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Publication due May 2006

Practical Grey-box Process Identification
Torsten Bohlin
Publication due May 2006

Nonlinear H2/H∞ Constrained Feedback Control
Murad Abu-Khalaf, Jie Huang and Frank L. Lewis
Publication due May 2006



Ben M. Chen, Tong H. Lee, Kemao Peng
and Venkatakrishnan Venkataramanan

Hard Disk Drive
Servo Systems
2nd Edition

With 124 Figures

123



Ben M. Chen, PhD
Department of Electrical and Computer
Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576

Kemao Peng, PhD
Department of Electrical and Computer
Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576

Tong H. Lee, PhD
Department of Electrical and Computer
Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576

Venkatakrishnan Venkataramanan, PhD
Mechatronics and Recording Channel
Division
Data Storage Institute
DSI Building, 5 Engineering Drive 1
Singapore 117608

British Library Cataloguing in Publication Data
Hard disk drive servo systems. - 2nd ed. - (Advances in

industrial control)
1.Servomechanisms 2.Data disk drives - Design 3.Hard disks
(Computer science)
I.Chen, Ben M., 1963-
629.8’323

ISBN-10: 1846283043

Library of Congress Control Number: 2006921170

Advances in Industrial Control series ISSN 1430-9491
ISBN-10: 1-84628-304-3 2nd edition e-ISBN 1-84628-305-1 2nd edition Printed on acid-free paper
ISBN-13: 978-1-84628-304-8 2nd edition
ISBN 1-85233-500-9 1st edition

© Springer-Verlag London Limited 2006

First published 2002
Second edition 2006

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive Natick,
MA 01760-2098, U.S.A. http://www.mathworks.com

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed in Germany

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com



Advances in Industrial Control

Series Editors

Professor Michael J. Grimble, Professor of Industrial Systems and Director
Professor Michael A. Johnson, Professor (Emeritus) of Control Systems
and Deputy Director

Industrial Control Centre
Department of Electronic and Electrical Engineering
University of Strathclyde
Graham Hills Building
50 George Street
Glasgow G1 1QE
United Kingdom

Series Advisory Board

Professor E.F. Camacho
Escuela Superior de Ingenieros
Universidad de Sevilla
Camino de los Descobrimientos s/n
41092 Sevilla
Spain

Professor S. Engell
Lehrstuhl für Anlagensteuerungstechnik
Fachbereich Chemietechnik
Universität Dortmund
44221 Dortmund
Germany

Professor G. Goodwin
Department of Electrical and Computer Engineering
The University of Newcastle
Callaghan
NSW 2308
Australia

Professor T.J. Harris
Department of Chemical Engineering
Queen’s University
Kingston, Ontario
K7L 3N6
Canada

Professor T.H. Lee
Department of Electrical Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576



Professor Emeritus O.P. Malik
Department of Electrical and Computer Engineering
University of Calgary
2500, University Drive, NW
Calgary
Alberta
T2N 1N4
Canada

Professor K.-F. Man
Electronic Engineering Department
City University of Hong Kong
Tat Chee Avenue
Kowloon
Hong Kong

Professor G. Olsson
Department of Industrial Electrical Engineering and Automation
Lund Institute of Technology
Box 118
S-221 00 Lund
Sweden

Professor A. Ray
Pennsylvania State University
Department of Mechanical Engineering
0329 Reber Building
University Park
PA 16802
USA

Professor D.E. Seborg
Chemical Engineering
3335 Engineering II
University of California Santa Barbara
Santa Barbara
CA 93106
USA

Doctor K.K. Tan
Department of Electrical Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576

Doctor I. Yamamoto
Technical Headquarters
Nagasaki Research & Development Center
Mitsubishi Heavy Industries Ltd
5-717-1, Fukahori-Machi
Nagasaki 851-0392
Japan



To our families



Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 
transfer in control engineering. The rapid development of control technology has 
an impact on all areas of the control discipline. New theory, new controllers, 
actuators, sensors, new industrial processes, computer methods, new applications, 
new philosophies , new challenges. Much of this development work resides in 
industrial reports, feasibility study papers and the reports of advanced collaborative 
projects. The series offers an opportunity for researchers to present an extended 
exposition of such new work in all aspects of industrial control for wider and rapid 
dissemination. 

Hard disk drive systems are ubiquitous in today’s computer systems and the 
technology is still evolving. There is a review of hard disk drive technology and 
construction in the early pages of this monograph that looks at the characteristics 
of the disks and there it can be read that: “bit density… continues to increase at an 
amazing rate”, “spindle speed… the move to faster and faster spindle speeds 
continue”, “form factors… the trend…is downward… to smaller and smaller
drives”, “performance… factors are improving”, “redundant arrays of inexpensive 
disks… becoming increasingly common, and is now seen in consumer desktop 
machines”, “reliability… is improving slowly… it is very hard to improve the 
reliability of a product when it is changing rapidly” and finally “interfaces… 
continue to create new and improved standards… to match the increase in 
performance of the hard disks themselves”. To match this forward drive in 
technology, control techniques need to progress too and that is the main reason 
why Professor Chen and his co-authors T.H. Lee, K. Peng and V. Venkataramanan 
have produced this second edition of their well-received Advances in Industrial 
Control monograph Hard Disk Drive Servo Systems.

The monograph opens with two chapters that create the historical context and 
the system modelling framework for hard disk drive systems. These chapters are 
followed by the control and applications content of the monograph. Hard disk drive 
systems are beset by nonlinear effects arising from friction, high-frequency 
mechanical resonances and actuator saturation so any control methods used have to 
be able to deal with these physical problems. Furthermore, there are two 
operational modes to contend with: track seeking and track following each with 



x Series Editors’ Foreword 

different performance specifications. The type of control solution proposed by 
Professor Chen and his co-authors emerges from the interplay between the desire 
to mitigate the nonlinear effects and yet find a control strategy to unify the control 
of the two operational modes. To reveal the strategy developed in this Foreword 
would be like prematurely revealing the ending of a fascinating mystery story. 

The monograph also has other valuable features: Chapter 3 contains succinct 
presentations of five different control methods with formulas given for both 
continuous and discrete forms. Two chapters on nonlinear control follow that 
covering linear control techniques. These chapters review classical time-optimal 
control and introduce the relatively new composite nonlinear feedback (CNF) 
control method. Again, presentations are given in both the continuous-time and 
discrete-time domains for completeness. 

The second part of the monograph comprises five applications studies 
presented over five chapters. Whilst the first three of these chapters test out the 
control methods discussed in earlier chapters, the last two chapters introduce new 
applications hardware into the hard disk drive servo system problem: microdrive 
systems and piezoelectric actuators; nonlinear system effects are prominent in 
these new hardware systems. 

Overall, it is an excellent monograph that exemplifies the topicality of control 
engineering problems today. Many lecturers will find invaluable material within 
this monograph with which to enthuse and motivate a new generation of control 
engineering students. Right at the end of this monograph, Professor Chen and his 
co-authors have extracted a benchmark control design problem for a typical hard 
disk drive system. The authors present their solution and “invite interested readers 
to challenge our design”, so happy reading and computing! 

M.J. Grimble and M.A. Johnson 
Industrial Control Centre 
Glasgow, Scotland, U.K. 



Preface

Nowadays, it is hard for us to imagine what life would be like without computers and
what computers would be like without hard disks. Hard disks provide an important
data-storage medium for computers and other data-processing systems. Many of us
can still recall that the storage medium used on computers in the 1960s and 1970s
was actually paper, which was later replaced by magnetic tapes. The key technolog-
ical breakthrough that enabled the creation of the modern hard disk drives (HDDs)
came in the 1950s, when a group of researchers and engineers in IBM made the very
first production hard disk, IBM 305 RAMAC (random access method of accounting
and control). The first generation of hard disks used in personal computers in the
early 1980s had a capacity of 10 megabytes. Modern hard disks have a capacity of
several hundred gigabytes.

In modern HDDs, rotating disks coated with a thin magnetic layer or record-
ing medium are written with data that are arranged in concentric circles or tracks.
Data are read or written with a read/write (R/W) head, which consists of a small
horseshoe-shaped electromagnet. It is suggested that, on a disk surface, tracks should
be written as closely spaced as possible so that we can maximize the usage of the
disk surface. This means an increase in the track density, which subsequently means
a more stringent requirement on the allowable variations of the position of the head
from the true track center. The prevalent trend in hard disk design is towards smaller
drives with increasingly larger capacities. This implies that the track width has to be
smaller, leading to lower error tolerance in the positioning of the head. As such, it is
necessary to introduce more advanced control techniques to achieve tighter regula-
tion in the control of the HDD servomechanism.

The scope of this second edition remains the same. It is to provide a systematic
treatment on the design of modern HDD servo systems. We particularly focus on the
applications of some newly developed control theories, namely the robust and per-
fect tracking (RPT) control, and the composite nonlinear feedback (CNF) control.
Emphasis is made on HDD servo systems with either a single-stage voice-coil-motor
(VCM) actuator or a dual-stage actuator in which an additional microactuator is at-
tached to a conventional VCM actuator to provide faster response and hence higher
bandwidth in the track-following stage. New design considerations and techniques,



xii Preface

which have drastically improved the overall performance of our HDD servo systems,
are introduced in this new edition. We also take this opportunity to extend the CNF
control technique to systems with external disturbances and to include a comprehen-
sive modeling and compensation of friction and nonlinearities as well as a complete
servo system design of a microdrive.

The intended audience of this book includes practicing engineers in hard disk
and CD-ROM drive industries and researchers in areas related to servo systems and
engineering. An appropriate background for this monograph would be some senior
level and/or first-year graduate level courses in linear systems and multivariable con-
trol. Some knowledge of control techniques for systems with actuator nonlinearities
would certainly be helpful.

We have the benefit of the collaboration of several coworkers, from whom we
have learned a great deal. Many of the results presented in this monograph are the
results of our collaboration. Among these coworkers are Professor Chang C. Hang
of the National University of Singapore, Dr Siri Weerasooriya, Dr Tony Huang, Mr
Wei Guo and Dr Guoxiao Guo of the Data Storage Institute of Singapore. We are
indebted to them for their contributions.

The authors of this monograph are particularly thankful to Guoyang Cheng for
his help in proofreading the whole manuscript. The first two authors would also like
to thank their current and former graduate students, especially Yi Guo, Xiaoping
Hu, Lan Wang, Teck-Beng Goh, Kexiu Liu, Zhongming Li, Chen Lin and Guoyang
Cheng, for their help and contributions.

We are grateful to Professor Zongli Lin of the University of Virginia, for his
invaluable comments and discussions on the subject related to the composite nonlin-
ear feedback control technique of Chapter 5. This technique, originally proposed by
Zongli and his coworkers and later enhanced by us, has emerged as an effective tool
in designing HDD servo systems. We are also indebted to Professor Iven Mareels of
the University of Melbourne and Professor Frank Lewis of the University of Texas
at Arlington, who were visiting our department here at the National University of
Singapore, for many beneficial discussions on related subjects.

We would like to acknowledge the National University of Singapore for provid-
ing us with the funds for three research projects on the development of HDD servo
systems. We are also grateful to people in the Design Technology Institute and the
Data Storage Institute of Singapore for their support to our projects.

Last, but certainly not the least, we owe a debt of gratitude to our families for
their sacrifice, understanding and encouragement during the course of preparing this
monograph. It is very natural that we once again dedicate this second edition to our
families.

Kent Ridge, Singapore Ben M. Chen
October 2005 Tong H. Lee

Kemao Peng
V. Venkataramanan
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Notation

We adopt the following notation and abbreviations throughout this monograph.

the set of real numbers

the entire complex plane

the set of complex numbers inside the unit circle

the set of complex numbers outside the unit circle

the unit circle in the complex plane

the open left-half complex plane

the open right-half complex plane

the imaginary axis in the complex plane

an identity matrix

an identity matrix of dimension

the transpose of
H the complex conjugate transpose of

Im the range space of

Ker the null space of

the Moore–Penrose (pseudo) inverse of

the set of eigenvalues of

the maximum eigenvalue of

the maximum singular value of

the usual 2-norm of a matrix

the -norm of a stable system or

the -norm of a signal or

the set of all functions whose norms are finite

the -norm of a signal or
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the set of all functions whose -norms are finite

the -norm of a stable system or

dim the dimension of a subspace

the orthogonal complement of a subspace of

ARE algebraic Riccati equation

CNF composite nonlinear feedback

DSA digital signal analyzer

DSP digital signal processor

GB gigabytes

HDD hard disk drive

LDV laser Doppler vibrometer

LQG linear quadratic Gaussian

LQR linear quadratic regulator

LTR loop transfer recovery

MB megabytes

MSC mode-switching control

N/RRO non-/repeatable runouts

PES position error signal

PID proportional-integral-derivative

PTOS proximate time-optimal servomechanism

RPT robust and perfect tracking

R/W read/write

TMR track misregistration

TOC time-optimal control

TPI tracks per inch (kTPI = kilo TPI)

VCM voice-coil-motor

ZOH zero-order hold

Also, , where is a subspace and is a matrix. Finally,
we append a at the end of a proof or a result statement.
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Introduction

1.1 Introduction

Hard disk drives (HDDs) provide an important data-storage medium for computers
and other data-processing systems. In most commercial HDDs, rotating disks coated
with a thin magnetic layer or recording medium are written with data that are ar-
ranged in concentric circles or tracks. Data are read or written with a read/write
(R/W) head, which consists of a small horseshoe-shaped electromagnet. Figure 1.1
shows a simple illustration of a typical hard disk servo system with a voice-coil-
motor (VCM) actuator.

The two main functions of the R/W head-positioning servomechanism in disk
drives are track seeking and track following. Track seeking moves the R/W head
from the present track to a specified destination track in minimum time using a
bounded control effort. Track following maintains the head as close as possible to
the destination track center while information is being read from or written to the
disk. Track density is the reciprocal of the track width. It is suggested that, on a disk
surface, tracks should be written as closely spaced as possible so that we can maxi-
mize the usage of the disk surface. This means an increase in the track density, which
subsequently means a more stringent requirement on the allowable variations of the
position of the heads from the true track center.

The prevalent trend in hard disk design is towards smaller hard disks with in-
creasingly larger capacities. This implies that the track width has to be smaller,
which leads to lower error tolerance in the positioning of the head. The controller
for track following has to achieve tighter regulation in the control of the servomech-
anism. Basically, the servo system of an HDD can be divided into three stages, i.e. the
track-seeking, track-settling and track-following stages (see Figure 1.2 for a detailed
illustration). Current HDDs use a combination of classical control techniques, such
as the proximate time-optimal control technique in the track-seeking stage, and lead-
lag compensators, proportional-integral-derivative (PID) compensators in the track-
following stage, plus some notch filters to reduce the effects of high-frequency reso-
nance modes (see, e.g., [1–16] and references cited therein). These classical methods
can no longer meet the demand for HDDs of higher performance. Thus, many con-
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Figure 1.1. A typical HDD with a VCM actuator servo system

Figure 1.2. Track seeking and following of an HDD servo system

trol approaches have been tried, such as the linear quadratic Gaussian (LQG) with
the loop transfer recovery (LTR) approach (see, e.g., [17–19], control approach
(see, e.g., [20–26], and adaptive control (see, e.g., [27–30]) and so on. Although
much work has been conducted to date, more studies need to be done to achieve
better performance in HDDs.

The scope of this book is to provide a systematic treatment on the design of
modern HDD servo systems. In particular, we focus on the applications of some
newly developed results in control theory, i.e. robust and perfect tracking (RPT) con-
trol, which is suitable for track following, and composite nonlinear feedback (CNF)
control, which is for track seeking and following. The emphasis is on HDD servo
systems with either a single-stage VCM actuator or a dual-stage actuator in which
an additional microactuator is attached to a conventional VCM actuator to provide
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faster response and hence higher bandwidth in the track-following stage. Most of the
results presented in this book are from research carried out by the authors and their
coworkers over the last few years. The purpose of this book is to discuss various
aspects of the subject under a single cover.

1.2 Historical Development

The first generation of hard disks used in PCs had a capacity of 10 megabytes (MB)
and cost over $100 per MB. Modern hard disks have capacities approaching 100
gigabytes (GB) and cost less than 1 cent per MB. This represents an improvement
of 1000000% in less than 20 years and now it is cumulatively improving at 70% per
year. At the same time, the speed of the hard disk and its interfaces has also increased
dramatically.

Some of the very earliest computers had no storage at all. Each time a program
had to be run it would have to be entered manually. It was realized then that to utilize
the power of computers fully there was a need for permanent storage.

During the initial search for permanent storage, paper played a major role in hu-
man life. The computer scientists were also psychologically influenced by paper.
This led to the use of paper as the first storage medium on computers, though mag-
netic storage had already gained momentum by that time. Programs and data were
recorded using holes punched into paper tapes or punch cards to represent a “1”,
and paper blocks to represent a “0” (or vice versa). This type of storage was used
for many years until the creation of magnetic tapes. However, these tapes also lost
their place when random access to the data was needed for quick and efficient usage
of data stored. Thus, an improvement needed to be found. Disk drive development
took an eventful spin when IBM announced, in May 1955, a product that offered
unprecedented random-access storage to 5 million characters each of 7-bit.

These early prototypes had the heads of the hard disk in contact with the disk sur-
face. This was done to allow the low-sensitivity electronics to be able to better read
the magnetic fields on the disk surface. However, owing to the fact that manufactur-
ing techniques were not nearly as sophisticated as they are now, it was not possible
to produce a disk surface that was smooth enough for the head to slide smoothly over
it at high speed while in contact with the surface. As a result, the heads and the mag-
netic coating on the surface of the disk would wear out over time. Thus the problem
of reliability was not addressed.

IBM engineers working under R. Johnson at IBM in San Jose, California, be-
tween 1952 and 1954 realized that, with the proper design, the R/W heads could be
suspended above the disk surface and read the bits as they passed underneath. This
critical discovery, that contact with the surface of the disk was no longer necessary,
was implemented as IBM 305 RAMAC (random access method of accounting and
control), introduced on September 13, 1956. This early version stored 5 million char-
acters on 50 disks, each 24 in diameter. The capacity was approximately 5 MB. Its
bit density was about 2000 bits per square inch and the data transfer rate was an im-
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pressive 8800 bytes per second. Over the succeeding years, the technology improved
incrementally; bit density, capacity and performance all increased.

Next, we summarize the interesting history of the hard disk. In what follows, we
present lists of some historical “firsts” and new trends in the development of HDDs.
These lists are generated from the following sources on the net: www.pcguide.com,
www.storage.ibm.com, www.storagereview.com and www.mkdata.dk [31, 32].

1.2.1 Chronological List of HDD History

There have been a number of important “firsts” in the world of hard disks over their
first 40 years or so. The following is a list, in chronological order, of some of the
products developed during the past half-century that introduced key or important
technologies in HDDs.

FIRST HARD DISK (1956): IBM 305 RAMAC was introduced. It had a capacity
of about 5 MB, stored on fifty 24 disks. Its bit density was a mere 2000 bits per
square inch and its data throughput was about 8800 bytes per second.
FIRST AIR-BEARING HEADS (1962): IBM’s model 1301 lowered the flying
height of the R/W heads to 250 microinches. It had a 28-MB capacity with half as
many heads as the original RAMAC, and increased both bit density and through-
put by about 1000%.
FIRST REMOVABLE DISK DRIVE (1965): IBM’s model 2310 was the first disk
drive with a removable disk pack. While many PC users think of removable hard
disks as being a modern invention, in fact they were very popular in the 1960s
and 1970s.
FIRST FERRITE HEADS (1966): IBM’s model 2314 was the first hard disk to use
ferrite core heads, the first type later used on PC hard disks.
FIRST MODERN HARD DISK DESIGN (1973): IBM’s model 3340, nicknamed
the Winchester, was introduced. With a capacity of 60 MB, it introduced several
key technologies that led to it being considered by many as the ancestor of the
modern disk drives.
FIRST THIN-FILM HEADS (1979): IBM’s model 3370 was the first with thin-film
heads, which would for many years be the standard in the HDD industry.
FIRST 8 FORM FACTOR DISK DRIVE (1979): IBM’s model 3310 was the first
disk drive with 8 platters, greatly reduced in size from the 14 that had been the
standard for over a decade.
FIRST 5.25 FORM FACTOR DISK DRIVE (1980): Seagate’s ST-506 was the first
drive in the 5.25 form factor, used in the earliest PCs.
FIRST 3.5 FORM FACTOR DISK DRIVE (1983): Rodime introduced RO352,
the first disk drive to use the 3.5 form factor, which became one of the most
important industry standards.
FIRST EXPANSION CARD DISK DRIVE (1985): Quantum introduced the Hard-
card, a 10.5-MB hard disk mounted on an industry standard architecture (ISA)
expansion card for PCs that were originally built without a hard disk. This prod-
uct put Quantum “on the map” so to speak.
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FIRST VOICE-COIL ACTUATOR 3.5 DRIVE (1986): Conner Peripherals intro-
duced CP340, the first disk drive to use a voice-coil actuator.
FIRST “LOW-PROFILE” 3.5 DISK DRIVE (1988): Conner Peripherals intro-
duced CP3022, which was the first 3.5 drive to use the reduced 1 height, now
called low profile and the standard for modern 3.5 drives.
FIRST 2.5 FORM FACTOR DISK DRIVE (1988): PrairieTek introduced a drive
using 2.5 platters. This size later became a standard for portable computing.
FIRST DRIVE WITH MR HEADS AND PARTIAL RESPONSE AND MAXIMUM

LIKELIHOOD (PRML) DATA DECODING (1990): IBM’s model 681 (Redwing),
an 857 MB drive, was the first to use MR heads and PRML data decoding.
FIRST THIN-FILM DISKS (1991): IBM’s Pacifica mainframe drive was the first
to replace oxide media with thin-film media on the platter surface.
FIRST 1.8 FORM FACTOR DISK DRIVE (1991): Integral Peripherals’ 1820 was
the first hard disk with 1.8 platters, later used for PC-card disk drives.
FIRST 1.3 FORM FACTOR DISK DRIVE (1992): Hewlett Packard’s C3013A is
the first 1.3 drive.
FIRST 1 HIGH 1 GB DISK DRIVE (1993): IBM unveiled the world’s first 1
high 1 GB disk drive, storing 354 million bits per square inch.
FIRST 7200 RPM ULTRA ATA-INTERFACE DISK DRIVE (1997): Industry’s first
of this kind for desktop computers from Seagate Technology.
FIRST 10000 RPM DISK DRIVE (1998): Seagate Technology introduced the first
10000 rpm drives, i.e. the 9.1-GB (ST19101) and 4.55-GB (ST34501) Cheetah
family.
FIRST ULTRA ATA/100 DISK DIVES (2000): Seagate announced the first Ul-
tra ATA/100 interface on its Barracuda ATA II disk drive, the industry’s fastest
desktop PC disk drive.
LARGEST HDD (2000): At the time of the preparation of the first edition, Sea-
gate’s Barracuda 180 was the largest single drive in the world. It had a capacity
of 180 GB.
FIRST 100 GB/IN DISK DRIVE (2001): Seagate Technology demonstrated a
disk drive of more than 100 billion data bits per square inch.
FIRST 60-GB/PLATTER DISK DRIVE (2002): Seagate Technology launched
the Barracuda ATA V disc drive; it’s the first hard drive to achieve 120 GB using
only two discs.
FIRST 2.5 /10,000 RPM ENTERPRISE DISK DRIVE (2004): Seagate Technol-
ogy introduced Savvio, the world’s first family of 2.5 enterprise-class hard disk
drives.
LARGEST 1 DISK DRIVE (2005): At the time of the preparation of this second
edition, Seagate Technology produces the largest capacity 1 disk drive, which
has a capacity of 8 GB.
LARGEST HDD (2005): At the time of the presentation of this second edition,
Barracuda 7200.9 of Seagate Technology is the largest drive in the world, which
has a capacity of 500 GB.
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1.2.2 Trends in Advances of HDD Systems

In spite of a slow change in the basic design of hard disks over the years, accelerated
improvements in terms of their capacity, storage, reliability and other characteristics
have been made. In what follows, the various trends are highlighted.

BIT DENSITY: The bit density of hard disk platters continues to increase at an
amazing rate, even exceeding some of the optimistic predictions of a few years
ago. Densities in the laboratory are now approaching 1000 Gbits per square inch,
and modern disks pack as much as 60 GB of data onto a single 3.5 platter.

CAPACITY: Hard disk capacity continues to increase at an accelerating rate. From
10 MB in 1981, the normal capacity is now well over 400 GB. Consumer drives
would most likely have a capacity of 1 TB within a couple of years.

SPINDLE SPEED: The move to faster and faster spindle speeds continues. Since
increasing the spindle speed improves both random access and sequential perfor-
mance, this is likely to continue. 7200 rpm spindles are now standard on main-
stream IDE/ATA drives. A 15000 rpm SCSI drive was announced by Seagate in
2000.

FORM FACTOR: The trend in form factors is downward: to smaller and smaller
drives. 5.25 drives have now all but disappeared from the mainstream market,
with 3.5 drives dominating the desktop and server segment. In the mobile world,
2.5 drives are the standard, with smaller sizes becoming more prevalent; IBM
in 1999 announced its Microdrive, a tiny 170 MB or 340 MB device, only 1 in
diameter and less than 0.25 thick. Over the next few years, desktop and server
drives are likely to make a transition to the 2.5 form factor as well. The primary
reasons for this “shrinking trend” include the enhanced rigidity of smaller plat-
ters, reduction of mass to enable faster spin speeds, and improved reliability due
to enhanced ease of manufacturing.

PERFORMANCE: Both positioning and transfer performance factors are improv-
ing. The speed with which data can be pulled from the disk is increasing more
rapidly than the improvement of positioning performance, suggesting that, over
the next few years, addressing seek time and latency will be the areas of greatest
value to hard disk engineers.

REDUNDANT ARRAYS OF INEXPENSIVE DISKS (RAID): In the province of
only high-end servers, the use of multiple disk arrays to improve performance and
reliability is becoming increasingly common, and is now seen even in consumer
desktop machines.

RELIABILITY: The reliability of hard disks is improving slowly as manufacturers
refine their processes and add new reliability-enhancing features, but this char-
acteristic is not changing nearly as rapidly as the others above. It is simply very
hard to improve the reliability of a product when it is changing rapidly.

INTERFACES: Despite the introduction to the PC world of new interfaces, such
as the IEEE-1394 and universal serial bus (USB), the mainstream interfaces are
the same as they were through the 1990s: IDE/ATA and SCSI. The interfaces
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themselves continue to create new and improved standards with higher maximum
transfer rates, to match the increase in performance of the hard disks themselves.

1.3 Overview of HDD Servo Systems

1.3.1 Mechanical Structure of an HDD

The physical structure of a typical modern hard disk drive is depicted in Figure 1.3.
The authors of this book are thankful to Seagate Technology for granting permission
to use this figure in our work. A brief description (see also, e.g., [33]) is given below:

Courtesy of Seagate Technology

Figure 1.3. Mechanical structure of a typical HDD

1. DEVICE ENCLOSER. This is the most important component, as it determines the
reliability of the disk drives. It helps to keep the contamination low. With the aid
of recirculation and a breather filter, it keeps out dust and other contamination
that could enter between the R/W heads and the platters over which they float,
and reduces the possibility of head crashes. The two major parts, the base casting
and top cover, are sealed with a gasket. The base casting provides supports for
the spindle, actuator, VCM yoke and electronics card.

2. DISK. Every hard disk has one or more flat rotating disks, each with two mag-
netic surfaces, called platters. These are made of either an Al–Mg alloy sub-
strate material electroless plated with Ni–P, or a mixture of glass and ceramic.
The magnetic material, to allow data storage, is applied as a thin coating on both
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sides of each platter together with a carbon overcoat. The surfaces of each platter
are precision machined and treated to remove any imperfections, and attention
is paid during the manufacturing process to ensure a very smooth surface.

3. ACTUATOR ASSEMBLY. This consists of a VCM, data flex cable or printed cir-
cuit cable, actuator arms and crash-stops at both ends of travel. The data are
read/written from/to the platters using the R/W heads mounted on the top and
bottom surfaces of each platter. The heads are supported by the actuator arm.
The actuator in HDDs, i.e. the VCM actuator, is so named as it works like a loud-
speaker. The electrical input to the VCM is supplied through a flex cable. The
coil of the VCM actuator extends between a yoke/magnets. The write-driver/pre-
amplifier is often part of the actuator assembly, which is mounted on a data flex
cable.

4. HEAD/SUSPENSION ASSEMBLY. The R/W heads are of ferrite, metal-in-gap,
thin-film or magnetoresistive (MR) types. Older types, i.e. ferrite, metal-in-gap,
and thin film, used the principle of electromagnetic induction, whereas the mod-
ern disk drive heads use MR heads, which use the principle of change of magne-
toresistance. Both read and write operations in older disk drives were performed
by a single head, but the modern HDDs use separate heads for read and write
operations. These heads are positioned only microinches above the recording
medium on an air-bearing surface, which is often referred to as a slider. A gim-
bal attaches the slider to a stainless steel suspension to allow for pitch and roll,
and the suspension is attached to the arm of the actuator by a ball swaging.

5. SPINDLE AND MOTOR ASSEMBLY. These are responsible for turning the hard
disk platters with stable, reliable and consistent turning power for thousands of
hours of often continuous use. All hard disks use servo-controlled DC spindle
motors and are configured for direct connection, i.e. there are no belts or gears
used to connect them to the hard disk platter spindle. The critical component of
the hard disk’s spindle motor is the set of spindle motor bearings at each end of
the spindle shaft. These bearings are used to turn the platters smoothly. The disk
clamper and spacers are other important parts of this assembly.

6. ELECTRONICS CARD: This provides an interface to the host personal computer
(PC). The most common interfaces used are the integrated drive electronics
(IDE), the advanced technology attachment (ATA), and the small computer sys-
tems interface (SCSI), which all use integrated electronic circuits. These inte-
grated circuits have a power driver for the spindle motor, VCM, R/W electronics,
servo demodulator, controller chip for timing control and control of interface,
microcontroller/digital signal processor (DSP) for servo control and control in-
terface, and ROM and RAM for microcode and data transfer.

Lastly, we note that a fairly complete report on the basic mechanical and electri-
cal structures of hard and floppy disk drives used in the 1970s and early 1980s can
be found in Zhang [34].
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1.3.2 Issues on Control System Design

For smaller drives with larger capacities, the control system has to achieve tighter
regulation in the control of the servomechanism. To read (or write) the data reliably
from (or to) the disk, the absolute track-following error with respect to the target
track center, which is commonly called track misregistration (TMR), must be less
than 10% of the track pitch. For example, for a 3.5 HDD with 25 kTPI, the track
pitch is about 1 lum and its TMR must be less than 0.1 lum. Thus, for 70 kTPI, TMR
must be less than 0.036 lum. This requires rigorous analysis of the sources of TMR
and development of advanced techniques to overcome or eliminate these sources to
meet the increasing demand for higher TPI. Figure 1.4 shows a typical disk drive
servo channel indicating the various sources of disturbances and errors. Some of the
larger components of TMR are due to the following error sources, listed roughly in
the order of impact (see, e.g., [35] and references cited therein):

Figure 1.4. Sources of error in an HDD servo system
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1. external shock and vibrations present in portable devices;
2. TMR caused by bearing hysteresis and poor velocity estimates during track-

settling mode;
3. servo pattern nonlinearities and inaccuracies caused by head, media, and servo-

writing effects;
4. mechanical resonances in suspension, actuator, disk, and housing;
5. electronic noise in recording channel entering the servo demodulator;
6. nonrepeatable spindle runout caused by bearings;
7. variations in RRO caused by thermal and other drifts.

A good HDD servo system has not only the desired track-seeking and following
performance, but also the robustness to overcome all the above-listed disturbances
and uncertainties. The following are robustness issues that one should consider in
designing an HDD servo system:

Disturbance Rejection

As discussed earlier, higher TPI requires a tighter TMR, which is formally defined
as three times the position error variance of the true position error signal (PES),
i.e. . The sources of disturbances, which are the error sources contributing to

, can be classified into three categories: input disturbance, output disturbance
and measurement noise. The input disturbance is typically a color noise due to flex-
ure, an electronic bias superimposed with selective energy arising from the natural
frequencies of the various mechanical perturbations such as resonances, vibrations
and friction. The output disturbance is also a color noise due to spindle rotation and
its effects such as runout, windage and media noise. The measurement noise is a typ-
ical white noise due to the position-measurement techniques and/or sensors. These
disturbances and noise can be modeled as in Figure 1.5. The objective would be to
reject the effect of the disturbances and the measurement noise and achieve minimum
position error variance.

actuator
HDD

Controller

Input
disturbance

filter
disturbance

filter

Output

True PES

Measured
PES+

+
+

+
+

+
+

Measurement
noise
filter

Figure 1.5. Modeling of disturbances in an HDD servo system
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It has been shown [36] that, under some simplifications, can be approxi-
mated as

(1.1)

where is the number of samples. Recently, Li et al. [37] gave a solution that min-
imizes by converting the minimization of into an equivalent optimal
control problem for an auxiliary system, which contains the dynamics of the actua-
tor, the input and output disturbances and the measurement noise, and which has a
properly defined disturbance input and an output to be controlled. The problem to
minimize can then be solved using any appropriate optimal control methods
(see, e.g., Chapter 3).

Runout Compensation

Next, to understand runout disturbances, we recall the two main functions of HDD
servo systems, i.e. track seeking and track following, which are usually achieved by
two different controllers. The track-seeking controller moves the R/W head to the
target track in minimum time; after this, when the control is switched to the track-
following controller, it must make the R/W head follow the target track and keep
the errors as small as possible. Thus, all HDDs must have a position-measurement
mechanism. The position feedback signals in most HDD servomechanisms are de-
rived through prerecorded position information recorded on one side of a disk sur-
face at the time of manufacture using a servo writer. Ideally, servo tracks are perfect
concentric circles. However, in the process of servo writing, the head that writes
the signals cannot be kept perfectly still, due to, e.g., the presence of vibration and
NRRO effects, which result in tracks that are not perfect circles. This apparent track
motion causes the R/W head to move in an attempt to minimize the position error,
which results in positioning of the R/W head away from the real data track. Such an
imperfection is termed a runout. This runout, depending upon its nature, can be clas-
sified as repeatable and nonrepeatable. In what follows we discuss these two types of
runout and the methods available to compensate these disturbances collected from a
literature survey.

Repeatable Runout. When the sampling frequency is equal to the spindle rotation
frequency, or one of its multiples, the runout motion produced by the apparent track
is repeated. This repeated runout, which is locked to the spindle rotation in both
frequency and phase, is what we call a RRO. Thus, the major source of RROs is the
eccentricity of the track. Other sources include the offset of the track center with
respect to the spindle center, bearing geometry and wear, and motor geometry [38].
RROs caused by factors other than the eccentricity would cause a large amount of
RROs at the rotational frequency of the spindle or its multiples, which is common to
all tracks.

An RRO is a repetitive event in that both its amplitude and phase are locked to
the rotation of the spindle. Therefore, this prior knowledge of an RRO can be used
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as a feedforward signal to compensate the tracking error. Roughly, there exist three
approaches to reject RRO: 1) repetitive control, 2) feedback control based on the
internal model principle, and 3) identification and feedforward control. Many ver-
sions of the above compensation techniques for RROs have been reported, and some
include adaptive feed-forward cancellation and repetitive control (see, e.g., [38–41],
PID with repetitive control (see, e.g., [42]) and recurrent neural networks (see, e.g.,
[43]). To be a little more specific, assuming that the RRO, , is a time-varying
unknown disturbance consisting of a sum of sinusoids of known frequencies, i.e.

cos sin (1.2)

the adaptive feedforward compensation approach is to design a control

cos sin (1.3)

Next, an appropriate adaptive algorithm is used to adjust the estimates and
so that these estimates are made equal to the nominal values, i.e.

(1.4)

The RRO disturbance approximated as in Equation 1.2 can then be canceled by the
reproduced signal. This technique is also demonstrated by using neural networks in
[43].

Nonrepeatable Runout. NRROs are a product of disk drive vibration and electrical
noise in the measurement channel (see, e.g., [1]). More specifically, the causes of
NRRO are spindle-bearing defects, windage-induced disk flutter, electronics noise
in the measurement channel, etc., present during servo-track writing. NRROs can be
minimized via improved servo writing, use of better bearings, and improved design
of electronics. Since RROs are the harmonics of the motor rotational frequency in
the frequency domain, an NRRO is the subtraction of the harmonics from the total
indicated runout (TIR), which can be defined as the distance difference between the
R/W head and the previously written track in an HDD, and hence an NRRO in the
time domain can be easily constructed by the inverse Fourier transform of an NRRO
in the frequency domain [44]. Alternatively, for a better understanding of the time
trends of an NRRO, specifically a motor NRRO, Ohmi [45] proposed subtracting the
averaged RRO from the experimentally obtained radial vibration of a rotor, the TIR.
That is, an NRRO can be derived as follows [45]:

RRO TIR (1.5)

NRRO TIR RRO (1.6)

where is the number of revolutions of the rotor, is the number of samples per
revolution, represents the number of disk revolutions and represents the number



1.3 Overview of HDD Servo Systems 15

of phases from a fixed point of the slit. An NRRO can be taken care of by the servo
controller through improved loop bandwidth. However, the increase in servo band-
width required to reject an NRRO is mainly determined by three factors, i.e. the servo
sampling rate, the spectrum of the measurement noise, and the existence of plant res-
onance modes. The effect of resonance modes and their compensation is discussed
in the following section. Recent research suggests the use of improved mechanical
design, with a damped disk substrate and fluid-bearing spindles [46], which imposes
less stress on the servo loop, to reject NRROs.

Resonance Compensation

The actuator and HDD structures, of course, are not perfectly rigid and have hundreds
of flexible modes. This flexibility gives rise to vibrations, which results in a longer
time to settle at the target track and amounts to a significant component of the TMR.
The servo bandwidth of modern disk drives is approaching 2 kHz, and it has been
proved in the literature that resonance modes that exist within a decade away from
the servo-crossover frequency degrade the system performance. In short, in modern
disk drives, resonance or vibration modes are the major sources of NRROs. Each res-
onance mode can be modeled as a second-order transfer function. The VCM actuator
transfer function displaying multiple resonance modes can be modeled as [35],

(1.7)

where is torque constant, is inertia, and are, respectively, the damping ratio
and the natural frequency of the th resonance mode. For simplicity, the frequency-
response characteristics with a single resonance mode in actuator dynamics for a
typical commercial drive are shown in Figure 1.6, in which the characteristics with-
out resonance mode is shown by dashed lines. There is a significant difference in
phase angle of the transfer function with the resonance mode. This tends to cause a
loss of gain margin in the compensated loop and hence reduces its stability. Although
there are hundreds of such resonances in an actual disk drive, many of the character-
istics can be defined by considering only three or four modes, as other modes have an
insignificant amplitude or are of too high a frequency to be of interest [1]. Some of
the important resonance modes that must be considered in the design of high-density
disk drives are the quasirigid body mode, the pivot bearing, the lateral elastic bending
mode, and the vibrations of the individual disk platters.

