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Preface 

This Mathematics pocket book provides students, technicians, 
engineers and scientists with a readily available reference to the 
essential mathematics formulae, definitions and general 
information needed during their studies and/or work situation. 

The book assumes little previous knowledge, is suitable for a 
wide range of courses, and will be particularly useful for students 
studying for National and Higher National Technician certificates 
and diplomas, for degree courses, and for GCSE and Ά' levels. 

The author would like to express his appreciation for the 
friendly cooperation and helpful advice given to him by the 
publishers and to Mr Tony May for his assistance in editing the 
manuscript. Thanks are also due to Mrs Elaine Woolley for the 
excellent typing of the manuscript. 

J O Bird 
Head of Applied Electronics 
Highbury College 
Portsmouth 
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1 Arithmetic operations 

Arithmetic is the science of numbers — the art of counting, 
computing or calculating. 

HCF 
When two or more numbers are multiplied together, the 

individual numbers are called factors. Thus a factor is a number 
which divides into another number exactly. The highest 
common factor (HCF) is the largest number which divides into 
two or more numbers exactly. 

For example, to find the HCF of 12, 30 and 42, firstly each 
number is expressed in terms of its lowest factors. This is achieved 
by repeatedly dividing by the prime numbers 2, 3, 5, 7, 11, 13, 
. . . , (where possible) in turn. Thus 

The factors which are common to each of the numbers are 2 in 
column 1 and 3 in column 3, shown by the broken lines. Hence 
the HCF is 2 x 3 , i.e. 6. That is, 6 is the largest number which will 
divide into all of the given numbers. 

LCM 
A multiple is a number which contains another number an 

exact number of times. The smallest number which is exactly 
divisible by each of two or more numbers is called the lowest 
common multiple, (LCM). 

For example, to find the LCM of 12, 42 and 90, each number 
is expressed in terms of its lowest factors, and then selecting the 
largest group of any of the factors present. Thus, 

12=[2x"2]x 3 
42='2 x 3 x[7j 
90=2 xiTxÜ χΓ51 
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The largest group of any of the factors present are shown by the 
broken lines and are 2 x 2 in 12, 3 x 3 in 90, 5 in 90 and 7 in 42. 
Hence the LCM is 2 x 2 x 3 x 3 x 5 x 7 = 1260, and is the smallest 
number which 12, 42 and 90 will all divide into exactly. 

Order of Precedence 
In arithmetic operations, the order in which operations are 

performed are: 

(i) to determine the values of operations contained in 
brackets, 
(ii) multiplication and division, (the word " o f also 
means multiply), and 
(iii) addition and subtraction. 

This order of precedence can be remembered by the word 
BODMAS, standing for Brackets, Of, Division, Multiplication, 
Addition and Subtraction, taken in that order. 

Thus, for example, 

1 3 - 2 x 3 + 1 4 4 - ( 2 + 5 ) 

is evaluated as: 

1 3 - 2 x 3 + 1 4 + 7 (Brackets) 
= 1 3 - 2 x 3 + 2 (Division) 
= 1 3 - 6 + 2 (Multiplication) 
= 1 5 - 6 (Addition) 
=9 (Subtraction) 

Fractions 
When 2 is divided by 3, it may be written as-J or 2/3. -J is 

called a fraction. The number above the line, i.e. 2, is called the 
numerator and the number below the line, i.e. 3, is called the 
denominator. When the value of the numerator is less than the 
value of the denominator, the fraction is called a proper fraction; 
thus f is a proper fraction. When the value of the numerator is 
greater than the denominator, the fraction is called an improper 
fraction. Thus -J is an improper fraction and can also be expressed 
as a mixed number, that is, an integer and a proper fraction. 
Thus the improper fraction -J is equal to the mixed number 2J. 

When a fraction is simplified by dividing the numerator and 
denominator by the same number, the process is called cancelling. 
Cancelling by 0 is not permissable. 
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Continued fractions 
Any fraction may be expressed in the form shown below for 
the fraction -ff-. 

1 1 1 1 1 1 
65 j £ 2+-3- 1 1 1 1 

2β ' + * 2 + _ L 2 + _ _ 2 + _ _ _ 2 + 
8 + i 8 + - 8+-

2 1 + i 
The latter form can be expressed generally as 

1 
A + a 

B + 0 
C+y 

Ό+δ 

Comparison shows that A, B, C and D are 2, 8, 1 and 2 
respectively. 

A fraction written in the general form is called a continued 
fraction and the integers A, B, C and D are called the quotients 
of the continued fraction. The quotients may be used to obtain 
closer and closer approximations to the original fraction, these 
approximations being called convergent«. 

A tabular method may be used to determine the convergents 
of a fraction: 

a 

1 

0 
T 

2 

2 

1 
2 

3 

8 

8 
Ϊ7 

4 

1 

9 
Ϊ9 

5 

2 

26 
55 

(i)The quotients 2, 8, 1 and 2 are written in cells, a2, a3, 
a4 and a5 with cell al being left empty. 
(ii) the fraction^ is always written in cell bl. 
(iii) The reciprocal of the quotient in cell a2 is always 

written in cell b2 i.e. - in this case. 
2 
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(a3xb2p)+blp 
(iv) The fraction in cell b3 is given by , 6 7 (a3xb2q)+blq 

( 8 x l ) + 0 _ 8 
, , e ' (8x2) + l = Ϊ 7 

(a4 x b3p) + b2p 
(a4xb3q)+b2q' 

(v) The fraction in cell b4 is given by 

( l x8 ) + l 9 
- = —, and so on. ( l x l 7 ) + 2 19 

26 1 8 9 26 
Hence the convereents of— are - , —, — and —, 5 55 2 17 19 55 

26 
each value approximating closer and closer to —. 

These approximations to fractions are used to obtain practical 
ratios for gearwheels or for a dividing head (used to give a 
required angular displacement). 

Ratio 
The ratio of one quantity to another is a fraction, and is the 

number of times one quantity is contained in another quantity of 
the same kind. Thus expressing 25p as a ratio of £3.75 is 

25 1 
, i.e. — 

375 15 

Proportion 
If one quantity is directly proportional to another, then as 

one quantity doubles, the other quantity also doubles. When a 
quantity is inversely proportional to another, then as one 
quantity doubles, the other quantity is halved. (See section 3, para. 
5, page 25). 

If it is required to divide 126 in the ratio of 5 to 13, then 
firstly the parts are added together, i.e., 5+ 13= 18. Hence 18 parts 
corresponds to 126. 

126_ 
thus 1 part corresponds to — 7 

5 parts corresponds to 5 x 7 = 35 
and 13 parts corresponds to 13x7=91 

Thus 126 divided in the ratio of 5:13 is 35:91 
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Decimals 
The decimal system of numbers is based on the digits 0 to 9. 

A number such as 53.17 is called a decimal fraction, a dreimal 
point separating the integer part, i.e. 53, from the fractional part, 
i.e. 0.17 

A number which can be expressed exactly as a decimal 
fraction is called a terminating decimal and those which cannot 
be expressed exactly as a decimal fraction are called non-
terminating decimals. 

3 4 
Thus, - = 1 . 5 is a terminating decimal, but - = 1.33333... is a 

non-terminating decimal. 

1.33333... can be written as 1.3, called 'one point-three recurring'. 
The answer to a non-terminating decimal may be expressed 

in two ways, depending on the accuracy required: 

(i) correct to a number of significant figures, that is, 
figures which signify something, and 
(ii) correct to a number of decimal places, that is, the 
number of figures after the decimal point. 

The last digit in the answer is unaltered if the next digit on the 
right is in the group of numbers 0, 1, 2, 3 or 4, but is increased by 
1 if the next digit on the right is in the group of numbers 5, 6, 7, 8 
or 9. Thus the non-terminating decimal 7.6183... becomes 7.62, 
correct to 3 significant figures, since the next digit on the right is 8, 
which is in the group of numbers 5, 6, 7, 8 or 9. Also 7.6183... 
becomes 7.618, correct to 3 decimal places, since the next digit on 
the right is 3, which is in the group of numbers 0, 1, 2, 3 or 4. 

Percentages 
Percentages are fractions having the number 100 as their 

denominators and are used to give a common standard. 

25 1 
For example, 25 per cent means , i.e. - , and is written as 

100 4 
25%. 

121 1 
Thus 12J% of £378 means —?- x £378 = - x £378 = £47.25 

10Ü o 
134 

Expressing 134 mm as a percentage of 2.5 m is x 100% 
Z J U U 

= 5 3 β % 
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Bases, indices and powers 
The lowest factors of 2 000 are 2 x 2 x 2 x 2 x 5 x 5 x 5. These 

factors are written as 24 x 53, where 2 and 5 are called bases and 
the numbers 4 and 3 are called indices. 
When an index is an integer it is called a power. 

Thus, 24 is called 'two to the power of four', and has a base 
of 2 and an index of 4. Similarly, 5* is called 'five to a power of 3' 
and has a base of 5 and an index of 3. Special names may be used 
when the indices are 2 and 3, these being called 'squared' and 
'cubed' respectively. Thus 72 is called 'seven squared' and 93 is 
called 'nine cubed'. When no index is shown, the power is i, i.e. 21 

means 2. 

Reciprocals 
The reciprocal of a number is when the index is — 1 and its 

value is given by 1 divided by the base. Thus the reciprocal of 2 is 
- i ] -i 

2 and its value is - or 0.5. Similarly, the reciprocal of 5 is 5 
1 

which means - or 0.2 
5 

Square roots 
1 

The square root of a number is when the index is - , and the 

square root of 2 is written as 2^2 or yJ2. The value of a square 
root is the value of ehe base which when multiplied by itself gives 
the number. Since 3 x 3 = 9, then ^ 9 = 3. However, 
(— 3) x (— 3) = 9, so ^ 9 = — 3. There are always two answers when 
finding the square root of a number and this is shown by putting 
both a + and a — sign in front of the answer to a square root 
problem. Thus ^ 9 = ± 3 and 41/2 = V*= ± 2 , and so on. 

Laws of indices 
When simplifying calculations involving indices, certain basic 

rules or laws can be applied, called the laws of indices. These are 
given below. 

(i) When multiplying two or more numbers having the 
same base, the indices are added. Thus 

3 2 *3 4 =3 2 + 4 =3 6 
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(ii) When a number is divided by a number having 
the same base, the indices are subtracted. Thus 

^_ = 35-2 = 33 
32 

(iii) When a number which is raised to a power is raised 
to a further power, the indices are multiplied. Thus 

(35)2=35x2=310 

(iv) When a number has an index of 0, its value is 1. 
Thus 3°= 1. 
(v) A number raised to a negative power is the reciprocal 
of that number raised to a postive power. Thus 

34 

Similarly,-33-= 23 

(vi) When a number is raised to a fractional power the 
denominator of the fraction is the root of the number and 
the numerator is the power. Thus, 82/3 = \/82 = (2)2 =4 
and25 1 / 2 =V25 1 = ±5 

Standard form 
A number written with one digit to the left of the decimal 

point and multiplied by 10 raised to some power is said to be 
wrritten in standard form. Thus: 

5837 is written as 5.837 x 103 in standard form, and 
0.0415 is written as 4.15 x 10~2 in standard form. 

When a number is written in standard form, the first factor is 
called the mantissa and the second factor is called the exponent. 
Thus the number 5.8 x 103 has a mantissa of 5.8 and an exponent 
oflO3 

Errors 
(i) In all problems in which the measurement of distance, 
time, mass or other quantities occurs, an exact answer 
cannot be given; only an answer which is correct to a 

7 



stated degree of accuracy can be given. To take account 
of this an error due to measurement is said to exist. 
(ii) To take account of measurement errors it is usual to 
limit answers so that the result given is not more than 
one significant figure greater than the least 
accurate number given in the data. 
(iii) Rounding-off errors can exist with decimal 
fractions. For example, to state that π = 3.142 is not 
strictly correct, but 'π = 3.142 correct to 4 significant 
figures' is a true statement. (Actually, π = 3.14159265...) 
(iv) It is possible, through an incorrect procedure, to 
obtain the wrong answer to a calculation. This type of 
error is known as a blunder. 
(v) An order of magnitude error is said to exist if 
incorrect positioning of the decimal point occurs after a 
calculation has been completed. 

Logarithms 
(i) A logarithm of a number is the power to which a base 
has to be raised to be equal to the number. 
Thus, 

if y=a* then x=logay 

(ii) Logarithms having a base of 10 are called common 
logarithms and the common logarithm of x is written as 
lgx. 
(iii) Logarithms having a base of e are called hyper
bolic, Naperian or natural logarithms and the 
Naperian logarithm of x is written as log,*, or more 
commonly, In x. 
(iv) The change of base rule for logarithms states, 

log v = - ^ _ , from which, l n y = - ^ = gJ>> =2.3026 lg> 
^ loĝ fl ' lg< 0.4343 *y 

(v) Laws of logarithms: 

(a) log (AX B) = log A + log B 

(b) l o g ^ - V l o g , 4 - l o g l ? 

(c) log An = n log A 
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2 Numbering systems 

Conversion of denary numbers to 
binary numbers and vice-versa 

(i) The system of numbers in everyday use is the denary 
or decimal system of numbers, using the digits 0 to 9. It 
has ten different digits (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9), and 
is said to have a radix or base of 10. 
(ii) the binary system of numbers has a radix of 2 and 
uses only the digits 0 to 1. 
(i) The denary number 234.5 is equivalent to 

2x 102 + 3x 10 1 +4x l0° - l -5x l0 - 1 

i.e., is the sum of terms comprising: (a digit) multiplied 
by (the base raised to some power). 
(ii) In the binary system of numbers, the base is 2, so 
1 101.1 is equivalent to: 

1 x 2 3 + l x2 2 + 0 x 2 1 + l x 2 ° + l x 2 _ 1 

Thus the denary number equivalent to the binary number 
1 101.1 is 

1 
8 + 4 + 0 + 1 + - , 

2 
that is 13.5, 

i.e. 1 101.12= 13.5i0, the suffixes 2 and 10 denoting binary 
and denary systems of numbers respectively. 

3 An integer denary number can be converted to a correspond
ing binary number by repeatedly dividing by 2 and noting the 
remainder at each stage, as shown below for 3910. 

2)39 
2119 
2L? 
2)_J 
2)_J2 
2U 

0 

Remainder 
1 
1 
1 
0 
0 
1 

(most significant bit) 1 0 0 1 1 1 (least significant 
1 * I * bit) 
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The result is obtained by writing the top digit p{ the remainder as 
the least significant bit, (a bit is a binary digit_and the least 
significant bit is the one on the right). The bottom bit of the 
remainder is the most significant bit, i.e. the bit on the left. 

The fractional part of a denary number can be converted to a 
binary number by repeatedly multiplying by 2, as shown 
below for the fraction 0.625. 

0.625 x 2 = i L_i?j>0j 

0. [500] 
1. 00C 000 

0 1 (least significant bit) 

!_0_.250]χ2 = 

[0.500] x 2 = 
> 

(most significant bit) . 

For fractions, the most significant bit of the result is the top 
bit obtained from the integer part of multiplication by 2. The least 
significant bit of the result is the bottom bit obtained from the 
integer part of multiplication by 2. Thus 0.625i0 = 0.1012. 
5 For denary integers containing several digits, repeatedly 
dividing by 2 can be a lengthy process. In this case, it is easier 
usually to convert a denary number to a binary number via the 
octal system of numbers. This system has a radix of 8, using the 
digits 0, 1,2, 3, 4, 5, 6 and 7. The denary number equivalent to 
the octal number 4 3178 is 

4 x 8 3 + 3 x 8 2 + l χ δ ' + Τ χ δ 0 

i.e. 4x512 + 3 x 6 4 + 1 x8 + 7 x l or 2 255,0. 

6 An integer denary number can be converted to a correspond
ing octal number by repeatedly dividing by 8 and noting the 
remainder at each stage, as shown below for 49310. 
8)493 Remainder 
8) 61 5 1 
8 ] _ ^ 5—1 

7 5 5 
Thus, 49310 = 7558. 
7 The fractional part of a denary number can be converted to 
an octal number by repeatedly multiplying by 8, as shown below 
for the fraction 0.437510. 

0.4375x8= r—3 [ 5 ] r ff 
i.0.5| x 8 = .3 4 

hr1 
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For fractions, the most significant bit is the top integer obtained by 
multiplication of the denary fraction by 8. Thus 

0.437510 = 0.348 

Table 2.1 

Octal digit Natural binary number 

0 000 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 111 

8 The natural binary code for digits 0 to 7 is shown in Table 
2.1, and an octal number can be converted to a binary number by 
writing down the three bits corresponding to the octal digit. 

