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PREFACE 

The second volume of the CRC Press Comprehensive Dictionary of Mathematics covers algebra, 
arithmetic and trigonometry broadly, with an overlap into differential geometry, algebraic geometry, 
topology and other related fields. The authorship is by well over 30 mathematicians, active in 
teaching and research, including the editor. 

Because it is a dictionary and not an encyclopedia, definitions are only occasionally accompanied 
by a discussion or example. In a dictionary of mathematics, the primary goal is to define each term 
rigorously. The derivation of a term is almost never attempted. 

The dictionary is written to be a useful reference for a readership that includes students, scientists, 
and engineers with a wide range of backgrounds, as well as specialists in areas of analysis and 
differential equations and mathematicians in related fields. Therefore, the definitions are intended 
to be accessible, as well as rigorous. To be sure, the degree of accessibility may depend upon the 
individual term, in a dictionary with terms ranging from Abelian cohomology to z intercept. 

Occasionally a term must be omitted because it is archaic. Care was taken when such circum- 
stances arose to ensure that the term was obsolete. An example of an archaic term deemed to be 
obsolete, and hence not included, is “right line”. This term was used throughout a turn-of-the-century 
analytic geometry textbook we needed to consult, but it was not defined there. Finally, reference to 
a contemporary English language dictionary yielded “straight line” as a synonym for “right line”. 

The authors are grateful to the series editor, Stanley Gibilisco, for dealing with our seemingly 
endless procedural questions and to Nora Konopka, for always acting efficiently and cheerfully with 
CRC Press liaison matters. 

Douglas N. Clark 
Editor-in-Chief 
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A
A-balanced mapping LetM be a right mod-
ule over the ring A, and let N be a left module
over the same ringA. A mapping φ fromM×N
to an Abelian group G is said to be A-balanced
if φ(x, ·) is a group homomorphism from N to
G for each x ∈ M , if φ(·, y) is a group homo-
morphism from M to G for each y ∈ N , and
if

φ(xa, y) = φ(x, ay)

holds for all x ∈ M , y ∈ N , and a ∈ A.

A-B-bimodule An Abelian groupG that is a
left module over the ring A and a right module
over the ring B and satisfies the associative law
(ax)b = a(xb) for all a ∈ A, b ∈ B, and all
x ∈ G.

Abelian cohomology The usual cohomology
with coefficients in an Abelian group; used if
the context requires one to distinguish between
the usual cohomology and the more exotic non-
Abelian cohomology. See cohomology.

Abelian differential of the first kind A holo-
morphic differential on a closed Riemann sur-
face; that is, a differential of the form ω =
a(z) dz, where a(z) is a holomorphic function.

Abelian differential of the second kind A
meromorphic differential on a closed Riemann
surface, the singularities of which are all of order
greater than or equal to 2; that is, a differential
of the form ω = a(z) dz where a(z) is a mero-
morphic function with only 0 residues.

Abelian differential of the third kind A
differential on a closed Riemann surface that is
not an Abelian differential of the first or sec-
ond kind; that is, a differential of the form ω =
a(z) dz where a(z) is meromorphic and has at
least one non-zero residue.

Abelian equation A polynomial equation
f (X) = 0 is said to be an Abelian equation if

its Galois group is an Abelian group. See Galois
group. See also Abelian group.

Abelian extension A Galois extension of a
field is called an Abelian extension if its Galois
group is Abelian. See Galois extension. See
also Abelian group.

Abelian function A function f (z1, z2, z3,
. . . , zn)meromorphic on Cn for which there ex-
ist 2n vectors ωk ∈ Cn, k = 1, 2, 3, . . . , 2n,
called period vectors, that are linearly indepen-
dent over R and are such that

f (z+ ωk) = f (z)

holds for k = 1, 2, 3, . . . , 2n and z ∈ Cn.

Abelian function field The set of Abelian
functions on Cn corresponding to a given set of
period vectors forms a field called an Abelian
function field.

Abelian group Briefly, a commutative group.
More completely, a setG, together with a binary
operation, usually denoted “+,” a unary opera-
tion usually denoted “−,” and a distinguished
element usually denoted “0” satisfying the fol-
lowing axioms:

(i.) a + (b + c) = (a + b)+ c for all
a, b, c ∈ G,

(ii.) a + 0 = a for all a ∈ G,
(iii.) a + (−a) = 0 for all a ∈ G,
(iv.) a + b = b + a for all a, b ∈ G.
The element 0 is called the identity, −a is

called the inverse of a, axiom (i.) is called the
associative axiom, and axiom (iv.) is called the
commutative axiom.

Abelian ideal An ideal in a Lie algebra which
forms a commutative subalgebra.

Abelian integral of the first kind An indef-
inite integral W(p) = ∫ p

p0
a(z) dz on a closed

Riemann surface in which the function a(z) is
holomorphic (the differential ω(z) = a(z) dz

is said to be an Abelian differential of the first
kind).

Abelian integral of the second kind An in-
definite integralW(p) = ∫ p

p0
a(z) dzon a closed

Riemann surface in which the function a(z) is
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meromorphic with all its singularities of order
at least 2 (the differential a(z) dz is said to be an
Abelian differential of the second kind).

Abelian integral of the third kind An in-
definite integralW(p) = ∫ p

p0
a(z) dzon a closed

Riemann surface in which the function a(z) is
meromorphic and has at least one non-zero resi-
due (the differentiala(z) dz is said to be an Abel-
ian differential of the third kind).

Abelian Lie group A Lie group for which
the associated Lie algebra is Abelian. See also
Lie algebra.

Abelian projection operator A non-zero
projection operatorE in a von Neumann algebra
M such that the reduced von Neumann algebra
ME = EME is Abelian.

Abelian subvariety A subvariety of an
Abelian variety that is also a subgroup. See also
Abelian variety.

Abelian surface A two-dimensional Abelian
variety. See also Abelian variety.

Abelian variety A complete algebraic vari-
ety G that also forms a commutative algebraic
group. That is, G is a group under group oper-
ations that are regular functions. The fact that
an algebraic group is complete as an algebraic
variety implies that the group is commutative.
See also regular function.

Abel’s Theorem Niels Henrik Abel (1802-
1829) proved several results now known as
“Abel’s Theorem,” but perhaps preeminent
among these is Abel’s proof that the general
quintic equation cannot be solved algebraically.
Other theorems that may be found under the
heading “Abel’s Theorem” concern power se-
ries, Dirichlet series, and divisors on Riemann
surfaces.

absolute class field Let k be an algebraic
number field. A Galois extension K of k is an
absolute class field if it satisfies the following
property regarding prime ideals of k: A prime
ideal p of k of absolute degree 1 decomposes

as the product of prime ideals of K of absolute
degree 1 if and only if p is a principal ideal.

The term “absolute class field” is used to dis-
tinguish the Galois extensions described above,
which were introduced by Hilbert, from a more
general concept of “class field” defined by
Tagaki. See also class field.

absolute covariant A covariant of weight 0.
See also covariant.

absolute inequality An inequality involving
variables that is valid for all possible substitu-
tions of real numbers for the variables.

absolute invariant Any quantity or property
of an algebraic variety that is preserved under
birational transformations.

absolutely irreducible character The char-
acter of an absolutely irreducible representation.
A representation is absolutely irreducible if it is
irreducible and if the representation obtained by
making an extension of the ground field remains
irreducible.

absolutely irreducible representation A
representation is absolutely irreducible if it is
irreducible and if the representation obtained by
making an extension of the ground field remains
irreducible.

absolutely simple group A group that con-
tains no serial subgroup. The notion of an ab-
solutely simple group is a strengthening of the
concept of a simple group that is appropriate for
infinite groups. See serial subgroup.

absolutely uniserial algebra LetA be an al-
gebra over the fieldK , and letL be an extension
field of K . Then L ⊗K A can be regarded as
an algebra over L. If, for every choice of L,
L ⊗K A can be decomposed into a direct sum
of ideals which are primary rings, then A is an
absolutely uniserial algebra.

absolute multiple covariant A multiple co-
variant of weight 0. See also multiple covari-
ants.
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absolute number A specific number repre-
sented by numerals such as 2, 3

4 , or 5.67 in con-
trast with a literal number which is a number
represented by a letter.

absolute value of a complex number More
commonly called the modulus, the absolute val-
ue of the complex number z = a + ib, where a
and b are real, is denoted by |z| and equals the
non-negative real number

√
a2 + b2.

absolute value of a vector More commonly
called the magnitude, the absolute value of the
vector −→v = (v1, v2, . . . , vn)

is denoted by |−→v | and equals the non-negative

real number
√
v2

1 + v2
2 + · · · + v2

n.

absolute value of real number For a real
number r , the nonnegative real number |r|, given
by

|r| =
{

r if r ≥ 0
−r if r < 0 .

}

abstract algebraic variety A set that is anal-
ogous to an ordinary algebraic variety, but de-
fined only locally and without an imbedding.

abstract function (1) In the theory of gen-
eralized almost-periodic functions, a function
mapping R to a Banach space other than the
complex numbers.

(2) A function from one Banach space to an-
other Banach space that is everywhere differen-
tiable in the sense of Fréchet.

abstract variety A generalization of the no-
tion of an algebraic variety introduced by Weil,
in analogy with the definition of a differentiable
manifold. An abstract variety (also called an
abstract algebraic variety) consists of (i.) a
family {Vα}α∈A of affine algebraic sets over a
given field k, (ii.) for each α ∈ A a family of
open subsets {Wαβ}β∈A ofVα , and (iii.) for each
pair α and β inA a birational transformation be-
tween Wαβ and Wαβ such that the composition
of the birational transformations between sub-
sets of Vα and Vβ and between subsets of Vβ
and Vγ are consistent with those between sub-
sets of Vα and Vγ .

acceleration parameter A parameter chosen
in applying successive over-relaxation (which
is an accelerated version of the Gauss-Seidel
method) to solve a system of linear equations nu-
merically. More specifically, one solvesAx = b

iteratively by setting

xn+1 = xn + R (b − Axn) ,

where

R =
(
L+ ω−1D

)−1

with L the lower triangular submatrix of A, D
the diagonal of A, and 0 < ω < 2. Here, ω
is the acceleration parameter, also called the
relaxation parameter. Analysis is required to
choose an appropriate value of ω.

acyclic chain complex An augmented, pos-
itive chain complex

· · · ∂n+1−→ Xn
∂n−→ Xn−1

∂n−1−→ . . .

· · · ∂2−→ X1
∂1−→ X0

ε→ A → 0

forming an exact sequence. This in turn means
that the kernel of ∂n equals the image of ∂n+1
for n ≥ 1, the kernel of ε equals the image of
∂1, and ε is surjective. Here the Xi and A are
modules over a commutative unitary ring.

addend In arithmetic, a number that is to be
added to another number. In general, one of the
operands of an operation of addition. See also
addition.

addition (1) A basic arithmetic operation
that expresses the relationship between the
number of elements in each of two disjoint sets
and the number of elements in the union of those
two sets.

(2) The name of the binary operation in an
Abelian group, when the notation “+” is used
for that operation. See also Abelian group.

(3) The name of the binary operation in a
ring, under which the elements form an Abelian
group. See also Abelian group.

(4) Sometimes, the name of one of the opera-
tions in a multi-operator group, even though the
operation is not commutative.
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addition formulas in trigonometry The for-
mulas

cos(φ + θ) = cosφ cos θ − sin φ sin θ,

sin(φ + θ) = cosφ sin θ + sin φ cos θ,

tan(φ + θ) = tan φ + tan θ

1 − tan φ tan θ
.

addition of algebraic expressions One of
the fundamental ways of forming new algebraic
expressions from existing algebraic expressions;
the other methods of forming new expressions
from old being subtraction, multiplication, divi-
sion, and root extraction.

addition of angles In elementary geometry
or trigonometry, the angle resulting from the
process of following rotation through one an-
gle about a center by rotation through another
angle about the same center.

addition of complex numbers One of the
fundamental operations under which the com-
plex numbers C form a field. If w = a + ib,
z = c + id ∈ C, with a, b, c, and d real, then
w+ z = (a+ c)+ i(b+d) is the result of addi-
tion, or the sum, of those two complex numbers.

addition of vectors One of the fundamental
operations in a vector space, under which the set
of vectors form an Abelian group. For vectors
in Rn or Cn, if x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn), then x + y = (x1 + y1, x2 +
y2, . . . , xn + yn).

additive group (1) Any group, usually
Abelian, where the operation is denoted +. See
group, Abelian group.

(2) In discussing a ring R, the commutative
group formed by the elements of R under the
addition operation.

additive identity In an Abelian groupG, the
unique element (usually denoted 0) such that
g + 0 = g for all g ∈ G.

additive identity a binary operation that is
called addition and is denoted by “+.” In this
situation, an additive identity is an element i ∈ S
that satisfies the equation

i + s = s + i = s

for all s ∈ S. Such an additive identity is nec-
essarily unique and usually is denoted by “0.”

In ordinary arithmetic, the number 0 is the
additive identity because 0 + n = n + 0 = n

holds for all numbers n.

additive inverse In any algebraic structure
with a commutative operation referred to as ad-
dition and denoted by “+,” for which there is
an additive identity 0, the additive inverse of an
element a is the element b for which a + b =
b + a = 0. The additive inverse of a is usu-
ally denoted by −a. In arithmetic, the additive
inverse of a number is also called its opposite.
See additive identity.

additive set function LetX be a set and let A
be a collection of subsets ofX that is closed un-
der the union operation. Let φ : A → F , where
F is a field of scalars. We say that φ is finitely
additive if, whenever S1, . . . , Sk ∈ A are pair-
wise disjoint then φ(∪kj=1Sj ) = ∑k

j=1 φ(Sj ).
We say that φ is countably additive if, when-
ever S1, S2, · · · ∈ A are pairwise disjoint then
φ(∪∞

j=1Sj ) = ∑∞
j=1 φ(Sj ).

additive valuation Let F be a field and G
be a totally ordered additive group. An addi-
tive valuation is a function v : F → G ∪ {∞}
satisfying

(i.) v(a) = ∞ if and only if a = 0,
(ii.) v(ab) = v(a)+ v(b),
(iii.) v(a + b) ≥ min{v(a), v(b)}.

adele Following Weil, let k be either a finite
algebraic extension of Q or a finitely generated
extension of a finite prime field of transcendency
degree 1 over that field. By a place of k is meant
the completion of the image of an isomorphic
embedding of k into a local field (actually the
equivalence class of such completions under the
equivalence relation induced by isomorphisms
of the local fields). A place is infinite if the local
field is R or C, otherwise the place is finite. For
a place v, kv will denote the completion, and if
v is a finite place, rv will denote the maximal
compact subring of kv . An adele is an element
of ∏

v∈P
kv ×

∏
v /∈P

rv ,
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where P is a finite set of places containing the
infinite places.

adele group Let V be the set of valuations
on the global field k. For v ∈ V , let kv be
the completion of k with respect to v, and let
Ov be the ring of integer elements in kv . The
adele group of the linear algebraic group G is
the restricted direct product

∏
v∈V

Gkv
(
GOv

)

which, as a set, consists of all sequences of el-
ements of Gkv , indexed by v ∈ V , with all but
finitely many terms in each sequence being ele-
ments of GOv .

adele ring Following Weil, let k be either a
finite algebraic extension of Q or a finitely gen-
erated extension of a finite prime field of tran-
scendency degree 1 over that field. Set

kA(P ) =
∏
v∈P

kv ×
∏
v /∈P

rv ,

where P is a finite set of places of k contain-
ing the infinite places. A ring structure is put
on kA(P ) defining addition and multiplication
componentwise. The adele ring is

kA =
⋃
P

kA(P ) .

A locally compact topology is defined on kA by
requiring each kA(P ) to be an open subring and
using the product topology on kA(P ).

adjoining (1) Assuming K is a field exten-
sion of k and S ⊂ K , the field obtained by ad-
joining S to k is the smallest field F satisfying
k ⊂ F ⊂ K and containing S.

(2) If R is a commutative ring, then the ring
of polynomials R[X] is said to be obtained by
adjoining X to R.

adjoint group The image of a Lie group G,
under the adjoint representation into the space
of linear endomorphisms of the associated Lie
algebra g. See also adjoint representation.

adjoint Lie algebra Let g be a Lie algebra.
The adjoint Lie algebra is the image of g under

the adjoint representation into the space of linear
endomorphisms of g. See also adjoint represen-
tation.

adjoint matrix For a matrixM with complex
entries, the adjoint of M is denoted by M∗ and
is the complex conjugate of the transpose ofM;
so if M = (

mij
)
, then M∗ has m̄ji as the entry

in its ith row and j th column.

adjoint representation (1) In the context of
Lie algebras, the adjoint representation is the
mapping sending X to [X, ·].

(2) In the context of Lie groups, the adjoint
representation is the mapping sending σ to the
differential of the automorphism ασ : G → G

defined by ασ (τ) = στσ−1.
(3) In the context of representations of an al-

gebra over a field, the term adjoint representa-
tion is a synonym for dual representation. See
dual representation.

adjoint system Let D be a curve on a non-
singular surface S. The adjoint system of D is
|D +K|, where K is a canonical divisor on S.

adjunction formula The formula

2g − 2 = C.(C +K)

relating the genus g of a non-singular curve C
on a surface S with the intersection pairing of C
and C + K , where K is a canonical divisor on
S.

admissible homomorphism For a group G
with a set of operators �, a group homomor-
phism fromG to a groupG′ on which the same
operators act, such that

ω(ab) = (ωa)(ωb)

holds for all a, b ∈ G and allω ∈ �. Also called
an �-homomorphism or an operator homomor-
phism.

admissible isomorphism For a groupGwith
a set of operators�, a group isomorphism from
G onto a groupG′, on which the same operators
act, such that

ω(ab) = (ωa)(ωb)
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holds for all a, b ∈ G and allω ∈ �. Also called
an�-isomorphism or an operator isomorphism.

admissible normal subgroup Let G be a
group. It is easily seen that a subset N of G is
a normal subgroup if and only if there is some
equivalence relation ∼ onG such that ∼ is com-
patible with the multiplication on G, meaning

a ∼ b, c ∼ d ⇒ (ac) ∼ (bd) ,

and N is the equivalence class of the identity.
In case G also has an operator domain �, an
admissible normal subgroup is defined to be the
equivalence class of the identity for an equiva-
lence relation ∼ that is compatible with the mul-
tiplication as above and that also satisfies

a ∼ b ⇒ (ωa) ∼ (ωb) for all ω ∈ � .

admissible representation Let π be a uni-
tary representation of the group G in a Hilbert
space, and let M be the von Neumann algebra
generated byπ(G). The representationπ is said
to be an admissible representation or a trace ad-
missible representation if there exists a trace on
M+ which is a character for π .

Ado-Iwasawa Theorem The theorem that
every finite dimensional Lie algebra (over a field
of characteristic p) has a faithful finite dimen-
sional representation. The characteristic p = 0
case of this is Ado’s Theorem and the charac-
teristic p = 0 case is Iwasawa’s Theorem. See
also Lie algebra.

Ado’s Theorem A finite dimensional Lie al-
gebra g has a representation of finite degree ρ
such that g ∼= ρ(g).

While originally proved for Lie algebras
over fields of characteristic 0, the result was
extended to characteristic p by Iwasawa. See
Ado-Iwasawa Theorem.

affect For a polynomial equation P(X) = 0,
the Galois group of the equation can be consid-
ered as a group of permutations of the roots of
the equation. The affect of the equation is the
index of the Galois group in the group of all
permutations of the roots of the equation.

affectless equation A polynomial equation
for which the Galois group consists of all per-
mutations. See also affect.

affine algebraic group See linear algebraic
group.

affine morphism of schemes Let X and Y
be schemes and f : X → Y be a morphism. If
there is an open affine cover {Vi} of the scheme
Y for which f−1(Vi) is affine for each i, then f
is an affine morphism of schemes.

affine scheme Let A be a commutative ring,
and let Spec(A) = X be the set of all prime
ideals ofA, equipped with the spectral or Zariski
topology. Let OX be a sheaf of local rings on
X. The ringed space (X,OX) is called the affine
scheme of the ring A.

affine space Let V be a real, linear n-dimen-
sional space. LetA be a set of points, which are
denoted P,Q. Define a relation between points
in A and vectors in V as follows:
(i.) To every ordered pair (P,Q) ∈ A×A, there
is associated a “difference vector”

−→
PQ ∈ V.

(ii.) To every point P ∈ A and every vector
v ∈ V there is associated precisely one point
Q ∈ A such that

−→
PQ = v.

(iii.) If P,Q,R ∈ A then

−→
PQ+ −→

QR = −→
PR .

In this circumstance, we callA ann-dimensional
affine space.

affine variety A variety (common zero set
of a finite collection of functions) defined in an
affine space.

A-homomorphism For A-modules M and
N , a group homomorphism f : M → N is
called an A-homomorphism if

f (am) = af (m) for all a ∈ A, m ∈ M .

Albanese variety For V a variety, the Al-
banese variety of V is an Abelian variety A =
Alb(V ) such that there exists a rational f :
V → A which generates A and has the uni-
versal mapping property that for any rational
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g : V → B, where B is an Abelian variety,
there exist a homomorphism h : A → B and a
constant c ∈ B such that g = h f + c.

Alexander Duality If A is a compact subset
of Rn, then for all indices q and all R-modules
G,

Hq(Rn,Rn \ A;G) = H
n−q−1

(A;G) .

algebra (1) The system of symbolic ma-
nipulation formalized by François Viéte (1540–
1603), which today is known as elementary al-
gebra.

(2) The entire area of mathematics in which
one studies groups, rings, fields, etc.

(3) A vector space (over a field) on which is
also defined an operation of multiplication.

(4) A synonym for universal algebra, which
includes structures such as Boolean algebras.

algebra class An equivalence class of central
simple algebras under the relation that relates a
pair of algebras if they are both isomorphic to
full matrix rings over the same division algebra.
Algebras in the same algebra class are said to be
“similar.” See also central simple algebra.

algebra class group Let K be a field. Two
central simple algebras over K are said to be
similar if they are isomorphic to full matrix rings
over the same division algebra. Similarity is an
equivalence relation, and the equivalence
classes are called algebra classes. The product
of a pair of algebra classes is defined by choos-
ing an algebra from each class, sayA andB, and
letting the product of the classes be the algebra
class containing A⊗K B. This product is well
defined, and the algebra classes form a group un-
der this multiplication, called the algebra class
group or Brauer group.

algebra extension Let A be an algebra over
the commutative ring R. Then by an algebra
extension of A is meant either

(i.) an algebra over R that contains A; or
(ii.) an algebra A′ containing a two-sided R-

module M which is a two-sided ideal in A′ and
is such that

A′/M = A .

In this case, M is called the kernel of the ex-
tension because it is the kernel of the canonical
homomorphism.

algebra homomorphism Suppose A and B
are algebras of the same type, meaning that for
each n-ary operation fA on A there is a corre-
sponding n-ary operation fB on B. A mapping
φ : A → B is called a homomorphism from A

toB if, for each pair of corresponding operations
fA and fB ,

φ (fA (a1, a2, . . . , an))

= fB (φ (a1) , φ (a2) , . . . , φ (an))

holds for all a1, a2, . . . , an ∈ A.
Typically, an algebra A is a ring that also has

the structure of a module over another ringR, so
that an algebra homomorphism φ must satisfy
(i.) φ(a1 +a2) = φ(a1)+φ(a2) for a1, a2 ∈ A,
(ii.) φ(a1a2) = φ(a1)φ(a2) for a1, a2 ∈ A,
(iii.) φ(ra) = rφ(a), for r ∈ R and a ∈ A.

algebraic (1) An adjective referring to an
object, structure, or theory that occurs in algebra
or arises through application of the processes
used in algebra.

(2) An adverb meaning a process that in-
volves only the operations of algebra, which are
addition, subtraction, multiplication, division,
and root extraction.

algebraic addition In elementary algebra,
the addition of algebraic expressions which ex-
tends the operation of addition of numbers in
arithmetic.

algebraic addition formula For an Abelian
function f , an equation that expresses f (a+ b)
rationally, in terms of the values of a certain
(p+ 1)-tuple of Abelian functions, evaluated at
the points a, b ∈ C. See also Abelian function.

algebraic algebra An algebra A over a field
K such that every a ∈ A is algebraic over K .
See algebra.

algebraically closed field A field k, in which
every polynomial in one variable, with coeffi-
cients in k, has a root.
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algebraic closure The smallest algebraically
closed extension field of a given field F . The
algebraic closure exists and is unique up to iso-
morphism.

algebraic correspondence Let C be a non-
singular algebraic curve. By an algebraic cor-
respondence is meant a divisor in the product
variety C × C. More generally, an algebraic
correspondence means a Zariski closed subset
T of the product V1 × V2 of two irreducible va-
rieties. Points P1 ∈ V1 and P2 ∈ V2 are said
to correspond if (P1, P2) ∈ T . See also corre-
spondence ring.

algebraic curve An algebraic variety of di-
mension one. See also algebraic variety.

algebraic cycle By an algebraic cycle of di-
mensionm on an algebraic variety V is meant a
finite formal sum ∑

ciVi

where the ci are integers and the Vi are irre-
ducible m-dimensional subvarieties of V . The
cycle is said to be effective or positive if all the
coefficients ci are non-negative. The support of
the cycle is the union of the subvarieties hav-
ing non-zero coefficients. The set of cycles of
dimensionm forms an Abelian group under ad-
dition, which is denoted Zm(V ).

algebraic dependence The property shared
by a set of elements in a field, when they sat-
isfy a non-trivial polynomial equation. Such an
equation demonstrates that the set of elements
is not algebraically independent.

algebraic differential equation (1) An equa-
tion of the form

F
(
x, y, y′, y′′, . . . , y(n)

)
= 0

in whichF is a polynomial with coefficients that
are complex analytic functions of x.

(2) An equation obtained by equating to zero
a differential polynomial in a set of differential
variables in a differential extension field of a
differential field. See also differential field.

algebraic element If K is an extension field
of the field k, an element x ∈ K is an algebraic

element of K if it satisfies a non-trivial polyno-
mial equation with coefficients in k.

algebraic equation An equation of the form
P = 0 where P is a polynomial in one or more
variables.

algebraic equivalence Two cycles X1 and
X2 in a non-singular algebraic variety V are al-
gebraically equivalent if there is a family of cy-
cles {X(t) : t ∈ T } on V , parameterized by
t ∈ T , where T is another non-singular alge-
braic variety, such that there is a cycleZ inV×T
for which eachX(t) is the projection to V of the
intersection of Z and V × {t}, and X1 = X(t1),
X2 = X(t2), for some t1, t2 ∈ T . Such a family
of cycles X(t) is called an algebraic family.

algebraic equivalence of divisors Two di-
visors f and g on an irreducible variety X are
algebraically equivalent if there exists an alge-
braic family of divisors, ft , t ∈ T , and points
t1 and t2 ∈ T , such that f = ft1 , and g = ft2 .
Thus, algebraic equivalence is an algebraic ana-
log of homotopy, though the analogy is not par-
ticularly fruitful.

Algebraic equivalence has the important
property of preserving the degree of divisors;
that is, two algebraically equivalent divisors have
the same degree. It also preserves principal
divisors; that is, if one divisor of an algebrai-
cally equivalent pair is principal, then so is the
other one. (A divisor is principal if it is the di-
visor of a rational function.) Thus, the group
D0/P is a subgroup of the divisor class group
Cl0(X) = D/P . Here, D0 is the group of divi-
sors algebraically equivalent to 0, P is the group
of principal divisors, and D is the group of di-
visors of degree 0. The group D0/p is exactly
the subgroup of the divisor class group realized
by the group of points of the Picard variety of
X. See algebraic family of divisors, divisor. See
also integral divisor, irreducible variety, Picard
variety.

algebraic expression An expression formed
from the elements of a field and one or more
variables (variables are also often called inde-
terminants) using the algebraic operations of ad-
dition, subtraction, multiplication, division, and
root extraction.
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algebraic extension An extension fieldK of
a field k such that every α in K , but not in k,
is algebraic over k, i.e., satisfies a polynomial
equation with coefficients in k.

algebraic family A family of cycles {X(t) :
t ∈ T } on a non-singular algebraic variety V ,
parameterized by t ∈ T , where T is another
non-singular algebraic variety, such that there
is a cycle Z in V × T for which each X(t) is
the projection to V of the intersection of Z and
V × {t}.

algebraic family of divisors A family of di-
visors ft , t ∈ T , on an irreducible variety X,
where the index set T is also an irreducible va-
riety, and where ft = φ∗

t (D) for some fixed
divisor D on X × T and all t ∈ T . Here, for
each t ∈ T , φ∗

t is the map from divisors on
X × T to divisors on X induced by the embed-
ding φt : X → X × T , where φ(t) = (x, t),
andX× T is the Cartesian product ofX and T .
The variety T is called the base for the algebraic
family ft , t ∈ T . See also Cartesian product,
irreducible variety.

algebraic function A function Y = f (X1,
X2, . . . , XN) satisfying an equation R(X1, X2,
. . . , XN, Y ) = 0 where R is a rational function
over a field F . See also rational function.

algebraic function field Let F be a field.
Any finite extension of the field of rational func-
tions in

X1, X2, . . . , Xn

over the field F is called an algebraic function
field over F .

algebraic fundamental group A generaliza-
tion of the concept of fundamental group defined
for an algebraic variety over a field of character-
istic p > 0, formed in the context of finite étale
coverings.

algebraic geometry Classically, algebraic
geometry has meant the study of geometric prop-
erties of solutions of algebraic equations. In
modern times, algebraic geometry has become
synonymous with the study of geometric objects
associated with commutative rings.

algebraic group An algebraic variety, to-
gether with group operations that are regular
functions. See regular function.

algebraic homotopy group A generalization
of the concept of homotopy group, defined for
an algebraic variety over a field of characteris-
tic p > 0, formed in the context of finite étale
coverings.

algebraic identity An algebraic equation in-
volving a variable or variables that reduces to
an arithmetical identity for all substitutions of
numerical values for the variable or variables.

algebraic independence Let k be a subfield
of the fieldK . The elements a1, a2, . . . , an ofK
are said to be algebraically independent over k
if, for any polynomial p(X1, X2, . . . , Xn) with
coefficients in k, p(a1, a2, . . . , an) = 0 implies
p ≡ 0. When a set of complex numbers is said
to be algebraically independent, the field k is
understood to be the rational numbers.

algebraic integer A complex number that
satisfies some monic polynomial equation with
integer coefficients.

algebraic Lie algebra Let k be a field. An
algebraic groupG, realized as a closed subgroup
of the general linear groupGL(n, k), is called a
linear algebraic group, and its tangent space at
the identity, when given the natural Lie algebra
structure, is called an algebraic Lie algebra.

algebraic multiplication In elementary al-
gebra, the multiplication of algebraic expres-
sions, which extends the operation of multipli-
cation of numbers in arithmetic.

algebraic multiplicity The multiplicity of an
eigenvalue λ of a matrix A as a root of the char-
acteristic polynomial of A. See also geometric
multiplicity, index.

algebraic number A complex number z is
an algebraic number if it satisfies a non-trivial
polynomial equation P(z) = 0, for which the
coefficients of the polynomial are rational num-
bers.
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algebraic number field A field F ⊂ C,
which is a finite degree extension of the field
of rational numbers.

algebraic operation In elementary algebra,
the operations of addition, subtraction, multipli-
cation, division, and root extraction. In a gen-
eral algebraic system A, an algebraic operation
may be any function from the n-fold cartesian
productAn toA, where n ∈ {1, 2, . . . } (the case
n = 0 is sometimes also allowed). See also
algebraic system.

algebraic pencil A linear system of divi-
sors in a projective variety such that one divisor
passes through any point in general position.

algebraic scheme An algebraic scheme is a
scheme of finite type over a field. Schemes are
generalizations of varieties, and the algebraic
schemes most closely resemble the algebraic va-
rieties. See scheme.

algebraic space A generalization of scheme
and of algebraic variety due to Artin and in-
troduced to create a category which would be
closed under various constructions. Specifically,
an algebraic space of finite type is an affine
scheme U and a closed subscheme R ⊂ U ×U

that is an equivalence relation and for which both
the coordinate projections ofR ontoU are étale.
See also étale morphism.

algebraic subgroup A Zariski closed sub-
group of an affine algebraic group.

algebraic surface A two-dimensional alge-
braic variety. See also algebraic variety.

algebraic system A setA, together with var-
ious operations and relations, where by an oper-
ation we mean a function from the n-fold carte-
sian productAn toA, for somen ∈ {0, 1, 2, . . . }.

algebraic system in the wider sense While
an algebraic system is a set A, together with
various operations and relations on A, an alge-
braic system in the wider sense may also include
higher level structures constructed by the power
set operation.

algebraic torus An algebraic group, isomor-
phic to a direct product of the multiplicative
group of a universal domain. A universal do-
main is an algebraically closed field of infinite
transcendence degree over the prime field it con-
tains.

algebraic variety Classically, the term “al-
gebraic variety” has meant either an affine al-
gebraic set or a projective algebraic set, but in
the second half of the twentieth century, various
more general definitions have been introduced.
One such more general definition, in terms of
sheaf theory, considers an algebraic variety V
to be a pair (T ,O), in which T is a topological
space and O is a sheaf of germs of mappings
from V into a given field k, for which the topo-
logical space has a finite open cover {Ui}Ni=1
such that each (Ui,O|Ui) is isomorphic to an
affine variety and for which the image of V un-
der the diagonal map is Zariski closed. See also
abstract algebraic variety.

algebra isomorphism An algebra homomor-
phism that is also a one-to-one and onto mapping
between the algebras. See algebra homomor-
phism.

algebra of matrices The n×nmatrices with
entries taken from a given field together with the
operations of matrix addition and matrix multi-
plication. Also any nonempty set of such ma-
trices, closed under those operations and con-
taining additive inverses, and thus forming an
algebra.

algebra of vectors The vectors in
three-dimensional space, together with the oper-
ations of vector addition, scalar multiplication,
the scalar product (also called the inner prod-
uct or the dot product), the vector product (also
called the cross product), and the vector triple
product.

algebroidal function An analytic function f
satisfying a non-trivial algebraic equation

a0(z)f
n + a1(z)f

n−1 + · · · + an(z) = 0 ,

in which the coefficients aj (z) are meromorphic
functions in a domain in the complex z-plane.
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all-integer algorithm An algorithm for
which the entire calculation will be carried out
in integers, provided the given data is all given
in integers. Such algorithms are of interest for
linear programming problems that involve addi-
tional integrality conditions. A notable example
of such an algorithm was given in the early 1960s
by Gomory.

allowed submodule In a moduleM with op-
erator domainA, an allowed submodule is a sub-
module N ⊂ M such that a ∈ A and x ∈ N

implies ax ∈ N . Also called an A-submodule.

almost integral Let R be a subring of the
ring R′. An element a ∈ R′ is said to be almost
integral over R if there exists an element b ∈ R
which is not a zero divisor and for which anb ∈
R holds for every positive integer n.

alternating group For fixed n, the subgroup
of the group of permutations of {1, 2, . . . , n},
consisting of the even permutations. More spe-
cifically, the set of permutations σ : {1, 2, . . . ,
n} → {1, 2, . . . , n} such that

∏
1≤i<j≤n

(σ (j)− σ(i)) > 0 .

Usually denoted by An.

alternating law Any binary operationR(·, ·)
on a set S is said to satisfy an alternating law if

R(a, b) = −R(b, a)
holds for all a, b ∈ S. The term is particularly
used for exterior products and for the bracket
operation in Lie algebras.

alternating polynomial Any polynomial
P(X1, X2, . . . , Xn) that is transformed into −P
by every odd permutation of the indeterminants
X1, X2, . . . , Xn.

alternative algebra A distributive algebra,
in which the equations a · (b · b) = (a · b) · b
and (a · a) · b = a · (a · b) hold for all a and b
in the algebra.

alternative field An alternative ring with unit
in which, given any choices of a = 0 and b, the

two equations

ax1 = b and x2a = b

are uniquely solvable for x1 and x2. Also called
alternative skew-field.

amalgamated product Given a family of
groups {Gα}α∈A and embeddings {hα}α∈A of a
fixed group H into the Gα , the amalgamated
product is the group G, unique up to isomor-
phism, having the universal properties that (i.)
there exist homomorphisms {gα}α∈A such that
gα ◦ hα = gβ ◦ hβ for all α, β ∈ A and (ii.)
for any family {�α}α∈A of homomorphisms of
the groups Gα to a fixed group L satisfying
�α ◦ hα = �β ◦ hβ for all α, β ∈ A, there exists
a unique homomorphism � : G → L such that
�α = � ◦ gα .

For the case of two groups G1 and G2 with
isomorphic subgroups H1 ⊂ G1 and H2 ⊂ G2,
the amalgamated product of the groups can be
identified with the set of finite sequences of el-
ements of the union of the two groups with the
equivalence relation generated by identifying a
sequence with the sequence formed when adja-
cent elements are replaced by their product if
they are in the same Gi or with the sequence
formed when an element of an H1 is replaced
by its isomorphic image in H2 and vice-versa.
Multiplication is then defined by concatenation
of sequences.

The amalgamated product is also called the
free product with amalgamation.

ambig ideal Let k be a quadratic field, i.e.,
k = Q(

√
m)wherem is a non-zero integer with

no factor that is a perfect square. Conjugation
on k is the map sendingα = a+b√m, a, b ∈ Q,
to αc.

ambiguous case A problem in trigonome-
try for which there is more than one possible
solution, such as finding a plane triangle with
two given side lengths and a given non-included
angle.

Amitsur cohomology A cohomology theory
defined as follows. Let R be a commutative
ring with identity andF a covariant functor from
the category CR of commutative R-algebras to
the category of additive Abelian groups. For
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S ∈ CR and n a nonnegative integer, let S(n)

denote the n-fold tensor product of S over R.
For n a nonnegative integer, let Ei : S(n+1) →
S(n+2)(i = 0, 1, . . . , n) be the CR-morphisms
defined by

Ei (x0 ⊗ · · · ⊗ xn) =
x0 ⊗ · · · ⊗ xi−1 ⊗ 1 ⊗ xi ⊗ · · · ⊗ xn .

Define dn : F(S(n+1)) → F(S(n+2)) by setting

dn =
n∑
i=0

(−1)iF (Ei ) .

Then {F(S(n+1)), dn} defines a cochain com-
plex called the Amitsur complex and the coho-
mology groups are called the Amitsur cohomol-
ogy groups.

Amitsur cohomology groups See Amitsur
cohomology.

Amitsur complex See Amitsur cohomology.

ample See ample vector bundle, ample divi-
sor.

ample divisor A divisor D such that nD is
very ample for some positive integer n. A divi-
sor is very ample if it possesses a certain type of
canonical projective immersion.

ample vector bundle A vector bundle E
where the line bundle OE∨(1) on P(E∨) is am-
ple. That is, there is a morphism f from P(E∨)
to a projective space Pn with OE∨(1)⊗m = f ∗
OPN (1).

amplification The process of increasing the
magnitude of a quantity.

analytically normal ring An analytically un-
ramified ring that is also integrally closed. See
analytically unramified ring.

analytically unramified ring A local ring
such that its completion contains no non-zero
nilpotent elements. (An element x of a ring is
nilpotent if x · x = 0.)

analytic function Same as a holomorphic
function, but with emphasis on the fact that such

a function has a convergent power series expan-
sion about each point of its domain.

analytic homomorphism A homomorphism
between two Lie groups which is also an ana-
lytic function (i.e., expandable in a power series
at each point in the Lie group, using a local co-
ordinate system).

analytic isomorphism An analytic
homomorphism between two Lie groups which
is one-to-one, onto and has an inverse that is
also an analytic homomorphism. See analytic
homomorphism.

analytic structure A structure on a differen-
tiable manifold M which occurs when there is
an atlas of charts {(Ui, ϕi) : i ∈ I } onM , where
the transition functions

ϕj ◦ ϕ−1
i : ϕi

(
Ui ∩ Uj

) → ϕj
(
Ui ∩ Uj

)
are analytic.

analytic variety A set that is the simulta-
neous zero set of a finite collection of analytic
functions.

analytic vector A vector v in a Hilbert space
H is called an analytic vector for a finite set
{Tj }mj=1 of (unbounded) operators on H if there
exist positive constants C and N such that∥∥Tj1 · · · Tjkv

∥∥H ≤ CNkk!
for all ji ∈ {1, . . . , m} and every positive integer
k.

anisotropic A vector space V with an inner
product (·, ·) and containing no non-zero iso-
tropic vector. A vector x ∈ V is isotropic if
(x, x) = 0.

antiautomorphism An isomorphism of an
algebra A onto its opposite algebra A◦. See
opposite.

antiendomorphism A mapping τ from a ring
R to itself, which satisfies

τ(x + y) = τ(x)+ τ(y), τ (xy) = τ(y)τ (x)

for all x, y ∈ R. The mapping τ can also be
viewed as an endomorphism (linear mapping)
from R to its opposite ring R◦. See opposite.
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antihomomorphism A mapping σ from a
group G into a group H that satisfies σ(xy) =
σ(y)σ (x) for all x, y ∈ G. An antihomor-
phism can also be viewed as a homomorphism
σ : G → H ◦ whereH ◦ is the opposite group to
H . See opposite.

anti-isomorphism A one-to-one, surjective
map f : X → Y that reverses some intrinsic
property common to X and Y . If X and Y are
groups or rings, then f reverses multiplication,
f (ab) = f (b)f (a). IfX andY are lattices, then
f reverses the lattice operations, f (a ∩ b) =
f (a) ∪ f (b) and f (a ∪ b) = f (a) ∩ f (b).

antilogarithm For a number y and a base b,
the number x such that logb x = y.

antipode Let S be a sphere in Euclidean
space and s a point of S. The line through s and
the center of the sphere will intersect the sphere
in a uniquely determined second point s′ that is
called the antipode of s. The celebrated Borsuk-
Ulam Theorem of algebraic topology consid-
ers the antipodal map P �→ −P . The theory
of Hopf algebras contains a notion of antipode
which is analogous to the geometric one just de-
scribed.

antisymmetric decomposition The decom-
position of a compact Hausdorff space X con-
sists of disjoint, closed, maximal sets of anti-
symmetry with respect toA, whereA is a closed
subalgebra ofC(X), the algebra of all complex-
valued continuous functions on X. A is called
antisymmetric if, from the condition that f, f̄ ∈
A, it follows that f is a constant function. A
subset SßX is called a set of antisymmetry with
respect to A if any function f ∈ A that is real
on S is constant on this set.

apartment An element of A, a set of sub-
complexes of a complex � such that the pair
(�,A) is a building. That is, if the following
hold:

(i.) � is thick;

(ii.) the elements of A are thin chamber com-
plexes;

(iii.) any two elements of � belong to an
apartment;

(iv.) if two apartments� and�′ contain two
elements A,A′ ∈ �, then there exists an iso-
morphism of � onto �′ which leaves invariant
A,A′ and all their faces.

approximate functional equations Equa-
tions of the form f (x) = g(x) + Ev(x) where
f (x) and g(x) are known functions and the
growth of Ev(x) is known.

approximately finite algebra A C∗-algebra
that is the uniform closure of a finite dimensional
C∗-algebra.

approximately finite dimensional von Neu-
mann algebra A von Neumann algebra, M,
which contains an increasing sequence of finite
dimensional subalgebras,An ⊆ An+1, such that
∪∞
n=1An is dense in M. (Density is defined in

terms of any of a number of equivalent topolo-
gies on M, e.g., the weak∗ topology, or the
strong operator topology in any normal repre-
sentation.)

approximate number A numerical approx-
imation to the actual value.

approximation theorem A theorem which
states that one class of objects can be approxi-
mated by elements from another (usually
smaller) class of objects. A famous example
is the following.

Weierstrass A. T. Every con-
tinuous function on a closed inter-
val can be uniformly approximated
by a polynomial. That is, if f (x)
is continuous on the closed inter-
val [a, b] and ε > 0, then there ex-
ists a polynomial pε(x) such that
|f (x) − pε(x)| < ε for all x ∈
[a, b].

Arabic numerals The numbers 0, 1, 2, 3, 4,
5, 6, 7, 8, and 9. These numbers can be used to
represent all numbers in the decimal system.

arbitrary constant A constant that can be set
to any desired value. For example, in the calcu-
lus expression

∫
2x dx = x2 + C, the symbol

C is an arbitrary constant.
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arc cosecant The multiple-valued inverse of
the trigonometric function csc θ , e.g., arccsc(2)
= π/6 + 2kπ where k is an arbitrary integer
(k = 0 specifies the principal value of arc cose-
cant). The principal value yields the length of
the arc on the unit circle, subtending an angle,
whose cosecant equals a given value.

The arc cosecant function is also denoted
csc−1x.

arc cosine The multiple-valued inverse of the
trigonometric function cos θ , e.g., arccos(−1)
= π+2kπ where k is an arbitrary integer (k = 0
specifies the principal value of arc cosine). The
principal value yields the length of the arc on the
unit circle, subtending an angle, whose cosine
equals a given value.

The arc cosine function is also denoted
cos−1x.

arc cotangent The multiple-valued inverse
of the trigonometric function cotan θ , e.g., arc-
cot (

√
3) = π/6 + 2kπ where k is an arbitrary

integer (k = 0 specifies the principal value of
arc cotangent). The principal value yields the
length of the arc on the unit circle, subtending
an angle, whose cotangent equals a given value.

The arc cotangent function is also denoted
cot−1x.

Archimedian ordered field If K is an or-
dered field and F a subfield with the property
that no element of K is infinitely large over F ,
then we say that K is Archimedian.

Archimedian ordered field A set which, in
addition to satisfying the axioms for a field, also
possesses an Archimedian ordering. That is, the
field F is ordered in that it contains a subset P
and the following properties hold:

(i.) F is the disjoint union ofP , {0}, and −P .
In other words, each x ∈ F belongs either to P ,
or equals 0, or −x belongs to P , and these three
possibilities are mutually exclusive.

(ii.) If x, y ∈ P , then x+y ∈ P and xy ∈ P .
The ordered field is also Archimedian in that

the absolute value function

|x| =



x, if x ∈ P
0, if x = 0

−x, if x ∈ −P

is satisfied.
(iii.) For each x ∈ F there exists a positive

integer n such that n · 1 > x.
The rational numbers are an Archimedian or-

dered field, and so are the real numbers. The
p-adic numbers are a non-Archimedian ordered
field.

Archimedian valuation A valuation on a
ring R, for which v(x − y) ≤ max(v(x), v(y))
is false, for some x, y ∈ R. See valuation.

arcsecant The multiple-valued inverse of
the trigonometric function sec x, sometimes de-
noted sec−1x.

arc sine The multiple-valued inverse of the
trigonometric function sin θ , e.g., arcsin(1) =
π/2+2kπ where k is an arbitrary integer (k = 0
specifies the principal value of arc sine). The
principal value yields the length of the arc on
the unit circle, subtending an angle, whose sine
equals a given value.

The arc sine function is also denoted sin−1x.

arc tangent The multiple-valued inverse of
the trigonometric function tan θ , e.g., arctan
(
√

3) = π/3 + 2kπ where k is an arbitrary in-
teger (k = 0 specifies the principal value of arc
tangent). The principal value yields the length
of the arc on the unit circle, subtending an angle,
whose tangent equals a given value.

The arc tangent function is also denoted
tan−1x.

Arens–Royden Theorem LetC(MA)denote
the continuous functions on the maximal ideal
space MA of the Banach algebra A. Suppose
that f ∈ C(MA) and f does not vanish. Then
there exists a g ∈ A, for which g−1 ∈ A, and for
which f/ĝ has a continuous logarithm on MA.
(Here ĝ denotes the Gelfand transform of g.)

arithmetic The operations of addition, sub-
traction, multiplication, and division and their
properties for the integers.

arithmetical equivalence An equivalence
relation on the integers which is consistent with
the four operations of arithmetic. (a ∼ b and
c ∼ d imply a ± c ∼ b ± d, etc.) An example
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would be congruence modnwheren is a positive
integer. Here, two integers j and k are equiva-
lent if j − k is divisible by n. See equivalence
relation.

arithmetically effective Referring to a divi-
sor on a nonsingular algebraic surface, which is
numerically semipositive, or numerically effec-
tive (nef).

arithmetic crystal class For an n-dimen-
sional Euclidean space V , an equivalence class
of pairs (�,G) where � is a lattice in V and
G is a finite subgroup of O(V ). Two pairs
(�1,G1) and (�2,G2) are equivalent if there
is a g ∈ GL(V ) such that g�1 = �2, and
gG1g

−1 = G2.

arithmetic genus An integer, defined in terms
of the characteristic polynomial of a homoge-
neous ideal U in the ring of polynomials,
k[x1, . . . , xn], in the variables x1, . . . , xn over
a commutative ring k. If χ̄(U; q) denotes this
characteristic polynomial, then

χ̄(U; q) = a0
(q
r

)+a1
( q
r−1

)+· · ·+ar−1
(q

1

)+ar
where a0, . . . , ar ∈ k and {(qj )} are the binomial
coefficients. The integer (−1)r (ar − 1) is the
arithmetic genus of U .

arithmetic mean For a positive integer n, the
arithmetic mean of the n real numbers a1, . . . ,

an is (a1 + · · · + an)/n.

arithmetic of associative algebras An area
of mathematics devoted to the study of simple
algebras over local fields, number fields, or func-
tion fields.

arithmetic progression A sequence {sn} of
real numbers such that

sn = sn−1 + r, for n > 1 .

The number s1 is the initial term, the number
r is the difference term. The general term sn
satisfies sn = s1 + (n− 1)r .

arithmetic series A series of the form∑∞
n=1 an where for all n ≥ 1, an+1 = an + d.

arithmetic subgroup For a real algebraic
groupG ⊂ GL(n,R), a subgroup � ofG, com-
mensurable with GZ = G ∩ GL(n,R). That
is,

[� : � ∩GZ] < ∞ and [GZ : � ∩GZ] < ∞ .

Arrow-Hurewicz-Uzawa gradient method
A technique used in solving convex or concave
programming problems. Suppose ψ(x, u) is
concave or convex in x ∈ A ⊂ Rn and convex in
u ∈ 0 ⊂ Rm. Usuallyϕ(x, u) = ψ(x)+u·g(x)
where ϕ is the function we wish to minimize or
maximize and our constraints are given by the
functions gj (x) ≤ 0 1 ≤ j ≤ m. The method
devised by Arrow-Hurewicz and Uzawa consists
of solving the system of equations

dxi

dt
=




0 if xi = 0
and ∂ψ

∂xi
< 0,

i = 1, . . . , n
∂ψ
∂xi

otherwise




duj

dt
=




0 if uj = 0
and ∂ψ

∂uj
> 0,

j = 1, . . . , m
−∂ψ
∂uj

otherwise




If (x(t), u(t)) is a solution of this system, un-
der certain conditions, lim

t→∞ x(t) = x solves the

programming problem.

artificial variable A variable that is intro-
duced into a linear programming problem, in
order to transform a constraint that is an inequal-
ity into an equality. For example, the problem
of minimizing

C = 3x1 + 2x2

subject to the constraints

4x1 − 5x2 ≤ 7
x1 + x2 = 9

with x1 ≥ 0, x2 ≥ 0, is transformed into

C = 3x1 + 2x2 + 0A1

subject to the constraints

4x1 − 5x2 + A1 = 7
x1 + x2 + 0A1 = 9

c© 2001 by CRC Press LLC



with x1 ≥ 0, x2 ≥ 0, A1 ≥ 0, by introducing
the artificial variable A1. This latter version is
in the standard form for a linear programming
problem.

Artin-Hasse function For k a p-adic num-
ber field with k0 a maximal subfield of k unram-
ified over Qp, a an arbitrary integer in k0 and
x ∈ k, the function E(a, x) = exp −L(a, x)
where L(a, x) = ∑∞

i=0((a
σ )i/pi)xp

i
and σ is

the Frobenius automorphism of ko/Qp.

Artinian module A (left) module for which
every descending sequence of (left) submodules

M1 ⊃ M2 ⊃ · · · ⊃ Mn ⊃ Mn+1 ⊃ . . .

is finite, i.e., there exists an N such that Mn =
Mn+1 for all n ≥ N .

Artinian ring A ring for which every de-
scending sequence of left ideals

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ In+1 ⊃ . . .

is finite. That is, there exists an N such that
In = In+1 for all n ≥ N .

Artin L-function The function L(s, ϕ), de-
fined as follows. LetK be a finite Galois exten-
sion of a number field k with G = Gal(K/k).
Letϕ : G → GL(V )be a finite dimensional rep-
resentation (characteristic 0). For each prime ℘
of k, set L℘(s, ϕ) = det(I − ϕ℘N(℘)

−s)−1,
where ϕ℘ = 1

e

∑
τ∈T ϕ(στ), T is the inertia

group of ℘, |T | = e and σ is the Frobenius
automorphism of ℘. Then

L(s, ϕ) =
∏
℘

L℘(s, ϕ), for �s > 1 .

Artin-Rees Lemma Let R be a Noetherian
ring, I an ideal of R, F a finitely generated sub-
module overR, andE a submodule of F . Then,
there exists an integer m ≥ 1 such that, for all
integers n ≥ m, it follows that InF ∩ E =
In−m(ImF ∩ E).

Artin-Schreier extension For K a field of
characteristic p = 0, an extension of the form
L = K(Pa1, . . . , P aN) where a1, . . . , aN ∈

K,Pai is a root of xp − x − ai = 0, L/K is
Galois, and the Galois group is an Abelian group
of exponent p.

Artin’s conjecture A conjecture of E. Artin
that the Artin L-function L(s, ϕ) is entire in s,
whenever ϕ is irreducible and s = 1. See Artin
L-function.

Artin’s general law of reciprocity If K/k
is an Abelian field extension with conductor F
and AF is the group of ideals prime to the con-

ductor, then the Artin map A �→
(
K/k
A

)
is a

homomorphism AF → Gal(K/k). The reci-
procity law states that this homomorphism is
an isomorphism precisely when A lies in the
subgroup HF of AF consisting of those ideals
whose prime divisors split completely. That is,
AF/HF ∼= Gal(K/k).

Artin’s symbol The symbol
(
K/k
℘

)
defined

as follows. Let K be a finite Abelian Galois
extension of a number field k with σ the princi-
pal order of k and D the principal order of K .
For each prime ℘ of K there is a σ = (

K/k
℘

)
∈ G =Gal(K/k) such that

Aσ ≡ AN(℘) (mod ℘), A ∈ D ;(
K/k
℘

)
is called the Artin symbol of ℘ for the

Abelian extension K/k. For an ideal a = �℘e

of k relatively prime to the relative discriminant
of K/k, define

(
K/k
a

) = �
(
K/k
℘

)e
.

ascending central series A sequence of sub-
groups

{1} = H0 < H1 < H2 < · · · < G

of a groupG with identity 1, where Hn+1 is the
unique normal subgroup of Hn for which the
quotient groupHn+1/Hn is the center ofG/Hn.

ascending chain of subgroups A sequence
of subgroups

H1 < · · · < Hn < Hn+1 < · · · < G

of a group G.

associate A relation between two elements a
and b of a ring R with identity. It occurs when
a = bu for a unit u.
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associated factor sets Related by a certain
equivalence relation between factor sets belong-
ing to a group. SupposeN andF are groups and
G is a group containing a normal subgroup N
isomorphic toN withG/N ∼= F . If s : F → G

is a splitting map of the sequence 1 → N →
G → F → 1 and c : F × F → N is the
map, c(σ, τ ) = s(σ )s(τ )s(στ)−1 (s,c) is called
a factor set. More generally, a pair of maps (s, c)
where s : F → AutN and c : F × F → N is
called a factor set if

(i.) s(σ )s(τ )(a) = c(σ, τ )s(στ)(a)c(σ,

τ )−1(a ∈ N),
(ii.) c(σ, τ )c(στ, ρ) = s(σ )(c(τ, ρ))c(σ,

τρ).
Two factor sets (s, c) and (t, d) are said to

be associated if there is a map ϕ : F → N

such that t (σ )(a) = s(σ )(ϕ(σ )(a)ϕ(σ )−1) and
d(σ, τ ) = ϕ(σ)(s(σ )(ϕ(τ)))c(σ, τ )ϕ(στ)−1.

associated form Of a projective varietyX in
Pn, the form whose zero set defines a particular
projective hypersurface associated to X in the
Chow construction of the parameter space for
X. The construction begins with the irreducible
algebraic correspondence

{
(x,H0, . . . , Hd) ∈

X× Pn × · · · × Pn : x ∈ X ∩ (H0 ∩ · · · ∩Hd)
}

between points x ∈ X and projective hyper-
planes Hi in Pn, d = dimX. The projection
of this correspondence onto Pn × · · · × Pn is
a hypersurface which is the zero set of a single
multidimensional form, the associated form.

associative algebra An algebra A whose
multiplication satisfies the associative law; i.e.,
for all x, y, z ∈ A, x(yz) = (xy)z.

associative law The requirement that a bi-
nary operation (x, y) �→ xy on a set S satisfy
x(yz) = (xy)z for all x, y, z ∈ S.

asymmetric relation A relation ∼, on a set
S, which does not satisfy x ∼ y ⇒ y ∼ x for
some x, y ∈ S.

asymptotic ratio set In a von Neumann al-
gebra M , the set

r∞(M) = {λ ∈]0, 1[: M ⊗ Rλ

is isomorphic to M}.

augmentation An augmentation (over the
integers Z) of a chain complex C is a surjective

homomorphism C0
α→Z such that C1

∂1→C0
ε→Z

equals the trivial homomorphism C1
0→Z (the

trivial homomorphism maps every element of
C1 to 0).

augmented algebra See supplemented alge-
bra.

augmented chain complex A non-negative
chain complex C with augmentation C ε→Z. A
chain complex C is non-negative if each Cn ∈ C
with n < 0 satisfies Cn = 0. See augmentation.

automorphic form Let D be an open con-
nected domain in Cnwith� a discontinuous sub-
group of Hol(D). For g ∈ Hol(D) and z ∈ D

let j (g, z) be the determinant of the Jacobian
transformation of g evaluated at z. A mero-
morphic function f on D is an automorphic
form of weight � (an integer) for � if f (γ z) =
f (z)j (γ, z)−�, γ ∈ �, z ∈ D.

automorphism An isomorphism of a group,
or algebra, onto itself. See isomorphism.

automorphism group The set of all auto-
morphisms of a group (vector space, algebra,
etc.) onto itself. This set forms a group with
binary operation consisting of composition of
mappings (the automorphisms). See automor-
phism.

average Often synonymous with arithmetic
mean. Can also mean integral average, i.e.,

1

b − a

∫ b

a

f (x) dx,

the integral average of a function f (x) over a
closed interval [a, b], or

1

µ(X)

∫
X

f dµ,

the integral average of an integrable function f
over a measure space X having finite measure
µ(A).

axiom A statement that is assumed as true,
without proof, and which is used as a basis for
proving other statements (theorems).
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axiom system A collection (usually finite) of
axioms which are used to prove all other state-
ments (theorems) in a given field of study. For
example, the axiom system of Euclidean geom-
etry, or the Zermelo-Frankel axioms for set the-
ory.

Azumaya algebra A central separable alge-
bra A over a commutative ring R. That is, an
algebra A with the center of A equal to R and
with A a projective left-module over A ⊗R A

◦
(where A◦ is the opposite algebra of A). See
opposite.
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B
back substitution A technique connected
with the Gaussian elimination method for solv-
ing simultaneous linear equations. After the sys-
tem

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . .

an1x1 + an2x2 + · · · + annxn = bn

is converted to triangular form

t11x1 + t12x2 + · · · + t1nxn = c1
t22x2 + · · · + t2nxn = c2

. . . . . . . . .

tnnxn = cn .

One then solves for xn and then back substitutes
this value for xn into the equation

tn−1 n−1xn−1 + tnnxn = cn−1

and solves for xn−1. Continuing in this way, all
of the variables x1, x2, . . . , xn can be solved for.

backward error analysis A technique for
estimating the error in evaluatingf (x1, . . . , xn),
assuming one knowsf (a1, . . . , an) = b and has
control of |xi − ai | for 1 ≤ i ≤ n.

Baer’s sum For given R-modules A and C,
the sum of two elements of the Abelian group
ExtR(C,A).

Bairstow method of solving algebraic equa-
tions An iterative method for finding qua-
dratic factors of a polynomial. The goal being
to obtain complex roots that are conjugate pairs.

Banach algebra An algebra over the com-
plex numbers with a norm ‖ · ‖, under which it
is a Banach space and such that

‖xy‖ ≤ ‖x‖‖y‖
for all x, y ∈ B. If B is an algebra over the real
numbers, thenB is called a real Banach algebra.

base See base of logarithm. See also base of
number system, basis.

base of logarithm The number that forms the
base of the exponential to which the logarithm
is inverse. That is, a logarithm, base b, is the in-
verse of the exponential, base b. The logarithm
is usually denoted by logb (unless the base is
Euler’s constant e, when ln or log is used, log is
also used for base 10 logarithm). A conversion
formula, from one base to another, is

loga x = logb x loga b .

base of number system The number which
is used as a base for successive powers, com-
binations of which are used to express all posi-
tive integers and rational numbers. For example,
2543 in the base 7 system stands for the number

2
(

73
)

+ 5
(

72
)

+ 4
(

71
)

+ 3 .

Or, −524.37 in the base 8 system stands for the
number

−
[
5

(
82

)
+ 2

(
81

)
+ 4 + 3

(
8−1

)
+ 7

(
8−2

)]
.

The base 10 number system is called the deci-
mal system. For base n, the term n-ary is used;
for example, ternary, in base 3.

base point The point in a set to which a bun-
dle of (algebraic) objects is attached. For exam-
ple, a vector bundle V defined over a manifold
M will have to each point b ∈ M an associated
vector space Vb. The point b is the base point
for the vectors in Vb.

base term For a spectral sequence E =
{Er, dr} where dr : Er

p,q → Er
p−r,q+r−1, r =

2, 3, . . . and Er
p,q = 0 whenever p < 0 or

q < 0, a term of the form Er
p,o.

basic feasible solution A type of solution of
the linear equation Ax = b. If A is an m × n

matrix with m ≤ n and b ∈ Rm, suppose A =
A1 + A2 when A1 is an m × m nonsingular
matrix. It is a solution of the form A(x1, 0) =
A1x1 + A20 = b where x1 ∈ Rm and x1 ≥ 0.

basic form of linear programming problem
The following form of a linear programming
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problem: Find a vector (x1, x2, . . . , xn) which
minimizes the linear function

C = c1x1 + c2x2 + · · · + cnxn ,

subject to the constraints

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

. . .

am1x1 + am2x2 + · · · + amnxn = bm

and x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.
Here aij , bi , and cj are all real constants and

m < n.

basic invariants For a commutative ring K

with identity and a ring R containing K and G

a subgroup of AutK(R), a minimal set of gener-
ators of the ring RG.

basic optimal solution A solution of a linear
programming problem that minimizes the ob-
jective function (cost function) and is basic in
the sense that, in the linear constraints

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

. . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm

for the problem, n−m values of the n variables
x1, x2, . . . , xn are zero.

basic variable A variable that has value zero
in a linear programming problem. The basic
variables lie on the boundaries of the convex re-
gions determined by the constraints in the prob-
lem.

basis A subset B of a vector space V which
has the property that every vector v ∈ V can
be expressed uniquely as a finite linear com-
bination of elements of B. That is, if V is a
vector space over the field F , then for a given
v ∈ V , there exists a unique, finite, collec-
tion of vectors x1, x2, . . . , xn ∈ B and scalars
α1, α2, . . . , αn ∈ F such thatx = α1x1+α2x2+
· · · + αnxn.

By definition, V is finite dimensional if it has
a finite basis. In an infinite dimensional vec-
tor space, if there is a topology on V , the sum
representing a vector x may be allowed to be

infinite (and convergent). If only finite sums are
permitted, a basis is referred to as a Hamel basis.

Bernoulli method for finding roots An it-
erative method for finding a root of a polyno-
mial equation. If p(x) = a0x

n + an−1x
n−1 +

· · · + an is a polynomial, then this method, ap-
plied to p(x) = 0, consists of the following
steps. First, choose some set of initial-values
x0, x−1, . . . , x−n+1. Second, define subsequent
values xm by the recurrence relation

xm = −a1xm−1 + a2xm−2 + · · · + anxm−n

a0

for m ≥ 1. Third, form the sequence of quo-
tients rm = xm+1/xm for m ≥ 1. If the polyno-
mial has a single root, r , of largest magnitude,
then the sequence {rm} will converge to r .

Bernoulli number Consider numbersB∗
n de-

fined by the functional equation

x

ex − 1
+ x

2
− 1 =

∞∑
n=1

(−1)n−1B∗
nx

2n

(2n)!

= B∗
1x

2

2! − B∗
2x

4

4! + B∗
3x

6

6! − + · · ·

or, alternatively, by the equation

1 − x

2
cot

(x
2

)
=

∞∑
n=1

B∗
nx

2n

(2n)!

= B∗
1x

2

2! + B∗
2x

4

4! + B∗
3x

6

6! + · · · .

The numbers B∗
n are called the Bernoulli num-

bers. The definition given here is the classical
one. There are several alternative, and more
modern, definitions. Bernoulli numbers arise
in the theory of special functions, in the study
of hypergeometric functions, and as the coeffi-
cients of the Taylor expansions of many classical
transcendental functions.

Betti numbers The nth Betti number Bn,
of a manifold M , is the dimension of the nth
cohomology group, Hn(M,R). [The group Hn

(M,R) is the quotient group consisting of equiv-
alence classes of the closed n forms modulo the
differentials of (n − 1) forms.]
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Bezout’s Theorem If p1(x) and p2(x) are
two polynomials of degrees n1 and n2, respec-
tively, having no common zeros, then there are
two unique polynomials q1(x) and q2(x) of de-
grees n1 − 1 and n2 − 1, respectively, such that

p1(x)q1(x) + p2(x)q2(x) = 1 .

biadditive mapping For A-modules M,N

and L, the mapping f : M × N → L such that

f
(
x + x′, y

) = f (x, y) + f
(
x′, y

)
, and

f
(
x, y + y′) = f (x, y) + f

(
x, y′) ,

x, x′ ∈ M, y, y′ ∈ L.

bialgebra A vector spaceA over a field k that
is both an algebra and a coalgebra over k. That
is, (A,µ, η,*, ε) is a bialgebra if (A,µ, η) is
an algebra over k and (A,*, ε) is a coalgebra
over k, µ : A ⊗k A → A (multiplication).
η : k → A (unit), * : A → A ⊗k A (co-
multiplication). ε : A → k (counit) and these
maps satisfy

µ ◦ (µ ⊗ IA) = µ ◦ (IA ⊗ µ) ,

µ ◦ (η ⊗ IA) = µ ◦ (IA ⊗ η) ,

(* ⊗ IA) ◦ * = (IA ⊗ *) ◦ * ,

(ε ⊗ IA) ◦ * = (IA ⊗ ε) ◦ *.

bialgebra-homomorphism For (A,µ,

η,*, ε) and (A′, µ′, η′,*′, ε′) bialgebras over
a field k, a linear mapping f : A → A′ where
f ◦η = η′, f ◦µ = µ′ ◦(f ⊗f ), (f ⊗f )◦* =
*′ ◦ f, ε = ε′ ◦ f . See bialgebra.

biideal A linear subspace I of A, where (A,

µ, η,*, ε) is a bialgebra over k, such that µ(A
⊗k I ) = I and *(I) ⊂ A ⊗k I + I ⊗k A.

bilinear form A mapping b : V × V → F ,
whereV is a vector space over the fieldF , which
satisfies

b(αx + βy, z) = αb(x, z) + β(y, z)

and

b(x, αy + βz) = αb(x, y) + βb(x, z)

for all x, y, z ∈ V and α, β ∈ F . See also
quadratic form.

bilinear function See multilinear function.

bilinear mapping A mapping b : V × V →
W , where V and W are vector spaces over the
field F , which satisfies

b(αx + βy, z) = αb(x, z) + βb(y, z)

and

b(x, αy + βz) = αb(x, y) + βb(x, z)

for all x, y, z ∈ V and α, β ∈ F .

bilinear programming The area dealing with
finding the extrema of functions

f (x1, x2) = Ct
1x1 + Ct

2x2 + xt1Qx2

over

X = {
(x1, x2) ∈ Rn1 × Rn2 : A1x1 ≤ b1 ,

A2x2 ≤ b2, x1 ≥ 0, x2 ≥ 0}
where Q is an n1 × n2 real matrix, A1 is an
n1 × n1, real matrix and A2 is an n2 × n2 real
matrix.

binary Diophantine equation A Diophan-
tine equation in two unknowns. See Diophan-
tine equation.

binary operation A mapping from the Carte-
sian product of a set with itself into the set.
That is, if the set is denoted by S, a mapping
b : S ×S → S. A notation, such as 3, is usually
adopted for the operation, so thatb(x, y) = x3y.

binomial A sum of two monomials. For ex-
ample, if x and y are variables and α and β are
constants, then αxpyq +βxrys , wherep, q, r, s
are integers, is a binomial expression.

binomial coefficients The numbers, often
denoted by (nk), where n and k are nonnegative
integers, with n ≥ k, given by

(
n

k

)
= n!

k!(n − k)!

c© 2001 by CRC Press LLC



where m! = m(m−1) · · · (2)(1) and 0! = 1 and
1! = 1. The binomial coefficients appear in the
Binomial Theorem expansion of (x+y)n where
n is a positive integer. See Binomial Theorem.

binomial equation An equation of the form
xn − a = 0.

binomial series The series (1 + x)α =∑∞
n=0(

α
n)x

n. It converges for all |x| < 1.

Binomial Theorem For any nonnegative in-
tegers b and n, (a + b)n = ∑n

j=o(
n
j )a

j bn−j .

birational isomorphism A k-morphism ϕ :
G → G′, where G and G′ are algebraic groups
defined over k, that is a group isomorphism,
whose inverse is a k-morphism.

birational mapping ForV andW irreducible
algebraic varieties defined over k, a closed irre-
ducible subset T of V ×W where the closure of
the projection T → V is V , the closure of the
projection T → W is W , and k(V ) = k(T ) =
k(W). Also called birational transformation.

birational transformation See birational
mapping.

Birch-Swinnerton-Dyer conjecture The
rank of the group of rational points of an el-
liptic curve E is equal to the order of the 0 of
L(s,E) at s = 1. Consider the elliptic curve
E : y2 = x3 − ax − b where a and b are inte-
gers. If E(Q) = E ∩ (Q × Q), by Mordell’s
Theorem E(Q) is a finitely generated Abelian
group. Let N be the conductor of E, and if
p �| N , let ap + p be the number of solutions of
y2 = (x3 − ax − b) (mod p). The L-function
of E,

L(s,E) =
∏
p|N

(
1 − εpp

−s
)

∏
p �|N

(
1 − app

−s + p1−2s
)

where εp = 0 or ± 1.

block A term used in reference to vector bun-
dles, permutation groups, and representations.

blowing up A process in algebraic geometry
whereby a point in a variety is replaced by the set
of lines through that point. This idea of Zariski
turns a singular point of a given manifold into a
smooth point. It is used decisively in Hironaka’s
celebrated “resolution of singularities” theorem.

blowing up Let N be an n-dimensional com-
pact, complex manifold (n ≥ 2), and p ∈ N .
Let {z = (zi)} be a local coordinate system, in
a neighborhood U , centered at p and define

Ũ =
{
(z, l) ∈ U × Pn−1 : z ∈ l

}
,

where Pn−1 is regarded as a set of lines l in
Cn. Let π : Ũ → U denote the projection
π(z, l) = z. Identify π−1(p) with Pn−1 and
Ũ\π−1(p) with U\{p}, via the map π and set

Ñ = (N\{p}) ∪ Ũ , Bp(N) = Ñ/ ∼ ,

where z ∼ w if z ∈ N\{p} and w = (z, l) ∈ Ũ .
The blowing up of N at p is π : Bp(N) → N .

BN-pair A pair of subgroups (B,N) of a
group G such that:
(i.) B and N generate G;
(ii.) B ∩ N = H*N ; and
(iii.) the group W = N/H has a set of genera-
tors R such that for any r ∈ R and any w ∈ W

(a) rBw ⊂ BwB ∩ BrwB,
(b) rBr �= B.

Bochner’s Theorem A function, defined on
R, is a Fourier-Stieltjes transform if and only if it
is continuous and positive definite. [A function
f , defined on R, is defined to be positive definite
if ∫

R
f (y)f (x − y)dy > 0

for all x-values.]

Borel subalgebra A maximal solvable sub-
algebra of a reductive Lie algebra defined over
an algebraically closed field of characteristic 0.

Borel subgroup A maximal solvable sub-
group of a complex, connected, reductive Lie
group.

Borel-Weil Theorem If Gc is the complex-
ification of a compact connected group G, any
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irreducible holomorphic representation of Gc is
holomorphically induced from a one-dimension-
al holomorphic representation of a Borel sub-
group of Gc.

boundary (1) (Topology.) The intersection
of the complements of the interior and exterior
of a set is called the boundary of the set. Or,
equivalently, a set’s boundary is the intersection
of its closure and the closure of its complement.

(2) (Algebraic Topology.) A boundary in
a differential group C (an Abelian group with
homomorphism ∂ : C → C satisfying ∂∂ = 0)
is an element in the range of ∂ .

boundary group The group Im∂ , which is a
subgroup of a differential group C consisting of
the image of the boundary operator ∂ : C → C.

boundary operator A homomorphism
∂ : C → C of an Abelian group C that satisfies
∂∂ = 0. Used in the field of algebraic topology.
See also boundary, boundary group.

bounded homogeneous domain A bounded
domain with a transitive group of auto-
morphisms. In more detail, a domain is a con-
nected open subset of complex N space CN .
A domain is homogeneous if it has a transi-
tive group of analytic (holomorphic) automor-
phisms. This means that any pair of points z

and w can be interchanged, i.e., φ(z) = w, by
an invertible analytic map φ carrying the do-
main onto itself. For example, the unit ball in
complex N space, {z = (z1, . . . , zN) : |z1|2 +
· · · + |zN |2 < 1}, is homogeneous. A domain
is bounded if it is contained in a ball of finite
radius. A bounded homogeneous domain is a
bounded domain which is also homogeneous.
Thus, the unit ball in CN is a bounded homo-
geneous domain. There are many others. See
also Siegel domain, Siegel domain of the sec-
ond kind.

bounded matrix A continuous linear map
K : ?2(N)⊗ ?2(N) → ?1(N) where N is the set
of natural numbers.

bounded torsion group A torsion group T

where there is an integer n ≥ 0 such that tn = 1
for all t ∈ T .

bounded variation Let I = [a, b] ⊆ R be
a closed interval and f : I → R a function.
Suppose there is a constant C > 0 such that, for
any partition a = a0 ≤ a1 ≤ · · · ≤ ak = b it
holds that

k∑
j=1

|f (aj ) − f (aj−1)| ≤ C .

Then f is said to be of bounded variation on the
interval I .

bracket product If a and b are elements of
a ring R, then the bracket product is defined as
[a, b] = ab − ba. The bracket product satisfies
the distributive law.

branch and bound integers programming
At step j of branch and bound integers pro-
gramming for a problem list P a subproblem Pj

is selected and a lower bound is estimated for its
optimal objective function. If the lower bound
is worse than that calculated at the previous step,
then Pj is discarded; otherwise Pj is separated
into two subproblems (the branch step) and the
process is repeated until P is empty.

branch divisor The divisor
∑

iXX, where
iX is the differential index at a point X on a
nonsingular curve.

Brauer group The Abelian group formed by
the tensor multiplication of algebras on the set of
equivalence classes of finite dimensional central
simple algebras.

Brauer’s Theorem Let G be a finite group
and let χ be any character of G. Then χ can be
written as

∑
nkχψk

, where nk is an integer and
each χψk

is an induced character from a certain
linear character ψk of an elementary subgroup
of G.

Bravais class An arithmetic crystal class de-
termined by (L, B(L)), where L is a lattice and
B(L) is the Bravis group of L. See Bravais
group.

Bravais group The group of all orthogonal
transformations that leave invariant a given lat-
tice L.
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Bravais lattice A representative of a Bravais
type. See Bravais type.

Bravais type An equivalence class of arith-
metically equivalent lattices. See arithmetical
equivalence.

Brill-Noether number The quantity g −
(k + 1)(g − k + m), where g is the genus of
a nonsingular curve C and k and m are posi-
tive integers with k ≤ g. This quantity acts as a
lower bound for the dimension of the subscheme{
ϕ(D) : l(D) > m, degD = k

}
of the Jacobian

variety of C, where ϕ is the canonical function
from C to this variety.

Bruhat decomposition A decomposition of
a connected semisimple algebraic group G, as a
union of double cosets of a Borel subgroup B,
with respect to representatives chosen from the
classes that comprise the Weyl group W of G.
For each w ∈ W , let gw be a representative in
the normalizer N(B ∩B−) in G of the maximal
torus B ∩ B− formed from B and its opposite
subgroup B−. Then G is the disjoint union of
the double cosets BgwB as w ranges over W .

building A thick chamber complex C with
a system S of Coxeter subcomplexes (called the

apartments of C) such that every two simplices
of C belong to an apartment and if A, B are in
S, then there exists an isomorphism of A onto
B that fixes A ∩ B elementwise.

building of Euclidian type A building is of
Euclidean type if it could be used like a sim-
plical decomposition of a Euclidean space. See
building.

building of spherical type A building that
has finitely many chambers. See building.

Burnside Conjecture A finite group of odd
order is solvable.

Burnside problem (1) The original Burn-
side problem can be stated as follows: If every
element of a group G is of finite order and G

is finitely generated, then is G a finite group?
Golod has shown that the answer for p-groups
is negative.

(2) Another form of the Burnside problem is:
If a group G is finitely generated and the orders
of the elements of G divide an integer n, then is
G finite?
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C
Ci-field Let F be a field and let i, j be in-
tegers such that i ≥ 0 and j ≥ 1. Also, let P
be a homogeneous polynomial of m variables
of degree j with coefficients in F . If the equa-
tion P = 0 has a solution (s1, s2, . . . , sm) �=
(0, 0, . . . , 0) in F for any P such that m > ji ,
then F is called a Ci(j) field. If, for any j ≥ 1,
F is a Ci(j) field, then F is called a Ci-field.

Calkin algebra Let H be a separable infinite
dimensional Hilbert space, B(H) the algebra of
bounded linear operators onH , and I (H) be the
ideal of H consisting of all compact operators.
Then, the quotient C∗-algebra B(H)/I (H) is
called the Calkin algebra.

Campbell-Hausdorff formula A long for-
mula for computation of z = ln(exey) in the al-
gebra of formal power series in x and y with the
assumption that x and y are associative but not
commutative. It was first studied by Campbell.
Then Hausdorff showed that z can be written in
terms of the commutators of x and y.

cancellation Let x, y, and z be elements of
a set S, with a binary operation ∗. The acts of
eliminating z in x ∗ z = y ∗ z or z ∗ x = z ∗ y
to obtain x = y is called cancellation.

cancellation law An axiom that allows can-
cellation.

canonical class A specified divisor class of
an algebraic curve.

canonical cohomology class The 2-cocycle
in

H 2 (Gal(K/k), IK) ∼= Z/nZ

in the Galois cohomology of the Galois exten-
sion K/k of degree n with respect to the idéle
class group IK that corresponds to 1 in Z/nZ
under the above isomorphism.

canonical coordinates of the first kind For
each basis B1, . . . , Bn of a Lie algebra L of
the Lie group G, there exists a positive real
number r with the property that {exp(

∑
biBi) :

|bi | < r (i = 1, . . . , n)} is an open neigh-
borhood of the identity element in G such that
exp(

∑
biBi)→(b1 , . . . , bn)(|bi | < r , i = 1,

. . . , n) is a local coordinate system. These local
coordinates are called the canonical coordinates
of the first kind associated with the basis (Bi) of
this Lie algebra L.

canonical coordinates of the second kind
For each basis B1, . . . , Bn of a Lie algebra L

of the Lie group G, we have a local coordi-
nate system

∏
exp(biBi) →(b1 , . . . , bn) (i =

1, 2, . . . , n) in a neighborhood of the identity
element in G. These b1 , . . . , bn are called the
canonical coordinates of the second kind asso-
ciated with the basis (Bi) of this Lie algebra L.

canonical divisor Any one of the linearly
equivalent divisors in the sheaf of relative dif-
ferentials of a (nonsingular) curve.

canonical function A rational mapping φ :
X→ J , from a nonsingular curve X to its Jaco-
bian variety J , defined by φ(P ) = !(P − P0),
where P is a generic point of X and P0 is a fixed
rational point, ! : G0(X)/Gl(X) → J is the
associated isomorphism, G(X) is the group of
divisors, G0(X) is the subgroup of divisors of
degree 0 and Gl(X) the subgroup of divisors of
functions. Such a φ is determined uniquely by
! up to translation of J .

canonical homology basis A one-dimension-
al homology basis {βi, βk+i}ki=1 such that
(βi, βj ) = (βk+i , βk+j ) = 0, (βi, βk+i ) = 1,
and (βi, βk+j ) = 0 (i �= j), (i, j = 1, 2, . . . , k).

canonical homomorphism (1) Let R be a
commutative ring with identity and let L, M
be algebras over R. Then, the tensor product
L ⊗R M of R-modules is an algebra over R.
The mappings l → l ⊗ 1 (l ∈ L) and m →
m ⊗ 1 (m ∈ M) give algebra homorphisms
L → L ⊗R M and M → L ⊗R M . Each
one of these homomorphisms is called a canon-
ical homomorphism (on tensor products of al-
gebras).
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(2) Let the ring R = ∏
i∈I Ri be the direct

product of rings Ri . The mapping φi : R→ Ri

that assigns to each element r of R its ith com-
ponent ri is called a canonical homomorphism
(of direct product of rings).

canonical injection For a subgroup H of a
group G, the injective homomorphism θ :H →
G, defined by θ(h) = h for all h ∈ H . (θ is also
called the natural injection.)

canonically bounded complex Let F 0(C)

and Fm+1(C) (m an integer) be subcomplexes
of a complex C such that F 0(C) = C, and
Fm+1(Cm) = 0, then the complex C is called a
canonically bounded complex.

canonically polarized Jacobian variety A
pair, (J, P ), whereJ is a Jacobian variety whose
polarization P is determined by a theta divisor.

canonical projection Let S/ ∼ denote the
set of equivalence classes of a set S, with re-
spect to an equivalence relation∼. The mapping
µ:S → S/ ∼ that carries s ∈ S to the equiva-
lence class of s is called the canonical projection
(or quotient map).

canonical surjection (1) Let H be a normal
subgroup of a group G. For the factor group
G/H , the surjective homomorphism θ :G →
G/H such that g ∈ θ(g), for all g ∈ G, is called
the canonical surjection (or natural surjection)
to the factor group.

(2) Let G = G1 ×G2 × . . .×Gn be the di-
rect product of the groupsG1,G2, . . . ,Gn. The
mapping (g1, g2, . . . , gn)→ gi (i = 1, 2, . . . ,
n) from G to Gi is a surjective homomorphism,
called the canonical surjection on the direct prod-
uct of groups.

capacity of prime ideal LetA be a separable
algebra of finite degree over the field of quotients
of a Dedekind domain. Let P be a prime ideal
of A and let M be a fixed maximal order of
A. Then, M/P is the matrix algebra of degree
d over a division algebra. This d is called the
capacity of the prime ideal P .

cap product (1) In a lattice or Boolean alge-
bra, the fundamental operation a∧b, also called
the meet or product, of elements a and b.

(2) In cohomology theory, where Hr(X, Y ;
G) and Hs(X, Y ;G) are the homology and co-
homology groups of the pair (X, Y ) with coef-
ficients in the group G, the operation that as-
sociates to the pair (f, g), f ∈ Hr+s(X, Y ∪
Z;G1), g ∈ Hr(X, Y ;G2) the element f ∪g ∈
Hs(X, Y ∪ Z;G3) determined by the composi-
tion

Hr+s (X, Y ∪ Z;G1)

−→ Hr+s ((X, Y )× (X,Z);G1)

−→ Hom
(
Hr (X, Y ;G2) ,Hs (X,Z;G3)

)
where the first map is induced by the diagonal
map 0 : (X, Y ∪ Z)→ (X, Y )× (X,Z).

Cardano’s formula A formula for the roots
of the general cubic equation over the complex
numbers. Given the cubic equation ax3+bx2+
cx + d = 0, let A = 9abc − 2b3 − 27a2d

and B = b2 − 3ac. Also, let y1 and y2 be
solutions of the quadratic equation Y 2 − AY +
B3 = 0. Ifω is any cube root of 1, then (−b+ω
3
√
y1+ω2 3

√
y2)/3a is a root of the original cubic

equation.

cardinality A measure of the size of, or num-
ber of elements in, a set. Two sets S and T are
said to have the same cardinality if there is a
function f : S → T that is one-to-one and
onto. See also countable, uncountable.

Cartan integer Let R be the root system of
a Lie algebra L and let F = {x1, x2, . . . , xn} be
a fundamental root system of R. Each of the
n2 integers xij = −2(xi, xj )/(xj , xj ) (1 ≤ i,
j ≤ n) is called a Cartan integer of L, relative
to the fundamental root system F .

Cartan invariants Let G be a finite group
and let n be the number of p-regular classes
of G. Then, there are exactly n nonsimilar,
absolutely irreducible, modular representations,
M1,M2, . . . ,Mn, of G. Also, there are n non-
similar, indecomposable components, denoted
byR1, R2, . . . , Rn, of the regular representation
R of G. These can be numbered in a such a way
that Mn appears in Rn as both its top and bottom
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component. If the degree of Mn is mn and the
degree of Rn is rn, then Rn appears mn times
in R and Mn appears rn times in R. The multi-
plicities µnt of Mt in Rn are called the Cartan
invariants of G.

Cartan involution Let G be a connected
semisimple Lie group with finite center and let
M be a maximal compact subgroup of G. Then
there exists a unique involutive automorphism of
G whose fixed point set coincides with M . This
automorphism is called a Cartan involution of
the Lie group G.

Cartan-Mal’tsev-Iwasawa Theorem LetM
be a maximal compact subgroup of a connected
Lie groupG. ThenM is also connected andG is
homeomorphic to the direct product of M with
a Euclidean space Rn.

Cartan’s criterion of semisimplicity A Lie
algebraL is semisimple if and only if the Killing
form K of L is nondegenerate.

Cartan’s criterion of solvability Let gl(n,
K) be the general linear Lie algebra of degree
n over a field K and let L be a subalgebra of
gl(n,K). Then L is solvable if and only if
tr(AB) = 0 (tr(AB) = trace of AB), for every
A ∈ L and B ∈ [L,L].

Cartan’s Theorem (1) E. Cartan’s Theo-
rem. Let W1 and W2 be the highest weights of
irreducible representations w1, w2 of the Lie al-
gebra L, respectively. Then w1 is equivalent to
w2 if and only if W1 = W2.

(2) H. Cartan’s Theorem. The sheaf of
ideals defined by an analytic subset of a com-
plex manifold is coherent.

Cartan subalgebra A subalgebra A of a Lie
algebraL over a fieldK , such thatA is nilpotent
and the normalizer of A in L is A itself.

Cartan subgroup A subgroup H of a group
G such that H is a maximal nilpotent subgroup
of G and, for every subgroup K of H of finite
index in H , the normalizer of K in G is also of
finite index in K .

Cartan-Weyl Theorem A theorem that as-
sists in the characterization of irreducible repre-
sentations of complex semisimple Lie algebras.
Let G be a complex semisimple Lie algebra, H a
Cartan subalgebra, 8 the root system of G rela-
tive to H, α =∑

σ∈8 rσ σ , rσ ∈ R, a complex-
valued linear functional on H, and ρ : G →
GLn(C) a representation of G. The functional α
is a weight of the representation if the space of
vectors v ∈ Cn that satisfy ρ(h)v = α(h)v for
all h ∈ H is nontrivial; Cn decomposes as a di-
rect sum of such spaces associated with weights
α1, . . . , αk . If we place a lexicographic linear
order ≤ on the set of functionals α, the Cartan-
Weyl Theorem asserts that there exists an irre-
ducible representation ρ of G having α as its
highest weight (with respect to the order ≤) if
and only if 2[α,σ ]

[σ,σ ] is an integer for every σ ∈ 8,
and w(α) ≤ α for every permutation w in the
Weyl group of G relative to H.

Carter subgroup Any finite solvable group
contains a self-normalizing, nilpotent subgroup,
called a Carter subgroup.

Cartesian product If X and Y are sets, then
the Cartesian product of X and Y , denoted X×
Y , is the set of all ordered pairs (x, y)withx ∈ X

and y ∈ Y .

Cartier divisor A divisor which is linearly
equivalent to the divisor 0 on a neighborhood of
each point of an irreducible variety V .

Casimir element Letβ1, . . . , βn be a basis of
the semisimple Lie algebraL. Using the Killing
form K of L, let mij = K(βi, βj ). Also, let
mij represent the inverse of the matrix (mij ) and
let c be an element of the quotient associative
algebraQ(L), defined by c =∑

mijβiβj . This
element c is called the Casimir element of the
semisimple Lie algebra L.

Casorati’s determinant The n× n determi-
nant

D(c1(x), . . . , cn(x)) =
∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 (x) c2 (x) · · · cn(x)

c1 (x + 1) c2 (x + 1) · · · cn(x + 1)

· · ·

c1 (x + n− 1) c2 (x + n− 1) · · · cn(x + n− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

c© 2001 by CRC Press LLC



where c1(x), . . . , cn(x) are n solutions of the
homogeneous linear difference equation

n∑
k=0

pk(x)y(x + k) = 0 .

casting out nines A method of checking
base-ten multiplications and divisions. See ex-
cess of nines.

casus irreducibilis If the cubic equation
ax3 + bx2 + cx + d = 0 is irreducible over
the extension Q(a, b, c, d) of the rational num-
ber field Q, and if all the roots are real, then it
is still impossible to find the roots of this cubic
equation, by only rational operations with real
radicals, even if the roots of the cubic equation
are real.

category A graph equipped with a notion
of identity and of composition satisfying certain
standard domain and range properties.

Cauchy inequality The inequality(
n∑

i=1

aibi

)2

≤
n∑

i=1

a2
i

n∑
i=1

b2
i ,

for real numbers a1, . . . , an, b1, . . . , bn. Equal-
ity holds if and only if ai = cbi , where c is a
constant.

Cauchy problem Given an nth order partial
differential equation (PDE) in z with two inde-
pendent variables, x and y, and a curve @ in the
xy-plane, a Cauchy problem for the PDE con-
sists of finding a solution z = φ(x, y) which
meets prescribed conditions

∂j+kz
∂xj ∂yk

= fjk

j + k ≤ n − 1, j, k = 0, 1, . . . , n− 1 on @.
Cauchy problems can be defined for systems
of partial differential equations and for ordinary
differential equations (then they are called ini-
tial value problems).

Cauchy product The Cauchy product of two
series

∑∞
n=1 an and

∑∞
n=1 bn is

∑∞
n=1 cn where

cn = a1bn + a2bn−1 + · · · + anb1 .

If A =∑
an and B =∑

bn, then
∑

cn = AB

(if all three series converge). The Cauchy prod-
uct series converges if

∑
an and

∑
bn converge

and at least one of them converges absolutely
(Merten’s Theorem).

Cauchy sequence (1) A sequence of real
numbers, {rn}, satisfying the following condi-
tion. For any ε > 0 there exists a positive inte-
ger N such that |rm− rn| < ε, for all m, n > N .

(2) A sequence {pn} of points in a metric
space (X, ρ), satisfying the following condition:

ρ (pn, pm)→ 0 as n,m→∞ .

Cauchy sequences are also called fundamen-
tal sequences.

Cauchy transform The Cauchy transform,
µ̂, of a measure µ, is defined by µ̂(ζ ) = ∫

(z−
ζ )−1dµ(z). If K is a compact planar set with
connected complement and A(K) is the algebra
of complex functions analytic on the interior of
K , then the Cauchy transform is used to show
that every element of A(K) can be uniformly
approximated on K by polynomials.

Cayley algebra Let F be a field of charac-
teristic zero and let Q be a quaternion algebra
over F . A general Cayley algebra is a two-
dimensional Q-module Q + Qe with the mul-
tiplication (x + ye)(z + ue) = (xz + vu′y) +
(xu + yz′)e, where x, y, z, u ∈ Q, v ∈ F and
z′, u′ are the conjugate quarternions of z and
u, respectively. A Cayley algebra is the special
case of a general Cayley algebra where Q is the
quaternian field, F is the real number field, and
v = −1.

Cayley-Hamilton Theorem See Hamilton-
Cayley Theorem.

Cayley number The elements of a general
Cayley algebra. See Cayley algebra.

Cayley projective plane Let H be the set of
all 3× 3 Hermitian matrices M over the Cayley
algebra such that M2 = M and trM = 1. The
set H , with the structure of a projective plane, is
called the Cayley projective plane. See Cayley
algebra.
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Cayley’s Theorem Every group is isomor-
phic to a group of permutations.

Cayley transformation The mapping be-
tween n× n matrices N and M , given by M =
(I − N)(I + N)−1, which acts as its own in-
verse. The Cayley transformation demonstrates
a one-to-one correspondence between the real
alternating matrices N and proper orthogonal
matrices M with eigenvalues different from−1.

CCR algebra A C*-algebra A, which is
mapped to the algebra of compact operators un-
der any irreducible∗-representation. Also called
liminal C*-algebra.

center (1) Center of symmetry in Euclidean
geometry. The midpoint of a line, center of a
triangle, circle, ellipse, regular polygon, sphere,
ellipsoid, etc.

(2) Center of a group, ring, or Lie algebraX.
The set of all elements of X that commute with
every element of X.

(3) Center of a latticeL. The set of all central
elements of L.

central extension LetG,H , andK be groups
such that G is an extension of K by H . If H is
contained in the center of G, then G is called a
central extension of H .

centralizer Let X be a group (or a ring) and
let S ⊂ X. The set of all elements of X that
commute with every element of S is called the
centralizer of S.

central separable algebra An R-algebra
which is central and separable. Here a central
R-algebra A which is projective as a two-sided
A-module, where R is a commutative ring.

central simple algebra A simple algebra A
over a fieldF , such that the center ofA coincides
with F . (Also called normal simple algebra.)

chain complex Let R be a ring with iden-
tity and let C be a unitary R-module. By a
chain complex (C, α) over R we mean a graded
R-module C = ∑

n Cn together with an R-
homomorphismα: C → C of degree−1, where
α ◦ α = 0.

chain equivalent Let C1 and C2 be chain
complexes. If there are chain mappingsα: C1 →
C2 and β: C2 → C1 such that α ◦ β = 1C2 and
β ◦α = 1C1 , then we say that C1 is chain equiv-
alent to C2. See chain complex, chain mapping.

chain homotopy Let C1 and C2 be chain
complexes. Let α, β: C1 → C2 be two chain
mappings, and let R be a ring with identity. If
there is an R-homomorphism γ : C1 → C2 of
degree 1, such thatα−β = γ ◦α′+β ′◦γ , where
(C1, α

′) and (C2, β
′) are chain complexes over

R. Then γ is called a chain homotopy of α to
β. See chain complex, chain mapping.

chain mapping Let (C1, α) and (C2, β) be
chain complexes over a ring R with identity. An
R-homomorphism γ : C1 → C2 of degree 0
that satisfies β ◦ γ = γ ◦ α is called a chain
mapping of C1 to C2. See chain complex.

chain subcomplex LetR be a ring with iden-
tity and let (C, α) be a chain complex over R. If
H = ∑

n Hn is a homogeneous R-submodule
of C such that α(H) ⊂ H , then H is called a
chain subcomplex of C. See chain complex.

Chain Theorem Let A, B, and C be alge-
braic number fields such that C ⊂ B ⊂ A and
let 0A/C , 0A/B , and 0B/C denote the relative
difference of A over C, A over B, and B over C,
respectively. Then 0A/C = 0A/B0B/C . See
different.

chamber In a finite dimensional real affine
space A, any connected component of the com-
plement of a locally finite union of hyperplanes.
See locally finite.

chamber complex A complex with the prop-
erty that every element is contained in a chamber
and, for two given chambers C, C′, there exists
a finite sequence of chambers C = C0, C1, . . . ,
Cr = C′ in such a way that codimCk−1(Ck ∩
Ck−1) = codimCk

(Ck ∩ Ck−1) ≤ 1, for k =
1, 2, . . . , r . See chamber.

character A character X of an Abelian group
G is a function that assigns to each element x of
G a complex number X (x) of absolute value 1
such that X (xy) = X (x)X (y) for all x and y in
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G. If G is a topological Abelian group, then X
must be continuous.

character group The set of all characters
of a group G, with addition defined by (X1 +
X2)(x) = X1(x) ·X2(x). The character group is
Abelian and is sometimes called the dual group
of G. See character.

characteristic Let F be a field with identity
1. If there is a natural number c such that c1 =
1+ · · · + 1 (c 1s) = 0, then the smallest such c

is a prime number p, called the characteristic of
the field F . If there is no natural number c such
that c1 = 0, then we say that the characteristic
of the field F is 0.

characteristic class (1) Of an R-module
extension 0 → N → X → M → 0,
the element 00(idN) in the extension module
Ext1R(M,N), where idN is the identity map on
N in HomR(N,N) ∼= Ext0R(N,N) and 00 is
the connecting homomorphism Ext0R(N,N)→
Ext1R(M,N) obtained from the extension se-
quence. See connecting homomorphism.

(2) Of a vector bundle over base space X,
any of a number of constructions of a particu-
lar cohomology class of X, chosen so that the
bundle induced by a map f : Y → X is the
image of the characteristic class of the bundle
overX under the associated cohomological map
f ∗ : H ∗(X)→ H ∗(Y ). See Chern class, Euler
class, Pontrjagin class, Stiefel-Whitney class,
Thom class.

characteristic equation (1) If we substitute
y = eλx in the general nth order linear differen-
tial equation

y(n)(x)+ an−1y
(n−1)(x)+ . . .

+a1y
′(x)+ a0y(x) = 0

with constant coefficients ai (i = n− 1, . . . , 0)
and then divide by eλx , we obtain

λn + an−1λ
n−1 + · · · + a1λ+ a0 = 0 ,

which is called the characteristic equation asso-
ciated with the given differential equation.

(2) If we substitute yn = λn in the general
kth order difference equation

yn + an−1yn−1 + · · · + an−kyn−k = 0

with constant coefficients ai (i = n−1, . . . , n−
k) and then divide by λn−k , we obtain

λk + an−1λ
k−1 + · · · + an−k+1λ+ an−k = 0 ,

which is again called the characteristic equation
associated with this given difference equation.

(3) The above two definitions can be extended
for a system of linear differential (difference)
equations.

(4) Moreover, if M = (mij ) is a square ma-
trix of degree n over a fieldF , then the algebraic
equation |λI −M| = 0 is also called the char-
acteristic equation of M .

characteristic linear system Let S be a non-
singular surface and let A be an irreducible al-
gebraic family of positive divisors of dimension
d on S such that a generic member M of A is an
irreducible non-singular curve. Then, the char-
acteristic set forms a (d−1)-dimensional linear
system and contains TrM |M| (the trace of |M|on
M) as a subfamily. This linear system is called
the characteristic linear system of A.

characteristic multiplier Let Y (t) be a fun-
damental matrix for the differential equation

y′ = A(t)y . (∗)
Let ω be a period for the matrix A(t). Suppose
that H is a constant matrix that satisfies

Y (t + ω) = Y (t)H , t ∈ (−∞,∞) .

Then an eigenvalue µ for H of index k and mul-
tiplicity m is called a characteristic multiplier
for (∗), or for the periodic matrix A(t), of index
k and multiplicity m.

characteristic multiplier Let Y (t) be a fun-
damental matrix for the differential equation

y′ = A(t)y . (∗)
Let ω be a period for the matrix A(t). Suppose
that H is a constant matrix that satisfies

Y (t + ω) = Y (t)H , t ∈ (−∞,∞) .

Then an eigenvalue µ for H of index k and mul-
tiplicity m is called a characteristic multiplier,
of index k and multiplicity m, for (∗), or for the
periodic matrix A(t).
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characteristic of logarithm The integral part
of the common logarithm.

characteristic polynomial The polynomial
on the left side of a characteristic equation. See
characteristic equation.

characteristic series LetG be a group. If we
take the group Aut(G) (the group of automor-
phisms of G) as an operator domain of G, then
a composition series is called a characteristic
series. See composition series.

characteristic set A one-dimensional set of
positive divisors D of a nonsingular curve of
dimension n so that, with respect to one such
generic divisor D0 of the curve, the degree of
the specialization of the intersectionD ·D0 over
the specialization of D over D0 is a divisor of
degree equal to that of D ·D0.

character module Let G be an algebraic
group, with the sum of two characters X1 and X2
of G defined as (X1+X2)(x) = X1(x) ·X2(x),
for all x ∈ G. The set of all characters of G
forms an additive group, called the character
module of G. See character of group, algebraic
group.

character of a linear representation For the
representation ρ : A → GLn(k) of the algebra
A over a field k, the function χρ on A given by
χρ(a) = tr(ρ(a)).

character of group A rational homomor-
phism α of an algebraic group G into GL(1),
where GL(1) is a one-dimensional connected
algebraic group over the prime field. See alge-
braic group.

character system For the quadratic field k,
with discriminant d and ideal class group I ∼=
F/H (F the group of fractional ideals andH the
subgroup of principal ideals generated by posi-
tive elements), a collection

{
χp(N(A))

}
(p|d) of

numbers, indexed by the prime factors of d, in
which χp is the Legendre symbol mod p and
A is any representative ideal in its ideal class
mod H . The character system is independent of
the choice of representative and uniquely deter-
mines each class in I .

Chebotarev Density Theorem Let F be an
algebraic number field with a subfield f , F/f
be a Galois extension, C be a conjugate class of
the Galois group G of F/f , and I (C) be the set
of all prime idealsP of k such that the Frobenius
automorphism of each prime factor Fi of P in
F is in C. Then the density of I (C) is |C|/|G|.

Chern class The ith Chern class is an ele-
ment ofH 2i (M;R), whereM is a complex man-
ifold. The Chern class measures certain proper-
ties of vector bundles over M . It is used in the
Riemann-Roch Theorem.

Chevalley complexification LetG be a com-
pact Lie group, r(G) the representative ring of
G, A the group of all automorphisms of r(G),
and G′ the centralizer of a subgroup of A in A.
If G′ is the closure of G relative to the Zariski
topology of G′, then G′ is called the Chevalley
complexification of G.

Chevalley decomposition Let G be an alge-
braic group, defined over a field F and Ru the
unipotent radical of G. If F is of characteristic
zero, then there exists a reductive, closed sub-
group C of G such that G can be written as a
semidirect product of C and Ru. See algebraic
group.

Chevalley group Let F be a field, f an ele-
ment ofF , LF a Lie algebra overF , B a basis of
LF over F and tθ (f ) the linear transformation
ofLF with respect toB, where θ ranges over the
root system of LF . Then, the group generated
by the tθ (f ), for each root θ and each element
f , is called the Chevalley group of type over F .

Chevalley’s canonical basis Of a complex,
semisimple Lie algebra G with Cartan subalge-
bra H and root system8, a basis for G consisting
of a basis

{
H1, . . . , Hs

}
of H and, for each root

σ ∈ 8, a basis
{
Xσ

}
of its root subspace Gσ

that satisfy: (i.) σ(Hi) is an integer for every
σ ∈ 8 and each Hi ; (ii.) β(Xσ ,X−σ ) = 2

(σ,σ )
for every σ ∈ 8, where ( , ) represents the inner
product on the roots induced by the Killing form
β on G; (iii.) if σ , τ , and σ + τ are all roots and
[Xσ ,Xτ ] = nσ,τXσ+τ , then the numbers nσ,τ
are integers that satisfy n−σ,−τ = −nσ,τ .
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Chevalley’s Theorem Let G be a connected
algebraic group, defined over a field F , and let
N be a (F -closed) largest, linear, connected,
closed, normal subgroup of G. If C is a closed,
normal subgroup of G, then the factor group
G/C is complete if and only if N ⊂ C.

Cholesky method of factorization A method
of factoring a positive definite matrix A as a
product A = LLT where L is a lower triangular
matrix. Then the solution x of Ax = b is found
by solving Ly = b, LT x = y.

Choquet boundary Let X be a compact
Hausdorff space and let A be a function algebra
on X. The Choquet boundary is c(A) = {x ∈
X : the evaluation at x has a unique representing
measure}.

Chow coordinates Of a projective variety
X, the coefficients of the associated form of the
variety, viewed as homogeneous coordinates of
points on X. See associated form.

Chow ring Of a nonsingular, irreducible,
projective variety X, the graded ring whose ob-
jects are rational equivalence classes of cycles
on X, with addition given by addition of cycles
and multiplication induced by the diagonal map
0 : X → X × X. The ring is graded by codi-
mension of cycles.

Chow variety Let V be a projective variety.
The set of Chow coordinates of positive cycles
that are contained in V is a projective variety
called a Chow variety.

circulant See cyclic determinant.

circular units The collection of units of the
form 1−ζ s

1−ζ t , where ζ is a pnth root of unity, p is
a prime, and s �≡ t (modp) (and p � |s, t).

class (1) (Algebra.) A synonym of set that
is used when the members are closely related,
like an equivalence class or the class of residues
modulo m.

(2) (Logic.) A generalization of set, includ-
ing objects that are “too big” to be sets. Con-
sideration of classes allows one to avoid such

difficulties as Russell’s paradox, concerning the
set of all sets that do not belong to themselves.

class field LetF be an algebraic number field
and E be a Galois extension of F . Then, E
is said to be a class field over F , for the ideal
group I (G), if the following condition is met: a
prime idealP ofF of absolute degree 1 which is
relatively prime to G is decomposed in E as the
product of prime ideals of E of absolute degree
1 if and only if P is in I (G).

class field theory A theory created by E.
Artin and others to determine whether certain
primes are represented by the principal form.

class field tower problem Let F be a given
algebraic number field, and let F = F0 ⊂ F1 ⊂
F2 ⊂ · · · be a sequence of fields such that Fn

is the absolute class field over Fn−1, and F∞ is
the union of all Fn. Now we ask, is F∞ a finite
extension of F ? The answer is positive if and
only if Fk is of class number 1 for some k. See
absolute class field.

class formation An axiomatic structure for
class field theory, developed by Artin and Tate.
A class formation consists of

(1) a group G, the Galois group of the for-
mation, together with a family

{
GK : K ∈ Z

}
of subgroups of G indexed by a collection 8 of
fields K so that

(i.) each GK has finite index in G;

(ii.) if H is a subgroup of G containing some
GK , then H = GK ′ for some K ′;

(iii.) the family {GK} is closed under intersec-
tion and conjugation;

(iv.)
⋂

8 GK is the trivial subgroup of G;

(2) a G-module A, the formation module,
such thatA is the union of its submodulesA(GK)

that are fixed by GK ;
(3) cohomology groups Hr(L/K), defined

as Hr(GK/GL,A
(GK)), for which H 1(L/K)

= 0 whenever GL is normal in GK ;
(4) for each field K , there is an isomorphism

A �→ invKA of the Brauer group H 2(∗ /K)

into Q/Z such that
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(i.) if GL is normal in GK of index n,

invKH
2(L/K) =

(
1

n
Z
)
/Z

and

(ii.) even when GL is not normal in GK ,

invL ◦ resK,L = n invK

where resK,L is the natural restriction map
H 2(∗/K)→ H 2(∗/E).

classical compact real simple Lie algebra
A compact real simple Lie algebra of the type
An, Bn, Cn, or Dn, where An, Bn, Cn, and Dn

are the Lie algebras of the compact Lie groups
SU(n + 1), SO(2n + 1), Sp(n), and SO(2n),
respectively.

classical compact simple Lie group Any of
the connected compact Lie groups SU(n + 1),
SO(nl+1), Sp(n), or SO(2n), with correspond-
ing compact real simple Lie algebraAn (n ≥ 1),
Bn (n ≥ 2), Cn (n ≥ 3), or Dn (n ≥ 4) as its
Lie algebra.

classical complex simple Lie algebra Let
An, Bn, Cn, and Dn be the Lie algebras of the
complex Lie groups SL(n + 1, C), SO(2n +
1, C), Sp(n, C), and SO(2n,C). Then An (n ≥
1), Bn (n ≥ 2), Cn (n ≥ 3), and Dn (n ≥ 4) are
called classical complex simple Lie algebras.

classical group Groups such as the general
linear groups, orthogonal groups, symplectic
groups, and unitary groups.

classification Let R be an equivalence rela-
tion on a set S. The partition of S into disjoint
union of equivalence classes is called the clas-
sification of S with respect to R.

class number The order of the ideal class
group of an algebraic number fieldF . Similarly,
the order of the ideal class group of a Dedekind
domain D is called the class number of D.

class of curve The degree of the tangential
equation of a curve.

clearing of fractions An equation is cleared
of fractions if both sides are multiplied by a com-
mon denominator of all fractions appearing in
the equation.

Clebsch-Gordon coefficient One of the co-
efficients, denoted(

j1m1j2m2
∣∣j1j2jm

)
in the formula

ψ(jm) =
∑

−j≤m1,m2≤j
(j1m1j2m2

∣∣j1j2jm)

× ψ(j1m1)ψ(j2m2)

which relates the basis elements of the represen-
tation space C2 ⊗ · · · ⊗ C2 of 2j copies of C2

for a representation of SO(3) ∼= SU(2)/ {±I }.
The coefficients are determined by the formula(

j1m1j2m2
∣∣j1j2jm

) = δm1+m2,m

×
√
(2j + 1)(j1 + j2 − j)!(j + j1 − j2)!(j + j2 − j1)!

(j1 + j2 + j + 1)!

×
∑
ν

(−1)ν
√

(j1 +m1)!(j1 −m1)!(j2 +m2)!
ν!(j1 + j2 − j − ν)!(j1 −m1 − ν)!

×
√

(j2 −m2)!(j +m)!(j −m)!
(j2 +m2 − ν)!(j − j2 +m1 + ν)!(j − j1 −m2 + ν)! .

Clifford algebra Let L be an n-dimensional
linear space over a fieldF ,Q a quadratic form on
L,A(L) the tensor algebra overL, I (Q) the two-
sided ideal on A(L) generated by the elements
l⊗ l−Q(l) · 1 (l ∈ L), where⊗ denotes tensor
multiplication. The quotient associative algebra
A(L)/I (Q) is called the Clifford algebra over
Q.

Clifford group Let L be an n-dimensional
linear space over a field F , Q a quadratic form
on L, C(Q) the Clifford algebra over Q, G the
set of all invertible elements g inC(Q) such that
gLg−1 = L. Then, G is a group with respect
to the multiplication of C(Q) and is called the
Clifford group of the Quadratic form Q. See
Clifford algebra.

Clifford numbers The elements of the Clif-
ford algebra. See Clifford algebra.
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closed boundary If X is a compact Haus-
dorff space, then a closed boundary is a bound-
ary closed in X.

closed image Let µ:V → V ′ be a morphism
of varieties. If V is not complete, then µ(V )

may not be closed. The closure of µ(V ) which
is in V ′, is called the closed image of V .

closed subalgebra A subalgebra B1 of a Ba-
nach algebra B that is closed in the norm topol-
ogy. B1 is then a Banach algebra, with respect
to the original algebraic operations and norm of
B.

closed subgroup A subgroup H of a group
G such that x ∈ H , whenever some nontrivial
power of x lies in H .

closed subsystem LetM be a character mod-
ule. Let s be a subset of a root system r , and let
s′ be the submodule of M generated by s. If
s′ ∩ r = s, then s is called a closed subsystem.
See character module.

closed under operation A set S, with a bi-
nary operation ∗ such that a ∗ b ∈ S for all
a, b ∈ S.

closure property The property of a set of be-
ing closed under a binary operation. See closed
under operation.

coalgebra Let ρ and ρ′ be linear mappings
defined as ρ : V → V ⊗F V , and ρ′ : V →
F , where F is a field, V is vector space over
F , and ⊗ denotes tensor product. Then, the
triple (V , ρ, ρ′) is said to be a coalgebra over
F , provided (1V ⊗ ρ) ◦ ρ = (ρ ⊗ 1V ) ◦ ρ and
(1V ⊗ ρ′) ◦ ρ = (ρ′ ⊗ 1V ) ◦ ρ = 1V .

coalgebra homomorphism A k-linear map
f : C → C′, where (C,0, ε) and (C′,0′, ε′)
are coalgebras over a field k, such that (f ⊗f )◦
0 = 0′ ◦ f and ε = ε′ ◦ f .

coarse moduli scheme A scheme M and a
natural transformation ϕ : M → Hom(−,M)

where M is a contravariant functor from
schemes to sets such that
(i.) ϕ(Spec(k)) : M(Spec(k)) → Hom (Spec

(k),M) is bijective for any algebraically closed
field k, and
(ii.) for any scheme N and any natural transfor-
mationψ :M→ Hom(−, N) there is a unique
natural transformation λ : Hom(−,M) →
Hom(−, N) such that ψ = λ ◦ ϕ.

coarser classification ForR, S ⊂ X×X two
equivalence relations on X, S is coarser than R

if R ⊂ S.

coboundary See cochain complex.

coboundary operator See cochain complex.

cochain See cochain complex.

cochain complex A cochain complex C =
{Ci, δi : i ∈ Z} is a sequence of modules {Ci :
i ∈ Z}, together with, for each i, a module
homomorphism δi : Ci → Ci+1 such that δi−1◦
δi = 0. Diagramatically, we have

. . .
δi−2−→ Ci−1 δi−1−→ Ci δi−→ Ci+1 δi+1−→ . . . ,

where the composition of any two successive
δj is zero. In this context, the elements of Ci

are called i-cochains, the elements of the ker-
nel of δi , i-cocycles, the elements of the im-
age of δi−1, i-coboundaries, the mapping δi ,
the ith coboundary operator, the factor module
Hi(C) = ker δi/im δi−1, the ith cohomology
module and the set H(C) = {Hi(C) : i ∈ Z},
the cohomology module of C. If c is an i-cocycle
(i.e., an element of ker δi), the corresponding el-
ement c+ im δi−1 of Hi(C) is called the coho-
mology class of c. Two i-cocycles belong to the
same cohomology class if and only if they dif-
fer by an i-coboundary; such cocycles are called
cohomologous.

cochain equivalence Two cochain com-
plexes C and C̃ are said to be equivalent if
there exist cochain mappings φ : C → C̃ and
ψ : C̃ → C such that φψ and ψφ are homo-
topic to the identity mappings on C and C̃, re-
spectively.

cochain homotopy Let C = {Ci, δi : i ∈ Z}
and C̃ = {C̃i , εi : i ∈ Z} be two cochain com-
plexes and let φ,ψ : C → C̃ be two cochain
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mappings. A homotopy ζ : φ → ψ is a se-
quence of mappings {ζ i : i ∈ Z} such that, for
each i, ζ i is a homomorphism fromCi to C̃i and

φi − ψi = δiζ i+1 + ζ iεi−1 .

When such a homotopy exists, φ and ψ are said
to be homotopic and H(φ) = H(ψ), where
H(φ) and H(ψ) are the morphisms from the
cohomology module H(C) to the cohomology
module H(C̃) induced by φ and ψ .

cochain mapping Let C = {Ci, δi : i ∈
Z} and C̃ = {C̃i , εi : i ∈ Z} be two cochain
complexes. A cochain mapping φ : C → C̃ is
a sequence of mappings {φi : i ∈ Z} such that,
for each i, φi is a homomorphism from Ci to C̃i

and
φiεi = δiφi+1 .

The mapping φi induces a homomorphism from
the ith cohomology module Hi(C) to the ith
cohomology module Hi(C̃). Hence φ can be
regarded as inducing a morphism φ∗ from the
cohomology module H(C) to the cohomology
module H(C̃). The morphism φ∗ is also de-
notedH(φ). This enablesH(·) to be regarded as
a functor from the category of chain complexes
to a category of graded modules; it is called the
cohomological functor.

cocommutative algebra A coalgebra C, in
which the comultiplication0 is cocommutative,
i.e., has the property that δτ = δ, where τ is the
flip mapping, i.e., the mapping from C ⊗ C to
itself that interchanges the two C factors.

cocycle See cochain complex.

codimension Complementary to the dimen-
sion. For example, if X is a subspace of a vector
space V and V is the direct sum of subspaces X
and X′, then the dimension of X′ is the codi-
mension of X.

coefficient A number or constant appearing
in an algebraic expression. (For example, in
3+ 4x + 5x2, the coefficients are 3, 4, and 5.)

coefficient field See coefficient ring.

coefficient module See coefficient ring.

coefficient of equation A number or constant
appearing in an equation. (For example, in the
equation 2 tan x = 3x + 4, the coefficients are
2, 3, and 4.)

coefficient of linear representation When a
representation χ (of a group or ring) is isomor-
phic to a direct sum of linear representations and
other irreducible representations, the number of
times that a particular linear or irreducible rep-
resentation φ occurs in the direct sum is called
the coefficient of φ in χ .

coefficient of polynomial term In a polyno-
mial

a0 + a1x + a2x
2 + . . .+ anx

n ,

the constants a0, a1, . . . , an are called the coef-
ficients of the polynomial. More specifically, a0
is called the constant term, a1 the coefficient of
x, a2 the coefficient of x2, . . . , an the coefficient
of xn; an is also called the leading coefficient.

coefficient ring Consider the set of numbers
or constants that are being used as coefficients in
some algebraic expressions. If that set happens
to be a ring (such as the set of integers), it is
called the coefficient ring. Likewise, if that set
happens to be a field (such as the set of real
numbers) or a module, it is called the coefficient
field or coefficient module, respectively.

cofactor LetA be an n×nmatrix. The (k, P)
cofactor of A written AkP is (−1)k+P times the
determinant of the n−1×n−1 matrix obtained
by deleting the kth row and j th column of A.

cofunction The trigonmetric function that is
the function of the complementary angle. For
example, cotan is the cofunction of tan.

cogenerator An element A of category C
such that the functor Hom(−, A) : C → A is
faithful where A is the category of sets. Also
called a coseparator.

Cohen’s Theorem A ring is Noetherian if
and only if every prime ideal has a finite basis.
There are several other theorems which may be
called Cohen’s Theorem.
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coherent algebraic sheaf A sheaf F of OV -
modules on an algebraic variety V , such that if,
for every x ∈ V , there is an open neighborhood
U of x and positive integers p and q such that
the OV |U -sequence

Op
V |U → Oq

V |U → F |U → 0

is exact.

coherent sheaf of rings A sheaf of rings A
on a topological space X that is coherent as a
sheaf of A-modules.

cohomological dimension For a group G,
the number m, such that the cohomology group
Hi(G,A) is zero for every i > m and every G-
module A, and Hm(G,A) is non-zero for some
G-module A.

cohomology The name given to the subject
area that comprises cohomology modules, co-
homology groups, and related topics.

cohomology class See cochain complex.

cohomology functor See cochain mapping.

cohomology group (1) Because any Z-
module is an Abelian group, a cohomology
moduleH(C), where C is a cochain complex, is
called a cohomology group in the case where all
the modules under consideration are Z-modules.

(2) LetGbe a group andA aG-module. Then
Hi(G,A), the ith cohomology group of G with
coefficients in A, is defined by

Hi(G,A) = ExtiG(Z, A) .

(When interpreting the Ext functor in this con-
text, Z should be interpreted as a trivial G-
module.)

cohomology module See cochain complex.

cohomology set The set of cohomology
classes, when these classes do not possess a
group structure.

cohomology spectral sequence See spectral
sequence.

coideal Let C be a coalgebra with comulti-
plication 0 and counit ε. A subspace I of C is
called a coideal if 0(I) is contained in

I ⊗ C + C ⊗ I

and ε(I ) is zero.

coimage Let φ : M → N be a homomor-
phism between two modules M and N . Then
the factor module M/ ker φ (where ker φ de-
notes the kernel of φ) is called the coimage of
φ, denoted coimφ. By the First Isomorphism
Theorem, the coimage of φ is isomorphic to the
image of φ, as a consequence of which the term
coimage is not often used.

cokernel Let φ : M → N be a homomor-
phism between two modulesM andN . Then the
factor module N/ imφ (where im φ denotes the
image of φ) is called the cokernel of φ, denoted
coker φ.

collecting terms The name given to the proc-
ess of rearranging an expression so as to com-
bine or group together terms of a similar nature.
For example, if we rewrite

x2 + 2x + 1+ 3x2 + 5x as 4x2 + 7x + 1

we have collected together the x2 terms and the
x terms; if we rewrite

x2+y2+2x−2y as
(
x2 + 2x

)
+
(
y2 − 2y

)
we have collected together all the terms involv-
ing x, and all the terms involving y.

color point group A pair of groups (K,K1)

such that K = G/T , G is a space group, T is
the group of translations, and for some positive
integers r,K1 is the group of conjugacy classes
of all subgroups G1 of G with T ⊂ G1 and
[G : G1] = r .

color symmetry group A pair of groups (G,

G′)whereG is a space group and [G : G′] <∞.

column finite matrix An infinite matrix with
an infinite number of rows and columns, such
that no column has any non-zero entry beyond
the nth entry, for some finite n.
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column in matrix See matrix.

column nullity For an m × n matrix A, the
number m− r(A), where r(A) is the rank of A.

column vector A matrix with only one col-
umn, i.e., a matrix of the form


a1
a2
...

am


 .

Also called column matrix.

combination of things When r objects are
selected from a collection of n objects, the r

selected objects are called a combination of r
objects from the collection of n objects, pro-
vided that the selected objects are all regarded
as having equal status and not as being in any
particular order. (If the r objects are put into a
particular order, they are then called a permu-
tation, not a combination, of r objects from n.)
The number of different combinations of r ob-

jects from n is denoted by nCr or

(
n

r

)
and

equals
n!

r!(n− r)! .

commensurable Two non-zero numbers a

and b such that a = nb, for some rational num-
ber n. For example, 2

√
2 and 3

√
2 are com-

mensurable because 2
√

2 = 2
3 (3
√

2). All ra-
tional numbers are commensurable with each
other. No irrational number is commensurable
with any rational number.

common denominator When two or more
fractions are about to be added, it is helpful to re-
express them first, so that they have the same de-
nominator, called a common denominator. This
process is also described as putting the fractions
over a common denominator. For example, to
simplify 3

x−1 − 2
x+1 we might write

3

x − 1
− 2

x + 1

= 3(x + 1)

(x − 1)(x + 1)
− 2(x − 1)

(x − 1)(x + 1)

= x + 5

(x − 1)(x + 1)
.

Here (x−1)(x+1) is the common denominator.

common divisor A number that divides all
the numbers in a list. For example, 3 is a com-
mon divisor of 6, 9, and 12. See also greatest
common divisor.

common fraction A quotient of the form a/b

where a, b are integers and b �= 0.

common logarithm Logarithm to the base
10 (the logarithm that was most often used in
arithmetic calculations before electronic calcu-
lators were invented). See also logarithm.

common multiple A number that is a multi-
ple of all the numbers in a list. For example, 12
is a common multiple of 3, 4, and 6. See also
least common multiple.

commutant If S is a subset of a ring R, the
commutant of S is the set S′ = {a ∈ R : ax =
xa for all x ∈ S}. Also called: commutor.

commutative algebra (1) The name given to
the subject area that considers rings and modules
in which multiplication obeys the commutative
law, i.e., xy = yx for all elements x, y.

(2) An algebra in which multiplication obeys
the commutative law. See algebra.

commutative field A field in which multi-
plication is commutative, i.e., xy = yx, for all
elements x, y. (The axioms for a field require
that addition is always commutative. Some ver-
sions of the axioms insist that multiplication has
to be commutative too. When these versions of
the axioms are in use, a commutative field be-
comes simply a field, and the term division ring
is used for structures that obey all the field ax-
ioms except commutativity of multiplication.)
See also field.

commutative group See Abelian group.

commutative law The requirement that a bi-
nary operation ∗, on a setX, satisfy x∗y = y∗x,
for all x, y ∈ X. Addition and multiplication of
real numbers both obey the commutative law;
matrix multiplication does not.
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commutative ring A ring in which multi-
plication is commutative, i.e., xy = yx, for all
elements x, y. (The axioms for a ring ensure
that addition is always commutative.) The real
numbers are a commutative ring. Rings of ma-
trices are generally not commutative.

commutator (1) An element of the form x−1

y−1xy or xyx−1y−1 in a group. Such an el-
ement is usually denoted [x, y] and it has the
property that it equals the identity element if
and only if xy = yx, i.e., if and only if x and y

commute.
(2) An element of the form xy−yx in a ring.

Such an element is denoted [x.y] and is also
called the Lie product of x and y. It equals zero
if and only if xy = yx.

In a ring with an involution ∗, the element
x∗x − xx∗ is often called the self-commutator
of x.

commutator group See commutator sub-
group.

commutator subgroup The subgroup G′ of
a given group G, generated by all the commu-
tators of G, i.e., by all the elements of the form
x−1y−1xy (where x, y ∈ G). G′ consists pre-
cisely of those elements ofG that are expressible
as a product of a finite number of commutators.
So G′ may contain elements that are not them-
selves commutators. G′ is a characteristic sub-
group of G. G/G′ is Abelian and in fact G′ is
the unique smallest normal subgroup of G with
the property that the factor group of G by it is
Abelian. G′ is also called the commutator group
or the derived group of G.

commutor See commutator.

compact group A topological group that is
compact, as a topological space. A topologi-
cal group is a group G, with the structure of a
topological space, such that the map

(x, y) �→ xy−1 from G×G to G

is continuous.

compact real Lie algebra A real Lie alge-
bra whose Lie group is a compact group. See
compact group.

compact simple Lie group A Lie group that
is compact as a topological space and whose Lie
algebra is simple (i.e., not Abelian and having
no proper invariant subalgebra).

compact topological space A topological
space X with the following property: whenever
O = {Oα}α∈A is an open covering of X, then
there exists a finite subcoveringO1,O2, . . . , Ok .

companion matrix Given the monic poly-
nomial over the complex field

p(t) = tn + an−1t
n−1 + · · · + a1t + a0 ,

the n× n matrix

A =




0 0 . . . 0 −a0
1 0 . . . 0 −a1

0 1
. . .

...
...

...
. . .

. . . 0 −an−2
0 . . . 0 1 −an−1




is called the companion matrix of p(t). The
characteristic polynomial and the minimal poly-
nomial ofA are known to coincide with p(t). In
fact, a matrix is similar to the companion ma-
trix of its characteristic polynomial if and only if
the minimal and the characteristic polynomials
coincide.

complementary degree Let F be a filtra-
tion of a differential Z-graded module A. Then
{FpAn} is a Z-bigraded module and the module
FpAn has complementary degree q = n− p.

complementary law of reciprocity A reci-
procity law due to Hasse and superseded by
Artin’s general law of reciprocity. Let p be
a prime number. If α ∈ k is such that α ≡
1 mod p(1− τp) where τp = exp 2π i/p ∈ k,
then (p

d

)
p
= τ cp ,

c = Trk/Q

(
α
p(1−τp)

)
;

(
1− τp

α

)
p

= τdp ,

d = −Trk/Q

(
α − 1

p(1− τp)

)
.
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complementary series The irreducible, uni-
tarizable, non-unitary, principal series represen-
tations of a reductive group G.

complementary slackness This refers to
Tucker’s Theorem on Complementary Slackness,
which asserts that, for any real matrix A, the in-
equalities Ax = 0, x ≥ 0 and t uA ≥ 0 have
solutions x, u satisfying Atu+ x > 0.

complementary submodule LetN be a sub-
module of a module M . Then a complementary
submodule to N in M is a submodule N ′ of M
such that M = N ⊕N ′.

complementary trigonometric functions
The functions cosine, cosecant, and cotangent
(cos θ , cscθ and cot θ ), so called because the
cosine, cosecant, and cotangent of an acute an-
gle θ equal, respectively, the sine, secant, and
tangent of the complementary angle to θ , i.e.,
the acute angle φ such that θ and φ form two of
the angles in a right-angled triangle. (φ = π

2 −θ

in radians or 90− θ in degrees.)

complete cohomology theory A cohomol-
ogy theory of the following form. Let π be a
finite multiplicative group and B = B(Z(π))
the bar resolution. If A is a π -module define
H ∗(π,A) = H ∗(B,A). See cohomology.

complete field A field F with the following
property: wheneverp(x) = a0+a1x+· · · akxk
is a polynomial with coefficients inF thenp has
a root in F .

complete group A group G whose center
is trivial and all its automorphisms are inner.
Thus, G and the automorphism group of G are
canonically isomorphic.

complete integral closure Let O be an in-
tegral domain in a field K and M an O-module
contained in K . Let S be the set of all val-
uations on K that are nonnegative on O. If
υ ∈ S, let Rυ be the valuation ring of υ. Then
M ′ =⋂

v∈S RnM is the completion of M . If O
is the integral closure of O, M ′ is the complete
integral closure of the O-module M ′ = OM .

complete intersection A variety V in Pn(k)

of dimension r , where I (V ) is generated byn−r
homogeneous polynomials. See variety.

complete linear system The set of all effec-
tive divisors linearly equivalent to a divisor.

complete local ring See local ring.

completely positive mapping For von Neu-
mann algebras A and B, a linear mapping T :
A → B such that for all n ≥ 1 the induced
mappings

In ⊗ T : Mn(A) = Mn(C)⊗ A→ Mn(B)

are positive.

completely reduced module An R module
(R a ring) which is the direct sum of irreducible
R modules. An R module is irreducible if it has
no sub R-modules.

completely reducible Let k be a commuta-
tive ring and E a module over k. Let R be a
k-algebra and let ϕ : R→ Endk(E) be a repre-
sentation of R in E. We say that ϕ is completely
reducible (or semi-simple) if E is an R-direct
sum of R-submodules Ei ,

E = E1 ⊕ · · · ⊕ Em ,

with each Ei irreducible.

completely reducible representation A rep-
resentation σ such that the relevantR-moduleE
is an R-direct sum of R-submodules Ei ,

E = E1 ⊕ E2 ⊕ · · · ⊕ Em ,

such that each Ei is irreducible. See irreducible
representation.

Also called semi-simple.

completely solvable group A group that is
the direct product of simple groups.

complete pivoting A process of solving an
n × n linear system of equations Ax = b. By
a succession of row and column operations, one
may solve this equation once A has been trans-
formed to an upper triangular matrix. Suppose
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A(0) = A,A(1), · · · , A(k−1) have been deter-
mined so that A(k−1) = (a

(k−1)
ij ). Let a(k−1)

pq be
the entry so that

∣∣∣a(k−1)
pq

∣∣∣ = max
{∣∣∣a(k−1)

ij

∣∣∣ : i, j ≥ k
}
.

Interchange the kth row and pth row and the
kth column and qth column to obtain a matrix
B(k−1). Now A(k) is obtained from B(k−1) by
subtracting b

(k−1)
ik /b

(k−1)
kk times the kth row of

B(k−1) from the ith row of B(k−1).

complete resolution Let π be a finite mul-
tiplicative group. The bar resolution BZ((π))
of B is also called the complete free resolution.
Here Bn is the free V-module with generators
[x1| · · · |xn] for all x1 �= 1, . . . , xn �= 1 in π .
So, Bn is the free Abelian group generated by
all x[x1| . . . |xn] with x ∈ π and no xi �= 1.
Define ∂ : Bn → Bn−1 for n > 0 by setting

∂ [x1| . . . |xn] = x1 [x2| . . . |xn]

+
n−1∑
j=1

(−1)j
[
x1| . . . |xjxj−1| . . . |xn

]
+ (−1)n

[
x1| . . . |xn−1

]

where [y1| . . . |yn] = 0 if some yi = 1.

complete scheme A scheme X over a field
K together with a morphism from X to Spec K
that is proper and of finite type. See scheme.

complete valuation ring Let k be a field. A
subring R of k is called a valuation ring if, for
any x ∈ k, we have either x ∈ R or x−1 ∈ R. A
valuation ring gives rise to a valuation, or norm,
on K . The valuation ring is complete if every
Cauchy sequence in this valuation converges.

complete Zariski ring See Zariski ring.

completing the square When a quadratic
ax2 + bx + c is rewritten as

ax2 + bx + c = a

(
x2 + b

a
x

)
+ c

= a

[(
x + b

2a

)2

− b2

4a2

]
+ c

= a

(
x + b

2a

)2

−
(
b2

4a
− c

)
= aX2 − d(

where X = x + b

2a
and d = b2 − 4ac

4a

)
the process is called completing the square in x.
It is often used when solving equations or de-
termining the sign of an expression because the
absence of an X term in the final form aX2 − d

makes it easy to determine whether the expres-
sion is positive, negative, or zero.

completion The act of enlarging a set (mini-
mally) to a complete space. This occurs in ring
theory, measure theory, and metric space theory.

complex (1) Involving complex numbers.
See complex number.

(2) A set of elements from a group (not nec-
essarily forming a group in their own right).

(3) A sequence of modules {Ci : i ∈ Z},
together with, for each i, a module homomor-
phism δi : Ci → Ci+1 such that δi−1 ◦ δi = 0.
Diagramatically, we have

. . .
δi−2−→ Ci−1 δi−1−→ Ci δi−→ Ci+1 δi+1−→ . . .

where the composition of any two successive δj

is zero.

complex algebraic variety See algebraic va-
riety.

complex analytic geometry (1) Analytic
geometry, i.e., the study of geometric shapes
through the use of coordinate systems, but
within a complex vector space rather than the
more usual real vector space so that the coor-
dinates are complex numbers rather than real
numbers.

(2) The study of analytic varieties (the sets of
common zeros of systems of analytic functions),
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as opposed to algebraic geometry, the study of
algebraic varieties.

complex conjugate representation Let G
be a group and let φ be a complex representa-
tion of G (so that φ is a homomorphism from
G to the group GL(n,C) of all n × n invert-
ible matrices with complex entries, under matrix
multiplication). If we define a new mapping
ψ : G → GL(n,C) by setting ψ(g) = φ(g)

for all g ∈ G, where φ(g) is the matrix ob-
tained from the matrix φ(g) by replacing all its
entries by their complex conjugates, then ψ is
also a complex representation of G, called the
complex conjugate of φ.

complex fraction An expression of the form
z
w

where z andw are expressions involving com-
plex numbers or complex variables. A complex
fraction z

w
is frequently simplified by observ-

ing that it equals zw̄
ww̄

(where w̄ is the complex
conjugate of w), which is simpler because the
denominator ww̄ is real.

complex Lie algebra See Lie algebra.

complex Lie group See Lie group.

complex multiplication (1) The multiplica-
tion of two complex numbers a+ ib and c+ id

(where a, b, c, d are real) using the rule

(a + ib)(c + id) = (ac − bd)+ i(ad + bc) ,

which is simply the usual rule for multiplying
binomials, coupled with the property that i2 =
−1.

(2) The multiplication of two complexes of
a group, which is defined as follows. Let G be
a group and let A,B be complexes, i.e., subsets
of G. Then AB = {ab : a ∈ A, b ∈ B}.
This definition obeys the associative law, i.e.,
A(BC) = (AB)C for all complexes A,B,C of
G.

complex number A number of the form z =
x+ iy where x and y are real and i2 = −1. The
set of all complex numbers is usually denoted C
or C.

complex orthogonal group See complex or-
thogonal matrix.

complex orthogonal matrix A square ma-
trix A such that its entries are complex num-
bers and it is orthogonal, i.e., has the property
that AAT = I , or equivalently that AT = A−1

(where AT denotes the transpose of A). Such a
matrix has determinant±1. The set of all n× n

complex orthogonal matrices forms a group un-
der matrix multiplication, called the complex or-
thogonal group O(n,C). The set of all n × n

complex orthogonal matrices of determinant 1
is a normal subgroup of O(n,C), called the com-
plex special orthogonal group SO(n,C).

complex plane The set C of complex num-
bers can be represented geometrically as the
points of a plane by identifying each complex
number a + ib (where a and b are real) with
the point with coordinates (a, b). This geomet-
rical representation of C is called the complex
plane or Argand diagram. In this representation,
points on the x-axis correspond to real numbers
and points on the y-axis correspond to numbers
of the form ib (where b is real). So the x- and
y-axes are often called the real and imaginary
axes, respectively. Note also that the points rep-
resenting a complex number z and its complex
conjugate z̄ are reflections of each other in the
real axis.

complex quadratic field A field of the form
Q[√m] (the smallest field containing the ratio-
nal numbers and

√
m) where m is a negative

integer.

complex quadratic form An expression of
the form

n∑
i=1

aiz
2
i +

∑
i �=j

aij zizj

where, for all i and j , zi is a complex variable,
and ai and aij are complex constants.

complex representation A homomorphism
φ from a group G to the general linear group
GL(n,C), for some n. (GL(n,C) is the group
of all n × n invertible matrices with complex
entries, the group operation being matrix multi-
plication.) n is called the degree of φ. Complex
representations of degree 1 are called linear.
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complex root A root of an equation that is a
complex number but not a real number. For ex-
ample, the equation x3 = 1 has roots 1, e2πi/3,

e4πi/3. Of these, 1 is called the real cube root
of unity, while e2πi/3 and e4πi/3 are called the
complex cube roots of unity.

complex semisimple Lie algebra A complex
Lie algebra that is semisimple, i.e., does not have
an Abelian invariant subalgebra.

complex semisimple Lie group A complex
Lie group whose Lie algebra is semisimple, i.e.,
does not have an Abelian invariant subalgebra.

complex simple Lie algebra A complex Lie
algebra that is simple, i.e., not Abelian and hav-
ing no proper invariant subalgebra.

complex simple Lie group A complex Lie
group whose Lie algebra is simple, i.e., not
Abelian and having no proper invariant subal-
gebra.

complex special orthogonal group See com-
plex orthogonal matrix.

complex sphere A complex n-sphere with
center z0 and radius r is the set of all points at
distance r from z0 in the n-dimensional com-
plex metric space Cn. (Cn is the set of all n-
tuples (a1, a2, . . . , an), where each ai is a com-
plex number.)

complex spinor group The universal cover
of SO(n,C) = {A ∈ GL(n,C) : AtA = I and
det A = 1} it is denoted Spin(n,C).

complex structure A complex analytic struc-
ture on a differentiable manifold. Complex
structures may also be put on real vector spaces
and on pseudo groups. See analytic structure.

complex symplectic group The set of all n×
n matrices A with complex numbers as entries
and having the property that AT JA = J (where
AT is the transpose of A, J is the matrix

[
0 I

−I 0

]

and I denotes the n
2 × n

2 identity matrix) forms
a group under matrix multiplication, called the
complex symplectic group Sp( n2 ,C).

complex torus A torus of the form Cn/@

where @ is a lattice in Cn.

complex variable A variable whose values
are complex numbers.

component (1) When a vector or force is
expressed as an ordered pair (a1, a2) in two di-
mensions, as a triple (a1, a2, a3) in three dimen-
sions, or as an n-tuple (a1, a2, . . . , an) in n di-
mensions, the numbers a1, a2, . . . , an are called
its components.

