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Preface

Functional analysis is a child of the twentieth century. Rapid developments

in the theory of differential equations and especially in harmonic analysis

(the theory of Fourier series) made it desirable to study entire spaces of

functions. These were usually infinite dimensional spaces, which revealed

new worlds of harmony and truth. Functional analysis gave analysis a new

set of techniques and an entirely new way of looking at things. It created

the idea of “soft” analysis (as opposed to “hard” analysis). It often was able

to prove in a few lines results that were hard work to verify by classical

means.

Functional analysis is abstract mathematics at its best. It requires a

good deal of the reader, and particularly of the end user. It is a demanding

discipline, but one which yields many fruits.

Most graduate students are required to learn some functional analysis

as part of the qualifying exam system. Working analysts have to have some

functional analysis under their belts. It is part of our toolkit, just as Galois

theory is for the algebraist.

The creators of functional analysis are also legend. Stefan Banach and

Stanislaw Ulam, to name just two, were part of the Scottish Cafe team in

pre-war Poland, and they helped to set a standard for how mathematics is

practiced today. A bit later, John von Neumann played a critical role in

establishing the importance of Hilbert space theory, both in mathematics

and in physics. Some of the most important and powerful mathematicians

today are functional analysts.

The purpose of this book is to introduce the reader with minimal back-

ground to the basic scripture of functional analysis. Readers should know

some real analysis and some linear algebra. Measure theory rears its ugly

head in some of the examples and also in the treatment of spectral theory.

The latter is unavoidable and the former allows us to present a rich variety

of examples. The nervous reader may safely skip any of the measure theory

and still derive a lot from the rest of the book. Apart from this caveat, the

xi



xii Preface

book is almost completely self-contained; in a few instances we mention

easily accessible references.

A feature that sets this book apart from most other functional analysis

texts is that it has a lot of examples and a lot of applications. This helps to

make the material more concrete, and relates it to ideas that the reader has

already seen. It also makes the book more accessible to a broader audience.

I thank Don Albers for being a worldly and gentle editor. I thank Jerry

Folland for helpful comments at various junctures. And I thank the staff at

the MAA for another delightful publishing experience.

St. Louis, Missouri Steven G. Krantz



CHAPTER 1

Fundamentals

1.1 What is Functional Analysis?

The mathematical analysts of the nineteenth century (Cauchy, Riemann,

Weierstrass, and others) contented themselves with studying one function

at a time. As a sterling instance, the Weierstrass nowhere differentiable

function is a world-changing example of the real function theory of “one

function at a time.” Some of Riemann’s examples in Fourier analysis give

other instances. This was the world view 150 years ago. To be sure, Cauchy

and others considered sequences and series of functions, but the end goal

was to consider the single limit function.

A major paradigm shift took place, however, in the early twentieth cen-

tury. For then people began to consider spaces of functions. By this we

mean a linear space, equipped with a norm. The process began slowly. At

first people considered very specific spaces, such as the square-integrable

real functions on the unit circle. Much later, people branched out to more

general classes of spaces. An important feature of the spaces under study

was that they must be complete. For we want to pass to limits, and com-

pleteness guarantees that this process is reliable.

Thus was born the concepts of Hilbert space and Banach space. People

like to joke that, in the early 1940s, Hilbert went to one of his colleagues

in Göttingen and asked, “What is a Hilbert space?” Perhaps he did. For it

was a new idea at the time, and not well established. Banach spaces took

even longer to catch on. But indeed they did. Later came topological vec-

tor spaces. These all proved to be powerful and flexible tools that provide

new insights and new power to the study of classical analysis. They also

afford a completely different point of view in the subjects of real and com-

plex analysis. Functional analysis is a lovely instance of how mathematical

abstraction enables one to see new things, and see them very clearly.

1



2 1. Fundamentals

The purpose of this book is to introduce the reader to the wealth of ideas

that is functional analysis. This will not be a thorough grounding, but rather

a taste of what the subject is like. We shall make a special effort to provide

examples and concrete applications of the abstract ideas, just so that the

neophyte can get a concrete grip on the techniques. Certainly we provide

references to more advanced and more comprehensive texts.

As readers work through the book, they may find it useful to refer to

some of the great classic texts, such as [DUS], [RES], [RUD2], and [YOS].

1.2 Normed Linear Spaces

Let X be a collection of objects equipped with a binary operation C of

addition and also with a notion of scalar multiplication. Thus, if x; y 2 X ,

then x C y 2 X . Also, if x 2 X and c 2 C then cx 2 X . (The scalar field

can be the real numbers R or the complex numbers C. For us it will usually

be C, but there will be exceptions. When we want to refer to the scalar field

generically, we use the letter k.) We equip X with a norm; thus, if x 2 X ,

then kxk 2 RC � ft 2 R W t � 0g. We demand that

1. kxk � 0,

2. kxk D 0 if and only if x D 0,

3. If x 2 X and c 2 C then kcxk D jcj � kxk,

4. If x; y 2 X , then kx C yk � kxk C kyk.

We call X a normed linear space (or NLS).

Notice that X as described above is naturally equipped with balls. If

x 2 X and r > 0 then

B.x; r/ D ft 2 X W kx � tk < rg

is the (open) ball with center x and radius r . We may think of the collection

of balls as the subbasis for a topology on X . Concomitantly, we say that

a sequence fxj g � X converges to x 2 X if kxj � xk ! 0 as j ! 1.

The sequence fxj g is Cauchy if, for any � > 0, there is a J so large that

j; k > J implies kxj � xkk < �.
We use the notation B.x; r/ � ft 2 X W kx � tk � rg to denote the

closed ball with center x and radius r . It is worth commenting that this

closed ball is not necessarily the closure of the open ball (exercise).



1.2. Normed Linear Spaces 3

DEFINITION. Let X be a normed linear space. We say that X is a Banach

space if X is complete in the topology induced by the norm. That is to say,

if fxj g is a Cauchy sequence inX , then there is a limit element x 2 X such

that xj ! x as j ! 1.

EXAMPLE. Let X D RN equipped with the usual norm: If x D .x1;

x2; : : : ; xN / is a point of RN , then

kxk D

0
@

NX

j D1

x2
j

1
A

1=2

:

We certainly know that this norm satisfies the axioms for a norm. It is a

standard fact that RN , equipped with the topology coming from this norm,

is complete. So RN is a Banach space.

EXAMPLE. Let

X D ff W f is a continuous function on the unit interval Œ0; 1�

with values in Rg :

We equipX with the norm, for f 2 X , given by

kf k D max
t2Œ0;1�

jf .t/j :

It is straightforward to verify that this norm satisfies the four axioms.

Furthermore, if ffj g is a Cauchy sequence in this norm, then in fact ffj g
is uniformly Cauchy. It is a standard result from real analysis (see [KRA1])

that such a sequence has a continuous limit function f . Hence our space is

complete. AndX is therefore a Banach space. We usually denote this space

by C.Œ0; 1�/.

EXAMPLE. Let us consider the space X D `1 of sequences ˛ D faj g of

real numbers with the property that
P

j jaj j < 1. The norm on this space

is

k˛k �
X

j

jaj j :

It is easy to check the four axioms of a norm. Addition is defined compo-

nentwise, as is scalar multiplication.

If ˛j D faj

`
g1

`D1
is a Cauchy sequence of elements ofX then let � > 0.

ChooseK > 0 such that, if j; k > K then k˛j � ˛kk < �=5. It follows for

such j; k and any index ` that

jaj

`
� ak

` j � k˛j � ˛kk < �

5
:



4 1. Fundamentals

By the completeness of the real numbers, we find for each ` that the se-

quence faj

`
g1
j D1 converges to a real limit a0

`
. We claim that the sequence

A � fa0
`
g lies in `1 and is the limit in norm of the original Cauchy sequence

f˛j g.

Choose K as above. Select L so large that
P1

mDL j˛K
m j < �=5. If

n > K then

1X

mDL

jan
mj �

1X

mDL

jan
m � aK

m j C
1X

mDL

jaK
m j < 2�

5
: .1/

As a result,

1X

mD1

jan
m�a0

mj �
L�1X

mD1

jan
m�a0

mjC
1X

mDL

jan
mjC

1X

mDL

ja0
mj < �

5
C2�

5
C2�

5
D � :

Here we use the fact that an
m ! a0

m, each m, so the first sum is less than

�=5 if n is large enough. That the last sum does not exceed 2�=5 follows

from (1) by letting n ! 1. Therefore the ˛j converge to A as desired.

We see that X is complete, so it is a Banach space. We usually denote

this space by `1.

EXAMPLE. It is a fact, and we shall not provide all the details here, that

if 1 � p < 1, then the collection of sequences ˛ D faj g such thatP
j jaj jp < 1 forms a Banach space. The appropriate norm is

k˛k �

0
@X

j

jaj jp
1
A

1=p

:

We usually denote this space by `p .

For p D 1, the appropriate space is that of all bounded sequences

˛ D faj g of real numbers. The right norm is

k˛k D sup
j

jaj j :

We denote this space by `1. See [RUD2] for a thorough treatment of these

spaces.

As previously indicated, the balls B.x; r/ in a normed linear space X

may be taken to be a subbasis for the topology on X .

PROPOSITION 1.1. The topology on a normed linear space is Hausdorff.

Proof. Let x; y 2 X be distinct elements. Let kx � yk D ı > 0. Then,

by the triangle inequality, the balls B.x; ı=3/ and B.y; ı=3/ are disjoint.

Hence the space is Hausdorff.
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1.3 Finite-Dimensional Spaces

The examples of the previous section indicate that there are many inter-

esting norms on infinite-dimensional spaces. Such is not the case in finite

dimensions.

Recall that a linear space is finite dimensional if it has a basis with

finitely many elements. It is an easy, basic result that, in this circumstance,

any two bases for the space have the same number of elements N . We call

N the dimension of the space.

PROPOSITION 1.2. Let X be a finite-dimensional space. Then any two

norms k k1 and k k2 on X are equivalent in the sense that there is a

constant C > 1 so that, for any x 2 X ,

1

C
� kxk1 � kxk2 � C � kxk1 :

Proof. The unit sphere in the norm k k1 is closed and bounded (in the k k1

topology), so it is a compact set. The function

x 7�! kxk2

is a continuous, nonvanishing function on that unit sphere. So it has a posi-

tive minimumm and a positive maximum M . Thus

m � kxk2 � M

for all x in the k k1 unit sphere. In other words,

mkxk1 � kxk2 � Mkxk1

for all x in the k k1 unit sphere. If x is any element ofX then we apply the

last set of inequalities to x=kxk1. The result is

mkxk1 � kxk2 � Mkxk1

for all elements x 2 X . We simply take C to be the maximum of M and

1=m.

REMARK. Notice that the compactness of the unit sphere in the k k1 norm

played a key role in the last proof. Pick one of the examples in the last

section and show that the unit sphere in that infinite-dimensional space is

not compact.
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The upshot of this last proposition is that, for a given dimension N , the

only normed linear space with that dimension is RN . This is a frequently

useful observation.

An important piece of information for us is the following:

PROPOSITION 1.3. The norm on a normed linear space X is continuous.

That is to say, the function

X 3 x 7�! kxk

is a continuous function from X to R.

Proof. From the triangle inequality,

ˇ̌
ˇ̌kxk � kyk

ˇ̌
ˇ̌ � kx � yk :

That shows that the function is in fact Lipschitz.

1.4 Linear Operators

All of modern mathematics is formulated in the language of sets and func-

tions. In the subject of functional analysis, the most important functions are

the linear operators (linear transformations).

If X and Y are normed linear spaces and

ƒ W X �! Y

is a function such that

ƒ.c1x1 C c2x2/ D c1ƒ.x1/C c2ƒ.x2/

for all x1; x2 2 X and scalars c1; c2, then we call ƒ a linear operator. In

the special case that Y is the scalar field k then we callƒ a linear functional

on X . The collection of continuous (or bounded), linear functionals on X ,

denoted by X�, is a very important space in itself that carries a great deal

of powerful information aboutX .

EXAMPLE. Let X be the space C.Œ0; 1�/ and define the linear operator ƒ

by

C.Œ0; 1�/ 3 f 7�!
Z 1

0

f .x/ dx 2 R :

This is a linear functional on X .
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EXAMPLE. Let X be the space C.Œ0; 1�/ and define the linear operator ƒ

by

C.Œ0; 1�/ 3 f 7�! x2 � f .x/ 2 C.Œ0; 1�/ :
This is a linear operator from X to itself.

EXAMPLE. Let X be the space C.Œ0; 1�/ and define, for f 2 X and j 2 Z,

yf .j / D
Z 1

0

f .t/e�2�ijt dt :

It is easy to see that j yf .j /j � kf kC.Œ0;1�/.

Consider the linear operator from C.Œ0; 1�/ to `1 given by

C.Œ0; 1�/ 3 f 7�! f yf .j /g1
j D�1 :

This is an important operator in Fourier analysis.

DEFINITION. Let T W X ! Y be a linear operator. The norm of the

operator T is defined to be

kT k D kT kop D sup
kxkX �1

kT xkY :

We sometimes denote this norm by kT kX;Y or kT kop.

In case S W X ! C is a linear functional, then the norm is

kSk D sup
kxkX �1

jSxj :

The most important linear operators, and particularly linear function-

als, are the continuous ones. It turns out that these are particularly easy to

recognize and to deal with.

THEOREM 1.4. Let X and Y be normed linear spaces and let T W X ! Y

be a linear map. Then the following statements are equivalent:

(a) T is continuous,

(b) T is continuous at 0,

(c) T is bounded (i.e., there is a C > 0 so that kT xkY � CkxkX for all

x 2 X).

Proof. That (a) implies (b) is trivial. Assume (b). Then there is a neigh-

borhood U of 0 such that T .U / � fy 2 Y W kyk � 1g. Also U must

contain a ball B.0; ı/ about 0. Hence kT xkY � 1 when kxkX � ı. Since

T commutes with scalar multiplication, we see that kT xkY � aı�1 when-

ever kxkX � a. That is to say, kT xkY � ı�1kxkX . So we see that (b)

implies (c).
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Finally, if kT xkY � CkxkX for all x, then kT x1 �T x2kY D kT .x1 �
x2/kY � � whenever kx1 � x2kX � C�1�. Hence T is continuous and (a)

holds.

1.5 The Baire Category Theorem

Recall that a metric space is a set E together with a distance function d W
E � E ! RC satisfying these axioms:

(a) d.x; y/ D d.y; x/ for all x; y 2 E ,

(b) d.x; y/ D 0 if and only if x D y,

(c) d.x; y/ � d.x; z/C d.z; y/ for all x; y; z 2 E .

We say that the metric space .E; d/ is complete if, whenever fxj g is a

Cauchy sequence (defined in the obvious fashion) in E , then that sequence

has a limit in E . The Baire category theorem is one of the most important

applications of the idea of completeness.

THEOREM 1.5. If E is a complete metric space, then the intersection of

any countable collection of dense, open subsets of E is also dense in E (it

is not necessarily open).

REMARK. The theorem is plainly false without the hypothesis of complete-

ness. For example, let E be the rational numbers Q equipped with the usual

Euclidean metric. Let fqj g be an enumeration of the rationals. And define,

for j D 1; 2; : : : ,

Sj D E n fqj g :

Then each Sj is open and dense in E . But the intersection of the sets Sj is

the empty set.

REMARK. The contrapositive statement of the Baire theorem is also of in-

terest: If Fj are closed, nowhere dense sets inE , then the union of the Fj is

the complement of a dense set. In particular, it cannot be the whole space.

Proof of the Baire Category Theorem. This is a quite standard argument

that can be found in many texts, such as [RUD1] or [RUD3] or [KRA1].

Suppose that V1; V2; : : : are dense, open sets in E . Let U be any

nonempty open set in E . The property of a set S being dense means that S

has nontrivial intersection with any nonempty open set. Thus our job is to

show that .\jVj / \ U ¤ ;.
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Let B.x; r/ be the metric balls inE . Let B.x; r/ be the closed ball with

center x and radius r . Since V1 is dense in E , U \ V1 is a nonempty open

set. So it contains a ball: We can find x1 2 E and r1 > 0 such that

B.x1; r1/ � U \ V1 : .2/

Inductively, if n � 2 and xn�1, rn�1 have been chosen, the denseness

of Vn tells us that Vn \ B.xn�1; rn�1/ ¤ ;. So we can find a ball

B.xn; rn/ � Vn \ B.xn�1; rn�1/ ; .3/

with 0 < rn < 1=n.

This inductive process produces a sequence fxng inE . If j; k > n, then

we see that xj and xk both lie in B.xn; rn/. Hence d.xj ; xk/ < 2rn < 2=n.

We see then that fxj g is a Cauchy sequence. Since E is complete, we

conclude that there is a point x 2 E such that xj ! x.

Since xj lies in B.xn; rn/ if j > n, we may conclude now that x lies in

each B.xn; rn/, and .3/ shows that x lies in each Vn. Line (2) shows that x

lies in U . We have shown, as advertised, that .\jVj /\ U ¤ ;.

A lot of terminology has grown up around the Baire theorem, and we

shall not belabor it here. Suffice it to say that a set inE is called a Gı set if

it is the intersection of countably many open sets. So Baire’s theorem says

that the intersection of dense Gıs is also a dense Gı .

Further, a set G in E is said to be of first category if it is the countable

union of nowhere dense sets. A subset that is not of the first category is said

to be of the second category. Baire’s theorem says that no complete metric

space is of the first category.

1.6 The Three Big Results

Elementary Banach space theory boils down to three big theorems. We

shall enunciate them and prove them, and then give a number of remarkable

examples to illustrate their importance.

In what follows we shall use the notion of semicontinuity. Recall that

a function f W X ! R is upper semicontinuous if, for each real ˇ, fx 2
X W f .x/ < ˇg is open. The function is lower semicontinuous if, for each

real ˛, fx 2 X W f .x/ > ˛g is open. Clearly, if f is both lower and upper

semicontinuous, then f is continuous.

If T˛ W X ! Y is a collection of operators then we say that fT˛g is

uniformly bounded if there is a constant M > 0 such that kT˛kop � M .
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We say that the T˛ blow up on a dense Gı set E if sup˛2A kT˛xk D 1 for

every x in E .

THEOREM 1.6 (The Banach-Steinhaus Theorem). Suppose that X is a Ba-

nach space and that Y is a normed linear space (not necessarily complete).

Assume that fT˛g W X ! Y is a collection of bounded linear operators, for

˛ in some index set A. Then either the fT˛g are uniformly bounded or else

they blow up on a dense Gı .

REMARK. The Banach-Steinhaus theorem is sometimes also called the uni-

form boundedness principle. The uniform boundedness aspect is the first

option and the denial of uniform boundedness is the second option. This

result is a lovely application of the Baire category theorem.

Proof of the Banach-Steinhaus Theorem. This is a straightforward appli-

cation of the Baire category theorem and elementary analysis. The proof

may be found in many textbooks, including [RUD1].

Set, for x 2 X ,

�.x/ D sup
˛2A

kT˛xk :

Put

Vn D fx 2 X W �.x/ > ng

for n D 1; 2; 3; : : : . Since each T˛ is continuous and since the norm func-

tion on Y is continuous, each function x ! kT˛xk is continuous on X .

Thus �, the supremum of such functions, is lower semicontinuous. We

conclude then that each Vn is open. There are now two cases:

(a) Suppose that every Vn is dense in X . In this case, \nVn is a dense

Gı in X by the Baire category theorem. Since �.x/ D 1 for every

x 2 \nVn, we see that the blow up holds.

(b) If instead some Vm fails to be dense in X , then there is a point x0 2 X
and an r > 0 such that kxk � r implies that x0 C x 62 Vm (in other

words, Vm misses a ball). We see then that �.x0 C x/ � m, or

kT˛.x0 C x/k � m

for all ˛ 2 A and all x with kxk � r . We have

kT˛xk D kT˛..x0 Cx/C.�x0//k � kT˛.x0 Cx/kCkT˛.x0/k � 2m :

We conclude that uniform boundedness holds withM D 2m=r .
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THEOREM 1.7 (The Open Mapping Principle). Let X and Y be Banach

spaces. Let ƒ W X ! Y be a bounded, surjective, linear transformation.

Then the image of any open set is open. That is to say, if U � X is open,

then ƒ.U / � fƒu W u 2 U g � Y is open.

REMARK. An immediate consequence of the theorem is that there is a ı >

0 so that

ƒ.BX/ � ıBY ;

where BX , BY are the open unit balls inX and Y respectively. In case ƒ is

both injective and surjective, we thus see that ƒ�1 is continuous (see more

on this point below). This is important information.

Proof of the Open Mapping Principle. See [RUD1] for the ideas behind

this proof.

Continue to use the notation BX , BY for the open unit balls in X and

Y , respectively. Let y 2 Y . Then there is an x 2 X such that ƒx D y. For

any k > 0, if kxk < k then y 2 ƒ.kBX /. Thus Y is the union of the sets

ƒ.kU /, k D 1; 2; 3; : : : . Since Y is complete, the Baire category theorem

then tells us that there is a nonempty open set W in the closure of some

ƒ.kBX /. Therefore every point ofW is the limit of a sequence ƒxj , where

xj 2 kBX for some k. Fix this k and thisW .

Select y0 2 W , and choose � > 0 such that y0Cy 2 W for all kyk < �.

For any such point y there are sequences faj g and fbj g in kU such that

ƒaj ! y0 and ƒbj ! y0 C y

as j ! 1. Set xj D bj � aj . Then we have kxj k < 2k and ƒxj ! y.

This is true for every y with kyk < �. So the linearity of ƒ tells us that, if

ı � �=2k then, for every y 2 Y and every � > 0, there is an x 2 X so that

kxk � 1

ı
� kyk and ky �ƒxk < � : .4/

We want to shrink � to 0.

Fix y 2 ıV and � > 0. By .4/, there is an x1 2 X with kx1k < 1 and

ky �ƒx1k < 1

2
ı� :

Suppose now that x1; x2; : : : ; xk are chosen so that

ky � ƒx1 �ƒx2 � � � � �ƒxkk < 2�kı� : .5/
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Use .4/, with y replaced by y�ƒx1 �ƒx2 � � � � �ƒxk , to obtain an xkC1

such that .5/ holds with k C 1 in place of k and such that

kxkC1k < 2�k� .6/

for k D 1; 2; : : : .

If we set sk D x1 C x2 C � � � C xk, then (6) shows that fskg is a Cauchy

sequence in X . Since X is complete, there is therefore an x 2 X such that

sk ! x. The inequality kx1k < 1, along with (6), shows that kxk < 1C �.

Since ƒ is continuous, ƒsk ! ƒx. By (5), ƒsk ! y. We conclude that

ƒx D y.

So we have proved that

ƒ..1 C �/BX/ � ıBY

or, dividing by .1 C �/,

ƒ.BX/ � .1 C �/�1ıBY .7/

for every � > 0. The union of the sets on the right-hand side of (7), taken

over all � > 0, is ıBY . This proves thatƒ.BX / � ıBY . It follows naturally

that the image of any open set is open, because any open set is the union of

balls.

COROLLARY 1.8. Let X and Y be Banach spaces. Let ƒ W X ! Y be a

univalent, surjective, bounded linear operator. Then there is a ı > 0 such

that

kƒxkY � ıkxkX

for all x 2 X—that is, kƒxk is bounded below. In other words, ƒ�1 is a

bounded linear operator from Y toX .

REMARK. Notice that the inequality in the conclusion of the corollary is

just the opposite of the inequality that gives boundedness of the operatorƒ.

Proof of the Corollary. Choose ı as in the statement of the open mapping

principle. Then the conclusion of that theorem, together with the fact that

ƒ is one-to-one, shows that kƒxk < ı implies that kxk < 1. Taking con-

trapositives, we see that kxk � 1 implies that kxk � ı.

The next result is the third and last of our “big three.” It is unusual in

that it does not require the space in question to be complete. In some sense

it is more of a logic result than a functional analysis result.



1.6. The Three Big Results 13

Historically, the Hahn-Banach theorem was first proved for real normed

linear spaces. It was Bohnenblust [BOH] who determined how to extend

the result to complex normed linear spaces.

If X is a normed linear space and E a subspace, then let � W E ! R be

a bounded linear functional. We callb� W X ! R an extension of � to X if
b�
ˇ̌
E

D � and ky�k D k�k.

THEOREM 1.9 (The Hahn-Banach Theorem). Let X be a normed linear

space andE a (not necessarily closed) subspace. Let � be a bounded linear

functional on E . Then there exists an extension y� of � toX .

REMARK. It is worth noting here that E need not be closed. And X need

not be complete. These are signals that the tools of analysis will not play a

significant role in the proof.

It should also be noted that the extension is not usually unique. In many

cases there will be uncountably many distinct extensions.

REMARK. In fact the Hahn-Banach theorem is false for linear operators

(rather than linear functionals). We leave the details of this assertion for the

interested reader. Or the reader might refer to [KAK] or [SOB] or [KEL].

Proof of the Hahn-Banach theorem. This quite standard proof may be

found in [RUD1].

First assume that X is a real normed linear space, and that � is a real-

linear, real-valued, bounded linear functional on E . If k�k D 0 then the

desired extension y� is is the zero-functional. Forgetting this trivial case, we

may after a renormalization assume that k�k D 1.