Currently, the resonances of an HDD head actuator assembly caused by the pivot
bearing have become a critical issue, since these resonances have been found to be
the major design factor limiting the higher servo control bandwidth [47]. These res-
onances are excited during the track-seeking mode, and when the control is trans-
ferred to the track-following mode these vibrations result in an increased settling
time. Recently, Mah et al. [48] have developed a novel moving-coil head actuator,
which is designed deliberately to make sure that the force acting on the VCM is
an orthogonal force so that there is no resulting force acting on the pivot bearing,
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Figure 1.6. The ideal and “actual” frequency responses of HDD actuators

thereby minimizing residual vibrations. The rotational speeds of modern disk drives
are progressively increasing, and hence the effect of the vibration of individual disk
platters at their natural frequencies is a significant contributing factor to TMR in
high-density disk drives. These resonances are driven primarily by internal windage
excitation, and their behavior is dominated by the disk-material properties and ge-
ometry, and not by the spindle, encloser, or structural design (see, e.g., [49]). Use
of alternate disk substrate materials can control these effects. Structural resonance
modes can be compensated by using a notch filter as a precompensator. Since almost
all structural resonance modes have lightly damped poles, the idea is to cancel lightly
damped poles and place a pair of well-damped poles instead by using a notch filter.
Hanselmann and Mortix [50] proposed the use of three notch filters to suppress the
plant model resonance modes. These filters are preferred instead of low-pass filters
because the sharper the cutoff in the magnitude of the frequency response, the lower
the phase introduced in the loop. The transfer function of an analog notch filter is
commonly chosen as (see, e.g., [51])

(1.8)

where is the center frequency and is the Q-factor. These notch filters can be
realized by using switched capacitance filters. To use with digital control, digital
notch filers can be realized using microprocessors or high-speed DSPs. Weaver and
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Ehrlich [52] proposed the use of multirate filters to eliminate the resonance modes
beyond the Nyquist frequency.

1.4 Implementation Setup

To make our work more complete, we have implemented almost all of our designs
on actual HDDs with some highly advanced and accurate equipment. In what fol-
lows, we briefly summarize the key software and hardware tools used to obtain the
simulation and implementation results.

1. MATLAB R AND Simulink R . All offline computation and simulation of the re-
sults in this book are done using the well-known products from Mathworks, Inc.,
MATLAB R with its simulation package Simulink R .

2. SOFTWARE TOOLKITS. Two software toolkits have been used in the develop-
ment of results presented in this monograph. The linear systems toolkit [53], de-
veloped under a MATLAB R environment by the first author of the book and his
coworkers, Zongli Lin and Xinmin Liu of the University of Virginia, collects a
few tens of m-functions. These m-functions realize algorithms for computing lin-
ear system structures (such as the finite and infinite zero structures, invertibility
structures, and many other properties) and algorithms for computing and
optimal controllers, as well as controllers that solve the almost disturbance
decoupling problem, and robust and perfect tracking problem. Another toolkit,
the CNF control toolkit [54, 55], developed by our research team, has also been
heavily used in designing track-seeking and track-following controllers in HDD
servo systems presented in the coming chapters. Both toolkits are available for
free at the website http://hdd.ece.nus.edu.sg/˜bmchen.

3. dSPACE DSP SYSTEM. A dSpace DSP system is used in the actual implementa-
tion throughout the book. The system has the following main components:

dSpace Add-on Card. The main component of the dSpace DSP system is its
add-on card, DS1102, which is built upon a Texas Instruments TMS320C31
floating-point DSP. The DSP has been supplemented by a set of analog-to-
digital (A/D) and digital-to-analog (D/A) converters, a DSP microcontroller-
based digital I/O subsystem and incremental sensor interfaces. Some major
features of this add-on card are:
a) a TMS320C31 floating-point DSP;
b) two 16-bit 250 kHz and two 12-bit 800 kHz sampling A/D converters

with input span of V;
c) a quad 12-bit D/A converter with programmable output voltages;
d) a 16-bit fixed point digital I/O, a bit-selectable-parallel I/O port, four

timers, six PWM circuits, and a serial interface.
Real-time Interface (RTI) and Real-time Workshop (RTW). The RTI acts as
a link between Simulink R and the dSpace hardware. It has builtin hardware
control functions and blocks for DS1102 add-on card based on Simulink R .
This, together with the RTW, automatically generates real-time codes from
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Simulink R offline models and implements these codes on the dSpace real-
time hardware.
dSpace Control Desk. This is a software platform that combines all the above
tools of dSpace for controlling, monitoring, and automating the implemen-
tation process on the actual HDDs.

4. POLYTEC LASER DOPPLER VIBROMETER (LDV). The Polytec LDV is an op-
tical instrument for accurately measuring velocity and displacement of vibrating
surfaces completely without contact. The LDV system consists of two main com-
ponents: 1) an optical sensor head or fiber optic unit (both are laser interferome-
ters), which measures the dynamic Doppler shift from the vibrating object; and
2) a controller (processor), which provides power to the optics and demodulates
the Doppler information using various types of Doppler signal decoder electron-
ics, thereby producing an analog vibration signal (velocity and/or displacement)
that can be viewed/measured by the customer using commercially available fast
Fourier transform (FFT) analyzers and oscilloscopes. This instrument is used to
measure the displacement and velocity of the R/W heads of HDDs.

5. DYNAMIC SIGNAL ANALYZER (DSA). The HP35670A dynamic signal ana-
lyzer is a dynamic monitoring and measuring instrument that can be used for
characterizing the performance and stability of a control system. Performance
parameters, such as rise time, overshoot, and settling time, are generally spec-
ified in the time domain. Stability criteria, gain/phase margins, are generally
specified in the frequency domain. The HP35670A DSA is capable of measur-
ing in both the time and frequency domains. The instrument can also be used for
system identification.

6. VIBRATION-FREE TABLE. Since the success of the actual implementation de-
pends largely on the accurate measurement of very small displacements of less
than 1 lum, there is a need to isolate the HDD implementation setup from the
external vibrations. A Vibraplane Model 9100/9200 series vibration-free work-
station was used. These are designed and constructed to provide very effective
isolation of vibrations at frequencies above 5 Hz and low amplification at low
frequencies of 2–3 Hz. Hence, the use of this vibration-free table shows signifi-
cant improvements in resolution and repeatability of the measurement.

The overall hardware setup in our laboratory at the National University of Singa-
pore (NUS) is depicted in Figure 1.7.

1.5 Preview of Each Chapter

Since the publication of the first edition of this monograph [56], we have developed
many new design methodologies and obtained many new theoretical and experimen-
tal results. We are to integrate all of these new developments and results in this sec-
ond edition. This new edition can be naturally divided into two parts. The first part
consists of Chapters 1 to 5, covering some background introductions to HDD servo
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Figure 1.7. Implementation setup for HDD servo systems

systems, and some commonly used as well as newly developed linear and nonlinear
control techniques. The second part, i.e. Chapters 6 to 10, deal with the design of
specific single- and dual-stage actuated HDD servo systems.

More specifically, Chapter 2 recalls some commonly used system identification
and modeling techniques, such as the prediction error identification and least squares
estimation methods, applicable in the frequency domain, and the impulse response
analysis and step response analysis in the time domain, as well as the physical effect
approach together with Monte Carlo estimations. These techniques are employed to
identify the models of VCM actuators and microactuators later in the book. Chap-
ter 3 deals with linear systems and control techniques. In particular, we first recall
a structural decomposition technique of linear systems, which has the distinct fea-
ture of displaying the finite and infinite zero structures as well as the invertibility
structures of a given system, and plays a dominant role in the development of sev-
eral linear control methods used in designing HDD servo systems. We also recall
several commonly used linear control techniques, namely, the well-known classical
PID control, optimal control, control and almost disturbance decoupling, ro-
bust and perfect tracking (RPT) control, and the loop transfer recovery (LTR) tech-
nique. These methods are suitable for track-following control and have been used
extensively in designing HDD servo systems in the literature. Chapter 4 focuses on
some classical nonlinear control techniques such as the proximate time-optimal ser-
vomechanism (PTOS) and mode-switching control (MSC). PTOS is generally used
to design a control law in the track-seeking stage of HDD servo systems, whereas
the MSC design technique can be used to find a controller that is applicable for both
track seeking and track following.
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We devote Chapter 5 to cover the theory of so-called composite nonlinear feed-
back (CNF) control. The CNF control, which consists of a linear feedback law and
a nonlinear feedback law, aims to improve the transient performance of the over-
all system. The linear feedback part is designed to yield a closed-loop system with
a small damping ratio for quick response, whereas the nonlinear feedback part is
used to increase the damping ratio of the closed-loop system as the system out-
put approaches the target reference to reduce the overshoot. A software toolkit in
MATLAB R is also presented for this new technique. It is available for free down-
loading at http://hdd.ece.nus.edu.sg/˜bmchen.

In the second part, Chapters 6 and 7 focus on the design of HDD servo systems
with a conventional single-stage VCM actuator. In particular, Chapter 6 deals with
the modeling of the VCM actuator and design of track-following controllers using
both the conventional PID control method and the recently developed RPT control
method, whereas Chapter 7 deals with the design of track-seeking controllers. Three
different designs using the PTOS, MSC and CNF approaches are presented in this
chapter and their results are carefully compared. Likewise, Chapter 8 deals with the
modeling and design of HDD servo systems with a dual-stage actuator. A complete
HDD servo system with a dual-stage actuator is presented. Conventional HDDs with
a single-stage VCM actuator usually have resonances in the positioning arm and
low-frequency bearing effects. It is believed that the performances of such HDDs
have been pushed almost to their limits. Dual-stage servo systems with high band-
width and high accuracy control are a possible solution to overcome the problems
associated with conventional HDDs.

Microdrives have become popular these days with high demand from many new
applications. Unfortunately, many factors such as friction and nonlinearities, which
can be safely neglected in normal drives, emerge as critical issues for microdrives.
In Chapter 9, we present a comprehensive modeling and compensation of friction
and nonlinearities as well as a complete servo system design of a typical microdrive.
Chapter 10 considers a robust controller design for a piezoelectric bimorph nonlinear
actuator using an almost disturbance decoupling approach. Such an actuator has
its own application domain including the use as a microactuator for the dual-stage
actuated hard drives. Finally, we post in Chapter 11 a benchmark design problem for
a typical HDD (Maxtor 51536U3) servo system, for which interested readers might
try out to test their own techniques and designs.
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System Modeling and Identification

2.1 Introduction

The purpose of this chapter is to revisit some basic theories and solutions of system
identification, which are to be used later in the coming chapters to model various
HDD systems. In general, the goal of system identification is to determine a math-
ematical model for a system or a process. Mathematical models may be developed
either by use of “laws of nature”, commonly known as modeling or based on experi-
mentation, which is known as system identification [57]. In order to achieve a certain
desirable performance for a given plant, it is necessary to derive a model for the plant
that is adequate for controller design. The conventional design techniques in linear
control systems require either parametric or nonparametric models. For example, de-
sign methods via root locus or robust control technique require a transfer function or
a state-space description of the plant to be controlled. The plant model is either de-
scribed by the coefficients of certain polynomials or by the elements of state-space
matrices. In either case, we call these polynomial coefficients or matrix elements the
parameters of the model. The category of such models is a parametric description
of the plant model. On the other hand, design based on Nyquist, Bode and Nichols
methods requires curves of amplitude and phase of transfer function from input to
the output as functions of real frequency . If we have experimental data from a typ-
ical frequency response test, then we will be able to obtain certain functional curves
for the plant. These curves are called nonparametric models of the plant, as there is
no finite set of numbers that describes it exactly (see, e.g., [1]).

Thus, for a given plant, the problem of system identification is to determine a
system model from the relationship (either in the time or the frequency domain) be-
tween its input and output. The problem can be represented graphically as shown in
Figure 2.1, in which is the known input signal, is the observation noise, and

is the measured output. A large variety of methods have been developed for solv-
ing such a problem (see, e.g., [58] and references cited therein). These methods in-
clude classical identification techniques (such as the impulse response analysis, step
response analysis, frequency response identification) and equation error approaches
and model adjustment techniques (such as the least square estimation, maximum
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Unknown system

Figure 2.1. The unknown system to be identified

likelihood, and stochastic approximation, to name a few). The detailed derivations
of these techniques can be found in a number of advanced texts devoted to system
identification, e.g., [57–61]. We note that the techniques are applicable only to linear
systems. For systems with nonlinearities, other advanced modeling techniques have
to be used. One of the key issues in modeling systems with nonlinearities is to de-
termine the physical structures of the nonlinear components. Another issue is that
there is generally no analytical solution for nonlinear differential equations, which
causes trouble in identifying the model parameters. In the last section of this chapter,
we present a so-called physical effect approach modeling method of [62] together
with Monte Carlo estimations (see, e.g., [63–65]). The technique will be utilized to
identify a comprehensive model for a microdrive in Chapter 9, in which friction and
nonlinearities associated with its VCM actuator are highly noticeable.

2.2 Time-domain Methods

In this section, we restrict our attention to identifying both parametric and nonpara-
metric models through some commonly used time-domain techniques. Interested
readers are referred to [57, 58, 66] for detailed materials on the identification through
impulse and step response characteristics.

2.2.1 Impulse Response Analysis

Parametric Models. Parametric models are described by parameters of differential
equations or transfer functions. From these analytic representations, plots or values
of interest of frequency response can in general be generated without much diffi-
culty, whereas the reverse process of deriving parameters from nonparametric model
descriptions is much more difficult.

A fairly general parametric model of a single-input and single-output (SISO)
system can be described by the following differential equation (see, e.g., [66]),

(2.1)

Solving the differential equation for the input signal
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(2.2)

with being the unit impulse function, gives the impulse transfer function ,

(2.3)

as the corresponding output function. Note that it is hard to generate an impulse input
in the continuous-time domain, and hence this method is impractical.

Nonparametric Models. Consider again a SISO system as in Figure 2.1 with a scalar
input signal and a scalar output signal . Assume that the system is linear,
time invariant and causal.

It is well known that a linear, time-invariant causal system can be described by
its impulse response as follows:

d (2.4)

Knowing and knowing for , we can consequently compute
the corresponding output , for any input. The impulse response is thus a
complete characterization of the system.

The discrete equivalent of the output can be written at the sampling instants
, , as

d (2.5)

where is the sampling period. Since, the input is kept constant between the
sampling instants:

(2.6)

we can derive that

(2.7)

Now, let be the transfer function of the system from input to output with
being the usual forward shift operator, i.e.

(2.8)

Then, Equation 2.7 can be written as

(2.9)

If the system in Equation 2.9 is subjected to a pulse input
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(2.10)

then the output is
(2.11)

If the noise level is low, then the estimates of the coefficients of the impulse response
from an experiment will be

(2.12)

and the errors . This simple analysis is called impulse response analysis. Un-
fortunately, many physical processes do not allow the error to be insignifi-
cant compared with the impulse response coefficients. Moreover, such an input could
induce nonlinear effects that would disturb the linearized behavior of the model. As
such, identification methods depended on impulse inputs are rarely used in practical
situations.

2.2.2 Step Response Analysis

Parametric Models. Parametric models usually are described by their frequency
response function,

exp (2.13)

where , , , and are parameters to be identified.
Many researchers proposed methods for determining parameter values from time

functions of the process output provided that the process input is a well-determined
signal. Of primary importance are step functions as input signals and step responses
as output signals.

Almost all methods for the evaluation of step response functions use a small
number of characteristic values of the response function. A first-order lag model
with time delay and a frequency response

exp (2.14)

is widely used in step response analysis. In fact, there are quite a number of systems,
especially in process control, that can be approximated by a first-order model with an
appropriate delay. The parameters , and can be derived from the step response
shown in Figure 2.2 with being the amplitude of the input step signal (see, e.g.,
[66]). In short, if the system model is of first order, one may need only obtain two
pieces of information: (i) the steady-state response to the step input, and (ii) the time
constant. The latter can be obtained either from the tangent with maximum slope of
the step response or from the 10 to 90% rise time.
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Figure 2.2. A typical step response

For a second-order system model (with two poles and no zero), there are two pos-
sible situations: 1) when the two poles are real and 2) when the poles are a complex
conjugate pair. Formulae for finding these from measurements of the (a) steady-state
response, (b) maximum overshoot, (c) time required to reach the first-peak, and (d)
time required to reach 50% of the steady-state value (for overdamped systems) can
be easily derived. For the general case of higher-order practical systems, it is perhaps
best to use a gradient method to find the parameters of the model of a given order
such that the integral of the square of the error is minimized (see, e.g., [57]).

Nonparametric Models. Since the impulse response of a system is the derivative
of the step response, the identification problem in this case may be regarded as the
determination of the transfer function from the impulse response. Alternatively, a
step function

(2.15)

when applied to Equation 2.9 gives the output

(2.16)

Then, the estimates can be obtained as

(2.17)

which has an error . Hence, we would suffer again from large
errors in most practical applications. But, if the goal is to determine some basic
control-related characteristics, then the step responses from Equation 2.16 can very
well furnish that information to a sufficient degree of accuracy. In fact, some well-
known rules for tuning simple regulators, such as the Ziegler–Nichols rule, are based
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on model information hidden in step responses. Based on plots of the step responses,
some key characteristics of the system can be graphically constructed, which in turn
can be used to determine system parameters.

2.3 Frequency-domain Methods

We recall in this section two identification methods in the frequency domain, namely,
the predication error identification approach and the least square estimation method,
Both are particularly important to our studies in modeling the micro and VCM actu-
ators in HDD servo systems in the forthcoming chapters. The theories behind these
techniques can be found in various references (see, e.g., [57, 67]).

2.3.1 Prediction Error Identification Approach

The prediction error approach is a black-box identification method. It includes the
following three steps.

1. PARAMETER IDENTIFICATION. Suppose a system can be described as

(2.18)

where and are its process input and output; is noise input and
supposed to be white; and

(2.19)

The predictor is:

(2.20)

where

...

...

...

(2.21)
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is the parameter vector of the system. Then, the prediction error given by a model
is

(2.22)

Next, we define a loss function as

(2.23)

where is a scalar-valued positive function, and

(2.24)

is a set of input and output data from the experiment test. The desired system
parameters can then be obtained by the minimization of this loss function, i.e.

(2.25)

2. DETERMINATION OF MODEL ORDER. The loss function can also be
used to determine the order of a system. If the order of a model is lower than that
of the system, then the value of the loss function will decrease significantly with
the increase of the order of the model. However, when the order of the model is
higher than that of the system, the increase of model order does not provide any
more innovation for parameter identification, thus the value of will
not decrease much. Therefore, the order of the system to be identified can be
determined based on the decrease rate of . Figure 2.3 shows a typical
plot of the loss function versus identified model orders. It is clear from the plot
that the order of the corresponding system to be identified is four.

3. MODEL VALIDATION. The last step of the prediction error identification method
is to verify the correctness of the model obtained. It is clear that the residuals of
the model can be obtained as

(2.26)

Obviously, if the model is correct, i.e.

and (2.27)

the residual will tend to a white-noise sequence . However, the nonwhite-
ness of the residuals does not necessarily mean that the model is incorrect. In
that case, the crosscorrelation of the input and residuals can be used to ver-
ify the model. If and are independent, this means that all information in the
residuals is explained by the process model , and we can conclude that the es-
timate is correct. Otherwise the result is incorrect. The crosscorrelation of and

is
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Figure 2.3. Values of loss function versus identified model orders

(2.28)

where is the expected value. If the residuals and input are independent, we
have

as (2.29)

where , and denotes the normal random
distribution with zero mean and a variance . Let be the -level of the

such that

(2.30)

where is the probability. Define the following null hypothesis:

(2.31)

If is accepted, then we can say that the model is acceptable with a probability
of . Figure 2.4 shows a typical plot of the values of the crosscorrelation
function between the input and the error residual. It can be seen that, for such a
model, all the data are within the 95% confidence region. Hence, we can say that
the corresponding identified model is acceptable with a probability of 95%.
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Figure 2.4. Model validation test

2.3.2 Least Square Estimation Method

We will utilize the frequency-response identification method (see, e.g., [59]) to model
our actuator. Such a method is applicable to minimum phase processes. We expect
from the properties of the physical system that the VCM actuator is of minimum
phase. The detailed procedure proceeds as follows: we first assume that the transfer
function of a minimum phase plant is given by

(2.32)

for some appropriate coefficients , , and , , with
. These parameters are to be identified. Then, its corresponding frequency

response is given by

(2.33)

where

(2.34)
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Let and be the real and imaginary parts of the measured frequency re-
sponse of the actuator system. The frequency response error between the model and
the actual measurement data is given by

(2.35)

Thus, the parameters of the system can be obtained by minimizing the following
index:

(2.36)

where is the total number of points of the measured data. Unfortunately, this is a
nonlinear optimization problem, and it is difficult to solve. We then follow the results
of [59] to modify the error norm as

(2.37)

The original problem now becomes a linear optimization problem. Using Equations
2.33 and 2.35, we can rewrite Equation 2.37 as follows

(2.38)

where
(2.39)

and
(2.40)

Therefore, can be minimized by finding , , , and , , , such that

...

...

(2.41)
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Rearranging the above equations, we obtain

(2.42)

where

...
...

...
...

...
. . .

...

(2.43)

...
...

...
...

...
. . .

...

(2.44)

...
...

...
...

...
. . .

...

(2.45)

...
...

...
...

...
. . .

...

(2.46)

and where

(2.47)

(2.48)

The desired parameters of the corresponding transfer function model can be obtained
by solving the above equations.

We note that the methods recalled above are merely for the modeling and identifi-
cation of the HDD VCM and microactuators in the forthcoming chapters. If systems
to be identified are highly uncertain with disturbances, it would be more appropriate
to use the methods reported in a recent monograph by Chen and Gu [68] to yield
more accurate results.
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2.4 Physical Effect Approach with Monte Carlo Estimations

Diverse methods have been proposed (see, e.g., [13, 59, 69]) to identify the model of
linear plants, in which the nonlinearities of the plants are assumed to be negligible.
As such, these methods cannot be applied to identify the model of plants with sig-
nificant nonlinearities. One of the key issues in identifying the model of a nonlinear
plant is to configure its physical structure. Another issue is that there is generally
no analytical solution for nonlinear differential equations, which causes problems in
identifying the parameters in the model of nonlinear plants.

The so-called physical effect approach [62] with the Monte Carlo method (see,
e.g., [63–65]) can be applied to tackle these two problems efficiently. The approach
is to examine and analyze physical effects that occur in or between physical parts of
a nonlinear plant to configure a structured model and then to identify the parameters
numerically in the obtained structured model with the Monte Carlo method. We pro-
ceed to summarize such an efficient parameter identification approach for nonlinear
systems in the following.

2.4.1 Structural Analysis of Physical Effects

The structural analysis is to determine the physical structure of the nonlinear plants
using analytical derivation based on some natural laws and theories, such as the
well-known Newton’s laws of motion, principles of circuits, electromagnetic effects,
stochastic and probability theory, if applicable. It focuses on identifying the physical
effects that occur in or between the components of the plants under consideration and
on identifying their interconnection properties. Unfortunately, it is not always possi-
ble to capture all the properties of a physical plant. Instead, the structural analysis is
more on the characterization of the major characteristics of physical plants based on
some appropriate assumptions. For example, in HDD servo systems, Newton’s laws
can be applied to analyze the motion of the VCM actuator under the assumption that
it is a rigid body. The permanent magnet associated with the coil is assumed to be
constant for simplicity. Some other typical models of physical effects, such as the
commonly used friction models and models for springs, can be applied to simplify
the analysis. In principle, the structure of the nonlinearities has to be sufficient to
characterize the main properties of the given system. One would generally obtain the
structured model of a nonlinear plant in the following form:

(2.49)

where , and are, respectively, the state, input and measurement output variables
with appropriate dimensions. and are appropriate nonlinear functions. Lastly,
represents the set of all unknown parameters of the model, which is to be identified
using some parameter-identification techniques.
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2.4.2 Monte Carlo Estimations

In most situations, it is hard to find analytical solutions to the associated nonlin-
ear differential equations. Thus, it is difficult to identify the parameters in nonlinear
models. Alternatively, one has to search for solutions through numerical means. The
Monte Carlo method (see, e.g., [63–65]) is one such numerical technique, which can
loosely be classified as a method purely based on numerical simulation. The essence
of the Monte Carlo method is to employ certain stochastic techniques to identify the
unknown parameters of a structured nonlinear model. The Monte Carlo method has
been widely used from field to field even in the deterministic setting. It is very effi-
cient in approximating solutions to various mathematical problems, for which their
analytical forms are hard, if not impossible, to be determined.

Considering the structured model of Equation 2.49, the Monte Carlo estimation
method is an optimization process in determining the set of the unknown parameters,

. It is to minimize the following performance index:

(2.50)

subject to

(2.51)

where is the number of the sampled data, , , are appropri-
ate weighting matrices, and are, respectively, the simulated and experimental
measurement output responses corresponding to a set of preselected input signals .
Note that should be carefully chosen to ensure that the unknown parameters in the
structured model of the plant can be properly identified.

Various numerical optimization algorithms, such as genetic algorithm, simulated
annealing and gradient algorithm, neural network and their combinations, can be
adopted to solve the above problem. As usual, all these numerical methods might
yield a locally optimal solution. To ensure obtaining a meaningful solution, one
should have certain background knowledge on the problem to be solved. For ex-
ample, in HDD servo systems, the ranges of certain portions of the system dynamics
are known to us. Such information is useful and should be incorporated in the above
optimization process.

Similarly, an optimization process in the frequency domain can also be formu-
lated to identify certain parts of the system dynamics. In fact, it is effective to com-
bine the results identified using both the time- and frequency-domain methods. In
general, it would yield a more accurate solution. The overall Monte Carlo estimation
processes in the time domain and frequency domain are, respectively, depicted in
Figures 2.5 and 2.6.

2.4.3 Verification and Validation

Once a model with all its parameters is identified, it is necessary to perform a se-
ries of model verification and validation processes. Model verification is a series of
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Structured model

with unknowns,

Input signal,

Actual plant

Figure 2.5. Monte Carlo estimation in the time-domain setting
.

Structured modelInput signal,

transform

with unknowns,

Actual plant Fast Fourier

Fast Fourier
transform

Figure 2.6. Monte Carlo estimation in the frequency-domain setting
.

quantitative examinations and comparisons between the actual experimental data and
those generated from the identified model. It is to verify whether the identified model
is a true representation of the real plants based on some intensive tests with various
input-output responses other than those used in the identification process. On the
other hand, validation is on qualitative examinations, which are to verify whether the
features of the identified model are capable of displaying all of the essential charac-
teristics of the actual plant. It is to recheck the process of the physical effect analysis,
the correctness of the natural laws and theories used as well as the assumptions made.
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In conclusion, verification and validation are two necessary steps that one needs
to perform to ensure that the identified model is accurate and reliable. As mentioned
earlier, the above technique will be utilized to identify the model of a commercial
microdrive in Chapter 9.
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Linear Systems and Control

3.1 Introduction

It is our belief that a good unambiguous understanding of linear system structures,
i.e. the finite and infinite zero structures as well as the invertibility structures of lin-
ear systems, is essential for a meaningful control system design. As a matter of fact,
the performance and limitation of an overall control system are primarily dependent
on the structural properties of the given open-loop system. In our opinion, a control
system engineer should thoroughly study the properties of a given plant before carry-
ing out any meaningful design. Many of the difficulties one might face in the design
stage may be avoided if the designer has fully understood the system properties or
limitations. For example, it is well understood in the literature that a nonminimum
phase zero would generally yield a poor overall performance no matter what design
methodology is used. A good control engineer should try to avoid these kinds of
problem at the initial stage by adding or adjusting sensors or actuators in the system.
Sometimes, a simple rearrangement of existing sensors and/or actuators could totally
change the system properties. We refer interested readers to the work by Liu et al.
[70] and a recent monograph by Chen et al. [71] for details.

As such, we first recall in this chapter a structural decomposition technique of
linear systems, namely the special coordinate basis of [72, 73], which has a unique
feature of displaying the structural properties of linear systems. The detailed deriva-
tion and proof of such a technique can also be found in Chen et al. [71]. We then
present some common linear control system design techniques, such as PID control,

optimal control, control, linear quadratic regulator (LQR) with loop transfer
recovery design (LTR), together with some newly developed design techniques, such
as the robust and perfect tracking (RPT) method. Most of these results will be inten-
sively used later in the design of HDD servo systems, though some are presented
here for the purpose of easy reference for general readers.

We have noticed that it is some kind of tradition or fashion in the HDD servo
system research community in which researchers and practicing engineers prefer to
carry out a control system design in the discrete-time setting. In this case, the de-
signer would have to discretize the plant to be controlled (mostly using the ZOH
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technique) first and then use some discrete-time control system design technique
to obtain a discrete-time control law. However, in our personal opinion, it is eas-
ier to design a controller directly in the continuous-time setting and then use some
continuous-to-discrete transformations, such as the bilinear transformation, to dis-
cretize it when it is to be implemented in the real system. The advantage of such an
approach follows from the following fact that the bilinear transformation does not in-
troduce unstable invariant zeros to its discrete-time counterpart. On the other hand, it
is well known in the literature that the ZOH approach almost always produces some
additional nonminimum-phase invariant zeros for higher-order systems with faster
sampling rates. These nonminimum phase zeros cause some additional limitations
on the overall performance of the system to be controlled. Nevertheless, we present
both continuous-time and discrete-time versions of these control techniques for com-
pleteness. It is up to the reader to choose the appropriate approach in designing their
own servo systems.

Lastly, we would like to note that the results presented in this chapter are well
studied in the literature. As such, all results are quoted without detailed proofs and
derivations. Interested readers are referred to the related references for details.

3.2 Structural Decomposition of Linear Systems

Consider a general proper linear time-invariant system , which could be of either
continuous- or discrete-time, characterized by a matrix quadruple or in
the state-space form

(3.1)

where if is a continuous-time system, or if is a
discrete-time system. Similarly, , and are the state, input and
output of . They represent, respectively, , and if the given system is of
continuous-time, or represent, respectively, , and if is of discrete-
time. Without loss of any generality, we assume throughout this section that both

and are of full rank. The transfer function of is then given by

(3.2)

where , the Laplace transform operator, if is of continuous-time, or ,
the -transform operator, if is of discrete-time. It is simple to verify that there exist
nonsingular transformations and such that

(3.3)

where is the rank of matrix . In fact, can be chosen as an orthogonal matrix.
Hence, hereafter, without loss of generality, it is assumed that the matrix has the
form given on the right-hand side of Equation 3.3. One can now rewrite system of
Equation 3.1 as
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(3.4)

where the matrices , , and have appropriate dimensions. Theorem 3.1
below on the special coordinate basis (SCB) of linear systems is mainly due to the
results of Sannuti and Saberi [72, 73]. The proofs of all its properties can be found
in Chen et al. [71] and Chen [74].

Theorem 3.1. Given the linear system of Equation 3.1, there exist

1. coordinate-free non-negative integers , , , , , ,
and , , and

2. nonsingular state, output and input transformations , and that take the
given into a special coordinate basis that displays explicitly both the finite
and infinite zero structures of .

The special coordinate basis is described by the following set of equations:

(3.5)

...
(3.6)

...
...

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

and for each ,

(3.14)
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(3.15)

Here the states , , , , and are, respectively, of dimensions , ,
, , and , and is of dimension for each .

The control vectors , and are, respectively, of dimensions , and
, and the output vectors , and are, respectively, of dimensions

, and . The matrices , and have the
following form:

(3.16)

Assuming that , , are arranged such that , the matrix
has the particular form

(3.17)

The last row of each is identically zero. Moreover:

1. If is a continuous-time system, then

(3.18)

2. If is a discrete-time system, then

(3.19)

Also, the pair is controllable and the pair is observable.

Note that a detailed procedure of constructing the above structural decomposition
can be found in Chen et al. [71]. Its software realization can be found in Lin et al.
[53], which is free for downloading at http://linearsystemskit.net.

We can rewrite the special coordinate basis of the quadruple given
by Theorem 3.1 in a more compact form:

(3.20)
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(3.21)

(3.22)

(3.23)

3.2.1 Interpretation

A block diagram of the structural decomposition of Theorem 3.1 is illustrated in
Figure 3.1. In this figure, a signal given by a double-edged arrow is some linear
combination of outputs , to , whereas a signal given by the double-edged
arrow with a solid dot is some linear combination of all the states.

(3.24)

and

(3.25)

Also, the block is either an integrator if is of continuous-time or a backward-
shifting operator if is of discrete-time. We note the following intuitive points.

1. The input controls the output through a stack of integrators (or backward-
shifting operators), whereas is the state associated with those integrators
(or backward-shifting operators) between and . Moreover, and

, respectively, form controllable and observable pairs. This implies
that all the states are both controllable and observable.

2. The output and the state are not directly influenced by any inputs; however,
they could be indirectly controlled through the output . Moreover,
forms an observable pair. This implies that the state is observable.

3. The state is directly controlled by the input , but it does not directly affect
any output. Moreover, forms a controllable pair. This implies that the
state is controllable.

4. The state is neither directly controlled by any input nor does it directly affect
any output.
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Output

Output

Output

Figure 3.1. A block diagram representation of the special coordinate basis
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3.2.2 Properties

In what follows, we state some important properties of the above special coordinate
basis that are pertinent to our present work. As mentioned earlier, the proofs of these
properties can be found in Chen et al. [71] and Chen [74].

Property 3.2. The given system is observable (detectable) if and only if the pair
is observable (detectable), where

(3.26)

and where

(3.27)

Also, define

(3.28)

Similarly, is controllable (stabilizable) if and only if the pair is con-
trollable (stabilizable).

The invariant zeros of a system characterized by can be defined
via the Smith canonical form of the (Rosenbrock) system matrix [75] of :

(3.29)

We have the following definition for the invariant zeros (see also [76]).

Definition 3.3. (Invariant Zeros). A complex scalar is said to be an invariant
zero of if

rank normrank (3.30)

where normrank denotes the normal rank of , which is defined as its
rank over the field of rational functions of with real coefficients.

The special coordinate basis of Theorem 3.1 shows explicitly the invariant zeros
and the normal rank of . To be more specific, we have the following properties.

Property 3.4.

1. The normal rank of is equal to .
2. Invariant zeros of are the eigenvalues of , which are the unions of the

eigenvalues of , and . Moreover, the given system is of minimum
phase if and only if has only stable eigenvalues, marginal minimum phase if
and only if has no unstable eigenvalue but has at least one marginally stable
eigenvalue, and nonminimum phase if and only if has at least one unstable
eigenvalue.
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The special coordinate basis can also reveal the infinite zero structure of . We
note that the infinite zero structure of can be either defined in association with
root-locus theory or as Smith–McMillan zeros of the transfer function at infinity. For
the sake of simplicity, we only consider the infinite zeros from the point of view of
Smith–McMillan theory here. To define the zero structure of at infinity, one can
use the familiar Smith–McMillan description of the zero structure at finite frequen-
cies of a general not necessarily square but strictly proper transfer function matrix

. Namely, a rational matrix possesses an infinite zero of order when
has a finite zero of precisely that order at (see [75], [77–79]). The

number of zeros at infinity, together with their orders, indeed defines an infinite zero
structure. Owens [80] related the orders of the infinite zeros of the root-loci of a
square system with a nonsingular transfer function matrix to the structural invari-
ant indices list of Morse [81]. This connection reveals that, even for general not
necessarily strictly proper systems, the structure at infinity is in fact the topology of
inherent integrations between the input and the output variables. The special coor-
dinate basis of Theorem 3.1 explicitly shows this topology of inherent integrations.
The following property pinpoints this.

Property 3.5. has rank infinite zeros of order . The infinite zero
structure (of order greater than ) of is given by

(3.31)

That is, each corresponds to an infinite zero of of order . Note that for an
SISO system , we have , where is the relative degree of .

The special coordinate basis can also exhibit the invertibility structure of a given
system . The formal definitions of right invertibility and left invertibility of a linear
system can be found in [82]. Basically, for the usual case when and
are of maximal rank, the system , or equivalently , is said to be left invertible
if there exists a rational matrix function, say , such that

(3.32)

or is said to be right invertible if there exists a rational matrix function, say
, such that

(3.33)

is invertible if it is both left and right invertible, and is degenerate if it is neither
left nor right invertible.

Property 3.6. The given system is right invertible if and only if (and hence )
are nonexistent, left invertible if and only if (and hence ) are nonexistent, and
invertible if and only if both and are nonexistent. Moreover, is degenerate if
and only if both and are present.
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By now it is clear that the special coordinate basis decomposes the state space
into several distinct parts. In fact, the state-space is decomposed as

(3.34)

Here, is related to the stable invariant zeros, i.e. the eigenvalues of are the
stable invariant zeros of . Similarly, and are, respectively, related to the
invariant zeros of located in the marginally stable and unstable regions. On the
other hand, is related to the right invertibility, i.e. the system is right invertible if
and only if , whereas is related to left invertibility, i.e. the system is left
invertible if and only if . Finally, is related to zeros of at infinity.

There are interconnections between the special coordinate basis and various in-
variant geometric subspaces. To show these interconnections, we introduce the fol-
lowing geometric subspaces.

Definition 3.7. (Geometric Subspaces X and X). The weakly unobservable sub-
spaces of , X, and the strongly controllable subspaces of , X, are defined as
follows:

1. X is the maximal subspace of that is -invariant and contained
in Ker such that the eigenvalues of X are contained in

X for some constant matrix .
2. X is the minimal -invariant subspace of containing the sub-

space Im such that the eigenvalues of the map that is induced by
on the factor space X are contained in X for some con-

stant matrix .

Moreover, we let X and X, if X ; X and X, if
X ; X and X, if X ; X and X, if X ;

and finally X and X, if X .

We have the following property.

Property 3.8.

1. spans
if is of continuous-time,
if is of discrete-time.

2. spans
if is of continuous-time,
if is of discrete-time.

3. spans .

4. spans
if is of continuous-time,
if is of discrete-time.

5. spans
if is of continuous-time,
if is of discrete-time.

6. spans .
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Finally, for future development on deriving solvability conditions for almost
disturbance decoupling problems, we introduce two more subspaces of . The orig-
inal definitions of these subspaces were given by Scherer [83].

Definition 3.9. (Geometric Subspaces and ). For any , we define

(3.35)

and

(3.36)

and are associated with the so-called state zero directions of if is
an invariant zero of .

These subspaces and can also be easily obtained using the special
coordinate basis. We have the following new property of the special coordinate basis.

Property 3.10.

Im (3.37)

where
Im Ker (3.38)

and where is any appropriately dimensional matrix subject to the constraint that
has no eigenvalue at . We note that such a always exists, as

is completely observable.

Im (3.39)

where is a matrix whose columns form a basis for the subspace,

(3.40)

and

(3.41)

with being any appropriately dimensional matrix subject to the constraint that
has no eigenvalue at . Again, we note that the existence of such an

is guaranteed by the controllability of .

Clearly, if , then we have X and X It
is interesting to note that the subspaces X and X are dual in the sense that

X X where is characterized by the quadruple .
Also, .
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3.3 PID Control

PID control is the most popular technique used in industry because it is relatively
easy and simple to design and implement. Most importantly, it works in most prac-
tical situations, although its performance is somewhat limited owing to its restricted
structure. Nevertheless, in what follows, we recall this well-known classical control
system design methodology for ease of reference.

Figure 3.2. The typical PID control configuration

To be more specific, we consider the control system as depicted in Figure 3.2, in
which is the plant to be controlled and is the PID controller characterized
by the following transfer function

(3.42)

The control system design is then to determine the parameters , and such
that the resulting closed-loop system yields a certain desired performance, i.e. it
meets certain prescribed design specifications.

3.3.1 Selection of Design Parameters

Ziegler–Nichols tuning is one of the most common techniques used in practical sit-
uations to design an appropriate PID controller for the class of systems that can be
exactly modeled as, or approximated by, the following first-order system:

(3.43)

One of the methods proposed by Ziegler and Nichols ([84, 85]) is first to replace the
controller in Figure 3.2 by a simple proportional gain. We then increase this
proportional gain to a value, say , for which we observe continuous oscillations
in its step response, i.e. the system becomes marginally stable. Assume that the cor-
responding oscillating frequency is . The PID controller parameters are then given
as follows:

(3.44)
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Experience has shown that such controller settings provide a good closed-loop re-
sponse for many systems. Unfortunately, it will be seen shortly in the coming chap-
ters that the typical model of a VCM actuator is actually a double integrator and thus
Ziegler–Nichols tuning cannot be directly applied to design a servo system for the
VCM actuator.