Thus, 4378= 100011 1112 
and 26.358 = 010 110.011 1012 

The Ό' on the extreme left does not signify anything, thus 

26.358= 10 110.011 1012 

To convert a denary number to a binary number via octal, the 
denary number is first converted to an octal number, as shown in 
paras 6 and 7, and then the corresponding binary number is 
written down, as shown above. 

Addition and subtraction of binary 
numbers 

9 Binary addition of two bits is achieved according to the 
following rules: 

0 + 0 = 
0+1 = 
1+0 = 
1 + 1 = 

Sum 
0 
1 
1 
0 

Carry 
0 
0 
0 
1 

When adding binary numbers A and B, A is called the 
augend and B is called the addend. For example, adding 1 and 1 
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produces a sum of 0 and a carry of 1, and may be laid out as: 

Augend 1 
Addend J_ 
Sum _0_ 
Carry 1 

10 Binary addition of three bits, (augend + addend + carry) is 
achieved according to the following rules: 

0 + 0 + 0 
0 + 0+1 
0 + 1 + 0 
0+1 + 1 
1+0 + 0 
1 + 0 + 1 
1 + 1+0 
1 + 1 + 1 

= 
= 
= 
= 
= 
= 
= 
= 

Sum 

0 
1 
1 
0 
1 
0 
0 
1 

Can 

0 
0 
0 
1 
0 
1 
1 
1 

Using the rules of two bit and three bit addition, two binary 
numbers say 1011 and 1110, may be added as shown: 

Column 

Augend 
Addend 

Sum 

Carry 0 

5 

0 
0 

1 

1 

4 3 

1 0 
1 1 

1 0 

1 1 

2 

1 
1 

0 

0 

1 

1 
0 

1 

Column 1: Adding augend and addend gives 1 + 0 = sum 1, carry 0 
to column 2. 
Column 2: Adding augend, addend and carry gives: 1 + 1+0 
= sum 0, carry 1 to column 3. 
Column 3: Adding augend, addend and carry gives: 0 + 1 + 1 
= sum 0, carry 1 to column 4, and so on. 
11 A negative binary number can be stored in a calculator or 
computer by using a sign bit to denote the negative quantity. 
Binary numbers having a sign bit are called signed-magnitude 
binary numbers. An additional bit is allocated to the left of the 
binary number to indicate the sign and by convention, a sign bit of 
0 is used to denote a positive number and a 1 to denote a negative 
number. Thus, in a signed-bit system, (0) 10012 represents the 
denary number +9, but (1) 10012 represents the denary number 
— 9, the sign bit being shown in brackets. 
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Signed-magnitude binary numbers have two parts: 

(i) the sign bit (shown in brackets in this section for 
clarity), giving the sign of the number, and 
(ii) a binary number following the sign bit giving the size 
or modulus of the binary number. 

One of the disadvantages of a signed-bit system is that it reduces 
the maximum number capable of being stored in a given sized 
register by approximately a half For example, a 4-bit register can 
store the positive numbers 0 to 15 if no sign bit is used, and the 
numbers — 7 to + 7 when a sign bit is used. 
12 In many calculators, microprocessors and computers, the 
process of subtracting one binary number from another is performed 
by a process called complementary addition. This process enables 
the same logic circuitry to be used for both addition and 
subtraction. There are two methods of complementary addition in 
widespread use: (i) the one's complement method, shown in para 
13, and (ii) the two's complement method, shown in para 14. 

The one's complement method 
13 When subtracting binary number B from binary number 
A, i.e. A - B = C, A is called the minuend, B is called the 
subtrahend and C is called the difference, i.e. minuend 
— subtrahend = difference. The procedure for subtracting one 
binary number from another using the one's complement method is 
as follows: 

(i) Express both minuend and subtrahend so that they 
each have the same number of bits. 
(ii) Determine the one's complement of the subtrahend. 
This is achieved by writing 1 for 0 and 0 for 1 for each bit 
in the subtrahend. Thus the one's complement of 101 101 
is 010010. 
(iii) Add the minuend to the one's complement of the 
subtrahend to obtain a sum. 
(iv) Depending on the number of bits in the sum, the 
result of complementary addition, using the one's comple
ment method is obtained thus: 

(a) If the sum has' the same number of bits as the minuend 
and subtrahend of (i), the difference between the minuend 
and subtrahend is negative, and the value is the one's 
complement of the sum. 

(b) If one extra bit is generated in the sum by complementary 
addition in (iii), the difference between the minuend and 
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subtrahend is positive and its value is given by end-
around carry, that is, by taking the bit on the extreme 
left of the sum and adding it to the bit on the extreme 
right. Thus, end-around carry operating on 1 001 011 gives 
1 100 as shown: 
* 0 0 1 0 1 1 
I ►! 

1 1 0 0 

0 1 1 

Thus, for example, to determine 10112— 1102 by the one's 
complement method the above procedure is followed for a 
minuend of 1011 and a subtrahend of 110. 

(i) 1011-110=1011-0110 
(ii) The one's complement of the subtrahend is 1001. 
(iii) Adding the minuend and the one's complement of 
the subtrahend gives: 

1011 
1001 

Sum 10100 

(iv) An extra bit is generated in the sum so the procedure 
given in (iv) (b) above is adopted. The difference is po
sitive and its value is obtained by 'end-around carry', i.e., 

JO 100 

U. 
Sum 101 Thus 10112-1102 = 1012. 

The two's complement method 
14 Assuming the subtraction is of the form: 

minuend — subtrahend = difference, 

then the procedure for determining the difference by the two's 
complement method is as follows: 

(i) Express the minuend and subtrahend so that they each 
have the same number of bits. 
(ii) Add the sign-bit, (0) for a positive number and (1) 
for a negative number on the extreme left of both the 
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minuend and subtrahend. (Note: 10 111— 101 means that 
both minuend and subtrahend are positive numbers, i.e. 
(+10 111)- ( + 101) and are assigned sign-bits of (0)). 
(iii) Determine the two's complement of the subtrahend. 
This is achieved by writing down the one's complement 
and adding 1. Thus the two's complement of 101 011 is 
010 100+1, i.e. 010101. 
(iv) Add the minuend to the two's complement of the 
subtrahend to obtain a sum. 
(v) Depending on whether the sign bit is (0) or (1), the 
result of complementary addition by the two's comple
ment method is obtained thus: 

(a) If the sign bit is (0), the 1 on the left of the sign is disreg
arded and the difference between the minuend and sub
trahend is positive and its value is given by the bits to the 
right of the sign bit in the sum. 

(b) If the sign bit is (1), the difference between the minuend 
and subtrahend is negative and its value is the two's 
complement of the sum. 
Thus, for example, to determine 1 101 0112 — 110 1002 by the 

two's complement method the above procedure is followed for a 
minuend of 1 101 011 and a subtrahend of 110 100. 

(i) 1 101011-110100=1 101011-0110100. 
(ii) Adding the sign bits gives (0) 1 101 011 - (0)0 110 100, 
the sign bit being (0) since both numbers are positive, i.e., 

(+1 1010112)-(+1101002). 

(iii) The two's complement of the subtrahend is obtained 
from the one's complement plus one, i.e. (1)1 001 011 + 1, 
that is, (1)1001 100. 
(iv) Adding the minuend and two's complement of the 
subtahend gives: 

(0)1 101011 
(1)1001100 

Sum 1(0)0110111 

(v) The sign bit is (0), hence (v) (a) of the above procedure applies. 
The 1 on the left of the sign bit is disregarded, the difference is 
positive and its value is given by the bits on the right of the sign 
bit. 

Thus 11010112-1101002= 1101U2 
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15 Binary subtract ion of two numbers may also be achieved 
by a method of direct subtraction, according to the rules: 

diiference borrow 

0 - 0 = 0 0 
0 - 1 = 1 1 
1 - 0 = 1 0 
1 - 1 = 0 0 

Thus, the method of taking 10112 from 11012 is as shown, the 
subtraction for each column being: 
minuend— (subtrahend + borrow). 

Column 5 4 3 2 1 

Minuend 1 1 0 1 
Subtrahend 1 0 1 1 

Difference 0 0 1 0 

Borrow 0 0 1 0 0 

Column 1: 1 - (1 -1-0) = difference 0, borrow 0 (in column 2). 
Column 2: 0— (1 + 0 ) = difference 1, borrow 1 (in column 3). 
Column 3: 1 — ( 0 + 1) = difference 0, borrow 0 (in column 4). 
Column 4: 1 — (1 + 0 ) = difference 0, borrow 0 (in column 5). 

T h u s l l 0 1 2 - 1 0 1 1 2 = 102. 

In practice, the procedure is much the same as subtraction in 
denary numbers. To take 10112 from 11012 is as shown: 

Column 4 3 2 1 

Minuend 1 °Jr 20 1 
Subtrahend 1 0 1 1 

Difference 0 0 1 0 

Column 1: 1 — 1 = difference 0. 
Column 2: 0 - 1, borrow 1 from column 3 leaving the minuend of 
column 3 as 0. The borrowed 1 becomes 2 when moved to column 
2. 2 - 1 = difference 1. 
Column 3 : 0 - 0 = difference 0. Thus, HOlj-lOll^lOj, 
Column 4 : 1 - 1 = difference 0. as obtained previously. 
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Multiplication and division of binary 
numbers 

16 Binary multiplication of two bits is according to the following 
rules: 

0 x 0 = 0 
0 x 1 = 0 
1 x 0 = 0 
1x1 = 1 

When multiplying A by B to give C, i.e., A x B = C, A is called the 
multiplicand, B the multiplier and C the product. 
17 The operation of multiplication in binary is similar to that for 

denary numbers, as shown below for 1410 x 610. 

1410 = 1 1 1 02 (multiplicand) 
610 = 0 1 1 02 (multiplier) 

0 0 0 0 
1 1 1 0 

1 1 1 0 
0 0 0 0 

84,0 = 1 0 1 0 1 0 02 (product) 

It can be shown that zero bits in the multiplier do not contribute 
to the product and are usually ignored. Thus, binary multipli
cation of 25,o x 13,o *s performed as shown. 

1 1 0 0 1 (multiplicand) 
1 1 0 1 

1 1 0 0 1 
1 1 0 0 1 

1 1 0 0 1 

325,0 = 1 0 1 0 0 0 1 0 1 (product) 

18 Denary multiplication of numbers having decimal fractions is 
performed by ignoring the decimal point in the first instance and 
then counting the number of fractional digits in both the multip
licand and multiplier to position the decimal point in the product. 
Thus: 

31.4,0
X 13.72,0=430.808,0 

17 

2510 = 
13,o = 



A similar procedure is used for binary numbers. Thus 

in binary multiplication gives: 
\Vw\Vu 

1 1 0 0 . J_ (multiplicand) 

1 0 0 . 1 0 1 1 (multiplier) 

1 1 0 0 1 
1 1 0 0 1 (partial 

1 1 0 0 1 products) 
1 1 0 0 1 

117.187510= 1 1 1 0 1 0 1 . 0 0 1 _ 1 _ (product) 

(Should it occur, when adding the partial products, then 
1 + 1 + 1 -1-1 =0, carry 2; 1 + 1 + 1 + 1 + 1 = 1, carry 2; and soon.) 
19 The process of multiplication can be performed by adding the 
multiplicand to itself as many times as required by the multiplier, 
thus 

9iox4io = 9io + 910 + 9IO + 910 = 3610 
Similarly, in binary numbers 

10112x 1012= 10112H-10112+-10112-+ 10112+-10112 (since 1012 = 510) 

Using the principles introduced in paras 9 and 10: 

0 0 1 0 1 1 
0 0 1 0 1 1 
0 0 1 0 1 1 
0 0 1 0 1 1 
0 0 1 0 1 1 

Sum 1 1 0 1 1 1 
Carry 1 3 1 3 2 
i.e., 10112xl012 = 1101112 

For binary mixed numbers, the position of the binary point is 
ignored in the first instance, multiplication by repeated addition is 
performed as shown above and the binary point is inserted after 
multiplication, (see para 18). 
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Thus: 101.12 x 1.012 is treated as 10112 x 1012 in the first 
instance, 
i.e. 10112

X 1012=1101112, (see above) and 
101.JJ2 x 1.0^2 = 110.1Π_2, (from para. 18). 

20 When dividing number A by number B, giving C and 

remainder D, i.e. — = C, remainder D, A is called the dividend, B 
B 

the divisor and C the quotient. To perform 5110-r910 in binary, 
a similar procedure to that for long division of denary numbers is 
used. 

5110= 1100112 
910=10012 

1 0 1 (quotient) 

(divisor) 1 0 0 1 ") 1 V ]0 20 1 Γ (dividend 

0 0 0 1 

0 0 1 1 1 1 
1 0 0 1 

1 1 0 
1100112 Thus = 101ο, remainder 1109. 10012

 2 2 

(Complementary addition may be used as an alternative to direct 
binary subtraction.) 

21 Binary mixed numbers can be dealt with by expressing them 
as whole binary numbers. Thus: 

10110.012 10110012 
— -, and dividing as shown in para 20, 1010.12 

gives: 

101010 
1 

0 

1010 102 '** 

0 1 °* 
0 1 0 

0 0 0 

1 
20 0 
1 0 

1 0 

0 
1 

1 
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1011001 101ο 
i.e. =102+ 2 

101010 ' 1010102 

1.01ο 
= 102 + — 2 1010.1ο 
= 102, reaminder 1.012 

22 Binary division may be performed by repeated addition of the 
divisor. For example: 

12,o 
310 

11002 

112 

ated addition of the < 

11 
11 

110 
11 

1001 
11 

once 
twice 

three times 

four times 

11002 Thus, - = 1002 

11102 Similarly, gives: 

11 
11 

110 
11 

1001 
11 

1100 
11 

once 
twice 

three times 

four times 

five times 

1111 which is larger than the dividend. 
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The number 1100, (the four times product) is larger than 11102 by 
102. 

1110a Thus, = 1002, remainder 102. 

Coding 
23 The natural binary system of numbers requires a large 
number of bits to depict a denary number having several 
significant figures. For example, the denary number 3418 is the 
binary number 110101011010 and this binary number gives no real 
idea of the size of the number. Also, registers for storing bits in 
calculators, computers and microprocessors are usually of uniform 
size, containing room to store 4 or 8 or 16 bits. For these reasons, 
various codes are used in practice, rather than the natural binary 
system of numbers. 
24 It is usual, when expressing a denary number as a binary 
number, to use a decade system. Each decade contains four bits 
and is used to represent a denary number from 0-9. The units 
decade is used to represent denary numbers from 0-9, the ten's 
decade is used for denary numbers from 10-99, and so on. This 
system of coding is called the binary-coded-decimal system, 
usually abbreviated to B.C.D. system. 

Thus 271910 encoded as a binary-coded-decimal number is 
given by: 

271910 = 0010011100011001 

Conversely, the B.C.D. number 100001 100101 0011 expressed as a 
denary number is 8653]0. 
25 Another code in common use is the 'excess-three code', witten 

as the eX's 3 code', and when used as a BCD is called the 
'X's 3 BCD9. This code is formed by adding the binary 
number 0011 to the natural binary code. Thus the X's 3 
binary numbers equivalent to the denary numbers 0, 1 ,2 , . . . 
are 0011, 0100, 0101 , . . . The advantage of this code is that 
there is no binary number 0000, which may occur in the 
event of electrical failure to a system. Thus, to encode 5208i0 
as an excess-three, binary-coded-decimal: 

Natural Binary 
Denary Number Number X's 3 Number 

5 0101 0101+0011 = 1000 
2 0010 0010 + 0011=0101 
0 0000 0000 + 0011=0011 
8 1000 1000 + 0011 = 1011 
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i.e. 520810 = 1000010100111011, when expressed as an X's 3 
BCD. 
26 During the transmission of binary codes, errors can occur due 
to human errors and due to the signal being distorted in the 
transmitting medium. When this occurs, a 0 in the signal is 
received as a 1 and vice-versa. 

Error detecting codes may be used, giving an indication of an 
error having been made. The simplest of these error detecting 
codes uses five bits instead of four, four bits containing the data 
and the fifth bit being used for checking purposes, and called a 
parity bit. Two such codes are the odd parity system and the 
even parity system. 

The odd parity system 
27 The sum of the l's in any group of five bits must add up to 
an odd decimal number, the fifth parity bit being selected to meet 
this requirement. Thus, 0100, 0110,0111, 0000, 1111 is transmitted 
as: 

Information Odd panty bit Decimal sum 
0100 0 1 
0110 1 3 
0111 0 3 
0000 1 1 
1111 1 5 

i.e., 01000, 01 101,01 110,00001, 11 111. If the five bits received do 
not contain an odd number of 1 's then the recipient knows an 
error has been made. 