Select x0 2 X with x0 62 E . Let E1 be the linear space spanned by E

and x0. Thus E1 consists of all vectors of the form x C �x0, where x 2 E
and � is a real scalar. Let us define T1.x C �x0/ D �.x/ C �˛, where ˛

is some fixed real number (to be specified later). We see that T1 is a real

linear functional on E1. The catch is that we need to choose ˛ so that the

extended functional still has norm 1. This will hold provided that

j�.x/C �˛j � kx C �x0k .8/

for x 2 E and � real. We replace x by ��x and divide both sides of .8/ by

j�j. The requirement becomes

j�.x/ � ˛j � kx � x0k

for x 2 E .
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It is convenient now to rewrite our condition as

˛x � ˛ � ˇx ;

where

˛x D �.x/ � kx � x0k and ˇx D �.x/C kx � x0k : .9/

Such an ˛ exists if and only if all the intervals Œ˛x; ˇx � for x 2 E have a

common point. That is to say, if and only if

˛x � ˇy .10/

for all x 2 E , y 2 E . But

�.x/ � �.y/ D �.x � y/ � kx � yk � kx � x0k C ky � x0k

or

�.x/ � kx � x0k � �.y/ C ky � x0k :

Hence

˛x � ˇy

by (9).

Thus we have shown that there is a norm-preserving extension T1 of �

from E to E1.

We come to the logic part of the proof. Let R be the collection of

all ordered pairs .E 0; �0/, where E 0 is a subspace of X that contains E

and where �0 is a real-linear extension of � to E 0 with k�0k D 1. We

may partially order R by .E 0; �0/ � .E 00; �00/ if and only if E 0 � E 00 and

�00.x/ D �0.x/ for all x 2 E 0. We note that the axioms of a partial ordering

are definitely satisfied and also that R is not empty since .E; �/ lies in R.

We may thus apply the Hausdorff maximality theorem (or Zorn’s lemma)

to conclude that there is a maximal totally ordered subcollection… of R.

Let ‰ be the collection of all E 0 such that .E 0; �0/ 2 … for some linear

functional �0. Then ‰ is a totally ordered by set inclusion and hence the

union eE of all members of‰ is a subspace1 ofX . If x 2 eE then x 2 E 0 for

some E 0 2 ‰. Definee�.x/ D �0.x/, where �0 is the functional that occurs

in the pair .E 0; �0/ 2 ‰. Our definition of the partial order in … shows

that it does not matter which E 0 2 … we choose to definee� as long as E 0

contains x.

1We need to be careful here, because the union of two subspaces need not be a subspace.

For example, the union of the x-axis and the y-axis in the Euclidean plane is not a subspace.
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We easily check that e� is a linear functional on eE , with ke�k D 1. If
eE is a proper subspace of X , then the first part of the proof would give us

a further extension of e�, and that would contradict the maximality of ….

Thus eE D X and we have completed the proof in the case of real scalars

and real linear functionals.

Next we treat Bohnenblust’s contribution. If now � is a complex-linear

functional on the subspace E of the complex normed linear space X , let �

be the real part of �. Use the real Hahn-Banach theorem, which we have

just proved, to extend � to a real-linear functionale� onX with ke�k D k�k.

Define

e�.x/ De�.x/ � ie�.ix/

for x 2 X . We may check directly thate� is a complex-linear extension of

� and that

ke�k D ke�k D k�k D k�k :

1.7 Applications of the Big Three

We shall spend some considerable time examining applications of the big

three theorems. This will help us to put these important results into per-

spective, and also help us to understand what they say and what they mean.

The applications of these three important theorems are broad and di-

verse. They come from partial differential equations, Fourier analysis, and

many other parts of mathematics. Some of them require a bit of back-

ground, which we cannot provide in a book of this brevity. But we shall

provide easily accessible references.

It is useful in what follows to define the circle group T to be the interval

Œ0; 2�� with the endpoints identified. This identification is nicely effected

by the map

Œ0; 2�� 3 � 7! ei� :

We continue to do arithmetic (and analysis) on Œ0; 2�� as usual, just re-

membering that 0 and 2� are the same point. In particular, a function f is

continuous on T if it is continuous on Œ0; 2�� in the usual sense and also

f .0/ D f .2�/.

EXAMPLE. This example concerns convergence and divergence of Fourier

series. See [KAT] or [KRA3] for the chapter and verse in this matter.

In what follows, we use the notationLp to denote functions that are pth

power integrable (see [RUD1]). If f is an L1 function on T , we define the
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nth Fourier coefficient of f to be

yf .n/ D 1

2�

Z 2�

0

f .t/e�int dt :

The N th partial sum of the Fourier series of f is defined to be

SNf .e
i�/ D

NX

nD�N

yf .n/ein� :

In point of fact, one can easily calculate (again see [KAT] or [KRA3])

that

SNf .e
i� / D 1

2�

Z 2�

0

f .t/DN .� � t/ dt ;

where

DN .t/ �
sin
�
N C 1

2

�
t

sin 1
2
t

:

The functionDN is known as the Dirichlet kernel.

Our goal in this example is to show that there exists a broad class of

functions with divergent Fourier series (in a sense to be specified).

It will be crucial for us to know the L1 norm of DN . In fact

Z 2�

0

jDN .t/j dt D
Z �

��

jDN .t/j dt

� 2

Z �

0

j sin
�
N C 1

2

�
t j

t
dt

D 2

Z .NC1=2/�

0

j sin t j
t

dt

> 2

.NC1=2/�X

nD1

Z n�

.n�1/�

j sin t j
n�

dt

� 4

�

NX

nD1

1

n
� 4

�
lnN :

We see that kDN kL1 ! 1 as N ! 1.

We consider the operators SN operating on the Banach space

X D
�
f continuous on Œ0; 2�� such that f .0/ D f .2�/

�
:

Of course the norm on X is the supremum norm.
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We claim that

kSN k D kDN kL1 : .11/

If we can prove (11), then kSN k ! 1. The uniform boundedness prin-

ciple then tells us that there is a dense subset D of X so that, for ev-

ery f 2 D , the Fourier series of f at 0 diverges (since SNf .e
i0/ D

.1=Œ2��
R 2�

0
f .t/DN .t/ dt). So all that remains is to prove the claim.

On the one hand, if f 2 X , then

jSN .f /j � 1

2�

Z 2�

0

jf .s/jjDN .s/j ds � kf ksup � kDN kL1 :

That is one half of our task.

On the other hand, consider the closed set

E D ft 2 Œ0; 2�� W DN .t/ � 0g :

For n D 1; 2; : : : , let

fn.t/ D 1 � nd.t; E/
1C nd.t; E/

:

Here d.t; E/ denotes the distance of the point t to the set E . Then

(a) kfnksup � 1,

(b) fn.t/ D 1 for t 2 E ,

(c) fn.t/ ! �1 for t 62 E .

The Lebesgue dominated convergence theorem tells us that

SN .fn/ �!
Z 2�

0

jDN .s/j ds

as n ! 1. We conclude that kSN k D kDN kL1 and our proof is complete.

It is well to recall here the Stone-Weierstrass theorem:

THEOREM 1.10. Let A be an algebra2 of continuous functions on a com-

pact, Hausdorff space X . Suppose that

(a) A separates points (i.e., if x ¤ y are elements of X then there is an

f 2 A such that f .x/ ¤ f .y/),

2An algebra is a collection of objects equipped with binary operations of addition and

multiplication, and also with a notion of scalar multiplication.



18 1. Fundamentals

(b) A vanishes nowhere (i.e., if x 2 X then there is an f 2 A such that

f .x/ ¤ 0),

(c) In case A and C.Œ0; 1�/ consist of complex-valued functions, then A is

closed under complex conjugation.

Then A is dense in C.Œ0; 1�/.

The Stone-Weierstrass theorem is a generalization of the classical Weier-

strass approximation theorem.

EXAMPLE. Let us take another look at the partial summation operators

for Fourier series. It is a matter of great interest to know whether, if f 2
Lp.T /, then does it follow that SNf ! f in Lp norm?

If q is a trigonometric polynomial, then SNq D q as soon as N exceeds

the degree of q. So the convergence of SN q to q is trivial.

Fix 1 � p < 1 and suppose that we know that kSN kLp ;Lp � C , with

the estimate independent of N . If f 2 Lp is arbitrary, let � > 0. By the

Stone-Weierstrass theorem, select a trigonometric polynomial q such that

kf � qkLp < �. Select N so large that N exceeds the degree of q. Then

we have

kSNf � f kLp � kSN .f � q/kLp C kSN q � qkLp C kq � f kLp

� Ckf � qkLp C 0C �

� C� C �

D .C C 1/� :

So we see that a uniform bound on the operator norms of the summation

operators SN gives us the desired Lp convergence of Fourier series.

For the converse, suppose it is known that SNf ! f in Lp norm for

every f 2 Lp.T /. Then the uniform boundedness principle tells us that

there is a constant C so that kSN kLp ;Lp � C . So we have a necessary and

sufficient condition for Lp convergence of Fourier series.

A classical calculation, amounting mainly to algebraic trickery (see

[KRA3]), in fact reduces the question of the uniform bound on the operator

norms of the SN to a single bound on a single operator called the Hilbert

transform. The Hilbert transform is given by the singular integral

f 7�!
Z

f .t/

x � t dt :

The Hilbert transform is arguably the most important linear operator in all

of analysis, and this discussion gives an indication of one of the reasons

why.
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EXAMPLE. This is another application to Fourier series.

First we recall the Riemann-Lebesgue lemma. It says this:

Lemma: Let f 2 L1.T /. Define the Fourier coefficients as usual

by

yf .n/ D 1

2�

Z 2�

0

f .t/e�int dt :

Then

lim
n!˙1

j yf .n/j D 0 :

The reason for this result is simplicity itself. First, in the special case that

f is a trigonometric polynomial

f .t/ D
MX

j D�M

aj e
ij t ;

then yf .n/ D 0 as soon as jnj > M . If f is an arbitrary L1 function then

let � > 0 and use the Stone-Weierstrass theorem to select a trigonometric

polynomial p so that kf � pkL1 < �. Let M be the degree of p and let

jnj > M . Then

j yf .n/j � j 2.f � p/.n/j C j yp.n/j � kf � pkL1 C 0 < � :

That establishes the result.

The question that we want to consider now is whether the converse of

the Riemann-Lebesgue lemma is true. That is to say, if faj g is a doubly

infinite sequence of complex numbers that vanishes at ˙1 then is there an

f 2 L1 such that yf .n/ D an for all n 2 Z? The answer is “no,” and we

shall see this using a little functional analysis.

Let us define c0 to be the space of doubly infinite sequences of complex

numbers which vanish at ˙1. The norm on this space is the supremum

norm. We have the operator

T W L1.Œ0; 2��/ �! c0

given by

T .f / D f yf .n/g1
nD�1 � yf :

We first show that T is one-to-one. Suppose that f 2 L1 and Tf D 0. Then
yf .n/ D 0 for every n. It follows that, for any trigonometric polynomial p,

Z 2�

0

f .t/p.t/ dt D 0 :
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By the Stone-Weierstrass theorem, we may conclude than that

Z 2�

0

f .t/g.t/ dt D 0

for any g 2 C.Œ0; 2��/ with g.0/ D g.2�/. A simple approximation argu-

ment allows us to conclude that

Z 2�

0

f .t/�.t/ dt D 0

for any � the characteristic function of a disjoint union of intervals in Œ0; 2��.

It follows that f � 0. Thus T is univalent.

Seeking a contradiction, we suppose that the range of T is all of c0.

Then the corollary to the open mapping principle would say that there is a

ı > 0 such that

k yf k`1 � ıkf kL1 .12/

for all f 2 L1.Œ0; 2��/. Let Dn be the Dirichlet kernel as in the last exam-

ple but one. Then Dn 2 L1, kcDnk`1 D 1, and kDnkL1 ! 1 as n ! 1.

So there cannot be a ı > 0 so that

kcDnk`1 � ıkDnkL1

for every n. That is a contradiction.

REMARK. It is actually quite difficult to give a “constructive” proof of the

last result. And certainly functional analysis gives it to us rather easily.

EXAMPLE. We shall take a moment to discuss the so-called closed graph

theorem. This is an extremely useful criterion for telling when a linear

operator is continuous. The statement is as follows:

Theorem: Suppose that X and Y are Banach spaces. Let ƒ W X !
Y be a linear mapping. Assume that the graph G D f.x; ƒx/ W x 2
Xg is a closed set in X � Y . Then ƒ is continuous.

For the proof, we begin by noticing that X � Y is a vector space if we

define addition and scalar multiplication componentwise. We define a norm

on X � Y by

k.x; y/kX�Y � kxk C kyk :

Then it is straightforward to check that, so equipped, X � Y is a Banach

space.
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The graph G of ƒ is the set of ordered pairs .x; ƒx/ 2 X � Y . It is, by

hypothesis, closed. So G is itself a Banach space. Also the mapping

�1 W .x; ƒx/ 7�! x

is a continuous, one-to-one, linear mapping of G onto X . We also define

�2 W .x; y/ 7�! y

from X � Y to Y .

The open mapping theorem guarantees that ��1
1 W X ! G is continu-

ous. Trivially �2 is continuous. Therefore

ƒ D �2 ı ��1
1

is continuous, as was to be proved.

We close this discussion by noting that a common, and commonly used,

formulation of the closed graph theorem is this:

Theorem: Let ƒ be a linear mapping of Banach space X to Banach

space Y . Assume that, for each sequence fxj g in X for which x D
limj !1 xj and y D limj !1 ƒxj exist, it is true that y D ƒx.

Then ƒ is continuous.

We leave it to the reader to check that our two formulations of the closed

graph theorem are equivalent.

EXAMPLE. It is a basic fact from harmonic analysis that any smoothly

bounded domain in RN has a Green’s function. See [KRA2] for the details.

In fact the argument in that source depends on Stokes’s theorem in an essen-

tial way. We provide here, for planar domains, an alternative construction

due to Peter Lax [LAX]. The main tool is the Hahn-Banach theorem.

Let � � R2 be a smoothly bounded domain. This means that @�

consists of finitely many smooth, disjoint, closed curves. Let w 2 �. A

Green’s function for � with singularity at w is a function G. � ; w/ on �

such that

(a) G. � ; w/ is continuous on � n fwg,

(b) G. � ; w/ vanishes on @�,

(c) G.z; w/C log jz �wj=.2�/ is harmonic (in the z variable) on �.

It is clear that, if a Green’s function with singularity at w exists, then it is

unique (apply the maximum principle).
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We work in this example with real Banach spaces over the real field

R. Let X be the space C.@�/ of real-valued functions continuous on @�.

Let Y be the subspace consisting of those continuous functions that have

a harmonic extension to the interior of the domain �. Clearly Y is a lin-

ear subspace3 of X . We remind the reader that a C 2 (twice continuously

differentiable) function u is harmonic on a domain� if

�
@2

@x2
C @2

@y2

�
u.x; y/ � 0

on �.

Obviously, if u 2 Y , then the harmonic extension yu to� is unique. Fix

w 2 �. Consider the functional

'w W Y ! R

given by 'w.u/ D yu.w/ for u 2 Y . Then 'w is a linear functional on Y and

k'wk D 1 by the maximum principle. By the Hahn-Banach theorem, there

is an extension c'w of 'w toX . And of course c'w will also have norm 1.

Let z 2 R2 n @�. For t 2 @�, consider the function

 z.t/ D 1

2�
� log jz � t j :

Then certainly  z 2 X . If z 62 �, then

'w. z/ D c z.w/ D 1

2�
� log jz �wj :

If instead z 2 �, then we may define

H.z; w/ D c'w. z/ :

Then we take

G.z; w/ D H.z; w/� 1

2�
� log jz �wj :

We claim that G. � ; w/ is the Green’s function for� with singularity at w.

For this purpose it suffices to show that H.z; w/ is harmonic in z 2 �

and thatH.z; w/ tends to log jt0 � wj=.2�/ as z tends to any t0 2 @�.

3This is a fascinating instance of formal reasoning. In the end, we know that X and Y are

the same space. That is to say, the Dirichlet problem can be solved for any continuousboundary

datum '. But the proof of that fact involves the Poisson kernel, and that is constructed using

the Green’s function. What we are doing here is constructing the Green’s function. So we treat

X and Y as formally distinct.
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Of course c'w is continuous and linear. Also

lim
h!0

log jz C h� t j � log jz � t j
h

exists uniformly for t 2 @� (as long as z, z C h are inside �). Thus c'w

commutes with differentiation with respect to x or y. As a result, for z 2 �,

�
@2

@x2
C @2

@y2

�
H.z; w/ D

�
@2

@x2
C @2

@y2

�
c'w . z/

D c'w

��
@2

@x2
C @2

@y2

�
 z

�

D c'w .0/

D 0 ;

since  z is harmonic in �.

t

z

z¢
t0

¶W

FIGURE 1.1. The reflected point z0.

Finally, if z is near to t0 2 @�, then let t be the point of @� that is

nearest to z. Let z0 be the mirror image of z in the tangent line to @� at

t (see Figure 1.1). Since @� is smooth, if z is sufficiently near to t0, then

z0 62 � and z0 is also near to t0. Hence

c'w . z0 / D 'w . z0 / D 1

2�
� log jz0 � wj ;

and this tends to log jt0 �wj=.2�/ as z ! t0. On the other hand,

jc'w. z/ � c'w . z0 /j � k z �  z0 k1 ;

and this expression tends to 0 as t ! t0. Hence b'w . z/ ! log jt0 �
wj=.2�/ as z ! t0. This proves that our G. � ; w/ is indeed the Green’s

function for � with singularity at w 2 �.
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EXAMPLE. It is a classical construction (see [KRA2]) to obtain the Poisson

kernel for a domain by calculating the unit outward normal derivative of the

Green’s function at the boundary. In what follows we take a more abstract

approach—using the Hahn-Banach theorem—to derive the Poisson integral

formula.

Let � be a smoothly bounded domain in the plane and� its closure. Of

course @� denotes the boundary of the domain.

Let Z be the space of those functions continuous on� and harmonic in

the interior. Using the supremum norm, we see that this is a Banach space.

We may also consider the space Y of restrictions of elements of Z to @�,

and equip Y with the supremum norm also. By the maximum principle, we

see that, for f 2 Z, we have

kf kZ D kf kY :

We also know that, if z 2 �, then

jf .z/j � kf kY :

In particular, if f 2 Z and f .z/ D 0 for all z 2 @� then f � 0. In other

words, if f1; f2 2 Z and f1 D f2 on @� then f1 D f2.

Summarizing what we have learned, if f 2 Y then there is a unique ex-

tended function (still denoted by f ) on � so that f 2 Z and the restriction

of the extension to @� equals the original function f .

Fix a point z 2 �. We know that

� W Y 3 f 7�! f .z/

is a bounded linear functional of norm 1. The Hahn-Banach theorem tells

us that there is a an extension y� of this functional to C.@�/. Certainly

y�.1/ D 1 and ky�k D 1 : .13/

We claim that these facts imply that y� is a positive linear functional on

C.@�/.

To see this, let f 2 C.@�/ with 0 � f � 1 and put g D 2f � 1. We

write

y�g D ˛ C iˇ ;

where ˛ and ˇ are real. Notice that �1 � g � 1. Thus

jg C ir j2 � 1C r2
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for any real constant r . Thus (13) implies that

.ˇ C r/2 � j˛ C i.ˇ C r/j2 D jy�.g C ir/j2 � 1C r2 :

We conclude that

ˇ2 C 2rˇ � 1

for every real r . This forces ˇ D 0. Since kgkY � 1, we conclude next that

j˛j � 1. As a result,

y�f D 1

2
�.1 C g/ D 1

2
.1 C ˛/ � 0 :

We may apply the Riesz representation theorem (see [RUD1, Theorem

2.14]). It tells us that there is a regular, positive Borel measure �z on @�

such that

y�f D
Z

@�

f d�z

for f 2 C.@�/. In particular, we see that

f .z/ D
Z

@�

f d�z .14/

for f 2 z.

Let us summarize what we have proved:

Theorem: To each z 2 � there corresponds a positive measure �z

on the boundary @� that “represents” z in the sense that (14) holds

for every f 2 Z.

Notice that y� determines�z uniquely. But, in general, the Hahn-Banach

extension is certainly not unique. So, thus far, we cannot say anything about

the uniqueness of the representing measure.

Let us specialize down. Let � be the unit disc D in the complex plane

and let z 2 D. Write z D rei� . Define

un.w/ D wn

for n D 0; 1; 2; : : : . Then un 2 Z. Thus

rnein� D
Z

@�

und�z :

Since u�n D un on @�, we find that

Z

@�

und�z D r jnjein� .15/



26 1. Fundamentals

for n D 0;˙1;˙2; : : : . Thus it makes sense to examine the real function

Pr.� � t/ D
1X

nD�1

r jnjein.��t/ .16/

for t real. Notice that

1

2�

Z 2�

0

Pr.� � t/eint dt D r jnjeint .17/

for n D 0;˙1;˙2; : : : .
We see that the series (16) is dominated by the convergent geometric

series
P
r jnj, so it is legitimate to insert the series into the integral (17) and

to switch the sum and the integral (so that we integrate term by term). That

is what gives (17). Comparison of (17) and (15) gives

Z

@�

f d�z D 1

2�

Z 2�

0

f .ei t /Pr.� � t/ dt

for f D un, hence for any trigonometric polynomial p. Again, by the

Stone-Weierstrass theorem, we see that this last line holds for any continu-

ous f on @D. So now we see that �z was uniquely determined.

In particular, the last line holds for f 2 Z. So we now have the repre-

sentation

f .z/ D 1

2�

Z 2�

0

f .ei t/Pr .� � t/ dt

for f 2 Z. The series (16) can be summed explicitly, since it is the real

part of

1C 2

1X

1

.ze�i t /n D ei t C z

ei t � z D 1 � r2 C 2ir sin.� � t/

j1� ze�i t j2 :

Thus we see that

Pr.� � t/ D 1 � r2

1 � 2r cos.� � t/C r2
:

This is the Poisson kernel for the unit disc. We have Pr.� � t/ � 0 if

0 � r < 1.



CHAPTER 2

Ode to the Dual Space

2.1 Introduction

If X is a normed linear space, then the collection of bounded linear func-

tionals on X is called its dual space and is denoted X�. Given a Banach

space X , we frequently want to calculate X�. Knowledge of X� can give

us a good deal of information about X itself.

We note that, whenX is a Banach space, thenX� will also be a Banach

space. If ˛ 2 X� then

k˛kX� � sup
kxk�1

j˛.x/j :

When ˛ 2 X� and x 2 X then we sometimes write ˛.x/ for the action of

˛ on x and sometimes write h˛; xi or hx; ˛i (in order to emphasize the dual

nature of the action).

EXAMPLE. Let the Banach space X be RN equipped with the usual norm.

Of course any linear functional on X is automatically bounded, and it is

given by inner product with an N -vector. So the space X� of bounded

linear functionals on RN is just RN itself.

EXAMPLE. Let X be the Banach space `1, which is the collection of all

summable sequences of complex numbers. We calculate X�. Let ˛ 2 X�.

Set fuj g to be the sequence which has a 1 in the j th slot and 0s in all

the other slots. Certainly uj 2 `1. Set aj D ˛.uj /. Consider the sequence

faj g. We claim that faj g is in fact a bounded sequence. If not then, given

M > 0, there is an aj with jaj j > M . But then

˛.uj / D aj

27
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and we see that

j˛.uj /j > Mkuj k :

Since this is true for any M > 0, we find that ˛ is unbounded. Contra-

diction. Thus we have shown that any bounded linear functional ˛ on `1

is associated to a bounded sequence faj g (i.e., an element of `1), and the

functional is given by

˛.fxj g/ D
X

j

ajxj :

Conversely, if fbj g is any bounded sequence, then the mapping

fxj g !
X

j

bjxj

defines a bounded linear functional on `1.

We have proved that the dual space .`1/� is `1.

EXAMPLE. We cannot provide all the details here (see [RUD1] for the

chapter and verse), but we note that if X D C.Œ0; 1�/, then X� is the col-

lection of regular Borel measures on Œ0; 1�. This is the celebrated Riesz

representation theorem.

EXAMPLE. Let X be the space L1.T / of Lebesgue integrable functions on

the circle group T . Then it can be shown (see [RUD2]) that X� is the space

L1.T / of essentially bounded functions on T . However we must note that

the dual of L1.T / is not L1.T /. In fact it is impossible to give a compact

characterization of the dual of L1.T /.

EXAMPLE. If 1 � p < 1 then let the conjugate exponent q be defined by

1

p
C 1

q
D 1 or q D p

p � 1
:

Define the Banach space `p by

`p D

8
<̂

:̂
faj g1

j D1 W

0
@

1X

j D1

jaj jp
1
A

1=p

� kfaj gk`p < 1

9
>=
>;
:

It is a fact, which we shall not prove here, that .`p/� D `q . Indeed, we have

treated the case p D 1 in the second example. Given this information, one

might wonder whether .`1/� D `1. In fact this is not the case, and it is

essentially impossible to describe the dual of `1 in any compact fashion.
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Let us treat this matter now. Let Y be the Banach subspace of `1

consisting of those sequences faj g such that limj !C1 aj exists. Define

a bounded linear functional � on Y by

�.faj g/ D lim
j !C1

aj :

We may apply the Hahn-Banach theorem to elicit a bounded linear func-

tional y�, still having norm 1, on `1 that extends �. If .`1/� D `1, then

there would be an `1 sequence ˇ D fbj g that represents y�. But then we can

apply ˇ to the sequence that equals 1 in the first N entries and 0 elsewhere

to see that all the partial sums of ˇ are 0. It follows that ˇ is identically 0,

and that is a contradiction. Therefore the dual of `1 is not `1.

2.2 Consequences of the Hahn-Banach

Theorem

The Hahn-Banach theorem gives us important information about the dual

space. We record some of it here.