Another common way to design a PID controller is the pole assignment method,
in which the parameters , and are chosen such that the dominant roots of
the closed-loop characteristic equation, i.e.

(3.45)

are assigned to meet certain desired specifications (such as overshoot, rise time, set-
tling time, etc.), while its remaining roots are placed far away to the left on the com-
plex plane (roughly three to four times faster compared with the dominant roots). The
detailed procedure of this method can be found in most classical control engineering
texts (see, e.g., [86]). For the PID control of discrete-time systems, interested readers
are referred to [1] for more information.

3.3.2 Sensitivity Functions

System stability margins such as gain margin and phase margin are also very im-
portant factors in designing control systems. These stability margins can be obtained
from either the well-known Bode plot or Nyquist plot of the open-loop system, i.e.

. For an HDD servo system with a large number of resonance modes, its
Bode plot might have more than one gain and/or phase crossover frequencies. Thus,
it would be necessary to double check these margins using its Nyquist plot. Sensi-
tivity function and complementary sensitivity function are two other measures for
a good control system design. The sensitivity function is defined as the closed-loop
transfer function from the reference signal, , to the tracking error, , and is given by

(3.46)

The complementary sensitivity function is defined as the closed-loop transfer func-
tion between the reference, , and the system output, , i.e.

(3.47)

Clearly, we have . A good design should have a sensitivity function
that is small at low frequencies for good tracking performance and disturbance rejec-
tion and is equal to unity at high frequencies. On the other hand, the complementary
sensitivity function should be made unity at low frequencies. It must roll off at high
frequencies to possess good attenuation of high-frequency noise.

Note that for a two-degrees-of-freedom control system with a precompensator
in the feedforward path right after the reference signal (see, for example, Figure
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3.3), the sensitivity and complementary sensitivity functions still remain the same
as those in Equations 3.46 and 3.47, which represent, respectively, the closed-loop
transfer function from the disturbance at the system output point, if any, to the system
output, and the closed-loop transfer function from the measurement noise, if any, to
the system output. Thus, a feedforward precompensator does not cause changes in
the sensitivity and complementary sensitivity functions. It does, however, help in
improving the system tracking performance.

Noise

Disturbance

Figure 3.3. A two-degrees-of-freedom control system

3.4 Optimal Control

Most of the feedback design tools provided by the classical Nyquist–Bode frequency-
domain theory are restricted to single-feedback-loop designs. Modern multivariable
control theory based on state-space concepts has the capability to deal with multi-
ple feedback-loop designs, and as such has emerged as an alternative to the classical
Nyquist–Bode theory. Although it does have shortcomings of its own, a great asset
of modern control theory utilizing the state-space description of systems is that the
design methods derived from it are easily amenable to computer implementation.
Owing to this, rapid progress has been made during the last two or three decades
in developing a number of multivariable analysis and design tools using the state-
space description of systems. One of the foremost and most powerful design tools
developed in this connection is based on what is called linear quadratic Gaussian
(LQG) control theory. Here, given a linear model of the plant in a state-space de-
scription, and assuming that the disturbance and measurement noise are Gaussian
stochastic processes with known power spectral densities, the designer translates the
design specifications into a quadratic performance criterion consisting of some state
variables and control signal inputs. The object of design then is to minimize the per-
formance criterion by using appropriate state or measurement feedback controllers
while guaranteeing the closed-loop stability. A ubiquitous architecture for a measure-
ment feedback controller has been observer based, wherein a state feedback control
law is implemented by utilizing an estimate of the state. Thus, the design of a mea-
surement feedback controller here is worked out in two stages. In the first stage, an
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optimal internally stabilizing static state feedback controller is designed, and in the
second stage a state estimator is designed. The estimator, otherwise called an ob-
server or filter, is traditionally designed to yield the least mean square error estimate
of the state of the plant, utilizing only the measured output, which is often assumed
to be corrupted by an additive white Gaussian noise. The LQG control problem as
described above is posed in a stochastic setting. The same can be posed in a deter-
ministic setting, known as an optimal control problem, in which the norm of
a certain transfer function from an exogenous disturbance to a pertinent controlled
output of a given plant is minimized by appropriate use of an internally stabilizing
controller.

Much research effort has been expended in the area of optimal control or
optimal control in general during the last few decades (see, e.g., Anderson and Moore
[87], Fleming and Rishel [88], Kwakernaak and Sivan [89], and Saberi et al. [90],
and references cited therein). In what follows, we focus mainly on the formulation
and solution to both continuous- and discrete-time optimal control problems.
Interested readers are referred to [90] for more detailed treatments of such problems.

3.4.1 Continuous-time Systems

We consider a generalized system with a state-space description,

(3.48)

where is the state, is the control input, is the external distur-
bance input, is the measurement output, and is the controlled output
of . For the sake of simplicity in future development, throughout this chapter, we
let P be the subsystem characterized by the matrix quadruple and

Q be the subsystem characterized by . Throughout this section, we
assume that is stabilizable and is detectable.

Generally, we can assume that matrix in Equation 3.48 is zero. This can be
justified as follows: If , we define a new measurement output

new (3.49)

that does not have a direct feedthrough term from . Suppose we carry on our control
system design using this new measurement output to obtain a proper control law, say,

new Then, it is straightforward to verify that this control law is equivalent
to the following one

(3.50)

provided that is well posed, i.e. the inverse exists for almost all
. Thus, for simplicity, we assume that .

The standard optimal control problem is to find an internally stabilizing
proper measurement feedback control law,
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Figure 3.4. The typical control configuration in state-space setting

(3.51)

such that the -norm of the overall closed-loop transfer matrix function from to
is minimized (see also Figure 3.4). To be more specific, we will say that the control

law of Equation 3.51 is internally stabilizing when applied to the system of
Equation 3.48, if the following matrix is asymptotically stable:

(3.52)

i.e. all its eigenvalues lie in the open left-half complex plane. It is straightforward to
verify that the closed-loop transfer matrix from the disturbance to the controlled
output is given by

(3.53)

where

(3.54)

It is simple to note that if is a static state feedback law, i.e. then the
closed-loop transfer matrix from to is given by

(3.55)

The -norm of a stable continuous-time transfer matrix, e.g., , is defined as
follows:

trace H (3.56)
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By Parseval’s theorem, can equivalently be defined as

trace (3.57)

where is the unit impulse response of . Thus, .
The optimal control is to design a proper controller such that, when it

is applied to the plant , the resulting closed loop is asymptotically stable and the
-norm of is minimized. For future use, we define

internally stabilizes (3.58)

Furthermore, a control law is said to be an optimal controller for of
Equation 3.48 if its resulting closed-loop transfer function from to has an -
norm equal to , i.e. .

It is clear to see from the definition of the -norm that, in order to have a finite
, the following must be satisfied:

(3.59)

which is equivalent to the existence of a static measurement prefeedback law
to the system in Equation 3.48 such that We note

that the minimization of is meaningful only when it is finite. As such, it
is without loss of any generality to assume that the feedforward matrix
hereafter in this section. In fact, in this case, can be easily obtained. Solving
either one of the following Lyapunov equations:

(3.60)

for or , then the -norm of can be computed by

trace trace (3.61)

In what follows, we present solutions to the problem without detailed proofs. We
start first with the simplest case, when the given system satisfies the following
assumptions of the so-called regular case:

1. P has no invariant zeros on the imaginary axis and is of maximal column
rank.

2. Q has no invariant zeros on the imaginary axis and is of maximal row rank.

The problem is called the singular case if does not satisfy these conditions.
The solution to the regular case of the optimal control problem is very simple.

The optimal controller is given by (see, e.g., [91]),

(3.62)
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where

(3.63)

(3.64)

and where and are, respectively, the stabilizing solutions
of the following Riccati equations:

(3.65)

(3.66)

Moreover, the optimal value can be computed as follows:

trace trace (3.67)

We note that if all the states of are available for feedback, then the optimal con-
troller is reduced to a static law with being given as in Equation 3.63.

Next, we present two methods that solve the singular optimal control prob-
lem. As a matter of fact, in the singular case, it is in general infeasible to obtain
an optimal controller, although it is possible under certain restricted conditions (see,
e.g., [90, 92]). The solutions to the singular case are generally suboptimal, and usu-
ally parameterized by a certain tuning parameter, say . A controller parameterized
by is said to be suboptimal if there exists an such that for all
the closed-loop system comprising the given plant and the controller is asymptoti-
cally stable, and the resulting closed-loop transfer function from to , which is
obviously a function of , has an -norm arbitrarily close to as tends to .

The following is a so-called perturbation approach (see, e.g., [93]) that would
yield a suboptimal controller for the general singular case. We note that such an
approach is numerically unstable. The problem becomes very serious when the given
system is ill-conditioned or has multiple time scales. In principle, the desired solution
can be obtained by introducing some small perturbations to the matrices , ,
and , i.e.

(3.68)

and

(3.69)

A full-order suboptimal output feedback controller is given by

(3.70)

where



54 3 Linear Systems and Control

(3.71)

(3.72)

and where and are respectively the solutions of the following
Riccati equations:

(3.73)

(3.74)

Alternatively, one could solve the singular case by using numerically stable algo-
rithms (see, e.g., [90]) that are based on a careful examination of the structural prop-
erties of the given system. We separate the problem into three distinct situations:
1) the state feedback case, 2) the full-order measurement feedback case, and 3) the
reduced-order measurement feedback case. The software realization of these algo-
rithms in MATLAB R can be found in [53]. For simplicity, we assume throughout the
rest of this subsection that both subsystems P and Q have no invariant zeros on the
imaginary axis. We believe that such a condition is always satisfied for most HDD
servo systems. However, most servo systems can be represented as certain chains of
integrators and thus could not be formulated as a regular problem without adding
dummy terms. Nevertheless, interested readers are referred to the monograph [90]
for the complete treatment of optimal control using the approach given below.

i. State Feedback Case. For the case when in the given system of Equation
3.48, i.e. all the state variables of are available for feedback, we have the following
step-by-step algorithm that constructs an suboptimal static feedback control law

for .

STEP 3.4.C.S.1: transform the system P into the special coordinate basis as given
by Theorem 3.1. To all submatrices and transformations in the special coordinate
basis of P, we append the subscript P to signify their relation to the system P.
We also choose the output transformation P to have the following form:

P
P

P

(3.75)

where P rank . Next, define

P
P P P

P

P
P

P

P
P

P

(3.76)

P P
P

P P

P P (3.77)

P P P P P P P (3.78)

P P P P P P P P (3.79)

P P P P P P P P P P (3.80)
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STEP 3.4.C.S.2: solve the following algebraic matrix Riccati equation:

P P P P P P (3.81)

for and define

P

P P P P P

(3.82)

Then, partition as

...
...

P P

(3.83)

where and are of dimensions P and P, respectively.

STEP 3.4.C.S.3: let P be any arbitrary P P matrix subject to the constraint
that

P P P P (3.84)

is a stable matrix. Note that the existence of such a P is guaranteed by the
property that P P is controllable.

STEP 3.4.C.S.4: this step makes use of subsystems, to P, represented by
Equation 3.14. Let , to P, be the sets of
elements all in , which are closed under complex conjugation, where and

P are as defined in Theorem 3.1 but associated with the special coordinate
basis of P. Let P P . For to P, we define

(3.85)

and

(3.86)

STEP 3.4.C.S.5: in this step, various gains calculated in Steps 3.4.C.S.2 to 3.4.C.S.4
are put together to form a composite state feedback gain for the given system P.
Let

...

P P P
P

(3.87)

and



56 3 Linear Systems and Control

...

P P P
P

(3.88)

Then, the suboptimal state feedback gain is given by

P P (3.89)

where

P

(3.90)

P P P P P

P P P P P

P P P

(3.91)

and where

P

P

...
. . .

...

P P P

(3.92)

diag P (3.93)

This completes the algorithm.

Theorem 3.11. Consider the given system in Equation 3.48 with and
, i.e. all states are measurable. Assume that P has no invariant zeros on the

imaginary axis. Then, the closed-loop system comprising that of Equation 3.48 and
with being given as in Equation 3.89 has the following properties:

1. it is internally stable for sufficiently small ;
2. the closed-loop transfer matrix from the disturbance to the controlled output

, , possesses as .

Clearly, is an suboptimal controller for the system given in Equation
3.48.

ii. Full-order Output Feedback Case. The following is a step-by-step algorithm
for constructing a parameterized full-order output feedback controller that solves the
general optimization problem.

STEP 3.4.C.F.1: (construction of the gain matrix P ). Define an auxiliary system

(3.94)
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and then perform Steps 3.4.C.S.1 to 3.4.C.S.5 of the previous algorithm on the
above system to obtain a parameterized gain matrix . Let P .

STEP 3.4.C.F.2: (construction of the gain matrix Q ). Define another auxiliary
system

(3.95)

and then perform Steps 3.4.C.S.1 to 3.4.C.S.5 on the above system to get the
parameterized gain matrix . We let Q .

STEP 3.4.C.F.3: (construction of the full-order controller FC). Finally, the param-
eterized full-order output feedback controller is given by

FC

FC FC

FC FC

(3.96)

where
FC P Q

FC Q

FC P

FC

(3.97)

This concludes the algorithm for constructing the full-order measurement feed-
back controller.

Theorem 3.12. Consider the given system in Equation 3.48 with . Assume
that P and Q have no invariant zeros on the imaginary axis. Then the closed-loop
system comprising the given system and the full-order output feedback controller of
Equation 3.96 has the following properties:

1. it is internally stable for sufficiently small ;
2. the closed-loop transfer matrix from the disturbance to the controlled output

, , possesses as .

By definition, Equation 3.96 is an suboptimal controller for the system given in
Equation 3.48.

iii. Reduced-order Output Feedback Case. For the case when some measurement
output channels are clean, i.e. they are not mixed with disturbances, then we can
design an output feedback control law that has a dynamical order less than that of
the given plant and yet has an identical performance compared with that of full-order
control law. Such a control law is called the reduced-order output feedback controller.
We note that the construction of a reduced-order controller was first reported by
Chen et al. [94] for general linear systems, in which the direct feedthrough matrix
from input is nonzero. It was shown in [94] that the reduced-order output feedback
controller has the following advantages over the full-order counterpart:
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1. the dynamical order of the reduced-order controller is generally smaller than that
of the full-order counterpart;

2. the gain required for the same degree of performance for the reduced-order con-
troller is smaller compared with that of the full-order counterpart.

We now proceed to design a reduced-order controller, which solves the general
suboptimal problem. First, without loss of generality and for simplicity of pre-

sentation, we assume that the matrices and are already in the form

and (3.98)

where rank and is of full rank. Then the given system in Equation
3.48 can be written as

(3.99)

where the original state is partitioned into two parts, and ; and is partitioned
into and with . Thus, one needs to estimate only the state in the
reduced-order controller design. Next, define an auxiliary subsystem QR character-
ized by a matrix quadruple R R R R , where

R R R R (3.100)

The following is a step-by-step algorithm that constructs the reduced-order output
feedback controller for the general optimization.

STEP 3.4.C.R.1: (construction of the gain matrix P ). Define an auxiliary system

(3.101)

and then perform Steps 3.4.C.S.1 to 3.4.C.S.5 on the above system to get the
parameterized gain matrix . We let P .

STEP 3.4.C.R.2: (construction of the gain matrix R ). Define another auxiliary
system

R R

R R

(3.102)

and then perform Steps 3.4.C.S.1 to 3.4.C.S.5 on the above system to get the
parameterized gain matrix . We let R .



3.4 Optimal Control 59

STEP 3.4.C.R.3: (construction of the reduced-order controller RC). Let us partition
P and R as

P P P R R R (3.103)

in conformity with the partitions of and of Equation 3.99,

respectively. Then define

R R R R R R R

Finally, the reduced-order output feedback controller is given by

RC

RC RC

RC RC

(3.104)

where

RC R P R R R P

RC R R

P P R

RC P

RC P P R

(3.105)

This concludes the algorithm for constructing the reduced-order output feedback
controller.

Theorem 3.13. Consider the given system in Equation 3.48 with . Assume
that P and Q have no invariant zeros on the imaginary axis. Then, the closed-loop
system comprising the given system and the reduced-order output feedback controller
in Equation 3.104 has the following properties:

1. it is internally stable for sufficiently small ;
2. the closed-loop transfer matrix from the disturbance to the controlled output

, , possesses as .

By definition, Equation 3.104 is an suboptimal controller for the system given in
Equation 3.48.

3.4.2 Discrete-time Systems

We now consider a generalized discrete-time system characterized by the follow-
ing state-space equations

(3.106)
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where is the state, is the control input, is the external distur-
bance input, is the measurement output, and is the controlled output
of . As usual, we let P be the subsystem characterized by the matrix quadruple

and Q be the subsystem characterized by . Without
loss of any generality, we assume that , is stabilizable and
is detectable.

The standard optimal control problem for a discrete-time system is to find an
internally stabilizing proper measurement feedback control law,

(3.107)

such that the -norm of the overall closed-loop transfer matrix function from
to is minimized. To be more specific, we will say that the control law of
Equation 3.107 is internally stabilizing when applied to the system of Equation
3.106, if the following matrix is asymptotically stable:

(3.108)

i.e. all its eigenvalues lie inside the open unit disc. The closed-loop transfer matrix
from the disturbance to the controlled output is given by

(3.109)

where

(3.110)

(3.111)

(3.112)

(3.113)

The -norm of a stable discrete-time transfer matrix, e.g., , is defined as
follows:

trace H (3.114)

By Parseval’s theorem, can equivalently be defined as

trace (3.115)

where is the impulse response of . Thus, .
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The optimal control for the discrete-time system of Equation 3.106 is to de-
sign a proper controller such that, when it is applied to the plant , the result-
ing closed loop is asymptotically stable and the -norm of is minimized.
For future use, we define

internally stabilizes (3.116)

Again, a control law is said to be an optimal controller for of Equation
3.106 if its resulting closed-loop transfer function from to has an -norm equal
to , i.e. .

For the case when , can be computed by

trace trace (3.117)

where and are, respectively, the solutions of the following Lyapunov equa-
tions:

(3.118)

We now present solutions to the discrete-time optimal control problem with-
out detailed proofs. As usual, we assume that for convenience. We start first
with the simplest case when the given system satisfies the following assumptions
of the so-called regular case:

1. P has no invariant zeros on the imaginary axis and is left invertible;
2. Q has no invariant zeros on the imaginary axis and is right invertible.

The problem is called the singular case if does not satisfy these conditions.
Again, the solution to the regular case of the discrete-time optimal control

problem is very simple as well. The optimal controller is given by :

(3.119)

where

(3.120)

(3.121)

and

(3.122)

and where and are, respectively, the stabilizing solutions
of the following Riccati equations:
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(3.123)

(3.124)

We note that the above discrete-time Riccati equations can be solved using the non-
iterative method given in [74]. If all the states of are available for feedback, then
the optimal controller is reduced to a static law with being given
as in Equation 3.120.

Next, we present solutions to the singular optimal control problem. Similarly,
the solutions to the singular case are generally suboptimal, and usually parameterized
by a certain tuning parameter, say . Again, a discrete-time controller parameterized
by is said to be suboptimal for the system in Equation 3.106 if there exists an
such that for all the closed-loop system comprising the given plant and the
controller is asymptotically stable, and the resulting closed-loop transfer function
from to , which is obviously a function of , has an -norm arbitrarily close to

as tends to .
The following perturbation approach would yield a suboptimal controller for the

general discrete-time singular case. Given any , define

(3.125)

and

(3.126)

A full-order suboptimal output feedback controller is given by

(3.127)

where

(3.128)

(3.129)

and

(3.130)

and where and are, respectively, the stabilizing solutions
of the following Riccati equations:
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(3.131)

(3.132)

The following are alternative methods based on the structural decompositions of the
given systems. Similarly, we separate the problem into three distinct situations: 1)
the state feedback case, 2) the full-order measurement feedback case, and 3) the
reduced-order measurement feedback case.

Similarly, for convenience, we assume throughout the rest of this subsection that
both subsystems P and Q have no invariant zeros on the unit circle. The complete
treatment of optimal control using the approach given below can be found in
[90]. Interestingly, it turns out that for this case, although it is singular, we can always
obtain a set of optimal controllers that need not be parameterized by any tuning
scalar.

i. State Feedback Case. For the case when in the given system of Equation
3.106, we have the following step-by-step algorithm that constructs an subopti-
mal static feedback control law for .

STEP 3.4.D.S.1: (decomposition of P). Transform the subsystem P, i.e. the ma-
trix quadruple , into the special coordinate basis as given by The-
orem 3.1. Denote the state, output and input transformation matrices as P, P

and P, respectively.

STEP 3.4.D.S.2: (gain matrix for the subsystem associated with ). Let be any
constant matrix subject to the constraint that

(3.133)

is a stable matrix. Note that the existence of such an is guaranteed by the
property of the special coordinate basis, i.e. is controllable.

STEP 3.4.D.S.3: (gain matrix for the subsystem associated with , and ).
Let

(3.134)

(3.135)

and

P P (3.136)
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Solve the following discrete-time Riccati equation

(3.137)

for . Then partition

(3.138)

STEP 3.4.D.S.4: (composition of gain matrix ). In this step, various gains calcu-
lated in the previous steps are put together to form a composite state feedback
gain matrix . It is given by

P P

(3.139)

This completes the algorithm.

Theorem 3.14. Consider the system given in Equation 3.106 with and
, i.e. all states are measurable. Assume that P has no invariant zeros on the unit

circle. Then, the closed-loop system comprising the given system and
with being given as in Equation 3.139 has the following properties:

1. it is internally stable;
2. the closed-loop transfer matrix from the disturbance to the controlled output

, , possesses

Thus, is an optimal state feedback control law for the system in
Equation 3.106.

ii. Full-order Output Feedback Case. The following is a step-by-step algorithm for
constructing an optimal full-order output feedback controller.

STEP 3.4.D.F.1: (computation of ). Utilize the special coordinate basis properties
to compute two constant matrices and such that P Ker and

Q Im . Then, compute

(3.140)
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STEP 3.4.D.F.2: (construction of the gain matrix P). Define an auxiliary system

(3.141)

where

(3.142)

and then perform Steps 3.4.D.S.1 to 3.4.D.S.4 of the previous algorithm on the
above system in Equation 3.141 to obtain a gain matrix . We let P .

STEP 3.4.D.F.3: (construction of the gain matrix Q). Define another auxiliary
system

(3.143)

and then perform Steps 3.4.D.S.1 to 3.4.D.S.4 of the previous algorithm on the
above system to get a gain matrix . Similarly, we let Q .

STEP 3.4.D.F.4: (construction of the full-order controller FC). Finally, the param-
eterized full-order output feedback controller is given by

FC

FC FC

FC FC

(3.144)

where
FC P Q

FC Q

FC P

FC

(3.145)

This concludes the algorithm for constructing the full-order measurement feed-
back controller.

Theorem 3.15. Consider the system given in Equation 3.106 with . Assume
that P and Q have no invariant zeros on the unit circle. Then the closed-loop
system comprising the given system and the full-order output feedback controller of
Equation 3.144 has the following properties:

1. it is internally stable;
2. the closed-loop transfer matrix from the disturbance to the controlled output

, , possesses

Hence, Equation 3.144 is an optimal control law for the system given in Equation
3.106.
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iii. Reduced-order Output Feedback Case. We now follow the procedure as in
the continuous-time case to design a reduced-order output feedback controller. For
simplicity of presentation, we assume that the matrices and are already in the
form

and (3.146)

where rank and is of full rank. Next, we follow Steps 3.4.D.F.1
and 3.4.D.F.2 of the previous subsection to compute the constant matrix , and form
the following system:

(3.147)

where , and are defined as in Equation 3.142. Then, partition Equation 3.147
as follows:

where the state of Equation 3.147 is partitioned into two parts, and ; and
is partitioned to and with . Thus, one needs to estimate only the state

in the reduced-order controller design. Next, define an auxiliary subsystem QR

characterized by a matrix quadruple R R R R , where

R R R R (3.148)

The following is a step-by-step algorithm that constructs the reduced-order output
feedback controller for the general optimization.

STEP 3.4.D.R.1: (construction of the gain matrix P). Define an auxiliary system

(3.149)

and then perform Steps 3.4.D.S.1 to 3.4.D.S.4 of the previous algorithm on the
above system to obtain a parameterized gain matrix . Moreover, let P .

STEP 3.4.D.R.2: (construction of the gain matrix R). Define another auxiliary
system
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R R

R R

(3.150)

and then perform Steps 3.4.D.S.1 to 3.4.D.S.4 of the previous algorithm on the
above system to obtain a parameterized gain matrix . Similarly, let R .

STEP 3.4.D.R.3: (construction of the reduced-order controller RC). Let us partition
P and R as

P P P and R R R (3.151)

in conformity with and , respectively. Then define

R R R R R R R (3.152)

Finally, the parameterized reduced-order output feedback controller is given by

RC

RC RC

RC RC

(3.153)

where

RC R P R R R P

RC R R P P R

RC P

RC P P R

(3.154)

This concludes the algorithm for constructing the reduced-order output feedback
controller.

Theorem 3.16. Consider the system given in Equation 3.106 with . Assume
that P and Q have no invariant zeros on the unit circle. Then, the closed-loop
system comprising the given system and the reduced-order output feedback controller
in Equation 3.153 has the following properties:

1. it is internally stable;
2. the closed-loop transfer matrix from the disturbance to the controlled output

, , possesses

Thus, Equation 3.153 is an optimal control law for the system given in Equation
3.106.

Lastly, we note that the result presented in this section, although it is not totally
complete, is sufficient to obtain appropriate solutions for HDD servo systems and
many engineering problems. We next move to control and its related problems.
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3.5 Control and Disturbance Decoupling

The ultimate goal of a control system designer is to build a system that works in
a real environment. Since the real environment may change and the operating con-
ditions may vary from time to time, the control system must be able to withstand
these variations. Even if the environment does not change, other factors of life are
the model uncertainties, as well as noises. Any mathematical representation of a sys-
tem often involves simplifying assumptions. Nonlinearities are either unknown, and
hence unmodeled, or are modeled and later ignored in order to simplify analysis.
High-frequency dynamics are often ignored at the design stage as well. In conse-
quence, control systems designed based on simplified models may not work on real
plants in real environments. The particular property that a control system must pos-
sess for it to operate properly in realistic situations is commonly called robustness.
Mathematically, this means that the controller must perform satisfactorily not just
for one plant, but for a family of plants. If a controller can be designed such that the
whole system to be controlled remains stable when its parameters vary within certain
expected limits, the system is said to possess robust stability. In addition, if it can sat-
isfy performance specifications such as steady state tracking, disturbance rejection
and speed of response requirements, it is said to possess robust performance. The
problem of designing controllers that satisfy both robust stability and performance
requirements is called robust control. control theory is one of the cornerstones
of modern control theory and was developed in an attempt to solve such a problem.
Many robust control problems (such as the robust stability problem of unstructurally
perturbed systems, the mixed-sensitivity problem, robust stabilization with additive
and multiplicative perturbations, to name a few) can be cast into a standard
control problem (see, e.g., [74]).

Since the original formulation of the control problem by Zames [95], a great
deal of work has been done on finding the solution to this problem. Practically all the
research results of the early years involved a mixture of time-domain and frequency-
domain techniques, including the following: Interpolation approach (see, e.g., Lime-
beer and Anderson [96]); Frequency domain approach (see, e.g., Doyle [97], Francis
[98] and Glover [99]); Polynomial approach (see, e.g., Kwakernaak [100]); and -
spectral factorization approach (see, e.g., Kimura [101]). Recently, considerable at-
tention has been focused on purely time-domain methods based on algebraic Riccati
equations and/or singular perturbation approach (see, e.g. [74, 91, 102] and refer-
ences cited therein). Along this line of research, connections are also made between

optimal control and differential games (see, e.g., Başar and Bernhard [103]).
We also recall in this section the solutions to the problem of almost dis-

turbance decoupling with measurement feedback and internal stability. Although,
in principle, it is a special case of the general control problem, the problem
of almost disturbance decoupling has a vast history behind it, occupying a central
part of classical as well as modern control theory. Several important problems, such
as robust control, decentralized control, non-interactive control, model reference or
tracking control, and optimal control problems can all be recast into an
almost disturbance decoupling problem. Roughly speaking, the basic almost distur-
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bance decoupling problem is to find an output feedback control law such that in the
closed-loop system the disturbances are quenched, say in an sense, up to any
prespecified degree of accuracy while maintaining internal stability. Such a prob-
lem was originally formulated by Willems [104, 105] and termed almost disturbance
decoupling problem with measurement feedback and internal stability (ADDPMS).

The formulation of control is very similar to that of optimal control. In
order to avoid unnecessary repetitions, we make use of some terms defined in the
previous section, e.g., the state-space equations of the given system and its subsys-
tems P and Q, the format of the control law and its corresponding closed-loop
transfer matrix, as well as the definitions of the regular and singular problems.

3.5.1 Continuous-time Systems

We consider a continuous-time linear time-invariant system as given in Equation
3.48. For simplicity, we assume that is stabilizable, is detectable,

and . The standard control problem for continuous-time
systems is to find an internally stabilizing proper measurement feedback control law
of the format in Equation 3.51 such that when it is applied to the given system the
resulting closed-loop system is internally stable and the -norm of the overall
closed-loop transfer matrix function from to , i.e. , is minimized. The

-norm of a stable continuous-time transfer matrix, e.g., , is defined as
follows:

(3.155)

where and are, respectively, the input and output of , and is the
-norm of the corresponding signal. It is clear that the -norm of corre-

sponds to the worst case gain from its input to its output. For future use, we define

internally stabilizes (3.156)

We note that the determination of this is rather tedious. For a fairly large class of
systems, can be exactly computed using some numerically stable algorithms. In
general, an iterative scheme is required to determine . We refer interested readers
to the work of Chen [74] for a detailed treatment of this particular issue. For simplic-
ity, we assume throughout this section that has been determined and hence it is
known.

For the case when , the corresponding control problem is commonly
known in the literature as the problem of almost disturbance decoupling with
internal stability. It can be shown that such a problem is solvable for of Equation
3.48 if and only if the following conditions hold (see, e.g., [74, 83]):

1. is stabilizable;
2. is detectable;
3. , where ;
4. Im P P ;
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5. Ker Q Q ; and
6. Q P .

We note that if P is right invertible and of minimum phase, and Q is left invertible
and of minimum phase, then conditions 4–6 are automatically satisfied.

It transpires that, for control, it is almost impossible to find a control law
with a finite gain to achieve the optimal performance, i.e. . As such, we focus
on designing suboptimal controllers instead. To be more specific, given a scalar

, we focus on finding a control law that yields , where
is the corresponding closed-loop transfer matrix. Hereafter, we call a control law that
possesses such a property an -suboptimal controller.

Next, we proceed to construct a solution to the regular problem (for its definition
see the previous section). Given a scalar , we solve for positive semi-definite
stabilizing solutions and respectively to the following Riccati equa-
tions:

(3.157)

and

(3.158)

The -suboptimal control law is given by (see also [91]),

(3.159)

where

(3.160)

(3.161)

(3.162)

and where

(3.163)

Note that, for the state feedback case, the -suboptimal control law is given by
with being given as in Equation 3.163.

For the singular case, the following perturbation method can be utilized. For
and a positive scalar , define , , and as in Equations 3.68

and 3.69, and solve the following Riccati equations:

(3.164)
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and

(3.165)

for and . Then, it can be shown that there exists an such that
for all the following control law is an -suboptimal for the given
system:

(3.166)

where

(3.167)

(3.168)

(3.169)

and where

(3.170)

(3.171)

Note that for the state feedback case, the -suboptimal control law is given by
with being given as in Equation 3.170.

Alternatively, the singular control problem can also be solved using the sin-
gular perturbation approach as in the previous section for optimal control. In fact,
we only need to modify the algorithms slightly for control to yield the required

-suboptimal controllers. We treat separately the state feedback case and the
measurement feedback case. For simplicity, we assume that both subsystems P and

Q do not have invariant zeros on the imaginary axis.

i. State Feedback Case. Given a scalar , the following algorithm yields an
-suboptimal state feedback gain matrix for of Equation 3.48 with .

STEP 3.5.C.S.1: transform the system P into the special coordinate basis as given
by Theorem 3.1. To all submatrices and transformations in the special coordinate
basis of P, we append the subscript P to signify their relation to the system P.
We also choose the output transformation P to have the following form:

P
P

P

(3.172)

where P rank . Next, compute
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P

P

P

P

P

P

(3.173)

and define P, P, P, P, P, P, P P, and P P as in Equa-
tions 3.76–3.80. Finally, define

P
P

P

(3.174)

STEP 3.5.C.S.2: solve the following algebraic matrix Riccati equation,

P P P P

P P P P (3.175)

for and define

P

P P P P P

(3.176)

Then, partition as

...
...

P P

(3.177)

where and are of dimensions P and P, respectively.

STEP 3.5.C.S.3: follow exactly Steps 3.4.C.S.3 to 3.4.C.S.5 of the previous section
to construct a state feedback gain matrix .

We have the following result.

Theorem 3.17. Consider the system given in Equation 3.48 with and
, i.e. all states are measurable. Assume that P has no invariant zeros on

the imaginary axis. Then, the closed-loop system comprising the given system and
with being given as in the above algorithm has the following prop-

erties:

1. it is internally stable for sufficiently small ;
2. the closed-loop transfer matrix from the disturbance to the controlled output

, , possesses for sufficiently small .

Clearly, is an -suboptimal control law for the system given in
Equation 3.48.
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ii. Measurement Feedback Case. Similarly, one can design either a full-order or a
reduced-order output feedback control law that solves the -suboptimal prob-
lem. Unfortunately, the reduced-order controller design for control is quite dif-
ferent from its counterpart in control and is quite complicated. We only focus
below on the design of a full-order -suboptimal controller. Interested readers
are referred to [74] for a more complete treatment. The following is a step-by-step
algorithm to construct a full-order -suboptimal control law for any .

STEP 3.5.C.F.1: define an auxiliary full state feedback system

(3.178)

and perform Steps 3.5.C.S.1 to 3.5.C.S.3 of the previous algorithm to obtain a
gain matrix . Also, define

P P (3.179)

Note that is the solution of Equation 3.175.

STEP 3.5.C.F.2: define another auxiliary full state feedback system as follows:

(3.180)

and perform Steps 3.5.C.S.1 to 3.5.C.S.3 of the previous algorithm, but for this
auxiliary system, to obtain a gain matrix . Let us define .
Similarly, define a positive semi-definite matrix as in Equation 3.179, but for
the current auxiliary system.

STEP 3.5.C.F.3: the full-order -suboptimal controller is given by

(3.181)

where

(3.182)

and
(3.183)

This completes the algorithm.
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We have the following theorem.

Theorem 3.18. Consider the system given in Equation 3.48 with . Assume
that P and Q have no invariant zeros on the imaginary axis. Then, the closed-
loop system comprising the given system and the measurement feedback controller
in Equation 3.181 has the following properties:

1. it is internally stable for sufficiently small ;
2. the closed-loop transfer matrix from the disturbance to the controlled output

, , possesses for sufficiently small .

Hence, Equation 3.181 is an -suboptimal control law for the system given in
Equation 3.48.

Remark 3.19. For the case when , i.e. the problem of almost distur-
bance decoupling with internal stability for of Equation 3.48 (with both subsys-
tems P and Q having no invariant zeros on the imaginary axis) is solvable, then
either the above algorithm or the algorithm in the previous section for optimal
control would yield desired solutions. We note that, in general, suboptimal solutions
are nonunique. In fact, one could utilize the algorithm for constructing the reduced-
order output feedback suboptimal controller in the previous section to construct
a reduced-order solution for the almost disturbance decoupling problem.

3.5.2 Discrete-time Systems

We now consider a discrete-time linear time-invariant system as given in Equation
3.106. Again, for simplicity, we assume that is stabilizable, is de-
tectable, and . The standard control problem for discrete-time
systems is to find an internally stabilizing proper measurement feedback control law
of the format in Equation 3.107 such that, when it is applied to the system in Equation
3.106, the resulting closed-loop system is internally stable and the -norm of the
overall closed-loop transfer matrix function from to , i.e. , is minimized.
The -norm of a stable discrete-time transfer matrix, e.g., , is defined as
follows:

(3.184)

where and are, respectively, the input and output of , and is the
-norm of the corresponding signal. Next, we define

internally stabilizes (3.185)

Again, we refer interested readers to the work of Chen [74] for the computation of
. For simplicity, we assume throughout this section that has been determined

and hence it is known.
It can be shown that the problem of almost disturbance decoupling with

internal stability is solvable for of Equation 3.106, i.e. , if and only if the
following conditions hold (see, e.g., Chen [74]):
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1. is stabilizable;
2. is detectable;
3. , where ;

4. Im P Ker P ;

5. Ker Q Im Q ;

6. Q P .

We note that if P is right invertible and of minimum phase with no infinite zeros,
and Q is left invertible and of minimum phase with no infinite zeros, then conditions
4–6 are automatically satisfied.

The problems of discrete-time control and almost disturbance decou-
pling can be solved explicitly in the discrete-time domain. Complete solutions to
these problems have been reported by Chen [74]. However, by utilizing the bilinear
transformations (see Chen et al. [71] for the mapping of structural properties un-
der the bilinear transformations), we can convert these discrete-time problems into
equivalent continuous-time problems, and thus all algorithms presented in the pre-
vious subsection can be readily applied to yield desired solutions. The procedure is
fairly simple.

1. We first apply the well-known bilinear transformation to the given discrete-time
system in Equation 3.106 to obtain an equivalent continuous-time counterpart,
i.e.

(3.186)

where

(3.187)

Note that if has eigenvalues at , then one can apply some prefeedback laws
to remove them.

2. Next, utilize any method of the previous subsection to the system in Equation
3.186 to find an appropriate -suboptimal controller, say,

(3.188)
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Note that some prefeedback might be necessary to wash out .

3. Lastly, apply the inverse bilinear transformation to convert the controller in
Equation 3.188 to a discrete-time equivalent system. It is known in the literature
(see, e.g., [99]) that the discrete-time controller obtained is -suboptimal to
the original discrete-time system in Equation 3.106.

The above procedure is also applicable to finding discrete-time almost dis-
turbance decoupling controllers. As mentioned earlier, all results presented in the
previous section on optimal control are applicable to solving the almost dis-
turbance decoupling problem when both P and Q have no invariant zeros on the
unit circle.

3.6 Robust and Perfect Tracking Control

We present in this section a robust and perfect tracking (RPT) problem that was pro-
posed and solved by Liu et al. [106] for continuous-time systems and Chen et al.
[107] for discrete-time systems (see also Chen [74]). The RPT problem is to design
a controller such that the resulting closed-loop system is asymptotically stable and
the controlled output almost perfectly tracks a given reference signal in the presence
of any initial conditions and external disturbances. By almost perfect tracking we
mean the ability of a controller to track a given reference signal with an arbitrar-
ily fast settling time in the face of external disturbances and initial conditions. Of
course, in real life, a certain tradeoff has to be made in order to design a physically
implementable control law. The results of this section will be utilized heavily in later
chapters to solve track-following problems in hard disk drive servo systems.

3.6.1 Continuous-time Systems

Consider the following continuous-time system:

(3.189)

where is the state, is the control input,
q

is the external distur-
bance,

p
is the measurement output, and is the output to be controlled.