(2) When a vector v in a vector space V is
expressed in the form a1e1 + a2e2 + · · · + anen
where a1, a2, . . . , an are scalars and e1, e2, . . . ,

en is a basis of V , the scalars a1, a2, . . . , an are
called the components of v with respect to the
basis e1, e2, . . . , en.

(3) When a vector or force v is expressed as
w+x, where w is parallel to a given direction and
x is perpendicular to that direction, w is called
the component of v in the given direction.

(4) The word component is also used loosely
to mean simply a part of a mathematical expres-
sion.

composite field The smallest subfield of a
given field K containing a given collection {kα :
α ∈ A} of subfields of K .

composite number An integer that is not
zero, not 1, not −1, and not prime.

composition algebra An alternative algebra
A over a field F (characteristic �= 2), with iden-
tity 1 and a quadratic norm n : A → F such
that n(x, y) = n(x)n(y).

composition factor See composition series.

composition factor series For a group G

with composition series G = G0 ⊃ G1 ⊃
· · · ⊃ Gr = {e}, the sequence G0/G1, . . . ,

Gr−1/Gr .

composition series A series of subgroups
G0,G1, . . . ,Gn of a groupG such thatG0 = 1,
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Gn = G and, for each i, Gi is a proper normal
subgroup of Gi+1 such that Gi+1/Gi is simple.

The Jordan-Hölder Theorem states that ifH0,

H1, . . . , Hm is another composition series for
G, then m = n and there is a one-one corre-
spondence between the two sets of factor groups
{Gi+1/Gi : i = 0, . . . , n − 1} and {Hi+1/Hi :
i = 0, . . . , n− 1} such that corresponding fac-
tor groups are isomorphic. The factor groups
Gi+1/Gi : i = 0, . . . , n−1 are therefore called
the composition factors of G. There are similar
definitions for composition series and compo-
sition factors of other algebraic structures such
as rings. These are obtained by making obvi-
ous changes to the definitions for groups. For
example, in the case of rings, take the above
definitions, replace G0 = 1 by G0 = 0, and
replace the words group, subgroup, and normal
subgroup by ring, subring, and ideal throughout.

Composition Theorem (class field theory)
Let K1 and K2 be class fields over k for the
respective ideal groups H1 and H2. Then the
composite field K1K2 is the class field over k
for H1 ∩H2.

compound matrix Given positive integers
n, P (P ≤ n), denote by QP,n the P-tuples of
{1, 2, . . . , n} with elements in increasing order.
QP,n has (nP)members ordered lexicographically.
For anym×nmatrixA and ∅ �= α ⊆ {1, 2, . . . ,
m}, ∅ �= β ⊆ {1, 2, . . . , n}, let A[α | β] denote
the submatrix of A containing the rows and col-
umns indexed by α and β, respectively.

Given an integer P, 0 < P ≤ min(m, n), the
Pth compound matrix ofA is defined as the (mP )×
(nP) matrix

A(P) = ( detA[α | β] )α∈Qł,m,β∈Qł,n
.

To illustrate this definition, if A = (aij ) is
a 3 × 4 matrix, then A(2) is a 3 × 6 matrix;
its (1, 1), (1, 2), and (2, 1) entries are, respec-
tively,

det


a11 a12
a21 a22
,


 det


a11 a13
a21 a23
,




and

det

(
a11 a12
a31 a32

)
.

computation by logarithms This is the name
given to a method of solving an equationA = B

where A and B are complicated expressions in-
volving products and powers. The method is to
take logarithms of both sides, i.e., to say that
logA = logB, and then to use the laws of log-
arithms to simplify and rearrange that equation
so as to obtain the logarithm of the unknown
variable and hence obtain that variable itself.

comultiplication See coalgebra.

concave programming The subject dealing
with problems of the following type. SupposeX
is a closed convex subset of Rn and g1, . . . , gm
are convex functions on X. Let f be a concave
function on X. Determine x ∈ X such that
f (x) = min {f (x) : x ∈ X and g1(x) ≤
0 for i = 1, . . . , m}.
conditional equation An equation involving
variable quantities which fails to hold for some
values of the variables.

conditional inequality An inequality involv-
ing variable quantities which fails to hold for
some values of the variables.

condition number The quantity‖A‖·‖A−1‖,
where ‖A‖ is the norm of the matrix A.

conductor (1) Of an Abelian extensionK/k,
the product F = ∏

℘ F℘ (over all prime
ideals) of the conductors of the local fields
K℘/k℘ ; F℘ = ℘n, where n is minimal with the
property that the norm of every nonzero element
of K satisfies NK/k(x) ≡ 1(mod℘n). (If ℘ is
infinite, F℘ = ℘ when K℘ �= k℘ and F℘ = 1
otherwise.)

(2) Of a character χ of some representation
of the Galois group G of a local field K/k, the
function

f (x) = 1

|G0|
∞∑
i=0

∑
g∈Gi

χ(1)− χ(g) ,

where Gi are the ramification subgroups{
σ ∈ G : v(σ (x)−x) ≥ i+1 for all x ∈ K+

}
,

v the discrete valuation on K (with respect to
which K is complete) and K+ = {x ∈ K :
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v(x) ≥ 0}. The ideal ℘f (χ), where ℘ is the
maximal ideal of the ring of integers in K , is
also called the (Artin) conductor of χ .

Conductor Ramification Theorem (class field
theory) If F is the conductor of the class field
K/k, then it is prime to all unramified prime
divisors forK/k, and F factors as F =∏

℘ F℘ ,
where each F℘ is the ℘-conductor of the local
field K℘/k℘ at some ramified prime ℘. See
conductor, class field.

conformal transformation A mapping of
Riemannian manifolds that preserves angles in
the respective tangent spaces. In classical com-
plex analysis, the same as a holomorphic or an-
alytic function with nonzero derivative.

congruence A form of equivalence relation
of two sets or collections of objects. The term
will have different specific meanings in different
contexts.

congruence zeta function The (complex val-
ued) function ζK(s) =∑ 1

N(A)s
where the sum

is over all integral divisors A of the algebraic
function field K over k(x) where k is a finite
field.

congruent integers With respect to a positive
integer (modulus) m, two integers a and b are
congruent modulo m, written a ≡ b (mod m),
when a − b is divisible by m.

conjugacy class Assume S is a set. A binary
relation R on S is a subset of S × S. The con-
jugacy class determined by an element a ∈ S is
the set of elements b ∈ S so that (a, b) ∈ R. In
case R is reflexive ((a, a) ∈ R for all a ∈ S),
symmetric (if (a, b) ∈ R then (b, a) ∈ R) and
transitive (if (a, b), (b, c) ∈ R then (a, c) ∈ R),
then distinct conjugacy classes are disjoint and
the union of all the conjugacy classes is S.

conjugate (1) Of a complex number z =
a + bi (a, b real), the related complex number
z̄ = a − bi.

(2) Of a group element h, the group element
ghg−1, where g is another element of the group.
See also conjugate radicals.

conjugate complex number For z = x+ iy

a complex number, the complex conjugate of z is
written as z̄ or z∗ and is given by z̄ = x−iy. This
operation preserves multiplication and addition
in the sense that z+ w = z̄+ w̄ and zw = z̄w̄.
A consequence is that, if P is a polynomial with
real coefficients, thenP(z) = P(z̄), so that roots
of P occur in complex conjugate pairs.

conjugate field To the field extension F over
a base field k (within some algebraic closure k̄),
any subfield F ′ of k̄ isomorphic to F . In one
of the fundamental theorems of Galois theory,
it is found that if F is a subfield of a normal
extension E of k, then the conjugate fields of F
inside E are precisely those fields F ′ for which
the Galois groups Gal(E : F) and Gal(E : F ′)
are conjugate subgroups of Gal(E : k).

conjugate ideal To a fractional ideal A of a
number field K/k, the image ideal ϕ(A) of the
conjugate fieldϕ(K)under some k-isomorphism
ϕ : k̄→ k̄.

conjugate radicals Expressions of the form√
a + √b and

√
a − √b. More generally, the

expressions n
√
a − ζ i

n
√
b, i = 0, 1, . . . , n − 1,

where ζ is an nth root of unity, are conjugate
radicals.

conjugate subgroup For a subgroup G′ of
a group G, any of the subgroups gG′g−1 =
{ghg−1 : h ∈ G′}.

conjugation mapping An automorphism of
a group G of the form a �→ gag−1 for some
g ∈ G.

conjugation operator Given a uniform al-
gebra (function algebra) A on some compact
Hausdorff space X with ϕ in the maximal ideal
space of A, and µ a representing measure for
ϕ, the operator that assigns to each continuous
real-valued function u ∈ )A, the continuous
real-valued function ∗u so that u + i ∗ u ∈ A

and
∫ ∗udµ = 0. See function algebra, maxi-

mal ideal space, representing measure.

connected graded module A graded module
M =∑∞

n=0 Mn, over a field k, for which M0 is
isomorphic to k. See graded module.
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connected group An algebraic group which
is irreducible as a variety. See algebraic group,
variety.

connected Lie subgroup A Lie subgroup
which is connected, as a differentiable manifold.

connected sequence of functors A sequence
F i : C → C′ of functors between Abelian cat-
egories for which there exist connecting mor-
phisms

∂∗ : F i(C)→ F i−1(A)

(or
∂∗ : F i(C)→ F i+1(A)) ,

for every exact sequence 0 → A→ B → C →
0 of objects in C that turns

· · · → F i+1(C)
∂∗−→ F i(A) −→ F i(B)

−→ F i(C)
∂∗−→ F i−1(A) −→ · · ·

(respectively,

· · · → F i−1(C)
∂∗−→ F i(A) −→ F i(B)

−→ F i(C)
∂∗−→ F i+1(A) −→ · · · )

into a chain complex, and, whenever

0 −→ A −→ B −→ C −→ 0
↓ f ↓ g ↓ h

0 −→ A′ −→ B′ −→ C′ −→ 0

is a morphism of exact sequences, then

∂∗ ◦ F i(h) = F i−1(f ) ◦ ∂∗
(respectively,

∂∗ ◦ F i(h) = F i+1(f ) ◦ ∂∗) .
See chain complex.

connecting homomorphism The boundary
homomorphism

∂∗ : Hr(K,L;G)→ Hr−1(L;G) ,

connecting the homology groups of the simpli-
cial pair (K,L) with coefficients in the group G
and, dually, the coboundary homomorphism

∂∗ : Hr(L;G)→ Hr+1(K,L;G) ,

connecting the corresponding cohomology
groups.

connecting morphism See connected se-
quence of functors.

consistent equations A set of equations which
have some simultaneous solution.

constant A function F : A → B such that
there is a c ∈ B with F(x) = c, for all x ∈ A.

constant of proportionality The constant
k relating one quantity to others in a relation
of direct, inverse, or joint proportionality. For
example, quantity x is directly proportional to
quantity y if there is a constant k �= 0 such
that x = ky. In this case, the constant k is
the constant of proportionality. See also direct
proportion, inverse proportion, joint proportion.

constant term Given an equation in a vari-
able x, any part of the equation that is inde-
pendent of x is a constant term. If g(x) =
sin(x)+ x2 + 3π , then the constant term is 3π .

constituent A Z-representation of a finite
group G, Z the rational integers.

constituent Let Z denote the rational inte-
gers and Q the rational field. Let T be a Z-
representation of a finite group G. Then T is
called a constituent of the group G.

constructible sheaf A sheaf F on a scheme
X, decomposable into locally closed sub-
schemes so that the restriction of F to each sub-
scheme is locally constant.

continuation method of finding roots A
method for approximating roots of the equation
f (x) = 0 on the closed interval [a, b] by intro-
ducing a parameter t , so that f (x) ≡ g(x, t)|t=b
and so that g(x, a) = 0 is easily solved to ob-
tain x = x0. We partition the interval to give
a = t0 < t1 < · · · < tn = b, then successively
solve g(x, ti) = 0 to obtain x = xi by some
iterative method that begins with the previous
solution x = xi−1.
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continued fraction A number of the form

a0 + 1

a1 + 1

a2 + 1

a3 + . . .

where the ai are real numbers and a1, a2, . . .

are all positive. A continued fraction is simple
if all the ai are integers and finite, as opposed to
infinite, if the sequence of ai is finite. For typo-
graphical convenience, the continued fraction is
often written as [a0; a1, a2, . . . ].

continuous analytic capacity Of a subset A
of C, the measure sup

∣∣f ′(∞)
∣∣ over all contin-

uous functions on the Riemann sphere S2 that
vanish at∞, are analytic outside some compact
subset of A, and have sup norm ‖f ‖ ≤ 1 on S2.

continuous cocycle A matrix that arises as
the derivative of a group action on a manifold.

contragredient representation Of a repre-
sentation ρ of a group G on some vector space
V , the representation ρ∗ of G on the dual space
V ∗ defined by ρ ∗ (g) = ρ(g−1)∗. See repre-
sentation, dual space.

contravariant See functor.

convergent matrix An n× n matrix A such
that every entry of Am converges to 0 as m ap-
proaches ∞. Convergent matrices arise in nu-
merical analysis; for example, in the study of
iterative methods for the solution of linear sys-
tems of equations. It is known that A is conver-
gent if and only if its spectral radius is strictly
less than 1; namely, all eigenvalues of A have
modulus strictly less than 1.

convex hull The smallest convex set contain-
ing a given set. (A set S is convex if, whenever
x, y ∈ S, then the straight line joining x and
y also lies in S.) If E is a vector space and
e1, . . . , ek are elements of E, then the convex
hull of the set {e1, . . . , ek} is the set {∑k

1 cj ej :
cj ≥ 0 and

∑
cj = 1}.

convex programming The theory that deals
with the problem of minimizing a convex func-

tion on a convex set obtained as the solution set
to a family of inequalities.

coordinate ring Of an affine algebraic set X
(over a field k), the quotient ring

k[X] = k[x1, x2, . . . , xn]/I (X)

of the ring of polynomials over k by the ideal of
polynomials that vanish on X.

coproduct Of objects Ai (i ∈ I ) in some
category, the universal object

∐
Ai , with mor-

phismsϕi : Ai →∐
Ai satisfying the condition

that if X is any other object and ψi : Ai → X

are morphisms, there will exist a unique mor-
phism ψ : ∐Ai → X so that ψi = ψ ◦ ϕi . If
the category is Abelian, the coproduct coincides
with the direct sum

∑
Ai .

coradical Of a coalgebra, the sum of its sim-
ple subcoalgebras. See coalgebra, simple co-
algebra.

coregular representation The contragredi-
ent representation of the right regular represen-
tation reciprocal to a given left regular represen-
tation. See contragredient representation.

Corona Theorem If f1, . . . , fn belong to
H∞, the set of bounded analytic functions in
the unit disk D in the complex plane, and if
|f1(z)|+ · · ·+ |fn(z)| ≥ δ > 0 in D, then there
exist g1, . . . , gn ∈ H∞ with

∑
fjgj = 1 in D.

In functional analytic terms, the theorem says
this. H∞ is a vector space under pointwise ad-
dition and scalar multiplication and a Banach
space with the norm ‖f ‖ = sup |f (z)|, for z ∈
D. Further, since the pointwise product of two
bounded functions is bounded it is an algebra
with pointwise multiplication. As a Banach
space, H∞ has a dual space H∞′, which is
the set of all continuous linear mappings from
H∞ into the complex numbers C. A functional
λ ∈ H∞′ may have the added property of being
multiplicative, λ(fg) = λ(f )λ(g). We denote
the set of all such multiplicative linear function-
als by M . For example, if a ∈ D, then the linear
functional λ(f ) = f (a) is in M and is called a
point evaluation. The set H∞′ has a topology
whereby λa converges to λ if, for each f ∈ H∞,
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the numbers λa(f ) converge to λ(f ). M inher-
its this method of convergence from H∞′ and
the Corona Theorem states that the “point eval-
uations” are dense in M in this topology. This
was proved by Carleson.

correspondence ring Of a nonsingular curve
X, the ring C(X) whose objects, called corre-
spondences, are linear equivalence classes of
divisors of the product variety X × X, mod-
ulo the relation that identifies divisors if they
are linearly equivalent to a degenerate divisor.
The addition in this ring is addition of divisors,
and the multiplication is defined by composi-
tion, that is, if C1, C2 are correspondences of X
and x ∈ X, then C1 ◦ C2 is the correspondence
C1(C2(x)) where C(x) is the projection on to
the second component of C(x,X).

cosecant function The reciprocal of the sine
function, denoted csc θ . Hence, csc θ = 1

sin θ .
See sine function.

cosecant of angle The reciprocal of the sine
of the angle. Hence, csc θ = 1

sin θ . See sine of
angle.

cosemisimple coalgebra A coalgebra which
is equal to its coradical. See coalgebra, coradi-
cal.

cosine function One of the fundamental
trigonometric functions, denoted cos x. It is (1)
periodic, satisfying cos(x + 2π) = cos x; (2)
bounded, satisfying −1 ≤ cos x ≤ 1 for all
real x; and (3) intimately related with the sine
function, sin x, satisfying the important identi-
ties cos x = sin(π2 − x), sin2 x + cos2 x = 1,
and many others. It is related to the exponen-

tial function via the identity cos x = eix+e−ix
2

(i = √−1), and has series expansion

cos x = 1− x2

2! +
x4

4! −
x6

6! + · · ·

valid for all real values of x.
See also cosine of angle.

cosine of angle Written cosα, the x-coor-
dinate of the point where the terminal ray of the
angle α whose initial ray lies along the positive
x-axis intersects the unit circle. If 0 < α < π

2 (α

in radians) so that the angle is one of the angles
in a right triangle with adjacent side a, opposite
side b, and hypotenuse c, then cosα = a

c
.

cospecialization Let A and B be sets and
! : A → B a function. Cospecialization is
a process of selecting a subset of B with refer-
ence to subsets of A, using the mapping ! as a
referencing operator.

cotangent function The quotient of the co-
sine and the sine functions. Also the reciprocal
of the tangent function. Hence, cot θ = cos θ

sin θ =
1

tan θ . See sine function, cosine function.

cotangent of angle Written cot α, the x-coor-
dinate of the point where the terminal ray of the
angle α whose initial ray lies along the positive
x-axis intersects the line P with equation y = 1.
If α measures more thanπ radians (= 180◦), the
terminal is taken to extend back to intersect the
line P. If 0 < α < π

2 (α in radians), so that the
angle is one of the angles in a right triangle with
adjacent side a, opposite side b, and hypotenuse
c, then cot α = a

b
.

coterminal angles Directed angles whose
terminal sides agree. (Their initial sides need
not agree.)

cotriple A functor T : C → C on a category
C for which there exist natural transformations
ε : IdC → T , δ : T → T 2, for which the
following diagrams commute:

T (X)
IT (X)←− T (X)

IT (X)−→ T (X)

εT (X) ↘ δX ↓ ↙ T (εX)

T 2(X)

T (X)
δX−→ T 2(X)

δX ↓ ↓ δT (X)

T 2(X)
T (δX)−→ T 3(X)

countable set A set S such that there is a
one-to-one mapping f : S → N from S onto
the set of natural numbers. See also cardinality.

counting numbers The positive integers 1,
2, 3, . . .
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Courant-Fischer (min-max) Theorem Let
A be an n×nHermitian matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn .

Then

λi = max
dim X=i

min
x∈X, x∗x=1

x∗Ax

and

λi = min
dim X=n−i+1

max
x∈X, x∗x=1

x∗Ax .

This theorem was first proved by Fischer for
matrices (1905) and later (1920) it was extended
by Courant to differential operators.

covariant A term describing a type of func-
tor, in constrast with a contravariant functor. A
covariant functor F : C → D assigns to every
object c of the domain categoryC an objectF(c)
of the codomain category D and to every arrow
α : c→ c′ ofC an arrow F(α) : F(c)→ F(c′)
ofD in such a way thatF(idC) = idD , where idC
and idD are the identity arrows of the respective
categories, and that T (β ◦α) = T (β) ◦ T (α) (◦
represents composition of arrows in both cate-
gories) whenever β ◦α is defined in C. See also
contravariant.

covering Of a (nonsingular) algebraic curve
X over the field k, a curve Y for which there
exists a k-rational map Y → X which induces
an inclusion of function fields k(x) ↪→ k(Y )

making k(Y ) separably algebraic over k(X).

covering family A family of morphisms in a
category C which define the Grothendieck topol-
ogy on C.

coversine function The function

covers α = 1− sin α .

Coxeter complex A thin chamber complex in
which, to every pair of adjacent chambers, there
exists a root containing exactly one of the cham-
bers. WhenC ⊂ C′we say thatC is a face ofC′.
Two chambers are adjacent if their intersection
has codimension 1 in each: the codimension of
C in C′ is the number of minimal nonzero faces

of C′ lying in the star complex St(C) of objects
containingC. A root is the image of the complex
under some idempotent endomorphism, called a
folding.

Coxeter diagram A labeled graph whose
nodes are indexed by the generators of a Cox-
eter group which has (Pi, Pj ) as an edge la-
beled by Mij whenever Mij > 2. Here Mij

are elements of the Coxeter matrix. Also called
Coxeter-Dynkin diagrams. These are used to
visualize Coxeter groups.

Coxeter group A group with generators ri ,
i ∈ I , and relations of the form (rirj )

aij = 1,
where all aii = 1 and whenever i �= j , aij > 1
(aij may be infinite, implying no relation be-
tween ri and rj in such a case).

Cramer’s rule Assume we are given n linear
equations in n unknowns. That is, we are given
the linear equations Li(X) = ∑n

j=1 CijXj ,
where the Cij are given numbers, the Xj are
unknowns and i = 1, . . . , n. We are asked
to solve the n equations Li(X) = bj , where
j = 1, . . . , n. One can write these equations in
matricial form AX = B, where A is a square
n × n matrix and X = (X1, . . . , Xn) and B =
(b1, . . . , bn) are vectors in Rn. Cramer gave
a formula for solving these equations provid-
ing the matrix A has an inverse. Let | · | de-
note the determinant of a matrix, which maps a
square matrix to a number. (See determinant.)
The matrix A will have an inverse provided the
number |A| is not zero. So, assuming A has an
inverse (this is also referred to by saying that A
is non-singular), the solution values of Xj are
given as follows. In the matrix A, replace the
ith column of A (that is, the column made up of
Ci1, . . . , Cin) by B. We again obtain a square
matrix Ai and the solution numbers Xi = |Ai ||A| .
If X is the n vector made up of these numbers,
it will solve the system and this is the only so-
lution.

Cremona transformation A birational map
from a projective space over some field to itself.
See birational mapping.

cremona transformation A birational map
of the projective plane to itself.
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criterion of ruled surfaces A theorem of
Nakai, characterizing ample divisors D on a
ruled surface X as those for which the inter-
section numbers of D with itself and with every
irreducible curve in X are all positive. See am-
ple, ruled surface, intersection number.

crossed product Of a commutative ring R

with a commutative monoidG (usually a group)
with respect to a factor set

{
ag,h ∈ R : g, h ∈

G
}
. If G acts on R in such a way that the map-

ping r �→ rg is an automorphism of R, then the
crossed product of R by G with respect to the
factor set is the R-algebra with canonical basis
elements bg for g ∈ G and multiplication law

∑
g∈G

rgbg


(∑

h∈G
shbh

)

=
∑
g,h∈G

ag,hr
g(shgbgh) .

To ensure that this multiplication is associative,
the elements of the factor set must satisfy the
relations ag,hagh,k = a

g
h,kag,hk for all g, h, k ∈

G. Further, if e ∈ G is the identity element,
the unit element of the algebra is be, which also
requires that, in the factor set, ae,g = ag,e equals
the unit element in R for all g ∈ G.

Crout method of factorization A type of
LU -decomposition of a matrix in which L is
lower triangular, U is upper triangular, and U

has 1s on the diagonal.

crystal family A collection of crystallo-
graphic groups whose point groups, @, are all
conjugate in GL3(R) and whose lattice groups
are minimal in their crystal class with respect
to the ordering (Y, @) ≤ (Y′, @′), defined as:
there exists a g ∈ GL3(R) so that (Y′) = g(Y),
@′ = g@g−1 and B(Y) ⊆ B(Y′) where B(Y)

is the Bravais group
{
g ∈ O(3) : (Y) = (Y)

}
.

See crystallographic group, Bravais group.

crystallographic group A discrete group of
motions in Rn containingn linearly independent
translations. See also crystal system.

crystallographic restriction The proper sub-
group H0 of the point group H of a crystallo-

graphic group @ is cyclic of order q, where the
only possible values of q are 1, 2, 3, 4, or 6.

The terms used are defined as follows. The
group @ is a discrete subgroup of the Euclidean
group E(2) = R2 × O(2). Let j : E(2) →
O(2) be the homomorphism (x,A) �→ A. Then
H = j (@) is a subgroup of O(2), called the
point group of @. Let L be the kernel of j , a
discrete subgroup of R2. If the rank of L is 2,
then @ is called a crystallographic group. Then
H0 is H ∩ SO(2).

crystallographic space group A crystallo-
graphic group of motions in Euclidean 3-space.
See crystallographic group.

crystal system A classification of 3-dimen-
sional crystallographic lattice groups. Where
the lattice constants a, b, c represent the lengths
of the three linearly independent generators and
α, β, γ the angles between them, the seven crys-
tal systems are (where x, y are distinct and not
1, and θ �= 90◦):

Name a : b : c (α, β, γ )

cubic 1 : 1 : 1 (90◦, 90◦, 90◦)

tetragonal 1 : 1 : x (90◦, 90◦, 90◦)

rhombic 1 : x : y (90◦, 90◦, 90◦)

monoclinic 1 : x : y (90◦, θ, 90◦)

hexagonal 1 : 1 : x (90◦, 90◦, 120◦)

rhombohedral 1 : 1 : 1 (θ, θ, θ)

triclinic other than above

See crystallographic group.

cube (1) In geometry, a three-dimensional
solid bounded by six square faces which meet
orthogonally in a total of 12 edges and, three
faces at a time, at a total of eight vertices. One
of the five platonic solids.

(2) In arithmetic, referring to the third power
x3 = x · x · x of the number x.
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cube root Of a number x, a number t whose
cube is x: t3 = x. If x is real, it has exactly one
real cube root, which is denoted t = 3√x.

cubic (1) A polynomial of degree 3: p(X) =
a0 + a1X + a2X

2 + a3X
3, where a3 �= 0.

(2) A curve whose analytic representation in
some coordinate system is a polynomial of de-
gree 3 in the coordinate variable.

cubic equation An equation of the formax3+
bx2+cx+d = 0, where a, b, c, d are constants
(and a �= 0).

cup product (1) In a lattice or Boolean alge-
bra, the fundamental operation a∨b, also called
the join or sum of the elements a and b.

(2) In cohomology theory, where Hr(X, Y ;
G) is the cohomology of the pair (X, Y ) with
coefficients in the group G, the operation that
sends the pair (f, g), f ∈ Hr(X, Y ;G1), g ∈
Hs(X,Z;G2), to the image

f ∪ g ∈ Hr+s(X, Y ∪ Z;G3)

of the element f ⊗ g under the map

Hr(X, Y ;G1)⊗Hs(X,Z;G2)

→ Hr+s(X, Y ∪ Z;G3) ,

induced by the diagonal map

0 : (X, Y ∪ Z)→ (X, Y )× (X,Z) .

Cup Product Reduction Theorem A theo-
rem of Eilenberg-MacLane in the theory of co-
homology of groups. Suppose the group G can
be presented as the quotient of the free group F

with relation subgroup H , so that 1 → H →
G → F → 1 is exact. If A is a G-module,
then the induced extension of G given by 1 →
H/[H,H ] → F/[H,H ] → G → 1 is a 2-
cocycle ζ in H 2(G,A). Let K = H/[H,H ].
If ϕ ∈ Hr(G,Hom(K,A)), the cup product
ϕ ∪ ζ ∈ Hr+2(G,A) (which makes use of the
natural map Hom(K,A)⊗K → A) determines
an isomorphism

Hr(G,Hom(K,A)) ∼= Hr+2(G,A) .

cuspidal parabolic subgroup A closed sub-
group G1G2G3 of a connected algebraic group

G which is the product of (i.) a reductive Lie
subgroupG1, stable under the Cartan involution,
(ii.) a vector subgroup G2 whose centralizer in
G is G2G1, and (iii.) a group G3 = exp(

∑Gα)

where G is the Lie algebra of G1Gα =
{
X ∈

G : [H,X] = α(H)X for all H ∈ H}
, where

H is the Lie algebra of G2, α is some functional
on H, and the sum that defines G3 is over all
positive α for which Gα is nonzero.

cycle (1) In graph theory, a graph Cn on ver-
tices v1, v2, . . . , vn whose only edges are be-
tween v1 and v2, v2 and v3, . . . , vn and v1.

(2) In a permutation group Sn, a permutation
with at most one orbit containing more than one
object.

(3) In homology theory, any element in the
kernel of a homomorphism in a homology com-
plex.

cyclic algebra A crossed product algebra of
a cyclic extension field F (over a base field k)
with its (cyclic) Galois group G = 〈g〉 with
respect to a factor set that is determined by a
single nonzero element a of k. The elements
of this algebra are uniquely of the form α0 +
α1b+ · · ·+αn−1b

n−1, where the αi come from
F ,

{
1, b, b2, . . . , bn−1

}
are the formal basis el-

ements of the algebra, and n is the order of G.
The multiplication is determined by the relations
bα = αgb, bibj = bi+j and bn = a.

cyclic determinant A determinant of the
form ∣∣∣∣∣∣∣∣

a0 a1 · · · an−1
an−1 a0 · · · an−2

· · ·
a1 a2 · · · a0

∣∣∣∣∣∣∣∣
,

in which the entries of successive rows are
shifted to the right one position (modulo n).
Also called a circulant.

cyclic group A group, all of whose elements
are powers an (n = 0, 1, . . . ) of a single gen-
erating element a. Such a group is finite if, for
some d, ad equals the identity element. The
group is often denoted 〈a〉.
cyclic representation A unitary representa-
tion ρ of a topological group G, having a cyclic
vector x, i.e., an element x of the representation
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space for which the span of vectors ρ(g)x, as g
runs through G, is dense. See representation.

cyclic subgroup Any subgroupH of a group
G in which all elements of H are powers an

(n = 0, 1, . . . ) of a single element a ∈ H , the
generator of the subgroup.

cyclotomic field Any extension of a field ob-
tained by adjoining roots of unity.

cyclotomic polynomial Any of the polyno-
mials !n(x) whose roots are precisely those
roots of unity of degree exactly n. That is,
!1(x) = x − 1 and, for n > 1,

!n(x) = xn − 1∏
d|n (!d(x))

,

where the product is over the proper divisors d
of n.
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D
Danilevski method of matrix transformation
A method for computing eigenvalues of a matrix
M , involving application of row and column op-
erations that produce the companion matrix of
M .

decimal number system The base 10 po-
sitional system for representing real numbers.
Every real number x has a representation of the
form

dn−1dn−2 · · · d1d0 · d−1d−2 · · · ,
in which the di are the digits of x; d0 and d−1
are separated by the decimal point (.). The digits
of x are determined recursively by the formulas
dn−1 =

⌊
x

10n−1

⌋
and for k > 1,

dn−k =
⌊
x −∑k−1

j=1(dn−j10n−j )
10n−k

⌋
,

where n is the unique integer that satisfies 10n−1

≤ x < 10n and �t� is the floor function (the

greatest integer≤ t). For example, ifx = 238
3

4
,

then n = 3, d2 = 2, d1 = 3, d0 = 8, d−1 =
7, d−2 = 5. The only possible digits are 0, 1, 2,
3, 4, 5, 6, 7, 8, 9. The digit d0 is called the ones
digit, d1 the tens digit, d2 the hundreds digit, d3
the thousands digit, etc.; also, d−1 is the tenths
digit, d−2 the hundredths digit, etc. It can be
shown that, precisely when x is rational, the se-
quence of digits of x eventually repeats. That is,
there is a smallest integerp for which di−p = di
for every i less than some fixed index. Here we
call the string of digits di−1di−2 · · · di−p a re-
peating block and p the period of the represen-
tation of x. In the special case that the repeating
block is the single digit 0, the convention is to
drop all the trailing zeros from the representation
and say that x has a finite or terminating decimal
expansion. Further, it is possible in this case to
give a second, distinct expansion of x: if x has
finite decimal expansion with final nonzero digit

di , then another representation of x can be ob-
tained by replacing di with di − 1 and defining
di−1 = di−2 = · · · = 9. For example, 238.75 =
238.74999· · · .
decomposable operator A bounded linear
operator T , on the separable Hilbert space L2

(�, µ;H) of square-integrable, measurable, H-
valued functions on some measure space (�, µ)
where H is also a Hilbert space, so that for each
measurable ξ(γ ), the function γ �→ T (γ )ξ(γ )

is measurable, and so that, for each ξ ∈ L2(�,

µ;H), T can be represented as the direct inte-
gral

T ξ =
∫
�

⊕T (γ )ξ(γ )dµ(γ ) .

decomposition field Let the ringA be closed
in its quotient field K . Suppose that B is its
integral closure in a finite Galois extension L,
with groupG. Then B is preserved by elements
of G. Let ℘ be a maximal ideal of A and B
a maximal ideal of B that lies above ℘. Now
GB is the subgroup of G consisting of those
elements that preserve B. Observe thatGB acts
in a natural way on the residue class field B/B
and it leaves A/℘ fixed. To any σ ∈ GB, we
can associate an element σ ∈ B/B over A/℘;
the map

σ �−→ σ

thereby induces a homomorphism of GB into
the group of automorphisms of B/B over A/℘.

The fixed field in GB is called the decompo-
sition field of B, and is denoted Ldec.

decomposition field Let the ringA be closed
in its quotient fieldK . Suppose thatB is its inte-
gral closure in a finite Galois extension L, with
group G. Then B is preserved by elements of
G. Let℘ be a maximal ideal ofA and B a maxi-
mal ideal of B that lies above ℘. NowGB is the
subgroup ofG consisting of those elements that
preserve B. Observe that GB acts in a natural
way on the residue class field B/B and it leaves
A/℘ fixed. To any σ ∈ GB we can associate an
element σ ∈ B/B over A/℘; the map

σ �−→ σ

thereby induces a homomorphism ofGB into the
group of automorphisms of B/B over A/℘.
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The fixed field in GB is called the decompo-
sition field of B, and is denoted Ldec

decomposition group Of a prime ideal℘ for
a Galois extension K/k, the stabilizer of ℘ in
Gal(K/k). See stabilizer, Galois group.

decomposition number The multiplicity of
an absolutely irreducible modular representa-
tion of a group G, in the splitting field K (for
which it is the Galois group) as it appears in a
decomposition of one of the irreducible repre-
sentations ofG in some number field for which
K is the residue class field. See absolutely irre-
ducible representation, modular representation.

Dedekind cut One of the original ways of
defining irrational numbers from rational ones.
A Dedekind cut (L,R) is a decomposition of
the rational numbers into two sets L and R such
that (i.) L andR are nonempty and disjoint; (ii.)
if x ∈ L and y ∈ R then x < y; (iii.) L has no
largest element. Thus, a rational number can be
identified with a Dedekind cut (L,R) for which
R has a least member and an irrational number
can be identified with a Dedekind cut (L,R) for
which R has no least element.

Dedekind domain An integral domain which
is Noetherian, integrally closed, and whose
nonzero prime ideals are all maximal. See inte-
gral domain, Noetherian ring, integrally closed.

Dedekind’s Discriminant Theorem Let
F = Q( 3

√
d) be a pure cubic field and let d =

ab2 with ab square-free. If F is of the first
kind, then the discriminant of F is given by
d(F ) = −27(ab)2 and if F is of the second
kind, then d(F ) = −3(ab)2.

Dedekind zeta function Let k be a number
field andOk be the ring of all algebraic integers
in k. If I is a nonzero Ok-ideal, we write N(I)
for the finite index [Ok : I ]. The Dedekind zeta
function is then defined by

ζk(x) =
∑
I

N(I)−x =
∏
J

(
1−N(J )−x)−1

,

where x > 1 and the sum extends over all non-
zero ideals of Ok , while the product runs over
all nonzero prime ideals of Ok .

defect If k is a field which is complete under
an arbitrary valuation, and if E is a finite exten-
sion of degree n, with ramification e and residue
class degree f , then ef divides n: n = ef δ, and
δ is called the defect of the extension.

defective equation An equation, derived
from another equation, which has fewer roots
than the original equation. For example, if x2+
x = 0 is divided by x, the resulting equation
x + 1 = 0 is defective because the root 0 was
lost in the process of division by x.

defective number A positive integer which
is greater than the sum of all its factors (except
itself). For example, the number 10 is defective,
since the sum of its factors (except itself) is 1+
2+ 5 = 8.

If a positive integer is equal to the sum of
all its factors (except itself), then it is called a
perfect number. If the number is less than the
sum of its factors (except itself), then it is called
abundant.

deficiency Let R �→ F �→ G be a free pre-
sentation of a group G. Let {xk} be a set of
generators of F and {rk} be a set of elements
of F generating R as a normal subgroup. Then
the data P = ({xk}, {rk}) is called a group pre-
sentation of G, xk are called generators, and rk
are called relators. The group presentation P is
called finite if both {xk} and {rk} are finite. A
group G is finitely presentable if there exists a
finite group presentation for G.

The deficiency of a finite group presentation
P is the integer

def(P ) = #{generators} − #{relators} .

The deficiency of a finitely presentable groupG,
denoted def(G), is the maximum deficiency of
finite group presentations for G.

defining relation A defining relation for a
quantity or property τ is an equation or property
that uniquely determines τ .

definite Hermitian form Let H be a (com-
plex) Hilbert space. A Hermitian form is a func-
tion f : H ×H → C, such that f (x, y) is lin-
ear in x, and conjugate linear in y, and f (x, x)
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is real. A Hermitian form f is called posi-
tive definite [resp., nonnegative definite, nega-
tive definite, nonpositive definite] if, for x �= 0,
f (x, x) > 0 [resp., ≥ 0, < 0,≤ 0].

definite quadratic form LetE be a finite di-
mensional vector space over the complex num-
bers C . Let L be a symmetric bilinear form on
E. (See bilinear form, symmetric form.) The
quadratic form associated with L is the func-
tion Q(x) = L(x, x). If Q(x) > 0, [resp.,
Q(x) ≥ 0, < 0,≤ 0] the form is called posi-
tive definite [resp., nonnegative definite, nega-
tive definite, nonpositive definite]. As an im-
portant application, assume F(x, y) is a smooth
function of two real variables x and y. Let f be
the quadratic part of the Taylor expansion of F

f (x, y) = ax2 + 2bxy + cy2 ,

where a, b, and c are determined as the appro-
priate second partial derivatives of F , evaluated
at a given point. Questions involving the mini-
mum points of F can be solved by considering
the two by two matrix

A =

 a b

c d


 ,

with its determinant and the upper left one by
one determinant a both positive. In this case we
are considering

(x, y)A
[
x
y

]
= f (x, y) .

deflation A process of finding other eigenval-
ues of a matrix when one eigenvalue and eigen-
vector are known. More specifically, if A is an
n × n matrix with eigenvalues λ1, . . . , λn, and
Av = λ1v, with v a nonzero (column) vector,
then, for any other vector u, the eigenvalues of
the matrix B = A− vuT are

λ1 − uT v, λ2, . . . , λn .

By choosing uT to be a multiple of the first row
of A and scaled so that uT v = λ1, the first row
of B becomes identically zero.

deformation A deformation is a transfor-
mation which shrinks, twists, expands, etc. in

any way without tearing. Additional conditions,
such as continuity, are usually attached to a de-
formation. Thus, one can talk about a continu-
ous deformation, or smooth deformation, etc.

degenerate A term found in numerous sub-
jects in mathematics. For example, in algebraic
geometry, when considering the homogeneous
bar resolutions of Abelian groups, one uses sub-
groups generated by (n+1)-tuples (y0, y1, . . . ,
yn) with yi = yi+1 for at least one value of i;
such an (n+ 1)-tuple is called degenerate.

degree of divisor If a polynomial p(x) is
factored as follows:

p(x) = a0 (x − x1)
n1 · · · (x − xk)nk ,

where x1, . . . , xk are distinct. Then each x− xi
is called a divisor and the corresponding ni is
called the degree of the divisor.

degree of equation In a polynomial equa-
tion, the highest power is called the degree of
equation. In a differential equation, the highest
order of differentiation is called the degree of
equation.

degree of polynomial A polynomial is an
expression of the form

p(x) = a0 + a1x + · · · + anxn, an �= 0 .

The integer n is called the degree of polynomial
p(x).

degree of polynomial term See degree of
polynomial.

De Moivre’s formula See De Moivre’s The-
orem.

De Moivre’s Theorem For any integer n and
any angle θ the complex equation (De Moivre’s
formula)

(cos θ + i sin θ)n = cos(nθ)+ i sin(nθ)

holds.

denominator The quantity B, in the fraction
A
B

(A is called the numerator).
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density Weight per unit (volume, area, length,
etc.).

dependent variable In a function y = f (x),
x is called the independent variable and y the
dependent variable.

derivation A map D : A → M , from a
commutative ring A to an A-module M such
that

D(a + b) = D(a)+D(b)
and

D(ab) = aD(b)+ bD(a)
for all a and b in A.

derivation of equation A proof of an equa-
tion, by modifying a known identity, using cer-
tain rules.

derivative If a function y = f (x) is defined
on a real interval (a, b), containing the point x0,
then the limit

lim
x→x0

f (x)− f (x0)

x − x0
,

if it exists, is called the derivative of f at x0 and
may be denoted by

f ′ (x0) ,
df

dx
(x0) ,Dxf (x0) , fx (x0) , etc .

If the function y = f (x) has a derivative at
every point of (a, b), then the derivative function
f ′(x) is sometimes simply called the derivative
of f .

derived equation See derivation of equation.

derived functor If T is a functor then its
left-derived functors are defined inductively as
follows: Let T0 = T . If Sn is any connected
sequence of (additive) functors, then each natu-
ral transformation S0

.→ T0 extends to a unique
morphism {Sn : n ≥ 0} → {Tn : n ≥ 0} of con-
nected sequences of functors. The right derived
functors are defined similarly.

derived series Given a Lie algebra G, we
define its derived seriesG0,G1, . . . , inductively
by G0 = G, Gn+1 = [Gn,Gn], n ≥ 0, where,
for any subsets S and T ofG, [S, T ] denotes the

Lie subalgebra generated by all [s, t] for s ∈ S
and t ∈ T .

Descartes’s Rule of Signs A rule setting an
upper bound to the number of positive or nega-
tive zeros of a function. For example, the pos-
itive zeros of the function f (x) cannot exceed
the number of changes of sign in f (x).

descending central series The series of nor-
mal subgroups

G = N0 ⊇ N1 ⊇ N2 ⊇ · · · ,
of a group G, defined recursively by: N0 = G,
Ni+1 = [G,Ni], where

[G,Ni] =
{
x−1y−1xy : x ∈ G, y ∈ Ni

}
is a commutator subgroup. See also commutator
subgroup.

descending chain of subgroups A (finite or
infinite) sequence {Gi} of subgroups of a group
G, such that eachGi+1 is a subgroup ofGi . See
also subgroup.

determinant A number, defined for every
square matrix, which encapsulates information
about the matrix. Common notation for the de-
terminant of A is detA and |A|. For a 1 × 1
matrix, the determinant is the unique entry in
the matrix. For a 2 × 2 matrix,(

a11 a12
a21 a22

)

the determinant is a11a22− a12a21. For a larger
n×nmatrixA, the determinant is defined recur-
sively, as follows: LetAi,j be the (n−1)×(n−1)
matrix created from A by removing the ith row
and the j th column. Then

detA =
n∑
i=1

(−1)i+j aij detAi,j

This sum can be computed, and is the same, for
any choice of j between 1 and n.

determinant factor IfA is a matrix with ele-
ments in a principal ideal ring (for example, the
integers or a polynomial ring over a field), then
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the determinant factors of A are the numbers
d1, . . . , dr where di is the greatest common di-
visor of all minors of A of degree i and r is the
rank of A.

determinant of coefficients The determi-
nant of coefficients of a set of n linear equations

a11x1 + · · · + a1nxn = b1

...
...

an1x1 + · · · + annxn = bn

in n unknowns over a commutative ring R is
denoted by

det



a11 · · · a1n
...

. . .
...

an1 · · · ann


 ,

or by ∣∣∣∣∣∣∣
a11 · · · a1n
...

. . .
...

an1 · · · ann

∣∣∣∣∣∣∣ .
Its value is

∑
P (sgnP)a1p1 · · · anpn , where the

sum is over all permutations P = (p1, . . . , pn)

of 1, 2, . . . , n. Usually,R is the real or the com-
plex numbers. The set of equations is uniquely
solvable if and only if the determinant of the
coefficients is nonzero.

diagonalizable linear transformation A lin-
ear transformation from a vector space V into
another vector space W which can be repre-
sented by a diagonal matrix (with respect to
some choice of bases for V andW ). See diago-
nal matrix. See also diagonalizable operator.

diagonalizable operator A linear transfor-
mation of a vector space V into itself which can
be represented by a diagonal matrix with respect
to some basis of V . An operator is diagonaliz-
able if and only if there is a basis for V made
up entirely of eigenvectors of the operator. See
also Jordan normal form.

diagonally dominant matrix An n× n ma-
trix A = (aij ) with entries from the complex
field is called row diagonally dominant if

|aii | ≥
∑
k �=i

|aik|

for each i ∈ {1, 2, . . . , n}. When the inequality
above holds strictly for every i ∈ {1, 2, . . . , n},
we say that A is strictly row diagonally domi-
nant. Similarly, we can define diagonal domi-
nance with respect to the sums of the moduli of
the off-diagonal entries in each column.

diagonal matrix An n×nmatrix (aij )where
aij = 0 if i �= j .

diagonal sum The sum of the diagonal en-
tries of a square matrixA, which also equals the
sum of the eigenvalues of A. If the entries in
A are complex and the diagonal sum is positive
(negative), then at least one of the eigenvalues
of A has a positive (negative) real part. Also
called spur or trace.

difference The (set theoretical) difference of
two sets A and B is defined by:

A\B = {x : x ∈ A and x /∈ B} .
The (algebraic) difference of subsets A and B
of a group G is defined by:

A−B = {x ∈ G : x = a−b, a ∈ A, b ∈ B} .

difference equation An equation of the form

xn+1 = F (xn, xn−1, . . . , x0) ,

which defines a sequence of numbers, provided
that initial values (e.g., x0) are given. Difference
equations are the discrete analog of differential
equations. The difference equation known as
the logistic equation, xn+1 = axn(1 − xn), a
constant, is one of the original examples of a
system that exhibits chaotic behavior.

difference group The quotient group of an
additive group G by a subgroup H (written as
G − H ). For example, the additive group of
integers has the even integers as a subgroup, and
the difference group is the mod2 group {0, 1}.
See quotient group.

difference of like powers The factorization:

an − bn = (a − b)
(
an−1 + an−2b

+ an−3b2 + · · · + abn−2 + bn−1
)
.
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difference of the nth order If y(x) is a func-
tion of a real variablex and9x is a fixed number,
then the first order difference 9y(x) is defined
by9y(x) = y(x +9x)− y(x). Scaling9x to
1, the difference of the nth order is defined by

9ny(x) = 9
(
9n−1y(x)

)

=
n∑
k=0

(−1)n−k
(
n

k

)
y(x + k) .

difference of two squares The factorization:
a2 − b2 = (a − b)(a + b). See also difference
of like powers.

difference product The polynomial defined
over an integral domain by p(x1, . . . , xn) =∏
i<j (xi − xj ). Also called simplest alternat-

ing polynomial in x1, . . . , xn. The difference
product p is invariant with respect to even per-
mutations of x1, . . . , xn and becomes −p with
respect to an odd permutation. If the characteris-
tic of the integral domain is different from 2 and
q is any alternating polynomial in x1, . . . , xn,
then q = ps, where s is symmetric.

different Suppose thatK is an algebraic num-
ber field and Q denotes the rational subfield of
the complex number field. LetM = {A ∈ K :
trace(A;) ⊂ θ , where ; and θ are the prin-
cipal orders of K and Q, respectively}. Then
the different DK/Q of K isM−1. See algebraic
number field, principal order.

differential automorphism An automor-
phism A of a differential field F such that A
commutes with each derivation of F and leaves
the ground field fixed. Kolchin has determined
the structure of the group of differential auto-
morphisms. See differential field.

differential extension ring If R is a differ-
ential ring and S is a differential subring of R,
then R is a differential extension ring of S. For
example, the differential ring of all real-valued
differentiable functions on the real line is an ex-
tension of the subring of polynomials. See dif-
ferential ring, differential subring.

differential field A differential ring which
also forms a field. See differential ring.

differential form of the first kind Suppose
that � is a nonsingular curve and that ω is a
differential form on�. If (ω) is a positive divisor
of the free Abelian group generated by points of
�, then ω is a differential form of the first kind
(or a regular 1-form). If, for any point P of �,
there is a rational function fP such that ω−dfP
is a regular 1-form, then ω is a differential form
of the second kind. If ω has nonzero residues,
then it is a differential form of the third kind.

differential form of the second kind See
differential form of the first kind.

differential form of the third kind See dif-
ferential form of the first kind.

differential ideal Suppose that R is a differ-
ential ring with derivations D1, . . . , Dk . Then
an ideal a of R is a differential ideal ifDia ⊂ a
for all i. See differential ring.

differential index Suppose that �1 and �2
are nonsingular curves, that π : �1 → �2 is
singular, and that t1 and t2 are local parameters
at P on �1 and Q = π(P ) on �2, respectively.
The differential index at P is the nonnegative
integer vP (ds/dt), where vP is the valuation at
P .

differential polynomial Suppose that X1,

. . . , Xr belong to a field which is a differential
extension (ring) of a differential field K , with
derivations D1, . . . , Dk . Then X1, . . . , Xr are
differential variables. If s1, . . . , sk are nonneg-
ative integers andD(s1)1 · · ·D(sk)k Xi are algebra-
ically independent overK , then a polynomial in
these elements is a differential polynomial.

differential representation Suppose that U
is a unitary representation of a Lie groupGwith
Lie algebra g, that X ∈ g and that x is an an-
alytic vector with respect to U . Suppose that
V (X)x is the derivative at t = 0 of Uexp tX(x).
Then the linear mapping V : X→ V (X) is the
differential representation of U .

differential ring A commutative ringR, with
unit, together with a finite number of commuting
derivations on R. (A derivation on R is a map-
pingD : R→ R such thatD(x+y) = Dx+Dy
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andD(xy) = Dx ·y+x ·Dy, for x, y ∈ R.) The
ring of all real-valued differentiable functions of
a real variable is a differential ring.

differential subring IfR is a differential ring
with derivations D1, . . . , Dk , then a subring of
S of R is a differential subring if DiS ⊂ S for
all i. See differential ring.

differential variable See differential poly-
nomial.

differentiation (1) In a chain complex, a
map, usually denoted dn or δn, from one module
to the next. An example of a differentiation is
the boundary operator encountered in the study
of simplicial complexes. See also chain com-
plex, boundary operator.

(2) Of a function f (x) of a real variable, at a
real number x = a, the limit

f ′(a) = lim
h→0

f (a + h)− f (a)
h

.

Many generalizations to other topological spaces
exist.

digit A symbol in a number system. For
example, in the binary number system, the only
digits that are used are 0 and 1. See also duodec-
imal number system.

dihedral group An algebraic groupDn, gen-
erated by two elements: a, which is a rotation
of the Euclidean plane about the origin through
angle of 2π

n
, and b, which is reflection through

the y-axis. Dn is the group of symmetries of the
regular n-gon, and has order 2n.

dimension The number of vectors in the ba-
sis of a vector space V . If the basis is finite,
then V is called finite dimensional. In this case,
if V is a vector space of dimension n over the
real numbers R, then it is isomorphic to the Eu-
clidean space Rn. If the basis is infinite, then V
is called infinite dimensional. See also basis.

Diophantine equation An equation in which
solutions are restricted to the integers.

direct decomposition A group G has a di-
rect decomposition G = H1 × H2 × · · · × Hn

if each Hi is a normal subgroup of G, G =
H1H2 . . . Hn, and H1 . . . Hi−1 ∩Hi = {e}, i =
2, . . . , n.

directed set A set X equipped with a partial
ordering and such that if x, y ∈ X then there
exists z ∈ X such that x ≤ z and y ≤ z.
direct factor Either H or K , in the direct
product H ×K or H ⊗K . See direct product.

direct integral See integral direct sum.

direct limit Suppose {Gµ}µ∈I is an indexed
family of Abelian groups, where I is a directed
set. Suppose that there is also a family of ho-
momorphisms ϕµν : Gµ → Gν , defined for all
µ < ν, such that: ϕµµ : Gµ → Gµ is the iden-
tity, and if µ < ν < κ then ϕνκ ◦ ϕµν = ϕµκ .
Consider the disjoint union of the groups Gµ
and form an equivalence relation by xµ ∼ xν ,
xµ ∈ Gµ and xν ∈ Gν , if for some upper bound
κ ofµ and ν we have ϕµκ(xµ) = ϕνκ(xν). Then
the direct limit is defined to be the set of equiv-
alence classes and is denoted by

lim→ µ∈I
Gµ .

See also directed set.

direct product (1) A group G is called the
internal direct product of subgroups H and K
if the following three conditions hold: H and
K are normal subgroups of G, H ∩K contains
only the identity element, and G = HK . This
internal direct product is denoted H ×K .

(2) If H and K are any two groups, then the
external direct product of H and K , denoted
H ⊗ K , is the Cartesian product: {(h, k) : h ∈
H, k ∈ K}. H⊗K is a group, defining multipli-
cation componentwise, i.e., (h1, k1) · (h2, k2) =
(h1 · h2, k1 · k2). See also internal product, ex-
ternal product.

direct proportion Quantity x is directly pro-
portional to quantity y, or varies directly as y,
if there is a constant k �= 0 such that x = ky.
(k is called the constant of proportionality.) See
also inverse proportion, joint proportion.

direct sum (1) In the case where V1, V2, . . . ,
Vn are all vector spaces over the same field F ,
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one can define the direct sum V to be a vector
space made up of n-tuples of the form (v1, v2,

. . . , vn), where vi ∈ Vi . The common notation
for this direct sum is:

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn .

(2) In the case where V1, V2, . . . , Vn are all
vector subspaces of the same vector space W ,
and Vi⊥Vj if i �= j , we can define the direct
sum V to be a vector space made up of sums of
the form: v1 + v2 + · · · + vn where vi ∈ Vi .
The same notation is used as above. See also
orthogonal subset.

(3) In the case whereH1,H2, . . . ,Hn are all
subgroups of the same Abelian groupG, we can
define the direct sum H to be a subgroup of G
made up of sums of the form: h1+h2+· · ·+hn
where hi ∈ Hi , provided that each x ∈ H has
a unique representation as the sum of elements
from the subgroups {Hi}. The same notation is
used as above.

(4) If A is a k × l matrix and B is an m× n
matrix, then the direct sum of A and B is the
(k +m)× (l + n) partitioned matrix

(
A 0
0 B

)
.

direct trigonometric functions The usual
trigonometric functions (sine, cosine, tangent,
etc.) as opposed to the inverse trigonometric
functions.

direct variation See direct proportion.

Dirichlet algebra A closed subalgebra A of
the continuous complex-valued functions C(X)
on a compact Hausdorff space X such that (i.)
A contains the constant functions, (ii.) A sep-
arates points of X, and (iii.) { (f ), f ∈ A} is
dense inCR(X), the space of all real-valued and
continuous functions on X.

Dirichlet L-function The function L(s), de-
fined by

L(s) =
∞∑
n=1

χ(n)/ns ,

where χ is a character of the group of classes
coprime to some positive integer m and

χ(n) =
{χ((n)) if (n,m)=1

0 if (n,m)�=1 ,

where (n) is the residue class of n(mod m).
The function L(s) converges absolutely for
 (s) > 1, and is used widely in the study of
rational number fields and of quadratic and cy-
clotomic number fields. See also L-function.

Dirichlet Unit Theorem Suppose that k is
an extension field (of first degree) of the rational
subfield Q of the complex number field. Then
the group of units of k is the direct product of
a cyclic group and a free Abelian multiplicative
group.

discrete filtration A finite collection{
F 1, . . . , F n

}
of submodules of a module A

such that F i ⊃ F i+1 and Fn = 0.

discrete series Suppose that G is a con-
nected, semisimple Lie group, with a square in-
tegrable representation. The set of all square
integrable representations of G is the discrete
series of the irreducible unitary representations
of G.

discrete valuation A non-Archimedean val-
uation v is discrete if the valuation ideal of v is
a nonzero principal ideal. In this case the valu-
ation ring for v is also said to be discrete.

discrete valuation ring See discrete valua-
tion.

discriminant (1) For the quadratic equation
ax2+bx+c = 0, the number9 = b2−4ac. If
9 > 0, then the equation has two real-valued
solutions. If 9 < 0, then the equation has
two complex-valued solutions which are com-
plex conjugates. If 9 = 0, then the equation
has a double root which is real valued.

(2) For the conic sectionAx2+Bxy+Cy2+
Dx+Ey+F = 0, the number9 = B2−4AC.
If 9 > 0, then the conic section is a hyperbola.
If 9 < 0, then the conic section is an ellipse.
If 9 = 0, then the conic section is a parabola.
The discriminant is invariant under rotation of
the axes.
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discriminant of equation See discriminant.

disjoint unitary representations A pair, U1
and U2, of unitary representations of a group
such that no subrepresentation of one is equiva-
lent to a subrepresentation of the other.

disjunctive programming In mathematical
programming, the task is to find an extreme value
of a given function f , which maps a set A into
an ordered set R. Usually A is a closed subset
of a Euclidean space and (usually) A is defined
by a collection of inequalities or equalities. In
disjunctive programming, the set A is not con-
nected.

distributive algebra A linear space A, over
a field K , such that there is a bilinear mapping
(or multiplication)A×A→ A. If the multipli-
cation does not satisfy the associative law, the
algebra is nonassociative.

distributive law A law from algebra that
states that if a, b, and c belong to a set with
two binary operations+ and ·, then it is true that
a·(b+c) = a·b+a·c and (b+c)·a = b·a+c·a.

dividend The quantity a in the division al-
gorithm. It is a quantity which is to be divided
by another quantity; that is, the number a in a

b
.

See division algorithm.

divisibility relation Suppose that a, b, and
c lie in a ring R and that a = bc. Then we
say that b divides a (written b|a), and call this a
divisibility relation where b is a divisor or factor
of a.

divisible An integer a is divisible by an inte-
ger b if there exists another integer k such that
a = bk.

divisible group An Abelian groupG (under
the operation of addition) such that, for every
g ∈ G and every n ∈ N, there exists x ∈ G
such that g = nx. In other words, each element
in G is divisible by every natural number. An
example of a divisible group is the factor group
G/T , where T is the torsion subgroup ofG. See
torsion group.

division (1) Finding the quotient q and the
remainder r in the division algorithm. See divi-
sion algorithm.

(2) A binary operation which is the inverse of
the multiplication operation. See also quotient.

division algebra An algebra such that every
nonzero element has a multiplicative inverse.

division algorithm Given two integers a and
b, not both equal to zero, there exist unique
integers q and r such that a = qb + r and
0 ≤ r < |q|. q is called the quotient and r
is called the remainder. Also called Euclidian
Algorithm.

The division algorithm is used in the develop-
ment of a number of ideas in elementary num-
ber theory, including greatest common divisor
and congruence. There are other situations in
which a division algorithm holds. See greatest
common divisor, congruence, division of poly-
nomials, Gaussian integer.

division by logarithms To compute x
y

, first
compute c = logb x − logb y. Then x

y
= bc.

This can be an aid to computation, when a table
of logarithms to the base b is available. See also
logarithm.

division by zero For any real number x, x0 is
not defined.

division of complex numbers For real num-
bers a, b, c, and d

a + bi
c + di =

ac + bd
c2 + d2

+ bc − ad
c2 + d2

i

This formula comes from multiplying the nu-
merator and denominator of the original expres-
sion by c − di.

division of polynomials If polynomialsf (x)
and g(x) belong to the polynomial ring F [x],
and the degree of g(x) is at least 1, then there
exist unique polynomials q(x) and r(x) in F [x]
such that

f (x) = q(x)g(x)+ r(x)
where r(x) ≡ 0 or the degree of r(x) is less than
the degree of q(x). The process is sometimes
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called synthetic division. See also division al-
gorithm, degree of polynomial.

division of whole numbers See division al-
gorithm. See also divisible.

divisor (1) The quantity b in the division
algorithm. See division algorithm.

(2) For an integer a, the integer d is called a
divisor of a if there is another integer b so that
a = bd. Colloquially, d is a divisor of a if d
“evenly divides” a.

divisor class An element of the factor group
of the group of divisors on a Riemann surface
by the subgroup of meromorphic functions. The
factor group is called the divisor class group.

divisor class group If X is a smooth alge-
braic variety, then the divisor class group is the
free Abelian group on the irreducible codimen-
sion one subvarieties of X (these are called “di-
visors”), modulo divisors of the form (f ) =
(f )0 − (f )∞, for all rational (or meromorphic)
functions f on X; here (f )0 is the divisor of
zeros and (f )∞ is the divisor of poles.

IfX is not smooth, “divisor” in “divisor class
group” means Cartier divisor, i.e., a divisor which
is locally given by one equation; that is to say,
one which is locally of the form (f ) for a rational
function f on X.

Divisor class groups also exist in commuta-
tive algebra, and in geometry for singular germs.

See divisor class.

divisor of set Let X be a non-singular vari-
ety defined over an algebraically closed field k.
A closed irreducible subvariety Y ⊆ X having
codimension 1 is called a prime divisor. An ele-
ment of the free Abelian group generated by the
set of prime divisors is called a divisor on X.

domain The domain of a function is the set
on which the function is defined. For example,
the function f (x) = sin x has domain R since
the sine of every real number is defined, while
the domain of the function f (x) = √

x is the
non-negative real numbers. See also integral
domain, unique factorization domain, range.

Doolittle method of factorization An “LU -
factorization” method for a square matrix A.
The method concerns factoringA into the prod-
uct of two square matrices: L is a lower triangu-
lar matrix and U is an upper triangular matrix.
All of the diagonal elements of L are required
to be 1. Explicit formulas can then be created
for the rest of the entries in L and U . See also
Gaussian elimination.

double chain complex A double complex
of chains B over � is an object in MZ×Z

� , to-
gether with two endomorphisms ∂ ′ : B → B
and ∂ ′′ : B → B of degree (−1, 0) and (0,−1),
respectively, called the differentials, such that

∂ ′∂ ′ = 0, ∂ ′′∂ ′′ = 0, ∂ ′′∂ ′ + ∂ ′∂ ′′ = 0 .

In other words, we are given a bigraded family
of�-modules {Bpq}, p, q ∈ Z, and two families
of �-module homomorphisms

{
∂ ′pq : Bpq → Bp−1q

}
,

{
∂ ′′pq : Bpq → Bpq−1

}
,

such that the earlier three equations involving
the operators ∂ ′ and ∂ ′′ hold.

double invariance Let� be a dense subgroup
of the additive group R of real numbers, with the
discrete topology. LetG be the character group
of �. Any element a ∈ �, as a character of G,
defines a continuous function χa onG. Let σ be
the Haar measure ofG. A closed subspaceM of
L2(σ ) is called invariant if χaM ⊆ M , for all
a ∈ � with a ≥ 0. M is called doubly invariant
if χaM ⊆ M for all a ∈ �. Such invariance is
called double invariance.

Douglas algebra Let L∞ be the space of
bounded functions on the unit circle and H∞
be the subspace of L∞ consisting of functions
whose harmonic extension to the unit disk is
bounded and analytic. An inner function is a
function in H∞ whose modulus is 1 almost ev-
erywhere. A Douglas algebra is a subalgebra
of L∞ generated by H∞ and the conjugates
of finitely many inner functions (in the uniform
topology).

A theorem of Chang and Marshall asserts that
every uniform algebra A, withH∞ ⊂ A ⊂ L∞
is a Douglas algebra.
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downhill method of finding roots To find
the real roots of

f (x, y) = 0, g(x, y) = 0 ,

find points (a, b) where φ = f + g has its ex-
treme values. In the downhill method the co-
ordinates of (a, b) are approximated by choos-
ing an estimate (x0, y0), selecting a value for h,
evaluating φ at the nine points xj = x0 + ε1h,
yk = y0 + ε2h where εi = −1, 0, 1, and con-
structing the quadratic surface, φ1 = a0+a1x+
a2y+a3(3x2−2)+a4(3y2−2)+a5xy, where
the values of the coefficients aj are calculated
by applying the method of least squares and us-
ing the values of φ1 at the nine points (xj , yk).
Then replace the 0th approximation (x0, y0) to
(a, b) by the center (x1, y1) of the quadratic sur-
face defined by φ1. The process is repeated with
smaller and smaller values of h.

Drazin inverse See generalized inverse.

dual algebra Suppose that (A,µ, η) is an
algebra over a field k (with multiplicationµ and
unit mapping η), and (C,9, ε) is a coalgebra of
(A,µ, η). Then (C∗, µ, η) is the dual algebra
of (C,9, ε) if C∗ is the dual space of C and
µ, η and 9, ε are correspondingly dual.

dual coalgebra Suppose that (A,µ, η) is an
algebra over a field k and thatA◦ is the collection
of elements of the dual space A∗ whose kernels
each contain an ideal I where A/I is finite di-
mensional. Then (A◦,9, ε), where9 and ε are
induced dually by µ and η, respectively, is the
dual coalgebra.

dual curve Suppose that � is an irreducible
plane curve of degree m ≥ 1 in a projective
plane. The dual curve �̂ in the dual projective
plane is the closure of the set of tangent lines to
� at its nonsingular points. The dual of �̂ is �.

dual graded module SupposeA = ∑
n≤0 An

is a graded module over a field k. If A∗n is the
dual of the module An, then A∗ = ∑

A∗n is the
dual graded module of A.

dual homomorphism A mapping φ : L1 →
L2, of one lattice to another, such thatφ(x∩y) =
φ(x) ∪ φ(y) and φ(x ∪ y) = φ(x) ∩ φ(y).

dual Hopf algebra Suppose that (A, φ,ψ)
is a graded Hopf algebra. Then (A∗, φ∗, ψ∗) is
also a graded Hopf algebra which is called the
dual Hopf algebra. See graded Hopf algebra.

duality If X is a normed complex vector
space, then the set of all bounded linear func-
tionals on X is called the dual of X and is usu-
ally denoted X∗. The dual space can be de-
fined for many other classes of spaces, includ-
ing topological vector spaces, Banach spaces,
and Hilbert spaces. An identification of the dual
space is usually referred to as duality. For ex-
ample, the duality of Lp spaces, where Lp∗ =
Lq, p−1 + q−1 = 1, 1 ≤ p <∞.

duality principle in projective geometry
Suppose that Pn is a finite dimensional projec-
tive geometry of dimension n. Suppose that T
is a proposition in Pn and Pn−r−1 (0 ≤ r ≤ n)
and that “contains” and “contained in” are re-
versed, in the statement of T , obtaining in this
way a new statement T̂ , called the dual of T .
Then T is true if and only if T̂ is true.

Duality Theorem A theorem in the study
of linear programming. The Duality Theorem
states that the minimum value of c1x1+ c2x2 +
· · ·+cnxn in the original problem is equal to the
maximum value of b1y1 + b2y2 + · · · + bmym
in the dual problem, provided an optimal solu-
tion exists. If an optimal solution does not exist,
then there are two possibilities: either both fea-
sible sets are empty, or else one is empty and
the other is unbounded. See dual linear pro-
gramming problem.

dual linear programming problem (1) An-
other linear programming problem which is in-
timately related to a given one. Consider the
linear programming problem: minimize c1x1+
c2x2 + · · · + cnxn, where all xi ≥ 0 and subject
to the system of constraints:

a11x1 + a12x2 + · · · + a1nxn ≥ b1
a21x1 + a22x2 + · · · + a2nxn ≥ b2

...

am1x1 + am2x2 + · · · + amnxn ≥ bm .

The following linear programming problem is
known as the dual problem: maximize b1y1 +
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b2y2+· · ·+bmym where all yi ≥ 0 and subject
to the system of constraints:

a11y1 + a21y2 + · · · + am1ym ≤ c1
a12y1 + a22y2 + · · · + am2ym ≤ c2

...

a1ny1 + a2ny2 + · · · + amnym ≤ cn .

The Duality Theorem describes the relation be-
tween the optimal solution of the two problems.
See Duality Theorem.

(2) The definition above may also be stated
in matrix notation. If (c is an 1 × n vector, (b is
a m× 1 vector, and A is an m× n matrix, then
the original linear programming problem above
can be stated as follows: Find the n × 1 vector
(x which minimizes (c(x, subject to (x ≥ 0 and
A(x ≥ (b. The dual problem is to maximize (y (b,
subject to (y ≥ 0 and (yA ≤ c.

(3) The dual of a dual problem is the original
problem.

dual module For a module M over an ar-
bitrary ring R, the module denoted M∗, equal
to the set of all module homomorphisms (also
called linear functionals) from M to R. This
dual module is also denoted HomR(M,R) and
is, itself, a module. See also homomorphism,
linear function.

dual quadratic programming problem
Suppose that P is the quadratic programming
problem:

maximize z = cT x − (1/2)xT Dx ,
subject to the constraints Ax ≤ b, x ≥ 0, x in
Rn.

Then the dual quadratic programming prob-
lem PD is:

minimize w = bT y + (1/2)xT Dx ,
subject to the constraints AT y + Dx ≥ c, all
components xi ≥ 0, yi ≥ 0.

It can be shown that if x∗ solves P, then PD
has solution x∗, y∗, and max z = max w.

dual representation Let π : G → GL(V )
be a representation of the group G in the linear
space V . Then the dual representation π∨ :
G→ GL(V ∗π ) is given by π∨(g) = π(g−1)∗.

dual space (1) For a vector space V over a
field F , the vector space V ∗, equal to the set of
all linear functions from V to F . V ∗ is called
the algebraic dual space.

(2) In the case where H is a normed vector
space over a field F , the continuous dual space
H ∗ is the set of all bounded linear functions from
H to F . By bounded, we mean that each linear
function f satisfies

sup
x �=0
x∈H

|f (x)|
‖x‖ <∞ .

This type of dual space is the focus of theorems
in functional analysis such as the Riesz Repre-
sentation Theorem.

duodecimal number system A number sys-
tem using a base of 12 rather than 10. The Ara-
bic numerals 0 through 9 are utilized, along with
two other symbols X and Q, which are used to
represent 10 (base 10) and 11 (base 10). The
number 12 (base 10) is then represented in the
duodecimal system as 10.

Durand-Kerner method of solving algebraic
equations A method of solving an algebraic
equation f (z) = zn + a1z

n−1 + · · · + an = 0
(with complex coefficients and an �= 0) using an
iteration formula for approximating the n roots
z1, . . . , zn of fi :

zi,k+1 = zi,k − f
(
zi,k

)
/

n∏
j=1

(
zi,k − zj,k

)
,

j �= i, i = 1, . . . , n, k = 0, 1, 2, . . . . The
method approximates all n roots of f (z) simul-
taneously. Speed of convergence is second or-
der.

dynamic programming An approach to a
multistep decision process, in which an outcome
is calculated for each stage. In Richard Bell-
man’s approach to dynamic programming, an
optimal policy has the property that, for each ini-
tial state and decision, the subsequent decisions
must generate an optimal policy with respect to
the outcome of the initial state and initial deci-
sion. This is now the most widely used approach
to dynamic programming.
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E
e One of the most important constants in
mathematics. The following are two common
ways of approximating this number:

e = lim
n→∞

(
1+ 1

n

)n

and

e =
∞∑
n=0

1

n! ,

where n! = 1 · 2 · 3 · · · n is the factorial.
The number e is transcendental and its value

is approximately 2.7182818 . . . . The letter e
stands for Euler.

effective divisor See integral divisor.

effective genus Suppose that � is an irre-
ducible algebraic curve and �̃ is a nonsingular
curve that is birationally equivalent to �. Then
the genus of �̃ is the effective genus of �. An al-
gebraic curve � is rational if its effective genus
is 0 and elliptic if its effective genus is 1.

eigenfunction A function f which satisfies
the equation T (f ) = λf , for some number λ,
where T is a linear transformation from a space
of functions into itself. For example, if T is
the linear transformation on the space of twice
differentiable functions of one variable:

T (f ) = d2f

dx2

then cos(x) is an eigenfunction of T , with λ =
−1. Eigenfunctions arise in the analysis of par-
tial differential equations such as the heat equa-
tion. See also eigenvalue.

eigenspace For an eigenvalue λ of a matrix
(or linear operator) A, the set of all eigenvectors
associated with λ, along with the zero vector.
The eigenspace is the space of all possible solu-
tions of the vector equation

(λI − A)	x = 	0 .

See also eigenvalue, eigenvector.

eigenspace in the weaker sense Suppose
that L is a linear space, T is a linear transfor-
mation on L, and λ is an eigenvalue of T . Then
the collection of all elements v in L such that
(T − λI)kv = 0, for some integer k > 0, is the
eigenspace in the weaker sense, corresponding
to the eigenvalue λ. Such an element v is some-
times called a root vector of T .

eigenvalue For an n × n matrix (or a linear
operator) A, a number λ, such that there exists a
non-zero n× 1 vector v satisfying the equation
Av = λv. The product of the eigenvalues of a
matrix equals its determinant. See also eigen-
vector.

eigenvector A non-zero n × 1 vector 	v that
satisfies the equation Av = λ	v for some num-
ber λ, for a given n × n matrix A. See also
eigenvalue.

Eisenstein series One of the simplest exam-
ples of a modular form, defined as a sum over
a lattice. In detail: Let � be a discontinuous
group of finite type operating on the upper half
plane H , and let κ1, . . . , κh be a maximal set
of cusps of � which are not equivalent with re-
spect to �. Let �i be the stabilizer in � of κi ,
and fix an element σi ∈ G = SL(2,R) such that
σi∞ = κi and such that σ−1

i �iσi is equal to the
group �0 of all matrices of the form(

1 b

1

)
with b ∈ Z. Denote by y(z) the imaginary part
of z ∈ H . The Eisenstein series Ei(z, s) for the
cusp κi is then defined by

Ei(z, s) =
∑

y(σ−1
i σ z)s , σ ∈ �1 \ � ,

where s is a complex variable.

Eisenstein’s Theorem If f (x) = a0+a1x+
a2x

2+· · ·+anx
n is a polynomial of positive de-

gree with integral coefficients, and if there exists
a prime number p such that p divides all of the
coefficients off (x) except an, and ifp2 does not
divide a0, then f (x) is irreducible (prime) over
the field of rational numbers; that is, it cannot
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be factored into the product of two polynomials
with rational coefficients and positive degrees.

elementary divisor (of square matrix) For
a matrix A with entries in a field F , one of the
finitely many monic polynomials hi , 1 ≤ i ≤ s,
over F , such that h1|h2| · · · |hs , and A is simi-
lar to the block diagonal sum of the companion
matrices of the hi .

elementary divisor of a finitely generated
module For a module M over a principal
ideal domainR, a generator of one of the finitely
many ideals Ii of the polynomial ring R[X],
1 ≤ i ≤ s, such that I1 ⊆ I2 ⊆ · · · ⊆ Is
and M is isomorphic to the direct sum of the
modules R[X]/Ii .
elementary Jordan matrix An n×n square
matrix of the form

λ 0 0 . . . 0
1 λ 0 . . . 0

0 1
. . .

...
. . .

0 0 . . . 1 λ

 .

In the special case where n = 1, every matrix
(λ) is an elementary Jordan matrix. (In other
words, one can forget about the 1s below the
diagonal if there is no room for them.)

It is easier to understand this if we phrase it in
the language of linear operators rather than ma-
trices. An elementary Jordan matrix is a square
matrix representing a linear operator T with re-
spect to a basis e1, . . . , en, such that T e1 =
λe1+e2, T e2 = λe2+e3, . . . , T en−1 = λen−1+
en, and T en = λen. Thus (T − λI)n = 0, that
is T −λI must be nilpotent, but n is the smallest
positive integer for which this is true. Here, I is
the identity operator, and the scalar λ is called
the generalized eigenvalue for T .

It is a theorem of linear algebra that every
matrix with entries in an algebraically complete
field, such as the complex numbers, is similar
to a direct sum of elementary Jordan matrices.
See Jordan canonical form. The infinite dimen-
sional analog of this theorem is false. How-
ever, shift operators, that is operators S such that
Sei = ei+1, for i = 1, 2, 3, . . . , play a promi-
nent role in operator theory on infinite dimen-

sional Hilbert and Banach spaces. The connec-
tion between shift operators and elementary Jor-
dan matrices is that the nilpotent operatorT−λI

may be thought of as the finite dimensional ana-
log of the shift S.

elementary symmetric polynomial A poly-
nomial of several variables that is invariant un-
der permutation of its variables, and which can-
not be expressed in terms of similar such polyno-
mials of lower degree. For polynomials of two
variables, x + y and xy are all the elementary
symmetric polynomials.

elementary symmetric polynomials For n
variables x1, . . . , xn, the elementary symmetric
polynomials areσ1, · · · , σn, whereσk is the sum
of all products of k of the variables x1, . . . , xn.
For example, if n = 3, then σ1 = x1 + x2 + x3,
σ2 = x1x2 + x1x3 + x2x3 and σ3 = x1x2x3.

elimination of variable A method used to
solve a system of equations in more than one
variable. First, in one of the equations, we solve
for one of the variables. We then substitute that
solution into the rest of the equations. For ex-
ample, when solving the system of equations:

2x + 4y = 10

8x + 9y = 47

we can solve the first equation for x, yielding:
x = 5−2y. Then, substituting this solution into
the second equation, we have 8(5− 2y)+ 9y =
47, which we can then solve for y. Once we
have a value for y, we can then determine the
value for x. See also Gaussian elimination.

elliptic curve A curve given by the equation

y2 + a1xy + a2y = x3 + a3x
2 + a4x + a5

where each ai is an integer. Elliptic curves were
important in the recent proof of Fermat’s Last
Theorem. See Fermat’s Last Theorem.

elliptic function field The field of functions
of an elliptic curve; a field of the form
k(x,

√
f (x)), where k is a field, x is an inde-

terminant over k, and f (x) is a separable, cubic
polynomial, with coefficients in k.
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elliptic integral One of the following three
types of integral.
Type I:

∫ x

0

dt√
(1− t2)(1− k2t2)

=
∫ φ

0

dt√
1− k2 sin2 t

.

Type II:∫ x

0

√
1− k2t2

1− t2
dt =

∫ φ

0

√
1− k2 sin2 t dt .

Type III:∫ x

0

dt

(t2 − a)
√
(1− t2)(1− k2t2)

=
∫ φ

0

dt

(sin2 t − a)
√

1− k2 sin2 t
.

Here 0 < k2 < 1 and a is an arbitrary con-
stant. The constant k is called the modulus. If
x = 1, or equivalently, if φ = π/2, then the
elliptic integral is called complete; otherwise, it
is incomplete.

elliptic transformation A linear fractional
transformation w = T z of the complex plane
which can be written as

w − a

w − b
= k

z− a

z− b

for some unimodular constant k.

endomorphism (1) A function from a space
into itself, satisfying additional conditions de-
pending on the nature of the space. For exam-
ple, when one studies groups, an endomorphism
is a function F from a group G into itself such
that F(x+ y) = F(x)+F(y) for all x and y in
G.

(2) A morphism in a category, with the prop-
erty that its domain and range coincide.

endomorphism ring The ring consisting of
all endomorphisms (from a space A with an
additive structure to itself) with addition given
by the addition in A and multiplication coming
from composition. See endomorphism.

entire algebroidal function An algebroidal
function f (z) that has no pole in |z| <∞. See
algebroidal function.

entire linear transformation Consider a lin-
ear fractional transformation (also known as a
Möbius transformation) in the complex plane;
that is, a function given by

S(z) = az+ b

cz+ d
,

where a, b, c, and d are complex numbers. If
c = 0 and d �= 0, S(z) becomes a typical linear
transformation, which is also an entire function.

enveloping algebra Let B be a subset of an
associative algebra A with multiplicative iden-
tity 1. The subalgebra B† of A containing 1 and
generated by B is called the enveloping algebra
of B in A. See associative algebra.

enveloping von Neumann algebra LetA de-
note a C∗-algebra and S denote the state space
of A. For each state φ ∈ S, let (πφ,Hφ,ψφ)

denote the cyclic representation of φ. Here πφ

is a representation of A on the Hilbert space Hφ .
The linear span of vectors of the form πφ(a)ψφ ,
for a ∈ A, is dense in Hφ . Let HS be the direct
sum Hilbert space of the spaces Hφ , as φ varies
through S, and let πS be the representation of
A on HS obtained from the direct sum of the
representations πφ , for φ ∈ S. The enveloping
von Neumann algebra of A is the closure A′′ of
πS(A) with respect to the weak operator topol-
ogy. Because πS is a faithful representation, A
can now be viewed as a C∗-subalgebra of the
von Neumann algebra A′′.

The enveloping von Neumann algebra A′′
of a C∗-algebra A is isomorphic, as a Banach
space, to the second dual ofA. Ifm is a von Neu-
mann algebra, G is a locally compact group and
ifα : G→ Aut(m) is a continuous group homo-
morphism, where the automorphism group
Aut(m) has the topology of weak convergence,
then the W ∗-crossed product algebra m ×α G

arises as the enveloping von Neumann algebra
of a certain C∗-crossed product affiliated with
the W ∗-dynamical system (m,G, α).

epimorphism A morphism e in a category,
such that the equation f ◦ e = g ◦ e for mor-
phisms f and g in the category implies that
f = g. In most familiar categories, such as
the category of sets and functions, an epimor-
phism is simply a surjective or onto function in
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the category. A function e from set X to set
Y is surjective or onto if e(X) = Y , that is if
every element y ∈ Y is the image e(x) of an el-
ement x ∈ X. See also morphism in a category,
monomorphism, surjection.

Epstein zeta function A function, ζQ(s,M),
defined by Epstein in 1903. Let V be a vector
space over R having dimension n. Let M be a
lattice in V and Q(X) a positive definite qua-
dratic form defined on V . Then, ζQ(s,M) is
defined for complex numbers s by

ζQ(s,M) =
∑

x∈M\{0}

1

Q(x)s
.

The Epstein zeta function is absolutely conver-
gent when�s > m

2 . IfQ(x) is a positive integer
for all x ∈ M \ {0}, then

ζQ(s,M) =
∞∑
k=1

a(k)

ks
,

where a(k) denotes the number of distinct x ∈
M with Q(x) = k. The Epstein zeta function,
in general, has no Euler product expansion. See
also Riemann zeta function.

equal fractions Two fractions (of positive
integers), m

n
and k

7
, are equal if m7 = nk. If

the greatest common divisor of m and n is 1 and
the greatest common divisor of k and 7 is also
1, then the two fractions are equal if and only if
m = k and n = 7.

equality (1) The property that two mathemat-
ical objects are identical. For example, two sets
A, B are equal if they have the same elements;
we write A = B. Two vectors in a finite dimen-
sional vector space are equal if their coefficients
with respect to a fixed basis of the vector space
are the same.

(2) An equation. See equation.

equation An assertion of equality, usually
between two mathematical expressions f , g in-
volving numbers, parameters, and variables. We
write f = g. When the equation involves one
or more variables, the equality asserted may be
true for some or all values of the variables. A
natural question then arises: For which values

of the variables is the equality true? The task of
answering this question is referred to as solving
the equation.

equivalence class Given an equivalence re-
lationR on a set S and an x ∈ S, the equivalence
class of x, usually denoted by [x], consists of all
y ∈ S such that (x, y) ∈ R. Clearly, x ∈ [x],
and (x, y) ∈ R if and only if [x] = [y]. As
a consequence, the equivalence classes of R in-
duce a partition of the setS into non-overlapping
subsets.

equivalence properties The defining prop-
erties of an equivalence relation R ⊆ S × S;
namely, thatR is reflexive ((x, x) ∈ R for allx ∈
S), symmetric ((x, y) ∈ R whenever (y, x) ∈
R), and transitive ((x, z) ∈ R whenever (x, y) ∈
R and (y, z) ∈ R). See also relation, equiva-
lence class.

equivalence relation A relation R on a set
S (that is, a subset of S × S), which is reflex-
ive, symmetric, and transitive. (See equivalence
properties.) For example, let S be the set of all
integers and R the subset of S × S defined by
(x, y) ∈ R if x− y is a multiple of 2. Then R is
an equivalence relation because for all x, y, z ∈
S, (x, x) ∈ R (reflexive), (x, y) ∈ R whenever
(y, x) ∈ R (symmetric), and (x, z) ∈ R when-
ever (x, y) ∈ R and (y, z) ∈ R (transitive).

equivalent divisors See algebraic equiva-
lence of divisors.

equivalent equations Equations that are sat-
isfied by the same set of values of their respec-
tive variables. For example, the equation x2 =
3y−1 is equivalent to the equation 6w−2z2 = 2
because their solutions coincide.

equivalent valuations Let φ : F → R+ be
a valuation on a field F (here R+ denotes the set
of all nonnegative real numbers). The valuation
φ gives rise to a metric on F , where the open
neighborhoods are the open spheres centered at
a ∈ F defined by

{b ∈ F | φ(b − a) < ε}, ε ∈ R+ .

Two valuations are called equivalent if they in-
duce the same topology on F .
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error In the context of numerical analysis, an
error occurs when a real number x is being ap-
proximated by another real number x̂. A typical
example arises in the implementation of numeri-
cal operations on computing machines, where an
error occurs whenever a real number x is made
machine representable either by rounding off or
by truncating at a certain digit. For example, if
x = 4.567, truncation at the third digit yields
x̂ = 4.56 while rounding off at the third digit
yields x̂ = 4.57.

There are two common ways to measure the
error in approximating x by x̂: The quantity

|x − x̂|
is referred to as the absolute error, and the quan-
tity

|x − x̂|
|x| (x �= 0)

is referred to as the relative error. The concept
of error is also used in the approximation of a
vector x ∈ Rn by x̂ ∈ Rn; the absolute value in
the formulae above are then replaced by some
vector norm. In particular, if we use the infinity
norm, and if the relative error is approximately
10−k , then we can deduce that the largest in ab-
solute value entry of x̂ has approximately k cor-
rect significant digits.

étale Let X and Y be schemes of finite type
over k. A morphism f : X→ Y is called étale
if it is smooth of relative dimension 0.

étale morphism A morphism f : X→ Y is
said to be étale at a point x ∈ X if dxf induces
an isomorphism CxX → Cf (x)Y of the corre-
sponding tangent cones (viewed as schemes).

étale site Let X be a scheme, let S/X be
the category of schemes over X and let C/X
be a full subcategory of S/X that is closed un-
der fiber products and is such that, for any mor-
phism Y → X in C/X and any étale morphism
U → Y , the composite U → X is in C/X. The
category C/X, together with the étale topology
of C/X, is the étale site over X. See étale topol-
ogy.

étale topology Let Y be a connected, closed
subscheme of a normal variety X and assume

that Y is G2 in X. Let X′ be the normaliza-
tion of X in K(X̂), and let f : X′ → X be
the natural map. Then there is a subvariety Y ′

of X′ which is G3 in X′ and such that f

∣∣∣∣
Y ′

is

an isomorphism of Y ′ onto Y , and such that f
is étale at points of X′ in a suitable neighbor-
hood of Y ′. Then (X′, Y ′) is an étale neighbor-
hood of (X, Y ). The étale neighborhoods form
a subbasis for the étale topology. See also étale
morphism.

Euclidean domain Let R be a ring. Then R

is an integral domain if x, y ∈ R and xy = 0
implies either x = 0 or y = 0. An integral
domain is Euclidean if there is a function d from
the non-zero elements of R to the non-negative
integers such that
(i.) For x �= 0, y �= 0, both elements of R, we
have d(x) ≤ d(xy);
(ii.) Given non-zero elements x, y ∈ R, there
exists s, t ∈ R such that y = sx + t , where
either t = 0 or d(t) < d(x).

Euclidian Algorithm An algorithm for find-
ing the greatest common divisor g.c.d. (m, n),
of two positive integers m, n satisfying m > n.
It can be described as follows:

1. Divide n into m, i.e., find a positive
integer p and a real number r so that

m = pn+ r , 0 ≤ r < n.
2. If r = 0, then g.c.d. (m, n) = n.
3. If r �= 0, then g.c.d. (m, n) = g.c.d. (n, r);

replace m by n and n by r and
repeat step 1.

After possibly several iterations, the process al-
ways terminates by detecting a zero remainder
r . Then g.c.d. (m, n) equals the value of the
last nonzero remainder detected. The following
example illustrates this algorithm:

954 = 29× 32+ 26,
32 = 1× 26+ 6,
26 = 4× 6+ 2,
6 = 3× 2+ 0.

Hence g.c.d. (954, 32) = 2. The algorithm can
be modified so that the remainder in step 1 is the
smallest number r (in absolute value) satisfying
0 ≤ |r| ≤ n. This may lead to fewer required
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iterations. For example, the modified algorithm
for the above numbers yields

954 = 30× 32− 6,
32 = 5× 6+ 2,
6 = 3× 2+ 0.

Hence g.c.d. (954, 32) = 2 in three iterations.

Euclid ring An integral domain R such that
there exists a function d(·) from the nonzero el-
ements ofR into the nonnegative integers which
satisfies the following properties:
(i.) For all nonzero a, b ∈ R, d(a) ≤ d(ab).
(ii.) For any nonzero a, b ∈ R, there exist
p, r ∈ R such that a = pb + r , where either
r = 0 or d(r) < d(b).

The integers with ordinary absolute value as
the function d(·) is an example of a Euclid ring.
Also the Gaussian integers, consisting of all the
complex numbers x+iy where x, y are integers,
form a Euclid ring; d(x + iy) = x2 + y2 serves
as the required function.

Also called Euclidian ring.

Euler class The Euler class of a compact, ori-
ented manifold X, denoted by χ ∈ Hn(X, Ẋ),
is defined by

χ = (U1 ∪ U2)/z .

Euler-Poincaré characteristic Let K be a
simplicial complex of dimension n, and let αr
denote the number of r-simplexes of K . The
Euler-Poincaré characteristic is

χ(K) =
n∑

r=0

(−1)rαr .

χ(K) is a generalization of the Euler charac-
teristic, V − E + F , where V,E, F are, re-
spectively, the numbers of vertices, edges, and
faces of a simple closed polyhedron (namely, a
polyhedron that is topologically equivalent to
a sphere). Euler’s Theorem in combinatorial
topology states that V − E + F = 2. See also
Lefschetz number.

Euler product Consider the Riemann zeta
function

ζ(s) = 1+ 1

2s
+ · · · + 1

ks
+ · · · ,

which converges for all real numbers s > 1.
Euler observed that

ζ(s) =
∏ 1

1− p−s
,

where p runs over all prime numbers. This in-
finite product is called the Euler product. One
of the main questions regarding zeta functions
is whether they have similar infinite product ex-
pansions, usually referred to as Euler product
expansions.

Euler’s formula The expression

eiz = cos z+ i sin z ,

where i = √−1. This is proved by consider-
ing the infinite series expansions of ez, sin z and
cos z for z ∈ C.

See also polar form of a complex number.

even element LetQ be a quadratic form with
nonzero discriminant on an n-dimensional vec-
tor space V , over a field F , of characteristic
not equal to 2. Let C(Q) denote the Clifford
algebra of Q. Then C(Q) is the direct sum
C+(Q)+ C−(Q), where

C+(Q) = F 1̇+ V 2 + V 4 + · · · ,
C−(Q) = V + V 3 + V 5 + · · · .

The elements of C+(Q) and C−(Q) are called
the even and odd elements, respectively, of the
Clifford algebra.

even number An integer that is divisible by
2. An even number is typically represented by
2n, where n is an integer.

evolution Another term for the process of
extracting a root. See extraction of root.

exact sequence Consider a sequence of mod-
ules {Mi} and a sequence of homomorphisms
{hi} with

hi : Mi−1 −→ Mi

for all i = 1, 2, . . . The sequence of homomor-
phisms is called exact at Mi if Imhi = Kerhi+1.
The sequence is called exact if it is exact at every
Mi . For a sequence

0 −→ M1
h2−→ M2 ,
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it is understood that the first arrow (from 0 to
M1) represents the 0 map, so the sequence is
exact if and only if h2 is injective.

exact sequence of cohomology (1) Suppose
G is an Abelian group and A is a subspace of
X. Then there is a long exact sequence of coho-
mology:

· · · → Hn(X,A,G)→ Hn(X,G)

→ Hn(A,G)→ Hn+1(X,A,G)→ · · · .
Here Hn are the cohomology groups.

(2) If 0 → A→ B → C → 0 is a short ex-
act sequence of complexes, then there are natural
maps δi : Hi(C)→ Hi+1(A), giving rise to an
exact sequence

· · · → Hi(A)→ Hi(B)→ Hi(C)

→ Hi+1(A)→ · · ·
of cohomology.

exact sequence of ext (contravariant) If

0 −→ A −→ B −→ C −→ 0

is a short exact sequence of modules over a ring
R and M is an R-module (on the same side as
A), then the associated contravariant exact se-
quence of ext is a certain long exact sequence of
the form

0 → Hom(C,M)→ Hom(B,M)

→ Hom(A,M)

→ Ext1R(C,M)→ Ext1R(B,M)

→ Ext1R(A,M)

→ · · · → ExtnR(C,M)→ ExtnR(B,M)

→ ExtnR(A,M)→ · · · .

exact sequence of ext (covariant) If

0 −→ A −→ B −→ C −→ 0

is a short exact sequence of modules over a ring
R andM is anR-module (on the same side asA),

then the associated covariant exact sequence of
ext is a certain long exact sequence of the form

0 → Hom(M,A)→ Hom(M,B)

→ Hom(M,C)

→ Ext1R(M,A)→ Ext1R(M,B)

→ Ext1R(M,C)

→ · · · → ExtnR(M,A)→ ExtnR(M,B)

→ ExtnR(M,C)→ · · · .

exact sequence of homology (1) Suppose A
is a subspace of X. Then there exists a long
exact sequence

· · · → Hn(A)→ Hn(X)s

→ Hn(X,A)→ Hn−1(A)→ · · · ,
called the exact sequence of homology, where
Hn(X) denotes the nth homology group of X

andHn(X,A) is thenth relative homology group.
(2) If 0 → A→ B → C → 0 is a short ex-

act sequence of complexes, then there are natural
maps δi : Hi(C)→ Hi−1(A), giving rise to an
exact sequence

· · · → Hi(A)→ Hi(B)→ Hi(C)

→ Hi−1(A)→ · · ·
of homology.

exact sequence of Tor Let A be a right �-
module and let B ′ �→ B �→ B ′′ be an exact
sequence of left �-modules. Then there exists
an exact sequence

Tor�n (A,B ′)→ Tor�n (A,B)→ Tor�n (A,B ′′)
→ · · · → Tor�1 (A,B ′)→ Tor�1 (A,B)

→ Tor�1 (A,B ′′)→ A⊗� B ′ → A⊗� B

→ A⊗� B ′′ → 0 .

exceptional compact real simple Lie algebra
Since compact real semisimple Lie algebras are
in one-to-one correspondence with complex
semisimple Lie algebras (via complexification),
the classification of compact real simple Lie al-
gebras reduces to the classification of complex
simple Lie algebras. Thus, the compact real
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simple Lie algebras corresponding to the ex-
ceptional complex simple Lie algebras El (l =
6, 7, 8), F4 and G2 are called exceptional com-
pact real simple Lie algebras.

exceptional complex simple Lie algebra In
the classification of complex simple Lie algebras
α, there are seven categories: A,B,C,D,E,F,G,
resulting from all possible Dynkin diagrams.
The notation in each category includes a sub-
script l (e.g., El), which denotes the rank of α.
The algebras in categories El (l = 6, 7, 8), F4
and G2 are called exceptional complex simple
Lie algebras (in contrast to the classical com-
plex simple Lie algebras).

exceptional complex simple Lie group A
complex connected Lie group associated with
one of the exceptional complex simple Lie alge-
bras El (l = 6, 7, 8), F4 or G2.

exceptional curve of the first kind Given
two mutually nonsingular surfaces F,F ′ and a
birational transformation T : F → F ′, the total
transform E of a simple point in F ′ by T −1

is called an exceptional curve. It is called an
exceptional curve of the first kind if, in addition,
T is regular along E. Otherwise, it is called an
exceptional curve of the second kind. See also
algebraic surface.

exceptional curve of the second kind See
exceptional curve of the first kind.

exceptional Jordan algebra A Jordan alge-
bra that is not special. See special Jordan alge-
bra.

excess of nines A method for verifying the
accuracy of operations among integers, also
known as the method of casting out nines. It
uses the sums of the digits of the integers in-
volved, in modulo 9 arithmetic. We illustrate
the method for addition of integers. Consider
the sum

683+ 256 = 939 .

The sum of digits of 683, 256, and 939 are 17 ≡
8 mod 9, 13 ≡ 4 mod 9 and 21 ≡ 3 mod 9,
respectively. Indeed, 8+ 4 = 12 ≡ 3 mod 9.

exhaustive filtration A filtration {Mk : k ∈
Z} of a module M is called exhaustive (or con-
vergent from above) if

∪kMk = M .

See filtration. See also discrete filtration.

Existence Theorem (class field theory) For
any ideal group there exists a unique class field.
See ideal group, class field.

expansion of determinant Given an n × n

matrix A = (aij ), the determinant of A is for-
mally defined by

detA =
∑
σ∈Sn

sgn(σ )a1σ(1)a2σ(2) . . . anσ(n) ,

where Sn denotes the symmetric group of de-
gree n (the group of all n! permutations of the
set {1, 2, . . . , n}), and where sgn(σ ) denotes the
sign of the permutation σ . (sgn(σ ) = 1 if σ is
an even permutation and sgn(σ ) = −1 if σ is
an odd permutation.) The formula in the equa-
tion above is referred to as the expansion of the
determinant of A.

exponent Given an element a of a multiplica-
tive algebraic structure, the product ofa·a·. . .·a,
in which a appears k times, is written as ak and
k is referred to as the exponent of ak . The sim-
plest example is when a is a real number. In
this case, we can also give meaning to negative
exponents by a−k = 1/ak (assuming that k is
a positive integer and that a �= 0). We define
a0 = 1. The basic laws of exponents of real
numbers are the following:
(1) akam = ak+m,
(2) ak/am = ak−m (a �= 0),
(3) (ak)m = akm,
where k and m are nonnegative integers. We
can extend the definition to rational exponents
m/n, where m is any integer and n is a positive
integer, by defining am/n = n

√
am. Synonyms

for the exponent are the words index and power.
See also exponential mapping.

exponential function of a matrix Let A be
an n × n matrix over the complex numbers C.
The exponential function f (A) = eA is defined
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by the infinite series

eA = I + A+ 1

2!A
2 + 1

3!A
3 + · · ·

=
∞∑
k=0

1

k!A
k .

Letting ‖ · ‖ denote the Euclidean vector norm,
as well as the induced matrix norm, we can show
that the exponential function of a matrix is well
defined (i.e., the series is convergent) by show-
ing that it is absolutely convergent. Indeed, in-
voking well-known inequalities, and the defini-
tion of the real exponential function ex , we have
that ‖eA‖ equals∥∥∥∥∥

∞∑
k=0

1

k!A
k

∥∥∥∥∥ ≤
∞∑
k=0

1

k! ‖A‖
k = e‖A‖ <∞ .

One basic property of eA is that its eigenval-
ues are of the form eλ, where λ is an eigenvalue
of A. It follows that eA is always a nonsin-
gular matrix. Also, the exponential property
eA+B = eAeB holds if and only if A and B

commute, that is, AB = BA.
The exponential function of a matrix arises

in the solution of systems of linear differential
equations in the vector form dx(t)/dt = Ax(t),
t ≥ 0, where x(t) ∈ Cn. If the initial condition
x(0) = x0 is specified, then the unique solution
to this differential problem is given by x(t) =
etAx0.

exponential mapping The mapping (func-
tion) f (x) = ex , where x ∈ R and e is the base
of the natural logarithm. (See e.) The expo-
nential mapping is the inverse mapping of the
natural logarithm function: y = ex if and only
if x = ln y. Mclaurin’s Theorem yields

ex =
∞∑
k=0

xk

k! .

More generally, the exponential mapping to base
a (a �= 1) is defined by f (x) = ax .

exponentiation The process of evaluating
ak , that is, evaluating the product a · a · . . . · a,
in which a appears k times. See also exponent.

expression A mathematical statement, using
mathematical quantities such as scalars, vari-
ables, parameters, functions, and sets, as well as
relational and logical operators such as equality,
conjunction, existence, union, etc.

exsecant function A trigonometric function
defined via the secant of an angle as exsecθ =
secθ − 1. Similarly, we define the excosecant
function as excosecθ = cscθ − 1.

extension Given a subfield E of a field F ,
namely, a subset of F that is a field with respect
to the operations defined in F , we call F an
extension field ofE. The fieldF can be regarded
as a vector space over E. The dimension of
F over E is called the degree of the extension
field F over E. If f1, . . . , fp ∈ F , then by
E(f1, . . . , fp) we denote the smallest subfield
of F containing E and f1, . . . , fp. E(f1) is
called a simple extension of E.

If every element of E is algebraic over F , we
call E an algebraic extension. Otherwise, we
call E a transcendental extension.

The notion of extension also applies to rings.
See also number field.

extension of coefficient ring Let R[t] be the
ring of polynomials over the (coefficient) ring
R in the indeterminate t . As the notion of ex-
tension can also concern a ring, an extension of
R is usually referred to as the extension of the
coefficient ring of R[t]. See extension, ring of
polynomials.

extension of valuation If v is a valuation on
a field F and if K is an extension of F , then an
extension of v to K is a valuation w on K such
that w(x) = v(x), for x ∈ F . See valuation.

exterior algebra Let V be a vector space
over a field F . Let also T0(V ) denote the direct
sum of the tensor products V ⊗ . . .⊗V . T0(V )

is called the contravariant tensor algebra over
V and is equipped with the product ⊗ as well
as addition and scalar multiplication. Let S be
formed by all elements of T0(V ) of the type v⊗
v, as well as their sums, scalar multiples and
their products with arbitrary elements in T0(V ).
Then S is a subgroup of (the Abelian group)
T0(V ) and the quotient group T0(V )/S can be
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considered. This quotient group can be made
into an algebra by defining the operations · and∧

as follows:

c · (t + S) = ct + S (c ∈ F) ,

(t1 + S)
∧

(t2 + S) = (t1 ⊗ t2)+ S .

The operation
∧

is called the exterior product
of the exterior algebra T0(V )/S of V , which is
denoted by

∧
V .

∧
V is also known as the

Grassmann algebra of V . The image of v1 ⊗
. . . ⊗ vp under the natural mapping T0(V ) →∧

V is denoted by v1∧ . . .∧vp and is called the
exterior product of v1, . . . , vp ∈ V . In general,
the image of V ⊗ . . .⊗ V with p factors under
the above natural mapping is called the p-fold
exterior power of V and is denoted by

∧p
V .

The exterior product satisfies some important
rules and properties. For example, it is multilin-
ear, v1 ∧ . . . ∧ vp = 0 if and only if v1, . . . , vp
are linearly dependent, andu∧v = (−1)pq v∧u
whenever u ∈∧p

V and v ∈∧q
V .

See also algebra, tensor product.

external product Given two groups G1,G2,
the external (direct) product of G1,G2 is the
group G = G1 × G2 formed by the set of all
pairs (g1, g2) with g1 ∈ G1 and g2 ∈ G2; the
operation in G is defined to be

(g1, g2)
(
g′1, g′2

) = (
g1g

′
1, g2g

′
2

)
.

This definition can be extended in the obvious
way to any collection of groups G1,G2, . . . .
The operation in each component is carried out
in the corresponding group. The external prod-
uct coincides with the external sum of groups if
the number of groups is finite. See also internal
product.

Ext group The Ext group is defined in several
subjects. For example, if A is an Abelian group
and if

0 → R→ F → A→ 0

is any free resolution of A, then for every Abel-
ian groupB, there exists a group Ext(A, B) such
that

0 → Hom(A,B)→ Hom(F, B)

→ Hom(R,B)→ Ext(A,B)→ 0

is exact; moreover, the group is independent of
the choice of the free resolution of A. The el-
ements of Ext(A,B) are equivalence classes of
short exact sequences 0 → B → M → A→ 0
and addition is induced by Baer sum.

The Ext group is also defined in homological
algebra, topology, and operator algebras. The
group Ext(A,B) is called the group of exten-
sions of B by A.

extraction of root The process of finding a
root of a number (e.g., that the fifth root of 32
is 2) or the process of finding the roots of an
equation.

extraneous root A root, obtained by solving
an equation, which does not satisfy the origi-
nal equation. Such roots are usually introduced
when exponentiation or clearing of fractions is
performed.

extreme terms of proportion Given a pro-
portion, namely, an equality of two ratios a

b
=

c
d

, the numbers a and d are called the extreme (or
outer) terms of the proportion. See proportion.
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F
factor (1) An integer n is a factor (or divisor)
of an integer m if m = nk for some integer k.
Thus, ±1,±2, and ±4 are all the factors of 4.
More generally, given a commutative monoid
M that satisfies the cancellation law, b ∈ M is a
factor of a ∈ M if a = bc for some c ∈ M . We
then usually write b|a. See also prime, factor of
polynomial.

(2) A von Neumann algebra whose center is
the set of scalar multiples of the identity opera-
tor. The study of von Neumann algebras is car-
ried out by studying the factors which are type I,
II, or III with subtypes for each. See also type-I
factor, type-II factor, type-III factor, Krieger’s
factor.

factorable polynomial A polynomial that
has factors other than itself or a constant poly-
nomial. See also factor of polynomial.

factor group Let G be a group and let H
denote a normal subgroup of G. The set of left
(or right) cosets of G, denoted by

G/H = {aH : a ∈ G} ,
forms a group under the operation (aH)(bH) =
(ab)H and is called the factor group or the quo-
tient group of G relative to H .

The factor groups of a group G can be useful
in revealing important information aboutG. For
example, letting C(G) represent the center of
G, if G/C(G) is cyclic it follows that G is an
Abelian group.

factorial The factorial of a positive integer n
(read n factorial) is denoted by n! and is defined
by

n! = n (n− 1) (n− 2) . . . 3 2 1 .

For example, 4! = 4 3 2 1 = 24. By definition,
0! = 1. An approximation of n! for large values
of n is given by Stirling’s formula:

n! ≈
(n
e

)
n
√

2πn .

factorial series The infinite series, involving
factorials,

∞∑
k=0

1

k! = 1+ 1

1! +
1

2! + · · ·

This series converges to the number e. See fac-
torial.

factoring The process of finding factors; of
an integer or of a polynomial, for example. Given
an integer n > 1, the Fundamental Theorem
of Arithmetic states that n can be expressed as
a product of positive prime numbers, uniquely,
apart from the order of the factors. The process
of finding these prime factors is referred to as
the prime factoring or the prime factorization
of n. See also division algorithm, factoring of
polynomials.

factoring of polynomials The process of
finding factors of a polynomial f (x) ∈ F [x]
over a field F . If f (x) has positive degree, then
f (x) can be expressed as a product

f (x) = cg1(x)g2(x) . . . gr (x) ,

where c ∈ F and g1, g2, . . . , gr are irreducible
and monic polynomials inF [x]. This is referred
to as the prime factoring or the prime factoriza-
tion of f (x) and is unique apart from the order
of the factors.

If f (x) ∈ F [x] is monic and has positive
degree, then there is an extension field E of F ,
so that f (x) can be factored into

f (x) = (x − r1) (x − r2) . . . (x − rk)

inE[x]. The fieldE is the splitting field of f (x)
and it satisfies E = F(r1, r2, . . . , rk), where
r1, r2, . . . , rk are the roots of f (x) in E. If
the field F is algebraically closed (for example
the complex numbers), then E = F . See also
Factor Theorem, division algorithm.

factor of polynomial A polynomial g(x) ∈
F [x] over a field F is a factor of f (x) ∈ F [x]
if f (x) = g(x)h(x) for some h(x) ∈ F [x]. For
example, g(x) = x − 1 is a factor of f (x) =
x2 − 1. See also factoring of polynomials.

factor representation Consider a nontriv-
ial Hilbert space H and a topological group G
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(i.e., a group with the structure of a topological
space so that the mappings (x, y) → xy and
x → x−1 are continuous). Let U be a unitary
representation of G, namely, a homomorphism
of G into the group of unitary operators on H

that is strongly continuous. If the von Neumann
algebra M generated by {Ug : g ∈ G} and its
commutant M ′ satisfy

M ∩M ′ = {z1 : z ∈ C} ,
then U is called a factor representation of G.

factor set Suppose A is an Abelian group
and G is an operator group acting on A. Then
every element σ ∈ G defines an automorphism
a→ aσ ofA such that (atau)σ = aστ . A factor
set is a collection of elements {aσ,τ : σ, τ ∈ G}
in A such that

aσ,τ aστ,ρ = aστ,ρaσ,τρ .

Factor Theorem The linear term (x − a) is
a factor of the polynomial f (x) ∈ F [x] over a
field F if and only if f (a) = 0.

It is an immediate corollary of the Remainder
Theorem. ( See Remainder Theorem.) The Fac-
tor Theorem can be useful in finding factors of
polynomials: If f (x) = x4+ x3+ x2+ 3x− 6,
then one knows that ifa is an integer, then (x−a)
is a factor of f (x) only if a divides 6. Hence it
makes sense to search for integer roots of f (x)
among the factors of 6.

faithful function Let V and W be partially
ordered vector spaces with positive proper cones
V + and W+, respectively. A function f : V →
W is said to be faithful if f (x) = 0, with x ∈
V +, occurs only in the case where x = 0.

As an example, let V be the complex vec-
tor space of n × n matrices with positive cone
V + consisting of all positive semidefinite ma-
trices. Let W be the complex field and W+ =
[0,∞), and let f : V → W be the trace func-
tion: f (x) = trace(x) = ∑n

i=1 xii , for all
x = (xij ) ∈ V . Then f is a faithful function.

Faithful functions arise in the theory of C∗-
algebras, as follows: Let A be a C∗-algebra.
By a theorem of Gelfand, Naimark, and Segal,
there is a faithful C∗-algebra homomorphism
ρ : A→ B(H), where B(H) is the C∗-algebra

of bounded linear operators acting on a Hilbert
space H . See partially ordered space.

faithful R-module A module M over a ring
R such that, whenever r ∈ R satisfies rM = 0,
then r = 0. Also called faithfully flat.

false position The method of false position
(or regular falsi method) is a numerical method
for approximating a root r of a function f (x),
given initial approximations r0 and r1 that sat-
isfy f (r0)f (r1) < 0. The next approximation
r2 is chosen to be the x-intercept of the line
through the points (r0, f (r0)) and (r1, f (r1)).
Then r3 is chosen as follows: If f (r1)f (r2) < 0
we choose r3 to be the x-intercept of the line
through the points (r1, f (r1)) and (r2, f (r2)).
Otherwise, we choose r3 as the x-intercept
of the line through the points (r0, f (r0)) and
(r2, f (r2)), and swap the indices of p0 and p1
to continue. This process ensures that succes-
sive approximations enclose the root r . See also
secant method.

feasible region The set of all feasible solu-
tions of a linear programming problem. See also
feasible solution.

feasible solution In linear programming, the
objective is to minimize or maximize a linear
function of several variables, subject to one or
more constraints that are expressed as linear
equations or inequalities. A solution (choice)
of the variables that satisfies these constraints
is called a feasible solution. See also feasible
region.

Feit-Thompson Theorem Every non-
Abelian simple group must have even order. This
result was conjectured by Burnside and proved
by Feit and Thompson in 1963. It was an impor-
tant step and the driving force behind the effort
to classify the finite simple groups.

Fermat numbers Integers of the form 22n +
1, where n is a nonnegative integer. For n =
1, 2, 3, 4, the Fermat numbers are prime inte-
gers. Euler proved, contrary to a conjecture by
Fermat, that the Fermat number for n = 5 is not
a prime.
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Fermat’s Last Theorem There are no posi-
tive integersx, y, z, andn, withn > 2, satisfying
xn + yn = zn.

Pierre Fermat wrote a version of this theo-
rem in the margin of his copy of Diophantus’
Arithmetica. He commented that he knew of a
marvelous proof but that there was not enough
space in the margin to present it.

This assertion is known as Fermat’s Last The-
orem, because it was the last unresolved piece
of Fermat’s work. A proof eluded mathemati-
cians for over 300 years. In 1993, A. J. Wiles
announced a proof of the conjecture. Some gaps
and errors that were found in the original proof
were corrected and published in the Annals of
Mathematics in 1995.

fiber (1) Preimage, as of an element or a set;
inverse image.

(2) In homological algebra, iff : X→ Y is a
morphism of schemes, y ∈ Y , k(y) is the residue
field of y, and Spec k(y) → Y is the natural
morphism, then the fiber of the morphismf over
the point y is the scheme

Xy = X ×Y Spec k(y) .

Also spelled fibre.

Fibonacci numbers The sequence of num-
bers fn given by the recursive formula fn =
fn−1 + fn−2 for n = 2, 3, . . . , where f1 =
f2 = 1 (or sometimes f1 = 0, f2 = 1). It can
be shown that every positive integer is the sum
of distinct Fibonacci numbers. Any two con-
secutive Fibonacci numbers are relatively prime.
The ratios fn+1

fn
form a convergent sequence

whose limit asn→∞ is the golden ratio,
√

5+1
2 .

fibre See fiber.

field A commutative ring F with multiplica-
tion identity 1, all of whose nonzero elements
are invertible with respect to multiplication: for
any nonzero a ∈ F there exists c ∈ F such that
ac = 1. We usually write c = a−1. It fol-
lows that if a, b ∈ F are nonzero elements of a
field, then so is ab, namely, every field is an inte-
gral domain. Well-known examples of fields are
the rational numbers, the real numbers, and the
complex numbers with the familiar operations

of multiplication and addition. Also the residue
ring modulo p, Zp, is a field when p is a prime
integer. See ring.

field of quotients Let D �= 0 be a com-
mutative integral domain and let D∗ denote its
nonzero elements. Consider the relation ≡ in
D ×D∗ defined by (a, b) ≡ (c, d) if ad = bc.
It can be shown that≡ is an equivalence relation.
(See equivalence relation.) Denote the equiva-
lence class determined by (a, b) as a/b (called
a quotient or a fraction) and let F = {a/b} be
the quotient set determined by ≡. We can now
equip F with addition, multiplication, an ele-
ment 0, and an element 1 so that it becomes a
field as follows:

a/b + c/d = (ad + bc)/bd ,

(a/b) · (c/d) = ac/bd ,

0 = 0/1, and 1 = 1/1 .

It can be shown that the above operations +, ·
define single-valued compositions in F and that
F with the above 0 and 1 is a commutative ring.
Moreover, if a/b �= 0, then a �= 0 and b/a is
the inverse of b/a. This shows that F is a field;
it is called the field of quotients or the field of
fractions (or rational expressions) of D.

field of rational expressions See field of quo-
tients.

field of values See numerical range.

field theory In algebra, the theory and re-
search area associated with fields. See field.

figure (1) A symbol used to denote an integer.
(2) In topology, a set of points in the space

under consideration.

filtration A filtration of a module M is a
collection {Mk : k ∈ Z}, of submodules of M ,
such that Mk+1 ⊂ Mk for all k ∈ Z. See also
exhaustive filtration, filtration degree.

filtration degree Suppose thatM is a graded
module with differentiation d of degree 1, i.e.,
M is a complex, and that the filtration {FkM}k∈Z
of M is homogeneous. Define the graded mod-
ule E0(M) to be the direct sum

∑
k∈Z E

k
0(M)
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where Ek
0(M) = FkM/Fk+1M . Define

Fk,lM = Mk+l ∩ FkM = FkMk+l

and E
k,l
0 (M) = Fk,lM/Fk+1,l−1M , where

k, l ∈ Z. Then E0(M) is doubly graded as the
direct sum

∑
k,l∈Z E

k,l
0 (M). In the same way,

the module E0(H(M)) is doubly graded by the
modules E

k,l
0 (H(M)) = FkHk+l (M)/F k+1

Hk+l (M), where H(M) is the homology mod-
ule of M and FkHk+l (M) = Fk,lH(M).

For 1 ≤ r ≤ ∞ define

Zk,l
r (M) = Im

(
Hk+l (FkM/Fk+rM

)
→ Hk+l (FkM/Fk+1M

) )
,

Bk,l
r (M) = Im

(
Hk+l−1

(
Fk−r+1M/FkM

)
→ Hk+l (FkM/Fk+1M

) )
,

Ek,l
r (M) = Zk,l

r (M)/Bk,l
r (M) .

Then Er(M) is doubly graded by identifying
Ek
r (M) with the direct sum∑

l∈Z

Ek,l
r (M) .

Finally, the differentiation operator dr : Er →
Er is composed of homomorphisms dk,lr : Ek,l

r

→ E
k+r,l−r+1
r , in other words, dr has bi-degree

(r, 1− r).
In all of these doubly graded modules the first

degree k is called the filtration degree, the sec-
ond degree l is called the complementary degree,
and k + l is called the total degree.

fine moduli scheme A moduli scheme Mg

of curves of genus g such that there exists a flat
family F → Mg of curves of genus g such that,
for any other flat family X → Y of curves of
genus g, there is a unique map Y → Mg via
which X is the pullback of F .

finer If T and U are two topologies on a space
X, and if T ⊆ U , then U is said to be finer than
T .

finite A term associated with the number of
elements in a set. A set S is finite if there ex-
ists a natural number n and a one-to-one corre-
spondence between the elements of S and the

elements of the set {1, 2, . . . , n}. We may then
write |S| = n. The fact that a set S is finite is de-
noted by |S| <∞ and we say that S consists of a
finite number of elements. See also cardinality,
finite function.

finite Abelian group A groupG that is finite,
as a set, and commutative; namely for any a, b ∈
G, ab = ba. See also finite, Abelian group.

finite basis A basis of a vector space V over
a field F , comprising a finite number of vectors.
More precisely, a finite basis of V is a finite set
of vectors B = {v1, v2, . . . , vn} ⊂ V with two
properties:

(i.) B is a spanning set of V , that is, every
vector ofV is a linear combination of the vectors
in B.

(ii.) B consists of linearly independent vec-
tors (over the specified field F ).

A (finite) basis of a vector space is not, in
general, unique. However, all the bases of V
have the same number of vectors. This number
is called the dimension of V . Here the dimen-
sion of V is n and thus V is referred to as a finite
dimensional vector space.

The set of vectors {ei}ni=1, consisting of the
vectors ei ∈ Rn whose ith entry is one and all
other entries equal zero, is a finite basis for the
vector space Rn. It is usually called the standard
basis of Rn.

finite continued fraction Let q be a contin-
ued fraction defined by q = p1 + 1/q1, where
q1 = p2 + 1/q2, q2 = p3 + 1/q3, . . . , and
where pi, qi are numbers or functions of a vari-
able. See continued fraction. If the expression
q terminates after a finite number of terms, then
q is a finite continued fraction. For example,

q = 1+ 1

2+ 1
3

is a finite continued fraction usually denoted by
1+ 1

2+
1
3 .

finite field A field F which is a finite set. In
such a case, the prime field ofF can be identified
with Zp, the field of residue classes, modulo p,
for some prime integer p. (See prime field.) It
follows that |F | = pn for some integer n. We
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thus have the fundamental fact that the num-
ber of elements (cardinality) of a finite field is
a power of a prime integer. Moreover, all finite
fields of the same cardinality are isomorphic.

finite function (1) A function f : X → Y

which is finite, when thought of as a subset of
the Cartesian product X × Y . It follows that f
is finite if and only if its domain X is a finite set.

(2) A function from a set X to the extended
real or complex numbers (R ∪ {±∞} or C ∪
{±∞}), never taking the values ±∞. See also
semifinite function.

finite graded module See graded module.

finite group A group, which is finite as a set.
An example of a finite group is the symmetric
group, Sn, of degree n, having n! elements. In
fact, any finite group with n elements is isomor-
phic to some subgroup of Sn. See symmetric
group.

finitely generated group A group G that
consists of all possible finite products of the el-
ements of a finite set S. We usually write

G = 〈S〉 = {s1s2 . . . sk : si ∈ S}
and we call S a set of generators of S. The
simplest example is a cyclic group, namely, a
group G generated by one element a. We then
write G = 〈{a}〉 = {ak : k ∈ Z}.
finitely generated ideal An ideal I in a ringR
such that I contains elements i1, . . . , ik which,
under sums and products by elements ofR, gen-
erate all of I .

finitely generated module Let A be a ring
and M an A-module. We say that M is finitely
generated if there is a finite set {x1, x2, . . . , xk}
of elements of M such that, for each element
x ∈ M , there exist scalars ai ∈ A, so that

x =
k∑

i=1

aixi .

We refer to {x1, x2, . . . , xk} as a system of gen-
erators of M .

finitely presented group Let F be the free
group generated by a1, a2, . . . , an and G be a

group generated by b1, b2, . . . , bn. Then there
is a homomorphism h of F onto G. If the ker-
nel of h is the minimal normal subgroup of F
containing the classes of words

w1 (a1 . . . , an) , . . . , wm (a1 . . . , an) ,

then

w1 (b1 . . . , bn) = 1, . . . , wm (b1 . . . , bn) = 1

are the defining relations of G. If m and n are
both finite, we call G a finitely presented group.

Finiteness Theorem (1) (Finiteness theo-
rem of Hilbert concerning first syzygies) There
are only finitely many first syzygies. See first
syzygy.

(2) (Completeness of predicate calculus) If a
proposition H is provable (derivable) from a set
of statements X, then there exists a finite subset
X∗ ⊂ X from which H can also be derived.

finite nilpotent group A group G, which
is both finite and nilpotent. See nilpotent group.
The following conditions are equivalent to being
nilpotent for a finite group:

(i.) G has at least one central series.
(ii.) The upper central series of subgroupsZi

of G,

{e} ≡ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . .

ends with Zn ≡ G for some finite n ∈ N.
(iii.) The lower central series of G

G ≡ H̃0 ⊃ H̃1 ⊃ . . .

ends with H̃m = {e} for some finite m ∈ N.
(iv.) Every maximal (proper) subgroup is

normal.
(v.) Every subgroup differs from its normal-

izer.
(vi.) G is a direct product of Sylow p-sub-

groups of G.

finite prime divisor An equivalence class
of non-Archimedean valuations of an algebraic
number field K .

finite simple group A groupG of finite order
|G| (|G| > 1) that contains no proper normal
subgroup.
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finite solvable group A group G that has a
composition series

G ≡ G0 ⊃ G1 ⊃ · · · ⊃ Gn ≡ {e} ,
whose factor groups Gi/Gi+1, i = 0, . . . , n−
1, are of prime order. Equivalently, the composi-
tion factorsGi/Gi+1 are simple Abelian groups
(i.e., cyclic groups of prime order).

first factor of class number The class num-
ber h of the p-th cyclotomic field Kp, where p
is a prime, is a product h = h1h2 of two factors
h1 and h2, called, respectively, the first and the
second factor of the class number h.

If Km = Q(ξm), ξm = e2πi/m, then h2 is the
class number of the real subfield K ′

m = Q(ξ +
ξ−1). Explicitly

h1 = (−1)r+1

(2p)r

r+1∏
i=1


p−1∑
j=1

jχi(j)


 ,

h2 = |E|
R0

,

where r = (p − 3)/2 gives the number of mul-
tiplicatively independent units, χi, i = 1, . . . ,
p − 1, are the multiplicative characters of the
reduced residue classes of Z modulo p, and
χi, i = 1, . . . , r − 1, are those characters for
which χi(−1) = −1. Further, 0 �= E = R[ε0,

. . . , εr−1] is the Dedekind regulator of multi-
plicatively independent units εi (i = 0, . . . , r−
1), also called circular units and R0 is the regu-
lator of K ′

p.

Remark: Km = Q(ξm), ξm = e2πi/m is an al-
gebraic number field obtained by adjoining an
m-th primitive root of unity to Q. It is a Ga-
lois extension over Q of degree φ(m), where φ
is Euler’s function [φ(m) gives the number of
primitive roots of unity].

first syzygy LetR = k[x1, . . . , xn] be a poly-
nomial ring of n variables x1, . . . , xn over a field
k and, relying on the natural gradation ofR [i.e.,
deg (xi) = 1, deg (c) = 0 for c ∈ k], let M be
a finitely generated graded R-module. Desig-
nate by (f1, . . . , fm) a minimal basis of M over
R consisting of homogeneous elements. Intro-
duce m indeterminates gi (i = 1, . . . , m) and

the freeR-moduleF ,F =
m∑
i=1

Rgi generated by

them. Requiring that deg (gj ) = deg (fj ), j =
1, . . . , m, we supply F with the structure of a
graded R-module. The kernel of a graded R-
homomorphism φ : F → M, M = φ(F ), de-
fined by φ(gj ) = fj is referred to as the first
syzygy. It is uniquely determined by M up to a
graded R-module isomorphism.

(More generally: LetR be a Noetherian ring,
M a finitely generatedR-module. Then one can
find a finitely generated freeR-moduleF and an
R-homomorphism φ : F → M (onto), whose
kernel defines the first syzygy of M .)

fixed component The maximal positive divi-
sor<0 that is contained in all divisors of a linear
system < is called the fixed component of <.

Let V be a complete irreducible variety, f0,

f1, . . . , fn the elements of the function field
k(V ) of V , and D a divisor ring on V such that
(fi) + D ≥ 0, for all i. Then the set < of the
divisors of the form (<aifi) + D, with ai ∈ k

not all zero, is called a linear system.

flat dimension A left R module B, where R
is a ring with unit, has flat dimension n if there
is a flat resolution

0 −→ En −→ · · · −→ E0 −→ B −→ 0 ,

but no shorter flat resolution of B. The defini-
tion of the flat dimension of a right R module
is entirely similar. See flat resolution. Flat di-
mensions have little relation to more elementary
notions of dimension, such as the dimension of
a vector space, but they are related to the idea of
injective dimension. See also injective dimen-
sion, projective dimension.

flat module Let R be a ring and M a right
R-module. If for any exact sequence

0 → N ′ → N → N ′′ → 0 ,

the induced sequence

0 → M ⊗R N ′ → M ⊗R N → M ⊗R N ′′ → 0

is exact, then R is a flat R-module.
Here M ⊗R N is a tensor product of a right

R-module M and a left R-module N .
Remark: In view of the isomorphism between
M ⊗R N and N ⊗R M , we could drop the qual-
ifiers left and right.
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flat morphism of schemes A morphism of
schemes f : X → Y such that, for each point
x ∈ X, a stalk OX,x at that point is a flat OY,f (x)-
module. If f is surjective, f is faithfully flat.

flat resolution Let B be a left R module,
where R is a ring with unit. A flat resolution of
B is an exact sequence,

· · · φ2−→ E1
φ1−→ E0

φ0−→ B −→ 0 ,

where every Ei is a flat left R module. (We
shall define exact sequence shortly.) There is
a companion notion for right R modules. Flat
resolutions are important in homological alge-
bra and enter into the dimension theory of rings
and modules. See also flat dimension, flat mod-
ule, injective resolution, projective resolution.

An exact sequence is a sequence of left R
modules, such as the one above, where every φi
is a left R module homomorphism (the φi are
called connecting homomorphisms), such that
Im(φi+1) = Ker(φi). Here Im(φi+1) is the im-
age of φi+1, and Ker(φi) is the kernel of φi . In
the particular case above, because the sequence
ends with 0, it is understood that the image of
φ0 is B, that is φ0 is onto. There is a companion
notion for right R modules.

formal group Formal groups are analogs of
the local Lie groups, for the case of algebraic
k-groups with a nonzero prime characteristic.

formal scheme A topological local ringed
space that is locally isomorphic to a formal spec-
trum Spf(A) of a Noetharian ring A.

formal spectrum LetR be a Noetherian ring
which is complete with respect to its ideal I
(in the I -adic topology), so that its completion
along I can be identified with R. The formal
spectrum Spf(R), of R, is a pair (X ,OX ) con-
sisting of a formal scheme X = V (I) ⊂ Spec
(R) and a sheaf of topological rings OX defined
as follows:

>(D(f ) ∩ X ,OX ) = lim← n>0Rf /I
nRf , f ∈ R .

Here V (I) is a set of primitive ideals of R con-
taining I , D(f ) = Spec(R) − V (f ), f ∈ R

are elementary open sets forming a base of the
Zariski topology, and >(Q,O) designates the
set of sections over Q of a sheaf space O over

X . A section of O over Q is a continuous map
σ : A ⊂ X → O such that π ◦ σ = 1A, where
π : O → X is such that π(Ox) = x,Ox being
a stalk over x.

form ring Let (R, P ) be a local ring and Q

its P -primary ideal. Set

Fi = Qi/Qi+1, i = 0, 1, . . . ; Q0 = R ,

and for A = A′ (mod Qi+1) ∈ Fi B = B ′ (mod
Qj+1) ∈ Fj , require

AB = A′B ′
(

modQi+j+1
)
∈ Fi+j .

Then the form ring of R with respect to Q is
defined as a graded ring F generated by F1 over
F0 and equal to the direct sum of modules

F =
∞⊕
i=0

Fi ,

where Fi is a module of homogeneous elements
of degree i.

formula (1) A formal expression of a propo-
sition in terms of local symbols.

(2) A formal expression of some rule or other
results (e.g., Frenet formula, Stirling formulas,
etc.).

(3) Any sequence of symbols of a formal cal-
culus.

forward elimination A step in the Gauss
elimination method of solving a system of linear
equations

n∑
j=1

aij xj = bi, (i = 1, . . . , n)

consisting of the following steps

a
(m+1)
ij = a

(m)
ij − a

(m)
im a

(m)
mj /a

(m)
mm ,

b
(m+1)
i = b

(m)
i − a

(m)
im b(m)m /a(m)mm ,

i, j = m+ 1, . . . , n, with

a
(1)
ij ≡ aij , b

(1)
i = bi ,
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for all i, j . After the forward elimination, we
get a system with a triangular coefficient matrix

n∑
j=m

a
(m)
mj xj = b(m)m , m = 1, . . . , n

and apply backward elimination to solve the sys-
tem.

Also called forward step.

four group The simplest non-cyclic group
(of order 4). It may be realized by matrices( ±I 0

0 ±I
)

(any two elements different from the identity
generate V ), or as a non-cyclic subgroup of the
alternating group A4, involving the permuta-
tions

(1), (12)(34), (13)(24), (14)(23) .

It is Abelian and, as a transitive permutation
group, it is imprimitive with the imprimitivity
system {12}, {34}.

Also called Klein’s four group or Vierergruppe
V.

Fourier series An infinite trigonometric se-
ries of the form

1

2
a0 +

∞∑
n=1

[an cos nx + bn sin nx]

with a0, a1, . . . , b1, · · · ∈ R, referred to as
(real) Fourier coefficients. Here

an = 1

π

π∫
−π

f (t) cos nt dt ,

bn = 1

π

π∫
−π

f (t) sin nt dt ,

n = 0, 1, 2, . . . , with f (t) a periodic function
with period 2π . The relationship between f (x)
and the series is the subject of the theory of
Fourier series. The complex form is

∞∑
k=−∞

cke
ikx ,

so that

ck = 1

2
(ak − ibk) = c̄−k .

Fourier’s Theorem Consider an nth degree
polynomial in x,

f (x) = a0x
n + a1x

n−1 + · · · + a0 ,

with ai ∈ R and a0 �= 0, and the algebraic
equation

f (x) = 0 .

Designate by V (c1, c2, . . . , cp) the number of
sign changes in the sequence c1, c2, . . . , cp of
real numbers, defined by

V
(
c1, c2, . . . , cp

) = 1

2

q−1∑
j=1

(
1− sgn cνj cνj+1

)
,

where cν1 , cν2 , . . . , cνq is obtained from c1, c2,
. . . , cp by deleting the vanishing terms ci = 0.
Defining, finally

W(x) = V
(
f (x), f ′(x), . . . , f (n)(x)

)
and

N ≡ N(a, b) = W(a)−W(b) ,

the number m ≡ m(a, b) of real roots in the
interval (a, b) equals

m = N (mod2), m ≤ N ,

i.e., m = N or m = N − 2 or m = N − 4, . . . ,
or m = 0 or 1.

The precise value of m can be obtained us-
ing the theorem of Sturm that exploits the se-
quence f (x), f ′(x), R1(x), . . . , Rm−1(x), Rm,
where−Ri is the remainder when dividingRi−2
by Ri−1, with R0 = f ′ and R−1 = f . Then
m = W(a)−W(b).

Fourier’s Theorem (on algebraic equations)
is also called the Budom-Fourier Theorem.

fraction A ratio of two integers m/n, where
m is not a multiple of n and n �= 0, 1, or any
number that can be so expressed. In general,
any ratio of one quantity or expression (the nu-
merator) to another nonvanishing quantity or ex-
pression (the denominator).
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fractional equation An algebraic equation
with rational integral coefficients.

fractional exponent The number a, in an
expression xa , where a is a rational number.

fractional expression See fraction.

fractional ideal (1) (Of an algebraic num-
ber field k) Let k be an algebraic number field
of finite degree (i.e., an extension field of Q of
finite degree) and I an integral domain consist-
ing of all algebraic integers. Further, let p be
the principle order of k (i.e., an integral domain
k ∩ I whose field of quotients is k) and a an
integral ideal of k (i.e., an ideal of the principle
order p). Then a fractional ideal of k is a p-
module that is contained in k (i.e., pa ⊂ a) such
that αa ⊂ p for some α (α ∈ k, α �= 0). See
algebraic number, algebraic integer.

(2) (of a ring R) An R-submodule a of the
ring Q of total quotients of R such that there
exists a non-zero divisor q of R such that qa ⊂
R. See ring of total quotients.

fractional programming Designating: x an
n-dimensional vector of decisive variables, m
an n-dimensional constant vector, Q a positive
definite, symmetric, constant n × n matrix and
( , ) the scalar product, the problem of fractional
programming is to maximize the expression

(x,m)√
(x,Qx)

,

subject to nonnegativity of x (x ≥ 0) and linear
constraints Ax ≤ b.

fractional root A root of a polynomial p(x)
with integral coefficients

p(x) = a0x
n + a1x

n−1 + · · · + an

that has the form r/s. One can show that r and s
are such that an is divisible by r and a0 is divisi-
ble by s. Any rational root of monic polynomial
having integral coefficients is thus an integer.
Also called rational root.

free Abelian group The direct product (fi-
nite or infinite) of infinite cyclic groups. Equiv-
alently, a free Abelian group is a free Z-module.

An infinite cyclic group is one generated by a
simple element x such that all integral powers of
x are distinct. See cyclic group, direct product.

free additive group The direct sum of ad-
ditive groups Ai, i ∈ C, such that each Ai is
isomorphic to Z. See additive group.

free group A free product of infinite cyclic
groups. The number of free factors is called the
rank of the group F . Alternatively, (i.) a free
group Fn on n generators is a group generated
by a set of free generators (i.e., by the generators
that satisfy no relations other than those implied
by the group axioms); (ii.) a free group is a group
with an empty set of defining relations.

To form a free group we can start with a free
semigroup, defined on a set of symbols S =
{a1, a2, . . . }, that consists of all words (i.e., fi-
nite strings of symbols from S, repetitions being
allowed), including an empty word representing
the unity. Next, we extend S to S′ that contains
the inverses and the identity e

S′ =
{
e, a1, a

−1
1 , a2, a

−1
2 , . . .

}
.

Then a set of equivalence classes of words
formed from S′ with the law of composition de-
fined by juxtaposition (to obtain a product αβ of
two words α and β, we attach β to the end of
α; to obtain the inverse of α reverse the order of
symbols ai while replacing ai by a−1

i and vice
versa) is the free group F on the set S.

The equivalence relation (designated by “∼”)
used to define the equivalence classes is defined
via the elementary equivalences ee ∼ e, aia

−1
i

∼ e, a−1
i ai ∼ e, aie ∼ ai, a

−1
i e ∼ a−1

i , eai =
ai, ea

−1
i = a−1

i , so that α ∼ β if α is obtain-
able from β through a sequence of elementary
equivalences.

free module For a ring R, an R-module that
has a basis.
Remarks: (i.) If R is a field, then every R-
module is free (i.e., a linear space over R).

(ii.) A finitely generated module V is free if
there is an isomorphism φ : Rn → V , where R
is a commutator ring with unity.

(iii.) A free Z-module is also called a free
Abelian ring.
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free product Consider a family of groups
{Gi}i∈C and their disjoint union as sets S. A
word is either empty (or void) or a finite se-
quence a1a2 . . . an, of the elements of S. Des-
ignate by W the set of all words and define the
following binary relations on W :

(i.) The product of two words w and w′ is
obtained by juxtaposition of w and w′.

(ii.) w ' w′ if either w contains successive
elements akak+1 belonging to the same Gi and
w′ results from w by replacing akak+1 by their
product a = akak+1, or ifw contains an identity
element and w′ results by deleting it.

(iii.) w ∼ w′ if there exists a finite sequence
of words w = w0, w1, . . . , wn = w′ such that
for each j (j = 0, . . . , n−1) eitherwj ' wj+1
or wj+1 ' wj .

Clearly, the definition of the product imme-
diately implies the associativity and “∼” rep-
resents an equivalence relation that is compati-
ble with multiplication. We can thus define the
product for the quotient setG ofW by the equiv-
alence relation ∼, and take as the identity the
equivalence class containing the empty word.
The resulting group G is called the free product
of the system of groups {Gi}i∈C.
Remarks: (i.) The free product is the dual con-
cept to that of the direct product (and is called
the coproduct in the theory of categories and
functors).