Thus, for example, to encode 2976i0 into a binary-coded-
decimal with odd parity: 

Denary Number BCD Odd Panty Bit 
2 0010 0 
9 1001 1 
7 0111 0 
6 0110 1 

i.e. 2976,0 = 00100100110111001101 when expressed as a BCD 
with odd parity. 

The even parity system 
28 This is similar to the odd parity system except that the 
decimal sum of the five bits must be an even number. Thus 0100, 
0110, 0111, 0000, 1111 is transmitted as 01001, 01100, 01111, 
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00000, 11110. If the five bits are received and the sum of the l's is 
not an even decimal number, then the recipient knows an error 
has been made. 

Thus, for example, to encode 4725i0 into an excess-three, 
binary-coded-decimal with even parity: 

Denary number 
4 
7 
2 
5 

BCD 
0100 
0111 
0010 
0101 

X's 3 BCD 
0111 
1010 
0101 
1000 

Even parity bit 
1 
0 
0 
1 

i.e 472510=01111101000101010001 when expressed as an 
X's 3 BCD with even parity. 
29 Another error detecting code is called the two-out-of-five 

code in which five bits are used and the denary numbers 0 to 
9 are each represented by two l's and three 0's as shown 
below: 

Two-out-of-five code 
11000 
00011 
00101 
00110 
01001 
01010 
01100 
10001 
10010 
10100 

Corresponding denary number 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

If any set of five bits received contains more or less than two 1 's 
then an error exists. 

Thus, for example, to encode 5728|0 into a two-out-of-five 
code: 

Denary number 
5 
7 
2 
8 

Two-out-of-five code 
01010 
10001 
00101 
10010 

Thus 572810 = 01010100010010110010 when expressed i 
two-out-of-five code. 
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3 Algebra 

1 Algebra is that part of mathematics in which the relations 
and properties of numbers are investigated by means of general 
symbols. For example, the area of a rectangle is found by 
multiplying the length by the breadth; this is expressed algebrai
cally as A = / x b, where A represents the area, / the length and b 
the breadth. 

The basic laws of algebra 
2 Let a, b, c and d represent any four numbers. Then : 

(i) a + {b + c) = {a + b)+c 
(ii) a(bc) = (ab)c 
(iii) a+b=b+a 
(iv) ab = ba 
(v) a(b + c) =ab + ac 

a + b a b 
(vi) = - + -

c c c 
(vii) {a + b){c + d)=ac + ad+bc + bd 

Thus, for example, from (v), 3(2 + 5) =3 x 2 + 3 x 5 = 6+15 = 21, 
3 + 4 3 4 

from (vi), = - + - and from (vii), v ; 5 5 5 
{2x+ 3γ) (a-b) = 2ax- 2bx+ 3qy- 3by. 

Laws of indices 
3 (i) amxan = am + n. For example, 23 x 24 = 2 3 + 4 = 2 7 = 128. 

am 3 5 

(ii) — = am-\ For example, - ^ = 3 5 ~ 2 = 3 3 = 27. 
d1 3 

(iii) (am)n = amn. For example, (23)4 = 2 3 x 4 = 21 2 = 4096. 
(iv) flm/n = ny/am. For example, 82 ' 3 = V 8 2 = 22 = 4. 

1 _„ 1 1 
(v) a n = —. For example, 3 = -s- = - . 

an F 3 2 9 (vi) a0 = 1. For example, 17° = 1. 
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4 When two or more terms in an algebraic expression contain a 
common factor, then this factor can be shown outside of a bracket. 
For example, ab + ac = a(b + c), which is simply the reverse of (v) in 
para 2, and 6px + 2py-4:pz = 2p(3x+y-2z). This process is called 
factorisation. Similarly, since Sab is common to all the terms in 
the expression 3a2b-6ab2+ \5ab, the expression factorises as 
3ab(a-2b + 5). 

Direct and inverse proportionality 
5 (i) An expression such as y = 3x contains two variables. 

For every value of x there is a corresponding value ofy. 
The variable x is called the independent variable and y 
is called the dependent variable. 
(ii) When an increase or decrease in an independent 
variable leads to an increase or decrease of the same 
proportion in the dependent variable this is termed direct 
proportion. Ify = 3x then y is directly proportional to x, 
which may be written asyocx ory-kx , where k is called 
the coefficient of proportionality (in this case, k being 
equal to 3.) Thus ify is directly proportional to x, and 
y = 37.5 when x = 2.5, then jxx , i.e.,y = kx and 
37.5 = £(2.5), from which the constant of proportion
ality, 

37.5 
k = =15. 

2.5 
Thus the value ofy when x = 6 is given by 
y = kx= (15) (6) =90. Examples of laws involving direct 
proportion include Hooke's law, Charles' law and Ohm's 
law. 
(iii) When an increase in an independent variable leads 
to a decrease of the same proportion in the dependent 
variable (or vice versa) this is termed inverse pro
portion. Ify is inversely proportional to x then 

1 k 
ycc- ory=-. 

X X 

Alternatively, k = xy, that is, for inverse proportionality the 
product of the variables is constant. An example of a law 
involving inverse proportion is Boyles law. Thus if volume 
Fis inversely proportional to pressure/» and F=0.08 

1 k 
when p= 1.5* 106, then Foe-, i.e. V--y from which the 

P P 
constant of proportionality, 
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k= Vp= (0.08)(1.5 x 106) = 12 x 104. 

Thus the volume when the pressure changes to 4 x 106 is 
given by: 

k 1 2 x l 0 4
 0 

V=- = ΪΓ = 3 Χ 1 0 - 2 Ο Γ 0 . 0 3 . 
p 4 x l 0 6 

Equations 
6 An equation is a statement that two quantities are equal. To 
'solve an equation' means 'to find the value of the unknown'. 
The value of the unknown is called the root of the equation. 
7 (2* — 3) is an example of an algebraic expression, whereas 
2x — 3 = 1 is an example of an equation (i.e. it contains an 'equals' 
sign). 
8 An identity is a relationship which is true for all values of 
the unknown, whereas an equation is only true for particular 
values of the unknown. For example, 2x — 3 = 1 is an equation since 
it is only true when x = 2, whereas 3x =8x — 5x is an identity since 
it is true for all values of x. (Mote: ' = ' means 'is identical to'.) 
9 A linear equation is one in which an unknown quantity is 
raised to the power 1. 3x + 2 = 0 is an example of a linear equation. 
Any arithmetic operation may be applied to an equation as long 
as the equality of the equation is maintained. 

For example, if 2 is subtracted from both sides of the 
equation 3x + 2=0 , 

then 3x= - 2 . 

2 2 . 
Dividing both sides by 3 gives: x = — . Thus x = — is the root of 
the linear equation 3x + 2 = 0. 
To solve 3(x —2) =9, the brackets are firstly removed. 
Thus 3*-6 =9. 
Then 3* = 9 + 6=15, 

15 
and x = — = 5. 

3 
3 4 

To solve - = - , each side of the equation is multiplied by the LCM 
x 5 

of the denominator, 5x. 

Hence 5x 

Cancelling gives: (5)(3) = (*)(4) 
K'H) 
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i.e. 15=4*, 
from which, 15 3 

* = — = 3 -
4 4 

10 A quadratic equation is one in which the highest power of 
the unknown quantity is 2. For example, x2 — 3x+ 1 =0 is a 
quadratic equation. There are four methods of solving 
quadratic equations. These are: 
(i) by factorisation (where possible), 
(ii) by 'completing the square', 
(iii) by using the 'quadratic formula', and 
(iv) graphically, (see page 112). 
11 Multiplying out (2x+ l ) (*-3) gives 2x 2 -6x+ x - 3 , i.e., 
2x2—5x— 3. The reverse process of moving from 2x2 — 5x— 3 to 
(2x+ 1)(*— 3) is called factorising. If the quadratic expression 
can be factorised this provides the simplest method of solving a 
quadratic equation. For example, if 2x2 — 5 x - 3 = 0 , then, by 
factorising: 

(2*+ l ) (x -3 )=0 . 

1 
Hence, either (2*+ 1) = 0, i.e., x= - -

v ) 2 
or ( x - 3 ) = 0 , i.e.,x = 3. 
The technique of factorising is often one of'trial and error'. 
12 (i) Let the general quadratic equation be ax2 + bx + c = 0, 

where 0, b and c are constants. 
9 b c 

Dividing throughout by a gives: ** + -*+- - -0 , 
a a 

and rearranging gives: x2+-x= — 
a a 

Adding to each side of this equation the square of half the 
coefficient of the term in x to make the left hand side a 
perfect square gives: 

\ 2 / A \ 2 

a \2aJ \2aJ a 

( b\2 b2 c b2-\ac 
Rearranging gives : * + — = 7 T — = ~T~2— 

\ 2a) 4<r a 4a£ 

Taking the square root of both sides gives: 
b _ j{b2-*ac \ = ±>/(*2-4fli) 

X + 2a~J\^r~)~ 2a 
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b J(b*-iac) 
Hence, x ± -

2a 2a 
-b±J{b2-4ac 

i.e. x= 
2a 

This method of solution is called 'completing the 
square'. 
(ii) Summarising, if ax2 + bx + c = 0, then 

-b±J(b2-4ac) 
X = Ü 

This is known as the quadratic formula. 
Thus to solve 3x2 - 11*-4 = 0, a = 3, b= - 1 1 and c= - 4 . 

- ( - l l ) ± V [ ( - H ) 2 - 4 ( 3 ) ( - 4 ) ] Hence x= 
2(3) 

_ l l±V121- f48] 
" 6 

11+V169 11±13 11 + 13 11-13 

24 2 1 
Hence x=—= 4 or x= — -

6 6 3 

13 A cubic equation is one in which the highest power of the 
unknown quantity is 3. For example, 2x3 + x2 — x + 4 = 0 is a cubic 
equation. Cubic equations may be solved (i) by iterative methods 
(see paras. 17 to 21) or (ii) by plotting graphs (see section 8, para. 
21, page 115). 
14 Equations which have to be solved together to find the 
unique values of the unknown quantities, which are true for each 
of the equations, are called simultaneous equations. 

There are three methods of solving a pair of linear 
simultaneous equations in two unknowns. These are: 

(i) by substitution, 
(ii) by elimination, 
(iii) graphically, (see page 109) 

Thus, for example, to solve the simultaneous equations 

* + 2 j = - l (1) 
4x -3?=18 (2) 

by substitution: 

From equation (1), x= — 1 — 2y. 

Substituting x = — 1 — 2y into equation (2) gives 
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4 ( - 1 - 2 J O -
i.e. -4 -8 jy 

from which, y = -

Substituting y = -

from which 

-3y = 
-3y = 
■Uy = 

22 

18 
18 
18 + 4 = 22 

= - 2 

-2 into equation (1) 

x + 2{ : -2 ) = - i 
x - 4 = - 1 and 

gives 

JC = 3 

To solve the given simultaneous equations by elimination: 
If equation (1) is multiplied throughout by 4, the coefficient of* will be 
the same as in equation (2) giving: 

4* + 8 j = - 4 (3) 

Subtracting equation (3) from equation (2) gives: 

4 x - 3 j = 1 8 (2) 
~ 4x + 8 j = - 4 

(3) 
0 - l l j = 22 

22 
Hence y = = —2 as before. 

By substituting this value o{y into equation (1) or (2) gives x = 3 as 
before. T h e solution x = 3,y = —2 is the only pair of values that 
satisfy both of the original equations. 
15 There are two methods of solving simultaneous equations, one 
of which is linear and the other quadratic. These are : (i) by 
substitution, or (ii) graphically. (See section 8, para 20, page 113). 
For example, to solve by substitution, 

j = 2 * 2 - 3 * - 4 (1) 

y=2-\x (2) 
the two equations are equated, 
i.e. 2 x 2 - 3 x - 4 = 2 - 4 x 
from which 2x2 + x — 6 = 0. 
Factorising gives: 

(2x-3)(* + 2)=0 
3 

from which: x = - and x = — 2. 
2 

3 
In equation (2), when x = - , y = — 4 and when x = — 2, y = 10 

which may be checked in equation (1). 
16 (i) T h e statement v = u + at is said to be a f o r m u l a for v in 
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terms of u, a and /. v, u, a and t are called symbols. The single 
term on the left hand side of the equation, v, is called the subject 
of the formula. 
(ii) Provided values are given for all the symbols in a formula 
except one, the remaining symbol can be made the subject of the 
formula and may be evaluated by using tables, or calculators. 
(iii) When a symbol other than the subject is required to be 
calculated it is usual to rearrange the formula to make a new 
subject. This rearranging process is called transposing the 
formula or transposition. 
(iv) The rules for transposition of formulae are the same as those 
used for the solution of simple equations (see para 9) — i.e. the 
equality of an equation must be maintained. 

Thus if ν=/λ, then to make λ the subject of the formula both 
sides of the equation are divided by/ . 

i.e., - = λ 
f 

pi 
Similarly, to transpose R=— for a, initially multiply both 

a 
sides of the equation by a giving Ra = p/, and then dividing both 

pi 
sides by R, giving a=—. 

K. 
fi 

Also, to transpose v = u-\ f o r / firstly rearrange to obtain 
m 

the term i n / o n its own on one side of the equation, i.e subtract u ß from both sides, giving v — u = —. m 

Multiplying each side by m gives: m(v — u) =ft 

and dividing both sides by / gives: —(v — u)—f. 

Iterative methods 
17 Many equations can only be solved graphically or by 
methods of successive approximations to the roots, called iterative 
methods. Two methods of successive approximations are (i) an 
algebraic method, and (ii) by using the Newton-Raphson formula. 
18 Both successive approximation methods rely on a reasonably 

30 



good first estimate of the value of a root being made. One way of 
doing this is to sketch a graph of the function, say, _>>=/(*), and 
determine the approximate value of roots from the points where 
the graph cuts the x-axis. Another way is by using a functional 
rotation method. This method uses the property that the value of 
the graph off(x) = 0 changes sign for values of x just before and 
just after the value of a root. For example, for the equation 

4x 2 -6x -7 = 0, 

\etf(x) = 4x2-6x-7 
T h e n / ( 0 ) = - 7 
a n d / ( - l ) = 4 ( - l ) 2 - 6 ( - l ) - 7 = 3. 

Since the value of/ (x) changes from — 7 to + 3, a root of 
the equation must be between x = 0 and x = — 1. The difference 
between —7 and +3 is 10 thus a reasonable first approximation is 
- 7 / +3 \ 

from 0, i.e., —0.7 ( or back from — 1, i.e., —0.7 I. 
10 V 10 ) 

An algebraic method of successive 
approximations 

19 This method can be used to solve equations of the form: 

a + bx + cx2 + dx3 + . . . =0, 

where a, b, c, d, . . . are constants. 
Procedure: 

First approximation 
(i) Using a graphical or the functional notation method, 
(see para 18), determine an approximate value of the root 
required, say xj. 

Second approximation 
(ii) Let the true value of the root be (χχ +δ\). 
(iii) Determine x2 the approximate value of {xx +<$i) by 
determining the value οϊ/{χγ + δχ) = 0, but neglecting 
terms containing products of δγ. 

Third approximation 
(iv) Let the true value of the root be (x2+^2)· 
(v) Determine x3, the approximate value of (^2+^2) DY 
determining the value of/(#2+^2) =0> D u t neglecting 
terms containing products of <52. 
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(vi) The fourth and higher approximations are obtained 
in a similar way. 

20 Using the techniques given in para 19(b) to (f), it is possible 
to continue getting values nearer and nearer to the required root. 
The procedure is repeated until the value of the required root does 
not change on two consecutive approximations, when expressed to 
the required degree of accuracy. For example, to determine the 
smallest positive root of the equation 3x3 — 10*2 + 4* +7 = 0, correct 
to 3 significant figures, the functional notation method is used 
initially to find the value of the first approximation. 

/I*)=3x3-10x2 + 4x + 7 
/(0) = 3(0)3 - 10(0)2 + 4(0) + 7 = 7 
/ ( l ) = 3 ( l ) 3 - 1 0 ( l ) 2 + 4(l) + 7 = 4 
/ (2)=3(2)3-10(2)2 + 4(2) + 7 = - l 

Following the procedure given in para 19: 

First approximation 
(i) Let the first approximation be such that it divides the 
interval 1 to 2 in the ratio of 4 to — 1, i.e., let X\ be 1.8. 

