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Preface to the Second Edition

During the nine years since the publication of the first edition of this
book, there has been substantial progress on the treatment of well-set prob-
lems of nonlinear solid mechanics. The main purposes of this second edition
are to update the first edition by giving a coherent account of some of the
new developments, to correct errors, and to refine the exposition. Much of
the text has been rewritten, reorganized, and extended.

The philosophy underlying my approach is exactly that given in the
following (slightly modified) Preface to the First Edition. In particular, I
continue to adhere to my policy of eschewing discussions relying on techni-
cal aspects of theories of nonlinear partial differential equations (although
I give extensive references to pertinent work employing such methods).
Thus I intend that this edition, like the first, be accessible to a wide circle
of readers having the traditional prerequisites given in Sec. 1.2.

I welcome corrections and comments, which can be sent to my electronic
mail address: ssa@math.umd.edu. In due time, corrections will be placed
on my web page: http://www.ipst.umd.edu/Faculty/antman.htm.

I am grateful to the following persons for corrections and helpful com-
ments about the first edition: J. M. Ball, D. Bourne, S. Eberfeld, T. Froh-
man, T. J. Healey, K. A. Hoffman, J. Horváth, O. Lakkis, J. H. Maddocks,
H.-W. Nienhuys, R. Rogers, M. Schagerl, F. Schuricht, J. G. Simmonds,
Xiaobo Tan, R. Tucker, Roh Suan Tung, J. P. Wilber, L. von Wolfersdorf,
and S.-C. Yip. I thank the National Science Foundation for its continued
support and the Army Research Office for its recent support.

Preface to the First Edition

The scientists of the seventeenth and eighteenth centuries, led by Jas.
Bernoulli and Euler, created a coherent theory of the mechanics of strings
and rods undergoing planar deformations. They introduced the basic con-
cepts of strain, both extensional and flexural, of contact force with its com-
ponents of tension and shear force, and of contact couple. They extended
Newton’s Law of Motion for a mass point to a law valid for any deformable
body. Euler formulated its independent and much subtler complement,
the Angular Momentum Principle. (Euler also gave effective variational
characterizations of the governing equations.) These scientists breathed

vii



viii PREFACE TO THE FIRST EDITION

life into the theory by proposing, formulating, and solving the problems
of the suspension bridge, the catenary, the velaria, the elastica, and the
small transverse vibrations of an elastic string. (The level of difficulty of
some of these problems is such that even today their descriptions are sel-
dom vouchsafed to undergraduates. The realization that such profound
and beautiful results could be deduced by mathematical reasoning from
fundamental physical principles furnished a significant contribution to the
intellectual climate of the Age of Reason.) At first, those who solved these
problems did not distinguish between linear and nonlinear equations, and
so were not intimidated by the latter.

By the middle of the nineteenth century, Cauchy had constructed the
basic framework of 3-dimensional continuum mechanics on the foundations
built by his eighteenth-century predecessors. The dominant influence on
the direction of further work on elasticity (and on every other field of
classical physics) up through the middle of the twentieth century was the
development of effective practical tools for solving linear partial differen-
tial equations on suitably shaped domains. So thoroughly did the concept
of linearity pervade scientific thought during this period that mathemati-
cal physics was virtually identified with the study of differential equations
containing the Laplacian. In this environment, the respect of the scientists
of the eighteenth century for a (typically nonlinear) model of a physical
process based upon fundamental physical and geometrical principles was
lost.

The return to a serious consideration of nonlinear problems (other than
those admitting closed-form solutions in terms of elliptic functions) was
led by Poincaré and Lyapunov in their development of qualitative methods
for the study of ordinary differential equations (of discrete mechanics) at
the end of the nineteenth century and at the beginning of the twentieth
century. Methods for handling nonlinear boundary-value problems were
slowly developed by a handful of mathematicians in the first half of the
twentieth century. The greatest progress in this area was attained in the
study of direct methods of the calculus of variations (which are very useful
in nonlinear elasticity).

A rebirth of interest in nonlinear elasticity occurred in Italy in the 1930’s
under the leadership of Signorini. A major impetus was given to the sub-
ject in the years following the Second World War by the work of Rivlin.
For special, precisely formulated problems he exhibited concrete and ele-
gant solutions valid for arbitrary nonlinearly elastic materials. In the early
1950’s, Truesdell began a critical examination of the foundations of contin-
uum thermomechanics in which the roles of geometry, fundamental physical
laws, and constitutive hypotheses were clarified and separated from the un-
systematic approximation then and still prevalent in parts of the subject.
In consequence of the work of Rivlin and Truesdell, and of work inspired
by them, continuum mechanics now possesses a clean, logical, and simple
formulation and a body of illuminating solutions.

The development after the Second World War of high-speed computers
and of powerful numerical techniques to exploit them has liberated scien-
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tists from dependence on methods of linear analysis and has stimulated
growing interest in the proper formulation of nonlinear theories of physics.
During the same time, there has been an accelerating development of meth-
ods for studying nonlinear equations. While nonlinear analysis is not yet
capable of a comprehensive treatment of nonlinear problems of continuum
mechanics, it offers exciting prospects for certain specific areas. (The level
of generality in the treatment of large classes of operators in nonlinear
analysis exactly corresponds to that in the treatment of large classes of
constitutive equations in nonlinear continuum mechanics.) Thus, after two
hundred years we are finally in a position to resume the program of analyz-
ing illuminating, well-formulated, specific nonlinear problems of continuum
mechanics.

The objective of this book is to carry out such studies for problems of
nonlinear elasticity. It is here that the theory is most thoroughly estab-
lished, the engineering tradition of treating specific problems is most highly
developed, and the mathematical tools are the sharpest. (Actually, more
general classes of solids are treated in our studies of dynamical problems;
e.g., Chap. 15 is devoted to a presentation of a general theory of large-
strain viscoplasticity.) This book is directed toward scientists, engineers,
and mathematicians who wish to see careful treatments of uncompromised
problems. My aim is to retain the orientation toward fascinating prob-
lems that characterizes the best engineering texts on structural stability
while retaining the precision of modern continuum mechanics and employ-
ing powerful, but accessible, methods of nonlinear analysis.

My approach is to lay down a general theory for each kind of elastic
body, carefully formulate specific problems, introduce the pertinent math-
ematical methods (in as unobtrusive a way as possible), and then conduct
rigorous analyses of the problems. This program is successively carried out
for strings, rods, shells, and 3-dimensional bodies. This ordering of topics
essentially conforms to their historical development. (Indeed, we carefully
study modern versions of problems treated by Huygens, Leibniz, and the
Bernoullis in Chap. 3, and by Euler and Kirchhoff in Chaps. 4, 5, and 8.)
This ordering is also the most natural from the viewpoint of pedagogy:
Chaps. 2–6, 8–10 constitute what might be considered a modern course in
nonlinear structural mechanics. From these chapters the novice in solid
mechanics can obtain the requisite background in the common heritage of
applied mechanics, while the experienced mechanician can gain an appre-
ciation of the simplicity of geometrically exact, nonlinear (re)formulations
of familiar problems of structural mechanics and an appreciation of the
power of nonlinear analysis to treat them. At the same time, the novice in
nonlinear analysis can see the application of this theory in simple, concrete
situations.

The remainder of the book is devoted to a thorough formulation of the
3-dimensional continuum mechanics of solids, the formulation and analysis
of 3-dimensional problems of nonlinear elasticity, an account of large-strain
plasticity, a general treatment of theories of rods and shells on the basis of
the 3-dimensional theory, and a treatment of nonlinear wave propagation
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and related questions in solid mechanics. The book concludes with a few
self-contained appendices on analytic tools that are used throughout the
text. The exposition beginning with Chap. 11 is logically independent of
the preceding chapters. Most of the development of the mechanics is given
a material formulation because it is physically more fundamental than the
spatial formulation and because it leads to differential equations defined on
fixed domains.

The theories of solid mechanics are each mathematical models of physi-
cal processes. Our basic theories, of rods, shells, and 3-dimensional bodies,
differ in the dimensionality of the bodies. These theories may not be con-
structed haphazardly: Each must respect the laws of mechanics and of
geometry. Thus, the only freedom we have in formulating models is essen-
tially in the description of material response. Even here we are constrained
to constitutive equations compatible with invariance restrictions imposed
by the underlying mechanics. Thus, both the mechanics and mathematics
in this book are focused on the formulation of suitable constitutive hy-
potheses and the study of their effects on solutions. I tacitly adopt the
philosophical view that the study of a physical problem consists of three
distinct steps: formulation, analysis, and interpretation, and that the anal-
ysis consists solely in the application of mathematical processes exempt
from ad hoc physical simplifications.

The notion of solving a nonlinear problem differs markedly from that for
linear problems: Consider boundary-value problems for the linear ordinary
differential equation

(1)
d2

ds2
θ(s) + λθ(s) = 0,

which arises in the elementary theory for the buckling of a uniform column.
Here λ is a positive constant. Explicit solutions of the boundary-value
problems are immediately found in terms of trigonometric functions. For
a nonuniform column (of positive thickness), (1) is replaced with

(2)
d

ds

[
B(s)

dθ

ds
(s)
]

+ λθ(s) = 0

where B is a given positive-valued function. In general, (2) cannot be
solved in closed form. Nevertheless, the Sturm-Liouville theory gives us
information about solutions of boundary-value problems for (2) so detailed
that for many practical purposes it is as useful as the closed-form solu-
tions obtained for (1). This theory in fact tells us what is essential about
solutions. Moreover, this information is not obscured by complicated for-
mulas involving special functions. We accordingly regard this qualitative
information as characterizing a solution.

The elastica theory of the Bernoullis and Euler, which is a geometrically
exact generalization of (1), is governed by the semilinear equation

(3)
d2

ds2
θ(s) + λ sin θ(s) = 0.
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It happens that boundary-value problems for (3) can be solved explicitly in
terms of elliptic functions, and we again obtain solutions in the traditional
sense. On the other hand, for nonuniform columns, (3) must be replaced
by

(4)
d

ds

[
B(s)

dθ

ds
(s)
]

+ λ sin θ(s) = 0,

for which no such solutions are available. In Chap. 5 we develop a non-
linear analog of the Sturm-Liouville theory that gives detailed qualitative
information on solutions of boundary-value problems for (4). The theory
has the virtues that it captures all the qualitative information about so-
lutions of (3) available from the closed-form solutions and that it does so
with far less labor than is required to obtain the closed-form solutions. We
shall not be especially concerned with models like (4), but rather with its
generalizations in the form

(5)
d

ds

[
M̂

(
dθ

ds
(s), s

)]
+ λ sin θ(s) = 0.

Here M̂ is a given constitutive function that characterizes the ability of the
column to resist flexure. When we carry out an analysis of equations like
(5), we want to determine how the properties of M̂ affect the properties of
solutions. In many cases, we shall discover that different kinds of physically
reasonable constitutive functions give rise to qualitatively different kinds of
solutions and that the distinction between the kinds of solutions has great
physical import. We regard such analyses as constituting solutions.

The prerequisites for reading this book, spelled out in Sec. 1.2, are a
sound understanding of Newtonian mechanics, advanced calculus, and lin-
ear algebra, and some elements of the theories of ordinary differential equa-
tions and linear partial differential equations. More advanced mathematical
topics are introduced when needed. I do not subscribe to the doctrine that
the mathematical theory must be fully developed before it is applied. In-
deed, I feel that seeing an effective application of a theorem is often the
best motivation for learning its proof. Thus, for example, the basic results
of global bifurcation theory are explained in Chap. 5 and immediately ap-
plied there and in Chaps. 6, 9, and 10 to a variety of buckling problems.
A self-contained treatment of degree theory leading to global bifurcation
theory is given in the Appendix (Chap. 21).

A limited repertoire of mathematical tools is developed and broadly
applied. These include methods of global bifurcation theory, continuation
methods, and perturbation methods, the latter justified whenever possible
by implicit-function theorems. Direct methods of the calculus of variations
are the object of only Chap. 7. The theory is developed here only insofar
as it can easily lead to illuminating insights into concrete problems; no
effort is made to push the subject to its modern limits. Special techniques
for dynamical problems are mostly confined to Chap. 18 (although many
dynamical problems are treated earlier).
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This book encompasses a variety of recent research results, a number
of unpublished results, and refinements of older material. I have chosen
not to present any of the beautiful modern research on existence theories
for 3-dimensional problems, because the theory demands a high level of
technical expertise in modern analysis, because very active contemporary
research, much inspired by the theory of phase transformations, might very
strongly alter our views on this subject, and because there are very attrac-
tive accounts of earlier work in the books of Ciarlet (1988), Dacorogna
(1989), Hanyga (1985), Marsden & Hughes (1983), and Valent (1988). My
treatment of specific problems of 3-dimensional elasticity differs from the
classical treatments of Green & Adkins (1970), Green & Zerna (1968), Og-
den (1984), Truesdell & Noll (1965), and Wang & Truesdell (1973) in its
emphasis on analytic questions associated with material response. In prac-
tice, many of the concrete problems treated in this book involve but one
spatial variable, because it is these problems that lend themselves most
naturally to detailed global analyses. The choice of topics naturally and
strongly reflects my own research interests in the careful formulation of
geometrically exact theories of rods, shells, and 3-dimensional bodies, and
in the global analysis of well-set problems.

There is a wealth of exercises, which I have tried to make interest-
ing, challenging, and tractable. They are designed to cause the reader
to (i) complete developments outlined in the text, (ii) carry out formula-
tions of problems with complete precision (which is the indispensable skill
required of workers in mechanics), (iii) investigate new areas not covered in
the text, and, most importantly, (iv) solve concrete problems. Problems,
on the other hand, represent what I believe are short, tractable research
projects on generalizing the extant theory to treat minor, open questions.
They afford a natural entrée to bona fide research problems.

This book had its genesis in a series of lectures I gave at Brown Uni-
versity in 1978–1979 while I was holding a Guggenheim Fellowship. Its
exposition has been progressively refined in courses I have subsequently
given at the University of Maryland and elsewhere. I am particularly in-
debted to many students and colleagues who have caught errors and made
useful suggestions. Among those who have made special contributions have
been John M. Ball, Carlos Castillo-Chavez, Patrick M. Fitzpatrick, James
M. Greenberg, Leon Greenberg, Timothy J. Healey, Massimo Lanza de
Cristoforis, John Maddocks, Pablo Negrón-Marrero, Robert Rogers, Felix
Santos, Friedemann Schuricht, and Li-Sheng Wang. I thank the National
Science Foundation for its continued support, the Air Force Office of Scien-
tific Research for its recent support, and the taxpayers who support these
organizations.
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CHAPTER 1

Background

1. Notational and Terminological Conventions
Mathematical statements such as formulas, theorems, figures, and ex-

ercises are numbered consecutively in each section. Thus formula (3.4.11)
and Theorem 3.4.12 are the eleventh and twelfth numbered statements in
Sec. 4 of Chap. 3. Within Chap. 3, these statements are designated simply
by (4.11) and Theorem 4.12.

Ends of proofs are designated by �. The symbols ∃ and ∀, which appear
only in displayed mathematical expressions, respectively stand for there ex-
ists and for all (or for any or for every). In definitions of mathematical
entities, I follow the convention that the expression iff designates the log-
ically correct if and only if , which is usually abbreviated by if. In the
statements of necessary and sufficient conditions, the phrase if and only if
is always written out.

The equivalent statements

b := a and a =: b

mean that the expression b is defined to equal expression a, which has
already been introduced. The statement a ≡ b says that a and b are
identical. This statement applies to expressions a and b that are being
simultaneously introduced or that have already been introduced; in the
latter case this statement is often used as a reminder that the identity was
established earlier.

I follow the somewhat ambiguous mathematical usage of the adjective
formal, which here means systematic, but without rigorous justification, as
in a formal calculation. A common exception to this usage is formal proof,
which is not employed in this book because it smacks of redundancy.

An elastic body is often described by an adjective referring to its shape,
e.g., a straight rod or a spherical shell. In each such case, it is understood
that the adjective refers to the natural reference configuration of the body
and not to any deformed configuration. When a restricted class of defor-
mations is studied, the restrictions are explicitly characterized by further
adjectives, as in axisymmetric deformations of a spherical shell.

Passages in small type contain refinements of fundamental results, proofs
that are not crucial for further developments, advanced mathematical argu-
ments (typically written in a more condensed style), discussions of related
problems, bibliographical notes, and historical remarks. None of this ma-
terial is essential for a first reading.

1



2 1. BACKGROUND

2. Prerequisites
The essential mathematical prerequisite for understanding this book is a

sound knowledge of advanced calculus, linear algebra, and the elements of
the theories of ordinary differential equations and partial differential equa-
tions, together with enough mathematical sophistication, gained by an ex-
posure to upper-level undergraduates courses in pure or applied mathemat-
ics, to follow careful mathematical arguments. Some of the important top-
ics from these fields that will be repeatedly used are the Implicit-Function
Theorem, the conditions for the minimization of a real-valued function,
variants of the Divergence and Stokes Theorems, standard results of vec-
tor calculus, eigenvalues of linear transformations, positive-definiteness of
linear transformations, the basic theorems on existence, uniqueness, con-
tinuation, and continuous dependence on data of solutions to initial-value
problems of ordinary differential equations, phase-plane methods, the clas-
sification of partial differential equations as to type, and orthogonal expan-
sions of solutions to linear partial differential equations.

A number of more esoteric mathematical concepts, most of which deal
with methods for treating nonlinear equations, will be given self-contained
developments. For the sake of added generality or precision, certain pre-
sentations are couched in the language of modern real-variable theory. The
reader having but a nodding familiarity with the intuitive interpretations
of these concepts, presented in Sec. 7, can blithely ignore their technical
aspects, which play no essential role in the exposition. Those few argu-
ments that rely on real-variable theory in a crucial way are presented in
small type; they can be skipped by the novice.

The prerequisites in physics or engineering are not so sharply delineated.
In principle, all that is necessary is a thorough understanding of Newtonian
mechanics. In practice, the requisite understanding is gained by exposure
to serious undergraduate courses in mechanics.

The rest of this chapter explains the conventions, fundamental defini-
tions, and basic analytic results used in this book. The next two sections
contain important statements of notational philosophy.

3. Functions
Consider the following little exercise: Suppose that the real-valued func-

tion f of two real variables is defined by the formula

(3.1) f(x, y) = x2 + y2.

Let

(3.2) x = r cos θ, y = r sin θ.

What is f(r, θ)? The answer that f(r, θ) = r2 is false (although traditional).
The correct answer is that f(r, θ) = r2 + θ2: We do not change the form
of the function f by changing the symbols for the independent variables.
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The transformation (3.2) is irrelevant; it was introduced expressly to be
misleading. To make sense of the incorrect answer and to account for
(3.2) we define a function g by g(r, θ) = f(r cos θ, r sin θ). Then we find
that g(r, θ) = r2. Thus g and f are different functions. The definition of
g shows how they are related. Now f(x, y) could represent the value of
some physical quantity, e.g., the temperature, at a point of the plane with
Cartesian coordinates (x, y). If (3.2) is used to replace (x, y) with polar
coordinates (r, θ), then the function g that delivers the same temperature at
the same point now represented by polar coordinates is a function different
from f , but “it has the same values”.

In short, a function is a rule. We consistently distinguish between the
function f and its value f(x, y) and we consistently avoid using the same
notation for different functions with the same values. We never refer to
‘the function f(x, y)’. We can of course define a function f by specifying
its values f(x, y) as in (3.1).

Formally, a function φ from set A to set B is a rule that associates with
each element a of A a unique element φ(a) of B. φ(a) is called the value of φ
at a. A is called the domain (of definition) of φ. (B may be called the target
of φ.) If we wish to emphasize the domain and target of φ, we refer to it as
the function φ : A → B. If we wish to emphasize the form of the function
φ, we refer to it as the function a �→ φ(a). For example, we can denote
the function f defined by (3.1) by (x, y) �→ x2 + y2. We give maximum
information about a function φ by denoting it as A � a �→ φ(a) ∈ B.
Finally, in certain circumstances it is convenient to refer to a function φ by
φ(·). For example, suppose y is fixed at some arbitrary value. Then (3.1)
defines a function of x (parametrized by y), which we denote by either
x �→ f(x, y) or f(·, y). If D is any subset of A, we define the range or
image of D under φ to be the set φ(D) := {φ(a) : a ∈ D} of all the values
assumed by φ when its arguments range over D. (The terminology is not
completely standardized.)

To anyone exposed to the standard texts in elementary and applied
mathematics, physics, or engineering, such a refined notational scheme
might seem utterly pretentious or compulsive. But I find that the use of the
traditional simpler notation of such texts, though adequate for linear prob-
lems, typically produces undue confusion in the mind of the unsophisticated
reader confronting nonlinear problems not only in continuum mechanics,
but also in rigid-body mechanics, calculus of variations, and differential
equations (because each of these fields requires the precise manipulation of
different functions having the same values).

Consequently, the refined notations for functions described above (found
in modern books on real variables) will be used consistently throughout this
book. In particular, if φ is a function, then an equation of the form φ = 0
means that φ is the zero function; there is no need to write φ(a) ≡ 0.
(We have reserved the symbol ‘≡’ for other purposes.) If two real-valued
functions f and g have the same domain of definition D, then the statement
f �= g means that there is at least one x in D for which f(x) �= g(x); there
may well be many x’s in D satisfying f(x) = g(x). We write f ≥ g iff
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f(x) ≥ g(x) for all x in D. We write f > g iff f ≥ g andf �= g. Note that
an inequality of the form φ > 0 is quite different from a statement that φ
is everywhere positive, i.e., that φ(x) > 0 for all x in the domain of φ.

We often abbreviate the typical partial derivative ∂
∂xg(x, y) by either

gx(x, y) or ∂xg(x, y), whichever leads to clearer formulas. (There is a no-
tational scheme in which gx and gy are denoted by g1 and g2. This scheme
does not easily handle arguments that are vector-valued.)

A function is said to be affine iff it differs from a linear function by a
constant.

The support of a function is the closure of the set on which it is not
zero. A function (defined on a finite-dimensional space) thus has compact
support if the set on which it is not zero is bounded.

We generally avoid using f−1 to designate the inverse of a function f . In
the rare cases in which it is used, f−1(y) denotes the value of the inverse at
y, while f(x)−1 denotes the reciprocal of the value of a real-valued function
f at x.

We apply the adjective smooth informally to any function that is con-
tinuously differentiable and that has as many derivatives as are needed to
make the mathematical processes valid in the classical sense. (We do not
follow the convention in which a smooth function is defined to be infinitely
differentiable.)

4. Vectors
There are three definitions of the concept of 3-dimensional vectors cor-

responding to three levels of sophistication: (i) Vectors are directed line
segments that obey the parallelogram rule of addition and that can be
multiplied by scalars. (ii) Vectors are triples of real numbers that can be
added and be multiplied by scalars in the standard componentwise fash-
ion. (iii) Vectors are elements of a 3-dimensional real vector space. We
regard the most primitive definition (i) and the most abstract definition
(iii) as being essentially equivalent, the latter giving a mathematically pre-
cise realization of the concepts of the former. The vectors we deal with
are either geometrical or physical objects. If we refer such vectors to a
rectilinear coordinate system, then their coordinate triples satisfy defini-
tion (ii). We eschew this definition on the practical grounds that its use
makes the formulas look more complicated and makes conversion to curvi-
linear coordinates somewhat less efficient and on the philosophical ground
that its use suppresses the invariance of the equations of physics under the
choice of coordinates: Even a boxer on awakening from a knockout punch
knows that the impulse vector applied to his chin has a physical significance
independent of any coordinate system used to describe it.

In light of these remarks, we define Euclidean 3-space E
3 to be abstract

3-dimensional real inner-product space. (Formal definitions of all these
terms are given in Sec. 19.1.) The elements of E

3 are called vectors. They
are denoted by lower-case, boldface, italic symbols u, v, etc. The inner
product of vectors u and v is denoted by the dot product u · v. E

3 is
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defined by assigning to this dot product the usual properties. Since we
ignore relativistic effects, we take E

3 as our model for physical space. Two
vectors u and v are orthogonal iff u · v = 0. We define the length of vector
u by |u| :=

√
u · u. A set of vectors is orthonormal iff they are mutually

orthogonal and each has length 1. On E
3 we can define the cross-product

u × v of u and v. The zero vector of E
3 is denoted o. We use without

comment the standard identities

(4.1)
(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c),

a × (b × c) = (a · c)b − (a · b)c.

A basis for E
3 is a linearly independent set of three vectors in E

3. The
triple {u,v,w} is a basis if and only if (u × v) · w �= 0. Such an ordered
basis is right-handed iff (u × v) · w > 0. Throughout this book we denote
a fixed right-handed orthonormal basis by

(4.2) {i, j,k} ≡ {i1, i2, i3} ≡ {i1, i2, i3}

using whichever notation is most convenient.
The span span {u1, . . . ,un} of vectors u1, . . . ,un is the set of all linear

combinations
∑n

k=0 αkuk, αk ∈ R, of these vectors. Thus span {k} is the
straight line along k and span {i, j,k} is E

3.
A linear transformation taking vectors into vectors (i.e., a linear trans-

formation taking E
3 into itself) is called a (second-order) tensor. Such

tensors are denoted by upper-case boldface symbols A, B, etc. Using
Gibbs notation we denote the value of a tensor A at u by A · u (in place
of the more customary Au). We correspondingly denote the product of A
and B by A ·B (in place of the more customary AB). The identity tensor
is denoted I and the zero tensor is denoted O. We set u ·A ·v := u ·(A ·v).
The transpose A∗ of A is defined by u · A · v = v · A∗ · u for all u,v. A
tensor A is said to be symmetric iff A∗ = A. A tensor A (symmetric or
not) is said to be positive-definite iff the quadratic form u · A · u > 0 for
all u �= o.

The determinant detA of A is defined by

(4.3) det A :=
[(A · u) × (A · v)] · (A · w)

[u × v] · w

for any basis {u,v,w}. It is independent of the basis chosen.
A tensor A is said to be invertible iff the equation A ·x = y has a unique

solution x for each y. In this case the solution is denoted A−1 ·y, and A−1,
which is a tensor, is the inverse of A. It can be shown that A is invertible
(i) if and only if the only solution of A · x = o is x = o, or equivalently
(ii) if and only if A · x = y has a solution x for each y, or equivalently
(iii) detA �= 0.

A tensor Q is said to be orthogonal iff |Q ·u| = |u| for all u and is said to
be proper-orthogonal iff it further satisfies det Q > 0. (Proper-orthogonal
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tensors describe rotations.) It can be shown that Q is orthogonal if and
only if Q−1 = Q∗. A detailed discussion of tensor algebra and calculus is
postponed until Chap. 11, because the fine points of the theory will only
be needed thereafter.

Let R
n denote the set of n-tuples of real numbers. We denote typ-

ical elements of this set by lower-case boldface sans-serif symbols, like
a ≡ (a1, . . . , an). The n-tuple of zeros is denoted o. As noted above, we
distinguish R

3 from the Euclidean 3-space E
3. Nevertheless, if necessary,

we can assign any one of several equivalent norms to R
n. When it is physi-

cally meaningful we define a · b :=
∑n

k=1 akbk. In particular, in Chap. 8 we
introduce a variable orthonormal basis (s, t) �→ {d1(s, t),d2(s, t),d3(s, t)}.
We represent a vector-valued function v by v = v1d1 + v2d2 + v3d3 and
we denote the triple (v1, v2, v3) by v. Thus v · v = v · v. It is essential to
note, however, that the components ∂tvk of vt are generally not equal to
the components vt · dk of vt.

If u �→ f(u) is defined in a neighborhood of v, then f is said to be
(Fréchet-) differentiable at v iff there is a tensor A and a function r such
that

(4.4) f(v+h) = f(v)+A·h+r(h,v) with
|r(h,v)|

|h| → 0 as h → o.

In this case, A is denoted ∂f
∂u (v) or fu(v) or ∂f(v)/∂u and is called the

(Fréchet) derivative of f at v. (As we shall see when we introduce com-
ponents, these notations are designed to indicate that the contribution of
f to the tensor ∂f/∂u precedes that of u. In particular, ∂f/∂u does not
in general equal (∂/∂u)f , which denotes its transpose in the notation in-
troduced in Chap. 11.) It follows from this definition that if g is Fréchet
differentiable near v and if w �→ f(w) is Fréchet differentiable near g(v),
then the composite function u �→ f(g(u)) is Fréchet differentiable near v,
and its Fréchet derivative is given by the Chain Rule:

(4.5)
∂

∂u
f(g(u)) =

∂f

∂w
(g(u)) · ∂g

∂u
(u).

A much weaker notion of a derivative is that of a directional derivative: If
for fixed v and h there is a number ε > 0 such that f(v + th) is defined for
all t ∈ [0, ε] and if d

dtf(v + th)
∣∣
t=0 exists, then it is called the (Gâteaux )

differential of u �→ f(u) at v in the direction h. If there is a Gâteaux
differential in each direction h and if this differential is linear in h, we
denote this differential by the same notation we have used for the Fréchet
differential: ∂f

∂u (v) · h. In this case, we call ∂f
∂u (v) the Gâteaux derivative

of f at v. Fréchet derivatives are Gâteaux derivatives. We shall make the
distinction between these derivatives explicit when we use them. Obvious
analogs of these notations for spaces that are not Euclidian will also be
used.

Let Ω be a domain in R
n and let Ω � u �→ f(u) ∈ R

m be continuously
differentiable. Let points x and y of Ω be joined by the straight line segment
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{αx + (1 − α)y : 0 ≤ α ≤ 1} lying entirely in Ω. Then the Fundamental
Theorem of Calculus and the Chain Rule imply that

(4.6)
f(x) − f(y) = f(αx + (1 − α)y)|α=1

α=0 =
∫ 1

0

∂

∂α
f(αx + (1 − α)y) dα

=
[∫ 1

0

∂f
∂u

(αx + (1 − α)y) dα
]

· (x − y).

The equality of the leftmost and rightmost terms of (4.3) constitutes the
form of the Mean-Value Theorem we consistently use. Multiple applications
of it yield Taylor’s Formula with Remainder.

A (parametrized) curve in E
3 is a continuous function s �→ r(s) ∈ E

3

defined on an interval of R. We often distinguish this curve from its image,
which is the geometrical figure consisting of all its values. The curve r
is continuously differentiable iff it admits a parametrization in which r is
continuously differentiable with respect to the parameter and its derivative
with respect to the parameter never vanishes.

A (parametrized) surface (patch) is a continuous function (s1, s2) �→
r(s1, s2) ∈ E

3 defined on a region of R
2. The surface r is continuously

differentiable iff it admits a parametrization, say with (s1, s2), such that
r is continuously differentiable with respect to these parameters and such
that ∂r

∂s1
× ∂r

∂s2
�= o.

Let f and g be defined on an interval and let a belong to the closure
of this interval. Then we write that f(t) = O{g(t)} as t → a iff |f/g| is
bounded near a and we write that f(t) = o{g(t)} as t→ a iff |f(t)/g(t)| → 0
as t→ a. O and o are the Landau order symbols.

5. Differential Equations
We denote ordinary derivatives by primes.
Let D be an open connected subset of R

3 and let I be an open interval
of real numbers. Let D × I � (x, y, z, s) �→ f(x, y, z, s) be a given continu-
ous function. A classical solution of the second-order ordinary differential
equation

(5.1) f(u, u′, u′′, s) = 0

is a twice continuously differentiable function I � s �→ u(s) such that(
u(s), u′(s), u′′(s)

)
∈ D for all s in I and such that

(5.2) f(u(s), u′(s), u′′(s), s) = 0 ∀ s ∈ I.

If f(·, ·, ·, s) is affine for all s in I, then the differential equation (5.1)
is said to be linear. If f(x, y, ·, s) is affine for every (x, y, s) at which it
is defined, then the differential equation (5.1) is said to be quasilinear. If
f(x, y, z, s) has the form l(z, s) + g(x, y, s) where l(·, s) is linear for all s in
I, then the differential equation (5.1) is said to be semilinear. Analogous



8 1. BACKGROUND

definitions apply to ordinary differential equations of any order, to systems
of ordinary differential equations, to partial differential equations of any
order, and to systems of partial differential equations. In each case, the
highest-order derivatives assume the role of u′′ here.

The fundamental partial differential equations of nonlinear solid me-
chanics are typically quasilinear. The fundamental ordinary differential
equations of 1-dimensional static problems, likewise typically quasilinear,
can often be converted to semilinear systems. For example, consider the
quasilinear second-order ordinary differential equation

(5.3)
d

ds

[
u′(s) − 1

u′(s)

]
+ g(u(s)) = 0

defined for u′ everywhere positive. Here g is a given function. (We seek a
solution u so that (5.3) holds for all s in a given interval. We exhibit the
independent variable s in (5.3) rather than convert (5.3) to the form (5.1),
so that we can avoid complicating the simple given form by carrying out
the differentiation d/ds by the chain rule.) By setting v = u′ − 1/u′, we
readily convert (5.3) to the system

(5.4) u′ =
v +

√
v2 + 4
2

, v′ = −g(u),

which we term semilinear because the system is linear in the highest deriva-
tives u′ and v′.

Throughout this book, we often tacitly scale an independent spatial
variable s so that it lies in an interval of a simple form, such as [0,1].

6. Notation for Sets
To describe parts of a physical body or collections of functions, we use

the notation of set theory. A set is a collection of objects called its elements.
We denote the membership of an element a in a set A by a ∈ A. A is a
subset of set B, denoted A ⊂ B, iff every element of A is a member of
B. A set is clearly a subset of itself. A set may be defined by listing its
elements (within braces) or by specifying its defining properties. The set of
all elements a in set B enjoying property P (a) is denoted {a ∈ B : P (a)}.
For example, the set of all positive numbers is {x ∈ R : x > 0}. The
empty set ∅ is the set with no elements. In any discussion, the set of all
objects under consideration form the universe, and all sets of such objects
are subsets of the universe.

The union of A and B, denoted A ∪ B, is the set of all elements that
belong to either A or B or both. In mathematical parlance, followed here,
‘or’ is not restrictive, so that an alternative of the form “P or Q” means
“either P or Q or both”. Thus A ∪ B is the set of all elements that belong
to A or B. The intersection of A and B, denoted A ∩ B, is the set of all
elements that belong to both A and B. The set of all elements in A and not
in B is denoted A\B. The complement \B of B is the set of all elements (in
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the universe) not in B. The set of all ordered pairs (a, b) with a ∈ A and
b ∈ B is denoted A × B; sets of ordered n-tuples are denoted analogously.
We set A × A = A2, etc. Thus the set of pairs (x1, x2) of real numbers
with 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1 is denoted [0, 1]2.

The closure, interior, and boundary of a set A are denoted by clA, intA,
and ∂A. A subset of E

n or R
n is said to be a domain iff it is open and

connected. A subset of these spaces is said to be compact iff it is closed
and bounded. (For definitions of standard topological notions used here,
see elementary books on analysis.)

7. Real-Variable Theory
Most of the fundamental laws of continuum mechanics are expressed as

relations among integrals. In traditional approaches, their integrands are
typically presumed continuous. Such a concession to mathematical con-
venience sacrifices the generality that enables the laws to encompass such
diverse phenomena as shock waves, domain walls, and fracture. Accord-
ingly, we shall require that the integrands in our fundamental integral laws
merely be integrable in a general sense. We thereby separate the statement
of fundamental principle from the regularity problem of deducing precisely
where the integrands enjoy more smoothness.

To make these notions precise we must employ the modern theory of
functions of a real variable. The purpose of this little section is not to give
an indigestible capsulization of real-variable theory, but merely to introduce
a couple of useful concepts.

The Lebesgue measure, or, simply, the measure, |A| of a subset A of R is a generalized
length of A, which reduces to the usual length when A is an interval. Likewise, the
Lebesgue measure |B| of a subset B of R2 or of E2 is a generalized area and the Lebesgue
measure |C| of a subset C of R3 or of E3 is a generalized volume, etc. Not all sets in
Rn or En admit a Lebesgue measure. There are other kinds of measures, such as mass
measures, useful in mechanics; see Sec. 12.6.

A set C of R3 has a Lebesgue measure or equivalently is (Lebesgue-) measurable iff
it can be suitably approximated by a countable number of rectangular blocks. For C
to have the classical notion of volume, which is its Jordan content, it must be suitably
approximated by a finite number of rectangular blocks. Consequently, the collection of
measurable sets is much larger than the collection of sets with Jordan content.

A set C of R3 has (Lebesgue) measure 0 iff for each ε > 0, C can be covered by a
countable collection of rectangular blocks (possibly overlapping) whose total volume is
≤ ε. (This is the first bona fide definition given in this section.) Analogous definitions
hold on R and R2. A property that holds everywhere on a set C except on a subset of
measure 0 is said to hold almost everywhere, abbreviated a.e. (on C). Thus it is easy to
show that the set of rational numbers, though everywhere dense in R, has measure 0 in
R.

The Lebesgue integral is defined in a way naturally compatible with the definition
of measure. The Lebesgue measure and integral afford not only greater generality than
the corresponding Jordan content and Riemann integral, but also support a variety of
powerful theorems, such as the Lebesgue Dominated Convergence Theorem and the
Fubini Theorem, which give easily verified conditions justifying the interchange of the
orders of infinite processes.

If f is Lebesgue-integrable on an interval I of R containing the point a, then (its



10 1. BACKGROUND

indefinite integral) F , defined by

(7.1) F (x) = c +
∫ x

a
f(ξ) dξ for x ∈ I

with c a constant, belongs to the very useful space AC(I) of absolutely continuous
functions on I. It can be shown that if F is absolutely continuous on I, then it is
continuous on I, it has a well-defined derivative f a.e. on I, f is Lebesgue-integrable
on I, and F is related to f by (7.1) with c replaced by F (a). (A function F is absolutely
continuous on I iff for arbitrary ε > 0 there is a δ > 0 such that

(7.2)
n∑

k=1

|f(yk) − f(xk)| < ε

for every finite collection (x1, y1), . . . , (xn, yn) of nonoverlapping intervals with∑n
k=1 |yk − xk| < δ.) The absolutely continuous functions play a fundamental role

in the general treatment of ordinary differential equations.

8. Function Spaces
Many processes in analysis are systematized by the introduction of col-

lections of functions having certain useful properties in common. A function
space is such a collection having the defining property that it is a vector
space, i.e., if any two functions f and g belong to the collection, then so
does every linear combination αf + βg where α and β are numbers. For
example, let Ω be a connected region of R

n or of E
n and let m be a pos-

itive integer. Then the collection of all continuous functions from Ω to
R

m is the function space denoted by C0(Ω; Rm). Since the range R
m is

obvious in virtually all our work (because the notational scheme described
in Sec. 4 tells when the range consists of scalars, vectors, tensors, or some
other objects), we suppress the appearance of the range, and simply write
C0(Ω). By C0(cl Ω) we denote the functions continuous on the closure of
Ω, which are the functions uniformly continuous on Ω. Likewise, for any
positive integer k we denote by Ck(Ω) the space of all k-times continuously
differentiable functions on Ω. If Ω is an interval such as [a, b] or (a, b), then
we abbreviate C0([a, b]) and C0((a, b)) by C0[a, b] and C0(a, b), etc.

Of comparable utility for mechanics are the real Lebesgue spaces Lp(Ω),
p ≥ 1, consisting of (equivalence classes of) all real-valued functions u on Ω
(differing only on a set of measure 0) such that |u|p is Lebesgue-integrable.
Thus if u ∈ Lp(Ω), then

(8.1)
∫

Ω
|u(z)|p dv(z) <∞

where dv(z) is the differential volume at z in Ω (i.e., v is the Lebesgue
measure on Ω). If u ∈ Lp(Ω) and v ∈ Lq(Ω) where 1

p + 1
q = 1, then they

satisfy the very useful Hölder inequality:

(8.2)
∫

Ω
|u(z)v(z)| dv(z) ≤

[∫
Ω

|u(z)|p dv(z)
] 1

p
[∫

Ω
|v(z)|q dv(z)

] 1
q

.
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(If p = 1 so that q = ∞ here, then the second integral on the right-hand side
of (8.2) can be interpreted as the (essential) supremum of |v| on Ω.) When
p = 2 = q, (8.2) is called the Cauchy-Bunyakovskĭı-Schwarz inequality.

The Sobolev spaces W 1
p (Ω), p ≥ 1, consist of (equivalence classes of)

all real-valued functions u on Ω (differing at most on a set of measure
0) such that |u|p and |uz|p are Lebesgue-integrable. Here uz denotes the
distributional derivative, a generalized derivative, of u, which is defined in
Sec. 19.1.

If Ω is an interval I on R, and if x, y ∈ I with x < y, then the classical
formula

(8.3) u(y) − u(x) =
∫ y

x

u′(ξ) dξ

can be shown to have meaning for u ∈W 1
p (I). If, furthermore, p > 1, then

the Hölder inequality implies that

(8.4)

|u(y) − u(x)| ≤
∫ y

x

1|u′(ξ)| dξ

≤
[∫ y

x

1q dξ

]1/q [∫ y

x

|u′(ξ)|p dξ
]1/p

≤ C(y − x)1/q

where the constant C ≡
[∫

I |u′(ξ)|p dξ
]1/p

< ∞ depends on u. This in-
equality says that if u ∈W 1

p (I) with p > 1, then u is continuous. It actually
says more (about the modulus of continuity of u):

(8.5) sup
x,y∈I:x�=y

|u(x) − u(y)|
|x− y|a ≤ const.

Here α = 1
q = 1 − 1

p . Thus u belongs to the space C0,α(I) of Hölder-
continuous functions with exponent α on I, which are defined by (8.5). A
function that is Hölder-continuous with exponent 1 is said to be Lipschitz-
continuous.

The spaces C0(cl Ω), C0,α(cl Ω), Lp(Ω), and W 1
p (Ω) are Banach spaces,

which are discussed in Chap. 19. Each function in such a space is endowed
with a size, its norm, naturally related to the linear structure of the space,
and the space has nice convergence properties expressed in terms of the
norm.



CHAPTER 2

The Equations of Motion
for Extensible Strings

1. Introduction
The main purpose of this chapter is to give a derivation, which is mathe-

matically precise, physically natural, and conceptually simple, of the quasi-
linear system of partial differential equations governing the large motion
of nonlinearly elastic and viscoelastic strings. This derivation, just like all
our subsequent derivations of equations governing the behavior of rods,
shells, and 3-dimensional bodies, is broken down into the description of
(i) the kinematics of deformation, (ii) fundamental mechanical laws (such
as the generalization of Newton’s Second Law to continua), and (iii) mate-
rial properties by means of constitutive equations. This scheme separates
the treatment of geometry and mechanics in steps (i) and (ii), which are
regarded as universally valid, from the treatment of constitutive equations,
which vary with the material. Since this derivation serves as a model for
all subsequent derivations, we examine each aspect of it with great care.
We pay special attention to the Principle of Virtual Power and the equiv-
alent Impulse-Momentum Law, which are physically and mathematically
important generalizations of the governing equations of motion and which
play essential roles in the treatments of initial and boundary conditions,
jump conditions, variational formulations, and approximation methods. In
this chapter we begin the study of simple concrete problems, deferring to
Chaps. 3 and 6 the treatment of more challenging problems.

The exact equations for the large planar motion of a string were derived by Euler
(1751) in 1744 and those for the large spatial motion by Lagrange (1762). By some
unfortunate analog of Gresham’s law, the simple and elegant derivation of Euler (1771),
which is based on Euler’s (1752) straightforward combination of geometry with mechan-
ical principles, has been driven out of circulation and supplanted with baser derivations,
relying on ad hoc geometrical and mechanical assumptions. (Evidence for this state-
ment can be found in numerous introductory texts on partial differential equations and
on mathematical physics. Rare exceptions to this unhappy tradition are the texts of
Bouligand (1954) and Weinberger (1965).) A goal of this chapter is to show that it is
easy to derive the equations correctly, much easier than following many modern exposi-
tions, which ask the reader to emulate the Red Queen by believing six impossible things
before breakfast.

The correct derivation is simple because Euler made it so. Modern authors should be
faulted not merely for doing poorly what Euler did well, but also for failing to copy from
the master. A typical ad hoc assumption found in the textbook literature is that the
motion of each material point is confined to the plane through its equilibrium position

13
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perpendicular to the line joining the ends of the string. In Sec. 7 we show that scarcely
any elastic strings can execute such a motion. Most derivations suppress the role of
material properties and even the extensibility of the string by assuming that the tension
is approximately constant for all small motions. Were it exactly constant, then no
segment of a uniform string could change its length, and if the ends of such a string
were held at a separation equal to the length of the string, then the string could not
move. (One author of a research monograph on 1-dimensional wave propagation derived
the wave equation governing the motion of an inextensible string. Realizing that an
inextensible string with its ends separated by its natural length could not move, however
pretty its governing equations, he assumed that one end of the string was joined to a
fixed point by a spring.) One can make sense out of such assumptions as those of purely
transverse motion and of the constancy of tension by deriving them as consequences of
a systematic perturbation scheme applied to the exact equations, as we do in Sec. 8.

Parts of Secs. 1–4, 6, 8 of this chapter are adapted from Antman (1980b) with the
kind permission of the Mathematical Association of America.

2. The Classical Equations of Motion
In this section we derive the classical form of the equations for the large

motion of strings of various materials. A classical solution of these equa-
tions has the defining property that all its derivatives appearing in the
equations are continuous on the interiors of their domains of definition.
To effect our derivation, we accordingly impose corresponding regularity
restrictions on the geometrical and mechanical variables. Since it is well
known on both physical and mathematical grounds that solutions of these
equations need not be classical, we undertake in Secs. 3 and 4 a more pro-
found study of their derivation, which dispenses with simplified regularity
assumptions.

Kinematics of deformation. Let {i, j,k} be a fixed right-handed or-
thonormal basis for the Euclidean 3-space E

3. A configuration of a string
is defined to be a curve in E

3. A string itself is defined to be a set of ele-
ments called material points (or particles) having the geometrical property
that it can occupy curves in E

3 and having the mechanical property that
it is ‘perfectly flexible’. The definition of perfect flexibility is given below.

We refrain from requiring that the configurations of a string be simple (noninter-
secting) curves for several practical reasons: (i) Adjoining the global requirement that
configurations be simple curves to the local requirement that configurations satisfy a sys-
tem of differential equations can lead to severe analytical difficulties. (ii) If two different
parts of a string come into contact, then the nature of the resulting mechanical interac-
tion must be carefully specified. (iii) A configuration with self-intersections may serve
as a particularly convenient model for a configuration in which distinct parts of a string
are close, but fail to touch. (iv) It is possible to show that configurations corresponding
to solutions of certain problems must be simple (see, e.g., Chap. 3).

We distinguish a configuration s �→ sk, in which the string lies along an
interval in the k-direction, as the reference configuration. We identify each
material point in the string by its coordinate s in this reference configura-
tion. If the domain of definition of the reference configuration is a bounded
interval, then, without loss of generality, we scale the length variable s to lie
in the unit interval [0, 1]. If this domain is semi-infinite or doubly infinite,
then we respectively scale s to lie in [0,∞) or (−∞,∞). In our ensuing
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development of the theory, we just treat the case in which this domain is
[0, 1]; adjustments for the other two cases are straightforward. (If the string
is a closed loop, we could take a circle as its reference configuration, but
there is no need to do this because the reference configuration need not
be one that can be continuously deformed from topologically admissible
configurations; the main purpose of the reference configuration is to name
material points.)

For a string undergoing some motion, let r(s, t) denote the position
of the material point (with coordinate) s at time t. For the purpose of
studying initial-boundary-value problems, we take the domain of r to be
[0, 1] × [0,∞). The function r(·, t) defines the configuration of the string
at time t. In this section we adopt the convention that every function of
s and t, such as r, whose values are exhibited here is ipso facto assumed
to be continuous on the interior of its domain. (We critically examine this
assumption in the next two sections.) The vector rs(s, t) is tangent to the
curve r(·, t) at r(s, t). (By our convention, rs is assumed to be continuous
on (0, 1) × (0,∞).) Note that we do not parametrize the curve r(·, t) with
its arc length. The parameter s, which identifies material points, is far
more convenient on mathematical and physical grounds.

The length of the material segment (s1, s2) in the configuration at time
t is the integral

∫ s2

s1
|rs(s, t)| ds. The stretch ν(s, t) of the string at (s, t) is

(2.1) ν(s, t) := |rs(s, t)|.

(It is the local ratio at s of the deformed to reference length, i.e., it is the
limit of

∫ s2

s1
|rs(s, t)| ds/(s2 − s1) as the material segment (s1, s2) shrinks

down to the material point s.) An attribute of a ‘regular’ motion is that
this length ratio never be reduced to zero:

(2.2) ν(s, t) > 0 ∀ (s, t) ∈ [0, 1] × [0,∞).

Provided that the reference configuration is natural, which means that there
is zero contact force acting across every material point in this configuration
(see the discussion of mechanics below), the string is said to be elongated
where ν(s, t) > 1, and to be compressed where ν(s, t) < 1. (The difficulty
one encounters in compressing a real string is a consequence of an instability
due to its great flexibility.)

To be specific, we assume that the ends s = 0 and s = 1 of the string are
fixed at the points o and Lk where L is a given positive number. In the
optimistic spirit that led us to assume that r is continuous on (0, 1)×(0,∞),
we further suppose that r(·, t) is continuous on [0, 1] for all t > 0. In this
case, our prescription of r at s = 0 and at s = 1 leads to boundary
conditions expressed by the following pointwise limits:

(2.3a) lim
s↘0

r(s, t) = o, lim
s↗1

r(s, t) = Lk for t > 0,

which imply that r(·, t) is continuous up to the ends of its interval of defi-
nition. These conditions are conventionally denoted by

(2.3b) r(0, t) = o, r(1, t) = Lk.
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We assume that the string is released from configuration s �→ u(s) with
velocity field s �→ v(s) at time t = 0. If rt(s, ·) is assumed to be continuous
on [0,∞) for each s ∈ (0, 1), then these initial conditions have the pointwise
interpretations

(2.4a) lim
t↘0

r(s, t) = u(s), lim
t↘0

rt(s, t) = v(s) for s ∈ (0, 1),

which are conventionally written as

(2.4b) r(s, 0) = u(s), rt(s, 0) = v(s).

The requirement that the data given on the boundary of [0, 1] × [0,∞)
by (2.3) and (2.4) be continuous, so that rt could be continuous on its
domain, is expressed by the compatibility conditions

(2.5) u(0) = o, u(1) = Lk, v(0) = o, v(1) = o.

Mechanics. Let 0 < a < b < 1. We assume that the forces acting on (the
material of) (a, b) in configuration r(·, t) consist of a contact force n+(b, t)
exerted on (a, b) by [b, 1], a contact force −n−(a, t) exerted on (a, b) by [0, a],
and a body force exerted on (a, b) by all other agents. We assume that the
body force has the form

∫ b

a
f(s, t) ds. The contact force n+(b, t) has the

defining property that it is the same as the force exerted on (c, b) by [b, d]
for each c and d satisfying 0 < c < b < d < 1. Analogous remarks apply
to −n−. Thus n±(·, t) are defined on an interval (0, 1) of real numbers, as
indicated (and not on a collection of pairs of disjoint intervals). We shall
see that the distinction between open and closed sets in the definitions of
contact forces will evaporate (for the problems we treat; this distinction
can play a critical role when the string is in contact with another body).
The minus sign before n−(a, t) is introduced for mathematical convenience.
(It corresponds to the sign convention of structural mechanics.)

Let (ρA)(s) denote the mass density per unit length at s in the reference
configuration. This rather clumsy notation, using two symbols for one
function, is employed because it is traditional and because it suggests that
the density per unit reference length at s in a real 3-dimensional string is the
integral of the density per unit reference volume, traditionally denoted by ρ,
over the cross section at s with area A(s). It is important to note, however,
that the notion of a cross-sectional area never arises in our idealized model
of a string. We assume that ρA is everywhere positive on (0, 1) and that it
is bounded on [0, 1].

The integrand f(s, t) of the body force is the body force per unit reference
length at s, t. The most common example of the body force on a segment
is the weight of the segment, in which case f(s, t) = −(ρA)(s)ge where
g is the acceleration of gravity and e is the unit vector pointing in the
vertical direction. f(s, t) could depend on r in quite complicated ways.
For example, f could have the composite form

(2.6) f(s, t) = g
(
r(s, t), rt(s, t), s, t

)
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where g is a prescribed function, which describes the effects of the envi-
ronment. The dependence of g on the velocity rt could account for air
resistance and its dependence upon the position r could account for vari-
able gravitational attraction.

The requirement that at typical time t the resultant force on the typical
material segment (a, s) ⊂ (0, 1) equal the time derivative of the linear mo-
mentum

∫ s

a
(ρA)(ξ)rt(ξ, t) dξ of that segment yields the following integral

form of the equation of motion

(2.7)
n+(s, t) − n−(a, t) +

∫ s

a

f(ξ, t) dξ

=
d

dt

∫ s

a

(ρA)(ξ)rt(ξ, t) dξ =
∫ s

a

(ρA)(ξ)rtt(ξ, t) dξ.

This equation is to hold for all (a, s) ⊂ (0, 1) and all t > 0.
The continuity of n+ implies that n+(a, t) = lims→a n+(s, t). Since f

and rtt are continuous, we let s→ a in (2.7) to obtain

(2.8) n+(a, t) = n−(a, t) ∀ a ∈ (0, 1).

Since the superscripts ± on n are thus superfluous, we drop them. We
differentiate (2.7) with respect to s to obtain the classical form of the
equations of motion:

(2.9) ns(s, t) + f(s, t) = (ρA)(s) rtt(s, t) for s ∈ (0, 1), t > 0.

Students of mechanics know that the motion of bodies is governed not
only by a linear momentum principle like (2.7), but also by an angular mo-
mentum principle. We shall shortly explain how the assumption of perfect
flexibility together with two additional assumptions ensure that the angular
momentum principle is identically satisfied. Under these conditions, (2.9)
represents the culmination of the basic mechanical principles for strings.

Constitutive equations. We describe those material properties of a string
that are relevant to mechanics by specifying how the contact force n is re-
lated to the change of shape suffered by the string in every motion r. Such
a specification, called a constitutive relation, must distinguish the material
response of a rubber band, a steel band, a cotton thread, and a filament of
chewing gum. The system consisting of (2.9) and the constitutive equation
is formally determinate: It has as many equations as unknowns.

A defining property of a string is its perfect flexibility, which is expressed
mathematically by the requirement that n(s, t) be tangent to the curve
r(·, t) at r(s, t) for each s, t:

(2.10a) rs(s, t) × n(s, t) = o ∀ s, t

or, equivalently, that there exist a scalar-valued function N such that

(2.10b) n(s, t) = N(s, t)
rs(s, t)
|rs(s, t)|

.
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(Note that (2.2) ensures that rs(s, t) �= o for each s, t.) Why (2.10) should
express perfect flexibility is not obvious from the information at hand. One
motivation for this condition could come from experiment. The best mo-
tivation for this tangency condition comes from outside our self-consistent
theory of strings, namely, from the theory of rods, which is developed in
Chaps. 4 and 8. The motion of a rod is governed by (2.9) and a companion
equation expressing the equality of the resultant torque on any segment of
the rod with the time derivative of the angular momentum for that seg-
ment. In the degenerate case that the rod offers no resistance to bending,
has no angular momentum, and is not subjected to a body couple, this sec-
ond equation reduces to (2.10a) (and the rod theory reduces to the string
theory).

The force (component) N(s, t) is the tension at (s, t). It may be of either
sign. Where N is positive it is said to be tensile and the string is said to
be under tension; where N is negative it is said to be compressive and the
string is said to be under compression. (This terminology is typical of the
inhospitability of the English language to algebraic concepts.)

From primitive experiments, we might conclude that the tension N(s, t)
at (s, t) in a rubber band depends only on the stretch ν(s, t) at (s, t) and
on the material point s. Such experiments might not suggest that this
tension depends on the rate at which the deformation is occurring, on the
past history of the deformation, or on the temperature. Thus we might
be led to assume that the string is elastic, i.e., that there is a constitutive
function (0,∞) × [0, 1] � (ν, s) �→ N̂(ν, s) ∈ R such that

(2.11) N(s, t) = N̂
(
ν(s, t), s

)
.

Note that (2.11) does not allow N(s, t) to depend upon r(s, t) through
N̂ . Were there such a dependence, then we could change the material prop-
erties of the string simply by translating it from one position to another. (In
this case, it would be impossible to use springs to measure the acceleration
of gravity at different places, as Hooke did, by measuring the elongation
produced in a given spring by the suspension of a given mass.) Similarly,
(2.11) does not allow N(s, t) to depend upon all of rs(s, t), but only on its
magnitude, the stretch ν(s, t). A dependence on rs(s, t) would mean that
we could change the material response of the string by merely changing its
orientation. Finally, (2.11) does not allow N(s, t) to depend explicitly on
absolute time t (i.e., N̂ has no slot for the argument t alone). At first sight,
this omission seems like an unwarranted restriction of generality, because
a real rubber band becomes more brittle with the passage of time. But
a careful consideration of this question suggests that the degradation of a
rubber band depends on the time elapsed since its manufacture, rather than
on the absolute time. Were the constitutive function to depend explicitly
on t, then the outcome of an experiment performed today on a material
manufactured yesterday would differ from the outcome of the same experi-
ment performed tomorrow on the same material manufactured today. This
dependence on time lapse can be generalized by allowing N(s, t) to depend



2.2. THE CLASSICAL EQUATIONS OF MOTION 19

on the past history of the deformation at (s, t). We shall soon show how
to account for this dependence. In using (2.11) one chooses to ignore such
effects. That the material response should be unaffected by rigid motions
and by time translations is called the Principle of Frame-Indifference (or
the Principle of Objectivity).

Let us sketch how the use of this principle leads to a systematic method
for reducing a constitutive equation in a general form such as

(2.12a) N(s, t) = N0
(
r(s, t), rs(s, t), s, t

)
to a very restricted form such as (2.11). (In Chaps. 8 and 12, we give
major generalizations of this procedure.) A motion differing from r by a
rigid motion has values of the form c(t) + Q(t) · r(s, t) where c is an arbi-
trary vector-valued function and where Q is an arbitrary proper-orthogonal
tensor-valued function. (A full discussion of these tensors is given in Chap.
11.) Then N0 is invariant under rigid motions and time translations if and
only if

(2.12b) N0
(
r, rs, s, t

)
= N0

(
c(t) + Q(t) · r,Q(t) · rs, s, t+ a

)
for all vector-valued functions c, for all proper-orthogonal tensor-valued
functions Q, and for all real numbers a. First we take c = o, Q = I. Then
(2.12b) implies that N0 is independent of its last argument t. Next we take
Q = I and let c be arbitrary. Then (2.12b) implies that N0 is independent
of its first argument r. Finally we let Q be arbitrary. We write rs = νe
where e is a unit vector. Then (2.12b) reduces to

(2.12c) N0
(
νe, s

)
= N0

(
νQ(t) · e, s

)
.

We regard theN0 of (2.12c) as a function of the three arguments ν ∈ (0,∞),
the unit vector e, and s. But (2.12c) says that (2.12c) is unaffected by the
replacement of e with any unit vector, so that N0 must be independent of
e, i.e., (2.12a) must have the form (2.11).

There is no physical principle preventing the constitutive function from
depending in a frame-indifferent way on higher s-derivatives of r. Such a
dependence arises in certain more refined models for strings that account
for thickness changes. For example, to obtain a refined model for a rubber
band, one might wish to exploit the fact that rubber is nearly incompress-
ible, so that the volume of any piece of rubber is essentially constant.
Within a theory of strings, this constraint can be modelled by taking the
thickness to be determined by the stretch, with the consequence that higher
derivatives enter the constitutive equations and the inertia terms. (See the
discussion in Sec. 16.12.) Similar effects arise in string models for com-
pressible materials (cf. Sec. 8.9. These can be interpreted as describing an
internal surface tension, which seems to be of limited physical importance
except for problems of shock structure and phase changes where its role
can be critical. See Carr, Gurtin, & Slemrod (1984), Hagan & Slemrod
(1983)), and the references cited in item (iv) Sec. 14.16.
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Anyone who rapidly deforms a rubber band feels an appreciable increase
in temperature θ. One can also observe that the mechanical response of the
band is influenced by its temperature. To account for these effects we may
replace (2.11) with the mechanical constitutive equation for a thermoelastic
string:

(2.13) N(s, t) = N̂00
(
ν(s, t), θ(s, t), s

)
.

When this equation is used, the equation of motion must be supplemented
with the energy equation, and the new variables entering the energy equa-
tion must be related by constitutive equations.

The motion of a rubber band fixed at its ends and subject to zero body
force is seen to die down in a short time, even if the motion occurs in
a vacuum. The chief source of this decay is internal friction, which is
intimately associated with thermal effects. The simplest model for this
friction, which ignores thermal effects, is obtained by assuming that the
tension N(s, t) depends on the stretch ν(s, t), the rate of stretch νt(s, t),
and the material point s; that is, there is a function (0,∞) × R × [0, 1] �
(ν, ν̇, s) �→ N̂1(ν, ν̇, s) ∈ R such that

(2.14) N(s, t) = N̂1
(
ν(s, t), νt(s, t), s

)
.

(Note that in general νt ≡ |rs|t is not equal to |rst|. In the argument
ν̇ of N̂1, the superposed dot has no operational significance: ν̇ is just a
symbol for a real variable, in whose slot, however, the time derivative νt
appears in (2.14).) When (2.14) holds, the string may be called viscoelastic
of strain-rate type with complexity 1. (Some authors refer to such materials
as being of rate type, while others refer to them as being of differential
type, reserving rate type for an entirely different class.) It is clear that
(2.14) ensures that the material response is unaffected by rigid motions
and translations of time:

2.15. Exercise. Prove that a frame-indifferent version of the constitutive equation
N (s, t) = N̂1(rs(s, t), rst(s, t), s) must have the form (2.14).

The form of (2.14) suggests the generalization in which N (s, t) depends upon the first
k t-derivatives of ν(s, t) and on s. (Such a string is termed viscoelastic of strain-rate
type with complexity k.) This generalization is but a special case of that in which N (s, t)
depends upon the past history of ν(s, ·) and upon s. To express the constitutive equation
for such a material, we define the history νt(s, ·) of ν(s, ·) up to time t on [0,∞) by

(2.16a) νt(s, τ ) := ν(s, t − τ ) for τ ≥ 0.

Then the most general constitutive equation of the class we are considering has the form

(2.16b) N (s, t) = N̂∞
(
νt(s, ·), s

)
.

The domain of N̂∞(·, s) is a class of positive-valued functions. A material described by
(2.16) (that does not degenerate to (2.11)) and that is dissipative may be called viscoelas-
tic. This term is rather imprecise; in modern continuum mechanics it is occasionally
used as the negation of elastic and is thus synonymous with inelastic.



2.2. THE CLASSICAL EQUATIONS OF MOTION 21

Note that (2.14) reduces to (2.11) where the string is in equilibrium. Similarly, if the
string with constitutive equation (2.16b) has been in equilibrium for all time before t
(or, more generally, for all such times t − τ for which ν(s, t − τ ) influences N̂∞), then
(2.16b) also reduces to (2.11). Thus “the equilibrium response of all strings (in a purely
mechanical theory) is elastic.” We shall pay scant attention to constitutive equations of
the form (2.16b) more general than (2.14). There is a fairly new and challenging math-
ematical theory for such materials with nonlinear constitutive equations; see Renardy,
Hrusa, & Nohel (1987).

A string is said to be uniform if ρA is constant and if its constitutive
function N̂ , N̂1, . . . does not depend explicitly on s. A real (3-dimensional)
string fails to be uniform when its material properties vary along its length
or, more commonly, when its cross section varies along its length. If only
the latter occurs, we can denote the cross-sectional area at s by A(s). Then
(ρA)(s) reduces to ρA(s) where ρ is the given constant mass density per
reference volume. In this case, the constitutive function N̂ might well have
the form N̂(ν, s) = A(s)N(ν), etc.

Not every choice of the constitutive functions N̂ , etc., is physically rea-
sonable: We do not expect a string to shorten when we pull on it and we
do not expect friction to speed up its motion. We can ensure that an in-
crease in tension accompany an increase in stretch for an elastic string by
assuming that ν �→ N̂(ν, s) is (strictly) increasing, i.e., N̂(ν2, s) > N̂(ν1, s)
if and only if ν2 > ν1. This condition can be expressed more symmetrically
by

(2.17a) [N̂(ν2, s) − N̂(ν1, s)][ν2 − ν1] > 0 if and only if ν2 �= ν1.
Our statement that (2.17a) is physically reasonable does not imply that
constitutive functions violating (2.17a) are unreasonable. Indeed, models
satisfying (2.17a) except for ν in a small interval have been used to describe
instabilities associated with phase transitions (see Ericksen (1975, 1977b),
James (1979, 1980), Magnus & Poston (1979), and Carr, Gurtin, & Slemrod
(1984) and the references cited in item (iv) of Sec. 14.16).

A stronger condition, which is physically reasonable but not essential
for many problems, is that ν �→ N̂(ν, s) be uniformly increasing, i.e., that
there be a positive number c such that

(2.17b) [N̂(ν2, s) − N̂(ν1, s)][ν2 − ν1] > c[ν2 − ν1]2.

If N̂(·, s) is differentiable, then (2.17b) is equivalent to

(2.17c) N̂ν ≥ c everywhere.

If N̂(·, s) is differentiable, then a condition intermediate to (2.17a) and
(2.17c) is that

(2.17d) N̂ν > 0 everywhere.

Conditions (2.17a,b) could be equivalently expressed as inequalities for difference
quotients, but such inequalities do not naturally generalize to the case (treated exten-
sively in later chapters) in which N̂ is replaced with a vector-valued function. Note that
there is not a perfect correspondence between our conditions on differences and those
on derivatives.
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One can impose hypotheses on N̂ short of differentiability that ensure that ν̂ has
properties somewhat better than mere continuity (and weaker than (2.17b): Suppose
that N̂ is continuous and further that there is a function f on [0,∞) with x �→ f (x)/x
strictly increasing from 0 to ∞ such that

(2.17e) [N̂ (ν1, s) − N̂ (ν2, s)](ν1 − ν2) ≥ f (|ν1 − ν2|).

This condition strengthens (2.17a).

Since ν �→ N̂1(ν, 0, s) describes elastic response, we could require it to
satisfy (2.17a). A stronger, though reasonable, restriction on N̂1 is that:

(2.18) ν �→ N̂1(ν, ν̇, s) is strictly increasing.

Similar restrictions could be placed on other constitutive functions.

The discussion of armchair experiments in the preceding paragraph is intentionally
superficial. If we pull on a real string, we prescribe either its total length or the tensile
forces at its ends. But in pulling the string we may produce a stretch that varies from
point to point; the integral of the stretch is the total actual length. In typical experi-
ments, one measures the tensile force at the ends when the total length is prescribed,
and one measures the total length when the tensile force at the ends is prescribed. These
experimental measurements of global quantities correspond to information coming from
the solution of a boundary-value problem. It is in general a very difficult matter to
determine the constitutive function, which has a local significance and which determines
the governing equations, from a family of solutions.

For an elastic string the requirements that an infinite tensile force must
accompany an infinite stretch and that an infinite compressive force must
accompany a total compression to zero stretch are embodied in

(2.19a,b) N̂(ν, s) → ∞ as ν → ∞, N̂(ν, s) → −∞ as ν → 0.

The reference configuration is natural if the tension vanishes in it. Thus
for elastic strings this property is ensured by the constitutive restriction

(2.20) N̂(1, s) = 0.

It is easy to express assumptions corresponding to those of this paragraph
for other materials.

That (2.14) describes a material with a true internal friction, i.e., a
material for which energy is dissipated in every motion, is ensured by the
requirement that

(2.21) [N̂1(ν, ν̇, s) − N̂1(ν, 0, s)] ν̇ > 0 for ν̇ �= 0.

A proof that (2.21) ensures that (2.14) is ‘dissipative’ is given in Ex. 2.29.
A stronger restriction, which ensures that the frictional force increases with
the rate of stretch, is that

(2.22a) ν̇ �→ N̂1(ν, ν̇, s) is strictly increasing.



2.2. THE CLASSICAL EQUATIONS OF MOTION 23

Clearly, (2.22a) implies (2.21). The function N̂1(ν, ·, s) can be classified just
as in (2.17). Condition (2.22a) is mathematically far more tractable than
(2.21), but much of modern analysis requires the yet stronger condition

(2.22b) ν̇ �→ N̂1(ν, ν̇, s) is uniformly increasing.

There are a variety of mathematically useful consequences of the con-
stitutive restrictions we have imposed. In particular, hypothesis (2.19)
and the continuity of N̂ enable us to deduce from the Intermediate-Value
Theorem that for each given s ∈ [0, 1] and N ∈ R there is a ν satisfying
N̂(ν, s) = N . Hypothesis (2.17a) implies that this solution is unique. We
denote it by ν̂(N, s). Thus ν̂(·, t) is the inverse of N̂(·, t), and (2.11) is
equivalent to

(2.23) ν(s, t) = ν̂
(
N(s, t), s

)
.

If N̂ is continuously differentiable and satisfies the stronger hypothesis
(2.17d), then the classical Local Implicit-Function Theorem implies that
ν̂ is continuously differentiable because N̂ is. These results constitute a
simple example of a global implicit function theorem. We shall employ a
variety of generalizations of it throughout this book.

Let g be the inverse of x �→ f (x)/x where f is given in (2.17e). Then (2.17e)
immediately implies that

|ν̂(N1, s) − ν̂(N2, s)| ≤ g (|N1 −N2|) ,

which implies that ν̂ is continuous and gives a modulus of continuity for it.

We substitute (2.11) or (2.14) into (2.10b) and then substitute the re-
sulting expression into (2.9). We thus obtain a quasilinear system of partial
differential equations for the components of r. The full initial-boundary-
value problem for elastic strings consists of (2.3), (2.4), (2.9), (2.10b), and
(2.11). That for the viscoelastic string of strain-rate type is obtained by
replacing (2.11) with (2.14). If we use (2.16b), then in place of a partial
differential equation we obtain a partial functional-differential equation,
for which we must supplement the initial conditions (2.4) by specifying the
history of r up to time 0.

It proves mathematically convenient to recast these initial-boundary-
value problems in an entirely different form, called the weak form of the
equations by mathematicians and the Principle of Virtual Power (or the
Principle of Virtual Work) by physicists and engineers. The traditional
derivation of this formulation from (2.9) is particularly simple: We intro-
duce the class of functions y ∈ C1([0, 1] × [0,∞)) such that y(0, t) = o =
y(1, t) (for all t ≥ 0) and such that y(s, t) = o for all t sufficiently large.
These functions are termed test functions by mathematicians and virtual
velocities (or virtual displacements) by physicists and engineers. We take
the dot product of (2.9) with a test function y and integrate the resulting
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expression by parts over [0, 1] × [0,∞). Using (2.4) and the properties of
y we obtain

(2.24)
∫ ∞

0

∫ 1

0
[n(s, t) · ys(s, t) − f(s, t) · y(s, t)] ds dt

=
∫ ∞

0

∫ 1

0
(ρA)(s)[rt(s, t)−v(s)]·yt(s, t) ds dt for all test functions y.

Equation (2.24) expresses a version of the Principle of Virtual Power for
any material. We can substitute our constitutive equations into it to get a
version of this principle suitable for specific materials.

Under the smoothness assumptions in force in this section, we have
shown that (2.7) and (2.4) imply (2.24). An equally simple procedure
(relying on the Fundamental Lemma of the Calculus of Variations) shows
that the converse is true.
2.25. Exercise. Derive (2.24) from (2.9) and (2.4) and then derive (2.9) and (2.4)
from (2.24). The Fundamental Lemma of the Calculus of Variations states that if f is
integrable on a measurable set E of Rn and if

∫
E fg dv = 0 for all continuous g, then

f = 0 (a.e.). Here dv is the differential volume of Rn.

Equation (2.9) is immediately integrated to yield (2.7) with n+ = n− =
n. Then the integral form (2.7), the classical form (2.9), and the weak
form (2.24) of the equations of motion are equivalent under our smooth-
ness assumptions. In Sec. 4 we critically reexamine this equivalence in the
absence of such smoothness.
2.26. Exercise. When undergoing a steady whirling motion about the k-axis, a string
lies in a plane rotating about k with constant angular velocity ω and does not move
relative to the rotating plane. Let f(s, t) = g(s)k, where g is prescribed. Let (2.3)
hold. Find a boundary-value problem for a system of ordinary differential equations,
independent of t, governing the steady whirling motion of an elastic string under these
conditions. Show that the steady whirling of a viscoelastic string described by (2.14)
is governed by the same boundary-value problem. How is this result influenced by the
frame-indifference of (2.14)? (Suppose that N were to depend on rs and rst.)

2.27. Exercise. For an elastic string, let W (ν, s) :=
∫ ν
1 N̂ (ν̄ , s) dν̄ . Suppose that f has

the form f(s, t) = g(r(s, t), s) where g(·, s) is the Fréchet derivative (gradient) of the
scalar-valued function −ω(·, s), i.e., g(r, s) = −ωr(r, s), where ω is prescribed. (Thus f
is conservative.) W is the stored-energy or strain-energy function for the elastic string
and ω is the potential-energy density function for the body force f . Show that the
integration by parts of the dot product of (2.9) with rt over [0, 1] × [0, τ ) and the use of
(2.3) and (2.4) yield the conservation of energy:

(2.28)
∫ 1

0

[
W
(
ν(s, τ ), s

)
+ ω

(
r(s, τ ), s

)
+ 1

2 (ρA)(s)|rt(s, τ )|2
]
ds

=
∫ 1

0

[
W
(
|us(s)|, s

)
+ ω

(
u(s), s

)
+ 1

2 (ρA)(s)|v(s)|2
]
ds.

(This process parallels that by which (2.24) is obtained from (2.9) and (2.4).) Show
that (2.28) can be obtained directly from (2.24) and (2.3) by choosing y(s, t) in (2.24)
to equal rt(s, t)χ(t, τ, ε) where

χ(t, τ, ε) :=

⎧⎪⎨⎪⎩
1 for 0 ≤ t ≤ τ,
1 + (τ − t)/ε for τ ≤ t ≤ τ + ε,

0 for τ + ε ≤ t,
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and then taking the limit of the resulting version of (2.24) as ε → 0. See Sec. 10 for
further material on energy.

2.29. Exercise. Let (2.14) hold and set N̂ (ν, s) = N̂1(ν, 0, s). Define W as in Ex. 2.27.
Let f have the conservative form shown in Ex. 2.26. Define the total energy of the
string at time τ to be the left-hand side of (2.28). Form the dot product of (2.9) with
rt, integrate the resulting expression with respect to s over [0, 1], and use (2.3) to obtain
an expression for the time derivative of the total energy at time t. This formula gives a
precise meaning to the remarks surrounding (2.21).

2.30. Exercise. Formulate the boundary conditions in which the end s = 1 is con-
strained to move along a frictionless continuously differentiable curve in space. Let this
curve be given parametrically by a �→ r̄(a). (Locate the end at time t with the parameter
a(t).) A mechanical boundary condition is also needed.

2.31. Exercise. Formulate a suitable Principle of Virtual Power for the initial-
boundary-value problem of this section modified by the replacement of the boundary
condition at s = 1 with that of Ex. 2.30. The mechanical boundary condition at s = 1
should be incorporated into the principle.

The first effective steps toward correctly formulated equations for the vibrating string
were made by Taylor (1713) and Joh. Bernoulli (1729). D’Alembert (1743) derived the
first explicit partial differential equation for the small motion of a heavy string. The
correct equations for the large vibrations of a string in a plane, equivalent to the planar
version of (2.9), (2.10b), were derived by Euler (1751) in 1744 by taking the limit of
the equations of motion for a finite collection of beads joined by massless elastic springs
as the number of beads approaches infinity while their total mass remains fixed. The
correct linear equation for the small planar transverse motion of an elastic string, which
is just the wave equation, was obtained and beautifully analyzed by d’Alembert (1747).
Euler (1752) stated ‘Newton’s equations of motion’ and in his notebooks used them to
derive the planar equations of motion for a string in a manner like the one just presented.
A clear exposition of this derivation together with a proof that n+ = n− was given by
Euler (1771). Lagrange (1762) used the bead model to derive the spatial equations of
motion for an elastic string. The Principle of Virtual Power in the form commonly
used today was laid down by Lagrange (1788). A critical historical appraisal of these
pioneering researches is given by Truesdell (1960), upon whose work this paragraph is
based.

We note that the quasilinear system (2.9), (2.10b), (2.11) arising from the concep-
tually simple field of classical continuum mechanics is generally much harder to analyze
than semilinear equations of the form utt − uss = f (u, us), which arise in conceptually
difficult fields of modern physics.

3. The Linear Impulse-Momentum Law
The partial differential equations for the longitudinal motion of an elas-

tic string are the same as those for the longitudinal motion of a naturally
straight elastic rod (for which compressive states are observed). It has long
been known that solutions of these equations can exhibit shocks, i.e., dis-
continuities in rs or rt. (See the discussion and references in Chap. 18.)
Shocks can also arise in strings with constitutive equations of the form
(2.16b) (see Renardy, Hrusa, & Nohel (1987)). On the other hand, An-
drews (1980), Andrews & Ball (1982), Antman & Seidman (1996), Dafer-
mos (1969), Greenberg, MacCamy, & Mizel (1968), Kanel’ (1969), and
MacCamy (1970), among many others, have shown that the longitudi-
nal motions of nonlinearly viscoelastic strings (or rods) for special cases
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of (2.14) satisfying a uniform version of (2.22) do not exhibit shocks. The
burden of these remarks is that the smoothness assumptions made in Sec. 2
are completely unwarranted for nonlinearly elastic strings and for certain
kinds of nonlinearly viscoelastic strings.

It is clear that the integral form (2.7) of the equations of motion makes
sense under smoothness assumptions weaker than those used to derive (2.9).
In this section we study natural generalizations of (2.3), (2.4), (2.7), and
(2.8) under such weaker assumptions. In the next section we demonstrate
the equivalence of these generalizations with a precisely formulated version
of the Principle of Virtual Power.

We formally integrate (2.7) with respect to t over [0, τ ] and take account
of (2.4) to obtain the Linear Impulse-Momentum Law:

(3.1)

∫ τ

0

[
n+(s, t)−n−(a, t)

]
dt+

∫ τ

0

∫ s

a

f(ξ, t) dξ dt

=
∫ s

a

(ρA)(ξ)[rt(ξ, τ) − v(ξ)] dξ,

which is to hold for (almost) all a, s, τ . The left-hand side of (3.1) is
the linear impulse of the force system {n±,f} and the right-hand side is
the change in linear momentum for the material segment (a, s) over the
time interval (0, τ). We regard (3.1) as the natural generalization of the
equations of motion (2.7).

We now state virtually the weakest possible conditions on the functions
entering (3.1) for its integrals to make sense as Lebesgue integrals and
for our boundary and initial conditions to have consistent generalizations.
These generalizations are the highlights of the ensuing development, the
details of which can be omitted by the reader unfamiliar with real analysis.

We assume that there are numbers σ− and σ+ such that

(3.2) 0 < σ− ≤ (ρA)(s) ≤ σ+ < ∞ ∀ s ∈ [0, 1].

We assume that rs and rt are locally integrable on [0, 1] × [0,∞), that r satisfies the
boundary conditions (2.3) in the sense of trace (see Adams (1975), Nečas (1967)), i.e.,
that

(3.3) lim
s↘0

∫ t2

t1

r(s, t) dt = o, lim
s↗1

∫ t2

t1

[r(s, t) − Lk] dt = o ∀ (t1, t2) ⊂ [0,∞),

that u is integrable on [0, 1], that the first initial condition of (2.4) is assumed in the
sense of trace:

(3.4) lim
t↘0

∫ b

a
(ρA)(s)[r(s, t) − u(s)] ds = o ∀ [a, b] ⊂ [0, 1],

and that v is integrable on [0, 1]. Conditions (3.3) and (3.4) are consistent with the
local integrability of rs and rt (see Adams (1975), Nečas (1967)). We do not prescribe
a generalization of the second initial condition of (2.4) because we shall show that it is
inherent in (3.1), as the presence there of v suggests. We finally assume that n± and f
are locally integrable on [0, 1] × [0,∞).



2.3. THE LINEAR IMPULSE-MOMENTUM LAW 27

Since we are merely assuming that our variables are integrable over compact subsets
of [0, 1]× [0,∞), we must show that the single integrals in (3.1) make sense: By Fubini’s
Theorem, the local integrability of n+ implies that for each τ ∈ (0,∞) there is a set
A+(τ ) ⊂ [0, 1] with Lebesgue measure |A+(τ )| = 1 such that n+(s, ·) is integrable
over [0, τ ] for s ∈ A+(τ ). Moreover, the Lebesgue Differentiation Theorem implies
that there is a subset A+

0 (τ ) of A+(τ ) with |A+
0 (τ )| = 1 such that for s ∈ A+

0 (τ ), the
integral

∫ τ
0 n+(s, t) dt has the ‘right’ value in the sense that it is the limit of its averages

over intervals centered at s. The corresponding statements obtained by replacing the
superscript ‘+’ by ‘−’ are likewise true. Let A(τ ) := A+

0 (τ ) ∩ A−
0 (τ ). (Thus |A(τ )| = 1

for each τ .) Let B be the set of t ≥ 0 for which (ρA)(·)rt(·, t) is integrable over [0, 1] and
for which

∫ 1
0 (ρA)(s)rt(s, t) ds has the ‘right’ value. (Fubini’s Theorem and Lebesgue’s

Differentiation Theorem imply that |B ∩ [0, T ]| = T for all T ≥ 0.) Thus each term in
(3.1) is well-defined for each τ ∈ B and for each a and s in A(τ ) with a ≤ s. Hence (3.1)
holds a.e.

We now derive some important consequences from (3.1). Since Fubini’s Theorem
allows us to interchange the order of integration in the double integral, we can represent
the the first integral on the left-hand side of (3.1) as an integral over (a, s) of an integrable
function of ξ for τ ∈ B. Thus for each τ ∈ B, the function s �→

∫ τ
0 n+(s, t) dt is absolutely

continuous, not merely on A(τ ), but on all of [0, 1]. Consequently,

(3.5)
∫ τ

0
n+(a, t) dt = lim

s→a

∫ τ

0
n+(s, t) dt ∀ τ ∈ B.

Then (3.1) implies that

(3.6)
∫ τ

0
n+(a, t) dt =

∫ τ

0
n−(a, t) dt ∀ τ ∈ B.

Thus the superscripts ‘+’ and ‘−’ are superfluous even in this more general setting and
will accordingly be dropped.

The properties of the Lebesgue integral imply that if a, s ∈ A(T ), then a, s ∈ A(τ )
for all τ ∈ [0, T ]. Let us fix T > 0. Let a, s ∈ A(T ). Since left-hand side of (3.1) is an
integral over (0, τ ) of an integrable function of t, the right-hand side of (3.1) defines an
absolutely continuous function of τ for a, s ∈ A(T ). Thus

(3.7) lim
τ↘0

∫ s

a
(ρA)(ξ)[rt(ξ, τ ) − v(ξ)] dξ = o ∀ a, s ∈ A(T ).

This generalization of the second initial condition of (2.4), which has the same form as
(3.4), is thus implicit in (3.1).

It is important to note that the generalizations (3.3), (3.4), (3.7) of the boundary and
initial conditions (2.3) and (3.3) represent averages of the classical pointwise conditions.
As such, the limiting processes they embody correspond precisely to the way they could
be tested experimentally.

Our basic smoothness assumption underlying the development of this section is the
local integrability of rs, rt, and n. Since n is to be given as a constitutive function of
the stretch and possibly other kinematic variables, the local integrability of n imposes
restrictions on the class of suitable constitutive functions.

In the modern study of shocks, physically realistic solutions r are sought in larger
classes of functions, such as functions of bounded variation, which need not have locally
integrable derivatives. Thus there is a need for mathematically sound and physically re-
alistic generalizations of the development of this and the next section. (See the refernces
cited at the end of Sec. 12.9.)

3.8. Exercise. Repeat Ex. 2.26, but now obtain the same equations for the steady
whirling of the string directly from (3.1) and (3.6). This derivation can easily be per-
formed with complete mathematical rigor.
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4. The Equivalence of the
Linear Impulse-Momentum Law

with the Principle of Virtual Power

In this section we prove that the Linear Impulse-Momentum Law for-
mulated in Sec. 3 is equivalent to a generalized version of the Principle of
Virtual Power stated in (2.24). Our proof is completely rigorous and tech-
nically simple. Although we couch our presentation in the language of real
analysis to ensure complete precision, all the steps have straightforward
interpretations in terms of elementary calculus.

The demonstration of equivalence given at the end of Sec. 2, which is
universally propounded by mathematicians and physicists alike, pivots on
the classical form (2.9) of the equations of motion. But this form is devoid
of meaning in the very instances when the Linear Impulse-Momentum Law
and the Principle of Virtual Power are essential, i.e., when there need not
be classical solutions. In our approach given below, Eq. (2.9) never appears.

Since (2.9) never appears, it is therefore never exposed to abuse. The
most dangerous sort of abuse would consist in multiplying (2.9) by a
positive-valued function depending on the unknowns appearing in (2.9),
thereby converting (2.9) to an equivalent classical form. But its corre-
sponding weak form, obtained by the procedure leading to (2.24), would
not be equivalent to (2.24), because the integration by parts would pro-
duce additional terms caused by the presence of the multiplicative factor.
Consequently, the corresponding jump conditions at discontinuities (see
Sec. 5) would have forms we deem wrong because they are incompatible
with the jump conditions coming from the generalization of (2.24). This
generalization is deemed correct because, as we shall show, it is equivalent
to the Linear Impulse-Momentum Law, which we regard as a fundamental
principle of mechanics.

Note that the Principle of Virtual Power as stated in (2.24) makes sense
when the smoothness restrictions imposed on r and n in Sec. 2 are replaced
by the much weaker conditions of Sec. 3. The resulting form of (2.24) can
be further extended to apply to all test functions y that have essentially
bounded generalized derivatives, that vanish for large t, and that vanish in
the sense of trace on the boundaries s = 0 and s = 1. (These functions
form a subspace of the Sobolev spaceW 1

∞([0, 1]× [0,∞)).) The smoothness
assumptions on the variables entering these formulations are the weakest
that allow all the integrals to make sense as Lebesgue integrals. We refer to
the resulting version of (2.24) as the generalized Principle of Virtual Power.

We now derive this principle from the Linear Impulse-Momentum Law
under the assumptions of Sec. 3. Let φ be a polygonal (piecewise affine)
function of s with support in (a, b) ⊂ [0, 1] and let ψ be a polygonal function
of t with support in [0, τ). (The support of a function is the closure of the
set on which it is not zero.) Note that the support of ψ is contained in a
half-closed interval. Let e be a fixed but arbitrary constant unit vector.
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Then (3.1) implies that

(4.1)
∫ τ

0

∫ b

a

φs(s)ψt(t)
{∫ t

0
e · [n(s, t̄ ) − n(a, t̄ )] dt̄

+
∫ t

0

∫ s

a

e · f(s̄, t̄ ) ds̄ dt̄
}
ds dt

=
∫ τ

0

∫ b

a

φs(s)ψt(t)
∫ s

a

(ρA)(s̄)e · [rt(s̄, t) − v(s̄)] ds̄ ds dt.

Since ψ and φ are absolutely continuous, we can integrate the triple integral
on the left-hand side of (4.1) by parts with respect to t, we can integrate
the quadruple integral on the left-hand side of (4.1) by parts with respect
to t and s, and we can integrate the right-hand side of (4.1) by parts with
respect to s. Since ψ(τ) = 0, φ(a) = 0 = φ(b), we thereby convert (4.1) to

(4.2)
∫ τ

0

∫ b

a

φs(s)ψ(t)e · n(s, t) ds dt−
∫ τ

0

∫ b

a

φ(s)ψ(t)e · f(s, t) ds dt

=
∫ τ

0

∫ b

a

φ(s)ψt(t)e · (ρA)(s)[rt(s, t) − v(s)] ds dt.

Let us set

(4.3) y(s, t) = φ(s)ψ(t)e.

Since this y has support in (a, b) × [0, τ), we can write (4.2) in the form
(2.24) for all y’s of the form (4.3). More generally, (2.24) holds for all y’s
in the space that is the completion in the norm of W 1

∞([0, 1] × [0,∞)) of
finite linear combinations of functions of the form (4.3). (Some properties
of this space are discussed by Antman & Osborn (1979).)

Equation (2.24) for this large class of y’s expresses the generalized Prin-
ciple of Virtual Power or the Weak Form of (2.9), (2.3), and (2.4). We
henceforth omit the adjective generalized. (If we allow n and f to be
smoother, we can allow the y’s to be rougher.) The Weak Form of the
Initial-Boundary Value Problem for elastic strings is obtained by inserting
(2.10b) and (2.11) into (2.24) and appending (3.3) and (3.4). Analogous
definitions hold for other materials.

Without making unwarranted smoothness assumptions, we have thus
shown that the Linear Impulse-Momentum Law implies the Principle of
Virtual Power. Conversely, we can likewise recover (3.1) (without the su-
perscripts ‘±’) from (2.24) by taking ε to be a small positive number, taking
y to have the form (4.3) (which reduces (2.24) to (2.42)), taking φ and ψ
to have the forms

(4.4a) φ(s̄) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 for 0 ≤ s̄ ≤ a,
s̄−a

ε for a ≤ s̄ ≤ a+ ε,
1 for a+ ε ≤ s̄ ≤ s− ε,
s−s̄

ε for s− ε ≤ s̄ ≤ s,
0 for s ≤ s̄ ≤ 1,
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(4.4b) ψ(t) =

⎧⎪⎨⎪⎩
1 for 0 ≤ t ≤ τ,
1 − t−τ

ε for τ ≤ t ≤ τ + ε,
0 for τ + ε ≤ t,

and then letting ε→ 0. (The functions of (4.4) should be sketched. If H is
the Heaviside function, then φ is a Lipschitz continuous approximation to
s̄ �→ H(s̄− a)−H(s̄− s) and ψ is a Lipschitz continuous approximation to
t �→ 1−H(t− τ).) In this process, we must evaluate the typical expression

(4.5) lim
ε→0

∫ τ+ε

0

1
ε

∫ a+ε

a

n(s, t) · eψ(t) ds dt,

which Fubini’s Theorem and (4.4b) allow us to rewrite as

(4.6) lim
ε→0

1
ε

∫ a+ε

a

∫ τ+ε

0
n(s, t) · e dt ds

− lim
ε→0

{
ε

[
1
ε2

∫ a+ε

a

∫ τ+ε

τ

n(s, t) · e
t− τ
ε
dt ds

]}
.

The Lebesgue Differentiation Theorem implies that the first term in (4.6)
is

(4.7)
∫ τ

0
n(a, t) · e dt

for almost all a in (0, 1) and that the supremum of the absolute value of the
bracketed expression in the second term of (4.6) is finite for almost all a in
(0, 1) and τ in (0,∞). (Note that |(t − τ)/ε| ≤ 1 for t ∈ [τ, τ + ε].) Thus
(4.5) equals (4.7). The other terms are treated similarly. The arbitrariness
of e allows it to be cancelled in the final expression. Thus (2.24) implies
(3.1) and these two principles are equivalent.

The Principle of Virtual Power can be used to exclude certain naive
solutions of differential equations as unphysical. We illustrate this property
with a differential equation simpler than that for a string. Consider the
boundary-value problem

(4.8) u′′(s) + π2u(s) = 0 on (−1, 1), u(±1) = 0.

The continuous function u∗ defined by u∗(s) = | sinπs| is in W 1
1 (−1, 1),

satisfies the boundary conditions, and satisfies the differential equation
everywhere except at 0. Other than its failure to be a classical solution of
the boundary-value problem, there is nothing intrinsically wrong with u∗

from a purely mathematical standpoint. Now suppose that (4.8) is regarded
as a symbolic representation for the weak problem
(4.9)∫ 1

−1
[u′v′ − π2uv] ds = 0 ∀ v ∈ C1[−1, 1] with v(±1) = 0, u(±1) = 0,
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solutions of which are sought inW 1
1 (−1, 1). We presume that (4.9) embod-

ies a Principle of Virtual Power, representing a description of the underly-
ing physics more fundamental than that given by (4.8). It is easy to show
that u∗ does not satisfy (4.9) and can therefore be excluded as unrealistic.
(Just substitute u∗ into (4.9) and integrate the resulting system by parts on
[−1, 0] and [0, 1] obtaining v(0) = 0. Since there are v’s that do not vanish
at the origin, u∗ is not a solution of (4.9).) Indeed, by using methods like
those of (4.4)–(4.6) or of Sec. 6, we can show that every (weak) solution of
(4.9) is a classical solution of (4.8). In the next section we show how the
Principle of Virtual Power enables us to classify precisely those kinds of
jumps that are compatible with it.

In much of modern mathematical literature, the classical form of an equation is
regarded as merely an abbreviation for the weak form. Since weak formulations of
equivalent classical formulations need not be equivalent, this convention should be used
with care. The weak form is also sometimes termed the variational form, an expression
we never employ because it connotes far more generality than the notion of variational
structure introduced in Sec. 10.

If there are concentrated or impulsive forces applied to the string, then f would not
be locally integrable, and the development of these last two sections would not be valid.
Distribution theory, which was designed to handle linear equations with such forces, has
recently been extended to handle nonlinear equations (see Colombeau (1990), Rosinger
(1987)). But it is not evident how to obtain (3.6) in such a more general setting. In
Sec. 6 we comment further on this question for a degenerately simple static problem.

5. Jump Conditions
We now show how the Principle of Virtual Power yields jump conditions

that weak solutions must satisfy at their discontinuities.

(γ1 ,γ2 )

0 1
s

t

G G

C

1
2

Figure 5.1. The neighborhood of a curve of discontinuity.
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Let C ∈ [0, 1]× [0,∞) be (the image of) a simple curve. We assume that
C is so smooth that it possesses a unit normal (γ1, γ2) at almost every point.
(It suffices for C to be uniformly Lipschitz-continuous, i.e., that there be
a finite number of open sets covering C such that in each such set E there
is a coordinate system with respect to which C ∩ E can be described as
the graph of a Lipschitz continuous function.) Suppose that there are two
disjoint, simply-connected open sets G1 and G2 such that ∅ �= ∂G1∩∂G2 ⊂ C
(see Fig. 5.1), that (2.9) holds in the classical sense in G1 and in G2, and
suppose that there are integrable functions n1,n2, r1

t , r
2
t on C such that

(5.2) n → nα, rt → rα
t (in the sense of trace)

as Gα � (s, t) → C, α = 1, 2.

Set

(5.3) [[n]] := n2 − n1, [[rt]] := r2
t − r1

t on C.

[[n]] is called the jump in n across C.
If y is taken to have support in G1 ∪ G2 ∪ C, then (2.24) reduces to

(5.4)
∫

G1∪G2

[n · ys − f · y − ρA(rt − v) · yt] ds dt = 0

for all such y’s. We separately integrate (5.4) by parts over G1 and G2
(by means of the divergence theorem), noting that (2.9) is satisfied in each
region and that y vanishes on ∂G1 \ C and on ∂G2 \ C. We obtain

(5.5)
∫

C
y · {[[n]]γ1 − ρA[[rt]]γ2} dλ = 0

for all such y’s. Here dλ is the differential arc length along C. Since y is
arbitrary on C, Eq. (5.5) implies that

(5.6) [[n]]γ1 − ρA[[rt]]γ2 = o a.e. on C.

These are the Rankine-Hugoniot jump conditions for (2.24). A curve in
the (s, t)-plane across which there are jumps in n or rt is called a shock
(path). A solution suffering such a jump is said to have (or be) a shock.
Suppose that the shock path has the equation s = σ(t). Then σ′(t) is the
shock speed at (σ(t), t). Equation (5.6) thus has the form

(5.7) [[n]] + ρAσ′[[rt]] = o.

The foregoing analysis leading to (5.6) is formal to the extent that so-
lutions are presumed classical except on isolated curves. For further in-
formation on jump conditions and shocks, see Chap. 18 and the references
cited there.
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6. The Existence of a Straight Equilibrium State
When none of the variables appearing in the Linear Impulse-Momentum

Law depends on the time, it reduces to the static form of (2.7), (2.8):

(6.1) n(s) − n(a) +
∫ s

a

f(ξ) dξ = o

for (almost) all a and s in [0, 1]. If f is Lebesgue-integrable, then (6.1)
implies that n is absolutely continuous and has a derivative almost every-
where. Thus the classical equilibrium equation

(6.2) n′(s) + f(s) = o

holds a.e. When (2.3a) holds, the Principle of Virtual Power (2.24) reduces
to

(6.3)
∫ 1

0
[n(s) · y′(s) − f(s) · y(s)] ds = 0

for all sufficiently smooth y that vanish at 0 and 1.
Note that in equilibrium the constitutive equation (2.14) reduces to that

for an elastic string, namely (2.11). (Indeed, if the string has been in
equilibrium for its entire past history, then the general constitutive equation
(2.16b) itself reduces to (2.11). This observation must be interpreted with
care, because a string described by (2.16b) can creep under the action of
an equilibrated system of forces not varying with time.) We accordingly
limit our attention to elastic strings, described by (2.10b) and (2.11):

(6.4) n(s) = N̂
(
ν(s), s

)r′(s)
ν(s)

.

We assume that N̂ is continuously differentiable, although much can be
done with N̂ ’s that are merely continuous. (See the remarks surrounding
(2.17e).)

For integrable f we now study the boundary-value problem of finding a
function r, whose (distributional) derivative r′ is integrable, that satisfies
the system (6.1), (6.4), (2.3), which we record as

N̂
(
|r′(ξ)|, ξ

) r′(ξ)
|r′(ξ)|

∣∣∣∣s
a

+
∫ s

a

f(ξ) dξ = o,(6.5)

r(0) = o, r(1) = Lk.(6.6)

(Conditions (6.6) interpreted as (2.3a) make sense because r is the indef-
inite integral of the integrable function r′ and is accordingly absolutely
continuous.)

In Chap. 3 we shall study a rich collection of problems for (6.5) and
(6.6) in which f depends on r. Here we content ourselves with the study
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of straight equilibrium configurations s �→ r(s) = z(s)k, in which z is an
absolutely continuous, increasing function, when f has the special form

(6.7) f(s) = g(s)k.

In keeping with the local integrability of f assumed in Secs. 3 and 4, we
take g to be Lebesgue-integrable. The requirement that z′(s) > 0 for all s
ensures (2.2). Under these conditions, the problem (6.5), (6.6) reduces to
finding z and a constant K such that

N̂(z′(s), s) = G(s) +K ∀ s ∈ [0, 1], G(s) := −
∫ s

0
g(ξ) dξ,(6.8)

z(0) = 0, z(1) = L.(6.9a,b)

In view of the equivalence of (2.11) with (2.23), Eq.(6.8) is equivalent to

(6.10) z′(s) = ν̂
(
G(s) +K, s

)
.

The properties of ν̂ ensure that z′(s) > 0 for all s. We integrate (6.10)
subject to (6.9a) to obtain

(6.11) z(s) =
∫ s

0
ν̂
(
G(ξ) +K, ξ

)
dξ.

The boundary-value problem (6.8), (6.9) has this z as a solution provided
K can be chosen so that (6.11) satisfies (6.9b), i.e., so that

(6.12) Φ(K) :=
∫ 1

0
ν̂
(
G(ξ) +K, ξ

)
dξ = L.

Note that since G is the indefinite integral of the integrable function g, it
is absolutely continuous. It follows that the function Φ(·), just like ν̂(·, s),
strictly increases from 0 to ∞ as its argument increases from −∞ to ∞.
Since L > 0, we can reproduce the argument justifying the existence of ν̂ to
deduce that (6.12) has a unique solution K (depending on G and L). The
solution of (6.8), (6.9) is then obtained by substituting this K into (6.11).

Since G and ν̂ are continuous, (6.11) implies that the solution z is con-
tinuously differentiable and its derivative is given by (6.10). Let us now
suppose that g is continuous. Then G is continuously differentiable. Since
ν̂ is continuously differentiable, (6.10) implies that the solution z is twice
continuously differentiable. Since (6.10) is equivalent to (6.8), we can ac-
cordingly differentiate (6.8) to show that z is a classical solution of the
ordinary differential equation

(6.13) d
dsN̂

(
z′(s), s

)
+ g(s) = 0.

(The regularity theory of this paragraph is called a bootstrap argument.)
We summarize our results:
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6.14. Theorem. Let N̂ be continuously differentiable on (0,∞) × [0, 1],
N̂ν(ν, s) > 0 for all ν and s, N̂(ν, s) → ∞ as ν → ∞, and N̂(ν, s) → −∞
as ν → 0. Let g be Lebesgue-integrable. Then (6.8), (6.9) has a unique
solution z, which is continuously differentiable and satisfies z′(s) > 0 for
all s. If g is continuous, then z is twice continuously differentiable and
satisfies (6.13).

Note that (6.10) implies that the stretch z′ is constant if the material is
uniform, i.e., if N̂s = 0, and if G is constant, i.e., if g = 0.

Equation (6.8) and its equivalent, (6.10), make sense if G is merely integrable. In
this case, g is defined as the distributional derivative of −G. Our analysis goes through
with the solution z continuous by (6.11). The only trouble with such a solution lies in
its mechanical interpretation: Our proof in Sec. 3 that n+ = n− is no longer applicable.
Much of the difficulty with this question evaporates if the distribution g were to equal
an integrable function a.e. In particular, if G were a Heaviside (i.e., a step) function,
then g would be a Dirac delta, and our problem, which would be solvable, would also
make mechanical sense.

Note that the unique solution of (6.8), (6.9) may well represent a compressed straight
state. This certainly occurs if g = 0 and L < 1. Such a solution should certainly be
unstable under any reasonable physical criterion. (It is unique only among all straight
equilibrium states.) This solution is nevertheless worthy of study because its equations
are exactly those for the straight equilibrium state of a naturally straight rod, whose
bending stiffness allows it to sustain a certain amount of compression without losing
stability. A knowledge of the properties of the straight states of a straight rod is necessary
for the study of its buckling from that state.

Note that (6.5) and (6.6) may admit straight folded solutions in which z is not
increasing. These can have a very complicated structure (see Reeken (1984a) and the
treatments of Chaps. 3 and 6). These solutions are not accounted for by Theorem 6.14.

7. Purely Transverse Motions
The ad hoc assumption that the motion of each material point is confined to a plane

perpendicular to the line joining the ends of the string, frequently used in textbook
derivations of the equations of motion of strings and discussed in Sec. 1, motivates our
study in this section of conditions under which such special motions can occur.

J. B. Keller (1959) and B. Fleishman (1959) independently observed that if an elastic
string has a constitutive equation of the form

(7.1) N̂ (ν, s) = (EA)(s)ν

where EA is a given positive-valued function, then the equations of motion (2.9), (2.10b),
and (2.11) reduce to the special form

(7.2) [(EA)(s)rs(s, t)]s + f(s, t) = (ρA)(s)rtt(s, t).

(The ungainly symbol EA is used because it roughly conforms to traditional engineering
notation. See the discussion of the notation ρA in Sec. 2.) If f does not depend on r
through a relation such as (2.6), then (7.2) is a system of three uncoupled nonhomoge-
neous wave equations. In particular, if f satisfies

(7.3) k · f(s, t) = −G′(s)

and if the initial data satisfy

(7.4) k · u = z, k · v = 0
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where z is the unique solution of (6.8) and (6.9), then the initial-boundary-value problem
consisting of (7.2), (2.3), and (2.4) has a unique solution with k · r = z. (The existence
and uniqueness of such a solution, under mild conditions on the data, follows from the
theory of partial differential equations.) This solution describes a purely transverse
motion.

Of course, (7.1) satisfies neither (2.19b) nor (2.20). Keller noted, however, that (7.1)
could closely approximate the behavior of certain rubber strings when ν is large. This
observation does not imply that the motion of a string satisfying a constitutive equation
close to (7.1) is close to the motion given by (7.2), because a small nonlinear coupling
can shift energy from one mode to another, as is well known in rigid-body mechanics.
In particular, even if (7.3) and (7.4) hold, a string with a constitutive equation close to
(7.1) could undergo motions with a significant longitudinal component.

We now address the converse problem of determining what restrictions are imposed
on the constitutive functions by the assumption that the string must execute a nontrivial
purely transverse motion with

(7.5a,b) r(s, t) · k = z(s), (r · i)2 + (r · j)2 
= 0

for every f satisfying (7.3) and for all initial conditions satisfying (7.4) when z satisfies
(6.8) and (6.9) and when ν lies in a certain interval (ν−, ν+) in (0,∞) with ν− ≤ min z′.
The substitution of (7.5a) and (2.10b) into the k-component of (2.9) yields

(7.6)
[
N̂
(
ν(s, t), s

) z′(s)
ν(s, t)

]
s

− G′(s) = 0,

so that

(7.7) Ω
(
ν(s, t), s

)
:=
N̂
(
ν(s, t), s

)
z′(s)

ν(s, t)
− G(s) = Ω

(
ν(0, t), 0

)
.

The theory of initial-value problems for quasilinear partial differential equations,
applied to the full system of governing equations, says that in a small neighborhood of
the initial time, solutions depend continuously on smooth initial data. Thus smooth
initial data satisfy (7.7) for t = 0. For any fixed s we can prescribe the initial data
ν(s, 0) and ν(0, 0) arbitrarily in (ν−, ν+). Thus from (7.7) at t = 0 we conclude that Ω
is a constant function. This constancy of Ω ensures that N̂ (·, s), restricted to (ν−, ν+),
has the form (7.1). We summarize this argument, a modified version of that of J. B.
Keller (1959):

7.8. Theorem. Let (7.3) and (7.4) hold. If every solution of (2.9), (2.10b), (2.11),
(2.3), (2.4) for which ν− < ν < ν+ is purely transverse, i.e., satisfies (7.5), then N̂ (·, s)
restricted to (ν−, ν+) has the form (7.1).

7.9. Problem. Let (7.3) and (7.4) hold. Suppose that Ω is independent of s and
that the initial-boundary-value problem admits a nontrivial purely transverse motion
satisfying (7.5). What restrictions are thereby imposed on N̂?

The following exercise, proposed by J. M. Greenberg, also indicates the role played
by linear, or more generally, affine constitutive relations.

7.10. Exercise. Consider the free motion of a uniform, nonlinearly elastic string of
doubly infinite length. Thus f = o, N̂s = 0, s ∈ (−∞,∞). A solution r of the governing
equations is called a travelling wave iff it has the form

(7.11) r(s, t) = p(s − ct)

where c is a real number. Show that if there is no nonempty open interval of (0,∞) on
which N̂ is affine, then the travelling waves in a string have very special and uninteresting
forms. Determine those forms. (In Sec. 9.3 we shall see that the equations for rods have
a very rich collection of travelling waves.)
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8. Perturbation Methods and
the Linear Wave Equation

In Sec. 6 we proved the existence of a unique straight equilibrium con-
figuration zk for an elastic string when f = g(s)k. In this section we
study the motion of an elastic string near this equilibrium state by formal
perturbation methods. We first outline their application to the initial-
boundary-value problem (2.9), (2.10b), (2.11), (2.3), (2.4) and then give
a detailed treatment of time-periodic solutions. We discuss the validity of
the perturbation methods in the next section.

We begin by studying the initial-boundary-value problem when the data
are close to those yielding the straight equilibrium state: Let ε represent a
small real parameter and let the data have the form

(8.1) u(s) = z(s)k+εu1(s), v(s) = εv1(s), f(s, t) = g(s)k+εf1(s, t)

where z is the solution of the equilibrium problem given in Sec. 6. For
well-behaved solutions, the inital data should satisfy the compatibility con-
ditions u1(0) = o = v1(0), u1(1) = o = v1(1). We suppose that N̂(·, s) is
(p + 1)-times continuously differentiable. We seek formal solutions of the
initial-boundary-value problem whose dependence on the parameter ε is
specified by a representation of the form

(8.2) r(s, t, ε) = z(s)k +
p∑

k=1

εk

k!
rk(s, t) + o(εp).

Since (8.2) implies that

(8.3) rk(s, t) =
∂kr(s, t, ε)
∂εk

∣∣∣∣
ε=0
, k = 1, . . . , p,

we can find the problem formally satisfied by rk by substituting r(s, t, ε)
into the equations of the nonlinear problem, differentiating the resulting
equations k times with respect to ε, and then setting ε = 0. We find that
the equation for rk is linear and involves r1, . . . , rk−1; thus the equations
for r1, . . . , rp can be solved successively.

To compute these equations directly in vectorial form, we define

(8.4) n̂(q, s) := N̂(|q|, s)q|q|−1.

Thus (2.9), (2.10b), (2.11) has the form

(8.5) n̂(rs, s)s + f = ρArtt.

We use the definition of Gâteaux derivative given after (1.4.5) to obtain

(8.6) n̂q(q, s) · c = N̂ν(|q|, s)q q · c

|q|2 +
N̂(|q|, s)

|q|

[
c − q q · c

|q|2

]
.
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(To differentiate |q| with respect to q, we write it as
√

q · q so that
∂
√

q · q/∂q = q/
√

q · q.) Thus we find that

(8.7) ∂εn̂(rs(s, t, ε), s)|ε=0 = n̂q(z′(s)k, s) · ∂sr1(s, t).

Note that n̂q is symmetric.
Differentiating (8.5) once with respect to ε and using (8.6) and (8.7) we

reduce the equation for r1 to

(8.8a) (L · r1)(s, t) = f1(s, t)

where the vector-valued partial differential operator L is defined by

(8.8b) (L · r)(s, t) := (ρA)(s)rtt(s, t)

− ∂

∂s

{
N0(s)
z′(s)

[rs(s, t) · i i + rs(s, t) · j j] +N0
ν (s)rs(s, t) · k k

}
with

(8.9) N0(s) := N̂(z′(s), s), N0
ν (s) := N̂ν(z′(s), s).

We use an analogous notation for higher derivatives. Note that the com-
ponents of (8.8) in the i-, j-, and k-directions uncouple into three scalar
wave equations.

r1 must satisfy the boundary conditions

(8.10) r1(0, t) = o, r1(1, t) = o

and the initial conditions

(8.11) r1(s, 0) = u1(s), ∂tr1(s, 0) = v1(s).

The component r1 · k satisfies the following wave equation obtained by
dotting (8.8) with k:

(8.12) (ρA)(s)wtt(s, t) − [N0
ν (s)ws(s, t)]s = f1(s, t) · k.

We can simplify the equations for the other two components of (8.8) by
introducing the change of variable

(8.13) ζ = z(s) or, equivalently, s = s̃(ζ)

where s̃ is the inverse of z, which exists by virtue of the positivity of z′.
We set

(8.14) r̃1(ζ, t) := r1(s̃(ζ), t), ρ̃A(ζ) :=
(ρA)(s̃(ζ))
z′(s̃(ζ))

.
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Then r̃1 · i and r̃1 · j satisfy

(8.15) ρ̃A(ζ)utt(ζ, t) − [N0(s̃(ζ))uζ(ζ, t)]ζ = h(ζ, t)

where h(ζ, t) respectively equals f1(s̃(ζ), t) · i and f1(s̃(ζ), t) · j. Note that
(6.8) and (8.9) imply that

(8.16) N0(s̃(ζ)) = K +G(s̃(ζ))

whereK satisfies (6.12). ρ̃A is the mass per unit length in the configuration
zk. The change of variables (8.13) and (8.14) is tantamount to taking the
stretched equilibrium configuration zk as the reference configuration.

Equation (8.12) describes the small longitudinal motion of a string (or of
a rod) about its straight stretched equilibrium state. The nonuniformity of
the string and the presence of G cause the coefficients of (8.12) to depend
on s. Condition (2.17d) ensures that N0

ν is positive and that (8.12) is
consequently hyperbolic.

Equation (8.15) describes the small transverse vibrations of the string.
If G = 0 and if the string is uniform, then ρ̃A is constant. N0(s̃(ζ)) is the
tension at s̃(ζ) in the configuration zk. If G = 0, Eq. (8.16) implies that
this tension is constant whether or not the string is uniform. Under the
hypotheses (2.17a) and (2.20), Eq. (6.13) implies that for G = 0 this con-
stant tension is positive if and only if L > 1. Where this tension (constant
or not) is positive, (8.15) is hyperbolic, and where the tension is negative,
(8.15) is elliptic. In the latter case, expected physical instabilities are re-
flected by the ill-posedness of initial-boundary-value problems for (8.15).
Analogous statements apply to the full nonlinear system. By endowing
the string with resistance to bending and twisting (i.e., by replacing the
string theory with a rod theory), we remove this ill-posedness at the cost
of enlarging the system. See Chaps. 4 and 8.

8.17. Exercise. Find the linearized equations (satisfied by r1) for the motion of a
viscoelastic string satisfying (2.14). Classify the equations as to type.

8.18. Exercise. Suppose that L > 1 and that v = o and f = o. Find equations for r1,
r2, r3 for the perturbation solution for (2.9), (2.10b), (2.11), (2.3), (2.4). If u1 · k = 0,
how do these equations illuminate the role of purely transverse motions discussed in
Sec. 7?

We now turn to the more interesting problem of determining the properties of free
time-periodic motions of an elastic string near the straight equilibrium state. We seek
motions satisfying (8.5) with f(s, t) = g(s)k, satisfying (2.3), and having an as yet
undetermined period 2π/

√
λ with λ > 0 so that

(8.19) r(s, t + 2π/
√
λ) = r(s, t).

Let us set t̄ =
√
λt, r̄(s, t̄) = r(s, t̄/

√
λ), introduce these variables into the governing

equations, and then omit the superposed bars. In this case, (8.5) is modified by having
λ precede ρA. Equation (8.19) reduces to

(8.20) r(s, t + 2π) = r(s, t).
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Note that a small parameter ε is not supplied in this problem. For the moment, we may
think of it as an amplitude characterizing the departure of time-periodic solutions from
the trivial straight equilibrium state.

The following exercise shows that we cannot attack this problem of periodic solutions
by blindly following the approach used for the initial-boundary-value problem.

8.21. Exercise. Substitute (8.2) into the problem for time-periodic solutions. Find the
frequencies λ for which the problem for r1 has solutions of period 2π in time. Show that
if the corrections r2 and r3 have the same frequencies, then N̂ is subjected to unduly
severe restrictions.

We circumvent this difficulty by allowing λ also to depend on ε. The dependence of
frequency on the amplitude thereby permitted is a typical physically important mani-
festation of nonlinearity. We accordingly supplement (8.2) with

(8.22) λ(ε) = ω2 +
p∑

k=1

εk

k!
λk + o(εp+1).

Equations (8.2) and (8.22) give a parametric representation (i.e., a curve) for the configu-
ration and the frequency in a neighborhood of the trivial state. We obtain the equations
satisfied by rk and λk−1 by substituting (8.2) and (8.22) into the governing equations,
differentiating them k times with respect to ε, and then setting ε = 0. We find that rk

satisfies the boundary conditions and periodicity conditions

(8.23a,b) rk(0, t) = o = rk(1, t), rk(s, t + 2π) = rk(s, t).

r1 satisfies

(8.24) L(ω2) · r1 = o

where L(λ) is defined by (8.8b) with ρA replaced with λρA. We assume that system
(8.24) is hyperbolic, i.e., we assume that N 0 is everywhere positive. We can solve (8.23),
(8.24) for r1 by separation of variables. We find that nontrivial solutions r1 have the
form

(8.25a,b) r1(s, t) =

{
ul(s)[alm cosmt + blm sinmt] when ω2 = σ2

l /m
2,

wl(s)[αlm cosmt + βlm sinmt]k when ω2 = τ 2l /m
2,

l = 0, 1, 2, . . . , m = 1, 2, . . . ,

where the {alm} and the {blm} are arbitrary vectors in span{i, j}, where the {σ2
l } are

the eigenvalues and {ul} are the corresponding eigenfunctions of the Sturm-Liouville
problem

(8.26)
d

ds

[
N 0(s)u′

z′(s)

]
+ σ2(ρA)(s)u = 0, u(0) = 0 = u(1),

where the {αlm} and the {βlm} are arbitrary real numbers, and where the {τ 2l } are the
eigenvalues and the {wl} are the corresponding eigenfunctions of the Sturm-Liouville
problem

(8.27)
d

ds

[
N 0

ν (s)w′]+ τ 2(ρA)(s)w = 0, w(0) = 0 = w(1).

We normalize {ul} by the requirement that

(8.28)
∫ 1

0
(ρA)(s)ul(s)un(s) ds = δln :=

{
1 if l = n,

0 if l 
= n,
, u′

l(0) > 0
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and adopt the same conditions for {wl}. δln is the Kronecker delta. The positivity
everywhere of N 0 and z′ ensures that 0 < σ2

0 < σ2
1 < · · · and that σ2

l → ∞ as
l → ∞ by the Sturm-Liouville theory (see Coddington & Levinson (1955) or Ince (1926),
e.g.). The positivity everywhere of N 0

ν ensures that {τ 2l } has the same properties.
The representations of (8.25a,b) respectively correspond to transverse and longitudinal
motions. Since (8.23) with k = 1 and (8.24) are invariant under translations of time
and under rotations about the k-axis, we could without loss of generality impose two
restrictions the four components of alm and blm appearing in (8.25a).

Note that for fixed ω2 = σ2
l /m

2, there are as many different solutions of the form
(8.25) as there are distinct pairs (j, p) of integers, j = 1, 2, . . . , p = 0, 1, 2, . . . , satisfying

(8.29a,b)
σ2

l

m2
=
σ2

j

p2
or

σ2
l

m2
=
τ 2j

p2
.

(Note that the special condition that N̂ (·, s) be linear, discussed in Sec. 7, ensures that
σ2

l = τ 2l for all l.) If N 0/z′ and ρA are constant, then there are infinitely many pairs
(j, p) satisfying (8.29a).

Suppose that ω2 = σ2
l /m

2 and that there are no pairs of integers (j, p) such that
(8.29b) holds. In this case we find that r1 · k = 0. Then the perturbation procedure
yields

(8.30) L(σ2
l /m

2) · r2 = 2λ1ρA∂ttr1 + ∂s

{[
N 0 − z′N 0

ν

(z′)2

]
∂sr1 · ∂sr1

}
k.

Before blindly lurching toward a solution of (8.30), it is useful to take a preliminary
step that can greatly simplify the analysis: We take the dot product of (8.30) with r1 of
(8.25) and then integrate the resulting expression by parts twice over [0, 1]×[0, 2π]. Since
r1 satisfies the homogeneous equation and since r1 has no k-component, the resulting
equation reduces to

(8.31) λ1 = 0.

Thus the equations for the i- and j-components of r2 are exactly the same as those for
these components of r1. It follows that the contribution of these terms of r2 to (8.2)
has exactly the same form as the corresponding components of r1, but with a coefficient
of ε2/2 in place of ε. We accordingly absorb r2 into r1 by taking

(8.32) r2 · i = 0 = r2 · j,

In Sec. 5.6 we describe a more systematic way to get relations like (8.32).
In view of (8.31) and (8.32), problem (8.30) reduces to a nonhomogeneous linear

equation for r2 · k:

(8.33)
σ2

l

m2
ρA∂ttr2 · k − ∂s[N 0

ν ∂sr2 · k]

= 1
2∂s

[
N 0 − z′N 0

ν

(z′)2
(u′

l)
2
] [

|alm|2 + |blm|2 +
(
|alm|2 − |blm|2

)
cos 2mt

+alm · blm sin 2mt] .

Since we know that the homogeneous problem for (8.33) has only the trivial solution, we
can seek a solution in the form f (s) + g(s) cos 2mt+ h(s) sin 2mt and obtain boundary-
value problems for f , g, and h like (8.27). The solutions of these boundary-value prob-
lems can be represented in terms of a Green function associated with the operator of
(8.27) or alternatively by an expansion in terms of the eigenfunctions associated with
(8.27). We can also represent the solution of (8.33) directly as an eigenfunction expan-
sion with respect to the basis

(8.34) {(s, t) �→ 1
π
wq(s) cosnt, 1

π
wq(s) sinnt, q = 0, 1, . . . , n = 1, 2, . . . }.
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We find the Fourier coefficients of k · r2 by multiplying (8.33) by a member of (8.34)
and integrating the resulting equation by parts over [0, 1]× [0, 2π]. (See Stakgold (1998),
e.g.) We get

(8.35a) k · r2(s, t)

=
m2

2π

∞∑
q=0

µlqwq(s)
[
(|alm|2 − |blm|2) cos 2mt + (alm · blm) sin 2mt

]
,

(8.35b)
( 1

4 τ
2
q − σ2

l

)
µlq :=

∫ 1

0
∂s

{
N 0(s) − z′(s)N 0

ν (s)
z′(s)2

u′
l(s)

2
}
wl(s) ds

when (8.25a) holds and when τ 2q 
= 4σ2
l for each q. The properties of {τ 2q } developed in

Sturm-Liouville theory ensure that (8.35a) converges. Equation (8.35) shows that the
first correction to the purely transverse linear motion is a longitudinal motion.

Using (8.25), (8.31), and (8.32) we find that

(8.36) L(σ2
l /m

2) · r3

= 3λ2ρA∂ttr1 + 3∂s

{
(N 0 − z′N 0

ν )
[∂sr1 · ∂sr1 + (k · ∂sr2)z′]∂sr1

(z′)3

}
.

We treat this equation just like (8.30): We dot it with r1 and integrate the resulting
equation by parts over [0, 1] × [0, 2π] to get

(8.37) m2π(|alm|2 + |blm|2)λ2

=
∫ 1

0

∫ 2π

0
∂s

{
(N 0 − z′N 0

ν )
[∂sr1 · ∂sr1 + (k · ∂sr2)z′]∂sr1

(z′)3

}
· ∂sr1 dt ds.

In view of (8.22) the sign of this expression for λ2 gives the important physical infor-
mation of whether the frequency λ increases or decreases with the amplitude ε of the
motion. Note how λ2 depends crucially on the behavior of the constitutive function N̂ .
The procedures we have used in this analysis are quite general.

8.38. Exercise. Obtain an explicit representation for λ2 when the material is uniform,
so that N̂s = 0 and z′ and ρA are constant.

A computation analogous to that leading to (8.37) can be carried out for the purely
longitudinal motion. But the results are purely formal because it can be shown that
no purely longitudinal periodic motion is possible (see Keller & Ting (1966) and Lax
(1964)). The solutions must exhibit shocks. For the transverse motions (which have a
longitudinal component as we have seen), periodic solutions are possible. (The energy
could be shifted about and avoid being concentrated. We give a transparent example of
such a phenomenon in Sec. 14.15.) This possibility of shocks makes it hard to justify
the method and to interpret the results. The formal results clearly say something im-
portant about the nonlinear system, but it is difficult to give a mathematically precise
and physically illuminating explanation of exactly what is being said. In other words,
it is not clear what the linear wave equations say about solutions of the nonlinear equa-
tions. By introducing a strong dissipative mechanism, corresponding to (2.14) subject
to (2.22b), it is likely that we could prevent our equations from having shocks. But
this dissipation would prevent periodic solutions unless we introduced periodic forcing.
The resulting perturbation scheme would be more complicated, but there is some hope
that the approach could be justified. It is physically attractive but notoriously difficult
to study the undamped system by taking the limit as the dissipation goes to zero. We
comment on related questions at the end of Sec. 11.

Carrier (1945, 1949) used such perturbation methods to study periodic planar vibra-
tions of an elastic string for which N̂ (·, s) is taken to be affine, although this restriction
is inessential. The work of this section is largely based on Keller & Ting (1966) and
J. B. Keller (1968). For other applications of this formalism, see Millman & Keller
(1969) and Iooss & Joseph (1990).
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9. The Justification of Perturbation Methods
In this section we give precise conditions justifying perturbation methods

for static problems. The fundamental mathematical tool for our analysis is
the Implicit-Function Theorem in different manifestations. References on
the justification of perturbation methods for dynamical problems are given
at the end of this section. Our basic result is

9.1. Theorem. Let z be as in Sec. 6. Let p be a positive integer. If
N̂ is continuous, if N̂(·, s) ∈ Cp+1(0,∞), if N̂ν(z′(s), s) ≡ N0

ν (s) > 0 and
N̂(z′(s), s) ≡ N0(s) > 0 for each s, if g ∈ C0[0, 1], and if f1 ∈ C0[0, 1], then
there is a number η > 0 such that for |ε| < η the boundary-value problem

d

ds

[
N̂
(
|r′(s)|, s

) r′(s)
|r′(s)|

]
+ g(s)k + εf1(s) = o,(9.2)

r(0) = o, r(1) = Lk(9.3a,b)

has a unique solution r(·, ε) with r(·, ε)∈C2[0, 1] and r(s, ·)∈Cp+1(−η, η).
(Thus r(s, ε) admits an expansion like (8.2).)

Proof. From (6.5) with a = 0 and from (8.4) we get

(9.4) n̂
(
r′(s), s

)
− n̂

(
r′(0), 0

)
−G(s)k + ε

∫ s

0
f1(ξ) dξ = o,

which can be obtained from the integration of (9.2). From (8.6) we obtain

(9.5) c · n̂q(z′(s)k, s) · c = N0
ν (s)(k · c)2 +

N0(s)
z′(s)

[
c · c − (k · c)2

]
.

Thus n̂q(z′(s)k, s) is positive-definite and therefore nonsingular. The clas-
sical Implicit-Function Theorem thus implies that for q near z′(s)k, the
function q �→ n̂(q, s) has an inverse, which we denote by n �→ m(n, s). We
use it to solve (9.4) for r′(s). We integrate the resulting equation from 0
to s subject to (9.3a) to obtain

(9.6) r(s) =
∫ s

0
m

(
n̂(r′(0), 0) +G(ξ)k − ε

∫ ξ

0
f1(σ) dσ, ξ

)
dξ.

The requirement that (9.6) satisfy (9.3b) yields

(9.7) l(r′(0), ε)

:=
∫ 1

0
m

(
n̂(r′(0), 0) +G(ξ)k − ε

∫ ξ

0
f1(σ) dσ, ξ

)
dξ = Lk.

If there is a unique solution r′(0) = p(ε) of this equation, then its substi-
tution for r′(0) in (9.6) yields the solution r(·, ε) of (9.2), (9.3). We now



44 2. THE EQUATIONS OF MOTION FOR EXTENSIBLE STRINGS

verify that (9.7) meets the hypotheses of the classical Implicit-Function
Theorem: First of all, we must show that

(9.8) l(z′(0)k, 0) = Lk.

But this is equivalent to (6.12) because (8.4) and (6.8) imply that

(9.9a)
n̂ (z′(0)k, 0) +G(ξ)k = [N(z′(0), 0) +G(ξ)]k = [K +G(ξ)]k

= N̂(z′(ξ), ξ)k = n̂ (z′(ξ)k, ξ) .

Next, (9.7) implies that

(9.9b) lp(p, 0) =
∫ 1

0
mn

(
n̂(p, 0) +G(ξ)k, ξ

)
· n̂q(p, 0) dξ.

From (9.9a) we find that

(9.10) mn

(
n̂(z′(0)k, 0) +G(ξ)k, ξ

)
= mn

(
N̂(z′(ξ), ξ)k, ξ

)
,

so that (9.10) is the inverse of the symmetric positive-definite tensor
n̂q(z′(ξ)k, ξ). It follows that (9.10) is positive-definite. Since the prod-
uct of two symmetric positive-definite tensors is positive-definite (though
not necessarily symmetric), we find that

(9.11) lp(z′(0)k, 0) is nonsingular.

Conditions (9.8) and (9.11) are the requisite hypotheses for the classical
Implicit-Function Theorem, which says that there is a number η > 0
such that (9.7) has a unique solution p(ε) for |ε| < η and that p(·) ∈
Cp+1(−η, η). It then follows from (9.5) that r(s, ·) itself is in this space.
The regularity of r(·, ε) can be read off from (9.6). (It is correspondingly
enhanced for increased smoothness of g and f1.) �

Note that this theorem is purely local in the sense that it gives information about so-
lutions of the nonlinear problem (9.2), (9.3) only in a neighborhood of a known solution.
In contrast, the elementary analysis of Sec. 6 is global. In Chap. 3 we shall give global
analyses of equilibrium states of strings under several more interesting force systems.

In this proof we have avoided the use of determinants. They are not suitable for
proving (9.11) because lp(z′(0)k, 0) is an integral. If an integrand is a positive-definite
tensor everywhere, then its integral is likewise, but if an integrand is merely nonsingular
everywhere, then its integral need not be nonsingular.

9.12. Exercise. Prove the last assertion about nonsingular tensors.

The proof of Theorem 9.1 relied on the special nature of (9.2). If f1, say, were to
depend upon r, then (9.5) would be an integral equation for r and would require a subtler
analysis. Procedures for such analyses have been systematized, the most comprehensive
methods employing an abstract version of the local Implicit-Function Theorem 20.1.27
in Banach Space, which is applied in several places in this book. Here we present
a related concrete approach, the Poincaré shooting method, applicable to systems of
ordinary differential equations (more complicated than (9.2)).
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Proof of Theorem 9.1 by the Poincaré shooting method.We seek a vector a such
that (9.2) subject to the initial conditions

(9.13) r(0) = o, r′(0) = a

has a solution satisfying (9.3b). To apply the basic theory of ordinary differential equa-
tions to this problem, it is convenient to write (9.2) as a first-order system in which the
derivatives of the unknowns are expressed as functions of the unknowns. This reduction
can be effected in two ways: For r′ close enough to z′k, we can use the tools developed
in the above proof of Theorem 9.1 to write (9.2), (9.3) as

(9.14) n′ = −g(s)k − εf1(s), r′ = m(n, s), r(0) = o, n(0) = b := n̂(a, 0).

Alternatively, we could carry out the differentiation in (9.2). For r′ close enough to z′k,
we can solve (9.2) for r′′, obtaining an equation of the form r′′ = h(r′, s, ε). We set
v = r′ and thereby convert this second-order system to the equivalent first-order system

(9.15) v′ = h(v, s, ε), r′ = v.

To be specific, we limit our attention to (9.14). Since the results of Sec. 6 imply that it
has a unique solution r = zk, n = n̂(z′(·)k, ·)) for ε = 0 and b = n̂(z′(0)k, 0)), the basic
theory of ordinary differential equations (see Coddington & Levinson (1955, Chaps. 1,2)
or Hale (1969, Chap. 1), e.g.) implies that (9.14) has a unique solution r(·, b, ε) defined
on the whole interval [0, 1] if ε and b are close enough to 0 and n̂(z′(0)k, 0)). Moreover,
r(s, ·, ·) is (p + 1)-times continuously differentiable. r(·, b, ε) would correspond to a
solution of (9.2), (9.3) for small nonzero ε if b can be chosen so that

(9.16) r(1, b, ε) = Lk.

We know that this system for b has the solution b0 := n̂(z′(0)k, 0)) for ε = 0. The
Implicit-Function Theorem then implies that there is a number η > 0 such that (9.16)
has a unique solution (−η, η) � ε �→ b̂(ε) with b̂ ∈ Cp+1(−η, η) and with b̂(0) = b0
provided that

(9.17) det R(1) 
= 0, R(s) :=
∂r

∂b
(s, b0, 0).

The theory of ordinary differential equations implies that the matrix R satisfies the
initial-value problem obtained by formally differentiating (9.14) with respect to b and
then setting (b, ε) = (b0, 0). This process yields

(9.18) n′
b = O, r′

b = mn
(
n̂(z′(s)k, s)

)
· nb, ,nb(0) = I, rb(0) = O,

whence we obtain

(9.19) R′ = mn
(
n̂(z′(s)k, s)

)
, R(0) = O.

We obtain R(1) by integrating (9.19). It is positive-definite because (9.10) is. �
9.20. Problem. Investigate the validity of the perturbation process when N 0 is not
everywhere positive.

Chap. 20 contains proofs of a general version of the Implicit-Function Theorem, of the
basic existence and uniqueness theorem for initial-value problems for ordinary differential
equations in Ex. (20.1.22), and of the Poincaré Shooting Method. These proofs are each
based upon the Contraction Mapping Principle. Thus both methods discussed above
are intimately connected. Methods for justifying perturbation methods for dynamical
problems have so far required that the equations have a strong dissipative mechanism.
See Koch & Antman (2001), Potier-Ferry (1981,1982), Xu & Marsden (1996).
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10. Variational Characterization of
the Equations for an Elastic String

If f : R → R is continuous, then the equation

(10.1) f(x) = 0

is equivalent to

(10.2) φ′(x) = 0

where

(10.3) φ(x) =
∫ x

0
f(ξ) dξ.

Thus we might be able to study the existence of solutions of (10.1) by
showing that φ has an extremum (a maximum or a minimum) on R. If φ
is merely continuous, we can still study the minimization of φ, although
the corresponding problem (10.1) for f need not be meaningful. (The
present situation in 3-dimensional nonlinear elastostatics has precisely this
character: Under certain conditions the total energy is known to have a
minimizer, but it is not known whether the equilibrium equations, which
correspond to the vanishing of the Gâteaux derivative of the energy, have
solutions. See Chap. 13.)

If f : R
n → R

n is continuous, then the system

(10.4) f(x) = o

may not be equivalent to the vanishing of a gradient

(10.5) ∂φ(x)/∂x = o

because there may not be a scalar-valued function φ such that ∂φ/∂x = f.
If f ∈ C1(Rn), then a necessary and sufficient condition for the existence
of such a φ is that:

(10.6) ∂f/∂x is symmetric.

In this case, φ is defined by the line integral

(10.7) φ(x) :=
∫

C
f(y) · dy

where C is a sufficiently smooth curve joining a fixed point to x. (For a
proof, see Sec. 12.3.) We could then study (10.4) by studying extrema of
φ.

In this section we show how the equations of motion for an elastic string
can be characterized as the vanishing of the Gâteaux differential of a scalar-
valued function of the configuration. For this purpose, we must first extend
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the notion of directional derivative of a real-valued function defined on some
part of R

n to a real-valued function defined on a set of functions, which
are to be candidates for solutions of the governing equations.

Let E1 and E2 be normed spaces (e.g., spaces of continuous functions;
see Chap. 19) and let A ⊂ E1. Let f [ · ] : E1 → E2. (When the argument
of a function lies in a function space, we often enclose this argument with
brackets instead of parentheses. Examples of such f ’s are forthcoming.) If

(10.8) d
dεf [u+ εy]|ε=0

exists for u ∈ A, y ∈ E1, and ε ∈ R \ {0}, then it is called the Gâteaux
differential, directional derivative, or first variation of of f at u in the
direction y. If (10.8) exists for all y in E1 (for which it is necessary that u
be an interior point of A) and if it is a bounded linear operator acting on y
(i.e., if (10.8) is linear in y and if the E2-norm of (10.8) is less than a constant
times the E1-norm of y), then f is said to be Gâteaux-differentiable at u.
In this case, (10.8) is denoted by fu[u] · y, and fu[u] is called the Gâteaux
derivative of f at u. (This terminology is not completely standardized. See
Văınberg (1964) for a comprehensive treatment of the interrelationship of
various kinds of differentiations.) If E2 = R, then f is called a functional.

We ask whether the (weak form of the) governing equations for a string
can be characterized by the vanishing of the Gâteaux differential of some
suitable functional. We show that this can be done for elastic strings under
conservative forces. We study the formulation of the equations for time-
periodic motions of such strings; the formulation of initial-boundary-value
problems by variational methods proves to be somewhat unnatural.

The kinetic energy of the string at time t is

(10.9) K[r](t) := 1
2

∫ 1

0
(ρA)(s)|rt(s, t)|2 ds.

The stored-energy (or strain-energy) (density) function for an elastic string
is the function W defined by

(10.10) W (ν, s) :=
∫ ν

1
N̂(β, s) dβ.

The (total) stored energy in the string at time t is

(10.11) Ψ [r](t) :=
∫ 1

0
W
(
ν(s, t), s

)
ds.

Suppose that f has the form

(10.12) f(s, t) = g(r(s, t), s)

and that there is a scalar-valued function ω, called the potential-energy
density of g, such that

(10.13) g(r, s) = −∂ω(r, s)/∂r
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(see the remarks following (10.5)). Thus g is conservative. The potential
energy of the body force g at time t is

(10.14) Ω[r](t) :=
∫ 1

0
ω
(
r(s, t), s

)
ds.

The potential-energy functional for the string is Ψ +Ω.
Let E consist of all continuously differentiable vector-valued functions

[0, 1] × R � (s, t) �→ y(s, t) that satisfy

(10.15) y(0, t) = o = y(1, t), y(s, ·) has period T .

The norm on E can be taken to be

(10.16) ‖ y‖ := max{|y(s, t)|+ |ys(s, t)|+ |yt(s, t)| : (s, t) ∈ [0, 1]× [0, T ]}.

We introduce the Lagrangian functional Λ by

(10.17) Λ[r] :=
∫ T

0
{K[r](t) − Ψ [r](t) −Ω[r](t)} dt.

We study this functional on the class of admissible motions

(10.18) A := {r : r(s, t) = y(s, t) + Lsk, y ∈ E , |rs(s, t)| > 0}.

For r ∈ A and y ∈ E , we obtain from (10.9)–(10.14) that

(10.19)

Λr[r] · y =
d

dε

∫ T

0

∫ 1

0

[ 1
2 (ρA)(s)|rt(s, t) + εyt(s, t)|2

−W
(
|rs(s, t) + εys(s, t)|, s

)
− ω

(
r(s, t) + εy(s, t), s

)]
ds dt

∣∣∣∣
ε=0

=
∫ T

0

∫ 1

0

[
(ρA)(s)rt(s, t) · yt(s, t)

− N̂
(
|rs(s, t)|, s

)rs(s, t) · ys(s, t)
|rs(s, t)|

+ g
(
r(s, t), s

)
· y(s, t)

]
ds dt.

The mild difference between the vanishing of (10.19) and the Principle of
Virtual Power (2.24), embodied in the presence of v in (2.24), reflects the
fact that (2.24) accounts for initial conditions, whereas (10.19) accounts
for periodicity conditions. Hamilton’s Principle for elastic strings under
conservative forces states that (the weak form of) the governing equations
can be characterized by the vanishing of the Gâteaux differential of the
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Lagrangian functional Λ. Any system of equations that can be character-
ized by the vanishing of the Gâteaux differential of a functional is said to
have a variational structure; the equations are called the Euler-Lagrange
equations for that functional.

Hamilton’s principle does not require that variables entering it be periodic in time.
In fact, in the mechanics of particles and rigid bodies, the configuration is typically
required to satisfy boundary conditions at an initial and terminal time. Such conditions
are artificial; they are devised so as to yield the governing equations as Euler-Lagrange
equations. On the other hand, periodicity conditions define an important class of prob-
lems.

In continuum mechanics, Hamilton’s principle is applicable only to frictionless sys-
tems acted on solely by conservative forces. A criterion telling whether a system of
equations admits a natural variational structure is given by Văınberg (1964) and is ex-
ploited by Tonti (1969). (Its derivation is just the generalization to function spaces of
that for (10.6).) There is also a theory, akin to the theory of holonomicity in classical
mechanics, that tells when a system can be transformed into one having a variational
principle. The use of such a theory for quasilinear partial differential equations is very
dangerous because the requisite transformations may change the weak form of the equa-
tions. For physical systems, the altered form may not be physically correct because it
does not conform to the Principle of Virtual Power and accordingly does not deliver the
correct jump conditions.

For Hamilton’s Principle to be useful, it must deliver something more than an al-
ternative derivation of the governing equations with theological overtones. One way for
it to be useful would be for it to promote the proof of existence theorems for solutions
characterized as extremizers of Λ. Serious technical difficulties have so far prevented
this application to the equations of motion of nonlinear elasticity. Hamilton’s Principle,
however, has recently proved to be very effective in supporting the demonstration of the
existence of multiple periodic solutions of systems of ordinary differential equations (see
Ekeland (1990), Mawhin & Willem (1989), Rabinowitz et al. (1987), e.g.). The spe-
cialization of Hamilton’s Principle to static problems, called the Principle of Minimum
Potential Energy, is very useful for existence theorems and for the interpretation of the
stability of equilibrium states, as we shall see in Chaps. 7 and 13. Moreover, Hamiltonian
structure has been effectively exploited to derive stability theorems for certain elastic
systems (see Simo, Posbergh, & Marsden (1991), e.g.).

11. Discretization

In this section we briefly survey some numerical methods for solving partial differen-
tial equations like those for the string. This text is not directly concerned with numerical
methods; we examine these questions here because they are intimately related to the
Principle of Virtual Power. (They can also be used to produce constructive existence
theorems for certain problems.)

We describe a simple method that leads to the formal approximation of the partial
differential equations for an elastic string by a system of ordinary differential equa-
tions. This procedure, associated with the names of Bubnov, Galerkin, Faedo, and
Kantorovich, is sometimes called the method of lines. A special case of it is the semi-
discrete finite-element method.

Let {s �→ φk(s), k = 1, 2, . . . } be a given set of functions in W 1
p (0, 1) with the

properties that φk(0) = 0 = φk(1) and that given an arbitrary function in W 1
p (0, 1) and

an error, there exists a finite linear combination of the φk that approximate the given
function to within the assigned error in the W 1

p -norm. (The set {s �→ sin kπs} has these
properties. Another such set is defined in (11.9).) We seek to approximate solutions of
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the initial-boundary-value problem for elastic strings of Sec. 2 by functions rK of the
form

(11.1) rK(s, t) = Lsk +
K∑

k=1

φk(s)rk(t)

where the functions rk are to be determined. We approximate the given initial position
u(s) and initial velocity v(s) by

(11.2a,b) uK(s) = Lsk +
K∑

k=1

φk(s)uk, vK(s) =
K∑

k=1

φk(s)vk

where the constant vectors {uk, vk} are given. In the Principle of Virtual Power (2.24),
(2.10b), (2.11) for elastic strings let us replace r and v with rK and vK and let us
choose

(11.3) y(s, t) = φl(s)yl(t)

where yl is an arbitrary absolutely continuous function that vanishes for large t. (There
is no need for yl to be indexed with l. No summation is intended on the right-hand side
of (11.3).) Then this principle reduces to the following weak formulation of the system
of ordinary differential equations for {rk}:

(11.4)
∫ ∞

0

∫ 1

0
n̂

(
Lk +

K∑
k=1

φ′
k(s)rk(t), s

)
· yl(t)φ′

l(s) ds dt −
∫ ∞

0
fl · yl dt

=
K∑

k=1

〈φk, φl〉
∫ ∞

0

(
drk

dt
− vk

)
· dyl

dt
dt

for all absolutely continuous yl, l = 1, . . . , K , where

(11.5) fl(t) :=
∫ 1

0
f(s, t)φl(s) ds, 〈φk, φl〉 :=

∫ 1

0
ρAφkφl ds.

In consonance with (2.4) we require that {rk} satisfy the initial conditions

(11.6a,b) rk(0) = uk,
drk

dt
(0) = vk,

the second of which is incorporated into (11.4) as we shall see.

11.7. Exercise. Suppose that (11.4) has a continuously differentiable (or more gen-
erally an absolutely continuous) solution {r1, . . . , rK}. Take yl(t) = ψ(t)e where ψ
is defined in (4.4b) and and where e is an arbitrary constant vector. Use the method
described at the end of Sec. 4 to prove that

∑K
k=1〈φk, φl〉( drk

dt
− vk) is continuously

differentiable (whichever smoothness hypothesis is made about the solution) and ac-
cordingly satisfies (11.6b). Show that the solution of (11.4) is thus a classical solution
of the system

(11.8)
K∑

k=1

〈φk, φl〉
d2rk

dt2
+
∫ 1

0
n̂

(
Lk +

K∑
k=1

φ′
l(s)rk(t), s

)
φ′

k(s) ds − fl = o.

If we make the very reasonable assumption that the Gram matrix with components
〈φk, φl〉 is nonsingular, then (11.8) can be put into standard form. In particular, if
φk(s) = sin kπs and if ρA is constant, then this matrix as well as the corresponding
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1

s
kh

φk

(k+1)h(k−1)h

Figure 11.10. The function φk.

matrix with components 〈 f ′
k, φ

′
l〉 is diagonal. For practical computation, this virtue is

counterbalanced by the high cost of the numerical evaluation of the integrals in (11.4)
and (11.8).

Let us set h = 1/(K + 1) and

(11.9) φk(s) =

⎧⎪⎨⎪⎩
h−1[s − (k − 1)h] for (k − 1)h ≤ s ≤ kh,
1 − h−1(s − kh) for kh ≤ s ≤ (k + 1)h,

0 elsewhere.

(This function is shown in Fig. 11.10.) When (11.9) is used, the matrices whose elements
are 〈φk, φl〉 and 〈φ′

k, φ
′
l〉 are tridiagonal. The cost of the numerical evaluation of the

integrals in (11.4) and (11.8) is low. (Matrices with components 〈φ′
k, φ

′
l〉 arise naturally

in the linearization of (11.8) and are associated with the finite-difference approximation
of rss.) The choice (11.9) gives the simplest (semi-discrete) finite-element approximation
to our nonlinear initial-boundary-value problem. If ρA is constant, say ρA = 1, then

(11.11) 〈φk, φk〉 =
4h
6
, 〈φk, φk+1〉 =

h

6
, 〈φk, φl〉 = 0 for l 
= k − 1, k, k + 1.

If, however, we were to approximately evaluate these integrals by using the trapezoid
rule, then we would find that 〈φk, φl〉 = δkl. In this case, the left-hand side of (11.8)
would uncouple and the resulting equations could be identified with the equations of
motion of K beads joined by massless nonlinearly elastic springs.

11.12. Exercise. Replace r in (10.17) with rK of (11.1). Show that the vanishing of
the Gâteaux derivative of the resulting functional of {r1, . . . , rK} is equivalent to (11.4).

11.13. Exercise. Using the principles of classical particle mechanics, find the equations
of motion of K beads joined in sequence by massless nonlinearly elastic springs, with
the first and the Kth bead joined to fixed points by such springs. Compare the resulting
equations with (11.8). Formally obtain (2.9)–(2.11) by letting K → ∞ while the total
mass of the beads stays constant. (See the discussion at the end of Sec. 2.)

Even though the form of the governing equations for discrete models converges to the
form of the governing equations for string models, it does not follow that the solutions
of the former converge to solutions of the latter in any physically reasonable sense.
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Von Neumann (1944) (in a paper filled with valuable insights) advanced the view, now
recognized as false, that the solutions for the positions of the beads in the equations of
Ex. 11.13, together with their time derivatives and suitable difference quotients should
converge respectively to the position, velocity, and strain fields for (2.9)–(2.11). This
convergence is valid only where the partial differential equations have classical solutions.
Where the velocity and strain suffer jump discontinuities (shocks), the solutions of the
discrete problem develop high-frequency oscillations that persist in the limit as K →
∞. Consequently it can be shown that the limiting stress is incorrect. For thorough
discussions of this phenomenon and related issues, see Greenberg (1989, 1992), Hou &
Lax (1991), and the references cited therein.

Likewise, finite-element discretizations of dynamic problems of nonlinear elasticity
may fail to give sharp numerical results because they are not well adapted to capture
the shocks such systems may possess. (There is an effort to change this state of af-
fairs.) There are a variety of effective numerical schemes, originally developed for gas
dynamics, that can effectively handle shocks. One such scheme, that of Godunov (see
Bell, Colella, & Trangenstein (1989), e.g.), may be regarded as a discretization of the
Impulse-Momentum Law of Sec. 3 in a way that exploits the characteristics of the un-
derlying hyperbolic system. The trouble with many such schemes is that they have
inherent dissipative mechanisms, inspired by those for gas dynamics, that are not in-
variant under rigid motions and could therefore lead to serious errors in problems for
which there are large rotations. (Cf. Antman (1998, 2003a) and Sec. 8.9.) There is an
extensive literature on the finite-element method for equilibrium problems. Among the
more mathematical works oriented toward solid mechanics are those of Brenner & Scott
(2002), Brezzi & Fortin (1991), Ciarlet (1978), Ciarlet & Lions (1991), Hughes (1987),
Johnson (1987), Oden & Carey (1981–1984), and Szabó & Babuška (1991).

Although we do not know in what sense the solution of (11.8) converges to the solution
of the partial differential equations for elastic strings, we might be able to resolve this
question for viscoelastic strings by using modern analytic techniques associated with
the Faedo-Galerkin method. (See Ladyzhenskaya (1985), Ladyženskaja, Solonnikov, &
Ural’tseva (1968), Lions (1969), and Zeidler (1990, Vol. IIB).) An analysis along these
lines for a quasilinear engineering model of an elastic string was carried out by Dickey
(1973). He proved that the solutions of a system like (11.8) converge to the classical
solution of the partial differential equations until the advent of shocks. Antman &
Seidman (1996) used the Faedo-Galerkin method to treat the longitudinal motion of a
viscoelastic rod with a constitutive equation of the form (2.14).



CHAPTER 3

Elementary Problems
for Elastic Strings

1. Introduction
The development of both continuum mechanics and mathematics during

the eighteenth century was profoundly influenced by the successful treat-
ment of conceptually simple, but technically difficult problems. (Indeed,
one can argue that the dominant philosophical attitudes of the Age of Rea-
son were founded on an awareness of these scientific triumphs, if not on
their understanding.) Among the most notable of these classical problems
are those of determining the equilibrium states of inextensible strings hung
between two points and subjected to various systems of loads. (An inex-
tensible string is one for which the stretch ν is constrained to equal 1, no
matter what force system is applied to the string.) The problem of the
catenary is to determine the equilibrium states of such a string when the
applied force is the weight of the string. The problem of the suspension
bridge is to determine these states when the applied force is a vertical load
of constant intensity per horizontal distance. (The string does not corre-
spond to the bridge, but to the wires from which it is suspended.) The
problem of the velaria is to determine these states when the applied force
is a normal pressure of constant intensity. In the related problem of the
lintearia, the applied force is a normal pressure varying linearly with depth.
(This problem describes the deformation of a cylindrical membrane holding
a liquid, the string representing a typical section of the membrane.) In a
fifth problem, the applied force is the attraction to a fixed point. In Sec. 12
we outline the progression from haphazard conjecture to elegant solution
of these problems in the seventeenth and eighteenth centuries.

Catenary comes from the Latin catena, meaning chain. It is the curve assumed by
a suspended chain. Velaria comes from the Latin velarium, meaning awning or sail.
In the terminology of Jas. Bernoulli, it is the curve assumed by a cylindrical surface
subjected to simple hydrostatic pressure. Lintearia comes from the Latin lintea, also
meaning sail . (Lintea is the plural of linteum meaning linen cloth.) In the terminology
of Jas. Bernoulli, the lintearia is the curve assumed by a horizontal cylindrical surface
holding water.

Jas. Bernoulli formulated corresponding problems for elastic strings.
Dickey (1969) observed that the catenary problem for nonlinearly elastic
strings offers novel challenges on questions of existence, multiplicity, and
qualitative behavior of solutions, which were contemplated neither by the

53
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savants of the seventeenth and eighteenth centuries nor by their successors.
In this chapter we study these and related questions for generalizations of
the problems mentioned above to nonuniform, nonlinearly elastic strings.
One feature of these problems is that many detailed properties of the de-
formed shape are independent of the material response, which intervenes
most significantly in the study of existence and multiplicity. The next
section illustrates how the essential geometry is unaffected by constitutive
equations for strings under vertical loads. Throughout this chapter we
retain the notation of Chap. 2.

2. Equilibrium of Strings under Vertical Loads
Let a string have a natural reference length 1. Let f(s) denote the force

per unit reference length at s applied to the string. We assume that f is
integrable. Then the equilibrium equations are

(2.1a,b,c) n(s) − n(c) +
∫ s

c

f(ξ) dξ = o, n = Na, a :=
r′

|r′|

for almost all c and s. (See (2.6.1) and (2.2.10b). Note that (2.6.2) holds
a.e.) Given f , we seek absolutely continuous configurations r satisfying
(2.1), satisfying

(2.2) ν ≡ |r′| > 0 a.e.,

and satisfying the boundary conditions

(2.3) r(0) = o, r(1) = ai + bj, a ≥ 0, b ≥ 0.

(There is no loss in generality in taking position boundary conditions in
this form.)

We assume that f , which may be a composite function depending on r
in a general way, has the form

(2.4) f(s) = −F ′(s)j, F ′(s) > α a.e., F (0) = 0

where F is absolutely continuous and α is a given positive number. We give
specific forms for F in subsequent sections. The unit vector j is interpreted
as pointing upward.

We postpone the introduction of a constitutive equation for N . Our first
results apply to the underdetermined system (2.1)–(2.4). As the comments
following (2.6.3) explain, the equilibrium response of strings is elastic, so
we shall employ the constitutive equation (2.6.4). But the next few results
would apply equally well to an N depending on |r′|, |r′|′, . . . .

It may seem physically obvious that the string whose configuration is to be deter-
mined by (2.1)–(2.4) should lie in the {i, j}-plane. One’s confidence in this intuition
may be shaken by observing nonplanar equilibrium states of a real thread held at its
ends under its own weight. One could attribute such states to the presence of small
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flexural and torsional stiffness that can dominate the small weight of the thread. If the
planarity of the equilibrium state is deemed physically obvious, then it should be proved
to follow from (2.1)–(2.4) in order to demonstrate the soundness of our model; if it is not
deemed obvious, then it should be proved because it is an important and unexpected
consequence of these equations. We now prove that the solutions of these equations are
in fact planar (thereby supporting in an oblique way the explanation just adduced for
the skewness of real threads).

2.5. Proposition. Let r and n satisfy (2.1)–(2.4) with r absolutely con-
tinuous and with N continuous. Then r and n are planar: r ·k = 0 = n ·k.

Proof. Condition (2.2) and the absolute continuity of r ensure that a is
defined as a unit vector by (2.1c) a.e. Eq. (2.1a) implies that n is absolutely
continuous. Consequently (2.1a) holds for all c and s. Eqs. (2.1) and (2.4)
imply that

(2.6a,b) n = Na = Fj + n(0), whence |N | = |Fj + n(0)|.

Thus |N | is absolutely continuous. If N vanishes at a point s0 in [0,1],
then (2.6b) implies that n(0), which is not known beforehand, must equal
−F (s0)j, whence (2.6a) reduces to

(2.7) n(s) ≡ N(s)a(s) = [F (s) − F (s0)]j.

Thus n · k = 0. Since F ′ > α, Eq. (2.7) implies that N vanishes only at
s0. Thus (2.7) implies that

(2.8) a(s) = sign{[F (s) − F (s0)]N(s)−1}j for s �= s0.

(Equation (2.8) is also valid without ‘sign’.) Thus

(2.9a,b) r(s) · k =
∫ s

0
ν(ξ)a(ξ) · k dξ = 0.

If N vanishes nowhere, then (2.3) and (2.6) imply that
(2.10)

0 = (ai+bj)·k =
∫ 1

0
r′(s)·k ds =

∫ 1

0
ν(s)a(s)·k ds = n(0)·k

∫ 1

0

ν(s)
N(s)

ds.

Since N is continuous, the integrand in the rightmost term of (2.10) has
but one sign, so that n(0) · k = 0. Thus n · k = 0 and a · k = 0 by (2.6).
Eq. (2.9a) then implies that r · k = 0. �

That the vanishing of N at any point leads to a degenerate solution, as
suggested by the first part of this proof, is confirmed by

2.11. Proposition. Let r and n satisfy the hypotheses of Proposition 2.5.
If there is an s0 in [0, 1] such that n(s0) ·i = 0 (i.e., if either a(s0) ·i = 0, so
that the tangent to the string at s0 is vertical, or N(s0) = 0), then n ·i = 0,
a · i = 0, a = 0, and the string lies along the vertical j-axis. Otherwise, N
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never vanishes, so that the string is either everywhere in tension (N > 0)
or everywhere in compression (N < 0) and the string is nowhere vertical.

Proof. Proposition 2.5 and Eq. (2.6) imply that if n(s0) · i = 0, then
n · i = 0. If N(s0) = 0, then (2.8) holds, implying that a · i = 0, so that

(2.12) r(s) · i =
∫ s

0
ν(ξ)a(ξ) · i dξ = 0, r(1) · i ≡ a = 0.

If n(s0) · i = 0 but N vanishes nowhere, then the equation n · i = 0 implies
that a · i = 0 with the same consequence (2.12). �
2.13. Problem. Generalize Propositions 2.5 and 2.11 when the requirement that F ′
have a positive lower bound a.e. is suspended.

In view of Proposition 2.5, we may introduce the representations

a(θ) = cos θi + sin θj,(2.14)

n(0) = λi + µj.(2.15)

Then by dotting (2.6) successively with i, j, and a we obtain

N cos θ = λ,(2.16a)

N sin θ = µ+ F,(2.16b)

N = λ cos θ + (µ+ F ) sin θ.(2.16c)

If λ = n(0) · i �= 0, then (2.16a,b) imply that

tan θ =
µ+ F
λ

,(2.17)

cos θ = ±λ
δ
, sin θ = ±µ+ F

δ
, δ :=

√
λ2 + (µ+ F )2, N = ±δ.

(2.18)

Since F is absolutely continuous, (2.17) implies that tan θ is also. We
may accordingly take θ to be absolutely continuous and have range in
(−π/2, π/2). Since F is strictly increasing, Eq. (2.17) implies that θ is
strictly increasing if λ > 0, and strictly decreasing if λ < 0. Thus

2.19. Proposition. Let the hypotheses of Proposition 2.5 hold and let
a > 0. The configuration r admits the usual Cartesian parametrization

(2.20) r · i = x, r · j = y(x).

y is strictly convex for λ > 0 and strictly concave for λ < 0.

2.21. Exercise. For n · i 
= 0, derive (2.17) by the following alternative process:
Substitute (2.14) into (2.1) and use (2.4) to get

(2.22a,b,c) N ′ = F ′ sin θ, Nθ′ = F ′ cos θ,
N ′

N
= θ′ tan θ.

Integrate (2.22c) subject to (2.15) to obtain (2.16a), substitute (2.16a) into (2.22b) to
get

(2.23) θ′ sec2 θ = F ′/λ,

and integrate (2.23) to obtain (2.17).
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3. The Catenary Problem
We now study the existence and multiplicity of absolutely continuous so-

lutions of the boundary-value problem (2.1)–(2.3) for elastic strings, with
constitutive equation (2.6.4), loaded by their own weights. Thus we spe-
cialize (2.4) to

(3.1) f(s) = −(ρA)(s)gj, F (s) =
∫ s

0
(ρA)(ξ)g dξ,

under the assumption that there is a positive number ω such that (ρA)(s) ≥
ω. Here (ρA)(s) is the mass density of the string per unit unstretched
length at s, and g is the acceleration of gravity. We assume that N̂ is
continuously differentiable, satisfies N̂ν > 0 everywhere, and satisfies the
growth conditions (2.2.19). By the argument preceding (2.2.23), N̂(·, s)
has an inverse ν̂(·, s) with ν̂ continuously differentiable. Thus (2.2.11) and
(2.2.23) are equivalent.

Before studying the number of solutions of this boundary-value problem,
we use a bootstrap argument to show that any solution must be classical:

3.2. Proposition. Let F of (3.1) be absolutely continuous on [0, 1] and
let N̂ have the properties just described. Let a > 0. Then every absolutely
continuous solution r of the boundary-value problem (2.1)–(2.3), (2.6.4),
(3.1) for which N is continuous has a derivative r′ that is absolutely con-
tinuous. At any s at which F is continuously differentiable (i.e., at which
ρA is continuous), r is continuously differentiable. If F is continuously
differentiable, then r is a classical solution of the boundary-value problem.

Proof. Proposition 2.11 implies that λ �= 0 if and only if a �= 0. Thus
(2.17) implies that θ has the same regularity as F , and (2.16c) accordingly
implies the same about N . (Products of absolutely continuous functions
are absolutely continuous. A Lipschitz-continuous function of an abso-
lutely continuous function is absolutely continuous. See Natanson (1961,
Chap. 9), e.g.) Thus ν̂(N(·), ·) has the same regularity as F . The rest of
the proposition follows from the representation r′ = νa. �
3.3. Exercise. For a = 0 show that the boundary-value problem for the elastic catenary
has an uncountable number of absolutely continuous solutions if the requirement that N
be continuous is suspended. (Most of these solutions are pathological. Since they satisfy
the integral form of the equilibrium equations or, equivalently, the Principle of Virtual
Power, their physical unacceptability can only be attributed to the absence of bending
stiffness. The requirement that N be continuous is an artificial admissibility condition
in lieu of a characterization of boundary-value problems for strings as singular limits
of those for rods. I expect that such a characterization would identify as physically
reasonable only those solutions for which N is continuous.)

To show that the boundary-value problem has a solution, we merely
have to show that λ and µ can be determined from the data a, b, F . There
are exactly as many solutions of the boundary-value problem as there are
distinct pairs (λ, µ). Indeed, if a > 0, then λ �= 0, so that (2.17) yields
θ, and (2.16c) yields N . The function r is then found by integrating r′ =
ν̂(N(·), ·)a subject to r(0) = o. (The same conclusion holds when a = 0.)
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In the rest of this section, we assume that a > 0. We obtain a pair of
equations for λ and µ from the boundary conditions (2.3) by using (2.1c),
(2.14), and (2.18):

(3.4±)

ai + bj = r(1) − r(0) =
∫ 1

0
ν(s)[cos θ(s)i + sin θ(s)j] ds

=
∫ 1

0

ν̂
(
±δ(s), s

)
±δ(s) {λi + [µ+ F (s)]j} ds

=: P±(λ, µ;F )i +Q±(λ, µ;F )j.

Equation (3.4+) describes tensile solutions and (3.4−) describes compres-
sive solutions.

Let us introduce the functionW ∗ conjugate to the stored-energy function
W of (2.10.10) by the Legendre transformation

(3.5) W ∗(N, s) := Nν̂(N, s) −W
(
ν̂(N, s), s

)
,

so that

(3.6) ν̂(N, s) =W ∗
N (N, s), W ∗(N, s) =

∫ N

0
ν̂(N, s) dN

(with the lower limit of integration taken to be 0 because (3.5) implies that
W ∗(0, s) = 0 since W (1, s) = 0). We illustrate the form of ν̂ and W ∗ in
Fig. 3.7. We set

(3.8) Φ±(λ, µ; a, b, F ) =
∫ 1

0
W ∗(±δ(s), s) ds− λa− µb.

Equation (3.4±) is equivalent to the vanishing of the gradient of
Φ±(·, ·; a, b, F ). (There is no problem with the differentiability of this func-
tion because F (s) > 0 for s > 0. Note that given P± and Q±, we can
construct Φ± by (2.10.7).)

1

0

ν

N

W *(N , s)

(N , s)^

Fig. 3.7. Graphs of ν̂ and W ∗.
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We now analyze (3.4+). We show that the gradient of Φ+ vanishes at one
point at least, because Φ+ has a minimum: The properties of W ∗ inherited
from N̂ and illustrated in Fig. 3.7 imply that

(3.9) Φ+(λ, µ; a, b, F ) → ∞ as λ2 + µ2 → ∞.

Thus the set K := {(λ, µ) : Φ+(λ, µ; a, b, F ) ≤ Φ+(0, 0; a, b, F )} must be
bounded. K is closed because Φ+ is continuous. Therefore, Φ+(·, ·; a, b, F )
restricted to K is a continuous function on the closed and bounded set K and
therefore has a minimum at some point (λ̄, µ̄) in K. But this minimum is
clearly a minimum for the unrestricted function. Thus for each given a, b, F ,
the continuous function Φ+(·, ·; a, b, F ) on R

2 has an absolute minimum at
a point (λ̄, µ̄), at which the gradient of Φ+(·, ·; a, b, F ) must vanish. Hence
(λ̄, µ̄) is a solution of (3.4+). The positivity of ν̂N , which is a consequence
of that of N̂ν , implies that the Hessian matrix of Φ+

(3.10)
[
P+

λ P+
µ

Q+
λ Q+

µ

]
is positive-definite,

whence Φ+ is strictly convex. (The simplest proof of (3.10) is based on
computing the quadratic form for its matrix.) By an argument like that
following (8.10.11)), the strict convexity of Φ+ implies that (3.4+) has at
most one solution. Let us prove this directly from (3.10): Suppose that
there were two solutions (λ1, µ1) and (λ2, µ2). It would then follow from
the Fundamental Theorem of Calculus and the Chain Rule that
(3.11)
0 = (λ1 − λ2)[P+(λ1, µ1) − P+(λ2, µ2)]

+ (µ1 − µ2)[Q+(λ1, µ1) −Q+(λ2, µ2)]

= (λ1 − λ2)P+ (αλ1 + (1 − α)λ2, αµ1 + (1 − α)µ2)
∣∣α=1
α=0 + · · ·

=
∫ α=1

α=0

d

dα
[(λ1 − λ2)P+ (αλ1 + (1 − α)λ2, αµ1 + (1 − α)µ2) + · · ·] dα

=
∫ α=1

α=0

[
P+ (αλ1 + (1 − α)λ2, αµ1 + (1 − α)µ2) (λ1 − λ2)2 + · · ·

]
dα.

The integrand of the last term in this identity is a quadratic form for the
positive-definite matrix (3.10). Since (3.11) requires this quadratic form to
vanish, its coefficients must vanish, whence λ1 = λ2, µ1 = µ2.

Since a > 0, we can use (2.16a) to show that λ̄ > 0 and use (2.17) to
show that θ is a strictly increasing function of s. Therefore, we have proved

3.12. Theorem. Let ν̂ have the properties described above. There is
exactly one absolutely continuous solution r of the boundary-value problem
for the catenary for which N is everywhere positive. For this solution,
λ̄ ≡ n(0) · i > 0 and the function y of (2.20) is strictly convex.

Note that these fundamental results are direct consequences of our con-
stitutive hypotheses.
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3.13. Exercise. Show that

(3.14) Φ−(λ, µ; a, b, F ) = −λa− µb+ o
(√
λ2 + µ2

)
as λ2 + µ2 → ∞.

3.15. Exercise. For inextensible strings, i.e., strings for which ν̂ = 1, show that
the variational method used to prove Theorem 3.11 can be readily adapted to treat
compressive solutions: Prove that if 0 < a and if a2 + b2 < 1, then there is exactly one
tensile solution, for which y is convex, and there is exactly one compressive solution,
for which y is concave. Specialize these results to a uniform string, for which F = γs,
and determine how the shape of the compressive configuration is related to that of the
tensile configuration. Show that the solutions (λ, µ) of (3.4+) parametrized by a, b have
the property that λ2 + µ2 ↗ ∞ as a2 + b2 ↗ 1. In this limit, the constraint that
the supports are separated by the length of the inextensible string permits only the
unique configuration in which r describes the straight line joining the supports. Thus
the tension necessary to hold a heavy inextensible string taut is infinite. (This paradox
has been known at least since the nineteenth century.) If a2 + b2 > 1, then there can be
no solutions.

Exercise 3.13 shows that there is no straightforward way to exploit the
variational structure of (3.4−) for extensible strings. A common modern
response to a system like this is to abandon any hope of deducing informa-
tion analytically and instead appeal to numerical processes. Each numeri-
cal study requires a choice of data a, b, F, ν̂. Consequently each numerical
study, presumed reliable, yields information about just one set of data; such
studies cannot distinguish between what is typical of all data and what is
special. In particular, such studies cannot readily identify thresholds in
data across which solution properties change drastically. We accordingly
approach our problem by other analytic techniques. Such analyses of course
would form a very useful concomitant to any serious numerical study.

In the rest of this section, we drop the minus signs ornamenting P and
Q in (3.4−). We first observe that if (3.4−) has a solution, then signλ =
−sign a and µ < 0. If (3.4−) has a solution with a2 + b2 > 1, then there
must be an s0 such that ν(s0) > 1, so that N(s0) > 0. Proposition 2.11
then implies that N > 0, which is incompatible with the fact that (3.4−)
corresponds to a negative N . Thus if (3.4−) has a solution, then a2+b2 ≤ 1.
In fact, we have a sharper result: Since λ ≤ 0 and since µ+ F can vanish
at most once in [0, 1], it follows that δ(s) > 0 and ν̂

(
−δ(s), s

)
< 1 for

all except possibly one s in [0, 1]. Hence the Cauchy-Bunyakovskĭı-Schwarz
inequality implies that 1 > P 2 +Q2 = a2 +b2. We summarize these results:

3.16. Proposition. Let ν̂ have the properties described above. If (3.4−)
has a solution, then

(3.17) a2 + b2 < 1, signλ = −sign a, µ < 0.

Thus if a > 0, then λ < 0 and solutions correspond to strictly concave y’s
by Proposition 2.19. Proposition 3.16 says that these arciform compressive
states exists only if the distance between the supports is less than the
natural length of the string. For the degenerate case that a = 0, we shall
easily show that there are exactly two solutions (with N continuous) when
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(3.17) holds: In one solution, the string is compressed between the two
supports, and in the other, the string is balanced precariously in a folded
vertical configuration above its supports.

It is evident that these compressive configurations should be unstable ac-
cording to any physically reasonable criterion. But as both Hooke and Jas.
Bernoulli observed, such configurations correspond to moment-free states
of arches composed of materials that resist bending. They accordingly play
an important role in optimal design. There is also evidence that such con-
figurations have an asymptotic significance in rod theory. Finally, these
configurations correspond to critical points in any dynamical problem for
these strings, and as such influence the global evolution of solutions. (These
observations escaped a reviewer who criticized Dickey (1969) for studying
unstable solutions.)

The most direct approach to analyzing (3.4−) consists in determining the
nature of the graphs (λ, µ) �→ P (λ, µ;F ), Q(λ, µ;F ), using this information
to discover what the level curves P (λ, µ;F ) = a, Q(λ, µ;F ) = b look
like, and then finding simple conditions that ensure that these level curves
intersect (at solutions of (3.4−)). For this purpose, it is useful to set

(3.18) γ := F (1) = maxF, Γ (s) = γ−1F (s)

and regard Γ , which gives the shape of F , as fixed.

µ

λ

µ

λ

(a) (b)

Fig. 3.19(a). The level curves

P (λ, µ; γΓ ) = a.
The arrow indicates the direction
of decreasing a.

Fig. 3.19(b). The level curves

Q(λ, µ; γΓ ) = b.
The arrow indicates the direction
of decreasing b.

For fixed γ > 0, we determine the properties of the graphs of (λ, µ) �→
P (λ, µ; γΓ ), Q(λ, µ; γΓ ) by showing how they are related to the graphs
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of (λ, µ) �→ P (λ, µ; 0), Q(λ, µ; 0). The presence of the radical δ in the
integrands of P and Q prevents P (λ, µ; γΓ ) and Q(λ, µ; γΓ ) from converg-
ing uniformly to P (λ, µ; 0) and Q(λ, µ; 0) for λ ≤ 0, µ ≤ 0 as γ ↘ 0.
The same lack of uniformity occurs in other limit processes. Although we
must accordingly treat various limit processes with care, we can never-
theless deduce detailed qualitative information about the graphs (λ, µ) �→
P (λ, µ; γΓ ), Q(λ, µ; γΓ ). The details, omitted here, are given by Antman
(1979b). The dependence of the level curves P (λ, µ; γΓ ) = a, Q(λ, µ; γΓ )
= b on a and b is shown in Fig. 3.19. From it and related figures, we can
deduce

3.20. Theorem. Let ν̂ have the properties described above. (i) Let γ > 0
be given. If a and b are chosen sufficiently small with a > 0, then there
are at least two distinct solutions of (3.4−) and consequently at least two
distinct solutions of the boundary-value problem. (ii) Let a and b be given
with a > 0 and with a2+b2 < 1. If γ is chosen sufficiently small, then there
are likewise at least two distinct solutions of the boundary-value problem.
For these solutions, λ ≡ n(0) · i < 0, and y, defined by (2.20), is strictly
concave.

An illuminating insight into this multiplicity of solutions is given by Wolfe (1997).

Topological approach. We now approach this problem by an elemen-
tary topological method that does not require the detailed computations
underlying the proof of Theorem 3.20. The basic idea is that solutions of
(3.4−) correspond to points at which the continuous vector field

E
2 � λi + µj �→ [P (λ, µ;F ) − a]i + [Q(λ, µ;F ) − b]j

vanishes. Degree theory provides a way to reduce the study of this vanishing
to the study of the degenerate problem in which a = 0. We now give an
intuitive outline of degree theory in a more general setting, deferring a
careful exposition to Chap. 21.

Let Ω be a bounded domain in R
n and let I be an interval on R. Let

f : cl Ω × I → R
n be continuous. We wish to study how solutions x ∈ cl Ω

of the equation

(3.21) f(x, c) = o

depend on the parameter c. (We shall identify x with (λ, µ), c with a, and
f(x, c) with

(
[P (λ, µ;F ) − a], [Q(λ, µ;F ) − b]

)
, holding b and F fixed.) If

f(·, c) does not vanish on ∂Ω, then we can define an integer deg
(
f(·, c),Ω

)
,

called the (Brouwer) degree of f(·, c) on Ω, with the properties that it is easy
to compute and that |deg

(
f(·, c),Ω

)
| gives a lower bound for the number of

solutions of (3.21). In essence, we assign the number ±1 to each solution x
of (3.21) according to an appropriate rule and define the degree to be the
sum of these numbers. The method we employ is a generalization of the
Intermediate Value Theorem for real-valued functions of a real variable.

If f(·, c) is continuously differentiable on cl Ω, does not vanish on ∂Ω,
and has a Jacobian that does not vanish where f(·, c) does, we define
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deg
(
f(·, c),Ω

)
to be the sum of the signs of the Jacobians at the zeros

of f(·, c):

(3.22) deg
(
f(·, c),Ω

)
:=

∑
sign det

∂f
∂x

(x, c)

where the sum is taken over all x in Ω for which f(x, c) = o. Note that
this definition ensures that there are at least as many solutions of (3.21)
as |deg

(
f(·, c),Ω

)
|. This definition can be extended by approximation to

continuously differentiable functions f(·, c) for which the Jacobian can van-
ish at its zeros, and then to continuous functions. As the presence of the
Jacobian suggests, the degree can be represented as an integral, from which
it can be shown that the degree depends continuously on f(·, c) in C0(cl Ω)
provided that f(·, a) does not vanish on ∂Ω. We shall vary f(·, a) by varying
a. Since the degree is an integer, it stays fixed for continuous variations
of f(·, a) that do not vanish on ∂Ω. It follows from this invariance that
deg

(
f(·, a),Ω

)
is determined by the restriction of f(·, a) to ∂Ω. This fact

simplifies the computation of degree. In particular, if n = 2, then it can be
shown that 2π deg

(
f(·, a),Ω

)
is the angle through which f(·, a) rotates as ∂Ω

is traversed in a counterclockwise sense. (For continuous complex-valued
functions of complex variables, degree theory reduces to the Argument
Principle.) If f(·, a) does not vanish on ∂Ω, then the algebraic number of
solutions of (3.21) in Ω is even or odd according as deg

(
f(·, a),Ω

)
is even

or odd.
To avoid some minor technical difficulties in the application of these

ideas, we begin by assuming that the string is uniform so that ν̂s = 0 and
F (s) = γs. We first study the degenerate problem in which a = 0 and b =
b0, where b0 is a sufficiently small positive number (whose permissible range
will be specified shortly). Our goal is to determine how solutions evolve
from solutions of the degenerate problem as the parameters are varied. We
shall determine the degree of λi + µj �→ [P (λ, µ;F )]i + [Q(λ, µ;F ) − b]j
on certain sets and then use the invariance of degree under changes in a to
determine properties of the solutions of (3.4−).

For (3.4−) to have a solution with a = 0, it must reduce to

(3.23a)

Q(0, µ;F ) ≡ −
∫ 1

0

ν̂(−|µ+ γs|)
|µ+ γs| (µ+ γs) ds ≡ − 1

γ

∫ µ+γ

µ

ν̂(−|u|) u|u| du = b0.

Using (3.6), we find that

(3.23b) γQ(0, µ;F ) =

⎧⎪⎨⎪⎩
W ∗(µ+ γ) −W ∗(µ) for µ ≤ −γ,
W ∗(−µ− γ) −W ∗(µ) for − γ ≤ µ ≤ 0,
W ∗(−µ− γ) −W ∗(−µ) for 0 ≤ µ,
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from which we obtain

Q(0, µ;F ) < 0 for 0 ≤ µ, Q(0, µ;F ) → 0 as µ→ −∞,
(3.24)

Qµ(0, µ;F ) = − ν̂(−|µ+ γ|)(µ+ γ)
γ|µ+ γ| − ν̂(µ)

γ
for µ ≤ 0, µ �= −γ,

(3.25)

Qµ(0, µ;F ) > 0 for µ ≤ −γ, Qµ(0, µ;F ) < 0 for − γ < µ ≤ 0.
(3.26)

Qµ(0, ·;F ) is discontinuous at −γ, where Q(0, ·;F ) assumes its maximum
on (−∞, 0]. The form of Q(0, ·;F ) is shown in Fig. 3.27. This figure shows
that if 0 < b0 < Q(0,−γ;F ), then (3.4−) has exactly two solutions µ1(b0)
and µ2(b0), with µ1(b0) < −γ and with −γ < µ2(b0) < 0. The config-
uration corresponding to µ1(b0) is a straight line joining the supports at
(0, 0) and (0, b0). The configuration corresponding to µ2(b0) is a folded
line in which the fold lies above the higher support (0, b0). In the former
case, N = −δ is everywhere negative; in the latter case, N must vanish
exactly once, at the fold. As b0 is reduced to 0, µ1(b0) → −∞ and the
corresponding unfolded compressed state is ultimately reduced to a point,
this configuration being maintained by the reaction µ1(0) = −∞. The ex-
istence of these two degenerate solutions for 0 < b0 < Q(0,−γ;F ) suggests
why there would be two compressive states for a > 0, as ensured by The-
orem 3.20. Note that these solutions, just like those of Ex. 3.3, satisfy the
integral form of the equilibrium equations or, equivalently, the Principle of
Virtual Power.

µ1 γ− µ2

µ

Q(0,µ;F)

Q(0,−γ );F

0b( ) 0b( )

0b

Fig. 3.27. Graph of Q(0, ·;F ).

We now get some more information about the location of solutions (3.4−)
as both a and b are varied. The length of the straight line joining o to ai+bj
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is exceeded by the deformed length of the string:

(3.28)

√
a2 + b2 = |ai + bj| =

∣∣∣∣∫ 1

0
r′(s) ds

∣∣∣∣
≤
∫ 1

0
|r′(s)| ds =

∫ 1

0
ν̂
(
−
√
λ2 + [µ+ F (s)]2, s

)
ds.

(For generality, we treat nonuniform strings in (3.28).) If there is a number
ε > 0 such that a2 + b2 ≥ ε2, then (3.28) implies that λ and µ must each
have lower bounds depending only on ε (and F and ν̂), but independent
of a and b. (If not, the properties of ν̂ illustrated in Fig. 3.7 would ensure
the violation of (3.28) for large negative λ or µ.) Thus for fixed ε (and for
fixed F and ν̂), we can choose Λ andM so large that all solutions of (3.4−)
lie in the rectangle bounded by the lines λ = ±Λ, µ = 0, and µ = −M . In
particular, we take −M < µ1(b0). We first examine problems in which b is
held fixed at b0, and a is increased from 0. In this case, we choose ε = b0.

= Λλ _

= γµ

(0,µ )1

(0,µ )2

(0,0)

µ

λ

_

λ=Λ

= Mµ _

Fig. 3.29. The vector field P (·, ·;F )i + [Q(·, ·;F ) −b0]j on the
(λ, µ)-plane.

The vector field λi + µj �→ [P (λ, µ;F ) − a]i + [Q(λ, µ;F ) − b]j is con-
tinuous on E

2. In Fig. 3.29 we use the definitions of P and Q in (3.4−)
to sketch this field for a = 0 and b = b0 on the lines λ = ±Λ, µ = 0,
µ = −γ, and µ = −M . As the rectangle with sides λ = ±Λ, µ = 0,
and µ = −γ is traversed in the counterclockwise sense, the vector field
P (·, ·;F )i + [Q(·, ·;F ) − b0]j rotates through an angle of 2π. Thus its
degree on the domain bounded by this rectangle is 1. Since the only sin-
gular point of this field on this domain is at (0, µ2(b0)), the degree of
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this field on every small neighborhood containing (0, µ2(b0)), called the
(Brouwer) index of (0, µ2(b0)), is also 1 (essentially as a consequence of
definition (3.22)). Similarly, the index of (0, µ1(b0)) is −1. The degree of
P (·, ·;F )i + [Q(·, ·;F ) − b0]j on the large rectangular domain bounded by
the lines λ = ±Λ, µ = 0, and µ = −M is 0, the sum of its indices, as can
be determined directly by computing its rotation.

We regard the state variables (λ, µ) as constituting a single entity, dis-
tinct from the parameter a. We say that

(
(λ, µ), a

)
is a solution pair of

(3.4−) if it satisfies this equation.

3.30. Theorem. Let b = b0 ∈
(
0, Q(0,−γ;F )

)
, let ν̂ be independent of s

and have the properties described above, and let F (s) = γs. Then the set
of solution pairs

(
(λ, µ), a

)
of (3.4−), which lie in [−Λ, 0] × [−M, 0] × [0, 1],

contains a connected set joining
(
(0, µ1(b0)), 0

)
to

(
(0, µ2(b0)), 0

)
. (See

Fig. 3.31.)

µ2 (b0)

µ1 b( 0 )

µ

λ

a

Fig. 3.31. Schematic diagram of solution pairs of (3.4−). A
plane perpendicular to the a-axis through a small value of a in-
tersects the set of solution pairs at an algebraically even number
of points. It is conceivable that there are also disconnected sets
of solutions.

Sketch of Proof. The set of solution pairs of (3.4−), being the inverse image of
o under the continuous function

(
(λ, µ), a

)
�→ [P (·, ·;F ) − a]i + [Q(·, ·;F ) − b0]j, is

closed. Conditions (3.17) and the consequences of (3.28) imply that this set is also
bounded. Suppose for contradiction that

(
(0, µ1(b0)), 0

)
and

(
(0, µ2(b0)), 0

)
were not

connected by a set of solution pairs. Let C be the maximal connected set of solution
pairs containing

(
(0, µ1(b0)), 0

)
. (We admit the possibility that C might consist only

of the point
(
(0, µ1(b0)), 0

)
.) Since the set of solution pairs is compact, so is C. Since
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the distance between two disjoint compact sets is positive, the set C can be enclosed in
a bounded open set O whose closure contains no solution pairs other than those of C.
Let O(α) represent the intersection of O with the plane a = α: O(α) := {

(
(λ, µ), a

)
∈

O : a = α}. We know that deg
(
P i + (Q − b0)j,O(0)

)
= 1. The compactness of C and

the construction of O ensure that there is a number ā such that cl O(ā) contains no
solution pairs. Thus, by a result that can be ultimately traced back to definition (3.22),
it follows that deg

(
(P −a)i+(Q− b0)j,O(ā)

)
= 0. But this result is incompatible with

the invariance of degree, which implies that these two degrees should be equal. �
There are many strategies by which Theorem 3.30 can be extended to more general

choices of a, b, F , and ν̂ . Instead of varying a alone, we can vary all these quantities
by replacing them with continuous functions [0,∞) � t �→ a�(t), b�(t), F �(·, t), and
ν�(·, ·, t) with a�(0) = 0, b�(0) = b0, F �(s, 0) = γs, and ν�(N, s, 0) = ν̂(N ). The role
of a as parameter in (3.4−) is played by t. If t �→ a�(t)2 + b�(t)2 has a positive lower
bound and exceeds 1 for large t, then the conclusions of Theorem 3.30 are still valid.

We can also use degree theory to treat problems in which F �(s, 0) and ν�(N, s, 0) can
have arbitrary form. Let P �(λ, µ; t) and Q�(λ, µ; t) be the values of P and Q obtained
by replacing F and ν̂ with F � and ν�. We find that Q�(0, ·; 0) increases on (−∞,−γ)
but need not be decreasing on (−γ, 0] from its positive value at −γ to its negative value
at 0. Thus if 0 < b0 < Q�(0,−γ; 0), then the equation Q�(0, µ; 0) = b0 has exactly one
solution µ1(b0) in (−∞,−γ) and an algebraically odd number of solutions in (−γ, 0). If
Q�(0, ·; 0)− b0 changes sign at µ̄, then the index of (λ, µ) �→

(
P �(λ, µ; 0), Q�(λ, µ; 0)

)
at

(0, µ̄) is ±1, as an examination of the rotation of this vector field shows. (Since this field
is not differentiable, we cannot use definition (3.22) to compute the degree.) Following
the proof of Theorem 3.30, we obtain

3.32. Theorem. Let 0 < b0 < Q�(0,−γ; 0). Let [0,∞) � t �→ a�(t), b�(t), F �(·, t),
and ν�(·, ·, t) be continuous functions with a�(0) = 0, b�(0) = b0, with a�(·)2 + b�(·)2
having a positive lower bound and ultimately exceeding 1, and with ν�(·, ·, t) having the
same properties as ν̂ . Then the set of solution pairs

(
(λ, µ), t

)
of

(3.33) P �(λ, µ, t) = a�(t), Q�(λ, µ, t) = b�(t)

contains a connected set joining
(
(0, µ1(b0)), 0

)
to one of the solutions µ̄ of Q�(0, µ; 0) =

b0 in (−γ, 0). If µ̄ is any point at which Q�(0, ·; 0) − b0 changes sign, then the set of
solution pairs of (3.33) contains a connected set joining

(
(0, µ̄), 0) to

(
(0, ¯̄µ), 0) where ¯̄µ

is another point at which Q�(0, ·; 0) = b0.

3.34. Exercise. Let ν̂(N, 1
2 − ξ) = ν̂(N, 1

2 + ξ) and F ′( 1
2 − ξ) = F ′( 1

2 + ξ). For b = 0
prove that the equation Q(λ, µ;F ) = 0 has a unique solution for µ, which is µ = −γ/2.
(Thus each support bears half the weight of the symmetric string. Hint: Let ω = µ+ γ

2 ,
G(ξ) = Γ ( 1

2 + ξ) − γ
2 . Thus G(·) is odd. Use the modified version of Q(λ, µ;F ) = 0 to

isolate ω.) Thus (3.4−) is reduced to the problem of solving P (λ,−γ/2;F ) = a for λ.
By studying the form of this P , show that there are at least two solutions λ if a is small
enough. (This is essentially the problem treated by Dickey (1969).) Now use degree
theory to study the multiplicity and connectivity of solutions as b varies from 0.

The topological approach to the catenary developed above is a special version of the
general theory of Alexander & Antman (1983). The connectivity results of Theorem
3.30 and Theorem 3.32 essentially rely on the variation of only one parameter. It is
natural, however, to choose parameters, say (a, b, γ), that vary in a finite-dimensional
space, or even parameters (a, b, F, ν̂) that vary in an infinite-dimensional space. In
these cases, we might expect the dimension of the set of solution pairs to be that of
the set of parameters. Topological tools more subtle than degree theory are required
to handle such problems. See Alexander & Antman (1981, 1983), Alexander & Yorke
(1976), Fitzpatrick, Massabò, & Pejsachowicz (1983), and Ize, Massabò, Pejsachowicz,
& Vignoli (1985). The paper of Alexander & Antman (1983) actually addresses the
catenary problem with the infinite-dimensional parameter (a, b, F, ν̂).
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It is instructive to obtain an ordinary differential equation for y of (2.20), which
explicitly gives the shape of the elastic catenary. We assume that a > 0. Let s̃(x) be
the arc length in the reference configuration to the material point having abscissa x in
the deformed configuration. It is well-defined by virtue of Proposition 2.11. Then (2.17)
and (2.20) imply that

(3.35a,b) λy′(x) = µ + F
(
s̃(x)

)
, s̃′(x) =

√
1 + y′(x)2

ν(s̃(x))
.

Equation (2.16a) implies that

(3.36) ν(s̃(x)) = ν̂
(
λ
√

1 + y′(x)2, s̃(x)
)
.

Since F is invertible, (3.35a) is equivalent to

(3.37) s̃(x) = F−1(λy′(x) − µ
)
.

By differentiating (3.35a) with respect to x and substituting (3.35b)–(3.37) into the
resulting equation, we obtain the desired equation

(3.38) λy′′(x) =
F ′ (F−1(λy′(x) − µ

))√
1 + y′(x)2

ν̂
(
λ
√

1 + y′(x)2, F−1
(
λy′(x) − µ

)) .
This equation implies that λy′′(x) > 0 for all x, in confirmation of Proposition 2.19.

3.39. Exercise. Find a set of four boundary conditions for y and y′ appropriate for
the catenary problem that should be appended to (3.38) to produce a boundary-value
problem from which λ, µ, and the two constants of integration can be found.

If the string is inextensible so that ν̂ = 1 and if it is uniform so that F ′ = γ, then
(3.38) reduces to the classical equation

(3.40) λy′′(x) = γ
√

1 + y′(x)2

for the inextensible uniform catenary found by Leibniz and Joh. Bernoulli and integrated
by Leibniz to show that y could be expressed as a hyperbolic cosine. Since the simplicity
of (3.40) does not extend to (3.38), we used the intrinsic formulation of the problem
culminating in (3.4) in our analysis of the multiplicity of solutions. Our approach of using
the intrinsic geometric variables θ and ν , which originated with Jas. Bernoulli, is more
natural for the description of the underlying physics. The problem of the inextensible
uniform catenary is treated in detail in books on the calculus of variations. Its equations
are the Euler-Lagrange equations for the extremization of the potential energy functional
for the string (See Sec. 2.10). Note how easy the variational treatments of Theorem 3.11
and Ex. 3.15 are as compared with those in books on the calculus of variations. I know
of no book on the calculus of variations treating even the nonuniform inextensible string.

3.41. Exercise. Consider the inextensible string subject to boundary conditions (2.3)
with b = 0. If a = 1, then purely geometric considerations imply that r(s) = si, so that
a = i. Use (2.1) to show that in this case there can be no equilibrium solution if (3.1)
holds. An alternative approach illuminates this result: Let a < 1, b = 0. Show that the
solutions of (3.4+) (with ν̂ = 1) parametrized by a have the property that λ ↗ ∞ as
a ↗ 1. Thus it may be said that the tension necessary to hold a heavy inextensible string
taut is infinite. (This paradox has been known at least since the nineteenth century.)
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4. The Suspension Bridge Problem
We now take the vertical load f to have a prescribed intensity that is

everywhere negative per unit horizontal length in its deformed configura-
tion. Thus we assume that there is given an absolutely continuous function
[0, a] � x �→ G(x) and a positive number α such that

(4.1) f(s) = −G′(x(s))x′(s)j, G(0) = 0, G′ > α a.e.,

where x(·) is defined by (2.20). Thus the function F of (2.4) is defined by

(4.2) F (s) := G(x(s)).

Let s̃(x) be the arc length in the reference configuration to the material
point whose abscissa in the deformed configuration is x. We restrict our
attention to the nondegenerate case in which a > 0 so that λ �= 0. Then
(2.16)–(2.18), and (2.20) imply that

λy′(x) = µ+G(x),(4.3)

N(s̃(x)) = λ
√

1 + y′(x)2 = ±
√
λ2 + [µ+G(x)]2,(4.4)

s̃′(x) =

√
1 + y′(x)2

ν̂
(
N(s̃(x)), s̃(x)

) =

√
λ2 + [µ+G(x)]2

|λ|ν̂
(
±
√
λ2 + [µ+G(x)]2, s̃(x)

) .(4.5)

We obtain y by integrating (4.3). If the load is uniform so that there is
a positive number γ for which G(x) = γx, then y describes a parabola, no
matter what the constitutive function ν̂ is! More generally, from (4.3) and
Proposition 2.11 we have

4.6. Proposition. Let a > 0. The shape of every string satisfying (2.1),
(2.3), and (4.1) for which r is absolutely continuous and N is continuous
is given by

(4.7) λy(x) = µx+
∫ x

0
G(ξ) dξ

no matter what its constitutive function and what values are assigned to a
and b.

Note that (4.7) implies that any such y has an absolutely continuous
derivative.

For a > 0, the problem for the suspension bridge for an elastic string is
reduced to Eqs. (4.5) and (4.7), subject to the boundary conditions

(4.8a,b,c,d) y(0) = 0, y(a) = b, s̃(0) = 0, s̃(a) = 1,
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the first of which has already been accounted for by (4.7). We get a solution
if and only if λ and µ can be chosen to satisfy these conditions. The
substitution of (4.7) into (4.8b) yields a linear relation between λ and µ:

(4.9) µa = λb−
∫ a

0
G(ξ) dξ.

We substitute (4.9) into (4.5) and require its integral to satisfy (4.8c,d):

(4.10±) R±(λ) := ±
∫ a

0

δ̃(x, λ)
λν̂
(
±δ̃(x, λ), s̃(x)

) = 1

where
(4.11)

δ̃(x, λ) :=
√
λ2 + [λβ +H(x)]2, β :=

b

a
, H(x) := G(x)− 1

a

∫ a

0
G(ξ) dξ.

We obtain a solution to our boundary-value problem whenever (4.10) has a
solution λ. We first study tensile solutions corresponding to λ’s satisfying
(4.10+).

4.12. Theorem. Let ν̂ have the properties described at the beginning
of Sec. 3. (i) There is at least one tensile solution of the boundary-value
problem for a > 0. (ii) If ν̂ is independent of s and if b = 0, then there
is exactly one such tensile solution. (iii) For each tensile solution, λ ≡
n(0) · i > 0 and y is strictly convex.

Proof. By the Intermediate Value Theorem, statement (i) follows from
the continuity of R+ on (0,∞) and from the limits

(4.13) R+(λ) → 0 as λ→ ∞, R+(λ) → ∞ as λ→ 0.

Under the hypotheses of (ii), the integrand of dR+(λ)/dλ is everywhere
negative, so that (ii) holds. Equation (4.10+) implies that λ > 0. Equa-
tion (4.7) then yields (iii). �
4.14. Problem. The proof of Theorem 4.12(i) shows that the algebraic number of
solutions of (4.10+) is odd. Either prove a uniqueness statement without the conditions
of statement (ii) or else show that there are circumstances under which (4.10+) has more
than one solution.

As in Sec. 3, the existence question for compressive states is more deli-
cate:

4.15. Theorem. (i) If there is a compressive solution to the boundary-
value problem, then a < 1. (ii) The algebraic number of solutions of
compressive solutions is even. (iii) If a, b/a, and G are sufficiently small,
then there are at least two compressive solutions. (iv) For each compressive
solution, λ ≡ n(0) · i < 0 and y is strictly concave.

Proof. Statement (i) follows from the estimate that R−(λ) > a. State-
ment (ii) follows from the limits R−(λ) → ∞ as λ ↗ 0 and as λ → −∞.
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Statement (iii) follows from this last result and from the observation that
R−(λ) can be made < 1 by taking a, b/a, and G small enough. Statement
(iv) is proved as is statement (iii) of Theorem 4.12. �
4.16. Exercise. Use the ideas leading to Theorems 3.30 and 3.32 to determine the
connectivity of solution pairs

(
λ, (a, b)

)
satisfying (4.10−).

4.17. Exercise. Let {i, j} be an orthonormal pair of vectors. Let x(s)i + y(s)j be the
position of the material point of a string (of any material) constrained to deform in the
{i, j}-plane. Suppose that the ends s = 0 and s = 1 of the string are fixed:

x(0) = 0 = y(0), x(1) = a > 0, y(1) = b ≥ 0.

Suppose that the force applied to an arbitrary material segment (c, d) is[∫ x(d)

x(c)
f (x) dx

]
j.

For what class of functions f does every possible equilibrium configuration of the string
satisfy an equation of the form y(s) = ω(x(s)) where ω is a polynomial of fourth-order?

4.18. Exercise. State and prove an analog of Theorem 4.15 for inextensible strings.

5. Equilibrium of Strings under Normal Loads
Let a string of reference length 2α be confined to the {i, j}-plane, so

that (2.14) holds. If the string is subject to a load distribution f that lies
in the {i, j}-plane and acts normal to the string, then f has the form

(5.1) f(s) = −h(s)k × a.

We assume that h, which could depend on the configuration r, is (Lebesgue)
integrable. We may interpret the string as a section of a cylindrical mem-
brane with generators parallel to k. Forces of the form (5.1) are exerted
by arbitrary fluids at rest and by inviscid fluids in motion.

Let r and n satisfy (2.1), (2.2), and (5.1) with r absolutely continuous
and with N continuous. We take s ∈ [−α, α]. Then (2.1) and (5.1) imply
that

(5.2) n(s) = N(s)a(s) = n(0) +
∫ s

0
h(ξ)k × a(ξ) dξ.

Thus n and |N | are absolutely continuous. Since N is assumed to be
continuous, it is positive on an open set and it is negative on an open
set, each of which can be represented as countable disjoint unions of open
intervals. Let I denote any such interval. On I, N is absolutely continuous
and nowhere vanishing. For s in I, we can divide (5.2) by N(s) and thus
deduce that a is absolutely continuous on I. We know that the equilibrium
equation (2.6.2) holds a.e. We can actually compute n′ = N ′a +Na′ a.e.
on I. Thus (2.6.2) and (2.14) yield

(5.3) N ′a +Na′ − hk × a = o a.e. on I,
whence

(5.4a,b) N = const., Nθ′ = h a.e. on I.
Since N is required to be continuous, we obtain
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5.5. Proposition. Let r and n satisfy (2.1), (2.2), and (5.1) with r
absolutely continuous and withN continuous. ThenN = const. on [−α, α].
If N �= 0, then θ is absolutely continuous. If N = 0, then h = 0. If h is a.e.
positive or negative, then (N �= 0 and thus) θ′ is a.e. positive or negative,
so that the curve r is convex.

We shall limit our attention to problems for which the continuity of N
is compatible with the form of h.

Let σ(s) denote the arc length of r from r(0) to r(s). Then σ′ = ν.
The positivity of ν, ensured by (2.2), implies that σ has an inverse s̃. Let
θ̃(σ) := θ(s̃(σ)). In view of (5.4b), the curvature of r at s̃(σ) is given by

(5.6) θ̃′(σ) =
h(s̃(σ))
Nν(s̃(σ))

.

The force f of (5.1) is called a simple hydrostatic load iff

(5.7) h(s) = pν(s) so that f = −pk × rs

where p is a constant called the pressure. To account for the pressure
exerted by a confined gas, we may let the pressure depend on the volume
of the container, so that it is a given functional with value p[r]. (The
equation of state of a gas typically prescribes the pressure as a function
of the temperature and specific volume. For a uniform gas at rest within
a closed cylindrical membrane, the specific volume can be replaced by the
cross-sectional area enclosed by the membrane, which is determined by r.
Here we are taking the temperature to be fixed.) From (5.7) we find that
the curvature (5.6) is constant:

5.8. Proposition. Let the hypotheses of Proposition 5.5 hold with h
given by (5.7). Then r is a circular arc.

There are other cases in which circular equilibrium states occur. From
(5.6) we immediately obtain

5.9. Proposition. Let the hypotheses of Proposition 5.5 hold and let h
have the form h(s) = pj(ν(s)) where j is a given function. Let the string
be uniform and elastic, so that ν̂ is independent of s. Then r is a circular
arc.

The case that the function j = 1 is often treated in the engineering
literature. It represents an approximation to (5.7). The approximation
process results in a weakening of Proposition 5.8 by the inclusion of the
additional hypothesis that the string be uniform.

There is an illuminating alternative proof of Proposition 5.8: for p �= 0,
the substitution of (5.7) into (5.2) yields

(5.10) N(s)a(s) = n(0) + pk ×
∫ s

0
ν(ξ)a(ξ) dξ

= n(0) + pk × [r(s) − r(0)] = pk × [r(s) − c]
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where pk × c ≡ −n(0) + pk × r(0). We now use Proposition 5.5 to obtain

(5.11) N = p|r(s) − c|,

which is the equation of a circle.
We now focus our attention on elastic strings subject to simple hydro-

static loads (5.7). We shall determine the existence and multiplicity of
circular equilibrium states. Without loss of generality, we fix the orienta-
tion of r by taking θ′ > 0 and accordingly require that N and p have the
same sign. In this case, (5.4b) and (5.11) can be written as

(5.12a,b,c) θ′(s) = ν(pq, s)/q, N = pq, q := |r − c|.

We first take α = π and study the existence of simple, closed circular
configurations with

(5.13) θ(π) = θ(−π) + 2π.

Since (5.12a) implies that θ̃(σ) = θ̃(0) +σ/q, we find from (5.6), (5.7), and
(5.13) that

(5.14)

r(π) − r(−π) =
∫ π

−π

ν̂(pq, s)[cos θ(s)i + sin θ(s)j] ds

=
∫ σ(π)

σ(−π)
[cos θ̃(σ)i + sin θ̃(σ)j] dσ

= q
∫ θ̃(σ(π))

θ̃(σ(π))−2π

[cos θ̃(σ)i + sin θ̃(σ)j] dθ̃ = o.

Thus (5.13) ensures that r is closed and therefore a full circle. We use
(5.12a) to reduce (5.13) to

(5.15) 2πq =
∫ π

−π

ν̂(pq, s) ds.

If p and q satisfy this equation, then (5.12a) generates a solution of the
full problem. By examining the properties of ν̂ as sketched in Fig. 3.7, or
by examining Fig. 5.23, corresponding to the more complicated equation
(5.21) below, we deduce the following result from (5.15):

5.16. Theorem. Let ν̂ have the properties described at the beginning of
Sec. 3. Let p be a given nonpositive number. Then (5.15) has exactly one
solution q, which corresponds to a unique compressive state. There is a
positive number P [ν̂] depending on the constitutive function ν̂ such that
if 0 < p < P [ν̂], then (5.15) has at least one solution q, which corresponds
to a tensile state. For given positive p, there are materials ν̂ for which
(5.15) has any specified number of tensile solutions. If ν̂(N, s)/N → 0 as
N → ∞, then for any given positive p, (5.15) has at least one solution q.
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If ν̂(N, s)/N has a positive lower bound for N ∈ [0,∞), then there is a
positive number M such that (5.15) has no solutions for p > M . If q is a
given positive number, then (5.15) has exactly one solution p.

This theorem stands in marked contrast to Theorems 3.12, 3.20, 3.30,
4.12, and 4.15 because its statements on existence and multiplicity depend
crucially on a threshold in material response distinguishing what may be
called soft and hard materials. The presence of such a threshold, charac-
teristic of problems in nonlinear elasticity, is a consequence of the nature
of the dependence of the load intensity on the configuration in (5.6). A
load depending on a configuration is said to be live. If ν̂ is independent
of s, then (5.15) is equivalent to the much simpler equation pq = N̂(q),
which comes directly from (5.4a) and the constitutive function for N (see
Antman (1972, Sec. 23)).

5.17. Exercise. Suppose that a given quantity of gas is introduced inside the membrane
whose section is r. Then neither p nor q is known a priori. Instead, an equation of state
relates the pressure to the density. For example, in a polytropic gas, the pressure is
taken proportional to ργ where ρ is the density of the gas and γ is a given number,
usually taken to lie in [1, 5

3 ]. The density is the reciprocal of the specific volume. In our
setting, the equation of state for a polytropic gas reduces to p = βq−2γ where β is a
prescribed positive number. Prove an analog of Theorem 5.16 for the problem in which
neither p nor q is prescribed, but for which this equation of state holds.

The velaria. We now turn to the more difficult problem (of the velaria), analogous to
those treated in Secs. 3 and 4, in which the ends of the string are fixed:

(5.18) r(±α) = ±i.

Equation (5.12a) implies that

(5.19) θ(α) − θ(−α) =
1
q

∫ α

−α
ν̂(pq, s) ds.

Since θ′ > 0 and since r must be circular and satisfy (5.18), elementary geometry implies
that

(5.20) θ(α) = −θ(−α) ∈ [0, π), sin θ(α) = 1/q.

Let S− be the inverse of sin on [0, π
2 ] and S+ be the inverse of sin on [ π

2 , π]. Then (5.19)
and (5.20) imply that

(5.21) qS±
(

1
q

)
=

1
2

∫ α

−α
ν̂(pq, s) ds =: αν̄(pq).

If (5.20) and (5.21) hold, then we follow (5.14) to find that

(5.22) r(α) − r(−α) =
∫ σ(α)

σ(−α)
[cos θ̃(σ)i + sin θ̃(σ)j] dσ = 2i.

Thus (5.18) is automatically satisfied whenever (5.21) is satisfied. Each solution of the
latter generates an equilibrium state, which is tensile if ν̄ > 1 and compressive if ν̄ < 1.
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Fig. 5.23. (a) Graphs of q �→ qS±(1/q) and the straight line q �→ q. (b)
Graphs of q �→ ν̄(pq) for different p’s and different rates of growth of ν̂(·, s).
(Note that the vertical and horizontal scales are different.) The intersec-
tions of the curves of (b) with the straight line of slope 1 give solutions of
(5.15). The intersections of these curves with the graphs of q �→ qS±(1/q)
give solutions of (5.21). The function q �→ ν̄(pq) is represented by curve 1
for p large and negative, by curve 2 for p small and negative, by curve 3
for p = 0, by curve 4 for p small and positive, by curve 5 for a sufficiently
large positive p when ν̄ is asymptotically sublinear, and by curve 6 for p
positive when ν̄ is asymptotically superlinear. Curve 3 also corresponds to
an inextensible string.

In Fig. 5.23 we plot graphs of the functions q �→ qS±(1/q) and q �→ ν̄(pq) when α > π
2 .

From this figure and from its analogs for 1 ≤ α ≤ π
2 and for α < 1, we deduce

5.24. Theorem. Let ν̂ have the properties described at the beginning of Sec. 3.

(i) Let α > 1 and let p be given. There is a positive number P1[ν̂ ] depending on the
constitutive function ν̂ such that if p < −P1[ν̂ ], then (5.21) has no solution q. There is a
positive number P2[ν̂ ] such that if −P2[ν̂ ] < p < 0, then (5.21) has at least two solutions
q; all solutions correspond to compressive equilibrium states. There is a positive number
P3[ν̂ ] such that if 0 < p < P3[ν̂ ], then (5.21) has at least one solution q; each solution
corresponds to a tensile equilibrium state. For given positive p there are materials ν̂ for
which (5.21) has any specified number of tensile solutions. If ν̂(N, s)/N → 0 as N → ∞,
then for any given positive p, (5.21) has at least one solution q. If ν̂(N, s)/N has a
positive lower bound for N ∈ [0,∞), then there is a positive number M such that (5.21)
has no solutions for p > M .
(ii) Let α > 1 and let q be given. If q < 1, then (5.21) has no solutions p (as is
geometrically obvious). If q = 1, then (5.21) has exactly one solution p, which is negative
if α > π

2 , zero if α = π
2 , and positive if α < π

2 . Let q�(α) be the solution of qS−(1/q) = α
if α ≤ π

2 and be the solution of qS+(1/q) = α if α ≥ π
2 . If q ∈ (1, q�) and if α > π

2 , then
(5.21) has exactly two solutions p, each of which is negative. If q ∈ (1, q�) and if α = π

2 ,
then (5.21) has exactly two solutions p, one positive and one negative. If q ∈ (1, q�) and
if α < π

2 , then (5.21) has exactly two solutions p, each of which is positive. If q = q�
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and if α > π
2 , then q� must equal 1, and (5.21) has exactly two solutions p, one negative

and one zero. If q = q� and if α = π
2 , then q� must equal 1, and (5.21) has the unique

solution p = 0. If q = q� and if α < π
2 , then (5.21) has exactly two solutions p, one

positive and one zero. If q > q�, then (5.21) has exactly two solutions p, one positive
and one negative.
(iii) Let α ≤ 1 and let p be given. Equation (5.21) has no solutions for p ≤ 0. For p > 0,
the results of (i) hold.
(iv) Let α ≤ 1 and let q be given. Equation (5.21) has no solutions p for q < 1, has
exactly one solution p (which is positive and corresponds to a tensile state) if q = 1,
and has exactly two solutions p (which are positive and correspond to tensile states) if
q > 1.

The lintearia. We now study the problem (of the lintearia) in which the
pressure increases linearly with depth. In particular, we regard the string as
a cross section of a cylindrical membrane supporting a heavy incompressible
liquid. We take j to point in the vertical direction and define x = r · i,
y = r · j. Let s ∈ [0, 1] and let (2.3) hold. Let h be a given number,
representing the elevation of the free surface of the liquid. We assume that
the pressure force is

(5.25) f(s) =
{ −pk × r′(s) if y(s) ≥ h,

−{p+ ω[h− y(s)]}k × r′(s) if y(s) ≤ h.

Here p is a given nonnegative number, representing atmospheric (simple
hydrostatic) pressure, and ω is a given positive number, representing the
weight of the liquid per unit length of the k-direction. The height h can
be prescribed if there is an infinite reservoir of liquid available, as shown
in Fig. 5.26. For simplicity, we assume that the entire string is in contact
with the liquid: y(s) ≤ h for 0 ≤ s ≤ 1. In particular, we assume that
b ≤ h.

Fig. 5.26. A string (cylindrical membrane) supporting a heavy
liquid with its free surface maintained at a prescribed height by
an infinite reservoir of liquid.
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Equations (5.4b) and (5.25) imply that

(5.27) Nθ′(s) = {p+ ω[h− y(s)]}ν̂(N, s).

From (2.14) we obtain

(5.28a,b) x′(s) = ν̂(N, s) cos θ(s), y′(s) = ν̂(N, s) sin θ(s).

This system (5.27), (5.28) of ordinary differential equations is supplemented
by the four boundary conditions (2.3), which correspond to the three con-
stants of integration for the system and the unknown parameter N .

5.29. Problem. Carry out a full existence and multiplicity theory for this boundary-
value problem along the lines of Sec. 3. The difficulty here is caused by the absence
of integrals of the ordinary differential equations, which reduce their study to that of
finite-dimensional equations. The Poincaré shooting method, described in Sec. 2.9, can
be used to reduce the boundary-value problem to a finite-dimensional system. It might
be possible to study this system by the degree-theoretic methods used by Antman &
Wolfe (1983) for the problem of Sec. 6.)

Using the notation of (5.6) and its obvious extensions, we can write
(5.27) and (5.28) as

(5.30a,b,c) Nθ̃′(σ) = ω[h− ỹ(σ)], x̃′(σ) = cos θ̃(σ), ỹ′(σ) = sin θ̃(σ).

Since N is constant, we eliminate ỹ from (5.30a,b) to find that θ̃ satisfies

(5.30d) θ̃′′(σ) + (ω/N) sin θ̃(σ) = 0,

which is the equation of the pendulum and of the elastica (the latter dis-
cussed in Chap. 4 and elsewhere). Boundary conditions for (5.30d) come
from (2.3) and (5.30a,b):

(5.31) Nθ̃′(0) = ωh, Nθ̃′(σ(1)) = ω(h− b).

5.32. Exercise. Suppose that (5.25) holds, but that h is not prescribed. Instead, the
membrane is required to support a given amount of liquid. Thus the cross-sectional
area α occupied by the liquid is prescribed. See Fig. 5.33. Show how the problem
just described must be modified to accommodate this change. (Hint: Represent the
prescribed area as a line integral over its boundary, consisting partly of r, partly of the
free surface y = h, where h is not known, and partly of rigid walls. Assume that these
rigid walls are vertical as in Fig. 5.33.)

5.34. Exercise. Under certain standard simplifying assumptions, the force on a wire
in equilibrium carrying an electric current I in an ambient magnetic field b has intensity
f = Ir′ × b per unit reference length. Suppose that b = Bk and that IB is a nonzero
constant. Interpret the wire as an elastic string. From the analog of (5.2), prove that n
and |N | are absolutely continuous when r is absolutely continuous. Assuming that N
itself is continuous, prove that N is constant. Show that if N 
= 0, then

(5.35) r′(s) · k = ν(s)a(s) · k =
ν̂(N, s)
N

n(0) · k.
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Fig. 5.33. Membrane supporting a fixed amount of liquid.

Let P be the projection of E3 onto the {i, j}-plane. Thus P · v = −k × (k × v) =
v − (v · k)k. Show that

(5.36) P · [r − r(0)] − (IB)−1k × n(0) = −(IB)−1k × n.

(This equation is equivalent to (5.10) for strings in a plane under simple hydrostatic
pressure.) Show that n · k = n(0) · k and thus that

(5.37)
P · [n − n(0)] = n − n(0), |P · n| = const.,

|P · [r − r(0)] − (IB)−1k × n(0)| = |(IB)−1P · n| =: q (const).

Thus r lies on a circular cylinder of radius q with generators parallel to the k-axis. We
can set (5.36) equal to qa ≡ q(cos θi + sin θj). Use (5.36) to show that qθ′k × a =
P · r′ = νIBqk × a/N so that

(5.38) θ′ = νIB/N.

Introduce the variables of (5.6) into (5.35) and (5.38) and deduce that the image of r is
a helix (no matter what is the constitutive equation of the string). Let 0 ≤ s ≤ 1. Let
the string satisfy the boundary conditions

(5.39) r(0) = o, r(1) = ck

where c is a given number. Prove that the resulting boundary-value problem has a
solution corresponding to each solution N of the equations

(5.40) 2mπN = IB
∫ 1

0
ν̂(N, s) ds

where m is an integer. Show how the number of solutions of (5.40) is affected by the
behavior of ν̂(·, s). (This problem is based on Wolfe (1983). If the wire is also rotating,
the analysis becomes much richer. See Healey (1990) and Wolfe (1985, 1990).)

If the magnetic field is perpendicular to the line joining the ends of the wire, then
the wire admits an equilibrium configuration lying in the plane perpendicular to the
magnetic field. The governing equations are exactly those for a string under a simple
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hydrostatic pressure. To make physical sense of this hydrostatic pressure, we interpret
the string as a section of a cylindrical membrane. In contrast, the physical interpretation
of a string lying in a plane perpendicular to a magnetic field is intrinsically 1-dimensional.

The development of Secs. 2–5 extends that of Antman (1979b, c© Society for Indus-
trial and Applied Mathematics). (The statement of Theorem 5.24 corrects his faulty
statement.)

6. Equilibrium of Strings under Central Forces

We study general properties of solutions of the equilibrium equations for elastic
strings under central forces. Our development, which is similar in spirit to that of
Sec. 2, uses techniques from the theory of the motion of a particle in a central force
field.

We assume that the force intensity f is central:

(6.1) f(s) = f (r(s), s)
r(s)
r(s)

where r := |r|. We assume that f (·, s) is continuous on E3 \ {o} and that f (p, ·) is
integrable for each p ∈ E3\{o}. f could account for a central gravitational, electrostatic,
or magnetostatic force. In this case, f is given by the inverse-square law:

(6.2) f (r, s) = µ(s)r−2,

where µ is a given function of fixed sign. (Problems for strings in which (6.2) holds
may offer good models for the tethering of space structures.) f could also account for a
centrifugal force on a string constrained to lie in a plane due to the rotation of the string
with constant angular velocity ω about an axis perpendicular to the plane. In this case,

(6.3) f (r, s) = ω2(ρA)(s)r.

We focus on force fields like (6.2) that are singular at the point o, which we treat with
circumspection. We assume that on any compact subset of [E3 \{o}]× [0, 1] the function
f either has a positive lower bound or a negative upper bound. We seek an absolutely
continuous position field r, a contact force field n that is absolutely continuous where
r > 0, and a tension field N that is continuous where r > 0 satisfying (2.1), (2.2), (6.1)
wherever r > 0 and satisfying the boundary conditions

(6.4) r(0) = r0, r(1) = r1,

where r0 and r1 are given vectors in E3.
Let R be the set of material points s on which r > 0. R is open because r is assumed

to be continuous. We show that N can vanish only at isolated points of R (although
the zeros of N could accumulate at the boundary points of R where r = 0): Suppose
for contradiction that there were a sequence {sk} of points of R converging to a point
s∞ ∈ R with N (sk) = 0, N (s∞) = 0. Then (2.1) and (6.1) imply that

(6.5)
∫ sk

s∞
f (r(s), s)

r(s)
r(s)

ds = o, k = 1, 2, . . . .

Since r is absolutely continuous and nonzero on R, the function s �→ r(s∞)
r(s∞) · r(s)

r(s) =: R(s)
is absolutely continuous on R and equals 1 at s∞. Thus (6.5) implies that

(6.6)
∫ sk

s∞
f (r(s), s)R(s) ds = 0, k = 1, 2, . . . .
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But R is positive near s∞ and f vanishes nowhere. Therefore the integrand in (6.6) has
one sign for large enough k, so that (6.6) is impossible.

Let N be the subset (necessarily open) of R on which N does not vanish. As in the
preceding sections, we find that N is absolutely continuous on R, that a is absolutely
continuous on N , and that

(6.7) n′(s) +
f (r(s), s)r

r
= o

a.e. on N . In view of the isolation of the zeros of N on R, Eq. (6.7) holds a.e. on R.
We operate on (6.7) with r× to obtain

(6.8) (r × n)′ = o

a.e. on R since r′ ×n = o by (2.1b,c). By properties of absolutely continuous functions,
(6.8) implies that on each component interval P of R there is a vector c (depending on
P) such that

(6.9a,b,c) r × n = c, r · c = 0, n · c = 0,

so that the restrictions of r and n to P lie in a plane perpendicular to c.
Now suppose that N vanishes somewhere on P. Then (6.9a) implies that c = o. Since

N vanishes only at isolated points of P, Eqs. (2.1) and (6.9a) imply that r × r′ = o a.e.
on P. Since the positivity of r and ν on P prevent r and r′ from vanishing except on
a set of measure 0, it follows that r and r′ must be parallel on P. Thus there must be
a locally integrable function γ on P that can vanish at most on a set of measure 0 such
that

(6.10) r′(s) = γ(s)r(s)

a.e. on P, whence it follows that

(6.11) r(s) = r(a) exp
∫ s

a
γ(ξ) dξ

on P where a is any point in P. This equation says that r(P) lies on a ray. We get the
same conclusion if r × r′ should vanish at a point of P. Thus the material of P must
either lie on a ray or else be nowhere radial. The latter case occurs if and only if c 
= o.
When this happens, N cannot vanish on P (by (6.9a)) so the configuration of P is either
tensile or compressive and so that a is absolutely continuous on P. We summarize these
results:

6.12. Proposition. Let r be absolutely continuous and let N be continuous where
r > 0. Let r and n satisfy (2.1), (2.2), and (6.1) on P, a component open interval
of R. Then N can vanish only at isolated points of P, N is absolutely continuous on
P, and a is absolutely continuous on each open subinterval of P on which N does not
vanish. If N vanishes on P or if the tangent to the string is radial at a point of P, then
the configuration of P is radial. Otherwise, this configuration is a plane curve that is
nowhere radial and the material of P is either everywhere in tension or everywhere in
compression.

We readily strengthen the regularity theory of this proposition by introducing our
standard constitutive hypotheses:

6.13. Proposition. Let r and n satisfy the hypotheses of Proposition 6.12 and satisfy
(2.6.4). Let ν̂ have the properties described at the beginning of Sec. 3. Then r′ is
absolutely continuous on N ∩ P. If f is continuous on (E3 \ {o}) × P, then r is twice
continuously differentiable on N ∩ P.

We now study nonradial configurations on N ∩ P, for which c 
= o, N vanishes
nowhere, and the string is confined to a plane perpendicular to c, which we take to be
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spanned by the orthonormal pair {i, j}. We can then locate r with polar coordinates r
and φ:

(6.14) r(s) = r(s)[cosφ(s)i + sinφ(s)j].

Thus

(6.15a,b,c) ν =
√

(r′)2 + (rφ′)2, r′ = ν cos(θ − φ), rφ′ = ν sin(θ − φ).

We substitute (6.14) and (2.1b,c) into (6.9a) and dot the resulting equation with k to
obtain

(6.16) r2φ′ = c · kν/N = cν/|N |

in which we ensure that φ′ > 0 by choosing {i, j, k} so that c · k has the same sign
as N , and c = |c| = |c · k|. Under the hypotheses of Proposition 6.13, φ′ is absolutely
continuous on P.

Now we substitute (2.1b,c) and (2.14) into (6.7), which holds everywhere on P in
virtue of Proposition 6.13, and then dot the resulting equation with k × a to obtain

(6.17) Nθ′ =
fk · (r × a)

r
= f sin(θ − φ).

From (6.15c) and (6.17) we obtain

(6.18) Nθ′ = rfφ′/ν.

Since φ′ is positive on P, both θ′ and the curvature θ′/ν have the same sign as Nf .
We say that the curve r is bowed out on P if θ′ > 0 on P and bowed in if θ′ < 0 on
P. In particular, if f is attractive, so that f < 0, then each bowed-out configuration is
compressive and each bowed-in configuration is tensile.

Since φ′ is positive on P (when c > 0), the function P � s �→ φ(s) has an inverse s̃,
which is continuously differentiable when the hypotheses of Proposition 6.13 hold. We
set

(6.19) u(φ) := 1/r(s̃(φ)).

The substitution of (6.14), (6.16), and (6.19) into the radial component of (6.7) yields

(6.20) u′′(φ) + u(φ) =
N (s̃(φ))f

(
r(s̃(φ)), s̃(φ)

)
c2ν(s̃(φ))u(φ)2

a.e. on P and everywhere on P that f and ν are continuous. The substitution of (6.16)
and (6.19) into (6.15) yields

(6.21) N (s̃(φ))2 = c2[u(φ)2 + u′(φ)2].

We replace ν in (6.20) and (6.16) by its constitutive function and then substitute (6.21)
into the resulting equations to obtain the following semilinear system of ordinary differ-
ential equations for u and s̃:

u′′ + u = ±
√
u2 + (u′)2f

(
(cosφi + sinφj)/u, s̃

)
cν̂
(
±c
√
u2 + (u′)2, s̃

)
u2

,(6.22±)

s̃′ =

√
u2 + (u′)2

ν̂
(
±c
√
u2 + (u′)2, s̃

)
u2
.(6.23±)
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In the important case that P = [0, 1], these equations are to be supplemented by bound-
ary conditions equivalent to (6.4), namely,

(6.24a,b,c,d) u(0) = u0, u(φ1) = u1, s̃(0) = 0, s̃(φ1) = 1.

Here we have taken φ(0) = 0 and φ1 = φ(1) without loss of generality. φ(1) − φ(0) is
determined by (6.4). The four conditions of (6.24) correspond to the three unknown
constants of integration for (6.22) and (6.23) and to the unknown parameter c.

If f depends only on r and s, then (6.22) and (6.23) reduces to an autonomous system
for u and s̃. If furthermore the string and force field are uniform so that ν̂ and f are
independent of s, in which case we can set f (r, s) := g(u)u2, then (6.22) and (6.23)
uncouple, with the former reducing to the autonomous equation

(6.25±) u′′ + u = ±
√
u2 + (u′)2g(u)

cν̂(±c
√
u2 + (u′)2)

.

In this case, we obtain a regular configuration, i.e., one with r everywhere positive,
provided that c can be found so that u satisfies (6.25±), (6.24a,b), and the auxiliary
condition

(6.26±)
∫ φ1

0

√
u2 + (u′)2

ν̂(±c
√
u2 + (u′)2, s̃)u2

dφ = 1,

which comes from (6.23±) and (6.24c,d).
By multiplying (6.25) by u′ and then rearranging and integrating the resulting equa-

tionwe obtain the integral

(6.27) c2[u2 + (u′)2] = [h(E + G(u))]2

where E is a constant, h is the inverse of N �→ W ∗(N ) :=
∫N
0 ν̂(n) dn, and G(u) :=∫ u

1 g(v) dv. Thus the phase portrait of (6.25) corresponding to parameters c and E
consists of those points (u, u′) at which the paraboloid z = c2[u2 + (u′)2] intersects
the cylindrical surface z = [h(E + G(u))]2 in (u, u′, z)-space. From the phase portrait
we can determine detailed qualitative information about all regular solutions of the
differential equations (6.25) and about possible regular solutions of the boundary-value
problem (6.25), (6.24a,b), (6.26). This behavior depends upon the strength of the string,
characterized by ν̂ , the nature of the force field g, and the placement of r0 and r1.

6.28. Exercise. Sketch the phase portrait of (6.25) for various choices of g (and ν̂).

6.29. Exercise. A uniform force field f satisfies the inverse-square law (6.2) if and
only if g(u) = µ (const.). In this case, (6.25) and (6.27) become simpler. If furthermore
the string is inextensible (so that ν̂ = 1), then (6.27) can be integrated in closed form.
(This is the problem treated by Joh. Bernoulli.) Carry out the integration and express
r in terms of the constants of the problem. Discuss the existence and multiplicity of
solutions to the boundary-value problem (6.25), (6.24a,b), (6.26).

The treatment of singular solutions, given by Antman & Wolfe (1983) requires a
careful extension of the laws of mechanics to handle infinite forces. These solutions
have a very rich structure. These authors give a full existence and multiplicity theory
by combining the Poincaré shooting method, described in Sec. 2.6, with degree theory,
described in Sec. 3.

This section is adapted from from the elementary part of Antman & Wolfe (1983) by
kind permission of Academic Press.
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7. Circular States of a Spinning String
We now begin our study of some simple dynamical problems for strings,

most of which which are governed by ordinary differential equations.
We seek circular configurations of a string under zero body force that

rotate about their centers with constant angular velocity c:

(7.1) r(s, t) = −ν̄b(s− ct)

where

(7.2) b(θ) := k × a(θ) = −sinθi + cos θj

and where ν̄ is a constant. (a was introduced in (2.14).) Since ν is con-
stant, the assumption (7.1) reduces the governing equations for any uniform
material reduce to that for a uniform elastic material:

(7.3) ρAc2ν̄ = N̂(ν̄).

Note that the substitution of (7.1) into the equations of motion automatically de-
livers the form (7.3), which accounts for the fictitious centrifugal force. The explicit
introduction of a centrifugal force or other fictitious forces is a source of possible errors
in sign and substance, and should be avoided.

7.4. Exercise. For given c, determine how the solvability of (7.3) depends on the
behavior of N̂ .

8. Travelling Waves
A solution r of the equations of motion for a string is called a travelling

wave iff it has the form

(8.1) r(s, t) = r̃(s− ct)

where c is a constant called the speed of propagation. Clearly (7.1) describes
a travelling wave. Let us substitute (8.1) into the equations of motion
(2.2.9), (2.2.10b), (2.2.11) for a uniform elastic string subject to zero body
force. We obtain the ordinary differential equation

(8.2)
[
N̂(ν̃)

r̃′

ν̃

]′
= ρAc2r̃′′

where the prime denotes differentiation with respect to the phase ξ := s−ct
and where ν̃ := |r̃′|. Equation (8.2) admits the integral

(8.3) [N̂(ν̃) − ρAc2ν̃] r̃
′

ν̃
= α

where a is a constant vector. From (8.3) we immediately obtain

(8.4) N̂(ν̃) = ρAc2ν̃ ± |α|.
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We regard c and α as given parameters. We study the different kinds of
solutions that can arise as these parameters are varied.

Depending on the values of the parameters c and α and the nature of
the function N̂ , equation (8.4) may have no solutions for ν, may have any
number of isolated solutions, or may have intervals of solutions. The last
case occurs only if the graph of N̂ has straight parts. In particular, if α = o,
then there is an interval of solutions only if N̂ is linear on an interval (as
in Sec. 2.7). If ν̃ is an isolated solution of (8.4), then it corresponds to a
configuration with constant stretch ν̃.

First let us assume that (8.4) has a solution ν̃ for α �= 0. Since N̂(ν̃) −
ρAc2ν̃ �= 0, (8.3) yields

(8.5) r̃′ =
ν̃α

N̂(ν̃) − ρAc2ν̃
= ±ν̃ α

|α| .

If ν̃ is an isolated solution of (8.4), then r̃′ is a constant vector, so that the
travelling wave is very uninteresting. In the degenerate case that there is
an interval of solutions, then r̃′ has the fixed direction α, but its amplitude
can vary in any (measurable) way as ν̃ varies over its interval.

Now we assume that (8.4) has a solution ν̃ for α = o. If ν̃ is isolated,
then the corresponding r̃′ satisfying (8.3) has constant stretch ν̃ but ar-
bitrary direction. This means that r̃′(ξ) has the form ν̃p′(ξ) where p′ is
an arbitrary unit-vector-valued function. Now the prescription of p is the
prescription of an arbitrary curve in space with the arc length as parame-
ter. (The curve p could either be unbounded in both directions or closed.)
We have just shown that to any such curve, to any given speed c, and
to any solution ν̃ of (8.4) (isolated or not), there corresponds a travelling
wave with this constant stretch ν̃ whose configuration lies in the prescribed
curve p. Conversely, given p and a constant stretch ν̃, we can solve (8.4)
uniquely for c2 giving speeds at which the configuration of the travelling
wave lies in p and has constant stretch. A special case of such motions are
the circular motions (7.1).

If α = o and if there is an interval of solutions ν̃ of (8.4), then r̃′ has
arbitrary direction and arbitrary amplitude lying in the interval of solutions
ν̃. (This situation corresponds closely to that for the linear wave equation in
which the only travelling waves for noncharacteristic c are linear functions,
and all functions are travelling waves for characteristic c.)

This problem with α = o and ν̃ constant represents a generalization by Healey &
Papadopoulos (1990) of a problem for inextensible strings discussed by Routh (1905,
Chap. 13). Healey & Papadopoulos discuss the stability of these motions. For further
developments, see O’Reilly (1996).

If p were interpreted as a frictionless tube, then a body force f acting in the direction
p′′(σ) at p(σ), which is normal to p′(σ), can always be found from the governing equation
to enforce this constraint at any speed c.

8.6. Problem. Investigate the cable-laying problem of Routh (1905, Art. 597) for
extensible strings under various models of viscous drag.
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Let us now study travelling waves for a viscoelastic string. Then in place
of (8.4) we have the autonomous first-order ordinary differential equation

(8.7a) N̂1(ν̃,−cν̃′) = ρAc2ν̃ ± |α|.

We assume that N̂1 satisfies (2.2.22b), so that N̂1(ν, ·) has an inverse
N �→ P (ν,N). Therefore (8.7a) is equivalent to an autonomous first-order
ordinary differential equation in standard form:

(8.7b) −cν̃′ = P (ν̃, ρAc2ν̃ ± |α|).

The critical points of (8.7) are exactly the solutions of (8.4) with N̂ replaced
with N̂1(·, 0). We immediately see that if ν−, ν+ are prescribed numbers
in (0,∞), then there is a unique c2 and ±|α| such that ν± satisfy (8.4).
Let us suppose that there are no other solutions ν of (8.4) lying between
ν− and ν+ for this c2 and ±|α|. Then the slope field for (8.7) on the (ξ, ν)
plane vanishes on the lines ν = ν± and has one sign between them. This
means that there are speeds c and parameters α for which there are so-
lutions beginning at the height of one of the ν± at ξ ↘ −∞ and varying
monotonically to the height of the other as ξ ↗ ∞. Whereas the travelling
waves for elastic strings are of limited physical and mathematical signifi-
cance because solutions of initial-value problems typically have shocks, the
travelling waves for viscoelastic strings have the additional feature that
they can be used to illuminate the shock structure of elastic strings, as we
shall see in Chap. 18.

9. Radial Oscillations
Now we treat a truly dynamical problem. The classical equations of

motion of a uniform elastic string confined to the {i, j}-plane and subjected
to a simple hydrostatic pressure consist of (2.2.9), (2.2.10b), (2.2.11), (5.1),
and (5.7):

(9.1)
[
N̂(|rs|)

rs

|rs|

]
s

− pk × rs = ρArtt.

(Our assumption of uniformity means that N̂ and ρA are independent of
s.) We assume that the configuration of the string is a simple closed loop
in which s increases as the loop is traversed in the counterclockwise sense.
In this case, a positive p tends to inflate the string.

We seek solutions of (9.1) in which each material point s executes a
purely radial motion so that each configuration of the string is a circle of
radius r(t). Specifically, we suppose that the reference configuration is an
unstretched circle of radius 1 and that the motion is restricted to have the
form

(9.2) r(s, t) = −r(t)b(s) = −r(t)[− sin si + cos sj].
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The substitution of (9.2) into (9.1) yields the following second-order au-
tonomous ordinary differential equation for r:

(9.3a) ρArtt + N̂(r) − pr = 0.

This equation has the integral

(9.3b) ρArt
2 + 2W (r) − pr2 = 2c (const.),

where the stored-energy function W is defined in (2.10.10). These equa-
tions also govern the motion of some elastic rings.

9.4. Exercise. Investigate the way the phase portrait of (9.3) depends upon the sign of
p and the nature of W . (This is an open-ended problem.) In particular, for p > 0 discuss
how the behavior of the collection of solutions of (9.3) is influenced by conditions such
as W (r)/r2 → ∞ as r → ∞ and W (r)/r2 → 0 as r → ∞. Discuss the different kinds of
periodic solutions that (9.3) can have for different choices of W . Show how the phase
portrait enables one to determine the restricted stability under radial perturbations of
the equilibrium states discussed in Theorem 5.16.

9.5. Exercise. Do Ex. 9.4 under the assumption that the string is viscoelastic and has
constitutive equation (2.2.14) satisfying (2.2.22).

10. Combined Whirling and Radial Motions
A mathematically obvious joint generalization of (7.1) and (9.2) is

r(s, t) = −r(t)b(s − ct), but the substitution of this expression into the
equations of motion yields no generalization of the two cases already treated.
The physical explanation is immediate: Conservation of angular momen-
tum requires that the string spin faster at a small radius than at a large
radius. We accordingly seek solutions of the equations of motion in the
form

(10.1) r(s, t) = −ν̄(t)b(s+ ψ(t)).

The substitution of this expression into the equations of motion for a vis-
coelastic string under hydrostatic pressure yield the following pair of equa-
tions for ν̄ and ψ:

ρA(−ν̄tt + ν̄ψt
2) = N1(ν̄, ν̄t) − pν̄,(10.2)

2ν̄tψt + ν̄ψtt ≡ (ν̄2ψt)t = 0.(10.3)

Thus (10.3) implies that there is a constant h such that ν̄2ψt = h. The
substitution of this statement of the conservation of angular momentum
into (10.2) yields and equation for ν̄ alone:

(10.4) ρA(−ν̄tt + h2/ν3) = N1(ν̄, ν̄t) − pν̄.

10.5. Exercise. Carry out the analog of Ex. 9.5 for (10.4).

This problem is a degenerate version of that for rods treated by Antman (2001).
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11. Massless Springs
We study the longitudinal motions along the k-axis of a string whose

end s = 0 is fixed at o and to whose end s = 1 is attached a material point
of mass m that moves along this axis under the action of the contact force
exerted by the string and an external time-dependent force h. Compressed
states are clearly unstable for a string. However, the equations governing
the longitudinal motion of a string are exactly the same as those governing
the longitudinal motion of a straight rod, and rods have flexural stiffness,
which increases the stability of longitudinal motions. Thus this problem,
like that of radial vibrations just discussed, has physical meaning. Here we
refer to a straight rod undergoing longitudinal motions as a spring.

We set r(s, t) = z(s, t)k. Thus one boundary condition is

(11.1) z(0, t) = 0.

If there are no body forces acting on the spring, then the appropriate
version of the linear momentum law (cf. (2.2.7)) is

(11.2) −N(s, t) + h(t) =
∫ 1

s

(ρA)(ξ)ztt(ξ, t) dξ +mztt(1, t),

from which we immediately obtain the governing partial differential equa-
tion

(11.3) (ρA)(s)ztt = Ns

and the boundary condition

(11.4a) mztt(1, t) = −N(1, t) + h(t)

at s = 1. We impose initial conditions

(11.4b,c) z(s, 0) = z0(s), zt(s, 0) = z1(s).

We assume that z0 and z1 are continuously differentiable. To obtain a full
initial-boundary-value problem for z, we need only choose a constitutive
equation for N . In keeping with (2.2.2), we require that zs(s, t) > 0. We
shall study elastic and viscoelastic materials with constitutive equations
coming from (2.2.11) and (2.2.14).

In elementary courses in mechanics, springs are assumed massless; their
only role is to communicate forces to the bodies they join. The motions of
such bodies are accordingly governed by ordinary differential equations. To
study the status of the ordinary differential equations governing systems
with massless springs, we may assume that the mass

∫ 1
0 (ρA)(s) ds of the

spring is small relative to the mass m by setting

(11.5) (ρA)(s) = εσ(s)

where ε is a small positive parameter. We content ourselves here with
studying the reduced initial-boundary-value problems for elastic and vis-
coelastic springs obtained by setting ε = 0.
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Elastic springs. We first study the reduced problem for elastic springs.
Substituting (2.2.11) into (11.4a), we obtain

(11.6) mztt(1, t) = −N̂
(
zs(1, t), 1

)
+ h(t).

The presence of the s-derivative of z in (11.6) prevents it from being the
expected ordinary differential equation for the motion z(1, ·) of the tip
mass. We seek conditions under which (11.6) yields a bona fide ordinary
differential equation. For this purpose, we must exploit (11.3). Substituting
(2.2.11) and (11.5) into (11.3) and then setting ε = 0, we obtain

(11.7a) N̂(zs(s, t), s) = N̂(zs(1, t), 1).

Assuming that N̂ satisfies the restrictions stated at the beginning of Sec. 3,
we can put (11.7a) into the equivalent form

(11.7b) zs(s, t) = ν̂
(
N̂(zs(1, t), 1), s

)
.

We integrate this equation over [0, 1] subject to the boundary condition
(11.1) to obtain

(11.8) z(1, t) =
∫ 1

0
ν̂
(
N̂(zs(1, t), 1), s

)
ds =: J

(
zs(1, t)

)
.

Our constitutive hypotheses imply that J increases strictly from 0 to ∞ as
its argument increases from 0 to ∞. Thus J has an inverse and (11.8) is
equivalent to

(11.9) zs(1, t) = J−1(z(1, t)).
The substitution of (11.9) into (11.6) yields a true ordinary differential
equation for z(1, ·). The solution of it subject to initial conditions coming
from (11.4b,c) can be substituted into (11.9), which in turn can be sub-
stituted into (11.7b), which yields z(·, ·). In general, the initial conditions
(11.4) are incompatible with the form of z.

11.10. Exercise. For a uniform elastic spring, find the form of the initial conditions
(11.4) that are compatible with the form of z.

Viscoelastic springs. Unfortunately, there is no justification that the solution of the
reduced problem for an elastic spring approximates the solution of the full system. For
a viscoelastic spring there is such a justification, but the reduced problem is far richer
than that for elastic springs.

We assume that N1 satisfies (2.2.22b), namely, that there is a positive number α
such that

(11.11) ∂N1(ν, ν̇ , s)/∂ν̇ ≥ α > 0

everywhere. Then N1(ν, ·, s) has an inverse N �→ P (ν, N, s). Following the development
for elastic springs, we find that the reduced problem for viscoelastic springs is governed
by

(11.12a) N1
(
zs(s, t), zst(s, t), s

)
= N1

(
zs(1, t), zst(1, t), 1

)
= −mztt(1, t) + h(t)



3.11. MASSLESS SPRINGS 89

or, equivalently,

(11.12b) zst(s, t) = P
(
zs(s, t),−mztt(1, t) + h(t), s

)
.

Thus

(11.12c) zt(s, t) =
∫ s

0
P
(
zs(η, t),−mztt(1, t) + h(t), ξ

)
dη.

Since (11.11) implies that n �→
∫ 1
0 P (zs(s, t), n, s) ds has an inverse q �→ Q(zs(·, t), q), it

follows that (11.12c) with s = 1 is equivalent to

(11.13) mztt(1, t) = h(t) −Q(zs(·, t), zt(1, t)).

We now substitute (11.13) into (11.12b) to obtain

(11.14) zst(s, t) = P
(
zs(s, t), Q(zs(·, t), zt(1, t)), s

)
.

Equations (11.13) and (11.14) form a semilinear system of ‘ordinary differential equa-
tions’ for t �→ zs(·, t), zt(1, t) subject to (11.4).

If h is continuous, say, then a standard application of the Contraction Mapping Prin-
ciple 20.1.3 to integral versions of (11.13) and (11.14) incorporating the initial conditions
(11.4b,c) implies that there is a time interval on which the resulting initial-value problem
has a unique solution. As before, the solution of this initial-value problem generates a
solution to the reduced problem. We wish to determine whether the initial-value prob-
lem has a unique solution defined for all positive time and then whether the motion of
the tip mass is governed by an ordinary differential equation.

To show that our initial-value problem has a solution for all time, we need to show
that zs, 1/zs and zt(1, t) are pointwise bounded for any finite time (see Martin (1976,
Chap. 6)). For this purpose, we first get an energy estimate.

We define

(11.15) W (ν, s) :=
∫ ν

0
N1(y, 0, s) dy

(see Ex. 2.2.27). We merely require of W that it have a lower bound. Let us multiply
the extremes of (11.12a) by zst to obtain

(11.16) Wν
(
zs(s, t), s

)
zst(s, t) + [N1(zs(s, t), zst(s, t), s) −N1(zs(s, t), 0, s)]zst(s, t)

= [−mztt(1, t) + h(t)]zst(s, t).

Integrating (11.16) with respect to s over [0, 1], we obtain the energy equation

(11.17)
d

dt

{
1
2mzt(1, t)

2 +
∫ 1

0
W
(
zs(s, t), s

)
ds

}
= −

∫ 1

0
[N1(zs(s, t), zst(s, t), s) −N1(zs(s, t), 0, s)]zst(s, t) ds + h(t)zt(1, t).

Thus

(11.18) 1
2mzt(1, t)

2 +
∫ 1

0
W
(
zs(s, t), s

)
ds

= −
∫ t

0

∫ 1

0
[N1(zs(s, τ ), zst(s, τ ), s) −N1(zs(s, τ ), 0, s)]zst(s, τ ) ds dτ

+
∫ t

0
h(τ )zt(1, τ ) dτ + 1

2mz1(1)2 +
∫ 1

0
W
(
∂sz0(s), s

)
ds.
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(Note that the left-hand side of (11.18), which is the total energy of the massless spring,
consists of the kinetic energy of the tip mass and the potential energy of spring; the
spring has no kinetic energy.) Since W is bounded below, since 2hzt ≤ h2/m +mzt2,
and since (11.11) implies (2.2.21)), there is a number C , independent of t, such that

(11.19)
m

2
zt(1, t)2 ≤ C +

1
2m

∫ t

0
h(τ )2 dτ +

m

2

∫ t

0
zt(t)2 dτ.

(If h = 0, then we could replace the right-hand side of (11.19) with C .) Let us as-
sume that h is locally integrable. Let us set Γ (t) := C + 1

2m

∫ t
0 h(τ )

2 dτ and Z(t) :=
m
2

∫ t
0 zt(t)

2 dτ . Then (11.19) implies that

(11.20a,b) Zt ≤ Γ + Z ⇐⇒ (e−tZ)t ≤ e−tΓ (t).

We integrate this last inequality over [0, t] to obtain

(11.21) Z(t) ≤ et
∫ t

0
e−τΓ (τ ) dτ.

We substitute (11.21) into (11.19), which is equivalent to (11.20), to obtain

(11.22) m
2 zt(1, t)

2 ≤ Γ + et
∫ t

0
e−τΓ (τ ) dτ.

(This is a special case of the Gronwall inequality; see Ex. 18.4.20.) It follows that there
is a continuous function Γ1 such that

(11.23) |zt(1, t)|, |z(1, t)| ≤ Γ1(t).

To obtain bounds on ν we impose two constitutive hypotheses, the first saying that
the viscosity becomes infinite at a total compression, and the second saying that the
viscosity is not too small at infinite extension:

11.24. Hypothesis. There are constants ν∗ > 0, M ≥ 0,and a continuously differen-
tiable function β on (0, ν∗] with β(ν) → ∞ as ν ↘ 0 such that

(11.25) N1(ν, ν̇ , s) ≤ −β′(ν)ν̇ +M ∀ ν ≤ ν∗, ∀ ν̇ ∈ R.

11.26. Hypothesis. There are constants ν∗ > 0, M ≥ 0,and a continuously differen-
tiable function β on [ν∗ < ∞) with β(ν) → ∞ as ν → ∞ such that

(11.27) N1(ν, ν̇ , s) ≥ β′(ν)ν̇ −M ∀ ν ≥ ν∗, ∀ ν̇ ∈ R.

These hypotheses are unduly crude because they hold for all ν̇ . More refined hypothe-
ses, which give the same bounds we are about to obtain but with far more difficulty, are
given by Antman & Seidman (1996).

We now show that ν is bounded below by a continuous function that is everywhere
positive. Without loss of generality, we assume that ν∗ < min ∂sz0. Suppose that there
is a pair (s0, T ) such that ν(s0, T ) < ν∗. (If not, then there would be nothing to prove.)
Let t∗ be the last time before T at which ν(s0, t∗) = ν∗. We set s = s0 in (11.12a),
integrate the resulting equation with respect to t from t∗ to T , and us (11.25) to get

(11.28)
−m[zt(1, T ) − zt(1, t∗)] +

∫ T

t∗
h(t) dt =

∫ T

t∗
N1(zs(s0, t), zst(s0, t), s) dt

≤ β(ν∗) − β(ν(s0, T )) +M (T − t∗).
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In view of (11.23), this inequality implies that β(ν(s0, T )) is bounded above by a con-
tinuous function of T , whence the properties of β imply that ν is bounded below by a
continuous function that is everywhere positive. Using (11.27) we likewise prove that ν
is bounded above by a continuous function. By the remarks preceding (11.15), we have
shown that our initial-value problem has a solution for all time.

The second equality of (11.12a) fails to be the standard ordinary differential equation
for massless springs because of the presence of the s-derivatives on z (cf. (11.13)). If
we were to solve an initial-value problem for (11.14) for zs, then it would ostensibly
depend on the past history of z(1, ·). Now we show that this ostensibility is real: z(1, ·)
cannot satisfy such an ordinary differential equation for all initial conditions under the
reasonable requirement that

(11.29) N1(ν, ν̇ , s) →
{

∞
−∞

}
as ν →

{
∞
0

}
for fixed ν̇ and s (cf. (2.2.19)).

11.30. Exercise. Prove that (11.11) and (11.29) imply that

(11.31) Pν(ν, N, s) < 0, P (ν, N, s) →
{

∞
−∞

}
as ν →

{
0
∞

}
for fixed N and s.

If (11.12a) were to be the standard second-order ordinary differential equation for
z(1, ·), then there must be a function (z, τ ) �→ j(z, τ ) such that

(11.32) zs(1, t) = j(z(1, t), t), zst(1, t) = jz(z(1, t), t)zt(1, t) + jτ (z(1, t), t).

Let us set λ := z0(1), µ := z1(1). Then (11.12) implies that

(11.33) µ =
∫ 1

0
P (∂sz0(s), N1(j(λ, 0), jz(λ, 0)µ + jτ (λ, 0)), s) ds

for all µ and for all continuously differentiable z0 satisfying z0(0) = 0 and ∂sz0(s) > 0 for
all s. We take the Gâteaux differential of (11.33) with respect to z0 (i.e., we replace z0
in (11.33) by z0 + εη where η(0) = 0, differentiate the resulting expression with respect
to ε and then set ε = 0) to obtain

(11.34) 0 =
∫ 1

0
{Pνηs + PN [N1νjz(λ, 0) +N1ν̇(jzz(λ, 0)µ + jzτ (λ, 0)]η(1)} ds

where the arguments of the derivatives of N1 and of P are respectively the arguments of
N1 and P in (11.34). By applying the Fundamental Lemma of the Calculus of Variations
to (11.34) (i.e., by taking η to have the form (2.4.4a) and following the subsequent
development), we obtain

(11.35)
Pν(∂sz0(s), N1(j(λ, 0), jz(λ, 0)µ + jτ (λ, 0)), s)

= Pν(∂sz0(1), N1(j(λ, 0), jz(λ, 0)µ + jτ (λ, 0)), 1) ∀ z0, λ, µ, s.

By differentiating (11.33) with respect to µ and using (11.11) we find that jz(·, 0) is
everywhere positive. Thus the second argument of N1 in (11.35) ranges over R as µ
ranges over R. Thus (11.35) implies that

(11.36) Pν(∂sz0(s), N, s) = Pν(∂sz0(1), N, 1) ∀ ∂sz0, N, s.

We fix the arguments of Pν on the right-hand side of (11.36). Since ∂sz0 is arbitrary,
and since (11.31) implies that Pν → ∞ as ν → 0, we can readily violate (11.36) by
choosing ∂sz0 sufficiently small. Thus there are no viscoelastic materials of strain-rate
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type satisfying (11.11) and (11.29) for which the reduced problem for the tip mass is
governed by a second-order ordinary differential equation for all initial data.

It can be shown that the solution of the reduced problem is the leading term of
the regular part of a rigorous asymptotic expansion of the solutions of the full initial-
boundary-value problem with respect to the parameter ε (see Yip, Antman, & Wiegner
(2002)). Under suitable uniformity conditions, it can be shown that a standard ordinary
differential equation is an attractor for the reduced problem (see Wilber (2002) and
Wilber & Antman (2001)).

The treatment encompassing (11.1)–(11.10) and (11.29)–(11.36) is based upon
Antman (1988a, c© Society for Industrial and Applied Mathematics). The treatment of
the remaining material in this section is based upon Sec. 4 of Yip, Antman, & Wiegner
(2002). It replaces the incorrect argument centered on (4.25)–(4.27) of Antman (1988a).

12. Comments and Historical Notes
Each of the specific problems of this chapter is treated by a different formulation em-

bodying different variables to exploit the underlying geometry. Only for the suspension
bridge problem did we use a Cartesian description of the configuration of the string. The
special character of the loading, which made the inextensible problem tractable in the
seventeenth century, made this Cartesian description effective here. On the other hand,
the Cartesian formulation of the inextensible catenary problem, which Joh. Bernoulli
and especially Leibniz exploited with great success, makes the treatment of elastic cate-
nary problems excessively complicated, as the work of Jas. Bernoulli suggests and as
(3.38) demonstrates.

The static problems we have treated have the common feature that the shape of
equilibrium configurations is to a large extent independent of the material response.
The ease with which the shape could be determined for certain problems no doubt hid
the necessity of finding conditions to ensure that there actually are such solutions.

The problems of Secs. 2.6–2.8 become degenerate if N̂ (·, s) is linear. The same
remark applies to many of the problems of this section. The nineteenth-century authors
Todhunter, Minchin, and Routh, who wrote on statics, advocated the use of such linear
functions because they deemed such laws to be firmly established by experiment. The
ubiquity of rubber bands in this century makes their view seem archaic.

The problem of determining the catenary was posed by Leonardo da Vinci, who
made false assertions about its mathematical character. In 1638 Galileo incorrectly
stated that the curve (for a uniform inextensible string) is a parabola. The problem
of the suspension bridge was studied by Stevin in 1608. The correct form of the curve
(for an inextensible string under constant horizontal load intensity), a parabola, was
found by Beeckman in 1614–1615, Huygens in 1646, and Pardies in 1673, the successive
analyses exhibiting increasing sophistication and accuracy. Both Huygens and Pardies
also noted that the catenary could not be a parabola. Pardies incorrectly stated that the
curve for the suspension bridge problem with an elastic string (under constant horizontal
load intensity) is not a parabola. In 1646 Huygens incorrectly stated that the velaria is
a parabola. He acknowledged his error in 1668. In 1691 Jas. Bernoulli correctly asserted
the velaria to be a circle.

In 1675 Hooke observed that a (uniform inextensible) moment-free arch that supports
its own weight is obtained by turning the catenary, whatever its form, upside-down. This
observation may be regarded as a primitive multiplicity theorem. In 1690 Jas. Bernoulli
challenged the scientific world to find the catenary. Within a year, Joh. Bernoulli,
Leibniz, and Huygens did so, with Leibniz obtaining its graph in the explicit form
of a hyperbolic cosine. (Full proofs of this result were finally given by Hermann in
1716 and Taylor in 1715–1717.) Between 1691 and 1704, Jas. Bernoulli intensively
studied static problems for nonuniform elastic strings, the formulation of which forced
him to penetrate far deeper toward the fundamental physical principles than any of
his predecessors and contemporaries. Between 1713 and 1728, Joh. Bernoulli found the
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shape of an inextensible string gravitationally attracted to a fixed point. (This superficial
historical sketch is based on Truesdell (1960), which should be consulted for full details.)

By the second half of the nineteenth century, problems for both inextensible and
linearly elastic strings were routinely treated in the British books on statics by Todhunter
(1853), Minchin (1887), and Routh (1891). These texts are virtually devoid of references
to earlier work. In my (far from exhaustive) examination of French, German, Italian,
and Russian books, I found none that had treatments of these questions comparable to
those of Todhunter, Minchin, and Routh. The first advance beyond these works was
made by Dickey (1969), who saw the need for a full existence and multiplicity theory
and met it in his treatment of the symmetric elastic catenary (cf. Ex. 3.34).



CHAPTER 4

Planar Steady-State
Problems for Elastic Rods

A theory of rods is the characterization of the motion of slender solid
bodies by a finite number of equations in which there is but one indepen-
dent spatial variable. (The theory of strings, formulated in Chap. 2, is thus
an example of a theory of rods.) In this chapter we formulate and analyze
equilibrium problems for the planar deformation of elastic rods. The in-
trinsically 1-dimensional theory that we employ, which may be called the
special Cosserat theory of rods, has several virtues: It is exact in the same
sense as the theory of strings of Chap. 2 is exact, namely, it is not based
upon ad hoc geometrical approximations or mechanical assumptions. It
is much more general than the standard theories used in structural me-
chanics. Many important concrete problems for the theory admit detailed
global analyses, some of which are presented below.

In Sec. 1 we give a concise development of the fundamental theory for
planar equilibrium problems, deferring to Chaps. 8 and 16 detailed discus-
sions of dynamical theories of rods deforming in space. There we present
generalizations, refinements, and thorough analyses of all the concepts in-
troduced here in a simplified setting. (Chapter 8 can be read right now.)
In Secs. 2–6 we solve a variety of elementary problems. (We continue this
program in Chap. 6, where we treat a variety of global bifurcation problems
for the planar deformation of rods, and in Chap. 7, where we use variational
methods for some of these problems.)

1. Formulation of the Governing Equations
Let a thin 2-dimensional body occupy a region B of the plane spanned by

{i, j}. We call this configuration the reference configuration of the body.
See Fig. 1.1a. This configuration is often taken to be a natural configura-
tion, which is one that has the property that no part of the body exerts a
force on any other part of the body (whence it follows that there can be no
applied forces in this configuration). We may think of this configuration
as the intersection with the {i, j}-plane of the reference configuration of
a slender 3-dimensional body that is symmetric about this plane. In this
case, we limit our studies here to deformations that preserve this symmetry.
Alternatively, we could regard B as a typical cross section of a very long (or
infinitely long) cylindrical body with generators parallel to k. In this case,
we limit our studies here to deformations that preserve the cylindricity,

95
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so that the deformation of B is typical of the deformation of every cross
section.

Within B we identify a smooth plane base curve [s1, s2] � s �→ r◦(s) ≡
r◦(s) ∈ B. (We allow the symbol ◦ to be written as either a subscript or
a superscript, so that we can place other symbols in the vacated spots.)
We take s to be the arc-length parameter of r◦. This curve should be
chosen so that B represents a ‘thickening’ of r◦. In particular, the lines
normal to r◦ should not intersect within B. The intersection with B of
the normal line through r◦(s) is the material (cross) section (at) s. The
vector b◦(s) := k×r′

◦(s) is a unit vector normal to r◦ at r◦(s); it lies along
the section s. It is sometimes desirable to choose r◦(s) to bisect the cross
sections (provided that such a ‘curve of centroids’ exists).

Under the action of forces and couples, the body shown in Fig. 1.1a is
deformed into the configuration shown in Fig. 1.1b. The material points
forming r◦ now occupy a plane curve [s1, s2] � s �→ r(s) for which s is in
general not the arc-length parameter. The straight section at s is typically
deformed into a plane curve β. An exact description of such a deformation
would require partial differential equations with two independent spatial
variables (see Chap. 12). We now use the thinness of the body to moti-
vate the construction of a simpler theory governed by ordinary differential
equations in s. It is clear that if we know r, we know the gross shape of the
deformed body. In the model we employ, the planar version of the special
Cosserat theory of rods, we find ordinary differential equations not only for
r but also for the unit vector field b, which characterizes some average ori-
entation of the deformed cross section β. See Fig. 1.1c. The theory we now
formulate, though motivated by the considerations embodied in Fig. 1.1,
stands on its own as a coherent independent mathematical model of the
2-dimensional deformation of thin bodies.

Geometry of deformation. A planar configuration of a special
Cosserat rod is defined by a pair of vector-valued functions

(1.2) [s1, s2] � s �→ r(s), b(s) ∈ span{i, j}

where b(s) is a unit vector, called the director at s. We can accordingly
represent b and the vector a := −k × b by

(1.3) a = cos θi + sin θj, b = − sin θi + cos θj.

Thus a configuration can be alternatively defined by r and θ.
Throughout the remainder of this book up to Chap. 16, we take the word

rod to be synonymous with special Cosserat rod , unless there is a specific
statement to the contrary. We have defined the configuration of a rod, but
have not defined a rod itself. (See the comments following (8.3.5).)

Since the basis {a, b} is natural for the intrinsic description of defor-
mation, we decompose all vector-valued functions with respect to it. In
particular, we set

(1.4) r′ =: νa + ηb.
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Fig. 1.1. (a) Reference configuration of a 2-dimensional body.
(b) Deformed configuration of a 2-dimensional body. (c) De-
formed planar configuration of a Cosserat rod.
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The functions

(1.5) ν, η, µ := θ′

are the strain variables corresponding to the configuration (1.2). We iden-
tify the values of all variables in the reference configuration by a superposed
circle. Thus in this configuration,

(1.6) r′
◦ = a◦ = cos θ◦i + sin θ◦j, ν◦ = 1, η◦ = 0.

To interpret the strain variables, we first observe that the stretch of the
base curve r◦, i.e., the local ratio of deformed to reference length, is |r′| =√
ν2 + η2. The strain ν = r′ ·a = k·(r′×b) is the local ratio of deformed to

reference area of the parallelogram with sides r′ and b. In a pure elongation
of the rod, |r′| reduces to ν. It is convenient, though imprecise, to think of
ν as measuring stretch. The dot product

(1.7) b · r′

|r′| =
η√

ν2 + η2
=: sinβ

is the projection of b onto the unit vector r′/|r′| or vice versa; it measures
the shear angle β, which is the reduction in the right angle between r′

◦
and b◦. Let φ(s) be the angle between i and r′(s). Thus φ = θ + β. Its
derivative with respect to the actual arc length of r is the curvature of r.
Thus this curvature is φ′/|r′|, which is in general not equal to µ = θ′. To
appreciate the significance of µ, consider the pure inflation of an initially
circular ring. The curvature changes, but µ remains fixed. On the other
hand, if a straight rod is bent into a circle without elongation, then µ and
the curvature both change. One of many virtues of µ is that it isolates the
effect of pure bending from changes in curvature associated with stretching.

The requirement that the deformation not be so severe that the stretch
of r is ever reduced to zero or that the shear is so large that b and r ever
coincide is ensured by the inequality

(1.8) ν(s) > 0 ∀ s ∈ [s1, s2].

The more restrictive requirement that distinct nearby cross sections of the
body B of Fig. 1.1 cannot intersect within the deformed image of B is
discussed in Sec. 8.7. It leads to the following generalization of (1.8):
There is a convex function V (·, s) on R with V (0, s) = 0 for all s such that

(1.9) ν(s) > V
(
θ′(s), s

)
.

V depends on the disposition of r◦ in B (see Fig. 1.1). We restrict our
attention to the important case that V ≥ 0.
1.10. Exercise. Prove that ν, η, µ are unaffected by rigid displacements and that they
determine r, b to within a rigid displacement. Thus they account for change of shape.

We have not introduced conditions preventing r from intersecting itself. We can
therefore model problems for thin rods in which different parts of a rod slide past each
other without effect. See Fig. 2.15. On the other hand, if we regard a rod as a cross
section of a cylindrical shell perpendicular to the generators, then such self-intersections
have no physical significance. Characterizations of the family of nonintersecting con-
figurations useful for analytic purposes is given by Gonzalez et al. (2002), Lanza de
Cristoforis & Antman (1991), Schuricht (2002), and Schuricht & von der Mosel (2003).
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Statics. Let s1 < c < s < s2. In a deformed configuration, the material of
(s, s2] exerts a resultant contact force n+(s) and a resultant contact torque
r(s) × n+(s) + m+(s) about o on the material of [c, s]. The vector m+(s)
is the corresponding resultant contact couple. Since we are restricting our
attention to planar problems, we are assuming that n+ takes values in
span{i, j} and m+ takes values in span{k}. Just as in Sec. 2.2, n+(·) and
m+(·) depend only on the section separating the two segments, and are
independent of any other property of the bodies. The resultant contact
force and contact torque about o exerted on [c, s] by [s1, c) are denoted
by −n−(c) and −r(c) × n−(c) − m−(c). The resultant of all other forces
acting on [c, s] in this configuration is assumed to have the form

(1.11)
∫ s

c

f(ξ) dξ

where f takes values in span{i, j}. The resultant of all other torques is
assumed to have the form

(1.12)
∫ s

c

[r(ξ) × f(ξ) + l(ξ)] dξ

where l = lk. The vectors f(s) and l(s) are the body force and body couple
per unit reference length at s.