(ii.) If each Gi is an infinite cyclic group
generated by ai , then the free product of {Gi}i∈C
is the free group generated by {ai}i∈C.

free resolution (Of Z) A certain cohomo-
logical functor, defined by Artin and Tate, that
can be described as a set of cohomology groups
concerning a certain complex in a non-Abelian
theory of homological algebras.

free semigroup All words (i.e., finite strings
of symbols from a set of symbols S =
{a1, a2, . . . }) with the product defined by jux-
taposition of words [and the identity being the
empty (void) word when a semigroup with iden-
tity is considered]. See also free group.

free special Jordan algebra Let A = k[x1,

. . . , xn] be a noncommutative free ring in the in-
determinates x1, . . . xn (i.e., the associative al-

gebra over k). Defining a new product by

x ∗ y = (xy + yx)/2 ,

we obtain a Jordan algebraA(J). The subalgebra
of A(J) generated by 1 and the xi is called the
free special Jordan algebra (of n generators).
Remark: A special Jordan algebra A(J) arises
from an associative algebra A by defining a new
product x ∗ y, as above.

Frobenius algebra An algebraA over a field
k such that its regular and coregular representa-
tions are similar.
Remarks: (i.) Any finite dimensional semi-
simple algebra is a Frobenius algebra.

(ii.) An algebra A is a Frobenius algebra,
if the left A-module A and a dual module A∗
of the right A-module A are isomorphic as left
A-modules.

Frobenius automorphism An element of a
Galois group of a special kind that plays an im-
portant role in algebraic number field theory.

Designate by K/F a relative algebraic num-
ber field, with K a Galois extension of F of
degree [K : F ] = n, G = G(K/F) the cor-
responding Galois group, and F the principal
order of K . In Hilbert’s decomposition theory
of prime ideals ofF , for a Galois extensionK/F

in terms of the Galois group G, the subgroup

H = {
σ ∈ G : Pσ = P}

,

called the decomposition group of a prime ideal
P ofF overF , plays an important role. The nor-
mal subgroup H of H , called the inertia group
of P over F , is defined by

H = {
σ ∈ H : aσ ≡ a(modP), a ∈ F

}
.

The quotient group H/H is a cyclic group
of order k, where k is the relative degree of P .
This cyclic group is generated by an element
σo ∈ H that is uniquely determined (modH) by
the requirement

aσo ≡ aN(π)(modP), a ∈ F

where π is a prime ideal of F that is being de-
composed. This element σo is referred to as the
Frobenius automorphism or the Frobenius sub-
stitution of P over F .
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See also ramification group, ramification
numbers, ramification field, Artin’s symbol.

Frobenius endomorphism For a commuta-
tive ringR with identity and prime characteristic
p, the ring homomorphisn F : R→ R, defined
by

F(a) = ap, (for all a ∈ R) .

Clearly, for any a, b ∈ R, we have that

(a + b)p = ap + bp and (a · b)p = ap · bp .
For a Galois extension K/Fp over a prime field
Fp of degree m := [K : Fp] (with pm = q

distinct elements), referred to as Galois field Fq

of order q, the Frobenius endomorphism

F : Fq → Fq, F : x (→ xp

is injective and thus an automorphism of Fq .
(See also Frobenius automorphism.) In fact, F
generates the cyclic Galois group G(Fq/Fp).

Generally, for a scheme X over a finite field
Fq of q(= pn) elements, the Frobenius endo-
morphism is an endomorphism ψ : X → X

such that ψ = Id (the identity mapping) on the
set of Fq–points ofX (i.e., on the set of points of
X defined over Fq ) and the mapping of the struc-
ture sheaf ψ∗ : OX → OX raises the elements
of OX to the qth power.

Thus, for an affine variety X ⊂ An defined
over Fq , we have

ψ (x1, . . . , xn) =
(
x
q

1 , . . . , x
q
n

)
.

Frobenius formula The characters χ [λ](α) of
the irreducible representation [λ] ≡ (λ1, λ2,

. . . , λn), associated with the class (α) ≡ (1α1

2α2 3α3 . . . nαn) of the symmetric (≡ permuta-
tion) group Sn, where the partitions [λ] and (α)
of n satisfy the relations

n∑
i=1

λi = n =
n∑
i=1

iαi ,

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 ,

are given by the following Frobenius formula:∑
λ

χ
[λ]
(α)J

[λ](x) = F(α)(x) ,

where F(α)(x) = J(x)s(α)(x) is the Frobenius
generating function (q.v.) and J[λ](x) is a gen-
eralized Vandenmonde determinant

J[λ](x) ≡ J(λ1λ2...λn) (x1, x2, . . . , xn)

=

∣∣∣∣∣∣∣∣∣∣

x
λ1+n−1
1 x

λ1+n−1
2 . . . x

λ1+n−1
n

x
λ2+n−2
1 x

λ2+n−2
2 . . . x

λ2+n−2
n

...
...

...

x
λn
1 x

λn
2 . . . x

λn
n

∣∣∣∣∣∣∣∣∣∣
.

An alternative form is

s(α)(x) =
∑
λ

χ
[x]
(α)S[λ](x) ,

whereS[λ](x) is Schur polynomial and s(α)(x) =∏n
r=1(sr (x))

αi is the product of αi th powers of
Newton polynomials

sr (x) =
n∑
i=1

xri .

See also Frobenius generating function.

Frobenius generating function For an arbi-
trary partition (α) of n, written in the form

(α) ≡ (
1α1 2α2 . . . nαn

)
,

n∑
i=1

iαi = n ,

the Frobenius generating function F(α)(x) ≡
F(α)(x1, . . . , xn) is given by the product

F(α)(x) = J(x)s(α)(x) ,

where J(x) is a polynomial, expressible as a
Vandermonde determinant

J(x) ≡ J(x1, x2, . . . , xn) =
∏
i<j

(
xi − xj

)

=

∣∣∣∣∣∣∣∣∣∣∣

xn−1
1 xn−1

2 . . . xn−1
n

...
...

x2
1 x2

2 . . . x2
n

x1 x2 . . . xn
1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
,

and s(α)(x) ≡ ∏n
i=1(sr (x))

αi is a product of
αi th powers of power sums (or Newton polyno-
mials) sr ,

sr (x) =
n∑
i=1

xri .
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See also Frobenius formula.

Frobenius group A (nonregular) transitive
permutation group on a set M , each element of
which has at most one fixed point, i.e., the iden-
tity of the group is its only element that leaves
more than one element of M invariant. See reg-
ular transitive permutation group.

Frobenius homomorphism (For commuta-
tive rings.) Let A be a commutative ring of
prime characteristic p, so that (a + b)p

n =
ap

n + bp
n

for any a, b ∈ A and any n ∈ N.
Thus, the map φ : a (→ ap is an endomorphism
of the additive group ofA. Since further 1p = 1
and (ab)p = apbp for a, b ∈ A, this is also an
endomorphism of A, which is referred to as the
Frobenius homomorphism of A. It is injective
when 0 is the only nilpotent element ofA, which
is the case when A is an integral domain. See
also Frobenius endomorphism for schemes.

Frobenius inequality Let f : X → Y, g :
Y → Z, and h : Z→ V be linear maps of finite
dimensional vector spaces over a division ring
(a skew-field). Then

rank (hg)+rank (gf ) ≤ rank (g)+rank (hgf ) .

Frobenius morphism See Frobenius auto-
morphism, Frobenius homomorphism, Frobe-
nius endomorphism.

Frobenius norm For an n × n matrix A,
the length, denoted ‖A‖, of the n2-dimensional
vector
(a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , ann),
i.e.,

‖A‖ =

 n∑
i,j=1

∣∣aij ∣∣2


1/2

.

Frobenius normal form An n × n matrix
A = (aij ) that is block (upper) triangular, with
the diagonal blocks being square irreducible ma-
trices that correspond to the strongly connected
components of G(A). Here, G(A) is the di-
rected graph (digraph), G(A) = (V ,E), con-
sisting of vertices V = {1, 2, . . . , n} and di-
rected edges E = {(i, j) : aij �= 0}. The

set V admits a partition into disjoint subsets of
vertices so that in each such subset the vertices
have access to each other via a directed path (se-
quence of edges). The subsets of this partition
are called the strongly connected components of
G(A).

If there is only one strongly connected com-
ponent, we call A irreducible. Otherwise, A
is reducible. If A is reducible, there exists a
permutation matrix P such that PAPT , is in
Frobenius normal form. For instance, if G(A)
has t strongly connected components, then its
Frobenius normal form is



A11 A12 . . . . . . A1t
0 A22 A23 . . . A2t

0 0
. . .

. . .
...

...
. . .

. . . At−1,t−1 At−1,t
0 . . . . . . 0 Att




,

where each Aii for i = 1, 2, . . . , t is square
and irreducible. The Frobenius normal form is
not, in general, unique. As for any permutation
matrix P , P−1 = PT , spectral properties of A
can be studied by studying spectral properties
of the irreducible blocks Aii in its Frobenius
normal form.

Frobenius Reciprocity Theorem Let G and
H be finite groups, > and γ some irreducible
representations of G and H , respectively, and
H a subgroup of G, H ⊂ G. Designate by (γ ↑
G) the representation of G induced by γ and
by (> ↓ H) the representation of H subduced
(restricted) from >. Then the multiplicity of >
in (γ↑G) equals the multiplicity of γ in (>↓H).
Equivalently,

〈χ(>), χ(γ↑G)〉G = 〈χ(>↓H), χ(γ )〉H ,

where χ(C) designates the character of the rep-
resentation C of X and

〈χ(C),X(C′)〉X = 1

|X|
∑
x∈X

χ(C)(x)χ(C′)(x) ,

is a normalized Hermitian inner product on the
class function space of X, X = H or G.

Frobenius substitution See Frobenius auto-
morphism.
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Frobenius Theorem There are a number of
theorems associated with the name of Frobenius.
(See also Frobenius Theorem on Non-Negative
Matrices, Frobenius Reciprocity Theorem.)

(1) (Frobenius Theorem on Division Alge-
bras.) The fields R (the field of real numbers)
and C (the field of complex numbers) are the
only finite dimensional real associative and com-
mutative algebras without zero divisors (i.e., di-
vision algebras), while H (the skew-field of
quaternions or Hamilton’s quaternion algebra)
is the only finite dimensional real associative,
but noncommutative, division algebra.

For nonassociative algebras, the only alterna-
tive algebra without zero divisors is the Cayley
algebra. See Cayley algebra, alternative algebra.

(2) (Frobenius Theorem for Finite Groups.)
For a finite group G of order |G| = g, the num-
ber of solutions of the equation xn = c, where
c belongs to a class C having h conjugated ele-
ments, is given by g.c.d. (hn, g).

The original, simpler version of this theorem
states that the number m of solutions of xn = 1,
where n|g, is divisible by n, i.e., n|m.

(3) (Frobenius Theorem for Transitive Per-
mutation Groups.) For a transitive permutation
groupG of degree n, whose elements, other than
the identity, leave at most one of the permuted
symbols invariant, the elements of G displacing
all the symbols form, together with the identity,
a normal subgroup of order n.

(4) (Also called Zolotarev-Frobenius Theo-
rem.) Let a be an arbitrary integer and b any odd
integer such that a and b are relatively prime,
i.e., g.c.d.(a, b) = 1. Further, let πa desig-
nate multiplication by a in the additive group
H := Z/bZ. Then πa (regarded as an automor-
phism of H ) represents a permutation of the set
H and as such possesses the parity (or sign) δ
given by

δ (πa) =
(a
b

)
,

where
(
a
b

)
is the Jacobi (generalized Legendre)

symbol.
(5) (Frobenius Theorem in Finite Group The-

ory.) Let H be a selfnormalizing subgroup of a
finite group G, NG(H) = H , and

H ∩ x−1Hx = {e} ,
for all x ∈ G. Then the elements of G that do
not lie in H , together with the identity element

e, form a normal subgroup N of G,

N = (G\H) ∪ {e} ,
such that G = NH, H ∩N = {e} and G/N ∼=
H . See also Frobenius group.

(6) (Frobenius Theorem on Abelian Varieties.)
Let G be an additive group of divisors on an
Abelian variety A, X a divisor on A, and Â the
Picard variety of A. Denote by φX a rational
homomorphism of A into Â that maps a ∈ A

into the linear equivalence class of the divisor
Xa −X, where Xa is the image of X under the
translationA→ A defined by b (→ a+b. There
are elements a1, . . . , an such that the product
(intersection) Xa1 • · · · •Xan , n = dimA is de-
fined. Designating the degree of the zero cycle
Xa1 • · · · • Xan by (X(n)), the degree of φx is
given by (X(n))/n!

(7) (Frobenius Theorem on Subduced Repre-
sentations.) Let G be a (finite) group having
r classes CN, (N = 1, . . . , r) with rN elements
each, |CN| = rN. Further, let {>i} be the set of
irreducible representations (irreps) of G, and χi
the character of >i . Similarly, let H be a sub-
group ofG having s classesDk with sk elements
each, and having the irreps {Jj } and characters
φj . Designate, further, the representation of H
subduced by >i by >̃i = >i ↓ H and its char-
acter by χ̃i . Then there exist rs nonnegative
integers cij such that

>̃i ∼= ⊕s
j=1 cijJj , (i = 1, . . . , r)

and

χ̃i =
s∑

j=1

cijφj , (i = 1, . . . , r) .

Clearly,

cij = 1

|H |
s∑

k=1

skχ̃i(k)φj (k) .

Finally,

r∑
i=1

cijχi(N) = |G|
rN|H |

∑
N′

sN′φj (N
′[N]) ,

where N′[N] labels the classes DN′ of H that are
contained in (CN ∩H) and have sN′ elements.
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Frobenius Theorem on Non-Negative Matri-
ces (Also called Peron-Frobenius Theorem.)

Let A be an indecomposable (or irreducible),
non-negativen×nmatrix over R, A ≡ ‖aij‖n×n
(i.e., all entries aij of A are non-negative and
there are no invariant coordinate subspaces
when we regard A as an operator on Rn; in other
words, aij ≥ 0 and there are no permutations of
rows and columns that would reduce the matrix
to the following block form(

A12 Q
A21 A22

)
) .

Further, let λ0, . . . , λn−1 be eigenvalues of A,
labeled in such a way that

ρ ≡ |λ0| = |λ1| = · · · =
∣∣λh−1

∣∣ > |λh| ≥ ∣∣λh+1
∣∣

≥ · · · ≥ |λn−1| , (1 < h ≤ n) .

Then
(i.) If A majorizes a complex matrix B, i.e.,∣∣bij ∣∣ ≤ aij , (i, j = 1, . . . , n)

and
ρB := max

0≤i<n
|µi | ,

withµ0, µ1, . . . , µn−1 the eigenvalues of B, we
have that

ρB ≤ ρ .

(ii.) A always has a positive eigenvalueρ that
is a simple root of the characteristic polynomial
of A and ρ majorizes the moduli of all other
eigenvalues as the above introduced notation (i)
implies. The coordinates ci (1 ≤ i ≤ n) of
an eigenvector c, c = (c1, c2, . . . , cn)

T that is
associated with this “maximal” eigenvalue ρ are
either all positive (ci > 0) or all negative (ci <
0).

(iii.) If A has h characteristic values λ0 =
ρ, λ1, . . . , λh−1 of modulus r , as in (i), then
these eigenvalues are all distinct and are given
by the roots of the equation λh − ρh = 0, i.e.,

λj = ωiρ, (j = 0, 1, . . . , h− 1)

where ω is the hth root of unity, ω = e2πi/h.
Moreover, any eigenvalue of A, multiplied by
ω, is again an eigenvalue of A. Thus, the entire
spectrum {λi, 0 ≤ i < n} of A is invariant with

respect to a rotation by 2π/h when represented
by points in the complex plane.

(iv.) Finally, if h > 1, the matrix A can be
brought to the following cyclic form

A =

∥∥∥∥∥∥∥∥∥∥∥

0 A12 0 . . . 0
0 0 A23 . . . 0
...

...
...

...

0 0 0 . . . Ah−1h
Ah1 0 0 . . . 0

∥∥∥∥∥∥∥∥∥∥∥
,

with square blocks along the diagonal, by a suit-
able permutation of rows and columns.

Fuchsian group A special case of a Kleinian
group, i.e., a finitely generated discontinuous
group of linear fractional transformations acting
on some domain in the complex plane. (See
Kleinian group, linear fractional function.)

Generally, a Fuchsian group is a discrete (or
discontinuous) transformation group of an open
disc X in C onto the Riemann sphere. More
specifically, one considers transformations of
the upper half-plane Xu = {z ∈ C : / z > 0} or
of the unit discXd = {z ∈ C : |z| < 1} onto the
complex plane. In the former case (X = Xu),
the elements of a Fuchsian group are Möbius
(linear fractional) transformations (or conformal
mappings)

z (→ az+ b

cz+ d
, a, b, c, d ∈ R, ad − bc = 1 ,

so that the relevant group is a subgroup of
PSL(2). In the latter case (X = Xd), the group
elements are Möbius transformations with
pseudo-unitary matrices.

When one considers the disc X as a con-
formal model of the Lobachevski plane, then
a Fuchsian group can be regarded as a discrete
group of motions in this plane that preserve the
orientation. A Fuchsian group is referred to as
elementary if it preserves a straight line in the
Lobachevski plane (or, equivalently, some point
in the closure X of X). For a nonelementary
Fuchsian group >, one then defines the limit set
of >, designated as L(>), as the set of limit
points of the orbit of a point x ∈ X located on
the circle ∂X and independent of x. We then
distinguish Fuchsian groups of the first and sec-
ond kind: for the former kind, we require that
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L(>) = ∂X, while in the second case L(>) is a
nowhere dense subset of ∂X.

For any z ∈ C ∪ {∞} (the extended com-
plex plane) and any sequence {γi} of distinct
elements of >, we define a limit point of > as a
cluster point of {γiz}. If there are at most two
limit points, > is conjugate to a group of mo-
tions of a plane. Otherwise, the set L of all limit
points of> is infinite, and> is called a Fuchsoid
group. Such a group is Fuchsian if it is finitely
generated.

Fuchsoid group See Fuchsian group. Also
called Fuchsoidal group.

function One of the most fundamental con-
cepts in mathematics. Also referred to as a
mapping, correspondence, transformation, or
morphism, particularly when dealing with ab-
stract objects. This concept gradually crystal-
ized from its early implicit use into the present
day abstract form. The term “function” was first
used by Leibniz, and it gradually developed into
a general concept through the work of Bernoulli,
Euler, Dirichlet, Bolzano, Cauchy, and others.
The modern-day definition as a correspondence
between two abstract sets is due to Dedekind.

Generally, a function f is a relation between
two sets, say X and Y , that associates a unique
element f (x) ∈ Y to an element x ∈ X. (See
relation.) The sets X and Y need not be distinct.
Formally, this many-to-one relation is a set of or-
dered pairs f = {(x, y)}, x ∈ X, y ∈ Y , that is,
a subset of the Cartesian productX×Y , with the
property that for any (x′, y′) and (x′′, y′′) from
f , the inequality y′ �= y′′ implies that x′ �= x′′.
The first element x ∈ X of each pair (x, y) ∈ f

is called the argument or the independent vari-
able of f and the second element y ∈ Y is re-
ferred to as the abscissa, dependent variable or
the value of f for the argument x.

The sets Xf and Yf of the first and second
elements of ordered pairs (x, y) ∈ f are called
the domain (or the set) of definition of f and the
range (or the set) of values of f , respectively,
while the entire setX is simply called the domain
and Y the codomain of f . For any subset A ⊂
X, the set of values of f , {y = f (x) ∈ Y :
x ∈ A} is called the image of A under f and is
designated by f (A). In particular, the image of
the domain of f is f (Xf ), i.e., Yf = f (Xf ) or

Yf = f (X), and the image of the element x ∈
Xf under f is y = f (x). Often one simply sets
X = Xf . The set of ordered pairs f = {(x, y)},
regarded as a subset of X × Y , is referred to as
the graph of f . (See graph.)

The mapping property of a function f is usu-
ally expressed by writing f : X → Y , and
for (x, y) ∈ f one often writes y = f (x) or
f : x (→ y, or even y = f x or y = xf . In lieu
of the symbol f (x0) one also writes f (x)|x=x0 ,
and often the function itself is denoted by the
symbol f (x) rather than f : x (→ y, since this
notation is more convenient for actual computa-
tions.

The set of elements ofX that are mapped into
a given y0 ∈ Y is called the pre-image of y0 and
is designated by f−1(y0), so that

f−1 (y0) = {x ∈ X : f (x) = y0} .
For y0 ∈ Y\Yf we have clearly f−1(y0) = ∅
(the empty set).

The notation f : X → Y indicates that the
setX is mapped into the setY . WhenX = Y , we
say that X is mapped into itself. When Y = Yf ,
we say that f maps X onto Y or that f is sur-
jective (or a surjection). Thus, f : X → Y is a
surjection (or onto) if for each y ∈ Y there ex-
ists at least one x ∈ X such that f : x (→ y. If
the images of distinct elements ofX are distinct,
i.e., if x′ �= x′′ implies that f (x′) �= f (x′′) for
any x′, x′′ ∈ X, we say that f is one-to-one, or
univalent, or injective (or an injection). Thus, f
is injective if the preimage of any y ∈ Yf con-
tains precisely one element from X, i.e., card
f−1(y) = 1, y ∈ Yf . The mapping f : X→ Y

that is simultaneously injective and surjective
(or one-to-one and onto) is referred to as bi-
jective (or a bijection). For a bijective func-
tion one defines the inverse function by f−1 =
{(y, f−1(y)), y ∈ Yf . See inverse function.

For two functions f : X → Y and g : Y →
Z, with Yf ⊂ Yg , the function h : X → Z that
is defined as

h(x) = g(f (x)), for all x ∈ Xf ,

is called the composite function of f and g (also
the superposition or composition of f and g),
and is designated by h = g ◦ f .

function algebra For a compact Hausdorff
space X, let C(X) [or CR(X)] be the algebra
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of all complex- [or real-] valued functions onX.
Then a closed subalgebraA ofC(X) [orCR(X)]
is referred to as a function algebra on X if it
contains the constant functions and separates the
points of X [i.e., for any x, y ∈ X, x �= y, there
exists an f ∈ A such that f (x) �= f (y)]. A
typical example is the disk algebra, that is, the
complex-valued functions, analytic in the unit
disk D = {|z| < 1}, which extend continuously
to the closure of D, with the supremum norm.

Alternatively, a function algebra is a semi-
simple, commutative Banach algebra, realized
as an algebra of continuous functions on the
space of its maximal ideals (recall that a com-
mutative Banach algebra is semi-simple if its
radical reduces to {0}, the radical being the set
of generalized nilpotent elements).

function field A type of extension of the field
of rational functions C(x) that plays an impor-
tant role in algebraic geometry and the theory of
analytic functions.

For an (irreducible) affine variety V (P),
where P is a prime ideal in C[x] ≡ C[x1, . . . ,
xn], the function field of V (P) is the field of
quotients of the affine coordinate ring C[x]/P .
Similarly, for a projective variety V (P), where
P is a homogeneous prime ideal in a projective
n-space Pn, the function field ofV (P) is the sub-
field of the quotient field of the homogeneous
coordinate ring C[x]/P of zero degree [i.e., the
ring of rational functionsf (x0, x1, . . . xn)/g(x0,

x1, . . . , xn) (f, g being homogeneous polyno-
mials of the same degree and g /∈ P) modulo
the ideal of functions (f/g), with f ∈ P]. See
also Abelian function field, algebraic function
field, rational function field.

function group A Kleinian group > whose
region of discontinuity has a nonempty, con-
nected component, invariant under >.

functor A mapping from one category into
another that is compatible with their structure.
Specifically, a covariant functor (or simply a
functor) F : C → D, from a category C into a
category D, represents a pair of mappings (usu-
ally designated by the same letter, i.e., F ).

F : Ob C → ObD, F : Mor C → MorD ,

associating with each object X of C, X ∈ Ob C
an object F(X) of D, F (X) ∈ ObD, and with
each morphism α : X → Y in C, α ∈ Mor C, a
morphismF(α) : F(X)→ F(Y ) inD, F (α) ∈
MorD, in such a way that the following hold:

(i.) F(1X) = 1F(X), for all X ∈ Ob C and

(ii.) F(α ◦ β) = F(α) ◦ F(β) for all mor-
phismsα ∈ HomC(X, Y ) andβ ∈ HomC(Y, Z).

Note that a functor F : C → D defines a
mapping of each set of morphisms HomC(X, Y )
into HomD(F (X), F (Y )), associating the mor-
phismF(α) : F(X)→ F(Y ) to each morphism
α : X→ Y . It is called faithful if all these maps
are injective, and full if they are surjective. The
identity functor IdC or 1C of a category C is the
identity mapping of C into itself.

A contravariant functor F : C → D asso-
ciates with a morphism α : X→ Y in C a mor-
phism F(α) : F(Y )→ F(X) in D (or, equiva-
lently, acts as a covariant functor from the dual
category C∗ to D), with the second condition
(ii.) replaced by (ii.′) F(α ◦ β) = F(β) ◦ F(α)
for all morphisms α ∈ HomC(X, Y ), β ∈
HomC(Y, Z).

A generalization involving a finite number
of categories is an n-place functor from n cate-
gories C1, . . . Cn into D that is covariant for the
indices i1, i2, . . . , ik and contravariant in the re-
maining ones. This is a functor from the Carte-
sian product ⊗n

i=1C̃i into D where C̃i = Ci for
i = i1, . . . , ik and C̃i = C∗i otherwise. A two-
place functor that is covariant in both arguments
is called a bifunctor.

fundamental curve A concept in the theory
of birational mappings (or correspondences) of
algebraic varieties. See birational mapping.

Consider complete, irreducible varieties V

and W and a birational mapping F between
them, F : V → W . A subvariety V ′ of V is
called fundamental if dim F [V ′] > dim V ′.

When V ′ is a point, it is called a fundamental
point with respect toF and, likewise, whenV ′ is
a curve, it is referred to as a fundamental curve
with respect to F .

See also Cremona transformation for a bira-
tional mapping between projective planes.

Remarks: A variety V is irreducible if it is
not the union of two proper subvarieties and any
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algebraic variety can be embedded in a complete
variety.

A projective variety is always complete, while
an affine variety over a field F is complete when
it is of zero dimension.

fundamental exact sequence A concept in
the theory of homological algebras.

Let Hi(G,A) be the ith cohomology group
of G with coefficients in A, where A is a left G-
module (that can be identified with a left Z[G]-
module). (See cohomology group.) Designate,
further, the submodule of G-invariant elements
inAbyAG and assume thatHi(H,A) = 0, i =
1, . . . , n, for some normal subgroup H of G.
Then the sequence

O → Hn
(
G/H,AH

)
→ Hn(G,A)

→ Hn
(
H,AG

)
→ Hn+1

(
G/H,AH

)
→ Hn+1(G,A)

(composed of inflation, restriction, and trans-
gression mappings) is exact and is referred to as
the fundamental exact sequence.

fundamental operations of arithmetic The
operations of addition, subtraction, multiplica-
tion, and division. See operation. Often, extrac-
tion of square roots is added to this list.

Starting with the set N of natural numbers,
which is closed with respect to the first three
fundamental operations, one carries out an ex-
tension to the field of rational numbers Q rep-
resenting the smallest domain in which the four
fundamental operations can be carried out in-
discriminately, excepting division by zero. Ad-
joining the operation of square root extractions,
we arrive at the field of complex numbers C.

These operations can be defined for various
algebraic systems, in which case the commuta-
tive and associative laws may not hold.

fundamental point See fundamental curve.

fundamental root system (of a (complex)
semi-simple Lie algebra g) A similar concept
arises in Kac-Moody algebras, in algebraic
groups, algebraic geometry, and other fields. Let

T be a subset of the root system J of a semi-
simple Lie algebra g, relative to a chosen Cartan
subalgebra h, T = {α1, α2, . . . , αr}. Then T

is called a fundamental root system of J if
(i.) any root α ∈ J is a linear combination

of the αi with integral coefficients,

α =
r∑

i=1

miαi, mi ∈ Z ,

and
(ii.) the mi are either all non-negative (when

α ∈ J+ is a positive root) or all non-positive.
The roots belonging toT are usually referred

to as simple roots. They can be defined as pos-
itive roots that are not expressible as a sum of
two positive roots. They are linearly indepen-
dent and constitute a basis of the Euclidean vec-
tor space spanned by J whose (real) dimension
equals the rank of g.

fundamental subvariety See fundamental
curve.

fundamental system (Of solutions of a sys-
tem of linear homogeneous equations)

n∑
j=1

aij xj = 0, i = 1, . . . , m) . (1)

Let fi =
n∑

j=1

aijXj , (i = 1, . . . , m) be linear

forms over a field F, fi : Fn → F . Clearly,
the solutions of (1) form a (right) linear space
V over F , since if xik ≡ (x

(k)
1 , . . . , x

(k)
n ) ∈

Fn, (k = 1, . . . , r) are solutions of (1), so
is their (right) linear combination

∑r
j=1 xj cj ,

cj ∈ F . In fact, V is the kernel of the (left) lin-
ear mapping G : Fn → Fm given by G : x (→
(f1(x), . . . , fm(x)). Designating the dimension
of V by d, d = dim V , we can distinguish the
following cases:

(i.) d = 0: In this case the system (1) has
only the trivial solution x = 0.

(ii.) d > 0: Choosing a basis {x1, . . . , xd}
for V , we see that any solution of (1) is a (right)
linear combination of the xk , (k = 1, . . . , d).
One then says that x1, . . . , xd form a fundamen-
tal system of solutions of (1). Clearly, a nontriv-
ial solution is found if and only if r < n, r being
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the rank of the matrix A = ‖aij‖ [or, equiva-
lently, the number of linearly independent lin-
ear forms fi, (i = 1, . . . , m)], and the number
of linearly independent fundamental solutions is
d = n − r . Since m ≥ r , we see that a non-
trivial solution always exists if the number of
equations is less than the number of unknowns.

fundamental system of irreducible represen-
tations (Of a complex semisimple Lie alge-
bra g.) Consider a complex semisimple Lie al-
gebra g and fix its Cartan subalgebra h. Let
k = dim h = rank g, h∗ the dual of h, consist-
ing of complex-valued linear forms on h, and h∗R
the real linear subspace of h∗, spanned by the
root system J. Let, further, T = {α1, . . . , αk}
be the system of simple roots (see fundamental
root system) and define

α∗i =
2αi

(αi, αi)
,

where (α, β) is a symmetric bilinear form on h∗
defined by the Killing form K(·, ·) as follows:

(α, β) = K
(
tα, tβ

)
,

tα being a star vector associated to α, tα = ν−1

(α), where ν designates the bijection ν : h →
h∗. Let, further, U1, . . . , Uk be a basis of h∗R
that is dual to α∗1 , . . . , α∗N , i.e., (Ui, α

∗
j ) = δij .

Then the set of irreducible representations {>1,

. . . , >k} that have U1, . . . , Uk as their highest
weights is called the fundamental system of irre-
ducible representations (irreps) associated with
T.

Fundamental Theorem of Algebra Every
nonconstant polynomial (i.e., a polynomial with
a positive degree) with complex coefficients has
a complex root.

Also called Euler-Gauss Theorem.

Fundamental Theorem of Arithmetic Ev-
ery nonzero integer n ∈ Z can be expressed as
a product of a finite number of positive primes
times a unit (±1), i.e.,

n = Cp1p2 . . . pk ,

where C = ±1, k ≥ 0 and pi, i = 1, . . . , k
are positive primes. This expression is unique
except for the order of the prime factors.

Fundamental Theorem of Galois Theory
Let K be a Galois extension of a field M with a
Galois group G = G(K/M). Then there exists
a bijectionH ↔ L between the set of subgroups
{H } of G and the set of intermediate fields {L},
K ⊃ L ⊃ M . For a givenH , the corresponding
subfield L = L(H) is given by a fixed field
KH of H (consisting of all the elements of K
that are fixed by all the automorphisms of H ).
Conversely, to a givenL corresponds a subgroup
H = H(L) of G that leaves each element of
L fixed, i.e., H(L) = G(K/L), so that [K :
L] = |H |. This bijection has the property that
[L : M] = [G : H ], where [L : M] is the
degree of the extension L/M and [G : H ] is the
index of H in G.

Also called Main Theorem of Galois Theory.

Fundamental Theorem of Proper Mapping
A basic theorem in the theory of formal schemes,
also called formal geometry, in algebraic geom-
etry. See formal scheme.

Let f : S → T be a proper morphism of
locally Noetherian schemes S and T , T ′ a closed
subscheme of T , S′ the inverse image of T ′
(given by the fiber product S×T T

′) and, finally,
Ŝ and T̂ the completions of S and T along S′ and
T ′, respectively. Then f̂ : Ŝ → T̂ (the induced
proper morphism of formal schemes) defines the
canonical isomorphism(

Rnf∗(X)
)
|T ′ ∼= Fnf̂∗(X|S′), n ≥ 0

for every coherent OS-module X on S, i.e., a
sheaf of OS-modules.

For a coherent sheaf X on S, X|S′ denotes
the completion of X along S′. Rnf∗ is the right
derived functor of the direct image f∗(X) of X.

Fundamental Theorem of Symmetric Poly-
nomials Any symmetric polynomial innvari-
ables, p(x) ≡ p(x1, x2, . . . xn), from a poly-
nomial ring R[x] ≡ R[x1, x2, . . . xn], can be
uniquely expressed as a polynomial in the ele-
mentary symmetric functions (or polynomials)
s1, s2, . . . , sn in the variables xi . See elementary
symmetric polynomial.

In other words, for each p(x) ∈ R[x] there
exists a unique polynomial π(z) ∈ R[z], z ≡
(z1, z2, . . . , zn) such that

p (x1, x2, . . . , xn) = π (s1, s2, . . . , sn) ,
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where si are the elementary symmetric polyno-
mials (functions)
s1 = ∑n

i=1 xi ,
s2 = ∑

i<j xixj ,
s3 = ∑

i<j<k xixj xk ,
...

sn = x1x2 · · · xn.
Also called Main Theorem on Symmetric

Polynomials.

Fundamental trigonometric identities Re-
call that in a plane R2 with a Cartesian coordi-
nate system O−xy (i.e., with the origin O ≡
(0, 0) and the x- and y- axes representing the
abscissa and the ordinate), any point P ∈ R2 is
uniquely represented by its coordinates (x, y).
Designating the radial distance OP by r, r =√
x2 + y2, and the angle POx (i.e., angle be-

tween the line PO and the x-axis) by α, we
define six ratios as follows:

sin α = y
r
, cosα = x

r
,

tan α = y
x
, cot α = x

y
,

secα = r
x
, csc α = r

y
.

These functions of α are called trigonometric or
circular functions. They are interrelated as fol-
lows

tan α = sin α
cosα , cot α = cosα

sin α = 1
tan α ,

secα = 1
cosα , csc α = 1

sin α ,

1+ tan2 α = sec2 α, 1+ cot2 α = csc2α.

Furthermore, we have that

sin2 α + cos2 α = 1 ,

implying that the points P = (x, y) lying on
the unit circle x2+ y2 = 1 with its center at the
origin (0, 0) can be expressed in terms of the
angle α as P = (cosα, sin α).

The important addition formulas read
sin(α ± β) = sin α cosβ ± cosα sin β,
cos(α ± β) = cosα cosβ ∓ sin α sin β,
tan(α±β) = (tan α± tan β)/(1∓ tan α tan β).
When α = β we have
sin 2α = 2 sin α cosα,
cos 2α = cos2 α − sin2 α = 2 cos2 α − 1 =
1− 2 sin2 α,
and for a general integral multiple of α

sin nα =
[(n−1)/2]∑

j=0

(
n

2j+1

)
(−1)j sin2j+1 α cosn−(2j+1) α,

cos nα = ∑[n/2]
j=0

(
n
2j

)
(−1)j sin2j α cosn−2j α,

while the half-angle formulas are

sin2 (
α
2

) = 1
2 (1− cosα),

cos2
(
α
2

) = 1
2 (1+ cosα),

tan2
(
α
2

) = 1−cosα
1+cosα .

The addition formulas are

sin α + sin β = 2 sin α+β
2 cos α−β

2 ,

sin α − sin β = 2 cos α+β
2 sin α−β

2 ,

cosα + cosβ = 2 cos α+β
2 cos α−β

2 ,

cosα − cosβ = −2 sin α+β
2 sin α−β

2 ,

and the product formulas are

2 sin α cosβ = sin(α + β)+ sin(α − β),
2 cosα sin β = sin(α + β)− sin(α − β),
2 cosα cosβ = cos(α + β)+ cos(α − β),
−2 sin α sin β = cos(α + β)− cos(α − β).

fundamental unit By Dirichlet’s Unit The-
orem, the unit group Ek of an algebraic number
field k is the direct product of a cyclic group of
a finite order and the free Abelian multiplicative
group of rank r (note that r = r1+r2−1, where
r1 and r2 designate, respectively, the number of
real and complex conjugates x(i), i = 1, . . . , n
of any x ∈ k, so that r1 + 2r2 = n, n being the
degree of k over Q). A basis (e1, e2, . . . , er ) of
this free Abelian group is referred to as a system
of fundamental units of k. See Dirichlet Unit
Theorem, unit group.

fundamental vectors The vectors e1, e2, . . . ,

en of an n-dimensional vector space V over F ,
forming a basis of V , are referred to as funda-
mental vectors of V . Clearly, for any x ∈ V , we
have that x = ∑n

i=1 ξiei , ξi ∈ F , and the ξi are
called the components of x, with respect to the
fundamental vectors e1, . . . , en.
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G
Galois cohomology Let K/k be a finite Ga-
lois extension with the Galois group G(K/k).
Suppose, further, that G(K/k) acts on some
Abelian group A. The Galois cohomology
groups Hn(G(K/k), A) ≡ Hn(K/k,A), n ≥
0 are then the cohomology groups defined by the
(cochain) complex (F n, d), with Fn consisting
of all mappings G(K/k)n → A and d designat-
ing the coboundary operator (see cohomology
groups). When the extension K/k is of an in-
finite degree, one also requires that the Galois
topological group acts continuously on the dis-
crete group A and the mappings for the cochains
in Fn are also continuous.

One also defines Galois cohomology for a
non-Abelian group A, in which case one usually
restricts oneself to zero- and one-dimensional
cohomology groups, H 0 and H 1, respectively.
In the first case, H 0(K/k,A) = AG(K/k) repre-
sents a set of fixed points in A under the action
of the Galois group G(K/k), while in the sec-
ond case H 1(K/k,A) is the quotient set of the
set of 1-dimensional cocycles.

The concept of Galois cohomology enables
one to define the cohomological dimension of
the Galois group Gk of a field k. See coho-
mological dimension. Non-Abelian Galois co-
homology enables the classification of principal
homogeneous spaces of group schemes and, in
particular, to classify types of algebraic varieties
(using Galois cohomology groups of algebraic
groups).

Also called cohomology of a Galois group.
See also Tamagawa number, Tate-Shafarevich
group.

Galois equation Let K/k be a finite Galois
extension with the Galois group G(K/k). Then
K is a minimal splitting field of a separable poly-
nomial f (X) ∈ k[X], and we call G(K/k) the
Galois group of f (X) or the Galois group of
the algebraic equation f (X) = 0. (See min-
imal splitting field, separable polynomial.) If
G(K/k) is Abelian or cyclic, we call the equa-

tion f (X) = 0 an Abelian equation or a cyclic
equation, respectively. (See Abelian equation.)
When the extension field K can be obtained by
adjoining a root α of f (X) to k, K = k[α],
then the equation f (X) = 0 is called a Galois
equation.

Galois extension A finite field extensionK/k

such that the order of the Galois group G(K/k)

is equal to the degree [K : k] = dimk K of the
field extension K , i.e.,

|G(K/k)| = [K : k] = dimk K .

Remarks:
(i.) The degree [K : k] of the field exten-

sion K/k, k ⊂ K , equals the dimension of K

as a k-vector space, [K : k] = dimk K . One
distinguishes quadratic ([K : k) = 2), cubic
([K : k] = 3), biquadratic (K : k] = 4), finite
([K : k] <∞), etc., extensions.

(ii.) All quadratic and biquadratic extensions
are Galois extensions.

(iii.) For any finite field extension K/k, the
order of the Galois group g ≡ |G(K/k)| divides
the degree of the extension [K : k], i.e., g|[K :
k].

(iv.) For a Galois extensionK/k with the Ga-
lois group G(K/k), the fixed field KG is given
by k, i.e., KG = k. See also Galois theory.

Galois field Finite fields Fq, q = pn, are
also called Galois fields. See finite field.

Galois group For an extension K of a field k,
the group of all k-automorphisms of K is called
the Galois group of the field extension K/k and
is denoted by G(K/k).

Remarks:
(i.) A k-automorphism of an extension field

K is an automorphism that acts as the identity
on the subfield k. It is also referred to as an
automorphism of a field extension K .

(ii.) Since every Galois extension is a split-
ting field of some polynomial f (x) ∈ k[x],
and any two splitting fields K of a polynomial
f (x) ∈ k[x] are isomorphic, the Galois group
G(K/k)depends only onf (up to isomorphism).
See Galois extension. Thus, if K is the splitting
field of f (x) ∈ k[x], the Galois group G(K/k)

is also referred to as the Galois group of the
polynomial over k.
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Galois theory In a broad sense, a theory
studying various mathematical objects on the
basis of their automorphism groups (e.g., Galois
theories of rings, topological spaces, etc.). In a
narrower sense, it is the Galois theory of fields
that originated in the problem of finding of roots
of algebraic equations of higher degrees (e.g.,
quintic and higher). This problem was solved
by Galois in his famous letter that he wrote on
the eve of his execution (1832) and laid unread
for more than a decade. In today’s language,
this theory may be summarized as follows.

Consider an arbitrary field k. An extension
(field) K of k is any field containing k as a sub-
field, k ⊂ K , and may be regarded as a lin-
ear space over k (finite or infinite dimensional;
dimk K ≡ [K : k] is called the degree of the ex-
tension K/k). One says that α ∈ K is algebraic
over k if it is a root of a non-zero (irreducible)
polynomial p(x) ∈ k[x] from a polynomial ring
k[x] (i.e., with coefficients from k). The small-
est extension of k containing α is usually de-
noted by k(α), and the smallest extension of k

that contains all the roots of an irreducible poly-
nomial p(x) ∈ k[x] is called the splitting field
of p(x). The degree of such an extension is di-
visible by the degree of p(x) and is equal to this
degree if all the roots of p(x) can be expressed
as polynomials in one of these roots. A finite ex-
tension K/k is separable if K = k(α) and the
irreducible polynomial p(x) with α as a root has
no multiple roots, and normal if it is the split-
ting field of some polynomial in k[x]. When
the extension is both separable and normal it is
called a Galois extension. See Galois extension.
If char k = 0 (e.g., k is a number field), any
finite extension is separable.

The group of all automorphisms of a Galois
extension K , leaving all elements of k invari-
ant, is the Galois group G(K/k). The relation-
ship between its subgroups H, H ⊂ G, and the
corresponding intermediate extension fields L,
k ⊂ L ⊂ K , is described by the Fundamental
(or Main) Theorem of Galois theory. See Funda-
mental Theorem of Galois Theory. In this way,
the difficult problem of finding all subfields ofK
is reduced to a much simpler problem of deter-
mining the subgroups of G(K/k). Moreover, if
H is normal, L is a Galois extension. These re-
sults are then exploited in studying the solutions
of algebraic equations. If K is the splitting field

of an irreducible polynomial p(x) ∈ k[x] with-
out multiple roots, the Galois group G(K/k) is
referred to as the Galois group of the equation
(or polynomial) p(x) = 0. This group can be
computed without actually solving the equation
and can be regarded as a subgroup of the group
of permutations of the roots of p(x). In the gen-
eral case, it is simply the permutation group of
all the roots, i.e., the symmetric group of de-
gree n = deg[p(x)]. Since such a group is not
solvable for n ≥ 5, there are no solutions in rad-
icals for the quintic and higher degree algebraic
equations. This theory can also be employed to
decide which problems of geometry are solvable
by ruler and compass (by reducing them to an
equivalent problem of solving some algebraic
equation over the field of rational numbers in
terms of quadratic radicals).

Galois theory had an enormous impact on the
development of algebra during the nineteenth
century. It was extended and generalized in var-
ious directions (Galois topological groups, class
field theory, inverse problem of Galois theory,
etc.), even though many important problems of
the classical Galois theory remain unsolved.

Galois theory of differential fields Let K be
a differential field and N a field extension. The
corresponding Galois group, G(N/K), is the set
of all differential isomorphisms of N over K .

gap value A concept from the theory of al-
gebraic functions.

Consider a closed Riemann surface R of
genus g. When R carries no meromorphic func-
tion whose only pole of multiplicity m is at a
point p ∈ R, then m is called a gap value of
p ∈ R.

The Riemann-Roch Theorem implies that if
g = 0, then no point has gap values, while if
g ≥ 1, then every p ∈ R has exactly g gap
values. A point p ∈ R is an ordinary point
if m at p equals 1, 2, . . . , g and a Weierstrass
point otherwise. See ordinary point, Weierstrass
point. See also Riemann-Roch Theorem.

gauge transformation A concept which
arose in Maxwell’s formulation of the electro-
magnetic field theory and was later extended to
more general field theories. In mathematics, it
is used to designate bundle automorphisms of a

c© 2001 by CRC Press LLC



principle fiber bundle over a (space-time) man-
ifold that is endowed with a group structure.
In general, gauge transformations (in both clas-
sical and quantum field theories) change non-
observable field properties (potentials) without
affecting the physically observable quantities
(observables).

In electromagnetic field theory, the gauge
transformation (also called gradient transfor-
mation or gauge transformation of the second
kind) has the form

φ → φ′ = φ + ∂f

∂t
, A → A′ = A− gradf ,

whereφ and A designate, respectively, the scalar
and vector potentials of the field and f is an ar-
bitrary (twice differentiable) scalar function of
space and time. Equivalently, using the formal-
ism of special relativity, the 4-component elec-
tromagnetic vector potentialAj(x), j = 0, 1, 2,
3 and x = (x0, x1, x2, x3), transforms as fol-
lows:

Aj(x)→ A′j (x) = Aj(x)+ ∂f

∂xj
.

This transformation does not change the fields
involved implying the gauge invariance of the
underlying field theory. It may be used to sim-
plify the relevant field equations through a suit-
able choice of gauge, i.e., of a function f (x)

(Coulomb gauge, Lorentz gauge, etc.).
In Weyl’s unified field theory (which origi-

nated from the theory of Cartan’s connections),
one employs a space (time) whose structure is
defined by the fundamental tensor gij , the co-
variant derivative of which is defined in terms
of the electromagnetic potential Ai as follows:

∇igjk = 2Aigjk .

This equation is invariant with respect to the
scale transformation gij → g′ij = ρ2gij and
the gauge transformation

Ai → A′i = Ai − ∂ log ρ

∂xi
.

For complex valued fields (required in quan-
tum field theories), the theory must also be in-
variant with respect to gauge transformations (of
the first kind) of the wave functions �(x) in-
volved, which have the general form

�(x)→ �′(x) = eig(x)�(x) .

For example, for the complex valued fields�(x)

interacting via the electromagnet fieldAi(x) that
is generated by the electric charges, the theory
(i.e., the field equations and the Lagrangians)
should be invariant with respect to gauge trans-
formations of the type

�(x)→ �′(x) = eif (x)�(x) ,

�∗(x)→ �′∗(x) = e−if (x)�∗(x) ,
Aj (x)→ A′j (x) = Aj(x)+ ∂f (x)

∂xj .

Such gauge transformations form an Abelian
group of transformations [with the binary op-
eration f (x) = g(x)+ h(x) for two successive
gauge transformations g and h].

The concept of gauge transformations has
been generalized to various field theories. In
mathematics, one employs this concept in ex-
ploring principle fiber bundles over a manifold
endowed with the group structure. A (gauge)
potential is then a connection on this bundle
and a gauge transformation is a bundle auto-
morphism that leaves the underlying manifold
pointwise invariant. These automorphisms form
a group of gauge transformations.

Gaussian elimination A method for succes-
sive elimination of unknowns when solving a
system of linear algebraic equations ("0),

n∑
j=1

aij xj − ai0 = 0, i = 1, . . . , m, ("0)

where aij are elements of some field F . As-
suming that a11 �= 0 (otherwise, renumber the
equations), the key algorithmic step can be de-
scribed as follows:

Multiply the first equation by (a21/a11) and
subtract it (term by term) from the second equa-
tion. Next, multiply the first equation by (a31/

a11) and subtract it from the third equation, etc.,
until the first equation is multiplied by (am1/a11)

and subtracted from the last (i = m) equation
of the system ("0).

Designate the resulting system of equations
with the first equation deleted by ("1), and carry
out the same set of operations on ("1) obtain-
ing ("2), etc. Assuming that the rank of the
coefficient matrix of ("0) [which is also called
the rank of the system of equations ("0)], r =
rank("0), is smaller than m, r < m, we obtain,
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after the rth step, a system ("r) in which all the
coefficients of the unknowns vanish. The sys-
tem ("0) [or ("r)] is called compatible, if in
("r) all the absolute terms vanish as well (i.e.,
when the rank of the coefficient matrix equals
the rank of the augmented matrix); otherwise it
is incompatible and has no solution.

To obtain a solution of a compatible system,
we choose some solution (x

(0)
r , · · · , x(0)

n ) of the
system ("r−1) and proceed by the back sub-
stitution to ("r−2), ("r−3), etc., until ("0) is
reached. See back substitution. In general, we
can choose a solution for ("r−1)by assigning ar-
bitrary values to then−r variablesxr+1, . . . , xn,
say xj = cj−r (j = r + 1, . . . , n), so that

x(0)
r = (a(r−1)

r0
−

n∑
j=r+1

a
(r−1)
rj cj−r )/a

(r−1)
rr

and x
(0)
j = cj−r for j = r + 1, . . . , n. The

(general) solution will then depend on r − n

arbitrary parameters cj ∈ F , j = 1, . . . , n− r .
Once we have a solution of ("r−1), the back

substitution proceeds by assigning the values
x
(0)
r , . . . , x

(0)
n to the unknowns xr , . . . , xn in

the first equation of ("r−2), obtaining xr−1 =
x
(0)
r−1, and thus a solution (x

(0)
r−1, x

(0)
r , . . . , x(0)

n )

of ("r−2). These values for xr−1, . . . , xn are
then substituted into the first equation of ("r−3),
obtaining xr−2 = x

(0)
r−2, etc., until a solution

(x
(0)
1 , x

(0)
2 , . . . , x

(0)
n ) of ("0) is obtained. The

general solution results when the cj (j = 1, . . . ,
n− r) are regarded as free parameters.

This method can be generalized in various
ways. (See Gauss-Jordan elimination.) It can
also be formulated in terms of a general m × n

(or m×n+1) matrix A over F [representing the
coefficient (or augmented) matrix of a system
("0)], in which case it is normally referred to as
the row reduction of A. The algorithm can then
be conveniently expressed through the so-called
elementary row operations, which in turn can be
represented by the elementary matrices of three
basic types [(I + aeij ), i �= j , replacing the ith
rowXi byXi+aXj , I+eij+eji−eii−ejj , inter-
changing rows i and j , and I+(c−1)eii , c �= 0,
multiplying the ith row by c] acting from the left
on A. Clearly, the action of the elementary ma-
trices and of their inverses on the augmented
matrix A of a system ("0) produces an equiv-

alent system of linear algebraic equations, and
the process of Gauss elimination can thus be
represented by a product of corresponding ele-
mentary matrices.

In practical applications, when numerical ac-
curacy is at stake, one can also require that the
diagonal coefficients (the so-called pivots) are
not only different from zero, but the largest ones
possible: in partial pivoting one chooses the ab-
solutely largest aii (from the ith column), and in
complete pivoting the absolutely largest element
of the entire coefficient matrix (by appropriately
renumbering the unknowns).

Also called Gauss method, Gauss elimina-
tion method or Gauss algorithm for solving lin-
ear systems of algebraic equations. See also
forward elimination.

Gaussian integer A complex number (a +
bi) with integer a and b. The Gaussian inte-
gers are thus the points of a square lattice in the
complex plane, forming the ring

Z[i] = {a + bi : a, b ∈ Z} .
In fact, Z[i] is an integral domain (with four
units ±1,±i) and, using the absolute value
squared as a size function, it is also a Euclidean
domain (and, hence, principal ideal domain and
thus a unique factorization domain). The prime
elements (called Gauss primes) are either ra-
tional primes that are congruent to 3 modulo 4
(i.e., 3, 7, 11, 19, etc.), or the complex numbers
(a + ib) whose norm squared N = a2 + b2 is
either a rational prime congruent to 1 modulo 4
or 2 (i.e., 1+ i, 1+ 2i, 3+ 4i, etc.).

(Also called Gauss integer or Gauss number.)

Gaussian ring A unique factorization do-
main. See unique factorization domain.

Gaussian sum Let χ(n, k) be a numerical
character modulo k. Then a trigonometric sum
of the form

G(a, χ) =
k−1∑
n=0

χ(n, k)e
2πi(an)

k

is referred to as the Gauss(ian) sum modulo k. It
is thus fully defined by specifying the character
χ(n, k) and the number a. Note that when a ≡
b(mod k), then G(a, χ) = G(b, χ).
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The Gauss sum is exploited in number the-
ory where it enables one to establish a relation
between the multiplicative and additive charac-
ters.

Gauss-Jordan elimination A variant of the
Gauss elimination method, in which one zeros
out the elements in the entire column, rather than
only below the diagonal. See Gaussian elimina-
tion.

The initial step is identical with that of Gauss
elimination, while in the subsequent steps one
subtracts the ith equation multiplied by (aji/aii)

from all the other equations. Consequently, the
upper left submatrix of the coefficient matrix
after the ith iteration is diagonal or, by dividing
each equation by the diagonal coefficient, it is a
unit matrix. In this way, one obtains the solution
of the system directly, without performing the
substitution. The coding of this algorithm is
simpler than for Gauss elimination, although the
required computational effort is larger.

Also called sweeping-out method.

Gauss-Manin connection A way to differ-
entiate cohomology classes with respect to pa-
rameters. See cohomology class.

The first de Rham cohomology group

H 1
dR(X/K)

of a smooth projective curve X over a field K

can be identified with the space of differentials
(of the second kind) on X modulo exact differ-
entials. Each derivative θ of K can be lifted in a
canonical way to a mapping ∇θ of H 1

dR(X/K)

into itself such that

∇θ (f ω) = f∇θ (ω)+ θ(f )ω ,

where f ∈ K and ω ∈ H 1
dR(X/K). This im-

plies an integrable connection

∇ : H 1
dR(X/K)→ -1

K ⊗H 1
dR(X/K)

called the Gauss-Manin connection. This can be
generalized to higher dimensions as well as to
other algebraic or analytic structures. See also
Hodge theory.

Gauss-Seidel method for solving linear equa-
tions An iterative numerical method, also

called the single step method, for approximat-
ing the solution to a system of linear equations.
In more detail, suppose we wish to approximate
the solution to the equation Ax = b, where A

is an n × n square matrix, and x and b are n

dimensional column vectors. Write A = L +
D + U , where L is lower triangular, D is di-
agonal, and U is upper triangular. The matrix
L + D is easy to invert, so replace the exact
equation (L+D)x = −Ux + b by the relation
(L+D)xk = −Uxk−1 + b, and solve for xk in
terms of xk−1:

xk = −(L+D)−1Uxk−1 + (L+D)−1b .

This gives us the core of the Gauss-Seidel iter-
ation method. We choose a convenient starting
vector x0 and use the above formula to compute
successive approximations x1, x2, x3, . . . to the
actual solution x. Under suitable conditions, the
sequence of successive approximations does in-
deed converge to x. See also iteration matrix.

Gauss’s Theorem (1) See Fundamental The-
orem of Algebra.

(2) Let R be a unique factorization domain.
Every polynomial from R[X] or R[X1, . . . ,

Xn] (which are also unique factorization do-
mains) can be uniquely expressed as a product
of certain primitive polynomials and an element
of R. See primitive polynomial. Then a product
of primitive polynomials is primitive.

A number of other theorems in analysis are
associated with Gauss’s name, e.g., the so-called
“Theorema Egregium” or Gauss curvature for
regular surfaces in E3, Mean Value Theorem for
Harmonic Functions, Gauss-Bonnet Theorem,
etc.

GCR algebra A generalization of CCR [com-
pletely continuous (= compact) representation]
algebras that are also referred to as liminal or
liminary algebras. See CCR algebra.

A GCR algebra is a C∗-algebra having a
(possibly transfinite) composition series whose
factor algebras are CCR (i.e., if Iλ is a compo-
sition series of our C∗-algebra, then Iλ+1/Iλ is
CCR). See composition series. This is equiva-
lent to requiring that the trace quotients be con-
tinuous.

Equivalently, a C∗-algebra is GCR if the im-
age of every nontrivial representation contains

c© 2001 by CRC Press LLC



some nonzero compact operator. Thus, starting
with a largest CCR ideal I0 of a givenC∗-algebra
A that consists of all elements a ∈ A whose im-
age π(a) is compact for all irreducible represen-
tations π , we construct the factor algebra A/I0.
Continuing this process, we eventually obtain
the largest GCR ideal of A. This will turn out to
be the C∗-algebra A itself if it is GCR. Clearly,
any CCR algebra is GCR while the converse is
false.

Also called postliminary algebra.

Gel’fand-Mazur Theorem A complex Ba-
nach algebra is a field if and only if it coincides
with the field of complex numbers C.

See Banach algebra.

Gel’fand-Naimark Theorem Any C∗-alge-
bra admits a faithful (i.e., injective) representa-
tion on some Hilbert space.

More precisely, any C∗-algebra A is isomet-
rically ∗-isomorphic to aC∗-subalgebra of some
algebra B(H) of bounded linear operators on a
Hilbert space H . Thus, a C∗-algebra is a Ba-
nach algebra of (bounded linear) operators on
a Hilbert space H (with the usual operations of
addition, multiplication by scalars, and product
of operators) which is closed under the taking
of adjoints.

Moreover, if A is separable, then H can be
assumed to be separable as well.

Gel’fand-Pyatetski-Shapiro Reciprocity Law
LetG be a connected semisimple Lie group, 3 a
discrete subgroup of G and T the regular repre-
sentation of G on 3\G [defined by (Tgf )(x) =
f (xg), f ∈ L2(3\G)]. Then the multiplicity
of a unitary, irreducible representation γ in the
regular representation T on 3\G equals the di-
mension of the vector space formed by all auto-
morphic forms of 3 of type γ . See automorphic
form.

Gel’fand representation A correspondence
between the elements of a commutative Banach
algebra R and the continuous functions on the
space of regular maximal ideals M of R.

Recall that a maximal ideal M of R is called
regular if the quotient algebra R/M is a field,
in which case R/M is isomorphic to C, the field
of complex numbers. Thus, each coset x(M)

[i.e., the coset containing x ∈ R] can be re-
garded as a complex number and the functional
x̂ : x �→ x(M) is multiplicative and linear,
i.e., xy(M) = x(M)y(M). Conversely, with
each multiplicative linear functional one can as-
sociate a regular maximal ideal. Designating by
X , the set of all multiplicative functionals on
R, endowed with Gel’fand topology, we obtain
the Gel’fand representation, associating with an
element ofR a continuous function on X vanish-
ing at infinity. See Gel’fand topology. In fact,
X is a locally compact Hausdorff space and,
when R has a unit element, a compact Haus-
dorff space.

Also called Gel’fand transform.

Gel’fand tableau A triangular pattern

[m] =:


(mn)

(mn−1)
...

(m2)

(m1)

 :=


m1n m2n
m1n−1 m2n−1

· · ·
m12

m11

· · · mnn

· · · mn−1n−1

m22


that is employed to label the basis vectors of the
carrier spaces for the irreducible representations
3(mn) of the unitary group U(n) [or SU(n) set-
ting mnn = 0] relying on the Gel’fand-Tsetlin
group chain. See Gel’fand-Tsetlin basis. The
irreducible representations 3(mn) of U(n) are
uniquely labeled by their highest weight (mn) ≡
(m1nm2n . . . mnn), where

m1n ≥ m2n ≥ · · · ≥ mnn ≥ 0 .

The entries of the lexicographical Gel’fand
tableaux satisfy the so-called “betweenness con-
ditions”

mij ≥ mi,j−1 ≥ mi+1,j ,
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i = 1, . . . , n−1; j = 2, . . . , n, reflecting Weyl’s
branching law for the subduction of 3

(mn) from U(n) to U(n − 1). The ith row of
the Gel’fand tableau thus represents the highest
weight of those U(i) irreducible representations
that result by a successive subduction of 3(mn),
implied by the Gel’fand-Tsetlin chain.

Arranging the basis vectors in a lexicograph-
ical order, we have, for example, for the (210)
irreducible representation of U(3) or SU(3),

 210
21
2

 ,

 210
21
1

 ,

 210
20
2

 ,

 210
20
1

 ,

 210
20
0

 ,

 210
11
1

 ,

 210
10
1

 ,

 210
10
0

 .

Gel’fand topology The weak topology on
the space of multiplicative linear functions on a
commutative Banach algebra R. See Gel’fand
representation.

Gel’fand transform See Gel’fand represen-
tation.

Gel’fand-Tsetlin basis A basis for the carrier
space of U(n) or SU(n) irreducible representa-
tions exploiting the group chain

U(n) ⊃ U(n− 1) ⊃ · · · ⊃ U(2) ⊃ U(1) , (1)

where U(i) ⊃ U(i−1) represents schematically
the imbedding U(n − 1) ⊕ (1) [i.e., U(n − 1)
represents a subgroup of blocked n × n uni-
tary matrices (linear operators) consisting of a
(n− 1)× (n− 1) unitary matrix and the 1× 1
matrix (1); clearly this subgroup of U(n) is iso-
morphic with U(n − 1)]. According to Weyl’s
branching law, each irreducible representation
of U(i) subduced to U(i−1) is simply reducible.
Since, moreover, U(1) is Abelian, the canoni-
cal chain (1) provides an unambiguous labeling
for mutually orthogonal one-dimensional sub-
spaces spanning the carrier space of a given ir-
reducible representation of U(n) through a set of
highest weights characterizing the subduction at
each level. Collecting these highest weights we
obtain a Gel’fand tableau. See Gel’fand tableau.
Also called Gel’fand-Zetlin basis or canonical
basis.

general associative law The associative law
for a given binary operation implies that (a1a2)

a3 = a1(a2a3) = a1a2a3 (representing the bi-
nary operation involved by a juxtaposition). The
general associative law requires that any finite
ordered subset ofn elements, say a1, a2, . . . , an,
ai ∈ G, (i = 1, . . . , n), n > 2, uniquely deter-
mines their “product” a1a2 · · · an, irrespective
of the sequence of binary operations employed.

general equation See also Galois equation,
Galois group, Galois theory. Recall that the Ga-
lois group G(K/k) of the finite field extension
K/k is also called the Galois group of the alge-
braic equation f (X) = 0, when K is a minimal
splitting field of a separable polynomial f (X)

∈ k[X]. The algebraic equation f (X) = 0 is
also called a Galois equation when the exten-
sion field K can be obtained by adjoining some
root of f (X) to k, i.e., when K = k(α) for some
root α of f (x). We also note that G(K/k) has a
faithful permutation representation based on the
permutation group of the roots of f (X). When
this representation is primitive, f (X) = 0 is
called a primitive equation. See primitive equa-
tion. See also affect (of f (X)).

Now, when α1, α2, . . . , αn are algebraically
independent elements over k, then the equation
F (n)(X) = 0 for the nth degree polynomial

F (n)(X) = Xn − α1X
n−1 + α2X

n−2

−α3X
n−3 ± · · · + (−1)nαn

from k(α1, α2, . . . , αn)[X] is called a general
equation of degree n. See algebraic indepen-
dence. The Galois group of this equation is then
isomorphic with Sn, the symmetric (or permu-
tation) group of degree n. Moreover, if char k �=
2, then the quadratic subfield L corresponding
to the alternating group An of the same degree
is obtained by adjoining the square root of the
discriminant D of F (n)(X), i.e., L = k(

√
D).

generalization Motto: Be wise! Generalize!
“Picayune Sentinel” and M. Artin’s Algebra.

(1) An extension of a statement (or a con-
cept, a principle, a theorem, etc.) that applies
or is valid for some system or structure A to
all members of a larger class of systems B con-
taining A as one of its elements (or a proper
subsystem).

(2) The process of inferring such a statement
(or concept, etc.).
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(3) In logic, generalization implies the for-
mal derivation of a general statement from a
particular one by replacing the subject of the
statement with a bounded variable and prefixing
a quantifier (in predicate calculus). For exam-
ple, the statement “the hypothesis H(i) holds
for some i ∈ Z” is the (existential) generaliza-
tion of “the hypothesis H(i) holds for i = 1
and 3.” A universal generalization applies to
all members of a given class while an existential
generalization applies only to some unspecified
members of such a class.

generalized Borel embedding A general-
ization of a Borel embedding of a symmetric
bounded domain to an embedding of an arbi-
trary homogeneous bounded domain. Let D be
a homogeneous bounded domain and let Gh be
the identity component of the full automorphism
group Gh(D) of D. Let gh be the Lie algebra of
Gh, then gh is a j -algebra with a collection of
endomorphisms (j). Let gc

h be the complexifi-
cation of gh and let g−h = {x + ijx ∈ gc

h : x ∈
gh, j ∈ (j)}. If Gc

h is the analytic subgroup of
the full linear group corresponding to gc

h, and
G−h is the complex closed subgroup of Gc

h gen-
erated by g−h , thenD can be embedded as theGh

orbit of the origin in the complex homogeneous
space Gc

h/G
−
h .

generalized decomposition number Let G
be a finite group of order |G| = g and K a split-
ting field of G of characteristic char K = p �= 0
(i.e., K is a splitting field for the group ring
K[G]). If p is a divisor of g, p|g, we can gener-
ate modular representations of G. See modular
representation.

Let, further, L be an algebraic number field
that is a splitting field of G having a prime ideal
π dividing p, and :i, i = 1, . . . , n, be the non-
similar irreducible representations ofG inL and
χi, i = 1, . . . , n, their standard characters.

Now, any x ∈ G can be uniquely decom-
posed as follows:

x = yz = zy ,

where y is the so-called p-factor of x (whose or-
der is a power of p) and z is a p-regular element
of G (whose order is prime to p). If, further,
φ
(y)

1 , . . . , φ
(y)
ky

are absolutely irreducible modu-

lar characters of the centralizer CG(y) of y in
G, then

χi(yz) =
∑
j

c
(y)
ij φ

(y)
j (z) ,

and the coefficients c
(y)
ij are referred to as the

generalized decomposition numbers of G.
When the order of y is a power pr of p, then

the coefficients c(y)ij are algebraic integers of the
field of the pr th roots of unity. See also de-
composition number, modular representation of
finite groups.

generalized eigenvalue problem The prob-
lem of finding scalars λ ∈ F and vectors x (from
a linear space V over F ) for linear operators (or
matrices) A and B on V satisfying the equation

Ax = λBx . (1)

Usually, A and B are required to be Hermitian
and, moreover, B to be positive definite. When
B = I , the identity (matrix) on V , the problem
reduces to the standard or classical eigenvalue
problem.

A further generalization examines the non-
linear problem(
Anλ

n + An−1λ
n−1 + · · · + A1λ+ A0

)
x = 0.

Clearly, for n = 1 we obtain (1).

generalized Eisenstein series Let 3 ⊂ SL
(2,R) be a Fuchsian group, acting on the up-
per half-plane H of the complex plane C, and
designate by 3\H the quotient space of H by
3. See Fuchsian group. The Selberg zeta func-
tion Zp(s,:), defined for s ∈ H and a matrix
representation : of 3, has a number of inter-
esting properties when 3\H is compact and 3

is torsion-free. See Selberg zeta function. For
a more general case, when 3\G is noncompact
(though has a finite volume), the decomposition
of L2(3\G) into the irreducible representation
spaces has a continuous spectrum. Generalized
Eisenstein series (defined by Selberg) give the
explicit representation for the eigenfunctions of
this continuous spectrum. In the special case in
which 3 is the elliptic modular group, SL(2,Z)

(or the corresponding group of linear functional
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transformations) 3 = SL(2,Z), this series is

∑
(c,d)=1

y2

|cτ + d|2s

where y = �z, z ∈ H .
Similar generalized Eisenstein series can be

defined for semisimple algebraic groups G and
their arithmetic subgroups. See also Eisenstein
series.

generalized Hardy class A concept arising
in the theory of function algebras (or uniform
algebras) generalizing that of the Hardy class
from the theory of analytic functions.

[Recall that the Hardy classHp (p > 0) con-
sists of analytic functions on the open unit disc
D = {z : |z| < 1} having the property

sup
0<r<1

{
∫
∂D

|f (rζ )|pdµ(ζ )}1/p <∞ ,

where dµ = |dζ |/2π is normalized Lebesgue
measure on the boundary ∂D = {ζ : |ζ | = 1}
of D. This concept is important for harmonic
analysis, theory of power series, linear opera-
tors, random processes, approximation theory,
control theory (in particular the so-called H∞
control theory; note thatH∞ represents the class
of bounded analytic functions in D), etc. Their
importance stems from the fact that they are pre-
cisely the classes of analytic functions in D with
boundary values (of class Lp) from which they
can be recovered by means of the Cauchy inte-
gral.]

For a function (uniform) algebra A with a
positive multiplicative measure µ, one defines
the generalized Hardy classes Hp as the closure
of A in Lp(µ) for 1 ≤ p < ∞, while for p =
∞, H∞(µ) represents the weak ∗-closure of A
in L∞(µ).

Remark: Here one considers a fixed uniform
algebra A on a compact Hausdorff space X, the
maximal ideal spaceMA ofA, and a fixed homo-
morphism φ ∈ MA. It is important to recall
that there exists a correspondence between non-
zero complex-valued homomorphisms φ of A

and maximal idealsAφ inA that are given by the
kernel of φ. In fact, MA is a compact Hausdorff
space. Then, designating by µ a measure for φ,
one defines Hp(µ) as the closure of A in Lp(µ)

and, similarly, H∞(µ) as the weak-star closure
of A in L∞(µ). Note that L∞(µ) is a com-
mutative Banach ∗-algebra (with the pointwise
multiplication and the involution given by com-
plex conjugation), which is isometrically iso-
morphic to the algebra of complex-valued con-
tinuous functions on the maximal ideal space of
L∞(µ).

generalized inverse For an m× n matrix A,
with entries from the complex field, the unique
n×m matrix A+ satisfying

(i.) AA+A = A,
(ii.) A+AA+ = A+,
(iii.) (AA+)∗ = AA+,
(iv.) (A+A)∗ = A+A.
This definition (by Penrose) is equivalent to

the definition (by Moore) that A+ is the unique
matrix so that

(1)AA+ is the (orthogonal) projection matrix
onto the range of A,

(2)A+A is the (orthogonal) projection matrix
onto the range of A+.
The matrix A+ is also referred to as the Moore-
Penrose inverse (or pseudo inverse) of A.

There are other types of generalized inverses.
More usually encountered are the group inverse
A# of a square matrixA (AA#A = A,A#AA# =
A#, AA# = A#A), and the Drazin inverse AD

(ADAAD = AD , AAD = ADA, Ak =
ADAk+1, k = 0, 1, . . . ). AD is unique and A#

is unique if it exists.
All generalized inverses coincide with A−1

when A is invertible.

generalized law of reciprocity The main
theorem of class field theory, stating that, for
a finite Galois extension L/K , the reciprocity
map rL/K ,

rL/K : G(L/K)ab → AK/NL/KAL ,

defined by

rL/K(σ ) := N"/K (π")mod
(
NL/KAL

)
,

is an isomorphism. Here, " is the fixed field of
a Frobenius lift σ̃ ∈ φ(L̃/K) of σ ∈ G(L/K)

and π" ∈ A" is a prime element. For any field
K and a multiplicative G-module A one defines

AK = AGK = {a ∈ A : σa = a, ∀σ ∈ GK} ,
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where GK is a closed subgroup of the profinite
group G that is associated with the field K and
AG/NGA is the norm residue group relative to
the norm group NGA = {NGa = ∑

σ∈G σa :
a ∈ A}. One further defines the Galois group of
L/K as

G(L/K) = GK/GL ,

assuming that GL is a normal subgroup of GK .
In such a case, the extension L/K is called a
normal or Galois extension. See Galois exten-
sion. Note that for a finite extension L/K , when
AK ⊆ AL, there is a normal map

NL/K : AL → AK, NL/K(a) =
∏
σ

σa ,

with σ ranging over the right representatives
of GK/GL. When L/K is Galois, AL is a
G(L/K)-module and AK = A

G(L/K)
L .

Recall also that a prime element πK of AK,

πK ∈ AK , is an element with vK(πK) = 1,
where vK designates a homomorphism

vK = 1

fK

v ◦NK/k : AK → Ẑ ,

with v a henselian valuation v : Ak → Z and k

the ground field for which Gk = G. Further, σ̃
is a Frobenius lift of σ if σ = σ̃ |L,

σ̃ ∈φ(L̃/K)

=
{
σ̃ ∈ G(L̃/K) : degK(σ̃ ) ∈ N

}
,

where degK is a surjective homomorphism
degK : G(L̃/K)→ Ẑ, Ẑ the Prüfer ring

Ẑ = lim← n∈NZ/nZ ,

where
lim← denotes projective limit. In fact, Ẑ =∏

p Zp, where p is a prime.
Finally, for every finite extension K/k of the

ground field, one defines K̃ = K · k̃,

fK = [K ∩ k̃ : k]
and

degK :
1

fK

deg : GK → Ẑ ,

where
K̃ = K

(
n
√
K∗

)

is the maximal Kummer extension of exponent
n.

Also called generalized reciprocity law.

generalized nilpotent element An element
from the kernel of the Gel’fand representation
of a commutative Banach algebra R, i.e., an el-
ement x ∈ R such that

lim
n→∞

∥∥xn
∥∥1/n = 0 .

The kernel of R is referred to as the radical of
R. When this radical reduces to {0}, R is said to
be semisimple.

generalized nilpotent group An extension
of the concept of nilpotency to infinite groups,
in a nonstandard manner. Thus, a group G is a
generalized nilpotent group if any homomorphic
image of G that is different from {e} has a center
that is different from {e}. This definition reduces
to the standard one when G is finite, but not
when G is an infinite group.

generalized peak point A point x in a com-
pact Hausdorff space such that {x} is a gener-
alized peak set. See peak set, generalized peak
set.

generalized peak set An intersection of peak
sets of a compact Hausdorff space. See peak set.

generalized quaternion group A general-
ization of the quaternion group G, which is the
group of order 8 with two generators σ and τ

satisfying the relations σ 4 = e, τ 2 = σ 2 and
τστ−1 = σ−1, which is isomorphic to the mul-
tiplicative group of quaternion units {±1,±i,

±j,±k}. The generalized quaternion group is
a group of order 2n, (n ≥ 3), again with two
generators σ and τ , which, however, satisfy the
following relations:

σ 2n−1 = e, τ 2 = σ 2n−2
and τστ−1 = σ−1 .

The standard quaternion group corresponds to
n = 3.

generalized Siegel domain A domain D in
Cn × Cm (n,m ≥ 0) with the following prop-
erties. (i.) D is holomorphically equivalent to
a bounded domain. (ii.) D contains a point of
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the form (z, 0) where z ∈ Cn. (iii.) D is in-
variant under the following holomorphic trans-
formations of Cn × Cm for some c ∈ R, and
for all s ∈ Rn and t ∈ R : (z, u) �→ (z + s, u),
(z, u) �→ (z, eitu), and (z, u) �→ (et z, ectu). In
the above situation, D is said to be a generalized
Siegel domain with exponent c.

generalized solvable group An extension of
the concept of solvability to infinite groups in a
nonstandard way. For example, a group G is a
generalized solvable group if any homomorphic
image of G that is different from {e} contains a
nontrivial (i.e., different from {e}) Abelian nor-
mal subgroup. As with generalized nilpotency,
this definition reduces to a standard one for fi-
nite groups but not in the case of infinite groups.
See generalized nilpotent group.

Generalized Tauberian Theorem A theo-
rem, due to Wiener, originating in the theory of
the Fourier transform. Here we give a version
that is pertinent for the exploitation of Banach
algebras in the theory of topological groups.

The theorem pertains to the following prob-
lem of spectral synthesis. See spectral synthesis.

Consider an Abelian topological groupG and
itsL1-algebra (or group algebra)R. Let, further,
Ĝ designate the character group of G. Then any
closed ideal I in R determines a set Z(I) in
Ĝ consisting of common zeros of the Fourier
transforms of the elements of I . [Recall that
the Fourier transform of x ∈ R is given by its
Gel’fand transform, in the present case by

x̂(γ ) =
∫

x(g)γ (g)dµ(g) ,

where γ is a character of G and µ is a (left-
invariant) measure on G (with G regarded as a
locally compact Hausdorff group).] The above-
mentioned problem then asks whether the con-
verse also holds, namely, whether I can be
uniquely characterized by Z(I).

A special case when Z(I) is empty is ad-
dressed by the Generalized Tauberian Theorem
which states that I must coincide with R when
Z(I) = ∅.

generalized uniserial algebra Consider a
finite dimensional, unitary (associative) algebra
A over a field F and designate its system of

orthogonal idempotents by {e(s)i }, so that

n∑
i=1

di∑
s=1

e
(s)
i = 1

and

A =
n∑

i=1

di∑
s=1

Ae
(s)
i =

n∑
i=1

di∑
s=1

e
(s)
i A ,

the latter relationship providing a decomposi-
tion of A into a direct sum of indecomposable
left (right) ideals. Here n denotes the number of
simple algebra components Ai in the decompo-
sition of the semisimple quotient algebra A/N ,
N being the radical of A,

A/N ≡ A =
n∑

i=1

Ai ,

each Ai being a full matrix ring of degree di ,
which thus decomposes into the direct sum of
di minimal left (right) mutually A-isomorphic
ideals Ae

(s)
i (e

(s)
i Ai), i = 1, . . . , n; s = 1, . . . ,

di , where e
(s)
i designate the orthogonal idempo-

tents of Ai . The idempotents e
(s)
i in the above

are representatives from each residue class e
(s)
i ,

which are chosen in such a way that the relations
hold. In the following, we designate e

(s)
i simply

by ei .
We call A a generalized uniserial algebra if

each indecomposable left (right) idealAei (eiA)

of A has a unique composition series. See com-
position series.

An algebra A is a generalized uniserial alge-
bra if its radical N is a principal left and right
ideal, and a uniserial algebra if and only if every
two-sided ideal of A is a principal left and right
ideal, i.e., if and only if every quotient algebra of
A is a Frobenius algebra. See uniserial algebra,
Frobenius algebra.

An algebra A is an absolutely uniserial al-
gebra if the algebra AK over K , where K is an
extension field of a field F , is uniserial for any
such extension K/F . This is the case if and
only if the radical N of A is a principal ideal
generated by an element from the center Z of A
and Z decomposes into a direct sum of simple
extensions F [α] of F .
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generalized valuation A valuation of a gen-
eral rank. See valuation.

The rank of an additive valuation (or simply
of a valuation) v : F → G∪{∞} of the field F ,
with G a (totally) ordered additive group and the
element∞ is defined to be greater than any ele-
ment of G, is defined to be the Krull dimension
of the valuation ring Rv = {a ∈ F : v(a) ≥ 0}.
See Krull dimension.

general linear group On a finite dimensional
linear space V , with dimV = n, over a field K ,
the group of (nonsingular) linear mappings of
V onto V , the group operation being defined
as composition of mappings, denoted GL(V ).
More generally, the automorphism group
AutK(V ) of the free right K-module V with n

generators, for K an associative ring with unit.
Equivalently, a general linear group of de-

gree n over K , usually designated GL(n,K)

or GLn(K), is a group of n × n invertible ma-
trices with entries in K . Clearly, GL(V ) and
GL(n,K) are isomorphic. When viewed as an
affinite variety, GL(n,K) can also be regarded
as an algebraic group. See algebraic group. In
most applications, K is a field. The structure of
GL(n,K) over a ring K is studied in algebraic
K-theory.

Also called full linear group. See also special
linear group, projective general linear group.

general linear Lie algebra (Of degreen over
a commutative ring with unity [or over a field]
K), a Lie algebra, denoted gl(n,K), which re-
sults from the total matrix algebra M(n,K) of
(all) n× n matrices with entries from K , when
endowed with a Lie (or bracket) product defined
by the commutator [X, Y ] := XY−YX. See Lie
algebra. A general linear Lie algebra gl(n,K)

is the Lie algebra of GL(n,K), a general lin-
ear group, and may thus also be regarded as the
tangent space to GL(n,K) at the identity (repre-
sented by the identity matrix). See also general
linear group.

general position Let x0, . . . , xk be points in
Euclidean space. These points are said to be
in general position if they are not contained in
any plane of dimension less than k. This con-
cept may be generalized to geometric objects of
higher dimension.

general solution As a rule, the general solu-
tion of a problem is a solution involving a cer-
tain number of parameters from which any other
solution (except for singular solutions) can be
obtained, through a suitable choice of these pa-
rameters.

Specifically, in analogy to differential equa-
tions, one understands, by a general solution of
a nonhomogeneous linear difference equation

n∑
i=0

pi(x) y(x + i) = q(x) (1)

a solution of the form

y(x) =
n∑

i=1

ci(x)φi(x)+ ψ(x) ,

where φi(x), i = 1, . . . , n are linearly inde-
pendent solutions of the corresponding homo-
geneous equation, ψ(x) is an arbitrary solution
of the nonhomogeneous equation (1), and ci(x)

are arbitrary periodic functions of period 1.

general term (Of a series, of a polynomial,
of an equation, of a language, etc.) An expres-
sion or an object that forms a separable part of
some other expression or object, in particular
expressions separated by the plus sign (in a se-
ries or a polynomial), comma (in a sequence),
inequality or identity sign (in an inequality or a
chain of inequalities or equation(s)), etc. Also
called generic term.

generating representation Let G be a com-
pact Lie group. Designate, further, the com-
mutative, associative algebra of complex-valued
continuous functions on G by C(0)(G,C) ≡
C(0)(G), and its subalgebra of representative
functions referred to as the representative ring
of G by R(G,C) ≡ R(G). See representa-
tive function, representative ring. Note that,
with the supremum norm‖f ‖ = supg∈G |f (g)|,
C(0)(G) is a Banach space and the actions of
G on this space (given by left and right transla-
tions) are continuous. At the same time,C(0)(G)

may be completed with respect to the norm aris-
ing from the inner product (u, v) = ∫

G

uv, yield-

ing the Hilbert space L2(G) of square integrable
functions on G. The actions of G on L2(G)

(again by left and right translations) are unitary.
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In view of the Peter-Weyl theorem, R(G)

is dense in both C(0)(G) and L2(G) so that
there exists a faithful (i.e., injective) represen-
tation ρ : G → GL(n,C) of G and R(G) may
be regarded as a finitely generated algebra over
C. Thus, there exists a faithful representation
g �→ {rij (g)} such that the functions rij and rij
generateR(G). Such a representation is referred
to as a generating representation.

generator(s) (1) In group theory, the ele-
ments of a nonempty subset S of a group G such
that G is generated by S, i.e., G = 〈S〉, where
〈S〉 consists of all possible products of the ele-
ments of S and of their inverses that are possibly
subject to a certain number of conditions (called
relations) of the type

s
n1
1 s

n2
2 · · · snmm = e, si ∈ S, ni ∈ Z .

When S is finite, G is said to be finitely gener-
ated or finitely presented. See relation, finitely
presented group. For a cyclic group, S consists
of a single element.

More precisely, let G be a group generated
by some set S ≡ {s1, s2, . . . , sn} and let us des-
ignate by F the free group on S. Further, let T
be a subset of F , T ≡ {t1, t2, . . . , tm} ⊂ F , and
NT the smallest normal subgroup of F contain-
ing T (given by the intersection of all normal
subgroups of F containing T ). Then, G is said
to be given by the generators si, (i = 1, . . . , n)
subject to the relations t1 = t2 = · · · = tm = e,
if there is an isomorphism G ≈ F/NT that as-
sociates si with siNT . This is usually expressed
by writing

G = 〈s1, . . . , sn : t1 = t2 = · · · = tm = e〉 ,
(1)

and one also says that G has the presentation
given by the right-hand side of (1).

Remarks: (i.) Although we have used a finite
number of generators and relations in the above
definition, this is not necessary.

(ii.) The relation ri = e, e.g., a−1b−2ab =
e, is often more convenient to write in the form
avoiding inverses, i.e., ab = b2a in our exam-
ple.

(iii.) Recall that a free group is “free" of
relations, so that we can regard any element in
NT as the identity, as in fact the notation of (1)
suggests.

(iv.) Cyclic groups are generated by a single
generator (which, clearly, is not unique), e.g.,
Z8 = 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉.

(v.) See also finitely generated group.
(1a) In the analytic theory of semigroups,

one defines the infinitesimal generator F of an
equicontinuous semigroup T of class (C0), T ≡
{Tt | t ≥ 0}, as a limit

Fx = lim
t→0+ t−1 (Tt − e) x .

(2) In ring theory, we say that an ideal I of
a (commutative) ring R is generated by a finite
subset S = {s1, . . . , sn} of R, when

I =
{

n∑
i=1

risi : ri ∈ R

}
,

in which case we also write

I = (s1, . . . , sn) or I =
n∑

i=1

Rsi ,

and refer to the ring elements si, i = 1, . . . , n,
as generators of I . An ideal generated by a
single generator, I = (s), is called a principal
ideal. An extension to noncommutative rings is
obvious.

(3) An analogous definition also applies to
modules over a ring (or a field).

Consider anA-moduleM (i.e., a module over
a ring A) and a family X = {xi}i∈I of elements
of M . The smallest sub-A-module N of M con-
taining all the elements ofX consists of all linear
combinations of these elements and we write

N =
∑
i∈I

Axi =
{∑

i∈I
aixi : ai ∈ A, i ∈ I

}
.

The family X is then referred to as a system of
generators for N . We also say that N is gener-
ated by X. When X is finite, i.e., Card(X) <

∞, N is said to be finitely generated, and an
A-module Ax, generated by a single element
x ∈ M , is called a monomial.

When A is a field, the A-module M becomes
a linear space over A, and the same terminol-
ogy is sometimes employed even in this case, al-
though one often definesM to be spanned rather
than generated by X, and X is referred to as a
spanning set (or a basis, if linearly independent).
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(4) The method of defining groups by gen-
erators and relations can be also applied to Lie
algebras. Let L be a Lie algebra over a field F

generated by a set X = {Xi}i∈I . If L is free on
X (in which case the vector space V = Span(x)
can be given an L-module structure by assign-
ing to each x ∈ X an element of the general
linear Lie algebra gl(V ) and extending canon-
ically to L) and M is the ideal of L generated
by a family of elements A = {aj }j∈J , J being
some index set, then the quotient algebra L/M

is referred to as the Lie algebra with generators
Xi, (i ∈ I ) and relations aj = 0, (j ∈ J ), with
Xi the image of the element xi ∈ X in L/M .
This is referred to as a presentation of L.

Remarks: (i.) For semisimple Lie algebras
L over an algebraically closed field F , charF =
0, one can give a presentation of L in terms of
generators and relations that depends only on
the root system of L. (See Serre’s Theorem.)

(ii.) In the physics literature, one often refers
to the basis elements of the defining (or stan-
dard) representation of matrix Lie groups or al-
gebras as generators. Thus, for example, the
matrix units eij = ‖δikδjJ‖ of gl(n, F ) are re-
ferred to as raising (i < j), lowering (i > j),
and weight (i = j) generators according as they
raise, lower, or preserve the weight of a repre-
sentation involved.

(5) In homological algebra, an object G of
an Abelian category A (with all functions be-
ing additive) is called a generator if the natural
mapping

Hom(A,B)→ Hom (hG(A), hG(B))

is one to one. Here Hom designates the functor
defining the category A,

Hom : A×A → (Ab) ,

with (Ab) designating the category of Abelian
groups, and with

hG(·) := Hom(G, ·) .
Similarly, one defines a cogenerator G when

Hom(A,B)→ Hom
(
hG(B), hG(A)

)
is one to one, where now

hG(·) := Hom(·,G) .

(6) In coding theory, with a linear code de-
fined as a subspace W of Vn = {0, 1, . . . , q−
1}n, with q being a prime power q = pα , one
associates with each element a ∈ Vn the poly-
nomial

a(X) = a1 + a2X + · · · + anX
n−1

over a Galois field GF(q) [note that Vn can be
regarded as an n-dimensional vector space over
GF(q)]. Then the cyclic code W modulo g(X)

is defined by

W = {a ∈ Vn : a(X) ≡ 0(modg(X))}
and g(X) is referred to as the generator of N .

generic point Consider an irreducible vari-
ety V in Kn, where K is the universal domain
and designate by k a field of definition for V

(which is a subfield ofK , k ⊂ K), having a finite
transcendence degree over the underlying prime
field. See irreducible variety, universal domain,
transcendence degree, prime field. Then a point
(x) ≡ (x1, . . . , xn) of V , (x) ∈ V , with the
property that all points of V are specializations
of (x) over k, is called a generic point of V over
k. See specialization. Note that in general a
generic point of V is not unique.

Remarks:
(i.) In some texts, generic point refers to an

arbitrary point of a nonempty Zariski open set
of a variety V . See Zariski open set.

(ii.) A generic point x in a topological (sub)-
space A is a generic point of A when A = {x}
(where the bar designates the closure in the hull-
kernel topology).

genus (1) For an algebraic variety, a discrete,
numerical invariant representing an important
parameter then enables a classification of such
varieties. These invariants may be defined in
various ways, the most useful ones being based
on the concept of differential forms on a vari-
ety and on the cohomology of coherent sheaves.
One distinguishes the algebraic genus pa(X)

and the geometric genus pg(X) of a variety X.
See geometric genus.

For a one-dimensional algebraic variety C

over a field k, referred to as an algebraic curve,
the genus g of C is defined as the dimension
of the space of regular differential 1-forms on
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C, assuming that C is smooth and complete.
See algebraic curve. We recall here that an al-
gebraic curve can be transformed into a plane
curve with only ordinary multiple points by a fi-
nite number of plane Cremona transformations
(quadratic transformations of a projective plane
into itself). See Cremona transformation. A
plane algebraic curve C of degree n is a point
set in an affine 2-space defined by the zero set
f (X, Y ) = 0, of annth degree polynomialf (X,

Y ) in X and Y . Setting F(X0, X1, X2) = Xn
0

f (X1/X0, X2/X0), the homogeneous polyno-
mial F defines an algebraic curve C of degree
n in a projective plane P2. We say that C is ir-
reducible if f (X, Y ) is irreducible. Clearly, a
curve of degree 1 is a line. A point P = (a, b)

on C is an r-ple point if f (X+a, Y +b) has no
terms of degree less than r in X and Y . There
are r tangent straight lines (counting multiplic-
ity) at such a point: if these tangents are all dis-
tinct, P is referred to as an ordinary point and
an ordinary double point is called a node. An
r-ple point with r > 1 is called a multiple or a
singular point.

For a nonsingular irreducible curveC, we de-
fine a divisor a as an element of the free Abelian
group G(C) generated by the points of C that is
of the form

a =
∑
i

niPi, (ni ∈ Z) (1)

and has a degree deg(a) = ∑
i ni . We say that

the representation (1) for a is reduced ifPi �= Pj

for i �= j . A positive or an integral divisor, writ-
ten as a - 0, involves only positive coefficients
ni, (ni > 0). We further designate by w a dis-
crete valuation whose value group is the additive
group of integers, thus representing a normal (or
normalized) valuation wP of K(C) defined by
a valuation ring RP given by the subset of the
function field K(C) ofC (K designating the uni-
versal domain) consisting of those functions f

that are regular at P . The integer wP (f ) is re-
ferred to as the order of f at P , and P is said
to be a zero of f when wP (f ) > 0 and a pole
when wP (f ) < 0. The linear combination

"wP (f )P =: (f ) (2)

is called the divisor of the function f , and the set
of all positive divisors that are linearly equiva-

lent to a given divisor a is referred to as a com-
plete linear system determined by a and is des-
ignated by |a|. Further, one defines a finite di-
mensional vector space V(a) over K as follows:

V(a) := {f ∈ K(C) : (f )+ a - 0} ,
whose one-dimensional subspaces are in a bi-
jective correspondence with the elements of |a|.
We then define the dimension of |a|, dim|a|, by

dim|a| := dimKV(a)− 1 ,

and the genus of C, g ≡ g(C), as the supremum
of non-negative and bounded integers deg(a)−
dim |a|,

g := sup
a∈G(C)

(deg(a)− dim |a|) .

One can show that for any g > 0, g ∈ Z,
there exists an algebraic curve of genus g. The
curves with g = 1 are the so-called elliptic
curves and those with g > 1 are subdivided into
the classes of hyperelliptic and non-hyperelliptic
curves. See elliptic curve, hyperelliptic curve.
See also specialty index, Riemann-Roch Theo-
rem.

For an r-dimensional projective variety Y in
Pn (a projective n-space over an algebraically
closed field k), the arithmetic genus of Y can
be defined in terms of the constant term of the
Hilbert polynomial PY (X), X = (X0, X1, . . . ,

Xn), of Y , as follows:

pa(Y ) = (−1)r (PY (0)− 1) .

It can be shown that pa(Y ) is independent of
projective embeddings of Y . When Y is a plane
curve of degree d (see above), then

pa(Y ) = 1

2
(d − 1)(d − 2) ,

and when it is a hypersurface of degree d, then

pa(Y ) =
(
d−1
n

)
.

Equivalently, for a projective scheme Y over a
field k, the arithmetic genus pa(Y ) can be de-
fined by

pa(Y ) = (−1)r [χ (OY )− 1] ,
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where OY designates a sheaf of rings of regular
functions from Y to k and χ(F) is the so-called
Euler characteristic of a coherent sheaf F on
Y that is defined in terms of the cohomology
groups Hi(Y,F) of F as follows:

χ(F) := "(−1)i dimk H
i(Y,F) .

See projective scheme. Thus, when Y is a curve,
we have that

pa(Y ) = dimk H
1 (Y,OY ) ,

while for a complete smooth algebraic surface
Y , we have

pa(Y ) = χ (OY )− 1

= dimk H
2 (Y,OY )− dimk H

1 (Y,OY ) .

On the other hand, the geometric genuspg(Y )

of a nonsingular projective variety Y over k is
defined as the dimension of the (global) section
of the canonical sheaf ωY of Y (defined as the
nth exterior power of the sheaf of differentials
where n = dim Y ), 3(Y, ωY ), i.e.,

pg(Y ) := dimk 3 (Y, ωY ) .

For a projective nonsingular curve C, the arith-
metic and the geometric genuses coincide, i.e.,
pa(C) = pg(C) = g, while for varieties of di-
mension greater than or equal to 2, they are not
necessarily equal, and their difference is referred
to as the irregularity of Y . See irregularity.

(2) For an algebraic function field K over
k of dimension 1 (or of transcendence degree
1) (i.e., a finite separable extension of a purely
transcendental extension k(x) of k such that k
is maximally algebraic in K), the genus of K/k

is defined similarly as for a curve C. Thus, it
is achieved by replacing C with K/k, K(C) by
K , and K by k, while points on C now become
prime divisors of K/k.

We can also say that the genus of a function
field is given by the genus of its Riemann surface
(recall that the Riemann surface S of a function
field is homeomorphic to the complement of a
finite set of points in a compact oriented two-
dimensional manifold S, while the genus of the
latter is defined, loosely speaking, as the number
of “holes” in S, i.e., g = 0 if S is a sphere, g = 1
if S is a torus, etc.).

(3) For quadratic forms Q over an algebraic
number field k of finite degree, one defines equiv-
alence classes of forms having the same genus
by requiring thatQ andQ′ be equivalent over the
principle order op in kp for all non-Achimedean
prime divisors p of k and, at the same time, that
they are equivalent over kp for all the Archime-
dian prime divisors p of k. (Recall that prime
divisors of k are equivalence classes of nontriv-
ial multiplicative valuations over k and are re-
ferred to as Archimedean or non-Archimedian
accordingly if these valuations are Archimedean
or not.) See valuation.

(4) For a complex matrix representation of a
finite group G. Consider a finite group G and
an algebraic number field K . Recall that there
exists a bijective correspondence between linear
and matrix representations of G and that every
linear representation of G over K is equivalent
to some linear representation of the group ring
K[G]. When K is the ring of rational integers, a
linear representation over K is called an integral
representation.

Further, for a given algebraic number field
K , every K[G]-module V contains G-invariant
R-lattices (called G-lattices for short), where R

is the ring of integers in K , that may be viewed
as finitely generated R[G]-modules, providing
an integral representation of G.

Designating by P a prime ideal of R and by
RP the ring of quotients (or fractions) of the ring
R with respect to the prime ideal P , also called
the local ring at P , one can also explore the RP -
representations (this approach is closely related
with modular representation theory). Thus, with
any R[G]-module M we can associate a family
of RP [G]-modules MP = RP ⊗ M , with P

ranging over all prime ideals of R. Then, when,
for two G-lattices (or R[G]-modules) M and
N , belonging to a K[G]-module V , we have
that MP

∼= NP for all P , we say that M and N

have (or are of) the same genus. (See also class
number.)

(5) Similarly, for a connected algebraic group
G over an algebraic number field k of finite de-
gree, we consider a ring R of integers in k and
designate by L a general R-lattice (also called a
transformation space) in the vector space V on
which G acts. Defining then an action of GA,
the adele group of G, on the set {L} of R-lattices
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in a natural way, one defines the genus of L as
the orbit GAL of L with respect to GA.

(6) For an imaginary quadratic field k. (See
also principal genus of k.) Each coset of the
ideal class group G of k modulo the subgroup
H of all ideal classes of k satisfying the condi-
tion (ε1, . . . , εt ) = (1, . . . , t) is referred to as
a genus of k. See ideal class, ideal class group.
Here, ε1 = χi(N(a)), i = 1, . . . , t , where a
is an integral ideal with (a, (d)) = 1, N desig-
nates the norm, the χi are the Kronecker sym-
bols, and d is the discriminant of k. See Kro-
necker symbol. For each genus, the values of
εi , (i = 1, . . . , t) are unique and (ε1, . . . , εt ) is
called the character system of this genus. See
character system.

genus of function field See genus (2).

geometrical equivalence Let V be an n-
dimensional Euclidean space and let O(V ) be
the orthogonal group of V . If T is an n-
dimensional lattice in V and K is a finite sub-
group of O(V ), let (T ,K) denote a faithful
linear representation of K on T . Every pair
(T ,K) corresponds to a set of crystallographic
groups. Two pairs (T1,K1) and (T2,K2) are
said to be geometrically equivalent if there ex-
ists a g ∈GL(V ) such that K2 = gK1g

−1. This
equivalence relation is denoted by (T1,K1) ∼
(T2,K2), and the equivalence classes are called
geometric crystal classes.

geometric crystal class See geometrical
equivalence.

geometric difference equation A difference
equation of the form

y(px) = f (x, y(x)) ,

where p ∈ C is an arbitrary complex number.
For example, the standard form of a linear dif-
ference equation,

n∑
k=0

ak(x) y(x + k) = b(x) ,

can be transformed to this form via the change
of variables z = px , yielding

n∑
k=0

Ak(z) Y
(
zpk

)
= B(z) .

geometric fiber The fiber X×Y Spec(K) of
a geometric point Spec(K)→ Y , where X and
Y are schemes and K is an algebraically closed
field.

Specifically, for a morphism of schemes φ :
X → Y and a point y ∈ Y , the fiber of the
morphism φ over the point y is the scheme

Xy = X ×Y Spec k(y) ,

where k(y) is the residue field of y. See fiber. A
point of Y with values in a field K is a morphism
Spec(K) → Y . Also, when K is algebraically
closed, such a point is referred to as a geometric
point. See geometric point.

A suitable embedding of k(y) in K is as-
sumed, in the above definition.

Also called geometric fiber.

geometric fibre See geometric fiber.

geometric genus (Of an algebraic surface
S) a numerical invariant characterizing this sur-
face given by the number of linearly independent
holomorphic 2-forms on S.

More generally, for an n-dimensional irre-
ducible variety V , the geometric genus is given
by the number of linearly independent differen-
tial forms of the first kind of degree n.

See also genus.

geometric mean Given any n positive num-
bers a1, . . . , an, the positive number G =n√
a1a2 · · · an.

geometric multiplicity Given an eigenvalue
λ of a matrix A, the geometric multiplicity of λ
is the dimension of its eigenspace. It coincides
with the size of the diagonal block with diagonal
element λ in the Jordan normal form of A. See
also algebraic multiplicity, index.

geometric point A morphism Spec(K) →
X, whereX is a scheme andK is an algebraically
closed field.

geometric programming A special case of
nonlinear programming, in which the objective
function and the constraint functions are linear
combinations of (not necessarily integral) pow-
ers of the variables.
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geometric progression A sequence of non-
zero numbers, having the form ar, ar2, . . . ,

arn(, . . . ). See also geometric series.

geometric quotient Let Z and Y be alge-
braic schemes over a field. Suppose that G is
a reductive algebraic group that operates on Z,
and f : Z → Y is a G-invariant morphism of
schemes. Denote by f∗ the homological map-
ping induced by f , and by OZ and OY the
sheaves of germs of regular functions on Z and
Y , respectively. The morphism f is called a
geometric quotient if

(i.) f is a surjective affine morphism and
f∗(OZ)

G = OY ,
(ii.) f (X) is a closed subset of Y whenever

X is a G-stable closed subset of Z, and
(iii.) for each z1 and z2 in Z, the equality

f (z1) = f (z2) holds if and only if the G-orbits
of z1 and z2 are equal.

geometric series A series of the form

∞∑
j=0

arj = ar + ar2 + · · · + arn + · · · .

Sometimes also referred to as a geometric pro-
gression.

If |r| < 1, the above series converges to the
sum ar/(1− r).

Geršgorin’s Theorem The eigenvalues of an
n × n matrix A = (aij ), with entries from the
complex field, lie in the union of n closed discs
(known as the Geršgorin discs),

n⋃
i=1

z ∈ C : |z− aii | ≤
∑
k �=i

|aik|
 .

As a consequence of Geršgorin’s Theorem,
every strictly diagonally dominant matrix is in-
vertible. The latter fact is also known as the
Lévy–Desplanques Theorem. See also ovals of
Cassini.

Givens method of matrix transformation
A method for transforming a symmetric ma-
trix M into a tridiagonal matrix N = PMP−1.
Here P is a product of two-dimensional rotation
matrices.

Givens transformation See Givens method
of matrix transformation.

Gleason cover The projective cover in the
category of compact Hausdorff spaces and con-
tinuous maps. In this category, the projective
cover of a space X always exists, and is called
the Gleason cover of the space. It may be con-
structed as the Stone space (space of maximal
lattice ideals) of the Boolean algebra of regu-
lar open subsets of X. A subset is regular open
if it is equal to the interior of its closure. Al-
ternatively, it may be constructed as the inverse
limit of a family of spaces mapping epimorphi-
cally onto X. See also epimorphism, projective
cover, Stone space.

global dimension For an analytic set A, the
number dim(A) = supz∈A dimz(A), where
dimz(A) is the local dimension of A at z.

global Hecke algebra Let F be either an al-
gebraic number field of finite degree or an alge-
braic function field of one variable over a finite
field. Consider the general linear group GL2(F )

of degree 2 over F , and denote by GA the group
of rational points of GL2(F ) over the adele ring
of F . For each place v of F , let Hv be the Hecke
algebra of the standard maximal compact sub-
group of the general linear group of degree 2
over the completion of F at v. Denote by εv
the normalized Haar measure of Hv . The re-
stricted tensor product of the local Hecke alge-
bras Hv with respect to the family {εv} is called
the global Hecke algebra of GA.

G-mapping Suppose that G is a group, and
X and Y are G-sets. A G-mapping is a mapping
f : X → Y such that f (gx) = gf (x) for each
g in G and each x in X.

GNS construction A means of construct-
ing a cyclic representation of a C∗-algebra on
a Hilbert space from a state of the C∗-algebra.
The letters G, N, and S refer to Gel’fand,
Naı̆mark (Neumark), and Siegel (Segal), respec-
tively.

good reduction For a discrete valuation ring
R, with quotient field K , and an Abelian variety
A over K , we denote by A′ the Neron minimal
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model of A. Thus, A′ is a smooth group scheme
of finite type over Spec(R) such that, for every
scheme B ′ which is smooth over Spec(R), there
is a canonical isomorphism

HomSpec(R)(B
′, A′)→ HomK(B ′K,A) .

If A′ is proper over Spec(R), then we say that A
has a good reduction at R. See Neron minimal
model.

Gorenstein ring An algebraic ring which ap-
pears in treatments of duality in algebraic geom-
etry. Let R be a local Artinian ring with m its
maximal ideal. Then R is a Gorenstein ring if
the annihilator of m has dimension 1 as a vector
space over K = R/m.

graded algebra An algebra R with a direct
sum decomposition R = R0 ⊕ R1 ⊕ . . . (so
that the Ri are groups under addition) satisfying
RmRn ⊆ Rm+n, for all m, n > 0. The elements
of each Ri are called homogeneous elements of
degree i.

graded coalgebra A coalgebra (C,R, ε)

such that there exist subspaces Cn, n ≥ 0, such
that C = C0⊕C1⊕ . . . and R(Cn) ⊂ ⊕

i+j=n

Ci⊗Cj , for alln > 0 and such that ε(Cn) = {0},
for all n > 0.

graded Hopf algebra Suppose that R is a
commutative ring with a unit, (A, ε) is a supple-
mented graded R-algebra, and ψ : A→ A⊗A

is a map such that

α1 ◦ (1A ⊗ ε) ◦ ψ = 1A = α2 ◦ (ε ⊗ 1A) ◦ ψ ,

with 1A denoting the identity mapping on A, α1
denoting an algebra isomorphism from A ⊗ R

to A, and α2 denoting an algebra isomorphism
from R ⊗ A to A. Then A is called a graded
Hopf algebra.

graded module Let R = R0 ⊕ R1 ⊕ . . .

be a graded ring. A graded R-module is an
R-module M which has a direct decomposition
M = ⊕∞

j=−∞Mj , such that RiMj ⊂ Ri+j , for
i ≥ 0 and j ∈ Z. The elements of each Mi are
called homogeneous elements of degree i.

graded object An object O which can be
written as a direct sum O = ⊕

a∈A Oa , where
A is a monoid.

graded ring A ring R with a direct sum de-
composition R = R0⊕R1⊕ . . . (so that the Ri

are groups under addition) satisfying RmRn ⊆
Rm+n for all m, n > 0. The elements of each
Ri are called homogeneous elements of degree
i.

A primary example is the ring R = k[x1,
. . . , xn]hom of homogeneous polynomials in n

variables over a coefficient ring k. In this ring,
Rn = 0, for n < 0 and, for n ≥ 0, Rn consists of
the polynomials that are homogeneous of degree
n.

gradient method for solving non-linear pro-
gramming problem An iterative method for
solving non-linear programming problems. Sup-
pose that the problem is to maximize the func-
tionf subject to some constraints. At each stage
of the iteration, one uses the current iterate xk ,
the gradient of f at xk , and a positive number
λk to compute the point xk+1 according to the
formula xk+1 = xk − λknk , where nk is the unit
vector in the direction of the gradient of f at the
point xk .

Gramian For complex valued functions fi :
[a, b] → C, i = 1, . . . , n, the determinant of
the n× n matrix whose i, j entry is

∫ b

a
fifj dx.

Gram-Schmidt process A way of converting
a basis x1, . . . , xn for an inner product space
V, (·, ·) into an orthonormal basis v1, . . . , vn, so
that we have (vi, vj ) = 0, if i �= j and (vi, vi) =
1, for i, j = 1, . . . , n. The relationship between
{x1, . . . , xn} and {v1, . . . , vn} is given by

v1 = x1

‖x1‖ ,

v2 = x2 − (x2, v1)v1

‖x2 − (x2, v1)v1‖ ,

v3 = x3 − (x3, v1)v1 − (x3, v2)v2

‖x3 − (x3, v1)v1 − (x3, v2)v2‖ .

. . .

Here ‖x‖ = √(x, x), for any x ∈ V .

Gram’s Theorem (1) Suppose that P is a
convex polytope in Euclidean 3-space. For k =
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0, 1, 2, denote the kth angle sum of P by αk(P ).
Then α0(P )− α1(P )+ α2(P ) = 1. More gen-
erally, if P is a d-dimensional convex polytope
in Euclidean d-space and αk(P ) is the kth angle
sum of P for k = 0, 1, 2, . . . , d − 1, then

d−1∑
i=0

(−1)iαi(P ) = (−1)d−1 .

(2) Suppose that F is a field of characteristic
zero, and denote by G the general linear group
of some degree over F . Consider matrix rep-
resentations ρ1, . . . , ρq of G over F , with ni

the degree of ρi , such that each ρi is either the
rational representation of G induced by some
element of G or is the contragredient map κ .
Suppose that ρi = κ for i ≤ s and ρi �= κ for
i > s. Let {x(i)

j : 1 ≤ i ≤ q, 1 ≤ j ≤ ni} be
algebraically independent elements over F . For
each b = 1, 2, . . . , s, let Hb be a polynomial in
x
(i)
j for i > s that is homogeneous in x

(i)
1 , . . . ,

x
(i)
ni for each i, and suppose that the setV of com-

mon zeros of H1, . . . , Hs in the affine space of
dimension ns+1 + · · · + nq is G-stable. Then
there is a finite set C of absolute multiple co-
variants such that V is the set of (. . . , a(i)

j , . . . )

for i > s such that (. . . , a(b)
m , . . . , a

(i)
j , . . . ) is

a zero point of C for each a
(b)
m with b ≤ s.

graph A simple graph is a pair (V ,E), where
V is a set and E is a set of distinct, unordered
pairs of elements of V . In a directed graph (or
digraph), the elements of E are ordered pairs
of distinct elements of V . Allowing multiplici-
ties for the elements of E or allowing loops (an
element of E of the form (v, v)) gives a gen-
eral graph, also called a graph. The elements
of V are called vertices and the elements of E

are called edges. Thus a pair (u, v) ∈ E may
be visualized as a line segment joining points
u, v ∈ V .

Graphs are used widely in combinatorics and
algebra since they model relationships of vari-
ous kinds among sets.

graphing See graph of equation, graph of
function.

graph of equation For an equation E =
E(x1, . . . , xn) over the field K , in the variables

x1, . . . , xn, the set G(E) = {(a1, . . . , an) ∈
Kn : E(a1, . . . , an) = 0}.

graph of function For a function f : V →
W , where V and W are sets, the set G(F) =
{(x, f (x)) : x ∈ V }. Thus the graph G(f ) is
a subset of the Cartesian product V ×W of the
sets.

graph of inequality For an equation E =
E(x1, . . . , xn), over the ordered field K in the
variables x1, . . . , xn, the graph of the inequality
E > 0 is the set G(E) = {(a1, . . . , an) ∈ Kn :
E(a1, . . . , an) > 0}.

greater than IfR is an Abelian group andR+
is a subset of R not containing 0, such that R+ is
closed under addition, R = R+ ∪ (−R+)∪ {0},
andR+∩(−R+) is empty, then, for all a, b ∈ R,
we have either a − b ∈ R+ or a − b ∈ (−R+)
or a − b = 0. In the first case, we write a > b

and say that a is greater than b (or b is less than
a); in the second case, we write a < b and say
that b is greater than a; in the third case, we say
that a and b are equal and write a = b.

greater than or equal to See greater than.

greatest common divisor For integers a and
b, not both zero, the unique positive integer, de-
noted gcd(a, b), which divides both a and b and
is divisible by any other divisor of both a and b.
Also called greatest common factor or highest
common factor.

greatest common factor See greatest com-
mon divisor.

greatest lower bound See infimum.

Grössencharakter See Hecke character.

Grothendieck category A category C satis-
fying: (i.) C is Abelian; (ii.) C has a generator;
(iii.) direct sums always exist in C; and (iv.) for
any objectP of C, any sub-objectQofP , and for
any totally ordered family {Ri} of sub-objects,
we have (∪Ri) ∩Q = ∪(Ri ∩Q).

Grothendieck topology Suppose that C is
a category. A Grothendieck topology on C is a
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collection of families of morphisms, indexed by
the objects of C (such a family that corresponds
to an object S of C is called a covering family
of S), such that

(i.) {ϕ : T → S} is a covering family of S

whenever ϕ : T → S is an isomorphism,
(ii.) if I is an index set and {ϕi : Ri →

S}i∈I is a covering family of S, then, for each
morphism ϕ′ : S′ → S, the fiber product R′i
defined by R′i = Ri×S S

′ exists and the induced
family {ϕi : R′i → S′} is a covering family of
S′, and

(iii.) if I is an index set, Ai is an index set
for each i in I , the family {ϕi : Ri → S}i∈I
is a covering family of S, and the family {si,a :
Si,a → Ri}a∈Ai

is a covering family of Ri for
each i in I , then the family {ϕi ◦si,a : Si,a → S}
is a covering family of S.

ground field (1) If E is an extension field of
a field F , then F is called the ground field (or
the base field).

(2) If V is a vector space over a field F , then
F is called the ground field of V (or field of
scalars of V ).

ground form Consider the general linear
group of some degree over a field F of charac-
teristic zero. A finite number of homogeneous
forms with coefficients in F that are algebrai-
cally independent is called a set of ground forms.
See general linear group.

group One of the basic structures in algebra,
consisting of a set G and a (composition) map
m : G×G→ G, usually written as m(g, g′) =
g ◦ g′, g + g′ or g · g′, satisfying the following
axioms:

(i.) (associativity) g◦(g′ ◦g′′) = (g◦g′)◦g′′
for all g, g′, g′′ ∈ G;

(ii.) (identity) there is an element e ∈ G such
that e ◦ g = g = g ◦ e, for all g ∈ G.

(iii.) (inverses) for each g ∈ G, there is g′ ∈
G (called the inverse of g) such that g ◦ g′ =
e = g′ ◦ g.

One can think of a group as describing sym-
metries of certain objects.

group algebra Let R be a commutative ring
with identity and let G be a group with ele-
ments {gα}α . The R-group algebra is the R-

algebra freely generated by the gα , so that an el-
ement is a (formal) finite sum rα1gα1+ rα2gα2+· · · + rαngαn . When multiplying such elements
one simplifies by writing gαgβ as gγ , for some
unique γ , and then collecting terms.

group character A representation of a group
G is a homomorphism α : G → H , where H

is a linear group over a field F . The charac-
ter of α is the function Xα : G → F , de-
fined by Xα(g) = trace(α(g)). In the case of
finite groups G, characters characterize repre-
sentations up to equivalence.

group extension The groupG is an extension
of the group H by the group F if there is a short
exact sequence 1 → H → G → F → 1. See
exact sequence. See also Ext group.

grouping of terms The rearranging of terms
in an expression into a form more convenient for
some purpose. For example, one may group the
terms involving x in the expression 5x2+ey+3x
to produce the expression (3x + 5x2)+ ey .

group inverse See generalized inverse.

group minimization problem Suppose that
A is an m× n matrix with real entries, b a vec-
tor in Euclidean m-space Rm, and c a vector in
Rn. Consider the vector xB of basic variables
associated with a dual feasible basis of the linear
programming problem of minimizing cT x sub-
ject to the conditions that Ax = b and xj ≥ 0
for j = 1, . . . , n. Denote by S the set of vectors
x such that Ax = b, xj ≥ 0 for j = 1, . . . , n,
and some of the coordinates of x are restricted
to be integers. The problem of minimizing cT x

subject to the condition that x is an element of
the group generated from S by ignoring the non-
negativity constraints on the coordinates of the
vector xB is called a group minimization prob-
lem. One may solve this problem by finding
the shortest path on a directed graph that has a
special structure. If each coordinate of the vec-
tor of basic variables for the optimal solution of
the group minimization problem is nonnegative,
then that solution is optimal for the original lin-
ear programming problem; otherwise one may
use a branch-and-bound algorithm to investigate
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lattice points near the optimal solution for the
group minimization problem.

group of automorphisms A one-to-one map-
ping α : A → A, where A is an algebraic ob-
ject, for example an algebra or a group, such
that α preserves whatever algebraic structure A

has. Any such α has an inverse which also pre-
serves the structure of A. The composition of
two such automorphisms does this as well. The
set of all such α forms the automorphism group
of A (where the composition map in this group
is a composition of functions). See also auto-
morphism group.

group of classes of algebraic correspondences
Suppose that C is a nonsingular curve. Denote
by G the group of divisors of the product variety
C × C, and denote by D the subgroup of divi-
sors that are linearly equivalent to degenerate
divisors. The quotient group G/D is called the
group of classes of algebraic correspondences.

group of congruence classes Let m > 0 be
an integer. Two integers a and b are said to be
congruent mod m (written a ≡ b mod m) if
a − b is divisible by m. This is an equivalence
relation. (See equivalence relation.) Denote the
equivalence class of the integer a by [a]; thus
[a] = {b : b ≡ a mod m}. Then the set of
equivalence classes for this equivalence relation
is a group under “addition” defined by [a] +
[b] = [a+ b]. This group is called the group of
congruence classes or group of congruences of
the integers modulo m.

group of inner automorphisms For each
element g of a group G, let i(g) : G → G be
the map defined by i(g)(g′) = gg′g−1. Then
we have i(gh) = i(g)i(h), for all g, h ∈ G and
also i(g−1) = i(g)−1. It follows that i(g) is
an automorphism of G and the set of all such
i(g) (for all g ∈ G) is called the group of inner
automorphisms of G. It is a normal subgroup of
the group of automorphisms of G.

group of outer automorphisms The quo-
tient group Aut(G)/Inn(G), where Aut(G) is
the group of all automorphisms ofG and Inn(G)

is the normal subgroup of Aut(G) consisting of

all inner automorphisms ifG. See group of inner
automorphisms.

group of quotients Let S be a commutative
semigroup with cancellation (so that ab = ac

implies b = c), then there is an embedding of S
in a group G such that any g ∈ G can be written
as g = st−1, where s, t ∈ G. Here G is called
the group of quotients of S.

group of symmetries If L is a geometric
object, then a symmetry of L is a one-to-one
mapping of L to itself which preserves the ge-
ometry of the object (e.g., preserves the metric,
if L is a subset of a metric space). The set of all
such symmetries forms a group called the group
of symmetries.

group of twisted type Suppose that F is a
field. Denote by L a simple Lie algebra over
the complex numbers that corresponds to the
Dynkin diagram of some type X, and denote by
C the Chevalley group of type X over F . Con-
sider the Lie algebra LZ spanned by Chevalley’s
canonical basis of L over the ring Z of integers.
Then C is generated by linear transformations
xa(t) of the Lie algebra F ⊗Z LZ, with a a root
of L, and t in F .

(1) IfX equalsAn,Dn, orE6, then the Dynkin
diagram of type X has a nontrivial symmetry τ .
If τ(a) = b, and if F has an automorphism
σ such that the order of σ equals the order of
τ , then denote by θ the automorphism of C

that sends xa(t) to xb(t
σ ). Denote by U the

θ -invariant elements of the subgroup of C gen-
erated by {xa(t) : a > 0, t ∈ F }, and denote
by V the θ -invariant elements of the subgroup
of C generated by {xb(t) : b < 0, t ∈ F }. The
group generated by U and V is called a group
of twisted type.

(2) Suppose thatX equals eitherB2 orF4 and
that the field F has characteristic 2, or suppose
that X = G2 and the field F has characteris-
tic 3. If F has an automorphism σ such that
(tσ )σ = tp for each t in F , then one may ap-
ply a procedure similar to that described in (1)
above to obtain in each case another group of
twisted type.

groupoid A small category in which all mor-
phisms are invertible. See category.
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group scheme A group scheme over a scheme
S is a schemeX, together with a morphism to the
scheme S such that there is a section e : S → X

(thought of as the identity map), a morphism
r : X → X over S (thought of as the inverse
map), and a morphismm : X×X → X (thought
of as the composition map) such that (i.) the
composition m ◦ (Id × r) is equal to the pro-
jection X → S followed by e and (ii.) the two
morphisms m ◦ (Id× r) and m ◦ (r × Id) from
X ×X ×X to X are the same.

Group Theorem Suppose that R is a ring.
The set of equivalence classes of fractional ide-
als of R that contain elements that are not zero
divisors forms a group.

group-theoretic integer programming A
method that involves transforming an integer
linear programming problem into a group mini-
mization problem. If each coordinate of the vec-
tor of basic variables for the optimal solution of
the corresponding group minimization problem
is nonnegative, then that solution is optimal for
the original programming problem; otherwise
one may use a branch-and-bound algorithm to
investigate lattice points near the optimal solu-
tion for the group minimization problem.

group theory The study of groups. Group
theory includes representation theory, combina-
torial group theory, geometric group theory, Lie

groups, finite group theory, linear groups, per-
mutation groups, group actions, Galois theory,
and more.

group variety A variety V , together with a
morphism m : V × V → V such that the set
of points given by V is a group and such that
the inverse map (v → v−1) is also a morphism
of V . Here a morphism of varieties X, Y (over
a field k) is a continuous map f : X → Y ,
such that, for every open set V in Y , and for
every regular function g : V → k, the function
g ◦ f : f−1(V )→ k is regular.

G-set A setS for which there is a mapf : G×
S → S such that f (gg′, s) = f (g, f (g′, s))
and f (Id, s) = s for all g, g′ ∈ G and s ∈ S.
Here, G is a group.

Guignard’s constraint qualification Sup-
pose that X is a closed connected subset of real
Euclidean n-space, g is a vector-valued function
defined on X, and C is the set of all points in X

such that gi(x) ≤ 0 for each i = 1, . . . , n. Sup-
pose that x is a point on the boundary of X that
is not an extreme point of X, denote by ∇gi(x)

the gradient of gi at x, and denote by Y the set
of vectors y for which ∇gi(x) · y ≤ 0 for each i

such that gi(x) = 0. If Y is a subset of the con-
vex hull spanned by the vectors tangent to C at
x, then g is said to satisfy Guignard’s constraint
qualification at the point x.
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H
Hadamard product Given two m × n ma-
trices A = (aij ) and B = (bij ), the Hadamard
product (or Schur product) of A and B is their
entrywise product, usually denoted by

A ◦ B = (aij bij

)
.

half-angle formulas The trigonometric iden-
tities cos2 θ = (1 + cos(2θ))/2 and sin2 θ =
(1+ cos(2θ))/2.

half-side formulas Suppose that α, β, and γ

are the angles of a spherical triangle. Denote by
a the side of the triangle that is opposite α, and
put S = (α + β + γ )/2 and

R =
√

− cos S

cos(S − α) cos(S − β) cos(S − γ )
.

The formulas

sin

(
1

2
a

)
=
√
− cos S cos(S − α)

sin β sin γ
,

cos

(
1

2
a

)
=
√

cos(S − β) cos(S − γ )

sin β sin γ
,

and

tan

(
1

2
a

)
= R cos(S − α)

are called half-side formulas.

half-spinor An element of the representa-
tion space of either half-spin representation of
the complex spinor group. See half-spin repre-
sentation.

half-spin representation Suppose that V is
a vector space of dimension 2n and Q is a qua-
dratic form on V . Write V as a direct sum of
two n-dimensional isotropic spaces W and W ′
for Q. The representations corresponding to the
sum of all even exterior powers of W and to the
sum of all odd exterior powers of W are called

the half-spin representations of the complex or-
thogonal Lie algebra so2nC.

Hall subgroup Let P be a set of prime num-
bers. A P -number is a number all of whose
prime divisors are in P . A P ′-number is a num-
ber none of whose prime divisors are in P . A
finite group G is a P -group if |G| is a P -number.
A subgroup H of a finite group G is a Hall P -
subgroup if H is a P -group and [G : H ] is a P ′
number. Further, H is a Hall subgroup if H is
a P -subgroup for some P . This is equivalent to
the condition gcd(|H |, [G : H ]) = 1.

Hamilton-Cayley Theorem A matrix sat-
isfies its characteristic polynomial. That is, if
p(x) is the characteristic polynomial of a matrix
M , then p(M) = 0. Also called the Cayley-
Hamilton Theorem.

Hamilton group A non-Abelian group in
which each subgroup is normal. See normal
subgroup.

Hamilton’s quaternion algebra The non-
commutative ring generated over the real num-
bers by 1, i, j, k where 1 is the identity, i2 =
−1, j2 = −1, k2 = −1 and ijk = −1. Thus,
an arbitrary element has the form q = a +
bi + cj + dk, where a, b, c, d are real num-
bers. The conjugate of q is the quaternion q̄ =
a − bi − cj − dk, which has the property that
qq̄ = a2 + b2 + c2 + d2. This allows one
to show that each non-zero q has an inverse
q−1 = q̄/(qq̄). Thus, we have an example of
a non-commutative division algebra. The set
of quaternions of norm 1 (qq̄ = 1) forms a
group under multiplication which is isomorphic
to SU(2).

harmonic mean Given n non-zero real num-
bers xi, i = 1, . . . , n, their harmonic mean is
H , where 1/H = (1/x1 + · · · + 1/xn)/n.

harmonic motion Simple harmonic motion
is the motion of a particle subject to the differ-
ential equation

d2x

dt2
= −n2x ,
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where n is a constant. Its solution may be writ-
ten as x = R cos(nt + b), where R and b are
arbitrary constants. Damped harmonic motion
is the motion of a particle subject to the differ-
ential equation

d2x

dt2
+ 2p

dx

dt
+ n2x = 0 ,

where 2p dx
dt

is a resistance proportional to the
velocity and p is a constant.

harmonic progression See harmonic series.

harmonic series The series

1+ 1

2
+ 1

3
+ · · · 1

n
+ · · · .

It is well known that this series diverges; a proof
is given by Bernoulli. One can also see this by
noting that 1/2 ≥ 1/2, 1/3+1/4 > 1/2, 1/5+
1/6 + 1/7 + 1/8 > 1/2, 1/9 + 1/10 + · · · +
1/16 > 1/2, etc., showing that the series is at
least as big as n(1/2) for any n.

Hartshorne conjecture If X1 and X2 are
smooth submanifolds with ample normal bun-
dles of a connected, projective manifold Z such
that

dimX1 + dimX2 > dimZ ,

then is X1 ∩X2 nonempty?

Hasse invariant Let E be an elliptic curve
over a perfect field k of characteristic p > 0
and let F : E → E be the Frobenius mor-
phism (induced by the p-power map). Let F ∗ :
H 1(E, OE) → H 1(E, OE) be the induced map
on cohomology. If F ∗ = 0, then E has Hasse
invariant 1; otherwise E has Hasse invariant 1.
Here H 1(E, OE) is a one-dimensional vector
space over k, since E is elliptic, and OE is the
sheaf of regular functions on the variety E.

Hasse-Minkowski character Let A be an
n × n non-singular symmetric matrix with ra-
tional elements and let Di (i = 1, 2, . . . , n) be
the leading principal minor determinant of order
i in the matrix A. Suppose further that none of
the Di is zero. Then the integer

cp = cp(A) = (−1,−Dn)p

n−1∏
i=1

(Di,−Di+1)p

is the Hasse-Minkowski character of A. Here p

is a prime and (a, b)p is the Hilbert norm residue
symbol.

Hasse-Minkowski character Also called
Hasse-Minkowski symbol, Hasse symbol, and
Minkowski-Hasse character. An invariant of a
quadratic form which, when considered together
with the discriminant of the form and the number
of variables, determines the class of a quadratic
form over a local field. Let F be either a com-
plete archimedean field or a local field of charac-
teristic not equal to 2. Let (a, b) = 1 if ax2+by2

represents 1, otherwise let (a, b) = −1. If f is
a nondegenerate quadratic form over F equiv-
alent to a1x2

1 + a2x2
2 + · · · + anx2

n , then the
Hasse-Minkowski character is usually defined
as either

χp(f ) =
∏
i<j

(
ai, aj

)
or

χ∗p(f ) =
∏
i≤j

(
ai, aj

)
.

Note that χ∗p = χp · (d(f ), d(f )) where d(f )

is the discriminant of f . The Hasse-Minkowski
character depends only on the equivalence class
of the form f and not on the diagonalization
used. It may also be defined in terms of the
Hasse algebra of f by setting χp(f ) = 1 if the
Hasse algebra associated with f splits and -1 if
it does not. The Hasse-Minkowski character is
sometimes called the Hasse invariant, since the
Hasse invariant is either 1 or the unique element
of order 2 in the Brauer group of F . See also
Hasse invariant, Hasse-Minkowski Theorem.

Hasse-Minkowski symbol See Hasse-
Minkowski character.

Hasse-Minkowski Theorem If q is a qua-
dratic form over a global field F , with charac-
teristic not equal to 2, then q is isotropic over F

if and only if q is isotropic over all F℘ , where
F℘ is the completion of F at the place ℘.

If F and F℘ are defined as above, this the-
orem leads to the following statement: Two
quadratic forms are equivalent over F if and
only if they are equivalent over all F℘ , if and
only if they have the same dimension, discrim-
inant, the same Hasse-Minkowski character for
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non-archimedean F℘ , and the same signature
over the real completions of F . See Hasse-
Minkowski character.

Hasse principle Let X be a smooth projec-
tive variety over an algebraic number field k. A
fundamental Diophantine problem for X is to
decide whether there are any k-rational points
on X and, if so, to describe them. When X is a
geometrically integral quadric, the Hasse prin-
ciple affirms that if X has rational points in every
completion of k, then it has rational points in k.

Hasse’s conjecture Let m1, m2, and m3 be
coprime integers greater than 2. If A(m1, m2,

m3) denotes the number of lattice points (x1, x2,

x3) with (xi, mi) = 1 in the tetrahedron

2 max (xi/mi) <

3∑
i=1

xi/mi < 1 ,

then A(m1, m2, m3) is even. In 1943, Hasse
made the conjecture, which arose in his inves-
tigations of class numbers of Abelian number
fields.

Hasse symbol See Hasse-Minkowski char-
acter.

Hasse-Witt map See Hasse-Witt matrix.

Hasse-Witt matrix Given a complete smooth
algebraic variety X of dimension n defined over
a perfect field k of positive characteristic p, there
is a natural Frobenius morphism F : X → X,
whose action on the structure sheaf OX of X is
just as the pth power map. This action induces
another action on the nth cohomology group
H n(X, OX), called the Hasse-Witt map of X

and denoted also by F . The group H n(X, OX)

is a finite-dimensional k-vector space and the
matrix corresponding to F is called the Hasse-
Witt matrix of X.

Hasse zeta function The function ζ(s), of a
complex variable s, defined as follows. Suppose
that V is a nonsingular complete algebraic vari-
ety defined over a finite algebraic number field
F . For each prime ideal P of F , denote by VP

the reduction of V modulo P , denote by FP the
residue field of P , and denote by Nm the number

of F m
P -rational points of VP . Denote by ZP the

formal power series defined by

ZP (u) = exp

( ∞∑
m=1

Nmum

m

)
.

Denote by P the set of all prime ideals P of F

such that VP is defined, and denote by N(P ) the
absolute norm of P . Then

ζ(s) =
∏
P∈P

ZP

(
N(P )−s , VP

)
.

Hausdorff space A topological space X such
that, whenever p, q are points of X, then there
is an open neighborhood U of p and an open
neighborhood V of q such that U ∩ V = ∅.
Also called T2-space.

haversine The complex valued function h(z)

= (1− cos z)/2.

Hecke algebra (1) Let H be a subgroup of
a group G, and suppose that for each g in G,
the index of H ∩ gHg−1 in H is finite. Denote
by H\G/H the set of double cosets of G by
H . If R is a commutative ring, then the module
RH\G/H has an R-algebra structure and is called
the Hecke algebra of (G, H) over R.

(2) Let H be a subgroup of a finite group G.
Suppose that F is a field, and e is an idempotent
in F H such that the left ideal F He affords an
F -character. Then the subalgebra e · F G · e is
called a Hecke algebra.

Hecke character Consider an algebraic num-
ber field of finite degree, denote its idele group
by J and its idele class group by C. A char-
acter of J that is a character of C is called a
Hecke character (or Grössencharakter). See
idele class, idele group.

Hecke L-function A function L(s), of a com-
plex variable s, defined as follows. Suppose that
F is an algebraic number field of finite degree,
and m is an integral divisor of F . Denote by χ

the character of the ideal class group of F mod-
ulo m. For each integral ideal a of F , denote its
absolute norm by N(a). Denote by I the set of
all integral ideals of F . Then

L(s) =
∑
a∈I

χ(a)/N(a)s .
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height (1) Let R be a non-trivial commutative
ring with an identity. A prime chain of length
n is a sequence I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ In

(proper inclusions) of prime ideals (i.e., Ii ∈
Spec(R)). If I ∈ Spec(R), then the supremum
of the lengths of such prime chains is called the
height of the prime ideal I . If I is a (proper)
not necessarily prime ideal of R, by height(I )

we will mean the minimum of the heights of the
prime ideals which contain I .

(2) If ; ⊂ Rn is a root system and < is a base
for ;, then, for β ∈ ;, we have β =∑α∈; kαα,
where the kα are integers. Then the height of β

is
∑

α∈; kα .

Heisenberg group The group of all upper-
triangular integral (or sometimes real) 3×3 ma-
trices with 1s on the diagonal. The Heisenberg
group is nilpotent.

Held group A finite simple group of order
4,030,387,200.

Hensel’s Lemma Let A be a complete lo-
cal ring with m its maximal ideal. Assume that
A is m-adically complete. Let f (x) ∈ A[x]
be a monic polynomial of degree n. Let π :
A → A/m be the canonical map and extend
π to π : A[x] → (A/m)[x]. If g1(x) and
g2(x) are relatively prime monic polynomials
over A/m of degree r and n− r (respectively),
such that π(f (x)) = g1(x)g2(x), then there ex-
ist h1(x), h2(x) ∈ A[x] having degree r and n−
r such that f (x) = h1(x)h2(x) and π(hi(x)) =
gi(x), for i = 1, 2.

Herbrand quotient Let G = {g1, . . . , gn}
be a finite group and let M be a G-module. Let
N : M → M be the norm defined by N(m) =
g1m + · · · + gnm. Then N(M) is contained in
MG. Let h0 = MG/N(M) and let h1 be the first
cohomology group H 1(G, M). If h0 and h1 are
finite, then the quotient of their orders is h(M),
the Herbrand quotient. The Herbrand quotient
is multiplicative for short exact sequences of G-
modules: if we have 1 → M ′ → M → M ′′ →
0, then h(M) = H(M ′)h(M ′′).

Herbrand’s Lemma Let G be a finite group.
If M ′ is a sub-G-module of a G-module M and
the Herbrand quotient h(M ′) exists, then h(M)

also exists and h(M) = h(M ′). See Herbrand
quotient.

Hermitian form A form (·, ·) : V × V →
C, where V is a real or complex vector space,
such that (u, v) = (v, u), for all u, v ∈ V . The
standard Hermitian form on Cn is defined by
(u, v) =∑n

i=1 uivi .

Hermitian matrix A matrix M , such that its
transpose and its complex conjugate (the matrix
with entries equal to the complex conjugates of
the entries of M) are equal. See transpose.

Hermitian operator An operator M, on a
real or complex vector space, such that M∗ =
M , where M∗ is the adjoint operator. Thus, if the
Hermitian form is the standard Hermitian form,
then M∗ = MT , where T stands for transpose.

Hessenberg method of matrix transformation
A method for transforming a matrix into a matrix
(bij ) by means of a triangular similarity trans-
formation so that bij = 0 whenever i − j ≥ 2.

Hessian The Jacobian of the first order deriva-
tives of a differentiable function f = f (x1, . . . ,

xn) of n real variables; i.e., H(f ) = J (∂f/∂x1,

. . . , ∂f/∂xn) = |∂2f/∂xi∂xj |.

Hey zeta function The function ζ(s), of a
complex variable s, defined as follows. Sup-
pose that A is a simple algebra over an algebraic
number field of finite degree, o is a maximal or-
der of A, and a is an integral left o-ideal. Denote
by N(a) the number of elements in o/a, and by
I the set of all integral left o-ideals. Then

ζ(s) =
∑
a∈I

N(a)−s .

higher algebra (1) Algebra at the undergrad-
uate level.

(2) Modern, or abstract, algebra.

higher-degree Diophantine equation An al-
gebraic equation of degree three or higher whose
coefficients are integers, such that the solutions
sought are to be integers. See also Diophantine
equation.
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higher differentiation For a commutative
ring R with a unit and N the nonnegative inte-
gers, a sequence

{δi : R → R}i∈N

of maps such that, for every x and y in R and
every i and j in N,

(i.) δi(x + y) = δix + δiy;
(ii.) δi(xy) =∑p,q∈N:p+q=i δpx · δqy;

(iii.) δi(δj x) = (i+j
i

)
δi+j x; and

(iv.) δ0x = x.

highest common factor See greatest com-
mon divisor.

highest weight (1) Suppose that g is a com-
plex semisimple Lie algebra, h is a Cartan subal-
gebra of g, and O is a lexicographic ordering on
the real linear subspace of the complex-valued
forms on h, spanned by the root system of g rel-
ative to h. If ρ is a representation of g, then the
maximal element of the set of weights of ρ with
respect to O is called the highest weight of ρ.

(2) If V is a vector space over the field C of
complex numbers, g is a semisimple Lie algebra
over C, π is an irreducible finite-dimensional
representation of g in V , and h is a Cartan sub-
algebra of g, then g has a Cartan decomposition
g = h ⊕ (⊕αgα), with each α being an eigen-
value of the action of h on π . Such an eigen-
value is called a weight of π . A nonzero vector
v ∈ V is called a highest weight vector of π if
v is an eigenvector for the action of h on π and
if gα(v) = 0 for each positive root α of g. The
highest weight of π is the weight of the highest
weight vector of π .

Higman-Sims group A finite simple group
of order 44,352,000.

Hilbert-Hasse norm residue symbol For a
fixed prime p, let ζn be a primitive pnth root of
1 in some algebraic closure of Qp. Let Ln =
Qp(ζn), and let (·, ·)n be the pnth Hilbert norm
residue symbol of L∗n.