Second approximation 
(ii) Let the true value of the root, x2, be (xj +<$i). 
(iii) Let/(xi + ^!) = 0, then since xx = 1.8, 
3{\.8 + ölf-\0(\.S + öl)2 + 4{\.S+ö)+7=0 

Neglecting terms containing products of <5j and using the 
binomial series (see section 4, page 41), gives: 

3[1.83+3(1.8)2<51]-10[1.82+(2)(1.8)<51] + 4(1.8 + <5,) + 7 ^ 0 
3(5.832 + 9.72^0 - 3 2 . 4 - 3 6 ^ + 7.2 + 4 ^ + 7~0 
17.496 + 29.16^! - 3 2 . 4 - 3 6 ^ + 7.2 + 4 ^ + 7 ^ 0 

-17.496 + 32 .4 -7 .2 -7 0.704 
1 29.16-36 + 4 2.84 

Thus x2^ 1.8-0.25 = 1.55 

Third approximation 
(iv) Let the true value of the root, x3, be (*2+<52). 
(v) Let/(x9 + <52) = 0, t n e n s m c e *2= 1 -55» 
3(1.55 + (52)3-10(1.55 + <52)2+4(1.55 + <52)+7 = 0 

Neglecting terms containing products of <52, gives: 
11.17+ 21.62<52- 24.03- 31<52 + 6.2 + 4<52+7«0 
c -11.17 + 24 .03-6 .2 -7 -0 .34 
(52« » =0.063 2 21.62-31+4 -5 .38 
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Thus x3« 1.55+ 0.063= 1.613. 
(vi) Values of x4 and x5 are found in a similar way. 

f(x3+ö3) = 

3(1.613+<53)3-10(1.613+<53)2 + 4(1.613+<53) + 7=0 
giving δ3&0.005 and x^ 1.618 i.e., 1.62 correct to 3 
significant figures. 

/(*4+<54) = 3(1.618+<54)3- 10(1.618 + <54)2+4(1.618+<54)+ 7=0 
giving <54=0, correct to 4 significant figures and 
*5«1.62, correct to 3 significant figures. 

Since x4 and x5 are the same when expressed to the 
required degree of accuracy, then, the required root is 
1.62, correct to 3 significant figures. 

(Note on accuracy and errors. Depending on the accuracy of evaluating 
the/(x+<5) terms, one or two iterations (i.e. successive approxi
mations) might be saved. However, it is not usual to work to more 
than about 4 significant figures accuracy in this type of calculation. 
If a small error is made in calculations, the only likely effect is to 
increase the number of iterations.) 

Newton's method 
21 The Newton-Raphson formula, often just referred to as 
Newton's method may be stated as follows: 

if rj is the approximate value of a real root of the equation f(x) = 0, then a 
closer approximation to the root, r2 is given by: 

f(rO 
r2 = r ' - / ^ 

(If, as occasionally happens, the successive approximations of a 
root do not converge towards the value of the root, a new value of 
η should be selected so that/(rj) has the same sign as/"(rj)). The 
advantages of Newton's method over the algebraic method of 
successive approximations is that it can be used for any type of 
mathematical equation, (i.e. ones containing trigonometric, 
exponential, logarithmic, hyperbolic and algebraic functions), and 
it is usually easier to apply than the algebraic method. 

Thus, for example, to find the root of the equation 
x*-3 sin x + 2 ln(*+ 1) =3.5, 

correct to 3 significant figures: 
f{x)=x2-?> sin x + 2 l n (x+ l ) -3 .5 
/ ( 0 ) = - 3 . 5 
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/ ( I ) = 1-3 sin 1+2 In 2 -3 .5=-3 .6381 (Note: 'sin Γ means'the 
sine of 1 radian') 
/(2) = 4 - 3 sin 2 + 2 In 3 - 3 . 5 = -0.0307 
/(3) = 9 - 3 sin 3 + 2 In 4 -3 .5 = 7.8492. 
Hence, let the first approximation, η =2. 

Newton's formula states that r2 = ri = 

where η is a first approximation to the root and r2 is a better 
approximation to the root. 
Hence,/(η) = -0.0307. 

2 
/ ' (x) = 2x — 3 cos x H (see section 12) 

x+ 1 

7 , ( r , ) = / , , ( 2 ) = 2 ( 2 ) - 3 c o s 2 + ^ 

= 4+1.2484 + 0.6667 = 5.9151. 
/(r ,) -0.0307 

Hence, rQ = r, = 2 
/ ' ( r , ) 5.9151 

= 2.005 or 2.01, correct to 3 significant figures. 
A still better approximation to the root, r3, is given by: 

f(r2) 
r3 = r2-r fa) 

[(2.005)2-3 sin 2.005 + 2 In 3.005-3.5] = 2.005 
I 2(2.005)-3 cos 2.005 + 

(-0.0010) 
= 2 .005-- - = 2.005 + 0.00017 

5.938 

.005 +1 J 

i.e. r3=2.01, correct to 3 significant figures. 
Since the values of r2 and r3 are the same when expressed to 

the required degree of accuracy, then the required root is 2.01, 
correct to 3 significant figures. 

Partial fractions 
22 By algebraic addition, 

1 3 ( * + i ) + 3 ( * - 2 ) 4 x - 5 
x-2 x+1 (x-2)(x+\) x*-x-2 

The reverse process of moving from 

4 x - 5 1 3 
to + 

x2-x-2 x-2 x+1 
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is called resolving into part ia l fract ions . 
In order to resolve an algebraic expression into partial 

fractions: 
(i) the denominator must factorise (in the above example, 
x2 — x — 2 factorises as (x — 2) (x + 1)), and 
(ii) the numerator must be at least one degree less than 
the denominator (in the above example (4x —5) is of 
degree 1 since the highest powered x term is x1, and (x2 

— x — 2) is of degree 2). 
When the degree of the numerator is equal to or higher than 

the degree of the denominator, the numerator must be divided by 
the denominator until the remainder is of less degree than the 
denominator. 

There are basically three types of partial fraction and the 
form of partial fraction used is summarised below, where f(x) is 
assumed to be of less degree than the relevant denominator and A, 
B, and C are constants to be determined. 

Denominator 
containing 

Type 1 
Linear factors 

Type 2 
Repeat linear 
factors 

Type 3 
Quadratic factors 

Expression 

/w 
(x + a)(x-b)(x + c) 

Λ*) 

Λ*) 
(ax2 + bx + c)(x + d) 

Form of partial fraction 

A B C 

{x + a) (x-b) (x + c) 

A B C 

(x + a) (x + a)2 {x + af 

Ax + B C 

(ax2 + bx + c) [x + d) 

(In the latter type, ax2 + bx + c is a quadrat ic expression which does 
not factorise without containing surds or imaginary terms.) 

11-3x 
Thus, for example, to resolve -= into partial fractions 

it is firstly recognised that the denominator factorises as 
(x— 1) (x + 3) and the numerator is of less degree than the denominator. 

1 1 - 3 * 
Thus ~2 may be resolved into partial fractions. 
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11 - 3x A B 
Let = 1 , where A and B are 

(x-l)(x + 3) (x-1) (jr + 3) 
, , , . 11 -3* _A{x+3) + B{x-\) 

constants to be determined, i.e., — (*- l ) (*+3) {x-\){x+3) 
by algebraic addition. 

Since the denominators are the same on each side of the 
identity then the numerators are equal to each other. Thus, 
\\-3x=A(x+3) + B{x-\). 
To determine constants A and B, values of x are chosen to make 
the term in A or B equal to zero. When x= 1, then 
11-3(1) = Λ(1 + 3) + £(0) 

i.e. 8 = 4, 
i.e. A = 2 

When x= - 3, 

i.e. 20 = 
i.e. B= -

11-3* 
Thus 
Α " " " χ 2 + 2 * -

Icheck: 
L * - i 

Similarlv. whe 

4 

then 11 

-\B 
-5 

2 
3 (*-

5 
x + 3 ~ 

n resolvi 

- 3 ( - 3 ) = Λ(0) + £(· 

- 5 ^ 2 
1) (* + 3) (x-
2(x + 3 ) - 5 ( * - l ) 

(*- l ) (* + 3) 

2x + 3 
ίησ =- into Dar 

- 3 -

1) 

1) 

5 
(x + 3) 

11-3* Ί 
A:2 -h 2ΛΓ - 3 J 

tial f factions ii 

recognised that the denominator contains a repeated linear factor, 
(*-

Let 

2)2· 
2x + 3 

. = 
A 

(*-2) 
+ — 

B _A\ ',*-
( *■ 

-2) + B 
- 2 ) 2 

Equating the numerators gives: 2x+3 = A(x— 2) + Z? 
Let* = 2. Then 7 = Λ(0) + £ i.e. B = l 
2x + 3=A(x-2)+B=Ax-2A + B 

Since an identity is true for all values of the unknown, the 
coefficients of similar terms may be equated. 
Hence, equating the coefficients of* gives: 2 = A 
Also, as a check, equating the constant terms gives: 3 = —2A + B 
When ^ = 2 , £ = 7, R.H.S. = - 2 ( 2 ) + 7 = 3 = L.H.S. 
Hence, 

2x+3 2 7 
( J C - 2 ) 2 " ( X - 2 ) + ( X - 2 ) 2 
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3 + 6x + 4 x 2 - 2 x 3 

To resolve 0—0 into partial fractions, it is 
*V + 3) F 

recognised that the denominator is a combination of a quadratic 
factor, (x2 + 3), which does not factorise without introducing 
imaginary surd terms, and repeated linear factors — terms such as 
x2 being treated as (x + 0)2. Let 

3 + 6 * + 4 x 2 - 2 * 3
 =A B Cx+D 

*V+3) 7+7~(7+3T 
=Ax{x2+3) + B(x2+3)+{Cx+D)x2 

*V+3) 
Equating the numerators gives: 

3 + 6x + 4x2-2x3=Ax(x2+3) + B{x2 + 3) + {Cx + D)x2 

= Ax3 + 3Ax + Bx2 + 3B + Cx3 + Dx2 

Let x = 0. Then 3 = 3 £ 

i.e. B=\ 

Equating the coefficients of x3 terms gives: — 2 = A + C (1) 
Equating the coefficients of x2 terms gives: 4 = B + D 
Since B=\,D = 3. 
Equating the coefficients of x terms gives: 6 = 3.4 
i.e. A = 2 
From equation (1), since A = 2 , C = —4 
Hence 

3 + 6x + 4 * 2 - 2 * 3 _ 2 1 - 4 x + 3 = : 2 7 3 - 4 * 

*V + 3) = ; V + _ 7 T 3 ~ ~ i + ? + ? + 3 
26 Resolving an algebraic expression into partial fractions is used 
as a preliminary to integrating certain functions. (See para 12, 
page 193). 

Exponential functions 
27 An exponential function is one which contains £*, e being a 
constant called the exponent and having an approximate value of 
2.7183. The exponent arises from the natural laws of growth and 
decay and is used as a base of natural or Naperian logarithms. 

28 T h e natura l l a w s o f g r o w t h a n d decay are of the form 
y=Ajix, where A and k are constants. T h e natural laws occur 
frequently in engineering and science and examples of quantities 
related by a natural law include: 
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(i) Linear expansion / = l0e 
(ii) Change in electrical resistance with temperature RQ = R^e 
(iii) Tension in belts Τχ = TQ^ 
(iv) Newton's law of cooling Q = Q§e~kt 

(v) Biological growth y=yoekl 

(vi) Discharge of a capacitor q = Qe~ ^ ' 
(vii) Atmospheric pressure />=/>o^ 

(viii) Radioactive decay Ν=Ν$β~λι 

(ix) Decay of current in an inductive circuit i = Ie~^ ' ' 

29 The value of ex may be determined by using 
(i) A calculator which possesses an V function, 

X2 X3 

(ii) The power series ex =\ +x-\ 1 1- . . . (where 3! is 'factorial 
2 1 3 1 

3'and means 3 x 2 x 1), 
(iii) Naperian logarithms, or 
(iv) 4-figure tables of exponential functions. 
Examples include e0M = 1.4333, e'047 = 0.6250 
and e~26 = 0.0743, each correct to 4 decimal places, 
and elJ629 = 5.829318, correct to 7 significant figures. 

30 (i) Figure 3.1 shows graphs ofy = e* and y = e ~ x. 

(ii) A graph o{y = be^^x is shown in Figure 3.2. This is obtained 
by drawing up a table of values of x and determining the 
corresponding values ofy. 

4y 
The gradient of the curve at any point, —, is obtained by 

ax 
drawing a tangent to the curve at that point and measuring the 
gradient of the tangent. 

dy BC (6.2-3.7) 
For example, when * = 0, y = 5 and — = = = 2.5 

V J dx AB 1 
dy EF (16.8-10) 

and when x = 2,y= 13.6 and — = = = 6.8 
dx DE 1 

dy 1 
These two results each show that — = -y, and further 

dx 2 
determinations of the gradients ofj = 5^^^2^ would give the same 
result for each. In general, for all natural growth and decay laws 
of the formj = i4/*, where k is a positive constant for growth laws 

dy 
(as in Figure 3.2) and a negative constant for decay occurs, —-ky, 

dx 
i.e., the rate of change of the variable,y9 is proportional to 
the variable itself. 
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-3 2 

Figure 3.1 

-1 0 

_ι L 

y = 5 e x-

A— 

Figure 3.2 
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dy 
(iii) For any natural law of growth and decay of the form — = ky, 

dx 
the solution is alwaysy = Arx. Thus, for example, 

)d then Q = ^[-<1/™)J< dt \ CRJ 

Hyperbolic or Naperian logarithms 
31 Logarithms having a base of e are called hyperbolic, 
Naperian or natural logarithms and the Naperian logarithm 
of* is written as log, x, or more commonly, In x. 

32 The value of a Naperian logarithm may be obtained by 
using: 
(i) A calculator possessing an 'In x' function, 
(ii) The change of base rule for logarithms, which states, 

lo?/J = > fr°m which, Iny = = = 2.3026 \s y: 
^ \ogba J \ge 0.4343 ^ 

(iii) 4-figure Naperian logarithm tables. 
For example, In 3.478 = 1.2465 

In 469.2 = 6.1510 
and In 0.07314= —2.6154, each correct to 4 decimal places. 
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4 Series 

(a + x)° = 
(a + x)l = 
(a + x)2 = 
(a + x)3 = 
(<z + x)4 = 
(a + x)5 = 

(a + x)(a + x) = 
(a + x)2(a + x) = 
(a + xf(a + x) = 
(a + x)*{a + x) = 

Binomial theorem 
1 A binomial expression is one which contains two terms 
connected by a plus or minus sign. Thus (p + q), {a — x)2, (2x+j>) 
are examples of binomial expressions. 
2 Expanding {a + x)n for integer values of n from 0 to 6 gives 
the following results: 

1 
a + x 

a2 + 2ax + x2 

a3 + 3a2x + 3ax2 + x3 

a4 + 4a3 x + 6a2 x2 + 4<zx3 + x4 

a5 + 5a4x + 1OA2 + 1OA3 + 5a*4 + x5 

(a + x)6 = (a + x)5(a + x)= a6 + 6a5 x + 15<zV + 2 0 Ä 3 + 15a V + 6ax5 + x6 

3 From the results of para 2 the following patterns emerge: 
(i) 'a' decreases in power moving from left to right. 
(ii) V increases in power moving from left to right. 
(iii) The coefficients of each term of the expansions are 
symmetrical about the middle coefficient when n is even 
and symmetrical about the two middle coefficients when n 
is odd. 
(iv) The coefficients are shown separately in Table 4.1 and 
this arrangement is known as Pascal's triangle. A coef
ficient of a term may be obtained by adding the two 
adjacent coefficients immediately above in the previous 
row. This is shown by the triangles in Table 4.1, where, 
for example, 1 + 3=4, 10+5=15, and so on. 
(v) Pascal's triangle method is used for expansion of the 
form (a+x)" for integer values of« less than about 8. 

4 The binomial theorem is a formula for raising a binomial 
expression to any power without lengthy multiplication. The 
general binomial expansion of (a + x)n is given by: 

. n(n—\) n n n(n—\)(n — 2) Q * 
(a + n)n = an + nan-lx + - 1^—2*2 + - 11 V " 3 x 3 + . . . +x" 

2! 3! 
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Table 4.1 

{a + x 

{a + x 

{a + x 

{a + x 

{a + x 

{a + x 

{a + x 

)° 
I1 

)2 

)3 

)4 

)5 

6 

where 3! denotes 3 x 2 x 1 and is termed 'factorial 3'. With the 
binomial theorem n may be a fraction, a decimal fraction or a 
positive or negative integer. For example, 

(2<z + 3£)5 = (2<z)5 + 5(2«)4(3£) + m^^+^W^ 2! 
(5)(4)(3)(2) 

4! 