The rod is in equilibrium if the resultant force and moment acting on
each material segment [c, s] are each zero:

(1.13) n+(s) − n−(c) +
∫ s

c

f(ξ) dξ = o,

(1.14)
m+(s) − m−(c) + r(s) × n+(s) − r(c) × n−(c)

+
∫ s

c

[r(ξ) × f(ξ) + l(ξ)] dξ = o.

The extension of these laws to intervals for which c = s1 or s = s2 is
straightforward: Prescribed forces and couples acting at the ends of the
rod must be accounted for. (No such forces are treated in (2.3.1).)

By imitating the procedures of Secs. 2.2 and 2.3, we can obtain the
obvious analogs of the results found there. In particular, we find that the
superscripts ‘±’ are superfluous. Assuming that all the functions appear-
ing in (1.13) and (1.14) are sufficiently regular, we can differentiate these
equations with respect to s to obtain

n′ + f = o,(1.15)

m′ + (r × n)′ + r × f + l = o.(1.16)

The substitution of (1.15) into (1.16) reduces the latter to

(1.17) m′ + r′ × n + l = o.
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Equations (1.15) and (1.17) are the classical forms of the equations of equi-
librium for (the special theory of Cosserat) rods.

By integrating (1.17) over [c, s], we obtain a reduced version of (1.14):

(1.18) m(s) − m(c) +
∫ s

c

[r′(ξ) × n(ξ) + l(ξ)] dξ = o.

By imposing mild conditions on the functions entering (1.13) and (1.14)
we could deduce (1.18) directly from (1.13) and (1.14) without resorting
to the classical equations. Thus the Balance Laws (1.13) and (1.14) are
equivalent to (1.13) and (1.18).

In accord with our assumption of planarity, we set

(1.19) n = Na +Hb, m =Mk.

The substitution of (1.19) into (1.15) and (1.17) yields componential forms
for these equations:

(1.20)

N ′ − µH + f · a = 0,

H ′ + µN + f · b = 0,

M ′ + νH − ηN + l = 0.

As we shall see, the componential forms are often less convenient than their
vectorial counterparts.

We may call H the shear force and M the bending couple (or moment).
The tension is n · r′/|r′|. When η �= 0, there is no standard name for
N , and the definition of shear force differs from that used in structural
mechanics, in which it is usually assumed that a = r′/|r′|.

Under the very mild conditions prevailing in this chapter, the integral
balance laws (1.13) and (1.18) are equivalent to (1.15) and (1.17) (see
Sec. 2.6).

Constitutive equations. The rod is called elastic if there are constitutive
functions N̂ , Ĥ, M̂ such that

(1.21)

N(s) = N̂
(
ν(s), η(s), µ(s), s

)
,

H(s) = Ĥ
(
ν(s), η(s), µ(s), s

)
,

M(s) = M̂
(
ν(s), η(s), µ(s), s

)
.

For each fixed s, the common domain of these constitutive functions con-
sists of those ν, η, µ satisfying

(1.22) ν > V (µ, s)

(cf. (1.9)). In Sec. 8.8 we show that these constitutive equations are invari-
ant under rigid displacements. The substitution of (1.21) into (1.19) and
its insertion into (1.15) and (1.17) yields a sixth-order quasilinear system of
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ordinary differential equations for r and θ. The study of concrete problems
for this system is the object of the next few chapters.

For simplicity of exposition, we assume that N̂ , Ĥ, M̂ are continuously
differentiable. We ensure that an increase in the tension n · r′/|r′| accom-
pany an increase in the stretch |r′|, that an increase in the shear force
H accompany an increase in the shear strain η, and that an increase in
the bending couple M accompany an increase in the bending strain µ by
requiring that:

(1.23) the matrix
∂(N̂ , Ĥ, M̂)
∂(ν, η, µ)

is positive-definite.

We term (1.23) the monotonicity condition. (This condition is equivalent to
the positive-definiteness of the symmetric part of this matrix.) We assume
that extreme values of the resultants accompany extreme values of the
strains in a way that is compatible with (1.23):

N̂(ν, η, µ, s) →
{ + ∞

− ∞

}
as ν →

{ + ∞
V (µ, s)

}
,(1.24)

Ĥ(ν, η, µ, s) → ±∞ as η → ±∞,(1.25)

M̂(ν, η, µ, s) → ±∞ as µ→
{ sup

inf

}
{µ : ν > V (µ, s)}.(1.26)

In (1.24) the variables η, µ, s are fixed; analogous remarks hold for (1.25)
and (1.26).

We assume that it is no more difficult to shear the rod in one sense than
in the opposite sense and that N and M are unaffected by the sense of
shearing:

(1.27) N̂(ν, ·, µ, s) and M̂(ν, ·, µ, s) are even, Ĥ(ν, ·, µ, s) is odd.

We finally require that N,H,M vanish in the reference configuration:

(1.28) N̂(1, 0, µ◦, s) = 0, M̂(1, 0, µ◦, s) = 0.

We assume that the mapping

(1.29a) (ν, η, µ) �→
(
N̂(ν, η, µ, s), Ĥ(ν, η, µ, s), M̂(ν, η, µ, s)

)
has the inverse

(1.29b) (N,H,M) �→
(
ν̂(N,H,M, s), η̂(N,H,M, s), µ̂(N,H,M, s)

)
,

so that (1.21) is equivalent to constitutive equations of the form

(1.30)

ν(s) = ν̂
(
N(s), H(s),M(s), s

)
,

η(s) = η̂
(
N(s), H(s),M(s), s

)
,

µ(s) = µ̂
(
N(s), H(s),M(s), s

)
.
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When (1.30) is used, it is assumed that ν̂ and µ̂ satisfy (1.22), and that
(1.29b) enjoys the same smoothness as (1.29a).

It is not hard to show that conditions (1.23)–(1.26) support a global
implicit function theorem to the effect that (1.29a) has the inverse (1.29b)
with the indicated properties; see Theorems 21.2.30 and 20.1.27.
1.31. Exercise. Let N, H, M, s be given numbers. Prove that (1.23) ensures that the
system

N = N̂
(
ν, η, µ, s

)
, H = Ĥ

(
ν, η, µ, s

)
, M = M̂

(
ν, η, µ, s

)
(cf. (1.21)) can have at most one solution for ν, η, µ.

If the rod is constrained so that η = 0 in all circumstances, then the rod
is said to be unshearable. We construct such a theory from (1.30) by simply
defining η̂ = 0. In this case, H (which is the Lagrange multiplier corre-
sponding to this constraint) is not defined constitutively by any version of
(1.21); it is just an unknown of any problem in which it appears. (For a full
treatment of constraints, see Secs. 8.17 and 12.12.) Likewise, if the rod is
constrained so that ν = 1, then the rod is said to be inextensible, and N is
(a Lagrange multiplier) not defined constitutively by any version of (1.21).
These two constraints are commonly imposed in structural mechanics. The
elastica theory is based on these two constraints and on the Bernoulli-Euler
constitutive equation that says that M is linear in the change in µ (which
is now the curvature):

(1.32) M(s) = (EI)(s)[µ(s) − µ◦(s)].

(This theory was created by Jas. Bernoulli (1694), Euler (1727, 1732), and
D. Bernoulli (1728). See Truesdell (1960).)

If the matrix of (1.23) is symmetric, then there exists a scalar-valued
function (ν, η, µ, s) �→ W (ν, η, µ, s), called the stored-energy function, such
that

(1.33a) N̂ =Wν , Ĥ =Wη, M̂ =Wµ.

In this case, which is motivated by thermodynamical considerations (see
Sec. 12.14), the rod is said to be hyperelastic. Condition (1.23) ensures
that the Hessian matrix of second derivatives ofW with respect to ν, η, µ is
positive-definite, so thatW (·, ·, ·, s) is strictly convex. The symmetry of the
matrix of (1.23) implies the symmetry of the matrix of partial derivatives of
(ν̂, η̂, µ̂) with respect to (N,H,M). Thus there exists a scalar-valued func-
tion (N,H,M, s) �→ W ∗(N,H,M, s), called the conjugate stored-energy
function, such that

(1.33b) ν̂ =W ∗
N , η̂ =W ∗

H , µ̂ =W ∗
M .

(W ∗(·, ·, ·, s) is the Legendre transform of W (·, ·, ·, s).)
1.34. Exercise. Prove that

(1.35)
W ∗(N, H, M, s) = Nν̂(N, H, M, s) + Hη̂(N, H, M, s) + Mµ̂(N, H, M, s)

− W
(
ν̂(N, H, M, s), η̂(N, H, M, s), µ̂(N, H, M, s), s

)
.

In Chap. 16, we undertake an intensive study of the constitutive condi-
tions from the viewpoint of 3-dimensional elasticity.
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Boundary conditions. Let us now briefly describe some simple types of
boundary conditions (deferring to Sec. 8.14 a comprehensive treatment).
We just describe conditions at end s1; those at end s2 are completely
analogous.

We can prescribe the position of the end s1 by requiring that there be a
given vector r1 such that

(1.36) r(s1) = r1.

In this case, we do not prescribe the force n(s1) acting at the end, so that
it remains free to accommodate (1.36). We could alternatively prescribe
the force acting at the end by requiring that there be a given vector n1
such that

(1.37) n(s1) = n1.

In this case, we do not prescribe r(s1). (For equilibrium problems, one
is not free to prescribe forces at both ends in an arbitrary way because it
is necessary, but not sufficient, for equilibrium that the resultant force on
the rod vanish.) We can restrict the end s1 to move in a groove under the
action of a prescribed tangential force by requiring that there be a C1-curve
σ �→ r1(σ) and a scalar-valued function σ �→ n1(σ) such that

(1.38) r(s1) = r1(σ), n(s1) · r′
1(σ)

|r′
1(σ)|

= n1(σ).

Here σ is an unknown. In this case, which is intermediate to (1.36) and
(1.37), we prescribe no further restrictions.

We can prescribe the orientation b(s1) of the end section by requiring
that there be a given number θ1 such that

(1.39) θ(s1) = θ1.

This condition can be effected by welding the end section to a rigid wall
whose normal makes an angle θ1 with i. See Fig. 1.40b. In this case, we do
not prescribe M(s1). (Notice that conditions like (1.39) when prescribed
at both ends carry far more information than the specification of b(s1) and
b(s2) because conditions for θ give a winding number for b.)

We can prescribe the bending couple at s1 by requiring that there be a
given number M1 such that

(1.41) M(s1) =M1.

In this case, we may assume that the end s1 can freely rotate about a hinge
(under the action of the prescribed couple).

The various alternatives such as (1.36) or (1.37) seem physically rea-
sonable. They can be put into a formal mathematical setting within the
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Fig. 1.40. Welding and clamping of an end. Here the base curve
is taken to be the bottom edge of the rod. (a) The reference con-
figuration. (b) A deformation satisfying the boundary condition
θ(s1) = 0. (c) A deformation satisfying the boundary condition
φ(s1) = 0. (d) A deformation with a support like that of (c) in
which φ is discontinuous at s1. It can be shown that the con-
figuration in (d) is natural, whereas that in (c) is artificial: The
configuration of (c) must be maintained by a feedback couple
applied at r(s1) (see Antman & Lanza de Cristoforis (1997)).

Principle of Virtual Power (see Sec. 8.14). Their full mathematical jus-
tification is effected by suitable existence theorems. We do not pause to
develop systematically such theorems, though many arise as by-products
of our analyses of specific problems in Chaps. 6 and 7.

A common alternative to boundary condition (1.39), which is used for less sophisti-
cated models, is that of clamping, one version of which is illustrated in Fig. 1.40c. In it
the tangent to r at s1 is fixed by requiring that there be a given number φ1 such that

(1.42a) φ(s1) = φ1.

This condition is equivalent to

(1.42b,c) tan θ(s1) =
ν(s1) tan φ1 − η(s1)
ν(s1) − η(s1) tan φ1

⇐⇒ η(s1)
ν(s1)

= tan
(
φ1 − θ(s1)

)
.

Note that for unshearable rods, (1.39) and (1.42) are equivalent. It can be shown that
(1.42) in general must be maintained by a feedback couple, and is therefore unnatu-
ral. (This condition, however, is useful for certain problems of fluid-solid interaction.)
For shearable rods, the boundary conditions (1.42) present many unpleasant analytical
challenges and mechanical surprises, and should be avoided in the modelling of natural
problems. See Antman & Lanza de Cristoforis (1997).

Boundary-value problems. Our boundary-value problems consist of the
geometrical relations (1.4) and the equation in (1.5), the equilibrium equa-
tions (1.15) and (1.17) or, equivalently, (1.20), the constitutive equations in
the form (1.21) or (1.30), and a suitable collection of boundary conditions,
e.g., either (1.36) or (1.37) or (1.38), and either (1.39) or (1.41) at s1, with
analogous choices at s2. In particular, if we substitute (1.30) into (1.20), we
obtain a system involving just the unknowns N,H,M . The substitution of
(1.30) into (1.4) and (1.5) gives three more equations for r and θ in terms
of (N,H,M).
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Equations of motion. It is convenient to include the study of the ordi-
nary differential equations of steady motions under the study of the ordi-
nary differential equations of pure equilibrium problems. Furthermore, to
study the stability of steady states, we need to examine associated equa-
tions of motion. For this purpose, we record the form of the equations of
motion, deferring to Chap. 8 a full discussion of this subject. We obtain
the equations of motion by replacing the o’s on the right-hand sides of
(1.15) and (1.16) with time derivatives of the linear and angular momen-
tum, respectively. We might expect the linear momentum to be linear in
rt and bt and the angular momentum to be linear in cross products of r, b
with rt, bt. Alternatively, we might be motivated to choose forms for these
momenta from those for the 2-dimensional body of Fig. 1.1. In any event,
we show in Secs. 8.2 and 8.4 for a rod undergoing a planar deformation
that a suitable form for the linear momentum per unit reference length at
(s, t) is

(1.43) (ρA)(s)rt(s, t) + (ρI)(s)bt(s, t)

and that a suitable form for the angular momentum per unit reference
length at (s, t) is

(1.44) (ρA)(s)r(s, t) × rt(s, t) + (ρI)(s)r(s, t) × bt(s, t)

+ (ρI)(s)b(s, t) × rt(s, t) + (ρJ)(s)b(s, t) × bt(s, t).

Here, for straight rods, (ρA)(s), (ρI)(s), (ρJ)(s) may be interpreted as the
mass, first moment of mass, and second moment of mass per unit reference
length about r◦(s) of the section s of the reference configuration. For
curved rods, these interpretations must be modified slightly (see Sec. 8.4).
We take ρA and ρJ to be everywhere positive on (s1, s2). In the important
case of a straight rod in which r◦ is regarded as the curve of mass centers
of the cross sections of the 3-dimensional rod, we can take ρI = 0. (For
curved rods, we can make ρI vanish by a suitable choice of r◦, but there are
compensatory disadvantages, as we discuss in Chap. 8.) The replacement of
the o’s on the right-hand sides of (1.15) and (1.16) with the time derivatives
of (1.43) and (1.44) yields the equations of motion corresponding to (1.15)
and (1.17):

ns + f = ρArtt + ρIbtt,(1.45)

ms + rs × n + lk = ρIb × rtt + ρJb × btt.(1.46)

Note that b×btt = θttk if b has the form (1.3) with θ time-dependent, i.e.,
if b is confined to a fixed plane. We shall soon be considering problems in
which b is confined to a rotating plane, for which we need the generality of
(1.46).



106 4. PLANAR STEADY-STATE PROBLEMS FOR ELASTIC RODS

2. Planar Equilibrium States of
Straight Rods under Terminal Loads

Let us assume that f = o and l = 0 and take s1 = 0, s2 = 1. We set

(2.1) n(1) = −Λ(cosαi + sinαj)

with Λ ≥ 0. Then (1.3), (1.4), (1.13), (1.18), and (1.19) imply that if r
and θ are absolutely continuous, then

n(s) = −Λ(cosαi + sinαj),(2.2a)

M ′ = −Λ[ν sin(θ − α) + η cos(θ − α)].(2.2b)

We set

(2.3) γ := θ − α.

Equations (1.30) and (2.2a) imply that

ν = ν̂(−Λ cos γ, Λ sin γ,M, s),(2.4a)

η = η̂(−Λ cos γ, Λ sin γ,M, s),(2.4b)

γ′ = µ̂(−Λ cos γ, Λ sin γ,M, s).(2.4c)

Eq. (2.4c) and Eq. (2.2b) with ν and η replaced with (2.4a,b) form a second-
order semilinear system for (θ,M).

Had we chosen in place of (1.30) constitutive equations of the form

(2.5) ν = ν�(N, H, µ, s), η = η�(N, H, µ, s), M = M�(N, H, µ, s),

then in place of this semilinear system we obtain the single second-order quasilinear
equation

(2.6) d
ds

M�(−Λ cos γ, Λ sin γ, γ′, s)

+ Λ[ν�(−Λ cos γ, Λ sin γ, γ′, s) sin γη�(−Λ cos γ, Λ sin γ, γ′, s
)
cos γ] = 0.

It is somewhat more convenient to use the semilinear system.

If we specialize our equations to the elastica by constraining ν = 1,
η = 0, and by adopting (1.32), then we reduce (2.4c) and (2.2b) to

(2.7a,b) γ′(s) =
M(s)

(EI)(s)
, M ′ = −Λ sin γ,

which is equivalent to the correspondingly degenerate form of (2.6):

(2.8) d
ds [(EI(s)γ′(s)] + Λ sin γ(s) = 0.
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We assume that the reference configuration of the rod is straight and we
adopt the symmetry restrictions:

(2.9)

ν̂ is even in H and even in M,
η̂ is odd in H and even in M,
µ̂ is even in H and odd in M.

These conditions say that it is no harder to shear or bend the rod in one
sense than to do so the same amount in the opposite sense (cf. (1.27)).
These conditions are degenerate versions of the transverse isotropy condi-
tions described in Sec. 8.11. (In Sec. 16.10, 3-dimensional considerations
are used to show that the symmetry with respect to H can generally be ex-
pected and that if each cross section of the rod is doubly symmetric about
its centroid, then the symmetry with respect to M holds, but is otherwise
unwarranted.) Let us assume that the material of the rod is uniform, so
that the constitutive functions of (1.21) or (1.30) are independent of s. In
this case, (2.4c) and (2.2b) reduce to the autonomous system

γ′ = µ̂(−Λ cos γ, Λ sin γ,M),(2.10a)

M ′ = − Λ[ν̂(−Λ cos γ, Λ sin γ,M) sin γ(2.10b)

+ η̂(−Λ cos γ, Λ sin γ,M) cos γ].

We study the qualitative properties of all solutions to (2.10) by examin-
ing its phase portrait in the (γ,M)-phase plane. Conditions (2.9) and the
form of (2.10) imply that the phase portrait is symmetric about the γ-axis,
is symmetric about the M -axis, and has period 2π in γ. Conditions (2.9)
and (1.23) imply that the right-hand side of (2.10a) vanishes if and only
if M = 0. Thus the singular points of (2.10) have the form (γ, 0) where γ
satisfies

(2.11) tan γ = − η̂(−Λ cos γ, Λ sin γ, 0)
ν̂(−Λ cos γ, Λ sin γ, 0)

=: h(γ, Λ).

Since ν̂ is everywhere positive, the denominator of (2.11) does not vanish.
For an unshearable rod, the numerator is zero, in which case the singular
points have the form (kπ, 0) where k is an integer. Condition (2.9) implies
that (2.11) always has roots kπ. We want to determine if it has others.

Since Λ ≥ 0, conditions (2.9) and (1.23) imply that h(γ, Λ) has the sign
opposite to that of sin γ for Λ > 0. By sketching the graphs of tan and
h(·, Λ) and by noting that h(γ, 0) = 0 = hγ(γ, 0), we find that there is a
positive number Λ+ (possibly infinite) such that the only solutions of (2.11)
are kπ for Λ < Λ+.

2.12. Exercise. Linearize (2.10) about its singular points to determine their type. In
particular, let

(2.13) q(Λ) :=
Λν̂(−Λ cos γ, Λ sin γ, 0)

cos γ
[1 − hγ(γ, Λ) cos2 γ]
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Fig. 2.14a. Typical phase portrait of (2.10) when Λ < Λ+.

Fig. 2.14b. Typical phase portrait of (2.10) when Λ > Λ+ and
hγ(π,Λ) > 1.

Fig. 2.14c. Typical phase portrait of (2.10) when Λ > Λ+ and
hγ(π,Λ) < 1.

when γ satisfies (2.10). Prove that the singular point is a center when q(Λ) > 0 and
a saddle point when q(Λ) < 0. Show that the points (2kπ, 0) are centers and that the
points ((2k + 1)π, 0) are saddle points when hγ((2k + 1)π, Λ) < 1 and centers when
hγ((2k + 1)π, Λ) > 1. More generally, show that a solution γ of (2.11) in ( π

2 , 3π
2 )

corresponds to a saddle point if the slope of h(·, Λ) is less than the slope of tan at γ and
corresponds to a center if the slope of h(·, Λ) exceeds the slope of tan at γ.

In view of the results of Ex. 2.12, the phase portraits of (2.10) have
the form shown in Fig. 2.14. (The symmetry conditions ensure that these
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Λ Λ Λ Λ

ΛΛΛΛ

Fig. 2.15a. Inflexional configurations of r corresponding to
closed orbits of Fig. 2.14a encircling the origin.

ΛΛ

Fig. 2.15b. Noninflexional configuration of r corresponding to
an unbounded trajectory of Fig. 2.14a.

portraits have the character of those for conservative problems in that there
are no spiral points or nodes or their global analogs.) The phase portrait
for the elastica is just like Fig. 2.14a.

We reconstruct the possible shapes of the deformed rod by integrating
(1.4). Since γ′ behaves like the curvature

γ′

[ν̂2 + η̂2]1/2 +
ν̂η̂′ − η̂ν̂′

[ν̂2 + η̂2]3/2 ,

at least for moderate shear, we can practically read off the shapes from the
phase portraits. For example, a closed orbit of Fig. 2.14a encircling the
origin corresponds to a segment of a curve like that shown in Fig. 2.15a,
while an unbounded trajectory lying outside the separatrix corresponds to
a segment of the noninflexional curve shown in Fig. 2.15b. We emphasize
that these shapes are merely candidates for solutions of specific boundary-
value problems. We have not demonstrated that it is possible to choose
the unprescribed constants and integration constants so that a trajectory
uses up exactly one unit of the independent variable in joining termini
corresponding to prescribed boundary conditions. We address important
aspects of this question in the next chapter and elsewhere.

Figures 2.14b,c have additional closed orbits, in which γ is confined to a
subinterval of (π

2 ,
3π
2 ). Here the rod is everywhere in tension. In each case,

there is a singular point with γ equal to a nonintegral multiple of π. This
singular point describes a straight rod with η �= 0 and corresponds to a
shear instability that can arise in rods sufficiently weak in shear when they
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Fig. 2.16. Configuration of a rod corresponding to a closed or-
bit encircling a singular point of Fig. 2.14c with γ equal to a
nonintegral multiple of π.

are in tension. Figure 2.16 show the configuration of a rod corresponding
to a closed orbit encircling such a singular point.

2.17. Exercise. Suppose that the rod is hyperelastic and uniform, so that the functions
in (1.30) have the form (1.33b) with W ∗ independent of s. Show that the trajectories
of the phase portrait of (2.10) have the form

(2.18) W ∗(−Λ cos γ, Λ sin γ, M) = const.

Alternatively, let the functions of (2.5) have the form ν� = W �

N , η� = W �

H , M� = −W �
µ

with W � independent of s. Show that the trajectories of the phase portrait of (2.6) in
(γ, γ′)-space have the form

(2.19) γ′W �
µ(−Λ cos γ, Λ sin γ, γ′) − W �(−Λ cos γ, Λ sin γ, γ′) = const.

The symmetry condition (2.9) implies that W ∗(N, H, ·) is even. Thus, under mild reg-
ularity assumptions, W ∗ has the form W ∗(N, H, M) = W �(N, H, K) with K = M2.
Prove that the Monotonicity Condition (1.23) implies that (2.18) can be solved uniquely
for M2 in terms of −Λ cos γ, Λ sin γ, and the constant, by showing that W �

K > 0. Use
a similar construction to show that (2.19) can be solved for (γ′)2 in terms of the other
variables.

2.20. Exercise. The component of n perpendicular to r′ is Q := n ·(k×r′)/|r′|. (It is
termed the vertical shear in the engineering literature.) Prove that (2.11) is equivalent
to Q = 0.

2.21. Exercise. Show that (2.9) is equivalent to the corresponding statement in which
the roles of (ν, η, µ) and (N, H, M) are switched.

2.22. Problem. Carry out the phase-plane analysis of the planar deformation of a
rod whose natural state has a circular axis. Here the symmetry conditions (2.9) are
weakened by dropping those involving M .

In his remarkable work of 1744, Euler catalogued all possible equilibrium states for the
elastica and thereby established the qualitative theory of ordinary differential equations.
See Love (1927, Secs. 262, 263) and Truesdell (1960) for accounts of this work. Among
the many references showing how solutions of the problem for the elastica can be solved
in terms of elliptic functions are Love (1927), Frisch-Fay (1962), and Reiss (1969). The
treatment given here, which is in the spirit of Euler’s, generalizes that of Antman (1974a),
which in turn is based on that of Antman (1968).
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3. Equilibrium of Rings
under Hydrostatic Pressure

We now study planar equilibrium states of an initially circular elastic
ring subjected only to simple hydrostatic pressure

(3.1) f = pk × r′.

(See Sec. 3.5. The ring may be regarded as a typical cross section of an
infinitely long cylindrical shell.) Under our standard minimal regularity
assumptions, solutions of (1.13), (1.18), and (1.30) are classical solutions
of the differential equations

(3.2a,b) n′ + pk × r′ = o, M ′ + k · (r′ × n) = 0,

and (1.30). We dot (3.2a) with n and substitute the resulting expression
into (3.2b) to obtain the exact derivative of the integral

(3.3) |n|2 − 2pM ≡ N2 +H2 − 2pM = a (const.).

We assume that the natural reference configuration is a circle of unit
radius so that in this configuration µ = 1. Thus we take s1 = 0, s2 = 2π.
The requirement that r have a winding number of 1 leads to the side
condition

(3.4) 2π = θ(2π) − θ(0) =
∫ 2π

0
µ(s) ds.

We require that the position field r, the strains ν, η, µ, and the resultants
N,H,M , when extended to the whole real line, each have period 2π in
s. (The requirement that r′ have period 2π, which is necessary for the
smoothness of r, is ensured by the periodicity of the strain.) The problem
consisting of (1.30), (3.2), (3.4), and these periodicity conditions is called
the ring problem.

Unshearable rings. If the ring is unshearable, then (1.20) or (3.2) re-
duces to

(3.5a,b,c) N ′ −Hθ′ = 0, H ′ +Nθ′ + pν = 0, M ′ + νH = 0.

As we pointed out in the paragraph containing (1.32), H is a Lagrange mul-
tiplier, not determined constitutively, and the constitutive equations have
the form (1.30) with η̂ = 0. We assume that ν̂ and µ̂ are independent of H,
as is true for a hyperelastic rod. Methods for treating the problem when
these functions depend on H are like those described below for shearable
rings. We wish to eliminate the multiplier H from our formulation.

The substitution of (3.5c) into (3.3) yields

(3.6) (M ′)2 = ν2(a+ 2pM −N2).
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From (3.5a,c) we get

(3.7) νN ′ + θ′M ′ = 0.

If the material is hyperelastic and uniform, so that the constitutive func-
tions have one of the pairs of forms

ν̂(N,M) =
∂W ∗

∂N
(N,M), µ̂(N,M) =

∂W ∗

∂M
(N,M),(3.8a,b)

N̂(ν, µ) =
∂W

∂ν
(ν, µ), M̂(ν, µ) =

∂W

∂µ
(ν, µ),(3.9a,b)

then the substitution of (3.8) or (3.9) into (3.7) yields the integral

(3.10)
W ∗(N,M) = b (const.) or

νWν(ν, θ′) + θ′Wµ(ν, θ′) −W (ν, θ′) = b.

Let us substitute our specialization of the constitutive equations (1.30) into
(3.7). The resulting equation says that the vector (M ′, N ′) is orthogonal to
the vector

(
µ̂(N,M), ν̂(N,M)

)
at (M,N). The positivity of ν̂ everywhere,

a consequence of (1.8), implies that
(
µ̂(·, ·), ν̂(·, ·)

)
is nowhere horizontal

on the (M,N)-plane. Thus (M ′, N ′) is nowhere vertical. It follows that
trajectories in the (M,N)-plane satisfying (3.7) and the specialization of
the constitutive equations (1.30) lie on graphs of solutions of the ordinary
differential equation

(3.11)
dN

dM
= − µ̂(N,M)

ν̂(N,M)
=: −κ̂(N,M).

Note that the value of κ̂ is the curvature of r for an unshearable ring.
A specific planar version of the inequality (1.22), which is established in
Sec. 8.6, is just that

(3.12) ν > V (µ) :=
{
h2µ if µ ≥ 0,
h1µ if µ ≤ 0

where h1 and h2 are numbers characterizing the geometry of the cross-
section. We take h1 ≤ 0 ≤ h2. We assume that the constitutive functions ν̂
and µ̂ satisfy (3.12). Then the absolute value of the right-hand side of (3.11)
is bounded by 1/min{|h1|, h2}. (Note that the right-hand side of (3.11)
is just the negative of the curvature of r.) Therefore, the continuation
theory for ordinary differential equations implies that solutions of initial-
value problems for (3.11) are defined for all M . We denote the solution of
(3.11) satisfying the initial condition N = c whenM = 0 byM �→ Ň(M, c).

Under the monotonicity conditions that support (3.10), we find that the Legendre
transform W ∗ of W is convex and can be taken to vanish at (0, 0). But it is not coercive
like W . Consequently its level sets do not form closed orbits. (Such closed orbits would
also be incompatible with the global existence theory for Ň(·, c).) Our existence theory
for (3.11) is equivalent to showing the existence of an integrating factor for (3.7) and
(1.30).
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We now substitute Ň(M, c) into (3.6) to obtain a two-parameter family
of equations for phase-plane trajectories in the (M,M ′)-plane:

(3.13) M ′ = ±ν̂
(
Ň(M, c),M

)√
a+ 2pM − Ň(M, c)2.

In order that (3.13) correspond to an equilibrium state of a ring it must rep-
resent a closed orbit (touching no singular points). Let a+2pM−Ň(M, c)2,
which is a well-defined constitutive function depending on M and the
parameters p, a, c, be positive on an interval of the form (M−(p, a, c),
M+(p, a, c)) and have simple zeros at the end points of this interval. Stan-
dard phase-plane methods imply that there is a one-to-one correspondence
between such intervals and closed orbits for (3.13). Moreover, each such
closed orbit has the property that M−(p, a, c) ≤ M ≤ M+(p, a, c). Let
s �→ M(s; p, a, c) denote a solution of (3.13) corresponding to a closed or-
bit. (The integration of (3.13) would produce another constant of integra-
tion that we can fix by taking M(0; p, a, c) =M−(p, a, c).) For M(·; p, a, c)
to generate a solution of the equilibrium problem for the ring, it must
(i) satisfy (3.4):

(3.14)
∫ 2π

0
µ̂
(
Ň(M(s; p, a, c), c),M(s; p, a, c)

)
ds = 2π,

(ii) have period 2π, and (iii) generate an r with period 2π. Condition (ii)
is equivalent to the statement that there is a positive integer k such that
M(·; p, a, c) has least period 2π/k. Thus s increases from 0 to π/k in the
first transit of (M,M ′) on the upper half of the trajectory corresponding
to (3.13), from which it follows that

(3.15)

π

k
=
∫ M+(p,a,c)

M−(p,a,c)

ds

dM
dM

=
∫ M+(p,a,c)

M−(p,a,c)

dM

ν̂
(
Ň(M, c),M

)√
a+ 2pM − Ň(M, c)2

.

By (1.3) and (1.4), condition (iii) is equivalent to

(3.16a) o = r(2π) − r(0)

=
∫ 2π

0
ν̂
(
Ň(M(s; p, a, c), c),M(s; p, a, c)

)
[cos θ(s)i + sin θ(s)j] ds

where, without loss of generality, we take

(3.16b) θ(s) =
∫ s

0
µ̂
(
Ň(M(ξ; p, a, c), c),M(ξ; p, a, c)

)
dξ.

We do not consider here whether there are equilibrium states of the ring,
i.e., whether there are numbers a and c satisfying (3.14)–(3.16). We merely
determine what every equilibrium state must look like. In this process, we
show that in a certain sense (3.16a) is automatically satisfied, so we do not
have to concern ourselves with it. Our first observation is a summary of
the consequences of the phase-plane analysis of (3.13):
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3.17. Lemma. Let a + 2pM − Ň(M, c)2 be positive on the interval(
M−(p, a, c),M+(p, a, c)

)
and have simple zeros at its end points. Let

s �→ M(s; p, a, c) denote a solution of (3.13) corresponding to a closed
orbit. Then

(3.18) M−(p, a, c) ≤M(s; p, a, c) ≤M+(p, a, c),

the graph of M(·; p, a, c) is symmetric about its points of tangency to the
lines M = M±(p, a, c), the derivative M ′(·; p, a, c) vanishes only on these
lines, and M(·; p, a, c) is monotone between successive contact points with
these lines.

From (3.11) and (3.7) we compute

(3.19a) d
ds κ̂

(
N(s),M(s)

)
=

[µ̂2ν̂N − µ̂ν̂ν̂M − µ̂ν̂µ̂N + ν̂2µ̂M ]
ν̂3 M ′(s)

where the arguments of the constitutive functions on the right-hand side
of (3.19a) are

(
N(s),M(s)

)
. It follows from (1.22) and (1.23) that the

quadratic form in brackets in (3.19a) is everywhere positive. Therefore

(3.19b) κ(·; p, a, c) := κ̂
(
Ň(M(·; p, a, c), c),M(·; p, a, c)

)
and M(·; p, a, c) have extrema at exactly the same points. Thus κ(·; p, a, c)
enjoys properties analogous to those of M(·; p, a, c) in Lemma 3.17.

Let us denote the actual arc length from 0 to s by

(3.20) σ(s) :=
∫ s

0
ν(ξ) dξ

and define 2l = σ(2π). We denote the inverse of σ by s̃ and define

(3.21) κ̃(σ; p, a, c) := κ(s̃(σ); p, a, c).

3.22. Lemma. Let M(·; p, a, c) have least period 2π/k (so that (3.15)
is satisfied ). Then κ̃(·; p, a, c) has least period 2l/k. If s0 is a zero of
M ′(·; p, a, c), then κ̃(·; p, a, c) assumes a maximum or minimum at σ(s0),
is symmetric about this point, and enjoys properties analogous to those of
M(·; p, a, c) in Lemma 3.17.

3.23. Exercise. Prove Lemma 3.22.

We now obtain the following striking result:

3.24. Theorem. Every simple (nonintersecting ) configuration of the ring
must have at least two axes of symmetry.
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Proof. The Four-Vertex Theorem (see Jackson (1944)) asserts that any
simple twice continuously differentiable closed curve r must have at least
four points at which the curvature has a local extremum. It follows from
Lemma 3.22 that κ̃(·; p, a, c) must have least period 2l/k with k ≥ 2. The
symmetry of the shape follows from the symmetry of the curvature. �

The proof of the Four-Vertex Theorem of course relies on the use of
(3.16a). We now prove that Theorem 3.24 implies that (3.16a) holds. This
means that (3.16a) does not further restrict the solutions whose properties
we have extracted from the phase portrait corresponding to (3.13). Setting
θ̃(σ) = θ(s̃(σ)), we can write (3.16a) as

(3.25a,b)
∫ 2l

0
[cos θ̃(σ)i + sin θ̃(σ)j] dσ = o or

∫ 2l

0
eiθ̃(σ) dσ = 0.

We set

(3.26) θ̃(σ) :=
πσ

l
+ ψ̃(σ).

Theorem 3.24 implies that ψ̃ has period 2l/k with k ≥ 2. Thus the left-
hand side of (3.25b) becomes

(3.27)
∫ 2l

0
exp

(
i
πσ

l

)
exp

(
iψ̃(σ)

)
dσ,

which vanishes identically because the two exponentials in (3.27) are or-
thogonal by virtue of their periodicities.

Let us denote by Mk any function that generates a solution of the ring
problem with least period 2π/k. Corresponding to it is the bending strain
µk, which we write as

(3.28) µk = 1 + ζk.

Condition (3.14) implies that the integral of ζk is zero, so that if ζk �= 0,
then

(3.29) min
s
ζk(s) < 0 < max

s
ζk(s).

It follows from our preceding results that ζk has exactly 2k extrema (and
2k zeros) on any half-open interval of length 2π.

3.30. Theorem. Let j and k be unequal positive integers. Let C denote
any connected set of solution pairs (p, ζ) of the ring problem. Suppose C
contains a solution pair (pj , ζj) with ζj having least period 2π/j and an-
other solution pair (pk, ζk) with ζk having least period 2π/k. Then C must
contain a trivial solution pair (for which ζ = 0) and the ζ’s of C can change
their least period only at a trivial solution pair. Indeed, the only solu-
tions that, with their first derivatives, are uniformly near a given nonzero
solution are solutions with the same least period as the given solution.
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We set ‖ζ‖ := max{|ζ(s)| : s ∈ [0, 2π]}. The proof consists in using
elementary calculus to show that

(3.31) ‖ζk‖ ≤
2j‖ζk − ζj‖ + π‖ζ ′

k − ζ ′
j‖

|k − j| .

Proof of (3.31). Assume without loss of generality that ζk(s�) = maxs ζk(s) ≥
maxs ζj(s). Then (3.29) implies that

(3.32a) | max
s

ζk(s) − max
s

ζj(s)| = ζk(s�) − max
s

ζj(s) ≤ ζk(s�) − ζj(s�) ≤ ‖ζk − ζj‖.

Similarly, we obtain

(3.32b) | min
s

ζk(s) − min
s

ζj(s)| ≤ ‖ζk − ζj‖.

Since ζk has the same properties as M(·; p, a, c) in Lemma 3.17, it follows that

(3.33)
∫ 2π

0
|ζ′

k(s)| ds = 2k[max
s

ζk(s) − min
s

ζk(s)].

Thus

(3.34)

π‖ζ′
k − ζ′

j‖ ≥ 1
2

∫ 2π

0
|ζ′

k(s) − ζ′
j(s)| ds

≥ 1
2

∣∣∣∣∫ 2π

0
|ζ′

k(s)| ds −
∫ 2π

0
|ζ′

j(s)| ds

∣∣∣∣
=
∣∣k[max

s
ζk(s) − min

s
ζk] − j[max

s
ζj(s) − min

s
ζj ]
∣∣

= |(k − j)[max
s

ζk(s) − min
s

ζk(s)] + j[max
s

ζk(s) − max
s

ζj(s)]

− j[min
s

ζk(s) − min
s

ζj(s)]|

≥ |k − j|[max
s

ζk(s) − min
s

ζk(s)] − 2j‖ζk − ζj‖,

the last step coming from (3.32). We now use (3.29) to get (3.31). �

It must be emphasized that this result depends critically on consequences
of Lemma 3.22 and is not a property of periodic functions in general. In-
deed, by appropriately perturbing a function with period P one can obtain
functions with least period nP where n is any positive integer. Theorem
3.30 has the following important consequence:

3.35. Corollary. On every connected set (or branch) of solution pairs of
the ring problem not containing a trivial pair, the ζ’s are globally charac-
terized by their least period or, equivalently, by their number of zeros.

Shearable rings. We now sketch the generalization of the preceding theory to shear-
able rings, for which (1.20) reduces to

(3.36a,b,c) N ′ = Hθ′ + pη, H′ = −Nθ′ − pν, M ′ = ηN − νH

(cf. (3.5)), from which we obtain

(3.37a,b) NN ′ + HH′ − pM ′ = 0, νN ′ + ηH′ + µM ′ = 0
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(cf. (3.3) and (3.7)). The integral of (3.37a) is (3.3). If the material is hyperelas-
tic and uniform, with constitutive equations (1.33b), then (3.37b) has the integral
W ∗(N, H, M) = const. We adopt (1.30) with the constitutive functions independent
of s and satisfying the symmetry conditions that ν̂ and µ̂ are even in H and η̂ is odd in
H. We can accordingly represent the constitutive functions of (1.30) by

(3.38)
ν̂(N, H, M) = ν̄(N, Ω, M), η̂(N, H, M) = ω̄(N, Ω, M)H, µ̂(N, H, M) = µ̄(N, Ω, M)

where

(3.39) Ω := 1
2H2.

We substitute the constitutive functions (3.38) into (3.37) to obtain

(3.40a,b) NN ′ +Ω′ −pM ′ = 0, ν̄(N, Ω, M)N ′ + ω̄(N, Ω, M)Ω′ + µ̄(N, Ω, M)M ′ = 0.

Now (3.36c) implies that M ′ can vanish only at a point s0 where either H(s0) = 0 or

(3.41) N(s0)ω̄(N(s0), Ω(s0), M(s0)) = ν̄(N(s0), Ω(s0), M(s0)).

Since the monotonicity condition implies that η̂(N, ·, M) is strictly increasing, it follows
that ω̄ must be everywhere positive and thus (3.41) could hold only for certain positive
N ’s. Condition (3.41) is associated with a shear instability of the sort discussed in the
preceding section. For materials satisfying the constitutive restriction that

(3.42) ν̄(N, Ω, M) > Nω̄(N, Ω, M) everywhere,

we need not bother with (3.41).
Let I be any open interval on the s-axis on which M ′ vanishes nowhere. On I we

can replace (3.40) with

(3.43)
dN

dM
= − pω̄ + µ̄

ν̄ − Nω̄
,

dΩ

dM
=

pν̄ + Nµ̄

ν̄ − Nω̄

where ν̄, ω̄, µ̄ have the arguments shown in (3.40). Since this system possesses the
integral (3.3), solutions of initial-value problems for it can be defined everywhere on
cl I that Ω ≥ 0. We denote the two-parameter family of solutions of (3.43) by M �→
Ň(M, a, c, p), Ω̌(M, a, c, p) (where a is defined by (3.3)).

The substitution of these functions into (3.36c) yields the analog of (3.13):

(3.44) M ′ = ±
√

2Ω̌(M, a, c, p)
[
ω̄
(
Ň(M, a, c, p), Ω̌(M, a, c, p), M

)
Ň(M, a, c, p)

−ν̄
(
Ň(M, a, c, p), Ω̌(M, a, c, p), M

)]
where Ω̌(M, a, c, p) = a + 2pM − Ň(M, a, c, p)2 by (3.3).

Note that the route to (3.44) differs considerably from that to (3.13). The treatment
of curvature is likewise more convoluted: Let φ be the angle between i and r′ so that

(3.45) r′ = |r′|(cos φi + sin φj).

We set

(3.46) φ =: θ + β, so that β := arctan
η

ν
.

(β is the shear angle.) The curvature is φ′/|r′|.
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3.47. Exercise. Suppose that there is no s0 for which (3.41) holds. Then M ′ = 0 if and
only if H = 0, which happens if and only if η = 0. By inserting the constitutive functions
into the formula for the curvature and repeatedly using (3.36), show that the derivative
of the curvature vanishes where M ′ vanishes. Show that the converse need not be true
because the expression playing the role of the bracketed term in (3.19a) typically involves
second derivatives of the constitutive functions and products of the first derivatives.
(Thus, in the absence of further constitutive assumptions, this expression can vanish,
so that the number of relative extrema of the curvature may exceed that of M , and
the Four-Vertex Theorem cannot be invoked as above.) Under suitable constitutive
assumptions, prove an analog of Theorem 3.24 for shearable rings.

We now develop an analog of Theorem 3.24 by a method alternative to that suggested
by Ex. 3.47. We observe that where (3.43) holds, M has properties just like those given
in Lemma 3.17. Thus, without loss of generality, we may assume that M is an even
function of s having a maximum at s = 0 with least period 2π/k. We indicate by a
subscript k any solution of the ring problem corresponding to such an M . By tracing
through the effects of the constitutive functions and the functions Ω̌ and Ň , we find that
we can fix a rigid rotation such that the φk corresponding to Mk has the property that
s �→ φk(s) − s is odd and has period 2π/k. Thus φk(π/k) = π/k. Since we now define σ

and l by (3.20) with ν replaced by |r′| =
√

ν2 + η2, condition (3.16a) now implies that
(3.25) holds with θ̃(σ) replaced with φ̃k(σ) := φk(s̃(σ)). As before, we find that this
condition holds identically if k ≥ 2.

The requirement that the reference configuration be natural implies that

(3.48) µ̄(0, 0, 0) = 1.

Suppose that we provisionally adopt the far more stringent condition that

(3.49) µ̄(N, Ω, 0) = 1 ∀ N, Ω.

(We discuss this condition in Sec. 16.10.) Condition (3.4) says that µk must have mean
value 1. The monotonicity of µ̄(N, Ω, ·) then implies that µk(s) − 1 must have the same
sign as Mk(s). Since Mk has its maximum at s = 0 and has the properties given in
Lemma 3.17, it follows that M ′

k < 0 on (0, π/k). Let us assume that

(3.50) νk(s) − ωk(s)Nk(s) > 0 ∀ s

(cf. (3.42)). Since M ′ can then vanish only where H and therefore η vanish, we conclude
that ηk(0) = 0, so that θk(0) = 0, by (3.6) and by our fixing of a rigid rotation so that
φk(0) = 0. It then follows from (3.4) and the oddness of θk that θk(π/k) = π/k. Then
these conditions imply that

(3.51) θk(s) ≥ s for s ∈ [0, π/k].

(See Fig. 3.52.) Since (3.50) implies that Hk(s), ηk(s), βk(s) each have the sign opposite
to that of M ′

k(s), it follows from (3.46) that

(3.53) φ̃(σ) ≥ πσ

l
for σ ∈ [0, l/k].

We use these observations to prove:

3.54. Theorem. Let (3.49) hold. Any configuration of the ring problem for which
(3.50) holds, for which Ň and Ω̌ are well defined, and for which

(3.55)
πσ

l
≤ φ̃(σ) ≤ 2π − πσ

l
for σ ∈ [0, l/k]

must have at least two axes of symmetry.

Note that (3.55) does not force r to be convex.
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Fig. 3.52. Construction leading to the proof of (3.51). There is a unique
s� in [0, π/2] such that Mk > 0 and µk = θ′

k > 1 for 0 ≤ s < s� and such
that Mk < 0 and µk = θ′

k < 1 for s� < s ≤ π/k. Suppose that the graph
of θk were to fall below the graph of the straight line s �→ s in (0, π/k),
as shown by the dashed line in (c). This could only happen in the interval
(s�, π/k). Since θ′

k < 1 here, it would be impossible for θk to satisfy the
condition that θk(π/k) = π/k.

Proof of Theorem 3.54. Were k to equal 1, then (3.55) would imply that cos φ̃(σ) ≤
cos(πσ/l) for σ ∈ [0, 2l]. Thus the condition that

∫ 2l
0 cos φ̃(σ) dσ = 0 of the modified

form of (3.25) could not hold. �
We can easily generalize this result. All we need to do is to ensure that (3.53)

holds so that (3.55) makes sense. We suspend (3.49), retain (3.48), and incorporate
in the theorem the restriction that the conclusion holds only in the region of solution-
parameter space for which µ − 1 has a single zero s0 on [0, π] with µ − 1 > 0 on [0, s0)
and µ − 1 < 0 on (s0, π].

Dickey & Roseman (1993) pointed out that symmetry theorems like 3.24 and 3.54
do not hold for rings subject to a central force (for which they discovered an interesting
secondary bifurcation), and they adduced this fact as an explanation for experimental
evidence indicating that observed large buckled states may have but one axis of symme-
try. I believe that such an unnatural loading system is inappropriate for explaining the
reduced symmetry observed in experiment. Rather, restrictions on size of solutions such
as that embodied in (3.55), which would presumably be more stringent for more accurate
rod theories, possibly augmented with the results of an analysis of imperfections, seem
quite consistent with the available experimental data.

3.56. Exercise. Use the methods just developed for shearable rings to prove The-
orems 3.24 and 3.30 for unshearable rings with constitutive equations of the form
ν = ν̂(N, H, M), η = 0, µ = µ̂(N, H, M).

In our study of the buckling of shearable arches in Sec. 6.12 we shall use a more
direct approach to obtain analogs of Theorems 3.24 and 3.30. We shall characterize
qualitative properties of solution branches by the number of zeros of H or, equivalently,
of η and for appropriate boundary-value problems we shall show that this number can
change only where H has a double zero. If this happens, the system (3.36), (3.38) has
a critical point (N, H, M) = (N0, 0, M0), corresponding to a trivial circular equilibrium
state, with N0µ̄(N0, 0, M0) = −pν̄(N0, 0, M0). For (3.4) to hold, it is necessary that
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µ̄(N0, 0, M0) = 1. We thus obtain a system of two equations for N0 and M0. The
monotonicity of

(
ν̄(·, 0, ·), µ̄(·, 0, ·)

)
supports a global inverse function theorem to the

effect that this system has a unique solution (N0, M0) if p ≥ 0. A much easier approach
to this conclusion follows from the observation that this system for (N0, M0) is equiv-
alent to N0 = N̂(ν0, 0, 1), M0 = M̂(ν0, 0, 1) where ν0 satisfies N̂(ν0, 0, 1) = −pν0, the
analysis of which has been carried out in Sec. 3.5 (see the comments following the state-
ment of Theorem 3.5.16). This second formulation is easy only because we have already
established the invertibility of our constitutive functions by means of the very global
inverse function theorems that would have enabled us to resolve the original formulation
of the problem for (N0, M0).

The theory for rods under simple hydrostatic pressure was developed by Lévy (1884).
The solution of the equilibrium equations for Bernoulli-Euler rings was expressed in
terms of elliptic functions by Halphen (1884). Tadjbakhsh & Odeh (1967) initiated the
mathematical analysis of the buckling of Bernoulli-Euler rings. The presentation of this
section represents a simplification and generalization of the work of Antman (1970a,
1973b, 1974a) and of Antman & Dunn (1980).

4. Asymptotic Shape of Inflated Rings
We study the equilibrium of nonuniform, noncircular rings under an

internal simple hydrostatic pressure. Our governing equations are (1.3),
(1.4), (3.36) with p replaced by −p, and (1.21). We take s ∈ [−L,L] and
require that

(4.1) θ(L) − θ(−L) = 2π, r(L) = r(−L).

In the natural reference state

(4.2) ν = 1, η = 0, θ = θ◦.

We require that constitutive restrictions (1.23)–(1.28) hold. Let ε be a small
positive parameter. We characterize large deformations of the ring by the
requirement that the area enclosed by r (computed by Green’s Theorem)
be the large number π/ε2:

(4.3) 1
2

∫ L

−L

k · (r × r′) ds =
π

ε2
.

We wish to determine how solutions of this ring problem depend on the
parameter ε. (We require the area, rather than the pressure, to be large,
because there are materials having arbitrarily large circular equilibrium
configurations for bounded internal pressures; see Sec. 3.5.)

For (4.3) to hold, ν, r, and the radius of curvature, which is the reciprocal
of the curvature

(4.4) κ =
θ′

[ν2 + η2]1/2 +
νη′ − ην′

[ν2 + η2]3/2

(cf. (3.46)), must be correspondingly large. We consequently introduce new
variables

(4.5) ν̄ = εν, r̄ = εr, κ̄ = κ/ε.



4.4. ASYMPTOTIC SHAPE OF INFLATED RINGS 121

Motivated by a 3-dimensional interpretation of constitutive equations for
nonlinearly elastic materials under large extension (see Sec. 16.10), we
adopt the scaling

(4.6) N = α(ε)N, εH = α(ε)H, M = α(ε)M

where α is a strictly increasing function defined on an interval of the form
[0, E] with α(0) = 0. (Other scalings are possible; they are treated simi-
larly.) Looking ahead to the role played by p, we adopt the scaling

(4.7) εp̄ = α(ε)p.

Thus our governing differential equations (1.3), (1.4), and (3.36) with p
replaced by −p assume the form

r̄′ = ν̄a + εηb,(4.8)

N
′ = εθ′H − εp̄η,(4.9)

εH
′ = −θ′N + p̄ν̄,(4.10)

M
′ = ηN − ν̄H.(4.11)

They are subject to the side conditions (4.1) and (4.3):

∫ L

−L

θ′(s) ds = 2π,(4.12)

r̄(L) = r̄(−L),(4.13) ∫ L

−L

k · [r̄ × (ν̄a + εηb)] ds = 2π.(4.14)

Note that

(4.15) κ̄ =
θ′

(ν̄2 + ε2η2)1/2 +
ε(ν̄η′ − ην̄′)

(ν̄2 + ε2η2)3/2 .

We say that a sequence of functions {ε �→ αk(ε), k = 0, . . . ,K}, with K
finite or infinite, is an asymptotic sequence iff (i) each αk is continuous on
a common interval of the form [0, E], (ii) each αk is positive on (0, E], and
(iii) αk(ε) = o(αk−1(ε)) as ε→ 0. Let

(4.16) q := (ν̄, η, µ), Q := (N,H,M).

We adopt constitutive equations of the form

(4.17) Q =
K∑

k=0

αk(ε)Qk(q, s) + Q+(αK(ε), q, s)
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where {αk} is a given asymptotic sequence, α0 = 1, Qk := (Nk, Hk,Mk),
Q+(·, q, s) is continuously differentiable, and Q+(αK(ε), q, s) = o(αK(ε))
uniformly for (q, s) in a compact subset of (0,∞)×R

2×[−L,L] (see (3.12)).
There is no loss of generality in using the same αk for each component of
Qk because Qk may have zero components. We assume that distinct mem-
bers of {ε �→ αk(ε), εαk(ε), k = 0, . . . ,K} can be put into an asymptotic
sequence and that any two members of this set that are asymptotically
equivalent are actually equal. We furthermore require that the constitu-
tive functions have as much smoothness in q as required in the analysis.

The behavior of the material for ε small corresponds to very large exten-
sions by virtue of (4.5). We accordingly use a very general representation
for the dependence of the constitutive functions on ε, in place of merely
taking the αk(ε) to be powers of ε, because we have no experimental ev-
idence to guide us and we are not so sanguine as to believe that nature
must accommodate herself to our mathematical convenience.

We assume that

Nk and Mk are even in η, Hk is odd in η,(4.18)

N0
η = 0 =M0

η ,(4.19)

N0(0, µ, s) = 0,(4.20)

N0(ν̄, ν̄, s) → ∞ as ν̄ → ∞,(4.21a)
∂

∂ν̄
N0(ν̄, µ, s) > 0,

∂

∂ν̄
N0(ν̄, ν̄, s) > 0,(4.21b,c)

η �→ ηN0(ν̄, ν̄, s) − ν̄H0(ν̄, η, ν̄, s) is invertible ∀ ν̄ > 0.(4.22)

Condition (4.18) is analogous to the symmetry condition (3.38). Conditions
(4.19) and (4.21) are inspired by 3-dimensional considerations. Condition
(4.20) is a natural concomitant of the asymptotic approach we employ.
Condition (4.22) is a technical requirement like (3.42) that enables us to
avoid dealing with shear instabilities.

We now seek solutions of the ring problem in the form

(4.23) q(s, ε) =
K∑

k=0

βk(ε)qk(s)+o(βK(ε)), p̄(ε) =
K∑

k=0

βk(ε)pk+o(βK(ε))

with the βk forming an asymptotic sequence with β0 = 1. We define

(4.24) θ′k = µk.

We must determine the βk, qk, pk.
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We get the leading terms of (4.23) by substituting it into the governing
equations (4.8)–(4.14) and then letting ε→ 0:

r′
0 = ν0a0 ≡ ν0(cos θ0i + sin θ0j),(4.25)

(N0)′ = 0,(4.26a)

−θ′0N0 + p0ν0 = 0,(4.26b)

(M0)′ = η0N0 − ν0H0,(4.26c) ∫ L

−L

θ′0 ds = 2π,(4.27a) ∫ L

−L

ν0(cos θ0i + sin θ0j) ds = o,(4.27b)

k ·
∫ L

−L

(r0 × r′
0) ds = 2π.(4.27c)

Thus N0 = const. If p0 were to equal 0, then (4.26b) would imply that
either N0 = 0 or θ′0 = 0. But if N0 = 0, then (4.20) and (4.21) would imply
that ν0 = 0, in contradiction to (4.27c). If θ′0 = 0, then (4.27a) would be
violated. Thus p0 �= 0. It then follows from (4.26b) that N0 �= 0 and that
ν0 and θ′0 can vanish nowhere. Hence (4.15) yields the leading term for the
curvature:

(4.28) κ0 =
θ′0
ν0

=
p0
N0 = const.

Thus if there is a solution for the leading term (an issue we soon resolve),
then r0 represents a circle. Indeed, (4.25) and (4.26b) imply that

(4.29) r′
0 =

N0

p0
θ′0a0 = −N

0

p0
b′
0.

By fixing the center of the circle at the origin we obtain from (4.29) that

(4.30) r0 = −N
0

p0
b0.

We now substitute (4.29) and (4.30) into (4.27c) and use (4.27a) to obtain
(N0/p0)2 = 1. Fixing the orientation of r0 so that κ0 > 0, we thus obtain
from (4.26b) that

(4.31a,b,c,d) N0 = p0, θ′0 = ν0, r0 = −b0, κ0 = 1.

We must now find ν0 = µ0, η0, p0 to show that there are solutions. Equa-
tion (4.31b) reduces (4.27a) to

(4.32)
∫ L

−L

ν0 ds = 2π
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and reduces (4.31a) to

(4.33) N0(ν0(s), ν0(s), s) = p0.

Properties (4.21) ensure that if p0 > 0, then (4.33) can be uniquely solved
for ν0(s):

(4.34) ν0(s) = ν�

0(p0, s).

ν�

0(·, s) strictly increases from 0 to ∞ as its argument increases over this
range. Thus the substitution of (4.34) into (4.32) yields an equation that
can be uniquely solved for p0. We then have ν0 from (4.34) and µ0 = ν0
from (4.31b). Condition (4.22) ensures that η0 can be uniquely determined
from (4.26c).

We now study the first-order corrections. We again substitute (4.23) into
(4.8)–(4.14) and use the results about the leading-order terms to obtain

d
ds [β1(ε)(∂N0/∂q) · q1 + α1(ε)N1] = εν0H0 − εp0η0 + · · · ,(4.35)

ε d
dsH

0 = β1(ε)[p0(ν1 − µ1) + ν0(p1 − (∂N0/∂q) · q1)](4.36)

− α1(ε)ν0N1 + · · · ,
d
ds [β1(ε)(∂M0/∂q) · q1 + α1(ε)M1](4.37)

= β1(ε)[η1p0 + η0(∂N0/∂q) · q1 − ν1H0 − ν0(∂H0/∂q) · q1]

+ α1(ε)[η0N1nu0H
1] + · · · ,

0 =
∫ L

−L

µ1(s) ds+ · · · ,(4.38)

0 =
∫ L

−L

[ν0θ1b0 + ν1a0] ds+ · · · ,(4.39)

0 =
∫ L

−L

ν1(s) ds+ · · · ,(4.40)

ν1, η1, µ1 have period 2L.(4.41)

Here (∂N0/∂q) · q1 := N0
ν ν1 + N0

ηη1 + N0
µµ1, etc., the arguments of N0

ν ,
N1, etc., are ν0, η0, µ0, s, and the ellipses represent terms of order higher
than those explicitly exhibited. In obtaining (4.40), it is convenient to use
integration by parts together with (4.31c).

There are two given functions of ε, namely, ε �→ ε, α1(ε), in these equa-
tions. We show that there is essentially only one way to choose the unknown
function β1 so as to obtain ν1, η1, µ1, p1 as nontrivial solutions. Our results
depend on the relative size of ε and α1(ε).
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Case 1. α1(ε) = o(ε). We can eliminate the terms containing α1 from
(4.35) and (4.36). There are three possibilities for β1:

(a) ε = o(β1(ε)). We can drop terms containing ε from (4.35) and (4.36)
and we can drop the terms containing α1 from (4.37). We thus find (in the
limit as ε→ 0) that

(∂N0/∂q) · q1 = c (const.),(4.42a)

p0(ν1 − µ1) + ν0(p1 − (∂N0/∂q) · q1) = 0,(4.42b)

d
ds [(∂M0/∂q) · q1] − [η1p0 + η0(∂N0/∂q) · q1](4.42c)

= −[ν1H0 + ν0(∂H0/∂q) · q1].

Now we integrate (4.42b) over (−L,L) and use (4.38) and (4.40) to obtain
p1 = c. From (4.42b) we then obtain that ν1 = µ1. We now use (4.42a)
and (4.19) to find that µ1 = p1/(N0

ν +N0
µ), which is well-defined by virtue

of (4.21). We substitute this expression into (4.38) to find that p1 = 0,
whence ν1 = µ1 = 0. Equation (4.42c) thus reduces to η1p0 − ν0H0

η = 0, so
that η1 = 0 by virtue of (4.22). Thus our assumption (a) yields only trivial
solutions, in which case there is no justification for the presence of β1 in
(4.23). We accordingly regard assumption (a) as worthless. Now we try

(b) β1(ε) = o(ε). Then we can also drop the terms containing β1 from
(4.35) and (4.36) to obtain ν0H0 = p0η0 and H0 = const. These equations
impose further restrictions on the variables ν0, η0, µ0 already found. It is
very unlikely that these restrictions and any that come from (4.37) would
hold. If they do not, then assumption (b) is invalid. If these conditions
happen to be met, then the visible terms in (4.35)–(4.41) need not consti-
tute all the candidates for lower-order terms. When the missing candidates
are restored, we can analyze the resulting equations by the same process
as we are now carrying out. Our remaining alternative is

(c) β1(ε) = ε. Then (4.35)–(4.37) reduce to

d
ds [(∂N0/∂q) · q1] = ν0H0 − p0η0,(4.43a)

d
dsH

0 = p0(ν1 − µ1) + ν0[p1 − (∂N0/∂q) · q1],(4.43b)

together with (4.42c).
4.44. Exercise. Show how to solve (4.43) and (4.42c) subject to (4.38)–(4.41).

4.45. Exercise. Carry out the analysis for Case 2: α1(ε) = ε and Case 3: ε = o(α1(ε)).

The treatment of higher-order corrections proceeds along the same lines, with a
rapidly growing level of complexity. The approach is analogous to the ideas underlying
the Newton Polygon (see Chow & Hale (1982), Dieudonné (1949), Văınberg & Trenogin
(1969), e.g.). The development of this section is adapted from that of Antman & Calderer
(1985a) with the kind permission of Cambridge University Press. They work out a
concrete example and show that the first-order correction is useful for values of ε as large
as 1

4 . They prove that in the absence of shear instabilities the ring problem has a unique
solution of the form (4.23) under assumptions of the sort we have made above. Their
proof (which requires some minor adjustments) uses the theory of ordinary differential
equations with periodic coefficients to replace the ring problem with an operator equation
that can be analyzed by an implicit function theorem.
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5. Straight Configurations of a Whirling Rod
In this section we study a conceptually simple problem whose solutions

have the rich complexity that comes from the interaction of a nonlinear
constitutive equation with a ‘live’ load. The problem has the attraction
that virtually every standard method of analysis is easily applied and yields
distinctive information.

The end s = 1 of a naturally straight rod of length 1 is welded to the
inside of a rigid ring of radius R so that the rod lies on the ray from the
weld to the center of the ring. (It is mathematically more convenient to
fix the length of the rod rather than the radius of the ring.) We take the
ring to lie in the {i, j}-plane. See Fig. 5.1. The end s = 0 is free. We seek
straight steady configurations of the rod in which the system is rotated at
constant angular velocity ω about the k-axis. (We discuss bifurcation from
such states in Sec. 6.13.)

Fig. 5.1. Reference configurations of the rod attached to large
and small rings.

We accordingly seek constrained motions of the form

(5.2) r(s, t) = r(s)a(t), a(t) := cosωti + sinωtj, b(s, t) = k × a(t)

satisfying the boundary condition

(5.3) r(1) = R.

We assume that the rod is nonlinearly elastic with constitutive functions
satisfying (1.23)–(1.28) and the symmetry conditions (2.9). Consequently,
the contact loads corresponding to (5.2) have the form H = 0 = M , so
that

(5.4) n(s, t) = N(s)a(t).
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We assume that there are no forces applied to the rod except the contact
force at s = 1. In this case, the integral version of the equation of motion
(1.45) (with ρI = 0) reduces to

(5.5) N(s) = −ω2
∫ s

0
(ρA)(ξ)r(ξ) dξ.

The integration of (1.4) subject to (5.3) yields

(5.6) r(s) = R−
∫ 1

s

ν(ξ) dξ.

For simplicity of exposition, we assume that the rod is uniform, define

(5.7) λ := ω2ρA,

and write our nontrivial constitutive equation in one of the equivalent
forms:
(5.8)
N(s) = N̂

(
ν(s)

)
:= N̂

(
ν(s), 0, 0

)
, ν(s) = ν̂

(
N(s)

)
:= ν̂

(
N(s), 0, 0

)
.

Let the constitutive functions N̂ and ν̂ of (5.8) be continuously differen-
tiable. Our boundary-value problem is (5.5)–(5.8). It is clear that if this
problem has a solution with r′ integrable, then r is twice continuously dif-
ferentiable and N is thrice continuously differentiable. Thus this problem
is equivalent to

(5.9a,b,c,d) r′ = ν̂(N), N ′ = −λr, r(1) = R, N(0) = 0

or

(5.10) N ′′ + λν̂(N) = 0, N(0) = 0, N ′(1) = −λR.

We introduce the stored-energy function and its Legendre transform by

(5.11) W (ν) :=
∫ ν

1
N̂(ν̄) dν̄, W ∗(N) :=

∫ N

0
ν̂(N̄) dN̄.

See Fig. 3.3.7 for a sketch of the graph of W ∗.
Before embarking on our mathematical analysis, let us first use physical

intuition to anticipate the kind of solutions we obtain. Suppose first of
all that R ≥ 1 and that the angular velocity of the ring is slowly raised
to a constant value. Then the centrifugal force on the rod would tend
to produce compression everywhere and we would expect there to be a
solution s �→ r(s;λ) with every part of the rod in compression: r′(s;λ) < 1
for each s. Moreover, we expect r′(s, ·) to be decreasing. Now suppose that
R < 1 and that the angular velocity of the ring is slowly raised to a constant
value. In this case, the centrifugal force would tend to produce compression
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on part of the rod (at least for angular velocities that are not too large)
and produce tension on the remainder. It may happen that the material in
tension is incapable of resisting the centrifugal force, whose intensity per
unit natural length is proportional to the distance of the material point
from the center of the ring. In this case, there would be no steady solution.
For small enough ω, we expect there to be a steady state in this case, but for
large ω, there could be no solution or any number of solutions, depending
on the parameters and the material properties.

If R < 1, or even if R < 1
2 , it should be possible to produce a solution

for which the rod is everywhere in compression by the artificial process
of compressing it to the desired deformed length and then spinning the
ring so rapidly that centrifugal force can maintain the rod in compression.
Conversely, if R > 1, it might be possible to have configurations with
deformed length exceeding 2R when the spin is sufficiently rapid and the
material is sufficiently strong in resisting tension.

Before studying the existence of solutions, we first study their qualitative
behavior because it suggest ways to handle existence questions effectively.
System (5.9) has the integral

(5.12) λr2 + 2W ∗(N) = 2c := λr(0)2 = λR2 + 2W ∗(N(1)),

which describes the trajectories of the phase portrait of (5.9), sketched
in Fig. 5.13. Only those trajectories intersecting the nonnegative N -axis
are consistent with the requirement that c ≥ 0, coming from (5.12). This
figure implies that there could be three kinds of solutions: (i) those with
N everywhere ≤ 0, (ii) those with N positive on an open interval with
endpoint s = 0 and negative on an open interval with endpoint s = 1, these
intervals having a common endpoint, and (iii) those withN everywhere ≥ 0.
Note that Fig. 5.13 implies that N is symmetric about the point lying over
the center of the ring.

We now prove a collection of theorems ensuring the existence of solutions
of various types to our boundary-value problem for various ranges of the
parameters λ and R.

5.14. Theorem. Let R > 0 be arbitrary. Then (5.9) has a solution if λ
is sufficiently small (its size depending on R).

Proof. We use the Poincaré shooting method, introduced in Sec. 2.9. We
consider the initial-value problem consisting of (5.9a,b,d) and the auxiliary
initial condition

(5.15) r(0) = R− 1 + α.

For α = 0 = λ, this problem has the unique solution defined by N(s) =
0 and r(s) = s + R − 1. Standard results from the theory of ordinary
differential equations imply that this initial-value problem has a unique
solution, which we denote by

(
r(·;α, λ,R), N(·;α, λ,R)

)
, if |α| and λ are
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N r R=

r

Fig. 5.13. Phase portrait of (5.9). Solutions correspond to tra-
jectories that must start on the line N = 0, terminate on the
line r = R, and use up exactly one unit of independent variable
s in making the transition.

small enough. This solution is a solution of the boundary-value problem
(5.9) if α can be chosen so that

(5.16) F (α, λ,R) := r(1;α, λ,R) −R = 0.

We know that F (0, 0, R) = 0 and that F is differentiable (by the basic
theory of ordinary differential equations). The Implicit-Function Theorem
implies that we can find an α satisfying (5.16) for small λ if Fα(0, 0, R) �=
0. To compute Fα(0, 0, R), we first determine

(
rα(·; 0, 0, R), Nα(·; 0, 0, R)

)
,

which satisfies

(5.17)
r′α(s; 0, 0, R) = ν̂N (0)Nα(s; 0, 0, R), N ′

α(s; 0, 0, R) = 0,

Nα(0; 0, 0, R) = 0, rα(0; 0, 0, R) = 1,

from which we find Fα(0, 0, R) = rα(1; 0, 0, R) = 1. �
5.18. Exercise. Let α�(λ, R) denote the (small) solution of (5.16) for small λ. Then
the solution of (5.9) is

(
r(·; α�(λ, R), λ, R), N(·; α�(λ, R), λ, R)

)
. Formulate and solve

the problem for (∂/∂λ)(r(·; α�(λ, R), λ, R), N(·; α�(λ, R), λ, R)
)
|λ=0 and give a physical

interpretation of the solution.

We now find conditions on R so that for all λ there is a completely com-
pressed configuration corresponding to a trajectory of Fig. 5.13 that starts
on the positive r-axis. We apply the shooting method, in a global way, re-
placing the initial-value problem (5.9a,b,d) and (5.15) with the equivalent
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integral equations:

(5.19) N(s) = −λ
∫ s

0
r(ξ) dξ, r(s) = R− 1 + α+

∫ s

0
ν̂(N(ξ)) dξ.

We denote solutions as before. The integral (5.12) ensures that the solution
is defined on the entire interval [0, 1] for any choice of parameters. We seek
an α so that (5.9c) holds, i.e., so that

(5.20) α+
∫ 1

0
ν̂
(
N(s;α, λ,R)

)
ds = 1.

From (5.19) we obtain

R− 1 + α ≤ r(s;α, λ,R) ≤ R− 1 + α+
∫ 1

0
ν̂(N(s)) ds,

(5.21)

−λ
[
R− 1 + α+

∫ 1

0
ν̂(N(s)) ds

]
≤ N(s;α, λ,R) ≤ −λ(R− 1 + α)s.

Thus the monotonicity of ν̂ implies that

(5.22)
α ≤ α+

∫ 1

0
ν̂

(
−λ

[
R− 1 + α+

∫ 1

0
ν̂(N(ξ)) dξ

])
ds

≤ α+
∫ 1

0
ν̂
(
N(s;α, λ,R)

)
ds ≤ α+

∫ 1

0
ν̂
(
−λ(R− 1 + α)s

)
ds.

If R ≥ 1 and if α = 0, then the rightmost expression of (5.22) is < 1.
If R ≥ 1 and if α approaches ∞, then the leftmost expression of (5.22)
approaches ∞. It follows from the Intermediate Value Theorem that (5.20)
has a positive solution α�(λ,R).
5.23. Exercise. Show that the solution just described satisfies

(5.24) −λRs < N(s; α�(λ, R), λ, R) < λ(−Rs + s − s2/2), N ′(s; α�(λ, R), λ, R) < 0.

Thus the solution corresponds to a configuration that is everywhere in compression.

We have just proved

5.25. Theorem. If R ≥ 1, then for each λ ≥ 0, problem (5.9) has a
solution satisfying (5.24).

Alternative proof of Theorem 5.25. Let

(5.26) K := {(r, N) ∈ C0[0, 1] : 0 ≤ r(s) ≤ R, −λRs ≤ N(s) ≤ 0}.

We represent (5.5), (5.6), and (5.8) in the form

(5.27) (r, N) = f [r, N, λ, R]

where f [·, ·, λ, R] is a compact and continuous mapping taking the closed convex subset
K of the Banach space C0[0, 1] into itself. The Schauder Fixed-Point Theorem 21.3.17
implies that (5.27) has a fixed point in K, i.e., that (5.5), (5.6), (5.8) have a solution
meeting the restrictions defining K. �

Though moderately sophisticated, the Schauder Fixed-Point Theorem is easy to ap-
ply and can lead to sharp results. We now use it to show that a completely compressed
solution exists for any R provided that λ is large enough:
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5.28. Theorem. Let R and A be given with 0 < A < R. Then for sufficiently large λ,
problem (5.10) has a solution N satisfying

(5.29) −λRs < N(s) < −λAs and N ′(s) < 0 for s > 0.

5.30. Exercise. Let Y = N/λ. Prove that (5.10) is equivalent to the integral equation:

(5.31) Y (s) = −Rs +
∫ 1

0
min(s, ξ)ν̂

(
λY (ξ)

)
dξ =: T [Y, λ, R](s).

Proof of Theorem 5.28. Since

(5.32) −Rs ≤ T [Y, λ, R](s) ≤ −Rs + s

∫ 1

0
ν̂
(
λY (ξ)

)
dξ,

we immediately see that we can take λ so large that T [·, λ, R] is a compact and continuous
mapping taking the closed convex subset {Y ∈ C0[0, 1] : −Rs ≤ Y (s) ≤ −As} of the
Banach space C0 into itself. The conclusion of the theorem follows immediately from
the Schauder Fixed-Point Theorem. �

5.33. Exercise. Use a similar approach to treat states that are not necessarily com-
pressive. Prove:

5.34. Theorem. Suppose that either (i) λ is so small that the algebraic equation
2N = λν̂(N) has a (necessarily positive) solution N , or (ii) λ is so small and R is so
large that the algebraic equation N = λ[ν̂(N) − R] has a solution N . (If there are
numbers α ≤ 1 and K > 0 such that ν̂(N) ≤ K(Nα + 1), then each of these equations
has a solution for all λ and R.) Let C denote the smallest solution of either of these
equations. Then (5.10) has a solution satisfying

(5.35) −λRs ≤ N(s) ≤ λ[−Rs + ν̂(C)(s − s2/2)].

Let us denote any compressive solution of (5.10) by N(·, λ, R). Thus N(s, λ, R) < 0
for s > 0. We now give a criterion ensuring that N(s, λ, R) decreases as λ increases:

5.36. Theorem. Let
(
r(·, λ, R), N(·, λ, R)

)
be a solution of (5.5), (5.6), (5.8) for which

there are a nonnegative number λ0 and a continuous function g : [0, 1] → R with
g(0) = 0, g(s) > 0 for s > 0 such that

(5.37) −λR < N(s, λ, R) < −λg(s) and Ns(s, λ, R) > 0 for s > 0, λ ≥ λ0.

(This condition is ensured by the various existence theorems described above.) Let ν̂
satisfy

(5.38) Nν̂N (N) → 0 as N → −∞.

Then for λ sufficiently large, Nλ(·, λ, R) exists and satisfies

(5.39) Nλ(s, λ, R) < 0 for s ∈ (0, 1].

Proof. By hypothesis, problem (5.5)–(5.8) has a solution. The Implicit-Function The-
orem 20.1.27 (in Banach space) implies that Nλ(·, λ, R) exists if the only solution of the
linearization

(5.40)
N�(s) = −λ

∫ s

0
r�(ξ) dξ,

r�(s) = −
∫ 1

s
ν̂N

(
N(ξ, λ, R)

)
N�(ξ, λ, R) dξ
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is the trivial solution (r�, N�) = (0, 0). Problem (5.40) is equivalent to the boundary-
value problem

(5.41) N ′
� = −λr�, r′

� = ν̂N

(
N(s, λ, R)

)
N�, N�(0) = 0, r�(1) = 0.

(We adopt the convention that N� = N�, etc.) Let us make the Prüfer transformation

(5.42) r� = σ cos ψ, N� = λσ sin ψ,

which converts (5.41) to

(5.43)

σ′ = σ[−1 + λν̂N

(
N(s, λ, R)

)
] cos ψ sin ψ,

ψ′ = −[cos2 ψ + λν̂N

(
N(s, λ, R)

)
sin2 ψ],

ψ(0) = 0, ψ(1) = − π
2 (mod π).

A nontrivial solution of (5.43) (for which σ 
= 0) satisfies

(5.44) π
2 (mod π) =

∫ 1

0
[cos2 ψ + λν̂N (N) sin2 ψ] ds ≤ 1 +

∫ 1

0
λν̂N (N) sin2 ψ ds.

Conditions (5.37) and (5.38) ensure that (5.44) cannot hold for λ sufficiently large. Thus
Y := Nλ(·, λ, R) exists and satisfies

(5.45) Y (s) = −Rs +
∫ s

0

∫ 1

ξ
[ν̂
(
N(σ)

)
+ λν̂N

(
N(σ, λ, R)

)
Y (σ)] dσ dξ.

Conditions (5.37) and (5.38) imply that for arbitrary ε > 0 we can find a λ1 > 0 and a
k > 0 such that

(5.46) Y (s) ≤ −ks + ε

∫ s

0

∫ 1

ξ
Y (σ) dσ dξ

for λ ≥ λ1. Thus

(5.47) U(s) :=
∫ s

0

∫ 1

ξ
Y (σ) dσ dξ

satisfies the differential inequality

(5.48a,b,c) U ′′ + εU ≥ ks ≥ 0, U(0) = 0, U ′(1) = 0.

It is not hard to show that if 2 > 2δ > ε, then (5.48) implies that s �→ U(s)[1 − δs2]−1

has its maximum at s = 0, which (5.47) implies is 0. It then follows from (5.46) that

(5.49) Y (s) ≡ Nλ(s, λ, R) ≤ −ks,

a result stronger than (5.39). �
5.50. Exercise. Prove that U ≤ 0 by showing that (5.48a) prevents s �→ U(s)[1−δs2]−1

from having an interior maximum on (0, 1) and then showing that (5.48c) and (5.48a)
prevent this function from having a maximum at s = 1. (This result is an ad hoc
application of the Maximum Principle. For the general theory, see Protter & Weinberger
(1967), especially Theorems 1.3–1.5.)

We can supplement the qualitative information given by Theorem 5.36 with an exis-
tence and uniqueness theorem:

5.51. Theorem. For λ sufficiently large, there is exactly one solution of (5.5), (5.6),
(5.8) satisfying the hypotheses of Theorem 5.36.

5.52. Exercise. Prove Theorem 5.51 by showing that the Mean-Value Theorem implies
that the difference of two solutions satisfies a system like (5.41). Then follow the proof
of Theorem 5.36.

Theorems 5.14 and 5.34 are the only results developed so far for the tricky case of
solutions whose deformed length exceeds 2R. Theorems 7.6.12 and 7.6.19, which rely
on the calculus of variations, apply to this case.

The results of this section are adapted from the work of Antman & Nachman (1980,
Sec. 7) (with kind permission from Elsevier Science Ltd., The Boulevard, Langford
Lane, Kidlington OX5 1GB, UK). For further developments in this direction, see Burton
(1986).
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6. Simultaneous Whirling and
Breathing Oscillations of a Ring

We extend the results of Sec. 3.10 to the simultaneous whirling and
breathing of rings. We assume that the ring is elastic and uniform with
constitutive equations given by (1.21), that ρI = 0, that there are no
external loads, and the symmetry condition (2.9) holds.

Let us begin by attempting to find solutions in which r(·, t) is a circle for
each t and b(s, t) is everywhere perpendicular to rs(s, t). We accordingly
take

(6.1)
θ(s, t) = s+ ψ(t),

r(s, t) = −ν(t)b(s, t) = −ν(t)[− sin(s+ ψ(t))i + cos(s+ ψ(t))j]

where the functions ψ and ν are to be determined.

6.2. Exercise. Prove that the substitution of (6.1) into the equations of motion (1.45),
(1.46) shows that the only solutions of the form (6.1) either have ψ constant, in which
case there is no whirling, or have ν constant, in which case there is no breathing. More
generally, show that this same conclusion holds for any material response causing H to
vanish when (6.1) holds, and holds for any unshearable material when the requirement
that H = 0 is added to (6.1). (Here H plays the role of the Lagrange multiplier main-
taining the unshearability.) Give a physical explanation of why these results should not
be surprising.

In view of this negative result, we weaken (6.1) by seeking a solution of
the more general form

(6.3)

θ(s, t) = s+ ψ(t),

r(s, t) = η(t)[cos(s+ ψ(t))i + sin(s+ ψ(t))j]

− ν(t)[− sin(s+ ψ(t))i + cos(s+ ψ(t))j]

where the functions ψ, ν, η are to be determined.

6.4. Exercise. Find the equations of motion governing ψ, ν, η when (6.3) holds. Show
(for any constitutive equations) that angular momentum is conserved for such motions:

(6.5) [ρA(ν2 + η2) + ρJ ]ψt + ρA(νηt − νtη) = const.

For hyperelastic materials, show that energy is conserved for such motions:

(6.6) 1
2ρA[(νt − ηψt)2 + (ηt + νψt)2] + 1

2ρJψt
2 + W (ν, η, 1) = const.

6.7. Exercise. Carry out Ex. 6.4 for an unshearable ring, in which case η is constrained
to be 0 (so that (6.3) reduces to (6.1)). Note that H is now an unknown of the problem
(which, in view of Ex. 6.2, cannot be taken to be 0).

For generalizations and analyses of these problems, see Ex. 16.10.36. (This section
is based on Antman (2001).)
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7. Bibliographical Notes
We shall discuss planar buckling problems for rods in Chap. 6 and variational treat-

ments of problems for rods in Chap. 7. There are several works devoted to the treatment
of large displacements for the elastica, often by the use of elliptic functions. They in-
clude Born (1906), Frisch-Fay (1962), Funk (1970), Ilyukhin (1979), Love (1927), Nikolai
(1955), Popov (1948), and Saalschütz (1880). These books contain extensive bibliogra-
phies. For more recent work, showing the richness of the elastica theory, see Domokos
& Holmes (1993a,b), Domokos, Holmes, & Royce (1997), Stuart (2002).

Nonlinear constitutive equations seem to have been first considered in practical ap-
plications by Haringx (1942, 1948–1949).

Truesdell (1954) solved the design problem of determining the reference shape of an
elastica in order that it have a prescribed shape under a specific loading. To outline
his work in a slightly more general setting, suppose that the rod is inextensible and
unshearable and that its constitutive equation is M(s) = M∗

(
θ′(s), θ′◦(s)

)
where θ′◦(s)

is the reference curvature. For given f (possibly configuration-dependent) and θ, the
equilibrium equations reduce to a degenerately simple ordinary differential equation for
θ◦. Truesdell analyzed this equation when M∗ is linear in θ′(s) − θ′◦. In Chap. 16, we
show how the constitutive equations depend on the reference configuration.



CHAPTER 5

Introduction to Bifurcation Theory
and its Applications to Elasticity

1. The Simplest Buckling Problem
If a naturally straight thin rod, such as a plastic or metal ruler, is sub-

jected to a small compressive thrust applied to its ends, it remains straight.
If the thrust is slowly increased beyond a certain critical value, called the
buckling load , the rod assumes a configuration, called a buckled state, that
is not straight. See Fig. 1.1. This process is called buckling. Depending
on the precise mode of loading and the nature of the rod, the transition
to a buckled state can be very rapid. If the thrust is further increased,
the deflection of the rod from its straight state is likewise increased. If
this entire process is repeated, the rod may well buckle into another con-
figuration such as the reflection of the first through a plane of symmetry.
The performance of a whole series of such experiments on different rods
would lead to the observation that the buckling loads and the nature of
buckled states depend upon the material and shape of the rod and upon
the manner in which it is supported at its ends. It can also be observed
that the results of experiments are highly sensitive to slight deviations of
the rod from perfect straightness or of the thrust from perfect symmetry.
The study of buckling for different bodies is one of the richest sources of
important problems in nonlinear solid mechanics.

An important aspect of the example we have just described is that there
are multiple equilibrium states, among which is an unbuckled or trivial
state in which the rod remains straight. This state is not readily observed
when the thrust exceeds the buckling load because it is unstable. Rather
than inferring its existence from our intuitive notions of symmetry, we shall
prove its existence for all thrusts in the mathematical models we adopt to
describe buckling. Nevertheless, a simple experiment makes plausible the
existence of an unbuckled state for all thrusts: We introduce restraints
preventing the lateral deflection of the rod at a certain height (see Fig. 1.2)
and observe that the rod does not buckle for a range of thrusts exceeding
the buckling load. The lateral constraints apply no net force to the rod
in its observed straight state, for if so, the contact couple exerted by one
segment of the rod on an adjacent segment would not be zero and bending
would result. (See Chap. 4.)

In many experiments, the rod can exhibit dynamic effects. There are
challenging mathematical difficulties in accounting correctly for these ef-

135
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λ λ

(a) (b) (c) (d)

Fig. 1.1. Buckling of a naturally straight rod. (a) The natu-
ral state of a rod whose lower end is welded to a rigid foun-
dation and whose upper end is free. (b) A buckled state of
this rod, which occurs when a sufficiently large thrust λ is ap-
plied to the upper end. In this case, the base applies a reactive
force equal and opposite to the thrust applied at the upper end.
(c), (d) Analogous states for a rod whose upper end is hinged in
such a way that it is constrained to remain directly above the
lower end.

fects. Fortunately, we can get good insights into many buckling processes
by studying the multiplicity and stability of equilibrium states. From these,
we can often infer useful information about the dynamical processes taking
the structure from one equilibrium state to another. We comment briefly
on this issue in Sec. 7.

The simplest model for describing the planar buckling of a rod is the
elastica, described in Sec. 4.1. Suppose that its reference configuration is
defined by

(1.3) r◦(s) = si, s ∈ [0, 1], a◦ = i so that θ◦ = 0.

We assume that the end s = 0 is welded to a rigid wall perpendicular to
the i-axis at the origin o and that the end s = 1 is free of geometrical
restraint and is subject to a compressive thrust of magnitude λ acting in
the −i-direction. (This is the situation illustrated in Fig. 1.1b.) Then the
boundary conditions are

(1.4a,b,c,d) r(0) = o, θ(0) = 0, n(1) = −λi, M(1) = 0.

We assume that no body force or couple is applied to the rod. Then the
integral form of the equilibrium equations, corresponding to (4.1.32) and
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λ

Fig. 1.2. A device that raises the effective buckling load.

to (4.2.7b) with γ = θ, reduce to
(1.5a,b)

θ(s) =
∫ s

0

M(ξ)
(EI)(ξ)

dξ, M(s) = k ·
∫ 1

s

rs(ξ) × n(ξ) dξ = λ
∫ 1

s

sin θ(ξ) dξ.

We assume for simplicity that EI is continuous and everywhere positive.
(Were EI to vanish at an end, then our differential equation would be
singular. Methods for treating singular problems are discussed in Chap.
6.) Eqs. (1.5) represent a pair of integral equations for (θ,M) depending
on the parameter λ. To each solution of this system there corresponds
an r, which is the solution of the initial-value problem consisting of the
differential equation r′ = cos θi + sin θj (the specialization of (4.1.4)) and
the initial condition (1.4a). By taking limits in (1.5) and by differentiating
this system, we can reduce it to the familiar boundary-value problem

(1.6a,b,c) d
ds [(EI(s))θ′(s)] + λ sin θ(s) = 0, θ(0) = 0, θ′(1) = 0.

For EI = const., the solution of (1.6) can be found in terms of elliptic
functions (see Reiss (1969), e.g.). Nevertheless, even when EI = const., we
prefer to use (1.5), which directly accounts for the boundary conditions,
directly captures the underlying mechanics, and allows us to seek solutions
in a class of functions larger than those for which (1.6) is meaningful.
1.7. Exercise. Convert (1.6) to the alternative integral equation

(1.8) θ(s) = λ

∫ 1

0
G(s, ξ) sin θ(ξ) dξ where G(s, ξ) :=

⎧⎨⎩
∫ ξ
0

dσ
(EI)(σ) for ξ ≤ s,∫ s

0
dσ

(EI)(σ) for s ≤ ξ
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by substituting (1.5b) into (1.5a). G is the Green function for the differential operator
θ �→ − d

ds
[EIθ′] subject to (1.6b,c). This result can also be obtained from (1.6) by using

distribution theory (see Stakgold (1998)). Suppose that (1.6c) is replaced with θ(1) = 0.
Find the corresponding Green function.

Let us represent problem (1.5) symbolically by

(1.9) f[λ, u] = o

where u stands for the pair (θ,M). We thus regard u as a pair of con-
tinuous functions and regard f as an operator taking such pairs into pairs
of continuous functions. We could equivalently represent (1.6) and the
integral equation of Ex. 1.7 in the abstract form (1.9) by making differ-
ent identifications. Indeed, we regard (1.9) as the abstract form for all
parameter-dependent problems.

We assume that the problem (1.9) has enough symmetry that a family
of ‘trivial’ solutions can be readily identified for all values of λ and that the
variable u is so chosen that all these trivial solutions can be characterized
by the equation u = o. Thus the operator f must have the property that

(1.10) f[λ, o] = o ∀ λ.

Property (1.10) is certainly enjoyed by (1.5).

As we shall see, there are cases in which it is not immediately obvious how to for-
mulate (1.9) so that it satisfies (1.10). For example, consider the planar buckling of an
extensible rod. Then the trivial solution, which corresponds to an unbuckled state, is
defined by an expression of the form r(s) = r(s, λ)i. If the rod is not uniform, then the
existence of r must be demonstrated by an argument like that of Sec. 2.6. For more
complicated problems, the proof of the existence of a family of trivial solutions may
require a far deeper analysis. In fact, there need not be a unique trivial solution for each
value of the parameter λ. Suppose that the governing equations for the buckling of this
extensible rod have the symbolic form

(1.11) g[λ, r] = o with g[λ, ri] = o.

To put (1.11) into the form (1.9) satisfying (1.10), we set

(1.12) u := r − r(·, λ)i, f [λ, u] := g[λ, r(·, λ)i + u].

Thus we need only study bifurcation problems for which (1.10) holds, realizing, however,
that the reduction to the form (1.9) may be far easier in principle than in practice.

We can now represent solutions of (1.9) by the simple device of a bi-
furcation diagram. Let any (λ, u) satisfying (1.9) be called a solution pair.
(Of course, u itself might represent a pair of functions as in (1.5).) Since
u represents a function, it lies in an infinite-dimensional space. Therefore
plotting the solution pairs in (λ, u)-space is impossible. Instead, we let ϕ
be some convenient real-valued function of u, e.g., an amplitude, and plot
all points (λ, ϕ(u)) in R

2 corresponding to solution pairs (λ, u). For our
example, we could take ϕ(u) to be M(0) or θ(1). In Fig. 1.13 we sketch
such a bifurcation diagram, obtained in Sec. 5, for our example problem.
The diagram can be constructed explicitly if EI is constant; see Ex. 1.14.
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We follow the mathematical convention of taking the parameter axis to be
the abscissa. (Engineers usually take it to be the ordinate.) We label the
ordinate u instead of ϕ(u) because we choose to interpret this figure as a
schematic diagram of all solution pairs in the space of (λ, u). The points on
the λ-axis represent solution pairs by virtue of (1.10). This axis is called
the trivial branch of solution pairs. A branch of solution pairs is any con-
nected set of them. For our example, the other branches, termed nontrivial,
correspond to buckled states of the rod. In Fig. 1.13 we see that there are
at least three solution pairs when λ0

1 < λ < λ
0
2, at least five solution pairs

when λ0
2 < λ < λ

0
3, etc. We shall see that the numbers λ0

1, λ
0
2, . . . are the

eigenvalues of the linearization of (1.5) about the trivial branch. For our
simple model of an elastic structure, there are a countable infinity of such
eigenvalues.

(λ1
0 )0

u

λ
, (λ2

0 )0, (λ3
0 )0,

Fig. 1.13. Bifurcation diagram for (1.5) or (1.6) corresponding
to the buckling process of Fig. 1.1b.

1.14. Exercise. Use elliptic functions to construct explicitly a bifurcation diagram
for (1.6) when EI is constant. In particular, let α = θ(1) and plot sin(α/2) vs. λ. (A
detailed treatment of (1.6) subject to different boundary conditions was carried out by
Reiss (1969). Also see Love (1927, Secs. 262, 263) and Frisch-Fay (1962).)

The word bifurcation (from the Latin furca for fork) describes the local
appearance of Fig. 1.13 near (λ0

k, o). We shall give a formal mathematical
definition of bifurcation in Sec. 3. The interpretation of a bifurcation di-
agram such as Fig. 1.13 should actually be done with care. The diagram
is just a 2-dimensional projection of an infinite-dimensional figure, so that
there may be fewer connections and more branches than it shows. We shall
find that many of the bifurcation diagrams to be encountered below have a
far richer structure than that of Fig. 1.13. This figure gives no information
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λ

u

(λ1
0 )0,

(λ2
0 )0,

(λ3
0 )0,

Fig. 1.15. One possible bifurcation diagram corresponding to an
imperfect form of Fig. 1.13. In this case, some number slightly
less than λ0

1 may be regarded as an effective buckling load be-
cause the most pronounced deviation from straightness shows
up when such a value of thrust is reached. See Fig. 6.9.33 for a
different ‘unfolding’ of Fig. 1.13.

on which of several possible configurations would be occupied by the body
of Fig. 1.b for a given λ, i.e., it says nothing about the stability of these
multiple configurations. Neither does Fig. 1.13 say anything about the dy-
namical process by which the rod moves from one configuration to another.
In the engineering literature there are certain accepted ways of interpreting
the stability and dynamics of the rod from a bifurcation diagram, which we
discuss below. Much, but not all, of this doctrine can be mathematically
justified.

If the rod in Fig. 1.1 is not perfectly straight or if the thrust is applied
eccentrically, then the bifurcation diagram of Fig. 1.13 does not apply.
Suppose that we introduce a small parameter ε accounting for the lack of
straightness. In particular, let us interpret ε as a magnitude of the curva-
ture of the natural reference state. If ε is small and if there are no other
such imperfections, then the bifurcation diagram might assume the form
of Fig. 1.15. Such a result is somewhat unsatisfactory, because there are
many conceivable kinds of imperfections that are physically reasonable.
The mathematical study of the effects of many imperfection parameters
(such as ε) would seem to be prohibitively complicated. On the other
hand, the very imperfections that one might wish to ignore in order to
avoid mathematical complications might give rise to dangerous instabili-
ties not evident in such innocuous diagrams as Fig. 1.15. Fortunately, it is
possible to use the recently created subject of singularity theory (see Gol-
ubitsky & Schaeffer (1985)) to determine precisely how many imperfection
parameters are needed to describe ‘nearly’ all possible local responses to
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any system of imperfections. (In many respects, the development of singu-
larity theory consists in the complicated unification of elementary concepts.
The theory nevertheless is easy to apply.) We describe applications of it
in Sec. 6.6. There we show that there can be imperfections producing
bifurcation diagrams qualitatively different from Fig. 1.15.

2. Classical Buckling Problems of Elasticity
We now briefly describe some of the classical buckling problems of elas-

ticity, many of which have features that are far from being completely
understood. For generality, in this section we regard a rod as a slender
3-dimensional body. For brevity of exposition we assume that the refer-
ence configuration of the rod has a curve of centroids. We denote a typical
configuration of this curve by r. We likewise regard a shell as a thin
3-dimensional body. (See Chap. 10 for an introduction to the theory of
shells.)

The planar buckling problem described in Sec. 1 was given its first de-
finitive treatment by Euler (1744). The terminal thrust causing the buck-
ling can be either replaced by or supplemented by the rod’s weight. Euler
(1780a,b,c) posed and solved the problem of determining the critical height
at which a uniform rod buckles under its own weight (see Truesdell (1960)).

The interesting version of Euler’s buckling problem in which the end
thrust is required to remain tangent to the deformed r was first studied by
Beck (1952). For this problem, the only compressed equilibrium states are
straight, but the rod buckles by going into motion.

Far richer variants of these problems arise when r is allowed to deform
into a space curve. In this case, one can also study the effects of a terminal
couple acting in concert with the terminal thrust and the weight. The
nature of the equilibrium states depends crucially on the precise way the
boundary conditions are maintained. The study of such problems was
initiated by Greenhill (1883). If the rod is uniform, then this problem has
three buckling parameters: the thrust, a suitable component of the applied
couple, and the constant mass density per unit natural length. This last
parameter can be replaced by the length of the rod. The abstract version
of this problem is obtained by replacing the real parameter λ of (1.9) by a
triple λ of real parameters.

If the rod is not uniform, then the effect of the weight depends upon the
mass distribution ρA along the rod’s length. In this case the ‘parameter’
ρA is a function and therefore belongs to an infinite-dimensional space of
functions (e.g., the space of continuous functions or the space of bounded
measurable functions). In the optimal design of rods against buckling, the
cross section is varied along the length to maximize the ‘minimum buckling
load’.

In a related problem, also first studied by Greenhill (1883), one end
of a straight (heavy) rod is welded to a rigid horizontal plane rotating
at constant angular velocity ω about the vertical axis that coincides with
the trivial configuration of r. See Fig. 2.1. For this problem the straight
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ω

Fig. 2.1. Buckling of a whirling rod.

(a)

ω ω

(b)

Fig. 2.2. Buckled states of a rod welded to a rotating rigid ring.
In (a) the rod buckles out of the plane of the ring and in (b) it
buckles in the plane of the ring.

configuration is destabilized by the centrifugal force, and steadily rotating
buckled states are observed. (This problem differs from that in which a
naturally straight rod with a circular cross section, with one end welded
to a fixed rigid horizontal plane, executes steady nontrivial rotations about
the vertical; see Healey (1992).) A degenerate version of these problems for
rotating rods, having a particularly beautiful analysis, is obtained by re-
placing the rod with an elastic string. (This is the first bifurcation problem
to be analyzed in the next chapter.) In another class of buckling problems
for whirling rods (which cannot be regarded as classical), one end of the
rod is welded to the inside of a rigid ring rotating with constant angular
velocity about the line perpendicular to the plane of the ring and passing
through its center. See Fig. 2.2. The analyses carried out in Secs. 4.5 and
7.6 show that the set of trivial configurations is very rich, depending cru-
cially on both the angular velocity and on the ratio of the natural length
of the rod to the radius of the ring.

Now consider a rod with a plane of symmetry in its reference config-
uration that is subjected to a system of forces having the same plane of
symmetry and a system of couples acting about axes perpendicular to this
plane. The reference configuration of the rod need not be straight. The
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Fig. 2.3. Lateral buckling of a beam. The vertical plane is the
plane of symmetry of the problem. (a) A trivial configuration.
(b) A buckled state, in which r is not planar and the rod has
suffered twisting. The rod could also buckle into the reflection
of the configuration shown through the plane of symmetry.

(a) (b)

Fig. 2.4. (a) A uniformly compressed trivial state of a hydro-
statically loaded ring. (b) A buckled state of the ring. Similar
figures hold for arches.

rod may have a family of equilibrium configurations parametrized by these
loads and having the same plane of symmetry. These equilibrium configu-
rations are termed trivial even though their determination may be far from
trivial. Buckled states corresponding to a lateral instability occur when the
configuration of the rod loses its plane of symmetry. See Fig. 2.3. (For the
special class of problems in which the only loads are equal and opposite
bending couples applied to the ends of the rod, the technical difficulties are
greatly reduced.)

A circular ring or arch with its material curve of centroids constrained to
lie in a plane can buckle under hydrostatic pressure or related load systems
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by losing its circularity. (See Fig. 2.4.) The ring or arch can be regarded as
a cross section of a complete or incomplete cylindrical tube. (A force system
identical to that exerted by stationary fluid on a cylinder is exerted by a
transverse magnetic field on a current-carrying arch.) As our preliminary
analyses of Chap. 4 indicate, the mathematical structure of these buckling
problems has a character quite different from that for straight rods.

Fig. 2.5. Configuration of a doubly hinged, initially cylindrical
rod undergoing a shear instability. The corresponding instabil-
ity for a doubly welded rod is illustrated in Fig. 2.6.

Fig. 2.6. Configuration of an initially cylindrical rod undergoing
a necking instability.

For certain ideal boundary conditions, a straight rod subjected to ten-
sile forces applied to its ends has a family of trivial solutions in which the
axis of the rod (the material line of centroids) remains straight and the
cross sections remain perpendicular to it. When the applied force exceeds
a critical value, a rod may suffer a shear or necking instability. In a shear
instability (Fig. 2.5), cross sections originally perpendicular to the axis are
sheared with respect to this line. In a necking instability (Fig. 2.6), the
thickness suffers a large localized reduction. (See the photographs in Nadai
(1950).) Although these instabilities are usually associated with plastic re-
sponse, we shall find that they actually occur for certain nonlinearly elastic
materials. Neither of these instabilities is termed buckling. Nevertheless,
their mathematical treatment within the context of bifurcation theory is
the same as that for buckling problems.

For each of the examples just discussed, there are models that describe
the equilibrium states by ordinary differential equations. The buckling
problems for shells, on the other hand, lead to partial differential equations
for the description of equilibrium. Under special conditions of symmetry,
these problems possess a family of equilibrium states described by ordinary
differential equations. But the physical interpretation of the stability of
the special symmetric states requires the consideration of the full partial
differential equations. The three classical problems of shell buckling are



5.2. CLASSICAL BUCKLING PROBLEMS OF ELASTICITY 145

(a) (b)

Fig. 2.7. Buckling of a plate under a planar system of loads
applied to its edge. A trivial state is shown in (a) and a buckled
state in (b). The most frequently studied cases are those of
circular and rectangular plates subjected to normal pressures
applied to their edges.

Fig. 2.8. Buckling of a cylindrical shell under forces applied
to its ends that are parallel to its generators. A trivial state is
shown in (a), an axisymmetric buckled state (having a barrelling
instability) is shown in (b), and a state exhibiting the commonly
observed pattern of lozenges is shown in (c). This pattern can
also be found behind the knees of a pair of denim trousers. (The
case in which the cylinder is circular has received by far the most
attention.)

(i) the buckling of a plate under a planar system of forces applied to its
edge (Fig. 2.7), (ii) the buckling of a (circular) cylindrical shell under a
compressive system of forces acting parallel to its generators (Fig. 2.8), and
(iii) the buckling of a spherical shell or cap under a hydrostatic pressure or
similar load system (Fig. 2.9).

The buckling of the spherical cap illustrated in Fig. 2.9 exhibits a new
effect that does not arise in the simplest models for rods. If the cap is
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(a) (b) (c)

Fig. 2.9. Buckling of a spherical cap under hydrostatic pressure.
A uniformly compressed trivial state is shown in (a), a large
axisymmetric deformation is shown in (b), and a state exhibiting
a pentagonal dimple is shown in (c).

shallow, then simple models for it lead to bifurcation diagrams of the sort
illustrated in Fig. 2.10. Here λ represents the hydrostatic pressure and u
represents some measure of the distortion from the uniformly compressed
spherical configuration. Thus the λ-axis is the branch of trivial solutions.

Suppose that the pressure is very slowly raised from 0. (This is a so-
called quasistatic process. There are serious difficulties, seldom confronted,
in making the notion of such a process mathematically precise and in jus-
tifying the conclusions and interpretations made on the basis of such a
notion; see Sec. 7.) Initially the shell remains spherical until the value λ0
at the point A of Fig. 2.10 is reached. λ0 is the lowest eigenvalue of the lin-
earization of the governing equations about the trivial state. (This process
is an idealization: In practice, the sphericity is lost due to imperfections
before point A is reached.) As λ is increased past λ0, it is observed that
solution pairs switch at A from the trivial branch to the branch AB in a
process that is the same as that for the buckled rod described by Fig. 1.13.
The observed branch AB need not correspond to axisymmetric configu-
rations. We do not yet attempt to justify the standard terminology that
branch A∞ is unstable and that branch AB is stable.

As λ is increased slowly beyond λ0, the solution pairs move along branch
AB until point B is reached. As λ is increased beyond its value at B, there
are no longer any nearby equilibrium states on which solution pairs can re-
main. The accepted doctrine, borne out by experience, is that the solution
‘jumps’ to another equilibrium state. We indicate this jumping process by
the dotted line joining B to F. Point F is on the ‘stable’ branch DEFG∞.
The jump BF represents the phenomenon of snapping, wherein the shell
moves suddenly from a slight perturbation of Fig. 2.9a to a configuration
like that of Fig. 2.9b. This motion is usually accompanied by a popping
sound. As λ is slowly increased beyond its value at F, the solution pairs
move out along branch FG∞. The progression along this branch represents
the slow inflation of the configuration of Fig. 2.9b.

The snapping process, which is not well understood, clearly is the an-
tithesis of a quasistatic process: It is exceedingly rapid and its observed
motion dies out very rapidly. Moreover, our description of this buckling
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Fig. 2.10. Bifurcation diagram for the buckling of a shallow
spherical cap under hydrostatic pressure. Only one branch of
nontrivial solutions is shown.

process gives no explanation for why the shell should jump from state B to
branch DEFG, rather to some other branch not shown in Fig. 2.10. (The
mathematical description of snapping requires a study of the equations of
motion, which must account for a powerful internal damping mechanism
to bring the shell rapidly to rest after snapping. The branch to which u is
carried during a snapping is that containing the equilibrium point in whose
region of attraction is found the initial data for u corresponding to state B.
(An inkling of the complexity of this process is given by Reiss & Matkowsky
(1971) in their study of a simplified discrete model for the dynamics of a
rod not undergoing snapping.)

Let us now look at the unloading process in which the shell begins in a
state G on the stable branch DEFG and the pressure is gradually lowered.
Solution pairs then move from G to F to E, which corresponds to a non-
trivial equilibrium state under zero pressure. Such a state would look like
that of Fig. 2.9b. Configurations of this form persist when λ assumes nega-
tive values, which correspond to pressures applied from below in Fig. 2.9b.
When λ reaches the negative value corresponding to D, the configuration
snaps back to a trivial state by a process just like that of BF. Note that
if λ is slowly raised and lowered over an interval containing the values of
λ corresponding to states D and B, then the system exhibits hysteresis,
even though there are no memory terms in the equations. Branch BCD is
unstable and is therefore not readily observed in experiment.

Two problems in which the trivial solution is time-dependent are that of
a straight rod subjected to time-dependent thrusts applied to its ends and
that of a circular ring subjected to a time-varying pressure. The former
problem seems to be technically more difficult. There are obvious analogs
of these problems for plates and shells. None of these problems for geomet-
rically exact theories has been given a satisfactory nonlinear analysis.

There are numerous important examples of buckling caused by effects of
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nonmechanical origin, such as that of a thermoelastic rod whose ends are
welded to rigid walls at a fixed distance apart. When the rod is heated, the
walls thwart the natural propensity of the rod to elongate. The resulting
compressive stresses cause buckling when the temperature field exceeds a
critical level. Similar phenomena arise for plates and shells. Structures
carrying electric currents and structures made of magnetoelastic materials
can buckle in magnetic fields. In some of these problems, the deformed
shape of the structure affects the ambient field. Such difficult interactions
also occur in the buckling of structures in contact with moving fluids. This
buckling can be either steady-state or dynamic.

There is a voluminous and interesting engineering literature dealing with buckling
problems. Much of this is devoted to finding the eigenvalues of problems linearized about
the trivial unbuckled state, which for degenerate theories is taken to be the reference
configuration. The remainder typically treat small solutions of engineering theories of
structures by perturbation methods. Recently some studies have taken up sophisticated
local analyses based on catastrophe or singularity theory. Though this classical literature
typically uses formulations of the equations and methods of analysis far more primitive
than those used here, it nevertheless represents an excellent source of fascinating prob-
lems and of suggestive methods of analysis.

Among the many texts containing large collections of buckling problems are those
of Atanackovic (1997), Bažant & Cedolin (1991), Biezeno & Grammel (1953), Bleich
(1952), Bolotin (1963, 1964), Brush & Almroth (1975), Burgermeister, Steup, & Kret-
zschmar (1957, 1963), Como & Grimaldi (1995), Dinnik (1935), Dowell (1975), Dowell
& Il’gamov (1988), Dym (1974), Grigolyuk & Kabanov (1978), Hartmann (1937), Her-
rmann (1967b), Huseyin (1975), Kollbrunner & Meister (1961), Leipholz (1970, 1971,
1978a,b), Moon (1984), Nguyen (1995), Nikolai (1955), Panovko & Gubanova (1979),
Pflüger (1964), Prescott (1924), Rzhanitsyn (1955), Thompson & Hunt (1973, 1984),
Timoshenko & Gere (1961), Vol’mir (1967, 1979), and Ziegler (1977). Among the most
useful review articles are those of Babcock (1983), Budiansky (1974), Bushnell (1981),
Eisley (1963), Herrmann (1967a), Hutchinson & Koiter (1970), Moon (1978), Nemat-
Nasser (1970), and Pogorelov & Babenko (1992). Most of these works have extensive
bibliographies. The article by Knops & Wilkes (1973), which approaches the subject
of elastic stability from a very careful mathematical viewpoint, gives excellent coverage
to the engineering literature. Surveys of geometrically exact problems for nonlinearly
elastic structures are given by Antman (1977, 1980c, 1981, 1989).

3. Mathematical Concepts and Examples
We study operator equations of a form that generalizes (1.9) by allowing

for an n-tuple λ of parameters in place of a single parameter:

(3.1) f[λ, u] = o, where f[·, o] = o.

We assume that the domain of f is a subset of R
n × X where X is a real

Banach space and that its target is a real Banach space. (Banach spaces
provide a convenient and natural way to describe the size and convergence
of functions. See Sec. 19.1 for a discussion of these spaces. In many of
our applications, X is just the Banach space of continuous functions on a
closed and bounded interval.) If X is finite-dimensional, we replace f[λ, u]
with f(λ, u).

Our restriction of u and λ to real rather than complex spaces, which corresponds
to the applications we study, would seem to simplify matters. The opposite is in fact
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true. The most elementary application of the principle that the complex case is simple
and that the real case is complex arises in the study of the roots of a polynomial.
The basic existence theorem for polynomial equations is the Fundamental Theorem of
Algebra, which asserts that a polynomial of degree n with real or complex coefficients
has n complex roots counted according to multiplicity. On the other hand, there are no
convenient, universally applicable tests telling exactly how many real roots are possessed
by an arbitrary polynomial with real coefficients.

A point (λ0, o) on the trivial branch of (3.1) is called a bifurcation point
on this branch iff in every neighborhood of this point there is a solution pair
(λ, u) of (3.1) with u �= o. (Some authors call this a branching point . The
terminology is not completely standardized for this and other concepts.)

Bifurcation theory may be divided onto two main areas: the local the-
ory, which treats the behavior of solutions near a bifurcation point, and the

global theory, which treats the behavior of solutions wherever they occur.
The local theory may be further subdivided into perfect bifurcation, which
we simply call bifurcation, and imperfect bifurcation, which describes how
the bifurcation diagram is altered by the presence of imperfections. The
study of the detailed effects of imperfections within the global theory is in
a primitive state. Our main interest is in the study of the applications of
global bifurcation theory.

The simplest example of bifurcation occurs for linear equations of the
form

(3.2) A(λ) · u = o.

Here A(λ) is a linear operator, depending on the n-dimensional parameter
λ, that acts on the unknown u. (An outline of linear operator theory is given
in Chap. 19, which should be consulted for explanations of any unfamiliar
concepts used in this section.) An n-tuple λ0 is called an eigenvalue of
the operator-valued function λ �→ A(λ) iff the equation A(λ0) · v = o has a
nonzero solution w, called an eigenvector, corresponding to λ0. The set of
all eigenvectors corresponding to λ0 form the null space or kernel ker A(λ0)
of the operator A(λ0) or, equivalently, form the eigenspace corresponding
to λ0. The linearity of A(λ0) ensures that ker A(λ0) is a vector space.
(Thus, if w1 and w2 are eigenvectors corresponding to the eigenvalue λ0,
then α1w1 + α2w2 for all real α1 and α2 is also a solution of (3.2) when
λ = λ0.) The geometric multiplicity of λ0 is the dimension of ker A(λ0).
The algebraic multiplicity, which also plays an important role in bifurcation
theory, is discussed below. These considerations show that the bifurcation
diagram for (3.2) has the form shown in Fig. 3.3.

Our definition of eigenvalue is more general than the usual definition. In the special
case that λ is a real or complex parameter, it is standard to say that λ0 is an eigenvalue
of the operator A iff the the equation A · v = λ0v has a nontrivial solution, called
the eigenvector corresponding to λ0. In our terminology, this λ0 is an eigenvalue of
the operator-valued function λ �→ A − λI. Some authors refer to the eigenvalues of
λ �→ I − λA as characteristic values. We do not adhere to this policy. We employ
our general definition because the operators that arise in the bifurcation problems of
nonlinear elasticity are typically not affine functions of the parameter λ.
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Fig. 3.3. Bifurcation diagram for (3.2) when λ is a scalar λ. The
trivial branch is the λ-axis. The nontrivial solution pairs are rep-
resented by straight vertical lines through the points {(λ0

k, o)},
where the λ0

k are the (real) eigenvalues of (3.2). This represen-
tation should not be construed as implying that the collection
of solution pairs (λ0

k,w) is one-dimensional; it is in fact a plane
in the (λ, u)-space whose dimension is the geometric multiplicity
of λ0

k.

We now begin our study of the relationship of the bifurcation diagram for
a nonlinear problem such as (3.1) to that for its linearization about u = o.
Recall from Sec. 2.10 that if limε→0 f[λ, εv]/ε exists for all v in X and if
this limit is a bounded linear operator acting on v, then we denote it by
(∂f/∂u)[λ, o] · v. In this case, (∂f/∂u)[λ, o] is called the Gâteaux derivative
of f[λ, ·] at o. We then say that the equation

(3.4) (∂f/∂u)[λ, o] · v = o,

which has the form (3.2), is the linearization of (3.1) about u = o. If,
furthermore, f[λ, ·] has the form

(3.5) f[λ, u] = A(λ) · u + o(‖u‖) as ‖u‖ → 0

where A(λ) is a bounded linear operator and where ‖u‖ denotes the X -
norm of u, then f[λ, ·] is said to be (Fréchet-) differentiable at o, and
A(λ) is called the (Fréchet) derivative of f[λ, ·] there. A(λ) is also de-
noted by (∂f/∂u)[λ, o]. Indeed, if f[λ, ·] is Fréchet-differentiable at o, then
it is Gâteaux-differentiable there, and the derivatives are equal.

If we identify (θ,M) of (1.5) with u in C0[0, 1] × C0[0, 1] =: X , then its
linearization is

(3.6) θ1(s) =
∫ s

0

M1(ξ)
(EI)(ξ)

dξ, M1(s) = λ
∫ 1

s

θ1(ξ) dξ,

which is readily seen to be equivalent to the problem

(3.7a,b,c) d
ds [(EI(s))θ′1(s)] + λθ1(s) = 0, θ1(0) = 0, θ′1(1) = 0,
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corresponding to (1.6).

3.8. Exercise. Prove that the operator

(3.9) C0[0, 1] � θ �→ f(θ, λ) := θ − λ

∫ 1

0
G(·, ξ) sin θ(ξ) dξ ∈ C0[0, 1],

where G is defined in (1.8), is Fréchet-differentiable at 0. Write the linearization of (1.8).
Repeat this exercise when C0 on the left and right of (3.9) is replaced with C1.

It was long an unwritten law of physics, still widely believed, that the
behavior of small solutions of (3.1), which is presumed to describe physical
processes, is accurately accounted for by the behavior of solutions of its
linearization (3.4). It is fortunate that this law is unwritten, because it is
not true. One mission of bifurcation theory is to determine what accurate
information about (3.1) is provided by (3.4).

Examples. We now present a selection of concrete, simple mathematical
examples showing the variety of behavior that is possible for solutions of
bifurcation problems and that must be accounted for by the basic theorems
stated in Sec. 4. The simplest problems are those for which X is R or
R

2, for then we can represent precisely the entire set of solution pairs
for one-parameter problems in the the 2- or 3-dimensional space of (λ, u).
Problems for which X is finite-dimensional are of major importance because
virtually all the tractable infinite-dimensional bifurcation problems can be
approximated effectively by finite-dimensional problems.

Virtually the simplest nonlinear bifurcation problem is

(3.10) x = (λ− x2)x, x ∈ R.

Its linearization about the trivial branch x = 0 is the linear eigenvalue
problem y = λy which has as its only eigenvalue λ = 1. The bifurca-
tion diagram for (3.10), immediately found, consists of the trivial branch
x = 0 and the closure of the nontrivial branches, which has the equation
λ = 1 + x2. Note that the nontrivial branches are curved, as is typical
for nonlinear problems, and that the nontrivial branches bifurcate from
(λ, x) = (1, 0), where 1 is the eigenvalue of the linearized problem. In the
following examples, when bifurcation occurs, it occurs at the eigenvalues
of the linearization. We shall prove a precise version of this statement in
Theorem 4.1.

It can happen that nonlinear problems have bifurcations in which nontrivial solution
pairs lie on lines, just as for linear eigenvalue problems. For example, consider the system

(3.11) x2 + y2 = λx2, 2xy = λy2, (x, y) ∈ R
2,

whose bifurcation diagram is readily found, or the boundary-value problem

(3.12) d
ds

[g(u(s), u′(s), s, λ)] − h(u(s), u′(s), s, λ) = 0, u(0) = 0 = u(1)

where g(·, ·, s, λ) and h(·, ·, s, λ) are homogeneous of degree α > 0. The analysis of prob-
lems like (3.12) by Lyusternik (1937, 1938) furnished an early illustration of the applica-
tion of the ideas of the powerful Lyusternik-Shnirel’man category theory to bifurcation
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problems. Problems lacking homogeneous nonlinearities also may admit solutions lying
on lines: For λ > 0, consider the following problem proposed by Wolkowisky (1969):

(3.13) u′′ + λ2u[1 + (λ cos λs)u − (sin λs)u′] = 0, u(0) = 0 = u(1).

It is easy to see that (3.13) has nontrivial solution pairs of the form (u, λ) = (uk, kπ)
with uk(s) =const. sin kπs for each integer k > 0. We shall be able to prove that these
nontrivial branches are the only branches bifurcating from the trivial branch.

One of the central results justifying the need for a theory is that there
need not be bifurcation from an eigenvalue of the linearized problem. Con-
sider the following problem for (x, y) ∈ R

2:

(3.14a,b) x+ y(x2 + y2) = λx, y − x(x2 + y2) = λy,

which has the trivial branch defined by x = 0 = y. The linearization of
(3.14) about the trivial branch is

(3.15) x = λx, y = λy,

which has λ = 1 as its only eigenvalue. This eigenvalue has geometric mul-
tiplicity 2, i.e., every nonzero pair (x, y) is an eigenvector of (3.15). Never-
theless, if we multiply (3.14a) by y, multiply (3.14b) by x, and subtract one
of the resulting equations from the other, then we obtain (x2 +y2)2 = 0. It
is significant to note that (3.14) cannot be characterized as the vanishing
of the gradient of a scalar function of x and y when λ is fixed because

(3.16)
∂

∂y
[x+ y(x2 + y2) − λx] �= ∂

∂x
[y − x(x2 + y2) − λy].

Thus (3.14) is not variational. A similar effect occurs for differential equa-
tions:

3.17. Exercise. Combine the techniques used for (3.14) with integration by parts to
prove that the boundary-value problem

(3.18)
−u′′ = λ[u + v(u2 + v2)], −v′′ = λ[v − u(u2 + v2)],

u(0) = 0 = v(0), u(1) = 0 = v(1)

has the unique solution u = 0 = v for each real λ. Find the eigenvalues and eigenfunc-
tions of the linearization of (3.18) about the trivial branch.

To gain some insight into the uniqueness of the trivial solution of (3.14),
we embed it into a one-parameter family of problems

(3.19a,b) (1 + 2α)x+ y(x2 + y2) = λx, y − x(x2 + y2) = λy.

When α = 0, this system reduces to (3.14). For α �= 0, the linearization
of (3.19) about the trivial branch has eigenvalues 1 and 1 + 2α with corre-
sponding normalized eigenvectors (0, 1) and (1, 0). Eq. (3.19) implies that
if x = 0, then y = 0 and vice versa. For nontrivial solutions, (3.19) implies
that

(3.20) [λ− (1 + α)]2 + (x2 + y2)2 = α2,
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which is the equation of a sphere-like surface in (λ, x, y)-space. We substi-
tute (3.20) into (3.19b) to obtain

(3.21)
√
λ− 1 y = −

√
1 + 2α− λx for 1 ≤ λ ≤ 1 + 2α

for α ≥ 0. The bifurcating branches lie on the curve formed by the intersec-
tion of the two surfaces of (3.20) and (3.21), which is shown in Fig. 3.22. We
see that as α→ 0, this curve shrinks to the point on the λ-axis with λ = 1,
which is the eigenvalue of geometric multiplicity 2 of the linearization of
(3.14). This example suggests that the absence of nontrivial branches for
(3.14) may be associated with the multiplicity of the eigenvalue. This ex-
ample has the additional feature that the nontrivial branches are bounded
and that they connect their bifurcation points.

Fig. 3.22. Bifurcation diagram for (3.19) with α > 0.

We further examine the source of difficulties for (3.14) by studying a
variational problem whose linearization has an eigenvalue with geometric
multiplicity 2. The equations expressing the vanishing of the gradient of

(3.23a) (x, y) �→ 1
2 (1 − λ)(x2 + y2) + 1

4 (x2 + y2)2 + 1
4αx

4

are

(3.23b) x+ (x2 + y2)x+ αx3 = λx, y + (x2 + y2)y = λy

(which for α = 0 differs from (3.14) by the replacement of the coefficients
(y,−x) of x2 + y2 with (x, y)). Here α is a real parameter. The only
eigenvalue of the linearization of (3.23b) about the trivial branch is λ = 1,
which has geometric multiplicity 2. Nevertheless, (3.23b) has exactly two
nontrivial branches:

(3.24)
y = 0, λ = 1 + x2 + αx2;

x = 0, λ = 1 + y2,
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each of which bifurcates from (λ, x, y) = (1, 0, 0). This example suggests
that the absence of nontrivial branches for (3.14) may be associated jointly
with its lack of variational structure and with the multiplicity of the eigen-
value of the linearized problem. Indeed, in the next section we state the-
orems to the effect that if f of (3.1) with a scalar eigenvalue parameter is
sufficiently well behaved and if either (i) its linearization about the triv-
ial branch has an eigenvalue λ0 of odd algebraic multiplicity, or (ii) f[·, u]
is affine, f[λ, ·] is the gradient of a scalar-valued function, and λ0 is an
eigenvalue of (3.4) of any multiplicity, then (λ0, o) is a bifurcation point.

Note that if α = 0, then (3.23b) has a 2-dimensional paraboloidal surface
of nontrivial solution pairs, bifurcating from (1, 0, 0). This phenomenon is
associated with the invariance of (3.23b) under rotations about 0 in the
(x, y)-plane.

Another mechanism by which a point (λ0, o) may fail to be a bifurcation
point for (3.1) when λ0 is an eigenvalue of (3.4) is evidenced by the scalar
problem x = (1 − λ2)x− x3 (cf. (3.10)). The linearization of this equation
about the trivial branch has λ = 0 as its only eigenvalue. It has algebraic
multiplicity 2 (defined in the next section) and geometric multiplicity 1.
That this problem cannot have nontrivial solutions is associated with the
evenness of the algebraic multiplicity.

Now consider the following variational problem, due to Pimbley (1969),

(3.25) λx = x+ 3
4x

3 + 3
2xy

2, αλy = y + 3
4y

3 + 3
2yx

2

where α is a real parameter. The bifurcation diagrams for this problem are
shown in Fig. 3.26 for various values of α. There is secondary bifurcation for
α ∈ (1, 2). λ = 1 is the only eigenvalue of the linearization of (3.25) about
the trivial branch for α = 1. It has geometric and algebraic multiplicity 2.
There are, however, exactly four pairs of distinct continuously differentiable
branches of nowhere trivial solution pairs bifurcating from (1,0,0). This
result and the previous ones indicate that there are no simple rules relating
the multiplicity of the eigenvalue to the number of bifurcating branches.

3.27. Exercise. Prove that the bifurcation diagrams for (3.25) indeed have the forms
shown in Fig. 3.26 and find the diagrams for α < 1.

Bauer, Keller, & Reiss (1975) have shown how some examples of secondary bifurca-
tion, which arise in applications, have a mathematical structure like (3.25): At a critical
value of an auxiliary parameter α, (3.4) has a multiple eigenvalue µ and there are multi-
ple nontrivial branches of (3.1) bifurcating from (µ, o). As α passes through the critical
value, nontrivial branches coalesce at (µ, o) and then break up into primary branches,
which bifurcate from the trivial branch, and secondary branches, which bifurcate from
the primary branches. Keener (1979) has analyzed phenomena of this kind and supplied
an interesting collection of examples.

The solutions of the nonlinear Hammerstein integral equation

(3.28) λw(s) =
2
π

∫ π

0

(
sin s sin t +

1
α

sin 2s sin 2t

)
[w(t) + w(t)3] dt, s ∈ [0, π]

(with a degenerate kernel) must have the form

(3.29) w(s) = x sin s + y sin 2s.
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Fig. 3.26. Bifurcation diagrams for (3.25) for α ≥ 1. The dia-
grams for α < 1 are similar.

The substitution of (3.29) into (3.28) yields (3.25).
A more spectacular example of multiple bifurcation is afforded by the problem

(3.30) λu′′(s) + u(s)
∫ 1

0
u(t)2 dt = 0 for s ∈ (0, 1), u(0) = 0 = u(1)
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(proposed by Kirchgässner). The only eigenvalue of the linearization

(3.31) λv′′ = 0 for s ∈ (0, 1), v(0) = 0 = v(1)

of (3.30) about the trivial branch is λ = 0, which has infinite geometrical multiplicity.
We multiply (3.30) by u(s) and integrate the resulting expression by parts over (0, 1) to
obtain

(3.32) −λ

∫ 1

0
u′(s)2 ds +

[∫ 1

0
u(s)2 ds

]2
= 0,

which implies that the only solution of (3.30) for λ ≤ 0 is trivial. For λ > 0, we
regard (3.30) as a linear ordinary differential equation with constant coefficients that
happen to depend on the unknown u. The nontrivial solution pairs must have the form
un(s) = cn sin nπs when n2π2λ =

∫ 1
0 u(t)2 dt, where cn is a constant to be determined

and n is a nonzero integer. The substitution of un into (3.30) yields a formula for cn,
from which we obtain

(3.33) un(s) = ±
√

2λ sin nπs.

The bifurcation diagram Fig. 3.34 defined by (3.30) exhibits an infinity of nontrivial
branches bifurcating from (0,0). If λ is replaced with 1/λ, then the modified equation
has an infinity of nontrivial branches, none of which bifurcate from the trivial branch.
For more complicated equations, the demonstration that there are such nonbifurcating
branches, sometimes called isolas, and their construction can be quite difficult (see
Antman & Pierce (1990), H. B. Keller (1981), and Peitgen, Saupe, & Schmitt (1981).)

λ

Fig. 3.34. Bifurcation diagram for (3.30) showing a plot of
signu′

n(0) max |un| =signu′
n(0)

√
2λnπ as a function of λ, which

comes from (3.33).

3.35. Exercise. Bifurcation diagrams like Fig. 3.34 occur in mechanics. Suppose that
the reduction δ of the distance between the ends of an inextensible elastica is prescribed
in place of the thrust λ. Then θ and the unknown thrust λ must satisfy (1.6) and the
additional condition

(3.36)
∫ 1

0
cos θ(s) ds = 1 − δ.
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Show that the bifurcation diagram for this problem has the form of Fig. 3.34 with δ
replacing λ. How is this bifurcation diagram related to Fig. 1.13? (When the elastica is
uniform, this problem can be solved explicitly by using the results of Ex. 1.14.) Discuss
the role of inextensibility in producing a bifurcation diagram like Fig. 3.34.

The following artificial problem disabuses us of the optimistic hope that
solution branches of a reasonably well-behaved bifurcation problems are
curves. The nontrivial branch for

(3.37) λx(x− 1)2 = x(x− 1)2
[
2 + sin

(
π

x− 1

)]
,

which is easily plotted, does not form a curve, although it is connected. (A
set E is called connected iff however it is expressed as a union of two disjoint
nonempty sets A and B, at least one of these sets must contain a limit point
of the other. Thus E is connected iff there do not exist nonempty sets A
and B such that E = A ∪ B with A∩ cl B = ∅ = B ∩ cl A; see Alexander
(1981), Whyburn (1964), and the paragraph preceding Theorem 4.19.) The
factor (x−1)2 is put into (3.37) so that the right-hand side is continuously
differentiable.

We can construct examples like this for boundary-value problems of the form

(3.38) u′′ + λ[1 + h(λ2u2 + (u′)2, λ)]u = 0 for s ∈ (0, 1), u(0) = 0 = u(1)

where h(0, λ) = 0. (This example, which generalizes (3.13), is due to Rabinowitz
(1973a).) This problem has nontrivial branches bifurcating from (k2π2, 0) of the form
(λ, u) with u(s) = c sin kπs and

(3.39) λ[1 + h(k2π2c2, λ)] = k2π2.

A bifurcation diagram can be determined from (3.39). By varying h we can construct a
very rich variety of diagrams, including those with branches that are not connected. One
of the difficult problems of bifurcation theory for differential equations is to determine
when the branches are actually curves.

Our next objective is to show that there may be no nontrivial branches passing
through a bifurcation point. Our example gives a further illustration of the difficulty
in deducing statements about the multiplicity of bifurcating branches of (3.1) from the
multiplicity of eigenvalues of (3.4). To construct such examples when f is very well
behaved requires great care. We follow the approach of Böhme (1972).

θ

π

ξ0 1 2 6 83 4 10

Fig. 3.40. Φθ is negative in the shaded regions.



158 5. BIFURCATION THEORY

Let R2 � (ξ, θ) �→ Φ(ξ, θ) ∈ R be infinitely differentiable, let Φ(·, θ) have period 2,
let Φ(ξ, ·) have period 2π, and let the locus of points where Φθ vanishes have the form
shown in Fig. 3.40. We define

(3.41) F (r cos θ, r sin θ) := Φ(1/r, θ) exp(−1/r2).

Then F is infinitely differentiable and F (0, 0) = Fx(0, 0) = Fy(0, 0) = 0. We study the
variational problem

(3.42) (λ − 1)x = Fx(x, y), (λ − 1)y = Fy(x, y),

which is readily shown to be equivalent to

λ − 1 =
[

2Φ(1/r, θ)
r4

−
Φξ(1/r, θ)

r3

]
exp

(
− 1

r2

)
,(3.43)

Φθ(1/r, θ) = 0.(3.44)

Let us fix r2 := x2 + y2 = α2 (const.). Figure 3.40 implies that for each such α2 > 0,
Eq. (3.44) has at least six solutions θ. For each such solution, Eq. (3.43) yields a
corresponding value of λ. Thus there are at least six solution pairs on each cylinder
{(λ, x, y) : x2 +y2 = α2} in R3. A bifurcation diagram in (λ, r)-space for (3.42) is shown
in Fig. 3.45. Thus problem (3.42), involving the vanishing of the gradient of an infinitely
differentiable function, has no nontrivial branches passing through the bifurcation point
(λ, x, y) = (1, 0, 0) (i.e., there is no branch of nontrivial solution pairs whose closure
contains this bifurcation point), has a complicated multiplicity structure that bears no
obvious relation to the geometric multiplicity 2 of the eigenvalue λ = 1 of the lineariza-
tion, and has a countable infinity of nonbifurcating branches. Theorem 4.19 will show
that some of the pathologies of this example cannot occur if f is real-analytic.

1

1

1+ exp _
2

=λ

λ

1
r

)(

_

1
2

1
3

Fig. 3.45. A schematic bifurcation diagram for (3.42) when F has the
properties described in the paragraph containing (3.41).

3.46. Problem. Choose an appropriate F with the properties described in the para-
graph containing (3.41) and sketch the full bifurcation diagram for (3.42) in perspective
in (λ, x, y)-space.

The following exercise describes related bifurcation phenomena.

3.47. Exercise. Sketch the full bifurcation diagrams for (3.42) in (λ, x, y)-space when
F is defined by (3.41) with (i) Φ(ξ, θ) = sin πξ, (ii) Φ(ξ, θ) = θ2 − πθ sin πξ, and (iii)
Φ(ξ, θ) = θ2 − 2θξ.
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Another example showing the existence of a connected nontrivial branch that is not
a curve is given by

3.48. Exercise. Sketch the full bifurcation diagrams for (3.42) in (λ, x, y)-space when

F (r cos θ, r sin θ) = [θ2 − 2θ log(1 + cos πr)] exp[−1/(1 + cos πr)].

It is of course easy to construct examples of bifurcation problems with
worse pathologies when f is very badly behaved. For example, for the
problem λx = x sin(1/x), which does not have a linearization at the trivial
branch, each point of the segment [−1, 1] × {0} is a bifurcation point.

A well-known multiparameter bifurcation problem from rigid-body me-
chanics is to find solutions of the ordinary differential equation

(3.49)
d2θ

dt2
+ (λ1 + λ2 cos t) sin θ = 0

having a prescribed period. This equation describes the motion of a pen-
dulum whose support is given a vertical sinusoidal motion. Two artificial
two-parameter problems are

u′′ + ϕ(λ1, λ2)u+ ψ(λ1, λ2)u3 = 0, u(0) = 0 = u(1),(3.50)

u′′ + ϕ(λ1, λ2)u+ ψ(λ1, λ2)u
∫ 1

0
u(t)2 dt = 0, u(0) = 0 = u(1)(3.51)

where ϕ and ψ are given functions. These problems have the same lin-
earizations, the set of their eigenvalues consisting of all pairs (λ1, λ2) that
satisfy

(3.52) ϕ(λ1, λ2) = n2π2, n = 1, 2, . . . .

Problem (3.50) can be solved in closed form in terms of elliptic functions
and problem (3.51) can be solved in closed form by elementary means. If
ϕ and ψ are continuously differentiable and if (3.52) represents a family of
smooth disjoint curves (as would happen if ϕ(λ1, λ2) = λ1 − (λ2)2, e.g.),
then the nontrivial solution pairs of (3.51) and (3.52) form smooth surfaces
of dimension 2 in R

2 × C2[0, 1]. A properly stated generalization of this
observation is the content of Theorem 4.14.

3.53. Exercise. Study the nature of solution pairs of (3.51) with ϕ(λ1, λ2) = λ1−(λ2)2

for various choices of ψ.

4. Basic Theorems of Bifurcation Theory
The examples of the last section expose the need for effective theorems

describing the local and global behavior of bifurcating branches of solution
pairs. In this section we provide such a collection of theorems. The proofs
of all these theorems except the first are either omitted or deferred.

Our first theorem makes precise the observation made in the preceding
section that well-behaved problems (3.1) have bifurcation points of the form
(λ0, o) where λ0 is an eigenvalue of the linearization (3.4).
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4.1. Theorem. Let X and Y be Banach spaces with X having norm ‖ · ‖.
Let A be a neighborhood of λ0 in R

n and let U be a neighborhood of o in X .
Let f : A × U → Y and let f[λ, ·] have Fréchet derivative A(λ) at o for each
λ ∈ A. (Thus f satisfies (3.5) where A(λ) is a bounded linear operator
from X to Y.) Let A(·) be continuous (from A to the space L(X ,Y) of
bounded linear operators from X to Y). If (λ0, o) is a bifurcation point on
the trivial branch of (3.1), then λ0 is in the spectrum of A(·), i.e., A(λ0)
does not have a bounded inverse.

Proof. If (λ0, o) is such a bifurcation point, then by its definition there
is a sequence of solution pairs {(λk, uk)} of (3.1) with uk �= o such that
(λk, uk) → (λ0, o) as k → ∞. These solution pairs satisfy f[λk, uk] = o,
which is equivalent to

(4.2) A(λ0) · uk = [A(λ0) − A(λk)] · uk + o(‖uk‖),

by (3.5). Were A(λ0) to have a bounded inverse A(λ0)−1, then (4.2) would
imply that

(4.3) uk = A(λ0)−1{[A(λ0) − A(λk)] · uk + o(‖uk‖)}.

We divide this equation by ‖uk‖ and then equate the norms of the resulting
equation to obtain

(4.4) 1 =
∥∥∥∥A(λ0)−1

{
[A(λ0) − A(λk)] · uk

‖uk‖ +
o(‖uk‖)
‖uk‖

}∥∥∥∥ .
The continuity of A implies that the right-hand side of (4.4) would then
approach 0 as k → ∞, which is absurd. �

We now introduce the notation to be used in expressing further results.
Let X be a real Banach space with the norm ‖ · ‖ and let D be an open
subset of R

n×X that has a nonempty intersection D0×{o} := D∩[Rn×{o}]
with the parameter space. Let D � (λ, u) �→ f[λ, u] ∈ X have the form

(4.5) f[λ, u] = u − L(λ) · u − g[λ, u]

where L(λ) is a bounded linear operator from X to itself, L(·) is continuous
(i.e., L(·) ∈ C0(D0,L(X ,X )) ), g : D → X is continuous, and g[λ, u] =
o(‖u‖) as u → o uniformly for λ in any bounded set. Thus f[λ, o] = o
and all members of D0 × {o}, called the trivial family of solution pairs,
satisfy (3.1). The closure of the set of nontrivial solution pairs of (3.1) is
denoted S. The set of bifurcation points of (3.1) at the trivial family is
F := S ∩ [D0 ×{o}]. The linearization of (3.1) about the trivial family now
has the form

(4.6) v = L(λ)v.

Let E denote the set of eigenvalues of (4.6).
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We now prepare the groundwork for our next theorem, which gives some
representative conditions (i) ensuring that from (λ0, o) ∈ E × {o} there bi-
furcates a connected set of nontrivial solution pairs forming a C1-surface
of dimension n near (λ0, o) and (ii) describing precisely the relationship
between nontrivial solution pairs and the eigenvalues from which their
branches bifurcate. To appreciate the technical content of the construc-
tions, we consider the case in which n = 2. By the examples of the last
section, we may expect E to contain eigencurves. We require that (λ0, o) lie
on a sufficiently smooth eigencurve. We express the requisite smoothness
by requiring a neighborhood of (λ0, o) to be the image under a smooth map-
ping of a rectangular region in which the inverse image of the eigencurve is
a line. We can exploit the theory for one-parameter problems by restricting
the eigenvalue parameter λ to a curve through (λ0, o) transversal to the
eigencurve. The reader should specialize the following development to the
simple case of n = 1 and should try to visualize the geometrical ideas when
n ≥ 3.

Let λ0 ∈ E and let cl A ∈ D0 be the closure of a neighborhood of λ0

consisting of points λ of the form

(4.7) λ = λ̃(σ, τ), σ ∈ [−1, 1]n−1, τ ∈ [−1, 1]

where λ̃ is an invertible, continuously differentiable mapping of [−1, 1]n

onto cl A for which E ∩ cl A consists of those λ’s of the form λ = λ̃(σ, 0)
with σ ∈ [−1, 1]n−1 and for which λ0 = λ̃(o, 0). See Fig. 4.8.

Assume that L(·) ∈ C1(cl A). The restriction of L(·) to a τ -coordinate
curve through λ̃(σ, 0) is

(4.9) [−1, 1] � τ �→ L(λ̃(σ, τ)).

Following Magnus (1976), we say that the eigenvalue 0 of τ �→ I−L(λ̃(σ, τ))
is simple iff

(4.10) dim ker [I − L(λ̃(σ, 0))] = 1, dim ker [I − M(σ)] = 0

where

(4.11) M(σ) := L(λ̃(σ, 0)) + [(∂L/∂λ)(λ̃(σ, 0)) · λ̃τ (σ, 0)] · P(σ)

with P(σ) being any projection of X onto ker [I − L(λ̃(σ, 0))].

For linear operators depending affinely on a scalar parameter λ, there are elegant and
powerful formulations of spectral theory that contain a precise definitions of algebraic
multiplicity (see Kato (1976) and Taylor & Lay (1980)). For finite-dimensional operators
(matrices), there is an elementary theory with the same effect (of crucial importance in
the theory of linear systems of ordinary differential equations). For linear operators that
do not depend affinely on λ, the definition of algebraic multiplicity is more delicate. If
A(λ) is a square matrix depending smoothly on λ, then λ0 is an eigenvalue of A(·) if and
only if det A(λ0) = 0. Its algebraic multiplicity is just the order of the first nonvanishing
derivative of λ �→ det A(λ) at λ0. It is this notion that must be extended to general
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λ1

λ2

ρu

λ( ,o)0

σ

E
A

S1

τ

Fig. 4.8. Bifurcation diagram illustrating the variables associ-
ated with (4.7) and the nature of the connected set S1 of nontriv-
ial solution pairs bifurcating from (λ0, o) when the hypotheses of
Theorem 4.14 are met. Near this point, S1 is an n-dimensional
surface.

linear operators for which the notion of determinant is not natural. For a definitive
discussion of algebraic multiplicity of eigenvalues of linear operators, see Fitzpatrick &
Pejsachowicz (1991).

We require the following technical result.

4.12. Lemma. Let L(·) ∈ C1(cl A). For each σ ∈ [−1, 1]n−1, let 0 be a simple
eigenvalue of I − L(λ̃(σ, ·)) and let v(σ) denote a corresponding eigenvector. If

(4.13) dim ker [I − L(λ̃(σ, 0))]2 = dim ker [I − L(λ̃(σ, 0))] ≡ span v(σ) = 1,

then v(·) and P(·), which are defined above, can be chosen to be continuously differen-
tiable on [−1, 1]n−1.

Our main result on the local structure of solutions to (3.1) merely re-
quires that g be Lipschitz-continuous:

4.14. Local Bifurcation Theorem. Let λ0 ∈ E and let cl A ⊂ D0
be a neighborhood of λ0 consisting of points λ of the form (4.7) where
these variables have the properties described above. Let L(·) ∈ C1(cl A).
Let (4.5), (4.10), and (4.13) hold. Let there be a number ε > 0 and a
continuous, increasing function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0 such
that

(4.15) ‖g[α, x] − g[β, y]‖ ≤ ϕ
(
‖x‖ + ‖y‖

)[
‖x − y‖ + (‖x‖ + ‖y‖)|α − β|

]
∀ (α, x), (β, y) ∈ cl Z := {(λ, u) ∈ D : λ ∈ cl A, ‖u‖ ≤ ε}.
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Let v(·) and P(·) be taken to be continuously differentiable in accord with
Lemma 4.12. Then there exist a number η > 0 and continuous functions

(4.16a) [−1, 1]n−1 × [−η, η] � (σ, ρ) �→
{
κ(σ, ρ) ∈ R,

w(σ, ρ) ∈ [I − P(σ)]X

with κ(·, ρ) and w(·, ρ) continuously differentiable, with κ(·, 0) = 0, and
with w(·, 0) = o such that

(4.16b)
(
λ̃(σ, 0) + κ(σ, ρ)λ̃τ (σ, 0), ρ[v(σ) + w(σ, ρ)]

)
is a solution pair of (3.1) for σ ∈ [−1, 1]n−1 and |ρ| ≤ η. Moreover, there is
a subneighborhood cl W of cl Z containing (cl A) × {o} such that if (λ, u)
is a solution pair of (3.1) in cl W, then either u = o or else there is a
(σ, ρ) ∈ [−1, 1]n−1 × [−η, η] such that (λ, u) is given by (4.16b).

The local behavior ensured by Theorem 4.14 is illustrated in Fig. 4.8.
The conditions of the following useful corollary are often met.

4.17. Corollary. Let the hypotheses of Theorem 4.14 hold, and further-
more let λ̃ ∈ Cr(cl A), L(·) ∈ Cr(cl A), g ∈ Cr(cl Z), where r is a positive
integer or ∞. Then κ and w are in Cr

(
[−1, 1]n−1 × [−η, η]

)
. Thus, the

closure of the connected set of nontrivial solution pairs of (3.1) bifurcating
from (λ0, o) forms a Cr-surface of dimension n near (λ0, o).

The proofs of Lemma 4.12 and Theorem 4.14 are given by Alexander & Antman
(1981). Corollary 4.17 is proved like Theorem 20.1.14. These results are generalizations
to n-parameter problems of Theorem 1.19 of Rabinowitz (1973a), which is a refinement
of the results of Crandall & Rabinowitz (1971). Their work generalizes earlier implicit
function theorems by others going back to the work of Lyapunov and of Schmidt. For
details, see Chow & Hale (1982), Ize (1976), and Văınberg & Trenogin (1969). The basic
mathematical tools for proving these results are described in Chap. 20.

Our next few theorems are central to the bifurcation problems treated
in the following chapters. The traditional versions of the first theorem
employ the notion of odd algebraic multiplicity of an eigenvalue. Rather
than extending our definition (4.10) to that for an eigenvalue of arbitrary
multiplicity (see Fitzpatrick & Pejsachowicz (1991)), we can use the natu-
ral generalization of the observation: If A(λ) is a square matrix depending
continuously on λ, then the eigenvalues of A(·) are solutions of the charac-
teristic equation det A(·) = 0. If λ0 is an eigenvalue of A(·) of odd algebraic
multiplicity, then det A(·) changes sign at λ0. By virtue of the elementary
properties of the Brouwer degree, sketched in Sec. 3.3, especially (3.3.22),
and proved in Chap. 21, we see that detA(·) changes sign if and only if
the Brouwer index of A(λ) (at the zero solution) changes as λ crosses λ0.
The Brouwer degree for operators on finite-dimensional spaces can be ex-
tended to the Leray-Schauder degree for operators on infinite-dimensional
spaces having the form I−h(·) where h is compact (defined below). Thus in
place of the hypothesis that an eigenvalue has odd algebraic multiplicity,
we use the hypothesis that the Leray-Schauder index of I − L(·) (at the
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zero solution) changes at an eigenvalue. Of course, to verify that the index
changes, it might be necessary to compute the algebraic multiplicity of the
eigenvalue. We shall not need to do so in any of the concrete problems we
treat.

Let us sketch how to compute the algebraic multiplicity of eigenvalues for the eigen-
value problem

(4.18a,b,c) u′′ + b(s, λ)u′ + c(s, λ)u = 0, αu(0) + βu′(0) = 0, γu(1) + δu′(1) = 0,

where the coefficients b and c are well behaved. Let u1(·, λ) be the solution of (4.18a)
subject to the initial conditions u(0, λ) = 1, u′(0, λ) = 0, and let u2(·, λ) be the so-
lution of (4.18a) subject to the initial conditions u(0, λ) = 0, u′(0, λ) = 1. By the
elementary theory of ordinary differential equations, u1 and u2 form a fundamental set
of solutions for (4.18a), so that every solution of (4.18a), in particular, every solution
of the boundary-value problem (4.18) is a linear combination of these fundamental so-
lutions: u = C[u1 cos ω + u2 sin ω] where C and ω are constants. Now we choose ω
so that the boundary condition (4.18b) is satisfied: α cos ω + β sin ω = 0. The result-
ing u is a nontrivial solution of the the boundary-value problem (4.18) if and only if
γ[u1(1, λ) cos ω + u2(1, λ) sin ω] + δ[u′

1(1, λ) cos ω + u′
2(1, λ) sin ω] = 0. This is the char-

acteristic equation for (4.18). We define algebraic multiplicity for it just as we did for
the linear algebraic equation.

The two technical concepts used here are those of a compact operator and of connec-
tivity. Formally, a compact operator from a metric space X to a metric space Y is one
that takes every bounded sequence in X into a sequence in Y having a convergent sub-
sequence. The convergence of the subsequence is the device that allows the construction
of solutions of equations as subsequential limits. There are simple tests ensuring that a
given operator is compact, which we describe and use below. The reader unfamiliar with
this concept may be content for the time being in knowing that nice integral operators,
such as those of (1.5), are compact. (A set E in metric space Y is precompact iff any
sequence from E has a convergent subsequence. Thus, a compact operator from X to Y
is equivalently defined as one that takes every bounded set into a precompact set.)

Let us now define connectivity. Let X be a metric space (for simplicity of exposition).
A separation of X is a pair U , V of its nonempty open subsets with X = U ∪ V and
U ∩ V = ∅. X is connected iff it does not admit a separation. Two sets A and B in X
are connected to each other in X iff there exists a connected set Y in X with A∩Y 
= ∅,
B ∩ Y 
= ∅. Two nonempty sets A and B in X are separated from each other in X iff
there exists a separation U , V of X with A ⊂ U , B ⊂ V. (If A and B are separated from
each other in X , they are not connected in X , but if they are not connected, they need
not be separated.) The set of points in X connected to a given point x is called the
(connected) component of x. For a useful and accessible discussion of connectivity and
its applications, see Alexander (1981).

4.19. One-Parameter Global Bifurcation Theorem. Let f have the
form (4.5) and satisfy the accompanying restrictions with λ replaced by a
scalar λ and with D0 an interval. Let (λ, u) �→ L(λ)u, g[λ, u] be compact
and continuous. Let α, β ∈ D0 \ E and let the Leray-Schauder indices
of I − L(α) and I − L(β) at o be different. Then between α and β there
is an eigenvalue λ0 of (4.6) with the property that (λ0, o) belongs to a
maximal connected subset S(λ0) of the closure S of the set of nontrivial
solution pairs. Moreover, S(λ0) satisfies at least one of the following two
alternatives:

(i) S(λ0) does not lie in a closed and bounded subset of D. (In particular,
if D = R × X , then S(λ0) is unbounded in R × X .)



5.4. BASIC THEOREMS OF BIFURCATION THEORY 165

(ii) There is another eigenvalue µ of λ �→ I−L(λ) such that S(λ0) contains
(µ, o). If, moreover, the eigenvalues of λ �→ I−L(λ) are isolated (as would be
the case if L(λ) has the form λA), then there is an integer k ≥ 2 such that
cl S(λ0) contains exactly k points of the form (λ0

j , o), j = 1, . . . , k, where λ0
j

is an eigenvalue of (4.6) and λ0 is counted as a member of {λ0
j}. Moreover,

the number of such points at which I − L(·) changes its Leray-Schauder
index is even.

If, furthermore, f is real-analytic, then S(λ0) is a locally finite union
of analytic arcs and is arcwise-connected. It contains a curve K(µ) that
satisfies statements (i) and (ii).

Clearly, if λ0 is an eigenvalue of (4.6) at which the Leray-Schauder index
of I − L(·) (at the zero solution) changes, then S(λ0) has the properties
indicated in this theorem. In Sec. 21.4 we give the proof of those parts
of this theorem we shall use. The proof has the character of the proof of
Theorem 3.3.30.

The essential form of this theorem was proved by Rabinowitz (1971a). It represents
a major generalization of both the local theory of Krasnosel’skĭı (1964) and the global
results of Crandall & Rabinowitz (1970) for nonlinear Sturm-Liouville problems. Ex-
positions of Rabinowitz’s results together with numerous mathematical applications are
given by Ize (1976), Nirenberg (1974), Rabier (1985), and Rabinowitz (1971b, 1973a,
1975). For a related development, see Turner (1970). For a historical analysis of the
genesis of this theory see Antman (1983b). The results on real-analytic problems are due
to Dancer (1973). Other refinements are due to Dancer (1974a), Ize (1976), and Magnus
(1976). See Buffoni & Toland (2003). Further generalizations in which the hypotheses
on the compactness of L and g are replaced by weaker assumptions have been obtained
by Alexander & Fitzpatrick (1979, 1980, 1981), Lev (1978), Stuart (1973a), and Toland
(1976, 1977). For generalizations in which our hypotheses on the form (4.5) are relaxed,
see Fitzpatrick & Pejsachowicz (1993) and Fitzpatrick, Pejsachowicz, & Rabier (1994).

There are many important singular bifurcation problems that cannot be handled by
Theorem 4.19. Some of these can be handled by theorems developed in the references
of the preceding paragraph. Alternatively, we might have recourse to the following
procedure. Suppose that a one-parameter bifurcation problem (3.1) fails to meet the
hypotheses of Theorem 4.19. Suppose that we can replace (3.1) by a sequence of ap-
proximate problems

(4.20) fm[λ, u] = o, m = 1, 2, . . . ,

each of which does satisfy the hypotheses of Theorem 4.19. Then for each m, we obtain a
family of connected solution branches. Do the individual branches converge to connected
sets and are these limiting sets branches of solution pairs of (3.1)?

For example, suppose that (3.1) corresponds to an ordinary differential equation on
(0, 1) containing a term 1/s whose presence destroys the compactness of an appropri-
ate integral operator. (Here s denotes the independent variable lying in (0, 1), say.)
Then we could construct a sequence of approximating problems by replacing 1/s by
1/

√
s2 + m−2. Or suppose that (3.1) corresponds to an ordinary differential equation

on the unbounded interval (0, ∞). Then we could replace the original problem with a
sequence of ordinary differential equations on (0, m) subject to suitable boundary con-
ditions at s = m. Analogous procedures are used to treat singular problems for linear
ordinary differential equations (see Coddington & Levinson (1955, Chap. 9), e.g.).

Our basic result on approximation is the following theorem. For bifurcation problems
the set A may be thought of as part of the trivial branch and B may be thought of as a
neighborhood of ∞.
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4.21. Theorem. Let X and Y be Banach spaces and let D ⊂ X . Let f : D → Y,
fm : D → Y, m = 1, 2, . . . . Let

S := {x : f[x] = o}, Sm := {x : fm[x] = o}

denote the zero sets of these mappings. Let A and B be two closed subsets of D for
which A ∩ Sm and B ∩ Sm are (not empty and are) not separated in Sm. Suppose that

(i) S, Sm, m = 1, 2, . . . , are closed in D.
(ii) If xm ∈ Sm, m = 1, 2, . . . , and {xm} converges, then lim xm ∈ S.
(iii) If xm ∈ Sm, m = 1, 2, . . . , then {xm} has a convergent subsequence.

Then A ∩ S and B ∩ S are not separated in S. Moreover, if each Sm is compact, then
so is S∞ := lim Sm ⊂ S.

For a proof and applications of this theorem, see Alexander (1981). We describe
applications to elasticity in Secs. 6.3 and 6.4.

To motivate the statement of the Multiparameter Global Bifurcation Theorem 4.23
below and to furnish a caricature of the ideas underlying its proof (which we do not
provide), we describe an intuitive topological way of unifying the statements of the One-
Parameter Global Bifurcation Theorem 4.19. Suppose for simplicity that the domain D
of f of (4.5) is the whole of R × X . In Fig. 4.22a we illustrate on the horizontal plane
a typical bifurcation diagram for a one-parameter problem. We place a sphere on top
of this plane with the south pole of the sphere lying on the origin of the plane. We
then project the bifurcation diagram stereographically onto the sphere. The projection
of the trivial branch is a great circle joining the south pole to the north pole. Every
maximal bifurcating branch intersects this trivial great circle at at least two distinct
points. Unbounded branches intersect it at the north pole. These observations unify the
alternatives of Theorem 4.19.

In more technical language, in projecting D stereographically onto the unit sphere
we are adjoining to the metric space D a point ∞ (which we identify with the north
pole of the sphere), thereby producing a topological space D+ := D ∪ {∞} in which
a neighborhood basis of ∞ consists of complements of bounded sets. Below we apply
this process to subsets of D. There are technical issues in giving a full justification
of Fig. 4.22, which we avoid. In Secs. 6.3 and 6.4 this construction is combined with
Theorem 4.21 to handle some tricky problems of connectivity.

Let us now continue our interpretation of Theorem 4.19 by means of Fig. 4.22. We
take the closure of the image of a nontrivial branch, such as 1234, on the sphere and
‘identify’ its termini, where it meets the trivial great circle. We thereby obtain the
closed curve-like set G, the image of our branch, shown in Fig. 4.22b. We now intuitively
develop a mathematically precise way to say that G has no gaps: We flatten out G so
that it lies in a plane. Inside of it we place a circle, i.e., a one-dimensional sphere. We
radially project the flattened G onto this circle. Since G has no gaps in it, we cannot
continuously deform the projection into another mapping that takes G onto a single
point on the circle.

How can this process be distinguished from one applied to a Figure H with gaps?
Let us think of the flattened G as a circle of radius 2 and the flattened H as the arc
of a spiral consisting of all points in the plane with Cartesian coordinates of the form(
(2 + θ) cos θ, (2 + θ) sin θ

)
, 0 ≤ θ ≤ 3π. The radial projection of this arc onto the unit

circle takes each such point parametrized by θ to (cos θ, sin θ). But since this arc has a
gap, we can continuously deform this mapping through a family of continuous mappings
into a constant mapping that takes the arc onto a single point on the circle of radius 1:
We simply embed the projection into the one-parameter family of mappings that take
the point parametrized by θ to (cos αθ, sin αθ), where 0 ≤ α ≤ 1. For α = 1, we have
the projection, and for α = 0 we have the constant mapping. Elementary topological
arguments (based on degree theory, e.g.) show that the radial projection of a circle of
radius 2 onto the concentric circle of radius 1 cannot be continuously deformed through
a family of continuous mappings into a constant mapping. A continuous mapping that



5.4. BASIC THEOREMS OF BIFURCATION THEORY 167

Fig. 4.22. Stereographic projection of the bifurcation diagram on the sphere
and subsequent transformations.

cannot be so deformed into a constant mapping is said to be essential. That G has no
gaps is expressed by saying that there is an essential mapping of G onto the unit circle.
In the next theorem we replace the unit circle on which G is projected with a unit sphere
having the dimension equal to the number of parameters.

4.23. Multiparameter Global Bifurcation Theorem. Let f have the form (4.5)
and satisfy the accompanying restrictions.

(i) Let D = Rn ×X . Let D � (λ, u) �→ L(λ)u, g[λ, u] be compact and continuous. Let
α, β ∈ D0 \ E and let the Leray-Schauder indices of I − L(α) and I − L(β) be different.
Then each continuously differentiable arc C in D0 that contains α and β contains an
eigenvalue λ0 of (4.6) with the property that (λ0, o) belongs to a maximal connected
subset S(λ0) of the closure S of the set of nontrivial solution pairs of (3.1). S(λ0)
contains a connected subset T (λ0), with T (λ0) ∩ F = S(λ0) ∩ F , that has Lebesgue
dimension at least n at each of its points. Indeed, if T (λ0)+/F+ represents T (λ0)+

with its points on F+ identified, then there is an essential map that takes T (λ0)+/F+

onto the n-dimensional sphere.
(ii) Let D = ∪{D(γ) : γ ∈ (0, 1)} where the D(γ) are open sets with the property

that cl D(γ1) ⊂ D(γ2) when 0 < γ1 < γ2 < 1. Let D � (λ, u) �→ L(λ)u be compact
and continuous. Let D � (λ, u) �→ g[λ, u] be continuous and let D(γ) � (λ, u) �→ g[λ, u]
be compact for each γ. Let α, β ∈ D(γ)0 \ E for each γ and let the Leray-Schauder
indices of I − L(α) and I − L(β) be different. Then each continuously differentiable arc
C in D(γ)0 that contains α and β contains an eigenvalue λ0 of (4.6) with the property
that (λ0, o) belongs to a maximal connected subset S(λ0) of the closure S of the set of
nontrivial solution pairs. Then at least one of the following statements is true:

(a) S(λ0) is bounded and there is an γ∗ ∈ (0, 1) such that S(λ0) ⊂ D(γ∗). S(λ0)
contains a connected subset T (λ0) with the properties stated in (i).

(b) S(λ0) \ D(γ) 
= ∅ for all γ ∈ (0, 1) or S(λ0) is unbounded. For each γ ∈ (0, 1)
there is a modified equation u = ϕ(λ, u, γ){L(λ) · u + g[λ, u]} defined on all of
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Rn ×X that agrees with (3.1) on D(γ). The function ϕ can be defined to satisfy

ϕ(λ, u, γ) =

{
1 for (λ, u) ∈ D(γ),

0 for (λ, u) ∈ Rn × X \ D( 1
2 (γ + 1)).

Then the maximal connected subset S(λ0, γ) of the closure of the set of non-
trivial solution pairs of the modified equation that bifurcate from (λ0, o) has
the same properties as S(λ0) given in statement (i).

(iii) If, furthermore, λ0 is an eigenvalue of (4.6), if E near λ0 is an isolated C1-surface
of dimension n − 1, and if the restriction of I − L(·) to a smooth curve transversal to E
through λ0 changes its Leray-Schauder index at λ0 (in particular, if λ0 is an eigenvalue
of this restriction of odd algebraic multiplicity), then there is a bifurcating set S(λ0)
with all the properties described above.

(iv) The solutions of a one-parameter bifurcation problem corresponding to the re-
striction of f to C×X where C is a curve in D0 have the properties described in Theorem
4.19.

Statement (i) of this theorem was proved by Alexander & Antman (1981) by us-
ing Čech cohomology. Statement (ii) incorporates refinements introduced by Lanza &
Antman (1991, Thm. 5.1). The notion of Lebesgue (topological) dimension is explained
by Hurewicz & Wallman (1948). This theorem is related to the Global Implicit-Function
Theorem of Alexander & Yorke (1976). Related multiparameter global bifurcation and
continuation theorems are given by Fitzpatrick, Massabò, & Pejsachowicz (1983), Ize
(1997), and by Ize, Massabò, Pejsachowicz, & Vignoli (1985). Alexander & Antman
(1983) treat bifurcation problems with infinite-dimensional parameters, which arise, e.g.,
when the equation itself is regarded as the parameter. (In elasticity, this means that the
constitutive function or the shape of the body can be taken as the parameter.)

5. Applications of the Basic Theorems
to the Simplest Buckling Problem

We now show that by supplementing the abstract theorems of Sec. 4 with
some elementary methods we can obtain very detailed global information
about the nontrivial bifurcating branches of (1.5) or (1.6), comparable to
that given by Ex. 1.14, without using the explicit construction of this ex-
ercise (which is not available when EI is not constant).

We take u to be the pair (θ,M) and take the Banach space X to be
C0[0, 1] × C0[0, 1]. We put (1.5) into the mold (1.9) with f having the
form (4.5) by simply decomposing the integrand sin θ(ξ) in (1.5b) as θ(ξ)+
[sin θ(ξ) − θ(ξ)]. Then we identify

(5.1) g[λ, u](s) =
(

0, λ
∫ 1

s

[sin θ(ξ) − θ(ξ)] dξ
)
.

L(λ), which is affine in λ, is defined similarly.
To use Theorem 4.19, we must establish that L and g are compact. The

verification of the remaining hypotheses is immediate. In accord with the
definition of a compact operator given in Sec. 4, to show that g is compact
from R × X to X , we must prove that if there is a positive number B and
a sequence {λk, θk,Mk} such that

(5.2) |λk| ≤ B, max
s

|θk(s)| ≤ B, max
s

|Mk(s)| ≤ B,

then g[λk, θk,Mk] has a subsequence that is uniformly convergent. For this
purpose, we can easily apply the
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5.3. Arzelà-Ascoli Theorem. Let { gk} be a bounded, equicontinuous
sequence of functions defined on a compact subset K of R

n, i.e., let there
be a positive number N independent of k, and for every ε > 0 let there be
a δ(ε) > 0 independent of k for which

(5.4)
max{|gk(x)| : x ∈ K} ≤ N,

|gk(x) − gk(y)| < ε if |x − y| < δ(ε), x, y ∈ K

for all k. Then {gk} has a uniformly convergent subsequence.

The proof of this theorem is given in a variety of books on advanced
calculus, differential equations, and real analysis.

We now show that g is compact. We identify gk with the second compo-
nent of g[λk, θk,Mk]. A trivial computation shows that if (5.2) holds, then
|gk| ≤ (B + 1)2 =: N . Next we observe that if 0 ≤ x ≤ y ≤ 1, then

(5.5) |gk(x) − gk(y)| ≤ B
∫ y

x

| sin θk(ξ) − θk(ξ)| dξ ≤ N |x− y|.

Thus {gk} is equicontinuous, with δ(ε) = ε/N . The compactness follows
from Theorem 5.3. The proof of the compactness of (λ, u) �→ L(λ) · u is
proved the same way. Note that the same proof applies if (EI)−1 is merely
integrable and bounded above. In this case, however, (1.6) is not satisfied
in the classical sense, although (1.5) is.

5.6. Exercise. Suppose that EI is continuous and positive on [0, 1) and (EI)(1) = 0.
Find the necessary and sufficient condition on EI for L(λ) to be compact from X to itself.
Suppose that the rod models a 3-dimensional body {(x, y, s) : 0 ≤ s ≤ 1, −h(s) ≤ x ≤
h(s), −b ≤ y ≤ b} with a rectangular cross section. Here b is a given positive constant
and h is a given function with h(s) > 0 for 0 < s < 1. It is standard engineering
practice to take EI(s) to be the product of a constant (elastic modulus) E and the
areal moment of inertia I of the section s: I =

∫ b
−b

∫ h(s)
−h(s) x2 dx dy. (See Chap. 16 for

a detailed discussion of the generation of rod theories from 3-dimensional theories.) If
the the rod has thickness h(s) =const(1 − s)α near s = 1, find the critical α separating
compact from noncompact operators.

5.7. Exercise. Suppose that the linear constitutive equation corresponding to (1.5a) is
replaced by the nonlinear equation θ′(s) = µ̂(M(s), s) where µ̂ is continuously differen-
tiable and where µ̂(·, s) is odd, is strictly increasing, and has a derivative with a positive
upper bound. Prove that the resulting modification of (1.5) satisfies the compactness
restrictions of Theorem 4.19.

5.8. Exercise. If (1.4d) is replaced with θ(1) = 0, find an appropriate set of integral
equations like (1.5). To do this, replace (1.5b) with

(5.9) M(s) = M(0) − λ

∫ s

0
sin θ(ξ) dξ,

substitute this expression into (1.5a) evaluated at s = 1, set the resulting expression
equal to 0 in consonance with the new boundary condition, and solve the resulting
equation for the unknown constant M(0) as a functional of (θ, M). Now substitute this
representation for M(0) into (5.9). Show that (1.5a) and (5.9) satisfy the compactness
restrictions of Theorem 4.19. Repeat this exercise using the constitutive equation of
Ex. 5.7.
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5.10. Exercise. Suppose that the linear constitutive equation (4.1.32) with µ◦ = 0 is
replaced by a nonlinear equation M(s) = M̂(θ′(s), s) with M̂ continuously differentiable
and with M̂(·, s) odd. We now entertain the possibility that M̂(µ, s) need not approach
±∞ as µ → ±∞, although we require that M̂µ > 0 everywhere. Then the inverse µ̂(·, s)
of M̂(·, s) is defined only on a bounded open interval and blows up at its end points.
Consequently, the system of integral equations used in Exs. 5.7 and 5.8 need not be well
defined. Instead, one can directly attack the second-order quasilinear problem, which is
the analog of (1.6). (i) Prove that the analog of the problem of Ex. 5.7 can be converted
to the following system for (θ, θ′):

θ(s) =
∫ 1

0
G(s, ξ)

M̂s(θ′(ξ), ξ) + λ sin θ(ξ)

M̂µ(θ′(ξ), ξ)
dξ,(5.11)

θ′(s) =
∫ 1

s

M̂s(θ′(ξ), ξ) + λ sin θ(ξ)

M̂µ(θ′(ξ), ξ)
dξ(5.12)

where G(s, ξ) = ξ for ξ ≤ s and G(s, ξ) = s for s ≤ ξ; cf. (1.8). (Were M̂(µ, 1) to vanish
as in Ex. 5.6, then we would introduce EI explicitly as advocated in (8.10.3) and replace
G with that given by (1.8).) (ii) Show that the right-hand sides of (5.11) and (5.12)
define a continuous and compact operator taking any (θ, θ′) in C0[0, 1]2 into C0[0, 1]2.
(That M̂µ might fail to have a positive lower bound causes no trouble.) We can replace
the system (5.11) and (5.12) with a single integral equation by the following device. We
introduce a new variable u by

(5.13) u = θ′′, θ(0) = 0 = θ′(1).

The integration of this system gives

(5.14) θ(s) = −
∫ 1

0
G(s, ξ)u(ξ) dξ =: A[u](s), θ′(s) = −

∫ 1

s
u(ξ) dξ =: B[u](s).

(iii) Show that the substitution of these representations into the second-order quasilinear
boundary-value problem converts it into the integral equation

(5.15) u(s) = −
M̂s(B[u](s), s) + λ sin

(
A[u](s)

)
M̂µ(B[u](s), s)

.

Note that in all the nonlinear integral equations we had previously obtained, a linear in-
tegral operator acts on a nonlinear function of the unknown, whereas in (5.15), nonlinear
functions act on the linear integral operators A and B. (iv) For u ∈ C0[0, 1], show that
(5.15) is equivalent to the original quasilinear boundary-value problem. (v) Show that
the right-hand side of (5.15) defines a compact and continuous operator from C0[0, 1] to
itself. Discuss the modifications necessary to handle the analog of Ex. 5.8. (Formula-
tions like (5.15) are particularly useful for axisymmetric problems for plates and shells,
for which the full range of invertibility results of Secs. 4.1 and 8.10 are not available.
See Chap. 10.)

The linearization (4.5) of (1.5) is equivalent to the Sturm-Liouville prob-
lem

(5.16) d
ds [(EI)(s)ψ′(s)] + λψ(s) = 0, ψ(0) = 0 = ψ′(1).

The Sturmian theory (see Coddington & Levinson (1955) or Ince (1926),
e.g.) asserts that the eigenvalues λ0

1, λ
0
2, . . . of this problem are simple

and positive, that λ0
k → ∞ as k → ∞, and that the eigenfunction ψk
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corresponding to λ0
k has exactly k zeros on [0, 1], each simple. (For EI

constant, these results follow from an elementary computation.)
Thus, the One-Parameter Global Bifurcation Theorem 4.19 implies that

bifurcating from each point (λ0
k, o) on the trivial branch of (1.5) is the

branch S(λ0
k), which is a maximal connected subset of the closure S of

nontrivial solution pairs. S(λ0
k) is unbounded in R × X or joins (λ0

k, o) to
another such bifurcation point. We wish to determine what θ looks like on
the branches S(λ0

k) and where S(λ0
k) are located.

The symmetry of our problem implies that S(λ0
k) can be decomposed

into the union of two branches S±(λ0
k), which are reflections of each other.

We may define S+(λ0
k) to consist of all elements of S(λ0

k) for which θ′(0) ≥
0, and S−(λ0

k) to consist of all elements of S(λ0
k) for which θ′(0) ≤ 0.

In the ensuing development, we focus on the function θ. If (θ,M) in
C0[0, 1] × C0[0, 1] satisfies (1.5), then θ in C1[0, 1] satisfies (1.6). We ac-
cordingly study branches with θ continuously differentiable.

A very simple piece of information that greatly illuminates the nature
of θ on a nontrivial branch is the number of its zeros. A number s0 in [0, 1]
is a simple zero or a node of a continuously differentiable function θ iff
θ(s0) = 0, θ′(s0) �= 0. For EI everywhere positive, the zeros of a nontrivial
solution θ must be simple, for if θ were to have a non-simple zero at s0,
then θ would satisfy the initial-value problem consisting of (1.6a) and the
initial conditions θ(s0) = 0 = θ′(s0). But this initial-value problem, which
must have a unique solution (when EI is everywhere positive), clearly has
the unique solution 0. (If EI should vanish as in Ex. 5.6, then the standard
uniqueness theory for ordinary differential equations fails if θ has a double
zero where EI vanishes. A more sophisticated analysis is then required. We
shall treat examples of such analyses in the following chapters.) In Fig. 5.17
we show the graph of a function θ satisfying (1.6b,c) and having exactly
three zeros, each of which is simple. In Fig. 5.18, we illustrate corresponding
configurations r satisfying the specialization r′ = cos θi + sin θj of (4.1.3)
to the elastica.

0 1
s

θ

Fig. 5.17. Graph of a function θ satisfying (1.6b,c) and hav-
ing exactly three zeros, each of which is simple. Knowing the
number of its zeros and knowing something about the size of θ
between its zeros, we have a very accurate qualitative picture of
the behavior of θ.
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(a) (b) (c)

Fig. 5.18. Sketches of configurations of the elastica when θ has
the behavior shown in Fig. 5.17. That in (a) corresponds to a
θ with maxs |θ(s)| < π/2. That in (b) corresponds to a θ with
the maxima of |θ| slightly exceeding π/2 on each of the three
intervals bounded by the zeros of θ, and that in (c) corresponds
to a θ with the maxima of |θ| slightly less than π.

If we knew that a nontrivial branch were a curve, then by the definition
of a curve, θ would depend continuously on a parameter for the branch.
Were θ to change the number of its zeros on such a branch, then, as Fig. 5.17
suggests, it would have to evolve through a state in which it would have
a double zero. By the argument given above, such a state is trivial. Thus
along a curve of solution pairs, θ could change its nodal properties only at
a trivial solution pair. Each curve of nontrivial solution pairs is therefore
characterized by the number of zeros of θ. We now show that this same
conclusion remains valid for any branch of solutions, which may merely be
connected.

Let Z denote the set of all continuously differentiable functions on
[0,1] that satisfy (1.6b,c). Let Zj denote the subset of all functions in
Z that have exactly j zeros, each of which is simple. Zj is open in Z be-
cause the Implicit-Function Theorem implies that each element of Zj has a
C1-neighborhood of elements of Z that lies in Zj . (That is, if θ ∈ Zj ,
then there is an ε > 0 (depending upon θ) such that if φ ∈ Z and if
maxs |θ(s) − φ(s)| + maxs |θ′(s) − φ′(s)| ≤ ε, then φ ∈ Zj . Note that Zj is
not open in C0[0, 1].) The sets Zj are clearly disjoint.

The complement Z \ ∪∞
j=1Zj of the union of the Zj consists of all those

functions in Z having a zero of multiplicity 2 or more. Since ∂Zj is in this
complement, an element of ∂Zj must have a zero of multiplicity 2 or more.
Now the last statement of Theorem 4.14 implies that if a nontrivial solution
pair (λ, (θ,M)) of (1.5) is in S(λ0

k) and lies sufficiently close to (λ0
k, o), then

θ ∈ Zk. But this fact implies that if (λ, (θ,M)) is any nontrivial solution
pair in S(λ0

k), then θ ∈ Zk: Suppose that there were a nontrivial (λ̃, (θ̃, M̃))
in S(λ0

k) with θ̃ not in Zk. We could represent the maximal connected set
of nontrivial solution pairs containing (λ̃, (θ̃, M̃)) as the union of those pairs
with θ in Zk and those pairs with θ not in Zk. Neither of these sets could
be empty. Since S(λ0

k) is connected (see the definition following (3.37)),
the second set would have to contain a boundary point of the first set and
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therefore must contain a nontrivial solution pair with θ ∈ ∂Zk. But this is
impossible because this θ must have a double zero and therefore be the zero
function. Thus, each S(λ0

k) is globally characterized by the nodal property
that each nontrivial θ has exactly k zeros, each simple. This property is
inherited from the corresponding eigenfunction of linearized problem.

Moreover, S(λ0
k) cannot contain a point (λ0

l , o), l �= k, for, if so, our pre-
ceding argument would show that if (λ, (θ,M)) ∈ S(λ0

k), then θ ∈ Zk∩Zl =
∅. By the alternative of Theorem 4.19, each branch S(λ0

k) is unbounded in
(λ, (θ,M))-space.

5.19. Exercise. For problem (1.6) prove that if (λ, (θ, M)) ∈ S(λ0
k), then

(5.20) max
s

|θ(s)| < π.

Use this fact to show that each bifurcating branch is also characterized by the number
of zeros of M .

We now obtain information about the disposition of the branches S(λ0
k).

Let us multiply (1.6a) by θ and use (1.6b,c) to integrate the resulting
expression by parts. We obtain

(5.21)
∫ 1

0
(EI)(s)[θ′(s)]2 ds = λ

∫ 1

0
θ(s) sin θ(s) ds.

Inequality (5.20) implies that the integral on the right-hand side of (5.21)
is positive for any nontrivial solution, so that a corresponding λ must be
positive. It then follows that on a bifurcating branch the right-hand side
of (5.21) is less than or equal to λ

∫ 1
0 θ(s)

2 ds. The theory of Rayleigh
quotients (see Courant & Hilbert (1953) or Stakgold (1998), e.g.) implies
that if θ �= 0, then

(5.22)

∫ 1
0 θ

′(s)2 ds∫ 1
0 θ(s)

2 ds
≥ π2

4

where π2/4 is the smallest eigenvalue for ψ′′ + λψ = 0 subject to (1.6b,c).
Thus

(5.23) λ ≥ π2

4
min

s
(EI)(s)

on any bifurcating branch. By integrating (1.6a) from s to 1, we obtain
(EI)(s)θ′(s) = λ

∫ 1
s

sin θ(s) ds, which yields

(5.24) max
s

|θ′(s)| ≤ λ

mins(EI)(s)
.

Since branches S(λ0
k) are unbounded, it follows that λ must be unbounded

along each branch, for if not, θ and θ′ would also have to be bounded in the
C0-norm, by (5.20) and (5.24), yielding a contradiction. Similar results can
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be obtained in the situations covered by Exs. 5.7 and 5.8. Sharper estimates
can be derived by the use of the more delicate techniques discussed in
Chap. 6.

Thus, the disposition of branches is at least qualitatively like that shown
in Fig. 1.13. Since we know what every solution looks like on every bifur-
cating branch, we have obtained with little effort a qualitative description
of all bifurcating solutions comparable in detail to the quantitative de-
scriptions delivered by the exact solutions in terms of elliptic functions for
problems with EI constant and to those delivered by numerical methods.
The next exercise and the results of the next section show the effects caused
by nonlinear material response.

5.25. Exercise. Derive inequalities like (5.24) under the conditions of Ex. 5.7 when
the boundary conditions are θ(0) = 0 = θ(1).

The boundary-value problem (1.6) possesses nonbifurcating branches corresponding
to the noninflectional configurations like that illustrated in Fig. 4.2.15b. These configu-
rations, which occur for negative values of λ, have θ’s with values outside [−π, π], so that
the right-hand side of (5.21) is positive. These solutions can be found explicitly when
EI = B (const.). To show that there are such solutions when EI is not constant, we can
consider the one-parameter family of problems with bending stiffness αB +(1−α)EI(·),
α ∈ [0, 1] and use a multiparameter continuation theory analogous to the Multiparame-
ter Bifurcation Theorem 4.23. The approach is analogous to the use of degree theory in
Sec. 3.3.

This section is roughly based upon Crandall & Rabinowitz (1970) and Antman &
Rosenfeld (1978). For generalizations of its analysis to extensible and shearable rods,
which offer a rich collection of new phenomena, see Secs. 6.5–6.10.

6. Perturbation Methods
The formal perturbation methods described in Sec. 2.8 carry over to

the bifurcation problems we are now studying. Here we describe some re-
finements applicable to one-parameter problems satisfying the hypotheses
of Corollary 4.17, which fully justifies the perturbation approach. In par-
ticular, when its hypotheses hold, Corollary 4.17 implies that bifurcating
solution pairs of (3.1) lie on branches of the form

ε �→ λ(ε) =
r−1∑
k=0

λ(k)ε
k

k!
+O(εr),(6.1a)

ε �→ u(·, ε) =
r−1∑
k=1

u(k)(·)εk
k!

+O(εr)(6.1b)

for sufficiently small ε. The parameter ε may be regarded as an amplitude
of the solution u on the branch. We surround the indices on λ and u with
parentheses to distinguish them from indices identifying the branches.

The equations for {λ(k−1), u(k)} are obtained by substituting (6.1) into
(3.1), differentiating the resulting equation k times with respect to ε, and
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then setting ε equal to 0. In this way we obtain

f[λ(0), o] = o,(6.2) (
∂f

∂u

)0
· u(1) = o,(6.3) (

∂f

∂u

)0
· u(2) = −

(
∂2f

∂u∂u

)0

: u(1)u(1) − 2λ(1)

(
∂2f

∂λ∂u

)0

: u(1),(6.4) (
∂f

∂u

)0
· u(3) = −

(
∂3f

∂u∂u∂u

)0

∴ u(1)u(1)u(1) − 3
(

∂2f

∂u∂u

)0

: u(1)u(2)(6.5)

− 3λ(1)

(
∂3f

∂λ∂u∂u

)0

: u(1)u(1) − 3λ(1)
2
(

∂3f

∂λ∂λ∂u

)0

: u(1)

− 3λ(1)

(
∂2f

∂λ∂u

)0

: u(2) − 3λ(2)

(
∂2f

∂λ∂u

)0

: u(1), etc.,

where (∂f/∂u)0 := (∂f/∂u)[λ(0), o], etc. The quadratic form (∂2f/∂u∂u)0 :
u(1)u(1) may be defined as d

dε (∂f/∂u)[λ(0), εu(1)] · u(1)
∣∣
ε=0, etc. Note that

(6.2) is an identity.
If λ(0) is not an eigenvalue of (6.3), then its only solution is o. It follows

from (6.4), (6.5), and their successors that u(1) = u(2) = · · · = u(r) = o, in
consonance with Theorem 4.1. We accordingly limit our attention to the
case in which λ(0) is an eigenvalue of (6.3).

Each of the equations (6.4), (6.5), and their successors has the form of
the inhomogeneous linear equation

(6.6) (∂f/∂u)[λ(0), o] · v = h.

Since λ(0) is an eigenvalue, (∂f/∂u)[λ(0), o] is singular, i.e., it fails to have
an inverse. Consequently, (6.6) cannot be solved for all h. The right-hand
side of (6.4), however, contains the parameter λ(1) as well as a collection of
parameters equal to the dimension n of the null space ker (∂f/∂u)[λ(0), o] in
which u(1) is a typical element. Thus we might be able to ensure the solv-
ability of (6.4), etc., by adjusting these parameters appropriately. Lemma
19.2.13, the simple version of the Alternative Theorem, implies that if (6.6)
has a solution, then h annihilates the null space ker (∂f/∂u)

[
(λ(0), o

]∗ of the
adjoint:

(6.7) 〈h, v∗〉 = 0 ∀ v∗ ∈ ker (∂f/∂u)[λ(0), o]∗.

(This is just a generalized orthogonality condition.) Concrete applications
of this principle are given in the remarks following (2.8.30) and below. If
n∗ is the dimension of ker (∂f/∂u)[λ(0), o]∗, then (6.7) provides n∗ equations
that restrict the behavior of the parameters appearing in h. In particular,
if I − (∂f/∂u)[λ(0), o] (which is L

(
λ(0)

)
by (4.5)) is compact, then n∗ = n

and (6.7) is also sufficient for (6.6) to have a solution (see Sec. 19.2).
We now apply the perturbation method to (1.8), which is equivalent to

(1.6). To handle (6.7), it is most convenient to seek solutions θ of (1.8) in
the real Hilbert space L2(0, 1), which has the inner product

(6.8) 〈u, v〉 :=
∫ 1

0
u(s)v(s) ds.
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(It is easy to see that solutions of (1.8) in L2(0, 1) are classical solutions of
(1.6).) Eqs. (6.3)–(6.5) corresponding to (1.8) are

(6.9) θ(k)(s) − λ(0)

∫ 1

0
G(s, ξ)θ(k)(ξ) dξ = h(k)(s) :=

∫ 1

0
G(s, ξ)j(k)(ξ) dξ

where j(1) = 0, j(2) = 2λ(1)θ(1), j(3) = −λ(0)θ(1)
3 + 3λ(1)θ(2) + 3λ(2)θ(1).

These problems are equivalent to

d
ds [(EI)(s)θ′(k)(s)] + λ(0)θ(k)(s) = −j(k)(s),(6.10a)

θ(k)(0) = 0 = θ′(k)(1).(6.10b,c)

Problem (6.10) for k = 1 has a nontrivial solution, which has the form

(6.11) θ(1) = A(1)ψn if λ(0) = λ0
n

where A(1) is an arbitrary real constant and where we have used the no-
tation introduced after (5.16). We restrict our attention to the λ(0) given
by (6.11). In this case, we denote h(k), j(k), λ(k), and θ(k) by h(k)n, j(k)n,
λ(k)n, and θ(k)n. Since the operator on the left-hand side of (6.9) is self-
adjoint on L2(0, 1), its null space equals the null space of its adjoint, which
is span{ψn}. Thus (6.9) has a solution if and only if

(6.12) 〈h(k)n, ψn〉 = 0.

6.13. Exercise. Prove that (6.12) is equivalent to

(6.14) 〈j(k)n, ψn〉 = 0.

(This equation can be obtained by multiplying (6.10a) by ψn and integrating the result-
ing equation by parts subject to (6.10b,c). But this simple derivation of (6.14) yields
only a necessary condition for solvability.)

A direct study of (1.6) in a suitable subspace of L2(0, 1) introduces technical difficul-
ties that are at bottom resolved by showing the equivalence of (1.6) to (1.8) (see Naimark
(1969) or Stakgold (1998)). If (1.6) is to be studied directly, it is more convenient to do
so in the Sobolev space W 1

2 (0, 1). In this case, we would actually analyze the weak form
of this problem, which corresponds to the Principle of Virtual Power. Condition (6.14) is
still valid (see Nečas (1967)). If (1.8) were studied in other than a Hilbert space (as was
done in Sec. 5), then a variety of technical obstacles must be overcome to construct the
adjoint (see Taylor & Lay (1980)), but (6.14) still holds. We could study the equivalent
problem (1.5) for (θ, M) ∈ L2(0, 1). Its linearization misses being self-adjoint, but the
requisite solvability condition again reduces to (6.14).

To make our computations completely explicit, let us assume that EI =
const., in which case

(6.15) ψn =
√

2 sin (2n−1)π
2 s, λ0

n = (2n−1)2π2

4 EI.

We substitute (6.11) and (6.15) into (6.14) for k = 2 to obtain λ(1)nA(1) =
0. Since we seek nontrivial solutions, we take A(1) �= 0, whence

(6.16) λ(1)n = 0.
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This condition significantly simplifies (6.10) for k = 2, which has a solution
of the form

(6.17) θ(2)n(s) = A(2) sin (2n−1)π
2 s.

We now substitute (6.11) and (6.15)–(6.17) into (6.14) for k = 3 to obtain
the most important consequence of our perturbation procedure:

(6.18) λ(2)n =
λ0

n

∫ 1
0 θ(1)n(s)4 ds

3
∫ 1
0 θ(1)n(s)2 ds

= (2n−1)2π2

16 EIA(1)
2.

The solution of (6.10) for k = 3 is

(6.19) θ(3)n(s) = A(3) sin (2n−1)π
2 s+

A(1)
3

32
sin 3(2n−1)π

2 s.

Thus

λ(ε) = (2n−1)2π2

4 EI + ε2A(1)
2
[

(2n−1)2π2

32

]
EI +O(ε4),(6.20a)

θ(s, ε) =
[
εA(1) +

ε2A(2)

2
+
ε3A(3)

6

]
sin (2n−1)π

2 s(6.20b)

+
ε3A(1)

3

192
sin 3(2n−1)π

2 s+O(ε4).

The error term O(ε4) rather than O(ε3) appears in (6.20a) because the
oddness of (1.8) in θ implies that λ must be even in ε.

Bifurcation from (λ0,o) is supercritical or subcritical iff there is a neigh-
borhood of (λ0,o) in which every nontrivial solution pair (λ,u) respectively
has λ > λ0 or λ < λ0. Bifurcation from (λ0,o) is transcritical iff on every
sufficiently small neighborhood of (λ0,o) there are solution pairs (α,v) and
(β,w) with α > λ0 and β < λ0. The physical significance of these concepts
are discussed in Sec. 2. The positivity of λ(2)n ensures that the bifurcations
for (6.10) are supercritical, as shown in Fig. 1.13. Note that the positivity
of λ(2)n follows from (6.18) even when (6.15) does not hold.

We could simplify the form of (6.20b) by replacing εA(1)+
ε2A(2)

2 + ε3A(3)

6
by another small parameter η, the transformation from ε to η being invert-
ible for small enough ε. A far more elegant way to effect this simplification
is to take the amplitude ε to be the projection of θ onto the normalized
eigenfunction ψn =

√
2 sin (2n−1)π

2 s:

(6.21) ε := 〈θ(·, ε), ψn〉.

If we differentiate this equation k times with respect to ε and then set
ε = 0, we obtain

(6.22) 〈θ(1)n, ψn〉 = 1, 〈θ(k)n, ψn〉 = 0 for k = 2, 3, . . . .
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The substitution of (6.17) and (6.19) into (6.22) yields A(1) =
√

2, A(2) =
0 = A(3), which produce the desired simplification of (6.20b).

It is not immediately evident that (6.21) is consistent. We show that it is for the
general problem (3.1) when X is a Hilbert space. Suppose that (∂f/∂u)0 (cf. (6.3)) has
a 1-dimensional null space spanned by the unit vector u1. Then (6.21) is just a special
version of

(6.23) ε − 〈u(·, ε), u(1)〉 = 0.

If this equation were to be used as a definition of ε, then we would hope that we could
solve it uniquely for ε by the Implicit-Function Theorem. But in view of (6.1b), the deriv-
ative of the left-hand side of (6.23) with respect to ε at ε = 0 is just
1 − 〈u(1), u(1)〉 = 0. To circumvent this difficulty, we introduce the parameter ε ex-
plicitly into our bifurcation problem:

(6.24a) f[λ, u] = o, ε − 〈u, u(1)〉 = 0.

We abbreviate this system as

(6.24b) g[λ, u, ε] = o.

Now g[λ, o, 0] = o. We seek to solve (6.24) for λ and u as functions of ε for (λ, u, ε)
near (λ(0), o, 0). If f is nice enough, then Theorem 19.2.34 and the Implicit-Function
Theorem 20.1.27 say that we can find such a solution if the operator (∂g[λ(0), o, 0]/∂λ,

∂g[λ(0), o, 0]/∂u) is nonsingular, and that this operator is nonsingular if the equation

(6.25a)
∂g[λ(0), o, 0]

∂λ
µ +

∂g[λ(0), o, 0]

∂u
· v = o

has only the trivial solution (µ, v) = (0, o). But (6.25a) is equivalent to

(6.25b)
∂f[λ(0), o]

∂u
· v = o, 〈v, u(1)〉 = 0,

which clearly has only trivial solutions. Thus (∂g[λ(0), o, 0]/∂λ, ∂g[λ(0), o, 0]/∂u) is non-
singular, and (6.24) admits the requisite solution, having as many derivatives with re-
spect to ε as f has with respect to its arguments. If we denote the solution of (6.24) by
(λ(ε), u(·, ε)), then we see that (6.23) is an identity.

The following exercise is strongly recommended.

6.26. Exercise. Suppose that the linear constitutive equation M = EIθ′ is replaced
by the nonlinear equation M(s) = M̂(θ′(s)) for a uniform rod. Suppose that M̂ is
an odd, strictly increasing, five-times continuously differentiable function. Use (6.21)
to derive representations analogous to (6.20) for the modified version of problem (1.6)
(cf. Exs. 5.7 and 5.10). Find conditions on M̂ for λ(2) to be negative. That there are
such conditions says that there are nonlinear material responses that can produce the
dangerous subcritical bifurcation.

6.27. Exercise. Carry out formal perturbation expansions up to order 3 in ε of (3.14),
of (3.23b) with α = 0, and of (3.25) with α = 1.

6.28. Exercise. Find necessary and sufficient conditions on the sufficiently smooth
function f with f(0) = 0 such that the scalar problem x = λx−f(x) has (i) supercritical,
(ii) subcritical, and (iii) transcritical bifurcations.

6.29. Exercise. To see what happens when f is not sufficiently smooth for the pertur-
bation method to work, plot the bifurcation diagram for the scalar problem

(6.30) λx = f(x) :=

{
1 −

√
1 + x, x > 0,

−1 +
√

1 − x, x < 0.

Note that f is continuously differentiable.

The treatment of this section is roughly based on that of J. B. Keller (1968) (cf. Iooss
& Joseph (1990)).
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7. Dynamics and Stability
As this chapter has shown, nonlinearly elastic (and other kinds of) bod-

ies may have several distinct equilibrium configurations under the same
conditions. To determine whether a given equilibrium configuration is ob-
served, we must analyze its stability. Since an equilibrium configuration
is just a special motion that occurs for special initial conditions, we define
the stability of a given motion.

Let a body have a motion p0 for a given system f0 of initial conditions,
boundary conditions, applied loads, and other data. (For a material with
memory, the initial data may include the entire history before the initial
time.) p0 is a function of spatial variables and time. Let us denote the
motion corresponding to the data f by t �→ p[f](·, t). (Here the dot occupies
the slot for the spatial variables.) Thus p0 ≡ p[f0]. For simplicity, let us
assume that there is no memory and that the initial data are prescribed at
time 0.

It is of great practical importance to know whether p remains close to
p0 when f remains close to f0. We can make this question mathematically
precise by defining a distance π[p(·, t), p0(·, t)] between p(·, t) and p0(·, t)
and a distance φ[f, f0] between f and f0. (It is by no means obvious which
of many possible choices of these distances is both physically meaning-
ful and mathematically convenient.) Given prescribed positive numbers
ε and δ, we may pose the mathematically precise question of whether
supt≥0 π[p(·, t), p0(·, t)] < ε if φ[f, f0] < δ. It is mathematically easier to
ask whether p0 is Lyapunov-stable:

7.1. Definition. The motion [0,∞) � t �→ p0(·, t) is stable (in the sense
of Lyapunov) iff for arbitrary ε > 0 there is a number δ > 0 such that

sup
t≥0
π[p(·, t), p0(·, t)] < ε if φ[f, f0] < δ.

This motion is asymptotically stable (in the sense of Lyapunov) iff it is
stable and if π[p(·, t), p0(·, t)] → 0 as t→ ∞.

The theory of Lyapunov stability for systems of ordinary differential
equations (which describe discrete mechanical systems) is a highly devel-
oped subject. The study of the stability of solutions of partial differential
equations of continuum mechanics is in a far more primitive state. Elastic
stability theory primarily treats the study of the stability of equilibrium con-
figurations of elastic bodies. In view of the technical difficulties presented
by a rigorous analysis of equilibrium solutions of nonlinear evolution equa-
tions, elastic stability theory has traditionally employed simplified criteria
of stability, logically distinct from Definition 7.1. The history of its relation
to bifurcation theory has been a history of slow and painful mastery over
entrenched misconception and imprecision. Indeed, the distinction between
stability and equilibrium exercised the ancients:

Anaximander thought that the earth floats freely, and is not supported on anything.
Aristotle [De Caelo, 295b], who often rejected the best hypotheses of his time, objected
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to the theory of Anaximander, that the earth, being at the centre, remained immovable
because there was no reason for moving in one direction rather than another. If this
were valid, he said, a man placed at the centre of a circle with food at various points
of the circumference would starve to death for lack of reason to choose one portion
of food rather than another. This argument reappears in scholastic philosophy, not in
connection with astronomy, but with free will. It reappears in the form of “Buridan’s
ass,” which was unable to choose between two bundles of hay placed at equal distances
to right and left, and therefore died of hunger.*

Until the 1960’s, a large part of elastic stability theory was generally
understood to consist in the analysis of linearized equations like (6.10)
for k = 1 and in the conventional interpretation of results along the lines
of Sec. 2 (see Timoshenko & Gere (1961), e.g.). In this case, the trivial
solution is said to be unstable by the criterion of adjacent equilibrium. Per-
turbation analyses of the sort leading to (6.20) are called analyses of post-
buckling behavior in the engineering literature. This term also accounts for
the study of imperfections.

If the equilibrium problem possesses a potential-energy functional that
has a local minimum at equilibrium state p0, then p0 is said to be stable
according to the energy criterion introduced by Lagrange. This criterion
is readily justified for a class of discrete mechanical systems governed by
ordinary differential equations. It is a far more delicate matter to justify
it for continuous systems (see Ball, Knops, & Marsden (1978), Beevers
& Craine (1988), Beevers & Šilhavý (1988), Browne (1979), Caflisch &
Maddocks (1984), and Potier-Ferry (1981, 1982)).

If the linearization of the equations of motion about p0 has only bounded
solutions (for all initial conditions), then p0 is said to be infinitesimally sta-
ble. (Of course, boundedness must be defined in terms of a suitable metric.)
Within the theory of ordinary differential equations, there are many exam-
ples, particularly relevant to elasticity theory, in which infinitesimally stable
equilibrium solutions are not stable. Again, the justification for partial dif-
ferential equations of cases in which infinitesimal stability implies stability
is delicate. See Antman & Koch (2000), Koch & Antman (2001), Mars-
den & McCracken (1976), Potier-Ferry (1981, 1982), and Xu & Marsden
(1996).

It is now common practice in engineering to study dynamical behavior of
a continuum by studying the behavior of a discretization with a small num-
ber of degrees of freedom. Mathematical justifications of these approaches
are difficult. See the comments at the end of Sec. 2.11.

These various approaches should be used with circumspection, not mere-
ly because they have not been fully justified on mathematical grounds, but
because they can be physically misleading. A problem illustrating the
weakness of these criteria is that of the buckling of a rod under certain
kinds of nonconservative torsion. Nikolai (1928, 1929) observed that the
only equilibrium state is trivial, yet the rod becomes unstable by under-

*Quoted from Russell (1945, pp. 212–213). It is interesting to note that Buridan,
who lived in the fourteenth century, contributed to the development of the basic ideas
of mechanics.
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going motions. A similar phenomenon occurs in Beck’s (1952) problem
for the buckling of a rod under a follower force. We discuss general-
izations of these problems in Secs. 6.11 and 9.4. The need for careful
treatments of stability questions has been emphasized by Bolotin (1963),
Herrmann (1967a), Leipholz (1970,1978a), Panovko & Gubanova (1979),
Ziegler (1977). The need for mathematically rigorous treatments has been
emphasized by Knops & Wilkes (1973).
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CHAPTER 6

Global Bifurcation Problems
for Strings and Rods

In this chapter we apply the theory of Chap. 5 to the classical steady-
state bifurcation problems for the whirling of strings and rods, the buckling
of straight rods under end thrust, and the buckling of arches under hydro-
static pressure. Here we confront certain singular boundary-value problems
(like those described in Ex. 5.5.6). We concentrate on novel effects caused
by the nature of the nonlinear elastic response. We develop techniques by
which we can convert given boundary-value problems into mathematical
forms suitable for global analysis, and techniques by which we can extract
very detailed information about specific classes of problems.

1. The Equations for the
Steady Whirling of Strings

We employ the notation of Chap. 2. Let {i, j,k} be a fixed right-handed
orthonormal basis for E

3 with k pointing downward. Let ω be a fixed
number and set

(1.1) e(t) := cosωti + sinωtj.

We study steady rotations of a string about k, for which r has the form

(1.2) r(s, t) = x1(s)e(t) + x2(s)k × e(t) + z(s)k.

Let s denote the arc-length parameter of the string in its natural state. We
assume that [0, 1] � s �→ r(s, t) is absolutely continuous for each t. We set

(1.3) ν(s) := |rs(s, t)|

when (1.2) holds.
Suppose that the end s = 1 of the string is fixed at the origin:

(1.4) x1(1) = 0 = x2(1), z(1) = 0

and suppose that a material point of weight µ is attached to the end s = 0.
The only body force on the string is the force of gravity acting in the k-
direction. (Centrifugal forces, which are just misplaced acceleration terms,
are automatically accounted for by the computation of acceleration from

183
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(1.2).) In this case, the integral form of the equations of motion for elastic
strings, which adapts (2.2.7), (2.2.8), (2.2.10b), and (2.2.23) to (1.2) and
the boundary conditions at 0, is

N(s)x′
α(s)

ν̂(N(s), s)
+ ω2

[∫ s

0
(ρA)(ξ)xα(ξ) dξ +

µxα(0)
g

]
= 0, α = 1, 2,(1.5)

N(s)z′(s)
ν̂(N(s), s)

= −
[
g

∫ s

0
(ρA)(ξ) dξ + µ

]
=: −[sγ(s) + µ].(1.6)

(These equations are equivalent to a suitable version of the Linear Momen-
tum Principle (2.3.1) for steady motions adapted to the boundary con-
ditions in the manner of Sec. 8.15.) We assume that ρA is everywhere
positive and continuous and that ν̂ is continuous. As in Chap. 3, we fur-
ther require for each s that ν̂(·, s) be strictly increasing, ν̂(N, s) → ∞ as
N → ∞, ν̂(N, s) → 0 as N → −∞, and ν̂(0, s) = 1 (see Fig. 3.3.7). Our
first result is both physically important and mathematically useful:

1.7. Proposition. Let r and N satisfy (1.3)–(1.6) with r(·, t) absolutely
continuous and with N continuous. Then for each t, r(·, t) is a plane curve.

Proof. We set

(1.8) uα(s) := N(s)x′
α(s)/ν̂(N(s), s).

Then (1.5) implies that the uα are continuously differentiable. It follows
from (1.4) and (1.5) that (u1, x1) and (u2, x2) each satisfy the boundary-
value problem

u′ + ω2ρAx = 0, x′ =
uν̂(N(s), s)
N(s)

,(1.9a,b)

gu(0) = −ω2µx(0), x(1) = 0.(1.9c,d)

Since we are assuming that (1.3)–(1.6) has a solution, the function s �→
N(s)/ν̂(N(s), s) may be regarded as known and the problem (1.9) may
be regarded as linear in (u, x). Equation (1.9b) is singular wherever N
vanishes. Equations (1.6) and (1.8) imply that

(1.10) N(s)2 = u1(s)2 + u2(s)2 + [sγ(s) + µ]2.

Thus N vanishes nowhere if µ > 0. If µ = 0, then we deduce from (1.5) and
(1.6) that N vanishes at 0 and only at 0. (Thus the problem with µ = 0 is
singular.)

The second-order linear system (1.9a,b) has two independent solutions
and has one independent solution satisfying (1.9d). Let us fix one such
independent solution and denote it by (u, v). Since (u1, x1) and (u2, x2)
each satisfy (1.9), it follows that there are constants β1 and β2 such that
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(uα, xα) = βα(u, x). If β2
1 +β2

2 = 0, then r reduces to zk, and we are done.
If not, then r has the form

(1.11)
r(s, t) =

√
β2

1 + β2
2 x(s)e

�(t) + z(s)k,

e�(t) :=
β1e(t) + β2k × e(t)√

β2
1 + β2

2

,

which says that r(·, t) is confined to the {e�(t),k}-plane. �
Clearly, this proof applies to (1.9a,b) subject to other boundary condi-

tions, provided that N , which can vanish at most once, does not vanish on
(0, 1). A more delicate analysis is required when N vanishes on (0, 1); see
Ex. 3.6 below.

By readjusting the origin on the time-axis, we can identify e� with e,
and accordingly set x1 = x, x2 = 0, u1 = u, and u2 = 0. Thus the problem
(1.3)–(1.6) is equivalent to (1.4), (1.6), (1.9), and

(1.12±) N(s) = ±
√
u(s)2 + [sγ(s) + µ]2.

We could combine (1.9) and (1.12) to obtain

(1.13±)
d

ds

[
u′

(ρA)(s)

]
± ω

2uν̂(±
√
u(s)2 + [sγ(s) + µ]2, s)√

u(s)2 + [sγ(s) + µ]2
= 0,

which is subject to the boundary conditions

(1.14a,b) g(ρA)(0)u(0) = µu′(0), u′(1) = 0.

If ρA is not differentiable, then the interpretation of (1.13) is given by (1.9)
and (1.12). It proves more convenient to work with this system.

We now resolve the ambiguity of sign in (1.12±). Since γ > 0 everywhere,
Eq. (1.6) says that z′ has the sign opposite to that of N . Thus the string
must lie entirely above the support at the origin if N ≤ 0 and must lie
entirely below the support if N ≥ 0. We now show that the former states
are of little interest.

1.15. Proposition. The only classical solution of (1.9), (1.12−) is the
trivial solution, which describes the string balanced vertically above the
support.

Proof. If ω = 0, the conclusion follows immediately from (1.9), so we
henceforth assume that ω2 > 0. We first show that u ≤ 0. Suppose not.
Then the continuity of u would imply that u has a positive maximum
u(σ) > 0 on [0, 1]. Now σ cannot be 0, for if so, (1.9c) would imply that
x(0) < 0, and (1.9a) would then imply that u′(0) > 0, which is incom-
patible with the maximality of u(0). If σ is in (0, 1), then u′(σ) = 0 by
elementary calculus; if σ = 1, then (1.9a,b) also implies that u′(σ) = 0.
It would then follow from (1.9a,b), (1.12−) that x(σ) = 0 and x′(σ) < 0.
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The continuity of x would imply that x(ξ) > 0 for all ξ lying in a suffi-
ciently small neighborhood to the left of σ. Thus (1.9a) would imply that
u′(ξ) < 0 for all such ξ, in contradiction to the assumption that u(σ) is a
maximum. Thus u ≤ 0. Similarly, we show that u ≥ 0, so that u = 0.
That x = 0 follows from (1.9a). (This argument is a primitive application
of the maximum principle. A simpler and more traditional approach can
be applied to (1.13−) when ρA is continuously differentiable.) �

This result likewise extends to other boundary conditions.
1.16. Exercise. Transform (1.3), (1.5), (1.6), (1.12), and (1.13) by introducing the
change of variables

(1.17)

s∗ :=

∫ s
0 (ρA)(ξ) dξ∫ 1
0 (ρA)(ξ) dξ

, x∗(s∗) := x(s), z∗(s∗) := z(s), N∗(s∗) := N (s),

ν̂∗(N∗(s∗), s∗) :=
g
[∫ 1

0 (ρA)(ξ) dξ
]2

(ρA)(s)
ν̂(N (S), s), u∗(s∗) :=

N∗(s∗)x′∗(s∗)
ν̂∗(N∗(s∗), s∗)

,

ω2
∗ :=

ω2

g
, µ∗ :=

µ

g
∫ 1
0 (ρA)(ξ) dξ

.

We do not employ this mathematically convenient transformation, which has the effect
of replacing ρA by 1 and g by 1 (at the expense of complicating ν̂), because it would force
us to abandon the basic physical and geometrical variables we have become accustomed
to.

2. Kolodner’s Problem
In view of Proposition 1.15, we limit our study to (1.9) and (1.12+). We

treat just the difficult case in which µ = 0. We show that we can formulate
this problem so that it meets the hypotheses of the Global Bifurcation
Theorem 5.4.19.

We replace (1.9) and (1.12+) with their associated integral equations

u(s) = −ω2
∫ s

0
(ρA)(ξ)x(ξ) dξ,(2.1a)

x(s) = −
∫ 1

s

u(ξ)ν̂
(√
u(ξ)2 + ξ2γ(ξ)2, ξ

)
√
u(ξ)2 + ξ2γ(ξ)2

dξ,(2.1b)

which correspond to (1.5). A straightforward application of the Arzelà-
Ascoli Theorem 5.5.3 implies that the integral operators on the right-hand
sides of (2.1a,b) generate a compact mapping taking pairs (u, x) of con-
tinuous functions into pairs of continuous functions. Unfortunately, the
linearization of (2.1b) about the trivial solution, namely,

(2.2) x(s) = −
∫ 1

s

u(ξ)ν̂ (ξγ(ξ), ξ)
ξγ(ξ)

dξ,

has an integral operator that does not generate such a compact mapping. In
fact, there are continuous functions u vanishing at 0 such that the integral
in (2.2) does not converge for s = 0 (e.g., take u(s) = (log s)−1.)
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This difficulty is a direct consequence of the absence of µ. In fact,
one way to remedy it would be to penalize the problem by introducing
a sequence of µ’s approaching 0. Each penalized problem satisfies the
hypotheses of the Global Bifurcation Theorem. Theorem 5.4.21 could then
be used to show that the limiting problem has solution branches having the
same properties as their approximating branches. We shall describe this
approach in more detail in Sec. 3 in the context of a related problem, for
which alternative approaches are not evident. Here we have a convenient
alternative:

We set

(2.3a,b) u(s) =
√
sw(s), h(w, s) :=

ν̂
(√
sw2 + s2γ(s)2, s

)
√
w2 + sγ(s)2

,

which converts (2.1) to

w(s) = − ω
2

√
s

∫ s

0
(ρA)(ξ)x(ξ) dξ,(2.4a)

x(s) = −
∫ 1

s

w(ξ)h(w(ξ), ξ) dξ,(2.4b)

and converts (2.2) to

(2.5) x(s) = −
∫ 1

s

w(ξ)h(0, ξ) dξ = −
∫ 1

s

w(ξ)ν̂ (ξγ(ξ), ξ)√
ξγ(ξ)

dξ.

We write (2.4) as

(2.6) (w, x) = L(ω2) · (w, x) + g[ω2, w, x].

The essential compactness properties of (2.6) are given in the following
exercise.

2.7. Exercise. Let X := C0[0, 1] × C0[0, 1]. Prove that

[0,∞) × X � (ω2, w, x) �→ L(ω2) · (w, x), g[ω2, w, x] ∈ X

are continuous and compact.

We now study the eigenvalues of the linearized problem. The compact-
ness of L(ω2), which is affine in ω2, ensures that the eigenvalues have finite
multiplicity. This is a standard, useful property of compact linear map-
ping (see Riesz & Sz. Nagy (1955) or Stakgold (1998) among others). We,
however, give a more direct proof of a much sharper result by the methods
proceeding from (2.10) below. We readily show that the linearized problem
is equivalent to the linearization of (1.9), namely,

(2.8a,b,c,d) u′ + ω2ρAx = 0, x′ =
uν̂(sγ(s), s)
sγ(s)

, u(0) = 0, x(1) = 0.
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From (2.8) we obtain

(2.9)
ω2
∫ 1

0
ρAx2 dx = −

∫ 1

0
xu′ ds =

∫ 1

0
ux′ ds

=
∫ 1

0

u2ν̂(sγ(s), s)
sγ(s)

ds =
∫ 1

0

w2ν̂(sγ(s), s)
γ(s)

ds,

which tells us that the eigenvalues ω2 are real and positive.

We could have replaced
√
s in (2.3) with sα for any α ∈ (0, 1). The conclusion of

Ex. 2.7 would still be valid and the corresponding rightmost integral of (2.9) would
converge for any continuous w. The form of our actual (2.9) suggests that α = 1

2 is
particularly attractive. This choice is actually motivated by the treatment of Bessel
equations in the theory of linear operators.

To determine the properties of the set of eigenvalues of (2.8), which is
a singular Sturm-Liouville system, we introduce polar coordinates for the
(u, x)-plane by a Prüfer transformation

(2.10) u = r sinφ, −ωx = r cosφ.

The substitution of (2.10) into (2.8a,b) yields

(2.11) φ′ = ω
[
ρA cos2 φ+

ν̂(sγ(s), s)
sγ(s)

sin2 φ

]
.

Since this equation is singular at s = 0, it is not covered by the standard
existence and uniqueness theory. To show that this equation has a unique
solution satisfying the initial condition φ(0) = 0, we may set φ(s) =

√
sψ(s)

and write this expression as the integral from 0 to s of the right-hand side
of (2.11). We then use the Contraction Mapping Principle 20.13 as in Ex.
20.1.22 to show that this integral equation for ψ has a solution near 0. It
is then an easy exercise to show that the solution does not blow up and
therefore exists on [0,1]. Equation (2.11) is valid where r does not vanish.
The proof of Lemma 2.16 below shows that if r should vanish anywhere,
then it vanishes everywhere.

It is not difficult to see that there is a nontrivial solution of (2.8) for
each positive integer k for which an ω2 can be found such that

(2.12a,b) φ(0) = 0, φ(1) =
(2k − 1)π

2

(see Coddington & Levinson (1955, Chap. 8)). Since the solution φ of the
initial-value problem (2.11), (2.12a) strictly increases pointwise with ω2

and since φ(1) for this solution must be less than π/2 for small positive ω2,
we deduce

2.13. Sturmian Theorem. The eigenvalues ω2 = λ0
1, λ

0
2, . . . of (2.8) are

each simple and they can be ordered thus: 0 < λ0
1 < λ

0
2 < · · · with λ0

k → ∞
as k → ∞. The functions u(1)k and x(1)k constituting the eigenvector
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corresponding to λ0
k each have exactly k zeros on [0, 1]. The zeros of u(1)k

are distinct from those of x(1)k.

The only statement that does not follow from a careful study of the
geometry of the Prüfer transformation is that u(1)k and x(1)k cannot vanish
simultaneously at s = 0. A proof of it is an easy consequence of the proof of
Lemma 2.16 below. Note that (2.8) and the last statement of this theorem
imply that all the zeros of the components of the eigenfunctions are simple,
save possibly the zero of u(1)k at s = 0.

By virtue of Ex. 2.7 and Theorem 2.13, we can apply Theorem 5.4.19
to conclude that from each point (λ0

k, 0, 0) of [0,∞) × X there bifurcates
a branch S(λ0

k) of solutions of (2.6) in R × X . (The space X is defined
in Ex. 2.7.) By simply refining the nodal theory of Sec. 5.5 to account
for the singular behavior at s = 0, we now show that u and x on this
branch inherit the nodal properties of the eigenfunctions corresponding to
the eigenvalues determining the bifurcation points, u and x preserve these
properties globally, S(λ0

k) is unbounded, and S(λ0
k) does not join up with

any other branch:
We define Zj to be the set of all (w, x) ∈ X for which (i) w has exactly

j − 1 zeros on (0, 1), at which x does not vanish, (ii) x has exactly j − 1
zeros on (0, 1), (iii) x(0) �= 0, and (iv) w(1) �= 0, x(1) = 0. Thus Zj is
open in Z. Its boundary belongs to the set of (w, x) ∈ X for which w and
x vanish at the same point in (0, 1] or for which x(0) = 0.

We can now use the Local Bifurcation Theorem 5.4.14 to show that
if a nontrivial solution pair (ω2, (w, x)) in S(λ0

k) lies sufficiently close to
(λ0

k, (0, 0)), then (w, x) ∈ Zk. We use the argument on connectedness
given in Sec. 5.5 to show that this conclusion holds everywhere on S(λ0

k)
by showing that if (u, x) ∈ S(λ0

k) ∩ ∂Zk, then (w, x) = (0, 0). Standard
uniqueness theory implies this conclusion if w and x have a simultaneous
positive zero. We need only prove that (w, x) = (0, 0) if x(0) = 0.

We require a preliminary result:

2.14. Exercise. Let x be absolutely continuous on (0, 1), say, so that x has a derivative
x′ a.e. on (0, 1) and x(s) = x(a) +

∫ s
a x

′(ξ) dξ for a ∈ (0, 1). Thus if s > a, then
|x(s)| ≤ |x(a)| +

∫ s
a |x′(ξ)| dξ. Now |x| is also absolutely continuous, so that it is the

indefinite integral of its derivative (which exists a.e.): |x(s)| = |x(a)| +
∫ s

a |x(ξ)|′ dξ.
Prove that

(2.15) |x(s)|′ ≤ |x′(s)| a.e.

2.16. Lemma. Let (ω2, (w, x)) satisfy (2.4) and the additional condition
that x(0) = 0. Then (w, x) = (0, 0).

Proof. We define u by (2.3) and observe that (u, x) satisfies (1.9a,b) and
consequently the initial conditions x(0) = u(0) = u′(0) = 0. Using (2.15),
we obtain from (1.9) that

(2.17a,b) |u|′ ≤ C|x|, |x|′ ≤ |x′| ≤ K |u|
s
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where C := ω2 maxs(ρA)(s) andK := maxs ν̂(
√
u(s)2+s2γ(s)2, s)/mins γ(s).

It follows from (2.17b) that x′(0) = 0. We now set x := 2Ky and v :=
|u| + |y|. Then

(2.18a,b,c) v′ ≤ v

2s
+ 2KCv, v(0) = 0,

v(s)
s

→ 0 as s→ 0.

We multiply (2.18a) by its integrating factor to convert it to the form

(2.19)
d

ds

[
e−2KCs

√
s
v(s)

]
≤ 0

from which we obtain

(2.20)
e−2KCs

√
s
v(s) ≤ lim

a→0

v(a)√
a
e−2KCa = 0,

by virtue of the initial conditions. �
This proof represents a self-contained exposition of an important part of

the theory of differential inequalities (see Hale (1969) or Hartman (1964)).
Let us summarize what we can prove by exploiting the results obtained

so far by the methods of Sec. 5.5:

2.21. Theorem. For k = 1, 2, . . . , the solution branch S(λ0
k) of the system

(2.4) bifurcates from the trivial branch at (λ0
k, (0, 0)), does not touch S(λ0

l )
for l �= k, lies in (0,∞)×X , and is unbounded there. On each such branch,
(w, x) is a classical solution of the corresponding boundary-value problem.
If (ω2, (w, x)) ∈ S(λ0

k), then (ω2, (−w,−x)) ∈ S(λ0
k) and (w, x) ∈ Zk.

These global properties of branches were proved by Kolodner (1955) for
uniform, inextensible strings by using classical methods of analysis and by
Stuart (1976) by using Theorem 5.4.19. We now study other properties that
depend crucially on the nature of material response. For any continuous
function v, we set

(2.22) ‖v‖ := ‖v, C0[0, 1]‖ := max
s

|v(s)|.

We use this notation in this and the next section.
Let u(s) =

√
sw(s) = sy(s). We examine solutions on the level

(2.23) ‖y‖ + ‖x‖ = R.

Let (ω2, (w, x)) ∈ S(λ0
k). Then (w, x) may be regarded as the eigenvector

corresponding to the kth eigenvalue ω2 of the linear Sturm-Liouville prob-
lem (2.4) in which the function h(w(·), ·) is regarded as given. If (y, x) also
satisfies (2.23), then h(

√
sy(s), s) ≥ 1/

√
R2 + (maxs γ(s))2. Consider the

modification of (2.4) obtained by replacing h(
√
sy(s), s) by this lower bound

and by replacing (ρA)(s) by mins(ρA)(s). We reformulate the differential
equations corresponding to (2.4) in terms of (y, x). We apply the Prüfer
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transformation (2.10) to our original problem (regarded as linear) and to
the modified problem (which is truly linear). The inequalities subsisting
between the coefficients for (2.11) and for its analog for the modified prob-
lem enable us to deduce that the kth eigenvalue ω2 of the actual problem
must be less than the kth eigenvalue of the modified problem:

(2.24) ω2 ≤ j2k
√
R2 + ‖γ‖2

4 mins(ρA)(s)
=: λ+

k (R)

where jk is the kth positive zero of the Bessel function J0.

2.25. Exercise. Prove that the kth eigenvalue of the modified problem is given by the
right-hand side of (2.24).

The argument we have just sketched is the basis of a proof of the Stur-
mian Comparison Theorem specialized to our problem. Another way to
prove this and other versions, which is even more powerful, is to use min-
imax characterizations of eigenvalues of linear problems (see Courant &
Hilbert (1953) or Stakgold (1998), e.g.).

Since each branch S(λ0
l ) is unbounded, we deduce from (2.23) and (2.24)

that ‖w‖+‖x‖ is unbounded on each such branch. Indeed, (2.24) says that
in the bifurcation diagram in (ω2, ‖w‖ + ‖x‖)-space, the image of the kth
branch lies to the left of the curve whose equation is ω2 = λ+

k (‖w‖ + ‖x‖).
The function λ+

k is asymptotically linear for large values of its argument.
Suppose that the string is strong in tension in the sense that there is a

number M such that

(2.26) ν̂(N, s) ≤M(1 +N) for N ≥ 0 and for all s ∈ [0, 1].

For such strings we have the upper bound

(2.27) h(w(s), s) ≤M
(√
s+

1√
smins γ(s)

)
.

The Comparison Theorem then implies that on S(λ0
k), ω2 has a positive

lower bound:

(2.28) ω2 ≥ j2k

M‖ρA‖
[
1 + 1

mins γ(s)

] .
Suppose now that the string is very strong in tension in the sense that

(2.29)
ν̂(N, s)
N

→ 0 as N → ∞.
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2.30. Lemma. If (2.29) holds, then there is a real-valued function f such
that if (ω2, (w, x)) is a solution pair of (2.4), then

(2.31) ‖w‖ + ‖x‖ ≤ f(ω2).

Inequality (2.31) implies that ω2 → ∞ on each bifurcating branch.

Proof. System (2.4) implies that

(2.32) ‖w‖ ≤ ω2‖ρA‖ ‖x‖, ‖x‖ ≤ max
s
ν̂
(√

‖w‖2 + ‖γ‖2, s
)
,

so that

(2.33)
‖w‖ + ‖x‖

maxs ν̂
(√

(‖w‖ + ‖x‖)2 + ‖γ‖2, s
) ≤ 1 + ω2‖ρA‖.

It follows from (2.29) and (2.33) that ‖w‖+‖x‖ must be bounded for fixed
ω2. Thus such a function f must exist. Indeed, if the function of ‖w‖+‖x‖
defined by the left-hand side of (2.33) is strictly increasing, we define f to be
its inverse. Otherwise, we define f to be the inverse of a strictly increasing
lower bound for the left-hand side of (2.33), which always exists. �

We combine the results of our development beginning with (2.26) with
Theorem 2.21 to obtain

2.34. Theorem. Let (2.29) hold. For each ω2 in (λ0
k, λ

0
k+1), and for each

j = 1, . . . , k there is at least one pair (w, x) such that (ω2, (±w,±x)) ∈
S(λ0

j ). On each branch S(λ0
k), ω2 has a lower bound and both ω2 and

‖w‖ + ‖x‖ are unbounded.

In his study of the uniform inextensible string, Kolodner (1955) proved a sharper
result in which the ‘at least’ in the second sentence of Theorem 2.34 is replaced with
’exactly’. We do not obtain such a conclusion here because it is not true, as we indicate
below in Ex. 2.53. Nevertheless, this theorem says that the global bifurcation for very
strong strings is substantially the same as that for inextensible strings.

2.35. Exercise. Use the classical methods of Kolodner to prove Theorem 2.34. This
lengthy analysis shows both the beauty of a clever combination of classical methods and
the limitations of such methods when assumptions such as (2.29) are removed.

We now study a class of strings for which the bifurcation is significantly
different from that described by Theorem 2.34. Suppose that a string is
weak in tension in the sense that there is a number m > 0 such that

(2.36) ν̂(N, s) ≥ mN for N ≥ 0 and for all s ∈ [0, 1].

Since (2.36) implies that h(w, s) ≥ m
√
s, we can use the Comparison The-

orem to prove
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2.37. Theorem. Let (2.36) hold. On S(λ0
k), ω2 is bounded above:

(2.38) ω2 ≤ ζ2k
mmins(ρA)(s)

=: ηk

where ζk is the kth zero of the Bessel function J(−1/2).

Note that it is possible for a uniform string to satisfy neither (2.26) nor (2.36). It
is also possible for a string to satisfy both of these conditions. For such strings, ω2 is
bounded above and has a positive lower bound on each bifurcating branch. Among such
strings are those for which ν̂(·, s) is asymptotically linear , i.e., those for which there is a
positive-valued function µ such that N−1ν̂(N, s) → µ(s) as N → ∞. The corresponding
bifurcation problem is termed asymptotically linear. There is an extensive and beautiful
theory for such problems (see Dancer (1974b), Krasnosel’skĭı (1964), Pimbley (1962,
1963), Rabinowitz (1973b), Stuart (1973b), and Toland (1973)). In this case, it can be
shown that

(2.39) ω2 → Λk as ‖w‖ + ‖x‖ → ∞ on S(λ0
k)

where the Λk are the eigenvalues of the obvious linear problem at infinity. Dancer
(1974b) showed that S(λ0

k) is a curve for large ‖w‖+‖x‖. In the context of our problem
for whirling strings, the sharpness of these results is counterbalanced by the rarity of
asymptotically linear functions within the class of physically admissible ν̂ ’s.

For strings that are very weak in tension in the sense that

(2.40)
ν̂(N, s)
N

→ ∞ as N → ∞,

we have

2.41. Theorem. Let u(s) =
√
sw(s) =: sy(s). If (2.40) holds, then

(2.42) ω2 → 0 as ‖y‖ → ∞ on S(λ0
k) for k = 1, 2, . . . .

Note that ‖w‖ → ∞ and ‖u‖ → ∞ as ‖y‖ → ∞ by definition, and that
‖x‖ → ∞ as ‖y‖ → ∞ by (2.1a) and Theorem 2.37.

Proof for k = 1. We substitute (2.4b) into (2.4a) and integrate the
resulting expression by parts to obtain

(2.43)
gy(s)
ω2 =

1
s

∫ s

0

ξγ(ξ)y(ξ)ν̂
(
ξ
√
y(ξ)2 + γ(ξ)2, ξ

)
√
y(ξ)2 + γ(ξ)2

dξ

+ γ(s)
∫ 1

s

y(ξ)ν̂
(
ξ
√
y(ξ)2 + γ(ξ)2, ξ

)
√
y(ξ)2 + γ(ξ)2

dξ.

(We could replace (2.4) with (2.43) and show that the right-hand side of
(2.43) defines a compact mapping from C1[0, 1] into itself. The rest of
the preceding analysis could be carried out in this setting, at the expense
of somewhat more technical difficulty; cf. Antman (1980a).) On the first
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branch, w does not vanish on (0, 1]. Let us take it to be positive here. Then
(2.43) yields

(2.44)
y(s) ≥ ω2

g
min

ξ
γ(ξ)

∫ 1

0

ξy(ξ)ν̂
(
ξ
√
y(ξ)2 + γ(ξ)2, ξ

)
√
y(ξ)2 + γ(ξ)2

dξ

≥ y(1)
minξ γ(ξ)

‖γ‖

together with an analogous upper bound for gy/ω2, from which we obtain

(2.45) y(1)
minξ γ(ξ)

‖γ‖ ≤ y(s) ≤ y(0)
‖γ‖

‖γ(0)‖ .

These inequalities together with (2.40) imply that

(2.46)
sy(s)ν̂

(
s
√
y(s)2 + γ(s)2, s

)
√
y(s)2 + γ(s)2

→ ∞ as |y(1)| → ∞ for s > 0.

The Comparison Theorem thus implies that

(2.47) ω2 → 0 as |y(1)| → ∞

on the first branch. We must obtain (2.42) from (2.47). Just as we deduced
(2.44) from (2.43) we find that

(2.48) u(s) ≤ ‖γ‖
mins γ(s)

u(1) =
‖γ‖

mins γ(s)
y(1).

Thus (2.47) implies that

(2.49) ω2 → 0 as ‖u‖ → ∞

on the first branch. Equation (2.1b) implies that

‖x‖ ≤
∫ 1

0
ν̂
(√

‖u‖2 + ‖γ‖2, s
)
ds,

so that

(2.50) ω2 → 0 as ‖x‖ → ∞

on the first branch. Now suppose that ‖y‖ → ∞ on the first branch. Then
(2.45) implies that |y(0)| → ∞. Since (2.1a) and the definition of y imply
that y(0) = −ω2(ρA)(0)x(0), we obtain from (2.38) that |x(0)| → ∞ as
|y(0)| → ∞. Therefore, (2.50) implies that ω2 → 0 as ‖y‖ → ∞ on the
first branch, which together with (2.50) implies (2.42).

2.51. Exercise. By making suitable estimates and by using the Comparison Theorem,
obtain a specific function ϕ with ϕ(y) → 0 as y → ∞ so that ω2 ≤ ϕ(y(1)) on the first
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branch when there are numbers m > 0 and p > 1 such that ν̂(N, s) ≥ 1 + mN p for
N ≥ 0. Thus we have an estimate for the rate at which the limit in (2.47) is attained.

The basic idea of the proof for arbitrary k is to apply the Prüfer transfor-
mation (2.10) to the system of ordinary differential equations corresponding
to (2.1), obtain the analog of (2.11) with cosφ and sinφ expressed in terms
of u and x, and then impose (2.12). Using (2.38), we find that

(2k − 1)π
2ω

=
∫ 1

0

(ρA)ω2x2 + u2ν̂
(√
u2 + s2γ2, s

)
/
√
u2 + s2γ2

u2 + ω2x2 ds

≥
∫ 1

0

sy2ν̂
(
s
√
y2 + s2γ2, s

)
(s2y2 + ηkx2)

√
y2 + s2γ2

ds(2.52)

for (ω2, (w, x)) ∈ S(λ0
k). To prove the theorem, we need only use (2.40)

to show that the right-hand side of (2.52) becomes infinite with ‖y‖. To
do this, we must ensure that the pointwise growth of y is not confined to
spikes so narrow that the integrals in (2.52) remain bounded. We must
therefore examine the detailed form of the solution (y, x) between their
zeros. For this purpose, we can combine the Maximum Principle with very
careful analysis. The details for a slightly different formulation are given
by Antman (1980a). His methods were inspired by the work of Wolkowisky
(1969). Related approaches are given by Rabinowitz (1973a) and Turner
(1973).

We can illustrate the comment following Theorem 2.34 by showing that
under its hypotheses there can be subcritical bifurcations. For this purpose,
we may assume that the string is weak for small tension.

2.53. Exercise. Let ρA be constant and let there be numbers m > 0 and p > 1 such
that ν̂(N, s) = 1 +mN p for N ∈ [0, ρA]. Use the perturbation methods of Sec. 5.6 to
prove that the bifurcation from the trivial branch is subcritical if m is large enough.

2.54. Exercise. Carry out a complete analysis of the boundary-value problem (1.9)
and (1.12+) when µ > 0. In particular, state and prove an analog of every result given in
this section. (Note that this problem can be formulated entirely in terms of the variable
u; the variable w is neither needed nor appropriate.)

2.55. Research Problem. Carry out a rigorous stability analysis of these whirling
motions in the sense of Sec. 5.7. It is probably necessary to assume that the material is
dissipative, e.g., by assuming that (2.2.14), (2.2.21) hold. (See Toland (1979a,b) for a
discussion of energy criteria of stability.)

3. Other Problems for Whirling Strings

Reeken’s problem. Let us now suppose that each end of the string is
fixed to the axis of rotation:

xα(0) = 0 = xα(1), α = 1, 2,(3.1)

z(0) = 0, z(1) = a(3.2)
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where a is a prescribed number, which without loss of generality we take
to be nonnegative. (To have a meaningful problem for an inextensible
string, it is necessary that a < 1.) This ostensibly innocuous variant of
the boundary conditions of Secs. 1 and 2 leads to some serious technical
difficulties.

In place of (1.5), (1.6), we have

N(ξ)x′
α(ξ)

ν̂(N(ξ), ξ)

∣∣∣∣s
η

+ ω2
∫ s

η

(ρA)(ξ)xα(ξ) dξ = 0 ∀ η, s ∈ [0, 1], α = 1, 2,

(3.3)

N(s)z′(s)
ν̂(N(s), s)

= bγ(b) − sγ(s)(3.4)

where b is a constant of integration. We retain (1.8). In place of (1.10), we
have

(3.5) N(s)2 = u1(s)2 + u2(s)2 + [bγ(b) − sγ(s)]2.

3.6. Exercise. Carry out the following steps to prove that if r and N satisfy (1.3)
and (3.1)–(3.4) with r(·, t) absolutely continuous and with N continuous, then for each
t, r(·, t) is a plane curve. If N does not vanish in (0, 1), then the proof of Proposition
1.7 goes through. Otherwise, if N vanishes on (0, 1), then (3.5) implies that it vanishes
at b ∈ (0, 1), and that u1(b) = 0 = u2(b). Thus (u1, x1) and (u2, x2) each satisfy this
condition and (1.9a,b), (3.1), and (3.2). For given N , there is a linear multiple α0(u0, x0)
of nontrivial solutions (u0, x0) satisfying x0(0) = 0 and satisfying (1.9a,b) on [0, b), and
there is a linear multiple α1(u1, x1) of nontrivial solutions (u1, x1) satisfying x1(1) = 0
and (1.9a,b) on (b, 1]. The continuity of x implies that α0x0(b) = α1x1(b). If these
values are not 0, then this equation relates α0 to α1, giving a one-parameter family
of solutions to our boundary-value problem. Thus we can apply the reasoning used in
the proof of Proposition 1.7. If x(b) = 0, (use the theory of differential inequalities
as in the proof of Lemma 2.16 to) prove that (1.9a,b) subject to the initial condition
u(b) = 0 = x(b) has the unique solution (u, x) = (0, 0).

By virtue of this result, we may take x1 = x, x2 = 0, u1 = u, u2 = 0, just as in
Sec. 1 . We say that a solution is trivial if and only if u = 0.

3.7. Exercise. Let (u, x) generate a nontrivial solution to (3.1)–(3.4) with x and z
absolutely continuous and with N continuous. Prove that u is continuously differentiable
and is twice continuously differentiable where N does not vanish and that u satisfies

d

ds

[
u′

(ρA)(s)

]
+
ω2uν̂(N (s), s)

N (s)
= 0 where N does not vanish,(3.8)

u′(0) = 0 = u′(1).(3.9a,b)

3.10. Exercise. Prove the following results: Let (u, x) generate a nontrivial solution
to (3.1)–(3.4) with x and z absolutely continuous and with N continuous. Then N is
positive except possibly at a single point b. If N (0) = 0 or if N (1) = 0, then the solution
is trivial. If b ≤ 0, then the solution is trivial.

Thus N can be defined unambiguously in terms of u from (3.5):

(3.11) N (s) =
√
u(s)2 + [bγ(b) − sγ(s)]2.
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First suppose that b ∈ (0, 1) and that N (b) 
= 0. Then N is everywhere positive and
continuously differentiable with N (b) = |u(b)|. It then follows from (1.8) and (3.4) that
x′ and z′ are continuous with z′(s) < 0 for s < b and z′(s) > b for s > b. Thus, b is the
lowest point on the string, and (3.8) holds everywhere.

Now suppose that b ∈ (0, 1) and that N (b) = 0, so that u(b) = 0. Then (3.3) implies
that

(3.12) u(s) = ω2
∫ b

s
(ρA)(ξ)x(ξ) dξ ≡ [bγ(b) − sγ(s)]w(s),

where w is continuous on [0, 1] and is twice continuously differentiable on [0, 1] \ {b}. If
w(b) were 0, then u′(b) would be 0, and the solution would be trivial. Representation
(3.12) reduces (3.11) to

(3.13) N (s) = |bγ(b) − sγ(s)|
√

1 + w(s)2.

It then follows from (1.8) and (3.4) that

(3.14) x′(b+) = −x′(b−) = − ν̂(0, b)w(b)√
1 + w(b)2

, z′(b+) = −z′(b−) = − ν̂(0, b)√
1 + w(b)2

.

Thus, the string is folded at b, which is again the lowest point of the string by (3.4).
The treatment of the trivial solution reduces to that for the catenary in the special

case that one support is above the other (see Sec. 3.3). We find that there are at most
three different kinds of solutions (meeting our regularity requirements) that are possible
for a given a: a straight state (which is always possible), a state with a single fold
below the lower support, and a state with a single fold above the upper support. There
is exactly one purely tensile solution (either straight or folded) for each a ≥ 0. By
Ex. 3.10, these tensile configurations correspond to the only trivial branches from which
bifurcation can take place.

We now sketch the treatment of solution branches for which N is positive everywhere
on [0, 1]. In this case, all solutions are classical. Our first objective is to choose b of (3.4)
so that (3.2) is satisfied. Equations (3.4) and (3.11) imply that (3.2) holds if and only if

(3.15)
∫ 1

0

[bγ(b) − sγ(s)]ν̂(N (s), s)
N (s)

ds = a

where N (s) is given by (3.11). It is evident that if u is a nontrivial solution of our
boundary-value problem, then we can solve (3.15) uniquely for b in terms of u and a,
because the positivity of N prevents the integrand in (3.15) from being singular. This
result is inadequate since we should like to solve (3.15) for b as a continuously differ-
entiable functional of u and replace b in (3.11) and elsewhere with this representation.
This cannot be done because the left-hand side of (3.15) does not define a differentiable
functional of u on C0. To circumvent this difficulty, we use an approximation method
of the sort described in the remarks preceding Theorem 5.4.21: Let m be a positive
integer. We study the approximate problem in which N (s) of (3.11) is replaced with√
m−2 + u(s)2 + [bγ(b) − sγ(s)]2.

3.16. Exercise. Substitute this expression into the left-hand side of (3.15). Use the
properties of ν̂ to prove that the resulting equation can be solved uniquely for b in terms
of U,m, a:

(3.17) b = β[u,m]

where β is positive-valued and where β[·, m] is continuously differentiable on C0[0, 1].
Here the dependence of β on a is suppressed.



198 6. GLOBAL BIFURCATION PROBLEMS FOR STRINGS AND RODS

Now we replace the N (s) of (3.8) with

(3.18) N [u,m](s) :=
√
m−2 + u(s)2 + {β[u,m]γ(β[u,m]) − sγ(s)}2,

integrate the resulting equation twice with respect to x, and use (3.9a) to obtain

(3.19) u(s) = u(0) − ω2
∫ s

0
(ρA)(ξ)

∫ ξ

0

ν̂(N [u,m](η), η)u(η)
N [u,m](η)

dη dξ.

If ω 
= 0, then a solution of the approximate problem satisfies (3.9b) if and only if

(3.20)
∫ 1

0

ν̂(N [u,m](s), s)u(s)
N [u,m](s)

ds = 0.

Now we replace the only u in (3.20) that is not an argument of N with (3.19) and solve
the resulting equation for u(0). We substitute this value of u(0) into (3.19) to get an
integral equation for u, which we denote by

(3.21) u = ω2T [u,m].

3.22. Exercise. Prove

3.23. Theorem. Let µm
0 , µ

m
1 , . . . be the eigenvalues of the linearization of (3.21) about

the trivial solution. For each m = 1, 2, . . . , k = 0, 1, 2, . . . , (3.21) has a nontrivial
branch S(µm

k ) =: {((ω2)m
k , u

m
k )} in [0,∞) ×C1[0, 1] that is unbounded, bifurcates from

the trivial branch at (µm
k , 0), and does not touch S(µm

l ) for l 
= k. Each solution
pair ((ω2)m

k , u
m
k ) is a classical solution of the approximate version of (3.8), (3.9) with

(ω2)m
0 = 0, um

0 = const. Each nonzero um
k has exactly k zeros on [0, 1], which are

simple, and (ω2)m
k < (ω2)m

k+1. If ((ω2)m
k , u

m
k ) ∈ S(µm

k ), then ((ω2)m
k ,−um

k ) ∈ S(µm
k ).

By following Sec. 2, we can determine the disposition of the branches S(µm
k ) for each

ν̂ . To construct the solutions of the actual problem we need two simple estimates given
in the next exercise.

3.24. Exercise. Let B(R) := {u ∈ C1[0, 1] : ‖u, C1[0, 1]‖ ≤ R}. Prove that there are
numbers β+(R) and λk(R) that are independent of m such that

sup{β[u,m] : u ∈ B(R)} ≤ β+(R),(3.25)

(ω2)m
k ≤ λk(R) if ((ω2)m

k , u
m
k ) ∈ S(µm

k ) ∩ [R × B(R)].(3.26)

We now use Theorem 5.4.21 to construct solutions of our actual problem as subse-
quential limits of solutions of our approximate problems. For this purpose, we introduce

(3.27) Gk := {(ω2, u) ∈ [0,∞) × C1[0, 1] : ω2 ≤ λk(‖u, C1[0, 1]‖)} ∪ {∞}

and define its topology by taking a neighborhood basis of ∞ to be {(ω2, u) : ‖u, C1[0, 1]‖
> j}, j = 1, 2, . . . . Let

(3.28) S̄m
k := S(µm

k ) ∪ ([0, λk(0)] × {0}) ∪ {∞}.

Then S̄m
k is compact in Gk, and Theorem 3.23 implies that [0, λk(0)] × {0} and ∞ are

not separated in S̄m
k . We define the solution branches of our actual problem:

Sk := {(ω2
k, uk) : uk = ω2

kT [uk,∞],(3.29)

uk has exactly k zeros on [0, 1], which are simple},

S̄k := Sk ∪ ([0, λk(0)] × {0}) ∪ {∞}.(3.30)

It is conceivable that Sk is empty. Our basic result says that it is not:
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3.31. Theorem. [0, λk(0)]×{0} and {∞} are not separated in Sk, which consequently
contains a connected subset bifurcating from (µk, 0) on which ‖uk‖ is unbounded. Here
the µk are the eigenvalues of the linearization of u = ω2T [u,∞] about the trivial solution.
Moreover, Sk ∩ Sl = ∅ if l 
= k.

Consequently, the solution branches of the actual problem enjoy all the properties
of the branches of the approximate problem given in Theorem 3.23. Theorem 5.4.21
implies that Theorem 3.31 follows from a proof of the properties

(i) Let {m} be any subsequence of the positive integers. If
(
(ω2)m

k , u
m
k

)
∈ S̄m

k ,
then {

(
(ω2)m

k , u
m
k

)
} has a convergent subsequence.

(ii) If
(
(ω2)m

k , u
m
k

)
∈ S̄m

k and if
(
(ω2)m

k , u
m
k

)
→
(
(ω2)k, uk

)
in Gk as m → ∞, then(

(ω2)k, uk

)
∈ S̄k.

3.32. Exercise. Use the compactness inherent in the approximate problem to prove
Theorem 3.31.

Note that β[0] = β[0,∞] is just the b for which there is a unique trivial tensile
solution. If β[0] ∈ (0, 1), then β[uk] = β[uk,∞] also lies in (0, 1) for each uk such that
(ω2

k, uk) ∈ Sk, because if β[uk] were to equal either 0 or 1, then the solution would
be trivial by Ex. 3.10. Thus, if the trivial tensile solution sags, then every bifurcating
nontrivial solution sags; if the trivial tensile solution is taut, then every bifurcating
nontrivial solution is taut.

Let us now briefly outline the main ideas of the difficult case in which b ∈ (0, 1) and
N (b) = 0 so that u(0) = 0. It can be shown that if we try to imitate the development
above, which begins with a representation for b as a functional of u, then we should
encounter a host of apparently insurmountable analytic difficulties. We avoid these
difficulties by letting b play the role of a free parameter with a status like that of ω2.
(This policy is equivalent to letting a play the role of a free parameter.)

3.33. Exercise. Prove that w, defined by (3.12), satisfies

(3.34)

w(s) = ω2T [w, b](s)

:= ω2

⎧⎨⎩
1

bγ(b)−sγ(s)

∫ b
s

∫ ξ
0

[bγ(b)−ηγ(η)]ν̂(N(η),η)w(η)
N(η) dη dξ for s ∈ (0, b),

1
bγ(b)−sγ(s)

∫ s
b

∫ 1
ξ

[bγ(b)−ηγ(η)]ν̂(N(η),η)w(η)
N(η) dη dξ for s ∈ (b, 1)

where N is given by (3.13).

For u to be continuously differentiable on (0, 1), it is necessary that

(3.35) [[w]](b) = 0.

If we compute [[T [w, b]]](b) from (3.34), we obtain an expression that does not vanish
in general, so that T [·, b] does not take C0[0, 1] into itself. For this reason, we let b
vary in the hope that it could be chosen to satisfy (3.35). The physical explanation
is simple: Since N (b) = 0, the problem consisting of (3.8) on (0, b) subject to (3.9a),
and the problem consisting of (3.8) on (b, 1) subject to (3.9b) are nothing other than
Kolodner problems. If ω2 and a can be chosen so that the ends s = b of each string touch
(without communicating force to each other), then together they form a configuration
corresponding to a solution of (3.8), (3.9), (3.35). The conditions for touching at b are
that [[x]](b) = 0 = [[z]](b).

To obtain solutions, we construct the families of nontrivial solution sheets for the two
Kolodner problems with ω2 and b as parameters. These sheets intersect on a countable
family of curve-like continua in (ω2, b, w)-space, which are the solution branches for
our actual problem. It is remarkable that the eigenvalues at which bifurcation takes
place each have multiplicity 2. It can be shown that each solution branch is globally
characterized by the nodal properties of u. For details, see Alexander, Antman, & Deng
(1983).
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Stuart’s problem. A technically simple problem for a string of length l,
related to the nonsingular version of Kolodner’s problem, is obtained by
fixing the end s = 0 to the origin, attaching a ring of weight µ to the
end s = l, and confining the ring to slide without friction on the axis of
rotation. Then the boundary conditions are

(3.36) x(0) = 0 = z(0), x(1) = 0, u′(1) = 0,
N(l)z′(l)
ν̂(N(l), l)

= µ.

A simple analysis yields results virtually identical to those of Sec. 1. In
particular, the dependence of the disposition of branches on the strength
of the string is the same.

In Stuart’s problem, the end s = 0 of a string of length l is also fixed at
the origin, while the end s = l is attached to the positive z-axis at z = 1
and is subjected to a prescribed positive tension α, so that

(3.37) x(0) = 0 = z(0), x(l) = 0, z(l) = 1, N(l) = α > 0.

The natural length l of the string is left unspecified to accommodate the
prescription of N(l).

It is not hard to see that the problem corresponding to (3.36) and Stu-
art’s problem are intimately related to each other: In the former, the length
is prescribed, but N(1) is not; in the latter, N(l) is prescribed, but l is not.

Despite this duality, a formulation like those used above has not proved
convenient for Stuart’s problem. In particular, the fundamental unknown
used for Stuart’s problem has been the function [0, 1] � z �→ X(z), which
gives the graph of the deformed string. It is striking that the bifurcating
branches for Stuart’s problem have ω2 bounded above and below on each
bifurcating branch, no matter what the material response of the string. To
explain this phenomenon, let us replace the N(l) in (3.36) with α. Then
(3.36), (3.37), (1.8), and the Chain Rule yield

(3.38)
αz′(l) = µν̂(α, l), α = µ

√
1 +X ′(1)2,

u(l) =
αX ′(1)√
1 +X ′(1)2

= µX ′(1).

Thus |u(l)| → α as |X ′(1)| → ∞. This fact can be shown to imply that
when the natural norm of X along a branch for Stuart’s problem becomes
infinite, the natural norm for u remains bounded. The physical source of
this phenomenon is that in Stuart’s problem, N is forced to be bounded,
whereas it is not in the complementary problem based on (3.36).

Bibliographical notes. Kolodner (1955) gave a complete analysis of the problem in
Sec. 2 for inextensible strings, by a beautiful combination of the shooting method with
Sturmian theory. Stuart (1976) applied the global bifurcation theory of Chap. 5 to this
problem, thereby furnishing a simple, alternative treatment. The work of Kolodner in-
spired further work on related problems by Reeken (1977, 1979, 1980, 1984b), Toland
(1979a,b), and Wu (1972). The treatment in Sec. 2 for nonlinearly elastic strings is
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adapted from that of Antman (1980a) by kind permission of the Royal Society of Edin-
burgh.

The problem with boundary conditions (3.1), (3.2) was studied by Reeken (1980)
for inextensible strings. He constructed the first branch of (smooth) solutions, not by
continuing it from the eigenvalue of the linearization about the trivial solution, but by
continuing it back from the asymptotic state at infinite angular velocity. Part of the
treatment of Reeken’s problem given in this section is adapted from that of Alexander,
Antman, & Deng (1983) by kind permission of the Royal Society of Edinburgh.

Stuart’s (1975) treatment of the problem with boundary conditions (3.37) for inexten-
sible strings represents the first application of the global bifurcation theory of Chap. 5
to a physical problem. The treatment of it and of the dual problem with boundary
conditions (3.36) is based on that of Antman (1980a). Stuart’s problem is a primitive
model for the process by which string is both drawn and whirled. A more refined model
is analyzed in the next section.

4. The Drawing and Whirling of Strings
In this section we study the steady motion of a string that is simulta-

neously being drawn and whirled. This motion, which models the process
by which fibers are manufactured, has a Coriolis acceleration, which makes
the problem more complicated than those treated in the preceding sections.
Our first goal is to give a careful formulation of the governing equations,
because this problem exemplifies those technologically important problems
in which the material points undergoing the motion change with time. Our
second goal is to examine superficially the exceptionally rich structure of
solutions and the mathematical methods for determining it. We adhere to
the notation of Chap. 2.

Kinematics. Let {i, j,k} be a fixed right-handed orthonormal basis for
E

3. Gravity is taken to act in either the k or −k direction. Let a ≥ 0.
We study the combined whirling and drawing motion under gravity of that
part of a string, called the active part, lying between o and ak when it is
being fed through an inlet at o and is being withdrawn through an outlet
at ak.

Let s be an arc length parameter for a natural reference configuration
of the string. Let s0(τ) and sa(τ) denote the material points of the string
that respectively pass through o and ak at time τ :

(4.1) r(s0(t), t) = o, r(sa(t), t) = ak.

As usual, we assume that r(·, t) is absolutely continuous for all t.
We assume that the string is fed in at o and withdrawn at ak at the

same constant rate γ:

(4.2) s′0(τ) = s′a(τ) = −γ < 0,

so that

(4.3) s0(τ) = s0(0) − γτ, sa(τ) = sa(0) − γτ.
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Thus

(4.4) l := sa(τ) − s0(τ) = sa(0) − s0(0)

is independent of τ . We assume that l is given. For uniform strings, this
prescription is equivalent to the prescription of the amount of material in
the active part of the string. We set

(4.5) σ := s0(τ) − s0(t) = γ(t− τ).

It is the amount of material that has passed through the inlet between times
τ and t. If s0(t) ≤ s0(τ) ≤ sa(t), then σ ∈ [0, l]. We could normalize our
variables by taking s0(0) = 0. The problem we study below is independent
of t. Thus σ is just a parameter for the active part of the string.

We require that the motion of the string be steady by requiring that its
active part lie on a steadily rotating rigid space curve p, which (without
loss of generality) must have the form

(4.6)
p(σ, t) = x1(σ)e(t) + x2(σ)[k × e(t)] + z(σ)k,

e(t) := cosωt i + sinωt j.

We accordingly set

r(s0(τ), t) := r(s0(t) + σ, t) ≡ r(s0(0) − γt+ σ, t)(4.7)

= p(σ, t) ≡ p(γ(t− τ), t).

For r(·, t) to be absolutely continuous, it is necessary that p(·, t) be ab-
solutely continuous. In adopting (4.7), we are actually requiring that the
motion of the string be a travelling wave with σ representing the fixed
phase. It follows from (4.7) that

rs(s0(τ), t) = pσ(σ, t),(4.8)

ν(s0(τ), t) = |pσ(σ, t)| =
√
x′

1(σ)2 + x′
2(σ)2 + z′(σ)2 =: ν̃(σ),(4.9)

rt(s0(τ), t) = γpσ(σ, t) + ωk × p(σ, t),(4.10)

rtt(s0(τ), t) = γ2pσσ(σ, t) + 2ωγk × pσ(σ, t)(4.11)

− ω2[x1(σ)e(t) + x2(σ)(k × e(t))].

Note that the speeds at o and at ak of the material points occupying them
are

(4.12) |rt(s0(t), t)| = γν̃(0), |rt(sa(t), t)| = γν̃(l).

These are not necessarily equal. For a uniform string, (4.2) can be inter-
preted as saying that the mass fluxes at o and ak are equal. This require-
ment, rather than the equality of the entrance and exit speeds (4.12), is
essential for steady motions.
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Mechanics. To ensure that the string can admit motions (4.7) under the
sole body force of gravity, we require that the string be uniform, so that
ρA be constant and so that its constitutive functions be independent of
s. Otherwise, (4.7) would represent a constraint, which would have to
be maintained by artificial (time-varying) constraint forces. Since ρA is
constant, Eq. (4.4) implies that the total mass of the active part of the
string is independent of t.

Following (4.7) we set

(4.13) N(s0(τ), t) ≡ N(s0(0) − γt+ σ, t) =: n(σ, t).

As part of our definition of steady motions, we require that n be indepen-
dent of t. If the string is inextensible, then

(4.14) ν̃ = 1.

If the string is elastic and uniform, then (2.2.11) and (4.13) yield the con-
stitutive equation

(4.15) n(σ) = N̂(ν̃(σ)).

In view of the irregularities exhibited by solutions of string problems
treated in Chaps. 2 and 3 and in the preceding sections of this chapter,
and in view of the possibility that our dynamic problem could have shocks,
we formulate our problem as a version of the Impulse-Momentum Law
(2.3.1):

(4.16a)

∫ t2

t1

N(s, t)rs(s, t)
ν(s, t)

∣∣∣∣s=s0(τ2)

s=s0(τ1)
dt+ ερAg[s0(τ2) − s0(τ1)](t2 − t1)k

= ρA
∫ s0(τ2)

s0(τ1)
rt(s, t)

∣∣∣∣t=t2

t=t1

ds

where ε = ±1 to account for gravity either assisting or opposing the drawing
motion. We now use (4.2), (4.5), (4.8)–(4.10) to convert (4.16a) to

(4.16b)
∫ t2

t1

n(γ(t− τ))pσ(γ(t− τ), t)
ρAν̃(γ(t− τ))

∣∣∣∣τ=τ2

τ=τ1

dt− εgγ(τ2 − τ1)(t2 − t1)k

=
∫ γ(t−τ2)

γ(t−τ1)
[γpσ(σ, t) + ωk × p(σ, t)] dσ

∣∣∣∣t=t2

t=t1

.

Since p(·, t) is absolutely continuous and since p(σ, ·) is analytic, we can
differentiate (4.16b) with respect to t2 a.e., set σ2 = γ(t2 − τ2) and σ1 =
γ(t2 − τ1), and replace t2 by t to obtain

(4.17) m(σ)pσ(σ, t)|σ2
σ1

+ εg(σ2 − σ1)k

= 2ωγk × p(σ, t)|σ2
σ1

+ ω2
∫ σ2

σ1

k × [k × p(σ, t)] dσ
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where

(4.18) m(σ) :=
n(σ)
ρAν̃(σ)

− γ2.

If we introduce the complex horizontal displacement

(4.19) x(σ) = x1(σ) + ix2(σ),

then we can rewrite (4.17) and (4.1) as the boundary-value problem

m(ξ)x′(ξ)|σc − 2iωγx(ξ)
∣∣σ
c

+ ω2
∫ σ

c

x(ξ) dξ = 0,(4.20)

x(0) = 0 = x(l),(4.21)

m(σ)z′(σ) = εg(b− σ),(4.22)

z(0) = 0, z(l) = a(4.23)

where (4.20) is to hold for all [c, σ] ⊂ [0, l] and where b is a constant
of integration. These equations are to be supplemented with one of the
constitutive equations (4.14) or (4.15) and with the definition of ν̃ given
in (4.9). If (4.20) has a solution with x an absolutely continuous function,
then the first term of (4.20) must also be absolutely continuous. We can
then differentiate (4.20) a.e. with respect to σ, obtaining a complex second-
order ordinary differential equation. Observe that for elastic strings m
could vanish at various points because this equation describes travelling
waves for a hyperbolic system.

Standing in marked contrast to Proposition 1.7 is

4.24. Proposition. If γ > 0, then the only solution of (4.20)–(4.23)
corresponding to a string confined to a plane rotating about the k-axis is
the trivial solution, in which the string lies along the k-axis.

Proof. If the configuration of the string is confined to such a rotating
plane, then we can choose x to be real. In this case, (4.20) and (4.21)
imply that ωγx = 0. If γ > 0, then either the solution is trivial: x = 0, or
else ω = 0. In the latter case, (4.20) implies that

(4.25) m(σ)x′(σ) = C (const.).

By Rolle’s Theorem, the boundary conditions (4.21) imply that x′ must
vanish on (0, l). Therefore C = 0. Equations (4.6), (4.22), and (4.25) thus
imply that m(σ)2 = g2(b− σ)2, so that m can vanish at most once. Thus
x′ = 0. It follows from (4.21) that x = 0. �
4.26. Exercise. Suppose that there is a number β > 1 such that

(4.27) N̂ (ν) = α2ρAν for ν ≥ β

(cf. (2.7.1)). Find all the nontrivial solutions of (4.9), (4.20)–(4.23), and (4.27) when
the data are such that ν̃ ≥ β, and give explicit conditions for the data to meet this
condition. Sketch the bifurcation diagram and describe a typical configuration.
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We now give a very brief sketch of the bifurcation analysis of (4.20)–
(4.23). The essential equation governing the bifurcation is (4.20). It is a
complex second-order ordinary differential equation, which is equivalent to
a pair of real second-order equations. As Ex. 4.26 suggests, neither x1 nor
x2 preserves nodal properties along sheets of solution pairs ((ω, γ), x). We
introduce polar coordinates for the complex x-plane by

(4.28) x(s) = v(s)eiφ(s),

but we allow v to assume negative values so that it has a good chance
of being smooth. A delicate regularity theory shows that if m and v are
continuous and if (x, z) is an absolutely continuous solution of (4.20)–(4.23)
for ωγ �= 0, then φ is continuously differentiable and v is twice continuously
differentiable. These functions satisfy

(4.29a,b) (mv′)′ + ω2
(

1 +
γ2

m

)
v = 0, mφ′ = ωγ

where the prime denotes differentiation with respect to σ.
We now focus on inextensible strings, which are not susceptible of shocks.

Here we require that a < l. Then (4.9) and (4.14) give

(4.30) z′ = ±
√

1 − |x′|2.

Equation (4.22) says that z′ can vanish at most once. We get different
representations for z′ and m in terms of v from (4.29b) and (4.30) for the
cases that z′ is positive on (0, l) or changes sign at b ∈ (0, l). The boundary
conditions (4.23) lead to an equation that can be solved uniquely for b in
terms of a, v, ω, and γ for each case. The substitution of this b into
(4.29a) yields a single ordinary functional differential equation for v for
each case. The linearization of this equation is a Sturm-Liouville problem
whose solution can be expressed in terms of the Bessel functions J±2iωγ/g,
which behave like the sin and cos of the logarithm. Consequently, the
eigenfunction of the linearized problem lacks both continuity and nodal
structure.

To compensate for this difficulty, we regularize the problem as in (3.18)
by suitably introducing a penalization 1/j. We use the Multiparameter
Global Bifurcation Theorem 4.23 together with standard uniqueness theory
to prove that for each positive integer j there are 2-dimensional sheets
S(Ej

k), k = 1, 2, . . . , of solution pairs of the regularized problem bifurcating
from the distinct eigencurves Ej

k of its linearization. If ((ω, γ), v) ∈ S(Ej
k)

and if v �= 0, then v has exactly k − 1 zeros on (0, 1), which are simple.
Thus, it is the nodal structure of |x| rather than the nodal structure of
either x1 or x2 that is preserved globally on each sheet. See Fig. 4.31.

We now let j → ∞ and use the Comparison Theorem to determine
how the sheets move in this limit. We then use the Connectivity Theo-
rem 5.4.21 to show that the sheets of the regularized problems converge to
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Fig. 4.31. A typical configuration of a string that is being
whirled and drawn.

2-dimensional connected sets and use the compactness inherent in the reg-
ularized problems to show that the limiting connected sets are connected
sets of solution pairs of the actual problem preserving the nodal properties
of the approximating sheets S(Ej

k). This process shows that all the sheets
bifurcate from the lines ω = 0 and γ = 0 in the trivial plane. (These lines
are the edges of the continuous spectra corresponding to the parameters
ω and γ for the linearized problems.) The bifurcating sheets, having dis-
tinctive nodal properties, clearly do not inherit them from solutions of the
linearized problem, which have no nodal structure. A typical bifurcation
diagram is shown in Fig. 4.32.

The work in this section is based upon that of Antman & Reeken (1987, c©Society
for Industrial and Applied Mathematics). Figures 4.31 and 4.32 come from this source.

4.33. Research Problem. Carry out a rigorous stability analysis of these motions in
the sense of Sec. 5.7. It is probably necessary to assume that the material is dissipative,
e.g., by assuming that (2.2.14), (2.2.21) hold. Even a formal stability analysis would be
useful.

5. Planar Buckling of Rods. Global Theory
We now extend the analysis of Sec. 5.5 for the elastica to Cosserat rods

that can suffer not only flexure, but also extension and shear, and that
are governed by general nonlinear constitutive equations. We follow the
notation and assumptions of Secs. 4.1, 4.2, 5.1, and 5.5. In particular,
we assume that the symmetry conditions (4.2.9) hold. We further require
that our constitutive functions be thrice continuously differentiable. We
now suppose that the constitutive equations depend upon an additional
parameter α, which measures the stiffness of the rod and which satisfies
0 < α∗ ≤ α ≤ ∞, where α∗ is given. α may be related to the thickness of
the rod; its presence does not affect the symmetry properties. We assume
as in (5.1.3) that the reference configuration is defined by

(5.1) r(s) = si, s ∈ [0, 1], a = i so that θ = 0.
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Fig. 4.32. A typical bifurcation diagram for the problem of this
section.