PROPOSITION 2.1. Let X be a normed linear space. Pick x0 2 X , x0 ¤ 0.

Then there is a bounded linear functional � on X with k�k D 1 so that

�.x0/ D kx0k.

Proof. Let E D ftx0 W t 2 Rg. Define a linear functional r on E by

r.tx0/ D tkx0k. Then r is a bounded linear functional with norm 1. Apply

the Hahn-Banach theorem to obtain the functional � onX with the required

properties.

REMARK. Proposition 2.1 shows that X� has a great many nontrivial ele-

ments.

COROLLARY 2.2. Let X be a normed linear space and let x 2 X . Then

kxk D supfj�.x/j W � 2 X�; k�k D 1g :

Proof. Clearly

j�.x/j � k�k � kxk � kxk :

That proves half of the statement.

For the converse, we may assume that x ¤ 0. Use the proposition to

find a linear functional � of norm 1 so that �.x/ D kxk. It follows that

kxk D j�.x/j � supfj�.x/j W � 2 X�; k�k D 1g :
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PROPOSITION 2.3. Let X be a normed linear space and E a linear sub-

space. Fix a point x0 2 X . Then x0 is in the closure E of E if and only

if there is no bounded linear functional � on X so that �.x/ D 0 for all

x 2 E but �.x0/ ¤ 0.

REMARK. For clarity, it is worth formulating the contrapositive statement

of this new proposition:

Proposition. Let X be a normed linear space and E a linear sub-

space. Fix a point x0 2 X . There is a bounded linear functional �

onX with the property that �.x/ D 0 for all x 2 E while �.x0/ ¤ 0

if and only if x0 62 E .

Proof of the Proposition. Certainly if x0 2 E , and if � is a bounded linear

functional on X , and if we further know that �.x/ D 0 for all x 2 E , then

the continuity of � forces �.x0/ D 0.

Conversely, suppose that x0 62 E . Then there is a ı > 0 such that

kx � x0k > ı for all x 2 E . Let E 0 be the subspace of X generated by E

and x0. So a typical element of E 0 has the form x C tx0 for x 2 E and

t 2 R. Let us define

�.x C tx0/ D t :

Since

ıjt j � jt jkx0 C t�1xk D ktx0 C xk ;

we see that � is a linear functional onE 0 whose norm is at most ı�1. More-

over, �.x/ D 0 for x 2 E and �.x0/ D 1.

Finally, we apply the Hahn-Banach theorem to obtain a bounded linear

functional, also of norm at most ı�1, which extends � to all of X .

EXAMPLE. Let us consider the Banach space X D L2.Œ0; 1�/ consisting of

all square-integrable, measurable functions on Œ0; 1�. The norm on L2 is

kf kL2 �
�Z 1

0

jf .x/j2 dx
�1=2

:

Let ft1; t2; : : : g be any countable, dense subset of Œ0; 1�. For j D 1; 2; : : :

we set

'j .t/ D
�
1 if 0 � t � tj
0 if tj < t � 1 :

We shall show that every f 2 L2.Œ0; 1�/ can be approximated in norm by

linear combinations of the 'j .
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To see this, let � 2 X�. It is known (see [RUD1]) that L2 is its own

dual. So there is an element y 2 X such that, for all x 2 X ,

�.x/ D
Z 1

0

x � y ds :

Assume that �.'j / D 0 for j D 1; 2; : : : . Thus

Z tj

0

y.s/ ds D 0

for all j . For any t 2 Œ0; 1�, let

z.t/ D
Z t

0

y.s/ds :

Then z 2 C.Œ0; 1�/ and z.tj / D 0 for all j D 1; 2; : : : . Since ft1; t2; : : : g
is dense in Œ0; 1�, we see therefore that z � 0 on Œ0; 1�. Therefore y D 0

almost everywhere. In conclusion, the functional � D 0.

Proposition 2.3 tells us that, if we set Y equal to the span of the 'j , then

every element of L2.Œ0; 1�/ is in the closure of Y .





CHAPTER 3

Hilbert Space

3.1 Introduction

If we place some additional structure on a Banach space, then a richer the-

ory results. That is what we now do.

The key idea is to equip the Banach space with an inner product. That

gives us notions of orthogonality and projection, and the result is a beautiful

and coherent theory.

DEFINITION. A complex vector space H is called an inner product space

if, to each ordered pair of vectors x; y 2 H , there is associated a complex

number hx; yi. This number is called the inner product or scalar product of

x and y. In the language of algebra, we may think of this inner product as

a bilinear operator fromH �H to the scalar field C. In order to be useful,

the inner product must satisfy the following properties:

(a) hx; yi D hy; xi,

(b) hx C y; zi D hx; zi C hy; zi,

(c) hax; yi D ahx; yi for a 2 C,

(d) hx; xi � 0,

(e) hx; xi D 0 if and only if x D 0.

EXAMPLE. If H is Cn then a convenient inner product is the Hermitian

inner product given by

h.z1; z2; : : : ; zn/; .w1; w2; : : : ; wn/i D z1w1 C z2w2 C � � � C znwn :

33
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EXAMPLE. If H is the Lebesgue space of square integrable, measurable

functions on the interval Œ0; 1�, then a useful inner product is

hf; gi D
Z 1

0

f .x/g.x/ dx :

There are a number of easy consequences of the inner product axioms

that are worth noting explicitly.

(i) (c) implies that h0; yi D 0,

(ii) (b) and (c) imply that, for a fixed y 2 H , the mapping x 7! hx; yi is

a linear functional on H ,

(iii) (a) and (c) imply that hx; ayi D ahx; yi,

(iv) (a) and (b) give the distributive law

hz; x C yi D hz; xi C hz; yi I

(v) (d) allows us to define kxk D
p

hx; xi. Thus

kxk2 D hx; xi :

We have the fundamental Schwarz inequality:

PROPOSITION 3.1 (Schwarz inequality). If x; y 2 H then

jhx; yij � kxk � kyk :

REMARK. The Schwarz inequality is a fairly simple idea, but it has pro-

found consequences. For instance, it tells us that the projection of an ele-

ment x of H will have length not exceeding kxk. It also gives important

information about the trigonometry of space.

Proof of the Proposition. This argument is inspired by the proof in [RUD1].

It is quite standard.

Set A D kxk2, B D jhx; yij, and C D kyk2. Choose a complex

number ˛ such that j˛j D 1 and ˛hy; xi D B . If r is any real number then

we have

hx � r˛y; x � r˛yi D hx; xi � r˛hy; xi � r˛hx; yi C r2hy; yi : .1/

The expression on the left-hand side of (1) is real and nonnegative. Thus

A � 2Br C Cr2 � 0

for any real r .
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If C D 0 then the last inequality forces B D 0 so our inequality is

trivially true. If C > 0 then take r D B=C in the last inequality to derive

B2 � A � C .

PROPOSITION 3.2 (The Triangle Inequality). If x; y 2 H , then

kx C yk � kxk C kyk :

REMARK. It is noteworthy that the triangle inequality is a consequence

of Schwarz’s lemma. This is the standard means of deriving the triangle

inequality in the abstract setting of a normed linear space.

Proof of the Proposition. We apply the Schwarz inequality as follows:

kx C yk2 D hx C y; x C yi
D hx; xi C hx; yi C hy; xi C hy; yi
� kxk2 C 2kxk � kyk C kyk2

D .kxk C kyk/2 :

We call an inner product space a Hilbert space if it is complete.

EXAMPLE. Let X be Cn and let the inner product be

h.z1; z2; : : : ; zn/; .w1; w2; : : : ; wn/i �
nX

j D1

zjwj :

Then it is straightforward to check that this is an inner product space. Since

it is finite dimensional, it is also easy to check that it is complete. So it is a

Hilbert space.

EXAMPLE. Let L2.Œ0; 1�/ be the measurable, square integrable, complex-

valued functions on the interval Œ0; 1�. Equip this space with the inner prod-

uct

hf; gi �
Z 1

0

f .s/g.s/ ds :

Then this is an inner product space. It is a nontrivial theorem (see [RUD1])

that the space is complete. So it is a Hilbert space.

EXAMPLE. As usual, let `2 be the set of square-summable complex se-

quences. Define an inner product by

˝
faj g; fbj g

˛
�
X

j

ajbj :
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Then it is straightforward to check that this is an inner product. And one

can actually show that the space is complete. So this is a Hilbert space.

EXAMPLE. Consider the space of all piecewise linear functions on the in-

terval Œ0; 1�. This is certainly a linear space, and we can equip it with the

inner product

hf; gi D
Z 1

0

f .s/g.s/ ds :

The space is not complete, however, as any measurable, square-integrable

function can be approximated by piecewise linear functions.

DEFINITION. Let H be an inner product space. We say that a subset E �
H is a subspace if it is itself a vector space with the inherited operations

of addition and scalar multiplication. One checks that E is a subspace by

noting that E is closed under addition and scalar multiplication, and that E

contains the zero element.

EXAMPLE. Let H be the inner product space consisting of all measurable,

square-integrable functions on Œ0; 1� equipped with the usual inner product

hf; gi D
Z 1

0

f .s/g.s/ ds :

Then the set E of continuous functions on Œ0; 1� forms a subspace.

In this book we shall be particularly interested in closed subspaces.

3.2 The Geometry of Hilbert Space

DEFINITION. If x is an element of an inner product space H , then x?

denotes the set of all y such that hx; yi D 0. We call x? the orthogonal

space to x or the orthogonal complement of x.

If E � H is either a subspace or a subset, then we let E? denote the

set of all y such that he; yi D 0 for all e 2 E . We call E? the orthogonal

complement of E .

It is worth noting explicitly that x?, as just defined, is itself an inner

product space—in particular, it is closed under addition and scalar multipli-

cation. Likewise, E? is an inner product space.

DEFINITION. We say that a set F in a linear space V is convex if, whenever

x; y 2 F and 0 � t � 1, then

.1 � t/x C ty 2 F :
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0

FIGURE 3.1. Unique element of least norm.

As t ranges from 0 to 1, the displayed expression describes a segment from

x to y.

Any subspace of V is convex. Any translate of a convex set is convex.

If A is a convex set then the Minkowski functional�A of A is defined by

�A.x/ D infft > 0 W t�1x 2 Ag :

A set B � X is said to be balanced if ˛B � B for every ˛ in the scalar

field with j˛j � 1.

LEMMA 3.3 (The Parallelogram Law). We have the identity

kx C yk2 C kx � yk2 D 2kxk2 C 2kyk2 :

Proof. We calculate that

kx C yk2 C kx � yk2 D
�

kxk2 C hx; yi C hy; xi C kyk2

�

C
�

kxk2 � hx; yi � hy; xi C kyk2

�

D 2kxk2 C 2kyk2 :

PROPOSITION 3.4. Each nonempty, closed, convex set E in a Hilbert space

H contains a unique element of least norm. (See Figure 3.1.) That is to say,

there is an element y0 2 E such that

ky0k � kek

for all e 2 E . Furthermore, there is only one element y0 2 E with this

property.

REMARK. It is helpful to think of a closed disc in the plane that does not

contain the origin. A segment from the origin to the center of the disc will

intersect the boundary in the point of least norm.
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Proof of the Proposition. This is a standard result with a standard proof—

see, for instance, [RUD1], [RUD2].

Let ı D inffkxk W x 2 Eg. So ı is the “least norm” that we are

discussing. For any x; y 2 E , we apply Proposition 3.3 to .1=2/x and

.1=2/y to obtain

1

4
kx � yk2 D 1

2
kxk2 C 1

2
kyk2 �


x C y

2


2

:

Since E is convex, .x C y/=2 2 E . Therefore

kx � yk2 � 2kxk2 C 2kyk2 � 4ı2 : .2/

If it happens to be the case that both x and y are elements of smallest norm,

then kxk D ı and kyk D ı. Hence the last line tells us that x D y. That

takes care of the uniqueness part of the proposition.

Certainly the definition of ı tells us that there is a sequence fyj g in E

so that kyj k ! ı as j ! 1. Apply (2) to yj and yk . As j; k ! 1, it

then follows that the right-hand side of (2) will tend to 0. Thus fyj g is a

Cauchy sequence. Since H is a Hilbert space, it is complete. So there is a

y0 2 H such that yj ! y0. In other words, kyj � y0k ! 0 as j ! 1.

Since yj 2 E and E is closed, we see that y0 2 E . Since the norm is a

continuous function on H , we conclude that

ky0k D lim
j !1

kyj k D ı :

Thus y0 is the element of least norm that we seek.

We develop now the properties of Hilbert space projections.

THEOREM 3.5. Let H be a Hilbert space. Let E be a closed subspace.

Then there is a unique pair of linear mappings P and Q such that P W
H ! E , Q W H ! E?, and

x D Px CQx .3/

for all x 2 H . These mappings have the following additional properties:

(4) If x 2 E , then Px D x and Qx D 0. If x 2 E?, then Px D 0 and

Qx D x,

(5) kx � Pxk D inffkx � yk W y 2 Eg,

(6) kxk2 D kPxk2 C kQxk2.
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0

x

FIGURE 3.2. Orthogonal projection.

We call P and Q the orthogonal projections of H onto E and E? respec-

tively. See Figure 3.2.

REMARK. This result once again illustrates the dictum that Hilbert space

is an infinite-dimensional generalization of finite-dimensional Euclidean

space. For, certainly in RN , if E is a subspace then there is a projec-

tion onto E and there is a projection onto the subspace F perpendicular

to E . In fact let fe1; e2; : : : ; ekg be an orthonormal basis for E and let

ff1; f2; : : : ; fN�kg be an orthonormal basis for F . Then the projection P

ontoE is given by

Px D hx; e1ie1 C hx; e2ie2 C � � � hx; ekiek

and the projectionQ onto F is given by

Qx D hx; f1if1 C hx; f2if2 C � � � hx; fkifk :

Think about this simple example as you read the proof of the theorem.

Proof of the Theorem. See [RUD1], [RUD2] for the background.

If x 2 H , then the set xCE D fxCe W e 2 Eg is closed and convex. It

is, after all, a linear space. Define Qx to be the unique element of smallest

norm (using Proposition 3.4) in x C E . Define Px D x � Qx. Then (3)

is automatically true. Since Qx 2 x C E , it follows that Px 2 E . So P

maps H intoE .

Next we show that hQx; ei D 0 for all e 2 E . We may assume that

kek D 1, and we put z D Qx. The minimal property of Qx now shows

that

hz; zi D kzk2 � kz � ˛ek2 D hz � ˛e; z � ˛ei
for any scalar ˛. This simplifies to

0 � �˛he; zi � ˛hz; ei C j˛j2 :
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Take ˛ D hz; ei. This gives

0 � �jhz; eij2 ;

so that hz; ei D 0. Hence Q maps H intoE?.

Write x D xE C xE? , with xE 2 E and xE? 2 E?. So we have

xE � Px D Qx � xE? :

Since xE � Px 2 E and Qx � xE? 2 E?, and since E \E? D f0g, we

see that xE D Px and xE? D Qx. This proves the uniqueness assertions.

To see that P and Q are linear, we apply (3) to x; y; and ˛x C ˇy to

obtain

P.˛x C ˇy/ � ˛Px � ˇPy D ˛Qx C ˇQy �Q.˛x C ˇy/ :

The left-hand side is in E , and the right-hand side is in E?. Thus both are

0, so P and Q are linear.

Property (4) follows from (3). Property (5) was used to define P . Also

(6) follows from (3) since hPx;Qxi D 0.

COROLLARY 3.6. If E � H is a closed subspace and E ¤ H then there

is a y 2 H , y ¤ 0, such that y ? E .

Proof. Take x 2 H , x 62 E . Set y D Qx. Since x ¤ Px, it follows that

y ¤ 0.

We next treat one of the most central and significant results of Hilbert

space theory. Often called the Riesz representation theorem, it says that

every bounded linear functional on a Hilbert space H is given by inner

product with an element of H .

THEOREM 3.7. If � is a bounded linear functional on the Hilbert space H ,

then there is a unique element y 2 H such that

�x D hx; yi

for all x 2 H .

Proof. If �x D 0 for all x, then we may simply take y D 0. Otherwise we

define

E D fx 2 H W �x D 0g :
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The linearity of � shows that E is a subspace, and the fact that � is contin-

uous shows that E is closed. Since �h ¤ 0 for some h 2 H , we know that

E? does not consist of 0 alone.

Clearly the y that we seek lives inE?. Also �y D hy; yi.

Choose a nonzero z 2 E?. Then z 62 E , so �z ¤ 0. Set y D ˛z, where

˛ D .�z/=hz; zi. Then y 2 E?, �y D hy; yi, and y ¤ 0.

For any x 2 H , we put

x0 D x � �x

hy; yi y and x00 D �x

hy; yi y :

Then �x0 D 0, hence x0 2 E . Thus hx0; yi D 0. Therefore

hx; yi D hx00; yi D �x :

This gives the representation of � that we seek.

For the uniqueness of y, assume that hx; yi D hx; y0i for all x 2 H .

Set z D y � y0. Then hx; zi D 0 for all x 2 H . In particular, hz; zi D 0 so

that z D 0.

We turn to a consideration of orthogonal systems in Hilbert space. It is

this set of ideas that really shows us the structure of the Hilbert space, and

how Hilbert space is very naturally a generalization of finite-dimensional

Euclidean space.

DEFINITION. We say that a collection of elements fu˛g˛2A in a Hilbert

space H is orthonormal if each vector has norm 1 and if hu˛ ; uˇ i D 0

whenever ˛ ¤ ˇ. We may also write these conditions as

hu˛; uˇ i D
�
1 if ˛ D ˇ ;

0 if ˛ ¤ ˇ :

If fu˛g˛2A is an orthonormal set, or orthonormal system, then we asso-

ciate with each x 2 H a function yx on the index set A given by

yx.˛/ D hx; u˛i for ˛ 2 A :

We sometimes call the numbers yx.˛/ the Fourier coefficients of x relative

to the orthonornal system fu˛g.

PROPOSITION 3.8. Let u1; u2; : : : ; uk be an orthonormal set in the Hilbert

space H . Set

x D
kX

j D1

cjuj :
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Then

cj D hx; uj i for 1 � j � k I

kxk2 D
kX

j D1

jcj j2 :

Proof. Just calculate.

A fundamental problem in modern analysis is that of best approxima-

tion. As a specific instance, given an orthonormal set u1; u2; : : : ; uk in a

Hilbert space H and an element x 2 H , we wish to choose coefficients

c1; c2; : : : ; ck so as to minimize the expression


x �

kX

j D1

cjuj


: .7/

THEOREM 3.10. The choice of cj that minimizes the expression


x �

kX

j D1

cjuj



is

cj D hx; uj i :
The vector

kX

j D1

hx; uj iuj

is in fact the orthogonal projection of x into the subspace generated by

fu1; u2; : : : ; ukg. If ı is the distance of x to this subspace, then

kX

j D1

jhx; uj ij2 D kxk2 � ı2 : .8/

Proof. We seek the element of the space spanned by fu1; u2; : : : ; ukg that

is nearest to x. That element will be the projection of x into the space, and

that is given by
kX

j D1

hx; uj iuj :

The equation (8) is just the Pythagorean theorem.



3.2. The Geometry of Hilbert Space 43

We note in passing that, if fu˛g is any orthonormal set in a Hilbert space

H , then it is contained in a maximal orthonormal set. This follows by par-

tially ordering all orthonormal sets inH by containment and then applying

Zorn’s lemma in a standard way. A maximal orthonormal set fvˇ gˇ2B has

the property that if x 2 H and hx; vˇ i D 0 for all ˇ then x D 0. A maximal

orthonormal set is commonly called a complete orthonormal system.

COROLLARY 3.11 (Bessel’s Inequality). If fu˛ W ˛ 2 Ag is any orthonor-

mal set in the Hilbert space H , and if yx.˛/ � hx; u˛i for each ˛, then

X

˛2A

jyx.˛/j2 � kxk2 :

Proof. This is immediate from the last identity in the statement of the the-

orem.

We shall say a few words about the important Riesz-Fischer theory.

THEOREM 3.12 (The Riesz-Fischer Theorem). Let fu˛g˛2A be a complete

orthonormal system in H . Let ' 2 `2.A/. Then ' D yx for some x 2 H .

Proof. For n D 1; 2; : : : , let An D f˛ 2 A W j'.˛/j > 1=ng. Since ' 2 `2,

we see that each An is a finite set. Set

xn D
X

˛2An

'.˛/u˛ :

Then bxn D ' � �An (where �S denotes the characteristic function of the set

S ). Hence bxn.˛/ ! '.˛/ for each ˛ 2 A. Also k' � bxnk2 � k'k2. Thus,

by the dominated convergence theorem (see [FOL]), k' � bxnk`2 ! 0.

We conclude that fbxng is a Cauchy sequence in `2.A/. Since the sets

An are finite, Proposition 3.8 now shows that kxn � xmk D kbxn � cxmk`2 .

Thus fxng is a Cauchy sequence in H . Since H is complete, there is an x

that is the limit of the xn in H .

For any ˛ 2 A we then have

yx.˛/ D hx; u˛i D lim
n!1

hxn; u˛i D lim
n!1

bxn.˛/ D '.˛/ :

THEOREM 3.13. Let fu˛g˛2A be an orthonormal set in the Hilbert space

H . The following statements are equivalent:

(a) fu˛g is a complete orthonormal system inH ,

(b) The set S of all finite linear combinations of members of fu˛g is dense

in H ,
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(c) For every x 2 H , we have kxk2 D P
˛2A jyx.˛/j2,

(d) If x; y 2 H , then hx; yi D P
˛2A yx.˛/yy.˛/.

Proof. The scheme of our proof is

.a/ H) .b/ H) .c/ H) .d/ H) .a/ :

Let E be the closure of S (see part (b)). Since S is a subspace, so is E .

If S is not dense in H , then E ¤ H , so that E? contains some nonzero

element. Therefore fu˛g is not maximal if S is not dense, and we see that

(a) implies (b).

Suppose that (b) holds. Fix x 2 H and � > 0. Since S is dense, there

is a finite set u˛1
; u˛2

; : : : ; u˛k
such that some linear combination of these

vectors has distance less than � from x. This approximation can only be

improved if we take yx. j̨ / for the coefficients of u
j̨

. Thus if

z D yx.˛1/u˛1
C � � � C yx.˛k/u˛k

;

then we have kx � zk < �. Therefore kxk < kzk C �. So Corollary 3.11

tells us that

.kxk � �/2 < kzk2 D jyx.˛1/j2 C � � � C jyx.˛k/j2 �
X

˛2A

jyx.˛/j2 : .9/

Since � > 0 was arbitrary, we see that (c) follows from .9/ and the Bessel

inequality.

We can write the equation in (c) as

hx; xi D hyx; yxi ;

where the inner product on the right is that in `2. Fix x; y 2 H . If (c) holds,

then
hx C �y; x C�yi D hyx C �yy; yx C �yyi

for every scalar �. Thus

�hx; yi C �hy; xi D �hyx; yyi C �hyy; yxi :

We take � D 1 and also � D i in the last displayed line. This information

tells us that hx; yi and hyx; yyi have the same real and imaginary parts. Hence

they are equal. Thus we have that (c) implies (d).

Finally, if (a) is false, then there exists a 0 ¤ w 2 H such that hw; u˛i D
0 for all ˛ 2 A. If x D y D w, then hx; yi D kwk2 ¤ 0. But yx.˛/ D 0 for

all ˛ 2 A. So (d) fails. We see that (d) implies (a).



CHAPTER 4

The Algebra of Operators

4.1 Preliminaries

Before we begin the subject proper of this chapter, we need briefly to dis-

cuss some topological issues. In particular, we must treat some topologies

on X and X�.

DEFINITION. Let X be a Banach space and X� its dual. We say that a

sequence fxj g in X converges to x 2 X in the weak topology if '.xj / !
'.x/ for every ' 2 X�.

DEFINITION. Let X be a Banach space and X� its dual. We say that

a sequence f'j g in X� converges to ' 2 X� in the weak-� topology if

'j .x/ ! '.x/ for every x 2 X .

We can see that, in a certain sense, weak convergence and weak-� con-

vergence are dual notions. Weak-� convergence is pointwise convergence

for functionals. Weak convergence is the dual of this idea.

EXAMPLE. Let X D `1 so that its dual X� D `1. Let 'j 2 X� be

the sequence that has a 1 in the j th position and 0s elsewhere. If f 2 X

then h'j ; f i ! 0. Hence the sequence f'j g converges to 0 in the weak-�
topology. But notice that f'j g does not converge in norm.

EXAMPLE. Let X beL1.T / so that its dualX� isL1.T /. Let xj D eij t 2
X . Then the xj do not converge in norm. Indeed they are not Cauchy.

However, if y 2 X� is any element then

hy; xj i ! 0

as j ! ˙1. This is just the Riemann-Lebesgue lemma. Hence the se-

quence fxj g converges to 0 in the weak topology.

45
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THEOREM 4.1 (Banach-Alaoglu). Let X be a Banach space and let B be

the closed unit ball inX�. Then B is weak-� compact.

REMARK. The proof of this fundamental result relies on Tychonoff’s the-

orem from topology, which in turn depends on the axiom of choice. Basi-

cally we think of an element of B in terms of its graph, and we think of that

graph as living in the product of closed unit discs. We need to know that

that product is compact.

Proof of the Theorem. Let V be any neighborhood of 0 in X . Let x 2 X .

Then there is a positive, finite number .x/ such that x 2 .x/V . Therefore

jLxj � .x/

for every L 2 B and x 2 X .

Let Dx be the set of all scalars ˛ such that j˛j � .x/. Let P be the

product of all the Dx , and let � be the product topology on P . Since each

Dx is compact, then so is P .