We also assume that the pair is stabilizable and is detectable. For fu-
ture reference, we define P and Q to be the subsystems characterized by the matrix
quadruples and , respectively. Given the external dis-
turbance , , and any reference signal vector with , , ,

, , being available, and being either a vector of delta functions or
in , the RPT problem for the system in Equation 3.189 is to find a parameterized
dynamic measurement control law of the following form
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(3.190)

such that when the controller of Equation 3.190 is applied to the system of Equation
3.189, we have

1. there exists an such that the resulting closed-loop system with and
is asymptotically stable for all ; and

2. let be the closed-loop controlled output response and let be the re-
sulting tracking error, i.e. . Then, for any initial condition
of the state, ,

as (3.191)

We introduce in the above formulation some additional information besides the ref-
erence signal , i.e. , as additional controller inputs. The idea of uti-
lizing the reference signal together with its derivatives in tracking control is similar
to the command-generator system introduced in Lewis [108]. Note that, in general,
these additional signals can easily be generated without any extra costs. For example,
if , where is a unit step function, then one can easily obtain its
first-order derivative

(3.192)

where is a unit impulse function, and the second-order derivative

(3.193)

These and can be used to improve the overall tracking performance,
whereas does not exist in the real world and hence cannot be used.
We also note that our formulation covers all possible reference signals that have the
form , . Thus, our method could be applied to track approxi-
mately those reference signals that have a Taylor series expansion at . This can
be done by truncating the higher-order terms of the Taylor series of the given signal.
Also, it is simple to see that, when , the proposed problem reduces to the
well-known perfect regulation problem with measurement feedback.

It is shown that the RPT problem for the system in Equation 3.189 is solvable if
and only if the following conditions hold:

1. is stabilizable and is detectable;
2. , where ;
3. P, i.e. , is right invertible and of minimum phase;
4. Ker Im .

We assume throughout the rest of this subsection that the above conditions are
satisfied, and move on to construct solutions to the RPT problem. As usual, we focus
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on the following three cases: 1) the state feedback case; 2) the full-order measure-
ment feedback case; and 3) the reduced-order measurement feedback case.

i. State Feedback Case. When all states of the plant are measured for feedback,
the problem can be solved by a static control law. We construct in this subsection a
parameterized state feedback control law,

(3.194)

that solves the RPT problem for the system in Equation 3.189. It is simple to note
that we can rewrite the given reference in the following form:

...
...

...
. . .

...
...

... (3.195)

Combining Equation 3.195 with the given system, we obtain the following aug-
mented system:

AUG (3.196)

where

...
(3.197)

...
...

. . .
...

...
...

...
...

(3.198)

and
(3.199)

It is then straightforward to show that the subsystem from to in the augmented
system of Equation 3.196, i.e. the quadruple , is right invertible and
has the same infinite zero structure as that of P. Furthermore, its invariant zeros
contain those of P and extra ones at . We are now ready to present a
step-by-step algorithm to construct the required control law of the form in Equation
3.194.

STEP 3.6.C.S.1: this step transforms the subsystem from to of the augmented
system in Equation 3.196 into the special coordinate basis of Theorem 3.1, i.e.
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finds nonsingular state, input and output transformations , and to put the
subsystem into the structural form of Theorem 3.1 and in a small variation of the
compact form of Equations 3.20 to 3.23. It can be shown that the compact form
of Equations 3.20 to 3.23 for the subsystem from to of Equation 3.196 can
be written as

(3.200)

...
...

. . .
... (3.201)

and

(3.202)

STEP 3.6.C.S.2: choose an appropriate dimensional matrix such that

(3.203)

is asymptotically stable. The existence of such an is guaranteed by the prop-
erty that is completely controllable.

STEP 3.6.C.S.3: for each of , which is associated with the infinite zero struc-
ture of P or the subsystem from to of Equation 3.196, we choose an such
that

(3.204)

with all being in . Let

(3.205)

STEP 3.6.C.S.4: next, we construct

(3.206)

where

...
. . .

... (3.207)
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blkdiag (3.208)

and where
diag (3.209)

STEP 3.6.C.S.5: finally, we partition

(3.210)

where and .

We have the following result.

Theorem 3.20. Consider the given system in Equation 3.189 with its external distur-
bance , , its initial condition . Assume that all its states
are measured for feedback, i.e. and , and the RPT problem for the
system in Equation 3.189 is solvable. Then, for any reference signal , which has
all its th-order derivatives, , , being available and
being either a vector of delta functions or in , the RPT problem is solved by the
control law of Equation 3.194 with and , , as given in
Equation 3.210.

The following remark gives an alternative approach for solving the proposed RPT
problem via full state feedback. We leave the proof of this method to readers as an
exercise.

Remark 3.21. Note that the required gain matrices for the state feedback RPT prob-
lem might be computed by solving the following Riccati equation:

for a positive-definite solution , where

(3.211)

...
...

. . .
... (3.212)

and where , and are as defined in Equations 3.198 and 3.199. The required
gain matrix is then given by

(3.213)

where and .
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Finally, we note that solutions to the Riccati equation in Remark 3.21 might have
severe numerical problems as becomes smaller and smaller.

We consider two types of measurement feedback control laws: one is of full-order
controllers whose dynamical order is equal to the order of the given system; the other
is of reduced-order controllers with a dynamical order that is less than the order of
the given system. Without loss of generality, we assume throughout this subsection
that . If it is nonzero, it can always be washed out by the following preoutput
feedback:

ii. Full-order Output Feedback Case. The following is a step-by-step algorithm
for constructing a parameterized full-order measurement feedback controller, which
solves the RPT problem.

STEP 3.6.C.F.1: for the given reference and the given system in Equation
3.189, we first assume that all the state variables of Equation 3.189 are measur-
able and follow the procedures of the state feedback case to define an auxiliary
system,

(3.214)

Then, we follow Steps 3.6.C.S.1 to 3.6.C.S.5 of the algorithm of the state feed-
back case to construct a state feedback gain matrix:

(3.215)

STEP 3.6.C.F.2: let Q be characterized by a matrix quadruple

Q Q Q Q (3.216)

This step is to transform this Q into the special coordinate basis of The-
orem 3.1. Because of the special structure of the matrix Q , it is simple to
show that Q is always right invertible and is free of invariant zeros. Utilize
the results of Theorem 3.1 to find nonsingular state, input and output transfor-
mation Q, Q and Q such that

Q Q
Q Q

Q Q

Q

Q
Q (3.217)

Q Q Q
Q

Q

(3.218)

Q Q
Q (3.219)

Q Q
p (3.220)

where p rank . It can be verified that the pair is detectable if
and only if the pair
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Q
Q

Q

(3.221)

is detectable.

STEP 3.6.C.F.3: let Q be an appropriate dimensional constant matrix such that
the eigenvalues of the matrix

Q Q Q
Q

Q
Q Q Q

Q

Q

(3.222)

are all in . Next, we define a parameterized observer gain matrix,

Q
Q Q Q Q

Q Q
Q (3.223)

STEP 3.6.C.F.4: finally, we obtain the following full-order measurement feedback
control law:

(3.224)

where . This completes the construction of
the full-order measurement feedback controller.

We have the following theorem.

Theorem 3.22. Consider the given system in Equation 3.189 with its external dis-
turbance , , its initial condition . Assume that the RPT
problem is solvable for the system in Equation 3.189. Then, for any reference signal

, which has all its th-order derivatives, , , being avail-
able and being either a vector of delta functions or in , the RPT problem is
solved by the parameterized full-order measurement feedback control laws as given
in Equation 3.224.

The following remark yields an alternative way to compute the gain matrix
in Step 3.6.C.F.3.

Remark 3.23. The gain matrix in Step 3.6.C.F.3 can also be computed by solv-
ing the following Riccati equation:

(3.225)

for a positive-definite solution . The required gain matrix is then given
by

(3.226)

Again, this approach might have some numerical problems.
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iii. Reduced-order Output Feedback Case. We now present solutions to the RPT
problem via reduced-order measurement feedback control laws. For simplicity of
presentation, we assume that matrices and have already been transformed
into the following forms:

and (3.227)

where is of full row rank. Before we present a step-by-step algorithm to con-
struct a parameterized reduced-order measurement feedback controller, we first par-
tition the following system

(3.228)

in conformity with the structures of and in Equation 3.227, i.e.

(3.229)

where

(3.230)

Obviously, is directly available and hence need not be estimated. Next, we
define QR to be characterized by

R R R R

It is again straightforward to verify that QR is right invertible with no finite and
infinite zeros. Moreover, R R is detectable if and only if is detectable.
We are ready to present the following algorithm.

STEP 3.6.C.R.1: for the given reference and the given system in Equation
3.189, we again assume that all the state variables of the given system are mea-
surable and follow the procedures of the state feedback case to define an auxil-
iary system,

(3.231)

Then, we follow Steps 3.6.C.S.1 to 3.6.C.S.5 of the algorithm of the state feed-
back case to construct a state feedback gain matrix

(3.232)

Let us partition in conformity with and of Equation 3.229 as follows,

(3.233)
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STEP 3.6.C.R.2: let R be an appropriate dimensional constant matrix such that
the eigenvalues of

R R R R R (3.234)

are all in . This can be done because R R is detectable.

STEP 3.6.C.R.3: let

R R R R R R R (3.235)

and

R R R R

R R R

R

(3.236)

STEP 3.6.C.R.4: finally, we obtain the following reduced-order measurement feed-
back control law:

(3.237)

where for , R This completes
the constructing procedure.

Theorem 3.24. Consider the given system in Equation 3.189 with its external dis-
turbance , , its initial condition . Assume that the RPT
problem is solvable for the system in Equation 3.189. Then, for any reference signal

, which has all its th-order derivatives, , , being avail-
able and being either a vector of delta functions or in , the RPT problem
is solved by the parameterized reduced-order measurement feedback control laws of
Equation 3.237.

3.6.2 Discrete-time Systems

We present in this subsection the RPT problem for the following discrete-time sys-
tem:

(3.238)

where is the state, is the control input,
q

is the external distur-
bance,

p
is the measurement output, and is the output to be controlled.
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We also assume that the pair is stabilizable and is detectable. For
future reference, we define P and Q to be the subsystems characterized by the ma-
trix quadruples and respectively. Given the external
disturbance , , and any reference signal vector , the RPT
problem for the discrete-time system in Equation 3.238 is to find a parameterized
dynamic measurement feedback control law of the following form:

(3.239)

such that, when the controller in Equation 3.239 is applied to the system in Equation
3.238,

1. there exists an such that the resulting closed-loop system with and
is asymptotically stable for all ; and

2. let be the closed-loop controlled output response and let be the
resulting tracking error, i.e. . Then, for any initial con-
dition of the state, , as .

It has been shown by Chen [74] that the above RPT problem is solvable for the
system in Equation 3.238 if and only if the following conditions hold:

1. is stabilizable and is detectable;
2. , where ;
3. P is right invertible and of minimum phase with no infinite zeros;
4. Ker Im .

It turns out that the control laws, which solve the RPT for the given plant in
Equation 3.238 under the solvability conditions, need not be parameterized by any
tuning parameter. Thus, Equation 3.239 can be replaced by

(3.240)

and, furthermore, the resulting tracking error can be made identically zero for
all .

Assume that all the solvability conditions are satisfied. We present in the follow-
ing solutions to the discrete-time RPT problem.

i. State Feedback Case. When all states of the plant are measured for feedback, the
problem can be solved by a static control law. We construct in this subsection a state
feedback control law,

(3.241)

that solves the RPT problem for the system in Equation 3.238. We have the following
algorithm.

STEP 3.6.D.S.1: this step transforms the subsystem from to of the given system
in Equation 3.238 into the special coordinate basis of Theorem 3.1, i.e. finds
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nonsingular state, input and output transformations , and to put it into
the structural form of Theorem 3.1 as well as in the compact form of Equations
3.20 to 3.23, i.e.

(3.242)

(3.243)

(3.244)

(3.245)

STEP 3.6.D.S.2: choose an appropriate dimensional matrix such that

(3.246)

is asymptotically stable. The existence of such an is guaranteed by the prop-
erty that is completely controllable.

STEP 3.6.D.S.3: finally, we let

and (3.247)

This ends the constructive algorithm.

We have the following result.

Theorem 3.25. Consider the given discrete-time system in Equation 3.238 with any
external disturbance and any initial condition . Assume that all its states
are measured for feedback, i.e. and , and the solvability conditions
for the RPT problem hold. Then, for any reference signal , the proposed RPT
problem is solved by the control law of Equation 3.241 with and as given in
Equation 3.247.

ii. Measurement Feedback Case. Without loss of generality, we assume throughout
this subsection that matrix . If it is nonzero, it can always be washed out by
the following preoutput feedback It turns out that, for discrete-time
systems, the full-order observer-based control law is not capable of achieving the
RPT performance, because there is a delay of one step in the observer itself. Thus,
we focus on the construction of a reduced-order measurement feedback control law
to solve the RPT problem. For simplicity of presentation, we assume that matrices

and have already been transformed into the following forms,

and (3.248)

where is of full row rank. Before we present a step-by-step algorithm to con-
struct a reduced-order measurement feedback controller, we first partition the fol-
lowing system
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(3.249)

in conformity with the structures of and in Equation 3.248, i.e.

where and . Obviously, is directly
available and hence need not be estimated. Next, let QR be characterized by

R R R R

It is straightforward to verify that QR is right invertible with no finite and infinite
zeros. Moreover, R R is detectable if and only if is detectable. We are
ready to present the following algorithm.

STEP 3.6.D.R.1: for the given system in Equation 3.238, we again assume that
all the state variables of the given system are measurable and then follow Steps
3.6.D.S.1 to 3.6.D.S.3 of the algorithm of the previous subsection to construct
gain matrices and . We also partition in conformity with and as
follows:

(3.250)

STEP 3.6.D.R.2: let R be an appropriate dimensional constant matrix such that
the eigenvalues of

R R R R R (3.251)

are all in . This can be done because R R is detectable.

STEP 3.6.D.R.3: let

R R R R R R R (3.252)

R R R R

R R R

R

(3.253)

and
R (3.254)
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STEP 3.6.D.R.4: finally, we obtain the following reduced-order measurement feed-
back control law:

(3.255)

This completes the algorithm.

Theorem 3.26. Consider the given system in Equation 3.238 with any external dis-
turbance and any initial condition . Assume that the solvability conditions
for the RPT problem hold. Then, for any reference signal , the proposed RPT
problem is solved by the reduced-order measurement feedback control laws of Equa-
tion 3.255.

3.7 Loop Transfer Recovery Technique

Another popular design methodology for multivariable systems, which is based on
the ‘loop shaping’ concept, is linear quadratic Gaussian (LQG) with loop transfer
recovery (LTR). It involves two separate designs of a state feedback controller and
an observer or an estimator. The exact design procedure depends on the point where
the unstructured uncertainties are modeled and where the loop is broken to evaluate
the open-loop transfer matrices. Commonly, either the input point or the output point
of the plant is taken as such a point. We focus on the case when the loop is broken
at the input point of the plant. The required results for the output point can be easily
obtained by appropriate dualization. Thus, in the two-step procedure of LQG/LTR,
the first step of design involves loop shaping by a state feedback design to obtain
an appropriate loop transfer function, called the target loop transfer function. Such
a loop shaping is an engineering art and often involves the use of linear quadratic
regulator (LQR) design, in which the cost matrices are used as free design param-
eters to generate the target loop transfer function, and thus the desired sensitivity
and complementary sensitivity functions. However, when such a feedback design is
implemented via an observer-based controller (or Kalman filter) that uses only the
measurement feedback, the loop transfer function obtained, in general, is not the
same as the target loop transfer function, unless proper care is taken in designing the
observers. This is when the second step of LQG/LTR design philosophy comes into
the picture. In this step, the required observer design is attempted so as to recover the
loop transfer function of the full state feedback controller. This second step is known
as LTR.

The topic of LTR was heavily studied in the 1980s. Major contributions came
from [109–119]. We present in the following the methods of LTR design at both the
input point and output point of the given plant.

3.7.1 LTR at Input Point

It turns out that it is very simple to formulate the LTR design technique for both
continuous- and discrete-time systems into a single framework. Thus, we do it in one
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shot. Let us consider a linear time-invariant multivariable system characterized by

(3.256)

where , if is a continuous-time system, or , if
is a discrete-time system. Similarly, , and are the state,
input and output of . They represent, respectively, , and if the given
system is of continuous-time, or represent, respectively, , and if is
of discrete-time. Without loss of any generality, we assume throughout this section
that both and are of full rank. The transfer function of is then
given by

(3.257)

where , the Laplace transform operator, if is of continuous-time, or ,
the -transform operator, if is of discrete-time.

As mentioned earlier, there are two steps involved in LQG/LTR design. In the
first step, we assume that all state variables of the system in Equation 3.256 are
available and design a full state feedback control law

(3.258)

such that

1. the closed-loop system is asymptotically stable, and
2. the open-loop transfer function when the loop is broken at the input point of the

given system, i.e.
(3.259)

meets some frequency-dependent specifications.

Arriving at an appropriate value for is concerned with the issue of loop shaping,
which often includes the use of LQR design in which the cost matrices are used as
free design parameters to generate that satisfies the given specifications.

To be more specific, if is a continuous-time system, the target loop transfer
function can be generated by minimizing the following cost function:

C (3.260)

where and are free design parameters provided that has
no unobservable modes on the imaginary axis. The solution to the above problem is
given by

(3.261)

where is the stabilizing solution of the following algebraic Riccati equation
(ARE):

(3.262)
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It is known in the literature that a target loop transfer function with given as
in Equation 3.261 has a phase margin greater than and an infinite gain margin.

Similarly, if is a discrete-time system, we can generate a target loop transfer
function by minimizing

D (3.263)

where and are free design parameters provided that has no
unobservable modes on the unit circle.

(3.264)

where is the stabilizing solution of the following ARE:

(3.265)

Unfortunately, there are no guaranteed phase and gain margins for the target loop
transfer function resulting from the discrete-time linear quadratic regulator.

Figure 3.5. Plant-controller closed-loop configuration

Generally, it is unreasonable to assume that all the state variables of a given
system can be measured. Thus, we have to implement the control law obtained in the
first step by a measurement feedback controller. The technique of LTR is to design
an appropriate measurement feedback control (see Figure 3.5) such that the resulting
system is asymptotically stable and the achieved open-loop transfer function
from to is either exactly or approximately matched with the target loop transfer
function obtained in the first step. In this way, all the nice properties associated
with the target loop transfer function can be recovered by the measurement feedback
controller. This is the so-called LTR design.

It is simple to observe that the achieved open-loop transfer function in the con-
figuration of Figure 3.5 is given by

(3.266)
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Let us define recovery error as

(3.267)

The LTR technique is to design an appropriate stabilizing such that the recov-
ery error is either identically zero or small in a certain sense. As usual, two
commonly used structures for are: 1) the full-order observer-based controller,
and 2) the reduced-order observer-based controller.

i. Full-order Observer-based Controller. The dynamic equations of a full-order
observer-based controller are well known and are given by

(3.268)

where is the full-order observer gain matrix and is the only free design parameter.
It is chosen so that is asymptotically stable. The transfer function of the
full-order observer-based control is given by

(3.269)

It has been shown [110, 117] that the recovery error resulting from the full-order
observer-based controller can be expressed as

(3.270)

where
(3.271)

Obviously, in order to render to be zero or small, one has to design an observer
gain such that , or equivalently , is zero or small (in a certain sense).
Defining an auxiliary system,

(3.272)

with a state feedback control law,

(3.273)

It is straightforward to verify that the closed-loop transfer matrix from to of
the above system is equivalent to . As such, any of the methods presented in
Sections 3.4 and 3.5 for and optimal control can be utilized to find to
minimize either the -norm or -norm of . In particular,

1. if the given plant is a continuous-time system and if is left invertible and of
minimum phase,

2. if the given plant is a discrete-time system and if is left invertible and of
minimum phase with no infinite zeros,
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then either the -norm or -norm of can be made arbitrarily small, and
hence LTR can be achieved. If these conditions are not satisfied, the target loop
transfer function , in general, cannot be fully recovered!

For the case when the target loop transfer function can be approximately recov-
ered, the following full-order Chen–Saberi–Sannuti (CSS) architecture-based control
law (see [111, 117]),

(3.274)

which has a resulting recovery error,

(3.275)

can be utilized to recover the target loop transfer function as well. In fact, when
the same gain matrix is used, the full-order CSS architecture-based controller
would yield a much better recovery compared to that of the full order observer-based
controller.

ii. Reduced-order Observer-based Controller. For simplicity, we assume that
and have already been transformed into the form

and (3.276)

where is of full row rank. Then, the dynamic equations of can be partitioned
as follows:

(3.277)

where is readily accessible. Let

(3.278)

and the reduced-order observer gain matrix be such that is asymptot-
ically stable. Next, we partition

(3.279)

in conformity with the partitions of and , respectively. Then,

define
(3.280)

The reduced-order observer-based controller is given by

(3.281)
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It is again reported in [110, 117] that the recovery error resulting from the reduced-
order observer-based controller can be expressed as

(3.282)

where
(3.283)

Thus, making zero or small is equivalent to designing a reduced-order observer
gain such that , or equivalently , is zero or small. Following the same
idea as in the full-order case, we define an auxiliary system

(3.284)

with a state feedback control law,

(3.285)

Obviously, the closed-loop transfer matrix from to of the above system is equiv-
alent to . Hence, the methods of Sections 3.4 and 3.5 for and optimal
control again can be used to find to minimize either the -norm or -norm of

. In particular, for the case when satisfies Condition 1 (for continuous-time
systems) or Condition 2 (for discrete-time systems) stated in the full-order case, the
target loop can be either exactly or approximately recovered. In fact, in this case, the
following reduced-order CSS architecture-based controller

(3.286)

which has a resulting recovery error,

(3.287)

can also be used to recover the given target loop transfer function. Again, when the
same is used, the reduced-order CSS architecture-based controller would yield a
better recovery compared to that of the reduced-order observer-based controller (see
[111, 117]).

3.7.2 LTR at Output Point

For the case when uncertainties of the given plant are modeled at the output point,
the following dualization procedure can be used to find appropriate solutions. The
basic idea is to convert the LTR design at the output point of the given plant into
an equivalent LTR problem at the input point of an auxiliary system so that all the
methods studied in the previous subsection can be readily applied.
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1. Consider a plant characterized by the quadruple . Let us design
a Kalman filter or an observer first with a Kalman filter or observer gain matrix

such that is asymptotically stable and the resulting target loop

(3.288)

meets all the design requirements specified at the output point. We are now seek-
ing to design a measurement feedback controller such that all the proper-
ties of can be recovered.

2. Define a dual system characterized by where

(3.289)

Let and let be defined as

(3.290)

Let be considered as a target loop transfer function for when the
loop is broken at the input point of . Let a measurement feedback controller

be used for . Here, the controller could be based either on
a full- or a reduced-order observer or CSS architecture depending upon what

is based on. Following the results given earlier for LTR at the input point
to design an appropriate controller , then the required controller for LTR
at the output point of the original plant is given by

(3.291)

This concludes the LTR design for the case when the loop is broken at the output
point of the plant.

Finally, we note that there are another type of loop transfer recovery techniques
that have been proposed in the literature, i.e. in Chen et al. [120–122], in which the
focus is to recover a closed-loop transfer function instead of an open-loop one as in
the conventional LTR design studied in this section. Interested readers are referred
to [120–122] for details.
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Classical Nonlinear Control

4.1 Introduction

Every physical system in real life has nonlinearities and very little can be done to
overcome them. Many practical systems are sufficiently nonlinear so that important
features of their performance may be completely overlooked if they are analyzed and
designed through linear techniques. In HDD servo systems, major nonlinearities are
frictions, high-frequency mechanical resonances and actuator saturation nonlineari-
ties. Among all these, the actuator saturation could be the most significant nonlinear-
ity in designing an HDD servo system. When the actuator saturates, the performance
of the control system designed will seriously deteriorate. Interested readers are re-
ferred to a recent monograph by Hu and Lin [123] for a fairly complete coverage of
many newly developed results on control systems with actuator nonlinearities.

The actuator saturation in the HDD has seriously limited the performance of its
overall servo system, especially in the track-seeking stage, in which the HDD R/W
head is required to move over a wide range of tracks. It will be obvious in the forth-
coming chapters that it is impossible to design a pure linear controller that would
achieve a desired performance in the track-seeking stage. Instead, we have no choice
but to utilize some sophisticated nonlinear control techniques in the design. The most
popular nonlinear control technique used in the design of HDD servo systems is the
so-called proximate time-optimal servomechanism (PTOS) proposed by Workman
[30], which achieves near time-optimal performance for a large class of motion con-
trol systems characterized by a double integrator. The PTOS was actually modified
from the well-known time-optimal control. However, it is made to yield a minimum
variance with smooth switching from the track-seeking to track-following modes.
We also introduce another nonlinear control technique, namely a mode-switching
control (MSC). The MSC we present in this chapter is actually a combination of the
PTOS and the robust and perfect tracking (RPT) control of Chapter 3. In particular,
in the MSC scheme for HDD servo systems, the track-seeking mode is controlled by
a PTOS and the track-following mode is controlled by a RPT controller. The MSC is
a type of variable-structure control systems, but its switching is in only one direction.
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4.2 Time-optimal Control

We recall the technique of the time-optimal control (TOC) in this section. Given a
dynamic system characterized by

(4.1)

where is the state variable and is the control input, the objective of optimal
control is to determine a control input that causes a controlled process to satisfy the
physical constraints and at the same time optimize a certain performance criterion,

(4.2)

where and are, respectively, initial time and final time of operation, and is a
scalar function. The TOC is a special class of optimization problems and is defined
as the transfer of the system from an arbitrary initial state to a specified target
set point in minimum time. For simplicity, we let . Hence, the performance
criterion for the time-optimal problem becomes one of minimizing the following cost
function with , i.e.

(4.3)

Let us now derive the TOC law using Pontryagin’s principle and the calculus of
variation (see, e.g., [124]) for a simple dynamic system obeying Newton’s law, i.e.
for a double-integrator system represented by

(4.4)

where is the position output, is the acceleration constant and is the input to
the system. It will be seen later that the dynamics of the actuator of an HDD can be
approximated as a double-integrator model. To start with, we rewrite Equation 4.4 as
the following state-space model:

(4.5)

with

(4.6)

Note that is the velocity of the system. Let the control input be constrained as
follows:

(4.7)

Then, the Hamiltonian (see, e.g., [124]) for such a problem is given by

(4.8)
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where is a vector of the time-varying Lagrange multipliers. Pon-
tryagin’s principle states that the Hamiltonian is minimized by the optimal control,
or

(4.9)

where superscript indicates optimality. Thus, from Equations 4.8 and 4.9, the opti-
mal control is

for

for
sgn (4.10)

The calculus of variation (see [124]) yields the following necessary condition for
a time-optimal solution:

(4.11)

which is known as a costate equation in optimal control terminology. The solution to
the costate equation is of the form

(4.12)

where and are constants of integration. Equation 4.12 indicates that and,
therefore can change sign at most once. Since there can be at most one switching,
the optimal control for a specified initial state must be one of the following forms:

(4.13)

Thus, the segment of optimal trajectories can be found by integrating Equation 4.5
with to obtain

(4.14)

(4.15)

where and are constants of integration. It is to be noted that if the initial state
lies on the optimal trajectories defined by Equations 4.14 and 4.15 in the state plane,
then the control will be either or in Equation 4.13 depending upon the direction
of motion. In HDD servo systems, it will be shown later that the problem is of relative
head-positioning control, and hence the initial and final states must be
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(4.16)

where is the reference set point. Because of these kinds of initial state in HDD
servo systems, the optimal control must be chosen from either or in Equation
4.13. Note that if the control input produces the acceleration , then the input

will produce a deceleration of the same magnitude.
Hence, the minimum time performance can be achieved either with maximum

acceleration for half of the travel followed by maximum deceleration for an equal
amount of time, or by first accelerating and then decelerating the system with max-
imum effort to follow some predefined optimal velocity trajectory to reach the final
destination in minimum time. The former case results in an open-loop form of TOC
that uses predetermined time-based acceleration and deceleration inputs, whereas the
latter yields a closed-loop form of TOC. We note that if the area under acceleration,
which is a function of time, is the same as the area under deceleration, there will be
no net change in velocity after the input is removed. The final output velocity and the
position will be in a steady state.

In general, the time-optimal performance can be achieved by switching the con-
trol between two extreme levels of the input, and we have shown that in the double-
integrator system the number of switchings is at most equal to one, i.e. one less
than the order of dynamics. Thus, if we extend the result to an th-order system,
it will need switchings between maximum and minimum inputs to achieve a
time-optimal performance. Since the control must be switched between two extreme
values, the TOC is also known as bang-bang control.

In what follows, we discuss the bang-bang control in two versions, i.e. in the
open-loop and in the closed-loop forms for the double-integrator model characterized
by Equation 4.5 with the control constraint represented by Equation 4.7.

4.2.1 Open-loop Bang-bang Control

The open-loop method of bang-bang control uses maximum acceleration and max-
imum deceleration for a predetermined time period. Thus, the time required for the
system to reach the target position in minimum time is predetermined from the above
principles and the control input is switched between two extreme levels for this time
period. We can precalculate the minimum time for a specified reference set point
. Let the control be

for

for
(4.17)

We now solve Equations 4.14 and 4.15 for the accelerating phase with zero initial
condition. For the accelerating phase, i.e. with , we have

(4.18)

At the end of the accelerating phase, i.e. at ,
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(4.19)

Similarly, at the end of decelerating phase, we can show that

(4.20)

Obviously, the total displacement at the end of bang-bang control must reach the
target, i.e. the reference set point . Thus,

(4.21)

which gives

(4.22)

the minimum time required to reach the target set point.

4.2.2 Closed-loop Bang-bang Control

In this method, the velocity of the plant is controlled to follow a predefined trajectory
and more specifically the decelerating trajectory. These trajectories can be generated
from the phase-plane analysis. This analysis is explained below for the system given
by Equation 4.5 and can be extended to higher-order systems (see, e.g., [124]). We
will show later that this deceleration trajectory brings the system to the desired set
point in finite time. We now move to find the deceleration trajectory.

First, eliminating from Equations 4.14 and 4.15, we have

for (4.23)

for (4.24)

where and are appropriate constants. Note that each of the above equations
defines the family of parabolas. Let us define to be the positioning
error with being the desired final position. Then, if we consider the trajectories
between and , our desired final state in and plane must be

(4.25)

In this case, the constants in the above trajectories are equal to zero. Moreover, both
of the trajectories given by Equations 4.23 and 4.24 are the decelerating trajectories
depending upon the direction of the travel. The mechanism of the TOC can be illus-
trated in a graphical form as given in Figure 4.1. Clearly, any initial state lying below
the curve is to be driven by the positive accelerating force to bring the state to the
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Figure 4.1. Deceleration trajectories for TOC

deceleration trajectory. On the other hand, any initial state lying above the curve is
to be accelerated by the negative force to the deceleration trajectory.

Let
sgn (4.26)

The control law is then given by

sgn (4.27)

Figure 4.2. Typical scheme of TOC

A block diagram depicting the closed-loop method of bang-bang control is shown
in Figure 4.2. Unfortunately, the control law given by Equation 4.27 for the system
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shown in Figure 4.2, although time-optimal, is not practical. It applies maximum or
minimum input to the plant to be controlled even for a small error. Moreover, this
algorithm is not suited for disk drive applications for the following reasons:

1. even the smallest system process or measurement noise will cause control “chat-
ter”. This will excite the high-frequency modes.

2. any error in the plant model, will cause limit cycles to occur.

As such, the TOC given above has to be modified to suit HDD applications. In the
following section, we recall a modified version of the TOC proposed by Workman
[30], i.e. the PTOS. Such a control scheme is widely used nowadays in designing
HDD servo systems.

4.3 Proximate Time-optimal Servomechanism

The infinite gain of the signum function in the TOC causes control chatter, as seen in
the previous section. Workman [30], in 1987, proposed a modification of this tech-
nique, i.e. the so-called PTOS, to overcome such a drawback. The PTOS essentially
uses maximum acceleration where it is practical to do so. When the error is small,
it switches to a linear control law. To do so, it replaces the signum function in TOC
law by a saturation function. In the following sections, we revisit the PTOS method
in continuous-time and in discrete-time domains.

4.3.1 Continuous-time Systems

The configuration of the PTOS is shown in Figure 4.3. The function is a finite-
slope approximation to the switching function given by Equation 4.26. The
PTOS control law for the system in Equation 4.5 is given by

sat (4.28)

where sat is defined as

Figure 4.3. Continuous-time PTOS
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sat

if

if

if

(4.29)

and the function is given by

for

sgn for
(4.30)

Here we note that and are, respectively, the feedback gains for position and
velocity, is a constant between and and is referred to as the acceleration dis-
count factor, and is the size of the linear region. Since the linear portion of the
curve must connect the two disjoint halves of the nonlinear portion, we have
constraints on the feedback gains and the linear region to guarantee the continuity of
the function . It was proved by Workman [30] that

(4.31)

The control zones in the PTOS are shown in Figure 4.4. The two curves bounding
the switching curve (central curve) now redefine the control boundaries and it is
termed a linear boundary. Let this region be . The region below the lower curve is
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Figure 4.4. Control zones of a PTOS
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the region where the control , whereas the region above the upper curve
is the region where the control . It has been proved [30] that once the
state trajectory enters the band in Figure 4.4 it remains within and the control
signal is below the saturation. The region marked is the region where the linear
control is applied.

The presence of the acceleration discount factor allows us to accommodate
uncertainties in the plant accelerating factor at the cost of increase in response time.
By approximating the positioning time as the time that it takes the positioning error
to be within the linear region, one can show that the percentage increase in time
taken by the PTOS over the time taken by the TOC is given by (see [30]):

(4.32)

Clearly, larger values of make the response closer to that of the TOC. As a result
of changing the nonlinearity from sgn( ) to sat( ), the control chatter is eliminated.

4.3.2 Discrete-time Systems

The discrete-time PTOS can be derived from its continuous-time counterpart, but
with some conditions on sample time to ensure stability. In his seminal work,
Workman [30] extended the continuous-time PTOS to discrete-time control of a
continuous-time double-integrator plant driven by a zero-order hold as shown in
Figure 4.5. As in the continuous-time case, the states are defined as position and
velocity. With insignificant calculation delay, the state-space description of the plant
given by Equation 4.5 in the discrete-time domain is

(4.33)

where is the sampling period. The control structure is a discrete-time mapping
of the continuous-time PTOS law, but with a constraint on the sampling period to

D/A

A/D

A/D

Discrete-
time

control
law

Figure 4.5. Discrete-time PTOS
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guarantee that the control does not saturate during the deceleration phase to the target
position and also to guarantee its stability. Thus, the mapped control law is

sat (4.34)

with the following constraint on sampling frequency ,

(4.35)

where is the desired bandwidth of the closed-loop system.

4.4 Mode-switching Control

In this section, we present a mode-switching control (MSC) design technique for
both continuous-time and discrete-time systems, which is a combination of the PTOS
of the previous section and the RPT technique given in Chapter 4.

4.4.1 Continuous-time Systems

In this subsection, we follow the development of [125] to introduce the design of an
MSC design for a system characterized by a double integrator or in the following
state-space equation:

(4.36)

where as usual is the state, which consists of the displacement and the velocity
; is the control input constrained by

(4.37)

As will be seen shortly in the forthcoming chapters, the VCM actuators of HDDs
can generally be approximated by such a model with appropriate parameters and

. In HDD servo systems, in order to achieve both high-speed track seeking and
highly accurate head positioning, multimode control designs are widely used. The
two commonly used multimode control designs are MSC and sliding mode control.
Both control techniques in fact belong to the category of variable-structure control.
That is, the control is switched between two or more different controllers to achieve
the two conflicting requirements. In this section, we propose an MSC scheme in
which the seeking mode is controlled by a PTOS and the track-following mode is
controlled by a RPT controller.

As noted earlier, the MSC (see, e.g., [15]) is a type of variable structure control
systems [126], but the switching is in only one direction. Figure 4.6 shows a basic
schematic diagram of MSC. There are track seeking and track following modes.
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Figure 4.6. Basic schematic diagram of MSC

Each servo mode can be designed independently, and so the main issue in MSC is
the design of the switching mechanism.

This design problem has not yet been completely resolved, and many heuristic
approaches have been tried so far (see, e.g., [127]). Several methods were proposed
for mode switching from one controller to another. In [15], a method called initial
value compensation is proposed. Note that, when the switch is transfered from the
track-seeking mode to the track-following mode, the final states of the track-seeking
controller become the initial states for the track-following controller, and hence affect
the settling performance of track-following mode. In order to reduce the impact of
these initial values during mode switching, some compensation must be worked out.
Here, the initial values are referred to the values of the states during mode switching.
However, the RPT controllers developed by Chen and coworkers [74, 106] (see also
Chapter 3) have enough robustness against plant variations and are actually indepen-
dent of initial values. Hence, the use of these controllers in the track-following mode
eliminates the need for initial-value compensation during mode switching. More-
over, the RPT controllers in a track-following servo have been proved to be robust
against resonance mode changes from disk to disk and work well against runout
disturbances.

The MSC law that combines the PTOS and RPT controllers takes the following
simple form:

P

R

(4.38)

where P is a control signal generated by the PTOS control and is given as in Equa-
tion 4.28, and R is a signal generated by the reduced-order RPT control as given in
Equation 3.237. Furthermore, , the time that MSC switches from one mode to the
other, will be presented in the next subsection together with the stability analysis of
the closed loop comprising the given plant and the MSC control law.

In what follows, we show the stability of the MSC and give a set of conditions
for mode switching. First, we rewrite the given system in Equation 4.36 as follows:

P P P (4.39)
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where is the tracking error with being the target reference. In the HDD
servo systems that we deal with in the forthcoming chapters, is regarded as the
displacement of an HDD R/W head, and is its velocity. Recall the PTOS control
law:

P sat (4.40)

where the used throughout this section has a saturation level equal to unity;
the function and the feedback gain are as defined in the previous section.
It has been shown [30] that the PTOS control law yields an asymptotically stable
closed-loop system provided that the following conditions are satisfied:

1. ;
2. ;
3. , for any nonzero ;

4. ;

5. exists everywhere; and

6. for any , .

Generally, as the velocity is not measurable, the PTOS control law has to be modified
as follows if it is to be implemented in a real system:

P sat

P

(4.41)

where is the estimator feedback gain, and is the estimator state. Next, we let
. Then, the dynamics of the closed-loop system with the above

control law can be written as

sat (4.42)

It can be shown that the closed-loop system comprising the given plant and the mod-
ified PTOS control law, in which the velocity is replaced by the above estimation,
is asymptotically stable, if conditions 1 to 5 above are satisfied and condition 6 is
replaced by

(4.43)

and

(4.44)
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We can show that, under these new conditions, the closed-loop system is stable for
the case when the control input is saturated, i.e. . For
the case when , the closed-loop system in Equation
4.42 can be written as

(4.45)

Following the result of [128], we propose the following Lyapunov function for the
system in Equation 4.45:

P (4.46)

where is a scalar constant. The derivative of the above Lyapunov function is
given by

P (4.47)

The last term is negative for all . Thus, under this choice of , P . It
follows from LaSalle’s Theorem [129] that the closed-loop system comprising the
PTOS control law with the estimated velocity and the given plant is asymptotically
stable.

It is obvious that the closed-loop system comprising the given plant in Equation
4.39 and the reduced-order RPT control law of Equation 3.237 is asymptotically
stable when the control input is not saturated. For completeness, and for the analysis
of the overall closed-loop system with the MSC scheme, we proceed to investigate
the closed-loop system comprising the plant and the RPT controller, which can be
written as

sat R

R

(4.48)

where is again the reduced-order observer gain, which is selected to be exactly
the same as that used for the velocity estimation in the PTOS, and
is the feedback gain obtained using the RPT technique of Chapter 3. Again, let

and rewrite the RPT control law as

R P (4.49)

Let be a positive-definite matrix and solve the following Lyapunov
equation:

P P P P (4.50)

for . Such a always exists as P P is stable. Next, let

P P (4.51)
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and

(4.52)

Then, we define a set

(4.53)

where is the largest positive value such that

(4.54)

For all
P (4.55)

the resulting closed-loop system can then be written as

P P P P P (4.56)

Define a Lyapunov function,

R
P P (4.57)

and evaluate its derivative along the trajectories of the closed-loop system in Equa-
tion 4.56, i.e.