We assume that the end s = 0 of the rod is welded at the origin to a fixed
rigid wall with normal i, that the end s = 1 is welded to a rigid wall with
normal −i, which is free to move in any direction having no k-component,
and that the end s = 1 is subjected to a prescribed compressive thrust
−λi. Thus the boundary conditions are

θ(0) = 0 = θ(1),(5.2a,b)

r(0) = o, n(1) = −λi.(5.2c,d)

(It is not hard to design a simple device that maintains these conditions.)
We assume that no body force or couple is applied to the rod. Then the
integral forms of the equilibrium equations, corresponding to (4.2.10) with
γ = θ and to (5.2a,d), reduce to

θ(s) =
∫ s

0
µ̂ (−λ cos θ(ξ), λ sin θ(ξ),M(ξ), α, ξ) dξ,(5.3)

M(s) =M(0) − λ
∫ s

0
[ν̂ sin θ(ξ) + η̂ cos θ(ξ)] dξ(5.4)

where the arguments of ν̂ and η̂ in (5.4) are the same as those of µ̂ in (5.3).
To show that M(0) can be chosen to make θ(1) = 0, we substitute (5.4)

into (5.3) evaluated at s = 1 and seek an M(0) to satisfy

(5.5)
∫ 1

0
µ̂

(
−λ cos θ(s), λ sin θ(s),M(0) − λ

∫ s

0
. . . dξ, α, s

)
ds = 0.
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The M ’s that are arguments of ν̂ and η̂ in (5.4) are not replaced with the
right-hand side of (5.4). Thus the visible M(0) in (5.5) is the only M(0)
that appears in (5.5). Conditions (4.1.23) and (4.2.9) imply that

(5.6) M �→ µ̂(N,H,M,α, s) is odd and increasing.

Hence for fixed (θ,M, λ, α), (5.5) is positive for sufficiently large M(0) and
negative for sufficiently smallM(0). Thus the Intermediate Value Theorem
implies that for fixed (θ,M, λ, α), (5.5) has at least one solution for M(0).
Since µM > 0 by (4.1.23), this solution, denoted

(5.7) M(0) = B[θ,M, λ, α],

is unique. Since our constitutive functions are smooth, the inequality µM >
0 also enables us to deduce from the Implicit-Function Theorem 20.1.27
in Banach Space that B is a smooth functional of its arguments on C0 ×
C0 × [0,∞] × [α∗,∞]. We replace M(0) in (5.4) with B[θ,M, λ, α]. We set
u := (θ,M) and denote the resulting form of (5.3) and (5.4) by

(5.8) u = L(λ, α) · u + g[λ, α, u].

We treat (λ, α) as a pair of eigenvalue parameters. We set X := C0[0, 1] ×
C0[0, 1]. A straightforward application of the Arzelà-Ascoli and Bolzano-
Weierstrass Theorems shows that

[0,∞) × [α∗,∞) × X � (λ, α, u) �→ L(λ, α) · u, g[λ, α, u]

are compact and continuous. We therefore need only verify that L has
the appropriate spectral properties in order to apply the local and global
bifurcation theorems of Sec. 5.4. The arguments of Sec. 5.5 show that nodal
properties of θ are preserved globally on any connected set of solution pairs
not intersecting the trivial plane.

In view of these comments, we turn to the local study of bifurcation.
Here we treat several novel issues associated with imperfections and sin-
gularities before returning to global questions. To make our local study
completely explicit, we assume that the material is uniform, so that the
constitutive functions are independent of s.

Let ω̂ stand for any constitutive function, such as ν̂ or µ̂M , that depends
on N,H,M,α. Then we define

(5.9) ω0(λ, α) := ω̂(−λ, 0, 0, α),

so that

(5.10) [L(λ, α) · u](s)

=
(
µ0

M

∫ s

0
M(ξ) dξ, λ(ν0 + λη0H)

[∫ 1

s

θ(ξ) dξ −
∫ 1

0
ξθ(ξ) dξ

])
.
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Then the linearization of (5.8) about the trivial plane is equivalent to

(5.11) θ′′(1) + q(λ, α)θ(1) = 0, θ(1)(0) = 0 = θ(1)(1),

where

(5.12) q(λ, α) := λµ0
M (λ, α)[ν0(λ, α) + λη0H(λ, α)].

Problem (5.11) has a nontrivial solution, given by θ(1)(s) = const. sinnπs,
if and only if there is a positive integer n such that

(5.13) q(λ, α) = n2π2.

We refer to the set of points (λ, α) satisfying (5.13) as the nth eigencurve
(even though these points may not actually constitute one or even several
curves). Note that our constitutive assumptions imply that

(5.14) q(λ, α) > 0 for λ > 0, q(0, α) = 0, qλ(0, α) > 0.

Simplicity of eigenvalues. We now carry out computations to check
whether the hypotheses about simple eigenvalues of the Local and Global
Multiparameter Bifurcation Theorems are met.

It is an elementary exercise to compute the operator Lλ from (5.10).
Let u(1) := (θ(1),M(1)) = const.

(
(nπ)−1µ0

M sinnπs, cosnπs
)

denote the
eigenvector corresponding to an eigenpair (λ, α) satisfying (5.13). Let 〈·, ·〉
denote the L2-inner product. Then the linear operator P(λ, α) defined by

(5.15) P(λ, α) · u :=
〈θ, θ(1)〉 + 〈M,M(1)〉

〈θ(1), θ(1)〉 + 〈M(1),M(1)〉
u(1) =: J(u, λ, α)u(1)

projects C0 × C0 onto span {u(1)}. Here J(·, λ, α) is a linear functional.
Let us fix α = α�. Let q(λ�, α�) = n2π2. Then according to (5.4.10) and

(5.4.11), λ� is a simple eigenvalue of the problem

(5.16) u(1) = L(λ, α�) · u(1)

iff

dim ker
(
I − L(λ�, α�)

)
= 1,(5.17)

dim ker
(
I − L(λ�, α�) − Lλ(λ�, α�) · P(λ�, α�)

)
= 0.(5.18)

P can be replaced with any projection onto span u(1). The solution of (5.11)
shows that (5.17) holds if q(λ�, α�) = n2π2. A straightforward calculation
shows that (θ,M) is in the null space given in (5.18) if and only if θ satisfies

(5.19) θ′′ + q0θ = (nπ)−1{[(nπ)2 − q0]µ0
NM − µ0

Mq
0
λ

}
J sinnπs

and boundary conditions (5.2a,b). Here the superscript 0 denotes evalua-
tion at (λ�, α�). We readily find (e.g., by using the Alternative Theorem
and the definition of J) that the boundary-value problem for (5.19) has
a nontrivial solution if and only if the coefficient of J sinnπs in (5.19)
vanishes. It cannot do so if qλ(λ�, α�) �= 0. Hence,
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5.20. Lemma. Let q(λ�, α�) = n2π2. Then λ� is a simple eigenvalue of
(5.11) if and only if qλ(λ�, α�) �= 0.

Let us now fix λ� and again let q(λ�, α�) = n2π2. Then α� is a simple
eigenvalue of the problem

(5.21) u(1) = L(λ�, α�) · u(1)

if and only if (5.17) and (5.18) hold with Lλ replaced with Lα. By methods
similar to those leading to Lemma 5.20 we obtain

5.22. Lemma. Let q(λ�, α�) = n2π2. Then α� is a simple eigenvalue of
(5.21) if and only if µ0

Mqα �= 0 at (λ�, α�).

By using elementary operator theory or by direct computation we find
that (θ,M) ∈ ker

(
(I − L)2

)
if and only if

(5.23) θ′′′′ + 2qθ′′ + q2θ = 0, θ(0) = θ′′(0) = 0 = θ(1) = θ′′(1).

A straightforward computation then yields

5.24. Lemma. Let q(λ�, α�) = n2π2. Then

(5.25) ker
(
[I − L(λ�, α�)]2

)
= ker

(
I − L(λ�, α�)

)
.

These results enable us to apply the local and global bifurcation theory
to branches bifurcating from simple eigenvalues. We discuss bifurcation
from double eigenvalues in the following sections.

5.26. Problem. For nonuniform rods, develop a complete and detailed spectral theory
analogous to that leading to Lemmas 5.20, 5.22, and 5.24.

6. Planar Buckling of Rods. Imperfection
Sensitivity via Singularity Theory

To study the detailed local behavior of solution pairs near bifurcation
points, it is useful to reduce our problem to a finite-dimensional problem
by the Poincaré shooting method:

Let
(
θ(·, λ, α,m),M(·, λ, α,m)

)
denote the solution to the initial-value

problem consisting of

(6.1)
θ′ = µ̂, M ′ = −λ[ν̂ sin θ + η̂ cos θ],

θ(0) = 0, M(0) = m,

where the arguments of the functions µ̂, ν̂, η̂ are (−λ cos θ, λ sin θ,M,α).
Clearly

(
θ(·, λ, α,m),M(·, λ, α,m)

)
is a solution of our boundary-value

problem if and only if it is a solution of (6.1) defined for s ∈ [0, 1] that
satisfies

(6.2) θ(1, λ, α,m) = 0.



6.6. IMPERFECTION SENSITIVITY 211

Since (6.1) admits the trivial solution for m = 0, standard perturbation
theory for ordinary differential equations ensures that (6.1) has a solution
defined for s ∈ [0, 1] if |m| is sufficiently small and that this solution depends
smoothly on λ, α, and m (see Sec. 20.2).

We now study the finite-dimensional equation (6.2) in a neighborhood of
(λ, α,m) = (λ0, α0, 0) where (λ0, α0, 0) satisfies (5.13). If we can determine
howm depends on λ and α, then we know how the solution of (5.8) depends
on these variables.

We first observe that (4.2.9) implies that the solution of (6.1) satisfies
the oddness condition:

(6.3) θ(·, λ, α,m) = −θ(·, λ, α,−m), M(·, λ, α,m) = −M(·, λ, α,−m).

In carrying out the computations underlying the following results, we use
the fact that the only derivatives up to order three of the constitutive
functions at the trivial state that are not forced to vanish by the symmetry
conditions (4.2.9) are
(6.4)

ν0,

ν0
N , η

0
H , µ

0
M ,

ν0
NN , ν

0
HH , ν

0
MM , η

0
NH , µ

0
NM ,

ν0
NNN , ν

0
NHH , ν

0
NMM , η

0
NNH , η

0
HHH , η

0
HMM , µ

0
NNM , µ

0
HHM , µ

0
MMM .

The theory of ordinary differential equations implies that
(
θm(·, λ, α, 0),

Mm(·, λ, α, 0)
)

satisfies the linear initial-value problem

(6.5) θ̃′ = µ0
MM̃, M̃ ′ = −λ(ν0 + λη0H)θ̃, θ̃(0) = 0, M̃(0) = 1.

We readily find that

(6.6)
θm(s, λ, α, 0) =

µ0
M (λ, α)√
q(λ, α)

sin
√
q(λ, α)s,

Mm(s, λ, α, 0) = cos
√
q(λ, α)s,

which (5.13) reduces to

(6.7) θm(s, λ0, α0, 0) =
µ0

M (λ0, α0)
nπ

sinnπs, Mm(s, λ0, α0, 0) = cosnπs,

whence

(6.8) θm(1, λ0, α0, 0) = 0.

The symmetry condition (6.3) implies that

(6.9)

θmm(·, λ0, α0, 0) = 0 =Mmm(·, λ0, α0, 0),

θλ(·, λ0, α0, 0) = 0 =Mλ(·, λ0, α0, 0),

θλλ(·, λ0, α0, 0) = 0 =Mλλ(·, λ0, α0, 0),

θα(·, λ0, α0, 0) = 0 =Mα(·, λ0, α0, 0).
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From (6.6) (or else from a perturbation analysis of (6.1)), we find

(6.10)

θmλ(s, λ, α, 0) = −
(
µ0

MNq
−1/2 + 1

2µ
0
Mq

−3/2qλ

)
sin q1/2s

+ 1
2µ

0
Mq

−1qλs cos q1/2s,

Mmλ(s, λ, α, 0) = − 1
2q

−1/2qλs sin q1/2s,

which, by (5.13), yields

(6.11) θmλ(1, λ0, α0, 0) =
(−1)nµ0

Mqλ
2n2π2 .

We readily compute θmλλ(1, λ0, α0, 0) and θmα(1, λ0, α0, 0) from (6.6).
A straightforward but lengthy perturbation process yields an expression for
θmmm(1, λ0, α0, 0). It depends on a complicated combination of derivatives
of the constitutive functions up to order three. Thus we have no general
constitutive restrictions to tell us about this variable. It is therefore highly
probable that θmmm(1, λ0, α0, 0) �= 0. The question of which derivatives of
θ(1, λ, α, 0) are needed at (λ0, α0) to give an accurate description of local
behavior is answered by singularity theory (see Golubitsky & Schaeffer
(1985, Chaps. II, III)):

Let α0 be fixed and let (5.13) hold. Let ε = ±1, δ = ±1. If

θ(1, λ0, α0, 0) = 0, θm(1, λ0, α0, 0) = 0,(6.12a,b)

θmm(1, λ0, α0, 0) = 0, θλ(1, λ0, α0, 0) = 0,(6.12c,d)

sign θmmm(1, λ0, α0, 0) = ε, sign θmλ(1, λ0, α0, 0) = δ,(6.12e,f)

then this local problem for (6.2) is strongly equivalent to the problem

(6.13) (εx2 + δω)x = 0,

i.e., there exist smooth functions (x, ω) �→ F (x, ω), X(x, ω) defined on a
neighborhood of the origin (0, 0) in R

2 with F (0, 0) �= 0, and Xx(0, 0) > 0
such that

(6.14) (εx2 + δω)x = F (x, ω)θ
(
1, λ0 + ω, α0, X(x, ω)

)
.

Problem (6.13) is said to have a normal form. (Note that the function of
(6.14) is the simplest function having the properties of (6.12).)

Problem (6.13) has two two-parameter universal unfoldings of the form

(6.15a,b) εx3 + δωx+ β + γx2 = 0 or εx3 + δωx+ β + γω = 0.

These equations capture in a mathematically precise sense the effects of
all sufficiently smooth small perturbations (imperfections) of (6.13) when
(6.12) holds. If it happens that θmmm(1, λ0, α0, 0) = 0, then (6.2) is equiv-
alent to some other problem (with a more complicated normal form).
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There is no end to the number of ways we can introduce physical or geometrical im-
perfections into our problem: The natural reference configuration need not be straight,
the end load need not be applied in the −i direction, the end load could be offset so that
it is equipollent to a force and a moment, there can be a transverse load, etc. Singularity
theory says that the variety of local mathematical response is not increased by intro-
ducing more than the two unfolding parameters and that the use of fewer parameters
could very well result in missing important phenomena.

Suppose that we want to introduce a specific pair (β, γ) of imperfection parameters.
Thus we want to study a problem of the form G(λ, α0, m, β, γ) = 0 for (λ,m) near (λ0, 0)
when G(λ, α0, m, 0, 0) = θ(1, λ0, α0, m) and when (5.13) holds. (α is playing a passive
role here.) Then G(λ, α0, m, β, γ) is a universal unfolding of θ(1, λ0, α0, m) if and only
if it meets the following simple test (see Golubitsky & Schaeffer (1985, Prop. III.4.4)):

(6.16) det

⎡⎢⎢⎣
0 0 Gmλ Gmmm

0 Gλm Gλλ Gλmm

Gβ Gβm Gβλ Gβmm

Gγ Gγm Gγλ Gγmm

⎤⎥⎥⎦ 
= 0 at (λ0, α0, 0, 0, 0).

In this case G is strongly equivalent to (6.15).

ω

x

ω

x

(a) (b)

Fig. 6.17. Solution branches of (6.15).

Suppose that ε = 1 and δ = −1. A careful study of (6.15a) shows that
if β > max{0, γ3/27}, then the solution branches have the form shown
in Fig. 6.17a, and if 0 < β < γ3/27, then they have the form shown in
Fig. 6.17b (cf. Fig. 5.1.17). The figures for β < 0 are analogous. By the
strong equivalence of (6.15) to the universal unfolding of (6.2), we know
that the solution branches of the latter have the qualitative behavior of
Fig. 6.17 near their bifurcation points. In particular, Fig. 6.17b indicates
that a snapping phenomenon is likely to occur. The original study of
this two-parameter universal unfolding for an elastica was carried out by
Golubitsky & Schaeffer (1979).

Singularity theory is a rich and useful mathematical theory for studying solutions of
finite-dimensional problems. Some procedure, such as the Lyapunov-Schmidt method
or the Poincaré shooting method, based upon the Implicit-Function Theorem (see Sec.
20.2)) is needed to reduce infinite-dimensional problems to finite-dimensional problems
to which the theory can be applied. (The Poincaré shooting method is more convenient
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for ordinary differential equations because it uses only classical function spaces.) Singu-
larity theory is more general than the related catastrophe theory (see Poston & Stewart
(1978)), which treats scalar-valued (potential) functions rather than vector fields. The
mathematical foundations of singularity theory consist in a complicated amalgamation
of elementary analytic techniques, based on the Implicit-Function Theorem and Tay-
lor’s Theorem, with algebraic techniques for systematizing computations. Group theory
enters in an essential way for problems with symmetries (see Golubitsky, Stewart, &
Schaeffer (1988)). The results of the theory are easy to apply because Golubitsky &
Schaeffer (1985) have extensive tables of normal forms and their universal unfoldings for
a variety of problems, including ours. For applications of catastrophe theory to prob-
lems of imperfection-sensitivity for discrete mechanical systems, see Thompson & Hunt
(1984).

7. Planar Buckling of Rods.
Constitutive Assumptions

For the elastica treated in Sec. 5.5, q(λ, α) = λ/EI. (Here α can be
related to the stiffness EI.) For this q, all the preceding computations
become particularly simple. We now show that compressibility can produce
q’s for which

(7.1) q(λ, α) → 0 as λ→ ∞.

In this case, (5.14) implies that q(·, α) has a positive maximum at a posi-
tive value of λ. Thus q(·, α) may well have the form shown in Fig. 7.2. We
shall show that for reasonable constitutive functions it is possible to vary
the height of q(·, α) by varying α. Thus, for appropriate α we can ensure
that the maximum of this function occurs at n2π2, in which case the hy-
potheses supporting the universal unfolding just described are not valid.
We can in fact force this maximum to lie below π2, in which case there
are no bifurcating branches. There are, however, nonbifurcating branches.
The physical interpretation of such branches is straightforward: If a col-
umn, not too thin, composed of a relatively soft material is subjected to
a gradually increasing end thrust, it shortens, thickens, but does not lose
its straightness by buckling. There are no nearby equilibrium states. But
if the thrust is large enough, then a large transverse force can move the
compressed straight column into a stable large bowed configuration, where
it remains after the transverse force is removed. We wish to investigate
these nonbifurcating branches.

We interrupt our mathematical analysis to show that (7.1) is plausible and to produce
some concrete examples of constitutive functions for rods. Our approach is a primitive
version of that to be conducted in Chap. 16. Let us interpret the rod as a three-
dimensional body (see Fig. 4.1.1) whose reference configuration is a cylinder, which for
simplicity is taken to have the rectangular cross section A := {(x, y) : |x| ≤ h, 0 ≤ y ≤ 1}
of height 2h and of unit width. We assume that the deformed position p̃(x, y, s) of the
material point (x, y, s) is constrained to have the form

(7.3) p̃(x, y, s) = r(s) + xb(s) + yk, r′(s) = ν(s)a(s)

where a and b are defined in (4.1.3). Thus the stretch of the longitudinal fiber through
(x, y) is p̂s(x, y, s)·a(s) = ν(s)−xθ′(s). (Its positivity everywhere leads to the inequality
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4

αq

λ

2 3 Kα

π α2π α2

π α2

Fig. 7.2. Eigenvalues of (5.11) are those values of λ at which
the graph of q(·, α) intersects the horizontal lines with ordinates
n2π2. The graph shown here, with an appropriate scaling, cor-
responds to (7.16) with β = 1.

ν > h|θ′|, which defines the domain of the constitutive functions; cf. (4.1.9).) Constraint
(7.3) ensures that η = 0.

In a deformed configuration of this rod, we let T (x, y, s) denote the component of
force per unit reference area (i.e., a stress) acting across the material cross section at s
in the direction a(s). Then

(7.4) N (s) =
∫ 1

0
dy

∫ h

−h
T (x, y, s) dx, M (s) = −

∫ 1

0
dy

∫ h

−h
xT (x, y, s) dx.

Let us decompose T into a part TL that makes no contribution to the integrals of
(7.4) and a complementary part TA. (In Chap. 16 we show that TL can be identified
with a component of the Lagrange multiplier maintaining the constraint (7.3).) For a
uniform elastic material, we assume that TA(x, y, s) depends only on the stretch of the
longitudinal fiber through (x, y):

(7.5) TA(x, y, s) = T̂
(
ν(s) − xθ′(s)

)
.

We now define our constitutive equations for the planar deformation of a uniform un-
shearable elastic rod in terms of (7.5) by

(7.6) N̂ (ν, µ, α) =
∫ h

−h
T̂ (ν − xµ) dx, M̂ (ν, µ, α) = −

∫ h

−h
xT̂ (ν − xµ) dx

where

(7.7) α = h2/3.

We can define the strain energy function W for the rod in terms of the corresponding
function Ω for the constrained 3-dimensional body by setting

(7.8) W (ν, µ, α) :=
∫ h

−h
Ω(ν − xµ) dx, Ω(δ) :=

∫ δ

1
T (u) du.

Then we can write (7.6) as

(7.9) N (ν, µ, α) = Wν(ν, µ, α), M (ν, µ, α) = Wµ(ν, µ, α).

We can readily represent derivatives of (7.6) with respect to ν and µ in terms of
integrals of the derivatives of T̂ . If B̂(ν, µ, α) stands for any such derivative of (7.6), then
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we set B∗(ν, α) := B̂(ν, 0, α). Using these representations we find that all derivatives of
(7.6) at µ = 0 can be expressed in terms of derivatives of N ∗ with respect to ν alone:

(7.10)
N ∗

µ = M ∗
ν = M ∗

α = 0, M ∗
µ = αN ∗

ν , N
∗
α = N ∗/2α,

N ∗
νµ = N ∗

µα = M ∗
νν = M ∗

να = M ∗
µµ = M ∗

αα = 0, N ∗
µµ = M ∗

νµ = αN ∗
νν ,

N ∗
να = N ∗

ν /2α, M
∗
µα = 3

2N
∗
ν , N

∗
αα = −N ∗/4α2,

N ∗
ννµ = N ∗

µµµ = M ∗
νµµ = M ∗

ννν = 0, N ∗
νµµ = M ∗

ννµ = αN ∗
ννν , M

∗
µµµ = 9

5α
2N ∗

ννν .

Since (N,M ) �→ (ν̂(N,M, α), µ̂(N,M, α)) is the inverse of the pair of constitutive func-
tions defined by (7.6), we can represent those members of (6.4) not involving η or H in
terms of these ν-derivatives of N ∗. Since λ = −N ∗(ν0(λ, α), α) is an identity, we find
from (5.12) and (7.10) that

(7.11) q(λ) = −
N ∗ (ν0(λ, α), α

)
ν0(λ, α)

M ∗
µ (ν0(λ, α), α)

= −
N ∗ (ν0(λ, α), α

)
ν0(λ, α)

αN ∗
ν (ν0(λ, α), α)

for an unshearable rod. Under our standard constitutive assumption that N ∗(ν, α) →
−∞ as ν → 0, we then obtain

(7.12) lim
λ→∞

q(λ) = − lim
ν→0

N ∗(ν, α)ν
αN ∗

ν (ν, α)
.

If, furthermore, N ∗(·, α) ∈ C2(0, 1), say, and if N ∗(ν, α) ‘behaves like’ −Cν−β for ν
small, where C and β are positive constants, then (7.1) holds. More generally, if we
supplement the standard requirements that N ∗(ν, α) → −∞ as ν → 0 and N ∗

ν (ν, α) > 0
with the requirement that N ∗

νν(ν, α) is defined and negative for sufficiently small and
positive ν , then (7.1) holds.

7.13. Exercise. Prove this last statement and show that it need not be true if the
condition on the negativity of N ∗

νν(ν, α) is not imposed.

We now study a specific family of constitutive functions:

(7.14a,b) N ∗(ν, α) = 2hK(νγ − ν−β) or, equivalently, T̂ (ν) = K(νγ − ν−β),

whereK > 0, β > 0, γ ≥ 0 are given numbers. These functions, which meet our standard
requirements, have the additional virtue that they permit the integrals in (7.6) to be
evaluated explicitly. Equation (7.14) with γ = 0 is perfectly reasonable when ν ≤ 1,
i.e., when the material is under compression. We shall accordingly use this version of
(7.14) to illustrate local bifurcation from a trivial solution, which represents a uniformly
compressed state. (It is physically unrealistic to take γ = 0 for global bifurcation because
for very large λ, parts of the column can be in tension.) For γ = 0, (7.14a) is equivalent
to

(7.15) ν0(λ, α) =
(

2hK
λ + 2hK

)1/β

.

Then by using our representations for (6.4) in terms of (7.10), we find

(7.16) q(λ, α) =
λ

2hKαβ

(
2hK

λ + 2hK

)1+2/β

.

The graph of this function for β = 1 is shown in Fig. 7.2. Note that it has a unique max-
imum at λ = hKβ and that it satisfies (5.14) and (7.1). The corresponding eigencurves
in the (λ, α)-plane are defined by substituting (7.7) and (7.16) into (5.12).
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Eq. (7.14) is typical of a wide range of one-dimensional elastic constitutive equations
for compression. The combination of any such law with (7.10) would produce comparable
results. The basic assumption underlying the derivation of (7.14) from (7.3) and (7.6) is
that (7.3) in the form used makes no provision for transverse expansions and for shear.
Preliminary studies show that accounting for transverse expansions in (7.3) seems to
preserve much of the essential character of (7.10) and the ensuing analysis. But the
treatment of shear introduces new features: The representation for H analogous to (7.4)
involves a shear component of the stress besides the normal component T . Thus the
resulting constitutive relation for H is independent of those for N and M , which are
related by (7.10). In the absence of both a mathematical doctrine and a useful body of
experimental results saying how H depends on elongations for large compressions, we
must entertain the possibility, inherent in (5.12), that shearability could cause (7.1) to
fail.

For β = 3 and γ = 3 in (7.14), we find that (7.6) reduces to (7.9) with

(7.17) W = Kh
{ 1

10 [5ν4 + 10ν2(hµ)2 + (hµ)4] + (ν2 − h2µ2)−1} .
Notice how nicely (7.17) accounts for the condition that ν > h|µ|.

8. Planar Buckling of Rods.
Nonbifurcating Branches

We assume that (7.1) holds, whether or not the rod is unshearable. Thus
q(·, α) has a positive maximum at a positive value of λ. In this section we
study solutions of (6.2) for (λ, α) lying near a point (λ0, α0) at which q(·, α)
has a local positive maximum:

(8.1a,b,c) q(λ0, α0) = n2π2, qλ(λ0, α0) = 0, qλλ(λ0, α0) < 0.

Conditions (8.1b) and (6.11) imply that

(8.2) θmλ(1, λ0, α0, 0) = 0,

so that (6.12f) does not hold. We want to study the effect of varying only
the parameter α on the bifurcation diagram. Such variations preserve the
‘Z2-symmetry’ in (6.3). We do not introduce imperfection parameters as
in Sec. 6. If we adopt (7.16), then from (8.1) and a lengthy computation
we find that

(8.3)

θ = 0, θm = 0, θmm = 0,
θλ = 0, θλλ = 0, θmλ = 0, θα = 0,

(−1)nθmmm > 0, (−1)nθmλλ < 0, (−1)nθmα < 0

where the arguments of these derivatives of θ are (1, λ0, α0, 0). In partic-
ular, we have (−1)n2n2π2θmλλ = µ0

Mqλλ and (−1)n2n2π2θmα = µ0
Mqα at

this point.
The Z2-singularity theory of Golubitsky & Schaeffer (1985, Chap. VI)

says that if α = α0 is fixed and if (8.3) holds, then problem (6.2) is strongly
Z2-equivalent to the problem

(8.4) (x2 − ω2)x = 0,
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i.e., there exist smooth functions (x, ω) �→ F (x, ω), X(x, ω) defined on a
neighborhood of the origin (0, 0) in R

2 with F (0, 0) �= 0, Xx(0, 0) > 0,
F (·, ω) even, and X(·, ω) odd such that

(8.5) (x2 − ω2)x = F (x, ω)θ
(
1, λ0 + ω, α0, X(x, ω)

)
.

Problem (8.4) has a one-parameter Z2-universal unfolding of the form

(8.6) (x2 − ω2 − γ)x = 0.

This equation captures the effects of all sufficiently smooth small pertur-
bations of (8.4) that preserve the symmetry (6.3).

By using (8.5), which relates (6.2), (8.4), and (8.6), together with Gol-
ubitsky & Schaeffer’s (1985) Definition VI.3.1 of a Z2-universal unfolding,
we can readily show that (λ, α,m) �→ θ(1, λ, α,m) is a Z2-universal unfold-
ing of (λ,m) �→ θ(1, λ, α0,m) if θmα(1, λ0, α0, 0) �= 0, an inequality which
is ensured by the last inequality of (8.3). (This observation represents a
solution of the recognition problem for these universal unfoldings.) Problem
(8.6) bears essentially the same relation to (6.2) as (8.4) bears to (6.2) with
α fixed at α0. The variables (ω, γ, x) of (8.6) correspond to the variables
(λ− λ0, α− α0,m) of (6.2).

The graph of (8.6), a saddle surface, is easily constructed. A global
version of it is shown in Fig. 9.33. In summary, we have

8.7. Theorem. Let (λ0, α0) satisfy (8.1) and (8.3). Then for (λ, α,m)
near (λ0, α0, 0), the bifurcation diagram for (6.2) is strongly equivalent
to that for (8.6) with (λ − λ0, α − α0,m) corresponding to (ω, γ, x). The
number of solutionsm of (6.2) for fixed (λ, α) with (λ, α,m) near (λ0, α0, 0)
equals the number of intersections of the line parallel to the x-axis that
passes through (ω, γ, 0) with the graph of (8.6) with (ω, γ) corresponding
to the fixed (λ, α) under the equivalence generating (8.5). In particular, for
fixed α < α0, there are nontrivial branches that bifurcate from the trivial
plane, while for fixed α > α0, there are nontrivial branches that do not
bifurcate from the trivial plane.

If θmmm and θmλλ have the same sign at (1, λ0, α0, 0), then (6.2) has a
one-parameter Z2-universal unfolding of the form

(8.8) (x2 + ω2 ± γ)x = 0,

the graph of which is readily constructed. Our considerations of the last
section suggest that this situation is not so common.

Theorem 8.7 has an immediate global consequence. It asserts that nonbi-
furcating branches for fixed α are connected to bifurcating branches for a
different fixed value of α by a 2-dimensional surface of solution pairs. There-
fore, the nonbifurcating branches inherit their nodal properties from those
of the bifurcating branches, because these two branches can be joined by
a branch containing no trivial solution pairs. Thus, we have exploited the
availability of the parameter α to provide a connectivity method by which
we can give a detailed qualitative picture of nonbifurcating branches.
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9. Global Disposition of Solution Sheets
We now determine how the bifurcating sheets are disposed in X × [0,∞) × [α∗,∞)

where X := C0[0, 1] ×C0[0, 1]. By using versions of the techniques of Sec. 5.5, Antman
& Rosenfeld (1978) have shown that under very mild constitutive restrictions (which we
do not spell out here, but which are met by (7.17)), there is a continuous positive-valued
function f defined on [0,∞) × [α∗,∞) with the property that if ((λ, α), u) is a solution
pair of (5.8), then ‖u‖ < f (λ, α). (Here ‖·‖ denotes a norm for X .) This fact means that
u cannot blow up unless λ or α approaches ∞. (Since Antman & Rosenfeld obtained
their result for a whole family of materials, no parameter such as α intervenes in their
analysis. By examining the role of h in (7.17) we can readily show that the estimate
improves as h or α grows.) By using the Sturmian theory we can show that for bounded
α the bifurcating sheets are bounded away from the plane λ = 0. (For refined results
of this sort, see Olmstead (1977).) We can likewise show that under mild constitutive
conditions there is a continuous positive-valued function g defined on an unbounded
interval in [0,∞) with the property that if (u, λ, α) is a nontrivial solution pair of (5.8),
then α < g(λ) (see Antman & Pierce (1990)).

We now show how to analyze the behavior of branches for large λ. For simplicity,
we just treat unshearable columns. Throughout our analysis, we fix α and consequently
suppress its appearance. We shall show that the bifurcation diagrams for extensible
columns can differ strikingly from that for the inextensible elastica shown in Fig. 5.1.15.
We begin with general considerations and then for simplicity restrict our attention to
the material (7.17).

Let us assume that (7.9) holds and that the coercivity conditions (4.1.24)–(4.1.26)
hold. Then our governing equations (for unshearable rods, which are versions of the
differential equations corresponding to (5.3) and (5.4)) admit the first integral

(9.1a) θ′Wµ(ν, θ′) + νWν(ν, θ′) −W (ν, θ′) = c (const.),

where ν is defined to be the solution of

(9.1b) −λ cos θ = Wν(ν, θ′).

By Ex. 4.2.17, this integral can be written in the form

(9.2) θ′W �
µ(−λ cos θ, θ′) −W �(−λ cos θ, θ′) = c,

which defines a family of trajectories in the (θ, θ′)-phase plane. If θ′(0) > 0, then any
trajectory satisfying (5.2a,b) must first cross the positive θ-axis at some value θ = ψ.
In this case, we can evaluate c in (9.2) at (θ, θ′) = (ψ, 0) and find that c depends on ψ
and λ. Exercise 4.2.17 also shows that (9.2) is equivalent to an equation of the form

(9.3) h2(θ′)2 = F (θ, ψ, λ)

where F (·, ψ, λ) has period 2π. Here the h2, which appears throughout Sec. 7, is intro-
duced for future algebraic convenience. The Implicit-Function Theorem implies that F
is continuously differentiable when W is twice continuously differentiable, etc.

The form of (9.3) says that ψ is the maximum value of θ for a solution of our
boundary-value problem and that

(9.4a) F (ψ, ψ, λ) = 0.

From the analysis of Sec. 4.2 we readily find that the only singular points in the phase
portrait of (9.2) are centers at (2kπ, 0) and saddles at ((2k + 1)π, 0), k = 0,±1,±2, . . . .
Since there can be no singular points between θ = 0 and θ = π for all values of the
parameters, we find that

(9.4b) F (θ, ψ, λ) > 0 for − ψ < θ < ψ.
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Since (θ, θ′) = (0, 0), (π, 0) are singular points, F must satisfy

(9.4c,d) Fθ(0, 0, λ) = 0, Fθ(π, π, λ) = 0.

An examination of the linearizations of the differential equations corresponding to (5.3)
and (5.4) about the saddle point (π, 0), which reduces to the study of a simple eigenvalue
problem, shows that the separatrices approach it along directions that are not parallel
to the coordinate axes. Therefore,

(9.4e) Fθθ(π, π, λ) > 0.

Thus (9.2) (or (9.3)) has a phase portrait qualitatively the same as that for the elastica,
(which is identical to that for the pendulum). But the dependence of our portrait on λ
is radically different.

We now state and prove our basic multiplicity result for the material of (7.17). Af-
terwards we easily abstract it so that it applies to a wide class of materials.

9.5. Theorem. Let (7.17) hold with β = 3 = γ. There is a number Λn such that if
λ > Λn, then (5.8) has (at least) two pairs of nontrivial solutions (reflections of each
other) having exactly n + 1 zeros on [0, 1].

Proof. We obtain a solution of (5.8) if exactly one unit of the independent variable s is
used up on a phase-plane trajectory that begins and ends on the θ′-axis. In particular,
(9.3) then implies that there is a solution for which θ has exactly n + 1 zeros on [0, 1] if
λ and ψ satisfy

(9.6) J(ψ, λ) :=
∫ ψ

0

dθ√
F (θ, ψ, λ)

=
1

2hn
.

A solution pair (ψ, λ) of (9.6) determines a unique phase-plane trajectory for (9.3) and
a unique solution θ of (5.8), which is defined implicitly by

(9.7) s = h
∫ θ

0

dφ√
F (φ, ψ, λ)

for 0 ≤ s ≤ 1
2n
.

ψ plays the same role in (9.6) as m plays in (6.2). Indeed, there is a unique m ≥ 0
corresponding through (9.2) or (9.3) to each ψ ∈ [0, π).

In view of (9.4a), it is not clear that J is continuously differentiable on {(ψ, λ) :
0 ≤ ψ < π, λ > 0}. To show that it is, we introduce the changes of variables

(9.8a) u =
sin(θ/2)
sin(ψ/2)

, χ = sin(ψ/2), F �(u, χ, λ) = F (θ, ψ, λ), J �(χ, λ) = J(ψ, λ),

so that

(9.8b) J �(χ, λ) = 2χ
∫ 1

0

du√
1 − χ2u2

√
F �(u, χ, λ)

.

J � is readily differentiated for χ < 1. Indeed, J has as much differentiability on its
domain as F has.

We must determine the behavior of J(·, λ) as λ → ∞. We prove this theorem by
showing that J has the patently nonuniform behavior:

(9.9a,b,c) J(π, λ) = ∞, J(ψ, λ) →
{

∞ for 0 ≤ ψ < π/2
0 for π/2 ≤ ψ < π

}
as λ → ∞.

Conditions (9.4a,d) ensure that F (·, π, λ) is not integrable on (0, π), so that (9.9a) holds.
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The substitution of (7.17) into (9.1) shows that the corresponding function F of (9.3)
is defined implicitly as the solution of the system plus1pt plus 1pt plus1pt plus1pt

F 2

10
+ F ν2 +

ν4

2
− 1
δ2

=
ξ4

2
− 1
ξ2
,(9.10a)

ν(ν2 + F − δ−4) = −λ cos θ(9.10b)

where

(9.10c,d) δ2 := ν2 − F, ξ3 − ξ−3 := −λ cosψ.

We note that (9.10b) can be solved uniquely for ν as a function of the other variables
appearing in this equation, in consonance with the development in Secs. 4.1 and 4.2
supporting (9.2).

We now turn to the proof of (9.9b). We let ‘∼’ designate asymptotic equivalence as
λ → ∞ and let ‘O’ and ‘o’ designate the Landau order symbols as λ → ∞. We take ψ
to be fixed in [0, π/2), take θ to be fixed in [0, ψ], and take λ large. (Let us emphasize
that our results are not uniform in ψ and θ. Uniform results are not needed to prove
(9.9).) Then (9.10d) implies that

(9.11) ξ ∼ (λ cosψ)−1/3.

From (9.10a) we thus find that

(9.12a) δ2 ≤ (λ cosψ)−2/3 = O(λ−2/3),

whence

(9.12b) ν2 = F + O(λ−2/3).

We solve (9.10a) for δ−2 and then substitute the resulting expression and (9.12b) into
(9.10b) to obtain

(9.13)
√
F + O(λ−2/3)

{[
O(λ2/3) + 8

5F
2 + 2FO(λ−2/3)

]2
− 2F

}
= λ cos θ,

whence

(9.14) F = O(λ−2/3), ν2 = O(λ−2/3),

the second equality following from (6.21b).
Now we substitute (9.14) back into (9.10a), from which we obtain the following

refinement of (9.12a):

(9.15) δ−2 ∼ (λ cosψ)2/3.

We substitute (9.14) and (9.15) into (9.10b) and use (9.10c) to obtain

λ cos θ ∼ νδ−4 ∼ ν(λ cosψ)4/3,(9.16a)

F = ν2 − δ2 ∼ λ−2/3(cosψ)−8/3[cos2 θ − cos2 ψ].(9.16b)

Thus

(9.17) J(ψ, λ) ∼ λ1/3(cosψ)4/3
∫ ψ

0

dθ√
cos2 θ − cos2 ψ

.

In particular, J(0, λ) ∼ λ1/3π/2. Condition (9.9b) follows from (9.17).
We now prove (9.9c). Let ψ be fixed in (π/2, π). Then (9.10d) implies that

(9.18) ξ ∼ λ1/3(− cosψ)1/3.

For each θ ∈ (0, ψ), Eqs. (9.10a,c) imply that either (i) F → ∞ and ν → ∞ as λ → ∞
or (ii) ν → ∞ while F remains bounded as λ → ∞. We prove (9.9c) by showing that
(ii) cannot occur.
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First let θ < π/2. Then (9.10b,c) imply that δ−4ν = δ−4
√
F + δ2 → ∞ as λ → ∞.

Were F not to approach ∞ as λ → ∞, then δ would approach 0, in contradiction to the
limit ν → ∞, which holds in (ii). For θ = π/2, we find that (9.10b) implies that δ → 0,
whence F → ∞.

Now let θ ∈ (π/2, ψ). Were F not to approach ∞ as λ → ∞, then (9.10b) would
imply that ν ∼ (−λ cos θ)1/3. We substitute this expression and the corresponding
representation for ξ into (9.10a) to obtain an asymptotic quadratic equation for F . The
positive solution of this equation is

(9.19) 1
5F ∼ λ2/3

{
(− cos θ)2/3 +

√
(− cos θ)4/3 + 1

5 [(− cosψ)4/3 − (− cos θ)4/3]
}
,

which contradicts our false hypothesis.
Finally we treat the case that ψ = π/2. Here (9.10d) implies that ξ = 1, (9.10a)

implies that δ2 < 2, whence (9.10c) implies that F < ν2 < F + 2. Thus either ν and F
both approach ∞ or both stay bounded as λ → ∞. In the former case, (9.10a) implies
that δ → 0, and in the latter case, (9.10b) implies that δ → 0 when θ < π/2. We thus
conclude from (9.10c) that ν2 ∼ F when θ < π/2. Equation (9.10a) then implies that
ν2 and F → ∞ as λ → ∞ and that δ−2 ∼ 8

5F
2. Thus (9.10b) yields

(9.20) F (θ, π/2, λ) ∼
( 25

64λ cos θ
)2/9

,

which yields (9.9c) for ψ = π/2. �
It is clear from this proof that it is not difficult to verify the hypotheses of the

following generalization of Theorem 9.5.

9.21. Theorem. If (9.4) and (9.9) hold, then the conclusion of Theorem 9.5 holds.

We can obtain sharp asymptotic results for F for ψ > π/2 to complement those for
ψ < π/2 obtained in the proof of Theorem 9.5. Let ψ > π/2 and let λ be large. We first
study the case in which θ < π/2. It then follows from (9.10b) that δ−4 > ν2 + F . In
the proof of Theorem 9.5, we showed that ν → ∞ and F → ∞ as λ → ∞. Thus δ → 0
as λ → ∞ so that

(9.22) ν2 ∼ F.

We now solve (9.10a) for δ−2, and substitute the resulting expression and (9.21) into
(9.10b) to obtain

(9.23) λ cos θ ∼
√
F

{[
8
5F

2 − 1
2 (−λ cosψ)4/3

]2
− 2F

}
.

In view of (9.18), the only way this equation can hold is for

(9.24) F ∼
√

5
4 ξ

2 ∼
√

5
4 (−λ cosψ)2/3 ∼ ν2.

We now treat the case in which θ > π/2. From (9.10b,c) we find that

(9.25) ν >

(
−λ

2
cos θ

)1/3
.

By combining (9.10a,b), we find that

(9.26)
√
F + ν2 >

F 2

10
+ F ν2 +

ν4

2
− ξ4

2

for sufficiently large λ. This inequality is possible only if

(9.27a,b)
F 2

10
+ F ν2 +

ν4

2
∼ ξ4

2
, so that ν2 ∼ −F +

√
4
5F

2 + ξ4.
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Were δ−4 negligible with respect to ν2 + F , then (9.10a,b) would imply that

(9.28) ν(F + ν2) ∼ −λ cos θ.

We substitute (9.27b) into (9.29) to obtain

(9.29)
{
(λ cos θ)2 + F

[ 4
5F

2 + ξ4
]}2 ∼

[ 4
5F

2 + ξ4
]3
,

from which we would deduce that F ∼
√

5ξ2. Then (9.27b) would imply that ν2 =
o(λ2/3), in contradiction to (9.25). Thus δ−4 must be comparable to ν2 + F . It then
follows from (9.25) that δ2 must be negligible relative to ν2. Thus (9.10b) implies (9.22),
and we recover (9.24) from (9.27). Therefore (9.24) holds for ψ ∈ (π/2, π).

Property (9.9) implies that (9.6) has one solution ψ slightly less than π/2. In this
solution, |θ| < π/2, so that the column is everywhere compressed. The deformed shapes
of the column corresponding to solutions of (9.6) with ψ slightly less than π can be
determined by the techniques used by O’Malley (1976). They have the intuitively ob-
vious form. For example, if n = 1, then the column is everywhere in tension except at
boundary layers at its ends, where θ flips through an angle π. (In these solutions, θ
stays near ψ, which is near π for all s away from the ends of its interval [0, 1].) Equation
(9.24) could be used as a starting point for an asymptotic representation of the solution
as λ → ∞. Note that it implies the surprising result that ν is large at the ends of the
column where there is a large compressive thrust. This thrust is absorbed not by the
reduction of ν , but by the increase in F and in the reduction of δ. In other words,
ν does not exhibit boundary layer behavior. This fact, which is a consequence of our
adoption of a refined constitutive model accounting for the preservation of orientation,
would simplify a full asymptotic analysis.

To get detailed information about the disposition of solution branches corresponding
to Theorem 9.21, we could undertake a further analysis of J , with the aim of refining
(9.9), perhaps by showing that for λ large, the function Jλ(·, λ) vanishes exactly once.
In this case, (9.6) would have exactly two solutions ψ for each large λ. By a suitable use
of the regularity part of the Implicit-Function Theorem, we could conclude that solution
branches of (9.6) and thus solution branches of our boundary-value problem form two
distinct C1-curves going out to λ = ∞. Unfortunately, the requisite computations,
based on the use of (9.10) to effect the differentiation of (9.8b), become exceedingly
complicated as a consequence of the very nonuniformity that is reflected in (9.9). In
place of such an analysis, we content ourselves with results in the same spirit, which are
easily proved and which compensate for their deficiencies in detail with great generality:

9.30. Theorem. Let (9.4) and (9.9) hold and let F be twice continuously differentiable.
For each λ > Λn (introduced in Theorem 9.5), Eq. (9.6) has (at least) four solutions
±ψ1(λ), ±ψ2(λ) with ψ1(λ) → π/2, ψ2(λ) → π as λ → ∞. Corresponding to each
such solution is a solution pair of (5.8). Moreover, for almost all h > 0 the solution
pairs (ψ1(λ), λ), (ψ2(λ), λ) of (9.6) lie on distinct C1-manifolds (which are unions of
C1-curves).

Proof. All these statements save the last are summaries of results obtained above.
Since F is twice continuously differentiable, J is also. We can therefore obtain the last
statement by invoking Sard’s Theorem and results about C1-manifolds (see Abraham &
Robbin (1967, Thm. 15.1 and Cor. 17.2)). �

We can sacrifice a little more detail to get a result valid for all h. J. C. Alexander
(in a private communication) has given an elementary topological proof of

9.31. Theorem. Let (9.4) and (9.9) hold and let F be continuous. For each λ > Λn,
(9.6) has (at least) four solutions ±ψ1(λ), ±ψ2(λ) with ψ1(λ) → π/2, ψ2(λ) → π as
λ → ∞, and with {(λ,±ψ1(λ)) : λ > Λn} and {(λ,±ψ2(λ)) : λ > Λn} connected.
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Fig. 9.32. Typical bifurcation diagram reflecting Theorem 9.30. Here we
suppose that q has the form shown in Fig. 7.2. The number identifying
each branch is the value of n introduced in (5.12) and is 1 less than the
number of zeros of θ that characterizes each branch.

We illustrate typical bifurcation diagrams reflecting these theorems in Figs. 9.32 and
9.33.
9.34. Problems. Carry out the analysis of this section when (7.14) holds with β > 2
and γ > 1. What can be said about the global disposition of solutions when β > 0 and
γ > 0? Carry out the analysis for nonuniform rods (see Kath (1985)). Carry out the
analysis for general classes of W .

The development of Secs. 5–9 is adapted from Antman & Pierce (1990, c©Society for
Industrial and Applied Mathematics). Figures 6.17, 7.2, and 9.32 come from this source.

10. Other Planar Buckling
Problems for Straight Rods

We can analyze a great many other problems for the planar buckling of
rods by similar techniques. The essential ingredient in such studies is that
the reaction n(1) · j to any kinematic boundary conditions imposed at the
end s = 1 be zero. For example, consider the problem in which we replace
the boundary conditions (5.2) with

(10.1a–e) M(0) = 0 =M(1), r(0) = o, r(1) · j = 0, n(1) · i = −λ.

These conditions describe a rod with its end s = 0 hinged at o and with
its end s = 1 hinged to a point that can slide freely along the i-axis. From
(4.1.15) (cf. (5.4)) we then obtain

(10.2) 0 =M(1) −M(0) =
∫ 1

0
[k × n(1)] · r′(s) ds = −[r(1) · i][n(1) · j],

so that n(1) · j = 0 as long as r(1) �= o. It is thus clear that the entire
apparatus of Secs. 5–9 can handle this problem with but cosmetic changes.
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Fig. 9.33. Bifurcating sheet of solutions over the (λ, α)-plane. There are
infinitely many such sheets, all nested. (This figure comes from Antman
(1989) with permission of the American Society of Mechanical Engineers.)

The same is not true for the problem in which (5.2a,b) and (10.1c–e) hold,
because the equation for r cannot be uncoupled from those for θ and M .
In this case, we can express the reaction n(1) ·j as a functional of (θ,M, λ).
The analysis of nodal properties is technically much harder than that for
(10.1). See Antman & Rosenfeld (1978). (In the terminology of structural
mechanics, this problem is said to be statically indeterminate in the sense
that the reactions at the end cannot be found a priori, as they can for the
statically determinate problem for (10.2).)

10.3. Exercise. Prove that the bifurcating branches for the buckling of a rod under its
own weight globally preserve the distinctive nodal patterns they inherit from the eigen-
functions of the linearized problem corresponding to simple eigenvalues. Specifically,
analyze the problem (4.1.3), (4.1.4), (4.1.13), (4.1.18), (4.1.30) with f(s) = −(ρA)(s)gi
subject to the boundary conditions θ(0) = 0, r(0) = o, M (1) = 0, n(1) = o.

10.4. Problem. Consider the buckling of the structure illustrated in Fig. 10.5. The
curve OA represents the r for a nonlinearly elastic rod of unit reference length, and the
line AB represents a rigid shaft of length l. The rod is welded to a rigid wall at O, taken
to be the origin o, and hinged to the shaft at A. The shaft is hinged at point B, which is
constrained to move along the i-axis. An external horizontal force −λi is applied at B.
Carry out a global bifurcation analysis for this problem. Repeat the analysis when AB
is replaced by a nonlinearly elastic rod. (The first problem for the elastica was solved
by Stern (1979) by using elliptic functions.)
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The second part of this problem deals with a primitive framework. There has been
very little work done on nonlinear problems for frameworks, although there is an exten-
sive linear theory. (See Bleich (1952), e.g., among the many references listed in Sec. 5.2.)
It would be interesting to determine whether there are buckling problems for frameworks
that are amenable to global qualitative analysis in terms of nodal properties.

A

0

j

i B λ

Fig. 10.5. Geometry of Problem 10.4.

10.6. Problem. Consider the buckling of the structure illustrated in Fig. 10.7. The
curve AB represents the r for a nonlinearly elastic rod of unit reference length. The
lines OA and BC represent rigid shafts of length l. These rigid shafts are attached to
the rod at A and B so that either (i) OA and BC have the same directions as a(θ(0))
and −a(θ(1)), respectively, or (ii) OA and BC have the same directions as r′(0) and
−r′(1), respectively. The end O of the shaft OA is hinged to a fixed point, taken to be
the origin o, and the end C of the shaft BC is hinged to a point constrained to move
along the i-axis. An external force λi is applied at C. Carry out a global bifurcation
analysis of this problem. (For a study of the linearized problem, see Biezeno & Grammel
(1953, Sec. IV16b).)

Fig. 10.7. Geometry of Problem 10.6.

For an interesting collection of conservative loads for buckling problems see Gajewski
& Życzkowski (1970).

11. Follower Loads
We now study an illuminating class of problems in which the end load

n(1) depends on the configuration. In this case, n(1) is said to be a follower
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load. In particular, we assume that

(11.1) n(1) = −λc, c = cosψi + sinψj,

where c and ψ depend on the configuration of the end s = 1. We assume
that λ > 0. Our remaining boundary conditions are

(11.2a,b,c) θ(0) = 0, r(0) = o, M(1) = 0.

These problems are artificial. The force (11.1) may be realized by a feed-
back control. The one natural problem that can be modelled by follower
loads is that for a hose ejecting water, the reaction of the ejected water at
the nozzle being taken as tangential. The sinuous motion of hoses is typical
of the dynamics that can be produced. We set

(11.3) γ := θ − ψ.

Then from (4.2.10) we obtain

γ′ = µ̂(−λ cos γ, λ sin γ,M, s),(11.4a)

M ′ + λ[ν̂(−λ cos γ, λ sin γ,M, s) sin γ(11.4b)

+ η̂(−λ cos γ, λ sin γ,M, s
)
cos γ] = 0.

We assume that the monotonicity condition (4.1.23) holds. For simplicity
we retain the symmetry conditions (4.2.9). Note that a necessary condition
that (11.4) admit the trivial solution (θ,M) = (0, 0) is that γ = −ψ satisfy
(4.2.11). To ensure that there is such a solution (not involving a shear
instability), we require that ψ, regarded as depending on the configuration
of the end s = 1, vanish when θ(1) vanishes. We now show that for various
choices of (11.1) the only solutions of (11.1)–(11.4) are trivial.

11.5. Proposition. Let c = a(1) (so that ψ = θ(1)). For λ > 0, the only
solution of (11.1)–(11.4) is (θ,M) = (0, 0).

Proof. Equation (11.3) implies that γ(1) = 0. The initial-value problem
for (11.4) subject to this condition and to (11.2c) has a unique solution,
which we recognize to be (γ,M) = (θ − ψ,M) = (0, 0). We use (11.2a) to
prove that θ = ψ = 0. �

Let us now set

(11.6) r′ = |r′|(cosφi + sinφj), φ = θ + β

so that

(11.7) β = arctan
η̂(−λ cos γ, λ sin γ,M, s

)
ν̂(−λ cos γ, λ sin γ,M, s

)
(cf. (4.3.45) and (4.3.46)).
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11.8. Proposition. Let c = r′(1)/|r′(1)| (so that ψ = φ(1)). For λ > 0 and for
|γ| ≤ π

2 the only solution of (11.1)–(11.4) is (θ,M ) = (0, 0).

Proof. Equation (11.7), the monotonicity conditions, and the symmetry conditions
(4.2.9) imply that β(1) has the same sign as γ(1) = θ(1)−φ(1) = −β(1). Thus β(1) = 0
and ψ = θ(1). The proof is thus reduced to that of Proposition 11.5. �
11.9. Exercise. Let the rod be uniform. Use the phase portraits of Fig. 4.2.14 to show
that if (ψ = 0 when θ(1) = 0 and)

(11.10) [ψ − 1
2 θ(1)]sign θ(1) > 0 when θ(1) 
= 0,

then the only solution of (11.1)–(11.4) with |γ| ≤ π
2 is (θ,M ) = (0, 0).

These results do not mean that the straight states are stable. What
happens is that their stability is lost through dynamical processes. The
following exercise gives a formal computation of the buckling load. For a
rigorous treatment, see Carr & Malhardeen (1979) and M.-S. Chen (1987).
The latter paper shows that under some circumstances at least, stability is
lost by a Hopf bifurcation (cf. Koch & Antman (2001) and Xu & Marsden
(1996)).

11.11. Exercise. Linearize about the trivial state the equations of motion for a uniform
rod subject to (11.1) and (11.2) with ψ = θ(1). Show that there is a positive number
Λ, such that if λ > Λ, then these equations have solutions that grow without bound as
t → ∞.

Note that the nonlinear dynamical equations are not conservative because the follower
load is not conservative. Thus these equations do not have a variational structure,
i.e., they cannot be characterized by Hamilton’s Principle. Moreover, the linearized
equilibrium equations are consequently not self-adjoint. (This lack of self-adjointness is
manifested in the imbalance in the boundary conditions, which we exploited to prove
uniqueness of equilibrium states.)

There is an extensive engineering literature on nonconservative problems of elastic
stability. See the references listed at the end of Sec. 5.7. For treatments of problems for
hoses, see Bajaj (1988), Bajaj & Sethna (1984), and Bajaj, Sethna, & Lundgren (1980.)
For more complicated variants of the problems treated here, see Kordas & Życzkowski
(1963) and Życzkowski & Gajewski (1971).

12. Buckling of Arches
We now treat the buckling of circular arches by the methods of Chap. 5.

A slight variant of our treatment can handle the closely related problem of
the buckling of circular rings, which was treated in Sec. 4.3 by elementary
methods. We use the same assumptions and notation as used in Sec. 4.3.
In particular, we employ the monotonicity condition (4.1.23), the growth
conditions (4.1.24)–(4.1.26), and the symmetry condition (4.1.27).

We take −α ≤ s ≤ α with 0 < α < π. The reference configuration is
defined by

(12.1) r◦(s) = sin si − cos sj, θ◦(s) = s,

so that r◦ describes a circular arc of radius 1. We assume that the ends
of the arch are welded to blocks that slide in frictionless radial grooves
separated by an angle 2α. See Fig. 12.2.
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Fig. 12.2. Geometry of the natural reference configuration and
of a buckled state of an arch subjected to hydrostatic pressure.
The reference state of the arch is taken to be bowed down and
the pressure p is taken to act upward in order to simplify sign
conventions in the governing equations.

We assume that the material of the arch is uniform. Then the governing
equations (4.3.36), (4.1.30), and (4.1.4) can be reduced to

N ′ = Hµ̂(N,H,M) + pη̂(N,H,M),(12.3)

−H ′ = Nµ̂(N,H,M) + pν̂(N,H,M),(12.4)

M ′ = Nη̂(N,H,M) −Hν̂(N,H,M),(12.5)

θ′ = µ̂(N,H,M),(12.6)

r′ = ν̂(N,H,M)a(θ) + η̂(N,H,M)b(θ).(12.7)

From (12.3)–(12.5) we obtain

(12.8) H ′′ + (Nµ̂H + pν̂H)H ′

+ (µ̂+Nµ̂N + pν̂N )(Hµ̂+ pη̂) − (Nµ̂M + pν̂M )(Hν̂ −Nη̂) = 0,
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(12.9) θ′′ = µ̂N (Hµ̂+ pη̂) + µ̂HH
′ + µ̂M (Nη̂ −Hν̂).

The boundary conditions corresponding to Fig. 12.2 are

(12.10a,b,c) θ(±α) = ±α, H(±α) = 0, x(±α) = ±y(±α) tanα.

Here x := r · i, y := r · j. Condition (12.10b) is a consequence of (4.1.27).
The presence of frictionless grooves in Fig. 12.2 ensures that our extensible
arches admit a one-parameter family of circular equilibrium states. Our
boundary-value problem consists of (12.3)–(12.7), (12.10).

We say that an equilibrium configuration is trivial iff there is no shear
and if r describes a circle. Thus, in such a state η = 0 or, equivalently,
H = 0. We limit our attention to positive values of p. Setting H = 0 in
(12.3)–(12.5), we obtain

N = const., M = const.,(12.11a,b)

Nµ̂(N, 0,M) = −pν̂(N, 0,M).(12.12)

From (12.11) it follows that ν and µ are constant for trivial solutions, so
that the curvature reduces to the constant µ/ν. That r is circular in the
trivial state is thus a consequence of the assumption that H = 0. From
(12.10a) we obtain

(12.13) µ̂(N, 0,M) = 1.

The system (12.12), (12.13) has a unique solution for N and M when
p ≥ 0, as a consequence of the monotonicity and growth conditions. Note
that (12.13) says that there is no change in the bending strain µ. (If M̂
has the property that M̂(ν, 0, ν) = 0, which is reasonable when r can be
identified with the locus of centroids of the cross sections of 3-dimensional
rod, then we can identify this solution as N = −p, M = 0.)

Let (N0(p),M0(p)) denote the trivial solution. For any constitutive func-
tion such as ν̂N , we set ν0

N (p) := ν̂N (N0(p), 0,M0(p)), etc., and usually
suppress the argument p. The linearization of our boundary-value problem
about this trivial solution uncouples, with the part corresponding to the
linearization of (12.8) having the form

(12.14) H ′′
1 + q(p)2H1 = 0, H1(±α) = 0

where

(12.15) q2 := (µ0 +pη0H)
[
µ0 + p

(µ0)2ν0
N − ν0µ0(µ0

N + ν0
M ) + (ν0)2µ0

M

(µ0)2

]
.

Problem (12.14) has asymmetric nontrivial solutions

(12.16a,b) H1(s) = const. sin (2j+1)π
2α s when q(p0) =

(2j + 1)π
2α
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where j is an integer, and has symmetric nontrivial solutions

(12.16c,d) H1(s) = const. sin lπ
α s when q(p0) =

lπ

α

where l is a nonzero integer. (The symmetry is taken with respect to the
j-axis.) The simplicity of eigenvalues p, which satisfy the characteristic
equations (12.16b,d), is treated just as in Sec. 5.

We now study the global behavior of buckled states. We assume that the
constitutive functions ν̂, η̂, µ̂ are at least three times continuously differen-
tiable. Let us define a (solution) branch of our boundary-value problem
to be any connected set of

(
(N,H,M, θ, r), p

)
satisfying integral equations

corresponding to the boundary-value problem with (N,H,M, θ, r) contin-
uous. In view of our smoothness assumption on the constitutive functions,
it follows from (12.3)–(12.7) that such a quintuple (N,H,M, θ, r) is twice
continuously differentiable, so that (12.8) is satisfied in a classical sense.
The existence of a global branch emanating from an eigenvalue of odd alge-
braic multiplicity of the linearization of the boundary-value problem about
the trivial solution is assured by the Global Bifurcation Theorem 5.4.19.

It follows from the symmetry condition (4.1.27) that (12.8) admits the
solution H = 0 no matter what functions N and M and what parameters
p appear there. Since N and M are continuously differentiable functions
along branches, we may regard (12.8) as a second-order ordinary differen-
tial equation for H alone. It has the property that if H were to have a
double zero, then H = 0. It follows from the development of Sec. 5.5 that
H preserves the number of its simple zeros along any branch of solutions
not containing a trivial solution. Thus, we can globally distinguish differ-
ent nontrivial branches of solutions of this boundary-value problem by the
nodal properties of the function H.

12.17. Exercise. Give a full justification, in the manner of Sec. 5.5, of the global
bifurcation results just described.

12.18. Exercise. Carry out a perturbation analysis of the bifurcation problem de-
scribed above, showing that the bifurcation from simple eigenvalues corresponding to
both (12.16b) and (12.16d) is of pitchfork type. This is to be expected for the asym-
metric solutions corresponding to (12.16a) because these solutions come in mirror-image
pairs, but it is somewhat surprising for the symmetric solutions, which do not enjoy any
such pairing.

12.19. Exercise. For an inextensible, unshearable arch, with a constitutive equation
of the form µ = µ̂(M ), carry out a perturbation analysis of the problems for a doubly
welded arch and for a doubly hinged arch with fixed ends. Their respective boundary
conditions are

θ(±α) = ±α, x(±α) = ± sinα, y(±α) = cosα,(12.20)

M (±α) = 0, x(±α) = ± sinα, y(±α) = cosα.(12.21)

Determine which bifurcations are transcritical.

The treatment of boundary conditions other than those of (12.10) can be very difficult
for the general constitutive equations we are considering. For example, if the ends of
the arch are hinged to blocks sliding in frictionless radial grooves, then for general
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constitutive functions there are no trivial solutions of the form described above for a
range of p’s:

12.22. Exercise. Let the ends of the arch be hinged to blocks sliding in frictionless
grooves of the form y = g(x), y = g(−x) where g is a decreasing function defined on a
subinterval of (0, 1). Then the boundary condition are

(12.23) M (±α) = 0, y(±α) = g(±x(±α)), n(±α) · [i ± g′(±x(±α))j] = 0.

Suppose that the arch has the constitutive property that µ̂(N, 0, 0) = 1 for all N (which
is unrealistic for thick arches). In this case, show that the problem with boundary
condition (12.23) admits a family of trivial solutions with y(α) = y(−α) when the
grooves are radial: g(x) = −x cotα. Next suppose that M̂ (ν, 0, ν) = 0 and show that
the problem with boundary condition (12.23) admits a family of trivial solutions with
y(α) = y(−α) when the grooves have the form

(12.24) g(x) = − ln x + ln
(
1 +

√
1 − x2

)
−
√

1 − x2 + const. for 0 < x < 1.

It is noteworthy that (12.24) does not depend on α. (In general, one can find a differential
equation for g, which depends on α.)

The treatment of this section is adapted from Antman & Marlow (1993) (with kind
permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5
1GB, UK.) See Antman & Marlow (1993) for technically complicated variants of the
problems of this section. Their work extends that of Antman & Dunn (1980).

12.25. Exercise. Adopt the methods of this section to study the buckling of a circular
ring under hydrostatic pressure (see Sec. 4.3).

12.26. Problem. Suppose that the hydrostatic pressure on a circular arch or ring
is replaced by (i) a constant normal force per unit reference arc length, (ii) a constant
normal force depending on a suitably defined area enclosed by the ring or arch, (iii) a
constant radial force per unit actual arc length, (iv) a constant radial force per unit
reference arc length. Formulate and analyze the global bifurcation problems. (See Sills
& Budiansky (1978) for a perturbation analysis, and Dickey & Roseman (1993) for a
global analysis. For a discussion of the conservativeness of such loadings, see Fisher
(1987, 1988, 1989).)

13. Buckling of Whirling Rods
We first formulate and analyze the buckling problem corresponding to

Fig. 5.2.2a. To preserve the symmetry of the problem, we assume that
there is zero gravity. Let the radius of the rigid ring be R and let the
length of the attached rod be 1. We define e(t) by (1.1):

(13.1) e(t) = cosωt i + sinωt j.

We replace the basis vectors i, j,k used in Chap. 4 with e(t),k, e × k,
respectively. We seek steady solutions of the equations of motion (4.1.45),
(4.1.46) of the form

(13.2)

r(s, t) = r(s)e(t) + z(s)k,

a(s, t) = cos θ(s)e(t) + sin θ(s)k,

b(s, t) = − sin θ(s)e(t) + cos θ(s)k.
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These solutions correspond to steady rotations of the rod about k with
angular velocity ω. We assume that the inertia term ρI = 0. Then the
equations of motion reduce to

ns + ω2ρAr e = o,(13.3)

ms + rs × n = ω2ρJ cos θ sin θ k × e.(13.4)

We take s = 0 to be the free end of the rod and s = 1 to be the end of the
rod welded to the rigid ring. Then our boundary condition are

(13.5) n(0, t) = o, M(0) = 0, r(1, t) = Re(t), θ(1) = 0.

We integrate (13.3), (13.4) subject to (13.5), and then use the definition
(4.1.4) of ν and η and the constitutive equations (4.1.30) to convert our
problem to the following system of integral equations for N,H,M, θ:

N(s) = − ω2
[∫ s

0
(ρA)(ξ)r(ξ) dξ

]
cos θ(s),(13.6a)

H(s) = ω2
[∫ s

0
(ρA)(ξ)r(ξ) dξ

]
sin θ(s),(13.6b)

M(s) = −
∫ s

0
[H(ξ)ν̂ (N(ξ), H(ξ),M(ξ), ξ)(13.6c)

−N(ξ)η̂ (N(ξ), H(ξ),M(ξ), ξ)] dξ

− ω2
∫ s

0
(ρJ)(ξ) cos θ(ξ) sin θ(ξ) dξ,

θ(s) =
∫ 1

s

µ̂ (N(ξ), H(ξ),M(ξ), ξ) dξ,(13.6d)

where

r(s) = R−
∫ 1

s

[ν̂ (N(ξ), H(ξ),M(ξ), ξ) cos θ(ξ)(13.6e)

− η̂ (N(ξ), H(ξ),M(ξ), ξ) sin θ(ξ)] dξ.

Note that the trivial solutions of (13.6), defined by θ = 0, were studied in
Sec. 4.5.

13.7. Exercise. Carry out a detailed derivation of (13.6). Prove that (13.6) satisfies
all the hypotheses of the Global Branching Theorem 5.4.19. Prove that bifurcating
branches are distinguished by the nodal properties of θ and that these nodal properties
are inherited from the eigenfunctions corresponding to simple eigenvalues for the problem
linearized about the trivial solution.

We now turn to the buckling problem for a heavy rod illustrated in
Fig. 5.2.1. This classical problem, which is the analog of Kolodner’s whirling
string problem treated in Sec. 2, provides some novel technical challenges
in determining the nodal properties of solution branches. We retain (13.1).
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We now replace the basis vectors i, j,k used in Chap. 4 with k, e(t),k ×e,
respectively. We take k to point downward. We seek steady solutions of
the equations of motion (4.1.45) and (4.1.46) of the form

(13.8)

r(s, t) = r(s)e(t) + z(s)k,

a(s, t) = cos θ(s)k + sin θ(s)e(t),

b(s, t) = − sin θ(s)k + cos θ(s)e(t).

We take as the body force intensity the weight per unit reference length
g(ρA)(s)k. We assume that the rod has unit length. We assume that the
end s = 0 is welded at the origin to the plane with normal k and that the
end s = 1 of the rod is free. Thus

(13.9) r(0) = 0 = θ(0), n(1, t) = o, M(1) = 0.

Let us set

(13.10a,b) Q(s) := −n(s, t) · e(t), W (s) = g
∫ 1

s

(ρA)(ξ) dξ.

Then the equations for steady motion can be put into the form

Q′ = ω2ρAr,(13.11a)

r′ = ν̂(N,H,M) sin θ + η̂(N,H,M) cos θ,(13.11b)

M ′ = −ν̂(N,H,M)H + η̂(N,H,M)N + ω2ρJ cos θ sin θ,(13.11c)

θ′ = µ̂(N,H,M)(13.11d)

with

(13.11e,f) N =W cos θ −Q sin θ, H = −W sin θ −Q cos θ.

Therefore (13.9) reduces to

(13.12) r(0) = 0 = θ(0), Q(1) = 0 =M(1).

13.13. Exercise. Derive (13.11) and (13.12) from the general equations of Chap. 4.

That the integral equations corresponding to (13.11) and (13.12) satisfy
all the hypotheses of the Global Branching Theorem 5.4.19 is demonstrated
just as for (13.6). We now turn to the more delicate issue of nodal proper-
ties. In order to treat these we assume that the rod is unshearable, although
we allow the constitutive functions for ν and µ to depend on H. We assume
that the symmetry conditions (4.2.9) hold.

13.14. Theorem. Let the rod be unshearable. On each solution branch of
(13.11), (13.12) on which |θ| < π

2 and (Q, r,M, θ) �= (0, 0, 0, 0), the number
of simple zeros of θ and of Q are equal and constant.

We reduce the proof to a series of lemmas:
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13.15. Lemma. Let (Q, r,M, θ) satisfy (13.11) for an unshearable rod, let |θ| < π
2 ,

and let a ∈ [0, 1). Let Q(a) ≥ 0, r(a) ≥ 0, M (a) ≥ 0, θ(a) ≥ 0, with Q(a) + r(a) +
M (a) + θ(a) > 0. Then each of the functions Q, r,M, θ is everywhere positive on (a, 1]
(and so cannot satisfy (13.12)).

Proof. The hypotheses of this lemma say that (Q(a), r(a), M (a), θ(a)) lies in the closure
of the positive orthant in the four-dimensional phase space of (Q, r,M, θ), and does not
coincide with the origin. Since η̂ = 0 for an unshearable rod, and since (4.2.9) implies
that θ′ has the same sign as M , the differential equations (13.11) carry any such initial
point into the interior of this orthant.

An analogous argument (or the change of variables σ = 1 − s) yields

13.16. Lemma. Let (Q, r,M, θ) satisfy (13.11) for an unshearable rod, let |θ| < π
2 ,

and let a ∈ (0, 1]. Let Q(a) ≥ 0, r(a) ≤ 0, M (a) ≤ 0, θ(a) ≥ 0, with Q(a) − r(a) −
M (a) + θ(a) > 0. Then each of the functions Q,−r,−M, θ is everywhere positive on
[0, a) (and so cannot satisfy (13.12)).

13.17. Lemma. Let (Q, r,M, θ) be a nontrivial solution of (13.11) for an unshearable
rod, let |θ| < π

2 , and let a ∈ (0, 1). Suppose that

(13.18a,b,c,d) either Q(a) = 0, r(a) = 0 or M (a) = 0, θ(a) = 0.

Then on at least one of the intervals [0, a) or (a, 1], none of the four functions Q, r,M, θ
vanishes anywhere (and so Q, r,M, θ cannot satisfy (13.12)).

Proof. The four conditions of (13.18) cannot hold simultaneously, because the solution
would be trivial. Therefore, if (Q, r,M, θ) satisfies either (13.18a,b) or (13.18c,d), then
(Q, r,M, θ) or (−Q,−r,−M,−θ) must satisfy the hypotheses of one of the Lemmas
13.16 or 13.17 (because (4.2.9) implies that (13.11) is invariant under the transformation
(Q, r,M, θ) → (−Q,−r,−M,−θ)). �
Proof of Theorem 13.14. Suppose that there were an a ∈ [0, 1] such that (13.18b),
say, were to hold for a nontrivial solution. If a ∈ (0, 1), then the conclusion of Lemma
13.17 would be incompatible with (13.12); if a = 0, then the conclusion of Lemma 13.15
would be incompatible with (13.12) and the invariance; if a = 1, then the conclusion of
Lemma 13.16 would be incompatible with (13.12) and the invariance. Thus, a change
in the nodal structure of θ or Q, signalled by a double zero, can only occur at a trivial
solution. To prove that the number of simple zeros of θ and Q are equal, we observe
that these numbers are inherited from those of the eigenfunctions of the linear problem
as a consequence of the Local Bifurcation Theorem 5.4.14. We leave the determination
of the nodal properties of these eigenfunctions as the following exercise. �
13.19. Exercise. Determine the nodal properties of the solutions of the linearization
about the trivial solution.

13.20. Research Problems. (i) Determine detailed qualitative properties of the so-
lution branches for shearable rods. (ii) Suppose that W is replaced with −W . The
resulting problem describes the rotation of the rod whose natural state lies above the
support. Determine detailed qualitative properties of the solution branches for unshear-
able or shearable rods. (iii) Determine detailed qualitative properties of the solution
branches for the problem corresponding to Fig. 5.2.2b.

The treatment of the problem (13.6) is adapted from Antman & Nachman (1980)
(with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kid-
lington OX5 1GB, UK). The boundary-value problem (13.11) for weightless, inexten-
sible, unshearable rods was formulated and analyzed by Odeh & Tadjbakhsh (1965).
Further analyses of their problem were carried out by Bazley & Zwahlen (1968), Brezzi,
Descloux, Rappaz, & Zwahlen (1984), Clément & Descloux (1984, 1991), and Parter
(1970). The treatment given here generalizes and simplifies those of Parter (1970) and
Clément & Descloux (1984).
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An interesting variant of problem (13.11) was treated by Healey (1992) by group-
theoretic methods of bifurcation theory. Here the base of the rod is welded to a fixed,
rather than a rotating, horizontal plane. If the rod is transversely isotropic (see Sec.
8.9), then there are branches of nontrivial solutions, which describe steady motions in
which the axis lies in a fixed plane rotating about the vertical. The nodal properties of
these branches have yet to be determined.



CHAPTER 7

Variational Methods

1. Introduction
In this chapter we describe a few simple applications of the calculus

of variations to 1-dimensional problems of nonlinear elasticity, with the
purpose of showing how some very useful physical insights can be easily
extracted from the basic theory. The reader should review Secs. 2.10, 3.3,
and 4.1. We require a mathematical setting somewhat different from that
used in bifurcation theory; the technical aspects of this setting are given
below in small type.

In Chap. 8 we generalize Hamilton’s Principle for strings, stated in
Sec. 2.10, to hyperelastic rods moving in space under conservative loads.
For static problems, there is no kinetic energy, and the Hamiltonian re-
duces to the potential energy, which is the sum of the stored energy and
the potential energy of the forces applied to the rod. In light of Hamilton’s
Principle, we expect that the Euler-Lagrange equations for the potential-
energy functional are equilibrium equations.

To show that there actually are equilibrium states, we shall limit our at-
tention to those states that minimize the potential-energy functional under
suitable subsidiary conditions. These equilibrium states can be reckoned
as stable in certain senses. (See Sec. 5.7). The focus of this chapter is
a description of methods for showing that the potential-energy functional
is minimized and that the minimizer actually satisfies the Euler-Lagrange
equations. In Sec. 2 we show how to obtain Euler-Lagrange equations for
problems subject to isoperimetric constraints. Our goal in this section is to
develop some simple and powerful techniques for deriving useful physical
insights. Examples of such insights are given in Theorem 5.6 and in the
developments of Secs. 6 and 7.

To fix ideas, let us study the equilibrium configurations of a hyperelastic
rod under hydrostatic pressure p. We use the notation of Chap. 4. We allow
the rod to have any planar reference shape. When p is positive, the pressure
acts in the direction k × r′. To be specific, let us assume that the rod has
natural length L and that its ends are welded to vertical walls at o and i.
Thus

(1.1a,b,c,d) r(0) = o, r(L) = i, θ(0) = 0 = θ(L).

We wish to characterize the governing equations, described in Secs. 4.3 and
6.12, as the Euler-Lagrange equations for the potential-energy functional.

237
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1.2. Exercise. Prove that the potential-energy functional for the hydrostatic pressure
of Sec. 4.3 when applied to a rod satisfying boundary conditions (1.1) is (to within an
additive constant) the pressure p times the signed area enclosed by the r◦ and r. Use
a version of Green’s Theorem to prove that this area differs by a constant from

(1.3) 1
2

∫ L

0
k · [r(s) × r′(s)] ds.

Thus, the potential energy for the hyperelastic rod under hydrostatic
pressure p is

(1.4)
∫ L

0
W (ν(s), η(s), θ′(s), s) ds+

p

2

∫ L

0
k · [r(s) × r′(s)] ds,

where W is the stored energy function for the rod. Note that r is related
to the strains ν, η by (4.1.4):

(1.5) r′ = νa(θ) + ηb(θ)

where

(1.6) a(θ) = cos θi + sin θj, b(θ) = − sin θi + cos θj.

We shall accordingly study the minimization of (1.4) over a suitable class
of functions ν, η, θ, r satisfying (1.1) and (1.5). The form of the differential
constraint (1.5) is technically inconvenient. One way to avoid dealing with
(1.5) is simply to replace r′ and r in (1.4) respectively with (1.5) and

(1.7) r(s) =
∫ s

0
[ν(ξ)a(θ(ξ)) + η(ξ)b(θ(ξ))] dξ =: r[ν, η, θ](s).

Note that (1.7) satisfies (1.1a). We require that (1.7) satisfy (1.1b) by
imposing the side condition that

(1.8) r[ν, η, θ](L) = i.

It is technically easier to handle this integral constraint (called an isoperi-
metric constraint) than to handle the differential constraint (1.5). We can
now define the potential-energy functional

Π[ν, η, θ] := Ψ [ν, η, θ] + pΩ[ν, η, θ](1.9a)

where

Ψ [ν, η, θ] :=
∫ L

0
W (ν(s), η(s), θ′(s), s) ds,(1.9b)

Ω[ν, η, θ] := 1
2

∫ L

0
k · {r[ν, η, θ](s) × r[ν, η, θ]′(s)} ds.(1.9c)
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Suppose that p is prescribed. We seek to minimize Π over an admissible
class of ν, η, θ that satisfy certain regularity conditions, the requirement
(4.1.9) (defining the domain of W to consist of orientation-preserving de-
formations), the boundary conditions (1.1c,d), and the constraint (1.8),
and then to demonstrate that the minimizer satisfies appropriate Euler-
Lagrange equations. Thus we need to develop a rule for determining the
Euler-Lagrange equations for such constrained variational problems.

An alternative way to dispense with (1.5) is to use it as a definition of
ν and η. In this case, we define the potential-energy functional

Π[r, θ] := Ψ [r, θ] + pΩ[r](1.10a)

where

Ψ [r, θ] :=
∫ L

0
W
(
r′(s) · a(θ(s)), r′(s) · b(θ(s)), θ′(s), s

)
ds,(1.10b)

Ω[r] := 1
2

∫ L

0
k · {r(s) × r′(s)} ds.(1.10c)

For prescribed p we seek to minimize Π over an admissible class of r, θ that
merely satisfy certain regularity conditions and the boundary conditions
(1.1), and then to demonstrate that the minimizer satisfies appropriate
Euler-Lagrange equations.

It is easy to construct other variants of these problems. For example, in
(1.9) we could set µ = θ′ and then replace θ(s) by

(1.11) θ[µ](s) :=
∫ s

0
µ(ξ) dξ,

which accounts for (1.1c). Thus we regard µ, rather than θ, as a funda-
mental unknown; we accordingly replace θ with µ in the list of arguments
of the energy functionals. In this case, we add to the side conditions the
isoperimetric constraint that

(1.12) θ[µ](L) = 0,

which accounts for (1.1d) and which is analogous to (1.8). (Such formula-
tions at best are generally inconvenient for partial differential equations.)

The use of (1.7) or (1.11) is contingent on the presence of a boundary condition for
r or θ. If there were no such boundary conditions, we would have to introduce arbi-
trary constants of integration into (1.7) or (1.11). These unknown constants could be
regarded as arguments of the energy functionals. We generally do not have to worry
about such questions since in most of our applications of the calculus of variations to
elasticity the arguments of the energies are geometric quantities and the arbitrary con-
stants of integration merely fix a deformation to within a rigid displacement. Thus
we are free to prescribe these constants or, equivalently, to prescribe corresponding sub-
sidiary conditions for these geometric quantities when they are not otherwise prescribed.
For example, consider the deformation of a ring, in which there are only ‘periodicity’
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conditions (see Sec. 4.3)). In this case, we can fix the rigid displacement by prescribing
(1.1a,c). Alternatively, we could prescribe the mean translation and mean rotation (to
be zero):

(1.13a,b)
∫ L

0
r(s) ds = o,

∫ L

0
θ(s) ds = 0.

To get a formula analogous to (1.7) when (1.13a) holds in place of a standard boundary
condition, we integrate the identity ξr′(ξ) = [ξr(ξ)]′ − r(ξ) over (0, s) and integrate
the identity (L − ξ)r′(ξ) = [(L − ξ)r(ξ)]′ + r(ξ) over (s, L). Subtracting the resulting
integrals, we obtain

(1.14) Lr(s) =
∫ L

0
r(ξ) dξ +

∫ s

0
ξr′(ξ) dξ −

∫ L

s
(L − ξ)r′(ξ) dξ.

Condition (1.13a) causes the first integral in (1.14) to vanish. We can now replace r′ in
(1.14) with (1.5), and define the resulting version of (1.14) as r[ν, η, θ](s). Clearly, the
same approach can be used to replace (1.11) when (1.13b) holds.

To fix ideas, let us concentrate on the formulation (1.9). Instead of
prescribing p, we could prescribe the size of solution, measured by the area
change, by setting

(1.15) Ω[ν, η, θ] = Ω�

where Ω� is given. In this case, we seek to minimize Ψ subject to the
boundary conditions (1.1c,d) and the two constraints (1.8) and (1.15) and
then to determine the Euler-Lagrange equations. Alternatively, we could
leave p free, but prescribe the size of solution, measured by the stored
energy, by setting

(1.16) Ψ [ν, η, θ] = Ψ�

where Ψ� is given. We now seek to extremize Ω subject to the boundary
conditions (1.1c,d) and the two constraints (1.8) and (1.16) and then to
determine the Euler-Lagrange equations.

The domain of W (·, ·, ·, s) is an open convex proper subset V(s) of R
3

defined by (4.1.22). One of the central difficulties we face in studying Ψ
is caused by the reasonable requirements (4.1.24), (4.1.26) that the force
N = Wν or the couple M = Wµ become infinite in a total compression.
A natural condition ensuring this (when W is convex in its first three
arguments) is that the stored-energy density become infinite in a total
compression, i.e., that W (·, ·, ·, s) approach ∞ as its arguments approach
∂V(s).

2. The Multiplier Rule
We first formulate the classical Multiplier Rule for constrained varia-

tional problems in R
n, and then apply it to the calculus of variations.

Let A be a domain in R
n and let

(x1, . . . , xn) =: x �→ ϕ0(x), ϕ1(x), . . . , ϕk(x)
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be continuously differentiable real-valued functions on clA. We consider
the problem of minimizing ϕ0 on cl A subject to the side conditions

(2.1) ϕj = 0, j = 1, . . . , k

with k < n. We provisionally assume that each constraint ϕj = 0 defines
an (n − 1)-dimensional surface in R

n and that these surfaces intersect in
an (n − k)-dimensional surface. Let us suppose that this problem has a
minimizer x̄ that lies in A. We want to characterize x̄ as a point at which
the gradient of a certain function vanishes.

If we could solve the constraint equations (2.1) for k of the unknown
components of x in terms of the rest, then we could substitute this solution
into the argument of ϕ0 and require that the gradient of the resulting
composite function vanish. We eschew this procedure because (i) it is often
impossible to get an explicit solution, (ii) system (2.1) might not admit
a global implicit function theorem, (iii) such a procedure might destroy
symmetries enjoyed by the original problem, and (iv) such a procedure
might suppress the most natural description of a physical problem.

Let us first examine a special case, which illustrates the geometric con-
tent of the general technique. We take n = 3, k = 2. We assume that ϕ0
has a local minimum, which necessarily occurs on the intersection of the
surfaces defined by (2.1). We make the restrictive assumption that this
minimum occurs at an interior point of the C1-curve at which these sur-
faces intersect. We parametrize this curve by s �→ ξ(s) and assume that the
tangent vector field ξ′ vanishes nowhere. (If these surfaces do not intersect,
then there can be no minimizer. If they intersect at isolated points, then a
more refined analysis, carried out below, is required.)

By elementary calculus, the minimum of ϕ0 must thus occur at a point
x̄ = ξ(s̄), at which

(2.2) [∂ϕj (ξ(s̄)) /∂x] · ξ′(s̄) = 0

for j = 0. Now the ∂ϕj(x)/∂x are respectively perpendicular to the surfaces
ϕj = 0 at x. Thus (2.2) holds for j = 1, 2. Therefore ξ′(s̄) is perpendicular
to each of the gradients ∂ϕj (ξ(s̄)) /∂x, j = 0, 1, 2. If these three gradients
were independent, then ξ′(s̄) would vanish, a contradiction. Since these
gradients must be dependent, there are numbers λ0, λ1, λ2, not all zero,
such that

(2.3) ∂[λ0ϕ0(x̄) + λ1ϕ1(x̄) + · · · + λkϕk(x̄)]/∂x = o

for k = 2. The numbers λ0, . . . , λk are called the Lagrange multipliers.
They are unknowns of the problem; they can clearly be subjected to some
normalizing condition. If we wish to find candidates for minimizers by
solving (2.3), we must also find the multipliers. We thus must solve the
formally determinate system consisting of (2.1), (2.3), and the normalizing
condition.

The following analytic generalization of this result handles the atypical
cases omitted in the development culminating in (2.3).
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2.4. Lemma. Let A be a domain in R
n and let ϕ0, ϕ1, . . . , ϕk ∈ C1(cl A).

If ϕ0 has a local minimum at x̄ ∈ A subject to the side conditions (2.1),
then

(2.5) rank
∂(ϕ0, ϕ1, . . . , ϕk)
∂(x1, x2, . . . , xn)

(x̄) ≡ rank

⎡⎢⎢⎣
∂ϕ0(x̄)/∂x
∂ϕ1(x̄)/∂x

...
∂ϕk(x̄)/∂x

⎤⎥⎥⎦ < k + 1.

Proof. Suppose that (2.5) were not true, so that

(2.6) rank
∂(ϕ0, ϕ1, . . . , ϕk)
∂(x1, x2, . . . , xn)

(x̄) = k + 1,

which is the maximal rank possible for a (k + 1) × n matrix with k < n.
Now consider the underdetermined system

(2.7)

h+ ϕ0(x) = ϕ0(x̄),

ϕ1(x) = ϕ1(x̄),
...

...

ϕk(x) = ϕk(x̄)

for (h, x), which is satisfied when (h, x) = (0, x̄). Condition (2.6) would
enable us to use the Implicit-Function Theorem to solve for k + 1 of the
variables x1, . . . , xn in terms of h and of the remaining n − (k + 1) of the
variables x1, . . . , xn whenever (h, x) is near (0, x̄). Consequently, for each
small h > 0, there would be an x such that ϕ0(x) = ϕ0(x̄) − h < ϕ0(x̄), so
that x̄ could not be a minimizer. �

We immediately conclude from this lemma that the vectors ∂ϕ0(x̄)/∂x,
∂ϕ1(x̄)/∂x, . . . ,∂ϕk(x̄)/∂x must be dependent, so that there exist real num-
bers λ0, λ1, . . . , λk, not all zero, such that (2.3) holds. Condition (2.3) is
the Multiplier Rule for R

n. It says that a necessary condition for an interior
minimum in a constrained problem can be reduced to the vanishing of a
gradient of an auxiliary function.

If λ0 can be shown not to vanish, the variational problem is called nor-
mal. In this case, we can take λ0 = 1 as a normalization.

2.8. Exercise. Prove that the variational problem is normal if and only if

(2.9) rank
∂(ϕ1, . . . , ϕk)
∂(x1, . . . , xn)

(x̄) = k.

We now turn to the general isoperimetric problem of minimizing a
functional ϕ0 subject to constraints ϕj = 0, j = 1, . . . , k, where u �→
ϕ0[u], ϕ1[u], . . . , ϕk[u] are defined on a common domain of definition. Our
intended applications motivate us to choose this domain of definition to
consist of all vectors of the form u0 + v where u0 is fixed and v lies in
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a subset A of a Banach space B. (See Chap. 17 for notation and fun-
damental concepts about Banach spaces.) The domain of definition of
the ϕj is denoted u0 + A. For example, consider the problem of mini-
mizing Ψ of (1.10b) over all functions (r, θ) that satisfy (i) the inequality∫ L

0 (|r′|α + |θ′|γ) ds < ∞ (where α and γ are given numbers greater than
1, which characterize the material response), (ii) the boundary conditions
(1.1), (iii) the isoperimetric constraint Ω[r] = Ω�, and (iv) the condition
(4.1.9) of orientation-preservation a.e. We identify u0 with (r0, θ0) where
r0(s) = si/L, θ0 = 0, we identify B with the space of functions (r�, θ�)
satisfying

∫ L

0

(
|r′

�|α + |θ′�|γ
)
ds < ∞ and the homogeneous boundary con-

ditions r�(0) = o = r�(L), θ�(0) = 0 = θ�(L), and we identify A with
that subset of elements (r�, θ�) of B for which (r0, θ0) + (r�, θ�) preserves
orientation a.e. The set A is introduced because its elements satisfy homo-
geneous boundary conditions, so that linear combinations of its elements
also satisfy these same conditions.

Suppose that ϕ0 subject to the constraints ϕj = 0, j = 1, . . . , k, has a
local minimum at ū = u0+v̄, where v̄ is an interior point of A. Let v0, . . . , vn

be arbitrary independent elements of B and let ε := (ε0, ε1, . . . , εk) be a
collection of real numbers. Since v̄ is an interior point of A, it follows that
ū +

∑k
0 εjvj ∈ A when |ε| is sufficiently small. By definition of a local

minimum,

(2.10a) ϕ0[ū] ≤ ϕ0

[
ū +

∑k
0 εlvl

]
for all sufficiently small ε satisfying

(2.10b) ϕj

[
ū +

∑k
0 εlvl

]
= 0, j = 1, . . . , k.

Let us suppose that the functions ε �→ ϕj [ū +
∑k

0 εlvl] are continuously
differentiable at ε = o, where ε �→ ϕ0[ū +

∑k
0 εlvl] has a local minimum

subject to the constraints. We identify ε with x of Lemma 2.4. We note
that

(2.11)

∂ϕj [ū +
∑k

0 εlvl]
∂ε

=

(
∂ϕj [ū +

∑k
0 εlvl]

∂ε0
, . . . ,

∂ϕj [ū +
∑k

0 εlvl]
∂εk

)

=
∂ϕj [ū +

∑k
0 εlvl]

∂u
(v0, . . . , vk) .

Applying the Multiplier Rule to our present problem, we thus find that
there exist real numbers λ0, λ1, . . . , λk, not all zero, such that

(2.12)
k∑
0

λj
∂ϕj [ū +

∑k
0 εlvl]

∂ε

∣∣∣∣∣
ε=0

= 0.

In view of (2.11), we find that

(2.13a,b)
k∑
0

λj
∂ϕj [ū]
∂u

· v = 0 ∀ v ∈ B, i.e.,
k∑
0

λj
∂ϕj [ū]
∂u

= 0.
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This is the Multiplier Rule for Isoperimetric Problems. We readily find
that λ0 can be taken equal to 1 (i.e., the problem is normal) if and only
if the vectors ∂ϕ1[ū]/∂u, . . . , ∂ϕk[ū]/∂u (which belong to the dual space of
B) are independent.

2.14. Exercise. Formally apply the Multiplier Rule to obtain the Euler-Lagrange
equations for the variational problems posed in the paragraphs following (1.9). For the
problems based on (1.9), carry out a (rather lengthy) computation showing that these
equations are equivalent to those for the boundary-value problem posed in Sec. 4.3.

For multiplier rules for side conditions like (1.5), consult standard references like Bliss
(1946).

3. Direct Methods
The direct methods of the calculus of variations yield sufficient condi-

tions ensuring that various minimization problems have solutions. We shall
see that certain aspects of the theory are especially illuminating of physical
problems having variational formulations. The basic existence theory is a
generalization of Weierstrass’s theorem that a continuous real-valued func-
tion on a closed and bounded (i.e., a compact) subset A of R

n attains its
minimum there. We shall not start with the most natural abstract gener-
alization of this theorem, but rather with a concrete version of it that will
be immediately useful for 1-dimensional problems of elasticity. Then we
shall show how this concrete result can be deduced from the generalization
of Weierstrass’s theorem.

We study functionals of the form

(3.1) ϕ[η, ζ] =
∫ b

a

f
(
κ[η, ζ](s), ζ(s),η(s), ζ′(s), s

)
ds

where η := (η1, . . . , ηl) and ζ := (ζ1, . . . , ζm) are collections of real-valued
functions, and κ[η, ζ] := (κ1[η, ζ], . . . , κq[η, ζ]) is a collection of real-valued
functions determined by η and ζ. There is a certain arbitrariness and
redundancy in this notation, as the remarks following (1.10) show. For
example, for the functionals in (1.9) we may identify η = (ν, η), ζ = θ,
κ[η, ζ] = r[ν, η, θ], and for the functions of (1.10) we may identify ζ = (r, θ)
and have no need for η. Thus without essential loss of generality for our
1-dimensional problems of elasticity, we could drop ζ and ζ′ as arguments
of f in (3.1), or else we could drop η and κ. We assume throughout this
section that [a, b] is a bounded interval.

Let f0, . . . , fk+1 be given real-valued functions on

(3.2) {(κ, ζ,η, ζ′, s) : κ ∈ R
q, ζ ∈ R

m, (η, ζ′) ∈ V(s), s ∈ [a, b]}

where V(s) is an open convex subset of R
l × R

m. We may assume that
f0, . . . , fk+1 are extended real-valued functions on the closure of (3.2). Let
ψ0, . . . , ψk+1 be given real-valued functions and let b be a given R

p-valued
function on R

m × R
m.
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Our minimization problem, accounting for the various versions of the
problem formulated in Sec. 1, is to minimize a functional ϕ0 of the form

(3.3) ϕ0[η, ζ] := ψ0
(
ζ(a), ζ(b)

)
+
∫ b

a

f0
(
κ[η, ζ](s), ζ(s),η(s), ζ′(s), s

)
ds

over a class A of admissible functions for which

(3.4) b
(
ζ(a), ζ(b)

)
= o,

ϕj [η, ζ] : =
∫ b

a

fj
(
κ[η, ζ](s), ζ(s),η(s), ζ′(s), s

)
ds(3.5)

+ ψj

(
ζ(a), ζ(b)

)
= 0, j = 1, . . . , k,

ϕk+1[η, ζ] : =
∫ b

a

fk+1
(
κ[η, ζ](s), ζ(s),η(s), ζ′(s), s

)
ds(3.6)

+ ψk+1
(
ζ(a), ζ(b)

)
≤ 0.

We assume that there are reflexive Banach spaces L and W such that

(3.7) if (η, ζ) ∈ A, then η ∈ L and ζ ∈ W ,

and such that

(3.8) ϕ0[η, ζ] → ∞ as ‖η,L‖ + ‖ζ,W ‖ → ∞ for (η, ζ) ∈ A.

Our choice of L and W is dictated by the form of f0. For example, suppose
that f0 satisfies the following coercivity condition: Let |κ| + |ζ| ≤ R. For
each nonnegative R there is a positive number C(R), there are continuous
weight functions ρ1, . . . , ρl, σ1, . . . , σm independent of R that are positive
on (a, b), there are continuous functions α1, . . . , αl, β1, . . . , βm independent
of R and bounded below by a number exceeding 1, and there is an integrable
function γ(·, R) such that

(3.9) f0(κ, ζ,η, ζ′, s)

≥ C(R)

[
l∑
1

ρj(s)|ηj |αj(s) +
m∑
1

σj(s)|ζ ′
j |βj(s)

]
+ γ(s,R).

For the simplest mathematical problems, we may assume that the weight
functions ρj and σj are each 1, and that the exponents αj and βj are
each constants. For our problems of elasticity, condition (3.9) says how the
stored-energy function grows with the strains for large strains. The weight
functions arise in problems for tapered rods (see Sec. 8.12) and in problems
in polar coordinates (see Chaps. 10 and 14).
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When (3.9) holds, we choose L to consist of all functions η for which
the first sum in (3.9) is integrable on (a, b) and choose W to consist of all
functions ζ that are indefinite integrals of functions ζ′ for which the second
sum in (3.9) is integrable on (a, b). If the αj and βj are constants, then L is
a classical weighted Lebesgue space and W is a classical weighted Sobolev
space, with their standard norms. In this case, if ζ satisfies suitable bound-
ary conditions (3.4) or if (3.9) is strengthened by suitably accounting for
the dependence of f0 on ζ, then (3.8) is a consequence of (the strengthened)
(3.9). Condition (3.8) likewise follows from (3.9) when the αj and βj are
not constants by defining the norms of L and W in the manner described
below.

We are tacitly assuming that the minimization problem is well-defined
on A, which lies in L×W . In particular, we are assuming that the weight
functions are such that the boundary values of ζ that appear in (3.3)–(3.6)
are well defined for ζ ∈ W . As we see below, this is ensured when the
weight functions are constants.

Our basic result is

3.10. Theorem. Let A be nonempty. Let the functions ψj , b, and fj
be continuous on their domains, let fj(κ, ζ, ·, ·, s) be continuously differen-
tiable, let f0 and fk+1 be convex on V(s) and satisfy (3.9), let ψ0 and ψk+1
be bounded below, let the fj , j = 1, . . . , k, have the form

(3.11) fj(κ, ζ,η, ζ′, s) = gj [η, ζ](s) · η + hj [η, ζ](s) · ζ′ + ωj [η, ζ](s)

with gj , hj , ωj are compact mappings from L × W to C0[a, b]. Let κ be a
compact mapping from L × W to C0[a, b]. Let the mapping taking ζ′ into
s �→

∫ s

c
ζ′(ξ) dξ, where c is any given number in [a, b], be compact from W

to C0[a, b]. Let (3.8) hold. Then ϕ0 has a minimum on A.

We apply this theorem to specific problems in Secs. 5 and 6, which the
reader may wish to consult before proceeding further in this section. There
the simple condition (3.9), which in the guise of (5.3) is a central hypothesis
of Theorem 5.9, plays a critical role.

We now prove Theorem 3.10 in the context of the general theory.

Our fundamental abstract Minimization Theorem 3.21, stated below, is just a fancy
version of the basic minimization theorem of Weierstrass; its simple proof is virtually
identical once we marshal some technical preliminaries. We seek minimizers (η, ζ) ∈
L × W , rather than in

[
C0[a, b]

]l ×
[
C1[a, b]

]m, say, because the former space is math-
ematically and physically natural for variational problems, and because it is larger than
the latter, so we have a greater chance of finding minimizers there. After showing that
our problems have minimizers, we demonstrate (in the next section) that mild further
assumptions ensure that these minimizers have far more smoothness. (The technical
advantage of L × W is that it admits a generalization of the Bolzano-Weierstrass The-
orem.)

Lower semicontinuity. Consider the discontinuous function

(3.12) [0,∞) � x �→ f (x) :=

{
a if x = 0,

1
x+1 sin 1

x
if x > 0.
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If a > −1, then f has the infimum −1, which it does not attain. If a ≤ −1, then f has a
minimum, a, at 0. In the latter case, f is lower semicontinuous on [0,∞): An extended
real-valued function Rn ⊃ Ω � x �→ ϕ(x) ∈ (−∞,∞] is lower semicontinuous at x0 ∈ Ω
iff

(3.13) ϕ(x0) ≤ lim inf ϕ(y) as y → x0, y ∈ Ω.

ϕ is lower semicontinuous on Ω iff it is lower semicontinuous at every point of Ω. Many
of the functionals of the calculus of variations are not continuous, but enjoy an analog
of this property.

The following facts are consequences of (3.13).

3.14. Proposition. Let ϕ : Ω → (−∞,∞] with Ω ⊂ Rn.

(i) ϕ is lower semicontinuous at x0 if and only if for arbitrary ε > 0 there exists a
δ(ε) > 0 such that ϕ(x0) ≤ ϕ(x) + ε for all x ∈ Ω for which |x − x0| < δ.

(ii) ϕ is continuous at x0 if and only if both ϕ and −ϕ are lower semicontinuous.
(iii) ϕ is lower semicontinuous on Ω if and only if for each real λ the set Eλ :=

{x ∈ Ω : ϕ(x) ≤ λ} has the form Eλ = F ∩ Ω where F is a closed set in Rn.
(iv) If ϕ is lower semicontinuous on Ω and if Ω is compact (and nonempty), then ϕ

is bounded below on Ω and attains its minimum there.

Weak convergence. Only statement (iv) of Proposition 3.14, which is Weierstrass’s
Theorem, is not an immediate consequence of (3.13). A proof of it relies on the Bolzano-
Weierstrass Theorem: A bounded infinite set of points in Rn has a point of accumulation
or, equivalently, a bounded sequence in Rn has a convergent subsequence. (This property
can be phrased as: A closed and bounded set in Rn is (sequentially) compact.) To carry
the proof of statement (iv) over to a real-valued function defined on part of an infinite-
dimensional space, we need only extend the Bolzano-Weierstrass Theorem to such spaces.
This is not so easy:

Consider an orthonormal sequence {uk} for a real Hilbert space H with a (symmetric)
inner product 〈·, ·〉 and with norm ‖ · ‖ defined by ‖u‖ :=

√
〈u, u〉. Thus 〈uk, ul〉 =

δkl where δkl is the Kronecker delta. (For example, uk(s) =
√

2 sin kπs defines an
orthonormal sequence in the Hilbert space L2(0, 1), whose inner product is defined by
〈u, v〉 :=

∫ 1
0 u(s)v(s) ds.) But for k 
= l, we readily find that

(3.15) ‖uk − ul‖2 = 〈uk − ul, uk − ul〉 = 〈uk, uk〉 + 〈ul, ul〉 = 2,

so that no subsequence of {uk} can converge.
On the other hand, if {uk} is a complete orthonormal sequence, then any element f

of H admits a Fourier expansion f =
∑

〈f, uk〉uk, which converges in the norm of the
space. It follows that ‖f‖2 =

∑
|〈f, uk〉|2 (for each f ). Since this infinite series of real

numbers converges, its terms must converge to 0, i.e., 〈f, uk〉 → 0 for each f . Since this
limit holds for each f , it represents a sort of convergence for the sequence {uk}. We say
that a sequence vk in H converges weakly to v iff 〈f, vk〉 ≡ 〈vk, f 〉 → 〈v, f 〉 for every f in
H. It is this mode of convergence, when adapted for other Banach spaces, that furnishes
the appropriate setting for the generalization of Weierstrass’s Theorem. We now carry
out the requisite adaptation.

Let B be a real Banach space, e.g., Lα(Ω). A functional u∗ : B → R is linear iff
u∗[α1v1 + α2v2] = α1u∗[v1] + α2u∗[v2] for all α1, α2 ∈ R and for all v1, v2 ∈ B. A
linear functional u∗ is bounded (or, equivalently, continuous) iff for all v ∈ B there is a
number K such that |u∗[v]| ≤ K‖v,B‖. If u∗ is a bounded linear functional on B, it is
convenient to replace u∗[v] with 〈v, u∗〉. It can be shown that the set of all bounded
linear functionals on B forms a real Banach space B∗, called the space dual to B, which
has the norm

(3.16) ‖u∗,B∗‖ := sup
{ |〈u, u∗〉|

‖u,B‖
: 0 
= u ∈ B

}
≡ sup{|〈u, u∗〉| : ‖u,B‖ = 1}.
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In particular, if α ∈ (1,∞), then [Lα(Ω)]∗ can be identified with [Lα∗ (Ω)], where α∗ :=
α/(α − 1), with

〈u, u∗〉 :=
∫
Ω
u(x)u∗(x) dv(x) for u ∈ Lα(Ω), u∗ ∈ Lα∗ (Ω),

which converges because the Hölder inequality (1.8.2) implies that |〈u, u∗〉| ≤
‖u, Lα‖ ‖u∗, Lα∗‖. The same results hold if we replace the differential volume dv(x)
with ρ(x)dv(x) where ρ is positive on Ω. When the norm ‖u∗,B∗‖ is known, we can
define ‖u,B‖ to be sup{|〈u, u∗〉| : ‖u∗,B∗‖ = 1} (which is not perfectly analogous to
(3.16)). Such a definition is useful for the spaces L and W introduced in the remarks
following (3.9).

A Banach space B is reflexive iff its second dual B∗∗ := (B∗)∗ can be identified
with B. We immediately see that Lα is reflexive for α ∈ (1,∞). It can be shown that
the Sobolev spaces W 1

α are reflexive for α ∈ (1,∞) and that the spaces L and W are
reflexive as a consequence of the restrictions imposed on the exponents.

We now define weak convergence in an arbitrary Banach space. Recall that a sequence
{uk} in Banach space B converges (strongly) to u in B iff ‖uk − u,B‖ → 0 as k → ∞.
A sequence {uk} in Banach space B converges weakly to u in B iff

(3.17) 〈uk − u, v∗〉 → 0 ∀ v∗ ∈ B∗.

It follows from (3.16) that a strongly convergent sequence is weakly convergent, but the
discussion centered on (3.15) shows that the converse is not true. (The converse is true
in finite-dimensional spaces.) Thus, there are more weakly convergent sequences than
strongly convergent sequences. It can be shown that a weakly convergent sequence is a
sequence bounded in the norm of the Banach space.

To exploit this concept we need the following definitions: A functional ϕ on a subset
A of a Banach space B is sequentially weakly continuous on A iff

(3.18a) ϕ[u] = limϕ[uk]

as k → ∞ ∀ u ∈ A and ∀ {uk} ⊂ A converging weakly to u.

A functional ϕ on a subset A of a Banach space B is sequentially weakly lower semicon-
tinuous on A iff

(3.18b) ϕ[u] ≤ lim inf ϕ[uk]

as k → ∞ ∀ u ∈ A and ∀ {uk} ⊂ A converging weakly to u.

(Sequential weak lower semicontinuity is a much sharper restriction on a functional than
is sequential strong lower semicontinuity because there are more weakly convergent se-
quences than strongly convergent sequences.) A set E in a Banach space B is sequentially
weakly closed iff it contains the weak limits of all weakly convergent sequences in E.

One important class of sequentially weakly closed sets is given by Mazur’s Theorem:
A strongly closed convex set in a Banach space is sequentially weakly closed. We shall
actually employ the following illuminating result:

3.19. Proposition. If ϕ is sequentially weakly lower semicontinuous on a Banach
space B, then for each λ ∈ R, the set Eλ := {u ∈ B : ϕ[u] ≤ λ} is sequentially weakly
closed.

Proof. Let uk ∈ Eλ and let uk converge weakly to u in B. Then ϕ[u] ≤ lim inf ϕ[uk] ≤ λ,
so that u ∈ Eλ. �

An essential tool in our analysis is the following analog of the Bolzano-Weierstrass
Theorem:

3.20. Proposition. A Banach space is reflexive if and only if every bounded sequence
in it has a weakly convergent subsequence.



7.3. DIRECT METHODS 249

The Minimization Theorem. We can now prove the analog of Weierstrass’s Theo-
rem:

3.21. Minimization Theorem. A sequentially weakly lower semicontinuous func-
tional ϕ (with values in (−∞,∞]) on a sequentially weakly closed nonempty subset A
of a reflexive Banach space B is bounded below on A and has a minimum on A if either
(i) A is bounded, or (ii) ϕ[u] → ∞ as ‖u,B‖ → ∞ with u ∈ A.

Proof. If A has just a finite number of points, the result is immediate, so we assume
that A has an infinite number of points. Let us first assume that A is bounded. We
show that ϕ is bounded below on A. If not, there would be a sequence {uk} in A
with ϕ[uk] ≤ −k. Since A is a bounded set in a reflexive Banach space, Proposition 3.20
would imply that {uk} has a subsequence, which we also denote by {uk}, that converges
weakly to some limit u in B. Since A is sequentially weakly closed, it would follow that
u ∈ A. The nature of the range of ϕ implies that ϕ[u] > −∞. Inequality (3.18b) would
then imply that ϕ[u] ≤ lim inf ϕ[uk], which is impossible because ϕ[uk] → −∞.

We suppose that (i) holds, and show that ϕ attains a minimum on A. Since ϕ is
bounded below on A, it has an infimum µ. By definition of infimum, there exists a
sequence {uk} ⊂ A such that µ = limϕ[uk]. As above, this sequence has a subsequence,
denoted the same way, that converges weakly to some limit ū in A. Thus ϕ[ū] = µ
because ϕ[ū] ≥ µ and because (3.18b) implies that

(3.22) ϕ[ū] ≤ lim inf ϕ[uk] = limϕ[uk] = µ.

Now suppose that (ii) holds. We choose a fixed point u� in A and define A� :=
{u ∈ A : ϕ[u] ≤ ϕ[u�]}. It follows from Proposition 3.19 that A� is sequentially weakly
closed. Moreover, A� is bounded, for if not, there would be a sequence {uj} in A� with
‖uj ,B‖ → ∞. But then alternative (ii) would imply that ϕ[uj ] → ∞ in contradiction
to the definition of A�. We now apply the proof for case (i) to A� noting that ϕ has a
minimum on A if and only if it has a minimum on A�. �
Compact embeddings. Before proving Theorem 3.10 let us discuss its hypothesis
about compact embeddings. We begin with

3.23. Compact Embedding Theorem. Let −∞ < a < b < ∞ and α ∈ (1,∞). An
element of W 1

α(a, b) is (Hölder) continuous. A bounded sequence {uk} in W 1
α(a, b) has

a uniformly convergent subsequence.

Proof. The Hölder inequality (1.8.2) implies that if u ∈ W 1
α(a, b), then

(3.24a) |u(x) − u(y)| ≤ |y − x|1/α∗
‖u′, Lα(a, b)‖,

which says that u is Hölder continuous with exponent 1/α∗. We are assuming that there
is a number K such that ‖uk, W

1
α(a, b)‖ ≤ K . Thus (3.24a) implies that

(3.24b) |uk(x) − uk(y)| ≤ K |y − x|1/α∗
,

which implies that {uk} is equicontinuous. If the uk are prescribed to have a single value
at one point of [a, b], or if the integrals of the uk are prescribed to have a single value, then
(3.24b) implies that the {uk} are bounded in C0[a, b]. Even without these restrictions,
the {uk} are bounded in C0[a, b], for if not, there would be a subsequence of the k’s such
that |uk(xk)| ≥ k, whence (3.24b) would imply that |uk(x)| ≥ |uk(xk)|−K |b−a|1/α∗ ≥
k −K |b − a|1/α∗

for all x. But this inequality would imply that ‖uk, Lα(a, b)‖ → ∞, a
contradiction. The conclusion follows from the Arzelà-Ascoli Theorem (5.5.3). �
3.25. Exercise. Consider the set of functions u on [0, 1] whose (distributional) deriva-
tives satisfy

∫ 1
0 s

ω |u′(s)|αds < ∞ where α ∈ (1,∞). For what range of ω are these u’s
continuous on [0, 1]?

Clearly, the same kind of result holds for elements of the Sobolev spaces W with ap-
propriate weight functions. Such results support the hypotheses on compact embeddings
of Theorem 3.10.
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Proof of Theorem 3.10. To apply Theorem 3.21 to the proof of Theorem 3.10, we
merely need to show the weak lower semicontinuity or the weak continuity of the func-
tionals appearing there.

We first turn to the study of ϕ0, introduced in (3.3). We extend its integrand f0
from (3.2) to Rq × Rm × Rl × Rm × [a, b] by defining f0 for (η, ζ′) /∈ V(s) to be ∞. Our
main technical result is

3.26. Theorem. Let ϕ0 satisfy the hypotheses of Theorem 3.10, except possibly (3.8).
Let there be an integrable function γ such that f0(ζ, ζ′, s) ≥ γ(s) (cf. (3.9)). Then ϕ0
is sequentially weakly lower semicontinuous on L × W and a fortiori on A.

Proof. For notational simplicity, we assume that f0 depends neither on κ nor η. (In
view of the development of Sec. 1 following (1.9), there is little loss of generality in
making this restriction for problems in elasticity.) We further assume (without loss of
generality for the ensuing development) that γ is independent of R. Let ζi converge
weakly in W to ζ, this convergence being defined in the obvious componentwise way.
We recall that this sequence is accordingly bounded in this Banach space.

For any representative of ζ and any real number M , we define

(3.27) E(M ) := {s ∈ [a, b] : |ζ(s)′| ≤ M}.

Now

(3.28)

f0
(
ζi(s), ζ′

i(s), s
)

− γ(s) = f0
(
ζ(s), ζ′(s), s

)
− γ(s)

+ f0
(
ζi(s), ζ′

i(s), s
)

− f0
(
ζi(s), ζ′(s), s

)
+ f0

(
ζi(s), ζ′(s), s

)
− f0

(
ζ(s), ζ′(s), s

)
.

Since ζi → ζ in C0[a, b] by virtue of the hypothesis on compactness of Theorem 3.10,
there is a positive number K(ε) such that

(3.29) |f0
(
ζi(s), ζ′(s), s

)
− f0

(
ζ(s), ζ′(s), s

)
| < ε when i ≥ K(ε) for s ∈ E(M ).

From (3.28) and (3.29) it follows that∫
E(M)

[f0
(
ζi, ζ

′
i, s
)

− γ] ds ≥
∫

E(M)
[f0
(
ζ, ζ′, s

)
− γ] ds(3.30)

+
∫

E(M)
[f0
(
ζi, ζ

′
i, s
)

− f0
(
ζi, ζ

′, s
)
] ds − ε(b − a)

when i ≥ K(ε). The convexity of f0(ζ, ·, s) implies that

(3.31) f0
(
ζi(s), ζ′

i(s), s
)

− f0
(
ζi(s), ζ′(s), s

)
≥ (ζ′

i − ζ′) · ∂f0
∂ζ′ (ζi(s), ζ′(s), s

)
.

Since f0
(
ζi(s), ζ′

i(s), s
)

− γ(s) ≥ 0, we obtain from (3.30) and (3.31) that
(3.32)∫ b

a
[f0(ζi, ζ

′
i, s) − γ] ds

≥
∫

E(M)
[f0(ζi, ζ

′
i, s) − γ] ds

≥
∫

E(M)
[f0(ζ, ζ′, s) − γ] ds +

∫
E(M)

[
(ζ′

i − ζ′) · ∂f0
∂ζ′ (ζi, ζ

′, s)
]
ds − ε(b − a)

=
∫

E(M)

[
f0(ζ, ζ′, s) − γ

]
ds

+
∫

E(M)

{
(ζ′

i − ζ′) ·
[
∂f0

∂ζ′ (ζi, ζ
′, s) − ∂f0

∂ζ′ (ζ, ζ′, s)
]}

ds

+
∫

E(M)

[
(ζ′

i − ζ′) · ∂f0
∂ζ′ (ζ, ζ′, s)

]
ds − ε(b − a)



7.3. DIRECT METHODS 251

when i ≥ K(ε). Now we take the lim inf of each side of (3.32) as i → ∞. We write the
last integral as

(3.33)
∫ b

a
(ζ′

i − ζ′) · m ds where m :=

{
∂f0
∂ζ′ (ζ, ζ′, s) for s ∈ E(M ),

0 for s /∈ E(M ).

Since m is bounded (by the definition of E(M )), it follows from the weak convergence of
ζi to ζ that (3.33) approaches 0 as i → ∞. Let β be any number such that 1 < β ≤
min{βj}. We find that there is a positive number K such that

(3.34)

∫
E(M)

(ζ′
i − ζ′) ·

[
∂f0

∂ζ′ (ζi, ζ
′, s) − ∂f0

∂ζ′ (ζ, ζ′, s)
]
ds

≤
[∫ b

a
|ζ′

i − ζ′|β ds
]1/β

[∫
E(M)

∣∣∣∣∂f0∂ζ′ (ζi, ζ
′, s) − ∂f0

∂ζ′ (ζ, ζ′, s)
∣∣∣∣β∗

ds

]1/β∗

≤ K
[∫

E(M)

∣∣∣∣∂f0∂ζ′ (ζi, ζ
′, s) − ∂f0

∂ζ′ (ζ, ζ′, s)
∣∣∣∣β∗

ds

]1/β∗

,

the first inequality coming from the Hölder inequality and the second from the bound-
edness of weakly convergent sequences. The last integrand of (3.34) converges uniformly
to 0 as i → ∞. Thus

(3.35) lim inf
∫ b

a
[f0(ζi, ζ

′
i, s) − γ] ds ≥

∫
E(M)

[
f0(ζ, ζ′, s) − γ

]
ds − ε(b − a)

for all ε > 0 and M ≥ 0. This arbitrariness enables us to drop ε(b − a) from the right-
hand side of (3.35) and to replace the integral over E(M ) with the integral over [a, b].
Thus the integral term in ϕ0 is sequentially weakly lower semicontinuous. It is easy to
show that ψ0(ζi(a), ζi(b)) → ψ0(ζ(a), ζ(b)) . �

We supplement this result with

3.36. Proposition. A is sequentially weakly closed.

Proof. Theorem 3.26 implies that ϕk+1 is sequentially weakly lower semicontinuous,
so that the set of (η, ζ) satisfying (3.6) is sequentially weakly closed, by Proposition
3.19. Since a weakly convergent sequence of ζ’s is uniformly convergent, it follows that
ζ �→ b(ζ(a), ζ(b)) is sequentially weakly continuous, and thus the functions satisfying
(3.4) are sequentially weakly closed. Likewise, the functional ζ �→ ψj(ζ(a), ζ(b)) in
(3.5) is sequentially weakly continuous. By virtue of (3.11), the fj(κ, ζ, ·, ·, s), j =
1, . . . , k, are linear; thus both fj(κ, ζ, ·, ·, s) and −fj(κ, ζ, ·, ·, s) are convex. We can
apply Theorem 3.26 to the functionals defined by the integrals in (3.5) to conclude that
they are sequentially weakly continuous. Thus, the set of functions satisfying (3.5) is
sequentially weakly closed. �

Theorem 3.26, Proposition 3.36, and these last remarks ensure that the hypotheses
of Theorem 3.21 are met. Thus Theorem 3.10 is proved.

Virtually all the concrete results we have stated in this section are valid under weaker
hypotheses. For example, we could carry out the proof of an analog of Theorem 3.10
without the hypotheses about compact embeddings. In that case, we would use a com-
pact embedding of L× W into a space larger than C0[a, b]. See the references in Sec. 8.
The abstract Theorem 3.21 is applicable to partial differential equations, but in this
case, the analog of Theorem 3.26 for a single second-order partial differential equation
is more difficult to prove. As we mention in Sec. 13.6, the analog for systems of par-
tial differential equations of the sort that arise in the 3-dimensional theory of nonlinear
elasticity has only been obtained in recent years.
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4. The Bootstrap Method
In preceding chapters and in Sec. 2, we have treated Euler-Lagrange

equations formally. For example, in the remarks following (2.10b) we have
assumed that the functionals are continuously Gâteaux-differentiable at the
minimizer. We now show that this differentiability and the fact that the
minimizer satisfies the classical version of the Euler-Lagrange equations (so
that the minimizer enjoys more regularity than the other members of A)
are natural consequences of further mild restrictions on the integrands of
the functionals appearing in the minimization problem. This procedure is
called the bootstrap method.

In the minimization problem posed in Sec. 3, we further assume that
the functions ψj , b, and fj(·, ·, ·, ·, s) are continuously differentiable, that
the mapping (η, ζ) �→ κ[η, ζ] is continuously (Fréchet-) differentiable from
L × W to C0[a, b], and that its derivative is compact.

To illustrate the essential idea of this method without some of the in-
herent difficulties of problems from elasticity, we study a functional ϕ0
meeting the hypotheses placed on it above and in Theorem 3.10, but with
V(s) = R

l × R
m. (This is the standard approach. In the next section we

develop a more powerful method suitable for 1-dimensional problems of
elasticity.) We complement (3.9) with

4.1. Hypothesis. There are mappings L × W � (η, ζ) �→ Γ [η, ζ](·),
γ+[η, ζ](·) with s �→ Γ [η, ζ](s) a bounded measurable real-valued function
and with s �→ γ+[η, ζ](s) an integrable real-valued function such that

(4.2)
∣∣∣∣∂f0∂κ (κ, ζ,η, ζ′, s)

∣∣∣∣+ ∣∣∣∣∂f0∂η (κ, ζ,η, ζ′, s)
∣∣∣∣

+
∣∣∣∣∂f0∂ζ (κ, ζ,η, ζ′, s)

∣∣∣∣+ ∣∣∣∣∂f0∂ζ′ (κ, ζ,η, ζ
′, s)

∣∣∣∣
≤ Γ [η, ζ](s)

[
l∑
1

ρj(s)|ηj |αj(s) +
m∑
1

σj(s)|ζ ′
j |βj(s)

]
+ γ+[η, ζ](s).

We now show that we can take the Gâteaux derivative of ϕ0 at any
(η, ζ) ∈ L × W in suitable directions. We use this result in the Multiplier
Rule (2.13). For simplicity of exposition, let us assume that ψ0 = 0 and
that f0 is independent of κ and η. Then the Mean-Value Theorem (1.4.6)
implies that

(4.3)

ϕ0[ζ + εζ�] − ϕ0[ζ]
ε

=
∫ b

a

{[∫ 1

0

∂f0
∂ζ

(ζ + tεζ�, ζ
′ + tεζ′

�, s) dt
]

· ζ�

+
[∫ 1

0

∂f0
∂ζ′ (ζ + tεζ�, ζ

′ + tεζ′
�, s) dt

]
· ζ′

�

}
ds.

We take 0 < ε < 1. Now we choose ζ� to be piecewise continuously
differentiable. Since ζ′ merely belongs to L, we cannot expect uniform



7.4. THE BOOTSTRAP METHOD 253

convergence in (4.3) as ε → 0. But (4.2) implies that the absolute values
of the two integrals with respect to t over [0, 1] in (4.3) are dominated by
(4.4)∫ 1

0

{
Γ [ζ + tεζ�](s)

m∑
1

σj(s)|ζ ′
j + tεζ ′

�j |βj(s) + γ+[ζ + tεζ�](s)

}
dt.

Now recall that a convex function h has the property that h( 1
2ζ1 + 1

2ζ2) ≤
1
2h(ζ1) + 1

2h(ζ2). Since ζ �→ |ζ|β is convex, we thus find that

(4.5) |ζ ′
j + tεζ ′

�j |βj(s) ≤ 1
2 |2ζ ′

j |βj(s) + 1
2 |2tεζ ′

�j |βj(s).

It then follows from the definition of W that (4.4) is bounded above by
an integrable function of s for all ε. The integrand in (4.3) has an obvious
pointwise limit. Thus we can invoke the Lebesgue Dominated Convergence
Theorem to show that ϕ0 has a Gâteaux differential at ζ in the direction
of any piecewise continuously differentiable function ζ�, which is given by

(4.6) ϕ′
0[ζ] · ζ� =

∫ b

a

{
∂f0
∂ζ

(ζ, ζ′, s) · ζ� +
∂f0
∂ζ′ (ζ, ζ

′, s) · ζ′
�

}
ds.

To show that ϕ0 has a Gâteaux differential at ζ in the direction of any element of
L×W we replace the bounds on ∂f0/∂η and ∂f0/∂ζ′ given in (4.2) with more restrictive
bounds in which the αj and βj are replaced with αj − 1 and βj − 1. We would then
use the Hölder inequality. There is no advantage in carrying out this procedure for
variational problems associated with ordinary differential equations, however.

The treatment of the Gâteaux differentiability of ϕj , j = 1, . . . k, fol-
lows easily from (3.11), which obviates the need for an hypothesis on the
corresponding fj comparable to (4.2).

Let us now assume that the ϕ0 of the Minimization Problem of Sec. 3
when f0(κ[·, ·], ·, ·, ·, s) is confined to V(s) has the same Gâteaux differ-
entiability as we have just obtained under simplifying assumptions. (We
confront this question below for specific problems of elasticity.) We can ap-
ply the Multiplier Rule to the Minimization Problem provided that either
the unilateral constraint (3.6) is not present or else it can be shown that
any minimizer satisfying (3.6) must necessarily satisfy the corresponding
equality. Later we show how this can be done. Let us assume that one
of these conditions holds and furthermore, if the second condition holds,
then f0 satisfies (3.11). In this case, we denote ϕ0 by a ϕj with j taken
from 1, . . . , k and we denote ϕk+1 by ϕ0. (These conditions are typical of
problems in elasticity. See Sec. 5.) Let us denote the minimizer by (η̄, ζ̄).
Then in view of our results on Gâteaux differentiability, the Multiplier Rule
says that there are numbers λ0, λ1, . . . , λk such that

(4.7) ϕ :=
k∑
0

λjϕj
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satisfies

(4.8)
∂ϕ

∂η
[η̄, ζ̄] · η� +

∂ϕ

∂ζ
[η̄, ζ̄] · ζ� = 0

for all piecewise continuous η� and piecewise continuously differentiable ζ�.
This is the weak form of the Euler-Lagrange equations for the Minimiza-
tion Problem. For 1-dimensional problems of elasticity, these equations
correspond to the Principle of Virtual Power.

Let us denote the integrand of ϕ by f . To proceed further, we assume
that f is independent of κ and η. This is a substantive restriction; to
avoid it we should have to impose further restrictions on κ. Again, such
a restriction is not crucial for our elasticity problems. Let ε be a small
positive number and let c and s be any numbers satisfying a < c < c+ ε <
s− ε < s < b. We define the piecewise continuously differentiable function
h by

(4.9) h(ξ, s, c) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 for a ≤ ξ ≤ c,
ξ−c

ε for c ≤ ξ ≤ c+ ε,
1 for c+ ε ≤ ξ ≤ s− ε,
s−ξ

ε for s− ε ≤ ξ ≤ s,
0 for s ≤ ξ ≤ b.

Let e be a fixed but arbitrary element of R
m. We change the dummy

variable of integration in (4.8) to ξ and then choose ζ�(ξ) = h(ξ, s, c)e. We
substitute these variables into (4.8) to obtain

(4.10)
1
ε

∫ c+ε

c

∂f

∂ζ′ (ζ̄(ξ), ζ̄′(ξ), ξ) · e dξ − 1
ε

∫ s

s−ε

∂f

∂ζ′ (ζ̄(ξ), ζ̄′(ξ), ξ) · e dξ

+
∫ s

c

∂f

∂ζ
(ζ̄(ξ), ζ̄′(ξ), ξ) · h(ξ, s, c)e dξ = 0.

Since the first two terms in (4.10) are quotients, their limits as ε → 0
can be formally obtained by l’Hôpital’s Rule wherever the derivatives of
the integrals exist at ε = 0. Since the integrands in (4.10) are integrable
(by virtue of (4.2)), these integrals are absolutely continuous functions of
ε; their derivatives with respect to ε at ε = 0 exist for almost all c and s.
The Lebesgue Dominate Convergence Theorem enables us to show that the
limit of the last integral is given by this integral with h replaced with 1.
Using the arbitrariness of e, we thus obtain

(4.11)
∂f

∂ζ′ (ζ̄(s), ζ̄′(s), s) =
∂f

∂ζ′ (ζ̄(c), ζ̄′(c), c) +
∫ s

c

∂f

∂ζ
(ζ̄(ξ), ζ̄′(ξ), ξ) dξ

for almost all c and s in [a, b]. For 1-dimensional problems of elasticity, these
equations correspond to the integral form of the equilibrium equations.
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That the integral form (4.8) implies the local form (4.11) is just a version
of the Fundamental Lemma of the Calculus of Variations.

Let us fix c to be any value for which (4.11) holds. The right-hand side of
(4.11) defines an absolutely continuous function of s. Since we know that
there is a minimizer (ζ̄, ζ̄′), the left-hand side also defines an absolutely
continuous function of s. We can therefore differentiate (4.11) with respect
to s, obtaining the classical form of the Euler-Lagrange equations

(4.12)
d

ds

[
∂f

∂ζ′ (ζ̄(s), ζ̄′(s), s)
]

=
∂f

∂ζ
(ζ̄(s), ζ̄′(s), s) a.e.

To proceed further, we assume that this minimization problem is normal,
so that we can take λ0 = 1. (We are adhering to the renumbering of
functionals described in the remarks preceding (4.7).) Then f is a convex
function of ζ′. We now strengthen this assumption by requiring that f0,
and hence f , be a strictly convex function of ζ′, so that ∂f/∂ζ′ is a strictly
monotone function of ζ′. It follows that ∂f(ζ̄(s), ·, s)/∂ζ′ has an inverse
ω(ζ̄(s), ·, s) on its range. Since we know that (4.11) has a solution ζ̄, we
know that the right-hand side of (4.11) is in this range. Therefore (4.11) is
equivalent to

(4.13) ζ̄′(s) = ω

(
ζ̄(s),

∂f

∂ζ′ (ζ̄(c), ζ̄′(c), c) +
∫ s

c

∂f

∂ζ
(ζ̄(ξ), ζ̄′(ξ), ξ) dξ, s

)
.

Let us now further assume that f is twice continuously differentiable in
(ζ̄, ζ̄′) and continuously differentiable in s. Then the classical Implicit-
Function Theorem implies that ω is continuously differentiable. Since its
arguments in (4.13) are continuous functions of s, it follows from (4.13)
that ζ̄′ is continuous. Consequently, the arguments of ω in (4.13) are
continuously differentiable functions of s. Therefore, (4.13) implies that
ζ̄ is twice continuously differentiable. In this case, we can carry out the
differentiations everywhere, so that ζ̄ is a classical solution of the Euler-
Lagrange equations.

5. Inflation Problems

Existence. We now study extremum problems for the functionals intro-
duced in (1.9). These problems describe the equilibrium of nonlinearly
elastic arches subjected to hydrostatic pressure. We relegate the alterna-
tive treatment of these problems by the formulation (1.10) to an exercise.

We take the domain of W (·, ·, ·, s) to consist of those (ν, η, µ) satisfying
(4.1.22):

(5.1) ν > V (µ, s).

For simplicity of exposition, we assume that there are continuous functions
h1 and h2 with h1(s) ≤ 0 ≤ h2(s) for all s such that

(5.2) V (µ, s) =
{
h1(s)µ for µ < 0,
h2(s)µ for µ > 0.
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This form of V, mentioned in (4.3.12), is particularly natural (see Sec. 8.7).
In accord with (4.1.23) and (4.1.33), we assume that W (·, ·, ·, s) is twice

continuously differentiable and has a positive-definite Hessian matrix. We
require that W satisfy a special form of (3.9): There is a positive number
C, there are continuous functions α1, α2, β1 bounded below by a number
exceeding 1, and there is an integrable function γ such that

(5.3) W (ν, η, µ, s) ≥ C
[
να1(s) + |η|α2(s) + |µ|β1(s)

]
+ γ(s).

(We do not include weight functions in (5.3) because their presence can
add technical complications to our analysis; see Antman (1976b). Such
weight functions are needed to treat rods whose thickness approaches zero
at an end; see Sec. 8.12.) For a uniform rod, in which the constitutive
functions are independent of s, the exponents α1, α2, β1, γ are constants,
and the resulting analysis becomes closer to the typical. In each problem
we study, we take our admissible class of functions (ν, η, θ) to be a subset
of the set A0 that consists of those functions that satisfy∫ L

0

[
ν(s)α1(s) + |η(s)|α2(s) + |θ′(s)|β1(s)

]
ds <∞,(5.4)

ν(s) ≥ V (θ′(s), s) a.e.,(5.5)

together with (1.1c,d) and (1.8). Alternatively, we could replace (5.4) in the
definition of A0 with the requirement that Ψ [ν, η, θ′] < ∞, which implies
(5.4), by virtue of (5.3). We take our variables to lie in the appropriate
specialization of the spaces of L and W .

We assert that A0 is sequentially weakly closed. Indeed, since the functional of (5.4) is
sequentially weakly lower semicontinuous by Theorem 3.26, it follows from Proposition
3.36 that the functions satisfying (5.4) form a weakly closed set. To show that the
functions further satisfying (5.5) form a weakly closed set, we first show that they form
a strongly closed convex set and then use Mazur’s Theorem, stated before Proposition
3.19, to deduce that they form a sequentially weakly closed set. That the set is convex is
immediate. To show that it is strongly closed, we need only use the fact that a strongly
convergent sequence in a space Lα, α ≥ 1, has a subsequence that converges a.e.

Our major result about the three variational problems for the functionals
of (1.9) is the following

5.6. Theorem. Let the functionals Π, Ψ , Ω be defined by (1.9).
(i) Let p be prescribed. If α1(s) > 2 and α2(s) > 2 for all s, then the

functional Π = Ψ + pΩ has a minimum on A0.
(ii) Let Ω� be prescribed. The functional Ψ has a minimum over the

elements of A0 for which (1.15) holds.
(iii) Let Ψ� be prescribed. The functional Ω has a minimum and a

maximum over the elements of A0 for which Ψ [ν, η, θ] ≤ Ψ�.

Proof. These results follow directly from Theorem 3.10 or alternatively
from the abstract theory developed in Sec. 3. (The functional Ψ is sequen-
tially weakly lower semicontinuous and the functionals Ω and (ν, η, θ) �→
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r[ν, η, θ] are sequentially weakly continuous.) The only point that is wor-
thy of comment is that Ω is quadratic in ν and η and has no definite sign.
Consequently, in the proof of (i), to ensure that Π = Ψ+pΩ approaches ∞
as the norm of (ν, η, θ) approaches ∞ (see (3.8)), we must take α1(s) > 2
and α2(s) > 2 for all s. (See Ex. 5.7(i).) In this case, the internal energy
dominates the potential energy of the applied force system. This issue does
not arise in cases (ii) and (iii), because the two potentials are not competing
with each other. �

We refine statement (iii) of Theorem 5.6 below.

5.7. Exercise. (i) Prove that |Ω [ν, η, θ]| ≤
∫ L
0 (ν2 + η2) ds. (ii) Carry out the proof of

Theorem 5.6 for the functionals of (1.10).

Let us interpret these minimizers as very weak solutions of the Euler-
Lagrange equations for an arch under hydrostatic pressure. (Later we show
that under further assumptions, these minimizers are classical equilibrium
states.) The physical content of this theorem is that an arch admits equi-
librium states for all pressures provided that the material is strong enough
in tension and shear. On the other hand, an arch always admits equilib-
rium states of all sizes when the size is measured by the area change or
by the internal energy. These observations are in complete agreement with
the pure inflation problem for a circular ring or arch, which has much the
same form as the pure inflation problem for a string (cf. Secs. 3.5, 4.3, and
6.12).

Regularity. We now assume that the stored-energy density becomes in-
finite in a total compression:

(5.8) W (ν, η, µ, s) → ∞ as ν − V (µ, s) → 0.

Let (ν, η, θ) be an extremizer of one of the variational problems for (1.9)
(see Theorem 5.6). Since Ψ is finite at this minimizer, it follows from (5.8)
that the set of s’s at which ν(s) − V (θ′(s), s) = 0 has measure zero. We
wish to show that this set is empty and to show that the minimizer defines
a regular solution of the boundary-value problem for the Euler-Lagrange
equations. This objective is much harder to achieve for our problems of
elasticity than for the problems treated in Sec. 4, because the derivative
of W grows faster than W when ν is near V (θ′, s), so that hypotheses like
(4.2) are untenable. (Consider an energy for longitudinal motion: W (ν) =
A/ν+Bνα1 .) To carry out an effective proof of regularity, we must exploit
the strong repulsion inherent in (5.8). To minimize technicalities with side
conditions, we study the minimizer of (1.10a) satisfying (1.1).

5.9. Theorem. Let W (·, ·, ·, s) be continuously differentiable on its do-
main, and let W be continuous on its domain. Let (5.3) and (5.8) hold.
Let (r, θ) minimize (1.10a) on A0, which consists of all (r, θ) satisfying
the inequality Ψ [ν, η, θ′] < ∞ and the boundary conditions (1.1), with ν
and η defined by (1.5). (Elements of A0 satisfy (5.4) and (5.5) in view
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of (5.3) and (5.8).) Then (r, θ) satisfies the Euler-Lagrange equations a.e.,
and s �→ ν(s) − V (θ′(s), s) is everywhere positive.

Proof. We must show that Π is Gâteaux-differentiable in suitable directions. Then
we can employ the bootstrap method. To avoid the difficulties with (5.8), we construct
variations (r�, θ�) that vanish where the minimizer is close to violating (5.5): For any
positive integer n, let

Gn(s) := sup{|Wν(ν̃ , η̃, µ̃, s)| + |Wη(ν̃ , η̃, µ̃, s)| + |Wµ(ν̃ , η̃, µ̃, s)| :(5.10a)

|ν̃ − ν(s)| + |η̃ − η(s)| + |µ̃ − θ′(s)| < 1
n

},

En := {s ∈ [0, L] : Gn(s) ≤ n},(5.10b)

χn(s) :=

{
1 if s ∈ En,

0 if s /∈ En.
(5.10c)

Our hypotheses on W ensure that En is measurable. Clearly, En ⊂ En+1 and [0, L] \
∪∞

n=1En has measure zero.
We first choose an arbitrary bounded function s �→ µ�

n(s) and define

(5.10d) θn(s; t) := θ(s) + t
∫ s

0
χn(ξ)µ�

n(ξ) dξ.

In order for θn to satisfy (1.1c,d), we require that µ�
n satisfy

(5.10e) ϕ1[θn(·; t)] := θn(L; t) = t
∫

En

µ�
n ds = 0.

Next we introduce arbitrary functions (s, t) �→ ν�
n(s, t), η�

n(s, t) bounded in s and
continuously differentiable in t for |t| small. We define

(5.11a,b) νn(s; t) := ν(s) + tχn(s)ν�
n(s, t), ηn(s; t) := η(s) + tχn(s)η�

n(s, t),

rn(s; t) :=
∫ s

0
[νn(ξ; t)a(θn(ξ; t)) + ηn(ξ; t)b(θn(ξ; t))] dξ

≡ r(s) +
∫ s

0
{ν(ξ)[a(θn(ξ; t)) − a(θ(ξ))] + η(ξ)[b(θn(ξ; t)) − b(θ(ξ))]} dξ(5.11c)

+ t
∫ s

0
χn(ξ)[ν�

n(ξ; t)a(θn(ξ; t)) + η�
n(ξ; t)b(θn(ξ; t))] dξ.

The functions rn and θn generate νn, ηn of (5.11a,b) via (1.5). To ensure that rn

satisfies (1.1a,b), we now choose (ν�
n, η

�
n) so that

(5.11d)

0 =
1
t
φ[rn(·; t), θn(·; t)]

≡ 1
t

∫ L

0
{ν(s)[a(θn(s; t)) − a(θ(s))] + η(s)[b(θn(s; t)) − b(θ(s))]} ds

+
∫

En

[ν�
n(s; t)a(θn(s; t)) + η�

n(s; t)b(θn(s; t))] ds

for all small |t|, i.e., we now choose any vector (ν�
n, η

�
n) whose projections on the two

independent vectors (cos θn, sin θn) and (− sin θn, cos θn) are prescribed according to
(5.11d). Note that there is no difficulty at t = 0. (ν�

n and η�
n depend on t so that they

can satisfy (5.11d).)
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Since

(5.12) Π [rn(·; t), θn(·; t)] −Π [r, θ]

=
∫

En

[
W (νn(s; t), ηn(s; t), θ′

n(s; t), s) −W (ν(s), η(s), θ′(s), s)
]
ds

+
p

2
k ·

∫ L

0

[
rn(s; t) × r′

n(s; t) − r(s) × r′(s)
]
ds,

we find that Π [rn(·; t), θn(·; t)] < ∞ for |t| sufficiently small, so that (rn(·, t), θn(·, t)) ∈
A0 for |t| sufficiently small. Since the minimum of t �→ Π [rn(·; t), θn(·; t)] is attained at
t = 0 and since νn, ηn, θn satisfy the side conditions (5.10e) and (5.11d), we imitate the
argument leading to the Multiplier Rule (2.13) to conclude that there are constants λ0,
λ1, λ, not all zero, such that

(5.13a) d
dt

{λ0Ψ [rn(·; t), θn(·; t)] + λ0pΩ [rn(·; t), θn(·; t)]
+λ1ϕ1[θn(·; t)] + λ · φ[rn(·; t), θn(·; t)]}|t=0 = 0

for all ν�
n(·; 0), η�

n(·; 0), µ�
n. By integrating by parts and by using (5.10e) we find that

d

dt
Ψ [rn(·; t), θn(·; t)]

∣∣∣∣
t=0

(5.13b)

=
∫

En

[
Wν(ν(s), η(s), θ′(s), s)ν�

n(s; 0) +Wη(ν(s), η(s), θ′(s), s)η�
n(s; 0)

+Wµ(ν(s), η(s), θ′(s), s)µ�
n(s)

]
ds,

d

dt
Ω [rn(·; t), θn(·; t)]

∣∣∣∣
t=0

(5.13c)

=
∫

En

{
− 1

2 |r(s)|2µ�
n(s) + r(s) · [−ν�

n(s; 0)b(θ(s)) + η�
n(s; 0)a(θ(s))]

}
ds,

d

dt
ϕ1[θn(·; t)]

∣∣∣∣
t=0

=
∫

En

µ�
n(s) ds,(5.13d)

d

dt
φ[rn(·; t), θn(·; t)]

∣∣∣∣
t=0

(5.13e)

=
∫

En

{
−[k × r(s)]µ�

n(s) + ν�
n(s; 0)a(θ(s)) + η�

n(s; 0)b(θ(s))
}
ds.

By the arbitrariness of ν�
n(·; 0), η�

n(·; 0), µ�
n, we immediately deduce from (5.13) that

λ0Wν(ν(s), η(s), θ′(s), s) = λ0pr(s) · b(θ(s)) − λ · a(θ(s)),(5.14a)

λ0Wη(ν(s), η(s), θ′(s), s) = −λ0pr(s) · a(θ(s)) − λ · b(θ(s)),(5.14b)

λ0Wµ(ν(s), η(s), θ′(s), s) = λ0
1
2p|r(s)|2 − λ1 + λ · [k × r(s)](5.14c)

a.e. on En. It easily follows from (5.14) that if λ0 = 0, then λ1 = 0, λ = o, in
contradiction to the Multiplier Rule. We accordingly take λ0 = 1. Since En ⊂ En+1
it follows that λ1 and λ are independent of n. The properties of En show that (5.14)
holds a.e. on [0, L]. Since the right-hand side of (5.14) is continuous on [0, L], we can
assume that (5.14) holds everywhere on [0, L], and we deduce from (5.8) that s �→
ν(s)−V (θ′(s), s) is everywhere positive. Since the right-hand side of (5.14) is absolutely
continuous on [0, L], we can differentiate (5.14) a.e., and as in Sec. 4, thus find that the
Euler-Lagrange equations hold a.e. �

Note that this theorem does not require the hypothesis that W (·, ·, ·, s) be convex.
It suffices that the variational problem have a minimizer. Convexity is used in the next
theorem.

5.15. Exercise. Show that (5.14) is equivalent to the appropriate specialization of the
equations derived in Sec. 4.1.
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5.16. Theorem. Let the hypotheses of Theorem 5.9 hold and letW (·, ·, ·, s)
be uniformly convex. Then (r, θ) is a classical solution of the Euler-
Lagrange equations.

Proof. From (5.14) we obtain

(5.17a)
N̂ (ν(s), η(s), θ′(s), s) : = Wν(ν(s), η(s), θ′(s), s)

= pr(s) · b(θ(s)) − λ · a(θ(s)), etc.

The uniform convexity of W implies that (5.17a) is equivalent to a system of the form

(5.17b) ν(s) = ν̂
(
pr(s) · b(θ(s)) − λ · a(θ(s)), . . .

)
, etc.

Since the first three arguments of ν̂ , . . . are continuous on [0, L], it follows that ν, . . .
are continuous, so that the solution is classical. �
5.18. Exercise. Prove the analogs of Theorems 5.9 and 5.16 for the three problems
treated in Theorem 5.6.

5.19. Problem. Determine the regularity of equilibrium states when the energy W
is not required to satisfy (5.8). Is the minimizer a weak solution of the Euler-Lagrange
equation? Suppose that V has the form (5.2) and that

(5.20)

N̂ (ν, η, µ, s) → −∞, M̂ (ν, η, µ, s) →
{

∞ for µ > 0,

−∞ for µ < 0

}
as ν − V (µ, s) → 0.

Is it then possible to show that for a weak solution ν − V (θ′, s) = 0 nowhere?

Normality for the problem with prescribed strain energy. We now
refine Theorem 5.6(iii):

5.21. Theorem. Let the functionalsΠ, Ψ , Ω be defined by (1.9) or (1.10).
Let Ψ� be prescribed. The functional Ω has a minimum and a maximum
over the elements of A0 for which Ψ [ν, η, θ] = Ψ�.

Sketch of proof. For simplicity, we use Exercise 5.7 to show that Theo-
rem 5.6(iii) holds for the functionals of (1.10). Suppose for contradiction
that the extremizer (r, θ) were to satisfy Ψ [r, θ] < Ψ�. This inequality sug-
gests that Ω has an unconstrained minimum on A0 and that its Gâteaux
derivative must vanish. But small variations of the minimizer can violate
(5.5). It is consequently not obvious that Ω is Gâteaux-differentiable at the
extremizer. We avoid this difficulty by constructing variations by the meth-
ods used in the proof of Theorem 5.9. In place of (5.15), we accordingly
find that

(5.22) pk × r(s) = c,

which implies that r′ = o, in violation of (5.5). �
In our treatment of regularity, we have avoided confronting problems

with side conditions. An ad hoc procedure for doing so would be to refine
the variations ν�

n, η�
n, µ�

n used in the proof of Theorem 5.9 so that they are
consistent with the isoperimetric constraints. For this purpose, we can use
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the ideas developed in Sec. 2. Alternatively, we could formulate a Multiplier
Rule applicable to the original functionals, rather than to their Gâteaux
derivatives (see Cannon, Cullum, & Polak (1970)). We omit the details of
such constructions, assuming that versions of (2.13) can be established just
like (5.14) and (5.15).

Let us consider the problems (for (1.10)) in which (1.15) or (1.16) holds.
We should like to normalize the Lagrange multipliers so that the multiplier
associated with Ψ is 1. In this case, the multiplier associated with Ω can
be identified as the pressure necessary to maintain the constraint. For
showing that the multiplier associated with Ψ can be taken to be 1, we
need only show that this multiplier does not vanish. Were it to do so, then
the Gâteaux derivative of Ω would have to vanish, leading to (5.22) and
the consequent contradiction.

5.23. Exercise. Show that the multiplier associated with Ψ can be taken to be 1 when
(1.9) is used and either (1.15) or (1.16) holds. In this case, (1.8) must be used. It has
its own multiplier.

6. Problems for Whirling Rods
We now study variational aspects of the boundary-value problem (4.5.10):

(6.1a,b,c) N ′′ + λν̂(N) = 0, N(0) = 0, N ′(1) = −λR,

which describes the radial steady states of a rotating uniform elastic rod of
length 1, with its end s = 0 free, and with its end s = 1 attached to a rigid
ring of radius R rotating about its center with angular speed

√
λ/ρA. N is

the tension in the rod and ν̂(N) is the stretch it produces. We introduce the
conjugateW ∗ of the stored-energy function by (4.1.35); it has the property
that

(6.2) ν̂(N) =W ∗
N (N).

The usual properties of ν̂ yield

(6.3)
W ∗(0) = 0, W ∗

N (0) = 1, W ∗
N (N) > 0, W ∗

NN (N) > 0,

W ∗
N (N) → 0 as N → −∞, W ∗

N (N) → ∞ as N → ∞.

Let λ > 0 be fixed. We consider the problem of minimizing the functional

(6.4) Φ[N ] :=
∫ 1

0

[ 1
2N

′(s)2 − λW ∗(N(s))
]
ds+ λRN(1)

over the closed convex set

(6.5) K := {N ∈W 1
2 (0, 1) : N(0) = 0, N(s) ≤ 0 for 0 ≤ s ≤ 1}.

Since the constraint that N ≤ 0 in (6.5) is an a priori mathematical re-
striction, and not a consequence of fundamental mechanics, we shall have
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to impose further restrictions to ensure that minimizers of (6.5) correspond
to solutions of (6.1).

6.6. Exercise. Noting that (6.3) implies that there is a constant C > 0 such that
−CN ≤ W ∗(N ) ≤ 0 for N ≤ 0, prove that Φ[N ] → ∞ as ‖N,W 1

2 ‖ → ∞ and conse-
quently that Φ is minimized at a function N ∈ K.

Thus

(6.7) 1
t

[
Φ(N + tQ) − Φ(N)

]
≥ 0 ∀Q ∈ K, t > 0.

The Lebesgue Dominated Convergence Theorem implies that the limit of
(6.7) exists as t↘ 0 and is given by

(6.8)
∫ 1

0

[
N

′
Q′ − λW ∗

N (N)Q
]
ds+ λRQ(1) ≥ 0.

Let σ ∈ (0, 1), let ε be small and positive, and choose

(6.9) Q(s) =

⎧⎪⎨⎪⎩
0 for 0 ≤ s ≤ σ,
(σ − s)/ε for σ ≤ s ≤ σ + ε,
−1 for σ + ε ≤ s ≤ 1.

Substituting (6.9) into (6.8) and taking the limit as ε→ 0, we obtain

(6.10) N
′(σ) ≤ λ

∫ 1

σ

W ∗
N (N(ξ)) dξ − λR.

Since N ∈ K, conditions (6.3) and (6.10) imply that

(6.11) N
′(σ) ≤ λ[1 − σ −R]

(for all such σ). To proceed further and to eliminate unphysical minimizers
of Φ on K, we assume that R ≥ 1. Then N ′(s) < 0 for s > 0. Integrating
(6.11) with respect to σ from 0 to s and using the condition that N(0) = 0,
we find that N(s) < 0 for s > 0. Now let α be an arbitrary number in
(0, 1) and let Q be given by (6.9). If σ ≥ α and if t is sufficiently small,
then N + t(−Q) ∈ K. We can therefore replace Q in (6.7) with −Q and
accordingly replace (6.8) and (6.10) with the corresponding equations, the
latter holding for σ ∈ [α, 1). Since α is arbitrary, the equation correspond-
ing to (6.10) holds for all σ. Taking its limit as σ → 1, we recover (6.1c),
and differentiating it with respect to σ, we recover (6.1a). Thus

6.12. Theorem. Let λ, R be given with R ≥ 1. Then (6.1) has a solution
N , which minimizes Φ on K and which satisfies

(6.13) −λRs < N(s) < −Rs+ s− 1
2s

2 and N
′(s) < 0 for s > 0.

We can relax the restrictions caused by the membership of N in K if
we take the material to be sufficiently strong in resisting extension. The
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following exercise supports the basic calculations in the proof of the next
theorem. We set

(6.14) W := {N ∈W 1
2 (0, 1) : N(0) = 0}.

6.15. Exercise. (i) Use the Cauchy-Bunyakovskĭı-Schwarz inequality to prove that if
N ∈ W, then

(6.16) N (s)2 = 2
∫ s

0
N (t)N ′(t) dt ≤ 2

{∫ 1

0
N 2 dt

}1/2 {∫ 1

0
[N ′]2 dt

}1/2

,

so that

(6.17) ‖N, L2(0, 1)‖2 ≤ 4‖N ′, L2(0, 1)‖2.

This last inequality can be considerably sharpened by using variational arguments:
(ii) Prove that the functional N �→ ‖N ′, L2(0, 1)‖2 has a minimum on the subset of
W consisting of those N ’s for which ‖N, L2(0, 1)‖2 = 1 and show that this minimum is
π2/4. Thus (6.17) can be replaced with

(6.18) ‖N, L2(0, 1)‖2 ≤ 4
π2

‖N ′, L2(0, 1)‖2.

6.19. Theorem. Let λ and R be fixed. If there are numbers α ∈ (0, π2/8)
and K > 0 such that

(6.20) λW ∗(N) ≤ αN2 +K for N > 0,

then (6.1) has a solution, which minimizes Φ on W.

Proof. Inequalities (6.18) and (6.20) imply that

(6.21)
Φ(N) − λRN(1) ≥

∫ 1

0

1
2N

′(s)2 ds− λ
∫

{s:N(s)>0}
W ∗(N(s)) ds

≥ −K +
[
1
2

− 4α
π2

] ∫ 1

0
N ′(s)2 ds.

Thus Φ(N) → ∞ as ‖N,W 1
2 ‖ → ∞. The proof that Φ is minimized at

a function N ∈ W and that this minimizer is a classical solution of (6.1)
follows from a straightforward application of the theory of Secs. 3 and 4. �

7. The Second Variation. Bifurcation Problems
Let us consider a bifurcation problem for a circular arch or ring. It

admits a trivial circular equilibrium state. The mere availability of an
existence theorem provides us with no new information, because we already
know a solution. In this case, we can, however, use the results of Sec. 5 to
show that there is a nontrivial solution for certain ranges of pressure.

To be specific, we know the existence of a (classical) minimizer and of a
trivial solution. To show the existence of a nontrivial solution, we merely
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need to show that the trivial solution is not a minimizer. We do this by
showing that it does not have a nonnegative-definite second variation, and
therefore fails to satisfy a necessary condition for minimization.

Under the conditions prevailing in Secs. 4 and 6, we know that the
minimizers of the variational functionals over the admissible sets, which
are subsets of Sobolev spaces, are classical solutions of the Euler-Lagrange
equations. These minimizers are a fortiori minimizers over subsets of spaces
of smooth functions. Consequently, the study of necessary conditions can
be carried out in a completely classical setting. We now outline the theory
of the second variation in the simplest case, which corresponds to mini-
mizing (1.10a) over continuously differentiable (r, θ) that satisfy (1.1) (and
(5.1)).

We use the notation introduced in the paragraph following (2.9). Let
ϕ0 have an unconstrained local minimum at a point ū = u0 + v̄ in u0 + A.
Let v be an arbitrary element of the Banach space B containing A. If
ε �→ ϕ0[ū + εv] is twice continuously differentiable for |ε| small, then

(7.1)
∂ϕ0[ū]
∂u

· v ≡ ∂ϕ0[ū + εv]
∂ε

∣∣∣∣
ε=0

= 0,

as before, and

(7.2)
∂2ϕ0[ū]
∂u∂u

: vv ≡ ∂2ϕ0[ū + εv]
∂ε2

∣∣∣∣
ε=0

≥ 0.

(The left-hand side of (7.2) is the second variation of ϕ0 at ū.) If ū satisfies
(7.1) for all v in a dense subset of B, then it is a (weak) solution of the
Euler-Lagrange equations, but if there is a single v in B for which it does not
satisfy (7.2), then ū cannot be a minimizer of ϕ0. We apply this principle
to a trivial solution of a bifurcation problem to show that it cannot be a
minimizer, so that the minimizer, known to exist from other considerations,
must be another function. Therefore, there must be multiple solutions.

Let us apply this method to the buckling of a circular ring, treated in
Sec 4.3 (cf. Sec. 6.12). We take the reference configuration of the ring to
be defined by

(7.3) r◦(s) = sin si − cos sj, θ◦(s) = s.

We assume that W is independent of s. In place of (1.1), we assume that r
and s �→ θ(s)− s when extended to the whole real line have period 2π. We
could fix the rigid displacement of the ring by introducing the isoperimetric
constraints

(7.4)
∫ π

−π

r(s) ds = o,

∫ π

−π

θ(s) ds = 0,

but refrain from doing so because they complicate the analysis slightly.
The methods of Secs. 3–5 ensure that (1.10a) (with L = 2π) has a classical
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minimizer satisfying (5.4) and (5.5), and these periodicity conditions. The
smoothness of this minimizer enables us to choose B to consist of (r�, θ�) ∈
C1[0, 2π] having period 2π.

Let the first variation of Π of (1.10a) vanish at (r̄, θ̄). Then (5.14)
implies that the second variation here is the integral over (−π, π) of

(7.5) W ννx
2 +W ηηy

2 +Wµµ(θ′�)2 + 2W νηxy + 2W νµxθ
′
� + 2W ηµyθ

′
�

+ pk · (r� × r′
�) + 2θ�[pr̄ · r′

� − k · (λ × r′
�)] + (θ�)2[pk · (r̄ × r̄′) + λ × r̄′]

where x = r′
� · ā + θ�r̄′ · b̄, y = r′

� · b̄ − θ�r̄′ · ā, where ā := a(θ̄), etc., and
where W νν := Wνν(r̄ · ā, r̄ · b̄, θ̄′), etc. We assume that W is convex, so
that the quadratic form of second derivatives of W in (7.5) is positive.

We study trivial solutions of the form

(7.6) r̄(s) = −ν̄b(θ̄(s)), θ̄(s) = s

where ν̄ is constant. Thus η̄ = 0. Our standard assumption thatWη(ν, 0, µ)
= 0 enables us to deduce from Ex. 5.15 that λ = o and that ν̄ is the (unique)
solution of

(7.7) Wν(ν̄, 0, 1) = −pν̄.

We suppress the dependence of ν̄ on p. For this trivial solution, (7.5)
reduces to

(7.8) W νν(r′
� · ā)2 +W ηη(r′

� · b̄ − θ�ν̄)2 +Wµµ(θ′�)2 + 2W νµr′
� · āθ′�

+ p
[
k · (r� × r′

�) − 2θ�ν̄b̄ · r′
� + (θ�)2ν̄2] .

We take the test functions (r�, θ�) to be generated by the eigenfunctions of
the equilibrium problem linearized about the trivial state. This lineariza-
tion includes

(7.9) η′′
� + q(p)2η� = 0, η� has period 2π

where

(7.10) q(p)2 :=
(

1 +
p

W ηη

)(
1 + p

ν̄2W νν + 2ν̄W νµ +Wµµ

W ννWµµ −W 2
νµ

)

(cf. (6.12.14), (6.12.15)). Note that the convexity of W ensures that
q(p)2 > 1 when p > 0. The eigenvalues p are solutions of

(7.11) q(p)2 = n2

where n is an integer ≥ 2 . For a given n, (7.11) may have none, one,
several, or even infinitely many solutions. To each n for which (7.11) has
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a solution corresponds an eigenfunction of the form

(7.12)

η�(s) = B sin(ns− ω),

ν�(s) = −BA
n

cos(ns− ω)

:= − (p+W ηη)(Wµµ + ν̄W νµ)

W ννWµµ −W 2
νµ

B

n
cos(ns− ω),

θ�(s) = B
C

n2 sin(ns− ω) + E

:=
(p+W ηη)(ν̄W νν +W νµ)

W ννWµµ −W 2
νµ

B

n2 sin(ns− ω) + E,

r′
�(s) = ν�ā + (ν̄θ� + η�)b̄

where B,E, ω are arbitrary constants. The substitution of (7.12) into (7.8)
and the (lengthy) integration of the resulting expression over (−π, π) yields
the second variation, which is πB2 times

(7.13) W νν
A2

n2 +W ηη +Wµµ
A2

n2 − 2W νµ
AC

n2

−p
[

1
n2 − 1

(
A

n

)2

+
2n

n2 + 1

(
A

n

)(
1 +

ν̄C

n2

)
+

n2

n2 − 1

(
1 +

ν̄C

n2

)2

− 1

]
.

Note that the first line of (7.13) is positive, by the convexity of W , and
that the second line is negative when p is positive. Thus we conclude that
if there is an n ≥ 2 (typically n = 2) and a p for which (7.13) is negative,
then the trivial solution (7.6) does not minimize Π, so that the minimum
is achieved elsewhere. For simpler problems, such as that of Sec. 5.5, the
analog of (7.13) becomes correspondingly simple. See Ex. 7.15.

Since an equilibrium state that minimizes the energy can often be re-
garded as stable, and since a state at which the energy does not have a
local minimum can be regarded as unstable, results of the kind we have
just obtained may be interpreted as giving a range of values for which the
trivial state is unstable. See the comments in Sec. 5.7.
7.14. Exercise. Derive (7.5)–(7.13).
7.15. Exercise. Formulate the buckling problems of Secs. 5.5 and 6.5 for hyperelastic
rods as variational problems, and use the methods of this section to determine a range
of the loading parameter λ for which there are nontrivial solutions (which minimize the
potential-energy functional).

7.16. Exercise. Linearize the equations of motion for a circular elastic ring under
hydrostatic pressure about a trivial equilibrium state. The resulting linear equations
of motion are autonomous in t (and s). The solutions are sums of functions that are
exponentials in t. The equilibrium state is linearly stable if none of these exponentials
grows without bound as a function of t. Otherwise, this state is linearly unstable.
Discuss the relation of this kind of stability to the positive-definiteness of the second
variation. What happens if the inertia terms depend on s? Study these questions for
the dynamical analog of the problem of Sec. 5.5.



7.8. NOTES 267

8. Notes
The proof of Theorem 5.9 is modelled on that of Ball (1981a), which uses weaker

hypotheses. It similar to that of Antman (1976b), which uses slightly different hypothe-
ses. Alternative proofs of similar theorems are given by Antman (1970b, 1971, 1972),
Antman & Brezis (1978), and Seidman & Wolfe (1988). A related approach for non-
variational problems using the method of variational inequalities is given by Antman
(1983a). Section 6 is adapted from Antman & Nachman (1980) (with kind permission
from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK).
For further applications and refinements of the theory of Sec. 7, see Maddocks (1984,
1987). Sec. 5.7 briefly treats the implications of energy minimization on stability.

Most classical books on the calculus of variations, like Bliss (1946) and Gel’fand
& Fomin (1961), and many modern books, like Giaquinta & Hildebrandt (1996) and
Hestenes (1966), do not treat existence, but are concerned with so-called necessary
and sufficient conditions for minima: The former give conditions on the variational
functional that must hold at an minimizer, such as the vanishing of the first vari-
ation at an ‘interior’ minimizer. The latter give conditions ensuring that a (weak)
solution of the Euler-Lagrange equations is a minimizer. Akhiezer (1955), Buttazzo,
Giaquinta, & Hildebrandt (1998), Cesari (1983), Dacorogna (1989), Ewing (1969), Ioffe
& Tihomirov (1974), among others, treat existence for 1-dimensional problems whose
Euler-Lagrange equations are ordinary differential equations. See Dacorogna (1989), Gi-
aquinta (1983), Giusti (2003), Morrey (1966), and Struwe (1990) for existence theory for
multi-dimensional problems. See Sec. 17.11 for the discussion of Γ-convergence, which
treats limiting processes for parameter-dependent variational problems.

There is now an extensive literature on minimax methods, which give the existence
of families of ‘saddle points’ of the functional. See Berger (1977), Deimling (1985),
Rabinowitz (1986), Văınberg (1964), and Zeidler (1985, Vol. III). These methods have
seldom been brought to bear on problems of nonlinear elasticity, even those governed
by ordinary differential equations.

For recent studies on nonconvex energies, which are used to describe phase changes,
see Dacorogna (1989), Ekeland & Temam (1972), and Struwe (1990) for general con-
siderations, and see Ball (2002), Dacorogna (1989), Fosdick & James (1981), Gurtin
& Temam (1981), James (1981), and Pedregal (1997, 2000) for specific applications to
elasticity. For references to the extensive recent work on the much more complicated
variational problems of 3-dimensional nonlinear elasticity, which necessarily have non-
convex energies, some of which may model phase changes, see the discussion in Sec. 13.6.

Static contact problems for elastic bodies lead to variational inequalities, for which
there is a rich literature: See Baiocchi & Capelo (1978), Clarke (1983), Duvaut & Lions
(1972), Fichera (1972b), Hlaváček, Haslinger, Nečas, & Lovǐsek (1988), Kikuchi & Oden
(1988), Kinderlehrer & Stampacchia (1980), Panagiotopoulos (1985). To treat the kinds
of problems formulated in this book, these methods must be refined; see Schuricht (1997,
1998, 2002) and Schuricht & von der Mosel (2003).



CHAPTER 8

Theory of Rods
Deforming in Space

1. Introduction
In this chapter we generalize the development of Chap. 4 by formulating

a general dynamical theory of rods that can undergo large deformations
in space by suffering flexure, torsion, extension, and shear. We call the
resulting geometrically exact theory the special Cosserat theory of rods.
In Sec. 2 we outline an honest derivation of the governing equations for
elastic and viscoelastic rods. Here we scarcely pause for motivation, inter-
pretation, and justification of our results. The purpose of this presentation
is twofold: to establish a framework for the ensuing careful treatment in
subsequent sections and to demonstrate that there is a short and pleasant
path leading from fundamental physical principles to the governing equa-
tions. Armed with these results, the reader interested in the treatment of
concrete problems is ready to begin the following chapter. A full appreci-
ation of the theory, however, requires a study of the topics covered in the
remainder of the present chapter, which also serves as an easy entrée into
ideas important for 3-dimensional theories of solids.

Throughout this and the ensuing chapters, we adhere to the following
conventions (unless there is a statement to the contrary): Lower-case Latin
subscripts, other than s and t, range over 1, 2, 3. Expressions containing
such twice-repeated lower-case Latin indices are summed from 1 to 3. Thus

(1.1) ukvk = u1v1 + u2v2 + u3v3.

Lower-case Greek subscripts range over 1 and 2. Expressions containing
twice-repeated lower-case Greek indices are summed from 1 to 2. Thus

(1.2) uαvα = u1v1 + u2v2.

The Kronecker delta δij and the alternating symbol εijk are defined by

(1.3)

δij :=
{

1 if i = j,
0 if i �= j,

εijk :=

⎧⎪⎨⎪⎩
1 if (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2),

−1 if (i, j, k) = (3, 2, 1), (1, 3, 2), (2, 1, 3),
0 otherwise.

We set

(1.5) εαβ := εαβ3.

269
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If {ek} is a right-handed orthonormal basis for E
3, then

(1.4) δij = ei · ej , εijk = (ei × ej) · ek, εαβ = (eα × eβ) · e3.

2. Outline of the Essential Theory
Let the reference configuration of a slender solid body be a region sur-

rounding (or merely near) a (space) curve [s1, s2] � s �→ r◦(s) where s is
the arc-length parameter. r◦ is termed the base curve or axis. E.g., the
body could be a solid right circular cylindrical segment with r◦ parallel to
the generators of the cylinder. The parameter s of the axis of the cylinder
identifies a material (cross) section of the body, which consists of all mate-
rial points whose reference positions are on the plane perpendicular to the
axis at s.

We now construct a simple yet versatile model of a rod to describe the
motion of our slender 3-dimensional solid body: The motion of a special
Cosserat rod is defined by three vector-valued functions

(2.1) [s1, s2] × R � (s, t) �→ r(s, t), d1(s, t), d2(s, t) ∈ E
3

with d1(s, t) and d2(s, t) orthonormal. r(s, t) may be interpreted as the
position of the material point on the axis with coordinate s at time t or as
some average position field over the section (at) s at time t. d1(·, t) and
d2(·, t) may be interpreted as characterizing the configuration of the mate-
rial section s at time t. In particular, d1(s, t) and d2(s, t) may be regarded
as characterizing the configurations of a pair of orthogonal material lines
of the section s. Our task is to furnish equations for the determination of
(2.1). These equations should reflect the geometry inherent in (2.1), basic
mechanical principles, and reasonable constitutive assumptions.

We have defined the motion of a special Cosserat rod, but have not
defined such a rod itself, certainly not as a member of a class of 3-dimen-
sional bodies. (See the comments following (3.5).) If we identify a reference
configuration [s1, s2] × R � (s) �→ r◦(s), d◦

1(s), d◦
2(s) ∈ E

3 of such a rod,
then we can identify a special Cosserat rod with the collection of triples
{r◦(s),d◦

1(s),d
◦
2(s) : s ∈ [s1, s2]}. Throughout this and the next chapter,

we take the word rod to be synonymous with special Cosserat rod , unless
there is a specific statement to the contrary.

Geometry of deformation. We set

(2.2) d3 := d1 × d2.

Thus {dk(s, t)} for each (s, t) is a right-handed orthonormal basis for E
3.

These vectors are called directors. Thus there are vector-valued functions
u and w such that

(2.3a,b) ∂sdk = u × dk, ∂tdk = w × dk.
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Since the basis {dk} is natural for the intrinsic description of deformation,
we decompose relevant vector-valued functions with respect to it:

(2.4a,b,c) u = ukdk, rs = vkdk, w = wkdk.

2.5. Exercise. Prove (2.3). (Hint: Use (11.1.9).) Obtain representations for ui, wi in
terms of dk, ∂sdk, ∂tdk.

The triples

(2.6) u := (u1, u2, u3), v := (v1, v2, v3)

are the strain variables corresponding to the motion (2.1). For fixed t, the
functions u(·, t) and v(·, t) determine r(·, t), d1(·, t), d2(·, t) (the configu-
ration at time t) to within a rigid motion and thus account for change of
shape. (We distinguish between a vector u and a triple u; see Sec. 1.4.) u1
and u2 measure flexure, u3 measures torsion, v1 and v2 measure shear, and
v3 measures dilatation.

Since ∂t∂sdk = ∂s∂tdk, we obtain the compatibility equation

(2.7) ∂t(u × dk) = ∂s(w × dk),

which implies that

(2.8) (ws − ut) × dk = ukw − wku.

We take the dot product of (2.8) with dl × dk to obtain

(2.9a) ws = ut + u × w = (∂tuk)dk,

which is equivalent to

(2.9b) ut = ws − u × w

in an obvious notation.
A primitive condition ensuring that orientation is preserved is that

(2.10) v3 ≡ rs · d3 > 0.

This condition implies that (i) |rs| > 0, so that the local ratio of deformed
to reference length of the axis cannot be reduced to zero, and (ii) a typical
section s cannot undergo a total shear in which the plane determined by
d1(s, t) and d2(s, t) is tangent to the curve r(·, t) at r(s, t).

Mechanics. Let s1 < a < b < s2. In the configuration at time t, the
material of (b, s2] exerts a resultant contact force n+(b, t) and a resultant
contact torque r(b, t)×n+(b, t)+m+(b, t) about o on the material of [a, b].
m+(b, t) is the corresponding resultant contact couple. Just as in Sec. 2.2,
n+(·, t) and m+(·, t) depend only on the section separating the two bodies
and are independent of any other property of the bodies. The resultant
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contact force and contact torque about o exerted on [a, b] by [s1, a) are
denoted by −n−(a, t) and −r(a, t) × n−(a, t) − m−(a, t). The resultant of
all other forces acting on [a, b] in this configuration is assumed to have the
form

(2.11)
∫ b

a

f(s, t) ds

and the resultant of all other torques is assumed to have the form

(2.12)
∫ b

a

[r(s, t) × f(s, t) + l(s, t)] ds.

f(s, t) and l(s, t) are respectively the body force and body couple per unit
reference length at (s, t).

Recall that the linear momentum of a mass point is its mass times ve-
locity and is therefore linear in the velocity. We are accordingly motivated
to take the linear momentum of the material of [a, b] at time t to be an
integral of a linear combination of the ‘velocities’ rt and ∂tdα:

(2.13)
∫ b

a

[(ρA)(s)rt(s, t) + (ρIα)(s)∂tdα(s, t)] ds.

As we shall see, in Sec. 3, 3-dimensional considerations will allow us to
interpret ρA as the mass density per reference length and the ρIα as the
(weighted) first mass moments of inertia of cross sections per reference
length. It is thus often convenient and legitimate to take r◦ so that ρIα = 0.

Likewise, since the angular momentum (or moment of momentum) of
a mass point about the origin is the cross product of its position with its
linear momentum, we are motivated to take the angular momentum of the
material of [a, b] at time t to be an integral of a linear combination of cross
products of ‘positions’ r and dα with the ‘velocities’ rt and ∂tdβ :
(2.14)∫ b

a

[(ρA)(s)r(s, t) × rt(s, t) + r(s, t) × (ρIα)(s)∂tdα(s, t)

+ (ρIα)(s)dα(s, t) × rt(s, t) + (ρJ×
αβ)(s)dα(s, t) × ∂tdβ(s, t)] ds.

If we set

(2.15a) ρJ11 := ρJ×
22, ρJ22 := ρJ×

11, ρJ12 := −ρJ×
21, ρJ21 := −ρJ×

12,

(2.15b) i.e., ρJαβ := εαγεβδ ρJ
×
γδ,

then 3-dimensional considerations in Sec. 3 will enable us to interpret ρJαβ

as the components of the positive-definite symmetric matrix of (weighted)
second mass moments of inertia of the cross section. We readily find that

(2.16a)
(ρJ×

αβ)(s)dα(s, t) × ∂tdβ(s, t) = (ρJpq)(s)wq(s, t)dp(s, t)

=: ρJ(s, t) · w(s, t)
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where

(2.16b) ρJγ3 = ρJ3γ = 0, ρJ33 = ρJγγ

and ρJ is the tensor whose components with respect to the basis {dk} are
the ρJpq.

Physically reasonable choices for ρIα and ρJpq seem to demand inspiration from
the 3-dimensional theory (or else from some abstract mathematical characterization of
dynamical equations of mechanical systems like that of DeSilva & Whitman (1971)). Of
course, this issue does not arise for statical problems, so that the equilibrium theory of
rods does not require any specific interpretation from the 3-dimensional theory.

By requiring that the resultant force acting on the material of [a, b] equal
the time derivative of the linear momentum, we obtain the integral form
of the equations of motion, which differs from (2.2.7) only by the presence
of dα. More generally, by requiring that the impulse of forces acting on
[a, s] over the time interval [0, τ ] equal the change in linear momentum of
this body over this time interval, we obtain the Linear Impulse-Momentum
Law :

(2.17)
∫ τ

0
[n+(s, t) − n−(a, t)] dt+

∫ τ

0

∫ s

a

f(ξ, t) dξ dt

=
∫ s

a

{(ρA)(ξ)[rt(ξ, τ) − rt(ξ, 0)] + (ρIα)(ξ)[∂tdα(ξ, τ) − ∂tdα(ξ, 0)]} dξ

for all a and s satisfying s1 < a < s < s2. Similarly, by requiring that the
impulse of torques about o equal the change in angular momentum about
o, we obtain the Angular Impulse-Momentum Law :

∫ τ

0
[m+(s, t) − m−(a, t) + r(s, t) × n+(s, t) − r(a, t) × n−(a, t)] dt

(2.18)

+
∫ τ

0

∫ s

a

[r(ξ, t) × f(ξ, t) + l(ξ, t)] dξ dt

=
∫ s

a

{r(ξ, t) × [(ρA)(ξ)rt(ξ, t) + (ρIα)(ξ)∂tdα(ξ, t)]

+ (ρIα)(ξ)dα(ξ, t) × rt(ξ, t) + (ρJ)(ξ, t) · w(ξ, t)} dξ
∣∣∣∣t=τ

t=0
.

The extension of these laws to intervals for which a = s1 or s = s2 is
straightforward: Prescribed forces and couples acting at the ends of the
rod must be accounted for. (See Sec. 15.)

By imitating the procedures of Secs. 2.2 and 2.3, we can obtain the
obvious analogs of the results found there. In particular, we find that the
superscripts ‘±’ are superfluous. Assuming that all the functions appear-
ing in (2.17) and (2.18) are sufficiently regular, we can differentiate these
equations with respect to s and τ to obtain

(2.19) ns + f = ρArtt + ρIα∂ttdα,
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(2.20) ms + (r × n)s + r × f + l

= r × (ρArtt + ρIα∂ttdα) + ρIαdα × rtt + ∂t(ρJ · w).

The substitution of (2.19) into (2.20) reduces the latter to

(2.21) ms + rs × n + l = ρIαdα × rtt + ∂t(ρJ · w).

Eqs. (2.19) and (2.21) are the classical forms of the equations of motion for
(the special theory of Cosserat) rods.

By integrating (2.21) over [a, s] × [0, τ ], we obtain a reduced version of (2.18):

(2.22a)
∫ τ

0

{
m(s, t) − m(a, t) +

∫ s

a
[rs(ξ, t) × n(ξ, t) + l(ξ, t)] dξ

}
dt

=
∫ s

a
[c(ξ, τ ) − c(ξ, 0)] dξ

where

(2.22b)
c(s, t) : = (ρIα)(s)

[
dα(s, t) × rt(s, t) +

∫ t

0
rt(s, η) × ∂tdα(s, η) dη

]
+ (ρJ)(s, t) · w(s, t).

By imposing mild conditions on the functions entering (2.17) and (2.18), we could deduce
(2.22) directly from (2.17) and (2.18) without resorting to the classical equations. Thus
the Impulse-Momentum Laws (2.17) and (2.22) are equivalent to (2.17) and (2.18).

2.23. Exercise. Carry out this direct derivation of (2.22) under the assumption that
the functions entering the integrals are sufficiently smooth. (An approximation argument
can be used to extend the validity of this derivation to the most general class of functions
for which these integrals make sense as Lebesgue integrals. Alternatively, the derivation
can be effected directly by the careful use of standard tools of real analysis, such as
Fubini’s Theorem.)

Let

(2.24)
m := (m1,m2,m3), n := (n1, n2, n3)
where mk := m · dk, nk := n · dk.

We may call m1 and m2 the bending couples (or bending moments), m3
the twisting couple (or twisting moment), n1 and n2 the shear forces, and
n ·rs/|rs| the tension. These terms are not strictly analogous to those used
in structural mechanics, in which it is usually assumed that d3 = rs/|rs|.
Constitutive equations. The rod is called elastic if there are constitutive
functions m̂ and n̂ such that

(2.25) m(s, t) = m̂(u(s, t), v(s, t), s), n(s, t) = n̂(u(s, t), v(s, t), s).

For each fixed s, the common domain V(s) of these constitutive functions is
a subset of (u, v) describing deformations that preserve orientation. At the
least, V(s) consists of (u, v) satisfying (2.10). The rod is called hyperelastic
iff there exists a function W : {(u, v) ∈ V, s ∈ [s1, s2]} → R such that

(2.26) m̂(u, v, s) = ∂W (u, v, s)/∂u, n̂(u, v, s) = ∂W (u, v, s)/∂v.
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If m̂(·, ·, s) and m̂(·, ·, s) are continuously differentiable, then the simple-
connectedness of V(s) implies that a necessary and sufficient condition for
(2.26) to hold is that the 6 × 6 matrix

(2.27)
[
∂m̂/∂u ∂m̂/∂v
∂n̂/∂u ∂n̂/∂v

]
be symmetric. W is called the stored-energy or strain-energy function.

The rod is called viscoelastic of strain-rate type of complexity 1 iff there
are functions m̂ and n̂ such that

(2.28)
m(s, t) = m̂

(
u(s, t), v(s, t), ut(s, t), vt(s, t), s

)
,

n(s, t) = n̂
(
u(s, t), v(s, t), ut(s, t), vt(s, t), s

)
.

More generally, we could allow m̂ and n̂ to be determined by the past history
of u and v:

(2.29) m(s, t) = m̂(ut(s, ·), vt(s, ·), s), etc.

where, as in the notation of (2.2.16a), f t(τ) := f(t− τ) for τ ≥ 0.
The restriction of (m̂(·, ·, s), n̂(·, ·, s)) of (2.29) to ut(s, ·), vt(s, ·) that are

constant (for all time up to t) is called the equilibrium response function (at
s). For example, for (2.28), the equilibrium response function is (u, v) �→
(m̂(u, v, o, o, s), n̂(u, v, o, o, s). This function describes elastic behavior. It is
often useful to decompose (2.29) as a sum of the value of the equilibrium
response and its correction.

The substitution of (2.25) or (2.28) into (2.19) and (2.21) respectively
yields a twelfth-order or eighteenth-order quasilinear system of partial dif-
ferential equations for r, d1, d2. The study of concrete problems for these
systems is the object of the next chapter.

Our brief development of these equations raises a number of important
questions:

(i) What are specific interpretations for r, d1, d2 for rods?
(ii) How do u and v characterize the change of shape?
(iii) What are suitable generalizations of (2.10)?
(iv) What assumptions justify the choices (2.13) and (2.16) for the linear

and angular momenta?
(v) How can {dk} be effectively represented, so as to exploit its or-

thonormality?
(vi) What are appropriate boundary conditions? How can these be in-

corporated naturally into impulse-momentum laws and into a prin-
ciple of virtual power?

(vii) Why must the constitutive functions have just the forms shown
in (2.25) and (2.28)? Are these forms the most general in their
classes? Do they ensure that material behavior is unaffected by rigid
motions? What are reasonable physical restrictions to impose on
these functions? How do such restrictions affect the classifications
of the governing systems of partial differential equations?
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We address these and other pertinent questions in the rest of this chapter.
We can now explain the condition (2.2.10) that states that n is tangent

to r in a string. We define a string to be a rod that (i) has no bending
or torsional stiffness, so that m̂ = o, (ii) has no relative linear momentum
ρIα∂tqa, and (iii) has no relative angular momentum h. If l = o, then
(2.21) reduces to (2.2.10).

Readers wishing to progress as quickly as possible to the analysis of con-
crete problems in Chap. 9 can do so by reading Sec. 6 through (6.8), reading
enough of Sec. 4 to appreciate the basic ideas of Sec. 7, getting a thorough
understanding of Sec. 10, and appreciating the ideas of Sec. 17. When
necessary, they can return to Secs. 11, 13, and 18 for requisite background.

3. The Exact Equations of Motion
We now develop the exact equations of motion for rods from a 3-dimen-

sional viewpoint. Since we merely seek representations for the acceleration
terms, we do not require anything resembling the full apparatus of 3-dimen-
sional continuum mechanics. Our approach has the virtue of giving a pre-
view both of some of the geometric foundations of the 3-dimensional theory
and of methods for constructing more sophisticated rod theories.

A body is a set, whose elements are called material points, that has mass,
can sustain forces, and can occupy regions of Euclidean 3-space E

3. (We
do not pause to assign these terms mathematically precise interpretations
by means of measure theory; see Truesdell (1991a) and Secs. 12.1 and
12.6.) That a body can occupy regions of E

3 means that its material
points can be put into a one-to-one correspondence with the points of such
regions. We distinguish one such correspondence and call it the reference
configuration. We denote the region occupied by the body in its reference
configuration by B. Note that the reference configuration is not merely B:
It is the identification of each material point with its position z in B. We
nevertheless refer to the body itself as B. We assume that B is an open set.

Suppose that there is a continuously differentiable invertible mapping

(3.1a) cl B � z �→ x̃(z) ≡ (x̃1(z), x̃2(z), s̃(z)) ∈ R
3

such that the Jacobian

(3.1b) det
∂x̃
∂z

(z) > 0 ∀z ∈ cl B.

The function x̃ assigns a triple of curvilinear coordinates x := (x1, x2, x3)
with x3 =: s) to each z in clB. See Fig. 3.2. We denote the inverse of x̃
by z̃. By virtue of (3.1b), the Inverse-Function Theorem implies that z̃ is
continuously differentiable and that

(3.3) j(x) := det
∂z̃

∂x
(x) > 0 ∀x ∈ x̃(cl B).
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Fig. 3.2. Curvilinear coordinates for the reference configuration
of B.

Our first minimal restriction on the shape of B to make it rod-like is
that the coordinate s range over an interval (s1, s2) as x ranges over x̃(B),
i.e., (s1, s2) = {s : x ∈ x̃(B)}. The material (cross) section B(a) is the set
of all material points of B whose coordinates have the form (x1, x2, a), i.e.,

(3.4) B(a) := {z ∈ B : s̃(z) = a}.

Our second minimal restriction on B is that B(s) be bounded for each s in
[s1, s2]. For any subinterval I of [s1, s2], we define

(3.5) B(I) :=
⋃
s∈I

B(s) ≡ {z ∈ B : s̃(z) = a, a ∈ I}.

Thus B = B((s1, s2)).

We have defined a theory of rods and a motion of a Cosserat rod, but we have not
defined a rod itself. We could declare any body B meeting these two minimal restrictions
to be a rod, but such a body need not be slender. Since there is no simple, obvious,
universally acceptable mathematical characterization of slenderness, we avoid defining
rod, but continue to apply the term informally to the bodies we study in this chapter.

Let p(z, t) be the position of material point z at time t. We assume that
the domain of p(·, t) is cl B. Then p(·, t) is the configuration of the closure
cl B of the body at time t and p(cl B, t) is the region occupied by cl B at
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Fig. 3.6. Configurations p̃(·, ·, a, t) and p̃(·, ·, b, t) of the sections
B(a) and B(b) at time t.

time t. We define p̃(x, t) := p
(
z̃(x), t

)
. Then p̃(·, ·, s, t) is the configuration

of the section B(s) at time t. See Fig. 3.6.
We are now ready to formulate the equations of motion. For s1 < a <

b < s2, let n+(b, t) denote the resultant contact force exerted on B([s1, b])
by B((b, s2]). We define other forces and torques by analogous modifications
of the definitions given in Sec. 2. Let ρ(z) be the mass density at z in B
in the reference configuration. (We assume that it is well defined.) We set
ρ̃(x) := ρ(z̃(x)) and A(s) := x̃(B(s)). In mechanics, the linear momentum
of a body is defined to be the integral over the body of its velocity times
its differential mass. Accordingly, the linear momentum of B([a, b]) at time
t is

(3.7)
∫ b

a

{∫
A(s)

ρ̃(x)p̃t(x, t)j(x) dx1 dx2
}
ds.

The Linear Impulse-Momentum Law for B([a, b]) is

(3.8)
∫ τ

0
[n+(b, t) − n−(a, t)] dt+

∫ τ

0

∫ b

a

f(s, t) dξ dt

=
∫ b

a

{∫
A(s)

ρ̃(x)[p̃t(x, τ) − p̃t(x, 0)] j(x) dx1 dx2
}
ds.

Under mild conditions like those discussed in Secs. 2.2 and 2.3, we can
delete the superscripts ± from n.

To convert (3.8) to a form useful for rod theories we introduce a special
position vector r(s, t) determined from p̃(·, ·, s, t) in any convenient manner.
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For example, we could set

(ρA)(s)r(s, t) : =
∫

A(s)
ρ̃(x)p̃(x, t)j(x) dx1 dx2(3.9)

where

(ρA)(s) : =
∫

A(s)
ρ̃(x)j(x) dx1 dx2(3.10)

is the mass density in the reference configuration per unit of s. In this case,
(3.7) reduces to

(3.11)
∫ b

a

(ρA)(s)rt(s, t) ds.

Alternatively, if z̃(0, 0, s) ∈ cl B for each s, then we could take

(3.12) r(s, t) := p̃(0, 0, s, t).

No matter what choice we make for r, the linear momentum (3.7) always
has the form

(3.13)
∫ b

a

[(ρA)(s)rt(s, t) + (ρIα)(s)∂tqα(s, t)] ds

where

(3.14) ρIα(s)qα(s, t) :=
∫

A(s)
ρ̃(x)[p̃(x, t) − r(s, t)] j(x) dx1 dx2.

ρIα∂tqα is the linear momentum relative to r(s, t). Not having defined ρIα,
we regard ρIαqα as a single symbol. Eq. (3.8) would reduce to (2.17) if
qα = dα.

The angular momentum of B([a, b]) about o at time t is

(3.15)
∫ b

a

[∫
A(s)

ρ̃(x)p̃(x, t) × p̃t(x, t) j(x) dx1 dx2
]
ds,

which we readily decompose into the form

(3.16)

∫ b

a

[(ρA)(s)r(s, t) × rt(s, t) + r(s, t) × (ρIα)(s)∂tqα(s, t)
+ (ρIα)(s)qα(s, t) × rt(s, t) + ρJ(s, t) · ω(s, t)] ds

where
(3.17)

ρJ(s, t)·ω(s, t) :=
∫

A(s)
ρ̃(x)[p̃(x, t)−r(s, t)]×[p̃t(x, t)−rt(s, t)] j(x) dx1 dx2
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is the angular momentum relative to r(s, t). The expression ρJ(s, t) · ω
should also be regarded as a single symbol. The Angular Impulse-Momen-
tum Law for B([a, b]) is
(3.18)∫ τ

0
[m+(b, t) − m−(a, t) + r(b, t) × n+(b, t) − r(a, t) × n−(a, t)] dt

+
∫ τ

0

∫ b

a

[r(s, t) × f(s, t) + l(s, t)] ds dt

=
∫ b

a

[(ρA)(s)r(s, t) × rt(s, t) + r(s, t) × (ρIα)(s)∂tqα(s, t)

+ (ρIα)(s)qα(s, t) × rt(s, t) + ρJ(s, t) · ω(s, t)] ds
∣∣∣∣τ
0
.

Under mild conditions like those of Secs. 2.2 and 2.3, we can delete the
superscripts ± from m. Eq. (3.18) would reduce to to (2.18) if qα = dα

and if ω = w. If ρIαqα = o, which happens if (3.9) holds, then (3.18)
becomes much simpler.

We emphasize that (3.8) and (3.18) are exact laws of motion, as are their
classical versions obtained by replacing dα and w in (2.19) and (2.21) with
qα and ω. No approximations or constraints have been introduced. Since
the function p̃ depends on (x, t) and not merely on (s, t), these formulations
are not appropriate for a theory in which the motion is described solely by
functions of (s, t). We use (3.8) and (3.18) to construct such theories in
the next two sections.

4. The Equations of Constrained Motion
Provided that we retain constitutive equations of the form (2.29), we

generate a rod theory from the results of the last section by replacing the
exact representations (3.13) and (3.16) for the momenta with expressions
depending only on r, d1, and d2, i.e., by assigning a specific kinematical
significance to these vectors. In this section, we generate expressions for
the momenta by imposing a constraint that restricts the position field p̃ to
have the form

(4.1) p̃(x, t) = r(s, t) + g
(
r(s, t),d1(s, t),d2(s, t),x, t

)
no matter what force system is applied to the body. Here g is a prescribed
function. (In the terminology of rigid-body mechanics, (4.1) is a holonomic,
rheonomic constraint.) The form of (4.1) assigns a specific interpretation
to r, d1, and d2.

There are a variety of specializations of (4.1) that are reasonable:
(4.2a) g is independent of t (i.e., the constraint is scleronomic).
(4.2b) g is independent of r.
(4.2c) g is independent of s.
(4.2d) g is linear in r, d1, and d2.
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(4.2e) g is a linear combination of r, d1, and d2.
(4.2f) In the reference configuration, g reduces to a linear combination of

r, d1, and d2.
(4.2g) g(r,d1,d2,x, t) = x1d1 + x2d2.
This last form, so special, is also the most traditional. It enjoys all the
properties (4.2a–f).

Let (4.2g) hold, so that x1 and x2 are rectangular Cartesian coordinates
for each section B(s). Then (4.1) describes a deformation that takes the
plane reference section B(s) spanned by the reference values d◦

1(s), d◦
2(s)

of d1(s, ·), d2(s, ·) into an undeformed plane spanned by the actual values
d1(s, t), d2(s, t) at time t. The vectors d◦

1(s), d◦
2(s) could be taken as the

principal axes of inertia of the section B(s).
We now obtain simple explicit formulas for qα and h for g’s satisfying

properties (4.2a,b,e). In this case, (4.1) has the form

(4.3a) p̃(x, t) = r(s, t) + ϕγ(x)dγ(s, t).

We suppose that the ϕγ are continuously differentiable functions of x1, x2

and that det(∂ϕγ/∂x
µ) > 0 on A(s). Thus ϕ1(·, ·, s) and ϕ2(·, ·, s) are

independent for each s. When (4.3a) holds, we assume that the reference
configuration is correspondingly defined by

(4.3b) z̃(x) = r◦(s) + ϕα(x)d◦
α(s)

where {d◦
1,d

◦
2,d

◦
3 := ∂sr

◦} is a right-handed orthonormal basis.
If (4.3a) holds, we obtain from (3.14), (3.17), (2.16) that

qγ(s, t) = dγ(s, t),(4.4)

ρJ(s, t) · ω(s, t) = ρJpq(s)wq(s, t)dp(s, t), i.e., ω = w,(4.5)

where

(ρIγ)(s) :=
∫

A(s)
ρ̃(x)ϕγ(x)j(x) dx1 dx2,(4.6)

(ρJ×
µν)(s) :=

∫
A(s)

ρ̃(x)ϕµ(x)ϕν(x)j(x) dx1 dx2,(4.7a)

(ρJγδ)(s) := εγµεδνρJ
×
µν(s), ρJγ3 = ρJ3γ := 0, ρJ33 := ρJγγ .(4.7b)

The (ρIγ)(s) are generalized first moments of mass and the (ρJγδ)(s) are
generalized second moments of mass. (The alternating symbols are intro-
duced so that the indices on ρJ correspond to the axes about which these
moments are defined. As (4.5) shows, some formulas are simpler with ρJ×

αβ

and others are simpler with ρJαβ .) We can make ρIα = o by choosing the
ϕγ to make (4.6) vanish. See Ex. 4.8. Since the ϕγ are associated with
the reference configuration, we could always choose the reference values of
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dα so as to diagonalize the matrix with components ρJγδ. If, however, the
geometry or density changes discontinuously as a function of s, then the
ρIα and ρJpq could be discontinuous. In this case, the r◦ causing the ρIα to
vanish and the d◦

α causing the ρJpq to be diagonal could be discontinuous,
whence r and dα would typically be discontinuous.
4.8. Exercise. (i) Find j (defined in (3.3)) from (4.3b). Note that it depends on the
λα := d◦

3 · ∂sd◦
α. (ii) Suppose that the λα(s) = 0. Give a geometric interpretation of

this restriction. Show that if (4.2g) is used and that if z̃(0, 0, ·) := r◦ is the curve of
centroids of mass of the sections of B, then (4.6) vanishes, so that ρIα = 0. (iii) Suppose
that the λα(s) are not both 0. Show that if (4.2g) is used and that if z̃(0, 0, ·) := r◦ is
defined so that

∫
A(s) x

αρ̃(x) dx1 dx2 = 0, then in general (4.6) does not vanish, even if
ρ̃ is independent of x1 and x2. (iv) Prove that if A(s) is symmetric about the x1 and
x2 axes and if ρ̃ is even in x1 and x2, then there are functions aα such that the choice
of ϕα(x) = xα − aα(s) causes (4.6) to vanish provided that

(4.9) λ1(s)2
∫

A(s)
(x1)2ρ̃(x) dx1 dx2 + λ2(s)2

∫
A(s)

(x2)2ρ̃(x) dx1 dx2 < 1
4 (ρA)(s).

(v) Let A(s) and ρ̃ be arbitrary. Use the Implicit-Function Theorem to prove that if
the d◦

3(s) · ∂sd◦
α(s) are sufficiently close to 0, then there are functions aα as in (iv) such

that (4.6) vanishes.

In both linear and nonlinear rod theories, choosing the base curve r◦ to be a curve
of geometric centroids leads to attractive forms of the constitutive equations. (See Sec.
16.10.) For naturally curved rods, this curve is typically not one that makes ρIα = 0.
To see why, consider a typical annular sector defined in polar coordinates (r, θ) by
a − h ≤ r ≤ a + h, 0 ≤ θ ≤ θ̄. Here 0 < h < a. The circle r = a goes through the
centroid of each cross section. But the area of the region defined by a ≤ r ≤ a + h,
0 ≤ θ ≤ θ̄ exceeds that of the region defined by a − h ≤ r ≤ a, 0 ≤ θ ≤ θ̄. The
circle that divides the sector into equal areas has radius

√
a2 + h2. (This circle is not

that which causes ρIα = 0.) Thus for curved rods, it is usually impossible to enjoy
simultaneously the advantages for constitutive equations obtained by taking r◦ to be a
curve of geometric centroids and the advantages for the inertial terms obtained taking
r◦ to be a curve of mass centroids.

There is an interesting open geometrical problem of characterizing those bodies B
that admit a coordinate system defined by (4.3b) with (4.6) vanishing.

4.10. Exercise. Let ρ̃ be independent of x1 and x2. Show that the integrand in (4.6)
can be written as a 2-dimensional divergence over A(s). Use the Divergence Theorem
to get representations for (4.6) as integrals over ∂A(s).

4.11. Exercise. Use the Cauchy-Bunyakovskĭı-Schwarz inequality to prove that the
matrix with components ρJµν is positive-definite.

We now show that the expression (4.3) is scarcely more general than that given by
(4.2g) when r◦ is straight. In this case, j = det(∂ϕγ/∂xµ) > 0. For any fixed point
(x̄1, x̄2) in the domain of

(
ϕ1(·, ·, s), ϕ2(·, ·, s)

)
, let the mapping defined by

(4.12a) yα = ϕα(x) − ϕα(x̄1, x̄2, s)

be an invertible mapping taking cl A(s) into a closed and bounded set cl A�(s) in (y1, y2)-
space. Let us set y := (y1, y2, s). Thus (4.12a) is equivalent to a system of the form

(4.12b) xα = ψα(y).

If we substitute (4.12) into (4.6), we obtain

(4.13) (ρIγ)(s) =
∫

A�(s)
ρ̃(ψ1(y), ψ1(y), s)yγ dy1 dy2
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We get a similar simplification for (4.7). This procedure could break down if the Jacobian
of (4.12a) vanishes, say on ∂A(s). Choices of the ϕα to be other than xα are sometimes
useful for treating special kinds of boundary behavior (see the discussion of (16.6.7)).

We shall often take ρIα = 0 and take h to have the form (4.5), in which
case (2.19) and (2.21) reduce to

ns + f = ρArtt,(4.14)

ms + rs × n + l(4.15)

= ∂t[(ρJ×
γδ)(s)dγ(s, t) × ∂tdδ(s, t)] ≡ ∂t[(ρJpq)(s)wq(s, t)dk(s, t)]

≡ (ρJpq)(s)[∂twq(s, t)dk(s, t) + wq(s, t)w(s, t) × dk(s, t)]

≡ ∂t[(ρJ)(s, t)w(s, t)].

For certain problems in which it is important to account for detailed effects of a
force system applied to the lateral boundary of a 2- or 3-dimensional body, it may be
convenient to interpret r as a material curve on this boundary. In particular, consider
a 2-dimensional problem in which the rod may be interpreted as a cross section of a
cylindrical shell. If the outer surface of the shell is exposed to the effects of moving
fluids or is in contact with another body, then it is useful to take r to correspond to this
surface. In this case, ρIα 
= 0 and the constitutive functions change. (See Ex. 16.10.35
and Antman & Marlow (1993), Antman & Schuricht (2003), Lanza de Cristoforis &
Antman (1991), and Schuricht (1997, 1998, 2002).)

5. The Use of Exact Momenta
We now construct a rod theory very similar to that of Sec. 4 by an

attractive alternative, which makes up in simplicity for what it loses in
detail. We use (3.9) (so that ρIαqα = o). Let ρJαβ be defined by any
version of (4.7), say, that with ϕα = xα. We now define w to equal ω, i.e.,

(5.1) ρJ · w := ρJ · ω

where ρJ · ω is defined in (3.17). To get an appropriate theory of rods
starting with r and w we must express (u, v,w) in terms of these variables.
Given w, we take the dk to be the solution of the (ninth-order) linear
system (2.3b):

(5.2) ∂tdk = w × dk

subject to initial conditions. Knowing w and the dk, we find w from (2.4c).
For given w, we take the u to be the solution of the (third-order) linear
system (2.9b):

(5.3) ut = ws − u × w

subject to initial conditions. Thus we can express dk, u, v,w in terms of rs

and w.
We take as our governing equations the system (4.14), (4.15), (5.2), (5.3)

subject to constitutive equations (2.25) or (2.28) or (2.29). This system is
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exactly equivalent to (4.14), (4.15) with the constitutive equations, except
that r and dk now have interpretations different from those coming from
(4.2).

The use of the angular velocity vector w in our representation for ρJ · w enabled us
to circumvent difficulties caused by the nonlinear dependence of this angular momentum
on the dk.

Note that it is the momenta (3.9) and (3.17) that play an essential role in this
formulation. We need not formally introduce the inertias (3.10) and (4.7), as the freedom
in our choice of (4.7) indicates. Indeed, in the formulation of evolution equations for
continuum mechanics in the form of systems of first order in the time-derivatives (e.g.,
in conservation laws), it is the momenta rather than the velocities that appear most
naturally. Our (2.9b) is exactly a compatibily equation of the type that intervenes in
such first-order systems.

There is evidence to suggest that we could construct a representation of the form (4.1)
in which r and d have the properties assigned to them in this section, but that such
representations are not unique. The equations of motion generated in this section are
embedded in a rod theory by choosing constitutive equations depending on deformation
variables related to the momenta by compatibility conditions. The resulting elegant
theory, which we call the semi-intrinsic theory, is due to Libai & Simmonds; see their
book (1998) for references. The chief virtue of this theory is that it uses the exact
equations of motion. Its disadvantage is that it suppresses the role of thickness, so
that it does not permit the detailed calculations in Sec. 7 giving a criterion for the
preservation of orientation. Moreover, it does not allow constitutive equations to be
derived systematically from those of the 3-dimensional theory by the methods of Chap.
16, although it may be possible to do so by using the theory of moments. We discuss a
generalization of the semi-intrinsic theory in Sec. 16.5.

6. The Strains and the Strain Rates
In this section we discuss the geometrical significance of u and v, we

show that u, v, ut, vt are invariant under rigid motions, and we show that
u and v determine a configuration to within a rigid motion. These strains
are defined by (2.3)–(2.6). By taking the cross product of (2.3a) with dk,
or, equivalently, taking the dot product of (2.3a) with dj × dk, we obtain

(6.1) u = 1
2dk × ∂sdk ⇐⇒ uj = 1

2εjkl(∂sdk) · dl.

To interpret the significance of u and v, we study some especially simple
deformations. Let {i, j,k} be a fixed, right-handed, orthonormal basis for
E

3. We take [s1, s2] = [0, 1] and assume that the reference configuration,
corresponding to a straight prismatic 3-dimensional body, is defined by

(6.2) r◦(s) = sk, d◦
1(s) = i, d◦

2(s) = j, d◦
3(s) = k.

We first study the pure elongation in which the deformed configuration
is given by

(6.3) r(s) = λsk, d1(s) = i, d2(s) = j, d3(s) = k.

Then v3 = λ, the ratio of deformed to reference length. All other strains
are zero. This interpretation of v3 as a stretch is overly simplistic. Eqs.
(2.2) and (2.4) imply that in general

(6.4) v3 = rs · (d1 × d2).
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Thus v3 is the volume of the parallelepiped with sides rs, d1, d2, and
therefore represents the ratio of deformed to reference volume. That this
ratio never be reduced to zero is embodied in the inequality (2.10). We call
v3 the dilatation. In general, the stretch of the axis is |rs| =

√
vkvk.

The pure shear deformation defined by

(6.5) r(s) = s[αi + k], d1(s) = i, d2(s) = j, d3(s) = k

yields v1 = α, v3 = 1, with all other strains equal to zero. This v1 describes
the shear of d1 with respect to rs. This interpretation is likewise simplistic
because stretching can contribute to v1. In general, a measure of pure shear
is

(6.6)
v1√
vkvk

=
d1 · rs

|rs|
.

We call v1 and v2 the shear strains.
The torsional deformation defined by

(6.7)
r(s) = sk,

d1(s) = cos(µs)i + sin(µs)j, d2(s) = k × d1(s), d3(s) = k

yields v3 = 1, u3 = µ, with all other strains equal to zero. Thus u3 measures
the amount of twist. We call u3 the torsional strain.

The deformation of the configuration (6.2) into the circular configuration
given by

(6.8)
r(s) = λ[sin(ωs)k − cos(ωs)i],

d3(s) = cos(ωs)k + sin(ωs)i, d1(s) = j × d3(s), d2(s) = j

yields v3 = λω, u2 = ω, with all other strains equal to zero. Thus u2
measures the amount of flexure. Note that u2 is not the curvature 1/λ of
the circle r: The strain u2 is the derivative with respect to the reference
arc length s of the tangent angle ωs to the curve r at r(s), whereas the
curvature is the derivative of this angle with respect to the deformed arc
length. Thus u2 is not influenced by those changes in the curvature due to
the inflation of the circular configuration, caused by varying λ. We call u1
and u2 the flexural strains.

6.9. Exercise. Find the most general deformation of configuration (6.2) for which u
and v are constant.

We now show that our strains and strain rates are invariant under rigid
motions. Thus these quantities can only give information about the change
of shape. We assume that the dα are each differences of two position
vectors. It follows that if {r�,d�

α} differ from {r,dα} by a rigid motion,
then there are functions t �→ c(t) and t �→ Q(t) where Q(t) is a proper
orthogonal tensor such that

(6.10) r� = c + Q · r, d�
α = Q · dα.
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c(t) represents a translation and Q(t) a rotation. It follows from (2.4),
(6.10), and the orthogonality of Q that

(6.11) v�
k = r�

s · d�
k = (Q · rs) · (Q · dk) = rs · dk = vk.

Thus v is invariant under rigid motions.

6.12. Exercise. Prove that u, ut, vt are invariant under rigid motions.

We now show that u and v determine a configuration to within a rigid motion. It
follows that these quantities entirely characterize the change of shape. Our development,
which generalizes a standard method of differential geometry, is important also because
it gives a coordinate-free treatment of the directors, which supports effective numerical
methods for their computation (see Simo & Vu-Quoc (1988)).

For our analysis, we regard t as fixed and accordingly suppress its appearance. Let
u be a given function of s, which for simplicity we take to be continuous. Then (2.3a)
is a ninth-order linear system of ordinary differential equations for (the components of)
{dk}, which we can write in a form lacking the symbol for the cross-product:

(6.13) ∂sdk = ulεlkmdm.

Let s0 be fixed in [s1, s2]. Then the standard theory for linear systems of ordinary
differential equations (see Coddington & Levinson (1955, Chap. 3)) says that each initial-
value problem for (6.13) has a unique solution defined on the whole interval [s1, s2]. In
particular, there are continuously differentiable tensor-valued functions s �→ Dkl(s) with
Dkl(s0) = δklI such that each solution of (6.13) has the form

(6.14) dk(s) = Dkl(s) · dl(s0).

The tensors Dkl generate the fundamental matrix solution of (6.13).
We adopt the normalization that {dk(s0)} is a right-handed orthonormal basis for

E3. Now (6.13) admits the seven integrals

(6.15)
dk · dl = dk(s0) · dl(s0) = δkl,

(d1 × d2) · d3 = [d1(s0) × d2(s0)] · d3(s0) = 1

because (2.3a) implies that

(6.16)
∂s(dk · dl) = (u × dk) · dl + dk · (u × dl) = 0,

∂s[d1 · (d2 × d3)] = (u × d1) · (d2 × d3) + · · · = 0.

The last integral of (6.15) is not completely independent of the first six, which imply
that (d1 × d2) · d3 = ±1. Since this triple scalar product is continuous, it must equal 1
or −1 everywhere. It therefore inherits its sign from its value at s0.

Let {d�
k} be any other solution of (6.13). That a fundamental matrix is independent

of initial data implies that {d�
k} is expressed in terms of its initial data {d�

k(s0)} by
formula (6.14):

(6.17) d�
k(s) = Dkl(s) · d�

l (s0).

Since {dk(s0)} and {d�
k(s0)} are each right-handed and orthonormal, there is a proper

orthogonal tensor Q such that

(6.18) d�
l (s0) = Q · dl(s0).

Since {dl(s0)} is an orthonormal basis, we can express dk by

(6.19) dk = [dk · dl(s0)]dl(s0).
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By comparing this equation with (6.14) and (6.17), we find that

(6.20a,b) Dkl(s) = [dk(s) · dl(s0)]I = [d�
k(s) · d�

l (s0)]I.

By substituting (6.20a) into (6.17) and using (6.18), we find that

(6.21)
d�

k(s) = dk(s) · dl(s0)Q · dl(s0)

= Q · {[dk(s) · dl(s0)]dl(s0)} = Q · dk(s).

This says that two sets of director fields corresponding to the same u differ by a rigid
motion. That (6.13) always has a solution of the form (6.14) ensures that u determines
{dk} uniquely to within a rigid motion.

Since{dk(s)} and {dk(s0)} are each right-handed and orthonormal, there is a proper
orthogonal tensor D such that

(6.22) dk(s) = D(s) · dk(s0).

D can be found by comparing (6.22) with (6.14) or (6.20a). Similarly, there is a proper
orthogonal tensor D� such that

(6.23) d�
k(s) = D�(s) · d�

k(s0).

Despite the presence of the same Dkl in (6.14) and (6.17), the tensors D and D� are not
equal in general. Useful representations of D as a solution of (6.13) can be obtained in
terms of the formula of Rodrigues (see Gibbs & Wilson (1901), Goldstein (1980), Simo
& Vu-Quoc (1988), e.g.).

6.24. Exercise. Prove that D� = Q · D · Q∗, where Q is defined by (6.18).

Let u and v be given and let {dk} be determined from u by (6.14). We find r by
integrating (2.4):

(6.25) r(s) = r(s0) +
∫ s

s0

vk(ξ)dk(ξ) dξ.

If {r�, d�
k} is another configuration likewise determined from u and v, then we can use

(6.21) to obtain

(6.26)

r�(s) = r�(s0) +
∫ s

s0

vk(ξ)d�
k(ξ) dξ

= r�(s0) + Q ·
∫ s

s0

vk(ξ)dk(ξ) dξ

= [r�(s0) − Q · r(s0)] + Q · r(s),

which has the form (6.10). Thus u and v (subject to the normalization that {dk(s0)} be
right-handed and orthonormal) determine {r, dk} uniquely to within a rigid motion.

Let r◦, d◦
k, u◦, v◦ be the values of r, dk, u, v in the reference configuration. We

always take

(6.27) r◦
s = d◦

3 so that v◦
1 = 0 = v◦

2 , v◦
3 = 1.

As Ex. 6.28 shows, u◦ = o only for rods having a straight untwisted reference configu-
ration. Moreover, as Ex. 6.9 shows, the class of reference configurations for which u◦ is
constant is small.

6.28. Exercise. Let r◦ have curvature κ◦ and torsion τ ◦. Let d◦
1 be the unit normal

field to r◦, let d◦
2 be the unit binormal field to r◦, and let d◦

3 be the unit tangent field
to r◦. Use the Frenet-Serret formulas to show that

(6.29) u◦
1 = 0, u◦

2 = κ◦, u◦
3 = τ ◦.

6.30. Exercise. Prove that

(6.31) ∂suk ≡ ∂s(u · dk) = us · dk, ∂twk ≡ ∂t(w · dk) = wt · dk.
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7. The Preservation of Orientation
A configuration of a 3-dimensional body should be one-to-one (or injec-

tive) so that no two material points simultaneously occupy the same point
in space. Injectivity is a global restriction on configurations and accord-
ingly poses serious difficulties for analysis. A far more modest restriction
is that the deformation preserve orientation, which ensures that it be lo-
cally injective. If the configuration p(·, t) is differentiable, then it preserves
orientation if its Jacobian is positive:

(7.1) 0 < det
∂p

∂z
(z̃(x), t) = j(x)−1 det

∂p̃

∂x
(x, t) for x ∈ x̃(cl B).

Here we have used the notation of Sec. 3. The analog of (7.1) for rods, which
strengthens (2.10) and which relies on the theory of Sec. 4, is introduced
in

7.2. Theorem. (i) The requirement that (7.1) hold for all p̃ of the form
(4.3) with the ϕγ continuous on x̃(cl B) implies that there is a function
(u1, u2, s) �→ V (u1, u2, s) for which V (0, 0, s) = 0 and V (·, ·, s) is convex
and homogeneous of degree 1 such that

(7.3) v3 > V (u1, u2, s).

(ii) Furthermore, if there is a point (x1
0, x

2
0) ∈ cl A(s) such that

(7.4) ϕ1(x1
0, x

2
0, s) = 0 = ϕ2(x1

0, x
2
0, s)

or if there is a function ω ≥ 0 such that

(7.5)
∫

A(s)
ω(x) dx1 dx2 > 0 but

∫
A(s)

ω(x)ϕα(x) dx1 dx2 = 0,

then V ≥ 0. (iii) Finally, if the ϕγ are continuously differentiable and
satisfy

(7.6) det (∂ϕγ/∂x
µ) > 0

everywhere on a domain containing x̃(cl B), and if for each u1, u2, s, any
curve in the (x1, x2)-plane defined by

(7.7) ϕ1(x1, x2, s)u2 − ϕ2(x1, x2, s)u1 = 0

that touches ∂A(s) has a part that lies in A(s), then V (u1, u2, s) > 0 for
uαuα > 0.

We say that a deformation of a rod preserves orientation iff (7.3) holds
for all s ∈ [s1, s2]. Most of the works that acknowledge the need for a
condition like (7.3) choose the much weaker (2.10) for this purpose. Condi-
tion (2.10) arises in a purely 1-dimensional context, whereas (7.3) depends
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upon concepts from the 3-dimensional theory, just as the expressions for
the momenta do.

To interpret the significance of (7.3), we consider the 2-dimensional de-
formation sk + xi �→ (1 − x)(sin sk − cos si) for 0 ≤ s ≤ π/2, |x| ≤ h,
which takes lines parallel to the k-axis into concentric circles. If h ≥ 1,
then the line x = 1 is deformed into the point o and the lines x = a with
a > h have their orientations reversed. Condition (7.3), which prevents
such total compressions and reversals of orientation, says that this defor-
mation for h ≥ 1 is physically inadmissible. The hypotheses of statement
(iii) relate the geometry of A(s) to the functions ϕα. In particular, suppose
that ϕα(x) = xα. Then (7.7) defines a family of rays in the (x1, x2)-plane.
If ∂A(s) is nowhere radial (which depends not only upon the shape of A(s)
but also upon its placement relative to the origin in (x1, x2)-space), then
these hypotheses are met. See Ex. 7.19.

It might seem that any realistic theory of materials need not be con-
cerned with extreme deformations that violate (7.1) or (7.3). We require
(7.1) and (7.3) in order to prescribe constitutive restrictions that penal-
ize and often prevent the violation of these inequalities by solutions of the
governing equations. Without such a penalization, one could, for example,
inadvertently carry out a numerical study of configurations that have re-
versed orientation. Static problems for bodies having corners typically have
solutions with severe singularities at the corners. A correct analysis of the
behavior of the solution in the vicinity of such singular point, which is often
the most important aspect of a problem for such a body, depends crucially
on constitutive equations that correctly account for extreme strains. The
same remarks apply to bodies undergoing shocks.

Proof of Theorem 7.2. The substitution of (4.3) into (7.1) yields

(7.8) v3(s) > V �(u1(s), u2(s), x) ∀ (x1, x2) ∈ cl A(s)

for all s ∈ [s1, s2] where

(7.9) V �(u1, u2, x) := ϕ1(x)u2 − ϕ2(x)u1.

(Note that if (7.4) or (7.5) holds, then (7.8) implies (2.10).) The set of strains (u1, u2, v3)
satisfying (7.8), denoted V(s), consists of exactly those satisfying

(7.10) v3(s) > V (u1(s), u2(s), s)

for all s ∈ [s1, s2] where

(7.11) V (u1, u2, s) := max
{
V �(u1, u2, x) : (x1, x2) ∈ cl A(s)

}
.

To determine the properties of V , we let

(7.12) H(x) := {(u1, u2, v3) : v3(s) > V �(u1(s), u2(s), x)}.

Since V �(·, ·, x) is linear, H(x) is an open half-space in (u1, u2, v3)-space. Since the
intersection of half-spaces is a convex set, it follows that

(7.13) V(s) ≡ ∩ {H(x) : (x1, x2) ∈ cl A(s)}
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is a convex set in (u1, u2, v3)-space consisting exactly of those strains satisfying (7.10).
Thus the function V (·, ·, s) must be convex and therefore continuous, from which it
follows that V(s) is open. The linearity of V �(·, ·, x) implies that if (u1, u2, v3) ∈ V(s),
then (αu1, αu2, αv3) ∈ V(s) for α > 0. This result says that V(s) is a solid cone in
R3 and implies that V (·, ·, s) is homogeneous of degree 1. This completes the proof of
statement (i).

Since (7.11) implies that V (u1, u2, s) ≥ V �(u1, u2, x1
0, x

2
0, s) and that

(7.14) V (u1, u2, s) ≥ 1
|A(s)|

∫
A(s)

V �(u1, u2, x) dx1 dx2,

statement (ii) follows immediately from (7.4) and(7.5).
To prove statement (iii), which says that the cone ∂V(s) has no generators in the

plane v3 = 0, we assume for contradiction that there is a pair (ũ1, ũ2) 
= (0, 0) and a
pair (x̃1, x̃2) ∈ cl A(s) such that

(7.15) V (ũ1, ũ2, s) := max{V �(ũ1, ũ2, x) : (x1, x2 ∈ cl A(s)} ≡ V �(ũ1, ũ2, x̃
1, x̃2, s).

Let us first suppose that the maximizer (x̃1, x̃2) lies in the open set A(s). Then the
gradient of (x1, x2) �→ V �(ũ1, ũ2, x) must vanish at (x̃1, x̃2):

(7.16)
[
∂ϕ1(x̃1, x̃2, s)/∂x1 ∂ϕ2(x̃1, x̃2, s)/∂x1

∂ϕ1(x̃1, x̃2, s)/∂x2 ∂ϕ2(x̃1, x̃2, s)/∂x2

] [
−ũ2
ũ1

]
=
[

0
0

]
.

In view of (7.6), system (7.16) implies that ũ1 = 0 = ũ2, in contradiction to our
assumption.

Now let us suppose that (x̃1, x̃2) ∈ ∂A(s). Then (7.6) and (7.15) enable us to use the
Implicit-Function Theorem to deduce that the equation V �(ũ1, ũ2, x) = 0 has a curve
of solutions (x1, x2) in the (x1, x2)-plane that contains (x̃1, x̃2). If this curve penetrates
A(s), then V � is maximized at an interior point, which we have just shown leads to a
contradiction. �

Much of the structure of V(s) is preserved for the general constraint (4.1). See
Sec. 16.6.

We now examine three methods by which V (s) can be explicitly found when the
function (x1, x2) �→ δ(u1, u2, v3, x) is known to have its minimum on ∂A(s).

(i) If (x1, x2) �→ ϕ1(x), ϕ1(x) are harmonic (i.e., solutions of Laplace’s equation) or,
more generally, are solutions of certain uniformly elliptic partial differential equations,
then these functions assume their extrema on ∂A(s), whence it follows that (x1, x2) �→
V �(u1, u2, x) is maximized here for each (u1, u2). Under these conditions, ∂V(s) is the
envelope of {H(x) : (x1, x2) ∈ ∂A(s)}. For simplicity, let us assume that A(s) is simply-
connected. Let ∂A(s) be parametrized by the curve [ξ1, ξ2] � ξ �→

(
y1(ξ, s), y2(ξ, s)

)
whose values at ξ1 and ξ2 agree. ∂A(s) is said to be continuously differentiable iff it
admits such a parametrization in which

(
y1(·, s), y2(·, s)

)
is continuously differentiable

and its derivative with respect to ξ vanishes nowhere. In this case, the envelope of
{H(y1(ξ, s), y2(ξ, s), s) : ξ ∈ [ξ1, ξ2]} is obtained by solving

(7.17) ∂
∂ξ
V �
(
u1, u2, v3, y

1(ξ, s), y2(ξ, s), s
)

= 0

for ξ and substituting it into

(7.18) v3 = V �
(
u1, u2, y

1(ξ, s), y2(ξ, s), s
)

= 0,

from which we read off V . We recognize that (7.17) is just a necessary condition for
the maximization of (x1, x2) �→ V �(u1, u2, x). If ∂A(s) is only piecewise continuously
differentiable, then the process of envelope formation or, equivalently, the process of
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minimization must be carried out separately on each segment where ∂A(s) is continu-
ously differentiable. When minimization is performed, the values of V � at the ends of
each segment must be accounted for.

7.19. Exercise. Let ϕα(x) = xα and A(s) = {(x1, x2) : 0 ≤ a(s) ≤ (x1)2 + (x2)2 ≤
h(s)}. Show that V(s) is a right circular cone and

(7.20) V (u1, u2, s) = h(s)
√

(u1)2 + (u2)2.

Show that if A(s) = {(x1, x2) : |x1| ≤ h1(s), |x2| ≤ h2(s)}, then V(s) is a cone with a
rectangular cross section and

(7.21) V (u1, u2, s) = h2(s)|u1| + h1(s)|u2|.

Find V for A(s) = {(x1, x2) : |x1| ≤ h1(s), 0 ≤ x2 ≤ h2(s)}. Interpret these V ’s in light
of Theorem 7.2(iii).

(ii) Let the ϕα be harmonic. If A(s) is simply-connected, then A(s) can be con-
formally mapped onto a disk. The compositions of the ϕα with the inverse conformal
mapping are harmonic on the disk and therefore assume their extrema on the circular
boundary. In this case, the problem of determining V(s) and V reduces to an equivalent
problem on the disk. (But it is important to note that if ∂A(s) is not sufficiently smooth,
then the composite functions need not be well behaved on the boundary of the disk.)
Analogous results hold if A(s) is doubly-connected, for then A(s) can be conformally
mapped onto a circular annulus.

7.22. Problem. Find formulas for V in these cases.

(iii) Let (x̃1, x̃2) be any fixed point in A(s). Let A(s) be convex and let the matrix
(∂ϕα/∂xβ) be positive-definite on cl A(s). Thus the mapping (4.12) is uniformly strictly
monotone. By the theory of Sec. 10, it is an invertible mapping taking cl A(s) into a
closed convex set cl A�(s) in (y1, y2)-space, which has (0, 0) in its interior. Thus we have
to minimize the affine function

(7.23) (y1, y2) �→ v3 − y1u2 + y2u1

(which is a special case of that defined in (7.9)) on cl A�(s). Since it is affine, this
function assumes its minimum on ∂A�(s). If A�(s) is strictly convex, there is a unique
minimizer, which is readily found from the geometric construction of Fig. 7.24 by the
following argument. The function (7.23) has a planar graph over cl A�(s). This graph
has the normal (u2,−u1, 1). The direction of steepest descent lies along the intersection
of this graph with the plane containing the normal and the vertical vector (0, 0, 1).
This direction, defined wherever uαuα 
= 0, is −(−u2, u1, uαuα). The projection of
this direction onto the (y1, y2)-plane is (u2,−u1). The minimizer (ȳ1, ȳ2) of (7.23) on
cl A�(s) is at the intersection of ∂A�(s) with the half-ray from (0, 0) in the direction
(u2,−u1).

Let us describe ∂A�(s) by polar coordinates:

(7.25)
√
yαyα = f (θ, s), tan θ = y2/y1.

Then the construction of Fig. 7.24 yields

(7.26)
[
ȳ1
ȳ2

]
=
f
(
−sign(u1) arctan(u1/u2), s

)
√
uαuα

[
u2

−u1

]
.

The substitution of (7.26) into the analog of (7.10) yields

(7.27) V (s) = f
(
−sign(u1) arctan(u1/u2), s

)√
uαuα
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Fig. 7.24. Construction locating the minimizer of (7.23).

by virtue of the equivalence of (7.3) and (7.10). The results reported here extend those
of Antman (1976a, Sec. 4).

7.28. Exercise. Derive (7.20) and (7.21) from (7.27).

8. Constitutive Equations
Invariant Under Rigid Motions

In this section we examine why the constitutive equations should have
the restricted forms (2.25)–(2.29). We limit our attention to the most
general form (2.29). We begin by studying constitutive equations in a
yet more general form. A rod of a material with memory is governed by
constitutive equations of the form

(8.1)
n(s, t) = ñ(rt(s, ·), rt

s(s, ·),d t
α(s, ·), ∂sd

t
α(s, ·), s),

m(s, t) = m̃(rt(s, ·), rt
s(s, ·),d t

α(s, ·), ∂sd
t
α(s, ·), s).

The common domain of ñ and m̃ consists of those values of its arguments
satisfying (7.3). We do not treat non-simple materials, for which ñ and
m̃ depend on higher s-derivatives of r and dα. (See the remarks following
(2.2.12).) We do not allow ñ and m̃ to depend on the absolute time t for
the reasons stated after (2.2.11).

We require that these constitutive equations be frame-indifferent (or
objective), i.e., be invariant under rigid motions. We now determine the
restrictions imposed on (8.1) by this fundamental principle.
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Let {r,dα} define a motion and let n and m be the resultants acting
during this motion. Suppose, as in Sec. 6, that the dα are differences of
position vectors (cf. (4.2g) and (4.3)). Let {r�,d�

α} be another motion
that differs from {r,dα} by a rigid motion. Then there is a vector-valued
function c and a proper orthogonal tensor-valued function Q such that

(8.2a,b) r�(s, t) − c(t) = Q(t) · r(s, t), d�
α(s, t) = Q(t) · dα(s, t).

Let n� and m� be the resultants acting in the motion {r�,d�
α}. The

essential idea underlying frame-indifference is that these resultants are the
rotations of n and m:

(8.2c,d) n�(s, t) = Q(t) · n(s, t), m�(s, t) = Q(t) · m(s, t).

We make this idea into a fundamental principle by requiring that the con-
stitutive functions ñ and m̃ assigning resultants to the geometric vari-
ables be unaffected by the rigid motion defined by c and Q: Specifi-
cally, n� and m� must be delivered by the same constitutive functions
ñ and m̃ of {(r�)t, (r�

s)
t, (d�

α)t, (∂sd
�
a)t} as those that deliver n and m

from {rt, rt
s,d

t
α, ∂sd

t
α}. (The responsibility for accounting for the effects

of acceleration falls entirely on the acceleration terms.) Thus

(8.3a) n� = ñ((r�)t, (r�
s)

t, (d�
α)t, (∂sd

�
α)t, s), etc.

We replace n� in (8.3a) by Q · n from (8.2) and then replace n by its
constitutive function from (8.1) to obtain

(8.3b)
Q · ñ(rt, rt

s,d
t
α, ∂sd

t
α, s)

= ñ(ct + Qt · rt,Qt · rt
s,Q

t · d t
α,Q

t · ∂sd
t
α, s), etc.

which must hold for all c and for all proper orthogonal Q. We now con-
front the specific mathematical problem of determining the form of those
functions ñ and m̃ satisfying (8.4a) for all c and Q.

Let us first choose Q = I. Then (8.3b) implies that ñ and m̃ are
independent of their first argument rt, which we accordingly drop. We
next set

(8.4a) ñ(rt
s,d

t
α, ∂sd

t
α, s) = n̂k(ut, vt,d t

α, s)dk, etc.

The substitution of (8.4a) into (8.3b) and the use of (6.11) and Ex. 6.12
yields

(8.4b) n̂k(ut, vt,d t
α, s) = n̂k(ut, vt,Qt · d t

α, s), etc.

for all proper orthogonal Q. Since the dα are orthonormal, the Q · dα are
completely arbitrary within this class, so that the n̂k must be independent
of their penultimate arguments. Thus we have proved
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8.5. Theorem. The most general constitutive functions of the form (8.1)
invariant under rigid motions are (2.29). In particular, (2.25) and (2.28) are
respectively the most general constitutive functions invariant under rigid
motions for rods that are elastic and viscoelastic of strain-rate type.

Some authors require that (8.3b) hold for all orthogonal Q. The conclusion of The-
orem 8.5 is the same under this restriction.

Nonsimple materials. Exactly the same proof as that for Theorem 8.5 works for
nonsimple materials in which we add to the arguments of (8.1) a finite number of s-
derivatives of the arguments present in (8.1). (Such theories are called strain-gradient
theories. Indeed, we could allow nonlocal behavior in s by letting m(s, t) and n(s, t)
depend on us,t(σ, τ ) and us,t(σ, τ ) where us,t(σ, τ ) := u(s + σ, t − τ ) for s + σ ∈
[s1, s2], τ ≥ 0.) Suppose we add just rt

ss and ∂ssd t
α to the arguments of (8.1). Then

in place of (2.29) we would get m(s, t) = m̂(ut(s, ·), vt(s, ·), ut
s(s, ·), vt

s(s, ·), s), etc. The
resulting theory might, however, be inadequate: The Principle of Virtual Power for such
a theory would strongly suggest the inclusion of force and moment resultants dual to
the variables rss and ∂ssdα. The constitutive equations for these resultants would be
treated the same way. Rod theories with constitutive equations that do not describe
simple materials arise naturally in the treatment of incompressible rods in Sec. 16.12.
They also crop up as the continuum versions of numerical methods for treating shocks
in elastic rods and other elastic bodies; see Sec. 9.

It is useful to give an alternative derivation of Theorem 8.5 that replaces the directors
with a rotation tensor and replaces u with a skew tensor. We begin with

(8.6)

dk(s, t) = R(s, t) · d◦
k(s),

∂sdk(s, t) = Rs(s, t) · d◦
k(s) + R(s, t) · [u◦(s) × d◦

k(s)]

≡ [Rs(s, t) · R(s, t)∗ + R(s, t) · U◦(s) · R(s, t)∗] · dk(s, t)

=: U(s, t) · dk(s, t)

where R is proper orthogonal, U◦ is the skew tensor corresponding to u◦, and U is the
skew tensor corresponding to u. (Note that R is not the same as D of (6.22), which is
a convenient starting point for deriving (2.3a).) We write (8.4a) as n�

k(rt
s,R

t,Rt
s, s)dk.

It follows from (8.6) that (8.3b) implies that

(8.7a) n�
k(rt

s,R
t,Rt

s, s) = n�
k(Qt · rt

s,Q
t · Rt,Qt · Rt

s, s).

Now take Q = R∗ to reduce the right-hand side of (8.7a) to

(8.7b) n�
k(rt

s · Rt, I, (Rt)∗ · Rt
s, s) ≡ n�

k(rt
s · Rt, I, (Rt)∗ · U t · Rt, s).

The components of rs·R with respect to the fixed basis {d◦
k(s)} are v and the components

of U with respect to this basis are dk · U · dl, which depend on u. Hence Theorem 8.5
holds. (This proof uses some of the ideas of Healey (2002).)

Our proof of Theorem 8.5 relied on the orthonormality of {dk}. For more general
rod theories and for shell theories, this orthonormal basis is replaced by an arbitrary
basis or by a collection of vectors containing a basis. To handle these cases, we could
use Cauchy’s Representation Theorem, which we now state and thereafter apply. It is
based on a major generalization of the argument leading to Theorem 8.5. It plays a
central role in the treatment of isotropy in Secs. 11 and 12.13. (A more direct way to
handle frame-indifference and isotropy for general rod and shell theories, which is based
on Chap. 12, is given in Sec. 17.8.)
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8.8. Cauchy’s Representation Theorem (1850). Let y denote the
set of vectors (y1, . . . ,yN ) in either E

2 or E
3. Let E

2 be identified with
the orthogonal complement of a given vector k in E

3, and let a proper
orthogonal tensor Q on E

2 be taken to be one whose extension to E
3 is

proper orthogonal and leaves k unchanged. Let

(8.9)

S(y) := {ya · yb, 1 ≤ a ≤ b ≤ N},

T (y) :=
{ {(ya × yb) · yc, 1 ≤ a < b < c ≤ N} if yk ∈ E

3,

{(ya × yb) · k, 1 ≤ a < b ≤ N} if yk ∈ E
2,

I(y) := S(y) ∪ T (y)

denote various ordered sets of invariants of the vectors y. Let E consist of
those y satisfying a collection of relations of the form

(8.10) ψ(I(y)) ≺ 0

where ≺ stands for any of the relations <, ≤, =. If γ is a hemitropic
scalar-valued function on E , i.e., if

(8.11) γ(Q · y1, . . . ,Q · yN ) = γ(y1, . . . ,yN )

for all y ∈ E and for all proper orthogonal Q, then γ depends only on I(y),
and conversely. If the functions in (8.10) depend only on S(y) and if γ is a
isotropic scalar-valued function on E , so that (8.11) holds for all y ∈ E and
for all orthogonal Q, then γ depends only on S(y), and conversely. (The
same conclusion holds for vectors in E

M if T is taken to consist of M ×M
determinants of the ya and the same conclusion holds if E

M is replaced
with R

M .)

Proof. We prove this theorem only for hemitropic functions, the proof for isotropic
functions being analogous. We are given that

(8.12) γ(z) = γ(y)

for all y ∈ E and for all z := (z1, . . . , zN ) of the form za = Q · ya for all proper
orthogonal Q. We now reduce the proof to that of

8.13. Lemma. Let

(8.14) I(y) = I(z)

for all y and z in E. There exists a proper orthogonal Q such that

(8.15) za = Q · ya

for a = 1, . . . , N . (Clearly, (8.15) implies (8.14).)

Lemma 8.13 implies that (8.12) must hold for all y and z in E satisfying (8.14). It
follows that γ(y) must depend only on I(y) = I(z), which are the only variables that
the left- and right-hand sides of (8.12) have in common. �
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Proof of Lemma 8.13. Let (8.14) hold. By renumbering the vectors y1, . . . , yN if
necessary, we may assume that {y1, . . . , yP } is a basis for span E. Thus P ≤ the dimen-
sion of E, and P ≤ N . Since a necessary and sufficient condition for the independence
of {y1, . . . , yP } is that the Gram determinant not vanish:

(8.16) det
(
ya · yb

)
a,b=1,...,P


= 0,

condition (8.14) implies that {z1, . . . , zP } is also a basis for span E. Thus there is a
unique invertible linear transformation Q such that (8.15) holds for a = 1, . . . , P and
such that Q is the identity on the orthogonal complement of span E.

We now show that (8.15) holds for all a. Let P < a ≤ N . Since {y1, . . . , yP } and
{z1, . . . , zP } respectively are each bases for span E, there are uniquely determined sets
of numbers {αba, b = 1, . . . , P } and {βba, b = 1, . . . , P } such that

(8.17) ya =
P∑

b=1

αbayb, za =
P∑

b=1

βbazb for P < a ≤ N.

Now (8.14) and (8.15) for a = 1, . . . , P imply that

(8.18)
P∑

b=1

βbazb ·zc = za ·zc = ya ·yc =
P∑

b=1

αbayb ·yc =
P∑

b=1

αbazb ·zc, c = 1, . . . , P.

For each a > P , this is a homogeneous linear system for {βba − αba}. Condition (8.16)
ensures that this system has the unique solution 0, so that βba = αba. Thus (8.15) for
a = 1, . . . , P and (8.16) yield

(8.19) Q · ya =
P∑

b=1

αbaQ · yb =
P∑

b=1

αbazb = za.

To show that Q is orthogonal, we use (8.14) and (8.15) to obtain

(8.20) (Q · ya) · (Q · yb) = za · zb = ya · yb for 1 ≤ a ≤ b ≤ P.

Since Q is the identity on the orthogonal complement of span{y1, . . . , yP }, it follows
from (8.20) that Q is orthogonal. If P = 3, then we likewise obtain

(8.21a) (det Q)[(y1×y2)·y3] ≡ [(Q·y1)×(Q·y2)]·(Q·y3) = (z1×z2)·z3 = (y1×y2)·y3.

If P = 2, then

(8.21b) (det Q)[(y1×y2) ·k] ≡ [(Q ·y1)×(Q ·y2)] ·(Q ·k) = (z1×z2) ·k = (y1×y2) ·k.

In each case it follows that det Q = 1, so that Q is a proper orthogonal tensor. (This
proof is modelled on that of Truesdell & Noll (1965, Sec. 11).) �

We can use Cauchy’s Theorem to give yet another proof of Theorem 8.5 for elastic
rods: Let us set

(8.22) m̃(r, rs, dα, ∂sda, s) =: m̃k(r, rs, dα, ∂sda, s)dk, etc.,

where d3 is defined by (2.2). We identify γ with m̃k and ñk defined as in (8.22), identify
y with (rs, d1, d2, ∂sd1, ∂sd2), and identify the relations of the form (8.10) with

(8.23) v3 > V (u1, u2, s), dα · dβ = δαβ , ∂sdα · dβ + dα · ∂sdβ = 0.

We readily compute I(rs, d1, d2, ∂sd1, ∂sd2) and find that it depends on (u, v). Con-
versely, given S(rs, d1, d2, ∂sd1, ∂sd2) and given (7.3) (which is included in (8.23)), we
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can uniquely determine (u, v). Thus any function of I(rs, d1, d2, ∂sd1, ∂sd2) is a function
of (u, v) and vice versa.

The common domain of definition of m̂ and n̂ is

(8.24) V := {(u, v, s) : (u, v) ∈ V(s), s ∈ [s1, s2]} = ∩ {V(s) × {s} : s ∈ [s1, s2]}.

Had we introduced the stored-energy function W independently of (2.26), then we
could have taken its arguments to be those of (8.22) and used Cauchy’s Representation
Theorem to show that frame-indifference requires W to depend only on the arguments
shown in (2.26). There are compelling thermodynamic reasons, discussed in Sec. 12.14,
for assuming that an elastic body is hyperelastic. We refrain from making this assump-
tion universal because we can analyze most of our steady-state problems without it and
because certain natural approximation schemes can destroy hyperelasticity.

A rod of a simple viscoelastic material of strain-rate type with complexity 1 is gov-
erned by constitutive equations of the form
(8.25)

n(s, t) = ñ
(
rs(s, t), dα(s, t), ∂sdα(s, t), rst(s, t), ∂tdα(s, t), ∂tsdα(s, t), s

)
, etc.

The use of the Cauchy Representation Theorem to show that the most general frame-
indifferent constitutive functions of the form (8.25) are (2.28) is a more formidable
exercise than the analogous demonstration for elastic rods. Although the need for this
proof is obviated by Theorem 8.5, we carry out the details, not out of masochism, but
because the techniques are useful in the treatment of dynamical problems for such rods.

With ñk defined as in (8.22), frame-indifferent constitutive functions must satisfy the
following specialization of (8.3b):

(8.26)

ñk(rs, dα, ∂sdα, rst, ∂tdα, ∂tsdα, s)

= ñk(Q · rs, Q · dα, Q · ∂sdα, Qt · rs + Q · rst,

Qt · dα + Q(t) · ∂tdα, Qt · ∂sdα + Q · ∂tsdα, s), etc.,

for all proper orthogonal and differentiable Q. The orthogonality of Q implies that

(8.27) Qt = −Q · Q∗
t · Q

and that Q∗
t · Q is antisymmetric. Thus we may choose

(8.28) Q∗
t · Q = w×

where w is defined in (2.3b). The substitution of (8.27) and (8.28) into the right-hand
side of (8.26) reduces it to

(8.29)
ñk

(
Q · rs, Q · dα, Q · ∂sdα, Q · (rst − w × rs),

Q · (∂tdα − w × dα), Q · (∂tsdα − w × ∂sdα), s
)
.

Now (2.3b) and (2.4b) imply that

(8.30) rst − w × rs = (∂tvk)dk + vkw × dk − w × rs = (∂tvk)dk.

Similarly,

(8.31) ∂tsdα − w × ∂sdα = ∂s(w × dα) − w × (u × dα) = ws × dα.

We now use (2.3), (8.30), (8.31), and (2.9a) to write (8.29) as

(8.32) ñk

(
Q · vldl, Q · dα, Q · (u × dα), (∂tvl)Q · dl, o, (∂tul)Q · (dl × dα), s

)
,

which must equal the left-hand side of (8.26) for all proper orthogonal Q. Choosing
Q = I, we find that ñk must be independent of its fifth argument. In this case, the
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equality of the left-hand side of (8.26) with (8.32) has exactly the form (8.11). Thus
Cauchy’s Representation Theorem 8.8 implies that the ñk each depend on the dot and
triple scalar products of

(8.33) {vldl, dα, u × dα, (∂tvl)dl, (∂tul)(dl × dα)}.

We have just proved that if (8.25) is invariant under rigid motions, then (2.28) holds.
In this process, we made the special choice (8.28). To show that this choice causes no
loss of generality, we need only verify that (2.28) is invariant under rigid motions.

As this demonstration shows, the direct use of Cauchy’s Representation Theorem
8.8 for dealing with invariance is unwieldy. But it is easy to make it more efficient. A
virtual duplication of its proof yields

8.34. Corollary. Let E be defined as in the Cauchy’s Representation Theorem. Let
γ be a real-valued hemitropic functional of the past history of vector-valued functions
y1, . . . , yN of time, so that

(8.35) γ(Qt · yt
1, . . . ,Q

t · yt
N ) = γ(yt

1, . . . , y
t
N )

for all (y1, . . . , yn) such that (y1(t), . . . , yn(t)) ∈ E for all t, and for all proper orthogonal
functions Q. Then γ depends only on I(yt

1, . . . , y
t
N ), and conversely. The obvious

analogs of the rest of Theorem 8.8 also hold.

It is clear that this theorem also delivers Theorem 8.5.

9. Invariant Dissipative
Mechanisms for Numerical Schemes

The motion of an elastic rod is governed by (2.19), (2.21), (2.25). For simplicity of
exposition, we set f = o = l and ρIα = 0, and assume that the material is uniform, so
that the constitutive functions are independent of s. We set

(9.1) v := rs, p := rt,

so that v and p satisfy the compatibility condition vt = ps. Then these governing
equations, supplemented by (2.3b) and (2.9a), are equivalent to the following system of
first order in the time-derivatives:

∂tdk = w × dk,(9.2)

ut = ws − u × w,(9.3a)

vt = ps,(9.3b)

(ρJ · w)t = [m̂k(u, v)dk]s + v × n̂k(u, v)dk,(9.3c)

ρApt = [n̂k(u, v)dk]s(9.3d)

where u and v are defined in terms of u and v by (2.6). This system, which is hyperbolic if
(m̂, n̂) satisfies the monotonicity condition (10.1), is in the general form of a conservation
law:

(9.4) f(z)t = g(z)s + h(z)

where z = (dk,u, v,w, p). In the literature on conservation laws, the unknown z is
almost always regarded as an n-tuple of scalar-valued functions. We could write (9.2),
(9.3) as a system of scalar equations, e.g., by decomposing all vectors with respect to the
basis {dk} or by decomposing u and v with respect to this basis, and decomposing the
other vectorial unknowns with respect to the Cartesian basis {ik}, etc. A fundamental
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theme of this section is that when we make such a decomposition, we risk losing the
geometrical information carried by the base vectors {dk}, which underlies the charac-
terization of invariance under rigid motions. If we decompose (9.3) with respect to the
basis {dk}, we obtain the system

ut = ws − w × u,(9.5a)

vt = ps + u × p − w × v,(9.5b)

∂t(ρJ · w) ≡ ρJ · wt = ∂sm̂ + u × m̂ + v × n̂ − w × (ρJ · w),(9.5c)

∂t(ρAp) ≡ ρApt = ∂sn̂ + u × n̂ − w × (ρAp),(9.5d)

which has the virtue that it is uncoupled from (9.2). Here w and p are defined as in (2.6),
a cross product like w × u is defined in the obvious way as the triple of components of
w × u with respect to the basis {dk} (so that the ith component of w × u is εijkwjuk),
and ρJ is the matrix with components ρJpq with respect to the basis {dk}.

Numerical methods for (9.4) must be able to handle the shocks that this system
typically exhibits. All such numerical methods incorporate some sort of numerical reg-
ularization, such as artificial viscosity or artificial dispersivity. The simplest version of
methods with artificial viscosity (inspired by scalar versions of the Navier-Stokes equa-
tions), like the Lax-Friedrichs and upwind methods, may be regarded as consisting in
the numerical treatment of difference equations for the associated modified system

(9.6) f(u)t = g(u)s + h(u) + D · f(u)ss

where D is a small constant positive-definite diagonal matrix (see LeVeque (1992)). The
effect of D is to modify the material properties characterized by g and h. Note that
the positive-definiteness of D means the modifications of (9.3) or (9.5) with artificial
viscosity introduce such effects into the compatibility equations (9.3a,b) and (9.5a,b).
One aim of this section is to interpret these modifications.

We now show that the incorporation of artificial viscosity of the standard form of
(9.6) into (9.3) or (9.5) may be interpreted as modifying the response from that for
an elastic material to one that is not properly invariant under rigid motions. This
lack of invariance (which would be present even if the compatibility equations were not
modified) can cause serious numerical errors (see Antman & Liu (2004)). Finally we
show how to avoid these errors by introducing dissipative mechanisms that respect the
invariance.

9.7 Exercise. Decompose u and v with respect to {dk}, and decompose w and p with
respect to the Cartesian basis {ik}. Show that the modification of the resulting system
with artificial viscosity as in (9.6) is not equivalent to the modification of (9.5) (and
therefore these two systems could have solutions with very different properties). This is
a portent of some of the difficulties we must overcome.

Let U, V,W, P be constant, positive-definite, diagonal 3 × 3 matrices. Then a modifi-
cation of (9.5) with artifical viscosity has the form

ut = ws − w × u + U · uss,(9.8a)

vt = ps + u × p − w × v + V · vss,(9.8b)

ρJ · wt = ∂sm̂ + u × m̂ + v × n̂ − w × (ρJ · w) + W · ρJ · wss,(9.8c)

ρApt = ∂sn̂ + u × n̂ − w × (ρAp) + P · pss,(9.8d)

We would like the artificial viscosity terms in (9.8c,d) to represent a material dissipation,
which would regularize the behavior of solutions. Thus they should represent terms that
modify the constitutive functions in these two equations. If these modified constitutive
functions are to be invariant under rigid motions, then the remarks following Theorem
8.5 imply that W · ρJ · ws and P · ps should depend solely (although possibly nonlocally
in space and time) on u, v. It follows from (9.5a,b), which give the actual kinematical
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relations, that these viscosities lack the requisite form. It is also clear from Theorem
8.5 how to rectify this deficiency. A particularly simple way, in accord with (2.28), is to
replace (m̂, n̂) of (9.5c,d) with (m̂ + M · ut, n̂ + N · vt) where M,N are constant, positive-
definite, diagonal 3 × 3 matrices. Then in place of (9.8c,d) we obtain

ρJ · wt = ∂sm̂ + M · ust + u × (m̂ + M · ut) + v × (n̂ + N · vt) − w × (ρJ · w),(9.9c)

ρApt = ∂sn̂ + N · vst + u × (n̂ + N · vt) − w × (ρAp).(9.9d)

These equations are equivalent to the following modification of (9.3c,d):

(ρJ · w)t = {[m̂k(u, v) +Mklul]dk}s + v × [n̂k(u, v) +Nklvl]dk,(9.10c)

ρApt = {[n̂k(u, v) +Nklvl]dk}s.(9.10d)

We now examine modifications like (9.8a,b) of the compatibility equations (9.5a,b).
Since such modifications are critical for numerical methods, we cannot avoid studying
them by simply seting U = O = V, as we would do in the analysis of the differen-
tial equations for viscoelastic rods of strain-rate type. We first have to frame a notion
of invariance for modified compatibility equations, which come from purely kinematic
considerations and have no intrinsic material significance. We define an invariant sys-
tem with artificial viscosity to be a system of equations with single time-derivatives on
the left-hand side and with each equation containing a dissipative term such that it is
equivalent to the system consisting of momentum equations (2.19), (2.21) and consti-
tutive equations in invariant form. Thus to study this issue, we have to reconstitute
the governing system of equations of motion in their traditional form involving second
time-derivatives from a a suitable modification of (9.5) involving first time-derivatives.
In the process of constructing an invariant modification of (9.5a,b) we show that (9.8a,b)
not invariant.

Rather than modifying (9.5a,b), it is more convenient to modify (9.3a,b) and (9.2).
Let U and V be tensors whose matrices with respect to the basis {dk} are U and V. We
first consider a modification of (9.3b) in the form

(9.11) vt = ps + (V · v)ss + ηs

where η is a function at our disposal to make this equation invariant. Since this equation
sets a t-derivative equal to an s-derivative on a simply-connected domain, there is a
vector-valued potential, which is convenient not only to denote as r but also to treat as
r, such that

(9.12a,b) rt = p + (V · v)s + η, rs = v.

The treatment of the analogous modification of (9.3a) is a little trickier: We seek a
ξ so that

(9.13) ut = [w + (ρJ)−1 · (U · us + ξ)]s − u × [w + (ρJ)−1 · (U · us + ξ)]

is invariant. Although this equation does not have the form of a t-derivative equaling
an s-derivative, it does have the form of (2.9a), which is equivalent to (2.7). In view of
the argument surrounding (6.13), we therefore conclude there is an orthonormal basis,
which is convenient not only to denote as {dk} but also to treat as {dk}, such that

(9.14a,b) ∂tdk = [w + (ρJ)−1 · (U · us + ξ)] × dk, ∂sdk = u × dk.

Note that (9.14a) is a modification of (9.2).
We replace p in the modified momentum equation (9.10d) with its expression coming

from (9.12a) and we now identify the dk appearing there with the new vectors satisfying
(9.14). We obtain

(9.15) ρArtt = ρA(V · v)st + ρAηt + {[n̂k(u, v) +Nklvl]dk}s.
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For this equation to have the requisite invariance, the first two terms on the right-hand
side must have the form [n+

k dk]s where n+
k depends (possibly nonlocally) on (u, v). (The

first term on the right-hand side lacks this form because the time-differentiation of the
base vectors given by (9.14a) introduces terms not of this form.) We make a particularly
simple choice of n+

k by choosing η so that

ρA[V · v]st + ρAηt = ρA[Vkl∂tvldk]s, i.e.,(9.16a)

ηt = Vkl[(∂tvldk)s − (vldk)st]

= −Vkl{∂svl[w + (ρJ)−1 · (U · us + ξ)] × dk

+ vlut × dk + vlu × [(w + (ρJ)−1 · (U · us + ξ)) × dk]}
(9.16b)

where ut = ∂tukdk +[w +(ρJ)−1 · (U ·us +ξ)]×u. (In the absence of an indication to
the contrary, the differential operators ∂s and ∂t apply only to the terms immediately
following them.) Note that we use (9.14) to compute the derivatives of the dk. The
choice (9.16a) gives (9.15) an invariant form

(9.17) ρArtt = {[n̂k(u, v) +Nklvl + ρAVkl∂tvl]dk}s.

The substitution of the time integral of (9.16) into (9.11b) would lead to an equation
with an ugly integral operator, but the time-derivative of (9.11) is the attractive

(9.18) vtt = pst + Vkl(∂tvldk)ss.

The principal part of the partial differential operator acting on v in this equation is

(9.19) vtt − V · vsst.

It is responsible for the dissipativity and it gives this equation a parabolic-hyperbolic
character; see Zheng (1995). Note that the dk in (9.18) depend upon ξ, which has not
yet been fixed.

We now use (9.10c) to make (9.13) invariant. Since (9.13) comes from (9.3a) by
replacing w with w + (ρJ)−1 · (U · us + ξ), we make this replacement in (9.10c), and
interpret the dk there as the new dk:

(9.20) (ρJ · w)t = (U · us + ξ)t + {[m̂k(u, v) +Mklul]dk}s + v × [n̂k(u, v) +Nklvl]dk,

To put this into invariant form, we choose ξ ≡ ξkdk so that

(U · us + ξ)t = [Ukl∂tuldk]s, i.e.,(9.21a)

ξt = Ukl[(∂tuldk)s − (∂suldk)t]

= Ukl{(∂tulu − ∂sul[w + (ρJ)−1 · (U · us + ξ)]} × dk.
(9.21b)

Thus (9.20) becomes the invariant

(9.22) (ρJ · w)t = {[m̂k(u, v) +Mklul + Ulq∂tuq ]dk}s + v × [n̂k(u, v) +Nklvl]dk.

Eq.(9.21b) may be regarded as a linear ordinary differential equation for ξ. (Had we
replaced ξ by ρJ · ξ in (9.13), then the left-hand side of (9.21b) would be
(ρJ · ξ)t ≡ ρJkl(ξldk)t, and (9.21b) would not be linear in the components of ξ be-
cause the t-derivative of dk in this expression would introduce another factor involving
the ξl).

We regard the modified compatibility equation (9.13) and (9.21b) as a system for u
and ξ. We cannot eliminate ξ as we did η from (9.11) in getting (9.18). (We may regard
ξ as an internal variable, which enters an important class of constitutive equations; see
Sec. 12.10.) Nevertheless, if we differentiate (9.13) with respect to t and then substitute
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(9.21a) into the resulting equation where possible, we obtain an equation for which the
principal part of the partial differential operator acting on u is

(9.23) utt − (ρJ)−1 · U · usst,

which has the same character as (9.19).
Antman & Liu (2004) studied the planar spinning of a circular nonlinearly elastic

ring about its center as an initial-value problem for a hyperbolic conservation law. They
showed that numerical schemes are either very accurate or very inaccurate according as
whether or not they respect invariance.

It is clear that we could have replaced all the positive-definite diagonal matrices ap-
pearing in the above development with positive-definite symmetric matrices. (Numerical
methods typically do not require even this sophistication.) Indeed, we could introduce
artificial viscosity through nonlinear constitutive laws, which would just give another
source to the quasilinearity of the governing system. In short, there is no unique way
to introduce invariant versions of artificial viscosity. The following exercise shows that
if we make a slight variant of our procedure, then the invariant versions of (9.3c,d) have
higher derivatives with respect to s corresponding to constitutive functions depending
on (us, vs) also. The resulting theories may be termed strain-gradient theories. They are
examples of non-simple materials, which are commented on, but not intensively stud-
ied in this book. In the language of hyperbolic conservation laws, the introduction of
higher derivatives with respect to s represents a dispersive regularization, which sup-
ports Lax-Wendroff and Beam-Warming schemes. Thus, the following exercise shows
that the invariant introduction of artificial viscosity also introduces some dispersive ef-
fects. Slemrod (1984) first associated the artifical viscosity in the equation of mass
conservation for 1-dimensional gas dynamics with capillarity. In material coordinates,
the equation for conservation of mass becomes a compatibility equation and capillarity
corresponds to strain-gradient effects for solid mechanics.

9.24. Exercise. Consider the pair (9.3b,d). Suppose that the modification of (9.3d) is
taken to have the form

(9.25) ρApt = [n̂k(u, v)dk]s + P · pss + ζ

where the components of P with the basis {dk} form a constant positive-definite diagonal
matrix and where ζ is at our disposal to make (9.25) invariant. Retain the modification
(9.11) and replace the two visible p’s in (9.25) with the expression coming from (9.12a).
Now choose ηt to control the term (V ·v)st and then choose ζ to ensure that the resulting
version of (9.25) is invariant. Show that this equation involves four s-derivatives of r.

9.26. Exercise. In methods with dispersive regularizations, the term D · f(u)ss in
(9.6) is replaced with a third-order term of the form D · f(u)sss. Construct a dispersive
modification of (9.3) that is invariant under rigid motions. (Note that the process of
constructing invariant versions of systems with artificial viscosity actually endows our
equations with strain-gradient effects, which generalize dispersive effects.)

The material of this section is based on Antman (2003a, c© Kluwer Academic Pub-
lishers, by kind permission of Kluwer Academic Publishers).

10. Monotonicity and Growth Conditions
If the constitutive equations (2.25) for elastic rods are to conform to

our intuition and experience, they should meet some minimal physical re-
strictions. These might ensure that an increase in the tension n · rs/|rs|
accompany an increase in the stretch |rs|, an increase in a shear compo-
nent nα of the contact force accompany an increase in the shear strain vα,
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an increase in a bending couple mα accompany an increase in the flexure
uα, and an increase in twisting couple m3 accompany an increase in the
twist u3. If m̂(·, ·, s) and n̂(·, ·, s) are differentiable, then these conditions
are ensured by the requirement:

(10.1)
[
∂m̂/∂u ∂m̂/∂v
∂n̂/∂u ∂n̂/∂v

]
is positive-definite.

(This condition is equivalent to the positive-definiteness of the symmetric
part of this matrix.) The generalization of (10.1) to functions m̂(·, ·, s) and
n̂(·, ·, s) that are not differentiable is that

(
m̂(·, ·, s), n̂(·, ·, s)

)
be uniformly

monotone on compact subsets of its domain V(s), i.e., for each compact set
K(s) ⊂ V(s) there is a number c(K(s)) > 0 such that

(10.2)

Φ(u1, v1, u2, v2, s) := [m̂(u1, v1, s) − m̂(u2, v2, s)] · (u1 − u2)

+ [n̂(u1, v1, s) − n̂(u2, v2, s)] · (v1 − v2)

> c(K(s))(|u1 − u2|2 + |v1 − v2|2)
∀ (u1, v1), (u2, v2) ∈ K(s).

Here the dot product m · u of elements of R
3 is defined to be mkuk. (Since

m and u are components of m and u with respect to an orthonormal basis,
it follows that m · u = m · u.) Conditions (10.1) and (10.2) are equivalent
when m̂(·, ·, s) and n̂(·, ·, s) are differentiable. A useful generalization of
(10.2) is that

(
m̂(·, ·, s), n̂(·, ·, s)

)
be strictly monotone on V(s):

(10.3) Φ(u1, v1, u2, v2, s) > 0

∀ (u1, v1), (u2, v2) ∈ V(s) with (u1, v1) �= (u2, v2).

A weaker restriction, less useful for elasticity, is that
(
m̂(·, ·, s), n̂(·, ·, s)

)
be

monotone on V(s):

(10.4) Φ(u1, v1, u2, v2, s) ≥ 0 ∀ (u1, v1), (u2, v2) ∈ V(s).

Condition (10.4) is equivalent to the nonnegative-definiteness of the matrix
of (10.1) when m̂(·, ·, s) and n̂(·, ·, s) are differentiable. It is easy to see that
a function that is uniformly monotone on compact sets is strictly monotone
and that a strictly monotone function is monotone. The distinction between
these classes of functions is best seen in the setting of functions from R to
itself: The function

x �→

⎧⎪⎨⎪⎩
x for x ≤ 0,

0 for 0 ≤ x ≤ 1,

x − 1 for 1 ≤ x

is monotone, but not strictly monotone. The function x �→ x3 is strictly
monotone, but not uniformly monotone on compact sets. The function
x �→ x is uniformly monotone everywhere and the function x �→ arctanx is
uniformly monotone on compact sets.
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10.5. Exercise. Prove that (10.1) and (10.2) are equivalent when m̂(·, ·, s) and n̂(·, ·, s)
are differentiable.

Conditions (10.1)–(10.3) each ensure not only the minimal restrictions
listed in the first paragraph of this section, but also that the coupling of
effects, associated with the off-diagonal elements of the matrix of (10.1),
are subservient to the direct effects, associated with the diagonal elements.
We adopt (10.3) as our basic constitutive assumption for elastic rods.

Let us describe the dk by Euler angles (see Sec. 13). The substitution
of the constitutive equations (2.25) into the equations of motion (2.19) and
(2.21) yields a quasilinear system of six second-order partial differential
equations for r and the Euler angles. The requirement that this system be
totally hyperbolic (see Courant & Hilbert (1961)) is exactly (10.1). The
physical import of this requirement is that the rod can undergo a complete
range of wave-like behavior. In particular, the linearization of the equations
about any state has six real wave speeds. Condition (10.1) may be termed
the strong ellipticity condition because it ensures that the static part of the
equation, which is obtained by setting all time derivatives equal to 0 and
which depends on the constitutive functions, is strongly elliptic. Condition
(10.3) supports a complete and natural existence and regularity theory
for equilibrium problems, without preventing the appearance of buckling
and other kinds of instabilities, whose study constitutes one of our main
objectives.