We may think of an element of P as a function f on X (linear or not)

satisfying jf .x/j � .x/. As a result, B � X� \ P . So B inherits two

topologies:

(a) The weak-� topology,

(b) The topology � from P .

We shall show that these two topologies coincide on B , and that B is then

a closed subset of P . Since P is compact (by Tychonoff’s theorem), it will

then follow that B is �-compact and therefore that B is weak-� compact.

Fix an L0 2 B . Choose xj 2 X for j D 1; 2; : : : ; n. Also select ı > 0.

Set

W1 D fL 2 X� W jLxj �L0xj j < ı for 1 � j � ng
and

W2 D ff 2 P W jf .xj / �L0xj j < ı for 1 � j � ng :

We let n, xj , and ı range over all possible values. This generates a family

of sets W1 and a family of sets W2. The sets W1 form a local basis for

the weak-� topology of X� at L0. The sets W2 form a local basis for the

product topology of P at L0. Since B � P \X�, we see that

W1 \ B D W2 \ B :

That proves that the two topologies coincide on B .
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Assume that f0 is in the �-closure of B . Choose x; y 2 X , scalars ˛; ˇ,

and � > 0. The set of all f 2 P satisfying jf � f0j < � at x is a �-

neighborhood of f0. Likewise, the set of all f 2 P satisfying jf �f0j < �
at y is a �-neighborhood of f0. And the same for the set of all such f

satisfying jf � f0j < � at ˛x C ˇy. Thus B contains such an f . Since f

is linear, we have

f0.˛x C ˇy/ � f̨0.x/ � f̌0.y/

D .f0 � f /.˛x C ˇy/ C ˛.f � f0/.x/ C ˇ.f � f0/.y/ :

Hence

jf0.˛x C ˇy/ � f̨0.x/ � f̌0.y/j < .1C j˛j C jˇj/� :

Since � > 0 was arbitrary, we find that f0 is linear.

Finally, if x 2 V and � > 0, then the same argument shows that there is

an f 2 B such that jf .x/ � f0.x/j < �. Since jf .x/j � 1, the definition

of B tells us that jf0.x/j � 1. We conclude that f0 2 B . This proves that

B is a closed subset of P .

4.2 The Algebra of Bounded

Linear Operators

There is considerable interest in studying the algebra of bounded linear op-

erators from a Hilbert space H to itself. This is in part because John von

Neumann taught us that this is the right device for studying quantum me-

chanics (a state is such a bounded operator). Today these so-called von

Neumann algebras are studied in their own right, and are the source of con-

siderable fascinating mathematics.

We shall study these matters in a slightly more general context. Given

Banach spaces X and Y , we shall consider B.X; Y /—the bounded linear

operators from X to Y .

THEOREM 4.2. Associate to each L 2 B.X; Y / the number

kLk D supfkLxkY W x 2 X; kxk � 1g :

This is a norm on B.X; Y /. Since Y is a Banach space, then so is B.X; Y /.

Proof. A subset of a normed linear space is bounded if and only if it lies in

some multiple of the unit ball. It follows then that kLk < 1 for every L 2
B.X; Y /. If ˛ is a scalar, then .˛L/.x/ D ˛ �Lx, so that k˛Lk D j˛j � kLk.
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The triangle inequality in Y shows that

k.L1 C L2/xk D kL1x C L2xk
� kL1xk C kL2xk
� .kL1k C kL2k/kxk
� kL1k C kL2k

for every x 2 X with kxk � 1. Thus

kL1 C L2k � kL1k C kL2k :

If L ¤ 0, then Lx ¤ 0 for some x 2 X . Therefore kLk > 0. So B.X; Y /

is a normed space.

Assume that Y is complete and that fLng is a Cauchy sequence in

B.X; Y /. Since

kLnx �Lmxk � kLn �Lmk � kxk ; .1/

and, since we assume that kLn � Lmk ! 0 as n;m ! 1, we see that

fLnxg is a Cauchy sequence in Y for each x 2 X . Therefore

Lx � lim
n!1

Lnx

exists. Clearly L W X ! Y is linear.

If � > 0, then the right-hand side of .1/ does not exceed �kxk provided

that n;m are sufficiently large. Thus

kLx �Lmxk � �kxk

for all large m. As a result, kLxk � .kLmk C �/kxk. Thus L 2 B.X; Y /

and kL�Lmk � �. We see then that Lm ! L in the norm of B.X; Y /. So

we have established the completeness of B.X; Y /.

Let X be a Banach space andX� its dual. We let x be any element ofX

and x� any element of X�. Instead of writing x�.x/, we frequently write

hx; x�i :

This is because we can think ofX� acting onX or we can think ofX acting

on X�. The following result clarifies this situation.

THEOREM 4.3. Let X be a Banach space and B the closed unit ball of X .

If x� 2 X� , then define

kx�k D supfjhx; x�ij W x 2 Bg :

Then we have the following properties:
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(a) The given norm makes X� into a Banach space.

(b) If B� is the closed unit ball of X� then, for every x 2 X ,

kxk D supfjhx; x�ij W x� 2 B�g :

As a result, the mapping x� 7! hx; x�i is a bounded linear functional

on X� having norm kxk.

(c) The closed unit ball B� is weak-� compact.

Proof. Since B.X; Y / D X� when Y is the scalar field, assertion (a) is

obvious.

Fix x 2 X . The Hahn-Banach theorem tells us that there is a y� 2 B�

such that

hx; y�i D kxk :
But we also know that

jhx; x�ij � kxk � kx�k � kxk

for every x� 2 B�. Part (b) follows from these two facts.

Finally, the open ball U of X is dense in B by definition. So the def-

inition of kx�k shows that x� 2 B� if and only if jhx; x�ij � 1 for every

x 2 U . Part (c) now follows from the Banach-Alaoglu theorem.

If T 2 B.X; Y /, then we associate to it its adjoint operator T � 2
B.Y �; X�/. In fact we define T � by way of the equation

hT �y�; xi D hy�; T xi :

This definition bears a moment’s thought. Given a y� 2 Y �, we want T �y�

to lie inX�. And in fact it is uniquely determined by this last equation. For

if h˛; xi D hˇ; xi for all x 2 X then h˛ � ˇ; xi D 0 for all x 2 X . Hence

˛ � ˇ � 0.

PROPOSITION 4.4. We have that T � is a linear mapping and

kT �k D kT k :

Proof. If y� 2 Y � and T 2 B.X; Y / then define

T �y� D y� ı T :

Certainly then T �y� so defined lies in X�. Also

hx; T �y�i D ŒT �y��.x/ D y�.T x/ D hT x; y�i :
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This shows that the definition of T � that we have given here is consistent

with the one that we presented before the proposition.

If y�
1 ; y

�
2 2 Y �, then

hx; T �.y�
1 C y�

2 /i D hT x; y�
1 C y�

2 i
D hT x; y�

1 i C hT x; y�
2 i

D hx; T �y�
1 i C hx; T �y�

2 i
D hx; T �y�

1 C T �y�
2 i

for every x 2 X . Therefore

T �.y�
1 C y�

2 / D T �y�
1 C T �y�

2 :

Similarly, T �.˛y�/ D ˛T �y� . Hence T � W Y � ! X� is linear.

Finally, part (b) of Theorem 4.3 tells us that

kT k D sup

�
jhT x; y�ij W kxk � 1; ky�k � 1

�

D sup

�
jhx; T �y�ij W kxk � 1; ky�k � 1

�

D sup

�
kT �y�k W ky�k � 1

�

D kT �k :

If T is an operator then we let N .T / denote its null space and R.T / its

range. Of course I is the identity operator.

PROPOSITION 4.5. Let X and Y be Banach spaces and T 2 B.X; Y /.

Then

N .T �/ D R.T / and N .T / D R.T �/? :

Proof. Exercise. Or see [RUD2, p. 94].

4.3 Compact Operators

In classical analysis, a compact set is a (potentially) infinite set that behaves

in many ways like a finite set.

In functional analysis, a compact operator is an operator with (poten-

tially) infinite-dimensional range that behaves in many ways like an opera-

tor with finite-dimensional range.
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We shall give three equivalent definitions of compact operator. Along

the way, we shall use the concept of “totally bounded.” A set E in a metric

space X is said to be totally bounded if, for each � > 0, there is a finite

collection of balls of radius � so that E lies in the union of those balls.

Equivalently, E in a Banach space X is totally bounded if, for any neigh-

borhood V of 0 inX , there is a finite set F � X so that E � F C V .

We give three equivalent definitions of compact operator:

DEFINITION. A linear operator T 2 B.X; Y / is said to be compact if one

of the following equivalent conditions holds:

(a) If U is the unit ball inX , then the closure of T .U / is compact in Y .

(b) T .U / is totally bounded.

(c) Every sequence fxj g � X contains a subsequence fxjk
g such that

fT xjk
g converges to a point y 2 Y .

We leave it as an exercise for the reader to verify that these three condi-

tions are equivalent. We develop some properties of compact operators.

If X , Y are Banach spaces, we have the notation B.X; Y / to denote the

bounded linear operators fromX to Y . We also write B.X/ for the bounded

linear operators from X to X . This latter space is an algebra1 with the

binary operations of composition and addition. Note that, if S; T 2 B.X/,

then

kS ı T k � kSkkTk :
An operator T 2 B.X/ is invertible if there is a S 2 B.X/ such that

ST D TS D I . We write S D T �1. Notice that, by the open mapping

theorem, T is invertible if and only if the kernel of T is f0g and the range

of T is X .

The spectrum �.T / of an operator T 2 B.X/ is the set of all scalars �

such that T ��I is not invertible. Thus � 2 �.T / if and only if at least one

of these statements is true:

(i) The range of T � �I is not all of X .

(ii) T � �I is not one-to-one.

When (ii) holds, � is said to be an eigenvalue of the operator T . The corre-

sponding eigenspace is the null space of T � �I . Each nonzero element of

that null space is an eigenvector of T . It will satisfy the equation

T x D �x :

1An algebra is a collection of objects equipped with binary operations of addition and

multiplication, and also with a notion of scalar multiplication.
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We have

PROPOSITION 4.6. Let X and Y be Banach spaces. Then

(a) If T 2 B.X/ and dim R.T / < 1, then T is compact.

(b) If T 2 B.X/, T is compact, and R .T / is closed, then dim R .T / <

1.

(c) The compact operators form a closed subspace of B.X; Y / in the norm

topology.

Proof. These are all exercises in the definitions. The result may be found

in many standard texts, including [RUD2].

Statement (a) is trivial.

If R.T / is closed, then R.T / is complete. Hence T is an open mapping

ofX onto R.T /. If T is compact, then we see that R.T / is locally compact.

Hence (b) follows from the fact that every locally compact normed linear

space is finite dimensional (see [RUD2]).

It remains to treat part (c). IfS and T are two compact operators fromX

into Y , then so is SCT , just because the sum of any two compact subsets of

Y is compact. Hence the compact operators form a subspace„ of B.X; Y /.

We now show that„ is closed. That will complete the verification of (c).

Let T 2 B.X; Y / be in the closure of „. Select r > 0 and let U be the

open unit ball inX . There exists an S 2 „ with kS �T k < r . Since S.U /

is totally bounded, there are points x1; x2; : : : ; xk in U such that S.U / is

covered by the balls of radius r having centers at the points Sxj . Since

kSx � T xk < r for every x 2 U , we conclude that T .U / is covered by

the balls of radius 3r with centers at the points T xj . Thus T .U / is totally

bounded, proving that T 2 „.

PROPOSITION 4.7. Let X and Y be Banach spaces. Then

(a) If T 2 B.X/, T is compact, and � ¤ 0, then dim N .T � �I/ < 1.

(b) If dimX D 1, T 2 B.X/, and T is compact, then 0 2 �.T /.

(c) If S 2 B.X/, T 2 B.X/, and T is compact, then so are ST and TS .

Proof. Put Y D N .T � �I/ in part (a). The restriction of T to Y is a

compact operator whose range is Y . So (a) and (b) both follow from (b) of

the last proposition because, if 0 62 �.T /, then R.T / D X . The proof of

(c) is trivial.
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PROPOSITION 4.8. LetX; Y be Banach spaces. Assume that T 2 B.X; Y /.

Then T is compact if and only if T � is compact.

Proof. This is just a matter of understanding the definition of compactness.

See [RUD2].

Assume that T is compact. Let fy�
j g be a sequence in the unit ball of

Y �. Define
fj .y/ D hy; y�

j i
for y 2 Y . Since jfj .y/� fj .y

0/j � ky� y0k, we see that ffj g is equicon-

tinuous. Since T .U / has compact closure in Y (since T is compact), the

Ascoli–Arzela theorem guarantees that ffj g has a subsequence ffnj
g that

converges uniformly on T .U /. Since

kT �y�
nj

� T �y�
nk

k D sup
x2U

jhT x; y�
nj

� y�
nk

ij

D sup
x2U

jfnj
.T x/� fnk

.T x/j ;

the completeness of X� implies that fT �y�
nj

g converges. Therefore T � is

compact.

For the converse direction, imitate the proof just given.

DEFINITION. Let M be a closed subspace of a Banach space X . If there is

another closed subspace N of X such that

X D M CN with M \N D f0g ;

thenM is said to be complemented inX . We further say thatX is the direct

sum of M and N and we write

X D M ˚N :

The dimension of X=M is called the codimension of M in X .

REMARK. It is a remarkable result of Lindenstrauss and Tzafriri [LIT] that

the only Banach space in which every subspace is complemented is Hilbert

space.

The idea of complemented subspace is closely related to the question of

producing a Hahn-Banach type theorem for linear operators (as opposed to

linear functionals). See [KAK] and [SOB] for these ideas.

LEMMA 4.9. Let M be a closed subspace of a Banach space X .

(a) If dimM < 1, then M is complemented in X .

(b) If dim .X=M/ < 1, then M is complemented in X .
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REMARK. The statement of this result is algebraic in nature, so it is no

surprise that the proof is a combination of algebra and logic.

Proof of the Lemma. For (a), let fe1; e2; : : : ; ekg be a basis for M . Each

x 2 M then has a unique representation

x D ˛1.x/e1 C ˛2.x/e2 C � � � C ˛k.x/ek :

Each j̨ is a bounded linear functional on M . So, by the Hahn-Banach

theorem, each has a continuous extension b̨j to a member of X�. Let N be

the intersection of all the null spaces of all the b̨j . ThenX D M ˚N . That

proves (a).

For (b), let � W X ! X=M be the quotient map. Let fe1; e2; : : : ; emg
be a basis for X=M . Choose xj 2 X so that �xj D ej , each j . Let N be

the vector space spanned by fx1; x2; : : : ; xmg. Then X D M ˚N .

LEMMA 4.10. Let M be a subspace of the Banach space X . If M is not

dense in X , and if r > 1, then there is an x 2 X such that

kxk < r but kx � yk � 1 for all y 2 M :

Proof. There is an x1 2 X whose distance fromM is 1. That is to say,

inffkx1 � yk W y 2 M g D 1 :

Select y1 2 M such that kx1 � y1k < r . Set x D x1 � y1.

PROPOSITION 4.11. Suppose that X is a Banach space. Let T 2 B.X/ be

compact. If � ¤ 0, then T � �I has closed range.

REMARK. This result is essential to the study of eigenvalues and eigenvec-

tors.

Proof of the Proposition. This is a straightforward application of the ideas—

see [RUD2].

By part (a) of Proposition 4.7, dim N .T � �I/ < 1. By part (a) of

Lemma 4.9, X is the direct sum of N .T � �I/ and a closed subspace M .

Define an operator S 2 B.M;X/ by

Sx D T x � �x :

Then S is one-to-one onM . Also R.S/ D R.T ��I/. To show that R.S/

is closed, it is enough to show the existence of an r > 0 such that

rkxk � kSxk .2/
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for all x 2 M . For if this last inequality holds, and if fSxj g is a Cauchy

sequence, then so is fxj g. Thus the completeness of R.S/ will follow.

Seeking a contradiction, we suppose that (2) fails for every r > 0. So

there exists a sequence fxj g inM such that kxj k D 1, Sxj ! 0, and (after

passing to a subsequence) T xj ! x0 for some x0 2 X . We conclude that

�xj ! x0. So x0 2 M and

Sx0 D lim
j !1

.�Sxj / D 0 :

Since S is one-to-one, we find that x0 D 0. But kxj k D 1 for every j , and

x0 D lim�xj , hence kx0k D j�j > 0. This is a contradiction. Hence (2)

follows for some r > 0.

THEOREM 4.12. Suppose that X is a Banach space. Let T 2 B.X/ be

compact. Let r > 0 and let E be a set of eigenvalues � of T such that

j�j > r for each � 2 E . Then

(a) For each � 2 E , R.T � �I/ ¤ X ,

(b) E is a finite set.

Proof. Our strategy is to show that if either (a) or (b) is false then there are

closed subspaces Mj of X and scalars �j 2 E so that

(3) M1 � M2 � � � � withMj ¤ Mj C1 for all j ;

(4) T .Mj / � Mj for j � 1;

(5) .T � �j I /.Mj / � Mj for j � 2.

The proof is brought to closure by showing that this information contradicts

the compactness of T .

Suppose that (a) is false. Then R.T � �0I / D X for some �0 2 E .

Set S D T � �0I and define Mj to be the null space of Sj . Since �0 is an

eigenvalue of T , there is an x1 2 M1, x1 ¤ 0. Since R.S/ D X , there is a

sequence fxj g � X so that Sxj C1 D xj for j D 1; 2; : : : . Then we have

Sjxj C1 D x1 ¤ 0 but Sj C1xj C1 D Sx1 D 0 :

Hence Mj is a proper, closed subspace of Mj C1. We conclude that (3)–(5)

hold with �j D �0.

Assume that (b) is false. Then E contains a sequence f�j g of distinct

eigenvalues of T . Choose corresponding eigenvectors ej ; let Mk be the

(finite-dimensional, hence closed) subspace ofX spanned by e1; e2; : : : ; ek .
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Since the �j are distinct, fe1; e2; : : : ; ekg is a linearly independent set, so

that Mj �1 is a proper subspace of Mj . This proves (3).

If x 2 Mk , then

x D ˛1e1 C ˛2e2 C � � � C ˛kek ;

which shows that T x 2 Mk and

.T � �kI /x D ˛1.�1 � �k/e1 C � � � C ˛k�1.�k�1 � �k/ek�1 2 Mk�1 :

Hence (4) and (5) hold.

Since we have closed subspaces Mj satisfying (3) to (5), Lemma 4.9

gives us vectors yj 2 Mj for j D 2; 3; : : : such that

kyj k � 2 and kyj � xk � 1 if x 2 Mj �1 : .6/

If 2 � j < k, then define

z D Tyj � .T � �j I /yj :

By (4) and (5), z 2 Mk�1. So (6) tells us that

kTyk � Tyj k D k�kyk � zk D j�kjkyk � ��1
k zk � j�kj > r :

The sequence fTykg has thus no convergent subsequences, even though

fykg is bounded. This contradicts the compactness of T .

We come to the big structure theorem for compact operators.

THEOREM 4.13. Let X be a Banach space and T 2 B.X/. Assume that T

is compact. Then

(a) If � ¤ 0, then the four numbers

˛ D dim N .T � �I/
ˇ D dimX=R.T � �I/
˛� D dim N .T � � �I/
ˇ� D dimX�=R.T � � �I/

are equal and finite.

(b) If � ¤ 0 and � 2 �.T /, then � is an eigenvalue of T and also of T �.

(c) �.T / is compact, at most countable, and has at most one limit point at

0.
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Proof. For simplicity, write S D T � �I .

Let M0 be a closed subspace of a Banach space Y . Let k be a positive

integer such that k � dimY=M0. Then there are vectors y1; y2; : : : ; yk

in Y such that the vector space Mj generated by M0 and y1; y2; : : : ; yj

contains Mj �1 as a proper subspace. By a standard result in the theory

of normed linear spaces, each Mj is closed. By the Hahn-Banach theo-

rem, there are continuous linear functionalsL1, L2, . . . , Lk on Y such that

Ljyj D 1 but Ljy D 0 for all y 2 Mj �1. These functionals are plainly

linearly independent. We may thus conclude that

If „ denotes the space of all continuous linear functionals on Y that

annihilateM0, then

dimY=M0 � dim„ : .7/

We apply this result with Y D X , M0 D R.S/. By Proposition 4.11,

R.S/ is closed. Also „ D R.S/? D N .S�/, so that (7) becomes

ˇ � ˛� : .8/

Next we take Y D X� with the weak-� topology. Let M0 D R.S�/.

It follows that R.S�/ is weak-� closed. Since „ consists of all weak-�
continuous linear functionals on X� that annihilate R.S�/, we see that „

is isomorphic to R.S�/? D N .S/ (see Proposition 4.5) and (7) becomes

ˇ� � ˛ : .9/

Our next task is to prove that

˛ � ˇ : .10/

Once we have established that, then

˛� � ˇ� .11/

follows, since T � is a compact operator (Proposition 4.7). Since ˛ < 1 by

(a) of Proposition 4.7, (a) of the present theorem is an obvious consequence

of the inequalities (8), (9), (10), and (11).

So assume that (10) is false. Then ˛ > ˇ. Since ˛ < 1, Lemma 4.9

shows that X contains closed subspaces E and F such that dimF D ˇ and

X D N .S/˚ E D R.S/˚ F :
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Each x 2 X has a unique representation as x D x1 C x2 with x1 2 N .S/

and x2 2 E . Define � W X ! N .S/ by setting �x D x1. The closed graph

theorem tells us that � is continuous.

Since dim N .S/ > dimF , there is a linear mapping � of N .S/ onto F

such that �x0 D 0 for some x0 ¤ 0. Define

ˆx D T x C ��x

for x 2 X . Then ˆ 2 B.X/. Since dim R.�/ < 1, �� is a compact

operator. Thus so is ˆ (see Proposition 4.6(a)).

Notice that

ˆ � �I D S C �� : .12/

Since x0 2 N .S/, �x0 D x0, hence ��x0 D 0. We may conclude then

that � is an eigenvalue of ˆ (with eigenvector x0). So

R.ˆ � �I/ ¤ X .13/

by Theorem 4.12.

Since �x D 0 for every x 2 E , (12) shows that

.ˆ � �I/.E/ D S.E/ D S.X/ D R.S/ :

If x 2 N .S/, then �x D x, and (12) gives

.ˆ � �I/.N .S// D �.N .S// D F :

The last two displayed lines now tell us that

R.ˆ � �I/ � R.S/C F D X : .14/

The evident contradiction between (13) and (14) shows that (10) is true.

That completes our proof of (a).

Part (b) follows from (a) because, if � is not an eigenvalue of T , then

˛.T / D 0 and (a) implies that ˇ.T / D 0. That is to say, R.T � �I/ D X .

Thus T � �I is invertible, so that � 62 �.T /.
Lastly, part (c) of Theorem 4.13 tells us that 0 is the only possible limit

point of �.T /, that �.T / is at most countable, and that �.T / [ f0g is com-

pact. If dimX < 1, then �.T / is finite. If dimX D 1, then 0 2 �.T / by

part (b) of Proposition 4.6. Hence �.T / is compact. This gives part (c) of

the current theorem and completes the proof.



CHAPTER 5

Banach Algebra Basics

The idea of a Banach algebra was conceived by I. M. Gelfand in his Ph.D.

thesis of 1936. It is a beautiful blend of functional analysis and classical

hard analysis. Particularly striking is how quickly and easily it leads to

profound and elegant results. We shall present some of these in the present

chapter.

5.1 Introduction to Banach Algebras

An algebra is a collection of objects equipped with binary operations of

addition and multiplication, and also with a notion of scalar multiplication.

For example, the collection of polynomials p.x/ of one variable forms an

algebra. This is clearly an algebraic idea. Gelfand’s key insight was to

combine this notion with some analysis.

DEFINITION. Let A be a vector space over the complex numbers C that is

equipped with operations of multiplication and addition and also of scalar

multiplication. We assume that, for x; y; z 2 A,

(a) x � .y � z/ D .x � y/ � z,

(b) z � .x C y/ D z � x C z � y,

(c) ˛.x � y/ D .˛x/ � y D x � .˛y/ for all scalars ˛.

Further suppose that A is equipped with a norm that satisfies the in-

equality

kx � yk � kxk kyk :
We then say that A is a normed complex algebra. If, in addition, A is

complete in the topology induced by this norm, then we call A a Banach

algebra.

59
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EXAMPLE. Let A be the collection of all functions continuous on the clo-

sure of the unit discD in the complex plane and holomorphic on the interior

of that disc. Define the norm

kf k D max
z2D.0;1/

jf .z/j :

Then it is easy to check that A is a Banach algebra.

EXAMPLE. Let A be the collection of all bounded holomorphic functions

on the open unit discD in the complex plane. Define the norm

kf k D sup
z2D

jf .z/j :

Then it is straightforward to check that A is a Banach algebra.

EXAMPLE. Let A be the collection of all polynomials p.z/ of a single

complex variable. Define the norm

kpk D sup
z2D

jp.z/j :

Then A is a normed complex algebra, but it is not complete. (For example,

the function f .z/ D P
j 2

�j z2j
is in the closure of this algebra, but it is

not itself a polynomial.) So A is not a Banach algebra.

EXAMPLE. Let X be a compact, Hausdorff space. Let C.X/ denote the

continuous, complex-valued functions on X . Equip C.X/ with the norm

kf k D max
x2X

jf .x/j :

Then C.X/ is a Banach algebra. As we shall see below, it is in some sense

the most important and the most typical Banach algebra.