3! 

(2a)(3b)*+(3b)5 

= 32β5 + 240α4Α + 720aV + lOeOaV + 810aA4 + 243b5 

5 The r'th term of the expansion (a + x)n is: 

n{n-\)(n-2)... to (r-1) terms 
( r - 1 ) ! ' 

, „ - ( r - l ) r -1 

- (7)(6)(5)(4) 7 _ 4 For example, the 5'th term of (3+x) is 3 x , since F V ; ( 5 - 1 ) ! 
r=5i.e. ( 3 5 ) 3 V = 9 4 5 J C 4 

6 If a = 1 in the binomial expansion of (a + x)n then: 

n(n-\) 9 φ - 1 ) ( η - 2 ) -
( l + x ) » = l + m + _ x2 + - ^ -x3+..., 

2! 3! 
which is valid for — 1< x < 1. When * is small compared with 1 
then: (1 +x)n& +nx. 
7 Binomial expansions may be used for numerical approximations, 
for calculations with small variations and in probability theory. 
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Maclaurin's theorem 
8 Maclaurin's theorem states: 

X2 

/W=/(0)+*/'(0)+-/''(0)+. 
Some of the results obtained by applying Maclaurin's theorem to 
various functions are listed in paras 9 to 12. 

Trigonometnc series 
3 5 7 

X° X X 
9 sin x = x 1 l·... (valid for all values of x) 

3! 5! 7! 
x2 .4 ve 

Exponential series 

cos x = 1 1 h . . . (valid for all values of x) 
2! 4! 6! 

x2 x3 

10 / = 1 + x + — + — + . . . (valid for all values of x) 
2! 3 ! 

Logarithmic series 

11 In ( 1 + * ) = * - — + *— — + . . . (valid if - K x < l ) 
V ' 2 3 4 V ; 

Hyperbolic series 
3 5 7 

x° xJ x' 
12 sinh x — x-\ 1 1 (- . . . (valid for all values ofx) 

3! 5! 7! ; 

x2 / *6 

cosh x = l H 1 1—-+ . . . (valid for all values of x) 
2! 4 ! 6! 

(See section 11, para 9, page 159) 

Taylor's theorem 
13 f(a + h) =f(a) +hf'(a) + ^ / " M + ... 

Some applications of Taylor 's theorem include numerical 
differentiation, limits, small errors and the numerical solution of 
certain differential equations. 

Arithmetical progressions 
14 When a sequence has a constant difference between successive 
terms it is called an ar i thmet i ca l p r o g r e s s i o n (often abbreviated 
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to A.P.). Examples include (i) 1, 4, 7, 10, 13, . . . where the 
common difference is 3, and (ii) a, a + d, a + 2d, a + 3d, . . . where 
the common difference is d. 
15 If the first term of an A.P. is V and the common difference is 
'<f then the n'th term is: a + (n — \)d 
In example (i) of para 14, the 7'th term is given by 14- (7— 1)3= 19, 
which may be readily checked. 
16 The sum S of an A.P. can be obtained by multiplying the 
average of all the terms by the number of terms. 

a + l 
The average of all the terms = , where V is the first term and 

/ is the last term, 
i.e. / = a + (n — 1 )d, for n terms. 

W 
/ Ö 4 - / \ n 

Hence the sum of n terms, S„ = n\ ) = ~{a +[a+(n—\ 
n \ 2 ) r L 

i.e. Sn = n-[2a+(n-\)d\ 

For example, the sum of the first 7 terms of the series, 1,4, 7, 10, 
13, . . . is given by 

7 
£7 = -[2(l) + ( 7 - l ) 3 ] , sincee = l and d=3, 

= ^[2+18]=^(20)=70 

Geometric progressions 
17 When a sequence has a constant ratio between successive 
terms it is called a geometric progression (often abbreviated to 
G.P.). The constant is called the common ratio, r. Examples 
include (i) 1, 2, 4, 8, . . . where the common ratio is 2 and (ii) a, 
ar, ar, ar, ... where the common ratio is r. 
18 If the first term of a G.P. is 'a' and the common ratio is r, 
then the n'th term is ar"-1, which can be readily checked from the 
example in para 17. 

For example, the 8'th term of the G.P. 1, 2, 4, 8, . . . is 
(1)(2)7 = 128, since a = \ and r = 2. 
Let a G.P. be a, ar, ar2, ar3, . . . ar"-] 

then the sum of n terms, Sn=a+ ar+ar*+ ar*+ . . . 4-ar"_I (1) 
Multiplying through by r gives: 

rSH = ar + ar2 + ar3 + ar*+ .. .ατ»~ι +ar*... (2) 
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Subtracting equation (2) from equation (1) gives 

Sn-rSH = a-at*;i.e. Sn{\ -r) = a{\ -r*) 

Thus the sum of« terms, S„ = , which is valid when r < 1. 
( ΐ - Ό 

Subtracting equation (1) from equation (2) gives 

aO"-D s.= (r-1) 
which is valid when r > 1. 

For example, the sum of the first 8 terms of the GP 1, 2, 4, 8, 
16, . . . is given by 

1 ( 2 8 - 1 ) 
So = , since a = 1 and r = 2, 

8 ( 2 - 1 ) 

. 1 ( 2 5 6 - 1 ) 
i.e. Λ8 = = 255. 

19 When the common ratio r of a GP is less than unity, the sum 
of« terms, 

«. «('-'*) 
( 1 - r ) 

which may be written as 

a a/1 

( 1 - r ) ( 1 - r ) 

Since r< 1, r* becomes less as n increases, 

i.e. r"—>0 as n—KXD. 

ar" 
Hence ►O as n—KXD 

( 1 - r ) 
a 

Thus S„—► as n—HX). 
" ( 1 - r ) 

a 
20 T h e quantity is called the s u m to infinity, S^, and 

( 1 - r ) 
is the limiting value of the sum of an infinite number of terms. 

a 
i.e. SQO = - which is valid when — 1 < r < 1. 

\—r 
1 1 

For example, the sum to infinity of the GP 1 -\ 1 h . . . is 
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soa = -
1 - -

since a= 1 and r = - , i.e., SL = 2. 
2 °° 

Fourier series 
Periodic functions of period 2π 

21 Fourier series provides a method of analysing periodic 
functions into their constituent components. Alternating currents 
and voltages, displacement, velocity and acceleration of slider-
crank mechanisms and acoustic waves are typical practical 
examples in engineering and science where periodic functions are 
involved and often requiring analysis. 

22 A function/(x) is said to be per iodic ϊΐ/(χ+ Τ) =f(x) for all 
values of x, where T is some positive number. T is the interval 
between two successive repetitions and is called the per iod of the 
functions/(x). For example, y = sin x is periodic in x with period 2π 
since sin x = sin (χ + 2π) =sin(x + 47r), and so on. 

Similarly, y = cos x is a periodic function with period 2π since 
cos x = cos(x + 27t) =cos(x + 47c), and so on. In general, ifj> = sin (Ot 

2π 
or j = cos ω/ then the period of the waveform is . 

ω 
T h e function shown in Figure 4.1 is 
also periodic of period 2π and is 
defined by: 

M -{■:: when — π < χ < 0 
when 0 < χ < π 

Figure 4.1 

23 If a graph of a function has no sudden jumps or breaks it is 
called a cont inuous function, examples being the graphs of sine 
and cosine functions. However, other graphs make finite jumps at a 
point or points in the interval. The square wave shown in Figure 
4.1 has finite d i scont inui t i e s at χ = π , 2π, 3π, and so on. A great 
advantage of Fourier series over other series is that it can be 
applied to functions which are discontinuous as well as those which 
are continuous. 
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24 (i) The basis of a Fourier series is that all functions of 
practical significance which are defined in the interval 
— π ^ χ < π can be expressed in terms of a convergent 
trigonometric series of the form: 

f(x) = OQ-\-al cos *+a2 cos 2x+a3 cos 3x+ . . . 

+ by sin x+ b2 sin 2x+ b3 sin 3x+ . . . , 

when a0, a^ a2, . . . bly b2, . . . are real constants, 

00 

i.e.,y(x) = ao+ X ( e * c o s , , J C " , " ^ s i l l , I J C ) 0 ) 
Λ = 1 

where for the range — π to π: 

αο=^- \Λ*) dx 

■M f(x) cos nx dx (n= 1, 2, 3, 
— π 

π 1 , 
and bn=— | f(x) sin nx dx (n= 1,2,3,...) 

(ii) OQ, an and bn are called the Fourier «»efficients of 
the series and if these can be determined, the series of 
equation (1) is called the Fourier series corresponding to 

(iii) An alternative way of writing the series is by using 
the a cos x+ b sin x=c sin (*+a) relationship, i.e., 

f{x)~ao+C\ sin (X+OL{) + C2 sin (2x+a2) + . . . 
+ <r„sin (nx+aj , 

where AQ is a constant, cx = >J(a\+ b\), .. .cn= V(fln + ît) a r e t n e 

amplitudes of the various components, and phase angle 

® 
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(iv) For the series of equation (1): 
the term (a^ cos x+ bl sin x) or cx sin (x+«i) is called the first 
harmonic or the fundamental, the term (a2 cos 2x+ b2 sin 2.x) or 
(2x+a2) *s called the second harmonic, and so on. 
25 For an exact representation of a complex wave, an infinite 
number of terms are, in general, required. In many practical cases, 
however, it is sufficient to take the first few terms only. 
26 The sum of a Fourier series at a point of discontinuity 
is given by the arithmetic mean of the two limiting values off(x) 
as x approaches the point of discontinuity from the two sides. For 
example, for the waveform shown in Figure 4.2, the sum of the 

/. π \ . 
Fourier series at the points of discontinuity I i.e. at 0, —, π, . . . ) is 
given by: 

8 + ( -3 ) 5 1 
= - or 2-. 

2 2 2 

A Fourier series for the square wave function shown in Figure 
4.3, which is periodic of period 2π, is obtained as follows: 

Since/(AT) is given by two different expressions in the two 
halves of the range the integration is done in two parts, one from 
- π to 0 and the other from 0 to π. 

From para 24(i) 

Λ ο = ί τ f /w & = s { f _ * d x + fk dx] 
-n -n -n 

2π 
(a0 is in fact the mean value of the waveform over a complete per
iod of 2π and this could have been deduced in sight from Figure 4.3.) 

Figure 4.2 
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From para 24(i) : 

π 

f(x) cos nx = — fix) cos nx dx = —< — k cos nx dx+ \k cos nx dx > 

* J * l J J i 
- π - π 0 

1 (Γ-ksmnxl0 JTk sin ηχΎ) 

Hence β1} α2, «3, . . . are all zero and no cosine terms will appear in 
the Fourier series. From para 24(i): 

π 0 π 

bn = — J f(x) sin wx </x = —} — k sin nx dx + I k sin wx rfx > 

- π - π 0 

1 ff~£ cos wx Ί° Γ — Ä: COS nx Ί π | 
π ( 1 n J-π L » Joi 
s odd: When n is odd 

i.e. b=-
U 
nit 

Hence 

π' " 3π 

When n is even: 

4* 
bx = —, b$ = , b5 = , and so on. 

π { [ * WJ+L n { n)\] 
the Fourier series for the function in 

4k/ 1 1 \ 
/ 0 ) =—(sin jr+-sin 3jc+-sin 5JC + ... ) π \ 3 5 j 

i this series then: 

Λ 1 1 \ 
= 41 sin x + - sin 3x + - sin 5x + . . . I 

V 3 5 ; 

Hence the Fourier series for the function in Figure 4.3 is given by: 

If k = n in this series then: 
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4 sin x is termed the first partial sum of the Fourier series of / (x) , 
/ . 4 . \ 
I 4 sin x + - sin 3x 1 is termed the second partial sum of the Fourier 

/ 4 4 \ 
series, and I 4 sin x + - sin 3x + - sin 5x 1 is termed the third partial 

v 3 5 ; 

sum, and so on. Let Px = 4 sin x, P2 = i4 sin x + - sin 3x 1 and 

/ 4 4 \ 
4 sin x+ - sin 3x+ - sin 5x I. 

I 3 5 ; Graphs of Ρχ, P2, and P3, obtained by drawing up tables of 
values and adding waveforms, are shown in Figure 4.4(a) to (c) and 
they show that the series is convergent, i.e. continually approximat
ing towards a definite limit as more and more partial sums are 
taken, and in the limit will have the sum/(x) —n. 

Non-period functions over range 2π 
27 If a function f(x) is not periodic then it cannot be expanded 
in a Fourier series for a l l values of x. However, it is possible to 
determine a Fourier series to represent the function over any range 
of width 2π. 
28 Given a non-periodic function, a new function may be 
constructed by taking the values off(x) in the given range and 
then repeating them outside of the given range at intervals of 2π. 
Since this new function is, by construction, periodic with period 
2π, it may then be expanded in a Fourier series for all values of x. 
For example, the function f(x) =x is not a periodic function. 

However, if a Fourier series for/(x) =x is required then the 
function is constructed outside of this range so that it is periodic 
with period 2π as shown by the broken lines in Figure 4.5. 
29 For non-periodic functions, such as / (x) =x, the sum of the 
Fourier series is equal tof(x) at all points in the given range but it 
is not equal tof(x) at points outside of the range. 
30 For determining a Fourier series of a non-periodic function 
over a range 2π, exactly the same formulae for the Fourier 
coefficients are used as in para 24(i). 

A Fourier series to represent the function / (x) =2x in the 
range — π to π is obtained as follows: 

The function f(x) =2x is not periodic. The function is shown 
in the range — π to π in Figure 4.6 and is then constructed outside 
of that range so that it is periodic of period 2π (see broken lines) 
with the resulting saw-tooth waveform. 
For a Fourier series: 

y ^ j = - + ? (an cos nx + bn sin nx) 
n= 1 
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(a) 

(b) 

(0 
4/5 sin 5x 

Figure 4.4 
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fix) 
2τί 

Λ / 

1/ 
2π 0 

" 
f{x)=x 

!/ l· 2ττ 4ττ X 

Figure 4.5 

From para 24 (i 

«ο = — \Ax)dx 
^ 2π Γ 2π 

/1 
/ I 

2 , * | 
1 

Λχ) 

2π 

2 -

Α(χ)=2χ 

"/I /I 
/ \ / \ 0 ττ| / 2 r 377 x 

1 / 
1/ 

Figure 4.6 

f 1 P 2 Γχ 2 Τ 
\f(x)dx = — 2xdx = —-i — \ 

- π - π 
π π 

1 Γ ι f 
βΛ = — /"(*) cos nx dx = — I 2x cos nx dx 

71 J π J 
- π - π 

2 Γ* sin x ßin rcx Ί π 

= ~\ dx\ 

by parts (see paras 13 and 14, page 194) 
2 Vx sin nx cos πχΊπ 

" τ Γ [ η + *2 ] _ π 

2 Γ / cos «π \ / cos n ( — π) \ Ί 

π π 
1 Γ ι f 

£_ = — fix) sin nx dx — — 2x sin nx dx 

* J π J 
- π - π 

2 Γ - x cos nx (V — cos nx\ Ί π 

= — ( \dx , by parts 
71 L w JV » / J - π 
2 Γ — x cos nx sin ηχΊπ 

π~|_ n *2 J _ n 
2 Γ / —π cos «π sin ηπ\ ( — 

2 Γ — π cos «π π cos ηπΊ — 
π|_ Π η \ η 

(— π) cos n (— n) sin n (— »(-») VI 
«2 ; J 

cos ηπ 
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When n is odd: 

4 
n 

4 4 
Thus b\ =4, £3 = - , £5 = - , and so on. 

3 5 
When n is even: 

- 4 
bn = . 

2 
Thus b2 = — 2, £4 = — 1, £6 = — , and so on. 

4 4 
Thus/(x) = 2x=4 sin x— 2 sin 2 x + - sin 3x— 1 sin 4 * + - sin 5x 

2 
— sin 6x+ ... 

3 

e. 2jr = 4(sinjc — sin2jc + - s in3 jc - - s in4 j t+ - s in5 jc - - s in6x+ . . 
y 2 3 4 5 6 

for values of/(x) between — π and π. For values off(x) outside the 
range — π to π the sum of the series is not equal to/(*). 