Ericksen (1975, 1977b, 1980a) has emphasized that weaker constitutive hypotheses,
which can violate (10.3) locally, may describe important physical phenomena in crystals
not traditionally associated with elasticity. See Ball & James (1987), Carr, Gurtin, &
Slemrod (1984), Dolzmann (2002), Gurtin & Temam (1981), James (1979, 1980) for
further developments along these lines. Antman & Carbone (1977), in their study of a
general Cosserat theory of rods (in which d1, d2, and rs need merely be independent),
showed that the corresponding generalization of (10.3), by itself, permits instabilities of
a kind that have traditionally been associated with plasticity (see Sec. 16.11). Coleman
(1985) and N. C. Owen (1987) have shown how these two viewpoints can be reconciled.
By adhering to (10.3) I do not mean to suggest that the question of determining suitable
constitutive restrictions for elastic rods is settled.

Let (a, b) be a unit vector in R
3 × R

3. The line in R
3 × R

3 through
(u0, v0) parallel to (a, b) is

(10.6) R � σ �→ (u0, v0) + (a, b)σ.

Then (10.3) implies that

(10.7) σ �→ m̂(u0 + σa, v0 + σb) · a + n̂(u0 + σa,v0 + σb) · b

is strictly increasing. We use this observation in constructing growth con-
ditions.

We might expect that an infinite elongation of a rod must be maintained
by an infinite tensile force, that infinite shear strains must be maintained
by infinite shear forces, that an infinite twist must be maintained by an
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infinite twisting couple, etc. The restrictions on shearing and twisting are
expressed by

n̂1(u, v, s) → ±∞ as v1 → ±∞,(10.8a)

n̂2(u, v, s) → ±∞ as v2 → ±∞,(10.8b)

m̂3(u, v, s) → ±∞ as u3 → ±∞.(10.8c)

The formulation of comparable restrictions on m̂1, m̂2, and n̂3 requires
more care because the corresponding strains u1, u2, v3 are confined to the
open convex cone V(s) (see Sec. 7). We say that the strain (u, v) is extreme
iff either |(u, v)| :=

√
|u|2 + |v|2 = ∞ or (u, v) ∈ ∂V(s). We adopt the gen-

eral constitutive principle that extreme strains must be accompanied by an
infinite resultant, i.e., if (u, v) is extreme, then |

(
m̂(u, v, s), n̂(u, v, s)

)
| = ∞.

Condition (10.3) specifies how this unboundedness is to be attained: The
line (10.6) intersects the convex set V(s) either nowhere, or on a bounded
open interval, or on an open half-line, or on a whole line. We impose the

10.9. Coercivity Hypothesis. The function (10.7) approaches ±∞ as
σ approaches an extreme of its interval, with the sign on ∞ dictated by
the monotonicity of (10.7).

This condition includes (10.8). Let us fix (u0, v0) in V(s). An hypothesis
inspired directly by (10.3) and related to Hypothesis 10.9 is the coercivity
condition

(10.10)
Φ(u, v, u0, v0, s)√

|u − u0|2 + |v − v0|2
→ ∞ as (u, v) becomes extreme.

In Theorem 21.2.30, we show that (10.3) and either Hypothesis 10.9 or
(10.10) imply that if m, n, s are given, then the algebraic equations

(10.11) m = m̂(u, v, s), n = n̂(u, v, s)

can be uniquely solved for (u, v). The uniqueness is an immediate conse-
quence of (10.3): If (10.11) had two solutions (u1, v1) and (u2, v2), then
the left-hand side of (10.3) would vanish, forcing these two solutions to be
identical. (We prove the existence statement specialized for hyperelastic
rods at the end of this section.) The solution, denoted by

(10.12) u = û(m, n, s), v = v̂(m, n, s),

generates a set of constitutive equations equivalent to (2.25). Moreover, if
m̂(·, ·, s) and n̂(·, ·, s) are continuously differentiable and satisfy the slightly
stronger requirement (10.1), then the classical Inverse-Function Theorem
implies that û(·, ·, s) and v̂(·, ·, s) are continuously differentiable. In this
case, Proposition 10.23, proved below, implies that

(10.13)
[
∂û/∂m ∂û/∂n
∂v̂/∂m ∂v̂/∂n

]
is positive-definite.



306 8. THEORY OF RODS DEFORMING IN SPACE

The following variant of these results is also useful. Condition (10.3) and either
Hypothesis 10.9 or (10.10) imply that if u1, u2, m3, n, s are given, then the algebraic
equations

(10.14) m3 = m̂3(u, v, s), n = n̂(u, v, s)

have a unique solution

(10.15) u3 = u�
3(u1, u2, m3, n, s), v = v�(u1, u2, m3, n, s).

Define

(10.16) m�
β(u1, u2, m3, n, s) := m̂β

(
u1, u2, u

�
3(u1, u2, m3, n, s), v�(u1, u2, m3, n, s), s

)
.

Then (10.15) and

(10.17) mβ = m�
β(u1, u2, m3, n, s)

generate a set of constitutive equations equivalent to (2.25). Moreover, if m̂(·, ·, s) and
n̂(·, ·, s) are continuously differentiable and satisfy (10.1), then the classical Inverse-
Function Theorem implies that the functions of (10.15) and (10.17) are continuously
differentiable and that

(10.18)

⎡⎢⎢⎢⎣
∂m�

1/∂u1 ∂m�
1/∂u2 ∂m�

1/∂m3 ∂m�
1/∂n

∂m�
2/∂u1 ∂m�

2/∂u2 ∂m�
2/∂m3 ∂m�

2/∂n

∂u�
3/∂u1 ∂u�

3/∂u2 ∂u�
3/∂m3 ∂u�

3/∂n
∂v�/∂u1 ∂v�/∂u2 ∂v�/∂m3 ∂v�/∂n

⎤⎥⎥⎥⎦ is positive-definite.

We now furnish a general proof of (10.13) and (10.18). Let a and b be non-negative
integers. Let V be an open convex subset of Ra×Rb. (We define R0 to be the empty set.)
Let V � (x, y) �→

(̂
f(x, y), ĝ(x, y)

)
∈ Ra × Rb be continuously differentiable and uniformly

monotone so that

(10.19) a · ∂ f̂

∂x
· a + a · ∂ f̂

∂y
· b + b · ∂ ĝ

∂x
· a + b · ∂ ĝ

∂y
· b > 0

∀ (a, b) ∈ R
a × R

b with a · a + b · b 
= 0.

For each f in the range of f̂(·, y), the algebraic equation

(10.20) f = f̂(x, y)

has a unique solution for x:

(10.21) x = x�(f, y).

We now define

(10.22) g�(f, y) := ĝ
(
x�(f, y), y

)
.

10.23. Proposition. Under these conditions,

(10.24)
[
∂x�/∂ f ∂x�/∂y
∂g�/∂ f ∂g�/∂y

]
is positive-definite.

Proof. The definitions of x� and g� yield the identities

(10.25) f = f̂
(
x�(f, y), y

)
, ĝ(x, y) = g�

(̂
f(x, y), y

)
,
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which imply that

(10.26)
I = (∂ f̂/∂x) · (∂x�/∂ f), O = (∂ f̂/∂x) · (∂x�/∂y) + ∂ f̂/∂y,

∂ ĝ/∂x = (∂g�/∂ f) · (∂ f̂/∂x), ∂ ĝ/∂y = (∂g�/∂ f) · (∂ f̂/∂y) + ∂g�/∂y.

(Here I represents the identity operator on Ra and O represents the zero operator from
Rb to Ra.) We substitute

(10.27) a = (∂x�/∂y) · b + (∂x�/∂ f) · c

into (10.19) and use (10.26) to obtain

(10.28) c · ∂x�

∂ f
· c + c · ∂x�

∂y
· b + b · ∂g�

∂ f
· c + b · ∂g�

∂y
· b > 0 ∀ (c, b) ∈ R

a × R
b,

with c · c + b · b 
= 0. �

This proof simplifies that of Antman (1974b). Condition (10.13) follows from the
identifications f = (m, n) and x = (u, v) with g and y vacuous. Condition (10.18) follows
from the identifications f = (m3, n), g = (m1, m2), x = (u3, v), y = (u1, u2).

If the rod is hyperelastic, so that (2.26) holds, then the constitutive functions of
(10.12) and of (10.15) and (10.17) can each be expressed as the gradient of a scalar-
valued function, as we now show for the variables entering Proposition 10.23. Suppose
that there is a scalar-valued function (x, y) �→ W (x, y) such that

(10.29) f̂ = ∂W/∂x, ĝ = ∂W/∂y

and such that the hypotheses of Proposition 10.23 hold. We make the Legendre trans-
formation

(10.30) W �(f, y) := f · x�(f, y) −W
(
x�(f, y), y

)
.

Thus

(10.31) x� = ∂W �/∂ f, g� = −∂W �/∂y.

In particular, if (2.26) holds, then the constitutive functions of the form (10.12) can be
put into the form

(10.32a) u = ∂W ∗/∂m, v = ∂W ∗/∂n

where

(10.32b) W ∗(m, n, s) := m · û(m, n, s)n · v̂(m, n, s) −W (û(m, n, s), v̂(m, n, s), s),

and the constitutive functions of the form of (10.15) and (10.17) can be put into the
form

(10.33a) m�
α = −∂W �/∂uα, u�

3 = ∂W �/∂m3, v� = ∂W �/∂n

where

(10.33b)
W �(u1, u2, m3, n, s) := m3u

�
3(u1, u2, m3, n, s) + n · v�(u1, u2, m3, n, s)

−W
(
u1, u2, u

�
3(u1, u2, m3, n, s), v�(u1, u2, m3, n, s), s

)
.

10.34. Exercise. Show that (2.26) and (10.1) imply that W is strictly convex when m̂
and n̂ are differentiable. Discuss the convexity of ±W � of (10.30) when (̂f, ĝ) is strictly
convex and differentiable.
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A useful restriction on constitutive equations (2.28) for viscoelastic rods
ensuring that frictional effects increase with the strain rates is that:

(10.35) (u̇, v̇) �→
(
m̂(u, v, u̇, v̇, s), n̂(u, v, u̇, v̇, s)

)
is uniformly monotone.

This condition ensures that the equations of motion have a parabolic char-
acter, so that many effective mathematical tools are available for their anal-
ysis. When (10.35) holds, the monotonicity restrictions on m̂(·, ·, u̇, v̇, s),
n̂(·, ·, u̇, v̇, s) are not so crucial (see Andrews & Ball (1982), Antman & Sei-
dman (1996, 2005), Dafermos (1969), and Pego (1987)).

We now give a direct elementary proof of the equivalence of (10.11) and
(10.12) for hyperelastic rods, i.e., the equivalence of (2.26) with (10.32),
without invoking Theorem 21.2.30. We assume that W (·, ·, s) is continu-
ously differentiable and satisfies the strengthened coercivity condition that
for fixed (u0, v0) in V(s),

(10.36)
W (u, v, s)√

|u − u0|2 + |v − v0|2
→ ∞ as (u, v) becomes extreme.

(This condition says that W (·, ·, s) has superlinear growth at infinity.) We
further assume that (10.3) holds. It says thatW (·, ·, s) is strictly convex on
V(s). Let m, n, s be given. Then (2.26) implies that (10.11) is equivalent
to the vanishing of the derivative of

(10.37) (u, v) �→ Ω(u, v, s) :=W (u, v, s) − m · u − n · u.

We prove that (10.11) can be solved for (u, v) by showing that (10.37) has
a minimum on the open set V(s): Let Γ (u, v) :=

√
|u − u0|2 + |v − v0|2 so

that

(10.38)
Ω(u, v, s)
Γ (u, v)

=
W (u, v, s) − m · u − n · v

Γ (u, v)
.

Condition (10.36) implies that the right-hand side of (10.38) approaches ∞
as (u, v) becomes extreme, so that

(10.39) Ω(u, v, s) → ∞ as (u, v) becomes extreme.

We seek to minimize (10.37) on the set {(u, v) : Ω(u, v, s) ≤ Ω(u0, v0, s)}.
This set is closed because (10.37) is continuous and it is bounded because
if not, (10.39) would be violated. Thus (10.37) has an absolute minimizer,
which lies in this set. Since this minimizer is necessarily an interior point of
(the open set) V(s), the derivative of (10.37) must vanish at the minimizer.
Thus (10.11) has a solution. The uniqueness follows from the proof given
above.

We conclude this section with a useful and elementary result, which is not well
known. It implies that the principal subdeterminants of the derivative of a uniformly
monotone function are each positive-definite. Thus, if (10.1) holds, then the principal
subdeterminants of the matrix of (10.1) are each positive.
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10.40. Theorem. Let A be a real n × n matrix that is positive-definite (but not
necessarily symmetric). Then the principal subdeterminants of A are each positive.

This result is standard for symmetric, positive-definite matrices. We use this fact in
the ensuing proof.
Proof. It is enough to show that det A > 0, because the same argument can be applied
to each principal subdeterminant. Observe that the symmetric tensor A∗ · A is positive-
definite, for if not, there would be a u 
= o such that 0 ≥ u · A∗ · A · u ≡ |A · u|2, which
implies that u · A · u = 0, a contradiction. Therefore, [det A]2 = det(A∗ · A) > 0, by
results for symmetric matrices. Now let 2B = A + A∗, 2C = A − A∗. We know that
det A ≡ det(B+C) 
= 0, that det B > 0, and that C �→ det(B+C) 
= 0 is continuous. Thus
det(B + C) > 0. �

An alternative proof can be based on the observation that the equation
det(B + C) = 0, which says that the eigenvalues of the skew C with respect to the
symmetric, positive-definite B are each equal to −1, is inconsistent with the fact that
such eigenvalues must be pure imaginary numbers.

11. Transverse Hemitropy and Isotropy
We shall see that the equations for rods often readily yield detailed in-

formation about solutions if the rods are transversely hemitropic. In this
section we define this and related concepts and obtain convenient math-
ematical characterizations of them. Although the mathematical theory is
closely related to that of frame-indifference, the concepts are quite distinct.

Many materials, such as rubber or steel (at least on the macroscopic
level), having no preferred material directions are called isotropic. Other
materials, such as wood and animal muscle, having pronounced grain pat-
terns, are called aeolotropic or anisotropic. (We employ the former un-
wieldy term because the Greek prefix an of the latter term is easily confused
with the English article an in speech.) Artificial aeolotropic materials are
readily manufactured by imbedding reinforcing fibers in an isotropic ma-
terial. Aeolotropic materials often enjoy certain symmetries characterized
by groups of transformations that leave the material properties unchanged.
To determine these symmetries is to determine the material symmetry or
isotropy (group) of the material. Note that these notions of isotropy are
purely local in that they describe the behavior at material points.

Fig. 11.1a. Deformation of an
aeolotropic ball under a given
force system.

Fig. 11.1b. Deformation of the
rotated ball by the same force
system.
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Perhaps the conceptually simplest test for the symmetry of a material
point z is to subject an arbitrarily small ball of material surrounding z
in the reference configuration to a system of (time-dependent) forces, and
observe the consequent deformation it suffers. (We choose a ball because
it has no geometrically preferred directions.) Then we rotate the ball be-
fore applying the same system of forces to it and observe the consequent
deformation. (See Fig. 11.1.) If for each force system, these deformations
are independent of the rotations, then the material of z is hemitropic. This
test is tacitly based on the inconvenient assumption that the constitutive
functions give strains in terms of the force system.

Let us now limit our attention to materials whose constitutive equations
specify the force system at a material point as a function of kinematical
variables at that material point. To determine the symmetry of the mate-
rial at z, we may alternatively subject the ball to a given (time-dependent)
deformation and observe the force system corresponding to this deforma-
tion. Then we rotate the ball before subjecting it to a deformation, and
observe the force system corresponding to the deformation. If for each
deformation, the force systems are independent of the rotations, then the
material is hemitropic.

Instead of rotating the ball in these tests, we could hold the ball fixed and
rotate the testing apparatus (which effects deformations and measures the
corresponding force systems). In particular, we may orient the apparatus
by aligning a fixed right-handed orthonormal triad in it with a right-handed
orthonormal triad {d◦

k} of material vectors in the ball. We rotate the
apparatus by aligning it with another orthonormal triad {A·d◦

k} of material
vectors where A is a rotation tensor. Consider a pair deformations having
the same components with respect to the different bases {d◦

k} and {A ·d◦
k}.

If the components of the corresponding force systems with respect to these
bases are the same for every such pair of deformations and for every proper-
orthogonal A, then the material of z is hemitropic. This observation will
be the starting point of our theory.

We could also employ testing apparatus that has a plane of symmetry
(or employ pairs of apparatus that are mirror-images of each other). In
this case we could align the apparatus not only with any right-handed
orthonormal triad {d◦

k} of material vectors in the ball, but also with their
reflections. If the components of the force systems maintaining a pair
deformations having the same components with respect to the different
bases {d◦

k} and {A · d◦
k} are the same and if this property holds for every

such pair of deformations and for every orthogonal A, then the material of
z is isotropic.

In those theories of 3-dimensional continuum mechanics in which the independent
and dependent constitutive variables are tensors of order 2, there is no distinction be-
tween isotropy and hemitropy; see Sec. 12.13. For other theories, e.g., those containing
vectorial constitutive variables, such as lower-dimensional theories of rods and shells and
3-dimensional theories accounting for thermal or electromagnetic effects, there is such a
distinction.

If the response of the material is not the same for all rotations or all
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orthogonal transformations, but only for those that leave a given mate-
rial direction fixed, then the material is respectively called transversely
hemitropic or transversely isotropic. In the theory of Cosserat rods, the
reference configurations of the directors may be regarded as identifying
material lines. Thus they play a role similar to that of the markings on
the ball in Fig. 11.1: They are objects that can be subjected to orthogonal
transformations in experiments testing for isotropy. Since the role of d◦

3 is
so distinct from those of d◦

1 and d◦
2, there is no point in letting d◦

3 vary ex-
cept possibly by reflection in testing for isotropy. Thus the kind of isotropy
relevant for rod theories is transverse hemitropy or transverse isotropy.

In a rod theory, the constitutive equations characterize not only the
material of the 3-dimensional body, but also the shape of the body. In
the classical linear theories and in Kirchhoff’s Kinetic Analogue (1859),
both of which we discuss in Sec. 19, the shape of the cross section enters
only through the torsional stiffness and the moments of inertia of area and
of mass of the cross section (see (4.6), (4.7)). The larger the principal
moments of inertia of the cross section, the greater the stiffness with which
these rods resist both bending and twisting. In these classical theories, a
straight rod having a common line of centroids for both mass and area has
transverse hemitropy if and only if the principal area and mass moments of
inertia of the cross section about the line of centroids are respectively equal.
(For such theories, there is no distinction between transverse isotropy and
transverse hemitropy.) (The principal mass moments of inertia are the
eigenvalues of (ρJαβ) when ϕα = xα.) See Fig. 11.2. Since the response of
a nonlinearly elastic rod cannot be characterized solely by these moments
of inertia, we must characterize transverse hemitropy by a mathematical
statement that reflects the physical notions discussed above.

An example of a rod that is transversely hemitropic but not transversely
isotropic is a rope composed of helically disposed fibers. We might expect
that twisting the rope in one sense gives a response different from that
obtained from twisting it in the opposite sense. Indeed, one twist tightens
the constituent fibers and the opposite twist loosens them. Thus both the
twisting moment m3 and the tensile force n3 depend on the sense of twist,
which in turn depends on the handedness or chirality of the rope.

Buzano, Geymonat, & Poston (1985) have studied the buckling in space of a prismatic
rod with an equilateral triangular cross section. Its principal moments of inertia are
equal, so that it meets the classical criterion for transverse isotropy. But the theory
they employ, more complicated than that presented here, has enough sophistication to
distinguish between a circular cross section and an equilateral triangular cross section.
The buckling patterns they obtain exhibit some striking differences from those for rods
with circular cross sections. See Antman & Marlow (1992) for a simpler example within
the special Cosserat theory, in which nonlinear material response is the source of the
distinction between circular and equilateral triangular cross sections.

Now we obtain precise and useful mathematical characterizations of
transverse hemitropy for elastic rods. Let {d◦

k} be the values of {dk} in
the reference configuration. Let us make the customary identification of
d◦

3 with r◦
s , effectively defining sections. Let A(s) be an orthogonal ten-

sor that leaves d◦
3(s) unchanged. We introduce another pair of directors
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Fig. 11.2. Different deflections caused in the same rod by the
same force system applied to configurations differing by a rota-
tion. As the shape of the cross section suggests, the different
response indicates that the rod is not transversely isotropic.

{d◦�
α (s)} in span{d◦

α(s)} by

(11.3a,b) d̄◦
k(s) = A(s)∗ · d◦

k(s) with d̄◦
3(s) = A(s)∗ · d◦

3(s) = d◦
3(s).

(In our study, the variable s is fixed, in keeping with the local character of
isotropy.) We want to study the invariance of constitutive equations under
transformations (11.3). But the directors d◦

k do not intervene in (2.25).
We accordingly formulate this invariance under an induced transformation
of the directors dk.

We know that the deformation of the d◦
k is given by a proper orthogonal

R(s, t) such that

(11.4) dk(s, t) = R(s, t) · d◦
k(s).

We define

(11.5) d̄k(s, t) = R(s, t) · d̄◦
k(s) ≡ R(s, t) · A(s)∗ · d◦

k(s).

Thus d̄k is the deformation of the image of dk under the orthogonal A∗.
Then

(11.6a) d̄k(s, t) = [R(s, t) · A(s)∗ · R(s, t)∗] · dk(s, t) =: P (s, t)∗ · dk(s, t),

so that

(11.6b) d̄3 = P ∗ · d3 = d3.

Eqs. (11.6) say that P is an orthogonal tensor that leaves d3 unchanged and
that P is proper-orthogonal exactly when A is. These considerations show
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that any statement about invariance under (proper) orthogonal transfor-
mations A∗ of {d◦

k} that leave d◦
3 unchanged is equivalent to a statement

about invariance under (proper) orthogonal transformations P ∗ of {dk}
that leave d3 unchanged.

11.7. Exercise. Give a geometric explanation of why d̄ k(s, t) = A(s)∗ · dk(s, t) does
not hold in general.

We now characterize constitutive equations for transversely hemitropic
elastic rods as those that are invariant under the choice of right-handed
{d◦

k} (i.e., under the choice of markings) with d◦
3 fixed. These equations are

therefore invariant under proper orthogonal A∗ and P ∗ that respectively
leave d◦

3 and d3 unchanged. Let a deformation (rs,u) be given. By virtue
of (2.25), this deformation produces the resultants

(11.8) m̂k(u · d1, . . . )dk, etc.

We can also describe this deformation with respect to the basis {d̄k} and
obtain resultants

(11.9) m̄k(u · d̄1, . . . )d̄k, etc.,

which equal (11.8). There is a bar on the constitutive functions in (11.9)
because we have no assurance that if the arguments are the same, then the
corresponding components of the resultants are the same. The material is
transversely hemitropic iff m̄k = m̂k and n̄k = n̂k. In this case, the equality
of (11.8) and (11.9) yields

(11.10a) m̂k(u · d̄1, . . . ) = d̄k · dl m̂l(u · d1, . . . ), etc.,

or, equivalently,

(11.10b) m̂k(u · P ∗ · d1, . . . ) = dk · P · dl m̂l(u · d1, . . . ), etc.

(We can regard the arguments u · P ∗ · d1, . . . of m̂k on the left-hand side
of (11.10b) as describing a rotation taking dk to P ∗ · dk followed by the
deformation (rs,u). Thus (11.10b) conforms to a test for hemitropy in
which markings on a specimen are rotated.) The components of P with
respect to the basis {dk} are

(11.11) Pij = di ·P ·dj = di · d̄j = di ·R ·A ·R∗ ·dj = d◦
i ·A ·d◦

j =: Aij ,

i.e., the components of P with respect to the basis {dk} are the components
of A with respect to the basis {d◦

k}. Then we can write (11.10b) as

m̂α(A1νuν , A2νuν , u3, A1νvν , A2νvν , v3, s)(11.12a)

= Aαβm̂β(u1,u2,u3,v1, v2, v3, s),

m̂3(A1νuν , A2νuν , u3, A1νvν , A2νvν , v3, s)(11.12b,c)

= m̂3(u1,u2,u3,v1, v2, v3, s), etc.
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Thus an elastic rod is transversely hemitropic if and only if

(11.13a) m̂(A · u, A · v, s) = A · m̂(u, v, s), etc.,

where

(11.13b,c) A :=

⎡⎣A11 A12 0
A21 A22 0
0 0 1

⎤⎦ , det A = 1.

11.14. Exercise. By making a judicious choice of A, use (11.12) to prove that

(11.15) m̂1(u, v, s) = 0 = n̂1(u, v, s) if u1 = 0 = v1, etc.,

for a transversely hemitropic elastic rod.

11.16. Theorem. The constitutive functions for transversely hemitropic
elastic rods have the form

m̂α(u, v, s) = m
(
J(u, v), s

)
uα +m×(J(u, v), s

)
vα,(11.17a)

n̂α(u, v, s) = n×(J(u, v), s
)
uα + n

(
J(u, v), s

)
vα,(11.17b)

m̂3(u, v, s) = m̌3
(
J(u, v), s

)
,(11.17c)

n̂3(u, v, s) = ň3
(
J(u, v), s

)
(11.17d)

where

(11.18) J(u, v) := (uαuα, uαvα, vαvα, δ, u3, v3), δ := εαβuαvβ .

The stored-energy function W for a transversely hemitropic hyperelastic
rod depends only on J(u, v) and s.

Proof. Representations (11.17c,d) and that for the stored-energy function
W follow from (11.12b) by a version of Cauchy’s Representation Theo-
rem 8.8 for hemitropic functions appropriate for R

2. Since this theorem ap-
plies only to scalar-valued functions, we must reduce the proof of (11.17a,b)
to that for such functions. Toward this end, we calculate that

(11.19a,b) (u, v) �→ εαβm̂α(u, v, s)uβ , εαβm̂α(u, v, s)vβ

have the same invariance as m̂3 in (11.12b) under proper orthogonal trans-
formations. By Cauchy’s Representation Theorem for hemitropic functions,
(11.19) can be represented as functions of

(
J(u, v), s

)
. If δ �= 0, then we can

use Cramer’s rule to solve for m̂1 and m̂2 as functions of the expressions
on the right-hand sides of (11.19), thereby obtaining (11.17a).

Now suppose that δ = 0. Then u and v must have the form

(11.20a)
[
u1
u2

]
= u

[
cos θ
sin θ

]
,

[
v1
v2

]
= v

[
cos θ
sin θ

]
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for some θ. We substitute (11.20a) and

(11.20b) A =
[

cos θ sin θ
− sin θ cos θ

]
.

into (11.12a) and use Ex. 11.14 to obtain

(11.21)
m̂1(u cos θ, u sin θ, u3, v cos θ, v sin θ, v3, s) = cos θ m̂1(u, 0, u3, v, 0, v3, s),

m̂2(u cos θ, u sin θ, u3, v cos θ, v sin θ, v3, s) = sin θ m̂1(u, 0, u3, v, 0, v3, s),

which has the form of (11.17a), although there are no unique representa-
tions form andm× in terms of m̂1(u, 0, u3, v, 0, v3, s). The proof of (11.17b)
is the same. �

Representation (11.17) is not convenient for expressing monotonicity and
growth conditions. As we shall see elsewhere in this book, such represen-
tations seldom are.

11.22. Exercise. Replace (11.19) with (u, v) �→ m̂α(u, v, s)uα, m̂α(u, v, s)vα (which
have the same invariance as m̂3 in (11.12b) under all orthogonal transformations). Ob-
tain representations for m̂α and reconcile these with those of (11.17). The techniques
of this exercise show how to reconcile the representation for a hyperelastic rod obtained
by differentiating the representation of W as a function of J(u, v) with a representation
of the form (11.17a,b).

11.23. Exercise. Prove that transversely hemitropic viscoelastic materials (2.28) have
representations (analogous to (11.17)) of the form

(11.24)
m̂α(u, v, u̇, v̇, s) = m

(
J(u, v, u̇, v̇), s

)
uα +m×(J(u, v, u̇, v̇), s

)
vα

+ µ
(
J(u, v, u̇, v̇), s

)
u̇α + µ×(J(u, v, u̇, v̇), s

)
v̇α,

etc., where

(11.25)

J(u, v, u̇, v̇) := (uαuα, uαvα, vαvα, uαu̇α, uαv̇α, vαu̇α, vαv̇α,

u̇αu̇α, u̇αv̇α, v̇αv̇α, εαβuαvβ , εαβuαu̇β , εαβuαv̇β ,

εαβvαu̇β , εαβvαv̇β , εαβ u̇αv̇β , u3, v3, u̇3, v̇3).

It is tempting to use a continuity argument to deduce the nonunique representation
(11.17a) when u1v2 − u2v1 = 0 from that for the generic case that u1v2 − u2v1 
= 0.
The representation obtained by Cramer’s rule in the latter case shows the difficulty with
such an approach. A similar difficulty with regularity is apparent in (11.22) with v = 0,
for then we deduce that

(11.26) m
(
J(u, 0, 0, v3), s

)
=
m̂1(

√
uαuα, 0, u3, 0, 0, v3, s)√

uαuα
,

which could be ill behaved for uαuα = 0. Such troubles with regularity and uniqueness
are typical of analyses involving invariants.

For a rod to be transversely hemitropic, the inertia terms must obey
invariance requirements like those imposed on the constitutive functions.
Let (4.4) and (4.5) hold. Then the inertial terms are invariant under proper
orthogonal P that leave d3 invariant if and only if

(11.27a) ρI1 = 0 = ρI2
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and there is a scalar-valued function ρJ such that

(11.27b)
[
ρJ11 ρJ12
ρJ21 ρJ22

]
= ρJ

[
1 0
0 1

]
.

11.28 Exercise. Prove this statement.

In view of Ex. 4.8 and the comments following it, we conclude that
(11.27) severely restricts the shape of the rod. The following result shows
that our intrinsic characterization (11.13) of transverse hemitropy for con-
stitutive equations also severely restricts the shape.

11.29. Theorem. If the monotonicity condition (10.1) holds, then the
natural reference state of a transversely hemitropic elastic rod must be
straight, i.e., u◦

1 = 0 = u◦
2. More generally, if the equilibrium response of

(2.29) satisfies (10.1), then the same conclusion holds for any such material.

Proof. Consider (11.17a) in the natural reference state:

(11.30) m(u◦
αu

◦
α, 0, 0, 0, u

◦
3, 1, s)u

◦
α = 0.

Suppose that the reference state were not straight, say that u◦
1 �= 0. Then

m(u◦
αu

◦
α, 0, 0, 0, u

◦
3, 1, s) = 0 by (11.30), and u1 �→ m(u1

2 +u◦2
2 , 0, 0, u

◦
3, 1, s)

vanishes at ±u◦
1. It would then follow that u1 �→ m̂1(u1, u

◦
2, u

◦
3, v

◦, s) =
m(u1

2 + u◦2
2 , 0, 0, 0, u

◦
3, 1, s)u1 cannot have a positive derivative, so that

(10.1) cannot hold. �
Suppose we restrict transverse hemitropy by requiring that (11.13a) hold for all or-

thogonal A of the form (11.13b), i.e., for all A of the form (11.13b) for which det A = ±1.
(We refrain from characterizing the resulting material as transversely isotropic because
we reserve that appellation for another more appropriate concept. The terminology of
the theory of isotropy for rods is not standardized.) It then follows from Cauchy’s Rep-
resentation Theorem that m̂3, n̂3, and W depend on the J(u, v) of (11.18) in which δ has
been removed. We cannot immediately assert that (11.17a,b) hold with this reduced J
by analogy with Theorem 11.16 because its proof relies on the invariance of (11.19) under
proper orthogonal transformations, which does not extend to such improper transfor-
mations. Moreover, basing such a proof on Ex. 11.22 is complicated because δ plays an
essential role here. Instead, we observe that (11.17a,b) must hold for this larger group of
A. We substitute (11.17a) into (11.12a) and require that this condition also hold under
reflections A that are diagonal matrices with diagonal entries (−1, 1, 1). If we suppress all
the entries in J(u, v) except δ, we find that m(δ)uα +m×(δ)vα = m(−δ)uα +m×(−δ)vα,
etc. If δ 
= 0, then these equations imply that m and m× are even functions of δ. They
therefore depend only on δ2. but δ2 can be written in terms of the other invariants
of J(u, v). Trivially, the same conclusion holds if δ = 0. Thus, if (11.13a) hold for all
orthogonal A of the form (11.13b), then (11.17) hold with the reduced J(u, v). Analogous
results hold for (11.24).

We could still further restrict transverse hemitropy by adjoining the requirement that

(11.31) u3 �→ m̂3(u, v, s) is odd, u3 �→ m̂α(u, v, s), n̂(u, v, s) are even.

In this case, we replace u3 in (11.18) with u3
2 and multiply the right-hand side of

(11.17c) by u3.
A proof analogous to that of Theorem 11.29 yields
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11.32. Theorem. If the equilibrium response of (2.29) satisfies (11.31) and is monotone
in u3, then the natural reference state must be untwisted: u◦

3 = 0.

Assumption (11.31) is inappropriate for a rope composed of helically disposed fibers,
say, but is eminently reasonable for many natural and artificial rods, such as steel shafts.
We shall now see how a requirement like this comes out of a notion of transverse isotropy.
Our first inclination might be to allow A∗ of (11.3b) to reflect d◦

3. But then we run into
the difficulty that the domain of our constitutive functions does not include negative
values of v3.

Transverse isotropy. Let us first consider the scalar-valued stored-energy function
(u, v) �→ W (u, v, s) for a hyperelastic material. In keeping with (8.7b), we can alter-
natively denote its value by Φ(rs · R,R∗ · U · Rs, s). The value of the stored energy
function when the reference values of the directors are the d̄

◦
k of (11.3) is denoted

Φ̄(rs · A · R,A∗ · R∗ · U · A · Rs, s). The arguments of Φ̄ are those of Φ with R replaced
with R ·A∗. Since the energy is unchanged by the relabeling of the d◦

k, these two values
are equal:

(11.33) Φ(rs · R,R∗ · U · R, s) = Φ̄(rs · R · A∗,A · R∗ · U · R · A∗, s).

The isotropy group for hyperelastic rods consists of all orthogonal A for which (11.33)
holds with Φ̄ = Φ. We say that the rod is transversely isotropic iff this isotropy group
consists of all orthogonal A of the form (11.3). As in the discussion following (8.7b), we
relate the left-hand side of (11.33) to W (u, v, s) by noting that the d◦

k-components of rs

are vk, i.e., rs · R · d◦
k = rs · dk = vk, and that the d◦

k-components of R∗ · U · R are the
dk-components of the skew tensor U , which are determined by u. Indeed, U is related
to u by U · e = u × e for all e.

Now the d◦
k components of rs · R · A∗ ≡ A · R∗ · rs are

(11.34) vldl · R · A∗ · d◦
k = vld◦

l · A∗ · d◦
k = Aklvl

where Apq := d◦
p · A · d◦

q . We now relate the axial vector for A · R∗ · U · R · A∗ to
u by finding the axial vector for a skew tensor B∗ · U · B where B is orthogonal, i.e.,
we express b = (B∗ · U · B) · a as the cross product of some vector with a. By using
(11.1.49), we obtain for arbitrary c that

(11.35a)
b · c = c · B∗ · [u × (B · a)] = u · [(B · a) × (B · c)]

= (det B) u · B · (a × c) = (det B) [(B∗ · u) × a] · c,

whence the arbitrariness of c implies that

(11.35b) (B∗ · U · B) · a = [(det B) (B∗ · u)] × a.

Thus the axial vector for B∗ · U · B is (det B) (B∗ · u). For B = R, the d◦
k-components

of this vector are (det R)uk = uk, in consonance with our earlier comments. For B =
R · A∗, the corresponding axial vector is (det A) (A · R∗ · u), whose d◦

k components are
(det A)Aklul. Thus Φ̄(rs · R · A∗,A · R∗ · U · R · A∗, s) corresponds to a function of the
formW (det(A)A·u, A·v, s). W accordingly describes a transversely isotropic hyperelastic
material if and only if

(11.36) W (u, v, s) = W (det(A)A · u, A · v, s)

for all A of the form (11.13b) with det A = ±1. The consequences of (11.36) for A with
det A = 1 are given in Theorem 11.16, so that W has the form

(11.37) W (u, v, s) = Ψ (uαuα, uαvα, vαvα, εαβuαvβ , u3, v3, s)
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Now take A to be a reflection, say, the diagonal matrix (−1, 1, 1). Then the insertion of
(11.37) into (11.36) yields

(11.38) Ψ (uαuα, uαvα, vαvα, εαβuαvβ , εαβuαvβ , u3, v3, s)

= Ψ (uαuα, −uαvα, vαvα, εαβuαvβ , −u3, v3, s).

Only the second and fifth arguments, denoted x and y play an active role in (11.38),
which has the form ψ(x, y) = ψ(−x,−y).

11.39. Exercise. Prove that if ψ(x, y) = ψ(−x,−y), then ψ has the form ω(x2, y2, xy).
(If not in general, prove this when ψ is a real analytic function of x and y, in which case
it has a convergent Taylor series expansion. Cf. Smith (1994).)

In view of Ex. 11.39, for transversely isotropic hyperelastic rods, there is a function
Ω such that

(11.39) W (u, v, s) = Ω(uαuα, (uαvα)2, vαvα, u3
2, uαvαu3, v3, s).

Note that when W is taken to be quadratic in u and v, many distinctions between
different kinds of isotropy disappear.

In order to extend these methods directly to elastic rods with constitutive equations
(2.25), we must treat n and m differently, because (as (2.18) shows) m, just like u,
is an axial vector, i.e., the image of a skew tensor, which can be represented as a sum
of cross products of ordinary vectors. To handle m, we write it as dγ × mγ where
the mα are any vectors satisfying this underdetermined system. (There is no loss of
generality in taking m to have this form because it merely says that it is a sum of a vector
perpendicular to d1 and a vector perpendicular to d2. A 3-dimensional motivation for
this choice is given in Sec. 16.8.) The mγ transform just like n. In this way det A arises
for the transformation of m̂ just as it would if this transformation were defined to be the
derivative with respect to u of the right-hand side of (11.36).

It was essential in our treatment of (11.6) to separate the role of the deformation R
from that of the preliminary transformation A. The following exercise, producing nice
identities, indicates some pitfalls that we avoided by carefully making this distinction.

11.40. Exercise. Consider transformations of the form (11.6):

(11.41) d̄ k = G∗ · dk where G = Gpqdpdq .

(i) Let the Gpq be constant. (Note that G is not a constant.) Let ū be defined by
∂sd̄ k = ū × d̄ k, so that (6.1) implies

(11.42) 2ū = d̄ k × ∂sd̄ k = (G∗ · d̄ k) × (G∗ · ∂sd̄ k) + d̄ k × (G∗
s · ∂sd̄ k).

Compute Gs from its dyadic representation (11.41), and show that

(11.43) 1
2 (G∗ · d̄ k) × (G∗

s · ∂sd̄ k) = u − (det G)G∗ · u,

so that (11.42) yields

(11.44) ū = u.

(ii) Let (11.41) hold with G constant. Prove that

(11.45a,b) ū = (det G) G∗ · u, ū = (det G) u

where the components of ū in (11.45b) are ū · d̄ k.

The treatment of transverse isotropy here is based on Healey (2002). The study of
isotropy is somewhat simpler in the 3-dimensional theory; see Sec. 12.13. In Chap. 16,
where we derive rod theories from the 3-dimensional theory, we can readily construct
constitutive equations for materials with symmetry directly from those for the 3-dimen-
sional theory.
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12. Uniform Rods. Singular Problems
An elastic rod is called constitutively uniform iff the functions m̂ and n̂ of

(2.24) are independent of s. An analogous definition holds for a viscoelastic
rod. For simplicity of exposition, let (4.14) and (4.15) hold, i.e., let ρIα = 0.
A rod is called inertially uniform iff ρA and the ρJαβ are independent of s.
A rod is called uniform iff it is both constitutively and inertially uniform.
A real 3-dimensional rod may fail to be uniform because (i) its material
properties vary with s (i.e., the body in inhomogeneous), or (ii) its cross
section varies with s, or (iii) the reference configuration is natural and u◦

(which is the only set of strains that need not be constant functions in the
reference configuration) depends on s.

Let us show that (iii) causes nonuniformity for elastic rods satisfying
the monotonicity condition(10.1) by showing that uniformity forces u◦

s = o.
Suppose for simplicity that u◦ is continuously differentiable (see Ex. 6.9).
Note that (6.27) ensures that v◦ is constant. Let the reference configuration
be natural, so that

(12.1) m̂(u◦(s), v◦) = o ∀ s, whence
∂m̂
∂u

(u◦(s), v◦) · u◦
s = o ∀ s.

The monotonicity condition (10.1) implies that the matrix ∂m̂/∂u is non-
singular, so that (12.1) implies that u◦

s = o.
The situation (i) is rare for rods manufactured for technological pur-

poses. Consequently, it is reasonable to suppose that the functions ρA
and the ρJαβ are in fact products of a constant ρ, interpreted as the mass
density per unit reference volume, with functions A and Jαβ , interpreted
as generalized cross-sectional areas and moments of inertia of area of the
reference configuration. In particular (cf. (3.10) and (4.7)), we can take

(12.2)

A(s) :=
∫

A(s)
j(x) dx1 dx2, Jγδ(s) := εγµεδν

∫
A(s)

ϕµ(x)ϕν(x)j(x) dx1 dx2.

In the same spirit, we may take

(12.3a,b) n̂(u, v, s) = A(s)n̄(u, v, s), m̂α(u, v, s) = Jαβ(s)m̄β(u, v, s).

The treatment of m̂3 is a little more problematical: For the torsion of
a homogeneous isotropic linearly elastic prism (see Sokolnikoff (1956) or
Timoshenko & Goodier (1951), e.g.), we know that the twisting couple m̂3
has the form Du3, where the torsional rigidity D depends on the cross-
sectional shape. When the prism is a circular cylinder, D reduces to GJαα

where G is the shear modulus of linear elasticity (often denoted µ). Thus
it is appropriate to complement (12.3a,b) with

(12.3c) m̂3(u, v, s) = D(s)m̄3(u, v, s),

although the generality inherent in m̄3 would permit us to replace this D
with Jαα.
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Even if (ii) is the only source of nonuniformity, the functions n̄, m̄β , and
m̄3 cannot in general be taken to be independent of s. Indeed, if the rod
is hyperelastic, then the symmetry of (2.27) would force severe restrictions
on the constitutive functions. A fully convincing demonstration of the
naturalness of (12.3) must await the derivation in Chap. 16 of rod equations
from the 3-dimensional equations. Such a derivation is entirely in the spirit
of Sec. 4, but depends upon the 3-dimensional notion of stress and upon
3-dimensional constitutive equations.

As we show in Sec. 19, the coefficient functions A, Jαβ , D appear in
the classical theories of rods. Our purpose in using (12.3) is not to force
our nonlinear constitutive functions into the mold of such theories, but to
characterize in an explicit and convenient form the dependence of these
functions on s. Such a characterization proves to be very useful for the
treatment of singular problems in which m̂(·, ·, s) → o and n̂(·, ·, s) → o as
s → s1 or s2. We accordingly assume that the coefficients of the barred
functions in (12.3) exactly capture the limit process. Thus m̄1(·, ·, s) �→ 0
as s→ s1 or s2, etc.

The considerations of this section apply to rods of any material.

12.4. Exercise. Suppose that u◦
s 
= o. Prove that constitutive equations satisfying the

monotonicity condition (10.1) cannot have the form

(12.5) m̂α(u, v, s) = Jαβm̄β(u, v), m̂3(u, v, s) = Dm̄3(u, v)

where the J ’s and D are constants.

13. Representations for the
Directors in Terms of Euler Angles

The use of any six components of the directors d1 and d2 to define a
configuration of a rod is awkward because these six components are subject
to three constraints expressing the orthonormality of d1 and d2. In this
section we show how d1 and d2 can be determined from just three Euler
angles θ, φ, ψ in such a way that the constraint of orthonormality is auto-
matically satisfied (at the cost of introducing a polar singularity that can
be the source of serious analytical difficulty).

Let {jl} be a fixed orthonormal basis for E
3. We describe d3 by spherical

coordinates:

(13.1) d3 = sin θh + cos θ j3, h := cosφ j1 + sinφ j2.

d1 and d2 are confined to the plane perpendicular to d3. If we can identify
a distinguished line in this plane, then we can fix the locations of d1 and
d2 by specifying the angle that one of them makes with respect to this
line. Our development is based on this simple observation and on the
corresponding construction shown in Fig. 13.2.

If sin θ �= 0, then the plane perpendicular to d3 intersects the {j1, j2}-
plane along the line perpendicular to both j3 and d3. A unit vector along
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Fig. 13.2. The relationship of the directors to the fixed basis via
the Euler angles.

this line of nodes is

k2 : =
j3 × d3

|j3 × d3|
= j3 × h = − sinφ j1 + cosφ j2.(13.3)

Set

k1 : = k2 × d3 = cos θh − sin θ j3, k3 = d3.(13.4)

k1 and k2 form an orthonormal basis for the plane perpendicular to d3.
Let ψ be the angle from k1 to d1. Then

(13.5) d1 = cosψ k1 + sinψ k2, d2 = − sinψ k1 + cosψ k2,

together with (13.1), (13.3), (13.4), give the dk in terms of the Euler angles
θ, φ, ψ. In the terminology of rigid-body mechanics, θ is the nutation angle,
φ is the precession angle, and ψ is the spin angle.

Using the relations

(13.6) hs = φsk2, ∂sk2 = −φsh, ∂sk1 = −θsd3 + cos θ φsk2

we compute the ∂sdk and then use (6.1) to obtain

(13.7)

u1 = θs sinψ − φs cosψ sin θ,
u2 = θs cosψ + φs sinψ sin θ,
u3 = ψs + φs cos θ.
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The corresponding expressions for w are obtained by replacing the
s-derivatives with t-derivatives.

Caveat. For certain problems it is useful to relate the dk to orthonormal
bases depending on s, e.g., a basis for cylindrical coordinates. In this case
(13.7) need not hold; the uk must be found from the definition ∂sdk =
u × dk.

There is no standard notation for Euler angles. Although the Euler angles uniquely
determine the configuration of the dk, they are not uniquely determined by the dk.
Some of this ambiguity is evident in (13.7): If cos θ = 1, then only the sum ψs + φs can
be determined from u. This difficulty, associated with the polar singularity introduced
in (13.1), can be avoided by using the invariant characterization of u and w inherent in
(2.3) and developed in Sec. 6, or by using alternative representations of proper orthogonal
transformations in E3, as is done in rigid-body mechanics (see Kehrbaum & Maddocks
(1997), Shuster (1993), Simo & Vu-Quoc (1988)).

14. Boundary Conditions
In this section we describe a whole range of physically reasonable bound-

ary conditions and then show how they can be expressed by a compact
formalism. The motivation for our careful treatment arises not from a
compulsive desire for completeness, but from the observation that global
behavior and stability of solutions for rod problems depends crucially on
subtle distinctions in boundary conditions; see Antman & Kenney (1981).
In this section we exhibit only the classical versions of the boundary condi-
tions in their conventional forms (cf. (2.2.3)) deferring to the next section
a discussion of their weak forms.

The configuration at time t of the end section s1 of a rod is the triple
{r(s1, t),d1(s1, t),d2(s1, t)}. (The inequality v3 ≡ rs · d3 > 0 of (2.10)
determines the side of the plane span{d1(s1, t),d2(s1, t)} on which lies the
material of the rod near s1.) The prescription of the motion of an end of
the rod is equivalent to welding the end to a rigid plane whose motion is
prescribed. We can prescribe the entire motion of an end or merely part of
it together with complementary mechanical conditions.

Whether the welding of an end leads to a well-posed mathematical problem when
the end is tapered to zero thickness depends on whether the boundary values of the
dα are assumed in the sense of trace. The answer to this question in turn depends
on the functional setting of the problem, which is strongly influenced by the form of
the functions Jαβ of Sec. 12 and by the behavior of the constitutive functions for large
strains. The crudeness of our model permits welding under some circumstances in which
the end is tapered to zero thickness; see Antman (1976b, Sec. 2).

Kinematic boundary conditions fixing translation. We could pre-
scribe the position r(s1, ·) of the end s1 or we could allow it to move on
a curve or surface undergoing a prescribed motion or we could allow it
to move freely in space. If r(s1, t) is confined to a moving surface whose
equation is γ(z, t) = 0, then

(14.1) γ(r(s1, t), t) = 0.

If r(s1, t) is confined to a moving curve, then it moves on the intersection
of two moving surfaces and therefore satisfies two equations like (14.1).
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We now develop a single compact formula to describe the four kinds of
boundary conditions on r(s1, t). If r(s1, ·) is prescribed, then there is a
given (continuous) function r1 such that

(14.2) r(s1, t) = r1(t).

If r(s1, t) is confined to a moving curve defined parametrically by I � a �→
r1(a, t) where I is an interval, then

(14.3) r(s1, t) = r1(a(t), t).

a(t) is a generalized coordinate locating r(s1, t) on the curve r1(·, t). If
r(s1, t) is confined to a moving surface defined parametrically by A � a �→
r1(a, t) where A is a domain in R

2 with possibly part of its boundary, then

(14.4) r(s1, t) = r1(a(t), t).

a(t) is a pair of generalized coordinates locating r(s1, t) on the surface
r1(·, t).

We now unify and generalize these considerations. Let T denote the
time interval on which the motion takes place. Let G1 denote a connected
set in R

3×T having the property that each of its sections G1(τ) := {(a, t) ∈
G1 : t = τ} is nonempty. We assume that there is a continuous function
G1 � (a, t) �→ r1(a, t) ∈ E

3 such that

(14.5) r(s1, t) = r1(a(t), t).

This means that r(s1, t) is specified by whatever part of the triple a(t) of
generalized coordinates appears in the right-hand side of (14.5). If G1(t) is
a point for all t, then (14.5) prescribes r(s1, t) and is therefore equivalent
to (14.2). If G1(t) is a segment of a curve for all t, then (14.5) restricts
r(s1, t) to a curve in E

3, so that (14.5) is equivalent to (14.3). Similarly, we
recover (14.4) when G1(t) is a 2-dimensional region for all t and we recover
the unconstrained case when G1(t) is a three-dimensional region for all t.

Let us study the second case more carefully. If G1(t) is a segment of a
curve of finite length that is not a loop, then it may or may not contain
its end points. For illustration, suppose that the constraint curve in E

3 is
the half-open segment r1(·, t) defined by r1(a, t) = a1i for 0 < a1 ≤ l. We
interpret r1(·, t) as the groove illustrated in Fig. 14.6. The end of the rod
can touch the end li of the groove, in which case the end of the groove
exerts a reactive force on the end of the rod. The end of the rod cannot
touch the end o of the groove. The placement of a spring in the groove
between this end of the groove and the end of the rod would prevent this
contact (provided that an infinite force is required to compress this spring
to zero length).

Suppose that a0 ∈ G1(τ) and that the directions in which r1(·, τ) has a
linear Gâteaux differential at a0 form a linear space of dimension ρ1(a0, τ),
which can be 0, 1, 2, or 3. In these cases, which are not exhaustive (because
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Fig. 14.6. Configuration at time t of a rod whose end s1 is
constrained to lie on a half-open segment.

the differential might be defined only on a proper subset of such a linear
space), we denote the Gâteaux derivative by ∂r1(a0, τ)/∂a and can identify
ρ1(a0, τ) with the rank of this transformation. ρ1(a0, τ) is the number of
translational degrees of freedom of the end s1 at (a0, τ). When there are no
unilateral contacts included in the constraints, we can subsume the special
cases of G1 described in preceding paragraphs under this formalism.

The use of generalized coordinates a in (14.5) means that (14.5) might
afford merely a local description of boundary conditions. A global descrip-
tion, in the spirit of (14.1), can be readily framed by using concepts of
manifold theory (see Abraham & Marsden (1979) or Arnol’d (1974)). For
the treatment of unilateral conditions, see the references mentioned in the
last paragraph of Sec. 7.8.

Kinematic boundary conditions fixing rotation. To describe boundary conditions
fixing rotation, we imitate the development beginning with (14.5). Let B1 denote a
connected set in R3 × T having the property that each of its sections B1(τ ) := {(b, t) ∈
B1 : t = τ} is nonempty. We assume that there are continuous functions B1 � (b, t) �→
d1

k(b, t) ∈ E3, where the d1
k(b, t) form a right-handed orthonormal system such that

(14.7) dk(s1, t) = d1
k(b(t), t).

To avoid technical difficulties with unilateral constraints, let us suppose b0 ∈ B1(τ ) and
that the directions in which the d1

k(·, τ ) have linear Gâteaux differentials at b0 form a
linear space. Then in analogy with our treatment of ∂r1(a0, τ )/∂a and with (2.3), we
can write

(14.8) ∂d1
k(b0, τ )/∂b = Z1(b0, τ ) × d1

k(b0, τ ).

Let the rank of Z1(b0, τ ) be δ1(b0, τ ), which is the number of rotational degrees of
freedom of the end s1 at (b0, τ ). If δ1(b0, τ ) = 0, then the dk are fixed by (14.7). If
δ1 = 1, then Z1(b0, τ ) has the same effect as a vector z1(b0, τ ), namely, (14.7) constrains
the end s1 to rotate instantaneously about the axis z1(b0, τ ). An important special case
of this condition is that in which a material direction αkdk(s1, t) is attached to an axis
(hinge) having a prescribed alignment t �→ e3(t):

(14.9) αkdk(s1, t) = e3(t).
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Here the αk are assumed to be constant Cartesian components of a unit vector and e3 is a
unit vector. To put this condition into the parametric form (14.7), we prescribe e1 and e2
in any convenient way so that {ek} forms a right-handed orthonormal triad. Since αkdk

is a material vector, we introduce another material basis {d�
k} by d�

k(s1, t) = Q∗·dk(s1, t)
where Q is any constant proper orthogonal tensor such that d�

3(s1, t) = αkdk(s1, t).
Then (14.9) can be put into the parametric form (14.7) by

(14.10)

d1(s1, t) = d1
1(b1(t), t) := cos b1(t)Q · e1(t) + sin b1(t)Q · e2(t),

d2(s1, t) = d1
2(b1(t), t) := − sin b1(t)Q · e1(t) + cos b1(t)Q · e2(t),

d3(s1, t) = d1
3(b1(t), t) := Q · e3(t).

14.11. Exercise. Compute z1 and w(s1, t) from (14.10).

If δ1 = 2, then (14.8) says that there is no rotation about one time-dependent
direction. The easiest way to produce examples of (14.7) is to identify b with the Euler
angles θ, φ, ψ and constrain these to lie in a 2-dimensional surface in their space. For this
purpose, let Q be a constant proper orthogonal tensor, and identify a special material
triad d�

k(s1, t) by d�
k(s1, t) = Q∗ · dk(s1, t). Let t �→ e1(t), e2(t), e3(t) be a prescribed

right-handed orthonormal moving basis. We now identify {e1(t), e2(t), e3(t), d�
k} with

the variables {j1, j2, j3, dk} of Sec. 13. We could then impose the constraint that there
be no spin about e�

3 relative to the frame {ek} simply by fixing ψ while leaving the other
Euler angles free.

We get an important example by constraining the orientation of the end so that

(14.12) 0 = d�
1 · e2(t) = cosψ cos θ sinφ + sinψ cosφ.

This boundary condition is maintained by a (Cardan or Hooke) universal joint , illus-
trated in Fig. 14.13, whose outer gimbal has a prescribed motion. Then (14.7) has the
form
(14.14)

d�
1(s1, t) = cosψ(t)[cos θ(t) cosφ(t)e1(t) − sin θ(t)e3(t)] − sinψ(t) sinφ(t)e1(t),

d�
2(s1, t) = − sinψ(t)[cos θ(t) (cos φ(t)e1(t) + sin φ(t)e2(t)) − sin θ(t)e3(t)]

+ cosψ(t)[− sinφ(t)e1(t) + cos φ(t)e2(t)],

d�
3(s1, t) = sin θ(t)[cosφ(t)e1(t) + sin φ(t)e2(t)] + cos θ(t)e3(t),

where the Euler angles are subject to (14.12).

14.15. Exercise. Compute Z1(b0, τ ) from (14.12) and (14.14).

If δ1 = 3, then the orientation of the section s1 is free. If the position r(s1) is
prescribed, then the end can be supported in a ball-and-socket joint. If r(s1) is confined
to a curve, then the socket can be replaced by a tube. If r(s1) is confined to a surface,
there does not appear to be a simple mechanical device that prevents r(s1) from leaving
the surface. In such cases, there is usually some force, for example, coming from gravity
or from an arrangement of springs that presses the end s1 into the surface. Strictly
speaking, the boundary conditions for this case are unilateral constraints.
14.16. Exercise. Let

(14.17) ∂td
1
k(b, t) = w1(b, t) × d1

k(b, t).

Show that (14.7) implies that

(14.18) w(s1, t) = [Z1(b(t), t) × d1
k(b(t), t)] · ∂tb(t) + w1(b(t), t) × d1

k(b(t), t).

In place of (14.7), we could have prescribed (14.18). Making the angular velocity w(s1, t)
the fundamental kinematical variable is analogous to using quasi-coordinates in rigid
body mechanics (see Whittaker (1937)).
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Fig. 14.13. A universal joint. For the support defined by (14.12), the
motion of e2 is prescribed.

The generalized coordinates a and b may have components in common. For example,
a hinge with axis d1(s1, t) may be attached to the end s1 with this hinge constrained
to slide in the (moving) track to which r(s1, t) is constrained with the axis of the hinge
tangent to the track. We model this track by a moving space curve I � a �→ r1(a, t)
and take

(14.19) r(s1, t) = r1(a(t), t), d1(s1, t) =
∂r1(a(t), t)/∂a
|∂r1(a(t), t)/∂a|

(cf. (14.3)). In view of this example, we can generalize (14.5) and (14.7) by allowing r1(·)
and d1

k(·) to have a nonempty subset E1 of points (a, b, t) in R6 × T as their common
domain of definition.

Of course, all the comments about end s1 apply to end s2, the behavior
of which is described with the analogous notation. In view of the last
paragraph, we take as our kinematic boundary conditions

(14.20a,b) r(sα, t) = rα(aα(t), bα(t), t), dk(sα, t) = dα
k (aα(t), bα(t), t),

α = 1, 2, where rα(·) and dα
k (·) are defined on Eα ⊂ R

6 × T .

Mechanical boundary conditions. The constraints imposed on the mo-
tion of the ends by the kinematic boundary conditions (14.20) are enforced
by components of resultants at the ends that are not known a priori. In
general, they cannot be determined until a full solution of the governing
equations and their side conditions is obtained. The values of these con-
straint components at the ends are whatever are necessary to maintain the
constraint. On the other hand, components of the resultants that tend
to move the ends in ways permitted by the kinematic boundary conditions
may be prescribed. In fact, for well-set problems these components must be
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prescribed. (Often they are prescribed to vanish.) We first illustrate these
notions by example and then incorporate our findings into a rule for the
prescription of mechanical boundary conditions that complement (14.20).

If r(s1, t) is prescribed, then n(s1, t), the reaction necessary to en-
force the constraint, is not prescribed. If r(s1, t) is confined to a curve
I � a �→ r1(a, t) undergoing a prescribed motion, then only the compo-
nent of n(s1, t) instantaneously tangent to the curve can be prescribed; the
components of n(s1, t) orthogonal to the curve maintain the constraint.
Since a tangent to r1(·, t) at r(s1, t) is ∂r1(a(t), t)/∂a, we accordingly pre-
scribe t �→ n(s1, t)·∂r1(a(t), t)/∂a. Note that the actual velocity of the end
rt(s1, t) = [∂r1(a(t), t)/∂a]a′(t) + ∂r1(a(t), t)/∂t is not necessarily tangent
to r1(·, t) at r(s1, t). (It is if the curve is fixed in space.)

Similarly, if r(s1, t) is confined to a moving surface A � a �→ r1(a, t)
(see (14.4)), then we prescribe only t �→ n(s1, t) · ∂r1(a(t), t)/∂a. If r(s1, t)
is free, then (14.5) holds with ρ1 = 3. In this case, we prescribe t �→
n(s1, t) · ∂r1(a(t), t)/∂a, which is the same as prescribing n(s1, t) itself.

The prescribed values of the components of n(s1, t) may depend on the
position, velocity, and even the past history of the end. A dependence on
the position of the end may account for spring supports, a dependence on
the velocity may account for friction or for internal dissipation in supporting
springs, and the dependence on past history may account for more general
viscoelastic processes. For simplicity of exposition, we assume that the
prescribed components of n(sα, t) depend only on the position, velocity,
orientation, and angular velocity of the end sα. Similar considerations
apply to the specification of couples at the ends. Under the assumption
that (aα, bα) �→ rα(aα, bα, t),dα

k (aα, bα, t) are differentiable, all these cases
of mechanical boundary conditions are embodied in the requirement that
there are functions (r, ṙ,dk,w, t) �→ nα(r, ṙ,dk,w, t),mα(r, ṙ,dk,w, t)
such that plus1pt plus1pt

[
n(sα, t) − nα

(
r(sα, t), rt(sα, t), dk(sα, t),w(sα, t), t

)](14.21a)

·
{
∂rα(aα(t), bα(t), t)/∂aα

∂rα(aα(t), bα(t), t)/∂bα

}
= o,

[
m(sα, t) − mα

(
r(sα, t), rt(sα, t), dk(sα, t),w(sα, t), t

)](14.21b)

·
{

Yα(aα(t), bα(t), t)
Zα(aα(t), bα(t), t)

}
= o

where

(14.21c)
∂dα

k (a, b, t)/∂a = Yα(a, b, t) × dα
k (a, b, t),

∂dα
k (a, b, t)/∂b = Zα(a, b, t) × dα

k (a, b, t).

The domain of nα(·, ṙ,dk,w, t) and mα(·, ṙ,dk,w, t) is the range of
rα(·, ·, t), and the domain of nα(r, ·,dk,w, t) and mα(r, ·,dk,w, t) is the
range of
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(14.21d) (a, ȧ, b, ḃ) �→ ∂rα

∂a
(a, b, t) · ȧ +

∂rα

∂b
(a, b, t) · ḃ +

∂rα

∂t
(a, b, t),

etc.
For static problems mechanical boundary conditions cannot be pre-

scribed arbitrarily. They must be consistent with the requirement that
the resultant force and moment must vanish. Such conditions are neces-
sary conditions for the existence of solutions to equilibrium problems.
Twist. Consider a statical problem in which δ1 = 0 = δ2 so that d1 and d2 are
prescribed at each end of the rod. If the end s2 of the rod is twisted about d3(s2)
through an angle equal to an integral multiple of 2π, then d1(s2) and d2(s2) remain
unchanged. Thus it is likely that equilibrium problems for the rod under the boundary
conditions specifying d1 and d2 at the ends have multiple solutions. This multiplicity is
unsatisfactory because the boundary conditions ignore the physical process of twisting.
(There is no such ambiguity for dynamical problems because the dk(sα) can be expected
to evolve continuously from their initial states.) It is possible to prescribe the amount
of twist in a way that is geometrically and analytically satisfactory, the most effective
way involving the linking number of Gauss. This number is a topological invariant, the
use of which clarifies a very rich and complicated geometrical situation. For details, see
Alexander & Antman (1982). The related notions of twist, writhe, and linking number
play an essential role in studies of DNA; see Bauer, Crick, & White (1980) and the
references cited at the end of Chap. 9.

15. Impulse-Momentum Laws and
the Principle of Virtual Power

In this section we extend (2.17) and (2.18) to intervals (a, b) containing the end
points, at which we must account for boundary conditions. We then show that these
impulse-momentum laws are equivalent to a precisely formulated Principle of Virtual
Power. We concentrate on the treatment of boundary conditions and on the Angular
Impulse-Momentum Law, which present novelties not encompassed in the development
of Secs. 2.3 and 2.4. For simplicity of exposition, we assume that ρIα = 0.

We first extend the Linear Impulse-Momentum Law to the whole interval [s1, s2].
The classical forms of the initial conditions are conventionally denoted

(15.1a,b) r(s, 0) = g0(s), rt(s, 0) = g1(s)

(see (2.2.4)). We assume that g0 and g1 are integrable on [s1, s2]. We assume that
(15.1b) holds in the sense of trace (see (2.3.4)) and, just as in Sec. 2.3, incorporate it
into the Linear Impulse-Momentum Law by replacing rt(ξ, 0) in (2.17) with g1(ξ). Then
just as in (2.3.7), we find that the Linear Impulse-Momentum Law implies that (15.1b)
holds in the sense of trace. To fix ideas, let us first suppose that ρ1 = 3 = ρ2. In this
case, the conventional classical forms of the boundary conditions (14.21a) reduce to

(15.2) n(sα, t) = nα
(
r(sα, t), rt(sα, t), dk(sα, t),w(sα, t), t

)
.

We assume that the functions t �→ nα
(
r(sα, t), rt(sα, t), dk(sα, t), w(sα, t), t

)
are lo-

cally integrable on [0,∞). We extend (2.17) to the whole interval [s1, s2] and incor-
porate (15.2) into the resulting equation by simply replacing n−(a, t) ≡ n(a, t) with
nα

(
r(sα, t), rt(sα, t), dk(sα, t),w(sα, t), t

)
if a = s1 and by making the corresponding

adjustment if s = s2. If a = s1 and if s < s2, then with the modifications just introduced
(2.17) becomes∫ τ

0

[
n(s, t) − n1(r(s1, t), rt(s1, t), dk(s1, t),w(s1, t), t

)
+
∫ s

s1

f(ξ, t) dξ
]
dt

=
∫ s

s1

(ρA)(ξ)[rt(ξ, t) − g1(ξ)] dξ.(15.3)
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By following the proof of (2.3.7), we readily find that (15.2) holds in the sense of trace,
i.e., there are sets A and B with Lebesgue measure |A| = s2 − s1 and |B ∩ [0, T ]| = T
for all T ≥ 0 such that

(15.4) lim
A	s→sα

∫ t2

t1

[n(s, t) − nα
(
r(sα, t), rt(sα, t), dk(sα, t),w(sα, t), t

)
] dt = 0

for all t1, t2 ∈ B.
We can now derive the Principle of Virtual Power corresponding to our generalization

of the Linear Impulse-Momentum Law by modifying the approach of Sec. 2.4. There we
introduced a test function y with support in (s1, s2) × [0, τ ) (where (s1, s2) was taken
to equal (0, 1)). The requirement that this y vanish at s1 and s2 reflects the boundary
conditions (2.2.3) or (2.3.3). We suspend this requirement in our present development.
Since the boundary of [s1, s2] is disconnected, it is convenient to treat the boundary
conditions at each end separately by the contrivance of writing the test function y as
the difference

(15.5) y = y1 − y2

where y1 and y2 are twice continuously differentiable, have compact support on [s1, s2]×
[0,∞), and satisfy the boundary conditions y1(s2) = o = y2(s1). We operate on
(15.3) with

∫∞
0 dτ

∫ s2
s1
db y1

st(b, τ )·, operate on the corresponding version of (2.17) for
b = s2, namely,

∫ τ
0 [n2(r(s2, t), . . . ) − n(a, t) + · · · , with

∫∞
0 dτ

∫ s2
s1
da y1

st(a, τ )·, add
the resulting equations, and follow (2.4.1) and (2.4.2) to obtain the Principle of Virtual
Power corresponding to the Linear Impulse-Momentum Law :

(15.6)
∫ ∞

0

∫ s2

s1

[n(s, t) · ys(s, t) − f(s, t) · y(s, t)] ds dt

−
∫ ∞

0
[n2(r(s2, t), rt(s2, t), dk(s2, t),w(s2, t), t

)
· y(s2, t)

− n1(r(s1, t), rt(s1, t), dk(s1, t),w(s1, t), t
)

· y(s1, t)] dt

=
∫ ∞

0

∫ s2

s1

(ρA)(s)[rt(s, t) − g1(s)] · yt(s, t) ds dt

for all y’s in C2([s1, s2] × [0,∞)
)

with compact support and, more generally, for all y’s
in W∞

1
(
[s1, s2] × [0,∞)

)
with compact support.

15.7. Exercise. Follow the pattern of Sec. 2.4 to show that (15.6) implies the gener-
alized Linear Impulse-Momentum Law consisting in (15.3) and its analog for s2.

We now turn to the treatment of (14.20) and (14.21). Since their formulation was
specifically contrived to fit the Principle of Virtual Power, we first formulate a version
of it capable of handling these boundary conditions. We assume that the composite
functions of t whose values are given by the right-hand sides of (14.21) are locally inte-
grable on [0,∞). We use a variant r� of the traditional notation δr for the test function
(virtual velocity) y. Suppose that the functions rα(·, ·, t) and dα

k (·, ·, t) of (14.20) are
continuously differentiable. Then the Principle of Virtual Power corresponding to the
Linear Impulse-Momentum Law states that (15.6) holds for all piecewise continuously
differentiable r� with compact support on [s1, s2] × [0,∞) that have the form

(15.8) r�(sα, t) =
∂rα

∂aα

(
aα(t), bα(t), t

)
· aα

�(t) +
∂rα

∂bα

(
aα(t), bα(t), t

)
· bα

�(t)

with aα
� and bα

� piecewise continuously differentiable with compact support. Condition
(15.8) says that the test function r� is tangent to the manifolds defined by (14.20).
In particular, for fixed t, a curve on the manifold (14.20a) with α = 1 has the form
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ε �→ r1(ã1(ε), b̃1(ε), t). Therefore, a tangent to this manifold is the derivative of this
function with respect to ε evaluated at ε = 0. The one-parameter family of position
functions that lie on this curve for s = s1 is r(s, t, ε) with r(s1, t, ε) = r1(ã1(ε), b̃1(ε), t).
The differentiation of this equation with respect to ε yields (15.8), provided we denote
∂u(·, ε)/∂ε|ε=0 by u� for any function u.

We now show that this principle implies that the boundary conditions (14.21a) are
assumed in the sense of trace. We tacitly suppose that all the integrals we exhibit
make sense as Lebesgue integrals. (For a discussion of the technical details that we now
suppress, see Secs. 2.3 and 2.4.) Let σ ∈ (s1, s2), let ε ∈ (0, s2 − σ), and set

(15.9) φ(s; σ, ε) :=

⎧⎪⎨⎪⎩
1 for s1 ≤ s ≤ σ,
− s−(σ+ε)

ε
for σ ≤ s ≤ σ + ε,

0 for σ + ε ≤ s ≤ s2.

Let 0 ≤ t1 < t2, let 2ε < t2 − t1, and set

(15.10) ψ(t; ε) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ t ≤ t1,
t−t1

ε
for t1 ≤ t ≤ t1 + ε,

1 for t1 + ε ≤ t ≤ t2 − ε,
t2−t

ε
for t2 − ε ≤ t ≤ t2,

0 for t2 ≤ t.

Let e be an arbitrary triple of real numbers. Let r�(s1, t) be given by (15.8) with
a1�(t) = ψ(t; ε)e and with b1

� = o. We substitute

(15.11) r�(s, t) = φ(s; σ, ε)r�(s1, t)

into (15.6) and let ε → 0. In this process, we find that

(15.12) lim
ε→0

∫ ∞

0

∫ s2

s1

n(s, t) · r�
s (s, t) ds dt = −

∫ t2

t1

n(σ, t) · ∂r
1

∂a1
(
a1(t), b1(t), t

)
· e dt.

If we now let σ → s1 (through an appropriate dense set) in the resulting form of (15.6)
and if we use the arbitrariness of e, we obtain

(15.13) lim
s→s1

∫ t2

t1

[
n(σ, t) − n1(r(s1, t), rt(s1, t), dk(s1, t),w(s1, t), t

)]
· ∂r

1

∂a1
(
a1(t), b1(t), t

)
dt = o

(for almost every t1 and t2) just as in (15.4). The other boundary conditions of (14.21a)
are treated analogously. Thus the Principle of Virtual Power implies that (14.21) holds
in the sense of trace.

15.14. Exercise. Prove the equivalence of our general version of the Principle of
Virtual Power corresponding to the Linear Impulse-Momentum Law with a generalized
version of the Linear Impulse-Momentum Law when for each α the r(sα, t) are confined
to moving points, lines, or planes, or are unrestrained for all time. In this case, (14.20a)
and (14.21a) hold.

We now derive the Principle of Virtual Power corresponding to the Angular Impulse-
Momentum law in the simple special case that δ1 = 3 = δ2, which is analogous to (15.2).
In this case, the classical boundary conditions, which come from (14.21b), have the form

(15.15) m(sα, t) = m1(r(sα, t), rt(sα, t), dk(sα, t),w(s1, t), t
)
.
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The classical forms of the initial conditions are

(15.16a,b) dk(s, 0) = d0
k(s), h(s, 0) = h0(s).

We tacitly assume that all data are such that all integrals make sense as Lebesgue
integrals. We assume that (15.16a) holds in the sense of trace.

We extend the reduced Angular Impulse-Momentum Law (2.22) to the interval [s1, s2]
by incorporating the boundary condition (15.15) just as in (15.3). We identify

(15.17) d�
k = z × dk.

We introduce a test function z as in (15.5) and follow the procedure leading to (15.6) to
obtain the Principle of Virtual Power corresponding to the Angular Impulse-Momentum
Law :

(15.18)
∫ ∞

0

∫ s2

s1

[m(s, t) · zs(s, t) − [rs(s, t) × n(s, t) + l(s, t)] · z(s, t)] ds dt

−
∫ ∞

0
[m2(r(s2, t), rt(s2, t), dk(s2, t),w(s2, t), t

)
· z(s2, t)

− m1(r(s1, t), rt(s1, t), dk(s1, t),w(s1, t), t
)

· z(s1, t)] dt

=
∫ ∞

0

∫ s2

s1

[h(s, t) − h0(s)] · zt(s, t) ds dt

for all z’s in C2([s1, s2] × [0,∞)
)

with compact support and, more generally, for all z’s
in W∞

1
(
[s1, s2] × [0,∞)

)
with compact support.

As with (15.6), we generalize (15.18) to handle general boundary conditions (14.20)
and (14.21) by requiring that (15.18) hold for z’s meeting obvious smoothness require-
ments and having the form

(15.19) z(sα, t) = aα
�(t) · Yα

(
aα(t), bα(t), t

)
+ bα

�(t) · Zα
(
aα(t), bα(t), t

)
where Yα and Zα are defined after (14.21b).

We can unify our two Principles of Virtual Power by simply adding (15.6) and (15.18).
To obtain a useful variant of this combined form, which illuminates the development
given above, we observe that our kinematical variables r and dk are constrained by

(15.20) dk · dl = δkl,

by the boundary conditions (14.20), and by the initial conditions (15.1a) and (15.16a).
These constraints may be regarded as restricting {r, dk} to a certain manifold M in the
function space of {r, dk}. We denote a typical tangent vector to this manifold at (r, dk)
by (r�, d�

k). To compute (r�, d�
k) at a particular element (r, dk) of the function space,

we choose a C1-curve [−1, 1] � γ �→
(
r(·, ·, γ), dk(·, ·, γ)

)
in M that passes through

(r, dk) at γ = 0. Then a tangent vector to this curve, which is of course tangent to
M at (r, dk), is (r�, d�

k) =
(
∂γr(·, ·, 0), ∂γdk(·, ·, 0)

)
. The arbitrariness of the choice

of curve is reflected in the arbitrariness in (r�, d�
k). We justify the choice (15.8) by

requiring the curve to satisfy (14.20a):

(15.21) γ �→ r(sα, ·, γ) = rα
(
aα(·, γ), bα(·, γ), ·

)
.

Then (15.8) is given by

(15.22) r�(sα, t) = ∂γr(sα, t, 0) with aα
� = ∂γaα(·, 0), bα

� = ∂γbα(·, 0).

The choice (15.19) is justified the same way. Now (2.4b) and (15.17) imply that
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(15.23) r�
s = (v�

k )dk + vk(z × dk) = (v�
k )dk + z × rs, zs = (u�

k)dk.

Hence the combined form of the Principle of Virtual Power is equivalent to∫ ∞

0

∫ s2

s1

[n · v� + m · u� − f · r� − l · z] ds dt(15.24)

−
∫ ∞

0
[n2 · r�(s2, t) − n1 · r�(s1, t) + m2 · z(s2, t) − m1 · z(s1, t)] dt

=
∫ ∞

0

∫ s2

s1

{(ρA)(s)[rt(s, t) − g1(s)] · r�
t + [h(s, t) − h0(s)] · zt(s, t)} ds dt

for all r� satisfying (15.8) and for all z’s satisfying (15.19).

15.25. Exercise. Carry out the development in this section when ρIα 
= 0.

15.26. Exercise. Follow the pattern of Sec. 2.5 to determine jump conditions at curves
of discontinuity in the (s, t)-plane.

16. Hamilton’s Principle for Hyperelastic Rods
We now carry out the analog of Sec. 2.10 for rods. We do not pause to spell out

the obvious regularity assumptions needed to make sense of our various expressions. We
assume that the rod is hyperelastic, so that (2.26) holds. The stored energy in the rod
at time t is

(16.1) Ψ [r, dk](t) :=
∫ s2

s1

W
(
u(s, t), v(s, t), s

)
ds.

Suppose that there is a scalar-valued function ω such that the applied force and couple
densities have the form

(16.2)
f(s, t) = −∂ω

∂r

(
r(s, t), dk(s, t), s

)
,

l(s, t) = −dk(s, t) × ∂ω

∂dk

(
r(s, t), dk(s, t), s

)
.

ω is the potential-energy density of the body loads. Suppose that there are scalar-valued
functions ωα such that the end loads nα and ma of (14.21) have the forms

(16.3)
nα

(
r(sα, t), dk(sα, t)

)
= (−1)α+1 ∂ω

α

∂r

(
r(sα, t), dk(sα, t)

)
,

mα
(
r(sα, t), dk(sα, t)

)
= (−1)α+1dk(sα, t) × ∂ωα

∂dk

(
r(sα, t), dk(sα, t)

)
.

The ωα are the potential energies of the end loads. We set

(16.4) Ω [r, dk](t) :=
∫ s2

s1

ω
(
r(s, t), dk(s, t), s

)
ds +

2∑
α=1

ωα
(
r(sα, t), dk(sα, t)

)
.

Ψ + Ω is the potential-energy functional for the rod. The kinetic energy of the rod at
time t is

(16.5) K [r, dk](t) := 1
2

∫ s2

s1

[(ρA)(s)rt(s, t) · rt(s, t) + 2ρIβ(rt × w) · dβ

+ (ρJβγ)(s)wβ(s, t)wγ(s, t) + (ρJγγ)(s)w3(s, t)2] ds.

(This kinetic energy can be constructed directly from (2.13), (2.14), or else from the
integral over the volume of 1

2 p̃t · p̃t with p̃ given by (4.3a).) The Lagrangian functional
of the rod for {r, dk} having period T in t is
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(16.6) Λ[r, dk] :=
∫ T

0
{K [r, dk](t) − Ψ [r, dk](t) − Ω [r, dk](t)} dt.

Hamilton’s Principle states that the weak form of the governing equations for hyper-
elastic rods subject to conservative loads and to appropriate initial and final conditions
can be characterized by the vanishing of the Gâteaux differential of the Lagrangian
functional in every direction compatible with the boundary conditions.

16.7. Exercise. Demonstrate the validity of Hamilton’s Principle by showing that the
vanishing of the Gâteaux derivative of Λ for {r, dk} having period T in t and satisfying
(14.20) is just the Principle of Virtual Power (15.24).

16.8. Exercise. Consider a viscoelastic rod (2.28) satisfying (10.35). Suppose that
there is a scalar-valued function W such that

(16.9) m̂(u, v, o, o, s) = ∂W (u, v, s)/∂u, n̂(u, v, o, o, s) = ∂W (u, v, s)/∂v.

Let (16.1)–(16.5) hold. Prove that the total energy is nowhere increasing:

(16.10) d
dt

{K [r, dk](t) + Ψ [r, dk](t) + Ω [r, dk](t)} ≤ 0

(cf. Ex. 2.2.29).

17. Material Constraints
In this section we study material (or internal) constraints, which re-

strict the kinds of deformations that a rod can suffer. Typical material
constraints are those requiring the rod to be unshearable and inextensible,
no matter what the resultant contact force and couple are. A different kind
of constraint, termed external , is exemplified by the requirement that r,
d1, and d3 be coplanar, no matter what the applied forces are. Such con-
straints are maintained by devices external to the rod. They are discussed
in the next section.

Material constraints are introduced because they simplify the treatment
of the governing equations and because they are observed to be approxi-
mately true for important classes of deformations of real rods. For example,
the shears and the extension are typically very small in a rod subject to
purely terminal loads of ‘moderate’ size. A rational description of the re-
lationship between problems with small shears and extensions and those
in which these strains are constrained to be zero requires some care in its
formulation. We address this question after we lay down the general the-
ory. We note that the special Cosserat theory of rods is itself a constrained
version of the general Cosserat theory, described in Sec. 20. Indeed, as
Chap. 16 shows, each theory of rods belongs to a hierarchy of such theo-
ries with the simpler theories representing constrained versions of the more
complicated theories.

The simplest and most important material constraints for a rod are those
that prevent it from suffering shear and extension:

(17.1) v = (0, 0, 1).

We assume that (17.1) holds no matter what loading system is applied
to the rod and therefore no matter what values are assumed by m and
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n. Thus (17.1) is a constitutive restriction. Traditional doctrine asserts
that the constitutive equations for an unshearable, inextensible elastic rod
consist of (17.1) and

(17.2) m(s, t) = m̂
(
u(s, t), s

)
,

with n not prescribed as a constitutive function so that it remains free to
assume whatever values are necessary to maintain the constraint (17.1). A
generalization of (17.2) is

(17.3) m(s, t) = m�
(
u(s, t), n(s, t), s

)
.

In either case, n, and consequently n, plays the role of a fundamental
unknown in the governing equations. The presence of (17.1) ensures that
the number of equations equals the number of unknowns.

To motivate (17.3), we first study an unconstrained elastic rod for which
(10.3) and either Hypothesis 10.9 or property (10.10) hold. Then by the
results of Sec. 10, the constitutive equations (2.25) are equivalent to equa-
tions of the form

(17.4) v(s, t) = v�
(
u(s, t), n(s, t), s

)
, m(s, t) = m�

(
u(s, t), n(s, t), s

)
.

We regard the constraint (17.1) as a limiting case of nearly constrained
materials with constitutive equations of the form (17.4). We accordingly
generate (17.1) and (17.3) by the simple device of taking the constitutive
function v� = (0, 0, 1). In this procedure, we impose no restriction on n.
That n should be unrestricted is consistent with the Principle of Virtual
Power (15.24), which is independent of n when (17.1) holds.

We obtain analogous results for viscoelastic rods (of strain-rate type).
If (10.35) holds, then the constitutive equations (2.28) are equivalent to
equations of the form

(17.5)
vt(s, t) = v̇�

(
u(s, t), ut(s, t), v(s, t), n(s, t), s

)
,

m(s, t) = m�
(
u(s, t), ut(s, t), v(s, t), n(s, t), s

)
.

By defining v̇� to equal o (or, more generally, by defining v̇�(u, u̇, o, n, s) = o)
and by assuming that there is a time t0 such that v(t0) = (0, 0, 1), we reduce
(17.5) to (17.1) and an equation of the form

(17.6) m(s, t) = m�
(
u(s, t), ut(s, t), n(s, t), s

)
.

A hyperelastic rod subject to constraint (17.1) under a conservative
loading can be described by Hamilton’s Principle. We use the Multiplier
Rule (see Bliss (1946), e.g.) to formulate an equivalent principle in which
we replace the integrand W (u(s, t), v(s, t), s) of the unconstrained problem
with W (u(s, t), s) + n(s, t) · v(s, t) for the constrained problem. Here n is
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a triple of Lagrange multipliers. We then find that the governing Euler-
Lagrange equations correspond to the special choice (17.2), rather than to
the more general (17.3).

To explain this phenomenon in the context in which we obtained (17.3),
we introduce a Legendre transformation W � as in (10.30) so that the con-
stitutive functions of (17.4) have the form

(17.7) v�(u, n, s) = ∂W �(u, n, s)/∂n, m�(u, n, s) = −∂W �(u, n, s)/∂u.

Thus the matrix

(17.8)
[
∂m�/∂u ∂m�/∂n

−∂v�/∂u −∂v�/∂n

]
is symmetric. Now in any limit process in which v� → (0, 0, 1), the sym-
metry of (17.8) is destroyed unless ∂m�/∂n also goes to O. Thus for hyper-
elastic rods, (17.3) reduces to (17.2).

The foregoing considerations can be extended to any consistent set of K material
constraints of the frame-indifferent form

(17.9) κ(u, v, s) = 0.

We take K ≤ 5. If K = 6, then the deformation is rigid. We regard these constraints
as defining a (6 −K)-dimensional surface in the six-dimensional space of (u, v). At any
point of this surface, we introduce a local set of curvilinear coordinates in the surface
and a complementary set transversal to the surface. The coordinates in the surface are
treated like u and those transversal to the surface like v. The projection of (m, n) onto
the surface is defined constitutively; its projection transversal to the surface is not so
defined (and plays the role of n described above). The details of this approach are given
by Antman (1982).

We now develop a formal procedure that yields representations for solutions of the
equations for nearly constrained elastic materials. These procedures are particularly
useful to treat problems whose constrained versions reduce to the Kirchhoff Kinetic
Analogue (see (19.1)) because many of these can be solved in closed form in terms of
elliptic functions. (See the references at the end of Sec. 9.6.) Our perturbation methods
yield corrections for slight extensibility and shearability, which enable their effect to be
assessed. Let ε be a nonnegative parameter that measures the discrepancy between v
and its constrained value (0, 0, 1). We introduce a one-parameter family of materials of
the form (17.4):

(17.10a,b) v�(u, n, s) = (0, 0, 1) + εv�(u, n, s, ε), m�(u, n, s) = m�(u, n, s, ε)

where v� and m� are assumed to be (p + 1)-times continuously differentiable functions
of u, n, and ε. We assume that all the variables of the governing equations have Taylor
expansions up to the pth power in ε:

(17.11) u(s, t, ε) =
p∑

a=0

ua(s, t)
εa

a!
+ O(εp+1), etc.

We find the unknown coefficients by differentiating the equations repeatedly with respect
to ε and then setting ε = 0 (cf. Sec. 2.8). Clearly, the problem obtained by simply setting
ε = 0 in the governing equations is that for the material satisfying the constraint (17.1).
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17.12. Exercise. Carry out this perturbation process to obtain the first correction to
the equations of motion for elastic materials satisfying the constraint (17.1). Note that
all corrections are governed by linear equations.

There is a simple variant of this procedure that does not require that we express our
constitutive equations explicitly in the form (17.4) or (17.10). Inspired by (17.10a), we
introduce a new strain variable y by

(17.13) v = (0, 0, 1) + εy

and adopt constitutive equations in the form

(17.14a,b) m(s, t) = m+(u(s, t), y(s, t), s, ε), n(s, t) = n+(u(s, t), y(s, t), s, ε),

where m+ and n+ are assumed to be (p + 1)-times continuously differentiable functions
of u, y, and ε. We assume that y and all the other variables of the governing equations
have the form (17.11).

17.15. Exercise. If n+(u, ·, s, ε) is invertible, show that the equations for the leading
term (for ε = 0) of the governing equations correspond to (17.1) and (17.3). Show that
if furthermore (17.14a) is specialized to

(17.16) m(s, t) = m̄(u(s, t), s) + εm̌(u(s, t), y(s, t), s, ε),

then the equations for the leading term correspond to (17.1) and (17.2). Find the
equations governing the first-order corrections. (After n0 and u0 are found, then y0
can be found from (17.14b).) Show that the hyperelastic specialization of (17.16) and
(17.14b) is obtained by taking the stored-energy function W to have the form

(17.17) W (u, v, s) = W (u, s) + εW̌ (u, y, s, ε).

There remains the substantial analytic problem of justifying the validity of the formal
expansions (17.11).

Most of this section is based on Antman (1982). A formal theory for the relaxation
of the constraint of incompressibility was developed by Spencer (1964). A refinement
of his approach in the setting of planar rod theories was given by Antman (1968); it is
generalized in Ex. 17.15. For mathematical justifications of such methods, see Schochet
(1985). For a full treatment of material constraints in the setting of 3-dimensional
continuum mechanics, see Sec. 12.14.

18. Planar Motions

External constraints enforcing planarity. Suppose that the natural
reference configuration of a rod, regarded for the moment as a 3-dimen-
sional body, is a bent and twisted prism with a rectangular cross section.
That is, this reference configuration is generated by translating the center
of a rectangle along a fixed C1-space curve with the plane of the rectangle
perpendicular to the curve and with the rectangle allowed to rotate about
its center in some prescribed way. We could force this rod to undergo purely
‘planar’ deformations by flattening out the reference curve, untwisting the
cross sections so that a pair of opposite sides of the rectangle now generate
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Fig. 18.1a. Natural reference
configuration.

constraining
planes

Fig. 18.1b. Constrained configu-
ration.

a pair of parallel planes, and then confining the rod to move between a pair
of lubricated rigid planes containing these parallel planes. See Fig. 18.1.

Let {i, j,k} be a fixed orthonormal basis for E
3. Let the constraining

planes be perpendicular to k. These constraints can be expressed by

(18.2) r · k = 0, d2 = k.

Following the ideas developed in Secs. 14, 15, and 17, we conclude from
(18.2) that the virtual velocities r� and z must satisfy

(18.3) r� · k = 0, d�
2 = z × d2 = o.

Thus the expressions

(18.4) f · k ≡ f · d2, l · d1, l · d3

do not appear in the Principle of Virtual Power (15.24) because their coef-
ficients vanish by virtue of (18.3). In their places are the constraint forces
and couples (Lagrange multipliers) maintaining (18.2).

These considerations readily handle any constraints like (18.2). Such
constraints are termed external because they are enforced by the specific
environment in which the rod is placed, whereas a material (or internal)
constraint operates in every environment and characterizes the material
response. In particular, (18.2) implies that v2 = 0. The force n2 never-
theless is determined from the constitutive equations, which give the value
of this component necessary to enforce the constraint. If the constraining
planes were removed, then v2 could assume any value. If v2 = 0 were a
material constraint, then it would always be in effect and n2 would not be
determined constitutively.

Our 3-dimensional interpretation of (18.2) is equivalent to the prescrip-
tion of certain kinds of position boundary conditions on the lateral bound-
ary of the rod. This equivalence is the underlying source of the similarity
between our treatments of boundary conditions in Sec. 14 and of exter-
nal constraints here. The boundary conditions (14.20) may be regarded as
external constraints.

Naturally planar motions. A rod may have configurations satisfying
(18.2) without being forced to do so by constraints. Suppose that the
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natural reference configuration of a rod satisfies (18.2), that f ·k = 0, that
k × l = o, that ρJ12 = 0, and that the constitutive equations are such that
n · k = 0 and k × m = o when rs · k ≡ v2 = 0 and k × u = o. Then the
equations of motion may be expected to admit planar solutions (satisfying
(18.2)). (These solutions, however, need not be stable; see Fig. 5.2.3.)

When we study planar motions of a rod, we usually take the plane of
motion to be the {i, j}-plane. We then adopt the notation of Chap. 4:

d3 =: a = cos θi + sin θj, d1 =: b = − sin θi + cos θj, d2 = k,(18.5)

(18.6) rs = νa + ηb, m =Mk, n = Na +Hb,

so that

(18.7)
u1 = 0, u2 = θs, u3 = 0, v1 = η, v2 = 0, v3 = ν,
m1 = 0, m2 =M, m3 = 0, n1 = H, n2 = 0, n3 = N.

19. Classical Theories

Classical nonlinear theories. The classical elastic rod theory of
Kirchhoff (1859), called the kinetic analogue, is is a special case of our rod
theory based on the material constraints (17.1) and on linear constitutive
equations of the form

(19.1) mα(s, t) = (EJαβ)(s)[uβ(s, t) − u◦
β(s)], m3(s, t) = D(s)u3(s, t).

(If the u◦
β = 0 and if the EJαβ are independent of s (so that the rod is

uniform), then the governing equilibrium equations for a terminally loaded
rod are the same as the equations of motion of a heavy rigid body, whence
the name.) The functions EJαβ are defined as are the ρJαβ of (4.7) (see
Sec. 12). The torsional stiffnessD is usually found by solving the St. Venant
torsion problem of linear elasticity; it reduces to EJαα for isotropic rods
with a circular cross section.) The further requirement that the motion be
naturally planar reduces (19.1) to the Bernoulli-Euler constitutive equation
for the elastica

(19.2) M(s, t) = (EJ22)(s)[θs(s, t) − θ◦s(s)]

due to Jas. Bernoulli (1694), Euler (1727), D. Bernoulli (1728), and Euler
(1732) (see Truesdell (1960)).

19.3. Exercise. Find the equations of motion for the elastica when it is subject to
zero body loads and specialize them to equilibrium equations.



8.19. CLASSICAL THEORIES 339

Purely torsional motion. Let k be horizontal and let i point downward. Consider a
rod with a naturally straight axis so constrained that its axis lies along the k-axis. We
seek motions such that rs = d3 = k. Then d1, d2 have the form

(19.4) d1 = cosψi + sinψj, d2 = − sinψi + cosψj.

19.5. Exercise. Show that such motions are governed by an equation of the form

(19.6) k · ms − cρAg sinψ = ρJγγψtt

where g is the acceleration of gravity and c(s) is the distance of the mass center of the
section s from r(s) (when (4.4)–(4.7) hold under the assumption (4.2g)). For an elastic
rod, show that the constitutive function for k · m reduces to a function of ψs and s. (If
(8.2) holds, then (19.6) is typically a quasilinear hyperbolic equation. If the material
of the rod is uniform and if k · m depends linearly on ψs, then (19.6) reduces to the
sine-Gordon equation.)

In various linear and nonlinear theories of extensible, shearable elastic rods, such
as that of Timoshenko (1921), the constitutive equations (12.4) are supplemented with
constitutive equations for n of the form

(19.7) n̂α(u, v, s) = GA(s)vα, n̂3(u, v, s) = EA(s)[v3 − 1]

where G is the (effective) shear modulus. In the linear theories, the vk are approximated
by linear combinations of s-derivatives of the displacements.

Rotatory inertia. Many authors ignore ‘rotatory inertia’ in their formulation of the
equations of motion for rods by setting ρJαβ = 0 (thus causing the angular momentum
to vanish). For thin rods, these inertias are small. Nevertheless, we shall not introduce
this assumption, which simplifies the form of the governing equations and changes their
type, because it does not necessarily simplify the analysis (see Caflisch & Maddocks
(1984)). Indeed, a careful analysis of the role of small rotatory inertia seems to require
a delicate asymptotic treatment of initial layers.

Classical linear theories. We now linearize the equations of motion of nonlinearly
elastic rods about their reference configurations. We then show how the imposition
of further restrictions leads to a variety of theories for elastic rods standard in the
engineering literature. For simplicity of exposition, we restrict our attention to the
naturally planar motions just discussed. In view of (18.5)–(18.7), (19.2) we can write
the governing equations of motion (2.19) and (2.21) under the assumption that ρIα = 0
in the form

Ns −Hθs + f · a = ρArtt · a,(19.8)

Hs +Nθs + f · b = ρArtt · b,(19.9)

Ms + νH − ηN + l = ρJθtt(19.10)

where l = l · k and ρJ = ρJ22. The constitutive equations (2.25) for unconstrained
elastic rods reduce to (4.1.21):

(19.11)

N (s, t) = N̂ (ν(s, t), η(s, t), θs(s, t), s),

H(s, t) = Ĥ(ν(s, t), η(s, t), θs(s, t), s),

M (s, t) = M̂ (ν(s, t), η(s, t), θs(s, t), s).

We assume that N̂ and M̂ are even in η and that Ĥ is odd in η. We denote the third
argument of these constitutive functions by µ. We assume that these functions vanish
in the reference configuration.
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We follow the procedures of Sec. 2.9. We let ε be a small parameter and take the
body forces and the initial data to have the form

f = εf1, l = εl1,(19.12a,b)

r(s, 0) = r◦(s) + εu1, rt(s, 0) = εv1.(19.12c,d)

We assume that the boundary data are perturbations of data valid for the reference
configuration; we do not bother to spell out the possible forms, which are analogous to
(19.12c,d).

Let us first study the case in which the reference configuration is straight with sections
perpendicular to the axis. In this case, we set

(19.13) r(s, t) = x(s, t)i + y(s, t)j.

The reference configuration is then characterized by

(19.14) r◦(s) = si, x◦(s) = s, y◦(s) = 0, a◦(s) = i, b◦(s) = j.

For naturally straight rods, we also require that N̂ and Ĥ be even in µ and that M̂ be
odd in µ.

We denote the variable of the first perturbation by subscripts 1. By the procedures
of Sec. 2.9 we readily find that (18.5), (18.6), (19.8)–(19.11) yield the first perturbation

(19.15)

a1 = θ1j, b1 = −θ1i, ∂sx1 = ν1, ∂sy1 = θ1 + η1,

∂sN1 + f1 · i = ρA∂ttx1, ∂sH1 + f1 · j = ρA∂tty1,

∂sM1 +H1 + l1 = ρJ∂ttθ1,

N1 = N 0
ν (s)ν1 := Nν(1, 0, 0, s)ν1, H1 = H0

η(s)η1 := Hη(1, 0, 0, s)η1,

M1 = M 0
µ(s)∂sθ1 := Mµ(1, 0, 0, s)∂sθ1

with the form of the linearized constitutive equations reflecting the symmetries of (19.11)
in η and µ. The monotonicity condition (10.3) implies that the moduli N 0

ν , H
0
η , M

0
µ are

each positive. From (19.15) we readily obtain the linear hyperbolic system

∂s[N 0
ν ∂sx1] + f1 · i = ρA∂ttx1,(19.16)

∂s[H0
η(∂sy1 − θ1)] + f1 · j = ρA∂tty1,(19.17a)

∂s[M 0
µ∂sθ1] +H0

η(∂sy1 − θ1) + l1 = ρJ∂ttθ1.(19.17b)

Notice that (19.16) is uncoupled from (19.17). For both mathematical convenience and
physical interpretation, it seems best to retain (19.17) in the present form as a system
of two second-order equations for y1 and θ1. It is nevertheless traditional in structural
mechanics to convert (19.17) to a single fourth-order equation. In the rest of this section
we drop the subscript 1 from the variables of (19.17).

19.18. Exercise. Derive the identities

(M 0
µθs)ss + ρAytt − f · j + ls = (ρJθtt)s,(19.19a)

ys = θ +
(
H0

η

)−1 [
ρJθtt − (M 0

µθs)s − l
]

(19.19b)

to reduce (19.17) to
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(19.20)

[
(M 0

µθs)ss

ρA

]
s

+ θtt +
ρJθtttt

(H0
η)

−
(M 0

µθtts)s

(H0
η)

−
[

(ρJθtt)s

ρA

]
s

=
ltt

H0
η

+
(
ls

ρA

)
s

−
(

f · j

ρA

)
s

.

Note that (19.20) contains the fourth-order derivatives θtttt, θsstt, θssss. It is common
to neglect rotatory inertia by setting ρJ = 0. (For thin rods, ρJ can be reckoned as
negligible with respect to ρA.) In this case, the mathematical structure of (19.17) or
(19.20) (which resides in their classification as partial differential equations) changes
significantly. One can expect that differences in solutions in the resulting equations
would be most pronounced in an initial layer.

For unshearable materials, the linearized variable η is constrained to vanish, so that

(19.21) θ = ys,

and H is not delivered by a constitutive equation. The substitution of (19.21) into
(19.19a), which is still valid, then yields

(19.22)
(
M 0

µyss
)
ss

+ ρAytt − f · j + ls = (ρJystt)s .

(If we divide (19.22) by ρA and then differentiate it with respect to s, we get an equation
equivalent to (19.20) with H0

η formally set equal to ∞.) The most commonly used version
of the equation for the flexural motion of a rod is obtained by setting ρJ = 0 in (19.22).

Because of the artificiality of the equations (19.20) and (19.22), it is sometimes nec-
essary to carry out a variety of contortions to handle boundary conditions. For example,
suppose that H is required to vanish at an end. From (19.15) we find that the appro-
priate boundary condition for (19.20) is that the complicated expression

(19.23)
(
M 0

µθs
)
s

+ l − ρJθtt

vanish at that end.
If the reference configuration is not straight, then the uncoupling between the ex-

tension in (19.16) and the flexure and shear in (19.17) is lost. The following exercise
illustrates this.

19.24. Exercise. Represent r in polar coordinates by

(19.25)
r(s, t) = r(s, t)e1(s, t),

e1(s, t) = cos φ(s, t)i + sinφ(s, t)j, e2(s, t) = − sinφ(s, t)i + cos φ(s, t)j.

(The coordinates (r, φ) of (19.22) replace (x, y) of (19.13).) Obtain the equations of
motion analogous to (19.16) and (19.17).

20. General Theories of Cosserat Rods
In Sec. 1 we defined the motion of a special Cosserat rod to be specified by the

three functions r, d1, and d2 where {d1(s, t), d2(s, t)} is orthonormal for each (s, t).
The directors d1(s, t) and d2(s, t) fix a plane through r(s, t) and a line in this plane
through r(s, t). This information is interpreted as characterizing the gross behavior of
the material section s at time t. An obvious generalization of this theory is obtained
by suspending the requirement that the directors be orthonormal. The resulting gen-
eralization, called the full 2-director Cosserat theory, has enough versatility to describe
stretching and shearing within cross sections. We can retain the interpretations of d1
and d2 implicit in (4.1) and (4.3).
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More general theories can be constructed by increasing the number of directors from
two to any finite number. The additional directors allow additional 3-dimensional fea-
tures of of deformed cross sections, such as curvatures, to be described. For example, we
could interpret five (unconstrained) directors d1, d2, d11, d12, d22 by a generalization of
(4.2g):

(20.1)
p̃(x, t) = r(s, t) + x1d1(s, t) + x2d2(s, t)

+ 1
2 (x1)2d11(s, t) + x1x2d12(s, t) + (x2)2d22(s, t).

The treatment of the geometry of deformation for any of these theories can be carried
out in imitation of the development of Secs. 1–10. In doing so we confront the techni-
cal difficulty that the failure of {d1, d2} to be orthonormal deprives the analysis of a
physically natural and mathematically convenient orthonormal basis {dk} and prevents
the appearance of the vector u, which played such an important role in this chapter.
But if r, d1, and d2 essentially retain the interpretations assigned to them in Sec. 2,
then we can require them to satisfy rs · (d1 × d2) > 0, which generalizes (2.10). (Under
mild assumptions on the representation of p̃, it can be shown by the methods of Sec. 7
that this inequality is a consequence of the 3-dimensional requirement that p̃ preserve
orientation.) Thus {d1, d2, rs} is a basis at each (s, t). It, together with its dual basis,
can be used to give a full treatment of the geometry of deformation.

The basic difficulty in constructing general Cosserat theories is to introduce a full
set of equations of motion. In particular, since the configuration of the full 2-director
Cosserat theory is described by three unconstrained vector-valued functions, we need
three vector equations of motion to have as many equations as unknowns. Two of these
vector equations should be the impulse-momentum laws developed in Secs. 2, 4, and 15.
What is the third? There are two approaches by which we could answer this question. In
the first, we would replace the development of Secs. 3 and 4 with a far more sophisticated
analysis, tantamount to the use of the full 3-dimensional theory of continuum mechanics.
This approach, developed in Chap. 16, while not intrinsically 1-dimensional, yields a
completely satisfactory physical interpretation of the resulting equations. In the second
approach, we construct the requisite equations by postulating them in the framework of
a suitable principle of virtual power. In doing so, we would tacitly rely on the doctrine
that all equations of continuum mechanics have such characterizations. This approach
would yield the governing equations with little effort, but at the sacrifice of a concrete
physical intuition based upon explicit representations for the additional generalized force
resultants. (For conservative problems, this approach is formally equivalent to generating
the governing equations by Hamilton’s Principle.) Thus it is only the special Cosserat
theory that admits an intuitively natural, intrinsic formulation, at least for statics. But
even here, a deeper probing of the basic concepts inexorably leads to the doors of the
3-dimensional theory of solids. The virtue of the special Cosserat theory is that the
meaning of the resultants n and m is plain, so that only elementary aspects of the full
3-dimensional theory are needed to illuminate the basic notions of the special Cosserat
theory, as Secs. 3, 4, and 7 show. For intrinsic developments of general Cosserat theories,
see Sec. 16.13 and the references cited at the end of the next section.

21. Historical and Bibliographical Notes
A theory of rods may be viewed as a theory of 1-dimensional bodies that can move

in E3 or as an approximation to the theory of certain slender 3-dimensional bodies or as
a constrained version of such 3-dimensional bodies. In this chapter we have examined
in detail the nature of a single intrinsically 1-dimensional theory, the special Cosserat
theory. In Sec. 20 we gave a cursory description of more general intrinsic or direct the-
ories and in Sec. 16.13 we give a more detailed account. (The derivation of rod theories
from the 3-dimensional theory is carried out in Chap. 16.) Our presentation, especially
that of Secs. 3, 4, 7, and 20, shows that although it is logically possible to construct
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intrinsically 1-dimensional theories, at least for static problems, some inspiration, how-
ever tacit, from the 3-dimensional theory is needed to prescribe the form of acceleration
terms, to express the requirement that the deformation preserve orientation, and to in-
terpret the variables of more complicated models. Here we outline the development of
the main ideas that have led to modern direct theories of rods.

The first major steps in creating a theory of rods were taken by Jas. Bernoulli (1694).
He gave the equation of moment balance for the planar deformation of an (inextensible,
unshearable) elastica and also gave a separate nonlinear constitutive equation relating
the curvature and the bending couple. To obtain this constitutive equation, he regarded
the rod as behaving like a bundle of noninteracting fibers, each of which can be stretched
(or compressed). Euler (1727) derived the classical linear relation between bending
couple and change in curvature by assuming the elongation to vary linearly across each
cross section, by assuming each fiber to obey Hooke’s law, and by integrating the moment
of the corresponding ‘stress’ across the section to get the constitutive equation for the
bending couple. In this last step, Euler followed the method introduced by Leibniz
(1684). Euler’s work was long unpublished. The definitive form of this constitutive
equation, the Bernoulli-Euler law of bending (19.2), was obtained by D. Bernoulli (1728).
A full and coherent exposition of the theory of the elastica under an arbitrary prescribed
system of planar loads, based upon the moment balance, was given by Euler (1732). The
power and beauty of this theory became fully evident in Euler’s (1744) analysis of all
equilibrium states possible for a uniform, initially straight elastica under terminal loads.
The full theory for the planar motion of elasticae, incorporating the equations for both
force and moment balance, was given by Euler (1771, 1774). Although certain statically
determinate problems can be handled with the theory expounded in Euler’s paper of
1727, the treatment of statically indeterminate problems, the treatment of the statics of
rods that can suffer extension and shear, and the treatment of all dynamical problems
requires the full set of equations he derived in 1771 and 1774. In this work he introduced
the notion of shear force.

Euler (1775) went far toward establishing the equations for the motion of rods in
space. In this process, he developed much of the apparatus of the differential geometry
of curves in space. (A full account of the researches described so far can be found in
Truesdell (1960).) Euler, however, lacked a theory of strain for rods that can deform
in space. Saint Venant (1843, 1845) introduced the notion of twist (gauchissement).
Kirchhoff (1859), Clebsch (1862), Thomson & Tait (1867), and Love (1893) successively
refined the notion of strain and thereby established Kirchhoff’s kinetic analogue, a com-
pletely satisfactory, geometrically exact theory for the deformation of rods in space. It
is the natural generalization of the elastica theory (see (19.1) and (19.2)); see Benevento
(1991) and Dill (1992).

By using a variational characterization of the governing equilibrium equations, the
Cosserats (1907, 1909) introduced as the generalization of Kirchhoff’s theory what we
term the special Cosserat theory. Many subsequent independent refinements of rod
theory, such as Timoshenko’s (1921) treatment of shear deformation, can be subsumed
under the special Cosserat theory. Ericksen & Truesdell (1958) revived the Cosserats’
theory, extended it to the full 3-director theory, and gave a complete and precise analysis
of strain. Alexander & Antman (1982) gave a global treatment of strain, resolving certain
paradoxes in the specification of boundary conditions.

Ericksen & Truesdell formulated the classical equilibrium equations for the contact
force n and contact couple m. They did not, however, discuss the additional resultants
corresponding to the additional kinematical variables through the Principle of Virtual
Power, the additional equilibrium equations in which these resultants appear, and con-
stitutive equations relating the resultants to the full set of strains. Their work inspired
new interest in the formulation of geometrically exact rod theories more general than
Kirchhoff’s.

Cohen (1966) used a variational method to construct a theory for the statics of a
3-director theory of hyperelastic rods. Green & Laws (1966) formulated a thermody-
namical 2-director theory of rods, which is marred only by the artificiality of their in-



344 8. THEORY OF RODS DEFORMING IN SPACE

troduction of the equations of motion for the very resultants not considered by Ericksen
& Truesdell (see Antman (1972, p. 668)). DeSilva & Whitman (1969, 1971) refined and
elaborated these formulations, giving a natural postulational development for thermo-
dynamical 3-director theories. Cohen & Wang (1989) gave a coordinate-free treatment
of the full Cosserat theory. All these authors used frame-indifference to simplify the
forms of the governing equations. (There is no obvious need that is met by theories with
exactly three directors. Indeed, (20.1) suggests that if a 2-director theory is inadequate,
then it should be replaced with a 5-director theory.) A summary of this work, together
with additional references, is given by Antman (1972). Many of the features of the
special Cosserat theory presented in this chapter were introduced by Antman (1974b).
For an extensive treatment of Cosserat rods see Rubin (2000), and for an extensive
treatment of rod theories in general see Villaggio (1997).



CHAPTER 9

Spatial Problems for Rods

1. Summary of the Governing Equations
In this chapter we study spatial deformations of nonlinearly elastic rods.

We collect here the governing partial differential equations from the pre-
ceding chapter. Eqs. (8.2.3) and (8.2.4) yield

(1.1a,b,c) rs = vkdk, ∂sdk = u × dk, u = ukdk.

Under the assumption that ρIα = 0, which is appropriate for the problems
treated here, we reduce (8.2.19) and (8.2.21) for zero body loads to

(1.2a,b) ns = ρArtt, ms + rs × n = ρJ×
αβ∂t{dα × ∂tdβ}.

We assume that the constitutive functions (8.2.25) satisfy the mono-
tonicity condition (8.10.3) and the coercivity condition (8.10.10), so that
they can be inverted to yield (8.10.12). In particular, for a hyperelastic
material, (8.2.26) and (8.10.32) are equivalent. In all but the last section
of this chapter, we assume that the material is transversely hemitropic so
that (8.11.27) holds and so that these constitutive equations have a form
corresponding to that of (8.11.17):

ûα(m, n) = u
(
J(m, n), s

)
mα + u×(J(m, n), s

)
nα,(1.3a)

v̂α(m, n) = v×(J(m, n), s
)
mα + v

(
J(m, n), s

)
nα,(1.3b)

û3(m, n) = ǔ3
(
J(m, n), s

)
, v̂3(m, n) = v̌3

(
J(m, n), s

)
,(1.3c,d)

J(m, n) := (mαmα, mαnα, nαnα, εαβmαnβ , m3, n3).(1.3e)

We assume that the constitutive functions u, u×, v×, v, ǔ3, and v̌3 are
continuously differentiable.

1.4. Exercise. For a transversely hemitropic elastic rod, prove that

(1.5a) d3 ·(u×m+rs ×n) ≡ m2u1 −m1u2+n2v1 −n1v2 = (m2n1 −m1n2)(u× −v×).

For a transversely hemitropic hyperelastic rod, use (8.10.32) with W depending on (1.3e)
to prove that (1.5a) vanishes, and thus conclude that

(1.5b) u× = v×.

Let {il} be a fixed right-handed orthonormal basis, to be determined
from the data of our problems. Identifying this basis with {jl} of Sec. 8.13

345
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and using the auxiliary basis {kl} introduced there, we obtain representa-
tions for the directors and for u in terms of the Euler angles:
(1.6)

d1 = cosψ(cos θh − sin θi3) + sinψ i3 × h = cosψk1 + sinψk2,

d2 = − sinψ(cos θh − sin θi3) + cosψ i3 × h = − sinψk1 + cosψk2,

d3 = sin θh + cos θi3 = k3,

h := cosφi1 + sinφi2 = cos θk1 + sin θk3,

from which we find

u1 = θs sinψ − φs sin θ cosψ,(1.7a)

u2 = θs cosψ + φs sin θ sinψ,(1.7b)

u3 = ψs + φs cos θ.(1.7c)

We denote the components of m, n, u, v with respect to {kl} by capital
letters:

(1.8a) m = mldl =Mlkl, etc.,

so that

(1.8b)

M1 = m1 cosψ −m2 sinψ,
M2 = m1 sinψ +m2 cosψ,
M3 = m3, etc.

In particular,

(1.9) U1 = −φs sin θ, U2 = θs.

(The use of these components emphasizes the fundamental role played by
M2, the component of m about the line of nodes k2, which is most respon-
sible for changes in θ.)

Equilibrium problems. We set the acceleration terms in (1.2) equal to
zero, take the scaled arc length s of the reference configuration to be con-
fined to [0, 1], and assume that n(1) and m(1) are prescribed. Then (1.2a)
implies that n is constant. We choose the basis {ik} so that

(1.10a) n(s) = n(1) = −Λi3.

From (1.6) we then find that

(1.10b)
n1 = Λ sin θ cosψ, n2 = −Λ sin θ sinψ, n3 = −Λ cos θ,

N1 = Λ sin θ, N2 = 0.
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From the components of (1.2b) in the k2,h, i3,d3-directions and from
(1.3), (1.7) we now obtain

M ′
2 + (M1 cos θ+m3 sin θ)φ′(1.11a)

+Λ(Λv sin θ cos θ + v×M1 cos θ + v̌3 sin θ)=0,

(M1 cos θ +m3 sin θ)′ −M2(φ′ + Λv×) = 0,(1.11b)

(m · i3) ≡ −M1 sin θ +m3 cos θ = α (const.),(1.11c)

m′
3 = (u× − v×)Λ sin θM2,(1.11d)

θ′ = uM2,(1.11e)

−φ′ sin θ = uM1 + Λ sin θu×,(1.11f)

ψ′ = ǔ3 + [uM1 + Λ sin θu×] cot θ,(1.11g)

where the arguments of the constitutive functions u, u×, v×, v, ǔ3, v̌3 are s
and
(1.12)
J(m, n) =

(
M2

1 +M2
2 , ΛM1 sin θ, Λ2 sin2 θ,−ΛM2 sin θ,m3,−Λ cos θ

)
.

A straightforward study of the integral laws of equilibrium shows that
all solutions are as regular as the constitutive functions permit.

2. Kirchhoff’s Problem for
Helical Equilibrium States

We begin our analysis of (1.1) and (1.11) by seeking solutions with

(2.1) θ = const.

Since u must be positive by the strict monotonicity condition, it follows
from (1.11b,d,e) that

(2.2a,b,c) M2 = 0, M1 cos θ +m3 sin θ = const., m3 = β (const.).

Conditions (1.11c) and (2.2b,c) imply that M1 is constant. Thus (1.12)
is constant, so that all the constitutive functions for the strains assume
constant values. If sin θ �= 0, then (1.11c) and (2.2) imply that

(2.3) −M1 =
α− β cos θ

sin θ
.

If sin θ �= 0, then (1.11f,g) imply that φ′ and ψ′ are constants uniquely
determined from θ, Λ, α, and β. Thus all the variables are uniquely deter-
mined from θ and the loads. (But θ need not be uniquely determined from
the data, as we shall see below.) If sin θ = 0, then all we can conclude from
(1.7) is that ψ′ ± φ′ = ǔ3(M2

1 , 0, 0, 0, β,∓Λ). This ambiguity is a conse-
quence of the polar singularity in the description of the dk by Euler angles;
it leads to no ambiguity in the description of the actual configuration.
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Let σ(s) be the actual arc length from 0 to s. Then

(2.4) σ′ =
√
v̂αv̂α + v̂23 = const.

Let r =: xkik. The substitution of (1.6) and (1.3b) into (1.1a) then yields

(2.5)
dx1

dσ
= a cosφ,

dx2

dσ
= a sinφ,

dx3

dσ
= b,

where

aσ′ := (vΛ sin θ +M1v
×) cos θ + v̌3 sin θ,(2.6a)

bσ′ := − (vΛ sin θ +M1v
×) sin θ + v̌3 cos θ.(2.6b)

If sin θ �= 0, then φ′ is a constant, so that

(2.6c) φ =
φ′

σ′σ + const.

Thus (2.5) is the equation of a right circular helix (possibly degenerate) of
radius |aσ′/φ′| and pitch b. If sin θ = 0, then u1 = 0 = u2 by (1.7) and
n1 = 0 = n2 by (1.10b). Since u is positive by the strict monotonicity
condition, it follows that m1 = 0 = m2. Equation (1.3b) then implies
that v1 = 0 = v2. Thus (2.6) implies that a = 0, so that (2.5) represents a
straight line along i3. Thus, in either case, if the governing equations admit
solutions with θ constant, then the axis r of the corresponding configuration
must be helical. (The study of helical solutions is Kirchhoff’s problem.) The
constants a and b cannot vanish simultaneously because v̌3 > 0.

Note that (1.6), (1.10a), and (2.5) yield

(2.7)
n × r′

σ′ = −Λa(− sinφi1 + cosφi2) = −Λa(sinψd1 + cosψd2),

n · r′

σ′ = −Λb.

Thus Λa is the magnitude of the component of the resultant contact force
in the plane perpendicular to r′, and Λb is the component of the resultant
force along r′.

To verify that there actually exist solutions of this kind, we must find
θ, φ, ψ to satisfy the equilibrium equations, which by virtue of (2.2) reduce
to

(M1 cos θ + β sin θ)φ′(2.8)

= Λ[v̌3 sin θ + (vΛ sin θ +M1v
×) cos θ] = Λaσ′,

−M1 sin θ + β cos θ = α,(2.9)

− φ′ sin θ =M1u+ Λu× sin θ,(2.10)

ψ′ = ǔ3 − φ′ cos θ.(2.11)
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Here the constitutive functions depend on (1.12), which reduces to

(2.12)
(
M2

1 , ΛM1 sin θ, Λ2 sin2 θ, 0, β,−Λ cos θ
)
.

If sin θ �= 0, then (2.8) and (2.10) yield a single equation for θ. If sin θ = 0,
then the results of the paragraph following (2.6) imply that (2.8) and (2.10)
are identically satisfied, that (2.9) reduces to α = ±β, and that (2.11)
reduces to

(2.13) ψ′ ± φ′ = ǔ3(0, 0, 0, 0, α, Λ).

The existence and properties of solutions are treated in the exercises below.

A helical deformation, if it exists for given Λ and m(1), can always be maintained
by a wrench, which is a statically equivalent load system consisting of the force −Λi3
acting along the i3-axis (rather than being applied at r(1)) and of a couple with axis
parallel to i3. The force and couple may be communicated to the end r(1) of the rod
by a rigid shaft joining it to the i3-axis. To show that there is such a wrench, we first
observe that our actual terminal loading is statically equivalent to the force −Λi3 acting
along the i3-axis and the couple m(1) + r(1) × (−Λi3). This load system is a wrench
if the components of the couple in the i1- and i2-directions vanish. An evaluation of
these components using (2.1)–(2.6) shows that these components vanish if and only if
(2.8)–(2.12) hold (see Love (1927, Sec. 270)).

Let us now consider deformations with a straight axis, which occur only if aφ′ = 0,
in consequence of (2.5). Equation (2.8) implies that Λa = 0 if φ′ = 0. If Λ = 0, then we
can choose i3 arbitrarily. By taking it to lie along r, we effectively cause a to vanish.
Thus deformations with a straight axis occur only if a = 0, i.e., only if

(2.14) −(M1v× + vΛ sin θ) cos θ = v̌3 sin θ.

We first seek straight configurations with sin θ = 0. By the comments following (2.12)
we see that (2.8)–(2.10) are identically satisfied if α = β cos θ = ±β. In this case, the
stretch and twist are given by

(2.15) v3 = v̌3(0, 0, 0, 0, β, −Λ cos θ), ψ′ + φ′ cos θ = ǔ3(0, 0, 0, 0, β, −Λ cos θ).

If the reference configuration is natural, then v̌3(0, 0, 0, 0, 0, 0) = 1, ǔ3(0, 0, 0, 0, 0, 0) = 0.
The Poynting effect, observed experimentally and deduced analytically in the 3-dimen-
sional theory of nonlinear elastic materials (see Truesdell & Noll (1965, Sec. 66)) is
that a twist can produce a change in length. Thus there is no reason to require that
v̌3(0, 0, 0, 0, β, 0) = 1 for β 
= 0. Assumption (8.11.31) would, however, imply that
∂v̂3/∂m3 = 0 when m3 = 0, so that the Poynting effect is a second-order effect for small
twist.

2.16. Exercise. Discuss the existence of configurations with straight axes when a = 0,
sin θ 
= 0, φ′ = 0, and when a = 0, sin θ 
= 0, φ′ 
= 0.

Eqs. (2.5) imply that the axis is circular if and only if b = 0 and φ′ 
= 0. It follows
from (2.6) that b = 0 if and only if

(2.17) (−M1v× + vΛ sin θ) sin θ = −v̌3 cos θ.

a 
= 0 because b = 0. Moreover, sin θ 
= 0 because if so, condition (2.17) would cause v̌3
to vanish.

2.18. Exercise. Discuss the existence of configurations with circular axes when θ =
π/2.
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2.19. Exercise. Discuss the existence of configurations with a nondegenerate helical
axis.

Kirchhoff (1859) found helical configurations for his kinetic analogue. (See Love
(1927, Secs. 270–272).) This work was extended to shearable and extensible rods with
linear constitutive laws by Whitman & DeSilva (1974). The treatment of this section
represents a modification of that of Antman (1974b), and appears with the kind permis-
sion of the Quarterly of Applied Mathematics. For extensions of this work, see Chouäıeb
(2003).

3. General Solutions for Equilibria
We now study general equilibrium states of (1.1)–(1.3) for transversely

hemitropic rods. We assume that (1.5b) holds, so that (2.2c) holds. In
this case, Eqs. (1.10), (1.11c), (2.2c) constitute a set of five integrals for
our twelfth-order (six degree-of-freedom) system. We use these integrals to
reduce (1.11a,e) to

θ′ = uM2,(3.1)

M ′
2 = −

[
α− β cos θ

sin2 θ
u− Λu×

] [
β − α cos θ

sin θ

]
(3.2)

− Λ
{[
vΛ sin θ − v×

(
α− β cos θ

sin θ

)]
cos θ + v̌3 sin θ

}
where the constitutive functions depend on s and on
(3.3)

M2
2 +

(
α− β cos θ

sin θ

)2

,−Λ(α− β cos θ), Λ2 sin2 θ,−ΛM2 sin θ, β,−Λ cos θ.

Let us assume that the material is uniform (which is crucial for the
ensuing study) and is hyperelastic (which simplifies the ensuing study).
Thus the constitutive functions may be written in the form (8.10.32):

(3.4) u =
∂W ∗

∂m
(m, n), v =

∂W ∗

∂n
(m, n)

where W ∗ depends only on (3.3) because of transverse hemitropy.
The equilibrium version of (1.2) then yields

(3.5)
0 = r′ · n′ + u · (m′ + r′ × n)

= r′ · (n′
kdk + nku × dk) + u · (m′

kdk +mku × dk + r′ × n)

= v · n′ + r′ · (u × n) + u · m′ + u · (r′ × n) =
∂W ∗

∂n
· n′ +

∂W ∗

∂m
· m′

=
d

ds
W ∗.

Thus our system for hyperelastic rods has the ‘energy’ integral
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(3.6) W ∗(m(s), n(s)) = const.,

which, when combined with the integrals previously obtained, gives a family
of trajectories for the autonomous version of (3.1), (3.2) in the (θ,M2)-
phase plane.

Figs. 3.7a,b. Typical phase portraits for (3.1) and (3.2) for
α = β �= 0 and Λ > 0. A shear instability is manifested in
the portrait at the right.

Figs. 3.8a,b. Typical phase portraits for (3.1) and (3.2) for
α = β �= 0 and Λ < 0. A shear instability is manifested in
the portrait at the right.
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Fig. 3.9a,b. Typical phase portraits for (3.1) and (3.2) for α > 0,
β > 0, α �= β and Λ > 0. A shear instability is manifested in
the portrait at the right. The portraits for other cases in which
α �= ±β are similar.

Fig. 3.11. Trajectories of d3 on the unit sphere when α = β �=
0 and φ′ is everywhere positive. The petal-shaped trajectory
through the north pole corresponds to a closed orbit of Fig. 3.7
or Fig. 3.8 that encloses the center at the origin. The banded
trajectory corresponds to a closed orbit of these figures that
encloses a center other than the origin.

The symmetries inherent in (3.3) ensure that the phase portrait of (3.1)
and (3.2) is symmetric about the θ-axis, is symmetric about the M -axis,
and has period 2π in θ. We can readily sketch the phase portraits for
different parameter ranges. For α = 0 = β and for Λ > 0, the phase
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Fig. 3.12. Trajectories of d3 on the unit sphere when α = β �= 0
and φ′ is everywhere positive. The trajectory above the circle
θ = θ1 corresponds to separatrix arc from θ1 to −θ1 of Fig. 3.7
or Fig. 3.8b. The trajectory below the circle θ = θ1 corresponds
to the separatrix arc enclosing the center at θ1 of Fig. 3.7.

Fig. 3.13. Typical trajectory of d3 on the unit sphere when
0 < α < β corresponding to a closed orbit of Fig. 3.9 on which
φ′ changes sign.

portraits are given by Fig. 4.2.14 with γ replaced by θ. If Λ < 0, the phase
portrait is translated horizontally by π. Other cases are sketched in Figs.
3.7–3.9. Note that if α = β, then we can use the identity 1−cos θ

sin θ = sin θ
1+cos θ .

These portraits show how θ behaves as a function of s. Since θ and φ are
spherical coordinates of d3, we can determine the behavior of φ and thus
of d3 by combining our information on θ with the specialization of (1.11f).
In particular, if α = β, then (1.11f) reduces to

(3.10) φ′ =
βu

1 + cos θ
− Λu×.
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The first term on the right has the sign of β; we have no grounds to choose a
sign for the second term on the right. It is not unreasonable to take u× = 0,
at least for illustrative purposes. In Figs. 3.11–3.13 we sketch some typical
trajectories of d3 on the unit sphere that correspond to certain trajectories
of Figs. 3.7–3.9. Using (1.1) and (1.11g) we could determine the qualitative
behavior of {r,dk} from the information at hand. But since we can expect
the shear strains to be small, the behavior of d3 effectively indicates that
of r′.

There have been many treatments of Kirchhoff’s kinetic analogue for uniform, trans-
versely hemitropic rods by elliptic functions. Among the classical treatments are those
of Hess (1884, 1885), Born (1906), and Nikolai (1916); see Ilyukhin (1979). The results
of this section represent a generalization of some of those of Antman & Jordan (1975).
This material together with all the figures shown here is reproduced by kind permission
of the Royal Society of Edinburgh.

3.11. Exercise. Suppose that the EJαβ , D, u◦
β of the Kirchhoff theory (8.18.8) are

constants, with the u◦
β not both 0. Thus the reference configuration of the axis is a helix

or a circle. Show that the equilibrium equations for such a rod subject to zero body
loads do not support the integral (2.2c). (Thus the analysis of equilibrium states for
such problems would be technically more difficult than that carried out in this section.)

4. Travelling Waves in Straight Rods
We now assume that the rod is infinitely long so that s ∈ (−∞,∞). Let f

stand for a typical dependent variable appearing in the system (1.1), (1.2),
(8.11.17) for transversely hemitropic, uniform rods. We seek travelling-
wave solutions of this system, for which

(4.1) f(s, t) = f̄(s− ct)

where the real number c is called the wave speed. If we substitute repre-
sentations of the form (4.1) into our system, set

(4.2) ξ := s− ct,

drop the bars over functions of ξ, and denote differentiation with respect
to ξ by a prime, then we can use (8.11.27) to reduce (1.2) to

(4.3a,b) n′ = c2ρAr′′, m′ + r′ × n = c2ρJ(dα × d′
α)′.

Without loss of generality, we denote the integral of (4.3a) by

(4.4) n − c2ρAr′ = −Λi3 (const.)

where {ik} is a right-handed orthonormal basis, as in the preceding two sec-
tions. Replacing the components of n by their constitutive representations,
we use (1.6) to obtain the following generalization of (1.10b):

n̂1(u, v) − c2ρAv1 = Λ sin θ cosψ,(4.5a)

n̂2(u, v) − c2ρAv2 = −Λ sin θ sinψ,(4.5b)

n̂3(u, v) − c2ρAv3 = −Λ cos θ.(4.5c)
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Using the constitutive equations (8.11.17) together with (1.7) and (1.8),
we obtain from (4.5a,b) that

n×θ′ + (n− c2ρA)V2 = 0,(4.6a)

n×φ′ sin θ − (n− c2ρA)V1 = −Λ sin θ,(4.6b)

From (4.3b), (4.4), and the constitutive equations we obtain the following
generalization of (1.11c):

(4.7) m · i3 − c2ρJ(dγ × d′
γ) · i3

≡ [−M1+c2ρJU1] sin θ+[m̂3(u, v)−2c2ρJu3] cos θ = α (const).

The substitution of (8.11.17) into the d3-component of (4.3b) and the use
of the constitutive restriction that m× = n× (cf. (1.5)) yields the following
generalization of (1.11d):

(4.8) m̂3(u, v) − 2c2ρJu3 = β (const).

4.9. Exercise. Show that if the material is hyperelastic, so that (8.2.26) holds, and is
uniform, then (4.3) and (4.4) have the integral

(4.10) u · ∂W
∂u

+ v · ∂W
∂v

−W − c
2

2
[ρAv · v + ρJ(uγuγ + 2u3

2)] = const.

For materials that are not hyperelastic, we must replace (4.10) by an
equation analogous to (3.1) and (3.2). By virtue of (8.11.17) and (1.7) the
constitutive equation for M2 is

(4.11) M2 = mθ′ +m×V2.

To get the equation forM2 we dot (4.3b) with k2 and use (1.1), (1.7), (1.8),
(4.4), and (4.8) to obtain

(4.12)

M ′
2 − c2ρJθ′′ = − φ′(m − c2ρJdα × d′

α) · h − Λr′ · h

= − φ′[(M1 + c2ρJφ′ sin θ) cos θ + β sin θ]

− Λ[V1 cos θ + v3 sin θ].

We now discuss the qualitative behavior of (4.5)–(4.8), and (4.12). The
presence of the terms with c2 may destroy the monotonicity of the left-
hand sides of (4.5), (4.7), and (4.8) with respect to v1, v2, v3, φ′ sin θ, u3.
In this case, we cannot reduce (4.12) to a single second-order differential
equation for θ. Suppose we interpret (4.5), (4.7), and (4.8) as defining
v1, v2, v3, φ

′ sin θ, u3 as multivalued functions of (θ, θ′) and of the param-
eters Λ,α, β. We can substitute these multivalued representations into
(4.12), which thereby has a family of phase portraits for each fixed set of
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parameters. In particular, if (4.10) holds, then the substitution of these
representations into the left-hand side of (4.10) converts it into a multival-
ued function of (θ, θ′). The phase portrait for each fixed set of parameters
corresponds to the level curves of its multivalued graph.

By seeking travelling waves, we have reduced our original system of hy-
perbolic partial differential equations to a system of ordinary differential
equations. But the inherent lack of invertibility of hyperbolic equations
still remains for our system of ordinary differential equations. Indeed, the
characteristic speeds are those values of c for which the matrix of partial
derivatives of the principal parts of the ordinary differential equations for
travelling waves with respect to (u, v) is singular. At such characteristic
speeds, the uniqueness theory for initial-value problems for ordinary differ-
ential equations breaks down.

In Fig. 4.13 we show a phase portrait that arises when c is characteristic.
Since the smooth curves ABCD and EBGH are tangent at B, an actual
trajectory may switch there (and at D) or not at each passage. (This
tangency follows from the fact that c is characteristic; the switching is
permitted because of the absence of a uniqueness theory.) Because of this
switching, there is an uncountable family of oscillatory travelling waves
with θ ∈ C2, a typical member of which is sketched in Fig. 4.14.

Fig. 4.13. A phase portrait for (4.5), (4.7), (4.8), and (4.12)
when c is a characteristic speed.

We have used (8.11.17) in favor of (1.3) because the latter form of the constitutive
equations is of very limited utility in the study of dynamical equations for rods. A
deeper investigation of travelling waves, directed toward such questions as stability,
would inevitably lead to the partial differential equations. The work of this section
generalizes part of that of Antman & Liu (1979), who also examined the possibility of
solutions with discontinuities compatible with the Rankine-Hugoniot jump conditions
and with entropy conditions. This material, together with Figs. 4.13 and 4.14, appears
with the kind permission of the Quarterly of Applied Mathematics.

4.15. Exercise. Formulate the corresponding problem for travelling waves for trans-
versely hemitropic, uniform, viscoelastic rods having constitutive equations the form
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Fig. 4.14. A typical member of the uncountable family of oscil-
latory travelling waves corresponding to Fig. 4.13.

indicated in Ex. 8.11.23 and satisfying (8.10.35). The governing system of ordinary dif-
ferential equations is now well-posed. Their analysis, which would illuminate the nature
of shock structure for elastic rods, is an open research problem.

There are several works devoted to the treatment of large displacements for the kinetic
analogue, often by the use of elliptic functions. They include Born (1906), Frisch-Fay
(1962), Funk (1970), Ilyukhin (1979), Love (1927), Nikolai (1955), Popov (1948), and
Saalschütz (1880). These books contain extensive bibliographies. Moreover, much of
value for the spatial deformation of rods can be found in books on rigid-body mechanics
in consequence of the kinetic analogue. There are descriptions of large rotations that do
not employ the Euler angles and thereby avoid the concomitant difficulties with polar
singularities.

Mielke & Holmes (1988) have demonstrated chaotic spatial deformations for infinitely
long rods that are not transversely hemitropic. Such phenomena might be expected, even
for hyperelastic rods, because the governing equations are not totally integrable.

5. Buckling under Terminal Thrust and Torque
We now study the buckling in space of a transversely hemitropic rod

subjected to terminal thrust and torque. We assume that (1.5b) holds, so
that we can use (2.2c). Our governing equations are (3.1)–(3.3).

We assume that the end s = 0 of the rod is welded to the {i, j}-plane
at the origin and that the end s = 1 is welded to a plane with normal −k
that is otherwise free to move in any manner. The end s = 1 is subjected
to a compressive thrust of magnitude λ acting in the −k direction and to
a torque whose component about k is µ. Thus we require that

r(0) = o, d1(0) = i, d2(0) = j, d3(0) = k,(5.1a–d)

n(1) = −λk, m(1) · k = µ, d3(1) = k.(5.2a–c)

In view of (5.2a), we identify {i1, i2, i3} with {i, j,k} (see (1.10a)). Con-
ditions (5.1b–d) imply that

(5.3) θ(0) = 0 = θ(1).
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Combining the integrals (1.10), (1.11c), and (2.2c) with (5.1d,f), we obtain

(5.4) Λ = λ, α = β = µ.

Thus the quantity α−β cos θ
sin θ , which portends singular behavior in (3.2) and

(3.3), is reduced to the innocuous µ sin θ
1+cos θ , and (3.1)–(3.3) become

θ′ = uM2,(5.5)

M ′
2 = µ(ǔ3 − µu+ v×λ cos θ)

sin θ
1 + cos θ

(5.6)

− λ sin θ(v̌3 − µu× + vλ cos θ),

where the constitutive functions depend on
(5.7)

M2
2 +

(
µ sin θ

1 + cos θ

)2

,−λµ(1 − cos θ), λ2 sin2 θ,−λM2 sin θ, µ,−λ cos θ, s.

We can immediately convert our boundary-value problem (5.1)–(5.3),
(5.5)–(5.7) to the form (6.5.8) with α replaced by µ. Thus we can imitate
the local and global bifurcation analysis of Secs. 6.5–6.9. In particular, if
the rod is uniform, then the linearization of the problem about the trivial
(λ, µ)-plane is equivalent to (6.5.11) with

(5.8) q(λ, µ) := u0(λ, µ){λ[v03(λ, µ) + λv0(λ, µ)] + µ2u0(λ, µ)}.

The eigenvalues are pairs (λ, µ) for which there is a positive integer n
satisfying

(5.9) q(λ, µ) = n2π2.

For Kirchhoff’s kinetic analogue (see (8.19.1)), for which the rod is inex-
tensible and unshearable, so that v = 0, v× = 0, v̌3 = 1, and for which the
constitutive equations for the couples are linear, Eq. (5.9) reduces to

(5.10) u0(λ+ µ2u0) = n2π2.

Here u0 is a positive constant. Thus (5.10) describes a family of parabolas.
For λ = 0, we find that the the smallest buckling torque is µ = ±nπ/

√
u0.

When (5.10) holds we can make the structure safer, i.e., raise the lowest
buckling torque, by making λ negative, i.e., by subjecting the rod to ten-
sion. When (5.8) holds, however, it is quite possible to induce instabilities
by making λ large and negative because (5.8) has a term with λ2 multiplied
by a positive-valued function. Thus the presence of shearability leads to
hitherto unexpected instabilities.

Now let us study a 3-dimensional version of the follower-load problem
of Sec. 6.11. We retain (5.1) and replace (5.2) with

(5.11) n(1) = −λd3(1), m(1) = µd3(1).
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We accordingly take i3 to equal d3(1) so that (1.6) implies θ(1) = 0
mod 2π. It follows from (1.8) that M(1) = 0. We again find from our
integrals that (5.4) holds. Thus our differential equations are (5.5)–(5.7),
which are nonsingular. The initial-value problem for these equations sub-
ject to θ(1) = 0 =M(1) has the unique solution θ = 0 =M . Note that this
result holds even if λ = 0. This fact does not indicate that the rod is stable.
It loses stability by dynamical processes. One source of this phenomenon
is that the torque in (5.11) is not conservative. (It cannot be applied by a
simple mechanical device using weights and pulleys; see Ziegler (1977).)

5.12. Exercise. Suppose that a rod has all the properties used in this section. Let its
end s = 0 be welded to the {i, j}-plane so that (5.1) holds. Let the end s = 1 be held in a
universal joint (see Fig. 8.14.13) and be subjected to (5.2a,b). Formulate the remaining
boundary condition and determine the nodal properties of bifurcating solution branches.

5.13. Exercise. For λ = 0, study the linearized equations of motion for the noncon-
servative (5.11) and determine the linearized stability of the trivial state.

The account in this section is based upon Antman & Kenney (1981), who treat a wide
variety of boundary conditions, which produce a wide variety of responses. Interesting
examples of secondary bifurcation have been analyzed by Kovári (1969) for Kirchhoff’s
kinetic analogue and by Maddocks (1984) for an inextensible, unshearable, transversely
isotropic rod with general nonlinear constitutive equations for flexure and torsion. It
seems evident that his methods could carry over to the class of materials treated in this
section.

6. Lateral Instability
A rod having a plane of symmetry subjected to a loading with the same

symmetry suffers a lateral instability when a solution loses that symmetry.
(See Fig. 5.2.3.) We formulate the problem in general for a special Cosserat
rod and then subject a special case to a global bifurcation analysis.

We assume that the {i, j}-plane is the plane of symmetry. In the refer-
ence configuration, let
(6.1)

r′
◦ = d◦

3, d◦
1 = − sin θ◦i + cos θ◦j, d◦

2 = k, d◦
3 = cos θ◦i + sin θ◦j.

We assume that the constitutive functions have the form

(6.2)
u1 = σ1(ι, s)m1, u2 = û2(ι, s), u3 = σ32(ι, s)n2 + σ3(ι, s)m3,

v1 = τ1(ι, s)n1, v2 = τ2(ι, s)n2 + τ23(ι, s)m3, v3 = v̂3(ι, s)

where ι := (n2
1, n3,m

2
1,m2, n

2
2 +m2

3, n2m3). That (6.2) captures the sym-
metry of the material response of the rod with respect to the {i, j}-plane is
demonstrated in Ex. 16.10.29. We assume that the body force and couple
preserve the symmetry:

(6.3) f · k = 0, k × l = o.

Then the equilibrium equation for the force balance is

(6.4) n′ + f = o,
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and the componential forms of the equilibrium equations of the moment
balance are

(6.5)
m′

1 − (σ32n2 + σ3m3)m2 + u2m3 + (τ2n2 + τ23m3)n3 − v3n2 + l · d1 = 0,

m′
2 + (σ32n2 + σ3m3)m1 − σ1m3m1 − τ1n1n3 + v3n1 + l · d2 = 0,

m′
3 −m1u2 + σ1m1m2 + τ1n1n2 − (τ2n2 + τ23m3)n1 + l · d3 = 0.

Boundary conditions. We study a particular set of boundary conditions.
We assume that the end s = 0 is welded at the origin to a fixed rigid wall
lying in the {j,k}-plane, so that

(6.6) r(0) = o, d1(0) = j, d2(0) = k, d3(0) = i.

We assume that the force n(1) at the end s = 1 is prescribed with

(6.7) n(1) · k = 0.

We finally assume that the end s = 1 is freely hinged about the material
fiber d1(1), which is constrained to be parallel to the {i, j}-plane, and that
this end is subject to a couple whose k-component is the prescribed number
µ. Thus

(6.8a,b,c) d1(1) · k = 0, m1(1) = 0, m(1) · k = µ.

Since n(1) is prescribed, it follows from (6.3), (6.4), and (6.7) that

(6.9) n(s) = n(1) −
∫ 1

s

f(ξ) dξ, n · k = 0.

We can substitute (6.9) into (6.5).
We now simplify our problem in order to get one that has a simple nodal

pattern. We assume that f = o, n(1) = o, l = 0. We further require that
the reference configuration of the rod be straight with a doubly symmetric
cross section. In this case, Ex. 16.10.29 shows that

(6.10) u2 = σ2(ι, s)m2

where ι here and in (6.2) has m2 replaced with m2
2. (For the deep beams

that occur in traditional engineering studies of lateral instabilities, σ1 >
σ2.) Under these conditions, (6.5) reduces to

m′
1 + (σ2 − σ3)m2m3 = 0,(6.11a)

m′
2 + (σ3 − σ1)m3m1 = 0,(6.11b)

m′
3 + (σ1 − σ2)m1m2 = 0.(6.11c)

Conditions (6.8) imply that there is a reactive couple β such that

(6.12) m(1) = µk + βd1(1) × k.
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Since the balance of moments now reduces to m′ = o, it follows that
m(s) = m(1), so that

(6.13a,b,c)
m1(0) = m(0) · j = −βd1(1) · i, m2(0) = µ, m3(0) = βd1(1) · j.

Our boundary-value problem consists of (1.1), (6.2), and (6.9)–(6.11) sub-
ject to (6.6) and (6.8).

6.14. Exercise. Assume that the rod is uniform. Find the trivial solution in which
r describes a circle. Solve the linearization of this boundary-value problem about the
trivial solution. Recast the nonlinear boundary-value problem as a system of integral
equations in a form suitable for the application of the Global Bifurcation Theorem 5.4.19.

Let us now study the nodal properties of m1. In view of (6.8b), we can
use the methods of Sec. 5.5 to show that the number of simple zeros of m1
on (0, 1) are preserved wherever the following property holds: If m1 has
a double zero on [0, 1] or merely vanishes at s = 0, then m1 = 0. Let us
accordingly first suppose that m1 has a double zero at s0 in [0, 1]. Then
(6.11a) implies that

(6.15) m1 = 0 and (σ2 − σ3)m2m3 = 0 at s0.

If m3(s0) = 0, then the initial-value problem for (6.11a,c) (with m2 re-
garded as given) subject to m1(s0) = 0 = m3(s0) has the unique solution
m1 = 0 = m3. If m2(s0) = 0, then the initial-value problem for (6.11a,b)
subject to m1(s0) = 0 = m2(s0) has the unique solution m1 = 0 = m2,
which is incompatible with (6.8c) for µ �= 0. Thus, if σ2 − σ3 vanishes
nowhere or everywhere, then the possession of a double zero by m1 implies
that m1 = 0 = m3, and the solution is trivial.

Now suppose that m1(0) = 0. Then (6.13a) implies that either β = 0 or
d1(1) · i = 0. In the former case, (6.13c) implies that m3(0) = 0, and the
solution is trivial. The latter condition can occur only if d1(1) is rotated
through an angle π

2 from its reference value. Thus

6.16. Theorem. Let n = o = l. The number of simple zeros of m1 on
(0, 1] are preserved along any connected family S of solution pairs for the
boundary-value problem under study, provided that S does not contain a
trivial solution pair, that σ2−σ3 vanishes nowhere on (0, 1] for any solution
pair in S, and that d1(1) · i �= 0 for every solution pair in S.

6.17. Exercise. Prove an analog of Theorem 6.16 for m3.

6.18. Exercise. Let (6.6) hold and consider the two boundary-value problems obtained
by replacing (6.8) by each of the following two alternatives:

m(1) = µk,(6.19)

m(1) = µd2,(6.20)

Let n = o, but allow l 
= o. Prove that the boundary-value problems consisting of
(1.1), (6.2), (6.5), (6.6), (6.10) and either (6.19) or (6.20) have only trivial (equilibrium)
solutions.
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6.21. Exercise. Study the stability of the trivial solutions of Ex. 6.18 when the rod is
uniform by linearizing the equations of motion about the trivial equilibrium state.

6.22. Problem. Analyze equilibrium problems for which (6.8) is replaced with each of
the following sets of boundary conditions.

d2(1) · j = 0, m(1) · j = 0, m2(1) = µ,(6.23)

d2(1) = k, m2(1) = µ.(6.24)

(Interpret these conditions in terms of hinges and their dispositions.)

6.25. Research Problem. Analyze the global qualitative behavior of buckled states
of boundary-value problems for (6.2) and (6.5).

The work of this section is based on that of Antman (1984). For accounts of the ex-
tensive engineering literature on linearized instability, see the references listed in Sec. 5.2.
For more recent work along this line, see Reissner (1989). The kinetic analogue corre-
sponding to Kirchhoff’s equations (for inextensible unshearable rods with linear relations
between u and m) when n = o = l is the force-free motion of a rigid body with a fixed
point. This theory has a geometric description in terms of the rolling of Poinsot’s ellip-
soids. Presumably, our theory with n = o = l has an analogous description (of limited
utility for boundary-value problems). The analysis of these equations for rods in terms
of elliptic functions was first carried out by Hess (1884).

Other problems. In recent years there has been an explosion of research on steady-
state and dynamical problems for rods in space, much stimulated by the desire to model
DNA. While some of this work is a rediscovery of known results, many papers exhibit
interesting new phenomena. Much of this work is limited to the Kirchhoff theory, often
under symmetry conditions. It appears, however, that many of these results could be
extended to the special Cosserat theory. Besides the references cited above, the following
works and the references cited therein give a sampling of this body of research: Antman
(2000), Antman, Marlow, & Vlahacos (1998), Benham (1997), Burridge & Keller (1978),
Champneys, van der Heijden, & Thompson (1997), Coleman & Swigon (2000), Dichmann
& Maddocks (1999), Dichmann, Maddocks, & Pego (1996), Goldstein, Goriely, Huber, &
Wolgemuth (2000), Goriely, Nizette, & Tabor (2001), Goriely & Shipman (2001), Goriely
& M. Tabor (1997, 1998), Gonzalez, Maddocks, Schuricht, & von der Mosel (2002),
Gottlieb & Perkins (1999), Kehrbaum & Maddocks (1997), Lafortune & Lega (2003),
Lega & Goriely (1999), Lu & Perkins, (1994), Maddocks & Dichmann (1994), Maddocks
& Manning (1999), Mahadevan & Keller (1996), Manning & Hoffman (2001), McMillen
& Goriely (2002, 2003), Neukirch, van der Heijden, & Thompson (2002), Nordenholz &
O’Reilly (1997), Thompson & Champneys (1996), van der Heiden & Thompson (1998,
2000), Villaggio (1997).



CHAPTER 10

Axisymmetric Equilibria of Shells

1. Formulation of the Governing Equations
In this section we show how easy it is to formulate geometrically exact

theories for the axisymmetric deformation of shells that can suffer flexure,
mid-surface extension, and shear. These are the equations we shall analyze
in the next few sections. We limit our attention here to statics, deferring
to Chap. 17 the general formulation of dynamical equations for problems
lacking symmetry. Our approach imitates that of Sec. 4.1. We define a
plate to be a shell with a flat natural configuration. From the viewpoint of
large deformations, there is little to distinguish the two theories.

For our studies of bifurcation problems, it is essential to note that our
restriction here to axisymmetric deformations precludes bifurcation to con-
figurations lacking axisymmetry. There is an extensive literature on shell
buckling (essentially restricted to the study of eigenvalues of linearized ap-
proximate equations, which may not differ greatly from linearizations of
exact equations). This literature demonstrates that the lowest buckling
loads may well correspond to asymmetrical buckled states (of lowest en-
ergy). Thus our work in this chapter represents but a first step in the
treatment of physically important stability problems. More realistic prob-
lems are treated in Chap. 17.

There is a voluminous and contentious literature on the derivation of various ap-
proximate theories of shells, both linear and nonlinear, such as the von Kármán theory,
discussed in Sec. 17.10. Most of these theories were originally devised by imposing ad
hoc truncations on the equations describing the deformation and by using linear stress-
strain laws. Some of these theories can now be obtained as formal or even rigorous
asymptotic limits of the equations of the 3-dimensional theory as a thickness param-
eter goes to zero, provided that the data in the form of applied forces and boundary
conditions have special scalings in terms of the thickness parameter (see Secs. 17.10,11).

There are quite a few rigorous mathematical studies of boundary-value problems for
these nonlinear approximate theories (see Vorovich (1999)). I believe that the analog
in the exact theory of virtually any rigorous result for an axisymmetric equilibrium
problem for an approximate theory can be demonstrated with available mathematical
tools. (The same is not yet true of problems governed by partial differential equations.)
The rest of this chapter exemplifies this point. Moreover, not only is the treatment of
the exact theory often mathematically and mechanically more transparent, but it also
often yields a far richer description of physical effects.

Geometry of Deformation. Let {i, j,k} be a fixed right-handed or-
thonormal basis for Euclidean 3-space. For each real number φ, we set

(1.1) e1(φ) = cosφi + sinφj, e2(φ) = − sinφi + cosφj, e3 = k.

363
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The axisymmetric configuration of a special Cosserat shell , which can
suffer flexure, mid-surface extension, and shear is determined by a pair of
vector-valued functions r and b of s and φ of the form

(1.2) r(s, φ) = r(s)e1(φ) + z(s)k, b(s, φ) = − sin θ(s)e1(φ) + cos θ(s)k.

The variable s lies in an interval of the form [s1, s2] and φ lies in [0, 2π].
We define

(1.3) a(s, φ) = e2(φ) × b(s, φ) = cos θ(s)e1(φ) + sin θ(s)k.

The function r defines an axisymmetric surface in E
3. The values of these

and other geometric variables in the reference configuration are designated
by the superscript ◦. We assume that s is the arc-length parameter of each
curve r◦(·, φ) of longitude (so that |r◦

s(s, φ)| = 1) and that b◦ = −e2×∂sr
◦.

To interpret the variables of (1.2) and (1.3), we assume that the reference
configuration of an axisymmetric shell, regarded as a thin 3-dimensional
body, has an axisymmetric material reference surface, called the material
base surface, defined by the function r◦. The surface r◦ is often taken to
be the mid-surface. The vector r◦(s, φ), or simply the pair (s, φ), identifies
a typical material point on this base surface. φ is an azimuthal coordinate
for this surface. The vector r(s, φ) is interpreted as the deformed position
of the material point (s, φ). The vector b(s, φ) is interpreted as charac-
terizing the deformed configuration of the material fiber whose reference
configuration is on the normal to the base surface through r◦(s, φ).

The axisymmetry ensures that the section of the shell with a typical
{e1(φ),k}-plane behaves like every other section. The deformation of such
a section can be described by a planar rod theory. The shell, however, has
additional strains that influence its constitutive response.

We set

rs(s, φ) =: ν(s)a(s, φ) + η(s)b(s, φ),(1.4a)

τ :=
r

r◦
, σ :=

sin θ
r◦
, µ := θ′,(1.4b,c)

whence

(1.4d,e) (r◦τ)s = ν cos θ − η sin θ, (r◦σ)s = µ cos θ.

The strains ν, η, µ have the same meanings as for the planar deformation
of rods. τ , the stretch in the azimuthal direction, is the ratio of deformed
to reference length of a circle of latitude. σ measures the amount of bend-
ing about a. To appreciate its significance, consider the deformation of a
planar annulus into the frustum of a cone. The material is clearly bent.
The strain µ equals its reference value of 0, but σ changes, accounting for
this mode of flexure. This choice of σ for a flexural strain, while geomet-
rically reasonable, might seem to be pulled out of thin air. In Sec. 17.8
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we construct a general theory for Cosserat shells in which natural flexural
strains arise. When these are specialized to axisymmetric deformations,
these strains reduce to σ and µ.

The strain variables for our theory are

(1.5) q := (τ, ν, η, σ, µ).

To ensure that these variables correspond to deformations that preserve
orientation, we require that admissible strains satisfy a certain system of
inequalities, which correspond to the requirement that the Jacobian of a
3-dimensional deformation be positive.
1.6. Exercise. Suppose that the reference configuration of the 3-dimensional body is

B := {z = r◦(s, φ) + x3b◦(s, φ) : s1 ≤ s ≤ s2, 0 ≤ φ ≤ 2π, −h− ≤ x3 ≤ h+}

where 0 ≤ h−, h+. Let the deformed position of the material point with coordinates
(s, φ, x3) be constrained to have the form p̂(s, φ, x3) = r(s, φ)+x3b(s, φ). Follow Sec. 8.7
to show that orientation is preserved if and only if

(1.7) ν > max{h−, h+}|µ|, τ > max{h−, h+}|σ|.

Stress resultants and the equilibrium equations. Let n1(s0, φ) and
m1(s0, φ) denote the resultant contact force and contact couple per unit
reference length of the circle φ �→ r◦(s0, φ) of radius r◦(s0) that are exerted
across this section at r◦(s0, φ) by the material with s ≥ s0 on the material
with s < s0. Let n2(s, φ0) and m2(s, φ0) denote the resultant contact force
and contact couple per unit reference length of the curve s �→ r◦(s, φ0)
that are exerted across this section at r◦(s, φ0) by the material with φ ∈
[φ0, φ0 + ε] on the material with φ ∈ [φ0 − ε, φ0). Here ε is a small positive
number. By a variant of the procedure used in Sec. 4.1 we find that the
reactions to these resultants have the same values with signs reversed. Since
we seek axisymmetric configurations, we require that these resultants have
the form

n1(s, φ) = N(s)a(s, φ) +H(s)b(s, φ), n2(s, φ) = T (s)e2(φ),(1.8a,b)

m1(s, φ) = −M(s)e2(φ), m2(s, φ) = Σ(s)a(s, φ).(1.8c,d)

Clearly m2 should not have a component in the e2-direction: The effect of
such a component on bounding curves of longitude of a curvilinear rectangle
would be to bend these curve in the opposite senses and thereby destroy
the axisymmetry. Reasons why m2 should not have a component in the b
direction are given in Secs. 17.2,4,8: m2 can be regarded as a cross product
of b with another vector.

Let us assume that the shell is subjected to an axisymmetric applied
force of intensity f(s, φ) = f1(s)e1(φ) + f3(s)k and an applied couple of
intensity −l(s)e2(φ) per unit reference area of r◦ at (s, φ). For example,
a hydrostatic pressure of intensity p per unit actual area of r has an f of
the form

(1.9) f = p
rs × rφ

|r◦
s × r◦

φ| = p
r

r◦
(νa + ηb) × e2 = pτ(νb − ηa).
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The body couple has no other components because the effect on a curvilin-
ear rectangle of a component about a, thought of as nearly parallel to rs,
would tend to push one boundary curve of longitude inward and the other
outward, while a component about b, thought of as nearly perpendicular
to rs, would tend to push one bounding curve of longitude upward and
the other downward, in each case destroying the axisymmetry. The un-
suitability of the absent components can be demonstrated analytically by
retaining them and then showing that the equilibrium equations obtained
force these components to vanish.

Summing forces and moments on the segment consisting of all material
points with coordinates (ξ, ψ) with s1 ≤ ξ ≤ s, 0 ≤ ψ ≤ φ, we obtain
(1.10a)∫ φ

0
[N(s)a(s, ψ) +H(s)b(s, ψ)]r◦(s) dψ

−
∫ φ

0
[N(s1)a(s1, ψ) +H(s1)b(s1, ψ)]r◦(s1) dψ

+
∫ s

s1

T (ξ)e2(φ) dξ −
∫ s

s1

T (ξ)e2(0) dξ +
∫ s

s1

∫ φ

0
f(ξ, ψ)r◦(ξ) dψ dξ = o,

(1.10b)∫ φ

0
{−M(s)e2(ψ) + r(s, ψ) × [N(s)a(s, ψ) +H(s)b(s, ψ)]}r◦(s) dψ

−
∫ φ

0
{−M(s1)e2(ψ) + r(s1, ψ)×[N(s1)a(s1, ψ) +H(s1)b(s1, ψ)]}r◦(s1) dψ

+
∫ s

s1

[Σ(ξ)a(ξ, φ) + r(ξ, φ) × T (ξ)e2(φ)] dξ

−
∫ s

s1

[Σ(ξ)a(ξ, 0) + r(ξ, 0) × T (ξ)e2(0)] dξ

+
∫ s

s1

∫ φ

0
[r(ξ, ψ) × f(ξ, ψ) − l(ξ)e2(ψ)]r◦(ξ) dψ dξ = o.

Differentiating (1.10) with respect to s and φ, we obtain the classical form
of the equilibrium equations:

∂
∂s [r◦(Na +Hb)] − Te1 + r◦f = o,(1.11)

d
ds [r◦M ] −Σ cos θ + r◦(νH − ηN) + r◦l = 0.(1.12)

Constitutive relations. The shell is nonlinearly elastic iff there are func-
tions T̂ , N̂ , Ĥ, Σ̂, M̂ of q and s such that

(1.13) T (s) = T̂ (q(s), s), etc.

The common domain of definition of these functions corresponds to q’s that
preserve orientation. In particular, we can take this domain to be defined
by (1.7). We assume that the constitutive functions are continuously dif-
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ferentiable and are thrice continuously differentiable in q. We require that
these functions satisfy the monotonicity conditions: The matrices

(1.14a,b)
∂(N̂ , Ĥ, M̂)
∂(ν, η, µ)

,
∂(T̂ , Σ̂)
∂(τ, σ)

are positive-definite.

Condition (1.14a) ensures that an increase in the bending strain µ is ac-
companied by an increase in the bending couple M , etc. We also require
that compatible coercivity conditions hold:

{
T̂ (q, s)
N̂(q, s)

}
→ −∞ as

{
τ ↘ max{h−, h+}|σ|
ν ↘ max{h−, h+}|µ|

}
(1.15a)

if
{
ν
τ

}
is bounded above and if η, σ, µ are bounded,{
T̂ (q, s)
N̂(q, s)

}
→ ∞ as

{
τ
ν

}
→ ∞(1.15b)

if
{
ν − max{h−, h+}|µ|
τ − max{h−, h+}|σ|

}
has a positive lower bound

and if η, σ, µ are bounded,

Ĥ(q, s) → ±∞ as η → ±∞(1.15c)

if (τ, ν, σ, µ) lies in a compact subset of

{(τ, ν, σ, µ) : τ > max{h−, h+}|σ|, ν > max{h−, h+}|µ|},{
Σ̂(q, s)
M̂(q, s)

}
→ ±∞ as

{
σ
µ

}
→ ±

{
τ/max{h−, h+}
ν/max{h−, h+}

}
(1.15d)

if
{

(ν, η, µ)
(τ, η, µ)

}
lies in a compact subset of{

{(ν, η, µ) : ν > max{h−, h+}|µ|}
{(τ, η, µ) : τ > max{h−, h+}|σ|}

}
.

These conditions are more complicated than those of Sec. 4.1. To appre-
ciate their significance, we focus on the first condition of (1.15b), and for
simplicity we suppose that (η, σ, µ) = (0, 0, 0). We consider a specimen of
material whose reference configuration is a small square with τ measur-
ing the stretch in the horizontal direction and ν, in the vertical direction.
The first condition of (1.15b) says that if the horizontal stretch τ becomes
infinite while the vertical stretch ν has a positive lower bound, then the
horizontal tension T must become infinite to maintain such a state. If the
lower bound on ν were not present, then it would seem reasonable to expect
that τ could be forced to ∞ with bounded T by squeezing ν down to 0.
It is this interaction between effects in different directions that gives elas-
ticity its richness and complexity. (See the discussion following (12.2.30).
These interactions are absent in the problems discussed in the preceding
chapters.)
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That conditions such as (1.14) and (1.15) are regarded as physically
reasonable and worthy of study does not imply that alternative conditions
are necessarily unreasonable or unworthy of study.

In view of (1.14) and (1.15), we can invoke the Global Implicit-Function
Theorem 21.2.30 to show that the system of nonlinear algebraic equations

(1.16) N̂(q, s) = n, Ĥ(q, s) = h, M̂(q, s) = m

can be uniquely solved for (ν, η, µ) in terms of the other variables appearing
in this equation. We denote this solution by

(1.17a) ν = ν�(τ, n, h, σ,m, s), etc.

We then define T � and Σ� by

(1.17b) T �(τ, n, h, σ, µ, s) := T̂ (τ, ν�, η�, σ, µ�, s), etc.,

where the arguments of ν�, etc., are shown in (1.17a).
We assume that the reference configuration, in which the strains vari-

ables q◦ := (1, 1, 0, σ◦, µ◦) are trivial, is natural, i.e., stress-free, so that

(1.18) T̂ (q◦, s) = N̂(q◦, s) = Ĥ(q◦, s) = Σ̂(q◦, s) = M̂(q◦, s) = 0.

Shells of arbitrary shape. We actually have the wherewithal to construct much of
the dynamical theory of Cosserat shells, the details of which are relegated to Sec. 17.8.
Here we outline how to generalize the derivations of (1.11) and (1.12).

We take the material base surface to be r◦(M) where r◦ is a mapping into E3 of the
closure M of a domain of R2 whose elements are curvilinear coordinate s := (s1, s2).
We require that r◦ be one-to-one and continuously differentiable on int M and that the
coordinate system s be nonsingular here:

(1.19)
∂r◦

∂s1
× ∂r◦

∂s2

= o ∀ s ∈ int M.

Note that ∂r◦/∂s1 is a vector tangent to the coordinate curve s1 �→ r◦(s1, s2) in r◦(M),
etc.

Let n1
+(a) be the contact force per unit length of the curve s2 �→ r◦(a1, s2) exerted

across this curve at a by the material with s1 > a1 on the material with s1 ≤ a1. Let
−n1

−(a) be the corresponding force exerted on the material with s1 > a1 by the material
with s1 ≤ a1. Define n2

±(a) analogously for the curve s1 �→ r◦(s1, a2). Let f be the
body-force intensity per unit area of r◦(M).

1.20. Exercise. (i) Show that the requirement that the resultant force vanish on the
image under r◦ of the rectangle in M with corners at (a1, a2), (s1, a2), (s1, s2), (a1, s2)
is

(1.21)

∫ s2

a2
n1

+(s1, ξ2)
∣∣∣∣∂r◦(s1, ξ2)

∂ξ2

∣∣∣∣ dξ2 −
∫ s2

a2
n1

−(a1, ξ2)
∣∣∣∣∂r◦(a1, ξ2)

∂ξ2

∣∣∣∣ dξ2
+
∫ s1

a1
n2

+(ξ1, s2)
∣∣∣∣∂r◦(ξ1, s2)

∂ξ1

∣∣∣∣ dξ1 −
∫ s1

a1
n2

−(ξ1, a2)
∣∣∣∣∂r◦(ξ1, a2)

∂ξ1

∣∣∣∣ dξ1
+
∫ s2

a2

∫ s1

a1
f(ξ1, ξ2)

∣∣∣∣∂r◦(ξ1, ξ2)
∂ξ1

× ∂r◦(ξ1, ξ2)
∂ξ2

∣∣∣∣ dξ1 dξ2 = o.
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(ii) Under favorable regularity assumptions, prove that nα
+ = nα

−, and dropping the
indices ± derive the classical form of the equilibrium of forces:

(1.22)
∂

∂s1

(∣∣∣∣∂r◦

∂s2

∣∣∣∣n1
)

+
∂

∂s2

(∣∣∣∣∂r◦

∂s1

∣∣∣∣n2
)

+
∣∣∣∣∂r◦

∂s1
× ∂r◦

∂s2

∣∣∣∣f = o.

(iii) Let the contact couples mα
± be defined in analogy with nα

±. Let l be the body-
couple intensity per unit area of r◦(M). Likewise prove that the indices ± on mα are
superfluous and that

(1.23)

∂

∂s1

(∣∣∣∣∂r◦

∂s2

∣∣∣∣m1
)

+
∂

∂s2

(∣∣∣∣∂r◦

∂s1

∣∣∣∣m2
)

+
∂r

∂s1
×
∣∣∣∣∂r◦

∂s2

∣∣∣∣n1 +
∂r

∂s2
×
∣∣∣∣∂r◦

∂s1

∣∣∣∣n2 +
∣∣∣∣∂r◦

∂s1
× ∂r◦

∂s2

∣∣∣∣ l = o

where r(s) is the deformed position of r◦(s).

2. Buckling of a Transversely
Isotropic Circular Plate

We specialize the theory of Sec. 1 to circular plates of unit radius by
taking s1 = 0, s2 = 1, and

(2.1) r◦(s) = s, θ◦(s) = 0.

We assume that there is neither applied force nor couple, so that f = o,
l = 0. The axisymmetry implies that for a classical solution, the following
boundary conditions should hold at the center of the plate:

(2.2a,b,c) r(0) = 0, θ(0) = 0, η(0) = 0.

We assume that the edge s = 1 is constrained to be parallel to k:

(2.3) θ(1) = 0.

We assume that a normal pressure of intensity λg(r(1)) units of force
per reference length is applied to the edge s = 1 of the plate, so that

(2.4a,b) N(1) = −λg(r(1)), H(1) = 0.

If the edge pressure has intensity λ units of force per deformed length, then
g(r) = r, whereas if it has intensity λ units of force per reference length,
then g(r) = 1. For simplicity, we assume that the latter is the case.

Replacing (s1, s) in (1.10a) with (s, 1) and using (2.4), we obtain

−sN(s) =
[
λ+

∫ 1

s

T (ξ) dξ
]

cos θ(s),(2.5a)

sH(s) =
[
λ+

∫ 1

s

T (ξ) dξ
]

sin θ(s).(2.5b)
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By differentiating these equations, we recover the componential forms of
(1.11):

d
ds [sN(s)] = sH(s)θ′(s) + T (s) cos θ(s),(2.6a)

− d
ds [sH(s)] = sN(s)θ′(s) − T (s) sin θ(s).(2.6b)

Substituting (2.5) into (1.12) we obtain

(2.7) d
ds [sM(s)] −Σ(s) cos θ(s)

+
[
λ+

∫ 1

s

T (ξ) dξ
]
[ν(s) sin θ(s) + η(s) cos θ(s)] = 0,

which resembles (6.6.1). From (2.5) we readily obtain

(2.8a,b) H cos θ = −N sin θ, (sN/ cos θ)′ = T,

which is equivalent to (2.6). (We can get (2.8a) directly by taking the dot
product of (1.11) with k.)

We require that the material meet the following minimal restrictions on
its symmetry:

T̂ , N̂ , Σ̂, M̂ are even in η, Ĥ is odd in η,(2.9a)

T̂ , N̂ , Ĥ are unchanged under (σ, µ) �→ (−σ,−µ),(2.9b)

Σ̂, M̂ change sign under (σ, µ) �→ (−σ,−µ).(2.9c)

These conditions ensure that deformed states come in mirror images. Con-
dition (2.9c) is not as simple as one might hope. The source of these
constitutive assumptions is the 3-dimensional theory; see Sec. 17.4.

We assume that the constitutive functions are independent of s (for
simplicity of exposition) and satisfy the restricted isotropy conditions:

(2.10) N̂(τ, ν, 0, σ, µ) = T̂ (ν, τ, 0, µ, σ), M̂(τ, ν, 0, σ, µ) = Σ̂(ν, τ, 0, µ, σ).

These conditions are termed restricted because η is taken to be 0 here. If
(2.10) holds, we call the plate transversely isotropic. A gross but useful
oversimplification of the import of (2.10) is that it says that N̂ depends on
ν the same way that T̂ depends on τ , etc. The general isotropy condition,
which we study in a 3-dimensional context in Sec. 12.13, says that the ma-
terial response is unaffected by rotations of material fibers in the reference
configuration (cf. Sec. 8.11). For axisymmetric deformations, we need only
require a suitable invariance under rotations of π/2 that take longitudinal
fibers into azimuthal fibers, or vice versa. It is precisely such rotations that
are accounted for in (2.10).
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Unbuckled states. We first seek unbuckled states for which η = 0 =
θ. Then all the equilibrium equations are identically satisfied except for
(2.5a). We substitute the constitutive equations (1.13) into (2.5a) and seek
solutions of the form

(2.11) r(s) = r0(s) := ks

where k is a constant to be determined. The isotropy condition reduces
the resulting form of (2.5a) to

(2.12) T (k, k, 0, 0, 0) = −λ.

We augment (1.14) and (1.15) with the mild assumptions that T (k, k, 0, 0, 0)
strictly decreases from 0 to −∞ as k decreases from 1 to 0 and that
T (k, k, 0, 0, 0) is positive for k > 1. Then for each λ ≥ 0, Eq. (2.12)
has a unique solution for k, which we denote by k(λ).

The linearization. Let R represent any constitutive function from (1.13)
or a derivative of such a function. Then we set

(2.13) R0(λ) := R̂(k(λ), k(λ), 0, 0, 0).

The linearization of (2.7) and (1.13) about the unbuckled state defined by
r0(s, λ) = k(λ)s is the Bessel equation

(2.14) (sθ′(1))
′ − s−1θ(1) + γ(λ)2sθ(1) = 0

where

(2.15) γ(λ)2 :=
λ

M0
µ(λ)

[
k(λ) +

λ

H0
η (λ)

]
= −N

0(λ)
M0

µ(λ)

[
k(λ) − N

0(λ)
H0

η (λ)

]
.

The eigenvalues λ0 of (2.14) subject to (2.2b) and (2.3) are solutions of

(2.16) J1(γ(λ)) = 0

where J1 is the Bessel function of order 1. The corresponding eigenfunction
is s �→ J1(γ(λ0)s). In particular, if jp is the (p+1)st zero of J1 and if there is
a λ0 such that γ(λ0) = jp, then J1(jps) is the corresponding eigenfunction,
which has exactly p zeros on (0, 1), each simple.

2.17. Exercise. Linearize the entire boundary-value problem about the trivial branch,
obtaining (2.14) and (2.15).

We can expect γ2 to look like the q of Sec. 6.5. We could then carry out a
local analysis along the lines of Sec. 6.6. To carry out a global analysis, we
require that the boundary-value problem can be cast in the form required
by the One-Parameter Global Bifurcation Theorem 5.4.19.
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Compactness. We now wish to convert our problem to the form
(5.3.1), (5.4.5) with (λ, u) �→ L(λ)u, g[λ, u] compact and continuous. Our
inclination is to follow the scheme begun in Sec. 6.5 for rod problems and
use the natural integral equations of equilibrium as our starting point. But
(2.5) suggests that in doing so we would encounter technical problems, at
least in dealing with the polar singularity at s = 0. It might be possible to
resolve the difficulties by adopting suitable weightings on the unknowns,
but a study of (2.5) and (2.7) suggests that the efficacy of weightings de-
pends crucially on the details of the constitutive response.

The approach we adopt is suggested by the linearized problem, which is
governed by a Bessel equation. We know from elementary spectral theory
(see Stakgold (1998)) that many eigenvalue problems involving Bessel equa-
tions can be transformed into integral equations of the form [I−L(λ)] ·u = o
with L(λ) compact. Our plan is to force our boundary-value problem into
a form suggested by the linear problem with the hope that the constitutive
properties will enable us to prove that the nonlinear problem has the same
compactness properties as the linear problem. We merely sketch the salient
ideas, omitting a lot of computation.

We substitute (1.13) into (2.6) and (2.7) and then carry out the differen-
tiations on the left-hand sides of the resulting equations. Condition (1.14a)
enables us to use Cramer’s rule to solve these equations for sν′, sη′, sµ′.
We then use (1.2) to force these equations into a mold suggested by the
linearization:

L1ρ :=
d

ds
[sρ′] − ρ

s
= f1,(2.18a)

L2z :=
d

ds
[sz′] = f2,(2.18b)

L3θ :=
d

ds
[sθ′] − θ

s
= f3(2.18c)

where ρ := r − r0 and where the f ’s are complicated expressions involving
all the geometric variables and the parameter λ. The variables ρ, z, and θ
satisfy the boundary conditions

(2.19a) ρ(0) = 0,

(2.19b) N0
ν ρ

′(1) +N0
τ ρ(1) = −N̂(q(1)) − λ+N0

ν ρ
′(1) +N0

τ ρ(1) =: b,

z(0) =0 = z′(1),(2.19c)

θ(0) =0 = θ(1).(2.19d)

We express f1, f2, f3 in terms of ρ, z, θ by using (1.4).
Motivated by the treatment of linear problems involving Bessel’s opera-

tor, we define u := (u1, u2, u3) by
(2.20)√

su1(s) := (L1ρ)(s),
√
su2(s) := (L2z)(s),

√
su3(s) := (L3θ)(s).
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We integrate these equations subject to the boundary condition (2.19) to
express (ρ, z, θ) as integral operators acting on (u1, u2, u3). In particular,

(2.21) θ[u3](s) =
∫ 1

0
K3(s, ξ)

√
ξu3(ξ) dξ

where K3, Green’s function for L3 subject to (2.19d), is given by

(2.22) K3(s, ξ) =

{ 1
2

(
s− 1

s

)
ξ for ξ < s,

1
2

(
ξ − 1

ξ

)
s for s < ξ.

We now replace every expression in f1, f2, f3 by representations of the form
(2.21). We denote the resulting fi by fi[λ, u]. Using (2.18) and (2.20), we
can convert our boundary-value problem to

(2.23) ui(s) =
fi[λ, u](s)√

s
.

We want to show that the right-hand side of (2.23) defines a mapping from
R × [C0[0, 1]]3 to [C0[0, 1]]3 that is continuous and compact.

Now let us examine carefully some crucial steps in the process by which
(2.23) was constructed. From (2.7) and (1.13) we obtain

(2.24) s(M̂σσ
′ + M̂µθ

′′ + · · · ) = Σ̂ cos θ − M̂ + · · · ,

which we can rewrite as

(2.25) M̂µL3θ = Σ̂ − M̂ − (s−1θ − θ′)M̂µ − (s−1θ − θ′)M̂σ + · · · .

Here the ellipsis contains terms like (cos θ−1)Σ̂, which prove to be innocu-
ous.

Thus we can expect the right-hand sides of (2.23) to contain an expres-
sion of the form (2.25) divided by

√
s. Since Σ̂ and M̂ depend on s−1 sin θ

and θ′, which (2.21) does not require to be particularly well behaved at
s = 0, this term could well cause trouble. It is not evident that (2.25)
divided by

√
s is even continuous. We now show how isotropy extricates

us from the threatened difficulty.
For simplicity of exposition, let us assume that Σ̂ and M̂ depend only

on σ and µ and let us replace σ(s) with θ(s)/s. Then in place of (2.25) we
accordingly study the (uncoupled) equation

(2.26a) u3 = s−1/2Ω[θ[u3]](s)

where

(2.26b) M̂µΩ[θ](s) := Σ̂
(
s−1θ(s), θ′(s)

)
− M̂

(
s−1θ(s), θ′(s)

)
−
(
s−1θ(s) − θ′(s)

) [
M̂µ

(
s−1θ(s), θ′(s)

)
+ M̂σ

(
s−1θ(s), θ′(s)

)]
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when θ is given by (2.21) and u3 is continuous. It is still not evident that
(2.26b) is even continuous.

Now (2.21) implies that

2θ[u3](s) =
∫ s

0

(
s− 1

s

)
ξ3/2u3(ξ) dξ +

∫ 1

s

s
(
ξ3/2 − ξ−1/2

)
u3(ξ) dξ,

(2.27a)

2θ[u3]′(s) =
∫ s

0

(
1 +

1
s2

)
ξ3/2u3(ξ) dξ +

∫ 1

s

(
ξ3/2 − ξ−1/2

)
u3(ξ) dξ,

(2.27b)

2
θ[u3](s)
s

=
∫ s

0

(
1 − 1

s2

)
ξ3/2u3(ξ) dξ +

∫ 1

s

(
ξ3/2 − ξ−1/2

)
u3(ξ) dξ.

(2.27c)

The Arzelà-Ascoli Theorem 5.5.3 implies that the right-hand sides of (2.27)
define compact mappings taking C0 into itself.

The isotropy condition that Σ̂(σ, µ) = M̂(µ, σ), which mimics (2.10),
implies that Σ̂σ(σ, µ) = M̂µ(µ, σ) and Σ̂µ(σ, µ) = M̂σ(µ, σ). Here M̂µ(µ, σ)
denotes the derivative of M̂ with respect to its second argument , which here
is occupied by σ. Thus

(2.28) M̂µΩ[θ](s) = Σ̂
(
s−1θ(s), θ′(s)

)
− Σ̂

(
θ′(s), s−1θ(s)

)
−
(
s−1θ(s) − θ′(s)

)[
Σ̂σ

(
θ′(s), s−1θ(s)

)
+ Σ̂µ

(
θ′(s), s−1θ(s)

)]
,

which we recognize as the difference between Σ̂(s−1θ(s), θ′(s)) and its linear
approximation at (θ′(s), s−1θ(s)). Assuming that Σ̂ is twice continuously
differentiable, we use Taylor’s Theorem (cf. (1.4.6)) to write (2.28) as

(2.29) M̂µΩ[θ](s) = α
(
θ[u3]′(s), s−1θ[u3](s)

)
[θ[u3]′(s) − s−1θ[u3](s)]2

where α is a continuous function. We substitute (2.29) into our simplified
equation (2.26a).
2.30. Exercise. Obtain an explicit representation for α as an integral of derivatives of
constitutive functions that shows that α is continuous when the constitutive functions
are twice continuously differentiable.

It follows from the definition of a compact mapping, given before the
statement of Theorem 5.4.19, that the composition of a continuous mapping
with a compact mapping (in either order) is compact and that the product
of compact mappings from C0 to C0 is compact. Therefore, to prove the
compactness of the mapping taking u3 into the right-hand side of (2.26a),
we need only prove that the mapping taking u3 to the square root of this
right-hand side, and therefore that the mapping taking u3 to

(2.31) s �→ s−1/4
[
θ[u3]′(s) − θ[u3](s)

s

]
= s−9/4

∫ s

0
ξ3/2u3(ξ) dξ,

is compact. (The equality in (2.31) follows from (2.27).)
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2.32. Exercise. Prove that the mapping taking u3 into (2.31) is compact, but that the
mappings taking u3 into s �→ s−1/4θ[u3]′(s) and s �→ s−1/4θ[u3](s)/s are not compact.

Thus we can apply the Global Bifurcation Theorem 5.4.19 to branches of
our problem that bifurcate from eigenvalues of odd algebraic multiplicity.

Nodal properties. Just as in Sec. 5.5 and Chap. 6, a proof that the
nodal properties are preserved on any connected set of solution pairs not
containing a trivial solution devolves on a uniqueness theorem for initial-
value problems for the governing equations. Just as in Sec. 6.2, the proof
of this uniqueness theorem is routine except for the case of zero initial data
at the singular point s = 0. We again merely sketch the main ideas:

We suppose that a solution of (2.23) generates via (2.21) a θ (which is
necessarily continuously differentiable) that has a double zero at 0. Now ρ
and z have representations like (2.21), from which we conclude that ρ(0) =
0 = ρ′(0) and η(0) = 0. It then follows from the definition of ρ that
N̂(q(s)) → N0 = −λ as s→ 0. Then (2.5a) implies that

(2.33) Γ (s, λ) :=
1
s

[
λ+

∫ 1

s

T̂ (q(ξ)) dξ
]

defines a continuous function.
The positivity of Ĥη, ensured by (1.14a), and the coercivity condition

(1.15c) imply that η �→ Ĥ(q) has an inverse H �→ η̃(τ, ν,H, σ, µ). Since
η̃(τ, ν, 0, σ, µ) = 0 by (2.9a), we obtain from (2.5b) and (2.33) that

(2.34)
η̃(τ, ν, Ĥ(q), σ, µ) =

[∫ 1

0
η̃H(τ, ν, tĤ(q), σ, µ) dt

]
Ĥ(q)

=: χ(q)Ĥ(q) = χ(q)Γ sin θ.

We replace the η in (2.7) with (2.34) and again use the ideas leading to
(2.25) and (2.29) to express (2.7) as

(2.35a) M̂µL3θ = α[θ′ − s−1θ]2 − sΓ [ν + χΓ ] sin θ + · · · .

Since we have an existence theory, we can regard (2.35) as an equation for
θ alone. It is clear from the form of this equation that if θ has a double
zero in (0, 1], then θ = 0. We now deduce the same conclusion when θ has
a double zero at 0.

We set ψ := sθ′ + θ, ω := sθ′ − θ and rewrite (2.35a) as the system

(2.35b)
{
ψ′

ω′

}
=
{

ψ/s

−ω/s

}
+
α

M̂µ

ω2

s2
− s

M̂µ

Γ [ν+χΓ ] sin 1
2 (ψ−ω)+ · · · .

We want to show that the only solution of this equation when θ has a
double zero at 0 is the trivial solution.

From (2.31) it follows that s �→ s−1/2[θ′(s) − θ(s)/s] = ωs−3/2 is
bounded. Since we are restricting our attention to a specific solution, it
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then follows that there is a positive number C such that the second term
on the right-hand side of (2.35b) is bounded in absolute value by Cωs−1/2.
Let v := |ψ|+ |ω| (cf. Ex. 6.2.14). In light of the preceding remarks, (2.35b)
implies that there is another positive number C such that

(2.36) v′ ≤ v

s
+
Cv√
s
,
v(s)
s

→ 0 as s→ 0,

the limit condition corresponding to the double zero of θ. The only solution
of (2.36) is v = 0. This fact ensures the uniqueness that supports the nodal
theory for our problem. (If the term v/s on the right-hand side of (2.36)
were multiplied by a constant greater than 1, then the solution of the
resulting inequality need not be 0. That this constant is exactly 1 is a
consequence of isotropy.)

2.37. Exercise. Prove all the statements in the last paragraph.

This section is based upon Antman (1978a).

3. Remarkable Trivial States
of Aeolotropic Circular Plates

We now study trivial states of the problem of Sec. 2 for uniform plates
when (2.10) does not hold. These have a surprisingly rich and complicated
structure. Since (2.9) holds, the governing equations for θ = 0 = η reduce
to

(3.1) d
ds [sN̂(r(s)/s, r′(s))] = T̂ (r(s)/s, r′(s)),

which comes from (2.6a), (1.4), and (1.13). Here and below we set N̂(τ, ν)
= N̂(τ, ν, 0, 0, 0), etc. The boundary conditions come from (2.2a) and
(2.4a,b):

(3.2) r(0) = 0, N̂(r(1), r′(1)) = −λ.

To avoid tedious technicalities in our analysis, we supplement the con-
stitutive restriction (1.14) with some auxiliary requirements. The first of
these is: The matrix

(3.3)
∂(T̂ , N̂)
∂(τ, ν)

is positive-definite.

This condition roughly says that a change in τ has more effect on T̂ than
it does on N̂ .

3.4. Exercise. Let (3.3) hold and let λ ≥ 0. Prove that the boundary-value problem
(3.1), (3.2) has at most one solution r ∈ C2(0, 1] for which s �→ sN̂ (r(s)/s, r′(s)) is
bounded.
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We further require that

(3.5a,b) T̂ν > 0, N̂τ > 0.

To appreciate the significance of (3.5), consider the deformation of a rectangular block
with edges parallel to the x, y, z-axes. If we fix the length in the x-direction, increase the
length in the y-direction, and apply zero force to the faces perpendicular to the z-axis,
we might expect the tensions in both the x- and y-directions to increase. If we identify
ν and τ with the stretches in the x- and y-directions respectively, then this argument
yields (3.5b).

Let ν�(τ, n) denote the unique solution for ν of the equation N̂(τ, ν) = n;
its existence is ensured by the constitutive restriction N̂ν > 0 from (1.14a)
and a corresponding growth condition. We set T �(τ, n) := T̂ (τ, ν�(τ, n)).
Then the boundary-value problem (3.1), (3.2) is equivalent to the semilinear
problem

d
ds (sτ̆) = ν�(τ̆ , n̆), d

ds (sn̆) = T �(τ̆ , n̆),(3.6a,b)

sτ̆(s) → 0 as s→ 0,(3.6c)

n̆(1) = −λ, τ̆(s) > 0 for s > 0.(3.6d,e)

3.7. Exercise. Convert the specializations of (1.14), (1.15a,b), and (1.18) for η = σ =
µ = 0 and the conditions (3.3) and (3.5) to equivalent restrictions on ν� and T �.

Let

(3.8) s = eξ−1, τ̆(s) = τ(ξ), n̆(s) = n(ξ).

Then (3.6) is equivalent to the autonomous problem

d
dξ τ = ν�(τ, n) − τ, d

dξn = T �(τ, n) − n, −∞ < ξ < 1,(3.9a,b)

eξτ(ξ) → 0 as ξ → −∞,(3.9c)

n(1) = −λ, τ(ξ) > 0 for ξ > −∞.(3.9d,e)

Thus we can study (3.9) by phase-plane methods.
The vertical isoclines of (3.9) consist of those points (τ, n) with τ ≥ 0

for which

(3.10) τ = ν�(τ, n) or, equivalently, n = N̂(τ, τ)

and the horizontal isoclines consist of those points (τ, n) for which

(3.11) n = T �(τ, n) or, equivalently, n = N̂(τ, ν), n = T̂ (τ, ν).

Conditions (3.3), (3.5b), (1.15a,b), and (1.18) imply that (3.10) is equiv-
alent to an equation of the form

(3.12) τ = v(n)
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with v increasing from 0 to 1 to ∞ as n increases from −∞ to 0 to ∞, and
imply that (3.11) is equivalent to an equation of the form

(3.13) τ = h(n)

with h(n) → 0 as n → −∞, h(0) = 0. The functions v and h are thrice
continuously differentiable because T̂ and N̂ are.

Let

(3.14)
U := {(τ, n) : 0 < τ, −∞ < n <∞},
U := {(τ, n) : 0 ≤ τ ≤ ∞, −∞ ≤ n ≤ ∞}.

U is the phase space for our problem. We introduce the open quadrants
(3.15)

Q1 := {(τ, n) : 1 < τ, 0 < n}, Q2 := {(τ, n) : 0 < τ < 1, 0 < n},
Q3 := {(τ, n) : 0 < τ < 1, n < 0}, Q4 := {(τ, n) : 1 < τ, n < 0}.

The singular points of (3.9) in U are points at which the horizontal and
vertical isoclines intersect and thus are points (τ, n) for which

(3.16) n = T̂ (τ, τ) = N̂(τ, τ).

(Other candidates for singular points in U , at which the direction field is
not defined, are points on its boundary τ = 0 and points at infinity. These
points require separate study.)

Let I be the (possibly disconnected) open region lying between the iso-
clines. Let L be the open region lying to the left of both isoclines and let R
be the open region lying to the right of both isoclines. We illustrate these
regions in Fig. 3.17.

It is instructive to examine the isoclines (3.10) and (3.11) for an isotropic material,
for which (2.10) implies that

(3.18) T̂ (τ, ν) = N̂ (ν, τ ).

In this case, the equation

(3.19) N̂ (τ, ν) = T̂ (τ, ν) ≡ N̂ (ν, τ ),

which comes from (3.11), has a solution for ν , namely, ν = τ . The corresponding
horizontal isoclines defined by (3.11) are then given by n = N̂ (τ, τ ), which is the same
equation as (3.10). Thus the vertical isoclines are also horizontal isoclines and are
therefore curves of singular points. If (3.19) admits solutions for ν other than ν = τ ,
then there are horizontal isoclines not coincident with the vertical isoclines, but these
contain no critical points in U . In any event, all other trajectories impinge transversally
from the left and the right onto the curve of singular points.

If we make the constitutive assumption that

(3.20)
∂

∂ν

[
N̂ (τ, ν) − T̂ (τ, ν)

]∣∣∣∣
ν=τ

> 0 ∀ τ,
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(0,0) τ

=vτ (n)

=fτ (n)

=hτ (n)

n

c

a

b

(1,0)

R

L

I

N v

N h

N v

−

−

Fig. 3.17. Typical phase portrait of (3.9) showing the isoclines,
the invariant regions I, L, and R, and the trajectories on the
curve τ = f(n). Here the horizontal and vertical isoclines in-
tersect transversally at n = 0, a, b. The singular points (1, 0)
and (−b, f(−b)) are attractive nodes and the singular points
(−a, f(−a)) and (c, f(c)) are saddle points.

then the solution ν = τ of (3.19) is unique, and the horizontal and vertical isoclines
coincide. Condition (3.20) is ensured by (3.3) and (3.18).

Now conditions (1.14) and (1.18) ensure via Ex. 3.7 that

(3.21) [ν�(1, n) − 1]n > 0 for n �= 0.

Thus (3.9a) implies that trajectories touching the line {(1, n) : n > 0}
cross it transversally from Q2 to Q1 and that trajectories touching the line
{(1, n) : n < 0} cross it transversally from Q4 to Q3. Similarly, we find
that

(3.22) (τ − 1)T �(τ, 0) > 0 for τ �= 1.

Therefore (3.9b) implies that trajectories touching the segment {(τ, 0) : 0 <
τ < 1} cross it transversally from Q2 to Q3 and that trajectories touching
the line {(τ, 0) : 1 < τ} cross it transversally from Q4 to Q1. Conditions
(3.21) and (3.22) imply that Q1 and Q3 are positively invariant regions,
i.e., trajectories entering them never leave. The disposition of the vector
fields in I, L, and R shows that I is positively invariant and that L and R
are negatively invariant regions. (A negatively invariant region is one with
the property that if a trajectory is ever in it, then it must have been in it
for all smaller values of the independent variable.)
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Since (3.9a,b) is autonomous, it is invariant under shifts of ξ. Therefore,
if a trajectory originates at a point, such as a singular point, for which
ξ may be chosen to equal −∞, then any point on the trajectory with ξ
finite may be regarded as corresponding to ξ = 1. A solution of (3.9)
accordingly corresponds to a trajectory in U that originates at a singular
point or possibly a point on the line τ = 0 or a point at ∞, that exhausts
an infinite amount of independent variable ξ, that terminates on the line
n = −λ, and that satisfies (3.9c) (which is automatic if τ is bounded on
the trajectory). Our fundamental result is

3.23. Lemma. Let (1.15a,b), (1.18), (3.3), and (3.5) hold. A trajectory
having a single point in L or in R cannot correspond to a solution of (3.9).
A trajectory corresponding to a solution must therefore begin at a singular
point and remain thereafter in a connected component of I.

Proof. Our constitutive assumptions imply that

(3.24) d
dξ τ > 0, d

dξn < 0, d
dξν

�(τ(ξ), n(ξ)) < 0 in L.

Since every point in L lies above the vertical isocline, it follows that

(3.25) n > N̂(τ, τ) or, equivalently, ν�(τ, n) > τ for (τ, n) ∈ L.

Let −∞ < ω < 1 and let (τ(ω), n(ω)) ∈ L. Since L is negatively in-
variant, the trajectory terminating at (τ(ω), n(ω)) ∈ L lies entirely in L.
Inequalities (3.24) and (3.25) imply that on this trajectory

(3.26a,b) ν�(τ(ξ), n(ξ)) ≥ ν�(τ(ω), n(ω)) > τ(ω) for ξ ≤ ω.

Substituting (3.26) into (3.9a), we obtain

(3.27a) d
dξ τ ≥ ν�(τ(ω), n(ω)) − τ,

or, equivalently,

(3.27b) d
dξ (eξτ) ≥ ν�(τ(ω), n(ω))eξ.

Integrating (3.27b) from χ to ω, we obtain

(3.28) eχτ(χ) ≤ eω[τ(ω)−ν�(τ(ω), n(ω))]+ν�(τ(ω), n(ω))eχ for χ ≤ ω

on this trajectory. Since the first term on the right-hand side of (3.28) is
negative by (3.26b), the entire right-hand side becomes negative as χ →
−∞. Thus there is a finite negative value of χ, depending on (τ(ω), n(ω)),
at which this trajectory touches the line τ = 0. Therefore this trajectory
cannot correspond to a solution of (3.9), and our assertion about L is
proved.

Now let us study trajectories terminating in R, in which all the inequal-
ities of (3.24) and (3.25) are reversed. We likewise prove the reverse of
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(3.28), which says that eχτ(χ) has a positive lower bound, so that (3.9c)
cannot hold. Thus the last statement of the lemma must hold. �

Exercise 3.4 implies that a trajectory beginning at a singular point and
necessarily remaining thereafter in a connected component of I must be
unique. Thus each such trajectory must lie on a curve defined by

(3.29) τ = f(n),

which lies between the horizontal and vertical isoclines. Let

(3.30)

N h := {n ∈ (−∞, 0) : h(n) > v(n)},
N := {n ∈ (−∞, 0] : h(n) = v(n)},

N v := {n ∈ (−∞, 0) : h(n) < v(n)}.

Note that 0 ∈ N . Since v and h are continuous, N is closed while N h

and N v are open. N h and N v, either or both of which could be empty,
can therefore be decomposed as unions of a countable number of disjoint
open intervals. The singular points lying in Q3 are points of {(τ, n) : n ∈
N , τ = h(n)}. A study of the phase portrait Fig. 3.17 in light of Lemma
3.23 leads to

3.31. Theorem. Let (1.15a,b), (1.18), (3.3), and (3.5) hold. Then for
λ ≥ 0, problem (3.1), (3.2) has a unique solution r0(·, λ) ∈ C0[0, 1]∩C2(0, 1]
and, equivalently, problem (3.6) has a unique solution (τ0(·, λ), N0(·, λ)) ∈
C1(0, 1]. If −λ ∈ N , then r0(s, λ) = sf(−λ). If −λ ∈ N h, then −λ
belongs to a component open interval (−b,−a) of N h. The function
N0(·, λ) strictly decreases from N0(0, λ) = −a to N0(1, λ) = −λ, and
r0(s, λ) = sf(N0(s, λ)). If −λ ∈ N v, then −λ belongs to a component
open interval (−d,−c) of N v. The function N0(·, λ) strictly increases
from N0(0, λ) = −d to N0(1, λ) = −λ, and r0(s, λ) = sf(N0(s, λ)). (See
Fig. 3.17.)

In particular, if N h has a component open interval of the form (−b, 0),
then N0(0, λ) = 0 for all λ ∈ (0, b). Thus the center of the plate is stress-
free for a range of boundary pressures. If N h = (−∞, 0), then the center
of the plate is stress-free for all pressures λ. If N v has a component open
interval of the form (−d, 0), then N0(0, λ) = −d for all λ ∈ (0, d]. Thus the
smallest amount of pressure on the boundary causes the stress at the center
to jump from 0 to a nonzero value, at which it remains while λ increases to
d. If N v = (−∞, 0), then the normal stresses T and N at the center of the
plate equal −∞ for all pressures λ. If N h has a component open interval
of the form (−∞,−b), then for large enough λ, the normal stresses at the
center of the plate equal −∞. Thus if N h �= (−∞, 0), then the solutions
of (3.6) do not depend continuously on λ ∈ [0,∞).

For the analysis of the buckling problem in the next section, we must determine the
detailed behavior of its trivial solutions (τ0(·, λ), N 0(·, λ)) near s = 0. This behavior,
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described by the next theorem and the subsequent discussion, is obtained by perturbing
(3.9) about its singular points in U . Using a notation like that of (2.13), we set

(3.32)
A1(s, λ) :=

T 0
ν (s, λ) −N 0

τ (s, λ)
2N 0

ν (s, λ)
, B1(s, λ) :=

√
A1(s, λ)2 +

T 0
τ (s, λ)
N 0

ν (s, λ)
,

α1(λ) := A1(0, λ), β1(λ) := B1(0, λ).

Note that A1 = 0 for hyperelastic plates.

3.33. Theorem. Let the hypotheses of Theorem 3.31 hold. If −∞ < N 0(0, λ) < 0,
then the limits of τ0(s, λ) and ν0(s, λ) as s → 0 exist and are equal and positive.
Moreover,

(3.34a) α1(λ) + β1(λ) ≥ 1

or, equivalently,

(3.34b) T 0
τ (0, λ) + T 0

ν (0, λ) ≥ N 0
τ (0, λ) +N 0

ν (0, λ).

There are numbers A(λ), B(λ), C(λ), and D(λ) such that

(3.35)
{
r0(s, λ)
N 0(s, λ)

}
=
{
sτ0(0, λ)
N 0(0, λ)

}
+
{
A(λ)
B(λ)

}
sα1(λ)+β1(λ)

+
{
C(λ)
D(λ)

}
s2[α1(λ)+β1(λ)] + o

(
s2[α1(λ)+β1(λ)]) as s → 0.

The expansions for r′0 and r′′0 are given by the formal derivatives of (3.35). If α1(λ) +
β1(λ) = 1, then all the terms on the right-hand side of (3.35), except the first, vanish.

If the material is hyperelastic, then (3.34) reduces to T 0
τ (0, λ) ≥ N 0

ν (0, λ). When the
strict inequality in (3.34) holds, we may say that the plate is circularly reinforced at the
center. Note that (τ0(0, λ), N 0(0, λ)) is a saddle point for (3.9a,b).

3.36. Exercise. Prove Theorem 3.33.

For problems for which (τ0(s, λ), N 0(s, λ)) → (0,−∞) as s → 0, it follows that

(3.37a,b) ν0(s, λ) → 0, T 0(s, λ) → −∞ as s → 0,

for if (3.37a) were not to hold, then ν0 would have a positive lower bound a, so that
(3.6) would imply the contradiction that τ0 ≥ a. The limit (3.37b) then follows from
that for τ0, from (3.37a), and from (1.15a). For these problems the behavior of solutions
near s = 0 devolves upon the fine structure of the constitutive functions. The behavior
is typified by that for the artificial example of the Taylor plate, which has no tensile
or flexural strength in the azimuthal direction. (It generalizes G. I. Taylor’s (1919)
model for a parachute.) Its constitutive functions for trivial solutions have the defining
property that

(3.38) N̂τ = 0, T̂ = 0.

3.39. Exercise. Solve (3.9) in closed form when (3.38) holds. Sketch the phase portrait
for (3.9).

3.40. Problem. Develop the theory of this section under the replacement of (3.3) with
the weaker conditions N̂ν > 0, T̂τ > 0.

The work in this section is based on that of Antman & Negrón-Marrero (1987) and
Negrón-Marrero & Antman (1990). (Much of the exposition is adapted from the former
reference, c©Martinus Nijhoff Publishers, Dordrecht, and is reprinted by permission of
Kluwer Academic Publishers.) For a related shrink-fit problem, see Antman & Shvarts-
man (1995). Transformations like (3.9) have been used for elasticity problems by Biot
(1976), Callegari, Reiss, & Keller (1971), Sivaloganathan (1986), Stuart (1985), and
Szeri (1990). See Sec. 14.7.
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4. Buckling of Aeolotropic Plates
Here we sketch how the buckling problem for aeolotropic plates differs from that for

isotropic plates treated in Sec. 2. We first study the linearization of our boundary-value
problem about the trivial solution described in Sec. 3. The linearization of (2.7) and
(1.13) is

(4.1)

[
sM 0

µ(s, λ)θ′]′ − 2M 0
µ(s, λ)A3(s, λ)θ′

+M 0
σ(s, λ)′θ +M 0

µ(s, λ)
[
A3(s, λ)2 − B3(s, λ)2

]
θ/s

+ sN 0(s, λ)
[
N 0(s, λ)/H0

η(s, λ) − r′0(s, λ)
]
θ = 0

where

(4.2) A3(s, λ) :=
Σ0

µ(s, λ) −M 0
σ(s, λ)

2M 0
µ(s, λ)

, B3(s, λ) :=

√
A3(s, λ)2 +

Σ0
σ(s, λ)

M 0
µ(s, λ)

.

Here M 0
µ(s, λ) = Mµ(r0(s, λ)/s, r′0(s, λ), 0, 0, 0) is the value of Mµ at the trivial state,

etc. Note that it depends on s and, in fact, can inherit any singular behavior of r0 in
s or discontinuous behavior of it in λ. Consequently, the analysis of (4.1) is a far more
challenging exercise than that provided by (2.14). Representations (3.35) can be used
to support an analysis (using comparison theory) to determine the nature of eigenvalues
and eigenfunctions of (4.1) subject to (2.2b) and (2.3).

If (τ0(0, λ), N 0(0, λ)) → (0,−∞) as s → 0, so that (3.37) holds, then (3.35) is
not valid. In this case, an inkling of the complexity of the solutions of the linearized
boundary-value problem is offered by the degenerate problem of the Taylor plate , defined
by the constitutive restrictions that T̂ = 0 = Σ̂ and that N̂ , Ĥ , M̂ are each independent
of τ and σ (cf. (3.38)). The Taylor plate may thus be regarded as consisting of an infinite
array of radially disposed rods.

4.3. Exercise. Let a Taylor plate have constitutive functions of the form

ν�(n) = (1 −Kn)−k for n ≤ 0,(4.4a)

M 0
µ(s, λ) =

L

ν0(s, λ)l
N 0

ν (s, λ) for ν0(s, λ) ≤ 1,(4.4b)

where K, L, k > 0; l ≥ 0. Analyze the resulting boundary-value problem for (4.1) by the
Prüfer transformation in the manner of Sec. 6.2. For an unshearable plate, prove that if
the positive integer j is sufficiently large, then there is no eigenfunction having more than
j zeros, and that if there is an eigenfunction with exactly j zeros, then the corresponding
eigenvalues cannot accumulate at λ = 0. For a shearable plate, let H0

η(s, λ) be a positive
constant. Prove that if k(1 + l) < 1, then there is a sequence of eigenvalues {λj} going
to ∞ with corresponding eigenfunctions having exactly j + 1 zeros.

The conversion of our boundary-value problem to the form (5.3.1), (5.4.5) is like
that for the transversely isotropic plate. But here we replace (2.20) with an expression
suggested by (4.1) for s near 0. Surprisingly, the presence of aeolotropy actually simplifies
the analysis, as we shall see, by affording ways to replace the troublesome factor s−1

with s1−ε for a positive ε. In certain respects, the isotropic case thus represents an
extreme of technical difficulty.

In many cases, nontrivial solutions satisfy the initial conditions θ(0) = 0 = θ′(0).
These conditions would seem to suggest difficulties in reducing a proof that nodal prop-
erties are preserved to a proof of the uniqueness of trivial solutions for θ when it has
a double zero. Fortunately, a change of variables of the form θ(s) = sαψ(s), where
α := A(0, λ)+B(0, λ)−1 accounts for the amount of anisotropy, leads to problems for the
new variable ψ when α ≥ 1 in which a solution is trivial if and only if ψ(0) = 0 = ψ′(0).
The requisite uniqueness theory leads to an inequality like (2.36), but with vs−1 replaced
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θ

λ#

Fig. 4.5. Bifurcation diagram showing a disconnected branch for the buck-
ling of an anisotropic plate.

with Cvsε−1 where ε is a positive number measuring the amount of anisotropy. We no
longer have a control on C , but this fact causes no difficulties because the presence of ε
significantly reduces the strength of the singularity at s = 0.

The product of this global bifurcation analysis is that the number of zeros of the
associated function ψ are inherited from the eigenfunctions of the linearized problem
corresponding to simple eigenvalues and are preserved globally, except possibly across
planes of the form λ = λ� where λ� is a value of λ at which the solution of the trivial
problem jumps. Consequently, we can expect the bifurcation diagram for a given branch
to have the form shown in Fig. 4.5. As λ is slowly raised through the value λ�, the
nontrivial solution along the branch in Fig. 4.5 suddenly jumps. The effect is similar to
that of snap-buckling, but the mathematical nature of the process is entirely different.
A snap-buckling would correspond to an S-shaped bifurcation diagram, which does not
occur in traditional theories for our problem for transversely isotropic plates (but could
result for such plates from the nonlinear material response, as Fig. 6.9.33 suggests).

We now ask if it is possible to determine nodal properties of the disconnected upper
branch in Fig. 4.5. Since such disconnectedness does not occur for the transversely
isotropic plate, we could show that the upper branch has the same nodal properties
as the lower if we could embed our problem into a family of problems parametrized
by a number β, which measures the amount of aeolotropy, in such a way that the
resulting problem with two parameters λ and β has a sheet of solution triples joining
the disconnected branches of Fig. 4.5 with the connected branches for the isotropic plate.
Were it possible to construct such a sheet of solution triples, we could find a connected
branch of solutions lying in this sheet, joining the lower branch of Fig. 4.5 (for β = 1)
to the connected branch for the isotropic plate (for β = 0), and then going from this
branch to the upper branch of Fig. 4.5 (for β = 1).

The obvious family of constitutive functions parametrized by β has the form

(4.6) q �→ βN̂ (q) + (1 − β)N̄ (q), etc.,

where N̂ is the actual constitutive function for the aeolotropic material and N̄ is the con-
stitutive function for an isotropic material. Our strategy fails miserably when functions
(4.6) are used: An analysis of the phase portrait Fig. 3.17 for the trivial state shows that
the isoclines enclosing the separatrix (3.29), which determines solutions, move closer to-
gether as a β → 0, but the singular points, which are the intersections of the isoclines,
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scarcely move at all. Thus the gaps between the singular points, which are responsible
for the jumps in the trivial solutions, are scarcely moved for β > 0. For β = 0, however,
the isoclines coincide and all jumps disappear. Therefore, the solutions generated by
(4.6) depend discontinuously on β, having a jump at β = 0. Fortunately, the same phase
portrait suggests how to construct a much subtler embedding that does work: Here, for
β near 1, the isoclines are squeezed into coincidence near the singular points. As β is
reduced to 0, the isoclines are progressively squeezed into coincidence over the intervals
between the original singular points. Thus nodal properties of branches are preserved
across gaps. This account of the buckling of anisotropic plates is based on the work of
Negrón-Marrero & Antman (1990).

5. Buckling of Spherical Shells
We now specialize the theory of Section 1 to uniform, transversely iso-

tropic, spherical shells of unit radius by taking s1 = 0, s2 = π, and

(5.1) r◦(s) = sin s, θ◦(s) = s.

Note that smeasures the arc length along circles of longitude from the south
pole. Our boundary conditions require that the deformation be regular at
the poles:

(5.2) r(0) = 0 = r(π), η(0) = 0 = η(π), θ(0) = 0, θ(π) = π.

We assume that the applied force is an externally applied hydrostatic pres-
sure (1.9) and we assume that there is no applied couple. Then equations
(1.11) and (1.12) reduce to

[sin sN̂(s)]′ − T̂ (s) cos θ(s) − sin sĤ(s)θ′(s) − pr(s)η(s) = 0,(5.3)

[sin sĤ(s)]′ + T̂ (s) sin θ(s) + sin sN̂(s)θ′(s) + pr(s)ν(s) = 0,(5.4)

[sin sM̂(s)]′ − Σ̂(s) cos θ(s) + sin s[ν(s)Ĥ(s) − η(s)N̂(s)] = 0.(5.5)

As in (2.8a), we can combine (5.3) and (5.4) to obtain

(5.6) sin s[N̂(s) sin θ(s) + Ĥ(s) cos θ(s)] + 1
2pr(s)

2 = 0.

We assume that the material of the shell is homogeneous and isotropic
in the restricted sense of (2.10). We retain (2.9a), but reject (2.9b,c). See
the discussion of these conditions in Sec. 17.4.

Our boundary-value problem consists of (1.4), (1.13), (5.2)–(5.5). Our
constitutive assumptions ensure that it admits the trivial solution (unbuck-
led state) in which the shell remains spherical, unsheared, and uniformly
compressed, so that ν = τ = k (const.), η = 0, θ(s) = s, σ = 1, µ = 1 if
and only if k satisfies

(5.7) N(k, k, 0, 1, 1) ≡ T (k, k, 0, 1, 1) = − 1
2pk

2.
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We adopt very mild constitutive restrictions sufficient to ensure that this
equation has a unique solution, which we denote by k = k(p).

An examination of the boundary-value problem does not disclose any
obvious candidate for a variable whose number of zeros might be preserved
globally on branches. The equations seem too highly coupled for that.
We nevertheless carry out the linearization of the boundary-value problem
about the trivial solution to see if it exposes any interesting relations that
we can exploit.

5.8. Exercise. Use the isotropy condition (2.10) to show that this linearization has
the form

d

ds
(τ1 sin s) = ν1 cos s − (η1 + kθ1) sin s, σ1 sin s = θ1 cos s,(5.9a,b)

N 0
ν ξ +N 0

µ Lθ1 =
[
(N 0

τ +H0
η + pk)η1 +

(
kN 0

τ +Nσ −N 0
µ + 1

2pk
2) θ1] sin s,(5.9c)

H0
η

d

ds
(η1 sin s) +

(
Nσ +N 0

µ − 1
2pk

2) d
ds

(θ1 sin s)(5.9d)

= −
(
N 0

ν +N 0
τ + pk

)
(τ1 + ν1) sin s,

M 0
ν ξ +M 0

µ Lθ1(5.9e)

=
[
(M 0

τ − kH0
η − 1

2pk
2)η1 +

(
kM 0

τ +Mσ −M 0
µ −M 0) θ1] sin s,

η1(0) = 0 = η1(π), θ1(0) = 0 = θ1(π)(5.9f)

where

ξ :=
d

ds
(ν1 sin s) − τ1 cos s,(5.9g)

(Lu)(s) := [u′(s) sin s]′ − u(s)/ sin s.(5.9h)

Differentiate (5.9d) with respect to s and use (5.9a,c,d) to eliminate the terms involving
τ1 and ν1 from the differentiated form of (5.9d). Show that the resulting equation is
given by the second row of a matrix equation of the form

(5.10a) Ax = pη1 sin s + qθ1 sin s

where

A :=

⎡⎢⎢⎢⎣
N 0

ν 0 N 0
µ

0 H0
η N 0

σ − 1
2pk

2 −N 0
µ

(
N0

τ +pk

N0
ν

)
M 0

ν 0 M 0
µ

⎤⎥⎥⎥⎦ , x :=

⎡⎣ ξ
Lη1
Lθ1

⎤⎦ ,(5.10b)

p :=

⎡⎢⎢⎢⎢⎣
N 0

τ +H0
η + pk

(N0
ν −N0

τ −H0
η−pk)(N0

ν+N0
τ +pk)

N0
ν

M 0
τ − kH0

η − 1
2pk

2

⎤⎥⎥⎥⎥⎦ , q :=

⎡⎢⎢⎢⎢⎣
kN 0

τ +N 0
σ −N 0

µ + 1
2pk

2

(kN0
ν −N0

σ+N0
µ− 1

2 pk2)(N0
ν+N0

τ +pk)

N0
ν

kM 0
τ +M 0

σ −M 0
µ −M 0

⎤⎥⎥⎥⎥⎦ .

Use Cramer’s rule to solve (5.10a) for Lη1 and Lθ1, obtaining

(Lη1)(s) +A(p)η1(s) sin s = −a(p)θ1(s) sin s,(5.10c)

(Lθ1)(s) +B(p)θ1(s) sin s = −b(p)η1(s) sin s(5.10d)
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where the constants A, B, a, b can be read off from (5.10b).

Thus the linearized problem leads to the coupled pair (5.10c,d) of second-
order ordinary differential equations. We can choose complex numbers α,
β, C such that ω = αη1 + βθ1 satisfies the Legendre equation

(5.11) (Lω)(s) + Cω sin s = 0, ω(0) = 0 = ω(π)

if and only if (η1, θ1) satisfy (5.10c,d). Problem (5.11) has a nontrivial
solution if and only if

(5.12) C = n(n+ 1), n = 1, 2, . . . ,

in which case,

(5.13) ω(s) = ωn(s) = const.P 1
n(cos s)

where P 1
n is the associated Legendre function of the first kind of degree n

and order 1. Equation (5.12) is equivalent to

(5.14) g(p;n) := [A(p) − n(n+ 1)][B(p) − n(n+ 1)] − a(p)b(p) = 0.

It is not hard to show that the eigenfunctions corresponding to the eigen-
values p, which satisfy (5.14), have the form

(5.15) (η(s), θ(s)) = ([n(n+ 1) −B]/b, 1)P 1
n(cos s).

The function s �→ P 1
n(cos s) has exactly n + 1 zeros on [0, π], including

those at 0 and π, each of which is simple. Thus every nontrivial solution
of problem (5.9) is characterized by the fact that η and θ have exactly the
same zeros.

The treatment of the global bifurcation theory leads to a somewhat more
complicated version of that for the plate in Sec. 2. We omit the details. We
now turn to the most interesting aspect of the analysis, the treatment of
nodal properties. Our results for the linearized problem together with per-
turbation results, which we do not describe, motivate us to study whether
the number of simultaneous zeros of η and θ − s is fixed on each branch.

The justification of such a conclusion, like that of Sec. 6.4, is much
trickier than that for the nodal theory for plates, which relies on two math-
ematical facts: (i) If h is a given continuously differentiable real-valued
function having exactly n + 1 zeros on a closed interval, each of which is
simple, then any continuously differentiable function f sufficiently close to
h (in the C1-norm) has exactly the same number of zeros. (Thus the set
Sn of such functions h is open.) (ii) Roughly speaking, if such a function
h is perturbed enough to change the number of its zeros, then along the
way it must evolve through a function having a double zero. (As we note
in Sec. 5.5, this remark is not strictly correct because branches of solution
pairs are not necessarily curves, but are merely connected sets. What is
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correct and useful is that the boundary of Sn consists of functions with
double zeros.) In other words, the specification of h as a function of s gives
the graph of a plane curve, small perturbations of which leave its nodal
properties unchanged. The change of these nodal properties is signalled by
the appearance of a double zero.

Now suppose that we consider two continuously differentiable functions
η and θ−s of s. Their graph is a curve in the 3-dimensional space with coor-
dinates s, η, θ− s. The functions η and θ− s have simultaneous zeros when
this curve intersects the s-axis. But typically the slightest perturbation
of this curve would destroy such intersections. Thus the nodal properties
of pairs of continuously differentiable functions differ markedly from those
for a single continuously differentiable function. To get useful information
about nodal properties of η and θ − s we must exploit the fact that they
are not merely arbitrary continuously differentiable functions, but are also
solutions of our boundary-value problem.

For this purpose, we introduce polar coordinates ξ and χ by the Prüfer
transformation

(5.16) η(s) = ξ(s) cosχ(s), θ(s) − s = ξ(s) sinχ(s).

A zero of ξ is a simultaneous zero of η and θ − s. We now confront a
second polar singularity caused by the transformations (5.16). A rather
delicate analysis is needed to show that ξ satisfies a well-defined second-
order equation. One unpleasant, but not surprising, feature of this equation
is that the mid-surface stretches are inextricably coupled with the shearing
and bending terms. A careful analysis of the relationship between the
equation for ξ and those of our boundary-value problem shows that the
number of zeros of ξ is preserved globally on branches (except if they cross
certain small, precisely defined regions of solution-parameter space). It
can also be shown that the nodal property of preserving the number of
simultaneous zeros of η and θ − s is not vacuous: There are nontrivial
branches with this property. The complexity of this result vis-à-vis those for
the plate may be regarded as a nonlinear analog of the fact that the linear
equations for the equilibrium of an elastic plate uncouple into equations
of lower order than those for shells. The treatment of nodal properties
for solutions of problems of this section is a complicated analog of that of
Sec. 6.4.

These nodal properties illuminate the interesting numerical work of Bauer, Reiss,
& Keller (1970) on the axisymmetric buckling of spherical shells. Using a theory of
von Kármán type (see Sec. 17.10), they found that all the bifurcating branches they
computed are connected. This demonstration required the very expensive computation
of large buckled states. Our nodal properties show that such connectedness cannot
occur for our geometrically exact theory. The discrepancy occurs because theories of
von Kármán type are based on a number of hypotheses that are not valid for large
deformations. A detailed treatment of the results of this section is given by Shih &
Antman (1986). The sketch just given generalizes their work by suspending their special
symmetry requirements, which the treatment of Sec. 17.4 suggests is not enforced by
the underlying 3-dimensional physical interpretation.
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6. Buckling of Cylindrical Shells
We now formulate the problem of the axisymmetric buckling of a circular cylindrical

tube under a compressive thrust applied to its edges. We scale the problem so that the
shell has length 2l and radius 1. The reference configuration is characterized by

(6.1) θ◦ = π
2 , r◦(s, φ) = e1(φ) + sk, r◦ = 1, a◦ = k, b◦ = −e1

for −l ≤ s ≤ l. Thus (1.4) is simplified.
We assume that there is no body force applied to the shell. We assume that the

edges are kept parallel and subject to a vertical thrust of intensity λ, so that

(6.2a,b,c,d) θ(±l) = π
2 , n1(±l, φ) = −λk, H(±l) = 0, N (±l) = −λ.

We do not bother to impose a condition on z that would fix a rigid translation. We set

(6.3) ψ :=
π

2
− θ.

From (1.10)–(1.12) we then can write the equilibrium equations in the form

(6.4)
N (s) = −λ cosψ(s) +

[∫ s

−l
T (t) dt

]
sinψ(s),

H(s) = −λ sinψ(s) −
[∫ s

−l
T (t) dt

]
cosψ(s),

(6.5) M ′ − Σ sinψ + νH − ηN = 0.

Note that the boundary conditions imply that

(6.6)
∫ l

−l
T (t) dt = 0.

From (6.4) we obtain the integral

(6.7) N (s) cosψ +H(s) sinψ = −λ.

We assume that the shell is nonlinearly elastic and is uniform, so that s does not
appear explicitly as an argument of the constitutive functions. Using (1.17) and (6.7)
we can write the governing system of ordinary differential equations from (6.5), (1.11),
(1.4) as the following semilinear system for M,H, ψ, r:

M ′ = Σ� sinψ − ν�H − (λ secψ +H tanψ)η�,(6.8a)

H ′ = −(λ secψ +H tanψ)µ� − T � cosψ,(6.8b)

ψ′ = µ�,(6.8c)

r′ = ν� sinψ − η� cosψ(6.8d)

where the arguments of the functions with sharp signs are

(6.8e) r, −(λ secψ +H tanψ), H, cosψ, M.

Our boundary-value problem is (6.8) subject to (6.2a,c).
It is simple to put this boundary-value problem into a form to which we can apply

the Global Bifurcation Theorem 5.4.19. This problem does not admit any obvious nodal
structure.
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Let us assume that Ĥ , Σ̂ , M̂ vanish when (η, σ, µ) = (0, 1, 0). Then the boundary-
value problem admits a trivial solution with ψ = 0 = η, with the radius (hoop stretch)
r and longitudinal stretch ν = z′ determined by

(6.9) N̂ (r, ν, 0, 1, 0) = −λ, T̂ (r, ν, 0, 1, 0) = 0.

Conditions (1.15) can be shown to ensure the existence of at least one solution (r, ν) of
(6.9) (see Chap. 21), but (1.14) is insufficient to ensure the uniqueness of the solution. In
contrast to the trivial solution for the compressed plate studied in Sec. 2, the hoop stress
T vanishes here, although (6.9) indicates that the radius varies with the thrust. To see
that T must vanish here, imagine that the shell is sliced in half by a plane through k. If
T were not zero, then each half would be subject to a net force and would consequently
accelerate.

6.10. Problem. Carry out a perturbation analysis of (6.8), (6.2a,c), determining
whether stability is lost by a transcritical bifurcation. (The problem does not have
enough symmetry to preclude transcritical bifurcations a priori.)

6.11. Research Problem. Characterize global bifurcation by means of nodal struc-
ture.

7. Asymptotic Shape of Inflated Shells
Consider a closed axisymmetric shell (a spheroidal shell) with an ar-

bitrary axisymmetric reference shape. It is subjected to an internal hy-
drostatic pressure. We study the asymptotic shape of the shell when the
enclosed volume becomes large. This is an analog of the problem treated
in Sec. 4.4. (Since there are spherical shells that can enclose an arbitrarily
large volume at finite pressure, we take the volume rather than the pressure
to be the prescribed large parameter.) Isaacson (1965) initiated the study
of such asymptotic states for membranes. See Wu (1979) for a systematic
survey of work on this problem for membranes.

Let ε be a small positive parameter. The large deformation of the shell
is characterized by the requirement that the volume enclosed by it be that
of a ball of radius 1/ε:

(7.1) −2π
3

∫ π

0
ρ(r × r′) · e2 ds =

4π
3ε3
.

We accordingly scale the strains by

(7.2) ν = ε−1ν�, τ = ε−1τ �, r = ε−1r�.

The substitution of (7.2) into (1.13) introduces the small parameter ε into
these constitutive equations. We rescale these equations in a way that
reflects the underlying mechanical response for large ν and τ . For example,
we take

(7.3) N(q, s) = α(ε)
K∑

k=0

αk(ε)Nk(q�, s) + o(αK(ε))
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where α is a positive decreasing function on (0, 1] with α(ε) → ∞ as ε↘ 0,
where α0 = 1, where {αk} is an asymptotic sequence, and where q� equals
q with ν and τ replaced with ν� and τ �. (It is interesting to note that even
if the original theory is hyperelastic, i.e., if the constitutive functions are
derivatives of a scalar strain-energy function, the leading terms of (7.3),
etc., do not correspond to a hyperelastic material.)

Under these assumptions one can prove that the solution can be rep-
resented as an asymptotic series in ε. The leading term corresponds to a
solution of a hydrostatically loaded membrane. It can be shown that if
the constitutive functions are isotropic (but not necessarily homogeneous)
and if area changes dominate length changes in affecting the response of
the tensions T and N for large τ and ν, then the leading term describes a
spherical shell (of very large radius). In particular, if for very large τ and
ν the isotropic strain energy function behaves like A(τ2 + ν2)a + B(τν)b,
where A,B, a, b are positive numbers, and if b > a, then the second hypoth-
esis is met. These results are based on the work of Antman & Calderer
(1985b).

8. Membranes
We obtain the equations for membranes from those for shells by assuming

that l = 0 and by making the constitutive assumptions that the membrane
cannot sustain couples, so that the contact force is tangent to the surface
r:

(8.1) M̂ = 0 = Σ̂, rs × [N̂a + Ĥb] = o.

Thus n1 = Na + Hb has the form Krs/|rs|. If we assume that the lon-
gitudinal and azimuthal tensions K and T have constitutive equations in-
dependent of η, σ, µ, then the governing equations for an elastic membrane
are exactly the same as (1.11) in which the shear strain η = 0, provided we
identify K with N :

d
ds (r◦N cos θ) − T + r◦f · e1 = 0,(8.2)
d
ds (r◦N sin θ) + r◦f · k = 0,(8.3)

with

rs = r′e1 + z′k = ν(cos θe1 + sin θk), τ = r/r◦,(8.4)

T (s) = T̂ (τ(s), ν(s), s), N(s) = N̂(τ(s), ν(s), s).(8.5)

In place of (1.14) and (1.15), we merely require that

(8.6) N̂ν > 0, N̂(τ, ν, s) →
{

+∞
−∞

}
as ν →

{ ∞
0

}
for fixed τ, s.



392 10. AXISYMMETRIC EQUILIBRIA OF SHELLS

We want to obtain a convenient set of differential equations. From (8.2)
and (8.3) or from (1.11), we immediately obtain

(8.7) d
ds (r◦N) − T cos θ + r◦f · a = 0.

Let F ′(s) = −r◦(s)f(s) · k. Then (8.3) admits the integral

(8.9) r◦N sin θ = F + const.

For example, if the body force is due solely to hydrostatic pressure (1.9),
then F (s) = 1

2pr(s)
2. The constant is determined by boundary condi-

tions. On the other hand, if the body force is due to a heavy liquid with
a free surface at height h, in which case the body force is the hydrostatic
pressure P + ω(h − z) where P is the pressure on the free surface, ω is
the weight per unit volume, and z = r · k, then F cannot have the form
F (s) = G(r(s), τ(s), ν(s), s) because G does not meet the requisite exact-
ness condition.

Now as in the paragraph containing (3.6), we let ν�(τ, n, s) denote the
unique solution of the equation N̂(τ, ν, s) = n; its existence is ensured by
(8.6). We set T �(τ, n, s) := T̂ (τ, ν�(τ, n, s), s). Then (8.2)–(8.5) is equiva-
lent to the semilinear system

d
ds (r◦n) = T �(τ, n, s) cos θ − r◦f · a,(8.10)
d
ds (r◦τ) = ν�(τ, n, s) cos θ(8.11)

for (τ, n), where cos θ can be expressed in terms of n and τ by (8.9) with
n replacing N (with different representations of cos θ having to be patched
together where θ crosses odd multiples of π

2 . Thus the governing equations
can be reduced to a semilinear second-order system. Variants of these
equations were developed by Dickey (1983).

The exact equations for membranes are treated in Green & Adkins
(1970) and in the references given in the preceding section. Many mem-
brane problems have interesting singularities that cause mathematical dif-
ficulties. These have almost exclusively been treated for approximate the-
ories. Thus many fascinating problems, such as that of Callegari, Reiss, &
Keller (1971), have not been given a full treatment within the exact theory.
(Preliminary results for this problem are described by Antman (1981).) For
a survey of nonlinear problems for approximate theories, see Weinitschke
(1987) and Weinitschke & Grabmüller (1992).

9. Eversion
In Sec. 5.2 we described the problem of snap-through in which at a

critical value of a load parameter a shell jumps from an equilibrium state
close to the reference state to an everted state that roughly approximates
the reflection of the reference state through a plane. In many such cases,
there is an everted equilibrium state that remains when the load is removed.
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This everted state, far removed from the reference state, is the object of
our study. We pay special attention to the lip that forms at the edge
(see Fig. 5.2.9). For this purpose we exploit the fact that if the shell is
very thin, then it behaves very much like a membrane, which offers no
resistance to bending. The eversion of a membrane through a plane is just
the mirror image of its reference state. We describe the eversion of the shell
by carrying out a rigorous asymptotic expansion of the governing equations
in terms of a small thickness parameter, in which the lip is described by a
boundary-layer expansion.

We assume that all functions given as data, such as the functions defin-
ing the reference configuration and the constitutive functions, have as many
continuous derivatives as appear in the analysis. We adopt the same con-
vention for all functions appearing in the derivation of the governing equa-
tions; The Landau order symbols O and o are understood to hold when the
small thickness parameter δ or ε ↘ 0 or when the meridional coordinate
s↘ 0, the meaning being obvious from the context.

We assume that a typical section of the base surface of the shell is a
smooth convex curve in which the height z(s) strictly decreases from its
value z(0) at the north pole to its value z(l) at the edge. Specifically, we
require that there is a positive number c such that

(9.1a) r◦(s) > 0 and θ◦(s) ∈ (−π, 0) for 0 < s ≤ l, θ◦s(s) < −c,

whence z◦
s (s) = sin θ◦(s) < 0 for 0 < s ≤ l. That the pole stays intact

and that the image of the base surface stays regular at the pole lead to the
conditions

(9.1b) r(0) = 0 = θ(0).

The polar singularity provides serious technical difficulties, which would be
absent for tube-like shells. Axisymmetry requires that

(9.2) θ◦(0) = 0, θ◦ss(0) = 0, θ◦ssss(0) = 0, . . . .

Since r◦s = cos θ◦, (9.2) generates corresponding restrictions on r◦.
We must now incorporate the thickness parameter, which plays a central

role in our analysis, explicitly into our problem by showing how it appears
in the constitutiveequations. The derivation of the requisite forms depends
on 3-dimensional interpretations of the constitutive functions. This process
we postpone to Sec. 17.6, where we shall have the wherewithal to do so.

We introduce a small positive thickness parameter ε where ε2 is regarded
as the ratio of a typical thickness to a typical length of the shell. We use
the squared number ε2 because its square root enters into the asymptotic
expansion. We set

(9.3) u := (τ, ν, η), v := (σ, µ), v̄ := (σ̄, µ̄), σ̄ := ε2σ, µ̄ := ε2µ.
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We introduce a refined version of (1.13) by assuming that there are consti-
tutive functions

(9.4a) (u, v̄, δ, s) �→ T (u, v̄, δ, s), etc.,

such that

(9.4b)

(
T,N,H)(s) = ε2

(
T ,N,H

)
(u(s), ε2v(s), ε2, s),(

Σ,M
)
(s) = ε4

(
Σ,M)(u(s), ε2v(s), ε2, s).

The ε2 that appear in the arguments of T , etc., in (9.4b) come from a
scaling of the thickness, described in Sec. 17.6. The powers ε2 and ε4

that premultiply the right-hand sides of (9.4b) are included to simplify the
asymptotic analysis.

We assume that (i) the reference configuration is natural, so that the
analog of (1.18) holds, (ii) the constitutive functions satisfy the restricted
isotropy condition at the north pole:

(9.5)
∂α

s N(τ, ν, 0, σ̄, µ̄, δ, 0) = ∂α
s T (ν, τ, 0, µ̄, σ̄, δ, 0),

∂α
sM(τ, ν, 0, σ̄, µ̄, δ, 0) = ∂α

s Σ(ν, τ, 0, µ̄, σ̄, δ, 0)

for as many of α = 0, 1, 2, . . . , as are needed in the analysis, (iii) the analog
of (2.9) holds, and (iv)
(9.6)

∂(T ,N,H,Σ,M)
∂(τ, ν, η, σ̄, µ̄)

(1, 1, 0, ε2σ◦, ε2µ◦, ε2, s) is positive-definite ∀ ε ≥ 0.

This last condition, standard in linear elasticity, endows the reference state
with a certain stability. It corresponds to the strict convexity of the stored
energy function at the reference configuration. (See the discussion in Sec.
13.8.) To avoid the pathologies discussed in Secs. 3 and 4, we need trans-
verse isotropy (9.5), but only at the pole. We assume that the edge is
completely free, so that

(9.7) N(l) = 0, H(l) = 0, M(l) = 0.

Our boundary-value problem consists of the equilibrium equations (1.11)
and (1.12) with f = o and l = 0, the regularity condition (9.1b), the bound-
ary conditions (9.7), and the constitutive equations (9.4). We substitute
the constitutive equations (9.4b) into the equilibrium equations (1.11) and
(1.12) with f = o and l = 0 and cancel the extraneous powers of ε. By
taking the dot product of the resulting (1.11) with e1 and k and using (9.7)
we obtain a useful replacement for (1.11):

[r◦(N cos θ −H sin θ)]s − T = 0,(9.8)

N sin θ +H cos θ = 0.(9.9)
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That the constant of integration on the right-hand side of (9.9) is 0 re-
flects that there can be no vertical force at the edge when the shell is in
equilibrium. The corresponding bending equation is

(9.10) ε2(ρ◦M)s − ε2Σ cos θ + r◦(νH − ηN) = 0.

The arguments of the constitutive functions in these equations are those
appearing in the right-hand sides of (9.4b). Our boundary-value problem
for (τ, ν, η, θ) consists of (1.4d), (9.8)–(9.10), the regularity conditions (9.1)
at the north pole, and the boundary conditions (9.7). We seek classical
solutions of this problem.

The asymptotic expansion. The reduced problem is the version of our
boundary-value problem obtained by setting ε = 0. Among its many solu-
tions is

(9.11) τ = τR
0 := 1, ν = νR

0 := 1, η = hR
0 := 0, θ = θR0 := −θ◦,

which describes an everted cup-shaped surface r with no shear of the di-
rector b with respect to r.

We introduce the stretched variable

(9.12) x :=
s− l
ε
.

We seek solutions

(9.13) z := (τ, ν, η, θ)

of the full boundary-value problem having the form

(9.14a) z(s, ε) = zK
A (s, ε) + o(εK) := zK

R (s, ε) + zK
B (ε−1(s− l), ε) + o(εK)

where

(9.14b) zK
R (s, ε) :=

K∑
k=0

εk

k!
zR
k(s), zK

B (x, ε) :=
K∑

k=1

εk

k!
zB
k(x).

zK
A is the asymptotic expansion, zK

R the regular expansion, and zK
B the

boundary-layer expansion (each of order K). Note that the regular expan-
sion includes the solution of the reduced problem and that the boundary-
layer expansion starts with k = 1. The form of this expansion is sug-
gested by an extensive theory for the asymptotic expansion of solutions to
nonlinear boundary-value problems for ordinary differential equations (see,
O’Malley (1991), Smith (1985), Vasil’eva & Butuzov (1973), Vasil’eva, Bu-
tuzov, & Kalachev (1995), Vishik & Lyusternik (1957), e.g.) We now show
that the terms of the regular and boundary-layer expansions can be for-
mally calculated. We then merely state, but do not prove, the theorem that
justifies such an asymptotic expansion, which asserts that our boundary-
value problem has a solution that differs from the Kth-order asymptotic
expansion by the indicated error.
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The regular expansion. When we study the boundary-layer expansion,
we shall show that there are positive constants C and c, possibly depending
on k but independent of ε such that each term zB

k of the boundary-layer
expansion satisfies a bound of the form

(9.15) |zB
k(x)| ≤ Cecx.

Thus the terms of the boundary-layer expansion are negligible when ε is
small except when x is sufficiently small, i.e., except in the boundary layer.
Since zR

k(s) is the kth derivative of zK
A (s, ε) with respect to ε at ε = 0, we

find the equations satisfied by the coefficients of the regular expansion for
s < l by substituting it into all the governing equations except for (9.7),
forming the derivatives of these equations with respect to ε of orders 1 to
K, and then setting ε = 0 in each of these derivatives. We do not require
that the regular expansion satisfy (9.7) because near s = l the boundary-
layer expansion is not negligible, so that here the regular expansion does
not approximate the solution well.
9.16. Exercise. Calculate the terms of the regular expansion for K = 4, showing that
τR
1 = νR

1 = ηR1 = θR1 = 0, τR
3 = νR

3 = ηR3 = θR3 = 0,

(9.17)

T
0
τ τ

R
2 + T 0

νν
R
2 + 2T 0

σ̄σ
R
0 + 2T 0

µ̄∂sθ
R
0 = 0,

N
0
τ τ

R
2 +N 0

νν
R
2 + 2N 0

σ̄σ
R
0 + 2N 0

µ̄∂sθ
R
0 = 0,

ηR2 = 0, θR2 sin θR0 = −(r◦τR
2 )s + νR

2 cos θR0 .

where T 0
τ (s) := T τ (1, 1, 0, 0, 0, 0, s), etc. Prove that τR

2 (0) = νR
2 (0), θR2 (0) = 0, ∂sθR2 (0)

is well defined, and ∂ssθR2 (0) = 0, in consonance with the axisymmetry. Show that the
nonlinearity of the material response is first manifested in the equations for the fourth
perturbation, i.e., the equations for τR

4 , etc. (That only even powers of ε appear in the
regular expansion reflects that ε2 is the natural parameter here. This expansion could
be carried out more efficiently in terms of δ = ε2 at the cost of incurring difficulties in
connecting this expansion to the boundary-layer expansion.)

The boundary-layer expansion. Inherent in the notion of a boundary
layer is the expectation that for fixed s < l the boundary-layer terms
become negligible as ε → 0, i.e., as x → −∞ (cf. (9.15)). We accordingly
require that

(9.18) zB
k(x) → 0 as x→ −∞.

We obtain the equations governing the boundary layer by replacing z in the
governing equations with its full asymptotic expansion zK

A (the regular ex-
pansion having already been computed) and replacing each s that appears
with l + εx noting that r◦(s) is replaced with r◦(l + εx) and that εd/ds is
replaced with d/dx:

(9.19a)

r◦[Hν −Nη] + ε(r◦M)x − ε2Σ cos θKA = 0,

r◦(N sin θKA +H cos θKA ) = 0,

[r◦(N cos θKA −H sin θKA )]x − εT = 0,

(r◦τK
A )x = ενK

A cos θKA − εηK
A sin θKA ,

N = 0, H = 0, M = 0 at x = 0,
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where the arguments of the constitutive functions are

τK
A (l + εx, ε), νK

A (l + εx, ε), ηK
A (l + εx, ε),(9.19b)

ε2[r◦(l + εx)]−1 sin θKA (l + εx, ε), ε[θKA (l + εx, ε)]x, ε2, l + εx.

In particular, by using (9.14) we obtain
(9.20)

θKA (x, 0) = θR0 (l),

∂εθ
K
A (x, 0) = x∂sθ

R
0 (l) + θR1 (l) + θB1 (x),

∂εεθ
K
A (x, 0) = x2∂ssθ

R
0 (l) + 2x ∂sθ

R
1 (l) + θR2 (l) + θB2 (x),

∂εεεθ
K
A (x, 0) = x3∂sssθ

R
0 (l) + 3x2∂ssθ

R
1 (l) + 3x ∂sθ

R
2 (l) + θR3 (l) + θB3 (x),

∂εεεεθ
K
A (x, 0) = x4∂ssssθ

R
0 (l) + 4x3∂sssθ

R
1 (l) + 6x2∂ssθ

R
2 (l)

+ 4x ∂sθ
R
3 (l) + θ4(l) + θB4 (x),

etc., which can be simplified by noting that θR1 = 0 = θR3 .

9.21. Exercise. Compute the third-order approximation to (9.19) (by differentiating
it one, two, and three times with respect to ε and then setting ε = 0). Show that
τB
1 = νB

1 = ηB1 = ηB2 = 0, and that
(9.22)
M

0
τ (l)τB

2xx +M 0
ν(l)νB

2xx + 2M 0
µ̄(l)θB1xxx = σR

0 (l)[T 0
τ (l)τB

2 + T 0
ν(l)νB

2 + 2T 0
µ̄(l)θB1x],

N
0
τ (l)τB

2 +N 0
ν(l)νB

2 + 2N 0
µ̄(l)θB1x = 0,

τB
2x + 2σR

0 (l)θB1 = 0,

M
0
τ (l)[τR

2 (l) + τB
2 (0)] +M 0

ν(l)[νR
2 (l) + νB

2 (0)]

+ 2M 0
σ̄(l)σR

0 (l) + 2M 0
µ̄(l)[θR0s(l) + θB1x(0)] = 0,

M
0
τ (l)τB

2x(0) +M 0
ν(l)νB

2x(0) + 2M 0
µ̄(l)θB1xx(0) = 0.

Here r◦σR
0 = sin θR0 . (The equations of the third perturbation are needed to establish

these equations.) Find the unique solutions τB
2 , ν

B
2 , θ

B
1 of this system satisfying (9.18),

observing that they meet (9.15). This calculation shows that the first correction to the
solution of the reduced problem is given by the boundary-layer term θB1 . The inter-
ested reader may calculate further terms of the boundary-layer expansion and graph the
everted shapes of a spherical cap for different thicknesses and for different materials.

Justification. Further perturbations of the regular and boundary-layer expansions are
nonhomogeneous versions of the equations treated in Exs. 9.16 and 9.21. A careful
examination shows that these equations can be solved for the unknowns, provided the
data admit as many derivatives as appear in these equations. These results are purely
formal; they do not ensure that there is an everted state and that it is approximated
by the asymptotic expansion of the form (9.14). Indeed, this formal expansion can be
constructed for moderately thick shells of a soft material that experience shows to lack
an everted state. The following theorem asserts that (9.14) is valid provided that the
shell is thin enough and has a convex monotone profile.

9.23. Theorem. Let (9.1) hold, let K be a given positive integer, let the data have
enough smoothness for the asymptotic expansion (9.14) up to order K + 1 to make
sense, and let the constitutive functions satisfy the restrictions (i)–(iv) given in the
paragraph containing (9.5). Then there is a positive number ε0 such that if ε ≤ ε0, then
the boundary-value problem has a nontrivial classical solution z := (τ, ν, η, θ), which is
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approximated by zK
A := (τK

A , ν
K
A , η

K
A , θ

K
A ) in the sense that there is a number C > 0,

independent of ε, for which

(9.24)

max
s∈[0,l]

|∂j
s(η − ηK

A )| ≤ CεK−1−j , j = 0, 1, 2,

max
s∈[0,l]

|∂j
s(τ − τK

A )| ≤ CεK−1−j , j = 0, 1, 2,

max
s∈[0,l]

|∂j
s(ν − νK

A )| ≤ CεK−1−j , j = 0, 1, 2,

max
s∈[0,l]

|∂j
s(θ − θK

A )| ≤ CεK+1−j , j = 0, 1, 2.

The proof of this theorem by Antman & Srubshchik (1998, 2001) relies on a mod-
ification by Srubshchik & Yudovich (1962) of an abstract version of Newton’s method
due to Kantorovich; see Kantorovich and Akilov (1982). The key step in the proof is to
estimate solutions of the linearization of the governing equations about the asymptotic
expansion zK

A in terms of nonhomogeneous data. The estimation consists of a compli-
cated sequence of elementary techniques, with much of the difficulty provided by the
polar singularity.

The same methods handle the case that the edge is fixed and hinged and cases in
which the shell is topologically a tube (for which there is no difficulty with the polar
singularity). It is, however, an open problem to give a rigorous asymptotic treatment
when the edge is welded to a rigid right circular cone. It may happen that the expansion
does not depend upon ε in the simple way shown in (9.14), but incorporates other
functions of ε that depend on the constitutive behavior (as in (7.3) and in Sec. 6.9). No
doubt the analysis of an eversion of just part of a shell through a plane parallel to that of
the edge, in which the regular expansion for θ is discontinuous, would furnish a far more
challenging exercise. The results and some of the exposition of this section are based
on the work of Antman & Srubshchik (1998, 2001, c© Kluwer Academic Publishers, by
kind permission of Kluwer Academic Publishers).



CHAPTER 11

Tensors

1. Tensor Algebra
We now give a deeper treatment of the material introduced in Secs. 1.4

and 8.1. Much of our exposition consists of assertions of standard results,
the proofs of which are given in the references cited at the end of Sec. 2.
The non-standard developments of this section are the treatment of skew
bases, i.e., bases that are not orthonormal, and the treatment of Gibbs’s
dyadic formalism in the setting of modern linear algebra.

Vectors. A vector is an element of E
3, which is abstract real 3-dimen-

sional inner-product space (see Sec. 19.1). Vectors are denoted by lower-
case bold-face symbols. The inner or dot product of vectors a and b is
denoted a · b. If a · b = o for all b, then a = o. The cross product of a
and b is denoted a × b.

Let {a1,a2,a3} be a basis for E
3. Then any u ∈ E

3 can be represented
uniquely as a linear combination of these base vectors:

(1.1a) u =
3∑

k=1

ukak.

We adopt the conventions that Latin indices have range 1, 2, 3, that Greek
indices have range 1, 2, and that twice-repeated indices are summed over
their range. Thus (1.1a) can be abbreviated as

(1.1b) u = ukak.

To find the components uk we introduce the dual basis: By the Riesz
Representation Theorem (see Stakgold (1998, p. 314)), or by a direct com-
putation, we can show that there exists a unique basis {ak}, called the
basis dual to {ak}, such that

(1.2a) ak · al = δkl :=
{

1 if k = l,
0 if k �= l.

Indeed, we readily find that

(1.2b) a3 =
a1 × a2

(a1 × a2) · a3
, etc.

399
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Then

(1.3a) uk = u · ak so that u = (u · ak)ak.

Similarly,

(1.3b) u = ukak where uk = u · ak so that u = (u · ak)ak.

If u = ukak and v = vkak, then

(1.4) u · v = ukvk.

A basis {ak} is called orthonormal iff ak · al = δkl ≡ δkl . For such a basis,
ak = ak.

Second-order tensors. Elements of the 9-dimensional space Lin :=
L(E3,E3) of linear transformations of E

3 to itself are called (second-order)
tensors. We may call vectors first-order tensors and call scalars (i.e., real
numbers) zeroth-order tensors. We denote second-order tensors by bold-
face upper-case symbols. The value of a tensor A at vector u is the vector
denoted by A · u (rather than by the more common Au.)

The product A · B of tensors A and B is the tensor defined by

(1.5) (A · B) · u = A · (B · u) ∀u ∈ E
3.

(The usual notation for this product is AB.) We define A2 := A · A,
A3 := A · A · A, etc.

The transpose (or adjoint) A∗ of A is the tensor uniquely defined by

(1.6a) v · (A · u) = (A∗ · v) · u ∀u,v ∈ E
3.

The existence of the transpose follows from the Riesz Representation The-
orem. In light of (1.6a), we set

(1.6b) v · A = A∗ · v.

Thus we can drop the parentheses on the left-hand side of (1.6a). It is a
simple exercise to show that

(1.7a,b) (αA + βB)∗ = αA∗ + βB∗ ∀α, β ∈ R, (A · B)∗ = B∗ · A∗.

A is called symmetric iff A = A∗, and is called antisymmetric or skew
iff A = −A∗. Every tensor A has a unique decomposition as a sum of a
symmetric tensor and a skew tensor:

(1.8) A = 1
2 (A + A∗) + 1

2 (A − A∗).

Every skew tensor W has associated with it a unique vector w, called the
axial vector of W , such that

(1.9a) W · u = w × u ∀u
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or, alternatively,

(1.9b) v · W · u = w · (u × v) ∀u,v.

The 6-dimensional subspace of Lin consisting of the symmetric tensors is
denoted Sym and the 3-dimensional subspace of Lin consisting of the skew
tensors is denoted Skw.

The identity tensor I and the zero tensor O are defined by

(1.10) I · u = u, O · u = o ∀u.

The function u �→ u · A · u is called the quadratic form of A. Only the
symmetric part of A enters it. (Indeed, if B is skew, then u ·B ·u = 0.) A
tensor A (not necessarily symmetric) is called positive-definite iff u·A·u >
0 for all u �= o. It is called positive-semidefinite iff u · A · u ≥ 0. It is
called negative-definite or negative-semidefinite iff −A is positive-definite
or positive-semidefinite, respectively. A is called indefinite iff it is neither
positive- nor negative-semidefinite.

1.11. Alternative Theorem. The equation A · u = b has a solution u
if and only if b is orthogonal to the null space of A∗, i.e., if and only if
b · z = 0 for all z satisfying A∗ · z ≡ z · A = o.

A is invertible (or nonsingular) iff it is a one-to-one mapping of E
3 onto

itself, i.e., iff the equation A · u = b has a unique solution u for each b.

1.12. Proposition. A is invertible if and only if the only solution of
A · u = o is u = o. A is invertible if and only for each b the equation
A · u = b has a solution u.

If A is invertible, then there exists a unique A−1 in Lin, called the
inverse of A, such that if A ·u = v, then u = A−1 ·v. It then follows that

(1.13) A · A−1 = A−1 · A = I.

If A and B are invertible, then

(1.14) (A · B)−1 = B−1 · A−1, (αA)−1 =
1
α

A−1 ∀α ∈ R \ {0}.

We define A−2 := A−1 ·A−1, etc. The operations of inverse and transpose
commute so that (A−1)∗ = (A∗)−1, which may be denoted by A−∗. (The
invertible tensors form the general linear group GL(3).) Those set of tensors
with a positive determinant (a subgroup of GL(3)) is denoted Lin+. (The
determinant is defined below.)

A complex number λ is an eigenvalue of A iff there is a nonzero vector
v such that A · v = λv. Such a vector v is an eigenvector corresponding
to λ. This restricted notion of eigenvalue is understood to hold through-
out this section. The general notion is given in Sec. 5.3. If A ∈ Sym,
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then its eigenvectors corresponding to distinct eigenvalues are orthogonal.
Moreover, E

3 has an orthonormal basis consisting of eigenvectors of A.
A tensor Q is said to be orthogonal iff |Q·u| = |u| for all u. Equating the

squares of each side of this equation we obtain u · (Q∗ ·Q−I) ·u = 0 for all
u. We shall shortly show that this equation implies that Q∗ ·Q = I. Hence
Q is orthogonal if and only if Q∗ = Q−1 and if and only if Q preserves the
inner product: (Q · u) · (Q · v) = u · v for all u,v. (The orthogonal tensors
form the orthogonal group O(3).) If Q is orthogonal, then detQ = ±1. Q
is said to be a rotation or to be proper-orthogonal iff it is orthogonal and
det Q = 1. Proper orthogonal tensors describe rigid rotations. (They form
the special orthogonal group SO(3).)

The dyadic product uv of vectors u and v (often denoted elsewhere by
u ⊗ v) is the tensor defined by

(1.15a) (uv) · w = (v · w) u ∀w.

This formula shows that it is not necessary to use the parentheses and
shows the virtue of using the dot in expressions like A · u. Note that (1.5)
and (1.15a) imply that

(1.15b) (ab) · (cd) = (b · c) ad.

A dyadic product is called a dyad.
A tensor can be defined by stating what it does to three independent

vectors. We easily find

1.16. Proposition. The tensor taking an independent set of vectors
a1,a2,a3 respectively to b1, b2, b3 is the sum bkak of dyads. In partic-
ular, if {ak} and {bk} are each orthonormal bases, then bkak is an or-
thogonal tensor. Moreover, if these bases are both right-handed (or both
left-handed), then bkak is proper-orthogonal.

From this follows

1.17. Proposition. If {ak} and {bl} are bases for E
3, then {akbl} is a

basis for Lin.

This result implies that operations on tensors can be defined by giving
their effects on dyads. In particular,

(1.18) (ab)∗ = ba.

It follows from Proposition 1.16 or from (1.3) that if {ak} is a basis, then

(1.19) I = akak = akak.

1.20. Exercise. Given a dyadic basis {akal} for Lin, construct from it bases for Sym
and Skw. (Bases for Sym and Skw constructed from a general dyadic basis {akbl} for
Lin are of no utility in our work.)
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On Lin, which is a real vector space under the standard rules for addition
and scalar multiplication, we can define an inner product ‘:’, which assigns
the real number A : B to any pair of tensors A and B, which, by definition
must have the properties that A : B = B : A and that it is linear in one of
its arguments (and hence in both): A : (βB+γC) = βA : B+γA : C. Of
course, the linear subspaces Sym and Skw of Lin are inner-product spaces
in their own right. In order to make this inner product compatible with
that for E

3, we define it for dyads:

(1.21a) (ab) : (cd) := (a · c)(b · d) ≡ (cd) : (ab) = (ab)∗ : (cd)∗.

(Some authors define the operator ‘:’ to be something other than an inner
product.) Compare (1.21a) with (1.15b). Since any tensor A is a linear
combination of base dyads of the form ab, it follows that

(1.21b)
A : (cd) = c · A · d = (cd) : A,

so that A : B = B : A = A∗ : B∗.

We define

(1.22) |A| :=
√

A : A.

On Lin, we define the function that assigns the scalar trA, called the
trace of A, to any tensor A by requiring that it be linear and by defining
it for dyads:

(1.23a) tr (ab) := a · b ≡ a · I · b ≡ ab : I ≡ I : ab.

Thus an invariant definition of trA is

(1.23b) trA := A : I ≡ I : A.

(An alternative invariant definition of trace is given below in (1.51b). Yet
another invariant definition of trace is that trU is ϕ(U) where ϕ is a linear
mapping from Lin to R that is isotropic, i.e., ϕ(Q · U) = ϕ(U) for all
orthogonal Q. This idea is developed implicitly in Theorem 12.13.9.) The
trace satisfies

(1.24a) tr (A · B∗) = A : B.

Note that (1.22) and (1.24a) imply that

(1.24b) tr (A∗ · A) = A : A = |A|2.

1.25. Exercise. Prove that

If A : B = 0 for all B ∈ Lin, then A = O.(1.26a)

If A ∈ Skw and B ∈ Sym, then A : B = 0.(1.26b)

If A : B = 0 ∀ B ∈ Sym, then A ∈ Skw.(1.26c)

If A : B = 0 ∀ B ∈ Skw, then A ∈ Sym.(1.26d)

If u · (Q∗ · Q − I) · u = 0 ∀ u, then Q∗ · Q = I.(1.26e)
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1.27. Exercise. Let {ek} be an orthonormal basis for E3. Construct from it bases for
Sym and Skw that are orthonormal with respect to the inner product ‘:’.

1.28. Exercise. Derive the following identities:

|B · A∗|2 = (B · A∗) : (B · A∗) = (A∗ · A) : (B∗ · B),(1.29)

A : (B · C) = (A · C∗) : B.(1.30)

1.31. Exercise. There are many ways to choose norms for tensors. The choice (1.22),
sometimes termed the Frobenius norm, is compatible with the inner product ‘:’ on Lin.
A common alternative choice, which is induced by the norm | · | on vectors and whose
generalizations are widely used in linear-operator theory, is

(1.32a) ‖A‖ := sup
x�=0

|A · x|
|x|

.

Show that

(1.32b) ‖A‖ = sup
|y|=1

|A · y|.

Use the method of Lagrange multipliers to find equations for the y that maximizes
|A ·y|2 subject to |y|2 = 1. Characterize ‖A‖ as an eigenvalue of an appropriate tensor.

Tensors of higher order. A typical element of the space L(E3,Lin) of
linear transformations that assign a second-order tensor to a vector is de-
noted u �→ M · u. We define the triadic product abc to be an element of
this space by setting

(1.33a) (abc) · u = (c · u)ab ∀u.

It can be shown that if {ak}, {bl}, and {cm} are bases for E
3, then

{akblcm} is a basis for L(E3,Lin).
A typical element of the space L(Lin,E3) is denoted A �→ M : A. We

define the triadic product abc to be an element of this space by setting

(1.33b) (abc) : uv = (b · u)(c · v)a ∀u,v.

This space likewise has a triadic basis.
We identify L(E3,Lin) with L(Lin,E3) and call their elements third-

order tensors. (In this process, we tacitly use the inner-product structure
of our spaces to shortcut the use of duality theory in these definitions.)

In this way, we can construct tensors of any order and develop a formal-
ism for the use of dots. For example, a fourth-order tensor D, regarded as
a member of L(Lin,Lin), has as its value the second-order tensor D : A at
the second-order tensor A. In our work, we shall have little need for ten-
sors of order higher than 2. Fourth-order tensors typically arise as Fréchet
derivatives of nonlinear mappings of Lin into itself. We shall often refer
to tensors like abc, abcd, etc., merely as dyads, and not bother with a
terminology that indicates their order.
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Components. Let A ∈ Lin and let {akbl} be a basis for Lin. (Such bases
occur frequently in continuum mechanics.) By definition, there is a 3 × 3
matrix

(
Akl

)
, called the matrix of A with respect to {akbl}, such that

(1.34) A = Aklakbl.

The entries of the matrix are called the components of A with respect to
{akbl}. By taking the inner product of (1.34) with apbq, we find that

(1.35) Apq = apbq : A = ap · A · bq = A : apbq.

In particular,

(1.36a,b) uv = (ak · u)(bl · v)akbl, I = (ak · bl)akbl.

If A is given by (1.34), then

(1.37a) A∗ = Aklblak.

If, furthermore, ak = bk, then

(1.37b) A = Aklakal, A∗ = Aklalak ≡ Alkakal.

Let v = A · u. Let A be given by (1.34), v = vkak, and u = umcm. Then

(1.38a) vk = Aklbl · cmum,

which reduces to the usual

(1.38b) vk = Akmum

when cm = bm.

1.39. Exercise. Find the components of A · B. If A is given by (1.34), how should
the basis for B be chosen to make the formula for A · B as simple as possible?

From (1.21a) we obtain

(1.40) A : B = (Aklakbl) : (Bmnambn) = AmlBml,

which confirms that ‘:’ is an inner product.
In most books on linear algebra, the components of a tensor A are introduced thus:

Let {ck} be a basis for E3. Since A · ck ∈ E3, it is a linear combination of the cm:

(1.41) A · ck = Am
kcm.

The Am
k are the components of A generated by the basis {ck}. Since

(1.42) cm · A · ck = Am
k,

the Am
k are therefore the components of A with respect to the basis {cjcl}.



406 11. TENSORS

Representations. Let A be symmetric. Let {ek} be an orthonormal
basis of eigenvectors corresponding to the eigenvalues λk of A. Condition
(1.35) then yields the spectral representation of A:

(1.43) A =
3∑

k=1

λkekek,

which says that A has a diagonal matrix with respect to its eigenvector
basis. Note that λk = ek ·A ·ek (no sum). Thus a symmetric A is positive-
definite if and only if its eigenvalues are positive, is zero if and only if its
eigenvalues are zero, etc.

For α ∈ R, we define

(1.44) Aα =
3∑

k=1

λα
k ekek

for symmetric A whenever the right-hand side makes sense. This definition
is consistent with those for integral values of α given previously. If A is
positive-definite (so that all its eigenvalues are positive), then (1.35) implies
that Aα is also, provided that λα

k is chosen to be positive when α is not an
integer. In particular, under this convention, if n is a positive integer and
A is positive-definite, then (1.35) with α = 1/n can be shown to define the
unique positive-definite nth root of A satisfying A1/n · · ·A1/n = A. (Here
A1/n appears n times.)

More generally, if ϕ : [a, b] → R is continuous, we can define ϕ(A) for
symmetric A by

(1.45) ϕ(A) =
3∑

k=1

ϕ(λk)ekek.

(See Riesz & Sz.-Nagy (1955, Sec. 106).) This definition yields a simple
formula for eA.

These notions can be extended to nonsymmetric tensors: If ϕ(z) =
∑∞

k=0 bk(z−z0)k

defines an analytic function of a complex variable z for |z − z0| < R, then the series of
tensors

∑∞
k=0 bk(A − A0)k converges to a tensor denoted ϕ(A) if every eigenvalue λ of

A − A0 satisfies |λ| < R. (See Ericksen (1960, Sec. 42) for a sharper theorem.) We can
get a generalization of (1.45) for such analytic ϕ’s by using the generalized eigenvectors
of A, as is done in the theory of linear ordinary differential equations in the construction
of eA (see Brauer & Nohel (1969).)

An alternative notation. To compensate for its ugliness, the following notational
scheme is convenient for handwriting and has certain conceptual advantages: A vector
is written as a symbol over a single tilde, a second-order tensor as a symbol over a double
tilde, a third-order tensor as a symbol over a triple tilde, etc. Thus each tensor symbol
has as many tildes as its order. Moreover, each dot cancels two tildes, as we see in the
following examples:

(1.46) v∼ = A∼∼
· u∼, V∼∼

= A∼∼∼∼
: U∼∼
,

which correspond to v = A · u, V = A : U . When this notation is used, there is no
need to assign to each kind of tensor its own font.
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Determinants. Let u,v,w be independent and let A ∈ Lin. We define

(1.47) det A :=
(A · u) · [(A · v) × (A · w)]

u · (v × w)
.

It can be shown that detA is independent of u,v,w. Since u · (v × w)
is the signed volume of a parallelepiped P with sides u,v,w, it follows
that (A · u) · [(A · v) × (A · w)] is the signed volume of the deformed
parallelepiped A · P in which each point of P has been subjected to the
linear transformation A. Thus det A is the ratio of these volumes. The
product of two tensors and the transpose satisfy the important identities

(1.48) det(A · B) = detA det B, det A = detA∗,

which follow from (1.47).
We rewrite (1.47) as

(1.49a) u · {(det A)(v × w) − A∗ · [(A · v) × (A · w)]} = 0.

Since the term in braces is clearly orthogonal to v and w, and since (1.49a)
says that this term is orthogonal to u, it is orthogonal to a basis and
therefore vanishes:

(1.49b) A∗ · [(A · v) × (A · w)] = (detA)(v × w).

If A is nonsingular, then (1.49b) yields the useful identity

(1.49c) (A · v) × (A · w) = (detA)A−∗ · (v × w).

A is invertible if and only if detA �= 0. In particular, if λ is an eigenvalue
of A, then it satisfies the characteristic equation for A:

(1.50) det(A − λI) = 0.

For any λ ∈ C, definition (1.47) implies that det(A − λI) is a cubic in λ:

(1.51a) det(A − λI) = −λ3 + IAλ2 − IIAλ+ IIIA.

The coefficients IA, IIA, IIIA are the principal invariants of A. They are
defined by (1.47) and (1.51a). They satisfy

(1.51b)

IA = tr A =
(A · u) · (v × w) + (A · v) · (w × u) + (A · w) · (u × v)

u · (v × w)
,

IIA = 1
2 [(tr A)2 − tr (A2)]

=
u · [(A · v) × (A · w)] + v · [(A · w) × (A · u)] + w · [(A · u) × (A · v)]

u · (v × w)
,

IIIA = det A.
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It can be shown that

(1.52) tr (A3) = I 3
A − 3IAIIA + 3IIIA.