PROPOSITION 5.1. Multiplication in a Banach algebra is continuous.

Proof. If xj ! x and yj ! y then

kxjyj � xyk � kxj .yj � y/k C ky.xj � x/k :

It is easy to see that fxj g and fyj g are bounded. Therefore the right-hand

side may be majorized by

Ckyj � yk C Ckxj � xk ;

and this clearly tends to 0.
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Although there has been considerable effort (see [RIC]) to study Banach

algebras that have no unit element, we shall be able to streamline our studies

considerably by assuming that there is a unit element. This is an element

e 2 A such that ex D xe D x for all x 2 A. We shall further assume that

kek D 1.

We call an element x 2 A invertible if there is an element x�1 2 A

such that x � x�1 D x�1 � x D e. The unit in the Banach algebra A and the

inverse of each invertible element are unique.

The spectrum of an element x 2 A is the set of all complex numbers �

such that x � �e is not invertible. We denote the spectrum of x by �.x/.

Of great interest in the study of any particular Banach algebra A is

the collection of its so-called multiplicative linear functionals.1 These are

bounded linear functionals ' that also respect multiplication:

'.x � y/ D '.x/ � '.y/ :

PROPOSITION 5.2. Let ' be a nontrivial multiplicative linear functional on

the Banach algebra A with unit e. Then '.e/ D 1 and '.x/ ¤ 0 for each

invertible x 2 A.

Proof. Certainly

'.e/ D '.e � e/ D '.e/ � '.e/ :

It follows immediately that '.e/ D 1 (for if '.e/ D 0 then the functional is

identically 0).

If x is invertible then

1 D '.e/ D '.x � x�1/ D '.x/ � '.x�1/ :

It follows that '.x/ ¤ 0.

PROPOSITION 5.3. Let A be a Banach algebra, x 2 A, and kxk < 1. Then

(a) e � x is invertible,

(b) k.e � x/�1 � e � xk � kxk2 � .1 � kxk/�1,

(c) j'.x/j < 1 for every multiplicative linear functional ' on A.

Proof. Since kxnk � kxkn and kxk < 1, the elements

un D e C x C x2 C � � � C xn .1/

1A multiplicative linear functional is actually a ring or algebra homomorphism. Neverthe-

less, “multiplicative linear functional” is the most commonly used terminology.
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form a Cauchy sequence in A. Since A is complete, there is an element

u 2 A such that un ! u. Since xn ! 0, and since

un � .e � x/ D e � xnC1 D .e � x/ � un ;

the continuity of multiplication implies that u is the inverse of e � x.

Line (1) implies that

ku� e � xk D kx2 C x3 C � � � k �
1X

nD2

kxkn D kxk2

1 � kxk :

That is assertion (b).

Finally, if � 2 C and j�j � 1, then (a) implies that e���1x is invertible.

The preceding proposition then tells us that

1 � ��1'.x/ D '.e � ��1x/ ¤ 0 :

Thus '.x/ ¤ �.

An obvious consequence of Proposition 5.2 and part (c) of the last

proposition is that any multiplicative linear functional has norm precisely

1.

DEFINITION. Let A be a Banach algebra and x 2 A. The spectral radius

of x is the number

�.x/ D supfj�j W � 2 �.x/g :

We now give a slightly different argument to again show that the norm

of a multiplicative linear functional cannot exceed 1.

PROPOSITION 5.4. Let ' be a multiplicative linear functional on the Ba-

nach algebra A. Then, for all x 2 A,

j'.x/j � kxk :

Proof. Fix x 2 X . If � is a complex scalar with j�j > kxk, then

�e � x D �.e � x=�/ :

The term e � x=� is invertible because its inverse is the Neumann series

eC x=�C x2=�2 C � � � :

Thus � 62 �.x/.
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In other words,

�.x/ � f� W j�j � kxkg :

Let ' be a multiplicative linear functional on A. Let s D '.x/. We claim

that s 2 �.x/. This is so because '.se � x/ D s � s D 0, so se � x cannot

be invertible.

We conclude that

fs W s is in the image of x under some multiplicative

linear functional 'g � f� W j�j � kxkg :

But this says that

j'.x/j � kxk :

5.2 The Structure of a Banach Algebra

We present some classical results that begin to lay out how a Banach algebra

is put together.

PROPOSITION 5.5. Let A be a Banach algebra. For each x 2 A, �.x/ is

compact and nonempty.

Proof. Notice that � 2 �.x/ if and only if x � �e is not invertible. The

complement of the invertible elements is closed (because the set of invert-

ible elements is open—see below). Finally, the mapping

� 7�! x � �e

is a continuous mapping of the complex plane intoA. So the inverse image

of a closed set is closed. We already know that the spectrum of x is bounded

by kxk. Hence the spectrum is compact.

Fix x0 2 A and choose �0 62 �.x0/. Then .x0 � �0e/
�1 ¤ 0. Then the

Hahn-Banach theorem guarantees the existence of a bounded linear func-

tionalˆ on A such that

f .�0/ � ˆŒ.x0 � �0e/
�1�

is not zero.

One may calculate, at any � 62 �.x0/, that

lim
�!�

f .�/ � f .�/
� � � D ˆŒ.x0 � �e/�2� :
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Thus f is complex differentiable and hence holomorphic at any � not in

�.x0/.

If �.x0/ were empty, then f .�/ would be an entire function that tends

to 0 at 1. It then follows that f .�/ � 0 by Liouville’s theorem. That

contradicts the fact that f .�0/ ¤ 0. Hence �.x/ is not empty.

PROPOSITION 5.6. Let A be a Banach algebra. Then the set of invertible

elements in A is open.

Proof. Let x be invertible in A and let h 2 A be small. Then

x C h D x � .e C x�1h/ :

If h is sufficiently small in norm then kx�1hk is smaller than 1. Then the

usual Neumann series argument shows that e C x�1h is invertible. And of

course x is invertible. Hence x C h is invertible.

THEOREM 5.7 (Gelfand-Mazur). If A is a complex Banach algebra with

unit in which every nonzero element has an inverse, then A is isometrically

isomorphic to the complex field C.

Proof. Let x 2 A and let �1, �2 be unequal complex numbers. Then at least

one of x � �1e and x � �2e is nonzero. Hence one of them, by hypothesis,

must be invertible. The last proposition now tells us that �.x/ therefore

consists of just one point. Call it �.x/.

Since x � �.x/e is not invertible, it must be 0. Hence x D �.x/e. Thus

the mapping x ! �.x/ is an isomorphism of A onto the complex field. It

is also an isometry since j�.x/j D k�.x/ek D kxk for every x 2 A.

THEOREM 5.8 (The Spectral Radius Theorem). Let A be a Banach algebra.

Let x 2 A. Then

�.x/ D lim
n!1

kxnk1=n :

REMARK. It is not even a priori clear that the limit exists. The existence

of the limit is part of the assertion of the theorem, and we shall prove it.

This result is aesthetically very pleasing, but it is also a useful analytic

tool.

Proof of the Theorem. Fix x 2 A and let n be a positive integer. Choose a

complex number � and assume that �n 62 �.xn/. Then

.xn � �ne/ D .x � �e/.xn�1 C �xn�2 C � � � C �n�1e/ :
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Multiplying both sides by .xn � �ne/�1, shows that .x � �e/ is invertible

so that � 62 �.x/.
Thus, if � 2 �.x/, then �n 2 �.xn/ for n D 1; 2; 3; : : : . By our

standard bounds on the spectrum, we know that j�nj � kxnk. Hence j�j �
kxnk1=n. As a result,

�.x/ � lim inf
n!1

kxnk1=n :

If j�j > kxk, it is then easy to check that

.�e � x/ �
1X

nD0

��n�1xn D e : .2/

This last series is thus equal to �.x � �e/�1.

Let ˆ be a bounded linear functional on A and define

f .�/ D ˆŒ.x � �e/�1� :

By line (2), the expansion

f .�/ D �
1X

nD0

ˆ.xn/��n�1 .3/

is valid for all � with j�j > kxk.

Arguing as in the last proof, we see that f is holomorphic outside �.x/,

hence certainly in the set f� W j�j > �.x/g. Thus the power series (3)

converges for j�j > �.x/. In particular

sup
n

jˆ.��nxn/j < 1 .4/

for all j�j > �.x/ and for every bounded linear functionalˆ on A.

The Hahn-Banach theorem tells us that the norm of any element of A is

just the same as its norm as a linear functional on the dual space ofA. Since

(4) holds for every ˆ, we can apply the uniform boundedness principle and

conclude that, for each � with j�j > �.x/, there is a real number C.�/ such

that

k��nxnk � C.�/

for every positive integer n. Multiply this last line by j�jn and take nth

roots. As a result,

kxnk1=n � j�jjC.�/j1=n

if j�j > �.x/. Thus

lim sup
n!1

kxnk1=n � �.x/ :
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5.3 Ideals

Let A be a Banach algebra. A set I � A is called an ideal if

(a) I is a linear subspace of A,

(b) If x 2 A and y 2 I, then xy 2 I.

EXAMPLE. Consider the Banach algebra A D C.Œ0; 1�/. Then the set of

functions f in A such that f .1=2/ D 0 is an ideal.

Also the set of f 2 A such that f .1=3/ D f .1=2/ D f .2=3/ D 0 is an

ideal.

It is a theorem that any maximal ideal (see below) in C.Œ0; 1�/ is a set of

the form

I D ff 2 A W f .x0/ D 0g
for some x0 2 Œ0; 1�.

EXAMPLE. Consider the Banach algebra A D H1.D/, the bounded ana-

lytic functions on the unit discD � C. Consider

I D ff 2 A W f .0/ D f 0.0/ D 0g :

It is easy to check that I is an ideal in A.

DEFINITION. An ideal I in a Banach algebra A is called a maximal ideal

if there is no ideal J that properly contains I and is properly contained in

A.

EXAMPLE. Consider the Banach algebra A D C.Œ0; 1�/. Let

I D ff 2 A W f .1=2/ D 0g :

We claim that I is a maximal ideal.

If not, then there is an ideal J that lies between I and A. So there is

an element f 2 J such that f .1=2/ ¤ 0. Consider an element g 2 I that

vanishes at 1=2 but nowhere else. Then

h D f 2 C g2

lies in J and vanishes at no point of Œ0; 1�. Then m D 1=h lies in A so that

.1=h/ � h � 1 2 J.

But if 1 2 J then A � J. So J is not a proper ideal.

PROPOSITION 5.9. Let A be a Banach algebra. Let I be a proper ideal in

A. Then I lies in a maximal ideal in A.
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Proof. This is just a straightforward application of Zorn’s lemma. Simply

partially order the collection of all ideals by containment.

PROPOSITION 5.10. Let A be a Banach algebra. Let I be a maximal ideal

in A. Then I is closed in A.

Proof. It is clear that the closure of an ideal is still an ideal.

Certainly I contains no invertible elements. And the set of all invertible

elements is open (Proposition 5.6). So the closure of I will contain no

invertible elements. Thus the closure of I will still be a proper ideal. Since

I is a maximal ideal, it must then be that the closure of I equals I. Hence

I is closed.

The most convenient way to identify, and to handle, maximal ideals

is by way of a theorem that connects them up with multiplicative linear

functionals.

THEOREM 5.11. Let A be a Banach algebra and let ' be a multiplicative

linear functional on A. Then the kernel of ' is a maximal ideal in A.

Conversely, if I is a maximal ideal in A, then I is the kernel of some

multiplicative linear functional ' on A.

We defer the proof of this result for a few moments while we develop

some ancillary machinery that will be needed. We note that, because of this

result, the collection of all multiplicative linear functionals on a Banach

algebra A is often called the maximal ideal space of A. We sometimes

denote this space by 4.

DEFINITION. If A is a Banach algebra and I � A an ideal then we define

the quotient of A by I to be the collection of all cosets

x C I � fx C i W i 2 Ig :

Denote such a coset by yx. The collection of all cosets is denoted A=I.

We see that

yx C yy D fx C y C i W i 2 Ig
so that yx C yy D 1x C y. Likewise, yx � yy D bx � y. Thus A=I is an algebra.

We define a norm on A=I by

kyxkA=I � inf
i2I

kx C ikA :

THEOREM 5.12. Let A be a Banach algebra and J a closed ideal in A.

Then the quotientA=J has the following properties:
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(a) A=J is a normed linear space,

(b) If A is a Banach space, then so is A=J,

(c) If A is a commutative Banach algebra and J is a proper closed ideal in

A, then A=J is a commutative Banach algebra.

Proof. Let ' W A ! A=J be the usual quotient map. If x 2 J then

'.x/ D 0 so k'.x/k D 0. If x 62 J then the fact that J is closed implies

that k'.x/k > 0. Clearly k�'.x/k D j�jk'.x/k. Thus if x1; x2 2 A and

� > 0 then there exists y1; y2 2 J such that

kx1 C y1k < k'.x1/k C �

and

kx2 C y2k < k'.x2/k C � :

Hence

k'.x1 C x2/k � kx1 C x2 C y1 C y2k < k'.x1/k C k'.x2/k C 2� :

This gives the triangle inequality on the quotient space and proves (a).

Suppose that A is complete and let f'.xn/g be a Cauchy sequence in

A=J. Then there is a subsequence fxnj
g so that

k'.xnj
/� '.xnj C1

/k < 2�j

for each positive j . Also there exist elements zj 2 A so that zj � xnj
2 J

and kzj � zj C1k < 2�j . Thus fzj g is a Cauchy sequence in A. Since A

is complete, there exists a z 2 A so that kzj � zk ! 0. Therefore '.xnj
/

converges to '.z/ in A=J. But, if a Cauchy sequence has a convergent

subsequence, then the full sequence converges. So A=J is complete. We

have proved (b).

To verify (c), select x1; x2 2 A and � > 0 and choose y1; y2 2 J so

that

kxj C yj k < k'.xj /k C � .5/

holds for j D 1; 2. Notice that .x1 C y1/ � .x2 C y2/ 2 x1x2 C J so that

k'.x1x2/k � k.x1 C y1/.x2 C y2/k � kx1 C y1k � kx2 C y2k :

Line (5) tells us that

k'.x1x2/k � k'.x1/k � k'.x2/k :
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If e is the unit in A, then we take x1 62 J and x2 D e in this last

displayed line. This yields k'.e/k � 1. But e 2 '.e/, and the definition

of the quotient norm now shows us that k'.e/k � kek D 1. So k'.e/k D
1.

The next result sums up many of our key ideas. We have provided some

separate arguments elsewhere, but repeat some of the key notions here.

THEOREM 5.13. Let A be a Banach algebra. Then

(a) Every maximal ideal M of A is the kernel of some multiplicative linear

functional on A,

(b) � 2 �.x/ if and only if f .x/ D � for some multiplicative linear func-

tional f on A,

(c) An element x is invertible in A if and only if f .x/ ¤ 0 for every multi-

plicative linear functional f ,

(d) f .x/ 2 �.x/ for every x 2 A and every multiplicative linear functional

f ,

(e) jf .x/j � �.x/ � kxk for every x 2 A and every multiplicative linear

functional f .

Proof. Many arguments in Banach algebra theory use the ideas in this proof.

It is well worth mastering. The ultimate resource in Banach algebra theory

is [RIC]. A more modern text is [KAN].

If M is a maximal idea of A, then A=M is a field. Since M is closed,

A=M is a Banach algebra. Let ' be the quotient map. The Gelfand-Mazur

theorem then tells us that there is an isomorphism j of A=M onto the com-

plex field C. If we set h D j ı', then h is a multiplicative linear functional

on A and the kernel of h is M itself. This proves (a).

If � 2 �.x/, then x � �e is not invertible. Therefore the set of all

elements .x � �e/y, where y 2 A, is a proper ideal in A. This ideal lies

in some maximal ideal N of A. By part (a), there is a multiplicative linear

functional h so that h.x � �e/ D 0. Since h.e/ D 1, we see that h.x/ D �.

That proves half of (b).

If instead � 62 �.x/, then there is a y 2 A so that .x � �e/y D e. It

follows that h.x � �e/h.y/ D 1 for every multiplicative linear functional h

on A. Thus h.x � �e/ ¤ 0 or h.x/ ¤ �. That proves the rest of (b).

Since x is invertible if and only if 0 62 �.x/, we see that (c) follows

from (b).

Finally, (d) and (e) are immediate consequences of (b).
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REMARK. That the kernel of a multiplicative linear functional is a maximal

ideal is now obvious. Thus the terminology “maximal ideal space” is fully

justified.

The last general result for Banach algebras that we present is a powerful

structure theorem. We begin with a little terminology.

A Banach algebra A equipped with an involution x 7! x� that satisfies

kxx�k D kxk2

for every x 2 A is called a B�-algebra.

It holds that

kxk2 D kxx�k � kxkkx�k
so that kxk � kx�k. Also

kx�k � kx��k D kxk :

Thus

kxk D kx�k :
It also follows that

kxx�k D kxkkx�k :
Let A be a Banach algebra and 4 the maximal ideal space. The mapping

that assigns to each x 2 A a function yx W 4 ! C by way of the formula

yx.h/ D h.x/

is called the Gelfand transform. The Gelfand transform enables us to realize

any Banach algebra A as an algebra of continuous functions on a compact

Hausdorff space (the compact Hausdorff space being 4 itself equipped with

the weak-� topology). The Banach-Alaoglu theorem guarantees that 4 is

compact.

The following theorem is generally considered to be one of the most

central and profound results of this elegant theory.

THEOREM 5.14 (Gelfand-Naimark). Let A be a commutative B� algebra

with maximal ideal space 4. The Gelfand transform is then an isometric

isomorphism of A onto C.4/ that has the additional property that

h.x�/ D h.x/

for x 2 A and h 2 4. [Here the overline denotes complex conjugation.]

Equivalently, we assert that

.x�/bD yx
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for x 2 A. (Hereb is the Gelfand transform: yx.h/ D h.x/ for x 2 A and

h 2 4.) In particular, x is hermitian (that is, x� D x) if and only if yx is a

real-valued function.

REMARK. The theorem tells us that that virtually any Banach algebra is

actually the continuous functions on some compact Hausdorff space. This

gives a helpful way to think of a Banach algebra.

Many important theorems in analysis, such as the Stone-Weierstrass the-

orem, are formulated on compact Hausdorff spaces.

Proof of the Theorem. Assume first that u 2 A and u D u� (we will have

an algebraic trick below for handling the more general case). Let h 2 4.

We need to prove that h.u/ is real. For t real, set z D u C i te. Write

h.u/ D ˛ C iˇ, with ˛ and ˇ real. Then

h.z/ D ˛ C i.ˇ C t/ and zz� D u2 C t2 :

Thus

˛2 C .ˇ C t/2 D jh.z/j2 � kzk2 D kzz�k � kuk2 C t2 :

In other words,

˛2 C ˇ2 C 2ˇt � kuk2

for t 2 R. This last line tells us (since it is true for all t 2 R) that ˇ D 0.

So h.u/ is real.

If x 2 A, then x D uC iv with u D u� and v D v�. Thus x� D u� iv.

Since yu and yv are real, the second statement of the theorem is thus proved.

Thus we see that yA is closed under complex conjugation. By the Stone-

Weierstrass theorem, yA is therefore dense in C.4/.
If x 2 A and y D xx�, then y D y�. Hence ky2k D kyk2. It follows,

by induction on n, that kymk D kykm for m D 2n. Therefore kyyk1 D
kyk by the spectral radius theorem and part (e) of Theorem 5.13. Since

y D xx�, the second displayed line of the theorem tells us that yy D jyxj2.

Hence

kyxk2
1 D kyyk1 D kyk D kxx�k D kxk2 ;

so that kyxk1 D kxk. Thus x $ yx is an isometry. So yA is closed in C.4/.
Since yA is also dense in C.4/, we conclude that yA D C.4/.

REMARK. The continuous functions on a compact, Hausdorff space are

fairly easy to understand. But many Banach algebras are still quite subtle.

For instance, there are many questions aboutH1.D/ orH1.B/ (whereB

is the unit ball in Cn) for which we are nowhere near to having an answer.
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5.4 The Wiener Tauberian Theorem

Norbert Wiener was one of the most powerful analysts of his day. In the

celebrated paper [WIE], he used everything but the kitchen sink to establish

certain rather deep convergence results for Fourier series (these are called

“Tauberian theorems” because they entail one kind of convergence implying

another kind of convergence). It really put the theory of Banach algebras

on the map when Gelfand was able to use his new ideas to prove one of

Wiener’s profound results in just a few lines. We present this proof here.

Before we state the theorem and prove it, we introduce some terminol-

ogy and notation.

Let A denote the space of all complex functions f on the unit circle T

which have absolutely convergent Fourier series. So

f .ei�/ D
1X

nD�1

cne
in�

with X

n

jcnj < 1 : .6/

The expression (6) is the norm on this space. Clearly A is a Banach space.

In fact, in a natural fashion,A is isometrically isomorphic to `1.

We also note that A is a commutative Banach algebra under pointwise

multiplication. For, if f 2 A with f .ei� / D P
n cne

in� and g 2 A with

g.ei� / D
P

n bne
in� , then

f .ei�/ � g.ei� / D
X

n

 X

k

cn�kbk

!
ein� :

Therefore

kfgk D
X

n

ˇ̌
ˇ̌
ˇ
X

k

cn�kbk

ˇ̌
ˇ̌
ˇ �

X

k

jbkj
X

n

jcn�kj D kf k � kgk :

Furthermore, the function that is identically 1 is the unit of A, and k1k D 1.

THEOREM 5.2. Suppose that the continuous function f on the circle group

has absolutely convergent Fourier series

f .ei�/ D
1X

nD�1

cne
in� ;
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so that X

n

jcnj < 1 :

Assume further that f vanishes nowhere. Then

1

f .ei�/
D

1X

nD�1

ne
in�

with X

n

jnj < 1 :

So the reciprocal of a nonvanishing function with absolutely convergent

Fourier series also has absolutely convergent Fourier series.

Proof. Let A be as above. Set f0.e
i� / D ei� . Then f0 2 A, 1=f0 2 A, and

kf n
0 k D 1 for every integer n. If h is any multiplicative linear functional of

A and h.f0/ D �, then the fact that khk � 1 implies that

j�nj D jh.f n
0 /j � kf n

0 k D 1

for any integer n, hence j�j D 1. Thus, by the Gelfand-Naimark theorem, to

each h there corresponds a point ei˛ in the circle group such that h.f0/ D
ei˛. Hence

h.f n
0 / D ein˛ D f n

0 .e
i˛/

for any integer n.

If f is given by

f .ei�/ D
1X

nD�1

cne
in� ;

then f D P
n cnf

n
0 . This series converges in the topology of A. Since h is

a continuous linear functional on A, we conclude that

h.f / D f .ei˛/ :

Our hypothesis that f vanishes at no point of the circle group then says

that f is not in the kernel of any multiplicative linear functional of A. And

now Theorem 5.13(c) guarantees that f is invertible in A.





CHAPTER 6

Topological

Vector Spaces

6.1 Basic Ideas

The most basic mathematical structure for functional analysis is that of a

Banach space. We have learned that the richer structure of Hilbert space can

lead to greater depth and insight. Certainly the most elementary structure—

more primitive than either Banach space or Hilbert space, but which still

yields useful results—is that of topological vector space. We shall discuss

the basic ideas here.

Convexity was implicit in much of what we did with Banach and Hilbert

spaces. In the current presentation, convexity will play a more explicit role.

We say that a set E in a linear space is convex if, whenever x; y 2 E and

0 � t � 1, then

.1 � t/x C ty 2 E :
This condition simply says that the segment connecting x and y in E also

lies in E .

In this chapter and what follows, we will make use of multi-index nota-

tion. Fix attention on a Euclidean space Rn. A multi-index ˛ on Rn is an

n-tuple of nonnegative integers: ˛ D .a1; a2; : : : ; an/. We let

x˛ D x
˛1

1 � x˛2

2 � � � � � x˛n
n ;

@˛

@x˛
D @˛1

@x˛1

@˛2

@x˛2
� � � @

˛n

@x˛n
:

Other variants of this notation will be used as needed.

DEFINITION. A topological vector space X is a vector space (over a field

k, which is usually either R or C) which is endowed with a topology so that

75
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the maps

.x; y/ 7! x C y

.�; x/ 7! �x

are continuous from X �X to X or from k �X to X respectively.

We say that a topological vector space (often abbreviated TVS) is lo-

cally convex if there is a basis for the topology consisting of convex sets.

Most any TVS that we shall encounter will be locally convex and Haus-

dorff.1

DEFINITION. Let X be a linear space. A seminorm on X is a function

x 7! �.x/, from X to Œ0;1/, such that

(a) �.x C y/ � �.x/C �.y/ for all x; y;2 X ,

(b) �.�x/ D j�j�.x/ for all x 2 X , � 2 k.

The difference between a seminorm and a norm is that, in the former,

�.x/ D 0 does not imply that x D 0.

We use seminorms to generate a subbasis for a topology as follows:

THEOREM 6.1. Let f�˛g˛2A be a family of seminorms on a linear space X .

If x 2 X , ˛ 2 A, and � > 0, let us define

Ux;˛;� D fy 2 X W �˛.y � x/ < �g :

Let T be the topology generated by theUx;˛;� (that is, we think of the collec-

tion of all Ux;˛;� as a subbasis for the topology). We have these properties

of the topology:

(i) For each x 2 X , the collection of finite intersections of sets Ux;˛;�

forms a neighborhood basis at x.

(ii) If fxj gj 2J is a net 2 in X , then xj ! x if and only if �˛.xj � x/ ! 0

for all ˛ 2 A.