Even and odd functions 
Even functions 

31 A functiony=f{x) is said to be even if/( — x) =f{x) for all 
values of x. Graphs of even functions are always symmetrical 
about the j-axis (i.e. is a mirror image). Two examples of even 
functions arejy = x̂  andjy = cos x as shown in Figure 4.7. An even 
function contains no sine terms in its Fourier series, i.e., A- = 0 

Odd functions 
32 A function y=f(x) is said to be odd \{f( — x) = —f{x) for all 
values of x. Graphs of odd functions are always symmetrical 
about the origin. Two examples of odd functions a re j=x J and 
j=sin x as shown in Figure 4.8. An odd function contains no cosine 
terms in its Fourier series, i.e., aH = 0 In addition, the constant 
term a0 = 0. 
33 Many functions are neither even nor odd, two such examples 

being shown in Figure 4.9. 



y=cos x 



Fourier cosine series 
34 The Fourier series of an even periodic function 'fix) having 
period 2π contains cosine terms only (i.e. contains no sine terms) 
and may contain a constant term. Hence, 

/(χ)=αο + Σακοοεηχ 

where 

and 

1 Γ 1C 
a0 = f(x) dx = — \J{x) dx (due to symmetry) 

2π J n) 
- π 0 

π π 

an = — I f{x) cos nx dx = — iflx) \ f(x) cos nx dx= -\f(x) cosnxdx 

The square wave shown in 
Figure 4.10 is an even 
function since it is 
symmetrical about th.tf(x) 
axis. 

Hence the Fourier 
series is given by 

00 

f(x) = a0 + Σ cos nx 

n= 1 

(i.e. the series contains no 
sine terms). 
00 = 0 (i.e. the mean value) 

fix) 

-2π 

Figure 

,1" 
- ir - r r /2 0 

L 
4.10 

n) 
I 

2 it 2π X 

π/2 

a„ = — \f(x) cos nx dx = — ) 2 cos nx dx + - 2 cos nx dx > 
0 0 π/2 

π IL n Jo L w J«/2J π 1 \ » / \ » 

( n \ 
2 sin — n \ 

n ) πη\ 2 / When n is even; 
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When n is odd; 

8 - 8 
an = — for n = 1, 5, 9, . . . and an = for n = 3, 7, 11, . . . 

nn nn 

Henc 

8 -8 
. * 3 = - ab=\ , and so on. 

π ' " 3π 5π 
Hence the Fourier series for the waveform of Figure 4.10 is given by: 

j(x)=-lcos x-- cos 3JC + - COS 5 J C - - COS 7ΛΜ 
πγ 3 5 7 

Fourier sine series 
35 The Fourier series of an odd periodic function/(x) having 
period 2π contains sine terms only (i.e., contains no constant 
term and no cosine terms). 

CO 

Hence, f[x)= Σ K s m nx 

7 1 =1 

where b„ = 
1 f 2 f 
— I /(*) sin nx ί/x = — \f(x) sin nx i/x 

The square wave shown in 
Figure 4.11 is an odd function 
since it is symmetrical about 
the origin. 

Hence the Fourier series is 
given by: 

00 

f(x) = Σ K sin nx 

n-l 

The function is given by: 
- 2 , when - π < χ < 0 

f(.x)\ 

2| 

Λ*)-
Figure 4.11 

2, when 0<χ<π 

2 f 2 f 4 Γ-cosnxT 
_ = — \f(x) sin nx dx = — 2 sin nx dx = — 
" n y J π] π[ „ J0 

o o 
4 r / -cos ηπ\ / 1\Ί 

= 7 r lA n ) \ η ) \ " τ 

-(1 —cos nn). 
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When n is even bn = 0. 

When n is odd bn = — (1 - - 1) =—. 
nn Tin 

8 8 8 
Hence b} =—, b* = , £= = , and so on. 

Hence the Fourier series for the square waveform shown in Figure 
4.11 is: 

8 / 1 1 1 
fix)=-( sin JC+- sin 3 x + - sin 5 JC+- sin Ix + . . . 

n\ 3 5 7 

Half range Fourier series 
36 When a function is defined over the range say 0 to π instead 
of from 0 to 2π it may be expanded in a series of sine terms only or 
of cosine terms only. The series produced is called a half range 
Fourier series. 
37 If a half range cosine series is required for the function 

f(x) = x in the range 0 to it then an even periodic function is 
required. In Figure 4.12,f(x) = x is shown plotted from x=0 to 
x=n. Since an even function is symmetrical about the/(x) axis the 
line AB is constructed as shown. If the triangular waveform 
produced is assumed to be periodic of period 2π outside of this 
range then the waveform is as shown in Figure 4.12. When a half 
range cosine series is required then the Fourier coefficients ÜQ and 
an are calculated as in para 34. 

f(x 
f{x)=x 

Figure 4.12 

Hence for a half range cosine series: 
π 

f(x) = flo + ^ an cos nx. 

When 

/w=^4J>w^4f^=^[yI= 1 Γ*2Τ η 
2~ 
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2 f 2 f 2 Γ* sin nx cos ηχΎ 
an = — \f(x) cos nx dx = — * cos nx dx = —1 h —^— by parts 71 J π J π [ w ^ J0 

o o 
2 Γ / π sin τ?π cos nn \ ( cos 0 \~| 

cos nn cos 0 \ 2 
) H Ö 2 — I = — 2 ( C O S nU ~ ^ 

When w is even 

«. = 0. 

When n is odd 

2 

- 4 - 4 
Hence ax = , ÖO = —^, Ö^ = 

π J π3' Ϊ 2 ' α5 - π5* 
, and so on. 

Hence the half range Fourier cosine series is given by: 

y(jc) = j c = - — | cos * + ~ 2 c o s 3 * + 7 2 C O S ^ J C + . . · I 

38 If a ha l f range s ine s e r i e s is required for the function 
f(x) = x in the range 0 to π then an odd periodic function is 
required. In Figure 4.13, f(x) =x is shown plotted from x = 0 to 
χ = π. 

'· cL/i 

V. 
/ ι 

! / 

Figure 4.13 

Since an odd function is symmetrical about the origin the line 
CD is constructed as shown. If the sawtooth waveform produced is 
assumed to be periodic of period 2π outside of this range, then the 
waveform is as shown in Figure 4.13. When a half range sine series 
is require then the Fourier coefficient bn is calculated as in para 35. 
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Hence for a half range sine series :f(x) = 2* bn sin nx. 
n=\ 

When/(x)=x, 
π π 

2 f 2 f . 
£n = — \f(x) sin nx dx = — \x sin nx ax 

π J π J 
0 0 

2 Γ — x cos nx sin ηχ"]π =;rt^r-+^n0'byparts' 
2 Γ / ~ π c°s «π sin ηπ\ Ί 2 

=4(~^^+T)- ( 0 + 0 )J=-; 
2 
-cos nit 

When n is odd, 

2 

2 2 2 
Hence A, = - , £* = - , K = - , and so on. 1 1 3 3 5 5 
When n is even 

2 

2 2 2 
Hence bn — — , bA = — , bc= — , and so on. 2 2» 4 4» 6 6» 

Hence the half range Fourier sine series is given by: 

/{x)—x = T\ sin x — - sin 2x+- sin 3JT—- sin Ax + - sin 5* — . . . J 
\ 2 3 4 5 / 

Fourier series over any range 
39 A periodic function/(x) of period / repeates itself when x 
increases by /, i.e./(x + /) =f{x). The change from functions dealt 
with previously having period 2π to functions having period / is 
not difficult since it may be achieved by a change of variable. 
40 To find a Fourier series for a function/(x) in the range 

1 / 
— ^ χ ^ - a new variable u is introduced such that fix), as a 

2 2 JK " 
2πχ / 

function of«, has period 2π. If u= then, when x= — , u= — n 
1 Jh \ and when x=- , u- +π . Also, let/(x)=yi \=F(u). The 
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Fourier series for F(u) is given by: 
oo 

F(U) = OQ+ Σ (flii c o s nu + bn sin nu) 
n=\ 

1 f If* 
where ÜQ = I F(u) du, an — — I F(u) cos nu du and 

vf F(u) sin n« </«. 

41 It is however more usual to change the formula of para 40 to 
2πχ 2π 

terms of x. Since u = , then du = dx, and the limits of 

/ / 
integration are — to + - instead of from — π to +π. Hence the 
Fourier series expressed in terms of x is given by: 

Λ 
^ ( /2nnx\ t . /2πηχ\) 

x)=a0+ LUncosl-j-j + bnsml—^-\y 

I I 
re, in the ranee — to + - : 

5 2 2 
1 fI/2 2 f//2

 v /2πηχ\ 
*o = y f{x)dx,aH = - j{x)cvs\—-\dx 

! fi/2 2 f//2 
f{x)dx,aH = -

iß -iß 

and 
" / 

-iß 
(The limits of integration may be replaced by any interval of 
length /, such as from 0 to /.) 
For example, if the voltage 
from a square wave 
generator is of the form: 

f 0, - 4 < / < 0 
v{t)=) 

[10, 0<*<4 
r 1 
1 1 
8 -4 

L 

10 

0 

| 
L 
4 

J 

| 
_J 

8 

1 

l_ 
12 f(ms) 

and has a period of 8 ms, 
then the Fourier series is I Period /=8 ms ' 
obtained as follows. The 
square wave is shown in 
Figure 4.14. 
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The Fourier series is of the form: 

v T (2nnt\ (2nnt\\ 
v(t)=%+ L\ancosl—j—\ + bnsml — \\ 

//2 4 0 4 

ao = y f v(t) dt = - ί v{t) dt=l-i f 0 dt+ f 10 ώ|=-[10/]ί = 5 

- / /2 - 4 - 4 0 

//2 4 
2 f , x /2ππΛ 2 f /2π«Λ 

fl" = 7 "(0 cosi — W/ = - »(/) cosi — J dt 
- 4 

0 4 

=ϊ{|οεο8(τ)Λ+|ιοοο{'?Μ 
- 4 0 

9 

-iß 

-I 
/πΛΛ_ 

lOsini— n 

( " ) 

l4 10 
= —[sin nn — sin 0] = 0 

π« 

for n= 1,2, 3, . . . 

2 f /2π/ζΛ 2 Γ /2nnt\ 
bn = - I »(/) s in i -y -J Λ = - I *(/) s in i -g -J 4 

- / /2 - 4 
0 4 

=ϊ{|θ 5 ί η('τ)ώ +{1 θ 5 ί η(τ)<*} 
- 4 0 

— 10 cos — . 
1Γ 4 ~14 - 1 0 

= -J = [c 
4^ Tin J0 nn [cos π« —cos 0] 

When n is even 

» . - 0 . 
When n is odd, 

- 1 0 20 - 1 0 20 20 
bx = (— 1 — 1) = —, bo = (— 1 — 1) = , be. = and so on. 
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Thus the Fourier series for the function v(t) is given by: 

, * e 20Γ . πί 1 . /3πΛ 1 . /5πΛ Ί 

42 

Half range series 
πχ 

By making the substitution u = — (see para 40), the range 

x = 0 to x = l corresponds to the range u = 0 to u = n. Hence a 
function may be expanded in a series of either cosine terms or sine 
terms only, i.e. a half range Fourier series. 
43 A half range cosine series in the range 0 to / can be 
expanded as: 

f(x)=a0+ Σα, { Mix -Κχ\ 

1 Λ / 2 ΓI „, ν /ηπχ\ 
where αο=-\ Ax) dx and α„=- Ax) cosi — j dx 

o 0 

For example, the half range Fourier cosine series for the 
function f(x) =x, in the range 0 ^ x ^ 2 is obtained as follows: A 
half range Fourier cosine series indicates an even function. Thus 
the graph of/(x) =x in the range 0 to 2 is shown in Figure 4.15 and 
is extended outside of this range so as to be symmetrical about the 

f(x) axis as shown by the broken lines. 
For a half range cosine series: 

in 

V ( mx\ 
-J-) 

^i\f(x)dx=ixdxJM 1 

fix) 

4 2 0 

f{x)=x 

- L ^ 
2 4 6 x 

Figure 4.15 
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1 *· x 

0« = yj/W c o s ( -7-J^ = 2Jx cos (τ/Η " 
(2 sin nit cos nit 

- + 

( Π7ίχ\ /τΜχ\ 
— I cosl — 1 il+_\LL 

(?) (?)' 
\ / cos 0 \ 

(?) ®nffl 
cos nit 
/ η π γ /ηπΥ 

(cos «π — 1) 

When n is even 

- 8 
υχ-

-8 
r» *3 = ^ 2 " 5 *5 = ;^jr> and so on. 

Hence the half range Fourier cosine series for/(x) in the range 0 to 
2 is given by: 

*)=1-^τ)+·Η^)+έ°°{^)+"·] 
44 A half range sine series in the range 0 to / can be 
expanded as: 

/ « 
a frmx\ 

where b„ ■2-{f(x) s i n W dx 

For example, the half range Fourier sine series for the 
function/(x) =x in the range 0 < x < 2 is obtained as follows: 
A half range Fourier sine series 
indicates an odd function. Thus 
the graphs offfx) =x in the 
range 0 to 2 is shown in Figure 
4.16 and is extended outside of 
this range so as to be 
symmetrical about the origin, 
as shown by the broken lines. Figure 4.16 

-2| A\ 4r - l ^ _ 
/ I 

-6T 



For a half range sine series 

Λ*. 

/ 2 
2f (rmx\ 2 f (ηπχ\ 

b=-\ fix) sinl 1 dx--\ x sinl } dx 

'J W 2J W 
o o 

( ητΐχ\ /ητΐχ\ 
) sinl I 

2) \ 2 ) 
/ηπ\ /MiY I 
\2) \J) Jo 

( ■ 
- 2 cos WTC sin «TT\ rr\ / sin 0 V 

(?) $n'W 
- 2 cos nn —4? 

nn 
~2 

rat 

- 4 4 - 4 - 4 - 4 4 
Hence £, = ( - 1) =—, b* = (1) = , b* = (1) = , and 1 π v J π 2 2 π w 2π 3 3π w 3π 
so on. 

Thus the half range Fourier sine series in the range 0 to 2 is 
given by: 

* x ) = ;H?H Ή ^ Η sinC?)"s *(T[)+···] 
A numerical method of harmonic 
analysis 

45 Many practical waveforms can be represented by simple 
mathematical expressions, and, by using Fourier series, the 
magnitude of their harmonic components determined. For 
waveforms not in this category, analysis may be achieved by 
numerical methods. 
46 Harmonic analysis is the process of resolving a periodic, 
non-sinusoidal quantity into a series of sinusoidal components of 
ascending order of frequency. 
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47 The Fourier coefficients, OQ, an and bn stated in para 24 all 
require functions to be integrated, i.e. 

π 2π 

ÜQ = f{x) dx = f(x) dx = mean value of/(x) in the 

- π 0 

range - π to π or 0 to 2π. 
π 2π 1 f l r 

an = — I /(*) cos nx dx = — I f(x) cox wx </* = twice the mean 
71 J π J 

- π 0 
value of/(x) cox nx in the range 0 to 2π. 

* 2π 
1 f 1 Γ 

£n = — I /(*) sin nx dx = — I f(x) sin nx </x — twice the mean 
π J π J 

- π 0 
value of/(x) sin nx in the range 0 to 2π. 

However, irregular waveforms are not usually defined by 
mathematical expressions and thus Fourier coefficients cannot be 
determined by using calculus. In these cases, approximate methods, 
such as the trapezoidal rule can be used to evaluate the Fourier 
coefficients. 
48 Most practical waveforms to be analysed are periodic. Let the 
period of a waveform be 2π and be divided into p equal parts as 

2π 
shown in Figure 4.17. The width of each interval is thus . Let 

P 
the ordinates be labelled Jto,j>i,j>2» · · · Ĵ » ( n o t e t n a t J O = A ) · The 
trapezoidal rule states: 

/width of\f 1 /first + last\ sum of Ί 
A r e a = [ )| -\ ) + remaining' 

\ interval J[^2\ ordinate / oidinatcs J 
\7~) 2 ̂ °+yp) + J l + Λ + Λ + · ■ · 

Sincey0=yp, then -(>b+J>) =J>o=Jp-

2π £ 
Hence area« 2 , ^ 

P k=\ 
area 1 /2π \ P \ P 

Mean value= « 1 ] Σ.Λ—~ Σ Λ 
length of base 2n\p Jk=x pk=l 

However, OQ = mean value of/"(x) in the range 0 to 2π. 
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M 

0 

yQ Kt v2 v3 κ4 

i i i ! 1 \ . 
II \ * ' ', 

- ^ |*-2*/p \ i y 

Period = 2π 

/ίΪ!'' 
^ 2 π x 

Figure 4.17 

1 £ 
thus a« , - - 2.ΛΆ 

/>* = ! 
(1) 

Similarly, an = twice the mean value off(x) cos «x in the range 0 to 2π, 

(2) 
2 f 

thus α β « - Σ, ykcos nxk 
Pk=\ and /»„ = twice the mean value of/(x) sin nx in the range 0 to 2π, 

thus ' £ „ « - X yk sin iurA (3) 

A graph of voltage v against Θ degrees is shown in Figure 4.18. The 
values of ordinatesjjj^jJs» · · · are 62, 35, - 3 8 , - 6 4 , - 6 3 , - 5 2 , 
- 28, 24, 80, 96,90 and 70, the 12 equal intervals each being of width 
30°. The voltage may be analysed into its first 3 constituent harmonics 
as follows: 
The data is tabulated in the proforma shown in Table 4.2. 