Thus (1.51b) and (1.52) imply that trA, tr (A2), and tr (A3) form a set
of invariants equivalent to the principal invariants. If λ1, λ2, λ3 are the
eigenvalues of A, then

(1.53) IA = λ1 + λ2 + λ3, IIA = λ1λ2 + λ2λ3 + λ3λ1, IIIA = λ1λ2λ3.

Eqs. (1.50) and (1.51a) imply that any real tensor A has at least one real
eigenvalue.

1.54. Cayley-Hamilton Theorem. Every tensor A satisfies its own
characteristic equation:

(1.55) −A3 + IAA2 − IIAA + IIIAI = O.

1.56. Exercise. Prove that the eigenvalues of a symmetric tensor are real and prove
that its eigenvectors corresponding to distinct eigenvalues are orthogonal.

1.57. Exercise. Use (1.44) to prove (1.55) for symmetric tensors.

2. Tensor Calculus
Consider a smooth function E

2 � z �→ ϕ(z) ∈ R, whose graph can be
visualized as a surface over the plane E

2. This surface has a geometry
independent of the coordinates we use to describe it. In particular, the
tangent plane and the curvature at each point of the surface, which can
be determined by partial derivatives of first and second order, have an
invariant character that can be described by tensors of first and second
order. In this section we refine slightly the coordinate-free approach of
defining derivatives introduced in Sec. 1.4.

A tensor field is a function that assigns a tensor to each element in its
domain of definition. For example, the velocity field of a body at a fixed
time assigns the velocity vector to each material point of the body. Consider
the following mappings, which are typical of those we shall encounter in
solid mechanics:

E
3 � u �→ ϕ(u) ∈ R,(2.1a)

Lin � U �→ ψ(U) ∈ R,(2.1b)

Sym � U �→ ϑ(U) ∈ R,(2.1c)

E
3 � u �→ f(u) ∈ E

3,(2.1d)

Lin � U �→ F (U) ∈ Lin.(2.1e)

If these functions are Fréchet-differentiable (or even just Gâteaux-differen-
tiable with a differential linear in the variation), then their derivatives
can be found by the procedure of Sec. 1.4. In particular, the derivative
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∂ϑ
∂U (A) ≡ ∂ϑ(A)/∂U ≡ ϑU (A) of (2.1c) at A is a second-order tensor,
which can be found from

(2.2)
∂

∂ε
ϑ(A + εB)

∣∣∣∣
ε=0

=
∂ϑ

∂U
(A) : B ∀B ∈ Sym.

Since B is symmetric, only the symmetric part of ∂ϑ(A)/∂U intervenes
in [∂ϑ(A)/∂U ] : B. It is accordingly appropriate to regard ∂ϑ(A)/∂U as
symmetric. We discuss its components below.

The derivative of (2.1e) at A is a fourth-order tensor denoted by

(2.3)
∂F

∂U
(A) ≡ ∂F (A)/∂U ≡ FU (A).

The last two forms have the virtue that the ordering of the boldface symbols
F and U conforms to the dyadic ordering of these symbols.

We thus find that the derivative of E
3 � u �→ ϕ(u) := c · u is c since

(2.4)
∂ϕ(a)
∂u

· v ≡ ∂

∂ε
c · (a + εv)

∣∣∣∣
ε=0

= c · v.

Similarly,

(2.5)
∂

∂u
|u|2 =

∂

∂u
(u · u) = 2u,

∂

∂u
|u| =

∂

∂u

√
u · u =

u

|u| .

The computation of ∂ det A/∂A involves a couple of tricks: Let {ak} be
an arbitrary basis. From (1.47) and (1.21) we obtain

(2.6)
a1 · (a2 × a3)(∂ det A/∂A) : B

= (B · a1) · [(A · a2) × (A · a3)]

+ (B · a2) · [(A · a3) × (A · a1)] + (B · a3) · [(A · a1) × (A · a2)]

=: a1 · (a2 × a3)(cof A) : B

where the cofactor tensor cof A is defined by

(2.7)
cof A :=

[(A · a2)×(A · a3)]a1+[(A · a3)×(A · a1)]a2+[(A · a1)×(A · a2)]a3

a1 · (a2×a3)
.

This definition is likewise independent of the basis {ak}. If A is singular,
then there is a nontrivial vector in its null space, which we can take to
be a3, say. In this case, (2.7) simplifies considerably. Indeed, if A has a
2-dimensional null space, then ∂ det A/∂A = O.
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When A is nonsingular, we use (1.49c), (1.2), (1.19) to simplify (2.6),
(2.7):
(2.8a)
(∂ det A/∂A) : B

= (detA)(A∗)−1 ·
[

(a2 × a3) a1

(a2 × a3) · a1
+

(a3 × a1) a2

(a3 × a1) · a2
+

(a1 × a2) a3

(a1 × a2) · a3

]
: B

= (detA)(A∗)−1 : B,

so that

(2.8b,c) ∂ det A/∂A = (detA)A−∗ = cof A.

Eq.(2.8b) is our desired representation. By interchanging A and A∗ in
(2.8c), we get a representation for A−1, which corresponds to Cramer’s
Rule.

An alternative proof of (2.8) uses (1.48) and (1.51a):

(2.9a)

det(A + εB) = ε3 det[(ε−1I + B · A−1) · A]

= (det A)ε3
(

1
ε3

+
1
ε2

IB·A−1 +
1
ε
IIB·A−1 + IIIB·A−1

)
= (det A)[1 + ε tr (B · A−1) + · · · ],

so that

(2.9b) (∂ det A/∂A) : B = (det A) tr (B · A−1),

which yields (2.8) by virtue of (1.24a).

2.10. Exercise. Prove that

(∂U/∂U) : B = B,(2.11a)

(∂U∗/∂U) : B = B∗,(2.11b)

[∂(A · U)/∂U ] : B = A · B,(2.11c)

[∂(U · A)/∂U ] : B = B · A,(2.11d)

[∂(U∗ · U)/∂U ] : B = U∗ : B + B∗ : U ,(2.11e)

(∂Um/∂U) : B =
m−1∑
k=0

Uk · B · Um−k−1(2.11f)

where m is a positive integer. Let U be invertible. Prove that

(∂U−1/∂U) : B = −U−1 · B · U−1.(2.11g)

Let C be positive-definite and symmetric, and let U(C) be its positive-definite square
root. Prove that

(2.11h) (UC : B) · U + U · UC : B ≡ [U · UC : B]∗ + U · UC : B = B ∀ B ∈ Sym.

(This identity shows that it is not easy to cancel B. For an explicit representation for
∂U/∂C, see Sidoroff (1978) and T. C. T. Ting (1985).)
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Components of derivatives. Let u �→ f(u) and v �→ g(v) be differen-
tiable. Then the derivative of their composition satisfies the Chain Rule:

(2.12) ∂f(g(v))/∂v = [∂f(g(v))/∂u] · ∂g(v)/∂v.

Let u �→ f(u) be differentiable and let {ak} and {bl} be bases for E
3

independent of u. Let u = ulal and f(u) = fk(ulal)bk. Then

(2.13)
∂fk

∂ul
=
∂(f · bk)
∂ul

= bk · ∂f
∂u

· ∂u
∂ul

= bk · ∂f
∂u

· al.

Thus ∂fk/∂ul are the components of the tensor ∂f/∂u with respect to the
basis {bkal}. Likewise, let {Akl} be a basis for Lin and let U = UklAkl.
Then for (2.1b), ∂ψ/∂Ukl are the components of ∂ψ/∂U with respect to
{Akl}:

(2.14)
∂ψ

∂Ukl
=
∂ψ

∂U
:
∂U

∂Ukl
=
∂ψ

∂U
: Akl.

The definition (2.2) of the derivative of (2.1c) is unexceptionable. But
there are some subtleties in obtaining the components of ϑU : Let {Akl}
be a basis for Lin. For example, if {ek} is an orthonormal basis for E

3,
then we could take Akl = ekel. Then the elements of a basis for Sym are
the six distinct tensors of the form Bkl := 1

2 (Akl + Alk) (but this basis is
not orthonormal with respect to the inner product ‘:’ when Akl = ekel).
Finally we can set Ckl = Bkl for k ≤ l, thereby enumerating the Bkl. The
six Ckl with k ≤ l form a basis for Sym.

Then the symmetric tensor U has the alternative representations:

(2.15a) U = UklAkl = V klBkl =W klCkl

where Ukl = U lk. Eq.(2.15a) implies that

(2.15b)

U11 = V 11 =W 11,

U12 = 1
2 (V 12 + V 21) = 1

2W
12,

U21 = 1
2 (V 12 + V 21) = 1

2W
12, etc.

Note that (2.15) ensures that Ukl = U lk, but does not determine the V kl

uniquely from the Ukl.
We cannot use the analog of (2.14) to express the components ∂ϑ/∂Ukl,

because the Akl need not be symmetric as required by (2.2) and to express
the components ∂ϑ/∂V kl because the V kl are ambiguous. Instead, we have

(2.16)
∂ϑ

∂W kl
=
∂ϑ

∂U
:
∂U

∂W kl
=
∂ϑ

∂U
: Ckl.

A convenient way to compute these components is to extend ϑ to a
function ϑ̄ defined on Lin by setting

(2.17) ϑ̄(Y ) := ϑ( 1
2 (Y + Y ∗)),
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so that

(2.18)
∂ϑ̄

∂Y
(Y ) : D =

∂ϑ

∂U
( 1
2 (Y + Y ∗)) : [12 (D + D∗)].

If we set Y = Y klAkl, 1
2 (Y + Y ∗) = U , and replace D in (2.18) with the

symmetrical Ckl, we then obtain

(2.19)
1
2

[
∂ϑ̄

∂Y kl
(Y ) +

∂ϑ̄

∂Y lk
(Y )

]
=

∂ϑ

∂W kl
(U), k ≤ l.

We now specialize (2.19) by replacing the argument Y on the left with U .
Of course, these same considerations carry over to any kind of function

of a symmetric tensor.

Gradients and related operators. The notation ∂f/∂u for a typical
derivative is ideally suited for the Chain Rule because it captures the correct
ordering for the underlying dyadic structure. We now show how it is related
to the standard notations of vector analysis.

The gradient ∇ψ of E
3 � z �→ ψ(z) ∈ R is defined by

(2.20) ∇ψ := ∂ψ/∂z.

The gradient ∇f of E
3 � z �→ f(z) ∈ E

3 is defined by

(2.21) ∇f := (∂f/∂z)∗.

We could write (2.21) as ( ∂
∂z )f and identify ∇ with the differential operator

∂
∂z . The transpose in (2.21) is used to make the notation conform to
classical usage. Indeed, let {ak} be a basis independent of z and set z =
zkak with zk = z · ak. Using techniques like those of (2.13), we find that

(2.22) ∂f/∂z = (∂f/∂zk)ak,

so that

(2.23) (∂f/∂z)∗ = ak(∂f/∂zk) =
(

ak ∂

∂zk

)
f = ∇f .

Thus we make the classical identification

(2.24) ∇ ≡ ak ∂

∂zk
.

An invariant definition of the divergence divf ≡ ∇ · f of a vector field
f is

(2.25) divf ≡ ∇ · f := tr (∂f/∂z) = I : (∂f/∂z) = (∂f/∂z) : I.
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A practical definition of the divergence is that it is the operator ∇· where
∇ is given by (2.24).

An invariant definition of the curl curlf ≡ ∇ × f of a vector field f is
that it is the unique vector field for which

(2.26) [∂f/∂z − (∂f/∂z)∗] · c = (curlf) × c ∀ c ∈ E
3.

A practical definition of the curl is that it is the operator ∇× where ∇ is
given by (2.24).

We shall have to apply the divergence operator ∇· to tensor fields. For
practical purposes, we again use (2.24). Invariant characterizations of this
operation are

∇ · T ∗ := (∂T /∂z) : I,(2.27a)

∇ · (T ∗ · c) = div (T ∗ · c) = tr [∂(T ∗ · c)/∂z] ∀ c ∈ E
3.(2.27b)

Note the disposition of the transpose sign. (Gurtin (1981a) and Truesdell
& Noll (1965), among others, define divT := ∇ · T ∗. We shall not use this
notation.)

We shall reserve the symbol z to represent material points of a body
and shall apply operators involving ∇ only to functions depending on z.

2.28. Exercise. Find the components of the tensors of (2.25), (2.26), and (2.27). For
treating the curl, use the alternating symbol introduced in Sec. 8.1.

Integral theorems. Let Ψ ∈ C1(Ω)∩C0(cl Ω) be a tensor-valued function
of any order defined on a bounded domain Ω of E

3. Let ∂Ω be a regular
surface in the sense of Kellogg (1929). Then

(2.29)
∫

Ω
∂Ψ(z)/∂z dv(z) =

∫
∂Ω

Ψ(z)ν(z) da(z)

where dv(z) is the differential volume element at z, da(z) is the differential
surface element of ∂Ω at z, and ν(z) is the outer unit normal to ∂Ω at z.
In particular, ∫

Ω
∇ϕ(z) dv(z) =

∫
∂Ω

ν(z)ϕ(z) da(z),(2.30a) ∫
Ω

∇f(z) dv(z) =
∫

∂Ω
ν(z)f(z) da(z),(2.30b) ∫

Ω
∇ · f(z) dv(z) =

∫
∂Ω

ν(z) · f(z) da(z),(2.30c) ∫
Ω

∇ × f(z) dv(z) =
∫

∂Ω
ν(z) × f(z) da(z),(2.30d) ∫

Ω
∇ · T ∗(z) dv(z) =

∫
∂Ω

ν(z) · T ∗(z) da(z)(2.30e)

=
∫

∂Ω
T (z) · ν(z) da(z).
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The identity (2.30a) is the Green-Gauss-Ostrogradskĭı Theorem. The iden-
tity (2.30c) is the Divergence Theorem.

2.31. Exercise. Derive (2.30a) under favorable regularity assumptions (by elementary
calculus) and then derive (2.30c,d,e) from it.

Let S be a one-sided surface in E3 that is regular in the sense of Kellogg. Let it be
bounded by a compatibly oriented curve C = ∂S regular in the sense of Kellogg. We
define S so that it does not contain any point of C. Let ν(z) and da(z) denote the unit
normal vector to S at z and the differential surface area of S at z. Let t(z) and ds(z)
denote the unit tangent vector to C at z and the differential arc length of C at z. Let
f ∈ C1(S) ∩ C0(S ∪ C). Then two forms of the Kelvin (Stokes) Theorem are

∫
S

ν(z) · curl f(z) da(z) =
∫

C
t(z) · f(z) ds(z),(2.32a) ∫

S
ν(z) × curl f(z) da(z) =

∫
C

t(z) × f(z) ds(z).(2.32b)

Proofs of all these integral theorems under favorable regularity assumptions are found
in standard texts on calculus and on vector analysis. Proofs under weak classical as-
sumptions are given by Kellogg (1929). Proofs under very weak conditions (which are
important in the modern mathematical analysis of problems of continuum mechanics)
use the ideas of geometric measure theory (see Evans & Gariepy (1991), Federer (1969),
Morgan (1995), and Ziemer (1989)).

The notational scheme introduced in this and the preceding section represents a
marriage of the dyadic system of Gibbs (see Gibbs & Wilson (1901)) with a modern
coordinate-free approach to linear algebra and to analysis in Euclidean space (see Bowen
& Wang (1976), Dieudonné (1960), Halmos (1958), Nickerson, Spencer, & Steenrod
(1959), Noll (1987), among others.) Our scheme is similar in approach, though not in
detail, to those used by Gurtin (1981a) and Truesdell & Noll (1965).

3. Indicial Notation
In the first half of the twentieth century, partly in response to the theory of relativity,

a very detailed indicial notation was developed for Riemannian geometry. In the 1950’s
(just when it was being extirpated from geometry), this notation was adopted in con-
tinuum mechanics, where it flourished for about a decade and was then superseded by
more modern notations. We outline this notation because we use a variant of it in the
rod and shell theories in Chaps. 16 and 17 and because important works on continuum
mechanics and elasticity employ it consistently.

Let x = (x1, x2, x3) be curvilinear coordinates for a region B ⊂ E3. Let z̃(x) assign
the position of the point with coordinates x. Let x̃ be the inverse of z̃. Then the vectors

(3.1) gk(x) :=
∂z̃

∂xk
(x) ≡ z̃,k(x)

are tangent to the coordinate curves. We assume that

(3.2) 0 < det
∂z̃

∂x
≡ [g1(x) × g2(x)] · g3(x) for z ∈ B

so that the gk are independent. Let {gk} be the basis dual to {gk}. We can use (3.1)

to verify that gk(x) = ∂x̃k

∂z
(z̃(x)). Then we can represent any vector field w by

(3.3) w(x) = wk(x) gk(x) = wk(x) gk(x).
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The wk are the contravariant components of w and the wk are the covariant components
of w. Similarly, we can represent any tensor field with respect to a basis consisting of
dyadic products of the gk and the gk. For example,

(3.4) T = T klgkgl = T k
l gkgl = Tk

lgkgl = Tkl gkgl.

The T kl are the contravariant components of T , the Tkl are the covariant components
of T , and the T k

l and the Tk
l are mixed components of T . In particular, (1.36b) implies

that

(3.5) I = gklgkgl = gk
l gkgl = gkl gkgl

where

(3.6) gkl := gk · gl, gk
l := δkl , gkl := gk · gl.

The gkl are the contravariant components, the gkl are the covariant components, and
the gk

l are the mixed components of the identity or metric tensor I. (That the quadratic
form of I is a sum of squares corresponds to the fact that the differential arc length
squared is a sum of squares in Euclidean space, so I is the metric tensor for E3.) We
readily find that

(3.7) gk = gklgl, gk = gkl gl.

For any tensor Ψ , we set

(3.8)
∂Ψ

∂xk
=: Ψ,k.

Thus (3.3), (3.4), and (3.8) imply that

w,m = wk
,mgk + wkgk,m,(3.9a)

T,m = T kl
,m gkgl + T klgk,mgl + T klgk gl,m.(3.9b)

Since gk,m is a vector, it can be represented as a linear combination of base vectors:

(3.10) gk,m = Γ p
kmgp = Γkmpgp.

Thus we can write (3.9) as

w,m = (wp
,m + wkΓ p

km)gp =: wp|mgp,(3.11a)

T,m = (T pq
,m + T iqΓ p

im + T pjΓ q
jm) gpgq =: T pq |m gpgq .(3.11b)

wp|m is the covariant derivative of wp and T pq |m is the covariant derivative of T pq .
Γ p

km and Γkmp are Christoffel symbols. All formulas involving components with re-
spect to the bases consisting of dyadic products of {gk} and {gk} are valid when any
unrepeated index is systematically raised or lowered or when the levels of any pair of
diagonally repeated indices are switched.

Let {ik} be an orthonormal basis and let z = zkik. By using (2.24) and the Chain
Rule, we obtain

(3.12) ∇ = ik ∂

∂zk
= ik ∂x̃

l

∂zk

∂

∂xl
= gl ∂

∂xl
.

We can derive (3.12) by an alternative procedure: For any function E3 � z �→ f(z) ∈ E3,
set f̃(x) = f(z̃(x)). Then the chain rule implies that

(3.13)
∂f

∂z
=
∂f̃

∂xk

∂x̃k

∂z
whence ∇f =

∂x̃k

∂z

∂f̃

∂xk
≡ gk ∂f̃

∂xk
,

from which (3.12) follows.
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3.14. Exercise. Prove that

(3.15) Γ k
km =

1√
det gij

∂
√

det gij
∂xm

.

3.16. Exercise. Prove that

div w ≡ ∇ · w = wk
|k.

In general, the gk and the gk are not unit vectors, even when they are orthogonal
(as for cylindrical and spherical coordinates). They typically have different dimensions.
Thus, components with respect to such bases are unsuitable for the estimations usually
required in the analysis of differential equations and unsuitable for physical interpreta-
tion. Consequently, physical components of tensors are introduced. Such components
can be introduced more directly by the formalism developed in Secs. 1 and 2. For fuller
developments of the tensorial apparatus described here with an orientation towards con-
tinuum mechanics, see Doyle & Ericksen (1956), Ericksen (1960), Eringen (1962), Green
& Zerna (1968), and Truesdell & Toupin (1960).



CHAPTER 12

3-Dimensional
Continuum Mechanics

In this chapter we present a formulation of continuum mechanics directed
toward the treatment of the behavior of solids. It is based on the material
(or Lagrangian) description of motion. Virtually all the problems we treat
will be cast in this formulation. At the conclusion of the chapter, we
describe the modifications needed for the spatial (or Eulerian) formulation,
which is essential for fluid mechanics and which has been used in solid
mechanics. References for standard material of this chapter expressed in a
related style are Bowen (1989), Chadwick (1976), Gurtin (1981a), Malvern
(1969), Šilhavý (1997), and Truesdell & Noll (1965). The last work has
extensive historical notes. References for specialized topics in this chapter
are given in the individual sections.

1. Kinematics
For the purposes of the classical mechanics we employ, a (3-dimensional)

body can be informally defined to be a set that can occupy regions of
E

3, that has volume, that has mass, and that can sustain forces. (For
more general problems of continuum physics, we could ask that a body
sustain heat flux, have entropy and energy, have electric charge, and sustain
electromagnetic fields.) The elements of a body are called material points
or particles. The use of the latter term does not imply any association
between material points and the discrete particles of modern physics.

To make these concepts absolutely precise, it is necessary to employ
modern mathematical concepts. For example, the requirement that a body
be able to occupy regions of E

3 is expressed by: A body is a topological
space that can be mapped homeomorphically onto regions of E

3. (A homeo-
morphism is a continuous mapping having a continuous inverse.) Each such
mapping defines a configuration of the body. We distinguish one configura-
tion of the body and call it the reference configuration. This configuration
might be one occupied by the body at a certain (initial) instant of time, or
it might be a natural (stress-free) configuration, or it might be some ideal
configuration, unlikely to be occupied by the body. For example, in the
study of water waves, a nice reference configuration might be one in which
the free surface is flat, and therefore unlikely ever to form the actual free
boundary of a large body of water on earth. The requirements that the
reference configuration of a body have volume and that a body have mass

417



418 12. 3-DIMENSIONAL CONTINUUM MECHANICS

and can sustain forces can be expressed by saying that a body is measur-
able in a suitable sense, which we do not bother to make precise (cf. Secs.
6 and 7).

We identify a body with the region B it occupies in its reference config-
uration, and we identify the material points of the body with the positions
z they occupy in B. The bodies we study are connected open sets together
with any part of their boundaries.

For very careful discussions of mathematical models for bodies, see Gurtin, Williams,
& Ziemer (1986), Noll (1966, 1993), Noll & Virga (1988), Rodnay & Segev (2003),
and Truesdell (1991a). They treat refined notions of bodies that can account for what
happens to material points that lie on a surface interior to a body when that body is
fractured along that surface.

A motion of body B is a one-parameter family {p(·, t), t ∈ I} of its
configurations B � z �→ p(z, t) ∈ E

3. Here I is an interval of R . p(z, t) is
the position of material point z at time t.

In the absence of a statement to the contrary, we assume that p has as
many continuous derivatives as are exhibited. Problems of existence are
typically posed in larger spaces of functions that do not possess classical
derivatives of the orders appearing in the equations, because there is more
likelihood of finding a solution in such a space. We comment on such
questions in Sec. 13.6.

We require that for (almost) every t the actual position field p(·, t) of
a body be injective (i.e., one-to-one) so that two distinct material points
cannot simultaneously occupy the same position in space. This requirement
is the Principle of Impenetrability of Matter. This principle is a global
restriction on p(·, t). A related local requirement is that p(·, t) preserve
orientation, i.e., that

(1.1) detpz(z, t) > 0

for (almost) all z ∈ B and for (almost) all t. By the remarks of Sec. 11.1,
this condition ensures that the local ratio of actual to reference volume
never be reduced to zero. Likewise, it is appropriate to require that the
local ratio of actual to reference length of any material curve and that the
local ratio of actual to reference area of any material surface be positive.
1.2. Exercise. Find a smooth mapping z �→ p(z) for which (1.1) holds everywhere,
but is not injective.

It is not difficult to show that if p(·, t) is a homeomorphism (i.e., a one-to-one contin-
uous mapping with a continuous inverse) from cl B to p(cl B, t), then p(∂B, t) = ∂p(B, t).

A very effective version of the impenetrability of matter was introduced
by Ciarlet & Nečas (1987):

(1.3) v(p(B, t)) ≥
∫

B
|det pz(z, t)| dv.

Here v denotes the volume (measure). To appreciate (1.3), suppose that
pz(·, t) were not injective, so that parts of the deformed body would over-
lap. Then the right-hand side would locally account for all the contribu-
tions to the volume of the deformed body and accordingly overestimate
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it. Condition (1.3) says that the actual volume cannot be less than this
overestimate and thus that the cause of the overestimation, namely, the
lack of injectivity, must be absent.

The class of position fields satisfying (1.1) is very complicated: It is not closed in
C1(cl B), it is not convex, and it may have an infinite number of connected components
that are not convex. Indeed, consider the deformation of a toroid that is effected by
slicing it so as to make it simply-connected, by rotating one sliced face through an
integral multiple of 2π relative to the other, and then by gluing the faces together so
that material points originally contiguous are again so. Each such deformation preserves
orientation, but deformation of one family cannot be continuously deformed into another.
For a discussion of these and related topological questions, see Alexander & Antman
(1982), Antman (1976a), and Pierce & Whitman (1980).

The velocity and acceleration of material point z at time t are pt(z, t)
and ptt(z, t). We use the abbreviation

(1.4) F := pz.

It is the transpose of the gradient of the position field. In the literature, it
is simply called the deformation gradient.

A formulation of continuum mechanics in which the material point z
is the independent spatial variable is called a material formulation (or
ahistorically, a Lagrangian formulation). A formulation of continuum me-
chanics in which the fixed point in space is the independent spatial variable
is called a spatial formulation (or ahistorically, an Eulerian formulation).
We discuss the latter in Sec. 15.
1.5. Exercise. Prove that the set of continuously differentiable F ’s satisfying (1.1) is
not convex. Prove that they form a cone with vertex O. (A cone C with vertex A is a
set in a linear space with the property that if F ∈ C, then α(F − A) ∈ C for all α > 0.)

2. Strain
We now compare the geometry of an arbitrary deformed configuration

with that of the reference configuration in order to develop convenient
quantities to measure the change of shape.

Let [a, b] � s �→ z̆(s) ∈ B be a continuously differentiable curve of
material points. We assume that s is the arc-length parameter, so that
|z̆′| = 1 and so that z̆′(s) is the unit tangent vector to z̆ at z̆(s).

Suppose that the body undergoes a motion p. Then at time t the ma-
terial points forming z̆ lie along the curve [a, b] � s �→ p(z̆(s), t) ∈ p(B, t)
(see Fig. 2.1). A tangent to this curve at p(z̆(s), t) is pz(z̆(s), t) · z̆′(s) ≡
F (z̆(s), t) · z̆′(s). The length of p(z̆(·), t) is

(2.2)
∫ b

a

√
[F (z̆(s), t) · z̆′(s)] · [F (z̆(s), t) · z̆′(s)] ds

=
∫ b

a

√
z̆′(s) · C(z̆(s), t) · z̆′(s) ds

where

(2.3) C(z, t) := F (z, t)∗ · F (z, t)
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z(s)˘ z�(s)˘

Reference Configuration

p(z(s),t)˘

p(z(s),t)˘∂
∂s

Fig. 2.1. The material curve z̆ and its deformed image.

is the (right Cauchy-) Green deformation tensor at (z, t). It is symmetric
and is positive-definite where F is nonsingular.

We now show that C completely describes change of shape locally. In
particular, we apply the rules of l’Hôpital and Leibniz to (2.2) to obtain

(2.4) lim
b↘a

length (p(z̆(·), t))
length (z̆)

=
√

z̆′(a) · C(z̆(a), t) · z̆′(a).

We now regard z̆(a) as a typical material point in the interior of B and
regard z̆′(a) as a typical material direction or fiber at z̆(a). We accordingly
set z = z̆(a) and n = z̆′(a). We conventionally interpret the preceding
observations about the deformation illustrated by Fig. 2.1 as saying that
the material fiber n at z is taken by the motion p to pz(z, t) ·n. The ratio
of deformed to reference length of the fiber n is

(2.5) |F (z, t) · n| ≡
√

n · C(z, t) · n.

|F (z, t) ·n| is the stretch at (z, t) along the fiber n. The fiber n at z is said
to be compressed, unstretched, or extended according as |F (z, t) · n| < 1,
|F (z, t) · n| = 1, or |F (z, t) · n| > 1. If |F (z, t) · n| = 1 for all n, which
happens if and only if

(2.6) C(z, t) = I,

then the deformation at (z, t) is said to be rigid.
We now determine the geometrical significance of the components of C.

Let {ak} be a basis for E
3. Then

(2.7) C = Ckla
kal = (ak · C · al) akal = (ak · F ∗) · (F · al) akal.

Thus

(2.8)
C11(z, t)

a1(z) · a1(z)
=

a1(z)
|a1(z)| · C(z, t) · a1(z)

|a1(z)| =
∣∣∣∣F (z, t) · a1(z)

|a1(z)|

∣∣∣∣2
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Fig. 2.9. Shear deformation.

is the square of the stretch of the material fiber along a1(z).
To interpret the off-diagonal components of C, we let m and n denote

two unit fibers at z subtending an angle θ◦. Thus |m| = 1 = |n| and
m ·n = cos θ◦. (See Fig. 2.9.) The deformed images of these fibers subtend
the angle θ defined by

(2.10) cos θ =
F · m

|F · m| · F · n

|F · n| =
m · F ∗ · F · n

|F · m| |F · n| =
m · C · n

|F · m| |F · n| .

The reduction γ(m,n) = θ◦ − θ in angle between m and n is found from
the two equations:

(2.11) cos(θ◦ − γ) =
m · C · n

|F · m| |F · n| , cos θ◦ = m · n.

If θ◦ = π/2, then

(2.12) sin γ =
m · C · n

|F · m| |F · n| ,

and γ is then called the orthogonal shear. If n = a1(z)
|a1(z)| and m = a2(z)

|a2(z)| ,
then

(2.13) cos(θ◦ − γ) =
C12√
C11

√
C22

.

Thus the component a1 · C · a2, together with the stretches, determines
the shear between fibers originally along vectors a1 and a2.

Let p be prescribed so that C is known. We fix t. The question of
determining which fibers n at a given material point z suffer the greatest
and least stretches is equivalent to determining which n’s extremize n·C ·n
subject to n · n = 1. By the method of Lagrange multipliers, there is a
number C such that the extremizer n satisfies

(2.14a) ∂[n · (C − CI) · n]/∂n = o.

Using the methods of Sec. 11.2, we readily show that (2.14a) is equivalent
to the eigenvalue problem:

(2.14b) (C − CI) · n = o, n · n = 1.
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This problem has solutions, necessarily nontrivial, if and only if

(2.15) det(C − CI) = 0.

The solutions C1, C2, C3 of (2.15) are the eigenvalues of C and the cor-
responding solutions n1, n2, n3 of (2.14b) are the corresponding eigen-
vectors. Since C is symmetric and positive-definite, the eigenvalues are
real and positive and the eigenvectors can be chosen to be orthonormal.
The eigenvectors of C(z, t) determine the principal axes of strain at (z, t),
which are the material directions that suffer extreme stretch under the mo-
tion p. The eigenvalues are the squares of the principal stretches; indeed,
C1 = n1 · C · n1, etc.

The requirement that the local ratio of actual to reference length of
any fiber at z be positive is equivalent to the requirement that the smallest
eigenvalue min k Ck(z) be positive. Note that detF =

√
det C =

√
C1C2C3

(see (11.1.51b), (11.1.53)). Thus the positivity of the Ck ensures that (1.1)
holds, so that the deformation preserves orientation. The converse is not
true, because there can be extreme limiting deformations in which the
product C1C2C3 stays finite and positive, while at least one of the Ck goes
to 0 and another goes to ∞.

Let us set

(2.16) a :=
m

|F · m|
, b :=

n

|F · n|
.

Then the problem of finding orthogonal pairs of directions m and n for which the
orthogonal shear, defined by (2.12), is extremized is equivalent to extremizing sin γ =
a · C · b subject to the constraints

(2.17) a · C · a = 1 = b · C · b, a · b = 0.

2.18. Exercise. Use the method of Lagrange multipliers to prove: There are three pairs
of orthogonal directions that extremize sin γ. Each such pair lies in a plane spanned by
a pair of eigenvectors of C, and each vector of the pair makes an angle of ± π

4 mod π
2

with the eigenvectors in the plane. The extreme values of sin γ are Ck−Cl
Ck+Cl

.

The planes spanned by {n1 + n2, n3}, {n1 − n2, n3}, etc., are the principal planes
of shear.

We now compute the analog of (2.4) for surface area. Let (s1, s2) be
surface coordinates for a continuously differentiable material surface patch
S, so that S is described by (s1, s2) �→ z̆(s1, s2). Let s̆ be the inverse of
z̆. Let ν(z) be the unit normal to S at a material point z oriented so that
{∂z̃/∂s1, ∂z̃/∂s2,ν} is right-handed. The vectorial differential surface area
da(z) of S at z is

(2.19) ν(z) da(z) =
∂z̃

∂s1
(s1, s2) × ∂z̃

∂s2
(s1, s2) ds1 ds2.

The vectorial differential surface area of the deformed image p(S, t) of S is
(2.20)[
∂p(z̃(s1, s2), t)

∂z
· ∂z̃
∂s1

(s1, s2)
]

×
[
∂p(z̃(s1, s2), t)

∂z
· ∂z̃
∂s2

(s1, s2)
]
ds1 ds2.
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2.21. Exercise. Show that (2.20) equals

(2.22) (det F (z, t))F −∗(z, t) · ν(z) da(z)

and show that the local ratio of deformed to reference area of S at z is

(2.23) (det F )|F −∗ · ν| =
√

det C
√

ν · C−1 · ν.

Let C1 ≤ C2 ≤ C3 at z. Define a surface element at z to be an oriented plane through z;
it is a 2-dimensional analog of the fiber n introduced in the paragraph containing (2.5).
Show that the surface element at z for which the area ratio is least is that perpendicular
to the eigenvector n3 and that for it the area ratio is

√
C1C2.

In place of C, any invertible tensor-valued function of C can be used as a
measure of strain. Three measures widely used are C, which is algebraically
convenient, C1/2, defined by (11.1.44), which is geometrically convenient
(see Sec. 4), and the material strain tensor

(2.24) E := 1
2 (C − I),

which has the virtue that it vanishes in the reference configuration and in
rigid motions.

The displacement of z at time t is

(2.25) u(z, t) := p(z, t) − z.

It has the virtue that it vanishes in the reference configuration and the
disadvantage that its use complicates virtually every expression in which
it appears. For example, in terms of u the simple (1.1) becomes the com-
plicated det (I + uz(z, t)) > 0.
2.26. Exercise. Find E in terms of u.

There are many strain tensors, e.g., α−1(Cα/2 − I), α > 0, that agree with E when
E is small, but disagree markedly when E is large. Thus the use of constitutive functions
delivering the stress as a linear function of some strain tensor typically gives the same
kind of results for small strain as any other such constitutive function, but the resulting
behavior for large strains can be significantly different.

3. Compatibility
If p is given, then we can compute C from (1.4) and (2.3):

(3.1) C = p∗
z · pz .

On the other hand, if C is given, then (3.1) represents an overdetermined system of six
equations for the three components of p. Here we give compatibility conditions on C
ensuring that p can be found. Such conditions are useful in linear elasticity because
an important class of static problems can be posed entirely in terms of the strain E.
For a solution E of such a problem to be meaningful, it must correspond to a position
field p. No such formulations have yet succeeded in nonlinear elasticity (although the
compatibility equations have been exploited with great effect in the work of Ericksen
(1954)). Nevertheless, the question remains interesting because the set of positive-
definite C’s is a convex set of tensor-valued functions, whereas p’s satisfying (1.1) do
not form a convex set of vector-valued functions (see Ex. 1.5).

We begin by giving a careful treatment of the much simpler problem for the existence
of a potential, and then outline the related ideas needed to determine those C’s for which
(3.1) has a solution p.

Let B be a domain in E3.
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3.2. Proposition. Let f be given on B. If

(3.3) ∇ω ≡ ωz = f

has a solution ω ∈ C2(B), then f ∈ C1(B) and

(3.4) ∇ × f = o or, equivalently, fz is symmetric.

Proof. Take the curl of (3.3). �
3.5. Theorem. If f ∈ C1(B) is given and satisfies (3.4), and if B is simply-connected,
then (3.3) has a solution ω ∈ C2(B) unique to within an additive constant.

Proof. Let a be a fixed point in B and let b be an arbitrary point in B. Let C1 and C2
be piecewise smooth curves in B joining a to b. We set

(3.6a) ωα(b) = χ +
∫

Cα

f(z) · dz

where χ is a given number and where dz = t(z) ds(z) in the notation of (11.2.32). Since
B is simply-connected, there is a smooth surface S spanning the closed circuit C1 − C2
that lies entirely in B. It follows from (11.2.32) and (3.4) that

(3.6b) ω1(b) − ω2(b) =
∫

C1−C2

f(z) · dz =
∫

S
ν · (∇ × f) da = 0.

Thus the line integral in (3.6a) is independent of path. If C(y) is any continuously
differentiable path in B from a to y, then it follows that

(3.6c) ω(y) = ω(a) +
∫

C(y)
f(z) · dz

defines a continuously differentiable function on B for given ω(a).
We now show that this ω satisfies (3.3). Let z be an arbitrary point of B, which we

can take to lie on an intermediate point of C(b). We parametrize C(b) by [a, b] � s �→ z̆(s)
with z̆(a) = a and z̆(b) = y. Thus (3.6c) implies that

(3.7) ω(z̆(s)) = ω(a) +
∫ s

a
f(z̆(ξ)) · z̆′(ξ) dξ,

whence

(3.8) ωz(z̆(s)) · z̆′(s) = f(z̆(s)) · z̆′(s).

The arbitrariness of z and of C(b) means that we can take z̆(s) = z and take z̆′(s)
arbitrary. We can accordingly cancel z̆′(s) from (3.8) to get (3.3). �

We immediately obtain

3.9. Corollary. Let B be multiply-connected, but otherwise let all the hypotheses
of Theorem 3.5 hold. Let each hole in B be encircled by a simple closed (irreducible)
piecewise smooth curve Ck lying entirely in B, k = 1, . . . , K, where K is the number of
holes. If

(3.10)
∫

Ck

f · dz = 0, k = 1, . . . , K,

then the conclusion of Theorem 3.5 still holds.

Generalizations of these classical results for much weaker regularity assumptions are
given by Ladyzhenskaya (1969), L. Schwartz (1966, Thm. II.VI), and Temam (1977).
These theorems suffice to treat the linearization of (3.1) about the reference configuration
(see Sokolnikoff (1956)) but are insufficient for (3.1) itself. For these we outline a classical
approach, which represents a modification of that of Eisenhart (1926).

We first consider a nonlinear multidimensional version of (3.3):

(3.11) wν
z = fν(w, z), ν = 1, . . . , N, w := (w1, . . . , wN ).

Here we adopt the summation convention that twice-repeated Greek indices are summed
from 1 to N .

Just as in the proof of Proposition 3.2, we obtain
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3.12. Proposition. If fν ∈ C1(RN × B) and if (3.11) has a solution w ∈ C2(B), then

(3.13)

∂fν

∂wµ
(w(z), z)

∂wµ

∂z
(z) +

∂fν

∂z
(w(z), z)

≡ ∂fν

∂wµ
(w(z), z)fµ(w(z), z) +

∂fν

∂z
(w(z), z) is symmetric.

The analog of Theorem 3.5 is

3.14. Theorem. If fν ∈ C1(RN × B), if

(3.15)
∂fν

∂wµ
fµ(w(z), z) +

∂fν

∂z
is symmetric,

and if B is simply-connected, then the problem consisting of (3.11) and the condition
that

(3.16) w(a) is prescribed

for some a ∈ B has a unique solution on a neighborhood of a that is twice continuously
differentiable there. If the fν(·, z) are linear, then this solution exists on all of B.

Sketch of Proof. Let C0 and C1 be simple, smooth curves in B joining a to b given by
[a, b] � s �→ z̆(s, 0), z̆(s, 1) with z̆(a, 0) = a = z̆(a, 1) and z̆(b, 0) = b = z̆(b, 1). Since B
is simply-connected, there is a continuously differentiable surface S in B that spans the
circuit C0 − C1, which can be parametrized thus: [a, b] × [0, 1] � (s, t) �→ z̆(s, t).

Standard theory of ordinary differential equations says that the initial-value problem
consisting of

(3.17)
dwν

ds
= fν(w, z̆(s, t)) · z̆s(s, t), ν = 1, . . . , N,

and (3.16) has a unique solution s �→ w̆(s, t) on some neighborhood of s = a, which is
a continuously differentiable function of (s, t). Moreover, if the fν(·, z) are linear, then
this solution exists on all of [a, b]×[0, 1]. If b is close enough to a, then even for nonlinear
equations, we can choose z̆ to ensure that this solution exists on all of [a, b] × [0, 1].

A computation based on (3.15) and (11.2.32), like that of the proof of Theorem 3.5,
then shows that w̆(b, 0) = b = w̆(b, 1). By an argument like that leading to (3.6c), we find
that the solution of (3.17) and (3.16) generates a function w defined on a neighborhood
of a. By an argument like that involving (3.8), we show that this function is in fact a
solution of (3.11). �

For multiply-connected domains B, conditions like (3.10) must be imposed. These
are restrictions not merely on the fν , but also on the boundary values of w on these
internal boundaries.

We now turn to (3.1), which is not even quasilinear. We obtain a quasilinear system
by differentiating (3.1) with respect to z. The integration of this differentiated equation
produces (3.1) modified by the presence of an arbitrary constant symmetric tensor A
of integration. Thus (3.1) is equivalent to the differentiated equation and the further
condition that

(3.18) A = O.

A considerable amount of algebraic manipulation converts the differentiated equation to
a linear system of form

(3.19a,b) pz = F , Fz = F · C−1 · H

where H is a third-order tensor (related to the Christoffel symbols) that depends on
Cz (which is given). We identify (3.19) with (3.11). Condition (3.15) for (3.19a) is
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automatically satisfied by virtue of (3.19b). Condition (3.15) for (3.19b) is equivalent
to the vanishing of the (fourth-order) Riemann-Christoffel curvature tensor R for C:

(3.20a) R = O.

These equations are called the compatibility equations. In the notation of Section
11.3, the components of R are

(3.20b) Rhijk := 1
2 (Chk,ij +Cij,hk −Chj,ik −Cik,hj)+(C−1)lm(ΓijmΓhkl−ΓikmΓhjl)

where

(3.20c) Γijk = 1
2 (Cik,j + Cjk,i − Cij,k).

Of the 81 components Rhijk of R, only six are independent. These can be taken to be
R2323, R3131, R1212, R3112, R1223, R2331.

The system (3.19) has twelve arbitrary constants of integration. It can be shown
that these suffice to satisfy (3.18) and to fix the rigid motion of p. Hence,

3.21. Compatibility Theorem. Let p ∈ C3(B) be given. Then C ∈ C2(B) and the
Riemann-Christoffel curvature tensor for C vanishes. If C is a given function in C2(B),
if B is simply-connected, and if the Riemann-Christoffel curvature tensor for C vanishes,
then (3.1) has a solution p ∈ C3(B), unique to within a rigid motion.

If B is not simply-connected, then conditions like (3.10) must be adduced to ensure
that the second statement of the Compatibility Theorem holds. As an example of
what happens in the absence of conditions like (3.10), consider the dislocation (see
Ex. 14.3.14) given in cylindrical coordinates (s, φ, z) by z �→ z + φk. This deformation
is discontinuous on a circular cylindrical tube with axis along k. By the methods of
Sec. 5 below, we find that F = I + s−1k(− sin φi + cos φj). Thus F and consequently
C are continuous.

The linearization of (3.1) about the reference configuration possesses a weak formu-
lation (see T. W. Ting (1974)). It is not known whether (3.1) itself admits a weak form
appropriate for the kinds of function spaces used in the existence theory of nonlinear
elasticity. See Ciarlet & Laurent (2003).

4. Rotation
The main tool in analyzing deformation is

4.1. Cauchy’s Polar Decomposition Theorem. Any nonsingular ten-
sor F can be written uniquely in the forms

(4.2a,b) F = R · U = V · R

where R is orthogonal and U and V are symmetric and positive-definite.

Proof. Set

(4.3a,b) U := (F ∗ · F )1/2, R := F · U−1.

Thus U is symmetric and positive-definite. (If (1.4) holds, then we recog-
nize that U is the positive-definite square root of C.) To justify formula
(4.2a), we need only show that R is orthogonal:

(4.4) R∗ · R = [U−1 · F ∗] · [F · U−1] = U−1 · U2 · U−1 = I.
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To show uniqueness of (4.2a), suppose that F = R̃ · Ũ also. Then F ∗ ·F =
Ũ ·Ũ . But F ∗ ·F has a unique positive-definite square root so that U = Ũ ,
whence R̃ = R.

To prove (4.2b) we apply (4.2a) to F ∗ obtaining the unique decomposi-
tion F ∗ = P ∗ · V with

(4.5) V = (F ∗∗ · F ∗)1/2 ≡ (F · F ∗)1/2, P ∗ = F ∗ · V −1.

Thus F = V · P , and this representation is unique. We must prove that
P = R. Equating our two representations for F , we obtain R ·U = V ·P ,
so that R ·U ·R∗ = V ·P ·R∗. Since R ·U ·R∗ is symmetric and positive-
definite, V · P · R∗ has a unique polar decomposition (of the form (4.2b))
with the rotation the identity. Thus V · P · R∗ = V , P · R∗ = I, so that
P = R. �

4.6. Corollary. If the hypotheses of Theorem 4.1 hold and if furthermore
det F > 0, then det R = 1, so that R is a proper-orthogonal tensor, called
the rotation tensor corresponding to F .

Now we make the intended identification (1.4), and show that R rotates
the principal axes of strain. Indeed, these principal axes, which are the
eigenvectors nk of C, are also the eigenvectors of U = C1/2. Thus the

(4.7a) F · nk = R · U · nk =
√
CkR · nk (no sum)

are orthogonal. This result gives the following representation for

(4.7b) R = R · nknk =
3∑

k=1

F · nknk

√
Ck

and supports the

4.8. Cauchy Decomposition Theorem. The deformation about mate-
rial point z may be regarded as resulting from a translation of z, a rigid
rotation of the principal axes, and stretches along these axes. The trans-
lation, rotation, and stretch may occur in any order, the representation of
the stretch depending on the order.

A deformation exhibiting these concepts is given by the planar deforma-
tion of a rectangle in which the material is compressed in the horizontal
direction to half its length and is then rotated through π/2. The same final
configuration is obtained by first rotating the body and then compressing
it in the vertical direction. If i1 and i2 are unit vectors in the horizontal
and vertical directions, then the first procedure takes zαiα to ξαiα and
then takes ξαiα to yαiα where

(4.9a)
[
y1

y2

]
=
[

0 −1
1 0

] [
ξ1

ξ2

]
,

[
ξ1

ξ2

]
=
[ 1

2 0
0 1

] [
z1

z2

]
.
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The second procedure takes zαiα to ηαiα and then takes ηαiα to yαiα

where

(4.9b)
[
y1

y2

]
=
[

1 0
0 1

2

] [
η1

η2

]
,

[
η1

η2

]
=
[

0 −1
1 0

] [
z1

z2

]
.

These deformations are illustrated in Fig. 4.10.

For a discussion of mean rotation, the specification of which can be used to fix the
rigid rotation of a deformable body, see Truesdell & Toupin (1960, Sec. B.I.c).

Fig. 4.10. The deformations (4.9). Notice what happens to each
straight line.

5. Examples

Simple shear. Let {ik = ik} be a fixed right-handed orthonormal basis
for E

3. We set z = zkik so that the zk are Cartesian coordinates of z. Let
K be a positive number. Simple shear is a deformation p of the form

(5.1) p(z) = (z1 +Kz2)i1 + z2i2 + z3i3,

which is illustrated in Fig. 5.2. Thus

F =
∂p

∂z
=
∂p

∂zk

∂zk

∂z
=
∂p

∂zk
ik = i1i

1 + (Ki1 + i2)i2 + i3i
3,(5.3)

F ∗ =
(
∂p

∂z

)∗
= i1i1 + i2(Ki1 + i2) + i3i3,(5.4)

C = F ∗ · F = i1i1 +K(i1i2 + i2i1) + (1 +K2)i2i2 + i3i3.(5.5)
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z2

z1

Fig. 5.2. Simple shear.

The matrices of F and C with respect to the basis {ikil} are

(5.6) (Fk
l) =

⎡⎣ 1 K 0
0 1 0
0 0 1

⎤⎦ , (Ckl) =

⎡⎣ 1 K 0
K 1 +K2 0
0 0 1

⎤⎦ .
We shall not use these matrices. For more complicated problems in curvilin-
ear coordinates in which different bases appear, the careless use of matrices
can lead to serious errors. The invariants of C, which can be read off from
(5.6), are

(5.7a,b,c) IC = 3 +K2, IIC = 3 +K2, IIIC = 1.

(The second invariant IIC can be computed as the sum of the three principal
2×2 determinants.) Since IIIC = detC = det(F ∗ ·F ) = (detF )2, it follows
from (5.7c) that the deformation (5.1) is locally volume-preserving, which
is geometrically obvious.

5.8. Exercise. Find the principal axes, the principal stretches, the rotation tensor,
and the images of the principal axes for the deformation (5.1). (See Truesdell & Toupin
(1960, Sec. 45).)

This example of simple shear can easily be treated in Cartesian coordi-
nates. In the following development, the presence of curvilinear coordinates
puts a premium on an accurate formalism to produce F and C. For this
purpose, we use the tensorial methods developed in Chap. 11.

Cylindrical material coordinates. Let x := (s, φ, z) denote the triple
of cylindrical coordinates. These are defined by the function z̃ that assigns
the reference position to x:

z̃(x) := sj1(φ) + zj3(5.9a)

where

j1(φ) ≡ j1(φ) := cosφ i1 + sinφ i2,

j2(φ) ≡ j2(φ) := − sinφ i1 + cosφ i2,(5.9b)

j3 ≡ j3 := i3.
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We set

(5.10) p̃(x, t) = p(z̃(x), t).

We want to compute F ≡ ∂p/∂z from p̃. Let x̃ be the inverse of z̃.
(This inverse could be found explicitly, provided a modicum of care is used
to specify φ as the argument of (z · i1,z · i2) rather than as the ambiguous
arctan(z · i2/z · i1). Our use of the Chain Rule in (5.12) obviates the need
for the representation of x̃.) By the Chain Rule,

(5.11a)
F (z, t) ≡ ∂p

∂z
(z, t) =

∂p̃

∂z
(x̃(z), t)

=
∂p̃

∂x
(x̃(z), t) · ∂x̃

∂z
(z) ≡ ∂p̃

∂xk
(x̃(z), t)

∂x̃k

∂z
(z)

or, equivalently,

(5.11b) F (z̃(x), t) =
∂p̃

∂xk
(x, t)

∂x̃k

∂z
(z̃(x)).

To find ∂x̃/∂z we also use the Chain Rule: We differentiate the identity
z = z̃(x̃(z)) with respect to z to obtain

(5.12) I =
∂z̃

∂x
(x̃(z)) · ∂x̃

∂z
(z) ≡ ∂z̃

∂xk
(x̃(z))

∂x̃k

∂z
(z) =

∂z̃

∂xk
(x)
∂x̃k

∂z
(z̃(x)).

We readily compute (∂z̃/∂xk)(x) from (5.9a), substitute it into (5.12), and
then take the dot products of the resulting expression with the jl to obtain

(5.13)

∂s̃

∂z
(z̃(x)) =

∂x̃1

∂z
(z̃(x)) = j1(φ),

∂φ̃

∂z
(z̃(x)) =

∂x̃2

∂z
(z̃(x)) =

1
s
j2(φ),

∂z̃

∂z
(z̃(x)) =

∂x̃3

∂z
(z̃(x)) = j3.

From (5.11), (5.13) we obtain

(5.14) F (z̃(x), t) =
∂p̃

∂s
(x, t)j1(φ) +

1
s

∂p̃

∂φ
(x, t)j2(φ) +

∂p̃

∂z
(x, t)j3.

Torsion, extension, inflation, and shear. We now specialize these re-
sults to a specific deformation independent of time. Let f, g, h be given
real-valued functions defined on an interval of [0,∞). Let α, β, γ, δ be
given real numbers. We study deformations that take the material point
with cylindrical coordinates (s, φ, z) to the position with cylindrical coor-
dinates (f(s), g(s) + αφ+ βz, h(s) + γφ+ δz), whence

(5.15) p̃(x) = f(s)k1(x) + [h(s) + γφ+ δz]k3,
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where

(5.16)

k1(x) ≡ k1(x) := cosω(x)i1 + sinω(x)i2,

k2(x) ≡ k2(x) := − sinω(x)i1 + cosω(x)i2,

k3 ≡ k3 := i3,

ω(x) := g(s) + αφ+ βz.

We postpone describing the geometry of this class of deformations so we
can concentrate on the practical question of computing F and C.

Since the bases introduced in (5.9b) and (5.16) are orthonormal, they are their own
duals. Nevertheless, we position the indices to conform to standard notations for general
bases. (Our notation therefore is compatible with that of Sec. 11.3.) In particular, it is
conventional in differential geometry to put the indices on coordinates as superscripts,
as in xk. In expressions such as ∂ψ

∂xk , the index is reckoned to be a subscript. The
indices on bases are designed to conform to the diagonal summation convention. Thus
we define the components of F in (5.17) below to be the coefficients of kijl. The
subscript l corresponds to a derivative. When we take components of stress in Chap. 14,
we assign their indices so that the indicial form of the inner product T : Ft, which is
the stress power, conforms to the diagonal summation convention. These policies, which
promote efficiency in bookkeeping and ease in translating our results to those found in
the literature, may be ignored without causing any damage.

We readily compute ∂p̃/∂xk from (5.15) and (5.16). We substitute these
expressions into (5.14) to obtain

(5.17) F (z̃(x)) = [f ′(s)k1(x) + f(s)g′(s)k2(x) + h′(s)k3]j1(φ)

+ s−1[αf(s)k2(x) + γk3]j2(φ) + [βf(s)k2(x) + δk3]j3,

C ≡ F ∗ · F
(5.18)

= {j1[f ′k1 + fg′k2 + h′k3] + · · · } · {[f ′k1 + fg′k2 + h′k3]j1 + · · · }
= [(f ′)2 + (fg′)2 + (h′)2]j1j1 + s−1[αf2g′ + γh′](j1j2 + j2j1)

+ [βf2g′ + δh′](j1j3 + j3j1) + s−2[(αf)2 + γ2]j2j2

+ s−1[αβf2 + γδ](j2j3 + j3j2) + [(βf)2 + δ2]j3j3,

IC = (f ′)2 + (fg′)2 + (h′)2 + s−2[(αf)2 + γ2] + (βf)2 + δ2,(5.19a)

IIC = (f ′)2{s−2[(αf)2 + γ2] + (βf)2 + δ2} + f2[δg′ − βh′]2(5.19b)

+ s−2f2[γg′ − αh′]2 + (αδ − βγ)2s−2f2,

IIIC = [(αδ − βγ)s−1ff ′ ]2,(5.19c)

det F = (αδ − βγ)s−1ff ′.(5.19d)

Note that the reciprocal of s occurs in (5.17)–(5.19). If the domain of p includes
the origin, then F could be singular there. This singularity is at the least a source of
analytic difficulty and may give rise to solutions with singularities (see Sec. 10.3). Thus
it is essential that the disposition of the s’s in all the formulas be absolutely accurate.
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The deformation (5.15) is natural for bodies whose boundaries are co-
ordinate surfaces for cylindrical coordinates. If g = 0 = h, α = 1 = δ,
and γ = 0, then (5.15) represents pure torsion. In general, α accounts for
circumferential stretch and δ for longitudinal stretch. β and γ are shear
parameters. The three functions f, g, h determine a space curve. The de-
formed image of the circular cylinder s = const. is a circular cylinder.
The deformed images of the planes φ = const. and z = const. are he-
licoidal surfaces generated by subjecting the space curve determined by
f, g, h to screw motions, consisting in simultaneous translations along the
z-axis and rotations about it of the space curve, with the rates determined
by the parameters β and γ. The deformation is an example of a semi-
inverse deformation. As we shall see in Chap. 14, it has the virtue that
under favorable circumstances, its substitution into the equilibrium equa-
tions of elasticity, reduces them to ordinary differential equations, which
are readily accessible to analysis.
5.20. Exercise. Let z̃(x) = s[sin θ(cos φ i1 + sin φ i2) + cos θ i3] where x = (s, θ, φ) is
the triple of spherical coordinates for E3. Find F for the deformation

(5.21) p̃(s, θ, φ) = f(s)[sin θ(cos φ i1 + sin φ i2) + cos θ i3].

5.22. Exercise. Let B be the hemispherical shell consisting of those material points
whose spherical polar coordinates s, θ, φ satisfy 1 − ε ≤ s ≤ 1 + ε, 0 ≤ θ ≤ π/2,
0 ≤ φ ≤ 2π. (Here ε is a small positive number.) Give a geometrical description of the
deformation that takes the material point in B with spherical polar coordinates s, θ, φ
to the point in space with cylindrical polar coordinates r, φ, z with r = 2θ/π, φ = φ,
z = s − 1, and find the deformation tensor F = ∂p/∂z.

5.23. Exercise. Let (x, y, z) be Cartesian coordinates relative to the basis {i, j, k}.
Find F for the deformation

(5.24) p(x, y, z) = f(x)[cos(g(x)+αy+βz)i+sin(g(x)+αy+βz)j]+[h(x)+γy+δz]k.

6. Mass and Density
The mass of a body is commonly defined as the amount of material in

the body. This physical definition leaves undefined amount and material.
To employ mass in our work, we must replace this intuitive but vague
physical notion with a precise mathematical notion: First of all, the mass
of a body B is a nonnegative number m(B) associated with B. We refine
our notion of body introduced in Sec. 1 by requiring that a body must have
a mass associated with it that satisfies the following requirements: (i) The
empty body ∅ has zero mass: m(∅) = 0. (ii) If A and B are bodies with
A ⊂ B, then m(A) ≤ m(B). (iii) If the Bk form a countable sequence
of disjoint bodies, then m(∪Bk) =

∑
m(Bk). In mathematical parlance,

m is therefore a measure. Thus, if we accept the axiom of choice, there
are very irregular bodies for which mass cannot be defined. For our work,
we take bodies to be connected open sets of material points together with
any parts of their boundaries. We thereby encounter no measure-theoretic
difficulties. We write

(6.1) m(B) =
∫

B
dm(z),
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implicit in which is the presence of a compatible notion of integral. The
interpretation of (6.1) is that the total mass of a body is additively de-
termined by its distribution over parts of the body. (In the parlance of
physics, mass is an extensive quantity.)

By having m depend only on B, we are effectively positing the Principle
of Conservation of Mass: Mass is an intrinsic property of a body and does
not depend on the configuration it occupies. Therefore,

(6.2) m(B) = m(p(B, t))
for all (continuous injections) p(·, t), for all t, and for all bodies B. Condi-
tion (6.2) implies that

(6.3) d
dtm(p(z, t)) = 0.

(In Sec. 15, we learn how to get an explicit representation for this derivative
under favorable assumptions.)

Let us now suppose that if any part (subbody) P of B has zero volume,
then it has zero mass. (Thus we are ostensibly dismissing from considera-
tion the particles treated in the discipline of particle mechanics. In Sec. 7
we show that a viable particle mechanics survives this assumption about
B.) In this case, (the Radon-Nikodym Theorem implies that) there exists
a (locally Lebesgue-integrable) reference density ρ ≥ 0 such that

(6.4) m(B) =
∫

B
ρ(z) dv(z).

ρ is the local ratio at z of mass to volume in the reference configuration.
Similarly, the Principle of Conservation of Mass implies that there exists
a (locally Lebesgue-integrable) density function p(B, t) × R � (y, t) �→
ρ̆(y, t) ∈ [0,∞] such that

(6.5) m(B) = m(p(B, t)) =
∫

p(B,t)
ρ̆(y, t) dv(y).

Here dv(y) is the differential volume at position y. The density of the
material point occupying position y at time t is ρ̆(y, t). The density of
material point z at time t is ρ̆(p(z, t), t). The substitution of (6.4) and
(6.5) into (6.2) and the use of the formula for change of variables yields

(6.6)

∫
B
ρ(z) dv(z) =

∫
p(B,t)

ρ̆(y, t) dv(y)

=
∫

B
ρ̆(p(z, t), t) detF (z, t) dv(z).

But B is arbitrary since each (measurable) part of a body is a body. Hence
(6.6) yields the local form of the Principle of Conservation of Mass:

(6.7) ρ(z) = ρ̆(p(z, t), t) detF (z, t) a.e.

This equation is called the material form of the continuity equation. It tells
how the density ρ̆(p(z, t), t) is determined from the datum ρ and from the
tensor F . The availability of this equation means that the unknown ρ̆ can
always be found after the motion is determined. In the spatial formulation
of mechanics (discussed in Sec. 15), the density is a fundamental unknown.
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7. Stress and the Equations of Motion

Force. Stress is the intensity of force per unit area. It, rather than force
itself, is responsible for significant deformation of materials. However un-
satisfactory the intuitive definition of mass is, the intuitive definitions of
force are even worse. Noll (1959, 1966, 1973) (see Gurtin (1974) and Trues-
dell (1991a)) created a very elegant postulational treatment of force exerted
by one body on another. His theory adapts the measure-theoretic ideas un-
derlying the concepts of mass and density to the far richer physical setting
of force. Rather than giving a superficial outline of this work, we content
ourselves with assuming that the resultant force g(t; B) on body B at time
t is a vector that is additively determined from its distribution over parts
of B (cf. (6.1)). We accordingly write

(7.1) g(t; B) =
∫

B
dg(z, t; B).

We further assume that the resultant couple c(t; B) on B at time t is
another vector that is additively determined from its distribution over parts
of B and has a representation like (7.1). (A couple is a sort of pure torque.)

The resultant torque or resultant moment m(t,a(t); B) onB abouta(t)
at time t is defined to be

(7.2) m(t,a(t); B) :=
∫

B
[ p(z, t) − a(t)] × dg(z, t; B) + c(t; B).

The Newton-Euler Laws of Motion consist of the Balance of Linear Mo-
mentum

(7.3) g(t; B) =
d

dt

∫
B

pt(z, t) dm(z) ∀ B

and the Balance of Angular Momentum

(7.4) m(t,o; B) =
d

dt

∫
B

p(z, t) × pt(z, t) dm(z) ∀ B.

The integrals in (7.3) and (7.4) are respectively the Linear Momentum and
the Angular Momentum. It is an easy matter to generalize (7.3) and (7.4)
to impulse-momentum laws, which are discussed in Sec. 9.

Many books on particle and rigid-body mechanics contain a proof that (7.3) implies
(7.4) when the body B consists of a finite number of unconstrained mass points exerting
central forces on each other. Their authors, making no further comment on the law
(7.4), tacitly seem to assume that they have established (7.4) in all reasonable generality.
There are no general proofs that (7.3) implies (7.4) when any of the special assumptions
is suspended. We avoid a logical impasse by using Euler’s simple device of postulating
(7.4), secure in the knowledge that its validity in classical mechanics has been amply
justified by experience.

The mass center pB(t) of B is defined by

(7.5) pB(t) :=
1

m(B)

∫
B

p(z, t) dm(z).
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Then (7.3) yields the Law of Motion of the Mass Center:

(7.6) g(t; B) = m(B)
d2

dt2
pB(t).

This is the same law as that governing the Newtonian particle. Rather than defining a
Newtonian particle as a body with zero volume but positive mass, we can merely define
it to be the mass center of a body. Thus we need not go through a song and dance to
explain why the earth may be regarded as having zero volume for certain problems and
having large volume for other problems.

7.7. Exercise. Prove that (7.3) and (7.4) imply that

(7.8) m(t, a(t); B) =
d

dt

∫
B
[ p(z, t) − a(t)] × ∂

∂t
[ p(z, t) − a(t)] dm(z)

when a(t) is a constant vector or when a(t) = pB(t).

In the rest of our work on continuum mechanics, we assume that the
mass density ρ is defined a.e. for the bodies under study, so that (6.4)
holds.

We assume that g(t; B) has the following decomposition:

(7.9) g(t; B) =
∫

B
f(z, t) dv(z) +

∫
∂B

t(z, t; ∂B) da(z).

f(z, t) is the body force (intensity) per unit reference volume at (z, t)
and t(z, t; ∂B) is the surface traction per unit reference area of ∂B at
(z, t). As we show below, f at (z, t) could depend on the position of
each material point of B at time t. We tacitly understand that f should
thus properly be expressed as a composite function of its arguments by
f(z, t) = f̂(z, t,p(·, t)). The same remarks apply to the boundary values
for the traction, which are discussed below in Sec. 8.

For thermomechanical problems, which are the only ones treated in this
book, we take c(t; B) = o. Then the resultant torque on B about o is the
moment about o of the force distribution (7.9):

(7.10)

m(t,o; B) =
∫

B
p(z, t) × f(z, t) dv(z) +

∫
∂B

p(z, t) × t(z, t; ∂B) da(z).

Examples. The terrestrial weight of a body B is the magnitude of the
(total) body force

(7.11a) −
∫

B
ρ(z)gk dv(z)

where g is the acceleration of gravity and k points upward. Here f(z, t) =
−ρgk. More generally, the gravitational attraction of an earth with a
spherically symmetric mass distribution on a body B outside the earth is

(7.11b) −MG
∫

B

ρ(z)p(z, t)
|p(z, t)|3 dv(z)
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whereM is the mass of the earth, G is the universal gravitational constant,
and o is at the earth’s center. Thus the body force intensity

(7.11c) f(z, t) = −MGρ(z)p(z, t)/|p(z, t)|3

depends on the unknown p(z, t). If B were part of a self-gravitating body,
then the contribution of the rest of B to its body force intensity f(z, t) at
z would depend not merely on p(z, t), but on p(·, t).

About the only other kinds of body forces found in nature are ‘reversed
effective forces’, such as centrifugal and Coriolis forces, which are due to
the acceleration of the reference frame used, and forces of electromagnetic
origin. These latter can have the character of the self-gravitating forces
just described.

An important example of a surface traction on a part S of ∂B is that
due a hydrostatic pressure, which is characterized by a constant intensity
P of force per unit actual area of p(S, t) acting in the direction opposite to
the outer normal to p(S, t):
7.12. Exercise. Use (2.19), (2.20) to show that the resultant force on S due to the
hydrostatic pressure is

− P

∫
s̃(S)

[
∂p(z̃(s1, s2), t)

∂z
· ∂z̃

∂s1
(s1, s2)

]
×
[

∂p(z̃(s1, s2), t)
∂z

· ∂z̃

∂s2
(s1, s2)

]
ds1 ds2

= −P

∫
S
(det F (z, t))F −∗(z, t) · ν(z) da(z) =

∫
S

t(z, t; ∂B) da(z),

so that t(z, t; ∂B) = −P (det F (z, t))F −∗(z, t) · ν(z) for hydrostatic pressure. (This
formula can be readily adjusted to handle normal forces that vary with position, like
those treated in Section 3.5.) We shall soon show that the linear dependence of t on ν
is typical of all tractions.

Stress. Let S be a smooth surface forming the common part of the bound-
ary of bodies A and B that otherwise have no intersection. Let ν(z) denote
the unit normal field at z in S pointing from B to A. Note that ν merely
orients a material surface in the reference configuration. It has no further
geometrical significance. Then the contact force exerted by A on B at time
t is

(7.13)
∫

S
t(z, t; ∂B) da(z).

We intend that this expression be independent of the choice of A and B,
provided that they meet the restrictions just stated. Using a precisely de-
limited version of the postulational system alluded to above, Noll (1959)
(see Noll (1966) and Truesdell (1991a)) proved that the balance of an-
gular momentum implies Cauchy’s postulate: t(z, t; ∂B) depends on ∂B
only through ν(z). We assume this and henceforth replace t(z, t; ∂B) with
t(z, t,ν(z)). The fundamental result of this section is

7.14. Cauchy’s Stress Theorem. If t(·, t,ν) and ρptt(·, t) − f(·, t) are
continuous on B for each ν, then there exists a second-order tensor field
T (·, t), called the first Piola-Kirchhoff stress tensor field, such that

(7.15) t(z, t,ν) = T (z, t) · ν.
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The utility of this important theorem will be made clear immediately
after its proof. Its plausibility can be seen in the following situation: Let
k be a unit vector. The reference shape of a body is a truncated cylinder
with ends perpendicular to the generators taken to be parallel to k and with
cross-sectional area A. Equal and opposite forces ±Fk are applied to the
ends of the body. The average force per unit reference area acting across a
material cross-section, which has normal k, has magnitude (F/A)k ·k = F ,
whereas the average force per unit reference area acting across a material
section with normal ν has magnitude (F/A)k · ν.

Proof of Theorem 7.14. We fix t. First we assume that y is an interior
point of B. Let {ek} be an orthonormal basis and let ν be any unit vector
satisfying ν · ek > 0. If h is a sufficiently small positive number, then
B contains the tetrahedron B(h) bounded by the plane through y + hν
with normal ν and by the three planes through y with normals e1, e2, e3.
If the area of the faceΠ(h) with normal ν is Ah2, then the areas of the three

other faces Π1(h), Π2(h), Π3(h) are Ah2ν ·e1, Ah
2ν ·e2, Ah

2ν ·e3, and the
volume of the tetrahedron is 1

3Ah
3. Under assumption (7.9), the Balance

of Linear Momentum for the tetrahedron reduces to

(7.16)
∫

Π(h)
t(z, t,ν) da(z) +

3∑
k=1

∫
Πk(h)

t(z, t,−ek) da(z)

=
∫

B(h)
[ρptt(z, t) − f(z, t)] dv(z).

We divide this equation by Ah2 and let h→ 0. Since the integrand on the
right-hand side of (7.16) is continuous, its integral is bounded by a constant
times 1

3Ah
3. By using the Mean-Value Theorem (applied to components

of (7.16)) and the continuity of t(·, t,ν) we thus obtain

(7.17) t(y, t,ν) = −
3∑

k=1

t(y, t,−ek)ek · ν

for every y ∈ intB and for every ν lying in the interior of the first octant.
Since (7.17) holds for all orthonormal bases {ek}, it follows that it holds

for all unit vectors ν. Since t(·, t,ν) is continuous and since B is an open
set together with part of its boundary, Eq. (7.17) holds for all y ∈ B. We
now define

(7.18) T (z, t) := −
3∑

k=1

t(z, t,−ek)ek,

which with (7.17) yields (7.15). �
It immediately follows from (7.15) that

(7.19) t(z, t,ν) = −t(z, t,−ν)
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for all unit vectors ν. This is Newton’s Law of Action and Reaction, derived
as a consequence of the Balance of Linear Momentum and the representa-
tion (7.9). We can use (7.19) to simplify the right-hand side of (7.18) by
removing the minus signs.

This exposition is modelled on Gurtin’s (1981a). For a discussion of variants, see
Truesdell (1991a). This theorem is true under far weaker regularity assumptions. See
Degiovanni, Marzocchi, & Musesti (1999), Gurtin & Martins (1976), Gurtin, Williams,
& Ziemer (1986), Šilhavý (1985, 1991, 1997), and Ziemer (1983).

Let us now substitute (7.15) into (7.9), which we then substitute into
(7.3) with B replaced by a typical subbody A. The linear dependence of
the traction on ν enables us to apply the Divergence Theorem in the form
(11.2.30e) to the resulting equation to convert it to

(7.20)
∫

A
[∇ · T ∗ + f − ρptt] dv = o

for all A ⊂ B. If the integrand of (7.20) is continuous on B, assumed to be
an open set together with any part of its boundary, then the arbitrariness
of A ensures that

(7.21) ∇ · T ∗ + f = ρptt

everywhere on B. Equation (7.21) is the material form of the classical
equations of motion. It is the local version of (7.3).
7.22. Exercise. Prove that (7.20) implies (7.21) under the indicated assumptions.

Let us now determine the local consequences of the Balance of Angular
Momentum. Substituting (7.15) and (7.10) into (7.4), we obtain

(7.23)
∫

∂A
p × [T · ν] da+

∫
A

[ p × f − ρp × ptt] dv = o.

We can apply the Divergence Theorem to the first integral in (7.23) to
convert it to the integral over A of the unappetizing ∇ · (p × T )∗. This
expression could readily be evaluated by introducing components. The
first step of a coordinate-free procedure is to take the dot product of (7.23)
with (a × b) where a and b are arbitrary constant vectors. Then the first
integrand becomes

(a · p)[b · (T · ν)]−[a · (T · ν)](b · p)(7.24)

= a · [ p(T · ν) − (T · ν)p] · b

= a · [ p(ν · T ∗) − (ν · T ∗)p] · b

= [(ν · T ∗)p] : (ba − ab).

The Divergence Theorem implies that the integral over ∂A of [ν ·(T ∗p)] : ba
equals the integral over A of

[∇ · T ∗p] : ba = ∇ · [(T ∗ · b)(p · a)](7.25)

= [∇ · (T ∗ · b)](p · a) + (T ∗ · b) · (∇p · a)

= b · [(∇ · T ∗)p + (T · F ∗)] · a

= ba : [(∇ · T ∗)p + (T · F ∗)].



12.7. STRESS AND THE EQUATIONS OF MOTION 439

The second equality in (7.25) is the standard identity for the divergence of
the product of a scalar- and a vector-valued function. It is a consequence
of (11.2.25). We can thus reduce (7.23) to

(7.26) (ba − ab) :
∫

A
{T · F ∗ + [(∇ · T ∗) + f − ρptt] p} dv = 0.

Since the bracketed term vanishes by (7.21) and since A is arbitrary, we
deduce from (7.26) that (ba − ab) : T · F ∗ = 0. Since Skw has a basis of
elements of the form ba − ab and since a and b are arbitrary, we conclude
from (11.1.26d) that

(7.27a,b) T · F ∗ is symmetric : F · T ∗ = T · F ∗.

This is the local version of (7.4).

7.28. Exercise. Suppose that

(7.29) c(B, t) =
∫

∂B
Γ · ν da

(cf. (7.9) and (7.15)) is not o. Determine the resulting generalization of (7.27). For the
basic concepts of couple stress, see Truesdell & Toupin (1960, Part D).

The lack of symmetry of T prompts us to introduce another material
stress tensor, the second Piola-Kirchhoff stress tensor S, by

(7.30) T = F · S.

By premultiplying (7.27b) by F −1 and postmultiplying it by F −∗, we find
that S is symmetric.

To interpret the Piola-Kirchhoff stress tensors, we let {ek} be an or-
thonormal basis. The deformation p(·, t) carries the material plane through
z with normal e3 to the surface with tangent plane at p(z, t) spanned by
F (z, t) · e1 and F (z, t) · e2. Using (11.1.49), we find that the unit normal
to this surface at p(z, t) is

(7.31) ξ̃3(z, t) =
[F (z, t) · e1] × [F (z, t) · e2]
|[F (z, t) · e1] × [F (z, t) · e2]|

=
F −∗ · e3√

e3 · C−1 · e3
.

We illustrate T (z, t) · e3 in Fig. 7.32. Even though T (z, t) · e3 acts across
the deformed image of the material plane through z with normal e3, its
intensity is measured per unit reference area. In Sec. 15 we define the
Cauchy stress, which is the intensity of force per actual area of the surface
across which it acts. To compute the average first Piola-Kirchhoff stress
across a material surface, we need only measure the total force across the
surface because the reference area of the surface is a piece of data. To
compute an average stress that is a force intensity per actual area, we
must also measure the actual area. The Piola-Kirchhoff stress has been
invidiously termed the engineering stress with the tacit suggestion that
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Fig. 7.32. The Piola-Kirchhoff traction vector T (z, t) ·e3 across
the material plane through z with normal e3.

its definition rests upon some unjustified approximation. In fact, it is
precisely formulated, physically natural, and especially well suited for solid
mechanics.

The vector T (z, t) · e3 can be decomposed in any convenient way. It
may be represented as a linear combination of the base vectors tangent
to curvilinear coordinate curves in the reference configuration. It is also
convenient to represent T (z, t) · e3 in terms of a basis associated with the
deformed image of the reference plane. In particular, (7.30) and (7.31)
imply that the component of T (z, t) · e3 normal to this surface is

(7.33) [T (z, t) · e3] · ξ̃3(z, t) =
e3 · S(z, t) · e3√

e3 · C−1 · e3
.

Thus the diagonal component e3 · S(z, t) · e3 of S accounts for the normal
component of traction across the deformed image of the material plane
through z with normal e3. The full meaning of S is apparent when we
represent T (z, t) · e3 as a linear combination of the elements of the basis
{F · ek}. By (11.1.2a) and (11.1.49), the dual basis is {F −∗ · ek}. Thus

(7.34) T · e3 = (T · e3) · (F −∗ · ek)F · ek = (e3 · S · ek)F · ek.

Thus the components of T · e3 associated with the deformed image of the
reference plane are the components of S · e3 relative to the basis in the
reference configuration. Such a basis is seldom the most useful for T .

We shall find that certain parts of solid mechanics are most easily de-
scribed in terms of T , while others are most easily described in terms of S.

8. Boundary and Initial Conditions
We now give a general description of boundary and initial conditions

for 3-dimensional bodies in the spirit of Sec. 8.14. Our development is
actually simpler than that of Sec. 8.14 because we do not have to worry
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about rotation and torque. Consequently, we merely sketch the main ideas,
starting with the conventional forms of thes conditions and then treating
the weak forms.

We assume that ∂B is sufficiently regular that it has a unit normal vector
defined a.e. We decompose ∂B as the union

(8.1) ∂B =
3⋃

c=0

Sc(t)

of disjoint sets Sc(t), on which different kinds of boundary conditions hold:
If material point z ∈ S0(t), then its position is prescribed at time t.

Thus there is a function p̄ defined on {(z, t) : z ∈ S0(t), t ∈ [0,∞)} (for
initial-boundary-value problems) such that

(8.2) p(z, t) = p̄(z, t).

The material point z has 0 degrees of freedom. In this case, the traction at
(z, t) is not prescribed. (Components of the traction that are not prescribed
on the boundary are whatever are necessary to make the body B move
subject to the prescribed boundary and initial conditions; they are found
a posteriori from the solution of a well-set problem.)

At the other extreme, if material point z ∈ S3(t), then its traction is
prescribed at time t. Thus there is a function τ̄ , whose domain is defined
just like that of p̄, such that

(8.3) T (z, t) · ν(z) = τ̄ (z, t).

The position of z ∈ S3(t) at time t is not restricted in any way, so that
it can go wherever it is pushed. The material point z has 3 degrees of
freedom.

Here and below, it is tacitly understood that τ̄ may depend, say, on
the restriction of p(·, t) to S3, although we suppress an explicit notation
indicating such a dependence.

In a situation intermediate between the two preceding cases, if a material
point z ∈ S2(t), then it slides on a moving surface γ(·,z, t) (of class C1) so
that

(8.4) γ(p(z, t),z, t) = 0.

The material point z has 2 degrees of freedom. In this case, we can prescribe
tractions tangent to the surface. Let ξ be the unit normal to this surface:

(8.5) ξ(p,z, t) =
∂γ(p,z, t)/∂p
|∂γ(p,z, t)/∂p| .

We complement (8.4) with

(8.6) [I − ξ(p(z, t),z, t)ξ(p(z, t),z, t)] · [T (z, t) · ν(z) − τ̄ (z, t)] = o
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where (z, t) �→ [I − ξ(p(z, t),z, t)ξ(p(z, t),z, t)] · τ̄ (z, t) is a prescribed
function with values in E

3.
In the remaining intermediate case, if z ∈ S1(t), then it is confined to

a moving curve (of class C1), taken to be the intersection of the moving
surfaces γα(·,z, t), α = 1, 2 so that

(8.7) γα(p(z, t),z, t) = 0, α = 1, 2.

The material point z has 1 degree of freedom. Let e(·,z, t) be the unit
tangent vector field to the curve. We prescribe the traction tangent to the
curve by

(8.8) e(p(z, t),z, t)e(p(z, t),z, t) · [T (z, t) · ν(z) − τ̄ (z, t)] = o

where e(p(z, t),z, t)e(p(z, t),z, t) · τ̄ (z, t) is given.
For the few technical aspects of Sec. 9, which we do not emphasize,

it suffices that ∂B be a locally Lipschitz-continuous surface and that the
∂Sc(t) be formed of locally Lipschitz-continuous curves.

Following Sec. 8.14, we subsume all these cases under a compact formalism: Let T
denote the time interval on which the motion takes place. Let H denote a connected set
in ∂B × T × R3 having the property that each of its sections {(z, t, q) : z = ζ, t = τ} is
nonempty for ζ ∈ ∂B and τ ∈ T . We assume that there are given functions

(8.9) H � (z, t, q) �→ (p̄(z, t, q), τ̄ (z, t, q)) ∈ E
3 × E

3

such that a complementary combination of components of position and traction at z are
specified in terms of an unknown function

(8.10) [0, ∞) � t �→ q(z, t) ∈ R
3

via

p(z, t) = p̄(z, t, q(z, t)),(8.11)

[ν(z, t) · T ∗(z, t) − τ̄ (z, t, q(z, t))] · ∂p̄

∂q
(z, t, q(z, t)) = o(8.12)

for (z, t) ∈ ∂B × [0, ∞). For each z, the function q(z, ·) is an unknown of the problem.
(For example, if the material point z is restricted to the unit sphere centered at the
origin, then we take q = (r, θ, φ) and p̄(z, t, q) = sin θ(cos φi + sin φj) + cos θk.) In
(8.12), τ̄ has a meaning slightly different from that of the τ̄ ’s that appeared in such
previous expressions as (8.6). The rank of [∂p̄/∂q](z, t, q(z, t)) is the number of degrees
of freedom of the material point z at time t. We thus find that

(8.13) Sc(t) = {z ∈ ∂B : rank [∂p̄/∂q](z, t, q(z, t)) = c}.

We assume that p satisfies initial conditions whose conventional form (cf. (2.2.4b))
is

(8.14a,b) p(z, 0) = p0(z), pt(z, 0) = p1(z).

Let us now study the weak form of the the boundary conditions for position. Such
versions are to hold when the solutions are not classical. We do not pause, however, to
spell out the function spaces in which such solutions are sought. We assume that ∂B
is sufficiently smooth (uniformly Lipschitz-continuous). Then given any material point
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Fig. 8.15. The nature of B near a material point z0 on its boundary.

z0 in ∂B, we can find a neighborhood N (z0) of z0 on the surface ∂B and a unit vector
k(z0) such that {z + ζk(z0) : z ∈ N (z0), 0 ≤ ζ ≤ ε} ⊂ cl B for a sufficiently small
positive number ε. See Fig. 8.15. Moreover, if B is bounded, then there are a finite
number of material points z1, . . . , zN in ∂B such that ∪N

b=1N (zb) covers ∂B. (If B is
unbounded, then there is a locally finite set of such points z1, . . . .)

We now assume that (8.11) holds in the sense of trace:

(8.16) lim
ζ↘0

∫ t2

t1

∫
G
[ p(z + ζk(zb), t) − p̄(z, t, q(z, t))] da(z) dt = o

for each b, for ‘almost every’ time interval [t1, t2], and for ‘almost every’ measurable
subset G of N (zb). (We explain what ‘almost every’ means in Sec. 9.) The traction
boundary conditions (8.12) have an analogous generalization, which is implicit in the
Impulse-Momentum Laws and the Principle of Virtual Power formulated in the next
section.

We likewise assume that the initial condition (8.14a) holds in the sense of trace:

(8.17) lim
t↘0

∫
P

ρ(z)[ p(z, t) − p0(z)] dv(z) = o

for ‘almost every’ P ⊂ B. For well-behaved ρ, condition (8.17) is unaffected by its
removal. The initial condition (8.14b) is implicit in the integral laws formulated in the
next section.

The material of this section is largely based on Antman & Osborn (1979).

9. Impulse-Momentum Laws and
the Principle of Virtual Power

We now carry over the development of Secs. 2.3 and 2.4 to 3-dimensional
continuum mechanics. The reader should review these sections, especially
the discussions of motivations. Let us first suppose that S1 and S2 are
empty. The straightforward generalization of the Balance of Linear Mo-
mentum (7.3), (7.9), (7.15) to allow for less regularity in the dependence on
t and to account explicitly for traction boundary conditions is the Linear
Impulse-Momentum Law :

(9.1)
∫ τ

0

∫
∂P\S3(t)

T (z, t) · ν(z) da(z) dt+
∫ τ

0

∫
∂P∩S3(t)

τ̄ (z, t) da(z) dt

+
∫ τ

0

∫
P

f(z, t) dv(z) dt =
∫

P
ρ(z)[ pt(z, τ) − p1(z)] dv(z)
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for almost all (sufficiently nice) P ⊂ B and for almost all τ > 0.

9.2. Exercise. Prove that (9.1) yields generalizations of (8.3) and (8.14b) like (8.16)
and (8.17).

We can easily generalize (9.1) to the case in which S1 and S2 need not
be empty. We merely replace the region of integration ∂P\S3(t) in the first
integral of (9.1) with ∂P \ [S1(t) ∪ S2(t) ∪ S3(t)] and add to the left-hand
side of (9.1) the terms
(9.3)∫ τ

0

∫
∂P∩S1(t)

τ̄ (z, t) · e(p(z, t),z, t)e(p(z, t),z, t) da(z) dt

+
∫ τ

0

∫
∂P∩S1(t)

[I − e(p(z, t),z, t)e(p(z, t),z, t)] · T (z, t) · ν(z) da(z) dt

+
∫ τ

0

∫
∂P∩S2(t)

[I − ξ(p(z, t),z, t)ξ(p(z, t),z, t)] · τ̄ (z, t) da(z) dt

+
∫ τ

0

∫
∂P∩S2(t)

ξ(p(z, t),z, t)ξ(p(z, t),z, t) · T (z, t) · ν(z) da(z) dt

coming from (8.6) and (8.8).
To write the resulting form of the Linear Impulse-Momentum Law in a

form that utilizes the compact notation (8.12), we merely have to replace
∂p̄/∂q of (8.12) with the tensor Π that is the orthogonal projector onto
the tangent space at p(z, t) of the manifold (8.11). (If (8.11) corresponds
to (8.4), then Π = I − ξξ.) Note that Π is symmetric. In this case, we
can write the Linear Impulse-Momentum Law as

(9.4)

∫ τ

0

∫
∂P\∂B

T (z, t) · ν(z) da(z) dt+
∫ τ

0

∫
P

f(z, t) dv(z) dt

+
∫ τ

0

∫
∂P∩∂B

τ̄ (z, t, q(z, t)) · Π(z, t, q(z, t)) da(z) dt

+
∫ τ

0

∫
∂P∩∂B

ν(z) · T (z, t)∗ · [I − Π(z, t, q(z, t))] da(z) dt

=
∫

P
ρ(z)[ pt(z, τ) − p1(z)] dv(z)

for almost all (sufficiently nice) P ⊂ B and for almost all τ > 0.
Since we can treat the symmetry condition (7.27) as a constitutive hy-

pothesis (cf. Sec. 10), we do not pause to generalize the Balance of Angular
Momentum to an Angular Impulse-Momentum Law. We likewise do not
examine the corresponding Principle of Virtual Power. For details of these
laws, see Antman & Osborn (1979).

The Principle of Virtual Power for forces or, equivalently, the weak form
of the equations of motion (7.21) subject to boundary conditions (8.11) and
(8.12) and to initial conditions (8.14) is
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(9.5)
∫ ∞

0

∫
B

[
T :

∂η

∂z
− f · η − ρpt · ηt

]
dv(z) dt

−
∫ ∞

0

∫
∂B

τ̄ (z, t, q(z, t))·η(z, t) da(z) dt−
∫

B
ρ(z)p1(z)·η(z, 0) dv(z) = 0

for all (nice enough) η with compact support in (clB)× [0,∞) that satisfy
the boundary conditions

(9.6) η(z, t) =
∂p̄

∂q
(z, t, q(z, t)) · r(z, t) for (z, t) ∈ ∂B × [0,∞)

for all (nice enough) r.

9.7. Exercise. Suppose that (7.21), (8.11), (8.12), and (8.14) hold in the classical
sense. Derive (9.5) and (9.6) by taking the inner product of (7.21) with η and then by
integrating the resulting expression by parts while using (8.12). (This is the traditional
derivation of the Principle of Virtual Power. Its deficiencies are described in Sec. 2.4.)

The fundamental result of this section can be informally stated thus:

9.8. Theorem (Antman & Osborn (1979)). The Impulse-Momentum
Law (9.4) and the Principle of Virtual Power (9.5), (9.6) are equivalent
when the fields entering these laws are sufficiently well behaved for all the
integrals that appear to make sense as Lebesgue integrals.

A typical requirement on the fields is that T be locally integrable.
In this case, Fubini’s theorem must be used to show that the traction
T · ν is integrable on ‘almost all’ surfaces ∂P in B. The full proof of this
theorem requires measure-theoretic constructions that put it outside the
scope of this book. (The proof is technically much harder than that of the
corresponding result in Sec. 2.4.) Nevertheless, the conceptual foundation
of the proof is so simple that it should be used to replace Ex. 9.7 as the
natural motivation for the Principle of Virtual Power. The essential feature
of the proof is that no field is ever left without the protective clothing of
an integral. Thus it is never required to have a pointwise significance (and
it is never subjected to the abuse of being multiplied by some function of
the unknowns with the consequent adverse effects described in the third
paragraph of Sec. 2.4).

Derivation of the Principle of Virtual Power from the Impulse-
Momentum Law. Let z = zkik where {ik} is a fixed orthonormal basis
for E

3. For simplicity, we assume that S3 ⊂ {z : z3 = 0}. We take P to be
the cell

(9.9) Q(u) := {z : z1 ∈ (−u1, u1), z2 ∈ (−u2, u2), z3 ∈ (0, u3)}

where u = ukik with u1, u2, u3 > 0. We assume that Q(u) ⊂ B and that
∂Q(u) ∩ ∂B ⊂ S3. The specialization of (9.4) to P = Q(y) ⊂ Q(u), which
has the form (9.1), reduces to
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0

∫ y3

0

∫ y2

−y2
T (z, t) · i1

∣∣z1=y1

z1=−y1 dz
2 dz3 dt(9.10)

+
∫ τ

0

∫ y1

−y1

∫ y3

0
T (z, t) · i2

∣∣z2=y2

z2=−y2 dz
3 dz1 dt

+
∫ τ

0

∫ y2

−y2

∫ y1

−y1
T (z, t) · i3

∣∣z3=y3

dz1 dz2 dt

+
∫ τ

0

∫ y2

−y2

∫ y1

−y1
τ̄ (z1i1 + z2i2, t) dz1 dz2 dt

+
∫ τ

0

∫ y3

0

∫ y2

−y2

∫ y1

−y1
f(z, t) dz1 dz2 dz3 dt

=
∫ y3

0

∫ y2

−y2

∫ y1

−y1
ρ(z)[ pt(z, t) − p1(z)] dz1 dz2 dz3.

Let ω, u1, u2, u3 be positive. We introduce functions ψ0, ψ1, ψ2, ψ3 with
properties:

(9.11)

ψ0 has support in [0, ω),

ψ1 has support in (−u1, u1), ψ1(z1) = ψ1(−z1),
ψ2 has support in (−u2, u2), ψ2(z2) = ψ2(−z2),
ψ3 has support in [0, u3).

Let c be a constant vector. We operate on (9.10) with

(9.12)
1
4

∫ ω

0

∫ u3

0

∫ u2

−u2

∫ u1

−u1
dy1 dy2 dy3 dτ ψ′

0(τ)ψ
′
1(y

1)ψ′
2(y

2)ψ′
3(y

3) c ·

(noting that
∫ u3

0

∫ u2

−u2

∫ u1

−u1 =
∫

Q(u)). Since

∫ ω

0
dτ ψ′

0(τ)
∫ τ

0
ϕ(t) dt = −

∫ ω

0
ψ0(τ)ϕ(τ) dτ,(9.13)∫ u1

−u1
dy1ψ′

1(y
1)
∫ y1

−y1
ϕ(z1) dz1 = −

∫ u1

−u1
ψ1(y1)[ϕ(y1) + ϕ(−y1)] dy1

= −2
∫ u1

−u1
ψ1(y1)ϕ(y1) dy1,

etc., we thus obtain
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−
∫ ω

0

∫
Q(u)

ψ0(τ)ψ′
1(y

1)ψ2(y2)ψ3(y3)c · T (z, t) · i1 dv(y) dτ

−
∫ ω

0

∫
Q(u)

ψ0(τ)ψ1(y1)ψ′
2(y

2)ψ3(y3)c · T (z, t) · i2 dv(y) dτ

−
∫ ω

0

∫
Q(u)

ψ0(τ)ψ1(y1)ψ2(y2)ψ′
3(y

3)c · T (z, t) · i3 dv(y) dτ

+ ψ3(0)
∫ ω

0

∫ u2

−u2

∫ u1

−u1
ψ0(τ)ψ1(y1)ψ2(y2)c · τ̄ (y1i1 + y2i2, t) dy1 dy2 dτ

+
∫ ω

0

∫
Q(u)

ψ0(τ)ψ1(y1)ψ2(y2)ψ3(y3)c · f(z, t) dv(y) dτ

= −
∫ ω

0

∫
Q(u)

ψ′
0(τ)ψ1(y1)ψ2(y2)ψ3(y3)ρ(y)c · pt(y, τ) dv(y) dτ

+ ψ0(0)
∫

Q(u)
ψ1(y1)ψ2(y2)ψ3(y3)ρ(y)c · p1(y) dv(y) dτ.

(9.14)

Let us now set

(9.15) η(z, t) = ψ0(t)ψ1(z1)ψ2(z2)ψ3(z3)c.

Since (9.11) implies that this η vanishes outside Q(u) × [0, ω], Eq. (9.14)
reduces to (9.5).

Simpler constructions work when Q(u) ∩ ∂B ⊂ S0 ⊂ {z : z3 = 0}
and when Q(u) ∩ ∂B = ∅. All such constructions can be extended to the
generalized versions of (8.11) and (8.12). Thus (9.5) holds for a special class
of η’s like those of (9.11) and (9.15). Now if ∂B is uniformly Lipschitz-
continuous, then essentially by definition there is an obvious Lipschitz-
continuous mapping that takes a typical region

{z + ζk(z0) : z ∈ N (z0), 0 ≤ ζ ≤ ε}

abutting the boundary into a cell of the form Q(u). (See Fig. 8.15.) This
mapping has a Lipschitz-continuous inverse. Thus we can carry out our
construction for any such region merely by inserting into our integrals the
Jacobian of the Lipschitz-continuous mapping, which exists a.e. Thus we
can partition B into a locally finite number of Lipschitz-continuous images
of cells like Q(u), each cell having a finite number of intersections with
other such cells, such that (9.5) holds for an η that is supported on such an
image of a cell and that is a transformed version of a η like that of (9.11) and
(9.15). But linear combinations of such η’s supported on images of cells are
dense in appropriate Sobolev spaces (with one derivative) corresponding to
the regularity of the ψ’s, so that (9.5) holds for all η’s in these Sobolev
spaces.

Now we can define what the phrase ‘for almost every P ⊂ B’ means. Let Q := Q(u)
with u1 = u2 = u3 = 1. Let g : Q → E3 be a one-to-one Lipschitz-continuous function



448 12. 3-DIMENSIONAL CONTINUUM MECHANICS

that has a Lipschitz continuous inverse and that takes each face of the cell Q into the
graph of a Lipschitz-continuous function. A property is said to hold for almost every
P ⊂ B iff for each such g the property holds on g(Q(y)) ∩ cl B for almost all y ∈ [0, 1]3

in the sense of Lebesgue measure on R3.

Derivation of the Impulse-Momentum Law from the Principle of
Virtual Power. Using the notions associated with Lipschitz-continuous
mappings discussed in the last two paragraphs, we can reduce the derivation
of the Impulse-Momentum Law for arbitrary bodies to its derivation for
cells. We may accordingly restrict our attention to the case described in
the paragraph containing (9.9). Let

(9.16) Q(w) ⊂ Q(y) ⊂ Q(u) ⊂ B, ∂Q(u) ∩ ∂B ⊂ S3 ⊂ {z : z3 = 0}.

Then Q(y) is the union of Q(w) and five truncated pyramids, which we
denote by cl K+

1 , cl K+
2 , cl K+

3 , cl K−
1 , cl K−

2 , where the K+
k lie between the

planes zk = wk and zk = yk for k = 1, 2, 3 and the K−
k lie between the

planes zk = −wk and zk = −yk for k = 1, 2. Let

α(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for z ∈ cl Q(w),
yk−zk

yk−wk for z ∈ cl K+
k , k = 1, 2, 3,

yk+zk

yk−wk for z ∈ cl K−
k , k = 1, 2,

0 for z /∈ cl Q(y),

(9.17)

β(t) =

⎧⎪⎨⎪⎩
1 for 0 ≤ t ≤ τ,
ω−t
ω−τ for τ ≤ t ≤ ω,
0 for ω ≤ t.

(9.18)

Let c be an arbitrary fixed vector. We set

(9.19) η(z, t) = α(z)β(t)c.

(We may note in passing that η has the form (9.15).) We substitute (9.19)
into (9.5) to obtain

(9.20)

c ·
∫ ω

0
β(t)

3∑
k=1

1
yk − wk

(∫
K+

k

+
∫

K−
k

)
T (z, t) · ik dv(z) dt

− c ·
∫ ω

0
β(t)

∫
Q(y)

α(z)f(z, t) dv(z) dt

+
c

ω − τ ·
∫ ω

τ

∫
Q(y)

α(z)ρ(z) pt(z, t) dv(z) dt

− c ·
∫ ω

0
β(t)

∫
{z∈Q(y):z3=0}

α(z)τ̄ (z, t) da(z) dt

− c ·
∫

Q(y)
α(z)ρ(z) p1(z) dv(z) = 0.
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The arbitrariness of c enables us to cancel it from (9.20).
Let

(9.21) E±
k (zk) = {v ∈ K±

k : vk = zk}.

Let us substitute the identities

(9.22)
∫

K+
k +
dv(z) =

∫ yk

wk

∫
E+

k (zk)
da(z) dzk,

etc., into (9.20). If T were continuous, then we could use the Fundamental
Theorem of Calculus and the rule for changing the order of integration
(Fubini’s Theorem) to show that as (y, ω) → (w, τ), the first integral of
(9.20) approaches

(9.23) −
∫ τ

0

3∑
k=1

∫
E+

k (wk)
T (z, t) · ik da(z) dt

for all (w, τ). Similarly, the fourth integral of (9.20) would approach

(9.24)
∫

Q(w)
ρ(z)pt(z, t) dv(z).

Under these conditions, the limit of (9.20) as (y, ω) → (w, τ) is the Impulse-
Momentum Law (9.4). A surprisingly delicate measure-theoretic argument,
which we omit, is needed to justify the same conclusion when T is merely
integrable.

The presentation of Secs. 8 and 9 is based upon the work of Antman & Osborn
(1979), which may be consulted for the full details of the proofs sketched here. For
further refinements, see Šilhavý (1991), Degiovanni, Marzocchi, & Musesti (1999), and
Rodnay & Segev (2003). The proof of a generalization of Theorem 9.8 suitable for the
kinds of function spaces used in the modern theory of quasilinear hyperbolic equations
remains an open problem.

10. Constitutive Equations of Mechanics
Our description of kinematics and strain and our equations of motion

apply to any material body. The equations of motion (7.21) and (7.27)
represent six scalar restrictions on the twelve components of p and T .
We simultaneously obtain a formally determinate system and describe the
material properties of bodies by relating p and T by constitutive equations.
We now study these from the general viewpoint of materials with memory.
In later sections we treat specific classes of materials.

For any function R � t �→ Ψ(z, t), we define the history of Ψ(z, ·) up to
time t, i.e., the past history of Ψ(z, ·), to be the function

(10.1) [0,∞) � τ �→ Ψ t(z, τ) := Ψ(z, t− τ).

Thus τ measures time backwards from t.
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There are two classes of mechanical constitutive equations: In the first
class, the stress T (z, t) at material point z at time t of body B is completely
determined by the history up to time t of p over the whole body:

(10.2) T (z, t) = T̂ (pt(·, ·),z, t).

In the second class, there are material constraints restricting the kinds of
motion a body can sustain. For example, if a body is rigid, then it cannot
change its shape no matter what system of forces is applied to it. This ma-
terial constraint of rigidity is characterized by the constitutive restriction
C = I. If a body is incompressible, then no part of it can change its volume
no matter what system of forces is applied to it. This material constraint of
incompressibility is characterized by the constitutive restriction detC = 1
or, equivalently, detF = 1. Such material constraints are accompanied
by adaptations of (10.2) in which T̂ is restricted to histories satisfying the
material constraints. We discuss material constraints in Sec. 12. We now
focus on (10.2).

There is no evidence that real materials require the level of generality
contemplated in (10.2). In particular, we may assume that T (z, t) does
not depend on the history of motion of material points outside an arbitrary
neighborhood of z. This assumption permits constitutive equations of the
form

(10.3) T (z, t) = T̂ (pt(z, ·),pt
z(z, ·),pt

zz(z, ·), . . . ,z, t).

There is a considerable body of research on special forms of (10.3), called strain-
gradient theories, when pt

zz(z, ·), at least, is present as an argument. In brief, this
work has indicated that the effect of the presence of z-derivatives of p of order higher
than 1 is slight, accounting for phenomena associated with surface tension, except where
the solution would otherwise be irregular, e.g., at shocks or at interfaces. Recent work
has indicated that constitutive equations with such higher derivatives help resolve very
difficult mathematical and mechanical problems. See Truesdell & Noll (1965) for an
account of early work and see Ball & James (1987), Carr, Gurtin & Slemrod (1984),
Dolzmann (2002), Dunn & Serrin (1985), Fried (1999), Gurtin (2000a), Hagan & Slem-
rod (1983), Pitteri & Zanzotto (2003), among others, for a discussion of important
advances. Strain-gradient effects have recently been introduced into plasticity theories;
see Gao et al. (1999) and Gurtin (2000b). We have seen in Sec. 8.9 that strain-gradient
theories arise naturally in numerical schemes for conservation laws of nonlinear elastic-
ity. Moreover, such theories arise naturally for theories of incompressible rods and shells
discussed in Secs. 16.12 and 17.7.

In this book we restrict our attention almost entirely to simple materials,
which have constitutive relations of the form

(10.4) T (z, t) = T̂ (pt(z, ·),pt
z(z, ·),z, t).

The second argument of T̂ is restricted to histories of F (z, ·) for which
det F > 0. We assume that T̂ identically satisfies the symmetry condition
(7.27). Thus we have no need to concern ourselves with it any more. In



12.10. CONSTITUTIVE EQUATIONS OF MECHANICS 451

the next section we show that T̂ should not depend on its first argument.
Our forthcoming definitions are made in light of this observation.

An elastic material has a constitutive equation of the form

(10.5) T (z, t) = T̂ (pz(z, t),z),

so that the stress is determined by the actual deformation gradient and is
otherwise independent of its past history. If the T̂ of (10.4) is indepen-
dent of its first argument, then its restriction to histories for which F (z, ·)
is constant has the form (10.5). In this sense, the equilibrium of simple
materials reduces to the equilibrium of elastic materials.

A viscoelastic material of strain-rate type of complexity 1 has a consti-
tutive equation of the form

(10.6) T (z, t) = T̂ (pz(z, t),pzt(z, t),z).

(Some authors refer to these materials as being of differential type and
others refer to them as being of rate type.) The substitution of (10.5)
or (10.6) into (7.21) yields a quasilinear system of partial differential equa-
tions, which present major challenges to modern analysis. The substitution
of (10.4) into (7.21) typically yields even more difficult partial-functional
differential equations.

In general, a material is said to be of strain-rate type of complexity n iff
it has a constitutive equation of the form

(10.7) T (z, t) = T̂ (pz(z, t), ∂tpz(z, t), . . . , ∂n
t pz(z, t),z).

Here n is a positive integer. Many constitutive equations in this class with
n ≥ 2 apparently do not describe real materials. A material is said to be
of stress-rate type iff it has a constitutive equation of the form

(10.8) ∂m
t T (z, t) = Ĝ(T (z, t), ∂tT (z, t), . . . , ∂m−1

t T (z, t),

pz(z, t), ∂tpz(z, t), . . . ∂n
t pz(z, t),z).

Here m and n are positive integers. (Some authors refer to these materials
as being of rate type.) For (10.8), which is an ordinary differential equation
for T (z, ·), to define a constitutive equation of the form (10.4) it must have a
globally defined solution. Even in this case, the material properties depend
on the initial conditions for T . A material is said to be of integral type iff
it has a constitutive equation in which T (z, t) is specified as an integral
operator on F t(z, ·). This operator may be a multiple composition of
integral operator and nonlinear functions in any order. A material is said
to be of internal-variable type iff it has a constitutive of the form

(10.9) T (z, t) = T̂ (pz(z, t), ∂tpz(z, t), . . . ∂n
t pz(z, t),Ψ(z, t),z)

where Ψ is a function satisfying some auxiliary equation, typically an or-
dinary differential equation of the form
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(10.10) ∂tΨ(z, t) = Γ (pz(z, t), ∂tpz(z, t), . . . ∂n
t pz(z, t),Ψ(z, t),z).

A material (of internal variable type) is said to be of phase-field type iff
(10.9) holds, but (10.10) is replaced by an equation for Ψ in which its
dependence on z is essential, e.g., by an equation relating partial derivatives
of Ψ with respect to t and z. The caveats for materials of stress-rate type
also apply to materials of internal variable type. Clearly, all these classes
of materials overlap and are not exhaustive.

We say that the material described by (10.4) is homogeneous iff T̂ and
ρ do not depend explicitly on z. (The concept of homogeneity is actually
somewhat simpler than the concept of uniformity introduced in Sec. 8.12.
But there is a 3-dimensional concept of uniformity that is much deeper; see
Truesdell & Noll (1965, Sec. 27)).

In the next few sections we discuss general restrictions on (10.4). We
then specialize our studies to problems for specific classes of materials.

There is a challenging open question related to the classification of constitutive equa-
tions. If we are presented with a specimen of material and know that it has a specific
kind of constitutive equation, e.g., (10.5) or (10.6), then we could devise sensible exper-
iments (see Rivlin & Saunders (1951)) to determine the constitutive function T̂ . On the
other hand, if we do not know the class of constitutive equations to which the material
belongs, then there is no obvious procedure to determine it from (a finite number of)
experiments. Mathematically, the question of determining material properties from ex-
periments is equivalent to determining a class of equations from information about its
solutions.

11. Invariance under Rigid Motions
In this section we determine the restrictions imposed on the general

constitutive equation (10.4) by the requirement that it be unaffected by
rigid motions.

Suppose that in a laboratory we suspend a variety of weights from a
weightless spring of natural length l and conclude that in static deforma-
tions the weight necessary to produce a change δ in length is kδ where k is
a positive constant. Next we now cause the spring to oscillate in the verti-
cal direction and determine indirectly that in such dynamical deformations
the weight necessary to produce a change δ in length is also kδ. Finally we
confine the spring to a frictionless radial groove on a horizontal turntable
with one end of the spring fixed at the center and the other end attached
to a small body of mass m. Let the polar coordinates of the tip mass at
time t be (r(t), φ(t)). We spin the turntable, so that φ is given. What are
the equations of motion for the radial coordinate r of the tip mass? The
radial component of Newton’s equation of motion is f = m(r̈− rφ̇2) where
f is the radial component of force on the tip mass. What is f? If we give
the expected answer that f = −k(r− l), then we are tacitly assuming that
the material properties of the spring are unchanged by the rotation, even
though the form of the equations is significantly affected by the rotation. If
the response were affected by the rigid motion (in some unspecified way),
then we could not set up the problem and could not pose it to students of
elementary mechanics.
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Now suppose we take the spring to the top of a mountain in Nepal or
to the bottom of a mine in West Virginia to measure the acceleration of
gravity g by the formula g = kδ/m. This formula would be useless were k
to change with position. (This experiment was proposed by Hooke.)

We could conduct any of these experiments at different times. If they are
to be valid, we must know how the material properties of the spring vary
with time. Our experiments would not be valid if the material properties
were to depend on an absolute time, which we do not know, rather than
with a time lapse, since the time of manufacture, say.

To avoid the difficulties we have just discussed, we adopt the Principle
of Frame-Indifference or Principle of Objectivity : Constitutive functions
are invariant under rigid motions and time shifts. This means that the
responsibility to account for the physical effects of rigid motions devolves
on the acceleration terms in the equations of motion. In particular, in the
example just treated of the motion of a spring on a turntable, the rigid
rotation produces the centrifugal acceleration −rφ̇2. We now turn this
principle into a precise mathematical statement, which can be effectively
applied to specialize the form of our constitutive equations. (Cf. Sec. 8.8.)

If a body undergoes a motion p, then a motion differing from p by a
rigid motion relative to a different clock is given by

(11.1) p�(z, σ) = c(t) + Q(t) · p(z, t), σ = t+ a

where Q is a proper-orthogonal tensor. Therefore,

p�(z, t+ a− τ) = c(t− τ) + Q(t− τ) · p(z, t− τ),(11.2)

pσ
� (z, τ) = ct(τ) + Qt(τ) · pt(z, τ).(11.3)

Thus

(11.4)
∂pσ

�

∂z
= Qt · ∂p

t

∂z
.

We apply the Polar Decomposition Theorem 4.1 to (11.4) to write it as

(11.5) Rσ
� · Uσ

� = Qt · Rt · U t.

Since the polar decomposition is unique and since Qt ·Rt is proper-orthogo-
nal, we conclude from (11.5) that

(11.6) Rσ
� = Qt · Rt, Uσ

� = U t.

Now let T · ν be the force per unit reference area acting across the
material surface with unit normal ν when the body undergoes the motion
p. We expect that if a body undergoes the motion p� defined by (11.1),
then the corresponding traction field T� · ν should just be the rotation of
T · ν:
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(11.7) T�(z, σ) · ν = Q(t) · T (z, t) · ν

so that

(11.8) T�(z, σ) = Q(t) · T (z, t).

This is just an informal statement of the requirement that the constitu-
tive equations be invariant under rigid motions. A formal mathematical
statement, the Principle of Frame-Indifference, is: If for fixed z a set of
constitutive equations relating p and T hold, then they must hold for p�

and T� for all c,Q, a. Thus if p and T satisfy (10.4):

(11.9) T (z, t) = T̂ (pt(z, ·),pt
z(z, ·),z, t),

then p� and T� also satisfy it:

(11.10) T�(z, σ) = T̂ (pσ
� (z, ·), (p�)σ

z(z, ·),z, σ).

We substitute (11.1) and (11.8) into (11.10) to convert it to

(11.11) Q(t) · T (z, t) = T̂ (ct(·) + Qt(·) · pt(z, ·),Qt(·) · pt
z(z, ·),z, t+ a).

We now replace the left-hand side of (11.11) with (11.9) to obtain

(11.12) Q(t) · T̂ (pt(z, ·),pt
z(z, ·),z, t)

= T̂ (ct(·) + Qt(·) · pt(z, ·),Qt(·) · pt
z(z, ·),z, t+ a),

which must hold for all c ∈ E
3, Q ∈ SO(3), a ∈ R and for all p(z, ·), F (z, ·)

with detF (z, ·) > 0.
Our basic result is the elegant theorem of Noll (1958):

11.13. Theorem. Constitutive equation (11.9) is invariant under rigid
motions and time shifts (i.e., satisfies (11.12) for all c,Q, a) if and only if
T̂ is independent of pt and of t and has the form

(11.14) T̂ (F t(z, ·),z) = R(z, t) · T̂ (U t(z, ·),z).

(Here the notation of (4.2) is used.)

Proof. Let us set Q = I and a = 0 in (11.12), which immediately implies
that T̂ is independent of its first argument. Similarly, we show that T̂ is
independent of its last argument.

Now the Polar Decomposition Theorem enables us to write (11.12) in
the form

(11.15) Q(t) · T̂ (F t(z, ·),z) = T̂ (Qt(·) · Rt(z, ·) · U t(z, ·),z).

Since z is being held fixed, we can choose the arbitrary Q(t) to equal
R(z, t)∗, so that (11.15) becomes
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(11.16) R(z, t)∗ · T̂ (F t(z, ·),z) = T̂ (U t(z, ·),z),

which is equivalent to (11.14). We now show that (11.14) implies (11.12).
Equation (11.14) implies that

(11.17) Q(t) · T̂ (F t(z, ·),z) = Q(t) · R(z, t) · T̂ (U t(z, ·),z).

Since (11.14) is an identity in F , we can replace F with Q · F = Q · R · U
and thus replace R with Q · R to get

(11.18) T̂ (Qt · F t(z, ·),z) = Q(t) · R(z, t) · T̂ (U t(z, ·),z),

which equals Q(t) · T̂ (F t(z, ·),z) by (11.17). �
We shall use a somewhat more convenient form of (11.14) obtained by

combining it with (7.30):

(11.19a)

S(z, t) = F (z, t)−1 · T (z, t)

= U(z, t)−1 · R(z, t)−1 · R(z, t) · T̂ (U t(z, ·),z)

= U(z, t)−1 · T̂ (U t(z, ·),z)

=: Ŝ(Ct(z, ·),z).

Thus

(11.19b) T (z, t) = T̂ (F t(z, ·),z) = F (z, t) · Ŝ(Ct(z, ·),z).

This result shows that the frame-indifferent versions of constitutive equa-
tions (10.7) for materials of strain-rate type and (10.8) for materials of
stress-rate type have the forms

S(z, t) = Ŝ(C(z, t), ∂tC(z, t), . . . , ∂ n
t C(z, t),z),(11.20)

∂m
t S(z, t) = Ĥ(S(z, t), ∂tS(z, t), . . . , ∂m−1

t S(z, t),(11.21)

C(z, t), ∂tC(z, t), . . . , ∂ n
t C(z, t),z).

The treatment of (10.9) and (10.10) is similar.

12. Material Constraints
Liquids and rubbers are nearly incompressible. The fibers that reinforce

rubber tires make them nearly inextensible in certain directions. These are
examples of materials subject to material or (internal) constraints, which
are constitutive restrictions on the kinds of deformations a body can suffer.
The presence of material constraints can lead to great simplifications in the
governing equations. In this section, we extend the analysis of Sec. 8.17
to 3-dimensional problems. In doing so, we confront some difficulties with
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compatibility that are not present in problems with but one independent
spatial variable.

A material point z of a body is subjected to a simple material constraint
if there is a real-valued function γ(·,z) such that

(12.1) γ(F (z, t),z) = 0

for any motion of the body. Since such a constraint is a constitutive re-
striction, it must be frame-indifferent, i.e., invariant under rigid motions.
Thus the constitutive function γ must satisfy

(12.2) γ(Q · F ,z) = γ(F ,z)

for every proper-orthogonal Q and for every F satisfying (12.1) with
det F > 0. As in Sec. 11, we take Q = R∗ to conclude that (12.1) is
equivalent to an equation of the form

(12.3) κ(C(z, t),z) = 0.

(Frame-indifference is not central to our analysis. The general case falls
under the treatment given at the end of this section.)

The material constraint most important for continuum mechanics is that
for an incompressible material , which is characterized by the following ver-
sion of (12.3):

(12.4) detC = 1.

A material that is inextensible in the material direction a, where a is a
unit vector, is characterized by the constraint

(12.5) a · C · a = 1.

Materials inextensible in two directions can be used to model woven cloth.
Ericksen (1986) has shown that the material constraint

(12.6) tr C = 3,

where tr denotes trace, arises in the description of the behavior of crystals.
Bell (1985) has observed that the material constraint

(12.7) tr U = 3

where U is the positive-definite square root of C closely describes experi-
mental data for the plastic deformation of metals. (A comprehensive study
of Bell’s constraint in nonlinear elasticity has been carried out by Podio-
Guidugli (1990) and by Beatty & Hayes (1992).) A rigid material is char-
acterized by the constraint that

(12.8) C = I.
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The details of the application of our theory to rigid materials is left as an
exercise.

It is interesting to note that (12.4) and (12.6) together imply that C = I. For a proof
of this fact, which seems to be known, see Marlow (1992). Thus the two constraints (12.4)
and (12.6) are equivalent to the six constraints of rigidity. Likewise, (12.4) and (12.7)
imply that C = I (see Beatty & Hayes (1992)).

We shall also study the Kirchhoff constraints

(12.9) Ci3 ≡ p̃,i · p̃,3 = δi3,

where Ckl are the components of C defined in Sec. 11.3, where p̃(x, t) :=
p(z̃(x), t), and where z̃ assigns a reference position to the triple x of curvi-
linear coordinates. (Cf. Secs. 5 and 16.2. To follow the development given
in this section, it suffices to take x to be a triple of Cartesian coordinates.)
The constraints (12.9) arise in various simple models for shells. We shall
see that these constraints have a character quite different from that of the
other constraints just described.

The C’s that enter constraints like (12.3) not only must take values in
the cone of positive-definite symmetric tensors, but also must satisfy the
compatibility conditions of Sec. 3. We begin the study of constraints by
developing a naive theory that ignores questions of compatibility. We then
refine this theory, showing that the naive theory is valid for constraints
(12.4)–(12.8), but not for (12.9) and not for an important class of con-
straints that arise in theories for rods and shells (see Chaps. 16 and 17).
Our basic approach consists in regarding a constrained material as a limit
of a large class of unconstrained materials.

Let us study a material point z that is subjected to a system of K
(independent and consistent) simple material constraints of the form

(12.10) κa(C,z) = 0, a = 1, . . . ,K < 6,

which restrict C to a (6−K)-dimensional manifold K(z) in the six-dimen-
sional inner-product space Sym of symmetric tensors. In particular, for
K = 1, which is the most important case, K(z) corresponding to (12.3)
is a five-dimensional manifold in the six-dimensional inner-product space
Sym of C. If in this case we assume that κC(C,z) is not O for C ∈ K(z)
and is therefore normal to K(z) at C, then K(z) admits a five-dimensional
tangent plane at each point.

When κ(C,z) = detC −1 and when (12.4) is satisfied, we use (11.2.8b)
to show that

(12.11) κC(C,z) = C−1.

Similarly, when κ(C,z) = a · C · a − 1 and when (12.5) is satisfied, we
obtain

(12.12) κC(C,z) = aa,
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and when (12.6) holds, we obtain

(12.13) κC(C,z) = I.

12.14. Exercise. Prove that

(12.15) κC(C, z) = (det U)U−1

when (12.7) holds. (This is a difficult computation, based upon the Cayley-Hamilton
Theorem 11.1.54; see Beatty & Hayes (1992), Podio-Guidugli (1990), Sidoroff (1978),
and T. C. T. Ting (1985, 1996).)

More generally, we assume that the rank of
(
∂κ1/∂C, . . . , ∂κK/∂C

)
is

K. Then K(z) can be locally described by

(12.16) C = Č(Γ ,O,z)

where O is a collection of K zeros and where Γ may be taken to be either a
collection (Γ1, . . . Γ6−K) ∈ R

6−K of independent generalized (curvilinear)
coordinates for K(z) or else a typical element of Sym lying in K(z). In the
latter case, we still refer to Γ as a set of generalized coordinates.

For an unconstrained material, we can introduce generalized coordinates
(Γ ,∆) for Sym in a neighborhood of any point C0 of K by

(12.17) C = Č(Γ ,∆,z)

where ∆ := (∆1, . . . ∆K) ∈ R
K . Thus K is characterized by ∆ = O,

and Γ is a set of generalized coordinates for K. We assume that Č is
continuously differentiable. The strain C(z, t), provided it is near C0 ∈ K,
is thus determined by (Γ (z, t),∆(z, t)) through (12.17). A basis for any
point in this neighborhood of C0 is
(12.18)
∂Č

∂Γ 1 (Γ ,∆,z), . . . ,
∂Č

∂Γ 6−K
(Γ ,∆,z),

∂Č

∂∆1 (Γ ,∆,z), . . . ,
∂Č

∂∆K
(Γ ,∆,z).

When (12.4) or (12.5) hold, we can take ∆ to be a scalar ∆ with ∆ =
det C − 1 or ∆ = a · C · a − 1, respectively. In the former case, we define
Γ as an element of Sym by C = (1+∆)1/3Γ , which is of the form (12.17).
Thus Γ = C/(det C)1/3.

We conceive of the constitutive equations for constrained materials as
being the limits of those for (all possible) slightly constrained materials.
To convert this statement into a precise mathematical criterion, we ex-
press (11.19), the general frame-indifferent constitutive equation for un-
constrained materials, in terms of the strain variables (Γ ,∆).

Whenever C(z, t) is close enough to K for (Γ (z, t),∆(z, t)) to be unique-
ly defined, we can decompose the second Piola-Kirchhoff stress S(z, t) into
the form

(12.19) S(z, t) = SL(z, t) + SA(z, t)
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where SL(z, t) is orthogonal to K at Č(Γ (z, t),O), and SA(z, t) belongs
to a space complementary to that of SL(z, t). In particular, we could take
SA(z, t) to be tangent to K at Č(Γ (z, t),O). This choice of space for
SA(z, t) is not always the most convenient, as we shall see. Both SL and
SA are required to be symmetric.

Then the constitutive equation (11.19):

(12.20) S(z, t) = Ŝ(Ct(z, ·),z)

is equivalent to equations of the form

SL(z, t) = ŠL(Γ t(z, ·),∆t(z, ·),z),(12.21)

SA(z, t) = ŠA(Γ t(z, ·),∆t(z, ·),z).(12.22)

Let us assume that if ∆ is small, then (12.21) can be solved for ∆, so that
it is equivalent to an equation of the form

(12.23) ∆(z, t) = ∆�(Γ t(z, ·),St
L(z, ·),z).

We now substitute (12.23) into (12.22) to convert it to an equation of the
form

(12.24) SA(z, t) = S�
A(Γ t(z, ·),St

L(z, ·),z).

Thus for C sufficiently close to K, the constitutive equation (12.20), for
unconstrained materials, is equivalent to the system (12.23), (12.24). We
could, of course, shortcut this argument by assuming at the outset that
(12.20) is equivalent to system (12.23), (12.24).

Note that the material satisfying the constraint (12.16) is naturally em-
bedded in the family of materials (12.23), (12.24). We now obtain the
constitutive equations for the constrained material as a limit of those for
unconstrained materials by the simple device of letting ∆� → O (while S�

A

can vary in any manner). In this process, (12.23) is replaced by ∆ = O
and the form of (12.24) is unchanged. Thus the constitutive equations for
a constrained simple material have the form

∆ = O,(12.25a)

S(z, t) = SL(z, t) + S�
A(Γ t(z, ·),St

L(z, ·),z)(12.25b)

where

(12.26a) SL(z, t) : C�(z, t) = 0 with C�(z, t) ∈ span
{

∂Č
∂Γa

(Γ (z, t),O)
}

or, equivalently,

(12.26b) SL(z, t) =
∑

a

λa(z, t)
∂κa

∂C
(Č(Γ (z, t),O))
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where the λa are scalar-valued functions. If we take SA(z, t) to be tangent
to K, then

(12.27) S�
A :
∂κa

∂C
(Č(Γ ,O)) = 0, a = 1, . . . ,K.

Note that (12.26b) forces SL to be symmetric. Moreover, it says that SL

is determined by C and by a collection Λ of scalar fields λa. We indicate
this fact by setting

(12.28a) SL(z, t) = ŜL (C(z, t),Λ(z, t),z)

and writing (12.25b) as

(12.28b) S(z, t) = ŜL (C(z, t),Λ(z, t),z) + ŜA(Ct(z, ·),Λt(z, ·),z).

Note that SL or, equivalently, the Lagrange multiplier Λ, is not specified as
a constitutive function of other variables and is consequently an unknown
of any problem in which it appears. The extra or active stress ŜA is defined
only for histories Ct that satisfy the constraint (12.10) (or (12.16)).

Motivated by this development, we are led to adopt the Local Con-
straint Principle (Principle of Determinism) of Truesdell & Noll (1965),
(see Antman (1982)) which consists in the requirement that (12.28) hold
subject to (12.26), so that the reactive Piola-Kirchhoff stress SL (associ-
ated with the Lagrange multiplier) must be orthogonal to the constraint
manifold (12.10). Thus it locally does no virtual work in any deforma-
tion tangent to the constraint manifold. Antman (1982) observed that
the derivation just given allows SA to depend upon SL, as is assumed in
a number of special theories (see J. Málek, J. Nečas, & K. R. Rajagopal
(2003), Renardy (1986), and Richmond & Spitzig (1980)), and he showed
that SA must be independent of SL for hyperelastic materials (see Exercise
12.31 below). The subscript A signifies active and the subscript L signifies
Lagrange or latent.

Let us reexamine the limit process leading to (12.25). For simplicity of notation, we
assume that the material is elastic, so that we can dispense with memory effects. From
(12.22)–(12.24) we find that

(12.29) S�
A(Γ , SL, z) = ŠA(Γ , ∆�(Γ , SL, z), z).

Were we to let ∆� → O while preventing ŠA from changing, then S�
A would be inde-

pendent of SL in the limit. But we are considering any family of materials for which
∆� → O, so that ŠA may indeed change. To see that SL (or Λ) could survive such a
limit process as an argument of S�

A (or ŠA), we consider the following simple analog of
the theory we have just developed. Corresponding to (12.21), (12.22) is the system

(12.30a) λ = λ̌(γ, δ, ε) :=
εh(γ)

δ
, α = α̌(γ, δ, ε) :=

εf(γ)
δ

where ε is a small positive number. This system is equivalent to
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(12.30b) δ = δ�(γ, λ, ε) :=
εh(γ)

λ
, α = α�(γ, λ, ε) :=

ελf(γ)
εh(γ)

.

In the limit as ε ↘ 0, δ� → 0 and α� depends on λ.
The equations of 3-dimensional hyperelasticity can be given a variational charac-

terization, in which the role of the Lagrange multiplier is determined by the standard
processes of the Calculus of Variations. In this setting, the Lagrange multiplier does not
appear in ŜA. That it should not so appear is also a consequence of our construction:

12.31. Exercise. A material is hyperelastic iff there is a stored-energy function Sym ×
B � (C, z) �→ W (C, z) ∈ R such that

(12.32) S(z, t) = Ŝ(C(z, t), z) = 2WC(C(z, t), z).

Show that for such a material the process leading from (12.23) and (12.24) to (12.25)–
(12.28) leads to an ŜA independent of Λ. (See the argument surrounding (8.17.7) and
(8.17.8).)

If we apply this theory to incompressible materials, for which (12.4)
holds, then we can use the identity that ∂ det F /∂F = (F ∗)−1 det F for
nonsingular F to find that the constitutive equations (12.23)–(12.28) reduce
to equations of the form

det C(z, t) = 1,(12.33a)

S(z, t) = −p(z, t)C−1(z, t) + ŜA(Ct(z, ·), pt(z, ·),z).(12.33b)

Here Λ reduces to the scalar p, called the pressure. The exact physical
meaning of p inheres in this equation and, in particular, in the precise
manner in which ŜA is chosen. If we adopt (12.27), then

(12.33c) ŜA : C−1 = 0.

It is more useful to define ŜA by the alternative condition

(12.33d) ŜA : C = 0.

(Note that the span of C−1 and the orthogonal complement of C are
complementary, for if not, C−1 would lie in this orthogonal complement,
so that C−1 : C, which equals 3, would have to vanish.) In this case,
(12.33b,d) say that the pressure p = − 1

3S : C is the negative of the mean
normal Cauchy stress, i.e., the negative of the mean of the force per unit
actual area. Here ‘mean’ refers to an average over directions. (See Sec. 15.
A reader accustomed to the spatial formulation of incompressibility, as
used in fluid dynamics, might find the form of (12.33) to be strange. It is
a consequence of our use of the second Piola-Kirchhoff stress instead of the
Cauchy stress.)

It follows from (12.13) and (12.15) that

(12.34a,b) SL = µI, SL = λ(det U)U−1,

respectively, when the Ericksen and Bell constraints (12.6) and (12.7) hold.
Here µ and λ are scalars. If (with no loss of generality) we choose a = g3
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(with g3 a unit vector) in (12.5), then it reduces to C33 = 1. In this case,
the x3-coordinate curves are inextensible and x3 is the arc-length parameter
for every configuration. It follows from (12.26) that

(12.35)
S33

L ≡ g3 · SL · g3 is arbitrary,

Skl
L ≡ gk · SL · gl = 0 for {k, l} �= {3, 3}.

Similarly, for the Kirchhoff constraints (12.9) we find that

(12.36a,b) S3k
L is arbitrary, Sαβ

L = 0.

We shall argue that of all the consequences we have derived from the Local
Constraint Principle, only (12.36b) is unsatisfactory.

Kirchhoff constraints. The Kirchhoff constraints (12.9), which we rewrite as

(12.37) C3k ≡ p̃,3 · p̃,k = δ3k,

form the starting point of the derivations of many shell theories, both linear and non-
linear. The material surface defined by x3 = 0 is usually taken as the midsurface of the
shell (under the tacit assumption that this surface exists). We now examine these and
related systems of constraints.

We differentiate (12.37) to obtain

(12.38) p̃,33 · p̃,3 = 0, p̃,3α · p̃,3 = 0, p̃,33 · p̃,α = 0.

Thus p̃,33 is orthogonal to each member of the basis {p̃,k} and is therefore o. Hence p̃
must have the form

(12.39) p̃(x, t) = r(x1, x2, t) + x3d(x1, x2, t)

where

(12.40a,b) r,α · d = 0, |d| = 1

as a consequence of (12.37). We now compute from (12.39) that

(12.41a) Cαβ = (r,α + x3d,α) · (r,β + x3d,β).

Thus Cαβ is quadratic in x3:

(12.41b) Cαβ,333 = 0.

In deducing (12.36), we assumed that for each z we could prescribe Cαβ arbitrarily.
But if we regard C as a function on B everywhere subjected to (12.37), then the Cαβ

are not arbitrary, but are themselves subject to the nonsimple constraints (12.41). In
general, the geometrically admissible functions C are not merely arbitrary functions
taking values in the cone of positive-definite symmetric tensor-valued functions, but
rather are arbitrary functions taking values in the subset of this cone consisting of
compatible C’s for which there exist injective position fields p satisfying (1.1), (1.4),
and (2.3). If C is twice continuously differentiable on B and if B is simply-connected,
then a necessary and sufficient condition for C to be compatible is that the Riemann-
Christoffel curvature tensor for it vanish. (See Sec. 3.)
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12.42. Exercise. Show that if C satisfies (12.37), then three of the compatibility
equations (3.21a) form a system of ordinary differential equations for the dependence of
the Cαβ on x3.

We could of course replace the Kirchhoff constraints (12.37) with the equivalent set of
constraints on the position field p requiring it to have the form (12.39), (12.40). In this
case, we need not concern ourselves with compatibility. We then require an appropriate
principle for constraints on the position field. Let us note that (12.39) and (12.40)
cause no difficulty in meeting the requirements of frame-indifference because (12.39)
and (12.40) define an equivalence class of position fields differing by rigid motions.

In treating more complicated analogs of (12.37), it is convenient to generalize (12.39)
and (12.40) rather than to generalize (12.37) directly, because the geometrical signifi-
cance of the constraints on the position field is usually obvious, while that of the corre-
sponding constraints on the strains is usually not. For example, suppose we constrain p
by requiring that (12.39) hold subject only to the requirement that |d| = 1. We readily
deduce from (1.4) and (2.3) that C33 = 1, Cα3,3 = 0. Note that these restrictions, which
are local, fail to be simple because they involve a partial derivative and therefore they
do not fall under the control of the Local Constraint Principle. These restrictions are
equivalent to the original restrictions on p, as we can readily check by integrating these
equations for the strains to get the requisite p.

The constraint system (12.39) and (12.40) says that for each fixed (x1, x2) the po-
sition field p̃(x1, x2, ·, t) is constrained to lie in the six-dimensional linear subspace of
its function space spanned by the functions x3 �→ ek, x3ek, k = 1, 2, 3, where {ek} is a
basis for E3. The corresponding strains Cαβ(x1, x2, ·, t) lie in the nine-dimensional linear
subspace of its function space spanned by products of the functions x3 �→ 1, x3, (x3)2

with basis elements for the 3-dimensional space of symmetric tensors. We expect the
corresponding Lagrange multipliers Sαβ

L to lie in some dual function space (i.e., to be
‘orthogonal’ to these position fields in a suitable sense). If so, there should be a very
large collection of such multipliers. But (12.36) says that the collection of such multipli-
ers consists exactly of the zero multipliers. The global generalization of the Constraint
Principle framed below is designed to be physically natural and to remedy this and more
fundamental defects.

The five constraints (12.3)–(12.8), which are used almost exclusively in 2- and 3-
dimensional elasticity, seem to have no clear-cut effect on the compatibility equations
(4.7), i.e., they seem to produce no clear-cut restrictions on the position field. Thus they
do not seem to suffer from the complications we have just described for (12.37). We
now demonstrate this fact by an indirect approach, which relies on the fine structure of
Lagrange multipliers.

The Global Constraint Principle. We now study position fields on B × I where I
is some time interval on the real line. We construct a global principle of determinism by
imitating the development of the local principle sketched in Section 3. In much of our
analysis, t is an inessential parameter; we retain it for completeness.

We consider position fields p(·, t) lying in an admissible class P of continuous one-
to-one functions on B for which the generalized derivative pz(·, t) is a locally Lebesgue-
integrable function satisfying (1.1) a.e. for almost every t. For simplicity of exposition,
we refrain from allowing the derivative of p to be a measure.) We assume that P inherits
its topology from a normed space W in which it lies and that P is an open subset of
W. We furthermore assume that W has the property that if p∗

z(·, t) · pz(·, t) = I, then
p(z, t) = z for all z. We thus take W to be a quotient space in which rigid motions are
factored out. This factoring can be explicitly effected by requiring mean translations and
rotations to vanish. (A natural example of W is a suitable quotient space of the Sobolev
space W 1

p of vector-valued functions whose first derivatives are Lebesgue-integrable to
a power p ≥ 1.)

For each η ∈ W (and each p ∈ P), we define the linear form 〈·, ηz〉 by

(12.43a) 〈T , ηz〉 :=
∫

B
T (z) : ηz(z) dv(z) = 1

2

∫
B

S(z) : C�(z) dv(z)
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where we have used (7.30) and the definition

(12.43b) C� = (ηz)∗ · pz + (pz)∗ · ηz .

The set of T ’s for which (12.43) is defined is the dual space T of the space of derivatives
of elements of W.

We study general constraints of the form

(12.44a) γ
(
p(·, t)

)
= o.

Let K be the subset of P consisting of all p(·, t) satisfying (12.44a). We assume that
(12.44a) is frame-indifferent; in particular, K has the property that if p(·, t) ∈ K, then
so is every position field that differs from p by a rigid motion, i.e., if p(·, t) ∈ K, then so
is c(t) + Q(t) · p(·, t) for every vector c(t) and for every proper orthogonal tensor Q(t).
The linearization of (12.44a) about p(·, t) in K is denoted

(12.44b) Γ
(
p(·, t)

)
· η(·, t) = o.

Functions η(·, t) satisfying (12.44b) are called vectors tangent to K at p(·, t); they form
the tangent space to K at p(·, t).

We first study ‘nearly constrained’ materials, those for which p is ‘close’ to K. We
can represent any such p as a sum

(12.45) p = π + q

where π ∈ K and q is not tangent to K at π. We adopt any convenient rule for this
decomposition. (We have in mind constraints for which π is defined by the right-hand
side of (12.39).)

For given π ∈ K, we can decompose the first Piola-Kirchhoff stress tensor T , assumed
to lie in T, into the sum

(12.46a) T = TL + TA

where TL is in the annihilator of the tangent space to K at π in the sense that

(12.46b) 〈TL(·, t), ηz(·, t)〉 = 0

for all tangent vectors η to K at π and where TA lies in a space complementary to that
of TL. This decomposition induces an analogous decomposition of the second Piola-
Kirchhoff stress tensor

(12.46c) S = SL + SA where SL = F −1 · TL, SA = F −1 · TA

with SA and SL again required to be symmetric. The difference between (12.46c) and
(12.19) is that (12.46c) cannot use a pointwise orthogonality condition.

We now imitate the approach leading to the Local Constraint Principle to obtain a
constitutive theory for constrained simple materials. Let qz have the polar decomposi-
tion Q·M where Q is a rotation and M is symmetric. The constitutive equations (11.19)
for an unconstrained simple material are equivalent to the specification of TL(z, t) and
TA(z, t) as functionals of the past history of

(12.47) [πz ]∗ · [πz + Q · M ] + M · Q∗ · πz + M · M .

We suppose that these constitutive relations are equivalent to equations of the form

(12.48)
M(z, t) = M�

(
πt

z(z, ·), T t
L(z, ·), z

)
,

TA(z, t) = T �
A

(
πt

z(z, ·), T t
L(z, ·), z

)
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when M is ‘small’, for z ∈ B. By setting M� = O, we obtain the equations for the
constrained material for which p ∈ K:

qz(z, t) = O,(12.49)

T (z, t) = TL(z, t) + T �
A

(
πt

z(z, ·), T t
L(z, ·), z

)
(12.50a)

where

(12.50b) 〈TL(·, t), ηz(·, t)〉 = 0 ∀ η tangent to K

and where T �
A takes values in a space complementary to that of TL.

As in (12.28) it is convenient to set

TL(z, t) =: T̂L (πz(z, t), Λ(z, t), z) ,(12.51a)

T �
A

(
πt

z(z, ·), T t
L(z, ·), z

)
=: T̂A

(
πt

z(z, ·), Λt(z, ·), z
)
.(12.51b)

Here Λ represents a collection of unknown functions that together with the motion
determine TL. The constitutive functions we employ must be frame-indifferent, but here
we do not use a notation that makes this requirement explicit.

The Global Constraint Principle consists in the structure of the constitutive restric-
tions (12.49)–(12.51) on TL. Since this principle is a constitutive restriction, η need not
satisfy any boundary conditions, which merely characterize the environment in which
the body is placed. In contrast, the Principle of Virtual Power (9.5), a fundamental law
of mechanics, holds for all η satisfying (9.6); these η’s need not be tangent to K. If,
however, the η in (9.5) is taken to be tangent to K, then (12.50b) implies that (9.5) is
independent of TL. Equations for TL are obtained by using (9.5) for η’s not tangent to
K.

The three differences between the Local and Global Constraint Principles are that for
the latter: (i) We use position fields and their gradients, so that the issue of compatibility
is explicit. (ii) We no longer necessarily have an inner product, so we sacrifice some of
the detail, such as (12.27), given by the Local Constraint Principle. (iii) Our approach
is global in that the bilinear form in (12.50b) is defined on infinite-dimensional spaces.

Since each open subset of B is itself a body with the same properties as B, one might
argue that the Global Constraint Principle can be thereby localized. This argument is
specious because some constraints, notably the Kirchhoff constraint, depend on B. In
particular, the representation (12.39) involves a distinguished material surface, namely,
the reference configuration of r. As our preceding development shows, it is not prima
facie clear that (12.37) can be localized. Thus we cannot blithely assume that we can
replace the region B of integration for (12.50a) by arbitrary nice subsets of B. (In
particular, in Chaps. 16 and 17 we could identify certain kinds of bodies as rods or
shells. But not all subsets of these bodies are rods or shells.) Thus in the Global
Constraint Principle the only way we admit of reducing the region of integration for
(12.50a) is by reducing the support of η. As we shall see, this cannot be easily done
(because of compatibility issues). Indeed, if (12.39) holds, then p�(x, t) := η(z̃(x), t)
has the same form as p̃(x, t), namely, r�(x, t)+x3d�(x, t), and it is impossible to reduce
the support of p� in the x3-direction without making d� vanish on a corresponding set.

We now show that the Global Constraint Principle implies the consequences of the
Local Constraint Principle for the single constraints (12.4)–(12.7). Let a single simple
constraint have the equivalent forms (12.1) and (12.3). Then η is tangent to K if and only
if it satisfies the single underdetermined first-order linear partial differential equation

(12.52)
∂γ

∂F
:

∂η

∂z
≡ ∂κ

∂C
:
[(

∂η

∂z

)∗
· F + F ∗ · ∂η

∂z

]
= 0.

We want to determine when the Global Constraint Principle implies that
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(12.53) TL = λγF ,

which is equivalent to (12.26b), for (12.4)–(12.7). To this end, we could try to localize
(12.50b) by constructing a rich enough class of η’s with compact support satisfying
(12.52). Since we are faced with the construction of a field η from restrictions on its
derivatives, we are again confronting the question of compatibility, albeit in a mild form.
Alternatively, we could set TL = λ ∂γ

∂F
+ H where ∂γ

∂F
: H = 0. If we could choose the

gradient ∂η/∂z to equal H, then (12.50) would immediately yield the desired result.
Since we have no assurance that H is a gradient, we must use another approach.

We shall demonstrate that (12.53) essentially holds for (12.4)–(12.7) by invoking a
multiplier rule. We now introduce the notation needed to state this rule: Let X and Y
be Banach spaces and let X∗ and Y∗ be their duals. (See Chap. 19 for definitions.) Let
the value of the functional x∗ (in X∗) at x in X be denoted 〈x∗, x〉 and let the value
of the functional y∗ (in Y∗) at y in Y be denoted 〈y∗, y〉. We denote the space of all
continuous linear transformations from X to Y by L(X, Y). If G ∈ L(X, Y), then its
adjoint, which is in L(Y∗, X∗), is denoted G∗.

12.54. Multiplier Rule. Let τ∗ ∈ X∗ and let G ∈ L(X, Y). If

(12.55) 〈τ∗, x〉 = 0 ∀ x ∈ X such that Gx = 0

and if G maps X onto Y, then there is an element λ∗ ∈ Y∗ such that

(12.56) 〈τ∗, x〉 + 〈λ∗, Gx〉 = 0 ∀ x ∈ X.

We shall identify x with η, λ∗ with the λ of (12.26b), the equation 〈τ∗, x〉 = 0 with
(12.50), and the equation Gx = 0 with (12.52). The simple proof of this theorem, which
is the same as Theorem 19.2.24, is given in Sec. 19.2.

To apply this theorem, we need only verify the surjectivity of G, i.e., we need only
show that the nonhomogeneous version

(12.57)
∂γ

∂F
:

∂η

∂z
= ω

of (12.52) has a solution η for all ω. In the examples to be analyzed here and at the end
of Sec. 15, we examine (12.57) formally before discussing suitable function spaces for it.
Following Secs. 11.3 and 16.2, we adopt the notation

p�(x, t) := η(z̃(x), t).

We first treat (12.5), because it is technically the easiest constraint. Choosing a = g3,
we convert (12.5) to

(12.58) p̃,3 · p̃,3 = 1,

so that (12.44b) is equivalent to

(12.59) p̃,3 · p�
,3 = 0.

In view of (12.43a), condition (12.50b) has the form

(12.60)
∫
x̃(B)

τk
L (x, t) · p�

,k(x, t) dv(x) = 0

for all p� satisfying (12.59). Eq.(12.57) reduces to

(12.61) p̃,3 · p�
,3 = ω.

Let us take
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(12.62) p�
,3 = ωp̃,3,

which satisfies (12.61) by virtue of (12.58). We integrate (12.62) with respect to x3 to
find a p� that satisfies (12.61).

Now (12.58) implies that p̃,3(·, t) ∈ L∞(x̃(B)). If we take ω ∈ Lq(x̃(B)) where q ≥ 1,
then (12.62) further implies that p�

,3(·, t) ∈ Lq(x̃(B)). We choose function spaces for ω

and p� to be consistent with this requirement.
The Multiplier Rule implies that there are related functions λ̃ and λ such that

(12.63)
0 =

∫
x̃(B)

[
τk
L (x, t) − λ̃(x, t)p̃,3(x, t)δk

3

]
· p�

,k(x, t) j(x) dx1 dx2 dx3

≡
∫

B
[TL(z, t) − λ(z, t)p̃,3(x̃(z), t)g3(x̃(z))] : ηz(z, t) dv(z)

for all p� or, equivalently, for all η. This equation implies that

(12.64)
[
j
(
τk
L − λ̃p̃,3δk

3

)]
,k

= o ⇐⇒ ∇ · [TL − λp̃,3g3]∗ = o

in the sense of distributions (cf. (7.21)). Thus we conclude that

(12.65) τk
L = λ̃p̃,3δk

3 + nk ⇐⇒ TL = λp̃,3g3 + N

where (jnk),k = o or ∇ · N∗ = o in the sense of distributions, i.e.,

(12.66)
∫

B
N : ηz dv = 0 ∀ η ∈ D(B).

Here D(B) is the space of infinitely differentiable functions with compact support in B.
But any such distribution N can enter neither into (12.50b) nor into the Principle of
Virtual Power (9.5). Accordingly, we can set N equal to O. In this case, (12.65) is
equivalent to (12.35).

One of the virtues of the theory of stress developed by Noll (1966) on the basis of
forces acting between bodies (see Truesdell (1991a)) is that it leads to a uniquely defined
stress, unpolluted by stresses N having zero divergences.

The use of the Multiplier Rule obviates the need for constructing functions η with
compact support that satisfy (12.52). This construction is easy for (12.5), which reduces
(12.52) to (12.59), but difficult for (12.4), (12.6), and (12.7). We avoid this difficult
construction by treating these three constraints by the Multiplier Rule in the setting of
the spatial formulation in Sec. 15.

We now study the Kirchhoff constraints (12.37). For these constraints, we can write
the system corresponding to (12.57) as

(12.67a,b) p̃,α · p�
,3 + p̃,3 · p�

,α = ωα, p̃,3 · p�
,3 = ω3

where p̃ is given by (12.39). Let {h1, h2, d} be the basis dual to {p̃,k}. (It can be found
explicitly.) By differentiating both equations of (12.67) with respect to x3, differentiating
(12.67b) with respect to xα, and using (12.39), we obtain the representation

(12.68) p�
,33 = (ωα,3 − ω3,α) hα + ω3,3d.

If we integrate this equation twice with respect to x3, substitute the resulting expression
for p� into (12.67a), and then differentiate this modified version of (12.67a) twice with
respect to x3, we obtain the compatibility equations

(12.69)
(
ωβ,3 − ω3,β

)
,3 = hα

,β · d (ωα,3 − ω3,α) ,

which is a linear system of ordinary differential equations for the ωβ,3 − ω3,β . It is clear
that we can find ωk’s that do not satisfy this equation. Thus it is impossible to fulfill
the hypotheses of the Multiplier Rule.

All these considerations allow us to enunciate the following informally stated conse-
quence of the Multiplier Rule:
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12.70. Theorem. Let body B be subjected to a system of K simple material con-
straints of the form

(12.71) γa(∂p/∂z, z) = 0, a = 1, . . . , K < 6.

If the linear system

(12.72)
∂γa

∂F

(
∂p

∂z
, z

)
:

∂η

∂z
= ωa, a = 1, . . . , K < 6,

has a solution η for all ωa in a suitable function space on B, then the Global Constraint
Principle in a suitable function-space setting reduces to the Local Constraint Principle
in that (12.26b) holds (to within a divergence-free stress).

It is easy to generalize this statement to arbitrary constraints of the form (12.44a).
It is instructive to apply this theorem to rigid materials defined by (12.8). Then

(12.52) would imply that the coefficient of κC should vanish, while (12.8) would imply
that F is proper-orthogonal. This coefficient is a symmetric tensor. The appropriate
nonhomogeneous version of this equation, corresponding to (12.72), is one in which there
is a symmetric tensor-valued function Ω on the right-hand side:

(12.73) (ηz)∗ · F + F ∗ · ηz = Ω.

This choice of nonhomogeneity is effected in the Multiplier Rule 12.54 by appropriately
choosing the range of G, i.e., in a way that reflects the equivalence of (12.2) and (12.3).
Of course, these same considerations would apply to other systems of constraints. Be-
cause of the symmetry, (12.73) has just six independent components. This system is
underdetermined as an algebraic equation for ηz , but overdetermined as a system of
differential equations for the three components of η. Indeed, we can easily see that
there are symmetric Ω’s for which this system cannot be solved for η: We just take
F = I. Then (12.73) reduces to the compatibility equation of linear elasticity (see
Sokolnikoff (1956)), which can only be solved when Ω meets compatibility conditions.
Thus Theorem 12.70 says that (12.8) does not give local information about TL. But we
can read this information off directly from (12.46b) when the linear form is specified by
the second integral in (12.43a). Since C� = O, equation (12.46b) imposes no restrictions
on TL. In a pedantic sense, (12.26b) actually holds with six multipliers, i.e., SL and
TL are completely arbitrary. The only thing about stress in a rigid body that could be
controlled in a specific problem would be its traction on the boundary.

We now examine the reactive stress for a system of constraints somewhat weaker
than the Kirchhoff constraints (12.37). We generalize these by adopting (12.39) without
the restrictions (12.40). Then the virtual positions (displacements, velocities), tangent
to the constraint manifold (12.39), are

(12.74) p�(x) = r�(x1, x2) + x3d�(x1, x2) where r� and d� are arbitrary.

In view of (12.43a), condition (12.50b) reduces to

(12.75)
∫
x̃(B)

[
τα
L ·

(
r�

,α + x3d�
,α

)
+ τ3

L · d�] dv(x) = 0

for all r� and d�, where

(12.76) τk
L = TL · gk = Skl

L p̃,l

with p̃ given by (12.39) and with SL symmetric.
Let us assume that

(12.77) x̃(B) = {x ∈ R
3 : (x1, x2) ∈ M ⊂ R

2, h−(x1, x2) < x3 < h+(x1, x2)}.
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Then (12.75) reduces to

(12.78)

∫
M

[(∫ h+

h−
τα
L j dx3

)
· r�

,α +
(∫ h+

h−
x3τα

L j dx3
)

· d�
,α

+
(∫ h+

h−
τ3
L j dx3

)
· d�

]
dx1 dx2 = 0

where j := det z̃x. The arbitrariness of r� and d� implies that (12.78) is equivalent to

(∫ h+

h−
τα
L j dx3

)
,α

= o,(12.79)

(∫ h+

h−
x3τα

L j dx3
)

,α

−
∫ h+

h−
τ3
L j dx3 = o(12.80)

in the sense of distributions. Thus the Global Constraint Principle implies that the
Lagrange multipliers τk

L for (12.39) belong to the infinite-dimensional space of functions
satisfying (12.79) and (12.80). The integrals appearing in (12.79) and (12.80) are stress
resultants. Their significance is discussed in Chap. 17.

In addition to (12.79) and (12.80), these reactive stresses satisfy the underdetermined
problem

(jτk
L ),k = −(jτk

A),k − jf + ρ̃j∂ttπ,(12.81a)

τk
L νk = −τk

Aνk + τ̄ for x3 = h±(x1, x2),(12.81b)

in the sense of distributions. Note that the terms on the right-hand sides of (12.81) are
typically known from the solution of the primary problem.
These conditions are cleary insufficient give TL. We could get representations for TL

in terms of Betti-Gwyther-Finzi-Maxwell-Morera potentials for the stress (see Truesdell
& Toupin (1960, Chap. D.IV)), but these are indeterminate to within a stress having
zero divergence. In short, we can find out very little about TL in the interior of the
body. All we know of substance is that (12.79), (12.80), (12.81b) hold. This does not
seem like much more than we know for rigid bodies, but it is of crucial importance in
the construction of rod and shell theories, as we shall see in Chaps. 16 and 17. Let
us contrast this state of affairs with that for the constraint of incompressibility (12.4),
for which the Local Constraint Principle holds. As we show in Chap. 14, the Lagrange
multiplier, the pressure, can be found explicitly in specific problems. It appears that TL

can only be found when the Local Constraint Principle holds. This means that allowing
TA to depend on TL, as in (12.51), when TL cannot be found would lead to a completely
intractable problem. We must accordingly curtail the generality of (12.51) when TL is
indeterminate. We might allow TA to depend at most on those parts of TL that are
determinate, but these typically depend on the boundary conditions, and these may
depend on TL. The most conservative course is to take TA independent of TL when TL

is indeterminate, as it is for the Kirchhoff constraint and as it is for the constraints that
generate the induced rod and shell theories of Chaps. 16 and 17.

To treat the Kirchhoff constraints (12.39) and (12.40), we use (12.74) with r� and
d� taken to be arbitrary functions satisfying

(12.82) d · d� = 0, d · r�
,α + r,α · d� = 0.

The details of the treatment for these constraints are given in Secs. 17.2,8.
The theory of material constraints (for 3-dimensional continuum mechanics) was

developed and refined by Ericksen & Rivlin (1954), Truesdell & Noll (1965), Antman
(1982), and Antman & Marlow (1991). Most of this section is based on this last work.
Other pertinent references are Green, Naghdi, & Trapp (1970), Gurtin & Podio-Guidugli
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(1973), Podio-Guidugli (1990), Podio-Guidugli & Vianello (1989), and Vianello (1990).
A formal theory for the relaxation of the constraint of incompressibility was developed
by Spencer (1964). A refinement of his approach in the setting of planar rod theories was
given by Antman (1968); it is generalized in Ex. 8.17.15. For mathematical justifications
of such methods see Le Dret (1985), Le Tallec & Oden (1981), Rostamian (1978, 1981),
and Schochet (1985).

13. Isotropy
We now characterize materials whose mechanical properties have no pre-

ferred directions. Our treatment is simpler and more direct than that given
for rods in Sec. 8.11. The first three pages of that section form the essential
motivation for the mathematical theory of the present section, and should
be read at this time.

We consider simple materials with constitutive equations of the general
form

(13.1) T (z, t) = T̂ (F t(z, ·),z).

We specialize our results to frame-indifferent versions of (13.1) shortly. We
fix (z, t) and suppress their appearance as arguments of T , F , Q.

Let {akbl} be a dyadic basis for Lin, with the ak and bl fixed in the
reference configuration of an arbitrarily small ball surrounding the material
point z. Let the ball undergo a (time-dependent) deformation given by
F = F klakbl. Let Q be a proper-orthogonal tensor and let a�

k = Q · ak

and b�
l = Q · bl. Now let the ball undergo the deformation given by F� =

F kla�
kb�

l , which has the same components as F . Thus

(13.2) F� = F kl(Q · ak)(Q · bl) = Q · F · Q∗.

Let T = T klakbl be the stress corresponding to F and let T� = T kl
� a�

kb�
l

be the stress corresponding to F�. If T kl = T kl
� for all F kl and all proper-

orthogonal Q, then the material (at z) is hemitropic, in which case we find
as in (13.2) that

(13.3) T� = Q · T · Q∗.

We now substitute (13.1) into (13.3) to obtain

(13.4) T̂ (Q · F t(z, ·) · Q∗,z) ≡ T̂ (F t
� (z, ·),z) = Q · T̂ (F t(z, ·),z) · Q∗.

Thus the material (13.1) is hemitropic iff (13.4) holds for all proper-orthog-
onal Q. Notice that this condition is not the same as (11.12) for frame-
indifference. There we did not rotate material fibers. We say that the
material (13.1) is isotropic iff (13.4) holds for all orthogonal Q.
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13.5. Proposition. If (13.1) is hemitropic, then it is isotropic.

The proof is an immediate consequence of the fact that any orthogonal
tensor is either proper-orthogonal or the negative of a proper-orthogonal
tensor Q and that (−Q) · A · (−Q)∗ = Q · A · Q∗ for all A ∈ Lin. This
proposition does not hold for constitutive functions involving tensors of
odd rank, as happens if vectors are either the independent or dependent
variables in the constitutive equation.

Even for aeolotropic materials, Eq. (13.4) can be satisfied for certain
Q’s. In particular, it is satisfied for Q = I. Any Q for which (13.4) is
satisfied is called a symmetry transformation for T̂ at z. The set of all
such transformations forms a group, the symmetry group of the material ,
which is a subgroup of the special (proper) orthogonal group. The sym-
metry group determines the nature of the aeolotropy. A material is thus
hemitropic at z iff its symmetry group at z is the special orthogonal group.

To find the restrictions that isotropy imposes on the frame-indifferent
constitutive equation (11.14), we substitute its functional form into both
sides of (13.4) to obtain

(13.6) T̂ (Q · U t(z, ·) · Q∗,z) = Q · T̂ (U t(z, ·),z) · Q∗.

We substitute (11.19b) into (13.4) to obtain the following alternative char-
acterization of frame-indifferent hemitropic simple materials:

(13.7) Ŝ(Q · Ct(z, ·) · Q∗,z) = Q · Ŝ(Ct(z, ·),z) · Q∗.

For special classes of materials, we can get very specific representations
of hemitropic materials. Let us first consider the frame-indifferent version
of an elastic material (defined by (10.5) and (11.19a)):

(13.8) S(z, t) = Ŝ(C(z, t),z),

with Ŝ as symmetric tensor-valued function of the symmetric tensor C. To
it we can apply the

13.9. Representation Theorem for Hemitropic Tensor-Valued
Functions. Let A be a subset of Sym that is invariant under rotations in
the sense that if C ∈ A, then Q · C · Q∗ ∈ A for all proper-orthogonal Q.
A function

(13.10) A � C �→ Ŝ(C,z) ∈ Sym

is hemitropic (and therefore isotropic) if and only if there are scalar-valued
functions ϕ0, ϕ1, ϕ2 of the invariants of C and of z such that

(13.11) Ŝ(C,z) = ϕ0(ι(C),z)I + ϕ1(ι(C),z)C + ϕ2(ι(C),z)C2

where
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(13.12) ι(C) := (IC , IIC , IIIC).

By using the Cayley-Hamilton Theorem 11.1.54, we readily find that
(13.11) is equivalent to

(13.13) Ŝ(C,z) = ψ−1(ι(C),z)C−1 + ψ0(ι(C),z)I + ψ1(ι(C),z)C

(provided that C is invertible). If S̃(·,z) is both hemitropic and linear,
then it has the form

(13.14) S̃(E,z) = λ(z)IEI + 2µ(z)E.

The constitutive functions of linear elasticity and of Newtonian fluids have
this character.

We follow Gurtin (1981a) in reducing the proof of Theorem 13.9 to the proofs of a
sequence of simpler results, which have intrinsic interest. We let A be as in the statement
of the theorem.

A scalar-valued function A � C �→ ϕ(C) ∈ R is hemitropic iff it satisfies ϕ(C) =
ϕ(Q·C ·Q∗) for all proper-orthogonal Q. This function is isotropic iff this relation holds
for all orthogonal Q. Thus a hemitropic scalar-valued function of a symmetric tensor
is isotropic. The principal invariants of a tensor are therefore isotropic scalar-valued
functions. Consequently a function of the form A � C �→ ψ(ι(C)) is isotropic. The
converse of this observation is also true:

13.15. Representation Theorem for Hemitropic Scalar-Valued Functions.
If A � C �→ ϕ(C) is hemitropic, then there is a function ι(C) �→ ϕ̃(ι(C)) such that

(13.16) ϕ(C) = ϕ̃(ι(C)).

Proof. The hemitropy of ϕ implies that

(13.17) ϕ(C) = ϕ(D)

for all D of the form Q · C · Q∗ with Q orthogonal. Note that C and D have the same
invariants. We prove the theorem by showing that

(13.18a,b) ϕ(A) = ϕ(B) whenever ι(A) = ι(B)

for hemitropic ϕ. Indeed, (13.18) says that ϕ cannot depend on anything other than
the common invariants in (13.18b), i.e., (13.16) holds. Since C and D have common
invariants, we can identify them with A and B of (13.18a), and thus deduce (13.18b)
and (13.16).

We now prove (13.18). Let (13.18b) hold. Then (11.1.50) and (11.1.51a) imply that
A and B have the same eigenvalues {Ck}. By the spectral representation (11.1.44), A
and B have orthonormal bases of eigenvectors {ak} and {bk} such that

(13.19a,b) A =
3∑

k=1

Ckakak, B =
3∑

k=1

Ckbkbk.

Let Q be defined by Q · ak = bk. Therefore (13.19) implies that Q · A · Q∗ = B. Since
ϕ is hemitropic, ϕ(A) = ϕ(Q · A · Q∗) = ϕ(B), which is (13.18a). �
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13.20. Theorem. Let A � C �→ G(C) ∈ Sym be hemitropic. Then C and G(C) have
the same eigenvectors.

Proof. Let c be an eigenvector of C in A and let Q, which is orthogonal but not proper,
be the reflection across the plane perpendicular to c :

(13.21) Q · c = −c, Q · a = a if a · c = 0.

Using the spectral representation (11.1.44) for C, we find that Q · C · Q∗ = C. Since
G is isotropic, we then find that Q · G(C) · Q∗ = G(Q · C · Q∗) = G(C), so that
Q · G(C) = G(C) · Q. Thus

(13.22) Q · G(C) · c = G(C) · Q · c = −G(C) · c

so that Q takes G(C) · c to its negative. But (13.21) implies that this can happen only
if G(C) · c is parallel to c, i.e., only if there is a number λ such that G(C) · c = λc .
Thus c is an eigenvector of G(C). �
13.23. Lemma. Let C ∈ Sym have distinct eigenvalues {Ck} and corresponding
orthonormal eigenvectors {ck}. Then

(13.24) span {I, C, C2} = span {c1c1, c2c2, c3c3} in Lin.

Proof. We first show that {I, C, C2} is linearly independent in Lin. Thus we must
show that if there are numbers α, β, γ such that

(13.25) αC2 + βC + γI = O,

then α = β = γ = 0. We let (13.25) operate on the eigenvectors {ck} (which are
independent) to obtain (αC2

k + βCk + γ)ck = o (no sum) so that αC2
k + βCk + γ = 0.

Thus the three distinct eigenvalues are solutions of the same quadratic equation, which
is possible only if the quadratic equation is completely degenerate: α = β = γ = 0. The
spectral representation (13.19a) implies that {I, C, C2} lies in span {c1c1, c2c2, c3c3},
so that (13.24) must hold. �

A simple proof yields

13.26. Lemma. Let C ∈ Sym have exactly two distinct eigenvalues: C1 corresponding
to eigenvector c1 and C2 = C3 whose eigenspace is the orthogonal complement of c1.
Then

(13.27) span {I, C} = span {c1c1, I − c1c1} in Lin.

Proof of Theorem 13.9. First suppose that C has three distinct eigenvalues and
accordingly has a spectral representation of the form (13.19a). Then Theorem 13.20
implies that Ŝ has a corresponding representation

(13.28) Ŝ(C, z) =
3∑

k=1

σk(z)ckck.

It then follows from (13.24) that there are scalar-valued functions α0, α1, α2 such that

(13.29) Ŝ(C, z) = α0(C, z)I + α1(C, z)C + α2(C, z)C2.

If C has exactly two distinct eigenvalues, we can similarly use (13.27) to show that
(13.29) holds with α2 = 0. If all the eigenvalues of C are equal, then C is proportional
to I and again (13.29) holds.

To complete the proof, we need only show that α0(·, z), α1(·, z), α2(·, z) are iso-
tropic, for then we can invoke Theorem 13.15. Since Ŝ(·, z) is isotropic, it follows that
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(13.30) Ŝ(C, z) − Q∗ · Ŝ(Q · C · Q∗, z) · Q = O.

We substitute (13.29) into (13.30) to obtain

(13.31) [α0(C, z) − α0(Q · C · Q∗, z)]I + [α1(C, z) − α1(Q · C · Q∗, z)]C

+ [α2(C, z) − α2(Q · C · Q∗, z)]C2 = O.

If the eigenvalues of C are distinct, then the independence of {I, C, C2}, implied by
(13.24), forces the coefficients in (13.31) to vanish, so that α0(·, z), α1(·, z), α2(·, z) are
isotropic. If C has exactly two distinct eigenvalues, then the vanishing of α2 enables us
to use (13.27) to show the isotropy of α0(·, z) and α1(·, z). If the eigenvalues of C are
equal, then α1 = 0 = α2 and the isotropy of α0 follows immediately from (13.31). �

The following result is useful for constitutive functions like those of (11.20) and
(11.21) in which the constitutive function has a finite number of tensor arguments and for
more general constitutive functions accounting for thermal and electromagnetic effects,
in which vectors also appear as independent and dependent variables in the constitutive
equations.

13.32. General Representation Theorem. Let γ be an isotropic scalar-valued
function, g be an isotropic vector-valued function, and G be an isotropic tensor-valued
function of symmetric tensors U1, . . . , UM and vectors v1, . . . , vN so that

(13.33)

γ(U1, . . . , v1, . . . ) = γ(Q · U1 · Q∗, . . . , Q · v1, . . . ),

Q · g(U1, . . . , v1, . . . ) = g(Q · U1 · Q∗, . . . , Q · v1, . . . ),

Q · G(U1, . . . , v1, . . . ) · Q∗ = G(Q · U1 · Q∗, . . . , Q · v1, . . . )

for all orthogonal Q. (It is understood that these vectors and tensors are defined for E3.)
Let ι(U1, . . . , v1, . . . ) denote a functionally independent set of all the invariants obtained
from the following list by replacing A, B, C by all possible choices of U1, . . . , UM , by
replacing a, b by all possible choices of v1, . . . , vN , and by including repetitions unless
there is a statement to the contrary:

(13.34)
tr A, tr (A · B), tr (A · B · C), a · b, a · A · b, a · A · B · b,

tr (A2 · B2) for A 
= B.

Then γ has the form

(13.35) γ(U1, . . . , v1, . . . ) = γ̃(ι(U1, . . . , v1, . . . )).

g has the form

(13.36) g(U1, . . . , v1, . . . ) =
∑
µ

γµ(ι(U1, . . . , v1, . . . ))gµ(U1, . . . , v1, . . . )

where the gµ form a functionally independent set of all the vectors obtained from the
following list by replacing A, B by all possible choices of U1, . . . , UM , by replacing a
by all possible choices of v1, . . . , vN , and by including repetitions:

(13.37) a, A · a, A · B · a.

G has the form

(13.38) G(U1, . . . , v1, . . . ) =
∑

ν

γν(ι(U1, . . . , v1, . . . ))Gν(U1, . . . , v1, . . . )

where the Gν form a functionally independent set of all the symmetric tensors obtained
from the following list by replacing A, B by all possible choices of U1, . . . , UM , by
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replacing a, b by all possible choices of v1, . . . , vN , and by including repetitions unless
there is a statement to the contrary:
(13.39)

I, A, A · B + B · A,

A2 · B + B · A2 for A 
= B,

ab + ba, a(A · b) + (A · b)a, a(A2 · b) + (A2 · b)a,

(A · a)(B · a) − (B · a)(A · a) for A 
= B, A · B · aa − aA · B · a for A 
= B.

There is an extensive literature on representation theorems for scalar-, vector-, and
tensor-valued functions invariant under subgroups of the orthogonal group. See Green
& Adkins (1970), Pipkin & Rivlin (1966), Smith (1994), Truesdell & Noll (1965, Chap.
BII), and Xiao (1997a,b, 1998) for summaries of results and extensive bibliographies.
Theorem 13.9 is due to Rivlin & Ericksen (1955). An incomplete proof was given by
Richter (1948). Our proof uses ideas of Serrin (1959, Sec. 59). Theorem 13.32 is due to
G. F. Smith (1971) and C.-C. Wang (1970b); see Boehler (1977).

14. Thermomechanics
Consider two scenarios:

(i) At an initial time a block and a table have the same temperature. The
block is slid across the table. It comes to rest with the temperatures of the
block and table each higher than their initial values.
(ii) The block is at rest on the table, each at the same fixed temperature.
Each body supplies thermal energy to their common interface, causing the
block to accelerate and reducing the temperature of each body.

Scenario (ii) is virtually the reverse of scenario (i). Scenario (i) conforms
to our experience; (ii) does not. It is a goal of thermodynamics to establish
a sound basis of laws explaining why (ii) cannot occur, i.e., to account for
irreversibility. We seek a thermodynamics rich enough to encompass the
behavior of heat-conducting continua undergoing large deformations.

The most familiar concepts of thermodynamics are temperature and
heat. Temperature measures hotness, which is not the same thing as heat.
We ‘know’ what it means for one object to be hotter than another, but we
are hard-pressed to say what it means for one object to be twice as hot as
another. We know what heat is: We pay for it. But there is a qualitative
difference between heats at various temperatures, as we can discover by
trying to heat a house to 20◦C with calories at 0◦C. Thus temperature,
hotness, and heat present subtle obstacles to our understanding. A notion
such as entropy, about which we have little intuition, presents substantial
difficulties.

In this section we outline a rational theory of continuum thermodynam-
ics and apply it to constitutive equations of thermoviscoelasticity of strain-
rate type to determine the restrictions it imposes on these equations. We
then specialize these results to thermoelastic media. (In Sec. 15.2 we use
the same methods to treat thermoplasticity.)

Fundamental concepts. The kinetic energy of body B at time t is

(14.1) K[ p; B](t) := 1
2

∫
B
ρ(z)|pt(z, t)|2 dv(z).
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The (mechanical) power at time t of the forces acting on body B is

(14.2) P [f ,T · ν; B](t) :=
∫

B
f(z, t) · pt(z, t) dv(z)

+
∫

∂B
[T (z, t) · ν(z)] · pt(z, t) da(z).

The integral

(14.3)
∫ t2

t1

P [f ,T · ν; B](t) dt

is the work done on B in the time interval (t1, t2). We take the dot product
of the equation of motion (7.21) with pt to obtain

(14.4) d
dt [

1
2 |pt|2] = (∇ · T ∗) · pt + f · pt = ∇ · (T ∗ · pt) − T : pzt + f · pt,

where the rightmost term is computed by introducing components. Inte-
grating (14.4) and using the Divergence Theorem, we obtain

(14.5) d
dtK = P −

∫
B

T : Ft dv,

which says that the stress power
∫

B T : Ft dv is the part of the power not
converted into motion.

To get a coordinate-free proof of the second equality of (14.4), we use (11.2.25) to
obtain

(14.6a) ∇ · (T ∗ · pt) = ∇ · (pt · T ) = [∂(pt · T )/∂z] : I.

We compute ∂(pt · T )/∂z by the process of Sec. 11.2:

(14.6b)

[∂(pt · T )/∂z] · y =
∂

∂ε
[ pt(z + εy, t) · T (z + εy, t)]

∣∣∣∣
ε=0

= [(∂pt/∂z) · y] · T + pt · [(∂T /∂z) · y]

= [T ∗ · (∂pt/∂z) + pt · (∂T /∂z)] · y.

Therefore, (11.1.24a) and (11.2.27) imply that

(14.6c)

∇ · (T ∗ · pt) = [T ∗ · (∂pt/∂z)] : I + pt · (∂T /∂z) : I

= tr [T ∗ · (∂pt/∂z)] + pt · (∇ · T ∗)

= T : Ft + pt · (∇ · T ∗).

It is useful to get an alternative representation for the stress power
T : Ft, which appears in (14.5). From the dyadic identity

(14.7) (a1a2 · b1b2) : (c1c2) = (b1b2) : (a2a1 · c1c2),

we obtain the general identity
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(14.8) (A · B) : C = B : (A∗ · C).

By using the definition (7.30) of S, (14.8), the symmetry of S, and the
definition (2.3) of C we obtain

(14.9)
T : Ft = (F · S) : Ft = S : (F ∗ · Ft) = 1

2S : (F ∗ · Ft + F ∗
t · F )

= 1
2S : Ct.

Performing work on a body can make it move faster (i.e., can cause an
increase in its kinetic energy) or can make it hotter. Heating a body can
make it hotter or can cause it to do work. Alongside the mechanical power
we accordingly introduce the nonmechanical power Q. Since we are not
considering electromagnetic effects, we call this power the heat power . We
assume that it has the form

(14.10) Q[r, q; B](t) :=
∫

B
r(z, t) dv(z) +

∫
∂B

q(z, t) · ν(z) da(z).

r is the rate at which heat is generated at (z, t) per unit volume of the
reference configuration. q is the heat flux vector ; q · ν is rate per unit
reference area at which heat enters the surface with outer normal ν. (Some
authors switch the sign of q.)

Doing work on a body and adding heat to it produces motions, changes
temperature, and causes the storage of energy, which is recoverable to do
work. This energy, called the internal energy , is denoted

(14.11) E[ε; B](t) :=
∫

B
ε(z, t) dv(z).

ε is the internal energy density per unit reference volume. K + E is the
total energy.

We postulate the Energy Balance (First Law of Thermodynamics):

(14.12) d
dtK + d

dtE = P +Q.

The energy balance says what happens to
∫

B T : Ft dv: It is either stored or
converted to heat flow. We substitute (14.1), (14.2), (14.10), (14.11) into
(14.12) and use the Divergence Theorem to convert the surface integrals to
volume integrals. Since B is arbitrary, we obtain

(14.13) ρptt · pt + εt = f · pt + ∇ · (T ∗ · pt) + ∇ · q + r.

We substitute (14.4) into (14.13) to obtain the energy equation:

(14.14) εt = T : Ft + ∇ · q + r.

The absolute or Kelvin temperature θ(z, t) of z at time t is a scalar-
valued function. We postulate that

(14.15) θ(z, t) > 0 ∀ (z, t).



478 12. 3-DIMENSIONAL CONTINUUM MECHANICS

Entropy. The Energy Balance expresses the equivalence of power and the
rate of energy production, but does not prescribe the manner in which con-
version can take place. Thus it says nothing about irreversibility and noth-
ing about dissipation. Entropy is the notion associated with irreversibility.

Consider a homogeneous body B that has a uniform temperature θ(t).
When Q < 0, it follows that P > d

dtK + d
dtE, by the energy balance (4.6).

Thus the excess of mechanical work over energy in the body produces heat
(as in scenario (i)). There is no restriction on this rate. When Q > 0,
heat is being added to the body, and P < d

dtK + d
dtE. In particular, when

P < 0, mechanical work is extracted from the body. But there are limits
to how much mechanical work the body can produce. (In scenario (ii), the
interface produces no power, and it would produce no power even if it were
heated a little.) In short, the energy balance describes the intraconvertibil-
ity of heat, power, and rate of change of energy. But each body is limited
in the rate at which it can convert heat into mechanical power. To capture
such phenomena, we may take as a fundamental postulate that the rate
Q[B](t) at which heat can be added to a homogeneous body with a spa-
tially constant temperature is bounded above by a function θ(t) d

dtH[B](t),
depending on the state of the body and on its constitution:

(14.16) Q[B] ≤ θ d
dtH[B].

H[B](t2) −H[B](t1) is the entropy produced in the body in the time inter-
val (t1, t2). Condition (14.16) is the Clausius-Planck Form of the Second
Law of Thermodynamics for homogeneous processes. The temperature θ
appearing in (14.16) should be interpreted as the temperature at which
heat is supplied. Its role in (14.16) suggests that the bound at which heat
can be supplied increases with temperature (in consonance with the range
of temperatures suitable for heating a house). The presence of θ in (14.16)
indicates that it is intimately related to the concept of entropy.

Now we consider materials that need not have uniform fields at each
instant of time. We introduce the entropy of B at time t:

(14.17) H[η,B](t) =
∫

B
η(z, t) dv(z).

η is the entropy per unit reference volume. A generalization of (14.16) to
continua without uniform fields is the Clausius-Duhem Form of the Second
Law of Thermodynamics or the Clausius-Duhem Inequality:

(14.18)
∫

B

r(z, t)
θ(z, t)

dv(z) +
∫

∂B

q(z, t) · ν(z)
θ(z, t)

da(z) ≤ d

dt

∫
B
η(z, t) dv(z).

Its local form is

(14.19) r + θ∇ · (θ−1q) ≤ θηt.

Let
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(14.20) g := ∇θ.

The substitution of (14.14) and (14.9) into (14.19) yields

(14.21) θηt − εt + 1
2S : Ct + θ−1q · g ≥ 0.

If we introduce the Helmholtz free-energy density ψ per unit reference vol-
ume by

(14.22) ψ := ε− ηθ,

then (14.21) reduces to

(14.23) −ψt − ηθt + 1
2S : Ct + θ−1q · g ≥ 0,

which is the local form of the Clausius-Duhem Inequality that we employ.
Another generalization of (14.16) to continua is the Clausius-Planck In-

equality :

(14.24) r + ∇ · q ≤ θηt.

It does not seem to have a natural integral form.
We may adopt the Clausius-Duhem Inequality as a universal law of

nature or merely as an interesting hypothesis worthy of study. Rather
than trying to make the plausible hypothesis (14.16) compelling and then
trying to justify (14.18) as its natural generalization (which can be done
in the setting of gas dynamics (see Truesdell & Bharatha (1977)), we shall
be content with determining consequences of (14.19) when the fields are
smooth. Our methods can be applied to any inequality replacing (14.19).

Constitutive restrictions. We define a simple thermomechanical mate-
rial to be one with constitutive equations of the form

(14.25)

T (z, t)= T̂ (F t(z, ·), θt(z, ·), gt(z, ·),z),

q(z, t) = q̂(F t(z, ·), θt(z, ·), gt(z, ·),z),

η(z, t) = η̂(F t(z, ·), θt(z, ·), gt(z, ·),z),

ψ(z, t)= ψ̂(F t(z, ·), θt(z, ·), gt(z, ·),z),

Note that these equations permit a very general class of couplings between
thermal and mechanical effects. We shall show how the Clausius-Duhem
inequality can be used to specialize the form of these equations.
14.26. Exercise. Put (14.25) into frame-indifferent form.

A thermomechanical process for a body consists of the fields p, θ that
satisfy the inequalities detpz > 0 and θ > 0, the balance of linear momen-
tum, the balance of angular momentum, and the balance of energy. We
can vary these processes by varying the body force f and the rate of heat
supply r.

We may interpret the Clausius-Duhem inequality (or any entropy in-
equality we adopt as a statement of the Second Law of Thermodynamics)
as a requirement that a real material can never behave so that the entropy
inequality is ever violated. Thus we adopt the
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14.27. Coleman-Noll Entropy Principle. The constitutive functions
(14.25) must satisfy the entropy inequality for all thermomechanical pro-
cesses.

Since f and r are at our disposal, we need not worry about the fields
constituting a thermomechanical process satisfying the balance of linear
momentum or the balance of energy. The balance of angular momentum
is automatically ensured by the requirement that the constitutive function
T̂ satisfy it identically. Thus Principle 14.27 has the

14.28. Corollary. The constitutive functions (14.25) must satisfy the
entropy inequality identically.

Thermoviscoelastic materials. We now apply this corollary to the class
of thermoviscoelastic materials of strain-rate type having constitutive func-
tions of the form (F , Ḟ , θ, g,z) �→ T̂ (F , Ḟ , θ, g,z) such that

(14.29) T (z, t) = T̂ (F (z, t),Ft(z, t), θ(z, t), g(z, t),z), etc.

We assume that these functions are continuously differentiable. Corollary
14.28 applies to ‘all’ processes. These could be defined as the most general
processes for which the integral balance laws make sense (cf. Sec. 9). Here
we merely determine the effect of Principle 14.27 when it is restricted to
smooth processes. We accordingly substitute (14.29) into the classical ver-
sion (14.23) of the Clausius-Duhem inequality and use the Chain Rule to
obtain

(14.30) [T̂ − ψ̂F ] : Ft − ψ̂Ḟ : Ftt − [η̂ + ψ̂θ]θt − ψ̂g · gt + θ−1q̂ · g ≥ 0

for all thermomechanical processes. We limit our attention to a fixed (z, t).
Then by varying the process, we can vary F ,Ft,Ftt, θ, θt, g, gt indepen-
dently at (z, t). Note that Ftt, θt, gt are not arguments of the constitutive
functions. Thus the values of the constitutive functions are unaltered when
we vary these three functions at (z, t).

Condition (14.30) implies that

(14.31) ψ̂g = o,

for if not, we could take the arbitrary gt to be a large positive multiple of
∂ψ̂
∂g and thereby cause (14.30) to be violated. Similarly, we find that

(14.32) ψ̂Ḟ = O

and that the coefficient of θt in (14.30) must vanish. Thus the constitutive
equation for the free-energy density ψ in (14.29) reduces to

(14.33) ψ(z, t) = ψ̂(F (z, t), θ(z, t),z)

and the constitutive function for the entropy density must have the special
form
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(14.34) η̂(F (z, t), θ(z, t),z) = −ψ̂θ(F (z, t), θ(z, t),z).

Conditions (14.32)–(14.34) reduce (14.30) to

(14.35) [T̂ − ψ̂F ] : Ft + θ−1q̂ · g ≥ 0 ∀F ,Ft, θ, g.

Let us replace Ft by αFt and g by βg where α and β are real numbers.
We obtain

(14.36)
α[T̂ (F , αFt, θ, βg,z) − ψ̂F (F , θ, z)] : Ft

+βθ−1q̂(F , αFt, θ, βg,z) · g ≥ 0 ∀F ,Ft, θ, g.

Now the left-hand side of (14.36), regarded as a function of α and β, is
≥ 0 and vanishes for α = 0 = β. It therefore has an interior minimum at
α = 0 = β, so that its derivatives with respect to α and β must vanish
here:

[T̂ (F ,O, θ,o,z) − ψ̂F (F , θ, z)] : Ft = 0,(14.37a)

q̂(F ,O, θ,o,z) · g = 0.(14.37b)

Since Ft and g are arbitrary, (14.37) reduces to

T̂ (F ,O, θ,o,z) = ψ̂F (F , θ, z),(14.38)

q̂(F ,O, θ,o,z) = o.(14.39)

Equation (14.38) says that the equilibrium mechanical response at constant
temperature is determined by the derivative of the free-energy density with
respect to F . Equation (14.39) says that heat does not flow when Ft = O
and g = o.

In a purely mechanical theory, a material is elastic iff the only field that
the stress depends on is a deformation tensor (see (10.5)). This material is
hyperelastic iff the stress is the derivative of a scalar field with respect to a
suitable deformation tensor. Equation (14.38) shows that the equilibrium
response of a thermoelastic material may be regarded as hyperelastic if
the stress is independent of θ. In isothermal deformations, in which θ is
constant, the same conclusion holds.

Our use of the entropy inequality implies that there are uncouplings in
the constitutive equations, which need not be postulated a priori. Further
uncouplings typically obtain when the material response is invariant under
some symmetry groups.

Let us introduce the constitutive function for dissipative part of the
stress:

(14.40) T D(F , Ḟ , θ, g,z) := T̂ (F , Ḟ , θ, g,z) − T̂ (F ,O, θ,o,z),

so that (14.38) implies that the constitutive function for the stress has the
form
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(14.41) T̂ (F , Ḟ , θ, g,z) = ψ̂F (F , θ, z) + T D(F , Ḟ , θ, g,z).

The substitution of (14.41) into (14.35) yields the dissipation inequality :

(14.42) T D : Ḟ +
q̂ · g

θ
≥ 0 ∀F , Ḟ , θ, g,

from which we obtain the mechanical dissipation inequality:

(14.43) T D(F , Ḟ , θ,o,z) : Ḟ ≥ 0 ∀F , Ḟ , θ

and the Fourier heat conduction inequality:

(14.44) q̂(F ,O, θ, g,z) · g ≥ 0 ∀F , θ, g,

which says that heat flows in a direction ‘opposed’ to that of the temper-
ature gradient. The Fourier heat law says that there is a positive-definite
tensor K(z) such that q̂(F ,O, θ, g,z) = K(z) · g. For an isotropic mate-
rial, K reduces to a scalar multiple of the identity.

We could easily work backwards to show that these results are also
sufficient to ensure that the Clausius-Duhem inequality holds for (14.29).

For the analysis of the partial differential equations obtained by sub-
stituting (14.29) into the balance of linear momentum and the balance of
energy, it is mathematically convenient and it might be physically reason-
able to strengthen (14.43) and (14.44) by requiring that T D(F , ·, θ, ·,z) and
q̂(F , ·, θ, ·,z) satisfy the strict monotonicity condition:

(14.45) [T D(F , Ḟ 2, θ, g2,z) − T D(F , Ḟ 1, θ, g1,z)] : [Ḟ 2 − Ḟ 1]

+
1
θ
[q̂(F , Ḟ 2, θ, g2,z) − q̂(F , Ḟ 1, θ, g1,z)] · [g2 − g1] > 0

for [Ḟ 2 − Ḟ 1] : [Ḟ 2 − Ḟ 1] + [g2 − g1] · [g2 − g1] > 0.

This condition gives the governing partial differential equations a strong
parabolic character, not enjoyed by the weaker restriction that T D be a
strongly elliptic function of Ḟ (see Secs. 13.3,9, 18.4 for discussions of
these matters in purely mechanical contexts).

For a thermoelastic material the constitutive functions of (14.29) are
independent of Ḟ . In this case, a straightforward specialization of the
development beginning with (14.30) allows us to replace (14.41) with

(14.46) T̂ (F , θ, g,z) = ψ̂F (F , θ, z)

and to simplify the other relations. If we set

(14.47) ψ̃(C, θ, z) := ψ̂(F , θ, z),

then (14.46) is equivalent to
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(14.48) Ŝ(C, θ, z) = 2ψ̃C(C, θ, z).

14.49. Exercise. Replace (14.29) with constitutive functions of the form

(14.50)

T (z, t)= Ť (F (z, t), Ft(z, t), η(z, t), g(z, t), z),

q(z, t) = q̌(F (z, t), Ft(z, t), η(z, t), g(z, t), z),

θ(z, t) = θ̌(F (z, t), Ft(z, t), η(z, t), g(z, t), z),

ε(z, t) = ε̌(F (z, t), Ft(z, t), η(z, t), g(z, t), z).

Imitate the analysis beginning with (14.30) to determine necessary and sufficient con-
ditions for (14.50) to satisfy the Clausius-Duhem inequality in the form (14.21). Use
the reduced constitutive equations to show that the equilibrium mechanical response
is hyperelastic if the deformation is isentropic, i.e., if η is constant. These conclusions
also follow from the Chain Rule from those for (14.29) if we assume that (14.29) has
sufficient invertibility for it to be equivalent to (14.50). A similar analysis can be carried
out when F , Ft, ε, g are the independent variables and T , q, 1/θ, η are the dependent
variables of the constitutive equations. Show that the equilibrium mechanical response
is generally not hyperelastic for isoenergetic deformations, i.e., deformations for which
ε is constant.

In the nineteenth century, continuum mechanics was founded under the leadership
of Cauchy, electromagnetism, under the leadership of Maxwell, and thermodynamics,
under the leadership of Carnot and Clausius. The mathematical skills of the last two
were vastly inferior to those of the first two. The deficiencies in substance and preci-
sion that typify the vast literature on thermodynamics since the time of Clausius may
be attributed to this inferiority. Although thermodynamics has been fashioned into a
serviceable tool for gas dynamics, chemistry, and some other fields, until recently it (in
painful contrast to continuum mechanics and electromagnetism) has lacked a formula-
tion capable of describing fields varying with space and time and governed by nonlinear
constitutive equations. Scathing critiques of the inadequacies of traditional thermody-
namics have been given by Bridgman (1941) and by Truesdell in a long series of writings
culminating in Truesdell’s books of 1980 and 1984, which give lively opinionated histories
of thermodynamics. Logical developments of the ideas of Carnot are given by Truesdell
& Bharatha (1977) and D. R. Owen (1984).

The development leading from (14.16) to (14.23) is a reduction of an argument intro-
duced by Truesdell (1984). The Entropy Principle was introduced by Coleman & Noll
(1963). The treatment following (14.29) is based on this work and on that of Coleman
& Mizel (1964). It was extended to a large class of materials of the form (14.25) having
fading memory by Coleman (1964) (see Gurtin (1968) and Truesdell (1984)).

The constitutive restrictions imposed by the Clausius-Duhem inequality on a linearly
heat-conducting compressible Newtonian fluid (governed by the Navier-Stokes equations
for compressible fluids and by Fourier’s heat law) are in complete accord with those
universally accepted for such materials. On the other hand, as our comments surround-
ing (14.45) suggest, the consequences of the Clausius-Duhem inequality are not strong
enough to deliver certain mathematically attractive and natural restrictions, while some
of its consequences, such as uncouplings, are of limited mathematical advantage.

Entropy inequalities are important in the study of shocks, for which the integral
balance laws, possibly interpreted in a very general form, must be used in favor of their
classical forms. The precise role that entropy inequalities, such as that of Clausius and
Duhem, should play in the theory of shocks is not yet clear (see Dafermos (1983, 1984,
1985, 2000), Ericksen (1991), Müller & Ruggeri (1998), and the discussion in Chap. 18).
For these reasons, we cannot unequivocably embrace the Clausius-Duhem inequality as
a universally valid characterization of irreversibility.

For investigations of how entropy inequalities are founded on more primitive axioms,
see Day (1972) and the deep and systematic work of Coleman & Owen summarized in
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their article of 1974. The entire logical structure of thermodynamics has been critically
examined by Serrin (1986), who suggests grounds on which the Energy Balance should be
replaced by an energy inequality. (In this connection, it is interesting to note that weak
solutions of the Navier-Stokes equations are only known to satisfy such an inequality.)

Invariance of energy under rigid motions. The Energy Balance (14.12) has the
form

(14.51)
∫

P
[ρptt · pt + εt] dv =

∫
P

[f · pt + r] dv +
∫

∂P
[(T · ν) · pt + q · ν] da

for all subbodies P in a universal body B. Green & Rivlin (1964) observed (in the
context of the spatial description of motion; see Sec. 15) that if (14.51) hold when every
visible pt is replaced with pt + a where a is a constant translational velocity, then the
arbitrariness of a immediately yields an integral form of the energy equation (14.14)
together with

(14.52)
∫

P
ρptt · a dv −

∫
P

f · a dv =
∫

∂P
(T · ν) · a da =

∫
P

(∇ · T ∗) · a dv,

which immediately gives an integral form of the equation of motion (7.21). Next, they
observed that if in (the integral of) (14.14), Ft is similarly replaced with Ω · F where
Ω is a constant skew tensor, then the arbitrariness of Ω yields the symmetry condition
(7.27).

In subsequent works, Green and his coworkers raised these observations to a principle
(cf. Green & Zerna (1968)), seemingly artificial in that it is not a statement of invariance
under rigid motions because it does not allow f and T ·ν to vary when the velocity field
is varied and because it does not account for boundary conditions. It is clear, however,
that this principle is just a variant of the Principle of Virtual Power: Let us give a
formal demonstration of this equivalence under favorable assumptions of regularity. The
arbitrariness of a and P in (14.52) say that it implies that

(14.53)
∫

B
ρptt · η dv −

∫
B

f · η dv =
∫

B
(∇ · T ∗) · η dv

for all η that can be approximated by finite sums of piecewise constant functions of z.
This is a version of the Principle of Virtual Power. (A rigorous proof taking due account
of the integral over ∂P would follow that of Sec. 9.) That (14.53) implies (14.52) can be
proved by the methods beginning with the paragraph containing (9.9). The Principle of
Virtual Power corresponding to the symmetry condition (7.27) is treated by Antman &
Osborn (1979).

Noll (1963, 1973) formulated an analogous principle, which is truly an invariance
principle. He used this principle in formulating his axiomatic development of the laws of
mechanics, expounded by Truesdell (1991a). For refinements, see Šilhavý (1989; 1997,
Chap. 6).

15. The Spatial Formulation

Kinematics. p(z, t) is the position of material point z at time t. Un-
der our assumption that p(·, t) is one-to-one for all t, it has an inverse
p(B, t) � y �→ q(y, t) ∈ B, so that y = p(z, t) if and only z = q(y, t).
Thus q(y, t) is the material point occupying position y at time t. We can
replace z with q(y, t) in all the functions of continuum mechanics we have
introduced above. For example, if u(z, t) := p(z, t)−z is the displacement
of the material point z, then we can define the displacement, velocity, and
acceleration of the material point occupying position y at time t by
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(15.1)
ŭ(y, t) := u(q(y, t), t) = y − q(y, t),

v̆(y, t) := pt(q(y, t), t), ă(y, t) := ptt(q(y, t), t)

or, equivalently, by

(15.2)
ŭ(p(z, t), t) := u(z, t),

v̆(p(z, t), t) := pt(z, t), ă(p(z, t), t) := ptt(z, t).

A formulation of continuum physics in which the independent variables
are (y, t) is called a spatial (or Eulerian) formulation (which was appar-
ently introduced by d’Alembert). From the viewpoint of physics, the use
of spatial descriptions is artificial since attention is shifted from the phys-
ical entity of a material point, the seat of physical activity, to the purely
geometric entity of a point in space. But for many important problems
of fluid mechanics and for a few special problems of solid mechanics there
are compelling mathematical advantages in using the spatial formulation.
We outline a formulation of continuum mechanics in spatial coordinates
primarily to make the literature on solid mechanics couched in such formu-
lations accessible to readers and to furnish readers knowledgeable in fluid
dynamics or electromagnetism a means to bring their knowledge to bear
on solid mechanics.

Let us first determine how ŭ, v̆, ă are related. From (15.1) and (15.2)
we obtain

(15.3a)

v̆(p(z, t), t) = ∂tp(z, t) = ∂tu(z, t) = ∂tŭ(p(z, t), t)

= ŭy(p(z, t), t) · pt(z, t) + ŭt(p(z, t), t)

= ŭy(p(z, t), t) · v̆(p(z, t), t) + ŭt(p(z, t), t)

or, equivalently,

(15.3b) v̆(y, t) = ŭy(y, t) · v̆(y, t) + ŭt(y, t).

This is a linear equation for v̆.
15.4. Exercise. Show that (15.3b) can be uniquely solved for v̆.

By the method leading to (15.3b), we obtain

(15.5) ă(y, t) = v̆y(y, t) · v̆(y, t) + v̆t(y, t).

Thus the acceleration ă is nonlinear in the velocity v̆ and its derivatives!
The spatial description must have many mathematical virtues to compen-
sate for the disadvantage of introducing this convective nonlinearity into
every equation of motion.
15.6. Exercise. Let z = zkik and y = ykik where {ik} is a fixed orthonormal basis.
Let y = p(z, t) be given by

(15.7)

y1 = 1
2 (z1 + z2)et + 1

2 (z1 − z2)e−t,

y2 = 1
2 (z1 + z2)et − 1

2 (z1 − z2)e−t,

y3 = z3.

Find q(y, t), ŭ(y, t); find v̆(y, t) both by (15.1) and by solving (15.3b).
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In the material formulation, the independent variable z is confined to
the fixed region B, whereas in the spatial formulation, the independent
variable y is confined to p(B, t), which in general is unknown. For many
problems of fluid mechanics, the fluids are confined to a prescribed, possibly
time-dependent region of space, so that p(B, t) is given. Otherwise, for free-
surface problems, some methods of a material formulation are introduced
to make the problem accessible. (These may include the use of streamlines
as coordinates or the linearization of the governing equations about the
reference configuration.) In solid mechanics, a spatial description is useful,
not for initial-boundary-value problems, but for inverse problems in which
the motion of the body or its boundary is specified, and other data, such
as the force system or the reference shape or the constitutive functions, are
to be determined. (See Sec. 14.14.)

When the spatial formulation is used, it is occasionally useful to determine whether
a moving surface always consists of the same material points, i.e., is a material surface.
A material surface may be specified by an equation of the form ϕ(z) = 0. At time t, it
occupies the surface consisting of those points y in space satisfying ϕ(q(y, t)) = 0.

15.8. Lagrange’s Criterion. Let p be a motion of a body B and let S(t) be the
configuration at time t in p(B, t) of a moving surface. Let S(t) be defined by ψ(y, t) = 0.
Then S(t) is a material surface for all t if and only if

(15.9) ψy · v̆ + ψt = 0.

Proof. If S(t) is a material surface for all t, then there is a function ϕ such that ϕ(z) =
ψ(p(z, t), t) for all t. (This says that the material points lying on S(τ) for some given τ
do not vary with t.) Equation (15.9) follows from the equation ϕt(z) = 0. Conversely,
suppose that (15.9) holds. Set ω(z, t) = ψ(p(z, t), t). (The equation ω(z, t) = 0 defines
the reference positions of the material points that at time t are on S.) Equation (15.9)
implies that ωt(z, t) = 0 so that ω is independent of t. �
Strain. Following the development leading from (2.2) to (2.4), we find that the local
ratio of deformed to reference length of the material fiber at (y, t) along unit vector a is

(15.10)
1√

a · qy(y, t)∗ · qy(y, t) · a
.

qy(y, t)∗ · qy(y, t) has been termed the Cauchy deformation tensor. By the definition
of q, we have the equivalent relations

(15.11) y = p(q(y, t), t), z = q(p(z, t), t),

whence we obtain

(15.12) I = pz(q(y, t), t) · qy(y, t), I = qy(p(z, t), t) · pz(z, t).

We may introduce the left Cauchy-Green deformation tensor B by

(15.13) B(y, t) := V (q(y, t), t)2 ≡ F (q(y, t), t)·F (q(y, t), t)∗ = qy(y, t)−1 ·qy(y, t)−∗

(cf. (4.5)). Thus the Cauchy deformation tensor qy(y, t)∗ · qy(y, t) = B−1. We may
introduce the spatial strain tensor Ĕ (cf. (2.24)) by

(15.14) 2Ĕ(y, t) := I −qy(y, t)∗ ·qy(y, t) = ŭy(y, t)+ ŭy(y, t)∗ − ŭy(y, t)∗ · ŭy(y, t),

the second equality coming from (15.1). (Compare this result with Ex. 2.26.)
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Rates. From (15.2) we obtain

(15.15) Ft(z, t) = pzt(z, t) =
∂

∂z
v̆(p(z, t), t) = v̆y(p(z, t), t) · F (z, t).

On the other hand, the polar decomposition (4.2) yields

(15.16) Ft = Rt · U + R · Ut.

Now we focus our attention at a particular time τ and choose p(·, τ) to be the reference
configuration. Thus we identify z = p(z, τ) = y. Equating (15.15) to (15.16) for t = τ ,
we obtain

(15.17) v̆y(y, τ) = Rt(y, τ) + Ut(y, τ).

Since U is symmetric, so is Ut. By differentiating the identity R(z, t)∗ · R(z, t) = I
with respect to t and then setting t = τ , we obtain

(15.18) Rt(y, τ)∗ + Rt(y, τ) = O,

so that Rt(y, τ) is the skew part of v̆y(y, τ). We can therefore define the stretching
tensor D and the spin tensor W to be the symmetric and skew parts of ∇v̆ ≡ v̆∗

y

so that at time τ , D(y, τ) = Ut(y, τ) and W (y, τ) = −Rt(y, τ). The axial vector w
corresponding to W (see (11.1.9)) is the instantaneous angular velocity of the principal
axes of stretch relative to the present configuration. 2w is the vorticity. The diagonal
components of D measure the rates of length changes per unit instantaneous length
along the instantaneous principal axes, and its off-diagonal components measure the
rates of angle changes relative to these axes.

15.19. Exercise. Prove that

(15.20) 2w = curl v̆

where the curl is taken with respect to the variables y.

From (11.2.8b) and (15.15) we obtain

(15.21)

∂t[det F (z, t)] = det F (z, t) tr [Ft(z, t) · F (z, t)−1]

= det F (z, t) tr [v̆y(p(z, t), t) · F (z, t) · F (z, t)−1]

= det F (z, t) div v̆(p(z, t), t)

where the divergence is taken with respect to y. Thus div v̆(y, t) is the rate of change of
volume at (y, t) per unit actual volume. It follows that the requirement that a material
undergo a locally volume-preserving deformation, which is specified by the nonlinear
equation det F = 1 in the material formulation, is equivalently specified by the linear
equation

(15.22) div v̆ = 0

in the spatial formulation. This fact is one of the virtues of the spatial formulation. It
is particularly useful for the description of liquids, which are effectively incompressible.
(Ebin & Saxton (1986) balanced (15.22) against the natural virtues of the material
formulation to treat the existence of equilibrium states of incompressible nonlinearly
elastic bodies.)

Let ϕ be an arbitrary real-valued function of y and t. Using (15.21) and (15.2) in
conjunction with the rule for the change of variables in integrals, we obtain the very
important identities
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(15.23)

d

dt

∫
p(B,t)

ϕ(y, t) dv(y)

=
d

dt

∫
B

ϕ(p(z, t), t) det pz(z, t) dv(z)

=
∫

B
[ϕt(p(z, t), t) + ϕy(p(z, t), t) · v̆(p(z, t), t)

+ ϕ(p(z, t), t)div v̆(p(z, t), t)] det F (z, t) dv(z)

=
∫

p(B,t)
[ϕt(y, t) + ϕy(y, t) · v̆(y, t) + ϕ(y, t)div v̆(y, t)] dv(y)

=
∫

p(B,t)
{ϕt(y, t) + div [ϕ(y, t)v̆(y, t)]} dv(y)

=
∫

p(B,t)
ϕt(y, t) dv(y) +

∫
∂p(B,t)

ϕ(y, t)v̆(y, t) · ξ(y, t) da(y),

which constitute the Transport Theorem. In the last equation of (15.23), ξ(y, t) denotes
the unit outer normal to ∂p(B, t) at y.

Mass. If we take the time derivative of the local form (6.7) of mass conservation and
use (15.21), we get the spatial form of the continuity equation:

(15.24) ρ̆t + div (ρ̆v̆) = 0.

We can alternatively derive (15.24) by using (15.23) to take the time derivative of (6.5)
and then by using the arbitrariness of p(B, t). Finally, we can get (15.24) by requiring
that the rate at which the mass within any fixed region Ω of space increases equals the
rate at which it enters through ∂ Ω:

(15.25)
d

dt

∫
Ω

ρ̆(y, t) dv(y) = −
∫

∂Ω
ρ̆(y, t)v̆(y, t) · ξ(y) da(y).

We then take the time derivative of the left-hand side of this equation, apply the Diver-
gence Theorem to the right-hand side, and finally use the arbitrariness of Ω. We can
now use (15.24) in (15.23) to get the Corollary to the Transport Theorem:

(15.26)
d

dt

∫
p(B,t)

ρ̆(y, t)ϕ(y, t) dv(y) =
∫

p(B,t)
ρ̆(y, t)[ϕt(y, t)+ϕy(y, t)·v̆(y, t)] dv(y).

(This gives a mathematically precise interpretation of the statement that ρ̆ dv = const.)
One of the virtues of the spatial formulation for solid mechanics as well as fluid

mechanics is that it allows the following definition to be made: A motion is steady iff
v̆t = o and ρ̆t = 0.

Stress. We assume that the resultant force g(t; B) on body B at time t
has the decomposition

(15.27) g(t; B) =
∫

p(B,t)
f̆(y, t) dv(y) +

∫
∂p(B,t)

σ(y, t; ∂p(B, t)) da(y).

f̆(y, t) := f(q(y, t), t) detpz(q(y, t), t) is the body force per unit actual
volume at (y, t) and σ(y, t; ∂p(B, t)) is the surface traction per unit actual
area at (y, t) of ∂p(B, t). By assuming that σ(y, t; ∂p(B, t)) depends on
∂p(B, t) only through its unit outer normal vector ξ(y, t) at y, we can
imitate the proof of Cauchy’s Stress Theorem 7.14 (by taking ∂p(B, t) to
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be a suitable tetrahedron) and conclude that there is a second-order tensor
Σ, called the Cauchy stress tensor (or simply the stress tensor), such that

(15.28) σ(y, t; ∂p(B, t)) = Σ(y, t) · ξ(y, t)

for y ∈ ∂p(B, t). We then use appropriate forms of the Balance of Lin-
ear and Angular Momentum together with (15.23) to obtain the classical
equations of motion

∇ · Σ∗ + f̆ = ρ̆ă,(15.29)

Σ is symmetric,(15.30)

which are the counterparts of (7.21) and (7.27). Here the divergence is
taken with respect to the variable y. (Condition (15.30) says that the
asterisk in (15.29) is unnecessary.)

To find out how Σ is related to T , we equate (7.9) to (15.27) to conclude
that

(15.31)
∫

∂p(B,t)
Σ(y, t) · ξ(y, t) da(y) =

∫
∂B

T (z, t) · ν(z) da(z)

for all B. We need to determine how ∂B is affected by the deformation.
Let s1 and s2 be parameters for a surface patch of ∂B that is described by
(s1, s2) �→ ẑ(s1, s2). On this patch

(15.32) ν(z) da(z) =
∂ẑ

∂s1
× ∂ẑ

∂s2
ds1 ds2.

The image of this patch under p(·, t) is (s1, s2) �→ p(ẑ(s1, s2), t), for which

(15.33)

ξ(y, t) da(y) =
(

F · ∂ẑ
∂s1

)
×
(

F · ∂ẑ
∂s2

)
ds1 ds2

= (detF )F −∗ ·
(
∂ẑ

∂s1
× ∂ẑ

∂s2

)
ds1 ds2

= (detF )F −∗ · ν(z) da(z)

by virtue of (11.1.49) and (15.32). Thus we conclude from (15.31) that

(15.34)
Σ(y, t) = [detF (z, t)]−1T (z, t) · F (z, t)∗

= [detF (z, t)]−1F (z, t) · S(z, t) · F (z, t)∗.

We use (15.34) to deduce frame-indifferent forms of constitutive equa-
tions for Σ. Observe that the very simple form (11.21) for materials of the
stress-rate type becomes very complicated in terms of the Cauchy stress
tensor: Both the spin and the vorticity tensors intervene when time deriva-
tives of S are expressed in terms of time derivatives of Σ. A complicated
theory of invariant stress rates was made superfluous by the theory of
Sec. 11. The stress Σ is particularly useful for Newtonian fluids, which
have constitutive equations of the form Σ = (−p+ λ trD)I + 2µD where
p, λ, µ are scalar fields independent of D.
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Material constraints. We now complete the demonstration that the Global Con-
straint Principle reduces to the Local Constraint Principle for the constraints (12.4),
(12.6), and (12.7).

We introduce spatial coordinates and reduce (12.57) to

(15.35) A : ∂η̆/∂y = ω̆ where A := (∂γ/∂F ) · F ∗.

Since system (15.35) is underdetermined, we may seek solutions in the form

(15.36) η̆ = ∂ψ̆/∂y

where ψ̆ depends on y and t. If A is symmetric and positive-definite, then (15.35) and
(15.36) form a linear elliptic equation for ψ̆ on p(B, t). The regularity of A (which
reduces to the identity for (12.4)) depends only on the regularity of p. We can invoke
the standard theories of linear elliptic equations to ensure existence of solutions in a
whole scale of compatible choices of function spaces for ω̆ and ψ̆.

15.37. Exercise. Show that

(15.38) A = I, A = 2F · F ∗, A = V

for (12.4), (12.6), (12.7), respectively. Here V is the positive-definite square root of
B ≡ F · F ∗. Each of these A’s is symmetric and positive-definite.

The substitution of η = ∂ψ/∂z into (12.52) would yield (∂γ/∂F ) : (∂ψ/∂z) = ω. For
(12.6) and (12.7), the coefficient tensor ∂γ/∂F is not positive-definite, and our argument
breaks down.



CHAPTER 13

3-Dimensional Theory
of Nonlinear Elasticity

The main objective of this chapter is to formulate the governing equa-
tions of nonlinear elasticity and to discuss constitutive restrictions and their
implications. The reader wishing to proceed directly to the treatment of
specific problems in Chap. 14 need only read Secs. 1–4. In Sec. 1, we collect
all the results of Chap. 12 that are pertinent to elasticity.

1. Summary of the Governing Equations
p(z, t) denotes the position of material point z of body B at time t. We

define

(1.1) F := pz, C := F ∗ · F .

The classical form of the balance of linear momentum is

(1.2) ∇ · T ∗ + f = ρptt

where T is the first Piola-Kirchhoff stress tensor, f is the prescribed body
force intensity per unit reference volume, and ρ is the prescribed mass
density per unit reference volume.

The material of B is elastic iff there is a function

(1.3a) Lin+ × B � (F ,z) �→ T̂ (F ,z) ≡ F · Ŝ(F ∗ · F ,z),

where Ŝ(F ∗ · F ,z) ∈ Sym, such that

(1.3b) T (z, t) = T̂ (F (z, t),z).

The second form of (1.3a) ensures that the response is frame-indifferent.
The symmetry of Ŝ ensures that the balance of angular momentum is
automatically satisfied. (Recall that Lin+ and Sym, defined in Sec. 11.1,
consist of second-order tensors that respectively have positive determinants
and are symmetric.) The substitution of (1.3b) into (1.2) converts it into
the following quasilinear sixth-order system of partial differential equations
(equivalent to three coupled second-order scalar partial differential equa-
tions):

(1.4) ∇ · T̂ ∗(pz(z, t),z) + f(z, t) = ρ(z)ptt(z, t).

491
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The body force f could be prescribed as a composite function depending
on (z, t) through p, pt, etc.

For incompressible materials, we replace (1.3a) with

det C = 1,(1.5)

T̂ (F , p,z) ≡ F · [−pC−1 + ŜA(C, p,z)],(1.6a)

T̂A(F , p, z) ≡ F · ŜA(C, p, z)(1.6b)

where the extra stress ŜA, which we may choose to satisfy ŜA : C = 0 (see
(12.12.33d)), need only be defined for C’s satisfying (1.5).

For unconstrained isotropic materials, Ŝ has the form

(1.7)
Ŝ(C,z) = α0(ι(C),z)I + α1(ι(C),z)C + α2(ι(C),z)C2

≡ β−1(ι(C),z)C−1 + β0(ι(C),z)I + β1(ι(C),z)C

where

(1.8) ι(C) := (IC , IIC , IIIC).

For incompressible isotropic materials, (1.6) reduces to

(1.9) T̂ (F , p,z) = F · [−pC−1 + ψ0(ι(C), p,z)I + ψ1(ι(C), p,z)C]

where now ι(C) := (IC , IIC) since IIIC = 1.

Hyperelasticity. The material defined by (1.3) is hyperelastic iff there
exists a scalar-valued stored-energy or strain-energy (density) function W
such that

(1.10a)
T̂ (F ,z) = ∂W (F ∗ · F ,z)/∂F or, equivalently,

Ŝ(C,z) = 2 ∂W (C,z)/∂C.

The incompressible material defined by (1.5), (1.6) is hyperelastic iff there
exists a stored-energy function W such that

(1.10b)
T̂A(F ,z) = ∂W (F ∗ · F ,z)/∂F or, equivalently,

ŜA(C,z) = 2 ∂W (C,z)/∂C

where the domain of W (·,z) need only consist of those C satisfying (1.5).
We are free, however, to extend this domain arbitrarily off the manifold
defined by (1.5) because components of the derivative of W not tangent to
this manifold can be absorbed in the pressure term.

A hyperelastic material is sometimes termed Green-elastic, in which
case the elastic material defined by (1.3) is termed Cauchy-elastic. In
Sec. 12.14 we showed that the Coleman-Noll Entropy Principle implies
that elastic materials should be hyperelastic. Less sophisticated arguments
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also support the same conclusion. Nevertheless, it is useful to preserve the
generality of Cauchy elasticity because there are a variety of approxima-
tion schemes, numerical, perturbational, and analytic, that lead to worthy
problems lacking the variational structure of hyperelasticity. In particular,
the constitutive function for the leading term of the asymptotic analysis
carried out in Sec. 4.4 is not hyperelastic, even if the constitutive function
for the full problem is hyperelastic. As we have seen in Chaps. 4, 6, 9, and
10, there are many equilibrium problems for which hyperelasticity is not
crucial for an effective analysis.

We adopt boundary and initial conditions like those discussed in Sec.
12.8.
1.11. Exercise. Let the body force intensity f and the applied traction τ̄ (see
(12.8.12)) be conservative, so that there are potential-energy functions Ω and ω such
that

(1.12) f(z, t) = −∂Ω
∂p

(
p(z, t), z

)
, τ̄

(
z, t, q(z, t)

)
= −∂ω

∂p

(
p(z, t), z

)
.

Let (12.8.11) hold. Prove that the equations governing the motion of a hyperelastic
body B under the action of the force system (1.12) are the Euler-Lagrange equations for
the Lagrangian functional
(1.13a)

L[p] :=
∫ t2

t1

{∫
B

[ 1
2ρpt · pt −W (p∗

z · pz , z) − Ω(p, z)
]
dv(z) −

∫
∂B
ω(p, z) da(z)

}
dt,

which is defined for all sufficiently well-behaved p satisfying (12.8.11).

The equilibrium equations for hyperelastic bodies can likewise be characterized as
the Euler-Lagrange equations for the potential-energy functional

(1.13b) Π [p] :=
∫

B
[W (p∗

z · pz , z) + Ω(p, z)] dv(z) +
∫

∂B
ω(p, z) da(z).

1.14. Exercise. The theory of Sec. 12.13 says that a hyperelastic isotropic material
has a stored-energy function of the form W †(ι(C), z). Use the results of Sec. 11.2 to
show that (1.10a) reduces to

(1.15) T̂ (F , z) = F ·
[
2
∂W †

∂ IC
I + 2

∂W †

∂ IIC
(ICI − C) +

∂W †

∂ IIIC
C−1

]
.

The corresponding version for incompressible media is obtained by replacing ∂W †/∂IIIC
with −p.

2. Constitutive Restrictions
Since we are using a material, rather than a spatial, formulation of

the governing equations, the acceleration term is just the innocuous ptt

appearing on the right-hand side of (1.4). Thus the entire responsibility for
the mathematical structure of this equation devolves upon the constitutive
function T̂ . In this section we discuss restrictions on T̂ that are both
physically reasonable and mathematically convenient. We consider the
following desiderata for T̂ :

(i) An increase in a component of strain should be accompanied by an
increase in a corresponding component of stress.
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(ii) Extreme strains (those for which an eigenvalue of C is 0 or ∞)
should be maintained by infinite stresses. (In an extreme strain,
|C| = ∞ or detC = 0.)

(iii) The equations of motion should admit solutions with wave-like be-
havior.

(iv) Well-set initial-boundary-value problems for the equations of mo-
tion should have solutions.

(v) For appropriate data, the equilibrium equations should admit mul-
tiple solutions, so that buckling can be described.

(vi) Solutions should have an appropriate level of regularity.
This list is notable for its intentional imprecision. To make (i) and

(ii) precise, we must select suitable measures of deformation from among
F ,C,U , etc., and suitable measures of stress from among T ,S,Σ, etc. To
convert these conditions into reasonable mathematical statements, we must
further account for the fact that an elongation in one direction is typically
accompanied by contractions in the transverse directions. This coupling of
effects is a source of the richness and difficulty of (1.4). We shall respond
to (iii) by requiring that (1.4) be hyperbolic. To make (iv)–(vi) precise,
we should have to define the class of functions in which solutions are to be
sought.

3. Order-Preservation:
Monotonicity and Ellipticity

Let us turn to (i), which says that the mapping from strains to stresses
is order-preserving in some as yet unspecified sense. The most mathe-
matically attractive notion of order-preservation is that T̂ (·,z) be strictly
monotone:

[T̂ (G + αH,z) − T̂ (G,z)] : H > 0 ∀ G ∈ Lin+,(3.1)

∀ H �= O, ∀α ∈ (0, 1] such that det(G + αH) > 0.(3.2)

If T̂ (·,z) is differentiable, then we can divide (3.1) by α and take the limit
as α↘ 0 to obtain an inequality whose strict form is

H : [∂T̂ (F ,z)/∂F ] : H > 0 ∀ F ∈ Lin+,(3.3)

∀ H �= O.(3.4)

For a hyperelastic material, the analog of (3.1) and (3.2) is that F �→
W (F ∗ · F ,z) be strictly convex.

Were T̂ to be defined on all of Lin, to satisfy (3.1) and (3.2) for all G and
H, and to satisfy mild growth conditions, then boundary-value problems
for the equilibrium equation corresponding to (1.4) would have an extensive
mathematical theory: Weak solutions exist. If the loading is dead, these
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solutions are unique to within a rigid displacement. The weak solutions
possess a considerable amount of regularity. (See Giaquinta (1983).)

3.5. Exercise. Prove the statement about uniqueness. (Hill (1957) first observed this
result, which is an extension of the Kirchhoff Uniqueness Theorem of linear elasticity.)

At first sight, these virtues seem irresistible. But the uniqueness means
that an elastic rod could not buckle under thrust, however thin the rod and
however large the thrust. One of the reasons for suffering the complexity
of nonlinear elasticity is to be able to describe buckling. Somewhat weaker
uniqueness results hold if the domain of T̂ is a suitable subset of that given
in (1.3a) (see Gurtin & Spector (1979).)

Another reason for rejecting (3.1), (3.2) is given by

3.6. Exercise. Suppose that T̂ (I, z) = O. Prove that (3.1), (3.2) are incompatible
with frame-indifference. (Hint: Take G = I and αH = Q − I in (3.1), (3.2) where Q is
proper-orthogonal.)

A third reason for rejecting (3.1), (3.2) is connected with desideratum (ii). A standard
assumption in monotone-operator theory is that the left-hand side of (3.1) approach ∞
as |G + H| → ∞ or as det(G + H) → 0 along any line containing G. Since the
domain Lin+ of T̂ (·, z) is not convex (see Ex. 12.1.5), there are line segments in the
domain with interior points very close to the boundary of the domain. At such interior
points of such line segments, the left-hand side of (3.1) is very large, so that (3.1), (3.2)
cannot hold over the entire line segment. A related phenomenon holds for hyperelastic
materials because a convex W finite-valued on an open nonconvex set cannot approach
∞ everywhere on the boundary of that set.

The easiest mathematical way to allow nonuniqueness, while preserving most of the
analytical advantages of (3.1), (3.2) would be to allow T̂ to depend upon p in addition
to pz . This ploy is prohibited by the Principle of Frame-Indifference.

In all of our studies of problems with but one spatial variable in Chaps. 1–10, we
required that the principal parts of the spatial differential operators (of elasticity) be
strictly monotone in their highest derivatives. The presence of lower-order terms in most
of these equations prevents the entire operator from being strictly monotone. Since the
operator in the left-most term of (1.4) does not have lower-order terms, a requirement
that its principal part be strictly monotone would ensure that the entire differential
operator be strictly monotone, and thus be a condition far more restrictive than that
imposed on our degenerate problems with only one spatial variable. In Chaps. 16 and
17 we discuss the relationship between monotonicity conditions for elastic rod and shell
theories and the Strong Ellipticity Condition, which we now introduce.

A condition weaker than (3.1), (3.2), yet having a well-established math-
ematical status, is (the strict form of) the Strong Ellipticity Condition:
Inequality (3.1) holds

(3.7) ∀ H of rank 1, ∀α ∈ (0, 1] such that det (G + αH) > 0.

Note that the set of tensors of rank 1 is exactly the set of dyads. If T̂ (·,z)
is differentiable, then a slightly stronger restriction is that (3.3) hold

(3.8) ∀ H of rank 1.

For hyperelastic materials, we set W̃ (F ,z) := W (F ∗ · F ,z). Then the
strict form of the Strong Ellipticity Condition when generalized slightly by
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relaxing the differentiability of W yields the requirement that W̃ (·,z) be
rank-one convex :

(3.9) W̃ (G + αH,z) ≤ (1 − α)W̃ (G,z) + αW̃ (G + H,z) ∀ G ∈ Lin+

and (3.7) holds. When W (·,z) is twice continuously differentiable, con-
ditions (3.3), (3.8) reduce to the Strong Legendre-Hadamard Condition of
the Calculus of Variations.

We now obtain a useful mechanical interpretation of the Strong Ellip-
ticity Condition. Let a and b be arbitrary unit vectors. Then ab is a unit
dyad: |ab| = 1. We can decompose F into its component along ab and its
orthogonal complement:

(3.10) F = (a · F · b)ab + [F − (a · F · b)ab].

We can therefore study the variation of the first term of (3.10) while the
second is held fixed. It follows from the definition (11.1.47) of the deter-
minant that if a and b are independent of F , or more generally, if a and b
are independent of a · F · b, then

(3.11) a · F · b �→ det F is affine for fixed F − (a · F · b)ab.

In this case, it follows that

(3.12) D(ab) := {a · F · b ∈ R : detF > 0}

is either an open half-line, or a line, or the empty set (even though Lin+ is
not convex). We are suppressing the dependence of D on F . We accord-
ingly set

(3.13) D(ab) =:
(
l−(ab), l+(ab)

)
.

l−(ab) is either −∞ or a finite number; l+(ab) is either ∞ or a finite
number. If D(ab) is empty, we can simply equate l− and l+. By choos-
ing H = ηab in (3.1) and (3.8), we deduce from the Strong Ellipticity
Condition that

(3.14)
(
l−(ab), l+(ab)

)
� a · F · b �→ a · T̂ (F ,z) · b is strictly increasing.

Conditions (3.3) and (3.8) imply that

(3.15)
∂[a · T̂ (F ,z) · b]
∂(a · F · b)

> 0

provided that a and b are independent of a ·F ·b. This condition says that
the ab-component of the first Piola-Kirchhoff stress tensor is an increasing
function of the corresponding component of F . Clearly, we can remove the
restriction in (3.15) that a and b be unit vectors.
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Let us now examine the dynamical significance of the Strong Ellipticity
Condition by classifying the type of (1.4) as a system of partial differential
equations from the viewpoint of wave propagation (see Courant & Hilbert
(1961)). Since such classifications are purely local, we study the behavior
of a solution p for (z, t) near (z0, t0) by studying the linearization of (1.4)
about an equilibrium state with constant deformation F (z0, t0) for a ho-
mogeneous elastic body occupying all space E

3 with constitutive function
F �→ T̂ (F ,z0) and constant density ρ(z0). This linearization has the form

(3.16a) ∇ ·
[
∂T̂

∂F
(F (z0, t0),z0) :

∂u

∂z

]∗
= ρ(z0)

∂2u

∂t2
,

which is most conveniently written in Cartesian components as

(3.16b)
∂T̂i

p

∂F j
q
(F (z0, t0),z0)

∂2uj

∂zq∂zp
= ρ(z0)δij

∂2uj

∂t2
.

We seek solutions of (3.16) in the form of plane waves travelling in direction
n with speed c, i.e., solutions of the form

(3.17) u(z, t) = v(n · z − ct), |n| = 1.

The substitution of (3.17) into (3.16) yields

(3.18)
[
∂T̂i

p

∂F j
q
npnq − c2ρδij

]
(vj)′′ = 0.

For a given n, this equation has a nontrivial solution v′′, i.e., (3.16) admits
a travelling wave in direction n, if and only if the acoustic tensor Q(n)
with components Qij(n) := (∂T̂i

p/∂F j
q)npnq has a positive eigenvalue

c2ρ, which satisfies

(3.19) det
(
Q − c2ρI

)
= 0.

The left-hand side of (1.4) is said to be elliptic at any solution for which
there is a positive solution c2ρ to (3.19). The Strong Ellipticity Condition
ensures that Q, which is not necessarily symmetric, is positive-definite. A
fortiori, it ensures that n ·Q(n) ·n > 0. An application of Theorem 21.2.32
shows that this last condition implies that there is a positive eigenvalue c2ρ
with a corresponding eigenvector v′′ = n (see Truesdell (1966) or Wang &
Truesdell (1973, Sec. 6.3)). Thus the Strong Ellipticity Condition ensures
the existence of a longitudinal travelling wave. Equation (1.4) is hyperbolic
iff for each n, all the eigenvalues of (3.18) are positive and if the corre-
sponding eigenvectors span E

3. The Strong Ellipticity Condition ensures
the positivity of the eigenvalues. If Q(n) is symmetric for all n, then the
Strong Ellipticity Condition also ensures the hyperbolicity of (1.4), which
means that it admits the full range of wave-like behavior. (It can be shown
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that Q(n) is symmetric for all F and n if and only if the material is
hyperelastic (see Wang & Truesdell (1973, Sec. 6.3)).

For further discussion of the Strong Ellipticity Condition for unconstrained materials,
see P. J. Chen (1973), Y.-C. Chen (1991), Hayes (1969), Hayes & Rivlin (1961), Rivlin
& Sawyers (1977, 1978), Rosakis (1990), Simpson & Spector (1983, 1987), Truesdell &
Noll (1965), and Wang & Truesdell (1973).

3.20. Exercise. Convert (3.3) and (3.8) into an equivalent statement about the de-
pendence of Ŝ on C.

The Strong Coleman-Noll Condition is that (3.1) hold

(3.21) ∀ H ∈ Sym \ {O}.

This condition implies several plausible constitutive restrictions and is therefore more
restrictive than any of its consequences. A detailed discussion of the relationship of
these various constitutive assumptions was carried out by Truesdell & Toupin (1963),
augmented versions of which have been given by Truesdell & Noll (1965) and by Wang
& Truesdell (1973). We shall find that the Strong Coleman-Noll Condition is not as
attractive as the Strong Ellipticity Condition for a number of our constructions.

Ericksen (1980a) and elsewhere has pointed out that (3.14), at least for certain com-
ponents, fails to describe phenomena observed in phase transitions in pure crystals.
Those who have studied such problems have typically relaxed conditions like (3.14)
by requiring that they hold everywhere except on a bounded subset of Lin+. See the
references cited at the end of Sec. 6.

We adopt the Strong Ellipticity Condition as our basic constitutive hy-
pothesis for nonlinear elasticity, without endorsing it as the sole avenue
to mechanical truth. Sometimes it is appropriate to supplement it with
additional restrictions, which may be consequences of the Strong Coleman-
Noll Condition. Sometimes it is appropriate to weaken it to describe phase
transitions.

Let us introduce the adjugate tensor

(3.22) F × := [∂(det F )/∂F ]∗ ,

which is the transposed cofactor tensor. For F ∈ Lin+, Eq. (11.2.8b)
implies that

(3.23) F × = (detF )F −1.

An important refinement of the Strong Legendre-Hadamard Condition is
Ball’s Condition of Polyconvexity: There is a convex function

(3.24) Lin+ × Lin+ × (0,∞) � (G,H, δ) �→W ‡(G,H, δ,z) ∈ R

such that

(3.25) W (F ∗ · F ,z) =W ‡(F ,F ×,det F ,z).

Note that the dependence of W on C = F ∗ ·F further restricts the form of
W ‡. The form of the right-hand side of (3.25) implies that the domain of
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W ‡ can be extended to the open 19-dimensional half-space Lin×Lin×(0,∞)
without altering the significance of this equation. On the other hand, the
domain of F �→ W (F ∗ · F ,z) is the nonconvex set Lin+. (The domain
of C �→ W (C,z) is the open convex subset of positive-definite tensors in
Sym.) The Polyconvexity Condition supports the only extant proofs of the
existence of minimizers of the potential energy functional for conservative
static problems.

Morrey (1952, 1966) introduced the concept of quasiconvexity, described by an inte-
gral inequality, and used it to obtain the existence of minimizers of variational problems
corresponding to well-behaved quasilinear elliptic systems, which do not suffer from the
peculiarities of the equations of elasticity associated with the requirement that det F > 0.
It was shown by Ball (1977a,b) that polyconvexity implies quasiconvexity and it was es-
sentially shown by Morrey that quasiconvexity implies rank-one convexity. Šverák (1991,
1992a) showed that rank-one convexity does not imply quasiconvexity, and produced an
example of a frame-indifferent, isotropic, quasiconvex function bounded below that is
not polyconvex. Kristensen (1999) proved that quasiconvexity cannot have a local char-
acterization. Also see Alibert & Dacorogna (1992), Ball (2002), Rosakis & Simpson
(1994), and Šverák (1992b).

Order-preservation for constrained materials. We now study ana-
logs of the Strong Ellipticity Condition for elastic materials subject to a
single material constraint of the form (12.12.1):

(3.26) γ(F (z, t),z) = 0

for which the global constraint principle reduces to the local constraint
principle. (Other cases, important for rod and shell theories, are treated
in Chaps. 16 and 17.) It is convenient to refrain from putting (3.26) into
frame-indifferent form. Corresponding to (12.12.26)–(12.12.28) are consti-
tutive equations of the form T (z, t) = T̂ (F (z, t), λ(z, t),z) where

(3.27) T̂ (F , λ, z) = λ
∂γ

∂F
(F ,z) + T̂A(F , λ, z).

We now extend the Strong Ellipticity Condition (3.1), (3.7) to such
materials by requiring that

(3.28) [T̂ (G + αab, λ, z) − T̂ (G, λ, z)] : ab > 0

for all G ∈ Lin+, ab �= O, α ∈ (0, 1] such that

(3.29a,b) det(G + αab) > 0, γ(G + αab) = 0.

The requirement that (3.29b) hold for all α implies that γF (G+αab) : ab
= 0 for all α. We thus deduce from (3.28) and (3.27) that

(3.30) [T̂A(G + αab, λ, z) − T̂A(G, λ, z)] : ab > 0

for all G, ab �= O, α ∈ (0, 1] such that (3.29) holds. This is the desired
analog of (3.1), (3.7). To get the analog of (3.3), (3.8) when T̂A and γ(·,z)
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are differentiable, we divide (3.30) by α, let α↘ 0, and differentiate (3.29b)
with respect to α at α = 0 to obtain an inequality whose strict form is

ab :
∂T̂A

∂F
: ab > 0 ∀F ∈ Lin+,(3.31)

∀ab �= O such that
∂γ

∂F
(F ,z) : ab = 0.(3.32)

(Note that (3.31) and (3.32) represent a restriction of (3.28) and (3.29)
more radical than the restriction (3.3) and (3.8) of (3.1) and (3.7), because
(3.32) allows ab to be a tangent vector to the constraint manifold, whereas
(3.29) requires that G+αab lie in the constraint manifold for all α ∈ [0, 1].)

Let us now study strong ellipticity for constrained elastic materials from the view-
point of classification, which we again approach by examining travelling waves for the
linearization. We linearize the system (1.2), (3.26), (3.27) about an equilibrium state
with constant deformation F (z0, t0) and constant multiplier λ(z0) for a homogeneous
elastic body occupying all space E3 as above, obtaining a system somewhat more com-
plicated than (3.16) for the linearized displacement u and the linearized multiplier λ�.
We seek solutions of this system in the form of plane waves travelling in direction n
with speed c, i.e., solutions of the form

(3.33) u(z, t) = v(n · z − ct), λ�(z, t) = µ(n · z − ct), |n| = 1,

which satisfy

(3.34a){[
∂T̂Ai

p

∂F j
q

+ λ
∂2γ

∂F i
p∂F j

q

]
npnq − c2ρδij

}
(vj)′′ +

[
∂T̂Ai

p

∂λ
+

∂γ

∂F i
p

]
npµ

′ = 0,

∂γ

∂F i
p
np(vi)′′ = 0.(3.34b)

(Note that we have obtained (3.34b) by adding one extra derivative to v′
i in the lineariza-

tion of (3.26).) For a given n, this system has a nontrivial solution v′′, µ′ if and only if
(3.34) has a positive eigenvalue c2ρ. In this case, the left-hand sides of (1.2) and (3.26)
subject to (3.27) constitute an elliptic operator at the solution p, λ. An examination of
the characteristic equation for (3.34) shows that it is merely quadratic in c2ρ (because
(3.34b) implies that eigenvectors v′′ must lie in the 2-dimensional orthogonal comple-
ment of γF ·n). If the characteristic equation has two positive eigenvalues corresponding
to two independent eigenvectors, then the left-hand sides of (1.2) and (3.26) subject to
(3.27) constitute a strongly elliptic operator at the solution p, λ.

Now let us specialize our attention to hyperelastic materials, for which T̂A is inde-
pendent of λ. We follow Scott & Hayes (1985). Let

(3.35a,b) Qij :=
[
∂T̂Ai

p

∂F j
q

+ λ
∂2γ

∂F i
p∂F j

q

]
npnq , m(n) :=

γF · n

|γF · n|
.

Notice the presence of the multiplier λ in the acoustic tensor Q(n), which is symmetric.
We solve (3.34a) for µ′ by taking the dot product of (3.34a) with m, and substitute the
result into (3.34) to obtain

(3.36a,b) [(I − mm) · Q − c2ρI] · v′′ = o, m · v′′ = 0.

Note that (I − mm) · Q need not be symmetric even though Q is. Nevertheless, (3.36)
has real eigenvalues, as we now show.
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We introduce the modified tensor

(3.37) Q̃ := Q − mm · Q − Q · mm + (m · Q · m)mm

and consider the eigenvalue problem

(3.38a,b) [Q̃ − c2ρI] · v′′ = o, m · v′′ = 0.

It follows from (3.37) that Q̃·m = o, so that (3.38a) is a well-defined eigenvalue problem
on the orthogonal complement of m. Since Q̃ is symmetric, it has two real eigenvalues
ρc2 (not necessarily distinct) with corresponding orthogonal eigenvectors. It also follows
from (3.37) that if (c2ρ, v′′) is an eigenpair of (3.36) if and only if it is an eigenpair of
(3.38). Thus (3.36) has two real eigenvalues with orthogonal eigenvectors.

Let us now take the dot product of (3.36a) with an eigenvector v′′ and use (3.36b)
to obtain

(3.39) v′′ · Q · v′′ = c2ρv′′ · v′′,

from which we conclude that the eigenvalues are positive for all n if Q is positive-definite
for all n, i.e., if

(3.40) ab :
[
∂T̂A

∂F
+ λ

∂2γ

∂F ∂F

]
: ab > 0 ∀ F ∈ Lin+,

subject to (3.32). Thus (3.40) and (3.32), which are not the same as (3.31) and (3.32),
say that the left-hand sides of (1.2) and (3.26) subject to (3.27) constitute a strongly
elliptic operator at the solution p, λ.

We now specialize our study to incompressible elastic media, for which
(3.29a) is automatically satisfied and (3.29b) reduces to

(3.41) det(F + αab) = 1 ∀ α ∈ [0, 1],

which is essentially equivalent to

(3.42)
∂

∂α
det(F + αab) ≡ (F + αab)−∗ : ab ≡ b · (F + αab) · a = 0.

We set α = 0 in (3.42) to get (3.32).
For a careful treatment of the Strong Ellipticity Condition for incom-

pressible media, beginning from the foregoing analysis of travelling waves,
see Zee & Sternberg (1983). Also see Ericksen (1953), Fosdick & Mac-
Sithigh (1986), and Scott (1975).

3.43. Exercise. Show that for hyperelastic incompressible materials, the multiplier
λ = −p can be eliminated from (3.34), so that (3.40) reduces to (3.31), and the Strong
Ellipticity Condition, discussed for arbitrary constraints, can be readily imposed on the
equations everywhere, rather than just at solutions.

In practice, the specializations of conditions (3.28), (3.29) and (3.31),
(3.32) to incompressible materials apply to shear deformations. A straight-
forward and physically natural analysis of problems for incompressible bod-
ies in which there is stretching requires more extensive alterations of the
Strong Ellipticity Condition (see Wissmann (1991)). Note that Ball’s con-
dition is readily specialized to incompressible materials.
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4. Growth Conditions
We now complement the Strong Ellipticity Condition with compatible

growth or coercivity conditions. We assume that if (3.14) holds, then

(4.1)
a · T̂ (F ,z) · b → ±∞ as a · F · b → l±(ab) for fixed F − (a · F · b)ab.

We assume analogous results for incompressible media for those ab satis-
fying (3.42).

For certain analytical work, it is useful to have a more refined description
of the behavior of T̂ under extreme strains. In particular, we might need to
study processes in which a ·F ·b → l±(ab), but for which F −(a ·F ·b)ab is
not fixed. To motivate further growth conditions, we examine the behavior
of an isotropic material point. Let {ek} be a fixed orthonormal basis of
eigenvectors of C(z, t) or, equivalently, of U(z, t). We henceforth suppress
the arguments z, t. Let {Ui} be the corresponding eigenvalues of U . The
isotropy implies that the {ek} are also eigenvectors of R−1 · T̂ (F ,z) =
U · Ŝ(C,z), whose eigenvalues are denoted {Tk}.

Condition (4.1) implies that if U1 and U2 are fixed, then T3 → −∞
as U3 → 0 and T3 → ∞ as U3 → ∞. Under these conditions, it is also
plausible that T1 → −∞ and T2 → −∞ as U3 → 0 and that T1 → ∞
and T2 → ∞ as U3 → ∞. (This property is an extreme version of the
Poisson ratio effect of linear elasticity.) Similar effects are captured by the
statements that if T3 is fixed and if U3 → 0, then (i) U1 → ∞ or T1 → −∞
and (ii) U2 → ∞ or T2 → −∞, and that if T1 and T2 are fixed and if U1 → 0
and U2 → 0, then U3 → ∞. The common feature of each of these effects
is that extreme behavior associated with one direction must always be
accompanied by extreme behavior associated with two other independent
directions. A general statement of this principle, couched in a form that
complements (3.14), is given by Antman (1983a). Roughly speaking, this
principle has the very useful consequence that if it can be shown that
extreme behavior cannot occur in a given direction, then it cannot occur
in any direction. (For a general discussion of the behavior of stress under
extreme strain, see Podio-Guidugli & Vergara Caffarelli (1991).)

For hyperelastic materials, it is customary to strengthen (4.1) by requir-
ing that

(4.2) W (C,z) → ∞ as any eigenvalue of C approaches 0 or ∞,

which is equivalent to the requirement that

(4.3) W (C,z) → ∞ as det C ↘ 0 and as tr C → ∞.

Note that

(4.4) trC = |F |2 = |U |2.
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It is often useful to require that there be numbers a > 1, A > 0, and an
integrable function ϕ such that

(4.5) W (C,z) ≥ A(trC)a/2 − ϕ(z).

This condition, which gives a lower bound for the rate of growth of W for
large C, typically plays an essential role in the applications of the direct
methods of the Calculus of Variations to problems of elasticity. It is typi-
cally accompanied by a complementary condition giving upper bounds for
|∂W/∂C|. (There are circumstances in which (4.5) must be replaced by a
much more sophisticated bound; see Antman (1976a, Sec. 3d)). Conditions
like (4.5) have analogs for Cauchy-elastic materials.

5. Special Constitutive Equations
It can be shown that the constitutive equation (1.9) for an incompressible isotropic

elastic material can be put into the form

(5.1) Σ = −pI + γ1(ι(B), p, z)B + γ−1(ι(B), p, z)B−1

where Σ is the Cauchy stress, and B := F ·F ∗, with ι defined after (1.9). In the special
case that γ1 and γ−1 are independent of ι, the material is hyperelastic so that γ1 and
γ−1 are also independent of p. In this case, (5.1) reduces to the constitutive equation
for a Mooney-Rivlin material:

(5.2) Σ = −pI + µ(z)
[ 1
2 + β(z)

]
B − µ(z)

[ 1
2 − β(z)

]
B−1.

Here µ and β are given moduli. This constitutive equation arises in certain approx-
imation schemes. It gives a reasonable approximation to some experimental data for
rubber. Its primary virtue is that it can greatly simplify the analysis of many problems
of incompressible elasticity, yielding explicit formulas in place of qualitative results. In
the variables of (1.9), Eq. (5.2) becomes

(5.3) T = −pF −∗ + µ
[ 1
2 + β

]
F − µ

[ 1
2 − β

]
F −∗ · C−1.

The special case of (5.2) with β = 0 describes the neo-Hookean material. The Blatz-Ko
material has a very specific stored energy function of the form

(5.4) W = µ(z)(IIC/IIIC + 2
√

IIIC − 5).

It describes some (compressible) foam rubbers.
In linear elasticity, discussed in Sec. 8, there is no distinction between the first Piola-

Kirchhoff stress, the second Piola-Kirchhoff stress, and the Cauchy stress. For isotropic
linearly elastic materials, the stress tensor has the form (cf. (8.14)) λtr E(1)I + 2µE(1)

where E(1) is the linearization of the material strain tensor E := 1
2 (C−I) (cf. (12.2.24))

about the reference configuration and where the given Lamé coefficients λ and µ are
scalar functions of the material point z that satisfy µ > 0, 3λ + 2µ > 0 everywhere.
Many computations for nonlinear problems are carried out for materials with constitutive
functions having a form like that for linear elasticity:

(5.5) Ŝ(C, z) = λ(z)(tr E)I + 2µ(z)E

where λ and µ satisfy the same inequalities. Such materials are sometimes said to be
of St.Venant-Kirchhoff type. While (5.5) is quite reasonable for small deformations, it
does not penalize extreme compressions by any device like (4.1)–(4.3). Moreover, since
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C is quadratic in the derivative of p, the Ŝ of (5.5) is quadratic in this derivative.
There is no general warrant for stresses with this growth, which is a mere artifact of the
choice of strain measure E with respect to which the second Piola-Kirchhoff stress is
taken to be linear. Indeed, nonlinear constitutive functions reducing to that for linear
elasticity can have any of an infinity of the forms obtained by replacing E in (5.5) with
α−1(Cα − I) with α ≥ 1

2 giving any superlinear growth. (See the comments at the
end of Sec. 12.2.) It is commonly argued that that the smallness of the strains that
typically occur for many problems of structural mechanics justify the use of something
like (5.5). As is demonstrated throughout this text, there are many instances in which
problems in which constitutive equations like (5.5) intervene can have extreme strains,
and problems in which the constitutive equations penalize extreme strains have at worst
moderate strains.

5.6. Exercise. Prove that the constitutive function (5.5) does not satisfy the Strong
Ellipticity Condition.

There are a variety of further special constitutive hypotheses based upon experi-
mental evidence or on mathematical simplicity, which we do not pause to discuss. See
Carroll (1988), Ogden (1984, Chap. 7), Truesdell (1952), and Truesdell & Noll (1965,
Secs. 94, 95) for references and evaluations.

6. Existence and Regularity
Desiderata (iii)–(vi) of Sec. 2 deal with questions of existence and regularity. We take

the requirement (iii) that solutions of (1.4) have wave-like behavior and the concomi-
tant need for a precise definition of such behavior as being subsumed under the Strong
Ellipticity Condition, which is intimately related to the hyperbolicity of (1.4). This con-
dition supports the existence theories for initial-value problems and initial-boundary-
value problems for (1.4) for short time of C. Chen & von Wahl (1982), Dafermos &
Hrusa (1985), and Hughes, Kato, & Marsden (1977). Ebin & Saxton (1986), Ebin &
Simanca (1992), and Hrusa & Renardy (1988) have treated the corresponding prob-
lem for incompressible media. Thus desideratum (iv) is met by the Strong Ellipticity
Condition.

The question of existence for the equilibrium equations is somewhat less satisfactory.
(One difficulty is the Lavrentiev effect, in which the infimum of an energy functional
depends critically on the regularity of the admissible class. See Foss, Hrusa, & Mizel
(2003) and the references cited therein.) Of course, equilibrium solutions cannot exist
if there is a net force or moment applied to the body. Ball (1977a,b) was able to make
a significant extension of the techniques of Morrey (1966) to show that if (3.25) and
suitable growth conditions hold, then the potential energy functional has a minimum over
a natural class of admissible functions in an appropriate Sobolev space. The Gâteaux-
differentiability of the potential energy functional at the minimizer would imply that
the minimizer is a weak solution of the Euler-Lagrange equations for the functional, i.e.,
that the minimizer satisfies the Principle of Virtual Power. Results tantalizingly close
to this property are given in the next section.

The requirement that the deformation preserve orientation is one of the main obsta-
cles that has so far prevented the proof of the requisite differentiability. There have been
a number of major advances in determining the regularity properties of minimizers. Cf.
Ball (1980, 1981b), Ball & Murat (1984), Bauman, Owen, & Phillips (1992), Bauman &
Phillips (1994), Giaquinta, Modica, & Souček (1989), and Müller (1990), but this issue
is difficult and far from settled. One interesting result is that of Zhang (1991), who
showed that under certain circumstances the absolute minimizer is the solution given by
the Implicit-Function Theorem, and is therefore smooth. For a comprehensive treatment
of results up to 1987, see Ciarlet (1988). Important advances have even been made for
problems for crystals in which the restricted convexity of the Strong Legendre-Hadamard
Condition is suspended on a bounded set. See Ball & James (1987, 1992), Chipot &
Kinderlehrer (1988), Dacorogna (1981, 1989), Dolzmann (2002), Fonseca (1987, 1988,
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1989a,b), Kinderlehrer & Pedregal (1991), and Modica (1987). We comment on local
existence theories based on the Implicit-Function Theorem at the end of Sec. 14.12. For
a magisterial survey on the present status of existence and regularity theory, see Ball
(2002).

7. Versions of the Euler-Lagrange Equations
Under realistic constitutive restrictions like those discussed above, there has as yet

been no demonstration that the minimizer of the total energy functional for equilibrium
problems satisfies the Euler-Lagrange equations, i.e., is a weak solution of the equilibrium
equations. Now, the satisfaction of the Euler-Lagrange equations in the calculus of
variations is but one of several necessary conditions for a function to be a local minimizer.
We now show that other related necessary conditions hold under further reasonable
constitutive assumptions, and that these physically important conditions are intimately
related to the equilibrium equations.

Let us again set W̃ (F , z) := W (F ∗ · F , z) and in consonance with (4.3) assume that
W̃ (F , z) → ∞ as det F ↘ 0. We assume that W̃ (·, z) is continuously differentiable. We
study materials satisfying the alternative constitutive hypotheses that there is a positive
number K such that

|W̃F (F , z) · F ∗| ≤ K [W̃ (F , z) + 1] ∀ F ∈ Lin+,(7.1)

|F ∗ · W̃F (F , z)| ≤ K [W̃ (F , z) + 1] ∀ F ∈ Lin+,(7.2)

Note that each of these conditions is compatible with (4.3).

7.3. Exercise. Prove that condition (7.2) implies condition (7.1). Hint: Use (11.1.29)
and the symmetry of W̃F (F , z) · F ∗ (a consequence (12.7.27) of the balance of angular
momentum) to show that

(7.4) |W̃F (F , z) · F ∗|2 = [F ∗ · W̃F (F , z)] : [F ∗ · W̃F (F , z)]∗ ≤ |F ∗ · W̃F (F , z)|2.

7.5. Exercise. Let a be a fixed unit vector. Show that

(7.6) W̃ (F , z) := (F · a) · (F · a) + (det F )−1 ≡ a · F ∗ · F · a + (det F )−1

satisfies (7.1) but not (7.2). Hint: Use (11.1.21) and (11.2.8b) to show that

(7.7)

{∂[(F · a) · (F · a)]/∂F } : G = 2[(F · a)a] : G,

W̃F (F , z) · F ∗ = 2(F · a)(F · a) − (det F )−1I,

F ∗ · W̃F (F , z) = 2(F ∗ · F · a)a − (det F )−1I.

To exploit the constitutive restrictions (7.1) and (7.2) below, we first show that they
imply ostensibly more general restictions:

7.8. Lemma. There is a γ > 0 such that

(7.9)
3K [W̃ (H, z) + 1] ≥

{
|W̃F (G · H, z) · H∗| if W̃ satisfies (7.1),

|H∗ · W̃F (G · H, z)| if W̃ satisfies (7.2)

∀ H,G ∈ Lin+ with |G − I| < γ.

Proof. We merely establish the first alternative, the proof of the second being analogous.
Let |G − I| < γ and define G(σ) := σG + (1 − σ)I for σ ∈ [0, 1]. Then

(7.10)

G(σ)−1 = I − [G(σ) − I]G(σ)−1 = I − σ[G − I]G(σ)−1,

|G(σ)−1| ≤ |I| + |G − I| |G(σ)−1| ≤
√

3 + γ|G(σ)−1|,

|G(σ)−1| ≤ 2 if γ ≤ 1 −
√

3
2
.
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Let γ satisfy this last inequality. Then the identity A : (B · C) = (A · C∗) : B from
(11.1.30) and the constitutive assumption (7.1) imply that
(7.11)
W̃ (GH, z) − W̃ (H, z)

=
∫ 1

0

d

dσ
W̃ (G(σ)H, z) dσ =

∫ 1

0
W̃F (G(σ) · H, z) : [(G − I) · H] dσ

=
∫ 1

0
W̃F (G(σ) · H, z) : [((G − I) · G−1) · (G · H)] dσ

=
∫ 1

0
[W̃F (G(σ) · H, z) · (G · H)∗] : [(G − I) · G−1] dσ

≤ K
∫ 1

0
[W̃ (G(σ) · H, z) + 1] |G − I| |G−1| dσ ≤ 2Kγ

∫ 1

0
[W̃ (G(σ) · H, z) + 1] dσ.

Therefore

(7.12) sup{W̃ (GH, z) : |G − I| < γ}
≤ W̃ (H, z) + 2Kγ [sup{W̃ (GH, z) : |G − I| < γ} + 1].

Let us now take γ ≤ 1 −
√

3
2 ,

1
6K

. Then (7.12) yields

(7.13) W̃ (GH, z) ≤ 3
2 W̃ (H, z) + 1

2 ,

and (7.1) implies that

(7.14)
|W̃F (G · H, z) · H∗| ≡ |W̃F (G · H, z) · (G · H)∗ · G−∗|

≤ K [W̃ (G · H, z) + 1]|G−∗| ≤ 3K [W̃ (H, z) + 1]. �

Our basic result is

7.15. Theorem (Ball (2002)). Let W̃ (F , z) → ∞ as det F ↘ 0 and let W̃ (·, z) be
continuously differentiable. Suppose for simplicity of exposition that ∂B = S0 ∪ S3 with
S0 ∩ S3 a locally finite collection of Lipschitz continuous curves (see Sec. 12.8) and that
Ω and ω of (1.12) are linear in p and continuous in z. Let p be a local W 1

α-minimizer
of the potential energy functional Π of (1.13b) over

(7.16) A := {p ∈ W 1
α(B) : Π [p] < ∞, p(z) = p̄(z) for z ∈ S0}, α ≥ 1.

(Such a local minimizer has the defining property that there is an ε > 0 such that
Π [r] ≥ Π [p] for all r ∈ A, ‖r − p, W 1

α(B)‖ ≤ ε.) If W̃ satisfies (7.1), then p satisfies

(7.17)
∫

B
[W̃F (pz(z), z) · pz(z)∗] : ζy(p(z))dv(z)

+
∫

B
Ωp(z) · ζy(p(z)) dv(z) +

∫
S3

ωp(z) · ζy(p(z)) da(z) = 0

for all continuously differentiable y �→ ζ(y) on p(cl B) that are bounded and have
bounded derivatives on p(cl B), and that vanish on p(S0) (in the sense of trace). If
W̃ satisfies (7.2), then p satisfies both (7.17) and

(7.18)

∫
B

{[W̃ (pz , z)I − p∗
z ·WF (pz , z)] : ηz + W̃z(pz , z) · η} dv

+
∫

B
{Ω(p, z)I : ηz + Ωz(p, z) · η} dv

+
∫

S3

{ω(p, z)I : ηz + ωz(p, z) · η − ω(p, z)(ν · η)z} da = 0

for all bounded continuously differentiable η on cl B that vanish on ∂B.
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To appreciate the significance of (7.17), let us suppose that B is bounded, that
p : B → p(B) is a homeomorphism with inverse q (cf. Sec. 12.15) and that the change-
of-variables formulas∫

B
f (p(z)) det pz(z) dv(z) =

∫
p(B)

f (y) dv(y),(7.19a) ∫
S3

g((p(z)) det pz(z)|pz(z)−∗ · ν(z)| dv(z) =
∫

p(S3)
g(y) da(y)(7.19b)

hold when f and g are measurable on their domains and one of the integrals in each of
(7.19a,b) exists. (Sufficient conditions for (7.19) to hold are given by Ball (1981b) and
Šverák (1988)). In this case, (12.15.31)–(12.15.34) imply that (7.17) is equivalent to

(7.20)
∫

p(B)
Σ(y) : ζy(y)dv(y) +

∫
p(B)

det pz(q(y))Ωp(q(y)) · ζy(y) dv(y)

+
∫

p(S3)

ωp(q(y)) · ζy(y)

det(pz(q(y))|p−∗
z (q(y)) · ν(q(y))|

da(y) = 0

where Σ is the Cauchy stress, given by (12.15.34), det pz(q(y))Ωp(q(y)) is the body
force per unit actual volume at y, ν(z) is the unit outer normal to S3 at z, and
ωp(q(y))/ det(pz(q(y))|p−∗

z (q(y)) · ν(q(y))| is the surface traction per actual area at
y in p(S3). Thus (7.20) is the just the weak form (Principle of Virtual Power) for the
equilibrium equation in the spatial formulation.

The factor W̃ (pz , z)I − p∗
z ·WF (pz , z) in the integrand of the first integral of (7.18)

is the Eshelby (or energy-momentum) tensor, which plays an important role in problems
of fracture and of coexistent phases (cf. Gurtin (2000a)).

Proof of Theorem 7.15. We first establish (7.17). Let ζ have the indicated properties.
For sufficiently small |ε| define

(7.21) r(z, ε) := p(z) + εζ(p(z)) so that rz(z, ε) := [I + εζy(p(z))] · pz .

Thus (for small enough ε), det rz(z, ε) > 0 a.e. because pz has this property. Therefore
r(·, ε) ∈ A or else Π [r(·, ε)] = ∞. Since ‖r(·, ε) − p, W 1

α(B)‖ → 0 as ε → 0 and since p
is a local W 1

α-minimizer, it follows that Π [r(·, ε)] ≥ Π [p]. Now

1
ε
{Π [r(·, ε)] −Π [p]}

=
1
ε

∫
B

∫ 1

0

d

dθ
W̃ ([I + θεζy(p(z))] · pz(z), z) dθ dv(z)

+
1
ε

∫
B
Ωp(z) · εζy(p(z)) dv(z) +

1
ε

∫
S3

ωp(z) · εζy(p(z)) da(z)

=
∫

B

∫ 1

0
W̃F ([I + θεζy(p(z))] · pz(z), z) : [ζy(p(z)) · pz(z)] dθ dv(z)

(7.22)

+
∫

B
Ωp(z) · ζy(p(z)) dv(z) +

∫
S3

ωp(z) · ζy(p(z)) da(z).

Using the identity (11.1.30) and the first alternative of (7.9), we find that

(7.23) |W̃F ([I + θεζy(p(z))] · pz(z), z) : [ζy(p(z)) · pz(z)]|
≤ const|W̃F ([I + θεζy(p(z))] · pz(z), z) · p∗

z(z)| ≤ 3K [W̃ (pz(z), z) + 1],

which is integrable. Thus the Lebesgue Dominated-Convergence Theorem implies that
the third-to-last integral in (7.22) and therefore (7.22) itself converge to the obvious



508 13. 3-DIMENSIONAL THEORY OF NONLINEAR ELASTICITY

limits as ε → 0. Since the left-hand side of this equation is positive or negative depending
on the sign of ε, the limit of the right-hand side must be 0, and this is (7.17).

We now establish (7.18) by similar means (cf. Bauman, Owen, & Phillips (1991)). Let
η be continuously differentiable, be bounded, and vanish on ∂B. Consider the equation

(7.24) h(u, ε) := u + εη(u) = z.

Clearly h(·, ε) is continuously differentiable on cl B and agrees with the identity I ≡
h(·, 0) on ∂B. If z ∈ ∂B, then (7.24) has a unique solution u, namely, u = z. If z is
in the interior of B, then h(u, 0) − z ≡ u − z cannot vanish for u ∈ ∂B. Therefore by
the boundary dependence of the Brouwer degree (Prop. 21.2.12), h(·, ε) has the same
degree as h(·, 0) ≡ I, which is 1. Thm. 21.2.2 then implies that (7.24) has at least one
solution. For |ε| sufficiently small, h(·, ε) is strictly monotone, and so (7.24) has exactly
one solution u (cf. Theorem 21.2.30), which we denote by ũ(z, ε).

We now define

(7.25) p̃(z, ε) := p(ũ(z, ε))

so that

(7.26) p̃z(z, ε) = pz(ũ(z, ε)) · ũz(z, ε) ≡ pz(ũ(z, ε))[I + εηu(ũ(z, ε))]−1 a.e.

Since p ∈ W 1
α, it follows that ‖p̃(·, ε)−p, W 1

α(B)‖ → 0 as ε → 0. The change of variables
(7.25) yields

(7.27)

Π [p̃(·, ε)] =
∫

B
W̃ (pz(u) · [I + εηu(u)]−1,u + εη(u)) det(I + εηu(u)) dv(u)

+
∫

B
Ω(p(u),u + εη(u)) det(I + εηu(u)) dv(u)

+
∫

S3

ω(p(u),u + εη(u)) det(I + εηu(u))
|[I + εη∗

u(u)] · ν(u + εη(u))|
da(u).

By imitating the proof of (7.17), we obtain that of (7.18). �

The following proposition gives an illuminating consequence of (7.1) (and of (7.2)),
worth including merely for the method of proof.

7.28. Proposition. If W̃ satisfies (7.1), then there are positive numbers M, µ such
that

(7.29) W̃ (F , z) ≤ M (|F |µ + |F −1|µ) ∀ F ∈ Lin+.

Proof. Let B ∈ Lin+ be symmetric and let τ ∈ [0, 1]. Then

(7.30)
d

dτ
|W̃ (eτB , z) + 1| ≤

∣∣∣ d
dτ
W̃ (eτB , z)

∣∣∣ = |W̃F (eτB , z) : [eτB · B]|

= |[W̃F (eτB , z) · eτB ] : B| ≤ K |W̃ (eτB , z) + 1| |B|

where the first inequality is standard from the theory of ordinary differential equations
(see Hale (1969), e.g.), the second equality follows from the identity (11.1.30) and from
the symmetry of B, and the second inequality follows from (7.1). This is a linear
differential inequality for W̃ (eτB , z) + 1 whose solution is delivered by the Gronwall
inequality

(7.31)
W̃ (eτB , z) + 1 ≤ eK|B|t[W̃ (e0B , z) + 1]

so that W̃ (eB , z) + 1 ≤ eK|B|[W̃ (I, z) + 1].
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Now set B = ln U where U is symmetric and positive-definite. (The logarithm of a
symmetric tensor is defined by its power series through its spectral decomposition; See
(11.1.45).) Let u1, u2, u3 be the eigenvalues of U . Since

(7.32) | ln U | =

[ 3∑
k=1

(ln uk)2
]1/2

≤
3∑

k=1

| ln uk|,

and since

(7.33) eK| ln u| =

{
eK ln u if u ≥ 1

eK ln(u−1) if u ≤ 1

}
≤ eK ln u + eK ln(u−1) = uK + u−K ,

it follows from the inequality abc ≤ 1
3 (a3 + b3 + c3) that

(7.34)

eK| ln U| ≤ (uK
1 + u−K

1 )(uK
2 + u−K

2 )(uK
3 + u−K

3 )

≤ 4
3 (u3K

1 + u3K
2 + u3K

3 + u−3K
1 + u−3K

2 + u−3K
3 )

≤ 4
3 (|U |3K + |U−1|3K).

Thus (7.31) implies that

(7.35) W̃ (U , z) ≤ M (|U |3K + |U−1|3K), M := 4
3 [max

z
W (I, z) + 1].

Let F have the polar decomposition F = R · U where R is a rotation tensor. Since the
definition of W̃ implies that W̃ (F , z) = W (U ·U , z) = W̃ (U , z), we can replace U with
R∗F in (7.35) to obtain (7.29). �

The results of this subsection are based on Ball’s (2002) refinement of Ball (1983).

8. Linear Elasticity
To obtain the equations of linear elasticity, we study a family of initial-

boundary-value problems of nonlinear elasticity depending on a small pa-
rameter ε. When ε = 0, the problem has a solution corresponding to
a natural reference configuration. The equations of linear elasticity are
formally obtained as the first perturbation of the initial-boundary-value
problem with respect to ε. The process is the same as that of Sec. 2.8.

Let ε be a small number. We accordingly consider (1.1)–(1.4) subject
to the following restrictions: The body force intensity has the form

(8.1) f(z, t) = εf (1)(z, t)

where f (1) is independent of ε. For simplicity of exposition, we assume
that ∂B = S0 ∪ S3 with S0 ∩ S3 = ∅ (see (12.8.1)) and with S0 and S3
independent of t. The boundary conditions are required to have the form

p(z, t) = z + εp̄(1)(z, t) for z ∈ S0,(8.2a)

T (z, t) · ν(z) = ετ̄ (1)(z, t) for z ∈ S3(8.2b)

where p̄(1) and τ̄ (1) are independent of ε. The initial conditions are required
to have the form

(8.3) p(z, 0) = z + εu(1)
◦ (z), pt(z, 0) = εv(1)

◦ (z)
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where u
(1)
◦ and v

(1)
◦ are independent of ε. (We could replace the right-hand

sides of (8.1)–(8.3) with any continuously differentiable functions of ε that
vanish at ε = 0.) The natural state is required to be stress-free:

(8.4) Ŝ(I,z) = O.

We seek solutions of the initial-boundary-value problem (1.1)–(1.4) sub-
ject to (8.1)–(8.4) in the form

(8.5) p(z, t, ε) = z + εp(1)(z, t) +
ε2

2 !
p(2) + · · · .

The number of terms in this finite Taylor expansion is one less than the
number of derivatives of Ŝ. We expand all the other variables of the initial-
boundary-value problem in a similar form.

We now differentiate each equation of the initial-boundary-value prob-
lem with respect to ε and then set ε = 0. We denote the components of
SC(I,z) by Hijkl. In view of (8.4), we obtain

C(1) ≡ 2E(1) ≡ p(1)
z +

(
p(1)

z

)∗
,(8.6)

∇ · S(1) + f (1) = ρp(1)
tt ,(8.7)

S(1)(z, t) = SC(I,z) : C(1)(z, t) or S(1)ij = HijklE
(1)
kl ,(8.8)

p(1)(z, t) = p̄(1)(z, t) for z ∈ S0,(8.9a)

S(1)(z, t) · ν(z) = τ̄ (1)(z, t) for z ∈ S3,(8.9b)

p(1)(z, 0) = u
(1)
◦ (z), p

(1)
t (z, 0) = v

(1)
◦ (z).(8.10)

Eqs.(8.6)–(8.10) constitute the initial-boundary-value problem for linear
elasticity.