(iii) The pair .X; T / is a locally convex TVS.

1We note that any Banach or Hilbert space is automatically locally convex and Hausdorff.

The basis for the topology in that case is just the metric balls.
2Here a net is a mapping from a directed set into X . The idea of net generalizes that of

sequence. See [KRA5], [KRA6].
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Proof. For part (i), let x 2 \k
1Uxj ; j̨ ;�j

. Then let ıj D �j ��˛.x�xj /. By

the triangle inequality, we have x 2 \k
1Ux; j̨ ;ıj

� \k
1Uxj ; j̨ ;�j

. Thus the

assertion follows from the definition of subbasis.

For part (ii) it suffices, in view of (i), to notice that �˛.xj � x/ ! 0 if

and only if fxj g is eventually in Ux;˛;� for every � > 0.

For part (iii), we see that the continuity of the vector operations follows

from the definition of continuity in terms of nets and from part (ii). Indeed,

if xj ! x and yj ! y, then

�˛..xj C yj / � .x C y// � �˛.xj � x/C �˛.yj � y/ ! 0 :

Hence xj C yj ! x C y. If also �j ! �, then eventually j�j j � C �
j�j C 1. So

�˛.�j xj � �x/ � �˛.�j .xj � x//C �˛..�j � �/x/
� C � �˛.xj � x/C j�j � �j�˛.x/ :

It then follows that �jxj ! �x. Furthermore, the sets Ux;˛;� are convex.

For if y; z 2 Ux;˛;� , then

�˛.x � Œty C .1 � t/z�/ � �˛.tx � ty/C �˛..1 � t/x C .1 � t/z/

< t� C .1 � t/� D � :

The local convexity of the topology thus follows from (i).

We have

PROPOSITION 6.2. Let X and Y be vector spaces with topologies defined,

respectively, by families f�˛g˛2A and f�ˇ gˇ2B of seminorms. Let T W X !
Y be a linear map. Then T is continuous if and only if, for each ˇ 2 B ,

there exist ˛1; : : : ; ˛k 2 A and C > 0 such that

�ˇ .T x/ � C �
kX

1

�
j̨
.x/ :

REMARK. One of our main applications of topological vector spaces will

be to the theory of distributions. In that context, the condition given in this

proposition will be the most useful means of verifying the continuity of a

linear mapping.

Proof of the Proposition. If the condition

�ˇ .T x/ � C �
kX

1

�
j̨
.x/ :
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holds and if hxj i is a net converging to x 2 X , then by part (ii) of the last

theorem we have �˛.xj � x/ ! 0 for all ˛. Hence �ˇ .T xj �T x/ ! 0 for

all ˇ. Thus T xj ! T x. We conclude that T is continuous.

Conversely, if T is continuous, then for every ˇ 2 B there is a neigh-

borhood U of 0 in X such that �ˇ .T x/ < 1 for x 2 U . Part (i) of

the last theorem tells us that we may assume that U D \k
1Ux; j̨ ;�j

. Let

� D minf�1; �2; : : : ; �kg. Then �ˇ .T x/ < 1 whenever �
j̨
.x/ < � for all

j .

Given x 2 X , there are now two possibilities: If �
j̨
.x/ > 0 for some

j , then let y D �x=
Pk

1 � j̨
.x/. So �

j̨
.y/ < � for all j . Hence

�ˇ .T x/ D
kX

1

��1�
j̨
.x/�ˇ .Ty/ � ��1

kX

1

�
j̨
.x/ :

If instead �
j̨
.x/ D 0 for all j , then �

j̨
.rx/ D 0 for all j and all r > 0.

Hence r�ˇ .T x/ D �ˇ .T .rx// < 1 for all r > 0. Therefore �ˇ .T x/ D 0.

Then �ˇ .T x/ � ��1
Pk

1 � j̨
.x/ in this case as well.

Exercises for the Reader Let X be a vector space equipped with the

topology induced by a family f�˛g˛2A of seminorms.

1. The linear space X is Hausdorff if and only if, for each x ¤ 0 in X ,

there is an ˛ 2 A such that �˛.x/ ¤ 0.

2. If X is Hausdorff and A is countable, then X is metrizable with a

translation-invariant metric.3

6.2 Frechet Spaces

DEFINITION. A complete Hausdorff TVS whose topology is defined by a

countable family of seminorms is called a Fréchet space.

It is important now to look at several examples of topological vector

spaces.

EXAMPLE. Consider the space of continuous functions from R to R. For

each compact K � R, define the seminorm

�K.f / D sup
x2K

jf .x/j :

3Here a metric d is translation invariant if d.x;y/ D d.x C z; y C z/ for all x;y; z 2
X .
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An equivalent, and somewhat simpler, way to define the topology is

with the countable family of seminorms

�j .f / D sup
x2Œ�j;j �

jf .x/j

for j D 1; 2; 3; : : : .

We see that this space is complete, so it is a Fréchet space.

EXAMPLE. Consider the space of measurable functions on R that are lo-

cally integrable (i.e., integrable on compact sets). Define the seminorms,

for k D 1; 2; : : : ,

�k.f / D
Z

fxWjxj�kg

jf .x/j dx :

This gives a Fréchet space (just because L1 is complete).

EXAMPLE. Fix a positive integer k and consider the C k functions on an

open set U � RN . For K � U compact and 0 � j � k, define seminorms

�j;K.f / � sup
x2K;j˛j�j

ˇ̌
ˇ̌ @

˛

@x˛
f .x/

ˇ̌
ˇ̌ :

Then it is not difficult to see that this is a Fréchet space.





CHAPTER 7

Distributions

7.1 Preliminary Remarks

The idea of generalized function has roots in the nineteenth century. Even

more than 100 years ago, mathematicians wanted a way to say that a func-

tion satisfies a differential equation in some “weak” sense. The impetus

was to develop a notion of function that is not conceived “point by point” as

we usually do. This set of ideas developed further traction in the twentieth

century, especially because of various questions in harmonic and functional

analysis. It was in 1950 that Laurent Schwartz wrote his definitive book

[SCH] enunciating the theory of distributions (or generalized functions).

The key insight for freeing the notion of function from a point-by-point

realization is to think of a function as an element of a dual space. We already

do this with Lp functions (which are equivalence classes, and certainly not

defined point-by-point). There are different theories of distributions, de-

pending on which space we are calculating the dual of.

Let U be an open set in RN . We consider C1
c .U / to be the collection

of those functions f that are infinitely differentiable and supported in some

compact subset K of U . Here the choice of K will depend on f . We equip

C1
c with the seminorms

�˛;K .f / D sup
K

ˇ̌
ˇ̌ @

˛

@x˛
f

ˇ̌
ˇ̌

for ˛ a multi-index and K compact in U . It is quite common in this subject

to denote C1
c .U / by the symbol D.U /.

DEFINITION. The topology on C1
c .U / has these features:

(a) A sequence f�j g in C1
c .U / converges in C1

c to � if f�j g � C1
c .K/

for some compact set K � U and �j ! � in the topology of C1
c .K/.

81
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That is to say, we require that .@˛=@x˛/�j ! .@˛=@x˛/� uniformly for

all ˛.

(b) If X is a locally convex topological vector space and T W C1
c .U / !

X is a linear map, then T is continuous if T restricted to C1
c .K/ is

continuous for each compactK � U . That is, it is continuous if T�j !
T� whenever �j ! � in C1

c .K/ and each K � U is compact.

(c) A linear mapping T W C1
c .U / ! C1

c .U 0/ is continuous if, for each

compact K � U , there is a compact K 0 � U 0 so that T .C1
c .K// �

C1
c .K 0/ and T is continuous from C1

c .K/ to C1
c .K 0/.

7.2 What is a Distribution?

DEFINITION. A distribution on U is a continuous linear functional on

C1
c .U /. The space of all distributions on U is denoted by D 0.U /. We

set D 0 D D 0.RN /. We impose the weak-� topology on D 0.U /.

It is important to have several incisive examples of distributions. We

have chosen these examples with two ideas in mind: (i) to show that ordi-

nary functions are also distributions and (ii) to exhibit some distributions

that are new “generalized functions” which are not ordinary functions.

EXAMPLE. Let f be a locally integrable function on Rn. Then f may be

paired with any C1
c function ' by

' 7�!
Z
f .x/'.x/ dx :

Thus f induces a distribution. Here we are taking U to be all of Rn.

EXAMPLE. Consider the mapping

C1
c .B/ 3 ' 7�! '.0/ :

Here B is the unit ball of RN . This distribution may be represented by

integration against the Dirac delta measure1 ı.

EXAMPLE. As before, let B be the unit ball of RN . Consider the mapping

C1
c .B/ 3 ' 7�! '.0/C @

@x1

'.0/ :

This is a distribution supported at the origin.

1The Dirac delta measure is the measure with total mass 1 at the origin and no mass else-

where.
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7.3 Operations on Distributions

We can come up with some more interesting examples of distributions by

introducing some operations on distributions. That we now do.

We begin by noting that the pairing of a distribution ˛ with a testing

function � can be denoted ˛.�/, but it is also often denoted h˛; �i.

PROPOSITION 7.1. Let fV˛g˛2A be a collection of open subsets of U , and

let V D [˛V˛ . If ˇ;  2 D 0.U / and ˇ D  on each V˛ , then ˇ D  on V .

Proof. To say that ˇ D  on V˛ means simply that, whenever ' is C1
c

with compact support in V˛ then ˇ.'/ D .'/.

Notice that, if ' 2 C1
c .V / then, by compactness, there are ˛1; ˛2; : : : ;

˛k such that supp' � [k
j D1V j̨

. Choose a partition of unity 1;  2; : : : ;  k 2
C1

c such that supp j � V
j̨

for each j and
Pk

1  j � 1 on supp '. Then

hˇ; 'i D
X

hˇ;  j'i D
X

h;  j'i D h; 'i :

If ˇ 2 D 0.U /, then there is a maximal open subset of U on which

ˇ D 0. We call the complement of this open set the support of ˇ.

EXAMPLE. Let B be the unit ball in RN and define

ˇ.'/ D '.0/

for any ' 2 C1
c .B/. Then the support of ˇ is f0g.

EXAMPLE. For ' a C1
c function on R, set

˛.'/ D �
Z 0

�1

'.x/ dx C
Z 1

0

'.x/ dx :

Then the support of ˛ is R.

DEFINITION. Let  2 D 0.U / for some open set U � RN .

(a) If ˛ is any multi-index, then we define .@˛=@x˛/ by

h.@˛=@x˛/; 'i D .�1/j˛jh; .@˛=@x˛/'i :

Clearly this definition is motivated by integration by parts.

(b) Given  2 C1.U /, we define   by

h ; 'i D h;  'i :
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(c) If y 2 RN and f is any function on RN then we define the translation

by y as �yf .x/ D f .x � y/. We set

h�y; 'i D h; ��y'i :

(d) If S is an invertible linear transformation of RN , then we set

h ı S; 'i D jdet S j�1h; ' ı S�1i :

(e) If  2 C1
c , then define e .x/ D  .�x/. We define the convolution of

the distribution  with  by

 �  .x/ D h; �x
e i :

It turns out that  �  is a C1 function (see Proposition 7.2 below).

(f) Let  be as in (e). Define  �  by

h �  ; 'i D h; ' � e i :

This definition is consistent with what we said in part (e).

In what follows, we use the abbreviation @˛ to denote .@˛=@x˛/ and @j

to denote @=@xj . The next proposition will help to clarify the preceding

definition.

PROPOSITION 7.2. Suppose that U � RN is open and  2 C1
c . Let

V D fx W x � y 2 U for y 2 supp g. For  2 D 0.U / and x 2 V , let

 �  .x/ D h; �x
e i. Then

(a)  �  2 C1.V /,

(b) @˛. �  / D Œ@˛� �  D  � Œ@˛ �,

(c) For any ' 2 C1
c .V /,

R
. �  /' D h; ' � e i.

Proof. Let e1; e2; : : : ; eN be the standard basis for RN . If x 2 V , then

there exists t0 > 0 such that x C tej 2 U for jt j < t0. We can then easily

verify that

t�1.�xCtej
e � �x

e / ! �x
e@j in C1

c .U / as t ! 0 :

It follows that @j . �  /.x/ exists and equals  � @j .x/. By induction

then,  �  2 C1.V / and @˛. �  / D  � @˛ . Furthermore, since

@˛e D .�1/j˛j e@˛ and @˛�x D �x@
˛ , we see that

.@˛/ �  .x/ D h@˛; �x
e i D .�1/j˛jh; @˛�x

e i D h; �x
e@˛ i

D  � .@˛ /.x/ :
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For the next step, if ' 2 C1
c .V /, we have

' � e .x/ D
Z
'.y/ .y � x/ dy D

Z
'.y/�ye .x/ dy :

The integrand here is continuous and supported in a compact subset of U ,

so the integral can be approximated by Riemann sums. That is to say, for

each large m 2 N, we can approximate supp' by a union of cubes of

side length 2�m centered at points ym
1 ; y

m
2 ; : : : ; y

m
k.m/

2 supp'. Then the

corresponding Riemann sums

Sm � 2�Nm
X

j

'.ym
j /�ym

j

e 

are supported in a common compact subset of U and converge uniformly to

' � e as m ! 1. Likewise,

@˛Sm D 2�Nm
X

j

'.ym
j /�ym

j
@˛e 

converges uniformly to ' � @˛e D @˛.� � e /. Hence Sm ! ' � e in

C1
c .U /. Thus we have

h; ' � e i D lim
m!1

h; Smi

D lim
m!1

2�Nm
X

j

'.ym
j /h; �ym

j

e i

D
Z
'.y/h; �ye i dy

D
Z
'.y/ �  .y/ dy :

7.4 Approximation of Distributions

Typical distributions are the Dirac delta mass, and one or more derivatives

of the Dirac delta mass. These are highly singular objects—as we might

expect generalized functions to be. But it is a nice fact that distributions

may be approximated—in a suitable topology—by smooth functions.

LEMMA 7.3. On RN , suppose that  2 C1
c and that

R
 D 1. Set

 t.x/ D t�N .x=t/ :

Let ' 2 C1
c . Then

 t � ' ! '

uniformly as t ! 0.
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Proof. Let � > 0. Choose ı > 0 small enough that j'.s/� '.u/j < � when

js � uj < ı. We calculate that

j t � '.x/ � '.x/j D
ˇ̌
ˇ̌
Z
 t .y/'.x � y/ dy � '.x/

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
Z
 t .y/ Œ'.x � y/ � '.x/� dy

ˇ̌
ˇ̌

�
Z

j t.y/j� dy

provided that t is small enough (so that x � y and x are close enough

together). This last equals

�

Z
j .y/j dy

by a simple change of variable. Finally this equals C�.

LEMMA 7.4. On RN , suppose that ' 2 C1
c ,  2 C1

c , and
R
 D 1. Let

 t.x/ D t�N .x=t/ :

Then

(a) Given any neighborhood U of supp', we have supp .' �  t / � U for

t sufficiently small.

(b) ' �  t ! ' in C1
c as t ! 0.

Proof. Suppose that supp � fx W jxj � Rg. Then supp .' �  t/ is

contained in the set of points whose distance from supp' is at most tR.

This is included in a fixed compact set if t � 1 and is included in U if t is

small. Further, @˛.' �  t / D .@˛'/ �  t ! @˛' uniformly as t ! 0 by

the preceding lemma.

PROPOSITION 7.5. For any open set U � RN , C1
c .U / is dense in D 0.U /

in the topology of D 0.U /.

Proof. Let  2 D 0.U /. We shall approximate  by distributionssupported

in compact subsets of U , and then approximate the latter by functions in

C1
c .U /.

Let fVj g be an increasing sequence of precompact open subsets of U

whose union is U . For each j we can pick �j 2 C1
c .U / such that �j D 1

on Vj . Given ' 2 C1
c .U /, for j sufficiently large we have supp ' � Vj .

Therefore h; 'i D h; �j'i D h�j ; 'i. Thus �j !  as j ! 1.
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Since supp �j is compact, �j can be regarded as a distribution on RN .

Let  ,  t be as in the preceding lemma. Set e .x/ D  .�x/. Then
R e D

1. Thus, given ' 2 C1
c , we have that ' �e t ! ' in C1

c . But then Lemma

7.4 tells us that .�j / �  t 2 C1 and h.�j / �  t ; 'i D h�j; ' � e ti !
h�j; 'i. Thus .�j / �  t ! �j  in D 0. In summary, every neighborhood

of  in D 0.U / contains the C1 functions .�j /� t for j large and t small.

Finally note that supp �j � Vk for some k. If supp ' \ V k D ;, then

for sufficiently small t we know that supp .' � e t / \ V k D ;. Hence

h.�j / �  t ; 'i D h; �j .' � e t /i D 0. Thus

supp ..�j / �  t / � V k � U :

We conclude this discussion with a simple but entertaining example.

EXAMPLE. Let

h.x/ D
�
0 if x � 0

1 if x > 0 :

We wish to calculate h0. We see that

hh0; 'i D �hh; '0i

D �
Z 0

�1

0 � '0.x/ dx �
Z 1

0

1 � '0.x/ dx

D �0 �
�
'.1/ � '.0/

�

D '.0/ :

Thus

h0 D ı ;

where ı is the Dirac delta mass at the origin. The function h is known as

the Heaviside function.

7.5 The Fourier Transform

One important operation from analysis, that we would certainly want to

have working with distributions, is the Fourier transform. To make such a

theory work, we would need a set of test functions (analogous to C1
c ) that

is preserved under the Fourier transform (see [KRA3]). CertainlyC1
c is not

so preserved. The Paley-Wiener theorem tells us that the Fourier transform

of a C1
c function cannot be compactly supported.
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We need another space of testing functions. What works best is the

so-called Schwartz space S . These are C1 functions f on RN with the

property that

�˛;ˇ .f / � sup jx˛@ˇf j

is finite for every choice of ˛ and ˇ. It is elementary to check that S is in

fact preserved under the Fourier transform. If we equip S with the topology

coming from the seminorms �˛;ˇ , then the Fourier transform is bicontinu-

ous. Then we take the Schwartz distributions to be the dual space of S . We

denote this space of distributions by S 0. If ˛ 2 S 0, then we define y̨ by

hy̨; 'i � h˛; y'i :

This definition is inspired by the Plancherel formula and the Poisson sum-

mation formula.

EXAMPLE. Let us calculate the Fourier transform of the Dirac delta mass

ı at the origin. We have

hyı; 'i D hı; y'i D y'.0/ :

Of course y'.0/ (where ' is a testing function) is nothing other than
R
' dx.

So we see that

yı.'/ D
Z
'.x/ dx :



CHAPTER 8

Spectral Theory

8.1 Background

Certainly one of the premier theorems in all of functional analysis is the

spectral theorem. It says that, on Hilbert space H , any reasonable bounded

linear operator can be represented as multiplication by anL1 function (act-

ing on L2). Much of the modern theory, especially the theory of normal

operators, depends critically on the spectral theorem.

There are many versions of the spectral theorem, both for bounded and

for unbounded operators. Here, in the spirit of simplicity, we concentrate

on a basic version for bounded operators.

Some preliminary, background terminology is this:

DEFINITION. An operator T 2 B.H/ is said to be

(a) normal if T T � D T �T ,

(b) self-adjoint if T � D T ,

(c) unitary if T �T D I D T T �,

(d) a projection if T 2 D T and T is self-adjoint.

Some additional terminology: An algebra of sets (all of which are sub-

sets of a given set X) is a collection of sets that is closed under finite union

and complementation. A �-algebra is an algebra that is closed under count-

able union.

DEFINITION. Let M be a �-algebra on a set �. Let H be a Hilbert space.

Then an i -resolution on M is a mapping

E W M ! B.H/

such that

89
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(a) E.;/ D 0, E.�/ D I ,

(b) Each E.!/ is a self-adjoint projection,

(c) E.! \ !0/ D E.!/E.!0/,

(d) If ! \ !0 D ;, then E.! [ !0/ D E.!/ C E.!0/,

(e) For every x; y 2 H , the set functionEx;y defined by

Ex;y .!/ D hE.!/x; yi

is a complex measure on M.

It is quite common to take M to be the �-algebra of all Borel sets in

a compact or locally compact Hausdorff space. In that case we augment

condition (e) to require that each Ex;y be a regular Borel measure.

The properties we have enunciated for an i -resolution make the next

two results nearly obvious (or see [RUD2, p. 302]):

PROPOSITION 8.1. If E is an i -resolution and x 2 H , then the mapping

! ! E.!/x

is a countably additive,H -valued measure on M.

PROPOSITION 8.2. Let E be an i -resolution. If !j 2 M and E.!j / D 0

for j D 1; 2; 3; : : : , and if ! D [1
j D1!j , then E.!/ D 0.

A useful, and intuitively appealing, preliminary result is this:

THEOREM 8.3. If f W H � H ! C is sesquilinear1 and bounded, in the

sense that

M D supfjf .x; y/j W kxk D kyk D 1g < 1 ; .1/

then there exists a unique S 2 B.H/ that satisfies

f .x; y/ D hx; Syi : .2/

Furthermore, kSk D M .

1A quadratic form is sesquilinear if it is complex linear in the first entry and conjugate

complex linear in the second entry.
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Proof. Since jf .x; y/j � Mkxkkyk, the mapping

x 7! f .x; y/

is, for each y 2 H , a bounded linear functional on H . This functional has

norm at most Mkyk. Thus, to each element y 2 H , there corresponds a

unique element Sy 2 H such that (2) holds. Also kSyk � Mkyk.

Clearly S W H ! H is additive. If ˛ 2 C, then

hx; S.˛y/i D f .x; ˛y/ D ˛f .x; y/ D ˛hx; Syi D hx; ˛Syi

for all x; y 2 H . Thus S is linear. So S 2 B.H/ and kSk � M .

We also know that

jf .x; y/j D jhx; Syij � kxkkSyk � kxkkSkkyk :

This gives the opposite inequalityM � kSk.

8.2 The Main Result

We enunciate a preliminary version of the spectral theorem.

THEOREM 8.4. Let E be an i -resolution. Then the formula

h.‰f /x; y/ D
Z

�

f dEx;y ;

for x; y 2 H , defines an isometric isomorphism ‰ of the Banach algebra

L1.E/ onto a closed, normal subalgebra A of B.H/.2 This isomorphism

also enjoys the properties

‰.f / D ‰.f /�

for f 2 L1.E/ and

k.‰f /xk2 D
Z

�

jf j2 dEx;x

for x 2 H and f 2 L1.E/.

Finally, an operator S 2 B.H/ commutes with every E.!/ if and only

if S commutes with every ‰.f /.

The first formula in the theorem is frequently, just for simplicity, abbre-

viated as

‰.f / D
Z

�

f dE :

2Here a subalgebra A if called normal if, whenever, x 2 A, then x� 2 A.
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Proof of the Theorem. The spectral theorem is so important that it is def-

initely worthwhile to enunciate it in several different ways. See [RUD1],

[RUD2], and [DUS, v. 3] for other discussions of this result.

Let f!1; !2; : : : ; !kg be a partition of� with!j 2 M. Let s be a simple

function such that s D Tj on !j . Define ‰.s/ 2 B.H/ by

‰.s/ D
kX

j D1

TjE.!j / : .3/

Each E.!j / is self-adjoint, so

‰.s/� D
kX

j D1

TjE.!j / D ‰.s/ : .4/

If f!0
1; !

0
2; : : : ; !

0
mg is another partition of this sort, and if t D �j on

!0
j , then

‰.s/‰.t/ D
X

j;k

Tj�kE.!j /E.!
0
k / D

X

j;k

Tj�kE.!j \ !0
k/ :

Since st is the simple function that equals Tj�k on !j \ !0
k

, we see that

‰.s/‰.t/ D ‰.st/ : .5/

A completely analogous argument now shows that

‰.˛s C ˇt/ D ˛‰.s/C ˇ‰.t/ : .6/

If x; y 2 H , then (3) shows that

h.‰s/x; yi D
kX

j D1

Tj ..E!j /x; yi D
kX

j D1

TjEx;y .!j / D
Z

�

s dEx;y : .7/

By (4) and (5), we have

‰.s/�‰.s/ D ‰.s/‰.s/ D ‰.ss/ D ‰.jsj2/ :

Hence (7) gives us that

k.‰s/xk2 D h‰.s/�‰.s/x; xi D h‰.jsj2/x; xi D
Z

�

jsj2 dEx;x : .8/

As a result,

k.‰s/xk � ksk1kxk : .9/
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On the other hand, if x 2 R.E.!j //, then

.‰s/x D j̨E.!j /x D j̨x .10/

since the projectionsE.!j / have mutually orthogonal ranges. If j is chosen

so that j j̨ j D ksk1, then (9) and (10) tell us that

k‰.s/k D ksk1 : .11/

Let f 2 L1.E/. There is a sequence of simple, measurable functions

sj that converges to f in the norm of L1.E/. By (11), the corresponding

operators ‰.sj / form a Cauchy sequence in B.H/ which is thus norm-

convergent to an operator that we shall call ‰.f /. One sees easily that

‰.f / does not depend on the particular choice of the fsj g. Clearly (11)

now tells us that

k‰.f /k D kf k1 .12/

for f 2 L1.E/.

The first line of the theorem follows from (7) (with sj in place of s)

since each Ex;y is a finite measure. Also the second and third lines of the

theorem follow from (4) and (8). Finally, if bounded, measurable functions

f and g are approximated, in the norm of L1.E/, by simple measurable

functions s and t , then we see that (5) and (6) hold with f and g in place of

s and t .