1 P 1 
From equation (1), atfz- Σ Λ = — ( 2 1 2 ) = 17.67 (sincep= 12) 

Pk=\ 1 2 

2 > 
From equation (2), an&- Σ Λ COS nxk 

Pk=i 
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2 2 
Hence a^—(417.94) = 69.66; a 2 « — ( - 39)= - 6 . 5 0 ; 

2 
a n d f l o « — ( - 4 9 ) = - 8 . 1 7 

3 1 2V 

2 P 
From equation (3), bn^a- Σ_% s m n** 

Pk=\ 
2 2 

Hence, ^ « — ( - 2 7 8 . 5 3 ) = - 4 6 . 4 2 ; ^ « — ( 2 9 . 4 3 ) = 4 . 9 1 ; 

2 
and £ ,«—(55) = 9.17 

Substituting these values into the Fourier series: 

/ (x) = ö 0 + Σ (a„ cos nx+ bn sin nx) 
7 1 =1 

gives 

ν = 17.67+69·66 cos 0-6.50 cos 20-8.17 cos 30+ . 
-46.42 sin 0+4.91 sin 20+9.17 sin 30+ ... 
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5 Matrices and 
determinants 

1 Matrices and determinants may be used for the solution of 
linear simultaneous equations. The coefficients of the variables for 
linear simultaneous equations may be shown in matrix form. The 
coefficients of x andy in the simultaneous equations 

x + 2v = 3 
become [ 1 in matrix notation (1 J) -4x — by = 6 

Similarly, the coefficients of p, q and r in the equations 

1.3/>-2.0? + r=7 
3.7/> + 4.8?-7r = 3 become 

-4.1/> + 3 . 8 ? + 1 2 r = - 6 
in matrix form 

2 The numbers within a matrix are called an array and the 
coefficients forming the array are called the elements of the 
matrix. The number of rows in a matrix is usually specified by m 
and the number of columns by n and a matrix referred to as an 
'm by rC matrix. Thus, 

/2 3 6\ 
V4 5 l) 

is a '2 by 3' matrix. 
3 Matrices cannot be expressed as a single numerical value, but 
they can often be simplified or combined, and unknown element 
values can be determined by comparison methods. Just as there are 
rules for addition, subtraction, multiplication and division of 
numbers in arithmetic, rules for these operations can be applied to 
matrices and the rules of matrices are such that they obey most of 
those governing the algebra of numbers. 
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Addition and subtraction of matrices 
4 If 

A 

then 

A + B 

and 

A-B 

_fa + e b+f\ 
\c+g d+h) 

Ja-e b-f\ 
\c-g d-h) 

Multiplication of matrices 
5 (i) When a matrix is multiplied by a number (called scalar 
multiplication), a single matrix results in which each element of 
the original matrix has been multiplied by the number. For 
example 

\0 \) \0 12/ 

(ii) When a matrix A is multiplied by another matrix B, a single 
matrix results in which elements are obtained from the sum of the 
products of the corresponding rows of A and the corresponding 
columns of B. For example, 

(a b\x(e A=(ae+bg af+bh\ 

(iii) Two matrices A and B may be multiplied together, provided 
the number of elements in the rows of matrix A are equal to the 
number of elements in the columns of matrix B. In general terms, 
when multiplying a matrix of dimensions (m by n) by a matrix of 
dimensions (n by r), the resulting matrix has dimensions (m by r). 
Thus a 2 by 3 matrix multiplied by a 3 by 1 matrix gives a matrix 
of dimensions 2 by 1. Thus 
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( (3x2)+ (4x5)+ ( O x - l ) \ /26 \ 
(-2x2)+ ( 6 x 5 ) + ( - 3 x - l ) 1= I 29 I 

(7χ2) + ( - 4 χ 5 ) + ( 1 χ - 1 ) / \ - 7 / 
6 In algebra, the commutative law of multiplication states that 
axb = bxa. For matrices, this law is only true in a few special 
cases, and in general A x B is not equal to BxA. 
7 A unit matrix, /, is one which all elements of the leading 
diagonal ( \ ) have a value of 1 and all other elements have a value 
of 0. Multiplication of a matrix by / is the equivalent of multiply
ing by 1 in arithmetic. 
8 The determinant of a 2 by 2 matrix, ( ) is defined as 

(ad—be). The elements of the determinant of a matrix are written 

between vertical lines. Thus, the determinant < 

13 - 4 | 
written as 

a matrix 
/3 - 4 \ 

t of ( is 

and is equal to ( 3 χ 6 ) - ( - 4 x 1), i.e. 
1 6 

18— ( — 4) or 22. Hence the determinant of a matrix can be 
expressed as a single numerical value, 

13 -41 
= 22 

The inverse or reciprocal of a 2 by 2 
matrix 

9 The inverse of matrix A is A~l such that A x A~l = 1, the unit 
(P l\ matrix. For matrix A = [ I the inverse may be obtained by: 
\r s) 

(i) interchanging the positions of p and s, 
(ii) changing the signs of q and r, and 

(iii) multiplying this new matrix by the reciprocal of the de

terminant of 

Thus 
ps-qr 

For example, the inverse of matrix 

CO 
V V ps-qr \-r p) 

. (\ 2 \ . 
IX ( I IS 

»ii -i) 
1 

4~6 ' 
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The determinant of a 3 by 3 matrix 
10 (i) The minor of an element of a 3 by 3 matrix is the value 
of the 2 by 2 determinant obtained by covering up the row and 
column containing that element. Thus for the matrix 

f\ 2 3 \ 
4 5 6 I 

\J 8 9 / 

the minor of element 4 is obtained by covering the row (4 5 6) 

and the column I 4 I , leaving the 2 by 2 determinant 

w 
12 31 
8 9| 

i.e., the minor of element 4 is (2 x 9) — (3 x 8), i.e. —6. 
(ii) The sign of a minor depends on its position within the matrix, 
the sign pattern being 

Thus the signed-minor of element 4 in the matrix 

| - - ( - 6 ) - 6 . 
/ . 2 3 \ 
I 4 5 6 I is 
\ 7 8 9 / 

2 31 
8 91 

The signed-minor of an element is called the cofactor of the 
element. 
(iii) The value of a 3 by 3 determinant is the sum of the products 
of the elements and their cofactors of any row or any column of 
the corresponding 3 by 3 matrix. 
For example, 

«1 °\ c\ 
Ü2 l>2 c2 

a3 b3 c3 

= al 
^2 ^2 

h c3 -bx 

0,2 ^2 

a3 c3 
+ f, 

Ü2 l>2 

a3 b3 
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The inverse or reciprocal of a 3 by 3 
matrix 

11 The adjoint of a matrix A is obtained by: 
(i) forming a matrix B of the cofactors of Ay and 
(ii) transposing matrix B to give B , where Βτ is the matrix 
obtained by writing the rows of B as the columns of B . Then 

T - 1 - 1 ac*J ^ 
adj A = B. The inverse of matrix A, A is given by A = —-—, 

A 
where adj A is the adjoint of matrix A and A is the determinant 
of matrix A. 

Properties of determinants 
12 There are certain properties of determinants which enable the 
value of a determinant to be found more simply. Some of these 
properties are given below. 

(i) If all the elements in a row or column are inter
changed with the corresponding elements in another row 
or column, the value of the determinant obtained is — 1 
times the value of the original determinant. Thus 

a 
c <A = ( - 1 ) 

b a\ 

d c 

(ii) If two rows or two columns of a determinant are 
equal its value is equal to zero. Thus: 

= 0 

(iii) If all the elements in any row or any column of a 
determinant have a common factor, the elements in that 
row or column can be divided by the common factor and 
the factor becomes a factor of the determinant. Thus 

bxx bxm 
= b* 

(iv) The value of a determinant remains unaltered if a 
multiple of the elements in any row or any column are 
added to the corresponding elements of any other row or 
column. Thus: 

I a b + ka\ 

c d+kc 
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The properties of determinants listed above may be used to reduce 
the size of elements within the determinant, and to introduce as 
many zero elements as is practical before evaluating the de
terminant. Simplification is mainly achieved by using property (iv) 

261 
Thus, for example, to simplify and evaluate 

taking 3 times column 2 from column 3 gives: 

7 
2 

11 

2 7 
1 2 
4 11 

2 
1 
4 

(26- 21) 
(6 -6) 

(40-33) 

7 5 
2 0 

11 7 

Taking twice column 1 from column 2 gives 

3 5 
0 0 

4 3 7 | 
value of this determinant is 

(7 -4) 
(2 -2) 
(11-8) 

. Since two of the elements in row 2 are zero, the 

- 1 x (property (iii)) + 0-0= -3x 
= - 3 ( 7 - 5 ) = - 6 

13 The procedure for solving linear simultaneous 
equations in two unknowns using matrices i s : 

(i) write the equations in the form 
alx + bly = c] 

a2x + b<y = c2, 
(ii) write the matrix equation corresponding to these 
equations, 

\a2 b2) \y) \cj' 

(iii) determine the inverse matrix 

1 
° \a2 h/ 

fl1^2 — b\a2 
( h ~H 
\-a2 aj 

(from para 9), 
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(iv) multiply each side of (ii) by the inverse matrix, and 
(v) solve for x and y by equating corresponding elements. 

For example, to solve the simultaneous equations 

3* + 5j>-7=0 (1) 
4x-3j>-19 = 0 (2) 

using matrices, following the above procedure: 
(i) Writing the equations in the ayX+btf=C\ form gives: 
3x + 5y = 7 
4x-3y=19 

(ii) The matrix equation is 

C >0-Q 
(iii) The inverse of matrix 

(iv) Multiplying each side of (ii) by (iii) and remember
ing that A*A~ - / , thi , the unit matrix, gives: 

Thus 

C)-(-0 

[ 
(v) By comparing corresponding elements, 
x = 4 and y = — 1. 

Checking: Equation (1), 3 x 4-1-5 x ( - 1) - 7 = 0 = RHSn 
Equation (2), 4 x 4 - 3 x ( - 1) - 19 = 0 = RHS 
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14 The procedure for solving linear simultaneous 
equations in three unknowns by matrices i s : 

(i) Write the equations in the form 

alx + bl? + clz = dl 
a2x + b^-\- c2z = d2 
a$x + by + c$z = d3 

(ii) Write the matrix equation corresponding to these 
equations, i.e. 

(see para 11), 
(iv) Multiply each side of (ii) by the inverse matrix, and 
(v) Solve for x, y and z by equating the corresponding 
elements. For example, to solve the simultaneous 
equations 
x+y + Z-4 = 0 (1) 

2x-3y + 4z-33=0 (2) 
3x-2y-2z-2=0 (3) 

using matrices following the above procedure: 
(i) Writing the equations in the axx+ btf+cxz=dx form 
gives: 
x+y+£=4 
2x-3y+4z=33 
3x- 2y-2z= 2 
(ii) The matrix equation is 

/ l 1 l \ /x\ 
2 - 3 

i3 - 2 

(iii) The inverse matrix of A = (2 "3 Ί 
\ 3 - 2 - 2 / 
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_ 1 acÜ A is given by A = 

The adjoint of A is the transpose of the matrix of the 
cofactors of the elements, (see para 11). The matrix of 
cofactors is 

(14 16 5 \ 
0 - 5 5 I 
7 - 2 - 5 / 

16 5^ 
- 5 5 
-2 -5) 

and the transpose of this matrix gives 

adj A = (14 0 7 \ 
16 - 5 - 2 I 
5 5 - 5 / 

The determinant of A, i.e., the sum of the products of 
elements and their cofactors, using a first row expansion is 

1-3 4 
1 

- 2 - 2 
- 1 

2 4 
3 - 2 

+ 1 
2 - 3 
3 - 2 

i.e. (1 x 14)- (1 x - 16)+ (1 * 5), that is, 35. Hence, the 
inverse of A, 

A~l= — (14 0 7 \ 
16 - 5 - 2 I 
5 5 - 5 / 

(iv) Multiplying each side of (ii) by (iii), remembering 
that A x A~l = /, the unit matrix, gives 

(1 0 0 \ /x\ /14 0 7 \ / 4 \ 

:: :π«Η" -; -ΐ)τ;) 
Θ Ι (14x4)+ (0x33)+ (7x2) \ 

= ^ ( ( 1 6 x 4 ) + ( - 5 x 3 3 ) + ( ( - 2 ) x 2 ) | 
\ (5x4) + (5x33) + ( ( - 5 ) x 2 ) / 

■=(-3--;) 77 



(v) By comparing corresponding elements, x—%y— — 3, 
Z = 5 which can be checked in the original equations. 

15 When solving linear simultaneous equations in two 
unknowns using determinants: 

(i) write the equations in the form 
axx + b\y + c{ = 0 
a2x + by + c2 = 0 
and then: 
(ii) the solution is given by 

x =-y 

where 

1 
Ί5 

D = 
b\ c\ 
b2 C2\ 

i.e. the determinant of the coefficients left when the x-column is 
covered up, 

Dv 
a2 c2\ 

i.e. the determinant of the coefficients left when the^-column is covered 
up, and 

D = 
\a2 ^2 

i.e. the determinant of the coefficients left when the constants-column 
is covered up. 
For example, to solve the simultaneous equations: 

3χ + 4)> = 0 
2x + 5? + 7 = 0 

the solution is given by: 

x = —y = \ 
4 
5 
X 

0 
7 

y 1 

3 
2 

0 
7 

3 
2 

4 
5 

28 21 

from which, 

-21 28 
x = — = 4 and y = 

7 J 7 
= - 3 
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16 When solving simultaneous equations in three unknowns 
using determinants: 

(i) Write the equations in the form 

axx + bxy + cxz + dx = 0 
a*2x + b<y + c2z + d2=0 
a3x + b$y + c3z + d3 = 0 

and then 
(ii) the solution is given by 

where 

Dv is 

z - 1 

~D 

cx dx 

c2 d2 

0 3 f3 . 

i.e. the determinant of the coefficients obtained by covering up the x-
column, 

)y is 
ax cx 

a2 c2 

fl3 c3 

i.e. the determinant of the coefficients obtained by covering up t h e ^ 
column, 

*i dA 

D7 is d, 

i.e. the determinant of the coefficients obtained by covering up the z-
column, and 

D is a2 b2 c2 

H h c3 
i.e. the determinant of the coefficients obtained by covering up the 
constants-column. 
For example, to solve 

2x + 3y-4z-26 = 0 
x-5y-3z + S7=0 

-Tx + 2y + 6z-\2=0 
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the solution is given by: 

4 
3 
6 

- 2 6 
87 

- 1 2 

2 
1 

1-7 

z 
3 

- 5 
2 

- 2 6 
87 

- 1 2 

2 

1 

- 7 

-1290 1806 -1161 
from which, 

-1 
Ϊ29 

-y 
-4 -26 
-3 87 
6 -12 

2 3 - 4 
1 -5 -3 

-7 2 6 

1290 -1860 
- = 10,^ = — r ^ r = 14 and z = 

1161 
-129 -129 -129 = 9 
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6 Complex numbers 

1 If the quadratic equation x2 + 2x + 5 =0 is solved using the 
quadratic formula then 

j c _ - 2 ± V [ ( 2 ) 2 - ( 4 ) ( l ) ( 5 ) ] _ - 2 ± V - 1 6 _ - 2 ± V [ ( 1 6 ) ( - l ) 3 
2(1) 2 2 

= - 2 ± v / 1 6 V - l = - 2 ± V - l 
2 2 

= - 1 ± 2 V ~ 1 
It is not possible to evaluate yj — 1 in real terms. However, if an 
operator j is defined asj=y/— 1 then the solution may be expressed 
a s * = - l + j 2 . 
2 — 1 +ft and — 1 —ft are known as complex numbers. Both 
solutions are of the form a +jb, V being termed the real part and 
jb the imaginary part. A complex number of the form a +jb is 
called a cartesian complex number. 
3 In pure mathematics the symbol i is used to indicate V — 1 (i 
being the first letter of the word imaginary). However i is the 
symbol of electric current, and to avoid possible confusion the next 
letter in the alphabet, j , is used to represent V — 1. 
4 A complex number may be represented pictorially on re
ctangular or cartesian axes. The horizontal (or x) axis is used to 
represent the real axis and the vertical (ory) axis is used to 
represent the imaginary axis. Such a diagram is called an Argand 
diagram. In Figure 6.1, the point A represents the complex 
number (3+fl) and is obtained by plotting the coordinates (3,j2) 
as in graphical work. Figure 6.1 also'shows the Argand points B, C 
and D representing the complex numbers (— 2 +j4), (— 3 — jb) and 
(1 — fl) respectively. 
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Figure 6.1 

Addition and subtraction of complex 
numbers 

5 Two complex numbers are added/subtracted by adding/sub
tracting separately the two real parts and the two imaginary parts. 
Thus, for example, 

(2 +/3) + (3 -ß) = 2 +/3 + 3 -j4 = 5 -j\ 

and 

(2 +ß) - (3 -74) = 2 +J3 - 3 +;4 = - 1 +;7. 