R
P P

P

P

(4.58)

where

P P P P (4.59)

This shows that all trajectories of Equation 4.56 starting from remain there and
converge asymptotically to zero. Hence, the closed-loop system comprising the plant
and the reduced-order RPT control law is asymptotically stable provided that the
control input is not saturated.

Next, we re-express Equation 4.46 using the Taylor expansion as follows:

P
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where is an appropriate scalar between and . Let

(4.60)

The MSC scheme can be obtained as follows:

P

R

(4.61)

where is such that

P and (4.62)

and where is the size of the linear region of the PTOS control law. The Lyapunov
function for the overall closed-loop system can be chosen as

P R (4.63)

where is the unit step function. It is simple to verify that

P R R P (4.64)

It has already been proved that the derivatives of the functions P and R are negative-
definite. The last term is always negative in view of the definition of in Equation
4.60. Hence, and the resulting closed-loop system comprising the given plant
and the mode-switching control law is stable. As such, Equation 4.62 can be regarded
as the switching condition for the MSC design.

4.4.2 Discrete-time Systems

We now present an MSC design technique for a discrete-time system characterized
by a double-integrator or by the following state-space form:

(4.65)

where is the sampling period, is assumed to be a positive scalar for simplicity,
is the displacement and is the velocity in the context of mechanical servo systems.
The PTOS controller for such a discrete-time system is given in Equation 4.34, i.e.

P sat (4.66)

where is the target reference. To simplify our analysis, we introduce a new variable
and rewrite the system of Equation 4.65 as follows
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(4.67)

and the corresponding PTOS controller as

P sat (4.68)

where

(4.69)

The MSC law comprising the PTOS and RPT controllers is given as follows,

P

R

(4.70)

where P is a control signal generated by the PTOS controller and R is a
control signal generated by the RPT controller (see Chapter 3 for details). is the
index that the MSC switches from one mode to the other.

In what follows, we proceed to present the detailed stability analysis and mode
switching condition for the above MSC design. Noting that the tracking error is given
by , we can rewrite the system in Equation 4.67 as the following

(4.71)

and the corresponding PTOS controller as follows,

P sat (4.72)

It has been shown in [30] that the discrete PTOS control law yields an asymptotically
stable closed-loop system provided that the following conditions are satisfied:

1. ;
2. ;
3. , ;

4. ;

5. exists everywhere;

6. For all , ; and

7. For the unsaturated situation, , where

sat (4.73)

and

sat (4.74)
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As the velocity is generally not measurable, the PTOS control law has to be
modified as follows,

P sat

P

(4.75)

where is the feedback gain of the estimator and is the state variable
of the estimator. Next, let

(4.76)

Then, the closed-loop system comprising Equations 4.71 and 4.75 can be rewritten
as

P

P

P sat

(4.77)

For such a case, Condition 7 above has to be replaced by

(4.78)

for the unsaturated situation, where

sat

and

sat

Following similar lines of reasoning as in [30], we can show that, under the above
new conditions, the closed-loop system is stable for the situation when the control
input is saturated, i.e. . When the control in-
put does not exceed the saturation level, , the
closed-loop system in Equation 4.77 can be written as

P

P

P

(4.79)
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Again, following the result of [30], we propose a Lyapunov function for the system
in Equation 4.79:

P (4.80)

where and are appropriate positive scalars to be selected later. The increase
of the Lyapunov function in Equation 4.80 along the trajectory of the closed-loop
system in Equation 4.79 is given by

P P P

(4.81)

where

sup

for between and , , and the integration is expressed using
the Taylor expansion as follows,

(4.82)

By Condition 6, . Letting , we have

P (4.83)

(4.84)

(4.85)

and



4.4 Mode-switching Control 113

(4.86)

Thus,

P

(4.87)

where

and

Obviously, in order to ensure the right-hand side of Equation 4.87 to be negative-
definite, we need to select and such that

(4.88)
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In particular,

is equivalent to

for which the first inequality implies

(4.89)

and the second one is guaranteed if is chosen to satisfy the following condition:

(4.90)

To ensure , it requires that

(4.91)

Noting that

and

the inequalities in Equation 4.91 imply

(4.92)

Recall that , which implies , and , . It is clear
that Equation 4.92 can only be satisfied when its left-hand side is equal to , which
implies either or

(4.93)

i.e.

(4.94)

Noting that Condition 1 implies and Condition 6 implies ,
we have

(4.95)
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Hence, by the proper choices of and as in Equations 4.95 and 4.90, respectively,
we have P . As in its continuous-time counterpart, it is straightforward to
verify the closed-loop system comprising the modified PTOS control law and the
given plant is asymptotically stable.

Next, we employ a reduced-order RPT control law in our MSC framework. The
detailed design procedure of the RPT controller is given in Chapter 3. It is given by

sat R

R

(4.96)

where is the reduced-order observer gain and is the state feedback
gain obtained using the RPT technique. For simplicity, we rewrite the system of
Equation 4.71 as

P P P P (4.97)

where

P P P

Letting , then the RPT controller can be expressed as

(4.98)

and
R P (4.99)

Let be a positive-definite matrix and solve the following Lyapunov
equation:

P P P P (4.100)

for . Note that such a always exists as P P is asymptotically stable.
Next, letting

P P P P P P P P (4.101)

and

(4.102)

we define a set

P P P (4.103)

where is the largest positive scalar such that
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P P (4.104)

For all P , the resulting closed-loop system can then be written as

P P P P P (4.105)

which is clearly an asymptotically stable system. Define a Lyapunov function,

R
P P (4.106)

and evaluate its increase along the trajectories of the closed-loop system in Equation
4.105 as follows,

R
P P P P

P P P P P

P

(4.107)

where
P P P P

and

P P P P P P P P

Hence, all trajectories of the closed-loop system in Equation 4.105 starting from
remain in the set and converge asymptotically to the origin. Hence, the closed-

loop system comprising the reduced-order RPT controller is asymptotically stable
provided that the control input is not saturated.

Next, we re-express Equation 4.80 using the Taylor expansion as follows,

P

P P (4.108)

where is an appropriate scalar between and . Let

(4.109)

The MSC law is given by
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P

R

(4.110)

where is such that

P and (4.111)

where is the size of the linear region of the PTOS control law. The Lyapunov
function for the overall closed-loop system can be chosen as

P R (4.112)

where

It is simple to verify that

P R

R P (4.113)

It has already been proved that the increase of the Lyapunov function P and
R are negative-definite when they are effective, respectively. The last item is

always negative in view of the definition of in Equation 4.109. Hence,
and the resulting closed-loop system comprising the given plant and the MSC control
law is asymptotically stable. Furthermore, Equation 4.111 gives the mode-switching
condition for the proposed MSC scheme.
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Composite Nonlinear Feedback Control

5.1 Introduction

The PTOS and MSC schemes discussed in the previous chapter have two controllers,
i.e. a nonlinear controller and a linear controller, operating in two different time
stages. The switching elements in these control schemes generally yield a system re-
sponse not as smooth as what we would expect and thus limit the overall performance
of the corresponding servo systems. Furthermore, both schemes do not pay any spe-
cial attention to the transient performance of the overall design, which is in fact one
of the important issues in tracking control problems. In general, quick response and
small overshoot are desirable in most practical situations. However, it is well under-
stood that quick response is often accompanied by a large overshoot. Thus, most of
the design schemes have to make a tradeoff between these two transient performance
indices. Inspired by a recent study of Lin et al. [130], which was introduced to im-
prove the tracking performance under state feedback laws for a class of second-order
systems subject to actuator saturation, we have developed in this chapter a nonlinear
control technique, the so-called composite nonlinear feedback (CNF) control, for a
more general class of systems with measurement feedback. It is applicable to systems
with or without external disturbances.

The CNF control consists of a linear feedback law and a nonlinear feedback
law without any switching element. Unlike the MSC and PTOS control laws, both
the linear and nonlinear controllers in CNF are in operation all the time. The linear
feedback part is designed to yield a closed-loop system with a small damping ratio
for a quick response, while at the same time not exceeding the actuator limits for
the desired command input levels. The nonlinear feedback law is used to increase
the damping ratio of the closed-loop system as the system output approaches the
target reference to reduce the overshoot caused by the linear part. We would like
to note that the design philosophy of the CNF technique is very different from the
commonly used antiwindup technique. The CNF control applies more control effort
to the system around the final stage when the controlled output is approaching to the
target reference. It focuses on reducing overshoot and speeding up its settling time.
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On the other hand, the antiwindup design focuses primarily on the initial stage to
reduce the effect of saturation.

We show by an example that such a technique could yield a better performance
compared to that of the time-optimal control in asymptotic tracking. It is noted that
the new control scheme can be utilized to design servo systems that deal with asymp-
totic target tracking or “point-and-shoot” fast targeting. As will be seen soon in the
forthcoming chapters, this new control method has improved the performance of the
overall servo system by a great deal.

Since the initiation of CNF in Lin et al. [130] for a class of second-order sys-
tems, there have been efforts to generalize it to more general systems. For example,
Turner et al. [131] extended the results of [130] to higher-order and multiple-input
systems. This extension was made under a restrictive assumption on the system that
excludes many systems including those originally considered in [130]. Also, as in
[130], only state feedback is considered in [131]. A fairly complete study dealing
with general linear continuous-time systems with measurement feedback has been
reported in Chen et al. [132], whereas its discrete-time counterpart has been reported
in Venkataramanan et al. [133]. The technique has recently been extended to solve
general multivariable systems with measurement feedback by He et al. [134, 135],
and to solve a class of nonlinear systems in [136, 137]. The result for tackling sys-
tems with external disturbances has recently been reported by Peng et al. [138].

Although the CNF technique is fairly mature and complete for solving general
linear systems, we would, however, restrict our attention to single-input systems in
this chapter for simplicity. The results presented in this chapter are sufficient in de-
signing HDD servo systems in the forthcoming chapters. The results for multi-input
systems and nonlinear systems are rather involved. We refer interested readers to the
references cited above.

The outline of this chapter is as follows: In Section 5.2, we present the technique
of CNF control for general single-input continuous-time systems without and with
external disturbances. The discrete-time version is given in Section 5.3. Section 5.4
shows in a numerical example that the CNF control is capable of outperforming the
time-optimal control in asymptotic tracking situations. Finally, in Section 5.5, we
present a user-friendly software toolkit for the CNF control design for continuous-
time systems with and without disturbances. The toolkit is written in MATLAB R

together with its simulation package Simulink R . It is available for free downloading
at the website http://hdd.ece.nus.edu.sg/˜bmchen.

5.2 Continuous-time Systems

We first present the result for systems without external disturbances and then extend
it to the case when the given system has external disturbances. For the latter, an
integrator is introduced in the controller to remove or minimize the steady-state bias
due to unknown constant disturbances. The selection of nonlinear design parameters
is also presented together with an interpretation of the nonlinear gain introduced in
the CNF design under the well-known framework of the classical root-locus theory.
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5.2.1 Systems without External Disturbances

Consider a linear continuous-time system with an amplitude-constrained actuator
characterized by

sat

(5.1)

where , , and are, respectively, the state, control input,
measurement output and controlled output of . , , and are appropriate
dimensional constant matrices, and sat: represents the actuator saturation
defined as

sat sgn (5.2)

with being the saturation level of the input. The following assumptions on the
system matrices are required:

1. is stabilizable,
2. is detectable, and
3. is invertible and has no invariant zeros at .

The objective here is to design a CNF control law that causes the output to track a
high-amplitude step input rapidly without experiencing large overshoot and without
the adverse actuator saturation effects. This is done through the design of a linear
feedback law with a small closed-loop damping ratio and a nonlinear feedback law
through an appropriate Lyapunov function to cause the closed-loop system to be
highly damped as the system output approaches the command input to reduce the
overshoot. Similar to the design of linear controllers discussed in Chapter 4, we sep-
arate the CNF controller design into three distinct situations 1) the state feedback
case, 2) the full-order measurement feedback case, and 3) the reduced-order mea-
surement feedback case.

i. State Feedback Case. We proceed to develop a composite nonlinear feedback
control technique for the case when all the states of the plant are measurable, i.e.

. It is done in three steps. In the first step, a linear feedback control law is
designed; in the second step, the design of nonlinear feedback control is carried out.
Lastly, in the third step, the linear and nonlinear feedback laws are combined to give
a composite nonlinear feedback control law. Again, we note that the procedure given
for this case follows closely from that reported in Lin et al. [130], although our result
is applicable to a much larger class of systems.

STEP 5.C.S.1: design a linear feedback law,

L (5.3)

where is chosen such that 1) is an asymptotically stable matrix, and
2) the closed-loop system has certain desired properties,
e.g., having a small damping ratio. We note that such an can be designed using
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methods such as the and optimization approaches, as well as the RPT
technique given in Chapter 3. Furthermore, is a scalar and is given by

(5.4)

and is a step command input. Here we note that is well defined because
is stable, and the triple is invertible and has no invariant

zeros at .

The following lemma determines the magnitude of that can be tracked by such
a control law without exceeding the control limits.

Lemma 5.1. Given a positive-definite matrix , let be the solution
of the following Lyapunov equation:

(5.5)

Such a exists since is asymptotically stable. For any , let
be the largest positive scalar satisfying the following condition:

(5.6)

Also, let
(5.7)

and
(5.8)

Then, the control law of Equation 5.3 is capable of driving the controlled output to
track asymptotically a step command input , provided that the initial state and
satisfy:

and (5.9)

Proof. Let us first define a new state variable

(5.10)

It is simple to verify that the linear feedback control law of Equation 5.3 can be
rewritten as

L (5.11)

and hence for all and, provided that , the closed-loop system
is linear and is given by

(5.12)

Noting that
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(5.13)

the closed-loop system in Equation 5.12 can then be simplified as

(5.14)

Next, we define a Lyapunov function:

(5.15)

Along the trajectories of the closed-loop system in Equation 5.14, satisfies

(5.16)

which implies that is a monotonically decreasing function with respect to
along the trajectories of Equation 5.14. Thus, all trajectories of Equation 5.14 starting
from remain there and converge asymptotically to the origin. For an initial state

and the step command input that satisfy Equation 5.9, we have

(5.17)

and hence

(5.18)

This completes the proof of Lemma 5.1.

Remark 5.2. We would like to note that for the case when , any step command
of amplitude can be asymptotically tracked if

and (5.19)

Clearly, the trackable amplitudes of reference inputs by the linear feedback control
law can be increased by increasing and/or decreasing through the choice
of . However, the change in gain indeed affects the damping ratio of the closed-
loop system and hence its rise time.

STEP 5.C.S.2: the nonlinear feedback control law N is given by

N (5.20)

where is any nonpositive function locally Lipschitz in , which is used to
change the system closed-loop damping ratio as the output approaches the step
command input. The choice of such a is to be discussed later.
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STEP 5.C.S.3: the linear and nonlinear feedback laws derived in the previous steps
are now combined to form a CNF controller:

L N (5.21)

We now move to prove that the closed-loop system comprising the given plant in
Equation 5.1 and the CNF control law of Equation 5.21 is asymptotically stable.

Theorem 5.3. Consider the given system in Equation 5.1. Then, for any nonposi-
tive function , locally Lipschitz in , the composite nonlinear feedback law in
Equation 5.21 internally stabilizes the given plant and drive the system controlled
output to track asymptotically the step command input of amplitude from an
initial state , provided that and satisfy Equation 5.9.

Proof. Again, let . Then, the closed-loop system comprising the given
plant in Equation 5.1 and the CNF control law of Equation 5.21 can be expressed as

(5.22)

where
sat N (5.23)

Clearly, for the given satisfying Equation 5.9, we have
Using the Lyapunov function

(5.24)

we can evaluate the derivative of along the trajectories of the closed-loop system
in Equation 5.22, i.e.

(5.25)

Note that for all

(5.26)

We next calculate for three different values of saturation function.

Case 1. If N , then N and thus

(5.27)

Case 2. If N , and by construction , we
have

N (5.28)

which implies that and hence

Case 3. Finally, if N , we have
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N (5.29)

implying and hence .
In conclusion, we have shown that

(5.30)

which implies that is an invariant set of the closed-loop system in Equation 5.22
and all trajectories of Equation 5.22 starting from inside converge to the origin.
This, in turn, indicates that, for all initial states and the step command input of
amplitude that satisfy Equation 5.9,

(5.31)

Therefore,
(5.32)

This completes the proof of Theorem 5.3.

Remark 5.4. Theorem 5.3 shows that the additional nonlinear feedback control law
N, as given in Equation 5.20, does not affect the ability of the closed-loop system

to track the command input. Any command input that can be asymptotically tracked
by the linear feedback law of Equation 5.3 can also be asymptotically tracked by the
CNF control law in Equation 5.21. However, this additional term N in the CNF con-
trol law can be used to improve the performance of the overall closed-loop system.
This is the key property of the CNF control technique.

ii. Full-order Measurement Feedback Case. The assumption that all the states of
are measurable is, in general, not practical. For example, in HDD servo systems,

the velocity of the actuator is not usually directly measurable. Thus, one has to im-
plement the PTOS controller or the control law obtained in the previous case via a
certain velocity estimation. In what follows, we proceed to develop a CNF design
using only measurement information.

STEP 5.C.F.1: we first construct a linear full-order measurement feedback control
law:

F

sat L

L

(5.33)

where is the reference input and is the state of the controller. As usual,
and are gain matrices and are designed such that and

are asymptotically stable and the resulting closed-loop system has the desired
properties. As defined in Equations 5.7 and 5.8,

(5.34)

and

We have the following result.
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Lemma 5.5. Given a positive-definite matrix P , let be the solution
to the Lyapunov equation

P (5.35)

Given another positive-definite matrix Q with

Q P (5.36)

let be the solution to the Lyapunov equation

Q (5.37)

Note that such and exist as and are asymptotically stable.
For any , let be the largest positive scalar such that for all

F (5.38)

we have

(5.39)

The linear control law in Equation 5.33 drives the system controlled output to
track asymptotically a step command input of amplitude from an initial state ,
provided that , and satisfy:

and F (5.40)

Proof. Let us transform the system coordinate by defining

and (5.41)

Then, the linear control law of Equation 5.33 can be written as

L (5.42)

Hence, for all states

F (5.43)

and for any satisfying
(5.44)

we have

L (5.45)
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Thus, for all and satisfying the condition as given in Equation 5.43, the closed-
loop system comprising the given plant and the linear control law of Equation 5.33
can be rewritten as

(5.46)

Next, we define a Lyapunov function for the closed-loop system in Equation 5.46:

(5.47)

Along the trajectories of the closed-loop system in Equation 5.46 the derivative of
the Lyapunov function is given by

P

Q

P

Q

(5.48)

where

P Q Q P (5.49)

With the choice of Q satisfying Equation 5.36, it is obvious that . This
shows that F is an invariant set of the closed-loop system in Equation 5.46 and all
trajectories starting from the set converge asymptotically to the origin. Thus, for the
initial states of and and step command inputs that satisfy Equation 5.40,

and (5.50)

which imply
(5.51)

This completes the proof of Lemma 5.5.

STEP 5.C.F.2: as in the state feedback case, the linear control law of Equation 5.33
obtained in the above step is to be combined with a nonlinear control law to form
the following CNF controller:

sat
(5.52)

where is a nonpositive scalar function, locally Lipschitz in , and is to be
chosen to improve the performance of the closed-loop system.

It turns out that, for the measurement feedback case, the choice of , the
nonpositive scalar function, is not totally free. It is subject to certain constraints. We
have the following theorem.
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Theorem 5.6. Consider the given system in Equation 5.1. Then, there exists a scalar
such that for any nonpositive function , locally Lipschitz in and

, the CNF control law of Equation 5.52 internally stabilizes the given
plant and drive the system controlled output to track asymptotically the step
command input of amplitude from an initial state , provided that , and
satisfy Equation 5.40.

Proof. Again, let and . For simplicity, we drop and in
throughout the rest of the proof of this theorem. Then, the closed-loop system

with the CNF control law of Equation 5.52 can be expressed as

(5.53)

where

sat

(5.54)

Clearly, for the given and satisfying Equation 5.40, we have

F (5.55)

Using the following Lyapunov function:

(5.56)

we evaluate the derivative of along the trajectories of the closed-loop system in
Equation 5.53, i.e.

P

Q

(5.57)

Note that for all

F (5.58)

Again, as is done in the full state feedback case, let us find the above derivative of
for three different cases.

Case 1. If

(5.59)
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then

(5.60)

which implies

P

Q

P

Q

(5.61)

where

P (5.62)

Q Q P (5.63)

Noting Equation 5.36, i.e. Q P , and is locally Lipschitz,
it is clear that there exists a such that for any scalar function with

we have Q and hence .

Case 2. If

(5.64)

then for the trajectories inside F ,

(5.65)

which implies that

(5.66)

Next, let us express

(5.67)

for an appropriate positive piecewise continuous function , bounded by for all .
In this case, the derivative of becomes

P

Q

P

Q

(5.68)

where
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P (5.69)

Q Q P (5.70)

Again, noting Equation 5.36, it can be shown that there exists a such that for any
satisfying we have Q and hence .

Case 3. Similarly, for the case when

(5.71)

we can show that there exists a such that for any satisfying
, we have for all the trajectories in F .

Finally, let . Then, we have for any nonpositive scalar func-
tion satisfying ,

F (5.72)

Thus, F is an invariant set of the closed-loop system in Equation 5.53, and all tra-
jectories starting from F remain inside and asymptotically converge to the origin.
This, in turn, indicates that, for the initial state of the given system , the initial state
of the controller , and step command input that satisfy Equation 5.40,

and (5.73)

and hence
(5.74)

This completes the proof of Theorem 5.6.

iii. Reduced-order Measurement Feedback Case. For the given system in Equa-
tion 5.1, it is clear that there are states of the system measurable if is of max-
imal rank. Thus, in general, it is not necessary to estimate these measurable states
in measurement feedback laws. As such, we design a dynamic controller that has a
dynamical order less than that of the given plant. We now proceed to construct such
a control law under the CNF control framework.

For simplicity of presentation, we assume that is already in the form

(5.75)

Then, the system in Equation 5.1 can be rewritten as

sat

(5.76)
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where the original state is partitioned into two parts, and with . Thus,
we only need to estimate in the reduced-order measurement feedback design.
Next, we let be chosen such that 1) is asymptotically stable, and 2)

has the desired properties, and let R be chosen such that
R is asymptotically stable. Here, we note that it was shown in Chen [110]

that is detectable if and only if is detectable. Thus, there exists a
stabilizing R. Again, such and R can be designed using any of the linear control
techniques presented in Chapter 3. We then partition in conformity with and

:
(5.77)

As defined in Equations 5.7 and 5.8,

(5.78)

and .
The reduced-order CNF controller is given by

R R R R

R sat (5.79)

and

R R

(5.80)

where is a nonpositive scalar function locally Lipschitz in subject to certain
constraints to be discussed later.

Next, given a positive-definite matrix P , let be the solution to
the Lyapunov equation

P (5.81)

Given another positive-definite matrix R with

R P (5.82)

let R be the solution to the Lyapunov equation

R R R R R (5.83)

Note that such and R exist as and R are asymptotically
stable. For any , let be the largest positive scalar such that for all

R
R

(5.84)

we have

(5.85)

We have the following theorem.
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Theorem 5.7. Consider the given system in Equation 5.1. Then, there exists a scalar
such that for any nonpositive function , locally Lipschitz in satisfying

, the reduced-order CNF control law given by Equations 5.79 and 5.80
internally stabilizes the given plant and drives the system controlled output to
track asymptotically the step command input of amplitude from an initial state ,
provided that , and satisfy

R
R and (5.86)

Proof. Let and R . Then, the closed-loop system
comprising the given plant in Equation 5.1 and the reduced-order CNF control law
of Equations 5.79 and 5.80 can be expressed as

R

(5.87)

where

sat

(5.88)

The rest of the proof follows along similar lines to the reasoning given in the full-
order measurement feedback case.

5.2.2 Systems with External Disturbances

We introduce in this subsection an enhanced version of the CNF control design,
which is capable of removing constant bias in servo systems. When the given sys-
tem has disturbances, the resulting system output generally does not asymptotically
match the target reference without knowing a priori the level of bias. A common ap-
proach for removing bias resulting from constant disturbances is to add an integrator
to the controller. In what follows, we propose an enhanced CNF design scheme by
introducing an additional integration action in the design. The new approach retains
the fast rise time property of the original CNF control and at the same time has an
additional capacity of eliminating steady-state bias due to disturbances.

Specifically, we consider a linear system with an amplitude constrained actuator,
characterized by

sat

(5.89)

where , , , and are, respectively, the state, control
input, measurement output, controlled output and disturbance input of the system. ,
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, , and are appropriate dimensional constant matrices. The function, sat:
, represents the actuator saturation defined as

sat sgn (5.90)

with being the saturation level of the input. The assumptions on the given
system are made:

1. is stabilizable,
2. is detectable,
3. is invertible and has no invariant zero at ,
4. is bounded unknown constant disturbance, and
5. is part of , i.e. is also measurable.

Note that all these assumptions are fairly standard for tracking control. We aim to
design an enhanced CNF control law for the system with disturbances such that the
resulting controlled output would track a target reference (set point), say , as fast
and as smooth as possible without having steady-state error. We first follow the usual
practice to augment an integrator into the given system. Such an integrator eventually
becomes part of the final control law. To be more specific, we define an auxiliary state
variable,

(5.91)

which is implementable as is assumed to be measurable, and is a positive scalar
to be selected to yield an appropriate integration action. The augmented system is
then given as follows,

sat

(5.92)

where

(5.93)

(5.94)

and

(5.95)

It is straightforward to show that Assumptions 1 and 3 imply that the pair is
stabilizable.

Next, we proceed to carry out the design of enhanced CNF control laws for two
different cases, i.e. the state feedback case and the reduced-order measurement feed-
back case. The full-order measurement feedback case is straightforward once the
result for the reduced-order case is established. We note that the procedure for de-
signing the enhanced CNF control laws is a natural extension of that given in the
previous subsection.
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i. State Feedback Case. We first investigate the case when all the state variables of
the plant in Equation 5.92 are measurable, i.e. . The procedure that generates
an enhanced CNF state feedback law is done in three steps. That is, in the first step,
a linear feedback control law is designed, in the second step, the design of nonlinear
feedback control is carried out, and lastly, in the final step, the linear and nonlinear
feedback laws are combined to form an enhanced CNF control law.

STEP 5.C.W.S.1: design a linear feedback control law,

L (5.96)

where is chosen such that 1) is an asymptotically stable matrix, and
2) the closed-loop system has certain desired proper-
ties. Let us partition in conformity with and . The general
guideline in the design of such an is to place the closed-loop pole of
corresponding to the integration mode, , to be sufficiently closer to the imagi-
nary axis compared to the rest eigenvalues, which implies that is a relatively
small scalar. The remaining closed-loop poles of are placed to have a
dominating pair with a small damping ratio, which in turn would yield a fast rise
time in the closed-loop system response. Finally, is chosen as

(5.97)

which is well defined as is assumed to have no invariant zeros at
and is nonsingular whenever is stable and is relatively

small.

STEP 5.C.W.S.2: given a positive-definite matrix , we solve the
following Lyapunov equation:

(5.98)

for . Such a solution is always existent as is asymptotically stable.
The nonlinear feedback portion of the enhanced CNF control law, N, is given
by

N (5.99)

where , with being the tracking error, is a smooth and nonpositive
function of , and tends to a constant as . It is used to gradually change
the system closed-loop damping ratio to yield a better tracking performance. The
choices of the design parameters, and , will be discussed later. Next, we
define

and (5.100)

STEP 5.C.W.S.3: the linear feedback control law and nonlinear feedback portion
derived in the previous steps are now combined to form an enhanced CNF con-
trol law,

L N (5.101)
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We have the following result.

Theorem 5.8. Consider the given system in Equation 5.89 with and the dis-
turbance being bounded by a non-negative scalar , i.e. . Let

(5.102)

Then, for any , which is a smooth and nonpositive function of and tends to
a constant as , the enhanced CNF control law in Equation 5.101 internally
stabilizes the given plant and drives the system controlled output to track the step
reference of amplitude from an initial state asymptotically without steady-state
error, provided that the following conditions are satisfied:

1. There exist positive scalars and such that

(5.103)

2. The initial condition, , satisfies

(5.104)

3. The level of the target reference, , satisfies

(5.105)

where .

Proof. For simplicity, we drop the variable in throughout this proof. Noting
that

(5.106)

and letting , then the dynamics equation of the augmented plant in Equa-
tion 5.92 can be expressed as,

sat

sat

sat

(5.107)

where sat Following the similar lines of reasoning as those
in the previous subsection, we can show that for and ,
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can be expressed as for some non-negative variable .
Thus, for the case when and , the closed-loop system
comprising the augmented plant in Equation 5.92 and the enhanced CNF control law
in Equation 5.101 can be expressed as follows:

(5.108)

In what follows, we show that the system in Equation 5.108 is stable provided
that the initial condition, , the target reference, , and the disturbance, , satisfy
those conditions listed in the theorem. Let us define a Lyapunov function

(5.109)

For easy derivation, we introduce a matrix such that . We then obtain the
derivative of calculated along the trajectory of the system in Equation 5.108,

(5.110)

We note that we have used the following matrix properties: i) ,
where is a symmetric matrix; ii) , if both and are square
matrices; and iii) if and . Clearly, the closed-loop system
in the absence of the disturbance, , has and thus is asymptotically stable.

With the presence of the unknown constant disturbance, , and with the initial
condition , where , the corresponding tra-
jectory of Equation 5.108 remains in and converges to a point on a ball

with . Since converges to a constant,
it is clear that the tracking error as . This completes the proof of
Theorem 5.8.

ii. Measurement Feedback Case. Next, we proceed to design an enhanced CNF
control law using only information measurable from the plant. In principle, we can
design either a full-order measurement feedback control law, for which its dynam-
ical order is identical to that of the given plant, or a reduced-order measurement
feedback control law, in which we make a full use of the measurement output and
estimate only the unknown part of the state variable. As such, the dynamical or-
der of the controller is reduced. It is more feasible to implement controllers with
smaller dynamical order. The procedure below on the enhanced CNF control using



5.2 Continuous-time Systems 137

reduced-order measurement feedback follows closely from that given in the previous
subsection.

For simplicity of presentation, we assume that in the measurement output of
the given plant in Equation 5.89 is already in the form,

(5.111)

The augmented plant in Equation 5.92 can then be partitioned as follows:

sat

(5.112)
where

(5.113)

and

(5.114)

Clearly, and are readily available and need not be estimated. We only need
to estimate . There are two main step in designing a reduced-order measurement
feedback control laws: i) the construction of a full state feedback gain matrix ; and
ii) the construction of a reduced-order observer gain matrix R. The construction of
the gain matrix is totally identical to that given in the previous subsection, which
can be partitioned in conformity with , and , as follows:

(5.115)

The reduced-order observer gain matrix R is chosen such that the closed-loop poles
of R are placed in appropriate locations in the open-left half plane.

The reduced-order enhanced CNF control law is then given by,

R R sat

R R R (5.116)

and

R R

(5.117)
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where is as defined in Equation 5.97 and is the smooth, nonpositive and
nondecreasing function of , to be chosen to yield a desired performance.

Next, given a positive-definite matrix , let be the
solution to the Lyapunov equation

(5.118)

Given another positive-definite matrix R with

R (5.119)

let R be the solution to the Lyapunov equation

R R R R R (5.120)

Note that such and R exist as and R are both asymptotically
stable. We have the following result.

Theorem 5.9. Consider the given system in Equation 5.89 with being bounded by
a scalar , i.e. . Let

R
R R

R R R (5.121)

Then, there exists a scalar such that for any , a smooth and nonpositive
function of with and tending to a constant as , the enhanced
reduced-order CNF control law of Equations 5.116 and 5.117 internally stabilizes
the given plant and drives the system controlled output to track the step reference
of amplitude asymptotically without steady-state error, provided that the following
conditions are satisfied:

1. There exist positive scalars and R R such that

R
R

R

(5.122)

2. The initial conditions, and , satisfy

R
R (5.123)

3. The level of the target reference, , satisfies

(5.124)

where is the same as that defined in Theorem 5.8.

Proof. The result follows from similar lines of reasoning as those in Theorem 5.8
and those for the measurement feedback case in the previous subsection.
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5.2.3 Selection of Nonlinear Feedback Parameters

Basically, the freedom to choose the function in either the usual CNF design or the
enhanced CNF design is used to tune the control laws so as to improve the perfor-
mance of the closed-loop system as the controlled output, , approaches the set point,
. Since the main purpose of adding the nonlinear part to the CNF or the enhanced

CNF controllers is to shorten the settling time, or equivalently to contribute a sig-
nificant value to the control input when the tracking error, , is small. The nonlinear
part, in general, is set in action when the control signal is far away from its saturation
level, and thus it does not cause the control input to hit its limits. For simplicity, we
now focus our attention on the case when the given system has external disturbances.
The following analysis is equally applicable to the case when the given system does
not have disturbances. Under such circumstances, the closed-loop system compris-
ing the augmented plant in Equation 5.92 and the enhanced CNF control law can be
expressed as:

(5.125)

We note that the additional term does not affect the stability of the estimators. It
is now clear that eigenvalues of the closed-loop system in Equation 5.125 can be
changed by the function . Such a mechanism can be interpreted using the classical
feedback control concept as shown in Figure 5.1, where the auxiliary system
is defined as:

(5.126)

has the following interesting properties.

OUTPUT

Figure 5.1. Interpretation of the nonlinear function

Theorem 5.10. The auxiliary system defined in Equation 5.126 is stable
and invertible with a relative degree equal to , and is of minimum phase with
stable invariant zeros.

Proof. First, it is obvious to see that is stable since is a stable
matrix. Next, since and , we have
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(5.127)

which implies that is invertible and has a relative degree equal to (or an
infinite zero of order ). Furthermore, has invariant zeros, as it is a SISO
system.

The last property of , i.e. the invariant zeros of are stable and
hence it is of minimum phase, can be shown by using the well-known classical root-
locus theory. Observing the block diagram in Figure 5.1, it follows from the classical
feedback control theory (see, e.g., [1]) that the poles of the closed-loop system of
Equation 5.125, which are the functions of the tuning parameter , start from the
open-loop poles, i.e. the eigenvalues of , when , and end up at the
open-loop zeros (including the zero at the infinity) as . It then follows from
the proof of Theorem 5.3 that the closed-loop system remains asymptotically stable
for any nonpositive , which implies that all the invariant zeros of the open-loop
system, i.e. , must be stable.

It is clear from Theorem 5.10 and its proof that the invariant zeros of
play an important role in selecting the poles of the closed-loop system of Equation
5.125. The poles of the closed-loop system approach the locations of the invariant
zeros of as becomes larger and larger. We would like to note that there
is freedom in preselecting the locations of these invariant zeros. This can actually
be done by selecting an appropriate in Equation 5.98. In general, we should
select the invariant zeros of , which are corresponding to the closed-loop
poles for larger , such that the dominated ones have a large damping ratio, which
in turn yields a smaller overshoot. The following procedure can be used as a guideline
for the selection of such a :

1. Given the pair and the desired locations of the invariant zeros of
, we follow the result of Chen and Zheng [139] (see also Chapter 9 of

Chen et al. [71]) on finite and infinite zero assignment to obtain an appropri-
ate matrix such that the resulting matrix triple has the
desired relative degree and invariant zeros.

2. Solve for a . In general, the solution is nonunique
as there are elements in available for selection. However, if the
solution does not exist, we go back to the previous step to reselect the invariant
zeros.

3. Calculate using Equation 5.98 and check if is positive-definite. If is
not positive-definite, we go back to the previous step to choose another solution
of or go to the first step to reselect the invariant zeros.

Generally, the above procedure would yield a desired result. The selection of the
nonlinear function is relatively simple once the desired invariant zeros of
are obtained. Assuming the tracking error is available, the following choice of
is a smooth and nonpositive function of :

(5.128)
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where and are appropriate positive scalars that can be chosen to yield a desired
performance, i.e. fast settling time and small overshoot. This function changes
from to as the tracking error approaches zero. At the
initial stage, when the controlled output, , is far away from the final set point, is
small and the effect of the nonlinear part on the overall system is very limited. When
the controlled output, , approaches the set point, , and the nonlinear
control law becomes effective. In general, the parameter is chosen such that the
poles of are in the desired locations, e.g., the dominated poles
have a large damping ratio, which would reduce the overshoot of the output response.
Note that the choice of is nonunique. Any function would work so long as it has
similar properties of that given in Equation 5.128.

5.2.4 An Illustrative Example

We illustrate the enhanced CNF control technique for continuous-time systems in the
following example. We consider a continuous-time system of Equation 5.89 with

(5.129)

(5.130)

and . The disturbance is unknown. For simulation purpose, we assume
. Our goal is to design an enhanced CNF state feedback control law that

would yield a good transient performance in tracking a target reference .
Following the procedure given in the previous subsection, we select an integra-

tion gain and obtain an appropriate augmented system. After a few tries, we
found that the following state feedback gain to the augmented system would yield a
good performance for our problem:

(5.131)

which places the poles of at , , . We note that the
first one corresponds to the integrator. Both the linear state feedback control and
enhanced CNF control share the same integration dynamics:

(5.132)

The linear state feedback control law is given by

(5.133)

Letting diag , we obtain a positive-definite solution for
Equation 5.98, which is given by

(5.134)
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and an enhanced CNF state feedback law:

(5.135)

where is as given in (5.128) with and . The simulation results given
in Figures 5.2 and 5.3 clearly show that the CNF control has outperformed the linear
control.
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Figure 5.2. Output responses of the enhanced CNF control and linear control

5.3 Discrete-time Systems

As in the continuous-time case, we present in this section the CNF design technique
for systems without and with external disturbances. Selection and interpretation of
nonlinear gain design parameters are also discussed.

5.3.1 Systems without External Disturbances

Let us now consider a linear discrete-time system with an amplitude-constrained
actuator characterized by
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Figure 5.3. Control signals of the enhanced CNF control and linear control

sat

(5.136)

where , , and are, respectively, the state, control input,
measurement output and controlled output of . , , and are appropriate
dimensional constant matrices, and sat: represents the actuator saturation
defined as

sat sgn (5.137)

with being the saturation level of the input. The following assumptions on the
system matrices are required:

1. is stabilizable,
2. is detectable, and
3. is invertible and has no invariant zeros at .

We now extend the results of the continuous-time composite nonlinear control
method to the discrete-time system in Equation 5.136. Thus, the objective here is
to design a discrete-time CNF control law that causes the output to track a high-
amplitude step input rapidly without experiencing large overshoot and without the
adverse actuator saturation effects. This can be done through the design of a discrete-
time linear feedback law with a small closed-loop damping ratio and a nonlinear
feedback law through an appropriate Lyapunov function to cause the closed-loop
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system to be highly damped as system output approaches the command input to re-
duce the overshoot. The result of this discrete-time version is analogous to that of
its continuous-time counterpart. Here, we again separate the design of discrete-time
CNF control into three distinct situations, i.e. 1) the state feedback case, 2) the full-
order measurement case, and 3) the reduced-order measurement feedback case.

i. State Feedback Case. We consider the case when , i.e. all the state variables
of of Equation 5.136 are available for feedback.