In sum, ‰ is an isometric isomorphism of L1.E/ into B.H/. Since

L1.E/ is complete, its image A D ‰.L1.E// is closed in B.H/ because

of (30).

Finally, if an operator S commutes with every E.!/, then S commutes

with ‰.s/ whenever s is simple. Thus the approximation process used

above shows that S commutes with every member of A.

The spectral theorem that we shall prove below states that every bounded,

normal operatorT on a Hilbert space induces an i -resolutionE on the Borel

subsets of its spectrum �.T /. Also that T can be reconstructed from E by

an integral of the type considered in our last theorem.

We begin by considering algebras of operators, and then specialize down

to single operators.

THEOREM 8.5. Let A be a closed, normal subalgebra of B.H/ that con-

tains the identity operator I . Let 4 be the maximal ideal space of A. Then

the following statements hold:
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(a) There exists a unique i -resolution E on the Borel subsets of 4 that

satisfies

T D
Z

4

�T dE ;

for every T 2 A, where �T is the Gelfand transform of T .

(b) E.!/ ¤ 0 for every nonempty open set ! � 4.

(c) An operator S 2 B.H/ commutes with every G 2 A if and only if S

commutes with every projectionE.!/.

REMARK. The formula in the statement of the theorem should be under-

stood to mean

hT x; yi D
Z

4

�T dEx;y : .13/

Proof of the Theorem. Since B.H/ is a B�-algebra, our given algebra A is

a commutativeB�-algebra. The Gelfand-Naimark theorem (Theorem 5.14)

thus asserts that T ! �T is an isometric �-isomorphism of A onto C.4/.
We now get a straightforward proof of the uniqueness of E . Suppose

that E satisfies (13). Since �T ranges over all of C.4/, the hypothesized

regularity of the complex Borel measures Ex;y shows that each Ex;y is

uniquely determined by (13). Use the Riesz representation theorem. Since,

by definition,

hE.!/x; yi D Ex;y .!/ ;

each projectionE.!/ is also uniquely determined by (13).

We turn to the existence of E . If x; y 2 H , then Theorem 5.14 (the

Gelfand-Naimark theorem) shows that

�T ! hT x; yi

is a bounded linear functional on C.4/ with norm � kxk � kyk (since

k�T k1 D kT k). By the Riesz representation theorem, there is a unique

regular complex Borel measure �x;y on 4 such that

hT x; yi D
Z

4

�T d�x;y .14/

for all x; y 2 H and T 2 A.

When �T is real, T is self-adjoint. Thus hT x; yi and hTy; xi are com-

plex conjugates of each other. As a result,

�x;y D �x;y .15/

for x; y 2 H .
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For fixed T 2 A, the left-hand side of (14) is linear in x and conjugate-

linear in y. The uniqueness of the measures �x;y implies then that �x;y .!/

is, for every Borel set ! � 4, a sesquilinear functional. Since k�x;yk �
kxk � kyk, it follows that Z

4

f d�x;y

is a bounded sesquilinear functional on H for every bounded, Borel func-

tion f on 4. Theorem 8.3 tells us that there corresponds to each such f an

operator ˆ.f / 2 B.H/ with

h. f̂ /x; yi D
Z

4

f d�x;y .16/

for all x; y 2 H . Comparison with (14) demonstrates that

ˆ.�T / D T .17/

for all T 2 A. Hence ˆ is an extension of the mapping �T ! T that takes

C.4/ onto A.

If f is real, then line (15) tells us that hˆ.f /x; yi is the complex con-

jugate of hˆ.f /y; xi. This fact implies thatˆ.f / is self-adjoint.

Next we shall prove that

ˆ.fg/ D ˆ.f /ˆ.g/ .18/

for bounded Borel functions f and g. If S; T 2 A, then .ST /bD yS�T .

Then (14) implies that
Z

4

yS�T d�x;y D hST x; yi D
Z

4

yS d�T x;y : .19/

Since yA D C.4/, we conclude that

�T d�x;y D d�T x;y

for every choice of x, y, and T . The integrals (19) remain equal if yS is

replaced by f . Thus
Z

4

f �T d�x;y D
Z

4

f d�T x;y

D h. f̂ /T x; yi
D hT x; zi

D
Z

4

�T d�x;z : (20)
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Here z D ˆ.f /�y. The reasoning used above also shows that the first and

last integrals in (20) remain equal when �T is replaced by any bounded Borel

function g. Thus

hˆ.fg/x; yi D
Z

4

fg d�x;y

D
Z

4

g d�x;z

D hˆ.g/x; zi
D hˆ.f /ˆ.g/x; yi :

That proves (18).

We can define E . If ! is a Borel subset of 4, let f be the characteristic

function of !. Put E.!/ D ˆ.f /.

By (18), E.! \ !0/ D E.!/E.!0/. With !0 D !, we see then that

each E.!/ is a projection. Since ˆ.f / is self-adjoint when f is real, it

follows that each E.!/ is self-adjoint. Clearly E.;/ D ˆ.0/ D 0. Line

(17) implies that E.4/ D I . The finite additivity of E follows from (16).

And the equation

hE.!/x; yi D �x;y.!/ .21/

also follows from (16). Thus E is an i -resolution.

The proof of part (a) of the theorem is now complete, because (13)

follows from (15) and (21).

For (b), suppose now that ! is open and E.!/ D 0. If T 2 A and �T has

support in !, then the equation in part (a) implies that T D 0. Thus �T D 0.

Since yA D C.4/, Urysohn’s lemma tells us that ! D ;. That establishes

(b).

For (c), select S 2 B.H/ and x; y 2 H . Put z D S�y. For any T 2 A
and any Borel set ! � 4, we have

hST x; yi D hT x; zi D
Z

4

�T dEx;z ; .22/

hTSx; yi D
Z

4

�T dESx;y ; .23/

hSE.!/x; yi D hE.!/x; zi D Ex;z.!/ ; .24/

hE.!/Sx; yi D ESx;y.!/ : .25/

If ST D TS for every T 2 A, then the measures in (22) and (23) are equal,

hence SE.!/ D E.!/S . The same reasoning establishes the converse.
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The next, and final, result is our spectral theorem. We commonly refer

to the E in the theorem as the spectral decomposition of the operator T .

THEOREM 8.6. Let T 2 B.H/ be normal. Then there exists a unique

i -resolutionE on the Borel subsets of �.T / such that

T D
Z

�.T /

�dE.�/ :

Every projection E.!/ commutes with every S 2 B.H/ which commutes

with T .

REMARK. Here we see rather explicitly that any normal operator onH can

be realized as multiplication by an essentially bounded function.

Proof. Let A be the smallest closed subalgebra of B.H/ that contains I ,

T , and T �. Since T is normal, the preceding theorem applies to A. By

Theorem 8.5, the maximal ideal space of A can be identified with �.T / so

that �T .�/ D � for all � 2 �.T /. The existence of E now follows from the

preceding theorem.

Obversely, if E exists so that the equation in the statement of the theo-

rem holds, then Theorem 8.5 tells us that

p.T; T �/ D
Z

�.T /

p.�; �/ dE.�/ : .26/

Here p is any polynomial in two variables with complex coefficients. By

the Stone-Weierstrass theorem, these polynomials are dense in C.�.T //.

The projections E.!/ are thus uniquely determined by the integrals (26).

So they are determined by T—just as in the uniqueness part of the proof of

the last theorem.

If ST D TS , then also ST � D T �S by the Fuglede-Putnam-Rosenblum

Theorem (see [RUD2, p. 300]). So S commutes with every member of A.

By part (c) of the preceding theorem, SE.!/ D E.!/S for every Borel set

! � �.T /.

Let E be the spectral decomposition of a normal operator T 2 B.H/.

Let f be a bounded, Borel function on �.T /. We then denote the operator

‰.f / D
Z

�.T /

f dE

by f .T /. With this notation, we can express the results of Theorems 8.4,

8.5, 8.6 as
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The mapping f ! f .T / is a homomorphism of the algebra of

all bounded Borel functions on �.T / into B.H/ that carries the

function 1 to I . It also carries the identity function on �.T / to T

and it satisfies

f .T / D f .T /�

with

kf .T /k � supfjf .�/j W � 2 �.T /g :

If f 2 C.�.T //, then equality holds in this last display.



CHAPTER 9

Convexity

9.1 Introductory Thoughts

In this chapter we treat the classical notion of convexity. Indeed, convexity

is an old idea. It occurs in some of Archimedes’s treatments of the con-

cept of arc length. But the idea of convexity was not actually formalized

until the treatise [BOF] appeared in 1934. Since then it has been stud-

ied intensely, both in the classical Euclidean setting (see [KRA4]) and in

the more general setting of infinite dimensions (see, for instance, [BAP],

[SIM]).

DEFINITION. Let X be a topological vector space, and let E � X . We say

that E is convex if, whenever x; y 2 X , then

.1 � t/x C ty 2 E for all 0 � t � 1 :

EXAMPLE. Let X be any Banach space. Let B.0; 1/ be the open ball with

center 0 and radius 1. Then B.0; 1/ is certainly convex, as the triangle

inequality shows.

Let X be the Banach space `2. Let 1 D .1; 0; 0; : : : / be an element of

X . Let

E D B.0; 1/ n B.1; 1=2/ :

Then E is not convex. For the points .3=4; 5=8; 0; : : :/ and .3=4;�5=8;
0; : : : / both lie in E . But their midpoint (corresponding to t D 1=2) is

.3=4; 0; 0; : : : /, and that does not lie in E .

DEFINITION. Let X be a topological vector space and E � X . The convex

hull of E is the smallest convex set in X that contains E . In other words, it

is the intersection of all convex sets that containE . See Figure 9.1.
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The set E The convex hull of E

FIGURE 9.1. Convex hull.

DEFINITION. Let E be a subset of a vector space X . We say that a point

s 2 E is an extreme point ofE if the following condition holds: If x; y 2 E ,

and if there exists a number t with 0 < t < 1, and tx C .1 � t/y D s, then

x D y D s. See Figure 9.2.

We call a set S � E an extreme set for E if, whenever x; y 2 E ,

0 < t < 1, and tx C .1 � t/y 2 S , then x 2 S and y 2 S .

FIGURE 9.2. An extreme point.

9.2 Separation Theorems

THEOREM 9.1. Let A and B be disjoint, nonempty, convex sets in a topo-

logical vector space X .

(a) If A is open then there exist ƒ 2 X� and  2 R such that

Reƒx <  � Reƒy

for every x 2 A and y 2 B .

(b) If A is compact, B is closed, and X is locally convex, then there exist

ƒ 2 X� and 1; 2 2 R, such that

Reƒx < 1 < 2 < Reƒy

for every x 2 A and every y 2 B .

Proof. It is sufficient to prove the result for real scalars.

For (a), fix a0 2 A, b0 2 B . Put x0 D b0 � a0. Set C D A � B C x0.

Then C is a convex neighborhood of 0 in X . Let p be the Minkowski
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functional of C . The term p satisfies the hypothesis of the Hahn-Banach

theorem. Since A\ B D ;, x0 62 C , hence p.x0/ � 1:

Define f .tx0/ D t on the subspace M of X generated by x0. If t � 0,

then

f .tx0/ D t � tp.x0/ D p.tx0/ :

If t < 0, then f .tx0/ < 0 � p.tx0/. Thus f � p on M . By the Hahn-

Banach theorem, f extends to a linear functionalƒ on X that also satisfies

ƒ � p. In particular, ƒ � 1 on C . Thus ƒ � �1 on �C , so jƒj � 1 on

the neighborhoodC \ .�C/ of 0. We conclude that ƒ 2 X�.

Let a 2 A and b 2 B . Then we have

ƒa �ƒb C 1 D ƒ.a � b C x0/ � p.a � b C x0/ < 1

sinceƒx0 D 1, a�bCx0 2 C , andC is open. We conclude thatƒa < ƒb.

We conclude that ƒ.A/ and ƒ.B/ are disjoint, convex subsets of R,

with ƒ.A/ to the left of ƒ.B/. Also ƒ.A/ is an open set since A is open

and since every nonconstant linear functional onX is an open mapping. Let

 be the right endpoint of ƒ.A/ to obtain the conclusion of part (a).

For (b), we note that there is a convex neighborhood V of 0 in X such

that .ACV /\B D ;. Part (a), withACV in place of A, shows that there

exists ƒ 2 X� such that ƒ.A C V / and ƒ.B/ are disjoint convex subsets

of R withƒ.ACV / open and to the left ofƒ.B/. Sinceƒ.A/ is a compact

subset of ƒ.AC V /, we derive the conclusion of (b).

COROLLARY 9.2. If X is a locally convex space then X� separates points

of X .

Proof. If x1; x2 2 X and x1 ¤ x2, then apply (b) of the theorem with

A D fx1g and B D fx2g.

THEOREM 9.3. Suppose that X is a vector space and that X 0 is a separat-

ing vector space (i.e., when x1 ¤ x2 then there is a ƒ with ƒx1 ¤ ƒx2)

of linear functionals on X . Then the X 0 topology � 0 makes X into a locally

convex space whose dual space is X 0.

Proof. We can see that � 0 is a Hausdorff topology. The linearity of the

members of X 0 shows that � 0 is translation invariant. If T1; T2; : : : ; Tk 2
X 0, if rj > 0, and if

V D fx W jTjxj < rj for 1 � j � kg ; .1/
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then V is convex, balanced, and V 2 � 0. In fact the collection of all V of

the form in (1) is a local basis for � 0. Thus � 0 is a locally convex topology

on X .

If (1) holds, then 1
2
V C 1

2
V D V . This proves that addition is contin-

uous. Suppose now that x 2 X and ˛ is a scalar. Then x 2 sV for some

s > 0. If jˇ � ˛j < r and y � x 2 rV , then

ˇy � ˛x D .ˇ � ˛/y C ˛.y � x/

lies in V , provided that r is so small that

r.s C r/C j˛jr < 1 :

As a result, scalar multiplication is continuous.

We now have proved that � 0 is a locally convex vector topology. Every

ƒ 2 X 0 is � 0-continuous. Conversely, suppose that ƒ is a � 0-continuous

linear functional on X . Then jƒxj < 1 for all x in some set V of the form

(1). We can conclude then that ƒ D P
j̨Tj . Since Tj 2 X 0, and X 0 is a

vector space, we conclude thatƒ 2 X 0 .

PROPOSITION 9.4. Suppose that X is a topological vector space on which

X� separates points. Let A;B be disjoint, nonempty, compact, convex sets

in X . Then there is a ƒ 2 X� such that

sup
x2A

Reƒx < inf
y2B

Reƒy :

REMARK. This result is fundamental. It enunciates a means of separating

two convex sets. In the plane there would be a line separatingA and B , and

that would tell us right away what ƒ has to be.

Proof of the Proposition. Let Xw be X equipped with the weak topology.

The sets A and B are apparently compact in Xw . They are also closed in

Xw just because Xw is a Hausdorff space. Since Xw is locally convex,

part (b) of Theorem 9.1 can be applied to Xw . This give us a ƒ 2 .Xw /
�

that satisfies the displayed equation in the proposition. But we know, from

Theorem 9.3, that .Xw /
� D X�.

Perhaps the most fundamental and compelling result about convexity in

infinite dimensions is the following striking theorem. It is illustrated nicely

in Figure 9.3.
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FIGURE 9.3. The Krein-Milman theorem.

9.3 The Main Result

THEOREM 9.5 (Krein-Milman). Let X be a topological vector space in

which X� separates points. If K is a compact, convex set in X , then K is

the closed, convex hull of its extreme points.

Proof. Let P be the collection of all compact extreme sets of K. Since

K 2 P , we see that P ¤ ;. We shall use these properties of P (to be

proved below):

(a) The intersection S of any nonempty subcollection of P is a member of

P unless S D ;.

(b) If S 2 P , ƒ 2 X�, � is the maximum value of Reƒ on S , and

Sƒ D fx 2 S W Reƒx D �g ;

then Sƒ 2 P .

We observe that (a) is obvious.

For (b), suppose that, for x; y 2 K and 0 < t < 1, we have tx C .1 �
t/y D z 2 Sƒ. Since z 2 S and S 2 P , we see that x; y 2 S . Therefore

Reƒx � �, Reƒy � �. Since Reƒz D � and ƒ is linear, we find that

Reƒx D � D Reƒy. Thus x; y 2 Sƒ.

Choose some S 2 P . Let P 0 be the collection of all members of P that

are subsets of S . Since S 2 P 0, certainly P 0 is not empty. We partially

order P 0 by set inclusion. Let� be a maximal totally ordered subcollection

of P 0. Let M be the intersection of all members of �.

Since� is a collection of compact sets with the finite intersection prop-

erty,M ¤ ;. By (a),M 2 P 0. The maximality of� implies that no proper

subset of M belongs to P . We see from (b) that every ƒ 2 X� is constant

on M . Since X� separates points of X , we conclude that M has only one

point. ThusM is an extreme point of K.

EXAMPLE. A closed cube in RN is the closed, convex hull of its vertices.

A closed ball in RN is the closed, convex hull of all its boundary points

(that is to say, it is the closed, convex hull of the sphere).





CHAPTER 10

Fixed-Point Theorems

Of course the granddaddy of all fixed-point theorems is that of L. E. J.

Brouwer, proved in the early twentieth century. It says this:

THEOREM 10.1. Let F be a continuous mapping of the closed unit ball

in RN to itself. Then there is a point P in the closed unit ball such that

F.P / D P .

Popular expositors have fun explaining the two-dimensional version of

this theorem in terms of stirring a bowl of soup with grated cheese on top.

Such frivolity tends to disguise the fact that the fixed-point theorem is a

profound result of mathematical analysis, and it has important applications

and consequences. In this chapter we intend to present two different ver-

sions of the fixed-point principle on Banach spaces, and to show how they

can be used to derive important and substantial results in the subject.

Much of our presentation here is indebted to [PAT].

10.1 Banach’s Theorem

The first infinite-dimensional fixed-point theorem is well known and is ac-

tually due to Stefan Banach.

DEFINITION. Let X be a metric space with metric � and F W X ! X a

mapping. We call F a contraction if there is a real number K, 0 < K < 1,

such that

�.F.x/; F.y// � K � �.x; y/ :

THEOREM 10.2. Let X be a complete metric space with metric �. Let

F W X ! X be a contraction. Then there is a unique point P 2 X such

that F.P / D P .

105
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EXAMPLE. Let X be the Banach space `2 and let F W X ! X be given

by f .x/ D .1=2/x C .1; 1=2; 1=3; : : : /. Then it is easily checked that f

is a contraction with constant K D 1=2. The unique fixed point is P D
.2=1; 2=2; 2=3; 2=4; : : : /.

EXAMPLE. Let X be the Banach space L2.Œ0; 1�/. Let F be the mapping

F.f / D .x C 1/

Z 1

0

x � f .x/ dx :

Then we can check that

jF.f / � F.g/j D
ˇ̌
ˇ̌.x C 1/

Z 1

0

xf .x/ dx � .x C 1/

Z 1

0

xg.x/ dx

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌.x C 1/

Z 1

0

x � Œf .x/ � g.x/� dx
ˇ̌
ˇ̌

� jx C 1j
Z 1

0

x2 dx1=2

Z 1

0

jf .x/ � g.x/j2 dx1=2

D jx C 1j � .1
p
3/kf � gkL2 :

Thus

kF.f / � F.g/kL2 �
�
7

9

�1=2

� kf � gkL2 :

We conclude that F has a unique fixed-point, but it is not at all clear what

that fixed point is.

REMARK. The property of being a contraction may seem rather special.

But our examples and applications will show that in fact contractions are

not so hard to come by.

Proof of the Theorem. First observe that, if x1; x2 are fixed-points of F ,

then

d.x1; x2/ D d.F.x1/; F.x2// � Kd.x1; x2/ ;

from which it follows that d.x1; x2/ D 0. Hence x1 D x2. That establishes

the uniqueness of the fixed-point.

Choose a point x0 2 X and define

x1 D F.x0/

x2 D F.x1/

x3 D F.x2/
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etcetera. We see that

d.xnC1; xn/ D d.F.xn/; F.xn�1/ � K � d.xn; xn�1/

D K � d.F.xn�1/; F.xn�2//

� K2d.xn�1; xn�2/

� � � �
� Knd.x1; x0/ :

If n;m 2 f1; 2; : : : g then

d.xnCm ; xn/ � d.xnCm ; xnCm�1/C d.xnCm�1; xnCm�2/

C � � � C d.xnC1 ; xn/

� .KnCm�1 CKnCm�2 C � � � CKn/d.x1; x0/

� Kn

1 �K � d.x1; x0/ :

We conclude that fxng is a Cauchy sequence. So it has a limit point

x 2 X . Since F is continuous (indeed, it is Lipschitz), we may conclude

that

F.x/ D F. lim
n!1

xn/ D lim
n!1

F.xn/ D lim
n!1

xnC1 D x :

So x is the fixed-point that we seek.

REMARK. It is worth noting that completeness is an essential hypothesis in

the theorem. As an instance, if X D .0; 1� with the usual Euclidean metric,

then the mapping F W X ! X given by F.x/ D x=2 is a contraction but

has no fixed-point.

It will be useful in what follows to have a couple of variants of Banach’s

contraction mapping fixed-point theorem.

COROLLARY 10.3. Let X be a complete metric space and Y a topological

space. Let F W X � Y ! X be a continuous function. Assume that,

uniformly in Y , F is a contraction in X . That is to say, assume that

d.F.x1 ; y/; F.x2; y// � K � d.x1; d2/

for all x1; x2 2 X , y 2 Y , and some 0 < K < 1. Then, for each fixed

y 2 Y , the mapping x 7! F.x; y/ has a unique fixed-point '.y/ 2 X .

Furthermore, the function y 7! '.y/ is continuous from Y toX .
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Proof. The only thing we need prove is the continuity of '. For y; y0 2 Y ,

we have

d.'.y/; '.y0 //

D d.F.'.y/; y/; F.'.y0 /; y0//

� d.F.'.y/; y/; F.'.y0 /; y// C d.F.'.y0 /; y/; F.'.y0/; y0//

� K � d.'.y/; '.y0// C d.F.'.y0/; y/; F.'.y0/; y0// ;

which implies

d.'.y/; '.y0 // � 1

1 �K � d.F.'.y0 /; y/; F.'.y0/; y0// :

Since this right-hand side goes to 0 as y ! y0, we obtain the desired

continuity.

COROLLARY 10.4. Let X be a complete metric space and let F W X ! X .

If F n (the composition of F with itself n times) is a contraction for some

n � 1, then F has a unique fixed-point x 2 X .

Proof. Let x be the unique fixed-point of F n, given by our theorem above.

Then

F n.F.x// D F.F n.x// D F.x/ ;

which implies that F.x/ D x. Since any fixed-point of F is also clearly a

fixed-point of F n, we obtain the uniqueness automatically.

10.2 Two Applications

Our first application of the Banach fixed-point theorem is to a proof of the

implicit function theorem. There are many proofs of the implicit function

theorem, but it turns out that the proof using a fixed-point theorem is the

most flexible and useful (see [KRP] for the details of this assertion).

In what follows, we let BX.P; r/ denote a metric ball in the Banach

space X and BX .P; r/ the closed metric ball. We interpret derivatives in a

Banach space in the usual Fréchet sense (see [RUD2, p. 248]).

We shall formulate the implicit function theorem as follows:

THEOREM 10.5. Let X; Y; Z be Banach spaces. Let U � X � Y be an

open set and u0 D .x0; y0/ 2 U . Let F W U ! Z. Assume that

(a) F is continuous and F.u0/ D 0,

(b) DyF.u/ exists for every u D .x; y/ 2 U ,
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(c) DyF is continuous at u0 and DyF.u0/ is invertible.

Then there exists ˛; ˇ > 0 for which BX.x0; ˛/ � BY .y0; ˇ/ � U and

a unique continuous function ' W BX.x0; ˛/ ! BY .y0; ˇ/ such that the

relation

F.x; y/ D 0 ” y D '.x/

holds for all .x; y/ 2 BX .x0; ˛/� BY .y0; ˇ/.

REMARK. The proof of this result is surprisingly straightforward. Contrast,

for example, with the more classical proof that appears in [RUD3].

Proof of the Theorem. We may assume, with no loss of generality, that x0 D
0 and y0 D 0. Define

ˆ.x; y/ D y �
�
DyF.0; 0/

��1
F.x; y/

for .x; y/ 2 U . By (a), ˆ is continuous from U into Y . We see that

Dyˆ.x; y/ D I �
�
DyF.0; 0/

��1

ıDyF.x; y/ :

By (c), there is a  > 0 small enough that

kDyˆ.x; y/k � 1

2

for all .x; y/ 2 BX.0; / � BY .0; / � U . Thus simple estimates and the

continuity of ˆ imply that

kˆ.x; y1/ �ˆ..x; y2/kY � 1

2
ky1 � y2kY

for kxkX , ky1kY , ky2kY all less than or equal to ˇ, which is less than  .

Using (a), we can find 0 < ˛ < ˇ such that

kˆ.x; 0/kY � ˇ

2

for all kxkX � ˛. Then, for kxkX � ˛ and kykY � ˇ,

kˆ.x; y/kY � kˆ.x; 0/kY Ckˆ.x; y/�ˆ.x; 0/kY � 1

2
.ˇCkykY / � ˇ :

Thus the continuous map ˆ W BX .0; ˛/ � BY .0; ˇ/ ! BY .0; ˇ/ is a

contraction on BY .0; ˇ/ uniformly in BX.0; ˛/. From our first corollary

to the Banach fixed-point theorem, there exists a unique continuous func-

tion f W BX .0; ˛/ ! BY .0; ˇ/ such that ˆ.x; f .x// D f .x/, that is,

F.x; f .x// D 0.
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For our next application, we consider the Cauchy problem

�
x0.t/ D f .t; x.t// for t 2 I
x.t0/ D x0 :

We seek a closed interval I , with t0 belonging to the interior of I , and also

a differentiable function x W I ! X (where X is a given Banach space)

so that the system is satisfied. This is the standard first-order initial value

problem in ordinary differential equations.