Hilbert modular group If M ∈ PSL(2, Od)

is a matrix and M stands for the matrix ob-
tained by replacing each entry of M by its Galois
conjugate, then the map M → (M, M) sends

PSL(2, Od) to an irreducible lattice in G (where
G = PSL(2, R) × PSL(2, R)). This last is
called a Hilbert modular group. It is known that
any irreducible lattice in G is commensurable to
one of the Hilbert modular groups.

Hilbert modular group If M ∈ PSL(2, Od)

is a matrix and M stands for the matrix ob-
tained by replacing each entry of M by its Galois
conjugate, then the map M → (M, M) sends
PSL(2, Od) to an irreducible lattice in G (where
G = PSL(2, R)×PSL(2, R)). This last is called
a Hilbert modular group. It is known that any
irreducible lattice in G is commensurable to one
of the Hilbert modular groups.

Hilbert modular surface Denote by G a
Hilbert modular group, and denote by H 2 the
product of the upper half-space with itself. After
adding a finite number of points to H 2/G and
obtaining the minimal resolution of the space,
one obtains a nonsingular surface over the com-
plex numbers. This surface is called the Hilbert
modular surface.

Hilbert norm-residue symbol Suppose that
F is an algebraic number field that contains a
primitive nth root of unity, that a and b are
nonzero elements of F , and that P is a prime
divisor of F . Put

σ =
a, F

(
n
√

b
)

/F

P

 ,

where the symbol on the right is the norm-residue

symbol. The symbol
(

a,b
P

)
n

defined by(
a, b

P

)
n

=
(

n
√

b
)σ

is called the Hilbert norm-residue symbol. See
also norm-residue symbol.

Hilbert polynomial Let R be an Artinian
ring and let R[x1, . . . , xn] be the (graded) poly-
nomial ring (graded by degree). Let M = M0⊕
M1 ⊕ . . . be a finitely generated graded R[x1,

. . . , xn]-module. Let LM(n) = L(Mn) denote
the length of the R-module. Then there is a
polynomial f (x) with rational entries such that
LM(n) = f (n), for sufficiently large n. This
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is the Hilbert polynomial of the R[x1, . . . , xn]-
module M . See length of module.

Hilbert’s Basis Theorem If R is a Noethe-
rian ring, then so is the polynomial ring R[x].
See Noetherian ring.

Hilbert scheme Let k be an algebraically
closed field. The Hilbert scheme parametrizes
all closed subschemes of P n

k . Here, if R is a
ring, then P n

k is the projective n space over the
ring R. It satisfies the following condition: to
give a closed subscheme S in P n

T which is flat
over T (for any scheme T ) is the same as giving a
morphism f : T → H . Here the map f acts on
t ∈ T by f (t) = the point of H corresponding
to the fiber St in P n

k(T ).

Hilbert’s Irreducibility Theorem Suppose
that P is an irreducible polynomial in the n vari-
ables x1, . . . , xn over an algebraic number field
F , and suppose that 0 < m < n. Then there is
an irreducible polynomial in the m variables x1,
. . . , xm that is obtainable from P by assigning
appropriate values in F to the n − m variables
xm+1, . . . , xn.

Hilbert space A linear space with a norm
that is induced by a complex Hermitian inner
product, and which is complete.

Hilbert-Speiser Theorem Suppose that E/F

is a finite Galois extension with Galois group G,
denote by E∗ and F ∗ the multiplicative groups
of the field E and F , respectively, and denote by
N the norm NE/F . Then Ĥ 0(G, F ∗) is isomor-
phic to E∗/N(F ∗), and H 1(G, F ∗) = 0.

Hilbert’s Syzygy Theorem (1) Let R be the
graded polynomial ring in n indeterminates of
degree 1 over a field, and let M be a finitely
generated graded R-module. If M0, . . . , Mn

are finitely generated graded R-modules,

0 → Mn → Mn−1 → · · · → M0 → M → 0

is an exact sequence, and M0, . . . , Mn−1 are
free, then Mn is free.

(2) Let R be a regular local ring of dimen-
sion d , and let G be a finitely generated R-
module. Then there are finitely generated free

R-modules F0, F1, . . . , Fd and there are R-
homomorphisms f0 : F0 → G and fi : Fi →
Fi+1 for i = 1, 2, . . . , d such that the sequence

0 → Fd
fd→ · · · f1→ F0

f0→ G → 0

is exact.

Hilbert’s Zero-point Theorem For any field
F , any finitely generated F -algebra A and any
ideal I of A, the radical of I is the intersection
of all the maximal ideals of A which contain I .

Hirzebruch surface The CP1-bundle over
CP1 with cross-section C where C2 = −n.

Hochschild’s cohomology group Suppose
that A is an algebra over a commutative ring.
If M is a two-sided A-module, then consider
the complex obtained from the module of all
n-cochains and the coboundary operator. The
cohomology of this complex is called the nth
Hochschild’s cohomology group of A relative to
M . See also cohomology group.

Hodge’s conjecture Suppose that V is a pro-
jective nonsingular variety over a finite algebraic
number field F , and denote by A the group of al-
gebraic cycles of codimension r on V⊗F C mod-
ulo homological equivalence. Then the space
of rational cohomology classes of type (r, r) on
V ⊗F C is spanned by A.

Hodge spectral sequence If V is a nonsin-
gular connected algebraic variety over the field
of complex numbers, and Fq denotes the sheaf
of germs of regular differential forms of degree
q, then the spectral sequence

E
q,p

1 = H p(V, Fq) ⇒ H p+q(V , C)

is called a Hodge spectral sequence.

Hodge structure Suppose that L is a lattice,
and V is a finite-dimensional real vector space
that contains L. Denote the complexification of
V by C. A Hodge structure of weight m on C

(or on V ) is a decomposition of C as a direct
sum

C =
⊗

p,q:p+q=m

Cp,q
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of complex vector spaces Cp,q such that the
complex conjugate of Cp,q is isomorphic to
Cq,p.

Hodge theory A body of results concern-
ing cohomology groups of manifolds. Three of
these results are listed here.

(1) Suppose that X is a closed oriented Rie-
mannian manifold. Then each element of a co-
homology group of X with complex coefficients
has a unique harmonic representative.

(2) Suppose that V is a compact complex
manifold of dimension n that is the image of
a holomorphic mapping from a compact Kähler
manifold of dimension n. If q = max(n− p +
1, 0), then H n(V, C) carries the Hodge structure
induced by the type (p, q)-decomposition of the
space of differential forms on the manifold.

(3) If X is a smooth noncomplete irreducible
variety, then H n(X, C) carries a mixed Hodge
structure that is independent of the choice of
complete algebraic variety X such that X − X

is a subvariety.
See Hodge structure.

Hölder inequality If p �= 0, 1, 1/p+1/q =
1 and ai, bi > 0, then we have

∑
i

aibi ≤
(∑

i

a
p
i

)1/p (∑
i

b
q
i

)1/q

,

if p > 1 and

∑
i

aibi ≥
(∑

i

a
p
i

)1/p (∑
i

b
q
i

)1/q

,

if 0 < p < 1. See also Hölder integral inequal-
ity.

Hölder integral inequality Suppose that f

and g are measurable positive functions defined
on a measurable set E, and suppose that p and q

are positive real numbers such that 1/p+1/q =
1. If p > 1, then∫

E

fg ≤
(∫

E

f p

)1/p (∫
E

gq

)1/q

.

If 0 < p < 1, then∫
E

fg ≥
(∫

E

f p

)1/p (∫
E

gq

)1/q

.

In each case, equality holds if and only if there
exist two real numbers a and b such that ab �= 0
and af p = bgq almost everywhere.

Hölder’s Theorem If n �= 2, 6, then the sym-
metric group Sn is complete. See symmetric
group, complete group.

holomorphic function See analytic function.

holomorphic functional calculus If X is a
complex Banach space (a complete normed vec-
tor space), T : X → X is a bounded linear
operator and f (z) is a holomorphic function on
(a neighborhood of) the spectrum of T (the set
of eigenvalues of T , if X is finite dimensional),
then one can define f (T ) via a Cauchy type inte-
gral. The map f → f (T ) is a homomorphism
from the algebra of holomorphic functions in a
neighborhood of the spectrum to T into the Ba-
nach algebra of bounded linear operators on T .

holosymmetric class Suppose that T is an n-
dimensional lattice in n-dimensional Euclidean
space, and that K is a finite subgroup of the or-
thogonal group. Denote by A, B, and G the sets
of arithmetic crystal classes, of Bravais types,
and of geometric crystal classes of (T , K), re-
spectively. There are surjective mappings s1 :
A → B and s2 : A → G, and there is an in-
jective mapping i : B → A such that s1 ◦ i is
the identity mapping on B. A holosymmetric
class is a class that belongs to the image of the
mapping s2 ◦ i.

See arithmetic crystal class, Bravais type, ge-
ometric crystal class.

homogeneous Of the same kind. For ex-
ample, a homogeneous polynomial is a polyno-
mial each of whose monomials has the same de-
gree. See homogeneous polynomial. See also
homogeneous bounded domain, homogeneous
coordinate ring, homogeneous equation, homo-
geneous ideal, homogeneous n-chain.

homogeneous bounded domain A bounded
domain D in Cn such that the group of all holo-
morphic transformations of D acts transitively
on D.
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homogeneous coordinate ring Let K be a
field, V a projective variety over K and I (V ) the
ideal of K[x0, . . . , xn] generated by the homo-
geneous polynomials in K[x0, . . . , xn] that van-
ish on V . Then K[x0, . . . , xn]/I (V ) is called
the homogeneous coordinate ring of V .

homogeneous difference equation A linear
difference equation of the form

xn + c1xn−1 + · · · + cnx0 = 0 ,

where c1, . . . , cn are given real or complex num-
bers and {xj } is an unknown infinite sequence.
The notion is similar to that of homogeneous
linear equation except that difference equations
are often written in terms of xn and powers of the
difference operator <xn = xn − xn−1, so that
they can be considered as analogs of differential
equations.

homogeneous domain A domain with a tran-
sitive group of automorphisms. In more de-
tail, a domain is a connected open subset of
complex N space CN . A domain is homoge-
neous if it has a transitive group of analytic
(holomorphic) automorphisms. This means that
any pair of points z and w can be interchanged,
i.e., φ(z) = w, by an invertible analytic map
φ carrying the domain onto itself. For exam-
ple, the unit ball in complex N space, {z =
(z1, . . . , zN ) : |z1|2 + . . . + |zN |2 < 1}, is ho-
mogeneous. See automorphism, invertible func-
tion, invertible map. See also bounded homo-
geneous domain, Siegel domain.

homogeneous element See graded ring.

homogeneous equation An equation, in an
unknown function f , having the form L[f ] =
0, where L acts linearly (L[c1f1 + c2f2] =
cLl[f1] + c2L[f2]). Thus, L could be a linear
differential operator (ordinary or partial). See
also homogeneous difference equation.

homogeneous function Let F be a field. A
function f = f (x1, . . . , xn) : F n → F , such
that, for all c ∈ F and all (x1, . . . , xn) ∈ F n,
we have f (cx1, . . . , cxn) = ckf (x1, . . . , xn) is
called a homogeneous function of degree k. See
also homogeneous polynomial.

homogeneous ideal An ideal I in a graded
ring R such that I is generated by homogeneous
elements. See graded ring.

homogeneous linear equation A linear equa-
tion in the variables x1, . . . , xn, having the form

c1x1 + · · · + cnxn = 0 ,

where the ci are constants.

homogeneous n-chain Let G be a group and
let G act on Gn+1 diagonally: g(g0, . . . , gn) =
(gg0, . . . , ggn). Define a boundary oper-
ator by d(g0, . . . , gn) = (g1, . . . , gn) −
(g0, g2, . . . , gn) + · · · + (−1)n(g0, . . . , gn−1).
Then the free Abelian group with basis the ele-
ments of Gn+1, with this action of G on Gn+1

and with boundary operator d is called the group
of homogeneous n-chains of G.

homogeneous polynomial A polynomial
P (x1, . . . , xn), which is also a homogeneous
function (of some degree k). See homogeneous
function. Thus,

P (x1, . . . , xn)

=
∑

m1+···+mn=k

cm1m2···mnx
m1
1 · · · xmn

n .

homogeneous ring See graded ring.

homogeneous space A smooth manifold M

with a Lie group G, such that there is a transitive,
smooth action of G on M .

homological algebra Originally called mul-
tilinear algebra, this branch of algebra deals
with the category of left (or right) R-modules
over some ring R (generally assumed to be as-
sociative and to possess an identity element).
A left R-module is an Abelian group A, to-
gether with a ring homomorphism of the ring
R into the ring of endomorphisms (homomor-
phisms) of A into itself. A right R-module is de-
fined similarly except the ring homomorphism
is replaced by a ring anti-homomorphism (i.e.,
the order of products is reversed). When R is
commutative, a structure as a left R-module in-
duces a structure as a right R-module and vice
versa. The morphisms of this category are the
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R-homomorphisms f : A → B for a pair of R-
modules A and B. By an R-homomorphism we
mean a group homomorphism of A into B with
the property that f (λa) = λf (a), for all λ ∈ R

and a ∈ A, when A and B are left R-modules
and, when A and B are right R-modules, we
assume that f (aλ) = f (a)λ. These categories
have two fundamental functors, both of which
take their values in the category of all Abelian
groups (which is, in the terminology of this def-
inition, the category of left Z-modules). We
describe them separately.

Given two left R-modules A, B, HomR(A,
B) denotes the Abelian group of all R-homo-
morphisms of A into B. When R is commuta-
tive, HomR(A, B) is also both a left and right
R-module. This functor is covariant in the sec-
ond variable and contravariant in the first. By
covariant in the second variable we mean that if
B → C is a morphism then there is an induced
morphism

HomR(A, B) → HomR(A, C) .

By contravariant in the first variable we mean
that there is an induced morphism

HomR(B, A) ← HomR(C, A) .

This functor is left exact in both variables. By
this we mean that, given any exact sequence
B → C → 0, the induced group homomor-
phisms

0 → HomR(C, A) → HomR(B, A)

forms an exact sequence and that any exact se-
quence 0 → B → C induces an exact sequence
0 → HomR(A, B) → HomR(A, C).

When A is a right R-module and B is a left R-
module then there is an Abelian group A⊗R B

called the tensor product of A and B that con-
sists of formal sums of pairs (a, b) where a is
a member of A and b is a member of B and is
subject to the relations

((a1 + a2) , b) ≡ (a1, b)+ (a2, b)

(a, b1 + b2) ≡ (a, b1)+ (a, b2)

(aλ, b) ≡ (a, λb) for all λ ∈ R .

A⊗R B is covariant in both variables and right
exact in both. When R is commutative, A ⊗R

B can be regarded as both a left and right R-
module.

Further development of these ideas leads to
certain derived functors called ExtnR(A, B) in
the case of the Hom functor and Torn

R(A, B) in
the case of the tensor product functor. There is
one such functor for each n ≥ 0 and, in case
n = 0, these coincide with Hom and the ten-
sor product. This development is too lengthy
and technical to describe further here. See Ext
group, Tor.

homological dimension Let C be the cate-
gory of left R-modules where R is an associa-
tive ring with identity. We construct a projective
resolution of an R-module A by first taking a
projective module P0, together with an epimor-
phism P0 → A → 0 and kernel K0. There
always exists such a projective module since a
free module on any set of generators for A will
work. If K0 is not projective, repeat this proc-
ess with an epimorphism P1 → K0 → 0 and
kernel K1. Continue until a kernel Kn which
is projective is obtained. The index n is called
the projective dimension or homological dimen-
sion of the module A. Two facts must be proved
before this notion makes sense: (i.) A has ho-
mological dimension 0 if and only if A is, itself,
projective and (ii.) the index n is independent
of the particular sequence of projective modules
used. See projective module.

homological functor A sequence of additive
covariant functors of Abelian categories H =
{Hi : A → A′} defined for −∞ < i < +∞
with the following properties. For each short
exact sequence 0 → A′ → A → A′′ → 0 in
A, and morphism of exact sequences f , there
exist connecting morphisms δ∗ : Hi(A

′′) →
Hi−1(A′) such that δ∗◦Hi(f

′′) = Hi−1(f ′)◦δ∗.
The sequence

· · · → Hi+1(A′′) δ∗→ Hi(A
′) → Hi(A)

→ Hi(A
′′) δ∗→ Hi−1(A′) → · · ·

is a complex which is always exact.

homological mapping A homomorphism of
homology modules induced by a chain map-
ping. Let A be a ring with unit, and let (X, δ)
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and (Y, δ′) be chain complexes over A with ho-
mology modules H(X) and H(Y ). The A-
homomorphism f∗ : H(X) → H(Y ), of degree
zero, induced by a chain mapping f : X → Y ,
is called the homological mapping induced by
f .

homology Let {An : n ∈ Z} be a set of R-
modules over some ring R. Assume that there
is a family of R-homomorphisms fn : An →
An−1 with the property that the composite ho-
momorphisms fn−1fn = 0 for all n. This data
defines a chain complex. The latter condition
implies that Im(fn) ⊆Ker(fn−1), where Im(f )

is the image of f and Ker(f ) is the kernel of
f . Then the factor module ker(fn−1)/Im(fn) =
Hn−1 is the (n − 1)st homology module of the
complex. The sequence of these modules is
called the homology of the complex.

homology class The residue class of a cycle
modulo a boundary in the group of chains. Let
A be an Abelian category and let C = (Cn, dn)

be a chain complex in A. Let Zn = Ker dn and Bn

= Im dn+1. A residue class of Zn/Bn is called a
homology class.

homology group When a chain complex of
Abelian groups is given, then its homology con-
sists of a sequence of homology groups. See
chain complex.

homology module When a chain complex of
R-modules over some ring R is given, then its
homology consists of a sequence of homology
modules. See chain complex.

homomorphism Algebraic structures such
as groups, rings, fields, and modules are all de-
fined with one or more binary operations. Sup-
pose that ◦ : S × S → S is one such binary
operation which is, simply, a function from the
Cartesian product S × S to S. We customarily
write a ◦ b instead of the more standard func-
tional notation ◦(a, b) to describe the action of
this function. Then a homomorphism is a func-
tion f : S → T from one such object to another
with the property that f (a ◦ b) = f (a) ◦ f (b)

for all a, b ∈ S. Additional qualifiers such
as group homomorphism, ring homomorphism,
or R-homomorphism are used to describe ho-

momorphisms defined on groups, rings, or R-
modules.

Homomorphism Theorem of Groups Let
G be a group and let H and N be subgroups of
G such that N is normal (aNa−1 ⊆ N for all
a ∈ G.) Then (i.) HN = NH = {x ∈ G : x =
nh, for some n ∈ N} is a subgroup of G, (ii.)
N is a normal subgroup of NH , (iii.) N ∩ H

is a normal subgroup of H , and (iv.) the factor
group NH/N is isomorphic to the factor group
H/(N ∩H).

homotopy Let X and Y be topological spaces
and let f and g be continuous functions from
X to Y . We will say that f is homotopic to g

(often written f ∼ g) to mean that there is a
continuous function F : X × I → Y defined,
on the Cartesian product of X with the unit in-
terval I = [0, 1], such that F (x, 0) = f (x) and
F (x, 1) = g(x) for all x ∈ X. The relation
of being homotopic is an equivalence relation.
The function F that defines the relation is often
spoken of as the homotopy.

When X is the unit interval (i.e., when we
are talking about paths in the space Y ), it is cus-
tomary to make the additional assumption that
F (0, s) ≡ f (0) = g(0) and F (1, s) ≡ f (1) =
g(1).

homotopy associative Let G be a topologi-
cal space carrying the structure of an H -space,
defined by the continuous map µ : G×G → G.
See H-space. Given points x, y, z ∈ G, we can
define the maps f (x, y, z) = µ(x, µ(y, z)) and
g(x, y, z)= µ(µ(x, y), z) from G×G×G →
G. We say that µ is homotopy associative if f

and g are homotopic as maps.

homotopy commutative Let G be a topolog-
ical space carrying the structure of an H -space,
defined by the continuous map µ : G×G → G.
(See H-space.) Given points x, y ∈ G, we
can define the maps f (x, y) = µ(x, y) and
g(x, y) = µ(y, x) from G × G to G. We say
that µ is homotopy commutative if f and g are
homotopic as maps.

homotopy identity Let G be a topological
space carrying the structure of an H -space, de-
fined by the continuous map µ : G×G → G.
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(See H-space.) A constant map e(x) = e is
called a homotopy identity if the maps defined
by µ(x, e) and µ(e, x) are both homotopic to
the identity map i on G defined by i(x) = x for
all x ∈ G.

homotopy inverse Let G be a topological
space carrying the structure of an H -space, de-
fined by the continuous map µ : G × G →
G and having a homotopy identity e. See H-
space, homotopy identity. A continuous map
ν : G → G defines a homotopy inverse if the
maps defined by µ(x, ν(x)) and µ(ν(x), x) are
both homotopic to the homotopy identity e.

Hopf algebra Two types of Hopf algebras
have been defined. The first one was introduced
by Hopf and is used in the study of homology
and cohomology of Lie groups. The second type
was introduced by Sweedler and has applica-
tions in the study of algebraic groups.

(1) A (graded) Hopf algebra (A, φ, ψ) over
a field k is a graded algebra with multiplication
φ which is also a graded co-algebra with comul-
tiplication ψ such that φ : (A, ψ)⊗ (A, ψ) →
(A, ψ) is a homomorphism of graded co-alge-
bras. This type of Hopf algebra is frequently
assumed to be connected, commutative, cocom-
mutative, and of finite type.

(2) A Hopf algebra with an antipode S is a
bialgebra with antipode S. See also antipode.

Hopf algebra homomorphism A bialgebra
homomorphism f , between a Hopf algebra H

with antipode S and a Hopf algebra H ′ with
antipode S′ such that S′f = f S. See also Hopf
algebra.

Hopf comultiplication A degree preserv-
ing linear map defined as follows. Let X be
a topological space with a base point x0 and let
µ be a continuous base point preserving map-
ping from X × X to X. Let ι1(x) = (x, x0)

and ι2(x) = (x0, x). If µ ◦ ιi is homotopic
to 1X, then µ induces a degree preserving linear
map, µ∗, from the cohomology group H ∗(X) to
H ∗(X) ⊗ H ∗(X) via a Künneth isomorphism.
In this situation µ∗ is called a Hopf comultipli-
cation and (X, µ) is called an H -space. If α is
an element of H ∗(X), then µ∗(α) is called the
Hopf coproduct of α.

Hopf coproduct The image of an element
under a Hopf comultiplication. See Hopf co-
multiplication.

Horner method of solving algebraic equations
An iteration method for finding the real roots of
an algebraic equation. Locate a positive root
between two successive integers. If a1 is the
greatest integer less than the root, use the sub-
stitution x1 = x − a1 to transform the equation
into one that has a root between 0 and 1. Lo-
cate this root between successive tenths. Use
the substitution x2 = x1 − a2 to transform the
equation to one that has a root between 0 and
one-tenth. Continue this process. The desired
root is then approximately a1 + a2 + · · · + an.

Householder method of matrix transforma-
tion A method of transforming a symmet-
ric matrix A into a tridiagonal matrix B. The
method uses a similarity transformation of the
form A → H−1AH , where H represents an
orthogonal matrix of the form I − 2uu∗ with
u∗u = 1. In the above situation, I represents the
identity matrix and u∗ is the conjugate transpose
of u.

Householder transformation The matrix
transformation u = Hv where H is a symmet-
ric and orthogonal matrix of the form H =
I − 2xxT , where xT x = 1. In the above sit-
uation, xT represents the transpose of x, and I

represents the identity matrix.

H-series Since the nth factor of a Blaschke
product ∏ an

|an|
an − z

1− anz

can be written in the form 1 + C(z, an), where
C(z, a) = (1−|a|)/|a|−(1−|a|2)/|a|(1−az),
the Blaschke product converges absolutely at a
point z0 if and only if

∑
C(z0, an) converges

absolutely. Thus, in complex analysis, an H -
series is a series of the form∑

cn/(1− anz) ,

where 0 < |an| < 1 (n = 1, 2, · · · ) and
∑

(1−
|an|) < ∞. The set of points on C at which
the H -series converges is called its set of con-
vergence. The subject of representation theory
also considers H -series.
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H -series

H-space A topological space G, together
with a continuous map µ : G ×G → G, from
the Cartesian product of G with itself to G. In
practice, various additional conditions are im-
posed on such maps that make them imitate the
properties normally associated with a multipli-
cation. See homotopy.

hull-kernel topology A topology on the set
of primitive ideals (the structure space I) of a
Banach algebra R. Under this topology, the clo-
sure of a set U is the set of primitive ideals con-
taining the intersection of the ideals in U .

Hurwitz’s relation A relation between the
Riemann matrices of two Abelian varieties T1
and T2 that implies the existence of a homo-
morphism from T1 to T2. Let T1 and T2 be
Abelian varieties with Riemann matrices F1 =
(ω

(1)
1 , . . . , ω

(1)
2n ) and F2 = (ω

(2)
1 , . . . , ω

(2)
2m).

There is a homomorphism λ : T1 → T2 if and
only if there is a complex matrix W , and a ma-
trix M with integer entries, such that WF1 =
F2M . In particular, for every homomorphism
λ : T1 → T2 there is a representation matrix
W(λ) with complex coefficients, and a represen-
tation matrix M(λ) with respect to the real coor-
dinate systems (ω

(1)
1 , . . . , ω

(1)
2n ) and (ω

(2)
1 , . . . ,

ω
(2)
2m), that has coefficients in Z, such that W(λ)

F1 = F2M(λ).

Hurwitz’s Theorem If every member of a
normal family (of analytic functions on a con-
nected, open, planar set F) is never zero on
F, then the limit functions are either identically
zero or never zero on F.

A family of analytic functions on a set F is
normal on F if every sequence from the fam-
ily contains a subsequence that converges uni-
formly on compact subsets of F.

Hurwitz zeta function The function

ζ(s, a) =
∞∑

n=0

1

(n+ a)s
, 0 < a ≤ 1 .

A generalization of the Riemann zeta function
considered by Hurwitz (1862).

hyperalgebra A bialgebra, whose underly-
ing co-algebra is co-commutative, pointed, and
irreducible.

hyperbolic cosecant function See hyper-
bolic function.

hyperbolic cosine function See hyperbolic
function.

hyperbolic cotangent function See hyper-
bolic function.

hyperbolic function The six complex func-
tions:
hyperbolic sine: sinh(z) = exp z−exp(−z)

2

hyperbolic cosine: cosh(z) = exp z+exp(−z)
2

hyperbolic tangent: tanh(z) = sinh(z)
cosh(z)

hyperbolic cotangent: coth(z) = cosh(z)
sinh(z)

hyperbolic secant: sech(z) = 1
cosh(z)

hyperbolic cosecant: csch(z) = 1
sinh(z)

.
Due to the fact that sinh(iz) = i · sin(z) and

cosh(iz) = cos(z), where sin(z) and cos(z) are
the ordinary sine and cosine of the complex an-
gle z, the hyperbolic functions are rarely used
outside of certain specialized applications.

hyperbolic secant function See hyperbolic
function.

hyperbolic sine function See hyperbolic
function.

hyperbolic tangent function See hyperbolic
function.

hyperbolic transformation A linear frac-
tional function f (z) = az+b

cz+d
where a, b, c, and

d are complex constants with ad − bc �= 0 has
a pair of (not necessarily distinct) fixed points.
(See linear fractional function.) This is so be-
cause the equation z = az+b

cz+d
is linear or qua-

dratic in z. When the two fixed points coin-
cide, the transformation is said to be parabolic.
When there are distinct fixed points, say α and
β, then we can write the transformation in the
form w−α

w−β
= k z−α

z−β
. When k is real (necessarily

non-zero) the transformation is said to be hyper-
bolic. When |k| = 1, the transformation is said
to be elliptic.
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hyperbolic trigonometry One of the two
classical types of non-Euclidean plane geom-
etry, which are distinguished from each other
and from Euclidean plane geometry by the form
of the parallel axiom that holds. For Euclidean
geometry, there is, through any point P not on
a line L, exactly one line parallel to L. For el-
liptic (also Lobachevskian) geometry there is,
through any point P not on a line L, no line
parallel to L. For hyperbolic geometry there is,
through any point P not on a line L, more than
one (actually infinitely many) lines parallel to
L.

Within the language of Riemannian geome-
try these three types of spaces are those of, re-
spectively, zero, positive, and negative constant
curvature. Models that exist within Euclidean
geometry are given by the following construc-
tions. For elliptic geometry, the space is the
surface of a sphere and the lines are great cir-
cles on the sphere. We must regard antipodal
points on the sphere as being identified in order
that lines intersect in no more than one point.
For hyperbolic geometry, the space is the inte-
rior of a disk and the lines are arcs of circles
that intersect the boundary of the disk at right
angles or are straight lines through the center
of the disk. An alternative model is the upper
half plane (y > 0) and the lines are arcs of cir-
cles centered on the real axis or straight lines
orthogonal to the x-axis.

An important property of these geometries
concerns the sum of the angles of a triangle. In
Euclidean geometry, the sum of the angles of
any triangle must be exactly equal to π (that is
to say, a straight angle). In elliptic geometry the
sum of the angles is always greater than π while
in hyperbolic geometry the sum of the angles is
always less than π .

If the non-Euclidean plane is embedded in a
Euclidean space of sufficiently high dimension,
then it becomes possible to measure areas of re-
gions on the plane using the Euclidean measure
of area relative to the enveloping space. It was
shown by Gauss that the area of a triangle, so
measured, equals the difference between π and
the sum of the angles of the triangle.

hyperelliptic curve An algebraic curve,
over a ground field k, is defined by an ir-
reducible polynomial F (X, Y ) in the polyno-

mial ring k[X, Y ]. Since F (X, Y ) generates
a maximal ideal in k[X, Y ], the factor ring
k[X, Y ]/(F (X, Y )) = K is also a field and con-
tains a canonical copy of k. If we denote the
canonical images of X and Y in K by x and
y, respectively, then K = k(x, y) is the field
extension of k generated by x and y. The field
K = k(x, y) is called the field of algebraic func-
tions on the algebraic curve defined by F (X, Y ).
A hyperelliptic curve is an algebraic curve of the
special form Y 2 = P (X), where P (X) is a poly-
nomial that has no repeated roots.

It is also usually assumed that k is algebrai-
cally closed in K . That is to say, every element
of K that is not in k is transcendental over k.
When this is so, k is said to be the exact con-
stant field for the curve.

hyperelliptic integral Let F (X, Y ) = Y 2 −
g(X) define a hyperelliptic curve over the field
C of complex numbers, where the polynomial
g(X) is square free and of degree n. Let K =
C(z, w) be the function field for this curve. Here,
z and w are the canonical images of X and Y in
the residue class field K = C[X, Y ]/(F (X, Y )).
The branch points of the function field K over the
projective line C(z) are the roots of g(X) and,
also, the point at infinity, when n is odd. When
n is even, the point at infinity is not a branch
point. We can, however, move one of the roots
of g(X) to ∞ by a linear change of variable in
z. Thus there is no loss of generality in assum-
ing that n is odd. The Riemann surface X for
this curve has genus g = 1− 2+ 1

2 (n+ 1), ac-
cording to the standard formula for the genus in
case [K : C(z)] = 2 and there are n+ 1 branch
points of index 2. According to the Riemann–
Roch Theorem, there are g linearly independent
holomorphic differential forms defined on the
Riemann surface. A holomorphic differential
form is an expression of the form f (z)dz, such
that, if π denotes a local parameter at a point P

on the Riemann surface, then f (z) dz
dπ

, which is
a member of K , has no pole at P . These are
commonly referred to as differentials of the first
kind. Each of them gives rise to an Abelian inte-
gral that is defined everywhere on the universal
covering surface for the Riemann surface. These
are hyperelliptic integrals of the first kind. They
are more commonly referred to as Abelian inte-
grals of the first kind. For hyperelliptic curves,
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these integrals can be given quite explicitly as∫
zr

√
g(z)

dz

for ≤ r < g − 1.
There are also differentials of the second and

third kinds. Differentials of the second kind
have poles but the residue vanishes at each of
these poles. Differentials of the third kind pos-
sess at least one pole with a nonvanishing residue.
Since the sum of the residues is always zero,
there must be at least two poles for a differential
of the third kind. To each of these is associ-
ated an Abelian integral, which, in the case of
differentials of the second kind, is also defined
on the entire universal covering surface for X
although it can have poles. For differentials of
the third kind, the singularities at points where
there are nonvanishing residues are logarithmic
singularities and are, thus, essential. The Abel-
ian integral associated with a differential of the
third kind is defined everywhere on the univer-
sal covering surface for X , except on curves that
pass through points that lie above these singu-
larities.

hyperelliptic surface The Riemann surface
for a hyperelliptic curve defined over the com-
plex field. See hyperelliptic curve.

hyperfinite factor A factor of type II1 which
is generated, in the weak topology, by an in-
creasing sequence {An}∞n=1 of finite dimensional
∗-subalgebras. In addition, each element in the
sequence {An}∞n=1 may be assumed to be a sub-
factor of type I2n . Sometimes the term hyperfi-
nite refers both to the factors defined above and
to factors of type In, where n < ∞.

hypergroup A set S with an associative mul-
tiplication that assigns to any a and b in S a non-
empty subset ab of S, such that, for each a and

b in S, there exist elements x and y in S such
that b ∈ ax and b ∈ ya.

hypergroupoid A set S, with a multiplication
that associates every two elements a and b in S

with a nonempty subset ab of S.

hypersurface A term with slightly different
meanings within algebraic geometry and analy-
sis:

(1) Algebraic Geometry: If X denotes affine
n-space over a field k, then any subvariety of
dimension n− 1 is referred to as a hypersurface
in X. The hypersurface is defined by a single ir-
reducible polynomial in n variables. This latter
fact is an expression of the algebraic fact that a
polynomial ring over a field is a unique factor-
ization domain.

(2) Analysis: If X denotes a manifold of di-
mension n, then any n−1 dimensional subman-
ifold can be referred to as a hypersurface. In
many cases, the hypersurface can be represented
by a single relation f (x1, . . . , xn) = 0. How-
ever, due to the fact that the coordinate system
changes from point to point, the general defini-
tion is necessarily more complicated.

hypo-Dirichlet algebra A uniform algebra
A with some properties that occur in concrete
examples. Let $f be the real part of f and let
$(A) = {$f : f ∈ A}. Let CR(X) be the space
of all continuous real-valued functions on X and
let log |A−1| = {log |f | : f, f−1 ∈ A}. A uni-
form algebra A on a compact Hausdorff space
X is hypodirichlet on X if the uniform closure
of $(A) has finite codimension in CR(X), and
the linear span of log |A−1| is dense in CR(X).
A uniform algebra A is hypodirichlet if it is hy-
podirichlet on its Shilov boundary. The fun-
damental work on hypo-Dirichlet algebras was
done by Ahern and Sarason in 1966.
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I
I-adic topology A topology that endows a
ring (module) with the structure of a topological
ring (module). Let I be an ideal in a ring R and
let M be an R-module. The I-adic topology on
M is formed by taking the cosets x+ InM, x ∈
M, n a positive integer, as a base of open sets.
The I-adic topology on R is formed by letting
M = R.

icosahedral group The group of rotations
of a regular icosahedron. It is a simple group
of order 60 and is isomorphic to the alternating
group of degree 5.

ideal In any ring (usually associative with
identity), any subgroup J of the additive group
ofR is called a left ideal ifRJ ⊆ J and is called
a right ideal if JR ⊆ J and, if both of these
conditions hold, is called, simply, an ideal.

ideal class LetR be an integral domain (com-
mutative ring with no divisors of zero). Two
ideals J and K are said to be linearly equivalent
if there exist nonzero elements a and b inR such
that aJ = bK . This establishes an equivalence
relation on the collection of all nonzero ideals
of R which we can write as J ≈ K . Any equiv-
alence class under this relation is said to be an
ideal class.

These classes respect multiplication in the
sense that if J1 ≈ J2 andK1 ≈ K2, then J1J2 ≈
K1K2. In most cases, this notion is only applied
to the collection of invertible ideals ofR. That is
to say, those ideals J for which there is another
ideal K such that JK is linearly equivalent to
the unit ideal R. For this case, the collection
of classes of invertible ideals forms an Abelian
group referred to as the ideal class group of the
ring.

An alternative and more modern way of defin-
ing this construction is contained in the notion
of fractional ideals. A fractional ideal of an in-
tegral domain R is a nonzero R-submodule F

of the quotient field of R with the property that

aF ⊆ R, for some nonzero a ∈ R. This in-
cludes all ordinary nonzero ideals. A fractional
ideal is principal if it is of the form aR where
a is some nonzero member of K . A fractional
ideal F is invertible if there is another fractional
ideal G such that FG = R. The invertible frac-
tional ideals form an Abelian group under ordi-
nary multiplication and this group contains the
group of principal fractional ideals. The fac-
tor group is isomorphic to the ideal class group
defined earlier.

ideal class group The group of ideal classes
of invertible ideals of an integral domain R or,
equivalently, the group of invertible fractional
ideals of R, modulo the subgroup of principal
fractional ideals. See ideal class.

ideal class in the narrow sense Let Ik be the
Abelian group consisting of the fractional ideals
of an algebraic number field k. Let P+k be the
subgroup of Ik consisting of all the principal
ideals generated by totally positive elements of
k. An ideal class of k in the narrow sense is a
coset of Ik modulo P+k .

ideal group Let K be an algebraic number
field and let R be its ring of algebraic integers.

(1) The group of fractional R-ideals of K

forms an Abelian group called the ideal group
of K .

(2) Let m be an integral ideal and let Km =
{a/b : a, b ∈ R, aR and bR relatively prime
to m}. Denote the group of all ideals of K that
are relatively prime to m by IK(m). Let m∗ be
a formal product of m and a finite number of
real infinite prime divisors of K , then m∗ is an
integral divisor of K . For α ∈ Km let α1 and α2
be elements of Km ∩ R such that α = α1/α2.
Let S(m∗) be the group of all principal ideals
generated by elements α of Km such that α1 ≡
α2(modm) and α ≡ 1(modp) for all the real
infinite prime divisors p included in the formal
product above. Any subgroup of IK(m) which
contains S(m∗) is called an ideal group modulo
m∗.

(3) Sometimes the definition given above is
called a congruence subgroup. In this case an
ideal group is an equivalence class of a congru-
ence subgroup under the following equivalence
relation. Two congruence subgroups H1 and

c© 2001 by CRC Press LLC



H2, modulo m∗1 and m∗2, respectively, are said
to be equivalent if there is a modulus n∗ such
that H1 ∩ IK(n) = H2 ∩ IK(n).

idele Let K be a global field. By this we
mean either an algebraic number field (a finite
extension of the rational field Q) or a field of al-
gebraic functions in one variable over a ground
field k (a finite separable extensionK of the field
k(x) of rational functions over the ground field
k, such that k is itself algebraically closed in
K). These are also referred to as product for-
mula fields since each of these types possesses
a class of absolute values, which are real valued
functions, defined on K with the properties that
|a| ≥ 0 for all a ∈ K , |a| = 0 if and only if
a = 0 and |a + b| ≤ |a| + |b|, for all a, b ∈ K .
See also valuation.

Moreover this class of absolute values sat-
isfies, for each nonzero a ∈ K , the relation∏

all ℘ |a|℘ = 1. Consider now the direct prod-
uct of copies of the multiplicative group K∗ of
K , indexed by absolute values. That is to say,
functions from the set of absolute values to the
group K∗. We will denote such a function by a,
and its value at℘ by a℘ . An idele is such a func-
tion with the additional property that |a℘ | = 1,
for almost all℘. Since each element ofK∗ gives
rise to such a function (a℘ = a for all ℘) we
may regard K∗ as a subgroup of the group of all
ideles. These are called principal ideles and the
factor group is called the idele class group of the
field.

idele class Members of the idele class group
of a global field. See idele.

idele class group The group of all idele
classes of a global field. See idele.

idele group The group of all ideles of a global
field. See idele.

idempotent element An element a of a ring,
with the property that a2 = a.

idempotent subset A subset S of a ring hav-
ing the property that S2 = S.

Idempotent Theorem IfE is an open-closed
subset of the maximal ideal space of a unital

commutative Banach algebra A, then there is a
unique element f of A such that f 2 = f and
the Gel’fand transform of f is 1 on E and 0
everywhere else. This theorem is sometimes
referred to as Shilov’s Idempotent Theorem.

identity (1) An equation. For example, a true
formula such as

N∑
j=1

j = N(N + 1)

2

is an identity.
(2) That element of a group, usually denoted

by the symbol 1, with the property that 1a =
a1 = a for all a in the group (or denoted 0, with
0 + a = a + 0 = a, in the case of an additive
group).

identity character The character on a group
Gwith the property that χ(g) ≡ 1 for all g ∈ G.
See character.

identity element A member e of a setS with a
binary operationx◦y, such thatx◦e = e◦x = x.
If the binary operation is not commutative, a left
and right identity may be defined separately. A
left identity e satisfies e ◦ x = x and a right
identity e satisfies x ◦ e = x.

identity function A function i with a domain
set X such that i(x) = x for all x ∈ X. See also
identity map, identity morphism.

identity map See identity function.

identity matrix The identity elementE in the
ring of n×nmatrices over some coefficient ring.
The entries of E are given by the Kronecker
delta-function

δij =
{

1 if i = j

0 if i �= j .

identity morphism Let C be a category, let
A be an object in C, and let i : A→ A be a mor-
phism in C. (A morphism is a generalization of a
function or mapping.) i is the identity morphism
for the object A if f ◦ i = f for every object B
and morphism f : A→ B in C, and i ◦ g = g

for every object C and morphism g : C → A in
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the category C. One of the axioms of category
theory is that every object in a category has a
(necessarily unique) identity morphism.

In most familiar categories, where objects
are sets with some additional structure and mor-
phisms are particular kinds of functions, the
identity morphism for an object A is simply the
identity function i; that is the function i such
that i(a) = a for all a ∈ A. See also identity
function, morphism.

Ihara zeta function Let R be the real num-
bers, kp be a p-adic field, and let ' be a sub-
group of G = PSL2(R)× PSL2(kp) for which
the following properties hold: (i.) ' is discrete;
(ii.) the projection,'R , of' in PSL2(R) is dense
in PSL2(R); (iii.) the projection, 'p, of ' in
PSL2(kp) is dense in PSL2(kp); (iv.) the only
torsion element of ' is the identity; (v.) the quo-
tient '\G is compact. Let H be the upper half
plane, {x+iy : y > 0}, and, for every z ∈ H , let
'z = {γ ∈ ' : γ (z) = z}, where ' acts on H

via 'R . Let P̃ (') = {z ∈ H : 'z
∼= Z} and let

P(') = P̃ (')/'. If Q ∈ P(') is represented
by z ∈ H and γ is a generator of 'z, then γ

is equivalent to a diagonal matrix in 'p whose
diagonal entries are λ and λ−1. Let deg(Q) be
|v(λ)| where v is the valuation of kp. The Ihara
zeta function of ' is

Z'(u) =
∏

Q∈P(')

(1− udeg(Q))−1 .

ill-conditioned system A system of equa-
tions for which small errors in the coefficients,
or in the solving process, have a large effect on
the solution.

image For a function f : S → T from a
set S into a set T , the set Im(f ) of all elements
of T of the form f (s) for some s in S. Another
popular notation is f (S). Also called range.

imaginary axis in the complex plane Com-
plex numbers x+ iy, where x and y are real and
i = √−1, can be identified with the points of
the real plane with Cartesian coordinates (x, y).
The plane is then referred to as the complex
plane. The coordinate axis x = 0 is called the
imaginary axis. Similarly, the axis y = 0 is
referred to as the real axis.

imaginary number Any member of the field
of complex numbers of the form iy, where y is
a real number and i = √−1 . The field of
complex numbers is the set of numbers of the
form x + iy, where x and y are real.

imaginary part of a complex number If z =
x+iy is a complex number, then the real number
y is called the imaginary part of z, denoted y =
�z, and the real number x is called the real part
of z, denoted x = �z.

imaginary prime divisor One of two types
of infinite prime divisors on an algebraic number
field K . Let a ∈ K and let σ be any injection of
K into the complex number field which does not
map K into the real number field. The equiva-
lence class of an archimedean valuation on K ,
given by v(a) = |σ(a)|2, is called an imaginary
(infinite) prime divisor. See also real prime di-
visor, infinite prime divisor.

imaginary quadratic field A field K which
is a quadratic (degree two) extension of the ra-
tional number field Q is called a quadratic num-
ber field. Since K = Q(

√
m), for some square

free integer m, we may further distinguish these
fields according to whether m < 0 or m > 0.
In the first case, the field is called an imaginary
quadratic field and, in the second, a real qua-
dratic field.

imaginary root A root of a polynomial f (z),
i.e., a number r such that f (r) = 0, which is an
imaginary number. See imaginary number.

imaginary unit Any number field K (finite
extension of the field Q of rational numbers)
contains a ring of integers, denoted R. This ring
consists of all roots in K of monic irreducible
polynomials f (x) ∈ Z[x], where Z is the ring
of rational integers. Alternatively, this ring is
the integral closure of Z in K . The units of R
are those elements u ∈ R for which there is
an element v ∈ R such that uv = 1. In an
isomorphic embedding of K into the field of
complex numbers, if the image of a unit u is
imaginary, then u is called an imaginary unit.
Note that this depends on which embedding is
used.
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imperfect field Any field that admits proper
inseparable algebraic extensions. This is the op-
posite of perfect. The simplest example of such
a field is the field k(x) where k = GF(q) is a
finite field. The extension given by the equation
tq − x = 0 is inseparable. Fields of character-
istic zero are perfect as are all finite fields.

implicit enumeration method of integer pro-
gramming A method of solving zero-one
linear programming problems. Values are as-
signed to some of the variables; if the solution
of the resulting linear program is either infeasi-
ble or not optimal, then all solutions containing
the assigned values may be ignored.

Implicit Function Theorem A theorem guar-
anteeing that an implicit equation F(x, y) = 0
can be solved for one of the variables. One of
many different forms of the theorem is the fol-
lowing assertion. LetF(x1, . . . , xn, y)be a con-
tinuously differentiable function of n + 1 vari-
ables. LetP be a point inn+1 space and assume
that F(P ) = c and ∂F

∂y
(P ) �= 0. Then, there is

a neighborhood of P and a unique continuously
differentiable functionf (x1, . . . , xn)defined on
this neighborhood, such that

F (x1, . . . , xn, f (x1, . . . , xn)) ≡ c

on this neighborhood.

imprimitive transitive permutation group
A permutation group G on a set X with the fol-
lowing two properties: (i.) for each x and y in X

there is a t ∈ G such that t (x) = y; (ii.) the sub-
group of G consisting of all permutations which
leave x fixed is not a maximal subgroup. See
also permutation group, transitive permutation
group.

improper fraction A rational number m/n,
where m and n are integers and m > n > 0.
Such a fraction can be written in the form m

n
=

r
n
+ q where r < n where r and q are also

integers (for simplicity we have assumed that
all of these numbers are positive). The numbers
r and q are obtained by long division. That is,
we write m = nq + r where r < n.

incommensurable Two membersa, b ∈ S of
a partially ordered set S such that neither a ≤ b

nor b ≤ a.

incomplete factorization A method of pre-
conditioning the system of equations Ax = b,
in which A is approximated by LU , where L is
a lower triangular matrix and U is an upper tri-
angular matrix. In an incomplete factorization,
small elements are dropped, making the approx-
imation sparse.

inconsistent system of equations A set of
equations for which there does not exist a com-
mon solution (in an appropriate solution space).

increasing directed set A setS, together with
a binary relation≤, having the properties (i.)a ≤
a for all a ∈ S, (ii.) a ≤ b and b ≤ c implies
a ≤ c, and (iii.) for all a, b ∈ S, there is an
element c ∈ S such that a ≤ c and b ≤ c. Also
called directed set.

indecomposable group A group G (G �=
{e}), that is not isomorphic to the direct product
of two subgroups, unless one of those subgroups
is {e}.

indecomposable module A module M over
a ring R such that M is not the direct sum of two
proper R-submodules.

indefinite Hermitian form A Hermitian
form equivalent to

p∑
i=1

x̄ixi −
q∑

j=1

x̄p+j xp+j

in which x̄ is the conjugate transpose and neither
p nor q is zero.

indefinite quadratic form A quadratic form
over an ordered field F , which represents both
positive and negative elements. If every positive
number inF is a square (for example, ifF = R),
then an indefinite quadratic form is equivalent to
the form

p∑
i=1

x2
i −

q∑
j=1

x2
p+j ,

c© 2001 by CRC Press LLC



in which neither p nor q is zero. The rank of
the quadratic form is p + q where p and q are
uniquely determined by the quadratic form.

indefinite sum A concept analogous to the
indefinite integral. Given a function f (x) and a
fixed quantity ;x (;x �= 0), let F(x) be a func-
tion such that F(x+;x)−F(x) = f (x) ·;x.
If c(x) is an arbitrary function, periodic, with
a period ;x, then F(x) + c(x) is an indefinite
sum of f (x).

Independence Theorem A corollary of the
Approximation Theorem. Let e1, e2, . . . , en be
real numbers and let v1, v2, . . . , vn be mutually
nonequivalent and nontrivial multiplicative val-
uations of a field K . If

∏
i vi(a)

ei = 1 for all
a ∈ K\{0}, then ei = 0 for i = 1, 2, . . . , n.

independent linear equations A system of
linear equations in which deleting any equation
would expand the solution set.

independent variable A symbol that rep-
resents an arbitrary element in the domain of
a function. If the domain of the function is a
Cartesian product set X1×X2× · · ·×Xn, then
the independent variable may be denoted (x1,

x2, . . . , xn), where each xi represents an arbi-
trary element inXi . In addition, each xi is some-
times called an independent variable. See also
dependent variable.

indeterminate form An expression of the
form 0/0,∞/∞, 0·∞,∞−∞,∞0, 00, or 1∞.
Such expressions are undefined. Indeterminate
forms may appear when a limit is improperly
evaluated as the quotient (product, etc.) of lim-
its and not the limit of a quotient (product, etc.).
But the term may properly appear when such
limits are classified, so that they can be evalu-
ated.

indeterminate system of equations A sys-
tem of equations with an infinite number of so-
lutions.

index (1) Most commonly, a subscript which
is used to distinguish members of a set S. Thus,
in this sense, a function defined on a set (called
the index set) and taking its values in the set S.

For example an infinite sequence {a1, . . . , an} is
a set indexed by the natural numbers.

(2) There are many theorems in mathematics
that are referred to as “index theorems" and these
generally describe properties of certain special
types of indices. For example, the index of a lin-
ear function T : X → Y between two complex
vector spaces is, by definition, dim ker(T )− dim
ker T ∗, where T ∗ is the adjoint, or conjugate
transpose, of T . See also index of specialty.

index of eigenvalue (1) The number

dim ker(A− λI)− dim ker
(
A∗ − λ̄I

)
,

where A is a square matrix (or a Fredholm lin-
ear operator on a Banach space), I is the identity
matrix of the same size as A, and A∗ is the con-
jugate transpose (Banach space adjoint) of A.

(2) The order of the largest (Jordan) block
corresponding to λ in the Jordan normal form of
A. The index of λ is the smallest positive integer
m such that rank(A−λI)m = rank(A−λI)m+1.

index of specialty Let D be a divisor on
a complete nonsingular curve over an algebrai-
cally closed field k, and let K be a canonical di-
visor of X. The index of specialty of the divisor
D is dimkH

0(X,O(K − D)) =dimkH
2(X,O

(D)), where O (D) is the invertible sheaf associ-
ated with D. This definition also applies to divi-
sors on nonsingular surfaces. IfD is a divisor on
a curve on genusg, then the Riemann-Roch The-
orem may be applied to give a second formula
for the index of specialty. In this case, the spe-
cialty index of D is equal to g−degD+dim|D|,
where |D| is a complete linear system of D.

Index Theorem of Hodge Let M be a com-
pact Kähler manifold of complex dimension 2n
and let hp,q denote the dimension of the space of
harmonic forms of type (p, q) onM . The signa-
ture of M is

∑
p,q(−1)php,q . The sum may be

restricted to the case where p+ q is even since,
on a compact Kähler manifold, hp,q = hq,p.
Any complex, projective, nonsingular, algebraic
variety is a Kähler manifold, and the follow-
ing application of the Riemann-Roch Theorem
is also called the Hodge Index Theorem.

Let H be an ample divisor on a nonsingu-
lar projective surface X, and let D be a divisor
which has a nonzero intersection number with
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some divisor E. If the intersection number of
D and H equals zero, then the self-intersection
number of D is less than zero. This implies that
the induced bilinear form on the Neron-Severi
group ofX has only one positive eigenvalue, and
that the rest of the eigenvalues are negative.

induced module An example of a scalar ex-
tension. Let K be a commutative ring, and let
G be a group with a subgroup H . The canonical
injection H → G induces a homomorphism of
group rings K[H ] → K[G]. Let M be a K[H ]
module. The induced module of M is the K[G]
module K[G] ⊗K[H ]M . See also induced rep-
resentation.

induced representation A representation of
a groupG obtained by “extending” a representa-
tion of a subgroup H of G. Let K be a commu-
tative ring; the canonical injection H → G in-
duces a homomorphism of group ringsK[H ] →
K[G]. Let M be a K[H ]-module, the represen-
tation of G associated with the induced K[G]
moduleK[G]⊗K[H ]M is the induced represen-
tation of G. It is also called the induced repre-
sentation of the representation of H associated
with M . See also induced module.

induced von Neumann algebra Let M be a
von Neumann algebra which is a *-subalgebra of
the set of bounded linear operators on a Hilbert
space H. Let M′ be the set of operators that
commute with every A ∈ M and with the ad-
joint of every A ∈ M. If E is a projection
operator in M′, then the induced von Neumann
algebra of M on the subspaceEH is the restric-
tion of EM E = EM to EH.

induction The Principle of Induction is a the-
orem that concerns well-ordered sets. A well-
ordered set is a linearly ordered set in which
every nonempty subset has a smallest member.
The natural numbers are a primary example of
such a set. Other examples are the transfinite or-
dinal numbers. The principle of induction states
that if S is a well-ordered set and T is a subset
of S with the property: whenever {a ∈ S : a <

b} ⊂ T implies b ∈ T , then we can conclude
that T = S. Indeed, the condition implies that
the smallest member of S is in T . If the comple-
ment of T were not empty, then it would have a

smallest member. Call this member b. This is
not the smallest member of S as we have seen.
However, T contains all a such that a < b, so it
must contain b as well which is a contradiction.

Certain well-ordered sets such as the natural
numbers have the property that every element
of S (aside from the smallest) has an immedi-
ate predecessor. The principle of induction for
such sets can be rephrased as follows: any sub-
set T ⊂ S, such that (i.) T contains the smallest
element of S and (ii.) whenever T contains a

then it also contains the next smallest element
of S, then T = S. The proof is much the same
since the smallest member b of the complement
of T could not be the smallest member of S and,
therefore, would have an immediate predecessor
which is in T . Therefore, the immediate succes-
sor of b would also be in T which is, again, a
contradiction. In this form the principle is called
the principle of finite induction. Otherwise it is
referred to as transfinite induction.

This theorem is commonly applied as a meth-
od of proof for statements that can be indexed by
some well-ordered set. For example, the state-
ments P(n) : 1 + 2 + · · · + n = n(n+1)

2 are
indexed by the natural numbers. This can be
proved by finite induction. On the other hand,
a theorem such as the assertion that every ideal
J of a ring R is contained in a maximal ideal
requires (for most rings) transfinite induction.

For most proofs that involve transfinite in-
duction, the method is replaced by a logically
equivalent method called “Zorn’s Lemma” or,
simply, “Zornification.” In order to be applied,
a basic axiom of mathematics itself (called the
“Axiom of Choice") must be assumed. This has
a number of formulations but the one of interest
here is the one that asserts that all sets possess a
well ordering. It can then be shown that every
partially ordered set has a maximal chain (sim-
ply ordered subset). As an example, the class
of proper ideals that contain a given ideal J of a
ring R is a partially ordered set under ordinary
set inclusion. By Zorn’s Lemma there is a max-
imal chain of these and the union of the member
of such a chain is a maximal and proper ideal (it
does not contain the identity element) of R.

The fact that this sort of argument is logically
equivalent to one using transfinite induction is
not particularly trivial to prove. Both types of
arguments circulated in mathematics for many
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years until it was realized just in this century that
they were equivalent.

inequality An expression that involves mem-
bers of some partially ordered set, commonly
taking the form a < b or a ≤ b. The so-called
triangle inequality involving real numbers is an
example and it asserts that |a + b| ≤ |a| + |b|,
for all real numbers a, b.

inequality relation Let ≤ denote a relation
on a set S (i.e., a ≤ b, whenever (a, b) belongs
to the relation). (See relation.) If it is true that
(i.) a ≤ a for all a ∈ S, (ii.) if a ≤ b and
b ≤ a then a = b, and (iii.) if a ≤ b and b ≤ c

then a ≤ c, then the relation is called a partial
ordering or inequality relation. Extensions of
this are the linear ordering, which is a partial
ordering satisfying property (iv.) for all a, b ∈
S, a ≤ b or b ≤ a, and the well ordering which
is a linear ordering in which every nonempty
subset of S has a smallest member.

inertia field A valuation ring R in a field K

has the property that it has exactly one maximal
ideal. (See valuation ring.) When this ideal is
principal, then every other nonzero ideal of R is
a power of this ideal. Thus, a discrete valuation
ring is a unique factorization domain in which
there is only one irreducible element. If L is
a finite extension field of K (usually assumed
to be separable), then the integral closure S of
the discrete valuation ring R in L has the prop-
erty that it is the intersection of a finite set of
discrete valuation rings of L and, equivalently,
is a unique factorization domain with only a fi-
nite number of irreducible elements. The orig-
inal maximal ideal of R, which is πR, has the
property that π can be factored in S in the form
π = u

∏r
j=1 π

e−j
j , whereu is a unit of S and the

elementsπj run over the finite set of distinct irre-
ducible elements ofS. LetSj denote the discrete
valuation ring that is associated with the element
πj . There are then three indices associated with
this construction. The number r , above, is the
decomposition index, the numbers e1, . . . , er
are the ramification numbers, and the numbers
fj = [Sj/πjSj : R/πR] are the residue class
degrees. When the field extensions that give
rise to the residue class degrees are not separa-
ble, then certain adjustments have to be made

in these definitions. If L is a Galois extension
of K with Galois group G, it can be shown that
e = e1 = · · · = er and f = f1 = · · · = fr ,
so, in this case, [L : K] = ef r . Now, for each
j , there is a subgroup Gj of G consisting of
those automorphisms σ of L over K that have
the property that (πjS)σ = πjS. It is easily
shown that the Gj form a complete conjugacy
class in G. These are called decomposition sub-
groups. LetZj denote the intermediate field that
is associated with Gj under the Galois corre-
spondence. The fields Zj form a complete class
of conjugate subfields. In the important case that
G is Abelian, all of the Zj coincide. The fields
Zj are called decomposition fields. Now, the
residue class fields Sj/πjSj = S/πjS are also
Galois over R/πR and there is a natural homo-
morphism of Gj onto the Galois group of this
extension. The kernel is a normal subgroup Hj

of index f in Gj . The subgroups Hj are called
inertial subgroups. The subfields Tj associated
with Hj are called inertial fields. The inertial
groups Hj are members of a complete conju-
gacy class as are the inertial fields Tj . Note that
we have a chain of fields K ⊆ Zj ⊆ Tj ⊆ L

with the relative degrees [L : Tj ] = e, [Tj :
Zj ] = f , and [Zj : K] = r . There is a further
refinement of the field extension Tj ⊆ L into a
chain of intermediate fields called ramification
fields and these are the fields that are associated
with subgroups of Gj that leave various powers
of πjS invariant.

inertia group (1) Let K/k be a finite Galois
extension of fields and let G be its Galois group.
If R is the ring of integers of K and P is a prime
ideal of R, then the inertia group of P over k
is {σ ∈ G : Pσ = P and aσ ≡ a(modP) for
all a ∈ R}. This group is a subgroup of the
decomposition group of P .

(2) Let k be a local field, K a normal exten-
sion of finite degree, and G be the Galois group
of K/k. Let P be the valuation ideal of K and
let p be a generator of P . The inertia group is
{σ ∈ G : pσ ≡ p(modP)}.

inertia of (Hermitian) matrix The ordered
triple

i(A) = (i+(A), i−(A), i0(A)) ,
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where i+(A), i−(A), i0(A) are, respectively, the
number of positive, negative, and zero eigenval-
ues (counting multiplicities), of a given Hermi-
tian matrix A.

Sylvester’s Law of Inertia states that two Her-
mitian matrices A and B satisfy i(A) = i(B) if
and only if there exists a nonsingular matrix C

such that A = CBC∗.
The notion of inertia can be extended to ar-

bitrary square matrices with complex entries,
where i+(A), i−(A), i0(A) are, respectively, the
numbers of eigenvalues with positive, negative,
and zero real part.

infimum The greatest lower bound or meet
of a set of elements of a lattice. The term is most
frequently used with regard to sets of real num-
bers. IfA is a set of real numbers, the infimum of
A is the unique real number b = inf A defined
by the following two conditions: (i.) x ≥ b for
all x ∈ A; (ii.) if x ≥ c for all x ∈ A, then b ≥ c.
The infimum of a set of real numbers A may not
exist, that is there may be no real number b sat-
isfying conditions (i.) and (ii.) above, but ifA is
bounded from below, the infimum of A is guar-
anteed to exist. This fact is one of the several
equivalent forms of the completeness property
of the set of real numbers. See meet. See also
supremum.

infinite continued fraction An expression
of the form

a0 + b1

a1 + b2

a2 + b3

a3 + · · ·

.

Infinite continued fractions may be used to ap-
proximate an irrational number.

infinite Galois extension Let K be a sub-
field of the field L and assume that L is an al-
gebraic extension of K . L is a Galois extension
if it is a normal, separable, algebraic extension
of K . (See normal extension, separable exten-
sion, algebraic extension.) L is said to be normal
over K if, whenever an irreducible polynomial
P(x) ∈ K[x] has a root in L, then P(x) splits
into linear factors in L[x]. Those of nonfinite
degree are infinite Galois extensions. Alterna-
tively, the Galois group of L over K has the

property that its fixed field is precisely K . (See
Galois group.) The fixed field is the subfield of
L that is left elementwise fixed by the Galois
group.

infinite height (1) An element a in an Abel-
ian p-group A is said to have infinite height if
the equation pky = a is solvable in A for every
nonnegative integer k.

(2) A prime ideal p is said to have infinite
height if there exist chains of prime ideals p0 <

p1 < p2 < · · · < ph−1 < p with arbitrarily
large h. If p is a prime ideal in a Noetherian
ringR, andp �= R, thenp does not have infinite
height.

infinite matrix A matrix with an infinite
number of rows and an infinite number of col-
umns. Such a matrix may be infinite in only two
directions, as (aij ), i, j = 0, 1, 2, . . . :




a00 a01 a02 . . .

a10 a11 a12 . . .

a20 a21 a22 . . .

· · ·


 ,

or it may be infinite in all directions, as (aij ), i,
j = 0,±1,±2, . . . :




. . . . . . . . .

· · · a−1−1 a−10 a−11 . . .

· · · a0−1 a00 a01 . . .

· · · a1−1 a10 a11 . . .

· · · · · · · · ·


 .

infinite prime divisor An equivalence class
of archimedean valuations on an algebraic num-
ber field.

infinitesimal automorphism A complete
holomorphic vector field on a manifold. On
a Lie group the definitions of infinitesimal au-
tomorphism and derivation coincide. See also
Killing form.

infinite solvable group A solvable group
which is not finite. There are also generaliza-
tions of the concept of solvability for infinite
groups. See solvable group. See also general-
ized solvable group.
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infinity (1) The symbol∞, used in the nota-
tion for the sum of an infinite series of numbers

∞∑
n=0

an ;

an infinite interval, such as

[a,∞) = {x : x ≥ a} ;
or a limit, as x tends to∞,

lim
x→∞ f (x) .

(2) The point at∞ as, for example, the north
pole of the Riemann sphere.

inflation A map of cohomology groups in-
duced by lifting the cocycles of a factor group
G/H to G. Let G be a group, M a G-module,
H a normal subgroup of G, MH = {m ∈ M :
hm = m, for all h ∈ H }, π the canonical epi-
morphism from G to G/H , and i : MH → M

the inclusion map. The inflation map is the map
of cohomology groups

inf =(π, i)∗ : Hn
(
G/H,MH

)
→ Hn(G,M) ,

(for n ≥ 1), which is achieved by lifting the
homomorphism of pairs (π, i) : (G/H,MH)→
(G,M).

inflection point A point on a plane curve at
which the curve switches from being concave to
convex, relative to a fixed line; a non-singular
point P on a plane curve C such that the tan-
gent line to C at P has intersection multiplicity
greater than or equal to 3. See also intersection
multiplicity.

inhomogeneous difference equation A lin-
ear difference equation of the form

a0yk+n + a1yk+n−1 + · · · + anyk = rk ,

where rk differs from 0 for some values of k. In
the opposite case where rk is identically equal
to 0, the linear difference equation is homoge-
neous. These notions are directly analogous
to the corresponding ones for linear differential
equations.

inhomogeneous polarization (1) The alge-
braic equivalence class of a nondegenerate divi-
sor on an Abelian variety.

(2) LetX be a proper scheme over an algebra-
ically closed field k and let Pic(X) be the Picard
group of X. Let Picτ (X) be the subgroup of
Pic(X) consisting of the set of all the invertible
sheaves F on X, for which there exists a non-
zero integer n, such thatFn represents a point of
the Picard scheme of X in the same component
as the identity. A coset of Picτ (X) in Pic(X)

consisting of ample invertible sheaves is called
an inhomogeneous polarization of X.

injection A function i : A → B such that
i(a1) �= i(a2) whenever a1 �= a2. Injections
are also called injective functions, injective map-
pings, one-to-one functions, and univalent func-
tions. The notion of an injection generalizes to
the notion of a monomorphism or monic mor-
phism in a category. See monomorphism. See
also epimorphism, surjection.

injective class A class of objects in a cate-
gory, each member of which is injective. The
word “class” is used here rather than “set” be-
cause we cannot talk about the set of all injec-
tive objects in most categories without running
into the sort of logical difficulties, for example
Russell’s paradox, connected with the “set of all
sets.”

injective dimension A left R module B,
where R is a ring with unit, has injective di-
mension n if there is an injective resolution

0 −→ B −→ E0 −→ · · · −→ En −→ 0 ,

but no shorter injective resolution of B. The
definition of the injective dimension of a right
R module is entirely similar. See injective res-
olution. See also flat dimension, projective di-
mension.

Injective dimensions have little to do with
more elementary notions of dimension, such as
the dimension of a vector space, but they are
related to a famous theorem called “Hilbert’s
Theorem on Syzygies.” Suppose the ring R is
commutative. Define the global dimension of
R to be the largest injective dimension of any
R module, or ∞ if there is no largest dimen-
sion. Let D(R) denote the global dimension of
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R, and let R[x] be the ring of polynomials in x

with coefficients in R. Then in modern termi-
nology, Hilbert’s Theorem on Syzygies states
that D(R[x]) = D(R)+ 1. See also syzygy.

injective envelope An object E in a cate-
gory C is the injective envelope of an object A
if it has the following three properties: (i.) E

is an injective object, (ii.) there is a monomor-
phism i : A→ E, and (iii.) there is no injective
object properly between A and E. In a gen-
eral category, this means that if j : A → E′
and k : E′ → E are monomorphisms and E′
is injective, then k is actually an isomorphism.
See also injective object, monomorphism, pro-
jective cover.

In most familiar categories, objects are sets
with structure (for example, groups, topological
spaces, etc.), morphisms are particular kinds of
functions (for example, group homomorphisms,
continuous functions, etc.), and monomor-
phisms are one-to-one functions of a particu-
lar kind. In these categories, property (iii.) can
be phrased in terms of ordinary set containment.
For example, in the category of topological
spaces and continuous functions, property (iii.)
reduces to the assertion that there is no injective
topological space containing A as a topological
subspace, and contained in E as a topological
subspace, except for E itself.

injective mapping See injection.

injective module An injective object in the
category of left R modules and left R module
homomorphisms, where R is a ring with unit.
Symmetrically, an injective object in the cate-
gory of right R modules and right R module
homomorphisms. See injective object. See also
flat module, projective module, projective ob-
ject.

In the important case where the ring R is a
principal ideal domain, the injective R modules
are just the divisible ones. (An R module M is
divisible if for each element m ∈ M and each
r ∈ R, there exists mr ∈ R such that rmr = m.)
Thus, for example, the rational numbers, Q, are
an injective Z module, where Z is the ring of
integers. See also flat module, injective object,
projective module, projective object.

injective object An object I in a category C
satisfying the following mapping property: If i :
B → C is a monomorphism in the category, and
f : B → I is a morphism in the category, then
there exists a (usually not unique) morphism g :
C → I in the category such that g ◦ i = f .
This is summarized in the following “universal
mapping diagram”:

B
i−→ C

f ↘ ↙ ∃g
I

See also injective module, monomorphism, pro-
jective module, projective object.

In most familiar categories, objects are sets
with structure (for example, groups, Banach
spaces, etc.), and morphisms are particular
kinds of functions (for example group homo-
morphisms, bounded linear transformations of
norm ≤ 1, etc.), so monomorphisms are one-
to-one functions (injections) of particular kinds.
Here are two examples of injective objects in
specific categories: (1) In the category of Abel-
ian groups and group homomorphisms, the in-
jective objects are just those Abelian groups
which are divisible. (An Abelian group G is
divisible if for each g ∈ G and each integer
n, there exists a group element gn ∈ G such
that ngn = g.) Thus, for example, the rational
numbers Q are an injective object in this cat-
egory. (2) The Hahn-Banach Theorem asserts
that the field of complex numbers, thought of as
a one-dimensional complex Banach space, is an
injective object in the category of complex Ba-
nach spaces and bounded linear transformations
of norm ≤ 1.

injective resolution Let B be a left R mod-
ule, where R is a ring with unit. An injective
resolution of B is an exact sequence,

0 −→ B
φ0−→ E0

φ1−→ E1
φ2−→ · · · ,

where every Ei is an injective left R module.
There is a companion notion for right R mod-
ules. Injective resolutions are extremely impor-
tant in homological algebra and enter into the
dimension theory of rings and modules. See
also flat resolution, injective dimension, injec-
tive module, projective resolution.
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An exact sequence is a sequence of left R
modules, such as the one above, where every
φi is a left R module homomorphism (the φi are
called “connecting homomorphisms”), such that
Im(φi) = Ker(φi+1). Here Im(φi) is the image
of φi , and Ker(φi+1) is the kernel of φi+1. In
the particular case above, because the sequence
begins with 0, it is understood that the kernel
of φ0 is 0, that is φ0 is one-to-one. There is a
companion notion for right R modules.

inner automorphism A group automor-
phism of the form φa(g) = aga−1. In more
detail, an automorphism of a group G is a one-
to-one mapping ofG onto itself which preserves
the group operation, φ(g1g2) = φ(g1)φ(g2) for
all g1 and g2 in G. If a is a fixed element of G,
the mapping φa defined above is easily seen to
be an automorphism. Automorphisms of this
form are rather special and form a group under
composition called the group of inner automor-
phisms of G.

inner derivation A derivation of the form
Da(x) = xa − ax. In more detail, a deriva-
tion is a linear mapping D of a (possibly non-
associative) algebra A into itself, satisfying the
familiar product rule for derivatives, D(xy) =
D(x)y + xD(y). Thus, derivations are alge-
braic generalizations of the derivatives of calcu-
lus. Now let A be associative. If a is a fixed
element of A, the mapping Da defined above is
easily seen to be a derivation. Derivations of
this form are rather special, and are called inner
derivations.

The concept extends to Lie algebras, but in
this case inner derivations are derivations of the
formDa(x) = [x a], where [x a] is the Lie prod-
uct.

inner topology The topology of a Lie sub-
group H , as a submanifold of a Lie group G.
This topology need not be the relative topol-
ogy of H , viewed as a subspace of a topological
space G.

inseparable element An element of an ex-
tension field with an inseparable minimal poly-
nomial. In more detail, let G be an extension
of a field F . (This means that G is a field and
G ⊇ F .) Let α be an algebraic element of G

over F . (This means that α satisfies a polyno-
mial equation P(α) = 0 with coefficients in F .)
Among all polynomials P with coefficients in
F such that P(α) = 0, there is one of smallest
positive degree, called the minimal polynomial
of α. The algebraic element α is inseparable if
its minimal polynomial is inseparable. See also
inseparable polynomial. Antonym: separable
element.

Inseparable elements can only occur if the
field F has characteristic n �= 0. In particular,
inseparable elements can never occur if F is the
field of rational numbers, or an extension of the
rationals. See also inseparable extension.

inseparable extension An algebraic exten-
sion field containing an inseparable element.
See inseparable element. Antonym: separable
extension.

inseparable polynomial An irreducible poly-
nomial with coefficients in a field which factors
over its splitting field with repeated factors or,
more generally, a polynomial which has an in-
separable polynomial among its irreducible fac-
tors.

In more detail, let F be a field and let P be a
polynomial of positive degree with coefficients
inF . P may or may not factor into linear factors
over F (for example, x2−2 does not factor over
the rationals), but there always exists a smallest
extension field of F over which P does factor
(for example, x2−2 factors as (x−√2)(x+√2)
over the field G formed by adjoining

√
2 to the

rationals). This smallest extension field is called
the splitting field for P .

Let F [x] denote the ring of polynomials with
coefficients in F . Suppose first that P is irre-
ducible in F [x], that is P does not factor into
two or more polynomials in F [x] of positive de-
gree. P is called separable if its factorization
over its splitting field has no repeated factors. In
the general case where P is not irreducible, P
is called separable if each irreducible factor is
separable. Finally, P is called inseparable if it
is not separable. Antonym: separable polyno-
mial.

integer (1) Intuitively, an integer is one of the
signed whole numbers 0,±1,±2,±3, . . . , and
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a natural number is one of the counting num-
bers, 1, 2, 3, . . . .

(2) Semi-formally, the ring of integers is the
set Z consisting of the signed whole numbers,
together with the ordinary operations of addi-
tion, +, and multiplication, ·. The ring of in-
tegers forms the motivating example for many
of the concepts of mathematics. For example,
the ring of integers, (Z,+, ·), satisfies the fol-
lowing properties for all x, y, and z ∈ Z: (1)
x + y ∈ Z. (2) x + (y + z) = (x + y) + z.
(3) x + 0 = 0 + x, (4) given x, there exists an
element −x such that x + −x = −x + x = 0.
These are precisely the axioms for a group, so
the integers under addition, (Z,+), form the first
example of a group. Furthermore, addition is
commutative, (5) x + y = y + x. Properties
(1) through (5) are precisely the axioms for an
Abelian group, so the integers under addition
form the first example of an Abelian group. In
addition, the integers satisfy the following ad-
ditional properties for all x, y, and z ∈ Z: (6)
x · y ∈ Z. (7) x · (y + z) = x · y + x · z,
and (y + z) · x = y · x + z · z. Properties (1)
through (7) are precisely the axioms for a ring,
so the ring of integers, (Z,+, ·), form the first,
and one of the best, examples of a ring. Further-
more, the integers satisfy (8) 1 · x = x · 1 = x.
The number 1 is called a unit element because
it satisfies this identity, so the ring of integers
forms one of the best examples of a ring with
unit element, or ring with unit for short. In ad-
dition, the ring of integers satisfies the commu-
tative law, (9) x · y = y · x, so it forms one of
the best examples of a commutative ring.

The ring of integers has a far richer structure
than described above. For example, the ring of
integers is an integral domain, or domain for
short, because it satisfies property (10) x ·y = 0
implies x = 0 or y = 0 (or both). Thus, the
ring of integers satisfies the familiar cancella-
tion law: If we know x · y = x · z for x �= 0,
then we know y = z. Finally, the integers form
one of the best examples of a Euclidean domain,
and of a principal ideal domain. See also Abel-
ian group, commutative ring, Euclidean domain,
principal ideal domain, ring, unit element.

Many of the most profound open (unsolved)
questions in mathematics revolve around the in-
tegers. For example, a prime number is a (pos-
itive) integer divisible only by itself and 1. Eu-

clid proved centuries ago that there are infinitely
many prime numbers. But it is still unknown
whether there are infinitely many pairs of prime
numbers, pn and pn+1, which differ by 2, i.e.,
pn+1 − pn = 2. The conjecture that there are
infinitely many such pairs of primes is called
the twin prime conjecture. Perhaps the deepest
and most important unsolved question in math-
ematics is the Riemann hypothesis. Although
the Riemann hypothesis is stated in terms of the
behavior of a certain analytic function called the
Riemann zeta function, it too involves the prop-
erties of the integers at its heart. For example, if
the Riemann hypothesis were true, then the twin
prime conjecture (and most of the other great un-
solved conjectures of number theory) would be
true.

(3) Formally, an integer is an element of the
ring of integers. The ring of integers is the small-
est ring containing the semi-ring of natural num-
bers. The semi-ring of natural numbers is de-
fined in terms of the set of natural numbers. The
set of natural numbers is any set N, together with
a successor function S carrying N to N, satisfy-
ing the Peano postulates:

(1) There is an element 1 ∈ N.
(2) S : N → N is a function, that is the

following two properties hold: (a) given n ∈ N,
there is only one element S(n), and (b) for each
n ∈ N, S(n) ∈ N.

(3) For each n ∈ N, S(n) �= 1.
(4) S is a one-to-one function, that is if S(m)

= S(n) then m = n.
(5) (The axiom of induction) Suppose I is a

subset of N satisfying the following two prop-
erties: (a) 1 ∈ I , and (b) if i ∈ I then S(i) ∈ I .
Then I = N.

Addition and multiplication,+ and ·, are de-
fined inductively in terms of the successor func-
tion S, so that S(n) = n+ 1, and the semi-ring
of natural numbers is defined to be the set of
natural numbers N, together with the operations
of + and ·.

Mathematical logic shows us that there are
fundamentally different models of the natural
numbers, and thus of the ring of integers. (A
model of the natural numbers is simply a par-
ticular set N and successor function S satisfying
the Peano postulates.) For example, if we begin
by believing we understand a particular model of
the natural numbers, and call this object (N, S),
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then it is possible to construct out of our pre-
existing (N, S) a new object (N∗, S∗) with the
following remarkable properties:

(1) (N∗, S∗) also satisfies the Peano postu-
lates, and thus equally deserves to be called “the
natural numbers.”

(2) Every n ∈ N also belongs to N∗.
(3) If n ∈ N, then S∗(n) = S(n).
(4) There exist elements of N∗ larger than any

element of N. (These elements of N∗ are called
“infinite elements” of N∗.)

Warning to the reader: One also has to rede-
fine what one means by set and subset for this
to work. Otherwise, (4) could not be true and
(N∗, S∗) would simply equal (N, S).

This construction forms the basis of Abra-
ham Robinson’s non-standard analysis, and re-
lated constructions lie at the heart of the Gödel
undecideability theorem.

(4) Other usage: In algebraic number theory,
algebraic integers are frequently called integers,
and then ordinary integers are called rational
integers. An algebraic integer is an element α
of an extension field of the rationals which is
integral over the rational integers. See integral
element.

integer programming The general linear
programming problem asks for the maximum
value of a linear function L of n variables, sub-
ject to linear constraints. In other words, the
problem is to maximize L(x1, x2, . . . , xn) sub-
ject to the conditions AX ≤ B, where X is the
column vector formed from x1, . . . , xn, B is a
column vector, and A is a matrix. The general
integer programming problem is the same, ex-
cept the solution (x1, . . . , xn) is to consist of
integers.

Integer programming problems frequently
arise in applications, and many important com-
binatorial problems, such as the travelling sales-
man problem, are equivalent to integer pro-
gramming problems. The formal statement of
this equivalence is that integer programming
is one of a class of hardest possible problems
solvable quickly by inspired guessing; in other
words, integer programming is NP complete.
(Technically, the NP complete problem is the
one of determining whether an integer vector
(x1, . . . , xn) exists, subject to the constraints
and making L(x1, . . . , xn) > a predetermined

constant K .) There are several efficient solu-
tion methods for particular classes of integer
programming problems, but it is unlikely that
there is an efficient solution method for all in-
teger programming problems, since this would
imply NP = P , a conjecture widely believed
to be false.

integrable family of unitary representations
Let G be a topological group. A unitary rep-
resentation of G is a group homomorphism L

from G into the group of unitary operators on
a Hilbert space H , which is continuous in the
following sense: For each fixed h1 and h2 in H ,
the function g )→ (L(g)h1, h2) is continuous.
Here, (L(g)h1, h2) denotes the inner product of
L(g)h1 and h2 in the Hilbert space H . (In other
words, L is a continuous map from G into the
set of unitary operators endowed with the weak
operator topology.) See unitary representation.

In the theory of unitary representations, it is
frequently desirable to express a given unitary
representation L as a direct integral or integral
direct sum of simpler unitary representations,

L =
∫
X

l(x) dµ(x)

where X is a set and µ is a measure on X, or,
more precisely, where X is a set, B is a σ -field
of subsets of X, and µ is a measure on B. See
integral direct sum. Here, l(x) is a unitary rep-
resentation ofG for each x ∈ X. IfL′ is another
unitary representation of G, and if L′ can also
be represented as a direct integral,

L′ =
∫
X

l′(x) dµ(x) ,

and if l′(x) is unitarily equivalent to l(x) except
possibly on a set of µ measure 0, then L′ is uni-
tarily equivalent to L. In other words, direct
integrals preserve the relation of unitary equiv-
alence. See unitary equivalence.

This leads to the consideration of functions
from X into the set E of unitary equivalence
classes of unitary representations of G. (Here,
two representations are equivalent if they are
unitarily equivalent.) Such a function L is said
to be an integrable family of unitary represen-
tations, or an integrable unitary representation
for short, if the following holds: There is a func-
tion l defined on X such that (1) l(x) is a unitary
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representation in the equivalence class L(x) for
each x ∈ X, and (2) for each pair of elements
h1 and h2 in the Hilbert space H , and group ele-
ment g ∈ G, the function x )→ 〈l(x)(g)h1, h2〉
is µ measurable.

An integrable family of unitary representa-
tions, L, and any of its associated functions, l,
are exactly what is needed to form a new unitary
representation via the direct integral,

L =
∫
X

l(x) dµ(x) .

Because of the aforementioned preservation of
unitary equivalence, one may write

L =
∫
X

L dµ(x)

instead.

integrable unitary representation See inte-
grable family of unitary representations.

integral (1) Of or pertaining to the integers,
as in such phrases as “integral exponent,” i.e.,
an exponent which is an integer.

(2) In calculus, the anti-derivative of a con-
tinuous, real-valued function. In more detail, let
f be a continuous real-valued function defined
on the closed interval [a, b]. Let F be a func-
tion defined on [a, b] such that F ′(x) = f (x)

for all x in the interval [a, b]. F is called an
anti-derivative of f , or an indefinite integral of
f , and is denoted by

∫
f (x) dx. The number

F(b)− F(a) is called the definite integral of f
over the interval [a, b], or the definite integral
of f from a to b, and is denoted by

∫ b

a
f (x) dx.

By the Fundamental Theorem of Calculus, if
f (x) ≥ 0 for all x in [a, b], the definite integral
of f over the interval [a, b] is equal to the area
under the curve y = f (x), a ≤ x ≤ b.

There is a sequence of rigorous and increas-
ingly general definitions of the integral. In order
of increasing generality, they are

(i.) The Riemann integral. Let a = x0 ≤
x1 ≤ · · · ≤ xn = b be a partition of [a, b].
Choose intermediate points t1, t2, . . . , tn so that
x0 ≤ t1 ≤ x1, x1 ≤ t2 ≤ x2, . . . , xn−1 ≤ tn ≤
xn. The sum,

∑n
1 f (ti)(xi − xi−1) is called a

Riemann sum. The Riemann integral of f over

the interval [a, b] is defined to be

∫ b

a

f (x) dx = lim|xi−xi−1|→0

n∑
i=1

f (ti)

(xi − xi−1) ;
in other words, the Riemann integral is defined
as the limit of Riemann sums. It is non-trivial to
prove that the limit exists and is independent of
the particular choice of intermediate points ti .

(ii.) There are several variants of this defini-
tion. In the most common one, f (ti) is replaced
by the supremum (least upper bound) of f on
the interval [xi−1, xi] to obtain the upper sum
U(f,P), and by the infimum (greatest lower
bound) of f on [xi−1, xi] to obtain the lower
sum L(f,P). (Here, P refers to the partition
a = x0 ≤ x1 ≤ . . . ≤ xn = b.) The upper and
lower integrals of f are

∫ b

a

f (x) dx = inf
P

U(f,P)

and ∫ b

a

f (x) dx = sup
P

L(f,P) .

(Here, inf stands for infimum and sup for supre-
mum. See infimum, supremum.) The function
f is defined to be Riemann integrable if the up-
per and lower integrals of f are equal, and their
common value is called the Riemann integral
of f over the interval [a, b]. It is a theorem
that all continuous functions are Riemann inte-
grable. This definition has the advantage that
it extends the class of integrable functions be-
yond the continuous ones. It is a theorem that
a bounded function f is Riemann integrable if
and only if it is continuous almost everywhere.

(iii.) Definitions (i.) and (ii.) generalize
from intervals [a, b] to suitable regions in higher
dimensions.

(iv.) The Stieltjes integral. Everything is as in
(ii.), except that xi−xi−1 is replaced by α(xi)−
α(xi−1) in the definition of upper and lower
sums, where α is a monotone increasing (and
possible discontinuous) function. The Stieltjes
integral of f is denoted by

∫ b

a
f (x) dα(x). The

Stieltjes integral is more general than the Rie-
mann integral, not in that the class of integrable
functions is enlarged, but rather in that the class
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of things we can integrate against (the functions
α) is enlarged.

(v.) The Lebesgue integral. Letµ be a count-
ably additive set function on a σ -field of sets.
The set function µ is called a measure. See
sigma field, measure. Examples are:

(a) X is a finite set, and if A is a subset of X,
then µ(A) = the number of elements in A. µ is
called counting measure on X.

(b) X is any set, finite or infinite. The σ -field
of sets is the set of all subsets of X. Let a be
a fixed point of X. If A is a subset of X, then
µ(A) = 1 if a ∈ A, and µ(A) = 0 otherwise.
µ is called a point mass at a, or the Dirac delta
measure at a.

(c)X is the interval [a, b]. The σ -field of sets
is the set of Borel subsets of X. (The Borel sets
include all subintervals, whether open or closed,
of [a, b], and many other sets besides.) If I is
an interval, then µ(I) is the length of I . µ is
called Lebesgue measure on [a, b].

(d) X and the σ -field are as in (c). Let α be
a monotone increasing function on [a, b], and
for convenience suppose it is continuous from
the right. If I = (x1, x2] is a right half closed
subinterval ofX, thenµ(I) = α(x2)−α(x1). µ
is called a Lebesgue-Stieltjes measure on [a, b].

(e) X is an open subset of n-dimensional Eu-
clidean space, Rn. The σ -field is the σ -field of
Borel subsets of X. If C is a small n-dimen-
sional cube contained in X, then µ(C) is the
n-dimensional volume of C. (In the familiar
case n = 2, an n-dimensional cube is simply a
square, and the n-dimensional volume is simply
the area of the square. In the equally familiar
case n = 3, an n-dimensional cube is an ordi-
nary 3-dimensional cube, and then-dimensional
volume is the ordinary 3-dimensional volume of
the cube.)

A simple function on X is a function which
takes only finitely many values. If g is a sim-
ple function taking values c1, . . . , cn on the sets
A1, . . . , An (so c1, . . . , cn exhaust the finite
set of values of taken by g) and Ai = {x ∈
X, g(x) = ci}, then

∫
X

g(x) dµ(x) =
n∑

i=1

ciµ (Ai) .

(This assumes, of course, that the Ai belong to
the σ -field, i.e., that theµ(Ai) are defined. Such

a simple function is called measurable.) Now
suppose f is a bounded function on X. Define
the upper integral of f on X as

∫
X

f (x) dµ(x) = inf
g∈G

∫
X

g(x) dµ(x) ,

where G equals the set of measurable simple
functions g such that g ≥ f . Define the lower
integral of f on X similarly,∫

X

f (x) dµ(x) = sup
h∈H

∫
X

h(x) dx ,

where H equals the set of measurable simple
functions h such that h ≤ f . The bounded
function f is Lebesgue integrable, or simply in-
tegrable, if the upper and lower integrals agree,
and then their common value is called the
Lebesgue integral of f with respect to the mea-
sure µ, or simply the integral of f with respect
to the measure µ, and is denoted by

∫
X
f (x) dx.

The Lebesgue integral extends both the class
of integrable functions (all the way to bounded
measurable functions), and the class of things
we can integrate against (arbitrary measures).
The theory extends to unbounded functions as
well.

(vi.) The Denjoy integral. Similar to the
Lebesgue integral, except that the upper inte-
gral is defined as the infimum of the integrals of
an appropriate family of lower semi-continuous
functions, and the lower integral is defined as the
supremum of a family of upper semi-continuous
functions. See also lower semi-continuous func-
tion, upper semi-continuous function.

The Denjoy integral requires extra structure
on X, X must be a topological space, and the
measure µ must be a Radon measure. However,
the Denjoy integral is particularly well suited for
dealing with certain technical difficulties con-
nected with the integration of functions taking
values in a non-separable topological vector
space.

(vii.) Definition (i.) of the Riemann integral
easily extends to continuous vector valued func-
tions f taking values in a complete topological
vector space. The analogous definition for the
Stieltjes integral also extends to this setting. See
also topological vector space.

(viii.) The Pettis integral, also called the
Dunford Pettis integral. Letf be a vector valued
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function, and let µ be a measure on a space X,
as in (v.) or (vi.). Suppose f takes values in a
locally convex topological vector space V . The
Pettis integral of f is defined by the conditions,

(∫
X

f (x) dµ(x), λ

)
=

∫
X

(f (x), λ) dµ(x) ,

for all λ ∈ V ∗. Here, V ∗ is the dual of V ,
consisting of all continuous linear functionals on
V . Of course, this presupposes that the scalar
valued functions (f (x), λ) are integrable, and
that the infinite system of equations,

(e, λ) =
∫
X

(f (x), λ) dµ(x), λ ∈ E∗ ,

has a solution e ∈ V . See also locally convex
topological space.

(ix.) The definition of the Stieltjes integral
extends to vector valued measures and scalar
valued functions, and even to operator valued
measures and vector valued functions. The Spec-
tral Theorem is phrased in terms of such an in-
tegral. See also Spectral Theorem.

(x.) Recently, a seemingly minor variant of
the classical Riemann integral has been discov-
ered which has all the power of the Lebesgue
integral and more. This new integral is variously
named the Henstock integral, the Kurzweil-
Henstock integral, or the generalized Riemann
integral. The Henstock integral is defined in
terms of gauges. Define a gauge to be a func-
tion γ which assigns to each point x of the in-
terval [a, b] a neighborhood of x. (The neigh-
borhood may be an open interval containing x,
half open if x is one of the endpoints a or b.)
Let a = x0 < x1 < · · · < xn = b be a partition
of [a, b] with intermediate points t1, t2, . . . , tn,
as in the definition of the classical Riemann in-
tegral. Refer to such a partition as a tagged
partition, with the intermediate points ti as the
tags. Define a tagged partition to be γ fine if
[xi−1, xi] ⊆ γ (ti) for each i. If f is a real
valued function on [a, b], define the Henstock
integral of f to be the (necessarily unique) real
number L such that for each ε > 0, there is a
gauge γ such that

∣∣∣L−∑
f (ti) (xi − xi−1)

∣∣∣ < ε ,

for eachgamma fine tagged partition. Of course,
the Henstock integral of f is still denoted by

∫ b

a

f (x) dx .

If f is positive, then Henstock integrabil-
ity and Lebesgue integrability coincide, and the
Henstock integral of f equals the Lebesgue in-
tegral of f . But if f varies in sign, and |f |
is not Henstock (and thus not Lebesgue) inte-
grable, then the Henstock integral of f may still
exist, even though the Lebesgue integral of f

cannot exist under these circumstances. Thus,
the Henstock integral is more general than the
Lebesgue integral. The Henstock integral ob-
tains its added power because it captures cancel-
lation phenomena related to improper integrals
that the Lebesgue integral cannot.

The Henstock integral extends to a Henstock-
Stieltjes integral in a rather simple way. Hen-
stock integration also extends to functions of
several variables. However, Henstock integra-
tion on subsets of n-dimensional space, Rn, is
still an open area of investigation, as is the exten-
sion of the Henstock integral to abstract settings
similar to measure spaces.

integral character In number theory, a char-
acter which takes on only integral values.

integral closure Let S be a commutative ring
with unit, and let R be a subring of S. The
integral closure ofR inS is the set of all elements
of S which are integral over R. See integral
element. R is integrally closed in S if R equals
its integral closure in S.

integral dependence LetS be a commutative
ring with unit, and let R be a subring of S. An
element α ∈ S is integrally dependent over R if
α is integral over R. See also integral element.

integral direct sum (1) A representation of
a Hilbert space as an L2 space of vector val-
ued functions. In more detail, let (X,F, µ)

be a measure space. Here, X is a set, F is
a σ -field of subsets of X, and µ is a measure
on F . (See Hilbert space, integral, measure,
sigma field.) Let H(x), x ∈ X, be a fam-
ily of Hilbert spaces indexed by X, and let H
be the union of the sets H(x), x ∈ X. Let L
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be a set of functions f defined on X such that
(a) f (x) ∈ H(x) for all x ∈ X; (b) the func-
tion x )→ ‖f (x)‖ is measurable; (c) there ex-
ists a countable family f1, f2, f3, . . . ∈ L such
that the set {f1(x), f2(x), f3(x), . . . } is dense
in H(x) for each x ∈ X. Assume also the fol-
lowing closure property for L, (d) if g satisfies
property (a) and the function x )→ (f (x), g(x))

is measurable for each f ∈ L, then g ∈ L.
Here, ‖f (x)‖ denotes the Hilbert space norm of
f (x) and (f (x), g(x)) the Hilbert space inner
product in the Hilbert space H(x).

Let

L2(L, dµ)

=
{
f ∈ L :

∫
X

‖f (x)‖2 dµ(x) <∞
}

.

The Hilbert space L2(L, dµ) is called an inte-
gral direct sum, or a direct integral, and is fre-
quently denoted by∫

X

H(x) dµ(x) .

(2) The corresponding representation of a lin-
ear transformationT between two integral direct
sums,∫

X

H1(x) dµ(x) and
∫
X

H2(x) dµ(x) ,

as an integral of bounded linear transformations
t (x). In more detail, let H1(x) and H2(x), x ∈
X, be two families of Hilbert spaces indexed by
X as in (1) above, and let t (x), x ∈ X be a family
of linear transformations from H1(x) to H2(x)

indexed by X. If f lies in
∫
X
H1(x) dµ(x), de-

fine T (f ) by T (f )(x) = t (x)(f (x)), except
possibly on a set ofµmeasure 0. (Of course, the
domain of T will be all of

∫
X
H1(x) dµ(x), that

is, T (f ) will lie in
∫
X
H2(x) dµ(x), only when

the family t (x), x ∈ X is uniformly bounded,
except possibly on a set of µ measure 0, that is
only when there is a constantK independent of x
such that the norm ‖t (x)‖ ≤ K , except possibly
on a set of µ measure 0. In this case, the oper-
ator T will be bounded, with norm ≤ K .) The
linear transformation T is called the integral di-
rect sum, or a direct integral of the family t (x),
x ∈ X, and is frequently denoted by∫

X

t(x) dµ(x) .

integral divisor (1) In elementary algebra
and arithmetic, a factor or divisor which is an
integer, as in, for example, 3 is an integral divisor
of 12.

(2) In algebraic geometry, a divisor with pos-
itive coefficients. In more detail, let X be an
algebraic variety. (This simply means that X is
the solution set to a system of polynomial equa-
tions. See algebraic variety.) A divisor onX is a
formal sum D = a1C1+ · · · + akCk , where the
ai are integers and the Ci are distinct irreducible
subvarieties of X of codimension 1. (Codimen-
sion 1 means the dimension ofCi is one less than
the dimension of X. Irreducible means Ci is not
the union of two proper [i.e., strictly smaller]
subvarieties. In the simplest case where X is
an algebraic curve, the Ci are just points of X.)
The divisor D is integral if all the coefficients
ai are positive. Integral divisors are also called
positive divisors or effective divisors.

The notions of divisor and integral divisor
extend to various related and/or more general
contexts, for example to the situation where X

is an analytic variety. See analytic variety.
Perhaps the clearest examples of integral di-

visors occur in elementary algebra and elemen-
tary complex analysis. Consider a polynomial
or analytic function f defined in the complex
plane. Let C1, C2, C3, . . . be a listing of the
zeros of f . The corresponding integral divisor
D = a1C1 + a2C2 + a3C3 + · · · describes the
zeros of f , counting multiplicity, and one con-
siders such divisors repeatedly in these subjects,
for example in the statement that a polynomial
of degree n has exactly n zeroes counting multi-
plicity. In elementary algebra and complex anal-
ysis, integral divisors are often called “sets with
multiplicity,” and one thinks of the coefficient
ak as meaning that the point Ck is to be counted
as belonging to the set ak times.

integral domain A commutative ringR with
the property that ab = 0 implies a = 0 or b = 0.
Here, a and b are elements of R. For example,
the ring of integers is an integral domain.

integral element Let S be a commutative
ring with unit, and let R be a subring of S. An
element α ∈ S is integral over R if α is the
solution to a polynomial equation P(α) = 0,
where the polynomial P has coefficients in R
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and leading coefficient 1. (Such a polynomial is
called a monic polynomial. For example, x2+5
is monic, but 2x2 + 5 is not monic.)

The most important application of the con-
cept of an integral element lies in algebraic num-
ber theory, where an element of an extension
field of the rational numbers which is integral
over the ring of integers is called an algebraic
integer, or often just an integer. In this case,
ordinary integers are often called rational inte-
gers.

If bothR and S are fields, an integral element
is called an algebraic element.

integral equivalence (1) For modules, Z-
equivalence. Here Z is the ring of integers. See
R-equivalence, Z-equivalence.

(2) For matrices, two matrices M1 and M2
are integrally equivalent if there is an invertible
matrixP , such that bothP andP−1 have integer
entries andM2 = P tM1P . Here,P t denotes the
transpose of P .

(3) For quadratic forms, two quadratic forms
Q1(x) = xtM1x and Q2(x) = xtM2x are in-
tegrally equivalent if the matrices M1 and M2
are integrally equivalent. In other words, Q1
and Q2 are integrally equivalent if each can be
transformed to the other by a matrix with integer
entries.

integral extension A commutative ring S

with unit and containing a subring R is an in-
tegral extension of R if every element of S is
integral over R. See integral element.

In the important special case where R and
S are fields, an integral extension is called an
algebraic extension.

The classic example of an integral extension
is the ring S of algebraic integers in some al-
gebraic extension field of the rational numbers.
Here, the ring R is the ring of ordinary (i.e., ra-
tional) integers. See algebraic integer, integral
element.

If S is an integral domain, there is an im-
portant relationship between being an integral
extension and possessing certain finiteness con-
ditions. Specifically, an integral domain is an
integral extension of a subring R if and only if
S is module finite over R. Module finite sim-
ply means that S is finitely generated as an R

module. See also integral domain.

integral form (1) A form, usually a bilinear,
sesquilinear, or quadratic form, with integral co-
efficients. For example, the form 2x2−xy+3y2

is integral.
(2) A form, usually a bilinear, sesquilinear, or

quadratic form, expressed by means of integrals.
For example, the inner product on the Hilbert
space L2 of square integrable functions,

(f, g) =
∫
X

f (t)g(t) dµ(t) ,

is an integral (sesquilinear) form.

integral ideal A non-zero ideal of the ring R

of algebraic integers in an algebraic number field
F . See algebraic integer, algebraic extension,
ideal. See also integer, integral element, integral
extension. In the elementary case where F is
the field of rational numbers and R is the ring
of ordinary integers, an integral ideal is simply
a non-zero ideal of the ring of integers.

In algebraic number theory, a distinction is
drawn between fractional ideals and integral
ideals. An integral ideal is as defined above.
By contrast, a fractional ideal is an R module
lying in the algebraic number field F .

integrally closed Let A be a subring of a
ring C. Then the set of elements of C which are
integral over A is called the integral closure of
A in C. If A is equal to its integral closure, then
A is said to be integrally closed.

integral quotient In elementary arithmetic,
a quotient in which both the numerator and the
denominator are integers. For example, 3/4 is
an integral quotient, whereas 3.5/4.5 is not, even
though the latter represents (equals) the rational
number 7/9.

integral representation (1) A representation
of a group G is a homomorphism φ from G into
a group Mn of n× n matrices. The representa-
tion is integral if each matrix φ(g) has integer
entries.

(2) Any representation of a quantity by means
of integrals. See integral.

integral ringed space A ringed space is a
topological space X together with a sheaf of
rings OX on X. This means that to each open
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set U of X, there is associated a ring OX(U).
(The remaining properties of sheaves need not
concern us here.) The ringed space (X,OX)

is integral if each ring OX(U) is an integral do-
main. For example, ifX is an open subset of Cn,
complex n-space, or a complex analytic mani-
fold, and OX(U) is the ring of analytic functions
defined on U , then (X,OX) is an integral ringed
space. See integral domain.

integral scheme A scheme is a particular
sort of ringed space. See scheme. An integral
scheme is a scheme which is an integral ringed
space. See integral ringed space.

intermediate field LetF ,G, andH be fields,
with F ⊆ G ⊆ H . G is called an intermediate
field.

internal product Let G1 and G2 be Abel-
ian groups, and let R be a commutative ring. A
group homomorphism π : G1⊗G2 → (R,+),
where (R,+) is the underlying additive group
of R, is an internal product if it satisfies π(g1⊗
g2) = π(g1) · π(g2), where · is the multiplica-
tion in the ring R. Here, G1 ⊗G2 is the tensor
product of G1 and G2. The notion is most fre-
quently used in homological algebra, in which
caseπ becomes a homomorphism of chain com-
plexes of groups, and the relation π(g1⊗ g2) =
π(g1) ·π(g2) only has to hold for cycles (or co-
cycles). See also chain complex, cocycle, cycle,
tensor product.

internal symmetry A symmetry that is an
invertible mapping of a set onto itself. If the set
has additional structure, then the mapping and
its inverse must preserve that structure. For ex-
ample, if the set is in addition a differentiable
manifold, then the mapping (and automatically
its inverse) must be differentiable. If the set is
in addition a topological space, then the map-
ping and its inverse must both be continuous.
If the set is in addition a metric space, then the
mapping (and automatically its inverse) must be
an isometry. See also inverse function, inverse
mapping.

interpolating subset Let H be a set of func-
tions from a set X to a set Y . Let a1, a2, a3, . . .

be a finite or infinite sequence of elements of

X, and let y1, y2, y3, . . . be a finite or infi-
nite sequence of elements of Y . The set A =
{a1, a2, a3, . . . } is an H interpolating subset
for the sequence y1, y2, y3, . . . if there exists
a function h ∈ H such that h(a1) = y1 for
i = 1, 2, 3, . . . . In this case, the sequence
a1, a2, a3, . . . is called an H interpolating se-
quence for y1, y2, y3, . . . .

The classic examples of interpolating se-
quences occur in the case where X is the field
of complex numbers and H is the set of all
polynomials with complex coefficients. The La-
grange interpolation theorem asserts that any fi-
nite sequence of complex numbers, a1, . . . , an,
all terms of which are different, is an H inter-
polating sequence for any sequence y1, . . . , yn
of complex numbers with the same number of
terms.

Although the notion of an interpolating sub-
set is usually reserved for discrete sets A as
above, it makes sense in greater generality. Let
A be an arbitrary subset of X, and let f be a
function from A to Y . Then A is an H interpo-
lating subset for the function f if there exists a
function h ∈ H such that h(a) = f (a) for all
a ∈ A.

intersection multiplicity A variety V is the
set of common zeros of a set I of polynomials.
In other words, V = {(x1, . . . , xn) : P(x1, . . . ,

xn) = 0 for all P ∈ I }. Intuitively, the inter-
section multiplicity of varieties V1, . . . , Vn at a
point x = (x1, . . . , xn) where they intersect is
the degree of tangency (or order of contact) of
the intersection at x plus 1. For example, the
parabolas

x2 − x2
1 = 0 and x2 − x2

1 − x1 = 0

have intersection multiplicity 1 at (x1, x2) =
(0, 0) because they intersect transversally (are
not tangent to each other) there. However,

x2 − x2
1 = 0 and x2 − 5x2

1 = 0

have intersection multiplicity 2 at (x1, x2) =
(0, 0) because they intersect tangentially to first
order there. One must also include the possibil-
ity of x being a multiple point, in which case the
intersection multiplicity should be ≥ the order
of the multiple point.

Rigorously, if D1, . . . , Dn are effective divi-
sors on a smooth n-dimensional variety X and
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are in general position at a point x ∈ X, then the
intersection multiplicity of D1, . . . , Dn at x is

(D1, . . . , Dn)x = dim (Ox/ (f1, . . . , fn)) .

Here is what all this means: X is smooth if it has
no singular points. A divisor on X is a formal
sumD = a1C1+· · ·+akCk , where the ai are in-
tegers and the Ci are distinct irreducible subva-
rieties of X of codimension n− 1. (Irreducible
means Ci is not the union of two proper [i.e.,
strictly smaller] subvarieties. In the simplest
case where X is an algebraic curve, the Ci are
just points ofX.) The divisorD is effective (also
called integral or positive) if all the coefficients
ai are positive. Ox is the local ring of X at x.
The local ring of X at x consists of quotients of
polynomial functions, f/g, defined at and near x
(i.e., on an open subset ofX containing x) where
g(x) �= 0, and two such functions are identified
if they agree on an open subset containing x. (In
other words, Ox is the ring of terms of regular
functions at x.) Locally, each divisor Di is the
divisor of a function fi , and that is where the fi
come from. (f1, . . . , fn) is the ideal in Ox gen-
erated by f1, . . . , fn (by their terms actually).
The quotient ring Ox/(f1, . . . , fn) is not only a
ring but also a finite dimensional vector space.
The intersection multiplicity (D1, . . . , Dn) is
the dimension of this vector space. See general
position, term, integral divisor, quotient ring.

The intersection multiplicity of effective di-
visors not in general position at x is defined in
terms of the intersection multiplicity of equiva-
lent divisors which are in general position. The
intersection multiplicity of fewer than n effec-
tive divisors, say D1, . . . , Dk , is defined in
terms of module length rather than the less gen-
eral concept of vector space dimension. Let C
be one of the irreducible components of the va-
riety

⋂
Ci,j , where Di =∑

ai,jCi,j . Then the
intersection multiplicity of D1, . . . , Dk in the
component C is

(D1, . . . , Dk)C = G (OC/ (f1, . . . , fk))

where G(OC/(f1, . . . , fk)) is the module length
of the OC module OC/(f1, . . . , fk) and OC is
the local ring of the irreducible subvariety C.
See also local ring, module of finite length.

intersection number A varietyV is the set of
common zeros of a set I of polynomials. In other

words, V = {(x1, . . . , xn) : P(x1, . . . , xn) = 0
for all P ∈ I }. Intuitively, the intersection
number of varieties V1, . . . , Vn is the number
of points of intersection, counting multiplicity.
Rigorously, if D1, . . . , Dn are effective divisors
on a smooth n-dimensional variety X (see in-
tersection multiplicity for brief definitions of
these terms), then the intersection number of
D1, . . . , Dn is

(D1, . . . , Dn) =
∑
x∈S

(D1, . . . , Dn)x ,

in other words, it is the sum of the intersection
multiplicities over the finitely many points of
intersection of the divisors D1, . . . , Dn. Here,
S =⋂n

i=1 Si , Si =
⋃

j Ci,j , and Di =∑
j ai,j

Cj .
It is also possible to define intersection num-

bers for fewer than n divisors, say D1, . . . , Dk .
However, this definition is the culmination of an
entire theory.

intersection product (1) Let i(A,B;C) be
the intersection multiplicity of two irreducible
subvarieties A and B of an irreducible variety
V , along a proper component C of A ∩ B. The
intersection product of A and B is

A · B =
∑
n

i(A,B;Cn)Cn

where the sum is taken over all the proper com-
ponents Cn of A ∩ B. If X = ∑

α aαAα and
Y = ∑

β bβBβ are two cycles on V such that
each component Aα of X intersects properly
with each component Bβ of Y , then the inter-
section product is

X · Y =
∑
α

∑
β

aαbβ
(
Aα · Bβ

)
.

(2) If M is an oriented n-dimensional mani-
fold and a and b are members of the homology
groups Hp(M) and Hq(M), then the intersec-
tion product of Lefschetz is a · b = D−1a I

b = D(D−1a J D−1b) ∈ Hp+q−n where D is
the Poincaré-Lefschetz duality. See also inter-
section multiplicity, cup product, cap product,
Poincaré-Lefschetz duality.

intransitive permutation group A permu-
tation groupG is a group of one-to-one and onto

c© 2001 by CRC Press LLC



functions from a set X to itself. The group oper-
ation is understood to be a composition of func-
tions, τσ (x) = τ ◦ σ(x) = τ(σ (x)). Usually,
but not always, the set X is finite. The permu-
tation group G is intransitive if for some (and
hence for all) x ∈ X, the set O(x) = {σ(x) :
σ ∈ G} is not equal to all of X. The set O(x) is
called the orbit of x, so we can say the permu-
tation group G is intransitive if the orbit of any
element x ∈ X fails to be all of X. Synonym:
intransitive transformation group. Antonyms:
transitive permutation group, transitive trans-
formation group.

invariance As in ordinary non-technical En-
glish, the property of being unchanged with re-
spect to some action or set of actions.

invariant (1) Let L be a set. Let G be an-
other set which acts on L. This means that there
is a binary operation · so that g · l is an element
of L for each g ∈ G and l ∈ L. Usually, but not
always, G is a group. An element l ∈ L is in-
variant under the action of G, or a G invariant,
if g · l = l for each g ∈ G.

Here are some examples:
Example (a): Let G be a group of functions

from a set X to itself. Each g ∈ G is assumed to
be one-to-one and onto, and the group operation
is a composition of functions, g1g2(x) = g1 ◦
g2(x) = g1(g2(x)). Let L be a set of functions
from X to some set Y . The action of G on L is
defined via a composition of functions: g · l =
l ◦ g, i.e. g · l(x) = l(g(x)).

Example (b): Let G equal the symmetric
group on n letters. In other words, G is the
permutation group of all permutations (one-to-
one and onto functions) of the set {1, . . . , n}.
The group operation is a composition of func-
tions. Let L be the ring of all polynomials in n

variables, x1, . . . , xn. If g ∈ G, and l is a mono-
mial xk1

1 · · · xknn , then g · l = x
k1
g(1) · · · xkng(n). In

other words, g · l is formed from l by rearrang-
ing the variables. If l is an arbitrary polynomial,
then l is a sum of monomials, l = ∑

aili . De-
fine g · l by linearity, g · l = ∑

aig · li . The
polynomials which are invariant under the ac-
tion of g are called symmetric functions. Thus,
the symmetric functions are those polynomials
which remain unchanged after rearranging their
variables. It is a theorem that each symmet-

ric function is a sum of elementary symmetric
functions, p1 = 1, p2 = the sum of all pairs of
variables, p2 = x2

1 + x1x2 + · · · + x1xn+ x2
2 +

x2x3 + . . .+ x2xn + · · · + x2
n , p3 = the sum of

all triples of variables, pn = x1x2 · · · xn.

Example (c): this is an important special case
of example (a). G is a group of conformal trans-
formations of the unit disk (in the complex plane)
into itself. (Thus, G is a group of linear frac-
tional transformations.) X is the unit disk, and
L is the set of analytic functions defined on the
unit disk. A function in L which is invariant
under the action of G is called an automorphic
function. See conformal transformation, linear
fractional transformation.

Example (d): LetG be an Abelian group. Let
K be a field and KG the group algebra over K .
Let L be a left KG module. Define the action
of G by module multiplication, g · l = gl. In
the theory of group representations, the set of all
l ∈ L which are invariant under the action of G
are called the G-invariants of L. The set of all
G-invariants ofL forms a leftKG submodule of
L which plays a key role in the theory of group
representations. See also group algebra.

(2) Let G and L be as in (1). A subset V of
L is invariant under the action of G if g ·v ∈ V

for all v ∈ V . Here is an important example:
Let T be a bounded linear operator on a Hilbert
space H . Let G = {T }, the set consisting of
T alone. Let L = H . Define the action of
G on L by operator application, T · l = T (l).
A subspace of L which is invariant under the
action of G is called an invariant subspace for
T . A famous unsolved problem is the invari-
ant subspace problem, often called the invariant
subspace conjecture: Does every bounded lin-
ear operator on an infinite dimensional complex
Hilbert space H have a proper (not {0}, not all
of H ) closed invariant subspace?

(3) A bilinear form f on a Lie algebra L is
called an invariant form if f ([a c], b) +
f (a, [b c]) = 0. Here, [a c] is the Lie algebra
product of a and c.

(4) A quantity which is left unchanged un-
der the action of a prescribed class of functions
between sets is also called an invariant. For ex-
ample, the Euler characteristic is a topological
invariant because it is preserved under topolog-
ical homeomorphisms. (A one-to-one and onto
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function from one topological space to another
is called a homeomorphism if both it and its in-
verse are continuous.)

(5) Let X be a set and let E be an equivalence
relation on the set X. Let f : X → Y be a
function from X to another set Y . If f (x1) =
f (x2) whenever (x1, x2) ∈ E, that is whenever
x1 is equivalent to x2 modulo the equivalence
relation E, then f is called an invariant of E.
The function f is called a complete invariant of
E if (x1, x2) ∈ E if and only if f (x1) = f (x2).
Finally, a finite or infinite set F of functions on
X is called a complete system of invariants for
E if (x1, x2) ∈ E if and only if f (x1) = f (x2)

for all functions f ∈ F .
Here is a well-known example: Let X be the

set of all m × n matrices with coefficients in a
field F . Define two such matrices M1 and M2
to be equivalent if there exist invertible square
matrices P and Q such that M1 = PM2Q, and
let E be the resulting equivalence relation. It
is a theorem of linear algebra that the rank of a
matrix M is a complete invariant for E, that is
m×n matrices M1 and M2 are equivalent under
the above definition if and only if they have the
same rank.

invariant derivation Let D be a derivation
on the function field K(A) of an Abelian variety
A, whereK is the universal domain ofA. Let Ta
be translation by an element a ∈ A. If (Df ) ◦
Ta = D(f ◦ Ta), for every f ∈ K(A), then D

is called an invariant derivation on A.

invariant element Let T : X → X be a
function or mapping. If x ∈ X has the property
that T (x) = x, then x is called an invariant
element of the operator T . This concept arises
in analysis, topology, algebra, and many other
branches of mathematics.

invariant element Let T : X → X be a
function or mapping. If x ∈ X has the property
that T (x) = x, then x is called an invariant
element of the operator T . This concept arises
in analysis, topology, algebra, and many other
branches of mathematics.

invariant factor Let A be an n × n matrix
with distinct eigenvalues λi, , i = 1, 2, . . . , k,
and Jordan normal form J . Consider the ma-

trix B1, obtained from J by taking the direct
sum of k Jordan blocks, one for each distinct
eigenvalue λi , having maximal order among all
Jordan blocks corresponding to λi . Next con-
sider B2, obtained similarly to B1, but from the
remaining Jordan blocks in J . Continue in this
manner until all Jordan blocks of J have been
used, thus obtaining a sequence B1, B2, . . . , Bs

of matrices whose sizes are non-increasing and
whose direct sum is by construction permuta-
tionally similar to J .

The characteristic polynomials of the matri-
ces Bj , j = 1, 2, . . . , s are known as the in-
variant factors of A. It is worth noting that for
each j = 1, 2, . . . , s, by construction, the char-
acteristic polynomial of Bj coincides with the
minimal polynomial of Bj . In particular, the
minimal polynomial of B1 is the minimal poly-
nomial of A. It follows that two matrices are
similar if and only if they have the same invari-
ant factors.

invariant field Let G be a group of field au-
tomorphisms of a field F . A subfield H of F
is invariant for G, or G-invariant, if g(h) = h

for all g ∈ G and h ∈ H ; in other words, the
subfieldH isG-invariant ifG fixes the elements
of H . Synonym: fixed field.

invariant form (1) A bilinear or quadratic
form which is invariant under the action of a set
of transformations. See invariant.

(2) A bilinear form f on a Lie algebraL such
that f ([a c], b) + f (a, [b c]) = 0. Here, [a c]
is the Lie algebra product of a and c.

invariant of group Let G be a finite Abelian
group. By the Fundamental Theorem of Abelian
Groups,

G = σ (m1)⊕ σ(m2)⊕ · · · ⊕ σ(ms) ,

where σ(mi) is a cyclic group of order mi and
mi dividesmi+1. The numbersm1,m2, . . . , ms

are uniquely determined by G, are invariant un-
der group isomorphism, and are called the in-
variants of the group G.

invariant of weight w Let R be a ring and let
L be a left R module. Let G be a set which acts
on L. This means there is a binary operation ·
so that g · l is an element of L for each g ∈ G
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and l ∈ L. Usually, G is a group. Let w be a
function from G to R. An element l ∈ L is an
invariant of weight w under the action of G, or
a G invariant of weight w, if g · l = w(g)l for
each g ∈ G.

Here is an example: Let L be the set of all
analytic functions in the upper half plane of the
complex plane. Let G be the modular group.
The modular group is the group of all linear
fractional transformations

g(z) = az+ b

cz+ d
,

where a, b, c, and d are integers and the determi-
nant ad − bc = 1. G acts on L by composition
of functions,

g · l(z) = l ◦ g(z) = l(g(z)) = l

(
az+ b

cz+ d

)
.

A modular form of weight k is a G invariant of
weight w, where w(g) = (cz + d)k . In other
words, l is a modular form of weight k if l ∈ L

and

l

(
az+ b

cz+ d

)
= (cz+ d)kl(z) ,

whenever a, b, c, and d are integers and ad −
bc = 1.

There is a companion notion of weight for
right R modules. Furthermore, the notion of a
G invariant of weight w extends to the situation
where R and L are simply sets, and R acts on
L.

inverse LetG be a set with a binary operation
· and an identity e. This means g1 · g2 ∈ G

whenever g1 and g2 belong to G, and g · e =
e · g = g for all g ∈ G. The element h ∈ G is
an inverse of g ∈ G if g · h = e and h · g = e.

Often g is an element of a group G. What is
very special about this case is that (a) either of
the conditions gh = e and hg = e implies the
other, and (b) the inverse of g always exists and
is uniquely determined by g. The inverse of g is
frequently denoted by g−1. See group. See also
inverse function, inverse morphism.

inverse element An element of a setGwhich
is the inverse of another element of G. See in-
verse.

inverse function Let f be a function from a
set X to a set Y . Diagrammatically, f : X →
Y . The inverse function to f , if it exists, is the
function g : Y → X such that f ◦ g = iY and
g ◦ f = iX. (Here, iX and iY are the identity
maps on X and Y , and ◦ denotes composition
of functions.) In other words, f (g(y)) = y

for all y ∈ Y , and g(f (x)) = x for all x ∈
X. The function f has an inverse if and only if
f is one-to-one and onto, and the inverse g is
defined by g(y) = the unique element x such
that f (x) = y. The inverse function to f is
frequently denoted by f−1. See also identity
map, inverse mapping, inverse morphism.

Example: Let f (x) = 10x , for x real. The
inverse function to f is g(x) = log10 x, for x >

0.

inverse limit Suppose {Gµ}µ∈I is an indexed
family of Abelian groups, where I is a pre-
ordered set. Suppose that there is also a family
of homomorphisms ϕµν : Gµ → Gν , defined
for all µ < ν, such that if µ < ν < κ , then
ϕνκ ◦ ϕµν = ϕµκ . Consider the direct product
of the groups Gµ and define πµ to be the pro-
jection onto the µth factor in this direct product.
Then the inverse limit is defined to be the sub-
group G∞ = {x : µ < ν implies πµ(x) =
ϕνµ ◦ πν(x)}. See also preordered set.

inverse mapping See inverse function.

inverse matrix The matrix B, if it exists,
such that AB = BA = I . In more detail, let A
be a square n× n matrix, and let I be the n× n

identity matrix, that is the n×n matrix with en-
try 1 in each diagonal position and 0 elsewhere.
An n×n matrix B is the inverse of A if AB = I

andBA = I . Either condition implies the other.
The inverse of A, if it exists, is uniquely deter-
mined by A and is denoted by A−1. It is a the-
orem of linear algebra that a matrix is invertible
(i.e., has an inverse) if and only if its determi-
nant is non-zero. There is a determinantal (in-
volving determinants) formula for the inverse of
A, A−1 = det(A)−1adj(A), where det(A) is the
determinant of A and adj(A) is the classical ad-
joint of A, that is the transpose of the matrix of
cofactors. See cofactor, determinant, transpose.
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inverse morphism Let C be a category, let A
and B be objects in C, and let f : A→ B be a
morphism in C. (A morphism is a generalization
of a function or mapping.) A morphism g :
B → A is the inverse morphism of f if f ◦ g
is the identity morphism on object B, and g ◦
f is the identity morphism on object A. The
inverse morphism of f , if it exists, is uniquely
determined by f .

There are also notions of left and right in-
verse morphisms. Morphism g is a left inverse
morphism of f if g ◦f is the identity morphism
on object A, and is a right inverse morphism of
f if f ◦ g is the identity morphism on B. See
also identity morphism, inverse function.

inverse operation See inverse function.

inverse proportion Quantity a is inversely
proportional to quantity b, or varies inversely
with quantity b, if there is a constant k different
from 0 such that a = k/b. For example, New-
ton’s law of universal gravitation, “The grav-
itational force between two masses is directly
proportional to the product of the masses and
inversely proportional to the square of the dis-
tance between them,” is given by the formula
F = GmM/r2, where G is a constant of nature
called the gravitational constant.

inverse ratio (1) The inverse ratio to a/b is
b/a.

(2) Inverse ratio also means inverse propor-
tion, as in “a varies in inverse ratio to b.” See
inverse proportion.

inverse relation The relation formed by re-
versing the ordered pairs in a given relation. In
more detail, a relation R is a subset of the Carte-
sian product X × Y , where X and Y are sets.
(The Cartesian product X × Y of X and Y is
simply the set of all ordered pairs (x, y), where
x ∈ X and y ∈ Y .) The inverse relation to R is
the relation {(y, x) : (x, y) ∈ R}. The inverse
relation to R is usually denoted by R−1. Note
that if the relation R is a subset of the Cartesian
productX×Y , then the inverse relationR−1 is a
subset of Y ×X. Example: An inverse function
is a special sort of inverse relation. See inverse
function.

inverse transformation See inverse func-
tion.

inverse trigonometric function The inverse
functions to the trigonometric functions sin, cos,
tan, cot, sec, and csc; that is, the arcsin, the arc-
cosine, the arctangent, the arccotangent, the arc-
secant, and the arccosecant, respectively. They
are denoted by arcsin, arccos, arctan, arccot,
arcsec, and arccsc, or by sin−1, cos−1, tan−1,
cot−1, sec−1, and csc−1. Note that, in formulas
involving trigonometric functions and inverse
trigonometric functions, sin−1(x) is not equal
to the number 1/ sin(x), but rather to the value
of the arcsin of x. Similar comments apply to
cos−1(x), etc.

Because the trigonometric functions sin, cos,
etc. are not one-to-one, the inverse trigonometric
functions are really inverse relations, although
they may be thought of as multiple valued func-
tions. Thus arcsin(x) is any angle y such that
sin(y) = x, and similarly with arccos
(x), etc. To make the inverse trigonometric
functions into single valued functions, one must
specify a branch or, equivalently, an interval in
which the trigonometric function is one-to-one.
For example, the principal branch of the arcsin
is the inverse of sin(x) restricted to the inter-
val −π

2 ≤ y ≤ π
2 ; it is denoted by Arcsin or

Sin−1, with a capital letter. Thus Arcsin(x) is
the unique angle y in the interval −π

2 ≤ y ≤ π
2

such that sin(y) = x. The principal branches
of the other inverse trigonometric functions are
also denoted by capital letters, Arccos = Cos−1,
Arctan = Tan−1, etc. The principal branch
of the arctan takes values in the same interval
as the principal branch of the arcsin, namely
−π

2 ≤ y ≤ π
2 , but the principal branch of the

arccos takes values in the interval 0 ≤ y ≤ π .

inverse variation See inverse proportion.

inversion The act of computing the inverse.
See inverse.

inversion formula Any of a number of for-
mulas for computing the inverse of a quantity.
The two most celebrated probably are:
(i.) the inversion formula for computing the in-
verse of a matrix, A−1 = det(A)−1adj(A),
where det(A) is the determinant ofA and adj(A)
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is the classical adjoint of A, that is the transpose
of the matrix of cofactors. See inverse matrix.
(ii.) The Fourier inversion formula,

f (x) =
1

2π

∫ +∞
−∞

[∫ +∞
−∞ f (λ)ei(x−λ)µ dλ

]
dµ .

The Fourier inversion formula is really a state-
ment that if f has Fourier transform,

F(µ) = 1√
2π

∫ +∞

−∞
f (λ)e−iλµ dλ ,

then the inverse Fourier transform is given by
the inversion formula,

f (x) = 1√
2π

∫ +∞

−∞
F(µ)eiµx dµ .

(There have to be hypotheses on f , say f ∈
L1 ∩ L2, for this to work.)

invertible element (1) An element with an
inverse element. See inverse, inverse element.

(2) Let R be a ring with unit e. An element
r of R, for which there exists another element
a in R such that ar = e and ra = e, is called
an invertible element of R. This is, of course,
a special case of (1) above. The element a, if
it exists, is uniquely determined by r , and is
denoted by r−1. See unit.

If only the condition ar = e holds, then r is
said to be left invertible. Similarly, if only the
condition ra = e holds, then r is said to be right
invertible.

invertible function A function f : S → T

such that there is a function g : T → S with
f ◦ g = idT and g ◦ f = idS . Often the word
“function” is used to specify that T is a field.

invertible map A function f : S → T such
that there is a function g : T → S with f ◦ g =
idT and g ◦ f = idS . Often the word “map” is
used to specify that T is not a field of scalars.

invertible sheaf A locally free sheaf of rank
1. In more detail, a ringed space is a topological
space X together with a sheaf of rings OX on X.
This means that to each open setU ofX, there is
associated a ring OX(U). (The remaining prop-
erties of sheaves need not concern us here.) A

sheaf of OX modules is defined similarly, except
that to each open subset U of X, there is asso-
ciated an OX module F(U). A sheaf F of OX

modules is locally free of rank 1, or invertible,
if X can be covered by open sets Uα , α ∈ A,
such that F(Uα) is isomorphic to OX(Uα). See
also ringed space, sheaf.

involution (1) A function φ from a set X
to itself, such that φ2 = φ. Here, φ2(x) =
φ ◦ φ(x) = φ(φ(x)).

(2) Let A be an algebra over the complex
numbers. A function φ from A to itself is an
involution if it satisfies the following four prop-
erties for all x and y in A and all complex num-
bers λ: (i.) φ(x + y) = φ(x) + φ(y), (ii.)
φ(λx) = λ̄φ(x), (iii.) φ(xy) = φ(y)φ(x), (iv.)
φ((φ(x)) = x.

φ(x) is frequently denoted by x∗, and then
the four properties take the more familiar form:
(i.) (x+y)∗ = x∗+y∗, (ii.) (λx)∗ = λ̄x∗, (iii.)
(xy)∗ = y∗x∗, (iv.) x∗∗ = x.

Examples: (i.) A is the complex numbers.
x∗ = x̄, the complex conjugate of x. (ii.) A

is the algebra of bounded linear operators on a
Hilbert space. T ∗ is the adjoint of T .

irrational equation An equation with irra-
tional coefficients. See also irrational number.

irrational exponent An exponent which is
irrational. For example, the expressions 2π and
eπ involve irrational exponents. See also irra-
tional number.

irrational expression An expression involv-
ing irrational numbers. See also irrational num-
ber. Although the word expression is often used
loosely in elementary mathematics without a
rigorous definition, it is possible to define ex-
pression rigorously by specifying the rules of a
formal grammar.

irrational number A real number r which
cannot be expressed in the form p/q, where p

and q are integers. Equivalently, a real num-
ber which is not a rational number. It was the
great discovery of the ancient Greek mathemati-
cian and philosopher Pythagoras that

√
2 is irra-

tional. The numbers e and π are also irrational.
These last two are irrational in a very strong
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sense, they are transcendental, but it took until
the nineteenth century to prove this. See also
transcendental number.

irreducible algebraic curve An algebraic
curve is a variety of dimension 1 in 2-
dimensional affine or projective space. (A vari-
ety is the solution set to a system of polynomial
equations.) An algebraic curve is irreducible
if it is not the union of two proper (strictly
smaller) subvarieties. For example, the parabola
y−x2 = 0 is an irreducible algebraic curve, but
the pair of lines x2 − y2 = 0 is a reducible
algebraic curve because it can be decomposed
into the union of the two lines x − y = 0 and
x + y = 0.

irreducible R-module Let R be a ring and
let M be a module over R. We say that M is
irreducible over R if R has no submodules. In
some contexts, we say that M is irreducible if
M cannot be written as a direct sum of proper
sub-modules. These are also sometimes called
simple modules.

irreducible character A character of a finite
group which is not a sum of characters different
from itself. Every character of a finite group is a
sum of irreducible characters. See also character
of group.

irreducible co-algebra A co-algebra in
which any two non-zero subco-algebras have
non-zero intersection. A co-algebra C is irre-
ducible if and only if C has a unique simple
subco-algebra.

irreducible component (1) In algebraic ge-
ometry, a variety is the solution set of a system
of polynomial equations, usually in more than
one variable. A variety is irreducible if it is not
the union of two proper (strictly smaller) subva-
rieties. An irreducible component of a variety
is a maximal irreducible subvariety. That is, a
subvariety W ⊆ V is an irreducible component
of a variety V if (i.) W is irreducible, and (ii.)
there is no irreducible variety W ′ properly be-
tween W and V (W ⊂ W ′ ⊂ V , W �= W ′,
W ′ �= V ). Every variety is the finite union
of its irreducible components. Example: V =
{(x, y) : x2 − y2 = 0}. The irreducible com-

ponents of V are the two lines x − y = 0 and
x + y = 0.

The notion of an irreducible component ex-
tends to varieties in other contexts, for example
to analytic varieties.

(2) In combinatorial group theory, every Cox-
eter group can be written as the direct sum of
(possibly infinitely many) irreducible Coxeter
groups, called the irreducible components of
the Coxeter group. See also irreducible Cox-
eter group.

irreducible constituent Let Z denote the
rational integers and Q the rational field. Let T
be a Z-representation of a finite group G. If T
is Q-irreducible, then T is called an irreducible
constituent of the group G.

irreducible constituent Let Z denote the ra-
tional integers and Q the rational field. Let T
be a Z-representation of a finite group G. If T
is Q-irreducible, then T is called an irreducible
constituent of the group G.

irreducible Coxeter complex A Coxeter
complex for which the associated Coxeter group
is an irreducible Coxeter group. In more detail,
let (W, S) be a Coxeter group. For now, it suf-
fices that W is a (possibly infinite) group and
S is a set of generators for W . Define a spe-
cial coset to be a coset of the form w〈S′〉, where
w ∈ W , S′ ⊆ S, and 〈S′〉 is the group gener-
ated by S′. The Coxeter complex Q associated
with (W, S) is the partially ordered set of special
cosets, ordered by reverse inclusion: B ≤ A if
and only if B ⊇ A. Q is an irreducible Cox-
eter complex if its Coxeter group (W, S) is an
irreducible Coxeter group. See also irreducible
Coxeter group.

Although Coxeter complexes are abstractly
defined, there is a rich geometry associated with
them, resembling the geometry of simplicial
complexes.

irreducible Coxeter group A Coxeter group
which cannot be written as the direct sum of two
other Coxeter groups. In more detail, Coxeter
groups are generalizations of finite reflection
groups. Let W be a (possibly infinite) group,
and let S be a set of generators for W . The pair
(W, S) is called a Coxeter group if two things are
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true: (i.) Each element of S has order 2 (s2 = s

if s ∈ S), and (ii.) W is defined by the system of
generators and relations: set of generators = S;
set of relations = {(st)m(s,t) = 1}, where m(s, t)

is the order of the element st in the group W ,
and there is one relation for each pair (s, t) with
s and t in S and m(s, t) <∞.

A Coxeter group is irreducible if it cannot
be written as the direct sum of two other Cox-
eter groups. In other words, the Coxeter group
(W, S) is irreducible if it cannot be written as
(W, S) = (W ′ ×W ′′, S′ ∪ S′′), where (W ′, S′)
and (W ′′, S′′) are themselves Coxeter groups.
(Equivalently, a Coxeter group is irreducible if
its Coxeter diagram is connected.) Every Cox-
eter group can be written as the direct sum of
(possibly infinitely many) irreducible Coxeter
groups, called the irreducible components of the
group. See also Coxeter diagram, irreducible
Coxeter complex.

irreducible decomposition Informally, a de-
composition of an object into irreducible com-
ponents or elements. See irreducible compo-
nent, irreducible element.

irreducible element (1) An element a of a
ring R with no proper factors in the ring. This
means that there do not exist elements b and
c in R, different from 1 and a, such that a =
bc. Example: If R is the ring of integers, the
irreducible elements are the prime numbers. See
also prime number.

(2) A join or meet irreducible element of a
lattice. See join irreducible element, meet irre-
ducible element.

irreducible equation A polynomial equa-
tion P(x) = 0, where the polynomial P is irre-
ducible. See also irreducible polynomial.

irreducible fraction A fraction a/b, where
the integers a and b have no common factors
other than 1 and −1. In other words, a fraction
reduced to lowest terms.

irreducible homogeneous Siegel domain
Siegel domains are special kinds of domains in
complex N space, CN . An easy way to con-
struct new Siegel domains is to take the Carte-
sian product of two given Siegel domains. Thus

if S1 and S2 are Siegel domains, S = S1×S2 =
{s = (s1, s2) : s1 ∈ S1, s2 ∈ S2} will also
be a Siegel domain. A Siegel domain is irre-
ducible if it is not the Cartesian product of two
other Siegel domains. A Siegel domain is ho-
mogeneous if it has a transitive group of analytic
(holomorphic) automorphisms. An irreducible
homogeneous Siegel domain is a homogeneous
Siegel domain which is not the Cartesian prod-
uct of two other homogeneous Siegel domains.
See homogeneous domain, Siegel domain.

irreducible linear system A system of linear
equations where no equation is a linear com-
bination of the others. It is a theorem that a
system of n linear equations in n unknowns is
irreducible if and only if the determinant of the
matrix of coefficients is not 0. The methods of
row and column reduction provide computation-
ally efficient tests for irreducibility. Synonym:
linearly independent system of linear equations.
See also linear combination, linearly indepen-
dent elements.

irreducible matrix See Frobenius normal
form.

irreducible module The module analog of a
simple group. Specifically, an R module,
where R is a ring, is an irreducible module if
it contains no proper R submodules. For ex-
ample, Zp, the integers modulo a prime number
p, is an irreducible Z module. (Here, Z is the
ring of integers.) In the case where the ring R

is not commutative, the notion of irreducibility
extends to left and right R modules.

irreducible polynomial A polynomial with
no proper factors. In greater detail, if R is a ring
and R[x] denotes the ring of polynomials with
coefficients inR, then a polynomialP inR[x] is
irreducible if it is an irreducible element of the
ringR[x]. See irreducible element. Example: If
R is the field of real numbers and C is the field
of complex numbers, the polynomial P(x) =
x2 + 1 is irreducible in R[x] but reducible (it
factors as (x + i)(x − i)) in C[x].

irreducible projective representation A
projective representation of a group G is a func-
tionT fromG into the group GL(V )of invertible
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linear transformations on a vector space V , sat-
isfying two additional axioms. (See projective
representation.) T is irreducible if there does
not exist a proper (�= 0, �= V ) subspace W of
V such that T (g)(w) ∈ W for all g ∈ G and
w ∈ W . See also irreducible representation,
irreducible unitary representation.

irreducible representation A representa-
tion of a group G is a homomorphism T from G

into the group GL(V ) of invertible linear trans-
formations on a vector space V . T is an irre-
ducible representation if there does not exist a
proper ( �= 0, �= V ) subspace W of V such that
T (g)(w) ∈ W for all g ∈ G and w ∈ W .

The notion extends to other contexts. For ex-
ample, V may be a Hilbert space and GL(V )

may be replaced by the topological group of in-
vertible bounded linear operators on V . In this
case, the homomorphismT is required to be con-
tinuous, and the subspaces W are required to be
closed. See also irreducible unitary representa-
tion.

irreducible R-module Let R be a ring and
let M be a module over R. We say that M is
irreducible over R if R has no submodules. In
some contexts, we say that M is irreducible if
M cannot be written as a direct sum of proper
sub-modules. These are also sometimes called
simple modules.

irreducible scheme A scheme whose under-
lying topological space is irreducible. In more
detail, a scheme is a particular type of ringed
space, (X,OX). Here, X is a topological space
and OX is a sheaf of rings on X. The scheme
(X,OX) is irreducible if X is not the union of
two proper ( �= ∅, �= X) closed subsets. See also
ringed space, scheme.

irreducible Siegel domain Siegel domains
are special kinds of domains in complexN space,
CN . An easy way to construct new Siegel do-
mains is to take the Cartesian product of two
given Siegel domains. Thus if S1 and S2 are
Siegel domains, S = S1 × S2 = {s = (s1, s2) :
s1 ∈ S1, s2 ∈ S2} will also be a Siegel domain.
A Siegel domain is irreducible if it is not the
Cartesian product of two other Siegel domains.

See Siegel domain. See also irreducible homo-
geneous Siegel domain.

irreducible tensor An element of the tensor
product V ⊗ W of two vector spaces, which
cannot be written as v ⊗w, for v ∈ V and w ∈
W . Also called irreducible tensor operators or
spherical tensor operators.