8.11. Exercise. Show that

(8.12) H ijkl = H jikl = H ijlk

so that there can be at most 32 independent components in the 81 components {H ijkl}.
Show that if the material is hyperelastic (see (1.10a)), then

(8.13) H ijkl = Hklij ,

in which case there can be at most 21 independent components among {H ijkl}. Show
that if the material is isotropic, then there are scalar-valued functions λ and µ of z,
called the Lamé coefficients, such that (8.8) reduces to

(8.14) S(1) = λ(tr E(1))I + 2µE(1).

It is customary in linear elasticity to require that (8.13) hold and that H ijklE
(1)
ij E

(1)
kl

be a positive-definite quadratic form. This second requirement is a local version of the
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convexity of the stored-energy for nonlinear hyperelasticity. It is consequently more
restrictive than the strong Legendre-Hadamard condition. It is physically reasonable
because it only applies to the derivative of the constitutive function Ŝ at the natural
state.

8.15. Exercise. Find necessary and sufficient conditions on λ and µ for the quadratic
form H ijklE

(1)
ij E

(1)
kl to be positive-definite when (8.14) holds.

For discussions of the lack of frame-indifference in linear elasticity, see Fosdick &
Serrin (1979) and Casey & Naghdi (1985).

The theory of linear elasticity is in a very satisfactory state of completion. There is
an extensive literature. The definitive exposition of the theory is that of Gurtin (1972).
Standard comprehensive texts include the works of Love (1927), Lur’e (1970), Sokol-
nikoff (1956), and Timoshenko & Goodier (1951). A representative sampling of other
works, showing the breadth of analytical work on the subject and having extensive bib-
liographies, would include Achenbach (1973), Carlson (1972), Fichera (1972a,b), Knops
& Payne (1971), Kupradze (1965), Kupradze et al. (1979), Lur’e (1964), Muskhelishvili
(1963), Parton & Perlis (1984), and Villaggio (1977).

9. Viscous Dissipation
The hyperbolic equations of motion of nonlinear elasticity provide severe challenges

to analysis because they are susceptible to shocks. Consequently the existence theories
for initial-value problems discussed in Sec. 6 are confined to short times. I know of no
such theories global in time, which must account for shocks, for three space dimensions.
(Theories for 1-dimensional problems, which are commented on in Chap. 18, are in a
much more satisfactory but nevertheless incomplete state.) The introduction of strong
dissipative and regularizing mechanisms typically leads to equations that both capture
important physical features and are more amenable to mathematical analysis. Here we
describe the mathematically simplest of such mechanisms, that of viscous dissipation,
contrasting its treatment of order-preservation with that for nonlinear elasticicty dis-
cussed in Sec. 3. See Secs. 8.8 and 8.9 for discussions of viscous dissipation in rod
theories.

In Secs. 12.10 and 12.11 we identified a material of strain-rate type (of complexity
1) as having a frame-indifferent constitutive equation of the form

(9.1) T (z, t) = T̂ (F (z, t),Ft(z, t), z) = F (z, t) · Ŝ(C(z, t),Ct(z, t), z)

where Ct = F ∗
t · F + F ∗ · Ft. There is not an extensive theory on the specific form

of such constitutive equations. Various models for (9.1) are influenced by the Navier-
Stokes equations for compressible viscous fluids, which in the spatial notation of Sec.
12.15 have the form

(9.2) Σ(y, t) = −p(ρ̆(y, t)) + λdiv v̆(y, t) + µ(ρ̆(y, t))[v̆y(y, t) + v̆y(y, t)∗]

where µ > 0, 3λ + 2µ > 0. These constitutive equations, in their spatial formulation
are invariant under rigid motions. The naive transfer of ideas on dissipation from fluids
to solids, unfortunately common at least in the mathematical literature, can lead to
physically unacceptable models (cf. Antman (1998)) as the next exercise shows.

9.3. Exercise. Let λ and µ be constants. Prove that the constitutive equation

(9.4) T (z, t) = λtr (Ft(z, t))I + µ(Ft + F ∗
t )

is not invariant under rigid motions.

In (3.14) and (3.15) we obtained a physical interpretation for the Strong Ellipticity
Condition. An analogous interpretation would be meaningful for the dependence of T̂
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on its second argument Ḟ governed the Strong Ellipticity Condition. To the best of
my knowledge, no analysis has even employed such a dependence. Fortunately, without
violating frame-indifference T̂ can satisfy the far more restrictive condition that it be a
strictly monotone function of Ḟ . This condition is that

[T̂ (F , Ḟ + Ḣ, z) − T̂ (F , Ḟ , z)] : Ḣ > 0(9.5)

∀ Ḟ , ∀ Ḣ 
= O, ∀ F ∈ Lin+(9.6)

(cf. (3.1), (3.2)).
We now put (9.5) into a simple frame-indifferent form by using (9.1), showing that

(9.5) is consistent with frame-indifference. Set

(9.7a,b) Ċ := Ḟ ∗ · F + F ∗ · Ḟ , K̇ := Ḣ∗ · F + F ∗ · Ḣ

The substitution of the second version of (9.1) into (9.5) yields

(9.8)

{F · [Ŝ(C, Ċ + K̇, z) − Ŝ(C, Ċ + K̇, z)]} : Ḣ

≡ [Ŝ(C, Ċ + K̇, z) − Ŝ(C, Ċ + K̇, z)] : (F ∗ · Ḣ)

≡ 1
2 [Ŝ(C, Ċ + K̇, z) − Ŝ(C, Ċ, z)] : K̇ > 0,

the first equality following from a tensor identity and the second from the symmetry of
Ŝ.

Now we assert that given an arbitrary K̇ and an arbitrary F ∈ Lin+, there exists an
Ḣ satisfying (9.7b). This equation is a linear equation in the space of tensors endowed
with the inner product ‘:’. The Alternative Theorem in the form of Corollary 19.2.19
says that this equation has a solution Ḣ if and only if K̇ is orthogonal to the null space
of the adjoint of the linear transformation Ḣ �→ Ḣ∗ · F + F ∗ · Ḣ =: A : Ḣ in the space
L(Lin,Lin) of fourth-order tensors X �→ D : X. The adjoint D† of D is defined in
analogy with (11.6a) by Y : (D : X) = X : (D† : Y ) for all X,Y . To find the adjoint
of A, we use components to find that

(9.9) Y : (Ḣ∗ · F + F ∗ · Ḣ) ≡ Ḣ : (Y · F ∗ + Y ∗ · F ∗) =: Ḣ : (A† : Y ).

The null space of A† consists of all Y for which (Y + Y ∗) · F ∗ = O. Since F is
nonsingular, it consists of all skew Y . Since K is symmetric, it is orthogonal to all such
Y . Thus (9.7b) has a solution (which is not unique because the null space of A† is not
trivial). Thus we conclude that if T̂ is a strictly monotone function of Ḟ , then (9.8)
holds for all K̇ 
= O and for all positive-definite and symmetric C, i.e., Ŝ is strictly
monotone in Ċ.

One easy way to construct such a constitutive function is to assume that there is
a scalar potential Ω such that Ŝ(C, Ċ, z) − Ŝ(C,O, z) = ΩĊ(C, Ċ, z) with Ω convex
in Ċ. There seems to be no compelling physical warrant for such an assumption—it is
not a consequence of our thermodynamic theory, although one may wish to study such
systems and may find that such assumptions are physically or mathematically useful;
cf. Ziegler & Wehrli (1987).

The equations of viscoelasticity of strain-rate type satisfying (9.5) are said to be
parabolic-hyperbolic (just as are the Navier-Stokes equations for compressible viscous
fluids). Such equations, which play a fundamental role in the study of quasilinear hy-
perbolic systems, have recently undergone intensive study, especially for those with but
one spatial variable. See Hsiao (1997), Liu & Zeng (1997), Racke & Zheng (1997), and
Zheng (1995). For applications to stability issues, see Antman & Koch (2000), Koch
& Antman (2001), Potier-Ferry (1982), and Xu & Marsden (1996). For mathemati-
cal treatments of weaker dissipative mechanisms, see Renardy, Hrusa, & Nohel (1987).
Some of these issues are discussed further in Chap. 18.



CHAPTER 14

Problems in Nonlinear Elasticity

In this chapter we study restricted classes of solutions of several equilib-
rium and dynamical problems for elastic bodies, which enjoy a number of
symmetries. They are governed by equations with fewer independent vari-
ables and are consequently far easier to analyze than the original system
of quasilinear partial differential equations. We can thus derive important
physical insights into the behavior of nonlinearly elastic materials. We also
obtain a collection of quite specific solutions about which we can perform
illuminating perturbation analyses. We begin with problems in Cartesian
coordinates and then devote most of our attention to problems that are in-
variant under changes of the cylindrical coordinates φ and z or of spherical
coordinates φ and θ. Many of these problems are semi-inverse problems,
in which the form of the deformation is restricted a priori, and some of the
data are left free to accommodate the restricted deformation. See Chap. 18
for other dynamical problems.

1. Elementary Static Problems
in Cartesian Coordinates

We first study two problems of compression. Let A be a closed simply-
connected region in the {i, j}-plane. Let the reference configuration of a
homogeneous isotropic nonlinearly elastic body be the cylindrical segment

(1.1) {z = xi + yj + zk : xi + yj ∈ A, 0 ≤ z ≤ 1}.

This body is placed in a rigid cylindrical container with bottom A and
with lateral boundary L := {(xi + yj + zk) : xi + yj ∈ ∂A, 0 ≤ z ≤ 1}.
The bottom and sides are assumed to be perfectly lubricated so that the
tangential components of traction on them are zero:

(1.2) k × T (z) · k = o for z ∈ A, k · T (z) · ν(z) = 0 for z ∈ L

where ν is the unit outer normal vector to L. A perfectly lubricated rigid
plate (piston) is placed upon the material surface z = 1 and a compressive
force −Λk is applied to the plate, with the plate held horizontal (i.e.,
perpendicular to k). We are to find an equilibrium state of the body under
zero body force. We seek a solution in which the material points on the
bottom and lateral surface of the body stay in contact with the bottom and
lateral surface of the container and in which the material points of the top

513
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of th body stay in contact with the plate. Thus we supplement (13.1.2)
with the mechanical boundary condition

(1.3)
∫

A
T (xi + yj + k) · k dx dy = −Λk

and with geometrical boundary conditions

(1.4)
k × [p(z) − z] = o for z ∈ L,

p(xi + yj) · k = 0, p(xi + yj + k) · k = c,

where c is the constant height of the top in the k-direction, expected to be
less than 1, and to be found in terms of Λ. It would be presumptuous at
this stage to suppose that the pointwise traction on the top is constant, i.e.,
to replace the boundary condition (1.3) with T (xi + yj + k) · k = Λ/a(A).
(For the particular solution we now obtain, we justify this replacement a
posteriori, but such a justification cannot be expected in general.)

We seek a solution in the form

(1.5) p(z) = xi + yj + czk,

which satisfies the position boundary conditions. Since this function is lin-
ear, the stresses are constant, so that the equilibrium equations are identi-
cally satisfied. From (13.1.5) and (13.1.7) we immediately get

F = ii + jj + ckk, C = ii + jj + c2kk, E = 1
2 (c2 − 1)kk,(1.6)

T = (α0 + α1 + α2)(ii + jj) + T (c)kk,(1.7a)

T (c) := α0c+ α1c
3 + α2c

5(1.7b)

with the α’s depending on the principal invariants of C and thus on c. It
follows from (1.7) that the traction boundary conditions (1.2) are satisfied.
The Strong Ellipticity Condition implies that T is an increasing function
of its argument c, so that the equation

(1.8) T (c) = −Λ

has at most one solution c, while (13.4.1) implies that it has a solution,
with c > 0.

It is instructive to examine (1.8) for the St.Venant-Kirchhoff material (13.5.5), for
which T reduces to 1

2 (λ + 2µ)c(c2 − 1). This T is not increasing (which gives a specific
answer to Ex. 13.5.6), so for given positive Λ, there could be multiple c’s, and what is
even worse, a total compression, with c = 0, is maintained by Λ = 0, and changes of
orientation with c < 0 can be maintained by finite loads Λ, some of which are negative!

A close relative of the St.Venant-Kirchhoff material (13.5.5), likewise inspired by
linear elasticity, is that in which the Cauchy stress Σ = [det F ]−1T ·F ∗ (see (12.15.34))
depends on the spatial strain tensor Ĕ = 1

2 (I −F −∗ ·F −1) (see (12.15.14)) in the same
way S that depends of E in (13.5.4):

(1.9a) Σ = λ(tr Ĕ)I + 2µĔ,

i.e.,

(1.9b) T = 1
2 det F [λ tr (I − F −∗ · F −1)I + 2µ(I − F −∗ · F −1)] · F −∗.
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For our problem, (1.9) yields

(1.9c) T (c) = 1
2 (λ + 2µ)(1 − c−2),

This function is an increasing function of c that has the virtue of going to −∞ as c → 0.
Thus (1.8) has a unique solution with 0 < c < 1 for each positive Λ. The virtues of
the constitutive function (1.9b) in compression are compensated for by its very special
behavior in tension, incompatible with (13.4.1) and (13.4.2) (but not utterly unrea-
sonable for plastic behavior in quasistatic monotonic loading). Whatever advantages
and disadvantages (13.5.5) or (1.9) and their ilk have for specific problems are purely
fortuitous: These models, unlike some others described in Sec. 13.5, have largely been
chosen for their ostensible mathematical advantages, and not for experimental accuracy.

1.10. Exercise. Formulate and analyze the problem just treated for general materials,
but now with the boundary conditions on L replaced with the requirement that L be
traction-free: T · ν = o on L. Allow Λ to be any real number. In particular, seek a
solution of the form p(z) = b(xi + yj) + ck with b and c constants. Discuss what the
Strong Ellipticity Condition and growth conditions say and fail to say about solving for
the unknown constants b and c in terms of Λ.

1.11. Exercise. Let a homogeneous isotropic unconstrained rectangular elastic prism
{z : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, −∞ < z < ∞} suffer the static simple shear deformation
(12.5.1) under zero body force. Determine the tractions on the boundary necessary to
maintain this deformation when there is no body force. This is an inverse problem. Show
how the tractions depend on K when K is small. In particular, expand the tractions in
powers of K and determine the terms of second and third order, which correct that of
first order.

1.12. Exercise. A homogeneous isotropic incompressible rectangular hyperelastic
prism {z : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, −∞ < z < ∞} has its bottom y = 0 welded to the
horizontal {i, k}-plane, so that

(1.13a) p(xi + zk) = xi + zk,

has its top y = 1 welded to a rigid plate, kept horizontal at height 1 and prevented
from moving in the k-direction, that is subject to a prescribed force Λi per unit of z in
the i-direction (and subject to whatever forces in the j- and k-directions are needed to
maintain the kinematic constraints), so that

(1.13b) p(xi + j + zk) = (x + K)i + j + zk,

∫ 1

0
i · T (xi + j + zk) · j dx = Λ

where K is a constant to be determined, and has traction-free sides {z : x = 0} and
{z : x = 1}, so that

(1.13c) T (yj + zk) · i = o = T (i + yj + zk) · i.

Discuss the solvability of this problem, and compare its solvability to that for the same
problem for a compressible body.

2. Torsion, Extension, Inflation,
and Shear of an Annular Sector

We introduce the cylindrical material coordinates x := (s, φ, z), denote
the reference position of the material point with coordinates x by z̃(x),
and study the deformations described by (12.5.9)–(12.5.19):

(2.1) p̃(x) = f(s)k1(x) + [h(s) + γφ+ δz]k3,
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F (z̃(x)) = [f ′(s)k1(x) + f(s)g′(s)k2(x) + h′(s)k3]j1(φ)(2.2)

+ s−1[αf(s)k2(x) + γk3]j2(φ) + [βf(s)k2(x) + δk3]j3

=: F i
q(s)ki(x)jq(φ),

C = [(f ′)2 + (fg′)2 + (h′)2]j1j1 + s−1[αf2g′ + γh′](j1j2 + j2j1)(2.3)

+ [βf2g′ + δh′](j1j3 + j3j1) + s−2[(αf)2 + γ2]j2j2

+ s−1[αβf2 + γδ](j2j3 + j3j2) + [(βf)2 + δ2]j3j3

=: Cpq(s)jp(φ)jq(φ)

where

j1(φ) ≡ j1(φ) := cosφ i1 + sinφ i2,

j2(φ) ≡ j2(φ) := − sinφ i1 + cosφ i2,(2.4)

j3 ≡ j3 := i3,

k1(x) ≡ k1(x) := cosω(x)i1 + sinω(x)i2,

k2(x) ≡ k2(x) := − sinω(x)i1 + cosω(x)i2,
(2.5)

k3 ≡ k3 := i3,

ω(x) := g(s) + αφ+ βz.

Note that each component of F and C depends only on s.
Using (12.5.13), we find that

(2.6) ∇ ≡ ∂

∂z
=
∂x̃l

∂z
(z̃(x))

∂

∂xl
= j1(φ)

∂

∂s
+

1
s
j2(φ)

∂

∂φ
+ j3 ∂

∂z
.

We shall apply the divergence operator based on (2.6) to the first Piola-
Kirchhoff stress tensor to get the equations of equilibrium. Let us decom-
pose T like F :

(2.7) T (z̃(x)) = Ti
q(x)ki(x)jq(φ).

Unconstrained media. We first look at unconstrained media, assuming
that the constitutive functions (13.1.3) are such that the components of T
in (2.7) depend only on s.

2.8. Exercise. Let (2.1) hold. Show that if Ŝ is independent of φ and z and if (13.1.7)
holds, then the components ki(x) ·T̂ (F (z̃(x), s) ·jq(φ) are independent of φ and z. (The
isotropy condition is sufficient, but not necessary for this property to hold: There are
many aeolotropic materials whose aeolotropy respects the translation-invariance of the
problem under changes of φ and z. See Sec. 10.3.)

2.9. Exercise. Let (2.1) hold. Show that if the components of T in (2.7) depend on x

only through s, and if (2.1)–(2.5) hold, then the equations of equilibrium for zero body
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force, i.e., the components of ∇ · T ∗ = o, reduce to the system of ordinary differential
equations:

d

ds
(sT1

1) = K := sT2
1g′(s) + αT2

2 + βsT2
3,(2.10)

d

ds
(sT2

1) + sT1
1g′(s) + αT1

2 + βsT1
3 = 0,(2.11)

d

ds
(sT3

1) = 0.(2.12)

2.13. Exercise. Find the three nontrivial components of the symmetry condition
(12.7.27), one of which is

(2.14) f
[
T1

1g′ +
α

s
T1

2 + βT1
3
]

= f ′T2
1.

The substitution of (2.14) into (2.11) yields

(2.15)
d

ds
(sfT2

1) = 0.

We may now substitute our constitutive equations for unconstrained ma-
terials into (2.10), (2.15), and (2.12) to get a system of three second-order
ordinary differential equations for f, g, h, α, β, γ, δ. We shall append suit-
able subsidiary conditions to this system.

Incompressible media. The requirement that detF = 1, which charac-
terizes incompressibility, is reduced by (2.2) to

(2.16) s−1f(s)f ′(s) = κ := (αδ − βγ)−1

(see (12.5.19)), whence we obtain

(2.17) f(s) =
√
κs2 + λ

where λ is a constant of integration. Thus the form of f is quite explicit.
In line with our treatment of unconstrained materials, we assume that

the constitutive function (13.1.6) implies that the components of F · ŜA

with respect to the basis {kijq} depend only on s. Isotropy ensures this
independence. The remaining contributor to the first Piola-Kirchhoff stress
in (13.1.6) is the pressure term −p(x)F (z̃(x))−∗. Since p is unknown, we
cannot automatically assume that it is independent of φ and z. Perhaps the
easiest way to obtain F −1 is to employ Cramer’s Rule to find the inverse of
the matrix of F with respect to the basis used in (2.2) and then to observe
that this inverse is the matrix of F −1 with respect to the transposed dual
{jqk

i} of the basis {kij
q}. (Since the bases {jp} and {ki} are orthonormal,

they are their own duals. We retain the distinction in the positioning of
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indices for the reasons stated in the paragraph following (12.5.16).) We
thus find that
(2.18)
F (z̃(x))−1

= (αδ − βγ)f(s)
s

j1(φ)k1(x)

+ j2(φ){−f(s)[δg′(s) − βh′(s)]k1(x) + δf ′(s)k2(x) − βf(s)f ′(s)k3}

+ j3

{
f(s)
s

[γg′(s) − αh′(s)]k1(x) − γf
′(s)
s

k2(x) + α
f(s)
s
f ′(s)k3

}
where (2.16) and (2.17) hold. It follows from (13.1.6) that

(2.19)

T1
1 = T 1

1− p

f ′ , T1
2 = T 1

2+ pf(δg′ − βh′), T1
3 = T 1

3− pf
s
(γg′ − αh′),

T2
1 = T 2

1, T2
2 = T 2

2− p δf ′, T2
3 = T 2

3+ p γ
f ′

s
,

T3
1 = T 3

1, T3
2 = T 3

2+ p κβs, T3
3 = T 3

3− p κα

where the T i
q are the components of T̂A = F · ŜA with respect to the basis

shown in (2.7). For isotropic incompressible media, for which (13.1.9)
holds, we obtain

(2.20)

T 1
1 = ψ0f

′ + ψ1f
′[(f ′)2 + (fg′)2 + (h′)2],

T 1
2 = ψ1

f ′

s
[αf2g′ + γh′],

T 1
3 = ψ1f

′[βf2g′ + δh′],

T 2
1 = ψ0fg

′ + ψ1f
{
g′[(f ′)2 + (fg′)2 + (h′)2]

+
α

s2
[αf2g′ + γh′] + β[βf2g′ + δh′]

}
,

T 2
2 = ψ0

α

s
f + ψ1

f

s

{
g′[αf2g′ + γh′] +

α

s2
[(αf)2 + γ2] + β[αβf2 + γδ]

}
,

T 2
3 = ψ0βf + ψ1f

{
g′[βf2g′ + δh′] +

α

s2
[αβf2 + γδ] + β[(βf)2 + δ2]

}
,

T 3
1 = ψ0h

′ + ψ1

{
h′[(f ′)2 + (fg′)2 + (h′)2]

+
γ

s2
[αf2g′ + γh′] + δ[βf2g′ + δh′]

}
,

T 3
2 = ψ0

γ

s
+
ψ1

s

{
h′[αf2g′ + γh′] +

γ

s2
[(αf)2 + γ2] + δ[αβf2 + γδ]

}
,

T 3
3 = ψ0δ + ψ1

{
h′[βf2g′ + δh′] +

γ

s2
[αβf2 + γδ] + δ[(βf)2 + δ2]

}
(since (2.1)–(2.5), (2.16), and (2.17) hold). Here ψ0 and ψ1 depend only on
IC , IIC , s (see(12.5.19)) (and possibly on p for a Cauchy-elastic material).
We assume that ψ0 and ψ1 are independent of p and s.
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In place of (2.10), (2.15), and (2.12), the equilibrium equations are

−κ−1fps + (δg′ − βh′)fpφ − (γg′ − αh′)s−1fpz + ∂s(sT 1
1)(2.21)

= K+ := sT 2
1g′ + αT 2

2 + βsT 2
3,

−κ(δpφ − γpz)s+ ∂s(sfT 2
1) = 0,(2.22)

κ(βpφ − αpz)s+ ∂s(sT 3
1) = 0.(2.23)

From (2.22) and (2.23) we find that pφ and pz are independent of φ and
z. Differentiating (2.21) with respect to φ and z, we find that pφs = 0 = pzs

so that p has the form

(2.24) p(s, φ, z) = p̄(s) +Aφ+Bz

where A and B are constants. Since the functional form of f is known,
Eqs. (2.21)–(2.23) form a system of ordinary differential equations for p̄, g, h
depending upon several parameters, which are either specified or else are to
be determined from additional conditions. Note that this system is linear
in p̄.
2.25. Exercise. Derive (2.21)–(2.23). (Since p and therefore T can depend on φ and
z, these equations cannot be obtained by direct substitution of (2.19) into (2.10), (2.15),
and (2.12). Instead, it is necessary to obtain the general form of ∇ · T ∗ = o from (2.6)
and (2.7).)

3. Torsion and Related Equilibrium
Problems for Incompressible Bodies

We assume that (2.1)–(2.5), (2.16), and (2.17) hold with ψ0 and ψ1
independent of φ, z, and p. Thus (2.19)–(2.24) hold. We first treat torsion
problems for which γ = 0, g = 0 = h. Then (2.19) and (2.20) reduce to

T1
1 = − p

f ′ + ψ0f
′ + ψ1(f ′)3,(3.1a)

T1
2 = 0, T1

3 = 0, T2
1 = 0,(3.1b)

T2
2 = −p δf ′ + ψ0αs

−1f + ψ1αs
−3f3[α2 + β2s2],(3.1c)

T2
3 = βf{ψ0 + ψ1[α2s−2f2 + (βf)2 + δ2]},(3.1d)

T3
1 = 0, T3

2 = βs(α−1δ−1p+ ψ1αδs
−2f2),(3.1e)

T3
3 = −δ−1p+ ψ0δ + ψ1δ[(βf)2 + δ2](3.1f)

where ψ0 and ψ1 depend only on s and

(3.1g)
IC = (f ′)2 + (αs−1f)2 + (βf)2 + δ2,

IIC = (f ′)2[(αs−1f)2 + (βf)2 + δ2] + (αδs−1f)2.

If f(0) is required to be 0, then (3.1g) reduces to

(3.1h) IC =
1
αδ

+
α

δ
+

(βs)2

αδ
+ δ2, IIC =

1
αδ

[
α

δ
+

(βs)2

αδ
+ δ2

]
+ αδ.
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We define (the generalized shear modulus)

(3.2) µ(IC , IIC) := ψ0 + [α2s−2f2 + (βf)2 + δ2]ψ1.

For our class of deformations, condition (13.3.42) reduces to

(3.3) (b·j1)αδf(k1 ·a)+(b·j2)sf ′(δk2−βfk3)·a+(b·j3)αff ′(k3 ·a) = 0.

Using (2.2)–(2.5) and the Strong Ellipticity Condition (13.3.31), (13.3.32),
we find that

(3.4)

∂

∂β
T 2

3 =
∂

∂β
(k2 · T̂A · j3) = −zk1 · T̂A · j3 + k2j

3 :
∂T̂A

∂F
:
∂F

∂β

= 0 + fk2j
3 :
∂T̂A

∂F
: k2j

3 > 0.

This inequality together with the growth condition (13.4.1) implies that
β �→ βµ(IC , IIC) strictly increases from −∞ to ∞ with β. Since βµ van-
ishes for β = 0, it follows that µ > 0.

Pure torsion. We take B to be the segment of a right circular cylinder
of unit radius with axis along i3 defined by

(3.5a) {(s, φ, z) : 0 ≤ s < 1, 0 ≤ φ ≤ 2π, 0 ≤ z ≤ z1}.

We study the pure torsion of B, which is defined by (2.1)–(2.5) with α = 1,
γ = 0, δ = 1, g = 0, h = 0, with β prescribed, and with the outer radius
prevented from changing, so that f(1) = 1. Then

(3.5b) f(s) = s.

(In place of the requirement that f(1) = 1, we could have merely required
that the axis remain intact: f(0) = 0, which also ensures that λ = 0 in
(2.17), so that (3.5b) holds.)

The traction on the planar end, defined by z = z1, is T · j3 = Ti
3ki. Its

component in the k3-direction is T3
3. The traction on the lateral cylindrical

surface, defined by s = 1, is T · j1 = Ti
1ki = T1

1k1. If we require that the
lateral surface be traction-free, i.e., that

(3.6a) Ti
1 = 0 for s = 1,

then (2.19), (2.24), and (3.1) imply that A = 0 = B so that −p̄+ψ0+ψ1 = 0
for s = 1. In this case, (2.22) and (2.23) are identically satisfied. The
pressure p = p̄ is determined by integrating (2.21) subject to (3.6a):

(3.6b) −p+ T 1
1 =

∫ 1

s

T 1
1 − T 2

2 − βξT 2
3

ξ
dξ.
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Note that (3.1) and (3.5b) imply that this integral converges for s = 0. We
use the expression for p given by (3.6b) to find that the normal component
of force over the plane z = z1 is

(3.7) 2π
∫ 1

0
(−p+ T 3

3) s ds = π
∫ 1

0
[2T 3

3 − T 1
1 − T 2

2 − βsT 2
3] s ds.

Substituting (3.1) and (3.5b) into (3.7), we find that the bracketed term in
its integrand is

(3.8) −(βs)2{ψ0 + ψ1[1 + (βs)2]}.

Note that the term in braces is not the same as the specialization of (3.2),
which is positive. Mild further restrictions, such as the E-inequalities (see
Truesdell & Noll (1965, Sec. 53)), experimentally observed to hold for rub-
bers, ensure that (3.8) is negative. In this case, a compressive thrust is
necessary to effect the pure torsion.

The resultant torque across any plane section with normal j3 is
(3.9)∫ 2π

0

∫ 1

0
p × T · j3s ds dφ =

∫ 2π

0

∫ 1

0
(sk1 + zk3) × (T2

3k2 + T3
3k3)s ds dφ

= 2π
∫ 1

0
s2T2

3 dsk3 =: Tk3

(since
∫ 2π

0 k1 dφ = o =
∫ 2π

0 k2 dφ). This equation gives the torque as a
nonlinear function of the twist β.

Let T (β) be defined to be the penultimate term in (3.9) with T2
3 in the

integrand replaced with its constitutive function from (3.1d). Were we to
prescribe T and leave the twist β free, then we would have to solve the
equation T (β) = T for β as a function of T . Condition (3.4) together with
the growth condition (13.4.1) implies that T strictly increases from −∞ to
∞ with β, so that β can be uniquely determined.

A variant of our torsion problem is obtained by prescribing the twist β,
prescribing the traction T1

1 on the lateral surface to be 0, and prescribing
the normal force resultant on the ends to be 0:

∫ 1
0 T3

3 s ds = 0. In this
case, δ is left free and (3.5b) is replaced with

√
δf(s) = s. In general, we

find that δ �= 1, so that both the radius and the length of the cylinder are
changed in producing the twisted state by applying twisting moments to
the ends.

3.10. Exercise. Find an equation for δ for this problem. Compare conditions that
would ensure that there exists a unique solution δ with the condition coming from (3.4).

We remark that all these solutions are valid for bodies of any shape, in
particular, for parts of a full cylinder bounded by cylindrical coordinate
surfaces, such as wedges and tubes.
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Suppose that we prescribe a full boundary-value problem for the cylinder
B with zero traction on the lateral surface and with prescribed position field

(3.11) p̃(x) = sk1(x) + zk3, ω(x) ≡ φ+ βz for z = 0, z1.

Then the solution discussed above is a solution of this boundary-value
problem; it need not be the only solution. On the basis of the analysis of
Sec. 9.5, we may expect the body to suffer a torsional buckling at a critical
value of the twist. Similar remarks apply to problems in which the cylinder
is compressed.

Other problems. In the following exercises (some of which require a
lengthy analysis), we pose a variety of other problems for incompressible,
isotropic elastic media that have deformations of the form (2.1).

3.12. Exercise. Axial compression and elongation. For the body B of (3.5a), let
α = 1, β = 0 = γ, g = 0 = h and let δ be prescribed. Let the traction on the lateral
surface be o. Find an explicit representation for the traction on the ends in terms of the
constitutive functions ψ0 and ψ1.

3.13. Exercise. Azimuthal dislocation. Let the body be the cylindrical segment with a
wedge removed that is defined by 0 ≤ s < 1, 0 < φ < φ1, 0 < z < z1 with 0 < φ1 < 2π.
(For the sake of visualization, it is useful to take φ1 > π.) Consider the deformation
obtained by welding the faces φ = 0, φ1 together so that the deformed body is a complete
circular cylindrical segment. Such a deformation can be put into the form (2.1) by taking
α = 2π/φ1, β = 0 = γ, and g = 0 = h. Suppose that the traction on the lateral surface
is o and that the resultant force applied to the ends z = 0, z1 is o. Find an equation for
the unknown δ. Discuss its solvability.

3.14. Exercise. Shearing dislocation. Let the body be the half-slit annular segment
defined by s0 ≤ s < 1, 0 < φ < 2π, 0 < z < z1 with 0 < s0 < 1. Consider the
deformation (2.1) with α = 1, β = 0, g = 0 = h, and with γ a prescribed positive
number. (i) Sketch the deformed shape, which can be maintained by suitably welding
the slit faces to a rigid plate of zero thickness lying in the half plane φ = 0, s > 0.
(ii) Suppose the f(0) is a prescribed positive number, so that λ is known from (2.17). If
the resultant force applied to the ends z = 0, z1 is o, find an equation for the unknown
δ and discuss its solvability. (iii) Suppose that δ = 1 and that the tractions on the
lateral cylindrical surfaces are zero. Find an equation for the unknown λ and discuss its
solvability. (iv) Suppose that the tractions on the lateral cylindrical surfaces are zero and
and that the resultant force applied to the ends z = 0, z1 is o. Find a pair of equations
for the unknowns δ and λ and discuss their solvability in light of ideas discussed in Sec.
3.3. (For the trickier case in which s0 = 0, see the comments following (4.4) below.)

3.15. Exercise. Cavitation. For the full cylinder B given by (3.5a), let α = 1 = δ, β =
0 = γ, g = 0 = h. (i) Show that if the material is hyperelastic, then the constitutive
functions for T 1

1 and T 2
2 for this class of deformations can be given the form (2.20)

with ψ1 = 0 and with ψ0 depending only on f
s

+ s
f
. (ii) Let f(1) be a prescribed number

greater than 1. Show that the equilibrium equations have a solution with f(0) > 0 and
with the traction on the surface s = 1 finite provided that T 2

2 is integrable. Find
simple conditions on the constitutive functions ψ0 and ψ1 that ensure this integrability.
This solution describes a configuration in which the axis of the cylinder opens into a
cylindrical cavity. (iii) Let T1

1 be a prescribed positive number λ for s = 1. Show that
for each λ the equilibrium equations admit the trivial solution given by f(s) = s for
all s. (iv) If there is a solution with a cavity, i.e., if T 2

2 is integrable when f(0) > 0,
then it is reasonable to require the vanishing of the Cauchy traction on the boundary
of the cavity. This condition, which relates the radius f(0) of the cavity to λ, gives the
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branch of nontrivial solutions. Characterize the bifurcation point λ0 at which cavitation
is initiated. Compute it when ψ0(IC) = sf

s2+f2 . (For an in-depth treatment of this
problem, see Ball (1982). For a treatment of cavitation for compressible bodies, see the
discussion in Sec. 7 and works cited there.)

3.16. Exercise. Inflation. Let the body be the tube defined by s0 ≤ s < 1, 0 ≤ φ < 2π,
0 < z < z1 with 0 < s0 < 1. Let α = 1 = δ, β = 0 = γ, g = 0 = h. Let the inner
cylinder be subjected to a simple hydrostatic pressure of intensity λ units of force per
actual area and let the outer cylinder be traction-free. Find the tractions at the ends
necessary to maintain the equilibrium of the annular cylinder.

3.17. Exercise. Eversion. Let the body be the tube given in Ex. 3.16. For the
deformation (2.1) defined by α = 1, δ = −1, β = 0 = γ, g = 0 = h, f > 0, which
turns the tube inside out, find the tractions at the ends necessary to keep the tube in
equilibrium with zero tractions on the cylindrical faces.

The Strong Ellipticity Condition is incapable of ensuring the uniqueness of solutions
for several of these problems. A discussion of slightly stronger related conditions that
do ensure uniqueness is given by Wissmann (1991).

3.18. Exercise (Chen & Rajagopal (2001).) Let 0 < a < 1 and let B be the incom-
pressible isotropic elastic annulus with reference configuration defined by {(s, φ, z) : a ≤
s < 1, 0 ≤ φ ≤ 2π, z ∈ R}. Consider deformations in which the outer boundary is fixed
and the inner boundary is rotated through an angle θ about k. In particular, consider
deformations of the form (2.1) with α = 1, β = 0, γ = 0, δ = 1, f(s) = s, h = 0,
g(a) = 0, g(1) = θ. (i) For such deformations, prove that (2.21)–(2.24) reduce to

−sps + ∂s(sT 1
1) = T 2

1sg′ + T 2
2,(3.19)

∂s(s2T 2
1) = 0,(3.20)

showing why A and B from (2.24) must vanish. (Once (3.20) is solved, (3.19) can be
used to solve for p.) (ii) Let τ(s) := T 2

1(s) ≡ T2
1(s), κ(s) := F2

1(s) ≡ sg′(s). Write the
constitutive equation for τ as τ = τ̂(κ) and assume that τ̂ is continuously differentiable
on R. Let (13.3.31), (13.3.32) hold. Show that τ̂ has an inverse κ̂. (iii) Eq. (3.20) is
equivalent to the statement that there is a constant c such that τ(s) ≡ τ̂(κ(s)) = cs−2.
Prove that the boundary-value problem for g, namely, (3.20) subject to g(a) = 0, g(1) =
θ, has a solution for each constant c satisfying

(3.21)
∫ 1

a

1
ξ

κ̂(cξ2 ) dξ = θ.

(iii) Prove that (3.21) has a unique solution for c, denoted c(θ). (iv) Let ε be a small
positive number. Prove that there is a unique radius b(θ, ε) ∈ (a, 1) such that
(3.22)
κ(b(θ, ε)) = κ(a)+ε(κ(1)−κ(a)) ⇐⇒ κ̂(c(θ)b(θ, ε)−2) = (1−ε)κ̂(c(θ)a−2)+εκ̂(c(θ)).

Suppose that |τ̂ | (which is odd by virtue of the isotropy) is bounded (as it is in various
models of plasticity). Prove that b(θ, ε) ↘ a as |θ| → ∞.

3.23. Exercise. Give a geometric interpretation of the deformation

(3.24) p̃(x) =
1
2

αβ2s2i +
φ

αβ
j +

[
z

β
+

γφ

αβ

]
k, αβ 
= 0

where x is defined just as in this section. Carry out an analysis of appropriate boundary-
value problems along the lines of this section.
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4. Torsion, Extension, Inflation, and
Shear of a Compressible Annular Sector

For compressible bodies, we cannot use (2.16) and (2.17). Thus we can-
not avoid confronting bona fide differential equations consisting of (2.10),
(2.15), and (2.12) subject to suitable constitutive equations of the form
(13.1.5). In general, we confront quasilinear boundary-value problems for
(f, g, h). The existence and regularity theory for these problems (obtained
by Antman (1983a)) relies crucially on the Strong Ellipticity Condition and
the growth conditions. It is made difficult by the presence of the require-
ment that det F > 0. (By the same device as that leading to (6.2) below,
we can show that the Strong Ellipticity Condition implies that the matrix
∂(T̂1

1, f T̂2
1, T̂3

1)/∂(f ′, g′, h′) is positive-definite. Consequently, the gov-
erning equations can be treated by powerful methods of pseudo-monotone
operator theory, which we do not discuss here.)

In this section, we show how to extract from the growth conditions some
useful information about solutions without solving for them. For simplicity
of exposition, we assume that the material is hyperelastic. Here we define
the body B by

(4.1) B := {z̃(x) : s0 ≤ s < 1, 0 < φ < φ1, 0 < z < z1}.

Let us now adopt the growth condition (13.4.5) and specialize it to the
semi-inverse deformation (2.1):

W (C,z) + ϕ(z) ≥ A(trC)a/2(4.2)

= A[(f ′)2 + (fg′)2 + (h′)2 + (αs−1f)2 + (γs−1)2 + (βf)2 + δ2]a/2.

(See (12.5.19a). Recall that we require that A > 0 and a > 1.) We
have more chance of finding solutions of our semi-inverse boundary-value
problems if we seek them in a large class of functions rather than in a
small class defined by very nice regularity properties. (The singularity for
s = 0, which caused singularities in some of the solutions of Sec. 3, makes
us suspicious of too optimistic an assumption of regularity.) A reasonable,
large class of admissible functions (f, g, h) and parameters (α, β, γ, δ) are
those that make the total stored energy bounded:

(4.3)
∫

B
W (C(z),z) dv(z) = φ1z1

∫ 1

s0

sW (C(z̃(x), s) ds <∞.

It then follows from (4.2) that admissible functions and parameters satisfy

(4.4)∫ 1

s0

s[(f ′)2 + (fg′)2 + (h′)2 + (αs−1f)2 + (γs−1)2 + (βf)2 + δ2]a/2ds <∞.

(We are tacitly assuming that f ′, g′, h′ are Lebesgue-measurable.)
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We immediately deduce from (4.4) that if s0 = 0 and if a ≥ 2, then there
is no admissible solution with γ �= 0. (Of course, a full existence theory
is required to show that such shearings with γ �= 0 generate admissible
solutions for 1 < a < 2.) Under the usual assumption that α �= 0 we
likewise deduce that if s0 = 0 and if a ≥ 2, then there is no admissible
solution with f(0) > 0. Thus cavitation cannot occur if the material is
strong in resisting tension.

If A(trC)a/2 represents the asymptotic behavior of W for large C, then
T̂1

1(F ,z) is asymptotic to (F 1
1)a−1, etc. Thus the response is asymptoti-

cally superlinear, linear, or sublinear if a > 2, = 2, or < 2, respectively.
We now consider a problem for a wedge B for which s0 = 0 and φ1 < 2π.

We fix a vertical rigid translation by setting h(1) = 0. Let us assume that
the tractions on the faces φ = 0, φ1 are zero and that the traction T · j1

on the cylindrical face s = 1 is the prescribed constant vector Tk3. The
total vertical force applied to this cylindrical face is therefore φ1z1Tk3. We
are not free to prescribe tractions arbitrarily on the end faces because they
must be adjusted to ensure that the resultant force and torque on the body
be zero. Thus there must in fact be a concentrated force along the axis,
because the integral of (2.12) (which is a consequence of the Principle of
Virtual Power) implies that

(4.5) lim
s→0

sT3
1 = T.

We ask whether h(0) is bounded. The answer is furnished by the following
embedding based on the Hölder inequality. We assume that (4.4) holds.
Let 0 < x ≤ y ≤ 1. Then for a �= 2,

(4.6)

|h(y) − h(x)| ≤
∫ y

x

|h′(s)| ds =
∫ y

x

s−
1
a

∣∣∣s 1
ah′(s)

∣∣∣ ds
≤
{∫ y

x

s−
1
a

a
a−1 ds

} a−1
a
{∫ y

x

∣∣∣s 1
ah′(s)

∣∣∣a ds} 1
a

≤ const.
{∫ y

x

s−
1

a−1 ds

} a−1
a

= const.
[
y

a−2
a−1 − x

a−2
a−1

] a−1
a

.

Thus h is continuous on any compact subset of (0, 1]. If a > 2, then (4.6)
implies that h is continuous on [0, 1], which implies that h(0) is bounded.

An analogous problem for a wedge is that in which the traction T · j1

on the cylindrical face s = 1 is the prescribed vector Tk2. In this case,
the integral of (2.15) implies that there is a concentrated torque applied to
the axis. Setting g(1) = 0 to fix rigid rotations about the axis, we can ask
whether g(0) is bounded. Conditions ensuring that it is are more difficult
because the analog of the computation (4.6) is complicated by the presence
of the function f .

4.7. Exercise. Study this torsion problem for incompressible materials.
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Note that in many of our examples, the rate of growth a = 2 is a thresh-
old for qualitatively different behavior. A number of nonlinear constitutive
equations for elastic response, closely inspired by linear elasticity, use con-
stitutive equations corresponding to a = 2. Others use energies quadratic in
E, which correspond to a = 4. The study of a single constitutive equation
may generate misleadingly narrow conclusions about the general nature of
the behavior of solutions to a given problem.
4.8. Research Problem. Analyze the existence of solutions to suitable boundary-value
problems for semi-inverse deformations of Sec. 3 for incompressible materials when g and
h are not required to vanish (see Antman (1983a)).

4.9. Research Problem. Analyze the existence of solutions to suitable boundary-
value problems for semi-inverse deformations of the form

(4.10) p̃(x) = f(s)i + [g(s) + αφ + βz]j + [h(s) + γφ + δz]k.

(If g = 0 = h and if the deformation is volume-preserving, then (4.10) reduces to (3.24).)

5. Flexure, Extension, and Shear of a Block
We let z = zkik = xi + yj + zk and study deformations of the form

p(z) = f(x)k1(z) + [h(x) + γy + δz]k3(5.1a)
where

k1(z) ≡ k1(z) := cosω(z)i + sinω(z)j,

k2(z) ≡ k2(z) := − sinω(z)i + cosω(z)j,(5.1b)

k3 ≡ k3 := k,

ω(z) := g(x) + αy + βz.(5.1c)

Here α, β, γ, δ are constants and f, g, h are functions to be determined. A
special case of this deformation takes a cube into an annular wedge. As
we shall show in Sec. 6, semi-inverse problems for these deformations can
be analyzed by methods more elementary than those used for the complete
study of the problem discussed in Sec. 4.
5.2. Exercise. Describe and sketch the effect of the deformation (5.1) on a cube.
(Hint: Break up the deformation into a composition of simpler deformations, starting
with a pure bending.)

5.3. Exercise. Show that

F (z) = [f ′(x)k1(z) + f(x)g′(x)k2(z) + h′(x)k3]i1(5.4)

+ [αf(x)k2(z) + γk3]i2 + [βf(x)k2(z) + δk3]i3

=: F i
q(x)ki(z)iq,

C = [(f ′)2 + (fg′)2 + (h′)2]i1i1 + [αf2g′ + γh′](i1i2 + i2i1)(5.5)

+ [βf2g′ + δh′](i1i3 + i3i1) + [(αf)2 + γ2]i2i2

+ [αβf2 + γδ](i2i3 + i3i2) + [(βf)2 + δ2]i3i3

=: Cpq(s)ipiq,
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(5.6) detF = (αδ − βγ)ff ′.

We decompose T thus:

(5.7) T = Tp
q(z)kp(x)iq.

Unconstrained media. Our treatment, reduced largely to a sequence of
exercises, parallels that of Sec. 2.

5.8. Exercise. Let (5.1) hold. (i) Show that if Ŝ is independent of y and z and if the
material is isotropic, so that (13.1.7) holds, then the components kp(x) · T̂ (F (z), x) · iq

are independent of y and z (cf. Ex. 2.8). (ii) Show that if the components of T in (5.7)
depend on x only through x, then the equations of equilibrium for an unconstrained
body under zero body force, i.e., the components of ∇ · T ∗ = o, reduce to the system of
ordinary differential equations:

d

dx
T1

1 = T2
1g′(x) + αT2

2 + βT2
3,(5.9)

d

dx
T2

1 + T1
1g′(x) + αT1

2 + βT1
3 = 0,(5.10)

d

dx
T3

1 = 0(5.11)

(cf. (2.10)–(2.12)).

5.12. Exercise. Prove that the symmetry conditions (12.7.27) imply that

(5.13) f [T1
1g′ + αT1

2 + βT1
3] = f ′T2

1,

the substitution of which into (5.10) reduces it to

(5.14)
d

dx
(fT2

1) = 0.

Eqs. (5.11) and (5.14) yield the integrals

(5.15a,b) fT2
1 = G (const.), T3

1 = H (const.).

Under the assumption that the components of T introduced in (5.7)
are independent of y and z (which is ensured by isotropy), the governing
equations for the deformation (5.1) consist of (5.9), (5.15), the constitu-
tive equations (13.1.3b). p is subject to the requirement that det F > 0.
By making obvious sign conventions, we may assume that each factor of
the second term of (5.6) is positive. We shall append suitable subsidiary
conditions to this system.

Incompressible media. The requirement that det F = 1 immediately gives

(5.16) f(x) =
√

2κx, κ := (αδ − βγ)−1.

We omit a constant of integration, which merely shifts x.
Let T i

q be the components of T̂A = F · ŜA with respect to the basis shown in (5.7).
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5.17. Exercise. (i) Show that
(5.18)

T1
1 = T 1

1− p(f ′)−1, T1
2 = T 1

2+ pf(δg′ − βh′), T1
3 = T 1

3− pf(γg′ − αh′),

T2
1 = T 2

1, T2
2 = T 2

2− p δf ′, T2
3 = T 2

3+ p γf ′,

T3
1 = T 3

1, T3
2 = T 3

2+ pβκ, T3
3 = T 3

3− p ακ.

(ii) Under the assumption that the T i
q are independent of y and z, show that the

equilibrium equations for zero body force are

−κ−1fpx + (δg′ − βh′)fpy − (γg′ − αh′)fpz + ∂xT 1
1 = T 2

1g′ + αT 2
2 + βT 2

3,(5.19)

−κ(δpy − γpz) + ∂x(fT 2
1) = 0,(5.20)

κ(βpy − αpz) + ∂xT 3
1 = 0.(5.21)

(iii) Show that (5.19)–(5.21) imply that p has the form

(5.22) p(x, y, z) = p̄(x) + Ay + Bz

where A and B are constants. (iv) Under the simplfying assumption that A = 0 = B in
(5.22), show that T1

1 ≡ T 1
1 − κ−1fp satisfies

(5.23) f ′(x)T1
1(x) = f ′(a)T1

1(a) +
∫ x

a
[f ′′T 1

1 − f ′(T 2
1g′ + αT 2

2 + βT 2
3)] dξ.

(v) Show that the constitutive equations (13.1.9) for isotropic incompressible media
reduce to

(5.24)

T 1
1 = ψ0f ′ + ψ1f ′[(f ′)2 + (fg′)2 + (h′)2],

T 1
2 = ψ1f ′[αf2g′ + γh′],

T 1
3 = ψ1f ′[βf2g′ + δh′],

T 2
1 = ψ0fg′ + ψ1f

{
g′[(f ′)2 + (fg′)2 + (h′)2] + α[αf2g′ + γh′] + β[βf2g′ + δh′]

}
,

T 2
2 = ψ0αf + ψ1f

{
g′[αf2g′ + γh′] + α[(αf)2 + γ2] + β[αβf2 + γδ]

}
,

T 2
3 = ψ0βf + ψ1f

{
g′[βf2g′ + δh′] + α[αβf2 + γδ] + β[(βf)2 + δ2]

}
,

T 3
1 = ψ0h′ + ψ1

{
h′[(f ′)2 + (fg′)2 + (h′)2] + γ[αf2g′ + γh′] + δ[βf2g′ + δh′]

}
,

T 3
2 = ψ0γ + ψ1

{
h′[αf2g′ + γh′] + γ[(αf)2 + γ2] + δ[αβf2 + γδ]

}
,

T 3
3 = ψ0δ + ψ1

{
h′[βf2g′ + δh′] + γ[αβf2 + γδ] + δ[(βf)2 + δ2]

}
.

Since the functional form of f is known, Eqs. (5.19)–(5.21), (5.24) form a system
of ordinary differential equations for p̄, g, h depending upon several parameters, which
are either specified or else to be determined from additional conditions. Note that this
system is linear in p̄.

5.25. Exercise. Let B := {xi + yj + zk : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} be the
reference configuration of a homogenous isotropic incompressible block in which ψ0 and
ψ1 are independent of p. Consider the pure flexure of B defined by (5.1) and (5.16) with
β = 0 = γ, g = 0 = h. Find the equation expressing the condition that the faces x = 1, 2
be traction-free and discuss the solvability of this equation for α, δ. Show that (13.4.1)
is not useful for this purpose. Find the tractions on the other faces and determine their
resultant forces and resultant moments on these faces about their midpoints. Interpret
these tractions from the viewpoint of the St. Venant flexure problem of linear elasticity
(cf. Sokolnikoff (1956)).
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6. Flexure, Extension, and
Shear of a Compressible Block

We study deformations of the form (5.1), supposing without loss of gen-
erality that B is the unit cube {z : 0 < zk < 1}. We assume that a subset
of the constants α, β, γ, δ is prescribed and that a complementary set of
subsidiary conditions (on appropriate stress resultants) is prescribed. We
fix a rigid displacement by prescribing

(6.1) g(0) = 0, h(0) = 0.

We require that any tractions prescribed on the faces x = 0, 1 be compatible
with the integrals (5.15). We prescribe either g(1) or G and we prescribe
either h(1) or H. Note that T3

1 is a dead shear load on the faces x = 0, 1,
whereas fT2

1 is a shear load that neither is dead nor corresponds to a
constant Cauchy stress.

The effect of the Strong Ellipticity Condition. We assume for sim-
plicity of exposition that T̂ is continuously differentiable. We transform

our equations further by bringing the Strong Ellipticity Condition and as-
sociated growth conditions to bear on them. Choosing b = i in (13.3.15),
we obtain

(6.2) a · ∂(T̂ · i)
∂(F · i)

· a = a · ∂(T̂ · i)
∂px

· a = al ∂T̂l
1

∂Fm
1
am > 0

where a = alkl. (Thus T̂ · i is a strictly monotone function of px for fixed
values of its other arguments.)

In consonance with (6.2) we impose the following special cases of the
growth conditions (13.4.1) when F has the form (5.4):

(6.3)

T̂1
1 → ±∞ as F 1

1 = f ′ →
{ ∞,

0,

T̂2
1 → ±∞ as F 2

1 = fg′ → ±∞,
T̂3

1 → ±∞ as F 3
1 = h′ → ±∞

for fixed values of the other arguments. Conditions (6.2) and (6.3) enable
us to apply the Global Implicit-Function Theorem 21.2.30 to show that
when F has the form (5.4), then the (algebraic) equations

T̂1
1(F , x) = T,(6.4a)

fT̂2
1(F , x) = G,(6.4b)

T̂3
1(F , x) = H(6.4c)
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can be uniquely solved for (f ′, g′, h′) in terms of the other variables, and
are therefore equivalent to a system of the form

F 1
1 := f ′ = ϕ(T,G/f,H, αf, γ, βf, δ, x),(6.5a)

F 2
1 := fg′ = ζ(T,G/f,H, αf, γ, βf, δ, x),(6.5b)

F 3
1 := h′ = η(T,G/f,H, αf, γ, βf, δ, x)(6.5c)

where ϕ is positive-valued. The Local Implicit-Function Theorem implies
that ϕ, ζ, η are continuously differentiable because T̂ is. Note that (6.4b,c)
correspond to (5.15). Consequently, the governing equations (5.9), (5.15),
and (13.1.3b) are equivalent to the semilinear system of ordinary differen-
tial equations consisting of (6.5) and

(6.6)

T ′ = Φ(T,G/f,H, αf, γ, βf, δ, α, β, x)

:= − T̂2
1(F p

qkpi
q, x)ζ(T,G/f,H, αf, γ, βf, δ, x)/f

− αT̂2
2(F p

qkpi
q, x) − βT̂2

3(F p
qkpi

q, x)

where F 1
1, F 2

1, F 3
1 are given by (6.5) and the remaining components of

F are given by (5.4).
We readily find that (for fixed f, α, β, γ, δ) the quadratic form for the matrix

(6.7)
∂(T̂1

1, f T̂2
1, T̂3

1)
∂(f ′, g′, h′)

is the quadratic forms in (6.2) for suitable a and is therefore positive-definite. We can
accordingly solve (6.4) for f ′, g′, h′ in terms of the other variables, where we can now
replace G/f with G. The choice made above, however, proves more useful for the ensuing
analysis.

Note that the fourth-order system (6.5), (6.6) is degenerate because the
right-hand sides are independent of g and h. It is accordingly controlled
by the second-order system (6.5a), (6.6). (A similar phenomenon occurs in
the problems treated in Secs. 6.5, 9.4.) In particular, if α, β, γ, δ,G,H are
prescribed, then (6.5a) and (6.6) are uncoupled from (6.5b,c), which can be
solved for g and h after f and T are found by simply integrating (6.5b,c):

g(x) =
∫ x

0
f(ξ)−1ζ(T (ξ), G/f(ξ), H, αf(ξ), γ, βf(ξ), δ, ξ) dξ,(6.8a)

h(x) =
∫ x

0
η(T (ξ), G/f(ξ), H, αf(ξ), γ, βf(ξ), δ, ξ) dξ.(6.8b)

On the other hand, if g(1) and h(1) are prescribed, then G and H must be
found as solutions of the equations

g(1) =
∫ 1

0
f(ξ)−1ζ(T (ξ), G/f(ξ), H, αf(ξ), γ, βf(ξ), δ, ξ) dξ,(6.8c)

h(1) =
∫ 1

0
η(T (ξ), G/f(ξ), H, αf(ξ), γ, βf(ξ), δ, ξ) dξ,(6.8d)

which are coupled to (6.5a) and (6.6).
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We shall analyze boundary-value problems for (6.5a), (6.6), (6.8) by con-
tinuing solutions from a distinguished special solution. In most problems,
the natural choice for the special solution would be a trivial solution, which
would correspond to the reference configuration for our elasticity problem.
Unfortunately, the trivial state, which is a cube, is not in the form (5.1) of
admissible solutions; it is rather a singular limit of such solutions. Indeed,
the cubical reference configuration is obtained by setting β = 0, γ = 0,
δ = 1, g = 0, h = 0 and by taking the formal limits α → 0, f → ∞,
αf → 1. In this case, the family of solutions may be said to be continued
from infinity (see the references in the paragraph containing (6.2.39)). Re-
stricting our attention to α’s that are positive, we can make a change of
variables to render this technical difficulty innocuous: We set

(6.9) q := αf, β̄ := β/α, ḡ1 := g(1)/α, Γ := αG.

In this case, (6.5a), (6.6), (6.8) reduce to

q′ = αϕ(T, Γ/q,H, q, γ, β̄q, δ, x),(6.10a)

T ′ = Φ(T, Γ/q,H, q, γ, β̄q, δ, α, αβ̄, x),(6.10b)

ḡ1 =
∫ 1

0
q(ξ)−1ζ(T (ξ), Γ/q(ξ), H, q(ξ), γ, β̄q(ξ), δ, ξ) dξ,(6.11a)

h(1) =
∫ 1

0
η(T (ξ), Γ/q(ξ), H, q(ξ), γ, β̄q(ξ), δ, ξ) dξ.(6.11b)

Let us suppose that

(6.12) (q, T ) ∈ E := {(q, T ) ∈ C0(0, 1) × C0(0, 1) : q(0) > 0}.

The Strong Ellipticity Condition and the growth conditions (6.3) ensure
that the right-hand sides of (6.11) define a monotone and coercive mapping
of (Γ,H) (see Proposition 8.10.23 and the accompanying discussion), so
that the Global Implicit-Function Theorem 21.2.30 implies that Γ and H
can be found uniquely in terms of ḡ1, h(1), and other data of (6.11):

(6.13)
Γ = Γ �[T, q, α, β̄, γ, δ, ḡ1, h(1)],

H = H�[T, f, α, β̄, γ, δ, ḡ1, h(1)].

The Local Implicit-Function Theorem implies that Γ � and H� are contin-
uously differentiable functions of their arguments with (q, T ) ∈ E . If g(1)
and H are prescribed, or if h(1) and G are prescribed, a more elemen-
tary argument based on the Intermediate-Value Theorem gives analogous
conclusions.
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Connected families of solutions of the boundary-value problem.
Let us now suppose that α, β̄, γ, δ, ḡ1, h(1) are prescribed with αδ−βγ > 0,
α > 0. We impose boundary conditions of the form

T (0) = T0 or q(0) = q0 > 0,(6.14a,b)

T (1) = T1 or q(1) = q1 > 0(6.14c,d)

where q0, T0, q1, T1 are prescribed. Conditions more general than (6.14a,c)
lead to no serious difficulties in the analysis. Since α, β̄, γ, δ are prescribed,
the tractions on the faces y = 0, 1, z = 0, 1 ensure that the resultant force
and moment on the body vanish when (6.14a,c) are prescribed. To be
specific and to avoid minor problems with Neumann boundary conditions,
we restrict our attention to (6.14a,d) (which do not render the requirement
that f be everywhere positive, coming from (5.6), completely innocuous,
as would (6.14a,c)). Then (6.10), (6.11), and(6.14a,d) are equivalent to

q(x) = q1 − α
∫ 1

x

ϕ(T (ξ), Γ �/q(ξ), H�, q(ξ), γ, β̄q(ξ), δ, ξ) dξ,(6.15a)

T (x) = T0 +
∫ x

0
Φ(T (ξ), Γ �/q(ξ), H�, q, γ, β̄q(ξ), δ, α, αβ̄, ξ) dξ(6.15b)

where the arguments of Γ � and H� are given in (6.13). We write (6.15) as

(6.16a) (q, T ) = κ[q, T,µ]

where

(6.16b)
µ : = (α, β̄, γ, δ, q1, T0, ḡ1, h(1))

∈ M := {µ ∈ R
8 : α > 0, αδ − β̄γ > 0, q1 > 0}.

6.17. Exercise. Prove

6.18. Proposition. κ is a continuous and compact mapping from E ×M
to E .

We wish to study how solutions depend on the eight-dimensional param-
eter µ. If we restrict our attention to µ’s confined to a curve in M, then
we could use a continuation theorem like Theorem 3.3.30 (see the proof of
Theorem 21.4.1). For multiparameter problems, we may appeal to the fol-
lowing analog of Theorem 5.4.23. This theorem essentially says that if an
equation like (6.16) has a special solution pair

(
(q◦, T ◦),µ◦) at which the

linearization of (6.16) with respect to (q, T ) is nonsingular, then (6.16) has
a connected family of solution pairs containing

(
(q◦, T ◦),µ◦) each point

of which has dimension at least equal to the number of parameters of µ.
Moreover, this connected family cannot come to an abrupt stop.
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6.19. Multiparameter Global Continuation Theorem. Let X be a Banach space
and let {O(ε), 0 < ε < 1} be a family of open sets (not necessarily bounded) in X × Rm

for which (u◦, λ◦) ∈ O(ε) for 0 < ε < 1, cl O(ε2) ⊂ O(ε1) for 0 < ε1 < ε2 < 1. Let
O := ∪0<ε<1O(ε). Let f : O → X be continuous, let f[u◦, λ◦] = u◦, and let f : O(ε) → X
be compact for 0 < ε < 1. Let I denote the identity operator on X . Let the Fréchet
derivative I − ∂f[u◦, λ◦]/∂u : X → X of u �→ u − f[u, λ] at (u◦, λ◦) exist and be invertible.
Let S := {(u, λ) ∈ O : u = f[u, λ]} and let S0 be the connected component of S containing
(u◦, λ◦). (In a neighborhood of (u◦, λ◦), S agrees with S0.) Then one of the following
statements is true:
(i) S0 is bounded and there is an ε∗ ∈ (0, 1) such that S0 ⊂ O(ε∗). There is an
essential map (i.e., a continuous map not homotopic to a constant) σ from S0 onto the
m-dimensional sphere Sm whose restriction to S0 \ {(u◦, λ◦)} is inessential. Moreover,
S0 contains a connected subset S00 that contains (u◦, λ◦), that has the same properties
as S0 with respect to σ, and that has the property that each point of it has Lebesgue
dimension at least m.
(ii) S0 \ O(ε) 
= ∅ for all ε ∈ (0, 1) or S0 is unbounded. For each ε ∈ (0, 1) there
is a modified equation u = ϕ[u, λ, ε]f[u, λ] defined on all of X × Rm that agrees with
u = f[u, λ] on O(ε). The one-point compactification S+

0 (ε) of the connected component
S0(ε) containing (u◦, λ◦) of the set of solution pairs of the modified equation has the
same properties as S0 in statement (i).

The basic proof of this theorem is given by Alexander & Yorke (1976). This statement
embodies refinements due to Alexander & Antman (1981) and Lanza & Antman (1991).
Also see Alexander & Antman (1983), Fitzpatrick, Massabò, & Pejsachowicz (1983),
and Ize, Massabò, Pejsachowicz, & Vignoli (1985). The hypotheses of this theorem are
too strong to allow it to handle higher-dimensional problems of nonlinear elasticity. For
this purpose appeal can be made to Healey (2000), Healey & Rosakis (1997), Healey &
Simpson (1998).

We assume that

(6.20) T̂2
1 = 0 = T̂3

1 when F 2
1 = 0 = F 3

1.

6.21. Exercise. Prove that if the material is isotropic, then (6.20) holds. Prove that
if (6.20) holds and if ḡ1 = 0 = h(1), then g = 0 = h and Γ = 0 = H.

We also require that the reference configuration be a stress-free natural
state and that

(6.22) H : [∂T̂ (I,z)/∂F ] : H > 0 ∀H ∈ Sym \ {O}.

This is just a special case of the Strong Coleman-Noll Condition; it is
slightly weaker than the requirement that this inequality hold for all H �=
O, which is standard in linear elasticity.

We show that (6.16) satisfies the hypotheses of Theorem 6.19 by virtue
of Proposition 6.18 and the following two exercises:
6.23. Exercise. Use Ex. 6.21 to show that for α = β̄ = γ = 0, δ = 1, ḡ1 = 0 = h(1),
Eq. (6.16) admits the trivial solution (q, T ) = (1, 0), which corresponds to the cubical
reference configuration.

6.24. Exercise. Show that (6.22) implies that the linearization of (6.16) about the
trivial state described by Ex. 6.23 is nonsingular.

Growth conditions like those discussed after (13.4.1) ensure that f(0) >
0. To treat weaker coercivity conditions, one can use devices like those of
Ex. 5.5.10. Also see Antman (1978b). For a treatment of acceptable dual
pairs of data when not all of α, β, γ, δ are prescribed, see Antman (1983a).
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Qualitative behavior of solutions. Let us assume that the material is
homogeneous, so that the constitutive functions do not depend explicitly
on x. We write (6.5a) and (6.6) in the form

f ′ = ψ(T, f,G,H, α, β, γ, δ),(6.25a)

T ′ = Ψ(T, f,G,H, α, β, γ, δ).(6.25b)

For simplicity of exposition we fix the parameters G,H,α, β, γ, δ, suppress
their appearance, and study the phase portrait Fig. 6.26 for (6.25). Since
ψ > 0, so that f ′ > 0, it follows that there are no singular points and
therefore no closed orbits and that all trajectories move from left to right.
For certain ranges of parameters, growth conditions like those discussed in
the paragraphs following (13.4.1) imply that

(6.27) Ψ(f, T ) →
{

+∞
−∞

as f →
{ ∞,

0.

For a subset of such parameter ranges, the Strong Ellipticity Condition
implies that ∂Ψ/∂f > 0.

Ψ(T,f)= 0T

T(1)

T(0)

0 f

Fig. 6.26. Phase portrait of (6.25) when (6.27) holds and
∂Ψ/∂f > 0.

6.28. Exercise. Prove that if G = 0 = H and if (6.20) holds, then the Strong Ellipticity
Condition implies that ∂Ψ/∂f > 0.

If (6.27) holds and if ∂Ψ/∂f > 0, then the phase portrait has the form
shown in Fig. 6.26. Note that if T (0) and T (1) are prescribed, then can-
didates for solutions correspond to trajectories joining the two horizontal
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lines with ordinates T (0) and T (1). On such trajectories, T is either mono-
tone or else has an interior minimum. Similar observations can be made for

other pairs of boundary conditions. Such a trajectory actually corresponds
to a solution of our boundary-value problem if exactly 1 unit of the inde-
pendent variable x is used up in the traversal of the trajectory. In the next
section we show how to obtain existence theorems by such an approach.

6.29. Problem. Use this approach to obtain existence theorems for boundary-value
problems for (6.25).

6.30. Problem. Show that nonhomogeneous materials exhibit the same qualitative
properties as those implicit in Fig. 6.26 (e.g., by using a Prüfer transformation; see
(6.2.10)).

6.31. Exercise. Formulate the equilibrium equations for deformations of the form (5.1)
for incompressible bodies, and find the form of f in terms of α, β, γ, δ and a constant of
integration. Formulate and solve analogs of Exs. 3.12 and 3.16.

The material of this section is adapted from Antman (1978b) by kind permission of
Elsevier Science Publishers.

7. Dilatation, Cavitation, Inflation, and Eversion
We now study spherically symmetric deformations of compressible non-

linearly elastic bodies. Let x := (s, θ, φ) be spherical polar coordinates for
E

3, and let

(7.1)

a1(θ, φ) ≡ a1(θ, φ) := sin θ(cosφi + sinφj) + cos θk,

a2(θ, φ) ≡ a2(θ, φ) := cos θ(cosφi + sinφj) − sin θk,

a3(φ) ≡ a3(φ) := − sinφi + cosφj

be the orthonormal basis associated with

(7.2) z̃(x) := sa1(θ, φ),

which assigns positions (in the reference configuration) to x. Let 0 ≤ α < 1,
0 ≤ β < γ ≤ π. We study bodies of the form

(7.3) B = int{z = z̃(x) : α ≤ s ≤ 1, β ≤ θ ≤ γ, 0 ≤ φ < 2π}.

(For 0 < α, 0 < β < γ < π, B is a zone of a spherical shell; for 0 < α,
β = 0, γ = π, B is a full spherical shell; for α = 0, β = 0, γ = π, B is a
ball.)

For ε = ±, we set

(7.4)
b1(θ, φ) ≡ b1(θ, φ) := εa1(εθ, φ), b2(θ, φ) ≡ b2(θ, φ) := a2(εθ, φ),

b3(φ) ≡ b3(φ) := εa3(φ).

Thus {bk} is also an orthonormal basis for E
3.
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We study semi-inverse problems for which the deformation is restricted
to have the form

(7.5) p̃(x) = r(s)b1(θ, φ).

This deformation represents an inflation or dilatation if ε = +, and an
eversion if ε = −.

We deduce from (7.5) that

(7.6)

F (z̃(x)) = r′(s)b1(θ, φ)a1(θ, φ)

+ s−1r(s)[b2(θ, φ)a2(θ, φ) + εb3(φ)a3(φ)]

=: F k
l(s)bk(θ, φ)al(θ, φ),

(7.7) detF (z̃(x)) = εr′(s)[s−1r(s)]2,

so that the requirement that det F > 0 everywhere essentially reduces to

(7.8) s−1r(s) > 0, εr′(s) > 0 ∀ s ∈ [α, 1].

Thus the right stretch tensor U , which is the positive-definite square root
of C, is given by

(7.9)

U(z̃(x)) = εr′(s)a1(θ, φ)a1(θ, φ)

+ s−1r(s)[a2(θ, φ)a2(θ, φ) + a3(φ)a3(φ)]

=: Ukl(s)ak(θ, φ)al(θ, φ).

Its principal invariants are

(7.10) IU = εr′ + 2s−1r, IIU = s−1r[2εr′ + s−1r], IIIU = εr′[s−1r]2.

7.11. Exercise. Derive (7.6)–(7.10) (see Sec. 12.5).

For the problems we now consider, it is marginally more convenient
to replace the constitutive function (13.1.3a) delivering the second Piola-
Kirchhoff stress tensor for a nonlinearly elastic material with one of the
form

(7.12) (U ,z) �→ Š(U ,z).

We require that the material be transversely isotropic in the sense that

(7.13a) Š
(
Q(z) · U · Q(z)∗,z

)
= Q(z) · Š(U ,z) · Q(z)∗

for all orthogonal Q(z) that leave a1(θ, φ) invariant:

(7.13b) Q(z) · a1(θ, φ) = a1(θ, φ).
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We assume that the inhomogeneity is spherically symmetric, so that the
components of Š with respect to the basis {akal} depend explicitly on z
only through s. For U ’s that are diagonal with respect to the basis {akal},
we set

(7.14) Škl(U11, U22, U33, s) := ak(θ, φ) · Š(U ,z) · al(θ, φ).

7.15. Exercise. Use (7.13) with Q · a2 = a3, Q · a3 = −a2 to prove that

Š11(U, V,W, s) = Š11(U,W, V, s),(7.16a)

Š33(U, V,W, s) = Š22(U,W, V, s),(7.16b)

Š23(U, V, V, s) = Š31(U, V, V, s) = Š12(U, V, V, s) = 0.(7.16c)

The properties of isotropic materials can be found from (7.16a,b) by a simultaneous
cyclic permutation of the indices 1,2,3 and the arguments U, V, W and from the observa-
tion in Sec. 12.13 that (Šij) is diagonal when (Uij) is diagonal. Alternatively, we could
use representations like (13.1.7) for isotropic tensor-valued functions. (We could have
likewise treated transverse isotropy by obtaining a suitable representation theorem.) Re-
markably, there are aeolotropic materials consistent with spherical symmetry for which
we could carry out our entire analysis. These are tabulated by Antman & Ting (2001).

There are several kinds of glassy rocks whose structure is spherically symmetric
and transversely isotropic: spherulites, orbicules, perlites, and lithophysae. Pacinian
corpuscles, which are structures surrounding nerve endings consist largely of concentric
layers of liquids and solids. The singular behavior at the center which we find for such
transversely isotropic bodies might explain aspects of the efficient functioning of these
corpuscles in sensing touch.

For F ’s that are diagonal with respect to the basis {bkal}, so that the
corresponding U ’s are diagonal with respect to the basis {akal}, and for
S’s that are diagonal with respect to the basis {akal}, the constitutive
function delivering the first Piola-Kirchhoff stress tensor has the form

(7.17a) T̂ (F ,z) = T̂k
l(F 1

1, F
2
2, F

3
3, s)bkal

where

(7.17b) T̂p
p(F 1

1, F
2
2, F

3
3, s) = F p

pŠ
pp(U11, U22, U33, s)

= F p
pŠ

pp(|F 1
1|, |F 2

2|, |F 3
3|, s), p = 1, 2, 3 not summed,

and where the remaining components are each 0. Conditions (7.6), (7.7),
and (7.9) give

(7.17c)

T̂1
1(F 1

1, F
2
2, F

3
3, s) = r′Š11(εr′, s−1r, s−1r, s),

T̂2
2(F 1

1, F
2
2, F

3
3, s) = s−1rŠ22(εr′, s−1r, s−1r, s),

T̂3
3(F 1

1, F
2
2, F

3
3, s) = εs−1rŠ33(εr′, s−1r, s−1r, s).
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To make our notation conform to that of Chap. 10, we set

(7.17d)

T̂1
1(ν, τ, ετ, s) = νŠ11(εν, τ, τ, s) =: Nε(τ, ν, s),

T̂2
2(ν, τ, ετ, s) = τ Š22(εν, τ, τ, s) =: T ε(τ, ν, s),

T̂3
3(ν, τ, ετ, s) = ετ Š33(εν, τ, τ, s) =: εT ε(τ, ν, s),

with the last two equations reflecting the transverse isotropy condition
(7.16b).

7.18. Exercise. Prove that if the components of T with respect to basis {bkal} are
diagonal and are independent of (θ, φ), then the only nontrivial equilibrium equation for
zero body force reduces to

(7.19a) [s2T1
1]′ − sT2

2 − εsT3
3 = 0.

Prove that for a deformation of the form (7.5) the insertion of constitutive equations
for a transversely isotropic material reduces these equations to the single quasilinear
second-order ordinary differential equation

(7.19b) [s2Nε
(
s−1r, r′, s

)
]′ − 2sT ε

(
s−1r, r′, s

)
= 0,

which is the object of our study. Note that this equation is very similar to (10.3.1). The
development in the rest of this section should be compared with that of Sec. 10.3.

Using (7.17), we readily find that the Strong Ellipticity Condition implies
that

(7.20) Nε
ν > 0.

7.21. Exercise. Prove that the Strong Ellipticity Condition does not imply that
T ε

τ > 0. This is one respect in which our spherically symmetric problem differs from the
axisymmetric problem treated in Sec. 10.3.

Note that (7.8) implies that r′ ranges over (0,∞) when ε = + and ranges
over (−∞, 0) when ε = −. In consonance with (13.4.1), we require for fixed
τ and s that

(7.22)
N+(ν, τ, s) → ±∞, N−(ν, τ, s) → ±∞

as ν approaches its extremes,

the signs taken to be compatible with (7.20). In this case, (7.20) and the
Intermediate-Value Theorem ensure that the equation N±(τ, ν, s) = n is
equivalent to an equation of the form ν = νε(τ, n, s). Setting T̃ ε(τ, n, s) :=
T ε(τ, νε(τ, n, s), s), we reduce (7.19b) to the semilinear system

(7.23±) (sτ̆)′ = ν±(τ̆ , n̆, s), (s2n̆)′ = 2sT̃±(τ̆ , n̆, s).

Let us use the transformation

(7.24) s = eξ−1, τ̆(s) = τ(ξ), n̆(s) = n(ξ),
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which is the same as (10.3.8), to convert (7.23) to

(7.25±)
dτ

dξ
= ν±(τ, n, eξ−1) − τ, dn

dξ
= 2[T̃±(τ, n, eξ−1) − n]

for 1 + lnα < ξ < 1.
Condition (7.20) implies that

(7.26) νε
n > 0,

so that n �→ ν+(τ, n, s) strictly increases from 0 to ∞ and n �→ ν−(τ, n, s)
strictly increases from −∞ to 0 as n increases from −∞ to ∞. We can
follow Sec. 10.3 to deduce useful consequences of hypotheses like

(7.27±)
∂(T±, N±)
∂(τ, ν)

is positive-definite.

7.28. Exercise. Use (7.17d) to prove that

(7.29) ν−(τ, n, s) = −ν+(τ, −n, s), T̃ −(τ, n, s) = T̃+(τ, −n, s),

so that (7.25−) can be written as

(7.30−)
dτ

dξ
= −ν+(τ, −n, eξ−1) − τ,

dn

dξ
= 2[T̃+(τ, −n, eξ−1) − n]

for 1 + ln α < ξ < 1. These identities can be used to convert constitutive restrictions
on T+ and N+ into constitutive restrictions on T − and N−: Prove that (7.27+) is
equivalent to (7.26) and

(7.31a,b) T̃ −
τ ν−

n − T̃ −
n ν−

τ > 0, T̃ −
τ > 0,

that when (7.20) holds, the conditions

(7.31c,d) T+
ν > 0, N+

τ > 0

are equivalent to

(7.31e) T̃ −
n < 0, ν−

τ > 0,

and that when (7.20) holds, the condition

(7.31f) N+
τ < N+

ν

is equivalent to

(7.31g) ν−
τ < 1.

We now focus our attention on homogeneous materials, for which the
constitutive functions are independent of s. Thus (7.25) is autonomous.
The phase portrait of (7.25+) is constructed exactly as in Sec. 10.3. The
treatment of isotropy differs somewhat from that centered on (10.3.18)–
(10.3.20) because (10.3.18) does not hold. For our spherical problems, we
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Fig. 7.33. Typical phase portrait of (7.25−) under the assump-
tion that (7.26) and (7.31a,b,e,g) hold.

find that the equation N+(τ, ν) = T+(τ, ν), associated with the horizontal
isoclines (see (10.3.19)), nevertheless has a solution for ν given by ν = τ ,
by virtue of (7.17d) and the transverse isotropy.
7.32. Exercise. Show that when (7.26) and (7.31a,b,e,g) hold, the phase portrait for
(7.25−) or, equivalently, (7.30−), has the character of that shown in Fig. 7.33. Show
that the horizontal isoclines are defined by n = T+(τ, ν) = −N+(τ, ν). Note that there
is no vertical isocline because ν− < 0.

Compression of a ball. We now study the deformation of a ball subject
to a uniform normal traction of intensity −λg(r(1)) per unit reference area
on its boundary, so that

(7.34) n(1) = −λg(τ(1)).

Here λ is a given number, and g is a given function that is assumed to
satisfy g(r) > 0, g′(r) ≥ 0 for r > 0. For a dead load, g(r) = 1, and for a
hydrostatic load (with a constant intensity of force per unit deformed area),
g(r) = r2. These loads are pressures for λ > 0 and tensions for λ < 0. For
problems in which λ > 0 we require that the center remain intact, so that
r(0) = 0 or, equivalently,

(7.35) eξ−1τ(ξ) → 0 as ξ → −∞.

For λ < 0, we assume that either (7.35) holds or that a spherical cavity
forms at the center. In the latter case, r(0) > 0 and the normal stress



14.7. DILATATION, CAVITATION, INFLATION, AND EVERSION 541

T1
1(0) = 0. Thus

(7.36a,b) lim inf
ξ→−∞

eξ−1τ(ξ) > 0, lim
ξ→−∞

n(ξ) = 0.

For all these problems we use (7.25+).
The phase-plane analysis of (7.25+), (7.35) for λ > 0 is identical to that

carried out in Sec. 10.3 for aeolotropic plates. The much simpler treatment
in Sec. 10.2 for isotropic plates carries over to isotropic balls.

7.37. Exercise. For an isotropic ball subject to a uniform normal pressure with λ > 0
and either g(r) = 1 or g(r) = r2, discuss the existence and uniqueness of solutions of
the form r(s) = ks, where k is a positive constant, in light of constitutive hypotheses of
the sorts treated in this chapter.

Observe that the treatment of the problem in which r(1) or, equivalently,
τ(1) is a prescribed number less than 1 is virtually identical.

Dilatation and cavitation of a ball. Let us first study the dilatation
problem for a ball. Here λ is negative, and (7.34) and (7.35) hold. We
can invoke the results of Sec. 10.3 to conclude that under mild constitutive
assumptions there is a unique solution of the boundary-value problem. It
corresponds to a segment of the separatrix in Fig. 10.3.17 (in the quadrant
Q1) beginning at a saddle point and terminating on the curve n = −λg(τ).
The behavior of such solutions depends on the disposition of the horizontal
and vertical isoclines in Q1, and may exhibit all the complexity of com-
pressive states described by Theorem 10.3.31. Under mild constitutive
restrictions, the separatrix lies on the curve defined by τ = f(n) with the
domain of f the whole n-axis. The problem for a dead load, for which
g = 1, always has a unique solution. On the other hand, there are materi-
als for which the curve τ = f(n) does not intersect the curve n = −λτ2 for
−λ sufficiently large. Thus there are bodies for which there is no spheri-
cally symmetric equilibrium state with center intact under the action of a
hydrostatic tension on its boundary. When no such equilibrium state ex-
ists, we might expect that at least one of the following alternatives occurs:
There is a spherically symmetric equilibrium state with cavitation, there
is an equilibrium state (possibly with cavitation) that is not spherically
symmetric, or there is no equilibrium state and the body behaves dynam-
ically. In fact, it follows from the ensuing development that there cannot
be spherically symmetric equilibrium states with cavitation when there are
no spherically symmetric equilibrium states without cavitation.

We now study cavitational solutions and compare them with solutions in
which the center is intact. Stable cavitational solutions are of great impor-
tance in solid mechanics because they furnish a mechanism for spontaneous
fracture. Most contemporary researches in fracture mechanics employ spe-
cial constitutive criteria for the onset of fracture (in circumstances much
more general than those we study here).

In R (see Fig. 10.3.17), τ ′ < 0 and n′ > 0. Now (7.31c) implies that
ν+

τ < 0. This condition and the inequality ν+
n > 0, which follows from
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(7.20), imply that

(7.38)
d

dξ
ν+(τ(ξ), n(ξ)) > 0 when (τ(ξ), n(ξ)) ∈ R.

7.39. Exercise. Imitate the proof of Lemma 10.3.23 to demonstrate

7.40. Lemma. Let (7.38) hold for trajectories lying in R. Then eξ−1τ(ξ)
has a positive lower bound on any trajectory in R.

Thus (7.36a) is automatically satisfied on such trajectories. Now it is
not hard to show that any half-trajectory terminating in R is defined for
ξ → −∞. It follows that on such half-trajectories τ(ξ) → ∞ as ξ → −∞.
Thus for λ < 0, a (cavitating) solution of (7.25+) satisfying (7.34) and
(7.36) corresponds to a trajectory that is asymptotic to the positive τ -
axis (as ξ → −∞) and that terminates on the curve n = −λg(τ). Below
we sketch how to show that there are materials for which there exists a
trajectory C that is asymptotic to the positive τ -axis. For our immediate
purposes, we simply assume that there exists such a trajectory and that it
is unique.

It is illuminating to consider as an alternative to (7.34) the requirement
that the outer radius be prescribed to exceed 1:

(7.41) τ(1) = ω > 1.

For simplicity of exposition, we take the g in (7.34) to correspond to a
dead load: g = 1. For other g’s, there can be no spherically symmetric
equilibrium state with cavitation when there is no spherically symmetric
equilibrium state with center intact, because nonexistence in the latter case
occurs when the curve n = −λg(τ) lies to the left of the separatrix curve
τ = f(n), while C must lie to the right of the separatrix curve.

The existence, multiplicity, and qualitative properties of solutions follow
from an examination of the appropriate phase portraits. The stability of
solutions does not (although one can make educated guesses about it). For
hyperelastic bodies, we can characterize stable solutions formally as those
that minimize the potential energy functional in suitable classes. Cavi-
tation, however, presents some peculiarities about the class of admissible
functions that are appropriate for stability. (See Ball (1982), Giaquinta,
Modica, & Souček (1989), Müller, Qi, & Yan (1994), Müller & Spector
(1995), and Sivaloganathan (1986)).

In Figs. 7.42, 7.43, and 7.44 are exhibited typical phase portraits of the
quadrant Q1 for (7.25+) for an isotropic material and for two kinds of
aeolotropic materials. From Fig. 7.42, for isotropic materials, we find that
for 0 < −λ ≤ n∗ there is exactly one equilibrium state with center intact
satisfying (7.34) and exactly one cavitating equilibrium state satisfying
(7.34). If −λ > n∗, there is exactly one equilibrium state, which is intact.
(This state presumably is unstable: Cavitation may well occur, but in
a dynamical process.) Note that the outer radius of this intact state is
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7.42. Typical phase portrait of the quadrant Q1 for (7.25+) for
an isotropic material.

Fig. 7.43. Typical phase portrait of the quadrant Q1 for (7.25+)
for an aeolotropic material when (τ, n) = (1, 0) is a saddle point
and when Q1 is free of critical points.

the same as that for a cavitating state, but the normal stress −λ on the
boundary for the intact state exceeds that for the cavitating state at the
same radius. This normal stress for the cavitating state is presumably the
most that can be borne in a stable equilibrium state with the prescribed
outer radius.

From Fig. 7.42 we also find that for 1 ≤ ω < τ∗, there is exactly one
equilibrium state satisfying (7.41), which is intact. For τ∗ ≤ ω there are
exactly two equilibrium states satisfying (7.41): one intact, the other not.
For hyperelastic materials, the cavitating state is stable and the intact state
is unstable according to the energy criterion (see Ball (1982)).

For phase portraits for aeolotropic materials of the form of Fig. 7.43, we
find that for each −λ > 0, there is exactly one intact state and one cavitat-
ing state satisfying (7.34). For 1 ≤ ω < τ∗, there is exactly one equilibrium
state satisfying (7.41), which is intact. For τ∗ < ω, there is exactly one
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Fig. 7.44. Typical phase portrait of the quadrant Q1 for (7.25+)
for an aeolotropic material when (τ, n) = (1, 0) is an attractive
node and when Q1 is free of critical points.

intact equilibrium state satisfying (7.34) and there are exactly two cavitat-
ing equilibrium states satisfying (7.34). Extrapolating from Ball’s results
about the stability of the isotropic body, we surmise that the only one of
these three states that is stable is the cavitating state on the lower branch
of C. (n is apparently smallest on this branch.) As ω is increased past
τ∗, the (presumably) stable equilibrium state snaps from one with center
intact to a cavitating state. No such jumping occurs for isotropic materi-
als. For the traction problem, we might conjecture that there is no stable
equilibrium state for λ ≥ n∗. The deductions from Fig. 7.44 are left as an
informal exercise.

We now show that there are materials for which the phase portrait has a trajectory
asymptotic to the positive τ -axis. Since τ ′(ξ) < 0 and τ(ξ) → ∞ as ξ → −∞ in R, we
can solve the equation τ(ξ) = τ† for ξ = ξ†(τ†) when τ(·) corresponds to a trajectory in
R. We then set n†(τ†) := n(ξ†(τ†)) or, equivalently, n†(τ) := n(ξ†(τ)). Then (7.25+)
in R implies that n† satisfies the equation

(7.45a)
dn†

dτ
=

2[T̃+(τ, n†) − n†]
ν+(τ, n†) − τ

,

which we rewrite as

(7.45b)
d

dτ

(
n†(τ)

τ2

)
=

2
τ2(ν+(τ, n†) − τ)

[
T̃+(τ, n†) − n†ν+(τ, n†)

τ

]
=: H(τ, n†).

Let ω be any positive number and let τ > ω. Then (7.45b) yields

(7.46)
n†(τ)

τ2
=

n†(ω)
ω2

+
∫ τ

ω
H(σ, n†(σ)) dσ.

If the constitutive functions are such that the integral in (7.46) defines a bounded,
continuous function of ω and τ that is decreasing in τ , then, for any fixed (ω, n†(ω)),
(7.46) has a limit as τ → ∞. For fixed ω, we can use the Intermediate-Value Theorem
to choose n†(ω) so that this limit is 0. With this choice, the solution of (7.46) gives the
desired trajectory, provided that (ω, n†(ω)) ∈ R.
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We shall find that it is fairly easy to impose conditions on the constitutive functions
ν+ and T̃+ that ensure these properties. But constitutive functions for nonlinearly elastic
materials customarily deliver the stress as a given function of strain. We accordingly
obtain sufficient conditions for constitutive equations in this form. Our procedure is
reminiscent of that used in Sec. 6.9.

We assume that there are positive numbers A1, B1, . . . , c2, d2 such that

T+(τ, ν) ∼ −A1τ−a1 + B1τb1 − Cc1τ−c1−1ν−c2 + Dd1τd1−1νd2 ,(7.47)

N+(τ, ν) ∼ −A2ν−a2 + B2νb2 − Cc2τ−c1ν−c2−1 + Dd2τd1νd2−1(7.48)

as τ → ∞, ν → 0. By this we mean that T+ and N+ equal the terms on the right-
hand sides of (7.47) and (7.48) and terms negligible with respect to these as as τ → ∞,
ν → 0. These limits are chosen because under our general constitutive assumptions
they correspond to large τ and bounded n. (The representations (7.47) and (7.48) are
reasonable for all ν and τ .)

7.49. Exercise. Determine the ranges of the parameters in (7.47) and (7.48) for which
the right-hand sides satisfy each of the constitutive restrictions (7.20), (7.27+), and
(7.31c,e).

We seek corresponding asymptotic representations for T̃+ and ν+. We get the latter
by seeking a representation for the solution ν of the equation

(7.50) n = N+(τ, ν)

in the form

(7.51) ν ∼ τ−µ(n)χ(τ, n)

with µ and χ positive-valued for each real n and with χ(τ, n) having a positive limit,
depending on n, as τ → ∞. We substitute (7.51) into (7.48) and then substitute the
result into (7.50) to obtain an asymptotic equation involving a sum of powers of τ . For
this equation to be satisfied, µ must be chosen so that the two highest powers of τ in
(7.50) are equal (cf. Sec. 4.4). (The systematic exploitation of this observation when the
exponents a1, . . . , d2 are given specific numerical values constitutes the Newton Polygon
Method; see Dieudonné (1949).) Then limτ→∞ χ(τ, n) =: M is determined by the
requirement that the sum of terms with the highest powers of τ in the resulting version
of (7.50) vanish in the limit as τ → ∞:

(7.52) 0 ∼ −A2τµa2M−a2 − Cc2τ−c1+µ(c2+1)M−c2−1 + Dd2τd1−µ(d2−1)Md2−1.

Here we have retained all terms that cannot be immediately disqualified as negligible.
The candidates for µ, obtained by the pairwise equating of the exponents on τ , are the
positive numbers among

(7.53)
c1

c2 + 1 − a2
,

d1

a2 + d2 − 1
,

d1 + c2

d2 + c2
.

(The last entry in (7.53) is the only one that is clearly positive.) We note that µ and M
found by this procedure are independent of n. We obtain the asymptotic representation
for T̃+ by substituting that for ν+ into T+:

(7.54) T̃+(τ, n) ∼ B1τb1 − Cc1M−c2τ−c1−1+µc2 + Dd1Md2τd1−1−µd2 .

Now we substitute (7.51) and (7.54) into (7.46) to obtain
(7.55)

n†(τ)
τ2

∼ n†(ω)
ω2

−
∫ τ

ω
(B1σb1−3 − Cc1M−c2σ−c1−4+µc2 + Dd1Md2σd1−4−µd2 ) dσ
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as τ → ∞. Since we know that the general constitutive restrictions supporting the
phase portraits of Figs. 7.43 and 7.44 force n† to be decreasing, by the definition of R,
it follows that the C-term in (7.53) cannot be dominant as τ → ∞. This condition and
the requirement that the integrand in (7.55) be integrable on (ω, ∞) are ensured by

(7.56) −c1 + µc2 < b1 + 1, −c1 + µc2 < d1 − µd2, b1 < 2, d1 < 3 + µd2.

In view of the argument following (7.46), conditions (7.56) imply the existence of a
unique trajectory asymptotic to the positive τ -axis.

If necessary, we could ensure that (ω, n†(ω)) ∈ R by taking the constants B1 and
D sufficiently small. Whether it is necessary to make such an assumption depends on
the nature of the boundary of R, which is determined by the disposition of the horizon-
tal and vertical isoclines in Q1. (This disposition may be found by a complementary
asymptotic analysis involving other representations for the constitutive equations.) Thus
we conclude that there are cavitating solutions when (7.47), (7.48), and (7.56) hold (and
possibly when further minor restrictions are imposed). This asymptotic analysis corrects
that of Antman & Negrón-Marrero (1987).

The details of the cavitation problem for cylinders are virtually identical to those
for a ball. For a cylinder, however, hydrostatic tension is described by g(r) = r. The
important distinction between cylinders and balls is that the nature of tensile solutions
for certain materials depends crucially on the choice of g. There is an extensive lit-
erature on cavitation. See, e.g., Horgan & Polignone (1995), Sivaloganathan (1999),
Sivaloganathan & Spector (2003), and the works cited therein.

Inflation of a shell. Let us take α > 0. We can consider any combi-
nation of traction boundary conditions and position boundary conditions
for (7.25+) subject to the requirement that if we prescribe both inner and
outer radii, then the former must be the smaller. To be specific, let us
prescribe dead loads n(1 + lnα) = n∗ < 0 and n(1) = n∗ > n∗ and let
us suppose that the phase portrait has the form shown in Fig. 7.57, so
that the only critical point is a saddle at (1, 0). If n∗ ≥ 0, then the only
candidates for solutions are the upward-moving trajectories to the right of
the separatrices. If n∗ < 0, then these trajectories, together with some of
those in the region below both lower separatrices, are candidates.

Since dn/dξ > 0 in the region to the right of the separatrices, we can
define each trajectory there by an equation of the form τ = τ †(n, ω) where
ω is the value of τ at which the trajectory intersects the line n = n∗. Then
τ † is the solution of the initial-value problem

(7.58a)
dτ

dn
=

ν+(τ, n) − τ
2[T̃+(τ, n) − n]

, τ(n∗) = ω.

Such a trajectory generates a solution to our boundary-value problem
whenever ω can be chosen so that ξ varies from 1 + lnα to 1 on this
trajectory, i.e., so that

(7.58b) − lnα =
∫ 1

1+ln α

dξ =
∫ n∗

n∗

dn

2[T̃+(τ †(n, ω), n) − n]
=: Φ(ω).

Φ(ω) is the amount of independent variable ξ used up on the segment of
the trajectory through (ω, n∗) terminating on the line n = n∗. From the
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Fig. 7.57. Phase portrait for (7.25+) when its only critical point
is a saddle at (1, 0).

phase portrait (7.57), we find that τ †
ω > 0 and that τ †

ω ↗ ∞ as ω ↗ ∞.
Our growth conditions imply that T̃+(τ, n) → ∞ as τ → ∞ for n in any
bounded interval. Therefore, Φ(ω) → 0 as a ω → ∞. If we further assume
that T̃+

τ > 0, which is a consequence of (7.27+), we find that Φ′(ω) < 0 for
all ω > ω0 where ω0 is the value of τ at which the line n = n∗ intersects
the stable separatrix.

Let us first study the case in which n∗ ≥ 0. From standard properties
of critical points, it follows that Φ(ω0) = ∞. It then follows from the
Intermediate-Value Theorem that there is an ω satisfying (7.58b) and con-
sequently a solution to our boundary-value problem, which is unique when
Φ is strictly decreasing.

Now suppose that n∗ < 0. We first examine solutions of our boundary-
value problem for trajectories to the right of the separatrices. We know
that Φ(ω) → 0 as ω → ∞. Let us presume that Φ(ω0) can be computed.
Then the Intermediate-Value Theorem implies that there is a solution of
our boundary-value problem corresponding to a trajectory to the right of
the separatrices if − lnα ≤ Φ(ω0), i.e., if α is sufficiently close to 1 or if
n∗ is sufficiently close to 0. There is at most one solution trajectory in
this region if Φ is strictly decreasing. If Φ is strictly decreasing and if
− lnα > Φ(ω0), there is no solution trajectory in this region.
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For n∗ < 0, we now study trajectories in the region below the lower
separatrices. The graphs of these trajectories have the form n = n†(τ, ω)
where ω is the rightmost value of τ at which the trajectory intersects the
line n = n∗. Then n†(·, ω) is the solution of the initial-value problem

(7.59a)
dn

dτ
=

2[T̃+(τ, n) − n]
ν+(τ, n) − τ , n(ω) = n∗.

Just as above, we find that n†(·, ω) generates a solution of the boundary-
value problem if ω satisfies

(7.59b) − lnα =
∫ 1

1+ln α

dξ = −
∫ ω

τ∗

dτ

ν+(τ, n†(τ, ω)) − τ =: Ψ(ω)

where τ∗ is any solution of n†(τ, ω) = n∗.
Let ω̄ identify the trajectory satisfying (7.59a) that is tangent to the line

n = n∗. For ω ∈ (ω̄, ω0), there are two values of τ∗ such that n†(τ, ω) =
n∗. Let us first choose τ∗ to be the smaller of these values. Then for
ω̄ ≤ ω ≤ ω0, Ψ(ω) ranges over an interval containing [Ψ(ω̄),∞]. Thus,
if −λα ≥ Ψ(ω̄), i.e., if α is sufficiently small or if n∗ is sufficiently large,
then there is a solution of our boundary-value problem. In particular, if
−λα > Ψ(ω̄), then for this solution n has an internal maximum. (Note that
this range of α roughly complements the range corresponding to trajectories
to the right of the separatrices.)

Now let ω ∈ (ω̄, ω0) and let τ∗ be the larger of the two solutions of
n†(τ, ω) = n∗. Then Ψ can be defined just like Φ above, and, under mild
constitutive assumptions, can be assumed to satisfy Ψ ′(ω) > 0 for ω ∈
(ω̄, ω0). We find that if Ψ(ω̄) ≤ −λα ≥ Ψ(ω0), then there is a solution of
our boundary-value problem in which n is increasing.

There are a variety of more sophisticated methods (including those used
in Sec. 4.5 and in Chap. 7) to show that this problem has solutions. The
procedure used here has the virtue that it gives the qualitative properties
of the solutions and multiplicity results, and the disadvantage that it does
not give the stability of solutions.

7.60. Exercise. Analyze by the methods of this section all the qualitatively distinct
possibilities for boundary-value problems corresponding to Fig. 7.57 and for the phase
portrait for (7.25+) when its only critical point is an attractive node at (1, 0).

7.61. Exercise. Use phase-plane methods to determine the existence and qualitative
properties of these inflation problems for all the alternative specifications of position and
traction boundary conditions for an isotropic material.

7.62. Exercise. For hyperelastic materials, use the direct methods of the calculus of
variations to prove the existence of solutions to the problem of this section under all the
alternative specifications of position and traction boundary conditions for an isotropic
material.

Eversion of a shell. Half a tennis ball can easily be turned inside out and
remain in an unloaded everted configuration. One can even contemplate
the eversion of a whole tennis ball by slicing it, pulling it through the slit,
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and then gluing the slit together again. A finite length of rubber tube can
be everted, possibly with some difficulty. (See the illustrated discussion
of Truesdell (1978).) That such eversions can be effected suggests that
equilibrium equations for such nonlinear elastic bodies admit at least two
(stable) classical solutions (differing by more than a rigid displacement).

Here we treat the eversion problem for spherical shells by methods just
like those we used for the inflation problem. We assume that (7.26) and
(7.27+) hold and that the corresponding natural growth conditions hold,
so that the phase portrait Fig. 7.33 is valid. Under these conditions, the
horizontal isocline has the form τ = h(n) with h(0) = 0 and with h strictly
increasing from 1 to ∞ as n increase from 0 to ∞. Since ν− < 0, by (7.26a),
there are no vertical isoclines in Fig. 7.33 and therefore no singular points
in Q1.

Let the graph of the solution of (7.25−) satisfying the initial condi-
tions τ = h(n̄), n = n̄ with n̄ ≥ 0 be denoted τ �→ n‡(τ, n̄). Under
our constitutive assumptions, for each n̄ > 0 this graph has exactly two
intersections with the line n = 0, which are denoted ω�(n̄) and ω�(n̄)
with ω�(n̄) < ω�(n̄). An everted equilibrium configuration of the shell
corresponds to a solution of (7.25−) satisfying the boundary conditions
n(1 + lnα) = 0 = n(1). Such a solution in turn corresponds to n‡(·, n̄)
when n̄ satisfies the following analog of (7.59b):

(7.63) − lnα = −
∫ ω�(n̄)

ω�(n̄)

dτ

ν−(τ, n‡(τ, n̄)) − τ =: X(n̄).

Now X(0) = 0. Since ω� < 1, since ω�(n̄) ↗ ∞ as n̄↗ ∞, since ω�(n̄) ↘ 0
as n̄ ↗ ∞, and since ν−(τ, n) ↗ 0 as n → ∞, it follows that X(n̄) →
∞ as n → ∞. It follows from Leibniz’s Rule that X ′(n̄) > 0 for all
n̄ > 0. Therefore, (7.63) has a unique solution for each α ∈ (0, 1), so
that there is a unique spherically symmetric everted state when (7.26),
(7.27+), and compatible growth conditions hold. Uniqueness can be lost
when (7.27+) is suspended. It is of course a straightforward matter to
replace the zero traction conditions for the eversion problem with nonzero
traction conditions. The methods are the same.

7.64. Exercise. Suppose that the shell is not complete, i.e., β > 0 or γ < π. Then
the material edges of the everted shell, defined by θ = β, γ, are constrained to lie on the
cones defined by θ = −β, −γ. Determine the traction on these edges, which is not zero,
and prove that the resultant forces on these edges are zero.

These results explain why an everted hemispherical shell with zero traction over
its entire boundary cannot have the everted spherical form given by (7.5) with ε = −1.
Those everted states that look nearly spherical (see Truesdell (1978)) exhibit flaring near
the edge. As Sec. 10.9 indicates, this flaring is a boundary-layer effect corresponding to
the discrepancy between zero traction on the edge and zero force on the edge.

7.65. Research Problem. Carry out an asymptotic analysis of this flaring with
respect to the thickness parameter 1 − α.

7.66. Exercise. Formulate and fully analyze the eversion of cylindrical tubes of finite
length.
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7.66. Exercise. Work out the existence theory for the inflation and the eversion of
incompressible shell.

7.68. Exercise. Study the cavitation problems for an incompressible elastic ball when
the normal stress is prescribed and when the outer radius is prescribed. The latter
problem gives a simple paradigm for the whole process of cavitation.

The solution for the inflation of an incompressible spherical shell was obtained by
Green & Shield (1950) and the solution for eversion by Ericksen (1955a). For a treatment
of existence for these problems in the spirit of Sec. 4, see Adeleke (1983). Studies of the
corresponding problems for compressible media were carried out by Adkins (1955) and
Green (1955). For full accounts of this early work, see Green & Adkins (1970), Green
& Zerna (1968), Ogden (1984), and Truesdell & Noll (1965).

The material formulation given in the beginning of this section follows Antman
(1979a). Figures 7.43–7.45 and much of the analysis in this section through (7.56)
come from Antman & Negrón-Marrero (1987) ( c©Martinus Nijhoff Publishers, Dor-
drecht, reprinted by permission of Kluwer Academic Publishers). A related problem,
a nonlinear version of the classical shrink-fit problem is treated by Antman& M. M.
Shvartsman (1995). Ball (1982) initiated the study of cavitation (for isotropic hyper-
elastic materials). His work has been the inspiration of numerous studies: Giaquinta,
Modica, & Souček (1989), Horgan & Abeyaratne (1986), Müller, Qi, & Yan (1994),
Müller & Spector (1995), Pericak-Spector & Spector (1988), Podio-Guidugli, Vergara
Caffarelli, & Virga (1986), Sivaloganathan (1986), and Stuart (1985).

The analysis of the inflation of a shell given above is based on that of Sivaloganathan
(1986); the analogous treatment of eversion is based on Szeri (1990). For materials
that are not homogeneous, the phase-plane methods used throughout this section fail.
Instead, one can use variational methods (see Ball (1982) and Sivaloganthan (1986) for
hyperelastic problems), variational inequalities (see Antman (1979a)), shooting methods
(see Stuart (1985)), and methods of asymptotically autonomous problems (see Shvarts-
man & Antman (1995)). For problems of dilatation and inflation, one can use continu-
ation methods like those of Gauss & Antman (1984) and Negrón-Marrero (1985).

8. Other Semi-Inverse Problems

Problems for prisms. In Sec. 9.2 we studied the qualitative behavior of transversely
isotropic elastic rods subject only to terminal loads. We found that the qualitative
behavior is dictated by phase portraits relating a bending couple to a suitable bending
strain. Most of the orbits in these portraits are closed, and therefore correspond to
periodic behavior of these two variables. The solutions as a whole, however, need not be
periodic. Here we study a family of semi-inverse problems for the 3-dimensional theory
of elasticity that is designed to correspond to the solutions observed in the rod theory.

We assume that the body B is an infinite prism

(8.1) B = Ω × span{k}

where Ω is a domain in E2. We assume that the material properties of the body do
not vary with the coordinate z3 along k. We seek deformations p for which there is a
constant vector a, a real number ζ, and a constant rotation tensor R such that

(8.2) p(z + ζk) = R · [p(z) + a].

This deformation has the property that C has period ζ in the k-direction. An important
special case of this deformation (which Ericksen (1980b) calls a deformation of St.Venant
type) is that in which there are functions ζ �→ a(ζ), R(ζ) such that (8.2) holds for all ζ.

We assume that the body is subject to zero body force. Then the equilibrium equa-
tions imply that the resultant force n(z3) and the resultant torque h(z3) about any



14.8. OTHER SEMI-INVERSE PROBLEMS 551

fixed point c acting across the section z3 are independent of z3:

n(z3) ≡
∫
Ω

T (z) · k dz1 dz2 = const.,(8.3a)

h(z3) ≡
∫
Ω

[p(z) − c ] × T (z) · k dz1 dz2 = const.(8.3b)

8.4. Exercise. Make judicious choices of the test functions in the Principle of Virtual
Power to give a direct proof of (8.3).

We want to determine some simple properties of deformations satisfying (8.2). First
we suppose that R 
= I. Then (by Euler’s Theorem on Rigid Motions) there is a
unique line of vectors b, forming the axis of rotation, that is invariant under R, i.e.,
R · b = b. These vectors span the null space of I − R. The set of vectors orthogonal to
the axis of rotation have the form (R∗ − I) · d where d is an arbitrary vector, because
by the Alternative Theorem 19.2.20, the range of R∗ − I is the orthogonal complement
of the null space of its adjoint R − I. Thus a admits the orthogonal decomposition
a = b + (R∗ − I) · d, which we substitute into (8.2) to obtain

(8.5) p(z + ζk) − d = R · [p(z) − d] + b.

Therefore F (z +ζk) = R ·F (z). It follows from frame-indifference (see (12.11.14)) that

(8.6)
T (z + ζk) = T̂ (F (z + ζk), z1, z2) = T̂ (R · F (z), z1, z2)

= R · T̂ (F (z), z1, z2) = R · T (z).

Thus n(z3 + ζ) = R · n(z3). It then follows from (8.3a) that

(8.7) n(z3) = R · n(z3) ∀ z3,

which, together with (8.3a), implies that n is a constant vector parallel to the axis b of
rotation. Let us now take c = d. Then we likewise find from (8.3b) that

(8.8)
h(z3) = h(z3 + ζ) =

∫
Ω

{R · [p(z) − d] + b} × R · T (z) · k dz1 dz2

= R · h(z3) + b × n = R · h(z3) ∀ z3.

In summary, if R 
= I and if c = d, then n and h are constant vectors parallel to
the axis of rotation.

8.9. Exercise. Prove that if R = I and if n 
= o, then c can be chosen so that a, h,
and n are all parallel.

8.10. Research Problem. Suppose that Ω is a disk and that the material of B is
transversely isotropic with respect to the axis k. Determine the qualitative behavior of
the material center line in deformations of the form (8.2). (Cf. Sec. 16.14.)

This material is based on the work of Ericksen (1980b). For analyses of the St.Venant
deformation by using similar ideas, see Ball (1977b), Ericksen (1977a,b, 1983), Muncaster
(1979), and the treatment in Sec. 16.14.

Another problem in cylindrical coordinates. We now briefly discuss a variant of
the deformations described in Sec. 2. Again we take x := (s, φ, z), but now we consider

(8.11) p̃(x) = sf(φ)k1(x) + [sh(φ) + δz]k3,



552 14. PROBLEMS IN NONLINEAR ELASTICITY

where

(8.12)

k1(x) ≡ k1(x) := cos ω(x)i1 + sin ω(x)i2,

k2(x) ≡ k2(x) := − sin ω(x)i1 + cos ω(x)i2,

k3 ≡ k3 := i3,

ω(x) := g(φ) + α ln s.

The reference state is characterized by f = 1, g(φ) = φ, h = 0, α = 0, δ = 1. Setting

(8.13)
j1(φ) ≡ j1(φ) := cos φ i1 + sin φ i2, j2(φ) ≡ j2(φ) := − sin φ i1 + cos φ i2,

j3 ≡ j3 := i3,

we readily find that

F (z̃(x)) = [f(φ)k1(x) + αf(φ)k2(x) + h(φ)k3]j1(φ)(8.14)

+ [f ′(φ)k1(x) + f(φ)g′(γ)k2(x) + h′(φ)k3]j2(φ) + +δk3j3

=: F i
q(s)ki(x)jq(φ),

C = [(1 + α2)f2 + h2]j1j1 + [ff ′ + αf2g′ + hh′](j1j2 + j2j1)(8.15)

+ [(f ′)2 + (fg′)2 + (h′)2]j2j2 + δh(j1j3 + j3j1)

+ δh′(j2j3 + j3j2) + δ2j3j3

=: Cpq(s)jp(φ)jq(φ),

det F = δ[fg′ − αf ′]f.(8.16)

In view of (8.16), we naturally restrict our variables to satisfy

(8.17) f > 0, δ > 0, fg′ > αf ′.

8.18. Exercise. Describe geometrically the effect of (8.11) on a wedge. Derive (8.14)–
(8.16). Find the principal invariants of C.

We decompose T like F :

(8.19) T (z̃(x)) = Ti
q(z̃(x))ki(x)jq(φ).

We assume that the unconstrained constitutive functions (13.1.3) are such that the
components of T in (8.19) depend only on φ. (Isotropy ensures this for a material whose
components in (8.19) depend explicitly on x only through φ.) In this case, the equations
of equilibrium for zero body force, i.e., the components of ∇ · T ∗ = o, reduce to the
system of ordinary differential equations:

dT1
2

dφ
+ T1

1 − αT2
1 − g′T2

2 = 0,(8.20)

dT2
2

dφ
+ αT1

1 + T2
1 + g′T1

2 = 0,(8.21)

dT3
2

dφ
+ T3

1 = 0.(8.22)

8.23. Exercise. Derive (8.20)–(8.22) and find the three nontrivial components of the
symmetry condition (12.7.27).

We may now substitute our constitutive equations for unconstrained materials into
(8.20)–(8.22) to get a system of three second-order ordinary differential equations for
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f, g, h, α, δ. If the constitutive functions do not depend explicitly on φ, then this system
is autonomous. A large variety of suitable subsidiary conditions can be appended to this
system (see Antman (1983a)). It seems likely that simplified versions of the methods of
Antman (1983a) or of variational methods can be used to prove that suitable boundary-
value problems have weak solutions and that these weak solutions are classical.

In view of (8.16), the defining requirement for incompressible media that det F = 1
reduces to an explicit expression for g′ in terms of f, f ′, α, δ. Here, in contrast to
the problems treated in Sec. 4, we confront a bona fide system of ordinary differential
equations.

The deformation (8.11) is a generalization of that studied by Fu, Rajagopal, & Szeri
(1990) and Rajagopal & Carroll (1992), who took α = 0, h = 0.

We can also formulate an analogous deformation for a cone. In the notation of Sec. 7,
we consider a deformation of the form

(8.24) p̃(x) = sf(θ)a1(θ, φ).

8.25. Problem. Analyze deformations of the form (8.24).

9. Universal and Non-Universal Deformations
We have studied a variety of specific static problems in which the form

of the deformation is strongly restricted. Now any given deformation is a
solution of the equilibrium equations provided that the body force f be
adjusted to accommodate it. The class of physically natural body forces,
however, is quite small, encompassing merely gravitational forces, forces
due to reversed acceleration, and forces of electromagnetic origin. We ex-
clude deformations that must be maintained by artificial body forces by
limiting our attention to those that can be maintained entirely by tractions
on the boundary of the body. These deformations are termed controllable.

Among the controllable deformations are those that can occur for every
material in a given class. Such deformations are called universal for that
class. For example, consider the affine static deformations, for which F
is constant, of homogeneous elastic bodies. Since T̂ (F ) is consequently
constant, the equilibrium equation ∇·T̂ (F )∗ = o is automatically satisfied.
Thus these affine deformations are universal for such materials. (In fact,
they are the only universal deformations, as we show below.) In these
deformations, the constitutive function T̂ enters only through the boundary
conditions. It is this feature that makes universal deformations especially
useful for determining material properties: One can subject a homogeneous
elastic body to a given affine deformation F and measure the traction
induced on the boundary. From the tractions, one can readily determine
the stress corresponding to the (constant) F . (This procedure was actually
carried out with great success by Rivlin & Saunders (1951) for rubber, an
incompressible homogeneous elastic material.) Clearly, there is no reason
to expect that a non-universal deformation can be maintained by surface
tractions alone, so that this experimental process could not be carried out
for such a deformation. Alternative procedures relying on a prescription of
surface tractions or other data would be tantamount to solving a boundary-
value problem, with the attendant difficulties described in Sec. 13.6.
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It is clear that if U(M) is the class of universal deformations of a class
M of materials and if N is a subclass of M: N ⊂ M, then U(M) is a
subclass of U(N ): U(M) ⊂ U(N ). Thus, as we show below, the most
powerful characterizations of universal deformations are those that apply
to the most restricted class of materials. Many of these comments readily
carry over to dynamical problems; see Sec. 14.

We begin our study of the characterizations of universal deformations
with the most elementary of theorems:

9.1. Theorem. All universal static deformations of homogeneous elastic
bodies are affine deformations.

Proof. Let F denote such a deformation. Then the equilibrium equation
in coordinates is

(9.2a)
∂T̂i

j

∂F k
l
(F )

∂F k
l

∂xj
= 0,

which is equivalent to

(9.2b) ab :
∂T̂

∂F
(F ) : [Fz · b] = 0 ∀a, b.

We write (9.2b) as A ∴ Fz = 0. The arbitrariness of the material ensures
that the third-order tensor A is arbitrary. Hence it follows that Fz = O, so
that F is constant. �
9.3. Problem. Find all universal static deformations of homogeneous elastic bodies
that satisfy the Strong Ellipticity Condition.

In view of the remarks preceding its statement, Theorem 9.1 is a conse-
quence of

9.4. Theorem. All universal static deformations of homogeneous, isotro-
pic elastic bodies are affine deformations.

Sketch of proof. We substitute (13.1.7) into the equilibrium equation.
The arbitrariness of the functions β−1, β0, β1 imposes several restrictions on
F and the invariants ι(C). These, together with the restrictions coming
from the further requirement that C satisfy the compatibility equations
(12.3.20a), yield a set of conditions that force F to be constant. The
details of the proof are given by Wang & Truesdell (1973, Sec. 6.2). �

This theorem is in turn a special case of the following more powerful
theorem of Ericksen (1955b):

9.5. Theorem. All universal static deformations of homogeneous isotro-
pic hyperelastic bodies are affine deformations.

For incompressible materials, the arbitrariness of the pressure p allows
a much richer class of deformations. We summarize the situation as it is
now understood:
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9.6. Theorem. All universal static deformations of homogeneous, iso-
tropic, incompressible, hyperelastic bodies belong to one of the following
classes:

(9.7) Fz = O, det F = 1,

p(xi + yj + zk) =
√

2κx[cos(αy + βz)i + sin(αy + βz)j](9.8)

+ (γy + δz)k with κ(αδ − βγ) = 1,

p̃(s, φ, z) = 1
2κs

2i + (αφ+ βz)j + (γφ+ δz)k(9.9)

with κ(αδ − βγ) = 1,

p̃(s, φ, z) =
√
κs2 + λ[cos(αφ+ βz)i + sin(αφ+ βz)j](9.10)

+ (γφ+ δz)k with κ(αδ − βγ) = 1,

p̃(s, θ, φ) =
√
κ± s3{sin(±θ)[cosφi + sinφj] + cos θk},(9.11)

p̃(s, φ, z) = κs[cos(α ln s+ βφ)i + sin(α ln s+ βφ)j] + δk(9.12)

with κ2βδ = 1,

and deformations for which there is a functional relationship among the
twelve quantities

(9.13) Cm, ek · (∇ × el)

where the Cm are the eigenvalues and the ek the corresponding unit eigen-
vectors of C.

We have studied many deformations of the forms (9.7)–(9.12). A con-
crete characterization of the last class, associated with (9.13), is not known.
(It is conceivably empty.)

Most of Theorem 9.6 is due to Ericksen (1954). His analysis was a tour de force
combining mechanics and geometry. He showed that universal deformations had to
be of the form (9.7)–(9.11) or else satisfy certain geometric restrictions. Subsequent
refinements of these restrictions, leading to classes (9.12) and (9.13), were carried out
by Fosdick (1966, 1971), Fosdick & Schuler (1969), Kafadar (1972), Klingbeil & Shield
(1966), Marris (1975, 1982), Marris & Shiau (1970), and Singh & Pipkin (1965). For a
study of universal deformations in the dynamics of simple materials, see Carroll (1967).

One way to escape the straitjacket that Theorems 9.5 and 9.6 impose
on possible deformations is to relax the restrictions on the deformation by
allowing semi-inverse deformations, discussed in Secs. 1–8. The existence
theorems for these problems assert that such solutions are possible for every
material meeting the Strong Ellipticity Condition and associated growth
conditions. A second method is to prescribe a class of deformations and
restrict the material response to ensure that such deformations are possi-
ble. We now describe examples of these methods. In the next section we
describe an example that combines these two approaches.
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Consider the deformation of a slab

(9.14) B := {z = xi + yj + sk : 0 < s < 1}

in which each layer at height s stays at its own height and undergoes a rigid deformation.
Such a deformation has the form

(9.15) p(x, y, z) = u(s)i + v(s)j + Ω(s) · z

where Ω(s) is a rotation about the k-axis through an angle ω(s). With respect to the
basis {i, j, k}, Ω(s) has the matrix

(9.16) [Ω] =

⎡⎣ cos ω − sin ω 0
sin ω cos ω 0

0 0 1

⎤⎦ .

Without loss of generality, we may assume that u(0) = v(0) = ω(0) = 0. We prescribe
u(1), v(1), ω(1). We seek ordinary differential equations for u, v, ω.

F (z) has the matrix

(9.17)

⎡⎣ cos ω(s) − sin ω(s) u′(s) − xω′(s) sin ω(s) − yω′(s) cos ω(s)
sin ω(s) cos ω(s) v′(s) + xω′(s) cos ω(s) − yω′(s) sin ω(s)

0 0 1

⎤⎦ .

C(z) has the invariants

(9.18)

IC(z) = IIC(z) = 3 + [u′(s) − xω′(s) sin ω(s) − yω′(s) cos ω(s)]2

+ [v′(s) + xω′(s) cos ω(s) − yω′(s) sin ω(s)]2,

IIIC = 1.

We assume that the slab is composed of an isotropic incompressible elastic material.
Since F depends on x and y, we cannot expect the resulting equations of equilibrium
to be independent of x and y. Thus, in general, it is impossible to obtain ordinary
differential equations for u, v, ω. One way to avoid this difficulty is to restrict (9.15)
further by requiring that ω′ = 0. (The dynamical problem in which ω = 0 is treated
in Sec. 14.) Alternatively, we can restrict our attention to materials for which x and y
do not enter the equilibrium equations. Such a material is the Mooney-Rivlin material
(13.5.2).

9.19. Exercise. Show that the equations of equilibrium for the Mooney-Rivlin material
are independent of x and y. Obtain and solve the ordinary differential equations for
u, v, ω.

The analysis of the deformation (9.15) for ω′ = 0 was carried out for arbitrary
incompressible materials and for ω′ 
= 0 for Mooney-Rivlin materials by Rajagopal &
Wineman (1984, 1985). This deformation was inspired by steady solutions of the Navier-
Stokes equations. The degenerate character of the Mooney-Rivlin constitutive equation
gives it a strong resemblance to the constitutive equation of a Newtonian fluid.

9.20. Problem. Carry out an analysis of deformations of the form

(9.21) p(x, y, z) = f(z)(xi + yj) + h(z)k

for compressible and incompressible isotropic materials. Show that there are materi-
als for which the functions f and g can be found as solutions of ordinary differential
equations. (See Currie & Hayes (1981).)

One can study non-universal semi-inverse deformations, like (9.21), in which p is
specified in terms of functions to be determined. Then as in Problem 9.20 and as in
the next section, one can classify those materials that are compatible with the admis-
sible deformations. Finally, one can study boundary-value problems for the unknown
functions. E.g., see McLeod & Rajagopal (1999) and Polignone Warne & Warne (1998).
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10. Antiplane Problems
As we have seen, the equilibrium of a nonlinearly elastic body is governed by a

quasilinear system of three coupled second-order partial differential equations. Now the
theory of quasilinear elliptic systems (in particular, the theory of variational problems)
under the kinds of assumptions we need for nonlinear elasticity has not yet reached a
level of completion comparable to that for the two degenerate cases in which there is
but one independent variable and in which there is but one dependent variable. For
the semi-inverse problems discussed in Secs. 1–8, the partial differential equations of
elasticity reduce to ordinary differential equations and accordingly fall into the first
case. A full arsenal of analytic methods, including some not emphasized in this book,
are available for their analysis. Are there likewise interesting problems of elasticity
governed by a single second-order partial differential equation? There is only one such
class of problems of this sort, the antiplane deformations of an incompressible body,
that has been extensively investigated. Although the theory has few problems that are
physically illuminating or practically important, its relative simplicity makes it a very
attractive laboratory in which to develop analytic techniques and insights. We now
sketch the main features of the theory, which is equally useful for other branches of solid
mechanics.
Let Ω be a domain in span{i1, i2} and let B be the cylindrical domain Ω×span{k}, with
generators parallel to k. An antiplane (shearing) motion of B has the form

(10.1) p(z, t) = zαiα + [z3 + w(z1, z2, t)]k.

Here repeated Greek indices are summed over 1,2. Thus

F = I + w,αkiα, C = I + w,αw,βiαiβ + w,α(kiα + iαk),(10.2a,b)

IC = 3 + w,1
2 + w,2

2 = IIC , IIIC = 1.(10.2c,d)

(We could ostensibly generalize (10.1) by replacing it with

(10.3) p(z, t) = λ−1/2zαiα + [λz3 + w(z1, z2, t)]k

where the constant λ > 0 accounts for stretches in the axial and transverse directions.
But we can include such effects in (10.1) either by choosing the stretched configuration
as the reference configuration or by redefining zk.)

Let us assume that the body force acts only in the z3-direction: f = f3k, and that
the prescribed density ρ and body force f3 do not depend on z3. We assume that the
body consists of an incompressible elastic material (13.1.5), (13.1.6) in which ŜA is
independent of z3. Then (13.1.4)–(13.1.6) reduce to

−p,α + p,3w,α + T α
β

,β = 0,(10.4)

−p,3 + T 3
β

,β + f3 = ρwtt(10.5)

where the T q
i are the components of T̂A.

10.6. Exercise. Show that (10.4) and (10.5) imply that p,3 = c, a constant.

Eqs. (10.4) and (10.5) form an overdetermined system of three equations for the two
unknown functions w and p. If this system has a solution, then cross differentiation of
(10.4) shows that

(10.7) T 1
β

,β2 = T 2
β

,β1.

Here and throughout this section, we assume that the T α
β and w have as many deriva-

tives as appear in our analysis. Conversely, if (10.7) has a solution w (say, a solution
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to an initial-boundary-value problem) and if Ω is simply-connected, then (10.4) can
be solved for p (cf. Sec. 12.3). (If Ω is not simply-connected, then suitable additional
restrictions must be imposed on the boundary values of w.) We pose the question of
determining conditions on the constitutive functions to ensure that (10.7) is identically
satisfied for any regular solution of (10.5).

For example, suppose that the material is isotropic, in which case (13.1.9) holds.
Then (10.7) reduces to

(10.8) [(ψ1w,1w,1),1 + (ψ1w,1w,2),2],2 = [(ψ1w,2w,2),2 + (ψ1w,1w,2),1],1.

Clearly, (10.8) holds for the degenerate material for which ψ1 = 0. If we seek those ψ1’s
for which (10.8) is identically satisfied for all w, then we find only that ψ1 = 0. We can
expect to get a much stronger result by requiring that (10.8) hold only for those w’s that
satisfy (10.5). The basic result, for the equilibrium of hyperelastic materials (13.1.15),
is

10.10. Theorem (Knowles (1976)). Let f3 = 0 and let (IC , IIC) �→ W †(IC , IIC) be
independent of z and satisfy the ellipticity condition

(10.10)
d

dγ

{
γ

[
∂W †

∂IC
(3 + γ2, 3 + γ2) +

∂W †

∂IIC
(3 + γ2, 3 + γ2)

]}
> 0 ∀ γ > 0.

Then the body admits nontrivial antiplane equilibrium states, i.e., condition (10.7) is
identically satisfied for any equilibrium solution w of (10.5), if and only if there is a
constant β such that W † satisfies

(10.11) β
∂W †

∂IC
(3 + γ2, 3 + γ2) = (1 − β)

∂W †

∂IIC
(3 + γ2, 3 + γ2)

for all γ ≥ 0.

To solve (10.4), (10.5) we may suppose that p,3 = 0. Then (10.5) reduces to a
quasilinear partial differential equation for the scalar unknown w. Once this is solved,
p is immediately found from (10.4). Note that for hyperelastic materials,

(10.12) T 3
β = 2

[
∂W †

∂IC
+

∂W †

∂IIC

]
w,β

where the argument of T 3
β is (10.2a), and the arguments of W † are IC , IIC of (10.2c,d).

These are the stresses that appear in the fundamental partial differential equation (10.5).
The form of T 3

β for homogeneous isotropic materials is unrestricted:

10.13. Exercise. Prove that if

(10.14) γ �→ H(γ2) :=
∂W †

∂IC
(3 + γ2, 3 + γ2) +

∂W †

∂IIC
(3 + γ2, 3 + γ2)

is given, then there always exists a W † satisfying (10.11).

Antiplane problems, a class of semi-inverse problems, were introduced into nonlinear
elasticity by Adkins (1954). Theorem 10.9 ensures that the class of admissible materials
is reasonably rich, so that from the viewpoint of material response, antiplane problems
are worthwhile. See Knowles (1977a) for an analogous result for compressible media.
For studies of fracture for antiplane problems, see Knowles (1977b), among others. The
problem treated in Section 2.7 is essentially an antiplane problem, and Theorem 2.7.8
is analogous to Theorem 10.9.

Papers on antiplane strain exploiting the special analytic virtue of having but a single
dependent variable are those of Gurtin & Temam (1981) and Bauman & Phillips (1990).
(They compensate for this simplicity by considering nonconvex stored energies.) For a
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numerical treatment of dynamical problems, see Lott, Antman, & Szymczak (2001). For
dynamical problems for other materials, see Engler (1989). For these other materials,
there are (as yet) no analogs of Theorem 10.9, so that the compatibility condition must
be checked on an ad hoc basis. See Sec. 15.4.

10.15. Problem. Obtain the analog of Theorem 10.9 for the deformation

(10.16) p̃(r, θ, z) = r[cos(θ + g(r, z))i + sin(θ + g(r, z))j] + zk

(see Tao, Rajagopal, & Wineman (1990)).

11. Perturbation Methods
Perturbation methods, the same as those described in Secs. 2.8 and 5.6,

can be applied in an illuminating way to many 3-dimensional problems of
elasticity. In particular, several of the solutions of the inverse and semi-
inverse problems described above can serve as trivial solutions for bifur-
cation problems. Here we first formulate the perturbation process for the
spatial buckling and necking of an incompressible, homogeneous, isotropic
elastic cylinder under prescribed end displacement. For these problems, we
restrict our attention to hyperelastic materials, not only because they are
physically natural, but also because they ensure that the (principal parts
of the) linearized equations are self-adjoint. We describe some of the details

of the problems of necking and barrelling. We then describe the instability
of an annulus welded to a spinning disk. We limit out attention to the more
formal aspects of these two problems, merely commenting on the rigorous
justification of their bifurcation theory. These two problems appear to be
the only bifurcation problems for partial differential equations of nonlinear
elasticicity that have so far been rigorously justified.

An incompressible, homogeneous, isotropic hyperelastic cylinder
under prescribed end displacement. We assume that the lateral sur-
face of the cylinder is traction-free and that the end planes are held hor-
izontal and are lubricated, so that there is no horizontal component of
the traction on these faces. We prescribe the distance lδ between the end
planes. As in Sec. 2, we use cylindrical coordinates x = (s, φ, z) and take
the body to be the cylinder

(11.1) B := {z̃(x) : 0 ≤ s < l, 0 ≤ φ ≤ 2π, 0 < z < l}.

We define the basis {jq} by (2.4), but do not yet introduce the base vec-
tors ki as a generalization of (2.5), however, because the polar coordinates
implicit in their use unduly restrict the class of deformations. We denote
the position of the material point with coordinates x by p̃(x). Then

(11.2) F (z̃(x)) = p̃s(x)j1(φ) + 1
s p̃φ(x)j2(φ) + p̃z(x)j3.

We likewise set

(11.3) T = τ qjq.
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Then the governing boundary-value problem consists of the equilibrium
equations:

(11.4) ∇ · T ∗ ≡
(

j1 ∂

∂s
+

1
s
j2 ∂

∂φ
+ j3 ∂

∂z

)
· jqτ

q = o, x ∈ x̃(B);

the constraint of incompressibility:

(11.5) detF ≡ 1
s (p̃s × p̃φ) · p̃z = 1, x ∈ x̃(B);

the constitutive equation (see (13.1.9)) for homogeneous, isotropic materi-
als:

(11.6a) F ∗ · T = −pI + ζ(ι(C))C + η(ι(C))C2, ζ := ψ0, η := ψ1,

which for hyperelastic materials (see (13.1.10b), (13.1.15)) reduces to

(11.6b)
F ∗ · T = −pI + 2C · ∂W

∂C

= −pI + 2C ·
[(
∂W †

∂IC
+ 2
∂W †

∂IIC
IC

)
I − ∂W

†

∂IIC
C

]
;

the requirement that the lateral surface be traction-free:

(11.7a) τ 1 = T · j1 = o for s = 1;

the requirement that the ends be horizontal and separated by the distance
lδ:

(11.7b) p̃(s, φ, 0) · i3 = 0, p̃(s, φ, l) · i3 = lδ;

the requirement that the horizontal components of the tractions on the end
faces vanish:

(11.7c) τ 3 · i1 = 0 = τ 3 · i2 for z = 0, l;

and a pair of restrictions that fix the rigid motions permitted by the re-
quirements given above:

(11.8) p̃(0, φ, 0) = o, p̃(1, 0, 0) · i2 = 0.

We allow δ to be any positive number, so that the cylinder can be either
compressed or extended. (In the latter case, it would, however, be difficult
to construct devices, such as lubricated magnets, that could maintain the
prescribed boundary conditions at the ends.)

For each δ > 0, this boundary-value problem admits the trivial solution
defined by

p̃(0)(x) = δ−1/2sj1(φ) + δzj3,(11.9a)

F(0) = δ−1/2(j1j
1 + j2j

2) + δj3j
3,(11.9b)

T(0) = [−p(0)δ−1 + ζ(0)δ + η(0)δ3]j3j3,(11.9c)

p(0) = ζ(0)δ−1 + η(0)δ−2(11.9d)
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where

(11.9e) ζ(0) = ζ(2δ−1 + δ2, δ−2 + 2δ), η(0) = η(2δ−1 + δ2, δ−2 + 2δ).

This solution is just that studied in Ex. 3.12.
We treat δ as the bifurcation parameter. Following the procedure of

Sec. 5.6, we introduce a small parameter ε, which measures the magnitude
of deviations from the trivial state, and then expand all the variables of our
boundary-value problem as Taylor polynomials in ε to the extent permitted
by the smoothness of the data, which here are the functions ζ and η:

(11.10)
δ = δ(0) + εδ(1) +

ε2

2!
δ(1) + · · · ,

p̃ = p̃(0) + εp̃(1) +
ε2

2!
p̃(1) + · · · , etc.

We proceed formally in that we do not spell out the function spaces in
which our variables are to lie and we do not justify the validity of the
expansion. (See the discussion at the end of this section.) The first-order
terms satisfy the boundary-value problem

∇ · T ∗
(1) = o, x ∈ x̃(B),(11.11a)

F −∗
(0) : F(1) = 0,(11.11b)

T(1) = − p(1)F −∗
(0) − F −∗

(0) · F ∗
(1) · T(0) + ζ(1)F(0)

+ ζ(0)F −∗
(0) · C(1) + η(1)F(0) · C(0)

+ η(0)F −∗
(0) ·

(
C(0) · C(1) + C(1) · C(0)

)
,

(11.11c)

T(1) · j1 = o for s = 1,(11.11d)

p̃(1)(s, φ, 0) · i3 = 0, p̃(1)(s, φ, l) · i3 = δ(1)l,(11.11e)

j1 · T(1) · j3 = 0 = j2 · T(1) · j3 for z = 0, l,(11.11f)

p̃(1)(0, φ, 0) = o, p̃(1)(1, φ, 0) · i2 = 0,(11.11g)

where C(1) = F ∗
(0) · F(1) + F ∗

(1) · F(0), where

(11.11h)
ζ(1) =

∂ζ

∂ IC
(ι(C(0))) trC(1)

+
∂ζ

∂ IIC
(ι(C(0)))

[
trC(0)trC(1) − C(0) : C(1)

]
,
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etc., and where δ is replaced by δ(0) in all expressions for F(0). (The form
of (11.6) enables us to avoid using the identity

(11.12)
∂F −∗

∂ε
= −F −∗ · ∂F

∗

∂ε
· F −∗,

coming from (11.2.11), to differentiate F −∗.)
For δ(1) = 0, problem (11.11) is homogeneous and admits the zero so-

lution generated by (p(1), p(1)) = (o, 0). Let us suppose that this homo-
geneous problem also admits a (smooth) nontrivial solution (p̄, p̄) at some
value of δ(0), which is an eigenvalue of the homogeneous problem. Then
(11.11) implies that

(11.13)

0 = −
∫

B
p̄ · ∇ · T ∗

(1) dv =
∫

B
T(1) : F̄ dv

=
∫

B
T̄ : F(1) dv =

∫
∂B

p̃(1) · T̄ · ν da

= δ(1)l
∫

{z∈∂B:z=l}
j3 · T̄ · j3 da

where C̄ and T̄ are obtained from C(1) and T(1) by replacing F(1) wherever
it appears by F̄ . (This entire computation, which relies on the hyperelas-
ticity, should properly be carried out in the context of the Principle of
Virtual Power.)

11.14. Exercise. Derive (11.13).

By an analysis like that of Secs. 6.5–6.8, we can show that the last
integral in (11.13) vanishes if the eigenvalue δ(0) is multiple. Let us suppose
that this integral does not vanish. Then (11.13) implies that δ(1) = 0. This
means that p̄ = p(1), etc. We are now faced with the eigenvalue problem
(11.11) in the cylinder B. The eigenvalues are critical loads for various
kinds of deformations. We study this problem in the special case that the
deformation is restricted to be axisymmetric. We accordingly preclude the
treatment of buckling, shear, and torsional instabilities.

Necking and barrelling instabilities. For axisymmetric deformations,
p̃ has the form

(11.15) p̃(x) = f(s, z)j1(φ) + h(s, z)j3,

so that (11.2) and (11.5) reduce to

F = (fsj1 + hsj3)j1 + s−1fj2j
2 + (fzj1 + hzj3)j3,(11.16)

s−1f(fshz − fzhs) = 1,(11.17)

and so that

(11.18)
IC = f2

s + h2
s + s−2f2 + f2

z + h2
z,

IIC = s−2f2(f2
s + h2

s + f2
z + h2

z) + s2f−2.
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Set T = Ti
qjijq. The constitutive equations (11.6) then reduce to

(11.19)

T1
1 = −ps−1fhz + ζfs + η[fs(f2

s + h2
s) + fz(fsfz + hshz)],

T1
3 = ps−1fhs + ζfz + η[fs(fsfz + hshz) + fz(f2

z + h2
z)],

T2
2 = −psf−1 + ζs−1f + ηs−3f3,

T3
1 = ps−1ffz + ζhs + η[hs(f2

s + h2
s) + hz(fsfz + hshz)],

T3
3 = −ps−1ffs + ζhz + η[hs(fsfz + hshz) + hz(f2

z + h2
z)],

the other components of T vanishing. From (11.4) (and (11.19)) we obtain

∂s(sT1
1) − T2

2 + s∂zT1
3 = 0,(11.20a)

∂s(sT3
1) + s∂zT3

3 = 0,(11.20b)

pφ = 0.(11.20c)

Conditions (11.7) reduce to

T1
1 = 0 = T3

1 for s = 1,(11.21a)

h(s, 0) = 0, h(s, l) = lδ,(11.21b)

T1
3 = 0 for z = 0, l.(11.21c)

Axisymmetry replaces (11.8) with

(11.22) f(0, z) = 0,

which says that the axis must remain intact.
11.23. Exercise. Derive (11.16)–(11.22).

We now linearize the boundary-value problem (11.17), (11.19)–(11.22) about the
trivial state (11.9), which is described by

(11.24) f(0) = δ−1/2s, h(0) = δz.

The linearization of (11.17) is

(11.25) ∂s[sf(1)] + δ−3/2s∂zh(1) = 0.

The linearization of (11.19) is
(11.26)

(T1
1)(1) = − δ1/2p(1) − δp(0)s

−1f(1) − δ−1/2p(0)∂zh(1)

+ (δ−1/2Z + δ−3/2H)[δ−3/2s−1∂s(sf(1)) + ∂zh(1)]

+ (ζ(0) + 3δ−1η(0))∂sf(1),

(T1
3)(1) = [δ−1/2p(0) + δ1/2η(0)]∂sh(1) + [ζ(0) + (δ−1 + δ2)η(0)]∂zf(1),

(T2
2)(1) = − δ1/2p(1) + (δp(0) + ζ(0) + 3δ−1η(0))s

−1f(1)

+ (δ−1/2Z + δ−3/2H)[δ−3/2s−1∂s(sf(1)) + ∂zh(1)],

(T3
1)(1) = [δ−1/2p(0) + δ1/2η(0)]∂zf(1) + [ζ(0) + (δ−1 + δ2)η(0)]∂sh(1),

(T3
3)(1) = − δ−1p(1) − δ−1/2p(0)s

−1∂s(sf(1))

+ (δZ + δ3H)[δ−3/2s−1∂s(sf(1)) + ∂zh(1)] + [ζ(0) + 3δ2η(0)]∂zh(1),
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with

(11.27) Z := 2
[
δ

∂ζ

∂ IC
+

∂ζ

∂ IIC

]
, H := 2

[
δ

∂η

∂ IC
+

∂η

∂ IIC

]
,

where the arguments of the derivatives of ζ are those of (11.9e). Since (11.20)–(11.22)
are linear in the visible variables, their linearizations are obtained by appending the
subscript (1) on each of their variables. In consonance with the discussion following
(11.13), we take δ(1) = 0, so that corresponding to (11.21b) are the boundary conditions

(11.28) h(1)(s, 0) = 0 = h(1)(s, l).

From (11.21c), (11.26), and (11.28) we obtain

(11.29) ∂zf(1)(s, 0) = 0 = ∂zf(1)(s, l)

provided that ζ(0) + (δ−1
(0) + δ(0)

2)η(0) 
= 0, which we assume. We seek solutions of our
linear system in the form

(11.30)

f(1)(s, z) =
∞∑

k=1

f1k(s) cos
kπz

l
,

h(1)(s, z) =
∞∑

k=1

h1k(s) sin
kπz

l
,

p(1)(s, z) =
∞∑

k=1

p1k(s) cos
kπz

l

where f1k(s), h1k(s), p1k(s) are to be determined. The form of f(1) and h(1) is chosen
to satisfy (11.28) and (11.29). The form of p(1) is then dictated by any of the par-
tial differential equations in which it appears. The cosine series do not contain terms
corresponding to k = 0 because the linear system forces f10 = 0, p10 = 0.

11.31. Exercise. Substitute (11.30) into the linear boundary-value problem and elim-
inate h1k and p1k to get a fourth-order linear equation for f1k subject to appropriate
boundary conditions. Use Bessel functions to solve this boundary-value problem and find
an explicit equation for the eigenvalues corresponding to the eigenfunction f1k. (There
are two cases. The analysis, which is lengthy, requires care and precision.) Discuss the
multiplicity and the disposition of the entire set of eigenvalues.

11.32. Problem. Determine criteria ensuring that the bifurcations from the eigenval-
ues are supercritical and subcritical.

11.33. Exercise. Expand solutions of the pure torsion problem for an incompressible
cylinder, formulated in Sec. 3, in terms of the parameter β about β = 0 up to terms of
order β2. Interpret the second-order effects found.

The treatment just given is akin to those of Sensenig (1963) and Weso�lowski (1962,
1963) and is typical of those for an extensive literature on perturbation methods in
nonlinear elasticity, much of it under the names of ‘small deformations upon large’
and ‘incremental’ theories. Davies (1989, 1991) and Simpson & Spector (1985) gave
careful treatments of barrelling, and Spector (1984) refined the bifurcation picture of
Weso�lowski. See Green & Adkins (1970), Green & Zerna (1968), Ogden (1984), and
Truesdell & Noll (1965) for compendia of solutions and references. See Negrón-Marrero &
Montes-Pizarro (2001) for a detailed treatment of the spectrum for the problem linearized
about an affine deformation.

Our treatment of the instability of the elastic cylinder under prescribed end displace-
ment is purely formal: The difficulty in justifying it, as pointed out by Ciarlet (1988) and
Valent (1988), is that the amount of regularity that can be demonstrated for problems
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with mixed boundary conditions is typically insufficient for the hypotheses of available
forms of the theorem. Healey & Montes-Pizarro (2003) circumvented this obstacle by
periodically extending the finite cylinder to an infinite cylinder. They obtained a global
bifurcation theory by using the results of Healey & Simpson (1998). The formal methods
used in this section can be extended not only to problems for compressible media, but
also for problems of thermoelasticity, etc.

Instability of a spinning annulus. We study the plane-strain motion of
an incompressible homogeneous isotropic elastic tube whose inner surface
is welded to a rigid circular cylinder rotating about its axis with constant
angular speed ω and whose outer surface is traction-free.

As in Sec. 3 we introduce the cylindrical coordinates x ≡ (s, φ, z) by
setting z̃(x) = sj1(φ) + zj3 where

j1(φ) ≡ j1(φ) := cosφ i1 + sinφ i2,

j2(φ) ≡ j2(φ) := − sinφ i1 + cosφ i2,(11.34)

j3 ≡ j3 := i3.

Let 0 ≤ R < 1. The reference configuration of the body is the tube with
R ≤ s ≤ 1, 0 ≤ φ ≤ 2π. The most general plane-strain motions have the
form

(11.35a) p̃(x, t) = r(s, φ, t)k1(φ, t) + v(s, φ, t)k2(φ, t) + zk3

where

(11.35b)

k1(φ, t) ≡ k1(φ, t) := cosωt j1(φ) + sinωt j2(φ),

k2(φ, t) ≡ k2(φ, t) := − sinωt j1(φ) + cosωt j2(φ),

k3 ≡ k3 := j3.

Thus

p̃t = (rt − ωv)k1 + (ωr + vt)k2,(11.36a)

p̃tt = (rtt − 2ωvt − ω2r)k1 + (vtt + 2ωrt − ω2v)k2,(11.36b)

F = p̃sj
1 +

p̃φ

s
j2 + p̃zj

3(11.37)

= [rsk1 + vsk2]j1 +
1
s
[(rφ − v)k1 + (vφ + r)k2]j2 + k3j

3

=: F i
qkij

q,

C = p̃s · p̃sj
1j1 + p̃s · p̃φ

s
(j1j2 + j2j1) +

p̃φ

s
· p̃φ

s
j2j2 + j3j3(11.38)

= [rs2 + vs2]j1j1 +
1
s
[rs(rφ − v) + vs(vφ + r)](j1j2 + j2j1)

+
1
s2

[(rφ − v)2 + (vφ + r)2]j2j2 + j3j3

=: Cpqj
pjq
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The boundary condition expressing the requirement that inner surface
of the tube, of natural radius R, adhere to a rigid cylinder of radius R
rotating about its axis with angular speed ω is that

(11.39) r(R,φ) = R, v(R,φ) = 0.

Since the body under study is incompressible, we require that detF = 1:

(11.40a) [p̃s × p̃φ] · i3 ≡ rs(vφ + r) − vs(rφ − v) = s.

Exemplifying that Jacobians can be written as divergences, (11.40a) can be written
in each of the following forms:

(rvφ)s − (rvs)φ + 1
2 [r2 + v2 − s2]s = 0,(11.40b)

−(rφv)s + (rsv)φ + 1
2 [r2 + v2 − s2]s = 0,(11.40c)

(11.40d) si3 = p̃s × p̃φ = 1
2 [(p̃ × p̃φ)s − (p̃ × p̃s)φ].

Since (s, φ) is confined to a simply-connected region, we could introduce a potential
that ensures that (11.40a) is satisfied. We would then have the problem of showing that
given the potential, we can recover r and v from the differential equations relating these
variables to the potential.

Let us decompose T like F :
(11.41)

T (z̃(x), t) = Ti
q(s, φ)ki(φ, t)jq(φ) =: −pF −∗ + T i

q(s, φ)ki(φ, t)jq(φ).

We use the formulas of Sec. 3 to write the equations of motion as

− ps(vφ + r) + pφvs + ∂s(sT 1
1) + ∂φT 1

2 − T 2
2(11.42a)

= sρ(rtt − 2ωvt − ω2r),

ps(rφ − v) − pφrs + ∂s(sT 2
1) + ∂φT 2

2 + T 1
2(11.42b)

= sρ(vtt + 2ωrt − ω2v),

together with the requirement that p be independent of z.
For a homogeneous isotropic incompressible viscoelastic body of strain-

rate type, we use constitutive equations of the form

(11.43a) T̂ (F ) = F · [−pC−1 + ŜA(C,Ct)]

where the second Piola-Kirchhoff stress ŜA has the form
(11.43b)

ŜA(C,Ct) = α0I + α1C + α2C
2 + α3Ct + α4(Ct)2

+ α5[C2 · Ct + Ct · C2] + α6[C · (Ct)2 + (Ct)2 · C]

with the coefficients α0, . . . , α6 depending on the invariants

(11.43c)
trC, trC2, trCt, tr [(Ct)2],

tr [C · Ct], tr [C2 · Ct], tr [(Ct)2 · C],

in view of Theorem 12.13.32, identities (11.1.51) and (11.1.52), and the
incompressibility condition.

The boundary condition expressing the requirement that outer surface
of the tube, of natural radius 1, be traction-free is that for s = 1,

(11.44) T · j1 = 0 ⇐⇒ T1
1 ≡ −p

s
(vφ + r) + T 1

1 = 0 = pvs + T 2
1 ≡ T 2

1.
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Steady solutions. We now seek steady solutions of our equations, and
specialize the constitutive equations (11.43) to those for an elastic body:

(11.45a) T̂ (F ) = F · [−pC−1 + ψ0(ι)I + ψ1(ι)C]

where ψ0 and ψ1 depend on the principal invariants of C

(11.45b) ι := IC = IIC = 1 + rs2 + vs2 +
1
s2

[(rφ − v)2 + (vφ + r)2],

and are independent of p. We assume that the natural state has zero extra
stress:

(11.45c) ψ0(3) + ψ1(3) = 0.

The equations of motion are (11.42) with the time-derivatives set equal
to 0. By multiplying (11.42a) by rs and (11.42b) by vs, adding the products,
and using (11.40), we obtain

(11.46a)
−s[p− 1

2ω
2ρ(r2 + v2)]s + rs[∂s(sT 1

1) + ∂φT 1
2 − T 2

2]

+ vs[∂s(sT 2
1) + ∂φT 2

2 + T 1
2] = 0.

Likewise, by multiplying (11.42a) by rφ − v and (11.42b) by vφ + r, adding
the products, and using (11.40), we obtain
(11.46b)

−s[p− 1
2ω

2ρ(r2 + v2)]φ + (rφ − v)[∂s(sT 1
1) + ∂φT 1

2 − T 2
2]

+ (vφ + r)[∂s(sT 2
1) + ∂φT 2

2 + T 1
2] = 0.

We can now divide (11.46a,b) by s and cross-differentiate to get a sin-
gle equation independent of both p and the eigenvalue parameter λ. If the
displacements are expressed in terms of a potential, then this equation gov-
erns it. Our boundary-value problem consists of (11.46), (11.40), (11.39),
(11.44).

Linearized problem. Let

(11.47) λ := ω2ρ, α := 2[ψ′
0(3) + ψ′

1(3)], β := ψ1(3).

Our boundary-value problem admits the trivial solution

(11.48) r(s, φ) = s, v(s, φ) = 0, p(s, φ) = − 1
2λ(1 − s2),

in which the tube rotates rigidly at angular speed ω.
We linearize our boundary-value problem about this trivial solution to

get an eigenvalue problem parametrized by λ. Bifurcation can only occur at
the spectrum of this linearized problem. The variables of the linearization
are identified by superscripted triangles.



568 14. PROBLEMS IN NONLINEAR ELASTICITY

The linearization of (11.40) is

(11.49) (sr�)s + v�
φ = 0.

Since r and v are defined on a simply-connected domain, Theorem 12.3.5
implies that there exists a potential χ such that

(11.50) sr� = χφ, v� = −χs.

11.51. Exercise. Linearize the governing equations of the steady state problem about
the trivial solution, and express the displacements r� and v� in terms of χ to obtain

λχφφ − p�
φ − βsχsss +

α

s
χsφφ − β

χsφφ

s
+ 2β

χφφ

s2
− βχss + β

χs

s
= 0.(11.52a)

p�
s − λχsφ − α

χssφ

s
− β

χφφφ

s3
− β

χssφ

s
− β

χsφ

s2
+ α

χsφ

s2
= 0,(11.52b)

Differentiate (11.52a) with respect to s and (11.52b) with respect to φ and add the
resulting derivatives to show that χ satisfies the 2-dimensional biharmonic equation:

(11.53) (∂ss + 1
s
∂s + 1

s2 ∂φφ)(χss + 1
s
χs + 1

s2 χφφ) = 0,

subject to the boundary conditions

χφ(R, φ) = 0 = χs(R, φ),(11.54a,b)

−p�(1, φ) + (α + 2β)χsφ(1, φ) − 2βχφ(1, φ) = 0,(11.54c)

χφφ(1, φ) + χφ(1, φ) − χss(1, φ) = 0.(11.54d)

(Cf. Rabier & Oden (1989).)

11.55. Exercise. Solve (11.53) by seeking solutions in the form f(s) cos nφ+g(s) sin nφ,
where n is a non-negative integer. These functions have the requisite periodicity in φ.
(i) Substitute these functions into (11.53) to get the same kinds of ordinary differential
equations for u and v. These equations are of Euler type, so that they admit solutions
of the form sp (possibly multiplied by a logarithm). Since the differential operator
factors, a solution of this equation is a solution of the version corresponding to Laplace’s
equation, which gives p = ±n, when n ≥ 2. (ii) Factor out these solutions to get the
remaining two solutions p = 2 ± n when n ≥ 2. Thus show that the general solution of
(11.53) on a circular annulus is

(11.56a)

χ = a0 ln s + b0s2 + c0s2 ln s + d0s2φ + ã0φ

+ 1
2a1sφ sin φ + (b1s3 + ã1s−1 + b̃1s ln s) cos φ

− 1
2 c1sφ cos φ + (d1s3 + c̃1s−1 + d̃1s ln s) sin φ

+
∞∑

n=2

(ansn + bnsn+2 + ãns−n + b̃ns−n+2) cos nφ

+
∞∑

n=2

(cnsn + dnsn+2 + c̃ns−n + d̃ns−n+2) sin nφ.

(See J. H. Michell (1899) or Timoshenko & Goodier, (1951, p. 116).) The requirement
that the position field be periodic in φ implies that d0 = ã0 = a1 = c1 = 0. Condition
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(11.54a) and the fact that only the derivative of χ has physical meaning means that
χ(R, φ) = 0 can be added to the boundary conditions. (iii) Show that

(11.56b)

a0 ln R + b0R2 + c0R2 ln R = 0,

b1R3 + ã1R−1 + b̃1R ln R = 0,

d1R3 + c̃1R−1 + d̃1R ln R = 0,

anRn + bnRn+2 + ãnR−n + b̃nR−n+2 = 0, n ≥ 2,

cnRn + dnRn+2 + c̃nR−n + d̃nR−n+2 = 0, n ≥ 2.

(iv) Likewise, show that (11.54b) implies that

(11.56c)

a0R−1 + 2b0R + c0(2R ln R + R) = 0,

3b1R2 − ã1R−2 + b̃1(ln R + 1) = 0,

3d1R2 − c̃1R−2 + d̃1(ln R + 1) = 0,

nanRn−1 + (n + 2)bnRn+1 − nãnR−n−1 + (−n + 2)b̃nR−n+1 = 0, n ≥ 2,

ncnRn−1 + (n + 2)dnRn+1 − nc̃nR−n−1 + (−n + 2)d̃nR−n+1 = 0, n ≥ 2.

(v) Show that (11.54d) implies

(11.56d)

−a0 + 2b0 + 3c0 = 0,

6b1 + 2ã1 + b̃1 + b1 + ã1 − (d1 + c̃1) = 0,

6d1 + 2c̃1 + d̃1 + d1 + c̃1 + b1 + ã1 = 0,

n(n − 1)an + (n + 2)(n + 1)bn + n(n + 1)ãn + (n − 2)(n − 1)b̃n

+n2(an + bn + ãn + b̃n) − n(cn + dn + c̃n + d̃n) = 0, n ≥ 2,

n(n − 1)cn + (n + 2)(n + 1)dn + n(n + 1)c̃n + (n − 2)(n − 1)d̃n

+n2(cn + dn + c̃n + d̃n) + n(an + bn + ãn + b̃n) = 0, n ≥ 2.

(vi) Show that all the coefficients with indices 0 and 1 vanish. We then have six equations
for each of the eight coefficients with index n. (vii) Eq. (11.52a) implies that

(11.57) p� = λχφ − β

∫ φ

0
sχsss dφ̄

+
α

s
χsφ − β

χsφ

s
+ 2β

χφ

s2
− β

∫ φ

0
χss dφ̄ − β

∫ φ

0

χs

s
φ̄ + h(s),

where h is to be determined. Show that boundary condition (11.54c) then yields

(11.58) (4+λ/β)χφ(1, φ)−3χsφ(1, φ)+f(1) =
∫ φ

0
[χsss(1, φ̄)+χss(1, φ̄)+χs(1, φ̄)] dφ̄.

(viii) Let γ := 4 + λ/β. Substitute (11.56a) (with all coefficients with indices 0 and 1
set equal to 0) into (11.58) to get

h(1) = −
∞∑

n=2

1
n

(∂s + ∂ss + ∂sss)(cnsn + dnsn+2 + c̃ns−n + d̃ns−n+2)
∣∣∣∣
s=1

,

(11.59a)

[−γn + 3n∂s + n−1(∂s + ∂ss + ∂sss)](ansn + bnsn+2 + ãns−n + b̃ns−n+2)
∣∣
s=1 = 0,

(11.59b)

[−γn + 3n∂s + n−1(∂s + ∂ss + ∂sss)](cnsn + dnsn+2 + c̃ns−n + d̃ns−n+2)
∣∣
s=1 = 0.

(11.59c)
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h(1) can be found after the unknown coefficients are found. (ix) Characterize the λ’s for
which there are nontrivial coefficients. Note that there is no coupling between coefficients
with different indices. In particular, show that for each n these eigenvalues λ are solutions
of a characteristic equation giving γ2 as a unique positive-valued function of n and R.

The last two lengthy exercises constitute the elementary part of the monograph of
Rabier & Oden (1989). They find that the linearized problem besides having eigenvalues
also has an essential spectrum. Their main effort is to handle the technically difficult
demonstration that bifurcation actually occurs under these conditions. It appears that
some methods of bifurcation theory developed since their work (like those used in Chap.
6 for singular problems) could simplify some of their arguments.

11.60. Research Problem. Because of the presence of Coriolis accelerations, the
dynamical problem may have far more interesting behavior than the steady state prob-
lem, with the possibility of Hopf bifurcations or more complicated bifurcations from the
trivial steady motion. Analyze the dynamical bifurcation problem.

12. Instability of an Incompressible
Body under Constant Normal Traction

We study the deformation of a homogeneous, isotropic, incompressible
body B (e.g., a cube) under a constant dead normal traction τ :

(12.1) T (z) · ν(z) = τν(z) for z ∈ ∂B.

We limit our attention to linear deformations of B, i.e., deformations of the
form z �→ F · z where F is a constant tensor satisfying (11.5).

Substituting (11.6) for such deformations into the equilibrium equations
(11.4), we find that the pressure p is constant. Thus T is constant. We
assume that the normal vectors {ν(z)} on ∂B span E

3. In this case, the
substitution of (11.6) into (12.1) yields

(12.2a) −pF −∗ + ζF + ηF · C = τI,

which the Polar Decomposition Theorem 12.4.1 converts to

(12.2b) −pU−1 + ζU + ηU3 = τR∗.

Let the Uk :=
√
Ck be the eigenvalues of U , and let {ek} be a correspond-

ing right-handed orthonormal basis of eigenvectors. Giving U its spectral
representation (11.1.43), we deduce from (12.2b) that if τ �= 0, then the
proper-orthogonal R has a diagonal matrix with respect to the basis {ek},
whose diagonal entries must accordingly be ±1 and whose determinant
must equal 1. A suitable enumeration of the eigenvectors implies that ei-
ther R = I (so that F =

∑
Ukek) or that R = −e1e1 − e2e2 + e3e3 (so

that F = −U1e1e1 − U2e2e2 + U3e3e3). Thus the components of (12.2b)
with respect to the basis {ek} can be written as

(12.2c) [ζUk + ηU3
k − ε(k)τ ]Uk = p (no summation)

where ε(k) = −1 if k = 1, 2 in which case R = −e1e1 − e2e2 + e3e3,
and ε(k) = 1 otherwise. Here ζ and η depend on the invariants U1 +



14.12. INSTABILITY UNDER CONSTANT NORMAL TRACTION 571

U2 + U3 and U1U2 + U2U3 + U3U1. The system, (12.2c) together with the
incompressibility condition

(12.3) U1U2U3 = 1,

yields four equations for the four unknowns p and the Uk.

12.4. Exercise. Carry out in detail the preceding development.

Note that the problem with R = −e1e1 −e2e2 +e3e3 describes an equi-
librium in which the body has been rotated about the e3-axis through an
angle of π while the directions of the tractions remain are unchanged. See
Fig. 12.5. Thus this equilibrium is also the solution of a different problem
in which the normal traction is not constant. We discuss problems like this
below. For the time being, we limit our attention to the case that R = I.
This problem admits the trivial (rigid) solution U1 = U2 = U3 = 1. If we
assume that the extra stress vanishes in the reference configuration, then
we find that p = −τ for the trivial solution. We now study the bifurcation
of nontrivial solutions from the trivial solution by using a refinement of the
singularity theory described in Secs. 6.6 and 6.8.

Fig. 12.5. Trivial equilibrium configuration of a cube with R =
I and a nontrivial configuration with R = −e1e1 −e2e2 +e3e3.

Let us set u = (u1, u2, u3) where uk := lnUk and set c = (1, 1, 1). Then
(12.2c), (12.3) becomes

(12.6a,b) h(u, τ) = p c, u · c := u1 + u2 + u3 = 0

where h := (h1, h2, h3) with hk(u, τ) := [ζeuk + ηe3uk − τ ]euk . Let Π be
the orthogonal projection of R

3 onto the plane defined by (12.6b):

(12.7a) Π · u = u − 1
3 (u · c) c.

Thus u satisfies (12.6b) if and only if Π · u = u. Operating on (12.6a) with
Π· and with (I − Π)· we reduce it to

(12.7b) Π · h(u, τ) = o, (I − Π) · [p c − h(u, τ)] = o.
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Thus (12.6) has a solution (u, p) if and only if

(12.8a,b,c) Π · u = u, Π · h(u, τ) = o, p = 1
3h(u, τ) · c.

Note that (for ε(k) = 1) problem (12.2c), (12.3), and therefore (12.8) is
invariant under permutations of the index k. In particular, let S3 be the
group of permutations of three symbols. If G ∈ S3, then G · u is a triple
whose indices form a permutation of those of u. Thus h(G ·u, τ) = G ·h(u, τ),
i.e., h(·, τ) is equivariant under S3. Thus if u is a solution of (12.8), then
so is G · u.

Now we introduce a Cartesian coordinate system on the plane (12.6b)
by methods like those used in the introduction of Euler angles in Sec. 8.13:
We introduce the standard basis j1 := (1, 0, 0), etc., for R

3. Then the plane
defined by (12.6b) is perpendicular to c := j1+j2+j3; it is therefore spanned
by the orthonormal basis

(12.9)
a := 1√

2
( j1 + j2 + j3) × j3 ≡ 1√

2
( j1 − j2),

b := 1√
6
( j1 + j2 + j3) × ( j1 − j2) ≡ 1√

6
( j1 + j2 − 2j3).

If u satisfies (12.6b), then it has the form u = xa + yb with

(12.10) x = (u1 − u2)/
√

2, y = (u1 + u2 − 2u3)/
√

6.

We introduce the complex variable z = x + iy. The complex conjugate,
real part, and imaginary part of any complex number w are denoted by w̄,
Rew, and Imw. We can express (12.8b) as an equivalent equation for z,
which we write as

(12.11) g(z, σ) = 0

where g is complex-valued, σ := τ − τ0, and τ0 is an eigenvalue of the
linearization of our problem about the trivial solution. The equivariance of
(12.8) under S3 implies that (12.11) is invariant under all compositions of
z �→ e2π/3z (rotations through 2π/3) and z �→ z̄ (reflections). (That is, the
problem for z is equivariant under the dihedral group D3 of all symmetries
of the equilateral triangle. This is a manifestation of the intuitive fact that
S3 is isomorphic to D3, which can be seen by labelling the vertices of an
equilateral triangle with 1,2,3.)

To avoid technical difficulties, let us assume that g ∈ C∞(C×R), where
C denotes the complex plane. It can be shown that such a D3-equivariant
g has the form

(12.12) g(z, σ) = a(|z|2,Re z3, σ)z + b(|z|2,Re z3, σ)z̄2

where a and b are C∞ functions. (Representation (12.12) is a complicated
analog of the fact that an even, real-valued function f of a real variable
has the form f(x) = h(x2).) Let us now study (12.12) in a neighborhood
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of a bifurcation point (z, σ) = (0, 0). At such a point, a(0, 0, 0) = 0. It
is shown by Golubitsky, Stewart, & Schaeffer (1988) that if a(0, 0, 0) = 0,
b(0, 0, 0) �= 0, aσ(0, 0, 0) �= 0, then (12.11) is D3-equivalent to

(12.13) δσz + z̄2 = 0

where δ =sign [b(0, 0, 0)aσ(0, 0, 0)]: i.e., if g = (Re g, Im g), then there
is a nonsingular matrix S(z, σ) and an infinitely differentiable one-to-one
mapping (Z,Σ) of C × R onto itself such that

(12.14)
[

Re [δσz + z̄2]
Im [δσz + z̄2]

]
= S(z, σ) · g

(
Z(z, σ), Σ(σ)

)
where S, Z,Σ preserve the symmetry (cf. (6.6.14)). Moreover, (12.13) is its
own universal unfolding. Note that the hypotheses leading to (12.13) are
generic.

We easily see that the solution set for (12.13) in (z, σ)-space consists of
the trivial line z = 0 and the three nontrivial lines

(12.15) z = −δσ, z = −δσe2πi/3, z = −δσe−2πi/3.

If we trace back the significance of each of these branches, we find that they
correspond to states in which exactly two of the stretches λk are equal. Per-
haps surprisingly, this group-theoretical analysis thus shows that there is
no bifurcation to a state with three unequal stretches. A formal study
of stability on the nontrivial branches, testing whether they provide local
minima to the energy of a hyperelastic body restricted to affine deforma-
tions, shows that these branches are unstable (near the bifurcation point).
Just as in Sec. 6.8, we could illuminate the global behavior of branches
and their stability by studying a more degenerate problem, namely, that
for which b(0, 0, 0) = 0. In physical terms, this condition is satisfied for a
Mooney-Rivlin material.

The treatment just given is based on that of Ball & Schaeffer (1983). Also see
Golubitsky, Stewart, & Schaeffer (1988). These references give detailed treatments of
the degenerate problem for which b(0, 0, 0) = 0. The general problem of the dead-load
traction of a cube was introduced by Rivlin (1948, II). For further developments of this
problem, see Y.-C. Chen (1996), Rivlin (1974), and Sawyers (1976).

Comments. The difficulty with mixed boundary conditions discussed in the second
paragraph after Ex. 11.33 does not arise in the problem with boundary condition (12.1)
because this problem is finite-dimensional since we have restricted our attention to affine
deformations. It would not arise in unrestricted traction boundary-value problems either,
because the boundary conditions are not mixed.

Figure 12.5 illustrates another source of trouble: multiple solutions for the same dead
loading. In distinguishing these solutions, the role of rotation is central.

A necessary condition for the solution of an equilibrium problem with traction bound-
ary conditions is that the resultant force and torque on the body be zero:∫

B
f dv +

∫
∂B

τ̄ da = o,(12.16) ∫
B

p × f dv +
∫

∂B
p × τ̄ da = o.(12.17)



574 14. PROBLEMS IN NONLINEAR ELASTICITY

Condition (12.17) is a source of difficulty, because it depends on the unknown p. (Condi-
tion (12.16) would depend on p only if the load were not dead.) Systematic perturbation
schemes for equilibrium problems must deal with this issue, which is related to the use
of the Alternative Theorem. The basic method, a refinement of that outlined in Sec.
13.8 in which the trivial configuration is the reference configuration, is due to Signorini
(1930, 1949, 1955). Accounts of this method are given by Grioli (1962), Truesdell &
Noll (1965), and Wang & Truesdell (1973). Refinements of the method are given by
Bharatha & Levinson (1978), Capriz & Podio-Guidugli (1974, 1979, 1982), Green &
Spratt (1954), Grioli (1983), and Rivlin & Topakoglu (1954). Standard perturbation
methods work without difficulty for dynamical problems, for which (12.16) and (12.17)
do not intervene.

The justification of Signorini’s expansion about the reference configuration by means
of the Implicit-Function Theorem was carried out by Stoppelli (1954, 1955, 1957–1958)
and Van Buren (1968). Stoppelli confronted the bifurcation problems associated with
Fig. 12.5. Accounts of Stoppelli’s work are given by Grioli (1962), Wang & Truesdell
(1973), Truesdell & Noll (1965), and Valent (1988). See Ciarlet (1988) and especially
Valent (1988) for careful expositions of the technical questions that underlie the use
of the Implicit-Function Theorem. A complete modern treatment of these bifurcation
problems, using singularity theory and group theory, was carried out by Chillingworth,
Marsden, & Wan (1982, 1983) and Wan & Marsden (1984). See Marsden & Hughes
(1983) and Pierce (1989) for accounts of this work. It is likely that local methods based
upon some version of the Implicit-Function Theorem can give rise to global results via
the methods of Healey (2000), Healey & Rosakis (1997), Healey & Simpson (1998). The
difficulties in justifying perturbation methods for dynamical problems are the same as
those discussed in Chap. 2.

13. Radial Motions of an Incompressible Tube
We now study a dynamic inverse problem, corresponding to the static

problems formulated in Sec. 3, for a homogeneous, isotropic, incompressible
infinite tube of inner radius s0 and outer radius 1. We adopt the time-
dependent versions of (2.1) and (2.16) with α = 1 = δ, β = 0 = γ, and
g = 0 = h:

p̃(x, t) = f(s, t)j1(φ) + zj3,(13.1)

F = fsj1j
1 + s−1fj2j

2 + j3j
3,(13.2)

f(s, t)fs(s, t) = s so that f(s, t)2 = s2 + r(t)2 − s20(13.3)

where

(13.4) r(t) := f(s0, t).

These equations describe the purely radial motions of the tube. (Since we
are fixing the longitudinal stretch δ = 1, there is no such motion for a solid
cylinder, for which s0 = 0.)

Let us assume that the tractions on the two cylindrical surfaces are
prescribed:

(13.5) T1
1(s0, t) = −s−1

0 r(t)π0(r(t), t), T1
1(1, t) = −f(1, t)π1(f(1, t), t).
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(π0 and π1 measure force per unit actual area.) Following Secs. 2 and 3,
we find that the equations of motion reduce to

[sT1
1]s − T2

2 = sρftt,(13.6)

T1
1 = −pf

s
+ ψ0fs + ψ1fs

3, T2
2 = −pfs + ψ0

f

s
+ ψ1

f3

s3
(13.7)

where each argument of ψ0 and ψ1 is (fs)2 + f2/s2 + 1. We used (13.3)
in obtaining (13.7). The remaining equations of motion and our boundary
conditions show that p is independent of φ and z.

Using (13.3) and (2.19), we can write (13.6) as

(13.8) ps = [(sT 1
1)s − T 2

2 − sρftt]f−1.

We integrate this equation from s0 to 1, integrating the first term on the
right-hand side by parts, and then use the boundary conditions (13.5).
Using (13.3), we thus obtain the following ordinary differential equation
for r:

(13.9a)
∫ 1

s0

[
sρftt
f

+
T 2

2

f
− s

2T 1
1

f3

]
ds = π0 − π1.

Explicitly integrating the first term in the integrand of (13.9a) and using
(13.7), we obtain

(13.9b)
ρ

2

{
[rrtt + (rt)2] ln

(
1 +

κ2

r2

)
− (rt)2κ2

r2 + κ2

}
+
Φ′(r)
4r

= π0 − π1

where κ2 := 1 − s20 and

(13.9c) Φ′(r) = 4r
∫ 1

s0

1
s

[
ψ0

(
1 − s4

f4

)
+ ψ1

s2

f2

(
f4

s4
− s4

f4

)]
ds.

Eq. (13.9b) can be written as

(13.9d) d
dt{ρ[r

2(rt)2 ln(1 + κ2r−2)] + Φ(r)} = 4rrt(π0 − π1).

If π0 − π1 does not depend explicitly on t, then (13.9b) is autonomous and
(13.9d) yields the energy integral for (13.9b), which gives the orbits of its
phase portrait.

13.10. Exercise. Discuss how the qualitative behavior of solutions of (13.9) is influ-
enced by the constitutive functions ψ0 and ψ1 when π0 − π1 = 0 and when π0 − π1 is a
positive constant. Compare this problem with Ex. 3.9.4.

13.11. Exercise. Formulate and analyze the purely radial motions of an incompress-
ible, isotropic, elastic, spherical shell.

This work is based on Knowles (1960). Also see Guo & Solecki (1963). For a related
analysis, see Knowles & Jakub (1965). Exercises 13.10 and 13.11 show that there are ini-
tial conditions for which solutions become unbounded. For a broad class of constitutive
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assumptions, Calderer (1983) went far beyond Exs. 13.10 and 13.11 in analyzing phase
portraits like that generated by (13.9c) when π0 − π1 is independent of t. In particu-
lar, she exhaustively determined the qualitative behavior of all solutions, showing when
solutions blow up in finite time. (For a general class of related problems, Ball (1978)
showed that weak solutions do not exist for all time. For partial differential equations,
in contrast to ordinary differential equations, this finding does not necessarily imply
blowup. Consequently, Calderer’s work illuminated Ball’s analysis.) Calderer (1986)
treated analogous problems for viscoelastic materials with memory.

These radial motions are universal. We discuss such motions in the next
section.

14. Universal Motions of Incompressible Bodies
In this section we show how to find certain motions for incompressible

elastic bodies. These are formulated as are the inverse problems of Secs.
3 and 8, and are typified by the motion treated in Sec. 13. We introduce
the notion of a quasi-equilibrated motion and determine some of its prop-
erties before treating explicit problems. We assume throughout that T̂A is
independent of the pressure.

The equations of motion (13.1.4)–(13.1.6) of an incompressible elastic
body are

(14.1a,b) ∇ ·
[
−pp−1

z + T̂A(pz, ·)∗]+ f = ρptt, det pz = 1.

For our present purposes, it is useful to recast (14.1a) into its spatial form:
We set y = p(z, t), assume that p(·, t) is invertible, denote its inverse by
q(·, t), regard the pressure p as a function of y, t, set

(14.1c)

a(y, t) : = ptt(q(y, t), t),

Σ̂A(F ,y, t) : = (detF )−1T̂A(F , q(y, t)) · F ∗,

f̆(y, t) : = f(q(y, t), t) detpz(q(y, t), t),

and denote the gradient with respect to y by ∇y (cf. Sec. 12.15). In view
of the incompressibility condition (14.1b), Eq. (14.1a) is equivalent to
(14.1d)

−∇yp(y, t) + ∇y · Σ̂A(pz(q(y, t), t),y, t) + f̆(y, t) = ρ(q(y, t)) a(y, t).

Recall that a motion p is controllable for an incompressible elastic body
iff it is a solution of (14.1d) with f̆ = o, i.e., iff there is a scalar pressure
field p such that (14.1d) holds. A motion p (for f̆ = o) is universal for
(a class of) incompressible elastic bodies iff for each material in the class
there is a pressure field p such that (14.1d) holds.

We now use the freedom afforded by the arbitrariness of the pressure
field p to construct universal motions for homogeneous isotropic bodies
from the universal deformations discussed in Sec. 9. We assume that the
extra stress T̂A is independent of the pressure p. We say that a motion p

of an incompressible body subject to body force f̆ is quasi-equilibrated iff
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for each fixed time t the deformation p(·, t) is a solution of an equilibrium
problem, i.e., iff there exists a scalar field p0 such that

(14.2) −∇yp0 + ∇y · Σ̂A + f̆(y, t) = o,

By subtracting (14.2) from (14.1a), we find that if p is quasi-equilibrated
and satisfies its equation of motion, then there is a scalar field

(14.3a,b) ! = p− p0 such that − ∇y! = ρa,

which implies that

(14.3c) ∇y × (ρa) = o.

Conversely, if p is quasi-equilibrated and if there exists a single-valued po-
tential ! such that (14.3b) holds, then p generates a solution of (14.1d).
(For ρ = const., there is an extensive literature on motions satisfying
(14.3b); see Truesdell & Toupin (1960, Secs. 105–138).) Let p be a quasi-
equilibrated solution of (14.2). Then the total Cauchy stress for for p is

(14.4) Σ = −!I + Σ0 with Σ0 := −p0I + Σ̂A

where the arguments of Σ̂A are those shown in (14.1d). Σ0 can be found
from the solution of the corresponding equilibrium problem.

The following theorem asserts that universal motions and quasi-equilibrated motions
are essentially the same.

14.5. Theorem (Wang (1970a)). Let M denote any class of incompressible elastic
materials with the property that Σ̂A is independent of the pressure. A motion p is
universal for M if (i) there exists a scalar field � such that (14.3b) holds, and (ii) for
each Σ̂A ∈ M there exists a scalar field p0 such that (14.2) holds with f̆ = o. Let M
have the further mild property P: If T̂A ∈ M, then αT̂A ∈ M for all α ∈ R. If p is
universal for this M, then (i) and (ii) hold.

Proof. If (i) and (ii) hold, then we add (14.2) and (14.3b) to get (14.1a) (for arbitrary
Σ̂A) with p = p0 + �. Conversely, if p is universal for M with property P, then by the
definition of this property, for each α, there is a scalar pressure field π such that

(14.6) −∇yπ + α∇y · Σ̂A = ρa.

From (14.1d) and (14.6) we immediately find that (14.2) and (14.3b) hold (with f = o

for arbitrary Σ̂A) with

(14.7) p0 =
p − π

1 − α
, � =

π − αp

1 − α
. �

If we apply this result to homogeneous, isotropic, incompressible bodies, then we get
universal motions corresponding to each of the definitive cases (9.7)–(9.12) by replacing
each of the constants α, . . . by functions of t and by adding to p̃ a rigid motion.

Let us first show how we can use this theory to get an alternative derivation of the
equations of motion of Sec. 13. As a special case corresponding to (9.10), we use (13.1)
and (13.3):

(14.8) p̃(x, t) = f(s, t)j1(φ) + zj3, f(s, t) :=
√

s2 + r(t)2 − s2
0.
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Then (14.3b) reduces to

(14.9) −1
ρ

�s

s
=

(rrtt + r2
t )f2 − r2r2

t

f4
, �φ = 0 = �z .

We integrate (14.9) to get an expression for � depending on an arbitrary function of t.
We use (14.4) to obtain the total stress

(14.10) T̂ (F , p) = −�F −∗ + T0, T0 := −p0F −∗ + T̂A(F ).

(These formulas, analogs of (14.4), are completely general.) T0 is just the total stress for
the equilibrium problem, which is a special case of that described in Ex. 3.16. It can be
found just as in (3.6). System (14.9), (14.10) is equivalent to (13.9) once the arbitrary
function of t in � is identified with prescribed boundary pressures.

14.11. Exercise. Derive (14.9) and prove this equivalence.

Motions taking a block into a sheared annular wedge. We seek mo-
tions taking a rectangular block of a homogeneous, isotropic, incompressible
elastic body into a sheared annular wedge in the form of a dynamic analog
of (9.8):

(14.12a) p(xi + yj + zk, t) = r(x, t)k1(θ(y, z, t)) + ζ(y, z, t)k

where

(14.12b)

r(x, t) : =
√

2κ(t)x+ λ(t),

θ(y, z, t) : = α(t)y + β(t)z + µ(t),

ζ(y, z, t) : = γ(t)y + δ(t)z + ν(t),

k1(θ) : = cos θi + sin θj, k2(θ) := − sin θi + cos θj,

with

(14.13) κ(αδ − βγ) = 1

to ensure that the deformation be volume-preserving. We have introduced
functions of time in addition to those suggested by (9.8) in order to account
for rigid motions because, in the words of Truesdell & Noll (1965, Sec. 61),
“arbitrary constants which can be annulled by choice of origin for static
problems cannot be annulled in general, since the dynamical equations are
not invariant under arbitrary time-dependent shifts of origin.”

By carefully manipulating these relationships and their time derivatives,
we obtain

(14.14)

x = (2κ)−1(r2 − λ),
y = κ[δ(θ − µ) − β(ζ − ν)],
z = κ[−γ(θ − µ) + α(ζ − ν)];

(14.15)
2κrrt = κt(r2 − λ) + κλt,

(θ − µ)t = αty + βtz = κ[(δαt − γβt)(θ − µ) + (αβt − βαt)(ζ − ν)],
(ζ − ν)t = γt y + δtz = κ[(δγt − γδt)(θ − µ) + (αδt − βγt)(ζ − ν)];
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(14.16)
4κ2rtt = (2κκtt − κt

2)r + 2[−2κ(λκtt + κtλt) + λκt
2 + κ2λtt]r−1

− (κλt − λκt)2r−3,

(θ − µ)tt = κ[(δαtt − γβtt)(θ − µ) + (αβtt − βαtt)(ζ − ν)],
(ζ − ν)tt = κ[(δγtt − γ δtt)(θ − µ) + (α δtt − β γtt)(ζ − ν)].

Eq. (14.12) implies that

(14.17)
a ≡ a1k1 + a2k2 + a3k

= ptt = (rtt − rθt2)k1 + (2rtθt + rθtt)k2 + ζttk.

Note that ptt is independent of y and z. The requirement (14.3c) implies
that
(14.18)

curla =
(

k1
∂

∂r
+

k2

r

∂

∂θ
+ k

∂

∂ζ

)
× (a1k1 + a2k2 + a3k)

=
(

1
r

∂a3
∂θ

− ∂a2
∂ζ

)
k1 +

(
∂a1
∂ζ

− ∂a3
∂r

)
k2 +

1
r

(
∂(ra2)
∂r

− ∂a1
∂θ

)
k = o.

The vanishing of the k2-component of (14.18) yields

(14.19) −2κrθt(αβt − βαt) = 0,

whence either

(14.20) αβt − βαt = 0

or θt = 0. By virtue of the independence of θ and ζ, (14.15) implies that if
θt = 0, then (14.20) holds. The vanishing of the k1-component of (14.18)
yields

(14.21) κ(δγtt − γδtt) = [κt(r2 − λ) + κλt](αβt − βαt) + rκ(αβtt − βαtt)

by (14.20), whence

(14.22) δγtt − γδtt = 0 ⇐⇒ δγt − γδt = const.

The vanishing of the k3-component of (14.18) yields

(14.23) −2κθt(δαt − γβt) = 2θtκ−1κt + 2θtt.

Since (14.23) is affine in θ, we obtain from it and (14.20) that

(δαt − γβt)[κ−1κt + κ(δαt − γβt)] + δαtt − γβtt = 0,(14.24)

[µt − κ(δαt − γβt)µ][κ(δαt − γβt) + κ−1κt](14.25)

+µtt − κµ(δαtt − γβtt) = 0.
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We now look at (14.20) for t in R under the assumption that α and β
are continuously differentiable. We introduce polar coordinates σ and ψ by

(14.26) α = σ cosψ, β = σ sinψ,

so that (14.20) yields

(14.27) σ2ψt = 0.

Since (14.13) implies that α and β cannot vanish at the same time, (14.27)
implies that ψ = constant. Thus α and β are in constant ratio, α vanishes
either everywhere (in which case β vanishes nowhere) or nowhere, and β
vanishes either everywhere (in which case α vanishes nowhere) or nowhere.

Since (14.13) is equivalent to

(14.28) κσ(δ cosψ − γ sinψ) = 1,

the substitution (14.26) with ψ constant into (14.24) and (14.25) reduces
these equations to

κ−1κt + σ−1σt + (σt)−1σtt = 0,(14.29a)

σµtt − µσtt + (σ−1σt + κ−1κt)(σµt − µσt) = 0(14.29b)

whence

κσσt = const.(14.30)

κσ(σµt − µσt) = const.(14.31)

Note that we have found five restriction (14.13), (14.20) (or (14.27)),
(14.22), (14.30), (14.31) on the eight functions α, β, γ, δ, κ, λ, µ, ν. These
restrictions simplify (14.15) and (14.16). E.g., θt = σ−1(µtσ − µσt) +
σ−1σtθ = constκ−1σ−2 + σ−1σtθ.
14.32. Exercise. Prove that
(14.33)

− ρ−1�

= 1
8κ−2[(2κκtt − κt

2)r2 − 4[2κ(λκtt + κtλt) − λκt
2 − κ2λtt] ln r + (κλt − λκt)2r−2]

− 1
2κ2r2θt

2 + 1
2σ−1[(r2σσt + 2rrt)σt + r2σtt]θ2

+ σ−1(σµt − µσt)[r2(σσt − σ−1σt − κ−1κ) + 2rrt]θ

+ 1
2κ(αδtt − βγtt)ζ2 + κ[νt − κν(αδtt − βγtt)]ζ + ϕ

where ϕ is an arbitrary function of t.

We readily find that

F = κr−1k1i + (αrk2 + δk3)j + (βrk2 + δk3)k,(14.34a)

F −∗ = κ−1rk1i + κr−1[(δk2 − βk)j + (−γk2 + αk)k],(14.34b)

C = κ2r−2ii + (α2r2 + γ2)jj + (β2r2 + δ2)kk(14.35)

+ (αβr2 + γδ)(jk + kj),

IC = κ2r−2 + (α2 + β2)r2 + γ2 + δ2,(14.36a)

IIC = κ2[α2 + β2 + r−2(γ2 + δ2)] + κ−2r2.(14.36b)
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Note that all these expressions are independent of y and z and of µ and ν.
Consequently, they have exactly the form as that for equilibrium problems,
corresponding to the specializations of (5.4)–(5.6) for (5.16).

14.37. Exercise. Analyze the dynamical analog of (9.9) along the lines of the devel-
opment beginning with (14.12).

Truesdell (1962) introduced the theory of quasi-equilibrated motions. The treatment
of motions of the form (14.12) given here is based upon modifications of that of Wang
& Truesdell (1973) given in the corrected reprinting in 2004 of Truesdell & Noll (1965,
Sec. 61).

15. Standing Shear Waves
in an Incompressible Layer

We now treat a dynamical semi-inverse problem. We take our body to
be the layer consisting of all material points z = xi + yj + sk for which
0 < s < 1. We study shearing motions of the form

(15.1) p(z, t) = [x+ u(s, t)]i + [y + v(s, t)]j + sk.

Then F , F −∗, and C have the following matrices with respect to {i, j,k}:

(15.2)

[F ] =

⎡⎣ 1 0 us

0 1 vs
0 0 1

⎤⎦ , [F −∗] =

⎡⎣ 1 0 0
0 1 0

−us −vs 1

⎤⎦ ,
[C] =

⎡⎣ 1 0 us

0 1 vs
us vs 1 + (us)2 + (vs)2

⎤⎦ .
The principal invariants of C are IC = 3 + (us)2 + (vs)2 =IIC , IIIC = 1.

We assume that the layer is an incompressible isotropic elastic body
whose material properties can depend on the material point only through
the coordinate s. We assume that the invariants ψ0 and ψ1, introduced in
(13.1.9), are independent of p. If the layer is subject to zero body force,
then the equations of motion (13.1.2) and (13.1.9) reduce to

−px + [µ((us)2 + (vs)2, s)us]s = ρ(s)utt,(15.3a)

−py + [µ((us)2 + (vs)2, s)vs]s = ρ(s)vtt,(15.3b)

pxus + pyvs + {−p+ ψ0 + ψ1[1 + (us)2 + (vs)2]}s = 0(15.4)

where the arguments of ψ0 and ψ1 are
(
3+(us)2+(vs)2, 3+(us)2+(vs)2, s

)
and where

(15.5) µ(χ, s) := ψ0(3 + χ, 3 + χ, s) + ψ1(3 + χ, 3 + χ, s)[2 + χ].

The term in braces in (15.4) is k · T · k.
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15.6. Exercise. Use the Strong Ellipticity Condition to show that the matrix

(15.7)
[

µ + 2(us)2µχ 2usvsµχ

2usvsµχ µ + 2(vs)2µχ

]
is positive-definite

and thereby deduce that

(15.8)
∂

∂ξ
[ξµ(ξ2, s)] > 0, µ(ξ2, s) > 0 ∀ ξ.

15.9. Exercise. Use (15.3) and (15.4) to prove that p must have the form

(15.10) p(x, y, s, t) = A(t)x + B(t)y + p̄(s, t).

Now let us prescribe the normal tractions i3 · T · i3 on the top and
bottom faces s = 0, 1 to be independent of x and y. Then (15.10) implies
that A = 0 = B. It then follows from (15.4) that these normal tractions
must be the same on each face. We may use (15.4) to determine p once u
and v are found. Since A = 0 = B, Eq. (15.3) reduces to

[µ((us)2 + (vs)2, s)us]s = ρ(s)utt,(15.11a)

[µ((us)2 + (vs)2, s)vs]s = ρ(s)vtt,(15.11b)

which is a quasilinear hyperbolic system by virtue of (15.7).
We restrict out attention to special sets of boundary conditions. On

each face s = 0 and s = 1, we require that either

(15.12) u = 0 = v,

so that the face is fixed, or

(15.13) us = 0 = vs,

so that the shear component of the traction is zero.
We seek standing-wave solutions of (15.11) of the form

(15.14) u(s, t) = f(s) cosωt, v(s, t) = f(s) sinωt,

so that f satisfies the quasilinear eigenvalue problem

(15.15)
d

ds
[µ((f ′(s)2, s)f ′(s)] + ω2ρ(s)f(s) = 0

subject to the boundary conditions that for s = 0 and s = 1

(15.16) either f = 0 or f ′ = 0.

Let us append the natural growth conditions to (15.8). Let ϕ be the inverse
of η �→ ηµ(η2, s). We can therefore replace (15.15) and (15.16) with the
equivalent semilinear problem

f ′ = ϕ(g, s), g′ = −ω2ρ(s)f,(15.17)

f = 0 or g = 0 for s = 0, 1.(15.18)

15.19. Exercise. Use the methods of Chaps. 5 and 6 to prove:
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15.20. Theorem. The eigenvalues ω2 = λ0
k of the linearization of (15.17)

and (15.18) are countably infinite, are simple, and can be ordered thus:
0 ≤ λ0

0 < λ
0
1 < λ

0
2 < · · · with λ0

k → ∞ as k → ∞. λ0
0 = 0 if and only if

g(0) = 0 = g(1).
Bifurcating from the trivial branch at (ω2, (f, g)) = (λ0

k, (0, 0)) is a so-
lution branch S(λ0

k), which does not touch S(λ0
l ) for k �= l, which lies in

[0,∞) × C0[0, 1] × C0[0, 1], and which is unbounded there. On each such
branch, (ω2, (f, g)) is a classical solution of (15.17) and (15.18), and except
at the bifurcation point f has exactly k zeros on (0, 1), each of which is
simple. If (ω2, (f, g)) ∈ S(λ0

k), then so is (ω2, (−f,−g)).
If there is a number M such that µ(η2, s) ≤ M for all η and s, then

there is a positive number σ depending only on the boundary conditions
such that

(15.21) min ρω2 ≤ σMk2 on S(λ0
k).

If there is a number m such that µ(η2, s) ≥ m for all η and s, then there
is the same positive number σ depending only on the boundary conditions
such that

(15.22) max ρω2 ≥ σmk2 on S(λ0
k).

If µ(η2, s) → ∞ as η → ∞, then ω2 is unbounded on each bifurcating
branch. If µ(η2, s) → 0 as η → ∞, then ω2 → 0 as max |f | + max |g| → ∞
on each bifurcating branch.

The treatment of this section is based on that of Antman & Guo (1984) ( c©Martinus
Nijhoff Publishers, Dordrecht, reprinted by permission of Kluwer Academic Publishers).

16. Commentary. Other Problems
Rivlin (1947–1949) showed that it was possible to analyze correctly set problems of

nonlinear elasticity with general constitutive equations and to deduce physically illumi-
nating information from the solutions. Parts of this chapter maintain this tradition by
bringing analytic tools more powerful than those at Rivlin’s disposal to bear on concrete
problems. Compendia of specific solutions are given by Atkin & Fox (1980), Eringen
& Suhubi (1974), Green & Adkins (1970), Green & Zerna (1990), Lur’e (1990), Ogden
(1984), Truesdell & Noll (1965), and Wang & Truesdell (1973). The book of Truesdell
& Noll may be consulted for historical commentary. These books give expositions of
the basic theory. For a more mathematical treatment of the theory, see Ciarlet (1988),
Gurtin (1981b), Hanyga (1985), Marsden & Hughes (1983), and Valent (1988).

There are several important research themes not mentioned in this chapter:

(i) Singularities. Solutions of both equilibrium and dynamic problems typically
exhibit singular behavior where the boundary is not smooth. The physical
(and numerical) importance of determining the nature of singularities, which
depends crucially on the constitutive response of the body as our development in
Sec. 4 suggests, is a compelling reason for suffering the difficulties of nonlinear
material response. This problem is largely open. See Knowles & Sternberg
(1973, 1974, 1975) for work in elasticity, and see Grisvard (1985, 1992) for a
discussion of mathematical implications.
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(ii) Contact Problems. There is a large body of work on contact problems for linear
elasticity, varying from the concrete, as in Galin (1980) and Gladwell (1980),
to the analytic, as in Fichera (1972b). The method of variational inequalities,
developed by Fichera for contact problems of the 3-dimensional linear elasticity,
is most easily applied to problems like those for simple models of membranes
in which the graph of the solution is confined between two graphs representing
obstacles above and below. In nonlinear elasticity, the body is described para-
metrically, so these methods do not directly apply. For treatments of problems
for materials with nonlinear response, see Duvaut & Lions (1972), Frémond
(2002), Hlavaček et al. (1988), Kikuchi & Oden (1988), Kinderlehrer & Stam-
pacchia (1980), and Panagiotopoulos (1985).

(iii) Homogenization. An extensive literature, both practical and mathematical,
describes the limiting response of a linearly elastic material that is a mixture
of two or more species in a periodic or random array as the dimension of a cell
size goes to zero. See Dal Maso (1993), Braides (2002), Braides & Defranceschi
(1998), Milton (2001), and Torquato (2002). Very little work has been carried
out for nonlinear elastic materials, a notable exception being that of Geymonat,
Müller, & Triantafyllides (1993), which can be consulted for references.

(iv) Phase Changes, Crystals. Much of the mathematical theory of phase changes
and crystals is embodied in the assumption that the restricted convexity of the
Legendre-Hadamard Condition is suspended on a bounded set. This theory
is developed in the references given in Sec. 13.6. The underlying mathemati-
cal formulation of the physical theory of phase changes in a way that is close
to standard formulations from metallurgy is now being intensively cultivated.
See Ambrosio, Fusco, & Pallara (2000), Ball, Kinderlehrer, Podio-Guidugli, &
Slemrod (1999), Bhattarcharya (1992), Dolzmann (2002), Fried (1999), Gurtin
(1993a,b, 2000a), Müller (1999), Pitteri & Zanzotto (2003), and the references
cited therein.

(v) St. Venant’s Principle. In linear elastostatics, St. Venant’s Principle roughly
says that the difference in effect of two equipollent traction systems confined to
a small part of a boundary becomes negligible away from the boundary. There
is a long history of giving this statement a precise mathematical formulation
that can be proved. The problem for nonlinear elasticity is much subtler, as the
development of Sec. 9.4 suggests. See Horgan (1989) and Horgan & Knowles
(1983) for discussion and references.



CHAPTER 15

Large-Strain Plasticity

In this chapter we discuss a general class of materials with memory, the
plastic materials, which are useful in describing the behavior of metals. Our
purpose is to present the basic theory, in which some concepts of Chap. 12
are further developed and illustrated, and in which the theory of elasticity
plays a central role, in as simple a context as is compatible with the un-
derlying physics. The exposition is simpler than that of most treatments
because we consistently use internal variables in the material formulation,
which obviates the need for a complicated treatment of frame-indifference,
as is necessary in the spatial treatment of theories involving stress rates.
We describe theories with a rich structure in Secs. 1– 3. In Sec. 4 we give a
general formulation of antiplane problems, whose degeneracies illuminate
subtle difficulties with the concept of permanent plastic deformation.

1. Constitutive Equations
Recall that if there is a function Ŝ such that the second Piola-Kirchhoff

stress tensor is specified constitutively by

(1.1) S(z, t) = Ŝ
(
C(z, t),z

)
,

then the material is called elastic. Otherwise, it is called inelastic or pos-
sibly viscoelastic, the latter term often being loosely defined. All such
materials are special cases of (simple) materials with memory, which have
constitutive equations delivering the second Piola-Kirchhoff stress as a func-
tional of the past history of the strain:

(1.2) S(z, t) = Ŝ
(
Ct(z, ·),z

)
.

Clearly, (1.1) is a degenerate special case of (1.2). Both of these equations
have forms compatible with the requirement that the material properties be
invariant under rigid motions. We are interested in materials with memory
that describe the behavior of metals (because this is a basic goal of plasticity
theory).

From the mathematical viewpoint, there is a very easy way to construct
a family of materials with memory: We take S to have the form

(1.3) S(z, t) = Ŝ
(
C(z, t),Π(z, t),Ct(z, t),z

)
,

585
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where Π, called an internal variable, is defined by the ordinary differential
equation

(1.4) Πt = Φ(C,Π,Ct,z).

The formal solution of (1.4) for Π(z, ·) delivers it as a tensor-valued func-
tional of the past history of C(z, ·) and of an initial datum. The substi-
tution of this solution into (1.3) converts it into a special form of (1.2).
Thus, no matter what the interpretation of Π is, no matter what its ten-
sorial character, and no matter how it transforms under rigid motions, the
system (1.3), (1.4) describes materials invariant under rigid motions.

We interpret Π below. The presence of Ct in (1.3) can account for
internal friction. A virtue of the system (1.3), (1.4) is that material prop-
erties are characterized by just two tensor-valued functions Ŝ and Φ that
depend on just a finite number of arguments. In contrast, the function
Ŝ of (1.2) depends on a variable Ct belonging to an infinite-dimensional
function space. In principle, a system of the form (1.3), (1.4) can be easily
adjusted to describe a rich variety of real plastic materials. (In practice,
there is no consensus as to what are accurate constitutive equations for
materials undergoing large, fast deformations.) To describe sensible classes
of constitutive functions for (1.3), (1.4), we must first discuss the basic
physical processes of plastic deformation that are to be modelled.

Let us study the deformation of a virgin paper clip. If we deform it
slightly, we can observe that the amount of stress needed to effect such a
deformation depends on the amount of deformation from its natural refer-
ence configuration. This property is typical of elastic materials. Such ma-
terials have a degenerate memory that only recalls their natural states. If
we release the paper clip from a small deformation, it rapidly returns to its
natural state, internal friction damping out the motion. (Elastic materials
do not have a mechanism for internal friction, but it is easy to incorporate
one into a more general model.) If we now subject the paper clip to a large
deformation and release it, it does not return to its original natural state
but to a state of permanent plastic deformation. In small deformations
from this state of permanent plastic deformation, the clip behaves elasti-
cally, but typically with a different function relating the deformation to the
stress. Thus the large deformation has changed the nature of the elastic
response to small deformations by changing the configuration (of perma-
nent plastic deformation) in which the stresses are zero. Thus in modelling
these phenomena, we must show how elastic constitutive equations change
with the change of the state of permanent plastic deformation and we must
account for the evolution of this state. Further experiments on the paper
clip might show that the behavior is roughly independent of the rate at
which the deformations are performed, but depends primarily on the order
in which they are performed. Thus we can incorporate this feature in our
model by requiring the constitutive equations to be rate-independent.

We now translate these qualitative experimental results into a specific
mathematical model. We begin with a conceptually simple model, relegat-
ing refinements to the next section.
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It is convenient, but neither mathematically essential nor always physi-
cally desirable, to interpret Π as the plastic strain defining the state of per-
manent plastic deformation. Specifically, we study an ‘infinitesimal neigh-
borhood’ of material point z that has undergone a deformation F (z, t) with
strain C(z, t). We imagine that the material around this neighborhood is
excised, so that the traction exerted on the boundary of this neighborhood
by the material in contact with it is zero. If the material is plastic, the
material at z unloads elastically to a state that can be characterized by its
strain Π(z, t). This gedankenexperiment of excision describes a process
by which to localize the considerations discussed in the deformation of the
paper clip.

We now introduce the yield function

(1.5) (C,Π,z) �→ γ(C,Π,z),

which will tell us when the material behaves elastically and when the de-
formation is large enough to shift the value of Π. The set

(1.6) E(Π,z) := {C : γ(C,Π,z) < 0},

called the elastic region, is assumed to be homeomorphic to an open ball
(in the six-dimensional space of symmetric tensors) for each fixed Π,z.
The deformation tensor C is required to satisfy

(1.7) γ(C,Π,z) ≤ 0.

This requirement does not mean that there is an a priori bound imposed
on C: Rather, it means that if C becomes large, then Π must change
accordingly. (We would expect it also to grow.) For given Π, z, the yield
surface (in strain space) is ∂E(Π,z). It is a five-dimensional surface in
the six-dimensional space of symmetric tensors. When (1.7) is imposed, we
need only define Ŝ and Φ for fields C and Π satisfying (1.7). To ensure
that the evolution of C and Π is always consistent with the inequality
(1.7) (a desideratum in numerical calculations), it is, however, convenient
to extend Ŝ and Φ to a neighborhood of cl E in any convenient way so that

(1.8)
∂

∂t
γ = γC : Ct + γΠ : Πt = γC : Ct + γΠ : Φ < 0 when γ > 0.

Examples. There are two yield functions commonly used in small-strain plasticity:
Suppose that (1.3) holds. Let {Σk(C,Π, z)} be the eigenvalues of the Cauchy stress
Σ = (det F )−1F · Ŝ(C,Π,O, z) · F ∗ (see (12.15.34)). It is not hard to see that these
eigenvalues depend on F only through C. The maximum Cauchy shear stress can be
shown to be max{|Σ1 −Σ2|, |Σ2 −Σ3|, |Σ3 −Σ1|}. The Tresca yield function, designed
to vanish when the maximum Cauchy shear stress reaches a threshold 2k, is given by

(1.9a) γ := max{|Σ1 − Σ2|, |Σ2 − Σ3|, |Σ3 − Σ1|} − 2k

where k is a positive constant. In linear elasticity, the average (Cauchy) stress 1
3 tr Σ is

responsible for volume changes. The deviatoric Cauchy stress Σ− 1
3 tr Σ I is responsible
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for the rest of the deformation. The von Mises yield function, designed to vanish when
the magnitude of the deviatoric Cauchy stress reaches a threshold k, is given by

(1.9b)
γ : = (Σ − 1

3 tr Σ I) : (Σ − 1
3 tr Σ I) − k2

≡ (Σ1 − 1
3 tr Σ)2 + (Σ2 − 1

3 tr Σ)2 + (Σ3 − 1
3 tr Σ)2 − k1.

Note that the right-hand side of (1.9b) is a continuously differentiable function of Σ,
but that the right-hand side of (1.9a) is not.

We now introduce some terminology that helps us to incorporate the
notion of yielding into (1.4):

If γ
(
C(z, t),Π(z, t),z

)
< 0, then z is said to behave elastically.

If γ
(
C(z, t),Π(z, t),z

)
= 0 and γC

(
Cz, t),Π(z, t),z

)
: Ct(z, t) < 0, then

z is said to undergo plastic unloading.

If γ
(
C(z, t),Π(z, t),z

)
= 0 and γC

(
C(z, t),Π(z, t),z

)
: Ct(z, t) = 0,

then z is said to undergo plastic neutral loading.

If γ
(
C(z),Π(z),z

)
= 0 and γC

(
C(z, t),Π(z, t),z

)
: Ct(z, t) > 0, then z

is said to undergo plastic loading.

Note that γC , where it is defined on ∂E , is an outer normal to this surface.
We specialize (1.4):

(1.10) Πt =
{

Ω(C,Π,Ct,z) during plastic loading,
O otherwise.

Note that if there is no plastic loading at z, then Π(z, ·) is a constant. In
this case, the constitutive equation (1.3) at z is that for a viscoelastic mate-
rial of strain-rate type; if the argument Ct of Ŝ were absent, then this con-
stitutive equation is that for an elastic material. The use of (1.10), which
describes the evolution of Π, affords a very simple mechanism by which to
obtain different elastic or viscoelastic constitutive equations, parametrized
by Π, to describe the elastic or viscoelastic response for sufficiently small
deformations about different states of permanent plastic deformation.

An idealized attribute of elastoplastic materials not enjoyed by ‘vis-
coplastic’ and ‘viscoelastic’ materials is that its response is rate-indepen-
dent, i.e., the response depends on the past history of deformation only
through the order in which the deformations occur and not through the
rate. Thus, if a paper clip were described by a rate-independent law, and if
it were subjected to a sequence of deformations causing it to break, then it
would have broken under the same sequence performed at any other rate.
In mathematical terms, if a component of τ �→ Ct(z, τ) ≡ C(z, t− τ) were
given by τ �→ sin(t − τ), then its effect on the stress at time t would be
the same as that produced by τ �→ sin(t − τ2), τ �→ sin(t − eτ − 1), etc.
Formally, the response (1.2) is rate-independent at z iff

(1.11) Ŝ(C(z, t− ·),z) = Ŝ(C(z, t− ϕ(·)),z)

for all ϕ on [0,∞] that strictly increase from 0 to ∞.
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Let us apply this condition to (1.3) and (1.10). We confront a notational
difficulty: In Ct(z, τ) ≡ C(z, t−τ), the t is fixed, whereas in Ct(z, t), which
appears in (1.10), t denotes the second argument, with respect to which
the derivative is taken. For our immediate purposes, we denote the second
argument of C by ζ, and present C(z, ·) as ζ �→ C(z, ζ).

Now let us assume that ϕ is continuously differentiable with ϕτ (τ) > 0
for all τ . We first observe the identities

∂

∂τ
C(z, t− ϕ(τ)) = −ϕ′(τ)Cζ(z, t− ϕ(τ)),(1.12a)

∂

∂τ
C(z, t− ϕ(τ))

∣∣
τ=0 = −ϕ′(0)Cζ(z, t),(1.12b)

∂

∂τ
C(z, t− τ)

∣∣
τ=0 = −Cζ(z, t).(1.12c)

Thus we can replace the Ct(z, t) appearing in (1.3), (1.4), (1.10) with
−(∂/∂τ)C(z, t− τ)

∣∣
τ=0. We treat t-derivative of Π likewise.

The past history of C affects Ŝ of (1.3) directly through the argument
Ct and indirectly through the dependence of the solution Π of the ordinary
differential equation (1.10) on the past history of C. An arbitrary change
of the past history of C has no effect on the argument C of Ŝ and Ω. If
we change the past history by replacing τ by ϕ(τ), then we must replace
(∂/∂τ)C(z, t − τ)

∣∣
τ=0 with (1.12b), i.e., we must replace Cζ(z, t) with

αCζ(z, t) where α := ϕτ (0). Likewise, we replace Πζ with αΠζ .
Thus if (1.3) and (1.10) are rate-independent, then

Ŝ
(
C,Π, αCt,z

)
= Ŝ

(
C,Π,Ct,z

)
,(1.13a)

Ω
(
C,Π, αCt,z

)
= αΩ

(
C,Π,Ct,z

)
(1.13b)

for all α > 0, i.e., Ŝ is positively homogeneous of degree 0 and Ω is posi-
tively homogeneous of degree 1 in Ct. Let us assume that Ŝ is continuous
in Ct (at least for Ct near O). Then we can let α ↘ 0 in (1.13a) and
thereby deduce that Ŝ

(
C,Π,Ct,z

)
= Ŝ

(
C,Π,O,z

)
, i.e., that Ŝ is inde-

pendent of Ct. Similarly, we assume that Ω is continuously differentiable
in Ct (for Ct near O). Differentiating (1.13b) with respect to α and then
setting α = 0, we obtain

(1.14a) Ω(C,Π,Ct,z
)

=
∂Ω

∂Ct
(C,Π,O,z

)
: Ct =: A(C,Π,z

)
: Ct.

Thus

(1.14b) Πt = A(C,Π,z) : Ct during plastic loading.

(We briefly discuss rate-dependent materials in Sec. 2.) We now obtain a
useful specialization of the form of (1.14).
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1.15. Proposition. If (1.10) has a continuous right-hand side and if γ is
continuously differentiable and non-vanishing on ∂E , then A has the form

(1.16a) A(C,Π,z) = M(C,Π,z)γC(C,Π,z),

so that (1.14) has the form

(1.16b) Πt = M(C,Π,z)[γC(C,Π,z) : Ct] during plastic loading.

Proof. The continuity of the right-hand side of (1.10) implies that

(1.17) A(C,Π,z) : Ct = O

for all C,Π,Ct such that

(1.18a,b) γ
(
C,Π,z

)
= 0, γC

(
C,Π,z

)
: Ct(z, t) = 0.

We introduce the unit tensor

(1.19) E33 := γC/|γC |,

whence (1.18b) implies that E33 : Ct = 0. Let {Ekl} (with E33 as given)
be an orthonormal basis for Sym. Then {EijEkl} is a basis for the space
L(Sym,Sym) of fourth-order tensors taking symmetric second-order tensors
into symmetric second-order tensors (cf. Prop. 11.1.17). Thus we can write
A = AijklEijEkl. Conditions (1.17), (1.18) say that if γ(C,Π,z) = 0,
then A annihilates every tensor that is orthogonal to γC . Thus

(1.20) O = A : Epq ≡ AijpqEij ∀(p, q) �= (33).

Therefore

(1.21) A = Aij33EijE33.

We set M |γC | := Aij33Eij and use (1.19) to obtain (1.16a). �
This proof could have been replaced with a suitable application of the

general Multiplier Rule 19.1.24.
During plastic loading on any time interval of positive duration, γ must

vanish identically, so that

(1.22) 0 = γC : Ct + γΠ : Πt.

By substituting (1.16) into (1.22), we obtain

(1.23) 1 + γΠ : M = 0

during plastic loading, and by continuity, when γ(C,Π,z) = 0. This is
the compatibility condition, which restricts the form of M . Thus the yield
function influences the form of (1.16).



15.2. REFINEMENTS AND GENERALIZATIONS 591

We give a concrete example of such constitutive equations in Sec. 3 and
we describe some specific generalized constitutive equations in Sec. 4. We
discuss generalizations and refinements of the present theory in the next
section.

In any computational process, it is possible that the differential equations governing
the evolution of the arguments C and Π of γ could cause these arguments to assume
values outside the domain of γ, i.e., values for which γ > 0. We can easily prohibit this
possibility by the following refinement: We simply extend γ and M in any convenient
way to the complement of {(C,Π, z) : γ(C,Π, z) ≤ 0} and replace (1.23) with

(1.24) 1 + γΠ : M = − (γC : Ct)ωγ when γ(C,Π, z) > 0

where ω is any positive-valued function of (C,Π, z) on this complement. Of course,
(1.24) implies (1.23). We assume that (1.16) holds on this complement. Then

(1.25)
∂

∂t
γ(C,Π, z) = (1 + γΠ : M) γC : Ct = − (γC : Ct)2 ωγ ≤ 0

when γ(C,Π, z) ≥ 0. Thus if γ initially does not exceed 0, then γ can never exceed 0.
These considerations suggest that we can readily generalize our model in the following

way: We retain a yield function γ as before and define the elastic region as before, but
we no longer require that C and Π be such that γ(C,Π, z) ≤ 0. Instead, we merely
replace (1.10) with

(1.26) Πt =

{
O if γ(C,Π, z) < 0,

Ω(C,Π,Ct, z) otherwise.

If we assume that the material response is rate-independent and if Ω is continuously
differentiable in Ct, then, as before, we find that Ω is linear in Ct. We do not, however,
deduce a representation like (1.16).

2. Refinements and Generalizations
In this section we examine several simple ways to extend the theory of Sec. 2 to

make it accommodate a wider range of phenomena observed in real materials. It must
be pointed out that there has been an extensive body of experiment on the plastic
response of materials. Nevertheless, even for commonly used kinds of aluminum and
steel, the experimental results typically give data only for very special deformations,
usually very small. Thus analytical work, to be of potential physical value, should allow
a wide range of constitutive behavior.

An important generalization of the theory of Sec. 2 is obtained by letting the material
be rate-dependent. Such dependence is observed when high-speed effects are present. A
striking manifestation of rate-dependence can be seen in the variety of buckling patterns
found in numerous studies of the dynamic axial compression of thin metal cylinders.
A survey of the effects of rate-dependent behavior, in the context of wave propagation
(of relevance to our discussion in the next section), is given by Clifton (1974, 1983). In
adopting such a generalization, we would be forced to sacrifice the specific constitutive
restrictions associated with (1.14) and (1.16). There is a corresponding loss of specificity
in the thermodynamical restrictions on rate-dependent response, which we discuss below.

We can readily generalize our results of Sec. 2 by adding other internal variables to
Π. One such variable is the hardening parameter k. It accounts for changes in the
yield function due to working (i.e., to a history of deformation). Another variable is
the back stress K, which is a symmetric tensor. It accounts for a loss of symmetry
of the yield surface due to working. We construct a theory involving these additional
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internal variables by the simple device of replacing Π wherever it appears in Sec. 2 with
the triple V := (Π, k,K) and by making obvious adjustments in the inner products
appearing there. These adjustments make sense because V lies in a thirteen-dimensional
inner-product space. When the constitutive equations are rate-independent, we obtain
the obvious generalizations of (1.14) and (1.16). Clearly, we could incorporate further
internal variables, such as damage parameters, by the same process.

Were we to follow the lead of small-strain plasticity, we would incorporate the pa-
rameters k and K into our more general theory by replacing γ(C,Π, z) and Ŝ(C,Π, z)
with γ�(C,Π, z) − k and S�(C,Π, z) + K.

We now formulate a full thermodynamical theory of rate-independent plasticity
with internal variables (see Coleman & Gurtin (1967). For a physical motivation for
their use, see Rice (1971)). We recall the developments of Sec. 12.14. Let θ(z, t),
g(z, t) := θz(z, t), h(z, t), and ψ(z, t) denote the absolute temperature, temperature
gradient, entropy density, and free-energy density at (z, t). The Clausius-Duhem ver-
sion (12.14.23) of the entropy inequality is

(2.1) −ψt − ηθt + 1
2S : Ct + θ−1q · g ≥ 0.

Let us set

(2.2) U := (C, θ, g).

U lies in a ten-dimensional space with inner product ◦. Our constitutive equations for
rate-independent thermoplasticity are

(2.3)

S(z, t) = Ŝ
(
U(z, t), V(z, t), z

)
,

q(z, t) = q̂
(
U(z, t), V(z, t), z

)
,

ψ(z, t) = ψ̂
(
U(z, t), V(z, t), z

)
,

η(z, t) = η̂
(
U(z, t), V(z, t), z

)
,

where V is an internal variable lying in a finite-dimensional space with inner product •.
The evolution of V is governed by an equation like (1.16). In analogy with the develop-
ment that follows (1.16), we say that thermoplastic loading occurs iff

(2.4)
∂γ

∂U
◦ Ut > 0 when γ = 0

and we assume that this evolution is governed by

(2.5) Vt =

{
M(U, V, z) [∂γ(U, V, z)/∂U] ◦ Ut during thermoplastic loading,

O otherwise.

Here M takes values in the space of V.
Note that we could include the stress S in V, provided we reduce the first equation of

(2.5) to an identity. That is, we can characterize a material of the stress-rate type as a
material of the internal-variable type (see Sec. 12.10). Many theories of plasticity have
constitutive equations of the stress-rate type, most of which employ spatial formulations.
The requirement of frame-indifference makes these equations complicated in form.

We now follow the approach of Sec. 12.14, which requires that for continuous pro-
cesses the constitutive equations must be such that the entropy inequality (2.1) is identi-
cally satisfied for all histories of U. We deduce the restrictions this requirement imposes
on our materials. These restrictions ensure that the material response meets some min-
imal level of dissipativity. Let us substitute (2.3) and (2.5) into (2.1) to obtain

(2.6)

0 ≤
[
−ψ̂C −

(
∂ψ̂

∂V
• M

)
γC + 1

2 Ŝ

]
: Ct +

[
−ψ̂θ −

(
∂ψ̂

∂V
• M

)
γθ − η̂

]
θt

+
[
−ψ̂g −

(
∂ψ̂

∂V
• M

)
γg

]
· gt + θ−1q̂ · g

≡ H ◦ Ut +
q̂ · g

θ
∀ U(z, ·) satisfying (2.4) during thermoplastic loading.
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The only place that Ut ≡ (Ct, θt, gt) appears in (2.6) is where it is visible. Let us
decompose Ut thus:

(2.7) Ut = α
∂γ

∂U
+ W where W ◦ ∂γ

∂U
= 0.

The only condition imposed on Ut by (2.4) is that α > 0; W is an arbitrary vector
orthogonal to ∂γ/∂U. Thus (2.6) reduces to

(2.8) 0 ≤ αH ◦ ∂γ
∂U

+ H ◦ W + θ−1q̂ · g

for all α > 0 and for all W orthogonal to ∂γ/∂U. By making α sufficiently small and by
setting W = O, we deduce from (2.8) the Fourier heat conduction inequality

(2.9a) q̂ · g ≥ 0.

Let

(2.9b) H = λ
∂γ

∂U
+ J where J ◦ ∂γ

∂U
= 0.

Substituting (2.9b) into (2.8) we obtain

(2.9c) H = λ
∂γ

∂U
, λ ≥ 0.

In summary, we obtain from (2.8) and (2.9) that

(2.10a)⎡⎣ Ŝ
−η̂

o

⎤⎦ =

⎡⎢⎣ ψ̂C

ψ̂θ

ψ̂g

⎤⎥⎦+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[λ + (∂ψ̂/∂V) • M]∂γ/∂U during thermoplastic loading,⎡⎢⎣O

0

o

⎤⎥⎦ otherwise,

If we now require that the right-hand side of (2.10a) be continuous, then we choose λ
so that the coefficient of ∂γ/∂U vanishes. In this case, (2.10a) reduces to

(2.10b)
1
2 Ŝ(U, V, z) = ψ̂C(C, θ, V, z),

−η̂(U, V, z) = ψ̂θ(C, θ, V, z).

Note that ψ̂ is independent of g. Conditions (2.9) and (2.10) also imply (2.6).
This approach to deducing constitutive restrictions from thermodynamical principles

works in general. The richer the material response, the less specific the consequences
of the entropy inequality. The primary references for this and the preceding section are
Antman & Szymczak (1989), Casey & Naghdi (1984), Coleman & Gurtin (1967), Green
& Naghdi (1965), and Simo & Ortiz (1985).

3. Example: Longitudinal Motion of a Bar
We now illustrate the concepts of Sec. 1 with an example of elastoplastic constitutive

equations describing the 1-dimensional theory of the longitudinal motion of a bar. In
this theory we ignore thickness changes that would accompany the longitudinal motion
of a 3-dimensional bar. Consequently, in our model, the vector z of Sec. 2 is replaced
with the scalar s, the vector p(z, t) with the scalar x(s, t), the scalar ρ(z) with the scalar
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(ρA)(s), and the tensors C, Π, S, T with the scalars ν , π, ν−1N , N . The elastic region
E(Π, z) in ν-space and the yield surface ∂E(Π, z) respectively reduce to an interval(
ν−(π, s), ν+(π, s)

)
and its two end points. This degeneracy of the yield surface must

be borne in mind when the constitutive model we now present is used to illuminate the
formalism of Sec. 1. For simplicity, we assume that the material is homogeneous so that
the constitutive functions do not depend explicitly on s.

Let λ be a given number in (0, 1). Our analog of the rate-independent version of
(1.3) is the constitutive equation

(3.1) N (s, t) = N̂
(
ν(s, t), π(s, t)

)
where N̂ is defined on (0,∞) × [λ,∞). N̂ is required to satisfy

N̂ν(ν, π) > 0, N̂ (π, π) = 0,(3.2a,b)

N̂ν(ν, π) → −∞ as ν → 0, π → λ.(3.2c)

Eq. (3.2b) says that π represents the permanent plastic strain. We shall express the yield
function in terms of two strictly increasing functions (0,∞) � ν �→ N−(ν), [λ,∞) �
ν �→ N+(ν) with

(3.3a,b,c) N−(ν) < 0 < N+(ν), N−(ν) → −∞ as ν → 0.

We assume that
(3.4) for each π > λ, the curves N = N̂ (ν, π) and N = N−(ν) intersect at exactly one
point, where ν = ν−(π),

(3.5) the curves N = N̂ (ν, λ) and N = N−(ν) do not intersect for ν > −1,

(3.6) for each π ≥ λ, the curves N = N̂ (ν, π) and N = N+(ν) intersect at exactly one
point, where ν = ν+(π).

3.7. Exercise. On the (ν, N ) -plane, sketch the stress-strain curves for this theory.
In particular, show the graphs of N±, a typical graph of N̂ (·, π), the graph of N̂ (·, λ)
(representing the most compressive elastic response), the elastic region (ν−(π), ν+(π)),
and the inaccessible region in which no pair (ν, N ) can be found for any admissible
constitutive relation.

3.8. Exercise. Produce specific choices for the functions N̂ , N−, N+ that meet the
conditions imposed on them, thereby showing that these conditions are mathematically
consistent.

Since the elastic region has the form

(3.9)
(
ν−(π), ν+(π)

)
= {ν : N−(ν) < N̂ (ν, π) < N+(ν)},

we may accordingly define yield functions

(3.10) g−(ν, π) := N−(ν) − N̂ (ν, π), g+(ν, π) := N̂ (ν, π) −N+(ν).

(To make contact with the presentation of Sec. 1, we could define the yield function by
g(ν, π) := g−(ν, π)g+(ν, π), but this function is not particularly convenient for dealing
with the disconnectedness of the yield surface here.) By imitating the development
leading to (1.16), we obtain

(3.11) πt = m±(ν, π)g±
ν (ν, π)νt if ν = ν±(π), g±

ν (ν, π)νt > 0,

which describes the evolution of π during plastic loading on each of the yield surfaces.
Of course, πt = 0 otherwise. Moreover, the constitutive functions m± are related to the
yield functions g± by the analog of (1.23):

(3.12) 0 = 1 +m±(ν, π)g±
π (ν, π) if ν = ν±(π), g±

ν (ν, π)νt > 0.
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Thus (3.11) reduces to

(3.13) πt =

⎧⎨⎩ − g±
ν (ν,π)

g±
π (ν,π)

νt if ν = ν±(π), g±
ν (ν, π)νt > 0,

0 otherwise.

Then the governing equations consist of the equation of motion

(3.14) N̂ (us, π)s = ρAxtt ⇐⇒
{
νt = vs,

(ρAv)t = N̂ (ν, π)s,

where v(s, t) := ut(s, t), and (3.13). We do not assign the ordinary differential equation
(3.13) a status equivalent to (3.14) because (3.14) represents a fundamental balance law
of physics, while (3.13) represents a constitutive equation, the form of which may vary
from problem to problem. For both analytical work and numerical analysis, it is natural
to replace (3.14) with versions of the Impulse-Momentum Law ( 2.3.1).

A basic philosophy for the numerical solution of initial-value problems for (3.13),
(3.14) is first to freeze π and treat (3.14) as a hyperbolic system for a short time interval.
Then update π by an ordinary differential equation solver for (3.13) and repeat the
process. In solving the hyperbolic equations, we could use the Godunov scheme, which
is a natural discretization of the physical laws implicit in the Impulse-Momentum Law
and is a very effective numerical method.

Initial-boundary-value problems for special versions of these 1-dimensional equations
have been treated numerically by Antman & Szymczak (1989) and Trangenstein &
Pember (1991). Antman & Szymczak found the surprising result that the solution for an
artificial elastic material corresponding to (3.1) without memory effects is much closer to
that for (3.1) than is the solution for an elastic-perfectly plastic material of the sort used
for small-strain plasticity. For numerical treatments of higher-dimensional problems, see
Simo (1998), Simo & Hughes (1998), Trangenstein (1994, 1995), Trangenstein & Colella
(1991), and Trangenstein & Pember (1992).

There is a subtle analytic question masked in our formulation: Our system admits
shocks. The Impulse-Momentum Laws or the equivalent Principle of Virtual Power show
how to interpret these discontinuities for the system (3.16). But there is no natural
weak form for (3.13), in which νt could be like a Dirac delta where a shock occurs.
Plohr & Sharp (1992) have handled such problems in the special case when (3.13) can be
incorporated in a Principle of Virtual Power. More generally, Renardy (1989) has shown
how the introduction of suitable small dissipative mechanisms obviates the difficulty.

4. Antiplane Shearing Motions
Let {i1, i2, i3 ≡ k} be a fixed right-handed, orthonormal basis for Eu-

clidean 3-space. Since our basis is Cartesian, we use only subscripts for our
vectors and tensors, with Greek indices ranging over 1,2 and with repeated
Greek indices summed over this range. Let z = xνiν + zk. We study
antiplane motions, which have the form

(4.1) p(x1, x2, z, t) = xνiν + [z + w(x1, x2, t)]k.

We set ẇ,ν = ∂tw,ν . From (4.1) we readily compute

F = I + w,νk iν ,(4.2)

C = I + w,µw,νiµiν + w,ν(k iν + iνk),(4.3)

H := I − C−1 = w,ν(k iν + iνk) − w,νw,νkk,(4.4)

Ḣ = ẇ,ν (kiν + iνk) − 2 w,ν ẇ,ν kk.(4.5)
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Note that detF = 1. We introduce a deformation tensor M and a strain
tensor P of permanent plastic deformation having the same forms as F
and H:

M := I +mνk iν ,(4.6a)

P := I − (M∗ · M)−1 = mν(k iν + iνk) −mνmνkk,(4.6b)

where the mν are assumed to be independent of z. (The tensors H and
P embody the same information as C and M∗ · M while having matrices
with more zeros.)

In general, F cannot be determined from C. Under our assumption of
antiplanarity, however, these two tensors are equivalent. The same remarks
apply to M and P .

We assume that the material is an incompressible, isotropic, nonlinearly
viscoplastic material. The incompressibility implies that there is a La-
grange multiplier p such that the second Piola-Kirchhoff stress tensor S
has the form

(4.7) S = −pC−1 + ŜA

where the extra stress ŜA is a prescribed constitutive function of volume-
preserving deformation histories. We specifically assume that ŜA is an
isotropic function of H, Ḣ, P that does not depend explicitly on the
coordinates xν , z. We shall informally refer to p as the pressure, without
requiring that it represent the mean normal Cauchy stress (see (12.12.33)).
It is not prescribed by a constitutive equation. We shall let it absorb a va-
riety of other terms having the same form. Thus its meaning will change in
our exposition. Nevertheless, these changes affect neither the mathematics
nor the mechanics. We could use Theorem 12.13.32 to represent ŜA as a
sum of products of scalar functions of the joint invariants of H, Ḣ, P with
symmetric parts of certain products of these tensors. For our deformations,
the set of nontrivial joint invariants is

(4.8)
I := {I1 := w,ν w,ν , I2 := 2w,νmν , I3 := mνmν ,

I4 := 2w,ν ẇ,ν , I5 := 2mνẇ,ν , I6 := ẇ,ν ẇ,ν }.

We shall restrict the form of our constitutive functions to be consistent
with antiplane motions after we examine the equations of motion.

Let T̂A =: T klikil. Under the assumption of antiplanarity and under the
constitutive assumptions we have made, the general equations of motion

(4.9)
(

iν
∂

∂xν
+ k

∂

∂x3

)
· T ∗ = ρẅk

reduce to

−p,ν + p,3w,ν +T νµ,µ = 0,(4.10)

−p,3 + T 3µ,µ = ρẅ.(4.11)
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Eq. (4.11) implies that p,33 = 0, so that p has the form

p(x1, x2, z, t) = h(x1, x2, t)z + g(x1, x2, t).

By substituting this expression into (4.10), we find that h is independent of
x1, x2. We assume that the pressure (either p itself or some mean normal
stress, which depends on z only through p) is bounded as z → ±∞. Thus
h = 0 and p,3 = 0. Hence (4.11) reduces to

(4.12) T 3µ,µ = ρẅ,

which is our fundamental equation of motion for w (and mν). Once these
variables are found, (4.10) can be integrated to produce p.

In order that the mixed partial derivatives of p as given by (4.10) be
equal, the stresses Tµν must satisfy the compatibility conditions:

(4.13) T 1ν,ν2 = T 2ν,ν1.

We interpret (4.13) as a constitutive restriction on ŜA. For hyperelastic me-
dia, Knowles (1976) has determined necessary and sufficient conditions on
material response for (4.13) to hold (see Theorem 14.10.10). For our class

of viscoplastic materials we content ourselves with a sufficient condition for
(4.13) to hold, namely, that ŜA has the form ŜA(H, Ḣ,P ) = α0(I)H +
α1(I)Ḣ +α2(I)P . Since we can absorb the C−1 from H into the pressure
term, this choice of constitutive function is equivalent to that in which H
is replaced with I:

(4.14) ŜA(H, Ḣ,P ) = α0(I)I + α1(I)Ḣ + α2(I)P .

Here α0, α1, α2 are given constitutive functions. A straightforward calcu-
lation shows that (4.14) satisfies (4.13) and reduces (4.12) to

(4.15) ẅ = (α0w,1 + α1ẇ,1 + α2m1),1 + (α0w,2 + α1ẇ,2 + α2m2),2.

(Since we shall limit our attention to (4.14), which clearly represents an
isotropic function, we actually have no need for the remarks on represen-
tation theorems preceding (4.8).)

Let the reference configuration occupied by the material be the cylin-
drical domain with cross section Ω in (x1, x2)-space. Let the νµ be the
components of the outer unit normal to ∂ Ω (which we assume exists al-
most everywhere). We may prescribe the motion w or the traction T3µνµ at
each point of the boundary ∂ Ω of Ω. We may also prescribe initial values
for w and ẇ.

Yielding. We now choose our measures of deformation and permanent
plastic deformation to be F and M . For the antiplane motions we study,
these tensors are equivalent to C and P . In fact, F is equivalent to the
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2-dimensional gradient ∇w = (w,1, w,2) and M is equivalent to m :=
(m1,m2). We formulate the constitutive equations for yielding in terms of
∇w and m. At the end of this section, we discuss the difficulties that arise
when we formulate these equations in terms of the tensors H and P .

We assume that the yield function γ is an isotropic scalar-valued function
of ∇w and m, and is independent of ∇ẇ. Thus, by Cauchy’s Representa-
tion Theorem 8.8.8, γ is a function of the invariants

(4.16) J := {I1, I2, I3}.

We set

(4.17) γK :=
∂γ

∂IK

and use an analogous notation for the derivatives of other invariants. The
constitutive equation (1.16) thus has the form

(4.18) ṁ = n(∇w,m)[I4γ1(J ) + I5γ2(J )]

where n is assumed to be an isotropic vector-valued function of its ar-
guments. Standard representation theorems imply that there are scalar-
valued functions η1 and η2 of J such that n has the form

(4.19) n(∇w,m) = η1(J )∇w + η2(J )m.

In terms of the yield function γ depending on J , plastic loading is defined
by

(4.20a,b) γ(J ) = 0, I4γ1(J ) + I5γ2(J ) > 0.

It follows from (4.20b) that during plastic loading, ∇ẇ cannot vanish any-
where, and the invariants I1 and I3 cannot vanish simultaneously. During
plastic loading on any time interval, γ is identically 0, whence

(4.21) γ1İ1 + γ2İ2 + γ3İ3 = 0,

which corresponds to (1.22). Replacing ṁ wherever it appears in (4.21)
with its representation by (4.18) and (4.19), we use (4.20b) to reduce (4.21)
to

(4.22) 1 + (2I1η1 + I2η2)γ2 + (I2η1 + 2I3η2)γ3 = 0,

which corresponds to (1.23). Condition (4.22) relates the constitutive func-
tion (4.19) to the yield function γ.

The essential governing equations for antiplane motion are (4.15), (4.18),
and (4.19), with (4.19) restricted by (4.22).

Let us now reexamine this problem when we choose the strain to be H
and the internal variable to be P , which at first sight is at least as attractive
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as the choice made above. We assume that γ is an isotropic scalar-valued
function of H and P and is independent of Ḣ. Then (not surprisingly
by the Representation Theorem 12.13.32) γ again depends on (4.16), and
(4.20b) characterizes plastic loading. Under these conditions, (1.16) yields

(4.23) Ṗ = K(H,P )[I4γ1(J ) + I5γ2(J )]

during plastic loading, where K is assumed to be an isotropic tensor-valued
function. We can invoke Theorem 12.13.32 to show that K has a repre-
sentation of the form
(4.24)

K(H,P ) = ξ0(J )I + ξ1(J )H + ξ2(J )P + ξ3(J )H · H + ξ4(J )P · P

+ ξ5(J )(H · P + P · H) + ξ6(J )(H · H · P + P · H · H)

+ ξ7(J )(H · P · P + P · P · H).

Suppose that we now wish to interpret P as the permanent plastic defor-
mation and accordingly require that P have the same form, namely (4.6b),
as H has in (4.4). It then follows from (4.23) that the components Kαβ of
K must equal 0. Let us assume that the ξk are continuous. By substituting
(4.4) and (4.6) into (4.24), we find that Kαβ = 0 if and only if

ξ0 = 0, ξ3 = 0, ξ4 = 0,(4.25a)

2ξ5 − 2ξ6I1 − 2ξ7I3 = 0.(4.25b)

Substituting (4.4), (4.6b), (4.24), and (4.25) into (4.23), we first obtain
(4.18) and (4.19) from the (3, 1)- and (3, 2)-slots of (4.23) with

η1 = ξ1 + 1
2ξ6I2 + ξ7I3,(4.26a)

η2 = ξ2 + ξ6I1 + 1
2ξ7I2.(4.26b)

Equating the terms in the (3, 3)-slot, we obtain

(4.27) 2mνṁν = {ξ1I1 + ξ2I3 − ξ5(I2 + 2I1I3) + ξ6[I1I2 + 2I3(I1 + I12)]

+ ξ7[I3I2 + 2I1(I3 + I32)]}[I4γ1(J ) + I5γ2(J )].

By substituting (4.26) into (4.27), we obtain yet another restriction on the
ξk in addition to (4.25), which is a consequence of the antiplanarity:

(4.28) ξ1(I2 − I1) + ξ2I3 + ξ5I2(1 − I3)
+ ξ6I2[ 12I2 + I1(I3 − 1)] + ξ7I3(I2 + I2I3 − 2I1I3) = 0.

If I1 = 0, then I2 = 0 and (4.22), (4.26b), and (4.28) reduce to

(4.29a,b,c) 1 + 2I3η2γ3 = 0, η2 = ξ2, I3ξ2 = 0,
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which are patently inconsistent when γ is well behaved. If I3 = 0, we get a
similar inconsistency. The source of the difficulty is (4.29c), which comes
from the requirement that P have the same form as H in the (3, 3)-slot.
By sacrificing this condition, we get rid of the inconsistency. We can then
adopt a variety of strategies for choosing P and its evolution equation
(4.23), but none seems simpler than our use of m as above.

This example indicates a subtle difficulty in the interpretation of Π
as the permanent plastic deformation. (Only the degeneracy of antiplane
motions allows us to use the variable m to escape the inconsistency of
(4.29).) When we adopt a set of constitutive equations, say (1.3) and
(1.10), involving an internal variable Π, the entire physical meaning of Π
inheres in these equations. (In the viewpoint advanced at the beginning
of Sec. 2, the internal variable is just a convenient mathematical device
for introducing memory.) When we attempt to give an internal variable
a physical interpretation, say, as a permanent plastic deformation, we risk
the imposition of further restrictions on the constitutive equations that
can lead to inconsistencies. This danger is especially pronounced when the
motion is restricted as it is here by the assumption of antiplanarity, and as
it would be in the construction of rod and shell theories by the imposition
of constraints as in Chaps. 16 and 17.

5. Notes
The various theories of small-strain plasticity (see Geiringer (1973), Hill (1950),

Kachanov (1969), Lubliner (1990), and Prager & Hodge (1951), among others), which
had reached a reasonable level of completion by the 1950’s, can present a bewildering
vista to the novice. Because they are restricted to quasistatic processes, many treatments
of small-strain plasticity are fraught with differentials used as infinitesimals to preclude
the appearance of partial derivatives with respect to time (in a manner reminiscent of
traditional treatments of thermostatics). Readers disappointed with the mixture of ba-
sic principle, ad hoc approximation, and primitive analysis in such expositions might
conclude that the subject is unworthy of serious mathematical effort. This conclusion
is false: Small-strain plasticity can be precisely formulated, poses worthy challenges to
the analyst (see Han & Reddy (1999), Temam (1985), and T. W. Ting (1973)), and is
of practical utility.

Nevertheless, such theories are too special to guide the development of useful general-
izations. (Serious problems arise with geometric descriptions of large strain and rotation
and can lead to consequent difficulties with the invariance of material properties under
rigid motions.) In response to these questions, an effort was begun in the 1950’s to
develop a correct dynamical theory for large plastic deformation, in which the roles of
geometry, mechanical principle, and properly invariant constitutive equations are clear
(and in which time is not regarded as unmentionable). At first, the goal was simply to
construct something clean, not necessarily something tractable.

Truesdell (1955a,b, 1956) introduced the theory of hypoelasticity in which the present
mechanical state of a material depends on the past history of deformation but is inde-
pendent of the rate at which the deformation is effected. A criterion of yielding is not
introduced a priori, but can arise in a natural way for certain problems. A central diffi-
culty in formulating the theory is to account for the requirement that material properties
are invariant under rigid motions. This theory was accompanied by a number of illu-
minating solved problems. Green & Naghdi (1965) produced a theory for large plastic
deformations inspired on one hand by the treatment of invariance in hypoelasticity and
on the other hand by the concept of yielding in small-strain plasticity. This theory was
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refined in subsequent years (see Casey & Naghdi (1984), Lubarda (2001), Naghdi (1990),
Simo & Ortiz (1985), and works cited therein), but for a long time these theories were
not applied to problems, either concrete or theoretical. Pipkin & Rivlin (1965), D. R.
Owen (1968, 1970), and Šilhavý (1977) developed the alternative theory of materials
with elastic range to account for the phenomena of plasticity. This theory has grown
quite abstract and has not yet attracted analysis. (But the recent work of Lucchesi &
Podio-Guidugli (1988, 1990) and Lucchesi, Owen, & Podio-Guidugli (1992) is an effort
to make this theory useful and accessible.)

It was not until the 1980’s that variants of the theory of Green & Naghdi were
seriously considered for numerical study. The availability of powerful computational
methods makes it now feasible to attack well-formulated problems for large deformations.
See Simo (1998), Trangenstein (1994, 1995), and Trangenstein & Colella (1991), inter
alios.

Recent work shows that the introduction of strain-gradient effects can lead to more
effective modelling of material response. See Fleck & Hutchinson (1997), Gao et al.
(1999) and Gurtin (2000b). Of course, the replacement of the ordinary differential
equations for the evolution of the internal variables with partial differential equations in
space and time, i.e., the use of phase-field models, would introduce nonlocal effects in
space.

In our treatment of yielding, to be specific, we adopted (1.7), which forces C to lie
within or on the yield surface. This condition is just one reasonable possibility. In their
studies, Greenberg & Nouri (1993) and Greenberg & Owen (1998) among others treat
the yield surface merely as a threshold across which constitutive functions change their
character.

There are a number of recent texts treating large-strain plasticity from a variety of
viewpoints: See, e.g., Besseling & van der Giessen (1994), Haupt (2000), Havner (1992),
Khan & Huang (1995), Lubarda (2001), Lubliner (1990), Maugin (1992), and Nguyen
(2000). For discussions of stability of elostoplastic structures, see Bažant & Cedolin
(1991), Frohman (1999), Nguyen (2000), Sewell (1972).

The exposition of Sections 1–3, is adapted from Antman & Szymczak (1989) by kind
permission of the American Mathematical Society.



CHAPTER 16

General Theories of Rods

1. Introduction
In Chap. 4 we defined a theory of rods to be the characterization of the

motion of slender solid bodies by a finite number of equations in which
there is but one independent spatial variable, which we denote by s. There
are several kinds of rod theories, reflecting different ways to construct
them. Perhaps the most elegant are the intrinsic(ally 1-dimensional) theo-
ries (Cosserat theories), the simplest example of which is that presented in
Chaps. 4 and 8. In intrinsic theories, the configuration of a rod is defined
as a geometric entity, equations of motion are laid down, and constitutive
equations relating mechanical variables to geometrical variables are pre-
scribed. But, as we saw in Chap. 8, there are parts of the theory that
are best developed under the inspiration of the 3-dimensional theory. In
the special Cosserat theory of Chap. 8, the classical equations of motion,
namely, the balances of linear and angular momenta, suffice to produce a
complete theory. (This theory is the richest theory in which the mechanical
variables are limited to the classical forces and couples.) The balances of
linear and angular momenta are inadequate for more refined intrinsic the-
ories. (In our treatment of refined intrinsic theories in Sec. 13, we discuss
the construction of the requisite additional equations of motion.)

Traditional presentations of both rod and shell theories (the latter treat-
ed in the next section) have seemingly contained internal contradictions,
which have required the reader, in the words of the Red Queen, to believe
six impossible things before breakfast. Acknowledging this difficulty, Koiter
(1966) wrote “The occurrence of occasional contradictions, is, of course, not
an uncommon phenomenon in approximate theories. Nevertheless, it may
be considered an unfortunate trait of the classical theory of thin shells
that its basic assumptions are already mutually contradictory. We have
no doubt that much of the existing confusion in shell theory is due to this
flaw in the foundations.” The theories of rods and shells presented here,
which have been developed and refined since Koiter wrote these words, are
internally consistent.

The first twelve sections of this chapter are devoted to the derivation of
a hierarchy of rod theories, called induced theories, from the 3-dimensional
theory by a generalization of projection methods used in the numerical
solution of partial differential equations. We pick up the thread begun
in Secs. 8.3 and 8.4 (which should be reread). We now have what was
lacking in Chap. 8: full 3-dimensional theories of stress and constitutive

603



604 16. GENERAL THEORIES OF RODS

equations. Using the Principle of Virtual Power we obtain a collection of
exact consequences of the 3-dimensional theory, far more extensive than
those of Chap. 8, which are central to the subsequent derivation of semi-
intrinsic and induced theories. The former represent a generalization of the
theory developed in Sec. 8.5. We may regard the induced theories either
as approximations of the 3-dimensional theory or as constrained versions
of it. The former interpretation lends itself to a simple convergence proof
given in Sec. 7. We discuss the issue of approximation in Sec. 17.12. The
latter interpretation has the virtue that the governing equations are ex-
act consequences of the 3-dimensional theory obtained by the imposition
of constitutive restrictions in the form of constraints and by the use of
constitutive equations for appropriate stress resultants. One goal of our
study of induced theories is to show that they possess a simple mathe-
matical structure consisting of the form of the equations, the form of the
requirements ensuring the preservation of orientation, and the form of con-
stitutive restrictions and to show that this structure is independent of the
specific constraints used to generate the theories. The induced theories we
obtain can be identified with corresponding intrinsic theories introduced
in Sec. 8.20 and in Sec. 13 below. From the viewpoint of practicality, the
derivation of rod and shell theories from the 3-dimensional theory enables
us to account for rods and shells that can suffer transverse extensions, to
deduce a mathematical structure for constitutive equations from that for
3-dimensional constitutive equations, and to make the role of thickness
explicit. The theories we develop here are applied to the study of some
specific problems exhibiting new physical phenomena not encompassed by
the less refined theories developed in Chaps. 4–9.

Other kinds of rod theories may be constructed by the asymptotic ex-
pansion (possibly formal) of the variables in one or more small thickness
parameters. Corresponding to different ways in which the data may depend
on the parameters are different theories of rods (and strings). In Sec. 14 we
describe a rigorous asymptotic analysis of the equilibrium of a nonlinear
elastic cylindrical rod. This analysis gives a distinguished position to the
special Cosserat theory of Chap. 8. Alternative asymptotic approaches are
treated in the context of shell theory in Secs. 17.10,11. We defer to the
end of Chap. 17 a discussion of the historical background of rod theories,
where we combine it with the corresponding discussion for shell theories.

For geometrical reasons, the derivation of induced rod theories is actually
more difficult than the derivation of induced shell theories. The reverse is
true for intrinsic theories. (Of course, the equations for shell theories are
more difficult to analyze than those for rod theories.) We derive the induced
rod theories first.
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2. Curvilinear Coordinates
In response to practical considerations, much of our presentation em-

ploys curvilinear coordinates. We devote this section to adapting the equa-
tions of Chap. 12 to such coordinate systems. We adhere to the convention
that diagonal pairs of Latin indices are summed from 1 to 3 and diagonal
pairs of Greek indices are summed from 1 to 2.

A number of authors, notably Antman (1972) and Naghdi (1972), have developed rod
and shell theories in terms of convected coordinates. These are just material coordinates
interpreted as spatial coordinates. They were popular when the spatial formulation was
paramount, not only for fluids, but also for solids. When the deficiencies of the spatial
formulation for treating boundary-value problems for solids became apparent, there
was no need to sneak material coordinates into a spatial formulation by the artifice of
convected coordinates.

We study bodies B that are closures of domains. We suppose that there
is a continuously differentiable invertible mapping B � z �→ x̃(z) ∈ R

3 such
that the Jacobian

(2.1) det
∂x̃
∂z

(z) > 0 ∀z ∈ B.

The function x̃ assigns a triple of curvilinear coordinates x := (x1, x2, x3)
to each z in B. We represent the nth power of x1, say, by (x1)n. We denote
the inverse of x̃ by z̃ and we set

(2.2) A := x̃(B).

The Inverse-Function Theorem implies that z̃ is continuously differentiable
and that

(2.3) j(x) := det
∂z̃

∂x
(x) > 0 ∀x ∈ A := x̃(B).

We adopt the convention that

(2.4)
∂y
∂xk

=: y,k

for any function y and we adopt the following standard abbreviations (see
Sec. 11.3):

(2.5a,b,c) gk(x) := z̃,k(x), gk(x) :=
∂x̃k

∂z
(z̃(x)), j = (g1 × g2) · g3.

Thus gk · gl = δkl , so that the bases {gk} and {gk} are dual to each
other. (Indeed, j g1 = g2 ×g3, etc.) We record the identities (11.3.12) and
(11.3.15):

(2.5d,e) ∇ ≡ gk ∂

∂xk
, gk · gl,k =

1
j
j,l.
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We define

(2.6a,b) p̃(x, t) := p
(
z̃(x), t

)
, ρ̃(x) = ρ

(
z̃(x)

)
.

Then

(2.6c,d) F :=
∂p

∂z
=
∂p̃

∂x
· ∂x̃
∂z

= p̃,kgk, C := F ∗ · F = (p̃,k · p̃,l) gkgl.

We define the Piola-Kirchhoff stress vectors

(2.7a)
τ k(x, t) : = T (z̃(x), t) · gk(x) ≡ F (z̃(x), t) · S(z̃(x), t) · gk(x)

=
[
gk(x) · S(z̃(x), t) · gl(x)

]
p̃,l(x, t),

from which it follows that

(2.7b) T = τ kgk.

To interpret τ k, we study the traction across the material surface defined
by x3 = const. The unit normal to this surface is

(2.8)
z̃,1(x) × z̃,2(x)
|z̃,1(x) × z̃,1(x)| =

g1(x) × g2(x)
|g1(x) × g2(x)| =

g3(x)
|g3(x)| .

Thus the traction across this surface is

(2.9) T · g3

|g3| =
τ 3

|g3| .

The presence of the |g3| in the denominator reflects the dependence of τ k

on the coordinate system used.
Let z �→ η(z) be an arbitrary differentiable function and let p�(x) :=

η(z̃(x)). Then we have the following identities (for the virtual stress
power):

(2.10) T :
∂η

∂z
= T :

[
∂p�

∂x
· ∂x̃
∂z

]
= T : [p�

,kgk] = [T · gk] · p�
,k = τ k · p�

,k.

These identities will prove most useful in our treatment of the Principle of
Virtual Power.

Let us examine the form of the linear and angular momentum balance
(12.7.21) and (12.7.27) in terms of the τ k. From (2.5) and (2.7) we obtain

∇ · T ∗ = gl · [ gkτ k],l =
1
j
[ jτ k],k,(2.11a)

∇ · (p × T )∗ =
1
j
[ jp̃ × τ k],k.(2.11b)

The substitution of (2.11a) into (12.7.21) yields an alternative version of
the equations of motion. The substitution of (2.11b) into (12.7.23) and
the use of the Divergence Theorem yield the following alternative to the
symmetry condition (12.7.27):

(2.12) p̃,k × τ k = o.
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The Principle of Virtual Power, boundary conditions. We study
the motion of B subject to boundary conditions of the form
(12.8.11), (12.8.12): We assume that there are given functions

(2.13) ∂A × [0,∞) × R
3 � (x, t, q) �→ (p̄(x, t, q), τ̄ (x, t, q)) ∈ E

3 × E
3

such that a complementary combination of components of position and
traction are specified in terms of an unknown function

(2.14) ∂A × [0,∞) � (x, t) �→ q(x, t) ∈ R
3

via

p̃(x, t) = p̄(x, t, q(x, t)),(2.15a)

[νk(x)τ k(x, t) − τ̄ (x, t, q(x, t))] · ∂p̄
∂q

(x, t, q(x, t)) = 0(2.15b)

for (x, t) ∈ x̃(∂B) × [0,∞). Here νk := ν · gk. These are the classical forms
of the boundary conditions. We assume that p̃ satisfies initial conditions
of the form

(2.16a,b) p̃(x, 0) = p0(x), p̃t(x, 0) = p1(x).

We have made slight and obvious changes in the notation of Chap. 12 used
for prescribed initial and boundary data. We specify the weak form of the
equations of motion in terms of the Principle of Virtual Power (12.9.5):

(2.17)
∫ ∞

0

∫
A

[
τ k(x, t) · p�

,k(x, t) − f(z̃(x), t) · p�(x, t)
]
dv(x) dt

−
∫ ∞

0

∫
∂A

τ̄ (x, t, q(x, t)) · p�(x, t) da(x) dt

−
∫

A
ρ̃(x)

[∫ ∞

0
p̃t(x, t) · p�

t (x, t) dt+ p1(x) · p�(x, 0)
]
dv(x) = 0

for all (nice enough) p� with compact support in A × [0,∞) that satisfy
the boundary conditions

(2.18) p�(x, t) =
∂p̄

∂q
(x, t, q(x, t)) · a(x, t) for (x, t) ∈ ∂A × [0,∞),

for all (nice enough) a. The function p� is a typical tangent vector to the
constraint manifold defined by the boundary condition (2.15a). Note that
the remaining boundary condition (2.15b) and initial condition (2.16b) are
incorporated into (2.17).

We assume that the material response of an unconstrained material is
specified by the constitutive equation

(2.19) τ k(x, t) = τ̂ k(p̃t
,1(x, ·), p̃t

,2(x, ·), p̃t
,3(x, ·),x).
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For constrained materials, we set

(2.20) τ k
L (x, t) := TL(z̃(x), t) · gk(x), τ k

A (x, t) := TA(z̃(x), t) · gk(x)

in consonance with (2.7). We adopt constitutive equations of the form
(12.12.49)–(12.12.51):

τ k
L (x, t) = τ̂ k

L (p̃,1(x, t), p̃,2(x, t), p̃,3(x, t), Λ̃(x, t),x),(2.21a)

τ k
A (x, t) = τ k

A (p̃t
,1(x, ·), p̃t

,2(x, ·), p̃t
,3(x, ·), Λ̃t(x, ·),x)(2.21b)

where Λ̃(x, t) := Λ(z̃(x), t).

3. Geometry of Rod-like Bodies
We set x3 =: s and take the coordinate s to be the parameter of a

distinguished material curve r◦, called the base curve; s it ranges over
an interval [s1, s2] as x ranges over x̃(B), i.e., [s1, s2] = {s : x ∈ x̃(B)}.
For simplicity of exposition and for most practical purposes, we assume
throughout this chapter that s is the arc-length parameter of the base
curve. In particular, we may follow tradition by taking s to be the arc-
length parameter of a coordinate curve, e.g., the curve x1 = 0 = x2. Let s̃
be the third component of x̃. The material (cross) section B(a) is the set
of all material points of B whose coordinates have the form (x1, x2, a), i.e.,

(3.1) B(a) := {z ∈ B : s̃(z) = a}.

We set

(3.2) A(s) := x̃(B(s)) ≡ {x ∈ A : x = (x1, x2, s)}.

For any subinterval I of [s1, s2], we define

(3.3) B(I) :=
⋃
s∈I

B(s) ≡ {z ∈ B : s̃(z) = a, a ∈ I}.

We assume that (2.1) holds on B and that B(s) is bounded for each s in
[s1, s2]. In this case, we say that B is rod-like. We do not attempt to define
a rod itself, which would be a member of a class of slender, solid, rod-like
bodies. Nevertheless, we call B a rod.

The lateral surface of B is

(3.4) L := {z ∈ ∂B : s1 < s < s2}.

The ends of B are B(s1) and B(s2). p̃(·, ·, s, t) is the configuration of the
section B(s) at time t.
Special example. We identify x with z, and set x = x1 = z1, y = x2 = z2, s = x3 = z3,
i = g1 = g1, j = g2 = g2, k = g3 = g3, so that z = xi + yj + sk. We take B to be a
rectangular block of length s2 − s1, of thickness 2h, and of width ω:

(3.5) B(s) := {sk + xi + yj : −h ≤ x ≤ h, 0 ≤ y ≤ ω, s ∈ [s1, s2]}.

In this case, r◦(s) = sk, and A(s) = {(x, y) : −h ≤ x ≤ h, 0 ≤ y ≤ ω} is independent
of s. The lateral surface L is just the union of four rectangular planes.
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4. Exact Equations of Motion
We construct exact rod-theoretic consequences of the Principle of Virtual

Power by the simple device of taking the virtual displacement p�, required
to satisfy (2.18), to be linear in an arbitrary function (s, t) �→ y�(s, t) with
values in an N -dimensional linear manifold that we identify with R

N . In
particular, we take

(4.1) p�(x, t) = P(x, t) · y�(s, t),

where P(x, t) is linear transformation from R
N to E

3, depending nicely on
(s, t), and y� is an arbitrary, sufficiently smooth function such that (4.1)
satisfies the boundary conditions (2.18). In the next section, where we
discuss these boundary conditions in detail, we show how to construct P
so that (2.18) holds on the lateral surface x̃(L). In analogy with (2.18), we
assume that there are functions R × R

n � (t,vα(t)) �→ uα(t,vα(t)) ∈ R
N ,

α = 1, 2, such that (4.1) satifies (2.18) on the ends of the rod if and only if

(4.2) y�(sα, t) =
∂uα

∂vα
(t,vα(t)) · wα(t) ∀wα(t) ∈ R

N (no sum).

We now substitute (4.1) into the Principle of Virtual Power (2.17) to
obtain

(4.3)
∫ ∞

0

∫ s2

s1

[m · y�
s + n · y� − f · y� − b · y�

t − c · y�] ds dt

−
∫ ∞

0
[m̄2(t)·y�(s2, t)−m̄1(t)·y�(s1, t)] dt−

∫ s2

s1

b̄(s)·y�(s, 0) ds = 0

for all sufficiently smooth y� satisfying (4.2) (or the periodicity condition
(6.20) below) where

m(s, t) :=
∫

A(s)
τ 3(x, t) · P(x, t) j(x) dx1 dx2,(4.4a)

n(s, t) :=
∫

A(s)
τ k(x, t) · P,k(x, t)j(x) dx1 dx2,(4.4b)

f(s, t) :=
∫

A(s)
f(z̃(x), t) · P(x, t) j(x) dx1 dx2(4.4c)

+
∫

∂A(s)
τ̄ (x, t, q(x, t)) · P(x, t)

ν1 dx2 − ν2 dx1

1 − ν3ν3
,

b(s, t) :=
∫

A(s)
ρ̃(x)p̃t(x, t) · P(x, t) j(x) dx1 dx2,(4.4d)

c(s, t) :=
∫

A(s)
ρ̃(x)p̃t(x, t) · Pt(x, t)j(x) dx1 dx2,(4.4e)

m̄α(t) :=
∫

A(s)
τ̄ (x, t, q(x, t)) · P(x, t) j(x) dx1 dx2

∣∣∣∣
s=sα

,(4.4f)

b̄(s) :=
∫

A(s)
ρ̃(x) p1(x) · P(x, 0) j(x) dx1 dx2.(4.4g)
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In (4.4c) the components νk of the unit outer normal vector ν to L at z̃(x)
are defined by ν = νkgk.

m and n are the stress resultants, i.e., weighted integrals of the stress
across a section. f is the applied load and contains contributions from both
the body force and the tractions on the lateral surface. The requirement
(4.2) ensures that the integrals for f and m̄α are well defined, i.e., that they
contain contributions only from those components of τ̄ that are prescribed.

If the integrands appearing in the weak equation (4.3) are continuous,
then (4.3) yields the classical versions of the equations of motion

(4.5) ∂sm − n + f = bt − c,

which are subject to the position boundary conditions (2.15a) and the
natural boundary conditions

(4.6) m(sα, t) · ∂yα

∂vα
= m̄α · ∂yα

∂vα
(no sum),

and to the initial conditions (2.16). It is important to note that the weak
equation (4.3) and the classical equations (4.5) and (4.6) are exact conse-
quences of the Principle of Virtual Power . Moreover, the form of these
equations is inherited directly from the 3-dimensional theory, and is inde-
pendent of the choice of P.

In consonance with the definition of a rod theory recalled in the first
line of Sec. 1, we characterize the configuration of a rod by an element
u of an N -dimensional manifold, say, R

N . We obtain specific theories by
prescribing how the quantities in (4.4) depend on u. If we do this directly,
we obtain intrinsic theories, by a method with slightly more inspiration
from the 3-dimensional theory than that developed in Sec. 8.4. To make
sense of any such theory, we must give a kinematic interpretation to the
components of u. We first sketch one way to do this:

5. Semi-Intrinsic Theories
We generalize the approach of Libai & Simmonds (1998) described in

Sec. 8.5. Let us suppose that P is independent of t. Then b is the weighted
momentum. (Were we to imitate the formalism of Sec. 8.5, we would
replace b with an expression of the form J · w where J(s) could be chosen
as a convenient integral over A(s).)

We now relate a strain-like quantity e to b by a compatibility equation

(5.1) et = bs.

Since this equation holds in a simply-connected region of (s, t)-space, say,
[s1, s2] × R, there exists a vector-valued potential u such that

(5.2) us = e, ut = b.
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We interpret the N -tuple u as characterizing the configuration of a rod. We
get a complete theory, the semi-intrinsic theory, by prescribing constitutive
equations giving m and n as functions of the past history of u and us.
Libai & Simmonds recommend that these constitutive equations be based
on experiment.

This attractive theory is intimately related to the intrinsic theory de-
scribed in Secs. 13 and 8.20. It has the advantage over the intrinsic theory
of giving a precise 3-dimensional interpretation to the kinematical variables
and to the stress resultants. Like the intrinsic theory it avoids the ostensible
paradoxes traditionally thought to attend theories with constitutive equa-
tions generated by those for the 3-dimensional theory. (In the next section,
we shall show how to resolve such paradoxes directly.) The disadvantages
of semi-intrinsic theories, also suffered by intrinsic theories, are that they
do not naturally account for refined descriptions of the preservation of ori-
entation, they not supply a structure for constitutive equations, and they
suppresses the role of thickness. Much of the mathematical structure for
physically reasonable constitutive equations can be supplied by the con-
siderations like those of Secs. 8.20 and 13 supporting order-preservation,
growth conditions, dissipation, and wave propagation. Alternatively, we
can adopt for semi-intrinsic and intrinsic theories the general properties of
constitutive equations developed in the next few sections by the imposi-
tion of constraints, since these properties are independent of the particular
constraint. Beginning with the next section, we develop rod theories com-
pletely from the 3-dimensional theory. We shall find that these theories
have the same formal structure as the the semi-intrinsic (and intrinsic)
theories.

Libai & Simmonds (1998) might not endorse the abstraction inherent in this formal
structure because they assert: “The Cosserat Theory . . . is unnecessarily elaborate and
predicts no physical phenomena that cannot be accounted for by a correctly formu-
lated and properly interpreted classical theory.” (p. xiii.) Presumably, they interpret
a Cosserat theory as something more elaborate than the special Cosserat rod and shell
theories introduced in Chaps. 8 and 10, e.g., theories with extensible directors like those
discussed below. These directors account for thickness changes, like those occuring in
the physically important phenomenon of necking; no classical theory describes necking.

For a development of related ideas in the setting of linear elasticity, see Ladevèze &
Simmonds (2001) and the works cited therein.

6. Induced Theories of Rods
In this section, we formulate the most general induced theories of rods,

showing how they can be constructed from the 3-dimensional theory by
a remarkably simple and elegant formalism that begins with the of exact
rod-theoretic consequences of the 3-dimensional theory given in Sec. 4. We
illustrate our very general approach with the special example of a uniform
straight rod (3.5) undergoing planar motion. The resulting theory is the
dynamical version of that of Chap. 4. In subsequent sections, we describe
several particularly useful specializations of these theories.