It is a familiar fact that this system is equivalent to solving the integral

equation

x.t/ D x0 C
Z t

t0

f .s; x.s// ds

for t 2 I . Our theorem is this:

THEOREM 10.6. Assume the following hypotheses:

(a) f is continuous,

(b) The inequality

kf .t; x1/ � f .t; x2/kX � k.t/kx1 � x2kX

for all .t; x1/; .t; x2/ 2 U holds for some k.t/ 2 Œ0;1/,

(c) k 2 L1..t0 � a; t0 C a// for some a > 0,

(d) There exist m � 0 and BR�X.u0; s/ � U such that

kf .t; x/kX � m

for all .t; x/ 2 BR�X.u0; s/.

Then there exists a �0 > 0 such that, for any � < �0, there is a unique

solution x 2 C 1.I� ; X/ to the Cauchy problem, with I� D Œt0 � �; t0 C ��.

REMARK. Those familiar with the classical proof will notice here that

things are much more streamlined. Many of the classical estimates are ab-

sorbed into the functional-analytic machinery.

Proof of the Theorem. Let r D minfa; sg and set

�0 D min
n
r;
r

m

o
:

Select � < �0 and consider the complete metric spaceZ D BC.Ir ;X/.x0; r/

with the metric induced by the norm of C.Ir ; X/. Here x0 is the constant
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function equal to x0. Since � < r , if z 2 Z then .t; z.t// 2 BR�X.u0; r/ �
U for all t 2 Ir . Thus, for z 2 Z, define

F.z/.t/ D x0 C
Z t

t0

f .y; z.y// dy

for t 2 Ir . Notice that

sup
t2Ir

kF.z/.t/ � x0k � sup
t2Ir

ˇ̌
ˇ̌
Z t

t0

kf .y; z.y//kX dy

ˇ̌
ˇ̌ � m� � r :

We conclude that F maps Z intoZ. The last task for us is to show that F n

is a contraction on Z for some n 2 N. By induction on n, we shall show

that, for every t 2 Ir ,

kF n.z1/.t/ � F n.z2/.t/kX � 1

nŠ

ˇ̌
ˇ̌
Z t

t0

k.y/ dy

ˇ̌
ˇ̌
n

� kz1 � z2kC.Ir ;X/ : .1/

For n D 1 this is clear. So assume it is true for n�1 with n � 2. Taking

t > t0 (the argument for t < t0 is analogous), we see that

kF n.z1/.t/ � F n.z2/.t/kX

D kF.F n�1.z1//.t/ � F.F n�1.z2//.t/kX

�
Z t

t0

kf .y; F n�1.z1/.y// � f .y; F n�1.z2/.y//kX dy

�
Z t

t0

k.y/kF n�1.z1/.y/ � F n�1.z2/.y/kX dy

� 1

.n � 1/Š

"Z t

t0

k.y/

�Z y

t0

k.w/ dw

�n�1

dy

#
kz1 � z2kC.Ir ;X/

D 1

nŠ

�Z t

t0

k.y/ dy

�n

kz1 � z2kC.Ir ;X/ :

Thus, from (1), we get

kF n.z1/ � F n.z2/kC.Ir ;X/ � 1

nŠ
kkkn

L1.Ir /
kz1 � z2kC.Ir ;X/ ;

and this shows that, for n big enough, F n is a contraction. By means of

our second corollary, we conclude that F has a unique fixed-point. That is

clearly the unique solution to our integral equation, hence solves the Cauchy

problem.
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10.3 The Schauder Theorem

One of the most well known and widely used fixed-point theorems is that

due to Schauder. Here we present the theorem and give a nice, modern

application.

We begin with a lemma.

LEMMA 10.7. Let K be a nonempty, compact, convex subset of a finite-

dimensional real Banach space X . Then every continuous function f W
K ! K has a fixed-point x 2 K.

Proof. Since X is homeomorphic to RN for some N , we assume without

loss of generality that X D RN . We may also assume that K � B
N

(the

closed unit ball). For every x 2 B
N

, let p.x/ 2 K be the unique point

of minimum norm for the set x � K. Observe that p.x/ D x for every

x 2 K. Furthermore, p is continuous on B
N

. In fact, given xj ; x 2 B
N

with xj ! x, we see that

kx � p.x/k � lim inf
xj !1

kx � p.xj /k

� lim infkx � xj k C inf
k2K

kxj � kk ! kx � p.x/k

as j ! 1. Thus x � p.xj / is a minimizing sequence as xj ! x in

x � K. This implies the convergence of p.xj / ! p.x/. Define g.x/ D
f .p.x//. Then g maps B

N
continuously onto K. By the Brouwer fixed-

point theorem, there is now a x 2 K such that g.x/ D x D f .x/.

THEOREM 10.8 (Schauder-Tychonoff). Let X be a locally convex space,

K � X a nonempty and convex set, andK0 � K compact. If f W K ! K0

is continuous, then there exists a point x 2 K0 such that f .x/ D x.

Proof. Denote by B the local basis for the topology of X generated by the

separating family of seminorms P on X . Given U 2 B, we may invoke

the compactness of K0 to find x1; x2; : : : ; xk 2 K0 such that

K0 �
k[

j D1

.xj C U / :

Let '1; : : : ; 'k 2 C.K0/ be a partition of unity for K0 subordinate to the

open cover fxj C U g. Define

fU .x/ D
kX

j D1

'j .f .x//xj
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for x 2 K. Then we have

fU .K/ � KU � co .fx1; : : : ; xkg/ � K :

Here co stands for “convex hull.”

Lemma 10.8 yields the existence of a pointxU 2 KU such that fU .xU / D
xU . Then

xU �f .xU / D fU .xU /�f .xU / D
kX

j D1

'j .f .xU //.xj �f .xU // 2 U .2/

for 'j .f .xU // D 0 whenever xj � f .xU / 62 U .

Invoking again the compactness of K0, there exists

x 2
\

W 2B

ff .xU / W U 2 B; U � W g � K0 : .3/

Choose p 2 P and � > 0 and let

V D fx 2 X W p.x/ < �g 2 B :

Since f is continuous on K, there is a W 2 B with W � V such that

f .x/� f .x/ 2 V

whenever x � x 2 2W , x 2 K. Furthermore, by (3), there is a U 2 B,

U � W , such that

x � f .xU / 2 W � V : .4/

Taking (2) and (4) together, we find that

xU � x D .xU � f .xU //C .f .xU / � x/ 2 U CW � W CW D 2W :

This yields

f .xU / � f .x/ 2 V : .5/

Lines (4) and (5) tell us that

p.x � f .x// � p.x � f .xU //C p.f .xU /� f .x// < 2� :

Since p and � are arbitrary, we conclude that p.x � f .x// D 0 for every

p 2 P , and that implies f .x/ D x.

One of the big open problems in functional analysis is to determine

whether any bounded linear mapping T of a Hilbert space H has an in-

variant subspace. This would be a proper subspace E � H such that

T .E/ � E . The result is known to be false for general Banach spaces

(see [ENF]), but it is still an important open problem for Hilbert spaces.
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One of the really nice positive results along these lines is the following (see

[LOM]):

THEOREM 10.9 (Lomonosov). Let X be a Banach space. Let T 2 B.X/

be a nonscalar operator commuting with a nonzero compact operator P 2
B.X/. Then T has a hyperinvariant subspace (i.e., it is invariant for all

operators commuting with T ).

Proof. The argument is by contradiction. Let A be the algebra of opera-

tors commuting with T . It is immediate that, if T has no hyperinvariant

subspace, then Ax D X for every x 2 X , x ¤ 0.

Without loss of generality, let S be an operator with kSkB.X/ � 1.

Choose x0 2 X such that kSx0k > 1 (which also implies kx0k > 1) and

set B D BX .x0; 1/. For x 2 SB (observe that this x cannot be the zero

vector), there is a T 0 2 A such that kT 0x � x0k < 1. Hence every x 2 SV
has an open neighborhoodVx such that T 0Vx � B for some T 0 2 A. By the

compactness of SB, we find a finite cover V1; : : : ; Vk and T 0
1; : : : ; T

0
k

2 A

such that

T 0
j Vj � B

for j D 1; 2; : : : ; k.

Let '1; : : : ; 'k 2 C.SB/ be a partition of unity for SB subordinate to

the open cover fVj g. Define, for x 2 B ,

f .x/ D
kX

j D1

'j .Sx/T
0

jSx :

Then f is a continuous function from B into B . Since T 0
jS is a compact

map for every j , it is easy to see that f .B/ is relatively compact. Thus

Schauder’s fixed point theorem tells us that there is an x 2 B such that

f .x/ D x.

Define the operator eT 2 A by

eT D
kX

j D1

'j .Sx/T
0

j :

Then we have
eTSx D x :

But eTS is a compact operator, thus the eigenspace F of eTS relative to

the eigenvalue 1 is finite-dimensional. Since eT S commutes with T , we

conclude that F is invariant for T . That means that T has an eigenvalue,

and thus a hyperinvariant subspace, contradicting our assumption.
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Notation Section Definition

X 1.2 normed linear space

kxk 1.2 norm of x

B.x; r/ 1.2 open ball with center x and radius r

B.x; r/ 1.2 closed ball with center x and radius r

X 1.2 Banach space

C.Œ0; 1�/ 1.2 the space of continuous functions on Œ0; 1�

C.X/ 1.2 the space of continuous functions on X

`1 1.2 the space of summable sequences

`p 1.2 the space of pth power summable sequences

`1 1.2 the space of bounded sequences

RN 1.3 Euclidean N -space

ƒ 1.4 a linear operator

X� 1.4 the space of bounded linear functionals onX (the

dual space)

yf .j / 1.4 the j th Fourier coefficient of f

d 1.5 a metric

Gı 1.5 the intersection of countably many open sets

U; V 1.6 the open unit ball in a Banach space

y� 1.6 extension of the linear functional �

T 1.7 the circle group

SN 1.7 a partial summation operator for Fourier series

DN .t/ 1.7 the Dirichlet kernel

Lp 1.7 the Lebesgue space of pth power integrable

functions

c0 1.7 doubly infinite sequences that vanish at infinity
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Notation Section Definition

G 1.7 the graph of a linear operator

G.z; w/ 1.7 the Green’s function

Pr.�/ 1.7 the Poisson kernel

H 3.1 an inner product space

H 3.1 a Hilbert space

hx; yi 3.1 the inner product in a Hilbert space

E 3.1 a subspace of a given space

x? 3.2 the orthogonal space to x

E? 3.2 the orthogonal complement of E

�A 3.2 the Minkowski functional of A

p; q 3.2 Hilbert space projections

� 3.2 a bounded linear functional

fu˛g˛2A 3.2 an orthonormal set

yx.˛/ 3.2 the ˛th Fourier coefficient of x

B.X; Y / 4.2 the bounded operators from X to Y

B.X/ 4.2 the bounded operators from X toX

kx�k 4.2 the norm of x�

kLk 4.2 the norm of the operator L

T � 4.2 the adjoint of the operator T

hx; x�i 4.2 the pairing of a Banach space element and a dual

element

N .T / 4.3 the null space of the operator T

R.T / 4.3 the range of the operator T

�.T / 4.3 the spectrum of the operator T

N 4.3 a complemented space

˛ 4.3 dim N .T � �I/
ˇ 4.3 dimX=R.T � �I/
˛� 4.3 dim N .T � � �I/

ˇ� 4.3 dimX�=R.T � � �I/
A 5.1 a Banach algebra

e 5.1 the unit element in a Banach algebra

�.x/ 5.1 the spectrum of an element of a Banach algebra
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Notation Section Definition

' 5.1 a multiplicative linear functional in a Banach

algebra

x�1 5.1 the inverse of an element in a Banach algebra

�.x/ 5.1 the spectral radius of x

I;J 5.3 an ideal in a Banach algebra

4 5.3 the maximal ideal space of a Banach algebra

A=I 5.3 the quotient of the Banach algebra A by the

ideal I

x 7! x� 5.3 an involution on a Banach algebra

yx 5.3 the Gelfand transform

�; �˛ 6.1 a seminorm

TVS 6.1 topological vector space

Ux;˛;� 6.1 a subbasis element for the topology on a TVS

C1
c .U / 7.1 infinitely differentiable functions of compact

support in U

D 0.U / 7.2 distributions with support in U

ı 7.2 the Dirac delta mass

supp' 7.3 the support of '

h˛; �i 7.3 pairing of a distribution with a testing function

@˛' 7.3 the derivative of order ˛ of '

 � ' 7.3 convolution of a distribution with a testing

function

e .x/ 7.3 the same as  .�x/
t�N .x=t/ 7.4 a Friedrichs mollifier

h.x/ 7.4 the Heaviside function

y̨ 7.5 the Fourier transform of a distribution

M 8.1 a sigma algebra of sets

E;Ex;y 8.1 an i -resolution

‰ 8.1 the isomorphism from the spectral theorem

s 9.1 an extreme point

F n 10.2 iteration of the mapping F with itself n times





Glossary

adjoint of an operator T A linear operator T � so that

hT x; yi D hx; T �yi:

algebra A collection of objects equipped with binary operations of addi-

tion and multiplication, and also with a notion of scalar multiplication.

algebra of sets A collection of sets that is closed under finite union and

complementation.

Baire category theorem The result that a complete metric space cannot

be written as the countable union of nowhere dense sets.

balanced set A set B in a linear space with the property that ˛B � B for

any scalar ˛ with j˛j � 1.

ball Given a metric space .X; d/, the ballB.P; r/with centerP and radius

r is the set B.P; r/ D fx 2 X W d.x; P / < rg.

Banach-Alaoglu theorem The theorem that says that the closed unit ball

in the dual of a Banach space is compact in the weak-� topology.

Banach algebra A Banach space that is also an algebra.

Banach fixed-point theorem See the contraction mapping fixed-point

theorem.

Banach space A normed linear space that is complete in the topology

induced by the norm.

Banach-Steinhaus theorem A theorem that characterizes the uniform

boundedness of a collection of linear operators.

Bessel’s inequality In a Hilbert space, the inequality

X

˛2A

jbx.˛/j2 � kxk2 :
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Herebx.˛/ are the Fourier coefficients of x with respect to a given orthonor-

mal set.

Borel sets The � algebra generated by the open sets.

bounded linear functional A linear functional � that satisfies an inequal-

ity of the form j�.x/j � Ckxk for some constant C > 0.

bounded linear operator A linear operator L that satisfies an inequality

of the form kLxky � CkxkX for some constant C > 0.

Cauchy problem This is the initial value problem for an ordinary differ-

ential equation given by

�
x0.t/ D f .t; x.t// for t 2 I
x.t0/ D x0 :

Cauchy sequence A sequence fxj g in a normed linear space X with the

property that, if � > 0, then there is a K > 0 so that if j; k > K, then

kxj � xkk < �.

characteristic function Given a set S , the characteristic function �S is

equal to 1 at points of S and equal to 0 at points of the complement of S .

circle group The group T that is equivalent to the reals R modulo 2� .

closed ball Given a metric space .X; d/, the closed ball B.P; r/ with

center P and radius r is the set B.P; r/ D fx 2 X W d.x; P / � rg.

closed graph theorem Logically equivalent to the open mapping principle.

Characterizes continuous linear mappings in terms of closed graphs.

codimension of a subspace M of X The dimension of X=M .

compact operator A linear operatorT from a Banach spaceX to a Banach

space Y with the property that T .U / has compact closure whenU is the unit

ball in X .

complement of a subspace M of X A subspace with the property that

there is another subspace N withM \N D f0g and M CN D X .

complete orthonormal set In a Hilbert space, an orthonormal set so that,

if x is orthogonal to every element of the set, then x D 0.

composition of a distribution with an invertible linear transformation

If S is an invertible linear transformation of RN and  a distribution, then

we set

h ı S; 'i D jdetS j�1h; ' ı S�1i :
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continuous linear functional A linear functional that is continuous in the

usual sense of topology.

continuous linear operator A linear operator that is continuous in the

usual sense of topology.

contraction A mapping F of a metric space .X; d/ to itself with the

property that there is a constant K between 0 and 1 such that

d.F.x/; F.y// � Kd.x; y/ :

contraction mapping fixed-point theorem The result that a contraction

on a complete metric space has a unique fixed-point.

convex hull of a set E The smallest convex set that contains E .

convex set A set E in a linear space X such that, if x; y 2 E , then .1 �
t/x C ty 2 E for all 0 � t � 1.

convolution of a distribution with a smooth function If  is a distribu-

tion and  a smooth function then we set

 �  .x/ D h; �x
e i :

Here e .x/ D  .�x/ and � is a translation operator.

derivative of a distribution If � is a distribution,D a derivative, and ' a

testing function, then we define

hD�; 'i � .�1/kh�;D'i ;

where k is the degree of D.

Dirac delta mass A measure of mass 1 supported at the origin.

distribution A generalized function, usually specified as an element of the

dual space of a space of smooth testing functions.

dual space The space X� of bounded linear functionals on a given space

X .

eigenvalue of an operator T A scalar � so that T ��I is not one-to-one.

eigenvector of an operator T A vector x with the property that T x D �x

for some eigenvalue �.

extreme point of a set E We say that s is an extreme point of E if,

whenever x; y 2 E , 0 < t < 1, and tx C .t � t/y D s, then x D y D s.
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extreme set for a set E We say that S is an extreme set forE if, whenever

x; y 2 E , 0 < t < 1, and tx C .1 � t/y 2 S , then x 2 S and y 2 S .

finite-dimensional space A linear space with a basis having finitely many

elements.

first category A set that can be written as the countable union of nowhere

dense sets.

fixed point of a mapping F A pointP such that F.P / D P .

Fourier series For an integrable function f on the circle group T , this is

the series
P

j cj e
ij� with cj D .1=.2�//

R 2�

0
f .t/e�ij t dt .

Fréchet space A complete, Hausdorff topological vector space with the

property that its topology is defined by a countable family of seminorms.

Gelfand-Mazur theorem The theorem that says that if a complex Banach

algebra has the property that every nonzero element is invertible then the

algebra is isometrically isomorphic to the complex number field.

Gelfand-Naimark theorem A theorem that establishes an isometric iso-

morphism of a given Banach algebra A with the continuous functions on

the maximal ideal space.

Gelfand transform The mapping that assigns to each x in a Banach alge-

bra X a functionbx W 4 ! C by way of the formula

bx.h/ D h.x/ :

Green’s function A function with the singularity of the fundamental so-

lution of the Laplacian but zero boundary values.

Hahn-Banach theorem The theorem that guarantees the existence of a

bounded extension of a given linear functional from a subspace to the total

space.

Hausdorff maximality theorem A result that allows one to extract a max-

imal element from a collection. Related to Zorn’s lemma.

Hilbert space A Banach space that is an inner product space.

ideal A linear subspace J ofX such that if y 2 J and x 2 X then xy 2 J.

identity element An element e in the Banach algebra X such that ex D
xe D x for every x 2 X .

implicit function theorem The theorem that tells us when we can solve

the equation f .x; y/ D 0 for y in terms of x.
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injective A mapping or function is injective if it is one-to-one.

inner product space A linear space equipped with a bilinear operator into

the field of scalars that satisfies certain natural properties.

invertible element in a Banach algebra X An element x 2 X for which

there exists a y 2 X with xy D e.

invertible operator A linear operator T W X ! Y with the property that

there is an operator S W Y ! X so that ST D TS D I .

i -resolution Let M be a �-algebra on a set �. Let H be a Hilbert space.

Then an i -resolution on M is a mapping

E W M ! B.H/

such that

(a) E.;/ D 0, E.�/ D I ,

(b) Each E.!/ is a self-adjoint projection,

(c) E.! \ !0/ D E.!/E.!0 /,

(d) If ! \ !0 D ;, then E.! [ !0/ D E.!/ C E.!0/,

(e) For every x; y 2 H , the set functionEx;y defined by

Ex;y .!/ D hE.!/x; yi

is a complex measure on M.

kernel of a multiplicative linear functional The set of elements that are

mapped to 0.

Krein-Milman theorem The result that a compact, convex set is the con-

vex hull of its extreme points.

linear functional A linear operator whose range is the field of scalars

(usually R or C).

linear operator A function L from a normed linear space X to a normed

linear space Y that is linear in the sense thatL.˛xCˇy/ D ˛L.x/CˇL.y/.

locally convex space We say that X is a locally convex space if there is a

basis for the topology consisting of convex sets.

Lomonosov’s theorem The theorem that says that a Banach space operator

that commutes with a compact operator has an invariant subspace.
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maximal ideal of a Banach algebra X A proper ideal in X that is con-

tained in no other ideal.

maximal ideal space of a Banach algebra X The collection of multi-

plicative linear functionals on X .

Minkowski functional A function that measures the convexity of a set.

multiplication of a distribution by a smooth function If  is a distribu-

tion and  a smooth function then we set

h ; 'i D h;  'i :

multiplicative linear functional on a Banach algebra X A ring homo-

morphism from X to the scalar field.

norm The device for measuring the lengths of vectors in a normed linear

space.

normal operator A bounded operator T on the Hilbert space H such that

T T � D T �T .

normed linear space A vector space that is equipped with a norm that is

compatible with the algebraic structure on the space.

open mapping principle The theorem that says that the inverse of a uni-

valent, surjective linear mapping is also continuous.

orthonormal set In a Hilbert space, a set of unit vectors that are mutually

orthogonal.

parallelogram law The identity, valid in a Hilbert space, that says

kx C yk2 C kx � yk2 D 2kxk2 C 2kyk2 :

partition of unity A collection of C1
c functions that sums to 1.

perpendicular complement of an element x In an inner product space,

the collection of elements that are orthogonal to x.

perpendicular complement of a set S In an inner product space, the

collection of elements that are orthogonal to all elements of S .

Poisson kernel The reproducing kernel for the space of harmonic func-

tions.

projection In a Hilbert space H , a canonical, self-adjoint, idempotent

operator that maps H onto a given subspace E .
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Riemann-Lebesgue lemma The result that says that the Fourier coeffi-

cients of an integrable function vanish at infinity.

Riesz-Fischer theorem The theorem that characterizes which sequences

of scalars arise as the Fourier coefficients of an element of Hilbert space.

Riesz representation theorem The theorem that characterizes the dual of

the space of continuous functions on a compact, Hausdorff space. Also the

theorem that says that any bounded, linear functional on a Hilbert space is

given by inner product with some element of the space.

scalar field The field over which our vector spaces and normed linear

spaces live. This field is denoted by k, and is usually the real number field

R or the complex number field C.

Schauder-Tychonoff theorem A fixed-point theorem for compact, convex

sets.

Schwartz distribution An element of the dual space of the Schwartz

space.

Schwartz function A smooth function f on RN is said to be Schwartz if

�˛;ˇ .f / � sup jx˛@ˇf j

is finite for every choice of ˛ and ˇ. We use the seminorms �˛;ˇ to topolo-

gize the space of Schwartz functions.

Schwarz inequality A standard inequality that estimates the size of the

inner product of two vectors in terms of the norms of those vectors:

jv � wj � kvkkwk :

second category A set that is not of first category.

self-adjoint operator An operator T on the Hilbert space H such that

T D T �.

seminorm Like a norm, but without the property that kxk D 0 ) x D 0.

sesquilinear A quadratic form that is complex linear in the first entry and

conjugate complex linear in the second entry.

� -algebra A collection of sets that is closed under countable union and

complementation.

space of functions A normed linear space whose elements are functions

on some common domain.
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spectral radius of an element x in a Banach algebra X The radius of

the spectrum of x.

spectral theorem A theorem that represents the bounded linear operators

on a Hilbert space in terms of multiplication of the space of L2 functions

by L1 functions.

spectrum of a Banach algebra element x The set of scalars � such that

x � �e is not invertible.

spectrum of an operator T The collection of scalars � so that T � �I is

not invertible.

Stone-Weierstrass theorem The theorem that gives a sufficient condition

for a subalgebra of C.X/ to be dense in C.X/.

subspace A subset of a given linear space X that is closed under addition

and scalar multiplication.

support of a distribution The complement of the set where the distribu-

tion vanishes.

surjective A mapping or function is surjective if it is onto.

topological vector space A vector space that is endowed with a topology

so that addition and scalar multiplication are continuous.

totally bounded set An set E with the property that, for each � > 0, there

is a finite collection of balls of radius � that covers E .

translation of a distribution If y 2 RN and f is any function on RN then

we define the translation by y as �yf .x/ D f .x�y/. If  is a distribution,

then we set

h�y; 'i D h; ��y'i :

triangle inequality The result that estimates the norm of the sum of two

vectors in terms of the norms of the individual vectors:

kv C wk � kvkCkwk :

uniform boundedness principle Same as the Banach-Steinhaus theorem.

unitary operator An operator T on the Hilbert spaceH such that T �T D
I D T T �.

von Neumann algebra The algebra of bounded operators on a Hilbert

space.
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weak-� topology A topology on the dual X� of a Banach space that is

equivalent to pointwise convergence.

weak topology A topology on a Banach space that is induced by the dual

space.

Wiener Tauberian theorem If a nonvanishing, continuous function has

absolutely convergent Fourier series, then so does its reciprocal.

Zorn’s lemma A logical result that enables one to extract maximal ele-

ments from a collection.
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