Classically, let [a, b] = ab − ba and let
jx, jy, jz be the x-, y-, and z- components of
the angular momentum j. An irreducible ten-
sor of rank k is a dynamical quantity T k

q , where
q = k, k − 1, . . . ,−k, that satisfies the follow-
ing commutation relations:[

jz, T
k
q

]
= qT k

q

[
jx ± ijy

] = √
(k ∓ q)(k ± q + 1)T k

q∓1 .

irreducible unitary representation A uni-
tary representation of a (topological) group G

is a (continuous) homomorphism T from G into
the groupU(H) of unitary operators on a Hilbert
spaceH . T is an irreducible unitary representa-
tion if there does not exist a proper (�= 0, �= H )
closed subspace W of H such that T (g)(w) ∈
W for all g ∈ G and w ∈ W . See also irre-
ducible representation.

irreducible variety A variety is the solution
set of a system of polynomial equations (usu-
ally in several variables). An irreducible vari-
ety is a variety V which is not the union of two
proper (�= ∅, �= V ) subvarieties. For example,
the parabola y−x2 = 0 is an irreducible variety,
but the variety x2−y2 = 0 is reducible because
it can be decomposed into the union of the two
lines x − y = 0 and x + y = 0.

irredundant In a lattice L, a representation
of an element a as a join a = a1 ∨ · · · ∨ an
is irredundant if omitting any of the elements
ai from the join produces an element b strictly
smaller than a. There is a dual notion for meets:
A representation of an element a as a meet a =
a1∧· · ·∧an is irredundant if omitting any of the
elements ai from the meet produces an element
b strictly larger than a. See join, lattice, meet.

Example: R is a Noetherian ring (a commu-
tative ring satisfying the ascending chain condi-
tion). L is the lattice of ideals of R, ordered
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by inclusion. It is a theorem of ring theory,
the Lasker-Noether Theorem, that every ideal
in R has an irredundant representation as an in-
tersection of primary ideals. This theorem al-
most completely describes the ideal theory of
Noetherian rings, including such rings as the
ring of polynomials in several variables with co-
efficients in a field, and the ring of terms of holo-
morphic (analytic) functions in several complex
variables. See also Noether, Noetherian ring.

irregularity In algebraic geometry, the di-
mension of the Picard variety of a non-singular
projective algebraic variety. See also Picard va-
riety.

irregular prime A prime number p which
divides the numerator of one or more of the
Bernoulli numbers B2, B3, . . . , Bp−3. A prime
number which is not irregular is called a regular
prime. Irregular primes were of interest because
they were the class of exceptional primes for
which Kummer’s proof of Fermat’s Last Theo-
rem does not work. Wiles’ recent proof of Fer-
mat’s Last Theorem probably makes the distinc-
tion between regular and irregular primes unin-
teresting, but one never knows. See Bernoulli
number, Fermat’s Last Theorem.

irregular variety A non-singular projective
algebraic variety with non-zero irregularity. A
variety of zero regularity is called a regular va-
riety. See also irregularity.

isogenous Abelian varieties A pair of Abel-
ian varieties of equal dimension, for which there
is a rational group homomorphism from one va-
riety onto the other. In more detail, an Abelian
variety is, among other things, an algebraic va-
riety which is also an Abelian group. A rational
group homomorphism from one Abelian variety
to another is a rational map which is also a group
homomorphism. See also rational map.

isogenous groups A pair of topological
groups (usually Lie groups) for which there is an
isogeny from one to the other. See also isogeny.

isogeny (1) A Lie group map (a continuous,
differentiable group homomorphism) φ : G→
H , where G and H are Lie groups, which is

a covering space map of the underlying mani-
folds. The map φ is a covering space map if
it is continuous and, for each h ∈ H , there ex-
ists a neighborhood U of h such that φ−1(U)

is a disjoint union of open sets in G mapping
homeomorphically to U under φ.

(2) A topological group homomorphism (a
continuous group homomorphism)φ : G→ H ,
where G and H are topological groups, which
is a covering space map of the underlying topo-
logical spaces.

(3) An epimorphism φ : G → H of group
schemes (over a ground scheme S) such that the
kernel of φ is a flat, finite group scheme over S.
See also epimorphism, scheme.

isolated component Let I be an ideal in a
commutative ring R, and let I = Q1 ∩ · · · ∩Qk

be a short representation of I as an intersection
of primary ideals. (See short representation.)
Let P1, . . . , Pk be the prime ideals belonging
to Q1, . . . ,Qk . (The easiest way to specify
Pi is to note that Pi is the radical of Qi , i.e.,
Pi = {p ∈ R : pn ∈ Qi for some integer n}.)
Renumbering the primary idealsQi if necessary,
an ideal J = Q1 ∩ · · · ∩Qr (with 1 ≤ r ≤ k) is
an isolated component of I if none of the prime
ideals P1, . . . , Pr contains a prime ideal Pj not
in the set {P1, . . . , Pr}.

Isolated components are of interest because
they introduce uniqueness into the representa-
tion theory of ideals in commutative Noetherian
rings. Although there are often many different
short representations of an ideal I , the isolated
components of I are uniquely determined. See
also isolated primary component, Noetherian
ring, primary ideal, prime ideal, radical, short
representation.

isolated primary component An isolated
component J of an ideal I in a commutative
ring, such that J is a primary ideal. Isolated
primary components are of interest because they
must occur among the primary ideals of every
short representation of I . See also isolated com-
ponent, short representation.

isomorphic Two groups G and H are iso-
morphic if there is an isomorphism φ : G→ H

between them. Isomorphic groups are regarded
as being “abstractly identical,” or different re-
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alizations of the same abstract group. The no-
tion extends to other algebraic structures such as
rings, to the completely general algebraic struc-
tures defined in universal algebra, and even to
the theory of categories. See also isomorphism.

isomorphism (1) In group theory, a map-
ping φ : G → H between two groups, G and
H , which is one-to-one (injective), onto (sur-
jective), and which preserves the group opera-
tion, that is φ(g1 · g2) = φ(g1) · φ(g2). The
notion extends to rings, where φ is required to
preserve the ring addition and multiplication, to
vector spaces, where φ is required to preserve
vector addition and scalar multiplication (i.e.,
φ(λ1v1 + λ2v2) = λ1φ(v1)+ λ2φ(v2)), and to
completely general algebraic contexts (see (2)
below).

(2) In universal algebra, a mapping φ : G →
H between two (universal) algebras G and H,
which is one-to-one (injective), onto (surjec-
tive), and which preserves the operations of G
and H. In more detail, G = (G, FG) and H =
(H, FH), where G is a set and FG is a set of
functions from finite Cartesian products of G

with itself toG (FG is called the set of operations
on G), and similarly for H. Thus the functions
in FG are G-valued functions f (g1, . . . , gn) of
n G-valued variables, and the value of n may
vary with the function f . To be an isomor-
phism, φ is required to be a one-to-one and onto
function from the set G to the set H , and for
every function f ∈ FG , there must be a func-
tion h ∈ FH, such that φ(f (g1, . . . , gn)) =
h(φ(g1), . . . , φ((gn)), and vice-versa. (This is
what is meant by “preserving the operations of
G and H.”)

In the special case where G and H are groups,
FG equals the singleton set containing the group
operation of G (the group multiplication), and
similarly for FH. We thus recapture the moti-
vating case of group isomorphisms.

(3) In category theory, a morphism φ : A→
B between two objects of a category with an
inverse morphism. In other words, for φ to be
an isomorphism, there must also be a morphism
ψ : B → A (the inverse of φ) such that ψ ◦φ =
ιA and φ ◦ ψ = ιB . Here, ιA and ιB are the
identity morphisms on A and B, respectively.

The category theoretic definition captures all
of cases (1) and (2) above, and also includes

such examples as isomorphisms of topological
groups, where it is required that an isomorphism
φ be a group isomorphism and thatφ andφ−1 be
continuous. See also category, homomorphism,
morphism, identity morphism.

Isomorphism Theorem of Class Field Theory
Let k be an algebraic number field. Let I (m) be
the multiplicative group of all fractional ideals
of k which are relatively prime to a given integral
divisor m of k. The Galois group of a class field
K/k for an ideal group H(m) is isomorphic to
I (m)/H(m). Therefore, every class field K/k

is an Abelian extension of k.

isomorphism theorems of groups The three
standard theorems describing the relationship
between homomorphisms, quotient groups, and
normal subgroups. Let G and H be groups, and
let φ : G → H be a homomorphism with ker-
nel K . (The kernel of φ is the set K = {g ∈
G : φ(g) = e}, where e is the group identity el-
ement in H .) The First Isomorphism Theorem
states that K is a normal subgroup of G (i.e.,
gK = Kg for every g ∈ G), and the quotient
group (factor group) G/K is isomorphic to the
image ofφ. LetS andT be subgroups ofG, with
T normal. The Second Isomorphism Theorem
states that S ∩ T is normal in S, and S/(S ∩ T )

is isomorphic to T S/T . Let K ⊂ H ⊂ G,
with both K and H normal in G. The Third
Isomorphism Theorem states that H/K is a nor-
mal subgroup of G/K , and (G/K)/(H/K) is
isomorphic to G/H .

There is an additional theorem which is some-
times called the Fourth Isomorphism Theorem,
but is more commonly called Zassenhaus’s
Lemma. Let A0, A1, B0, and B1 be subgroups
of G. Suppose A0 is normal in A1, and B0
is normal in B1. Zassenhaus’s Lemma states
that A0(A1 ∩ B0) is normal in A0(A1 ∩ B1),
B0(A0 ∩ B1) is normal in B0(A1 ∩ B1), and
A0(A1 ∩ B1)/A0(A1 ∩ B0) is isomorphic to
B0(A1 ∩ B1)/B0(A0 ∩ B1). See also factor
group, normal subgroup.

isotropic (1) In physics and other sciences,
a material or substance which responds the
same way to physical forces in all directions is
isotropic. Antonym: anisotropic.
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(2) Let V be a vector space equipped with
a bilinear form ( , ). A subspace W of V is
isotropic (sometimes called totally isotropic or
an isotropy subspace) if W ⊆ W⊥, where W⊥
is defined in the usual way, W⊥ = {v ∈ V :
(v,w) = 0 for allw ∈ W }. For example, ifV =
R2, 2-dimensional real space, and ( , ) is the
Lorentz form, ((x1, t1), (x2, t2)) = x1x2 − t1t2,
then each of the lines forming the edge of the
light cone, {(x, t) : x2− t2 = 0}, is an isotropic
subspace.

(3) If a differentiable manifoldM has enough
additional structure so that its tangent space
comes equipped with a bilinear form, for exam-
ple if M is a symplectic manifold, then a sub-
manifold S of M is isotropically embedded if at
each point s ∈ S, T Ss is an isotropic subspace
of TMs . Here, T Ss is the tangent space of S at
s, and similarly for TMs . See also symplectic
manifold, tangent space.

isotropy subgroup A group of transforma-
tions leaving a given point fixed. In more detail,
let G be a group of transformations acting on a
setX, and let x0 ∈ X. The subgroup of transfor-
mations T ∈ G leaving x0 fixed (T (x0) = x0)
is called the isotropy subgroup of G at the point
x0. The isotropy subgroup is also called the sta-
bilizer of x0 with respect to G.

isotropy subspace See isotropic.

iteration (1) Repetition; step-by-step repeti-
tion of a mathematical operation or construction.

(2) The use of loops as opposed to recursion
in computer algorithms or programs.

iteration function In numerical analysis, a
function φ, used to compute successive approx-
imations x1, x2, x3, . . . , to a quantity x, accord-
ing to the formula xn = φ(xn−1). For example,
if we choose φ(x) = x−f (x)/f ′(x) as an iter-
ation function and then select a suitable start-
ing point x0, we obtain the Newton-Raphson
method for approximating a zero of the func-
tion f (approximating a solution to the equation
f (x) = 0). See also Newton-Raphson method
of solving algebraic equations.

iteration matrix In numerical analysis, a ma-
trix M used to compute successive approxima-

tions x1, x2, x3, . . . to a vector x, according to
the formula xk = Mxk−1 + c. (Of course, one
must have a conveniently chosen starting vec-
tor x0.) For example, suppose we wish to solve
the equation Ax = b approximately, where A

is an n × n square matrix, and x and b are n-
dimensional column vectors. Write A = L +
D + U , where L is lower triangular, D is diag-
onal, and U is upper triangular. If we choose
the iteration matrix M = −D−1(L + U) and
c = D−1b, we obtain the Jacobi method for
solving linear equations. On the other hand, if
we choose the iteration matrixM = −(L+D)U

and c = (L + D)−1b, we obtain the Gauss-
Seidel method for solving linear equations. See
also iteration function, Gauss-Seidel method for
solving linear equations, Jacobi method for solv-
ing linear equations.

iterative calculation A calculation which
proceeds by means of iteration. See iteration.

iterative improvement (1) Any one of the
many algorithms for the approximate numerical
solution of problems which proceed by obtain-
ing a better approximation at each step.

(2) See iterative refinement.

iterative method An algorithm or calcula-
tional process which uses iteration. A classic ex-
ample is the Newton-Raphson method for com-
puting the roots of an equation. Another classic
example is the Gauss-Seidel iteration method for
solving systems of linear equations. See iter-
ation, iteration function, Gauss-Seidel method
for solving linear equations, Newton-Raphson
method of solving algebraic equations.

iterative process See iterative method.

iterative refinement (1) See iterative im-
provement (1).

(2) In numerical analysis, a process for solv-
ing systems of linear equations which begins
by obtaining a first solution using elimination
(Gaussian elimination or row reduction) which
is somewhat inaccurate due to roundoff errors,
and then improves the accuracy of the solution
using one of many iterative methods.
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Iwahori subgroup If G is a reductive group
defined over a local field, then in addition to
the standard BN-pair structure G has a second
BN-pair structure whose associated building is
Euclidean. In this case, the subgroups conjugate
to B are called Iwahori subgroups.

Iwasawa decomposition (1) A decomposi-
tion of a semisimple Lie algebra g over the field
of real numbers as g = k + a + n, where k

is a maximal compact subalgebra of g, a is an
Abelian subalgebra of g, a+ n is a solvable Lie
algebra, and n is a nilpotent Lie algebra.

(2) A decomposition of a connected Lie
group G as G = KAN , where K is an (essen-
tially) maximal compact subgroup,A is an Abel-
ian subgroup, and N is a nilpotent subgroup.
Here, G has Lie algebra g which is semisimple,
g = k + a + n is the Iwasawa decomposition
of g as in (1) above, K , A, and N are analytic
subgroups of G with Lie algebras k, a, and n,
and the mapping (x, y, z) )→ xyz is an analytic
diffeomorphism of K×A×N onto G. Further-
more, the groupsA andN are simply connected.

The classic example of an Iwasawa decompo-
sition is provided by the group G = SL(m,C),
the group of m × m matrices with determinant
1 over the complex numbers. In this case, K =
SU(m), the group of m×m unitary matrices of
determinant 1, A = the group ofm×m diagonal
matrices of determinant 1 with positive entries
on the diagonal, andN = the group ofm×m up-
per triangular matrices with 1 in every diagonal
entry. See Lie algebra, Lie group, semisimple
Lie algebra, semisimple Lie group.

Iwasawa invariants The integers λ, µ, and
ν defined by the relation

∣∣Cl (kn)p
∣∣ = pen

where e + n = λn+ µpn+ν , for all sufficiently
large n. Here, p is a prime, k is an algebraic
number field; k∞ is a Zp extension field of k (an
extension field with Galois group isomorphic to
Zp, the integers modulo p); kn is an intermedi-
ate field of degree pn over k, Cl(kn)p is the pth
component of the ideal class group of the field
kn, and |Cl(kn)p| is the number of elements in
Cl(kn)p. For cyclotomic Zp extensions, the in-
variant µ = 0.

Iwasawa’s Main Conjecture (1) A conjec-
ture relating the characteristic polynomials of
particular Galois modules top-adicL-functions.
The conjecture is an attempt to extend a classic
theorem of Weil, which states that the character-
istic polynomial of the Frobenius automorphism
of a particular type of curve is the numerator of
the zeta function of the curve. The conjecture
was originally written over the field Q, although
it has been reformulated as a conjecture over
any totally real field. It has been proved for real
Abelian extensions of Q and odd primes p by
Mazur and Wiles. Some work has also been
done in the general case.

(2) A conjecture in number theory, relating
certain Galois actions to p-adic L-functions.
The conjecture asserts: f̃χ (T ) = gχ(T ). Iwa-
sawa’s Theorem, which describes the behavior
of the p-part of the class number in a Zp-exten-
sion, can be regarded as a local version of the
Main Conjecture.

Iwasawa’s Theorem The characteristic p �=
0 case of the Ado-Iwasawa Theorem: Every
finite dimensional Lie algebra (over a field of
characteristicp) has a faithful finite dimensional
representation. The characteristicp = 0 case of
this is Ado’s Theorem. See Lie algebra.
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J
Jacobian variety The Picard variety of a
smooth, irreducible, projective curve. See Pi-
card variety.

Jacobi identity The identity (x · y) · z+ (y ·
z) · x + (z · x) · y = 0 satisfied by any Lie alge-
bra. For example, if A is any associative alge-
bra, and [x, y] denotes the commutator, [x, y] =
xy−yx, then the commutator satisfies the Jacobi
identity [[x, y], z]+[[y, z], x]+[[z, x], y] = 0.
See Lie algebra.

Jacobi method for solving linear equations
An iterative numerical method, also called the
total-step method, for approximating the solu-
tions to a system of linear equations. In more
detail, suppose we wish to approximate the solu-
tion to the equationAx = b, whereA is an n×n

square matrix. Write A = L+D+U , where L
is lower triangular, D is diagonal, and U is up-
per triangular. The matrix D is easy to invert, so
replace the exact equationDx = −(L+U)x+b

by the relation Dxk = −(L+U)xk−1 + b, and
solve for xk in terms of xk−1:

xk = −D−1(L + U)xk−1 + D−1b .

This gives us the core of the Jacobi iteration
method. We choose a convenient starting vec-
tor x0 and use the above formula to compute
successive approximations x1, x2, x3, . . . to the
actual solution x. Under suitable conditions, the
sequence of successive approximations does in-
deed converge to x. See iteration matrix.

Jacobi method of computing eigenvalues
Any of the several iterative methods for approxi-
mating all of the eigenvalues (characteristic val-
ues) of a Hermitian matrix A by constructing
a finite sequence of matrices A0, A1, . . . , AN ,
where A0 = A and, for 0 < k ≤ N , Ak =
U∗
k Ak−1Uk , Uk is a unitary matrix, and U∗

k de-
notes the conjugate transpose ofUk . The method
ends with a nearly diagonal matrix AN (all en-
tries off the diagonal are small) with good ap-

proximations to the eigenvalues of A down the
diagonal. The name is most frequently applied
to the Jacobi rotation method, where the ma-
trices Uk are chosen to be particularly simple
unitary matrices called planar rotation matri-
ces. See Jacobi rotation method.

Jacobi method of finding key matrix A step
in solving a linear system Ax = b by the linear
stationary iterative process. If the linear sta-
tionary iterative process is written as x(k+1) =
x(k) + R(b − Ax(k)), then the Jacobi method
chooses R to be the inverse of the diagonal sub-
matrix of A. See also linear stationary iterative
process.

Jacobi rotation method An iterative method
for approximating all of the eigenvalues (char-
acteristic values) of a Hermitian matrix A. The
method begins by choosing A0 = A, and then
produces a sequence of matrices A1, A2, . . . ,

AN , culminating in a nearly diagonal (all entries
off the diagonal are small) matrix AN with good
approximations to the eigenvalues of A down
the diagonal. At each step, Ak = U∗

k Ak−1Uk ,
whereUk is the (unitary) matrix of a planar rota-
tion annihilating the off diagonal entry of Ak−1
with largest modulus, hence the name rotation
method, and U∗

k is the conjugate transpose of

Uk . The matrix Uk =
(
u
(k)
i,j

)
differs from the

identity matrix only in four entries, u(k)p,p, u(k)q,q ,

u
(k)
p,q , and u

(k)
q,p. The formulas for these entries

are particularly simple in the case where the
original matrix A is a real symmetric matrix: If

Ak−1 =
(
a
(k−1)
i,j

)
, then u

(k)
p,p = u

(k)
q,q = cos(φ),

and u
(k)
p,q = −u

(k)
q,p = sin(φ), where

tan(2φ) = 2a(k−1)
p,q

a
(k−1)
p,p − a

(k−1)
q,q

,

and −π
4 ≤ φ ≤ π

4 . In the commonly oc-
curring case where the original matrix A has
no repeated eigenvalues, the method converges
quadratically. The method is named after its
originator, Gustav Jacob Jacobi (1804–1851).

Jacobi’s inverse problem The problem of
inverting Abelian integrals of the first kind on
a compact Riemann surface R of genus g ≥ 1.
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Let (ω1, . . . , ωg) be a basis of Abelian differen-
tials of the first kind on R and let P1, . . . , Pg be
a given set of fixed points on R. For any given
vector (u1, . . . , ug) ∈ Cp, the problem is to find
a representation of all of the possible symmetric
rational functions of Q1 . . .Qg as functions of
u1, . . . , ug that satisfy

g∑
j=1

∫ Qj

Pj

ωi = ui .

In the above situation the path of integration is
the same in each of the g equations. If the path
is not assumed to be the same, then the system
is actually a system of congruences modulo the
periods of the differentials (ω1, . . . , ωg).

Jacobson radical The set of all elements
r in a ring R such that rs is quasi-regular for
all s ∈ R. In more detail, let R be an arbi-
trary ring, possibly non-commutative, possibly
without a unit element. An element r ∈ R is
quasi-regular if there is an element r ′ ∈ R such
that r + r ′ + rr ′ = 0. (In the special case
where R has a unit element 1, this is equiva-
lent to (1+ r)(1+ r ′) = 1.) For example, every
nilpotent element (rn = 0 for some n) is quasi-
regular, but there are often other quasi-regular
elements. The Jacobson radical of R is the set
J of all elements r ∈ R such that rs is quasi-
regular for all s ∈ R.

The Jacobson radical is a two-sided ideal, and
it generalizes the notion of the ordinary radical
(the set of all nilpotent elements) of a commuta-
tive ring, though even in the special case where
R is commutative, the Jacobson radical often
differs from the ordinary radical. Both derive
much of their importance from the following
theorem: Let R be commutative. Then (i.) R is
isomorphic to a subring of a direct sum of fields
if and only if its radical vanishes, and (ii.) R

is isomorphic to a subdirect sum of fields if and
only if its Jacobson radical vanishes. See also
radical, subdirect sum of rings, Wedderburn’s
Theorem.

j-algebra A concept which reduces the study
of homogeneous bounded domains to algebraic
problems. Let G be a Lie algebra over R, H a
subalgebra of G, (j) a collection of linear endo-
morphisms of G, and ω a linear form on G. The

system {G,H, (j), ω} is called a j -algebra if
the following conditions are satisfied: (i.) j ≡
j ′ mod H and jH ⊂ H for j and j ′ in (j),
(ii.) j2 ≡ −1 mod H , (iii.) [h, jx] ≡ j [h, x]
mod H for h ∈ H and x ∈ G, (iv.) [jx, jy] ≡
j [jx, y]+ j [x, jy]+ [x, y] mod H for x and y

in G, (v.) ω([h, x]) = 0 for h ∈ H , (vi.) ω([jx,
jy]) = ω([x, y]), (vii.) ω([jx, x]) > 0 if x /∈
H .

Janko groups Any of the exceptional finite
simple groups J1, J2, J3, and J4. J1 has order
23 · 3 · 5 · 7 · 11 · 19. J2 has order 27 · 33 · 52 · 7
and is also called the HJ or Hall-Janko group.
J3 has order 27 · 35 · 5 · 17 · 19 and J4 has order
221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43.

Janko-Ree group Any member of the family
of all finite simple groups for which the central-
izer of every involution (element of order 2) has
the form Z2 × PSL2(q), q odd. These groups
consist of the Ree groups 2G2(3n), for n odd,
and the Janko group J1. See Janko groups, Ree
group.

Jensen measure (1) A positive measure µ

on the closure of an open subset ' of Cn (C the
complex numbers) such that for x ∈ ',

log |f (x)| ≤
∫

log |f (t)| dµ(t) ,
for all f belonging to some appropriate class of
holomorphic functions (such as the holomorphic
functions on'with continuous extensions to the
closure of '). Jensen measures are named after
Jensen’s inequality, which states that normal-
ized Lebesgue measure on the unit circle (1/2π
times arclength measure) is a Jensen measure.
In this case, ' is taken to be the open unit disk
{z ∈ C : |z| < 1} in the complex plane.

(2) More generally, a positive measure µ on
the maximal ideal space M of a commutative
Banach algebra A is called a Jensen measure
for an element , ∈ M if

log |,(f )| ≤
∫

log |t (f )| dµ(t)
for allf ∈ A. See also Banach algebra, Jensen’s
inequality, maximal ideal space.

Jensen’s inequality (1) In complex variable
theory. Let f be holomorphic on a neighbor-
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hood of the closed disc D(0, r) in the complex
plane. Assume that f (0) �= 0. Then Jensen’s
inequality is

log |f (0)| ≤ 1

2π

∫ 2π

0
log |f (reit )| dt .

(2) In measure theory. Let (X,µ) be a mea-
sure space of total mass 1. Let f be a non-
negative function on X. Let φ be a convex func-
tion of a real variable. Then Jensen’s inequality
is

φ

(∫
X

f (x) dµ(x)

)
≤

∫
X

φ ◦ f (x) dµ(x) .

join (1) In a lattice, the supremum or least
upper bound of a set of elements. Specifically,
if A is a subset of a lattice L, the join of A is
the unique lattice element b = ∨{x : x ∈ A}
defined by the following two conditions: (i.)x ≤
b for all x ∈ A; (ii.) if x ≤ c for all x ∈ A, then
b ≤ c. The join of an infinite subset of a lattice
may not exist; that is, there may be no element
b of the lattice L satisfying conditions (i.) and
(ii.) above. However, by definition, one of the
axioms a lattice must satisfy is that the join of
a finite subset A must always exist. The join of
two elements is usually denoted by x ∨ y.

There is a dual notion of the meet of a sub-
set A of a lattice, denoted by

∧{x : x ∈ A},
and defined by reversing the inequality signs in
conditions (i.) and (ii.) above. The meet is
also called the infimum or greatest lower bound
of the subset A. Again, the meet of an infinite
subset may fail to exist, but the meet of a finite
subset always exists by the definition of a lattice.

(2) In relational database theory, the join (or
natural join) of two relations is the relation
formed by agreement on common attributes.
Specifically, a relation is a set R of functions
f : A → X, from some set A, called the set of
attribute names, to a set X, called the set of pos-
sible attribute values. (In relational database
theory, the set A is always finite, so database
theorists make the gloss of identifying a rela-
tion with a set of n-tuples, that is, a relation in
the ordinary mathematical sense, and they then
sneak the attribute names in under the table.) If
R and S are two relations, with sets of attribute
names A and B, respectively, and set of possi-
ble attribute values X and Y , then the join of R

and S is the relation R��S, with set of attribute
names A∪B and a set of possible attribute val-
ues X ∪ Y , defined as the set of all functions
f : A ∪ B → X ∪ Y such that f |A ∈ R and
f |B ∈ S. Here, f |A is the restriction of f to A,
and f |B is the restriction of f to B. Thus the
formation of the natural join reduces to the fa-
miliar and ubiquitous mathematical problem of
extending classes of functions. See restriction.

join irreducible element An element a of
a lattice L which cannot be represented as the
join of lattice elements b properly smaller than
a (b < a, b �= a). See join.

There is a dual notion of meet irreducibility.
An element a ofL is meet irreducible if it cannot
be represented as the meet of lattice elements b
properly larger than a (a < b, a �= b). See meet.

joint proportion Quantity x is jointly pro-
portional to, or varies jointly with, quantities y
and z if there is a constant k such that x = kyz.
See also direct proportion, inverse proportion.

joint spectrum Let a1, . . . , an be elements
of a commutative Banach algebra A, and let M
be the maximal ideal space of A. M can be
identified with the space of multiplicative linear
functionals on A, that is the space of linear map-
pings , of A into the complex numbers C such
that ,(ab) = ,(a),(b). The joint spectrum of
a1, . . . , an is the subset

σ (a1, . . . , an) =
{(, (a1) , . . . , , (an)) : , ∈ M}

of Cn. An important and useful theorem is that if
a1, . . . , an actually generate the Banach algebra
A, then M is homeomorphic to σ(a1, . . . , an),
and σ(a1, . . . , an) is polynomially convex. See
Banach algebra, maximal ideal space, polyno-
mial convexity, spectrum.

joint variation See joint proportion.

Jordan algebra A commutative, usually non-
associative, algebraA satisfying the identity (a2·
b) · a = a2 · (b · a). The model for a Jordan al-
gebra is the algebra of n × n matrices with the
multiplicationA ·B = 1

2 (AB+BA), whereAB
denotes the usual matrix product. The theory of
Jordan algebras is somewhat analogous to the
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theory of Lie algebras, which is modeled on the
algebra of n×nmatrices with the multiplication
[A,B] = AB − BA. See also Lie algebra.

Jordan canonical form A matrix of the form




J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

0 0 . . . Jk


 ,

where each Ji is an elementary Jordan matrix,
is in Jordan canonical form. It is a theorem of
linear algebra that every n × n matrix with en-
tries from an algebraically complete field, such
as the complex numbers, is similar to a matrix
in Jordan canonical form. See also elementary
Jordan matrix.

Jordan decomposition (1) The decomposi-
tion of a linear transformation T : V → V ,
where V is a vector space, into a sum T =
Ts +Tn, where Ts is diagonalizable, Tn is nilpo-
tent, and the two commute. (Nilpotent means
T k
n = 0 for some integer k, and diagonalizable

means there is a basis forV with respect to which
T can be represented by a diagonal matrix.) Ts
and Tn, if they exist, are uniquely determined
by T . It is a theorem of linear algebra that if
V is a finite dimensional vector space over an
algebraically closed field, such as the complex
numbers, then Ts and Tn always exist, that is T
always has a Jordan decomposition. However,
this need not be true if the field is, for example,
the field of real numbers which is not algebrai-
cally closed. The Jordan decomposition of T is
equivalent to the representation of T by a matrix
in Jordan canonical form. See Jordan canonical
form.

(2) The decomposition of an element a of a
Lie algebra A into a sum a = s + n, where
s is a semisimple element of A, n is a nilpo-
tent element of A, and s and n commute. This
decomposition is called the additive Jordan de-
composition of a. The elements s and n, if they
exist, are uniquely determined by a. It is a theo-
rem that if A is a semisimple finite dimensional
Lie algebra over an algebraically complete field,
such as the complex numbers, then s and n al-
ways exist. See semisimple Lie algebra.

(3) The decomposition of a linear transfor-
mation T into a product T = SU , where S is di-
agonalizable, U is unipotent, and S and U com-
mute. (Unipotent means that U − I is nilpotent,
where I is the identity transformation.) This de-
composition is called the multiplicative Jordan
decomposition of T . S and U , if they exist, are
uniquely determined by T , and then the multi-
plicative Jordan decomposition is related to the
additive Jordan decomposition T = Ts + Tn by
S = Ts , U = I + S−1Tn.

(4) The decomposition of a linear transfor-
mation T into a product T = EHU , where E is
elliptic, H is hyperbolic, U is unipotent, and all
three commute. (Elliptic means E is diagonal-
izable and all complex eigenvalues have mod-
ulus = 1. Hyperbolic means H is diagonaliz-
able and all complex eigenvalues have modulus
< 1.) This decomposition is called the com-
pletely multiplicative Jordan decomposition of
T . E, H , and U , if they exist, are uniquely
determined by T .

(5) In analysis, the decomposition of a
bounded additive set function µ (defined on a
field of sets 8) into the difference of two non-
negative bounded additive set functions, µ =
µ+ − µ−, via the formulas

µ+(E) = sup
F⊆E

µ(F),

µ−(E) = − inf
F⊆E

µ(F) ,

where F is restricted to belong to 8. Here sup
and inf refer to the supremum and infimum, re-
spectively. (See supremum, infimum.) The set
functions µ+ and µ− are called the positive or
upper variation of µ, and the negative or lower
variation of µ. The sum |µ| = µ+ + µ− is
called the total variation of µ. See also additive
set function.

(6) In analysis, the decomposition of a func-
tion of bounded variation into the difference of a
monotonically increasing function and a mono-
tonically decreasing function. (Sometimes
stated monotonically non-decreasing and mono-
tonically non-increasing.) This is a special case
of (5). See also bounded variation, monotone
function.

Jordan-Hölder Theorem (1) The theorem
that any two composition series of a group are
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equivalent. A composition series of a group G

is a finite sequence of groups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} ,
such that each group Gi+1 is a maximal normal
subgroup of Gi . (Equivalently, each Gi+1 is
a normal subgroup of Gi and the factor group
Gi/Gi+1 is simple and not equal to {1}.) Two
composition series of G are equivalent if they
have the same length and isomorphic factor
groups. The theorem extends to groups with
operators, thus to R modules, for example, and
even to lattices (see (2) below). See also factor
group, normal subgroup, simple group.

(2) The theorem that any two composition
chains connecting two elements a and b in a
modular lattice are equivalent. A lattice is mod-
ular if it satisfies the weakened distributive law,

x ∧ (y ∨ z) =(x ∧ y) ∨ (x ∧ z)

whenever x ≥ y .

Here, y∨z denotes the lattice join or supremum
(least upper bound) of y and z, and y ∨ z de-
notes the lattice meet or infimum (greatest lower
bound) of y and z. (See join.) A composition
chain connecting a to b is a finite sequence of
lattice elements, a = a0 ≥ a1 ≥ · · · an = b,
such that there is no lattice element x strictly
between ai and ai+1. (Equivalently, each in-
terval [ai+1, ai] is a two element lattice.) Two
composition chains are equivalent if they have
the same length and projective intervals. Two
intervals [w, x] and [y, z] are projective if there
is a finite sequence of intervals,

[w, x] = [w1, x1] , [w2, x2] , . . . , [wn, xn]

= [y, z]
such that each pair of intervals [wi, xi] and
[wi+1, xi+1] are transposes. Finally, two inter-
vals are transposes if there are lattice elements
c and d such that one interval is [c, c ∨ d] and
the other is [c ∧ d, d].

If G is a group, the lattice of its normal sub-
groups is a modular lattice. Thus, the Jordan-
Hölder theorem for lattices gives us several
Jordan-Hölder like theorems for groups, for in-
stance for chief series and characteristic series.
(The isomorphism of factor groups comes from

the projectivity relation and the second isomor-
phism theorem for groups.) Unfortunately, the
classical Jordan-Hölder theorem for composi-
tion series of groups (see (1) above) is not so
easy to derive from the lattice theorem because
the lattice of all subgroups may not be modu-
lar. See also characteristic series, isomorphism
theorems of groups.

Jordan homomorphism A mapping φ be-
tween Jordan algebras A and B which respects
addition, scalar multiplication, and the Jordan
multiplication. In other words, φ(a + b) =
φ(a) + φ(b), φ(λa) = λφ(a), and φ(a · b) =
φ(a) ·φ(b), for all scalars λ and for all a, b ∈ A.
See Jordan algebra.

Jordan module Let A be a Jordan algebra
over a field of scalars K . A Jordan A module is
a vector space V over the same field K , together
with a multiplication operation · from A× V to
V satisfying (i.) a · (v + w) = a · b + a · w;
(ii.) a · (λv) = λ(a · v), and (iii.) (a · b) · v =
1
2a·(b·v)+ 1

2b·(a·v), for all a, b ∈ A, v,w ∈ V ,
and scalars λ.

Property (iii.) seems odd; indeed the reader
familiar with R modules (R a ring) would think
it should be replaced by (a · b) · v = a · (b · v).
However, property (iii.) is easier to understand
if one realizes that the Jordan multiplication ·
induces a mapping a �→ Ta between elements a
of the Jordan algebra and linear transformations
Ta . Given a ∈ A, Ta is defined by Ta(v) = a ·v.
Property (iii.) is chosen to guarantee that Ta·b
will be the Jordan product 1

2 (TaTb + TbTa) in
the Jordan algebra of linear transformations of
the vector space V .

In fact, the mapping a �→ Ta is a Jordan
homomorphism of A into the Jordan algebra of
all linear transformations on V . A homomor-
phism between a Jordan algebra A and a Jor-
dan algebra of linear transformations is called
a Jordan representation of A. The definition
of a Jordan module has been designed so there
is a one-to-one correspondence between Jordan
representations and Jordan modules. See also
Jordan algebra, Jordan homomorphism, Jordan
representation.

Jordan normal form See Jordan canonical
form.
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Jordan representation A Jordan homomor-
phism between a Jordan algebra A and a Jor-
dan algebra of linear transformations on a vec-
tor space V , equipped with the standard Jordan
product, T ·S = 1

2 (T S+ST ). There is a one-to-
one correspondence between Jordan representa-
tions and Jordan modules. See also Jordan al-
gebra, Jordan homomorphism, Jordan module.

Jordan-Zassenhaus theorem Let A be a fi-
nite dimensional semisimple algebra with unit
over the field of rational numbers, Q. Let Z be

the ring of integers, and let G be a Z-order in
A. Let L∗ be a left A module, and let σ(L∗) be
the set of all left G modules L, having a finite Z
basis, which are contained in L∗, and such that
QL = L∗. The Jordan-Zassenhaus Theorem
states: The set σ(L∗) splits into a finite number
of classes under Z-equivalence.

The Jordan-Zassenhaus Theorem is a far
reaching generalization of the theorem that the
number of ideal classes in an algebraic number
field is finite. See class field, ideal class, Z-basis,
Z-equivalence, Z-order.
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K
K3 surface A class of algebraic surface in
abstract algebraic geometry, defined in a pro-
jective space over an algebraically closed field.
In projective 3-space they can be regarded as de-
formations of quartic surfaces. A K3 surface is
characterized as a nonsingular, nonrational sur-
face, in several ways including:

(i.) irregularity, Kodaira dimension, and the
canonical divisor are zero;

(ii.) irregularity is zero and the arithmetic,
geometric, and first plurigenus are all one;

(iii.) as a compact complex analytic surface,
the first Chern class is zero and it has Betti num-
bers b0 = 1, b1 = 0, b2 = 22, b3 = 0, b4 = 1.

The space of one-dimensional differential
forms on a K3 surface is zero. An example of a
K3 surface is any smooth surface of order four
in projective three-dimensional space.

K3 surfaces were early examples of surfaces
satisfying Weil’s conjecture concerning the ana-
log of the Riemann Hypothesis for algebraic va-
rieties.

Kakeya-Eneström Theorem Let f be a
polynomial with real coefficients, say

f (x) = anx
n + an−1x

n−1 + · · · + a0 ,

for each real number x. Suppose

an ≥ an−1 ≥ · · · ≥ a0 > 0 .

Let r be any root of the polynomial. Then |r| ≤
1.

Kaplansky’s Density Theorem A funda-
mental theorem from the theory of von Neu-
mann algebras proved by Kaplansky in 1951.

The closureM with respect to the weak oper-
ator topology of a C∗-subalgebraA of the set of
bounded linear operators on a separable Hilbert
space is a von Neumann algebra. Furthermore,
if A1 is the set of elements of A with norm ≤ 1
in A (unit ball of A) and M1 is the set of ele-
ments of M with norm ≤ 1 (unit ball of M),

then M1 is the closure of A1 with respect to the
weak operator topology.

The theorem remains true if restated using
the strong operator topology instead of the weak
operator topology. Sometimes, the statement of
the theorem includes the following additional
information. The set of self-adjoint elements of
A1 is strongly dense in the set of self-adjoint
elements of M1, the set of positive elements of
A1 is strongly dense inM1, and if A contains 1,
the unitary group of A is strongly dense in the
unitary group of M .

k-compact group A connected algebraic
group defined over a perfect field k whose k-
Borel subgroups are reduced to the identity
group. The name k-anisotropic group is used
also. See also k-isotropic group.

k-complete scheme Let f : X −→ Y be a
morphism of schemesX, Y . Whenf has a prop-
erty, it is customary to say that X has the prop-
erty over Y , or that X is a Y -(property) scheme.
The property of being complete is connected
with the property of being proper. A morphism
f : X −→ Y is proper if it is separated, of fi-
nite type, and is universally closed. Then X is
called proper over Y . See separated morphism,
morphism of finite type.

Now, let k be an algebraically closed field.
LetX be a scheme of finite type over k which is
reduced (i.e., for any element x the local ring at
x has no nilpotent elements) and is irreducible
(i.e., the underlying topological space is not the
union of proper closed subsets). If X is proper
over k (actually over the spectrum of k), then X
is called a k-complete scheme.

kernel (1) In algebra, where a homomor-
phism f is defined between two algebraic sys-
tems A and B, if the group identity of B is de-
noted by e, then the kernel of f is

ker(f ) = {x ∈ A : f (x) = e} .
Alternately, ker(f ) may be denoted f−1({e}).

The kernel is a subset of A that usually has
special properties. If A and B are groups, then
the kernel of a homomorphism is a normal sub-
group of A. If A and B are R-modules over a
ringR, the kernel is a submodule ofA. IfA and
B are topological linear spaces, then the kernel
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of a continuous linear operator is a closed linear
subspace. The kernel of a semi-group homo-
morphism is the smallest two-sided ideal in the
semi-group. Similar remarks hold for kernels of
homomorphisms or morphisms in category the-
ory, sheaf theory, and kernels of linear operators
between spaces.

(2) In topology, for a nonempty set S in a
topological space, the kernel of S is the largest
subset T of S such that every element of T is an
accumulation or cluster point of T .

(3) The word kernel is used in various other
areas of mathematics to denote a function. In
the study of integral equations, for example, the
function K in the integral∫ b

a

K(x, y)f (y) dy

is called a kernel.

k-form (1) In linear algebraic group theory, a
k-form of an algebraic group G defined over an
extension fieldK of a field k is another algebraic
group H defined over k that is K-isomorphic
to G. Much work has been done in classify-
ing the “k-forms” of various types of algebraic
groups defined over K (e.g., semisimple alge-
braic groups or almost simple algebraic groups).

(2) More generally, ifG is an algebraic group
defined over k andK/k is a finite Galois exten-
sion, an algebraic groupG1 is said to be aK/k-
form of G if there is a K-isomorphism from G

onto G1. For example, let k be a field and �
a universal domain containing k. Let T be an
n-dimensional algebraic k-torus with splitting
field K . Then since T is K-isomorphic to the
direct product of n copies of GL(1) (the multi-
plicative group of non-zero elements of�), T is
a K/k-form of the n-dimensional K-split torus
GL(1)n.

See also quadratic form.

Killing form In Lie algebra theory, a sym-
metric bilinear form associated with the adjoint
representation of a Lie algebra. Specifically, if
g is a Lie algebra over a commutative ring K
with 1, ρ is the adjoint (linear) representation
of g and Tr denotes the trace operator, the sym-
metric bilinear form B : g × g −→ K given
byB(x, y) = Tr(ρ(x)ρ(y)) is called the Killing
form.

It is named after W. Killing who studied it in
1888. The Killing form is fundamental in the
study of Killing-Cartan classification of semi-
simple Lie algebras over fields of characteristic
0.

k-isomorphism (1) Let k be a field and
K,L extension fields of k. An isomorphism
σ : K −→ L such that σ(x) = x for all
x ∈ k is called a k-isomorphism. Alternately,
a k-isomorphism from K onto L is an isomor-
phism of the k-algebra K onto the k-algebra L.

(2) For other algebraic structures over a field
k, a k-isomorphism is essentially an isomor-
phism (a bijective map that preserves the bi-
nary operations) and a “regular” mapping (pre-
serving the particular structure on the sets).
For example, for linear algebraic groups a k-
isomorphism is an isomorphism that is also a bi-
rational mapping. For homogeneous k-spaces,
a k-isomorphism is an isomorphism that is an
everywhere defined pre-k-mapping.

k-isotropic group A connected algebraic
group, defined over a perfect field k, whose k-
Borel subgroups are nontrivial. For a reductive
k-group G defined over an arbitrary field k, G
is k-isotropic if the k-rank of G is greater than
zero. See k-compact group. See also k-rank.

Kleinian group A subgroup G of the group
of linear fractional functions defined on the ex-
tended complex plane Ĉ such that there is an
element x in Ĉ which has a neighborhood U
such that g(U) ∩ U = ∅, for each nontrivial
g ∈ G. Such groups were first studied by Klein
and Poincaré in the 19th century and were named
by Poincaré. See linear fractional function.

KMS condition A condition originally con-
cerning finite-volume Gibbs states and later pro-
posed for time evolution and the equilibrium
states in quantum lattice systems in statistical
mechanics (mathematically, within the frame-
work of C∗-dynamical systems and a one-
parameter group of automorphisms that describe
the time evolution of the system). The condition
was first noted by the physicists R. Kubo in 1957
and C. Martin and J. Schwinger in 1959. The
letters K, M, and S are derived from their names.
The equilibrium states are called KMS states.
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Let M be a von Neumann algebra. Let φ
be a faithful normal positive linear functional
on M . Let {σt } be a strongly continuous one-
parameter group of ∗-automorphisms ofM . Let
S be the closed strip in the complex plane {z :
0 ≤ �(z) ≤ 1}. Then the group {σt } will be said
to satisfy the KMS condition if for any x, y ∈ M ,
there is F : S −→ C such that F is bounded
and continuous on S, analytic in the interior of
S, and satisfies the conditions

F(t) = φ (σt (x)y) and

F(t + i) = φ (yσt (x)) .

The theory of Tomita-Takesaki shows the exis-
tence of such a group {σt } and also that such
groups are characterized by the condition. The
KMS condition is a very important concept in the
construction of type-III von Neumann algebras.
See type-III von Neumann algebra.

Kostant’s formula A formula (named after
B. Kostant) that gives the multiplicities of the
weights of a finite dimensional irreducible rep-
resentation constructed from a root system of a
complex semisimple Lie algebra. It is a con-
sequence of the Weyl character formula. See
Weyl’s character formula. In order to under-
stand the (very explicit) formula, some defini-
tions are in order. Let g be a complex semisim-
ple Lie algebra. Let V be a C-module and ρ
a linear irreducible representation of g over V .
Let)+ be the set of positive roots. Let δ be the
half sum of the positive roots (δ = 1

2

∑
α∈)+ α).

LetW be the Weyl group of the root system. Let
- be the highest weight of ρ. Let P be a non-
negative integer valued function (called the par-
tition function) defined on the lattice of weights.
For each weight µ, P(µ) is the number of ways
µ can be expressed as a sum of positive roots.
Letm-(λ) denote the multiplicity of a weight λ
of ρ. Then Kostant’s formula is

m-(λ) =
∑
w∈W

det(w)P (w(-+ δ)− (λ+ δ)) .

This sum is very difficult to compute in practice
and is thus of more theoretical than computa-
tional use. See also positive root, Weyl group.

k-rank Let K be an algebraically closed
field, k an arbitrary subfield of K , and G a re-
ductive linear algebraic group defined over k.

(See reductive; examples of reductive groups are
semisimple groups, any torus, and the general
linear group.) Let T be a k-split torus in G of
largest possible dimension. The dimension of
T is called the k-rank of G. The k-rank is 0 if
and only if G is anisotropic.

The nonzero weights of the adjoint of T are
called k-roots. In case T is a maximal torus,
k-roots are the usual roots of G with respect to
T .

Let Z denote the centralizer of T in G; i.e.,

Z =
⋂
y∈T

{x ∈ G : xy = y} .

Let N denote the normalizer of T in G; i.e.,

N =
{
x ∈ G : xT x−1 = T

}
.

Then the finite quotient group Z/N is called
the k-Weyl group. The group is named after the
German mathematician H. Weyl (1885–1955).

k-rational divisor (1) Let K be the alge-
braic closure (Galois extension) of a finite field
k (with q elements) and let X be an algebraic
curve defined over k. Then the automorphism
σ : k −→ k defined by σ(x) = xq defines an
automorphism σ : X −→ X defined by

σ (x1, x2, . . . , xn) = (
x
q

1 , x
q

2 , . . . , x
q
n

)
that leaves all k-rational points inX fixed (called
the Frobenius automorphism). Let

d =
∑
x∈X

axx

be a divisor in X. (Recall that all ak ∈ Z (inte-
gers) and all except at most a finite number are
zero.) Then d is a member of the free Abelian
group of divisors with base X, called Div(X).
The divisor d is a k-rational divisor if

d = σ(d) =
∑
x∈X

axσ(x) .

The set of k-rational divisors is a subgroup of
Div(X).

(2) Another use of the term k-rational divi-
sor involves a finite extension k of the field of
rational numbers Q. A divisor d = ∑n

i=1 Pi
is a k-rational divisor if all rational symmetric
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functions of the coordinates of the pointsPi with
coefficients in Q are elements of the field k.

k-rational point The term k-rational point
occurs in several areas of algebraic geometry,
algebraic varieties, and linear algebraic groups.
Examples of how the term is used follow.

(1) LetK be an algebraically closed field and
k a subfield of K . Let A2 be the set of pairs
(a, b) of elements a, b ∈ K (the affine plane).
Let f be a polynomial from A2 into K with
coefficients from K . Recall that a plane alge-
braic curve is {(x, y) ∈ A2 : f (x, y) = 0}.
Then P = (x, y) ∈ A2 is a k-rational point if
x, y ∈ k. If K = C and k = Q, then a point
(x, y) is a k-rational point if both coordinates
are rational numbers.

(2) IfK is the finite field consisting ofpr ele-
ments (p a prime number) andK is the algebraic
closure, then the set of k-rational points of a
curve with coefficients in k coincides with the set
of solutions of f (x, y) = 0, x, y ∈ k. If r = 1,
so that k is a prime number field, then the set of
k-rational points is equivalent to the set of solu-
tions of the congruence f (x, y) ≡ 0 (mod p).

(3) More generally, let k be a subfield of an
arbitrary field K . Let x = (x1, . . . , xn) ∈ An.
Then x is a k-rational point if each xi ∈ k,
i = 1, . . . , n. Next, let x = (x1, . . . , xn) ∈ Pn

(projective space). Then x is a k-rational point
if there is a (n + 1)-tuple of homogeneous co-
ordinates (λx0, λx1, . . . , λxn), λ �= 0 such that
λxi ∈ k, for each i = 0, 1, . . . , n. If xi �= 0, this
is equivalent to xj /xi ∈ k,∀ j = 0, 1, . . . , n.

(4) LetG be a linear algebraic group defined
over a field k. An element p that has all of its
coordinates in k is called a k-rational point.

(5) If X is a scheme over k, a point p of X
is called a k-rational point of X if the residue
class field (with respect to the inclusion map of
k into X at p) is k.

(6) If K is an algebraically closed transcen-
dental extension of k; V is an algebraic variety
defined over k; and k′ is a subfield of K , then
a k′-rational point of V is an element of V that
has all of its coordinates in k′.

Krieger’s factor The study of von Neumann
algebras is carried out by studying the factors
which are of type I, II, or III, with subtypes for
each. (See factor.) Krieger’s factor is a crossed

product of a commutative von Neumann alge-
bra with one ∗-automorphism. A Krieger’s fac-
tor can be identified with approximately finite
dimensional von Neumann algebras (over sepa-
rable Hilbert spaces) of type III0. Krieger’s fac-
tor was named after W. Krieger who has studied
them extensively.

Kronecker delta A symbol, denoted by δi,j ,
defined by

δi,j =
{

1 if i = j

0 if i �= j .

It is a special type of characteristic function de-
fined on the Cartesian product of a set with itself.
Specifically, let S be a set. Let D = {(x, x) :
x ∈ S}. The value of the characteristic function
of D is 1 if (x, y) ∈ D (meaning that x = y)
and is 0 otherwise.

Kronecker limit formula (1) If ζ is the ana-
lytic continuation of the Riemann ζ -function to
the complex plane C, then

lim
s→1

[
ζ(s)− 1

s − 1

]
=

lim
n→∞

[
n−1∑
m=1

1

m+ 1
+ 1 − log(n)

]
= γ

where γ is called Euler’s constant. This can be
expressed by saying that “near s = 1”

ζ(s) = 1

s − 1
+ γ +O(s − 1) .

This last formula is called the Kronecker limit
formula.

(2) In the theory of elliptic integrals, modular
forms, and theta functions, the function E(z, s)
(with z = x+ iy) defined by the Eisenstein type
series ∑

m,n

ys

|m(z)+ n|2s
(where x ∈ R, y > 0, the summation is over
all pairs (m, n) �= (0, 0), and �(s) > 1) can
be extended to a meromorphic function on C
whose only pole is at s = 1. The Kronecker
limit formula for E(z, s) is

π

s − 1
+2π(γ−log(2))−4π log |η(z)|+O(s−1)

c© 2001 by CRC Press LLC



where

η(z) = eπiz/12
∞∏
n=1

(
1 − e2πizn

)
.

The formula can be generalized to arbitrary num-
ber fields. More general Eisenstein type series
lead to similar (but more complicated) limit for-
mulas.

Kronecker product (1) Let A = (aij ) de-
note an m × n matrix of complex numbers and
B = (bij ) an r × s matrix of complex numbers.
Then the Kronecker product of the matrices A
andB is defined as themr×ns matrix described
by the mn blocks Cij given by

Cij = aijB, 1 ≤ i ≤ m, 1 ≤ j ≤ n .

Sometimes other permutations of the mnrs el-
ements arranged in mr rows and ns columns is
called the Kronecker product. This product is
used, for example, in studying modulii spaces
of Abelian varieties with endomorphism struc-
ture.

(2) Let V and W be finite dimensional vec-
tor spaces over a field k with bases {x1, . . . , xn}
and {y1, . . . , yr} for V andW , respectively. Let
L be a linear transformation on V and M a lin-
ear transformation on W . Let A be an n × n

matrix associated with L and B an r × r ma-
trix associated withM , determined by using the
stated ordering of the basis elements. If lexico-
graphic ordering is used for the tensor products
of the basis elements in determining a basis for
the tensor product of V and W , then the ten-
sor product V ⊗W of the linear transformations
has the nr × nr Kronecker product matrix de-
scribed in (1) as its matrix representation. See
lexicographic linear ordering.

(3) Now let V and W be arbitrary vector
spaces over a field k. Let U be a vector space
whose basis vectors are elements of the Carte-
sian product of V and W , i.e., let the elements
of U be finite sums of the form

n∑
ν=1

αν (xν, yν) .

Let N be the subspace of U such that

n∑
ν=1

ανL (xν)M (yν) = 0 ,

for each linear functionalL : V −→ k and each
linear functional M : W −→ k. Define the
Kronecker product of V and W with respect to
k as the quotient space U/N . If V and W are
rings with unity instead, and multiplication inU
is defined componentwise, then N becomes an
ideal of U and the Kronecker product becomes
a residue class ring.

(4) Sometimes, the tensor product of algebras
is referred to as their Kronecker product.

Kronecker’s Theorem Several theorems in
several fields of mathematics honor L. Kronecker
(1823–1891).

(1) If f is a monic irreducible element of k[x]
over a field k, there is an extension field L of k
containing a root c of f such that L = k(c).
Sometimes such an L is called a star field. For
example, the polynomial x2 + 1 over the real
number field has the field of complex numbers
as a star field. Further, if f has degree n, there is
an extension field of k in which f factors into n
linear factors, so f has exactly n roots (counting
multiplicities).

(2) A field extension of the field of rational
numbers which has an Abelian Galois group is
a subfield of a cyclotomic field.

(3) Kronecker was among several mathemati-
cians who studied the structure of subgroups and
quotient groups ofRn generated by a finite num-
ber of elements. The following theorem was
proved by him in 1884 and is also called Kro-
necker’s Theorem. Let m, n be integers ≥ 1. In
the following i will denote an integer between 1
and m while j will denote an integer between 1
and n. Let ai = (ai1, ai2, . . . , aim) be m points
of Rn and b = (b1, b2, . . . , bm) ∈ Rn. For ev-
ery ε > 0 there are m integers qi and n integers
pj such that for each j∣∣∣∣∣

m∑
i=1

qi aij − pj − bj

∣∣∣∣∣ < ε

if and only if for every choice of n integers
rj such that

∑n
l=1 ailrl is an integer, the sum∑n

l=1 blrl is an integer.
This theorem involves the closure of the sub-

group of the torus T n generated by a finite num-
ber of elements. Generalizations of the theorem
have been studied in the theory of topological
groups.
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Kronecker symbol (1) An alternate name
for the Kronecker delta. See Kronecker delta.

(2) In number theory, a generalization of the
Legendre symbol, used in solving quadratic con-
gruences

ax2 + bx + c ≡ 0 (mod m)

where a, b, c are integers (members of Z) and
m is a positive integer (m ∈ Z+).

Let d ∈ Z, d not a perfect square, d ≡
0 or 1 (mod 4) and m ∈ Z+. For the following,
recall that d is a quadratic residue of m if x2 =
d (modm) is solvable. Then the Kronecker sym-
bol for d with respect tom, denoted by ( d

m
), is a

mapping from {d}×Z+ onto {0,+1,−1} defined
by: (

d

1

)
= 1 ,

(
d

2

)
=




0 if d is even
+1 if d ≡ 1 (mod 8)
−1 d ≡ 5 (mod 8)

if m is an odd prime and m|d , then(
d

m

)
= 0 ,

if m is an odd prime and m � |d , then

(
d

m

)
=




+1 if d is a quadratic
residue of m

−1 if d is not a quadratic
residue of m

if m is the product of primes p1, p2, . . . , pr ,
then(

d

m

)
=

(
d

p1

)
·
(
d

p2

)
· · · · ·

(
d

pr

)
.

The Kronecker symbol is used to determine the
Legendre symbol, which in turn is used to find
quadratic residues. For certain values of d and
m the Kronecker symbol can be used to count
the number of quadratic residues.

(3) The Kronecker symbol has uses and gen-
eralizations in more advanced areas of number
theory as well; e.g., quadratic field theory and
class field theory.

k-root See k-rank.

Krull-Akizuki Theorem LetR be a Noethe-
rian integral domain, k its field of quotients, and
K a finite algebraic extension of k. Let A be a
subring ofK containing R. Assume every non-
zero prime ideal of R is maximal (i.e., assume
R has Krull dimension 1). Then A is a Noethe-
rian ring of Krull dimension 1. Also, for any
ideal g �= (0) of A, A/g is a finitely generated
A-module.

Here, the integral closure of a Noetherian
domain of dimension one is Noetherian. This
remains true for a two-dimensional Noetherian
domain but not for dimension three or higher.

Krull-Azumaya Lemma Let R be a com-
mutative ring with unit, M �= 0 a finite R-
module, andN anR-submodule ofM . Let J be
the Jacobson radical of R. The Krull-Azumaya
Lemma is a name given to any of the following
statements:

(i.) If MJ +N = M , then N = M;

(ii.) M �= MJ ;

(iii.) If M/MJ is spanned by a finite set
{xi +MJ }, then M is spanned by {xi}.

This lemma is also known by the name
Nakayama’s Lemma and by the name Azumaya-
Krull-Jacobson’s Lemma. It is a basic tool in the
study of non-semiprimitive rings.

Krull dimension The supremum of the
lengths of chains of distinct prime ideals of a
ring R. It is sometimes called the altitude of R.
The definition was first proposed by W. Krull in
1937 and is now considered to be the “correct”
definition not only for Noetherian rings but also
for arbitrary rings.

With this definition any field κ has dimension
zero and the polynomial ring κ[x] has dimension
one.

One reason for the acceptance of this def-
inition for rings comes from a comparison to
the situation in finite dimensional vector spaces.
In a vector space of dimension n over a field
κ , the largest chain of proper vector subspaces
has length n. The corresponding polynomial
ring κ[x1, . . . , xn] has a decreasing sequence (of
length or height n) of distinct prime ideals

(x1, . . . , xn) , . . . , (x1) , (0)
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where the notation (x1, . . . , xn)denotes the ideal
generated by the elements x1, . . . , xn. This se-
quence is of maximal length.

Krull Intersection Theorem Let R be a
Noetherian ring, I an ideal ofR, andM a finitely
generated R-module. Then

(i.) there is an element a ∈ I such that

(1 − a)


 ∞⋂
j=1

I jM


 = 0 .

(ii.) If 0 is a prime ideal or ifR is a local ring,
and if I is a proper ideal of R, then

∞⋂
j=1

I j = 0 .

In some formulations, part (i.) is given as:

∞⋂
j=1

I jM =

{x ∈ M : (1 − a)x = 0, for some x ∈ I } .
The theorem is important for the theory of
Noetherian rings and is an application of the
Artin-Rees Lemma concerning stable ring fil-
trations. See Artin-Rees Lemma.

Krull-Remak-Schmidt Theorem The the-
orem arises in various branches of algebra and
addresses the common length and isomorphisms
between elements of the decomposition of an al-
gebraic structure.

(1) In group theory. Suppose a groupG satis-
fies the descending or ascending chain condition
for normal subgroups. If G1 ×G2 × · · · ×Gn
andH1×H2×· · ·×Hm are two decompositions
ofG consisting of indecomposable normal sub-
groups, then n = m and each Gi is isomorphic
to some Hj .

(2) In ring theory. LetA = A1×A2×· · ·×An
and B = B1 × B2 × · · · × Bn be Artinian and
Noetherian modules where each Ai and Bj are
indecomposable modules. Then m = n and
each Ai is isomorphic to some Bj .

(3) The theorem may be formulated for other
algebraic structures, e.g., for local endomor-
phism modules or for modular lattices.

Combinations of the names W. Krull, R.
Remak, O. Schmidt, J.H.M. Wedderburn, and
G. Azumaya are used to refer to this theorem.
Wedderburn first stated the theorem for groups,
Remak gave a proof for finite groups, Schmidt
gave a proof for groups with an arbitrary sys-
tem of operators, Krull extended the theorem
to rings, and Azumaya found extensions of the
theorem to other algebraic structures.

Krull ring A commutative integral domainA
for which there exists a family {νi}i∈I of discrete
valuations on the field of fractions K of A such
that the intersection of all the valuation rings of
the {νi}i∈I isA and νi(x) = 0 for all nonzerox ∈
K and for all except (possibly) a finite number
of indices i ∈ I . A Krull ring is also called a
Krull domain. Every discrete valuation ring is
a Krull ring as is a factorial ring and a principal
ideal domain.

Krull rings were studied by W. Krull. They
represent an attempt to get around the problem
that the integral closure of a Noetherian domain
is (generally) not finite. Since the valuations
described above may be identified with the set
of prime ideals of height one, a Krull ring may be
defined alternately using prime ideal of height
one.

Krull’s Altitude Theorem Also called
Krull’s Principal Ideal Theorem. This theorem
has several forms and characterizations.

(1) Let R be a Noetherian ring, let x ∈ R

and let P be minimal among prime ideals of
R containing x. Then the height of P (or the
codimension or the altitude of P ) is ≤ 1. See
Krull dimension.

(2) Let R be a Noetherian ring containing
x1, . . . , xn. Let P be minimal among prime
ideals of R containing x1, x2, . . . , xn. Then the
height of P ≤ n.

(3) Let R be a Noetherian local ring with
maximal ideal m. Then the dimension of R is
the minimal number n such that there exist n
elements x1, x2, . . . , xn not all contained in any
prime ideal other than m.

Consequences of the theorem include the fact
that the prime ideals in a Noetherian ring sat-
isfy the descending chain condition so that the
number of generators of a prime ideal P bounds
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the length of a chain of prime ideals descending
from P .

Krull topology A topology that makes the
Galois groupG(L/K) (for the Galois extension
of the fieldL over the fieldK) into a topological
group. A fundamental system of neighborhoods
of the field unity element of L is obtained by
taking the set of all groups of the formG(L/M)

where M is both a subfield of L and a finite
Galois extension of K .

The Krull topology is discrete if L is a finite
extension of K . This topology is named after
W. Krull, who extended Galois theory to infinite
algebraic extensions and laid the foundations for
Galois cohomology theory.

k-split A term used in several parts of linear
algebraic group theory and homology theory.

(1) Let k be an arbitrary field. Let� denote a
universal domain containing k, that is, an alge-
braically closed field that has infinite transcen-
dence degree over k. Let Ga denote the alge-
braic group determined by the additive group of
� and let Gm denote the algebraic group deter-
mined by the multiplicative group of non-zero
elements of �. Let G be a connected, solvable
k-group. Then G is k-split if it has a composi-
tion series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {0}

composed of connected k-subgroups with the
property that each Gi/Gi+1 is k-isomorphic to
Gm or Ga .

(2) If a k-torus T of dimension n is k-isomor-
phic to the direct product of n copies of Gm, then
T is said to be k-split. For a k-torus, definitions
(1) and (2) are equivalent.

(3) Let A be a k-set, G be a k-group, M
be a principal homogeneous k-space for G, and
HX/k be the set of k-generic elements of the k-
components of any k-setX. For any k-mapping
h from A into G, let δh denote the k-mapping
from A× A into G defined by

δh(x, y) = h(x)−1h(y),

for all (x, y) ∈ HA2/k .

Recall that a one-dimensional k-cocycle f is a
k-mapping from A× A into G such that

f (x, z) = f (x, y)f (y, z),

for all (x, y, z) ∈ HA3/k .

If f is a one-dimensional k-cocycle such that
there exists a k-mapping h from A× A into M
such that f = δh, then f is said to k-split inM .
This definition is used in k-cohomology.

(4) There is a similar definition used in the co-
homolgy of k-algebras involving the k-splitting
of singular extensions of k-algebras bi-modules.

(5) If G is a connected semisimple linear al-
gebraic group defined over a field k, then G is
called k-split if there is a maximal k-split torus
in G. Such a G is also said to be of Chevalley
type.

Kummer extension Any splitting field F of
a polynomial(

xn − a1
) (
xn − a2

)
. . .

(
xn − ar

)
,

where for each i = 1, 2, . . . , r the ai are ele-
ments of a field k that contains a primitive nth
root of unity. A Kummer extension is character-
ized by the property of being a normal extension
having an Abelian Galois group and the fact that
the least common multiple of the orders of ele-
ments of the Galois group is a divisor of n.

Kummer’s criterion The German mathe-
matician E. Kummer’s attempts in the mid-19th
century to prove Fermat’s Last Theorem gave
rise to the theory of ideals and the theory of cy-
clotomic fields and led to many other theories
which are now of fundamental importance in
several areas of mathematics. Among his many
contributions to the mathematics that was devel-
oped to prove (or disprove) Fermat’s Last The-
orem, Kummer obtained congruences

Bn

[
dl−2n log(x + evy)

dvl−2n

]
v=0

≡ 0 (mod l)

for n = 1, 2, . . . , l−3
2 where Bn is the nth

Bernoulli number. The congruences are called
Kummer’s criterion in his honor. In 1905 the
mathematician D. Mirimanoff established the
equivalence of these congruences to the condi-
tions (which also are called Kummer’s criterion)
of the following theorem.
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Let x, y, z be nonzero integers. Let l be a
prime> 3. Suppose x, y, z are relatively prime
to each other and to l. If {x, y, z} is a solution
to the Fermat problem

xl + yl = zl ,

then
Bnfl−2n(t) ≡ 0 (mod l) ,

for all t ∈ {− x
y
,− y

x
,− y

z
,− z

y
,− x

z
,− z

x
} and for

n = 1, 2, . . . , l−3
2 where

fm(t) =
l−1∑
i=1

im−1t i ,

for m > 1, and Bernoulli number Bn.

Kummer surface A class of K3 surface
in abstract algebraic geometry first studied by
E. Kummer in 1864. It is a quartic surface which
has the maximum number (16) of double points
possible for a quartic surface in projective three-
dimensional space. It can be described as the
quotient variety of a two-dimensional Abelian
variety by the automorphism subgroup gener-
ated by the sign-change automorphism s(x) =
−x. See also K3 surface.

In projective three-dimensional space, the
surface given by

x4 + y4 + z4 + w4 = 0

is a Kummer surface.

Künneth’s formula See Künneth Theorem.

Künneth Theorem The theorem is formu-
lated for several different areas of mathemat-
ics. Occurring in the statement of the theorem
are one or more formulas concerning exact se-
quences known as Künneth formulas. The theo-
rem itself is sometimes called Künneth formula.
All Künneth-type formulas are related to study-
ing the theory of products (e.g., tensor products)
in homology and cohomology for various math-
ematical objects and structures. Examples fol-
low.

(1) The first Künneth Theorem exhibits the
Künneth formula for complexes. LetA be a ring
with identity,L a complex of leftA-modules and
R a complex of right A-modules. Assume that
for each n the boundary modules Bn(R) and cy-
cle modules Cn(R) are flat. Then for each n
there is a homomorphism β such that the se-
quence

0 →
∑

m+q=n
Hm(R)⊗Hq(L) α→ Hn(R⊗L) β→

β→
∑

m+q=n−1

Tor1(Hm(R)⊗Hq(L)) → 0

is exact.
(2) The next Künneth Theorem exhibits the

isomorphism. LetA be a ring with identity. Let
L be a complex of left A-modules and R be
a complex of right A-modules. Assume that
for each n the homology modules Hn(R) and
cycle modulesCn(R) are projective (in this case
Tor1(Hm(R) ⊗ Hq(L)) = 0). Then for each n
there is an isomorphismα such that the sequence∑

m+q=n
Hm(R)⊗Hq(L) ∼= Hn(R ⊗ L) .

(3) LetG be an Abelian group. For simplicial
complexesL andR and Cartesian productL×R,
the homology group Hn(L × R;G) splits into
the direct sum

Hn(L× R;G) ∼=
∑

m+q=n
Hm(L)⊗Hq(R)

⊕
∑

m+q=n−1

Tor
(
Hm(L)⊗Hq(R)

)
.

(4) Similar Künneth formulas and Künneth
Theorems generalized (e.g., to spectral se-
quences) or stated with other criteria on
the groups (e.g., torsion free groups) have been
studied.

k-Weyl group See k-rank.
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L
l-adic coordinate system Let A be an Abel-
ian variety of dimension n over a field k of char-
acteristicp ≥ 0. Let l be a prime number, Ql the
l-adic number field, Zl the group of l-adic inte-
gers, andPl the direct product of the 2n quotient
groups of Ql/Zl . Let Bl(A) denote the group
of points of A whose order is a power of l. If
l �= p, then Pl is isomorphic to Bl(A). The iso-
morphism yields the l-adic coordinate system of
Bl(A).

l-adic representation Let A,B be Abelian
varieties of dimensions n and m, respectively,
over a field k of characteristic p ≥ 0. Let l be a
prime number different from p and λ : A→ B

a rational homomorphism. Let Bl(A), Bl(B)
denote the group of points of A, respectively B,
whose order is a power of l and γ : Bl(A) →
Bl(B) the homomorphism induced by λ. Then
the 2m×2nmatrix representation (with respect
to the l-adic coordinate system) of γ is called
the l-adic representation of λ.

Lagrange multiplier To find the extrema of
a function f of several variables, subject to the
constraint g = 0, one sets ∇f = λ · ∇g. The
scalar λ is called a Lagrange multiplier.

Lagrange resolvent Let k be a field of char-
acteristicp containing thenth roots of unity such
that p does not divide n. Let k(�) be an exten-
sion field of degree n over k with cyclic Galois
group. Let σ be a generator of the Galois group.
Let ζ be an nth root of unity. Then the Lagrange
resolvent, denoted by (ζ,�) is defined by

(ζ,�) = �0 + ζ�1 + · · · + ζ n−1�n−1

where�j = σ j�, for each j = 1, 2, . . . , n−1
and �n = σn� = �0 = �.

Since σ�j = �j+1, for each j , the La-
grange resolvent has the property that σ(ζ,�)
= ζ−1(ζ,�). This implies that σ(ζ,�)n =
(ζ,�)n, meaning that (ζ,�)n ∈ K . The �j
can be determined from the equations

∑
ζ ζ

−j

(ζ,�) = n�j , since p does not divide n. So,
k(�) is generated by (ζ,�).

Lagrangian density It is customary in the
fields of mathematical physics and quantum me-
chanics to honor the Italian mathematician
J.L. Lagrange (1736–1813) by using his name
or the letter L to name a certain expression (in-
volving functions of space and time variables
and their derivatives) used as integrands in varia-
tional principles describing equations of motion
and numerous field equations describing phys-
ical phenomena. Thus, a “Lagrangian” occurs
in the statements of the “principle of least ac-
tion” (first formulated by Euler and Lagrange for
conservative fields and by Hamilton for noncon-
servative fields), as well as in Maxwell’s equa-
tions of electromagnetic fields, relativity theory,
electron and meson fields, gravitation fields, etc.
In such systems, field equations are regarded as
sets of elements describing a mechanical system
with infinitely many degrees of freedom.

Specifically, let � ⊂ Rm, [t0, t1) denote a
time interval, and f = (f 1, f 2, . . . , f n) : [t0,
t1) −→ Rn denote a vector valued function.
Let L be an algebraic expression featuring sums,
differences, products, and quotients of the func-
tions of f and their time and space derivatives.
L may include some distributions. Define

L(t) =
∫
�

L dx ,

where x = (x1, x2, . . . , xm) and

V (f) =
∫ t1

t0

L(t) dt .

Field equations are derived from considering
variational problems for V (f). In such a setup,
L is called the Lagrangian and L the Lagrangian
density.

Lanczos method of finding roots A proce-
dure (or attitude) used in the numerical solu-
tion (especially manual) of algebraic equations
whose principal purpose is to find a first ap-
proximation of a root. Then methods (espe-
cially Newton’s method) are used to improve
accuracy (by iteration). For equations with real
roots, the basic idea is to transform the equation
into one which has a root between 0 and 1; then
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reduce the order of the equation by using an ap-
proximating function (e.g., a Chebychev poly-
nomial); solve the reduced associated equation
exactly for a root between 0 and 1 and convert
the root found back to a root of the original equa-
tion by using the transformation functions. For
complex roots the procedure is similar but finds
a root of largest modulus.

As an explicit use of the ideas consider a
cubic equation with real coefficients a, b, c, d
(with ad �= 0)

ax3 + bx2 + cx + d = 0 .

First change the polynomial to a monic polyno-
mial

x3 + b1x
2 + c1x + d1 = 0

where b1 = b/a, c1 = c/a, d1 = d/a. If
d1 > 0, transform the equation by replacing x
everywhere by −x obtaining

x3 + b2x
2 + c2x − d2 = 0 ,

with d2 > 0, where b2 = −b1, c2 = c1, d2 =
d1. Now, by dividing by d2 and setting y =
x/ 3
√
d2, b3 = b2/

3
√
d2, c3 = c2/(

3
√
d2)

2, one
gets the equation

y3 + b3y
2 + c3y − 1 = 0 .

Now f (0) < 0. Also, for large positive y,
f (y) > 0. If f (1) > 0, there is a root be-
tween 0 and 1. If f (1) < 0, there is a root > 1.
In this case substitute t = 1/y into the equation
obtaining

t3 − c3t
2 − b3t − 1 = 0 .

In either case, substitute for t3 or y3 the quadrat-
ic term of the Chebychev polynomial

t3 = (1/32)
(

48t2 − 18t + 1
)

and solve the resulting quadratic equation ex-
actly. Discard any negative root and use the
remaining root. Convert it back to the origi-
nal equation using all the conversions. This is
the Lanczos method for cubic equations. There
are Lanczos methods for fourth and higher de-
gree equations with real coefficients and ones
for complex coefficients.

Lanczos method of matrix transformation
In the numerical solution of eigenvalue prob-
lems of linear differential and integral operators,
matrix transformations play a fundamental role.
Lanczos’ method, named after C. Lanczos who
introduced it in 1950, was developed as an iter-
ative method for a nonsymmetric matrix A and
involves a series of similarity transformations
to reduce the matrix A to a tri-diagonal matrix
T with the same (but more easily calculable)
eigenvalues as A.

Specifically, given an n × n matrix A, a tri-
diagonal matrix T is constructed so that T =
S−1AS. Assume that the n columns of S are
denoted by x1, x2, . . . , xn which will be deter-
mined so as to be linearly independent. Assume
that the main diagonal of matrix T = {tij } is de-
noted by tii = bi for i = 1, 2, . . . , n; the super-
diagonal tii+1 = ci for i = 1, 2, . . . , n− 1; and
the subdiagonal tii−1 = di , for i = 2, 3, . . . , n.
In this method the di will all be 1. The method
consists of constructing a sequence {yi} of vec-
tors such that yTi xi = 0, if i �= j .

Let x0, y0, c0 be zero vectors and let x1 and
y1 be chosen arbitrarily. Define {xk} and {yk}
recursively, by

xk+1 = Axk − bkxk − ck−1xk−1 ,

yk+1 = AT yk − bkyk − ck−1yk−1 ,

with

bk = yTk Axk

yTk xk

and

ck−1 =
yTk−1Axk

yTk−1xk−1
.

Assuming that yRj xj �= 0 for each j , it can be

shown that yTi xj = 0 if i �= j , the {xi} are
linearly independent, and that if the recursions
are used for k = n, that the resulting xn+1 = 0.
These results lead to the equations

Ax1 = x2 + b1x1

Axk = xk+1 + bkxk + ck−1xk−1 ,

for k = 2, 3, . . . , n− 1 and

Axn = bnxn + cn−1xn−1

which yield the desired tri-diagonal matrix T .
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Problems with the method involve a judicious
choice of x1 and y1 so that yTj xj �= 0 for each
j = 1, 2, . . . , n−1. Numerically, the weakness
of the method is due to a possible breakdown in
this biorthogonalization of the sequences {xi}
and {yi} even when the matrix A is well condi-
tioned. The numerical procedure is likely to be
unstable, for example, when yTi xi is small.

For symmetric matrices with x1 = y1 the
sequences {xi} and {yi} are identical. In this case
the numerical stability is comparable to either
Givens’ or Householder’s methods resulting in
the same tri-diagonal matrix — but with more
cost in deriving it.

Theoretically, the indicated algorithm occurs
in the conjugate-gradient method for solving a
linear system of equations, in least square poly-
nomial approximations to experimental data, and
as one way to develop the Jordan canonical form.

Lanczos method is sometimes called the
method of minimized iterations.

Laplace Expansion Theorem A theorem
concerning the finite sum of certain products of
determinants of submatrices of a given square
matrix. The theorem delineates which products
yield a sum equal to the determinant of the whole
matrix, so the expansions described are com-
monly used to evaluate determinants.

Let A be an n × n matrix with elements
from a commutative ring, where it can be as-
sumed that n > 1. Let A have elements ai j
where i denotes the row and j the column. Let
1 ≤ r < n. Suppose r rows of A, denoted by
i1, i2, . . . , ir are chosen where it is assumed (al-
ways) that i1 < i2 < · · · < ir (lexicographic
ordering). See lexicographic linear ordering.
Let R denote this lexicographically ordered r-
tuple (i1, i2, . . . , ir ). Suppose also that r col-
umns j1, j2, . . . , jr are chosen (lexicographi-
cally ordered). Let C be this lexicographically
ordered r-tuple (j1, j2, . . . , jr ). By choosing el-
ements ofA from the chosen rows and columns,
an r × r submatrix ARC = (bmn) = (aim jn)

is determined. If R′ denotes the lexicograph-
ically ordered (n − r)-tuple ir+1, ir+2, . . . , in
consisting of the rows of A not chosen and
C′ the columns not chosen, then AR′ C′ is an
(n − r) × (n − r) submatrix. Let λRC =
i1 + i2 + · · · + ir + j1 + j2 + · · · + jr . Finally,
let S be any lexicographically ordered r-tuple

chosen from the n numbers 1, 2, . . . , n. Then
the Laplace Expansion Theorem says:
∑
C

(−1)λR C det (ARC) det (AS′ C′) = det(A)

if R = S (and = 0, if R �= S), where the sum is
taken over the

(
n
r

)
selection of columnsC. Also,

∑
R

(−1)λR C det (ARC) det (AR′ S′) = det(A)

if R = S (and = 0, if R �= S), where the
sum is taken over the

(
n
r

)
selection of rows R.

The summations resulting in the sum det(A) are
called Laplace expansions of the determinant. If
r = 1, the “usual” expansion of a determinant
is obtained.

large semigroup algebra Let R be a com-
mutative ring, S a semigroup, and RS the set
of sequences of elements of R where in each
sequence only a finite number of elements is
different from zero. Then RS is the direct sum
of isomorphic copies of R using S as the index
set. A canonical basis of RS consists of {bi}i ∈S
where for a given i ∈ S, bi has the component
indexed by i equal to 1 and the rest of the com-
ponents equal to 0. The product

bi bj = bij for all i, j ∈ S
determines the multiplication in RS and makes
RS into an algebra called a semigroup algebra
of S over R. Now suppose S has the property
that for any s ∈ S there are only a finite number
of pairs {i, j} of elements of S such that s = ij .
If one defines multiplication of sequences α =
{αi} and β = {βj } of RS to be γ = {γk} where

γk =
∑
k=ij

αiβj , k ∈ S ,

then the resulting algebra is called a large semi-
group algebra and contains RS as a subalgebra.

largest nilpotent ideal The nilpotent ideal
which is the union of all nilpotent ideals of a Lie
algebra defined on a commutative ring with unit.
In a left Artinian ring, the radical is nilpotent and
is the largest nilpotent ideal. In a left Noetherian
ring, the prime radical is the largest nilpotent
left ideal. For a ring which has the property
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that every nonempty set of left ideals contains a
minimal element (with respect to inclusion), the
Jacobson radical is the largest nilpotent ideal.

lattice (1) A system consisting of a set S
together with a partial ordering ≤ on S and two
binary operations ∧ and ∨ defined on S such
that, for all a, b, c ∈ S,

a ∨ b ≤ c if and only if (a ≤ c and b ≤ c) ,
and

c ≤ a ∧ b if and only if (c ≤ a and c ≤ b) .

The element a ∨ b is called the supremum
of a and b and the element a ∧ b is called the
infimum of a and b.

The set of all subsets of a nonempty set S
ordered by the subset relation together with the
operations of set union and set intersection form
a lattice. The whole numbers, ordered by the
relation divides, together with the operations of
greatest common divisor and least common mul-
tiple, form a lattice. The real numbers, ordered
by the relation less than or equal to, together
with the operations of maximum and minimum,
form a lattice.

(2) Let Rn denote the set of all n-tuples of
real numbers. Let Rn be endowed with the
(usual) Euclidean metric space structure. Call
this metric space En. Let V n denote the (usual)
n-dimensional real vector space defined over R
by adding componentwise and multiplying by
scalars componentwise. Let Z denote the set of
integers. Let σ denote the mapping betweenEn

and V n that identifies points in En with vectors
in V n. Let L be the set of points


P ∈ En : σ(P ) =

n∑
j=1

αjvj , αj ∈ Z


 ,

for some basis {v1, v2, . . . , vn} of V n. Then L
is called an n-dimensional homogeneous lattice
in En.

lattice constant LetLdenote the lattice group
of an n-dimensional crystallographic group de-
fined on n-dimensional Euclidean space. Then
L is generated by n translations. Each inner
product of two of the generating translations is
called a Lattice constant. See lattice group.

lattice group (1) The subgroup of transla-
tions of the n-dimensional crystallographic
group C defined on n-dimensional Euclidean
space En. The lattice group is a commutative
normal subgroup ofC. Recall thatC is a discrete
subgroup of the group of motions on En that con-
tains exactlyn linearly independent translations.
The lattice group is generated by these transla-
tions. In applied areas of crystallography, the
group of motions is called a space group. Then
the lattice group is called the lattice of the space
group.

(2) Let L be an n-dimensional homogeneous
lattice in En. (See lattice.) Then

{
v ∈ V n : v = σ(P ), for some P ∈ L}

is called the lattice group of L. This lattice
group is a free module generated by the basis
{v1, v2, . . . , vn}.
lattice ordered group A lattice which is also
an ordered group. See lattice.

law A property, statement, rule, or theorem in
a mathematical theory usually considered to be
fundamental or intrinsic to the theory or govern-
ing the objects of the theory. Elementary exam-
ples include commutative, associative, distribu-
tive, and trichotomy laws of arithmetic,
DeMorgan’s laws in mathematical logic or set
theory, and laws of sines, cosines, or tangents in
trigonometry.

Law of Quadrants Also called rule of spe-
cies. In spherical trigonometry, ifABC is a right
spherical triangle, with right angle C and sides
a, b, and c (measured in terms of the angle at
the center of the sphere subtended by the side),
then: (i.) if a and A are both acute or both ob-
tuse angles (said to be of like species), then so
are b and B; (ii.) if c < 90◦, then a and b are of
like species; (iii.) if c > 90◦, then a and b are
of unlike species.

This law is used whenever one has a formula
which gives two possible values for the sine of
the side or angle, since it indicates whether the
side or angle is acute or obtuse.

Law of Signs In arithmetic, a rule for sim-
plifying expressions where two (or more) plus
(“+”) or minus (“−”) signs appear together. The
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rule is to change two occurrences of the same
sign to a “+” and to change two occurrences of
opposite signs to a “−.”

In using the Law of Signs, one is ignoring the
different usages of the minus sign; namely, for
subtraction, for additive inverse, and to denote
“negative.” The same is true for the plus sign;
namely, for addition and to denote “positive.”

Thus, x − (−y) or x − −y becomes x + y;
x + (−y) or x + −y becomes x − y; 4 − −3
becomes 4+3; 4+−3 becomes 4−3; x+ (+y)
or x ++y becomes x + y, etc.

Law of Tangents In plane trigonometry, a ra-
tio relationship between the lengths of sides of
a triangle and tangents of its angles. For a trian-
gle ABC, where A,B, and C represent vertices
(and angles) and a, b, and c represent, respec-
tively, the sides opposite the angles,

a − b
a + b =

tan 1
2 (A− B)

tan 1
2 (A+ B)

.

Laws of Cosines In plane and spherical trigo-
nometry, relationships between the lengths of
sides of a triangle and cosines of its angles. For
a triangle ABC in plane trigonometry, where
A,B, and C represent vertices (and angles) and
a, b, and c represent, respectively, the sides op-
posite the angles,

c2 = a2 + b2 − 2 a b cos(C) .

Here, the length of a side is determined by the
lengths of the other two sides and the cosine of
the angle included between those sides.

In spherical trigonometry, using the above
designations for the angles and for the sides
(measured in terms of the angle at the center
of the sphere subtended by the side), there are
two relationships:

cos(C) =− cos(A) cos(B)

+ sin(A) sin(B) cos(c)

and

cos(c) = cos(a) cos(b)+ sin(a) sin(b) cos(C) .

Laws of Sines In plane and spherical trigo-
nometry, the ratio relationship between the

lengths of sides of a triangle and sines of its
angles. For a triangle ABC in plane trigonom-
etry, where A,B, and C represent vertices (and
angles) and a, b, and c represent, respectively,
the sides opposite the angles,

a

sin(A)
= b

sin(B)
= c

sin(C)
.

In spherical trigonometry, using the same
designations for the angles and for the sides
(measured in terms of the angle at the center
of the sphere subtended by the side),

sin(a)

sin(A)
= sin(b)

sin(B)
= sin(c)

sin(C)
.

leading coefficient The nonzero coefficient
of the highest order term of a polynomial in a
polynomial ring. In the expression

anx
n + an−1x

n−1 + · · · + a1x + a0 ,

an is the leading coefficient. There are situations
when it is appropriate to consider an expression
when the leading coefficient is zero. In this case,
such a coefficient is called a formal leading co-
efficient.

least common denominator In arithmetic,
the least common multiple of the denominators
of a set of rational numbers. See least common
multiple.

least common multiple (1) In number the-
ory, if a and b are two integers, a least common
multiple of a and b, denoted by lcm{a, b}, is a
positive integer c such that a and b are each di-
visors of c (which makes c a common multiple
of a and b), and such that c divides any other
common multiple of a and b. The product of
the least common multiple and positive greatest
common divisor of two positive integers a and
b is equal to the product of a and b.

The concept can be extended to a set of more
than two nonzero integers. Also, the definition
can be extended to a ring where a least common
multiple of a finite set of nonzero elements of the
ring is an element of the ring which is a common
multiple of elements in the set and which is also
a factor of any other common multiple.
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(2) In ring theory, the ideal generated by the
intersection of two ideals is known as the least
common multiple of the ideals.

In a polynomial ring k[x1, . . . , xr ]over a field
k, the least common multiple of two monomials
x
m1
1 · · · · · xmrr and xn1

1 · · · · · xnrr is defined as

x
max(m1,n1)
1 · · · · · xmax(mr ,nr )

r .

least upper bound See supremum.

Lefschetz Duality Theorem LetX be a com-
pact n-dimensional manifold with boundary Ẋ
and orientation U over the ring R. For all R-
modules G and non-negative integers q there
exist isomorphisms

Hq(X;G)← Hq(X \ Ẋ;G)→ Hn−q(X, Ẋ;G)

and

Hq(X, Ẋ;G)→ Hn−q(X\Ẋ;G)← Hn−q(X;G) .

[Here j : X \ Ẋ ⊂ X.]

Lefschetz fixed-point formula One of the
main properties of the l-adic cohomology. It
counts the number of fixed points for a mor-
phism on an algebraic variety or scheme.

Let X be a smooth and proper scheme of fi-
nite type of dimension n defined over an alge-
braically closed field k of characteristic p ≥ 0.
Let l be a prime number different from p. Let
Ql be the quotient field of the ring of l-adic
integers. For each nonnegative integer i, let
Hi(X,Ql) denote the l-adic cohomology of X.
Let f : X −→ X be a morphism that has iso-
lated fixed points each of multiplicity one. Let
f ∗ be the induced map on the cohomology ofX.
Let Tr be the trace mapping. Then the number
of fixed points of f is equal to

2n∑
i=0

(−1)i Tr
(
f ∗;Hi (X,Ql)

)
.

Lefschetz number (1) A concept applica-
ble in several fields of mathematics, first intro-
duced in 1923 by S. Lefschetz (1884–1972) after
whom it is named. The idea is as follows. Let
X be a topological space. Let f : X → X

be a continuous map. For each nonnegative in-
teger k, f induces a homomorphism fk of the
homology groupHk(X;Q) (with coefficients in
the rational number field Q). If the ranks of the
homology groups (considered as vector spaces
over Q) are finite, then there is a matrix repre-
sentation for each fk and a trace tk of the matrix
which is an invariant of fk . The Lefschetz num-
ber of f , denoted by L(f ), is then given by

L(f ) =
∞∑
k=0

(−1)ktk .

If everything is well defined, thenL(f ) is an in-
teger and, if different from zero, guarantees that
f has a fixed point. Everything will be well de-
fined, for example ifX is a finite complex. Alter-
natives forX include a chain or cochain complex
of free Abelian groups (f an endomorphism of
degree 0) or a finite polyhedron of degree nwith
integral coefficients (f continuous, sum from 0
to n). There is a similar result if X is a closed
orientable manifold. Also, if f is the identity
map, then L(f ) is the Euler characteristic.

(2) For complex normal Abelian varieties, the
difference between the second Betti number and
the Picard number is sometimes called a Lef-
schetz number.

Lefschetz pencil Let X be a smooth com-
plete (thus projective) algebraic variety over an
infinite algebraically closed field k. In the the-
ory of algebraic varieties it can be shown that
there is a birational morphism

π : X̃ −→ X

from a smooth complete (projective) variety X̃
and a mapping

f : X̃ −→ P1
k

that is singular at most a finite number of points.
An inverse image f−1(x) is called a fiber and
contains at most one singular point which, if it
exists, is an ordinary double point. The family
of fibers is called a Lefschetz pencil ofX. Some-
times the map f is called a Lefschetz pencil. In
the theory establishing the existence of X̃, it is
shown that fibers are hyperplane sections of X.
Sometimes it is said that Lefschetz pencils “fiber
a variety.”
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Lefschetz pencils are involved in the proof of
the Weil conjecture. They are named in honor of
S. Lefschetz (1884–1972) who studied, among
many other things, nonsingular projective sur-
faces.

left A-module Let A be a ring. A left A-
module is a commutative groupG, together with
a mapping fromA×G intoG, called scalar mul-
tiplication and denoted here by juxtaposition,
satisfying for all x, y ∈ G and all r, s ∈ A:

1x = x ,

r(x + y) = rx + ry ,
(r + s)x = rx + sx ,

and
(rs)x = r(sx) .

Right A-modules are defined similarly.
Sometimes the term left or right is omitted. If
the ring is denoted by R, then the terminology
is leftR-module. If addition and scalar multipli-
cation are just the ring operations, then the ring
itself can be regarded as a left A-module. If the
ring is a field, then the modules are the vector
spaces over the field.

left annihilator The left annihilator of an
ideal S of an algebra A (over a field k) is a set

{a ∈ A : aS = 0} .
The left annihilator is an ideal of A. Similarly,
the left annihilator of S in R where S is a subset
of an R-moduleM (where R is a ring) is the set

{r ∈ R : rS = 0} .

left Artinian ring A ring having the property
that (considered as a left module over itself) ev-
ery nonempty set of submodules (meaning left
ideals in this context) has a minimal element.
For such a ring, any descending chain of left
ideals is finite. Compare with left Noetherian
ring.

For a left Artinian ring, the radical is the
largest nilpotent ideal. See largest nilpotent
ideal. For a left Artinian ring, any left module
is Artinian if and only if it is Noetherian.

Artinian rings are named after E. Artin (1898–
1962).

left balanced functor Let R1, R2, and R be
rings. Let CR1 , CR2 , and CR be categories of
R1-modules, R2-modules, and R-modules, re-
spectively. Let T : CR1 × CR2 → CR be an
additive functor that is covariant in the first vari-
able and contravariant in the second variable.
Let A ∈ CR1 . Let AT : CR2 −→ CR be the
functor defined by

AT (B) = T (A,B) for all B ∈ CR2 .

Let B ∈ CR2 . Let TB : CR1 −→ CR be the
functor defined by

TB(A) = T (A,B) for all A ∈ CR1 .

Then T is called left balanced if (i.) AT is exact
for each projective moduleA ∈ CR1 and (ii.) TB
is exact for each injective module B ∈ CR2 .

The definition can be extended to additive
functors T of several variables (some of which
are covariant and some contravariant) as fol-
lows. T is called left balanced if: (i.) T be-
comes an exact functor of the remaining vari-
ables whenever any one of the covariant vari-
ables is replaced by a projective module; and (ii.)
T becomes an exact functor of the remaining
variables whenever any one of the contravariant
variables is replaced by an injective module.

left coset Any set, denoted by aS, of all left
multiples as of the elements s of a subgroup S
of a groupG and a fixed element a ofG. Every
left coset of S has the same cardinality as S. For
each subgroup S ofG, the groupG is partitioned
into its left cosets, so that for a finite group the
number of elements in the group (order) is a
multiple of the order of each of its subgroups.

left derived functor Let R1, R2, and R be
rings. Let CR1 , CR2 , and CR be categories ofR1-
modules, R2-modules, and R-modules, respec-
tively. Let T : CR1 × CR2 → CR be an additive
functor that is covariant in the first variable and
contravariant in the second variable. LetX be a
definite projective resolution for each moduleA
of CR1 and let Y be a definite injective resolution
for each module B of CR2 . From homology the-
ory, T (X, Y ) is a well-defined complex which
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can be regarded as being over T (A,B). Also,
because of the homotopies involved, up to natu-
ral isomorphisms, T (X, Y ) is independent of the
chosen resolutionsX andY and depends only on
A andB. Therefore, the nth homology modules
Hn(T (X, Y )) are functions of A and B.

If f : A −→ A′ and g : B ′ −→ B, there
exist chain transformations F : X −→ X′ and
G : Y ′ −→ Y over f and g. Any two such are
homotopic. The induced chain transformation

T (f, g) : T (X, Y ) −→ T (X′, Y ′)

is determined up to homotopy, is independent
of the choice of F and G, and depends only on
f and g. This yields a well-defined homomor-
phism

Hn(T (X, Y )) −→ Hn(T (X
′, Y ′)) .

Define the nth left derived functor LnT :
CR1 × CR2 → CR by

LnT (A,B) = Hn(T (X, Y ))
and let LnT (f, g) be the well-defined homo-
morphism of the last paragraph

LnT (f, g) : LnT (A,B) −→ LnT (A
′, B ′) .

left global dimension For a ringAwith unity,
the supremum of the set of projective (or homo-
logical) dimensions (i.e., the set of minima of
the lengths of left projective resolutions) of el-
ements of the category of left A-modules. It
is also equal to the infimum of the set of in-
jective dimensions of the category. A theorem
of Auslander (1955) shows that the left global
dimension is also the supremum of the set of
projective dimensions of finitely generated left
A-modules. As simple examples of left global
dimension, the left global dimension of the in-
tegers is 1, while the left global dimension of a
field is 0. See projective dimension, homologi-
cal dimension, injective dimension.

left G-set Let G be a group with identity e
and juxtaposition denoting the group operation.
Let S be a set. Let p : G × S → S satisfy, for
each x ∈ S,

p(ab, x) = p(a, p(b, x))

and
p(e, x) = x .

Then S is called a leftG-set andG is said to act
on S from the left. If juxtaposition ax is used
for the value p(a, x), then the two conditions
become (ab)x = a(bx), ex = x.

left hereditary ring A ring in which every
left ideal is projective. Alternately, a ring whose
left global dimension is less than or equal to one.
See left global dimension.

If a ringA is left hereditary, every submodule
of a free A-module is a direct sum of modules
isomorphic to left ideals of A. The converse is
also true.

left ideal A nonempty subset L of a ring R
such that whenever x and y are in L and r is in
R, x−y and rx are inL. For example, ifR is the
ring of n× n real matrices, the matrices whose
first column is identically zero is a left ideal.
Ideals play a role in ring theory analogous to
the role played by normal subgroups in group
theory.

left invariant Used in various fields to indi-
cate not being altered or changed by a transfor-
mation, usually a left translation. For example,
(in linear algebra) a subalgebra S of a linear al-
gebra A is called left invariant if S contains, for
any x ∈ S, all left multiples ax for each a ∈ A.
If the linear algebra A has a unity element, then
the left invariant subalgebra is a left ideal. In Lie
group theory and transformation group theory
there are left invariant measures, left invariant
integrals, left invariant densities, left invariant
tensor fields, etc.

left inverse element Let S be a nonempty set
on which is defined an associative binary oper-
ation, say ∗. Assume that there is a left identity
element e in the set with respect to ∗. Let a de-
note any element of the set S. Then a left inverse
element of a is an element b of S such that

b ∗ a = e .
If every element of the set described above

has a left inverse element, then the set is called
a group. For a group, a left inverse element is
unique and is also a right inverse element. For
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commutative groups, the inverse element of a is
usually denoted by−a. Otherwise, the notation
a−1 is used. An element that has a left inverse
is sometimes called left invertible.

left Noetherian ring A ring having the prop-
erty that (considered as a left module over itself)
every nonempty set of submodules (meaning left
ideals in this context) has a maximal element.
For such a ring, any ascending chain of left ide-
als is finite. Compare with left Artinian ring.

For a left Noetherian ring, the prime radical
is the largest nilpotent ideal. See largest nilpo-
tent ideal. For a left Noetherian ring, any left
module is Artinian if and only if it is Noethe-
rian.

Noetherian rings are named after A.E.
Noether (1882–1935).

left order Let g be an integral domain in
which every ideal is uniquely decomposed into
a product of principal ideals (i.e., a Dedekind
domain). Let F be the field of quotients of g.
Let A be a separable algebra of finite degree
over F . Let L be a g-lattice of A. Then the set
{x ∈ A : xL ⊂ L} is an order of A called a left
order of A. See order. See also ZG-lattice.

left projective resolution A left resolution
X of an A-module M (where A is a ring with
unity) such that each Xn in the exact sequence

· · · → Xn→ Xn−1 → · · · → X0 → M → 0

is a projectiveA-module, and is called a left pro-
jective resolution ofM . See also left resolution.

left regular representation Let R be a ring,
M a left R-module, and HomZ(M,M) the ring
of module endomorphisms (whereM is viewed
as a module over Z). For each r ∈ R, let ρr :
M −→ M be a left translation (i.e., ρr(x) = rx
for all x ∈ M). If the ring homomorphism
ρ : R→HomZ(M,M), given by ρ(r) = ρr for
all r ∈ M is an injection, then ρ is called a left
regular representation of R in HomZ(M,M).
Left (and right) regular representations are very
important tools in ring theory with many appli-
cations throughout the theory.

left resolution Let A be a ring with unit and
M an A-module. If the sequence

· · · → Xn
∂n→ Xn−1

∂n−1→ · · · ∂1→ X0
ε→ M → 0

is exact, where X is a positive chain complex
of A-modules Xk , then the homomorphisms ∂k
have the property that the composition ∂k∂k+1 =
0 for all k, and ε : X → M is a sequence
of homomorphisms εk : Xk → M such that
εk−1∂k = 0 for all k, thenX is called a left reso-
lution of M . This concept is used in homology
theory in the computing of extension groups.

left satellite Let R1 and R be rings. Let
CR1 and CR be categories ofR1-modules andR-
modules, respectively. Let T : CR1 → CR be an
additive functor. A left satellite of T is an ad-
ditive functor defined over the same categories
as T and having the same variance (contra- or
co-). Once one left satellite of T (to be denoted
by S1T ) is determined, a sequence {SnT } of left
satellites may be defined by iteration.

In order to define the functor S1T by describ-
ing its action on modules and homomorphisms,
some background notation and remarks on ho-
mology theory need to be presented. Left satel-
lites may be defined for covariant functors and
contravariant functors. Here, the procedure for
creating a left satellite from a covariant functor
will be described in some detail, with the cor-
responding procedure for contravariant functors
only sketched. There is also a parallel develop-
ment for right satellites.

Let A be an R1-module. From homology
theory, it is always possible to construct an exact
sequence

0 → M
α→ P

β→ A→ 0

with P projective. For what follows, since the
module S1T (A) (to be defined) is only unique
within isomorphism (with respect to the choice
of P ), a particular choice of exact sequence
needs to be prescribed (which can always be
done).

(i.) Suppose T is covariant. Let A ∈ CR1 .
Let T (α) : T (M)→ T (P ). Define S1T (A) to
be Ker(T (α)). Then the sequence

0 → S1T → T (M)→ T (P )
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is exact. Let A,A′ ∈ CR1 . Let g : A → A′.
Then there are exact sequences

0 → M
α→ P

β→ A→ 0
↓ g

0 → M ′ α′→ P ′ β
′
→ A′ → 0

(withP andP ′ projective) and a homomorphism
f : P → P ′ such that gβ = β ′f . f defines
uniquely a homomorphism f ′ : M → M ′ such
that f α = α′f ′. One then gets the commutative
diagram

T (M)
T (α)−→ T (P )

↓ T (f ′) ↓ T (f )
T (M ′) T (α′)−→ T (P ′) .

T (f ′) induces a homomorphism

�(g) : Ker(T (α))→ Ker(T (α′)) .

It can be shown that�(g) is independent of the
choice of f . Define

S1T (g) : S1(A) −→ S1(A
′)

by S1T (g) = �(g). With this definition, S1T

becomes a covariant functor called the left satel-
lite of T .

(ii.) If T is contravariant, the procedure starts
with an exact sequence

0 → A
β→ Q

α→ N → 0 ,

with Q injective. Similar reasoning to the co-
variant case yields S1T (A) = Ker(T (α))where
T (α) : T (N) −→ T (Q) and S1T (g) : S1T (A

′)
−→ S1T (A). Here, S1T is contravariant.

(iii.) The sequence of functionSnT is defined
recursively from the exact sequences

0 → M → P → A→ 0

and
0 → A→ Q→ N → 0 ,

with P projective andQ injective as follows:

S0T = T ,

S1T as given above .

If T is covariant,

Sn+1T (A) = SnT (M)), n ≥ 1 .

If T is contravariant,

Sn+1T (A) = SnT (N)), n ≥ 1 .

Left satellites may also be defined for general
Abelian categories in a similar fashion.

left semihereditary ring A ring in which
every finitely generated left ideal is projective.
Compare with left hereditary ring.

Every regular ring is left semihereditary (and
right semihereditary).

left translation A left translation of a group
G by an element a ofG is a function fa : G→
G defined by

fa(x) = ax ,
for each x ∈ G.

Lehmer’s method of finding roots A meth-
od, developed in 1960 by D.H. Lehmer, for find-
ing numerical approximations to the (real or com-
plex, simple or multiple) roots of a polynomial
using a digital computer. Lehmer’s method pro-
vides a single algorithm for automatic computa-
tion applicable for all polynomials, in contrast to
other methods, the choice of which, for a partic-
ular polynomial, is dependent on human judg-
ment, experience, and intervention.

Lehmer’s method includes a test for deter-
mining whether or not the given polynomial has
a root inside a given circle. The test is applied
at each iteration of the process (to be described
next) on circles of decreasing size.

Assume that zero is not a root. Starting (in
the complex plane) with the circle with center
0 and radius 1 apply the test to look for a root
inside the circle. If one is found, halve the radius
and retest for the smaller circle. If a root is not
found, double the radius and apply the test. In a
finite number of steps, an annulus

{x : R < |z| < 2R}
will be determined (whereR is a power of 2) that
contains a root in the disk of radius 2R but not
in the disk of radius R. Next, cover the annulus
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with 8 overlapping disks of radius 5R/6 and cen-
ters (5R/3) exp(2πi/8), for k = 0, 1, . . . , 7.
Test each of the 8 circles until a root is found
trapped in a new annulus centered at (say) α
with radii R1, 2R1

{x : R1 < |z− α| < 2R1} ,
with R1 = 5R

6(2s ) for some s. The new annulus
is similarly covered by 8 disks and tested. After
(say) k iterations of this process, one gets a circle
of radius≤ 2(5/12)k which contains a root. One
continues until a prescribed accuracy is reached.

The strength of Lehmer’s method is its uni-
versality. The weakness is the rate of conver-
gence of the method which in practice may be
several times slower than less general methods
developed for specific types of roots.

length of module The common number of
quotientsMi/Mi+1 of submodules of a module
M over a ring R in a Jordan-Hölder or compo-
sition series

M = M0 ⊃ M1 ⊃ · · · ⊃ Ms = {0}
of M , if M has such a series. Any such chain
has the same number of terms. A necessary and
sufficient condition that M have such a series
is that it be both Artinian and Noetherian. See
composition series, Artinian module, Noethe-
rian module.

Leopoldt’s conjecture The assertion in the
study of algebraic number fields that the Zp-
rank of the p-adic closure of the group of units
of a number field is the same as the Z-rank of the
group of units. This conjecture is an open ques-
tion in many cases. There are Abelian analogs
of the conjecture and analogs for function fields
of characteristic p. The conjecture is named af-
ter H.W. Leopoldt, an extensive contributor to
the study of p-adic L-functions.

less than See greater than.

less than or equal to See greater than.

level structure A notion occurring in the
study of modulii spaces of Abelian varieties.
Usually a letter intrinsic to the variety discussed
is appended to the term.

(1) LetA be an Abelian variety of dimension
n over a field k of characteristicp ≥ 0. Letm be
a positive integer that is not a multiple of p. An
m-level structure with respect toA is a set of 2n
points on A which form a basis for the abstract
group Bm(A) of points of order m on A.

(2) For polarized complex Abelian varieties,
the concept of a level structure can be consid-
ered as a replacement of all or part of the concept
of a symplectic basis. If the variety is of type
D, then theD-level structure for the variety is a
certain symplectic isomorphism.

There are generalized levelm-structures, or-
thogonal level D structures, etc. The precise
definitions are quite detailed and require consid-
erable background and notational development.
Thus, they will not be given here. The associ-
ated modulii spaces for polarized Abelian vari-
eties with level structures are used in studying
properties of geometry and arithmetic.

Levi decomposition Let g be a finite dimen-
sional Lie algebra over the field of real or com-
plex numbers. Let radg denote the Lie subal-
gebra of g, called the radical of g. (See radi-
cal.) Let l be any subalgebra of g. Then the
direct sum of vector spaces radg and l (radg⊕ l)
forms a Lie subalgebra of g. If l exists such that
radg ⊕ l = g, then the sum radg ⊕ l is called
the Levi decomposition of g. The decomposi-
tion is named after E.E. Levi. The subalgebra
l involved in the splitting is called a Levi sub-
algebra of g. A theorem of Levi (1905) states
that g has such a decomposition and a theorem
by Malcev (1942) establishes the uniqueness of
the decomposition.

There is a similar Levi (product) decompo-
sition in algebraic group theory given by G =
RadG×H whereG is an algebraic group, RadG
is a unipotent radical of G, and H is an alge-
braic subgroup of G called the reductive Levi
subgroup of G. It is useful in reducing many
problems to the study of reductive groups.

Levi subgroup Let G be a Lie group. Let
RadG denote the radical of G. A Lie subgroup
L ofG is called a Levi subgroup ofG if (i.) the
identity imbedding of L into G is a Lie group
homomorphism, (ii.) G = (RadG)L, (iii.) the
dimension of (RadG) ∩ L is zero. If the Lie
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group is connected, there is always a (connected)
Levi subgroup. See Levi decomposition.

lexicographic linear ordering Sometimes
called dictionary order, an ordering which treats
numbers as if they were letters in a dictionary.
Suppose, for example, S is a set of monomials
of degree n in m variables: that is,

S =

x

k1
1 x

k2
2 . . . x

km
m :

m∑
j=1

kj = n

 .

then xk1
1 x

k2
2 . . . x

km
m is less than or equal to (≤)

x
l1
1 x

l2
2 . . . x

lm
m if the first nonzero difference of

corresponding exponents kj − lj satisfies kj −
lj ≤ 0. For example,

x1x2x
2
3x

3
4 ≤ x1x2x

3
3x4 ≤ x2

1x
4
2x3x4 .

A lexicographic ordering for the field of com-
plex numbers C is defined as follows: if z1 =
x1 + y1i, z2 = x2 + y2i ∈ C, then z1 ≤ z2 if
and only if

(x1 ≤ x2) or (x1 = x2 and y1 ≤ y2) .

Since in both of these cases the order ≤ is re-
flexive, antisymmetric, transitive, and satisfies
the trichotomy law, the order is a linear order, so
the order is called a lexicographic linear order.
More generally, if O1,O2, . . . , Om are ordered
sets, the product set p = ∏m

j=1Oj is given a
lexicographic ordering < as follows: if a =
(a1, a2, . . . , am) and b = (b1, b2, . . . , bm) ∈
p, then a < b if and only if the first non-zero
difference of corresponding coordinates aj −
bj < 0. When each Oj is linearly ordered, so
is p.

L-function Generally, a function of a com-
plex variable that generalizes the Riemann ζ -
function. L-functions are meromorphic on the
complex numbers C, exhibit both a Dirichlet se-
ries expansion and a Euler product expansion,
and satisfy similar functional equations. Some
generalizations of the ζ -function retain the ζ
identifier instead of an L. L-functions are im-
portant in the analytic study of the arithmetic
of objects in their corresponding mathematical
structures, including rational number fields, al-
gebraic number fields, algebraic varieties over

finite fields, representations of Galois groups,
p-adic number fields, etc.

(1) The most direct generalization of the Rie-
mann ζ -function is the DirichletL-function. Let
Z denote the integers. Let m ∈ Z with m > 0.
Let χ : Z −→ C be a Dirichlet character mod-
ulo m (i.e., χ �= 0, χ(a) = 0 if a and m are
not relatively prime, χ(ab) = χ(a)χ(b), and
χ(a +m) = χ(a)). Let s ∈ C with Re(s) > 1.
Define L(s) as

L(s) =
∞∑
n=1

χ(n)

ns
.

The definition exhibits the Dirichlet series ex-
pansion which converges absolutely and makes
L a holomorphic function for #(s) > 1. It is
equal to the Euler product

∏
p

1

1− χ(p)
ps

over primes p. It can be extended as a mero-
morphic function over C. If χ is defined to be
identically 1, the Riemann ζ -function itself is
obtained. The two functions have many sim-
ilar properties. For example, the study of the
location of zeroes of the L-function leads to a
generalized Riemann hypothesis.

(2) HeckeL-functions and HeckeL-functions
with grössencharakters are generalizations of
the Dirichlet L-functions to algebraic number
fields. OtherL-functions that can be considered
generalizations of these include those of Artin
and Weil involving Galois extensions of an al-
gebraic number field. There are L-functions as-
sociated with algebraic varieties defined over fi-
nite fields, p-adic L-functions defined over the
p-adic number field Qp, and automorphic L-
functions defined both for the general linear
group and for arbitrary reductive matrix groups.
See Hecke L-function, Artin L-function, Weil
L-function.

(3) A separate meaning of L-function occurs
in the area of mathematical analysis where an
L-function is defined as a continuous function
f : [a.b]×Kn −→ Kn (where [a, b] is a closed
real interval andKn denotes complex Euclidean
n-space) that is uniformly Lipschitzian in the
second variable, i.e., there is a constant L, the
Lipschitz constant of f , such that, for all t ∈
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[a, b], x ∈ Kn, y ∈ Kn we have

‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖ .
In such a circumstance, the initial value problem

dx

dt
= f (t, x), x(a) = c

has a unique solution for all c ∈ Kn.

Lie algebra A theory named after the Norwe-
gian mathematician M.S. Lie (1842–1899) who
pioneered the study of what are now called Lie
Groups.

Over a commutative ring with unit K , a Lie
algebra is aK-module together with aK-module
homomorphism x ⊗ y → [x, y] of L⊗ L into
L such that, for all x, y, z ∈ L,

[x, x] = 0

and

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 .

The product [x, y] is called a bracket product
and is an alternating bilinear function. The sec-
ond equation is called the Jacobi identity.

An example of a Lie Algebra is obtained for
an associative algebra L over K by defining

[x, y] = xy − yx .

Lie algebra of Lie group There are three
Lie algebras that are called a Lie algebra of a
Lie group G. (See Lie algebra.)

(1) The Lie algebra of all left invariant deriva-
tions on G with the bracket product [D1,D2]
defined for two derivations D!,D2 as D1D2 −
D2D1.

(2) The Lie algebra of all left invariant vector
fields on G with the bracket product of two left
invariant vector fieldsX and Y defined using the
natural isomorphism between the vector space
of left invariant vector fields and the vector space
of left derivations of G.

(3) The Lie algebra of all tangent vectors to
G at e with the bracket product between tangent
vectors defined using the natural isomorphism
between the space of left invariant vector fields
ofG and the space of tangent vectors ofG at e.

The fact that the three Lie algebras defined
above are isomorphic allows some flexibility in
applications of the theory.

Lie group A groupG, together with the struc-
ture of a differentiable manifold over the real or
complex number field, such that the functions
f : G × G → G and g : G → G defined
by f (x, y) = xy and g(x) = x−1 are differen-
tiable.

The additive groups of the fields of real or
complex numbers are Lie groups. The group of
invertiblen×nmatrices over the real or complex
number fields is a Lie group.

In addition to providing a thriving branch of
mathematics, Lie groups are used in many mod-
ern physical theories including that of gravita-
tion and quantum mechanics.

Lie-Kolchin Theorem Let V be a finite di-
mensional vector space over a field k. Let G
be a connected solvable linear algebraic group.
Let GL(V ) be the general linear group. Let
f : G → GL(V ) be a linear representation.
Then f (G) can be put into triangular form.

Alternate conclusions in the literature include
the following: (i.) Then f (G) leaves a flag in
V invariant. (ii.) Then there exists a basis in
V in which elements of f (G) can be written as
triangular matrices.

This theorem has been generalized by
Mal’tsev.

Lie’s Theorem There are several theorems
which bear the name and honor the Norwe-
gian mathematician M.S. Lie (1842–1899) who,
among other things, founded the theory of Lie
groups. For solvable Lie algebras, the follow-
ing version of Lie’s Theorem is considered an
important tool.

The irreducible representations of a finite di-
mensional, solvable Lie algebra over an algebra-
ically closed field of characteristic zero all are
one-dimensional.

Lie subalgebra LetK be a commutative ring
with unit. A Lie subalgebra is a subalgebra of
a Lie algebra (meaning a K-submodule that is
closed under the bracket product of the Lie al-
gebra). A Lie subalgebra is a Lie algebra. See
Lie algebra.
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Lie subgroup A subset of a Lie group G
which is both a subgroup of G and a submani-
fold ofG (with both structures being induced by
those of G). (See Lie group.) As an example,
an open subset which is also a subgroup of a Lie
group is a Lie subgroup.

like terms In an algebraic expression in sev-
eral variables, terms with identical factors raised
to identical powers (excluding values of coeffi-
cients). Like terms are usually collected and
combined using rules of arithmetic and associa-
tive, commutative, and distributive laws.

3x2y5z and − 2x2y5z

are like terms.

limit ordinal In the theory of ordinal num-
bers, a non-zero ordinal which does not have a
predecessor.

line (1) In classical Greek geometry, a line is
an undefined term characterized by axioms and
understood by intuition. A line is considered to
be straight and to extend without bound. In ev-
eryday usage, the words line and straight line are
used interchangeably, and although in this con-
text the word straight is somewhat redundant, it
is still universally used. (An archaic synonym
is right line.) Curves that can be drawn without
interruption are sometimes called lines.

(2) In plane analytic geometry, the graph or
set of points described by a linear equation in
two variables x and y, given by ax + by = c

(where a, b, c are real numbers) is a line. This
equation, or alternatelyax+by+c = 0, is called
the general equation of a line. The graph of a
real valued function f of a real variable, given
(for real numbers a, b) by f (x) = ax + b, for
each real number x, is a non-vertical line. The
number a is called the slope of the line. With
b = 0, there is a one-to-one correspondence
between non-vertical lines and slopes. For a
curve, the word slope is used more generally at
a point on the curve as the slope of the tangent
line to the curve at the point (if it exists). In this
context, a line can be described as a curve with
a constant slope.

The line passing through the two points (x1,

y1) and (x2, y2) in the Euclidean plane is de-

scribed as the set of all points (x, y) such that

x = x1 if x2 = x1

and

y − y1 = y2 − y1

x2 − x1
(x − x1) if x2 �= x1 .

The equation is called the two point form of the
equation of a line. Also, a line has a parametric
representation as the set of pairs (x, y) such that,
for each real number t ,

(x, y) = (1− t) (x1, y1) + t (x2, y2) .

(3) In affine geometry, where V is a finite
dimensional vector space over a field k, a line
is a one-dimensional affine space. If a, b are
distinct points, the line joining a and b can be
described as the set of all points of the form

(1− t)a + tb, for t ∈ k .
(4) In projective geometry, a line is a one-

dimensional projective space.
(5) Many areas of mathematics endow a line

with properties, resulting in such concepts as
parallel lines, half line, the real line, broken line,
tangent line, secant line, line of curvature, long
line, extended line, normal line, perpendicular
line, orthogonal line, line method (in numerical
analysis), etc.

linear (1) Like or resembling a line. One
of the most used terms in mathematics. Many
fields of mathematics are separated into linear
and non-linear subfields; e.g., the field of dif-
ferential equations. The adjective is also used
to specify a subfield of investigation; e.g., linear
algebra, linear topological space, linear (or vec-
tor) space, linear algebraic group, general lin-
ear group, etc. Also, the term is used to specify
a special subtype of object; e.g., linear combi-
nation, linear equation, linear function, linear
order, linear form, etc. See the nouns modified
for further explanation.

(2) If V,W are vector (linear) spaces over a
field k, a mappingL : V −→ W is called linear
ifL is additive and homogeneous. Equivalently,
L is linear if, for each α, β ∈ k and x, y ∈ V ,

L(αx + βy) = αL(x)+ βL(y) .
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(Note that the same symbolism for the vector
space operations was used for both vector spaces.)

linear algebra (1) A set L which is a finite
dimensional vector (or linear) space over a field
F such that for each a, b ∈ F and eachα, β, γ ∈
L,

α(βγ ) = (αβ)γ (associative law)

α(aβ + bγ ) = a(αβ)+ b(αγ ) (bilinearity)

(aα + bβ)γ = a(αγ )+ b(βγ ) .
(2) A mathematical theory of “linear alge-

bras.” University mathematics departments usu-
ally offer an undergraduate course where the lin-
ear algebras of matrices and linear transforma-
tions are studied.

linear algebraic group An abstract group
G, together with the structure of an affine alge-
braic variety, such that the product and inverse
mappings given by

µ : G×G→ G, (x, y) '→ xy

i : G→ G, x '→ x−1

are morphisms of affine algebraic varieties. Al-
ternately, such an algebraic group is called an
affine algebraic group. The ground field K is
assumed to be an arbitrary infinite field.

Probably the most important example of a lin-
ear algebraic group is the general linear group
GLn(K) or GLn(U), where U is a finite di-
mensional vector space over K . Since GLn(K)
is an open subset (with respect to the Zariski
topology) of the algebra on n× nmatrices over
K , it inherits the affine variety structure. Also,
polynomials on GLn(K) are realized as rational
functions in matrix elements with denominators
being powers of determinants. It follows that the
product and inverse mappings are morphisms of
affine algebraic varieties.

Another definition of a linear algebraic group
is a subgroup of the general linear group GLn
(U) which is closed in the Zariski topology,
where U is an algebraically closed field that
has infinite transcendence degree over the prime
field K . Since this subgroup is an algebraic
group, it can be called an algebraic linear group
as well. Now, there is an isomorphism between

a group defined by the first definition and one
defined by the second. So, the distinction is
only important when the word linear or affine
is omitted from the first definition, as is some-
times done in textbooks.

linear combination Let x1, x2, . . . , xn be el-
ements of a vector space V over a fieldF . A lin-
ear combination of the elements x1, x2, . . . , xn
over F is an element of the form

a1x1 + a2x2 + · · · + anxn
where a1, a2, . . . , an ∈ F .

Linear combination is a fundamental concept
in the theory of vector spaces and is used, among
other things, to define concepts of linear inde-
pendence of vectors, basis, linear span, and the
dimension of the vector space.

linear difference equation An equation of
the form

a0xn + a1xn−1 + · · · + akxn−k = bn
where a0, a1, . . . , ak are scalars and a0ak �= 0,
is called a linear difference equation of order
k. The equation is called non-homogeneous if
bn �= 0 and homogeneous if bn = 0. Such re-
cursive equations are important in many fields
of numerical analysis; e.g., in finding zeros of
polynomials and in determining numerical so-
lutions of ordinary and partial differential equa-
tions. Writing the above difference equation in
terms of the operator Dxn = xn − xn−1 and its
powers, one can exploit the analogy with linear
differential equations.

linear disjoint extension fields Two fields,
K and L, that are extensions of another field, k,
and are themselves contained in a common ex-
tension field are called linearly disjoint if every
subset of L that is linearly independent over k
is also linearly independent over K .

linear equation Let k be a commutative ring.
Let a, b ∈ k. Then an expression of the form

ax + b = 0

is called a linear equation in one variable x.
Let m ≥ 1. Let k[x1, . . . , xm] be a polyno-

mial ring over k. A linear equation is formed
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by setting a linear form equal to zero. In other
words, a linear equation in m variables is given
by an equation

a0 + a1x1 + · · · + amxm = 0 ,

where a1, . . . , am ∈ k.
In analytic geometry, where k is the real num-

ber field, a linear equation in m variables de-
scribes a line if m = 2, a plane if m = 3, and a
hyperplane if m > 3.

linear equivalence Any one of several simi-
lar equivalence relations defined on schemes or
algebraic varieties. Generally speaking, if X is
one of these structures and if the concepts of
divisor and principal divisor are defined, then
two divisors are related if their difference is a
principal divisor. The relation is an equivalence
relation, called a linear equivalence. The equiv-
alence classes form a group (See linear equiva-
lence class.)

More specifically, let X be a complete, non-
singular algebraic curve defined over an alge-
braically closed field k. Two divisors on X are
said to be linearly equivalent if their difference
is a principal divisor. A similar definition can
be made for nonsingular algebraic surfaces. See
divisor, principal divisor of functions.

More abstractly, let X be a Noetherian in-
tegral separated scheme which is nonsingular
in codimension one. The divisor d1 is called
linearly equivalent to d2 if their difference is a
principal divisor.

The definition can be extended to general
schemes by using Cartier divisors. See Cartier
divisor.

linear equivalence class An equivalence
class determined by the equivalence relation
called a linear equivalence defined on the di-
visors of an algebraic variety or a scheme. The
equivalence classes form a group which is one of
the intrinsic invariants of the variety or scheme.
See linear equivalence.

linear extension Let Y be a nonsingular al-
gebraic curve over a field k. Let J denote the
Jacobian variety of Y . Let φ be the canonical
function on Y (with values in J ). Let A be an
Abelian variety. Then for any function f on Y
into A, there exists a homomorphism h from J

into A such that f = h ◦ φ. The function h is
called the linear extension of f and is unique.
See Jacobian variety. See also canonical func-
tion, Abelian variety.

linear form (1) Also called linear functional.
A linear function or transformation from a linear
(vector) space V over a field F into the field F
(where the field is considered to be a linear space
over itself).

(2) An expression in n variables x1, . . . , xn
of the type

a1x1 + a2x2 + · · · + anxn + b
where a1, . . . an, b are elements of a commuta-
tive ring and at least one coefficient is not 0. If
b = 0, the form is called homogeneous.

linear fractional function A function f with
domain and range either the complex numbers
or the extended complex numbers and defined
for numbers a, b, c, d with ad − bc �= 0 by

f (z) = az+ b
cz+ d .

Linear fractional functions are univalent, mero-
morphic functions that map each circle and line
in the complex plane to either a circle or a line.
The class includes rigid motions, translations,
rotations, and dilations. It is a subset of the class
of rational functions, being those rational func-
tions of order 1. Using function composition as
the binary operation, the set of linear fractional
transformations forms a group. They play an
important role in the study of the geometric the-
ory of functions.

Also called linear fractional transformation,
linear transformation, Möbius transformation,
fractional linear transformation, and conformal
automorphism. See also linear fractional group.

linear fractional group A group of func-
tions formed by the set of linear fractional func-
tions defined on the complex plane or extended
complex plane using composition as the group
operation. The quotient group of the full linear
group modulo the subgroup of nonzero scalar
matrices is isomorphic to the linear fractional
group. Both groups are called linear fractional
in the mathematical literature. See linear frac-
tional function.
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linear fractional programming Determin-
ing the numerical solution of the problem of op-
timizing a function resembling the linear frac-
tional functions of complex analysis subject to
linear constraints. Linear programming meth-
ods are usually employed in the solution either
by a simplex-type method or by using the solu-
tion of an associated linear programming prob-
lem with additional constraints to solve the lin-
ear fractional problem. Specifically, letA be an
m× n matrix; let a, c be vectors in Rn; let p be
a vector in Rm; and, let b, c ∈ R. Then a linear
fractional programming problem is to minimize

a·x + b
c·x + d

subject to

Ax = p and x ≥ 0 .

linear fractional transformation Classically,
a function on the complex plane having the form
H(z) = [az+b]/[cz+d] for complex constants
a, b, c, d. There are analogs of this definition
on any Euclidean space.

linear function (1) A functionLwith domain
a vector space U over a field F and range in a
vector space V over F which is additive and
homogeneous. This means, for each x, y ∈ U
and for each α ∈ F ,

L(x + y) = L(x)+ L(y) (additivity)

and

L(αx) = αL(x) (homogeneity) .

The terms linear transformation and linear map-
ping are also used to describe a function satisfy-
ing these conditions and L is sometimes called
a linear operator. If F is regarded as a one-
dimensional vector space over itself and if V =
F , then L is called a linear functional or linear
form.

(2) If a function f has the real or complex
numbers as its domain and range, it is called
linear if for some constants a, b, a �= 0, and
for each x,

f (x) = ax + b .

For real valued functions of a real variable, the
graph of a linear function (in this context) is
a straight line. More properly, such functions
should be called affine, but the usage linear func-
tion is universal.

(3) See also linear fractional function.

linear genus Let X be a nonsingular alge-
braic surface. If X has a minimal model M ,
then the linear genus of X is an invariant equal
to the arithmetic genus of a canonical divisor
of M . If X is not a ruled surface, then X has
a minimal model and thus a linear genus. See
minimal model. See also arithmetic genus.

linear inequality In analytic geometry, a lin-
ear inequality in m variables in Euclidean m-
dimensional space is a linear form set less than,
less than or equal to, greater than, or greater than
or equal to zero. For example, the inequality

a0 + a1x1 + · · · + amxm > 0 ,

where a0, a1, . . . , am are real numbers, is a lin-
ear inequality.

If m = 2, the set of pairs of real numbers
satisfying a linear inequality constitutes a half-
plane bounded by the line given by the associ-
ated linear equation.

linear least squares problem A problem
where a linear function is to be found which best
approximates a given set of data in the sense that
the sum of the squares of the errors in such an
approximation is minimized.

linearly dependent elements A set of ele-
ments that satisfies some linear relation. More
specifically, a set of elements {x1, x2, . . . , xN }
in a vector space is linearly dependent over a
field F (such as the real or complex number
systems) if there exists α1, . . . , αN ∈ F , not
all zero, with α1x1 + · · · + αNxN = 0. Exam-
ples include a set of two co-linear vectors or a
set of three co-planar vectors.

linearly dependent function A function
which depends linearly on its input variables.
More precisely, a function f (x1, . . . , xN) is a
linearly dependent function if f (x1, . . . , xN) =
α1x1 + · · · + αNxN , where each αi belongs to
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some given field, such as the real or complex
number system.

linearly independent elements A set of el-
ements which is not linearly dependent. More
precisely, a set of elements {x1, x2, . . . , xN } in
a vector space is linearly independent over a
fieldF (such as the real or complex number sys-
tems) if, whenever α1x1 + · · · + αNxN = 0 for
α1, . . . , αN ∈ F , then necessarily all theαi must
be zero. Examples include a set of two vectors
which are not co-linear or a set of three vectors
which are not co-planar.

linear mapping A function from one vec-
tor space to another L : V '→ W , which pre-
serves the vector space operations, i.e.,L(r1v1+
r2v2) = r1L(v1)+r2L(v2) for all vectors v1, v2
∈ V and all scalars r1 and r2. Examples include
multiplication of an n-dimensional vector by an
m × n matrix (here V and W are Rn and Rm,
respectively) or the operation of differentiation
(here both V andW are spaces of functions with
appropriate differentiability).

Also called linear transformation, linear op-
erator.

linear pencil Given two linear transforma-
tions, or matrices, A and B, the family A+ λB,
where λ is any scalar parameter, is called the
(linear) pencil defined by A and B.

linear programming The study of optimiz-
ing a linear function over a convex, linear con-
straint set. Linear programming arises in eco-
nomics from the desire to maximize revenue or
minimize cost (from some economic process)
subject to constrained resources.

linear programming problem A problem
in which a linear function of one or more in-
dependent variables is maximized or minimized
over a convex polygonal region. For example, to
maximize the function L(x) = 3x1+2x2+5x3
over the set {2x1+3x2+5x3 ≤ 5, x1, x2, x3 ≥
0}. Often such a problem arises in economics,
where the linear function to be maximized or
minimized represents revenue or costs and the
polygonal constraint region represents the limi-
tation of resources.

linear representation IfG is a group, a linear
representation of G is a group homomorphism
of G into the invertible linear transformations
on some vector space.

linear simple group Denoted Ln(q), where
q is a non-zero power of a prime number, it
is one of the classical finite simple groups. It
may be identified as the projective special linear
group over a finite field of order q, and denoted
PSL(n, q). Let d be the greatest common divi-
sor ofn and q−1. The possible orders of a linear
simple group are qn(n−1)/2(

∏n
i=2(q

i − 1))/d;
where n ≥ 3, or n = 2 and q ≥ 4.

linear stationary iterative process A meth-
od of using successive approximation to solve
the system of linear equations Ax = b when
A is a non-singular matrix. A method is called
iterative if the operations used to get from one
approximation to the next are nearly the same.
If successive steps are exactly the same, the
method is called stationary. The linear station-
ary iterative process may be written as x(k+1) =
x(k)+R(b−Ax(k)), where R is an approxima-
tion to A−1 and x(0) = Rb. With this definition
x(r) = (I + C + C2 + · · · + Cr)Rb where
C = I − RA and I is the identity. R is some-
times referred to as the key matrix and I − RA
is called the iteration matrix.

linear system A finite set of simultaneous
equations that depends linearly on its inputs. For
example,

3x + 2y = 5

−x + 4y = 7

is a linear system of equations involving the two
unknowns x and y. Another example is a linear
system of differential equations, which is a sys-
tem of differential equations where each one is
of the form

L[f ] = α1(x)
∂f

∂x1
+· · ·+αN(x) ∂f

∂xN
= β(x)f

where the αi and β are functions of the indepen-
dent variables x = (x1, . . . , xN) (in particular,
they do not depend on the function f ). The
class of linear systems of differential equations
is the simplest class of differential equations to
understand and solve.
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linear transformation See linear mapping.

L-matrix See sign pattern.

local class field theory The theory of Abel-
ian extensions of local fields; for example, the p-
adic number fields. Early results were obtained
using the techniques inherited from (global)
class field theory. Other techniques in use in-
clude those from the theory of cohomology of
groups, algebraic K-theory, and the theory of
formal groups over local fields. Some of the
main results of local class field theory include
an isomorphism theorem and an existence theo-
rem. Let K∗ denote the multiplicative group of
K . The set of all finite Abelian extensions L/K
with Galois groupG is in one-to-one correspon-
dence with the norm subgroup N = NL/K(L∗)
of K∗. This correspondence yields a canonical
isomorphism from G to K∗/N . The existence
theorem states the converse. Any open subgroup
of finite index in K∗ can be realized as a norm
subgroup for some Abelian extension L of K .
See also class field theory.

local coordinates A set of functions on a
manifoldM near a point p, which forms a one-
to-one map of a neighborhood inM of the point
p onto a neighborhood in Euclidean space (i.e.,
RN or CN ). Local coordinates are used to per-
form operations, such as differentiation or inte-
gration, to functions on a manifold by pulling
them back to Euclidean space where such oper-
ations are simpler to understand.

local equation An equation of the form
f (x) = 0 which locally (i.e., in a neighborhood
of some given point) describes a codimension
one, irreducible variety.

local field A field that is complete with re-
spect to a discrete valuation and has a finite
residue field. A local field with finite character-
istic is isomorphic to the field of formal power
series in one variable over a finite field. If the
local field has characteristic 0, then it is isomor-
phic to a finite algebraic extension of the field of
p-adic numbers (Qp). The term has also been
applied to discretely valued fields with arbitrary
residue fields. In particular, real and complex
number fields have been called local fields.

local Gaussian sum Some constants in
number theory. Hecke (1918, 1920) extended
the notion of character by introducing the
Grössencharackter χ and defining L-functions
with such characters: Lk(s, χ) = ∑

a
χ(a)
N(a)

.
If we denote by ξk(s, χ) a certain multiple of
Lk(s, χ), then ξk(s, χ) satisfies a functional
equation ξk(s, χ) = W(χ)ξk(1 − s, χ̄) where
W(χ) is a complex number with absolute value
1. Such ξk(s, χ) can be represented by an in-
tegral form ξk(s, χ) = c

∫
Jk
φ(t)χ(t)V (t)sd∗t ,

where V (t) is the total volume of the ideal t , c
is a constant that depends on the Haar measure
d∗t of the ideal group Jk of the given field k, and
the φ(x) satisfies

∫
kp

φ(x)χp(x)Vp(x)
−1d∗x =

CpN
(
(δf )p

)s
τp

(
χp

) · µ (
Uf,p

)
, p|f .

Here τp(χp) is a constant called the local Gaus-
sian sum.

localization The process used to construct
the field of fractions from an integral domain (a
ring with no non-zero zero divisors). An exam-
ple is the construction of the rational numbers
(fractions) from the integers.

locally constructible sheaf Let Xét be the
étale site of a schemeX. A sheaf onXét which is
represented by an étale covering ofX is called a
locally constructible (or locally constant) sheaf.

locally convex topological space A topolog-
ical vector space with a basis for its topology,
whose members are convex.

locally finite A term used in several different
contexts. A typical example comes from the
theory of coverings: Let U = {Uα}α∈U be a
covering of a set E. If each e ∈ E is contained
in only finitely many of theUα , then the covering
U is said to be locally finite.

locally finite algebra An algebra with the
property that any finite number of its elements
generate a finite-dimensional subalgebra.

locally Noetherian scheme A scheme that
can be covered by open affine subsets, each of
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which is a Noetherian ring. See scheme. This
concept arises from the subject of algebraic ge-
ometry.

local Macaulay ring A local ring, which, as
a module over itself, has dimension equal to the
number of maximal regular sequences within its
maximal ideal. This class includes all Noethe-
rian rings. This concept arises in commutative
algebra.

local maximum modulus principle A basic
theorem in Banach algebras (due to Rossi) that
states that the Shilov boundary of the space, A,
of analytic functions on an open set U ⊂ Cn is
contained in the topological boundary ofU . See
Shilov boundary.

local parameter A mathematical quantity
that is only defined on a small open subset, such
as a neighborhood of a particular point. Some-
times a function, defined so as to depend upon
such a quantity, can be described by a local pa-
rameter near a given point, but not a global pa-
rameter.

local ring A ring �= {0} which has only one
maximal ideal. Local rings are of central impor-
tance to commutative algebra.

logarithm The logarithm of a numberN > 0
to a given base b > 0 (b �= 1), denoted logb N ,
is the unique number x with N = bx . For ex-
ample, log2 8 = 3 and log10 1/100 = −2. Of
particular importance is the natural logarithm,
denoted lnN or logN , where the base is the
number e = lim

h→∞(1+ 1/h)h = 2.718 . . . .

More rigorously, one may define logarithm
to the base e by

log x =
∫ x

1
t−1 dt

and logb x = log x/ log b.

logarithmic equation Any equation involv-
ing logarithms. For example, log10(x + 8) +
log10(x − 7) = 2.

logarithmic function The function logb(x)
for some given positive base b (b �= 1). See
logarithm.

The logarithm function is used to describe
many physical phenomenon. For example, the
Richter scale for earthquakes is defined in terms
of the logarithm of the energy produced by earth-
quakes.

logarithm of a complex number A loga-
rithm of a complex number z is any number w
with ew = z. The logarithm of a complex num-
ber is not unique, since the exponential function
is periodic with period 2πi (i.e., ew+2πi = ew),
if w is a logarithm of z, then w + 2πki is also
a logarithm of z for any integer k. The prin-
cipal value of the logarithm of z is the unique
logarithm whose argument is between −π and
π .