We characterize the configuration of a rod by a function u of (s, t) tak-
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ing values in an N -dimensional manifold M
N , e.g., R

N . Here we give a
kinematic interpretation to the components of u by constraining the con-
figuration p̃(·, ·, s, t) of the cross section s to have a finite number N of
degrees of freedom.(We are thus subjecting this configuration to an infinite
number of holonomic constraints). We identify u(s, ·) with the generalized-
position function of the section s. (Its components are the generalized
coordinates for this section.) In particular, for 3-dimensional materials
that are otherwise unconstrained, we assume that there is a (thrice con-
tinuously differentiable) function M

N × x̃(B) × R � (u,y, τ) �→ π(u,y, τ)
such that

(6.1) p̃(x, t) = π(u(s, t),x, t).

We use the theory of material constraints of Sec. 12.12 to generate ap-
propriate constitutive equations from those for the 3-dimensional theory.
Although constraining configurations of cross sections is akin to approxi-
mating them, there are some subtle and important differences, especially
for constitutive equations, that we shall emphasize later. We postpone
until Sec. 12 showing how to modify (2.5) to handle such 3-dimensional
material constraints as incompressibility because this modification involves
some unexpected subleties. Most of the resulting theories nevertheless have
a structure like that discussed in this section.

To avoid notational difficulties with total partial derivatives, we have introduced the
variables y and τ in the specification of π preceding (6.1). Thus without ambiguity we
may write

(6.2)
∂π(u(s, t), x, t)

∂s
=
∂π

∂u
(u(s, t), x, t) · us(s, t) +

∂π

∂y3
(u(s, t), x, t).

The total time derivative is defined analogously.
A simple and useful version of π is

(6.3) π(u, x, t) = r + x1d1 + x2d2

where we identify u with (the 9 components of) r, d1, d2. If d1, d2 are constrained to
be orthonormal, as in Sec. 8.4, then u can be interpreted as lying in the 6-dimensional
manifold E3× SO(3). Allowing the dα to vary their lengths allows the rod theory to
describe thickness changes as well as the effects described in Chap. 8 (see Sec. 8). A richer
theory is required to describe cross-sectional warping; see Simo & Vu-Quoc (1991). In
our special example, we specialize (6.3) even further to planar deformations by adopting
a version of (4.1.3):

a := cos θk + sin θi, b := − sin θk + cos θi,(6.4)

π(u, x, t) = r + xb + yj,(6.5)

where we identify u with (the components of) r and θ.
To ensure that there is no redundancy in the components of u, we may impose the

independency condition:

(6.6) If πu (u, x, t) · v = o ∀ (x1, x2) ∈ A(s), then v = o.

Note that the independence of the functions (x, y) �→ 1, x, y ensures that this condition
holds for (6.3) and (6.5).
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In Sec. 12, we shall show how to modify (6.1) to handle such 3-dimensional material
constraints as incompressibility, which involve some unexpected subleties. Most of the
resulting theories nevertheless have a structure like that discussed in this section. To
handle boundary layers of various kinds, one could allow the number N of degrees of free-
dom to depend on s (cf. Vogelius & Babuška (1981, 1982)). The requisite modifications
of the theory are left to the interested reader.

We require that (6.1) satisfy the position boundary conditions (2.15a)
on L identically in u and q:

(6.7) π(u,x, t) = p̄(x, t, q) for (x, t) ∈ x̃(L) × [0,∞).

π is allowed to depend on τ in order to accommodate such time-dependent
boundary conditions on L. For our special example, we assume that the
boundary conditions on L are purely traction boundary conditions. (Po-
sition boundary conditions on L, in which (6.7) is not vacuous, are not
treated in the traditional problems of rod theory.)

The construction of a π satisfying (6.7) is not difficult: Suppose that the position
is completely prescribed to be p̄(x, t) for each x on a time-dependent part L0(t) of L
whose curvilinear coordinates satisfy the equation ϕ(x, t) = 0. Let ζ be any convenient
function of u, x, t, let p̄ be extended from {(x, t) : x ∈ L0(t)} in any convenient way,
and take π(u, x, t) = p̄(x, t)+ϕ(x, t)ζ(u, x, t). This π satisfies the prescribed boundary
conditions. The form of this π motivates us to consider generalizations of the attractive
(6.3).

The constraint (6.1) does not allow arbitrary position boundary condi-
tions on u to be prescribed at the ends s = s1, s2. We therefore either
restrict the position boundary conditions at the ends or else approximate
arbitrary position boundary conditions at the ends by those consistent
with (6.1). We assume that the constraint (6.1) generates position bound-
ary conditions at the ends in the following parametric form analogous to
(2.15a):

(6.8) u(sα, t) = uα(t, vα(t)), α = 1, 2,

where the vα are unknowns and ∂uα/∂vα, α = 1, 2, has rank ≤ N (cf.
Sec. 8.14). (Of course, our formalism does not force position boundary
conditions to be prescribed at the ends.) Alternatively, if the body is
toroidal, i.e., if the ends consist of the same material points, then we impose
periodicity conditions

(6.9) u(s+ s2 − s1, t) = u(s, t).

Other possibilities can be handled likewise. We finally assume that initial
conditions have a form compatible with (6.1). For our special example, we
take position boundary conditions for (6.5) of the form

(6.10) r(s1) = 0, θ(s1) = 0

and prescribe the traction on the end s = s2.



614 16. GENERAL THEORIES OF RODS

Preservation of orientation. Let us set

(6.11) δ(u,v,y, τ) :=

{
[∂π/∂y1] × [∂π/∂y2]

}
·
{
[∂π/∂u] · v + ∂π/∂y3

}
j(y)

where the arguments of the derivatives of π are u,y, τ . Note that δ is
affine in v. In consonance with (6.1), we replace the requirement that the
deformation preserve orientation with its constrained form:

(6.12) δ(u(s, t),us(s, t),x, t) > 0 ∀x ∈ x̃(B).

Let (6.5) hold and set

(6.13) rs =: νa + ηb.

Then (6.12) reduces to

(6.14) ν(s, t) − xθs(s, t) > 0.

Let T
N denote the N -dimensional space of the derivatives us of members

of M
N . By following the proof of Theorem 8.7.2, we obtain the following

result of Antman (1976a):

6.15. Theorem. There is a subset V(s, t) of the space M
N ×T

N with the
property that its section {(u,v) ∈ V(s, t) : u = a} is a convex subset of T

N

for each a, s, t such that (6.12) holds if and only if

(6.16) (u(s, t),us(s, t)) ∈ V(s, t) ∀ s, t.

Thus (6.16) plays the same role for rod theories as the requirement
det F > 0 plays for the 3-dimensional theory.

When (3.5) holds, condition (6.14) is equivalent to

(6.17) ν > h|θs|,

so that V consists of all ν, θs satisfying this inequality.

Exact equations of motion for rods. Let us choose (the test function
or virtual velocity) p� to be tangent to the constraint manifold defined by
(6.1):

p�(x, t) = πu(u(s, t),x, t) · u�(s, t) with(6.18)

u�(sα, t) =
∂uα

∂vα
(t,vα(t)) · wα(t), wα(t) ∈ R

N , α = 1, 2,(6.19)

or u�(s+ s2 − s1, t) = u�(s, t)(6.20)

according as (6.8) or (6.9) holds. We take u� to be so smooth that all
derivatives of it that are exhibited have their classical meaning. Clearly
(6.18) agrees with (4.1) when P(x, t) = πu(u(s, t),x, t). In the very useful
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case that π is affine in its argument u, the function u does not intervene in
the right-hand side of (6.18). We now substitute (6.18) into the Principle
of Virtual Power (2.17) to obtain the exact equations (4.3)–(4.6) with P =
πu.

For our special example, we take

(6.21) p�(z, t) = r�(s, t) − xθ�(s, t)a(s, t), y = (r�, θ�).

In this case, m reduces to (n, M ) (with n in duality with r� and with M in duality
with θ�), n reduces to (o, ζ), f reduces to (f0, l), b reduces to (β, β), and c reduces to
(0, γ) where

(6.22)

n :=
∫ ω

0

∫ h

−h
τ3(x, y, s, t) dx dy,

M := −a(s, t) ·
∫ ω

0

∫ h

−h
xτ3(x, y, s, t) dx dy,

ζ := −
∫ ω

0

∫ h

−h
[τ1 · a + xθsτ3 · b] dx dy ≡ k · (rs × n),

f0 :=
∫ ω

0

∫ h

−h
f(x, t) dx dy +

∫
∂A(s)

τ̄ (x, t, q(x, t)) (ν1 dy − ν2 dx),

l := −a ·
∫ ω

0

∫ h

−h
xf(x, t) dx dy − a ·

∫
∂A(s)

xτ̄ (x, t, q(x, t)) (ν1 dy − ν2 dx),

β :=
∫ ω

0

∫ h

−h
ρ̃(x, y)p̃t(x, t) dx dy,

β := −a ·
∫ ω

0

∫ h

−h
xρ̃(x, y)p̃t(x, t) dx dy,

γ := −θt(s, t)b ·
∫ ω

0

∫ h

−h
xρ̃(x, y)p̃t(x, t) dx dy,

where the last identity for ζ follows by integrating (2.12) over A. In accord with Chap.
4, n(s, t) and M (s, t)k are the resultant contact force and couple across the section s
at time t, and f0 and lk are the external force and couple per unit of s. n is given
by (4.4a) with ∂π/∂y replaced with ∂π/∂r = I, and M is given by (4.4a) with ∂π/∂y
replaced with ∂π/∂θ = −xa.

6.23. Exercise. Let I be a positive integer. Let I be the collection of ordered pairs
(α, β) of integers with α ≥ 0, β ≥ 0, α + β ≤ I . Identify u = {d(α,β) : (α, β) ∈ I} (so
that N = 1

2 (I + 1)(I + 2)) and set

(6.24) π(u(s, t), x) =
∑

(α,β)∈I

(x1)α(x2)β

(α + β)!
d(α,β)(s, t).

Evaluate (4.4) when (6.24) is used. Interpret the resultants (4.4a,b) for small values of
α and β.

Multipliers, active resultants, and the equations of motion. We
again take the test function to have the form (6.18) but do not require that
(6.19) or (6.20) hold. Just as the Principle of Virtual Power (12.9.5) yields
(2.17), condition (12.12.50b) yields

(6.25a)
∫
x̃(B)

τ k
L (x, t) · p�

,k(x, t) dv(x) =
∫ s2

s1

(mL · u�
s + nL · u�) ds = 0
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for all smooth u�, i.e.,

(6.25b) ∂smL − nL = o

in the sense of distributions, where

mL(s, t) :=
∫

A(s)
τ 3

L (x, t) · πu(u(s, t),x, t) j(x) dx1 dx2,(6.26a)

nL(s, t) :=
∫

A(s)
τ k

L (x, t) · [πu(u(s, t),x, t)],k j(x) dx1 dx2.(6.26b)

For our special example, mL reduces to (nL, ML) and nL reduces to (o, ζL) where

(6.27)

nL :=
∫ ω

0

∫ h

−h
τ3
L (x, y, s, t) dx dy,

ML := −a(s, t) ·
∫ ω

0

∫ h

−h
xτ3

L (x, y, s, t) dx dy,

ζL := −
∫ ω

0

∫ h

−h
[τ1

L · a + xθsτ3
L · b] dx dy ≡ k · (rs × nL),

where the last identity comes from the integral over A of k · (p̃,k × τk
L ) = 0, which is a

consequence of the symmetry of SL in (12.12.46c). Thus the reactive resultants satisfy
the relations

(6.28) ∂snL = o, ∂sML + k · [rs × nL] = 0

(cf. (4.1.16)–(4.1.19)). This derivation is just a special case of that appearing in the
treatment of (12.12.73).

We now further require that u� satisfy the end conditions (6.19) when
(6.8) holds or (6.20) when (6.9) holds. Then, substituting (6.18) into the
Principle of Virtual Power (2.17) and using (6.25), we obtain (4.3), (4.5),
(4.6) with τ k replaced with τ k

A and with m and n replaced by mA and nA:

(6.29)
∫ ∞

0

∫ s2

s1

[mA · u�
s + nA · u� − f · u� − b · u�

t − c · u�] ds dt

−
∫ ∞

0
[m̄2(t)·u�(s2, t)−m̄1(t)·u�(s1, t)] dt−

∫ s2

s1

b̄(s)·u�(s, 0) ds = 0

for all sufficiently smooth u� satisfying (6.19) or (6.20) where

mA(s, t) :=
∫

A(s)
τ 3

A(x, t) · πu(u(s, t),x, t) j(x) dx1 dx2,(6.30a)

nA(s, t) :=
∫

A(s)
τ k

A (x, t) · [πu(u(s, t),x, t)],k j(x) dx1 dx2.(6.30b)

For our special example, mA reduces to (nA, MA) and nA reduces to (o, k ·(rs ×nL))
where

(6.31)
nA :=

∫ ω

0

∫ h

−h
τ3
A(x, y, s, t) dx dy,

MA := −a(s, t) ·
∫ ω

0

∫ h

−h
xτ3

A(x, y, s, t) dx dy.
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We obtain equations for a rod theory by replacing p̃ wherever it appears
in the expressions for b, c, f, and m̄ by its constrained form (6.1). (We
could allow f to depend on s and t also through a dependence on u because
we could allow f to depend on x and t through a dependence on p̃.) In
particular, (4.4d,e) are replaced by

b :=
∫

A(s)
ρ

[
∂π

∂u
· ut +

∂π

∂τ

]
· ∂π
∂u
j dx1 dx2,(6.32a)

c :=
∫

A(s)
ρ

[
∂π

∂u
· ut +

∂π

∂τ

]
· ∂
∂t

∂π

∂u
j dx1 dx2,(6.32b)

so that these momenta are specific functions of u and ut.

For our special problem, b = (ρArt, ρJθt) and c = (o, 0) where

(6.33) (ρA)(s) =
∫ ω

0

∫ h

−h
ρ(x, y, s) dx dy, (ρJ)(s) =

∫ ω

0

∫ h

−h
x2ρ(x, y, s) dx dy.

Thus the active resultants satisfy the equations of motion

(6.34) ∂snA + f = ρArtt, ∂sMA + k · [rs × nA] + l = ρJθtt.

(cf. (4.1.45) and (4.1.46) with ρI = 0).
Our governing equations (6.29) could have been obtained by substituting (2.11a)

into (12.7.21), taking the dot product of this equation with (6.18), and integrating the
resulting equation by parts subject to appropriate boundary conditions. This approach
employing the classical equations of motion, which is tantamount to the naive derivation
of the Principle of Virtual Power, sacrifices the generality inherent in this principle.

Constitutive relations. Let us now replace the τ k
A in (4.4a,b) with their

constitutive equations of the form (2.21) corresponding to
(12.12.50) and (12.12.51) in which F is replaced with its constrained form
based on (6.1). As we point out below, just as in (12.12.81), the τ k

L or,
equivalently, the components of Λ̃ are indeterminate. But, as we saw in
Sec. 8.17, parts of τ k

L , such as components of mL and nL, might be deter-
minate. Let

(6.35a) λ(s, t) := Λ̃(·, ·, s, t).

From (2.21) and (4.30) we get constitutive functions for rods of the form

(6.35b)
mA(s, t) = m̂A

(
ut(s, ·),ut

s(s, ·),λt(s, ·), s, t
)
,

nA(s, t) = n̂A

(
ut(s, ·),ut

s(s, ·),λt(s, ·), s, t
)
.

Here it is understood that only determinate parts of λ actually appear in
(6.35b). Indeed, in analogy with the treatments of Secs. 8.17 and 12.12, we
may regard λ as an abbreviation for components of mL and nL. The domain
of the constitutive functions m̂A

(
·, ·,λ, s, t

)
and n̂A

(
·, ·,λ, s, t

)
consists of

those histories
(
ut(s, ·),ut

s(s, ·)
)

for which
(
u(s, t),us(s, t)

)
∈ V(s, t) for all

t. We get theories of a traditional form when m̂A and n̂A are independent
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of λt. In view of (6.25), there is no loss of generality in replacing mA and
nA in (6.30), and (6.35) with m and n. We shall frequently do so.

We have thus formulated a hierarchy of initial-boundary-value problems
for rods, characterized by differential equations for functions depending
only on s and t. Note that if we use a frame-indifferent version of (2.19),
then the resulting form of (6.35) inherits this frame-indifference.

6.36. Exercise. For an elastic body of the form (3.5) subject to the constraint (6.5), ex-
press the constitutive equations (6.35) as integrals of the first and second Piola-Kirchhoff
stress tensors.

Constitutive relations of internal-variable type. The derivation of (6.35) is pred-
icated on the availability of constitutive relations like (2.21) giving the Piola-Kirchhoff
stress vectors as explicit functions of the past history of the deformation. For materials
of internal-variable type (which include as special cases materials of stress-rate type),
the constitutive responses depend on the solution of auxiliary ordinary differential equa-
tions for the internal variable (cf. (12.10.9), (12.10.10)). In general, these ordinary
differential equations cannot be solved explicitly for the internal variable in terms of the
deformation. Consequently, constitutive equations of the form (6.35) cannot be obtained
in practice. Instead, we directly construct an internal-variable theory for rods from the
3-dimensional theory:

To be specific, suppose that (2.21) is equivalent to the system

τk(x, t) = τ̂k(p̃,1(x, t), ., ., ∂tp̃,1(x, t), ., .,ψ(x, t), Λ̃(x, t), x),(6.37)

∂tψ(x, t) = γ (p̃,1(x, t), ., ., ∂tp̃,1(x, t), ., .,ψ(x, t), Λ̃(x, t), x).(6.38)

Here ψ is the internal variable (cf. (12.10.9), (12.10.10)). Now we treat (6.37) just as
we treated (2.19) to replace (6.35) with the system consisting of

(6.39)
mA(s, t) = m̂A (u(s, t), us(s, t), ut(s, t), ust(s, t),ψ(·, ·, s, t),λ(s, t), s, t) ,

nA(s, t) = n̂A (u(s, t), us(s, t), ut(s, t), ust(s, t),ψ(·, ·, s, t),λ(s, t), s, t)

and (6.38). Note that a solution of (6.38) depends parametrically on (x1, x2). When such
a solution for ψ is substituted into the integrals of the form (6.30) we get expressions like
(6.39) with the function ψ(·, ·, s, t) well-defined by (6.38) (provided (6.38) is solvable).

This approach leads to a perfectly satisfactory class of theories, but these theories are
more complicated in the dependence of the internal variable on the thickness coordinates
than one might like for rod theories. To get rod theories in which the internal variables
depend solely on s, t, we constrain the internal-variable function ψ(·, ·, s, t) on a section
A(s) at time t to be determined by a finite number of variables ψ11(s, t), . . . ,ψIJ (s, t).
For example, we could put a mesh on the section A defined by the lines x1 = x1

1, . . . , x
1
I ,

x2 = x2
1, . . . , x

2
J and identify ψij(s, t) := ψ(x1

i , x
2
j , s, t). We could use some version of

the finite-element method to represent ψ in terms of the ψij . Then then the substitution
of (6.1) into (6.38) yields

(6.40)
∂tψij(s, t) = γ(π,1(u(s, t), x1

i , x
2
j , s, t), ., .,

∂tπ,1(u(s, t), x1
i , x

2
j , s, t), ., .,ψij(s, t),λ(s, t), x1

i , x
2
j , s)

for i = 1, . . . , I ; j = 1, . . . , J . The substitution of the representation for ψ in terms of
the ψij into (6.37) and its substitution into (6.30) yields a replacement for (6.39) of the
form
(6.41)

mA(s, t) = m̂A(u(s, t), us(s, t), ut(s, t), ust(s, t),ψ11(s, t), . . . ,ψIJ (s, t),λ(s, t), s),

nA(s, t) = n̂A(u(s, t), us(s, t), ut(s, t), ust(s, t),ψ11(s, t), . . . ,ψIJ (s, t),λ(s, t), s).
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Many theories of plasticity are internal-variable theories (see Chap. 15). Among
the internal variables commonly used is a tensor interpreted as the permanent plastic
deformation. If this interpretation is taken seriously in rod and shell theories, then its
form, in particular, its dependence on x1, x2, should be influenced by the constraint
(6.1). In this case, however, its dependence on x1, x2 would in general be incompatible
with (6.38). (A similar incompatibility is duscussed in Sec. 15.4.) The explanation of
such incompatibilities is that the use of internal variables is just a mathematical device to
introduce memory into a system, and it needs no physical interpretation. The assignment
to an internal variable of a physical interpretation with mathematical consequences can
lead to incompatibility. We have avoided this danger by using a discretization (leading
to (6.40) independent of (6.1). For problems of plasticity, in which the evolution of the
internal variables depends on a yield condition, it is very useful to introduce internal
variables with pointwise significance, as we have just done. The use of (6.40) leads to
effective numerical approaches for the dynamics of plastic rods (see Frohman (1999)).

The reactions. Let us suppose that ∂p̄/∂q of (2.18) has rank 3 for x ∈
x̃(L). Thus we are prescribing pure traction boundary conditions on L. It
follows that (6.1) is consistent with (2.18).

In addition to satisfying (6.25), (6.26), the reactive stress vectors τL

satisfy the underdetermined problem

(jτ k
L ),k = −(jτ k

A ),k − jf + ρ̃j∂ttπ,(6.42a)

τ k
L νk = −τ k

Aνk + τ̄ for x ∈ x̃(L)(6.42b)

in the sense of distributions (cf. (12.12.81)), where the terms on the right-
hand sides of (6.42) are typically known from the solution of the primary
problem. As we observed at the end of Sec. 12.12, equation (6.42a) gives
no useful information about τ k

L . Thus we have no way of determining the
(total) stress with the body. (This explains why the the formulas for stress
in engineering beam theory do not agree with the stresses computed for cor-
responding exact problems of linear elasticity.) On the other hand, (6.42b)
and its generalization (2.15b) ensure that the traction boundary conditions
on L hold exactly. Thus the reactive traction compensates exactly for any
deficiencies of the active traction, which is determined by the constitutive
equations. This fundamental observation, made by Podio-Guidugli (1989),
puts to rest traditional objections (see Novozhilov (1953, p. 196) and Green,
Laws, & Naghdi (1967, 1968), e.g.) to the approach described in this sec-
tion on the grounds that the active stress TA, confounded with the total
stress T , when given by its constitutive equations typically fails to satisfy
(2.15b). The three critically important contributions of the theory of mate-
rial constraints of Sec. 12.12 to rod and shell theory are that the resultants
(6.26) do not enter the governing equations, that traction boundary condi-
tions are satisfied exactly, and that the Local Constraint Principle (used by
Podio-Guidugli (1989)) does not apply to rods and shells. (The treatment
of Lagrange multipliers in this section follows that of Antman & Marlow
(1991).)

In shell theories, rod theories, and in discrete models, the Lagrange mul-
tipliers serve as measures of the discrepancy between the solution of the
constrained problem and the original unconstrained problem (see Antman
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& Warner (1966)). Numerical methods that exploit the Lagrange multipli-
ers and the underlying duality are termed ‘mixed methods’ (see Brezzi &
Fortin (1991) and works cited therein).

Note how simple is the structure of the governing equations. The clas-
sicial version of (6.29) (cf. (4.5)) is

(6.43) ∂smA − nA + f = bt − c,

which is supplementd by the constitutive equations (6.35), whose common
domain of definition is given by (6.16). In Sec. 9, we show that the con-
stitutive functions themselves inherit their mathematical structure from
the 3-dimensional theory. There have been innumerable disputes about
the relative merits of innumerable rod and shell theories. The preceding
comments assert that there is no essential mathematical difference between
geometrically exact theories with the same degrees of freedom.

7. Convergence

We now give simple mathematical conditions that ensure that a sequence of solutions
of initial-boundary-value problems for rod theories indexed by the number N of degrees
of freedom of a typical section converges in an appropriate weak topology to the solution
of the 3-dimensional initial-boundary-value problem. We then briefly discuss constitutive
restrictions that support the analysis. We thereby endow these theories with a precise
mathematical role.

For simplicity of exposition, we limit our attention to position and traction boundary
conditions prescribed on fixed complementary parts of the boundary: We assume that
∂B = S0 ∪ S3 ∪ S03 where for each t, S0 and S3 are disjoint open subsets of ∂B and S03
is a finite union of Lipschitz curves. Our boundary conditions are

(7.1a,b) p̃(x, t) = p̄(x, t) for x ∈ x̃(S0), νi(x)τ i(x, t) = τ̄ (x, t) for x ∈ x̃(S3),

where p̄, τ̄ are prescribed. (Cf. Sec. 12.8.)
When (2.19) is substituted into (2.17), we denote the resulting form of the Principle

of Virtual Power as

(7.2) 〈h[p̃], p�〉 = 0 ∀ p�.

Let T be a fixed positive number. Let V denote a Sobolev space in W 1
1 (A) consisting of

functions ζ that satisfy ζ(x) = o for x ∈ S0 in the sense of trace. We assume that p�

belongs to a space E of mappings from [0, T ) to V. Let p̄, defined on A × [0,∞), satisfy
the position boundary condition (7.1a). We assume that the domain of definition of h
is a subset P of the translate p̄+E of E, and that h maps P into the dual space E∗ of E.
Eq. (7.2), assumed to hold for all p� ∈ E that vanish for t = T , and supplemented with
(7.1a), (2.16a) in the sense of trace, is a weak formulation of our initial-boundary-value
problem.

We now take the right-hand side of (6.1) to have the special form

(7.3) φJ (x, t) := p̄(x, t) +
J∑

j=1

φj(x)ΦJ
j (s, t)

where {φj(·, ·, s), j = 1, 2, . . . } is a given basis for V(s) := {ζ(·, ·, s) : ζ ∈ V} so that the
φj(·, s) vanish on x̃(S0) and where the ΦJ

j , regarded as the components of u, are to be
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determined. The constraint that p̃ = φJ endows the deformation of each section A(s)
with J degrees of freedom (cf. (6.24)). For such rod theories we constrain the initial
conditions (2.16) to have a form compatible with (7.3). For our present work we now
regard φJ as an approximation to p̃.

In (7.2) we replace p� with

(7.4) pJ
�(x, t) =

J∑
j=1

φj(x)Φ�
j (s, t),

where the Φ�
j are arbitrary, and replace p̃ with φJ . We then get the Principle of Virtual

Power for rods:

(7.5) 〈h[φJ ], pJ
�〉 = 0 ∀ pJ

� .

In this process, we get constitutive equations of the form

(7.6)
m(s, t) = m̂

(
ut(s, ·), ut

s(s, ·), s
)
,

n(s, t) = n̂
(
ut(s, ·), ut

s(s, ·), s
)

where u := (ΦJ
1 , . . . , Φ

J
J ).

The Galerkin approximations θKL to a solution p̃ of our initial-boundary-value prob-
lem (7.2) have the form

(7.7) θKL(x, t) = p̄(x, t) +
K∑

k=1

L∑
l=1

θkl(x)ΘKL
kl (t)

with {θkl, k, l = 1, 2, . . . } a given basis for V, with {ΘKL
kl } the solution of the following

weak initial-value problem for the system of weak ordinary differential equations:

(7.8) 〈h[θKL], θKL
� 〉 = 0 ∀ θKL

� =
K∑

k=1

L∑
l=1

θkl(x)Θ�
kl(t), ΘKL

kl (0) = ΘKL
0kl

where the Θ�
kl are arbitrary and where

∑K
k=1

∑L
l=1 θklΘ

KL
0kl is the projection of p0 − p̄

onto span {θkl, k = 1, . . . , K, l = 1, . . . , L}. (We use a double index in (7.7), (7.8) for
future notational convenience.)

Our fundamental assumption is that initial-boundary-value problem (7.2), (7.1a),
(2.16a) has a weak solution p̃ that can be weakly approximated by a subsequence θKL

of Galerkin approximations:

(7.9) θKL ⇀ p̃ as K, L → ∞ through a subsequence

(cf. Lions (1969), Zeidler (1990, Vol. IIB)).
Our rod-theoretic approximations to p̃ with J degrees of freedom have the forms

(7.3) where {ΦJ
j , j = 1, . . . , J} is a solution of (7.5). Now the solution of (7.5) can itself

be found by the Faedo-Galerkin method. In particular, each ΦJ
j can be approximated

(in a sense to be made precise below) by a subsequence of {Ψ JM
j } of the form

(7.10) Ψ JM
j (s, t) =

M∑
m=1

ωm(s)ΩJM
jm (t)

where the ωm are given functions with the property that {φjωm} is a basis for V, and
where ΩJM

jm are solutions of the initial-value problems for ordinary differential equations
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generated by the Faedo-Galerkin method. Let ψJM be the approximation to p̃ generated
by the application of the Faedo-Galerkin method to the equations of the J -th rod theory:

(7.11) ψJM (x, t) =
J∑

j=1

φj(x)Ψ JM
j (s, t) =

J∑
j=1

φj(x)
M∑

m=1

ωm(s)ΩJM
jm (t).

We assume that the sequence {Ψ JM
j } converges weakly to ΦJ

j as M → ∞ in the
sense that

(7.12) ψJM ⇀ φJ as M → ∞.

(This is virtually a consequence of (7.9).)
Note that ψKL = θKL if θkl = φkωl, in which case ψKL is a sequence with exactly

the same properties as θKL. Thus (7.9) implies that

(7.13) ψKL ⇀ p̃ as K, L → ∞ through a subsequence.

Let us fix an arbitrary ξ ∈ E∗. Conditions (7.12) and (7.13) respectively imply that
for arbitrary ε > 0, there are numbers M̄ (J, ε) and J̄(ε) such that

(7.14)
|〈ζ,ψJM − φJ 〉| ≤ 1

2 ε when M ≥ M̄ (J, ε),

|〈ζ, p̃ − ψJM 〉| ≤ 1
2 ε when J,M ≥ J̄(ε).

Thus, if we take J ≥ J̄(ε) and M ≥ M̄ (J̄(ε), ε), J̄(ε), we find that |〈ζ, p̃ − φJ 〉| ≤ ε
when J ≥ J̄(ε), i.e.,

(7.15) φJ ⇀ p̃ as J → ∞ through a subsequence.

But if the problem for p̃ has a unique solution, then the entire sequence converges. This
is our promised result.

See the comments at the end of Sec. 9 for a related result for the equilibrium of
hyperelastic bodies. Here there are typically multiple solutions, so that we only know
that a subsequence converges to (a not necessarily unique) global minimizer.

Note that we need not base (7.15) on the Faedo-Galerkin method. The limit (7.15)
is a consequence of any approximation scheme for which (7.9) and (7.12) hold.

I know of no paper that directly proves the short-time existence of the dynamical
initial-boundary-value problems for the quasilinear hyperbolic equations for hyperelastic
materials by the Faedo-Galerkin method. But the papers of Dafermos & Hrusa (1985)
and Hrusa & Renardy (1988) use the Faedo-Galerkin method as a critical part of their
analysis. (Their approaches might fall under the abstract scheme mentioned in the
preceding paragraph.) The likelihood of the direct applicability of the Faedo-Galerkin
method is suggested by the comments of Zeidler (1990, Vol. IIB, Sec. 33.6) on Theorem
2.1 of Majda (1984). Thus we might expect that our weak convergence results for rods
and shells hold for such materials for short time. Since there is no dissipation in such
materials, which consequently can sustain shocks, their governing equations would seem
to be more difficult to analyze than those for materials with any level of dissipation.
We might therefore surmise that short-time existence theories can be constructed by
methods like the Faedo-Galerkin method for virtually all realistic materials, so that the
hierarchies of rod theories would be mathematically meaningful for such materials.

In marked contrast to elastic materials are the strongly dissipative viscoelastic ma-
terials of strain-rate type, having constitutive functions of the form (13.9.1), whose
governing equations are of parabolic-hyperbolic type. If the mapping G �→ T̂ (F ,G,x)
is uniformly monotone and continuously differentiable, then there is a number c > 0
such that

(7.16) A :
∂T̂

∂G
(F ,G, z) : A ≥ c |A|2
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for all second-order tensors A. In this case, much of the theory of monotone operators
would be available for use in the Faedo-Galerkin method to show that initial-boundary-
value problems for the 3-dimensional equations have globally defined weak solutions.
(See Lions (1969) and Zeidler (1990, Vol. IIB). A central difficulty in such a proof would
be to ensure that the deformation be orientation-preserving).

For induced rod theories for viscoelastic materials of strain-rate type, (7.6) has the
form

(7.17) m(s, t) = m̂(u(s, t), ut(s, t), us(s, t), ust(s, t), s),

etc. If the monotonicity condition (7.16) is weakened to the strong ellipticity condition
that (7.16) hold only for tensors A of rank 1 (see Sec. 13.9), then it is an easy exercise (see
Sec. 9) to show that v̇ �→ m̂(u, u̇, v, v̇, s) is uniformly monotone. The exploitation of this
fact together with the fact that there is only one independent spatial variable supports
a proof (based on the Faedo-Galerkin method) that solutions of initial-boundary-value
problems for rods have globally defined orientation-preserving solutions with as much
smoothness as the data allow (see Antman & Seidman (2005)).

The remarks we have just made indicate that our fundamental hypotheses are capable
of being established for many materials, at least for short time. (Doing so is essentially a
question in the theory of partial differential equations.) Thus the precise mathematical
role of induced rod theories as generators of weak approximations to 3-dimensional
problems has a broad applicability. Ideally, one would want error estimates for φJ − p̃.
Here the the role of thickness, which we have suppressed, would enter in a crucial way,
and the induced theories make contact with asymptotic theories. Virtually all such error
estimates that have been obtained are restricted to equilibrium problems for hyperelastic
bodies, and in particular to linearly elastic bodies. See the discussion in Sec. 17.12 for
references.

This section is based on Antman (1997).

8. Rods with Two Directors
We now specialize the results of Sec. 6 to the important case generalizing

that in which (6.3) holds, so that u is the triple {r,d1,d2} of vectors,
and to the related problems in which the directors dα are constrained to
be orthogonal or orthonormal. The theories with unconstrained dα and
with orthogonal dα generalize that of Chap. 8 (which exactly corresponds
to orthonormal dα) chiefly by accounting for transverse stretching, which
plays an important role in problems of necking and wave propagation.

We set

(8.1) d1 = δ1a1, d2 = δ2a2

where a1 and a2 are independent unit vectors not necessarily orthogonal.
We define

(8.2) a3 ≡ a3 :=
a1 × a2

|a1 × a2|
.

We could take π to have one of the increasingly specialized forms (cf. Sec.
8.4)

π(u,y, τ) = r + κ(d1,d2,y),(8.3a)

π(u,y, τ) = r + κα(δ1, δ2,y)aα,(8.3b)

π(u,y, τ) = r + ϕα(y)dα,(8.3c)
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where κ, the κα, and the ϕα are given functions. Without loss of gener-
ality we assume that κ, κα, and ϕα each vanish when x1 = 0 = x2. To
put (8.3b) into form (8.3a), we just use δα = |dα|, a1 = d1/δ1, etc. By
constraining the dα to be orthonormal, we recover representations (8.4.1),
associated with the special Cosserat theory of rods. In addition to the
kinds of deformations permitted for such rods, Eqs. (8.3) allow thickness
changes associated with changes in δ1 and δ2 and allow an internal shear
associated with a change in the angle between d1 and d2. The most im-
portant version of (8.3) by far is (8.3c) with ϕα = xα. We preserve the
generality of (8.3a,b) solely to illustrate the difficulties it causes for the
moment equation.

We assume that in each case the reference configuration is defined by

(8.4) z̃(x) = r◦(s) + ϕα(x)a◦
α(s).

We denote values of variables in the reference configuration by the super-
script or subscript ◦. We assume that {a◦

1,a
◦
2,a

◦
3 ≡ r◦

s} is orthonormal and
therefore equals its dual basis {a1

◦,a
2
◦,a

3
◦}. We take δ◦1 = 1 = δ◦2 . (The ad-

justments needed to suspend this assumption, which are sometimes useful
(see Antman & Schuricht (2003)), are straightforward.)

We readily compute that
(8.5a)
g1 = z̃,1 = ϕα

,1a
◦
α, g2 = z̃,2 = ϕα

,2a
◦
α, g3 = z̃,3 = a◦

3 + ϕα
,3a

◦
α + ϕαa◦

α,3

and either use the identity I = ∂z̃
∂xk

∂x̃k

∂z = gkgk or else use the formulas
jg1 = g2 × g3, etc., to obtain
(8.5b)

g1 =
1
j

det
[

(1 + ϕαa3
◦ · a◦

α,3)a
1
◦ − (ϕ1

,3 + ϕ2a1
◦ · a◦

2,3)a
3
◦ ϕ1

,2
(1 + ϕαa3

◦ · a◦
α,3)a

2
◦ − (ϕ2

,3 + ϕ1a2
◦ · a◦

1,3)a
3
◦ ϕ2

,2

]
,

g2 =
1
j

det
[
ϕ1

,1 (1 + ϕαa3
◦ · a◦

α,3)a
1
◦ − (ϕ1

,3 + ϕ2a1
◦ · a◦

2,3)a
3
◦

ϕ2
,1 (1 + ϕαa3

◦ · a◦
α,3)a

2
◦ − (ϕ2

,3 + ϕ1a2
◦ · a◦

1,3)a
3
◦

]
,

g3 =
1
j

det
(
ϕα

,β

)
a3

◦ =
a3

◦
1 + ϕαa3◦ · a◦

α,3

where

(8.5c) j = (g1 × g2) · g3 = Φ
[
1 + ϕαa3

◦ · a◦
α,3
]
, Φ := det

(
ϕβ

,γ

)
.

Thus F = ∂p̃
∂xk

∂x̃k

∂z = p̃,kgk has the respective forms

F =
∂κ

∂xα
gα +

[
rs +

∂κ

∂dα
· (∂sdα) +

∂κ

∂y3

]
g3,(8.6a)

F =
∂κα

∂xγ
aαgγ +

[
rs +

(
∂κα

∂δγ
∂sδγ +

∂κα

∂y3

)
aα + κα∂saα

]
g3,(8.6b)

F = ϕα
,γdαgγ +

[
rs + ϕα

,3dα + ϕαdα,3
]
g3.(8.6c)
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Note that the form of F is very much dependent on the curvature and
torsion of the reference configuration, which is manifested by the presence
of the derivatives of the basis {a◦

α} in (8.5).

8.7. Exercise. Find explicit forms of V, introduced in Theorem 6.15, corresponding to
each version of (8.3).

Rods with orthogonal directors. We now focus on the most practical
model with two directors, that in which the directors are orthogonal and
(8.3c) holds throughout. Thereafter, we examine the more general cases.

When the directors are orthogonal, the vectors a1, a2, and a3 := a1×a2
form an orthonormal triad, which agrees with its dual basis. To avoid
summation signs in expressions like ϕαδαaα, which appears in (8.3c), we
adhere to the convention that, in the absence of a statement to the contrary,
both doubly and triply repeated indices are summed. The orthonormality
of the basis {ak = ak} allows us to be cavalier about the placement of the
indices.

As in Chap. 8, we set

(8.8) rs = vkak, ∂sak = u × ak, ∂tak = w × ak.

Then (8.5) reduces to

(8.9a) g1 = ϕα
,1a

◦
α, g2 = ϕα

,2a
◦
α, g3 = a◦

3 + ϕα
,3a

◦
α + ϕαu◦ × a◦

α,

(8.9b)

g1 =
1
j

det
[

(1 − ϕ1u◦
2 + ϕ2u◦

1)a
1
◦ − (ϕ1

,3 − ϕ2u◦
3)a

3
◦ ϕ1

,2
(1 − ϕ1u◦

2 + ϕ2u◦
1)a

2
◦ − (ϕ2

,3 + ϕ1u◦
3)a

3
◦ ϕ2

,2

]
,

g2 =
1
j

det
[
ϕ1

,1 (1 − ϕ1u◦
2 + ϕ2u◦

1)a
1
◦ − (ϕ1

,3 − ϕ2u◦
3)a

3
◦

ϕ2
,1 (1 − ϕ1u◦

2 + ϕ2u◦
1)a

2
◦ − (ϕ2

,3 + ϕ1u◦
3)a

3
◦

]
,

g3 =
1
j

det
(
ϕα

,β

)
a3

◦ =
a3

◦
1 − ϕ1u◦

2 + ϕ2u◦
1
,

(8.9c) j = Φ
[
1 − ϕ1u◦

2 + ϕ2u◦
1
]
.

Note the further simplifications that attend the useful specialization that
ϕα(x) = xα.

We set

(8.10) ωα := ∂sδα so that ∂sdα = ωαaα + δαu × aα (no sum).

Thus (8.6c) reduces

(8.11a)
F = ϕα

,γdαgγ +
[
rs + ϕα

,3dα + ϕα(ωαaα + δαu × aα)
]
g3

= ϕα
,γδαaαgγ + Fk3aka◦

3
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where

(8.11b)

jF13 : = v1 + ϕ1
,3δ1 + ϕ1ω1 − ϕ2δ2u3,

jF23 : = v2 + ϕ2
,3δ2 + ϕ2ω2 + ϕ1δ1u3,

jF33 : = v3 − ϕ1δ1u2 + ϕ2δ2u1.

Thus

(8.12) detF = δ1δ2
v3 − ϕ1δ1u2 + ϕ2δ2u1

1 − ϕ1u◦
2 + ϕ2u◦

1
.

We enforce the requirement that det F be positive by demanding that each
of its factors be positive:

(8.13) δ1 > 0, δ2 > 0, min
(x1,x2)∈cl A

[v3 − ϕ1(x)δ1u2 + ϕ2(x)δ2u1] > 0.

For many shapes, one can find an explicit expression for this minimum (see
Sec. 8.7). From (8.11) we obtain

(8.14)
C =: Cija

◦
i a

◦
j = F ∗ · F

= ϕα
,σϕ

α
,τδα

2gσgτ + ϕα
,σδαFα3(gσa◦

3 + a◦
3g

σ) + Fk3Fk3a
◦
3a

◦
3.

As in (8.3.10), (8.4.6), (8.4.7), we introduce the mass moments of A:

(8.15)
ρA :=

∫
A
ρ̃ j dx1 dx2, ρIα :=

∫
A
ρ̃ ϕα j dx1 dx2,

ρJαβ
× :=

∫
A
ρ̃ ϕαϕβ j dx1 dx2, ρJαβ := εαµεβνρJ

µν
× ,

whence ρJαβ
× := εαµεβνρJµν . (If ϕα(x) = xα, then the ρJαβ(s) are the

components of the mass moment of inertia tensor for A(s); their indices
represent the axes about which the components are computed.)

Corresponding to the constraint (8.3c) with orthogonal directors, the
virtual displacement p� is taken to have the form

(8.16) p� = r� + ϕαδ�
αaα + ϕαδαaα × ζ

where r� and ζ are arbitrary vector-valued functions of s and t and the
δ�
α are arbitrary scalar-valued functions of s and t some of whose compo-

nents vanish at the ends in accord with (6.7) when corresponding position
boundary conditions hold. We can either specialize the results of Sec. 6
to (8.16) or, equivalently, substitute (8.16) into (2.17). We then get, as in
(4.3) and (4.4), exact consequences of the equations of motion, which we
do not pause to exhibit. We get the equations for rods with orthogonal
directors by further imposing the constraint (8.3b) with the ak orthogonal.
In particular, for p� = r� we obtain the weak form of

(8.17) ns + f0 = ρArtt + ρIα∂tt(δαaα)
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(which generalizes (8.2.19)) where

n : =
∫

A
τ 3

Aj dx1 dx2 =
∫

A
TA · g3j dx1 dx2(8.18a)

=
∫

A
TA · g3

|g3| |g1×g2| dx1 dx2

=
∫

A
TA · a◦

3 Φdx1 dx2 =
∫

A
F · SA · a◦

3 Φdx1 dx2,

f0 : =
∫

A
f j dx1 dx2 +

∫
∂A

τ̄
ν1 dx2 − ν2 dx1

1 − ν3ν3
.(8.18b)

Note that Φdx1 dx2 is the differential area of the section A(s) � (x1, x2) �→
z̃(x) in the reference configuration. Thus the physical meaning of T imples
that n is the active contact force at s. Likewise, f0 is the body force
per unit length. In keeping with a remark following (6.35b), we drop the
subscript A from n and from analogous resultants defined below. Thus the
third integral of (8.18a) implies that n(s, t) is the resultant contact force
across the section s at time t, and f0 is body force per unit reference length,
in consonance with their definitions in Chap. 8. The methods of Ex. 8.4.8
can be used to show that coordinates can be chosen to make ρIα = 0.

Likewise, for p� = ϕαδ�
αaα we obtain

(8.19) ∂sΩα −∆α + fα = ρIαrtt · aα + ρJαβ
× (δαaα)tt · aβ

with α unsummed on the right-hand side, where

Ωα : =
∫

A
ϕατ 3

A · aα j dx1 dx2(8.20a)

=
∫

A
ϕαaα · F · SA · a◦

3 Φdx1 dx2,

∆α : =
∫

A
τ k

A · [ϕαaα],k j dx1 dx2(8.20b)

=
∫

A
[ϕαaα],k · F · SA · gk j dx1 dx2,

fα : =
∫

A
ϕαf · aαj dx1 dx2 +

∫
∂A
ϕατ̄ · aα

ν1 dx2 − ν2 dx1

1 − ν3ν3
,(8.20c)

with α unsummed in each of these equations. Taking p� = ϕαδαaα × ζ,
and using (2.12), we then obtain a generalization of (8.2.21):

(8.21) ms + rs × n + l = ρIα(δαaα) × rtt + ρJαβ
× (δαaα) × (δβaβ)tt
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where

m : =
∫

A
ϕαδαaα × τ 3

A j dx1 dx2(8.22a)

=
∫

A
ϕαδαaα × F · SA · a◦

3 Φdx1 dx2,

l : =
∫

A
ϕαδαaα × f j dx1 dx2(8.22b)

+
∫

∂A
ϕαδαaα × τ̄

ν1 dx2 − ν2 dx1

1 − ν3ν3
.

Eqs. (8.22a,b) say that m(s, t) and l(s, t) are the resultant active contact
torque and the resultant body torque per unit length about r(s, t) acting
across the section s at time t.

The special Cosserat theory, in which the dα are orthonormal, is obained
from the theory with orthogonal directors simply by setting δa = 1 and
∂sδα = 0. The Lagrange multipliers respectively corresponding to these
constraints are∆α and Ωα. The governing equations are the classical linear
and angular momentum laws (8.17) and (8.21); we simply ignore (8.19),
which gives information of limited utility about the Lagrange multipliers.

Constitutive equations. When the dα are constrained, to be orthogonal,
say, we cannot not identify the unconstrained u with (r,dα), we do not
define the resultants m and n by (4.4a,b), and consequently, we do not
use the constitutive equations (6.35). Instead, we simply use the resultants
n,m, ∆α, Ωα and construct constitutive equations for them by the process
described in the paragraph containing (6.35), i.e., we substitute (8.6) into
the constitutive functions for the active stress, and then substitute these
functions into the integrals defining the resultants n,m, ∆α, Ωα.

Rods with unconstrained directors. We now remove the constraint that the direc-
tors be orthogonal. As in Sec. 6, we readily find the governing equations, but now we
encounter a subtle problem of incorporating a version of the moment equation (8.21)
naturally into these equations. These considerations illuminate some of the assumptions
underlying the construction of intrinsic theories in Sec. 13.

Corresponding to the constraint (8.3a), the virtual displacement p� is taken to have
the form

(8.23) p� = r� +
∂κ

∂dα
· d�

α

where r� and d�
α are arbitrary vector-valued functions of s and t. Just as before, the

choice p� = r� yields a slight modification of (8.17), (8.18):

(8.24) ns + f0 = ρArtt + ρIα∂ttqα

where

(8.25) ρIαqα :=
∫

A
ρ̃κ j dx1 dx2.

Likewise, for p� = [∂κ/∂dα] · d�
α we obtain

(8.26) ∂smα − nα + fα = ∂tb
α − cα
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where

mα :=
∫

A
τ3
A · ∂κ
∂dα

j dx1 dx2,(8.27a)

nα :=
∫

A
τk
A · ∂

∂xk

[
∂κ

∂dα

]
j dx1 dx2,(8.27b)

fα :=
∫

A
f · ∂κ
∂dα

j dx1 dx2 +
∫

∂A
τ̄ · ∂κ
∂dα

ν1 dx2 − ν2 dx1

1 − ν3ν3
,(8.27c)

bα :=
∫

A
ρ̃ p̃t · ∂κ

∂dα
j dx1 dx2,(8.27d)

cα :=
∫

A
ρ̃ p̃t · ∂

∂t

[
∂κ

∂dα

]
j dx1 dx2.(8.27e)

Eqs. (8.24) and (8.26) are three vectorial equations of motion appropriate for the
variables appearing in (8.3). We can supplement these with the constitutive equations
(6.35). Eq. (8.24) is of course standard, but Eqs. (8.26) are not. We wish to determine
how (8.26) is related to the classical angular momentum balance (8.21). For this purpose,
we derive (8.21) as an exact consequence of (2.17) by choosing

(8.28) p�(x, t) = [p̃(x, t) − r(s, t)] × ω(s, t)

where ω is arbitrary. By using (2.12), we then obtain (8.2.17):

(8.29) ms + rs × n + l = ρIαqα × rtt + ht

where

m : =
∫

A
(p̃ − r) × τ3

A j dx
1 dx2(8.30a)

≡
∫

A
(p̃ − r) × TA · a3

◦ Φ dx
1 dx2,

l : =
∫

A
(p̃ − r) × f j dx1 dx2 +

∫
∂A

(p̃ − r) × τ̄
ν1 dx2 − ν2 dx1

1 − ν3ν3
,(8.30b)

h : =
∫

A
ρ̃ (p̃ − r) × (p̃ − r)t j dx

1 dx2(8.30c)

(cf. (8.3.17)). Eq. (8.30a) says that m(s, t) is the resultant contact torque about r(s, t)
acting across the section s at time t. We get a constitutive equation for it by the process
described in the above paragraph on constitutive equations. Note that (8.24), (8.26),
and (8.29) are exact consequences of the 3-dimensional equations of motion. We get
equations for rods by replacing p̃ with (8.3).

8.31. Exercise. Carry out all the steps in (8.24)–(8.30).

Our derivation of (8.24), (8.26), and (8.29) furnishes an alternative to that of Green
(1959) (which was generalized by Antman & Warner (1966)). A motivation for the
choice of p� leading to (8.28) is furnished by (8.3c), which produces the version (8.16)
of (8.23), one of whose terms is ϕαδαa�

α. Since the aα are unit vectors, it follows that
a1 · a�

1 = 0 = a2 · a�
2 , so that each a�

α has the form aα × ω where ω is arbitrary. Thus
if r� = o and δ�

α = 0, then p� = ϕαδαaα × ω = (p̃ − r) × ω.
If we substitute (8.3a) into (8.30), we discern no obvious connection between the

resulting approximations and the integrals of (8.27). (While this fact is somewhat dis-
turbing, it is not fatal for analysis because (8.24) and (8.26) when supplemented with
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constitutive equations lead to well-set problems.) If, however, we substitute (8.3c) into
(8.27)–(8.30), we immediately obtain

m = dα × mα, l = dα × fα,(8.32a,b)

bα = ρIαrt + ρJαβ
× ∂tdβ , cα = o,(8.32c,d)

h = dα × ρJαβ
× ∂tdβ .(8.32e)

Let us substitute (8.3c) into (2.12), multiply it by j, and integrate the resulting expres-
sion over A(s). Using (8.25a) and (8.27a,b), we get

(8.33) rs × n + (∂sdα) × mα + dα × nα = o.

By using (8.33) we show that (8.29) is a consequence of (8.26) when (8.3c) holds. The
use of (8.3b) leads to a more complicated version of (8.32).

This consequence (8.33) of the symmetry condition (2.12) can be regarded as a con-
stitutive restriction, just like (2.12). It is automatically satisfied whenever constitutive
functions for T satisfy (12.7.27). Likewise, the consequences of (2.12) for the theory of
Sec. 6 under the assumptions (8.3a,b) can be completely incorporated into its constitu-
tive equations, even though no simple relation like (8.33) results. (It is possible to obtain
other 1-dimensional consequences of (2.12) by multiplying it by various functions before
integrating it over A(s).) The consequences of isotropy for the 3-dimensional theory are
immediately carried over to rod theories. (See the treatments in Secs. 10 and 17.4.)

When we use (8.29), we confront the question of determining which components of
(8.26) should complement (8.29). The answer can be found by the observation that m
is primarily responsible for changes in a3, so that the remaining components of m1 and
m2 should be responsible for changes in δ1, δ2, and the angle between d1 and d2. We
get mechanical variables corresponding to δ1 and δ2 by substituting (8.1) into (8.3a)
and taking

(8.34) p� =
∂κ

∂dα
· aαδ

�
α

where the δ�
α are arbitrary.

8.35. Exercise. Construct the components of mα and nα corresponding to ∂sδα
and δα by this process, and give their physical interpretations. Show that the resulting
equations can be obtained by taking the dot products of the two equations of (8.26)
respectively with the aα.

When (8.1) is substituted into (8.3a), care must be taken in computing p� by (8.23).
The variations a�

α are not arbitrary because they must satisfy the constraints that
a�

1 ·a1 = 0, etc. Accordingly, Lagrange multipliers must be introduced into the Principle
of Virtual Power. These may be removed from the resulting classical equations by taking
suitable cross products. Such cross products are implicit in (8.28). It is not so easy to
get an equation for the angle between d1 and d2. One strategy is to represent a3 in
terms of spherical coordinates with respect to a fixed basis depending on s, e.g., {a◦

k}.
Then a1 and a2 can be located with respect to the nodal line formed by the intersection
of the planes normal to a3 and a◦

3 in the manner of Sec. 8.13. Such a representation
(with its attendant polar singularity) would produce an explicit formula for the angle
between d1 and d2, which could then be varied in a corresponding representation for p�.
(A related strategy was proposed in a slightly different context by Simo, Marsden, &
Krishnaprasad (1988).) Whenever we can isolate equations for variables corresponding
to changes in δ1, δ2, and the angle between d1 and d2, we can take our governing
equations to be these equations together with (8.24) and (8.29).
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9. Elastic Rods
For elastic rods, the constitutive equations (6.35) reduce to

(9.1)
mA(s, t) = m̂A(u(s, t),us(s, t),λ(s, t), s, t),

nA(s, t) = n̂A(u(s, t),us(s, t),λ(s, t), s, t)

with

m̂A(u,v,λ, s, t)(9.2)

=
∫

A(s)

[
T̂A · g3(x)

]
· πu j(x) dx1 dx2,

n̂A(u,v,λ, s, t)(9.3)

=
∫

A(s)

[
T̂A · gl(x)

]
·
[
∂2π

∂u∂u
· v δ3l +

∂

∂yl

∂π

∂u

]
j(x) dx1 dx2

where the arguments of the derivatives of π are u,x, t and where the argu-
ments of T̂A are F̌ (u,v,x, t), Λ̃(x, t), z̃(x) with

(9.4) F̌ (u,v,x, t) :=
[
∂π

∂u
(u,x, t) · vδ3k +

∂π

∂yk
(u,x, t)

]
gk(x).

In accord with (2.21) and (6.26), we define

(9.5) m̂L(u,v,λ, s, t) :=
∫

A(s)

[
T̂L · g3(x)

]
· πu j(x) dx1 dx2, etc.,

where the arguments of the derivatives of π are u,x, t, and the arguments
of T̂L are F̌ (u,v,x, t), Λ̃(x, t), z̃(x).

We now determine the implications for elastic rods of the Strong El-
lipticity Condition (13.3.1), (13.3.7) for constrained elastic media, which
requires that

(9.6)
[T̂L(G + αab,Λ,z) + T̂A(G + αab,Λ,z)

− T̂L(G,Λ,z) − T̂A(G,Λ,z)] : ab > 0

(9.7)
∀G, ∀ab �= O, ∀α ∈ [0, 1] such that

G + αab satisfies the constraints.

Theorem 6.15 implies that if det F̌ (u,v,x, t) > 0 and det F̌ (u,v+w,x, t) >
0, then det F̌ (u,v + αw,x, t) > 0 for all α ∈ [0, 1]. Since

a ·
(
T · g3) · πu =

{
[(πu) · a] g3} : T ,(9.8)

F̌ (u,v + αw,x, t) = F̌ (u,v,x, t) + α [πu(u,x, t) · w] g3,(9.9)
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we deduce from (9.2)–(9.7) that
(9.10)

[m̂A(u,v + αw,λ, s, t) − m̂A(u,v,λ, s, t)] · w

+[m̂L(u,v + αw,λ, s, t) − m̂L(u,v,λ, s, t)] · w

=
∫

A(s)
[T̂A(F̌ (u,v + αw,x), Λ̃, z̃(x)) − T̂A(F̌ (u,v,x), Λ̃, z̃(x))

+ T̂L(F̌ (u,v + αw,x), Λ̃, z̃(x)) − T̂L(F̌ (u,v,x), Λ̃, z̃(x))]

: [πu(u,x, t) · w] g3(x) j(x) dx1 dx2

> 0 for αw �= o.

Now we use the Global Constraint Principle to simplify (9.10). Eq. (6.25a)
implies that
(9.11)∫ s2

s1

{[m̂L(u + αu�,us + αu�
s ,λ, s, t) − m̂L(u,us,λ, s, t)] · u�

s

+ [n̂L(u + αu�,us + αu�
s ,λ, s, t) − n̂L(u,us,λ, s, t)] · u�} ds = 0

for all u�. Let s1 < ξ < ξ + ε < η < s2 and let a be an arbitrary fixed
element of R

N . Let

(9.12) ω(s, ε, ξ, η) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for s1 ≤ s ≤ ξ,
s− ξ for ξ ≤ s ≤ ξ + ε,
ε(η−s)
η−σ (η − s− ε) for ξ + ε ≤ s ≤ η,

0 for η ≤ s ≤ s2.

We substitute u� = ω(s, ε, ξ, η)a into (9.11), divide the resulting equation
by ε, and then let ε↘ 0 to obtain

(9.13) [m̂L(u(ξ, t),us(ξ, t) + αa,λ(ξ, t), ξ, t)

−m̂L(u(ξ, t),us(ξ, t),λ(ξ, t), ξ, t)] · a = 0,

which must hold for all ξ, t,a, u. Since we can vary u and us independently
at ξ, we deduce from (9.13) that

(9.14) [m̂L(u,v + αa,λ, s, t) − m̂L(u,v,λ, , s, t)] · a = 0

for all u,v,a,λ, s, t. It then follows from (9.14) that (9.10) reduces to

(9.15) [m̂A(u,v + αw,λ, s, t) − m̂A(u,v,λ, s, t)] · w > 0

for all u,v,a,λ, s, t with αw �= o, i.e., m̂A(u, ·,λ, s, t) is strictly monotone.
If we divide (9.15) by α and then let α↘ 0, we obtain an inequality whose
strict form is

(9.16) a · ∂m̂A

∂v
· a > 0 ∀ a �= o.
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(The development beginning with (9.6) is analogous to that leading up to
(13.3.30).)

9.17. Exercise. Let the 3-dimensional material be hyperelastic so that
(13.1.10) holds. Impose the constraint (6.1) where π does not depend explicitly on t.
Define the stored energy function for the rod by

(9.18) ŵ(u, v, s) :=
∫

A(s)
W
(
F̌ (u, v, x)∗ · F̌ (u, v, x), z̃(x)

)
j(x) dx1 dx2

where F̌ is defined in (9.4). Prove that

(9.19) n̂(u, v, s) =
∂ŵ

∂u
(u, v, s), m̂(u, v, s) =

∂ŵ

∂v
(u, v, s).

State a rod-theoretic version of Hamilton’s Principle that delivers the equations of mo-
tion.

Rods with constrained directors. For rods with two constrained di-
rectors, discussed in Sec. 8, we do not directly get (9.15) and (9.16), for
the reasons mentioned in the paragraph on constitutive equations in Sec. 8.
Instead, we obtain the analogous monotonicity conditions directly from the
appropriate constitutive equations. We illustrate the method for the spe-
cial Cosserat theory based upon (8.3c) with the dα orthonormal, so that
∂sdk = u × dk. We suppose for brevity that the 3-dimensional constitu-
tive functions are independent of Λ. We obtain constitutive equations by
inserting the 3-dimensional constitutive equations with (8.6c) into (8.18a)
and (8.22a):
(9.20)
n̂(rs,u,dk, s)

:=
∫

A
T̂A(ϕα

,γdαgγ + [rs + ϕα
,3dα + ϕαu × dα]g3,z) · a◦

3Φdx
1 dx2,

m̂(rs,u,dk, s)

:=
∫

A
ϕadα × T̂A(ϕα

,γdαgγ + [rs + ϕα
,3dα + ϕαu × dα]g3,z) · a◦

3Φdx
1 dx2,

Observe that if G has the form (8.6c), then so does G + ag3 where a =
r1

s − r2
s + ϕα(u1 − u2) × dα. Thus we can use this G + ab in (9.6). We

imitate the development from (9.10) to (9.16), finding in place of (9.15)
and (9.16) the monotonicity conditions

(9.21)
[n̂(r1

s ,u
1,dk, s) − n̂(r2

s ,u
2,dk, s)] · (r1

s − r2
s)

+ [m̂(r1
s ,u

1,dk, s) − m̂(r2
s ,u

2,dk, s)] · (u1 − u2) > 0

for all r1
s , r

2
s ,u

1,u2,dk with (r1
s ,u

1) �= (r2
s ,u

2),

∂(n̂, m̂)
∂(rs,u)

is positive-definite, i.e.,(9.22)

a · ∂n̂
∂rs

· a + a · ∂n̂
∂u

· b + b · ∂m̂
∂rs

· a + b · ∂m̂
∂u

· a > 0 ∀(a, b) �= (o,o).
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9.23. Exercise. Prove that (9.21) and (9.22) are respectively equivalent to (8.10.2)
and (8.10.1).

9.24. Problem. Let B be a helical body. In particular, let the reference configuration
r◦ of the axis be the helix

(9.25) r◦(s) = a(cos cs i1 + sin cs i2) + bs i3

where a and b are constants with a2 + b2 > 0. Choose the reference configurations d◦
1

and d◦
2 of the directors to lie along the principal normal and binormal of the helix:

(9.26) d◦
1(s) = −(cos cs i1 + sin cs i2), d◦

2(s) =
b(sin cs i1 − cos cs i2) + aci3√

a2c2 + b2
.

For h a positive constant, take

(9.27) B = {r◦(s) + x1d◦
1(s) + x2d◦

2(s) : s ∈ s1, s2, (x1)2 + (x2)2 ≤ h2}.

Suppose that B is a homogeneous isotropic elastic body. Find the constitutive equations
it generates for a special Cosserat theory and compare them to those of the Kirchhoff
theory (8.19.1).

The constitutive equations (9.2) and (9.3) make explicit the role of cross-sectional
geometry and can therefore be used to introduce weightings like those of (8.12.3), espe-
cially in the important and most common case that π is affine in u. As a useful rule of
thumb, these weightings can be taken to be those that would hold for the linearization
of (9.2) and (9.3) about the reference configuration.

If the thickness of the rod tapers down to zero at an end, then that end may not
be able to sustain certain kinds of boundary conditions, e.g., the end might not be able
to be welded to a rigid wall. Mathematically speaking, in the notation of Chap. 8 and
Sec. 8, a solution of a boundary-value problem is sought in which the director d3 is taken
to lie in a function space (typically a Sobolev space) chosen to reflect the growth of an
energy, which depends on the tapering. In a natural space, it might not be possible to
define suitable boundary values (traces) of d3. This issue can be treated by the methods
described in Sec. 14.4. It leads to some surprising conclusions (see Antman (1976b, Fig.
2.1)), which indicate deficiencies of rod theories. Instances in which the thickness of
a rod drops to zero at places other than its ends arise in problems of optimal design
against buckling; see Cox & Overton (1992) and the references cited therein.

There are a host of rod theories constructed by approximation from the 3-dimensional
theory, the relative advantages of each often being the object of a tiresome discussion.
The results of these last two sections show that if the rod theory is developed system-
atically from any approximation of the form (6.1), then it inherits a distinctive mathe-
matical structure from the 3-dimensional theory, which is independent of the particular
assumptions underlying the theory. This structure resides in the properties of V, spec-
ified in Theorem 6.15, in the form of the equations of motion, and in such constitutive
restrictions as the monotonicity condition (9.15).

Condition (9.15) supports a full existence and regularity theory for the equilibrium
of hyperelastic rods (see Chap. 7, Antman (1976b), and Seidman & Wolfe (1988)). This
theory can no doubt be extended to Cauchy elastic rods by the methods of Antman
(1983a).

Consider a specific boundary-value problem for the partial differential equations of
equilibrium of a hyperelastic 3-dimensional rod-like body and the corresponding ordinary
differential equations for a hierarchy of rod theories parametrized by the number of
degrees of freedom N . If the total energy functional for the 3-dimensional theory is
weakly lower semicontinuous on a suitable Sobolev space (this is the crucial assumption
supporting the proof of the existence of a minimizer of the energy), then the minimizers
of the constrained problems for rods, which are classical solutions of the corresponding
boundary-value problems, have a subsequence that converges weakly to a minimizer of
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the energy for the 3-dimensional problem (see Antman (1976a)). This fact, which has
the flavor of the much more general result of Sec. 7, gives a precise position to the
hierarchy of rod theories.

These results do not offer the ideal resolution of the validity of rod theories as approx-
imations to unconstrained 3-dimensional bodies. For this purpose, sharp error estimates
are sought. Some reasonable estimates have been obtained for various linear theories
of elastic rods and plates by methods that exploit the convexity of the stored-energy
function for such theories. Such techniques are not available for nonlinearly elastic rods.
(Cf. Morgenstern & Szabo (1961, Sec. 9), Koiter (1970), Ciarlet (1990), and Mielke
(1990).) The models for which estimates have been found are very similar to, but not
necessarily identical to, those one would obtain by adopting the simplest constraints
in Secs. 17.1,2 for the position field for shells; the simplest models for which there are
estimates typically differ from these constrained models by employing slightly different
moduli for the stress resultants. A possible mathematical explanation for the use of
different moduli is given in Sec. 17.10.

For thin bodies with unloaded lateral surfaces, these estimates typically show that the
constrained position field accurately approximates the position field for an unconstrained
body and that the resultants are accurate, but offer no similar statement about the stress
field computed from the constrained position field (i.e., about the active stress). The
role of the reactive stress is not considered in such analyses. These estimates are thus
compatible with our development, in which the role of the reactive stress is central.

10. Elastic Rods with a Plane of Symmetry

Planar problems. We now specialize the constitutive equations for elas-
tic rods with two directors to those for planar motions. In this case the
directors are necessarily orthogonal. We follow the notation of the develop-
ment beginning with (8.8), which depends on (8.3c). (The generalization
to (8.3b) is straightforward and of little use.) This theory and its spe-
cializations deliver many of the specific constitutive properties used in the
problems studied in Chaps. 4–6, and in the next section. We adhere as
closely as possible to the notational schemes introduced in Chap. 4, in Sec.
8.18, and in Sec. 8. For brevity of notation, we assume that the constitutive
functions are independent of λ.

We take span {i, j} to be the plane of motion by setting

a3 ≡ a := cos θi + sin θj, a1 ≡ b := − sin θi + cos θj, a2 := k,(10.1)

rs = νa + ηb, d1 = δ1b, d2 = δ2k.(10.2)

We define

(10.3a) µ := θs, ωα := ∂sδα.

Thus

(10.3b) v1 = η, v2 = 0, v3 = ν, u1 = 0, u2 = µ, u3 = 0.

The strain variables for our problem are

(ν, η, µ, ω1, ω2, δ1, δ2) =: q.
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The specialization of (8.11) is

(10.4) F =
[
ϕ1

,γδ1b + ϕ2
,γδ2k

]
gγ

+ j−1[(ν − ϕ1δ1µ)a + (η + ϕ1
,3δ1 + ϕ1ω1)b + (ϕ2

,3δ2 + ϕ2ω2)k]a◦,

from which we find
(10.5)
C = [δ12ϕ1

,αϕ
1
,β + δ22ϕ2

,αϕ
2
,β ]gαgβ

+ j−1[ϕ1
,αδ1(η + ϕ1

,3δ1 + ϕ1ω1) + ϕ2
,αδ2(ϕ

2
,3δ2 + ϕ2ω2)](gαa◦ + a◦gα)

+ j−2[(ν − ϕ1δ1µ)2 + (η + ϕ1
,3δ1 + ϕ1ω1)2 + (ϕ2

,3δ2 + ϕ2ω2)2]a◦a◦

where

(10.6)

g1 =
ϕ2

,2b
◦ − ϕ1

,2k

det(ϕα
,β)

+
ϕ2

,3ϕ
1
,2 − ϕ1

,3ϕ
2
,2

det(ϕα
,β) (1 − ϕ1µ◦)

a◦,

g2 =
−ϕ2

,1b
◦ + ϕ1

,1k

det(ϕα
,β)

−
ϕ2

,3ϕ
1
,1 − ϕ1

,3ϕ
2
,1

det(ϕα
,β) (1 − ϕ1µ◦)

a◦,

g3 =
a◦

1 − ϕ1µ◦ ,

j = det(ϕα
,β)

(
1 − ϕ1µ◦) .

Note that µ◦ ≡ θ◦s is the curvature of r◦. When ϕα = xa, (10.6) yields
g1 = b, g2 = k.

We require that the following symmetry conditions hold: A(s) is sym-
metric about the x1-axis for each s, ρ̂ is even in x2, ϕ1 is even in x2, and
ϕ2 is odd in x2. Thus j is even in x2.

Our governing equations of motion are (8.17)–(8.22). We set

(10.7) n =: Na +Hb, m =:Mk.

Our mechanical variables, corresponding to the elements of q, are

(10.8) Q := (N,H,M,Ω1, Ω2, ∆1, ∆2).

10.9. Exercise. Use the symmetry conditions to show that the acceleration terms from
(8.17), (8.19), (8.21) reduce to
(10.10)
ρIα∂tt(δαaα) = ρI∂tt(δ1b) = ρI [−(2∂tδ1θt + δ1θtt)a + (∂ttδ1 + δ1θt2)b],

ρIαrtt · aα + ρJαβ
× (δαaα)tt · aβ = ρIrtt · b + ρJ22(∂ttδ1 + δ1θt2) + ρJ11∂ttδ2,

k · [ρIαδαaα × rtt + ρJαβ
× δαaα × (δβaβ)tt] = −ρIδ1a · rtt + ρJ22δ1(2∂tδ1θt + δ1θtt)

where ρI := ρI1. Note the simplifications that ensue when ϕ1 can be chosen so that
ρI = 0 (cf. Ex. 8.4.8).

Using (8.18a), (8.20a,b), (8.22a), (10.4), and (10.7), we obtain specific
constitutive representations of (q, s) �→ Q̂(q, s) for elastic rods:
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N̂ =
∫

A

ν − ϕ1δ1µ

1 − ϕ1µ◦ a◦ · ŜA · a◦ Φdx1 dx2,(10.11)

Ĥ =
∫

A

[
η + ϕ1

,3δ1 + ϕ1ω1

1 − ϕ1µ◦ a◦ + δ1b◦
]

· ŜA · a◦ Φdx1 dx2,(10.12)

M̂ = −
∫

A
ϕ1δ1

ν − ϕ1δ1µ

1 − ϕ1µ◦ a◦ · ŜA · a◦ Φdx1 dx2,(10.13)

Ω̂1 =
∫

A
ϕ1
[
η + ϕ1

,3δ1 + ϕ1ω1

1 − ϕ1µ◦ a◦ + δ1b◦
]

· ŜA · a◦ Φdx1 dx2,(10.14a)

Ω̂2 =
∫

A
ϕ2
[
ϕ2

,3δ2 + ϕ2ω2

1 − ϕ1µ◦ a◦ + δ2k
]

· ŜA · a◦ Φdx1 dx2,(10.14b)

∆̂1 =
∫

A
(ϕ1b),k · F · ŜA · gk j dx1 dx2,(10.15a)

∆̂2 =
∫

A
ϕ2

,kk · F · ŜA · gk j dx1 dx2(10.15b)

where the argument C of ŜA is given by (10.5).
Our objective, motivated by the problems of Chaps. 4, 6, and 9, is

to determine conditions stating exactly when certain of these constitutive
functions vanish. In particular, we wish to study constitutive equations for
uniform materials when r◦ is a straight line or a circle.

10.16. Exercise. Decompose C with respect to the basis {b◦, k,a◦}, use the repre-
sentation (13.1.7), and use the identities ϕ1

,αgα = b and ϕ2
,αgα = k that are valid when

the ϕα are independent of s to prove:

10.17. Proposition. Let the symmetry conditions hold, let ϕ1 and ϕ2

be independent of s, and let ŜA be an isotropic function of C and an even
function of x2. Let Q̂ denote a typical element of Q̂. Then

−Ω̂2(ν, η, µ, ω1,−ω2, δ1, δ2, s) = Ω̂2(q, s),(10.18a)

Q̂(ν, η, µ, ω1,−ω2, δ1, δ2, s) = Q̂(q, s) for Q̂ �= Ω̂2,(10.18b)

−Q̂(ν,−η, µ,−ω1, ω2, δ1, δ2, s) = Q̂(q, s) for Q̂ = Ĥ, Ω̂1,(10.18c)

Q̂(ν,−η, µ,−ω1, ω2, δ1, δ2, s) = Q̂(q, s) for Q̂ �= Ĥ, Ω̂1.(10.18d)

10.19. Exercise. Prove:

10.20. Proposition. Let A(s) be symmetric about both the x1- and x2-
axes, let ϕ1 and ϕ2 be independent of s, let ϕ1 be odd in x1 and even in
x2, let ϕ2 be even in x1 and odd in x2, and let ŜA be an isotropic function
of C and an even function of x2. Then

M̂(q, s) = 0 if(10.21a)

δ1µ = νµ◦, η = ω1 = ω2 = 0.(10.21b)

Note that µ/ν , which appears in (10.21b), is the curvature of r at any point at which
η = 0 = ηs. The Monotonicity Condition (9.16) implies that M̂ is a strictly increasing
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function of µ (but does not imply that M̂ is a strictly increasing function of the actual
curvature). In general, as Proposition 10.20 shows, M̂ does not vanish when µ = µ◦.
If µ◦, which is the curvature of r◦, is constant, so that the r◦ is a circle, then µ − µ◦
measures the departure from circularity. Thus we must expect that a pure inflational
deformation taking r◦ to a circle of different radius must be maintained by a nonzero
bending couple M̂ . If we were to follow traditional practice and treat expressions like
ϕ1µ◦ and ϕ1δ1µ/ν as negligible with respect to 1 in (10.13) (i.e., if we were to treat
the ratio of thickness to radius of curvature as small in both the reference and deformed
configurations), then we would obtain a constitutive function M̂ that vanishes when
µ = µ◦. Such functions lead to more definitive results for problems for rings. Let us note
that the requirements of symmetry in Proposition 10.20, leading to the simplifications
embodied in (10.21), prevent concomitant simplifications in inertia terms (cf. Ex. 8.4.8).

For straight rods, the formulas (10.11)–(10.15) are greatly simplified. As
a consequence, we obtain much sharper constitutive restrictions, such as

10.22. Proposition. Let µ◦ = 0, let A(s) be symmetric about both the
x1- and x2-axes, let ϕ1 be odd in x1 and even in x2, let ϕ2 be even in
x1 and odd in x2, and let ŜA be an isotropic function of C and an even
function of both x1 and x2. Then

−Q̂(ν,−η,−µ, ω1, ω2, δ1, δ2, s) = Q̂(q, s) for Q̂ = Ĥ, M̂ ,(10.23a)

Q̂(ν,−η, µ,−ω1, ω2, δ1, δ2, s) = Q̂(q, s) for Q̂ �= Ĥ, M̂ ,(10.23b)

−Q̂(ν, η,−µ,−ω1, ω2, δ1, δ2, s) = Q̂(q, s) for Q̂ = M̂, Ω̂1,(10.23c)

Q̂(ν, η, µ,−ω1, ω2, δ1, δ2, s) = Q̂(q, s) for Q̂ �= M̂, Ω̂1.(10.23d)

Let us note that the symmetries in this result are physically reasonable.
What is not evident is whether there should be more symmetry than this.
The method for proving this result is that to be used for Theorem 17.4.30.

10.24. Exercise. Prove Proposition 10.22, showing that (10.23c,d) follow directly from
(10.18c,d) and (10.23a,b). Show that the double symmetry of A in Proposition 10.22
is essential by specializing (10.13) when (8.3c) holds with ϕα = xα, with µ◦ = 0, with
the centroid of A(s) at x1 = 0 = x2, and with the dα constrained to be orthonormal.
Suppose that A is not symmetric about the x2-axis. Show that in general Ĥ is odd in
η, M̂ and N̂ are even in η, M̂ (ν, η, 0, s) = 0, but that M̂ (ν, η, ·, s) is not odd. (For the
last step, it suffices to show that M̂µµ(ν, 0, 0, s) 
= 0.) Illustrate the computations when
A is an isosceles triangle.

10.25. Exercise. Carry out a perturbation analysis of the problem treated in Sec. 6.5
under the sole symmetry assumption that Ĥ is odd in η. For a uniform rod, show that
λ(1) (cf. Sec. 5.6) typically vanishes, despite the lack of symmetry, so that bifurcation
is not (strictly) transcritical. To get a transcritical bifurcation for a uniform rod, a
more refined theory may be required (see Buzano, Geymonat, & Poston (1985) and
Antman & Marlow (1992)). Show that for a nonuniform rod, transcritical bifurcation
is possible. (By applying the Alternative Theorem, show that λ(1) depends on integrals
of products of powers of the eigenfunctions with second derivatives of the constitutive
functions evaluated at the trivial solution. The eigenfunctions are determined just by
the first derivatives of the constitutive functions evaluated at the trivial solution.) Note
that in optimal designs (see Cox & Overton (1992)), the rod is not uniform. Therefore,
transcritical bifurcations are possible. Their presence may deprive the optimal design
(based on maximizing the minimum buckling load) of any physical meaning.
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We can get explicit constitutive functions for Q̂ by simply choosing an explicit form
for ŜA. In particular, for an isotropic hyperelastic material, we can take the stored-
energy function to be a sum of the invariants of C raised to various powers (see Antman
& Calderer (1985a), Antman & Negrón-Marrero (1987), and Ogden (1984)). The con-
stitutive assumptions supporting the treatment in Sec. 6.6, e.g., are inspired by such
constructions.

10.26. Exercise. Let W (C) = V (C) − V (I) − [∂V (I)/∂C] : (C − I) with

V (C) = A(IIIC)−1 + BIC + 1
2 [(IC)2 − 2IIC ] + 1

2D(IIIC)2

where A, B, C, D are positive constants. Find the two leading terms for the N and the
leading terms for H and M in the asymptotic representations (4.4.17).

10.27. Exercise. Let (8.3b) hold. Let f0 = o, l = o, lα = 0. Let e1(s) :=
cos si + sin sj. A free radial motion of a ring is a solution (10.1)–(10.3), (10.9)–(10.11)
for which r(s, t) = r(t)e1(s), d1(s, t) = δ1(t)e1(s), d2(s, t) = δ2(t)k, θ(s, t) = s. Find
the ordinary differential equations governing this motion for an elastic ring of reference
radius 1.

10.28. Problem. Formulate the equations for travelling waves in a ring for which
δ1 = 1 = δ2. Analyze their qualitative behavior (see Sec. 9.4). How do these results
differ from those for straight rods? Suppose that the ring is subjected to a hydrostatic
pressure of a form discussed in Sec. 3.5. Analyze the qualitative behavior of the governing
equations.

Spatial problems. For simplicity, let us now limit our attention to the
special Cosserat theory, which is obtained from the theory of Sec. 4 by
taking a1 and a2 orthonormal and by taking δ1 = 1 = δ2. The methods
developed above can be applied to any class of rod problems. We illustrate
this principle in the following two important exercises.

10.29. Exercise. Suppose that the reference configuration, the material response, and
the representation (8.3c) for an elastic rod are symmetric with respect to the {i, j}-plane.
Let the material be isotropic. In the reference configuration, let

(10.30) r◦
s = d◦

3 , d◦
1 = − sin θ◦i + cos θ◦j, d◦

2 = k, d◦
3 = cos θ◦i + sin θ◦j.

As in Chap. 8, set

(10.31) rs = vkdk, ∂sdk = u × dk, u = ukdk, n = nkdk, m = mkdk

where n and m are defined in (8.18a) and (8.22a). Prove that if (8.3c) holds with the
ϕα independent of s, then the constitutive functions m̂k, n̂k, which depend on the ul, vl
and s, have the following symmetries:

(i) n̂1 is odd in v1; the other constitutive functions are even in v1.
(ii) m̂1 is odd in u1; the other constitutive functions are even in u1.
(iii) n̂2 and m̂3 change sign when v2 and u3 change sign; the other constitutive

functions are unchanged when v2 and u3 change sign.

If the constitutive equations are invertible, then these symmetries hold if and only if
there are scalar-valued functions σ1, σ32, σ3, τ1, τ2, τ23 such that

(10.32)
u1 = σ1(ι, s)m1, u3 = σ32(ι, s)n2 + σ3(ι, s)m3,

v1 = τ1(ι, s)n1, v2 = τ2(ι, s)n2 + τ23(ι, s)m3

where ι := (n2
1, n3, m2

1, m2, n2
2 +m2

3, n2m3). Show that for a hyperelastic rod

(10.33) τ2 = σ3, τ23 = σ32.
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(These are the equations used in Sec. 9.6.) Prove that if furthermore A is also symmetric
about the x2-axis and if µ◦ = 0, then m̂2 is odd in u2, and the other constitutive
functions are even in u2. Note that the specialization of these results gives (4.2.9).

10.34. Exercise. Let (8.3c) hold and let the reference configuration of the rod be
straight and axisymmetric. Let ϕ1 be odd in x1 and even in x2, and let ϕ1 be even
in x1 and odd in x2. Let Ŝ be an isotropic function of C. Prove that the resulting
constitutive functions are transversely isotropic in the sense of Sec. 8.11.

10.35. Exercise. The form of a rod theory depends upon the choice of r◦ within the
3-dimensional body. Determine the formulas relating the rod theories for two different
choices of r◦ when (8.3c) holds. (These formulas can be very useful when one choice
of r◦ gives the constitutive equations a lot of symmetry, whereas a different choice is
particularly convenient for a special class of problems, e.g., contact problems, in which
r◦ might be chosen to be a material curve on the boundary of the body B that can
come into unilateral contact with some prescribed surface. (For a discussion of subtle
constitutive questions associated with a generalization of this problem, see Antman &
Schuricht (2003), Degiovanni & Schuricht (1998), and Schuricht (1997, 1998).)

10.36. Exercise. Find the equations of motion for the simultaneous whirling and
breathing of a circular elastic ring within the theory discussed in this section. (This
exercise generalizes Ex. 4.6.4. Cf. Antman (2001).)

11. Necking
We study a special class of planar equilibrium problems for an initially

straight rod having two directors. We seek solutions of the equilibrium
equations of Sec. 6 having the form

(11.1) r′ = νi, d1 = δj, d2 = δk.

These restrictions correspond to deformations in which the rod can locally
change its length and its thickness, but cannot bend, twist, or shear.

11.2. Exercise. Show that if ŜA and (8.3) are isotropic (or, more generally, transversely
isotropic) and if f0 = o, fα = o, l = o, then the nontrivial equilibrium equations of
(8.17)–(8.22), (10.7), (10.11)–(10.15) reduce to

N ′ = 0,(11.3)

Ω′ −∆ = 0,(11.4)

N(s) ≡ n(s) · i = N̂(ν(s), δ′(s), δ(s), s),(11.5)

Ω(s) ≡ m1(s) · j ≡ m2(s) · k = Ω̂(ν(s), δ′(s), δ(s), s),

∆(s) ≡ n1(s) · j ≡ n2(s) · k = ∆̂(ν(s), δ′(s), δ(s), s).

A combination of the methods used to prove Propositions 10.17 and 10.22
implies that

(11.6) Ω̂(ν, ·, δ, s) is odd, N̂(ν, ·, δ, s) and ∆̂(ν, ·, δ, s) are even.

The Strong Ellipticity Condition implies that

(11.7a,b)
∂(N̂ , Ω̂)
∂(ν, ω)

is positive-definite,
∂∆̂

∂δ
> 0.
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But the Strong Ellipticity Condition does not imply that

(11.7c)
∂(N̂ , ∆̂)
∂(ν, δ)

is positive-definite.

We take [s1, s2] = [0, 1]. We assume that the deformed length l of the
rod is prescribed:

(11.8) r(0) = o, r(1) = li.

We could weld the ends to rigid walls perpendicular to the i-axis:

(11.9) δ(0) = 1 = δ(1)

or we could assume that there is no restraint preventing the rod from
changing its thickness at the ends:

(11.10a) Ω(0) = 0 = Ω(1).

Conditions (11.6) and (11.7) ensure that (11.10a) is equivalent to

(11.10b) δ′(0) = 0 = δ′(1).

Let us strengthen (11.7a) by assuming that

(11.11) N̂(ν, ω, δ, s)
ν − 1
|ν − 1| + Ω̂(ν, ω, δ, s)

ω

|ω| → ∞

as ν2 + ω2 → ∞ or as ν → 0

for each fixed δ and s. It then follows from Theorem 21.2.30 that

(11.12a) (ν, ω) �→ (N̂(ν, ω, δ, s), Ω̂(ν, ω, δ, s))

has the inverse

(11.12b) (N,Ω) �→ (ν�(N,Ω, δ, s), ω�(N,Ω, δ, s)).

We define

(11.12c) ∆�(N,Ω, δ, s) := ∆̂(ν�(N,Ω, δ, s), ω�(N,Ω, δ, s), δ, s).

Condition (11.6) implies that ω� is odd in Ω and that ν� and ∆� are even
in Ω.

Thus (11.3)–(11.5) is equivalent to

N = const.,(11.13a)

δ′ = ω�(N,Ω, δ, s),(11.13b)

Ω′ = ∆�(N,Ω, δ, s).(11.13c)
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Then (11.8) implies that

(11.14) l =
∫ 1

0
ν�(N,Ω(s), δ(s), s) ds.

Let us seek a trivial solution of (11.13) and (11.14) in whichΩ = 0. Then
(11.13b) implies that δ = const. and (11.13c) reduces to ∆�(N, 0, δ, s) = 0,
which is generally incompatible with the constancy of N and δ unless ∆�

is independent of s. Let us accordingly assume that the rod is uniform, so
that the constitutive functions are independent of s. In this case, there is
a trivial solution of (11.13) and (11.14) if and only if there are numbers N
and δ such that

(11.15) ν�(N, 0, δ) = l, ∆�(N, 0, δ) = 0.

This system is equivalent to

(11.16a,b) N = N̂(l, 0, δ), 0 = ∆̂(l, 0, δ).

Let us strengthen (11.7b) by requiring that

(11.17) ∆̂(ν, 0, δ) →
{ ∞

−∞

}
as δ →

{ ∞
0

}
for each fixed ν. Then (11.7b) and (11.17) imply that (11.16b) has a
unique solution δ0(l), from which we obtain N = N0(l) := N̂(l, 0, δ0(l)). In
general, δ0(l) �= 1 so that (11.9) cannot be expected to hold. Thus trivial
solutions are associated with the boundary condition (11.10). We adopt
the convention that if (ν, ω, δ) �→ R̂(ν, ω, δ) is any constitutive function,
then R0(l) := R̂(l, 0, δ0(l)). Using (11.16), we then find that

(11.18)
dN0

dl
=
N0

ν∆
0
δ −N0

δ∆
0
ν

∆0
δ

.

Since we do not adopt (11.7c), this derivative need not be positive.
Let us first study (11.13), (11.14), and (11.10) by the perturbation

method. We seek nontrivial solution branches in the form

(11.19)
l(ε) = l0 + εl1 +

ε2

2!
l2 + · · · ,

Ω(s, ε) = εΩ1(s) +
ε2

2!
Ω2(s) + · · · , etc.

In light of the symmetry condition (11.6), we find that the first-order terms
satisfy

δ′1 = ω�
Ω(N0(l0), 0, δ0(l0))Ω1,(11.20)

Ω′
1 = ∆�

N (N0(l0), 0, δ0(l0))N1 +∆�
δ(N

0(l0), 0, δ0(l0))δ1,(11.21)

l1 = ν�
N (N0(l0), 0, δ0(l0))N1 + ν�

δ(N
0(l0), 0, δ0(l0))

∫ 1

0
δ1(s) ds,(11.22)
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(11.23) Ω1(0) = 0 = Ω1(1)

where N1 is a constant. From (11.20) and (11.21) we obtain

(11.24) Ω′′
1 + q(l0)Ω1 = 0

where

(11.25)

q(l0) := −∆�
δ(N

0(l0), 0, δ0(l0))ω
�
Ω(N0(l0), 0, δ0(l0))

= −N
0
ν∆

0
δ −N0

δ∆
0
ν

N0
νΩ

0
ω

= − ∆0
δ

N0
νΩ

0
ω

dN0

dl
.

Note that Ω is a variable ideally suited for measuring the deviation from
triviality. The boundary-value problem (11.23), (11.24) has a nontrivial
solution if and only if there is a positive integer n such that

(11.26) q(l0) = n2π2.

To interpret the significance of (11.26), we sketch a typical graph ofN0 in
Fig. 11.27 drawn with a solid line. Bifurcation theory says that a nontrivial
branch bifurcates from the trivial branch at any value of l0 satisfying (11.26)
if either l0 is a simple solution or if the material is hyperelastic. In view of
(11.18), bifurcation thus cannot occur until dN0/dl descends to a negative
threshold. The first bifurcating branch is sketched in Fig. 11.27 with a
dashed line. Corresponding to it is a necked state, i.e., a configuration with
variable thickness. The graph consisting of that for the trivial solution up
to the first critical value of l and that for the bifurcating branch beyond
that value is presumably observed in experiment.

N0

l

(l)

Fig. 11.27. Force-elongation curves for an elastic rod under ten-
sion. The dashed curve indicates a bifurcating branch corre-
sponding to a necked configuration.
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11.28. Exercise. Carry out a perturbation analysis of (11.13), (11.14), and (11.10)
that accounts for deviations from the solutions of the linear problem (11.20)–(11.23).

11.211. Exercise. Discuss alterations necessary to treat problems in which N rather
than l is prescribed.

11.30. Exercise. Carry out a global bifurcation analysis of (11.13), (11.14), and
(11.10), showing that nodal properties of Ω inherited from the linearization at a simple
eigenvalue l are preserved globally.

11.31. Exercise. Describe how the phase portrait of (11.13b,c) behaves for different
ranges of l and relate its behavior to that of (11.18). Use the phase portrait to describe
what δ must look like for any possible solution of (11.13b,c). In particular, describe the
qualitative behavior of solutions satisfying (11.9).

11.32. Problem. Analyze deformations in which the rod can twist as well as change
its length and thickness.

The material in this section is based upon that of Antman (1973a) and Antman &
Carbone (1977, c©Noordhoff International Publishing, Leyden). Excerpts of this last
work are reprinted by permission of Kluwer Academic Publishers.

12. The Treatment of Incompressibility
Let (6.1) hold and let δ be defined by (6.11). We now investigate how to incorporate

the incompressibility constraint

(12.1) δ(u, us, x, t) = 1 ∀x ∈ A, ∀ t

explicitly into our various theories of rods. (The treatment of other material constraints
is the same.) Because the theory has some surprising difficulties, we proceed from the
particular to the general, as in the transition from Chap. 4 to Chap. 8, in contrast to
the development in Secs. 3–10.

Planar problems. We analyze the mathematical structure of planar problems for rod
theories generated by constraints of the form (6.1) and subject to the incompressibility
condition (12.1). We use the notation of Sec. 10. For simplicity of exposition, we
constrain δ2 = 1 throughout this subsection.

We first study theories generated by the planar version of (8.3c) with ϕα(x) = xα

for notational simplicity:

(12.2) p̃(x1, x2, s, t) = r(s, t) + x1δ1(s, t)b(s, t) + x2k.

Thus the incompressibility condition (12.1) is

(12.3) k · (p̃,3 × p̃,1) ≡ (ν − x1δ1θs)δ1 = 1 − x1θ◦
s

or, equivalently,

(12.4a,b) νδ1 = 1, δ21θs = θ◦
s .

Condition (12.4a) is to be expected. But (12.4b) is disturbing: It says that the bending
measured by θs is completely determined by ν , so that admissible strains are degenerate.
In particular, if the rod is naturally straight, so that θ◦

s = 0, then θs = 0. This means
that the permitted motions of a naturally straight rod are such that at any instant
of time the shear is a constant function of s. If this shear is zero for all time, then
the permitted motions consist merely in longitudinal stretching measured by ν and
transverse stretching measured by δ1 = 1/ν . (Such motions are not without intrinsic
interest).

Since |x1| may be regarded as small, we could regard (12.4a) as a reasonable approxi-
mation to (12.3), and ignore (12.4b). Before discussing such theories, let us first explain
why the difficulty with (12.4b) is to be expected, and then how to overcome it.
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Consider the 2-dimensional plane-strain problem of bending an incompressible rect-
angular block into a sector of a circular tube. The deformation, which corresponds to
that of Ex. 14.5.16 obtained by setting g = 0 = h, β = 0 = γ, δ = 1, is given by

(12.5) p(x1, x2, s) =
√

2x1/α + c [cosαsi + sinαsj] + x2k

where c is a constant of integration and where we have replaced (x, y, z) of (14.5.1) with
(x1, s, x2).

12.6. Exercise. Let h > 0 and let x1 range over [−h, h] in the reference configuration
of the rectangular block. Prove that the deformation (12.5) does not take the line of
centroids x1 = 0 of the rectangular block into the circle of centroids of the deformed
image of the block.

This exercise shows that the transverse stretch in the 2-dimensional flexure problem
is never symmetric about the material line of centroids. On the other hand, (12.2)
forces this stretch to be symmetric. This incompatibility is the source of the adverse
consequences of (12.4b).

We might wish to compensate for the defects of (12.2) by replacing it with a fi-
nite Taylor expansion of higher order in x1. The presence of (x1)2 would destroy the
unwanted symmetry. But any given generalization of (12.2) can easily turn out to be
ineffective. For example, let us take

(12.7) p̃(x1, x2, s, t) = r(s, t) + [x1δ1(s, t) + (x1)2ζ(s, t)]b(s, t) + x2k.

Constructing the appropriate form of the incompressibility constraint (12.1) for (12.7),
we find that ζ = 0 wherever θs 
= 0. Thus (12.7) reduces to (12.2). We shall explain the
source of this difficulty below.

Let us now try to counteract the defects of (12.2) and (12.7) by replacing them with
the most general expression that is quadratic in x1:

(12.8) p̃(x1, x2, s, t) = r(s, t) + x1d(1,0)(s, t) + (x1)2d(2,0)(s, t) + x2k,

where we have used the notation of (6.24) and where we assume that d(1,0) and d(2,0)
lie in the {i, j}-plane. The substitution of (12.8) into (12.1) yields the system

k · [rs × d(1,0)] = 1,(12.9a)

k · [−d(1,0) × ∂sd(1,0) + 2rs × d(2,0)] = θ◦
s ,(12.9b)

k · [2d(2,0) × ∂sd(1,0) + d(1,0) × ∂sd(2,0)] = 0,(12.9c)

k · [d(2,0) × ∂sd(2,0)] = 0,(12.9d)

analogous to (12.4). Condition (12.9d) implies that ∂sd(2,0) is parallel to d(2,0): There
is a scalar-valued function ζ (which we take to be continuously differentiable whenever
d(2,0) is) such that ∂sd(2,0)(s, t) = ζs(s, t)d(2,0)(s, t). Thus

(12.9e) d(2,0)(s, t) = eζ(s,t)−ζ(s0,t)d(2,0)(s0, t)

for some s0 ∈ [s1, s2], so that for each fixed t, the vector d(2,0)(s, t) is parallel to a
fixed vector. Thus, d(2,0) either vanishes everywhere or vanishes nowhere. In the former
case, (12.8) would reduce to (12.2), which we have shown to describe a degenerate class
of motions. Otherwise, let us impose the very reasonable boundary condition that the
section at s0 be planar. Thus there is a constant unit vector e ∈ span{i, j} such that

(12.9f) [x1d(1,0)(s0, t) + (x1)2d(2,0)(s0, t)] × e = o,

whence there are scalar-valued functions γ1, γ2 such that

(12.9g) d(1,0)(s0, t) = γ1(t)e, d(2,0)(s0, t) = γ2(t)e.
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Then (12.9c) implies that there is a scalar-valued function ω such that

(12.9h) 2∂sd(1,0)(s, t) − ζs(s, t)d(2,0)(s, t) = ω(t)e.

The solution of this linear ordinary differential equation subject to initial conditions
(12.9h) says that there is a scalar-valued function ω1 such that d(1,0) = ω1(t)e; we have
already shown that there is a scalar-valued function ω1 such that d(2,0) = ω2(t)e. Thus
(12.8) reduces to an expression of the form (12.7) with b a constant. We accordingly
conclude that (12.8), despite its generality, is, like (12.2) and (12.7), inadequate for
incompressible materials.

To gain a better understanding of why the incompressible motions permitted by
(12.2), (12.7), and (12.8) are degenerate, let us first replace them and (6.1) with the
most general form for p̃, which is valid for any 2-dimensional (plane-strain) problem:

(12.10) p̃(x1, x2, s, t) = r(s, t) + α(x1, s, t)a(s, t) + λ(x1, s, t)b(s, t) + x2k,

where α(0, s, t) = 0 = λ(0, s, t). In analogy with (8.4), let us take

(12.11) z̃(x1, x2, s) = r◦(s) + x1b◦(s) + x2k.

Then the incompressibility condition (12.1) is

(12.12) k · (p̃,3 × p̃,1) ≡ (ν − λθs + αs)λ,1 − (η + αθs + λs)α,1 = 1 − x1θ◦
s .

This is a single partial differential equation for the two unknowns α and λ. If one of
these functions is given, then the other could be found at least locally by the method
of characteristics or alternatively, under favorable regularity, by the use of a Taylor
expansion. We therefore construct theories of incompressible rods by prescribing either
α or λ.

Before discussing the full implications of (12.12), let us first impose the severe (but
very useful) restriction that α = 0. Then (12.12) reduces to an ordinary differential
equation for λ(·, s, t), whose solution subject to the initial condition λ(0, s, t) = 0 is the
continuous function given by λ(x1, s, t) = λ̂(ν(s, t), θs(s, t), x1, s) where

(12.13) λ̂(ν, µ, x1, σ) :=
2x1 − (x1)2θ◦

s (σ)

ν +
√
ν2 − (2x1 − (x1)2θ◦

s (σ))µ
.

Note that λ̂(1, θ◦
s (s), x1, s) = x1 but that λ̂ in general is not odd in x1. This λ can be

substituted into (12.10) to produce a version of (6.1). The Binomial Theorem implies
that

(12.14) λ̂(ν, µ, x1, σ) =
x1

ν
+ · · ·

for sufficiently small |x1|. The constraint induced by the choice λ̂(ν, µ, x1, σ) = x1/ν
is an approximation to the actual constraint of incompressibility. It corresponds to the
constraint νδ1 = 1 when (10.2) is used with δ2 = 1. (The further constraint ν = 1 is
treated in Sec. 8.17.)

The failure of (12.7), when subject to (12.1), to allow for a rich collection of motions
is not at all surprising because (12.7) has the form of (12.10) with α = 0, and the only
form of (12.10) with α = 0 that satisfies (12.12) is given by (12.13).

Now we study (12.10) with the simplest nonzero α, namely, α(x1, s, t) = (x1)2u(s, t).
(If α were to have a part that is linear in x1, we could absorb it in the coefficient λ of
b, i.e., b, which derives all its kinematic significance from (12.10), could be defined as
p̃,1(0, x2, s, t).) Then (12.12) becomes the following partial differential equation for λ:

(12.15) [ν − λθs + (x1)2us]λ,1 − 2x1u[η + (x1)2uθs + λs] = 1 − x1θ◦
s .



16.12. THE TREATMENT OF INCOMPRESSIBILITY 647

Let us seek a solution λ of (12.15) as a power series λ(x1, s, t) =
∑∞

k=1(x1)kλk(s, t) in
x1. Then the λk are expressed in terms of the strains ν, η, θs, u by the recursions

(12.16)

νλ1 = 1,

2νλ2 = θsλ2
1 + 2uη − θ◦

s ,

3νλ3 = θs(3λ1λ2) − λ1us + 2u∂sλ1,

4νλ4 = θs(4λ1λ3 + 2λ2
2) − 2λ2us + 2u2θs + 2u∂sλ2,

(j + 1)νλj+1 = θs
j∑

k=1

(1 + j − k)λkλ1+j−k − (j − 1)usλj−1 + 2u∂sλj−1

for j ≥ 4.

Note that the λk are determined uniquely by this recursion and that the series for λ is
typically infinite. Moreover, λk depends on the derivatives of ν and u up to order k− 2,
and on derivatives of η and θs up to order k − 3. When the series for λ is infinite, λ
depends on an infinite number of derivatives of these strains.

The explanation for this unpleasant occurrence is that (12.12) has a partial derivative
of λ in s, and therefore a solution would typically depend nonlocally on the argument s
of ν, u, θs. Since (12.12) is a quasilinear partial differential equation for λ, its solution
would be given locally by the solution of its characteristic equations:

(12.17)

dx1

dτ
= ν(s) − λθs(s) + αs(x1, s),

ds

dτ
= α,1(x1, s),

dλ

dτ
= [η(s) + α(x1, s)θs(s)]α,1 + 1 − x1θ◦

s (s)

satisfying the initial conditions

(12.18) x1 = 0, s = σ, λ = 0.

Here we have suppressed the argument t, which is merely a parameter in these equations.
We know that given α, say in the form leading to (12.15), the problem (12.17), (12.18)
has a unique solution when |x1| is sufficiently small, and this solution depends nonlocally
on s. (In other words, (12.15) is a nonholonomic equation for λ.) In this case, we handle
(12.12) by replacing (12.10) with an expression of the form

(12.19)
p̃(x1, x2, s, t) = r(s, t) + (x1)2u(s, t)a(s, t)

+ λ̂[ν(·, t), η(·, t), θs(·, t), u(·, t), x1, s, t]b(s, t) + x2k,

where λ̂ is the solution of (12.12) that vanishes when x1 = 0. In consequence, the result-
ing equations of motion would have this nonlocal character. Thus we have discovered a
mechanism by which nonlocality in a spatial variable can enter continuum mechanics in
a natural way.

We now see why (12.8) is ineffective: Constraint (12.7) has the form of (12.10) with
a special α, and the only form of (12.10) with such an α that satisfies (12.12) is given
by (12.19).

We, of course, can approximate (12.12) by taking a finite series approximation to the
infinite series for λ proposed to solve (12.15). Then our solution λ depends on several
derivatives of the strains ν, η, θs, u.

It is clear that these same considerations apply to the case in which α(·, s, t) is given
as any finite Taylor expansion with α(0, s, t) = 0, with the coefficients of its powers of
x1 together with r and θ regarded as constituting the N -tuple u. Again, we find that
λ must typically be described by an infinite power series in x1. It therefore follows
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that in such cases no finite power series in x1 of the form (6.24) can exactly describe
incompressible motions.

We could alternatively prescribe the form of λ and solve (12.12) for α. In this case,
however, there is no reasonable special case that leads to an ordinary differential equation
for α(·, s, t).

We could carry out the preceding development when the xα are replaced with the ϕα

by carefully identifying which products of the ϕα and their derivatives are independent.

12.20. Exercise. Let δ2 = 1 and let (12.10) for an incompressible material hold with
α = 0, so that (12.10) has the form

(12.21) p̃(x1, x2, s, t) = r(s, t) + λ̂(rs(s, t) · a(s, t), θs(s, t), x1, s)b(s, t) + x2k,

where λ̂(ν(s, t), θs(s, t), x1, s) is given by (12.13).
(i) Show that in place of (10.4), (10.5), (10.7), (8.17)–(8.22), (10.10)–(10.15), con-

straint (12.21) yields

F = [(ν − λ̂θs)a + (η + λ̂ννs + λ̂µθss + λ̂σ)b](1 − x1θ◦
s )−1a◦(12.22a)

+ λ̂,1bb◦ + kk,

C = [(ν − λ̂θs)2 + (η + λ̂ννs + λ̂µθss + λ̂σ)2](1 − x1θ◦
s )−2a◦a◦(12.22b)

+ λ̂,1(η + λ̂ννs + λ̂µθss + λ̂σ)(1 − x1θ◦
s )−1(b◦a◦ + a◦b◦)

+ (λ̂,1)2b◦b◦ + kk;

(12.23) −∂ssn(2) + ∂sn(1) + f(0) − ∂sf(1) = ∂tβ + ∂sγ − ∂stδ

where

(12.24)

n(1) = n +
∫

A(s)
[(λ̂ν),1τ1 · b a + τ3 · (λ̂νba)s] j dx1 dx2,

n(2) = a

∫
A(s)

τ3 · b λ̂ν j dx
1 dx2,

f(0) =
∫

A(s)
fj dx1 dx2 +

∫
∂A(s)

τ̄
ν̄1 dx2 − ν̄2 dx1

1 − ν̄3ν̄3
,

f(1) = a

∫
A(s)

λ̂νf · b j dx1 dx2 + a

∫
∂A(s)

λ̂ν τ̄ · b
ν̄1 dx2 − ν̄2 dx1

1 − ν̄3ν̄3
,

β = ρArt +
∫

A(s)
ρ̃[(λ̂ννt + λ̂µθst)b − λ̂θta] j dx1 dx2,

γ =
∫

A(s)
ρ̃[rt + (λ̂ννt + λ̂µθst)b − λ̂θta] · (λ̂νba)t j dx

1 dx2,

δ = a

∫
A(s)

ρ̃[rt · b + λ̂ννt + λ̂µθst]λ̂ν j dx
1 dx2,

with n defined by (8.25a) and with ν̄k and ν̄k here denoting the components of the unit
outer normal ν to ∂B;

(12.25) −∂ssM(2) + ∂sM(1) −M(0) − ∂sl(1) + l(0) = −β(0) + ∂tβ(1) + ∂sγ(0) − ∂stγ(1),

where

(12.26)

M(0) =
∫

A(s)
{τ1 · [(λ̂ν),1ηb − λ̂,1a] + τ3 · [λ̂νηb − λ̂a]s} j dx1 dx2,

M(1) =
∫

A(s)
{(λ̂µ),1τ1 · b + τ3 · [λ̂νηb − λ̂a + (λ̂µb)s]} j dx1 dx2,

M(2) =
∫

A(s)
λ̂µτ3 · b j dx1 dx2,
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(12.26)

l(0) =
∫

A(s)
f · [λ̂νηb − λ̂a] j dx1 dx2 +

∫
∂A(s)

τ̄ · [λ̂νηb − λ̂a]
ν̄1 dx2 − ν̄2 dx1

1 − ν̄3ν̄3
,

l(1) =
∫

A(s)
λ̂µf · b j dx1 dx2 +

∫
∂A(s)

λ̂µτ̄ · b
ν̄1 dx2 − ν̄2 dx1

1 − ν̄3ν̄3
,

β(0) =
∫

A(s)
ρ̃[rt + (λ̂ννt + λ̂µθst)b − λ̂θta] · [λ̂νηb − λ̂a]t j dx1 dx2,

β(1) =
∫

A(s)
ρ̃[rt + (λ̂ννt + λ̂µθst)b − λ̂θta] · [λ̂νηb − λ̂a] j dx1 dx2,

γ(0) =
∫

A(s)
ρ̃[rt + (λ̂ννt + λ̂µθst)b − λ̂θta] · [λ̂µb]t j dx1 dx2,

γ(1) =
∫

A(s)
ρ̃[rt · b + λ̂ννt + λ̂µθst] λ̂µ j dx

1 dx2.

Note that we do not get this system by merely replacing the δ1 in (10.9)–(10.15) with
λ̂(ν, θs, x1, s).

(ii) Specialize (12.21)–(12.26) to the case in which λ̂ has the approximate form
λ̂(ν, θs, x1, s) = x1/ν and that

∫
A(s) ρ̃x

1j dx1 dx2 = 0. Relate the stress resultants
to those of (10.11)–(10.15).

(iii) Write the Principle of Virtual Power for (8.17)–(8.22), (10.4), (10.5), (10.7),
(10.10)–(10.15) when δ2 = 1 and

∫
A(s) ρ̃x

1 j dx1 dx2 = 0. Impose the constraint δ1 =
1/ν on this system by adding to the integrand of the virtual power a term of the form
Λ[δ1 − 1/ν ], where Λ is a Lagrange multiplier. Show that the resulting form of the
classical equations of motion is equivalent to those of step (ii). Interpret the Lagrange
multiplier.

(iv) Suppose that the system (8.17)–(8.22), (10.4), (10.5), (10.7), (10.10)–(10.15) is
subject to the constraints νδ1 = 1 and δ2 = 1. Let

∫
A(s) ρ̃x

1 j dx1 dx2 = 0. Construct
the governing equations of step (ii) now by imitating the method described in the para-
graph containing (8.17.9): In (ν, δ1)-space, a normal to the constraint curve νδ1 = 1
at (ν, δ1) is (δ1, ν) and a tangent is (ν,−δ). The vector (N, 0), which is transversal to
the constraint curve at any point, can be taken to be a Lagrange multiplier; it is not
prescribed constitutively. Prescribe the tangential component νN − δ1∆1 of (N,∆1)
constitutively in terms of ν, θs, (1/ν)s, s. Note that the form of the governing equations
is not affected by the choice of the vector transversal to the constraint curve.

(v) Consider a hyperelastic rod with stored-energy function W (ν, η, θs, δ1, ∂sδ1, s).
Formulate for it a version of Hamilton’s Principle that delivers the hyperelastic version
of (8.17)–(8.22), (10.4), (10.5), (10.7), (10.10)–(10.15) for δ2 = 1. Replace δ1 in the
Lagrangian functional with 1/ν and show that when

∫
A(s) ρ̃x

1 j dx1 dx2 = 0, its resulting
classical Euler-Lagrange equations of motion are equivalent to those of step (ii). Now
add to the integrand of the original Lagrangian functional the term Λ[δ1 − 1/ν ], where
Λ is a Lagrange multiplier, and show that when

∫
A(s) ρ̃x

1 j dx1 dx2 = 0, the resulting
classical Euler-Lagrange equations of motion are again equivalent to those of step (ii).

12.27. Exercise. Suppose that B is a homogeneous isotropic incompressible elastic
rectangular block and that r◦ is its line of centroids. Assume that l(0) = 0 and that
f(0) = f(0)i, f(1) = f(1)i. Specialize (12.21)–(12.26) or, equivalently, the equations of
Ex. 12.20(ii) when

∫
A(s) ρ̃x

1 j dx1 dx2 = 0 to motions in which the axis remains straight
and there is no shear by taking θ = 0 = η. (For this purpose it is necessary to use
arguments like those of Propositions 10.17, 10.20, 10.22.) Thus the motion consists only
of local length and thickness changes. Show that the only nontrivial governing equation
for r := r · i has the form

(12.28)
−∂ssN(2) + ∂sN(1) + f(0) − ∂sf(1) = ρArtt + ∂s{ρJ [2r−5

s rst
2 − r−4

s rstt]}
= ρArtt − ∂s{ρJ [(r−4

s rst)t + 2r−5
s rst

2]}
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where N(1) = n(1) · i, N(2) = n(2) · i, and where the constitutive equations have the
form N(1) = N̂(1)(ν, νs), etc. Find expressions for N̂(1) and N̂(2) as derivatives of a
stored-energy function when the rod is hyperelastic.

Spatial problems. Since the theory for spatial problems is quite similar to that for pla-
nar problems, we just sketch the main ideas, pointing out the places where we encounter
new sources of difficulty. The spatial analog of the degenerate planar representation
(12.2) is generated by the constraint (8.3c), for which (12.1) reduces to

(12.29) δ1δ2(a1 × a2) · (rs + ϕγ∂sdγ) = 1 + ϕγa3
◦ · ∂sa◦

γ .

Using the independence of the ϕα, we immediately obtain from (12.29) a set of three
scalar equations, independent of x1 and x2, that restricts the derivatives of the nine
independent components of r, d1, d2. But just as in (12.4b), these equations unduly
restrict the flexure of the rod. One could, however, adopt just one of these equations,
namely

(12.30) δ1δ2|a1 × a2|a3 · rs = 1,

as an approximation to the constraint of incompressibility and obtain a perfectly rea-
sonable theory.

12.31. Exercise. Specialize (12.29) to the special Cosserat theory (studied at length
in Chap. 8) for which δ1 = 1 = δ2 and the dk = ak are orthonormal, and show that no
flexural deformation is possible.

As we have indicated above, constraint (6.24) for planar problems, and a fortiori for
spatial problems, typically cannot account exactly for incompressibility. (Nevertheless,
(6.24) leads to useful approximations of incompressibility.) For plane strain problems of
the sort treated above, (6.24) has the form

(12.32) p̃(x1, x2, s, t) =
I∑

j=0

(x1)jd(j,0) + x2k,

where the d(j,0) are taken to lie in the {i, j}-plane. Thus (12.32) has 2(I + 1) scalar
unknowns. The constraint (12.1) is a polynomial equation in x1 of degree 2I − 1 and
therefore provides 2I restrictions on the unknowns. On the other hand, for spatial
problems, (6.24) has 3

2 (I + 1)(I + 2) scalar unknowns, while (12.1) is a polynomial of
degree 3I − 2 in the two variables x1 and x2 and therefore provides 1

2 (3I − 2)(3I − 1)
restrictions on the unknowns. For I = 4, the number of restrictions for the spatial
problem (at least formally) exceeds the number of unknowns. Consequently, there is a
limit to the precision that can be obtained for theories not having nonlocal terms.

Now let us examine what happens to (12.1) when we generalize the constraint (6.1),
(8.3) in analogy with (12.10) by taking

p̃(x, t) = r(s, t) + α(x, t)a3(s, t) + λγ(x, t)aγ(s, t) where(12.33)

α(0, 0, s, t) = 0 = λγ(0, 0, s, t)(12.34)

and where (8.4) holds. (Without the further restrictions we shall impose on α and λγ ,
(12.33) has virtually the generality of (6.1).) We want to see how (12.1) restricts the
way α and λγ depend on u.

We readily compute (12.1) for (12.33):

(12.35)

(α,1λ
1
,2 − α,2λ

1
,1)(a3 × a1) · (rs + αa3

s + λ2
sa2 + λγ∂saγ)

+ (α,1λ
2
,2 − α,2λ

2
,1)(a3 × a2) · (rs + αa3

s + λ1
sa1 + λγ∂saγ)

+ (λ1
,1λ

2
,2 − λ2

,1λ
1
,2)|a1 × a2|(a3 · rs + αs + λγa3 · ∂saγ) = 1 + ϕγa3

◦ · ∂sa◦
γ .
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This generalization of (12.12) is a single first-order nonlinear partial differential equa-
tion for α, λγ with independent variables x and parameter t. We could prescribe any
two of these functions to depend on u(s, t), x, t, where as usual u is a collection of gen-
eralized coordinate functions. The resulting equation could be solved at least locally
subject to the initial condition (12.34) by the method of characteristics, but, in gen-
eral, we could not expect the remaining functions to depend on the pointwise values
of r(s, t),a(s, t), b(s, t), u(s, t) and on the pointwise values of a finite number of their
s-derivatives.

The development leading to (12.13) suggests that we might hope to find such a
restricted dependence when α = 0, But in this case, (12.35) is still underdetermined, so
we have to restrict λ1 and λ2 further. Let us suppose that the ak are orthonormal and
that ϕγ = xγ . Then (12.35) reduces to

(12.36) (λ1
,1λ

2
,2 − λ2

,1λ
1
,2)(v3 − λ1u2 + λ2u1) = 1 − x1u◦

2 − x2u◦
1 .

This is a single partial differential equation parametrized by u1, u2, u◦
1 , u

◦
2 , v

3 for (λ1, λ2).
Since it is invariant under proper rotations in the (1, 2)-plane, we seek solutions in which
(λ1, λ2) is a hemitropic function of (u1, u2), (u◦

1 , u
◦
2), (x1, x2). We can use the Cauchy

Representation Theorem 8.8.8 to express (λ1, λ2) in terms of three scalar coefficients
of the hemitropic invariants of the independent variables. We set two of the scalar co-
efficients equal to 0, substitute the representation into (12.36) obtaining a semilinear
first-order partial differential equation for the nonzero coefficient, and solve this equa-
tion by the method of characteristics. This solution can be substituted into the general
representation, and the procedure can be repeated twice to get expressions for the re-
maining coefficients. We thus obtain a (nonunique) representation for (λ1, λ2) that is
analogous to (10.13). For details, see Antman (2004).

General considerations. If the rod theory induced by (6.1) is to account for such 3-
dimensional material constraints as incompressibility, then (6.1) should either identically
(or approximately) satisfy the 3-dimensional constraint. In particular, if (6.1) is to
describe an incompressible material, then u must satisfy (12.1). For each fixed x, t,
this is the equation for a (2N − 1)-dimensional surface in the 2N -dimensional space of
(u, us). Of, course, other material constraints of the sort discussed in Sec. 12.12 would
have virtually the same form.

If δ depends on x1, x2 in a fairly simple way, e.g., so that (12.1) can be written
as a polynomial equation in x1, x2, then we can immediately read off from (12.1) an
equivalent finite number K of independent explicit restrictions relating u, us, s, t:

(12.37) κ1(u, us, s, t) = 0, . . . , κK(u, us, s, t) = 0.

In many cases we have found that (12.37) unduly restricts strains and thereby prevents
motions that the rod theory should be capable of describing. A particularly unpleasant
version of this difficulty occurs for certain theories governing the spatial deformation of
rods, in which K > N . A simple remedy for these difficulties is to select from (12.37)
a subset of conditions that do not lead to undue restrictions, at the cost of sacrificing
the exact satisfaction of the constraint. When we use this approach, we presume that
(12.37) has been appropriately reduced. We shall shortly describe methods for handling
this reduced version of (12.37).

An alternative remedy for the inconsistencies inherent in (12.37) is to refrain from
completely specifying the form of (6.1) a priori, but let it be adapted to handle (12.1). We
followed this strategy in (12.10) and in (12.33). We then found that we could identically
satisfy (12.1) by taking in (6.1) a representation for π that depends on u(·, t), rather
than on u(s, t):

(12.38) p̃(x, t) = π�(u(·, t), x, t) :

We also found that we could systematically approximate (12.38) with representations of
the form

(12.39) p̃(x, t) = π�(u(s, t), ∂su(s, t), . . . , ∂J
s u(s, t), x, t),



652 16. GENERAL THEORIES OF RODS

where J is a positive integer. In these cases, we do not have to concern ourselves with
(12.1): We just substitute (12.38) or (12.39) into the Principle of Virtual Power, as in
Sec. 2, and produce the governing equations.

We now show how to deal with (12.37). We could either retain some or all of (12.37) as
side conditions for the equations of motion and then introduce corresponding Lagrange
multipliers for these side conditions as in Sec. 12.12. Suppose we retain the last K −M
of these equations, 0 ≤ M ≤ K . To treat the remaining first M equations of (12.37),
we could, under favorable circumstances, solve these equations for M components of
u as functions of the remaining components of u and of us, s, t. (If the circumstances
were not favorable, we could relegate some of the offending equations from the first
M equations of (12.37) to the remaining equations, and reduce M .) More generally, we
could introduce generalized coordinates v so that theseM equations would be equivalent
to a system of the form

(12.40) u = u�(v, vs, s, t).

As the development leading to a truncated version of (12.16) indicates, we could obtain
an alternative to (12.40) in which the dimension of v is reduced by having u depend on
a different v together with several of its s-derivatives:

(12.41) u = u�(v, ∂sv, . . . , ∂J
s v, s, t)

where J is a positive integer. By substituting (12.40) into (6.1), we ensure that the first
M equations of (12.37) are identically satisfied. If we now reinterpret u as v, then we
recover (12.39).

12.42. Exercise. When (12.39) holds and when u is subject to several equations of
the form (12.37), find the form of the analog of (6.38) and give formulas like (6.30),
(2.27c–g) for the variables that appear there.

The difficulties with incompressibility that we encountered in this section are akin
to those that would be encountered in the construction of finite-element methods for
incompressible media described in a material formulation (cf. Le Tallec (1994), Schwab
& Wright (1995)). The treatment of incompressibility by finite-element methods has
been most extensively developed for the equations of fluid dynamics, in the standard
spatial formulation of which incompressibility is characterized by the linear constraint
that the divergence of the spatial velocity field vanish (cf. Temam (1977) and Girault &
Raviart (1986), among others).

Presumably we could construct a rod theory for incompressible bodies by starting
with the 3-dimensional constitutive equations involving the Lagrange multiplier p. In
this case, we would have to adopt a representation for it like (6.1). To get results for
the multipliers as simple as those that arise in Ex. 12.42, we would have to correlate the
representations for p̃ and p. We would still confront the issue of the consistency of (6.1)
with (12.1).

The results of this section are based on Antman & Schuricht (1999). Among the
papers on the behavior of incompressible rods, see Antman (2003b), Dai (1998), Saxton
(1985), Wright (1984).

13. Intrinsic Theories of Rods

In Chap. 8 we studied the special intrinsic theory of rods in which a configuration is
defined by a position vector function, locating the base curve, and by an orthonormal
pair of vector functions, the directors, which characterize the orientation of a cross
section. The corresponding equations of motion are just the balances of linear and
angular momentum. The main difficulties we faced in constructing this theory were to
account for the preservation of orientation, to obtain suitable expressions for the linear
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and angular momenta, and to lay down suitable constitutive assumptions. We motivated
our treatment of these issues by interpreting the deformation as that for a constrained
3-dimensional body. A considerable refinement and generalization of this approach,
including a treatment of constitutive relations not possible in Chap. 8, is carried out in
Secs. 3–10 of the present chapter.

We now address the question of constructing intrinsic theories of rods with a level of
generality approaching that for induced theories. (Cf. Sec. 8.20.) In particular, to what
extent can we produce an intrinsic analog of the two-director theory described in Sec. 8?

We begin our study of intrinsic theories by defining the configuration of a rod by a
set of vector-valued functions

(13.1) (s, t) �→ d0(s, t), d1(s, t), . . . ,dK(s, t), d0(s, t) =: r(s, t).

This set of functions may be interpreted as a special choice of u introduced in Sec. 6.
We could specialize (13.1) by requiring that under the rigid motion z �→ c(t) + Q(t) · z
the vectors of (13.1) transform according to

(13.2) r(s, t) �→ c(t) + Q(t) · r(s, t), dk(s, t) �→ Q(t) · dk(s, t), k = 1, . . . , K.

This condition is suggested by (8.3c). By examining (6.1) and (8.3), we see that (13.2)
restricts the interpretations of (13.1).

Corresponding to (13.1) we can adopt as the weak form of our governing equations
of motion the Principle of Virtual Power:
(13.3)∫ ∞

0

∫ s2

s1

K∑
k=0

(
mk · ∂sd�

k + nk · d�
k − fk · d�

k − bk · ∂td
�
k − ck · d�

k

)
ds dt

−
∫ ∞

0

K∑
k=0

[
m̄k

2(t) · d�
k(s2, t) − m̄k

1(t) · d�
k(s1, t)

]
dt −

∫ s2

s1

K∑
k=0

b̄k(t) · d�
k(s, 0) ds = 0

for sufficiently smooth d�
k satisfying appropriate boundary conditions and initial condi-

tions (cf. (4.3)). (The bilinear form of (13.3) is typical of all theories of classical physics.)
If (13.2) holds, then we are motivated by (6.1), (6.32), and (8.3) to choose

(13.4) bk =
K∑

l=0

Jkl(s)∂tdl, ck = o

where the inertias Jkl are prescribed. In this case, we require that the quadratic form

(13.5) 1
2

K∑
k,l=0

Jklvk · vl

corresponding to the kinetic energy be positive-definite.
We can define constitutive equations for an elastic material by requiring the mk and

nk to depend on the

(13.6) d0, . . . ,dK , ∂sd0, . . . , ∂sdK .

If (13.2) holds, we can treat frame-indifference by the use of Cauchy’s Representation
Theorem as in Sec. 8.8. We could extend our theory to nonsimple materials by taking
some of these d’s to be derivatives of others.

We can deduce the governing equations for a hyperelastic rod by using Hamilton’s
principle, corresponding to (13.3). In particular, if (13.2) holds, we can take the kinetic
energy to be (13.5) with vk replaced with ∂tdk and the stored energy to depend upon
the scalar invariants of (13.6).

Thus the use of (13.2) enables us to produce intrinsic theories of rods with a simple
and natural mathematical structure. These theories may be regarded as abstractions
of those presented in Secs. 3–10. In this case, the development in Secs. 3–10 may be
used to motivate the criteria for the preservation of orientation, the expressions for the
linear and angular momenta, and constitutive assumptions. See O’Reilly (1998) for a
discussion of constitutive issues.
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14. Mielke’s Treatment of St. Venant’s Principle
In this section we describe how the rod theory of Chap. 8 can be given a precise

mathematical justification as furnishing an approximation to certain equilibrium prob-
lems of the 3-dimensional theory. We emphasize the structure of the governing equations,
sketching but briefly how the underlying analytic tools can be used to yield the basic
Theorem 14.45.

We study the behavior of equilibrium solutions of a nonlinearly elastic body having
as its natural reference configuration the cylindrical segment

(14.1) B = {z = zαiα + sk : (z1, z2) ∈ A, −l < s < l}

where A is a given domain in R2 having centroid at (0, 0) (so that
∫

A z
α dz1 dz2 = 0)

and having z1 and z2 as principal axes of inertia (so that
∫

A z
1z2 dz1 dz2 = 0). We

assume that the material properties of the body do not vary with s. We assume that
the body force f = o and that the traction on the lateral surface L is o. St. Venant’s
problem is to find all equilibrium configurations of this body when the resultant force
and moment are prescribed at each end. Thus we confront the problem of finding all
solutions p of

∇ · T ∗ = o in B,(14.2)

T · ν = o on L,(14.3)

T (z) = T̂
(
F (z), z1, z2

)
= F (z) · S̃

(
E(z), z1, z2

)
,(14.4) ∫

A
T (±l, z1, z2) · k dz1 dz2 is prescribed,(14.5a)

∫
A

p(±l, z1, z2) × [T (±l, z1, z2) · k] dz1 dz2 is prescribed(14.5b)

where 2E := C − I and where S̃
(
O, z1, z2

)
= O because the reference configuration is

natural. We assume that S̃(·, z1, z2) ∈ C2.
We shall rewrite (14.2)–(14.5) as a perturbation of the equilibrium equations for the

special Cosserat theory of rods. We accordingly decompose the position field in a form
that gives a distinguished role to the variable s:

(14.6) p(z) = r(s) + zαdα(s) + wk(z)dk(s)

where {dk(s)} is an orthonormal right-handed basis. We require that r(s) be the mean
position of the section s:

(14.7) r(s) =
1

a(A)

∫
A

p(z1, z2, s) dz1 dz2

where a(A) is the area of A. (Cf. Sec. 8.3.) We likewise require that the pair d1, d2 give
a mean configuration of the deformed section. To express this restriction in a concrete
mathematical form, we first observe that the cross product zαdα(s) × [p(z) − r(s)] is a
measure of the discrepancy between the two vectors in the product. We wish to choose
the pair d1, d2 so that the integral of this cross product over A vanishes. It then follows
from (14.6) that

(14.8)
∫

A
zαdα(s) × wk(z)dk(s) dz1 dz2 = o.

Thus (14.6)–(14.8) imply the six conditions

(14.9)
∫

A
wk dz1 dz2 = 0,

∫
A
zαw3 dz1 dz2 = 0,

∫
A

(z1w2 − z2w1) dz1 dz2 = 0,

which make (14.6) well-defined provided we can find d1 and d2.
Our aim is to express the dα and the wk in terms of p so that we can identify

conditions under which the last summand in (14.6) is small. We first indicate the kinds
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of conditions that would enable us to express d1 and d2 in terms of p. Eqs. (14.6)–(14.8)
and the properties of zα imply that

(14.10a,b,c) dα × qα = o, d3 · qα = 0, qα :=
∫

A
zαp dz1 dz2.

If q1 and q2 are independent, i.e., if q1×q2 
= o, then d1 and d2 lie in the plane spanned
by q1 and q2, and (14.10a) locates d1 and d2 in this plane to within an angle π. To
show that this independence is plausible, suppose that p(z) − r(s) − p,α(0, 0, s)zα is
‘small’. Then q1 × q2 approximately equals

[p,1(0, 0, s) × p,2(0, 0, s)]
[∫

A
(z1)2 dz1 dz2

] [∫
A

(z2)2 dz1 dz2
]
,

which does not vanish by virtue of (12.1.1).
Since {dk} is orthonormal, we can write

(14.11a) d′
k(s) = u(s) × dk(s), u = uldl.

Let us set

(14.11b) p,3(z) = d3(s) + yk(z)dk(s).

Equating (14.11b) to the corresponding derivative of (14.6) we obtain

(14.12) r′ + zαu × dα + wku × dk + wk
,3dk = d3 + ykdk.

Integrating (14.12) over A and using (14.9) and the properties of the zα, we obtain

(14.13) r′ = d3 +
[

1
a(A)

∫
A
yk(z1, z2, s) dz1 dz2

]
dk.

Now we operate on (14.12) with
∫

A dz
1 dz2zβdβ× and use (14.9) to obtain

(14.14)
[∫

A
zα(zβ + wβ)dz1 dz2

]
(uδαβ − uαdβ)

=
[∫

A
εαklz

α(yk − δkβw
β
,3) dz1 dz2

]
dl =

[∫
A
εαklz

αyk dz1 dz2
]

dl.

By successively dotting (14.14) with the dm, we can easily solve (14.14) for the uk

provided that the the integrals
∫

A z
αwβ dz1 dz2 are sufficiently small. We denote this

solution by

(14.15) u = u[w, y],

where w := (w1, w2, w3), etc. It is easy to see that u[w, y] = O(|w| + |y|) as |w| + |y| → 0.
Thus we can replace (14.11a) with

(14.16) d′
k = ul[w, y]dl × dk.

If w and y are given, then we can solve the ordinary differential equations (14.13) and
(14.16) globally (because (14.16) admits the integrals that the dk · dl are constants).

We now obtain equations for w and y. From (14.12) and (14.13) we immediately
obtain

(14.17) wk
,3(z) = yk(z)−

[
1

a(A)

∫
A
yk(z) dz1 dz2

]
−εkml{wl(z)+δlα(s)zα}um[w, y](s).

Now (14.6) and (14.11) imply that

F = p,li
l = (dα + wl

,αdl)iα + (d3 + yldl)k,(14.18)

2E = (wα,β + wβ,α + wk
,αwk,β)iαiβ(14.19)

+ (yα + w3
,α + wk

,αyk)(iαk + k iα) + (2y3 + ykyk)kk.
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Thus

(14.20) F,3 = yl
,3dlk + · · ·

where the ellipsis stands for terms independent of the yl
,3. By using (14.16) and (14.17),

we see that the ellipsis can be made to depend upon dk, w, y, w,α, y,α.
Let us write (14.2) and (14.4) in the form

(14.21) k
∂

∂s
· T̂ ∗ ≡ ∂(T̂ · k)

∂F
: F,3 = −iα ∂

∂zα
· T̂ ∗,

which (14.20) converts to

(14.22)
∂(T̂ · k)
∂(F · k)

·
(
yl

,3dl

)
= · · ·

where the ellipsis has the same meaning as in (14.20). The Strong Ellipticity Condition
implies that ∂(T̂ · k)/∂(F · k) is positive-definite. Therefore (14.22) can be written in
the form

(14.23) yl
,3(z) = · · · .

Our governing equations for r, dk, w, and y are (14.13), (14.16), (14.17), and (14.23).
It is convenient to rewrite (14.17) and (14.23) in the form

(14.24)
d

ds
wl(·, ·, s) = · · · , d

ds
yl(·, ·, s) = · · · ,

which are ordinary differential equations for the functions s �→ wl(·, ·, s), yl(·, ·, s), which
assume values in infinite-dimensional spaces. Let us observe that (14.2)–(14.4) and
therefore (14.23) admit the integrals

(14.25) n = n(±l) (const.), m + r × n = m(±l) + r(±l) × n(±l) (const.)

where

(14.26)
n = ñk(w, y)dk :=

∫
A

T̂ (F , z1, z2) · k dz1 dz2,

m = m̃k(w, y)dk :=
∫

A
(p − r) × [T̂ (F , z1, z2) · k] dz1 dz2.

(Cf. (8.24), (8.29), and (14.5).)
Our objective is to cast our governing ‘ordinary differential equations’ into a form

that exposes the underlying role of rod theory and that is amenable to mathematical
analysis. The basic mathematical tool we use is the Center-Manifold Theorem, a version
of the Implicit-Function Theorem. Let us pause to examine how this theorem can be
applied to a system of ordinary differential equations.

Consider a system of ordinary differential equations in the form

(14.27a,b,c)

x′ = A · x + a(x, y, z),

y′ = B · y + b(x, y, z),

z′ = C · z + c(x, y, z)

where x ∈ Ra, y ∈ Rb, z ∈ Rc, where A, B, C are constant square matrices of dimensions
a×a, b×b, c×c, respectively, and where a, b, c are twice continuously differentiable func-
tions from Ra+b+c to Ra, Rb, Rc, respectively, that together with their first derivatives
vanish at (o, o, o). An invariant manifold M for (14.27) is a set with the property that
if (x(0), y(0), z(0)) ∈ M, then (x(s), y(s), z(s)) ∈ M for all s for which the solution exists.
Suppose that all the eigenvalues of A have negative real parts, that all the eigenvalues of
B have positive real parts, and that all the eigenvalues of C have zero real parts. Then
the behavior of x and y is largely determined from this spectral information, so that the
behavior of the system (14.27) devolves on the behavior of z. This intuition is made
precise by the
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14.28. Center-Manifold Theorem. System (14.27) has twice continuously differen-
tiable invariant manifolds A, B, and C, called the stable, unstable, and center manifolds,
that are respectively tangent to the generalized null spaces of A, B, and C at (o, o, o).

It follows from the Center-Manifold Theorem that for |z| sufficiently small, the center
manifold can be described by x = x̃(z), y = ỹ(z) where x̃ and ỹ are twice continuously
differentiable and satisfy x̃(o) = o = ỹ(o), (∂ x̃/∂z)(o) = o = (∂ ỹ/∂z)(o). The flow on the
center manifold is governed by the c-dimensional system

(14.29) z′ = C · z + c(x̃(z), ỹ(z), z).

The next theorem says that the stability of solutions of (14.27) corresponds to that
of (14.29).

14.30. Theorem. Let b = 0. If the zero solution of (14.29) is stable or asymptotically
stable or unstable as s → ∞, then the zero solution of (14.27) is respectively stable or
asymptotically stable or unstable. Moreover, if the zero solution of (14.29) is stable and
if (x, z) is a solution of (14.27) with (x(0), z(0)) sufficiently small, then there is a solution
z̃ of (14.29) and there is a positive number γ such that

(14.31) x(s) = x̃ (z̃(s)) + O
(
e−γs

)
, z(s) = z̃(s) + O

(
e−γs

)
as s → ∞.

The simple example x′ = −x+x2 +xz− z3, z′ = az3 +xz2 of Carr (1981) illustrates
the basic ideas of these theorems. For full discussions of center-manifold theory, see Carr
(1981), Guckenheimer & Holmes (1983), and Marsden & McCracken (1976).

With appropriate technical adjustments, which we do not spell out, the theory can
be extended to a class of partial differential equations. We now put our equations in a
form to which we can apply such a theory. Let us set

(14.32) S̃(E, z1, z2) = H(z1, z2) : E + O
(
|E|2

)
as E → O.

H is the fourth-order tensor of elasticities (see Sec. 13.8). We assume it to be positive-
definite: There is a number η > 0 such that

(14.33) E : H : E ≥ η|E|2.

We now write (14.24) and (14.3) in the form

d

ds
(w, y) − L · (w, y) = φ(w, y) = O

(
|w|2 + |y|2 + w,α · w,α + y,α · y,α

)
,(14.34)

B · (w, y) = ψ(w, y) = O
(
|w|2 + |y|2 + w,α · w,α + y,α · y,α

)
(14.35)

on L where L and B are linear (partial differential) operators depending only on H. We
wish to replace (14.35) with a linear constraint so that we can readily employ center-
manifold theory. An analysis of a problem of linear elasticity yields

14.36. Proposition. L has a discrete spectrum with 0 as the only eigenvalue on the
imaginary axis.

Thus there is a real number δ such that the linear problem

(14.37) (L + δI) · (w, y) = (o, o), B · (w, y) = ω

has a unique solution denoted by

(14.38) (w, y) = G · ω.

Let us now define

(14.39) (w̃, ỹ) := (w, y) − G · ψ(w, y).
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It follows from (14.38) that if (w, y) is a solution of (14.34), (14.35), then (w̃, ỹ) satisfies
the linear boundary conditions

(14.40) B · (w̃, ỹ) = o.

Since (14.39) is invertible, we can replace (14.34) with an equation of the form

(14.41)
d

ds
(w̃, ỹ) − L̃ · (w̃, ỹ) = φ̃(w̃, ỹ).

Since (14.40) is linear, we can treat it as restricting the domain of definition E of the
operator L̃ while preserving its linear structure. Thus (14.41) is an ordinary differential
equation for functions taking values in E. For a suitable choice of E, made precise below,
we can employ the Center-Manifold Theorem.

It can be shown that the generalized null space of L̃ is six-dimensional and is spanned
by vectors associated with solutions of the St. Venant problem of linear elasticity. We can
therefore decompose (14.41) into a form like (14.27) with the equation corresponding to
(14.27c) obtained by projecting (14.41) onto the generalized null space of L̃. We denote
this projection of (w̃, ỹ) by (w̄, ȳ) and denote the equation corresponding to (14.27c) by

(14.42)
d

ds
(w̄, ȳ) − L̄(w̄, ȳ) = φ̄(w̄, ȳ, w̃ − w̄, ỹ − ȳ).

This is a sixth-order ordinary differential equation for (w̄, ȳ). The restriction of (14.42)
to the center manifold, which corresponds to (14.29), is obtained by setting w̃ = w̄, ỹ = ȳ
in (14.42).

Using (14.13) and (14.16), we identify the u and v of Chap. 8 with (w̄, ȳ) by

(14.43) r′ = vkdk = d3 + ȳkdk, uk = uk[w̄, ȳ].

Now for E small enough, Eqs. (14.32) and (14.39) can be used to show that (w̄, ȳ) �→
(ñ(w̄, ȳ), m̃(w̄, ȳ)), defined by (14.26), is invertible. Thus (14.42) is equivalent to the
ordinary differential equations for ñ and m̃ obtained from (14.25). Setting ñ(w̄, ȳ) =
n̂(u, v), etc., we see (14.42) is equivalent to the classical equilibrium problem for the
special Cosserat theory of nonlinearly elastic rods, namely,

(14.44) n′ = o, m′ + r′ × n = o, n = n̂k(u, v)dk, m = m̂k(u, v)dk.

We can obtain an estimate like (14.31) by restricting the size of solutions. A precise
statement of the results informally presented in this section is

14.45. Theorem. Let (14.1) and (14.33) hold. Then there is a positive number γ+,
depending on A and S̃, with the property that for each γ ∈ (0, γ+) and for each β > 2
there are positive numbers C and δ+ such that the following assertion holds: For each
l > 0 and for each solution p of (14.2)–(14.5) satisfying

(14.46) ‖ [(∂p/∂z)(·, s)]∗ · [(∂p/∂z)(·, s)] , W 1
β (A)‖ ≤ δ

with δ ≤ δ+, there is a (St. Venant) solution p̄, generated by the solution of the center-
manifold equation (14.42) or, equivalently, by (14.44), satisfying (14.25) such that

(14.47) ‖p − p̄, W 2
β (A × (−λ, λ)) ‖ ≤ Cδe−γ(l−λ) ∀ λ ∈ (0, l).

The presentation in this section is based upon the work of Mielke (1988, 1990). While
the development here gives a rigorous position to the theory of Chap. 8, it is restricted
by the smallness of the strain tensor, which justifies the use of (14.33), a condition far
more stringent than the Strong Ellipticity Condition.

Very pretty work on the 3-dimensional characterization of solutions of the equilibrium
equations for rods was carried out by Ericksen (1977a, 1983) and Muncaster (1979, 1983,
2003a,b); see Sec. 14.8. Their earlier work furnished one source of inspiration for Mielke.



CHAPTER 17

General Theories of Shells

1. Induced Shell Theories
There is a duality in the derivation of rod and shell theories from the 3-

dimensional theory that is effected by interchanging the roles of
(x1, x2) with x3. Accordingly, we merely sketch the main steps in con-
structing shell theories, emphasizing those places where the theories differ
in their particulars from rod theories. Let us remark that a plate is just a
special kind of shell, so that we make no mathematical distinction for the
former.

Geometry of the reference configuration. Let B and x have the prop-
erties described in the paragraph containing (16.2.1). But now we set
(x1, x2) =: (s1, s2) =: s, and, to reduce clutter, set x3 =: ζ. We assume
that

(1.1) M := {s : z̃(x) ∈ B}

is the closure of a domain in R
2. We further assume that ζ̃ := x̃3 is bounded

on B. B is said to be shell-like, or, simply, a shell, iff these two assumptions
hold. The edge of the shell is {z̃(x) ∈ ∂B : s ∈ ∂M}. For simplicity, we
assume that ∂B is the union of the edge and of the two surfaces L1 and L2
of the form

(1.2) Lα := {z̃(x) ∈ ∂B : ζ = hα(s)} ≡ {z̃(x) : s ∈ M, ζ = hα(s)}

with h1(s) < h2(s) for s ∈ intM. L1 and L2 are called the faces of the
shell. Denote the differential surface area on Lα by Γα(s) ds1 ds2.

We introduce a material base surface M � s �→ r◦(s), which, for sim-
plicity, we take to be twice continuously differentiable. (r◦(M) need not
lie in B.) If r◦ lies in a plane and if the reference configuration of B is
natural, then the shell is called a plate. The differential surface area of r◦

at s is

(1.3) da(s) = Γ (s) ds1 ds2, Γ := |r◦
,1 × r◦

,2|.

Consequently, the differential volume of B is

(1.4) dv(x) =
j(x)
Γ (s)

da(s) dζ.

659
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In many applications, the coordinates s1 and s2 are orthogonal, so that
r◦

,1 and r◦
,2 are orthogonal, but not necessarily orthonormal.

1.5. Exercise. Prove that the differential area of a surface having the form
{z̃(x) : s ∈ M, ζ = h(s)} (cf. (1.2)) is da(s) = A(s) ds1 ds2 with

(1.6)
A(s) = j(s, h(s))|g3(s, h(s)) − gβ(s, h(s))h,β(s)|

=
j(s, h(s))
ν3(s)

= j(s, h(s))[ν3(s) − νβ(s)h,β(s)]

where ν(s) = νk(s)gk(s, h(s)) = νk(s)gk(s, h(s)) is the unit normal to this surface at
z̃(s, h(s)). (We could have presented the base surface r◦ in this way. Alternatively, the
faces presented in this way could have been presented as the base surface was, by giving
a parametric representation of the position vector. The methods of presentation chosen
here seem to lead to the simplest theory.)

It is traditional and often convenient to take h1 = −h2, and r◦(s) =
z̃(s, 0), in which case the base surface is called the mid-surface. But for
contact problems, there are many advantages in taking the base surface
to be a surface that can come into contact with other bodies, whence the
generality adopted here. As we have seen in Sec. 8.4, the acceleration terms
in dynamical problems can be simplified by choosing the base surface so
that certain generalized first mass moments of inertia vanish. Typically,
such a base surface is not a midsurface, and this simplification may be
counterbalanced by complications in the constitutive equations.

Let σ be an arc-length parameter for the boundary of the base surface.
If the boundary of M is defined parametrically by σ �→ s̄(σ), then the
boundary of r◦ is σ �→ r◦(s̄(σ)). The definition of arc length implies that

(1.7) |r◦
,α

ds̄α

dσ | = 1.

The differential arc length of σ �→ r◦(s̄(σ)) at s = s̄(σ) is denoted by dσ(s).
The differential arc length of s1 �→ r◦(s) is |r◦

,1| ds1, etc.
The edge of the shell, described parametrically by

(1.8) (σ, ζ) �→ z̃(s̄(σ), ζ),

has differential area

(1.9)
∣∣ gα(s̄(σ), ζ)ds̄α

dσ (σ) × g3(s̄(σ), ζ)
∣∣ dσ dζ

= j(s̄(σ), ζ)
∣∣−g2(s̄(σ), ζ)ds̄1

dσ (σ) + g1(s̄(σ), ζ)ds̄2

dσ (σ)
∣∣ dσ dζ.

The coordinate surfaces corresponding to constant values of s1 and s2 have
differential areas

(1.10) |g2 × g3| ds2 dζ, |g1 × g3| ds1 dζ.
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Constraints. We generate an induced theory of shells by constraining p
by the obvious analog of (16.6.1), obtained by replacing s with s:

(1.11) p̃(x, t) = π(u(s, t),x, t).

The simplest example of such a representation is

(1.12) π(u,x, t) = r(s, t) + ζd(s, t)

where we identify u with (r,d). We assume that an independency condition
like (16.6.6) holds. We can readily compute the strains from (1.11) and
(1.12).

We adopt the analog of (16.6.7) for the faces. On the edge, we assume
that (1.11) generates position boundary conditions in the form

(1.13) u(s, t) = ū(s, t,v(s, t)), s ∈ ∂M,

or periodicity conditions of the form

(1.14) u(s1 + ξ1, s2, t) = u(s1, s2, t), u(s1, s2 + ξ2, t) = u(s1, s2, t),

or combinations of the components of (1.13) and (1.14).
We treat the preservation of orientation as in Sec. 16.6. The structure

of V(s, t) is not so specific as that of Theorem 16.6.15.

Exact equations of motion for shells. By the same procedure as that
used in Sec. 16.4 to obtain (16.4.3)–(16.4.6), we find that the exact equa-
tions of motion for shells are

(1.15)

∫ ∞

0

∫
M

[mα · u�
,α + n · u� − f · u� − b · u�

t − c · u�] da dt

−
∫ ∞

0

∫
∂M
Γ m̄ · u� dσ dt−

∫
M

b̄ · u�(·, 0) da = 0

for all sufficiently smooth u� satisfying

(1.16) u�(sα, t) = ūv(s, t,v(s, t)) · w(s, t), w(s, t) ∈ R
N , s ∈ ∂M,

when (1.13) holds and satisfying appropriate periodicity conditions when
(1.14) holds. Here

Γ (s) mα(s, t) :=
∫ h2(s)

h1(s)
τα(x, t) · πu j(x) dζ,(1.17a)

Γ (s) n(s, t) :=
∫ h2(s)

h1(s)
τ k(x, t) · [πu],k j(x) dζ,(1.17b)

Γ (s) f(s, t) :=
∫ h2(s)

h1(s)
f(x, t) · πu j(x) dζ(1.17c)

+ [τ̄ (z̃(x), t, q(z̃(x), t)) · πuΓ (s)]21,
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Γ (s) b(s, t) :=
∫ h2(s)

h1(s)
ρ̃(x) p̃t(x, t) · πu j(x) dζ,(1.17d)

Γ (s) c(s, t) :=
∫ h2(s)

h1(s)
ρ̃(x) p̃t(x, t) · [πu]t j(x) dζ,(1.17e)

Γ (s) m̄(s, t) :=
∫ h2(s)

h1(s)
τ̄ (z̃(x), t, q(z̃(x), t)) · πu(1.17f) ∣∣−g2(s̄(σ), ζ)ds̄1

dσ (σ) + g1(s̄(σ), ζ)ds̄2
dσ (σ)

∣∣ dζ,
Γ (s) b̄(s) :=

∫ h2(s)

h1(s)
ρ̃(x) p1(x) · ∂π

∂u
j(x) dx1 dx2

∣∣∣∣
t=0
.(1.17g)

where the arguments of the derivatives of π are (u(s, t),x, t). In (1.17c),
the evaluation at 2 is effected by taking ζ = h2 and Γ = Γ2, etc. The
classical form of (1.15) is

(1.18) Γ−1(Γmα),α − n + f = bt − c.

In analogy with (11.3.15), the first term of (1.18), occasionally written as mα|α, is a
sort of divergence. This form of (1.18) and its relatives given in the rest of this section do
not in general describe physical components. E.g., m1 measures some stress resultant,
not necessarily per unit length of the curve s2 �→ r◦(s1, s2), but per unit of s2. In later
sections of this chapter we introduce stress resultants measured per unit length of the
material coordinate curves across which they act. (See the remarks following (2.5f).)

Semi-intrinsic theories. Semi-intrinsic theories of shells (cf. Libai &
Simmonds (1998)) of any level of refinement can be constructed just as
in Sec. 16.5. They have the same virtues and defects as the corresponding
theories of rods.

Multipliers, active resultants, and equations of motion. Just as in
Sec. 16.6, the Lagrange multipliers satisfy

(1.19) Γ−1(Γmα
L ),α − nL = o

in the sense of distributions, where

Γ (s) mα
L (s, t) :=

∫ h2(s)

h1(s)
τα

L (x, t) · ∂π
∂u

(u(s, t),x, t) j(x) dζ,(1.20a)

Γ (s) nL(s, t) :=
∫ h2(s)

h1(s)
τ k

L (x, t) · ∂

∂xk

[
∂π

∂u
(u(s, t),x, t)

]
j(x) dζ.(1.20b)

From (16.2.17) and (12.12.50b) we then obtain, as before, the weak
form of the equations of motion for the active resultants:

(1.21)

∫ ∞

0

∫
M

[mα
A · u�

,α + nA · u� − f · u� − b · u�
t − c · u�] da dt

−
∫ ∞

0

∫
∂M
Γ m̄ · u� dσ dt−

∫
M

b̄ · u�(·, 0) da = 0
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for all sufficiently smooth u� satisfying (1.16) when (1.13) holds and satis-
fying appropriate periodicity conditions when (1.14) holds. Here

Γ (s) mα
A(s, t) :=

∫ h2(s)

h1(s)
τα

A (x, t) · ∂π
∂u

(u(s, t),x, t) j(x) dζ,(1.22a)

Γ (s) nA(s, t) :=
∫ h2(s)

h1(s)
τ k

A (x, t) · ∂

∂xk

[
∂π

∂u
(u(s, t),x, t)

]
j(x) dζ,(1.22b)

The classical form of (1.21) is

(1.23) Γ−1(Γmα
A),α − nA + f = bt − c.

We obtain equations for a shell theory by replacing p̃ wherever it appears
in the expressions for b, c, f, and m̄ by its constrained form (1.11).

Constitutive relations. Just as in Sec. 16.6, we obtain constitutive equa-
tions for mα

A and nα
A that depend on the past history of u,us, and Λ.

It is appropriate to introduce further weightings like those of (8.12.3)
to account for thickness variations. Let us emphasize that (1.15)–(1.18),
(1.21)–(1.23) are exact consequences of the Principle of Virtual Power.
In the sequel we often drop the subscript A from the stress resultants (see
remark following (16.6.35)). Just as in the discussion centered on (16.9.42),
the reactive stress τL ensures that traction boundary conditions on the faces
are satisfied exactly.
1.24. Exercise. Carry out the analog of Sec. 16.9 for shells. In particular, determine
the shell-theoretic consequences of the Strong Ellipticity Condition. (The resulting in-
equality has the features of both (16.9.16) and the Strong Ellipticity Condition for the
3-dimensional theory.)

Just as for rods, we obtain governing equations with a specific universal
structure. The convergence results discussed in Sec. 16.7 are immediately
applicable to shells.

2. Shells with One Director
In this section we specialize the treatment of Sec. 1 to shells that can

bend, twist, stretch, shear, and change their thickness. these are described
by the Cosserat theory with one director. We then treat shells that are con-
strained not to change their thickness, the theory for which corresponds to
the special Cosserat theory. We finally introduce the Kirchhoff constraints,
which prevent certain kinds of shearing. There are some subtleties in these
constrained theories, which merit our attention.

We identify u with the pair {r,d} of vectors and we take d = δa3 where
a3 is a unit vector. d is the director. We generate the theory with a
constraint of the form (1.11) by taking π to have one of the increasingly
specialized forms

π(u,w, τ) = r + κ(d,w),(2.1a)

π(u,w, τ) = r + κ(δ,w)a3,(2.1b)

π(u,w, τ) = r + ϕ(w)d,(2.1c)
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where κ, κ, and ϕ are given functions. Without loss of generality, we take

(2.1d) ϕ(s, 0) = 0.

For most practical purposes (2.1c) with ϕ(x) = ζ is perfectly acceptable
(especially so in light of the presence of Lagrange-multiplier stresses ac-
counting exactly for traction boundary conditions on the faces). We assume
that in each case the reference configuration is defined by

(2.2a) z̃(x) = r◦(s) + ϕ(x)a◦
3(s), d◦ = a◦

3 :=
r◦

,1 × r◦
,2

|r◦
,1 × r◦

,2|
,

so that a◦
3 is the positively oriented unit vector to r◦ and that δ◦ = 1. We

define ḡα(s) := gα(s, 0) (cf. (16.2.5)). Thus

(2.2b) Γ ḡ1 = r◦
,2 × a◦

3, Γ ḡ2 = a◦
3 × r◦

,2.

We easily get explicit representations for F and C from (2.1), (16.2.6).
In accord with (2.1a), we may take

(2.3a) p� = r� +
∂κ

∂d
· d�,

which reduces to

(2.3b) p� = r� − κa�
3 + κδδ

�a3

when (2.1b) is used. We first choose p� = r�, in which case (16.2.17)
reduces to the weak form of the balance of linear momentum:

(2.4) Γ−1(Γnα
� ),α + f0 = 2ρhrtt + qtt

where

Γnα
� := Γ |ḡα|nα (no sum) :=

∫ h2

h1

τα
A j dζ,(2.5a)

Γf0 :=
∫ h2

h1

f j dζ + [Γ τ̄ ]21,(2.5b)

ΓρIq :=
∫ h2

h1

ρ̃ (p̃ − r) j dζ,(2.5c)

2Γρh :=
∫ h2

h1

ρ̃ j dζ, ΓρI :=
∫ h2

h1

ρ̃ ϕ j dζ.(2.5d,e)

Note that Γn1
� = |r◦

,2|n1 by (2.2b), that n1(a, t) is the active contact
force per unit length of s2 �→ r◦(a1, s2) acting at (a, t) across the surface
corresponding to s1 = a1, etc., and that f0 is the body force per unit
area of r◦. To demonstrate that n1 has the asserted property, we denote
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the unit normal to the surface [s21, s
2
2] × [h1, h2] � (s2, ζ) �→ z̃(a1, s2, ζ)

by γ = g2 × g3/|g2 × g3| ≡ jg1/|g2 × g3|, so that (with a suitable sign
convention) the total active contact force across this surface is

(2.5f)

∫ s2
2

s2
1

∫ h2

h1

TA · γ |g2 × g3| ds2 dζ

=
∫ s2

2

s2
1

∫ h2

h1

τ 1
A j ds

2 dζ =
∫ s2

2

s2
1

∫ h2

h1

τ 1
A j

dσ2

|r◦
,2|
dζ

where σ2 is the arc-length parameter along s2 �→ r◦(a1, s2). Because of
their coordinate-free physical meaning, the nα, rather than the more ele-
gant nα

� , should be used for any specific problem, lest the governing equa-
tions be contaminated with incorrect weight functions. the same remarks
apply to the analogous functions introduced below.

Imitating Sec. 1 directly, we now take p� = [∂κ/∂d] · d�, and reduce
(16.2.17) to the weak form of

(2.6) Γ−1(Γµα
� ),α − ξ + f1 = b1

t − c1

where

Γµα
� := Γ |ḡα|µα (no sum) :=

∫ h2

h1

τα
A · ∂κ
∂d
j dζ,(2.7a)

Γξ :=
∫ h2

h1

τ k
A · ∂

∂xk

[
∂κ

∂d

]
j dζ,(2.7b)

Γf1 :=
∫ h2

h1

f · ∂κ
∂d
j dζ +

[
Γ τ̄ · ∂κ

∂d

]2

1
,(2.7c)

Γ (b1
t − c1) :=

∫ h2

h1

ρ̃ p̃tt · ∂κ
∂d
j dζ.(2.7d)

When (2.1c) is used, ∂κ/∂d = ϕI, and these formulas simplify consider-
ably. Note that (2.6) and (2.7) are consequences of the arbitrariness of
d�. Eqs. (2.4) and (2.6), together with appropriate constitutive equations,
form the basis of a mathematically satisfactory system of six equations for
the six unknown components of r and d. We, however, wish to relate the
variables µα

� and ξ of this system to couple and force resultants.
To illuminate our results, we decompose d� = δ�a3 + δa�

3 . Since a3 is
a unit vector, a�

3 is any vector perpendicular to a3 and therefore has the
form a�

3 = ω × a3 where ω is an arbitrary function of s and t. If we take
the dot product of (2.6) with a3, we obtain

(2.8) Γ−1(ΓΩα
� ),α −∆+ f1 · a3 = βt − γ

where
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ΓΩα
� := Γ |ḡα|Ωα (no sum) :=

∫ h2

h1

τα
A · ∂κ
∂d

· a3 j dζ = Γµα
� · a3,(2.9a)

Γ∆ :=
∫ h2

h1

τ k
A · ∂

∂xk

[
∂κ

∂d
· a3

]
j dζ = Γ (ξ · a3 + µα

� · a3,α),(2.9b)

Γβ :=
∫ h2

h1

ρ̃ p̃t · ∂κ
∂d

· a3 j dζ,(2.9c)

Γγ :=
∫ h2

h1

ρ̃ p̃t · ∂
∂t

[
∂κ

∂d
· a3

]
j dζ.(2.9d)

Alternatively, we obtain the weak form of (2.8) from (16.2.17) by choosing
p� = [∂κ/∂d] · a3δ

�.
To get equations complementing these, we merely take the cross product

of (2.6) with d to obtain

(2.10) Γ−1(Γd × µα
� ),α − d,α × µα

� − d × ξ + d × f1 = d × (b1
t − ×c1).

Alternatively, we obtain the weak form of (2.10) from (16.2.17) by choosing

(2.11a) p� = [∂κ/∂d] · (ω × δa3)

where ω is an arbitrary function of s and t.
Before interpreting (2.10) we get an alternative for it. For the choice

(2.11b) p� = (p̃ − r) × ω

where ω is an arbitrary function of s and t, we obtain from (16.2.17) and
(16.2.12) the weak form of the balance of angular momentum:

(2.12) Γ−1(Γmα
� ),α + r,α × nα

� + l = ρIq × rtt + ht

where

Γmα
� := Γ |ḡα|mα (no sum) :=

∫ h2

h1

(p̃ − r) × τα
A j dζ,(2.13a)

Γ l :=
∫ h2

h1

(p̃ − r) × f j dζ + [Γ (p̃ − r) × τ̄ ]21,(2.13b)

Γh :=
∫ h2

h1

ρ̃ (p̃ − r) × (p̃ − r)t j dζ.(2.13c)

The precise physical meaning of the contact couples mα can be read off
from (2.13a): m1(a, ζ, t) is the moment per unit length of r◦(a1, ·) about
r(a, t) of the traction across the material surface s1 = a1 acting over the
material fiber {x ∈ A : x = (a, ζ)}. Observe as before that (2.4), (2.6),
(2.8), (2.10), and (2.12) are exact consequences of the Principle of Virtual
Power.
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We get shell-theoretic versions by replacing p̃ with (2.1). To relate the
shell-theoretic versions of (2.10) and (2.12), we must restrict our attention
to constraints of the form (2.1b), i.e., we take p − r = κ = κa3 = (κ/δ)d.
In this case, (2.3b) is valid, (2.11a,b) have the same form, namely, a cross
product of d with an arbitrary vector, and

(2.14) mα = d × µα.

Thus the mα have no components in the a3-direction. Since (2.11a,b) have
the same form, their consequences (2.10) and (2.12) must be equivalent.
We use (2.5), (2.7), (2.13), (2.14) to deduce from this equivalence that

(2.15) r,α × nα
� + d,α × µα

� + d × ξ = o,

which is the analog of (16.8.33).

2.16. Exercise. In (16.2.12) replace p̃ with the constrained version coming from (2.1b)
and directly derive (2.15). (It is convenient replace κ/δ with a single symbol.) (For a
simpler computation, replace (2.1b) with (2.1c) and replace ϕ(x) with ζ .) It is not
surprising to note that (2.15) can also be derived by replacing τk

A in (2.5a), (2.7a,b)
with F · SA · gk where F is based on (2.1b) (because this representation for the stress
automatically accounts for the balance of angular momentum embodied in (16.2.12)).

We adopt either the system consisting of (2.4) and (2.6) or else that
consisting of (2.4), (2.8), and (2.12) as our governing equations of motion.
(The generality of (2.1a,b) is adopted to exhibit the extent to which the
mathematical structure of the governing equations is independent of the
particular constraint. Such a demonstration is of value because of the
proliferation of shell theories.) We get constitutive equations by replacing
the τ k in (2.5a), (2.9a,b), (2.13a) with their constitutive representations.

Special Cosserat theory of shells. We construct a special Cosserat
theory of shells (special cases of which are known as the Reissner-Mindlin
theory of shells) by constraining d to have unit length, so that δ = 1. In
this case, the configuration is determined by five unknown scalar functions
determining r and the unit vector d. If (2.1b) holds, then the classical
equations of motion are the vector equations (2.4) and (2.12). Since (2.12)
then agrees with (2.10), which has no component in the d-direction, this
system, when supplemented by appropriate constitutive equations, contains
but five equations, and is therefore formally determinate. (If (2.1b) does
not hold, then the governing equations are (2.4) and (2.10), as follows from
(16.2.17) and (2.3a) with δ� = 0.) A virtue of this theory is that the only
stress resultants needed in it are the contact forces and couples nα and
mα, which have immediate physical interpretations.

Kirchhoff theory of shells. Let us further suppose that d = a3 is per-
pendicular to the r,α:

(2.17) d = a3 =
r,1 × r,2

|r,1 × r,2|
.
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These are the Kirchhoff assumptions. They ensure that the configuration
of the shell is determined solely by r.

There are several ways to obtain the governing equations under the
assumption that (2.1c) holds. Perhaps the easiest way is to replace (2.17)
with

d · d = 1, d · r,α = 0

and combine the Multiplier Rule 12.12.54 with the Principle of Virtual
Power (16.2.17), by merely replacing τ k · p�

,k with τ k · (r� + ϕd�),k−
λd · d� + βα(d� · r,α + d · r�

,α). We replace (2.5a) with

(2.18) Γnα
A :=

∫ h2

h1

τα
A j dζ,

and define

(2.19) ΓΛ :=
∫ h2

h1

λj dζ, ΓBα :=
∫ h2

h1

βαj dζ.

Then (2.4), (2.6), (2.12) are replaced by

Γ−1[Γ (nα
A +Bαd)],α + f0 = 2ρhrtt + qtt,(2.20)

Γ−1(Γµα),α − ξ + Λd −Bαr,α + f1 = b1
t − c1,(2.21)

Γ−1(Γmα),α + r,α × nα + l = ρIq × rtt + ht.(2.22)

Now (2.4), (2.6), (2.12) are exact consequences of the the Principle of Vir-
tual Power. Therefore, by comparing (2.4) and (2.20), we can identify

(2.23) nα = nα
A +Bαd,

where only nα
A is to be prescribed constitutively. Since the Lagrange mul-

tipliers are not specified constitutively, we can redefine them so that only
the projection of nα

A onto the orthogonal complement of d is prescribed
constitutively. Likewise, since ξ has the direction d, we can absorb ξ into
λd, which means that this term is not prescribed constitutively. As before,
we find that the cross product of (2.21) with d is equivalent to (2.22). Thus
we take (2.20) and (2.22) in the form

(2.24) Γ−1(Γmα),α + r,α × (nα
A +Bαd) + l = ρIq × rtt + ht

as our governing equations. Since (2.24) has no d-component, it and (2.20)
correspond to five scalar equations for r and the Bα. Using the dual basis,
we can readily solve (2.24) for the Bα and substitute the solution into
(2.20) to obtain a single vectorial equation for r.
2.25. Exercise. Show that (2.17) implies that

(2.26) d� = ω × d, ω := d ×
r�

,1 × r,2 + r,1 × r�
,2

|r,1 × r,2|
.

Derive the governing equations equivalent to (2.20), (2.21), (2.24) directly by substitut-
ing (2.1c) and p� = r� + ϕd� into (16.2.17).

2.27. Exercise. Use the integral over ∂M in the Principle of Virtual Power for
Kirchhoff shells to determine the appropriate natural boundary conditions.

See Sec. 8 for further discussion of the Kirchhoff assumptions.
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3. Drawing and Twisting of an Elastic Plate
We study the steady drawing of a twisted elastic sheet, modelled as a

uniform plate with one unconstrained director. We set s1 = s, s2 = y and
let

(3.1) B := {si1 + yi2 + ζi3 : |s| < 1, |y| < b, |ζ| < h}.

We examine the motion of that part of the sheet (the active part) moving
between an inlet slit and an outlet slit (cf. Sec. 6.4), which lie along skew
lines. (This problem may be interpreted as a model with crude boundary
conditions for a sheet being unrolled from one roller and being taken up by
another.)

Let ω be a positive parameter accounting for skewness. We define the
orthonormal triad
(3.2)
e1 := i1, e2(ωs) := cosωsj + sinωsk, e3(ωs) := − sinωsj + cosωsk.

Let λ be a positive parameter. The outlet and inlet slits are taken to lie
along the skew lines

(3.3) y �→ ±λe1 + ye2(±ω)

(at a distance 2λ apart) where + corresponds to the outlet and − to the
inlet.

We assume that the material points (s, y, ζ) respectively passing through
the inlet and outlet at time τ have the form (s±(τ), y, ζ), so that

(3.4) r(s±(τ), y, t) · e1 = ±λ, r(s±(τ), y, t) · e3(±ω) = 0.

At the inlet and outlet we require that there be no force impeding the
sliding of the end along the lines (3.3):

(3.5) n1(s±(τ), y, t) · e2(±ω) = o,

that there be no bending couple about the axes e2(±ω):

(3.6a) m1(s±(τ), y, t) · e2(±ω) = o,

and that there be no resistance to change of thickness

(3.6b) Ω1(s±(τ), y, t) · e2(±ω) = 0.

These last two conditions are equivalent to

(3.6c) µ1(s±(τ), y, t) · e2(±ω) = o,

Likewise, the natural boundary conditions on the edges y = ±b are

(3.7a,b) n2(s,±b, t) = o = µ2(s,±b, t)

for all s, y in the active part at time t.
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We assume that the sheet is fed in at the inlet and withdrawn at the
outlet at the same constant rate:

(3.8) d
dτ s±(τ) = −c, so that s±(τ) = s±(0) − cτ.

We scale s so that

(3.9) s+(τ) − s−(τ) ≡ s+(0) − s−(0) = 2.

We set

(3.10) x := s−(τ) − s−(t) = c(t− τ).

Thus x is just a parameter for the active part of the sheet. If s−(t) ≤
s−(τ) ≤ s+(t), then x ∈ [−1, 1].

We require that the motion of the sheet be steady by requiring that
there be a fixed configuration ρ, δ occupied by the active part of the shell
at each time t:

(3.11)
r(s−(τ), y, t) ≡ r(s−(t) + x, y, t) = ρ(x, y) ≡ ρ(c(t− τ), y),
d(s−(τ), y, t) ≡ d(s−(t) + x, y, t) = δ(x, y) ≡ δ(c(t− τ), y).

In order that (3.4) hold, ρ must satisfy

(3.12) ρ(±1, y, t) · e1 = ±λ, ρ(±1, y, t) · e3(±ω) = 0.

Thus

(3.13)
rs(s−(τ), y, t) = ρx(x, y), ds(s−(τ), y, t) = δx(x, y),

rt(s−(τ), y, t) = cρx(x, y), dt(s−(τ), y, t) = cδx(x, y), etc.

Let us use (2.1c) with ϕ(x) = ζ, so that the deformation is constrained
by

(3.14) p(s, y, ζ, t) = r(s, y, t) + ζd(s, y, t).

Under the assumptions that the density ρ is constant and that there are
no external loads, the equations of motion (2.4) and (2.6) reduce to

(3.15a,b) nα
,α = 2ρhc2ρxx, µα

,α − ξ = ρJc2δxx.

If the sheet consists of a homogeneous isotropic elastic material, then

(3.16) T = F · (αI + βC + γC2)

where α, β, γ depend on the invariants of C.
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3.17. Exercise. We seek a trivial (semi-inverse) solution (ρ, δ) of the equations of
motion in which ρ is helicoidal and in which δ can be determined by ordinary differential
equations in y. We accordingly seek

(3.18) ρ(x, y) = λxe1 + f (y)e2(ωx), |x| ≤ 1, |y| ≤ b,

where f is to be determined. The function (3.18) clearly satisfies (3.12). We introduce
the orthonormal triad

(3.19a)
j1(x, y) :=

ρx(x, y)
|ρx(x, y)|

=
λe1 + ωf (y)e3(ωx)

χ
, j2(x) = e2(ωx),

j3(x, y) = j1(x, y) × j2(x) =
λe3(ωx) − ωf (y)e1

χ

where

(3.19b) χ :=
√
λ2 + ω2f2.

We seek δ in the form

(3.20) δ(x, y) = θk(y)jk(x, y).

(i) Show that

ρx = χj1, ρy = f ′j2,

δx = −θ1ω2fχ−1e2 + ωθ2e3 − θ3λωχ−1e2,(3.21)

δy = (θk)yjk + λωf ′χ−2(θ1j3 − θ3ωj1),

i1 · C · i1 = χ2 + 2ζχωθ2bj1 · e3 + ζ2δx · δx.(3.22)

The term in (3.22) linear in ζ prevents the invariants from being even in ζ , in consequence
of which the constitutive functions would not have a desired parity in the ζ-direction that
would enable some of the equations of motion to be identically satisfied. Accordingly,
we take θ2 = 0. In this case, δx and δy have the form

(3.23) δx = ψ2j2, δy = ψ1j1 + ψ32j3.

(ii) Show that

F = (χj1 + ζψ2j2)i1 + (f ′j2 + ζψ1j1 + ζψ3j3)i2 + (θ1j1 + θ3j3)i3,(3.24)

C = Ckli
kil(3.25a)

with

(3.25b)
C11 = χ2 + ζ2θ22, C22 = (f ′)2 + ζ2(ψ1 + ψ3)2, C33 = θ12 + θ32,

C12 = ζ(χψ1 + f ′ψ2), C13 = χθ1, C23 = ζ(ψ1θ1 + ψ3θ3).

Note that the invariants of C are even functions of ζ . (iii) Show that if the constitutive
equations are such that

(3.26)

n1 = (n1 · j1)j1 + (n1 · j3)j3, n2 = (n2 · j2)j2,

ξ = (ξ · j1)j1 + (ξ · j3)j3,

µ1 = (µ1 · j2)j2, µ2 = (µ2 · j1)j1 + (µ2 · j3)j3,

then (3.15a) has only one non-trivial component, the j2-component, and that (3.15b)
has only two non-trivial components, the j1- and j3-components. These nontrivial com-
ponents furnish a system three ordinary differential equations for the unknowns f , θ1,
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θ3. (iv) Show that the boundary conditions (3.5) and (3.6) are identically satisfied, and
that the nontrivial boundary conditions from (3.7) give appropriate boundary conditions
for f , θ1, θ3.

Let τk = T · ik. (v) Show that if (3.16) holds, then

(3.27)

τ1 = [α + βC11 + γC1rCr1](χj1 + ζψ2j2)

+ [βC21 + γC2rCr1](f ′j2 + ζψ1j1 + ζψ3j3)

+ [βC31 + γC3rCr1](θ1j1 + θ3j3),

τ2 = [βC12 + γC1rCr2](χj1 + ζψ2j2)

+ [α + βC22 + γC2rCr2](f ′j2 + ζψ1j1 + ζψ3j3)

+ [βC32 + γC3rCr2](θ1j1 + θ3j3),

τ3 = [βC13 + γC1rCr3](χj1 + ζψ2j2)

+ [βC23 + γC2rCr3](f ′j2 + ζψ1j1 + ζψ3j3)

+ [α + βC33 + γC3rCr3](θ1j1 + θ3j3)

and show that the parity of these functions with respect to ζ yields (3.26). (Clearly
(3.26) holds for various aeolotropic materials, such as orthotropic materials, and holds
for nonhomogeneous materials in which the constitutive functions are even functions
of ζ .)

3.28. Research Problem. Determine the qualitative properties of the solution f, θ1, θ2
of this boundary-value problem and how they depend on the parameters λ, ω, c and on
the constitutive equations. For this purpose use a version of the Strong Ellipticity Con-
dition. (Intrinsic difficulties can be expected if c exceeds certain natural wave speeds.)

3.29. Research Problem. Linearize the steady-state equations about the trivial
solution (3.18), (3.20), and determine the disposition of the eigensurfaces in the (ω, λ, c)-
space. Study the corresponding bifurcation problem and determine conditions under
which the bifurcation is sub- or super-critical with respect to to each of the eigenvalue
parameters, when the other is fixed. (Cf. Mockensturm (2001).)

3.30. Research Problem. Linearize the equations of motion for a viscoelastic sheet
about the trivial solution (3.18), (3.20), and discuss the stability of motion of the trivial
solution.

3.31. Research Problem. Replace the specification of λ with the specification of the
total tensile force acting at the slits (cf. Mockensturm (2001)):

(3.32)
∫ b

−b
n1(s±(τ ), y, t) · i1 dy = N,

and carry out Problems 3.28–3.30 for it.

3.33. Exercise. Carry out Exercise 3.17 for special Cosserat plates.

3.34. Exercise. Carry out the analog of Ex. 3.17 for Kirchhoff shells. Express the
requirement that the edges y = ±b be free. Here the trivial solution is defined by (2.38)
and δ = j3. Show that if the constitutive functions are such that

(3.35) n1
A = (n1

A ·j1)j1, n2
A = (n2

A ·j2)j2, m1 = (m1 ·j1)j1, m2 = (m2 ·j2)j2,

then the Lagrange multipliers Bα appearing in (2.20) and (2.24) can be chosen to ensure
that the boundary-value problem consisting of these equations and the boundary condi-
tions just described reduces to a boundary-value problem for a second-order autonomous
equation for f parametrized by ω, λ, c and find that equation (cf. Mockensturm & Mote
(1999)). Prove that if (3.16) holds, then (3.35) holds.

3.36. Research Problem. Carry out the analogs of Problems 3.28–3.31 for the
Kirchhoff plate.

The development in this section is based on Mockensturm & Mote (1999).
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4. Axisymmetric Motions of Axisymmetric Shells
We now study axisymmetric motions of axisymmetric Cosserat shells

with one director. In the next section we treat a global bifurcation problem
for such a shell. Let {i, j,k} be a fixed right-handed orthonormal basis for
Euclidean 3-space. We set s := (s, φ), x := (s, φ, ζ), and

(4.1) e1(φ) = cosφi + sinφj, e2(φ) = − sinφi + cosφj, e3 = k.

We assume that the body has the form

(4.2) B := {z̃(x) : s ∈ [s1, s2], φ ∈ [0, 2π), ζ ∈ [h1(s), h2(s)]}

where z̃ has the form (2.2) with

r◦(s, φ) = r◦(s)e1(φ) + z◦(s)k, ϕ(x) = ϕ(s, ζ),

r◦
s(s, φ) = a◦(s, φ) := cos θ◦(s)e1(φ) + sin θ◦(s)k,(4.3)

a◦
3(s, φ) ≡ b◦(s, φ) := − sin θ◦(s)e1(φ) + cos θ◦(s)k.

(Recall that ϕ(s, 0) = 0.) Then

(4.4) Γ (s) = r◦(s), j = r◦(1 − ϕσ◦)(1 − ϕµ◦)ϕζ

where σ◦ := (sin θ◦)/r◦ and µ◦ := θ◦s . We require that ϕζ > 0 everywhere,
1 − ϕσ◦ > 0 everywhere, and 1 − ϕµ◦ > 0 everywhere. (At this stage, we
could write down the specializations of the equations of motion of Sec. 2
for the polar coordinates s, φ.)

We assume that the components with respect to the basis {ek} of all
the scalar-, vector-, and tensor-valued functions that serve as data for our
problems are independent of φ, so that our problems are invariant under the
group SO(2) of rotations about k. We must impose further conditions so
that our problems are invariant under the full group O(2) of rotations and
reflections, in which case we term our problems axisymmetric. (Note that
the (continuous) vector field of radially disposed unit vectors on a circle
centered at the origin is invariant under O(2), whereas a (continuous) field
of tangentially disposed unit vectors is invariant only under SO(2).) In
this section we formulate the equations for the axisymmetric deformation
of axisymmetric shells with one director.

We adopt (2.1) with κ(d(s),x) ·ek(φ) independent of φ, with κ ·e2 = 0,
and with

(4.5)

r(s, φ, t) = r(s, t)e1(φ) + z(s, t)k,

d(s, φ, t) = δ(s, t)b(s, φ, t),

a(s, φ, t) := a1(s, φ, t) := cos θ(s, t)e1(φ) + sin θ(s, t)k,

a2(s, φ, t) := e2(φ),

b(s, φ, t) := a3(s, φ, t) = − sin θ(s, t)e1(φ) + cos θ(s, t)k.
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Thus such an axisymmetric configuration is determined by the four real-
valued functions r, z, δ, and θ. We set

(4.6)
rs =: νa + ηb, τ(s) := r(s)/r◦(s), σ(s) := (sin θ(s))/r◦(s),

µ := θs, ω := δs.

If we use (2.1b) with κζ > 0, then

(4.7)
F =

[(ν − κµ)a + (η + κs + κδω − κζϕs/ϕζ)b] a◦

1 − ϕµ◦

+
τ − κσ
1 − ϕσ◦ e2e2 +

κζ

ϕζ
bb◦.

Here κs = ∂κ/∂w1. Then

(4.8) C = Ckla
k
◦al

◦, Ckl := a◦
k · C · a◦

l

where

(4.9)

C11 :=
(ν − κµ)2 + (η + κs + κδω − ϕsκζ/ϕζ)2

(1 − ϕµ◦)2
,

C22 :=
(τ − κσ)2
(1 − ϕσ◦)2

, C33 :=
(
κζ

ϕζ

)2

,

C13 :=
η + κs + κδω

1 − ϕµ◦
κζ

ϕζ
, C21 = 0 = C23.

If (2.1b) holds, then the requirement that p preserve orientation, i.e., that
its Jacobian be positive everywhere, is equivalent to the inequalities

(4.10)
τ > max

ζ
κ(δ, s, ζ)σ, ν > max

ζ
κ(δ, s, ζ)µ,

min
ζ
κζ(δ, s, ζ) > 0.

If h1 = −h, h2 = h, and if κ is odd in ζ, then (4.10) reduces to

(4.11)
τ > κ(δ, s, h(s))|σ|, ν > κ(δ, s, h(s))|µ|,

min
ζ
κζ(δ, s, ζ) > 0.

The set of q := (τ, ν, η, σ, µ, δ, ω) satisfying (4.10) is denoted V(s). For fixed
δ, this set is convex.

In consonance with our assumption of axisymmetry, we require that

(4.12)
e2 · T · a◦ = 0, e2 × T · e2 = o, e2 · T · b◦ = 0,

f0 · e2 = 0, e2 × l = o
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with the components of f0 and l independent of φ. We accordingly set

(4.13)
n1 =: Na +Hb, Γn2 =: Te2, m1 =: −Me2,

Γm2 =: Σa, Ω1 =: Ω, Ω2 = 0.

Then (2.5a), (2.13a), (2.9a), (4.4), and (4.12) yield

Na +Hb :=
∫ h2

h1

TA · a◦(1 − ϕσ◦)ϕζ dζ,(4.14a)

T :=
∫ h2

h1

e2 · TA · e2(1 − ϕµ◦)ϕζ dζ,(4.14b)

M := −e2 ·
∫ h2

h1

(p̃ − r) × TA · a◦(1 − ϕσ◦)ϕζ dζ,(4.14c)

Σ := a ·
∫ h2

h1

(p̃ − r) × TA · e2(1 − ϕµ◦)ϕζ dζ,(4.14d)

Ω := b ·
∫ h2

h1

(TA · a◦) · ∂κ
∂d

(1 − ϕσ◦)ϕζ dζ,(4.14e)

∆ :=
∫ h2

h1

(TA · a◦) ·
(
∂κ

∂d
· b

)
s

(1 − ϕσ◦)ϕζ dζ(4.14f)

+ b ·
∫ h2

h1

(TA · b◦) · ∂
2κ

∂d∂ζ
(1 − ϕµ◦)(1 − ϕσ◦)ϕζ dζ.

etc. These variables satisfy the equations of motion

[r◦(Na +Hb)]s − Te1 + r◦f0 = 2r◦ρ hrtt + r◦ρIqtt,(4.15)

(r◦M)s −Σ cos θ + r◦(νH − ηN) − r◦l · e2(4.16)

= −r◦(ρIq × rtt + ht) · e2,

(r◦Ω)s − r◦∆+ r◦f1 = r◦βt − r◦γ,(4.17)

which are specializations of (2.4), (2.12), and (2.8).

Constitutive equations for elastic shells. A Cosserat shell that is
constrained to undergo axisymmetric deformations is nonlinearly elastic if
there are functions T̂ , N̂ , Ĥ, Σ̂, M̂ , ∆̂, Ω̂ defined on {(q, s) : q ∈ V(s), s ∈
[s1, s2]} such that

(4.18) T (s, t) = T̂ (q(s, t), s), etc.

Here we are taking these constitutive functions to be independent of the
Lagrange multipliers. We assume that these constitutive functions are con-
tinuously differentiable. To carry out analyses of these equations, we re-
quire that the constitutive functions (4.18) satisfy certain monotonicity,
growth, and symmetry properties. The monotonicity conditions can be
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chosen so that the substitution of (4.18) into the equations of motion yields
a quasilinear system of hyperbolic partial differential equations. We follow
the approach of Sec. 16.9 to show that these monotonicity conditions are
shell-theoretic consequences of the Strong Ellipticity Condition. We adopt
natural compatible growth conditions. It is easy to impose symmetry con-
ditions that ensure that we can carry out our global qualitative analysis
of the bifurcation problem to be treated in Sec. 5. But it is not evident
whether such conditions, designed merely to meet mathematical exigencies,
are physically natural or artificial. To resolve this issue, we again resort to
our 3-dimensional interpretation of the Cosserat theory.

Let us assume that (2.1b) holds. We obtain constitutive equations for
our constrained 3-dimensional theory by substituting (4.7)–(4.9) into the
constitutive equation (13.1.3b) for elastic materials and then substituting
the resulting expression into (4.14) to obtain constitutive equations of the
form (4.18). If we set Sij := ai

◦ · Ŝ · aj
◦ and assume in consonance with

(4.12) that these components are independent of φ, then the versions of
(4.18) so obtained, called the induced constitutive equations, have the form

(4.19)

N̂ =
∫ h2

h1

ν − κµ
1 − ϕµ◦ Ŝ

11
A (1 − ϕσ◦)ϕζ dζ,

M̂ = −
∫ h2

h1

κ
ν − κµ
1 − ϕµ◦ Ŝ

11
A (1 − ϕσ◦)ϕζ dζ,

Ĥ =
∫ h2

h1

β · ŜA · a◦ (1 − ϕσ◦) dζ,

Ω̂ =
∫ h2

h1

κδβ · ŜA · a◦(1 − ϕσ◦) dζ,

T̂ =
∫ h2

h1

τ − κσ
1 − ϕσ◦ Ŝ

22
A (1 − ϕµ◦)ϕζ dζ,

Σ̂ = −
∫ h2

h1

κ
τ − κσ
1 − ϕσ◦ Ŝ

22
A (1 − ϕµ◦)ϕζ dζ,

∆̂ =
∫ h2

h1

β · ŜA ·
{
∂s(κδ)a◦ +

(κδ),3

ϕζ
[(1 − ϕµ◦)b◦ − ϕsa

◦]
}

(1 − ϕσ◦) dζ

−
∫ h2

h1

κδ

[
µ
ν − κµ
1 − ϕµ◦ Ŝ

11
A (1 − ϕσ◦) + σ

τ − κσ
1 − ϕσ◦ Ŝ

22
A (1 − ϕµ◦)

]
ϕζ dζ,

where

β :=
ϕζ(η + κs + κδω) − κζϕs

1 − ϕµ◦ a◦ + κζb
◦,

and where the Ŝij
A depend on (4.9), Λ, and (s, ζ).
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4.20. Exercise. Prove:

4.21. Proposition. If T̂A satisfies the Strong Ellipticity Condition
(13.3.1), (13.3.7), then the induced constitutive functions T̂ , etc., satisfy
the following monotonicity conditions: The matrices

(4.22a,b,c)
∂(N̂ , Ĥ, M̂ , Ω̂)
∂(ν, η, µ, ω)

,
∂(T̂ , Σ̂)
∂(τ, σ)

,
∂∆̂

∂δ
are positive-definite.

We adopt (4.22) as a fundamental constitutive restriction. It ensures
that an increase in the bending strain µ be accompanied by an increase in
the bending couple M , etc. Rather than supplement (4.22) with a com-
patible system of growth conditions (requiring that infinite resultants ac-
company extreme strains; see Negrón-Marrero & Antman (1990), e.g.), we
content ourselves with prescribing a major consequence of a suitable set of
such conditions:

4.23. Hypothesis. For any given numbers N , H, M , Ω, the equations

(4.24) N̂(q, s) = N, Ĥ(q, s) = H, M̂(q, s) =M, Ω̂(q, s) = Ω

have a unique solution for (ν, η, µ, ω) as a function of (τ,N,H, σ,M, δ,Ω, s).

We denote this solution by

(4.25a) ν = ν�(τ,N,H, σ,M, δ,Ω, s), . . .

where the ellipsis stands for analogous expressions for η�, µ�, ω�. Let us
set

(4.25b) T �(τ,N,H, σ,M, δ,Ω, s) := T̂ (τ, ν�, η�, σ, µ�, δ, ω�, s), . . .

where the ellipsis stands for analogous definitions of Σ�, ∆�, and where
the arguments of ν�, η�, µ�, ω� in (4.25b) are those shown in (4.25a). The
functions ν�, etc., of (4.25) are necessarily continuously differentiable. The
constitutive equations (4.25) are equivalent to (4.18).

Now we turn to the symmetry conditions, which will be used in the next
section and which consequently constitute our immediate motivation for
our development of the Cosserat theory from the 3-dimensional theory. We
assume that the constitutive function ŜA satisfies the symmetry conditions:

Ŝ21
A = 0 = Ŝ23

A if C21 = 0 = C23,(4.26a)

Ŝ11
A , Ŝ

22
A , Ŝ

33
A are even functions of C13(4.26b)

if C21 = 0 and C23 = 0,

Ŝ13
A is an odd function of C13 if C21 = 0 and C23 = 0.(4.26c)

An isotropic material meets these conditions. Note that (4.3), (4.7), (4.9),
and (4.26) ensure (4.12).

We adopt the symmetry conditions: ρ̃ is even in ζ, κ is odd in ζ, h1 = −h,
and h2 = h.

The analog of Proposition 16.10.17 is
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4.27. Proposition. Let (2.1b) hold, let the symmetry conditions hold,
let κ be independent of s, and let (4.26) hold. Then

(4.28a) Ĥ(q, s) = 0 = Ω̂(q, s)

if

(4.28b) η = 0 = ω.

The proof of this proposition is straightforward. The form ofM prevents
us from obtaining a result analogous to Proposition 16.10.20.

The simplifications of our constitutive equations for plates, which have
the defining property that

(4.29) σ◦ = 0 = µ◦,

enable us to get an analog of Proposition 16.10.22:

4.30. Theorem. Let (4.29) hold and let the hypotheses of Proposition
4.27 hold. Then under the transformation

(4.31) (η, σ, µ) �→ −(η, σ, µ),

the induced constitutive functions Ĥ, Σ̂, M̂ change sign while the other
induced constitutive functions remain unchanged.

Proof. We replace the arguments η, σ, µ of M̂ in (4.18) with their nega-
tives. We then make the change of variable ζ �→ −ζ in the resulting integral.
Since κ(δ, s, ·) is odd, κ(δ, s, ζ) is thereby replaced with −κ(δ, s, ζ), etc. The
arguments now occupying the C11-, C22-, C33-slots in S11 are unchanged,
while the argument now occupying the C31-slot is the negative of that orig-
inally occupying this slot. We use (4.26b) to restore the original sign. We
thereby find that M̂ changes sign under (4.31). The other symmetries are
proved likewise. �
4.32. Exercise. Carry out the proofs of the other symmetries.

The induced constitutive equations enjoy many other symmetries, which
can be determined by similar methods.

The symmetry condition of Theorem 4.30 is much weaker than the
analogous conditions for plates for which δ is constrained to equal 1 (cf.
Sec. 10.2). In such theories, the shear response is uncoupled from the flexu-
ral response. Eq. (4.28a) is exploited below in a way that renders Theorem
4.30 as useful as the stronger results for the more restricted theory.
4.34. Exercise. Carry out the analog of Ex. 6.7.13. for the problem of Sec. 10.2.

4.34. Exercise. Carry out the analog of Ex. 6.7.13. for the problem of Sec. 10.5.

4.35. Research Problem. Let a complete isotropic spherical shell that is vis-
coelastic of strain-rate type be subjected to a uniform time-dependent pressure, e.g.,
a time-periodic hydrostatic pressure. Show that the governing equations admit a time-
dependent solution in which the base surface is always spherical and the directors are
always perpendicular to the deformed base surface. Such solutions are governed by non-
linear ordinary differential equations in time. Analyze the stability of these solutions,
first formally by linearizing the full equations of motion (not restricted to axisymmetric
motions) about the time-dependent spherical solutions.
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5. Global Buckled States of a Cosserat Plate

The boundary-value problem. We now treat an axisymmetric equilib-
rium problem for a plate, which we take to be annular in order to avoid
bothering with the polar singularity. We assume that (4.22), Hypothesis
4.23, and the conclusion of Theorem 4.30 hold. We take Γ (s) = s and
assume that f0 = o, l · e2 = 0, f1 = 0. We assume that the edge s = 1 of
the plate is constrained to be parallel to k, so that

(5.1) θ(1) = 0.

A normal pressure of intensity λ units of force per unit reference length is
applied to the edge s = 1, so that

(5.2) N(1) = −λ, H(1) = 0.

We finally assume that either the thickness of the plate at this edge is fixed,
so that there is a prescribed number δ1 such that

(5.3a) δ(1) = δ1

or else there is no restraint preventing such a change, so that

(5.3b) Ω(1) = 0.

The inner edge is subjected to similar boundary conditions:

(5.4) r(a) = a ⇔ τ(a) = 1, θ(a) = 0, H(a) = 0, Ω(a) = 0.

We can readily handle variants of these boundary conditions. We must
solve equilibrium versions of (4.6), (4.15)–(4.18), (5.1)–(5.4), which consti-
tute our boundary value problem.

Alternative formulation of the governing equations. We recast our
boundary-value problem in a form that makes the role of symmetry explicit
and that promotes the ensuing analysis. We integrate (4.15) subject to the
boundary condition (5.2) and use (4.28) to obtain

(5.5a,b) N(s) = −Λ(s) cos θ(s), H(s) = Λ(s) sin θ(s)

where Λ satisfies

Λ(1) = λ,(5.6)

(sΛ)′ = T �(τ,−Λ cos θ, Λ sin θ, s−1 sin θ,M, δ,Ω, s).(5.7)

We next deduce from (4.6), (4.16), (4.17), (4.25), and (5.5) that

(sτ)′ = ν� cos θ − η� sin θ,(5.8)

θ′ = µ�,(5.9)

(sM)′ = Σ� cos θ − sΛ(ν� sin θ + η� cos θ),(5.10)

δ′ = δ�,(5.11)

(sΩ)′ = s∆�(5.12)
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where the arguments of ν�, η�, µ�, Σ�, δ�, ∆� in (5.8)–(5.12) are the same

as those of
+

T � in (5.7).
Hypothesis 4.23 and the consequences of Theorem 4.30 imply that under

the transformation

(5.13) (H,σ,M) �→ −(H,σ,M)

the constitutive functions η�, Σ�, µ� of (4.25) change sign while the other
constitutive functions of (4.25) remain unchanged. It then follows from the
Mean-Value Theorem that η�, Σ�, µ� can be represented as

(5.14a) η� = ηHH + ησσ + ηMM, etc.,

where

(5.14b) ηH(τ,N,H, σ,M, δ,Ω, s) :=
∫ 1

0
η�

H(τ,N, αH,ασ, αM, δ,Ω, s) dα,

etc. Then equations (5.9), (5.10) assume the form

θ′ = A sin θ + µMM,(5.15a)

(sM)′ = C sin θ +DM(5.15b)

where

(5.16)

A := (µHΛ+ µσs
−1),

C := [ΣHΛ+Σσs
−1 − sΛ(ηHΛ+ ησs−1)] cos θ − sΛν�,

D := [ΣM − sΛηM ] cos θ.

Our boundary-value problem is thus equivalent to the system (5.7), (5.8),
(5,11), (5.12), (5.15), (5.1)–(5.4), (5.6) for

(5.17) u := (τ, Λ, θ,M, δ,Ω).

Unbuckled states. If we regard the Λ, δ, Ω appearing in (5.15), (5.16)
as given well-behaved functions, then this second-order system admits the
solution θ = 0 =M , which describes an unbuckled state.

Unbuckled states are typically not unique. For λ positive there can be such states
with a necking instability (see Sec. 16.11 and Negrón-Marrero (1989)). Nonuniqueness
can be manifested in far more prosaic circumstances, as we now show. It is easy to see
that unbuckled states are governed by the system

N̂ = −λ −
∫ 1

s
T̂ dξ,(5.18a)

(sΩ̂)′ − s∆̂ = 0(5.18b)

where the arguments of N̂ , Ω̂ , and ∆̂ are
(
r(s)/s, r′(s), 0, 0, 0, δ(s), δ′(s), s

)
and those of

T̂ are the same with s replaced by ξ. Let us now make several simplifying assumptions.



17.5. GLOBAL BUCKLED STATES OF A COSSERAT PLATE 681

We suppose that these constitutive functions are independent of s, as would happen if we
construct our constitutive equations as in Sec. 16.9 by using 3-dimensional constitutive
equations for a homogeneous material and by taking the plate thickness h to be constant.
Next we suppose that Ω̂ = 0 when η = σ = µ = ω = 0. This property is a consequence of
(4.28) for induced constitutive equations. Finally, we assume that T̂ (τ, ν, 0, 0, 0, δ, 0) =
N̂ (ν, τ, 0, 0, 0, δ, 0). A transversely isotropic plate would have this property.

Suppose that boundary condition (5.3b) holds. Then we can seek unbuckled states
with r′ = ν0 (const.), δ = δ0 (const.). These numbers satisfy

(5.19) N̂ (ν0, ν0, 0, 0, 0, δ0, 0) = −λ, ∆̂(ν0, ν0, 0, 0, 0, δ0, 0) = 0.

It is easy to impose natural growth conditions that ensure that (5.19) has a solution
(by a degree-theoretic argument), but our monotonicity conditions are insufficient to
ensure that such a solution is unique. (The positive-definiteness of the matrix of partial
derivatives of T̂ , N̂ , ∆̂ with respect to τ , ν , δ would suffice to ensure the uniqueness. This
positive-definiteness is not a consequence of the Strong Ellipticity Condition, although
it would follow from the strong Coleman-Noll Condition (13.3.1), (13.3.21).

Were we to impose conditions less restrictive than those that led to (5.19), then
the study of the mere existence of unbuckled states could lead to challenging exercises
in analysis. For example, an inkling of the complexity that can occur for plates not
satisfying the transverse isotropy condition can be found in Secs. 10.3 and 14.7. The
unbuckled state need not depend continuously on the load parameter λ. The corre-
sponding analysis for nonuniform plates for our problem would be far more formidable.
The requisite tools for treating these singular problems can be modelled on those used
by Negrón-Marrero (1985).

Nodal properties of buckled plates. Let C0 denote the space of con-
tinuous functions on [a, 0]. We use analogous expressions for other spaces.
We denote the Cartesian product of m copies of C0 by [C0]m.

Let us suppose that all the arguments of the overlined functions in (5.15)
are continuous functions of s. (These arguments are the same as those of
T � in (5.7).) Thus (5.15) implies that θ ∈ C1 if and only if (θ,M) ∈ [C0]2.
Moreover, θ has a simple zero at s∗ if and only if θ(s∗) = 0, M(s∗) �= 0;
and θ has a double zero at s∗ if and only if θ(s∗) = 0, M(s∗) = 0. Let

(5.20) Zk := {(θ,M) ∈ [C0]2 : θ(a) = 0 = θ(1), θ has exactly k + 1

zeros on [a, 1], each of which is simple}.

Zk is an open set in C0 ×C0. If (θ,M) belongs to its boundary ∂Zk, then
θ has a double zero on [a, 1].

Let S be a connected family of solution pairs containing a solution pair
(λ̃, ũ) with (θ̃, M̃) in Zk. Since Zk is open in [C0]2, there is a neighborhood
N of (λ̃, ũ) in the topology of [C0]7 × R such that if (λ,u) ∈ N ∩ S, then
(θ,M) ∈ Zk. Let S̃ be the largest connected component of S containing
(λ̃, ũ) and having the further property that there is no θ corresponding
to one of its solution pairs having a double zero. From the preceding
paragraph we know that (θ,M) in Zk for each solution pair of S̃.

Now if θ has a double zero, then the corresponding zero values for (θ,M)
can be taken as initial data for (5.15). The resulting initial-value problem
has a unique solution, which must be the zero solution (by virtue of the
special form of (5.15) consequent on the constitutive symmetry under the
transformation (4.31)). This conclusion holds no matter what continuous
values the hidden variables in (5.15) assume). Hence we have
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5.21. Theorem. If a connected set S of solution pairs contains no un-
buckled state and if it has one solution pair with (θ̃, M̃) in Zk, then each
of its solution pairs (θ,M) is in Zk. Thus the number of simple zeros of θ
is constant on such a set of solution pairs and characterizes it globally.

To prove the existence of branches of buckled states we first need to show
that we can write our boundary-value problem as a fixed-point problem
involving a compact operator on [C0]7. We can easily do this by integrating
(5.8), (5.11), (5.12), (5.15), and using (4.25) to show that the arbitrary
constants of integration can be adjusted to ensure that all the boundary
conditions are satisfied. (For details of a much more difficult version of
this process, see Negrón-Marrero & Antman (1990) and the works cited
therein.) We can now invoke Corollary 5.4.17 and Theorem 5.4.19 to obtain

5.22. Theorem. let λ̄ be an eigenvalue of odd algebraic multiplicity of the
linearization of the boundary-value problem about a branch of unbuckled
states and let ū(λ̄) be the corresponding unbuckled state. From (λ̄, ū(λ̄))
there bifurcates a branch of buckled states that is either unbounded in
[C0]7 × R or else returns to another such pair (κ̄, ū(κ̄)). If the eigenvalue
is simple, then the bifurcating branch inherits the nodal properties of the
eigenfunction.

This section is based on Antman (1990). For methods for treating the
polar singularity for a full circular plate, see Antman (1978a), Gauss &
Antman (1984), Negrón-Marrero (1985), and Negrón-Marrero & Antman
(1990).

6. Thickness parameter. Eversion
In Sec. 14.7 we examined within the 3-dimensional theory the static

eversion of a complete spherical shell and of a spherical cap, in the latter
case under the assumptions that the edge of the cap in the natural reference
configuration lies on a right circular cone centered at the center of the shell
and that in the deformed state the edge lies on the other nappe of the
same cone. In the spherically symmetric everted state the resultant force
on the edge is zero, but the traction is not. The simplifications attending
the spherical symmetry would not be available if the boundary conditions
on the edge were replaced by the requirement that the edge be traction-free
or be hinged. In Sec. 10.9 we showed how the special Cosserat theory of
shells could handle this problem. In formulating this theory, we required
the thickness parameter to enter the constitutive equations in a special
way. Here we show how to generate such constitutive equations, and then
comment upon other aspects of the eversion problem.

As noted in Sec. 10, there is an extensive literature, both formal and rigorous, on the
asymptotic justification of shell theories from 3-dimensional theories. For the eversion
problem treated in Sec. 10.9, on the other hand, we take the shell theory as given, and
study the rigorous asymptotics in a small thickness parameter of a problem within it.
Here we construct the shell theory.
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For the eversion of axisymmetric shells, we employ the formulation of
Sec. 3 specialized to special Cosserat shells, and assume that h1 and h2
are small and of opposite sign: There is a small (dimensionless) positive
thickness parameter α such that h1 = −αξ− and h2 = αξ+ with ξ± > 0.
We introduce the scaled thickness coordinate ξ by

(6.1) ζ = αξ.

We adopt (2.1c) with ϕ(x) = ζ and we constrain δ of (4.5) to equal 1. We
define

(6.2) σ̄ := ασ ≡ α sin θ
r◦
, µ̄ := αµ ≡ αθs.

The reflection of the reference configuration of the base curve across a plane
perpendicular to k is defined by θ0 where

(6.3) θ0(s) := −θ◦(s) so that r◦s = cos θ0.

Under these conditions, (4.7)–(4.9) yield

F =
[(ν − ξµ̄)a + ηb]a◦

1 + αξ∂sθ0
+

τ − ξσ̄
1 + αξ(sin θ0)/r◦

e2e2 + bb◦,(6.4)

C =
(ν − ξµ̄)2 + η2

(1 + αξ∂sθ0)2
a◦a◦ + b◦b◦(6.5)

+
η

1 + αξ∂sθ0
(a◦b◦ + b◦a◦) +

(τ − ξσ̄)2
(1 + αξ(sin θ0)/r◦)2

e2e2.

We study an axisymmetric cap, having its pole at s = 0 and its edge at
s = l > 0, for which r◦(0) = 0 and r◦(s) > 0 for 0 < s ≤ l. That the pole
stays intact and that the image of the base surface stays regular at the pole
lead to the conditions

(6.6) r(0) = 0, θ(0) = 0.

The polar singularity provides serious technical difficulties, which would be
absent for tube-like shells.

We scale the constitutive functions for the resultants by

(6.7) T̂ = αT , N̂ = αN, Ĥ = αH, Σ̂ = α2Σ, M̂ = α2M.

That these are natural scalings is ensured by (4.14), which implies that

(6.8)
N = a ·

∫ ξ+

−ξ−
T̂A · a◦(1 + αξ(sin θ0)/r◦) dξ,

M = −a ·
∫ ξ+

−ξ−
ξT̂A · a◦(1 + αξ(sin θ0)/r◦) dξ,

etc. As in Sec. 4, the formulas (6.7) enable us to introduce constitutive
functions (τ, ν, η, σ̄, µ̄; s, α) �→ T (τ, ν, η, σ̄, µ̄; s, α), etc., giving rise to con-
stitutive equations of the form

(6.9) αT (τ, ν, η, σ̄, µ̄; s, α) = T̂ (τ(s), ν(s), η(s), α−1σ̄(s), α−1µ̄(s); s, α),

etc., for elastic shells, and to determine their properties. In particular, we
assume that T is odd in η and that the other constitutive functions are
even in η (cf. Proposition 4.27).
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Comments on the eversion problem. In the asymptotic analysis of
Sec. 10.9, we constructed the solution of our boundary-value problem cor-
responding to an everted state for small α as a perturbation of the solution
of the reduced problem. In keeping with the extensive theory of singular
perturbations, we associated with our boundary-value problem its version
in terms of an independent variable x suitably rescaled with respect to the
parameter α so as to put a neighborhood of the edge s = l under a micro-
scope. We then approximated the solution to our boundary-value problem
by expansions in powers of α to both the original and rescaled problems.

It is tempting to rescale our boundary-value problem by introducing the
stretched variable x = (s− l)/α, and using it to replace each s that appears
in the boundary-value problem with l + αt. (The edge s = l corresponds
to t = 0). The rescaled version of (4.16) would then become

(6.17) (r◦M)t + r◦(Hν −Nη) − αΣ cos θ = 0.

In this and the other rescaled equilibrium equations, the only places that
the small parameter α appears is before the functions T,Σ. It is the pres-
ence of these resultants that distinguishes our shell theory from a rod the-
ory. When these terms are neglected, the governing equations reduce to
those for a (plane-strain) rod theory, as is appropriate near the edge.

This particular rescaling, however, can be shown to prevent the compu-
tation of polynomial approximations to the original and scaled problems.
To carry out such computations we must find a better scaling. The simplest
one that works is x = (s − l)/

√
α, which was used in Sec. 10.9. (In the

literature on singular-perturbation theory, this scaling is suggested by the
fact, far from obvious, that the predominant s-derivatives in our boundary-
value problem are of the orders 0, 2.) The true justification of this scaling
is given by Theorem 10.9.23. But within the context of formal expansions,
one can be led to this conclusion by discovering that no other simple scaling
leads to a computable formal representation.

7. The Treatment of Incompressibility
For shell theories based upon the constraint (1.11), the incompressibility

constraint has the form

(7.1) (p̃,1 × p̃,2) · p̃,3 = j(x) ∀x ∈ A, ∀ t.

We just outline the treatment of those features that differ from those for
rods in Sec. 16.12.

If we substitute (1.12) into (7.1) and adopt the notation of Sec. 2, we
obtain

(r,1 × r,2) · d ≡ (r,1 × r,2) · a3δ = 1,(7.2a)

(r,1 × d,2 − r,2 × d,1) · d = a◦
3,1 · a◦

1 − a◦
3,2 · a◦

2,(7.2b)

(d,1 × d,2) · d = (a◦
3,1 × a◦

3,2) · a◦
3.(7.2c)
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Since the planar problems for rods discussed in Sec. 16.10 are but special
cases of problems for shells, we find that (7.2) unduly restricts the defor-
mations, just as (16.12.4) does. In many cases we can be content with
imposing only (7.2a), and using it to represent δ in terms of the strains
that arise in the special Cosserat theory.

The analog of (16.12.10) with α = 0 is

(7.3) π(r,d,x, t) = r + λ(x, t)a3;

its substitution into (7.1) yields the analog of (16.12.12):

(7.4) [(r,1 × r,2) + (r,1 × a3,2 − r,2 × a3,1)λ+ (a3,1 × a3,2)λ2] · a3λ,3

= 1 + ζ(a◦
3,1 · a◦

1 − a◦
3,2 · a◦

2) + (ζ)2(a◦
3,1 × a◦

3,2) · a◦
3.

This ordinary differential equation for λ as a function of ζ subject to the
initial condition that λ = 0 when ζ = 0 can immediately be integrated to
define λ implicitly as the solution of a cubic equation, which is difficult,
but not impossible, to deal with.

7.5. Exercise. Find the first three nonzero terms of the Taylor expansion of λ in ζ .

7.6. Exercise. Specialize (7.4) to axisymmetric deformations. Note that the resulting
equation still yields a cubic for λ.

7.7. Exercise. Specialize (7.2) to axisymmetric deformations and determine the kinds
of deformations it permits.

7.9. Exercise. Use the Principle of Virtual Power to find the equations for the ax-
isymmetric motion of incompressible shells when (7.4) holds. (See Ex. 7.6.) Note that
additional stress resultants intervene.

7.9. Exercise. Formulate the eversion problem of Sec. 10.9 for incompressible ax-
isymmetric shells for which the axisymmetric specialization of (7.4), given by Ex. 7.6,
holds. In particular, find the natural scalings for the stress resultants in terms of the
thickness parameter α, analogous to (6.7) and (6.8), and find the equilibrium equations
analogous to (6.10)–(6.12). (Antman & Srubshchik (2001) have shown that the scalings
(6.20) lead to a rigorous asymptotic expansion of the solution. The actual computation
of the regular and boundary-layer expansions and the justification of their validity are
about twice as difficult as that for the problem of Sec. 10.9.)

The results of this section are based on Antman & Schuricht (1999).

8. Intrinsic Theory of Special Cosserat Shells
In this section we give the direct formulation of the special Cosserat

theory of shells as a description of a class of 2-dimensional bodies. We pro-
ceed formally, leaving to the reader the treatment of refinements and the
full statement of regularity restrictions corresponding to those of Chaps. 8
and 12. The motion of a special Cosserat shell is the motion of a material
surface together with the motion of a field of unit vectors, called directors,
defined on the surface and allowed to vary independently of the surface.
Our treatment complements those of Sec. 2 and of Ex. 10.1.20. We en-
counter some of the same difficulties without access to the tools available
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there. To resolve these difficulties, we find it convenient to carry out the
initial part of our development for unconstrained directors.

We assume that the material surface is continuously differentiable, at
least away from its boundary. It is very convenient, though somewhat
inelegant, to introduce curvilinear coordinates s := (s1, s2) for the material
surface by identifying it with a mapping s �→ r◦(s) into E

3 of the closure
M of a domain of R

2 with r◦ continuously differentiable and one-to-one on
intM. We require that the coordinate system s be nonsingular on intM:

(8.1) r◦
,1 × r◦

,2 �= o ∀ s ∈ intM.

Geometry of deformation. Formally, a motion of a special Cosserat
shell is a mapping

(8.2) M × R � (s, t) �→ (r(s, t),d(s, t)) ∈ E
3 × S

2,

where S
2 is the unit sphere in E

3. The pair (r(·, t),d(·, t)) is the configu-
ration at time t of the shell. In our initial development, we make no use of
the constraint that d have unit length, and so do not assume it.

The reference configuration is (r◦,d◦) where d◦ is taken to be the ori-
ented unit normal field:

(8.3) d◦ :=
r◦

,1 × r◦
,2

|r◦
,1 × r◦

,2|
.

We may interpret r(·, t) as the material base surface at time t and d(s, t)
as characterizing the deformation at time t of the material fiber normal to
the material base surface at r◦(s) in the reference configuration. Conse-
quently we assume that r �→ c + Q · r and d �→ Q · d under the rigid
rotation Q and the translation c. The interpretation of this assumption in
the light of (2.1) shows that it corresponds to (2.1c).

To model the 3-dimensional requirement that orientation be preserved,
we may adopt the shell-theoretic analog of (16.8.13):

(8.4) min
h1≤ζ≤h2

{[r,1 + ϕ(x)d,1] × [r,2 + ϕ(x)d,2]} · d

{[r◦
,1 + ϕ(x)d◦

,1] × [r◦
,2 + ϕ(x)d◦

,2]} · d◦ > 0 on intM.

which is directly motivated by the 3-dimensional interpretation inherent
in (2.1c). (The denominator in (8.4) is present to handle any coordinate
singularity, such as would occur at the poles of polar coordinate systems.)
Many authors adopt the weaker condition

(8.5)
(r,1 × r,2) · d

(r◦
,1 × r◦

,2) · d◦ > 0 on intM,

which does not rest on a 3-dimensional interpretation. (The weakness of
(8.5) vis-à-vis (8.4) might only become manifest for a shell under severe
loading, in which case the failure to penalize the violation of (8.4) might
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allow different material sections to intersect within a shell in its 3-dimen-
sional interpretation.) Both (8.4) and (8.5) imply that at each point of
intM the triad {r,1, r,2,d} is a basis for E

3. It is generally not an or-
thonormal basis, however. This fact is the source of technical difficulty.

The strains for (8.2) are any independent set of functions from the set
of all scalar and triple scalar products formed from the five vector-valued
functions r,1, r,2,d,d,1,d,2. For special Cosserat rods these are subject to
the requirement that d · d = 1. In view of the interpretation of r,d, these
strains are unaffected by rigid motions and determine the configuration of
the shell to within a rigid motion.

8.6. Exercise. Show that a suitable set of strains when d is constrained to be a unit
vector is

(8.7) r,α · r,β , r,α · d, r,α · d,β , d · a3 where a3 :=
r,1 × r,2

|r,1 × r,2|
.

Show that these quantities determine the configuration of the shell to within a rigid
motion.

Mechanics. Let A be a subdomain of intM having a piecewise C1 bound-
ary. Let γ be the unit normal field to ∂r◦(A) that is tangent to r◦(A) and
points outward from it. The resultant contact force per unit length of
∂r◦(A) exerted at r◦(s) at time t by the material outside cl r◦(A) on it is
denoted n(s, t,γ(s)). Similarly, the resultant contact torque per unit length
of ∂r◦(A) exerted at r◦(s) at time t by the material outside cl r◦(A) on
it is denoted r(s, t) × n(s, t,γ(s)) + m(s, t,γ(s)). Here we are following
Cauchy’s postulate of Sec. 12.7 in assuming that these contact loads de-
pend on ∂r◦(A) only through the normal vector γ. (We emphasize that γ
has no intrinsic geometrical significance: It merely identifies the material
plane across which the traction acts.) Let f0(s, t) denote the force and
l(s, t) the couple per unit area of r◦(A) exerted on this body at (s, t) by
all other agencies. Thus the resultant force and torque on r◦(A) at time t
are

∫
∂A

n(s, t,γ(s)) dσ(s) +
∫

A
f0(s, t) da(s),(8.8)

∫
∂A

[r(s, t) × n(s, t,γ(s)) + m(s, t,γ(s))] dσ(s)(8.9)

+
∫

A
[r(s, t) × f0(s, t) + l(s, t)] da(s),

where dσ(s) is the differential arc length of ∂r◦(A) at s, and where
da(s) = |r◦

,1(s) × r◦
,2(s)| ds1 ds2 =: Γ (s) ds1 ds2 is the differential area of

r◦(A) at s.
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We denote the linear and angular momenta of r◦(A) at s at time t by∫
A

[2(ρh)(s)rt(s, t) + ρIqt(s, t)] da(s),(8.10)

∫
A

[2(ρh)(s)r(s, t) × rt(s, t)(8.11)

+ r(s, t) × ρIqt(s, t) + ρIq(s, t) × rt(s, t) + h(s, t)] da(s).

The integral forms of the equations of motion express (8.8) and (8.9) re-
spectively as the time derivatives of (8.10) and (8.11). In keeping with our
interpretations of r and d, we take ρIq and h to have the general forms of
(2.5c) and (2.13c) when (2.1c) holds. (As explained in Secs. 8.2–8.4, the
inertial terms typically require motivation from the 3-dimensional theory.)
Thus we take

(8.12) q = d, h = ρJd × dt.

In light of the results of Sec. 8.4, we can often choose ρI = 0 (cf. (8.2.13)
and (8.2.14)). The integral forms of the equations of motion are obtained
by equating (8.8) to the time derivative of (8.10) and equating (8.9) to the
time derivative of (8.11). The impulse-momentum laws are then obtained
by integrating these integral laws with respect to time.

We now imitate the proof of Cauchy’s Stress Theorem 12.7.14 to deter-
mine how n and m depend on γ. The advantages of 2-dimensionality are
counterbalanced by the curvilinearity. (Were it not for the use of curvi-
linear coordinates and for the motivation of Cauchy’s Stress Theorem, the
material of this section could logically have been placed in Chap. 10.) We
start by characterizing γ. Let λ �→ š(λ) be a sufficiently smooth (abso-
lutely continuous) curve in intM where λ is the arc-length parameter. Its
unit tangent vector is dš

dλ ≡
(

dš1

dλ ,
dš2

dλ

)
and (one of) its unit normal vectors

is β :=
(

dš2

dλ ,−
dš1

dλ

)
. Let us define {ḡβ} to be the basis dual to {r◦

,µ} on
span {r◦

,1, r
◦
,2}, and observe that

(8.13) Γ ḡ1 = r◦
,2 × d◦, Γ ḡ2 = d◦ × r◦

,1.

Then the corresponding unit normal γ to the curve λ �→ r◦(š(λ)) is
given by

(8.14)

γ((š(λ)) =
d

dλr◦(š(λ)) × d◦(š(λ))
| d
dλr◦(š(λ))|

= −
[β2(š(λ))r◦

,1(š(λ)) − β1(š(λ))r◦
,2(š(λ))] × d◦(š(λ))

|β2(š(λ))r◦
,1(š(λ)) − β1(š(λ))r◦

,2(š(λ))|

=
Γ (š(λ))βα(š(λ))ḡα(š(λ))

|β2(š(λ))r◦
,1(š(λ)) − β1(š(λ))r◦

,2(š(λ))|

=: γα(š(λ))ḡα(š(λ)) where γα = γ · r◦
,α.
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Let us choose A to be the region in intM bounded by the right tri-
angle with vertices at (s1, s2), (s1 + β2l, s

2), (s1, s2 + β1l). Note that the
hypotenuse has length l and unit outer normal (β1, β2). The image of A
under r◦ is the region bounded by the curvilinear triangle with oriented
sides

[0, 1] � λ �→ r◦(s + λ(β2l, 0)),(8.15a)

[0, 1] � λ �→ r◦(s + λ(0, β1l) + (1 − λ)(β2l, 0)),(8.15b)

[0, 1] � λ �→ r◦(s + (1 − λ)(0, β1l)).(8.15c)

The unit outer normal to the image of the hypotenuse that is tangent to
r◦(A) at r◦(s + ζ(λ)) where ζ(λ) := λ(0, β1l) + (1 − λ)(β2l, 0) is given by
(8.14) with š taken to be (8.15b).

We denote by −n2(s + λ(β2l, 0), t) and −n1(s + (1 − λ)(0, β1l), t) the
contact forces per unit reference length acting across the material curves

(8.16)
[0, 1] � λ→ r◦(s + λ(β2l, 0)),

[0, 1] � λ→ r◦(s + (1 − λ)(0, β1l)),

respectively. For our special choice of A as a triangular region, we obtain

(8.17)

∫
∂A

n(s, t,γ(s)) dσ(s)

= −
∫ 1

0
n2(s + λ(β2l, 0), t), t)

∣∣r◦
,1(s + λ(β2l, 0), t)

∣∣β2l dλ

−
∫ 1

0
n1(s + (1 − λ)(0, β1l), t)

∣∣r◦
,2(s + (1 − λ)(0, β1l), t)

∣∣β1l dλ

+
∫ 1

0
n(s, t,γ(s))

∣∣β2r
◦
,1(s + ζ(λ)) − β1r

◦
,2(s + ζ(λ))

∣∣ l dλ.
We now substitute this expression into the first equation of motion, divide
it by l, and let l → 0 to obtain

(8.18) |β2r
◦
,1 − β1r

◦
,2|n(·, ·,γ) = n1|r◦

,2|β1 + n2|r◦
,1|β2.

Using (8.16), we obtain from (8.18) a version of Cauchy’s Stress Theorem:

(8.19) n(·, ·,γ) =
(
|ḡ1|n1r◦

,1 + |ḡ2|n2r◦
,2
)

· γ.

Thus n is linear in γ. We now set

(8.20) n1
� = |ḡ1|n1, n2

� = |ḡ2|n2,

so that

(8.21) n(·, ·,γ) = nα
� γα =

Γnα
�βα

|β2r◦
,1 − β1r◦

,2|
.
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Now we consider an arbitrary A in intM, which we assume is bounded
by a sufficiently smooth curve [0, µ] � λ �→ š(λ) where λ is the arc-length
parameter. From (8.21) and the Divergence Theorem applied to A, we
obtain

(8.22)

∫
∂A

n(s, t,γ(s)) dσ(s) =
∫ µ

0

Γnα
�βα

|β2r◦
,1 − β1r◦

,2|

∣∣∣∣ ddλr◦(š(λ))
∣∣∣∣ dλ

=
∫ µ

0
Γnα

�βα dλ =
∫

A
(Γnα

� ),α ds
1 ds2

=
∫

A
Γ−1(Γnα

� ),α da.

To make the underlying geometrical ideas used in this derivation completely precise,
i.e, to avoid a proof depending on pictures, we have pulled back the integrals to A in
R2 where we applied the Divergence Theorem. (We could have used these same ideas
to formulate a precise version of the Divergence Theorem on r◦(A).)

Let us substitute (8.22) into the integral form of the equations of motion,
from which we obtain

(8.23) Γ−1(Γnα
� ),α + f0 = 2ρhrtt + ρIdtt.

Similarly, we set mα
� := |ḡα|mα (no sum) where −m2 and −m1 are the

contact couple per unit reference length respectively acting across the ma-
terial curves (8.16), and find the balance of moments

(8.24) Γ−1(Γmα
� ),α + r,α × nα

� + l = ρId × rtt + ρJd × dtt.

These equations agree with (2.4) and (2.12).
The argument leading to (8.19) and its analog for m(·, ·,γ) shows that

these equations hold at any material point of the boundary of M at which
γ exists. Traction boundary conditions for shells specify components of
nα

� γα and mα
� γα as functions of s, t, and specify suitable complementary

components of r and d in a way completely analogous to that discussed in
Sec. 12.8.

Let us now study the role of (8.23) and (8.24) under the constraint that
|d| = 1. In this case, there are five geometrical unknowns, namely, the
components of r and two functions specifying the orientation of the unit
vector d. When the resultants in (8.23), (8.24) are prescribed by consti-
tutive equations, we ostensibly have six equations for these five unknowns.
On the other hand, the development of Sec. 2 indicates that these equa-
tions are insufficient to handle the case when d is not constrained to be
a unit vector. Our task here is to resolve these questions by using shell-
theoretic (i.e., purely 2-dimensional notions), without directly appealing to
the 3-dimensional machinery used in Sec. 2. We discuss several approaches:

(i) We regard our model as describing the motion of a body in which all
couples, namely, mα and l, are moments of force distributions. The couples
acting at a material point s of M are given a 3-dimensional interpretation
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as resulting from a distribution of force over the material fiber defined by
s. (This fiber is the set of all material points with coordinates of the form
(s, ζ).) Since we model the deformation of such fibers by the vector d, we
may assume that mα

� and l have the forms

(8.25) mα
� = d × µα

� , l = d × f1.

Now let us take the dot product of (8.24) with d to obtain

(8.26) d,α × µα
� + d · (r,α × nα

� ) = o.

Since this equation is degenerate in that it lacks time derivatives and lacks
any applied forces, we may treat it as a constitutive restriction, just as
we treated the symmetry condition in the 3-dimensional theory (to which
it is intimately related). Thus the effective equations of motion for both
constrained and unconstrained d’s are (8.23) and the projection of (8.24)
onto the orthogonal complement of d, which is obtained by taking the cross
product of (8.24) with d.

(ii) Let us construct the Principle of Virtual Power corresponding to
(8.14) either rigorously as in Sec. 8.15, or formally by dotting (8.14) with
a test function η and integrating the resulting product by parts over M.
We obtain an expression that we abbreviate as 〈ζ,η〉 = 0, which is to hold
for all η satisfying appropriate boundary conditions. Now we examine the
version of this equation suitable for directors of unit length by restricting
η to be tangent to the constraint manifold defined by d · d = 1, i.e., we
take d · η = 0. We use a version of the Multiplier Rule 19.2.24 to conclude
that there is a scalar-valued function λ such that the classical version of
this Principle of Virtual Power has the form

(8.27) Γ−1(Γmα
� ),α + r,α × nα

� + l = d × rtt + d × dtt + λd.

Eqs. (8.23) and (8.27) form a system of six scalar equations for r, the unit
vector d and the multiplier λ. We get a system independent of λ by taking
the cross product of (8.27) with d. We get an equation for λ by taking
the dot product of (8.27) with d. But (8.24) is assumed to be universally
valid: Its derivation did not depend upon any constitutive assumption
about constraints on d. Thus λ must be 0. The degenerate dot product
of (8.27) with d must therefore be satisfied identically. It is most easily
treated by using (8.25) to reduce it to the constitutive identity (8.26).

(iii) A recurring theme in this book is that the fundamental equations
of motion in continuum mechanics can be expressed as principles of virtual
power. In Sec. 16.13, we showed how to exploit such principles to construct
rod theories with the generality of the induced theories. Let us do the same
here, but merely replacing the many variables of (16.13.1) with the pair
r,d. The analog of (16.13.3) with r� = o is

(8.28)
∫ ∞

0

∫
A

[µα
� ·d�

,α+ξ·d�−f1·d�−(2ρIrt+ρJdt)·d�
t ]Γ ds1 ds2+· · · = 0
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where we have taken the inertia terms in a form suggested by (2.7d) and
where the ellipsis stands for boundary and initial conditions. (An alterna-
tive motivation for the inertia terms is that the kinetic energy is a quadratic
form in the derivatives of the generalized coordinates and corresponding
term in the Principle of Virtual Power should be the first variation of the
kinetic energy.) Now we account for the constraint that the director be a
unit vector by taking the virtual velocity to be tangent to the constraint
manifold, in this case by taking d� = ω ×d where ω is arbitrary. Then the
classical form of (8.28) reduces to a version of (2.10) with our special form
of the acceleration terms:

(8.29) Γ−1(Γd×µα
� ),α −d,α ×µα

� −d×ξ +d×f1 = d× (ρIrtt +ρJdtt).

The right-hand side of (8.29) is exactly the same as that of (8.24). Let us
identify the differentiated term and the body-force terms on the left-hand
sides as in (8.29). The equality of the remaining terms, which may be
regarded as a constitutive restriction, gives a version of (2.15):

(8.30) r,α × nα
� + d,α × µα

� + d × ξ = o.

The material of the shell is elastic iff nα and mα are prescribed functions
of r,α,d,d,α, and s. To express the form of the constitutive equations
invariant under rigid motions, we introduce one of the bases {r,1, r,2,d} or
{r,1, r,2,a

3} where a3 := (r,1 × r,2)/|r,1 × r,2|.
8.31. Exercise. Use the Cauchy Representation Theorem 8.8.8 to show that if the
components of nα and mα with respect to either of these bases depend only on (8.7)
and s, then the constitutive equations for an elastic special Cosserat shell are invariant
under rigid motions. (In particular, let {h̄α} lie in span {r,α} and be dual to {r,α},
and let {h̄k} be the basis dual to {r,1, r,2, d}. Consider the constitutive equations for
nα · h̄k and mα · h̄k.)

As we pointed out in Chap. 8, it is difficult to use the Cauchy Rep-
resentation Theorem to determine frame-indifferent constitutive functions
with more arguments than those of an elastic medium. We can easily get a
representation theorem for material with memory by recasting our problem
so that we can use the methods of Sec. 12.11. Our inspiration comes from
Sec. 2, but our techniques are purely 2-dimensional. We define a tensor de-
pending on a parameter ζ (the geometric significance of which we pretend
to ignore) by

(8.32) F = [r,α + ζd,α]gα + dd◦,

where we define the gα by (16.2.5b) with z = r◦ + ζd◦. Clearly, if F is
an affine function of ζ, then there is a one-to-one relationship between the
tensor F and the vectors r,α,d,α,d. Suppose that nα, say, is a prescribed
function of the past history of r,α,d,α,d and of s. This function is equal to
another closely related function of the arguments r,α, χd,α, d where χ is
a suitably chosen nonzero number. This second function is obtained from
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the same function with arguments r,α, ζd,α, d by fixing the parameter
ζ. We denote this last function of r,α, ζd,α, d by n̂α. By our preceding
remarks, there is a function n̂αk such that n̂α · hk = n̂αk(F t, s), where the
hk are defined in Ex. 8.31. Since the hk rotate with the body, invariance
under rigid rotations implies that n̂αk(F t, s) = n̂αk(QtF t, s) for all proper
orthogonal Q. We now follow Sec. 12.11 to conclude that the n̂αk must
depend on the past history of F ∗ · F , i.e., it is equivalent to a function
depending on the past history of (8.7).

The definition and characterization of a transversely isotropic special Cosserat shell
(with the transverse direction in the reference configuration taken to be d◦) is more
delicate than those for rods in Sec. 8.11 and for 3-dimensional bodies in Sec. 12.13,
because the reference configuration of a shell may be curved as is that for a rod and
because the number of independent spatial variables exceeds 1 as for a 3-dimensional
body. The underlying concepts are of course the same. It is intuitively clear that the
response at a material point s cannot be transversely isotropic unless r◦ is spherical (or
planar) near s (or unless the constitutive equations are unrealistically degenerate; cf. the
discussion at the end of Sec. 8.11). We omit the details of the development, referring
to Carroll & Naghdi (1972), Cohen & Wang (1989), Ericksen (1970, 1972), Murdoch &
Cohen (1979), and Wang (1972, 1973). We can finesse the difficulty (and the beauty) of
this theory by choosing constitutive equations constructed as in Secs. 1 and 2 from the
constitutive equations for isotropic 3-dimensional materials.

8.33. Exercise. Imitate the treatment of Sec. 16.13 to formulate a Cosserat theory
for shells with one unconstrained director.

The material of such a shell is hyperelastic iff there is a scalar-valued function ŵ of
r,α, d, d,α, and s such that

(8.34)
nα

� (s, t) =
∂ŵ

∂r,α
(r,1(s, t), r,2(s, t), d(s, t), d,1(s, t), d,2(s, t), s),

mα
� (s, t) = d × ∂ŵ

∂d,α
(r,1(s, t), r,2(s, t), d(s, t), d,1(s, t), d,2(s, t), s).

The frame-indifferent form of (8.34) is obtained when ŵ is a function of (8.7) and s.

8.35. Exercise. Prove that if ŵ depends only on (8.7) and on s, then it satisfies the
identity

(8.36) r,α × ∂ŵ

∂r,α
+ d,α × ∂ŵ

∂d,α
+ d × ∂ŵ

∂d
= o,

which corresponds to (2.15).

8.37. Exercise. Formulate Hamilton’s Principle for hyperelastic shells satisfying the
constraint d · d = 1 and verify that the Euler-Lagrange equations for the Lagrangian
functional are the governing equations (8.23) and (8.24).

Note that the entire treatment of this section is consistent with that of Sec. 2 provided
that (2.1c) is employed.

The buckling problem for rectangular plates. We now specialize our preceding
development to formulate a family of buckling problems for rectangular special Cosserat
plates, which is typical of problems governed by partial differential equations that could
be readily analyzed by perturbation methods. We take

(8.38) M = {s : |s1| ≤ l1, |s2| ≤ l2}
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where l1, l2 are prescribed positive numbers. We assume that r◦ lies in the {i1, i2}-
plane. We study problems for which

(8.39) n1(±l1, s2) · i1 = −λ1, n2(s1,±l2) · i2 = −λ2.

We allow λ1, λ2 to be either positive or negative. We have four bifurcation parameters
l1, l2, λ1, λ2, which can be reduced by suitable scaling.

To express the constitutive equations, we adopt a suitably specialized version of
(8.34). In particular, we adopt an analog of (16.9.18) for an isotropic W . Employing
(2.1c) with ϕ = ζ , we find that

(8.40) C = (r,α + ζd,α) · (r,β + ζd,β) iαiβ + (r,α + ζd,α) · d (iαi3 + i3iα) + i3i3.

Thus C is determined by r,α · r,β , r,α · d, r,α · d,β + r,β · d,α, d,α · d,β , and thus by
(8.7). For an isotropic, hyperelastic 3-dimensional material, the stored-energy function
depends on the principal invariants of (8.40). The first invariant is quadratic in ζ and
the other two are quartics in ζ . The thirteen coefficients of the different powers of ζ in
these invariants are the 2-dimensional invariants for the plate problem.

8.41. Exercise. Find these invariants. Next suppose that the plate is merely trans-
versely isotropic. Use a representation theorem for such materials to find the corre-
sponding plate-theoretic invariants and compare these with the invariants found from
the plate-theoretic invariants corresponding to a 3-dimensional isotropic material.

8.42. Problem. Formulate buckling problems for a plate with a stored-energy function
depending on (8.40) by supplementing (8.39) with a variety of other suitable boundary
conditions. Analyze these by using perturbation methods. Determine the eigensurface
consisting of those l1, l2, λ1, λ2 for which the linearized problem has nontrivial solutions.
Discuss the geometric and algebraic multiplicities of the eigenvalues. Discuss the role of
shearability. Determine whether buckling is supercritical or subcritical.

The methods of Golubitsky, Stewart, & Schaeffer (1988) can be profitably applied to
parts of this problem. See Schaeffer & Golubitsky (1979) and the discussion in Sec. 14.12.
An important open question is to adapt the methods of Healey & Kielhofer (1991) to
problems like these governed by systems of partial differential equations.

8.43. Problem. Carry out the analogs of Problem 8.42 for cylindrical and spherical
shells.

Kirchhoff shells. We specialize these formulations to Kirchhoff shells by
assuming that d cannot be sheared with respect to the surface r. Our
main goal is to determine appropriate forms of boundary conditions from
a suitable version of the Principle of Virtual Power. By methods just like
those of Sec. 12.9, we can show the equivalence of impulse-momentum laws
for (8.23), (8.24) to the Principle of Virtual Power in the form
(8.44)∫ ∞

0

∫
M

[
−nα

� · r�
,α − mα · ω,α + f0 · r� + (r�

,α × nα
� + l) · ω

]
Γ ds1 ds2 dt

+
∫ ∞

0

∫
∂M

[nα
� · r� + mα

� · ω]βαΓ dσ dt

+
∫ ∞

0

∫
M

[(2ρhrt + ρIqt) · r�
t + (ω × ρIq)t · rt + h · ωt]Γ ds1 ds2 dt

+
∫

M
[(2ρhrt + ρIqt) · r� + (ω × ρIq) · rt + h · ω]

∣∣∣∣
t=0
Γ ds1 ds2 = 0
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for all r�,ω. Here we interpret ω as coming from d� = ω × d, which is
valid since d is assumed to be a unit vector. (We can, of course, derive
(8.44) by purely formal methods.)

Now we impose the Kirchhoff constraint (2.17):

(8.45) d =
r,1 × r,2

|r,1 × r,2|
.

In this case, the nα
� · d are Lagrange multipliers. From (8.45) we obtain

(2.26):

(8.46) d� = ω × d, ω := d ×
r�

,1 × r,2 + r,1 × r�
,2

|r,1 × r,2|
.

The substitution of this ω into (8.44) yields an equation whose boundary
term is

(8.47)

∫ ∞

0

∫
∂M

[
(nα

�βα) · r� +
[(mα

�βα) · r,2]d
|r,1 × r,2|

· r�
,1

− [(mα
�βα) · r,1]d

|r,1 × r,2|
· r�

,2

]
Γ dσ dt.

We use (8.47) to determine suitable versions of boundary conditions anal-
ogous to (16.2.15). Let us study boundary conditions near a place where
r◦(∂M) is continuously differentiable. Without loss of generality, we take
this part of the boundary to be defined by s1 = s10, a constant, and assume
that M lies locally to the left of this boundary so that β1 = 1, β2 = 0.

We could prescribe the position r(s10, ·, t) at time t of this part of the
boundary. In this case, r�(s10, ·, t) = o and r�

,2(s
1
0, ·, t) = o, and the form

of (8.47) says that we can either clamp this part of the boundary, i.e.,
prescribe r,1(s10, ·, t), in which case r�

,1(s
1
0, ·, t) = o, or else prescribe the

complementary couple

(8.48)
(m1 · r,2)d
|r,1 × r,2|

,

which is the coefficient of r�
,1 in the integrand of (8.47).

Now suppose that we do not prescribe r(s10, ·, t). We take r�(s10, ·, t)
to have compact support and integrate the third term in the integrand of
(8.47) by parts over this support. Then the arbitrariness of r�(s10, ·, t) says
that we should prescribe its coefficient in the resulting integrand of (8.47):

(8.49) n1
� +

∂

∂s2

{
(m1

� · r,2)d
|r,1 × r,1|

}
.

We could further clamp this edge or prescribe (8.48).
Finally, we could prescribe some components of r(s10, ·, t) and leave the

remaining components free. The strategy for prescribing boundary condi-
tions is the same.
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8.50. Exercise. Suppose that r◦(M) lies in the {i, j}-plane. Suppose that those
boundary values of r and r,α that are prescribed agree with their values in the reference
configuration. Suppose that f0, l, the prescribed boundary values of nα

� βα and mα
� βα,

and the prescribed initial values of r − r◦ are each proportional to a small parameter ε.
Find the linear problem governing the leading term in a formal perturbation expansion
of the initial-boundary-value problem for the motion of an isotropic Kirchhoff plate. In
particular, find the equation governing the component of linearized displacement in the
k-direction. It differs from the classical equation in that it accounts for rotatory inertia.

8.51. Exercise. Derive the governing equations and natural boundary conditions for
a hyperelastic Kirchhoff shell by Hamilton’s Principle.

9. Membranes
A degenerate version of the equations for a shell are those for a mem-

brane (just as a degenerate version of the equations for a rod are those for
a string). The membrane equations are obtained from the shell equations
by introducing the constitutive assumptions that there is neither flexural
stiffness nor flexural inertia, so that mα = o and h = o; by taking ρIq = o;
and by taking the applied couple l = o. In this case, (8.24) reduces to

(9.1) r,α × nα = o,

which together with (8.23) are the governing equations for a membrane.
We regard (9.1) as a constitutive restriction on the nα. To determine its
consequences, let us decompose nα by

(9.2) nα = nαβr,β + nα3a3

where a3 = d of (8.45). The independence of the base vectors appearing
on the right-hand side of (9.2) enables us to deduce from (9.1) that

(9.3a,b) nα3 = 0, n12 = n21.

Conditions (9.3a) and (9.2) imply that nα ∈ span {r,1, r,2}. Thus the
contact force vectors are tangent to the surface r. Condition (9.3a) also
says that a membrane cannot sustain shear forces not tangent to the surface
r. To interpret the symmetry condition (9.3b), let us use (16.2.7a) and
(2.5a) to obtain the equivalent formulas:

Γnα
� =

∫ h2

h1

p,kgk · SA · gα j dζ(9.4a)

nαβ
� = nα

� · ḡβ =
1
Γ

∫ h2

h1

ḡβ · p,k gk · SA · gα j dζ(9.4b)

for a 3-dimensional shell-like body. We conceive of a membrane as being
an extremely thin shell, in which case we could hope to approximate p and
gk in (9.4) with r and ḡk. Doing so, we can make the identification

(9.5) nαβ ∼ 1
Γ

∫ h2

h1

ḡα · SA · ḡβ j dζ.
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Thus condition (9.3b) is a reflection of the symmetry of S and of the
thinness of the membrane.

The constitutive equations for membranes are like those for shells, except that now
(8.7) is reduced to {r,α · r,β}. If the membrane is hyperelastic, then it has a stored-
energy function ω̂ depending on these strains. If the membrane is also isotropic, then
the stored-energy function ŵ is a symmetric function of the eigenvalues of the matrix
(r,α ·r,β) with respect to the matrix (r◦

,α ·r◦
,β). Consequently, ŵ depends on the strains

only through λ1 + λ2 and λ1λ2, where λ1 and λ2 are solutions of

(9.6) det(r,α · r,β − λr◦
,α · r◦

,β) = 0.

Thus ŵ depends on

(9.7a,b)
(r,1 · r,1)(r◦

,2 · r◦
,2) + (r,2 · r,2)(r◦

,1 · r◦
,1) − 2(r,1 · r,2)(r◦

,1 · r◦
,2)

|r◦
,1 × r◦

,2|2
,

r,1 × r,2

r◦
,1 × r◦

,2
,

and s. Note that (9.7b) is the local ratio of deformed to reference area. The equations
of motion for a hyperelastic membrane are the Euler-Lagrange equations for the La-
grangian functional. In particular, the equilibrium of a hyperelastic isotropic membrane
under zero body force is governed by the Euler-Lagrange equations for the total energy
functional

(9.8)
∫

M
ŵ da(s).

The minimal surface equation. The minimal surface spanning a given contour C
is that surface through C having the least area. Its equations are the Euler-Lagrange
equations for the area functional

(9.9)

∫
r(M)

da =
∫

M
|r,1 × r,2| ds1 ds2 =

∫
M

∣∣∣∣∣r,1 × r,2

r◦
,1 × r◦

,2

∣∣∣∣∣ |r◦
,1 × r◦

,2| ds1 ds2

=
∫

M

∣∣∣∣∣r,1 × r,2

r◦
,1 × r◦

,2

∣∣∣∣∣ da(s).
Thus the minimal surface equations are a special case of the equations of equilibrium
for hyperelastic isotropic membranes. The version of the minimal surface equation most
studied is that in which r is the graph of a function. In this case, the equations have a
spatial formulation, which removes it from the setting for nonlinear elasticity promoted
in this book.

9.10. Exercise. Prove that the natural state for the membrane with total energy
functional (9.9) is the degenerate state in which the area of the membrane is zero.
(This situation is the analog of that discussed in Sec. 2.7.) Prove the same result for
membranes with stored-energy functions of the form

(9.11) w = Ω

(∣∣∣∣∣r,1 × r,2

r◦
,1 × r◦

,2

∣∣∣∣∣ , s
)

when Ω(·, s) is strictly increasing.

If Ω(·, s) is not strictly increasing, then there is at least one nondegenerate natural
state. A simple example is Ω(ξ, s) = ξ−1+ξ, in which area reductions are penalized, just
as in most of this book. In the absence of bending stiffness, nonincreasing Ω ’s can cause
instabilities associated with a loss of ellipticity. If Ω(·, s) is not affine, then the reference
quantity |r◦

,1 × r◦
,2| must appear explicitly in the integrand of the total stored-energy

functional (9.8). Thus, the minimal surface equation has special properties not shared
by any other membrane equations.

Note that (9.9) is quadratic in derivatives of r, but it is not coercive in any useful
sense. (The corresponding nonparametric form of this area functional, in which r is the
graph of a real-valued function, has asymptotically linear growth, which is the source
of analytic difficulties.) Useful coercivity could attend the introduction of a further
dependence on (9.7a).
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10. Asymptotic Methods.
The von Kármán Equations

In this section we outline effective methods for constructing theories of plates corre-
sponding to formal asymptotic approximations of the 3-dimensional equations of equi-
librium. The small parameter is the (half-) thickness h. In particular, we show how the
von Kármán plate equations can be given a rational position within nonlinear elasticity.

Let {ik} be a fixed right-handed orthonormal basis for E3. We set i3 = k. We take
all components of tensors with respect to this basis. We sum twice-repeated indices over
their ranges, whether the indices are diagonally disposed or not. Let M be a domain in
R2. We study plates, i.e., bodies of the form

(10.1) B(h) := {z = zkik : (z1, z2) ∈ cl M, z3 ∈ [−h, h]}.

We can identify M with r◦(M) as a domain in span{i1, i2}.
We shall express the resulting equations in terms of the displacement u defined by

(10.2a,b) p(z) = z + u(z) so that F = I + uz .

We adopt the constitutive equation (13.1.7) for a homogeneous iso-
tropic elastic body whose reference configuration is the natural undeformed state. Its
linearization about this state is

(10.3a) S� = λ (tr E�)I + 2µE�

where λ and µ, the Lamé constants, are assumed positive. (E� is the linearization of
E = 1

2 (C − I).) Then (10.3a) is equivalent to an expression of the form

(10.3b) E� = A(S�) :=
1 + ν
E

S� − ν

E
(tr S�)I

with E > 0, 0 < ν < 1
2 . (E is the elastic modulus, or Young’s modulus, and ν is

Poisson’s ratio.) We can now apply the invertible linear operator A to (13.1.7) to
obtain the equivalent constitutive equation

(10.4) A(S) =
1 − 2ν
E

α0I − ν

E
[α1 tr C + α2 tr (C2)]I +

1 + ν
E

(α1C + α2C2)

where the α’s depend upon the principal invariants of C. For simplicity, we assume that
the α’s are infinitely differentiable. A weak form of (10.4) is obtained by integrating the
inner product of it with an arbitrary symmetric tensor-valued function H̃:

(10.5)

∫
B(h)

A(S) : H̃ dv =
1 − 2ν
E

∫
B(h)

α0tr H̃ dv

− ν

E

∫
B(h)

[α1tr C + α2tr (C2)]tr H̃ dv

+
1 + ν
E

∫
B(h)

(α1C + α2C2) : H̃ dv

for all symmetric H̃. Note that H̃ should be regarded as a ‘virtual stress’. Here and
throughout this section, we proceed formally by tacitly assuming that all integrals make
sense. It is easy to impose sufficient conditions ensuring that they do.

Although it is possible to handle fairly general classes of boundary conditions, it is
illuminating to restrict our attention to the special and slightly artificial conditions on
the edge that

uα
,3 = 0, u3 = 0 for (z1, z2) ∈ ∂M,(10.6a,b) ∫ h

−h
k × T · γ dz3 = o for (z1, z2) ∈ ∂M(10.7)
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where γ is the unit outer normal to ∂M. The weak form of the equilibrium equations
is the Principle of Virtual Power (which incorporates (10.7)):

(10.8)
∫

B(h)
[S : η̃z + uz · S : η̃z − f · η̃] dv −

∫
L+∪L−

τ̄ · η̃ da = 0

for all η̃ satisfying boundary conditions (10.6a,b).

Below, we prescribe the traction on the faces.
We now transform our problem from one on a domain parametrized by the thickness

h to a set of equations parametrized by h on a fixed domain by the simple device of
setting

(10.9a) z1 = y1, z2 = y2, z3 = hy3,

so that y := (y1, y2, y3) ranges over

(10.9b) B(1) ≡ cl M × [−1, 1] ≡ {y : (y1, y2) ∈ cl M, y3 ∈ [−1, 1]}.

We also use the notation s ≡ (s1, s2) ≡ (y1, y2).
For our asymptotic approach to yield equations of von Kármán type, it is essential

that the magnitudes of the applied loads be scaled appropriately in the thickness. A
special case of such scalings, sufficient for our goal of merely illustrating the technique,
is to take

f(z) = h3f (y)k,(10.10)

τ̄ (x) = ±h4τ±(s)k for y3 = ±1.(10.11)

We now scale the stress, the virtual stress, displacement, and virtual displacement
fields by defining

(10.12)
Sαβ(z) := h2Σαβ(y, h), Sα3(z) := h3Σα3(y, h), S33(z) := h4Σ33(y, h),

H̃αβ(z) := h2Hαβ(y, h), H̃α3(z) := h3Hα3(y, h), H̃33(z) := h4H33(y, h),

(10.13)
uα(z) = h2υα(y, h), u3(z) = hυ3(y, h),

η̃α(z) = h2ηα(y, h), η̃3(z) = hη3(y, h).

We set

(10.14) Σ := Σjkijik, H := H jkijik, υ := υkik, η := ηkik.

If the boundary-value problem (10.5)–(10.8), (10.10), (10.11) has a solution (S,u),
then (Σ,υ) satisfies the following versions of (10.5) and (10.8):

(10.15) A0(Σ,H) + h2A2(Σ,H) + h4A4(Σ,H) = N (υ,H, h) ∀ H ∈ Sym,

(10.16) B(Σ, η) + 2C0(Σ,υ, η) + 2h2C2(Σ,υ, η) = F (η) ∀ η satisfying (10.6)

where

A0(Σ,H) :=
∫

B(1)

[
1 + ν
E

ΣαβHαβ − ν

E
ΣααHββ

]
dv,(10.17a)

A2(Σ,H) :=
∫

B(1)

[
2
1 + ν
E

Σα3Hα3 − ν

E
(Σ33Hββ +ΣββH33)

]
dv,(10.17b)
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A4(Σ,H) :=
1
E

∫
B(1)

Σ33H33 dv,(10.17c)

N (υ,H, h) :=
∫

B(1)

{
1 − 2ν
E

h−2α0(Hαα + h2H33)(10.17d)

− ν

E
h−2(α1tr C + α2tr C2)(Hαα + h2H33)

+
1 + ν
E

h−2(α1Cαβ + α2CαkCkβ)Hαβ

+ 2
1 + ν
E

h−1(α1Cα3 + α2CαkCk3)Hα3

+
1 + ν
E

(α1C33 + α2C
2
33)H33

}
dv(y),

B(Σ, η) := −
∫

B(1)
Σ :

∂η

∂y
dv,(10.17e)

C0(Σ,υ, η) := −1
2

∫
B(1)

Σkl ∂υ3

∂yk

∂η3

∂yl
dv,(10.17f)

C2(Σ,υ, η) := −1
2

∫
B(1)

Σkl ∂υα

∂yk

∂ηα

∂yl
dv,(10.17g)

F (η) := −
∫

B(1)
fη3 dv(10.17h)

−
∫

M
τ+(s)η3(s, 1) ds1 ds2 +

∫
M
τ−(s)η3(s,−1) ds1 ds2,

with

Cαβ = δαβ + h2(υα,β + υβ,α + υ3,αυ3,β) + h4υµ,αυµ,β ,(10.18a)

Cα3 = h(υα,3 + υ3,α + υ3,αυ3,3) + h3υµ,αυµ,3,(10.18b)

C33 = 1 + υ3,3(2 + υ3,3) + h2υµ,3υµ,3,(10.18c)

and where α0, α1, α2 depend upon the principal invariants of C of the form (10.18).
Note that the scaling dv(z) = h dv(y) affects every integral except for the last two terms
of (10.17h), where the distinction in scales between (10.10) and (10.11) is manifested.

We seek solutions of (10.15) and (10.16) having formal expansions of the form

(10.19)
Σ(y, h) = Σ(0)(y) + hΣ(1)(y) + 1

2h
2Σ(2)(y) + · · · ,

υ(y, h) = υ(0)(y) + hυ(1)(y) + 1
2h

2υ(2)(y) + · · · .

We limit our attention to the leading term (Σ(0), υ
(0)), which, as we shall show,

satisfies the (nonlinear) von Kármán equations. Once the leading term is determined,
subsequent corrections are obtained as solutions of linear equations with coefficients
depending on the leading terms. We denote the (2-dimensional) Laplacian by ∆ and
consequently we denote the (2-dimensional) biharmonic operator by ∆2. Our funda-
mental result is

10.20. Theorem. Let the data in (10.10) and (10.11) be sufficiently smooth and let
these equations have a solution of the form (10.19) with υ(0)

3 ∈ C4(M × [−1, 1]) ∩
C0(cl B(1)). Then υ(0) is of Kirchhoff-Love type, i.e., there is a function M � s �→ ω(s)
such that

(10.21a,b) υ
(0)
3 (y) = ω3(s), υ

(0)
α (y) = ωα(s) − y3ω3,α(s).
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Moreover, the stresses are given by

1 + ν
E

Σαβ
(0) − ν

E
Σµµ

(0)δ
αβ = 1

2

[
υ
(0)
α,β + υ(0)

β,α + υ(0)
3,αυ

(0)
3,β

]
,(10.22a)

Σα3
(0) = − E

2(1 − ν2)
[1 − (y3)2]∆ω3,α,(10.22b)

2Σ33
(0) = (y3 + 1)τ+ + (y3 − 1)τ−(10.22c)

+ (1 + y3)
∫ 1

−1
f (s, η) dη − 2

∫ y3

−1
f (s, η) dη

+
E [1 − (y3)2]

1 − ν2

[
y3

3
∆2ω3 − (1 − ν)ωα,βωα,β − ν(∆ω3)2

]
where ω satisfies the 2-dimensional problem

2E
3(1 − ν2)

∆2ω3 − 2Ωαβω3,αβ = τ+ + τ− +
∫ 1

−1
f (s, η) dη in M,(10.23)

Ωαβ
,β = 0 in M,(10.24)

ω3 = 0, ω3,αγα = 0 on ∂M,(10.25)

Ωαβγβ = 0 on ∂M,(10.26)

with

(10.27)
2(1 − ν2)

E
Ωαβ = (1 − ν)(ωα,β + ωβ,α) + 2νωµ,µδαβ

+ (1 − ν)ω3,αω3,β + νω3,µω3,µδαβ .

We sketch the proof below. We now show that (10.23) and (10.24) can be converted
to von Kármán’s equations. Let us assume for simplicity that M is simply-connected
and that Ωαβ is continuously differentiable. We apply Theorem 12.3.5 to each equation
of (10.24) to deduce that there are twice continuously differentiable functions ψ1 and ψ2
such that

(10.28) Ω11 = ψ1,2, Ω12 = −ψ1,1, Ω21 = ψ2,2, Ω22 = −ψ2,2.

Since Ω12 = Ω21, it follows that ψα,α = 0. We now apply Theorem 12.3.5 to this
equation to conclude that there is a thrice continuously differentiable function Φ such
that ψ1 = Φ,2, ψ2 = −Φ,2. Thus

(10.29) Ωαβ = εαγεβδΦ,γδ ,

which ensures that (10.24) is identically satisfied.

10.30. Exercise. Show that (10.23), (10.27), and (10.29) imply that ω3 and Φ satisfy
the semilinear von Kármán equations:

2E
3(1 − ν2)

∆2ω3 − 2[Φ, ω3] = τ+ + τ− +
∫ 1

−1
f (s, η) dη in M,(10.31)

∆2Φ = − 1
2 [ω3, ω3](10.32)

where the Monge-Ampère form [·, ·] is defined by

(10.33) [f, g] := f,11g,22 + f,22g,11 − 2f,12g,12.

(In fact, (10.23), (10.24), and (10.29) are equivalent to (10.31) and (10.32).)
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Sketch of the Proof of Theorem 10.20. We introduce the abbreviations

(10.34)
ξ := υ(0)

3,3(1 + 1
2υ

(0)
3,3), χ := υ(1)

3,3(1 + υ(0)
3,3),

καβ := υ(0)
α,β + υ(0)

β,α + υ(0)
3,αυ

(0)
3,β , λα := υ(0)

α,3 + υ(0)
3,α + υ(0)

3,αυ
(0)
3,3.

Then (10.18) and (10.19) imply that

(10.35)

IC = 3 + 2ξ + 2hχ + o(h),

IIC = 3 + 4ξ + 4hχ + o(h),

IIIC = 1 + 2ξ + 4hχ(1 + υ(0)
3,3) + o(h),

C : C = 3 + 4ξ + 4ξ2 + 4hχ(1 + 2ξ) + o(h),

CαβHαβ = Hαα + h2καβHαβ + o(h2),

Cα3Hα3 = hλαHα3 + o(h),

C33H33 = (1 + 2ξ)H33 + o(h),

CαkCkβHαβ = Hαα + h2(2καβ + λαλβ)Hαβ + o(h2),

CαkCk3Hα3 = 2h(1 + ξ)λαHα3 + o(h),

C3kCk3H33 = (1 + 2ξ)2H33 + o(h).

Proof of (10.21a). We take H = H33kk in (10.15) and then let h → 0. It follows from
(10.17d) and (10.35) that

(10.36a,b)
∫

B(1)
Θ(ξ)H33 dv = 0 ∀H33, so that Θ(ξ(y)) = 0 ∀y ∈ B(1)

where

(10.37)
Θ(ξ) :=

1 − 2ν
E

2∑
i=0

α̃i(ξ) +
2
E
ξ[α̃1(ξ) + 2α̃2(ξ)] +

4
E
ξ2α̃2(ξ),

α̃i(ξ) := αi(3 + 2ξ, 3 + 4ξ, 1 + 2ξ).

Since the reference configuration is natural, it follows from (13.1.7) that Θ(0) = 0. The
definitions of E and ν implicit in (10.3) ensure that Θ′(0) = 1, so that 0 is an isolated
zero. Therefore, the only continuous solution ξ of (10.36b) satisfying the boundary
condition that ξ = 0 for s ∈ ∂M (which comes from (10.6b)) is ξ = 0. It then follows
from (10.34), (10.6b), and the smoothness of υ(0)

3 that (10.21a) must hold. �

Proof of (10.21b). We take H = Hα3iαk in (10.15), let h → 0, and use (10.21a) to
obtain

(10.38a,b)
∫

B(1)

[
υ
(0)
α,3 + υ(0)

3,α

]
Hα3 dv = 0 ∀Hα3, so that υ

(0)
α,3 + υ(0)

3,α = 0.

We immediately deduce (10.21b) from (10.38b). �

Using (10.21), we can refine (10.35):

(10.39) IC = 3 + 2hυ(1)
3,3 + h2

[
2υ(0)

α,α + 2υ(0)
3,αυ

(0)
3,α + +(υ(1)

3,3)2 + 2υ(2)
3,3

]
+ o(h2), etc.

We again take H = H33kk in (10.15), use (10.39), divide the resulting expression by h,
and then let h → 0. We find that

(10.40) υ
(1)
3,3 = 0.
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Proof of (10.22a). We take H = Hαβiαiβ in (10.15), use (10.39) and (10.40), and
then let h → 0. We exploit properties of the invariants αi to show that the resulting
equation is the weak form of (10.22a). �

The remaining statements of Theorem 10.20 are proved in a similar fashion (see
Ciarlet (1980)).

This section is based upon the refinement of the work of Ciarlet (1980) by Davet
(1986). These authors employ a more general and precise functional setting than that
used here. Related expositions are given by Ciarlet & Rabier (1980) and by Ciarlet
(1990, 1997). See Vashakmadze (1999) for an alternative treatment.

This work was the first that gave the von Kármán equations a rational position within
the general theory of nonlinear elasticity. All previous derivations of these equations,
beginning with von Kármán’s (1910), employed a variety of ad hoc assumptions about
the negligibility of certain terms. A virtue of Ciarlet’s approach is that these equations
characterize the leading term of a formal asymptotic expansion of the solution for the
full 3-dimensional equations. The von Kármán equations have the important mathemat-
ical virtue that they are semilinear. Consequently their analysis is much simpler than
that of the quasilinear equations typical of other problems of nonlinear elasticity. (But
the linearizations of the quasilinear equations for Cosserat shells, which are needed for
bifurcation analyses, are scarcely any more complicated that those for the von Kármán
equations.)

It is important to note that the formal validity of the von Kármán equations is
predicated on very special scalings of the loads in the thickness variables. It is very easy
for mathematical analyses of these equations to be conducted for parameters outside
the range of physical validity (cf. Sec. 10.5). On the other hand, as P. G. Ciarlet has
noted, the mathematical simplicity of the von Kármán equations might conceivably be
exploited in continuation methods, of the sort discussed in Chap. 3 and elsewhere, to
describe situations far from those for which these equations are valid.

Work of Fox, Raoult, & Simo (1993) suggests that asymptotic methods using a
broader repertoire of scalings yield asymptotic models having the same form as those
discussed in Secs. 2 and 6.

11. Justification of Shell Theories
as Asymptotic Limits

The rigorous justification of various rod and shell theories by showing that their
governing equations and their solutions are appropriate limits of those for nonlinear
3-dimensional theories as a thickness parameter goes to zero has long provided serious
challenges to analysis. Recent advances in methods of the calculus of variations have
now provided effective new tools to justify rod and shell theories as such limits for the
equilibrium of hyperelastic bodies. (These same advances have supported an effective
theory of homogenization for linearly elastic materials.) We are faced with the problem
of minimizing a functional in which there are one or more small parameters that are
allowed to go to zero. We wish to relate the minimizer of the limit of the functional to
the corresponding limit of the minimizers.

The difficulty that is encountered is illustrated in the problem of minimizing the
functionals

(11.1) Φk[u] =
∫ 1

0
[2 + sin 2πkx]u′(x)2 dx, k = 1, 2, . . . ,

subject to the boundary conditions u(0) = 0, u(1) = 1, say in W 1
1 (0, 1). Each of these

functionals has a unique minimizer uk given by

(11.2) uk(x) =

∫ x
0

dξ
2+sin 2πkξ∫ 1

0
dξ

2+sin 2πkξ

,
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which satisfies the Euler-Lagrange equation and is found by solving it. Now, the sequence
of functions x �→ sin 2πkx converges weakly to 0 in W 1

1 (0, 1) as k → ∞ (in accord with
the discussion of weak convergence in Sec. 7.3). If we replace sin 2πkx in (11.1) with
its weak limit 0, we get the functional u �→ 2

∫ 1
0 u

′(x)2 dx, whose minimum is 2. On
the other hand, the substitution of the minimizer (11.2) of (11.1) into (11.1) gives the
minimum of (11.1):

(11.3)
[∫ 1

0

dx

2 + sin 2πkx

]−1

=

[
1
π

∫ π/2

−π/2

dy

2 + sin y

]−1

=
√

3.

(In the first equality of (11.3), we used the periodicity and oddness of the integrand to
express the integral as a multiple of an integral over a half period, to which a tabulated
indefinite integral can be applied.) Of course, the limit of (11.3) as k → ∞ is

√
3. (This

example, typical of those for problems of homogenization, comes from Dal Maso (1993).)
The notion of Γ-convergence is designed to avoid such incompatibilities by producing

a mode of convergence and limiting functional having the ‘right’ minimum and mini-
mizer. This theory shows that the appropriate limiting functional for (11.1) is

(11.4) u �→
√

3
∫ 1

0
u′(x)2 dx.

It has the properties that the minima of (11.1) converge to the minimum of (11.4) and
that the minimizers (11.2) of (11.1) converge pointwise to the minimizer x �→ x of (11.4).
For problems for rods and shells, the discrete parameter k of (11.1), which goes to ∞,
is replaced by at least one thickness parameter, which goes to 0.