STEP 5.D.S.1: design a linear feedback law,

L (5.138)

where is the input command, and is chosen such that has all its
eigenvalues in and the closed-loop system meets
certain design specifications. We note again that such an can be designed
using any of the techniques reported in Chapter 3. Furthermore,

(5.139)

We note that is well defined because has all its eigenvalues in ,
and is invertible and has no invariant zeros at .

The following lemma determines the magnitude of that can be tracked by such
a control law without exceeding the control limits.

Lemma 5.11. Given a positive-definite matrix , let be the solution
of the following Lyapunov equation:

(5.140)

Such a exists as is asymptotically stable. For any , let
be the largest positive scalar such that

(5.141)

Also, let
(5.142)

and
(5.143)

Then, the control law in Equation 5.138 is capable of driving the system controlled
output to track asymptotically a step command input of amplitude , provided
that the initial state and satisfy:

and (5.144)
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Proof. Let . Then, the linear feedback control law L can be rewritten as

L (5.145)

Hence, for all
(5.146)

and for any satisfying
(5.147)

the linear control law can be written as

L (5.148)

which indicates that the control signal L never exceeds the saturation. Next, let
us move to verify the asymptotic stability of the closed-loop system comprising the
given plant in Equation 5.136 and the linear feedback law in Equation 5.138, which
can be expressed as follows:

(5.149)

Let us define a Lyapunov function for the closed-loop system in Equation 5.149 as

(5.150)

Along the trajectories of the closed-loop system in Equation 5.149 the increment of
the Lyapunov function in Equation 5.150 is given by

(5.151)

This shows that is an invariant set of the the closed-loop system in Equation
5.149 and all trajectories of Equation 5.149 starting from converge to the origin.
Thus, for any initial state and the step command input that satisfy Equation
5.144, we have

(5.152)

and hence
(5.153)

This completes the proof of Lemma 5.11.

Remark 5.12. We would like to note that, for the case when , any step com-
mand of amplitude can be tracked asymptotically provided that

and (5.154)

This input command amplitude can be increased by increasing and/or decreasing
through the choice of . However, the change in affects the damping

ratio of the closed-loop system and hence its rise time.



146 5 Composite Nonlinear Feedback Control

STEP 5.D.S.2: the nonlinear feedback control law N is given by

N (5.155)

where is a nonpositive scalar function, locally Lipschitz in , and is to be
used to change the system closed-loop damping ratio as the output approaches
the step command input. The choice of will be discussed later in detail.

STEP 5.D.S.3: the linear and nonlinear components derived above are now com-
bined to form a discrete-time CNF control law:

L N (5.156)

We have the following result.

Theorem 5.13. Consider the discrete-time system in Equation 5.136. Then, for any
nonpositive , locally Lipschitz in and , the
CNF control law in Equation 5.156 is capable of stabilizing the given plant and
driving the system controlled output to track the step command input of am-
plitude from an initial state , provided that and satisfy the properties in
Equation 5.144.

Proof. Let . Then, the closed-loop system can be written as

(5.157)

where
sat N (5.158)

Equation 5.144 implies that Define a Lyapunov function

(5.159)

Noting that
(5.160)

we can evaluate the increment of along the trajectories of the closed-loop sys-
tem in Equation 5.157 as follows:

(5.161)

Next, we proceed to find the increment of for three different cases, as is done
in continuous-time systems.

If N then
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N (5.162)

Thus,

(5.163)

For any nonpositive with , it is clear that the increment

If N then implies that
N and Hence,

N

N N

N (5.164)

Thus, for all , we have , and hence

(5.165)

Similarly, for the case when N it can be shown
that .

Thus, is an invariant set of the closed-loop system in Equation 5.157 and
all trajectories of Equation 5.157 starting from remain there and converge to the
origin. This, in turn, indicates that, for all initial states and the step command
input of amplitude that satisfy Equation 5.144,

(5.166)

and
(5.167)

This completes the proof of Theorem 5.13.

Remark 5.14. Theorem 5.13 shows that the addition of the nonlinear feedback con-
trol law N as given in Equation 5.155 does not affect the ability to track the class of
command inputs. Any command input that can be tracked by the linear feedback law
in Equation 5.138 can also be tracked by the CNF control law in Equation 5.156. The
composite feedback law in Equation 5.156 does not reduce the level of the trackable
command input for any choice of the function . This freedom can be used to
improve the performance of the overall system. The choice of will be dis-
cussed in the forthcoming subsection.

ii. Full-order Measurement Feedback Case. We proceed to construct a discrete-
time full-order CNF control law in the following.
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STEP 5.D.F.1: we first construct a linear full-order measurement feedback control
law

sat L

L

(5.168)

where is the command input, is the state of the controller, and
are chosen such that and have all their eigenvalues in , i.e.
both are stable matrices, and, furthermore, the resulting closed-loop system has
met certain design specifications. As usual, we let

(5.169)

and

(5.170)

We note that both and are well defined.

Lemma 5.15. Given a positive-definite matrix P , let be the solution
to the Lyapunov equation

P (5.171)

Given another positive-definite matrix Q with

Q P (5.172)

let be the solution to the Lyapunov equation

Q (5.173)

Note that such and exist as and are asymptotically stable.
For any , let be the largest positive scalar such that for all

F (5.174)

we have

(5.175)

The linear control law in Equation 5.168 drives the system controlled output to
track asymptotically a step command input of amplitude from an initial state ,
provided that , and satisfy:

and F (5.176)
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Proof. This follows along similar lines to the reasoning given in the proofs of Lem-
mas 5.5 and 5.11.

STEP 5.D.F.2: the discrete-time full-order measurement composite nonlinear feed-
back control law is given by

sat (5.177)

and

(5.178)

where is a nonpositive scalar function, locally Lipschitz in , and is to be
chosen to improve the performance of the closed-loop system.

We have the following result.

Theorem 5.16. Consider the given discrete-time system in Equation 5.136. Then,
there exists a scalar such that for any nonpositive function

, locally Lipschitz in and , the discrete-time CNF control law in
Equations 5.177 and 5.178 internally stabilizes the given plant and drive the system
controlled output to track asymptotically the step command input of amplitude
from an initial state , provided that , and satisfy the conditions in Equation
5.176.

Proof. The proof of this theorem follows along similar lines to the reasoning given
in Theorems 5.6 and 5.13.

iii. Reduced-order Measurement Feedback Case. As in its continuous-time coun-
terpart, we now proceed to design a reduced-order measurement feedback controller.
For the given system in Equation 5.136, it is clear that states of the system are mea-
surable if is of maximal rank. As such, we could design a dynamic controller that
has a dynamical order less than that of the given plant. We now proceed to construct
such a control law under the CNF control framework.

For simplicity of presentation, we assume that is already in the form

(5.179)

Then, the system in Equation 5.136 can be rewritten as

sat

(5.180)

and
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(5.181)

where the original state is partitioned into two parts, and with .
Thus, we only need to estimate in the reduced-order measurement feedback de-
sign. Next, we let be chosen such that 1) is asymptotically stable, and
2) has the desired properties, and let R be chosen such
that R is asymptotically stable. Again, it follows from Chen [110] that

is detectable if and only if is detectable. Thus, there exists a sta-
bilizing R. Again, such and R can be designed using any of the linear control
techniques presented in Chapter 3. We then partition in conformity with and

:
(5.182)

As defined in Equations 5.169 and 5.169, we let

(5.183)

and

(5.184)

The reduced-order CNF controller is given by

R R sat

R R R (5.185)

and

R

R

(5.186)

where is a nonpositive scalar function locally Lipschitz in subject to certain
constraints to be discussed later.

Next, given a positive-definite matrix P , let be the solution to
the Lyapunov equation

P (5.187)

Given another positive-definite matrix R with

R P (5.188)

let R be the solution to the Lyapunov equation

R R R R R (5.189)
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Note that such and R exist as and R are asymptotically
stable. For any , let be the largest positive scalar such that for all

R
R

(5.190)

we have

(5.191)

We have the following theorem.

Theorem 5.17. Consider the system given in Equation 5.1. Then, there exists a
scalar such that for any nonpositive function , lo-
cally Lipschitz in and , the reduced-order CNF control law given by
Equations 5.185 and 5.186 internally stabilizes the given plant and drives the system
controlled output to track asymptotically the step command input of amplitude

from an initial state , provided that , and satisfy

R
R and (5.192)

Proof. Again, the proof of this theorem is similar to those given earlier.

5.3.2 Systems with External Disturbances

We consider a linear discrete-time system with actuator saturation and disturbances
characterized by

sat

(5.193)

where , , , and are, respectively, the state, control
input, measurement output, controlled output and disturbance input of the system. ,

, , and are appropriate dimensional constant matrices. The function, sat:
, represents the actuator saturation defined as

sat sgn (5.194)

with being the input saturation level. The following assumptions on the given
system are made:

1. is stabilizable,
2. is detectable,
3. is invertible with no invariant zero at ,
4. is bounded unknown constant disturbance, and
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5. is part of , i.e. is also measurable.

We aim to design a discrete enhanced CNF control law for the system with input
saturation and disturbances to track a step reference, say , neither violating the input
saturation nor having steady-state bias. An equivalent discrete integration, which
eventually becomes part of the final control law, is defined as follows,

(5.195)

where the tracking error is available for feedback as is assumed
to be measurable and is a positive scalar to be selected to yield an appropriate
integration speed. By integrating Equation 5.195 into the given system, we obtain
the following augmented system

sat

(5.196)

where

(5.197)

(5.198)

and

(5.199)

We note that under Assumptions 1 and 3, it is straightforward to verify that the pair
is stabilizable.

In what follows, we proceed to design an enhanced CNF control laws for the
given system for two different cases, i.e. the state feedback case and the reduced-
order measurement feedback case. The full-order measurement feedback case can
be solved in a straightforward manner once the result for the reduced-order case is
established.

i. State Feedback Case. We consider in the following the situation when all the
state variables of the given system in Equation 5.193 are measurable, i.e. . The
procedure that generates an enhanced CNF state feedback law is done in three steps.
That is, in the first step, a linear feedback control law with appropriate properties is
designed, then in the second step, the design of nonlinear feedback portion is carried
out, and lastly, in the final step, the linear and nonlinear feedback laws are combined
to form an enhanced CNF control law.

STEP 5.D.W.S.1: Design a linear feedback control law,

L (5.200)
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where is chosen such that i) is asymptotically stable, and ii) the
closed-loop system has certain desired properties. Let us
partition in conformity with and . The general guide-
line in designing such a state feedback gain is to place the closed-loop pole
of corresponding to to be sufficiently closer to compared
to the other eigenvalues, which implies that is a relatively small scalar. The
remaining closed-loop poles of are placed to have a dominating pair
with a small damping ratio, which in turn would yield a fast rise time in the
closed-loop system response. Finally, is chosen as

(5.201)

which is well defined as is assumed to have no invariant zeros at
and is nonsingular whenever is stable and is

relatively small.

STEP 5.D.W.S.2: Given an appropriate positive-definite matrix ,
we solve the following Lyapunov equation:

(5.202)

for . Such a solution is always existent as is asymptotically stable.
The nonlinear feedback portion of the enhanced CNF control law, N , is then
given by

N (5.203)

where , with , is a nonpositive function of and tends to a
finite scalar as . It is to be used to gradually change the system closed-
loop damping ratio to yield a better tracking performance. The choices of the
design parameters, and , will be discussed later. Next, we define

(5.204)

STEP 5.D.W.S.3: the linear and nonlinear feedback control laws derived in the pre-
vious steps are now combined to form an enhanced CNF control law,

(5.205)

We have the following result.

Theorem 5.18. Consider the given system in Equation 5.193 with and the
disturbance being bounded by a non-negative scalar , i.e. . Let

(5.206)

Then, for any , which is a nonpositive function of
and tends to a constant as , the enhanced CNF control law in Equation 5.205
internally stabilizes the given plant and drives the system controlled output to
track the step reference of amplitude from an initial state asymptotically without
steady-state error, provided that the following conditions are satisfied:
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1. There exist scalars and such that

(5.207)

2. The initial condition, , satisfies

(5.208)

3. The level of the target reference, , satisfies

(5.209)

where . Note that .

Proof. For simplicity, we drop in the nonlinear function throughout the fol-
lowing proof. First, it is straightforward to verify that

(5.210)

Letting , the augmented system in Equation 5.196 can be expressed
as

(5.211)

where
sat (5.212)

and the control law in Equation 5.205 can be rewritten as

(5.213)

Next, for and , we have

(5.214)

which implies
(5.215)

if , or
(5.216)

if , or
(5.217)

if . Obviously, for all possible situations, can be written as

(5.218)

with some appropriate . Thus, for and ,
the closed-loop system comprising the augmented system in Equation 5.196 and the
CNF control law in Equation 5.205 can be expressed as follows
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(5.219)

Defining a discrete-time Lyapunov function, , and factoring
as , the increment of along the trajectory of the system in

Equation 5.219 can be calculated as

(5.220)

Noting that

(5.221)

for , we have

(5.222)

Note that we have used the following property:

(5.223)

as both and are positive-definite matrices. Clearly, the closed-loop system in
the absence of the disturbance, , has and thus is asymptotically stable.
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With the presence of the disturbance, , and with ,
where , the corresponding trajectory of Equation 5.219 remains in
and converges to a ball characterized by with .

Note that is chosen such that it tends to a constant as . Also, for large
, the control signal is under its saturation level. Thus, the closed-loop system

in Equation 5.219 becomes an almost linear time-invariant system. We can conclude
that the corresponding trajectory of Equation 5.219 converges asymptotically to a
point, i.e. tends to a constant. Thus,

(5.224)

This completes the proof of Theorem 5.18.

ii. Measurement Feedback Case. Next, we consider the general measurement feed-
back situation, in which there is only part of state variables available for feedback.
As usual, for such a situation, one could either design a full-order or a reduced-
order measurement feedback control law. In what follows, we focus on designing a
reduced-order controller. Without loss of generality, we assume that in the mea-
surement output of the given plant in Equation 5.193 is in the form:

(5.225)

The augmented plant in Equation 5.196 can then be partitioned as

sat

(5.226)

(5.227)

and

(5.228)

with

(5.229)

We only need to estimate . There are two main steps in designing a reduced-
order measurement feedback control law: i) the construction of a full state feedback
gain matrix , which is totally identical to that given in the previous subsection; and



5.3 Discrete-time Systems 157

ii) the reduced-order observer gain matrix R, which is chosen such that the poles of
R are placed at appropriate locations inside the unit circle. To derive the

reduced-order measurement feedback controller, we partitioned
in conformity with , and . The reduced-order enhanced CNF con-
trol law is then given by,

R R sat

R R R (5.230)

and

(5.231)

where

R

is as defined in Equation 5.201, is as defined in Equation 5.204 and is
the nonpositive function of , which tends to a constant as .

Next, given a positive-definite matrix , let be the
solution to the Lyapunov equation

(5.232)

Let R be a positive-definite matrix such that

R (5.233)

and let R be the solution to the Lyapunov equation

R R R R R (5.234)

Note that such and R exist as and R are both asymptotically
stable. Next, let

R
R R

(5.235)
It is noted that R . We have the following result.

Theorem 5.19. Consider the given system in Equation 5.193 with the disturbance
being bounded by a scalar , i.e. . Let

R R R R R (5.236)

Then, there exists a such that for any ,
which is a nonpositive function of and tends to a constant as , the
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reduced-order enhanced CNF control law of Equations 5.230 and 5.231 internally
stabilizes the given plant and drives the system controlled output to track the
step reference of amplitude asymptotically without steady-state error, provided that
the following conditions are satisfied:

1. There exist positive scalars and R R such that

R
R

R

(5.237)

2. The initial conditions, and , satisfy

R
R (5.238)

3. The level of the target reference, , satisfies

(5.239)

where is the same as that defined in Theorem 5.18.

Proof. It follows from the similar lines of reasoning as those in Theorem 5.18 and the
similar arguments for the measurement feedback case reported in its continuous-time
counterpart in the previous section.

5.3.3 Selection of Nonlinear Feedback Parameters

As in its continuous-time counterpart, we focus our attention on the situation for the
case when the given system has external disturbances. Since the main purpose of
adding the nonlinear part to the CNF controller is to shorten the settling time and to
reduce the overshoot, or equivalently to contribute a significant value to the control
input when the tracking error, , is small, it is appropriate for us to select a
nonlinear gain matrix such that the nonlinear part is in action when the control signal
is far from its saturation level, and thus it does not cause the control input to hit its
limits. Under such a circumstance, it is straightforward to verify that the closed-loop
system comprising the augmented plant in Equation 5.196 and the CNF control law
in Equation 5.205 can be expressed as

(5.240)

As in its continuous-time counterpart, the eigenvalues of the closed-loop system in
Equation 5.240 can be changed by the nonlinear function . Assuming that is
available, we propose the following nonlinear gain function

(5.241)
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with . We note that starts from and gradually decreases to a constant
as approaches the target

reference . The parameter is used to determine the speed of change in .
To examine the behavior of the closed-loop system in Equation 5.240 more ex-

plicitly, we define an auxiliary system characterized by

(5.242)

Clearly, is stable. Note that which implies
is a square, invertible and uniform rank system with a relative degree of and with
invariant zeros. We show that this auxiliary system is in fact of minimum phase, i.e.
all its invariant zeros are stable. We note that for such a system, it follows from the
result reported in Chapter 5 of Chen et al. [71] that there exist nonsingular transfor-
mations , and such that the transformed system
has the following special form,

where the eigenvalues of are the invariant zeros of the auxiliary system ,
, and are some constant matrices. Next, we proceed to show that all the

eigenvalues of are inside the unit circle and thus is of minimum phase.
We note that at the steady state when , the nonlinear function matrix of
Equation 5.241 with an appropriately chosen can be set to and
the closed-loop system of Equation 5.240 can be expressed as

(5.243)

Clearly, the closed-loop system has eigenvalues at and one at . Thus, the
stability of the closed-loop system with implies the eigenvalues
of are all inside the unit circle. This shows that is indeed of minimum
phase.

It is noted that there is freedom in preselecting the locations of these invariant
zeros by choosing an appropriate in Equation 5.202. In general, we should select
the invariant zeros of , which correspond to the closed-loop poles of Equa-
tion 5.240 for the steady-state nonlinear gain matrix, with dominating ones having a
large damping ratio, which in turn generally yield a smaller overshoot. The following
procedure might be used for such a purpose.
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1. Given a set of self-conjugated complex scalars, which include all the uncon-
trollable modes, if any, of , we are to determine a such that the
resulting auxiliary system has its invariant zeros placed exactly at the
locations given in the set.
First, use the singular value decomposition technique to find a unitary matrix

and a nonsingular matrix such that

and partition accordingly

It is straightforward to verify that the stabilizability of implies the stabi-
lizability of . In fact, their uncontrollable modes, if any, are identical.
Next, for determining an appropriate matrix , we partition it accord-
ingly as follows

(5.244)

Then, can be expressed as

(5.245)

Using the results of Chen et al. [71] (see e.g., Chapters 8 and 9), we can show
that the invariant zeros of the auxiliary system are given by the eigen-
values of . Since is stabilizable and the given set
of complex scalars include all its uncontrollable modes, there exists a constant
matrix, say , such that has its eigenvalues placed exactly at
the locations given in the set. Obviously, we can select and such that

2. Select appropriately dimensional matrices , , and
to ensure that

(5.246)

3. Compute
(5.247)

If is not positive-definite, we go back to Step 2 to choose another solution of
or go to the first step to reselect another set of desired invariant zeros.
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Another method for selecting is based on a trial and error approach by limiting
the choice of to be a diagonal matrix and adjusting its diagonal weights through
simulation. Generally, such an approach would yield a satisfactory result as well.

5.3.4 An Illustrative Example

We illustrate the enhanced CNF control technique for discrete-time systems in the
following example. We consider a discrete-time system of Equation 5.193 with

(5.248)

(5.249)

and . The disturbance is unknown. For simulation purpose, we assume
. Our goal is to design a CNF state feedback control law that would yield

a good transient performance in tracking a target reference .
Following the procedure given in the previous subsection, we select an integra-

tion gain and obtain an appropriate augmented system. After a few tries, we
found that the following state feedback gain to the augmented system would yield a
good performance for our problem:

(5.250)

which places the poles of at , , . We note that the first one
corresponds to the integrator. Both the linear state feedback control and enhanced
CNF control share the same integration dynamics:

(5.251)

The linear state feedback control law is given by

(5.252)

Letting diag , we obtain a positive-definite solution for Equation
5.202, which is given by

(5.253)

and a CNF state feedback law:

(5.254)
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where is as given in (5.241) with and . The simulation results given
in Figures 5.4 and 5.5 clearly show that the CNF control has outperformed the linear
control.
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Figure 5.4. Output responses of the enhanced CNF control and linear control

5.4 Can We Beat Time-optimal Control?

So far, we have presented quite a number of control techniques in Chapters 4 and 5
that can be used to design control laws to track certain target references for systems
with actuator saturations. The TOC technique is believed to be nonrobust to system
uncertainties and noise, and thus cannot be used in tackling real problems. Unfortu-
nately, it has also been regarded as a method that would, at least theoretically, yield
the best performance in terms of settling time.

Can we design a control system that would beat the performance of the TOC?
Obviously, the answer to this question is no if it is required to have a precise point-
to-point tracking, i.e. to track a target reference precisely from a given initial point.
However, surprisingly, the answer would be yes if we consider an asymptotic track-
ing situation, i.e. if we consider the settling time to be the total time that the con-
trolled system output takes to get from its initial position to reach a predetermined
neighborhood of the target reference. The reason that we are interested in this issue
is that asymptotic tracking is widely used in almost all practical situations.
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Figure 5.5. Control signals of the enhanced CNF control and linear control

In what follows, we show the above observation in an example. Let us consider
a system characterized by a double integrator, i.e.

sat (5.255)

where as usual is the state, is the input, and and are, respectively, the mea-
surement and controlled outputs. Moreover, we assume that

sat sgn (5.256)

Let the initial state and the target reference . Then, it follows from
Equation 4.22 that the minimum time required for the controlled output to reach pre-
cisely the target reference under TOC control is exactly 2 s. Let us now consider an
asymptotic tracking situation instead. As is commonly accepted in the literature (see,
e.g., [86]), we define the settling time to be the total time that it takes for the control
output to enter the region of the target reference. The following control law,
obtained from a variation form of the CNF control technique, would give a faster
settling time than that of the TOC,

(5.257)

Figures 5.6 and 5.7, respectively, show the resulting controlled output responses and
the control signals of the TOC and the modified CNF control. The resulting output
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response of the modified CNF control has an overshoot of less than 1%. However, if
we zoom in on the output responses (see Figure 5.8), we will see that the modified
CNF control clearly has a faster settling time than that of the TOC when it enters
the target region, i.e. . It can be computed that the modified CNF
control has a settling time of 1.8453 s whereas the TOC has a settling time of 1.8586
s. Although the difference is not much, since we have not tried to optimize the solu-
tion of the modified CNF control, it is, however, significant enough to address one
interesting issue: there are control laws that can achieve a faster settling time than
that of the TOC in asymptotic tracking situations. It can also be shown that, no matter
how small the target region is, say for any small , we can always find a
suitable control law that beats the TOC in settling time. Nonetheless, we believe that
it would be interesting to carry out some further studies in this subject.
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Figure 5.6. Controlled output responses of TOC and modified CNF control

5.5 CNF Control Software Toolkit

The CNF design involves selecting quite a number of design parameters, especially
those parameters for forming the nonlinear feedback law. Some tuning and retuning
are needed in order to obtain the best possible solutions. In what follows, we present
a MATLAB R toolkit with a user-friendly graphical interface for the CNF control
system design. With the help of the rich collection of m-functions in MATLAB R
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and the powerful simulation capacity of its Simulink R , we develop a toolkit for the
CNF control technique. The toolkit can be utilized to design fast and smooth track-
ing controllers for general SISO linear systems and a class of nonlinear systems
(see, for example, [136] for details) with actuator saturation and other nonlineari-
ties such as friction, as well as external disturbances. The toolkit can display both
time-domain and frequency-domain responses on its main panel, and generate three
different types of control laws, namely, the state feedback, the full-order measure-
ment feedback and the reduced-order measurement feedback controllers. The usage
and design procedure of the toolkit are illustrated by an example on the design of an
HDD servo system. The toolkit has been reported earlier in Cheng et al. [54, 55]. It
can be downloaded at the website http://hdd.ece.nus.edu.sg/˜bmchen.

5.5.1 Software Framework and User Guide

The CNF control toolkit is developed under MATLAB R together with SimulinkR .
The software toolkit fully utilizes the graphical user interface (GUI) resources of
MATLAB R and provides a user-friendly graphical interface. The main interface of
the toolkit consists of three panels, the panel for conducting simulation, the panel
for setting up system data and the panel for specifying an appropriate controller. We
illustrate the design procedure using our CNF control toolkit in the following:

STAGE 1: INITIALIZATION. Once the toolkit is properly executed, a main panel
as shown in Figure 5.9 will be generated in a popup window. Users have to first enter
required data for a system to be controlled and then specify an appropriate controller
structure before running simulation on this panel.

STAGE 2: PLANT MODEL SETUP. To enter system data, users need to click
on the box labeled with PLANT to open the plant model setup panel as shown in
Figure 5.10. In addition to the state-space model of Equation 5.89, the toolkit also
allows users to specify resonance modes of the plant on this panel. We note that high-
frequency resonance modes are existent in almost all mechanical systems. Because
of the complexity of resonance modes, they are generally ignored or simplified in the
controller design stage. However, these resonance modes have to be included in the
simulation and evaluation of the overall control system design.

Each time a plant model is keyed in or modified on the panel, the toolkit au-
tomatically runs a checkup on the system stabilizability, detectability, invertibility,
and other requirements. For a nonlinear system, the toolkit also checks the stabil-
ity of its nonlinear dynamics. Users will be warned if the solvability conditions for
the CNF tracking control are not satisfied and users have to revise the model before
proceeding to controller design.

STAGE 3: CONTROLLER SETUP. As the core of this toolkit, the CNF controller
design is to be proceeded in a configurable and convenient fashion. A controller
setup panel as shown in Figure 5.11 is opened when the user activates the box
marked with CONTROLLER in the main panel. This panel carries a block diagram for
an adjustable controller configuration, which automatically refreshes when the user
makes any change or reselection on the controller structure. Users need to decide
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Figure 5.9. The main panel of the CNF control toolkit
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Figure 5.10. The panel for the plant model setup
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a controller structure first before proceeding to specify the corresponding controller
parameters. The following options are available for the controller in the toolkit:

1. If the given plant in Equation 5.89 has some nonlinearities, users can choose the
precompensation option and enter an appropriate nonlinear function to cancel as
many nonlinearities as possible.

2. If the given plant in Equation 5.89 has some unknown constant disturbances or
other types of disturbances, users can select a controller structure with integrator
to remove the steady-state bias.

3. If the given plant in Equation 5.89 is the nominal model of a noisy plant, which
has high-frequency resonance modes, users might enter a predesigned lowpass
or notch filter to minimize their effects on the overall performance.

4. Based on the properties of the given plant in Equation 5.89 and personal interest,
users can then choose a controller with either one of the following options:
a) State feedback;
b) Full-order measurement feedback;
c) Reduced-order measurement feedback.

When it comes to the design of the state feedback gain , users have three
choices. Users can either specify an explicit matrix (obtained through any other
design methodologies such as control) for , or employ the control tech-
nique (provided on the panel), or use the pole-placement method characterized by
the damping ratio and natural frequency of the dominant poles as well as integration
pole and gain (if applicable). For the pole-placement method, the remaining closed-
loop poles are placed three times faster than the dominant pair with a Butterworth
pattern.

In the case of measurement feedback control, users also have three choices for
the design of the observer gain . Users can directly enter a predesigned solution for

, or design it online using the control technique, or using the pole-placement
method to organize the observer poles into a Butterworth pattern with an appropriate
bandwidth. In any case, the corresponding parameters can be further tuned on the
main panel to obtain a satisfactory performance for the overall system.

STAGE 4: DESIGN AND SIMULATION. Once the plant model setup and the con-
troller setup are completed, users can then specify directly on the main panel the
simulation parameters, such as the setpoint for the target reference, the duration of
simulation and the step size. Users can also define the tracking performance indicator
and obtain the result for settling time and steady-state bias of the controlled output
response. For example, in Figure 5.9, the settling time is defined as the time when
the controlled output of the closed-loop system enters the neighborhood of
of the target reference. Alternatively, one can define such a neighborhood in terms of
the percentage of final target instead of the absolute error bound.

As mentioned in the previous section, the CNF controller consists of two parts,
a linear part and a nonlinear part. On the main panel, users are able to tune the
properties of the linear part by selecting appropriate values of the damping ratio and
natural frequency of the dominant modes of the linear state feedback dynamical ma-
trix . The remaining eigenvalues of are placed three times faster



170 5 Composite Nonlinear Feedback Control

Figure 5.11. The panel for the CNF controller setup
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than the dominant modes with a Butterworth pattern. Such an arrangement is purely
for the simplification of the control system design. The pole corresponding to the
integration part, if applicable, can be tuned on the main panel as well. Alternatively,
users are allowed to apply the design with a tunable parameter , or directly spec-
ify a state feedback gain matrix (obtained using any design method) in the controller
setup panel without any tunable parameters.

Design parameters and for the nonlinear part of the CNF controller can
also be tuned online on the main panel. In particular, the parameters and for the
nonlinear function of Equation 5.128 can be easily adjusted using the computer
mouse or by directly keying their values onto the spaces provided. In the current
version of the CNF control toolkit, the design parameter is restricted to a diagonal
matrix for the simplicity of software implementation.

There are three windows on the main panel for displaying the system state vari-
ables, the controlled output response and the control input signal, together with a
block diagram showing the structure of the overall control system. Using the right
button of the computer mouse to click on the window displaying the state variables,
output response and control signal, users are prompted by a small text window show-
ing options to redraw the plots on a new popup window or export the simulation data
to the MATLAB R workspace.

Finally, the following commands and functions are also implemented on the main
panel for saving and loading data as well as for evaluating the frequency-domain
properties of the overall control system:

1. Load data: This function is used to load data previously saved in the toolkit.
2. Save data: This function is to save the system and controller data for future use.
3. Export controller: This function is to export the data of the CNF controller ob-

tained to the MATLAB R workspace. The controller data are given by

sat

(5.258)

where , , , , , , , , are constant vectors or
matrices, and and are scalar functions. If a filter is used to reduce the
effects of noise or high-frequency resonance modes of a physical plant,
will represent the transfer function of such a filter. All these parameters can
be saved under a structured workspace variable (specified by the user) in the
command window.

4. Root locus: This function is to generate the root locus of the control system with
the CNF controller with respect to the change of the nonlinear function .

5. Bode plot: This function is to generate the Bode magnitude and phase responses
of the open-loop system comprising the plant and the controller in the steady-
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state situation when the nonlinear gain is converging to a constant. This function
can be used to evaluate the frequency-domain properties of the control system,
such as gain and phase margins.

6. Nyquist plot: Similar to the Bode plot given above. Note that for both the Bode
and Nyquist plots, users are allowed to specify a frequency range of interest.

7. Sensitivity functions: This function is to plot the sensitivity and complementary
sensitivity functions of the overall design with a prespecified frequency range.

8. Print: This function is to print the items shown on the main panel.
9. Close: This command is to close up the CNF control toolkit.

Although the CNF control toolkit is meant to design a composite nonlinear feed-
back controller, users have the option to choose only the linear portion of the CNF
control law for their design. This option is particularly useful for the comparison of
performances of the CNF controller and the linear controller.

5.5.2 An Illustrative Example

We illustrate the CNF control toolkit using a practical example on a micro hard
disk drive (HDD) servo system design. The following dynamical model of an IBM
microdrive (DMDM-10340) has been recently reported in Peng et al. [138] and will
be further studied in Chapter 9:

sat
(5.259)

where the state variable , consists of the displacement and velocity of the read/write
(R/W) head of the microdrive; and are simply the displacement (in lum) of the
R/W head of the drive; represents friction and some unknown disturbances of
the system, and is set to be mV for this demonstration; is the control input,
limited by V; and finally the nonlinearity artan is
generated by the data flex cable in the drive. The high-frequency resonance modes
of the microdrive as given in Chapter 9 are included in simulation.

For hard disk drive servo systems, the task of the controller is to move the actu-
ator R/W head to a desired track as fast as possible and to maintain the R/W head
as close as possible to the target track center when data are being read or written.
To ensure reliable data reading and writing, it is required that the deviation of the
R/W head from the target track center should not exceed of the track pitch. In
this demonstration, we focus our attention on designing a servo system that yields
an optimal performance for short-distance tracking. In particular, we set the target
reference lum. Thus, the settling time is defined as the total duration for the
R/W head to enter the lum region of the target track.

Using the CNF control toolkit of [55] with few online adjustments on the design
parameters, we manage to obtain a reduced-order CNF controller that yields a good
performance. The dynamics equations of the controller is given by:
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sat

(5.260)

(5.261)

with Figure 5.12 shows the controlled output response
of the servo system with the obtained CNF controller. The resulting 2.5% settling
time is about 0.27 ms. The frequency-domain properties of the CNF control servo
system are, respectively, shown in Figures 5.13 to 5.15.
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Figure 5.12. Output response and control signal of the CNF control system
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Figure 5.13. Bode and Nyquist plots of the CNF control system
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Figure 5.14. Sensitivity and complementary sensitivity functions of the CNF control system
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Figure 5.15. Root locus of the closed-loop system versus the nonlinear function



Part II

HDD Servo Systems Design



6

Track Following of a Single-stage Actuator

6.1 Introduction

The prevalent trend in hard disk design is towards smaller hard disks with increas-
ingly larger capacities. This implies that the track width has to be smaller, leading to
lower error tolerance in the positioning of the head. The controller for track follow-
ing has to achieve tighter regulation in the control of the servomechanism. Current
HDDs use a combination of classical control techniques, such as lead-lag compen-
sators, PID compensators, and notch filters. These classical methods can no longer
meet the demand for HDDs of higher performance. Thus, many control approaches
have been tried, such as LQG and/or LTR approach (see, e.g., [18, 19]), and adaptive
control (see, e.g., [28]) and so on.

The purpose of this chapter is to use the results of the RPT control method of
Chapter 3 and the CNF control technique of Chapter 5 to carry out the design of
track-following controllers for an HDD with a single VCM actuator. We first obtain
a model of the VCM actuator and then cast the overall track-following control sys-
tem design into an RPT design framework. A second-order dynamic measurement
feedback controller is then designed to achieve robust and perfect tracking for any
step reference. Our controller is theoretically capable of making the -norm of the
resulting tracking error arbitrarily small in faces of external disturbances and initial
conditions. Some tradeoffs are then made in order for the RPT controller to be im-
plementable using the existing hardware setup and to meet physical constraints such
as sampling rates and the limit of control of the system. The CNF control technique
and the classical PID control technique is also employed to design track-following
controllers for the same drive. The simulation and implementation results of these
controllers are done in both time domain and frequency domain and compared. The
result on the RPT design presented in this chapter are rooted in earlier work reported
in [3] (see also [74]). However, it is obtained using a new HDD, namely a Maxtor
(Model 51536U3) HDD. Furthermore, we introduce a notch filter to minimize the ef-
fect of the resonance modes and follow the development of a recent work by Cheng
et al. [140] to add an additional integrator to the RPT controller. The new design is
capable of eliminating steady-state bias.
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6.2 VCM Actuator Model

In this section, we present the modeling of the VCM actuator that is well known in the
research community of the HDD servo systems to have a characteristic of a double
integrator cascaded with some high-frequency resonance, which can reduce the sys-
tem stability if neglected. There are some bias forces in the HDD system that cause
steady-state errors in tracking performance. Moreover, there are also some nonlin-
earities in the system at low frequencies, which are primarily due to the pivot-bearing
friction. All these factors have to be taken into consideration when considering the
design of a controller for the VCM actuator. For the purpose of developing a model,
we have to compromise between accuracy and simplicity. In this section, a relatively
simplified model of the VCM actuator is identified and presented.

The dynamics of an ideal VCM actuator can be formulated as a second-order
state-space model as follows:

(6.1)

where is the actuator input (in volts), and are the position (in tracks) and the
velocity of the R/W head, is the position measurement gain and , with

being the current–force conversion coefficient and being the mass of the VCM
actuator. Thus, the transfer function of an ideal VCM actuator model appears to be a
double integrator, i.e.

(6.2)

However, if we also consider the high-frequency resonance modes, a more realistic
model for the VCM actuator will be

(6.3)

where is the number of significant resonance modes in the frequency range of
interest, and , , are the transfer functions for the resonance
modes. The frequency characteristics of the Maxtor (Model 51536U3) HDD have
been obtained using an LDV and an HP Dynamic Signal Analyzer. The actual fre-
quency response is shown in Figure 6.1. Applying the least squares estimation iden-
tification method given in Chapter 2 (see also [13, 59]) to the measured data from
the actual system, we obtain a tenth-order model for the actuator:

(6.4)

with

(6.5)
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(6.6)

(6.7)

and

(6.8)

Figure 6.1 shows that the frequency response of the identified model matches the
measured data very well for the frequency range from to kHz, which far exceeds
the working range of the VCM actuator.
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Figure 6.1. Frequency responses of the actual and identified VCM actuator models

6.3 Track-following Controller Design

We now present the control system design for the actuator identified in the previ-
ous section. Basically, the majority of commercially available HDD servo systems to
date are designed using a conventional PID approach. For drives with a single VCM
actuator, designers would encounter problems if they wished to push up the track-
following speed. Usually, there are some huge overshoot peaks in step response.
Thus, in practice, one would have to make tradeoffs between the track-following
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speed and the overshoot by selecting appropriate PID controller gains. These draw-
backs can be overcome by using our newly developed control techniques.

We design an HDD servo system that meets the following design constraints and
specifications:

1. the control input does not exceed V owing to physical constraints on the
actual VCM actuator;

2. the overshoot and undershoot of the step response are kept to less than 5% as the
R/W head can start to read or write within of the target;

3. the 5% settling time in the step response is as short as possible;
4. the gain margin and phase margin of the overall design are, respectively, greater

than 6 dB and ;
5. the maximum peaks of the sensitivity and complementary sensitivity functions

are less than 6 dB; and
6. the sampling frequency in implementing the actual controller is 20 kHz.

In order to minimize the effect of the high-frequency resonance modes, we add a
notch filter to the plant to cancel as much as possible of the unwanted responses. For
the plant considered in this chapter, we introduce the following notch filter

(6.9)

whose frequency response is given in Figure 6.2. The overall response of the plant
together with the notch filter is given in Figure 6.3, which shows that the effect of the
first two resonance modes are indeed reduced. This same notch filter will be used in
Chapters 7 and 8 as well.

Thus, we only consider a second-order model for the VCM actuator at this stage.
We will then put the resonance modes back when we are to evaluate the performance
of the overall design. Thus, in our design, we first use the following simplified model
of the VCM actuator:

(6.10)

and
(6.11)

Next, we define the output to be controlled as

(6.12)

The overall control system is depicted as in Figure 6.4.

RPT Control System Design. Consider the reference to be a step function with
a magnitude , i.e. , where is a unit step function. Then, we have
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Figure 6.4. Control system configuration for the HDD VCM actuator

(6.13)

where is a unit impulse function. Following the results of Chapter 3, we obtain
a corresponding auxiliary system:

(6.14)

where

(6.15)

We note that the additional integrator added is to compensate the steady-state bias
in the implementation. It is simple to see that is invertible and free
of invariant zeros, and Ker Ker . Hence, it follows from the result of
Chapter 3 that the RPT performance is achievable. Actually, there exists a family
of measurement feedback control laws, parameterized by a tuning parameter , such
that when it is applied to the given VCM actuator:

1. the resulting closed-loop system is asymptotically stable for sufficiently small ;
2. for any given initial condition and any , the -norm of the resulting

tracking error has the property , as .