More rigorously, log z may be defined as
log |z| + 2πi arg(z), where log |z| is defined,
as the logarithm of a positive real number and
arg(z) is the argument of z. See logarithm.

long division The long division of a number
g by a number f is the process of finding unique
numbersq and r withg = f q+r where r (called
the remainder) is less than g. Often long divi-
sion involves repeating the process so that r =
f q1+r1, with r1 < r . Thus, one obtains smaller
and smaller remainders r, r1, r2, . . . , with rn/f
tending to 0, so that q + q1 + q2 + · · · + qn is a
better and better approximation to g/f .

This process can be applied to elements
of other rings, such as the ring of polynomi-
als, where there is some notion of comparison
(greater than or less than). In the ring of polyno-
mials, the remainder is required to have degree
smaller than q.

long multiplication The process of multi-
plying two multi-digit numbers that involves ar-
ranging the intermediate products into columns.
For example,

452

621

452

904

2712

280692
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loop Any one-dimensional curve (defined as
the image of a continuous function defined on
the unit interval) in a topological space, which
starts and ends at the same point. The space of
all loops which pass through a given base point
is fundamental to the field of Homotopy theory,
a subfield of topology.

Lorentz group Another name for the group
O(1, 3), which is the group of all 4×4 matrices
Awith real entries that preserve the bilinear form
F(x, y) = −x0y0 + x1y1 + x2y2 + x3y3 (i.e.,
F(Ax,Ay) = F(x, y)). The Lorentz group
(as well as all the groups O(1, n)) are basic to
the study of differential geometry. The Lorentz
group in particular is important in the study of
relativity (mathematical physics).

lower bound For a set S of real numbers,
any number which is less than or equal to all
elements in S. For example, any number which
is less than or equal to zero is a lower bound for
the set {x : 0 ≤ x ≤ 1}.
lower central series A descending chain
of subalgebras D1G, D2G, . . . , associated to a
given Lie algebra G, defined inductively as fol-
lows: D1G = [G,G] (which means the set of
all Lie brackets of an element inGwith any other
element in G); DkG = [G,Dk−1G]. This con-
cept is of fundamental importance in the classi-
fication of Lie algebras.

lower semi-continuous function LetX be a
topological space and f : X → R a function.
Then f is said to be lower semi-continuous if
f−1((β,∞)) is open for every real β.

lower triangular matrix Any square matrix
A = (aij ) with zero entries above the diagonal
(aij = 0 for j > i). Any set of linear equa-
tions (A · x = b) arising from a lower triangular
matrix can be solved easily by solving the first

equation a11x1 = b1 for x1 and then forward
substituting in the subsequent equations to solve
for x2, x3, . . . .

lowest terms The form of a fractional ex-
pression with no factor that is common to both
numerator and denominator. For example, 3/4
is a fraction in lowest terms, but 6/8 is not, be-
cause of the common factor of 2.

loxodromic transformation One of several
classification schemes for linear fractional func-
tionsw = az+b

cz+d in one complex variable. If such
a transformation has two distinct finite fixed
points α and β, then the transformation can be
put into the following normal form:

w − α
w − β = k

z− α
z− β

where

k = a − cα
a − cβ .

If arg k = 0, the transformation is called hy-
perbolic; if |k| = 1 the transformation is called
elliptic; otherwise the transformation is called
loxodromic.

See linear fractional function.

Luroth’s Theorem Suppose L is the field
obtained by adjoining an element α to a field
F where α is transcendental over F ; if E is a
field with F ⊂ E ⊂ L, then E is obtained by
adjoining some element β ∈ E to F .

Lutz-Mattuck Theorem The group of ra-
tional points of an Abelian variety of dimen-
sion n over the p-adic number field contains a
subgroup of finite index that is isomorphic to n
copies of the ring of p-adic integers.

The theorem is named after its authors E. Lutz
(1937) and A. Mattuck (1955).
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M
Macaulay local ring See local Macaulay
ring.

Main Theorem (class field theory) If k is
an algebraic number field, then any Abelian ex-
tension of fields K/k is a class field over k, for
a suitable ideal group H .

Main Theorem (Galois Theory) See Fun-
damental Theorem of Galois Theory.

Main Theorem (Symmetric Polynomials)
See Fundamental Theorem of Symmetric Poly-
nomials.

mantissa The fractional part of a number in
its decimal expansion. For example, the man-
tissa of the number 3.478 is 0.478.

mapping Another name for function. See
function.

mathematical programming A process of
breaking down a mathematical problem into its
component steps so that it can be solved by a
computer.

mathematical programming problem A
mathematical problem that can be solved by pro-
gramming, i.e., by breaking it down into its com-
ponent steps so that it can be solved by a com-
puter.

Mathieu group Most non-Abelian finite sim-
ple groups can be classified into a list of infinite
families. There are 26 exceptional “sporadic”
groups that cannot be classified in this way. The
smallest of these groups has 7920 elements and
is named after its discoverer, E. Mathieu (1861).

matrix A rectangular array of numbers or
other elements:

a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .

am1 am2 . . . amn

 .

Here n represents the number of columns and
m the number of rows. These are indicated by
designating the above array an m× n matrix.

Matrices arise in many fields, such as linear
algebra. The most common use for a matrix is
to represent a linear mapping from one vector
space to another.

matrix group The set of all invertible square
matrices of a given dimension, under matrix
multiplication. This group is one of the simplest
and widely used groups where the multiplication
operation is not commutative.

Subgroups of the above group may also be
referred to as matrix groups.

matrix multiplication The process of mul-
tiplying two matrices A and B:

a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .

am1 am2 . . . amn

 ,


b11 b12 . . . b1r
b21 b22 . . . b2r

. . . . . .

bs1 bs2 . . . bsr

 .

The number of columns of the left matrixAmust
be equal to the number of rows of the second
matrix B (n = s). The ij entry of the product,
A · B is the sum

∑n
k=1 aikbkj .

The matrix product AB is the matrix of the
composition of the linear transformations with
matrices B and A.

matrix of a quadratic form For the qua-
dratic form on Rn

Q(x) =
n∑

i,j=1

aij xixj ,

where each aij is a real number, the matrix (aij ).
Usually there are further requirements, such as
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that this matrix must be symmetric (aij = aji)
and positive definite (Q(x) ≥ c|x|2 for some
positive constant c).

matrix of coefficients The matrix obtained
from the coefficients of the variables in a system
of linear equations. For example, the matrix of
coefficients of the linear system{

2x + 3y = 5
x + 5y = 7

}
is the matrix (

2 3
1 5

)
.

The solution to a system of linear equations is
usually found by manipulating its matrix of co-
efficients (together with the right side of the
equation).

matrix representation (1) A representation
of a group on a matrix group. See representation.

(2) A matrix which is used to describe a math-
ematical process or object. A common exam-
ple is to represent a linear map from one vector
space to another by a matrix by identifying the
coefficients of the expansion of the linear map in
terms of given bases for the domain and range.
Such a representation depends strongly on the
choice of bases.

For example, if V and W are vector spaces
with bases {v1, . . . , vn} and {w1, . . . , wm}, the
mapT : V → W which satisfiesT vj = ∑m

1 aij
wi has the matrix representation

a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .

am1 am2 . . . amn

 .

matrix unit The i, j matrix unit is an n ×
m matrix which has a 1 in the i, j entry and
zeros elsewhere. The collection of all matrix
units forms a basis for the vector space of n×m
matrices. Despite its name, a matrix unit is not
a unit in the algebraic sense (it does not have a
multiplicative inverse).

Mauer-Cartan differential form A differ-
ential 1-form on a Lie group which is invariant
under the group action. In more detail, for a

fixed element g in the Lie group G, the map-
ping Tg : G �→ G defined by x �→ g · x is a
differentiable map. A Mauer-Cartan form is a
1-form ν defined on G which has the property
that, for any g ∈ G, the pull back of ν via Tg is
again ν.

Mauer-Cartan system of differential equa-
tions The system of differential equations
satisfied by a set of left-invariant 1-forms that
allows one to recover the multiplication opera-
tion of the underlying Lie group.

maximal deficiency A geometric invariant
of an algebraic surface, defined as the first co-
homology group with values in the sheaf of 0-
forms (smooth functions).

maximal ideal An ideal is maximal in a ring
R if it is not properly contained in another ideal
other than R itself. See ideal.

maximal ideal space The collection X̂ of
all multiplicative linear functionals on a Banach
algebra or function algebra X. X̂ is so called
because the kernel of each such functional is a
maximal ideal in X.

maximal independent system A linearly in-
dependent system of vectors in a vector space,
with the property that any additional vector
would make the system dependent. See linearly
independent elements. For example, a set of
three non-coplanar vectors in R3 is a maximal
independent system because if any fourth vec-
tor is added, the system becomes linearly depen-
dent.

maximal order The largest order of any ele-
ment in a group, where the order of an element
g is the smallest positive integermwith gm = e,
the identity element in the group.

maximal prime divisor (Of an ideal I of a
commutative ringR.) A prime idealP ofR such
that P is maximal, as an ideal of R containing
I , and is disjoint from the set of elements of R
which are not zero-divisors, modulo I .
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maximal prime ideal A prime ideal of a ring
R which is not properly contained in a prime
ideal other than R itself. See prime ideal.

maximal separable extension A separable
extension field of a fieldF which is not properly
contained in any other separable extension field
of F . See separable extension.

maximal torus Let G be a Lie group. A
torus H in G is a connected, compact, Abelian
subgroup. If, for any other torus H ′ in G with
H ′ ⊇ H we have H ′ = H , then H is said to be
maximal.

mean Any of a variety of averages.
(1) The mean of a set of numbers is their sum

divided by the number of entries in the set. More
precisely, the mean of x1, . . . , xN is (x1 +· · ·+
xN)/N . The mean is one of the basic statistical
quantities used in analyzing data.

(2) The mean of a function f (x), defined on a
set S, is a continuous analog of the mean defined
above:

1

|S|
∫
S

f (x)dx ,

where |S| denotes the length, or volume, of S.
See also mean of degree r.

mean of degree r Of a function f , with re-
spect to a weight function p, the quantity(∫

f rp dx∫
p dx

)1/r

.

In other words, the mean of degree r of f is
the Lr norm of f with respect to the probability
measure generated by the weight function p.

mean proportional A mean proportional be-
tween two numbers a and b is the numberm such
that a/m = m/b.

mean terms of proportion The terms b and
c in the proportion a/b = c/d . (In older works,
the proportion is sometimes written a : b :: c :
d.)

measurable operator function For a set X,
a σ -algebra , on X and a Hilbert space H, a

function F from X to the set of bounded opera-
tors on H, such that, for any vector h ∈ H, the
function x �→ (F (x)h, h) is , measurable.

measurable vector function The space of
measurable vector functions is a set K of func-
tions, from a measure spaceM to a Hilbert space
H, (·, ·) with the following properties: (i.) if

x ∈ K , then ||x|| = (x(ζ ), x(ζ ))
1
2 is a measur-

able (scalar) function; (ii.) for any x and y ∈
K , (x, y) is measurable, and (iii.) there is a
countable family {x1, x2, . . . } fromK such that
{x1(ζ ), x2(ζ ), . . . } is dense inH . The definition
also allows for the Hilbert spaceH to depend on
ζ .

measure Let X be a space and let A be a
sigma field onX. A measure onX is a function
µ : A → R that satisfies certain additivity or
subadditivity properties, such as countable ad-
ditivity. See additive set function. A measure is
a device for measuring the length or the size of
a set.

median A midway point in a data set. For
a discrete data set, half the data points are less
than or equal to the median and half are greater
than or equal to the median. More generally,
the median for a distribution ρ on a probability
space {X,p} is a numberm such that the proba-
bility of the event that f (x) is less than or equal
tom is greater than or equal to 1/2 and the prob-
ability of the event that f (x) is greater than or
equal to m is greater than or equal to 1/2.

meet In a lattice, the infimum or greatest
lower bound of a set of elements. Specifically,
if A is a subset of a lattice L, the meet of A
is the unique lattice element b = ∧{x : x ∈
A} defined by the following two conditions: (i.)
x ≥ b for all x ∈ A. (ii.) If x ≥ c for all x ∈ A,
then b ≥ c. The meet of an infinite subset of
a lattice may not exist; that is, there may be no
element b of the lattice L satisfying conditions
(i.) and (ii.) above. However, by definition,
one of the axioms a lattice must satisfy is that
the meet of a finite subset A must always exist.
The meet of two elements is usually denoted by
x ∧ y.

There is a dual notion of the join of a sub-
set A of a lattice, denoted by

∨{x : x ∈ A},
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and defined by reversing the inequality signs in
conditions (i.) and (ii.) above. The join is also
called the supremum or least upper bound of the
subset A. Again, the join of an infinite subset
may fail to exist, but the join of a finite subset
always exists by the definition of a lattice.

meet irreducible element An element a of
a lattice L which cannot be represented as the
meet of lattice elements b properly larger than
a (a < b, a �= b). See meet.

There is a dual notion of join irreducibility.
An element a ofL is join irreducible if it cannot
be represented as the join of lattice elements b
properly smaller than a (b < a, b �= a). See
join.

member of an equation The expression on
the left (or right) side of the equality sign. The
member on the left side of the equals sign is
called the first member of the equation, and the
member on the right side is called the second
member of the equation.

Meta-Abelian group A group whose com-
mutator subgroup (defined as the set of all
a−1b−1ab, for a, b in the group) is Abelian. See
Abelian group.

method of feasible directions A technique in
non-linear optimization for functions of several
variables that reduces the problem to a series of
one-dimensional optimization problems.

minimal A term which generally means
smallest but whose precise meaning depends on
the context. In set theory, a minimal set with
respect to a given property is a set which has the
property, but, if any element is removed from
the set, then the smaller set fails to have this
property.

minimal basis A basis for a vector space V
with the property that, if any element is removed
from the basis, it no longer forms a basis (i.e.,
some element of V cannot be expressed as a
finite linear combination of the smaller set). See
basis.

Often such minimality is part of the definition
of basis.

minimal ideal An ideal which does not prop-
erly contain any ideal except the zero ideal, {0}.
minimal model A nonsingular, projective
surface which is the unique relatively minimal
model in its birational equivalence class. Except
for rational and ruled surfaces, every non-empty
birational equivalence class has a (unique) min-
imal model. The existence of a minimal model
in the birational equivalence class of a higher
dimensional variety, over the field of complex
numbers, has been solved for varieties of dimen-
sion three. In the higher dimensional case, cer-
tain types of singularities must be allowed and
minimal models are no longer unique.

minimal parbolic k-subgroup A closed sub-
group of a connected reductive linear algebraic
group G, defined over an arbitrary ground field
k, which is minimal among the parabolic sub-
groups of G. Any two minimal parabolic k-
subgroups are conjugate to each other over k.
Minimal parabolic k-subgroups play the same
role for arbitrary fields that Borel subgroups play
for algebraically closed fields. See parabolic
subgroup.

minimal polynomial For a given element T
(which could be a linear transformation or an
element in some field extension), a polynomial
p of least degree with p(T ) = 0.

minimal prime divisor An ideal I in a ring
R which is prime and is minimal (i.e., does not
properly contain any prime ideal). See prime
ideal.

minimal splitting field Suppose E,F with
F ⊂ E are fields and f (x) is an element of
F [x]. The field E is a minimal splitting field
if it is a splitting field for f (x) and no proper
subfield of E has this property.

minimal Weierstrass equation A Weier-
strass equation for an elliptic curve E/K is one
of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 .

We call such an equation minimal if, among all
possible Weierstrass equations, it has least dis-
criminant |D|.
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minimal Weierstrass equation A Weier-
strass equation for an elliptic curve E/K is one
of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 .

We call such an equation minimal if, among all
possible Weierstrass equations, it has least dis-
criminant |D|.
Minkowski-Farkas Lemma See Minkowski-
Farkas Theorem.

Minkowski-Farkas Theorem For every ma-
trix A and vector b the system Ax = b has a
non-negative solution if and only if the system
uA ≥ 0,ub < 0 has no solution.

This theorem is sometimes referred to as
the Minkowski-Farkas Lemma. The follow-
ing corollary has also been referred to as the
Minkowski-Farkas Lemma. The following con-
ditions are mutually exclusive. Either the
system of linear inequalities Ax ≤ b has a non-
negative solution or the system of linear inequal-
ities uA ≥ 0,ub < 0 has a non-negative solu-
tion.

Minkowski-Hasse character See Hasse-
Minkowski character.

Minkowski inequality If f and g are
complex-valued, measurable functions on a
measure space (X, µ) and 1 ≤ p < ∞, then(∫

X

|f (x)+ g(x)|p dµ(x)
) 1
p

≤
(∫

X

|f (x)|p dµ(x)
) 1
p

+
(∫

X

|g(x)|p dµ(x)
) 1
p

.

The left side of the inequality is the definition
of the Lp-norm of f + g. Thus, Minkowski’s
inequality is the statement that theLp-norm sat-
isfies the triangle inequality, which is one of the
defining properties of a norm. Named after the
German mathematician H. Minkowski (1864–
1909).

Minkowski-Siegel-Tamagawa Theory In
number theory, a theory on the arithmetic of

linear groups. Let S and T be the matrices of
integral positive definite quadratic forms, corre-
sponding to the lattices4S ⊂ Rm,4T ⊂ Rn, in
the sense that qS and qT express the lengths of
elements of 4S and 4T , respectively. Then an
integral solution X to the equation S[X] = T ,
where S[X] := XtSX, determines an isometric
embedding 4S → 4T . Denote by N(S, T ) the
total number of such maps. The genus of qS is
defined to be the set of quadratic forms which
are rationally equivalent to qS . Let I be the set
of these equivalence classes. One of Siegel’s
formulas gives the value of a certain weighted
average of the numbers N(Sx, T ) over a set of
representatives Sx for classes x ∈ I of forms of
a given genus:

Ñ(S, T ) = cm−nc−1
m α∞(S, T )

∏
p

αp(S, T ) ,

where c1 = 1
2 and ca = 1 for a > 1, Ñ(S, T )

= 1
Mass(S)

∑
x∈I

N(Sx,T )
w(x)

and w(x) is the order

of the group of orthogonal transformations of
the lattice 4S , and define the mass of S by
Mass(S) = ∑

x∈I 1
w(x)

.

In the special case T = S, we have Ñ(S, T )
= 1

Mass(S) , and the Siegel formula becomes the

Minkowski-Siegel formula:

Mass(S) = cmα∞(S, S)−1
∏
p

αp(S, S)
−1 .

Siegel’s formula can be deduced from an in-
tegral formula: Ñ(ϕ) = vol(g/γ )

vol(G/;)

∫
G/g

ϕ(x)dx,
whereG = Om(A) is the locally compact group
of orthogonal matrices with respect to S with
coefficients in the ring of adeles A, g and γ are
closed subgroups ofG with vol(g/γ ) finite and
ϕ is a continuous function with compact support
on G/γ . The quantities cm−n and cm become
the Tamagawa numbers τ(Om−n) and τ(Om),
respectively, and the Tamagawa measure on G
can be defined.

Minkowski space A flat space of four di-
mensions, designed to model the geometry of
the physical universe as suggested by the special
theory of relativity. It is also called Minkowski
space-time, the Minkowski world or the
Minkowski universe. There are two methods
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of envisioning Minkowski space. Coordinates
may be written as (x, y, z, ict) where i2 = −1
and c is the speed of light. In this case (x, y, z)
represents the position of a point in space, and t
is the time at which an event occurs at that point.
The distance between two points is then

ds =
√
(dx)2 + (dy)2 + (dz)2 − c2(dt)2 .

It is also possible to view Minkowski space as
the manifold R4, with a flat Lorentz metric. In
this case, the coordinates are written as (x1, x2,

x3, x4) = (x, y, z, ct) and the space is associ-
ated with an indefinite inner product x · y =
x1y1 + x2y2 + x3y3 − x4y4. Note, in some ref-
erences the time coordinate is listed first and
called x0. In addition, some references define
the inner product as the negative of the one de-
fined above. Using the definition given above,
a non-zero vector x is called time-like or space-
like, depending upon whether x · x is negative
or positive. A non-zero vector x is called null,
isotropic, or lightlike if x · x = 0.

Minkowski’s Theorem (1) If K �= Q, then
|DK | > 1, where K is a field, k is an algebraic
number field contained in k, with [K : k] < ∞,
and DK is the discriminant of K .

The theorem is a consequence of the follow-
ing Minkowski Lemma: let M be a lattice in
Rn, @ =vol(Rn/M), and let X ⊂ Rn be a cen-
trally symmetric convex body of finite volume
v =vol(X). If v > 2n@, then there exists a
nonzero α ∈ M ∩X.

(2) (On convex bodies) Any convex region
in n-dimensional Euclidean space which is sym-
metric about the origin and has a volume greater
than 2n contains another point with integral co-
ordinates. This theorem can be generalized as
follows. Let P be a convex region in n-dimen-
sional Euclidean space which is symmetric about
the origin and let4 be a lattice with determinant
@. If the volume of P is greater than 2n|@|,
then P contains a point of 4 other than the ori-
gin. This is one of the most important theorems
in the geometry of numbers, and is one of the
reasons that the geometry of numbers exists as a
distinct subdivision of number theory. The fol-
lowing application to algebraic number fields is
also called Minkowski’s Theorem. If k is an al-
gebraic number field of finite degree and k �= Q,

then the absolute value of the discriminant of k
is greater than 1.

minor The determinant of an n− 1 × n− 1
submatrix of an n× nmatrix obtained by delet-
ing a row and a column from the larger matrix.
Minors arise as a theoretical tool for computing
a determinant of a matrix (as in expansion by
minors). See expansion of determinant.

minuend The term from which another term
is to be subtracted. (The number a in a − b.)

minus sign The symbol “−” which indicates
subtraction in arithmetic. The minus sign also
indicates “additive inverse,” so that, for exam-
ple, −3 is the additive inverse of 3. This no-
tion extends to groups (with operation +), where
−x represents the element that when added to x
gives the identity in the group.

mixed decimal A number written in decimal
form with an integer and a fractional part; for
example, 34.587.

mixed expression A mathematical formula
involving terms of more than one type. For ex-
ample, 4xy + y2x is a mixed expression of the
variables x and y.

mixed group A set M which can be parti-
tioned into disjoint subsets, M0,M1, . . . with
the following properties: (i.) for a ∈ M0 and
b ∈ Mi , i = 0, 1, . . . , elements ab and a \ b
are defined such that a(a \ b) = b; (ii.) for
b, c ∈ Mi , an element b/c of M0 is defined
such that (b/c) · c = b; and (iii.) the associative
law (ab)c = a(bc) for a, b ∈ M0 and c ∈ M
holds.

mixed ideal An ideal I of a Noetherian ring
R such that there exist associated prime ideals
P,Q of I such that the height of P is not equal
to the height ofQ. See height.

mixed integer programming problem A
programing problem in which some of the vari-
ables are required to have integer values. In ad-
dition, all of the variables are usually required
to be nonnegative. Mixed integer programming
once referred only to problems that were linear
in appearance. The concept has been expanded

c© 2001 by CRC Press LLC



to include nonlinear programs. A mixed integer
linear programming problem may be written as

max
{
cx + dy : Gx +Hy ≤ b, x ∈ Zn+, y ∈ Rp+

}
,

where the matrices c, d,G,H , and b have inte-
ger entries and the following dimensions: c is
1 × n, d is 1 × p,G ism× n, H ism× p, and
b is m× 1. In addition, it is assumed that m
and n+ p are positive integers.

mixed number A number that has both an
integer and a fractional part, such as 4 2

3 .

M-matrix A matrix A that can be written as

A = sI − B ,
where B is an entrywise nonnegative matrix, I
is the identity matrix, and s is a positive number
greater than the spectral radius of B. From the
Perron-Frobenius Theorem for entrywise non-
negative matrices, it follows that all the eigen-
values of an M-matrix have positive real parts.
M-matrices arise naturally in several areas of
the mathematical sciences such as optimization,
Markov chains, numerical solution of differen-
tial equations, and dynamical systems theory.

Möbius transformation See linear fractional
function.

model A mathematical representation of a
physical problem. For example, the differential
equation dy

dt
= ky is a model for any physical

process that is governed by exponential growth
or decay, such as population growth radioactive
decay.

modular arithmetic Modular arithmetic with
respect to a certain number p refers to an arith-
metic calculation, where at the end, only the
remainder is kept after subtracting the greatest
multiple of p. For example, if p = 5, then
3 × 7 (modulo 5) equals 1 (since 3 × 7 = 21 =
4 × 5 + 1). See congruent integers, group of
congruence classes.

modular automorphism A one-parameter
∗-automorphism σφt , of a von Neumann algebra
M, where σφt (A) ≡ @itφ A@

−it
φ for a modular

operator @φ . See also modular operator.

modular character A group homomorphism
from the (multiplicative) group of units of the
ring of integers modulo m to the multiplicative
group of nonzero complex numbers. See also
character.

modular operator A positive self-adjoint
operator, defined and used in Tomita-Takesaki
theory. Let φ be a normal semifinite faithful
weight on a von Neumann algebra M. Let Hφ

be the Hilbert space associated with φ, let Nφ be
the left ideal {A ∈ M : φ(A∗A) is finite}, and
let η be the associated complex linear mapping
from Nφ into a dense subset of Hφ . LetSφ be the
antilinear operator defined by Sφη(A) = η(A∗)
where A ∈ N ∩ N ∗

φ and A∗ is the adjoint of A.
The polar decomposition of the closure of Sφ
defines a self-adjoint operator called a modular
operator.

modular representation A representation of
a group which is also a finite field. See repre-
sentation.

module A nonempty set M is said to be an
R-module (or a module over a ring R) if M is
an Abelian group under an operation (usually
denoted by +) and if, for every r ∈ R and m ∈
M , there exists an element rm ∈ M subject to
the distributive laws: r(m1 + m2) = rm1 +
rm2 and (r + s)m = rm + sm; as well as the
associative law r(sm) = (rs)m form,m1,m2 ∈
M and r, s ∈ R.

module ofA-homomorphisms The set of all
homomorphisms from anA-moduleM to anA-
moduleN forms a module over the ringA called
the module of homomorphisms fromM toN , de-
noted HomA(M,N). See homomorphism. See
also automorphism group.

module of boundaries A concept that arises
in the subject of graded modules. Regard the
graded moduleX as a sequence of modulesX0,

X1, X2, . . . with maps ∂n : Xn �→ Xn−1 (called
boundary maps) with ∂n−1◦∂n = 0. The module
of boundaries is the graded module of images
of the boundary map, i.e., ∂1{X1}, ∂2{X2}, . . .
This concept arises most commonly in topology
where the graded modules are chains of sim-
plicies in a topological space X. In this case,
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Xk is the free module generated (say, over the
integers) by the continuous images of the stan-
dard k-dimensional simplex in Euclidean space
{(x1, . . . , xk) ∈ Rk : xi ≥ 0,

∑k
i=1 xi ≤ 1}.

The boundary map of a k-simplex is a weighted
sum of (the continuous images of) its k − 1 di-
mensional faces where the weights are either
plus one or minus one depending on the ori-
entation of the face. Then the module of k −
1-boundaries is the module generated by the
boundaries of k-dimensional simplicies.

module of coboundaries A coboundary is
the image of a cocycle under the induced bound-
ary map. (See module of cocycles.) The set of
coboundaries is a module over the underlying
ring (often the integers or the reals).

module of cocycles The dual of the module
of cycles. More precisely, if X0, X1, X2, . . .

is a graded chain of cycles over a ring R (often
the integers or the reals) with boundary maps
∂n : Xn �→ Xn−1, then the module of cocycles
is the graded chain X̂0, X̂1, X̂2, . . . where each
X̂n is the set of all ring homomorphisms fromXn
to R. The induced coboundary map ∂̂n : X̂n �→
X̂n+1 is defined by ∂̂nĉn(xn+1) = ĉn(∂nxn+1)

for ĉn ∈ X̂n and xn+1 ∈ Xn+1.

module of cycles A concept that arises in the
subject of graded modules. Regard the graded
moduleX as a sequence of modulesX0, X1, X2,

. . . with maps ∂n : Xn �→ Xn−1 (called bound-
ary maps) with ∂n−1 ◦ ∂n = 0. A cycle cn ∈ Xn
is one that has zero boundary (∂ncn = 0). The
set of all cycles is a module over the underlying
ring (often the integers). This concept arises
most commonly in topology where the graded
modules are chains of simplicies in a topological
spaceX. In this case,Xk is the free module gen-
erated (say, over the integers) by the continuous
images of the standard k-dimensional simplex
in Euclidean space{
(x1, . . . , xk) ∈ Rk : xi ≥ 0,

k∑
i=1

xi ≤ 1

}

(into X). The boundary map of a chain is a
weighted sum of (the continuous images of) its
k − 1 dimensional faces where the weights are
either plus one or minus one depending on the

orientation of the face. The cycles are the chains
whose boundaries are zero. As a simple exam-
ple, a circle is a cycle in R2 because it is the
image of the one-dimensional simplex 0 ≤ t ≤
1 (via the complex exponential map, f (t) =
exp(2πit)) and because its boundary, f (1) −
f (0), is zero.

module of finite length A module M with
the property that any chain of submodules of the
form

{0} ⊂ M0 ⊂ M1 ⊂ M2 · · · ⊂ Ml = M

is finite in number. The above containments are
proper.

module of finite presentation A moduleM
over a ring R such that there is a positive in-
teger n and an exact sequence of R-modules
0 → K → Rn → M → 0 where K is finitely
generated.

module of finite type (1) A graded module∑
i≥0 Ai over a field k for which eachAi is finite

dimensional.
(2) A sheaf of O-modules (called an O-

Module) in a ringed space (X,O), which is lo-
cally generated by a finite number of sections
over O.

(3) A finitely generated module.

module of homomorphisms Let M and N
be modules over a commutative ring R. The set
of all homomorphisms of moduleM to module
N is called the module of homomorphisms of
M to N , with addition defined pointwise and
multiplication given by (r · f )(x) = r · (f (x)),
for r ∈ R, f : M → N a homomorphism
and x ∈ M . The module of homomorphisms is
denoted HomR(M,N).

module with operator domain A module
M , together with a setA and a map fromA×M
into M satisfying the following conditions. (i.)
For every a ∈ A and x ∈ M there is a unique
element ax ∈ M . (ii.) If a ∈ A and x, y ∈ M ,
then a(x + y) = ax + ay. In this situation, M
is called a module with operator domain A. It
is also called a module over A or an A-module.
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moduli of Abelian variety Parameters or
invariants which classify the set of all Abelian
varieties which are equivalent under some type
of equivalence relation to a given Abelian vari-
ety. The problem of finding moduli for Abel-
ian varieties is approached both algebraically
and geometrically, and involves coarse moduli
schemes and inhomogeneous polarizations.

moduli scheme See coarse moduli scheme.

modulus (1) The modulus of a complex num-

ber z = a + ib is defined as |z| = (a2 + b2)
1
2 .

(2) Let p be a positive integer. When two
integers a, b are congruent modulo p, then p
is called the modulus of the congruence. See
congruent integers.

modulus of common logarithm The log-
arithm to the base 10 is called common loga-
rithm. The factor by which the logarithm to a
given base of any number must be multiplied to
obtain the common logarithm of the same num-
ber is called modulus of the common logarithm.
Because one has log10 x = log10 b logb x, for
any base b (b > 0 and b �= 1) and any x > 0,
the modulus of the common logarithm for base
b is seen to be log10 b.

Moishezon space A compact, complex, ir-
reducible space X of (complex) dimension n
whose algebraic dimension (i.e., transcendence
degree of the field of meromorphic functions on
X) is also equal to n.

monic polynomial Any polynomial p(x) of
degree m over a ring R with leading coefficient
1R , the unit of the ring R. See leading coeffi-
cient.

monoidal transformation For any integer
m with 1 < m ≤ n, we can make a quadratic
transformation on the (X1, . . . , Xm)-space and
“product” it with the (Xm+1, . . . , Xn)-space to
get the monoidal transformation of the n-space
centered at the (n−m)-dimensional linear sub-
spaceL : X1 = · · · = Xm+1 = 0. In greater de-
tail, the monoidal transformation with center L
sends the (X1, . . . , Xn)-space into the (X′

1, . . . ,

X′
n)-space by means of the equations

X1 = X′
1

X2 = X′
1X

′
2

...

Xm = X′
1X

′
m

Xm+1 = X′
m+1

...

Xn = X′
n


or the reverse

X′
1 = X1

X′
2 = X2/X1

...

X′
m = Xm/X1

X′
m+1 = Xm+1

...

X′
n = Xn


.

The origin in the (X1, . . . , Xn)-space is blown
up into the linear (m−1)-dimensional subspace
of the (X′

1, . . . , X
′
n)-space given by L′ : X′

1 =
X′
m+1 = · · · = X′

n = 0.

monomial A polymonial consisting of one
single term such as anxn.

monomial module A module generated by
a single generator. See module.

monomial representation Let H be a sub-
group of a finite group G. If ρ is a linear rep-
resentation ofH with representation moduleM ,
then the linear representation ρG = K(G)⊗
K(H) M of G is called the induced represen-

tation from ρ. (Here, K is a field.) A mono-
mial representation of G is the induced repre-
sentation from a degree 1 representation of a
subgroup. Each monomial representation of G
corresponds to a matrix representation τ such
that for each g ∈ G the matrix τ(g) has exactly
one nonzero entry in each row and each column.
The induced representation ofG from the trivial
subgroup {e} is called the regular representation
of G.

monomorphism A morphism i in a category
satisfying the following property: Whenever the
equation i ◦ f = i ◦ g holds for two morphisms
f and g in the category, then f = g.
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In most familiar categories, such as the cate-
gory of sets and functions, a monomorphism is
simply an injective or one-to-one function in the
category. A function i : A → B is one-to-one,
or injective if i(a1) �= i(a2) whenever a1 �= a2.
See also morphism in a category, epimorphism,
injection.

monotone function Let I ⊆ R be an interval
and f : I → R a function. If whenever a, b ∈ I
and a < b it holds that f (a) ≤ f (b), then f
is said to be monotone increasing. If whenever
a, b ∈ I and a < b it holds that f (a) ≥ f (b),
then f is said to be monotone decreasing. In
both cases, f is a monotone function.

Moore-Penrose inverse See generalized in-
verse.

Mordell’s conjecture Any algebraic curve
of genus ≥ 2 defined over an algebraic number
field k of finite degree has finitely many rational
points. (Conjectured in 1922 and settled in the
affirmative by G. Faltings in 1983. The original
1922 conjecture was stated for the special case
k = Q.)

Mordell-Weil Theorem Let k be an alge-
braic number field of finite degree and let V be
an Abelian variety of dimension n defined over
k. Then the group Vk of all k-rational points on
V is finitely generated.

This theorem was proved by Mordell for the
special case of n = 1 in 1922 and by Weil for
the general case in 1928.

morphism Let ◦ be a binary operation on
a set A, while ◦′ is another such operation on
a set A′. A morphism m : (A, ◦) → (A′, ◦′)
is a function on A to A′ which preserves the
operation ◦ on A onto the operation ◦′ on A′, in
the sense that

m(a ◦ b) = m(a) ◦′ m(b)

for all a, b ∈ A.
In a categorical approach to algebra, one de-

fines a category C as a set (or, more generally,
a class) of objects, together with a class of spe-
cial maps, called morphisms between these ob-
jects. If C is the category of Abelian groups,
then the morphisms would normally be group

homomorphisms. If C is the category of topo-
logical spaces, the morphisms would be contin-
uous maps, etc. See also functor.

morphism in a category A map by means
of which categorical equivalence is measured.

morphism of finite type For R a commuta-
tive ring with 1, and X a scheme, a morphism
f : X −→ Spec(R) is called a morphism of fi-
nite type provided thatX has a finite open affine
covering {Ui = Spec(Ri)} such that each Ri is
a finitely generated R-algebra. More generally,
a morphism of schemes f : X −→ Y is of finite
type if there is an affine covering {Vi} of Y such
that the restriction f : f−1(Vi) −→ Vi is of
finite type for each i. See scheme, spectrum.

morphism of local ringed spaces Let X be
a topological space, and suppose that to each
x ∈ X is associated a local ringBX,x in a natural
way. Let Y be another such space. A mapping
f : X → Y is called a morphism of local ringed
spaces if, whenever, f (x) = y, there is induced
a homomorphism BY,y → BX,x .

morphism of local ringed spaces Let X be
a topological space, and suppose that to each
x ∈ X is associated a local ringBX,x in a natural
way. Let Y be another such space. A mapping
f : X → Y is called a morphism of local ringed
spaces if, whenever, f (x) = y, there is induced
a homomorphism BY,y → BX,x .

morphism of pointed sets A set X with a
distinguished element x∗ is called a pointed set.
For two pointed sets (X, x∗) and (Y, y∗), a map
f : X −→ Y is said to be a morphism of pointed
sets if f (x∗) = y∗.

morphism of schemes Let R be a commu-
tative ring with 1. One obtains a sheaf of rings
R̃ on Spec(R) by assigning to each point p of
Spec(R) the ring of quotientsRp. Then Spec(R)
is called an affine scheme when it is regarded
as a local-ringed space with R̃ as its structure
sheaf. A scheme is a local-ringed spaceXwhich
is locally isomorphic to an affine scheme. A
morphism of schemes X and Y is a morphism
f : X −→ Y as local ringed-spaces.

c© 2001 by CRC Press LLC



multilinear function Let V1, V2, . . . , Vk,W

be vector spaces over a field F . A function

f : V1 × V2 × · · · × Vk → W

that is linear with respect to each of its arguments
is called multilinear. If k = 2, f is called bilin-
ear. Thus, a bilinear function f : U × V → W

satisfies

f (u, av1 + bv2) = af (u, v1)+ bf (u, v2)

and

f (au1 + bu2, v) = af (u1, v)+ bf (u2, v)

for all a, b ∈ F and all u, u1, u2 ∈ U and
v, v1, v2 ∈ V .

The determinant of ann×nmatrixA is a mul-
tilinear function when the arguments are taken
to be each of the n rows (or columns) of A.

multinomial Given n real numbers
a1, a2, . . . , an, and m a positive integer, then
the expression (a1 + a2 + · · · + an)m is called
multinomial. We have

(a1 + a2 + · · · + an)m

=
∑ n!

p1! . . . pm!a
p1
1 . . . a

pm
m

where the sum is over all p1 + · · · + pm = m.
See also monomial.

multiobjective programming A mathemati-
cal programming problem in which the objective
function is a vector-valued function f : Rn −→
Rk, k ≥ 2, where Rk is ordered in some way
(e.g., lexicographic order, etc.).

multiple Let S be a semigroup whose binary
operation is multiplication. The element a ∈ S
is called a left (right) multiple of b ∈ S if there
exists an element c ∈ S such that a = cb (a =
bc). Under this condition b is the left (right)
divisor of a.

multiple complex Let C be an Abelian cat-
egory. A complex C in C is a family of objects
{Cn}n∈Z with differentials dn : Cn −→ Cn+1

such that dn+1dn = 0, n ∈ Z. A bicomplex C
in C is a family of objects {Cm,n}m,n∈Z and two
sets of differentials dm1 : Cm,n −→ Cm+1,n and

dn2 : Cm,n −→ Cm,n+1 such that dm+1
1 dm1 =

dn+1
2 dn2 = 0 and dm1 d

n
2 = dn2 d

m
1 ,m, n ∈ Z. A

multicomplex C in C is defined in an analogous
way: A family {Cn1,n2,...,nr }n1,n2,...,nr∈Z of ob-
jects and r sets of differentials

d
ni
i : Cn1,...,ni ,...,nr −→ Cn1,...,ni+1,...,nr ,

1 ≤ i ≤ r , subject to dni+1
i d

ni
i = 0 and dnii d

nj
j

= d
nj
j d

ni
i , 1 ≤ i, j ≤ r, i �= j .

multiple covariants LetK be a field of char-
acteristic 0 and let G = GL(n,K). Let F =∑
Ci1,...,inmi1,...,in be a homogeneous form of

degreed in variablesx1, . . . , xnwith coefficients
in K . (Here,

∑
ir = d and

mi1,...,in =
(
d!/

∏
ir !
)
x
i1
1 . . . x

in
n .)

For each g ∈ G, we define gxi and (gC)i1,...,in
by setting, respectively,

(gx1, . . . , gxn) = (x1, . . . , xn) g
−1

and F = ∑
(gC)i1,...,in (gmi1,...,in ). In this case,

the action of G on the polynomial ring R =
K[. . . , Ci1,...,in , . . . ] is given by either a rational
representation or the contragredient map A �→
tA−1. Then theG-invariants are called multiple
covariants.

multiple root A root of a polynomial, having
multiplicity > 1. See multiplicity of root.

multiplicand A number to be multiplied by
another number.

multiplication (1) A binary operation on a
set. In group theory, and in algebra in general,
it is customary to denote by aḃ or ab, the el-
ement which is associated with (a, b) under a
given binary operation. The element c = ab is
then called the product of a and b, and the binary
operation itself is called multiplication. When
the term multiplication is used for a binary op-
eration, it carries with it the implication that if
a and b are in the set G, then ab is also in G.

(2) One of two binary operations on a field
or ring. See field, ring.

multiplication by logarithms The logarithm
function logb x, especially when b = 10 or
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b = e, the basis for the natural logarithm, has
had extensive use in facilitating arithmetical cal-
culations, especially before the days of comput-
ers. The rule

logb n ·m = logb n+ logb m

allows one to multiply large numbersn,m by as-
certaining their logarithms (from a table), add-
ing the logarithms and then obtaining the prod-
uct ofm and n by another reference to the table.
See logarithm, common logarithm, natural log-
arithm.

multiplication of complex numbers Multi-
plication of z1 = a+ ib and z2 = c+ id yields
z1 ·z2 = (a+ ib)(c+ id) = (ac−bd)+ i(ad+
bc). Writing the complex numbers z1 and z2
in terms of their absolute values r1, r2 and their
arguments φ1, φ2: zj = rj (cosφj + i sin φj ),
yields z1 ·z2 = r1r2[cos(φ1 + ¯φ2)+ i cos(φ1 +
¯φ2)].
multiplication of matrices Let F be a ring,
and A = [aij ], 1 ≤ i ≤ m, 1 ≤ j ≤ n, an
m × n matrix over F . Multiplication of A (on
the right) by a k × l matrix B = [bij ] (over the
same fieldF ) is defined if n = k and the product
is the m × l matrix C = [cij ], with ij -entry is
obtained by cij = ∑

h aihbhj , 1 ≤ i ≤ m and
1 ≤ j ≤ l:

A·B =
 ∑

a1hbh1 . . .
∑
a1hbhl

. . .
∑
aihbhj . . .∑

amhbh1 . . .
∑
amhbhl

 .

multiplication of polynomials Let

f (x) =
n∑
0

akx
k, g(x) =

p∑
0

bkx
k ,

be polynomials over an integral domainD. Mul-
tiplication of the polynomials gives

f (x) · g(x) = a0b0 + (a0b1 + a1b0) x
1

+ (a0b2 + a1b1 + a2b0) x
2 + . . .

=
n+p∑

0

ckx
k

with ck = ∑k
i=0 aibk−i .

multiplication of vectors Any bilinear func-
tion defined on pairs of vectors. Important ex-
amples are the familiar dot product and cross
product of calculus. See also wedge product,
tensor product.

multiplicative group (1) Any group, where
the group operation is denoted by multiplica-
tion. Often a non-Abelian group is written as a
multiplicative group. See group, Abelian group.

(2) The set F ∗ of all the non-zero elements
of a field F . See field.

multiplicative identity An element 1, in a
set S with a binary operation ·, regarded as mul-
tiplication, such that 1 · a = a · 1 = a, for all
a ∈ S.

A multiplicative monoid is one in which the
binary operation is written as multiplication and
the multiplicative identity is 1 such that a1 =
1a = a, for all a in the monoid.

multiplicative inverse For an element a, in
a set S with a binary operation ·, considered as
multiplication, and an identity element 1, an el-
ement a−1 ∈ S such that a−1 · a = a · a−1 = 1.
(See also multiplicative identity.)

A field F is a non-trival commutative ring
in which every non-zero element a has a multi-
plicative inverse.

multiplicative Jordan decomposition Let
M be a free right R-module. A linear transfor-
mation τ on M is called semisimple if M has
the structure of a semisimple R[x] module de-
termined by x(m) = τ(m); that is, if and only if
the minimal polynomial of τ has no square factor
different from the constants in R[x]. The multi-
plicative Jordan Decomposition Theorem states
that any nonsingular linear transformation τ on
M can be uniquely written as τ = τsτu, where τs
is a semisimple linear transformation onM and
τu = 1M + τ−1

s τn for some nilpotent transfor-
mation τn onM . Here, τu is called the unipotent
component of τ .

multiplicatively closed subset A subset S
of a ring R, which is a subsemigroup of R with
respect to multiplication.
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multiplicity of a point Let f be a function
defined in a neighborhood of a point p in RN .
The multiplicity of the point p is the order to
which f vanishes at p; that is, f is of orderm at
p if all derivatives of f up to (but not including)
order m vanish, but some mth order derivative
does not.

In other contexts, if q is in the image of f
then the order of q is the number of elements in
the pre-image set of q under f .

multiplicity of a point Let f be a function
defined in a neighborhood of a point p ∈ RN .
The multiplicity of the point p is the order to
which f vanishes at p; that is, f is of orderm at
p if all derivatives of f up to (but not including)
order m vanish, but some mth order derivative
does not.

In other contexts, if q is in the image of f ,
then the order of q is the number of elements in
the pre-image set of q under f .

multiplicity of root LetD be an integral do-
main and f (x) an element ofD[x]. If c belongs
to D and c is a root of f (x) (f (c) = 0), then
f (x) = (x−c)mg(x)wherem is an integer with
0 ≤ m ≤ degf (x), g(x) ∈ D[x] and g(c) �= 0.
The integer m is called the multiplicity of the
root c of f (x).

multiplicity of weight Let g denote a com-
plex semisimple Lie algebra, h a Cartan subal-
gebra of g, andR the corresponding root system.
Let V be a g-module (not necessarily finite di-
mensional), and let w ∈ h∗ a linear form on h.
We will let V n denote the set of all v ∈ V such
that Hv = w(H)v, for all H ∈ h. This is a
vector subspace of V . An element of V w is said
to have weightw. The dimension ofV w is called

the multiplicity of w ∈ V : if V w �= {0}, w is
called a weight of V .

multiplier Let G be a finite group and let
C∗ = C\{0}. Then the second cohomology
group H 2(G,C∗) is called the multiplier of G.
If H 2(G,C∗) = 1, then G is called a closed
group and any projective representation of G
is induced by a linear representation. See also
Lagrange multiplier, Stokes multiplier, charac-
teristic multiplier.

multiplier algebra For a C∗-algebra A, let
A∗∗ denote its enveloping von Neumann alge-
bra. The multiplier algebra of A is the set
M(A) = {b ∈ A∗∗ : bA + Ab ⊆ A}.
multiply transitive permutation group
A permutation group G is called k-transi-
tive (k a positive integer) if, for any k-tuples
(a1, a2, . . . , ak) and (b1, b2, . . . , bk) of distinct
elements inX, there exists a permutation p ∈ G
such that pai = bi , for all i = 1, . . . , k. If
k = 2, G is called a multiply transitive permu-
tation group.

multistage programming A mathematical
programming problem in which the objective
function and the constraints have an iterative or
repetitive property.

mutually associated diagrams AnO(n) di-
agram is a Young diagram T for which the sum
of the lengths of the first column and the sec-
ond column is ≤ n. Two O(n) diagrams T1
and T2 are called mutually associated diagrams
if the lengths of their first columns sum up to
n and their corresponding columns (except the
first ones) have equal lengths. See Young dia-
gram.
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N
Nakai-Moishezon criterion For a ringed
space (X,O), we let I denote a coherent sheaf
of ideals of O. When X is a k-complete scheme
(where k is a field), then for any r-dimensional
closed subvariety W of X and any invertible
sheaf S we let (Sr ·W) denote the intersection
number of Sr with O/I. The Nakai-Moishezon
criterion states that if (Sr ·W) > 0 for any r-
dimensional closed subvariety W of X, then S

is ample.

Naperian logarithm See natural logarithm.

natural logarithm The logarithm in the base
e. See e. The natural logarithm of x is denoted
log x or, in elementary textbooks, ln x.

The adjective natural is used, due to the sim-
plicity of the defining formula

log x =
∫ x

1

1

t
dt ,

for x real and positive.
Also called Naperian logarithm. See also

logarithm, logarithmic function.

natural number A positive integer. The sys-
tem N of natural numbers was developed by the
Italian mathematician Peano, using a few sim-
ple properties known as Peano Postulates. Let
there exist a non-empty set N such that
Postulate I: 1 is an element in N.
Postulate II: For every n ∈ N, there exists a
unique n∗ ∈ N , called the successor of n.
Postulate III: 1 is not the successor of any ele-
ment in N.
Postulate IV: If n,m ∈ N and n∗ = m∗ , then
n = m.
Postulate V: Any subsetK ⊂ N having the prop-
erties

(i.) 1 is an element of K
(ii.) k∗ ∈ K whenever k ∈ K

satisfies K = N.
Addition on N is defined by:

(i.) n+ 1 = n∗, for every n ∈ N

(ii.) n + m∗ = (n + m)∗ whenever n + m is
defined.
The addition satisfies the following laws:
A1 Closure Law: n+m ∈ N
A2 Commutative Law: n+m = m+ n

A3 Associative Law: m+(n+p) = (m+n)+p
A4 Cancellation Law: If m+ p = n+ p, then
m = n

Multiplication on N is defined by
(i.) n · 1 = n

(ii.) n ·m∗ = n ·m+nwhenever n ·m is defined.
M1 Closure Law: n ·m ∈ N
M2 Commutative Law: n ·m = m · n
M3 Associative Law: m · (n · p) = (m · n) · p
M4 Cancellation Law: If m · p = n · p, then
m = n

Addition and multiplication are subject to the
Distributive Law
D1 For alln,m, p ∈ N, m·(n+p) = m·n+m·p

The elements of N are called natural num-
bers.

natural positive cone For a weight w on
the positive elements of a von Neumann algebra
A, we set Nw = {A ∈ A : w(A∗A) < ∞}.
Let 0 ≤ s ≤ 1

2 . Then the closure Ws of the
set of vectors �s

wη(A), where A ranges over
all positive elements in Nw ∩ Nw∗ , has some
of the properties of the von Neumann algebra
A. (Here, �w is a modular operator and η is
a complex linear mapping on Nw defined by
setting (η(A◦), η(A)) = w(A∗A).) The special

case W
1
4 is called the natural positive cone. It

is a self-dual convex cone and is independent of
the weight w.

negation Given a proposition P , the propo-
sition (not P ) is called the negation of P and is
denoted by ∼ P or ¬P .

negative See negative element.

negative angle An angle XOP , with ver-
tex O, initial side OP and terminal side OX,
such that the direction of rotation is counter-
clockwise.

negative cochain complex A cochain com-
plex C in an Abelian category such that Cn = 0
for n > 0. See cochain complex.
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negative element (1) Let K be an ordered
field. (See ordered field.) If x < 0, we say x is
negative and −x is positive.

(2) An element g �= e of a lattice ordered
group G such that g ≤ e. See lattice ordered
group.

See also negative root.

negative exponent In a multiplicative group
G with identity 1 the negative powers of an el-
ement a are a−1, its multiplicative inverse, and
the elements a−k = (a−1)k , for k > 0, where
an element bk is bb · · · b (with k factors).

negative number A negative element of the
real field. See negative element.

negative root Let G be a complex semisim-
ple Lie algebra. For a subalgebra H of G, we
set H∗ = {all complex-valued forms on H}.
For h∗ ∈ H∗, let Hh∗ = {g ∈ G : ad(h)g =
h∗(h)g, for all h ∈ H}. If Hh∗ �= 0 and
h∗ �= 0, then we say that h∗ is a root; two roots
are equivalent whenever one is a nonzero mul-
tiple of the other. The root system of G relative
to H is the finite set � = {h∗ ∈ H∗ : h∗ �=
0 and Hh∗ �= {0}}. Let H∗

R denote the real lin-
ear subspace of H∗ spanned by �. Relative to a
lexicographic linear ordering of H∗ (associated
with some basis over R), a root r is negative if
r < 0.

Neron minimal model Let R be a discrete
valuation ring with residue field k and quotient
field K . The Neron minimal model of an Abel-
ian variety A over K is a smooth group scheme
A of finite type over Spec(R) such that for ev-
ery scheme S over Spec(R) there is a canonical
isomorphism

HomK (SK,A) � HomSpec(R)(S,A) .

Here, SK is the pullback of S by Spec(K) →
Spec(R).

Neron-Severi group Let Div(S) denote the
group of all divisors of a nonsingular surface S.
By linearity and the Index Theorem of Hodge,
there is a bilinear form I (D ·D′) on Div(S)⊗Z
Q which has exactly one positive eigenvalue.
(See Index Theorem of Hodge.) Let J = {D ∈
Div(S)⊗Z Q : I (D ·D′) = 0 for all D′}. Then

J is a subgroup of Div(S)⊗Z Q and the quotient
X = (Div(S) ⊗Z Q)/J is a finite dimensional
vector space over Q. This quotient group X is
called the Neron-Severi group of the surface S
and its dimension is called the Picard number of
S.

network programming A mathematical pro-
gramming problem related to network flow, in
which the objective function and the constraints
are defined with reference to a graph.

Newton-Raphson method of solving algebraic
equations An iterative numerical method for
finding an approximate value for a zero of a func-
tion f (approximating a solution to the equa-
tion f (x) = 0). The method begins by choos-
ing a suitable starting value x0. The method
proceeds by constructing a sequence of succes-
sive approximations, x1, x2, x2, . . . , to the ex-
act solution x, according to the formula xk =
xk−1 − f (xk−1)/f

′(xk−1). Under suitable con-
ditions, the sequence x1, x2, x3, . . . converges
to x.

The name Newton-Raphson method is also
applied to a multi-dimensional generalization of
the above. Here, the object is to approximate a
solution to the equation f (x) = 0, but this time
x is a vector in an n-dimensional vector space
V and f is a vector-valued function from some
subset of V to V . The sequence of successive
approximations is constructed according to the
formula:

xk = xk−1 −D (f (xk−1))
−1 f (xk−1) ,

whereDf is the Jacobian of f (the n×nmatrix
of partial derivatives).

Newton’s formulas (1) For interpolation:

f (x0 + u�x) = f (x0)+ u

1!�0

+u(u− 1)

2! �2
0 +

u(u− 1)(u− 2)

3! �3
0

+u(u− 1)(u− 2)(u− 3)

4! �4
0 + · · · ,

where �0 = f (x0 +�x)− f (x0).
(2) For symmetric polynomials: Let p1, p2,

. . . , pr be the elementary symmetric polynomi-
als in variables X1, X2, . . . , Xr . That is, p1 =
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∑
Xi, p2 =∑

XiXj , . . . , pr = X1X2 . . . Xr .
For n = 1, 2, . . . , let sn = ∑

Xn
i . The Newton

formulas are: sn − p1sn−1 + p2sn−2 − · · · +
(−1)n−1pn−1s1 + (−1)nnpn = 0; and sn −
p1sn−1 + p2sn−2 − · · · + (−1)kpksn−k = 0,
for n = k + 1, k + 2, . . . .

nilalgebra An algebra in which every ele-
ment is nilpotent. See algebra, nilpotent ele-
ment.

nilpotent component LetM be a linear space
over a perfect field. Then any linear transforma-
tion τ of M can be uniquely written as τ =
τs + τn (Jordan decomposition), where τs is
semisimple and τn is nilpotent, and the two lin-
ear transformations τs and τn commute; they are
called the semisimple component and the nilpo-
tent component of τ , respectively. See Jordan
decomposition.

nilpotent element An element a of a ring R
such that an = 0, for some positive integer n.

nilpotent group A group G such that Cn(G)

= G, for some n, where 1 ⊂ C1(G) ⊂ C2(G)

⊂ · · · is the ascending central series of G. See
ascending central series.

nilpotent ideal A (left, right, two-sided) ideal
I of a ringR is nil if every element of I is nilpo-
tent; I is a nilpotent ideal if In = 0 for some
integer n.

nilpotent Lie algebra A Lie algebra such
that there exists a number M such that any com-
mutator of order M is zero.

nilpotent Lie group A connected Lie group
whose Lie algebra is a nilpotent Lie algebra.

nilpotent matrix A square matrix A such
that Ap = 0 where p is a positive integer. If p
is the least positive integer for which Ap = 0,
then A is said to be nilpotent of index p.

nilpotent radical Let G be a Lie algebra.
The radical of G is the union S of all solvable
ideals of G; it is itself a solvable ideal of G. The
largest nilpotent ideal of G is the union N of all
nilpotent ideals of G. The ideal I = [S,G] is

called the nilpotent radical of G and we have
the inclusions I ⊂ N ⊂ S ⊂ G. See nilpotent
ideal.

nilpotent subset A subset S of a ring R such
that Sn = 0, for some positive integer n.

nilradical The ideal intersection of all the
prime ideals P which contain I , where I is an
ideal in a commutative ring R. The nilradical
is denoted RadI . If the set of prime ideals con-
taining I is empty, then RadI = R.

Noetherian domain A commutative ring R

with identity, which is an integral domain and
also a Noetherian ring. See integral domain,
Noetherian ring.

Noetherian integral domain An integral do-
main whose set of ideals satisfies the maximum
condition: every nonempty set of ideals has a
maximal element.

Noetherian local ring A Noetherian ring
having a unique maximal ideal.

Noetherian module A left module M , over
a ring R such that, for every ascending chain
M1 ⊂ M2 ⊂ · · · of submodules of M , there
exists an integer p such that Mk = Mp, for all
k ≥ p.

Noetherian ring A ringR is left (resp. right)
Noetherian if R is Noetherian as a left (resp.
right) module over itself. See Noetherian mod-
ule. R is said to be Noetherian if R is both left
and right Noetherian.

Noetherian scheme A locally Noetherian
scheme whose underlying topological space is
compact. A scheme X is a locally Noetherian
scheme if it has an affine covering {Ui}, where
eachUi is the spectrum of some Noetherian ring
Ri .

Noetherian semilocal ring A Noetherian
ring with only a finite number of maximal
ideals. See Noetherian ring. See also Noethe-
rian local ring.
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Noether’s Theorem Any ideal in a finitely
generated polynomial ring is finitely generated.

non-Abelian cohomology The cohomology
H 0(G,N) and H 1(G,N) of a group G using
non-homogeneous cochains, where N is a non-
Abelian G-group.

non-Archimedian valuation A valuation
which is not Archimedian. See Archimedian
valuation.

non-commutative field A non-commutative
ring whose nonzero elements form a (multiplica-
tive) group.

non-convex quadratic programming The
mathematical programming problem of mini-
mizing the objective function f (x) = u · x +
(x · Ax)/2 subject to some linear equations or
inequalities. Here, f : Rn → R, u ∈ Rn is
fixed, and A is a symmetric (perhaps indefinite)
matrix.

non-degenerate quadratic form A homoge-
neous quadratic polynomialp in x1, x2, . . . , xn
with coefficients in a field K is called a qua-
dratic form. When the characteristic of K is
not 2, we may write p(x) = (x, Ax), where
x = (x1, x2, . . . , xn) and A is an n × n ma-
trix with entries in K . We say that p is a non-
degenerate quadratic form if the determinant
det(A) �= 0.

non-degenerate representation Let L1(G)

denote the space of all complex-valued inte-
grable functions on a locally compact group
G. Then L1(G) is an algebra over C, where
multiplication is given by the convolution (f ∗
g)(α) = ∫

G
f (αβ−1)g(β)dβ. The map

f (α) �→ f ∗(α) = D(α−1)f (α−1) is an in-
volution of the algebra L1(G), where D is the
modular function of G. For a unitary represen-
tation u of G, let Uf = ∫

f (α)uαdα. Then
a non-degenerate representation of the Banach
algebraL1(G)with an involution is given by the
map f �→ Uf . The map u �→ U is a bijection
between the set of equivalence classes of unitary
representations of G and the set of equivalence
classes of non-degenerate representations of the
Banach algebra L1(G) with an involution.

non-linear algebraic equation An equation
in n variables having the formp(x1, x2, . . . , xn)

= 0, wherep is a polynomial of degree> 1 with
coefficients in a field.

non-linear differential equation Any differ-
ential equation f (t, x, x′, . . . , x(n)) = 0, where
x represents an unknown function, x′ = dx

dt
and f (x0, . . . , xn+1) is not a linear function of
x0, . . . , xn+1.

A non-linear nth degree equation, as above,
can be written in the form of a system

x′i = fi (t, x1, . . . , xn) , i = 1, . . . , n

and uniqueness can be proved, with initial condi-
tions xi(ai) = bi, i = 1, . . . , n, under suitable
conditions on the fi .

non-linear problem Any mathematical prob-
lem which deals with non-linear mappings or
operators and their related properties.

non-linear programming A mathematical
programming problem in which the objective
function or (some of) the constraints are non-
linear.

non-linear transcendental equation A non-
linear analytic, but not polynomial, equation.

non-primitive character A character of a
finite group that is not a primitive character. See
primitive character, character of group.

nonsingular matrix A matrix having an in-
verse. See inverse matrix.

norm (1) LetV be a vector space overK = R
or C. A function ρ : V → [0,∞) is a semi-
norm if it satisfies the following three condi-
tions: (i.) ρ(x) ≥ 0, for all x ∈ V , (ii.)
ρ(αx) = |α|ρ(x), for all α ∈ K and x ∈ V , and
(iii.) ρ(x+y) ≤ ρ(x)+ρ(y), for all x, y ∈ V .
A semi-norm ρ for which ρ(x) = 0 ⇔ x = 0
is called a norm.

(2) See reduced norm.

normal *-homomorphism A ∗-homomor-
phism between two Banach algebras with in-
volutions B1 and B2 is an algebraic homomor-
phism ϕ which preserves involution; that is,
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ϕ(x∗) = ϕ(x)∗. A ∗-homomorphism ϕ is called
normal if, for every bounded increasing net Nα

in B1, one has supα ϕNα = ϕ(supα Nα). A ∗-
homomorphism between two operator algebras
is continuous in the strong and weak operator
topologies.

normal algebraic variety An irreducible va-
riety all of whose points are normal. See normal
point.

normal Archimedian valuation An Archi-
median valuation of an algebraic number field
K of degree n which is one of the valuations
vi, 1 ≤ i ≤ n, defined as follows: There are
exactlynmutually distinct injectionsϕ1, . . . , ϕn
of K into the complex number field C. We may
assume thatϕi(K) ⊂ R if and only if 1 ≤ i ≤ r1
and that ϕi(a) and ϕn−i+1+r1(a) are complex
conjugates for r1 ≤ i ≤ r2 = (n − r1)/2. Let
vi(a) = |ϕi(a)| for 1 ≤ i ≤ r1 and vi(a) =
|ϕi(a)|2 for r1 ≤ i ≤ r2 = (n − r1)/2. See
Archimedian valuation.

normal basis Let L be a Galois extension of
a fieldK andG(L/K) the Galois group ofL/K .
(See Galois extension, Galois group.) If L/K is
a finite Galois extension, then there is an element
l ∈ L such that the set {lg : g ∈ G(L/K)} forms
a basis for L over K called a normal basis. See
also Normal Basis Theorem.

The existence of a normal basis implies that
the regular representation of G(L/K) is equiv-
alent to the K-linear representation of G(L/K)

by means of L.

Normal Basis Theorem Any (finite dimen-
sional) Galois extension field L/K that has a
normal basis.

normal chain of subgroups A normal chain
of subgroups of a group G is a finite sequence
G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e} of subgroups
of G with the property that each Gi is a normal
subgroup of Gi−1 for 1 ≤ i ≤ n.

normal crossings Let D ≥ 0 be a divisor
(i.e., a cycle of codimension 1) on a non-singular
variety V and let x ∈ V . Then D is a divisor
with only normal crossings at x if there is a sys-
tem of local coordinates (f1, . . . , fn) around x

such that D is defined by means of (a part of)
this system of local coordinates. A divisor D is
called a divisor with only normal crossings if it
is a divisor with only normal crossings at every
x ∈ V .

normal equation LetAX = b be a system of
m linear equations in n unknowns with m ≥ n.
The problem of finding the X which minimizes
the Euclidean norm ‖b−AX‖ is called the lin-
ear least squares problem. The normal equa-
tion for this problem is tAAX = tAb, where
tA denotes the transpose of A. Applying the
Cholesky method to this normal equation is one
way of solving the linear least squares problem.
See Cholesky method of factorization.

normal extension An extension field K of
a field F , such that K is a finite extension of F
and F is the fixed field of G(K,F), the group
of automorphism of K relative to F .

normal form A canonical choice of repre-
sentatives for equivalence classes with respect
to some group action. See also Jordan normal
form.

normal function A continuous, strictly
monotone function of the ordinal numbers.

Normalization Theorem for Finitely Gener-
ated Rings Let R be a finitely generated ring
over an integral domain I. Then there exist an
element α ∈ I (with α �= 0) and algebraically
independent elements Y1, . . . , Yn of R over I
such that the ring of quotients RS is integral
over I[α−1, Y1, . . . , Yn]. Here, S = {αi : i =
1, 2, . . . }.

Normalization Theorem for Polynomial
Rings Let I be an ideal in a polynomial ring
K[X1, X2, . . . , Xn] in n variables over a field
K . Then there exist Y1, Y2, . . . , Yn in K[X1,

X2, . . . , Xn] such that (i.) Y1, Y2, . . . , Yn gen-
erate I∩K[Y1, Y2, . . . , Yn] and (ii.) K[X1, X2,

. . . , Xn] is integral over K[Y1, Y2, . . . , Yn].

normalized cochain A cochain f ,
in Hochschild cohomology, satisfying
f (ł1, . . . , łn) = 0 whenever one of the łi
is 1. Here, : is an algebra over a commuta-
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tive ring K , A is a two-sided :-module, an
n-cochain Cn is the module of all n-linear
mappings of : into A with C0 = A. This coho-
mology group is defined by the n-cochains and
the coboundary operator δn(f ) : Cn → Cn+1

defined by

δn(f ) : (ł1, . . . , łn+1) �→ λ1f (ł2, . . . , łn+1)

+
n∑

j=1

(−1)j f
(
ł1, . . . , łj łj+1, . . . , łn+1

)

+(−1)n+1f (ł1, . . . , łn) łn+1 .

The normalized cochains can be used to define
the same cohomology group.

normalizer (1) (In ergodic theory) Let (X,
B, µ) be a σ -finite measure space. A map f :
X −→ X is called measurable if f−1(B) ∈ B
for every B ∈ B. A bimeasurable map is a bi-
jective measurable map whose inverse is also
measurable. A non-singular bimeasurable map
f : X −→ X is said to be the normalizer for
another bimeasurable map g : X −→ X if for
every ϕ ∈ [g] = {ϕ : ϕ is a non-singular mea-
surable map of X such that, for some n, we
have ϕ(x) = gn(x) for µ-almost all x} there
is ψ ∈ [g] such that f ◦ ϕ = ψ ◦ f .

(2) (In group theory) Let S be a subset of a
group G. The normalizer of S is the subgroup
N(S) = {g ∈ G : g−1Sg = S} of G.

normal j-algebra A Lie algebra G over R
such that there is a linear endomorphism j of
G and a linear form ω on G satisfying the fol-
lowing four conditions: (i.) For every x ∈ G the
eigenvalues of ad(x) are all real; (ii.) [jx, jy] ≡
j [jx, y] + j [x, jy] + [x, y], for all x, y ∈ G;
(iii.) ω([jx, jy]) = ω([x, y]), for all x, y ∈ G;
(iv.) ω([jx, x]) > 0 for x �= 0.

normally flat variety LetV be a variety over
a field of characteristic zero and let S be a sub-
scheme of V defined by a sheaf of ideals I. Let
OS denote the sheaf of germs of regular func-
tions on S and let OS,x be the stalk of OS over
the point x ∈ S. Then V is said to be normally
flat along S if for any n and any x ∈ S, the quo-
tient module In

x /In+1
x is a flat OS,x-module.

normal matrix A square matrix M , with
complex entries, such that MM∗ = M∗M ,

where M∗ denotes the adjoint (the transpose of
the complex conjugate) of M .

normal point Let V be an affine variety over
an algebraically closed field k and let p be a
point in V . Then p is called a normal point if
the local ring Rp = k[x1, . . . , xn]/I (p) is nor-
mal. Here, I (p) is the ideal of all polynomials
in k[x1, . . . , xn] which vanish at p.

normal representation A normal ∗-
homomorphism of a von Neumann algebra A
into some operator algebra B.

normal ring An integrally closed integral
domain. A ring is integrally closed if it is equal
to its integral closure in its ring of quotients. See
integral closure.

normal series Let G be a finite group. We
definepi (i = 1, . . . , k) to be the distinct primes
which divide the order ofG. Let 〈Pi〉 be the nor-
mal subgroup generated by the class of Sylow
subgroups corresponding to the prime pi . If r is
minimal, then a collection 〈P1〉, 〈P2〉, . . . , 〈Pr 〉
which generates G is called a minimal system
of Sylow classes for G; r is called the Sylow
rank of G. A chain Ti (i = 0, . . . , r) of nor-
mal subgroups of G (T0 = identity, Tr = G)
such that Ti+1 is the group generated by Ti and
〈Pji 〉, where {ji} is a permutation of {1, . . . , r},
is called a normal series for the given minimal
system of Sylow classes.

normal series Let G be a finite group. We
definepi(i = 1, · · · , k) to be the distinct primes
which divide the order ofG. Let 〈Pi〉 be the nor-
mal subgroup generated by the class of Sylow
subgroups corresponding to the prime pi . If r is
minimal, then a collection 〈P1〉, 〈P2〉, · · · , 〈Pr 〉
which generates G is called a minimal system
of Sylow classes for G; r is called the Sylow
rank of G. A chain Ti(i = 0, · · · , r) of nor-
mal subgroups of G (T0 = identity, Tr = G)
such that Ti+1 is the group generated by Ti and
〈Pji 〉, where {ji} is a permutation of {1, · · · , r}
is called a normal series for the given minimal
system of Sylow classes.

normal subgroup A subgroup H of a group
G such that Hx = xH , for all x ∈ G.
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normal valuation Let K be an algebraic
number field and let O be the principal part of
K . A p-adic valuation v of K is a normal val-
uation if, for α ∈ K , one has v(α) = |p|−r ,
where |p| = norm of p = the cardinality of the
set O/p. Here, r is the degree of α with respect
to p. A normal valuation of a function field is
defined analogously, except that instead of |p|
one uses cd , where c > 0 is fixed and d is the
degree of the residue class field of the valuation
over the base field k.

See also normal Archimedian valuation.

norm form of Diophantine equation Let K
be an algebraic number field of degree d ≥ 3
and let c1, . . . , cn ∈ K . Then the norm

Norm (c1x1 + · · · + cnxn)

=
d∏

j=1

(
c
(j)

1 x1 + · · · + c
(j)
n xn

)

is a form of degree d with rational coefficients.
Here, c(j)i denotes a conjugate of ci, 1 ≤ i ≤ n.

normic form A normic form of order p ≥ 0
in a field k is a homogeneous polynomial f of
degree d ≥ 1 in n = pd variables with coeffi-
cients in k such that the equation f = 0 has no
solution in k except (0, . . . , 0).

norm-residue symbol Let k be a finite ex-
tension of Qp and

X = k{{t1}} . . . {{tn−1}}
be an n-dimensional local field. See local field.
Assume that k contains the roots of unity µ of
order q = pν , p �= 2. Let ζ be a generator
of µ. According to Vostokov, there is a skew-
symmetric map

H : X∗ × · · · ×X∗ → µ

H(α1, α2, . . . , αn+1) = ζ tr res(φ/s) , αi ∈ X∗ ,

with the property that αi+αj = 1 ⇐⇒ H(α1,

α2, . . . , αn+1) = 1 for i �= j . Here tr is the
trace operator of the inertia subfield of k, s is
determined in X by an expansion of ζ in X, and
φ(α1, α2, . . . , αn+1) is given by an expansion
of the αs in X. Here res is the residue of φ/s,
i.e., the coefficient of 1/t1t2 · · · tn−1.

It is known then thatH defines a non-degenerate
pairing

Kn(Xn)

Kn(Xn))q
× X∗n

(X∗n)q
( · )→ ζ tr res(φ/s)

satisfying the norm property, i.e.,

H(α1, α2, . . . , αn+1) = 1

⇐⇒ {α1, . . . , αn} ∈ Kn(Xn)

is a norm in Kn(Xn(q
√
αn+1)). This property

gives rise to its name as then-dimensional norm-
residue symbol.

nuclear (1) Let X and Y be Banach spaces.
A linear operator T X → Y is called a nuclear
operator if it can be written as a product T =
S1:S2 with X

S1−→ l∞
:−→ l1

S2−→ Y . Here,
S1 and S2 are bounded linear operators and :

is multiplication by a sequence {λn ≥ 0} in l1.
Then the nuclear norm of T is given by ‖T ‖1 =
inf ‖S1‖ ‖:‖l1‖S2‖. When X and Y are Hilbert
spaces, this norm coincides with the trace norm.

(2) A locally convex topological vector space
Z is called a nuclear space if for each abso-
lutely convex neighborhood U of 0 there is an-
other absolutely convex neighborhood V ⊂ U

of 0 such that the natural linear mapping τV,U :
Z(V ) −→ Z(U) is a nuclear operator. Here,
Z(U) andZ(V ) are the normed spaces obtained
from seminorms corresponding to U and V , re-
spectively.

null sequence Any sequence tending to 0 (in
a topological space with a 0 element).

Especially, one has a null sequence in the I-
adic topology. Let I be an ideal of a ring R

and let M be an R-module. A null sequence
in M is a sequence which converges to zero
in the I-adic topology of M. A base for the
neighborhood system of zero in this topology is
given by {InM : n = 1, 2, . . . }.
null space A synonym for the elements of a
matrix, when the matrix is considered as a linear
transformation.

number (1) Any member of the real or com-
plex numbers.

(2) We say that two sets have the same num-
ber if there is a bijection between them. This is
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an equivalence relation on the class of sets. A
number is an equivalence class under this rela-
tion. Examples are cardinal numbers or ordinal
numbers.

number field Any subfield of the field of
complex numbers.

number of irregularity The dimension of
the Picard variety of an irreducible algebraic va-
riety.

number system Any one of the fields Q, R,
or C (rational numbers, real numbers, or com-
plex numbers).

numerator The quantityA, in the fraction A
B

(B is called the denominator).

numerical Referring to an approximate cal-
culation, commonly made with machines.

numerical radius See numerical range.

numerical range The numerical range (or
field of values) of an n×n matrix A with entries
from the complex field is the set

F(A) = {
x∗Ax : x ∈ Cn, x∗x = 1

}
.

The numerical range is a compact, convex set
that contains the eigenvalues of A, is invari-
ant under unitary equivalence and is subadditive
(i.e., F(A+ B) ⊂ F(A)+ F(B)). The numer-
ical radius of A is defined in terms of F(A) by

r(A) = max{|z| : z ∈ F(A)} .
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O
objective function In a mathematical pro-
gramming problem, the function which is to be
minimized or maximized.

octahedral group The symmetric group of
degree 4. This is the group S4 of permutations
of 4 elements.

odd element (Of a Clifford algebra.) See
even element.

odd number An integer that is not divisible
by 2. An odd number is typically represented
by 2n − 1, where n is an integer.

omega group Let � be a set and let G be a
group. Then G is called an �-group (and � is
called an operator domain of G) if there is a map
�×G −→ G such thatω(g1g2) = ω(g1)ω(g2)

for any ω ∈ �, g1, g2 ∈ G.

omega subgroup A subgroup H of an �-
group G is an �-subgroup of G if ω(h) ∈ H for
each ω ∈ � and h ∈ H . See omega group.

one The smallest natural number. It is the
identity of the multiplicative group of real num-
bers.

one-cycle A collection C of Abelian groups
{Gn}n∈Z and morphisms ∂n : Gn −→ Gn−1, n

∈ Z, is called a chain complex. Any element
in the kernel of ∂n is called an n-cycle of C. In
particular, a one-cycle of C is any element of the
kernel of ∂1.

one-parameter subgroup A one-parameter
group of transformations of a smooth manifold
M is a family ft , t ∈ R, of diffeomorphisms
of M such that (i.) the map R × M −→ M

defined by (t, x) 	→ ft (x) is smooth, and (ii.)
for s, t ∈ R, one has fs ◦ ft = fs+t . More gen-
erally, if G is a Lie group with Lie algebra G,
then for each element X ∈ G there is a continu-

ous homomorphism (R,+) −→ G, t 	→ ϕ(t),
such that dϕ(d/dt) = X. Here, d/dt is the
basis of the Lie algebra of R. Such a homomor-
phism is called a one-parameter subgroup of the
Lie group G.

one-to-one function See injection.

onvolution Assume f and g are real or com-
plex valued functions defined on Rn and such
that f 2 and g2 are integrable on Rn. The con-
volution of f with g, written f � g, is a func-
tion h defined on Rn by the formula h(x) =∫ ∞
−∞ f (x − y)g(y)dy. Important cases of this

occur in the study of Sobolev spaces where one
can choose f so that it is integrable on all closed
and bounded (compact) subsets of Rn and choose
for g a function with infinitely many derivatives
(C∞) which is zero off a compact set (i.e., it has
compact support). In this special case, many
smoothness properties are passed on to f � g

and one can use convolutions to approximate f

in various norms.

operation Let A and B be sets. An operation
of A on B is any map from (a subset of) A × B

to B. Any a ∈ A is called an operator on B and
A is said to be a domain of operators on B. See
also binary operation.

operator algebra Let B(H) denote the set of
bounded linear operators on a Hilbert space H .
Then B(H) contains the identity operator and is
an algebra with the operations of operator ad-
dition and operator product (composition). An
operator algebra is any subalgebra of B(H).

operator domain See omega group.

operator homomorphism Let � be a set
and let G1 and G2 be �-groups. An operator
homomorphism from G1 to G2 is any homo-
morphism ϕ : G1 −→ G2 which commutes
with every ω ∈ �. That is, ϕ(ωg1) = ω(ϕg1)

for any ω ∈ � and any g1 ∈ G1. See omega
group.

opposite (1) Of a non-commutative group
(or ring) G, the group G∗ with the operation �,
defined by (a, b) 	→ a � b = b ◦ a, where ◦ is
the operation of G.
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(2) An oriented n-simplex σ of a simplicial
complex K is an n-simplex of K with an equiv-
alent class of total ordering of its vertices. (Two
orderings are equivalent if they differ by an even
permutation of the vertices.) Therefore, for ev-
ery n-simplex, n ≥ 1, there are two oriented
n-simplexes called the opposites of one another.

optimal solution A mathematical program-
ming problem is the problem of finding the
maximum/minimum of a given function f :
X −→ R, where X is a Banach space. A
point x∗ ∈ X at which f attains its maxi-
mum/minimum is called an optimal solution of
the problem.

orbit A subset of elements that are related by
an action. For example, let G be a Lie transfor-
mation group of a space �. Then a G-invariant
submanifold of � on which G acts transitively
is called an orbit.

order The number of elements in a set.

ordered additive group A commutative ad-
ditive group with an ordering “<” such that
whenever a, b, c are elements with a < b, then
a + c < b + c.

ordered field A field F with a total order
“<” such that if a, b, c are elements with a < b,
then a + c < b + c, and if c > 0 and a < b,
then ac < bc.

order of equation In a partial differential
equation, the highest derivative involved in that
expression.

order of field The number of elements in a
field F , often denoted |F |.
order of function The order of an analytic
function f (z) at point a is the exponent of the
lowest power in the Taylor Series of f (z) at a.

order of polynomial Let

Pn(x) = anx
n + an−1x

n−1 + · · · + a1x + a0

be a polynomial with complex coefficients and
an �= 0. The number n is the order of the poly-
nomial Pn(x).

order of radical Let A be an ideal of the ring
R. The set

√
A = {

x ∈ R : xn ∈ A for some n ∈ N
}

is called a radical of A. The order of radical of
A is the cardinal number of the set

√
A.

order of vanishing Let f be a holomorphic
function on an open set U in the complex plane.
Suppose that P ∈ U and that f (P ) = 0. Let k
be the least positive integer such that f (k)(P ) �=
0 (where the superscript denotes a derivative).
Then f is said to vanish to order k at P .

There is an analogous notion of order of van-
ishing for a real function. IfF vanishes at a point
x0 in Euclidean space, then the order of vanish-
ing at x0 is the order of the first non-vanishing
Taylor coefficient in the expansion about x0.

order relation A relation “≤” on a set such
that (i) x ≤ x, (ii) if x ≤ y and y ≤ x then
x = y, and (iii) if x ≤ y and y ≤ z then x ≤ z.

ordinary point A point in an analytical set
around which the set has a complete analytical
structure.

ordinary representation Let G be a group
and let V be a vector space. An ordinary repre-
sentation of G is a map from G to the automor-
phism group Aut(V ) of V .

orthogonal group The set O(n) of all n× n

matrices with complex entries such that for each
O ∈ O(n) the transpose Ot is the inverse O−1

of O.

orthogonality relation The binary relation
v ·w = 0 between vectors in a vector space with
a scalar product.

orthogonal matrix An element O of the or-
thogonal group O(n). See orthogonal group.

orthogonal measure A measure concentrat-
ed on a set at measure 0.

orthogonal subset Let S be a subset of a
vector (Hilbert) space V . The orthogonal subset
S⊥ of S is the subset

S⊥ = {�v ∈ V : �v · �w = 0 for all �w ∈ S} .
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orthogonal transformation A linear trans-
formation A : Rn → Rn (or, A : Cn →
Cn) that preserves the inner product, i.e., for
all �v, �w ∈ Rn (or Cn), �v · �w = A(�v) · A( �w).

outer automorphism An automorphism of
a group G that is not an inner automorphism,
i.e., not of the form g → aga−1 for some a ∈
G. The factor group of all automorphisms of G
modulo the subgroup of inner automorphism is
called the group of outer automorphisms.

ovals of Cassini The eigenvalues of an n×n

matrix A = (aij ) with entries from the complex
field lie in the union of n(n−1)/2 ovals, known
as the ovals of Cassini,

⋃
i,j∈{1,2,...,n},i �=j

Cij ,

where

Cij =
{
z ∈ C : |z − aii |

∣∣z − ajj
∣∣

≤
( ∑

k �=i

|aik|
)( ∑

k �=j

∣∣ajk
∣∣ )}

.

See also Geršgorin’s Theorem.

overfield An overfield of a field F is a field
K containing F . This is also called an extension
field of F .
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p-adic numbers The completion of the ratio-
nal field Q with respect to the p-adic valuation
| · |p. See p-adic valuation. See also completion.

p-adic valuation For a fixed prime integerp,
the valuation |·|p, defined on the field of rational
numbers as follows. Write a rational number in
the form prm/n where r is an integer, and m, n
are non-zero integers, not divisible by p. Then
|prm/n|p = 1/pr . See valuation.

parabolic subalgebra A subalgebra of a Lie
algebra g that contains a maximal solvable sub-
algebra of g.

parabolic subgroup A subgroup of a Lie
group G that contains a maximal connected
solvable Lie subgroup of G. An example is the
subgroup of invertible upper triangular matrices
in the groupGLn(C) of invertible n×nmatrices
with complex entries.

parabolic transformation A transformation
of the Riemann sphere whose fixed points are ∞
and another point.

paraholic subgroup A subgroup of a Lie
group containing a Borel subgroup.

parametric equations The name given to
equations which specify a curve or surface by
expressing the coordinates of a point in terms of
a third variable (the parameter), in contrast with
a relation connecting x, y, and z, the cartesian
coordinates.

partial boundary operator We call (Xp,q,

∂ ′, ∂ ′′) over A a double chain complex if it is
a family of left A-modules Xp,q for p, q ∈ Z
together with A-automorphisms

∂ ′
p,q : Xp,q → Xp−1,q

and
∂ ′′
p,q : Xp,q → Xp,q−1

such that

∂ ′
p−1,q ◦ ∂ ′

p,q = ∂ ′′
p,q−1 ◦ ∂ ′′

p,q

= ∂ ′
p,q−1 ◦ ∂ ′′

p,q + ∂ ′′
p−1,q ◦ ∂ ′

p,q = 0 .

We define the associated chain complex (Xn, ∂)

by setting

Xn =
∑

p+q=n

Xp,q, ∂n =
∑

p+q=n

∂ ′
p,q + ∂ ′′

p,q .

We call ∂ the total boundary operator, and ∂ ′,
∂ ′′ the partial boundary operators.

partial derived functor SupposeF is a func-
tor of n variables. If S is a subset of {1, . . . , n},
we consider the variables whose indices are
in S as active and those whose indices are in
{1, . . . n}\S as passive. By fixing all the passive
variables, we obtain a functor FS in the active
variables. The partial derived functors are then
defined as the derived functors RkFS . See also
functor, derived functor.

partial differential The rate of change of a
function of more than one variable with respect
to one of the variables while holding all of the
other variables constant.

partial fraction An algebraic expression of
the form

∑
j

nj∑
m=1

ajm(
z − αj

)m .

partially ordered space Let X be a set. A
relation on X that satisfies the conditions:
(i.) x ≤ x for all x ∈ X

(ii.) x ≤ y and y ≤ x implies x = y

(iii.) x ≤ y and y ≤ z implies x ≤ z

is called a partial ordering.

partial pivoting An iterative strategy, using
pivots, for solving the equation Ax = b, where
A is an n × n matrix and b is an n × 1 matrix.
In the method of partial pivoting, to obtain the
matrix Ak (where A0 = A), the pivot is chosen
to be the entry in the kth column of Ak−1 at
or below the diagonal with the largest absolute
value.
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partial product Let {αn}∞n=1 be a given se-
quence of numbers (or functions defined on a
common domain � in Rn or Cn) with terms
αn �= 0 for all n ∈ N. The formal infinite prod-
uct α1 · α2 · · · is denoted by

∏∞
j=1 αj . We call

Pn =
n∏

j=1

αj

its nth partial product.

peak point See peak set.

peak set Let A be an algebra of functions
on a domain � ⊂ Cn. We call p ∈ � a peak
point for A if there is a function f ∈ A such that
f (p) = 1 and |f (z)| < 1 for all z ∈ � \ {p}.
The set P(A) of all peak points for the algebra
A is called the peak set of A.

Peirce decomposition LetA be a semisimple
Jordan algebra over a field F of characteristic 0
and let e be an idempotent of A. For λ ∈ F , let
Ae(λ) = {a ∈ A : ea = λa}. Then

A = Ae(1) ⊕ Ae(1/2) ⊕ Ae(0) .

This is called the Peirce decomposition of A,
relative to E. If 1 is the sum of idempotents ej ,
let Aj,k = Aej (1) when j = k and Aej ∩ Aek

when j �= k. These are called Peirce spaces,
and A = ⊕j≤kAj,k . See also Peirce space.

Peirce’s left decomposition Let e be an idem-
potent element of a ring R with identity 1. Then

R = Re ⊕ R(1 − e)

expresses R as a direct sum of left ideals. This
is called Peirce’s left decomposition.

Peirce space Suppose that the unity element
1 ∈ K can be represented as a sum of the mutu-
ally orthogonal idempotents ej . Then, putting

Aj,j = Aej (1), Aj,k = Aej (1/2)∩Aek (1/2) ,

we have A = ∑
j≤k ⊕Aj,k . Then Aj,k are

called Peirce spaces.

Peirce’s right decomposition Let e be an
idempotent element of a unitary ring R, then

1−e and e are orthogonal idempotent elements,
and

R = eR + (1 − e)R

is the direct sum of left ideals. This is called
Peirce’s right decomposition.

Pell’s equation The Diophantine equations
x2 − ay2 = ±4 and ±1, where a is a positive
integer, not a perfect square, are called Pell’s
equations. The solutions of such equations can
be found by continued fractions and are used in
the determination of the units of rings such as
Z[√a]. This equation was studied extensively
by Gauss. It can be regarded as a starting point
of modern algebraic number theory.

When a < 0, then Pell’s equation has only
finitely many solutions. If a > 0, then all solu-
tions xn, yn of Pell’s equation are given by

±
(
x1 + √

ay1

2

)n

=
(
xn + √

ayn
)

2
,

provided that the pair x1, y1 is a solution with
the smallest x1 + √

ay1 > 1. Using continued
fractions, we can determine x1, y1 explicitly.

penalty method of solving non-linear pro-
gramming problem A method to modify a
constrained problem to an unconstrained prob-
lem. In order to minimize (or maximize) a func-
tion φ(x) on a set which has constraints (such
as f1(x) ≥ 0, f2(x) ≥ 0, . . . fm(x) ≥ 0), a
penalty or penalty function, ψ(x, a), is intro-
duced (wherea is a number), whereψ(x, a) = 0
if x ∈ X or ψ(x, a) > 0 if x /∈ X and ψ in-
volves f1(x) ≥ 0, f2(x) ≥ 0, . . . fm(x) ≥ 0.
Then, one minimizes (or maximizes) φa(x) =
φ(x) + ψ(x, a) without the constraints.

percent Percent means hundredths. The
symbol % stands for 100 . We may write a per-
cent as a fraction with denominator 100. For ex-
ample, 31% = 31

100 , 55% = 55
100 , . . . etc. Simi-

larly, we may write a fraction with denominator
100 as a percent.

perfect field A field such that every algebraic
extension is separable. Equivalently, a fieldF is
perfect if each irreducible polynomial with co-
efficients in F has no multiple roots (in an alge-
braic closure of F ). Every field of characteristic
0 is perfect and so is every finite field.
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perfect power An integer or polynomial
which can be written as the nth power of another
integer or polynomial, where n is a positive in-
teger. For example, 8 is a perfect cube, because
8 = 23, and x2 + 4x + 4 is a perfect square,
because x2 + 4x + 4 = (x + 2)2.

period matrix Let R be a compact Riemann
surface of genus g. Let ω1, . . . , ωg be a ba-
sis for the complex vector space of holomorphic
differentials on R and let α1, . . . , α2g be a ba-
sis for the 1-dimensional integral homology of
R. The period matrix M is the g × 2g matrix
whose (i, j)-th entry is the integral of ωj over
αi . The group generated by the 2g columns of
M is a lattice in Cg and the quotient yields a g-
dimensional complex torus called the Jacobian
variety of R.

period of a periodic function Let f be a
function defined on a vector space V satisfying
the relation

f (x + ω) = f (x)

for all x ∈ V and for some ω ∈ V . The number
ω is called a period of f (x), and f (x) with a
period ω �= 0 is call a periodic function.

period relation Conditions on ann×nmatrix
which help determine when a complex torus is
an Abelian manifold. In Cn, let * be generated
by (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . ,
0, 1), (a11, a12, . . . , a1n), (a21, a22, . . . , a2n),
. . . (an1, an2, . . . , ann). Then Cn/* is an
Abelian manifold if there are integersd1, d2, . . . ,

dn �= 0 such that, if A = (aij ) and D = (δij di),
then (i.) AD is symmetric; and (ii.) �(AD) is
positive symmetric. Conditions (i.) and (ii.) are
the period relations.

permanent Given anm×nmatrixA = (aij )

with m ≤ n, the permanent of A is defined by

permA =
∑

a1i1a2i2 . . . amim ,

where the summation is taken over all m-
permutations (i1, i2, . . . , im) of the set {1, 2,
. . . , n}. When A is a square matrix, the per-
manent therefore has an expansion similar to
that of the determinant, except that the factor

corresponding to the sign of the permutation is
missing from each summand.

permutation group LetA be a finite set with
#(A) = n. The permutation group on n ele-
ments is the set Sn consisting of all one-to-one
functions from A onto A under the group law:

f · g = f ◦ g

for f, g ∈ Sn. Here ◦ denotes the composition
of functions.

permutation matrix An n × n matrix P ,
obtained from the identity matrix In by permu-
tations of the rows (or columns). It follows that a
permutation matrix has exactly one nonzero en-
try (equal to 1) in each row and column. There
are n! permutation matrices of size n× n. They
are orthogonal matrices, namely, PT P = PPT

= In (i.e., PT = P−1). Multiplication from
the left (resp., right) by a permutation matrix
permutes the rows (resp., columns) of a matrix,
corresponding to the original permutation.

permutation representation A permutation
representation of a groupG is a homomorphism
from G to the group SX of all permutations of a
setX. The most common example is whenX =
G and the permutation of G obtained from g ∈
G is given by x → gx (or x → xg, depending
on whether a product of permutations is read
right-to-left or left-to-right).

Peron-Frobenius Theorem See Frobenius
Theorem on Non-Negative Matrices.

Perron’s Theorem of Positive Matrices If
A is a positive n × n matrix, A has a positive
real eigenvalue λ with the following properties:
(i.) λ is a simple root of the characteristic equa-
tion.
(ii.) λ has a positive eigenvector �u.
(iii.) If µ is any other eigenvalue of A, then
|µ| < λ.

Peter-Weyl theory Let G be a compact Lie
group and let C(G) be the commutative asso-
ciative algebra of all complex valued continuous
functions defined on G. The multiplicative law
defined on C(G) is just the usual composition
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of functions. Denote

s(G) =

f ∈ C(G) : dim

∑
g∈G

CLgf < ∞



where Lgf = f (g·). The Peter-Weyl theory
tells us that the subalgebra s(G) is everywhere
dense in C(G) with respect to the uniform norm
‖f ‖∞ = maxg∈G |f (g)|.
Pfaffian differential form The name given
to the expression

dW =
n∑

i=1

Xi dxi .

p-group A group G such that the order of
G is pn, where p is a prime number and n is a
non-negative integer.

Picard-Lefschetz transform Let W be a lo-
cal system attached to the monodromy repre-
sentation ϕp : π1(U, 0) → GL(Hp(W,Q)).
For each point tj there corresponds a cycle δj of
Hn−1(W,Q) called a vanishing cycle such that
if γj is a loop based at 0 going once around tj ,
we have for each x ∈ Hn−1(W,Q),

ϕp
(
γj

)
(x) = x ± (

x, δj
)
δj .

Picard number Let V be a complete nor-
mal variety and let D(V ), Da(V ) be the group
of divisors and group of divisors algebraically
equivalent to zero, respectively. The rank of
the quotient group NS(V ) = D(V )/Da(V ) is
called the Picard number of V .

Picard scheme Let O∗
V be the sheaf of mul-

tiplicative group of the invertible elements in
OV . The group of linear equivalence classes
of Cartier divisors can be identified with
H 1(V ,OV ). From this point of view, we can
generalize the theory of the Picard variety to the
case of schemes. The theory thus obtained is
called the theory of Picard schemes.

Picard’s Theorem There are two important
theorems in one complex variable proved by
the French mathematician Charles Émile Picard

(1856–1941). The first Picard theorem was
proved in 1879: An entire function which is not a
polynomial takes every value, with one possible
exception, an infinity of times.

The second Picard theorem was proved in
1880: In a neighborhood of an isolated essen-
tial singularity, a single-valued, holomorphic
function takes every value, with one possible ex-
ception, an infinity of times. In other words, if
f (z) is holomorphic for 0 < |z − z0| < r , and
there are two unequal numbers a, b, such that
f (z) �= a, f (z) �= b, for |z − z0| < r , then z0
is not an essential singularity.

Picard variety Let V be a complete normal
variety. The factor group of the divisors on V ,
algebraically equivalent to 0 modulo the group
of divisors linearly equivalent to 0, has a natural
canonical structure of an Abelian variety, called
the Picard variety.

Picard-Vessiot theory One of two main the-
ories of differential rings and fields. See Galois
theory of differential fields. The Picard-Vessiot
theory deals with linear homogeneous differen-
tial equations.

pi-group Letπ be a set of prime numbers and
letπ ′ be the set of prime numbers not inπ . Aπ -
group is a finite group whose order is a product
of primes in π . A finite group is π -solvable if
every Jordan-Hölder factor is either a π ′-group
or a solvable π -group. For a π -solvable group
G, define a series of subgroups

1 = P0 ⊆ N0 ⊂ P1 ⊂ N1 · · · ⊂ Pn ⊆ Nn = G

such that Pj/Nj−1 is a maximal normal π ′-
subgroup of G/Pj . This is called the π -series
of G and n is called the π -length of G.

pi-length See pi-group.

pi-series See pi-group.

pi-solvable group A finite groupG such that
the order of each composition factor of G is ei-
ther an element of a collection, π , of prime num-
bers or mutually prime to any element of π .

pivot See Gaussian elimination.
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pivoting See Gaussian elimination.

place A mappingφ : K → {F,∞}, whereK
and F are fields, such that, if φ(a) and φ(b) are
defined, then φ(a+b) = φ(a)+φ(b), φ(ab) =
φ(a)φ(b) and φ(1) = 1.

place value The value given to a digit, de-
pending on that digit’s position in relation to the
units place. For example, in 239.71, 9 repre-
sents 9 units, 3 represents 30 units, 2 represents
200 units, 7 represents 7

10 units and 1 represents
1

100 units.

Plancherel formula Let G be a unimodular
locally compact group and Ĝ be its quasidual.
Let U be a unitary representation of G and U∗
be its adjoint. For any f , g ∈ L1(G) ∩ L2(G),
the Plancherel formula∫

G

f (x)g(x) dx =
∫
Ĝ

t (U∗
g (ξ)Uf (ξ)) dµ(ξ)

holds, where Uf (ξ) = ∫
Ĝ
f (x)Ux(ξ)dx. The

measure µ is called the Plancherel measure.

plane trigonometry Plane trigonometry is
related to the study of triangles, which were
studied long ago by the Babylonians and an-
cient Greeks. The word trigonometry is derived
from the Greek word for “the measurement of
triangles.” Today trigonometry and trigonomet-
ric functions are indispensable tools not only in
mathematics, but also in many practical appli-
cations, especially those involving oscillations
and rotations.

Plücker formulas Let m be the class, n the
degree, and δ, χ, i, and τ be the number of
nodes, cups, inflections, tangents, and bitan-
gents. Then

n(n − 1) = m + 2δ + 3χ

m(m − 1) = n + 2τ + 3i

3n(n − 2) = i + 6δ + 8χ

3m(m − 2) = χ + 6τ + 8i

3(m − n) = i − χ .

plurigenera For an algebraic surfaceS with a
canonical divisor K of S, the collection of num-

bers Pi = >(iK), (i = 2, 3, . . . ). The plurigen-
era Pi , (i = 2, 3, . . . ) are the same for any two
birationally equivalent nonsingular surfaces.

plus sign The symbol “+” indicating the al-
gebraic operation of addition, as in a + b.

Poincaré Let R be a commutative ring with
unit. Let U be an orientation over R of a com-
pact n-manifold X with boundary. Then for all
indices q and R-modules G there is an isomor-
phism

γU : Hq(X;G) ≈ Hn−q(X;G) .

This is called Poincaré-Lefschetz duality. The
analogous result for a manifoldXwithout bound-
ary is called Poincaré duality.

Poincaré-Birkhoff-Witt Theorem Let G be
a Lie algebra over a number fieldK . LetX1, . . . ,

Xn be a basis of G, and let R = K[Y1, . . . , Yn]
be a polynomial ring on K in n indeterminates
Y1, . . . , Yn. Then there exists a unique alge-
bra homomorphism ψ : R → G such that
ψ(1) = 1 and ω(Yj ) = Xj , j = 1, . . . , n.
Moreover, ψ is bijective, and the j th homoge-
neous component Rj is mapped by ψ onto Gj .
Thus, the set of monomials {Xk1

1 X
k2
2 . . . X

kn
n },

k1, . . . , kn ≥ 0, forms a basis of U(G) over
K . This is the so-called Poincaré-Birkhoff-Witt
Theorem. Here U(G) = T (G)/J is the quotient
associative algebra of G whereJ is the two-sided
ideal of T (G) generated by all elements of the
form X ⊗ Y − Y ⊗X − [X, Y ] and T (G) is the
tensor algebra over G.

Poincaré differential invariant Let w =
α(z − z◦)/(1 − z◦z) with |α| = 1 and |z◦| <
1, be a conformal mapping of |z| < 1 onto
|w| < 1. Then the quantity |dw|/(1 − |w|2) =
|dz|/(1 − |z|2) is called Poincaré’s differen-
tial invariant. The disk {|z| < 1} becomes
a non-Euclidean space using any metric with
ds = |dz|/(1 − |z|2).

Poincaré duality Any theorem general-
izing the following: Let M be a com-
pact n-dimensional manifold without bound-
ary. Then, for each p, there is an isomor-
phism Hp(M; Z2) ∼= Hn−p(M; Z2). If, in
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addition, M is assumed to be orientable, then
Hp(M) ∼= Hn−p(M).

Poincaré-Lefschetz duality LetR be a com-
mutative ring with unit. Let U be an orientation
over R of a compact n-manifold X with bound-
ary. Then for all indices q and R-modules G
there is an isomorphism

γU : Hq(X;G) ≈ Hn−q(X;G) .
This is called Poincaré-Lefschetz duality. The
analogous result for a manifoldXwithout bound-
ary is called Poincaré duality.

Poincaré metric The hermitian metric

ds2 = 2

(1 − |z|2)2 dz ∧ dz

is called the Poincaré metric for the unit disc in
the complex plane.

Poincaré’s Complete Reducibility Theorem
A theorem which says that, given an Abelian
variety A and an Abelian subvariety X of A,
there is an Abelian subvariety Y of A such that
A is isogenous to X × Y .

point at infinity The point in the extended
complex plane, not in the complex plane itself.
More precisely, let us consider the unit sphere
in R3:

S =
{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1
}
,

which we define as the extended complex num-
bers. Let N = (0, 0, 1); that is, N is the north
pole on S. We regard C as the plane {(x1, x2, 0)
∈ R3 : x1, x2 ∈ R} so that C cuts S along the
equator. Now for each point z ∈ C consider the
straight line in R3 through z and N . This in-
tersects the sphere in exactly one point Z �= N .
By identifying Z ∈ S with z ∈ C, we have S

identified with C ∪ {N}. If |z| > 1 then Z is in
the upper hemisphere and if |z| < 1 then z is in
the lower hemisphere; also, for |z| = 1, Z = z.
Clearly Z approaches N when |z| approaches
∞. Therefore, we may identify N and the point
∞ in the extended complex plane.

pointed co-algebra Let V be a co-algebra.
A nonzero subco-algebra W of V is said to

be simple if W has no nonzero proper subco-
algebra. The co-algebra V is called a pointed
co-algebra if all of its simple subco-algebras are
one-dimensional. See coalgebra.

pointed set Denoted by (X, p), a setXwhere
p is a member of X.

polar decomposition Every n× n matrix A
with complex entries can be written asA = PU ,
where P is a positive semidefinite matrix and U
is a unitary matrix. This factorization of A is
called the polar decomposition of the polar form
of A.

polar form of a complex number Let z =
x + iy be a complex number. This number has
the polar representation

z = x + iy = r(cos θ + i sin θ)

where r = √
x2 + y2 and θ = tan−1

( y
x

)
.

polarization LetA be an Abelian variety and
let X be a divisor on A. Let X′ be a divisor on
A such that m1X ≡ m2X

′ for some positive in-
tegers m1 and m2. Let X be the class of all such
divisors X′. When X contains positive nonde-
generate divisors, we say that X determines a
polarization on A.

polarized Abelian variety Suppose that V
is an Abelian variety. Let X be a divisor on
V and let D(X) denote the class of all divisors
Y on V such that mX ≡ nY , for some inte-
gers m, n > 0. Further, suppose that D(X) de-
termines a polarization of V . Then the couple
(V ,D(X)) is called a polarized Abelian variety.
See also Abelian variety, divisor, polarization.

pole Let z = a be an isolated singularity of
a complex-valued function f . We call a a pole
of f if

lim
z→a

|f (z)| = ∞ .

That is, for any M > 0 there is a number ε >

0, such that |f (z)| ≥ M whenever 0 < |z −
a| < ε. Usually, the function f is assumed to
be holomorphic, in a punctured neighborhood
0 < |z − a| < ε.

pole divisor SupposeX is a smooth affine va-
riety of dimension r and supposeY ⊂ X is a sub-
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variety of dimension r − 1. Given f ∈ C(X) \
(0), let ordY f < 0 denote the order of vanish-
ing of f on Y . Then (f ) = ∑

Y (ordY f ) · Y is
called a pole divisor of f in Y . See also smooth
affine variety, subvariety, order of vanishing.

polynomial If a0, a1, . . . , an are elements
of a ring R, and x does not belong to R, then

a0 + a1x + · · · + anx
n

is a polynomial.

polynomial convexity Let � ⊆ Cn be a do-
main (a connected open set). If E ⊆ � is a
subset, then define

Ê = {z ∈ � : |p(z)| ≤ sup
w∈E

|p(w)|

for all p a polynomial} .
The set Ê is called the polynomially convex hull
of E in �. If the implication E ⊂⊂ � implies
Ê ⊂⊂ � always holds, then � is said to be
polynomially convex.

polynomial equation An equation P = 0
whereP is a polynomial function of one or more
variables.

polynomial function A function which is a
finite sum of terms of the form anx

n, where n is
a nonnegative integer and an is a real or complex
number.

polynomial identity An equationP(X1, X2,

. . . , Xn) = 0 where P is a polynomial in n

variables with coefficients in a field K such that
P(a1, a2, . . . , an) = 0 for all ai in an algebra A
over K .

polynomial in m variables A function which
is a finite sum of terms axn1

1 x
n2
2 . . . x

nm
m , where

n1, n2, . . . , nm are nonnegative integers and a is
a real or complex number. For example, 5x2y3+
3x4z− 2z+ 3xyz is a polynomial in three vari-
ables.

polynomial ring Let R be a ring. The set
R[X] of all polynomials in an indeterminate X
with coefficients in R is a ring with respect to

the usual addition and multiplication of polyno-
mials. The ring R[X] is called the polynomial
ring of X over R.

polynomial ring in m variables Let R be
a ring and let X1, X2, . . . , Xm be indetermi-
nates. The set R[X1, X2, . . . , Xm] of all poly-
nomials in X1, X2, . . . , Xm with coefficients in
R is a ring with respect to the usual addition and
multiplication of polynomials and is called the
polynomial ring inm variablesX1, X2, . . . , Xm

over R.

Pontrjagin class Let F be a complex PL
sheaf over a PL manifold M . The total Pontrja-
gin class p([F]) ∈ H 4∗(M;R) of a coset [F]
of real PL sheaves via complexification of [F]
satisfies these axioms:
(i.) If [F] is a coset of real PL sheaves of rank
m on a PL manifold M , then the total Pontrja-
gin class p([F]) is an element 1 + p1([F]) +
· · ·+p[m/2]([F]) of H ∗(M;R) with pi([F]) ∈
H 4i (M;R);
(ii.) p(G![F]) = G∗p([F]) ∈ H 4∗(N;R) for
any PL map G : N → M;
(iii.) p([F] ⊕ [G]) = p([G]) for any cosets [F]
and [G] over M;
(iv.) If [F] contains a bona fide real vector bun-
dle ξ over M , then p([F]) is the classical total
Pontrjagin class p(ξ) ∈ H 4∗(M;R).

Pontryagin multiplication A multiplication

h∗ : H∗(X) ⊗ H∗(X) → H∗(X) .

(H∗(X) are homology groups of the topological
space X.)

Pontryagin product The result of Pontrya-
gin multiplication. See Pontryagin multiplica-
tion.

positive angle Given a vector �v �= �0 in Rn,
then its direction is described completely by the
angleα between �v and�i = (1, 0, . . . , 0), the unit
vector in the direction of the positive x1-axis. If
we measure the angle α counterclockwise, we
say α is a positive angle. Otherwise, α is a neg-
ative angle.
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positive chain complex A chain complex X
such that the only possible non-zero terms Xn

are those Xn for which n ≥ 0.

positive cycle An r-cycle A = ∑
niAi such

that ni ≥ 0 for all i, where Ai is not in the
singular locus of an irreducible variety V for all
i.

positive definite function A complex val-
ued function f on a locally compact topological
group G such that∫

G

f (s − t)φ(s)φ(t)dsdt ≥ 0

for everyφ, continuous and compactly supported
on G.

positive definite matrix An n× n matrix A,
such that, for all �u ∈ Rn, we have

(A(�u), �u) ≥ 0 ,

with equality only when �u = 0.

positive divisor A divisor that has only pos-
itive coefficients.

positive element An element g ∈ G, where
G is an ordered group, such that g ≥ e.

positive exponent For an expression ab, the
exponent b if b > 0.

positive matrix An n×n matrix A with real
entries such that ajk > 0 for each j and k. See
also positive definite matrix.

positive number A real number greater than
zero.

positive root Let S be a basis of a root system
φ in a vector spaceV such that each rootβ can be
written as β = ∑

a∈S maa, where the integers
ma have the same sign. Then β is a positive root
if all ma ≥ 0.

positive semidefinite matrix Ann×nmatrix
A such that, for all �u ∈ Rn, we have

(A(�u), �u) ≥ 0 .

positive Weyl chamber The set of λ ∈ V ∗
such that (β, λ) > 0 for all positive roots β,
where V is a vector space over a subfield R of
the real numbers.

power Let a1, . . . , an be a finite sequence of
elements of a monoid M . We define the “prod-
uct” of a1, . . . , an by the following: we define∏1

j=1 aj = a1, and

k+1∏
j=1

aj =

 k∏
j=1

aj


 ak+1 .

Then
k∏

j=1

aj

m∏
>=1

ak+> =
k+m∏
j=1

aj .

If all the aj = a, we denote a1 · a2 . . . an as an

and call this the nth power of a.

power associative algebra A distributive al-
gebra A such that every element of A generates
an associative subalgebra.

power method of computing eigenvalues
An iterative method for determining the eigen-
value of maximum absolute value of an n ×
n matrix A. Let λ1, λ2, . . . , λn be eigenval-
ues of A such that |λ1| > |λ2| ≥ · · · ≥ |λn|
and let y1 be an eigenvector such that (λ1I −
A)y1 = 0. Begin with a vector x(0) such that
(y1, x

(0)) �= 0 and for some i0, x(0)i0
= 1. De-

termine θ(0), θ (1), . . . , θ (m), . . . and x(1), x(2),

. . . , x(m+1), . . . by Ax(j) = θ(j)x(j+1). Then
limj→∞ θ(j) = λ1 and limj→∞ x(j) is the
eigenvector corresponding to λ1.

power of a complex number Let z = x +
iy = r(cos θ + i sin θ) be a complex number
with r = √

x2 + y2 and θ = tan−1 y
x

. Let n be
a positive number. The nth power of z will be
the complex number rn(cos nθ + i sin nθ).

power-residue symbol Let n be a positive
integer and let K be an algebraic number field
containing the nth roots of unity. Let α ∈ K×
and let ℘ be a prime ideal of the ring such that
℘ is relatively prime to n and α. The nth power
is a positive integer and let K be an algebraic
number field containing the nth roots of unity.
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Let α ∈ K× and let ℘ be a prime ideal of the
ring of integers of K such that ℘ is relatively
prime to n and α. The nth power residue symbol(

α
℘

)
n

is the unique nth root of unity that is

congruent to α(N℘−1)/n mod ℘. When n = 2
and K = Q, this symbol is the usual quadratic
residue symbol.

predual Let X and Y be Banach spaces such
that X is the dual of Y , X = Y ∗. Then Y is
called the predual of X.

preordered set A structure space for a non-
empty set R is a nonempty collection X of non-
empty proper subsets of R given the hull-kernel
topology. If there exists a binary operation ∗ on
R such that (R, ∗) is a commutative semigroup
and the structure spaceX consists of prime semi-
group ideals, then it is said that R has an X -
compatible operation. For p ∈ R, let Xp =
{A ∈ X : p /∈ A}. A preorder (reflexive and
transitive relation) ≤ is defined on R by the rule
that a ≤ b if and only if Xa ⊆ Xb. Then R is
called a preordered set.

preordered set A structure space for a non-
empty set R is a nonempty collection X of non-
empty proper subsets of R given the hull-kernel
topology. If there exists a binary operation ∗ on
R such that (R, ∗) is a commutative semigroup
and the structure spaceX consists of prime semi-
group ideals, then it is said that R has an X -
compatible operation. For p ∈ R, let Xp =
{A ∈ X : p /∈ A}. A preorder (reflexive and
transitive relation) ≤ is defined on R by the rule
that a ≤ b if and only if Xa ⊆ Xb. Then R is
called a preordered set.

presheaf Let X be a topological space. Sup-
pose that, for each open subset U of X, there is
an Abelian group (or ring, module, etc.) F(U).
Assume F(φ) = 0. In addition, suppose that
whenever U ⊆ V there is a homomorphism

ρUV : F(V ) → F(U)

such that ρUU = identity and such that ρUW =
ρUV ρVW whenever U ⊆ V ⊆ W . The col-
lection of Abelian groups along with the homo-
morphisms ρUV is called a presheaf of Abelian

groups (or rings, modules, etc.). There is a stan-
dard procedure for constructing a sheaf from a
presheaf.

primary Abelian group An Abelian group
in which the order of every element is a power
of a fixed prime number.

primary component Let R be a commuta-
tive ring with identity 1 and let J be an ideal
of R. Assume J = I1 ∩ · · · ∩ In with each Ii
primary and with nminimal among all such rep-
resentations. Then each Ii is called a primary
component of J .

primary ideal Let R be a ring with identity
1. An ideal I of R is called primary if I �= R

and all zero divisors of R/I are nilpotent.

primary linear programming problem A
linear programming problem in which the goal
is to maximize the linear function z = cx with
the linear conditions

∑n
j=1 aij xj = bi (i =

1, 2, . . . , m) and x ≥ 0, where x = (x1, x2, . . . ,

xn) is the unknown vector, c is an n × 1 vec-
tor of real numbers, bi (i = 1, 2, . . . , n) and
aij (i = 1, 2, . . . , n, j = 1, 2, . . . , n) are real
numbers.

primary ring Let R be a ring and let N be
the largest ideal of R containing only nilpotent
elements. IfR/N is nonzero and has no nonzero
proper ideals, R is called primary.

primary submodule Let R be a commuta-
tive ring with identity 1. LetM be anR-module.
A submoduleN ofM is called primary if when-
ever r ∈ R is such that there exists m ∈ M/N

with m �= 0 but rm = 0, then rn(M/N) =
0 for some integer n.

prime A positive integer greater than 1 with
the property that its only divisors are 1 and itself.
The numbers 2, 3, 5, 7, 11, 13, 17, 19, 23, 27 are
the first ten primes. There are infinitely many
prime numbers.

prime divisor For an integer n, a prime di-
visor is a prime that occurs in the prime factor-
ization of n. For an algebraic number field or
for an algebraic function field of one variable (a
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field that is finitely generated and of transcen-
dence degree 1 over a field K), a prime divi-
sor is an equivalence class of nontrivial valua-
tions (over K in the latter case). In the number
field case, the prime divisors correspond to the
nonzero prime ideals of the ring of integers and
the archimedean valuations of the field.

prime element In a commutative ringR with
identity 1, a prime element p is a nonunit such
that ifp divides a product abwith a, b ∈ R, then
p divides at least one of a, b. When R = Z, the
prime elements are of the form ±p for prime
numbers p.

prime factor A prime factor of an integer n
is a prime number p such that n is a multiple of
p.

prime field The rational numbers and the
fields Z/pZ for prime numbers p are called
prime fields. Every field contains a unique sub-
field isomorphic to exactly one of these prime
fields.

prime ideal Let R be a commutative ring
with identity 1 and let I �= R be an ideal of R.
Then I is prime if whenever a, b ∈ R are such
that ab ∈ I , then at least one of a and b is in I .

prime number A positive integer p is said
to be prime if
(i.) p > 1,
(ii.) p has no positive divisors except 1 and p.
The first few prime numbers are 2, 3, 5, 7, 11,
13, 17.

prime rational divisor A divisor p =∑
niPi on X over k satisfying the following

three conditions: (i.)p is invariant under any au-
tomorphism σ of k̄/k; (ii.) for any j , there exists
an automorphism σj of k̄/k such thatPj = P

σj
1 ;

(iii.) n1 = · · · = nt = [k(P1) : k]i , where X is
a nonsingular irreducible complete curve, k is a
subfield of the universal domain K such that X
is defined over k. Prime rational divisors gen-
erate a subgroup of the group of divisors G(X),
which is called a group of k-rational divisors.

primitive character Let G be a finite group
and let Irr(G) denote the set of all irreducible

C-characters of G, where C denotes the field of
complex numbers. Then χ ∈ Irr(G) is called a
primitive character if χ �= ϕG for any character
ϕ of a proper subgroup of G. See also character
of group, irreducible character.

primitive element Let E be an extension
field of the field F (E is a field containing F

as subfield). If u is an element of E and x is an
indeterminate, then we have the homomorphism
g(x) → g(u) of the polynomial ring F [x] into
E, which is the identity onF and send x → u. If
the kernel is 0, then F [u] ∼= F [x]. Otherwise,
we have a monic polynomial f (x) of positive
degree such that the kernel is the principal ideal
(f (x)), and then F [u] ∼= F [x]/(f (x)). Then
we say E = F(u) is a simple extension of F
and u a primitive element (= field generator of
E/F ).

primitive equation An equation f (X) = 0
such that a permutation of roots of f (X) = 0 is
primitive, where f (X) ∈ K[X] is a polynomial,
and K is a field.

primitive hypercubic set A finite subgroup
K of the orthogonal group O(V ) is called fully
transitive if there is a set S = {e1, . . . , es} that
spans V on which K acts transitively and K has
no invariant subspace in V . In this case, one can
choose S as either
(i.) the primitive hypercubic type:

S = {e1, . . . , en} ,
(
ei, ej

) = δij ;
or
(ii.) the primitive hyperbolic type:

S = {f1, . . . , fn+1} ,

(fi, fj ) = { 1, i=1,...n+1,i=j

− 1
n
, i,j=1,...,n+1,i �=j

.

primitive ideal Let R be a Banach algebra.
A two-sided ideal I of R is primitive if there is a
regular maximal left ideal J such that I is the set
of elements r ∈ R with rR ⊆ I . The regularity
of J means that there is an element u ∈ R such
that r − ru ∈ J for all r ∈ R.

primitive idempotent element An idempo-
tent element that cannot be expressed as a sum
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a + b with a and b nonzero idempotents satis-
fying ab = ba = 0.

primitive permutation representation Let
G be a group acting as a group of permutations
of a setX. This is called a permutation represen-
tation of G. This representation is called primi-
tive if the only equivalence relations R(x, y) on
X such that R(x, y) implies R(gx, gy) for all
x, y ∈ X and all g ∈ G are equality and the
trivial relation R(x, y) for all x, y ∈ X.

primitive polynomial Let f (x) be a poly-
nomial with coefficients in a commutative ring
R. When R is a unique factorization domain,
f (x) is called primitive if the greatest common
divisor of the coefficients of f (x) is 1. For an
arbitrary ring, a slightly different definition is
sometimes used: f (x) is primitive if the ideal
generated by the coefficients of f (x) is R.

primitive ring A ring R is called left prim-
itive if there exists an irreducible, faithful left
R-module, and R is called right primitive if
there exists an irreducible, faithful right R-
module. See also irreducibleR-module, faithful
R-module.

primitive root of unity Let m be a positive
integer and let R be a ring with identity 1. An
element ζ ∈ R is called a primitive mth root
of unity if ζm = 1 but ζ k �= 1 for all positive
integers k < m.

primitive transitive permutation group Let
G be a transitive group of permutations of a set
X. If the stabilizer of each element of X is a
maximal subgroup of G, then G is called prim-
itive.

principal adele Let K be an algebraic num-
ber field and let AK be the adeles of K . The
image of the diagonal injection of K into AK is
the set of principal adeles.

principal antiautmorphism A unique an-
tiautomorphism β of a Clifford algebra C(Q)

such that β(x) = x, for all x ∈ V , where
C(Q) = T (V )/I (Q), V is an n-dimensional
linear space over a field K , and Q is a qua-
dratic form on V , T (V ) is the tensor algebra

overV , and I (Q) is the two-sided ideal of T (V )
generated by elements x ⊗ x − Q(x) · 1 for
x ∈ V . Compare with principal automorphism,
i.e., the unique automorphism α of C(Q) such
that α(x) = −x, for all x ∈ V .

principal automorphism Let A be a com-
mutative ring and letM be a module overA. Let
a ∈ A. The homomorphism

M ) x *→ ax

is called the principal homomorphism associ-
ated with a, and is denoted aM . When aM is
one-to-one and onto, then we call aM a princi-
pal automorphism of the module M .

principal divisor of functions The formal
sum

(φ) = m1p1 +· · ·+mjpj +n1q1 +· · ·+nkqk

where p1, . . . , pj are the zeros and q1, . . . , qk
are the poles of a meromorphic function φ, mi

is the order of pi and ni is the order of qi .

principal genus An ideal group ofK formed
by the set of all ideals U ofK relatively prime to
m such that NK/k(U) belongs to H(m), where
k is an algebraic number field, m is an integral
divisor of k, T (m) is the multiplicative group
of all fractional ideals of k which are relatively
prime to m, S(m) is the ray modulo m, H(m)

is an ideal group modulo m (i.e., a subgroup of
T (m) containing S(m)), and K/k is a Galois
extension.

principal H -series An H -series R which is
strictly decreasing and such that there exists no
normal series distinct from R, finer than R, and
strictly decreasing. See also H -series, normal
series, finer.

principal ideal Let R be a commutative ring
with identity 1. A principal ideal is an ideal of
the form aR = {ar|r ∈ R} for some a ∈ R.

principal ideal domain An integral domain
in which every ideal is principal. See principal
ideal.

principal ideal ring A ring in which every
ideal is principal. See principal ideal.
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Principal Ideal Theorem There are at least
two results having this name:

(1) Let K be an algebraic number field and
letH be the Hilbert class field ofK . Every ideal
of the ring of integers of K becomes principal
when lifted to an ideal of the ring of integers of
H . This was proved by Furtwängler in 1930.

(2) Let R be a commutative Noetherian ring
with 1. If x ∈ R and P is minimal among the
prime ideals of R containing x, then the codi-
mension of P is at most 1 (that is, there is no
chain of prime ideals P ⊃ P1 ⊃ P2 (strict in-
clusions) in R). This was proved by Krull in
1928.

principal idele LetK be an algebraic number
field. The multiplicative group K× injects di-
agonally into the group IK of ideles. The image
is called the set of principal ideles.

principal matrix Suppose A = [Aij ] is an
n×n matrix. The principal matrices associated
with A are A(k) = [Aij ], 1 ≤ i, j ≤ k ≤ n.

principal minor See principal submatrix.

principal order Let K be a finite extension
of the rational field Q. The ring of all algebraic
integers in K is called the principal order of K .

principal root A root with largest real part (if
this root is unique) of the characteristic equation
of a differential-difference equation.

principal series For a semisimple Lie group,
those unitary representations induced from finite
dimensional unitary representations of a mini-
mal parabolic subgroup.

principal solution A solution F(x) of the
equation SF(x)/Sx = g(x), where SF(x) =
F(x + Sx) − F(x). Such a solution F(x) can
be obtained by a formula in terms of integral,
series, and limits.

principal submatrix A submatrix of anm×n

matrixA is an (m−k)×(n−>)matrix obtained
from A by deleting certain k rows (k < m) and
> columns (> < n) of A. If m = n and if the set
of deleted rows coincides with the set of deleted
columns, we call the submatrix obtained a prin-

cipal submatrix of A. Its determinant is called
a principal minor of A. For example, let

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


 .

Then, by deleting row 2 and column 2 we obtain
the principal submatrix of A(

a11 a13
a31 a33

)
.

Notice that the diagonal entries and A itself are
principal submatrices of A.

principal value (1) The principal values of
arcsin, arccos, and arctan are the inverse func-
tions of the functions sin x, cos x, and tan x, re-
stricted to the domains −π

2 ≤ x ≤ π
2 , 0 ≤ x ≤

π , and −π
2 < x < π

2 , respectively. See arc sine,
arc cosine, arc tangent.

(2) Let f (x) have a singularity at x = c,
with a ≤ c ≤ b. The Cauchy principal value of∫ b

a
f (x) dx is

lim
ε→0

(∫ c−ε

a

f (x) dx +
∫ b

c+ε

f (x) dx

)
.

The Cauchy principal value of an improper
integral

∫ ∞
−∞ f (x)dx is limc→∞

∫ c

−c
f (x)dx.

principle of counting constants Let X and
Y be algebraic varieties and let C be an ir-
reducible subvariety of X × Y . Let pX and
pY denote the projection maps onto the fac-
tors of X × Y . Let a1 = dim(pX(C)) and
a2 = dim(pY (C)). There exist a nonempty
open subset U1 of pX(C), contained in pX(C),
and a nonempty open subsetU2 of pY (C)), con-
tained in pY (C), such that all irreducible com-
ponents of C(x) = {y ∈ Y : (x, y ∈ C} have
the same dimension b2 for all x ∈ U1 and such
that all irreducible components of C−1(y) =
{x ∈ X : (x, y) ∈ C} have the same dimension
b2 for all y ∈ U2. These dimensions satisfy
a1 + b2 = a2 + b1.

principle of reflection Two complex num-
bers z1 and z2 are said to be symmetric with
respect to a circle of radius r and center z0 if
(z1 − z0)(z2 − z0) = r2. The principle of
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reflection states that if the image of the circle
under a linear fractional transformation w =
(az + b)/(cz + d) is again a circle (this hap-
pens unless the image is a line), then the images
w1 and w2 of z1 and z2 are symmetric with re-
spect to this new circle. See also linear fractional
function.

The Schwarz Reflection Principle of complex
analysis deals with the analytic continuation of
an analytic function defined in an appropriate
set S, to the set of reflections of the points of S.

product A term which includes many phe-
nomena. The most common are the following:

(1) The product of a set of numbers is the re-
sult obtained by multiplying them together. For
an infinite product, this requires considerations
of convergence.

(2) If A1, . . . , An are sets, then the product
A1 × · · · × An is the set of ordered n-tuples
(a1, . . . , an) with ai ∈ Ai for all i. This defini-
tion can easily be extended to infinite products.

(3) Let A1 and A2 be objects in a category C.
A triple (P, π1, π2) is called the product of A1
and A2 if P is an object of C, πi : P → Ai is
a morphism for i = 1, 2, and if whenever X is
another object with morphisms fi : X → Ai ,
for i = 1, 2, then there is a unique morphism
f : X → P such that πif = fi for i = 1, 2.

(4) See also bracket product, cap product,
crossed product, cup product, direct product,
Euler product, free product, Kronecker prod-
uct, matrix multiplication, partial product, ten-
sor product, torsion product, wedge product.

product complex Let C1 be a complex of
right modules over a ring R and let C2 be a
complex of left R-modules. The tensor product
C1 ⊗R C2 gives a complex of Abelian groups,
called the product complex.

product double chain complex The dou-
ble chain complex (Zp,q, ∂

′, ∂ ′′) obtained from
a chain complex X of right A-modules with
boundary operator ∂p and a chain complex Y

of left A-modules with boundary operator ∂q in

the following way:

Zp,q = Xp × Yq

∂ ′
p,q = ∂p × 1

∂ ′′
p,q = (−1)p1 × ∂q .

product formula (1) Let K be a finite exten-
sion of the rational numbers Q. Then

∏
v |x|v =

1 for all x ∈ K , x �= 0, where the product is over
all the normalized absolute values (both p-adic
and archimedean) of K .

(2) Let K be an algebraic number field con-
taining the nth roots of unity, and let a and b

be nonzero elements of K . For a place v of K
(as in (1) above), let ( a,b

v
)n be the nth norm-

residue symbol. Then
∏

v(
a,b
v
)n = 1. See also

norm-residue symbol.

profinite group Any group G can be made
into a topological group by defining the collec-
tion of all subgroups of finite index to be a neigh-
borhood base of the identity. A group with this
topology is called a profinite group.

projection matrix A square matrix M such
that M2 = M .

projective algebraic variety Let K be a
field, let K̄ be its algebraic closure, and let Pn(K̄)

ben-dimensional projective space over K̄ . LetS
be a set of homogeneous polynomials inX0, . . . ,

Xn. The set of common zeros Z of S in Pn(K̄)

is called a projective algebraic variety. Some-
times, the definition also requires the set Z to be
irreducible, in the sense that it is not the union
of two proper subvarieties.

projective class Let A be a category. A pro-
jective class is a class P of objects in A such
that for each A ∈ A there is a P ∈ P and a
P-epimorphism f : P → A.

projective class group Consider left mod-
ules over a ring R with 1. Two finitely gener-
ated projective modules P1 and P2 are said to
be equivalent if there are finitely generated free
modulesF1 andF2 such thatP1⊕F1 , P2⊕F2.
The set of equivalence classes, with the opera-
tion induced from direct sums, forms a group
called the projective class group of R.
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projective cover An object C in a category
C is the projective cover of an object A if it sat-
isfies the following three properties: (i.) C is
a projective object. (ii.) There is an epimor-
phism e : C → A. (iii.) There is no projective
object properly between A and C. In a gen-
eral category, this means that if g : C′ → A

and f : C → C′ are epimorphisms and C′ is
projective, then f is actually an isomorphism.
Thus, projective covers are simply injective en-
velopes “with the arrows turned around.” See
also epimorphism, injective envelope.

In most familiar categories, objects are sets
with structure (for example, groups, topologi-
cal spaces, etc.) and morphisms are particu-
lar kinds of functions (for example, group ho-
momorphisms, continuous functions, etc.), and
epimorphisms are onto functions (surjections)
of a particular kind. Here is an example of a
projective cover in a specific category: In the
category of compact Hausdorff spaces and con-
tinuous maps, the projective cover of a space X
always exists, and is called the Gleason cover
of the space. It may be constructed as the Stone
space (space of maximal lattice ideals) of the
Boolean algebra of regular open subsets of X.
A subset is regular open if it is equal to the inte-
rior of its closure. See also Gleason cover, Stone
space.

projective dimension Let R be a ring with
1 and let M be an R-module. The projective
dimension of M is the length of the smallest
projective resolution ofM; that is, the projective
dimension is n if there is an exact sequence 0 →
Pn → · · · → P0 → M → 0, where each
Pi is projective and n is minimal. If no such
finite resolution exists, the projective dimension
is infinite.

projective general linear group The quo-
tient group defined as the group of invertible
matrices (of a fixed size) modulo the subgroup
of scalar matrices.

projective limit The inverse limit. See in-
verse limit.

projective module A module M for which
there exists a module N such that M ⊕ N is
free. Equivalently, M is projective if, whenever

there is a surjection f : A → M , there is a
homomorphism g : M → A such that fg is the
identity map of M .

projective morphism A morphismf : X →
Y of algebraic varieties over an algebraically
closed field K which factors into a closed im-
mersion X → Pn(K)×Y , followed by the pro-
jection to Y . This concept can be generalized to
morphisms of schemes.

projective object An objectP in a category C
satisfying the following mapping property: If e :
C → B is an epimorphism in the category, and
f : P → B is a morphism in the category, then
there exists a (usually not unique) morphism g :
P → C in the category such that e ◦ g = f .
This is summarized in the following “universal
mapping diagram”:

P
f ↙ ↘∃g
B

e←− C

Projectivity is simply injectivity “with the ar-
rows turned around.” See also epimorphism,
injective object, projective module.

In most familiar categories, objects are sets
with structure (for example, groups, topologi-
cal spaces, etc.), and morphisms are particular
kinds of functions (for example, group homo-
morphisms, continuous maps, etc.), so epimor-
phisms are onto functions (surjections) of partic-
ular kinds. Here are two examples of projective
objects in specific categories: (i.) In the cate-
gory of Abelian groups and group homomor-
phisms, free groups are projective. (An Abelian
group G is free if it is the direct sum of copies
of the integers Z.) (ii.) In the category of com-
pact Hausdorff spaces and continuous maps, the
projective objects are exactly the extremely dis-
connected compact Hausdorff spaces. (A com-
pact Hausdorff space is extremely disconnected
if the closure of every open set is again open.)
See also compact topological space, Hausdorff
space.

projective representation A homomorphism
from a group to a projective general linear group.

projective resolution LetB be a leftR mod-
ule, where R is a ring with unit. A projective
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resolution of B is an exact sequence,

· · · φ2−→ E1
φ1−→ E0

φ0−→ B −→ 0 ,

where every Ei is a projective left R module.
(We shall define exact sequence shortly.) There
is a companion notion for rightR modules. Pro-
jective resolutions are extremely important in
homological algebra and enter into the dimen-
sion theory of rings and modules. See also flat
resolution, injective resolution, projective mod-
ule, projective dimension.

An exact sequence is a sequence of left R
modules, such as the one above, where every
φi is a left R module homomorphism (the φi
are called “connecting homomorphisms”), such
that Im(φi+1) = Ker(φi). Here Im(φi+1) is the
image ofφi+1, and Ker(φi) is the kernel ofφi . In
the particular case above, because the sequence
ends with 0, it is understood that the image of φ0
is B, that is, φ0 is onto. There is a companion
notion for right R modules.

projective scheme A projective scheme over
a scheme S is a closed subscheme of projective
space over S.

projective space Let K be a field and con-
sider the set of (n + 1)-tuples (x0, . . . , xn) in
Kn+1 with at least one coordinate nonzero. Two
tuples (. . . , xi, . . . ) and (. . . , x′

i , . . . ) are equiv-
alent if there exists λ ∈ K× such that x′

i =
λxi for all i. The set Pn(K) of all equivalence
classes is called n-dimensional projective space
over K . It can be identified with the set of
lines through the origin in Kn+1. The equiv-
alence class of (x0, x1, . . . , xn) is often denoted
(x0 : x1 : · · · : xn). More generally, let R be a
commutative ring with 1. The scheme Pn(R) is
given as the set of homogeneous prime ideals of
R[X0, . . . , Xn] other than (X0, . . . , Xn), with a
structure sheaf defined in terms of homogeneous
rational functions of degree 0. It is also possible
to define projective space Pn(S) for a scheme
S by patching together the projective spaces for
appropriate rings.

projective special linear group The quotient
group defined as the group of matrices (of a fixed
size) of determinant 1 modulo the subgroup of
scalar matrices of determinant 1.

projective symplectic group The quotient
group defined as the group of symplectic ma-
trices (of a given size) modulo the subgroup
{I,−I }, where I is the identity matrix. See sym-
plectic group.

projective unitary group The quotient group
defined as the group of unitary matrices modulo
the subgroup of unitary scalar matrices. See uni-
tary matrix.

proper component Let U and V be irre-
ducible subvarieties of an irreducible algebraic
variety X. A simple irreducible component of
U ∩V is called proper if it has dimension equal
to dim U + dim V - dim X.

proper equivalence An equivalence relation
R on a topological space X such that R[K] =
{x ∈ X : xRk for some k ∈ K} is compact for
all compact sets K ⊆ X.

proper factor Let a and b be elements of a
commutative ring R. Then a is a proper factor
of b if a divides b, but a is not a unit and there
is no unit u with a = bu.

proper fraction A positive rational number
such that the numerator is less than the denom-
inator. See also improper fraction.

proper intersection Let Y and Z be subva-
rieties of an algebraic variety X. If every irre-
ducible component of Y ∩ Z has codimension
equal to codimY+codimZ, thenY andZ are said
to intersect properly.

proper Lorentz group The group formed
by the Lorentz transformations whose matrices
have determinants greater than zero.

proper morphism of schemes A morphism
of schemes f : X → Y such that f is sepa-
rated and of finite type and such that for every
morphismT → Y of schemes, the induced mor-
phism X×T Y → T takes closed sets to closed
sets.

proper orthogonal matrix An orthogonal
matrix with determinant +1. See orthogonal
matrix.
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proper product Let R be an integral domain
with field of quotientsK and letA be an algebra
over K . Let M and N be two finitely generated
R-submodules ofA such thatKM = KN = A.
If {a ∈ A : Ma ⊆ M} = {a ∈ A : aN ⊆ N},
and this is a maximal order ofA, then the product
MN is called a proper product.

proper transform Let T : V → W be a
rational mapping between irreducible varieties
and let V ′ be an irreducible subvariety of V . A
proper transform of V ′ by T is the union of all
irreducible subvarietiesW ′ ofW for which there
is an irreducible subvariety ofT such thatV ′ and
W ′ correspond.

proportion A statement equating two ratios,
a
b

= c
d

, sometimes denoted by a : b = c : d.
The terms a and d are the extreme terms and the
terms b and c are the mean terms.

proportional A term in the proportion a
b

=
c
d

. Given numbers a, b, and c, a number x which
satisfies a

b
= c

x
is a fourth proportional to a, b,

and c. Given numbers a and b, a number x
which satisfies a

b
= b

x
is a third proportional to

a and b, and a number x which satisfies a
x

= x
b

is a mean proportional to a and b.

proportionality The state of being in pro-
portion. See proportion.

Prüfer domain An integral domain R such
that every nonzero ideal ofR is invertible. Equiv-
alently, the localization RM is a valuation ring
for every maximal ideal M . Another equivalent
condition is that an R-module is flat if and only
if it is torsion-free.