A 1-parameter family Ψh of functionals from a Banach space X to R∪{∞} is said to
be strongly or weakly Γ-convergent to a functional Ψ as h → 0 iff (i) lim infh→0 Ψh[uh] ≥
Ψ [u] for every 1-parameter family uh of functions in X converging respectively strongly
or weakly to u, and (ii) For each u ∈ X there is a 1-parameter family uh ∈ X converging
respectively strongly or weakly to u such that limh→0 Ψh[uh] = Ψ̄ [u]. The useful prop-
erties of Γ-convergence of Ψh to Ψ are that under some assumptions of equicoercivity
(which we do not pause to spell out), (i) the minima of the Ψh exist and converge to the
minimum of Ψ , which exists, (ii) a subsequence of minimizers of Ψh converges to each
minimizer of Ψ , and (iii) if Ψh and Ψ have unique minimizers, then the minimizers of
the Ψh converge to the minimizer of Ψ . In the setting of rod and shell theories, these
properties endow the limiting problem, and especially its minimizers, with a natural
physical meaning.

To illustrate the role of Γ-convergence for the bending of plates, we adopt the notation
of Sec. 10. We consider the stored-energy functional

(11.5) E [p, h] =
∫

B(h)
W (p∗

z · pz) dv.

with B given by (10.1). We suppose that prescribed tractions and body forces make
negligible contributions to the total energy functional.

To gain intuition about the behavior of (11.5), we can use ideas developed for the
various theories of shells described above. If we substitute (2.1c) into (2.5a), (2.7a),
(2.13a), we find that the nα scale like h and that µα and m scale like h2, as in (6.7).
As our analysis of Sec. 6 shows, the leading terms of expansions in h are of order h
when the effects of extension predominate, and are of higher order when these effects
are negligible, e.g., when the deformation is dominated by flexural effects. These same
notions can be carried over to the stored energy: For a plate we take x to be Cartesian.
Then the material strain tensor E, defined in (12.2.24), based on (2.1c) with ϕ(x) = ζ
has components

(11.6)
2Eαβ = (r,α + ζd,α) · (r,β + ζd,β) − δαβ ,

2Eα3 = (r,α + ζd,α) · d, 2E33 = d · d − 1.
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The scaling (10.9) shows that the dominant component of the strain, of order 1 in h,
is r,α · r,β − δαβ provided that this term is not negligible. These components of strain
account for extension and shear of the base plane. The remaining components, which
are of higher order in h, account for flexure and for shear with respect to this base
plane. These strains make corresponding contributions to (11.5). In particular, if W is
quadratic in E, then (11.5) is of order h in (r,α · r,β − δαβ)2 and of order h3 in the
squares of the flexural strains. (The first approximation to W near a stress-free reference
state is quadratic in E.)

These considerations are in keeping with the following rigorous results obtained by
Γ-convergence. A basic aim of methods of Γ-convergence is to deduce the governing equi-
librium equations for shells directly and rigorously from those of 3-dimensional elasticity
without using a constraint like (2.1).

Under physical assumptions that are reasonable, Le Dret & Raoult (1995, 1996)
proved that the sum of h−1E(·, h) and suitably scaled potentials for surface tractions
and body forces Γ-converges to the energy for a membrane. (They did not incorporate
constitutive restrictions to preclude a change of orientation, i.e., to ensure (12.1.1), but it
seems likely that their analysis could be readily modified to do so.) The characterization
of a Γ-limit describing the flexure of a plate under compressive displacements on its
edge is more technical. Friesecke, James, & Müller (2002a), by refining estimates of
John (1961, 1965, 1971), showed under reasonable physical assumptions that h−3E(·, h)
Γ-converges in appropriate function spaces to the functional with values

(11.7) I [p] =

⎧⎪⎨⎪⎩
1
24

∫
M minc∈E3 [(B + ci3) : WF F (I) : (B + ci3)] dz1dz2

if p(x) = r(s), r,α · r,β = δαβ ,

∞ otherwise

where B = (r,α × d,β)iαiβ is the second fundamental form of the (isometrically) de-
formed image r of the base plane, and d = r,1 × r,2 is the unit normal to r. (Note how
B arises in (11.7).) This functional describes configurations in which the base plane
suffers neither stretch nor shear; the sole contributions to the energy come from bending
effects measured by the B. The resulting theory corresponds to special cases of the
Kirchhoff theory described in Secs. 2 and 8.

The methods of Γ-convergence give a way to construct rigorously (at least) the leading
term of the asymptotic expansion of solutions of the 3-dimensional equilibrium equations
of hyperelasticity in recalcitrant cases that have resisted other methods of rigorous jus-
tification (described by Ciarlet (1997, 2000)). The advantage of such rigorous methods
over formal methods is, as Le Dret & Raoult (1995) note, that some formal, seemingly
natural, asymptotic expansions do not always lead to the right result. The disadvantage
of Γ-convergence methods vis-à-vis other asymptotic methods is that the former have
the very restricted range of applicability to conservative equilibrium problems, neces-
sarily of elasticity, whereas formal asymptotic methods have been applied to dynamical
problems for a variety of constitutive functions. Like any asymptotic method involving
a single parameter, the results of Γ-convergence depend crucially on how the data of the
problem depend on the thickness parameter, with different asymptotic theories resulting
from different scalings.

For comprehensive treatments of Γ-convergence, see Braides (2002) and Dal Maso
(1993). The first application of it to elasticity was made by Acerbi, Butazzo, & Percivale
(1991), who obtained the equations for strings. Among the applications to membranes,
plates, and shells are those of Anzellotti, Baldo, & Percivale (1994), Ben Belgacem,
Conti, DeSimone, & Müller (2000, 2002), Fonseca & Francfort (2001), Friesecke, James,
& Müller (2002a,b), Friesecke, James, Mora, & Müller (2003), Le Dret & Raoult (1995,
1996, 2000), Monneau (2003), and Pantz (2003). Mora & Müller (2003) have derived
rod theories in this way.
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12. Commentary. Historical Notes
In the first part of this book, we treated strings, rods, membranes, and shells as cer-

tain kinds of 1- and 2-dimensional deformable bodies, whose deformations are governed
by equations directly representing geometrical laws, fundamental mechanical principles,
and properly invariant constitutive equations. Despite their generality, these models
proved to be quite tractable; we were able to solve a wide variety of problems and to
deduce useful physical information from the solutions. We note that simplified versions
of these models are used to describe most phenomena of technological importance in
structural mechanics and physiology.

In this and the preceding chapter we derived rod and shell theories from the 3-dimen-
sional theory by a variety of methods with the aims of deepening our understanding of
the theories derived earlier by direct methods and of showing how these theories can be
refined. (We postponed a treatment of the intrinsic (special Cosserat) theory of shells
to this chapter only because the derivation of (8.19) is more difficult than the analogous
derivation of Cauchy’s Theorem in Sec. 12.7.) An essential role in our approach is
the exploitation of exact consequences of the 3-dimensional equations of motion. The
constraint and semi-intrinsic methods deliver a hierarchy of properly invariant models of
increasing precision and complexity whose mathematical structure is independent of the
details of the actual system of constraints. Thus the voluminous literature disputing the
relative merits of scarcely distinguishable rod and shell theories is of little consequence.

Another purpose of rod and shell theories constructed by either constraint methods
or asymptotic methods is to model accurately the behavior of the body as described
by the full 3-dimensional theory. The traditional justification of this purpose has been
that the full 3-dimensional theory, even when linear, typically is deemed intractable in
the sense that illuminating closed-form solutions are not available. There is a growing
literature, begun by Morgenstern (1959), giving rigorous estimates of the errors between
solutions of the 3-dimensional equilibrium equations of linear elasticity and of those for
the rod or shell theory. (Most available results are for linear plate theory. Morgenstern
and many of his successors used dual variational principles, which rely on the convexity
of the stored-energy function, and are accordingly not readily adapted for nonlinear
elasticity. These errors are typically bounded by some constant (not computed) times
the thickness of the body to a certain positive power. See Ciarlet (1990, 1997, 2000) and
Le Dret (1991) for a treatment and extensive references for such bounds. Different sorts
of estimates were developed by John (1961, 1965, 1971) for nonlinear problems. Based
on a careful study of the underlying geometry and applicable to nonlinear problems, they
express the validity of various shell models in terms of a priori bounds on the strain.

Bounds like those of Morgenstern have to be interpreted with care: The norm used
for the error is critical, pointwise errors being both desirable and difficult. In particular,
for rod and shell theories constructed by an asymptotic expansion in a small thickness
parameter, important boundary-layer discrepancies occur. The nature of the boundary
layer depends crucially on the rod or shell model. The issue of boundary layers is
intimately associated with the St. Venant Principle; see the brief discussion in Sec. 14.16.
Virtually nothing is known about the behavior of boundary layers in corners. The
situation can be complicated by the presence of other small parameters. (See, e.g.,
Sanchez-Hubert & Sanchez-Palencia (1997), Sanchez-Palencia (1990), Sanchez-Palencia
& Vassiliev (1992) for treatments of asymptotic problems for shells when the curvature
is small.) For a discussion of the many mathematical subtleties of constructing reliable
plate theories, see Babuška & Li (1992). For a definitive mathematical treatment of
asymptotic questions encompassing those arising in beam and plate theory, see Maz’ja,
Nazarov, & Plamenevskĭı (1991).

Of course, the asymptotic limit of the problem for a body as one or two dimensions
become small is a very singular kind of problem, and we should expect a host of diffi-
culties. To control these singularities, at least to obtain classical theories such as von
Kármán’s, and to obtain error bounds it is necessary to suppose that load parameters
and other data are appropriately scaled in the thickness parameter. Karwowski (1990)
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and Fox, Raoult & Simo (1993) have made a broader study of scalings of other pa-
rameters in terms of the thickness, and have thereby obtained asymptotic theories much
closer to those obtained by the direct methods and by the method of constraints. Among
the formulations of the asymptotic theory of rods, besides that of Mielke presented in
Sec. 16.14, are those of Cimitière, Geymonat, Le Dret, Raoult, & Tutek (1988), Ge,
Kruse, & Marsden (1996), Karwowski (1990), Rigolot (1976), and Trabucho & J. M.
Viaño (1996). See Ciarlet (1990) and Trabucho & J. M. Viaño (1996) for comprehensive
surveys.

Antman (1976a) proved that the absolute minimizer of the potential-energy func-
tional for a hyperelastic body under conservative loading is the weak limit in a suitable
Sobolev space of a subsequence of (weak) solutions of the equilibrium equations for a
hierarchy of rod or shell models with increasing degrees of freedom, constructed by the
method of constraints. (This work has the flavor of that showing that a problem can
be effectively treated by numerical methods.) On the other hand, Simmonds (1992) has
emphasized that adding more degrees of freedom to a shell model can actually cause it to
approximate the solution of the 3-dimensional problem worse than the original simpler
model. The explanation of this apparent paradox is merely that the result of Antman
applies to bodies of a fixed shape and thickness, and treats a limit as the number of
degrees of freedom goes to infinity, whereas Simmonds is balancing two limit processes,
that treated by Antman and the asymptotic process as the thickness goes to zero. More-
over, it is well known that taking more terms in an asymptotic series need not improve
its accuracy.

In summary, much remains to be done to determine the errors between solutions of
rod or shell equations and the solutions of the 3-dimensional equations. Little is known
about nonlinearly elastic materials, about other materials, about dynamical problems
linear or not, about behavior near corners, about laminated materials, and about the
scaling of other parameters. Standard demonstrations of the utility of a given rod
or shell theory for effectively approximating a limited number of problems should not
be embraced with blind enthusiasm: In linear theories, rod and shell theories can be
constructed to deliver exact solutions of the 3-dimensional problem by suitably endowing
the rod or shell theory with more parameters than the 3-dimensional problem.

Much recent work on rod and shell theory has been motivated by developments in nu-
merical analysis and computational techniques. The progress in the numerical analysis
of problems of solid mechanics suggests that a day will come when rod and shell theories
will lose their distinctive identities within computational mechanics and be subsumed
under a general theory for the numerical treatment of 3-dimensional problems, endowed
with useful error estimates. Such a theory would automatically take advantage of thin-
ness where it is appropriate to do so and would adaptively use refined computational
methods to account for boundary layers and singularities at edges, corners, and cracks.
Of course, for appropriate systems of loads, such computational schemes might well be
equivalent to classical rod and shell theories in regions remote from boundaries. But
such an observation would be relegated to a historical curiosity.

Would such a consummation signify the death of rod and shell theories? I think
not, for the simple reason that computational mechanics is not coextensive with me-
chanics. There are worthy roles for rod and shell theories besides that of furnishing a
collection of approximations rich enough to be both technologically useful and capable
of provoking endless controversy. One such role is to provide an illuminating collection
of problems amenable to global analysis in which the effects of general material response
can be studied. The analysis of such problems, to which much of this book is devoted,
exactly complements numerical analysis, which is incapable of treating a whole family
of materials at one time. (This and the preceding paragraph are adapted from Antman
(1989) by permission of the American Society of Mechanical Engineers).

An account of the development of intrinsic theories of rods is given in Sec. 8.20.
The method of constraints can be traced back to Leibniz, who introduced the notion
of averaging the stress over a cross section. Discussion of the further development of
rod theories by Jas. Bernoulli, Euler, Cauchy, Poisson, Kirchhoff, Clebsch, Love, and
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others is given by Dill (1992), Love (1927), Szabó (1979), Timoshenko (1953), Truesdell
(1959, 1960, 1983), and Truesdell & Toupin (1960, Secs. 63A, 214). The method of
constraints for rods was developed for linear problems by Medick (1966), Mindlin &
Herrmann (1952), Mindlin & McNiven (1960), and Volterra (1956, 1961) among others.
The extension of these methods to nonlinear problems was carried out by Antman (1972),
Antman & Warner (1966), Green, Laws, & Naghdi (1968), Green & Naghdi (1970),
Green, Naghdi, & Wenner (1974), and Naghdi & Nordgren (1963). The general setting
used in this chapter was developed by Antman (1976a) and further refined by Antman
& Marlow (1991). Refinements of this method oriented toward numerical and stability
analysis were made by Fox & Simo (1992), Simo (1985), Simo & Fox (1989), Simo, Fox,
& Rifai (1989, 1990), Simo & Kennedy (1991), Simo, Marsden, & Krishnaprasad (1988),
Simo, Rifai, & Fox (1990, 1992), and Simo & L. Vu-Quoc (1986a,b, 1988, 1991), the last
paper accounting for cross-sectional warping.

For accounts of the foundation of plate and shell theories by Germain, Lagrange,
Poisson, Navier, Kirchhoff, Love, and others, see Benevento (1991), Love (1927), Naghdi
(1972), Szabó (1979), Timoshenko (1953), Truesdell (1983, 1991b), and Truesdell &
Toupin (1960, Sec. 212). A modern version of the method used by Kirchhoff (1850)
to determine appropriate boundary conditions for the Kirchhoff shell is given in the
material beginning with the paragraph containing (8.43).

The statical theory of what are here called special Cosserat shells was formulated by
the Cosserats (1908, 1909). Reissner (1945) and Mindlin (1951a,b) respectively devel-
oped linear versions of this theory for the statics and dynamics of elastic plates from
3-dimensional considerations. Consequently such theories are often called Reissner-
Mindlin theories. Synge & Chien (1941) gave a direct formulation of what we call the
Kirchhoff theory. Ericksen & Truesdell (1958) developed a full analysis of strain and
formulated the equations for the equilibrium of forces and torques (see the discussion
in Sec. 8.20). Green, Naghdi, & Wainwright (1965) formulated the full theory with
one extensible director and Cohen & DeSilva (1966a,b) did the same for a theory with
three directors. (Theories with three directors have the virtue neither of simplicity nor
of generality.) See Naghdi (1972) for a thermodynamical treatment of the 1-director
theory. Modern expositions of the Cosserat theory is given by Cohen & Wang (1989),
Rubin (2000), Steigmann (2001), and Villaggio (1997).

It should be noted that the special Cosserat theories of rods and shells are particularly
attractive because the classical balances of force and torque deliver the right number of
equations of motion for the kinematic variables admitted into the theory. Moreover, these
theories furnish natural, geometrically exact generalizations of the classical equations.
As our work in this chapter shows, the more complicated kinematical structure of even
the 1-director theory leads to new kinds of governing equations involving stress resultants
that are not so easily interpreted.

For accounts of various theories of shells together with studies of concrete problems,
written in a style not too dissimilar from that of this book, see Başar & Krätzig (1985),
Bloom & Coffin (2001), Dikmen (1982), Libai & Simmonds (1998), Pietraszkiewicz
(1989, 2001), Reissner (1985), Valid (1995), Vashakmadze (1999), and Villaggio (1997).
The main source for the mathematical analysis of nonlinear problems within this class of
theories is Vorovich (1999). A comprehensive bibliography of texts and survey articles
on shells is given by Noor (1989). An interesting collection of concrete problems for
geometrically exact theories of shells can be obtained by adapting those for traditional
theories treated by Timoshenko & Gere (1961) and Timoshenko & Woinowsky-Krieger
(1959). The fundamental references for the modern mathematical theories of plates and
shells are the treatises of Ciarlet (1997, 2000).



CHAPTER 18

Dynamical Problems

In this chapter we treat a collection of elementary but illuminating dy-
namical problems for elastic and viscoelastic bodies. This material merely
serves as an entrée to some parts of the rich and fascinating modern re-
search on the quasilinear hyperbolic and parabolic systems applicable to
elasticity. We develop the theory only in the context of concrete problems,
so that we can concentrate on the effects of constitutive hypotheses.

We shall encounter expressions like ∂
∂sN̂

(
u(s, t), s

)
≡ N̂

(
u(s, t), s

)
s
. To

distinguish notationally this ‘total partial derivative’ from the partial de-
rivative of N̂ with respect to its second argument, we present the functions
N̂ and u formally as

(y, x) �→ N̂(y, x), (s, t) �→ u(s, t).

By convention we henceforth use y and x as names for the first and second
arguments of N̂ and use s and t as names for the first and second arguments
of u. We can then write

∂sN̂
(
u(s, t), s

)
= N̂y

(
u(s, t), s

)
us(s, t) + N̂x

(
u(s, t), s

)
.

1. The 1-Dimensional Quasilinear Wave Equation
The 1-dimensional quasilinear wave equation

(1.1) (ρA)(s)wtt = N̂(ws, s)s

describes (i) the longitudinal motion of a straight elastic rod, (ii) the pure
shearing of an incompressible elastic layer, and (iii) the 1-dimensional mo-
tion of a gas. In each case, (ρA)(s) is the mass per unit length at s in the
reference configuration. In case (i), w(s, t) is the position of material point
s at time t, and N̂(y, s), the tension at s corresponding to the stretch y,
has the form shown in Fig. 1.2a. (See Sec. 4.1.) In case (ii), w(s, t) is the
displacement transverse to the s-axis, and N̂(y, s), the shear stress at s
corresponding to the shear strain y, has the form shown in Fig. 1.2b. (See
Sec. 14.15.) In case (iii), w has the same meaning as in case (i), although
the fluid-dynamical interpretation of ws is the specific volume, and N̂(y, s),
the negative of the pressure at s, corresponding to the specific volume y,
has the form shown in Fig. 1.2c. (We shall not pursue this case.) In each
instance, it is reasonable to impose the monotonicity condition

(1.3) N̂y(y, x) > 0 ∀x, y.

709
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N N N

y y y

(a) (b) (c)

Fig. 1.2. (a) Tension-stretch law for the longitudinal motion of
an elastic rod. (b) Shear stress-shear strain law for the shearing
motion of an incompressible elastic body. (c) Negative pressure-
specific volume law for a gas.

Though each case satisfies this condition, their mathematical differences are
profound. In particular, the mathematical theory is very well developed
if N̂yy(y, s) is either everywhere positive or everywhere negative. This
assumption conforms to most constitutive laws for gases (case (iii)), but it
is never satisfied for the odd functions for shear response in case (ii), and
there is no apparent physical reason why it should hold in case (i). We
regard (1.1) as an abbreviation for a suitable generalization in the form of
a principle of virtual power or as an impulse-momentum law.

It is convenient to write (1.1) as a system of two first-order equations
by setting

(1.4) u = ws, v = wt

so that (1.1) is equivalent to the matrix equation[
u

(ρA)(s)v

]
t

=: J(s) ·
[
u
v

]
t

(1.5a)

=
[

v
N̂(u, s)

]
s

=: A(u, s) ·
[
u
v

]
s

+
[

0
N̂x(u, s)

]
where

(1.5b) J(s) :=
[

1 0
0 (ρA)(s)

]
, A(u, s) :=

[
0 1

N̂y(u, s) 0

]
.

The eigenvalues of A relative to J, i.e., the eigenvalues of J−1 · A, are

(1.6) λ1(u, s) = −λ(u, s), λ2(u, s) = λ(u, s), λ(u, s) :=

√
N̂y(u, s)
(ρA)(s)

.

For any classical solution (u, v) of (1.5), the characteristics are the curves
t �→ sα(t) in the (s, t)-plane defined by

(1.7)
dsα
dt

(t) = λα(u(sα, t), sα), α = 1, 2.
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We define the Riemann invariants rα for (1.5) by

(1.8a) rα(s, t) := r̃α(u(s, t), v(s, t))

where

(1.8b) r̃α(u, v) := v −
∫ u

u0

λα(y, s) dy = v − (−1)α

∫ u

u0

λ(y, s) dy.

For case (i) we choose u0 = 1, and for case (ii) we choose u0 = 0. The
Riemann invariants satisfy the partial differential equations
(1.9)

∂trα + λα(u, s)∂srα = N̂x(u,s)
(ρA)(s) − (−1)αλ(u, s)

∫ u

u0

λx(y, s) dy =: fα(u, s).

In particular, on the characteristics (1.7), these equations reduce to the
ordinary differential equations

(1.10) d
dtrα(sα(t), t) = fα(u(sα(t), t), sα(t)).

Note that fα = 0 for uniform bodies, in which ρA is a constant and N̂
is independent of s, so that the Riemann invariants are constants on the
corresponding characteristics.

1.11. Exercise. Prove that (∂urα, ∂vrα) (no sum) is orthogonal to the eigenvector of
J−1 · A corresponding to λα.

As usual, we assume that the range of N̂(·, s) is R. Then we can solve
(1.8) uniquely for v = 1

2 (r1 + r2) and u = ũ
( 1

2 (r1 − r2)
)
, where ũ is a

strictly increasing function. It is these representations that we substitute
into the right-hand sides of (1.7), (1.9), and (1.10) to get equations for the
sα and the rα alone. We set λα(ũ( 1

2 (r1 − r2)), s) =: λ̃α(r1, r2, s). (We keep
the arguments of λ̃α distinct to allow the subsequent treatment of blowup
to be unfettered by the special form of (1.6).)

We study the constitutive restriction that N̂(·, x) be strictly concave:

(1.12) N̂yy(y, x) < 0 ⇐⇒ λy(y, x) < 0 ∀ y, x.

This restriction is not inconsistent with case (i), is totally inconsistent with
case (ii) (for odd, nonlinear functions N̂(·, x)), and is satisfied for all stan-
dard constitutive equations of gas dynamics in case (iii). We study it merely
because it is analytically easier to handle than more general conditions and
because it illuminates the source of difficulties for the more general condi-
tions. We now show that if (1.12) holds, then no matter how smooth the
data are, solutions of initial-value problems for (1.1) have derivatives that
become infinite in finite time, except in special circumstances. For this
purpose, we assume that the material is uniform, so that fα = 0, and that
N̂ is twice continuously differentiable.
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From (1.9) we obtain

(1.13) ∂tsr2 + λ̃2∂ssr2 +
∂λ̃2

∂r1
∂sr1∂sr2 +

∂λ̃2

∂r2
(∂sr2)2 = 0.

Let p := ∂sr2. Then (1.13) implies that

(1.14)

d

dt
p(s2(t), t) +

[
∂λ̃2

∂r1
(r1(s2(t), t), r2(s2(t), t))

]
∂sr1(s2(t), t) p(s2(t), t)

+
[

∂λ̃2

∂r2
(r1(s2(t), t), r2(s2(t), t))

]
p(s2(t), t)2 = 0

where s2 is any 2-characteristic. We write the first equation of (1.9) as

∂tr1 + λ̃2∂sr1 + (λ̃1 − λ̃2)∂sr1 = 0.

Since λ̃2 − λ̃1 is everywhere positive, we can use this expression to replace ∂sr1 in (1.14).
Now let (r1, r2) �→ h(r1, r2) be any function satisfying

(1.15)
∂h

∂r1
=

(∂λ̃2/∂r1)

λ̃2 − λ̃1
.

It follows from (1.10) that d
dt

h (r1(s2(t), t), r2(s2(t), t))= ∂h
∂r1

(s2(t), t) dr1
dt

(s2(t), t). Thus
(1.14) reduces to

(1.16)

d

dt
p(s2(t), t) +

[
d

dt
h (r1(s2(t), t), r2(s2(t), t))

]
p(s2(t), t)

+
[

∂λ̃2

∂r2
(r1(s2(t), t), r2(s2(t), t))

]
p(s2(t), t)2 = 0.

1.17. Exercise. Let q(t) = exp [h (r1(s2(t), t), r2(s2(t), t))] p(s2(t), t). Prove that

(1.18) q(t) =
q(0)

1 + q(0)
∫ t
0 e−h(∂λ̃2/∂r2) dτ

.

Here the arguments of the integrand are those of (1.16) with t replaced with τ .

q and therefore p remain bounded as long as the denominator in (1.18) does not
vanish. We now specialize our attention to case (i) when (1.12) holds. Suppose that the
initial values for u lie in a compact subset of (0, ∞) and that the initial values for v are
bounded. Then the initial values for r1 and r2 are bounded. It follows from (1.10) that
r1 and r2 are everywhere bounded.

1.19. Exercise. Prove that

(1.20)
∂λ̃2

∂r2
= − N̂yy

2N̂y

.

In view of (1.12) and the bounds on r1 and r2, we conclude that there is a positive
number K such that e−h∂λ̃2/∂r2 ≥ K everywhere, so that

∫ t
0 e−h(∂λ̃2/∂r2) dτ ≥ Kt

everywhere. From (1.18) we therefore obtain

1.21. Theorem. Let N̂ for case (i) be twice continuously differentiable and satisfy
(1.12). Let the initial values for u lie in a compact subset of (0, ∞) and let the initial
values for v be bounded. If there is an s0 such that ∂sr2(s0, 0) < 0, then ∂sr2 becomes
unbounded after a finite time.

1.22. Exercise. Formulate an analogous statement for r1 and formulate conditions
ensuring that the solution is continuously differentiable for all time.
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This development is based on that of Lax (1964; 1973, Sec. 6), who terms equations
genuinely nonlinear if they satisfy suitable generalizations of (1.12). For the more
complicated treatment of problems that include case (ii), see MacCamy & Mizel (1967).

Let us now find a condition ensuring that u has a positive lower bound in case (i).
We study the boundary-value problem consisting of (1.5) and

(1.23)

u(s, 0) = ū(s), v(s, 0) = v̄(s) for s ∈ [0, 1],

either v(0, t) = v0 or N̂(u(0, t), 0) = n0,

either v(1, t) = v1 or N̂(u(1, t), 1) = n1,

where ū and v̄ are prescribed continuous functions with ū everywhere positive on [0, 1],
and v0, n0, v1, n1 are prescribed real numbers. Now we could use results like those
obtained by Greenberg (1973), Nishida (1968), Nishida & Smoller (1973) and others
who show how Riemann invariants are controlled in a shock. It is more convenient,
however, to exploit an idea of Venttsel’ (1981). We extend our boundary-value problem
to all space by periodicity, thus obtaining an initial-value problem with periodic initial
data. Now we add ε∂ssrα where ε > 0 to the right-hand sides of (1.9) to make each of its
equations parabolic. We apply the Maximum Principle (for weakly coupled parabolic
systems; see Protter & Weinberger (1967)) to the resulting equations to get bounds
independent of ε on the Riemann invariants in terms of the initial data. In particular,

(1.24)
∫ u(s,t)

1

√
N̂y(y,s)
ρA(s) dy = 1

2 [r2(s, t) − r1(s, t)] ≥ 1
2 [r2(s, 0) − r1(s, 0)] > −∞.

If N̂y(·, s) is not integrable on (0, 1), then it follows from (1.24) that u(s, t) ≥ min ū for
all (s, t). (See Antman & Seidman (1996) for details.)

2. The Riemann Problem. Uniqueness
and Admissibility of Weak Solutions

Since (1.1) is regarded as giving a reasonable description of a class of
physical processes that are not expected to terminate at a finite time, we
interpret the breakdown of classical solutions at a finite time as indicating
that a physically reasonable solution must be a suitably defined weak so-
lution. As we showed in (2.5.6), if (1.5) has a weak solution (u, v) that is
classical to the left and right of a continuously differentiable curve t �→ σ(t)
in (s, t)-space with u and v having limits from the left and right on this
curve, then (u, v) must satisfy the Rankine-Hugoniot jump conditions

(2.1a,b) σ′(t)[[u]] = −[[v]], σ′[[v]] = −[[N̂(u, σ(t))/(ρA)(σ(t))]]

across this curve. If the limits (ul, vl) from the left are given, then the
elimination of σ′ from (2.1) shows that the limits (ur, vr) from the right
for which there is a σ′ satisfying (2.1) lie on the curves

(2.2)
√
ρA(v − vl) = ±

√
[N̂(u) − N̂(ul)](u− ul)

in the (u, v)-plane. Note that the monotonicity of N̂ ensures that the
right-hand side of (2.2) is real-valued.

We shall see that (2.1) is not sufficient to define a unique solution for
initial-value problems. To get a physically natural unique solution we shall



714 18. DYNAMICAL PROBLEMS

exclude ‘unsuitable’ parts of (2.2). Now if the states to the left and the right
of a discontinuity are to be determined by other data given at an earlier
time, then characteristics from the left and the right should impinge on the
shock curve t �→ σ(t) with increasing time. (Otherwise, the characteristics
could not be used for the local construction of solutions because their initial
values on the shock curve would not be known.) For our problem these
conditions reduce to the requirement that σ′ satisfy one of the following
Lax Entropy Conditions:

−λ(ur, σ) ≡ λ1(ur, σ) < σ′ < λ1(ul, σ) ≡ −λ(ul, σ),(2.3a)

λ(ur, σ) ≡ λ2(ur, σ) < σ′ < λ2(ul, σ) ≡ λ(ul, σ).(2.3b)

A solution for which (2.3a) holds is said to have a back shock or a 1-shock
at σ and a solution for which (2.3b) holds is said to have a front shock or
a 2-shock at σ.
2.4. Exercise. Deduce (2.1) directly from (1.5).

Throughout the rest of this section we consider a uniform rod (for which
N̂x = 0 and ρA is constant) satisfying (1.12) and the further technical
requirement that

(2.5) lim inf
y→∞ N̂y(y) > 0,

which is reasonable for elastic rods.
The basic building blocks of (weak) solutions of (1.5) are solutions of

Riemann problems, which are initial-value problems with initial data con-
stant to the left and right of the origin:

(2.6)
(
u(s, 0), v(s, 0)

)
=
{

(ul, vl) for s < 0,
(ur, vr) for s > 0

where ul, vl, ur, vr are constants. (Both practical and theoretical methods
for treating initial-value problems for (1.5) begin by replacing the initial
data with approximate piecewise constant data, which locally lead to a
collection of Riemann problems.) Since the initial data are not smooth, a
solution of the Riemann problem for t > 0 fails to be classical ab initio.
We now show how to construct solutions of Riemann problems.

By using (1.10), we easily see that

(2.7)
(
u(s, t), v(s, t)

)
=
{

(ul, vl) for s ≤ λ1(ul)t,
(ur, vr) for s ≥ λ2(ur)t

is a solution of the Riemann problem on the indicated region of (s, t)-
space. But it is not immediately obvious how to use the characteristics to
construct a solution in the rest of the half space t > 0. For this purpose,
we first seek shock solutions of (1.5), (2.7) of the form

(2.8)
(
u(s, t), v(s, t)

)
=
{

(ul, vl) for s ≤ σ′t,
(ur, vr) for s ≥ σ′t
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where σ′ is a constant. We suppose that (ul, vl) is given. We now determine
all the states (ur, vr) and shock speeds σ′ for which (2.8) represents a back
shock, i.e., a weak solution of (1.15) satisfying (2.3a). From (2.3a) and
(1.6) we obtain N̂y(ur) > N̂y(ul). The concavity of N̂ ensured by (1.12)
then implies that ur < ul. Since σ′ is negative by (2.3a), it follows from
(2.1a) that vr < vl. Thus we conclude from (2.2) that the set of all states
(ur, vr) for which (2.8) represents a back shock must lie on the curve

(2.9a) S1(ul, ur) :
√
ρA(v−vl) = −

√
[N̂(u) − N̂(ul)](u− ul), u < ul,

in (u, v)-space, which is illustrated in Fig. 2.10. For any (ur, vr) on this
curve, we find the corresponding σ′ from (2.1). Likewise, we find that the
set of all states (ur, vr) for which (2.8) represents a front shock must lie on
the curve

(2.9b) S2(ul, ur) :
√
ρA(v− vl) = −

√
[N̂(u) − N̂(ul)](u− ul), u > ul,

in (u, v)-space, which is also illustrated in Fig. 2.10.
We have just constructed special solutions for special Riemann problems.

For example, if (ul, vl) is given and if (ur, vr) lies on the curve (2.9b), then
(2.8) with σ′ given by (2.1) satisfies the Riemann problem. This solution
is illustrated in Fig. 2.11.

Fig. 2.10. Graphs of the shock and rarefaction curves S1(ul, ur),
S2(ul, ur), R1(ul, ur), R2(ul, ur).

2.12. Exercise. Show that (1.12) implies that the curve (2.9a) intersects every straight
line through (ul, vl) at most once.

A rarefaction wave is a solution of (1.5) of the form

(2.13) (u(s, t), v(s, t)) = (U(s/t), V (s/t)).
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Fig. 2.11. (a) Graph of the 2-shock solution (2.8) of the Rie-
mann problem (1.5), (2.6). (b) Level curves of (a). This is the
traditional mode of displaying the shock in(a).

Let ξ = s/t. The substitution of this expression into (1.5) yields the system
of ordinary differential equations

(2.14)
[

ξ 1
N̂y(U) ρAξ

] [
U ′

V ′

]
=
[

0
0

]
.

If (2.14) has nontrivial solutions, which we seek, then −ξ must be an eigen-
value of A relative to J, so that −ξ = ±λ(U), and (U ′, V ′) must be a
corresponding eigenvector. Let us first take

(2.15) ξ = −λ(U(ξ)),

so that the corresponding eigenvector (U ′, V ′) satisfies

(2.16) V ′(ξ) = λ(U(ξ))U ′(ξ).

Now (1.12) implies that (2.15) can be uniquely solved for U(ξ) and that
U ′ is everywhere positive. Thus ξ �→ λ1(U(ξ)) ≡ −λ(U(ξ)) is increasing,
in consonance with (2.15). We take λ1(ul) < ξ < λ1(ur). Since we can
solve (2.15) for U(ξ), it follows that (2.14) is equivalent to an equation
of the form dṼ /dU = −λ(U), so that Ṽ (U) − vl =

∫ U

ul
λ(y) dy gives the

rarefaction wave (U, Ṽ (U)) to the right of the ray s = λ1(ul)t ≡ −λ(u1)t.
In particular, any solution value (ur, vr) of a rarefaction wave lying on the
ray s = λ1(ur)t must lie on the 1-rarefaction curve

(2.17a) R1(ul, vl) : v − vl =
∫ u

ul

λ(y) dy

in (u, v)-space, which is illustrated in Fig. 2.10. Likewise, for the choice
ξ = λU(ξ), we take λ2(ul) < ξ < λ2(ur). Any solution value (ur, vr) lying
on the ray s = λ2(ur)t must lie on the 2-rarefaction curve

(2.17b) R2(ul, vl) : v − vl = −
∫ u

ul

λ(y) dy
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in (u, v)-space, which is illustrated in Fig. 2.10.

2.18. Exercise. Show that the curves S1(ul, vl) and R1(ul, vl) osculate at (ul, vl).
(The same is true of the curves indexed by 2.)

We have just constructed solutions for another class of special Riemann
problems. For example, if (ul, vl) is given and if (ur, vr) lies on the curve
(2.17b), then

(2.19)
(
u(s, t), v(s, t)

)
=

⎧⎪⎨⎪⎩
(ul, vl) for s ≤ λ2(ul)t,(
U( s

t ), V ( s
t )
)

for λ2(ul)t ≤ s ≤ λ2(ur)t,
(ur, vr) for s ≥ λ2(ur)t

with
(
U( s

t ), V ( s
t )
)

lying on R2(ul, vl) satisfies the Riemann problem. It
constitutes a weak solution of (1.5), (2.6) because it is a classical solution
on each of the open triangles defining each case in (2.19) and because
it is continuous, so that it automatically satisfies the Rankine-Hugoniot
conditions (2.1). This solution is illustrated in Fig. 2.20.

(a) (b)

Fig. 2.20. (a) Graph of the solution of the Riemann problem
(1.5), (2.6) when (ur, vr) lies on R2(ul, vl). (b) Level curves of
Fig. 2.20a. This is the traditional mode of displaying critical
information about the rarefaction wave of (a).

Now we show how to construct a solution to the Riemann problem for
arbitrary data.

2.21. Exercise. Prove

2.22. Proposition. Let (1.12) and (2.5) hold. Let (ul, vl) be fixed. To
each (ur, vr) in the (u, v)-plane there corresponds a unique point (ui, vi) ∈
S1(ul, vl) ∪ R1(ul, vl) such that (ur, vr) ∈ S2(ui, vi) ∪ R2(ui, vi).

The recipe for constructing solutions is straightforward: Given the Rie-
mann data (2.6), construct (ui, vi) as in Proposition 2.21. The solution
corresponds to the trajectory going from (ul,vl) to (ui,vi) along S1(ul,vl)∪
R1(ul,vl) and then going from (ui,vi) to (ur,vr) along S2(ui,vi)∪R2(ui,vi).
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For example, if (ur, vr) is in the region bounded by S1(ul, vl) and R2(ul, vl),
as in Fig. 2.23a, then the first segment of this trajectory corresponds
to a back shock with σ′ = −(vi − vl)/(ui − ul) (as a consequence of
(2.1)), the point (ui, vi) corresponds to a constant state over the region
σ′t < s < λ2(ul)t, and the third segment corresponds to the 2-rarefaction
wave over the region λ2(ul)t < s < λ2(ur)t. The level curves of this solu-
tion are shown in Fig. 2.23b. It can be shown that all such solutions are
unique in a properly defined sense.

Fig. 2.23. (a) Shock and rarefaction curves for the solution of
the Riemann problem when (ur, vr) is in the region bounded by
S1(ul, vl) and R2(ul, vl). (b) Level curves of the solution defined
by (a).

2.24. Exercise. Verify that this construction generates weak solutions of the Riemann
problem.

2.25. Exercise. Suppose that the Lax entropy conditions are not imposed. Prove that
there are Riemann problems not having unique solutions.

Except for the use of the Riemann invariants, many of the techniques
and results just described in these two sections carry over to quasilinear
hyperbolic systems of any order, e.g., those that describe the motion of an
elastic rod in space (see Chap. 8). We encounter difficulties, however, if we
suspend (1.12) or its higher-dimensional analogs. Since we have no reason
to expect that physical processes ostensibly well described by equations
such as (1.5) admit multiple states, since the Rankine-Hugoniot conditions
fail to ensure uniqueness of weak solutions, as is illustrated by Ex. 2.25, and
since (2.3) may be inadequate for this purpose, we should like to refine our
description of the underlying physics to find more effective replacements
for (2.3) that ensure uniqueness. Such replacements, called admissibility or
entropy conditions, are of three kinds:

(i) Purely analytic restrictions that ensure that initial-value problems for
(genuinely nonlinear) systems have unique weak solutions. This approach
as developed and refined by Olĕınik (1957), Lax (1957), and Liu (1975) has
not been created in a vacuum, but has been designed to be consistent with
gas dynamics.
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(ii) Thermodynamic restrictions, e.g., the use of jump conditions coming
from the integral form of the entropy inequality (12.14.18). It should be
noted that in a Newtonian (linearly viscous) fluid with a Fourier heat con-
duction law, the Clausius-Duhem inequality is exactly equivalent to the
standard mathematical and physical assumptions imposed on the dissipa-
tive terms. On the other hand, the consequences of the Clausius-Duhem
inequality for nonlinear viscoelasticity are weaker than the physically nat-
ural and standard assumption that the dependence of stress on strain rate
gives the equations a parabolic character.
(iii) Restrictions obtained from the analysis of singular perturbations of
systems obtained from the hyperbolic system by appending ‘strong’ dissi-
pative terms depending on a small parameter. The dissipative term tradi-
tionally regarded as desirable from the viewpoint of mechanics has been in
the form of the viscous dissipation arising for Newtonian fluids; a somewhat
stronger mechanism has been introduced for mathematical studies and is
implicit in numerical studies. Except for very special cases, there is no
full mathematical justification of the asymptotics underlying the singular
perturbation.

These remarks indicate that the theory of admissibility conditions is
well understood for equations of gas dynamics, although important an-
alytic questions remain open. Here the various approaches (i)–(iii) are
essentially equivalent and are consistent with the underlying fluid mechan-
ics. For solid mechanics, however, the situation is far less clear: There is
no extant version of (i) that can regarded as having an obvious and valid
physical meaning. The admissibility condition coming from the Clausius-
Duhem inequality, as described in (ii), has proved to be inadequate, for
many applications. Accordingly, it has been proposed to supplement it
with other conditions, such as Dafermos’s (1973) entropy-rate admissibil-
ity condition. Some admissibility conditions of the form (iii) allow an un-
welcome nonuniqueness, as we show in Sec. 6. Most studies of dissipative
mechanisms for solids have adopted dissipative forces linear in the strain
rate, just as for gas dynamics.

In view of these remarks, we are led to study those admissibility con-
ditions for solids that are obtained as jump conditions that remain in the
formal nonuniform limit as the strength of a physically natural family of
dissipative mechanisms is reduced to zero. (We illustrate the basic con-
cepts in Sec. 5.) The actual admissibility conditions therefore depend on
the dissipative mechanism. Although the full mathematical justification
for these limit processes is still lacking, we are able to analyze them in the
important special case of travelling waves. In the next section we describe
a family of viscous dissipative mechanisms for (1.5). In Sec. 5 we study
admissibility conditions obtained by method (iii).

Quasilinear hyperbolic equations are presently undergoing an intensive development,
parts of which employ technical methods of modern analysis. See Bressan (2000), Dafer-
mos (2000), Hsiao (1997), Serre (1999, 2000), Smoller (1994) for accounts of modern
work, strongly oriented towards problems having but one spatial variable. More classi-
cal introductions, strongly influenced by gas dynamics, are Courant & Friedrichs (1948),
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Jeffrey (1976), Lax (1973), Rozhdestvenskĭı & Yanenko (1968), von Mises (1958), and
Whitham (1974). That of Hanyga (1985) is applicable to nonlinear elasticity. For an
illuminating discussion of admissibility conditions, see Dafermos (1984). For a definitive
discussion of singular surfaces, see Truesdell (1961), Truesdell & Toupin (1960, Chap. C),
Wang & Truesdell (1973), and the classical text of Hadamard (1903). Detailed treat-
ments of the nonlinear equations for the motion of an elastic string is given by Reiff
(2002), Shearer (1985a,b, 1986), and Young (2002).

3. Shearing Motions of Viscoplastic Layers
In this section we formulate the partial differential equations for a fam-

ily of shearing motions of incompressible media. These equations, which
generalize (14.15.11), will be used to illustrate phenomena complementary
to those exhibited by solutions of generalizations of (1.1). Since the hy-
perbolic system (14.15.11) is of order higher than that of (1.1), we cannot
effectively treat the former by exploiting Riemann invariants as in Secs. 1
and 2. Nevertheless, there is a rich theory for these higher-order systems,
which we do not pause to discuss, developed in the references cited at the
end of the previous section.

As in Sec. 14.15, we study shearing motions of the form (14.15.1) that
take a typical material point z = xi + yj + sk to

(3.1) p(z, t) + [x+ u(s, t)]i = [y + v(s, t)]j + sk.

Relative to the basis {i, j,k}, the material strain tensor E := 1
2 (C − I)

and its time derivative have matrices given by

(3.2)

2[E] =

⎡⎣ 0 0 us

0 0 vs
us vs u2

s + v2s

⎤⎦ ,
2[Et] ≡ [Ct] =

⎡⎣ 0 0 ust

0 0 vst

ust vst 2(usust + vsvst)

⎤⎦
(cf. (14.15.2)). Note that detC = 1 so that (3.1) describes a volume-
preserving motion.

We study a viscoplastic material of strain-rate type for which the ma-
terial properties are independent of x, y. For this material, the first Piola-
Kirchhoff stress T is given by a constitutive equation of the form

(3.3) T = −pF −∗ + F · ŜA(E,Et,Π, s) ≡ −pF −∗ + T̂A(E,Et,Π, s)

where we take ŜA independent of p (see Chap. 15 and Sec. 12.12)), and
where the evolution of the internal variable Π, assumed to depend only on
s, t (cf. Sec. 15.4) is governed by a yield function γ introduced below.

We assume that the medium is subject to zero body force. Let

u : = ui + vj,(3.4)

n̂(us,ust,Π, s) : = (I − kk) · T̂A(E,Et,Π, s) · k.(3.5)
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Then the equations of motion (13.1.2) become

−px + ∂sn̂(us,ust,Π, s) · i = ρ(s)utt,(3.6a)

−py + ∂sn̂(us,ust,Π, s) · j = ρ(s)vtt,(3.6b)

pxus + pyvs − ps + ∂s[k · T̂A(E,Et,Π, s) · k] = 0(3.7)

(cf. (14.15.3,4)).
We assume that there is a continuously differentiable yield function

(y,Π, s) �→ γ(y,Π, s) such that us must satisfy

(3.8) γ(us,Π, s) ≤ 0

and assume that there is a another function Ω such that

(3.9) Πt = Ω(us,ust,Π, s) if γ(us,Π, s) = 0, γy(us,Π, s) · ust > 0,

and Πt = O otherwise.
We assume that the elastic part n̂(us,o,O, s) of n̂(us,ust,Π, s) is the

derivative of a stored-energy function ϕ, so that n̂(y,o,O, s) = ϕy(y, s).
We decompose n̂ into its elastic part, its dissipative part nD, and its plastic
part nP:

(3.10) n̂(us,ust,Π, s) = ϕy(us, s)+nD(us,ust,Π, s)+nP(us,ust,Π, s)

where

(3.11)
nD(y, ẏ,Π, s) : =

[∫ 1

0

∂n̂

∂ẏ
(y, αẏ, αΠ, s) dα

]
· ẏ,

nP(y, ẏ,Π, s) : =
[∫ 1

0

∂n̂

∂ẏ
(y, αẏ, αΠ, s) dα

]
· Π.

Just as in exercise (14.15.9), we find that (3.6), (3.7) imply that p has
the form p(x, y, s, t) = A(t)x+B(t)y+ p̄(s, t). For simplicity of exposition,
we assume that boundary conditions or conditions at infinity imply that
A = 0 = B. In this case (3.7) is just an equationfor p̄, which we can ignore
in our analyses, and (3.6) reduces to

(3.12) ns = ρ(s)utt.

4. Dissipative Mechanisms
and the Bounds They Induce

In this section we study initial-boundary-value problems for an ana-
log of (1.1) that governs the longitudinal motion of a viscoelastic rod, for
the equations (8.2.20), (8.2.21), (8.2.28) governing the spatial motion of
a viscoelastic rod, and the equations of Sec. 3 governing the shearing of a
viscoplastic layer.
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Longitudinal motion of a viscoelastic rod. We replace (1.1) with

(4.1) (ρA)(s)wtt = Ns

where N is given by a constitutive equation for a viscoelastic material of
strain-rate type:

(4.2a) N(s, t) = N̂(ws(s, t), wst(s, t), s).

Here (0,∞)×R× [0, 1] � (y, z, x) �→ N̂(y, z, x) ≡ φy(y, x)+ND(y, z, x) ∈ R

is a continuously differentiable constitutive function with
(4.2b)
φy(x, y) := N̂(y, 0, x), ND(y, 0, x) = 0, N̂(1, 0, x) = φy(1, x) = 0.

φ is the stored-energy function for the equilibrium response.
We shall seek solutions of the governing equations that never suffer a

total compression, i.e., solutions for which the stretch u = ws is everywhere
positive. Under suitable restrictions on the constitutive functions and on
the data, we shall show that if ws is initially positive, then it is always
positive.

The analysis of (4.1), (4.2) was initiated by Greenberg, MacCamy, & Mizel (1968),
who studied functions N̂ affine in their last arguments:

(4.3) N̂(y, z, x) = f(y) + mz.

Here m is a positive constant. Major advances in the theory for this equation were
made by Andrews (1980), Andrews & Ball (1982), and Pego (1987). Kanel’ (1969) and
MacCamy (1970) independently developed the theory for problems in which there is a
positive number m such that

(4.4) N̂(y, z, x) = f(y) + g(y)z with g ≥ m.

Andrews (1979) (see Andrews & Ball (1982)) developed a very simple device for proving
that ws is everywhere positive for solutions of (4.1) when (4.4) holds. The methods
developed below generalize Andrews’.

The material formulation of the 1-dimensional Navier-Stokes equations for compress-
ible fluids has the form (4.4) with g(y) = µ(y)/y, where µ is the viscosity, allowed to
depend on the specific volume y, which is the reciprocal of the actual density. Now
the 3-dimensional Navier-Stokes equations for fluids can be generalized by adopting a
constitutive equation for non-Newtonian fluids in place of those that are affine in the
velocity gradient. It happens that the naive replacement of the affine dependence on the
velocity gradient with a nonlinear dependence yields a theory with properties that do
not reflect those of a single known real fluid. Consequently, generalizations of (4.4) in
which N̂ is allowed to be nonlinear in y, which are the object of our study, are apparently
irrelevant for the dynamics of viscous gases. On the other hand, the form of (4.4) is not
ideally suited for solids. For example, on physical grounds one might wish to postulate
that N̂y be positive everywhere, or at least that N̂y be positive in certain large regions.
But if g is not constant, then there are regions of (y, z)-space where N̂y(y, z, x) is not
positive. In particular, if g(y) = 1/y or, more generally, if g is a strictly decreasing
function of y, then for any y > 0, there is a positive z such that N̂y(y, z, x) < 0, a result
that is counterintuitive.
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Dafermos (1969) studied the fully nonlinear problem (4.1), (4.2) for functions (y, z) �→
N̂(y, z) having the property that there are positive numbers m and M such that

(4.5) N̂z ≥ m, (N̂y)2 ≤ MN̂z .

This assumption (4.5) is perfectly suitable for the description of shearing motions of
solids, but, as is demonstrated by Antman & Malek-Madani (1987), it is incompatible
with physically natural restrictions on the longitudinal motions of solids.

While equations modelled on (4.4) are eminently reasonable for problems describing
compressible Navier-Stokes fluids, there seems to be no physical reason to restrict the
description of solids to (4.4). Thus it is desirable to generalize (4.4), but in doing so
we cannot use (4.5) for longitudinal motions. Since the analyses of the papers just de-
scribed depend crucially on the specific forms of (4.3)–(4.5), we must construct effective
alternatives to the procedures of these papers.

It is again convenient to use (1.4) to recast (4.1), (4.2) as a system:

ut = vs,(4.6a)

ρAvt = N̂(u, vs, s)s.(4.6b)

We assume that the rod has reference length 1 and that s ∈ [0, 1]. We
assume that the end s = 0 of the rod is fixed and that a small body of mass
µ is attached to the end s = 1. Thus

(4.7a,b) v(0, t) = 0, µvt(1, t) = −N̂(u(1, t), vs(1, t), 1).

We impose the initial conditions

(4.8) u(s, 0) = ū(s), v(s, 0) = v̄(s) ∀s ∈ [0, 1]

where ū and v̄ are prescribed functions with v̄(0) = 0. The classical form
of our initial-boundary-value problem is (4.6)–(4.8).

We assume that an increase in the contact force must accompany an
increase in the rate of stretch vs = wst by requiring that there be a positive
number m such that

(4.9) N̂z ≡ ND
z ≥ m.

This condition, generalizing (4.4) and (4.5), ensures that the mechanical
process described by (4.6) is dissipative in a uniform way and that for a fixed
function u, (4.6b) is parabolic. We impose a further restriction, inspired
partly by (4.4) and the work of Andrews (1979) and Antman (1988b),
that says that viscous effects become more pronounced as the stretch ws

becomes small:

4.10. Hypothesis. There are numbers y∗ ∈ (0, 1), M ≥ 0, and A ≥ 0,
and there is a continuously differentiable function ψ on (0, y∗) with

(4.11a) ψ(y) → ∞ as y → 0, ψ ≥ 0
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such that

N̂(y, z, x) ≤ −ψ′(y)z +Mψ(y) +A(4.11b)

for y ≤ y∗ and for z ∈ R.(4.11c)

It is clear that this hypothesis prohibits a superlinear dependence of N̂
on z for large z. This restriction can be removed at the expense of a more
complicated analysis (see Antman & Seidman (1996)). Note that there
is no loss of generality in taking A = 0 when M > 0, because we can
always take ψ to have a positive lower bound. Since φy(y) < 0 for y < y∗,
condition (4.11b) is much milder than that obtained by replacing N̂ with
ND. (Kanel’ (1969), MacCamy (1970), and Andrews (1979) each take
ND(y, z) = −ψ′(y)z for all y.)

Since we shall impose strong conditions on the viscous response, we can
get by with restrictions on the elastic response, characterized by φ, weaker
than usual. All we require is that y �→ φ(y, x) have a minimum 0 at y = 1.

We now obtain the energy equation. We define the kinetic energy K,
the strain energy Φ, and the dissipative stress work W by

(4.12)

K(t) := 1
2

∫ 1

0
(ρA)(s)v(s, t)2 ds+ 1

2µv(1, t)
2,

Φ(t) :=
∫ 1

0
φ
(
s, u(s, t)

)
ds,

W (t) :=
∫ t

0

∫ 1

0
ND

(
s, u(s, τ), vs(s, τ)

)
vs(s, τ) ds dτ.

Let us integrate the product of (4.6b) and v by parts over [0, 1] × [0, t) and
use (4.2) to obtain the energy equation

(4.13) K(t) + Φ(t) +W (t) = K(0) + Φ(0).

Note that each term on the left-hand side of (4.13) is nonnegative.

If we assume that

(4.14) φ(y, x) → ∞ as y → 0,

then for each t, (4.13) implies that u(·, t) can vanish only on a set of measure 0. We
shall use Hypothesis 4.10 to obtain a stronger result. (For static 1-dimensional problems,
(4.14) itself supports a delicate analysis showing that u can vanish nowhere; see Chap. 7.)

We now show that u has a positive lower bound. The existence theory of
Antman & Seidman (1996) shows that if the data are sufficiently regular,
then so is the solution as long as it exists. We accordingly assume that
u is continuous. We suppose that mins ū(s) > 0. Then without loss of
generality we may choose the number y∗ introduced in Hypothesis 4.10 so
that y∗ ≤ 1 and

(4.15) y∗ ≤ min
s
ū(s).
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Of course, to prove that u(s, t) is positive for all s, t, it suffices to show
that u(s, t) is positive only for those (s, t) for which u(s, t) < y∗. Thus
suppose that there is a point (ξ, ω) such that u(ξ, ω) < y∗. If ξ = 1, then
the continuity of u enables us to show that there is a ξ < 1 with the same
property. Since u is continuous, there is a ϑ ∈ (0, ω) such that u(ξ, ϑ) = y∗
and u(ξ, t) < y∗ for ϑ < t ≤ ω. We integrate (4.6b) over [ξ, 1] × [ϑ, t] and
use (4.6a) and (4.11b) to obtain

∫ 1

ξ

(ρA)(s)v(s, τ) ds
∣∣∣∣τ=t

τ=ϑ

=
∫ t

ϑ

N̂
(
u(s, τ), vs(s, τ), s

)
dτ

∣∣∣∣s=1

s=ξ

≤ −µ
∫ t

ϑ

vt(1, τ) dτ −
∫ t

ϑ

ψ′(u(ξ, τ))ut(ξ, τ) dτ

+M
∫ t

ϑ

ψ(u(ξ, τ)) dτ +A(t− ϑ)(4.16)

≤ µv(1, ϑ) − µv(1, t) + ψ
(
u(ξ, ϑ)

)
− ψ

(
u(ξ, t)

)
+M

∫ t

ϑ

ψ(u(ξ, τ)) dτ +A(t− ϑ)

for all t ∈ [ϑ, ω]. From the Cauchy-Bunyakovskĭı-Schwarz inequality and
the energy equation (4.13), we find that
(4.17)∣∣∣∣∫ 1

ξ

(ρA)(s)v(s, t) ds
∣∣∣∣ ≤

√∫ ξ

0
(ρA)(s) ds

√∫ ξ

0
(ρA)(s)v(s, t)2 ds ≤ const.

for all t ∈ [ϑ, ω]. The energy equation also implies that |v(1, t)| ≤ const.
Thus (4.16) and (4.17) yield

(4.18) ψ(u(ξ, t)) ≤ ψ(y∗) +M
∫ t

ϑ

ψ
(
u(ξ, τ)

)
dτ +A(t− ϑ) + const.

for all t ∈ [ϑ, ω]. It follows from the Gronwall inequality (see Ex. 4.20
below) that there is a positive number C(ω) such that

(4.19a) ψ
(
u(ξ, ω)

)
≤ C(ω).

Thus (4.11a) implies that there exists a positive-valued continuous function
c such that

(4.19b) u(ξ, ω) ≥ c(ω).

(The continuity of u ensures that (4.18) and (4.19a,b) hold for ξ = 1.)
Thus we obtain the pointwise bound

(4.19c) u(s, t) ≥ c(t) ∀ (s, t).
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4.20. Exercise. Suppose that f , g, h are continuous and nowhere negative on [0, ∞)
and that y is a nonnegative-valued function satisfying

(4.21a) y(t) ≤ f(t) + g(t)
∫ t

0
h(τ)y(τ) dτ for t ≥ 0.

Let Y (t) :=
∫ t
0 h(τ)y(τ) dτ so that

(4.21b) Y ′(t) ≤ h(t)[f(t) + g(t)Y (t)]

or, equivalently,

(4.21c)
d

dt

[
exp

(
−
∫ t

0
hg dτ

)
Y

]
≤ exp

(
−
∫ t

0
hg dτ

)
hf.

Obtain an estimate for Y and then for y. This is the Gronwall inequality.

4.22. Exercise. Let a given function (s, t) �→ f(s, t) be added to the right-hand side of
(4.6b). Suppose that f is square-integrable on every rectangle of the form [0, 1] × [0, T ].
Use the inequality 2|ab| ≤ ε−1a2 + εb2 for ε > 0 to deduce (4.19c).

4.24. Exercise. Let (4.7) be replaced with

(4.24) v(0, t) = v0(t), N̂(u(1, t), vs(1, t), 1) = n1(t).

Impose mild restrictions on the given functions v0 and n1, and deduce (4.19c). Repeat
this process when (4.7) is replaced with

(4.25) N̂(u(0, t), vs(0, t), 0) = n0(t), N̂(u(1, t), vs(1, t), 1) = n1(t).

The problem with time-dependent position boundary conditions

(4.26) v(0, t) = v0(t), v(1, t) = v1(t)

is much more difficult: In the energy equation (4.13) we now get
∫ t
0 n(s, τ)v(s, τ)dτ

∣∣s=1
s=0

on the right-hand side. Note that the constitutive equations indicate that this term has
a contribution from φy and that the left-hand side of the energy equation contains an
integral of φ. Since for any realistic material φy(y, x) is much more badly behaved than
φ(y, x) itself for y small, the resulting form of the energy equation merely indicates that
something small is dominated by something large, a fact both obvious and useless. We
only get useful energy estimates when φy and ND meet further conditions, which are
described by Antman & Seidman (1996). This is not surprising: If the material strongly
resists having its length changed, then changing its length against a large resistance
might cause the generation of so much work that the right-hand side of the energy
equation cannot be effectively controlled.

The following simple example is illuminating. Suppose that f = 0, N̂x = 0, and ρA
is constant. Then

(4.27) u(s, t) = 1 − t, v(s, t) = −s

defines a solution of (4.6) satisfying the initial conditions u(s, 0) = 1, v(s, 0) = −s, and
boundary conditions v(0, t) = 0, v(1, t) = −1. This solution corresponds to a total
compression at time t = 1. Note that, as a function of t, the second boundary condition
is ostensibly innocuous. Thus we cannot expect to get a useful energy inequality without
further restrictions. For this example, we could replace the second boundary condition
with the ‘equivalent’ condition that n(1, t) = N̂(1 − t, −1, 1), which may be expected to
become infinite as t ↗ 1. Clearly, this boundary condition is not innocuous.
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4.28. Exercise. Prove that the initial-boundary-value problem (4.1), (4.2), (4.7), (4.8)
has at most one classical solution, by carrying out the following steps. (i) Let w1 and
w2 be two such solutions, and let ω = w1 − w2. Show that

(4.29)
∫ 1

0
ρAωttωt ds + µωtt(1, t)ωt(1, t) = −

∫ 1

0
αωsωst ds −

∫ 1

0
βω2

st ds

where

(4.30)
α :=

∫ 1

0
N̂y(λ∂sw1 + (1 − λ)∂sw2, λ∂stw1 + (1 − λ)∂stw2, s) dλ,

β :=
∫ 1

0
N̂z(λ∂sw1 + (1 − λ)∂sw2, λ∂stw1 + (1 − λ)∂stw2, s) dλ.

(ii) Use (4.9) to show that there is a continuous function Γ1 such that

(4.31) 1
2

∫ 1

0
ρAω2

t ds + 1
2µωt(1, t)2 + m

∫ t

0

∫ 1

0
ω2

st ds dτ

≤ Γ1(t)
∫ t

0

∫ 1

0
|ωs| |ωst| ds dτ ≤ Γ1(t)

√∫ t

0

∫ 1

0
ω2

s ds dτ

√∫ t

0

∫ 1

0
ω2

st ds dτ,

whence there are continuous functions Γ2 and Γ3 such that

(4.32)
∫ t

0

∫ 1

0
ω2

st ds dτ ≤ Γ2(t)
∫ t

0

∫ 1

0
ω2

s ds dτ ≤ Γ3(t)
∫ t

0

∫ τ

0

∫ 1

0
|ωs|2 ds dη dτ.

(iii) Use the Gronwall inequality to complete the proof.

The results just described are adapted from the work of Antman & Seidman (1996),
by kind permission of Academic Press. Antman & Seidman show how to weaken Hy-
pothesis 4.10 and they furnish a treatment of the very difficult (4.26). The availability
of a positive lower bound for u enables the existence and regularity of solutions to be de-
duced, e.g., as a simple consequence of a modification of the theory of Dafermos (1969),
whose hypotheses would otherwise fail to be physically reasonable.

Spatial motion of a viscoelastic rod. We now generalize these results
for initial-boundary-value problems for (8.2.19), (8.2.21), (8.2.28). To be
specific, we take f = o, l = o, and take s ∈ [0, 1], take boundary conditions

(4.33) r(0, t) = o, w(0, t) = o, n(1, t) = o, m(1, t) = o.

We assume that the initial conditions are well-behaved. We assume that
the equilibrium responses of the constitutive functions are derivatives of a
stored-energy function:

(4.34) n̂(u, v, o, o, s) =
∂ϕ

∂v
(u, v, s), m̂(u, v, o, o, s) =

∂ϕ

∂u
(u, v, s)

with ϕ(u, v, s) ≥ 0, ϕ(u, v, s) → ∞ as |u| + |v| → ∞. We assume that
these constitutive functions are uniformly monotone in their dependence
on their third and fourth arguments, i.e., they satisfy (8.10.35).

4.35. Exercise. Derive the analog of (4.13), showing that each term on the left-hand
side of the resulting equation is non-negative.
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We now give constitutive restrictions ensuring that any well-behaved
solution of the initial-boundary-value problem uniformly satisfies the con-
dition (8.7.3): v3 > V (u1, u2, s), which says that the deformation preserves
orientation. We introduce new strain variables
(4.36)
δ = δ̂(v, u, s) := v3 − V (u1, u2, s), ζ := (ζ1, ζ2, ζ3, ζ4, ζ5) := (u, v1, v2).

For each s the mapping from (v, u) to (δ, ζ) defined by (4.36) is invertible
and that (8.7.3) confines (δ, ζ) to the region δ > 0. We define

(4.37) ň(δ, δ̇, ζ, ζ̇, s) := n̂
(

ζ, δ+V (ζ1, ζ2, s), ζ̇, δ̇+
∂V

∂uα
(ζ1, ζ2, s)ζ̇α, s

)
.

We adopt the following analog of (4.11) for our system:

4.38. Hypothesis. There are numbers ε ∈ (0, 1) and A ≥ 0, and there is
a continuously differentiable function ψ on (0, ε) with ψ(δ) → ∞ as δ → 0
such that

(4.39) ň3(δ, δ̇, ζ, ζ̇, s) ≤ −ψ′(δ)δ̇ +Aψ(δ) ∀δ ∈ (0, ε), ∀ δ̇, ζ, ζ̇, s.

4.40. Exercise. Prove that there is a positive-valued continuous function c such that
δ(s, t) ≥ c(t) for all (s, t).

4.41. Exercise. Prove that the initial-boundary-value problem described in this sub-
section has at most one classical solution.

The full existence and regularity theory for the viscoelastic rod in space is given by
Antman & Seidman (2005). It requires further constitutive restrictions.

Planar motion of an incompressible rod of any material. The behavior of solu-
tions of the equations for incompressible rods, described in Sec. 16.12 is very different
from that for the viscoelastic rods described in the preceding subsection. Since the
Jacobian is constrained to equal 1, we do not have to worry about preventing it from
vanishing. We do, however, need to ensure that no stretch ever become zero or infi-
nite. For this purpose, we do not have to invoke a strong dissipative mechanism as in
the examples above; the presence of a sufficiently strong stored-energy function for the
equilibrium elastic response, appearing in the energy equation, guarantees that many
stretches are bounded away from their extreme values. The source of this property is
that the substitution of a condition like (16.12.13), which ensures incompressibility, into
a representation for the position field like (16.12.10) introduces derivatives of the strains
into the stored-energy function (thus generating a material of strain-gradient type). The
energy equation gives integral bounds on functions of these derivatives, and embedding
theory then delivers pointwise bounds on the strains. The only constitutive restrictions
needed for such bounds are those that ensure that the total stored energy is bounded
above. For details, see Antman (2003b).

Shearing of an incompressible viscoplastic layer. We now study
initial-boundary-value problems for the equations of Sec. 3. Here the only
permissible motions of the 3-dimensional body are shearing motions. We
seek bounds on the size of such motions. (The results described in the
preceding subsection do not restrict the amplitude of shearing motions for
rods, and so additional hypotheses, like those of this subsection would be
needed to control them.)
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We adopt the following constitutive assumptions. There is a positive
number c such that

(4.42) ϕ(y) ≥ c |y|.

The material is uniformly dissipative: There exists a positive number c
such that

(4.43) a · ∂n̂
∂ẏ

(y, ẏ,Π, s) · a ≥ c |a|2

for all y, ẏ,Π, s and all a ∈ E
2. The viscosity is mildly strain-dependent

(as in the constitutive equation for a Navier-Stokes fluid in the material
formulation): There is a continuously differentiable function ψ with ψ(y)
→ ∞ as y → ∞ and that there are non-negative numbers c and C such
that

(4.44) n̂(y, ẏ,Π, s) · y

|y| ≥ ψ′(|y|) y

|y| · ẏ − Cψ(|y|) + c |y||ẏ|

for all y, ẏ, Π, s. The dependence of our constitutive functions Ω on
(y, ẏ) and nP on Π is mild: There are positive constants α < 1 and C
such that

|Ω(y1, ẏ1,Π1, s) − Ω(y2, ẏ2,Π2, s)|(4.45)

≤ C (|y1 − y2|α + |ẏ1 − ẏ2|α + |Π1 − Π2|) ,
nP(y, ẏ,Π, s) · ẏ ≤ C(1 + ϕ(y) + |ẏ||Π|)(4.46)

for all possible values of the arguments.

4.47. Exercise. Suppose that s ∈ [0, 1]. Let a complementary combination of compo-
nents of ut and n be given well-behaved functions of t for s = 0, 1. Obtain an energy
equation generalizing (4.13). Prove that there exists a continuous function Γ such that
K(t) + Φ(t) + W (t) ≤ Γ (t) for t ≥ 0.

We now use a variant of the argument leading to (4.19c) to get pointwise
bounds on |us|. We set κ :=

√
us · us and write

(4.48) us = κ e1

with

(4.49) e1 = cos θ i + sin θ j, e2 = − sin θ i + cos θ j.

Thus

(4.50) ∂t e1 = θt e2, ust = κt e1 + κ θt e2.

Let us suppose that n(1, t) is prescribed. For ν = 1, 2, we define

(4.51) gν(s, t) := eν(s, t) ·
∫ 1

s

ρut(ξ, t) dξ.
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The integration of (3.12) yields

(4.52) n(s, t) = n(1, t) −
∫ 1

s

ρutt(ξ, t) dξ,

from which we obtain

(4.52) e1(s, t) · n(s, t) = e1(s, t) · n(1, t) − ∂tg1(s, t) + θt(s, t) g2(s, t).

From (4.44) and (4.52) we obtain

(4.53) ψ′(κ)κt − Cψ(κ) ≤ Γ − ∂tg1 + |θt g2| − c κ |ust|.

From Ex. 4.47 it follows that there are functions Γν(t) depending on the
data such that

(4.54) |gν(s, t)| ≤ Γν(t), ν = 1, 2.

Since |ust| =
√
κ2

t + κ2θ2t , we obtain

(4.55) |θt(s, t) g2(s, t)| − c κ(s, t) |ust(s, t)| ≤ |θt(s, t)| [Γ2(t) − c κ(s, t)2].

Thus, wherever κ(s, t)2 ≥ Γ2(t)/c, (4.53) reduces to

(4.57) ψ′(κ)κt − Cψ(κ) ≤ Γ − ∂tg1.

Let κ(·, 0) be bounded and let Γ3 be a continuous function bounded below
by

√
Γ2/c+maxs κ(s, 0). We now show that κ is bounded by a continuous

function of t. Suppose that there were a ξ in [0, 1] and a τ2 > 0 such that
κ(ξ, τ2) > Γ3(τ2). Were there no such (ξ, τ2), there would be nothing to
prove. Since κ is continuous and since κ(ξ, 0) < Γ3(τ2), there exists a last
time τ1 < τ2 at which κ(ξ, τ1) = Γ3(τ2). We integrate (4.57) for s = ξ from
τ1 to t ≤ τ2 and use (4.54) to obtain
(4.58)

ψ(κ(ξ, t))−ψ(Γ3(τ2))−C
∫ t

τ1

ψ(κ(ξ, τ)) dτ ≤ Γ(t)−g1(ξ, t)+g1(ξ, τ1) ≤ Γ(t).

Gronwall’s inequality then implies that ψ(κ(ξ, t)) ≤ Γ(t), so that

(4.59) |us(ξ, t)| = κ(ξ, t) ≤ Γ(t), whence |us| ≤ Γ(t).

This derivation is based on Antman & Klaus (1996), which generalizes that
of Antman & Seidman (1994).

The role of bounds. In obtaining the a priori estimates described in this
section, we have assumed that the initial-boundary-value problems have
solutions (with more regularity than needed to give the weak equations
meaning). These estimates are used to prove that the weak equations
do indeed have regular solutions. This bald statement suggests that the
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proofs of such existence and regularity is based on circular reasoning. A
more careful description of the ways such bounds are used shows that there
is no logical inconsistency:

(i) Consider an estimate like (4.19c). It says that if there is a solution
w of (4.1), (4.2a) with a modicum of smoothness, then there is a number
c(T ) > 0 such that ws(s, t) ≥ c(T ) for all t ∈ [0, T ]. Since we do not
yet know that this problem has a solution, this estimate tells us where we
can seek solutions. In particular, a central difficulty with (4.1), (4.2a) is
that the constitutive function(y, z, x) �→ N̂(y, z, x) must be singular at at
a total compression y = 0. Since we know that ws for any regular solution
w is bounded away from 0 for t ∈ [0, T ], we could replace our original N̂
with a nicer one, say, defined nonsingularly for all y. We could then ex-
ploit standard theories of partial differential equations for such nonsingular
equations (see Antman & Seidman (1996)).

(ii) A standard method for proving the existence of solutions of initial-
boundary-value problems like those discussed in this section is the Faedo-
Galerkin method, described in Secs. 2.11 and 16.7. Here the unknown
solution w is to be constructed as the limit of a sequence wK of Galerkin
approximations of the form wK(s, t) =

∑
k = 1Kαk(s)wk

K(t) where the αk

are prescribed functions from some complete set on [0, 1] and the wk
K are

solutions of initial-value problems for ordinary differential equations ob-
tained by substituting the apprxomations into the weak form of the initial-
boundary-value problem (and making a judicious choice of test functions).
That these ordinary differential equations have solutions defined for all t
follows from a priori bounds on the solutions, frequently energy bounds.
Such energy bounds for the ordinary differential equations are obtained
by methods that are analogs of those for the partial differential equations
made notationally complicated by the sums appearing in the Galerkin ap-
proximations. Thus a priori estimates for the partial differential equations
often merely represent notationally simple stand-ins for the corresponding
estimates for the Galerkin approximations.

(iii) In the setting of the Faedo-Galerkin method, the a priori estimates
support the use of embedding theorems and compactness (see Sec. 7.3),
the latter ensuring the certain sequences, like wK , bounded in appropriate
Banach spaces have subsequences converging in some sense to a limit w∞,
which is a candidate to be a solution of the initial-boundary-value problem.
To show that it is indeed a solution it is necessary to show that a sequence
like N̂(wK(·, ·), wK

st (·, ·), ·) not merely has convergent subsequence, but also
that the subsequence converges to N̂(w∞(·, ·), w∞

st (·, ·), ·). This crucial step
exploits the mathematical structure inherited from the underlying mechan-
ics in the form of monotonicity, ellipticity, and parabolicity conditions. It
typically requires the derivation of further estimates, obtained, e.g., by for-
mally differenting the governing equations with respect to time, getting
energy-like estimates for quadratic forms of the accelerations in place of
velocities, etc.
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5. Shock Structure. Admissibility
and Travelling Waves

We now give a formal treatment of admissibility conditions obtained by
taking the asymptotic limit of the governing equations as the dissipative
terms go to zero. This is the approach (iii) described near the end of Sec. 2.
To be specific, we limit our attention to system (4.6) when N̂ has the form

(5.1) N̂(y, z, x) = Ň(y, εz, x, ε)

where ε is a small positive parameter. We assume that Ň is a well-behaved
function of its last argument. Thus we are suspending (4.9). When we
insert (5.1) into (4.6), we get

(5.2a,b) ut = vs, ρAvt = Ň(u, εvs, s, ε)s.

A system, like (5.2), in which a small parameter multiplies the highest-
order derivatives is said to be singularly perturbed. We have encountered
such a problem in Sec. 6.9, in which 1/λ plays the role of the small pa-
rameter. For small values of the parameter, the solutions, like those of
Sec. 6.9, may possess transition layers, i.e., small regions in which the so-
lution undergoes a large change. We expect to encounter transition layers
in our study of (5.2), because we know that the hyperbolic equation ob-
tained from (5.2) by setting ε = 0 has solutions with shocks, i.e., with
discontinuities, at which the solutions certainly undergo large changes in
small regions.

To motivate our treatment of (5.2), we examine a completely elementary,
but illuminating, boundary-value problem for a linear ordinary differential
equation:

(5.3a,b,c) ε
d2u

ds2
+
du

ds
= 0 on (0, 1), u(0) = 0, u(1) = 1

where ε is a small positive number. This problem has a transition layer at
the boundary s = 0, i.e., a boundary layer. If we formally set ε = 0 in (5.3),
then we find that u = const., a function that cannot satisfy both boundary
conditions of (5.3). On the other hand, we can immediately obtain an
explicit solution of (5.3):

(5.4) u(s, ε) =
1 − e−s/ε

1 − e−1/ε
,

which has the form shown in Fig. 5.5 and which clearly exhibits boundary-
layer behavior near s = 0.

In general, however, we cannot find explicit solutions to singular pertur-
bation problems. Effective ways to approximate solutions of generalizations
of (5.3) exploit the observation that (5.3) and (5.4) are each simplified by
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Fig. 5.5. Graph of (5.4) for ε =0.05.

the introduction of a scaled length variable ξ = s/ε. We now illustrate one
such general method by applying it to (5.3).

We set ũ(ξ, ε) := u(εξ, ε). Then ũ(·, ε) satisfies

(5.6a,b,c)
d2ũ

dξ2
+
dũ

dξ
= 0 on (0, 1/ε), ũ(0) = 0, ũ(1/ε) = 1.

We seek an asymptotic representation for the solution of (5.3) in the
form

(5.7) u(s, ε) =
K∑

k=0

1
k!
uk(s)εk +

K∑
k=0

1
k!
ũk(s/ε)εk + o(εK)

for any nonnegative integer K. The coefficient functions uk and ũk are
assumed smooth. For a general nonlinear problem, the smoothness of co-
efficient functions would reflect that of the data. The first sum in (5.7) is
the regular expansion and the second sum is the boundary-layer expansion
about s = 0. For a more general problem there would be a boundary-layer
expansion about s = 1.

We first substitute the regular expansion from (5.7) into (5.3a) finding
that uk = const. We next substitute the entire expansion (5.7) into the
boundary-value problem (5.6) obtaining
(5.8)

K∑
k=0

1
k!
{
ukss(εξ)εk+2 + uks(εξ)εk+1 + [ũkss(ξ) + ũks(ξ)]εk

}
= o(εK),

K∑
k=0

1
k!

[uk(0) + ũk(0)]εk = o(εK),
K∑

k=0

1
k!

[uk(1) + ũk(1/ε)]εk = 1 + o(εK).

Setting ε = 0 in this system, we immediately obtain

(5.9) ũ0ξξ + ũ0ξ = 0, u0 + ũ0(0) = 0, u0 + ũ0(∞) = 1
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whence ũ0(ξ) = A+Be−ξ, with the boundary conditions giving u0+A = 1,
B = −1. Thus we formally have

(5.10) u(s, ε) = 1 − e−s/ε + o(1),

which is an excellent approximation for (5.4) for small ε. Higher-order
corrections are readily found. For ordinary differential equations, this mul-
tiscale method and others like it can be justified by proving that the error
between the exact solution (which must be shown to exist) and sums like
those of (5.7) is of order o(εK). (See the treatment in Sec. 10.9 and those
of Chang & Howes (1984), O’Malley (1991), Smith (1985), and Vasil’eva,
Butuzov, & Kalachev (1995), among others).

Let us now study (5.2) by a similar approach. We expect that solu-
tions of (5.2) are well approximated by solutions of the hyperbolic system
obtained by setting ε = 0 wherever vs is bounded. Since the hyperbolic
system can have shocks in which vs becomes infinite, we expect that (5.2)
has a transition layer near a shock path s = σ(t) of the reduced hyperbolic
system. We are accordingly led to introduce the scaled independent vari-
able ξ = [s − σ(t)]/ε. For any function such as (s, t) �→ u(s, t), we define
ũ(ξ, t) := u(σ(t) + εξ, t). Then (5.2) is equivalent to

(5.11)
εũt − σ′(t)ũξ = ṽξ,

ρA(σ(t) + εξ)[εṽt − σ′(t)ṽξ] = Ň(ũ, ṽξ, σ(t) + εξ, ε)ξ.

Now we construct representations for u and v like (5.7):

(5.12a) u(s, t, ε) =
K∑

k=0

1
k!
uk(s, t)εk +

K∑
k=0

1
k!
ũk((s− σ(t))/ε, t)εk + o(εK)

or, equivalently,

(5.12b) ũ(ξ, t, ε) =
K∑

k=0

1
k!
uk(σ(t) + εξ, t)εk +

K∑
k=0

1
k!
ũk(ξ, t)εk + o(εK),

etc. The first sums are the regular expansions and the second sums are the
shock-layer expansions. Since (5.2) reduces to a hyperbolic equation for
ε = 0, we expect the terms uk of the regular expansion to be discontinuous
across the shock curve. For ε �= 0, however, (5.2) is a parabolic-hyperbolic
equation having regular solutions (see Antman & Seidman (1996)). Thus
we expect the entire expansion (5.12) to have regular solutions, whence we
expect the terms ũk of the shock-layer expansion to have discontinuities
across the shock curve that compensate for those of the uk. Consequently,
we require that the expansions for u(s, t, ε) and us(s, t, ε) be continuous at
s = σ(t):

(5.13)
uk(σ(t)+, t) + ũk(0+, t) = uk(σ(t)−, t) + ũk(0−, t),

kuk−1,s(σ(t)+, t) + ũkξ(0+, t) = kuk−1,s(σ(t)−, t) + ũkξ(0−, t),
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etc., with u−1 = 0 = v−1. We also require that the effect of the shock-layer
expansion to be localized on the shock, and accordingly take

(5.14) lim
ξ→±∞

ũk(ξ, t) = 0 = lim
ξ→±∞

ṽk(ξ, t).

We substitute the regular expansion from (5.12a) into (5.2) and set ε = 0
to show that (u0, v0) satisfies (1.5), which is equivalent to (1.1). Let us set

(5.15) u�(ξ, t) :=
{
u0(σ(t)−, t) + ũ0(ξ, t) for ξ < 0,
u0(σ(t)+, t) + ũ0(ξ, t) for ξ > 0,

etc.

Note that (5.13) implies that (u�(·, t), v�(·, t)) is continuously differentiable
at ξ = 0. We substitute the entire expansion (5.12b) into (5.11) and for-
mally set ε = 0 to find that

(5.16)
−σ′(t)u�

ξ = v�
ξ ,

−ρA(σ(t))σ′(t)v�
ξ = Ň(u�, u�

ξ , σ(t), 0)ξ.

Condition (5.14) yields

(5.17) u�(±∞, t) = u0(σ(t)±, t), v�(±∞, t) = v0(σ(t)±, t).

Note that (5.16) is a system of autonomous ordinary differential equa-
tions parametrized by t. Now travelling-wave solutions of a spatially au-
tonomous version of (5.2), which have the form u(s, t) = ũ(s−ct), v(s, t) =
ṽ(s− ct), satisfy (5.16) with the shock speed σ′(t) replaced by the speed c:

(5.18) −cũ′ = ṽ′, −ρAcṽ′ = Ň(ũ, ṽξ, 0)′,

the prime denoting the derivative with respect to ξ. Thus travelling-wave
solutions of (5.2) describe in the stretched variable ξ the large changes that
are described by shocks in the less refined theory governed by the reduced
hyperbolic equations. The travelling-wave solutions (infelicitously called
viscous shocks) are therefore said to determine the shock structure.

We identify the states (ul, vl) and (ur, vr) to the left and right of a shock
with the right-hand sides of (5.17). In view of the foregoing considerations,
we can say that the shock determined by these states is admissible according
to the travelling-wave criterion if there is a solution of the travelling-wave
equations that respectively approaches (ul, vl) and (ur, vr) as ξ → −∞
and ξ → ∞. Thus this criterion is reduced to a geometrical problem
of studying whether trajectories of solutions of an autonomous ordinary
differential equation can join two prescribed singular points in the phase
space.

It is important to note that the solutions of (5.16) depend on the lim-
iting behavior of Ň . Indeed, if Ň were replaced with another function in
which the parameter ε entered in a different manner, then (5.16) could be
different. (We examine an aspect of this issue in the next section. There
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are many different ways to introduce ε, with as much prima facie validity as
(5.1).) Thus, the admissibility of shocks in a hyperbolic system according
to the travelling-wave criterion is not a property of the hyperbolic system
itself: It depends critically on the way the hyperbolic system is embedded
into a system with dissipation, i.e., it depends on a description of the un-
derlying physics more refined than that delivered by the hyperbolic system
alone.

Note that (5.18) admits the integrals

(5.19) −cũ = ṽ + a, −ρAcṽ = Ň(ũ, ṽξ, 0) + b

where a and b are constants of integration. Thus (5.19) is equivalent to
an autonomous first-order ordinary differential equation parametrized by
a, b, c. The qualitative properties of such equations are easy to determine.
(Note that the physically reasonable constitutive assumption that the deriv-
ative of Ň with respect to its second argument have a positive lower bound
ensures that this ordinary differential equation can be put into standard
form.)
5.20. Problem. Use the travelling-wave criterion to study the admissibility of shocks
for (5.2).

In this section we have treated the asymptotics underlying the travelling-wave cri-
terion in a purely formal way. The rigorous treatment, especially for systems of higher
order, is difficult and subtle (as the problem treated in the next section suggests). See
Bressan (2000), Dafermos (2000), Liu (2000), Liu & Zeng (1997), and Serre (1999, 2000)
for careful discussions of these questions and for extensive references. (Most available
analyses are limited to systems in which the dissipative (stress-like terms) are linear in
the velocity gradient.) See Smoller (1994) for the use of topological methods for the
treatment of travelling-wave equations in higher dimensions.

6. Travelling Shear Waves in Viscoelastic Media
Formulation of the governing equations. In light of the discussion of
Sec. 5, we examine travelling waves for an analog of the problem treated
in Sec. 14.15 and formulated in Sec. 3. Let an incompressible, isotropic,
homogeneous, viscoelastic material of strain-rate type of complexity 1 fill
the entire space. We study shearing motions of the form (3.1), which have
strains and strain rates of the form (3.2).

For this material, the first Piola-Kirchhoff stress T is given by a consti-
tutive equation of the form

(6.1) T = −pF −∗ + F · ŜA(E,Et) ≡ −pF −∗ + T̂A(E,Et)

where ŜA, the extra stress, is an isotropic tensor function of its two argu-
ments. The General Representation Theorem 12.13.32 shows that ŜA has
the form

(6.2)

ŜA(E,Et) = ψ1E + ψ2Et + ψ3E
2 + ψ4E

2
t

+ ψ5[E · Et + Et · E] + ψ6[E2 · Et + Et · E2]

+ ψ7[E · E2
t + E2

t · E] + ψ8[E2 · E2
t + E2

t · E2]
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where ψ1, ..., ψ8 depend on the invariants

(6.3)
trE, trE2, trE3, trEt, trE2

t , trE3
t ,

tr (E · Et), tr (E · E2
t ), tr (Et · E2), tr (E2 · E2

t ).

When E and Et are given by (3.2), a straightforward computation shows
that all entries of (6.3) depend upon η = (η0, η1, η2) where

(6.4) η0 = u2
s + v2s , η1 = 2(usust + vsvst), η2 = u2

st + v2st.

Moreover, a further computation shows that (6.2) yields constitutive equa-
tions of the form

(6.5)

i · T̂A · k = µ(η)us + ν(η)ust,

j · T̂A · k = µ(η)vs + ν(η)vst,

k · T̂A · k = ζ(η).

We assume that the scalar functions µ, ν, ζ are continuously differentiable.
We assume that the medium is subject to zero body force and that the

pressure field (at infinity) is independent of x and y, so that (3.6) and (6.5)
reduce to

(6.6) [µ(η)us + ν(η)ust]s = ρutt, [µ(η)vs + ν(η)vst]s = ρvtt.

We assume that (14.15.8) holds:

(6.7a,b) ∂R[Rµ(R2, 0, 0)] > 0, µ(R2, 0, 0) > 0 ∀R.

We also require that (6.6) be parabolic in the sense that the matrix

(6.8)
[
∂U̇ (µU + νU̇) ∂V̇ (µU + νU̇)
∂U̇ (µV + νV̇ ) ∂V̇ (µV + νV̇ )

]
is positive-definite.

Here the arguments of µ and ν are (η0, 2UU̇+2V V̇ , U̇2+V̇ 2). This parabol-
icity condition, which has thermodynamic significance (see Sec. 12.14), en-
sures that the constitutive equations (6.5) describe a dissipative material.

If we let µ,0 = ∂µ/∂η0, µ,1 = ∂µ/∂η1, etc., then (6.8) is equivalent to

ν + 2[µ,1U
2 + (µ,2 + ν,1)UU̇ + ν,2U̇2] > 0,(6.9a)

ν + 2[µ,1V
2 + (µ,2 + ν,1)V V̇ + ν,2V̇ 2] > 0,(6.9b)

ν2 + ν[2µ,1η0 + (µ,2 + ν,1)η1 + 2ν,2η2](6.10)

+ 4(µ,1ν,2 − µ,2ν,1)(UV̇ − V U̇)2 > 0.

From (6.9) we obtain

(6.11) ν + 2µ,1η0 + (µ,2 + ν,1)η1 + 2ν,2η2 > 0.

We further impose the coercivity condition that

(6.12) U̇(µU + νU̇) + V̇ (µV + νV̇ ) → ∞ as U̇2 + V̇ 2 → ∞.



738 18. DYNAMICAL PROBLEMS

Travelling waves. We first study travelling-wave solutions of (6.6) for
their intrinsic value as a class of special solutions of these equations. Then
we examine their significance for the shock structure of the associated hy-
perbolic system. We seek travelling-wave solutions of (6.6) of the form

(6.13) u(s, t) = ũ
(
s− ct
γ

)
, v(s, t) = ṽ

(
s− ct
γ

)
where c (without loss of generality) is a positive constant and γ is a positive
constant to be assigned later. We denote derivatives of ũ and ṽ with respect
to their arguments by primes. Substituting (6.13) into (6.6), integrating
the resulting ordinary differential equations, setting

(6.14) ũ′ =: γŨ , ṽ′ =: γṼ ,

and dropping the tildes, we obtain the system

(6.15a,b) cνU ′ = γ(µ− c2ρ)U − γa, cνV ′ = γ(µ− c2ρ)V

where a is a constant of integration and where the arguments of ν and µ
are

(6.15c) η0 = U2+V 2, η1 = −2
c

γ
(UU ′+V V ′), η2 =

c2

γ2 [(U ′)2+(V ′)2].

Since our problem is invariant under rotations of the (U, V )-plane, we take
a to be nonnegative and take the constant of integration for (6.15b) to be
zero. The scaling (6.14) is quite natural. Note that derivatives of U and V
are hidden as arguments of µ and ν in (6.15). But (6.8) and (6.12) support
the Global Implicit-Function Theorem 21.2.30, which says that (6.15) is

equivalent to a system in standard form in which U ′, V ′ are expressed as
functions of U, V, c, a, γ:

(6.16) U ′ = f(U, V, c, a, γ), V ′ = g(U, V, c, a, γ)V.

System (6.15) implies that g must be even in V .
We now study how the portrait of (6.15) in the (U, V ) phase plane

depends on a, c, and the constitutive functions µ and ν. We first examine
the degenerate case in which a = 0. The trajectories of (6.15) lie on rays
through the origin of the (U, V )-plane. The singular points of (6.15) consist
of the origin together with those circles of radius A about the origin for
which

(6.17) µ(A2, 0, 0) = c2ρ.

There can be any number of such circles because the only restriction we
have imposed on µ(·, 0, 0) is (6.7).
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To find the actual nature of these radial trajectories, we observe that
(6.15) causes the last term in the left-hand side of (6.10) to vanish. Let
S(c, γ) be the set of all (U, V, U ′, V ′) ∈ R

4 satisfying (6.15). Then (6.10)
implies that

(6.18) ν[ν + 2µ,1η0 + (µ,2 + ν,1)η,1 + ν,2η2] > 0

on S(c, γ). Thus ν cannot vanish on S(c, γ). Now (6.11) implies that
ν(0, 0, 0) > 0. Since (0, 0, 0, 0) ∈ S(c, γ) and since ν is continuous, we can
conclude that ν is positive on the connected component of S(c, γ) con-
taining (0, 0, 0, 0). That (6.15) can be put into standard form implies that
S(c, γ) is connected. Thus ν is positive on S(c, γ). From (6.15) (or better
yet, from its version in polar coordinates), we then find that trajectories
move radially outward where µ(η) > c2ρ and U2 + V 2 �= 0, and inward
where µ(η) < c2ρ and U2 + V 2 �= 0 (as the phase (s − ct)/γ increases).
Moreover, (6.15) implies that µ(η)−c2ρ can vanish only on the singular cir-
cles defined by (6.17) and possibly at the origin. (See Fig. 6.19a.) Thus we
have a complete phase portrait of (6.15). A typical example is illustrated
in Fig. 6.19b.

Now we turn our attention to the general case in which a > 0. Then
(6.15) implies that

(6.20) cν[UV ′ − V U ′] = γaV.

We introduce polar coordinates R,Θ by

(6.21) U = R cosΘ, V = R sinΘ,

in terms of which (6.15) becomes

(6.22) cνR′ = γ(µ− c2ρ)R− γa cosΘ, cνRΘ′ = γa sinΘ

where η = (R2,−2cγ−1RR′, c2γ−2[(R′)2 + (RΘ′)2]).

Fig. 6.19a. A typical graph of the constitutive function µ(·, 0, 0)
showing the two roots A1 and A2 of (6.22) when c2 has the
indicated value. Since µ is continuously differentiable, the slope
of R �→ µ(R2, 0, 0) is 0 at R = 0.
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Fig. 6.19b. Phase portrait of (6.15) with a = 0 corresponding
to Fig 6.19a. The two families of trajectories attracted toward
the circle of radius A1 are heteroclinic. Note that as the c2 of
Fig 6.19a is reduced to zero, the two singular circles approach
each other, coalesce, and then disappear, whereupon the phase
portrait is globally that of a node and contains no heteroclinic
trajectories.

The singular points of (6.15) occur when U ′ = 0 = V ′ or possibly where
ν = 0. In the former case, the positivity of a readily shows that the
corresponding singular points are of the form (U∗, 0) where U∗ satisfies

(6.23) [µ(U2, 0, 0) − c2ρ]U = a.

Suppose ν = 0. Then (6.20) implies that V = 0, and (6.16) implies that
V ′ = 0 when V = 0. On the other hand, (6.9b) implies that (V ′)2ν,2 > 0
when ν = 0 (and V = 0), which contradicts the fact that V ′ = 0. We
conclude that not only are there no singular points corresponding to the
vanishing of ν, but that ν can vanish nowhere on solutions of (6.15). Note
that the singular points are determined solely by the elastic response. Hy-
pothesis (6.7b) says nothing about the number and disposition of solutions
of (6.20). In Fig. 6.24 we illustrate the construction of roots U1, ..., U5 of
(6.23) when µ(·, 0, 0) has the form shown in Fig. 6.19a.

It is important to note that the singular points are collinear. They
accordingly correspond to states with constant and parallel (U, V )’s. Con-
dition (6.7a) implies that c2 and a can always be adjusted so that (6.23)
has two prescribed roots.

To classify these singular points, we linearize (6.15) about them, obtain-
ing the uncoupled system

c(ν + 2µ,1U
2
∗ )U ′

� = γ(µ− c2ρ+ 2µ,0U
2
∗ )U�,(6.25a)

cνV ′
� = γ(µ− c2ρ)V�(6.25b)

for the variations U�, V�. Here ν, µ, µ,0, µ,1 have arguments U2
∗ , 0, 0. Note

that (6.9) ensures that the coefficient of U ′
� in (6.25a) is positive, while
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Fig. 6.24. If µ(·, 0, 0) has the form shown in Fig 6.19a, then U �→
[µ(U2, 0, 0)−c2ρ]U has the form shown here and the intersection
of its graph with a horizontal line with a small enough ordinate
a determines the five roots U1, ..., U5 of (6.23).

(6.10) and (6.11) ensure that ν > 0. The roots of the characteristic equation
for (6.25) are

(6.26a,b)
γ[µ− c2ρ+ 2µ,0U

2
∗ ]

c(ν + 2µ,1U2∗ )
,
γ(µ− c2ρ)

cν
.

Note that the numerator of (6.26a) is just γ times the derivative with
respect to U of the left-hand side of (6.23) at roots of (6.23). It changes
sign at simple roots. The denominator of (6.26a) has fixed sign, by our
preceding remarks. From Fig. 6.24, which is typical, we find that µ − c2ρ
is positive at positive roots of (6.23) and negative at negative roots. Thus
if (6.23) has only simple roots, then the singular points are either saddle
points or nodes and their determination follows immediately from (6.23).
That (6.25) is uncoupled means that the stable and unstable separatrices
through each saddle point are parallel to the coordinate axes at the singular
point and that if the two roots in (6.26) are not equal, then each node has
axes parallel to the coordinate axes. Thus, we have

6.27. Proposition. The location and the type of the singular points of
(6.15) depend only on the elastic response µ(·, 0, 0).

When the situation of Fig. 6.24 holds, U1 is an unstable node, U2 a saddle
point, U3 an unstable node, U4 a stable node, and U5 a saddle point. See
Fig. 6.36 below.

Asymptotics. Now we examine more carefully the asymptotics underly-
ing the travelling-wave criterion for our problem. We first set U1 = us,
U2 = vs, U3 = ut, U4 = vt, and thus convert (6.6) to the system

∂tU1 = ∂sU3, ∂tU2 = ∂sU4,(6.28a,b)

ρ∂tU3 = ∂s[µ(η)U1 + ν(η)∂sU3],(6.28c)

ρ∂tU4 = ∂s[µ(η)U2 + ν(η)∂sU4](6.28d)
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where η0 = U2
1 + U2

2 , η1 = 2(U1∂sU3 + U2∂sU4), η2 = (∂sU3)2 + (∂sU4)2.
The analog of (5.2) consists of (6.28a,b) and

(6.29) ρ∂tU3 = ∂s[µ(η0, εη1, ε2η2)U1 + εν(η0, εη1, ε2η2)∂sU3], etc.

With this introduction of the small parameter ε, the formal asymptotics of
the shock layer leads to a version of the travelling-wave equations (6.15),
just as in Sec. 5. If we assume that the analog of (6.8) holds for these scaled
constitutive equations for all ε, then we find that ν(η0, 0, 0) = 0.

Let us now see how to treat the alternative parametrization

(6.30) µ(η) = µ̄(η0) + εµ̂(η), ν(η) = εν̂(η).

In this form, the parameter ε cannot in general be scaled out of (6.28) by our simple
stretching transformation. To find the right asymptotics, we must know the details of
the constitutive functions in (6.30). Suppose for large values of |η1| and |η2| that µ̂ and
ν̂ have the form

(6.31)
µ̂(η) = M1(η0)|η1|k + M2(η0)|η2|l/2 + · · · ,

ν̂(η) = N1(η0)|η1|p + N2(η0)|η2|q/2 + · · ·

where M1, M2, N1, N2 are prescribed functions chosen so that the visible terms of (6.31)
satisfy (6.8), where k, l, p, q > 0, and where the ellipses denote lower-order terms.

Let us set

(6.32)
ξ =

s − σ(t)
γ(ε)

, Ũ1(ξ, t) = U1(σ(t) + γ(ε)ξ, t), etc.,

η̃1 = 2(U1∂ξŨ3 + U2∂ξŨ4), η2 = (∂ξŨ3)2 + (∂ξŨ4)2

where γ is to be chosen appropriately with γ(0) = 0. We substitute (6.31) and (6.32) into
(6.28) to get expressions whose leading terms contain powers of ε and γ. We accordingly
seek γ in the form εα where α is a positive number to be determined. In this case, (6.28c)
has the form

(6.33) − ρσ′(t)Ũ3 = ∂ξ

{[
µ̄ + ε1−αkM1|η̃1|ksign(η̃1)β + ε1−αlM2|η̃2|l/2

]
Ũ1

+
[
ε1−α(1+p)N1|η̃1|p + ε1−α(1+q)N2|η̃2|q/2

]
∂̃ξU3

}
+ · · ·

where the ellipses denote terms of order lower than those exhibited here. We want to
choose α so that the terms in (6.33) with ε to the lowest power vanish, i.e., so that the
leading term of (6.33) is satisfied. To be specific, let us suppose that q > p, k−1, l−1; the
treatment of all other cases is similar. Then the candidates for the smallest exponent in
(6.33) are 0 and 1−α(1+q). If they are not equal, then the coefficients of the smaller must
vanish, producing an inadmissible degeneracy. We consequently take α = 1/(1 + q). A
lengthy calculation shows that the resulting form of the leading-order equation of (6.33)
is equivalent to a travelling-wave equation for a degenerate version of (6.15), namely,

U ′ =
(µ̄ − c2ρ)U − a

D
, V ′ =

(µ̄ − c2ρ)V
D

(6.34a,b)

D := cN
1/(1+q)
2

{
[(µ̄ − c2ρ)U − a]2 + [(µ̄ − c2ρ)V ]2

}q/2(q+1)
.(6.34c)

Note that (6.34) is in the standard form (6.16). Since the denominators of (6.34a,b) are
the same, we conclude that the only effect of the terms N2 and q is merely a nonlinear
rescaling of the parameters along the orbits of the phase portrait. These observations
lead to
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Fig. 6.36. Typical phase portrait for the reduced system (6.34) when µ̄ has
the form of µ(·, 0, 0) of Fig. 6.19a. The horizontal and vertical isoclines
are shown as dashed curves. Note that the horizontal isoclines other than
the U -axis are circles. Separatrices are shown as heavy curves. The por-
trait is symmetric about the U -axis. For this problem, the disposition of
the horizontal and vertical isoclines completely determines the topological
character of the phase portrait.

6.35. Theorem. The qualitative properties of the phase portrait of (6.34) are com-
pletely determined by the elastic response µ̄.

In Fig. 6.36, we exhibit the phase portrait of (6.34) when µ̄ has the form of µ(·, 0, 0)
shown in Fig. 6.19a. In this case, Fig. 6.24 is valid. It is a straightforward exercise
to determine the qualitative behavior of U and V on any trajectory of Fig. 6.36. We
discuss this behavior below.

A more careful analysis, which we do not undertake, leads to

6.37. Theorem. On any compact subset of {(U, V ) : V 
= 0}, the horizontal and
vertical isoclines of the phase portrait of (6.15), (6.30) with γ = εα approach those of
(6.34) uniformly as ε → 0. If R �→ µ̄(R2)−c2ρ has only simple zeros, then the horizontal
isoclines of the phase portrait of (6.15), (6.30) with γ = εα approach those of (6.34)
uniformly as ε → 0 on any compact subset of the phase plane. If U �→ [µ̄(U2)−c2ρ]U −a
has only simple zeros, the same statement applies to the vertical isoclines.

This is a theorem on the structural stability of the isoclines of the phase portrait
of (6.15), (6.30) with γ = εα. A similar theorem can be obtained for those orbits
that connect nondegenerate equilibrium points. Similar results can be obtained for the
parametrization (6.28), (6.29) provided that mild additional constitutive assumptions
are made.

The singular points of Fig. 6.36 correspond to states to the left and to the right of a
shock. The shock structure is determined by the orbit connecting such singular points.
Figure 6.36 shows that there can be an infinity of such orbits. Thus the travelling-
wave criterion can test the admissibility of shocks, but does not identify a unique shock
structure. This difficulty and an accompanying lack of stability is a typical phenomenon
associated with the loss of strict hypberbolicity due to rotational invariance. See Brio
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& Hunter (1990), Freistühler (1990, 1991, 1992), and Freistühler & Liu (1993). What
may be required is a much deeper investigation of admissibility conditions generated
by the evanescence of a whole array of dissipative mechanisms including viscosity, heat
conduction, and strain-gradient effects (see Dafermos (1982, 2000) and Hagan & Slemrod
(1983)).

The technical parts of this section represent a refinement of Antman & Malek-Madani
(1988). Some of the interpretations have been changed. Excerpts and Figs. 6.19a,b,
6.24, and 6.36 from this paper are reprinted with the kind permission of the Quarterly
of Applied Mathematics.

In the standard numerical schemes for computing shocks are hidden
numerical dissipative mechanisms, which typically add dissipation to ‘com-
patibility’ equations like (5.2a) and (6.28a,b). These dissipative mecha-
nisms consequently are not of the form we have treated. Hagen & Slemrod
(1983) identify some such mechanisms with special surface-tension (strain-
gradient) effects. A considerable amount of the mathematical study of dis-
sipative mechanisms has dealt with such mechanisms that act with equal
effect on the compatibility equations and the equations of motion. See the
discussion in Sec. 8.9.

7. Blowup in Three-Dimensional Hyperelasticity
In this section we describe concavity methods that enable us to prove

that classical solutions of certain initial-boundary-value problems of non-
linear elasticity cannot exist for all time. Our results suggest that a certain
norm of a solution becomes infinite in finite time. Our results also apply
to weak solutions, but for simplicity of exposition we restrict our attention
to classical solutions.

We study the motion of a hyperelastic body B under zero body forces.
We take constitutive functions in the form

(7.1) T̂
(
pz(z, t),z

)
=
∂Ŵ

∂F

(
pz(z, t),z

)
.

We adopt the mild restriction that Ŵ ≥ 0. We tacitly assume that Ŵ is
in frame-indifferent form (see Sec. 13.1). The equations of motion are

(7.2) ρ(z)ptt = ∇ · T̂
(
pz(z, t),z

)
.

Our initial conditions are

(7.3) p(z, 0) = p0(z), pt(z, 0) = p1(z).

We assume that the boundary is traction-free:

(7.4) T̂
(
pz(z, t)

)
· ν(z) = o for z ∈ ∂B.

Our initial-boundary-value problem is (7.1)–(7.4).
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We shall be especially concerned with materials satisfying a constitutive
restriction of the form

(7.5) F :
∂Ŵ

∂F
(F ,z) ≤ αŴ (F ,z)

where α is a positive number. We could readily weaken (7.5) by adding a
positive constant to the right-hand side, since we can always redefine Ŵ to
include an additive constant without affecting the underlying mechanics.
(The effect of such a constant would be absorbed by the initial energy in
the analysis that follows.) To see the significance of (7.5), we could take
Ŵ to be a linear combination of powers of the invariants of C and then
determine which exponents are compatible with the choice of α. A simpler
approach is the following: Let A be an arbitrary constant tensor with
det A > 0. We can characterize the behavior of Ŵ (·,z) for large strains
by stating how (0,∞) � λ �→ Ŵ (λA,z) behaves for large λ. In particular,
the infimum β∗ of the β’s for which

(7.6) lim sup
λ→∞

λ−βŴ (λA,z) <∞

characterizes how weak the material is under large extensions. (β and β∗
may depend on A.) The smaller the β∗, the weaker the material. In linear
elasticity, Ŵ is quadratic in F , so β∗ = 2. A property like (7.5) represents
an upper bound on the rate of growth of Ŵ ; it complements a restriction
like (13.4.5). Suppose we strengthen (7.6) by requiring that

(7.7)
d

dλ
λ−βŴ (λA,z) ≤ 0.

By carrying out the differentiation in (7.7), we readily find that (7.5) is
equivalent to (7.7) with β = α.

Now we use a blowup argument to prove that for appropriate initial con-
ditions, a classical solution cannot exist for all time under the assumption
that (7.5) holds with α > 2. (This restriction on α is introduced merely to
prevent technical difficulties.)

Let p be a classical solution of (7.1)–(7.4). It conserves energy:

(7.8) E(t) := 1
2

∫
B
ρpt · pt dv +

∫
B
Ŵ (pz,z) dv = E(0).

We define

(7.9) G(t) :=
∫

B
ρ(z)p(z, t) · p(z, t) dv(z).

We seek a differential inequality for G that ensures that G blows up in
finite time. We have not bothered to fix the translation of p by requiring
that the mass center be fixed at the origin:

∫
B ρp dv = o. But we know
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that
∫

B ρptt dv = o, so that
∫

B ρp dv can grow at most linearly in time.
Therefore, a blowup of G really implies a blowup in position relative to the
mass center.

By differentiating (7.9) and using the Cauchy-Bunyakovskĭı-Schwarz in-
equality, we readily obtain

(7.10a,b) G′(t) = 2
∫

B
ρpt · p dv ≤ 2

√∫
B
ρpt · pt dv

√
G(t).

We now use (7.2), integration by parts, inequality (7.5), and (7.8) to obtain

(7.11)

G′′(t) = 2
∫

B
ρptt · p dv + 2

∫
B
ρpt · pt dv

= −2
∫

B
T : pz dv + 2

∫
B
ρpt · pt dv

≥ −2α
∫

B
Ŵ (pz,z) dv + 2

∫
B
ρpt · pt dv

= −2αE(0) + (2 + α)
∫

B
ρpt · pt dv.

We multiply (7.11) by G(t) and use (7.10b) to obtain

(7.12) GG′′ − (γ + 1)(G′)2 ≥ −2αE(0)G where γ =
α− 2

4
> 0.

Let us assume that

(7.13) E(0) > 0, G(0) > 0, G′(0) > 0.

We suppose that a classical solution of our initial-boundary-value problem
exists for t ∈ [0, T ). By continuity, there is an interval [0, τ) ⊂ [0, T ) on
which G′(t) > 0, so that G(t) > G(0) here. It follows from (7.12) that

(7.14)
d2

dt2
G−γ ≤ 4γ(1 + 2γ)E(0)G−(γ+1) on [0, τ).

Let us multiply (7.14) by d[G(t)−γ ]/dt, which is negative on [0, τ), and
integrate the resulting inequality from 0 to t with t < τ to obtain an
inequality that can be reduced to

(7.15) G′(t)2 ≥ G(t)H(G(t)) on [0, τ)

where

(7.16) H(G) := 8E(0) +
[
G(t)
G(0)

]2γ+1 [
G′(0)2

G(0)
− 8E(0)

]
.



7. BLOWUP IN THREE-DIMENSIONAL HYPERELASTICITY 747

Let us now further assume that the initial conditions are such that

(7.17) G′(0)2 > 8E(0)G(0),

which says that the initial velocity reinforces the initial displacement. Then
H is a strictly increasing function on [0,∞). From (7.15) we thus obtain
that G′(t)2 ≥ G(t)H(G(0)) > 0 on [0, τ). From the definition of τ and
from the continuity of G′ it follows that we can take τ = T .

From (7.15) and (7.16), now valid on [0, T ), we obtain

(7.18) T ≤
∫ G(T )

0

dG√
GH(G)

≤
∫ 1

0

dG√
8E(0)G

+ C
∫ ∞

1
G−γ−1/2 dG < K

where C and K are positive numbers, which are readily computed. Were
a classical solution to exist for all time, we could let T → ∞ in (7.18) to
derive a contradiction. In summary, we have

7.19. Theorem. Let (7.5) hold with α > 2. Let the initial data satisfy
(7.13) and (7.17). Then a classical solution of (7.1)–(7.4) (which is readily
shown to be unique by an energy argument) cannot exist for all time.

7.20. Exercise. Prove that (7.5) is frame-indifferent.

7.21. Exercise. Let A be a constant tensor and let h : (0, ∞) → (0, ∞) be a given
function. For the material defined by

(7.22) Ŵ (F ) = A : [F ∗ · F ] + h(det F ),

find conditions on α and h that ensure that (7.5) holds.

7.23. Problem. Generalize Theorem 7.19 to handle boundary conditions of the form

(7.24) p(z, t) = z for z ∈ S0, T̂
(
pz(z, t)

)
· ν(z) = o for z ∈ S3

where ∂B = S0 ∪ S3, S0 ∩ S3 = ∅. Since we do not require the initial configuration
to be a natural state, the prescription of zero boundary data for the displacement is
essentially no more restrictive than the prescription of arbitrary (sufficiently smooth)
time-independent data. (Cf. the treatment of Knops (1973), who uses an inequality that
is similar to (7.5), but is not frame-indifferent.)

7.25. Problem. Carry out the analogous treatment of problem (7.1)–(7.4) when the
assumption that (7.5) holds with α > 2 is replaced with the assumption that (7.6) holds
with β > 2. This problem is important because (7.7) would be a consequence of (7.6)
if the unacceptable strict monotonicity condition (13.3.1), (13.3.2) were in force, but it
does not seem to be a consequence of (7.6) if the Strong Ellipticity Condition holds.

We now study a related case of blowup in which each component of the
boundary of body B is subjected to a hydrostatic pressure. We assume
that there is a number k ≥ 0 such that

(7.26) ∂B =
k⋃

r=0

Γr

where the Γr are closed piecewise smooth surfaces not connected to each
other. We assume that Γ1, . . . , Γk lie within Γ0. (For example, B could be
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a spherical shell with Γ1 the inner surface and Γ0 the outer surface.) We
replace (7.4) with the requirement that there be a set of constant pressures
π0, . . . , πk, not necessarily positive, such that

(7.27) Σ
(
p(z, t), t

)
· ξ
(
p(z, t), t

)
= −πrξ

(
p(z, t), t

)
for z ∈ Γr.

Here Σ(y, t) is the Cauchy stress tensor at (y, t) and ξ
(
p(z, t), t

)
is the

outer unit normal vector to p(Γr, t) at y. (See (12.15.27)–(12.15.34).) We
define the function π ∈ C∞(B) to be the solution of Laplace’s equation
∆π = 0 in B subject to the Dirichlet boundary conditions π(z) = πr on
Γr.

We assume that for each t ∈ [0, T ) the initial-boundary-value problem
(7.1)–(7.3), (7.27) has a classical solution p with p(·, t) : cl B �→ p(cl B, t)
having an inverse q(·, t) ∈ C2(B) ∩C1(cl B). To extend the methods above
to the present problem, we shall need a few identities for the pressure terms,
which we now derive.

Let z, t) �→ η(z, t) be any function in C1(B) ∩ C0(cl B). Using (7.27)
and the results of Sec. 12.15 we can show that∫

∂B
η(z, t) · T (z, t) · ν(z) da(z)(7.28)

=
∫

p(∂B,t)
η(q(y, t), t) · Σ(y, t) · ξ(y) da(y)

= −
∫

p(∂B,t)
π(q(y, t)) η(q(y, t), t) · ξ(y) da(y)

= −
∫

p(B,t)
∇y · [π(q(y, t)) η(q(y, t), t)] dv(y)

= −
∫

B

∂[π(z)η(z, t)]
∂z

: F (z, t)−∗det F (z, t) dv(z).

The easiest way to prove the next result would be to extend p(·, t) for
each t continuously from clB to the region enclosed by Γ0. (Such an ex-
tension could be effected by solving Dirichlet’s problem for the Laplace
equation for each component of p in each hole.) Suppose this extension
is made. Let the region enclosed by Γr be denoted Ωr. Let ε0 = 1 and
εr = −1 for r = 1, . . . , k. Taking due account of orientation, we have

d

dt

∫
∂p(B,t)

π(q(y, t))p(q(y, t), t) · ξ(y) da(y)(7.29)

=
k∑

r=0

πr
d

dt

∫
p(Γr,t)

y · ξ(y) da(y) =
k∑

r=0

εrπr
d

dt

∫
p(Ωr,t)

3 dv(y)

= 3
k∑

r=0

πr

∫
p(Γr,t)

pt(q(y, t), t) · ξ(y) da(y)
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= 3
∫

p(Γr,t)
π(q(y, t))pt(q(y, t), t) · ξ(y) da(y).

The penultimate equality follows from the Transport Theorem 12.15.23.

7.30. Exercise. Prove (7.29) directly without using the extensions of p. (Hint: Use
(12.15.33) to pull the integral back to ∂B, introduce Cartesian coordinates, and invoke
Kelvin’s (Stokes’) Theorem to eliminate some terms; see Ball (1977a, Eq. (1.37)) and
Sewell (1967).)

Taking the dot product of (7.2) with pt, integrating the resulting expres-
sion by parts, and using (7.28) and (7.29), we deduce the energy equality

(7.31)
E(t) := 1

2

∫
B
ρpt · pt dv +

∫
B
Ŵ (pz,z) dv

+ 1
3

∫
B

∂(πp)
∂z

: F −∗ det F dv(z) = E(0).

We are now ready to begin our analysis. We assume that (7.5) holds
for α = 3. In contrast to the technical requirement that α > 2, which was
used above, this restriction is substantive: It states that the material must
be sufficiently weak. Defining G as in (7.9), we obtain (7.10) and (7.11)
with α = 3:

(7.32) G′′(t) ≥ −6E(0) + 5
∫

B
ρ(z)pt(z, t) · pt(z, t) dv.

Let us now suppose that E(0) ≤ 0, which can be effected by suitable
choices of the pressures. From (7.32) we obtain as above that

(7.33) g′′ ≤ 0 where g(t) := G−1/4(t)

(in place of (7.14)), which says that G−1/4 is concave and which implies
that

(7.34) g(t) ≤ g(0) + g′(0)t or, equivalently, G(t) ≥ 1
[g(0) + g′(0)t]4

.

If the initial conditions are such that G′(0) > 0, then g′(0) < 0, and (7.34)
implies that G blows up in finite time.

Now let us adopt the stronger restriction that E(0) < 0, while sus-
pending the requirement that G′(0) > 0. From (7.32) we find that G′′(t) >
−6E(0), so that G′(t) > G′(0) − 6E(0)t. Thus G′(t1) > 0 if t1 >
G′(0)/6E(0). We now reproduce the preceding argument by replacing t = 0
with t = t1. Thus we have

7.35. Theorem. Let (7.5) hold with α = 3. Let the initial data satisfy
either E(0) < 0 or E(0) ≤ 0 and G′(0) > 0. Then a classical solution of
(7.1)–(7.3), (7.27) cannot exist for all time.

7.38. Problem. Use the methods leading to Theorem 7.19 to find a blowup result for
(7.1)–(7.3), (7.27) when E(0) > 0.
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7.39. Problem. Carry out the analogous treatment of problem (7.1), (7.2), (7.4),
(7.27) when the assumption that (7.5) holds with α = 3 is replaced with the assumption
that (7.6) holds with β = 3.

The presentation in this section is based on those of Ball (1978), Knops (1973),
and Knops, Levine, & Payne (1974). These articles should be consulted for further
developments and for pertinent references. Also see Calderer (1983, 1986). As these
references indicate, and as should be apparent from the use of integrals, most of these
results apply to properly defined weak solutions of the governing equations.

We have given conditions under which a sort of energy of solutions blows up. However,
we have not shown that the solution survives long enough for this energy to blow up.
It is conceivable that it does not (see Ball (1978)). For ordinary differential equations,
this difficulty cannot occur.



CHAPTER 19

Appendix. Topics
in Linear Analysis

1. Banach Spaces
A Banach space is a vector space with very attractive linearity and convergence

properties. For our purposes, the most important Banach spaces are spaces of functions.
Formally, a Banach space is a complete, normed, vector space. Let us now define each
of these terms. By a scalar we mean a real or complex number.

A vector space (or equivalently a linear space) consists of a collection X of elements
x, y, z, . . . , called vectors, together with the operation of addition that associates with
each pair x, y of elements of X its sum x+y in X , and the operation of scalar multiplication
that associates with each scalar α and each x ∈ X the multiple αx in X , such that

(V1) x + y = y + x ∀ x, y ∈ X .
(V2) x + (y + z) = (x + y) + z ∀ x, y, z ∈ X .
(V3) ∃ o ∈ X such that x + o = x ∀ x ∈ X .
(V4) To each vector x ∈ X there corresponds a unique vector −x such that x+(−x) =

o,
(V5) α(βx) = (αβ)x for every scalar α, β and for every vector x.
(V6) 1x = x for every vector x.
(V7) α(x + y) = αx + αy for every scalar α and for every vector x, y,
(V8) (α + β)x = αx + βx for every scalar α, β and for every vector x.

As usual, we write x + (−y) as x − y. Since the operations of addition and scalar
multiplication are invariably obvious, we refer to X itself as the vector space. A vector
space (and correspondingly a Banach space) is called real or complex if the field of scalars
is respectively the real numbers or the complex numbers. In elasticity, complex vector
spaces arise primarily in the study of dynamical problems.

A vector space has dimension n where n is a nonnegative integer iff it has a set of
n linearly independent vectors, but every set of n + 1 vectors is dependent. A vector
space is infinite-dimensional iff for each positive integer k it has a set of k independent
vectors.

A vector space is normed iff it is endowed with a function that associates with each
x in X the real number ‖x,X‖, usually abbreviated ‖x‖, called the norm of x, such that

(N1) If ‖x‖ = 0, then x = o.
(N2) ‖αx‖ = |α| ‖x‖ ∀ scalars α, ∀ x ∈ X .
(N3) The triangle inequality holds: ‖x + y‖ ≤ ‖x‖ + ‖y‖ ∀ x, y ∈ X .

Note that the properties of a norm ensure that ‖x‖ ≥ 0 for all x ∈ X . The distance
between x and y in a normed space X is ‖x − y‖. We use this distance to define all the
topological notions such as open set, closed set, etc., just as in Euclidean space.

A sequence {xk} in a normed space X converges iff there exists an element x, called
the limit of the sequence, in X with the property that for arbitrary ε > 0 there is a
number M (ε) > 0 such that

(1.1) ‖xk − x‖ < ε when k > M (ε).

751
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A sequence {xk} in a normed space X is a Cauchy sequence iff for arbitrary ε > 0 there
is a number N (ε) > 0 such that

(1.2) ‖xk − xl‖ < ε when k, l > N (ε).

It is easy to see that every convergent sequence in a normed space is a Cauchy sequence.
A normed space is complete iff every Cauchy sequence of elements in it converges to a
limit in it. The importance of this concept is that in a normed space we can show that
a sequence converges merely by showing that it is a Cauchy sequence: We do not have
to have a candidate for a limit.

Examples.
i. Some finite-dimensional spaces. Let p ≥ 1. Then Rn, which consists of n-tuples
x = (x1, . . . , xn) of real numbers, when endowed with any of the norms

(1.3) ‖x, lp‖ :=

[
n∑

k=1

|xk|p
]1/p

or ‖x, l∞‖ := max{|xk| : k = 1, . . . , n},

is a real Banach space. To show that the functions of (1.3) are norms, it is convenient
to use the Hölder inequality:

(1.4)
n∑

k=1

|xkyk| ≤ ‖x, lp‖ ‖y, lp∗‖

for p ∈ (1,∞) and for 1
p

+ 1
p∗ = 1. (Several proofs of this inequality are given by Hardy,

Littlewood, & Polya (1952), e.g.) The completeness of these spaces is an immediate
consequence of the Cauchy Convergence Criterion for sequences of real numbers.

It is not hard to show that all norms on a finite-dimensional vector space are equiv-
alent, i.e., if ‖ · ‖1 and ‖ · ‖2 are norms on such a space, then there are positive numbers
c and C such that c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1. Thus, if a sequence in a finite-dimensional
vector space converges in one norm, then it converges in every other norm.

Recall from Chap. 7 that a set K in a normed space is (sequentially) compact iff
every sequence in K has a subsequence converging to a limit in K. It follows from the
Bolzano-Weierstrass Theorem that a set in a finite-dimensional normed space is compact
if and only if it is closed and bounded. A theorem of F. Riesz says that a normed linear
space is finite-dimensional if and only if its closed unit ball is compact.

ii. Spaces of continuous functions. Let Ω be a domain in Rn or En. Let
[
C0(cl Ω)

]m
denote the set of all uniformly continuous and bounded functions u from Ω to Rm. It is
a Banach space with norm

(1.5) ‖u,
[
C0(cl Ω)

]m ‖ := sup{|u(x)|, x ∈ cl Ω}.

Thus convergence in this space is uniform convergence. Completeness is equivalent to
the proof of the Cauchy Convergence Criterion for continuous functions, which is found
in all books on advanced calculus. (If Ω is bounded, then, because a continuous real-
valued function on a compact subset of Rn or En is bounded and uniformly continuous,
it follows that

[
C0(cl Ω)

]m is equivalent to the the set of continuous functions u on cl Ω,
and the sup in (1.5) can be replaced with max.)

iii. Spaces of continuously differentiable functions. Let Ω be a domain in Rn or En.
Let

[
C1(cl Ω)

]m denote the set of all continuously differentiable functions u from Ω to
Rm that together with their derivatives are bounded and uniformly continuous. It is a
Banach space with norm

(1.6) ‖u,
[
C1(cl Ω)

]m ‖ := ‖u,
[
C0(cl Ω)

]m ‖ + ‖∂u/∂x,
[
C0(cl Ω)

]mn ‖.



19.1. BANACH SPACES 753

iv. Lebesgue spaces. Let p ∈ [1,∞) and let Ω be a domain (or more generally a
measurable set) in Rn or in En. Let [Lp(Ω)]m denote the set of all (equivalence classes
of almost everywhere equal) functions from Ω to Rm such that

(1.7) ‖u, [Lp(Ω)]m ‖ :=
{∫

Ω
|u(x)|p dv(x)

}1/p

< ∞.

That this norm satisfies the triangle inequality follows from the Hölder inequality (1.8.2)
for integrals, which is a consequence of (1.4).

v. The space of bounded functions. Let Ω be a a measurable set in Rn or in En. The
set [L∞(Ω)]m of essentially bounded functions from Ω to Rm has the norm

(1.8) ‖u, [L∞(Ω)]m ‖
:= inf{α ∈ R : the set of x’s for which |u(x)| > α has measure 0}.

vi. Sobolev spaces. Let Ω be a domain in Rn or in En. To define Banach spaces of
functions whose derivatives are in Lp(Ω), we first define a generalized derivative of a
function that is merely locally integrable, i.e., integrable on compact subsets of Ω. Let
C∞

0 (Ω) denote that class of all scalar-valued functions that are infinitely differentiable
on Ω and have compact support there (so that for each function in C∞

0 (Ω) there is a
compact subset of Ω outside of which the function vanishes). Let u be locally integrable
on Ω. If there exists a locally integrable function vk such that

(1.9)
∫
Ω

u(x)
∂ϕ(x)
∂xk

dv(x) = −
∫
Ω

vk(x)ϕ(x) dv(x)

for all ϕ ∈ C∞
0 (Ω), then vk is called the distributional derivative of u and is denoted

∂u/∂xk. If u is differentiable on Ω, then its distributional derivative is readily shown to
equal its classical derivative.

Let p ≥ 1. The Sobolev space
[
W 1

p (Ω)
]m consists of (equivalence classes of almost

everywhere equal) functions u ∈ [Lp(Ω)]m whose distributional derivatives ∂u/∂x belong
to [Lp(Ω)]mn. The space

[
W 1

p (Ω)
]m is equipped with the norm

(1.10) ‖u,
[
W 1

p (Ω)
]m ‖ := {‖u, [Lp(Ω)]m ‖p + ‖∂u/∂x, [Lp(Ω)]mn ‖p}1/p .

There is an extensive literature devoted to the regularity and boundary behavior of
functions in Sobolev spaces (see Adams (1975), Maz’ya & Šapošnikova (1985), and Nečas
(1967), e.g.). The simplest such property of Sobolev spaces is the inequality (1.8.5).

A real inner product on a real vector space X is a real-valued function x, y �→ 〈x, y〉
such that

(I1) 〈x, y〉 = 〈y, x〉 ∀ x, y ∈ X .
(I2) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉 ∀α, β ∈ R, ∀ x, y, z ∈ X .
(I3) 〈x, x〉 ≥ 0 ∀ x ∈ X .
(I4) 〈x, x〉 = 0 if and only if x = o.

A space with a real inner product is a real normed space with norm defined by
‖x‖ =

√
〈x, x〉. A complete inner-product space is called a Hilbert space. Examples of

real Hilbert spaces are Rn endowed with the inner product 〈x, y〉 :=
∑n

k=1 xkyk, which
generates the norm (1.3) with p = 2; the space L2(Ω) endowed with the inner product
〈u, v〉 :=

∫
Ω u(x)v(x) dv, which generates the norm of (1.7) with p = 2 and m = 1; and

the space W 1
2 (Ω) with the inner product 〈u, v〉 :=

∫
Ω[u(x)v(x) dv(x)+ux(x) · vx(x)] dv,

which generates a norm equivalent to (1.10) with p = 2 and m = 1. (We define the
Euclidean space En to be abstract n-dimensional real inner-product space.)

A linear manifold or subspace A in a vector space is a set with the property that
if x1, x2 ∈ A, then α1x1 + α2x2 ∈ A for all scalars α1, α2. A linear manifold is itself
a vector space, inheriting the operations of addition and scalar multiplication from its
parent space, but it need not be a Banach space even if its parent space is a Banach
space because it need not be complete. It is complete and therefore a Banach space if
and only if it is closed.
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2. Linear Operators and Linear Equations
Let X and Y be real Banach spaces, and let D be a linear manifold in X . A mapping

f : D → Y is called a linear operator iff

(2.1) f(α1x1 + α2x2) = α1f(x1) + α2f(x2) ∀ x1, x2 ∈ D, ∀α1, α2 ∈ R.

We denote abstract linear operators by uppercase sans-serif symbols A, B, . . . and we
denote the value of an operator A at x by A · x. (We use the dot solely because it corre-
sponds to the Gibbsian notation we use for linear operators, i.e., tensors, on Euclidean
spaces.) The domain D of definition of a linear operator A is denoted D(A). We always
assume that D(A) is dense in X , i.e., the closure of D(A) in X is X itself. The range
A·D(A), here denoted R(A), is defined by

(2.2) R(A) := {y ∈ Y : ∃ x ∈ D(A) such that y = A · x}.

The null space (or kernel) of A is defined to be

(2.3) N (A) := {x ∈ D(A) : A · x = o}.

2.4. Example. Let X = L2(0, 1), D = C2[0, 1], Y = L2[0, 1]. Then D � u �→ u′′ ∈
Y is a linear operator with range C0[0, 1] and with null space consisting of all affine
functions u.

A basic objective of linear operator theory is to solve linear equations of the form

(2.5) A · x = f

when A is a given linear operator and f is a given element of Y. We now introduce
further terminology, concepts, and theorems that promote this goal.

A linear operator A is bounded or, equivalently, continuous iff there is a real number
α such that

(2.6) ‖A · x,Y‖ ≤ α‖x,X‖ ∀ x ∈ D(A).

(Note that (2.6) immediately implies the continuity of A in the usual sense.) The X
and Y could be dropped from the norms in (2.6), as we do below, because the meaning
of the norms is clear from the context. The (operator) norm ‖A‖ of a bounded linear
operator A is defined to be

(2.7) ‖A‖ := sup
{‖A · x‖

‖x‖
: o 
= x ∈ D(A)

}
≡ sup {‖A · x‖ : x ∈ D(A), ‖x‖ = 1} .

(The proof of the second identity in (2.7) is elementary.) The linear operator of Ex. 2.4
is not bounded. A simple example of a bounded linear operator is the operator of
integration on any reasonable space of integrable functions.

The set of all bounded linear operators A : D(A) → Y is denoted L(D(A),Y). That
D(A) is normed and Y is a Banach space is easily shown to imply that L(D(A),Y),
when equipped with the norm in (2.7), is itself a Banach space (with the obvious rules
for addition and scalar multiplication). It can be shown that if A is a bounded linear
operator, then it can be extended to the closure of D(A) in X without its norm being
increased. This closure is itself a Banach space, which we might as well call X . Thus
we always regard the domain of a bounded linear operator as being a Banach space.

If Y is R, then a member of L(D(A),R) is called a (real) bounded linear functional
and L(D(A),R), which is denoted by X ∗, is called the dual space of X . By our preceding
remarks, X ∗ is a Banach space. For many useful Banach spaces there are explicit
representations of the elements of X ∗. For example, if H is a real Hilbert space with
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inner product 〈·, ·〉, then the Riesz Representation Theorem asserts that to each A in H∗
there corresponds a unique vector x∗ in H such that

(2.8a) A · x = 〈x, x∗〉.

Conversely, each vector x∗ in H generates a bounded linear functional by (2.8a). Thus
for a Hilbert space H, the dual space H∗ can always be identified with H itself. (For
Sobolev spaces that are Hilbert spaces, this identification is not always convenient.)

We denote a typical element of X ∗ sometimes by x∗, but more often by X � x �→
〈x, x∗〉, a notation that is motivated by (2.8a) and that generalizes it. In this notation,
another representation theorem of Riesz says that if p ∈ (1,∞), then Lp(Ω)∗ can be
identified with Lp∗ (Ω), where p∗ = p/(p − 1), with

(2.8b) 〈u, u∗〉 :=
∫
Ω
u(x)u∗(x) dv(x),

the integral converging by the Hölder inequality.
Since X ∗ is a Banach space, we can define its dual space X ∗∗ := (X ∗)∗. Now each x

in X defines a bounded linear functional on X ∗ by x∗ �→ 〈x, x∗〉. Thus we can identify X
with a subset of X ∗∗. When X can be identified with X ∗∗, X is said to be reflexive, and
there is a symmetry between X and X ∗. Hilbert spaces, the Lp spaces with 1 < p < ∞,
and the Sobolev spaces W 1

p with 1 < p < ∞ are reflexive.
The notions of dual space and reflexivity are essential for the definition of weak

convergence. This topic is developed in detail in Sec. 7.3.

Adjoints. We now turn our attention to the study of the solvability of (2.5). Let us
first consider as a concrete example the boundary-value problem

(2.9a,b,c) u′′ + π2u = sin πs on (0, 1), u(0) = 0 = u(1).

We may formulate this problem as an operator equation of the form (2.5) by taking
X = C2[0, 1], D = {x ∈ X : x(0) = 0 = x(1)}, the linear operator A to be u �→ u′′ +π2u,
and f to be the function with values sin πs. We can find the general solution of (2.9a) in
terms of two arbitrary constants. Upon trying to use the boundary conditions (2.9b,c)
to evaluate the constants, we find that (2.9) has no solution. This naive procedure fails
for more complicated problems because it depends upon the availability of a specific
representation for the solutions of the equation. A slicker demonstration of the same
conclusion is obtained by assuming that (2.9) has a solution, then by multiplying (2.9a)
by sin πs, and by integrating the resulting equation by parts over (0, 1). The boundary
conditions reduce this equation to the absurdity: 0 =

∫ 1
0 sin2 πs ds.

We now abstract this procedure to make it applicable to a whole range of problems
of the form (2.5). We seek a simple test on f to tell whether (2.5) is solvable. For this
purpose, we need the concept of an adjoint operator.

Let A be a linear operator (not necessarily bounded) from D(A) to Y. Let D(A∗)
consist of all the elements y∗ in Y∗ such that there exists an x∗ in X ∗ such that

(2.10) 〈A · x, y∗〉 = 〈x, x∗〉 ∀ x ∈ D(A).

Here 〈A · x, y∗〉 is the value of the bounded linear functional y∗ at A · x in Y, and 〈x, x∗〉 is
the value of the bounded linear functional x∗ at x in X . It is easy to show that D(A∗) is
a vector subspace of Y∗ and that x∗ is uniquely determined by y∗. We accordingly write
x∗ = A∗ · y∗. It is easy to see that Y∗ ⊃ D(A∗) � y∗ �→ A∗ · y∗ ∈ X ∗ is a linear operator,
called the adjoint of A.

Let M be any subset of Banach space X and let M∗ be any subset of Banach space
X ∗. We define the annihilators

(2.11)
M⊥ := {x∗ ∈ X ∗ : 〈x, x∗〉 = 0 ∀ x ∈ M},

⊥M∗ := {x ∈ X : 〈x, x∗〉 = 0 ∀ x∗ ∈ M∗}.

Thus M⊥ consists of all bounded linear functionals on X that vanish on M, and ⊥M∗
consists of all the elements of X on which every element (bounded linear functional) of
M∗ vanishes. By applying the definition of closure and of span, we can easily prove
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2.12. Proposition. M⊥ and ⊥M∗ are closed linear manifolds, i.e., Banach spaces,
with

M⊥ = [cl (span M)]⊥,⊥M∗ = ⊥[cl (span M∗)].

We begin our study of the solvability of (2.5) by making the trivial observations that
if (2.5) has a solution, then f is in R(A), and that if (2.5) has a solution for every f in Y,
then R(A) = Y. We accordingly seek to describe R(A). Our treatment of (2.9) suggests
that R(A) is related to a suitable null space. Indeed,

2.13. Lemma. If (2.5) has a solution, then f annihilates the null space of A∗, i.e.,

(2.14a) 〈f, y∗〉 = 0 ∀ y∗ such that A∗ · y∗ = o

or, equivalently,

(2.14b) R(A) ⊂ ⊥N (A∗).

Proof. We are given that there exists an x such that A · x = f. For any y∗ ∈ D(A∗), it
therefore follows from (2.10) that

(2.15) 〈f, y∗〉 = 〈A · x, y∗〉 = 〈x, A∗ · y∗〉.

If we now take y∗ ∈ N (A∗), then the rightmost term of (2.15) vanishes by definition of
N (A∗). �

For much of our work on perturbation methods, Lemma 2.13 suffices. We need
stronger results to treat material constraints. In the process of developing these results,
we obtain some powerful generalizations of Lemma 2.13.

Since the right-hand side of (2.14b) is closed by Proposition 2.12, we can replace the
left-hand side of this containment by cl R(A). We can actually do more. Our first step
is

2.16. Theorem. [cl R(A)]⊥ = R(A)⊥ = N (A∗).

Proof. The first equality follows from Proposition 2.12. To prove the second, let
y∗ ∈ N (A∗), so that A∗ · y∗ = o. Thus 0 = 〈x, A∗ · y∗〉 = 〈A · x, y∗〉 for all x ∈ D(A).
This says that y∗ ∈ R(A)⊥. Conversely, let y∗ ∈ R(A)⊥. Then by definition of range,
〈A · x, y∗〉 = 0 = 〈x, o〉 for all x ∈ D(A). The last equality shows that y∗ ∈ D(A∗), so that
(2.10) then yields A∗ · y∗ = o. �

Now by a direct application of our definitions, we can easily demonstrate that
cl (span M) ⊂ ⊥(M⊥). A proof of the reverse containment, the details of which we
do not pause to spell out, relies on the Hahn-Banach Theorem. Thus

2.17. Proposition. cl (span M) = ⊥(M⊥).

Applying this proposition to Theorem 2.16, we immediately obtain

2.18. Theorem. cl R(A) = ⊥[R(A)⊥] = ⊥N (A∗).

If R(A) is known to be closed, then Theorem 2.18 is clearly true with R(A) replacing
cl R(A). Thus

2.19. Corollary. If A has closed range, then (2.5) has a solution if and only if f
annihilates the null space of A∗.

To exploit the powerful Corollary 2.19, we just have to demonstrate that A has closed
range. It can be shown that if A = I − K, where K is compact (see Sec. 5.4), then A has
closed range.

In general, these results are not symmetric in A and A∗: In place of a statement
completely dual to Theorem 2.18, we have the easily proved
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2.20. Theorem.

(2.21) cl R(A∗) ⊂ N (A)⊥.

If X is reflexive, then

(2.22) cl R(A∗) = N (A)⊥.

The proof of (2.22) is a direct consequence of Theorem 2.18. We can get (2.22)
without using the reflexivity of X by restricting the class of operators A. The following
result, which we do not prove, is a special case of Banach’s Closed Range Theorem:

2.23. Theorem. Let A ∈ L(X ,Y). Then the following statements are equivalent:

(i) R(A) is closed.

(ii) R(A∗) is closed.

(iii) R(A) = ⊥N (A∗).

(iv) R(A∗) = N (A)⊥.

Lemma 2.13, Theorems 2.16, 2.18, 2.20, Corollary 2.19, and Theorem 2.23 are ver-
sions of the (Fredholm) Alternative Theorem.

2.24. Multiplier Rule. Let A be a bounded linear operator from X onto Y (so that
R(A) = Y). Let x∗ ∈ N (A)⊥, i.e., let

(2.25) 〈x, x∗〉 = 0 ∀ x ∈ X such that A · x = o.

Then there exists a (Lagrange multiplier) y∗ ∈ Y∗ such that

(2.26) 〈x, x∗〉 − 〈A · x, y∗〉 = 0 ∀ x ∈ X .

Proof. Since R(A) is closed, we deduce from statement (iv) of Theorem 2.23 that there
is a y∗ ∈ R(A∗) such that x∗ = A∗ · y∗. Thus 〈x, x∗〉 = 〈x, A∗ · y∗〉. We use the definition
of adjoint to obtain (2.26). �

This proof is but a special case of the proof of Theorem 9.31 (Lyusternik’s Theorem)
of Luenberger (1969).

2.27. Exercise. Use the Alternative Theorems to given necessary and sufficient con-
ditions on the continuous function f so that the boundary-value problem

(2.28) u′′ + π2u = f on (0, 1), u(0) = 0 = u(1)

has a unique solution. Perhaps the easiest way to do this is to use a Green function to
convert (2.28) to an integral equation, which can be studied on L2(0, 1) by the Alter-
native Theorems. In this approach, it is necessary to show that the integral equation is
equivalent to the boundary-value problem (2.28).

Inverses. If A : X → Y and B : Y → Z, then their product A · B : X → Z is defined by
(A · B) · x := A · (B · x). If A : X → X , then we write A2 = A · A, etc.

If (2.5) has a unique solution for each f ∈ Y, then we represent the solution corre-
sponding to a given f by A−1 · f. Thus A · A−1 · f = f for all f ∈ Y or, equivalently,
A ·A−1 = I, where I is the identity operator from Y to itself. In other words, a one-to-one
mapping A of D(A) onto Y has an inverse mapping A : Y → D(A). It is readily seen that
A−1 is a linear operator. The mapping A is said to be invertible if A has an inverse. When
A is invertible, (2.5) is equivalent to x = A−1 · f. Thus (2.5) yields A−1 ·A · x = A−1 · f = x
for all X ∈ D(A), so that A−1 · A = I, where I is the identity operator from D(A) to itself.

The following basic theorem, which we do not prove, is useful for some of the ensuing
applications.
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2.29. Banach’s Open Mapping Theorem. If A is a bounded linear operator from
a Banach space X onto a Banach space Y, then A maps open sets onto open sets. If,
furthermore, A is a one-to-one (so that A is invertible with its range a Banach space),
then A−1 is also a bounded linear operator.

Projections. Let A and B be linear manifolds in a Banach space X . Then A+B denotes
the set of all vectors in X of the form a + b with a ∈ A and b ∈ B. If, furthermore,
A∩B = {o}, then we write A+B as A⊕B, which is called the direct sum of A and B. It
is easy to prove that X = A ⊕ B if and only if each x ∈ X has a unique representation of
the form x = a+ b with a ∈ A and b ∈ B. When X admits the direct sum decomposition
X = A ⊕ B, we say that A and B are complementary linear manifolds of X and that A
is a complement of B, and we denote codim A := dim B. (It can be shown that codim A
is independent of the complementing space B.)

Let P be the operator that associates with each such direct-sum decomposition x =
a + b ∈ X the vector a ∈ A. It is easy to see that P is a linear operator from X to itself
and that P · P = P. The operator P is called the projection of X onto A (along B). It
follows that the projection of X onto the complementary linear manifold B along A is
I − P. It can be shown that if A and B are Banach subspaces of X with X = A ⊕ B,
then the projections of X onto A and B are bounded. This occurs if either A or B are
finite-dimensional.

In general, any linear operator P : X → X with P · P = P is called a projection. Each
such projection generates the decomposition X = R(P) ⊕ N (P). To show this, we first
observe that X = R(P)+N (P) because each x can be written in the form x−P·x+(I−P)·x.
Thus, if x ∈ R(P), then x = P · x, so that if x ∈ R(P) ∩ N (P), then x = P · x = o, whence
R(P) ∩ N (P) = {o}.

We state without proof some important properties about projections on Banach
spaces:

2.30. Theorem. (i) Let P be a bounded projection of Banach space X onto A. Then A
is a closed linear manifold of X , i.e., it is a Banach subspace of X . (ii) Let A be a Banach
subspace of X . Then there is a bounded projection of X onto A if and only if there is
another Banach subspace B of X such that X = A ⊕ B. (In general, there need not be
a bounded projection onto a Banach subspace A of X .) (iii) If A is a finite-dimensional
linear manifold of X , or if it is a closed linear manifold of finite codimension, then there
is a bounded projection of X onto A. (iv) If X is a Hilbert space and if A is a closed
linear manifold in it, then there is a bounded projection of X onto A.

Fredholm operators. Let A be a bounded linear operator from X to Y. A is called a
Fredholm operator iff dim N (A) < ∞ and codim R(A) < ∞. The difference

ind A := dim N (A) − codim R(A) < ∞

is called the Fredholm index of A. We state the following properties of Fredholm operators
without proof.

2.31. Theorem. If A is a Fredholm operator, then

(i) R(A) is closed.
(ii) A∗ is a Fredholm operator with index ind A∗ = −ind A.
(iii) If K is a compact operator, then A + K is a Fredholm operator with the same

index as A.

2.32. Exercise. Prove statements (i) and (ii).

2.33. Theorem. A is a Fredholm operator of index 0 if and only if A is the sum of an
invertible operator and a compact operator.
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2.34. Theorem. If A is a Fredholm operator of index 0 and if N (A) = {0}, then the
equation A · x = f has a unique solution for each f ∈ Y, and A−1 ∈ L(Y,X ). (This means
that uniqueness implies existence, just as for this equation when A is a linear operator
from Rn to itself.)

From Theorem 2.30(iii) we immediately obtain that if A is a Fredholm operator, then
there are bounded projections P ∈ L(X ,X ) and Q ∈ L(Y,Y) such that

(2.35) R(P) ≡ P · X = N (A), R(I − Q) = (I − Q) · Y = R(A).

As Theorems 2.31, 2.33, and 2.34 suggest, the Alternative Theorems have useful
specializations for Fredholm operators, which furnished the motivation for the definition
of these operators. We do not pursue this topic.

Most of the material in this section can be found in standard books on functional
analysis. Among the more accessible references are Taylor & Lay (1980) and the fol-
lowing books, which are oriented toward differential equations and applications: Brezis
(1983), Goldberg (1966), Hutson & Pym (1980), Kantorovich & Akilov (1982), Kreyszig
(1978), and Luenberger (1969). For discussions of Fredholm operators, see Gohberg,
Goldberg, & Kaashoek (1991), and Zeidler (1986, Vol. I).



CHAPTER 20

Appendix. Local
Nonlinear Analysis

1. The Contraction Mapping Principle
and the Implicit-Function Theorem

In many of the problems treated in this text, we have detailed information about
special solutions, especially those termed trivial. We can often determine solutions in
a neighborhood of the special solutions or determine solutions of problems with nearby
data by using methods relying on versions of the Implicit-Function Theorem. In this
chapter we develop these methods of local nonlinear analysis. Each of our results is a
consequence of the Contraction Mapping Principle, which we now state and prove.

Let F be a closed subset of a Banach space X with norm ‖ · ‖. Let f : F → X . We
seek solutions x in F of a nonlinear operator equation of the form

(1.1) x = f(x).

(A solution of (1.1) is called a fixed point of f.) The mapping f is called a (strict)
contraction on F iff there is a number κ ∈ [0, 1) such that

(1.2) ‖f(x) − f(y)‖ ≤ κ‖x − y‖ ∀ x, y ∈ F .

The Contraction Mapping Principle ensures the existence and uniqueness of a solution
to (1.1) when f is a contraction taking F into itself. Much of the rest of this chapter is
devoted to putting concrete classes of equations into the form of (1.1), (1.2).

1.3. Contraction Mapping Principle (Banach-Cacciopoli Fixed-Point Theo-
rem). Let F be a closed subset of a Banach space X and let f : F → F be a contraction.
Then (1.1) has a unique solution x̄ in F .

Proof. Let x0 be an arbitrary element of F . We define the sequence {xk} of elements
in F by

(1.4) xk+1 = f(xk), k = 0, 1, . . . .

Then (1.2) implies that

(1.5) ‖xk+1 − xk‖ = ‖f(xk) − f(xk−1)‖ ≤ κ‖xk − xk−1‖ ≤ κk‖x1 − x0‖.

Thus for k > l,

(1.6)

‖xk − xl‖ ≤ ‖xk − xk−1‖ + ‖xk−1 − xk−2‖ + · · · + ‖xl+1 − xl‖

≤ κl(1 + κ + · · · + κk−l−1)‖x1 − x0‖

=
κl(1 − κk−l)

1 − κ
‖x1 − x0‖ ≤ κl

1 − κ
‖x1 − x0‖.

761
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Since κl → 0 as l → ∞ because κ ∈ [0, 1), it follows that {xk} is a Cauchy sequence.
Since X is a Banach space, this sequence converges to a limit x̄ in X , and since F is
closed, x̄ ∈ F . Since (1.2) implies that f is continuous, we now let k → ∞ in (1.4) to
show that x̄ is a solution of (1.1). To show that x̄ is unique, suppose that x̄ and ȳ are two
solutions of (1.1). Then (1.1) and (1.2) imply that ‖x̄ − ȳ‖ = ‖f(x̄) − f(ȳ)‖ ≤ κ‖x̄ − ȳ‖, so
that ‖x̄ − ȳ‖ = 0. �

This proof is constructive: If we let k → ∞ in (1.6), then we obtain an error estimate:

(1.7) ‖x̄ − xl‖ ≤ κl

1 − κ
‖f(x0) − x0‖.

This theorem holds when X is a complete metric space.

1.8. Exercise. Define f2(x) := f(f(x)), etc., where f is defined on a closed subset F of a
Banach space X . Suppose that there is a positive integer r such that fr is a contraction
on F . Let x̄ be its fixed point. Prove that f (which need not be a contraction on F) has
the unique fixed point x̄.

Now we study the generalization

(1.9) x = f(x, y)

of (1.1) obtained by introducing a parameter y into it.

1.10. Theorem. Let F be a closed subset of a Banach space X and let G be a subset
of a Banach space Y. Let f : F × G → F be a uniform contraction in the sense that
there is a number κ ∈ [0, 1) independent of y such that

(1.11) ‖f(x1, y) − f(x2, y)‖ ≤ κ‖x − y‖ ∀ x1, x2 ∈ F , ∀ y ∈ G.

Let f(x, ·) be continuous on G for each fixed x ∈ F . For each y ∈ G let h(y) be the unique
fixed point of f(·, y). Then h is continuous from G to F .

Proof. By definition of h,

(1.12)

h(y + z) − h(y) = f(h(y + z), y + z) − f(h(y), y)

= f(h(y + z), y + z) − f(h(y), y + z)

+ f(h(y), y + z) − f(h(y), y).

Thus (1.11) implies that

(1.13) ‖h(y + z) − h(y)‖ ≤ κ‖h(y + z) − h(y)‖ + ‖f(h(y), y + z) − f(h(y), y)‖.

Since κ ∈ [0, 1), the continuity of f(x, ·) implies that of h. �
We want to get results on the differentiability of h. Since the (Fréchet) derivative is

a bounded linear operator, we can use the following result in reaching this goal.

1.14. Corollary. Let X be a Banach space and let G be a subset of a Banach space
Y. For each y in G, let A(y) : X → X be a bounded linear operator that is a uniform
contraction in the sense that there is a number κ ∈ [0, 1) independent of y such that
‖A(y)‖ ≤ κ for all y in G. Let A(·) · x be continuous on G for each fixed x ∈ X . Then the
linear operator I − A(y) has a bounded inverse, which depends continuously on y.

1.15. Exercise. Prove this corollary (by showing that the equation x − A(y) · x = z
has a unique solution for each z ∈ X and that this solution depends continuously on the
parameters y, z).

Our major applications of the Contraction Mapping Principle are based on its fol-
lowing consequences. See Sec. 1.4 for the definition of Fréchet differentiability.
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1.16. Theorem. Let the hypotheses of Theorem 1.10 hold. Furthermore, let F and G
be closures of the open sets int F and int G, and let f be continuously Fréchet differen-
tiable on int F × int G. Then h is continuously Fréchet differentiable on int G.

Proof. To prove this theorem, we need a candidate w for the differential of h in an
arbitrary direction z. We shall get an equation for w by substituting x = h(y) into (1.9)
and formally differentiating this equation with respect to y. We shall then use Corollary
1.14 to prove that this equation has a solution depending continuously on y. Finally,
from (1.9) we shall get a representation for the difference between h(y + z) − h(y) and w
and use it to prove the differentiability of h. We now carry out these steps.

Provisionally assuming that h is differentiable, we differentiate (1.9) with respect to
y to obtain that w defined to equal [∂h(y)/∂y] · z, where z is an arbitrary element of Y,
would satisfy the linear equation

(1.17) w =
∂ f

∂x
(h(y), y) · w +

∂ f

∂y
(h(y), y) · z.

We identify the linear operator ∂ f(h(y), y)/∂x with A(y) of Corollary 1.14, and readily
verify that it satisfies the hypotheses of that corollary. Thus (1.17) has a unique solution,
which we easily find to be linear in z. We denote this solution by w = B(y) · z. This
well-defined expression is our candidate for the differential of h in direction z. Note that
Corollary 1.14 implies that B(·) is continuous.

To show that B(y) = ∂h(y)/∂y, we observe that (1.9), (1.17), and the definition of
differentiability imply that

(1.18)

u := h(y + z) − h(y) − B(y) · z

= f(h(y + z), y + z) − f(h(y), y) − ∂ f

∂x
(h(y), y) · B(y) · z − ∂ f

∂y
(h(y), y) · z

= f(h(y + z), y) +
∂ f

∂y
(h(y + z), y) · z + o(‖z‖)

− f(h(y), y) − ∂ f

∂x
(h(y), y) · B(y) · z − ∂ f

∂y
(h(y), y) · z

=
∂ f

∂x
(h(y), y) · u +

∂ f

∂y
(h(y + z), y) · z − ∂ f

∂y
(h(y), y) · z

+ o(‖h(y + z) − h(y)‖) + o(‖z‖).

Since h and ∂ f(·, y)/∂y are continuous, and since o(‖h(y + z) − h(y)‖) has the form
g(y, z)[h(y + z) − h(y)] ≡ g(y, z)[u + B(y) · z] where g(y, z) → o as z → o, we can write
(1.18) in the form

(1.19)
[
I − ∂ f

∂x
(h(y), y) + g(y, z)

]
· u = o(‖z‖).

We apply Corollary 1.14 to the operator on the left-hand side of (1.19) for small enought
z) to obtain u = o(‖z‖), which says that h is differentiable and that B(·), which is
continuous, is its derivative. �

It is much easier to prove

1.20. Theorem. Let the hypotheses of Theorem 1.16 hold and let f be k times contin-
uously differentiable on int F × int G. Then h is itself k times continuously differentiable
on int G.

1.21. Exercise. Prove Theorem 1.20.

1.22. Exercise. Consider the following initial-value problem for a system of ordinary
differential equations:

(1.23) u′(t) = g(u(t), t), u(0) = o
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where u takes values in Rn, where g is continuous from Rn × R to Rn, and where g
satisfies the Lipschitz condition: There is a number K such that

(1.24) |g(u, t) − g(v, t)| ≤ K |u − v| ∀ u, v ∈ R
n, ∀ t.

Noting that (1.23) is equivalent to the integral equation

(1.25) u(t) =
∫ t

0
g(u(τ ), τ ) dτ,

prove that (1.23) has a unique solution on a sufficiently small interval [−r, r] by the
following method: Let a and b be given positive numbers, let M = max{|g(u, t)| : |t| ≤
a, |u| ≤ b}, and let F be the set of all continuous functions v on [−r, r] such that v(0) = o,
sup{|v(t)| : |t| ≤ r} ≤ b. Show that r can be chosen so small in terms of the parameters
a, b, K,M that (1.25) has the form (1.1) where f is a contraction. (If (1.23) were to
depend on parameters, including initial data, then Theorems 1.11, 1.16, and 1.20 would
imply that the solution of the initial-value problem would depend on the parameters
with the same smoothness with which the right-hand side of (1.25) depends on u and
the parameters.)

There are many fixed-point theorems related to the Contraction Mapping Principle.
For discussions and references, see Istratescu (1981) and Zeidler (1986, Vol. I). We discuss
an alternative class of fixed-point theorems in the next chapter. The much deeper Nash-
Moser Theorem, which can be applied to otherwise intractable problems of dynamics
and which we do not discuss, is treated in J. T. Schwartz (1969).

Our chief application of the Contraction Mapping Principle is to the local solution
of equations of the form

(1.26) g(x, y) = o.

1.27. Implicit-Function Theorem (of Hildebrandt & Graves). Let X ,Y,Z be
Banach spaces and let E be a neighborhood of (o, o) in X ×Y. Let E � (x, y) �→ g(x, y) ∈ Z
be continuous, let g(o, o) = o, let the Fréchet derivative ∂g/∂x exist and be continuous
on E, and let ∂g(o, o)/∂x have a bounded inverse. Then there exists a neighborhood G
of o in Y on which (1.26) has a unique solution for x given by a continuous operator
h : G → X with h(o) = o such that

(1.28) g(h(y), y) = o ∀ y ∈ G.

If, furthermore, g is k times continuously differentiable on E, k ≥ 1, then so is h.

Proof. We write (1.26) in the form

(1.29) x = −A−1 · [g(x, y) − A · x] =: f(x, y), A :=
∂g(o, o)
∂x

.

To show that f(·, y) is a uniform contraction, we observe that the Mean-Value Theorem
implies that

(1.30) g(x, y)−g(w, y)−A ·(x−w) =
{∫ 1

0

[
∂g(tx + (1 − t)w, y)

∂x
− ∂g(o, o)

∂x

]
dt

}
·(x−w).

Since the term in braces can be made arbitrarily small for (x, w, y) sufficiently close to
(o, o, o), it follows that f is a contraction for small enough arguments. We complete the
proof by invoking Theorems 1.16 and 1.20. �

Of course, a simple change of variables enables us to replace (x, y) = (o, o) in this
theorem with any given point in X × Y.
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2. The Lyapunov-Schmidt Method.
The Poincaré Shooting Method

In our study of bifurcation problems we encounter operators whose linearizations fail
to satisfy the hypotheses of the Implicit-Function Theorem. The Lyapunov-Schmidt
Method, which we now describe, handles many such problems by projecting the equa-
tions onto two complementary spaces, with one projection amenable to the Implicit-
Function Theorem and the other consisting of equations in a finite-dimensional space.
We then describe an alternative approach, the Poincaré Shooting Method, which is ap-
plicable only to boundary-value problems for ordinary differential equations, for which
it is easier to use than the Lyapunov-Schmidt Method.

The Lyapunov-Schmidt Method. We now study (1.26) under the hypotheses of
Theorem 1.27, except that we now replace the requirement that A ≡ ∂g(o, o)/∂x have a
bounded inverse with the requirement that A be a Fredholm operator.

Since N (A) is a finite-dimensional subspace of X (by definition of a Fredholm oper-
ator), Theorem 19.2.31(iii) says that there is a bounded projection P of X onto N (A),
which induces the decomposition of x ∈ X as the direct sum

(2.1) x = u + v, u = P · x ∈ N (A), v = (I − P) · x.

Since Theorem 19.2.31(i) implies that R(A) is a closed subspace of Z with finite codi-
mension, Theorem 19.2.30(iii) says that there is a bounded projection I − Q of Y onto
R(A). Thus we can write (1.26) as

(2.2a,b) h(u, v, y) := (I − Q) · g(u + v, y) = o, Q · g(u + v, y) = o.

From our hypotheses on g, it follows that h maps a neighborhood O of (o, o, o) in [P ·X ]×
[(I − P) · X ] × Y into (I − Q) · Z = R(A), that h(o, o, o) = o, and that

∂h

∂v
(o, o, o) = (I − Q)

∂g

∂x
(o, o) = (I − Q)A = A

is a bounded one-to-one mapping of (I−P) ·X onto R(A), this last observation following
from the properties of P and Q. Now R(A) is a Banach space, by definition of a Fredholm
mapping, and (I − P) · X is a Banach space since P is bounded, by Theorem 19.2.30(i).
By the Open Mapping Theorem 19.2.29, ∂h(o, o, o)/∂v has a bounded inverse. We can
therefore use the Implicit-Function Theorem 1.27 to solve (2.2a) for v as a unique function
of u and y for (u, y) near (o, o). We denote this solution by v = v̂(u, y). We now substitute
this solution into (2.2b) to obtain

(2.3) Q · g(u + v̂(u, y), y) = o,

which is a system of d equations for the n-dimensional u where d =codimR(∂g(o, o)/∂x)
and n =dim N (∂g(o, o)/∂x). The Implicit-Function Theorem implies that v̂ is k times
continuously differentiable near (o, o) when g is k times continuously differentiable. Thus
the operator in (2.3) has the same smoothness, and we can use its k-degree Taylor
polynomial about (o, o) in our study of (2.3). We can expect solutions of (2.3) when
n ≥ d, which occurs when ∂g(o, o)/∂x has a nonnegative Fredholm index. The most
favorable case occurs when ∂g(o, o)/∂x has Fredholm index 0. In carrying out the detailed
analysis of (2.3), it is convenient to decompose u with respect to a biorthogonal system,
which is defined in terms of dual spaces.

Now in studying bifurcation problems for ordinary differential equations, it is con-
venient to use spaces of continuous functions or continuously differentiable functions,
because they are appropriate for describing detailed nodal properties. The duality the-
ory for such spaces is technical; one way to avoid the concomitant difficulties is to use
devices suggested in Ex. 19.2.27. It is even easier to use the Poincaré Shooting Method,
which we soon describe.

For variants of the Lyapunov-Schmidt Method, see Chow & Hale (1982). For ex-
tensive applications, see Văınberg & Trenogin (1974) and Zeidler (1986, Vol. I). For the
application of this method to problems with group symmetry, see Golubitsky & Schaeffer
(1985), Golubitsky, Stewart, & Schaeffer (1988), and Vanderbauwhede (1982).
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The Poincaré Shooting Method. Let u = (u1, . . . , un). We study nth-order systems
of ordinary differential equations of the form

(2.4) u′ = f(s, u,λ) for 0 < s < 1

subject to n side conditions (e.g., boundary conditions) of the form

(2.5) b[u(·),λ] = o.

Here λ designates an l-tuple of real parameters, and f is a given continuous function,
defined for simplicity on all of [0, 1] × Rn × Rl, with f(s, ·, ·) assumed to be k times
continuously differentiable on Rn ×Rl for each s, k ≥ 1. b is a given k times continuously
differentiable mapping from C0[0, 1] × Rl to Rn.

Our goal is to reduce the solution of (2.4), (2.5) to the solution of a finite number of
equations in a finite number of unknowns. For this purpose, we exploit the fact that we
can readily solve initial-value problems (see Ex. 1.22), at least locally. Consider (2.4)
subject to the initial condition

(2.6) u(0) = α.

Suppose that (2.4), (2.6) has a solution û(·,α,λ) defined on the whole interval [0, 1].
Its substitution into (2.5) yields the desideratum of a system of n equations for the n
unknown components of α:

(2.7) b[û(·,α,λ),λ] = o.

For many classes of equations, one can show that all solutions of an initial-value
problem exist on any bounded interval (e.g., by using energy estimates). When such
results are not available, we can appeal to

2.8. Theorem. Let the assumptions on f made above hold. Let the initial-value
problem consisting of (2.4) with λ = λ0 and u(0) = α0 have a (necessarily unique)
solution û(·,α0,λ0) defined on [0, 1]. Then there are neighborhoods of α0 in Rn and of
λ0 in Rl such that if α and λ are in these neighborhoods, then (2.4), (2.6) has a unique
solution û(·,α,λ) defined on [0, 1] with û continuous in s and k times continuously
differentiable in α and λ.

2.9. Exercise. Combine methods of Ex. 1.22 and Theorem 1.27 to prove this theorem.

By converting the initial-value problem (2.4), (2.6) to an integral equation like (1.25),
we can easily prove that the derivatives up to order k of û with respect to α and λ at
(α0,λ0) satisfy linear initial-value problems obtained by the formal differentiation of
(2.4), (2.6) with respect to these parameters. For an example, see Sec. 6.6.

The finite-dimensional system (2.7) can often be simplified further by applying the
Lyapunov-Schmidt Method to it. For a discussion of a variant of this approach, see
J. B. Keller (1969). Such a reduction is not needed when (2.7) is to be analyzed by
singularity theory.

If an ordinary differential equation is totally integrable, then its integrals can be used
to reduce the solution of a boundary-value problem to the solution of a finite-dimensional
problem without the local restrictions that support the Lyapunov-Schmidt Method and
the Poincaré Shooting Method. The price for the global validity of this finite-dimen-
sional problem is that the resulting finite-dimensional problem typically involves singular
integrals. For an application of this approach, see Sec. 6.9.

Solution methods for the finite-dimensional problem. If the finite-dimension-
al problem reduces to a single equation for two unknowns, say in the form

(2.10) f (x, y) = 0 where f (0, 0) = 0,
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and if f is (n−1) times continuously differentiable near (0, 0), then all small real solutions
of (2.10) for y in terms of x for x > 0 can be found by a Puiseux series, which has the
form

(2.11) y =
n∑

k=1

Akx
αk + o(xαn )

where 0 < α1 < · · · < αn. An analogous representation holds for x < 0. The αk’s
can be found systematically by means of the Newton Polygon. For an account of the
basic theory, see Dieudonné (1949) and for numerous examples see Văınberg & Trenogin
(1969). Some of the underlying ideas are used in the treatment in Sec. 4.4, which is
more complicated than that for (2.10) because the nonlinear operator in Sec. 4.4 need
not have a polynomial approximation.

Detailed results comparable to those delivered by (2.11) for finite-dimensional sys-
tems more complicated than (2.10) are very hard to obtain. Very useful qualitative
information can, however, be found by using the singularity theory of Golubitsky &
Schaeffer (1985). Some of the fundamental concepts are discussed in Sec. 6.6.
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Appendix. Degree Theory

1. Definition of the Brouwer Degree
Throughout this section, we take Ω to be a bounded open subset of Rn and take

cl Ω � x �→ f(x) ∈ Rn to be continuous. We wish to estimate the number of solutions x
in cl Ω of the equation

(1.1) f(x) = o.

We shall often be content with demonstrating that there is (at least) one solution. We
denote the collection of solutions of (1.1) lying in cl Ω by f−1({o}).

Our plan is first to consider a somewhat nicer collection of f’s for which (1.1) has a
finite number of ‘simple’ solutions. With each such solution, we associate the number
±1. Let the sum of these numbers be d. Then clearly (1.1) has at least |d| solutions. We
shall show that there is a special way to assign the numbers ±1 to these solutions that
leads to a special choice of d, denoted deg [f,Ω], that (i) can be extended to continuous f’s
and can be used to estimate the number of solutions of (1.1), (ii) depends continuously
on f and Ω, (iii) can be determined from the restriction of f to ∂Ω, and (iv) is stable
under a class of large perturbations of f. Since our aim is to expose the simplicity of the
logical framework of the theory, we merely outline the main ideas of certain of the more
technical aspects of the development.

For f ∈ C1(Ω), we set

(1.2) J(x) := det
∂ f

∂x
(x).

Let J−1({0}) denote the set of all points x in Ω for which J(x) = 0. To characterize the
range of J−1({0}) under f, we use a special case of Sard’s Theorem:

1.3. Lemma. Let f ∈ C1(Ω). Then f
(
J−1({0})

)
has Lebesgue measure 0, so that

int f
(
J−1({0})

)
= ∅, i.e., the image of the set of points at which the Jacobian of f

vanishes is so sparse that it has no interior.

Sketch of the proof. First let us suppose that f is affine, so that there is a constant
linear transformation A and a constant vector b such that f(x) = A·x+b and J = det A. If
det A 
= 0, then J−1({0}) = ∅, so that f(J−1({0})) = ∅. If det A = 0, then J−1({0}) = Ω.
In this case, f takes J−1({0}) into a plane in Rn of dimension < n, which has empty
interior. Thus if f is affine, the conclusion of the lemma holds. If f is not affine, then
its continuous differentiability allows us to approximate it locally by affine maps, whose
effect on J−1({0}) we know. Careful estimates then show that the volume of f(J−1({0}))
is bounded above by an arbitrarily small number. �

We are now ready to begin our definition of Brouwer degree. We always restrict our
attention to continuous f’s and Ω’s for which (1.1) has no solution on ∂Ω:

(1.4) o /∈ f(∂Ω).

We first consider the special case that

f ∈ C1(Ω) ∩ C0(cl Ω),(1.5)

J(x) 
= 0 for x ∈ f−1({o}), i.e., J−1({0}) ∩ f−1({o}) = ∅.(1.6)

769
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(Condition (1.6) says that solutions of (1.1) are simple.) Under these conditions, we
define the Brouwer degree of f to be

(1.7) deg [f,Ω] :=
∑

sign J(x)

where the sum is taken over all x ∈ f−1({o}). (This sum is taken to be zero if f−1({o})
is empty.) Let us show that this sum is well defined by showing that it is finite: The
Inverse-Function Theorem implies that f−1({o}) is discrete, i.e., consists solely of isolated
points, because f must be one-to-one in a neighborhood of every x in f−1({o}). Since
cl Ω is compact, f−1({o}) must be finite, for if not, it would have an accumulation point
in cl Ω, in violation of the discreteness. We illustrate the significance of the definition
(1.7) in Fig. 1.8. Our aim is now to relax the restrictions (1.5) and (1.6).

Fig. 1.8. Graph of a C1 function f : [−1, 1] → R required to satisfy
the boundary conditions f (±1) = ±1 and required to have simple zeros.
It follows from (1.7) that deg(f, [−1, 1]) = 1. For this function, Eq. (1.1)
has exactly three solutions. For arbitrary C1 perturbations of f satisfying
the same boundary conditions, it is only certain that (1.1) has at least one
solution, a conclusion that is ensured for any continuous f satisfying these
boundary conditions by the Intermediate-Value Theorem. Thus degree
gives an estimate of the number of solutions that is stable under perturba-
tions. This example illustrates that this degree is determined solely by the
boundary conditions.

To handle the difficult condition (ii), we now obtain an integral representation for
(1.7), to which f

(
J−1({0})

)
makes no contribution because it has zero measure, by

Sard’s Lemma: Let B(a, ε) denote the open ball of radius ε about a in Rn. Let {jε} be
a family of infinitely differentiable functions from Rn to R such that jε vanishes outside
B(o, ε) and such that ∫

Rn
jε(y) dv(y) ≡

∫
B(o,ε)

jε(y) dv(y) = 1.

(We can take jε(y) = ε−nj1(y/ε) where j1(y) = c exp
(
−1/(1 − |x|2)

)
for |x| < 1,

where j1(y) = 0 otherwise, and where the positive constant c is adjusted so that∫
Rn j1(y) dv(y) = 1.) Then we have

1.9. Lemma (Heinz). Let conditions (1.4), (1.5), and (1.6) hold. Then there is a
number ε̄(f) > 0 such that

(1.10) deg [f,Ω] = Iε(f,Ω) :=
∫
Ω
jε(f(x))J(x) dv(x) for 0 < ε < ε̄(f).
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Proof. Let {x1, . . . , xk} = f−1({o}). For small enough ε, the Inverse-Function Theorem
applied to the equation f(x) = y for y ∈ B(o, ε) implies that there are neighborhoods
A1

ε, . . . ,Ak
ε that are mapped homeomorphically by f onto B(o, ε). Now

(1.11) jε(f(x)) = 0 if x /∈ ∪Ai
ε

because f(x) /∈ B(o, ε) for such x. Therefore,

(1.12) Iε(f,Ω) =
∑

i

∫
Ai

ε

jε(f(x))J(x) dv(x).

Since J(xi) 
= 0 and since f ∈ C1(Ω), it follows that ε can be taken so small that J
vanishes nowhere on each Ai

ε. Thus sign J(x) is defined and constant on Ai
ε. We can

now use the formula for change of variables to show that

(1.13)

∫
Ai

ε

jε(f(x))J(x) dv(x) = sign J(xi)
∫

Ai
ε

jε(f(x))|J(x)| dv(x)

= sign J(xi)
∫

B(o,ε)
jε(y) dv(y) = sign J(xi). �

We now obtain some identities that enable us to define deg without using (1.6), but
at the expense of initially replacing (1.5) with the more restrictive condition

(1.14) f ∈ C2(Ω) ∩ C0(cl Ω).

Under this condition, we first show that deg [f,Ω] is not affected by certain perturbations
f − a of f by constant vectors a. (We cannot use (1.10) for this purpose because ε̄(f − a)
could go to 0 as a approaches f

(
J−1({0})

)
.)

1.15. Lemma. Let (1.4) and (1.14) hold. Let δ =dist (0, f(∂Ω)). Let a1 and a2 be two
points of B(o, δ) with a1, a2 /∈ f

(
J−1({0})

)
. Then

deg [f − a1,Ω] = deg [f − a2,Ω].

Proof. Lemma 1.9 implies that there is an ε < δ−max{|a1|, |a2|} such that (1.10) holds
with f replaced with f − a1 and with f − a2. To show that these integrals are equal, i.e.,
to show that

(1.16)
∫
Ω

[
jε
(
f(x) − a2

)
− jε

(
f(x) − a1

)]
J(x) dv(x) = 0,

we express the integrand of (1.16) as a divergence and then apply the Divergence The-
orem. Toward this end, we first use the Mean-Value Theorem with Integral Remainder
(i.e., the Fundamental Theorem of Calculus) to write

(1.17)

jε(y − a2) − jε(y − a1) =
∫ 1

0
∂tjε

(
y − (1 − t)a1 − ta2

)
dt

= div w(y) ≡
n∑
1

∂wk(y)/∂yk

where

w(y) = (a1 − a2)
∫ 1

0
jε
(
y − (1 − t)a1 − ta2

)
dt.

Now let Cij be the components of the cofactor matrix of (∂fi/∂xj). We have the classical
identity

(1.18)
∑

j

(∂fi/∂xj)Ckj = δikJ
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where δij is the Kronecker delta. A careful treatment of the cofactor matrix (see many
of the references cited at the end of Sec. 3) leads to the identity

(1.19)
∑

i

∂Cij

∂xi
= 0.

We define

(1.20) vi(x) :=
∑

j

wj(f(x))Cji(x)

for x ∈ cl Ω and define vi(x) = 0 for all other x. Using (1.17)–(1.19), we immediately find
that div v is the integrand of (1.16). Our choice of ε shows that w and therefore v have
compact support on Ω. Since v is continuously differentiable, we use the Divergence
Theorem to obtain (1.16). �

When (1.4) and (1.14) hold (but when (1.6) need not hold), we define

(1.21) deg [f,Ω] := deg [f − a,Ω]

where a /∈ f
(
J−1({0})

)
, a ∈ B(o, δ)) with δ =dist(0, f(∂Ω)). This definition makes sense

because Sard’s Lemma 1.3 implies that such points a are dense in every neighborhood
of o and because Lemma 1.15 implies that deg [f − a,Ω] has the same value for all such a.

1.22. Exercise. Let (1.14) hold. Show that if f−1({o}) = ∅, then deg (f,Ω) = 0.

The essential step in lifting the restriction (1.14) is the following approximation result:

1.23. Lemma. Let f satisfy (1.4) and (1.14) and let g satisfy (1.14). Then there is a
number η̄(f, g) such that

(1.24) deg (f + tg,Ω) = deg (f,Ω) for |t| < η̄(f, g).

Proof. If f−1({o}) = ∅, then there cannot be any solutions of f(x) + tg(x) = o in Ω for
|t| sufficiently small, in which case the degrees in (1.24) are each equal to 0.

Now we establish (1.24) under the restrictive assumptions that

(1.25) f−1({o}) = {x1, . . . , xk}, J(xi) 
= 0.

Set h(t, x) := f(x) + tg(x). Since h(0, xi) = 0 and ∂h(0, xi)/∂x = J(xi) 
= 0, the Implicit-
Function Theorem implies that there exist numbers ε > 0, η > 0 and continuous
functions x̃i : (−η, η) → B(xi, ε) such that x̃i(0) = xi and x̃i is the only solution of
h(t, x) = o lying in B(xi, ε). We take ε so small that the cl B(xi, ε) are disjoint and so
that sign J(x) =sign J(xi) for x ∈ cl B(xi, ε).

Let U := ∪iB(xi, ε). Since cl Ω \ U is a compact set on which the continuous function
f vanishes nowhere, it follows that |f| has a positive minimum α on this set. For |t| <
min{η, α/2maxcl Ω |g|} =: η1, we find that h(t, ·) cannot vanish on cl Ω \ U , so that the
inverse image of o under h(t, ·) is {x̃1, . . . x̃k}.

Since det ∂h/∂x is continuous, there is an η2 < η1 such that

(1.26)
∣∣∣∣det

∂h

∂x
(t, x) − J(x)

∣∣∣∣ < min{J(z) : z ∈ cl U}

for |t| < η2 and x ∈ cl U . Were det ∂h(t, x)/∂x and J(x) to have opposite sign for |t| < η2
and x ∈ cl U , then (1.26) would be violated. Thus sign det ∂h(t, x̃(t))/∂x = sign J(x̃(t)) =
sign J(xi), and (1.24) follows from the definition (1.7).

Now we drop conditions (1.25). By Sard’s Lemma 1.3, we can choose an a in B(o, 1
3 δ)

where δ = dist (o, f(∂Ω)) such that (1.25) holds with f replaced by f − a. Then (1.24)
and (1.21) imply that there exists an η3 > 0 such that

(1.27) deg (h(t, ·) − a,Ω) = deg (f − a,Ω) = deg (f,Ω) for |t| < η3.
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Now let η4 < min{η3, δ/3maxcl Ω |g|}. Then

|h(t, x) − a| ≥ |f(x)| − |a| − |t| |g(x)| > δ − 1
3 δ − 1

3 δ,

so that |a| ≤ dist (0, h(t, ∂Ω)). Thus we can use (1.21) to obtain deg (h(t, ·),Ω) =
deg (h(t, ·) − a,Ω), which when combined with (1.27) yields (1.24). �

We now show that the degree is constant for all C2 functions in a sufficiently small
C0-neighborhood of a function f ∈ C0(cl Ω) for which o /∈ f(∂Ω). (It can be shown that
a continuous function f on a compact set can be uniformly approximated by infinitely
differentiable functions (cf. Adams (1975), e.g.), so that there certainly are C2 functions
in every neighborhood of f. We shall tacitly use this observation in the sequel.) Let
g1, g2 ∈ C2(Ω) ∩ C0(cl Ω) with

max
cl Ω

|g1(x) − f(x)|, max
cl Ω

|g2(x) − f(x)| ≤ δ = dist (0, f(∂Ω)).

Let h(t, x) := (1 − t)g1(x) + tg2(x). Since h(t, ·) = h(t0, ·) + (t− t0)(g2 − g1) for any fixed
t0, we deduce from Lemma 1.23 that t �→ d(t) := deg

(
h(t, ·),Ω

)
is constant and a fortiori

continuous on a neighborhood of the arbitrary point t0. Thus d is continuous on the
connected set [0, 1], so that d([0, 1]) is connected, and d must be constant. Therefore
deg (g1,Ω) = deg (g2,Ω).

When f ∈ C0(cl Ω) and (1.4) hold, we accordingly define

(1.28) deg (f,Ω) := deg (g,Ω)

where g ∈ C2(Ω) ∩ C0(cl Ω) is any function with maxcl Ω |g(x) − f(x)| < dist (o, f(∂Ω))
and where deg (g,Ω) is defined by (1.21).

2. Properties of the Brouwer Degree
In this section we present a collection of important properties of our most general

definitions (1.28) of degree. They roughly fall into three groups: fundamental properties
(which are enjoyed by definition (1.7) under the special restrictions (1.5) and (1.6)),
properties that permit the effective evaluation of degree, and useful existence theorems
for finite-dimensional problems. A statement given without proof follows immediately
from the material preceding it. The basic technique for many of the proofs is to use
definitions (1.21) and (1.28) to reduce the proof to the regular case in which (1.5) and
(1.6) hold, so that the degree can be computed explicitly. This technique is illustrated
in the proof of Theorem 2.2; analogous proofs of subsequent results are omitted.

Definition (1.7) immediately yields

2.1. Proposition. Let I be the identity mapping on Ω. Then deg [I,Ω] = 1 if o ∈ Ω
and deg [I,Ω] = 0 if o /∈ cl Ω.

The crucial property of degree is the following:

2.2. Theorem. Let f ∈ C0(cl Ω) and let o /∈ f(∂Ω). If deg [f,Ω] 
= 0, then (1.1) has a
solution.

Proof. Suppose not. By Sard’s Lemma 1.3 (cf. (1.21)) we can choose a C2 function g
with simple zeros so that maxcl Ω |g(x) − f(x)| < dist (0, f(∂Ω)). Definition (1.28) implies
that deg [g,Ω] = deg [f,Ω] 
= o. On the other hand, the equation g(x) = o has no
solutions, so that (1.7) implies that deg [g,Ω] = 0, a contradiction. �

The contrapositive of the second statement of Theorem 2.2 is: If (1.1) does not have
a solution, then deg [f,Ω] = 0.

2.3. Exercise. Prove
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2.4. Proposition (Continuity). deg is a continuous mapping from C0(cl Ω) to the
integers in the sense that if o /∈ f(∂Ω) and if maxcl Ω |g(x) − f(x)| < dist (0, f(∂Ω)), then
deg [f,Ω] = deg [g,Ω].

2.5. Corollary. The mapping a �→ deg [f − a,Ω] is constant on each connected compo-
nent of Rn \ f(∂Ω).

2.6. Corollary (Homotopy Invariance). Let

[0, 1] � t �→ h(t, ·) ∈ C0(cl Ω)

be continuous. Suppose that h(t, x) 
= o for each x ∈ ∂Ω and for each t ∈ [0, 1]. Then

deg [h(0, ·),Ω] = deg [h(1, ·),Ω].

Let f = h(0, ·) and g = h(1, ·). Then h is said to be a homotopy between f and g,
and f and g are said to be homotopically equivalent. Corollary 2.6 has the very useful
consequence that in computing the degree we can replace the actual function f we are
given with a much simpler function g, provided that we can connect g to f with a
homotopy meeting the hypotheses of this corollary.

Corollary 2.6 applies to homotopies h defined on cylindrical regions [0, 1] × Ω of
[0, 1] × Rn. To handle global bifurcation problems, Rabinowitz (1971a) extended this
corollary to arbitrary regions A of R × Rn:

2.7. Theorem (Generalized Homotopy Invariance). For each t ∈ [a, b], let A(t) be a
bounded open set of Rn. (It could be empty.) Define

A = ∪{{t} × A(t) : t ∈ [a, b]}

(so that {t} × A(t) is a section of A). Let A \ [{a} × A(a)] \ [{b} × A(b)] be an open
connected subset of R × Rn. Let h : cl A → Rn be continuous and let

o /∈ h (∂A \ [{a} × A(a)] \ [{b} × A(b)])

(so that deg [h(t, ·),A(t)] is defined for all t ∈ [a, b]). Then

(2.8) t �→ deg [h(t, ·),A(t)] is constant on [a, b].

The proof of this theorem is given toward the end of this section.
We now list a collection of very useful properties of degree, which support further

developments of the theory and which enable the degree to be easily computed. We
omit the proofs when they have the character of that of Theorem 2.2.

2.9. Proposition (Additivity). Let Ω1 and Ω2 be disjoint open sets with Ω = Ω1 ∪Ω2
and with o /∈ f(∂Ω1) ∪ f(∂Ω2). Then

deg [f,Ω] = deg [f,Ω1] + deg [f,Ω2].

2.10. Proposition (Excision). Let K be a closed subset of cl Ω for which o /∈ f(K).
Then

deg [f,Ω] = deg [f,Ω \ K].

2.11. Proposition. If deg [f,Ω] 
= 0, then f(Ω) contains a nonempty open set in Rn

containing o. Consequently, if f(Ω) is contained in a plane in Rn of dimension less than
n, then deg [f,Ω] = 0.

Proof. By Theorem 2.2, we know that (1.1) has a solution, so that f−1({o}) is not
empty. Let C denote the connected component of Rn \ f(∂Ω) containing o consisting of
all a for which deg [f − a,Ω] = deg [f,Ω] 
= 0 (see Corollary 2.5). By Theorem 2.2, we also
know that the equation f(x) = a has a solution for each such a. Thus C ∈ f(Ω). Since
C is open, it is the requisite nonempty set. The second statement of the proposition is
then immediate. �
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2.12. Proposition (Boundary Dependence). If f and g agree on ∂Ω and if o /∈ f(∂Ω),
then deg [f,Ω] = deg [g,Ω].

Proof. Set h(t, x) = tf(x) + (1 − t)g(x). Since h(t, x) = f(x) for x ∈ ∂Ω, we can apply the
homotopy invariance of degree of Corollary 2.6 to deduce the conclusion. �
2.13. Poincaré-Bohl Theorem. If for each x ∈ ∂Ω, the vectors f(x) and g(x) do not
point in opposite directions, then deg [f,Ω] = deg [g,Ω].

Proof. Set h(t, x) = tf(x)+(1−t)g(x). We assert that h(t, x) 
= o for x ∈ ∂Ω and t ∈ [0, 1],
for if not, there would be an x and t such that tf(x) = −(1 − t)g(x) and f and g would
point in opposite directions. We can now apply the homotopy invariance of Corollary
2.6 to deduce the conclusion. �
2.14. Corollary (T. B. Benjamin). If there is a fixed nonzero vector a ∈ Rn such that
f(x) 
= λa for all x ∈ ∂Ω and for all λ > 0, then deg [f,Ω] = 0.

Proof. f and a never point in opposite directions on ∂Ω and therefore by the Poincaré-
Bohl Theorem have the same degree. But a is a constant function and therefore has
degree 0. �
2.15. Borsuk Odd Mapping Theorem. Let Ω be symmetric about o. Let f ∈
C0(cl Ω). Let f(−x) = −f(x) on ∂Ω with f not vanishing on ∂Ω. Then deg [f,Ω] is an odd
integer.

2.16. Exercise. Prove this result for continuously differentiable f’s with simple zeros.
(The proof for the general case is not as simple as one might expect because all the
approximation apparatus developed in Sec. 1 must be adapted to odd mappings. For
details, see the references at the end of Sec. 3.)

We are now able to apply these results to the solvability of nonlinear finite-dimen-
sional equations.

2.17. Brouwer Fixed-Point Theorem. Let cl Ω be homeomorphic to a compact
convex set in Rn. If f : cl Ω → cl Ω is continuous, then it has a fixed point, i.e., a point
x0 ∈ cl Ω such that f(x0) = x0.

Proof. We first prove this theorem for the case that Ω is the unit ball B(o, 1) centered
at the origin. Now if there is an x0 ∈ ∂B(o, 1) such that f(x0) = x0, then we are done.
We accordingly assume that there is no such x0. We set

(2.18) h(t, x) = x − tf(x), t ∈ [0, 1].

We assert that h(t, ·) does not vanish on ∂B(o, 1). If it were to vanish, then there would
be an x with |x| = 1 such that x = tf(x). Clearly t can be neither 0 nor 1. Thus f(x) = x/t
so that |f(x)| = t−1 > 1, which is impossible because f : B(o, 1) → B(o, 1). From the
homotopy invariance of degree it follows that

(2.19)
1 = deg [I,B(o, 1)] = deg [h(0, ·),B(o, 1)]

= deg [h(1, ·),B(o, 1)] = deg [I − f,B(o, 1)],

and the conclusion follows from Theorem 2.2.
Now let cl Ω be homeomorphic to cl B(0, 1), i.e., there exists a continuous function

g : cl B(0, 1) → cl Ω with a continuous inverse. Then y �→ g−1 (f (g(y))) is a continuous
mapping of cl B(0, 1) into itself, and therefore has a fixed point. The invertibility of g
immediately implies that f itself has a fixed point.

Next let cl Ω be a closed convex set. We can assume that cl Ω has a non-empty
interior, for if not, it must lie in a plane of dimension m < n in which it does have a non-
empty interior, and we identify this plane with Rm. By making a suitable translation, we
may assume that o is in the interior of Ω. For any x 
= o in Ω, the ray from o to x pierces
∂Ω at a unique point at the distance r(x) from o. Then x �→ x/r(x) is a homeomorphism
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from clΩ to B(0, 1). It follows from the preceding paragraph that f has a fixed point on
cl Ω. The result for homeomorphic images of closed convex sets is proved just as in the
last paragraph. �

The next few corollaries of the Poincaré-Bohl Theorem give concrete criteria for the
existence of solutions to (1.1), which we employ throughout this book.

2.20. Proposition. Let f : Rn → Rn be continuous and satisfy the coercivity condition

(2.21) f(x) · x

|x|
→ ∞ as |x| → ∞.

Then f(Rn) = Rn, i.e., the equation f(x) = a has a solution for each a ∈ Rn.

Proof. Since

(2.22) x · [f(x) − a] ≥ |x|
[
f(x) · x

|x|
− |a|

]
,

Hypothesis (2.21) implies that the left-hand side of (2.22) is positive on the sphere
∂B(o, R) := {x : |x| = R} for sufficiently large R. Thus f(x) − a and x do not point
in opposite directions on this sphere. The Poincaré-Bohl Theorem then implies that
deg [f−a,B(o, R)] = deg [I,B(o, R)] = 1, and the conclusion follows from Theorem 2.2. �
2.23. Exercise. Prove the following generalization of Proposition 2.20:

2.24. Proposition. Let Φ : Rn → R be continuously differentiable, let Φ(x) → ∞ as
|x| → ∞, ∂ Φ(o)/∂x = o, and let Φ have a strictly monotone gradient:

(2.25)
[
∂ Φ(x)
∂x

(x1) − ∂ Φ(x)
∂x

(x2)
]

· (x1 − x2) > 0 for x1 
= x2

(so that Φ is convex). Let f : Rn → Rn be continuous and satisfy the coercivity condition

(2.26) f(x) · ∂ Φ(x)/∂x

|∂ Φ(x)/∂x|
→ ∞ as |x| → ∞.

Then the equation f(x) = a has a solution for each a ∈ Rn.

We can generalize Proposition 2.24 with the following results, used at several places
in this book.

2.27. Exercise. Prove the following

2.28. Theorem. Let Ω be an open convex subset of Rn and let Y be an arbitrary set.
Let f : Ω×Y → Rn with f(·, y) continuous for each y ∈ Y. Let Φ : Ω → R be continuously
differentiable, let Φ(x) → ∞ as |x| → ∞ or as x → ∂Ω, let there be a point x0 ∈ Ω such
that ∂Φ(o)/∂x0 = o, and let Φ satisfy (2.25). Suppose that for each y ∈ Y there is a
number R(y) in the range of Φ for which

(2.29) f(x, y) · ∂Φ(x)
∂x

(x) ≥ 0 ∀ x such that Φ(x) = r ∀ r ≥ R(y).

Then for each y ∈ Y the equation f(x, y) = o has a solution x ∈ Ω.

We immediately obtain

2.30. Global Implicit-Function Theorem. Let the hypotheses of Theorem 2.28
hold and further let f(·, y) be strictly monotone:

(2.31) [f(x1) − f(x2)] · (x1 − x2) > 0 for x1 
= x2.

Then for each y ∈ Y the equation f(x, y) = o has a unique solution x ∈ Ω.

By introducing further hypotheses on the smoothness of f in both of its arguments,
we can assert that the solution has a corresponding level of smoothness in y, merely by
invoking such results for the Local Implicit-Function Theorem 20.1.27.

The following result is typical of those ensuring the existence of an eigenvalue for a
nonlinear operator equation.
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2.32. Theorem. Let f : ∂B(o, 1) → Rn be continuous, and let f(x) 
= o for x ∈ ∂B(o, 1).
If n is odd, then there is a direction normal to ∂B(o, 1) at some point x0 ∈ ∂B(o, 1)
that is unchanged under f, i.e., there is a nonzero real number λ and an x0 in ∂B(o, 1)
such that f(x0) = λx0. Equivalently, there is an x0 in ∂B(o, 1) at which the tangential
component of f to ∂B(o, 1) vanishes.

Proof. Extend f to the ball B(o, 1) by setting f(αx) = αf(x) for x ∈ ∂B(o, 1). deg [f,Ω] is
well defined (by its boundary behavior). Let us set

(2.33) h+(t, x) = tf(x) + (1 − t)x, h−(t, x) = tf(x) + (1 − t)(−x).

Now one of these homotopies must vanish for some x0 ∈ ∂B(o, 1), for if not, homotopy
invariance (Corollary 2.5) would imply that

(2.34) deg [f,Ω] = deg [I,Ω] = 1 and deg [f,Ω] = deg [−I,Ω] = −1,

with the last equality of (2.34) a consequence of the oddness of n. Now neither of the
homotopies of (2.33) can vanish on ∂B(o, 1) for t = 0 because |x| = 1, and neither can
vanish here for t = 1 because f does not vanish on ∂B(o, 1). Since one of the homotopies
of (2.33) must vanish on ∂B(o, 1), it thus follows that there is an x0 in ∂B(o, 1) and a t0
in (0, 1) such that

(2.35) f(x0) = ± (1 − t0)
t0

x0. �

An interesting related geometrical result, not of central importance here, is

2.36. Proposition. A nowhere vanishing tangent field exists on ∂B(o, 1) if and only if
n is even.

We do not pause to give the proof.

The index. Let f : Ω → Rn be continuous and let o /∈ f(∂Ω). If x0 is an isolated
solution of the equation f(x) = o, then by definition there is an open ball B(x0, r) about
it in which there are no other solutions. By the excision property (Proposition 2.10),
deg [f,B(x0, ε)] = deg [f,B(x0, r)] for all ε ∈ (0, r). This value of the degree is denoted
ind [f, x0] and is called the index of f at x0.

Let λ �→ A(λ) be a function that assigns an n × n matrix A(λ) to each λ in an
interval. Let λ0 be an eigenvalue of A. Then λ0 has algebraic multiplicity m iff A is
m-times differentiable at λ0 and

(2.37)
dj

dλj
det A(λ)

∣∣∣∣
λ=λ0

= 0 for j = 0, . . . , m − 1,
dm

dλm
det A(λ)

∣∣∣∣
λ=λ0


= 0,

(See Sec. 5.3 for definitions of eigenvalues.)
The following result is very useful for the study of bifurcation problems.

2.38. Proposition. Let x �→ f(λ, x) be continuously differentiable for all λ ∈ R and let
f(λ, o) = o. Suppose that λ �→ ∂ f(λ, o)/∂x has isolated eigenvalues λk, each of which has
a well-defined algebraic multiplicity mk. Then ind [f(λ, ·), o] is defined for each λ 
= λk

and

(2.39) ind [f(λk + ε, ·), o] = (−1)mk ind [f(λk − ε, ·), o]

for ε sufficiently small.

2.40. Exercise. Prove Proposition 2.38.

Proof of Theorem 2.7. We reduce the proof to an application of the homotopy
invariance of Corollary 2.6. Fix λ in [a, b]. Let

N (λ) := {x ∈ A(λ) : h(λ, x) = o}.
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By hypothesis, N (λ) ∩ {(t, x) ∈ ∂A : t = λ} = ∅. Since N (λ) is the inverse image of the
closed set {o} under the continuous mapping h(λ, ·), it is closed and therefore compact.
Thus there is an open set O(λ) such that

N (λ) ⊂ O(λ) ⊂ cl O(λ) ⊂ A(λ)

and there is an ε > 0 (depending on λ) such that

{[λ − ε, λ + ε] ∩ [a, b]} × O(λ) ⊂ A.

We assert that there is an ε so small that every solution pair (µ, y) of h(µ, y) = o with
|µ− λ| < ε lies in {[λ− ε, λ+ ε] ∩ [a, b]} × O(λ). Were there no such ε, then there would
be a sequence {εk, λk, xk} with

εk ↘ 0, h(λk, xk) = o, |λk − λ| ≤ εk,
(λk, xk) /∈ {[λ − εk, λ + εk] ∩ [a, b]} × O(λ).

By the Bolzano-Weierstrass Theorem, this sequence would have a subsequence, denoted
the same way, with {(λk, xk)} converging to a point of the form (λ, z). Since h is contin-
uous, it would follow that h(λ, z) = o. Since xk /∈ O(λ) for each K , it would follow from
the openness of O(λ) that y /∈ O(λ), in contradiction of the fact that N (λ) ⊂ O(λ).

For every µ ∈ [λ−ε, λ+ε]∩[a, b], deg [h(µ, ·),O(µ)] is well-defined because o /∈ ∂O(µ).
From the homotopy invariance of degree on cylindrical regions (Corollary 2.6) it follows
that [λ − ε, λ + ε] ∩ [a, b] � µ �→ deg [h(µ, ·),O(λ)] is constant. The excision property
(Proposition 2.10) implies that

deg [h(µ, ·),O(λ)] = deg [h(µ, ·),A(µ)]

for all µ ∈ [λ − ε, λ + ε] ∩ [a, b]. Thus µ �→ deg [h(µ, ·),A(µ)] is (locally) constant on
[λ − ε, λ + ε] ∩ [a, b] and must therefore be constant on [a, b]. �

We recall that a component of a metric space is a maximal closed connected subset
of it. We study components of solution pairs (t, x) of equations of the form h(t, x) = o.

2.41. Corollary. Let the hypotheses of Theorem 2.7 hold. If

d := deg [h(t, ·),A(t)] 
= o

for some t, and consequently for all t in [a, b], then there exists a component C of

S := {(t, x) ∈ A : h(t, x) = o}

that meets both {a} × A(a) and {b} × A(b).

Proof. S, being the inverse image of the closed set {o} under the continuous function
h, is closed, and, being bounded, is therefore compact. Now our assumption about the
disposition of solutions of h(t, x) = o ensures that S ∩ [{t} × A(t)] = S ∩ [{t} × cl A(t)],
so that this set is a closed subset of S. The sets K(a) := S ∩ [{a} × cl A(a)] and
K(b) := S ∩ [{b} × cl A(b)] are disjoint closed subsets of the metric space S and are
nonempty by virtue of Theorem 2.2 and the assumption that deg [h(t, ·),A(t)] 
= o.

Now we invoke the following lemma from topology: If K(a) and K(b) are disjoint
closed subsets of a compact metric space S, then either there exists a component of S
that meets both K(a) and K(b), or else there are two disjoint compact sets S(a) and S(b)
such that S = S(a) ∪ S(b) with K(a) ⊂ S(a), K(b) ⊂ S(b). We need only exclude the
second alternative to establish this corollary. Let us suppose for the sake of contradiction
that the second alternative holds. We set

2ε := dist (S(a), S(b)) ,

O := {(t, x) ∈ A : dist ((t, x), S(a)) < ε},
O(t) := {x : (t, x) ∈ O}.



21.3. LERAY-SCHAUDER DEGREE 779

Clearly, ε is positive and O ∩ S(b) 
= ∅. We define O(t) for all t ∈ [a, b] by defining O(λ)
to be the empty set wherever O does not intersect the plane t = λ. We identify O with
A of Theorem 2.7, from which we conclude that

deg [h(t, ·),O(t)] = const. ∀ t ∈ [a, b].

From the excision property (Proposition 2.10) it follows that

deg [h(a, ·),O(a)] = deg [h(a, ·),A(a)] = d.

But by our hypothesis,

deg [h(b, ·),O(b)] = deg [h(b, ·), ∅)] = 0.

These last three identities are contradictory. �

3. Leray-Schauder Degree
Mathematical results valid for arbitrary finite-dimensional spaces do not automati-

cally carry over to infinite-dimensional spaces. In particular, such consequences of the
properties of the Brouwer degree as the Brouwer Fixed-Point Theorem need not hold
without further restriction.

3.1. Example. Let l2 be the space of real sequences x = (x1, x2, . . . ) with ‖x‖2 =∑
x2

k < ∞. Let f(x) := (
√

1 − ‖x‖2, x1, x2, . . . ). It is easy to see that f : l2 → l2 is
continuous and takes the ball {x : ‖x‖ ≤ 1} not only into itself, but actually into its
boundary, because ‖f(x)‖2 = 1 − ‖x‖2 +

∑
x2

k = 1. Were f to have a fixed point x̄, then
‖x̄‖ = 1, and f(x̄) = (0, x̄1, x̄2, . . . ) = (x̄1, x̄2, . . . ). This equation implies that x̄ = o, in
contradiction to the equality ‖x̄‖ = 1.

To extend the Brouwer degree to infinite-dimensional Banach spaces, we restrict the
class of functions f to those of the form I − g where g is compact and continuous. Con-
comitantly, the Schauder Fixed-Point Theorem, which is the extension of the Brouwer
Fixed-Point Theorem, applies to g’s that are compact and continuous. Recall that a
mapping k from a Banach space X to a Banach space Y is compact iff k maps every
bounded sequence in X into a sequence in Y having a convergent subsequence there.
Mappings that are compact and continuous are ‘nearly finite-dimensional’ in the follow-
ing sense.

3.2. Lemma (Schauder). Let X and Y be Banach spaces and let k : X → Y be
compact and continuous. Then for every bounded E ⊂ X and for every ε > 0 there is
a finite-dimensional subspace Yε of Y and a continuous mapping kε from X to Yn such
that

‖k(x) − kε(x),Y‖ ≤ ε ∀ x ∈ E .

We omit the proof of this lemma (which can be found in standard books on functional
analysis and in the references cited below). We now proceed to extend the definition of
Brouwer degree to Banach spaces by exploiting the approximation property of Lemma
3.2. We denote the restriction of a function f to a subset A of its domain of definition
by f|A.

3.3. Lemma. Let Ω be a bounded open subset of Rn+m with m > 0. Let cl Ω � x �→
g(x) ∈ Rn be continuous. Let o /∈ (I − g)−1(∂Ω). Then

(3.4) deg [I − g,Ω] = deg [(I − g)|cl Ω∩Rn ,Ω ∩ R
n].

Proof. A simple computation shows that the degree on the right-hand side is well-
defined because there are no x’s on ∂Ω ∩ Rn taken by (I − g)|cl Ω∩Rn to o. Let us first
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suppose that g ∈ C1(cl Ω) and that det (I − ∂g/∂x) (x) 
= 0 for every x satisfying g(x) = x.
By hypothesis,

(3.5)
g(x) = (g1(x), . . . , gn(x), 0, . . . , 0) ,

(I − g)(x) = (x1 − g1(x), . . . , xn − gn(x), xn+1, . . . , xn+m) .

We can readily compute I−∂g/∂x from (3.5), showing that its matrix can be partitioned
into four submatrices with that in the upper left-hand corner being the n × n matrix
with components δij − ∂gi/∂xj , i, j = 1, . . . , n, with that in the lower right-hand corner
being the m × m identity matrix, and with that in the lower left-hand corner being
the m × n zero matrix. Consequently, the determinant of this matrix reduces to the
determinant of the n×n matrix in the upper left-hand corner. This is just the Jacobian
of I − g restricted to Ω ∩ Rn. We use definition (1.7) to establish (3.4) under our special
assumptions. We now follow the approximation arguments leading to definitions 1.21
and 1.28 to extend this result to the general class of g’s described by the hypotheses. �

Now consider the question of defining degree for a mapping x �→ f(x) from the closure
of a bounded open set Ω in a real n-dimensional normed space F to a real normed space
F̃ with the same dimension. We can identify any real normed n-dimensional space F
with Rn by choosing a basis for F because the components of any vector in F form an
n-tuple of real numbers. Is the resulting degree independent of the basis? To answer
this question, we introduce bases {ak}, {bk} for F and bases {ãk}, {b̃k} for F̃ . Using
the summation convention, we let bk = M · ak = M j

kaj and b̃k = M̃ · ãk = M̃ j
k ãj . We

set
x = ξjaj = ηkbk := M j

kη
kaj ,

f(x) = φj({ξp})ãj = ψk({ηq})b̃j := M̃ j
kψ

k({ηq})ãj ,

so that
M̃ j

kψ
k({ηq}) = φj({M p

qη
q}).

Thus the Chain Rule implies that

det
[
M̃ j

k

]
det

[
∂ψk

∂ηj
({ηq})

]
= det

[
∂φj

∂ξp

]
det [M p

q ]

for continuously differentiable f. Under the special conditions (1.5) and (1.6), this iden-
tity shows that the degree for (φ1, . . . , φn) equals that for (ψ1, . . . , ψn) on the corre-
sponding images of Ω when det[M̃ j

k] has the same sign as det[M p
q ], i.e., when the

orientation of {bk} with respect to {ak} is the same as that of {b̃k} with respect to {ãk}.
Otherwise, these degrees have opposite sign. Our standard approximation procedures
enable us to make these assertions in the general case. Thus, modulo orientation, de-
grees for mappings between normed spaces of the same finite dimension are independent
of basis and accordingly well defined. For our purposes (see (3.6)), we have F = F̃ , and
we avoid any difficulty by consistently using the same basis for the domain space and
the target space.

These considerations enable us to replace Rn and Rn+m in Lemma 3.3 with F and
F × E, respectively, where F and E are real normed spaces with dimensions n and m.

In the rest of this section, X denotes a real Banach space with norm ‖ · ‖, G denotes
a bounded open subset of X , and g : cl G → X is continuous. X , G, and g replace Rn,
Ω, and I − f of Sec. 1.

We begin our process of defining deg [I− g, G] by first studying a continuous mapping
g : G → G ∩ F where F is a finite-dimensional subspace of X . For such g’s, we define

(3.6) deg [I − g, G] := deg [(I − g)|cl G∩F , G ∩ F ].

To show that this definition makes sense, we must show that the right-hand side of (3.6)
is independent of F . Given g, we let F1 and F2 be two finite-dimensional spaces so that
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the range of g is in both F1 and F2 and therefore in F1 ∪ F2. Applying our generalized
interpretation of Lemma 3.3, we obtain

deg [(I − g)|cl Ω∩Fα ,Ω ∩ Fα] = deg [(I − g)|cl Ω∩F1∩F2 ,Ω ∩ F1 ∩ F2], α = 1, 2,

which gives the requisite independence.
We can now consider g : G → X that are continuous and compact. For any such g,

we define the Leray-Schauder degree of I − g to be

(3.7) deg [I − g, G] := lim
ε→0

deg [I − gε, G]

where the gε are a family of approximations to g in the sense of Lemma 3.2. We must
show that the right-hand side of (3.7) is well defined:

3.8. Lemma. Let G be a bounded open set in X . Let g : cl G → X be compact
and continuous. Let o /∈ (I − g)(∂G). Then the Leray-Schauder degree is a well-defined
integer, which is independent of the approximants gε appearing in (3.7).

Proof. We need to show that the absence of fixed points of g on the boundary of G
implies the absence of fixed points of gε on the boundary for ε sufficiently small. Toward
this end, we first establish that

(3.9) ∃ ε > 0 such that ‖x − g(x)‖ > 2ε ∀ x ∈ ∂G.

Let us suppose that (3.9) does not hold. Then there is a sequence xk ∈ ∂G, necessarily
bounded, such that ‖xk − g(xk)‖ → 0. Since g is compact, there is a subsequence of
{xk}, which we continue to denote by {xk}, such that g(xk) converges to a limit, which
we denote by y. Therefore, for this subsequence, we obtain from the triangle inequality
that

‖xk − y‖ ≤ ‖xk − g(xk)‖ + ‖g(xk) − y‖ → 0.

Thus xk → y. Since xk ∈ ∂G and since ∂G is closed, it follows that y ∈ ∂G. Since g is
continuous, it follows that g(xk) → g(y). Since limits are unique, we have g(y) = y, which
says that g has a fixed point on ∂G, in contradiction to our hypothesis. Thus (3.9) holds.

By Lemma 3.2, there is a continuous mapping gε with range Xε having finite dimen-
sion k(ε) such that

(3.10) ‖gε(x) − g(x)‖ ≤ ε for x ∈ cl G.

It follows from (3.9), (3.10), and the triangle inequality that

‖x − gε(x)‖ ≥ ‖x − g(x)‖ − ‖g(x) − gε(x)‖ ≥ ε > 0 ∀ x ∈ ∂G.

Thus x − gε(x) 
= o for each x ∈ ∂(G ∩ Xe), so that

deg [I − gε, G] := deg [(I − gε)|cl G ∩ Xe, G ∩ Xe]

is well-defined.
Now for given ε, this degree is independent of the particular approximant gε in-

troduced in (3.10). Indeed, suppose that g̃ε with range X̃ε also satisfies (3.10). We
introduce the homotopy

h(t, x) := t[x − g̃ε(x)] + (1 − t)[x − gε(x)].

Thus for x ∈ ∂(G ∩ Xε), (3.9) and (3.10) imply that

(3.11)

‖h(t, x)‖ = ‖[x − g(x)] − t[x − g(x)] − (1 − t)[x − g(x)] + h(t, x)‖
≥ ‖x − g(x)‖ − t‖g(x) − gε(x)‖ − (1 − t)‖g(x) − g̃ε(x)‖
≥ 2ε − tε − (1 − t)ε = ε > 0.

By the homotopy invariance (Corollary 2.6) and the boundary dependence (Proposition
2.12) of degree, we therefore conclude that deg [I−gε, G] = deg [I−g̃ε, G]. We now observe
that we can replace our g̃ε, required to satisfy (3.10), with gη where η is any number in
(0, ε]. Thus we conclude that deg [I − gε, G] is actually independent of ε (for ε satisfying
(3.9)). Thus the limit in (3.7) is trivially obtained. �

We now show that the analog of Theorem 2.2 holds:
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3.12. Theorem. Let the hypotheses of Lemma 3.8 hold. If deg [I − g, G] 
= 0, then g
has a fixed point, i.e., there is an x that satisfies the equation g(x) = x.

Proof. Let gε be a ‘sequence’ of approximants to g in the sense of Lemma 3.2. By the
last observation in the proof of Lemma 3.8, we know that

(3.13) deg [I − gε, G] = deg [I − g, G] 
= 0

for ε sufficiently small. Definition 3.6 and Theorem 2.2 imply that there is an xε ∈ G
satisfying

(3.14) gε(xε) = xε.

Since G is bounded, the compactness of g implies that g(xε) has a subsequence, denoted
the same way, that converges to a limit y in X . Since

(3.15) ‖xε − y‖ = ‖gε(xε) − y‖ ≤ ‖gε(xε) − g(xε)‖ + ‖g(xε) − y‖

for this subsequence, it follows from Lemma 3.2 and the definition of y that xε → y.
Since g is continuous, it follows that y = lim g(xε) = g(y). Thus g has a fixed point
y ∈ cl G. By hypothesis, y /∈ ∂G, so that y ∈ G. �

Using the method of proof of Theorem 3.12, we can readily prove:

3.16. Theorem. All the properties of the Brouwer degree described in Sec. 2 are valid
for the Leray-Schauder degree under the standard hypotheses of Lemma 3.8 together
with the further assumption that homotopies are compact and continuous on their do-
mains in (t, x)-space.

In particular, the analog of the Brouwer Fixed-Point Theorem is

3.17. Schauder Fixed-Point Theorem. Let cl G be homeomorphic to a bounded
closed convex set in X . If g : cl G → cl G is compact and continuous, then it has a
fixed point. Equivalently, if cl G is homeomorphic to a compact convex set in X and if
g : cl G → cl G is continuous, then it has a fixed point.

3.18. Exercise. Prove the first statement of this theorem when G is the open unit
ball in X . (Technical difficulties attend the proof of its generalization; see the references
below.)

Appropriately framed analogs of Propositions 2.20, 2.24, 2.28, 2.30, and 2.38 are also
valid. Many of the properties of degree can be extended to classes of mappings even
larger than the compact perturbations of the identity.

The definition of the Leray-Schauder index is just like that of the (Brouwer) index
given in Sec. 2.

Remarks on the literature. Our approach to degree theory, which is purely analytic,
was pioneered by Nagumo (1951) and Heinz (1959). The presentation above follows
the refinements of their treatment by Berger & Berger (1968), Deimling (1985), Lloyd
(1978), Rabinowitz (1975), and J. T. Schwartz (1969). Among the many other sources
giving an extensive development of degree theory by analytic means are Berger (1977),
Browder (1976), Eisenack & Fenske (1978), Istratescu (1981), Mawhin (1979), Milnor
(1969), Nirenberg (1974), Ortega & Rheinboldt (1970), and Zeidler (1986, Vol. I). Books
presenting degree theory from a topological viewpoint include standard texts on alge-
braic topology, together with the works of Cronin (1964), Dugundji & Granas (1982),
Krasnosel’skĭı (1964), and Krasnosel’skĭı & Zabrĕıko (1984), and Rothe (1986), which
have numerous applications to nonlinear equations. The pioneering paper of Leray &
Schauder (1934) continues to merit careful study.
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4. One-Parameter Global Bifurcation Theorem
In this section we use degree theory to prove the main parts of Theorem 5.4.19, due

to Rabinowitz (1971a), which we restate thus:

4.1. Theorem. Let X be a real Banach space with norm ‖ · ‖ and let D be an open
subset of R × X . Let the intersection of D with R × {o} be an open interval I. Let
D � (λ, u) �→ f[λ, u] have the form

(4.2) f[λ, u] = u − L(λ) · u − g[λ, u]

where L(λ) : X → X is linear, g[λ, u] = o(‖u‖) as u → o uniformly for λ in any bounded
set, and (λ, u) �→ L(λ) · u, g[λ, u] are compact and continuous. Let α, β ∈ I \ E, where E
is the set of eigenvalues of λ �→ I − L(λ). Let the Leray-Schauder indices of I − L(α) and
I − L(β) at o be different. (Note that if λ0 is an (isolated) eigenvalue of λ �→ I − L(λ) at
which the index of f[λ, ·] at o changes, then there are numbers α, β with the properties
just specified.) Then between α and β there is an eigenvalue λ0 of λ �→ I − L(λ) with the
property that (λ0, o) belongs to a maximal connected subset C of the closure S of the
set of nontrivial solution pairs. Moreover, C satisfies at least one of the following two
alternatives:

(i) C does not lie in a closed and bounded subset of D. (In particular, if D = R × X ,
then C is unbounded in R × X .)

(ii) There is another eigenvalue µ of λ �→ I − L(λ) on I such that C contains (µ, o).

In Theorem 5.4.19, the set C is denoted S(λ0). In this section, as in Sec. 2, we adhere
to the convention that if E is a subset of R × X , then E(t) is its section {x : (t, x) ∈ E}.
We accordingly change the notation to avoid ambiguity.

Proof. We first show that there must be a bifurcation point (λ0, o) on (α, β). It then
follows from Theorem 5.4.1 that λ0 is in the spectrum of λ �→ I−L(λ). The compactness
of L(λ) ensures that the spectrum consists entirely of eigenvalues (see Riesz & Nagy
(1955) or Stakgold (1998)).

Let us assume for contradiction that there is no bifurcation point on [α, β] × {o}.
From the definition of a bifurcation point in Sec. 5.3, it follows that for each λ ∈ [α, β]
there is a positive number r(λ) such that if ‖u‖, |µ − λ| < r(λ), then (µ, u) is not a
solution pair of

(4.3) f(λ, u) = o.

Now the segment [α, β]×{o} is covered by the open sets of the form {(µ, u) : ‖u‖, |µ−λ| <
r(λ)}, λ ∈ [α, β]. Since this segment is essentially just a closed segment of the real line,
it is compact. (To establish this formally, we need only use the Bolzano-Weierstrass
Theorem to show that any sequence (λk, o) has a convergent subsequence.) Therefore
the open covering has a finite subcovering. Let r denote the minimum of the r(λ) for
this subcovering. Thus (4.3) has no solutions satisfying ‖u‖ = r, λ ∈ [α, β]. From the
homotopy invariance (Corollary 2.6 and Theorem 3.16) it follows that deg [f(λ, ·), {u :
‖u‖ < r}] is independent of λ, in contradiction to the hypothesis that the index changes.

Let us now suppose for contradiction that C satisfies neither of the properties (i)
and (ii). Since f is a compact perturbation of the identity, we find that any bounded
part of S is precompact, so that C, which would be a closed and bounded subset of
S ∪ (I × {o}), would be compact. Therefore, by elementary properties of compact sets
in metric spaces, its distance to S \ C would be positive. Thus we could enclose C in an
open set U whose closure contains no point of S \ C. If necessary, by shaving off small
pieces of U , we can ensure that the λ-axis does not intersect the boundary ∂U(λ) of
any of its sections U(λ) (i.e., we can take the parts of ∂U near the λ-axis to be planes
perpendicular to this axis). See Fig. 4.4.

Since we are assuming that C does not intersect the λ-axis anywhere but at (λ0, o),
it follows that

r(λ) := dist (C(λ), (λ, o))
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Fig. 4.4. Schematic diagram of the sets C, U , and M if neither properties
(i) nor (ii) of Theorem 4.1 were to hold.

is positive for all λ 
= λ0 at which C(λ) is not empty. Let ε be a small positive number.
We set

(4.5) M := cl {(λ, u) ∈ U : 2‖u‖ ≤ r(λ), 2ε}, V := U \ M.

See Fig. 4.4. By the generalized homotopy invariance (Theorems 2.7 and 3.16), we
find that the restrictions of λ �→ deg [f(λ, ·),V(λ)] to the subsets of its domain where
λ < λ0 and where λ > λ0 are each constant. Since V(λ) = ∅ for |λ| large, we find that
these constant values are each 0. The generalized homotopy invariance also implies that
λ �→ deg [f(λ, ·),U(λ)] is a constant d. From the additivity property (Proposition 2.9
and Theorem 3.16) it follows that

(4.6) d = deg [f(λ, ·),U(λ)] = ind [f(λ, ·), o] + deg [f(λ, ·),V(λ)] = ind [f(λ, ·), o]

wherever the index is defined. At such places it can be shown that

(4.7) ind [f(λ, ·), o] = ind [I − L(λ, o)].

Setting λ = α, β in (4.6) and (4.7), we find that ind [f(α, ·), o] = d = ind [f(β, ·), o] in
contradiction to our hypotheses. �

4.8. Exercise. Prove (4.7).
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C. E. Beevers & M. Šilhavý (1988), The asymptotic behavior of classical solutions to

the mixed initial-boundary value problem in finite thermo-viscoelasticity, QAM 46,
319–329. (5.7)

J. B. Bell, P. Colella & J.A. Trangenstein (1989), Higher-order Godunov methods for
general systems of conservation laws, J. Comp. Phys. 82, 362–397. (2.11)

J. F. Bell (1985), Contemporary perspectives in finite strain plasticity, Int. J. Plasticity
1, 3–27. (12.12)

H. Ben Belgacem, S. Conti, A. DeSimone & S. Müller (2000), Rigorous bounds for
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J. Dieudonné (1960), Foundations of Modern Analysis, AP. (11.2)
M. Dikmen (1982), Theory of Thin Elastic Shells, Pitman. (17.12)
E. H. Dill (1992), Kirchhoff’s theory of rods, Arch. Hist. Exact Sci. 44, 1–23. (8.21;

17.12)
A. N. Dinnik (1935), Stability of Elastic Systems (in Russian), ONTI. (5.2)
G. Dolzmann (2002), Variational Methods for Crystalline Microstructure—Analysis and

Computation, SV. (8.10; 12.10; 13.6; 14.16)
G. Domokos & P. Holmes (1993a), Euler’s problem and Euler’s method, or the discrete

charm of buckling, JNS 3, 109–151. (4.7)
G. Domokos & P. Holmes (1993b), On noninflectional solutions of non-uniform elasticae,

IJNM 28, 677-685. (4.7)
G. Domokos, P. Holmes, & B. Royce (1997), Constrained Euler buckling, JNS 7, 1–34.

(4.7)
E. H. Dowell (1975), Aeroelasticity of Plates and Shells, Noordhoff. (5.2)
E. H. Dowell & M. Il’gamov (1988), Studies in Nonlinear Aeroelasticity, SV. (5.2)
T. C. Doyle & J. L. Ericksen (1956), Nonlinear elasticity, in Advances in Applied Me-

chanics 4, H. L. Dryden & T. von Kármán, eds., AP, 53–115. (11.3)
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G. H. Hardy, J. E. Littlewood & G. Pólya (1952), Inequalities, CUP. (19.1)
J. A. Haringx (1942), On the buckling and the lateral rigidity of helical compression

springs, Proc. Nederl. Akad. Wet. 45, 533–539, 650–654. (4.7)
J. A. Haringx (1948–1949), On highly compressible helical springs and rubber rods,

and their application for vibration-free mountings, Phillips Res. Rpts. 3, 401–449; 4,
49–80, 206–220, 261–290, 375–400, 407–448. (4.7)

P. Hartman (1964), Ordinary Differential Equations, Wi. (6.2)
F. Hartmann (1937), Knickung, Kippung, Beulung, Deutike. (5.2)
B. D. Hassard, N. D. Kazarinoff & Y.-H. Wan (1981), Theory and Applications of Hopf

Bifurcation, CUP. (5.8)
P. Haupt (2000), Continuum Mechanics and Theory of Materials, SV. (15.5)
K. Havner (1992), Plastic Deformation of Crystalline Solids, CUP. (15.5)
M. Hayes (1969), Static implications of the strong-ellipticity condition, ARMA 33, 181–

191. (13.3)
M. Hayes & R. S. Rivlin (1961), Propagation of a plane wave in an isotropic elastic

material subject to pure homogeneous deformation, ARMA 8, 15–22. (13.3)
T. J. Healey (1990), Large rotating states of a conducting elastic wire in a magnetic

field: Subtle symmetry and multiparameter bifurcation, JE 24, 211–227. (3.5)
T. J. Healey (1992), Large rotatory oscillations of transversely isotropic rods: Spatiotem-

poral symmetry breaking bifurcation, SJAM 52, 1120–1135. (5.2; 6.13)
T. J. Healey (2000), Global continuation in displacement problems of nonlinear elasto-

statics via the Leray-Schader degree, ARMA 152, 273–282. (14.6,12)
T. J. Healey (2002), Material symmetry and chirality in nonlinearly elastic rods, Math.

Mech. Solids 7, 405–420. (8.8,12)
T. J. Healey & H. Kielhofer (1991), Symmetry and nodal properties in the global bifur-

cation analysis of quasi-linear elliptic equations, ARMA 113, 299–311. (17.8)
T. J. Healey & E. L. Montes-Pizarro (2003), Global bifurcation in nonlinear elasticity

with an application to barrelling states of cylindrical columns, JE (14.11)
T. J. Healey & J. N. Papadopoulos (1990), Steady axial motion of strings, JAM 57,

785–787. (3.8)
T. J. Healey & P. Rosakis (1997), Unbounded branches of classical injective solutions to

the forced displacement problem in nonlinear elastostatics, JE 49, 65–78. (14.6,12)



REFERENCES 803

T. J. Healey & H. C. Simpson (1998), Global continuation in nonlinear elasticity, ARMA
143, 1–18. (14.6,12)

E. Heinz (1959), An elementary analytic theory of the degree of a mapping in n-
dimensional space, J. Math. Mech. 8, 231–247. (21.3)

D. Henry (1981), Geometric Theory of Semilinear Parabolic Equations, SV. (5.8)
G. Herrmann (1967a), Stability of equilibrium of elastic systems subjected to noncon-

servative forces, AMR 20, 103–108. (5.2,7)
G. Herrmann, ed. (1967b), Proc. Int. Conf. Dynamic Stability of Structures, Pergamon.

(5.2)
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différens problèmes de dynamique, in Œuvres 1, 365–468. (2.1,2)
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asymptotique des coques minces, CRAS 311, Sér. II, 909–916. (17.12)

E. Sanchez-Palencia & D. G. Vassiliev (1992), Remarks on vibration of thin elastic shells
and their numerical computation, CRAS 314, Sér. II, 445–452. (17.12)

D. H. Sattinger (1973), Topics in Stability and Bifurcation Theory, SV. (5.8)
D. H. Sattinger (1979), Group Theoretic Methods in Bifurcation Theory, SV. (5.8)
D. H. Sattinger (1983), Branching in the Presence of Symmetry, SIAM. (5.8)
K. N. Sawyers (1976), Stability of an elastic cube under dead loading: Two equal forces,

IJNM 11, 11–23. (14.12)
R. Saxton (1985), Existence of solutions for a finite nonlinearly hyperelastic rod, J.

Math. Anal. Appl. 105, 59–75. (16.12)
D. G. Schaeffer & M. Golubitsky (1979), Boundary conditions and mode jumping in the

buckling of a rectangular plate, CMP 69, 209–236. (17.8)
S. Schochet (1985), The incompressible limit in nonlinear elasticity, CMP 102, 207–215.

(8.17; 12.12)
F. Schuricht (1997), A variational approach to obstacle problems for shearable nonlin-

early elastic rods, ARMA 140, 103–159. (7.8; 8.4; 16.10)
F. Schuricht (1998), Regularity for shearable nonlinearly elastic rods in obstacle prob-

lems, ARMA 145, 23–49. (7.8; 8.4; 16.10)
F. Schuricht (2002), Global injectivity and topological constraints for spatial nonlinearly

elastic rods, JNS 12, 423–444. (4.1; 7.8, 8.4)
F. Schuricht & H. von der Mosel (2003), Euler-Lagrange equations for nonlinearly elastic

rods with self-contact, ARMA 168, 35–82. (4.1; 7.8)
C. Schwab & S. Wright (1995), Boundary layers of hierarchical beam and plate models,

JE 38, 1–40. (16.12)
J. T. Schwartz (1969), Nonlinear Functional Analysis, Gordon & Breach. (20.1, 21.3)
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Index

Absolute continuity, 10
Absolute temperature, 477
Acceleration, 419
Acoustic tensor, 497
Active stress, 460
Adjacent equilibrium, criterion of, 180
Adjoint of a linear operator, 755
Adjoint of a tensor, 400
Adjugate tensor, 498
Admissible functions in calculus of

variations, 239, 245, 525
Admissibility of shocks, 718, 732–736
Aeolotropic plates

buckling of, 383–385
trivial states, 376–382

Aeolotropy (Anisotropy)
for plates, 376–385
for rods in space, 309–318
for 3-dimensional bodies, 471

Affine function, 4
Algebraic multiplicity of eigenvalues, 154,

161–163, 777
Almost everywhere, definition of, 9
Alternating symbol, 269
Alternative Theorems, 401, 756–757
Angular Impulse-Momentum Laws

for rods, 273, 280, 328–332
for 3-dimensional bodies, vii, 434, 444,

627–628, 666
Angular momentum

for rods, 272–273, 279
for shells, 688
for 3-dimensional bodies, 434

Anisotropy see Aeolotropy
Annihilators, 464, 755
Antiplane problems

in elasticity 557–559

in plasticity, 595–600
Antisymmetric tensor, 400
A priori estimates, 730–731
Arches, buckling of, 228–232, 264–266
Artificial dispersivity, 299 ff
Artificial viscosity, 299 ff
Arzelà-Ascoli Theorem, 169
Asymptotic sequence, 121
Asymptotic methods

for rods, 120–125, 219–224
for shells, 390–391, 392–398, 698–705
for shock structure, 732–736, 741–743

Asymptotic shape
of inflated rings, 120–125
of inflated shells, 390–391

Asymptotics of large loads, 219–224
Asymptotics of shock structure, 732–736,

741–743
Asymptotic stability of motion, 179
Axial compression of an elastic body,

524–526
Axial vector, 400
Axisymmetric deformations of axisymmet-

ric shells, 363–398, 673–678

Balance of Angular Momentum, see
Angular Impulse-Momentum Laws

Balance of Linear Momentum see Linear
Impulse-Momentum Laws

Ball’s condition of polyconvexity, 498
Banach spaces, 11, 148, 751–753

reflexive, 245, 248–249
dual, 248

Barrelling of a 3-dimensional rod, 562–565
Bars, see Rods
Base curve of a rod, 96, 608
Base surface of a shell, 364, 659
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Basis, base vectors 5, 399
dual, 399
orthonormal, 400

Beams, see Rods
Bell’s constraint, 456–458, 461, 490
Bending couples (moments), also see

Contact couple
for rods, 100, 274, 628–630, 636–637
for shells, 368, 675–676

Bending strain, see flexural strain
Benjamin, T. B., 775
Bernoulli, Jas., vii
Bernoulli-Euler law, 102, 343
Bifurcation (Branching), 148 ff

global, 149
imperfect, 149
local, 149
multiparameter, 159
perfect, 149
secondary, 154
subcritical, 177
supercritical, 177
transcritical, 177, 390

Bifurcation diagram, 138 ff
Bifurcation point, 149
Bifurcation problems

for barrelling of a 3-dimensional rod,
562–565

for circular arches and rings, 111–120,
228–232, 264–266

for cylindrical shells, 389–390
for an incompressible body under normal

traction, 570–574
for lateral buckling of rods, 359–362
for the necking of rods, 640-644
for the necking of a 3-dimensional rod,

562–565
for the planar buckling of rods, 135–141,

168–174, 176–178, 206–224
for plates, 369–376, 383–385, 679–682
for rods under terminal thrust and

torque, 357–359
for spherical shells, 385–388
for whirling rods, 232–236
for whirling strings, 186–206

Bifurcation theory
basic theorems of, 159–168
dynamics and stability, 179–181
introduction to, 135–181
literature on mathematical aspects of,

181
mathematical concepts of, 149–151
mathematical examples of, 151–159

perturbation methods in, 174–178,
559–570

Blatz-Ko material, 503
Blowup in 3-dimensional hyperelasticity,

744–750
Body, 417–418, 432
Body couple

for shells, 365–366, 666
for rods, 99, 272, 627–628

Body force
for rods, 99, 272, 627
for shells, 365, 664
for strings, 16–17
for 3-dimensional bodies, 435–436

Bootstrap method, 34, 57, 252–256,
258–261

Boundary conditions
for rods in the plane, 103
for rods in space, 322–328
in sense of trace, see Trace
for strings, 15
for 3-dimensional bodies, 440–443, 607,

610, 613
Bounded (continuous) linear functional,

247, 754
Bounded (continuous) linear operator, 754
Branch of solution pairs, 139
Branching, see Bifurcation
Brouwer degree, see under Degree of a

mapping
Brouwer Fixed-Point Theorem, 775–776
Brouwer index, see under Index
Buckling

of arches, 228–232
problems of elasticity, survey of, 135–148
of rings, 111–120, 264–266
of cylindrical shells, 389–390
under follower loads, 226–228
of frameworks, 226
lateral, of beams, 359–362
literature on, 147–148
load, 135, 140
planar, of rods, 135–145, 168–178,

206–228, 264–266
of plates, 369–376, 383–385, 679–682,

693–694
of rods under terminal thrust and torque,

357–359
of spherical caps and shells, 145–148,

385–388
of whirling rods, 232–236

Calculus of variations
direct methods of, 244–263
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Fundamental Lemma of, 24, 254–255
literature on, 267
Minimization Theorem of, 249–250
Multiplier Rule of, 240–244
normality in, 260
semicontinuity in, 246-247

Cardan joint, 325–326
Catastrophe theory, 214
Catenary problem, 57–68, 92
Cauchy, A. L., viii
Cauchy-Bunyakovskĭi-Schwarz inequality,

11
Cauchy Decomposition Theorem, 427
Cauchy deformation tensor, 486
Cauchy-elastic material, 492
Cauchy-Green deformation tensors,

419–420, 486
Cauchy’s Polar Decomposition Theorem,

426–427
Cauchy’s Representation Theorem for

hemitropic functions, 295–298
Cauchy’s Stress Theorem, 436–437, 688–690
Cauchy sequence, 752
Cauchy stress tensor, 489
Cavitation, 522, 541–544
Cayley-Hamilton Theorem, 408
Center-Manifold Theorem, 657
Chain Rule, 411
Characteristic equation for a tensor, 407
Characteristic value, 150
Characteristics, 710
Christoffel symbols, 415
Classical solution, 14
Clausius-Duhem Inequality, 478ff, 592–594
Clausius-Planck Inequality, 478
Coercivity conditions, see Growth and

coercivity conditions
Cofactor tensor, 409
Coleman-Noll conditions, 498
Coleman-Noll Entropy Principle, 480
Compact Embedding Theorem, 249
Compact operator, 164, 249, 756, 759, 758ff
Compact set in Euclidean space, 9
Compact support, 4
Compatibility

for antiplane motions, 557–559, 596
of boundary and initial conditions, 16
for elastoplastic loading, 590
of strains, 423–426

Components of vectors and tensors, 405,
415–416

contravariant, 415
covariant, 415
mixed, 415

physical, 416
Compression

of an elastic ball, 540–541
of a fiber in a body, 420
of a string, 18
total, preclusion of, 723–725

Concavity methods, 744ff
Cone in a linear space, 419
Configuration

of an axisymmetric shell, 364
natural, 95
reference, see Reference configuration
of a rod in the plane, 96
of a rod in space, 270, 653
of a shell, 363, 686
of a string, 14–16
of a 3-dimensional body, 417

Conjugate energy
for elastic rods in the plane, 102, 127, 261
for elastic rods in space, 307, 335, 350ff
for elastic strings, 58

Connected component, 164
Connected set, 157, 163
Conservation law, 298
Conservation of energy (Energy equation)

for elastic strings, 24, 86, 89
for rods, 355, 724
for 3-dimensional bodies, 477, 575, 745
for viscoelastic rods, 724

Conservation of mass, 432–433, 488
Constitutive functions and equations,

generalities
for induced theories of rods, 617–618
for rods in space, 274–275
for strings, 17–23
for 3-dimensional bodies, 449–452

Constitutive functions and equations,
specific forms, see under Elastic-
ity, Plasticity, Thermoelasticity,
Thermoplasticity, Viscoelasticity

Constitutive principles, see Coercivity, Dis-
sipativity, Entropy, Invariance under
rigid motions, Isotropy, Monotonicity
conditions for constitutive equations,
Order

Constraint Principle
Global, 463–465
Local, 460

Constraints
Bell’s, 456–458, 461, 490
in calculus of variations, 238–244
Ericksen’s, 456–458, 461, 490
external, for rods, 336–337
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generating rod theories, 280–283,
612–613, 622

generating shell theories, 457, 462–463,
467–469, 661, 663

of incompressibility, 456–457, 461, 490
of inextensibility, 333, 456–457, 462, 466
internal, see Material constraints
isoperimetric, 238
Kirchhoff’s, 457, 462–463, 467–469,

667–668, 694–696
material, see Material constraints
of unshearability, 102, 111, 333

Contact couple
for rods, 99–100, 271–274, 628–630
for shells, 365, 666–668, 675, 687–696

Contact force
for rods, 99–100, 271–273, 627
for shells, 365, 664, 675, 687
for strings, 16
for 3-dimensional bodies, 436

Contact problems, 584
Contact torque, see Contact couple
Continuous and continuously differentiable

functions, spaces of, 10, 752
Continuity equation

material form of, 433
spatial form of, 488

Continuum mechanics, general principles
of, 417–490

Contraction Mapping Principle, 761–762
Contravariant components, 415
Controllable deformations, 553, 576
Convergence

strong, 248, 751–752
weak, 247–248

Convergence for rod and shell theories,
620–623, 663

Convected coordinates, 605
Convexity of energy

for rods in space, 307
Cosserat theory of plates, see under Shells
Cosserat theory of rods, see under Rods
Cosserat theory of shells, see under Shells
Couple

bending, for rods, 274
contact, see Contact couple
on a body, 434
twisting, for rods, 274

Covariant components, 415
Covariant derivatives, 415
Cramer’s Rule, 410
Cross product, 5, 399
Cross section of a rod, 96, 277, 608
Crystals, 584

curl, 413
Curve, 7
Curvilinear coordinates, formulation of

continuum mechanics in, 605–608
Cylindrical coordinates, problems in,

363–385, 389–391, 429–432, 515–535,
551–553, 559–570, 574–576, 578–581

Deformation
of an axisymmetric shell, 363–365
for induced theories of rods, 612–614,

623–626, 635–636
for induced theories of shells, 661,

663–664, 673–674, 686–687
of a rod in the plane, 96–98
of a rod in space, 270–271, 284–292,

610–614, 624–626, 635–636, 653
of a shell, 363–365, 661, 663–664,

673–674, 686–687
of a string, 14–15
of a 3-dimensional body, 417–432,

484–487
Deformation gradient, 419
Deformation tensors, 420, 486
Degree of a mapping, 62–66, 769–779

Brouwer, 62–66, 769–779
Leray-Schauder, 779–782
literature on, 782
homotopy invariance of, 774, 781

Density of mass, 16, 432–433, 488
Derivatives and differentials

Fréchet, 6, 150, 408–412
Gâteaux, 6, 47, 150, 253, 408–413

det, 5
Determinant, 5, 407,

derivative of, 409–410
Determinism, Principle of, see Constraint

Principle
Differential equations, basic definitions, 7–8
Differential type, materials of, 20, 451
Dilatation

of an elastic annular sector, 515–519,
524–526

of an elastic ball, 535–550
of an elastic cylinder, 524–526

Dilatational strain of a rod in space, 271,
284–285

Directors
for axisymmetric shells, 364
for rods in the plane, 96
for rods in space, 270, 341 ff, 623 ff, 653
representation in terms of Euler angles,

320–321
for shells, 663 ff, 686 ff
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Discretization, 49–52
Dislocation an elastic body, 522
Dispersive regularization, 302
Dissipation inequality, 482
Dissipativity

invariant mechanisms for rods, 298–302
for strings, 22
for longitudinal motions of rods, 724–725
for 3-dimensional bodies, 481–482,

511–512
div, 412
Divergence, 412
Divergence Theorem, 413–414
Domain of definition, 3
Domain in Euclidean space, 9
Dot product, 5, 399
DNA, 362
Dual space, 247
Dyad (Dyadic product), 402
Dynamical problems

for longitudinal motions of rods, 709–727
for rods in space, 354–357, 728
for strings, 35–42, 83–92
for 3-dimensional bodies, 574–583,

736–750

Edge of a shell, 659
Eigencurve, eigensurface, 159–161
Eigenspace, 149
Eigenvalue, 149, 401

algebraic multiplicity of, 154, 161–163,
777

geometric multiplicity of, 149
simple 161
Eigenvector, 149, 401

Elastic modulus, 698
Elastic stability theory, 179–181
Elastica, x, 102, 106, 135–141, 168–174,

176–178, 338, 343
Elasticity, constitutive equations of

for axisymmetric shells, 366–368
for induced theories of rods, 631, 640
for induced theories of shells, 675–678
for intrinsic theories of shells, 692
linear, 509–511
for rods in the plane, 100–102, 214–217
for rods in space, 274–275, 292–298,

302–320
for strings, 18–23
for 3-dimensional bodies, 451, 481-483,

491–504
Elastoplasticity, see Plasticity
Element of a set, 8
Ellipticity, 494–501

Empty set, 8
End of a rod, 608
Energy

balance of, 477
conjugate, see Conjugate energy
conservation of, see Conservation of

energy
criterion of stability, 180
equation, see Conservation of energy
free, see Free energy
internal, see Stored energy
invariance under rigid motions, 484
kinetic, see Kinetic energy
potential, see Potential energy
stored, see Stored energy
strain, see Stored energy
total, see Total energy

Engineering stress, 439
Entropy, 478
Entropy conditions for shocks, 714, 718–719

Lax’s, 714
Entropy inequality, 478–484, 592–593
Equations of motion

for extensible strings, 13–52
for induced theories of rods, 609–610,

614–617, 626–629, 648–650
for induced theories of shells, 661–662,

665–668, 694
for intrinsic theories of shells, 690–692
for the mass center, 435
Newton-Euler, 434
for rods in the plane, 105
for rods in space, 273–274, 276–284
for 3-dimensional bodies, 434–439,

443–449
Equilibrium problems

for strings, 33–35, 43–45, 53–82
for rods in the plane, 106-144, 168–174,

176–178, 206–236, 255–267, 640–643
for rods in space, 345–354, 359–362
for shells, 369–391, 392–398, 669–672,

679–682
for 3-dimensional bodies, 513–574

Equilibrium response function, 275
Ericksen’s constraint, 456–458, 461, 490
Eshelby tensor, 507
Euclidean space, 4
Euler, L., vii
Euler angles, 320–322
Euler-Lagrange equations, 49, 254–255,

505–509, 697
Eulerian formulation, see Spatial

formulation
Eversion
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of an axisymmetric shell, 392–398
of an elastic tube, 523
of a 3-dimensional elastic spherical shell,

548–550
Existence theory for 3-dimensional

elasticity, discussion of, 504–505
Extension

of elastic bodies, 513–535
of a fiber in a body, 420
of a string, 18

Extra stress, see Active stress

Face of a shell, 659
Fading memory, materials with, 483
Faedo-Galerkin method, 49–50, 620–623,

731
First Law of Thermodynamics, 477
Fixed point, 761
Flexibility, perfect, 17
Flexural strain,

for axisymmetric shells, 364–365, 674
for rods, 98, 271, 284

Follower loads, 226–228
Force on a body, (also see Body force,

Contact force) 434
Fourier heat conduction inequality, 482
Frame-indifference, see Invariance under

rigid motions
Fréchet derivatives and differentials, see

under Derivatives and differentials
Fredholm Alternative Theorem, see

Alternative theorems
Fredholm operator, 758–759
Free energy, 479–483, 592
Frenet-Serret formulas, 287
Frobenius norm, 404
Functions, conventions for, 2–4
Function spaces, 10–11
Functional, 47

bounded (continuous) linear, 247
Fundamental Lemma of Calculus of

Variations, 24, 254

Galerkin method, 49–50, 620–623, 731
Gamma convergence, application to rod

and shell theories, 703–705
Gâteaux derivatives and differentials, see

under Derivatives and differentials
Gauss’s Theorem, 413–414
Geometric multiplicity of eigenvalues, 149
Global Bifurcation Theorems, 164–168,

783–784
Global Continuation Theorem, Multipa-

rameter, 533

Gradient, 412
Gram matrix, 50
Green deformation tensor, 420
Green-elastic material, 492
Green’s Theorem, 413–414
Greenberg, J. M., 36
Gronwall inequality, 725, 727, 730
Growth and coercivity conditions for

constitutive equations
for axisymmetric shells, 367–368
for calculus of variations, 245
for rods in the plane, 101–102
for rods in space, 305, 308
for strings, 22–23
for 3-dimensional bodies, 502–503

Hamilton’s Principle
for hyperelastic rods, 332–333
for elastic strings, 48–49
for 3-dimensional hyperelastic bodies,

493
Handedness, 311
Heat, 475
Heat flux vector, 477
Helmholtz free energy, 479–483, 592
Hemitropic functions (also see Isotropy),

309–319, 470–475, 492–493
Hilbert space, 753
Historical notes, vii, 13–14, 92–93, 200-201,

469–470, 483–484, 574, 600–601,
706–708

History of a function up to time t, 19, 449
Hölder inequality, 10, 752
Hölder continuity, 11
Homeomorphism, 417
Homogenization, 584
Homotopy, 774, 781
Hooke, R., 18
Hooke universal joint, 325–326
Hydrostatic pressure, 72, 111–125, 228–232,

237–240, 255–261, 264–266, 385–388,
390–391

Hyperbolicity, 39, 40, 52, 298, 304, 339–340,
494, 497 ff, 582, 709–720, 732–736

Hyperelasticity
for induced theories of rods, 633, 639
of rods in the plane, 102, 238
of rods in space, 306–307, 317–318, 333,

335, 340
of shells, 693
for 3-dimensional bodies, 459, 481,

492–493, 500–501, 510
Hypoelasticity, 600
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Identity tensor, 5, 401, 415
Image of a function, 3
Impenetrability of Matter, Principle of, 418
Imperfection sensitivity, 140, 181, 210–214
Imperfection parameters, 213
Implicit Function Theorem

Global, 23, 776
(Local) of Hildebrandt & Graves, 764

Impulse-Momentum Laws, see Linear
Impulse-Momentum Laws and
Angular Impulse-Momentum Laws

Incompressibility
in rods, 644–652
in shells, 684–685
in 3-dimensional bodies, 455–457, 461,

487–488, 490, 492–493, 501, 517–523
Index, associated with degree, 66, 163–168,

777, 782
Indicial notation, 414–416
Induced theories

for rods, 611–640, 644–652
for shells, 659–668, 673–678, 682–685

Inelastic material, 20, 585
Inextensibility

of strings, 53, 60
of rods, 102
for 3-dimensional bodies, 456, 462, 466

Infinitesimal stability, 180
Inflation

of an elastic ring, 98, 120–126, 255–261
of an elastic shell, 390–391
of an elastic tube, 523
of a 3-dimensional elastic shell, 546–548

Initial conditions
for strings, 16, 26–27
for 3-dimensional bodies, 442–443

Inner product
for Hilbert space, 247, 753
of tensors, 403
of vectors, see Dot product

Integral theorems, 413–414
Integral type, materials of, 451
Internal constraints, see Material

constraints
Internal energy, see Stored energy, Potential

energy
Internal-variable type, materials of, 302,

451–452, 585–593
Intersection of sets, 8
Invariance under rigid motions (Frame-

indifference, Objectivity)
of strains and strain rates for rods, 98,

285–286

for constitutive functions for rods,
292–298, 653

for constitutive functions for shells, 692
for constitutive functions for strings, 19
lack of, for constitutive functions of

linear elasticity, 511
for constitutive functions for 3-

dimensional bodies, 452–455
Invariants of tensors, 407–408, 472–475
Inverse of a linear operator, 757–759
Isoenergetic deformations, 483
Isolas, 156
Isoperimetric problem, 238–244
Isotropy

for axisymmetric shells, 370
for rods in space, 309–318
for 3-dimensional bodies, 470–475, 492
representation theorems for, 472–475

Jump conditions, 31–32

Kelvin temperature, 477
Kelvin (Stokes) Theorem, 414
Kernel of an operator, see Null space
Kinetic energy

for longitudinal motion of rods, 724
for rods in space, 332, 653
for strings, 24, 47, 89
for 3-dimensional bodies, 475

Kinematics, see Deformation
Kirchgässner, K. 156
Kirchhoff constraints, 457, 462–463,

467–469, 667–668, 672, 694–696
Kirchhoff’s Kinetic Analogue, 338, 343
Kirchhoff’s problem for helical equilibrium

states of rods, 347–350
Kirchhoff shells, 667–668, 672, 694–696
Kirchhoff’s Uniqueness Theorem, 495
Kolodner’s problem for whirling strings,

186–195
Kronecker delta, 41, 269

Lagrange multipliers, 241, 459, 619–620,
757

Lagrange’s Criterion for a surface to be a
material surface, 486

Lagrangian formulation, see Material
formulation

Lagrangian functional
for elastic rods, 332–333
for elastic strings, 48
for 3-dimensional elastic bodies, 493

Lamé coefficients, 510, 698
Landau order symbols, 7, 221
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Lateral instability, 143, 359–362
Lateral surface of a rod, 608
Lavrentiev effect, 504
Lax entropy condition, 714
Lebesgue measure, 9
Lebesgue spaces, 10, 753
Left Cauchy-Green deformation tensor, 486
Legendre-Hadamard Condition, 496
Legendre transform, 58, 102, 307
Lin, 400
Lin+, 401
Linear analysis, topics in, 751–760
Linear elasticity, 509–511
Linear Impulse-Momentum Laws (Balance

of Linear Momentum)
for one-dimensional plasticity, 595
for rods, 273, 278–279, 328–332
for shells, 664
for strings, 25–31
for 3-dimensional bodies, 434, 443–449,

607 ff
Linear manifold, 753
Linear momentum

for rods, 272–273, 278–279
for shells, 664, 688
for strings, 17, 26
for 3-dimensional bodies, 434

Linear operator, 754
bounded (continuous), 754

Linearization, 150
Lintearia problem, 53, 76–78
Lipschitz continuity, 11, 57
Local Bifurcation Theorem, 162–164
Lyapunov, A. M., viii
Lyapunov-Schmidt method, 765

Mass, 432–433, 488
Mass center, 434
Material constraints

generating rod theories, 280–283,
611–620, 623–630

generating shell theories, 457, 462–463,
467–469, 661–664

for rods, 333–336
for 3-dimensional bodies, 455–470, 490,

499–501
Material formulation, 419

Material points
of a string, 14
of a rod, 270
of a 3-dimensional body, 417

Material section of a rod, 96, 277, 608
Material strain tensor, 423, 736
Matrix of a tensor, 405

Mean-Value Theorem, 7
Measure of a set, 9
Membranes, 391–392, 696–697
Memory, materials with, 292, 450, 585
Metric tensor, 415
Minimal surface equation, 697
Minimization Theorem, 249
Moments

bending, for rods, 274
of inertia (mass) of cross sections, 281,

653
twisting, for rods, 274

Mooney-Rivlin material, 503, 556, 573
Monotonicity conditions for constitutive

equations
for axisymmetric deformations of shells,

367, 677
for induced theories of rods, 632
for rods in the plane, 101
for rods in space, 302–303
for strings, 21
for 3-dimensional bodies, 482, 494–501

Motion
equations of, see Equations of motion
of a (special Cosserat) rod in space, 270
of a shell, 686
of a 3-dimensional body, 418
universal, see Universal motions

Multiparameter bifurcation problems, 159
Multiparameter Global Bifurcation

Theorem, 167–168
Multiparameter Global Continuation

Theorem, 533
Multiplicity of eigenvalues

algebraic, 154, 161–163, 777
geometric, 149

Multiplier Rule, 240–244, 466–469, 757
Multiplier stress

for rods, 615–616
for 3-dimensional bodies, 460

Multiscale method, 733 ff

Natural configuration for strings, 15, 22
Necking, 562–565, 640–644
Newton-Euler Laws of Motion, 434
Newton’s Law of Action and Reaction,

437–438
Newton polygon, 767
Neo-Hookean material, 503
Nodal structure, 171–173
Node, 171
Nonconvex energies, 267, 498–449
Nonlinear analysis

global, 769–784
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local, 761–778
Non-simple material, 294
Nonsingular tensor, 401
Nontrivial solution branch, 139
Notation, 1, 8, 414–415
Null space, 149, 754

Objectivity, see under Invariance under
rigid motions

Order, preservation of, in constitutive
equations of elasticity, 494–501
(also see Monotonicity conditions
for constitutive equations, Strong
Ellipticity Condition

Orientation, preservation of
for axisymmetric shells, 364–365
for induced theories of rods, 271,

288–292, 614
for induced theories of shells, 661
for rods in the plane, 98
for rods in space, 271, 288–292
for a 3-dimensional body, 418–419

Orthogonal tensor, 5,6, 402
Orthonormal basis, 400

Pacinian corpuscles, 537
Past history, 20, 449
Perturbation methods, 37–45, 174–178,

510, 559–570
Phase changes, 584
Phase-field theories, 452, 601
Piola-Kirchhoff stress tensor

first, 436–440
reactive, 459–460
second, 439–440

Piola-Kirchhoff stress vectors, 606
Piola-Kirchhoff traction vector, 440
Plastic deformation and strain, permanent,

586–587
Plastic loading, 588
Plasticity, 585–601

constitutive equations for, 585–599
Plates, also see Shells

buckling of 369–376, 383–385, 679–682
Poincaré, H., viii
Poincaré shooting method, 45, 210–212,

766–767
Poisson’s ratio, 698
Polar Decomposition Theorem, 426–427
Polyconvexity, 498
Position field, 418
Positive-definiteness, 5, 401
Post-buckling behavior, definition of, 180
Potential energy

for rods in the plane, 238, 256–260
for rods in space, 332
for strings, 24, 47–49, 68, 89–90
for 3-dimensional bodies, 180, 492–493

Power, 476 (also see Virtual Power)
Poynting effect, 349
Prerequisites, 2
Preservation of orientation, see Orientation
Pressure, 461 (also see Hydrostatic

pressure)
Principal axes of strain, 422
Principal invariants of a tensor, 407
Principal planes of shear, 422
Principal stretches, 422
Principle, see under the name of the

principle
Projection of a linear operator, 758–759
Proper-orthogonal tensor, 402
Prüfer transformation, 188
Puiseux series, 767

Quadratic form of a tensor, 401
Quasiconvexity, 499
Quasilinearity, 7

Radial motions
of an incompressible shell, 575
of an incompressible tube, 574–576
of a ring, 133, 640
of a string, 85–86

Range of a function, 3
Rank-one convexity, 496
Rankine-Hugoniot jump conditions, 32, 713
Rarefaction, 715–718
Rate independence, constitutive functions

with, 588–593
Rate-type, material of, 451
Reactive stress, 460, 619
Reeken’s problem for whirling strings,

195–199
Reference configuration

or a rod in the plane, 95
of a rod in space, 270
of a string, 14
of a 3-dimensional body, 417
of a 3-dimensional rod-like body, 276,

608
of a 3-dimensional shell-like body,

659–660
Reflexive Banach space, 245, 248–249, 754
Resultant couple, etc., see under Couple

etc.
Regularity, see Bootstrap method
Reissner-Mindlin theory of shells, 667, 708
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Representation theorems for hemitropic
and isotropic functions, 472–475

Riemann-Christoffel curvature tensor, 426
Riemann invariants, 713–720
Riemann problem, 714–719
Right Cauchy-Green deformation tensor,

420
Right-handedness of basis, 5
Rigid material, 420, 450, 456–457
Rigid motions, invariance under, see

Invariance
Rings under hydrostatic pressure, 111–125,

229–232, 264–266
Rivlin, R. S., viii
Rods

asymptotic theories of, 654–658
Cosserat theories of, 95–105, 269–342,

652–653
general theories of, 341–342, 603–640,

644–653
induced theories of, 603–640
intrinsic theories of, 652–653
lateral buckling of, 359–362
linear theories of, 338–341
necking of, 640–644
problems for, 106–134, 206-236, 264–266,

345–362, 640–644
St. Venant’s Principle for, 654–658
semi-intrinsic theories of, 283–284,

610–611
special Cosserat theories of, 95–105,

269–344
theory of, in the plane, 95–105, 336–338,

635–640
theory of, in space, 269–344, 603–635,

644–658
under hydrostatic pressure, 111–125,

228–232, 237–240, 255–261, 264–266
under terminal loads, 106–110, 135–141,

168–174, 175–178, 206–228, 357–359
validity of theories of, 620–623, 635
whirling of, 126–133, 232–236, 261–263

Rotation tensor, 426–427
Rotatory inertia, neglect of, 339

St. Venant-Kirchhoff material, 503
St. Venant’s Principle, 584, 654–658
Schauder Fixed-Point Theorem, 782
Second Law of Thermodynamics, 478–479
Section of a rod, material (cross), 96, 277,

608
Semicontinuity, lower, 246
Semi-intrinsic theories

of rods, 283–284, 610–611

of shells, 662
Semi-inverse problems of elasticity,

513–559, 574–583
Semilinearity, 7
Sets, basic definitions, 8–9
Shear

of an elastic body, 515–519, 524–535
principal planes of, 422
simple, 428–429
of a viscoelastic layer, 720–721, 728–731,

736–744
of a viscoplastic layer, 720–721, 729–731

Shear force
for rods, 100, 110, 274
for shells, 365

Shear instability, 144
Shear strain

for rods, 98, 271, 285
for 3-dimensional bodies, 421–422

Shear waves, 581–583, 736–744
Shells

asymptotic theories of, 698–705
Cosserat theories of, 663–668, 685–696
circular plates, 369–385
cylindrical, 389–390
general theories of, 659–708
induced theories of, 659–668, 673–678
intrinsic theories of, 685–696
Kirchhoff theory of, 667–668, 672,

694–696
problems for, 369–398, 669–672, 679–682
special Cosserat theories of, 663–668,

685–696
spherical, 385–388
theory of, for axisymmetric deformations,

363–368, 673–678
under edge loads, 369–385, 389–390
under hydrostatic pressure, 385–388,

390–391
von Kármán equations for plates,

698–703
Shocks, 713–719, 732–736
Signorini, A., viii
Simple materials, 450
Simple zero, 171
Simultaneous zeros, 387–388
Sine-Gordon equation, 339
Singularities of solutions of elasticity

problems, 583
Singularity theory, 212–214, 217–218,

572–573, 767
Skew tensor, 400
Skw, 401
Smoothness, 4
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Snap buckling (snapping), 146, 384
Sobolev spaces, 11, 245–247, 753
Solution branch, 139
Solution pairs, 66–67, 138
Solution sheets, 219–224
Span, 5
Spatial formulation, 419, 484–489
Spatial strain tensor, 486
Special Cosserat theory of rods, 269–344
Spectral representation of a symmetric

tensor, 406
Spectrum, 160, 657, 783
Spherical coordinates, problems in,

385–388, 432, 535–550, 575
Spinning, see Whirling
Spin tensor, 487
Springs, 87–92
Stability

adjacent equilibrium, criterion of, 180
elastic, 179
by the energy criterion, 180
infinitesimal, 180
in the sense of Lyapunov, 179

Statical determinacy and indeterminacy,
225

Steady motions, definition of, 488
Stokes theorem, 414
Stored (internal, strain) energy

for induced theories of rods, 633, 639
for membranes, 697
for rods in the plane, 102, 127, 215,

238–240, 256–257, 261, 263–266, 724
for rods in space, 297, 307, 318, 332, 653
for shells, 693
for strings, 24, 47, 88, 89–90
for 3-dimensional bodies, 461, 492, 524,

745
Strain energy, see Stored energy
Strain-gradient theories, 294, 302, 450, 601,

647, 741, 744
Strains

for axisymmetric shells, 364–365
for shells, 687
for rods in the plane, 98
for rods in space, 270–271, 284–285
for 3-dimensional bodies, 419–426, 486

Strain rates for rods, 286
Strain-rate type, material of, 20, 451
Stress rate type, material of, 451
Stress resultants (also see Contact force,

Contact couple)
for induced theories of rods, 615–616,

627–630

for induced theories of shells, 661–668,
675–676

Stress tensor
active, 460
Cauchy, 489
dissipative part of, 481
engineering, 439
extra, 460
first Piola-Kirchhoff, 436–440
reactive, 460, 615–616, 619
second Piola-Kirchhoff, 439–440

Stretch
for rods, 98, 284–285
for strings, 15
for 3-dimensional bodies, 420
principal, 422

Stretching tensor, 487
Strings

combined whirling and radial motions, 86
elementary problems for, 53–92
equations for, 13–52
holding liquids, 76–79
radial vibrations of, 85–86
transverse motions of, 35–36
under central forces, 79–82
under normal loads, 71–79
under vertical loads, 54–71
whirling of, 24

Strong convergence, 248, 751
Strong Ellipticity Condition, 495–501,

631–634
Stuart’s problem for whirling strings,

200–201
Sturm-Liouville problems, 171, 188 ff
Sturmian theory, 171, 188 ff
St. Venant-Kirchhoff material, 503
Summation convention, 269, 399
Support of a function, 4
Suspension bridge problem, 53–56, 69–71
Sym, 401
Symmetric tensor, 5, 400
Symmetry conditions for constitutive

equations for rods and shells, 107,
313–316, 370, 636–640, 677–678

Symmetry group of a material, 471
Symmetry of the stress tensor, 439, 606
Symmetry transformation, 471

Temperature, 477
Tension

for rods, 100, 274
for strings, 18

Tensor, 5, 399–416
adjoint of, 400
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adjugate of, 498
antisymmetric, 400
cofactor of, 409
components of, 405, 415–416
of higher order, 404
identity, 5, 401, 415
indefinite, 401
invariants of, 407, 472–475
invertible, 401
matrix of, 405
negative-definite, 401
nonsingular, 401
orthogonal, 402
positive-definite, 5, 401
product of, 400
proper-orthogonal, 402
quadratic form of, 401
semidefinite, 401
skew, 400

spectral representation of, 406
symmetric, 5, 400
transpose of, 400
zero, 5, 401

Test functions, 23
Thermoelasticity, constitutive equations of

for strings, 20
for 3-dimensional bodies, 481–483

Thermoplastic loading, 592
Thermoplasticity, 591–593
Thermomechanical process, 479
Thermomechanics, 475–484
Thermoviscoelasticity, constitutive

equations of, 480–483
Torsion of elastic bodies, 515–526, 553–556,

576–581
Torsional rigidity, 319
Torsional strain of a rod, 271, 285
Total energy

of a membrane, 697
of a rod, 333
of a string, 25, 47
of a spring-mass system, 89–90
of a 3-dimensional body, 477

tr, 403
Trace, boundary and initial conditions in

sense of, 26–27, 442–443
Trace of a tensor, 403
Transport Theorem, 488
Transpose of a tensor, 400
Transverse isotropy, see under Isotropy
Transverse motions of a string, 35–36
Travelling waves

in rods, 354–357
and shock structure, 732–736

in viscoelastic media, 738–744
Tresca yield function, 587
Triangle inequality, 751
Trivial solution pairs, 139, 161, 376–382
Truesdell, C., viii
Twist, 328
Twisting couple (moment) for rods, 274

Uniform rods, 107, 319–320
Uniform strings, 21
Union of sets, 8
Uniqueness of solutions in elasticity, 495
Universal deformations, 553–556
Universal joint, 326–326
Universal motions, 576–581
Unshearability, 102, 111–112

Variation
first see under Derivatives and

differentials
second, 263–266

Variational characterization of equations
for elastic strings, 46–49
for hyperelastic rods, 237–240, 333
for hyperelastic membranes, 696–697
for 3-dimensional hyperelastic bodies,

493
Vectors, 4–7, 399–400, 751

axial, 400–401
Vector space, 751
Velaria problem, 53
Velocity, 419
Vertical shear, 110
Virtual displacements and velocities, 23
Virtual Power (Work), Principle of

for rods, 254, 328–332
for strings, 24, 26, 28–31
for 3-dimensional bodies, 443–449, 607,

699
Viscoelasticity, constitutive equations of

for longitudinal motion of rods, 723–724
for rods in space, 274, 297–298
for strings, 20
for 3-dimensional bodies, 451, 511–512,

736–737
von Kármán equations for plates, 698–703
von Mises yield function, 588
Vorticity, 487

Wave equation
linear, 37–42
quasilinear, 709–719

Wave speed, 354
Weak continuity, 247–248
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Weak convergence, 247–248
Weak formulation of problems, see Virtual

Power
Weakly closed set, 248, 251
Whirling (spinning)

of an annulus, 565–570
of rings and rods, 126–133, 232–236,

261–263, 640

of strings, 24, 83, 86, 183–206
Work, 476

Yield surface, 587
Young’s modulus, 698

Zero tensor, 5, 401
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