Following the procedure for the reduced-order RPT controller given in Chapter 3,
we obtain a parameterized measurement feedback control law of the form
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RC RC RC RC (6.16)

with

RC

RC

RC

RC

(6.17)

The actual control input to the HDD system is then given by

(6.18)

where is as given in Equation 6.9. Figure 6.5 clearly shows that the RPT
problem is solved as we tune the tuning parameter to be smaller and smaller. Un-
fortunately, owing to the constraints of the physical system, i.e. the limits in control
inputs and sampling rates, as well as resonance modes, it is impossible to implement
a controller that tracks the reference with zero time. We would thus have to make
some compromises in the track-following speed because of these limitations. After
several trials, we found that the controller parameters of Equation 6.17 with
would give us a satisfactory performance.

We then discretize it using a ZOH transformation with a sampling frequency of
20 kHz. The discretized controller is given by

(6.19)
and

(6.20)

CNF Control System Design. Following the procedure given in Chapter 5 for the
CNF design for systems with disturbances, in which an integrator is added to the
controller to eliminate steady-state bias, we choose an integration gain and
obtain a corresponding augmented plant:

sat

(6.21)
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Figure 6.5. Responses of the closed-loop systems with RPT controller
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For track following, . Following a few simulation tries, we obtain a state feed-
back gain matrix,

(6.22)

which places the closed-loop poles at and . Next, we
choose to be a diagonal matrix with diagonal elements being ,
and , respectively. Solving the Lyapunov equation in Equation 5.98, we
obtain

(6.23)

The reduced-order observer gain matrix is selected as R which places
the observer pole at , and the nonlinear gain function is selected as follows:

(6.24)

Finally, the reduced-order enhanced CNF control law for the servo system is given
by

(6.25)

(6.26)

and
(6.27)

The above CNF controller is discretized using the ZOH method with a sampling
frequency of 20 kHz when implemented onto the actual HDD hardware.

PID Control System Design. Following the result of Chapter 3, we obtain a finely
tuned PID controller, which has the following transfer function:

(6.28)

where the second term is a low-pass filter added to improve the implementation per-
formance of the control system. In our experimental tests, we find that it is necessary
to add the low-pass filter to the PID control law in order to obtain a meaningful
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experimental performance. The above discrete-time PID controller is obtained from
a continuous-time counterpart using the ZOH method with a sampling frequency
of 20 kHz. Once again, we note that the above PID controller is tuned to meet the
requirements on the gain and phase margins, and the design specifications on the
sensitivity and complementary sensitivity functions. Although the PID control has
the simplest structure, its dynamical order, which is 3, is higher than that of the RPT
and CNF controllers. As expected, the complete control input is given by

(6.29)

6.4 Simulation and Implementation Results

In this section we present the simulation and actual implementation results of our de-
signs and their comparison. The following tests are presented: i) the track-following
test of the closed-loop systems, ii) the frequency-domain test including the Bode
and Nyquist plots as well as the plots of the resulting sensitivity and complemen-
tary sensitivity functions, iii) the runout disturbance test, and lastly iv) the PES test.
Our controller was implemented on an open HDD with a sampling rate of 20 kHz.
Closed-loop actuation tests were performed using an LDV to measure the R/W head
position. The resolution used for LDV was 2 lum/V. This displacement output is then
fed into the DSP, which would then generate the necessary control signal to the VCM
actuator. The actual implementation setup is as depicted in Figure 1.7.

6.4.1 Track-following Test

The simulation result and actual implementation result of the closed-loop responses
for the control systems are, respectively, shown in Figures 6.6 and 6.7. It is noted that
the PID control generates large overshoots in both simulation and implementation,
while the systems with the RPT and CNF control have very little overshoot. We sum-
marize the resulting 5% settling time, which is commonly used in the HDD research
community, in Table 6.1. Clearly, the CNF control gives the best performance in the
time domain compared to those of the other two systems.

Table 6.1. Performances of the track-following controllers

Settling time (ms)
PID control RPT control CNF control

Simulation 3.10 0.95 0.80
Implementation 2.65 1.05 0.85
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Figure 6.6. Simulation result: step responses with PID, RPT and CNF control
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We believe that the shortcoming of the PID control is mainly due to its structure,
i.e. it only feeds in the error signal, , instead of feeding in both and inde-
pendently. We trust that the same problem might be present in other control methods
if the only signal fed is . The PID control structure might well be as simple as
most researchers and engineers have claimed. However, the RPT controller is even
simpler, but it and the CNF controller have fully utilized all available information
associated with the actual system.

Unfortunately, we could not compare our results with those in the literature. Most
of the references we found in the open literature contained only simulation results
in this regard. Some of the implementation results we found were, however, very
different in nature. For example, Hanselmann and Engelke [18] reported an imple-
mentation result of a disk drive control system design using the LQG approach with a
sampling frequency of 34 kHz. The overall step response in [18] with a higher-order
LQG controller and higher sampling frequency is worse than that of ours.

6.4.2 Frequency-domain Test

For practical consideration, it is important and necessary to examine the frequency-
domain properties of control system design, which include the results of gain and
phase margins and the plots of sensitivity and complementary sensitivity functions.
Traditionally, gain and phase margins can be obtained through the Bode plot of the
open-loop transfer function comprising the given plant and the controller. However,
for the HDD system considered in our design, which has additional high-frequency
resonance modes, the corresponding Bode plots might have more than one gain
and/or phase crossover frequencies. Thus, it is important to verify the stability mar-
gins obtained from the associated Nyquist plots. Figures 6.8 to 6.13, respectively,
show the Bode plot, the Nyquist plot, and the sensitivity and complementary sen-
sitivity functions, as well as the closed-loop transfer functions (from the reference
input to the controlled output ) of the resulting control systems. For the
CNF design, which is a nonlinear controller, its frequency-domain functions are cal-
culated at the steady-state situation for which the nonlinear gain function has
approached its final constant value. The results show that all these designs meet the
frequency-domain specifications and have about the same closed-loop bandwidth.

6.4.3 Runout Disturbance Test

Although we do not consider the effects of runout disturbances in our problem for-
mulation, it turns out that our controllers are capable of rejecting the repeatable
runout disturbances, which are mainly due to the imperfectness of the data tracks
and the spindle motor speeds, and commonly have frequencies at the multiples of
the spindle speed, which is about Hz. We simulate these runout effects by inject-
ing a sinusoidal signal into the measurement output, i.e. the new measurement output
is the sum of the actuator output and the runout disturbance. Figure 6.14 shows the
implementation result of the output responses of the overall control system compris-
ing the tenth-order model of the VCM actuator model and the controllers together
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Figure 6.8. Bode and Nyquist plots of the PID control system
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Figure 6.10. Bode and Nyquist plots of the CNF control system



6.4 Simulation and Implementation Results 195

10
0

10
1

10
2

10
3

10
4

10
5

−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

T function (max. 3.1 dB)
S function (max. 3.1 dB)

(a) Sensitivity and complementary sensitivity functions

10
0

10
1

10
2

10
3

10
4

10
5

−200

−150

−100

−50

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

10
0

10
1

10
2

10
3

10
4

10
5

−800

−600

−400

−200

0

Frequency (Hz)

P
ha

se
 (d

eg
)

BW = 514 Hz 

(b) Closed-loop response
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Figure 6.12. Sensitivity functions and closed-loop transfer function of the RPT control system
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with a fictitious runout disturbance injection

(6.30)
and a zero reference . The result shows that the RPT and CNF controllers again
have better performance and the effects of such a disturbance on the overall response
under CNF control are minimal. A more comprehensive test on runout disturbances,
i.e. the position error signal (PES) test on the actual system will be presented in the
next section.
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Figure 6.14. Closed-loop output responses due to a runout disturbance

6.4.4 Position Error Signal Test

The disturbances in a real HDD are usually considered as a lumped disturbance at the
plant output, also known as runouts. Repeatable runouts (RROs) and nonrepeatable
runouts (NRROs) are the major sources of track-following errors. RROs are caused
by the rotation of the spindle motor and consists of frequencies that are multiples of
the spindle frequency. NRROs can be perceived as coming from three main sources:
vibration shocks, mechanical disturbance and electrical noise. Static force due to
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flex cable bias, pivot-bearing friction and windage are all components of the vibra-
tion shock disturbance. Mechanical disturbances include spindle motor variations,
disk flutter and slider vibrations. Electrical noises include quantization errors, media
noise, servo demodulator noise and power amplifier noise. NRROs are usually ran-
dom and unpredictable by nature, unlike repeatable runouts. They are also of a lower
magnitude (see, e.g., [1]). A perfect servo system for HDDs has to reject both the
RROs and NRROs.

In our experiment, we have simplified the system somewhat by removing many
sources of disturbances, especially that of the spinning magnetic disk. Therefore, we
actually have to add the runouts and other disturbances into the system manually.
Based on previous experiments, we know that the runouts in real disk drives are
composed mainly of RROs, which are basically sinusoidal with a frequency of about
55 Hz, equivalent to the spin rate of the spindle motor. By manually adding this
“noise” to the output while keeping the reference signal at zero, we can then read
off the subsequent position signal as the expected PES in the presence of runouts.
For actual drives, prewritten PES data might be estimated at high sampling rates
using servo sector measurements (see, for example, [141]). In disk drive applications,
the variation in the position of the R/W head from the center of the track during
track following, which can be directly read off as the PES, is very important. Track-
following servo systems have to ensure that the PES is kept to a minimum. Having
deviations that are above the tolerance of the disk drive would result in too many read
or write errors, making the disk drive unusable. A suitable measure is the standard
deviation of the readings, . A useful guideline is to make the value less
than of the track pitch, which is about lum for a track density of 25 kTPI.

Figure 6.15 shows the histograms of the tracking errors of the respective control
systems under the disturbance of the runouts. The values of the PES test are
summarized in Table 6.2. Again, the CNF control yields the best performance in the
PES test.

Table 6.2. The values of the PES test

PID control RPT control CNF control
3 (lum) 0.0615 0.0375 0.0288

In conclusion, the RPT and CNF controllers have much better performance in
track following and in the PES tests compared with that of the PID controller. We
note that the results can be further improved if we used a better VCM actuator and
arm assembly (such as those used in minidrives and microdrives) with a higher reso-
nance frequency. We will carry out a detailed study on the servo system of a micro-
drive later in Chapter 9.
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Track Seeking of a Single-stage Actuator

7.1 Introduction

In this chapter, we proceed to design track-seeking controllers for a single-stage actu-
ated HDD that would give high-speed seeking performance. We utilize the nonlinear
control techniques reported in Chapters 4 and 5 as well as the linear techniques re-
ported in Chapter 3 to carry out the design of three different types of track-seeking
controllers for a Maxtor HDD with a single VCM actuator. More specifically, we
design the servo systems using the conventional PTOS approach, the CNF control
technique, and the MSC system with PTOS and RPT controllers.

As in Chapter 6, a Maxtor (Model 51536U3) HDD is used to implement our
design. The actual frequency response and the identified model are given Figure 6.1.
The frequency-domain model has been identified earlier in Chapter 6 and is given
in Equations 6.4–6.8. The same notch filter as in Equation 6.9 is again utilized for
track seeking. With such a formulation, it is safe to approximate the VCM actuator
model with the notch filter as a double integrator with an appropriate gain. Such an
approximation simplifies the overall design procedure a great deal. Most importantly,
it works very well. However, in order to make our design more realistic, all our
simulation results are done using the tenth-order model. The final implementation is,
of course, to be carried out on the actual system.

The following state-space model is then used throughout our design of track-
seeking controllers:

sat (7.1)

where and are, respectively, the position of the VCM actuator head in microm-
eters and velocity in micrometers per second, and is the control input in volts. In
general, the velocity of the VCM actuator in the actual system is not available, and
thus is the only measurable state variable. For this particular system, the controlled
output is also the measurement output, i.e.

(7.2)
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Our objective is to design a servo controller that meets the following physical con-
straints and design specifications:

1. the control input does not exceed V owing to physical constraints on the
actual VCM actuator;

2. the overshoot and undershoot of track seeking are kept to less than 0.5 lum, the
limit of our measurement device for large displacement. As such, the settling
time used in this chapter is defined as the time taken for the R/W head to reach
the lum of the target track from its initial point.

3. the gain margin and phase margin of the overall design are, respectively, greater
than 6 dB and .

As mentioned earlier, three different approaches, namely the PTOS method, the
MSC method and the CNF method, are presented in the following to design appro-
priate servo systems for the given HDD. We carry out control system design for each
method first. All simulation and implementation results, as well as their comparison
are to be discussed in the last section.

7.2 Track Seeking with PTOS Control

We present in this section the design and implementation of an HDD servo system
using the PTOS approach (see Chapter 4). The first step is to find the state feedback
gains and in the PTOS control law based on the design specifications. To get
specifications in terms of required closed-loop poles we need the natural frequency

and the damping ratio . Let us choose the natural frequency to be rad/s,
i.e. 500 Hz, and the damping factor to be 0.7255 so as to have an acceleration dis-
count factor of 0.95, which yields a reasonably good performance for seek lengths
up to 300 lum. It follows from Equation 4.32 that a PTOS control law with such a dis-
count factor only increases the total tracking time by about 1.6% from that required
in the TOC. Clearly, the performance of the PTOS control is pushed very closely
to its limit, the TOC. Interested readers are referred to [30, 142, 143] for detailed
information on the selection of these parameters. Note that the relation between the
damping ratio and the acceleration discount factor in PTOS control law is given by
(see [30])

(7.3)

Then, the corresponding -plane closed-loop poles are

(7.4)

Using the m-function acker in MATLAB R , we obtain the following feedback gains

and (7.5)

and the length of the linear region in PTOS can be found from Equation 4.31 and
is given by lum. Thus, the PTOS control law for our disk drive is as
follows:
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P sat (7.6)

where with being the target reference, and

for

sgn for
(7.7)

with
(7.8)

and
(7.9)

The advantage of this control scheme is that it is quite simple to understand. The
implementation of such a controller requires an estimation of the VCM actuator ve-
locity (with the estimator pole being placed at ). More precisely, the following
velocity estimator is used:

P (7.10)

and
(7.11)

In the actual simulation and implementation of the PTOS controller of Equation 7.6,
is replaced with of Equation 7.11 and

P (7.12)

where is as given in Equation 6.9. The simulation and implementation
results of the above design will be given later in Section 7.5.

7.3 Track-seeking with MSC

In this section, we apply the MSC method of Chapter 4 to the disk drive given earlier.
The MSC scheme uses the proximate time-optimal controller in the track-seeking
mode, and the RPT controller in the track-following mode. We note that in MSC,
initially, the plant is controlled by the seeking controller and at the end of the seek-
ing mode a switch changes it to a track-following controller. In [127], the mode
switching was done after finding the optimal mode-switching conditions such that
the impact of the initial values on settling performance was minimized. But the im-
pact of the resulting control signal on the resonance modes was not considered. It
has been shown [74, 106] that the RPT controller is independent of these initial val-
ues. The optimal mode-switching conditions in our scheme can just be set such that
the control signal is small enough so as not to excite the resonance vibrations. The
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problem of unmodeled mechanical resonance can be treated more rigorously either
by minimizing the jerk as defined by as reported in [144] or by using a
method developed in the frequency domain in [145]. However, by utilizing the fea-
tures of RPT control, such as it works for a wide range of resonance frequencies (see
Chapter 6), the mode-switching conditions can be determined in a very simple way
(see Chapter 4).

We now move to present an MSC controller for the HDD with a single VCM
actuator. The control law in track-seeking mode (here we label its control signal as

P) is given in Equation 7.6, as this mode uses the PTOS control. The control law in
the track-following mode, i.e. the reduced-order measurement feedback RPT control
law, is given by

RC RC R RC RC (7.13)

with being the target reference and

RC

RC

RC

RC

(7.14)

Next we find the mode-switching conditions as defined in Equation 4.62. Using
the RPT controller parameters, and following the results of Chapter 4, the mode-
switching conditions can be determined as lum lum and

lum/s. We select the MSC law

P

R

(7.15)

in which P is as given in Equation 7.6 and is chosen such that

lum and lum/s (7.16)

As in the PTOS case, the actual control signal is generated by

(7.17)

The overall closed-loop system comprising the given VCM actuated HDD and the
MSC control law is asymptotically stable. For easy comparison, the simulation and
implementation of the overall system with the MSC control law will again be pre-
sented in Section 7.5.
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7.4 Track Seeking with CNF Control

We now move to the design of a reduced-order continuous-time composite nonlin-
ear control law as given by Equations 5.79 and 5.80 for the commercial hard disk
model shown in Figure 6.1. As the CNF control law depends on the size of the step
command input, we derive, for our HDD model given in Equation 7.1, the following
parameterized state feedback gain :

(7.18)

which places the eigenvalues of exactly at and
. The latter is the pole associated with the integration dynamics. Following

the design procedure given in Chapter 5 and the physical properties of the given
system, for lum, which is to be used in the next section for simulation and
implementation, we choose a damping ratio of and Hz, which
corresponds roughly to the normal working frequency range of the linear part of the
CNF control law with . Selecting , and

(7.19)

we obtain

(7.20)

and a reduced-order CNF control law as follows:

(7.21)

with being the target reference,

(7.22)

and

sat (7.23)

where

(7.24)

(7.25)

and
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(7.26)

Again, the actual control signal is generated as follows:

(7.27)

Note that in both simulation and implementation, the initial condition of is set to
zero at and reset to zero when the R/W head of the actuator reaches the point
that is 2 lum from the target to reinforce the integration action. Again, the simulation
and implementation results of the servo system with the CNF control law will be
presented in the next section for an easy comparison.

7.5 Simulation and Implementation Results

Now, we are ready to present the simulation and implementation results for all three
servo systems discussed in the previous sections and do a full-scale comparison on
the performances of these methods. In particular, we study the following tests:

1. track-seeking test;
2. frequency-domain test;
3. runout disturbance test; and
4. PES test.

All simulation results presented in this section have been obtained using Simulink R

in MATLAB R and all implementation results are carried out using our own exper-
imental setup as described in Chapter 1. The sampling frequency for actual imple-
mentation is chosen as kHz. Here, we note that all our controllers are discretized
using the ZOH technique.

7.5.1 Track-seeking Test

In our simulation and implementation, we use a track pitch of 1 lum for the HDD. In
what follows, we present results for a track seek length of 300 lum. Unfortunately,
owing to the capacity of the LDV that has been used to measure the displacement
of the R/W head of the VCM actuator, the absolute errors of our implementation
results given below are 0.5 lum. As such, the settling time for both implementation
and simulation results is defined as the total time required for the R/W head to move
from its initial position to the entrance of the region of the final target with plus and
minus the absolute error. This is the best we can do with our current experimental
setup. Nonetheless, the results we obtain here are sufficient to illustrate our design
ideas and philosophy. The simulation and implementation results of the track-seeking
performances of the obtained servo systems are, respectively, shown in Figures 7.1
and 7.2. We summarize the overall results on settling times in Table 7.1.

Clearly, the simulation and implementation results show that the servo system
with the CNF controller has the best performance. We believe that this is due to the
fact that the CNF control law unifies the nonlinear and linear components without
switching, whereas the other two servo systems involve switching elements between
the nonlinear and linear parts, which degrades the overall performance.
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Figure 7.1. Simulation result: response and control of the track-seeking systems
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Figure 7.2. Implementation result: response and control of the track-seeking systems



7.5 Simulation and Implementation Results 209

Table 7.1. Simulation and implementation: settling time of the track-seeking systems

Settling time (ms)
Simulation Implementation

PTOS MSC CNF PTOS MSC CNF
3.85 3.85 2.95 4.15 4.15 3.90

7.5.2 Frequency-domain Test

As seen in the previous sections, all three track-seeking controllers that we have de-
signed are nonlinear in nature. The frequency-domain properties of nonlinear track-
seeking controllers are not well defined and in fact not as important as those of track-
following controllers. For completeness and for comparison, we define the frequency
responses of the open and closed-loop systems with a nonlinear controller as those
corresponding to the steady-state situation when the nonlinear action of the controller
has become a constant or vanished. The Bode plot, Nyquist plot, sensitivity and com-
plementary sensitivity functions as well as the closed-loop frequency responses for
the system with each control technique are, respectively, shown in Figures 7.3 to 7.8.
All three control systems meet the design specifications in the frequency domain.
Finally, we note that for track-seeking controllers, the PES test is not necessary.
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Figure 7.3. Bode and Nyquist plots of the PTOS control system
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Figure 7.4. Bode and Nyquist plots of the MSC control system



212 7 Track Seeking of a Single-stage Actuator

10
0

10
1

10
2

10
3

10
4

10
5

−200

−150

−100

−50

0

50

100

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

10
0

10
1

10
2

10
3

10
4

10
5

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (d

eg
)

GM = 13.6 dB 

PM = 44°

(a) Bode plot

−1 −0.8 −0.6 −0.4 −0.2 0

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 0 dB

−20 dB

−10 dB

−6 dB

−4 dB

−2 dB

20 dB

10 dB

6 dB

4 dB
2 dB

Real axis

Im
ag

in
ar

y 
ax

is

(b) Nyquist plot

Figure 7.5. Bode and Nyquist plots of the CNF control system



7.5 Simulation and Implementation Results 213

10
0

10
1

10
2

10
3

10
4

10
5

−120

−100

−80

−60

−40

−20

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

T function (max. 4.1 dB)
S function (max. 5.0 dB)

(a) Sensitivity and complementary sensitivity functions

10
0

10
1

10
2

10
3

10
4

10
5

−200

−150

−100

−50

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

10
0

10
1

10
2

10
3

10
4

10
5

−600

−500

−400

−300

−200

−100

0

Frequency (Hz)

P
ha

se
 (d

eg
)

BW = 597 Hz 

(b) Closed-loop response

Figure 7.6. Sensitivity functions and closed-loop transfer function of the PTOS control system
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Figure 7.7. Sensitivity functions and closed-loop transfer function of the MSC control system
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Dual-stage Actuated Servo Systems

8.1 Introduction

The present demand for large-capacity disk drives is leading to an increase in areal
density at a rate of 100% per year. This requires a positioning accuracy of the order
of a few nanometers. The servo bandwidth of the current disk drive actuators makes
it very hard to achieve this. The VCM actuator used in conventional disk drives has
hundreds of flexible resonances at high frequencies (see, e.g., [1, 30]), which limits
the increase of bandwidth and hence the positioning accuracy. In order to develop
high bandwidth (track-following) servo systems, dual-stage actuation has been pro-
posed as a possible solution. Dual-stage actuator refers to the fact that there is a
microactuator mounted on a large conventional VCM actuator. A dual-stage actu-
ated HDD was successfully demonstrated by Tsuchiura et al. [146] of Hitachi. In
[146], a fine positioner based on a piezoelectric structure was mounted at the end of
a primary VCM stage to form the dual actuator. The higher bandwidth of the fine
positioner allowed the R/W heads to be positioned accurately. There have been other
instances where electromagnetic [147] and electrostatic [148] microactuators have
been used for fine positioning of R/W heads. The two most fundamental choices in
a dual-stage system are the actuator configuration and the control algorithm. There
have been proposals for electromagnetic, electrostatic, piezoelectric, shape memory
and rubber microactuators, etc., each with their own advantages and disadvantages.
Many research studies have been done and reported in the literature (see, e.g., [20,
148–167] just to name a few). In this chapter, we focus on the design of complete
HDD servo systems with a dual-stage actuator with a piezoelectric actuator in its
second stage (see Figure 8.1).

Diverse control strategies and methods have been reported in the design of HDD
servo systems with a dual-stage actuator (see, e.g., [150, 154, 156, 157, 159, 161–
163]. Guo et al. [154] have proposed four control strategies to design the dual-stage
actuator control system: the so-called parallel loop, master–slave loop, dual feedback
loop and master-slave with decoupling methods. Hu et al. [159] and Guo et al. [156]
have also utilized the well-known LQG/LTR method to design the dual-stage actu-
ator control system. These studies have accelerated the progress to improve HDD
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Figure 8.1. A dual-stage HDD actuator

servo system performances, but more studies need to be done before such dual-stage
actuated HDDs can be considered for commercialization.

We present in this chapter the design of track-following controllers for the dual-
stage actuated HDD with three different approaches, i.e. the PID control, the RPT
control method, and the CNF control technique. In each design, the VCM actuator
is controlled by a control law obtained using one of these three approaches and the
microactuator is controlled by a proportional gain together with an appropriate filter.

8.2 Modeling of a Dual-stage Actuator

In this section we develop a model for the dual-stage actuator. Since the VCM actu-
ator and the microactuator are decoupled, we need to identify two separate models
for the VCM actuator and for the microactuator. A Maxtor dual-stage HDD is used
in our design and implementation. It has a fine positioner based on a piezoelectric
suspension mounted at the end of a primary VCM arm (see Figure 8.1), and the mi-
croactuators produce the relative motion of the R/W head along the radial direction.
Here we note that only the displacement of the R/W head is available as the mea-
surement output. Also, the VCM arm in this HDD is quite similar to that in the HDD
studied in Chapters 6 and 7. Figures 8.2 and 8.3 respectively show the frequency-
response characteristics of the VCM actuator and the microactuator.

Using the data measured from the actual system, and the identification algorithm
given in Chapter 2 (see also [13, 59]), we obtain a tenth-order model for the actuator
(see also Chapter 6):

(8.1)

with

(8.2)

(8.3)

(8.4)
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and

(8.5)

and a tenth-order model for the microactuator,

(8.6)

with

(8.7)

(8.8)

(8.9)

(8.10)

and

(8.11)

We note here that the inputs to both actuators are voltages (in volts) and their outputs
are displacements (in micrometers). It can be seen clearly from Figures 8.2 and 8.3
that the actual responses and those of the identified models are matched very well at
the frequencies of interest.

8.3 Dual-stage Servo System Design

We now carry out the design of servo systems for the HDD with a dual-stage actuator.
Similarly, we would like to design our servo systems to the following constraints and
requirements.

1. The control input to the VCM actuator does not exceed V, whereas the con-
trol input to the microactuator is within V.

2. The displacement of the microactuator does not exceed 1 lum. Moreover, it has
to settle down to zero in the steady state so that the microactuator can be further
used for the next move.

3. The overshoot and undershoot of the step response are kept less than 0.05 lum,
i.e. 5% of one track pitch. As pointed out earlier, the R/W head of the HDD
servo system can start writing data onto the disk when it is within 5% of one
track pitch of the target.

4. the gain margin and phase margin of the overall design are respectively greater
than 6 dB and ;
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5. the maximum peaks of the sensitivity and complementary sensitivity functions
are less than 6 dB; and

6. the sampling frequency in implementing the actual controller is 20 kHz.

Unfortunately, the only available measurement in the dual-stage actuated HDD
is the displacement of the R/W head, which is a combination of the displacement
of the VCM actuator and that of the microactuator. Practically, we have to control
both actuators using the same measurement, which makes the servo system design
very difficult. Observing that the frequency response of the microactuator is as in
Figure 8.3, we find that it is nothing more than a constant gain at low frequencies
with a gain of . This property is valid so long as we do not push the speed of the
microactuator too high. As such, we propose in Figure 8.4 a control configuration
for the dual-stage actuated servo system. We note that the filter in the feedforward
path of the microactuator is the combination of an appropriate notch filter, which is
to attenuate the high-frequency resonance modes, and a lead-lag compensator, which
is to compensate some phase losses resulted in the notch filter.

To be more specific, we estimate the displacement of the microactuator di-
rectly from its input and then the estimation of the displacement of the VCM
actuator can be obtained as . It can be observed from the configuration in
Figure 8.4 that , the displacement of the microactuator, settles down to zero as
the tracking error approaches zero. As pointed out earlier, such a feature would en-
able the microactuator to be used for the next move. Since the microactuator can
only produce a maximum displacement of 1 lum, it is helpful in track seeking. As
such, we only focus on the design of controllers for track following, in which the
microactuator is expected to contribute significantly.

VCM
VCM

control
law

MICROFilter

Figure 8.4. The schematic representation of a dual-stage actuator control
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To reduce the effects of the resonance modes in the VCM actuator, as in Chap-
ter 6, we introduce a notch filter whose transfer function is given as in Equation 6.9.
We can then approximate the models of the VCM actuator as follows:

(8.12)

In order to minimize the effects of the resonance modes in the microactuator, we
introduce the following filter in the feedforward path:

(8.13)

where

(8.14)

and

(8.15)

It is a combination of a notch filter and a low-pass filter. The frequency responses
of the filter in Equations 8.13–8.15 and the compensated microactuator system are
given, respectively, in Figures 8.5 and 8.6. Clearly, the dynamics of the microactuator
can then be safely approximated by a static equation:

(8.16)

Note that the control input to the VCM actuator is constrained within V, which is
the same as the one used in Chapters 6 and 7, and the control input to the microac-
tuator has to be kept within V. Moreover, the maximum displacement that can be
generated by the microactuator cannot exceed 1 lum, which is equivalent to one track
pitch of the HDD servo system. Clearly, we are having a plant with both sensor and
actuator nonlinearities.

As in Chapter 6, we present in the following three different types of controllers
for the VCM actuator, i.e. PID, RPT and CNF control.

1. The PID control law (with the notch filter) for the VCM actuator is identical to
that given in Chapter 6. It is given by

(8.17)

and
(8.18)
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2. The RPT controller is slightly different from the one given in Chapter 6 and is
given by

(8.19)

(8.20)

and
(8.21)

where is the transfer function of the notch filter given in Equation 6.9.
3. Finally, the CNF control law is given as follows:

(8.22)

(8.23)

with
(8.24)

and
(8.25)

8.4 Simulation and Implementation Results

We now present the simulation and implementation results of the servo systems ob-
tained in the previous section. Simulations are done with the continuous-time plant
models of Equations 8.1 to 8.11 with controllers being discretized with the ZOH
method with a sampling frequency of 20 kHz. Implementations are carried out at a
sampling frequency of 20 kHz. The results of the dual-stage actuated HDD servo
systems will then be compared with those of the servo systems with a single-stage
actuator. The latter are done on the same drive by keeping the microactuator inac-
tive throughout the whole implementation process. The controller parameters for the
single-stage actuated systems are identical to those given in Chapter 6.
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8.4.1 Track-following Test

The simulated output responses of the servo systems with lum are given in
Figure 8.7. Once again, the RPT and CNF control systems yield much better perfor-
mances compared to that of the PID control system. For comparison, we present the
responses and control signals of each individual approach for the dual-stage actuated
servo system together with those of its single-stage counterpart in Figures 8.8 to 8.10,
respectively. The implementation results of the corresponding servo systems are then
presented in Figures 8.11 to 8.13. Finally, we summarize the resulting settling time
of each control system in Table 8.1.

Table 8.1. Performances of the servo systems

(a) Simulation results

Settling time (ms)
PID Control RPT Control CNF Control

Single-stage 3.10 0.95 0.80
Dual-stage 2.15 0.40 0.40

(b) Implementation results

Settling time (ms)
PID Control RPT Control CNF Control

Single-stage 2.70 1.05 0.85
Dual-stage 1.80 0.30 0.30

8.4.2 Frequency-domain Test

To verify the frequency-domain properties of our designs, Figures 8.14 to 8.19, re-
spectively, give the Bode plot, the Nyquist plot, and the sensitivity and complemen-
tary sensitivity functions, as well as the closed-loop transfer functions (from the ref-
erence input to the controlled output ) of the resulting control systems.
For the CNF design, once again, its frequency-domain functions are calculated at
the steady-state situation for which the nonlinear gain function has approached
its final constant value. The results show that all these designs meet the frequency-
domain design specifications.

8.4.3 Runout Disturbance Test

As in the previous chapters, we artificially add a runout disturbance

cos sin
(8.26)



226 8 Dual-stage Actuated Servo Systems

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (ms)

Di
sp

lac
em

en
t (μ

m)

Output of microactuator
Output of VCM
R/W head position

(a) PID control

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Time (ms)

Di
sp

lac
em

en
t (μ

m)

Output of microactuator
Output of VCM
R/W head position

(b) RPT control

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Time (ms)

Di
sp

lac
em

en
t (μ

m)

Output of microactuator
Output of VCM
R/W head position

(c) CNF control

Figure 8.7. Simulation: output responses of the dual-stage actuated systems
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Figure 8.8. Simulation results of single- and dual-stage servo systems with PID control
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Figure 8.9. Simulation results of single- and dual-stage servo systems with RPT control
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Figure 8.10. Simulation results of single- and dual-stage servo systems with CNF control
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Figure 8.11. Implementation results of single- and dual-stage servo systems with PID control
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Figure 8.12. Implementation results of single- and dual-stage servo systems with RPT control
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Figure 8.13. Implementation results of single- and dual-stage servo systems with CNF control
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Figure 8.14. Bode and Nyquist plots of the PID control system
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Figure 8.15. Bode and Nyquist plots of the RPT control system
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Figure 8.16. Bode and Nyquist plots of the CNF control system
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Figure 8.17. Sensitivity functions and closed-loop transfer function of the PID control system
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Figure 8.18. Sensitivity functions and closed-loop transfer function of the RPT control system
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Figure 8.19. Sensitivity functions and closed-loop transfer function of the CNF control system
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which is the same as those in the previous chapters, to our servo systems. The im-
plementation results of the corresponding responses are respectively shown in Fig-
ures 8.20 to 8.22.
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Figure 8.20. Implementation results: Responses to a runout disturbance (PID)

8.4.4 Position Error Signal Test

Lastly, as were done in Chapters 6 and 7, we conduct the PES tests for the complete
single- and dual-stage actuated servo systems. The results, i.e. the histograms of the
PES tests, are given in Figures 8.23 to 8.25. The 3 values of the PES tests, which
are a measure of track misregistration (TMR) in HDDs and that are closely related
to the maximum achievable track density, are summarized in Table 8.2.

Table 8.2. The values of the PES tests

3 (lum)
PID control RPT control CNF control

Single-stage 0.0615 0.0375 0.0288
Dual-stage 0.0273 0.0204 0.0195
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Figure 8.21. Implementation results: Responses to a runout disturbance (RPT)
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Figure 8.22. Implementation results: Responses to a runout disturbance (CNF)
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Figure 8.23. Implementation results: PES test histograms (PID)
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Figure 8.24. Implementation results: PES test histograms (RPT)
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Figure 8.25. Implementation results: PES test histograms (CNF)

It can be easily observed from the results obtained that the dual-stage actuated
servo systems do provide a faster settling time and better positioning accuracy com-
pared with those of the single-stage actuated counterparts. The improvement in the
track-following stage turns out to be very noticeable. This was actually the origi-
nal purpose of introducing the microactuator into HDD servo systems. However, we
personally feel that the price we have paid (i.e. by adding an expensive and delicate
piezoelectric actuator to the system) for such an improvement is too high.



9

Modeling and Design of a Microdrive System

9.1 Introduction

Chapters 6 to 8 focus on the design of single- and dual-stage actuated hard drive servo
systems. The hard drives considered are those used in normal desktop computers.
As mentioned earlier in the introduction chapter, microdrives have become popular
these days because of high demand from many new applications. Many factors such
as frictional forces and nonlinearities, which are negligible for normal drives and
thus ignored in servo systems given in Chapters 6 to 8, emerge as critical issues for
microdrives. It can be observed that nonlinearities from friction in the actuator rotary
pivot bearing and data flex cable in the VCM actuator (see Figure 9.1) generate large
residual errors and deteriorate the performance of head positioning of HDD servo
systems, which is much more severe in the track-following stage when the R/W
head is moving from the current track to its neighborhood tracks. The desire to fully
understand the behaviors of nonlinearities and friction in microdrives is obvious.
Actually, this motivates us to carry out a complete study and modeling of friction
and nonlinearities for the VCM-actuated HDD servo systems.

Friction is hard nonlinear and may result in residual errors, limit cycles and poor
performance (see, e.g., [168–171]. Friction exists in almost all servomechanisms,
behaves in features of the Stribeck effect, hysteresis, stiction and varying break-away
force, occurs in all mechanical systems and appears at the physical interface between
two contact surfaces moving relative to each other. The features of friction have been
extensively studied (see, e.g., [168–174]), but there are significant differences among
diverse systems. There has been a significantly increased interest in friction in the
industry, which is driven by strong engineering needs in a wide range of industries
and availability of both precise measurement and advanced control techniques.

The HDD industry persists in the need for companies to come up with devices
that are cheaper and able to store more data and retrieve or write to them at faster
speed. Decreasing the HDD track width is a feasible idea to achieve these objectives.
But, the presence of friction in the rotary actuator pivot bearing results in large resid-
ual errors and high-frequency oscillations, which may produce a larger positioning
error signal to hold back the further decreasing of the track width and to degrade
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Figure 9.1. An HDD with a VCM actuator

the performance of the servo systems. This issue becomes more noticeable for small
drives and is one of the challenges to design head positioning servo systems for small
HDDs. Much effort has been put into the research on mitigation of the friction in the
pivot bearing in the HDD industry in the last decade (see, e.g., [8, 175–178]). It is
still ongoing in the disk drive industry (see, e.g., [69, 179, 180]).

Diverse modeling methods had been proposed (see, e.g., [59, 69]) based on linear
systems, where nonlinearities of plants are assumed to be tiny and can be neglected.
As such, these methods cannot be directly applied to model plants with significant
nonlinearities. Instead, in the first part of this chapter, we utilize the physical ef-
fect approach given in Chapter 2 to determine the structures of nonlinearities and
friction associated with the VCM actuator in a typical HDD servo system. This is
done by carefully examining and analyzing physical effects that occur in or between
electromechanical parts. Then, we employ a Monte Carlo process (see Chapter 2) to
identify the parameters in the structured model. We note that Monte Carlo methods
are very effective in approximating solutions to a variety of mathematical problems,
for which their analytical solutions are hard, if not impossible, to determine. Our
simulation and experimental results show that the identified model of friction and
nonlinearities using such approaches matches very well the behavior of the actual
system.

The second part of this chapter focuses on the controller design for the HDD
servo system. Our philosophy of designing servo systems is rather simple. Once the
model of the friction and nonlinearities of the VCM actuator is obtained, we will try
to cancel as much as possible all these unwanted elements in the servo system. As it
is impossible to have perfect models for friction and nonlinearities, a perfect cancel-
lation of these elements is unlikely to happen in the real world. We then formulate
our design by treating the uncompensated portion as external disturbances. The PID
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and RPT control techniques of Chapter 3 and the CNF control technique of Chapter 5
are to be used to carry out our servo system design. We note that some of the results
presented in this chapter have been reported earlier in [138].

9.2 Modeling of the Microdrive Actuator

The physical structure of a typical VCM actuator is shown in Figure 9.2. The motion
of the coil is driven by a permanent magnet similar to typical DC motors. The stator
of the VCM is built of a permanent magnet. The rotor consists of a coil, a pivot
and a metal arm on which the R/W head is attached. A data flex cable is connected
with the R/W head through the metal arm to transfer data read from or written to
the HDD disc via the R/W head. Typically, the rotor has a deflected angle, in rad,
ranging up to rad in commercial disk drives. We are particularly interested in
the modeling of the friction and nonlinearities for the actuator in the track-following
stage, in which the R/W head movement is within the neighborhood of its current
track and thus . An IBM microdrive (DMDM-10340) is used throughout for
illustration.

SN

I
Magnet
Permanent

Coil

Pivot

R/W Head

α

Figure 9.2. The mechanical structure of a typical VCM actuator

9.2.1 Structural Model of the VCM Actuator

We first adopt the physical effect analysis of Chapter 2 to determine the structures of
nonlinearities in the VCM actuator. It is to analyze the effects between the compo-
nents of the actuator, such as the stator, rotor and support plane as well as the VCM
driver. The VCM actuator is designed to position the R/W head fast and precisely
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onto the target track, and is driven by a VCM driver, a full bridge power amplifier,
which converts an input voltage into an electric current. The electrical circuit of a
typical VCM driver is shown in Figure 9.3, where represents the coil of the VCM
actuator and the external input voltage is exerted directly into the VCM driver to
drive the coil.