Prüfer ring An integral domain R such that
all finitely generated ideals in R are inversible
in the field of quotients of R. See also integral
domain.

pseudogeometric ring Let A be a Noethe-
rian integral domain with field of fractionsK . If
the integral closure ofA in every finite extension
of K is finitely generated over A, then A is said
to satisfy the finiteness condition. A Noethe-
rian ring R such that R/P satisfies the finite-

ness condition for all prime ideals P is called
pseudogeometric.

pseudovaluation A map v from a ringR into
the nonnegative real numbers such that (i.) v(r)
= 0 if and only if r = 0, (ii.) v(rs) ≤ v(r)v(s),
(iii.) v(r + s) ≤ v(r)+ v(s), and (iv.) v(−r) =
v(r) for all r, s ∈ R.

p-subgroup A finite group whose order is
a power of p is called a p-group. A p-group
that is a subgroup of a larger group is called a
p-subgroup.

p-subgroup For a finite groupG and a prime
integer p, a subgroup S of G such that the order
of S is a power of p.

pure imaginary number An imaginary num-
ber. See imaginary number.

pure integer programming problem A
problem similar to the primary linear program-
ming problem in which the solution vector x =
(x1, x2, . . . , xn) is a vector of integers: the prob-
lem is to minimize z = cx with the conditions
Ax = b, x ≥ 0, and xj (j = 1, 2, . . . , n) is an
integer, where c is an n× 1 vector of real num-
bers, A is an m× n matrix of real numbers, and
b is an m × 1 matrix of real numbers.

purely infinite von Neumann algebra A
von Neumann algebraAwhich has no semifinite
normal traces on A.

purely inseparable element Let L/K be an
extension of fields of characteristic p > 0. If
α ∈ L satisfies αp

n ∈ K for some n, then α is
called a purely inseparable element over K .

purely inseparable extension An extension
L/K of fields such that every element of L is
purely inseparable over K . See purely insepa-
rable element.

purely inseparable scheme Given an ir-
reducible polynomial f (X) over a field k, if
the formal derivative df/dX = 0, then f (X)

is inseparable; otherwise, f is separable. If
char(k) = 0, every irreducible polynomial
f (X)(�= 0) is separable. If char(k) = p > 0,
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an irreducible polynomial f (X) is inseparable
if and only if f (X) = g(Xp). An algebraic
element α over k is called separable or insep-
arable over k if the minimal polynomial of α
over k is separable or inseparable. An alge-
braic extension of k is called separable if all
elements of K are separable over k; otherwise,
K is called inseparable. If α is inseparable, then
k has nozero characteristic p and the minimal
polynomial f (X) of α can be decomposed as
f (X) = (X−α1)

pr (X−α2)
pr . . . (X−αm)

pr ,
r ≥ 1, where α1, . . . , αm are distinct roots of
f (X) in its splitting field. If αp

r ∈ k for some
r , we call α purely inseparable over k. An al-
gebraic extension K of k is called purely in-
separable if all elements of the field are purely
inseparable over k. Let V ⊂ kn be a reduced
irreducible affine algebraic variety. V is called
purely inseparable if the function field k(V ) is
purely inseparable over k. Therefore, we can de-
fine the same notion for reduced irreducible al-
gebraic varieties. Since there is a natural equiva-
lence between the category of algebraic varieties
over k and the category of reduced, separated, al-
gebraic k-schemes, by identifying these two cat-
egories, we define purely inseparable reduced,
irreducible, algebraic k-schemes.

purely transcendental extension An exten-
sion of fields L/K such that there exists a set
of elements {xi}i∈I , algebraically independent
over K , with L = K({xi}). See algebraic inde-
pendence.

pure quadratic A quadratic equation of the
form ax2 + c = 0, that is, a quadratic equation
with the first degree term bx missing.

Pythagorean field A field F that contains√
a2 + b2 for all a, b ∈ F .

Pythagorean identities The following ba-
sic identities involving trigonometric functions,
resulting from the Pythagorean Theorem:

sin2(x) + cos2(x) = 1

tan2(x) + 1 = sec2(x)

1 + cot2(x) = csc2(x) .

Pythagorean numbers Any combination of
three positive integers a, b, and c such that a2 +
b2 = c2.

Pythagorean ordered field An ordered field
P such that the square root of any positive ele-
ment of P is in P .

Pythagorean Theorem Consider a right tri-
angle with legs of length a and b and hypotenuse
of length c. Then a2 + b2 = c2.

Pythagorean triple A solution in positive
integers x, y, z to the equation x2 + y2 = z2.
Some examples are (3, 4, 5), (5, 12, 13), and
(20, 21, 29). If x, y, z have no common divi-
sor greater than 1, then there are integers a, b
such that x = a2−b2, y = 2ab, and z = a2+b2

(or the same equations with the roles of x and
y interchanged). Also called Pythagorean num-
bers.
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Q
QR method of computing eigenvalues An
iterative method of finding all of the eigenvalues
of an n× n matrix A. Let A0 = A. Determine
A1, A2, . . . , Am, . . . in the following way: IfA
is a real tridiagonal matrix or a complex upper
Hessenberg matrix, let sm be the eigenvalue of
the 2 × 2 matrix closer to a(m)nn in the lower right
corner ofAm, or ifA is a real upper Hessenberg
matrix, let sm and sm+1 be the eigenvalues of
the 2×2 matrix in the lower right corner ofAm.
With this (these) value(s) of sm, writeAm− smI
as QmRm, where Qm is a unitary matrix and
Rm is an upper Hessenberg matrix. Then de-
fine Am+1 = RmQm − smI . Then the elements
on the diagonal of limm→∞Am converge to the
eigenvalues of A.

quadratic Of degree 2, as, for example, a
polynomial aX2 + bX + c, with a �= 0.

quadratic differential On a Riemann sur-
face S, a rule which associates to each local pa-
rameter z mapping a parametric neighborhood
U ⊂ S into the extended complex plane C
(z : U → C), a function Qz : z(U) → C such
that for any local parameter z1 : U1 → C and
z2 : U2 → C with U1 ∩ U2 �= ∅, the following
holds in this intersection:

Qz2 (z2(p))

Qz1 (z1(p))
=

(
dz1(p)

dz2(p)

)2

, ∀p ∈ U1 ∩U2 .

Here z(U) is the image of U in C under z.

quadratic equation A polynomial equation
of the form aX2+bX+c = 0. The solutions are
given by the quadratic formula. See quadratic
formula.

quadratic field A field of the form Q(
√
d) =

{a + b√d : a, b ∈ Q}, where Q is the field of
rational numbers and d ∈ Q is not a square.

quadratic form A polynomial of the form
Q(X1, . . . , Xn) = ∑

i,j cijXiXj , where the co-
efficients cij lie in some ring.

quadratic formula The roots of aX2+bX+
c = 0 are given byX = −b±

√
b2−4ac

2a (in a field
of characteristic other then 2).

quadratic function A polynomial function
of degree two: ax2 + bx + c. For example,
8x2 + 3x − 1 is a quadratic function. See also
pure quadratic.

quadratic inequality Any inequality of one
of the forms:

ax2 + bx + c < 0

ax2 + bx + c > 0

ax2 + bx + c ≤ 0

ax2 + bx + c ≥ 0 .

quadratic polynomial A polynomial of the
form aX2 + bX + c.
quadratic programming Theoretical as-
pects and methods pertaining to minimizing or
maximizing quadratic functions on sets X with
constraints determined by linear equations and
linear inequalities.

quadratic programming problem A qua-
dratic programming problem in which one wants
to maximize or minimize z = ctx− 1

2 xtDx with
the constraints Ax ≤ b and x ≥ 0, where A is
an m× n matrix of real numbers, c ∈ Rn, D is
an n×nmatrix of real numbers, and ( )t denotes
transposition.

quadratic reciprocity Let p and q be dis-
tinct odd primes. If at least one of p and q is
congruent to 1 mod 4, then p is congruent to a
square mod q if and only if q is congruent to a
square mod p. If both p and q are congruent to
3 mod 4, then p is congruent to a square mod q
if and only if q is not congruent to a square mod
p.

quadratic residue An integer r is a quadratic
residue mod n if there exists an integer x with
r ≡ x2 mod n. See modular arithmetic.
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quadratic transformation The map from
the projective plane to itself given by (x0 : x1 :
x2) �→ (x1x2 : x0x2 : x0x1). See also projective
space.

quartic Of degree 4, as, for example, a poly-
nomial aX4 +bX3 +cX2 +dX+e, with a �= 0.

quartic equation A polynomial equation of
the form aX4 + bX3 + cX2 + dX + e = 0.

quasi-affine algebraic variety A locally
closed subvariety of affine space. See affine
space.

quasi-algebraically closed field A field F
such that, for every d ≥ 1, every homogeneous
polynomial equation of degree d in more than d
variables has a nonzero solution in F . Finite
fields and rational function fields K(X) with
K algebraically closed are quasi-algebraically
closed.

quasi-coherent module Let (X,R) be a
ringed space. A sheaf of R-modules is called
quasi-coherent if, for each x ∈ X, there exists
an open set U containing x such that M|U can
be expressed as A/B where A and B are free
R|U -modules.

quasi-dual space The quotient space of the
space of quotient representations of a locally
compact group G, considered with the Borel
structure subordinate to the topology of uniform
convergence of matrix entries on compact sets.

quasi-equivalent representation Two uni-
tary representations π1, π2 of a group G (or
symmetric representations of a symmetric alge-
braA) in Hilbert spacesH1 andH2, respectively,
satisfying one of the following four equivalent
conditions:
(i.) there exist unitarily equivalent representa-
tions µ1 and µ2 such that µ1 is a multiple of π1
and µ2 is a multiple of π2;
(ii.) the non-zero subrepresentations of π2 are
not disjoint from π1;
(iii.) π2 is unitarily equivalent to a subrepresen-
tation of some multiple representation µ2 of π2
that has unit central support;
(iv.) there exists an isomorphism ' of the von

Neumann algebra generated by the set π1(A)

onto the von Neumann algebra generated by the
set π2(A) such that

' (π1(a)) = π2(a), for all a ∈ A .

quasi-Frobenius algebra Let A be an alge-
bra over a field and let A∗ be the dual of the
right A-module A. Decompose A into a di-
rect sum of indecomposable left ideals and a
direct sum of indecomposable right ideals: A =∑
i

∑
j Ae

(j)
i = ∑

i

∑
j e
(j)
i A, where Ae(j)i �

Ae
(j ′)
i′ if and only if i = i′, and similarly for the

right ideals. A is called quasi-Frobenius if there
exists a permutation π of the indices i such that
Ae
(1)
i � (e(1)π(i)A)∗.

quasi-Fuchsian group A Fuchsian group is
a group of conformal homeomorphisms of the
Riemann sphere which leaves invariant a round
circle in the sphere (equivalently a group of
isometries of hyperbolic 3 space which leaves
invariant a flat plane). A quasi-Fuchsian group
is a quasiconformal deformation of a Fuchsian
group: there is a quasiconformal homeomor-
phism of the sphere conjugating the action of the
Fuchsian group to the group in question. It fol-
lows that abstractly the group is a surface group.
Quasi-Fuchsian groups are extremely important
for hyperbolic 3-manifolds, for instance, play-
ing a central role in the geometrization of a large
class of 3-manifolds. See also Kleinian group.

quasi-group A set with a not necessarily as-
sociative law of composition (a, b) �→ ab such
that the equation ab = c has a unique solution
when any two of the variables are specified.

quasi-inverse Let x, y be elements of a ring.
Then y is called a quasi-inverse of x if x + y −
xy = x+y−yx = 0. If 1 exists, this means that
(1−y) is the inverse of (1−x). An element that
has a quasi-inverse is called quasi-invertible.

quasi-inverse element See quasi-inverse.

quasi-invertible element See quasi-inverse.

quasi-local ring A commutative ring with
exactly one maximal ideal. Often such rings are
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called local rings, but some authors reserve the
term local ring for Noetherian rings with unique
maximal ideals.

quasi-projective algebraic variety An open
subset of a projective variety.

quasi-projective morphism A morphismf :
X → Y of varieties, or schemes, that factors
as an open immersion X → X′ followed by a
projective morphism X′ → Y . See projective
morphism.

quasi-projective scheme An open sub-
scheme of a projective scheme. See projective
scheme.

quasi-semilocal ring A commutative ring
with only finitely many maximal ideals. Of-
ten such rings are called semilocal rings, but
some authors reserve the term semilocal ring
for Noetherian rings with finitely many maxi-
mal ideals.

quasi-symmetric homogeneous Siegel domain
A Siegel domain S = S(U, V,,,H) satisfying
the following conditions:
(i.) , is homogeneous and self-dual;
(ii.) Ru is associated with Tu for all u ∈ U ;
where U is a vector space over R of dimension
m; V is a vector space over C of dimension n;
, is a non-degenerate open convex cone in U
with vertex at the origin; H is a Hermitian map
H : V × V → Uc = U ⊗R C; for u ∈ Uc,
Ru ∈ End(V ) is defined by (u,H(v, v′)) =
2h(v, Ruv′), v, v′ ∈ V ; for each u ∈ U , there
exists a unique element Tu ∈ p(,) such that
Tue = u; and g(,) = t (,)+ p(,) is the Car-
tan decomposition. Notice that a Siegel domain
S is symmetric if and only if (i.) and (ii.) above
and the following condition (iii.) hold:
(iii.) Ru satisfies the relation

H(R(H(v", v′))v, v")
= H(v′, R(H(v, v"))v") .

quaternion An element of the Hamiltonian
quaternions. See Hamilton’s quaternion alge-
bra.

quaternion algebra See Hamilton’s quater-
nion algebra.

quaternion group The group of order 8 equal
to {±1,±i,±j, ±k}, with relations i2 = j2 =
k2 = −1, ij = k, ji = −k and (−1)a =
a(−1) for all a. See also Hamilton’s quaternion
algebra.

quintic Of degree 5, as, for example, a poly-
nomial aX5 + bX4 + cX3 + dX2 + eX + f ,
with a �= 0.

quintic equation A polynomial equation of
the form aX5+bX4+cX3+dX2+eX+f = 0.

quotient (1) The result of dividing one num-
ber by another. See also numerator, denomina-
tor.

(2) The result of starting with a set (group,
ring, topological space, etc.) and forming a new
set consisting of equivalence classes under some
equivalence relation. See also quotient algebra,
quotient chain complex, quotient G-set, quotient
group, quotient Lie algebra, quotient Lie group,
quotient representation, quotient ring, quotient
set.

quotient algebra The algebra of equivalence
classes of an algebra modulo a two-sided ideal.

quotient bialgebra The quotient spaceH/I
with the induced bialgebra structure, where I is
bi-ideal of a bialgebra H , i.e., I is an ideal of
an algebra (H,µ, η) which is also a co-ideal of
a co-algebra (H,4, ε), and (H,µ, η,4, ε) is a
bialgebra. See also bialgebra.

quotient bundle Let π : X→ B be a vector
bundle and let π ′ : X′ → B be a subbundle of
π . The quotient bundle of π is the union of vec-
tor spaces π−1(b)/(π ′)−1(b) with the quotient
topology.

quotient chain complex Let (X, ∂)be a chain
complex, where X = ∑

Xn, and let Y = ∑
Yn

be a subcomplex (so ∂Y ⊆ Y ). Then X/Y with
the map induced from ∂ forms the quotient chain
complex. See also chain complex.
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quotient co-algebra The quotient spaceC/I
with a co-algebra structure induced naturally
from a co-algebra (C,4, ε), where I is a co-
ideal of C. See also coalgebra.

quotient group LetG be a group and letH be
a normal subgroup. The set of all cosets forms a
group, denotedG/H , where the group operation
is defined by (aH) ∗ (bH) = (a ∗ b)H (where
a ∗ b denotes the group operation in G). For
example, ifG = Z, the integers under addition,
and H = nZ, the multiples of a fixed integer
n, then G/H is the additive group of integers
modulo n.

quotient G-set LetG be a group acting on a
set X and let R be a G-compatible equivalence
relation on X, that is, xRy implies gxRgy, for
all x, y ∈ X, and all g ∈ G. The quotient set
X/R, which has a natural action of G, is called
a quotient G-set. See also G-set.

quotient Lie algebra Let g be a Lie algebra
with bracket [·, ·], and let a be a Lie subalgebra
such that [g, a] ⊆ a (so a is an ideal of g). The
quotient g/a with the bracket induced from that
of g is called a quotient Lie algebra. See also
quotient algebra.

quotient Lie group Let G be a Lie group
and let H be a closed normal subgroup. The
quotient group can be given the structure of a
Lie group and is called a quotient Lie group.
See also quotient group.

quotient representation Letρ : G→GL(V )
be a representation of a group G as a group of
linear transformations of a vector space V . Let
W ⊆ V be a subspace such that ρ(G)W ⊆ W .
The quotient representation is the induced map
G→ GL(V/W). See induced representation.

quotient ring Let R be a ring and let I be
a two-sided ideal. The set R/I of cosets with
respect to the additive structure can be given the
structure of a ring by defining (a+I )+(b+I ) =
a + b+ I and (a + I )(b+ I ) = ab+ I , where
a, b ∈ R. This is called a quotient ring. The
standard example is when R = Z, the integers,
and I = nZ, the multiples of a fixed integer n.
Then R/I is the ring of integers modulo n.

quotient set The set of equivalence classes,
denotedX/R, of a setXwith respect to an equiv-
alence relation R on X.
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R
Racah algebra Let A be a dynamical quan-
tity and let φ1 and φ2 be irreducible components
of the state obtained by combiningn angular mo-
menta. Racah algebra is a systematic method
of calculating the matrix element (φ1, Aφ2) in
quantum mechanics.

Racah coefficient Certain constants in Racah
algebra. Consider irreducible representations of
the rotation groups R = SO(3). The reduction
of the tensor product of three irreducible repre-
sentations can be done in two ways, (D(j1) ⊗
D(j2))⊗D(j3) and D(j1)⊗ (D(j2)⊗D(j3))

and two corresponding sets of basis vectors. The
transformation coefficient for the two ways of
reduction is written in the following form:

〈j1j2 (j12) j3; j |j1, j2j3 (j23) ; j〉
= √

(2j12 + 1)(2j23 + 1)W (j1j2jj3; j12j23) .

Here W(abcd; ef ) are called the Racah coeffi-
cients.

radian A measure of the size of an angle. If
the vertex of an angle is at the center of a circle
of radius 1, the length of the arc on the circle
determined by the angle is the radian measure
of the angle. For example, a right angle is π/2
radians. One radian equals 180/π , which is ap-
proximately 57.3 degrees.

radical A term that has many meanings:
(1) The nth root of a number.
(2) If R is a commutative ring with 1 and

I is an ideal in R, the radical of I is the set of
r ∈ R such that rn ∈ I for somen (depending on
r). The radical of the zero ideal is often called
the radical of R, or the nilradical of R. It is
the intersection of all prime ideals of R. The
Jacobson radical of R is the intersection of all
maximal ideals of R.

(3) In an arbitrary ring, the radical is the
largest ideal that is contained in the set of quasi-
invertible elements.

(4) The radical of an algebraic group is the
largest connected closed solvable normal sub-
group.

(5) The radical of a Lie algebra is the largest
solvable ideal.

radical equation An equation in which the
variable is under a radical. For example,√
x2 + 1− 2 3

√
x = 3x is a radical equation.

radical of a group The maximal solvable
normal subgroup of a group G. In other words,
a solvable normal subgroupR ofG, which is not
contained in a larger solvable normal subgroup
ofG. See also solvable group, normal subgroup.

radicand In an expression n
√
a, the quantity

a.

radix The base of a system of numbers. For
example, 10 is the radix of the decimal system.

ramification field See ramification group.

ramification group LetL/K be a Galois ex-
tension of algebraic number fields and let R be
the ring of algebraic integers in L. Let P be
a prime ideal of R and let Z be the decompo-
sition group for P (the set of Galois elements
g such that gP = P ). The mth ramification
group V (m) is defined to be {g ∈ Z : gx ≡
x (mod Pm+1) for all x ∈R}. The fixed field of
V (m) is called the mth ramification field of P .

ramification index (1) If S/R is a finite ex-
tension of Dedekind domains and ℘ is a prime
ideal of R, then ℘S = ℘

e1
1 . . . ℘

eg
g , where

℘1, . . . , ℘g are prime ideals of S. The number
ei is called the ramification index of ℘i .

(2) If L/K is an extension of fields and v is a
(multiplicative) valuation on L, then the group
index [v(L×) : v(K×)] is called the ramifica-
tion index of v.

ramification numbers Let N be a normal
subgroup of a finite groupG. Suppose ϕ ∈ IrrN
(the irreducible characters of N ) is invariant in
G. If χ is an irreducible constituent of ϕG,
then the ramification number e(χ) is the pos-
itive integer such that χN = e(χ)ϕ. See also
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normal subgroup, invariant element, irreducible
constituent.

Ramification Theorem Let K be a number
field (finite extension of Q). Then a prime p
ramifies in K if and only if p divides the dis-
criminant of K .

ramified covering A triple (X, Y, π), where
X and Y are connected normal complex spaces
and π is a finite surjective proper holomorphic
map. For any such (X, Y, π), there exists a
proper analytic subset of X, outside which π
is an unramified covering.

ramified extension An extension of alge-
braic number fields, for example, in which at
least one prime ideal is ramified (i.e., has rami-
fication index greater than 1). See ramification
index.

ramified prime ideal Let S/R be a finite
extension of Dedekind domains and let P be a
prime ideal ofS. If the ramification index ofP is
greater than 1, the ideal P is said to be ramified.
See ramification index.

range See image.

rank of a group Let G be a finitely gener-
ated group, having g1, g2, . . . , gn as generators.
Let G̃ have generators g1

1 ,
g2
1 , . . . ,

gn
1 . Then the

rank of the groupG is the dimension of the finite
dimensional rational vector space G̃.

rank of element The number of minimal
nonzero faces of an element A of a complex ).
Here a complex ) is a set with an order relation
⊂ (read “is a face of”) such that, for a given el-
ementA, the ordered subset S(A) of all faces of
A is isomorphic to the set of all subsets of a set.

rank of matrix The maximal number of lin-
early independent columns of a rectangular ma-
trix A = (aij ) with entries in a field. This also
equals the maximal number of linearly indepen-
dent rows of A and is the size of the largest
nonzero minor of A.

rank of valuation For an additive valuation
v on a fieldK , the Krull dimension ofR = {x ∈

K : v(x) ≥ 0}; that is, the supremum of the
lengths n of chains of prime ideals ℘0 ⊃ · · · ⊃
℘n (strict inclusion) in R.

rational This term often refers to a quantity
equal to the ratio of two integers or polynomi-
als. It is also used to describe a point on an
algebraic variety with coordinates in a field (the
point is then said to be rational over this field).
See rational point.

rational action The action of a matrix group
G by means of a rational representation of G.
See rational representation.

rational cohomology group A cohomology
group for transformation spaces of linear alge-
braic groups G over a field K introduced by
Hochschild (1961). In particular, ifG is a unipo-
tent algebraic group over a fieldK of character-
istic 0, then H(G,A) is isomorphic to H(g,A)
where g is the Lie algebra of G and A is a g-
module.

rational curve An algebraic curve of genus
0. Such curve in n-dimensional affine space
can be described by rational functions x1 =
R1(t), . . . , xn = Rn(t) in terms of a single pa-
rameter t .

rational equivalence Let X1 and X2 be cy-
cles on a nonsingular irreducible algebraic vari-
ety V over a field K , and let A1

K be the affine
line over K . Suppose there exists a cycle Z on
V × A1

K such that the intersection Z · (V × a)

is defined for all a ∈ A1
K and such that there are

a1, a2 ∈ A1
K such that Z · (V × a1)−Z · (V ×

a2) = X1 −X2. Then X1 and X2 are rationally
equivalent.

rational expression Any algebraic expres-
sion which can be written as a polynomial di-
vided by a polynomial.

rational function The quotient of two poly-
nomials (possibly in several variables).

rational function field A field K(X1, . . . ,

Xn), where K is a given field and X1, . . . , Xn
are indeterminates.
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rational homomorphism A homomorphism
G1 → G2 of algebraic groups which is also a
rational map of algebraic varieties.

rational injectivity The notion that was used
by Hochschild (1961) to introduce the rational
cohomology group for transformation spaces of
linear algebraic group G over a field k. See
rational cohomology group.

rationalization The process of transforming
a radical expression into an expression with no
radicals, or with all radicals in the numerators.
See also rationalizing the denominator.

rationalization of denominator Removing
radicals from the denominator of an algebraic
expression. For example, in an expression of the
form (a+b√n)/(c+d√n), where a, b, c, d, n
are rational numbers, multiplying numerator
and denominator by c − d

√
n. The result is

of the form (r + s√n)/t , where r, s, t are ratio-
nal numbers. In some elementary mathematics
courses, it is taught that radicals in the denomi-
nator are undesirable.

rationalization of equation The process of
transforming a radical equation into an equation
with no radicals. The method is to manipulate,
algebraically, the equation so only radicals are
on one side of the equal sign and then raise both
sides of the equation to the index of one of the
radicals. The process may need to be repeated.

rationalizing the denominator The process
of removing radicals from the denominator of
a fraction. The method is to multiply the nu-
merator and the denominator of the fraction by
a rationalizing factor. For example,

1√
2
= 1√

2
·
√

2√
2
=
√

2

2
.

rational map (1) Informally, a rational func-
tion. See rational function.

(2) In algebraic geometry, a function from an
open subset U of a variety X to another variety
Y , which preserves regular functions. (Regu-
lar functions are functions which can be rep-
resented locally as quotients of polynomials.)
In more detail, let X and Y be varieties, and

let X be irreducible. (A variety is the solution
set of a system of polynomial equations. Irre-
ducible means the variety X is not the union of
two proper ( �= 0, �= X) subvarieties.) A rational
map F is an equivalence class of pairs (f, U),
whereU is an open subset ofX and f : U → Y

is a continuous function which preserves regular
functions. Preserving regular functions means
that if h : W → k is a regular function, where
W is an open subset of Y , then h ◦ f is regular
on the open set {x ∈ U : f (x) ∈ W }. Two such
pairs (f, U) and (g, V ) are deemed equivalent
if f = g on U ∩ V . It is a theorem that, given
a rational map F , there is a largest open set UM
such that a pair (f, UM) ∈ F . Thus, one may
think of a rational map as an actual function de-
fined on this maximal open setUM . The setUM
is referred to as the set of points on which F
is defined. See also irreducible variety, regular
function.

rational number A number that can be ex-
pressed as the quotient of two integersm/n, with
n �= 0. For example, 1/2, −9/4, 3, and 0 are ra-
tional numbers. The set of all rational numbers
forms a field, denoted Q. See field.

rational operation Any of the four oper-
ations of addition, subtraction, multiplication,
and division.

rational point Let V be an algebraic variety
defined over a field k. A pointP onV is rational
over k if the coordinates of P (in some affine
open set containing P ) lie in k. See also k-
rational point.

rational rank of valuation Let v be an addi-
tive valuation on a field K with values in an or-
dered additive group. The supremum of the car-
dinalities of linearly independent (over Z) sub-
sets of v(K×) is called the rational rank of v.

rational representation Let R be a commu-
tative ring with 1 and let G be a subgroup of
GLn(R) for some n. Let ρ : G → GLm(R)
for some m be a homomorphism. Suppose
there exist m2 rational functions in n2 vari-
ables pst ({Xij }) ∈ R[{Xij }] with ρ((gij )) =
(pst (guv)) for all (gij ) ∈ G. Then ρ is called a
rational representation.
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Rational Root Theorem Let R be a unique
factorization domain with quotient field F and
suppose f (x) = anx

n + an−1x
n−1 + · · · + a0

is a polynomial with coefficients in R. If c = p
q

with p and q relatively prime, and c is a root of
f , then p divides a0 and q divides an.

This is most often used in the particular case
when R is the integers and F is the rationals.

rational surface An algebraic surface (an
algebraic variety of dimension 2) that is bira-
tionally equivalent to 2-dimensional projective
space. See also rational variety.

rational variety A variety over a field k

which, for some n, is birationally equivalent to
an n-dimensional projective space over k. See
also birational mapping, variety.

R-basis Let R be a ring contained in a pos-
sibly larger ring S. A left S module V has an
R-basis if V is freely generated as an R mod-
ule by a family of generators, vα, α ∈ V . This
means (i.) each vα ∈ V ; (ii.) if a finite sum
r1vα1 + · · · + rnvαn = 0, where r1, . . . rn ∈ R,
then ri = 0 for i = 1, . . . n; (iii.) the set of all fi-
nite sums r1vα1+· · ·+rnvαn , where r1, . . . rn ∈
R, is equal toV . The family vα, α ∈ A, is called
an R-basis for V .

The most important case of this occurs when
R is chosen to be the ring of integers, Z, in which
case an R basis is called a Z-basis. See also Z-
basis.

real axis in complex plane A complex num-
ber p + iq, p, q real, can be identified with the
point (p, q) in Cartesian coordinates. Under
this identification, numbers of the form p + i0,
that is, real numbers, are identified with points
of the form (p, 0). The collection of all such
points forms one of the axes in this coordinate
system; this axis is called the real axis.

real closed field A real field F such that any
algebraic extension of F which is real must be
equal to F . That is, F is maximal with respect
to the property of reality in an algebraic closure.
See real field.

real field A field F such that−1 is not a sum
of squares in F .

realizable linear representation Let R and
S be commutative rings with identity and let
σ : R → S be a homomorphism. Let M be
a left R-module and let Mσ denote the scalar
extension of M by σ ; Mσ is a left S-module.
Let A be an associative R algebra and let ρ :
A→ EndR(M) be a linear representation of A
in M . Let Aσ denote the scalar extension of A
and let ρσ denote the scalar extension of ρ. An
arbitrary linear representation of the S algebra
Aσ inMσ is called realizable inR if it is similar
to ρσ for some linear representation ρ over R.
See scalar extension.

real Lie algebra A Lie algebra over the field
of real numbers. See Lie algebra.

real number The real numbers, denoted R,
form a field with binary operations of + (addi-
tion) and · (multiplication). This field is also an
ordered field: There exists a subset P ⊂ R such
that (i.) if a, b ∈ P then a+b ∈ P and a ·b ∈ P
and (ii.) the sets P , −P = {x ∈ R : −x ∈ P } ,
{0} (0 denotes the additive identity) are pairwise
disjoint and their union is R. Furthermore, the
field R satisfies the completeness axiom: If S
is a non-empty subset of R and if S is bounded
above, then S has a least upper bound in R. With
these axioms, R is known as a complete ordered
field. The existence of such a field is taken as
an assumption by many. Others prefer to postu-
late the existence of the natural numbers N ⊂ R
by means of the Peano postulates. See natu-
ral number. With these postulated, the integers,
Z are constructed from N and then the rational
numbers Q are constructed as the field of quo-
tients of Z. To construct the real numbers from
the rationals requires more work. One way is to
use the method of Dedekind cuts and another in-
volves viewing the reals as equivalence classes
of Cauchy sequences. See also field.

real part of complex number If z = a+bi,
where a and b are real, is a complex number, the
real part of z is a. This is denoted as �(z) = a.

real prime divisor Let K be an algebraic
number field of degree n; then there are n injec-
tions σ1, . . . , σn of K into C. We may assume
that these are ordered so that n = r1 + 2r2, and
so that for 1 ≤ j ≤ r1, σi maps to the real num-
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bers, for j ≥ r1, σj maps to C, and σ j+r1+r2 =
σj+r1 for j = 1, . . . , r2. For 1 ≤ j ≤ r1 set
vj (a) = |σ(a)|, a ∈ K and for r1 + 1 ≤ j ≤ r2
set vj (a) = |σ(a)|2. The v1, . . . , vr1+r2 form a
set of mutually nonequivalent valuations on K .
Equivalence classes of the v1, . . . , vr1 are called
real prime divisors.

real quadratic field A field of the form Q
(
√
m) where m is square free and positive.

real quadratic form LetA = [aij ] be an n×
n symmetric matrix. This generates a quadratic
form: Q(x) = xT Ax = ∑n

i,j=1 aij xixj . The
quadratic form is called real if all the aij are
real.

real representation A real analytic homo-
morphism from a Lie groupG to GL(V ), where
V is a finite dimensional vector space over R.

real root A root that is a real number. See
root.

real simple Lie algebra A Lie algebra that is
real and simple. Every real simple Lie algebra
of classical type is the Lie algebra of one of
two types of subgroups of a group of invertible
matrices.

real variable A variable whose domain is un-
derstood to be either the real numbers or a sub-
set of the real numbers. This is most often used
for emphasis to distinguish the domain from the
complex numbers. Functions whose domain of
definition is understood to be a subset of the real
numbers are called functions of a real variable.

reciprocal equation A polynomial equation
of the formanx

n+an−1x
n−1+· · ·+a1x+a0 = 0

where an = a0, an−1 = a1, etc. This has the
property that the reciprocal of any solution is
also a solution. Notice that if n is odd, then
this equation has root x = −1. Division of
this equation by x + 1 then yields a recipro-
cal equation of degree n − 1. If n is even, say
n = 2m, then the equation may be rewritten
as: a2mx

m + a2m−1x
m−1 + · · · + am + · · · +

a1(
1
x
)m−1 + a0(

1
x
)m = 0. Because of the sym-

metry of the coefficients, we associate the first
and last terms, the second and next-to-last terms,

etc., and consider the variable u = x+ 1
x

, so that
x2 + 1

x2 = u2 − 2, x3 + 1
x3 = u3 + 3u, . . . and

the equation reduces to an equation of degreem
in u.

reciprocal linear representation Let R be
a commutative ring with identity and let M be
an R module. Let A be an associative algebra
over R. A homomorphism A → EndR(M) is
called a linear representation of A in M . An
antihomomorphism (ρ is an antihomomorphism
if ρ(ab) = ρ(b)ρ(a)) A→ EndR(M) is called
a reciprocal linear representation.

reciprocal of number The reciprocal of a
number a �= 0 is the number b = 1

a
. Then

ab = 1, that is, the reciprocal of a number is its
multiplicative inverse. Note also that the recip-
rocal of b is a; in other words, the reciprocal of
the reciprocal of a nonzero number is the num-
ber itself.

reciprocal proportion The reciprocal of the
proportion of two numbers. If a and b are two
numbers, the proportion of a to b is a

b
; the re-

ciprocal proportion is b
a

.

reduced Abelian group An Abelian group
with no nontrivial divisible subgroups.

reduced algebra LetA be a semisimple Jor-
dan algebra over a field K . For an α ∈ K and
an idempotent e ∈ A set Ae(α) = {x ∈ A :
ex = αx}. Suppose that 1 is written as a sum
of idempotents ei . If, for every i, we can write
Aei (1) = Kei +Ni , withNi a nilpotent ideal of
Aei (1), then A is called a reduced algebra.

reduced basis Let G be a discrete group of
motions in n-dimensional Euclidean space and
let T denote the subgroup of all translations in
G. Let {t1, . . . , tn} be a basis for T and let A
denote the Gram matrix aij = (ti , tj ). (Here we
simply identify a translation with a vector; this
we may take as the image of 0 under the transla-
tion.) If the quadratic form q(x) = ∑

aij xixj ,
determined by A, is reduced then {t1, . . . , tn}
is called a reduced basis for T . (See reduced
quadratic form.)
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reduced character Let ρ be a finite-dimen-
sional linear representation of an associative al-
gebra A over a field K; that is, ρ : A →
EndK(M) is an algebra homomorphism, where
M is a K-module. Fix a basis of M and let Ta
denote the matrix (relative to this basis) asso-
ciated to the endomorphism of M which is the
image of a ∈ A. For a ∈ A set χρ(a) = Tr Ta ;
χρ is a function on A and is called the charac-
ter of ρ. A character of an absolutely irreducible
representation is called an absolutely irreducible
character. (See absolutely irreducible represen-
tation.) The sum of all the absolutely irreducible
characters of A is called the reduced character
ofA. See also reduced norm, reduced represen-
tation.

reduced Clifford group Let K be a field, E
a finite dimensional vector space over K , q(x)
a quadratic form on E, and C(q) the Clifford
algebra of the quadratic form q. Let G = {s ∈
C(q) : s is invertible, s−1Es = E}. G forms
a group relative to the multiplication of C(q);
G is called the Clifford group of q. C(q) is
the direct sum of two subalgebras, C+(q) and
C−(q), where C+(q) = K + E2 + E4 + · · ·
and C−(q) = E + E3 + · · · . The subgroup
G+ = G ∩ C+(q) of G is called the special
Clifford group. C(q) has an antiautomorphism
β which is the identity when restricted to E.
This can be used to define a homomorphism
N from G+ to the multiplicative group of K
by N(s) = β(s) s, s ∈ G+. The kernel of
N , denoted G+

0 , is called the reduced Clifford
group of q. An element s ∈ G induces a lin-
ear transformation φs on E by φs(x) = sxs−1,
x ∈ E. Such a φs belongs to the orthogo-
nal group of E relative to q and the mapping
s → φs is a homomorphism. This gives a
representation φ : G → O(q). Furthermore,
φ(G+) = SO(q). The subgroup φ(G+

0 ) of
SO(q) is called the reduced orthogonal group.
See Clifford algebra, Clifford group.

reduced dual LetG be a unimodular locally
compact group with countable base. The sup-
port of the Plancherel measure in Ĝ is called the
reduced dual of G.

reduced module Let > be a family of locally
rectifiable curves on a Riemann surface R. We

say that a module problem is defined for > if
there is a non-empty class P of conformally in-
variant metrics ρ(z)|dz| on R such that ρ(z) is
square integrable in the z-plane for each local
uniformizing parameter z such that

Aρ(R) ≡
∫∫
R
ρ2 dxdy

is defined and such that Aρ(R) and

Lρ(R) ≡ inf
γ∈>

∫
γ

ρ |dz|

are not simultaneously 0 or ∞. We designate
the quantity

m(γ ) = inf
ρ∈R

Aρ(R)
(Lρ(>))2

as the module of >.
Now let A be a simply connected domain of

hyperbolic type in C with z0 ∈ A. If r > 0 is
small, then

A ∩ {z : |z− z0| > r}
is a doubly connected domain A(r). Let A(r)
have module m(r) for the class of curves sepa-
rating its boundary components. The limit

lim
r→0

(
m(r)+ 1

2π
log r

)
is called the reduced module.

reduced module Let > be a family of locally
rectifiable curves on a Riemann surface R. We
say that a module problem is defined for > if
there is a non-empty class P of conformally in-
variant metrics ρ(z)|dz| on R such that ρ(z) is
square integrable in the z-plane for each local
uniformizing parameter z such that

Aρ(R) ≡
∫∫
R
ρ2 dxdy

is defined and such that Aρ(R) and

Lρ(R) ≡ inf
γ∈>

∫
γ

ρ |dz|

are not simultaneously 0 or ∞. We designate
the quantity

m(γ ) = inf
ρ∈R

Aρ(R)
(Lρ(>))2
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as the module of >.
Now let A be a simply connected domain of

hyperbolic type in C with z0 ∈ A. If r > 0 is
small, then

A ∩ {z : |z− z0| > r}
is a doubly connected domain A(r). Let A(r)
have module m(r) for the class of curves sepa-
rating its boundary components. The limit

lim
r→0

(
m(r)+ 1

2π
log r

)

is called the reduced module.

reduced norm Let ρ : A → EndK(M) be
a finite dimensional linear representation of an
associative algebraA over a fieldK in a finite di-
mensionalK-moduleM . Fix a basis forM and,
for a ∈ A, let Ta denote the matrix representa-
tion, with respect to this basis, of the endomor-
phism ρ(a). For a ∈ A, defineNρ(a) = det Ta ;
this is called the norm of a and it depends only
on the representation class of ρ. The norm is, up
to a constant of the form (−1)r (where r is the
degree of the representation), equal to the con-
stant term in the characteristic polynomial of Ta .
If pα(x) denotes the principal polynomial of α,
then the reduced norm of α is the constant term
of pα(x) multiplied by (−1)r .

reduced orthogonal group See reduced Clif-
ford group.

reduced quadratic form Let V be an n-
dimensional vector space over R and q(x) =∑
aij ξiξj a quadratic form on V , where the

aij , i, j ∈ {1, . . . , n} are given elements of R,
and the ξi ∈ R are the coordinates of the vec-
tor x ∈ V relative to a fixed basis of V . Set
A = [aij ]. The quadratic form q is said to be
reduced if the matrix A is positive definite and
satisfies: (i.) ai i+1 ≥ 0 for 1 ≤ i ≤ n− 1 and
(ii.) xTk Axk ≥ akk whenever xk is a 1×n vector
of the form xk = [y1, . . . , yn]T , where the yi are
integers such that the greatest common divisor
of yk, yk+1, . . . , yn is 1.

reduced representation (1) SupposeA is an
associative algebra over a field. The direct sum
of all absolutely irreducible representations of

A is called the reduced representation of A. Its
character is the reduced character. See abso-
lutely irreducible representation, reduced char-
acter.

(2) Let I be an ideal in a commutative ring
with identity. The ideal I is said to have a pri-
mary representation (or primary decomposition)
if I = Q1 ∩Q2 ∩ · · · ∩Qn, where each Qi is
a primary ideal. If no Qi contains the intersec-
tion of all the others, and if the radicals of theQi

(which are prime ideals) are distinct, the primary
representation is said to be reduced.

reduced scheme A scheme (X,OX) such
that, for every open setU ⊆ X, the ring OX(U)

has no nilpotent elements. See also scheme.

reduced von Neumann algebra Let H be a
Hilbert space and let B(H) denote the algebra
of bounded operators on H . A subalgebra M
of B(H) is called a ∗-subalgebra if T ∗ ∈ M
whenever T ∈ M. A ∗-subalgebra is called
a von Neumann algebra if it contains the iden-
tity and is closed in the weak operator topol-
ogy. Let P ∈ B(H) be a projection operator
in a von Neumann algebra M. Then the set
MP = {PT P : T ∈ M} is a ∗-subalgebra
of B(H) which is closed in the weak operator
topology but does not contain the identity. Nev-
ertheless, because P is a projection, the oper-
ators in this subalgebra map the Hilbert space
P(H) to itself and MP is a von Neumann alge-
bra on the Hilbert space P(H); MP is called a
reduced von Neumann algebra on P(H).

reducible component A component of a
topological spaceX that is not irreducible. Here
a nonempty subset Y ofX is irreducible if it can-
not be expressed as the union Y = Y1 ∪ Y2 of
two nonempty proper subsets, each of which is
closed in Y .

reducible equation Suppose p(x) is a poly-
nomial with coefficients in a fieldK , i.e.,p(x) ∈
K[x]. An equation of the form p(x) = 0 is said
to be irreducible ifp(x) is irreducible overK[x];
otherwise the equation is said to be reducible.
See also irreducible equation, reducible polyno-
mial.
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reducible linear representation (1) Let K
be a commutative ring with identity and letM be
aK-module. LetA be an associativeK algebra.
A linear representation of A in M is an algebra
homomorphism, ρ : A→ EndK(M) of A into
the algebra of allK endomorphisms ofM . Such
a representation can be used to make M into a
left A module by defining am = ρ(a)m, when-
ever a ∈ A,m ∈ M . IfM is a simpleAmodule,
then ρ is said to be irreducible; otherwise it is
called reducible.

(2) Let G be a group and K a field. A linear
representation ofG overK is a homomorphism
ρ from G to the matrix group GLm(K). The
representation is said to be reducible if there is
another representation σ : G→ GLm(K) such
that there exists a matrix T ∈ GLm(K) with
T −1ρ(g)T = σ(g) for all g ∈ G and so that

σ(g) has the form σ(g) =
(
σ11(g) σ12(g)

0 σ22(g)

)
for all g ∈ G.

reducible linear system Let X be a com-
plete irreducible variety. Consider f1, . . . , fn,
elements of the function field ofX, and letD be
a divisor onXwithD+(fi) positive for every i.
(Here (fi) denotes the divisor of fi . See princi-
pal divisor of functions.) The set of all divisors
of the form (

∑
kifi) +D, where the ki are el-

ements of the underlying field, and not all zero,
is called a linear system. The linear system is
irreducible if all its elements are irreducible; if
not, then it is called reducible.

reducible matrix An n × n matrix A such
that either (i.) n = 1 and A = 0 or (ii.) n ≥
2 and there is an n × n permutation matrix P
and an integer m with 1 ≤ m < n such that

PT AP =
[
C D

0 E

]
, where C is m × m, E is

(n − m) × (n − m), D is m × (n − m), and 0
denotes an (n−m)×m matrix of zeros.

reducible polynomial A polynomial f (x) ∈
R[x], that is, a polynomial with coefficients
in a ring R, which can be written as f (x) =
g(x)h(x) with g(x) and h(x) polynomials of
lower degree which are not units in R.

reducible variety Let K be a field. If S ⊂
K[x1, . . . , xn], the set of all common zeros of

S, that is, the set of all (a1, . . . , an) ∈ Kn such
that f (a1, . . . , an) = 0 for every f ∈ S, is
called an affine K-variety. Likewise, a set in n-
dimensional projective space over K consisting
of common zeros of a set of homogeneous poly-
nomials is called a projective variety. An affine
or projective K-variety V is reducible if it can
be written as V = W1 ∪W2, where each Wi is
a K-variety and a proper subset of V .

reduction formulas of trigonometry The
formulae: sin(θ + 2πk) = sin(θ), cos(θ +
2πk) = cos(θ) for k an integer; sin(π2 − θ) =
cos(θ), cos(π2 − θ) = sin(θ) and sin(θ + π) =
− sin(θ), cos(θ + π) = − cos(θ). These allow
one to express a trigonometric function of any
angle in terms of the sine and/or cosine of an
angle in the interval [0, π2 ).

reduction modulus The construction of ρσ

from ρ, whereK,L are commutative rings with
identity, σ : K → L is an isomorphism such
that σ : K → K/m is the canonical homo-
morphism, m is an ideal of K , Mσ is the scalar
extension σ ∗M = M ⊗K L of a K-module M
relative to σ , and ρ is the linear representation
associated with M . The linear representation
ρσ over L associated with Mσ is the scalar ex-
tension of ρ relative to σ and is the conjugate
representation of ρ relative to σ .

reduction of algebraic expression A modi-
fication of an algebraic expression to a simpler
or more desirable form. For example, (x+2)2−
(x + 2)(x − 2) can be reduced to 4(x + 2).

reductive A Lie algebra G is reductive if it is
fully reducible under ad G0.

reductive action Let K be a commutative
ring with identity and letρ : G→ GL(m,K) be
a rational representation of a matrix group G ⊂
GL(n,K). Suppose that R is a ring generated
by elements x1, . . . , xm over K . An action of
the group ρ(G) on R can then be used to define
an action of G on R by gr = ρ(g)r , g ∈ G,
r ∈ R. This action is said to be reductive if the
following condition is satisfied: Suppose M is
a module generated by y1, . . . , yr ∈ R over K ,
which is mapped by G to itself and f0 modM
is G-invariant. Then there is a homogeneous
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linear form h in f0, f1, . . . , fr such that h is
monic in f0 and h is G invariant. See rational
representation.

reductive group LetGbe an algebraic group.
Let N denote the maximal connected solvable
closed normal subgroup of G. If the identity
element is the only unipotent element ofN , then
G is called a reductive group.

reductive Lie algebra A Lie algebra A such
that the radical of A is the center of A. This
is equivalent to the condition that the adjoint
representation of A is completely reducible.

The radical of A is the union of all solvable
ideals of A.

redundant equation (1) An equation con-
taining extraneous roots that have been intro-
duced by an algebraic operation. For example,
the equation x − 2 = √

x when squared yields
the equation x2 − 5x + 4 = 0. This has roots
4 and 1; however, 1 is not a root of the original
equation. The equation x2 − 5x + 4 = 0 is said
to be redundant because of this extraneous root.

(2) An equation in a system of equations that
is a linear combination of other equations in the
system. The solution to the system remains un-
changed if this equation is excluded.

Ree group Any member of the family of
finite simple groups of Lie type, 2G2(3n) and
2F4(2n), for n odd.

refinement of chain A chainC1 in a partially
ordered setM is a refinement of a chainC2 inM
if the least and greatest elements of each chain
agree, and if every element of the chain C2 be-
longs to C1. C1 is a proper refinement of C2 if
there is at least one element of C1 which does
not belong to C2.

reflection (1) The mirror image of a point or
object.

A reflection in a line of a point P1 is the point
P2 on the opposite side of the line equidistant
from the line; that is, the point P2 such that the
line is the perpendicular bisector of the segment
P1P2, joining the point and its reflection. The
reflection of a geometric object in a line is just

the collection of all reflections of its constituent
points in the line.

If (x, y) is a point in the plane, the reflection
of (x, y) in the origin is the point (−x,−y);
the reflection of a geometric object in the origin
is the collection of reflections of its constituent
points.

In a similar fashion, define the reflection of
a point in a plane; for example, the reflection of
(x, y, z) in the x, y plane in three dimensions
is the point (x, y,−z). Likewise, reflection in
the origin is defined in the same way in higher
dimensions.

(2) In the study of groups of symmetries of
geometric objects, a group element correspond-
ing to a transformation reflecting the object in a
line or plane. In greater generality, a reflection
is a mapping of an n-dimensional simply con-
nected space of constant curvative which has an
n− 1 dimensional hyperplane as its set of fixed
points. In this case, the set of fixed points of the
mapping is called the mirror of the mapping.

reflexive property The property of a relation
R on a set S:

(a, a) ∈ R for every a ∈ S .

In other words, a relation has the reflexive prop-
erty if every element is related to itself. See
relation.

reflexive relation A relation having the re-
flexive property. See reflexive property.

regula falsi Literally, “rule of false position,”
an iterative method for finding a real solution of
an equation f (x) = 0. Suppose that f (x1) and
f (x2) have opposite sign. The method is to con-
sider the point of intersection of the x-axis with
the chord through (x1, f (x1)) and (x2, f (x2)).
This point has x coordinate

x3 = x1 − f (x1)

(
x2 − x1

f (x2)− f (x1)

)
.

The procedure is repeated with the point (x3,

f (x3)) and either (x1, f (x1)) or (x2, f (x2)), de-
pending on which of f (x1) or f (x2) has sign
opposite to f (x3). This converges more slowly
than Newton’s method.
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regular cone A subset C ⊂ V of a finite
dimensional vector space over R such that C is
convex, C contains no lines, and λc ∈ C when-
ever c ∈ C and λ > 0.

regular extension A field extension K/k

such that k is algebraically closed in K and K
is separable over k. Equivalently, the extension
is regular if K is linearly disjoint from k̄ (the
algebraic closure of k) over k.

regular function (1) In complex analysis, an
analytic or holomorphic function. See analytic
function, holomorphic function.

(2) In algebraic geometry, a function which
can be represented locally as a quotient of poly-
nomials. In more detail, let X be a variety. (A
variety is the solution set of a system of poly-
nomial equations.) Let V be an open subset of
X. Let f : V → k be a function from V to a
field k. The function f is regular at the point
p ∈ V if there is an open neighborhood U of
p, contained in V , on which f = g/h, where
g and h are polynomials and h �= 0 on U . f is
regular if it is regular at each point of its domain
V .

regular ideal A left ideal J in a ring R, for
which there exists an e ∈ R such that r−re ∈ J
for every r ∈ R. Similarly, a right ideal J , for
which there exists an e ∈ R such that r−er ∈ R
for every r ∈ R. Note that if R has an identity,
then all ideals are regular.

regular local ring Let R be a local ring and
set k = R/m. Then k is a field. A local Noethe-
rian ring is called regular if dimk m/m

2 =
dim R. (Here dim is the Krull dimension. See
Krull dimension.) See also local ring.

regular mapping (1) A differentiable map
with nonvanishing Jacobian determinant be-
tween two manifolds of the same dimension.

(2) A mapping given by an n-tuple of regular
functions from a variety to a variety contained
in affine n-space. See regular function.

regular matrix (1) A Markov chain is a prob-
ability model for describing a system that ran-
domly moves among different states over suc-
cessive periods of time. For such a process,

let aij denote the probability that a process cur-
rently in state j will in the next step be in state
i. The matrix A = [aij ] is called the transition
matrix of the chain. Note that the entries of A
are all nonnegative and the sum of the elements
in each column of A is 1. The matrix A is said
to be regular if there is a positive integer n such
that An has all positive entries.

(2) Sometimes, a synonym for non-singular
or invertible matrix. See inverse matrix.

regular module LetR be a commutative ring
with 1 andM anR-module. An element x ∈ M
is said to be regular if, for every r ∈ R, there
exists t ∈ R such that rx = rtrx. A submodule
N ofM is regular if each element ofN is regular.
In particular,M is regular if each of its elements
is regular.

regular module LetR be a commutative ring
with 1 andM anR-module. An element x ∈ M
is said to be regular if for every r ∈ R, there
exists t ∈ R such that rx = rtrx. A submodule
N ofM is regular if each element ofN is regular.
In particular,M is regular if each of its elements
is regular.

regular polyhedral group The group of mo-
tions which preserve a regular polygon in the
plane, or the group of motions in three dimen-
sional space that preserve a regular polyhedron.
The group of motions preserving a regularn-gon
in the plane is called the dihedral group Dn; it
has order 2n. The alternating group A4 can be
realized as the group of motions preserving a
tetrahedron, andA5 can be realized as the group
of motions preserving an iscosahedron; they are
called the tetrahedral and iscosahedral groups,
respectively. Similarly, the symmetric group S4
is called the octahedral group because it can be
realized as the group of motions preserving an
octahedron.

regular prime A prime number which is not
irregular. See irregular prime.

regular representation (1) LetK be a com-
mutative ring with identity and letA be aK alge-
bra. An element a ∈ A can then be viewed as an
element of the algebra of K endomorphisms on
A via x "→ a x for all x ∈ A. Such a representa-
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tion is called a left regular representation. If A
has an identity, this is a faithful representation.
In a similar way, define right regular represen-
tation.

(2) Let G be a group and, for a ∈ G, define
a mapping g "→ ag. In this way each a ∈ G

induces a permutation on the set G. This gives
a representation ofG as a permutation group on
G; this is called the left regular representation
of G. In a similar way, define right regular rep-
resentation. See also left regular representation,
right regular representation.

regular ring (1) An element a in a ring R
is called regular in the sense of Von Neumann
if there exists x ∈ R such that axa = a. If
every element of R is regular, then R is said to
be a regular ring. Note that every division ring
is regular, whereas the ring of integers is not.

(2) A regular local ring. See regular local
ring.

regular system of equations (1) A nonsingu-
lar system of n linear equations in n unknowns.
If we denote such a system as Ax = b, where
A is an n × n matrix, and x and b are n × 1
matrices, then A has nonzero determinant and
for each n×1 vector b there is a unique solution
x. Also called a Cramer system.

(2) More generally, if p1(x1, . . . , xm), . . . ,
pn(x1, . . . , xm) are n polynomials in m vari-
ables over a field k, the system of equations
p1 = 0, . . . , pn = 0 is called regular if it has
a finite number of solutions in an algebraically
closed field containing k.

regular transitive permutation group A
permutation group P is a subgroup of the sym-
metric group of permutations of a set S. If S has
at least two elements and if, for every α, β ∈ S,
there exists ap ∈ P such thatpα = β, thenP is
said to be transitive. If, in addition, no element
of P , except for the identity, fixes any element
of S, then P is called a regular transitive per-
mutation group.

regular variety A non-singular projective
algebraic variety with zero irregularity. A va-
riety which is not regular is called an irregular
variety. See irregular variety, irregularity.

regulator LetK be an algebraic number field
and let U(K) denote the units of K . If K has
degree n, then there are n field embeddings ofK
into the complex numbers C. Let r1 be the num-
ber of real embeddings, and r2 be the number
of complex embeddings (these occur in pairs)
so that r1 + 2r2 = n. Write σ1, . . . , σr1 for
the real embeddings and σr1+1, . . . , σn for the
complex embeddings and order the latter so that
σ r1+i = σr1+r2+i for i = 1, . . . , r2. It is a theo-
rem of Dirichlet thatU(K) is a finitely generated
Abelian group of rank r = r1 + r2 − 1 and so
there exists a fundamental system of units for
K; these we denote by u1, . . . , ur . For x ∈ C
let ‖x‖ denote the absolute value of x if x is
real, and the square of the modulus of x if x
is complex. The regulator of K is the abso-
lute value of the determinant of any (all have the
same value) r×r submatrix of the r×(r+1)ma-
trix [ ln‖σj (ui)‖ ], 1 ≤ i ≤ r , 1 ≤ j ≤ r + 1.

related angle Given an angle α whose ter-
minal side does not necessarily lie in the first
quadrant, the related angle of α is the angle in
the first quadrant whose trigonometric functions
have the same absolute value. For example, π6
radians is the related angle of 7π

6 radians, 70◦ is
the related angle of 290◦.

relation For A and B be sets, a relation be-
tween A and B is a subset R of A × B. Most
often considered is the case whenA = B; in this
case it is said thatR is a relation onA. For exam-
ple, = is a relation on the set of real numbers;
for each pair (a, b) ∈ R × R it can be deter-
mined whether or not (a, b) ∈ R = {(a, a)}.
Similarly, <, >, ≤, and ≥ are relations on the
real numbers. See also reflexive relation, sym-
metric relation, transitive relation, equivalence
relation.

relative algebraic number field If K is an
algebraic number field and k a subfield of K ,
the extension of K over k is called a relative
algebraic number field. See algebraic number
field.

relative Bruhat decomposition The decom-
position

(G/P )k = Gk/Pk = ∪w∈kWπ
((
U ′
w

)
k
)
,

c© 2001 by CRC Press LLC



whereG is a connected reductive group defined
over a field k, P is a minimal parabolic k-sub-
group of G containing a maximal k-split torus
S, U = Rn(P ) is the unipotent radical of P ,
kW = N/Z is the k-Weyl group of G relative
to S, Z = ZG(S) is the centralizer of S in G,
N = NG(S) is the normalizer of S in G, two k-
subgroups U ′

w and U ′′
w are such that U = U ′

w ×
U ′′
w whenever w ∈k W , and π is the projection

G→ G/P .

relative chain complex IfR is a ring, a chain
complex ofR-modules is a family {Kn, ∂n}, n ∈
Z, of R-modules Kn and R-module homomor-
phisms ∂n : Kn → Kn−1 such that ∂n∂n+1 = 0
for every n. A subcomplex of such a chain com-
plex is a family of R-submodules Sn ⊂ Kn
such that ∂nSn ⊂ Sn−1 for every n. In this
case, each ∂n induces a well-defined homomor-
phism of quotient modules: ∂ ′n : Kn/Sn →
Kn−1/Sn−1; furthermore ∂ ′n∂ ′n+1 = 0 for every
n. {Kn/Sn, ∂ ′n} is called a relative chain com-
plex. For a chain complex K = {Kn, ∂n} of R-
modules, the nth homology module of the com-
plex is defined as the quotient moduleHn(K) =
Ker ∂n/Im ∂n+1. If S = {Sn} is a subcomplex
of K , then the n-th relative homology module
is defined as Hn(K, S) = Ker ∂ ′n/Im ∂ ′n+1. See
also relative cochain complex.

relative cochain complex If R is a ring, a
cochain complex of R is a family {Kn, dn}, n ∈
Z, of R-modules Kn and R-module homomor-
phisms dn : Kn → Kn+1 such that dn+1dn = 0
for every n. (In other words, {K−n, d−n} is
a chain complex.) A cochain subcomplex of
such a cochain complex is a sequence of R-
submodules Sn ⊂ Kn such that dnSn ⊂ Sn+1
for every n. In this case each dn induces a
well-defined homomorphism of quotient mod-
ules: d ′n : Kn/Sn → Kn+1/Sn+1; furthermore,
d ′n+1d

′
n = 0 for every n. {Kn/Sn, d ′n} is called

a relative cochain complex. Cohomology and
relative cohomology are then defined in a way
completely analogous to the definition of homol-
ogy and relative homology. See relative chain
complex.

relative degree LetF be a finite dimensional
field extension of a field K , and denote the de-
gree of the extension by [F : K]. SupposeL and

M are intermediate fields: K ⊆ L ⊆ M ⊆ F .
The relative degree (or dimension) ofL andM is
the number [M : L]. This terminology allows a
concise statement of the Fundamental Theorem
of Galois Theory: If F is a finite dimensional
Galois extension of K , then the relative degree
of two intermediate fields is equal to the relative
index of their corresponding subgroups of the
Galois group.

relative derived functor A homological al-
gebra concerns a pair of algebraic categories
(U,M) and a fixed functor ) : U → M. A
short exact sequence of objects of U

0 → A→ B → C → 0

is called admissible if the exact sequence

0 → )A→ )B → )C → 0

splits in M. By means of the class E of admis-
sible exact sequences, the class of E-projective
(resp. E-injective) objects is defined as the class
of objects P (resp. Q) for which the functor
HomU (P,−) (resp. HomU (−,Q)) is exact on
the admissible short exact sequences. If U con-
tains enough E-projective or E-injective objects,
then the usual construction of homological alge-
bra makes it possible to construct derived func-
tors in this category, which are called relative
derived functors. See also derived functor.

relative different Let K be a relative alge-
braic number field over k. Let D and d de-
note the integers of K and k, respectively; that
is, D = K ∩ I and d = k ∩ I , where I is
the algebraic integers. Set D̂ = {α ∈ K :
TrK/k(αD) ⊂ d}, where TrK/k denotes the trace.
D̂ is a fractional ideal inK and (D̂ )−1 = DK/k

is an integral ideal of K . It is called the relative
different of K over k.

relative discriminant Suppose K is a rela-
tive algebraic number field over k. The relative
discriminant of K over k is the norm, with re-
spect to K/k, of the relative different of K/k.
See relative different.

relative homological algebra A homolog-
ical algebra associated with a pair of Abelian
categories (U,M) and a fixed functor

) : U → M .
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The functor) : U → M is taken to be additive,
exact, and faithful.

relative invariant (1) LetK be a field and let
F be an extension field of K . Let G be a group
of automorphisms ofF overK , and suppose that
K is the fixed field of the group G. A relative
invariant of G in F is a nonzero element Q ∈
F such that, for each σ ∈ G, there exists an
element χ(σ) in K for which σ(Q) = χ(σ)Q.

(2) In algebraic geometry, a quantity invari-
ant under birational transformation.

relatively ample Let (X,OX) be a scheme.
Let F be a sheaf of O-modules and construct a
projective bundle P(F) on X. A locally closed
S-subscheme f : X → S of p : P(F) → S

is called quasiprojective over S. For such a
quasiprojective scheme, an invertible sheafL on
X is called ample over S if there exist a locally
free OS-module of finite type on S and an im-
mersion ι : X → P(F) such that OX(1) = L.
If L⊗n is ample for some n, L is said to be rel-
atively ample over S.

relatively minimal See relatively minimal
model.

relatively minimal model A quasiprojective
variety X′ is said to dominate X if there exists
a regular birational map f : X′ → X. A va-
riety is a relatively minimal variety if it does
not dominate any variety except those isomor-
phic to itself. A representative of a birational
equivalence class is called a model; such a rep-
resentative which is a relatively minimal variety
is called a relatively minimal model.

relatively minimal variety See relatively
minimal model.

relatively prime numbers Two integers
which have no common factor other than 1 or
-1.

relative norm LetK and k be algebraic num-
ber fields with k ⊂ K and set n = [K : k]. Then
there are n k-linear embeddings φi : K → C.
For an ideal U of K , U(i) = {φi(u) : u ∈ U} is
an ideal of φi(K). Let L be the field generated
by φi(K), i = 1, . . . , n. The ideal in L gener-

ated by the U(i) is the extension of an ideal a of
k; a is called the relative norm of U over k.

remainder (1) If a is an integer and b is a
positive integer, then there is a unique pair of
integers q, r with 0 ≤ r < b such that a =
qb+ r . The integer q is called the quotient and
r is called the remainder.

(2) More generally, the terminology can be
applied in any Euclidean domain; here, by def-
inition, there is such a division algorithm. This
can also be applied in polynomial rings: If
R is an integral domain and if a(x), b(x) ∈
R[X], then there exists q(x), r(x) ∈ R[X] with
deg r(x) < deg b(x) or r(x) = 0 such that
a(x) = b(x)q(x)+ r(x). Again, q(x) is called
the quotient of the division of a(x) by b(x) and
r(x) is called the remainder.

Remainder Theorem Suppose R is a ring
with identity, for example, the integers. Suppose
that f (x) = anx

n+an−1x
n−1+· · ·+a1x+a0 ∈

R[x], that is, f (x) is a polynomial with coeffi-
cients inR. The Remainder Theorem states that
for any c ∈ R there exists a unique q(x) ∈ R[x]
such that f (x) = q(x)(x − c)+ f (c).

repeating decimal A decimal representation
of a number in which a digit, or sequence of dig-
its, is repeated without termination. For exam-
ple, 1

3 = .333 . . . , 11
7 = 1.571428571428 . . .

We may consider any decimal that terminates as
a repeating decimal by simply considering that
it ends in an infinite sequence of zeros. With this
convention, every repeating decimal is a rational
number.

replica Let V be a vector space over a field
K and V ∗ its dual. For A in EndKV (the K-
endomorphisms of V ) define A∗ ∈ EndK(V ∗)
via A∗u(x) = u(Ax) for every x ∈ V and
u ∈ V ∗. Let V rs denote the tensor product of
s copies of V and r copies of V ∗. Define Ars on
V rs by
Ars(x1 ⊗ · · · ⊗ xr ⊗ u1 ⊗ · · · ⊗ ur) =∑s

i=1 x1⊗· · ·⊗Axi⊗· · ·⊗xs⊗u1⊗· · ·⊗ur
−∑r

j=1 x1⊗· · ·⊗xs⊗u1⊗· · ·⊗A∗uj⊗· · ·⊗ur .
An element B ∈ EndK(V ) is called a replica of
A if the nullspace of Ars is a subspace of the
nullspace of Brs for every r and s.
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representation A mapping from an algebraic
system to another system, usually to one which
is better understood. The idea is to preserve the
structure of the original system as an image and
to take advantage of knowledge of the system
containing this image. There are a multitude of
examples of this and here we list only the more
common representations.

(1) Let G be a group. Let ρ : G → H be
a homomorphism of G to another group H ; ρ
is then called a representation of G. In partic-
ular, a homomorphism ρ : G → Sn of G into
a permutation group Sn of permutations of a set
of n elements is known as a permutation repre-
sentation. Cayley’s Theorem is that every finite
group can be so represented using a monomor-
phism. A homomorphism of G into GL(n,K),
the set of invertible n× n matrices over a com-
mutative ringK with identity, is called a matrix
representation of G.

(2) LetR be a commutative ring with identity
and letM be a module overR. Let EndR(M) de-
note the ring of R-linear maps of M onto itself.
Let A be an associative R-algebra. A represen-
tation ofA inM is anR-algebra homomorphism
ρ : A→ EndR(M).

(3) LetX be a Banach space andA a Banach
algebra. Let B(X) denote the space of bounded
linear operators on X. A representation of A in
X is an algebra homomorphism ρ : A→ B(X)
which satisfies ‖ρ(a)‖ ≤ ‖a‖ for every a ∈ A.

(4) Let G be a topological group and let H
be a Hilbert space. A homomorphism U from
G to the group of unitary linear operators on H
is called a unitary representation of G if U is
strongly continuous, that is, for every x ∈ H ,
g "→ Ugx is a continuous mapping from G to
H .

representation module Let R be a com-
mutative ring with identity and let ρ : A →
EndR(M) be a linear representation of an R-
algebra A in an R-module M . M can be made
into a left A-module, called the representation
module of ρ, by defining am = ρ(a)m, for
a ∈ A, m ∈ M .

representation space For a representation
from an algebraic structure G to the space of
endomorphisms on an algebraic structureH , the

representation space is H . See representation.
We give several examples; all are fairly similar.

(i.) Let k be a commutative ring with identity
and A an associative algebra over k. Let E be
a module over k and let ρ : A→ Endk(E) (the
space of k endomorphisms of E) be a represen-
tation. E is called the representation space.

(ii.) Let A be a Banach algebra and X a Ba-
nach space. For a representation of A on X, X
is the representation space.

(iii.) Let G be a topological group and let ρ
be a representation of G to the group of unitary
operators on some Hilbert spaceH . H is called
the representation space.

representation without multiplicity Let U
be a unitary representation of a topological group
G on a Hilbert space H , that is, a homomor-
phism U fromG to a group of unitary operators
on H . A subspace N of H is called invariant
if Ug(N) ⊂ N for every g ∈ G. (For g ∈ G,
Ug denotes the unitary operator that is the image
of g.) For g ∈ G let Vg = Ug |N . This gives
a unitary representation V of G on N ; this is
called the subrepresentation of U on N . If H
can be written as the direct sum H = H1 ⊕H2
where theHi are orthogonal, closed, and invari-
ant, thenU is said to be the direct sum of the sub-
representations U1 and U2 of U on H1 and H2,
respectively. A unitary representation is called
a representation without multiplicity if, when-
ever U is the direct sum of subrepresentations
U1 and U2, then U1 and U2 have the property
that no subrepresentation of U1 is equivalent to
a subrepresentation of U2. (Two unitary repre-
sentations U1 : G→ H1 and U2 : G→ H2 are
said to be equivalent if there exists an isometry
T : H1 → H2 such that T U1g = U2gT for all
g ∈ G.)

representative function LetG be a compact
Lie group, and let C(G) denote the algebra of
continuous complex valued functions onG. For
each g ∈ G, let Tg denote the operator of left
translation: Tg(x) = gx for x ∈ G. Tg acts on
C(G) by Tg(f ) = f ◦Tg . A function f ∈ C(G)
is called a representative function if the vector
space over C generated by the set of all Tg(f ),
g ∈ G, has finite dimension. The collection
of all such functions is called the representative
ring of G.
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representative of equivalence class An
equivalence relation on a set S partitions the set
S into disjoint sets, each consisting of related el-
ements, that is, the set is partitioned into sets of
the form Ax = {y ∈ S : x ∼ y}, called equiv-
alence classes. Any element of an equivalence
class is called a representative of that equiva-
lence class. See equivalence relation.

representative ring See representative func-
tion.

representing measure (1) A measure that
represents a functional on a function space in the
sense that the value of the functional at an ele-
mentf can be realized simply as integration off
with respect to the measure. A typical theorem
regarding the existence of such a measure is the
Riesz representation theorem: LetX be a locally
compact Hausdorff space and let T be a positive
linear functional defined on the function space
consisting of continuous functions onX of com-
pact support. Then there exists a σ -algebra A
containing the Borel sets ofX and a unique pos-
itive measure µ on A such that Tf = ∫

X
f dµ

for every f which is continuous and of compact
support onX. In this case, µ is said to represent
the functional T .

(2) On a function space with the property that
the functionals f "→ f (ζ ) are bounded, for ζ
in some planar setO, the representing measures
for the points of O are measures representing
the evaluation functionals in the sense of (1).
That is, representing measures are given byµ =
µζ , carried on a set λ, often contained in the
boundary of O, such that

f (ζ ) =
∫
λ

f (z) dµζ (z) .

R-equivalence Let R be a ring contained in
a possibly larger ring S. Let V and W be S
modules with finite R bases BV and BW . The
modules V and W are R-equivalent if there is
an S module isomorphism between V and W
which, relative to the bases BV and BW , has a
matrix U with all entries in the ring R, and such
that the inverse matrix U−1 also has all entries
in the ringR. It is a theorem thatR-equivalence
is independent of the particular choice of the
bases, BV and BW . See also isomorphism.

The most important case of this occurs when
R is chosen to be the ring of integers, Z, in which
case R-equivalence is called Z-equivalence. Z-
equivalence is related to the classical notion of
integral equivalence for matrices. See also in-
tegral equivalence, Z-equivalence.

residue class Suppose R is a ring and I is
an ideal in R. For x, y ∈ R, we say that x is
congruent to y modulo I if x − y ∈ I . It is
straightforward to check that congruence mod-
ulo I is an equivalence relation on R. A coset
of I in R is called a residue class modulo I . If
I is a principal ideal generated by an element
a ∈ R, the residue class modulo I is sometimes
referred to as the residue class modulo a; in par-
ticular, this is used in the case whenR = Z. See
also residue ring.

residue class field SupposeR is a commuta-
tive ring with identity 1 �= 0, and M is an ideal
in R. The quotient ring or residue ring, R/M ,
is a field if and only if M is a maximal ideal.
In this case R/M is known as the residue class
field or residue field. See also residue ring.

residue field See residue class field.

residue ring Let R be a ring and I an ideal
of R. Define a relation ∼ on R by x ∼ y if
x−y ∈ I ; this is an equivalence relation. Since
I is a normal subgroup ofR under the operation
+, the equivalence classes are cosets which we
write additively: a+I . The set of all such cosets
can be made into a ring with addition defined by
(a+I )+(b+I ) = (a+b)+I and multiplication
defined by (a + I )(b + I ) = ab + I . This ring
is called the residue ring, residue class ring, or
quotient ring and is denoted R/I .

Residue Theorem (1) Suppose f (z) is an
analytic function with an isolated singularity at a
point a. The residue off at a is the coefficient of
(z−a)−1 in the Laurent expansion of f at a; we
denote this by res[f ; a]. The Residue Theorem
states that if f is analytic in a simply connected
domain A, except for isolated singularities, and
if γ is a simple closed rectifiable curve lying in
A and not passing through any singularities of
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f , then

1

2πi

∫
γ

f (z) dz =
∑

res
[
f ; aj

]
,

where the sum is taken over the singularities aj
of f that lie inside γ .

(2) Let X be a complete nonsingular curve
over an algebraically closed field k. LetK be the
function field of X. Let AX denote the sheaf of
differentials of X over k and AK be the module
of differentials of K over k. For P ∈ X, let AP
denote its stalk at P . It can be shown that for
each closed point P ∈ X, there exists a unique
k-linear map resP : AK → k which has the
following properties: (i.) resP (τ) = 0 for all
τ ∈ AP , (ii.) resP (f ndf ) = 0 for all n �=
−1 and all f in the multiplicative group of K ,
(iii.) resP (f−1df ) = vP (f ) ·1, where vP is the
valuation associated toP . The Residue Theorem
states that for any τ ∈ AK ,∑

P∈X
resP (τ) = 0 .

resolution of singularities The technique of
applying birational transformations to an irre-
ducible algebraic variety in hope of producing
an equivalent projective variety without singu-
larities.

restricted Burnside problem A group with
identity e is said to have exponent n if gn =
e for every element g of the group. The re-
stricted Burnside problem is the conjecture that
if a group of exponent n is generated by m el-
ements, then its order is bounded by a quan-
tity S(n,m) which depends only on n and m.
For n = p a prime was solved affirmatively by
Kostrikin.

restricted direct product Let I be an index-
ing set, and let {Gi}, i ∈ I be a family of groups
indexed by I . Consider the set G = ∏

i∈I Gi
and put a group structure onG by defining mul-
tiplication componentwise:

{gi}i∈I {hi}i∈I = {gihi}i∈I .
G is called the direct product of the groups Gi .
The set of all elements {gi}i∈G of G such that
gi = e for all but a finite number of i forms a

normal subgroup ofG; it is called the restricted
direct product (or weak direct product) of the
groups Gi .

restricted Lie algebra A Lie algebraLover a
fieldK of characteristic p �= 0 such that, for ev-
ery a ∈ L, there exists an element a[p] ∈ Lwith
the following properties: (i.) (λa)[p] = λpa[p]
whenever λ ∈ K and a ∈ L, (ii.) [a, b[p]] =
[[. . . [a, b], . . . ], b] (a p-fold commutator), and
(iii.) (a + b)[p] = a[p] + b[p] + s(a, b) where
s(a, b) = s1(a, b)+ · · · + sp−1(a, b) and (p−
i)si(a, b) is the coefficient of λp−i−1 in the ex-
pansion of the p-fold commutator

[[. . . [a, λa + b], . . . ], λa + b] .

restricted minimum condition A commuta-
tive ring R, with identity, satisfies the restricted
minimum condition if R/I is Artinian for every
nonzero ideal I of R. See Artinian ring.

restriction Suppose A and B are sets and
f : A → B is a function. Let S ⊂ A. The
restriction of f to S is the function from S to B
given by a "→ f (a) for a ∈ S. This is often
denoted by f |S or f |S .

resultant (1) The sum of two or more vectors.
(2) A determinant formed from the coeffi-

cients of two polynomial equations. Consider
the two equations

a0x
n + a1x

n−1 + · · · + an = 0

b0x
m + b1x

m−1 + · · · + bm = 0

where a0 �= 0 and b0 �= 0. The resultant is the
determinant of an (m+ n)× (m+ n) matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 . . . an 0 . . . . . . . . . 0
0 a0 . . . an 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . 0 a0 . . . an
b0 . . . . . . bm 0 . . . . . . 0
0 b0 . . . . . . bm 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 b0 . . . . . . bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Here the firstm rows are formed with the coeffi-
cients ai and the last n rows are formed with the
coefficients bi . The two polynomial equations
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have a common root if and only if their resultant
is zero.

Richardson method of finding key matrix
Consider a real linear system of equationsAx =
b, where A is an n × n matrix and x and b are
n × 1 matrices. One method for approximat-
ing the solution, x, involves finding a sequence
of approximations xk by means of an iterative
formula xk = xk−1 + R(b − Axk−1), where R
is chosen to approximate A−1. If the spectral
radius of I − RA is less than 1, the xk con-
verge to the solution for all choices of x0. The
Richardson method is the choice R = αAT ,
where 0 < α < 2

‖A‖2 .

Riemann-Hurwitz formula LetM1 andM2
be compact connected Riemann surfaces. If f :
M1 → M2 is holomorphic and p ∈ M1, we
may choose coordinate systems at p and f (p)
so that locally f can be expressed as f (w) =
wnh(w)whereh(w) is holomorphic andh(0) �=
0. (Here 0 is the image of bothp and f (p) under
the respective coordinate maps.) Set bf (p) =
n − 1; this is called the branch number. The
total branching number of f is defined as B =∑
bf (p), where the sum runs over all p ∈ M .

The equidistribution property states that there
exists a positive integer m such that every q ∈
M2 is assumed m times counting multiplicity,
that is,

∑
(bf (p) + 1) = m for every q ∈ M2,

where the sum is taken over all p ∈ f−1(q).
For i = 1, 2, let gi denote the genus ofMi . The
Riemann-Hurwitz formula states

2 (g1 − 1)− 2m(g2 − 1) = B .

Riemann hypothesis The Riemann zeta func-
tion has zeros at −2,−4,−6, . . . . It is known
that all other zeros of the zeta function must lie
in the strip of complex numbers {z : 0 < �(z) <
1}. The Riemann hypothesis is the yet unproved
conjecture that all of the zeros of the zeta func-
tion in this strip must lie on the line �(z) = 1

2 .
Hardy proved that an infinite number of zeros lie
on this line. There are numerous other equiva-
lent formulations of this conjecture. Resolution
of this conjecture would have important impli-
cations in the theory of prime numbers. See
Riemann zeta function.

Riemann matrix An n × 2n matrix A, for
which there exists a nonsingular skew symmet-
ric 2n×2nmatrix P with integer entries so that
APAT = 0 and iAPA∗ (where A∗ is the con-
jugate transpose matrix ofA) is positive definite
Hermitian.

Riemann-Roch inequality (1) Let k be a
field and letX be a nonsingular projective curve
over k. A divisor on X is a formal sum D =∑

p∈X npP where each np ∈ Z and all but a
finite number of np = 0. For such a D, the de-
gree of D is defined as: deg(D) = ∑

np. Let
K denote the function field of X over k. For a
divisor D set L(D) = {f ∈ K : ordP (f ) ≥
−np for all P in X}. (Here ordP (f ) denotes
the order off atP .) L(D) is a finite dimensional
vector space over k; set Q(D) = dimkL(D).
The Riemann inequality (sometimes called the
Riemann-Roch inequality) states that there ex-
ists a constant g = g(X) such that Q(D) ≥
deg(D)+ 1− g for all divisors D.

(2) Let X be a surface. For any two divi-
sors C and D on X we let I (C.D) denote their
intersection number. For a divisor D let L(D)
denote the associated invertible sheaf and set
Q(D) = dimH 0(X,L(D)). Let pa denote the
arithmetic genus of X. The Riemann-Roch in-
equality states that if D is any divisor on X and
W any canonical divisor, then Q(D) + Q(W −
D) ≥ 1

2I (D.(D −W))+ 1+ pa .

Riemann-Roch Theorem (1) Let X be a
nonsingular projective curve. Let g be the genus
of X. The Riemann-Roch Theorem states that
if W is a canonical divisor on X, then for any
divisorD, Q(D)−Q(W−D) = deg(D)+1−g.
See Riemann-Roch inequality.

(2) Let X be a surface. For any two divisors
C andD onX let I (C.D) denote their intersec-
tion number. For a divisor D, let L(D) denote
the associated invertible sheaf and set Q(D) =
dimH 0(X,L(D)) and s(D) = dimH 1(X,

L(D)). Let pa denote the arithmetic genus of
X. The Riemann-Roch Theorem states that if
D is any divisor on X and if W is any canoni-
cal divisor, then Q(D) − s(D) + Q(W − D) =
1
2I (D.(D −W))+ 1+ pa .

Riemann-Roch Theorem for the adjoint sys-
tem LetX be a surface. For any two divisors
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C andD onX, let I (C.D) denote their intersec-
tion number. For a divisor D let L(D) denote
the associated invertible sheaf and set Q(D) =
H 0(X,L(D)) and s(D) = H 1(X,L(D)). Let
pa denote the arithmetic genus of X. The
Riemann-Roch Theorem for the adjoint system
states that if C is a curve with r components
and K is a canonical divisor, then Q(C +K) =
s(−C)− r + 1

2I ((K + C).C)+ pa + 2.

Riemann’s period inequality Let R be a
compact Riemann surface of genus g. The set
of all differentials of the first kind, that is, those
of the form a(z)dz, where a(z) is holomorphic,
is a vector space of dimension g over C; let
{ω1, . . . , ωg} denote a basis. Take normal sec-
tions α1, . . . , α2g as a basis for the homology
group of R, with coefficients in Z, set ωij =∫
αj
ωi , and letA denote the g×2gmatrix whose

ijth entry is ωij . Set E =
[

0 Ig
−Ig 0

]
, where

Ig denotes the g×g identity matrix. Riemann’s
period relation states that AEAT = 0. Rie-
mann’s period inequality states that the Hermi-
tian matrix iAEĀT is positive definite. See also
Riemann matrix.

Riemann’s period relation See Riemann’s
period inequality.

Riemann surface There are analytic “func-
tions” (for example w = √

z) that are naturally
considered as multiple valued. Such functions
are better understood using Riemann surfaces:
the idea is to consider the image as a surface con-
sisting of a suitable number of sheets so that the
mapping can be considered as one-to-one from
the z to w surfaces. For example, the function

w = z
1
3 can be viewed as a three-sheeted sur-

face (all elements of the complex plane, except
zero, have three cube roots) over the complex
plane. Locally, this mapping is one-to-one from
the plane to the surface. More precisely, a con-
nected Hausdorff space is called a Riemann sur-
face if it is a complex manifold of one com-
plex dimension. Any simply connected Rie-
mann surface can be conformally mapped to one
of the following: the finite complex plane, the
complex plane together with the point at infinity
(the Riemann sphere), or the interior of the unit

circle. Respectively, the surface is then called
parabolic, elliptic, or hyperbolic.

Riemann theta function Let R be a compact
Riemann surface of genus g. Let {ω1, . . . , ωg}
be a basis for the space of Abelian differentials
of the first kind, and let {α1, . . . , α2g} be normal
sections forming a basis for the homology, with
coefficients in Z, of R. (See Riemann’s period
inequality.) SetA = (ωij ), whereωij =

∫
αj
ωi .

It is possible to choose the ωi so that A has the
form A = (Ig, F ), where Ig is a g × g identity
matrix and F is a g × g complex symmetric
matrix whose imaginary part is positive definite.
For u = (u1, . . . , ug) set

θ(u) =
∑
m

exp

(
2πi

(
muT + 1

2
mFmT

))

where the sum is taken over all m =
(m1, . . . , mg) ∈ Zg . This sum converges uni-
formly on compact subsets. θ is the Riemann
theta function.

Riemann zeta function The function de-
fined by ζ(z) = ∑∞

n=1 n
−z for z in the com-

plex plane with �(z) > 1. Euler showed that
ζ(z) = ∏

p (1− p−z)−1 where p runs over all
primes. There are also various other represen-
tations of this involving integral formulas. This
function can be continued analytically to a mero-
morphic function on the complex plane with a
simple pole at z = 1. See also Riemann hy-
pothesis.

Riesz group An ordered Abelian group G
which satisfies: (i.) whenever n is a positive
integer and g ∈ G has gn ≥ 0 then g ≥ 0, and
(ii.) if G1 and G2 are finite sets in G, and if
g1 ≤ g2 for every g1 ∈ G1 and g2 ∈ G2 then
there exists an h ∈ G such that g1 ≤ h ≤ g2 for
all g1 ∈ G1 and g2 ∈ G2.

right A-module Let A be a ring. A right A-
module is an additive Abelian groupG, together
with a mapping G × A → G, called scalar
multiplication, and denoted by (x, r) "→ xr ,
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satisfying, for all r, s ∈ A and x, y ∈ G,

x1 = x ,

(x + y)r = xr + yr ,
x(r + s) = (xr + xs) ,

and
x(rs) = (xr)s .

right annihilator Let S be a subset of a ring
R. The set {r ∈ R : Sr = 0} is called the right
annihilator of S. Note that the right annihilator
of S is a right ideal of R and is an ideal of R if
S is a right ideal.

right Artinian ring A ring that satisfies the
descending chain condition on right ideals; that
is, for every chain I1 ⊃ I2 ⊃ I3 ⊃ . . . of right
ideals of the ring, there is an integerm such that
Ii = Im for all i ≥ m. See also right Noethe-
rian ring, left Artinian ring, left Noetherian ring,
Artinian ring, Noetherian ring.

right-balanced functor LetT be a functor of
several variables, some covariant and some con-
travariant, from the category of modules over a
ring R to the category of modules over a ring S.
T is said to be right-balanced if (i.) when any
of the covariant variables of T is replaced by an
injective module, T becomes an exact functor in
the remaining variables, and (ii.) when any one
of the contravariant variables of T is replaced by
a projective module, T becomes an exact functor
of the remaining variables.

right coset Any set, denoted by Sa, of all
right multiples sa of the elements s of a sub-
group S of a group G and a fixed element a of
G. See left coset.

right derived functor See left derived func-
tor.

right global dimension For a ring A, the
smallest n ≥ 0 for which A has the property
that every rightA-module has projective dimen-
sion≤ n. This is equal to the smallest n ≥ 0 for
which each rightA-module has injective dimen-
sion ≤ n. See projective dimension, injective
dimension. See also left global dimension.

right G-set A set M , acted on, on the right,
by a group G, satisfying m(g1g2) = (mg1)g2
for all g1, g2 ∈ G andm ∈ M , andme = m for
every m ∈ M , where e is the identity of G.

right hereditary ring A ring in which every
right ideal is projective. See also left hereditary
ring, left semihereditary ring, right semiheredi-
tary ring.

right ideal A nonempty subset I of a ring R
such that, whenever x and y are in I and r is in
R, x − y and xr are in I . See also left ideal,
ideal.

right injective resolution See right resolu-
tion.

right invariant (1) Let G be a locally com-
pact topological group. A Borel measure µ on
G is said to be right invariant ifµ(Ea) = µ(E)

for every a ∈ G and Borel set E ⊂ G.
(2) LetG be a Lie group. An element g ∈ G

defines an operator of right translation by g on
G: Rg(x) = xg for x ∈ G. If T is a tensor field
on G and if RgT = T for every g ∈ G (where
RgT is defined in the natural way), then T is
said to be right invariant.

right inverse element Suppose S is a non-
empty set with an associative binary operation
∗. Assume that there is a right identity element
e ∈ S, with respect to ∗. If a ∈ S, a right inverse
element for a is an element b ∈ S such that

a ∗ b = e .

If every element of such an S has an inverse
element, then S is called a group. See also left
inverse element.

right Noetherian ring A ring which satisfies
the ascending chain condition on right ideals.
That is, for every chain I1 ⊂ I2 ⊂ I3 ⊂ . . .

of right ideals there exists an integer m such
that Ii = Im for every i ≥ m. See also right
Artinian ring, left Noetherian ring, left Artinian
ring, Noetherian ring, Artinian ring.

right order Let g be an integral domain in
which every ideal is uniquely decomposed into
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a product of prime ideals (i.e., a Dedekind do-
main). Let F be the quotient field of g. Let A
be a separable algebra of finite degree over F .
LetL be a g-lattice ofA. For such a g-latticeL,
{x ∈ A : Lx ⊂ L} is called the left order of A.

A g-lattice L is a g-submodule of A that is
finitely generated over g and satisfies A = FL.

right regular representation (1) Let R be
a commutative ring with identity and let M be
an R-algebra. For r ∈ R, consider the mapping
ρr : M → M given by right translation (i.e.,
ρr(x) = xr , for x ∈ M). The mapping ρ :
R → HomZ(M,M) given by ρ(r) = ρr is an
antihomomorphism; it is called the right regular
representation of M . If M has an identity, this
is a faithful representation.

(2) Let G be a group, and for a ∈ G define
a mapping g → ga. In this way, each a ∈ G

induces a permutation on the set G. This gives
a representation of G as a permutation group
on G (again, the representation is an antihomo-
morphism): this is called the right regular rep-
resentation. See also regular representation, left
regular representation.

right resolution Consider a cochain com-
plex (X, δ) of A-modules Xn, n ∈ Z, and A
module homomorphisms δn : Xn → Xn+1 with
δn+1δn = 0. Suppose ε : M → X0 is an aug-
mentation of X over M , that is, an A module
homomorphism from anAmoduleM toX0 such

that the compositionM
ε−→ X0 δ0−→ X1 is triv-

ial. If 0
ε−→ M

δ0−→ X0 δ0−→ · · · −→ Xn
δn−→

· · · is exact, then X is called a right resolution
ofM . If, in addition, each Xn is an injective A-
module, then the cochain complex X is called a
right injective resolution of M .

right satellite Let A be an Abelian category
and let R be a selective Abelian category. If
A has enough proper injectives, then a P con-
nected pair (T ,E∗, S) of covariant functors is
right universal if and only if each proper short
exact sequence in A, 0 → C → J → K → 0,
with J proper injective, induces a right exact
sequence T (J ) → T (K) → S(C) → 0 in R.
Given T , the S with this property is uniquely
determined. It is called the right satellite of T .
See also left satellite.

right semihereditary ring A ring in which
every finitely generated right ideal is projective.
See also left semihereditary ring, left hereditary
ring, right hereditary ring.

right translation The function fa : G→ G,
on a group G, defined by fa(x) = xa, for x ∈
G. If g is a function on G, a right translation
of g by a is the function ga defined by ga(x) =
g(xa−1).

right triangle A triangle with a right angle.
The side opposite the right angle is called the
hypotenuse and the sides adjacent the right an-
gle are often called the legs of the triangle. The
Pythagorean Theorem states that in a right tri-
angle the sum of the squares of the lengths of
the legs is equal to the square of the length of
the hypotenuse.

ring A nonempty set R, with two binary op-
erations, usually denoted by+ and ·, which sat-
isfy the following axioms: (i.) With respect to
+, R is an Abelian group. (ii.) · is associative:
a · (b · c) = (a ·b) · c for all a, b, c ∈ R. (iii.) +
and · satisfy the distributive laws: a · (b+ c) =
a · b+ a · c and (b+ c) · a = b · a+ c · a for all
a, b, c ∈ R. The operation + is called addition
and the operation · is called multiplication. If
multiplication is commutative, the ring is called
a commutative ring. If there is an identity for
multiplication, that is, an element 1 which has
x · 1 = 1 · x = x for all x ∈ R, the ring is called
a ring with identity. The identity for the additive
Abelian group is denoted as 0. A division ring
is a ring whose nonzero elements form a group
under multiplication. A commutative division
ring is called a field.

ringed space A topological spaceX, together
with a sheaf of rings OX onX. The main import
of this statement is that to each open setU ofX,
there is associated a ring OX(U). Example: Let
X be an open subset of Cn, or, more generally, a
complex analytic manifold. For each open sub-
set U , let OX(U) = the ring of analytic (holo-
morphic) functions defined on U . Then the pair
(X,OX) is an important example of a ringed
space. The sheaf OX is called the Oka sheaf.
See sheaf.
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ring homomorphism Let R and S be rings,
each with binary operations denoted by+ and ·.
A ring homomorphism fromR to S is a mapping
f : R → S which satisfies: (i.) f (a + b) =
f (a) + f (b) and (ii.) f (a · b) = f (a) · f (b)
for all a, b ∈ R.

ring isomorphism A ring homomorphism
that is both injective and surjective. See ring
homomorphism.

ring of differential polynomials LetK be a
field and δ1, . . . , δn a set of commuting deriva-
tions on K . An extension field L of K is called
a differential extension field of K if the δi ex-
tend to derivations (which we again denote by
δi) on L such that δi(k) ∈ K for every k ∈ K .
Let x1, . . . , xm be elements of a differential ex-
tension field of K with derivations δ1, . . . , δn
and suppose that δr11 δ

r2
2 · · · δrnn xi (where the ri

are nonnegative integers and 1 ≤ i ≤ m) are al-
gebraically independent overK . The collection
of all polynomials (overK) in these expressions
is called the ring of differential polynomials in
the variables x1, . . . , xm.

ring of fractions Let R be a commutative
ring with identity, and S a multiplicative sub-
set of R, that is, 1 ∈ S and S has the prop-
erty that ab ∈ S whenever a, b ∈ S. De-
fine an equivalence relation on the set R × S

by (r, s) ∼ (r ′, s′) ⇔ s1(rs
′ − r ′s) = 0 for

some s1 ∈ S. Note that in the case when S con-
tains no zero divisors and 0 /∈ S, then (r, s) ∼
(r ′, s′)⇔ rs′ − r ′s = 0. The equivalence class
of (r, s) is usually denoted as r

s
and the set of

all equivalence classes defined in this way is de-
noted S−1R. Note that if 0 ∈ S, then S−1R

consists only of the element 0
1 . It can be shown

that S−1R is a commutative ring with identity,
where addition and multiplication are defined by
r
s
+ r ′

s′ = (rs′+r ′s)
ss′ and ( r

s
)( r

′
s′ ) = rr ′

ss′ . The ring
S−1R is called the ring of fractions of R by S.

ring of polynomials Let R be a ring and x
an indeterminate. The ring of polynomials over
R, denoted R[x], is the set of all polynomials in
the variable x, with coefficients in R. This may
be formally defined by considering the set of
all sequences (a0, a1, a2, . . . ) of elements of R

such that ai = 0 for all but a finite number of in-
dices i and defining addition and multiplication
by: (a0, a1, . . . )+(b0, b1, . . . ) = (a0+b0, a1+
b1, . . . ) and (a0, a1, . . . )(b0, b1, . . . ) = (c0, c1,

. . . ) where cn = ∑n
i=0 an−ibi . With these op-

erations, it is easy to see thatR[x] is a ring. Usu-
ally, however, the element (a0, . . . , an, 0, 0, . . . )
is denoted by a0 + a1x + · · · + anx

n. Polyno-
mial rings in several variables can be defined
inductively: R[x, y] = R[x][y].

ring of scalars If M is a module over a ring
R, R is called the ring of scalars. See module.

ring of total quotients Let R be a commu-
tative ring with identity and let U be the multi-
plicative subset of R consisting of all elements
of R that are not zero divisors. The ring of total
quotients is the ring of fractionsU−1R. See ring
of fractions.

ring operations The two binary operations
that occur in the definition of ring. These are
usually denoted by + and · and are called addi-
tion and multiplication. See ring.

ring theory The study of rings and their prop-
erties. See ring.

Ritt’s Basis Theorem In the theory of dif-
ferential rings, a polynomial generated by the
derivatives of a finite set S of elements is called
a differential polynomial of the elements of S.
Ritt’s Basis Theorem states that any setA of dif-
ferential polynomials contains a finite subset B
such that, if u is any element of A, then there
exists an integer power of u that is a linear com-
bination of the elements of B and their deriva-
tives. This theorem on differential polynomials
is the analog of Hilbert’s Basis Theorem in the
ring of ordinary polynomials. See also Hilbert’s
Basis Theorem.

root (1) (Of an equation) A number which
satisfies the equation (makes the equation true
when it is substituted in for the variable).

(2) (Of a polynomial p(x)) A root of the
equation p(x) = 0.

(3) (Of a number) A number which satisfies
xn = b. This number is called the nth root of b,
and is denoted by n

√
b.
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(4) (Of a complex number) A number which
satisfies zn = a + bi. This number is called the
nth root of a + bi, and is denoted by n

√
a + bi.

Also, the elements of a root system U. See
root system.

root extraction An algorithm to find the nth
root of a number.

roots of unity If n is a positive integer, then
any complex z such that zn = 1 is called an nth
root of unity. There are n distinct nth roots of
unity. A theorem that is useful for calculating
roots of unity is De Moivre’s Theorem, which
states that for a complex number z in polar form
z = r[cos θ + i sin θ ],

[r(cos θ + i sin θ)]n = rn(cos nθ + i sin nθ) .

root subspace Let E be a subfield of a field
K , and let p(x) be a polynomial with coeffi-
cients inE. If c is a root ofp(x) (i.e., p(c) = 0),
the smallest subfield of K that contains both E
and c is called a root subspace.

root system A finite subsetU of a real vector
space V which satisfies three conditions: (i.)
0 ∈ U and U generates V ; (ii.) for each α ∈ U
there exists an element α∗ in the dual space V ∗
of V such that the reflection map rα : β → β −
α∗(β)α stabilizes U and such that 〈α, α∗〉 = 2,
where 〈x, α∗〉 = α∗(x); and (iii.) if α, β ∈ U,
then ηβ,α ≡ 〈α, β∗〉 ≡ β∗(α) is an integer.

R-order Let R be a ring. Let A be a finite
dimensional algebra with unit element e over a
field F . A subring G of A is called an R-order
in A if it satisfies (i.) e ∈ G, (ii.) G contains a
basis of A as a vector space over the field F (an
F -basis ofA), and (iii.) G is a finitely generated
R module.

The most important case of this occurs when
R is chosen to be the ring of integers, Z, in which
case an R-order is called a Z-order. See also Z-
order.

Rosen’s gradient projection method An al-
gorithm which seeks to minimize a convex dif-
ferentiable function p on a non-empty convex
set F . Starting with some u0 in F , if p(u0)

is not minimal, then p decreases in the direc-
tion of the gradient of −p. Because p is a con-
vex differentiable function, p(x) < p(u0) for
each point along the gradient of −p at u0. Map
u0 to the point u, where that gradient intersects
the boundary of F . Repeat with the gradient of
−p at u1, u2, etc. We have p(u0) > p(u1) >

p(u2) . . . If the process converges, p is mini-
mized at the limit of the sequence u0, u1, . . . .

rotation Rigid motion about a fixed axis
wherein every point not on the axis is rotated
through the same angle about the axis. A ro-
tated point set retains its shape. A rotation of
Euclidian n-space is a linear transformation that
preserves distances and the orientation of the
space.

rotation group The group formed by the set
of all rotations of Rn, also called the orthogonal
group of Rn. The rotation group of 3-space
appears prominently in theoretical mechanics.

Roth’s Theorem A result in the theory of
rational approximations of irrational numbers.
If k > 2 and a is a real algebraic number, then
there are only a finite number of integer pairs
(x, y) with x > 0 such that∣∣∣a − y

x

∣∣∣ < 1

xk
.

See algebraic number.

Rouché’s Theorem Let C be a simple rec-
tifiable curve in the complex plane and suppose
that the functions F and f are analytic in and
on C. If |F | > |f | at each point on C, then the
functions F and f + F have the same number
of zeros in the finite region bounded by C. The
theorem is helpful for proving the existence of
and locating zeros of a complex function.

rounding of number A method of approxi-
mating numbers. To round a decimal to the nth
place, one sets all of the digits after the nth place
to zero, and changes the nth place according to
the following rule: If the first digit after the nth
place is greater than or equal to 5, the nth place
is increased by one. If the first digit after the nth
place is less than five, the nth place is unaffected
by the rounding. For example, π rounded to the

c© 2001 by CRC Press LLC



hundredths place is 3.14; 35560 rounded to the
nearest thousand is 36000.

row finite matrix An infinite matrix wherein
there are a finite number of non-zero entries in
each row.

row nullity ForA anm×nmatrix, the dimen-
sion of the row null space (the space of solutions
described byAx = 0). IfA is of rank r , the row
nullity is equal to m− r .
row of matrix A single horizontal sequence
of elements, extending across a matrix. For ex-
ample, in the matrix


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · ·
am1 am2 · · · amn


 ,

any of the arrays aj1aj2 . . . ajn is a row.

row vector A horizontal array of elements;
a 1×n matrix.

r-ple point on a curve Suppose C is a plane
curve, P is a point on C, and F is a field. Write
C = Cr +Cr+1+· · ·+Cr+s , r, s ∈ Z+, where
each Ci is a form of degree i in F [X, Y ] and
Cr �= 0. Then P is called an r-ple point on the
curve C. See also multiplicity of a point.

ruled surface A surface S that contains, for
each point p in S, a line that contains p. Some
simple examples of ruled surfaces are planes and
hyperboloids of one sheet.

Rule of Three A philosophy of mathemati-
cal pedagogy first stressed by the Calculus Con-
sortium based at Harvard University, in which
graphical, numerical, and analytical approaches
are used to aid in conceptualizations of prob-
lems and solutions. The same group has re-
cently coined the term Rule of Four to imply
the addition of a verbal approach to calculus.
The term was used later by the University of Al-
abama in instructing probability through math-
ematics, simulation, and data analysis.
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S
saddle point A point at which the first two
partial derivatives of a function f (x, y) in both
variables are zero, yet which is not a local ex-
tremum. Also called a hyperbolic point. The
term saddle hails from the appearance of the
plotted surface, wherein the saddle point appears
as a mountain pass between two hills. Similar
saddle phenomena occur with three hills; they
are sometimes called monkey saddles, with an
extra place for a monkey’s tail.

Satake diagram Used in the theory of Lie
algebras to describe the classification of a non-
compact real simple Lie Algebra L that arises
from the comparison of the conjugation opera-
tion of L with the complexification of L.

satisfy Meet specified conditions, as in an
equation or set of equations. Any values that re-
duce an equation to an identity satisfy that equa-
tion. Also, to meet a set of hypotheses, such as
satisfying the conditions of a theorem.

Sato’s conjecture A conjecture asserting

limx→∞ number of primes p ≤ x : θp ∈ [α, β]
number of primes < x

= 2

π

∫ β

α

sin2 θ dθ, 0 < α < β < π ,

where E is an elliptic curve over the rational
number field Q such that E does not have com-
plex multiplication, N is its conductor,
L(s,E) =
∏
p|N

(
1− εpp

−s
)−1 ∏

p �|N

(
1− app

−s + p1−2s
)−1

is theL-function ofE over Q, εp = 0 or±1, 1−
apu+pu2 = p1(u,E modp)= 1−apu+pu2 =
(1 − πpu)(1 − π̄pu) with πp = √

peiθp (0 <

θp < π). When E has complex multiplication,
the distribution of θp for half of p is uniform in
[0, π ], and θp is π

2 for the remaining half of p.

scalar extension Suppose ϕ : R1 → R2
is a ring homomorphism and suppose M is an
R2-module. Consider M to be an R1-module by
scalar restriction. Define theR1-moduleMR2 =
R2 ⊗R1 M . Then MR2 may be considered to
be an R2-module by defining r2 · (r ′2 ⊗ m) to
be r2 · r ′2 ⊗ m for all r2, r

′
2 ∈ R2 and for all

m ∈ M . This R2-module MR2 is called a scalar
extension. See also scalar restriction.

scalar matrix A square matrix, wherein all
of the elements on the main diagonal are equal,
i.e., all aii are the same, and all other elements
are 0, i.e., aij = 0, for i �= j .

scalar multiple (1) (In a linear space) The
product, ax, of an element, x, in a set L and an
element, a, in a field K; K is the scalar field.

(2) (Of a linear operator) The product of a
scalar a and a linear operator T : (aT )x =
a(T x).

(3) (In a module) The product ax of an el-
ement x in a module M and an element a in a
ring A (where M is a module over A); A is the
ring of scalars.

(4) (Of a vector) The product c�v of a vector
�v and a real number c. The vector c�v is on the
same line as the line containing �v, and the ratio
of c�v to �v is c (if �v is the zero vector, then c�v is
also the zero vector).

scalar multiplication See vector space.

scalar quantity When considering a vector
space over a field k, an element of k. See vector
space.

scalar restriction Suppose ϕ : R1 → R2
is a ring homomorphism and suppose M is an
R2-module. Then M can be made into an R1-
module by defining r · m to be ϕ(r) · m for all
r ∈ R1 and for all m ∈ M . This R1-module
M is called a scalar restriction. See also ring
homomorphism, module.

scheme A ringed space X for which there
is an affine scheme Spec(A) such that Spec(A)

and X are locally isomorphic.

Schmidt’s Theorem If a field F is perfect,
then every extension E/F is separable.
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See also perfect field, separable extension.

Schottky group Suppose C1, C−1, . . . , Ck,

C−k are 2k circles in the complex plane. Denote
the interior of Ci by Ii and the exterior, includ-
ing the point at infinity, by Ei , i = ±1, . . . ,±k.
Let µ1, . . . , µk be Möbius transformations sat-
isfying µi(Ci) = C−i , µi(Ei) = I−j , µi(Ii) =
E−i . Further, µ−i is defined to be µ−1

i , i =
1, . . . , k. Then the group generated by µ1, . . . ,
µk is called a Schottky group. See also Möbius
transformation.

Schreier conjecture A conjecture which
states that for an arbitrary finite simple group,
G, the outer automorphisms of G form a solv-
able group. The conjecture is true for all known
finite simple groups.

Schur index Let G be a finite group, F ⊂ S

where S is a splitting field for G, and ϕ ∈
IrrS(G). If , is an irreducible S-representation
which affords ϕ and - is an irreducible F -
representation such that , is a constituent of
-S , then the multiplicity of , as a constituent
of -S is called the Schur index of ϕ over F . See
also splitting field, irreducible representation,
constituent.

Schur product See Hadamard product.

Schur’s Lemma (1) Let M and N be sim-
ple A-modules, and let f : M → N be an A-
homomorphism. Then f is either an isomor-
phism or f is the zero homomorphism.

(2) Let A be a ring and let M be a simple A-
module. Let D = EA(M) be the endomorphism
ring of M . Then D is a skew field.

Schur subgroup The subgroup of the Brauer
group Br(k) consisting of those algebra classes
that contain a Schur algebra A over k, where k

is a field of characteristic 0.

Schur-Zassenhaus Theorem Suppose N is
a normal subgroup of a finite group G such that
|N | and |G : N | are relatively prime. Then G

contains subgroups of order |G : N | and any two
of these subgroups are conjugate in G.

See also normal subgroup, conjugate sub-
group.

Schwarz inequality The inequality which
states that for complex numbers x1, . . . , xn and
y1, . . . , yn,∣∣∣∣∣

n∑
i=1

xi ȳi

∣∣∣∣∣
2

≤
n∑

i=1

|xi |2
n∑

i=1

|yi |2 .

The inequality is commonly generalized in
abstract inner product spaces to mean |(x, y)| ≤
‖x‖ ‖y‖ for vectors x and y, where (·, ·) is the in-
ner product and ‖ · ‖ is its norm. Also known as
the Cauchy-Schwarz or Bunyakovskiǐ inequal-
ity, it is a special case of the Hölder integral
inequality. See Hölder’s Theorem.

scientific notation The convention in applied
mathematics wherein real numbers are repre-
sented as decimals (between one and ten) mul-
tiplied by powers of ten. For example, 36000 is
3.6×104 and 0.00031 is 3.1×10−4 in scientific
notation. The notation is particularly useful in
dealing with numbers that are very large or very
small in magnitude.

secant function One of the fundamental
trigonometric functions, denoted sec x. By
definition, sec x = 1

cos x , and hence the se-
cant function is (i.) periodic, satisfying sec(x +
2π) = sec x; (ii.) bounded below, satisfying
1 ≤ | sec x|, for all real x, and (iii.) undefined
where the cosine is 0 (x = ±π

2 ,± 3π
2 , . . . ).

Many other properties of the secant function can
be derived from those of the cosine and sine. See
cosine function. See also secant of an angle.

secant method The iterative sequence of ap-
proximate solutions of the equation f (x) = 0,
given by

xn+1 = xn − f (xn) · xn − xn+1

f (xn)− f (xn+1)

for f (xn) �= f (xn+1), n ≥ 1.

secant of an angle Written secα, the recip-
rocal of the x-coordinate of the point where the
terminal ray of the angle α whose initial ray lies
along the positive x-axis intersects the unit cir-
cle. If 0 < α < π

2 (α in radians) so that the
angle is one of the angles in a right triangle with
adjacent side a, opposite side b, and hypotenuse
c, then secα = c

a
.
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second difference In difference equations,
where the difference of y at x is 2y(x) = y(x+
2x)− y(x), the second difference is defined as
22y(x) = 2(2y(x)) = y(x + 22x)− 2y(x +
2x)+ y(x).

second factor of class number See first fac-
tor of class number.

secular equation The characteristic equation
of a square matrix A. See characteristic equa-
tion. For a square symmetric matrix of real ele-
ments, all of the solutions to the secular equation
(the eigenvalues of A) are real.

sedenion Any element of A4, where An is
the Clifford algebra over R with λii = −1. A4
is important in spinor theory and the theory of
Dirac’s equation.

Selberg trace formula Let G be a connected
semisimple Lie group and4 a discrete subgroup.
Let T be the regular representation ofG on4\G
defined by (Tgf )(x) = f (xy), f ∈ L2(4 \
G). When 4 \ G is compact, one has T =∑∞

k=1 T
(k) as the irreducible decomposition of

T . Let χk be the character of the irreducible
unitary representation T (k). Then one has the
trace formula
∞∑
k=1

∫
G

f (g)χk(g)dg =
∑
{γ }

∫
Dγ

f (x−1γ x) dx

where {γ } is the conjugate class of γ in 4 and
Dγ is the quotient space of the centralizer Gγ

of γ in G by the centralizer 4γ of γ in 4. When
4 \ G is not compact, the irreducible decom-
position of T on 4 \ G contains not only the
discrete sum but also the direct integral (contin-
uous spectrum). Selberg showed that even in
this case, there are explicit examples in which
the trace formula holds for the part with dis-
crete spectrum. Also the part with continuous
spectrum can be described by the generalized
Eisenstein series.

Selberg zeta function The zeta function

Z4(s,M) =
∏
i

∞∏
n=0

det
(
I −M (γi)N (γi)

−s−n
)
,

where 4 ⊂ SL(2,R) is a Fuchsian group, op-
erating on the complex upper half-plane H, P1,

P2, . . . are the conjugacy classes of primitive
hyperbolic elements of 4, γj ∈ Pj are their rep-
resentatives, γ �→ M(g) is a matrix represen-
tation of 4, N(γ ) = ξ2

2 the norm of hyperbolic
γ where ξ1, ξ2 are two eigenvalues of γ . Here,
when the two eigenvalues of γ ∈ 4 are dis-
tinct real numbers ξ1, ξ2 (ξ1ξ2 = 1, ξ1 < ξ2),
we call γ hyperbolic. When γ is hyperbolic,
γ n(n = 1, 2, . . . ) is also hyperbolic. When±γ

is not a positive power of another hyperbolic ele-
ment, γ is called a primitive hyperbolic element.

self-dual regular cone A cone which is self-
dual and regular. Let X be a vector space with
an inner product (·, ·). A subset C ⊂ X is called
a cone if (i.) x, y ∈ C implies x + y ∈ C; (ii.)
x ∈ C and t > 0 imply tx ∈ C; (iii.) if x and−x

are in C, then x = 0. A cone is called regular if
the relations x1 ≤ x2 ≤ · · · ≤ z imply that {xn}
is norm-convergent. A subset Cd := {x ∈ X :
(x, y) ≥ 0, for all y ∈ C} ⊂ X is called a dual
cone. C is called self-dual if C = Cd .

self-intersection number On an algebraic
surface, the intersection number (or Kronecker
index) I (d1 · d2) is defined for any divisors d1
and d2. See intersection number. The self-
intersection number is the case in which d1 =
d2, i.e., the number I (d · d) = (d2) is the self-
intersection number of the divisor d.

semidefinite Hermitian form A Hermitian
form H with n variables such that the signature
of H is either (r, 0) or (0, r), with 1 ≤ r < n.
See semidefinite quadratic form.

semidefinite quadratic form A real qua-
dratic form Q with n variables such that the
signature of Q is either (r, 0) or (0, r), with
1 ≤ r < n. See semidefinite Hermitian form.

semidefinite von Neumann algebra A von
Neumann algebra A which has an exact semifi-
nite normal trace on A.

semidirect product A group G which can be
written as the product of a normal subgroupN of
G and a subgroup H of G where N ∩H = {1}.

semifinite function A measurable function
f with the property that {x : |f (x)| = ∞} is σ -
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finite (the countable union of sets of finite mea-
sure).

semigroup Generalization of a group in
which a binary operation is defined and asso-
ciative on a set. The existence of an identity and
multiplicative inverses are not guaranteed in a
semigroup as they are in a group.

semigroup algebra An algebra over a field
K which has a multiplicative semigroup G as its
basis.

semigroup bialgebra An algebra ,(A) over
a field , with a basis A that is at the same time
a multiplicative semigroup.

semi-invariant (1) A common eigenvector
of a family of endomorphisms of a vector space
or module.

(2) A numerical characteristic of random
variables related to the concept of moment of
higher order. If v = (v1, . . . , vk) ∈ Rk is a ran-
dom vector, φv(u) = E(ei(u,v)) is its moment
generating function, where u = (u1, . . . , uk) ∈
Rk and (u, v) =∑n

j=1 vjuj . If for some n ≥ 1
the nth moment E(|vj |n) < ∞, j = 1, . . . , k,
then the (mixed) moments

m(α1,...,αk)
v = E

(
v
α1
1 · · · vαk

k

)
exist for all multi-indices (α1, . . . , αk) ∈ (Z+)k
such that |α| = α1+ · · ·+αk ≤ n. Under these
conditions,

φv(u) =∑
|α|≤n

iα1+···+αk

α1! · · ·αk!m
(α1,...,αk)
v u

α1
1 · · · uαk

k +o
(|u|n) ,

where |u| = |u1|+· · ·+|uk| and for sufficiently
small |u|, the principal value of logφv(u) can be
expressed by Taylor’s expansion as

logφv(u) =
∑
|α|≤n

iα1+···+αk

α1! · · ·αk!a
(α1,...,αk)
v u

α1
1 · · · uαk

k + o
(|u|n)

where the coefficients a
(α1,...,αk)
v are called

(mixed) semi-invariants, or cumulants, of order
α = (α1, . . . , αk)of the vector v = (v1, . . . , vk).

semilinear mapping A Z-linear mappingφ :
E → E′, whereE andE′ are modules, such that
φ(ax) = aφ(x) for all x ∈ E.

semilocal ring A ring R with finitely many
maximal ideals.

semiprimary ring A ring R such that, for
any ideal A and any positive number n ∈ N
with An = 0, we have A = 0.

semiprime differential ideal A differential
ideal which is semiprime. Let R be a com-
mutative ring with an identity. If a mapping
δ : R → R is such that, for any x, y ∈ R, (i.)
δ(x+y) = δx+δy; (ii.) δ(xy) = δx ·y+x ·δy,
then δ is called a differentiation. A ring R pro-
vided with a finite number of mutually commu-
tative differentiations in R is called a differential
ring. Let δ1, . . . , δm be the differentiations of a
differential ringR. An ideala ofR with δj a ⊂ a

(i = 1, 2, . . . , m) is called a differential ideal.
We say that a differential ideal a is semiprime
if a contains all those elements x that satisfy
xg ∈ a for some natural number g.

semiprime ideal See semiprime ring.

semiprime ring A ring such that 0 is the only
nilpotent ideal.

semiprime ring A ring R is semiprime if 0
is the only nilpotent ideal.

semiprimitive ring A ring in which the rad-
ical is the set containing only the zero element.
See radical.

semireductive action A rational action de-
fined by ρ such that N = f1K + · · · frK is
a G-admissible module (f1, . . . , fr ∈ R) and
that if f0 mod N (f0 ∈ R) is G-invariant, then
there is a homogeneous form h in f0, . . . , fr

of positive degree with coefficients in K such
that h is monic in f0 and is G-invariant, where
K is a commutative ring with identity and G is
a matrix group over K (i.e., a subgroup of the
general linear group GL(n,K)). A homomor-
phism ρ of G into GL(m,K) is called a ratio-
nal representation of G if there exist rational
functions φkl, 1 ≤ k, l ≤ m, in n2 variables xij
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(1 ≤ i, j ≤ n) with coefficients in K such that
ρ((σij )) = (φkl(σij )) for all (σij ) ∈ G. As-
sume that R is a commutative ring generated by
x1, . . . , xn overK and that an action of the group
G on R is defined such that (σx1, . . . , σxn)

t =
σ t (x1, . . . , xn) where t means the transpose of
a matrix. In this case we say that G acts on R as
a matrix group. Assume that ρ is a rational rep-
resentation of a matrix group G and ρ(G) acts
on a ring R as a matrix group. Then we have
an action of G on R defined by σf = (ρσ)f

(σ ∈ G, f ∈ R), called the rational action de-
fined by ρ.

semisimple Banach algebra A Banach al-
gebra A, such that its regular module A◦ is com-
pletely reducible. See also Banach algebra, reg-
ular module, completely reducible.

semisimple component The semisimple lin-
ear transformation φs of the Jordan decomposi-
tion of a linear transformation φ : L → L,
where L is an n-dimensional linear space over a
perfect field. By the Jordan decomposition, any
such φ is represented as the sum of the φs and a
nilpotent linear transformation φn.

semisimple Jordan algebra A Jordan alge-
bra A such that its regular module A◦ is com-
pletely reducible. See also Jordan algebra, reg-
ular module, completely reducible.

semisimple Lie algebra A Lie algebra whose
only Abelian ideal is the zero ideal.

semisimple Lie group A Lie group G is
called simple if
(i.) dim(G) is greater than 1;
(ii.) G has only finitely many connected com-
ponents; and
(iii.) any proper normal subgroup of the identity
component of G is finite.

We say that G is reductive if it has finitely
many connected components, and some finite
cover of the identity component Ge is a product
of simple and Abelian Lie groups. It is semisim-
ple if there are no Abelian factors in this decom-
position.

semisimple linear transformation A linear
transformation T on a vector space V of dimen-

sion n over a field F such that V contains a basis
of eigenvectors for T .

semisimple matrix A diagonalizable matrix.
Hence a matrixA = SMS−1, whereS is nonsin-
gular and M is diagonal. See diagonal matrix,
nonsingular matrix.

semisimple module An R-module M of a
ring R such that M is the sum of simple sub-
modules. Equivalent conditions are
(i.) M is the direct sum of simple submodules
and
(ii.) for every submodule E there exists a sub-
module F such that M = E + F .

semisimple part (1) A nonsingular ma-
trix can be represented uniquely as a product
(commutatively) of a diagonalizable matrix (the
semisimple part) and a unipotent matrix (the
unipotent part) of identical dimensions.

(2) The semisimple part of a group is the set
of all semisimple elements in that group.

semisimple ring A ring R such that, as a
module, R is semisimple.

Semistable Reduction Theorem A theorem
proved by Grothendieck that asserts: Given an
Abelian variety overF , there is a finite extension
of F , over which it has a semistable reduction.

Let F be a field with a discrete valuation v,
valuation ring ov , and maximal ideal mp. Let
AF be an Abelian variety over F . Let A be a
Néron model, A0 the connected Néron model,
k = k(v) andA0

k the special fiber over the residue
class field k. We say that AF has semistable
reduction if A0

k is an extension of an Abelian
variety by a torus (so that A0

k is a semi-Abelian
variety).

sense of inequality The direction of an in-
equality is sometimes also referred to as the
sense of an inequality. For example, x > 5
and y > z have the same sense.

sensitivity analysis The analysis of response
to imposed conditions, i.e., variations of solu-
tions in response to variations in a problem’s
parameters. A particularly important topic in
chaotic dynamics, wherein small changes in ini-
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tial conditions or parameters (such as a butterfly
flapping its wings in China) often produce dra-
matically different behavior at later times (such
as the formation of a hurricane that proceeds to
ravage much of Florida).

separable algebra A finite dimensional alge-
bra A over a field K such that the tensor product
E ⊗K A is semisimple over E for every exten-
sion field E of K .

separable element An algebraic element a
over a field K which is a root of a separable
polynomial over K .

separable extension An extension field F

of a field K whose elements are all separable
elements over K .

separable polynomial An irreducible poly-
nomial with a nonzero formal derivative.

separable scheme See purely inseparable
scheme.

separated morphism A morphism f : X →
S such that the image of the diagonal morphism
2X/S : X → X×S X is closed, where X and S

are local-ringed spaces.

separated scheme A scheme X such that
the diagonal subscheme 2X/Spec(A)(X) = X

×Spec(A) X is closed.

separating transcendence basis A subset S
of a field extension F of a field K such that S
is algebraically independent and F is algebraic
and separable over K(S).

sequence of factor groups Let G be a group
and let G = G0�G1�· · ·�Gn be a chain of nor-
mal subgroups of G. Then the sequence of fac-
tor groups is given byGi−1/Gi , i = 1, 2, . . . , n.

sequence of Ulm factors Suppose R is a
complete valuation ring with prime p and re-
duced R-module M . Define {Mµ} to be the
descending transfinite series obtained by suc-
cessive multiplication by p where intersections
are taken at the limit ordinals. Define ϕ by
ϕ(x) = µ if x ∈ Mµ but x /∈ Mµ+1; and de-

fine ϕ(0) = ∞ where ∞ exceeds any ordinal.
Then associated to each x there is a sequence of
ordinals {µi : µi = ϕ(pix), i ≥ 0} called the
sequence of Ulm factors. See also complete val-
uation ring, reduced module, transfinite series,
limit ordinal.

serial subgroup A subgroup H of a group G

is serial in G, denoted H serG, if there exists a
totally ordered set H and a set

{(Iσ , Vσ ) : σ ∈ H}
such that
(i.) H ≤ Vσ ≡ Iσ ≤ G ∀σ ∈ H;
(ii.) Iτ ≤ Vσ if τ < σ ;
(iii.) G \H =

⋃
{Iσ \ Vσ : σ ∈ H}.

series (1) The summation of a finite sequence
of terms, written with the Greek letter sigma as
follows:

N∑
n=0

an = a0 + a1 + · · · + aN

where n is the index of summation, 0 and N are
the limits of the summation, and each an is a
term.

(2) An infinite series is a formal sum of the
above type for which N = ∞. An infinite series
is said to converge if limN→∞(a1+· · ·+aN) =
S for some finite S; it is said to diverge oth-
erwise. There are many methods used to test
the convergence or divergence of infinite series,
such as the root test, ratio test, and comparison
test. Infinite series are also particularly useful
in analysis.

(3) Power series, or series of the form

∞∑
n=0

anx
n ,

for complex an, can be used to represent some
functions on intervals; these functions are called
real analytic in the interval (as opposed to being
singular at some point in the interval). Real ana-
lytic functions can be differentiated or integrated
by differentiating or integrating their represen-
tative power series term by term. Moreover, the
value of a function can be approximated at a
point c by evaluating its truncated power series
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HN
n=0an(x−c)n, with increasing accuracy in the

approximation as N approaches infinity.
(4) Series appear in a variety of other con-

texts, including differential equations (in which
solutions can sometimes be represented by
power series) and Fourier analysis, in which se-
ries of trigonometric terms are used to represent
otherwise complicated functions such as pulse
functions. See also Fourier series.

Serre conjecture Let F [X1, X2, . . . , Xn] be
a ring of polynomials over a field F . Then ev-
ery finitely generated projective module over
F [X1, X2, . . . , Xn] is free. Serre’s conjecture
was proved by Quillen and Suslin and is also
known as the Quillen-Suslin Theorem.

Serre’s Theorem For a positively graded,
commutative algebra C, the category of coher-
ent sheaves on the scheme ProjC is equivalent to
a certain category which is completely defined
in terms of C-gr.

set of antisymmetry See antisymmetric de-
composition.

Shaferevich’s reciprocity law The explicit
reciprocity law which asserts that
(i.) (π,E(α, π ′)) = 1 for p �| i, α ∈ DT .
(ii.) (π,E(α)) = ζTrα if α ∈ DT , Trα :=
TrT/Qp

α.
(iii.) (π, π) = (π,−1).
(iv.) (E(α), ε) = 1 for α ∈ DT , ε ∈ D×K .
(v.) If p �= 2,(

E
(
α, πi

)
, E

(
β, πj

))
=
(
πj ,E

(
αβ, πi+j

))
;

if p = 2,(
E
(
α, πi

)
, E

(
α, πj

))
=
(
−πj ,E

(
αβ, πi+j

))
∞∏
s=1

(
−1, E

(
αF s(β), πi+jps

))
·
∞∏
r=1

(
−1, E

(
F r(α)β, πipr+j

))
for α, β ∈ DT , p �| i, p �| j .

(vi.) If p = 2,(
−1, E

(
a, πi

))
=

∞∏
s=0

(
π,E

(
i2sF s+1(a), πi2s+1

))
forα ∈ DT , p �| i, whereK is an algebraic num-
ber field, p ∈ K is a prime ideal and π is a fixed
prime element of K , T is the inertia field of K ,
E(α) is the Artin-Hasse function, and E(α, χ)

is the Shaferevich function with α ∈ DT and
χ ∈ p. The explicit reciprocity law is a gen-
eralization of Gauss’s quadratic reciprocity law,
which allows one to decide whether an integral
number in a field is an nth power residue with
respect to a prime ideal.

sheaf A presheaf F on X which satisfies the
following conditions for every open U ⊆ X

such that∪iUi is an open covering of U : (i.) For
every i, if s, s′ ∈ F(U) are such that s|Ui

=
s′|Ui

, then s = s′; and (ii.) for every i and j ,
if si ∈ F(Ui) and sj ∈ F(Uj ) are such that
si |Ui∩Uj

= sj |Ui∩Uj
, then there is an s ∈ F(U)

such that for every i, s|Ui
= si . See presheaf.

sheaf of germs of regular functions A sheaf
of rings OV on a variety V where the stalk OV,x

(x ∈ V ) is the local ring of the ring regular
functions of open sets on V at x.

sheaf theory A mathematical method for
providing links between the local and global
properties of topological spaces. Sheaf theory
is also used to study problems in mathematical
areas such as algebra, analysis, and geometry.

Shilov boundary Let B be a Banach algebra,
M the set of all multiplicative linear functionals
λ (λ : B → C linear and λ(fg) = λ(f )λ(g)),
along with the weakest topology which makes
the mapping M % m �→ m(f ) ∈ C continu-
ous for every f ∈ B, and f̂ the Gel’fand trans-
form of f ∈ B. Then the Shilov boundary S of
M is the smallest closed subset of M such that
supS |f̂ | = supM |f̂ |, f ∈ B. See also Banach
algebra, Gel’fand transform.

short representation A representation of an
ideal I in a commutative ring R as an intersec-
tion of primary ideals, I = Q1∩Q2∩· · ·∩Qk ,
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satisfying two additional conditions: (i.) The
representation is irredundant, that is, it is not
possible to omit one of the primary ideals Qi

from the intersection. (ii.) The prime ideals
P1, P2, . . . , Pk belonging to the Q1,Q2, . . . ,

Qk are all different. (Pi is the prime ideal be-
longing to Qi if Pi contains Qi , but there is no
smaller prime ideal P ′i containing Qi . Equiva-
lently, Pi is the radical of Qi , i.e., Pi = {p ∈
R : pn ∈ I for some integer n}.) See also iso-
lated component, isolated primary component,
irredundant, primary ideal, prime ideal, radical.

Siegel domain An open subset S of com-
plex N space CN of the form S = {(z, w) ∈
Cm×Cn : Im z−N(w,w) ∈ O}. Here, O is an
open convex cone in realm space Rm with vertex
at the origin, N : Cn × Cn → Cm is O Hermi-
tian, Im z denotes the imaginary part of z, and
m+n = N . In addition, the coneO is usually as-
sumed to be acute; that is, O is usually assumed
not to contain an entire line. Finally, O Hermi-
tian means (i.) N(v,w) is linear with respect to
v, (ii.) N(v,w) = N(w, v), (iii.) N(w,w) = 0
if and only if w = 0, and (iv.) N(w,w) ∈ O. In
property (ii.), Phi(w, v) denotes the complex
conjugate of N(w, v), whereas in property (iv.)
O denotes the topological closure of O.

An example of a Siegel domain is the un-
bounded domain H consisting of all n×n sym-
metric matrices with complex entries, and with
positive definite imaginary parts. (A matrix M

is symmetric if Mt = M , where Mt is the trans-
pose of M . A matrix M with complex entries
can be written uniquely as M = A+ iB, where
A and B have real entries. The matrix B is the
imaginary part of M . An n × n matrix B with
real entries is positive definite if xtBx ≥ 0 for
all n dimensional column vectors x with real
entries. Here, xt is just x, made into a row vec-
tor.) The Siegel domain H is called a general-
ized Siegel half plane. In the special case where
n = 1, the generalized Siegel half plane is just
the familiar upper half plane of elementary com-
plex analysis.

A Siegel domain is homogeneous if it is ho-
mogeneous as a domain, that is, if it has a tran-
sitive group of analytic (holomorphic) automor-
phisms. The generalized Siegel half planes are
homogeneous Siegel domains. See homoge-
neous domain.

Siegel domains are divided into three classes,
Siegel domains of the first kind, Siegel domains
of the second kind, and Siegel domains of the
third kind. There is a deep connection between
Siegel domains of the second kind and perfectly
general bounded homogeneous domains. (A do-
main is bounded if it is contained in a ball of
finite radius. A bounded homogeneous domain
is a domain which is both bounded and homoge-
neous. An open ball of finite radius in complex
N space is a bounded homogeneous domain. A
generalized Siegel half plane is a homogeneous
domain, but it is not bounded.) The connection
between Siegel domains and bounded homoge-
neous domains is provided by a famous theorem
of Vinberg, Gindikin, and Pyatetskii-Shapiro:
Every bounded homogeneous domain in CN is
isomorphic to a homogeneous Siegel domain of
the second kind. See also bounded homoge-
neous domain, irreducible homogeneous Siegel
domain, Siegel domain of the first kind, Siegel
domain of the second kind, Siegel domain of the
third kind.

Siegel domain of the first kind A domain
D(V ) = {x + iy ∈ Rc|y ∈ V }, where V is a
regular cone in an n-dimensional vector space
R and Rc is the complexification of R.

Siegel domain of the second kind A do-
main D(V, F ) = {(x + iy, u) ∈ Rc ×W |y −
F(u, u) ∈ V }, where V is a regular cone in an
n-dimensional vector space R, Rc is the com-
plexification of R, W is a complex vector space,
and F : W ×W → Rc is a V -Hermitian form.
If W = 0, then a Siegel domain of the first kind
is obtained. See also Siegel domain of the first
kind.

Siegel domain of the third kind A do-
main which is holomorphically equivalent to
a bounded domain and can be written as
D(V,L,B) = {(x + iy, u, p) ∈ Rc × W ×
X|y − Re Lp(u, u) ∈ V, p ∈ B}, where V is
a regular cone in an n-dimensional vector space
R, Rc is the complexification of R, W and X are
complex vector spaces, B is a bounded domain
inX andL,Lp : W×W → Rc are nondegener-
ate semi-Hermitian forms, for p ∈ B. See also
Siegel domain of the first kind, Siegel domain
of the second kind.
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Siegel’s Theorem Let χ be a real Dirichlet
character of modulus k such that

χ(n) �=
{

1 if (n, k) = 1

0 if (n, k) �= 1
.

Siegel’s Theorem states that, for any ε > 0, there
exists cε > 0 such that

∞∑
n=1

χ(n)

n
>

cε

kε
.

Siegel zeta function A ζ -function attached to
an indefinite, quadratic form, meromorphic on
the whole complex plane and satisfying certain
functional equations.

sigma field Consider an arbitrary non-empty
subclass A of the power set of a set X such that
if P and Q are in A, then P ∩Q, P ∪ bQ, and
cP are also in A. Such an A is called a field. If,
in addition, A is closed under countable unions,
then it is called a σ -field.

signature The ordered pair (p, q) corre-
sponding to a real quadratic form Q of rank
p + q, where Q is equivalent to

p∑
i=1

x2
i −

q+p∑
j=p+1

x2
j .

See also signature of Hermitian form.

signature of Hermitian form The ordered
pair (p, q) corresponding to a Hermitian form
H of rank p + q, where H is equivalent to

p∑
i=1

xixi −
q+p∑

j=p+1

xjxj .

signed numbers Numbers that are either pos-
itive or negative are said to be signed or directed
numbers.

significant digits In a real number in decimal
form, the digits to the left of the decimal point
beginning with first non-zero digit, together with
the digits to the right of the decimal point ending
with the last non-zero digit.

sign-nonsingular matrix See sign pattern.

sign pattern The sign pattern of a real m×n

matrix A is the (0, 1,−1)–matrix obtained from
A when zero, positive, and negative entries are
replaced by 0, 1, −1, respectively. Thus, A de-
termines a (qualitative) class of matrices, Q(A),
consisting of all matrices with the same sign pat-
tern as A.

Sign patterns are one of the objects of study in
combinatorial matrix analysis, concerned with
the study of properties of matrices that are de-
termined from its combinatorial structure (such
as the directed graph) and other qualitative in-
formation. For example, A is called an L-matrix
provided that every matrix in Q(A) has linearly
independent rows. The sign pattern1 1 1 −1

1 1 −1 1
1 −1 1 1


is an example of an L-matrix. Such matrices first
arose in the study of sign-solvable systems in
economics models. A sign-nonsingular matrix
A is a square L-matrix; that is, every matrix in
Q(A) is nonsingular.

similar (1) (Similar figures) Geometric fig-
ures such that the ratio of the distance between
pairs of points in one figure and the distance be-
tween the corresponding pairs of points in an-
other figure is constant for every pair of points in
the first figure and corresponding pair of points
in the second figure.

(2) (Similar terms) Terms in an expression
which have the same unknowns and each un-
known is raised to the same power in each term.
For example, in the expression 5x2y3 + 8x3 +
3y3+7x2y3, 5x2y3 and 7x2y3 are similar terms.

(3) (Similar triangles) Triangles which have
proportional corresponding sides.

similar decimals Numbers that have the same
number of decimal places are said to be similar.
For example, 6.003, 2.232, and 100.000 are all
similar decimals.

similar fractions Simple fractions in which
the denominators are equal. See simple fraction,
denominator.
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similar isomorphism An isomorphism be-
tween two ordered fields, under which positive
elements are mapped to positive elements.

similar matrices Two square matrices A and
B such that A = P−1BP for some nonsingular
matrix P . See nonsingular matrix.

similar permutation representations Two
permutation representations, such that there ex-
ists a G-bijection between the corresponding G-
sets, where G is a group. Let SM be the group
of all permutations of a set M . A permutation
representation of a group G in M is a homo-
morphism G → SM . In general, if the product
ax ∈ M of a ∈ G and x ∈ M is defined and sat-
isfies (ab)x = a(bx), 1x = x, for all a, b ∈ G

and for all x ∈ M , with the identity element 1,
then G is said to operate on M from the left and
M is called a left G-set. We call a left G-set a
G-set. A mapping f : M → M ′ of G-sets is
called a G-mapping if f (ax) = af (x) for any
a ∈ G and x ∈ M . G-injection, G-surjection,
G-bijection are defined naturally.

similar terms See like terms.

simple Abelian variety A commutative al-
gebraic group without Abelian subvarieties (ex-
cept itself and its zero element). See algebraic
group, Abelian subvariety.

simple algebra An algebra A such that the
ring A is both a simple ring and a semisimple
ring.

simple co-algebra A co-algebra which has
no nontrival proper subco-algebras. See coalge-
bra.

simple component (1) Suppose R is a ring
written as R = R1⊗· · ·⊗Rn where R1, . . . , Rn

are ideals satisfying the condition that if Ri =
R′i⊗R′′i , where R′i and R′′i are ideals, then either
R′i = 0 or R′′i = 0. Then the ideals R1, . . . , Rn

are called the simple components of R.
(2) Suppose P is a polynomial in n variables

over a field F . Write P = ∏n
i=1 P

αi

i where the
Pi are the distinct, irreducible (over F ) factors
of P . Pj is called a simple component of P if
αj = 1.

simple extension An extensionE of a fieldF

such that E = F(x), for some element x ∈ E,
where F(x) denotes the subfield of E over F ,
generated by x. See also extension, subfield.

simple fraction A fraction a
b

, in which both
a and b are integers, and b �= 0. Also known as
a common fraction.

simple group A group that has no normal
subgroup other than itself and its identity {e}.

simple Lie algebra A Lie algebra whose only
ideals are itself and the zero ideal.

simple Lie group A Lie group whose only
proper Lie subgroup is the trivial subgroup.

simple module A module M , with more than
one element, whose only submodules are itself
and the zero submodule.

simple point A point of an irreducible variety
V of dimension d over a field K such that

( ∂fi
∂x′j

)
is of rank n− d, where f1(x0, x1, . . . , xn) = 0,
f2(x0, x1, . . . , xn) = 0, . . . , fr(x0, x1, . . . , xn)

= 0 form a basis for equations of V .

simple ring A ring R with more than one
element whose only ideals are itself and the zero
ideal.

simple root A root of an equation that is
not repeated, i.e., a root of multiplicity 1. See
multiplicity of root.

simplest alternating polynomial The poly-
nomial p(X1, . . . , Xn) = (X2−X1)(X3−X2)

. . . (Xn −Xn−1). See alternating polynomial.

simplex (1) In geometry, the convex hull of
an affine independent set of points, the vertices
of the simplex.

(2) In topology, a homeomorphic image of a
geometric simplex (as in (1)).

simplex method A method for optimizing a
basic feasible solution of a primary linear pro-
gramming problem in a finite number of itera-
tions. Let I be the set of basic variables and J be
the set of non-basic variables. Let x be a basic
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feasible solution of a primary linear program-
ming problem, and write x in the basic form:

xi +
∑
j∈J

dij xj = gi (i ∈ I )

z+
∑
j∈J

fjxj = v .

If, for all j ∈ J , fj ≥ 0, then x, given by

xT =
{
gT if T ∈ I

0 if T ∈ J
,

is an optimal solution. If there is a j ∈ J such
that fj < 0, then let ri∗ = min gi

dij
, where the

minimum is taken over all i ∈ I such that dij >

0. Then, replace i∗ in I with j , obtaining a new
basis. Rewrite the basic feasible solution into a
(new) basic form, and repeat the procedure.

simplex tableau See simplex method.

simplification of an expression Changing
the form of an expression (but not the content)
with the purpose of either making the expression
more concise or readying the expression for the
next step in a method or proof or solution.

simply connected covering Lie group The
simply connected Lie group G0, among those
Lie groups G which have g as their Lie algebra,
where g is a finite-dimensional Lie algebra over
R. Such G0 is unique up to isomorphism.

simply connected group A set G which has
the structure of a topological group (making the
group operation continuous) and which is sim-
ply connected.

simultaneous equations Any system of two
or more equations that must both/all be satisfied
by the same solutions. For example,{

y = 3x + 5
y = 2x + 6

constitutes a system of two simultaneous equa-
tions satisfied by x = 1, y = 8;{

y = x − 1
y = 3x − 3

is a system of simultaneous equations with no
solution.

simultaneous inequalities Any system of
two or more inequalities that must both/all be
satisfied by the same solutions. For example,{

y2 + x2 ≤ 1
y ≥ 0

are simultaneous inequalities satisfied by the up-
per half of the unit circle.

sine function One of the fundamental trigono-
metric functions, denoted sin x. It is (i.) peri-
odic, satisfying sin(x+2π) = sin x; (ii.) bound-
ed, satisfying −1 ≤ sin x ≤ 1, for all real
x; and (iii.) intimately related with the cosine
function, cos x, satisfying sinx = cos(π2 − x),
sin2 x + cos2 x = 1, and many others. It is re-
lated to the exponential function via the identity

sin x = eix−e−ix

2i (i = √−1), and has series
expansion

sin x = x − x3

3! +
x5

5! −
x7

7! + · · ·
valid for all real values of x.

See also sine of angle.

sine of angle Written sin α, the y-coordinate
of the point where the terminal ray of the angle
α whose initial ray lies along the positive x-axis
intersects the unit circle. If 0 < α < π

2 (α in
radians) so that the angle is one of the angles
in a right triangle with adjacent side a, opposite
side b, and hypotenuse c, then sin α = b

c
.

single step method for solving linear equa-
tions See Gauss-Seidel method for solving
linear equations.

single-valued function A relation (a set R
of pairs (x, y), x from a set X, and y from a
set Y ) such that (x, y1), (x, y2) ∈ R implies
y1 = y2. Thus, the function f : X → Y defined
by f (x) = y if (x, y) ∈ R assigns only one y

to a given x.
Indeed, every function has the above prop-

erty. However, it is occasionally necessary to
include multiple-valued “functions” (such as in-
verses of functions) in function theory and the
term single-valued is required for emphasis.
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singular locus The subvariety of an irre-
ducible variety V of dimension d over a field
K consisting of all points V which are not sim-
ple points.

singular matrix An n × n, non-invertible
matrix. A square matrixA is singular if and only
if its null space contains at least one nonzero
vector. Equivalently, A is singular if and only
if detA = 0 or if and only if at least one of its
eigenvalues is 0.

singular point A point at which a function
ceases to be regular, even though the function
remains regular at the points near the singular
point. See regular function. The term is often
used with “regular” replaced by “differentiable,”
“n times differentiable,” “C∞,” etc.

singular value decomposition Let A be an
n × n real normal matrix. A singular value
decomposition of A is the representation A =
USU∗, where U is a unitary matrix, U∗ is the
adjoint ofU , and S is a diagonal matrix of which
the diagonal entries are the singular values of A.

singular values of a matrix Eigenvalues of
a matrix A; i.e., the values of λ such that λI −A

is singular. See eigenvalue.

skew field A skew field F is a ring in which
the non-zero elements form a multiplicative
group.

skew-Hermitian matrix A matrixA of com-
plex elements (necessarily square) such that ĀT

= −A; i.e., the conjugate of its transpose is
equal to its negation. Also called anti-Hermitian.

skew-symmetric matrix A matrix A (nec-
essarily square) such that AT = −A, that is, its
transpose is equal to its negation. Also called
antisymmetric.

slack variable The linear inequality a1x1 +
a2x2 + · · · + anxn ≤ b may be converted to a
linear equality by adding a nonnegative variable
z, called a slack variable. Namely, a1x1+a2x2+
· · · + anxn ≤ b becomes a1x1 + a2x2 + · · · +
anxn + z = b. See also linear programming.

Slater’s constraint qualification The gen-
eral nonlinear programming problem is the fol-
lowing: let X0 be a connected closed set and let
θ, g = (g1, . . . , gm) be real-valued functions
defined on X0. Determine the set of x ∈ X0

which minimizes (or maximizes) θ , subject to
given constraints. If X0 is convex and gi are
convex, then the convex vector function g is
said to satisfy Slater’s constrait qualification on
C0 provided there exists an x ∈ X0 such that
gi(x) < 0, for all i.

slope-intercept form An equation of a line
in the plane of the form y = mx + b, where m

is the slope of the line and b is its intercept on
the y-axis. Example: y = 3x − 2 is a line with
a slope of 3 and a y-intercept of −2 (y = −2,
when x = 0).

small category If the objects of a category
form a set, then the category is called a small
category or a diagram scheme.

small category If the objects of a category
form a set, then the category is called a small
category or a diagram scheme.

smooth affine variety Let k be a field and
X ⊆ kn. We call X a variety if it is the common
zero set of a collection of polynomials. The va-
riety is said to be smooth at a point x ∈ X if the
collection of polynomials has non-degenerate
Jacobian at x.

smooth affine variety Let k be a field and
X ⊆ kn. We call X a variety if it is the common
zero set of a collection of polynomials. The va-
riety is said to be smooth at a point x ∈ X if the
collection of polynomials has non-degenerate
Jacobian at x.

Snapper polynomial Let X be a k-complete
scheme, F be a coherent OX-module, and L

be an invertible sheaf. The Snapper polynomial
is the polynomial in m given by χ(F ⊗ L⊗m),
where χ(F ) =∑

q(−1)q dim Hq(X, F ).

solution Anything that satisfies a given set
of constraints is called a solution to that set of
constraints. A number may be a solution to an
equation or a problem. A function may be a
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solution to a differential equation. A region on
a plane that satisfies a set of inequalities is a
solution of that set of inequalities.

solution by radicals Any method of solving
equations using arithmetic operations (including
nth roots). For instance, the quadratic formula
is a well-known method of solving second order
equations. See quadratic formula. Some equa-
tions of fifth order and higher cannot be solved
by radicals.

solution of an equation (1) For an equation
F(x1, . . . , xn) = 0, with unknowns x1, . . . , xn
in some set S, any n-tuple of numbers (a1, . . . ,

an), ai ∈ S satisfying F(a1, . . . , an) = 0.
(2) For a functional equation F(x, y) = 0

with unknown function y, any function f (x)

such that F(x, f (x)) = 0.
(3) For a differential equation

F
(
t, x, x′, . . . , x(n)

)
= 0 ,

where x(m) = dmx
dtm

, any n times differentiable
function f (t) such that

F
(
t, f (t), f ′(t), . . . , f (n)(t)

)
= 0 .

Many other types of equations are possible,
including differential equations with values of
the function and certain derivatives specified at
certain points.

solution of an inequality For an inequality
F(x1, . . . , xn) ≥ 0, with unknowns x1, . . . , xn
in some ordered set S, any n-tuple of numbers
(a1, . . . , an), ai ∈ S satisfying F(a1, . . . , an)

≥ 0. For instance, the region beneath the line
y = x + 2 contains solutions to the inequality
y − x < 2.

solution of oblique spherical triangle A
spherical triangle is formed by the intersection
of the arcs of three great circles on the surface of
a sphere. A spherical triangle has six parts, the
three angles α, β, and γ , and three sides AC,
AB, and BC. The angle α is specified by the
dihedral angle between the plane containing the
arc AB and the plane containing the arc AC,
and similarly for β and γ . An oblique spherical
triangle is one in which none of the three an-
gles is a right angle, and solving such a triangle

consists of using three given parts (for exam-
ple, the two sides and the included angle) to find
the remaining parts. See also solution of right
spherical triangle.

solution of plane triangle A plane triangle
has six principal parts: three angles and three
sides. Given any three of these parts, which
are sufficient to determine the triangle (e.g., two
sides and the included angle), the solution of the
triangle consists of determining the remaining
three parts.

solution of right spherical triangle A spher-
ical triangle is formed by the intersection of the
arcs of three great circles on the surface of a
sphere. A spherical triangle has six parts, the
three angles α, β, and γ , and three sides AC,
AB, and BC. The angle α is specified by the
dihedral angle between the plane containing the
arc AB and the plane containing the arc AC,
and similarly for β and γ . If one (or more) of
the angles is a right angle, the triangle is called
a right spherical triangle. Note that in contrast
to a plane triangle, a spherical triangle may have
one, two, or three right angles. The solution of
a right spherical triangle consists of finding all
the parts of the triangle, given the right angle
and any two other elements. The many possi-
ble cases which can occur were all summarized
in two formulas discovered by J. Napier (1550-
1617), known as Napier’s rules.

solvable algebra Given an algebra A, define
the sequence of algebras A(1), A(2), A(3), . . . ,
by A(1) = A, A(i+1) = (A(i))2, i = 1, 2, 3 . . . ,
where (A(i))2 denotes the span of squares of
elements of A(i). Then A is solvable if A(j) = 0
for some j .

solvable by radicals From antiquity, it has
been known that the quadratic equation ax2 +
bx + c = 0 has solutions

x = −b ±√b2 − 4ac

2a
.

In the Renaissance, analogous formulas for the
solution of general cubic and quartic equations
involving arithmetic combinations of the coef-
ficients of the polynomial and their roots were
discovered, and in the nineteenth century it was
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proved that no such formula exists for the roots
of general polynomials of degree five or higher.
In general one says that a polynomial p(x), with
coefficients in a field F (with characteristic 0) is
solvable by radicals if there exists an algorithm
for computing the roots of p(x) which consists
only of performing the field operations on the
coefficients of p, together with extracting roots
of such expressions. Since taking roots may take
one to an extension field of F , a more precise
formulation would say that there exists a radical
extension of F which contains a splitting field
of p(x). See also Cardano’s formula.

solvable group Given a group G, a nor-
mal series is a finite set of subgroups, {Nj }nj=1,
which satisfy: (i.) {e} = Nn ⊂ Nn−1 ⊂ · · · ⊂
N2 ⊂ N1 = G, where e is the identity element
in G. (ii.) Nj+1 is a normal subgroup of Nj

for j = 1 . . . n− 1. G is solvable if there exists
a normal series {Nj }nj=1 for which each of the
groups Nj/Nj+1 is Abelian.

solvable ideal An ideal in which the derived
series becomes zero.

solvable ideal An ideal in which the derived
series becomes zero.

solvable Lie group A Lie group G, which,
ignoring its Lie group structure and considering
it only as an abstract group, is solvable. See
solvable group.

solving a triangle The act of using the size
of certain sides and angles of a triangle to deter-
mine the remaining sides and angles. See also
solution of oblique spherical triangle, solution
of plane triangle, solution of right spherical tri-
angle.

space (1) A set of objects, usually called
points. Often equipped with some additional
structure, e.g., a topological space, if equipped
with a topology, or a metric space, if equipped
with a metric.

(2) The unbounded three-dimensional region
R3 in which all physical objects exist.

space coordinates A set of three numbers
sufficient to specify uniquely the location of a

point in space, according to some convention
to establish such location. Examples of such
coordinates are Cartesian coordinates, spheri-
cal coordinates, or cylindrical coordinates. Note
that while the coordinates must specify a unique
point in space, a given point in space may be
represented by several (or even infinitely many)
different sets of coordinates.

space curve A one-dimensional variety in
three-dimensional projective space.

space group A discrete subgroup G of the Eu-
clidean group, for which the subgroup of trans-
lations in G forms a three-dimensional lattice
group. Synonyms are crystallographic group
and crystallographic space group. See also lat-
tice group.

span of vectors The span of the vectorsx1, x2,

. . . , xk in a vector space V over a field F , is
the set X of all possible linear combinations of
x1, x2, . . . , xk . If x1, x2, . . . , xk are linearly in-
dependent vectors, then they constitute a basis
for their span, X.

spatial ∗-isomorphism Suppose that Hi is
a Hilbert space and that Mi is a von Neumann
algebra contained in the set of bounded linear
operators on Hi , for i = 1, 2, and consider a
∗-isomorphism π : M1 → M2. If there exists
a bijective isometric linear mapping U : H1 →
H2 such that UAU∗ = πA, for each A in M1
(with U∗ denoting the adjoint of U ), then π is
called spatial.

spatial tensor product The C∗-algebra re-
sulting when the algebraic tensor product of two
C∗ algebras A and B is equipped with the spa-
tial, or minimal, C∗ cross-norm,

‖x‖min = sup
ρ,η
‖(ρ ⊗ η)(x)‖

where x ∈ A⊗B, and the supremum runs over
all ∗-representations of A and B. There may
be more than one norm on the algebraic tensor
product A ⊗ B whose completion gives a C∗-
algebra.

special Clifford group If R is a ring with
identity, M a free R-module, and Q a quadratic
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form, define the Clifford algebra C(Q) as the
quotient algebra T (M)/I(M) where T (M) =
R ⊕ T 1M ⊕ T 2M ⊕ . . . , T jM is the j -fold
tensor product of M with itself, and I(M) is
the ideal generated by all elements of the form
x ⊗ x −Q(x)1. Define C+(Q) to be the sub-
algebra of C(Q) generated by an even number
of elements of M . The special Clifford group
G+(Q) consists of the set of invertible elements
g ∈ C+(Q) for which gMg−1 = g.

special divisor (1) A positive divisor a of a
nonsingular, complete, irreducible curve C such
that the specialty index of a is positive.

(2) A divisor D on an algebraic function field
F in one variable such that the specialty index
of D is positive.

See positive divisor, specialty index.

specialization (1) Suppose that D and E are
extension fields of a field F , and denote by Dn

and En the n-dimensional affine spaces over D
and E, respectively. Suppose that x is a point
of Dn and that y is a point of En. If every
polynomialp with coefficients inF that satisfies
p(x) = 0 also satisfies p(y) = 0, then y is
called a specialization of x over F .

(2) Suppose that S is a scheme, that s and t

are geometric points of S, and that t is defined
by an algebraic closure of the residue field of a
point of the spectrum of the strict localization of
S at s. Then s is called a specialization of t .

special Jordan algebra Let A be an associa-
tive algebra over a field F of characteristic not
equal to 2. Let A+ be the commutative algebra
obtained by defining a new multiplication via
x ∗ y = 1

2 (xy + yx). A special Jordan algebra
J is a commutative algebra satisfying the Jordan
identity

(xy)x2 = x
(
yx2

)
for every x, y in J , which is isomorphic to a
subalgebra of A+ for some A.

special linear group The multiplicative
group of n×n matrices with determinant 1. The
notation SL(n) is used.

special orthogonal group The multiplicative
group of n×n matrices M , with real entries and

determinant 1, such that the transpose of M is
equal to M−1. The notation SO(n) is used.

special representation If J is a Jordan alge-
bra, A an associative algebra, and A+ the com-
mutative algebra obtained from A, by defining
a new multiplication via x ∗ y = 1

2 (xy + yx), a
special representation of J is a homomorphism
ρ : J → A+.

specialty index (1) Of a divisor a of a nonsin-
gular complete irreducible curve C, the number
d−n+g, where d is the dimension of the com-
plete linear system determined by a, n is the
degree of a, and g is the genus of C.

(2) Of a divisor D of an algebraic function
fieldF in one variable, the number d−n+g−1,
where D has dimension d and degree n, and F

has genus g.
(3) Of a curve D on a nonsingular surface S,

the dimension of H 2(S,O(D)), where O(D) is
the sheaf of germs of holomorphic cross-sections
of D.

special unitary group The multiplicative
group of n × n matrices M such that the in-
verse M−1 is equal to the adjoint of M and the
determinant of M is 1. The notation SU(n) is
used.

special universal enveloping algebra Given
a Jordan algebraJ , its special universal envelop-
ing algebra is a pair (U, ρ) where U is an as-
sociative algebra, and ρ : J → U+ is a special
representation of J with the property that for any
other special representation ρ̃ of J , there exists
a homomorphism h, such that ρ̃ = hρ.

special valuation A valuation v of a field
such that the rank of v is 1. Also called expo-
nential valuation. See rank of valuation.

spectral radius For a square (n× n) matrix
A, the real number

ρ(A) = max{|λ| : λ an eigenvalue of A} .
More generally, given a normed vector space X

and a linear operator T : X → X, the spectral
radius of T coincides with

lim
k→∞

∥∥∥T k
∥∥∥1/k

.
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This limit is independent of the choice of the
norm ‖ · ‖.
spectral sequence A sequence M =
{Mk, dk}, in which each Mk , k = 2, 3, 4, . . .
is a Z-bigraded module and each dk is a dif-
ferential of bidegree (−r, r − 1) mapping Mk

p,q

to Mk
p−r,q+r−1. Furthermore, one requires that

H(Mk, dk) ∼= Mk+1, where H(Mk, dk) is the
homology of Mk with respect to the differen-
tial dk . An equivalent definition is obtained
by considering an exact couple {D,E, α, β, γ }
of Z-bigraded modules D and E, where the
map α has degree (1,−1), β has degree (0, 0),
and γ has degree (−1, 0). One then asso-
ciates to this exact couple a derived exact cou-
ple {D′, E′, α′, β ′, γ ′} in such a way that the
differential object (E, d) (where d = β ◦ γ )
naturally associated to {D,E, α, β, γ }, satisfies
H(E, d) = E′. Iterating the construction of
the derived exact couple then yields a spectral
sequence isomorphic to that defined above.

spectral sequence functor A map from the
category of exact couples to the category of
spectral sequences, which to an exact couple
{D,E, α, β, γ }, assigns a derived exact cou-
ple {D′, E′, α′, β ′, γ ′} in such a way that the
differential object (E, d) (where d = β ◦ γ )
naturally associated to {D,E, α, β, γ }, satisfies
H(E, d) = E′. (Here, H(E, d) is the homol-
ogy of E with respect to the differential d.) Iter-
ating the construction of the derived exact cou-
ple then yields a spectral sequence which is the
image of {D,E, α, β, γ }, under the spectral se-
quence functor.

spectral synthesis If I is a closed ideal in the
L1-algebra of an Abelian group, then the prob-
lem of determining whether I is characterized
by the set of common zeros of the Fourier trans-
forms of elements of I is called the problem of
spectral synthesis.

Spectral Theorem Let A be a Hermitian op-
erator on a Hilbert space H . Then there exists a
unique, compact, complex spectral measure E

such that A = ∫
λ dE(λ).

spectrum (1) Let L be a linear operator on
a Banach space X. The spectrum of L is the

complement of the set of complex numbers λ

for which the operator (L− λI)−1 is bounded.
In the case in which L is an n × n matrix, the
spectrum is equal to the set of eigenvalues of L.

(2) Let x be an element of a commutative Ba-
nach algebra A, with identity e. The spectrum
of x is the set of complex numbers λ such that
x − λe fails to have an inverse in A.

spherical excess The amount by which the
sum of the three angles in a spherical triangle
exceeds 180◦.

spherical Fourier transform LetGbe a con-
nected Lie group, and K a compact subgroup.
Let f be a continuous function on G, which is
bi-invariant under K , by which one means that
f (g) = f (kgk′), for every point g in G and
every pair of points k and k′ in K , and let dg
be a left invariant measure on G. The spherical
Fourier transform of f is

f̂ (φ) =
∫
G

f (g)φ(g−1)dg ,

where φ runs over the set of all positive defi-
nite spherical functions on G. One recovers the
classical Fourier transform if one takesG = Rn,
K = {0}, and dg equal to Lebesgue measure.

spherical function (1) Two linearly inde-
pendent solutions, Pm,n(z) and Qm,n(z) of the
ordinary differential equation(

1− z2
) d2y

dz2
− 2z

dy

dz

+
(
n(n+ 1)− m2

1− z2

)
y = 0

for n a positive integer, and m an integer be-
tween−n andn. Their name arises because they
are commonly encountered when applying the
method of separation of variables to Laplace’s
equation in spherical coordinates. These func-
tions, particularly when the range of m and n is
extended to include arbitrary complex values,
are also known as associated Legendre func-
tions.

(2) Let G be a connected Lie group, and K

a compact subgroup. A spherical function is a
continuous function φ, on G, with the following
properties:
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(i.) φ is bi-invariant under K , by which one
means that φ(g) = φ(kgk′), for every point g
in G and every pair of points k and k′ in K .

(ii.) φ is normalized so that φ(e) = 1, where
e is the identity element of G

(iii.) φ is an eigenfunction of every differ-
ential operator D which is invariant under the
action of G, and also invariant under right trans-
lations of K .

Note that the classical spherical functions de-
fined in (1) result from taking G = SO(3), and
K = SO(2), while for G = Rn, and K = {0},
the spherical functions are complex exponen-
tials. See also spherical Fourier transform.

spherical representation (1) Let γ be a
closed curve in three-dimensional Euclidean
space, E. Fix an origin, 0, and to each point
p on γ , associate the point p′ on the unit sphere
in E such that the ray 0p′ is the translate of the
unit tangent vector to γ at p. Let γ ′ be the curve
on the unit sphere traced out by p′ as p varies
over γ . Then γ ′ is the spherical representation
of γ .

(2) Let G be a connected Lie group, and K

a compact subgroup of G. A unitary represen-
tation U of G acting on a Hilbert space, H, is a
spherical representation of G with respect to K

if there exists a nonzero vector v in H such that
U(k)v = v, for every k in K . See also spherical
function.

spherical triangle A geometrical figure on
a sphere whose three sides are arcs of great cir-
cles. See also solution of right spherical triangle,
solution of oblique spherical triangle.

spherical trigonometry The study of the
properties and measurement of spherical trian-
gles. See also solution of right spherical trian-
gle, solution of oblique spherical triangle.

spinor Any element of the spin representa-
tion space of the group Spin(n,C). See spin
representation.

spinor group Let C(Q) be the Clifford alge-
bra obtained from a vector space V , with field
of scalars, F , and inner product defined by the
quadratic form Q. The spinor group Spin(Q) is
the group of invertible elements of C(Q) which

can be written as a product of an even number
of vectors vj ∈ V , with each vj of norm 1. If
V is Rn or Cn, with the usual inner product,
the spinor groups are denoted by Spin(n,R), or
Spin(n,C), respectively.

spinorial norm Let G+(Q) be the special
Clifford group obtained from a vector space V ,
with field of scalars, and quadratic form Q. See
special Clifford group. Letβ be the principal an-
tiautomorphism (on the Clifford algebra C(Q)),
defined by β(v1, v2 . . . vn) = vnvn−1 . . . v1, for
every v1, . . . , vn in V . Then the map n : G+ →
F , defined by n(g) = β(g) · g, for every g in
G+ is called the spinorial norm on C+.

spin representation A linear representation
of the spinor group Spin(n,C). See spinor group.
Ifn is odd, this is a faithful, irreducible represen-
tation of degree 2(n−1)/2. If n is even, the spin
representation can be decomposed into a pair of
inequivalent, irreducible representations, each
of degree 2

n
2−1. In this case, the two irreducible

representations are referred to as half-spinor rep-
resentations.

split extension Suppose that G, H , and K

are groups, that 1 denotes the trivial group, and
that

1 → G
β→ H

α→ K → 1

is a short exact sequence. If there is a group
homomorphism γ : K → H such that α ◦ γ is
the identity mapping on H , then H is called a
split extension of G by K . See also Ext group.

splitting field (1) LetF be a field,E an exten-
sion field of F , and f a polynomial of positive
degree and having all coefficients in F . If F

contains all the roots of f , and E is generated
over F by the roots of f , then E is called a split-
ting field of f over F . One says that f splits
into linear factors over E.

(2) Suppose that P is a set of polynomials,
each of positive degree and having all coeffi-
cients in F . If F contains all the roots of each
polynomial in P , and E is generated over F by
the roots of all the polynomials in P , then E is
called a splitting field of P over F .

(3) Suppose thatF is a field, andA an algebra
over F . If every irreducible representation of A
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over F is absolutely irreducible, then F is called
a splitting field for A.

(4) Suppose that F is a field, and G a group.
IfF is a splitting field for the group ringF [G], in
the sense of (3) above, thenF is called a splitting
field for G.

(5) Suppose that A is a division algebra over
a field F such that the center of A equals A, and
that E is an extension field of F . If E effects
a complete decomposition of A into simple left
ideals so that A × F is isomorphic, for some
positive integer i, to the ring of i × i matrices
with elements in A, then E is called a splitting
field of A over F . The number i is called the
index of A.

(6) Suppose that F is a field, and denote by
G the multiplicative group of nonzero elements
in a universal domain that contains F . If an
algebraic torus defined over F is isomorphic to
the direct product Gn over an extension field E

of F , then E is called a splitting field for the
torus.

splitting ring Suppose that R is a commuta-
tive ring, A an R-algebra, and S a commutative
R-algebra. If there is some finitely generated
faithful projective R-module P such that the S-
algebra S ⊗ A is isomorphic to the ring of en-
domorphisms of P over S, then S is called a
splitting ring of A.

square (1) A geometrical figure with four
sides of equal length which meet at right angles.

(2) To multiply a number by itself.

square integrable representation Suppose
that U is an irreducible unitary representation
of a unimodular locally compact group G. De-
note by dg the Haar measure of G. Suppose
that, for some nonzero element x of the repre-
sentation space of U , the function ϕ defined by
ϕ(g) = (Ugx, x) belongs to L2(G, dg). Then
U is called square integrable.

square matrix A matrix (rectangular array
a11 a12 . . . a1n
a21 a22 . . . a2n

· · · · · ·
am1 am2 . . . amn



of real or complex numbers) in which the num-
ber of rows equals the number of columns; m =
n.

square root The square root of a number a is
a number which, when multiplied by itself, gives

a, denoted
√
a or a

1
2 . For example, a square root

of 4 is 2 since 2 × 2 is 4. Note that a number
may have more than one square root. In the
present case, −2 is also a square root of 4 since
(−2) × (−2) is also equal to 4. However, no
number may have more than two distinct square
roots.

stabilizer If G is a group that acts on a set S
and x is an element of S, then the stabilizer of
x is the subgroup {g ∈ G : gx = x} of G.

stabilizer The subgroup of elements of a
group of permutations of a non-empty set, under
which the image of a given subset is itself.

stable matrix Most commonly, an n×n ma-
trix A with complex entries is called stable if
its eigenvalues lie in the open left half plane,
namely, if +λ < 0 for every eigenvalue λ of
A. Matrices whose eigenvalues lie in the open
right half plane are usually called positive sta-
ble. However, stability of a matrix appears in
the literature with respect to a variety of regions
of the complex plane. For example, a matrix
whose eigenvalues lie in the open unit circle is
sometimes referred to as Schur-stable.

stable reduction (1) Suppose that E is an
elliptic curve defined over a field F , complete
with respect to a discrete valuation. Then E is
said to have stable reduction over F if the re-
duced curve for a minimal Weierstrass equation
is nonsingular.

(2) Suppose thatR is a discrete valuation ring
with quotient fieldF , andA is an Abelian variety
over F . Denote by S the spectrum of R, and
denote by M the Néron minimal model of A.
Suppose that the connected component of the
fiber ofM over the closed point ofS that contains
0 has no unipotent radical. ThenA is said to have
stable reduction. See Neron minimal model.

(3) Suppose thatR is a discrete valuation ring
with quotient field F , and C is a smooth con-
nected curve over F . Then there is a finite sepa-
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rable algebraic extension field E of F such that
the curve C ×F E extends to a flat family of
stable curves over the spectrum of the integral
closure RE of R in E, and C ×F E is said to
have stable reduction in RE .

Stable Reduction Theorem IfR is a discrete
valuation ring with quotient field F , and A is
an Abelian variety over F , then A has potential
stable reduction at R. See stable reduction.

stable vector bundle A vector bundleE with
the property that for any proper subbundle E′ of
E, the inequality

rank(E) · degree(E′) < rank(E′) · degree(E)

holds.

standard complex Suppose that R is a com-
mutative ring, and that g is a Lie algebra over
R that is R-free. Denote by U the enveloping
algebra of g, and denote by

∧
R(g) the exterior

algebra of the R-module g. The U -free reso-
lution U ⊗∧

R(g) of R is called the standard
complex of g.

See enveloping algebra, exterior algebra.

standard form of difference equation If y
is a function from the integers to the real or com-
plex numbers, and 2 is the finite difference op-
erator defined by

(2y)(x) = y(x + 1)− y(x) ,

a difference equation is an equation relating y,
and its finite differences, i.e., an equation of the
form F(x, y,2y, . . . ,2ky) = 0. This stan-
dard form of this equation results by rewriting
it in such a way that the finite difference opera-
tor does not explicitly occur, i.e., by choosing T

so that the equation becomes G(x, y(x), y(x +
1), . . . , y(x + T)) = 0.

standard parabolic k-subgroup Suppose
that k is a field, and G is a connected reduc-
tive group defined over k. Suppose that S is a
maximal k-split torus, denote by Z the central-
izer of S in G, and by P a minimal parabolic
k-subgroup of G. Denote by r the set of all k-
roots of G with respect to S, choose an ordering
of r , and suppose that θ is a subset of the funda-
mental system of r with respect to that ordering.

Suppose that α is a linear combination of the
roots of r , in which all roots not in θ occur with
a nonnegative coefficient. Denote by ad the ad-
joint representation of g, and denote by Pα the
unipotent k-subgroup of G normalized by S so
that the Lie algebra of Pα is the set of all ele-
ments X in g such that ad(s)X = α(s) for all s
in S. Denote by Pθ the subgroup generated by Z

and Pα . Then Pθ is called a standard parabolic
k-subgroup of G that contains P .

standard position of angle An angle with its
vertex at the origin and its initial ray lying on the
positive x-axis. The magnitude of the angle is
then measured in a counter-clockwise direction
with respect to the side lying on the x-axis.

star of element (1) (Of an element A of a
complex 2) The set of all elements of 2 that
contain A.

(2) (Of an element x of a Banach algebra
B with involution ∗) The image of x under ∗
(denoted x∗).

state (1) A positive linear functional of norm
1 on a C∗-algebra.

(2) The state of a system of N particles in
classical mechanics is described by the instan-
taneous position and velocity of each of the par-
ticles. If these particles are moving in three-
dimensional Euclidean space, the state is then
described by a point in R6N . Given Newton’s
laws, the knowledge of the state of a system at
any given time allows one to predict its state
at any time in the future or past. These states
of the system are sometimes referred to as the
dynamical or microscopic state of the system.

In thermodynamics, the state of a system is
often specified by a much smaller number of
quantities, such as its density, volume, and tem-
perature. In this case the number of quantities
chosen to specify the state of the system are
the minimum needed to predict its macroscopic
properties, and these states correspond to a sta-
tistical average over a very great number of mi-
croscopic states of the system.

Steenrod algebra Suppose that p is a prime,
and denote by Zp the field of order p. Suppose
that q is a nonnegative integer, and denote by
Aq the Abelian group that consists of all stable
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cohomology operations of type (Zp,Zp) and of
degree q. The graded algebra

∑∞
q=0 Aq is called

the Steenrod algebra mod p.

Steinberg’s formula Suppose that G is a
compact, connected, semisimple, Lie group, and
that (ρ1, V1) and (ρ2, V2) are irreducible repre-
sentations of G. Denote by g the Lie algebra
of G, and choose a Cartan subalgebra h of g.
Decompose the tensor product mapping ρ1⊗ρ2
relative to h into a direct sum of irreducible con-
stituent representations. For each weight µ of
ρ1 ⊗ ρ2, denote by ρµ the irreducible represen-
tation of G that has µ as its highest weight, and
denote by m(µ) the multiplicity of ρµ in the de-
composition of ρ1⊗ρ2. Denote by h∗ the linear
space of all complex-valued forms on h, and de-
note by (hC)∗R the real linear subspace of h∗ that
is spanned by the roots of g relative to h. De-
note by W the Weyl group of g relative to h, by
P(µ) the number of ways in which an integral
form µ in (hC)∗R may be expressed as a sum of
positive roots of g relative to h, and by I1 and
I2 the highest weights of the representations of
the differentials dρ1 and dρ2 of the complexifi-
cation gC over V1 and V2, respectively. Denote
by s the sum of the positive roots of g relative
to h. For w and w′ in W , put

a(w) = w (I1 + δ)+ w′ (I2 + δ)

and put b = µ+ s. Then, if ρi = ρIi
for i = 1

and 2,

m(µ) =
∑
w∈W

∑
w′∈W

det(ww′)P (a(w)− b) .

See Weyl group, highest weight.

Steinberg type group A connected, semisim-
ple, algebraic group G, defined over a field F ,
such that G has a maximal, connected, solvable,
closed subgroup defined over F .

stereographic projection A particular meth-
od of associating to each point on a sphere a
point in the plane. Let N be the north pole of
the sphere, and W the equatorial plane. Through
each point, p, of the sphere, draw the line pass-
ing through N . The stereographic projection of
p is the point q at which this line passes through
W. Note that this is a one-to-one (and hence in-
vertible) mapping of the sphere minus the north

pole onto the plane. This mapping is often used
in complex analysis since in addition to being
invertible, it is conformal. The plane W is some-
times chosen to be the plane tangent to the south
pole, rather than the equatorial plane.

Using the inverse of this mapping, the plane
can be thought of as embedded in the (Riemann)
sphere.

Stiefel-Whitney class Let ξ be a q-sphere
bundle with base space B, and let Uξ ∈ Hq+1

(Eξ , Ėξ ;Z2) be its orientation class over Z2.
The ith Stiefel-Whitney classwi(ξ) ∈ Hi(B;Z2)

for i ≥ 0 is defined by

N∗ξ (wi(ξ)) = Sqi (Uξ ) .

Stiemke Theorem Suppose thatA is anm×n

real matrix. Then either
(i.) there is a vector x in Rn such that Ax = 0
and each coordinate of x is positive, or
(ii.) there is a vector u in Rm such that each
coordinate of uT A is nonnegative.

stochastic programming The theory, meth-
ods and techniques of incorporating stochastic
information into mathematical programming.
Typically, one wishes to optimize one or more
functions subject to some set of constraints. In
classical mathematical programming, it is as-
sumed that both the function to be maximized,
and the constraint functions are known with cer-
tainty. In stochastic programming, any of these
functions may vary randomly.

Stoker multiplier A concept from the theory
of water waves.

Stokes multiplier With respect to a given
formal fundamental solution Ŷ of

Ŷ (x) = Ĥ (x)×T eQ(x) ,

the Stokes multiplier (or Stokes matrix) Sα ∈
GL(n,C) corresponding to the singular line α

of 2 at 0 is defined by Yα− = Yα+ + Sα on α.

Stone space The space of all uniform ultra-
filters on ω with the natural topology. Equiva-
lently, the remainder βω \ ω in the Cech-Stone
compactification of the integers. This construc-
tion is denoted St(P(ω)/fin), where P(ω)/fin
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is the power set of ω modulo the ideal of finite
sets.

strict Albanese variety Suppose that V is an
irreducible variety, A is an Abelian variety, and
f : V → A is a morphism such that
(i.) the image of f generates A, and
(ii.) for every Abelian variety B and every mor-
phism g : V → B, there is a homomorphism
h : A → B and a point b of B such that
g = h ◦ f + b.

Then the pair (A, f ) is called a strict Al-
banese variety of V .

strict localization Suppose thatS is a scheme,
and s is a geometric point of S. The stalk of the
sheaf of étale neighborhoods of s is called the
strict localization of S at s.

stronger equivalence relation Suppose that
R and R̃ are equivalence relations on a set S.
Suppose that for all elements s and t of S, if sRt

holds, then sR̃t holds. Then R is called stronger
than R̃.

Strong Lefschetz Theorem Suppose that V
is a projective nonsingular irreducible variety of
dimension n, defined over the complex field C,
and suppose that V is embedded in the complex
projective space PN for some N . Suppose that
W0 and W∞ are elements of a Lefschetz pencil
obtained from a generic linear pencil of hyper-
planes in PN . Suppose that Ṽ is a smooth variety
and π : Ṽ → P1 is a surjective morphism ob-
tained from blowing up V at W0 ∩W∞. Denote
by Q the ring of rational numbers, by c the co-
homology class of H 2(V ,Q) that corresponds
to the hyperplane section π−1(0), and by h the
homomorphism fromH ∗(V ,Q) toH ∗+2(V ,Q)

that is defined by the cup product with c. Then,
for each i ≤ n, the homomorphism Ln−1 :
Hi(V,Q)→ H 2n−1(V ,Q) is an isomorphism.

See Lefschetz pencil, blowing up.

strongly closed subgroup A subgroup H of
a finite group G such that g−1Hg ∩ N(H) is a
subgroup of H for each g in G, where N(H) is
the normalizer of H in G.

strongly continuous homomorphism Sup-
pose thatG is a topological group, H is a Hilbert

space with at least two elements, and U is a
homomorphism of G into the group of unitary
operators on H . For each g in G, denote by Ug

the unitary operator U(g) on H that is associ-
ated withU . Consider the mapping σ : G→ H

defined by σ(g) = Ug(x). If σ is a continuous
mapping, then U is called strongly continuous.

strongly embedded subgroup A proper sub-
group H of a finite group G such that H is of
even order and H ∩ g−1Hg is of odd order for
every g in G\H .

strongly normal extension field Suppose
that U is a universal differential field of charac-
teristic zero, and denote by K the field of con-
stants of U . Suppose that F is a differential sub-
field of U such that U is universal over F , and
E is a finitely generated differential extension
field of F . Denote by C the field of constants
of E. Suppose that every isomorphism σ of E

over F satisfies the following conditions:
(i.) σ leaves invariant every element of C;
(ii.) each element of σE is an element of EK;
and
(iii.) each element of E is an element of σE ·K .

Then E is called a strongly normal extension
field of F .

strong minimality The property of a com-
plete, nonsingular, irreducible variety V over a
field that every rational mapping from a nonsin-
gular variety to V is a morphism.

Also called absolutely minimality.

structural constant (1) If V is a vector space
over the field of complex numbers, then multi-
plication in V is a tensor. The entries of the
matrix of that tensor relative to fixed bases of
the underlying spaces are called the structural
constants of the corresponding tensor algebra.

(2) Suppose that G is a local Lie group and
D is a differentiable system of coordinates in
G. Suppose that x and y are elements of G

that are sufficiently close to the identity, and put
f (x, y) = xy. If the second-order term of the
ith coordinate function f i of f is ai

jkx
j yk , then

the structural constants of G in D are the num-
bers cijk defined by cijk = ai

jk − ai
kj .

(3) If G is an infinitesimal group (that is, a
vector space together with a commutation op-
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eration defined on it), and if the commutation
operation in G is expressed in terms of coordi-
nates, then the coefficients of the corresponding
matrix are called the structural constants of G

in the given system of coordinates. See commu-
tator.

(4) Suppose that F is a field of characteristic
0, that g is a Lie algebra over F of dimension n,
and that X1, . . . , Xn is a basis of g over F . If
[Xi,Xj ] = ∑n

k=1 c
k
ijXk for i = 1, . . . , n and

j = 1, . . . , n, then the elements ckij of F are
called the structural constants of g relative to
X1, . . . , Xn.

structure A description of a mathematical
object in terms of sets and relations, subject to a
set of axioms is called a mathematical structure.
For example, a group, defined in terms of a set
and an operation, subject to the usual axioms for
a group, is a mathematical structure.

structure sheaf (1) Suppose that V is an
affine variety. Denote by AU the ring of regular
functions on the open set U . The sheaf obtained
from the assignment of AU to U for each open
set U is called the structure sheaf of V (or the
sheaf of germs of regular functions on V ).

(2) Suppose that V is a topological space, F
is a field, and O is a sheaf of germs of map-
pings from V to F . Suppose that there is a finite
open covering U1, . . . , Un of V such that each
pair (Ui,OUi

) is isomorphic to an affine variety.
Then O is called the structure sheaf of the pair
(V ,O).

(3) Suppose thatX is a topological space, and
O is a sheaf on X of commutative rings, each
with a unit, such that the stalk of O at each point
x of X does not equal {0}. Then O is called the
structure sheaf of the pair (X,O).

structure space The set of kernels of alge-
braically irreducible representations of a Banach
algebra.

Structure Theorem for Type-III von Neu-
mann Algebras Suppose that M is a von
Neumann algebra of type III. Then there exist a
von Neumann algebra N of type II∞, a faithful
normal trace τ , and a one-parameter group G of
∗-automorphisms θt with τ ◦ θt = e−t τ , such
that M is a crossed product of N with G.

See type-III von Neumann algebra, crossed
product.

Structure Theorem of Complete Local Rings
Suppose that R is a semilocal ring with unique
maximal idealm, that I is a coefficient ring ofR,
and that m is generated by n elements. Denote
by S the ring of formal power series in n vari-
ables over I . Then R is a homomorphic image
of S.

Sturm method of solving algebraic equations
Suppose that f is a real-valued polynomial of
degree d in one variable, and that f has no mul-
tiple zero. For real numbers a and b with a < b,
denote by N(a, b) the number of real roots of
the equation f = 0 in the interval (a, b). By
applying the division algorithm, one may con-
struct polynomials f0, f1, . . . , fd and q1, . . . ,
qd−1 such that f0 = f , fi−1 = fiqi + fi+1
for 1 ≤ i ≤ d − 1, and fd is constant. Denote
by V (a) the number of changes in sign of the
terms of the finite sequence f0(a), . . . , fd(a),
and denote by V (b) the number of changes in
sign of the terms of the finite sequence f0(b),
. . . , fd(b); in each case we ignore zero terms.
Then N(a, b) = V (a)−V (b). Sturm’s method
uses this result to approximate the real roots of
the equation f = 0.

Sturm’s Theorem A theorem which relates
the position of zeros of solutions of two lin-
ear, second order, ordinary differential equa-
tions. Suppose that y1(x) and y2(x) are non-
zero solutions of

y′′1 + q(x)y1 = 0

y′′2 + p(x)y2 = 0

on some interval I . If q(x) > p(x) for all x in
some interval I , then between any two zeros of
y2, there must be a zero of y1.

subalgebra A subset S of an algebra A, with
the property that S is itself an algebra with re-
spect to the operations of addition and multipli-
cation of A.

subbialgebra A subspace of a bialgebra B,
which is both a subalgebra and a subco-algebra
of B.
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subbundle IfE andF are vector bundles over
a common base space X, then E is a subbundle
of F if there exists a vector bundle morphism
such that for each x ∈ X, the restriction map
Ex → Fx has rank one.

subco-algebra Let C′ be a subspace of a co-
algebra C with comultiplication 2 and counit ε.
C′ is a subco-algebra, if 2(C′) ⊂ C ⊗ C, and
(C′,2|C′ , ε|C′) is a co-algebra.

subcomplex (1) If C is a simplicial complex,
a subset C′ of C which is itself a simplicial com-
plex is called a subcomplex.

(2) If C is a chain complex, a subset C′ of C
which is itself a chain complex and for which
C′j is a subset of Cj for each j , and for which
the boundary operator ∂ ′j is the restriction of the
boundary operator ∂j to C′j for each j is called
a subcomplex.

subdirect sum of rings A subring T of a di-
rect sum of rings S for which each projection
map from T into the coordinate rings Si is sur-
jective. In more detail, let S1, S2, S3, . . . be a
finite or countable family of rings. The ring S,
consisting of all sequences s = (s1, s2, s3, . . . ),
where each si ∈ Si and the operations are taken
coordinate-wise, is called the direct sum of the
rings Si . Let pi : S → Si be the function de-
fined by pi(s) = si . pi is a ring homomorphism
from S onto Si called the ith projection map. A
ring T is a subdirect sum of the rings Si if two
things are true: (i.) T is a subring of S, and
(ii.) each projection map pi is surjective from T

to Si , that is, pi(T ) = Si . See also direct sum,
ring homomorphism.

The notions of direct sum and subdirect sum
extend without difficulty to arbitrary, possibly
uncountable, families of rings. See countable
set, uncountable set.

subfield A subset S of a field F , with the
property that S is itself a field with respect to
the operations of addition and multiplication of
F .

subgroup Let G be a group and H a subset
of G. We call H a subgroup of G if H contains
the identity element, H is closed under multi-

plication, and H contains the inverse of each of
its elements.

submatrix See principal submatrix.

subnormal subgroup Given a group G, a
normal series is a finite set of subgroups,
{Nj }nj=1, which satisfy:
(i.) {e} = Nn ⊂ Nn−1 ⊂ · · · ⊂ N2 ⊂ N1 = G,
where e is the identity element in G.
(ii.) Nj+1 is a normal subgroup of Nj for j =
1 . . . n− 1.

If H is a subgroup of G such that H = Ni ,
for Ni an element of some normal series of G,
then H is called a subnormal subgroup of G.

Note that if H is a normal subgroup of G, we
can take the normal series N1 = G, N2 = H ,
N3 = {e}, so every normal subgroup is also
subnormal.

subordinate subalgebra Suppose that G is
a simply connected nilpotent Lie group, g is the
Lie algebra of G, and g∗ is the dual space of
g. Suppose that h is a subalgebra of g and f is
an element of g∗ such that (f, [X, Y ]) = 0 for
everyX andY inh. Thenh is called subordinate
to f .

subrepresentation Let ρ be a representation
of a group G, with representation space V , and
suppose the vector space V can be written as
the direct sum of two subspaces, S and T , each
left invariant by the representation. That is, let
ρ(g) be the image in GL(V ) of a point g ∈ G

and suppose ρ(g)S ⊂ S, and ρ(g)T ⊂ T , for
all g ∈ G. The maps ρS and ρT obtained by re-
stricting the range of the representation to GL(S)
and GL(T ), respectively, are themselves repre-
sentations, and are called subrepresentations of
ρ. See representation, representation space.

subring A subset S of a ring R, with the
property that S is itself a ring with respect to the
operations of addition and multiplication of R.

substitution The act of replacing one math-
ematical expression by another equivalent one.
For instance, if one wishes to solve the system
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of equations

x + y = 1

x − y = 2

one can conclude from the first equation that
x = 1 − y, and then substitute this value of x

into the second equation; that is, replace the x in
the second equation by the equivalent expression
1− y. One then obtains the equation 1− 2y =
2, or y = − 1

2 , from which one concludes that
x = 3

2 .

subtraction The process of finding the differ-
ence of two numbers or quantities. For instance,
the number z = x − y is that number which if
added to y gives x.

subtraction formulas in trigonometry For-
mulas that express the sine, cosine, or tangent
of the difference of two angles α and β, in terms
of trigonometric functions of α and β. For ex-
ample,

sin(α − β) = sin(α) cos(β)− sin(β) cos(α)

cos(α − β) = sin(α) sin(β)+ cos(α) cos(β)

tan(α − β) = tan(α)− tan(β)

1+ tan(α) tan(β)

subvariety Let W be a variety, that is, the set
of common zeros of some collection of polyno-
mials. If W is a (proper) subset of some other
variety V , then W is called a subvariety of V .

subvariety Let W be a variety, that is, the set
of common zeros of some collection of polyno-
mials. If W is a (proper) subset of some other
variety V , then W is called a subvariety of V .

successive substitutions A method of solv-
ing systems of equations in the variables x1, . . . ,

xn in which the first equation is solved for x1 as
a function of x2, . . . , xn. This result is then sub-
stituted into the remaining equations yielding a
system of equations in the variables x2, . . . , xn.
This process is then repeated until only a sin-
gle equation remains. For example, given the
system of equations

x1 + x2 + x2
3 = 0

2x1 − x2 + x3 = 0

x1 + 2x2 − x2
3 = 0

one can rewrite the first equation as x1 = −x2
3−

x2. Substituting this into the second and third
equations leads to

−3x2 + x3 − 2x2
3 = 0

x2 − 2x2
3 = 0

Solving the second of these equations for x2,
gives x2 = 2x2

3 , which when substituted into
the first equation gives

x3

(
1− 8x2

3

)
= 0

so that x3 = 0, or x3 = ±1/(2
√

2). One can
then obtain x1 and x2 for each of these possible
choices of x3, by substituting the chosen value
of x3 into the previous equations. Note that this
method may fail to yield a solution if it is im-
possible to solve for any of the variables at some
stage in the procedure, or if the final equation
one obtains has no solution.

sum (1) The result of adding two or more
numbers, or other mathematical objects (e.g.,
vectors).

(2) To add.

summation The act of adding numbers or
other mathematical objects (e.g., vectors).

summation notation Notation which uses
the Greek letter H to denote a sum. Typically
the symbol H is followed by an expression (the
“summand”) which depends on a “summation
variable,” say j , and H will have a subscript
indicating the first value of j to be included in the
sum, and a superscript indicating the final value
of j to be included. For example, the symbol∑5

j=1
j (j−1)

2 denotes the sum of the quantity
j (j−1)

2 from j = 1 to j = 5, i.e., 0 + 1 + 3 +
6+ 10.

sum of like powers A sum in which the sum-
mands are all expressions raised to a common
power, e.g., 155+205+255+305, orxr+yr+zr .

sum of perfect powers of integers A sum
in which the summands are integers, each raised
to the same positive integral power, e.g., 155 +
205+255+305, or 1+8+27+64+125. (Note
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that in the second example, each summand is the
cube of an integer.)

sum of vectors See addition of vectors.

superabundance Suppose that S is a nonsin-
gular surface, and D is a curve on S. Denote by
O(D) the sheaf of germs of holomorphic cross-
sections of D. The dimension of H 1(S,O(D))

is called the superabundance of D.

supersolvable group A finite group G such
that there are subgroups G0, . . . , Gn of G such
that G0 is trivial, Gi is a normal subgroup of
Gi+1 for i = 0, 1, . . . , n−1, each Gi is normal
inG, and each quotient groupGi+1/Gi is cyclic
and of prime order.

supplemented algebra Let R be a commu-
tative ring with a unit. If A is an R-algebra and
ε : A → R is an R-algebra homomorphism,
then (A, ε) is called a supplemented algebra (or
augmented algebra).

support (1) The support of a complex-valued
function is the closure of the set of points at
which the function is nonzero. Equivalently, it is
the complement of the largest open set on which
the function vanishes.

(2) The support of a measure is the comple-
ment of the largest open set of zero measure.

supremum The least upper bound or join of a
set of elements of a lattice. The term is most fre-
quently used with regard to sets of real numbers.
If S is a set of real numbers, the supremum of S
is the unique real number B = sup S defined by
the following two conditions: (i.) x ≤ B, for all
x ∈ S; (ii.) if x ≤ C, for all x ∈ S, then B ≤ C.

See also infimum.

surd An irrational root of a positive integer,
e.g., 3

√
2, or 52/5, or a sum of such expressions.

surjection A function e from a set X to a set
Y such that e(X) = Y , that is, such that every
element y ∈ Y is the image e(x) of an element
x ∈ X. Surjections are also called surjective
functions, surjective mappings, and onto func-
tions. The notion of a surjection generalizes to

the notion of an epimorphism or epic morphism
in a category. See also epimorphism, injection.

Suzuki group A finite simple group of order
q2(q−1)(q2+1), where n is a positive integer,
and q = 22n+1.

sweepable bounded domain A bounded do-
main D in Cn such that there is a compact subset
K of D and a subgroup 4 of the group of holo-
morphic automorphisms of D with 4K = D.

Sylow’s Theorems Suppose that G is a finite
group.

(1) If m and n are relatively prime and the
order ofG ispnm, thenG contains a subgroup of
order pi for each i = 1, 2, . . . , n. If 1 ≤ i ≤ n

and S is a subgroup of G of order pi , then S is
a normal subgroup of some subgroup of G of
order pi+1.

(2) IfH is ap-subgroup ofG andS is a Sylow
p-subgroup of G, then there is some element g
of G such that H is a subgroup of gSg−1. In
particular, every two Sylow p-subgroups of G

are conjugate in G.
(3) Denote by s the number of distinct Sylow

p-subgroups ofG. Then k is a factor of the order
of G and s ≡ 1(mod p). If H is a p-subgroup
of G, denote by t the number of distinct Sy-
low p-subgroups of G that contain H . Then
t ≡ 1pmodp.

See Sylow subgroup.

Sylow subgroup A maximal p-subgroup of
a group G, for a prime number p. Also called
Sylow p-subgroup of G.

See Sylow’s Theorems.

Sylvester’s elimination method A method
used in elimination theory for obtaining the re-
sultant of two polynomials. Suppose that I is
a unique factorization domain and a0, . . . , am
and b0, . . . , bn are elements of I . Put f (x) =∑m

i=0 aix
m−i and g(x) =∑n

i=0 bix
n−i . Define

anm×nmatrixC = (cij ) as follows. For i = 1,
. . . , n and j = i, . . . , i + m, put cij = aj−i .
For i = n+ 1, . . . , n+m and j = i − n, . . . ,
i, put cij = bj+n−i . Put cij = 0 for all other
appropriate values of i and j . If a0 and b0 have
no common factor, then the determinant of C

equals the resultant of f and g.
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See resultant.

Sylvester’s Theorem (1) If F is an ordered
field and V is a vector space over F with a non-
degenerate bilinear form, then there is a non-
negative integer r such that if {v1, v2, . . . , vn} is
an orthogonal basis of V , then exactly r of the
squares v2

1, v2
2, . . . , v2

n are positive and n− r of
these squares are negative.

(2) Suppose thatA = (aij ) is an n×nmatrix,
and r is a positive integer less than n. For i and
k in the set {1, . . . , n − r}, denote by Bik the
(r + 1)× (r + 1) submatrix of A consisting of
entries contained in one of rows 1, . . . , r , r + i

of A and in one of columns 1, . . . , r , r+k of A.
Denote by C the r×r submatrix of A consisting
of entries contained in one of rows 1, . . . , r of
A and one of columns 1, . . . , r of A. Then

det Bik = (det A)(det C)n−r−1 .

symmetric algebra (1) IfV is a vector space,
T is the tensor algebra over V , and I is the ideal
generated by

{x ⊗ y − y ⊗ x : x, y ∈ V } ,
then T/I is called the symmetric algebra of (or
over) V . This algebra is also the direct sum of
all the symmetric powers of V .

(2) If R is a commutative ring, M is an R-
module, T is the tensor algebra of M , and I is
the ideal generated by{
x ⊗ y − (−1)(deg x)(deg y)y ⊗ x : x, y ∈ T

}
,

then T/I is called the symmetric algebra of (or
over) M .

(3) Suppose that A is a finite-dimensional al-
gebra over a field F and that the left regular
module ofA is isomorphic to the group of homo-
morphisms from the right regular module of A

toF . IfA has a nondegenerate bilinear form that
is symmetric and associative, then A is called a
symmetric algebra.

symmetric bilinear form Let V be a vector
space, and F a field. Let h : V × V → F be a
bilinear form. Then h is symmetric if h(v, v′) =
h(v′, v) for any two vectors v and v′ in V .

symmetric equation An equation in two or
more unknowns x1, . . . , xn which is unchanged
by any permutation of the unknowns.

symmetric form A matrix M is said to be
symmetric if tM = M . The quadratic form in-
duced by M is then called a symmetric form.

symmetric group The set of permutations of
a set N of n elements, together with the opera-
tion of composition, forms the symmetric group.
The notation Sn is used.

symmetric matrix A real matrix S which is
equal to its adjoint, i.e., if the elements of S are
Sij , then Sij = Sji .

symmetric points Two points a and b are
symmetric with respect to a third point c if c is
the midpoint of the line segment ab. Two points
a and b are symmetric with respect to a line
if that line is the perpendicular bisector of ab.
Finally, a and b are symmetric with respect to a
plane if that plane passes through the midpoint
of ab, and is perpendicular to this line segment.

symmetric polynomial A polynomial, p(x1,

. . . , xn), which is transformed into itself by any
permutation of the variables x1, . . . , xn.

symmetric property The property of a rela-
tion R on a set S:

(s, t) ∈ R implies (t, s) ∈ R for all s, t ∈ S .

symmetric relation A relation R (on a single
set S) such that (a, b) ∈ R implies (b, a) ∈
R. See relation. An example of a symmetric
relation is equality: if a = b, then b = a. An
example of a relation that is not symmetric is the
“less than” relation. If a < b, then it is not true
that b < a.

symmorphism Suppose that T is an n-
dimensional lattice in n-dimensional Euclidean
space, and that K is a finite subgroup of the
orthogonal group. Denote by A and by S the
sets of arithmetic crystal classes and of space
groups of (T ,K), respectively. There is a sur-
jective mapping s : S → A and there is an
injective mapping i : A → S such that s ◦ i is
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the identity mapping on A. A space group that
belongs to the image of the mapping i is called
symmorphic.

See arithmetic crystal class, space group.

symplectic group The set of all symplectic
transformations from a symplectic vector space
(V , ω) to itself form the symplectic group of
(V , ω). If V is R2n, with the standard symplec-
tic structure, the notations Sp(2n) and Sp(2n,R)

are used. See symplectic transformation.

symplectic manifold A manifold equipped
with a distinguished closed 2-form of maximal
rank.

symplectic transformation A linear trans-
formation T from a symplectic vector space
(V1, ω1) to a symplectic vector space (V2, ω2),
which preserves the symplectic form; i.e.,

ω2 (T (v1) , T (v2)) = ω1 (v1, v2)

for any vectors v1 and v2 in V1.

synthetic division A compact notation for
representing the division of a polynomial p(x)
by a linear factor of the form x−a. For instance,
to divide p(x) = 3x2 − 2x − 1 by x − 1, first
write down the coefficients of p(x), and then to
the left, the constant term in the linear factor:

−1 | 3 −2 −1

The coefficient of the first term in the quotient
will always be the same as the coefficient of
the leading term in the original polynomial (3
in this example), so that is not written. Since
3x(x − 1) = 3x2 − 3x, we must subtract −3x
from the −2x in the original polynomial. This
is represented by changing the sign of −3, and
writing it under the −2 in the first line, and
adding:

−1 | 3 −2 −1
3

3 1

The next term in the factorization is 1 ·(x−1) =
x − 1, and repeating the above procedure, we
find:

−1 | 3 −2 −1
3 1

3 1 0

The bottom row of this diagram gives the coeffi-
cients of the quotient polynomial — in this case
3x + 1, and the final entry in the last row gives
the remainder — in this case 0.

system of equations A set of equations in the
variables x1, x2, . . . , xn, which are all required
to be satisfied simultaneously.

system of fundamental solutions (1) Sup-
pose that F is a field, and consider a system S of
linear homogeneous equations with coefficients
in F . Denote by V the vector space over F of
solutions of S. If the dimension of V is pos-
itive, then a basis for V is called a system of
fundamental solutions of S.

(2) Suppose thatD is a division ring, and con-
sider a system S of linear homogeneous equa-
tions with left coefficients in D. Denote by M

the unitary right D-module of solutions of S. If
the rank of M is positive, then a basis for M is
called a system of fundamental solutions of S.

system of fundamental units A minimal set
of units in terms of which the units of all other
physical quantities can be defined. For exam-
ple, in classical mechanics, if we choose the
meter as the unit of length, the kilogram as the
unit of mass, and the second as the unit of time
(the mks-system), then the units of other quan-
tities such as velocity (meters/second) or force
(kilogram-meters/second2) can be expressed in
terms of these three. Note that what constitutes a
system of fundamental units may depend on the
physical phenomena under consideration. For
instance, if one wished to consider electrody-
namics in addition to classical mechanics, one
would need to add to the list of fundamental units
a unit for current.

system of generators A set of elements S, of
a group G, such that every element in G can be
written as a product of elements of S (possibly
with repetitions).

system of inequalities A set of inequalities
in the variables x1, x2, . . . , xn, all of which are
required to be satisfied simultaneously. For ex-
ample the set of values (x1, x2)which satisfy the
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system of inequalities

x1 + x2 < 0

2x1 + x2 > −1

x1 + 3x2 > −2

is represented by the set of points in the x1x2-
plane, lying between, and not on, the lines x2 =
−x1, x2 = −2x1 − 1 and x2 = − 1

3x1 − 2
3 .

system of linear equations A system of m

linear equations in n variables x1, x2, . . . , xn, is
a set of equations of the form

n∑
k=1

ajkxk = cj ; j = 1, 2, . . . , m ,

where ajk and cj are constants. For example, if
n and m are both 2, one could have

x1 + 2x2 = 1

3x1 − x2 = 1 .

The important point is that in order for the sys-
tem to be linear, none of the variables xj may
appear with a power higher than 1, nor can there
be any products of xi with xj .

The above system can be written as a single
matrix equation

AX = C ,

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

· · · · · ·
am1 am2 . . . amn



X =


x1
x2
...

xn

 , C =


c1
c2
...

cm

 .

system of linear homogeneous equations
A system of linear equations in which the con-
stants, cj , appearing on the right-hand side of
the equations are all zero. For example,

x1 + 2x2 = 0

3x1 − x2 = 0 .

See also system of linear equations.

system of parameters Let R be a ring of
dimension n, and let I be its ideal of non-units.
A system of parameters is a set of n elements of
R which generates a primary ideal of I.

system of resultants Suppose that I is an
integral domain, and f1, . . . , fn elements of a
polynomial ring over I . Denote by a the set of
resultants of f1, . . . , fn. Suppose that G is a
finite subset of a such that a equals the radical
of the ideal generated by G. Then G is called a
system of resultants.

See resultant.

syzygy (1) A point on the orbit of a planet
(or the moon) at which that planet, the sun, and
the earth all lie on a straight line.

(2) Given a ring R, and an R-module M ,
a syzygy of (m1, . . . , mn) ∈ Mn is an n-tuple
(r1, . . . , rn) ∈ Rn, such that

n∑
j=1

rjmj = 0 .

syzygy theory The study of syzygies and re-
lated concepts such as chains of syzygies and
modules of syzygies. See syzygy. See also
Hilbert’s Syzygy Theorem.
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T
Tamagawa number Suppose that F is an
algebraic number field of finite degree and G

is a connected algebraic group defined over F .
Denote by GF the group of all F -rational points
on G, by GA the adele group of A, by I the idele
group of G, by M the module of all F -rational
characters of G, and by | · | the standard norm
in I . Denote by G0

A the set of all elements of
GA such that |χA(g)| = 1 for each element χ
of M . The volume of G0

A/GF with respect to
the normalized invariant measure is called the
Tamagawa number of G.

Tamagawa zeta function Suppose that F is
a field, and A a division algebra over F . Denote
by A∗ the group of invertible elements of A,
and by G the idele group of A. Suppose that
ω is a positive definite zonal spherical function
that belongs to the spectrum of A∗. Denote by
P the set of prime divisors of F . For p in P ,
denote by Fp the completion of F with respect
to p, by Ap the algebra obtained from A by
the scalar extension Fp over F , and by Tp the
reduced trace of Ap/R. For p in P and p finite,
put ϕp(gp) equal to the characteristic function
of a maximal order of Ap. Suppose that ∗ is a
positive involution. For p in P and p infinite,
put ϕp(gp) = exp(−πTp(gpg

∗
p)). For g in G,

put ϕ(g) = ∏
p∈P ϕp(gp), and denote by ||g||

the volume of g. For s a complex number, put

ζ(s, ω) =
∫
G

ϕ(g)ω
(
g−1

)
||g||s dg .

The function ζ is called the Tamagawa zeta func-
tion with character ω.

See zonal spherical function.

Tanaka embedding The embedding induced
by π exp (as an open submanifold) of a Siegel
domain D into the quotient group GC/B. Here,
GC is the connected complex Lie group gener-
ated by the complexification of the Lie algebra
gh of the full holomorphic automorphisms of D,
B is the normalizer in GC of b = g−1− + g0

C +

g1
C +g2

C where C denotes complexification, g−1−
is the−i-eigenspace in the complexificationg−1

C

of g−1 under adI , and gλ is the λ-eigenspace of
adE = 2

∑
k zk

∂
∂zk

+ ∑
α iuα

∂
∂uα

in gh.

tangent function One of the fundamental
trigonometric functions, denoted tan x. It is
(i.) periodic, satisfying tan(x + π) = tan x;
(ii.) undefined at multiples of π , satisfying

lim
x→kπ− tan x = −∞, lim

x→kπ+ tan x = ∞ ,

for every integer k; and (iii.) intimately related to
the sine and cosine functions, satisfying tan x =
sin x
cos x . The tangent function satisfies many im-
portant identities, including 1+tan2 x = sec2 x,

tan x = −i e
ix−e−ix

eix+e−ix , etc.

See also tangent of angle.

tangent line Let P be a point on a curve C

parameterized by x = f (t). The tangent line
to C at P is the line passing through P with
direction vector df (x). Thus, if C is the graph
of a function of one variable, y = f (x), then
the tangent line to C at (x, y) is the line passing
through (x, y) with slope f ′(x).

tangent of angle Written tan α, the x-
coordinate of the point where the tangent line
to the unit circle at (1, 1) intersects the infinite
line, along which lies the terminal ray of the an-
gle α, whose initial ray lies along the positive
x-axis. If 0 < α < π

2 (α in radians) so that the
angle is one of the angles in a right triangle with
adjacent side a, opposite side b, and hypotenuse
c, the tan α = b

a
.

tangent plane Let S be a surface in R2, de-
fined by the vector equation x = x(s, t). The
tangent plane to S at the point x0 = x(s0, t0) is
the plane passing through x0 and with direction
vectors xs(s0, t0) and xt (s0, t0).

tangent space The space of all tangent vec-
tors to a manifold or other analytic object. Equiv-
alently, the collection of equivalence classes of
curves in the object, where two curves are equiv-
alent if they induce the same directional deriva-
tive at a specified base point.
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Taniyama-Weil conjecture An important
conjecture in the study of ζ -functions. Let L(s,

E) be the L-function of an elliptic curve E over
the rational number field Q. The Taniyama-Weil
conjecture states that ifL(s,E) = ∑∞

n=1 ann
−s ,

then f (τ) = ∑∞
n=1 ane

2πinτ is a cusp of weight
2 for the congruence subgroup /0(N) which is
an eigenfunction for Hecke operators.

Tannaka Duality Theorem A compact
group is isomorphic to the group of represen-
tations of its group of representations.

Tate cohomology A variation on the coho-
mology of finite groups. It forms a free resolu-
tion of the finite group Z as a ZG module. See
also free resolution.

Tate’s conjecture For a projective nonsingu-
lar variety V over a finite algebraic number field
K , let U r (V̄ ) denote the group of algebraic cy-
cles of codimension r on V̄ = V

⊗
K C modulo

homological equivalence and let U r (V ) be the
subgroup of U r (V̄ ) generated by the algebraic
cycles rational over K . Tate conjectured that the
rank of U r (V ) is equal to the order of the pole
of the Hasse ζ -function ζ2r (s, V ) at s = r + 1.

Tate-Shafarevich group The set of elements
of the Weil-Châtelet group that are everywhere
locally trivial.

Tate’s Theorem Let K/k be a Galois ex-
tension with Galois group G. Tate’s Theorem
states that the n − 2 cohomology group of G

with coefficients in Z (denoted Ĥ (G,Z)) is iso-
morphic to the nth cohomology group of G with
coefficients in the idele class group Ck of K (de-
noted Ĥ (G,Ck)). The isomorphism is given by
6n(α) = ζK/k 7 α, where 7 denotes the cross
product and ζK/k is the canonical cohomology
class for K/k.

tautological line bundle The subspace of
PnXRn+1 (where Pn is projective space) that
consists of the pairs (L, x) where L ∈ Pn and
x ∈ L.

tensor product Given two linear spaces, M
and N , the tensor product, M ⊗N , is the unique
linear space with the property that, given a bi-

linear form b on M ⊗ N , there is a unique lin-
ear mapping, φ, on M ⊗ N so that b(x, y) =
φ(x ⊗ y). If L(= M) is the space of transfor-
mations of a linear space and A and B are trans-
formations, then there is a unique linear trans-
formation A ⊗ B such that A ⊗ B(x ⊗ y) =
A(x) ⊗ B(y).

term One of the ordered elements to which
an operation is applied. Examples would be
summands in a polynomial or any sum, finite
or infinite.

terminating decimal A real number that can
be expressed as m + p

10n for integers p,m and
n. Rational numbers can always be expressed as
either a terminating or repeating decimal. See
also repeating decimal.

term of polynomial An individual summand
in the polynomial expression.

tetrahedral group The alternating group of
degree 4, denoted A4. It is called the tetrahedral
group because it can be realized as the group of
rigid motions that preserve a tetrahedron.

theory of equations The study of polynomial
equations, the most general of which is

xn + a1x
n−1 + · · · + an−1x + an = 0 .

Some of the questions studied in the theory of
equations are the existence of roots, methods
of solutions, and the possibility of solutions by
radicals.

theory of moduli Given a class of objects,
such as “projective surfaces of general type” or
“rank two vector bundles on a given Riemann
surface,” one may classify them (up to isomor-
phism, say, or some other similar equivalence
relation) in two steps:

First, identify numerical invariants (invari-
ants under the chosen equivalence). Then, for
the objects having a fixed set of numerical in-
variants, describe an algebraic variety (or an an-
alytic variety) which parametrizes these. The
parametrization should satisfy certain natural-
ity conditions; most often, the parameter space
(called moduli space, since the parameters are
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called moduli) must represent some Hom func-
tor.

A well-known example is the moduli space
of Riemann surfaces (smooth algebraic curves)
of genus g: this is a point, for g = 0; a one-
dimensional variety, for g = 1; and a 3g − 3-
dimensional variety, if g ≥ 2. Here g is the
numerical invariant, which must be chosen first.

Of course, in each given context, a moduli
space may or may not exist (or may exist only af-
ter changing the class of objects slightly); when
the moduli space does exist, we say that the class
of objects has a theory of moduli.

Theta formula A formula relating the sum of
particular values of a continuous complex func-
tion φ on the adele ring of a finite degree alge-
braic number field k to the sum of certain values
of the Fourier transform ofφ. The formula states
that, for each idele a of k,

∑
α∈k

φ(aα) = V (a)−1
∑
α∈k

φ̂
(
a−1α

)
,

where V (a) is the volume of a.

theta function Any one of the four functions

<1(ν, τ ) = 2
∞∑
n=0

(−1)nq(n+1/2)2
sin(2n+1)πν

<2(ν, τ ) = 2
∞∑
n=0

q(n+1/2)2
cos(2n + 1)πν

<3(ν, τ ) = 1 + 2
∞∑
n=1

qn2
cos 2nπν

<4(ν, τ ) = 1 + 2
∞∑
n=1

(−1)nqn2
cos 2nπν,

where q = einτ and �τ > 0.
Any elliptic function can be expressed as a

quotient of theta functions.

theta series A series of the form∑
(x1,...,x2)∈Zn

e2πiQ(x1,...,xn)z

where Q(x1, . . . , xn) is a positive definite form
with integral coefficients and z is a complex
number.

If �z > 0 the series converges and is an entire
function of z.

Thom class Let ξ be a q-sphere bundle with
base space B and let /ξ be the local system on B

such that /ξ (b) = Hq+1(Eb, Ėb). Let p∗
ξ (/ξ )

be the local system on Eξ induced from /ξ by
pξ : Eξ → B. A Thom class of ξ is an element
of Uξ ∈ Hq+1(Eξ , Ėξ ;p∗

ξ (/ξ )) such that for
every b ∈ B the element

Uξ

∣∣∣∣(Eb, Ėb) ∈ Hq+1(Eb, Ėb;p∗
ξ (/ξ )

∣∣ Eb)

= Hq+1(Eb, Ėb;Hq+1(Eb, Ėb))

corresponds to the identity map ofHq+1(Eb, Ėb)

under the universal-coefficient isomorphism

Hq+1(Eb, Ėb;Hq+1(Eb, Ėb))

∼= Hom(Hq+1(Eb, Ėb),Hq+1(Eb, Ėb)) .

Thue’s Theorem Let n > 2, a ∈ Z, a �= 0
and let a1, . . . , an ∈ Z. If f (x) = ∑n

ν=0 aνx
ν

has distinct roots, then the number of rational
integral solutions of the binary form

∑n
ν=0 aνx

ν

yn−ν = a is finite.

Tometa-Takesaki theory A generalization
of the theory of Hilbert algebras.

topological vector space A vector space V

over a field F , equipped with topology such that
(i.) each point is closed and
(ii.) the vector space operations are continuous
(as maps from V × V to V and F × V to V ).

Tor Z-modules TorAn (M,N)(n = 0, 1, 2,
. . . ) that are defined from given right and left
A-modules. They are defined as the homology
modules Hn(M

⊗
A Y ) where Y is a projective

resolution of N .

Torelli’s Theorem Two curves are biratio-
nally equivalent if their canonically polarized
Jacobians are isomorphic.

toroidal embedding The observation (by
Kempf, Knudsen, and Mumford) that a normal
algebraic variety Y and a nonsingular Zariski
open subset U such that Y ⊃ U is formally iso-
morphic at each point to a torus embedding.
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toroidal subgroup Given a compact, con-
nected, semisimple Lie group G, the connected
Lie subgroup H that is associated to a Cartan
subalgebra of the Lie algebra of G is called a
toroidal subgroup. See also maximal torus.

torsion element An element a of an A-mod-
ule for which there is a non-zero divisor λ of A
such that λa = 0.

torsion-free group An Abelian group with
no elements of finite order except for the identity.

torsion group An Abelian group with the
property that all of its elements are of finite order.

torsion product A left-derived functor of the
tensor product of modules. See also Tor.

torsion subgroup The subgroup of an Abel-
ian group consisting of the set of all elements of
finite order.

torus embedding A normal scheme X, lo-
cally of finite type, over a closed field k on which
an algebraic torus T acts with a dense open orbit
isomorphic to T .

total boundary operator For the associated
chain complex, (Xn, ∂), ∂ is called the total
boundary operator.

total degree See filtration degree, comple-
mentary degree.

total differential Letf be a real-valued func-
tion of the real variables, x1, x2, . . . , xn. The
total differential is a generalization of the differ-
ential for a function of one variable. Its existence
for a function of two variables is equivalent to
the existence of a unique tangent plane to the
surface at a point. When it does exist, the total
differential of f at a point (a1, a2, . . . , an) is the
function

df (dx1, dx2, . . . , dxn)

= fx1 dx1 + fx2 dx2 + · · · + fxn dxn .

where the partials are evaluated at (a1, a2, . . . ,
an). Note, though, that the existence of the par-
tials fx1 , fx2 , . . . , fxn is not sufficient for the
existence of the total differential when n > 1.

totally imaginary field A field with no infi-
nite prime divisors.

totally isotropic See isotropic.

totally isotropic subspace A subspace W of
a linear space with the property that the symmet-
ric bilinear form B (associated with a quadratic
form Q) is equal to zero for all pairs x, y ∈ W .

totally real field A number field with no
imaginary infinite prime divisors.

total matrix algebra The set of all n × n

matrices over a field K . It is usually denoted
Mn(K).

total step method for solving linear equations
See Jacobi method for solving linear equations.

total transform Let T be a rational mapping
from the algebraic variety V to the algebraic
varietyW and let T ′ be an irreducible subvariety
of T whose projections have the closed images
V ′ and W ′ which are irreducible subvarieties of
V and W , respectively. The total transform of
V ′ is the set of points of W that correspond to
V ′ by T .

trace The trace of a square matrix, A = (aij )

is the sum of the elements along the main diag-
onal,

Tr(A) =
n∑

i=1

aii .

trace formula Let T be the regular represen-
tation of a connected semisimple Lie groupG on
/ G, where / is a discrete subgroup of G, and
let χk be the characters of the irreducible unitary
representations in the irreducible decomposition
of T . The trace formula is an identity between
two ways of calculating the trace of the integral
operator with kernel

∑
y∈/ f (x−1λy):

∞∑
k=1

∫
G

χk(g) dg =
∑
γ

f
(
x−1γ x

)
dx ,

where γ is the conjugate class of γ in / and Dγ

is the quotient space of the centralizer Gγ of γ
in G by the centralizer /γ of γ in /.
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trace of surface (1) The image of a surface
(a map from Rn into Rm).

(2) The set of C-divisors C ·C′ where C is a
generic component of an irreducible linear sys-
tem and C′ is a member of the system different
from C.

transcendence In the theory of fields, the
term has two meanings:

(1) In a field extension, k ⊂ K , an element of
K is transcendental over k if it is not algebraic
over k.

(2) The extension itself is transcendental if
all elements of K except those in k are transcen-
dental over k. See also transcendence degree.

transcendence basis A collection of ele-
ments S of an extension field K over k that is al-
gebraically independent over k and is algebraic
over the smallest intermediate extension field of
K over k containing S.

transcendence degree For an extension field
K over k, the cardinal number of an algebrai-
cally independent basis.

transcendence equation A field element is
transcendental if it is not algebraic, that is, does
not satisfy an algebraic equation. A transcen-
dental number has a transcendence degree. A
transcendence equation is an equation that one
would solve to determine the transcendence de-
gree. See transcendence degree.

transcendence equation A number is tran-
scendental over a field k if it is not algebraic over
k; that is, it does not satisfy an algebraic equation
with coefficients in k. A transcendental number
has a transcendence degree. A transcendence
equation is an equation that one would solve to
determine the transcendence degree.

transcendental A number is called transcen-
dental if it is not the solution of a polynomial
equation with rational coefficients. See also al-
gebraic number.

transcendental curve An analytic curve that
is not algebraic.

transcendental element An element α of an
extension field K over k that is not algebraic
over k. That is, α is not a zero of a polynomial
with coefficients in k. For example, π is not
transcendental over the rationals.

transcendental extension A field extension
K over k that contains at least one element that
is not algebraic over k.

transcendental function A multiple valued
analytic function w = w(z) that is not alge-
braic; that is, it does not satisfy an irreducible
polynomial equation, P(z,w) = 0.

transcendental number A complex number
that is not algebraic over the rationals.

transfer LetH be a subgroup ofGwith finite
index n and let gi (i = 1, . . . , n) be represen-
tatives of the right cosets of H . Let H ′ be the
commutator subgroup of H and let G′ be the
commutator subgroup of G. The transfer from
G/G′ to H/H ′ is the homomorphism φ from
G/G′ to H/H ′ that is defined by φ(G′(x)) =
H ′Hn

i=1gigx(gix)−1 , where gy is gi when y ∈
Hgi .

transfinite series Let I be the first uncount-
able ordinal and β ≤ I. A transfinite sequence
of real numbers {aξ }ξ<β is said to be convergent
and to have a limit a, provided that to any ε > 0
there exists ξ0 < β such that |aξ − a| < ε for
ξ ≥ ξ0. Given a transfinite sequence {fξ }ξ<β ,
we define a sequence {sξ }ξ<β of partial sums
belonging to a transfinite series

∑
ξ<β fξ in the

following way: s0 = f0, sλ = sλ−1 + fλ if λ is
not a limit ordinal and sλ = limξ<λ sξ if λ is a
limit ordinal and all sξ exist for ξ < λ. We say
that a transfinite series

∑
ξ<β fξ converges (uni-

formly) to a function s if the sequence {sξ }ξ<β

exists and converges (uniformly) to s.

transfinite series Let I be the first uncount-
able ordinal and β ≤ I. A transfinite sequence
of real numbers {aξ }ξ<β is said to be convergent
and to have a limit a, provided that to any ε > 0
there exists ξ0 < β such that |aξ − a| < ε for
ξ ≥ ξ0. Given a transfinite sequence {fξ }ξ<β ,
we define a sequence {sξ }ξ<β of partial sums
belonging to a transfinite series

∑
ξ<β fξ in the
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following way: s0 = f0, sλ = sλ−1 + fλ if λ is
not a limit ordinal and sλ = limξ<λ sξ if λ is a
limit ordinal and all sξ exist for ξ < λ. We say
that a transfinite series

∑
ξ<β fξ converges (uni-

formly) to a function s if the sequence {sξ }ξ<β

exists and converges (uniformly) to s.

transformation A function or mapping. The
term transformation usually implies that the
mapping is from a set to itself rather than to
another set and it often implies linearity.

transformation equation An equation or
set of equations that preserve the structure un-
der study. For example, in special relativity
a change of variables that preserves the form
x2 + y2 + z2 − c2t2 would be called a transfor-
mation equation.

transformation formula A formula that
gives the evaluation of a function at an element
in its domain in terms of the value of the function
at another related element in the domain.

transformation function In quantum me-
chanics, the function given by

U (σ, σ0) = P · exp

[
i

∫ σ

σ0

dx jµAµ

]
,

where jµ = eψ+γµψ and P is Dyson’s chrono-
logical operator.

The name transformation function is also give
to the Heaviside function in real-variable con-
texts and to the Cauchy kernel in complex vari-
able contexts.

transformation of coordinates A one-to-
one and onto linear transformation. It trans-
forms vectors of coordinates in one basis to vec-
tors of coordinates in a second basis.

transformation problem The problem of
determining a general procedure that will de-
cide, in a finite number of steps, whether two
given words interpreted as elements of a finitely
presented group can be transformed into each
other by an inner automorphism of the group.

transformation space An algebraic variety
that is acted on by an algebraic group. The ac-

tion is defined by an everywhere regular rational
mapping f (g, v) from G × V to V .

transgression A transgression in a fiber
space is a certain special correspondence be-
tween the cohomology classes of the fiber and
the base.

transitive extension Given a permutation
group H on a set I, a transitive extension of
H is the transitive permutation group on the set
I ∪ ∞ (where ∞ /∈ I) in which the stabilizer
group of ∞ is H .

transitive permutation group A permuta-
tion group G on a set I with the property that
whenever a, b ∈ I there is a π ∈ G such that
π(a) = b.

transitive property For a relation R on a set
X, the property that if both xRy and yRz then
xRz.

transitive relation A relation R on a set X
with the property that if xRy and yRz then xRz.
See transitive property. Here xRy means that
(x, y) ∈ R.

Translation Theorem One of the basic the-
orems of class field theory. It states that if K/k

is the class field for an ideal group and I is an
arbitrary finite extension of k, thenKI/I is the
class field for the ideal group of I consisting of
the ideals in I with their relative norms in the
original ideal group.

transportation problem A linear program-
ming problem which has several simple algo-
rithmic solutions. The problem is to minimize∑

i,j cij xij under the condition that
∑

j xij ≥
ai,

∑
i xij ≤ bj and xij ≥ 0.

transpose Given a linear mapping φ from
the linear space L to the linear space M , the
transpose of φ (denoted t φ) is the linear map
from the dual of M to the dual of L given by
t φ(f ) = f ◦ φ. In the case where L = Rn and
M = Rm, the transpose of the matrix of φ is the
ordinary matrix transpose: if the matrix of φ is
(aij ), then the matrix of t φ is (aji).
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transposed matrix The matrix Mt that is
obtained from M by exchanging the rows and
columns of M . If the ij entry of M is aij , then
the ij entry of Mt is aji . See also transpose.

transposed representation See adjoint rep-
resentation.

transposition A permutation of a set that ex-
changes exactly two elements. Any permutation
can be written as a product of transpositions.

transvection An element, other than the iden-
tity, of the general linear group of a right linear
space V over a noncommutative field with the
properties that it leaves a subspace of dimension
(n − 1) fixed and that it acts as the identity on
the remainder of V .

triangular factorization The factorization
of a matrix A into the product of a lower trian-
gular matrix L, with ones on its diagonal, and
an upper triangular matrix U : A = LU . The
solution to the matrix equation Ax = b can be
determined by first solving the equation Ly = b

and then solving Ux = y.

trichotomy Literally, division into three
parts. The trichotomy axiom in a totally ordered
set S, states that for x, y ∈ S, one of the asser-
tions x > y, x < y or x = y must hold.

trigonometric curve The graph of any of
the trigonometric functions in rectangular coor-
dinates.

trigonometric equation An equation that
involves trigonometric functions and constants.
The solution set for such an equation consists of
angles that satisfy it.

trigonometric expression An expression
that contains one or more of the trigonometric
functions.

trigonometric form of a complex number
The representation of the complex number z as
z = r[sin θ + i cos θ ](= reiθ ) where r is the
modulus of z (distance from the origin to z) and
θ is an argument of z (angle that the line 0z
makes with the positive x-axis).

trigonometric function One of the six func-
tions: sine, cosine, tangent, cotangent, secant,
cosecant. See sine function, cosine function,
tangent function, cotangent function, secant
function, cosecant function.

trigonometric functions of a sum Formulas
of the type sin(a+b) = sin a cos b+sin b cos a.
(Similar formulas hold for the other trigonomet-
ric functions.)

trigonometric identity An equation between
two trigonometric expressions that is satisfied by
any angle.

trigonometric series Any series of the form

1

2
a0 +

∞∑
k=1

(ak cos kx + bk sin kx)

or ∞∑
k=−∞

ake
ikx .

See also Fourier series.

trigonometry The study of the trigonometric
functions of angles (sine, cosine, tangent, cotan-
gent, secant, and cosecant) and the relationships
among them. Of special importance is the use
of these methods to solve triangles. Fields of
application include surveying and navigation.

trinomial An algebraic expression with ex-
actly three summands.

triple (1) An element of a triple Cartesian
product of sets A × B × C. Usually written
(a, b, c), where a ∈ A, b ∈ B and c ∈ C.

(2) To multiply by 3.

trivial solution The solution x = 0 to a sys-
tem of linear homogeneous equations.

trivial valuation A valuation that maps the
non-zero elements of a field onto one.

truncation of number Removing significant
digits from a number without rounding.

Tsen’s Theorem A normal simple algebra
over a field K of algebraic functions of one vari-
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able over an algebraically closed field is a total
matrix algebra over K .

Tucker’s Theorem on Complementary Slack-
ness For any matrix A, the inequalities Ax =
0, and u′A ≥ 0 have solutions x,u that satisfy
A′u + x > 0.

two-phase simplex method A method used
to introduce new artificial variables so that there
is a solution to start with. This usually happens
if (0, 0, . . . , 0) is not a feasible solution to the
linear programming problem. The first phase
is to use the new variables to have a solution to
start with, then after performing some row trans-
formations, we can discard all the artificial vari-
ables. This reduces the original question to an
ordinary linear programming problem. Solving
this problem is the second phase of this algo-
rithm.

type-I factor A factor that is isomorphic to
the algebra of bounded operators on ann-dimen-
sional Hilbert space.

type-II factor A type-II von Neumann al-
gebra that is a factor. See factor, type-II von
Neumann algebra, von Neumann algebra.

type-III factor See factor, type-III von Neu-
mann algebra, von Neumann algebra.

type-I von Neumann algebra A von Neu-
mann algebra that contains an Abelian projec-
tion E for which I is the only central projection
coveringE. Also called a discrete von Neumann
algebra.

type-II von Neumann algebra A von Neu-
mann algebra that is semifinite and contains no
Abelian projection.

type-III von Neumann algebra A von Neu-
mann algebra for which a semi-finite normal
trace does not exist. Also called a purely in-
finite von Neumann algebra.

type of a group A generic phrase that could
refer to (i.) the homotopy type of a group, (ii.) the
property of the group being of Lie type, or
(iii.) the property of the group being of Schot-
tky type, or any of several other commonly used
phrases.

c© 2001 by CRC Press LLC



U
U-invariant closed subspace A subspace of
the representation space of a unitary representa-
tion U that is invariant under each of the unitary
operators Ug .

Ulm factor A quotient group, Gα/Gα−1, of
an Abelian p-group G, where α is less than the
type of G and the Gα are defined by transfinite
induction with G1 equal to the elements of G of
infinite height. See type of a group.

unconditional inequality An inequality
which is true for all values of the variables (or
contains no variables). Examples are inequali-
ties such as x + 3 > x, x2 ≥ 0, 3 > 1.

uncountable set A set S such that there does
not exist a one-to-one mapping f : S → N
from S onto the set of natural numbers. See
also cardinality.

undefined term The initial objects about
which the basic hypotheses of an axiom system
are written. An example from set theory of an
undefined term is element.

undetermined coefficients Referring to a
method of solving a system of n linear differ-
ential equations, when the matrix of the system
has unique distinct real eigenvalues and the ini-
tial conditions are given. The method uses the
fact that each solution xi of such a system is of
the form

xi(t) = ci1e
tλ1 + · · · + cine

tλn .

From this fact, the initial conditions, and the
original system of differential equations, a sys-
tem of linear equations in the unknown coeffi-
cients cij can be derived and solved, yielding the
final solution.

unipotent component The unipotent linear
transformation that is one of the products of the

multiplicative Jordan decomposition of a non-
singular linear transformation.

unipotent group An algebraic group that has
no semisimple elements.

unipotent linear transformation A lin-
ear transformation with the property that the
semisimple component of its Jordan decompo-
sition is the identity.

unipotent matrix A square matrix whose
characteristic roots are all equal to one.

unipotent radical of a group The unipo-
tent part (in the multiplicative Jordan decompo-
sition) of the largest connected solvable closed
normal subgroup of an algebraic group.

unique factorization domain An integral
domain with the property that each nonzero el-
ement is a product of prime elements (up to in-
vertible factors).

Unique Factorization Theorem Every pos-
itive integer can be written uniquely as a product
of primes. See also unique factorization domain.

uniqueness theorem In general, a theorem
that states that an object that satisfies certain
specified conditions must be unique. Examples
are theorems that state that certain differential
equations have unique solutions that satisfy ini-
tial values and theorems that state that functions
(especially analytic functions) that satisfy cer-
tain conditions must be unique.

unirational variety An irreducible algebraic
variety over a field k that has a finite algebraic
extension which is purely transcendental over k.

uniserial algebra An algebra that can be de-
composed into a direct sum of ideals that are
primary rings.

unit (1) An invertible element, especially in
a ring.

(2) The multiplicative identity element.

unitary algebra An algebra with a unitary
element.
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unitary equivalence Let S and T be oper-
ators on a Hilbert space. We say that S and T

are unitarily equivalent if there exists a unitary
operator U such that S = U−1 ◦ T ◦ U .

unitary group The group of all unitary matri-
ces with complex coefficients, with matrix mul-
tiplication as the operation. It is denoted U(n).

unitary homomorphism A homomorphism
between unitary rings that maps the unitary ele-
ment of the first group onto the unitary element
of the second group.

unitary matrix A matrix of a unitary trans-
formation. The adjoints of these matrices are
their inverses and this property characterizes the
unitary matrices. They are also characterized by
the fact that they leave the inner product invari-
ant.

unitary representation Let G be a group. A
homomorphism ϕ : G → U(n) of G into some
unitary group is called a unitary representation.

unitary restriction The Lie algebra

gu =
∑

R
√−1Hj

+
∑

R(Eα + E−α)

+
∑

R
(√−1 (Eα − E−α)

)
,

where {Hi,Eα} is Weyl’s canonical basis for g.

unitary ring A ring with a unitary element.

unitary transformation A linear transfor-
mation that leaves the inner product

∑n
i=1 xixi

invariant. See also unitary matrix.

unit circle The set of all points in the plane
that are unit distance from the origin.

T =
{
z = eit : 0 ≤ t < 2π

}
.

unit element In a group G or ring R, the
element e that is the multiplicative identity. That
is, either e · g = g for all g ∈ G or e · r = r for
all r ∈ R.

unit group The set of units from an algebraic
number field.

unit mapping A mapping ν from a field k

to a vector space A over k that, along with an-
other mapping µ (called multiplication), form
an algebra (A,µ, ν). See algebra.

unit matrix A diagonal matrix whose ele-
ments on the main diagonal are all unity. Also
called identity matrix, since it acts as the identity
under matrix multiplication.

unit representation The one-dimensional
representation of a group G that maps each ele-
ment of G to the number 1. The unit represen-
tation is sometimes also called the trivial repre-
sentation.

univalent function See injection. The term
is usually applied to holomorphic or analytic
functions which are injections. See also analytic
function, holomorphic function.

Universal Coefficient Theorem for Homology
Let A ⊂ X be a pair of topological spaces and
letG be a group. The Universal Coefficient The-
orem for Homology is the fact that the exact se-
quence

0 → Hn(X,A) ⊗ G → Hn(X,A;G)

→ Tor (Hn−1(X,A),G) → 0

splits (non-naturally) in (X,A).

universal domain An algebraically closed
field K that has infinite transcendence degree
over a given field k.

universal enveloping algebra A universal
enveloping algebra of a Lie algebra G over a
commutative ring R with a unit element is an
associative R-algebra U(G) with a unit element,
together with a mapping σ : G → U(G) for
which the following properties hold:
(i.) σ is a homomorphism of Lie algebras, i.e.,
σ is R-linear and

σ([X, Y ]) = σ(X)σ(Y ) − σ(Y )σ (X) ,

for all X, Y ∈ G;
(ii.) For every associative R-algebra A with a
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unit element and every R-algebra mapping φ :
G → A such that

φ([X, y]) = φ(X)φ(Y ) − φ(Y )φ(X) ,

for all X, Y ∈ G, there exists a unique homo-
morphism of associative algebrasψ : (G) → A,
mapping the unit element to the unit element
such that φ = ψ ◦ σ .

universal enveloping bialgebra The cocom-
mutative bialgebra (U(L), µ, η,,, ε) over a
field k, where L is a Lie algebra over k, U(L) is
the universal enveloping algebra of L with mul-
tiplication µ and unit mapping η, the algebraic
homomorphism , : U(L) → U(L ⊕ L) �
U(L) ⊗ U(L) and ε : U(L) → k are the maps
induced by the Lie algebraic homomorphisms
L → L⊕L, x �→ x ⊕ x and L → {0}, x �→ 0,
respectively.

universal quantifier An operator containing
a variable written “(x)” or “(∀x),” that indicates
that the open sentence that follows is true of
every member of the relevant domain. More
precisely, every replacement of the variable x

by a name yields a true statement.

unknown A variable, or the quantity it repre-
sents, whose value is to be discovered by solving
an equation.

unmixed ideal An ideal which is not mixed.
See mixed ideal.

Unmixedness Theorem If R is a locally
Macaulay ring, and an ideal a of the polynomial
ring R[x1, . . . , xn] over R is generated by r el-
ements, with height a = r , then a is unmixed.
See local Macaulay ring, unmixed ideal.

unramified covering A triple (X, Y, π)

where X and Y are connected complex spaces
and π : X → Y a surjective, holomorphic map
such that any point y ∈ Y has a connected neigh-
borhoodVy with the property that π−1(Vy) con-
sists of the union of disjoint open subsets of X,
each of which is mapped isomorphically onto
Vy by π . See also ramified covering.

unramified extension Let H and K be two
fields. H is an unramified extension of K if all
prime ideals of K are unramified in H .

unramified ideal A prime ideal B of an alge-
braic number field F lying over a prime number
p such that the principal ideal (p) has in F a
product decomposition into prime ideals of the
form

(p) = Bα1
1 Bα2

2 · · · Bαm
m ,

where B1 = B and B2, . . . ,Bm �= B and α1 =
1.

upper bound A value greater than or equal to
each element of an ordered (or partially ordered)
set S is called an upper bound of S.

upper central series A sequence of sub-
groups Z0 = {e} ⊂ Z1 ⊂ Z2 ⊂ . . . , where
Z1 is the center of a group G, Z2/Z1 is the cen-
ter of G/Z1, etc.

upper semi-continuous function Let X be
a topological space and f : X → R a function.
Then f is said to be upper semi-continuous if
f−1((−∞, α)) is open for every real α.

upper triangular matrix A square matrix
having only zero entries below the main diago-
nal.
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V
valuation A map � from a field F to an
ordered ring R such that for all x, y ∈ F ,
(i.) �(x) ≥ 0 and �(x) = 0 if and only if
x = 0;
(ii.) �(x · y) = �(x) ·�(y);
(iii.) �(x + y) ≤ �(x)+�(y).

valuation ideal LetK be a number field and
let v be an additive valuation of the fieldK into
an ordered additive groupG. It follows that the
set Rv = {a ∈ K : v(a) ≥ 0} is a subring
of K and this ring has only one maximal ideal
{a : v(a) = 0} which is the valuation ideal of
v (or of Rv).

valuation ring If A ⊆ B ⊆ K are two local
rings with maximal ideals a and b, respectively,
then one says that B dominates A if a ⊂ b.
Dominance is a partial order relation on the set
of subrings ofK . The maximal elements of this
set are exactly the valuation rings of K .

value When a variable stands in place of con-
stants, then any one of these constants represents
a value of the variable.

value group The submodule {v(a) : a ∈
K\{0}} ofG, whereG is a totally ordered group
(i.e., G is a lattice-ordered commutative group
that is totally ordered, with the group operation
expressed by addition), K is a field, and v is an
additive valuation v : K → G∪{∞} of the field
K (i.e., a mapping satisfying (i.) v(a) = ∞
if and only if a = 0; (ii.) v(ab) = v(a) +
v(b) for all a, b �= 0; and (iii.) v(a + b) ≥
min{v(a), v(b)}).

Vandermonde determinant The determi-
nant of an n × n square matrix of which each
row consists of the 0th to (n − 1)st powers of

one of n given numbers x1, . . . , xn:

det




1 x1 · · · xn−1
1

1 x2 · · · xn−1
2· · ·

1 xn · · · xn−1
n


 =

∏
j<k

(
xj − xk

)
.

Vandiver’s Conjecture Let G be the ideal
class group of Q(ζ�), the �-th cyclotomic field.
Let A be the subgroup of G containing all el-
ements whose order divides �. Define Aj =
{A ∈ A : Aσt = At

j
, 1 ≤ t < �}. It can be

shown that A is the direct product of the Aj , i.e.,

A = A1A2 · · · Aj−1

and Aj ∩ Ak = {e}, if j �= k. If � is odd, Van-
diver’s conjecture states that the group A2A4A6
· · · A�−1 is trivial.

vanish To equal zero, e.g., a function f from
a set � to the real or complex numbers is said
to vanish on a subset B of � if it maps every
element of B to zero.

vanishing cocycle A cocycle which is equal
to some coboundary in a cochain complex.

variable A quantity that is allowed to repre-
sent any element of a given set. Any number in
the set is called a value of the variable and the
set itself is called the domain of the variable.

variable component A term that stands in
contrast to the fixed component of a linear sys-
tem. See fixed component. The precise mean-
ing of variable component, however, may vary
depending upon the context.

variation (1) A term, introduced by
Lagrange, used to denote a small displacement
of an independent variable or of a functional. If
f is a functional defined on a space �, a varia-
tion of the argument ω0 ∈ � is a curve ω(t, v),
where a ≤ t ≤ b, a ≤ 0, b ≥ 0, passing through
ω0. As v ranges through V (space of parame-
ters), the variations range through a family of
curves where, on each curve, t = 0 corresponds
to position ω0. In the case where V = �, v is
referred to as variation and is called the direc-
tional variation.
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(2) In statistics, the quantity 100σ/x̄ is called
the coefficient of variation of the variable x,
where σ is the standard deviation of x and x̄
is the mean.

(3) A term used to describe how one quantity
changes with respect to another quantity (quan-
tities). If the relation between two variables is
such that their ratio is a constant, one is said
to vary directly as the other. See also inverse
variation, joint variation.

(4) If f is a complex valued function defined
on an interval [a, b] ⊂ R, the variation of f is

V (f ) = sup
∞∑
k=1

|f (xk)− f (xk−1)| ,

where the supremum is taken over all partitions
a = x0, x1, . . . , xn = b of the interval [a, b].
If V (f ) < ∞, then f is said to be of bounded
variation.

(5) Assume µ is a finitely additive measure
defined on an algebra A of subsets of a set �
with values in a normed linear space (X, ‖ · ‖).
If E ∈ A, the variation of µ over E is defined
as

|µ|(E) = sup
π

∑
A∈π

‖µ(A)‖ ,

where the supremum is taken over all finite par-
titions π of E into disjoint subsets of E, each
element of π belonging to A. If |µ|(�) < ∞,
then µ is said to be of bounded variation.

variety If An denotes the affine n-space over
a field k and k[x1, x2, . . . , xn] the polynomial
ring in n variables over k, an affine algebraic
variety (or simply affine variety) is a subset of
An of the form

{
p ∈ An : f (p) = 0 for all f ∈ T }

,

where T is some subset of K[x1, x2, . . . , xn]. If
Pn denotes the projective n-space over a field
k and k[x0, x1, . . . , xn] the polynomial ring in
n + 1 variables over k, a projective algebraic
variety (or simply projective variety) is a subset
of Pn of the form

{
p ∈ Pn : f (p) = 0 for all f ∈ T }

,

where T is a subset of homogeneous polynomi-
als in K[x0, x1, . . . , xn].

A variety which is a subset of another variety
is called a subvariety. A variety V is called re-
ducible (resp. irreducible) if it can (resp. cannot)
be written as a union of two proper subvarieties.

The modern, and more general, definition of
algebraic varieties is as follows: Consider a pair
(V ,O) of a topological spaceV and its structure
sheaf O of mappings V −→ k, where k is an
algebraically closed field. This pair is called
a prealgebraic variety over k, and is denoted
simply byV , ifV has a finite open covering (Vi)
and there exists a homomorphism Vi −→ Ui
from Vi to an affine variety Ui that transforms
O|Vi to the structure sheaf ofUi . A prealgebraic
variety V is then called an algebraic variety if
the image of the diagonal mapping V −→ V ×
V is closed in the Zariski topology of the product
variety V × V .

An algebraic variety V is called an algebraic
group if it has a group structure and the mapping
V × V −→ V, (a, b) �→ ab−1 is a morphism.
In the case V is irreducible, then V is called
a group variety. A complete group variety is
called an Abelian variety.

vector (1) An entity having both magnitude
and direction. Commonly represented by a di-
rected line segment whose length and orienta-
tion in space give the magnitude and direction,
respectively. Two directed line segments repre-
sent the same vector if they are equivalent; that
is, if they have the same length and orientation.

(2) An element of a vector space. See vector
space.

vector bundle A mapping π of a vector
space E onto a vector space M such that for
each p ∈ M the inverse image π−1(p) =
{e ∈ E : π(e) = p} is a real vector space.
More specifically, a vector bundle is a five-tuple
(E,M,V k,W(k), π)where (i.) E is the bundle
space, (ii.) M is the base space, (iii.) V k is a k-
dimensional vector space, called the fiber space,
(iv.) π is a mapping ofE ontoM , called the pro-
jection, such that π−1(p) is homeomorphic to
V k for all p ∈ M , and (v.) W(k) is the general
linear group of all non-singular k × k matrices
acting on V k in such a way that if Av = v for
all v ∈ V k then A = I , the identity matrix.
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vector invariant An invariant of a matrix
group when each matrix representation of the
group is either the identity or the contragradient
map.

vector of shadow prices Linear Program-
ming is a method of finding extremal values of
certain linear functions satisfying conditions in
terms of a system of linear equations, inequali-
ties, or both. Suppose that A is an m × n ma-
trix, B ∈ Rm, and P ∈ Rn

∗
. The Problem

P is the following: to find X ∈ Rn for which
x0 = P ′X is maximal under the condition (i.)
AX=B; (ii.) X ≥ 0. An X satisfying (i.) is
called a solution; an X satisfying both (i.) and
(ii.) is called a feasible solution. We denote by
S the set of all feasible solutions. A necessary
and sufficient condition on X0 ∈ S to attain a
maximal value at X = X0 is the existence of a
U = U0 ∈ Rm

∗
such that (a.) U ′

0A ≥ P ′ and
(b.) (U ′

0A−P ′)X0 = 0. U0 is called the vector
of shadow prices.

vector quantity Any mathematical or phys-
ical quantity having a direction (usually in 2 or
3 dimensions) as well as magnitude, and hence
representible as a vector.

vector representation (of a Clifford group)
If G is the Clifford group of a quadratic form q

on an n-dimensional vector space V , a homo-
morphism φ of G into the orthogonal group of
V relative to q is called a vector representation
of G. See Clifford group.

vector space A pair (V , F ), where V is an
Abelian additive group of elements called vec-
tors, and F is a field such that for each α ∈ F
and every v ∈ V the product αv = vα is de-
fined as an element of V , and for all v,w ∈ V
and α, β ∈ F , the following hold:
(i.) (α + β)v = αv + βw,
(ii.) α(v + w) = αv + αw,
(iii.) (αβ)v = α(βv), and
(iv.) 1 v = v.
The pair (V , F ) is usually referred to by saying
that V is a vector space over F .

versine The function f (x) = 1 − cos x.

very ample (1) A linear system S of divisors
on a complete irreducible variety V is said to
be very ample if it has no fixed components and
the rational mapping φS defined by S is a closed
immersion.

(2) If D is a divisor, the set of positive divi-
sors that are linearly equivalent to D is a linear
system. If that linear system is very ample, the
divisor D is said to be very ample.

virtual arithmetic genus The integerχV (D)
:= χ(V ) − χ(L(−D)), with respect to D over
V , where V is a normal variety, D is a divisor
on V , χ(V ) is the arithmetic genus of V , L(D)
is a coherent algebraic sheaf, and

χ(F ) =
∑
q

(−1)q dim Hq(V, F )

for each coherent sheaf F .

volume A numerical characteristic of the ex-
tent of a body in three-dimensional space. In the
simplest case, the body is a rectangular
parallelepiped with sides of length a, b, c and
volume abc. The volume (of bodies in three-
dimensional space) has the following four prop-
erties: (i.) volume is non-negative; (ii.) volume
is additive, that is, if two bodies U and V , with
no points in common, have volumes v(U) and
v(V ), then the volume of their union is the sum
of their volumes, v(U ∪ V ) = v(U) + v(V );
(iii.) volume is invariant under translation, that
is if two bodiesU andV have volumes v(U) and
v(V ), and the two bodies are congruent, then
v(U) = v(V ); (iv.) volume of the unit cube is 1.

The concept of volume is extended, while
preserving properties (i.) through (iv.), to a wider
class of bodies by a process called the method of
exhaustion. LetG be a body whose surface sat-
isfies certain conditions. Find a set K ⊂ G that
can be expressed as a disjoint union of finitely
many parallelepipeds (and whose volume can
be calculated by additivity, property (ii.)). Also
find a set O ⊃ G that can be expressed as a fi-
nite disjoint union of parallelepipeds. If G is to
have a volume, we must have

v(K) ≤ v(G) ≤ v(O) .
If

sup
K⊂G

v(K) = inf
O⊃G v(O) ,
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this common value is called the volume of G,
v(G).

The concept of volume of a body in three-
dimensional space can be extended to sets in n-
dimensional space while preserving properties
(i.) through (iv.). This is done by replacing
rectangular parallelepipeds with cells. An n-
dimensional cell is a set of the form

I = {
(x1, x2, . . . , xn) : ai ≤ xi ≤ bi ,

i = 1, 2, . . . , n
}
.

The volume of the cell I is v(I ) = (b1 − a1) ·
· · · · (bn − an).
von Neumann algebra A subalgebra, A, of
the algebra B of bounded linear operators on a
Hilbert space that is self-adjoint and coincides
with its bicommutant. That is, (i.) A ∈ A im-
pliesA∗ ∈ A and (ii.) A = (A′)′, where ′ means
commutant:

A′ = {T ∈ B : TA = AT, for A ∈ A} .

von Neumann Density Theorem If A is a
subalgebra of the algebra B of bounded linear
operators on a Hilbert space, the following state-
ments are equivalent:
(i.) A is self-adjoint, contains the identity opera-
tor, and is closed in the weak operator topology.
(ii.) A is self-adjoint, contains the identity oper-
ator, and is closed in the strong operator topol-
ogy.
(iii.) A is the commutant of some subset of B.
The strong operator topology is defined by

Tn → T ⇐⇒ Tnx → T x, for all x .

See weak convergence, von Neumann algebra.

von Neumann reduction theory A theory
which reduces the study of von Neumann alge-
bras on a Hilbert space to the study of factors,
that is, von Neumann algebras whose centers
consist of scalar multiples of the identity opera-
tor.
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W
Waring’s Second Theorem Let N , p, q, n,
and d be as in Waring’s Theorem. If N > 0 then
N ≥ qn−d . See Waring’s Theorem.

Waring’s Theorem Let K be a field of char-
acteristic p consisting of q elements. Let f1,

. . . , fm be polynomials in n variables with coef-
ficients in K of degrees d1, . . . , dm, respectively,
and suppose that d = d1 + · · · + dm < n. If N
is the number of common zeros of f1, . . . , fm,
then N ≡ 0 (mod p). See also Waring’s Sec-
ond Theorem.

weak (inductive) dimension The empty set
∅ is declared to have dimension −1. Inductively,
we proceed as follows: If R is a set and if, for
every neighborhood U(p) of each point p ∈
R, there exists an open neighborhood V such
that p ∈ V ⊂ U(p) and the dimension of the
boundary of V is n − 1, then we say that R has
weak inductive dimension ≤ n.

If it is the case that the dimension of R is less
than or equal to n and it is not the case that the
dimension of R is less than or equal to n − 1,
then the dimension of R is n.

weak (inductive) dimension The empty set
∅ is declared to have dimension −1. Proceed
inductively as follows. If R is a set and if for
every neighborhood U(p) of each point p ∈
R there exists an open neighborhood V such
that p ∈ V ⊂ U(p) and the dimension of the
boundary of V is n − 1, then we say that R has
weak inductive dimension ≤ n.

If it is the case that the dimension of R is less
than or equal to n and it is not the case that the
dimension of R is less than or equal to n − 1,
then the dimension of R is n.

weak convergence (1) Convergence in the
weak topology. A sequence {xn} in a linear topo-
logical space V is said to converge weakly to an
element x in V if, for every continuous linear
functional f on V , limn→∞ f (xn) = f (x).

(2) Weak convergence of a sequence of linear
operators {Ln : V → W } to L means weak
convergence of Lnx to Lx, for every x ∈ V .

weak Dirichlet algebra A closed subalge-
bra A ⊂ C(X) such that A+ Ā is weakly dense
in L∞(m), where C(X) is a Banach algebra of
continuous complex-valued functions on a com-
pact Hausdorff space X, M(A) is the maximal
ideal space of A, ϕ ∈ M(A), Mϕ is the set of
representing measures for ϕ and m ∈ Mϕ .

weaker equivalence An equivalence relation
R is said to be weaker than an equivalence re-
lation S if equivalence in the sense of S implies
equivalence in the sense of R.

weak global dimension If M is a left R-
module over some ring R, then M is isomorphic
to the quotient of a free R-module F by some
submodule S. So M is isomorphic to F/S. S

is called the first syzygy of M . Taking the first
syzygy of S one gets the second syzygy of M ,
etc. The flat dimension of M is the least number
of times the procedure has to be repeated to get
a flat module, i.e., it is the smallest n such that
the nth syzygy is flat. If there is a bound on
such n, as M varies, then the least upper bound
of all such n is called the weak global dimension
of R. More precisely, it is the left weak global
dimension. But, in fact, the number is the same,
whether left or right modules are used.

Weak Lefschetz Theorem Let X be an al-
gebraic subvariety of complex dimension n in
the complex projective space CPN , let P ⊂
CPN be a hyperplane passing through all sin-
gular points of X (if any) and let Y = X ∩ P

be a hyperplane section of X. Then the relative
homology groupsHi(X, Y ; Z) vanish for i < n.
This implies that the natural homomorphism

Hi(Y ; Z) −→ Hi(X; Z)

is an isomorphism for i < n − 2 and surjective
for i = n − 1.

Weak Mordell-Weil Theorem If A is an
Abelian variety of dimension n, defined over
an algebraic number field k of finite degree, and
Ak the group of all k-rational points on A, then
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Ak/mAk is a finite group for any rational integer
m.

web group A Kleinian group whose region of
discontinuity consists only of Jordan domains.

Wedderburn-Mal’tsev Theorem Let A be
a finite-dimensional associative algebra over a
field k, and let R(A) denote the radical of A.
If the quotient algebra A/R(A) is separable,
then there exists a subalgebra S such that A =
S + R(A), S ∩ R(A) = {0} and S is uniquely
determined up to an inner automorphism.

Wedderburn’s Theorem Every finite divi-
sion ring is commutative and, hence, a field.

wedge product (1) IfX andY are topological
spaces and x0 ∈ X, y0 ∈ Y fixed points, the
subspace X × {y0} ∪ {x0} × Y of the product
X × Y is called a wedge product of X and Y .

(2) A multiplication operation defined on the
alternating multilinear forms on a K-module V ,
where K is a commutative ring with identity.
The wedge product is also called exterior prod-
uct and is defined to be associative. Assume L

and M are alternating multilinear forms on V of
degree r and s, respectively. Let Sr+s be the set
of permutations of {1, 2, . . . , r + s} and G ⊂ S

the set of all permutations σ which permute the
sets {1, 2, . . . , r} and {r + 1, r + 2, . . . , r + s}
within themselves. Let S be any set of permuta-
tions of {1, 2, . . . , r+s} which contains exactly
one element from each left coset of G. The
wedge product of L and M is defined by the
equation

L ∧ M =
∑
σ∈S

(sgn σ)(L ⊗ M)σ ,

where

(L ⊗ M)σ (α1, . . . , αr+s)

= (L ⊗ M)
(
ασ1, . . . , ασ(r+s)

)
.

Weierstrass canonical form (1) An equa-
tion representing the reciprocal of the gamma
function as an infinite product,

1

((x)
= xeCx

∞∏
n=1

(
1 + x

n

)
e−x/n .

Here, C is Euler’s constant

C = lim
n→∞

(
1 + 1

2
+ 1

3
+ · · · + 1

n
− log(n)

)
.

(2) An equation of the form y2 = 4x3−g2x−
g3 defining a curve which serves as a normal
model of an elliptic function field K (over a field
k) of dimension 1 that has a prime divisor of
degree 1.

Weierstrass point A point p, on a Riemann
surface R of genus g, such that there exists a
nonconstant rational function on R which has
no singularities except a pole at p of order not
exceeding g.

weight (1) The smallest cardinal number
which is the cardinality of an open base of a
topological space X is called the weight of the
space X.

(2) Let G be a complex semisimple Lie al-
gebra and fix a Cartan subalgebra H of G. Fur-
thermore, fix a lexicographic linear ordering on
H ∗

R, the linear space of all C-valued forms onH .
Let (ρ, V ) be a representation of G. For each
λ ∈ H ∗ let Vλ = {v ∈ V : ρ(H)v = λ(H)v}.
Then Vλ is a subspace of V and if Vλ �= {0},
then λ is called the weight of the representation
ρ (with respect to H ). The set of weights is fi-
nite and its maximum element with respect to
the ordering on H ∗

R is called the highest weight
of ρ.

(3) Let R be a root system in a Euclidean
space E. Let / be the set of all elements λ in
E for which 2(λ, r)/(r, r) is an integer, for all
r ∈ R. The elements of / are called weights.

weight function (1) If p and f are nonneg-
ative functions defined and integrable on 0, let
Mr(f ) be defined as

Mr(f ) =
(∫

0
pf r dx∫
0
p dx

)1/r

, r �= 0

and if Mr(f ) > 0 for some r > 0, define
M0(f ) = limr→0+ Mr(f ). The quantityMr(f )

is called the mean of degree r of f with respect
to the weight function p. If p = 1, then M1(f ),
M0(f ), andM−1(f ) are the arithmetic, geomet-
ric, and harmonic means of f , respectively.
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(2) Let (X,µ) be a measure space, where X

is a subspace of Euclidean space and the mea-
sure µ is absolutely continuous with Radon-
Nikodym derivative φ with respect to Lebesgue
measure. Then L2(X,µ), with norm

‖f ‖ =
(∫

X

|f (x)|2φ(x) dx
) 1

2

is referred to as the L2 space with weight func-
tion φ.

weight group Let (T ,K) be an element of
an arithmetic crystal group; that is, T is an
n-dimensional lattice in an n-dimensional Eu-
clidean space V , K a finite subgroup of the
orthogonal group O(V ) ((T1,K1) is equivalent
to (T2,K2) (arithmetically equivalent) if there
exists an invertible linear transformation g ∈
GL(v) so that T2 = gT1 and K2 = gK1g

−1).
The weight lattice or weight group of (T ,K) is
defined as the set

{v ∈ V : v − kv ∈ T , for all k ∈ K} .

weight lattice See weight group.

Weil-Chatelet group The group of principal
homogeneous spaces over an Abelian variety.

Weil cohomology A cohomology theory for
algebraic varieties over a field of arbitrary char-
acteristic. Let k be an algebraically closed field
and K a field of characteristic zero, called the
coefficient field. A contravariant functor V −→
H ∗(V ) from the category of complete connected
smooth varieties over k to the category of aug-
mented Z+-graded finite-dimensional anticom-
mutative K-algebras is called a Weil cohomol-
ogy with coefficients in K if the following hold:
(i.) If dim V = n, then a canonical isomor-
phism H 2n(V ) � K exists and the cup product
Hj(V ) × H 2n−j (V ) −→ H 2n(V ) induces a
perfect mapping.
(ii.) For any V1 and V2, the mapping H ∗(V1)⊗
H ∗(V1) −→ H ∗(V1×V2) defined by a⊗b −→
Proj∗1(a) · Proj∗2(b) is an isomorphism.
(iii.) Let Cj (V ) be the group of algebraic cy-
cles of codimension j on V . There exists a
fundamental-class homomorphism Cj (V ) −→

H 2j (V ) for all j which is functorial in V , com-
patible with products via the Kunneth formula,
has compatibility of the intersection with the cup
product, and maps a 0-cycle in Cn(V ) to its de-
gree as an element of K � H 2n(V ).

Weil conjecture A conjecture, first posed
in 1949 by A. Weil, regarding the properties
of the zeta function of some special varieties.
Let X be an n-dimensional complete nonsingu-
lar variety over a field Fq of q elements. Let
Z(u,X) = Z(t) be the zeta function of X. (See
congruence zeta function.) Then
(i.) Z(t) is a rational function of t ; that is, a quo-
tient of polynomials with rational coefficients.
(ii.) Z(t) satisfies the functional equation

Z
((

qnt
)−1

)
= ±qnχ/2tχZ(t) ,

where the integer χ is the intersection number
of the diagonal subvariety ;X with itself in the
product X × X.
(iii.) We can write Z(t) in the form

Z(t) =
2n−1∏
i=1

Pi(t)
(−1)i ,

where P0(t) = 1 − t , P2n(t) = 1 − qnt , and for
each i, 1 ≤ i ≤ 2n−1, Pi(t) = ∏Bi

j=1(1−αij t)

is a polynomial with integer coefficients and αij

are algebraic integers of absolute value qi/2.
(iv.) When X is the reduction modulo p of a
complete nonsingular variety Y of characteristic
zero, then the degree, Bi , of Pi is the ith Betti
number of the topological space Y considered
as a complex manifold.

Weil group LetK be a finite Galois extension
of an algebraic number field k, let CK be the
idele class group of K , and let

αK/k ∈ H 2(Gal(K/k), CK)

be the canonical cohomology class of field the-
ory. Then αK/k determines an extension WK/k

of Gal(K/k) and if L is a Galois extension of
k containing K , there is a canonical homomor-
phism WL/k −→ WK/k . The Weil group Wk

for k̄/k is defined as the projective limit group
projK lim WK/k of the WK/k . If kv is a local
field, the Weil group Wkv for k̄v/kv is defined
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by replacing the idele class group CK with the
multiplicative group K×

w in the above definition,
where Kw is a Galois extension of kv .

Weil L-function Let Wk be a Weil group of
an algebraic number field k, and let ρ : Wk −→
GL(V ) be a continuous representation of Wk on
a complex vector space V . (See Weil group.)
Let p be a finite prime of k or an Archimedean
prime of k, let ρp be the representation of Wkp

induced by ρ and let

φ : Wkp −→ Gal(k̄p/kp)

be a surjective homomorphism. Let > be an
element of Wkp such that φ(>) is the inverse
Frobenius element of p in Gal(k̄p/kp). Let I
be the subgroup of Wkp consisting of elements
w such that φ(w) belongs to the inertia group of
p in Gal(k̄p/kp) and let V I be the subspace of
V consisting of elements that are fixed by ρp(I).
Let N(p) denote the norm of p and define the
function

L(V, s) = L(s)

=
∏
p

det(1 − (N(p))−sρp(>)|V I )−1.

Then this product converges for s in some right
half-plane and is called the Weil L-function for
the representation ρ : Wk −→ GL(V ).

Weil number An algebraic integer of a finite
field K of q elements is called a Weil number
for q if each of its conjugates has absolute value√
q.

well-behaved A *-derivation δ of a C∗-
algebra such that, for every self-adjoint x in
its domain D(δ), there exists a state ϕ with
|ϕ(x)| = ‖x‖ and ϕ((.x)) = 0.

Weyl chamber (1) See Weyl group, for the
Weyl chambers of a root system in a finite di-
mensional Euclidian space.

(2) Let G be a connected affine algebraic
group, T a maximal torus in G, and B a Borel
subgroup ofG containingT . The set of all semi-
regular one-parameter subgroups inT whose as-
sociated Borel groups equal B is called a Weyl
chamber of B with respect to T in G.

Weyl group (1) IfR is a root system in a finite
dimensional Euclidean space E, an element rα
of the general linear group GL(E) is called a
reflection with respect to α ∈ R if rα(α) = −α

and rα fixes the points of a hyperplane Hα in E.
The subgroupW(R) of GL(E), generated by the
reflections rα , α ∈ R, is called the Weyl group
of R. The connected components of E\ ∪α Hα

are called the Weyl chambers of R.
(2) If G is a connected affine algebraic group

and T , a torus in G, the quotient group W(T,G)

= NG(T )/ZG(T ), where NG(T ) is the normal-
izer of T in G and ZG(T ) is the centralizer of T
in G, is called the Weyl group of G relative to T .
Weyl groups of maximal tori are isomorphic and
are referred to as the Weyl groups of the group
G.

Weyl’s canonical basis Let G be a semisim-
ple Lie algebra over C. Let H be a Cartan sub-
algebra of G and α a C-valued form on H . Let
Gα = {x ∈ G : ad(h)x = α(h)x for all h ∈
H }. Let ; be the set of all nonzero linear forms
α on H for which Gα �= {0}. Then ; is a finite
set whose elements are the roots of G relative
to H , and for each α ∈ ;, Gα is of dimension
one. Write G as a sum G = H + ∑

α∈; Gα .
If {h1, . . . , hn} is a basis for H and {eα} a ba-

sis for Gα , then {hi, eα} is a basis for G called
Weyl’s canonical basis if the following three
conditions are satisfied:
(i.) α(hi) ∈ R, α ∈ ;, 1 ≤ i ≤ n.
(ii.) The Killing form B of G satisfies B(eα ,
e−α) = −1 for every α ∈ ;.
(iii.) Ifα, β, α+β ∈ ; and [eα, eβ ] = nα,βeα+β

(nα,β ∈ C), then nα,β ∈ R and nα,β = n−α,−β .

Weyl’s character formula The formula

χρ(h) = ξ/+δ(h)

ξδ(h)
, h ∈ H ,

where G is a compact, connected, semisimple
Lie group, (ρ, V ) is an irreducible representa-
tion of G, ξρ is the character of ρ (χρ(g) =
trρ(g)), / is the highest weight of ρ, λ ∈ P ,
ξρ(h) = ∑

w∈W det(w)e(w(λ))(X), h = exp X,
and δ = 1

2

∑
α∈;+ α.

Weyl’s Theorem A theorem of H. Weyl stat-
ing that any finite dimensional representation
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of a semisimple Lie algebra is completely re-
ducible.

Whittaker model Let G be a group with a
subgroup N (as in the Iwasawa decomposition).
Letχ be a unitary character ofN on a spaceV of
one complex dimension. Then the action of N
onV viaχ induces a line bundleL onG/N . The
Whittaker model for G defined by χ is the space
of smooth sections of L (namely C∞ functions
from G to V such that f (gn) = χ(n)−1f (g)).

whole number (1) One of the natural num-
bers, 1, 2, 3, . . . .

(2) An integer that is positive, negative, or
zero.

Witt decomposition (1) IfV is a vector space
over a field of characteristic different from 2,
equipped with a metric structure induced by a
symmetric or skew-symmetric bilinear formf , a
decompositionV = V1+V2+V3 ofV is called a
Witt decomposition ifV1 andV2 are isotropic,V3
is anisotropic, andV3 is perpendicular toV1+V2
with respect to the bilinear form f .

(2) Let F be a field of characteristic differ-
ent from 2. A decomposition q = q1 ⊕ q2
of a quadratic form, where q(x1, . . . , qm) =
q1(x1, . . . , x2n) + q2(x2n+1, . . . , xm), is called
a Witt decomposition of q if q1 = x1x2 + · · · +
x2n−1x2n and q2(x2n+1, . . . , xm) = 0 only if
x2n+1 = x2n+2 = · · · = xm = 0.

Witt’s Theorem If V is a finite dimensional
vector space over a field of characteristic differ-
ent from 2, equipped with a metric structure in-
duced by a non-degenerate symmetric or skew-
symmetric bilinear form, then any isometry be-
tween two subspaces of V may be extended to
a metric automorphism of the entire space.

Witt vector An infinite sequence x = (x0,

x1, . . . ) with components in an associative and
commutative ring with a unit. Witt vectors are
added and multiplied as follows:

(x0, x1, x2, . . . ) + (y0, y1, y2, . . . )

= (p0 (x0, y0) , p1 (x0, x1, y0, y1) ,

p2 (x0, x1, x2, y0, y1, y2) , . . . )

(x0, x1, x2, . . . ) · (y0, y1, y2, . . . )

= (q0 (x0, y0) , q1 (x0, x1, y0, y1) ,

q2 (x0, x1, x2, y0, y1, y2) , . . . ) ,

where pn and qn are polynomials in variables
v0, . . . , vn and w0, . . . , wn, respectively, with
integer coefficients such that

fn(p0, . . . , pn) =fn(v0, . . . , vn)

+ fn(w0, . . . , wn)

and

fn(q0, . . . , qn) =fn(v0, . . . , vn)

· fn(w0, . . . , wn) ,

where fn = z
pn

0 + pz
pn−1

1 + · · · + pnzn are
polynomials, n a natural number and p a prime
number.

word A finite string w of syllables, written
in juxtaposition, where a syllable is any symbol
of the form ani , n any integer, where ai , called
a letter, is an element of some set A called al-
phabet. If the alphabet is A = {a1, a2, a3, a4},
then a1a

3
2a

−1
4 a2

3 is a word. Every word can be
changed to a reduced word by replacing an oc-
currence of ani a

m
i by an+m

i and by replacing an
occurrence of a0

i by 1, that is, dropping it out
of the word. The reduced form of the word
a1a2a

−7
2 a2

4a4a
0
3 is a1a

−6
2 a3

4 .

word problem A problem of determining if
a given word w is a consequence of a given set
of words {wi} ⊂ F(A), where F(A) is the free
group generated by the alphabet A; that is, to
determine if w is an element of the least normal
subgroup N of F(A) containing {wi}.
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X
x-axis The first of the coordinate axes used
in locating points in two- or three-dimensional
space.

(1) In the plane (two-dimensional space), the
coordinate axes are two straight lines intersect-
ing in a point O called the origin and denoted
by the pair (0, 0). By indicating which of the
axes is the first one, we introduce an orientation
to the plane. The location of any point P in the
plane is given by an ordered pair (a, b), which
means that the point P can be reached from the

origin by moving a units along the x-axis (the
first axis) and then b units parallel to the second
axis, which is called the y-axis.

(2) In three-dimensional space, the coordi-
nate axes are the three lines of intersection of
three planes which intersect in a single point
O called the origin and denoted by the triple
(0, 0, 0). By labeling the axes as the first, sec-
ond, and third we introduce an orientation to the
three-dimensional space. The location of any
point P is given by an ordered triple (a, b, c),
which means that the point P can be reached
from the origin by moving a units along the x-
axis (first axis), then b units parallel to the sec-
ond axis, called the y-axis, and finally c units
parallel to the third axis which is called the z-
axis
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Y
y-axis See x-axis.

Young diagram A graphical representation
of a partition of a natural number. If α = (α1,

α2, . . . , αk) is a partition of a natural number
n, that is, n = ∑

αi with each αi ∈ N, the
Young diagram (of order n) of the partition con-
sists of n blocks arranged in rows and columns
in such a way that the ith row has αi blocks. The
first block in each row lies in the first column.
The transposed Young diagram α′ corresponds
to the partition α′ = (α

′
1, α

′
2, . . . , α

′
m), where

α
′
j is the number of cells in the j th column of

the Young diagram. If the numbers 1, 2, . . . , n

are inserted in the blocks of a Young diagram
in some order, the diagram is called a Young
tableau.

Young symmetrizer An element eα of the
group ring of the symmetric group on n elements
defined by a Young tableau α of order n. See
Young diagram. The symmetrizer is determined
by the following rule: Let Rα and Cα be the
subgroup of the symmetric group consisting of
all permutations that permute 1, . . . , m in each
row and each column, respectively, of α. Let

rα =
∑

σ∈Rα

σ, cα =
∑

σ∈Cα

sgnn(σ )σ ,

where sgnn(σ ) = ±1 is the sign of σ . Then
eα = cαrα .
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Y
y-axis See x-axis.

Young diagram A graphical representation
of a partition of a natural number. If α = (α1,

α2, . . . , αk) is a partition of a natural number
n, that is, n = ∑

αi with each αi ∈ N, the
Young diagram (of order n) of the partition con-
sists of n blocks arranged in rows and columns
in such a way that the ith row has αi blocks. The
first block in each row lies in the first column.
The transposed Young diagram α′ corresponds
to the partition α′ = (α

′
1, α

′
2, . . . , α

′
m), where

α
′
j is the number of cells in the j th column of

the Young diagram. If the numbers 1, 2, . . . , n

are inserted in the blocks of a Young diagram
in some order, the diagram is called a Young
tableau.

Young symmetrizer An element eα of the
group ring of the symmetric group on n elements
defined by a Young tableau α of order n. See
Young diagram. The symmetrizer is determined
by the following rule: Let Rα and Cα be the
subgroup of the symmetric group consisting of
all permutations that permute 1, . . . , m in each
row and each column, respectively, of α. Let

rα =
∑

σ∈Rα

σ, cα =
∑

σ∈Cα

sgnn(σ )σ ,

where sgnn(σ ) = ±1 is the sign of σ . Then
eα = cαrα .
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Z
Zariski closed set A set which is closed in
the Zariski topology. See Zariski topology.

Zariski dense Dense in the Zariski topology.
See Zariski topology.

Zariski open set A set which is open in the
Zariski topology. See Zariski topology.

Zariski ring A Noetherian ring R, equipped
with the I -adic topology, satisfying the follow-
ing condition: every element b ∈ R such that
1−b ∈ I has an inverse inR if and only if every
ideal of R is a closed subset of R in the I -adic
topology. (The I -adic topology determined by
an ideal I of R is defined by taking {In}n∈N as a
fundamental system of neighborhoods of zero.)

Zariski’s Connectedness Theorem (1) If
f : X −→ Y is a proper surjective morphism
of irreducible varieties, the field K(Y) of ratio-
nal functions separably algebraically closed in
K(X) and y ∈ Y a normal point, then f−1(y)

is connected.

(2) For a proper morphism f : X −→ Y

of locally Noetherian schemes with f∗(OX) =
OY , every fiber f−1(y) of f is connected and
nonempty for y ∈ Y .

Zariski’s Main Theorem (1) If f : X −→
Y is a birational transformation of projective va-
rieties, where X is normal, then for any funda-
mental point p of f , the total transform f (p) is
connected and of dimension ≥ 1.

(2) A birational morphism f : X −→ Y of
algebraic varieties is an open imbedding into a
neighborhood of a normal point y ∈ Y iff−1(y)

is a finite set.

Zariski topology (1) A topology defined on
An, the affine space of all n-tuples of elements
of a field F . This topology is defined by taking
the closed sets to be the algebraic subsets of An.

(2) A topology defined on the affine scheme
Spec(A) of a ring A by taking the closed sets to
be the sets {p ∈ Spec(A) : I ⊂ p}, where I is
an ideal of A.

Zassenhaus group A subgroup H of SA, the
group of permutations of a finite setA, satisfying
the following three conditions:
(i.) H is 2-transitive, that is, for every a, b, c,
d ∈ A there exists σ ∈ H such that σ(a) = b

and σ(c) = d,
(ii.) the only element ofH that leaves more than
two elements of A fixed is the identity, and
(iii.) for any pair a, b ∈ A, the subgroup {h ∈
H : h(a) = a, h(b) = b} is nontrivial.

z-axis The third (and last) of the coordinate
axes used to locate points in three-dimensional
space. See x-axis.

Z-basis Let Z be the ring of integers. Let S
be a ring containing Z. A left S module V has
a Z basis if V is freely generated as a Z module
(Abelian group) by a family of generators vα ,
a ∈ A. This means (i.) each vα ∈ V ; (ii.) if
a finite sum n1vα1 + · · · + nkvαk = 0, where
n1, . . . , nk ∈ Z, then ni = 0 for i = 1, . . . , k;
(iii.) the set of all finite sumsn1vα1 +· · ·+nkvαk ,
wheren1, . . . , nk ∈ Z, is equal toV . The family
vα, α ∈ A, is called a Z-basis for V .

This generalizes to the case where Z is re-
placed by an arbitrary subring R of S, in which
case the family vα, α ∈ A, is called an R-basis
for V . See also R-basis.

Z-equivalence (1) Let Z be the ring of in-
tegers, let S be an arbitrary ring, and let V and
W be S submodules with finite Z bases, BV and
BW . The modules V and W are Z-equivalent if
there is an S module isomorphism between V

and W which, relative to the bases BV and BW ,
has a matrixU with integer entries, and such that
the inverse matrix U−1 also has integer entries.
It is a theorem that Z-equivalence is indepen-
dent of the particular choice of the bases BV

and BW . Furthermore, Z-equivalence is related
to the classical notion of integral equivalence
for matrices. See also integral equivalence, iso-
morphism, Z-basis.

The two most important applications of Z-
equivalence arise in (i.) the Jordan-Zassenhaus
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Theorem, and (ii.) the theory of integral rep-
resentations of groups. See integral representa-
tion, Jordan-Zassenhaus theorem.

The notion of Z-equivalence generalizes to
the case where Z is replaced by an arbitrary sub-
ring R of S, in which case the notion is called
R-equivalence. See also R-equivalence.

(2) Two integral representations T1 and T2
of a finite group G are Z-equivalent if there is
an invertible matrix U , with integer entries, and
such that the inverse matrix U−1 also has inte-
ger entries, which intertwines T1 and T2. This
means that T2(g) = U−1T1(g)U for all g ∈ G.
See also integral representation.

zero algebra An algebra having only one
element, 0 (zero), which then is also the unit of
the algebra.

zero divisor If a and b are two nonzero el-
ements of a ring R such the a · b = 0, then a

and b are divisors of zero or zero divisors. More
specifically, a is a left divisor of zero and b is
a right divisor of zero. In a commutative ring,
every left divisor of zero is also a right divisor
of zero and conversely.

zero element The identity element of a group
where the group operation is denoted by+ (addi-
tion). Depending on what additional structures
the group has, the element may be called the
zero element of a field, of a linear space, of a
ring.

zero exponent The integer 0, as a power
to raise elements of a multiplicative group. A
consequence of one of the laws of exponents is
am/an = am−n. Thus, when the base a is differ-
ent from zero and the two exponents are equal,
n = m the equation becomes 1 = am/an =
am−n = a0.

zero homomorphism A homomorphism φ :
G −→ G′ that maps every element of G to the
identity in G. A zero homomorphism is also
called the trivial homomorphism.

zero matrix A matrix in which every entry
is zero.

zero of a function A value of the argument
for which the function is zero. (A value of x
such that f (x) = 0.)

zero point (1) If f is a nonzero holomorphic
function and f (a) = 0, then a is a zero point
of f . (See zero of a function.) If a is a zero
point of f , then there exists a unique natural
number n and a holomorphic function fn such
that f (z) = (z−a)nfn(z), where fn(a) �= 0. In
that case, n is called the order of the zero point
a and a is a zero point of order n.

(2) If P is a polynomial in n variables over
a ring R and P(α1, α2, . . . , αn) = 0 ∈ R, then
(α1, α2, . . . , αn) is a zero point of P . (See zero
of a function.) If n =1, the zero points are called
roots.

(3) Consider a polynomial ringK[x1, . . . , xn]
in n variables over a field K and a field ) con-
taining K . A point (α1, α2, . . . , αn) in )n =
{(ω1, ω2, . . . , ωn) : ωi ∈ )} is a zero point of a
subset S of K[x1, . . . , xn] if f (α1, α2, . . . , αn)

= 0 for all f ∈ S.

zero representation If K is a commutative
ring with a unit andA an associative algebra over
K , an algebra homomorphism A −→ EK(M),
where EK(M) is the associative algebra over
K of all K-endomorphism of a K-module M , is
called the zero representation ofA if the module
M = {0}.
zero ring A ring having only one element,
the zero element (the identity with respect to
addition).

zeta function (1) The series

ζ(s) = 1 + 1

2s
+ 1

3s
+ 1

4s
+ · · ·

which converges for all real numbers s > 1 is
known as the Riemann ζ -function. B. Riemann
was the first to treat ζ(s) as a function of a com-
plex variable and showed that ζ(s) is holomor-
phic and has no zeros in �s > 1. Furthermore,
Riemann proved that ζ(s) can be extended to
a meromorphic function in the whole complex
plane whose only pole is a simple pole a s = 1.
See also Riemann hypothesis.

(2) Any of several special functions called ζ -
functions that (i.) are meromorphic on the whole
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complex plane, (ii.) have Dirichlet series ex-
pansion, (iii.) have Euler product expansion,
and (iv.) satisfy certain functional equations. See
also L-function.

zeta function defined by Hecke operators
Let Tn (n = 1, 2, 3, . . . ) be a Hecke operator
defined with respect to a discontinuous group
0. Let M be the representation space of the
Hecke operator ring K and denote by (Tn) the
matrix of the operation of Tn ∈ K on M . The
matrix-valued function

∑
n(Tn)n

−s is called the
ζ -function defined by Hecke operators.

ZG-lattice LetG be a finite group. A finitely
generated ZG-module which is Z-torsion free is
called a ZG-lattice.

zonal spherical function (1) A spheri-
cal function of degree n (a harmonic polyno-
mial in three variables of degree n restricted
to the unit sphere S2 of Euclidean space E3),
Z
(n)
u (x1, x2, x3) (u ∈ S2), which has a constant

value on any circle in S2 whose plane is perpen-
dicular to the vector u.

(2) Let G be a locally compact unimodu-
lar group and K a compact subgroup of G.

Denote by C(G;K) the set of all continu-
ous complex-valued functions f on G that are
invariant under every left translation by ele-
ments in K , by C(G,K) the set of elements
in C(G;K) that are two-sided K-invariant, and
by L the subset of C(G,K) consisting of all
functions with compact support. Then L is an
algebra over C if the product of two elements is
defined by convolution. If λ is an algebra homo-
morphism from L into C, and the eigenspace
{g ∈ C : f ∗g = λ(f )g for all f ∈ L} contains
a nonzero element, then it contains a two-sided
K-invariant elementω normalized byw(e) = 1.
This element ω is unique and is called the zonal
spherical function associated with λ.

Z-order Let Z be the ring of integers. Let A
be a finite dimensional algebra with unit element
e over a field F . A subring G of A is called
a Z-order in A if it satisfies (i.) e ∈ G, (ii.)
G contains a basis of A as a vector space over
the field F (an F -basis of A), and (iii.) G is a
finitely generated Z module (a finitely generated
Abelian group).

This generalizes to the case where Z is re-
placed by an arbitrary ring R, in which case G
is called an R-order. See also R-basis, R-order.
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