In order to simplify our analysis, we assume that the physical system has the fol-
lowing properties: i) the permanent magnet is constant; and ii) the coil is assembled
strictly along the radius and concentric circle of the pivot; Furthermore, we assume
that the friction of a mechanical object consists of Coloumb friction and viscous
damping, and is characterized by a typical friction function as follows:

N

N sgn

N

N sgn N

(9.1)

where is the friction force, N is the normal force, i.e. the force perpendicular to the
contacted surfaces of the objects, is the external force applied to the object, is
the relative moving speed between two contact surfaces, and N is the breakaway
force. Furthermore, , and are, respectively, the dynamic, static and viscous
coefficients of friction.

Through a detailed analysis of the VCM driver circuit in Figure 9.3, it is straight-
forward to verify that the relationship between the driver input voltage and the current
and voltage of the VCM coil is given by

(9.2)

where

(9.3)

A
B

C

Figure 9.3. The electrical circuit of a typical VCM driver
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is the input voltage to the VCM driver, and are, respectively, the VCM coil
current and voltage. For the IBM microdrive (DMDM-10340) used in our experi-
ment, k , k , k , , k , pF,
and the amplifier gains and . For such a drive, we have

(9.4)

which has a magnitude response ranging from dB (for frequency less than 110
Hz) to dB (for frequency greater than 2.2 kHz), and

for all (9.5)

Such a property generally holds for all commercial disk drives. As such, it is safe to
approximate the relationship of and of the VCM driver as

(9.6)

For the IBM microdrive used in this work, .
Next, it is straightforward to derive that the torque , relative to the center of

the pivot and that moving anticlockwise is positive and produced by the permanent
magnet in the coil with the electric current, is given by

(9.7)

and are, respectively, the outside and inside radius of the coil to the center of
the pivot, and is the number of windings of the coil. The total external torque

applied to the VCM actuator is given as follows:

(9.8)

where is the spring torque produced by the data flex cable and is a function
of the deflection angle or the displacement of the R/W head. The friction torque
in the VCM actuator comes from two major sources: One is the friction in the pivot
bearing and the other is between the pivot bearing and the support plane. The friction
torque in the pivot bearing can be characterized as

N (9.9)

where is the external force, , and are the related friction coefficients
as defined in Equation 9.1, is the radius of the pivot to its center, and

N (9.10)

is the normal force, which consists of the centrifugal force of the rotor and the dia-
metrical force, . Furthermore, is a constant dependent on the mass distribution
of the rotor, and
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(9.11)

is the force along the radius of the pivot bearing produced in the coil by the permanent
magnet.

The friction torque between the pivot bearing and the support plane can be char-
acterized as:

N (9.12)

where is the external force, , and are the related friction coefficients
as defined in Equation 9.1, and

N (9.13)

is the normal force resulted from a static balance torque of the rotor, . Thus, the
total friction torque presented in the VCM actuator is given by

and

sgn and

(9.14)

where

sgn

(9.15)

and
(9.16)

is the breakaway torque, and where and are, respectively, the corresponding
input voltage and the deflection angle for the situation when .

Lastly, it is simple to verify that the relative displacement of the R/W head, , is
given by

sin (9.17)

where is the length from the R/W head to the center of the pivot. Following New-
ton’s law of motion, , where is the moment of inertia of the VCM
rotor, we have

(9.18)

where

sgn

sgn

(9.19)

where
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(9.20)

with and being, respectively, the corresponding input voltage and the displace-
ment for the case when . It is clear now that the expressions in Equations
9.18–9.20 give a complete structure of the VCM model including friction and non-
linearities from the data flex cable. Our next task is to identify all these parameters
for the IBM microdrive (DMDM-10340).

9.2.2 Identification and Verification of Model Parameters

We proceed to identify the parameters of the VCM actuator model given in Equations
9.18–9.20. We note that there are results available in the literature (see, e.g., [168])
to estimate friction parameters for typical DC motors for which both velocity and
displacement are measurable and without constraint. Unfortunately, for the VCM
actuator studied in this chapter, it is impossible to measure the time responses in
constant-velocity motions and only the relative displacement of the R/W head is
measurable. As such, the method of [168] cannot be adopted to solve our problems.
Instead, we employ the popular Monte Carlo method of Chapter 2 (see also, [63–
65]), which has been widely used in solving engineering problems and is capable of
providing good numerical solutions.

First, it is simple to obtain from Equation 9.18 at a steady state when and
,

(9.21)

Our experimental results show that the right hand side of Equation 9.21 is very in-
significant for small input signal and small displacement . This will be verified
later when the model parameters are fully identified. Thus, we have

(9.22)

which is used to identify or equivalently , the spring torque produced by
the data flex cable. Next, for the small neighborhood of , we can rewrite the
dynamic expression of Equation 9.18 as

(9.23)
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For small signals, and by omitting the nonlinear terms in , the system dynamics in
Equation 9.23 can be approximated by a second-order linear system with a transfer
function from to :

(9.24)

The natural frequency of the above transfer function (or roughly its peak frequency),
, is given by

(9.25)

and its static gain is given by , which implies that

(9.26)

where . The expression in Equation 9.26 will be used to estimate the
parameter . More specifically, the parameters of the dynamic models of the VCM
actuator will be identified using the following procedure:

1. The nonlinear characteristics of the data flex cable or equivalently will
be initially determined using Equation 9.22 with a set of input signal, , and
its corresponding output displacement, . It will be fine tuned later using the
Monte Carlo method.

2. The parameter will be initially computed using measured static gains and peak
frequencies as in Equation 9.26, resulting from the dynamical responses of the
actuator to a set of small input signals. Again, the identified parameter will be
fine tuned later using the Monte Carlo method.

3. All system parameters will then be identified using the Monte Carlo method to
match the frequency response to small input signal;

4. The high-frequency resonance modes of the actuator, which have not been in-
cluded in either Equation 9.18 or 9.23, will be determined from frequency re-
sponses to input signals at high frequencies.

The above procedure will yield a complete and comprehensive model including nom-
inal dynamics, high-frequency resonance modes, friction and nonlinearities of the
VCM actuator. In our experiments, the relative displacement of the R/W head is the
only measurable output and is measured using a laser Doppler vibrometer (LDV). A
dynamic signal analyzer (DSA) (Model SRS 785) is used to measure the frequency
responses of the VCM actuator. The DSA is also used to record both input and output
signals of time-domain responses. Square waves are generated with a dSpace DSP
board installed in a personal computer.

The time-domain response of the VCM actuator to a typical square input signal
about Hz is shown in Figure 9.4. With a group of time-domain responses to a
set of square input signals, we obtain the corresponding measurement data for the
nonlinear function, , which can be matched nicely by an arctan function (see
Figure 9.5) as follows:
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Figure 9.4. Time-domain response of the VCM actuator to a square wave input
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Figure 9.5. Nonlinear characteristics of the data flex cable
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(9.27)

where V and (lum) . These parameters will be
further fine tuned later in the Monte Carlo process.

Next, by fixing a particular input offset point and by injecting on top of a
sweep of small sinusoidal signals with an amplitude of mV, we are able to obtain a
corresponding frequency response within the range of interest. It then follows from
Equation 9.26 that the values of the static gain, , and peak frequency, , of the
frequency response can be used to estimate the parameter, . Figure 9.6 shows the
frequency response of the system for the pair , which gives a static
gain of and a peak frequency of Hz. In order to obtain a more accurate
result, we repeat the above experimental tests for several pairs and the results
are shown in Table 9.1. The parameter, , can then be more accurately determined
from these data using a least square fitting,

(9.28)

which gives an optimal solution lum / (Vs ). Nonetheless, this param-
eter will again be fine tuned later in the Monte Carlo process.

Lastly, we apply a Monte Carlo process to identify all other parameters of our
VCM actuator model and to fine tune those parameters, which have previously
been identified. Monte Carlo processes are known as numerical simulation methods
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Table 9.1. Static gains and peak frequencies of the actuator for small inputs

(mV)
60.73 59.06 63.71 62.43 63.72 65.12 65.50

(Hz) 310.30 310.63 305.24 303.88 299.56 296.99 295.43

that make use of random numbers and probability statistics to solve some compli-
cated mathematical problems. The detailed treatments of Monte Carlo methods vary
widely from field to field. Originally, a Monte Carlo experiment means to use ran-
dom numbers to examine some stochastic problems. The idea can be extended to
deterministic problems by presetting some parameters and conditions of the prob-
lems. The use of Monte Carlo methods for modeling physical systems allows us to
solve more complicated problems, and provides approximate solutions to a variety
of mathematical problems, whose analytical solutions are hard, if not impossible,
to derive. In what follows, a Monte Carlo process is utilized to obtain time-domain
responses of the VCM actuator model in Equation 9.18 with a set of preset param-
eters and input signals. The corresponding frequency
responses are obtained through Fourier transformation of the obtained time-domain
responses. Our idea of using the Monte Carlo process is to minimize the differences
between simulated frequency responses and the experimental ones by iteratively ad-
justing the parameters of the physical model in Equation 9.18. The input signals in
our simulations are again a combination of an offset and sinusoidal signals with
a small amplitude mV and several frequencies ranging from 1 Hz to 1 kHz.

Although Monte Carlo methods can only give locally minimal solutions, in our
problem, however, the predetermined nonlinear characteristics of the data flex cable
and the parameter, , have given us a rough idea on what the true solution should
be. The solution within the neighborhood of the previously identified parameters are
given by

lum / (V s )

V
(lum)

s
(lum)

(lum)

lum / s

(lum)

lum / s

(9.29)

These parameters will be used for further verifications using the experimental setup
of the actual system.

So far, we have only focused on the low-frequency components of the VCM ac-
tuator model. In fact, there are many high-frequency resonance modes, which are
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crucial to the overall performance of HDD servo systems. The high-frequency res-
onance modes of the VCM actuator can be obtained from frequency responses of
the system in the high-frequency region (see Figure 9.7). The transfer function that
matches the frequency responses given in Figure 9.7 is identified using the standard
least square estimation method of Chapter 2 and is characterized by

(9.30)

with the resonance modes being given as

(9.31)

(9.32)

(9.33)

(9.34)

and

(9.35)

Finally, for easy reference, we conclude this section by explicitly expressing the
identified rigid model of VCM actuator:

(9.36)

where

sgn

sgn
(9.37)

and where
(9.38)

(9.39)

with and being, respectively, the corresponding input voltage and the displace-
ment for the case when . Note that in the above model, the input signal
is in voltage and the output displacement is in micrometers. Together with the
high-frequency resonance modes of Equations 9.31–9.35, the above model presents
a comprehensive characterization of the VCM actuator studied. This model will be
further verified using experimental tests on the actual system.
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Figure 9.7. Frequency responses of the VCM actuator in the high-frequency region

In order to verify the validity of the established model of the VCM actuator, we
carry out a series of comparisons between the experimental results and computed
results of the time-domain responses and frequency-domain responses of the actu-
ator. The comparison of the frequency responses between the experimental result
and the identified result for inputs consisting of mV and sine waves with
amplitude of 1 mV is shown in Figure 9.8. It clearly shows that the result of the
identified model matches well with the experimental result. The comparison of the
time-domain responses for an input signal consisting of mV and a sine
wave with an amplitude of 5 mV is given in Figure 9.9. It shows that the simula-
tion results match the trends and values of those obtained from experiments. The
noises associated with experimental results in Figures 9.8 and 9.9 are drift noises
caused by the LDV and/or DSA. The comparisons of both frequency-domain and
time-domain responses demonstrate that the identified model of the VCM actuator
indeed describes the features of the actuator.

9.3 Microdrive Servo System Design

We proceed to design a servo system for the microdrive identified in Section 9.2.
As mentioned earlier, our design philosophy is rather simple. We make full use of
the obtained model of the friction and nonlinearities of the VCM actuator to design
a precompensator, which would cancel as much as possible all the unwanted ele-
ments in the servo system. As it is impossible to have perfect models for friction
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Figure 9.8. Comparison of frequency responses to small signals of actuator with mV
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HDD

Nonlinearity
compensation

Enhanced
CNF controller

Figure 9.10. Control scheme for the HDD servo system

and nonlinearities, a perfect cancellation of these elements is unlikely to happen in
the real world. We then formulate our design by treating the uncompensated portion
as external disturbances. The enhanced CNF control technique of Chapter 5 is then
employed to design an effective tracking controller. The overall control scheme for
the servo system is depicted in Figure 9.10. Although we focus our attention here
on HDD, it is our belief that such an approach can be adopted to solve other servo
problems.

Examining the model of Equation 9.36, it is easy to obtain a precompensation,

(9.40)

which would eliminate the majority of nonlinearities in the data flex cable. The HDD
model of Equation 9.18 can then be simplified as follows:

sat
(9.41)

where the disturbance, , represents uncompensated nonlinearities, and is the
relative displacement of the R/W head (in micrometers). The control input, , is to
be limited within with V.

We design a microdrive servo system that meets the following design constraints
and specifications:

1. the control input does not exceed V owing to physical constraints on the
actual VCM actuator;

2. the overshoot and undershoot of the step response are kept to less than 5% as the
R/W head can start to read or write within of the target;
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3. the 5% settling time in the step response is as short as possible;
4. the gain margin and phase margin of the overall design are, respectively, greater

than 6 dB and ;
5. the maximum peaks of the sensitivity and complementary sensitivity functions

are less than 6 dB; and
6. the sampling frequency in implementing the actual controller is 20 kHz.

It turns out that for the microdrive its resonance modes are at very high frequen-
cies that are far above the working range of the drive. It is thus not necessary to add
a notch filter to minimize their effects. As usual, we consider a second-order nom-
inal model of Equation 9.41 for the VCM actuator. The resonance modes and the
notch filter will be put back to evaluate the performance of the overall design. As
in Chapters 6 and 8, we design our servo system using, respectively, PID, RPT and
CNF control.

1. The PID control law (discretized with a sampling frequency of 20 kHz) is given
by

(9.42)

2. The RPT controller is given by

(9.43)

and

(9.44)

3. Finally, the CNF control law is given as follows:

sat

(9.45)
and

(9.46)

where
(9.47)
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9.4 Simulation and Implementation Results

As in the early chapters, the following tests are performed on the obtained micro-
drive servo systems: i) the track-following test of the closed-loop systems, ii) the
frequency-domain test including the Bode and Nyquist plots as well as the plots of
the resulting sensitivity and complementary sensitivity functions, iii) the runout dis-
turbance test, and lastly iv) the PES test. Our controller was implemented on an open
microdrive with a sampling rate of 20 kHz with the actual implementation setup as
depicted in Figure 1.7.

9.4.1 Track-following Test

The simulation result and actual implementation result of the closed-loop responses
for the control systems are, respectively, shown in Figures 9.11 and 9.12. As ex-
pected, the PID control generates large overshoots in both simulation and implemen-
tation, while the systems with the RPT and CNF control have very little overshoot.
We summarize the resulting 5% settling time in Table 9.2. Clearly, the CNF control
once again gives the best performance in the time domain compared to those of the
other two systems.

Table 9.2. Performances of the track-following controllers

Settling time (ms)
PID control RPT control CNF control

Simulation 1.25 0.60 0.50
Implementation 1.50 0.65 0.60

9.4.2 Frequency-domain Test

To verify the frequency-domain properties of our design, we present in Figures 9.13
to 9.18, respectively, the Bode plot, the Nyquist plot, and the sensitivity and com-
plementary sensitivity functions, as well as the closed-loop transfer functions of the
resulting control systems. The results show that all these designs meet the frequency-
domain specifications.
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Figure 9.11. Simulation result: step responses with PID, RPT and CNF control
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Figure 9.12. Implementation result: step responses with PID, RPT and CNF control



262 9 Modeling and Design of a Microdrive System

10
0

10
1

10
2

10
3

10
4

10
5

−100

−50

0

50

100

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

10
0

10
1

10
2

10
3

10
4

10
5

−800

−700

−600

−500

−400

−300

−200

−100

Frequency (Hz)

P
ha

se
 (d

eg
)

GM = 22.3 dB 

PM = 52.5°

(a) Bode plot

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−1.5

−1

−0.5

0

0.5

1

1.5

0 dB

−20 dB

−10 dB

−6 dB

−4 dB

−2 dB

20 dB

10 dB

6 dB

4 dB

2 dB

Real axis

Im
ag

in
ar

y 
ax

is

(b) Nyquist plot

Figure 9.13. Bode and Nyquist plots of the PID control system
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Figure 9.14. Bode and Nyquist plots of the RPT control system
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Figure 9.15. Bode and Nyquist plots of the CNF control system
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Figure 9.16. Sensitivity functions and closed-loop transfer function of the PID control system
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Figure 9.17. Sensitivity functions and closed-loop transfer function of the RPT control system
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Figure 9.18. Sensitivity functions and closed-loop transfer function of the CNF control system



10

Design of a Piezoelectric Actuator System

10.1 Introduction

We present in this chapter a case study on a piezoelectric bimorph actuator control
system design using an optimization approach, which was originally reported
by Chen et al. [20]. Piezoelectricity is a fundamental process in electromechanical
energy conversion. It relates electric polarization to mechanical stress/strain in piezo-
electric materials. Under the direct piezoelectric effect, an electric charge can be ob-
served when the materials are deformed. The converse, or the reciprocal piezoelectric
effect, is that the application of an electric field can cause mechanical stress/strain
in the piezo materials. There are numerous piezoelectric materials available today,
including PZT (lead zirconate titanate), PLZT (lanthanum-modified lead zirconate
titanate), and PVDF (piezoelectric polymeric polyvinylidene fluoride), to name a
few (see Low and Guo [181]).

Piezoelectric structures are widely used in applications that require electrical to
mechanical energy conversion coupled with size limitations, precision, and speed of
operation. Typical examples are microsensors, micropositioners, speakers, medical
diagnostics, shutters and impact print hammers. In most applications, bimorph or
stack piezoelectric structures are used because of the relatively high stress/strain to
input electric field ratio (see Low and Guo [181]).

The work was motivated by the possibility of applying piezoelectric microactua-
tors in magnetic recording. The focus of this chapter is on the control issues involved
in dealing with the nonlinear hysteresis behavior displayed by most piezoelectric ac-
tuators. More specifically, we consider a robust controller design for a piezoelectric
bimorph actuator as depicted in Figure 10.1. A scaled-up model of this piezoelectric
actuator, which is targeted for use in the secondary stage of a dual-stage actuator for
magnetic recording, was actually built and modeled by Low and Guo [181]. It has
two pairs of bimorph beams that are subjected to bipolar excitation. The dynamics
of the actuator were identified in [181] as a second-order linear model coupled with
a hysteresis. The linear model is given by

(10.1)
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1
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1-base; 2-piezoelectric bimorph beams; 3-moving plate; and 4-guides

Figure 10.1. Structure of the piezoelectric bimorph actuator

where , , and are the tangent mass, damping, stiffness and effective piezoelec-
tric coefficients; is the input voltage that generates excitation forces in the actua-
tor system. The variable is the displacement of the actuator and is also the only
measurement we can have in this system. It is noted that the working range of the
displacement of this actuator is within lum. The variable arises from hysteretic
nonlinear dynamics [181] and is governed by

(10.2)

where , and are some constants that control the shape of the hysteresis. For the
actuator system that we are considering here, the above coefficients are identified as
follows:

kg
N s/m
N/m

m/V (10.3)

For a more detailed description of this piezoelectric actuator system and the identifi-
cations of the above parameters, we refer interested readers to the work of Low and
Guo [181]. Our goal in this chapter is to design a robust controller, as in Figure 10.2,
that meets the following design specifications.
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Piezo actuator

Controller

Control input Displacement

Reference

Figure 10.2. Piezoelectric bimorph actuator plant with controller

1. The steady-state tracking error of the displacement is less than 1% for any input
reference signals that have frequencies ranging from 0 to 30 Hz, as the actuator
is to be used to track certain colored noise types of signal in disk drive systems.

2. The 1% settling time is as short as possible (we are able to achieve a 1% settling
time of less than 0.003 s in our design).

3. The control input signal does not exceed V because of the physical
limitations of the piezoelectric materials.

Our approach is as follows: we first use the stochastic equivalent linearization
method proposed by Chang [182] to obtain a linearized model for the nonlinear hys-
teretic dynamics. Then we reformulate our design into an almost disturbance
decoupling problem in which the disturbance inputs are the reference input and the
error between the hysteretic dynamics and that of its linearized model, and where the
controlled output is simply the double integration of the tracking error. Thus, our task
boils down to designing a controller such that, when it is applied to the piezoelectric
actuator, the overall system is asymptotically stable, and the controlled output, which
corresponds to the tacking error, is as small as possible and decays as fast as possible.
Such an approach is quite innovative and can be adopted to tackle similar problems
for other types of piezo materials and applications. Ever since its original publication
in [20], the work has been frequently cited in the literature (see, for example, [3, 132,
133, 183–201]).

The outline of this chapter is as follows. In Section 10.2 a first-order linearized
model is obtained for the nonlinear hysteresis using the stochastic equivalent lin-
earization method. A simulation result is also given to show the match between the
nonlinear and linearized models. In Section 10.3 we formulate our controller de-
sign into a standard almost disturbance decoupling problem by properly defining the
disturbance input and the controlled output. Two integrators are augmented into the
original plant to enhance the performance of the overall system. Then a robust con-
troller that is explicitly parameterized by a certain tuning parameter, and that solves
the proposed almost disturbance decoupling problem, is carried out using a so-called
asymptotic time scale and eigenstructure assignment technique. In Section 10.4 we
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present the final controller and simulation results of our overall control system us-
ing MATLAB R and Simulink R . We also obtain an explicit relationship between the
peak values of the control signal and the tuning parameter of the controller, as well
as an explicit linear relationship of the maximum trackable frequency, for which the
corresponding tracking error can be settled to 1%, versus the tuning parameter of the
controller.

10.2 Linearization of Nonlinear Hysteretic Dynamics

We proceed to linearize the nonlinear hysteretic dynamics of Equation 10.2 in this
section. As pointed out by Chang [182], there are basically three methods available
in the literature to linearize the hysteretic types of nonlinear system. These are (i) the
Fokker–Planck equation approach (see, e.g., Caughey [202]), (ii) the perturbation
techniques (see, e.g., Crandall [203] and Lyon [204]) and (iii) the stochastic lin-
earization approach. All of them have certain advantages and limitations. However,
the stochastic linearization technique has the widest range of applications compared
with the other methods. This method is based on the concept of replacing the non-
linear system with an “equivalent” linear system in such a way that the “difference”
between these two systems is minimized in a certain sense. The technique was ini-
tiated by Booton [205]. In this chapter, we just follow the stochastic linearization
method given by Chang [182] to obtain a linear model of the following form:

(10.4)

for the hysteretic dynamics of Equation 10.2, where and are the linearization
coefficients and are to be determined. The procedure is quite straightforward and
proceeds as follows. First, we introduce a so-called “difference” function between

of Equation 10.2 and of Equation 10.4:

(10.5)

Then minimizing , where is the expectation operator, with respect to and
, we obtain

(10.6)

from which the stochastic linearization coefficients and are determined. It turns
out that if and are of zero means and jointly Gaussian, then and can be
easily obtained. Let us assume that and have a joint probability density function

exp

where is the normalized covariance of and , and and are the standard
deviations of and , respectively. Then the linearization coefficients and can
be expressed as follows:
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(10.7)

and
(10.8)

where , , and are given by

(10.9)

(10.10)

and

(10.11)

After a few iterations, we found that a sinusoidal excitation with frequencies rang-
ing from to Hz (the expected working frequency range) and peak magnitude
of V, which has a standard deviation of , would yield a suitable lin-
earized model for Equation 10.2. For this excitation, we obtain ,

(10.12)

and
(10.13)

The stochastic linearization model of the given nonlinear hysteretic dynamics of
Equation 10.2 is then given by

(10.14)

For future use, let us define the linearization error as

(10.15)

Figure 10.3 shows the open-loop simulation results of the nonlinear hysteresis and
its linearized model, as well as the error for a typical sine wave input signal . The
results are quite satisfactory. Here we note that, because of the nature of our approach
in controller design later in the next section, the variation of the linearized model
within a certain range, which might result in larger linearization error , does not
much affect the overall performance of the closed-loop system. We formulate as a
disturbance input and our controller automatically rejects it from the output response.
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Figure 10.3. Responses of hysteresis and its linearized model to a sine input
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10.3 Almost Disturbance Decoupling Controller Design

This section is the heart of this chapter. We first formulate our control system design
for the piezoelectric bimorph actuator into a standard almost disturbance decou-
pling problem, and then apply the results of Chapter 3 to check the solvability of the
proposed problem. Finally, we utilize the results in Chapter 3 to find an internally
stabilizing controller that solves the proposed almost disturbance decoupling prob-
lem. Of course, most importantly, the resulting closed-loop system and its responses
have to meet all the design specifications as stated at the beginning of this chapter. To
do this, we have to convert the dynamic model of Equation 10.1 with the linearized
model of the hysteresis into a state-space form. Let us first define a new state variable

(10.16)

Then, from Equation 10.14, we have

(10.17)

Substituting Equations 10.15 and 10.16 into Equation 10.1, we obtain

(10.18)

The overall controller structure of our approach is then depicted in Figure 10.4.
Note that in Figure 10.4 we have augmented two integrators after , the tracking error
between the displacement and the reference input signal . We have observed a
very interesting property of this problem, i.e. the more integrators that we augment
after the tracking error , the smaller the tracking error we can achieve for the same
level of control input . Because our control input is limited to the range from

to V, it turns out that two integrators are needed in order to meet all
the design specifications. It is clear to see that the augmented system has an order of
five. Next, let us define the state of the augmented system as

(10.19)

and the measurement output

(10.20)

i.e. the original measurement of displacement plus two augmented states. The
auxiliary disturbance input is

(10.21)

and the output to be controlled, , is simply the double integration of the tracking
error. The state-space model of the overall augmented system is then given by
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(10.22)

with

(10.23)

(10.24)

(10.25)
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(10.26)

(10.27)

For the problem that we are considering here, it is simple to verify that the system
of Equation 10.22 has the following properties.

1. The subsystem is invertible and of minimum phase with one
invariant zero at . It also has one infinite zero of order four.

2. The subsystem is left invertible and of minimum phase with one
invariant zero at and two infinite zeros of orders one and two.

Then, it follows from the results of Section 3.5 that the -ADDPMS for the system
in Equation 10.22 is solvable. In fact, one can design either a full-order observer-
based controller or a reduced-order observer-based controller to solve this problem.
For the full-order observer-based controller, the order of the disturbance decoupling
controller (see Figure 10.4) is five and the order of the final overall controller (again
see Figure 10.4) is seven (the disturbance decoupling controller plus two integrators).
On the other hand, if we use a reduced-order observer in the disturbance decoupling
controller, the total order of the resulting final overall controller will be reduced to
four. From the practical point of view, the latter is much more desirable than the
former. Thus, in what follows we only focus on the controller design based on a
reduced-order observer. We can separate our controller design into two steps:

1. In the first step, we assume that all five states of in Equation 10.22 are available
and then design a static and parameterized state feedback control law,

(10.28)

such that it solves the almost disturbance decoupling problem for the state feed-
back case, i.e. , by adjusting the tuning parameter to an appropriate
value;

2. In the second step, we design a reduced-order observer-based controller. It has
a parameterized reduced-order observer gain matrix that can be tuned to
recover the performance achieved by the state feedback control law in the first
step.

We use the structural decomposition approach of Chapter 3 to construct both the
state feedback law and the reduced-order observer gain. We would like to note that,
in principle, one can also apply the ARE-based optimization technique (see, e.g.,
Zhou and Khargonekar [93]) to solve this problem. However, because the numerical
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conditions of our system are very poor, we are unable to obtain any satisfactory
solution from the ARE approach. We cannot get any meaningful solution for the
associated continuous-time ARE in MATLAB R . The following is a closed-form
solution of the static state feedback parameterized gain matrix obtained using the
method given in Chapter 3.

(10.29)

where is the tuning parameter that can be adjusted to achieve almost disturbance
decoupling. It can be verified that the closed-loop system matrix, is
asymptotically stable for all and the closed-loop transfer function from
the disturbance to the controlled output , , satisfying

(10.30)

as .
The next step is to design a reduced-order observer-based controller that recovers

the performance of the above state feedback control law. First, let us perform the fol-
lowing nonsingular (permutation) state transformation to the system of Equation
10.22,

(10.31)

where

(10.32)

such that the transformed measurement matrix has the form of

(10.33)

Clearly, the first three states of the transformed system, or , and of the orig-
inal system in Equation 10.22, need not be estimated as they are already available
from the measurement output. Let us now partition the transformed system as fol-
lows:

(10.34)
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(10.35)

(10.36)

Also, we partition

(10.37)

(10.38)

Then the reduced-order observer-based controller (see Chapter 3) is given in the form
of

(10.39)

with

(10.40)

(10.41)

(10.42)

(10.43)

where is the parameterized reduced-order observer gain matrix and is to be
designed such that is asymptotically stable for sufficiently small
and also

(10.44)

as . Again, using the software package of [53], we obtained the following
parameterized reduced-order observer gain matrix

(10.45)

Then the explicitly parameterized matrices of the state-space model of the reduced-
order observer-based controller are given by
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where
(10.46)

and
(10.47)

The overall closed-loop system comprising the system of Equation 10.22 and
the above controller would be asymptotically stable as long as . In fact,
the closed-loop poles are exactly located at , two pairs at ,

and . The plots of the maximum singular values of the closed-loop
transfer function matrix from the disturbance to the controlled output , namely

, for several values of , i.e. , and , in
Figure 10.5 show that as tends to smaller values, the -norm of also
becomes smaller. Hence, almost disturbance decoupling is indeed achieved. These
are the properties of our control system in the frequency domain. In the next sec-
tion we will address its time-domain properties, which are, of course, much more
important, as all the design specifications are in the time domain.

10.4 Final Controller and Simulation Results

In this section we put our design of the previous section into a final controller as
depicted in Figure 10.2. It is simple to derive the state-space model of the final over-
all controller by observing its interconnection with the disturbance decoupling con-
troller of Equation 10.39 (see Figure 10.4). We also present simulation results
of the responses of the overall design to several different types of reference input
signal. They clearly show that all the design specifications are successfully achieved.
Furthermore, because our controller is explicitly parameterized by a tuning param-
eter, it is very easy to adjust it to meet other design specifications without going
through it all over again from the beginning. This is also discussed next.

As mentioned earlier, the final overall controller of our design is of the order of
four, of which two are from the disturbance decoupling controller and two from the
augmented integrators. It has two inputs: one is the displacement and the other is
the reference signal . It is straightforward to verify that the state-space model of the
final overall controller is given by
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Figure 10.5. Maximum singular values of closed-loop transfer function

(10.48)

where

(10.49)

(10.50)

with and given by Equations 10.46 and 10.47, respectively,

(10.51)

and
(10.52)

There are some very interesting and useful properties of this parameterized con-
troller. After repeatedly simulating the overall design, we found that the maximum
peak values of the control signal are independent of the frequencies of the refer-
ence signals. They are only dependent on the initial error between displacement
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and the reference . The larger the initial error, the bigger is the peak that occurs in
. Because the working range of our actuator is within lum, we assume that the

largest magnitude of the initial error in any situation is not larger than lum. This as-
sumption is reasonable, as we can always reset our displacement to zero before the
system is to track any reference and hence the magnitude of initial tracking error can
never be larger than lum. Let us consider the worst case, i.e. that the magnitude of
the initial error is lum. Then, interestingly, we are able to obtain a clear relationship
between the tuning parameter and the maximum peak of . The result is plotted
in Figure 10.6. We also found that the tracking error is independent of initial errors.
It only depends on the frequencies of the references, i.e. the larger the frequency that
the reference signal has, the larger the tracking error that occurs. Again, we can
obtain a simple and linear relationship between the tuning parameter and the maxi-
mum frequency that a reference signal can have such that the corresponding tracking
error is no larger than 1%, which is one of our main design specifications. The result
is plotted in Figure 10.7.

Clearly, from Figure 10.6, we know that owing to the constraints on the control
input, i.e. it must be kept within V, we have to select our controller with

. From Figure 10.7, we know that in order to meet the first design speci-
fication, i.e. the steady-state tracking errors are less than % for reference inputs that
have frequencies up to Hz, we have to choose our controller with .
Hence, the final controller as given in Equations 10.48 to 10.52 meets all the de-
sign goals for our piezoelectric actuator system of Equations 10.1 and 10.2, for all

. Let us choose . We obtain the overall controller
as in the form of Equation 10.48 with

(10.53)

(10.54)

(10.55)

The simulation results presented in the following are done using the Simulink R

package in MATLAB R , which is widely available these days. Two different ref-
erence inputs are simulated using the Runge–Kutta 5 method in Simulink R with a
minimum step size of 10 lus and a maximum step size of 100 lus as well as a toler-
ance of . These references are: 1) a cosine signal with a frequency of 30 Hz
and peak magnitude of 1 lum, and 2) a sine signal with a frequency of 34 Hz and
peak magnitude of 1 lum. The results for the cosine signal are given in Figures 10.8
to 10.10. In Figure 10.8, the solid-line curve is and the dash-dotted curve is the
reference. The tracking error and the control signal corresponding to this reference
are given in Figures 10.9 and 10.10, respectively. Similarly, Figures 10.11 to 10.13
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Figure 10.6. Parameter versus maximum peaks of in worst initial errors
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Figure 10.7. Parameter versus maximum frequency of that has 1% tracking error
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are the results corresponding to the sine signal. All these results show that our design
goals are fully achieved. To be more specific, the tracking error for a 30-Hz cosine
wave reference is about 0.8%, which is better than the specification, and the worst
peak magnitude of the control signal is less than 90 V, which is of course less than
the saturated level, i.e. 112.5 V. Furthermore, the 1% tracking error settling times for
both cases are less than s. It is interesting to note that the performance of the
actual closed-loop system with the nonlinear hysteretic dynamics is even better than
that of its linearized counterpart.

Although we do not consider frequency-domain specifications in our design, the
sensitivity and complementary sensitivity functions, the Bode plot and Nyquist plot
(near the origin for verification) given, respectively, in Figures 10.14 and 10.15 show
that the overall control system turns out to have impressive robustness with respect
to disturbances and measurement noise, and impressive gain and phase margins. In
particular, the system has a lower gain margin of 0.487 and an infinite upper gain
margin, and a phase margin of .
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Figure 10.8. Responses of the displacement and the 30-Hz cosine reference
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(b) Tracking error from 0.004 to 0.1 s

Figure 10.9. Tracking error for the 30-Hz cosine reference
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Figure 10.10. Control signal for the 30-Hz cosine reference
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Figure 10.11. Responses of the displacement and the 34-Hz sine reference
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Figure 10.12. Tracking error for the 34-Hz sine reference
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Figure 10.13. Control signal for the 34-Hz sine reference
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Figure 10.14. Sensitivity and complementary sensitivity functions of overall control system



10.4 Final Controller and Simulation Results 289

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−100

−50

0

50

100

150

200

Frequency (rad/s)

M
ag

ni
tu

de
 (d

B
)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

−350

−300

−250

−200

−150

−100

Frequency (rad/s)

P
ha

se
 (d

eg
)

(a) Bode plot

−2.5 −2 −1.5 −1 −0.5 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
0 dB

−20 dB

−10 dB

−6 dB

−4 dB

−2 dB

20 dB

10 dB

6 dB

4 dB 2 dB

Real axis

Im
ag

in
ar

y 
ax

is

(b) Nyquist plot

Figure 10.15. Bode and Nyquist plots of the overall control system
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A Benchmark Problem

Before ending this book, we post in this chapter a typical HDD servo control design
problem. The problem has been tackled in the previous chapters using several design
methods, such as PID, RPT, CNF, PTOS and MSC control. We feel that it can serve as
an interesting and excellent benchmark example for testing other linear and nonlinear
control techniques.

We recall that the complete dynamics model of a Maxtor (Model 51536U3) hard
drive VCM actuator can be depicted as in Figure 11.1:

Nominal plant Resonance modes

Noise

Figure 11.1. Block diagram of the dynamical model of the hard drive VCM actuator

The nominal plant of the HDD VCM actuator is characterized by the following
second-order system:

sat (11.1)

and
(11.2)

where the control input is limited within V and is an unknown input dis-
turbance with mV. For simplicity and for simulation purpose, we assume
that the unknown disturbance mV. The measurement output available for
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control, i.e. (in lum), is the measured displacement of the VCM R/W head and is
given by

Noise (11.3)

where the transfer functions of the resonance modes are given by

(11.4)

with represents the variation of the resonance modes of the actual
actuators whose resonant dynamics change from time to time and also from disk
to disk in a batch of million drives. Note that many new hard drives in the market
nowadays might have resonance modes at much higher frequencies (such as those
for the IBM microdrives studied in Chapter 9). But, structurewise, they are almost
the same. The output disturbance (in lum), which is mainly the repeatable runouts, is
given by

(11.5)
and the measurement noise is assumed to be a zero-mean Gaussian white noise with
a variance (lum) .

The problem is to design a controller such that when it is applied to the VCM
actuator system, the resulting closed-loop system is asymptotically stable and the
actual displacement of the actuator, i.e. , tracks a reference lum. The overall
design has to meet the following specifications:

1. the overshoot of the actual actuator output is less than 5%;
2. the mean of the steady-state error is zero;
3. the gain margin and phase margin of the overall design are, respectively ,greater

than 6 dB and ; and
4. the maximum peaks of the sensitivity and complementary sensitivity functions

are less than 6 dB.

The results of Chapter 6 show that the 5% settling times of our design using the
CNF control technique are, respectively, 0.80 ms in simulation and 0.85 ms in actual
hardware implementation. We note that the simulation result can be further improved
if we do not consider actual hardware constraints in our design. For example, the
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CNF control law given below meets all design specifications and achieves a 5%
settling time of 0.68 ms. It is obtained by using the toolkit of [55] under the option
of the pole-placement method with a damping ratio of and a natural frequency of
2800 rad/sec together with a diagonal matrix diag . The
dynamic equation of the control law is given by

sat

(11.6)

(11.7)

where
(11.8)

and
(11.9)

with being given as in Equation 6.9.
The simulation results obtained with given in Figures 11.2 to 11.4 show

that all the design specifications have been achieved. In particular, the resulting 5%
settling time is 0.68 ms, the gain margin is 7.85 dB and the phase margin is 44.7 ,
and finally, the maximum values of the sensitivity and complementary sensitivity
functions are less than 5 dB. The overall control system can still produce a satisfac-
tory result and satisfy all the design specifications by varying the resonance modes
with the value of changing from to .

Nonetheless, we invite interested readers to challenge our design. Noting that
for the track-following case, i.e. when lum, the control signal is far below its
saturation level. Because of the bandwidth constraint of the overall system, it is not
possible (and not necessary) to utilize the full scale of the control input to the actuator
in the track-following stage. However, in the track-seeking case or equivalently by
setting a larger target reference, say lum, the very problem can serve as a
good testbed for control techniques developed for systems with actuator saturation.
Interested readers are referred to Chapter 7 for more information on track seeking of
HDD servo systems.
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(a) and for the system without output disturbance and noise

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Time (ms)

R
/W

 h
ea

d 
di

sp
la

ce
m

en
t (

μm
)

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.1

−0.05

0

0.05

0.1

0.15

Time (ms)

C
on

tro
l s

ig
na

l t
o 

V
C

M
 (V

)

(b) and for the system with output disturbance and noise

Figure 11.2. Output responses and control signals of the CNF control system
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Figure 11.3. Bode and Nyquist plots of the CNF control system
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