Multiplication and division of complex 
numbers 

6 Multiplication of complex numbers is achieved by 
assuming all quantities involved are real and then using j = — 1 to 
simplify. Thus 

( 3 + j 2 ) ( 4 - j 5 ) « 1 2 - 7 l 5 + j B - / l O = ( 1 2 - - 1 0 ) + j ( - 1 5 + 8) 
= 22- 7 7 
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7 The complex conjugate of a complex number is obtained 
by changing the sign of the imaginary part. Hence the complex 
conjugate of a +jb is a —jb. The product of a complex number and 
its complex conjugate is always a real number. For example, 

(3+>4)(3->4)=9-;ϊ2+;ϊ2-/ΐ6==9+16 = 25. 
[(a+jb)(a— jb) may be evaluated 'on sight' as a2 + b2]. 
8 Division of complex numbers is achieved by multiplying 
both numerator and denominator by the complex conjugate of the 
denominator. For example, 

2-fi 2-ß (3-ß) 6 - J B - J 1 5 + / 2 0 -14- . ,23 
3+>4 3+J4 (3-fl) 32 + 42 25 

- 1 4 23 
= j— or - 0 . 5 6 - T 0 . 9 2 

25 J25 J 

Complex equations 
9 If two complex numbers are equal, then their real parts are 
equal and their imaginary parts are equal. Hence if a +jb = c+jd, 
then a — c and b — d. 

The polar form of a complex number 
(i) Let a complex number Z De 

x+j?> as shown in the Argand 
diagram of Figure 6.2. Let dis
tance OZ be r and the angle OZ 
makes with the positive real axis 
be Θ. From trigonometry, 
x=r cos Θ and y-r sin Θ. Hence 
Z~ χ +jy=r c o s 0 +j"r s m 0 
= r(cos Θ +j sin Θ). 
Z~r(cos Θ +j sin Θ) is 
usually abbreviated to £ = rZ_0 
which is known as the polar 
form of a complex number. 
(ii) r is called the modulus (or magnitude) of Z a n d is 
written as mod £ or \Zi, r is determined using Pythagoras' 
theorem on triangle OAZ in fig. 2, i.e., r=y/(x2-\-yl). 
(iii) Θ is called the argument (or amplitude) of Z and is 
written as arg Ζ· By trigonometry on triangle OAZ, 

y 
arg £ = 0 = arctan -. 

Real axis 

Figure 6.2 
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(iv) Whenever changing from cartesian form to polar 
form, or vice-versa, a sketch is invaluable for determining 
the quadrant in which the complex number occurs. 
Thus, for example, to determine (3+j4) in r/_0 form, 

r = v / (32 + 42)=5 

4 
and, from Figure 6.3(a), 0=arctan -=53°8'. 

Hence (3+74) = 5Δ53°8'. 
Also 12Δ165°=12 cos 165°+jl2 sin 165° 

= - 11.59+7*3.11, as shown in Figure 6.3(b). 

(b) 

Figure 6.3 

Multiplication and division in polar form 
11 I f£ , = r,Z_0, and£2=r2Z_02 then: 

(ü) f L - Ü ^ - ö , ) . 
Thus, for example, 

8Δ25οχ4Ζ.60ο=(8χ4)Ζ_(25ο+60ο) = 32Ζ_85° 

16Z_75° 16 A Ä and = —Δ(75°-15° =8Ζ_βΟ° 
2Z_15° 2 

De Moivre's theorem 
12 De Moivre's theorem states: 

[rZ_0]n=;*Z_/i0, 
which is true for all positive, negative or fractional values of n, and 
is thus useful for determining powers and roots of complex 
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numbers. For example, 

[3 L 20°]4= 34 L (4 x 20°) = 81 L 80° 

The square root of a complex number is determined by letting 
1 . . 

n = - in De Moivre's theorem, i.e., 
2 

V[rZ-Ö]=[rZ.6l]1/2=r1/2^-^=Vr^-. 

There are two square roots of a real number, equal in size 
but opposite in sign. Thus, for example, to find the two square 
roots of (5 4-7*12): 

12 
(5+>12)=V(52+122)Z-arctan— = 13Δ67°23' 

5 
When determining square roots two solutions result. To 

obtain the second solution one way is to express 13Z_67°23' also as 
13L (67°23' +360°), i.e., 13Δ427°23\ When the angle is divided 
by 2 an angle less than 360° is obtained. Hence 

V(5+/12) =Χ/[13Ζ_67°23Ί and V[13Z.427°23'] 
= [13Δ67°23']1/2 and [13Δ427°23']1/2 

= 131/2Z.^-x67°23') and 13,/2Ζ_(-><427023' J 

= V13/L33°42' and V13Z_213°42' 
= 3.61 Δ33°42' and 3.61 Δ213°42' 

Thus, in polar form, the two roots are 3.61 Z_33°42 and 
3.61 L- 146° 18*. 

3.61 L 33° 42'= 3.61 (cos 33° 42' + j sin 33°42') = 3.0+j2.0 
3.61 L - 146° 18'=3.61[cos(- 146° 18') +j s in(- 146° 18')] 

= -3.0->2.0 

Thus, in cartesian form the two roots are ± (3.0 +fi.0). 
From the Argand diagram shown in Figure 6.4 the two roots 

are seen to be 180° apart, which is always true when finding 
square roots of complex numbers. 
13 When finding the Λ root of a complex number, there are 
n solutions. For example, there are three solutions to a cube root, 
five solutions to a fifth root, and so on. In the solutions to the roots 
of a complex number, the modulus, r, is always the same, but the 
arguments, Θ, are different. Arguments are symmetrically spaced 

/360V 
on an Argand diagram and are ( 1 apart, where n is the 

V n J 
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Imaginary axis 

Figure 6.4 

number of the root required. Thus if one of the solutions to the 
cube root of a complex number is, say, 5Z.200, the other two roots 

are symmetrically spaced (?J i.e., 120° from this root and the 

three roots are 5Z_20°, 5L 140° and 5Z_260°. For example, to 
determine the roots of ( - 14+j3)~2/5: 

14+7'3= 14.32 L 167° 54' 
and 

(" 14+>3)-2/5=14.32_2/5Z_^ — x 167°54' j=0.3448L -67° 

e five roots each 
/360\° 

, ( - ) , i . , , 7 r 

10' 

There are five roots each symmetrically placed around the Argand 
/360\° 

diagram, ( —^- ) , i.e., 72° apart. Thus the roots are: 

0.3448Z_-67° 10', 0.3448L4°50', 0.3448L76°50', 
0.3448L 148° 50' and 0.3448L220° 50' 

Application of complex numbers 
14 There are several applications of complex numbers in science 
and engineering, in particular in electrical alternating current 
theory and in mechanical vector analysis. 

The efFect of multiplying a phasor by j is to rotate it in a 
positive direction (i.e. anticlockwise) on an Argand diagram 
through 90° without altering its length. Similarly, multiplying a 
phasor by —j rotates the phasor through — 90°. These facts are 
used in a.c. theory since certain quantities in the phasor diagrams 
lie at 90° to each other. For example, in the R-L series circuit 
shown in Figure 6.5(a), VL leads /by 90° (i.e., /lags VL by 90°) and 
may be written &sjVL, the vertical axis being regarded as the 
imaginary axis of an Argand diagram. Thus VR+jVL= V and since 
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Phasor diagram Phasor diagram 

Figure 6.5 

VR = IR, V=IXL (where XL is the inductive reactance, 2π/Ζ, ohms) 
and V=IZ (where Z ls m e impedance) then R+jVL = Z- Similarly, 
for the R-C circuit shown in Figure 6.5(b), Vc lags / by 90° (i.e. / 

leads Vc by 90°) and VR-jVc= V, from which R-jXc = Z (where 

1 \ 
Xc is the capacitive reactance, —— ohms I. 

Thus Z= (4+./7)Ω represents a impedance consisting of a 4Ώ 
resistance in series with an inducatance of inductive reactance 7Ω. 

Similarly an impedance of (5 — 7'3)Ω represents a 5Ω resistance 
in series with a capacitor of capacitive reactance 3Ω. Complex 
numbers are particularly useful with parallel a.c. circuits. For 
example, for the circuit shown in Figure 6.6 impedance Z f°r tne 
three-branch parallel circuit is given by: 

1 1 1 1 
- = — + — + - - - , where Z\ = (4 + /3), ^ 2 = 10, and 

<?3=12_/5. 

Admittance, Yx = 
4- /3 4->3 

Zx 4+j3 4+J3 \-β 42 + 32 

= 0.160-β. 120 Siemens 

1 1 
Admittance, T9 = = — = 0.10 Siemens. 

Z2 io 
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/?2=10Ω 

Η τ -

Λο=12Ω Hh 
Χ Γ = 5Ω 

240V,50Hz 

Figure 6.6 

1 1 
Admittance, T*= = -

' ό V 1 

12+75 12+75 
Ζ3 12-75 12-75 12+7'5 122 + 52 

= 0.0710+70.0296 Siemens 
Total admittance 
r= r ,+ r2+ r3= (0.160-70.120)+ (o.io)+ (0.0710+70.02%) 

= 0.331-70.0904 
= 0.343 Z_ - 15° 17' Siemens 

Current / = — = VT= (240Z_0°) (0.343Z_ - 15° 17') 

= 82.32 L - 15° 17' amperes. 

Exponential form of a complex number 
15 Certain mathematical functions may be expressed as power 
series, three examples being: 

_4 

( i ) i , = ' + X + 2T + 3 ! + 4 ! + 5! + 

(ii) sin x = x h l· 
' 3! 5! 7! 

(iii) cos x=\ 1 h 
V ' 2! 4! 6! 

(1) 

(2) 

(3) 

16 Replacing x in equation (1) by the imaginary number^, gives: 
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^ 2! 3! 4! 5! 

βΘ2 βθ3 4fl4 505 
= 1 +ß+J +J +J +J + . . . 

J 2! 3! 4! 5! 

By definition, j = yj(- 1), henceß— -\,ß= -j,J4=\,J6 =j, and so 
on. 

Λ Λ 02 03 04 05 

Thus, / = 1 + J 0 >—+ — + i · · · 
2! 3! 4! 5! 

Grouping real and imaginary terms gives: 

V 2! 4! / · \ 3! 5! / 

However, from equations (2) and (3): 

( 1 + . . . ) = c o s 0 a n d ( 0 + . . . = sin 0 V 2! 4! J V 3! 5! / 
Thus *# = cos 0 + / sin 0 (4) 

Writing - 0 for 0 in equation (4), gives: 

^ - e ) = c o s ( - 0 ) - K / s i n ( - 0 ) 

However, cos( —0) =cos 0 and sin( —0) = — sin 0 
Thus e-J°=cos 0 - j sin 0 (5) 
17 (i) The polar form of a complex number z is: 

r (cos 0 +j sin 0). But, from equation (4), 
cos 0 +j sin 6 = efl. Therefore, z = rr. When a complex 
number is written in this way, it is said to be expressed 
in exponential form. 
(ii) The exponential form of a complex number is re
quired when finding logarithms of complex numbers. 
For example 

1η(3+>4) = 1η[5Ζ_53°8'] = 1η[5Δ0.927] 
since 53° 8'= 0.927 rad 

= ln[5^·927] 
= ln 5+In ^ 0 · 9 2 7 from the laws of logarithms 
= ln 5+7θ.{}27, from the definition of a 

logarithm 

i.e. In(3+y4) = 1.609+/0.927 correct to 3 decimal places. 
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Expressing cos ηθ and sin ηθ in terms of 
powers of cos 0 and sin Θ 
18 The complex number £ = r(cos Θ +j sin 0), when raised to 
power n, becomes ^l = in (cos ηθ +j sin ηθ) by de Moirvre's 
theorem. 

Also £ = [r(cos 0 +j sin 0)]" 
= r*(cos0+jsin 0)B 

Thus, cos ηθ +j sin ηθ = (cos 0 + j sin 0)" (6) 
The right-hand side of this equation can be expanded by 

applying the binomial theorem, i.e. 

(cos 0+7 sin 0)n = cosn0 + w c o s " " ^ sin 0 + - - cos" - 2 0 / sin20+ 

B u t / = - 1,j3 = — j , j*=\, and so on. 

Hence, (cos 0 +j sin 0)" = cos"0 +jn cos"-1 0 sin 0 -

cos""2 0 sin2 0 - / - cosn_30 sin30 + 
2! J 3! 

Grouping real and imaginary terms gives: 

(cos 0 +j sin 0)n = cosn0 - W("~ ) cos»-2g sin20 + 

n(n-\)(n-2)(n-3) . 
cos" *0 sin* 0 - . . , 

4! 

+ / « cos»" '0 sin 0-W ( W~1
3

)
!
( W"2 ) cos«-30 sin30+ .. Λ 

and from equation (6): 

(cos ηθ +j sin ηθ) = cosn0 - ~ cos" " 20 sin20 + 

n(n-\)(n-2)(n-3) n_4 . 
—" sin σ — . . . 4! - cos sin 

+ / « c o s - ' θ s i n g - " ( " > ) (" 2 ) cos»"3 0 sin30 + .. \ 

Equating the real parts: 

cos « 0 = c o s * 0 - ^ - — cos"~20 sin20 + . . . (7) 
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Equating the imaginary parts: 

. n(n-lXn-2) β 
sin Λ 0 = Λ cos""^ sin 0 cos"_30 sin30 + . . . (8) 

Equations (7) and (8) are used to express cos ηθ and sin ηθ in 
terms of powers of cos Θ and sin Q< 
Thus, for example, from equation (7): 

^ 40 4 ( 3 ) 20 · 2ü (4)(3)(2)(1) . 
cos 40=cos*0— cos^0 siir0H cosu0 sin*0 

2! 4 ! 

=cos40 - 6 cos20 sin20 + sin40 

and from equation (8): • *Λ * 4Λ · a i 5 ) ( 4 ) ( 3 ) 2f l · 3Λ 
sin 5t7 = 5 cos u sin u cos*0 smJ0 + 

3! 
(5)(4)(3)(2)(1) 

5! 

= 5 cos40 sin 0 - 1 0 cos20 sin30+sin50 

cos°0 sin50 

Expressing cos"0 and sin"0 in terms of 
sines and cosines of multiples of Θ 

19 From para 16, equations (4) and (5): 

£ = / = cos θ+j sin 0 (9) 

- = -p = e-J° = cos 0 - > sin 0 (10) 

Adding equations (9) and (10) gives: 

Z + - = 2 cos 0 
z 

and it follows that 

= 2*cos',0 (11) ( . ♦ ! ) . , 

Subtracting equation (10) from equation (9) gives: 

Z — =j 2 sin 0 
Z 

It follows that 

=/2"s in , , 0 (12) 
( - ! ) - ' 

91 



If z = cos 0 + j sin 0, then from de Moivre's theorem, 

Z* = cps Λ0 +j sin «0 

. 1 _ 
Also, if- = cos u—j sin 0, then from de Moivre's theorem, 

z 
— = cos ηθ — j sin ηθ 
z" J 

Adding gives 

(V + —] = 2cos«0. (13) 

Subtracting gives 

^ - i ) = 2/sin*0 (14) 

Equations (11) to (14) are used for expressing powers of cos 0 
and sin 0 in terms of cosines and sines of multiples of 0. 
For example, to express sin2C in terms of cosines of multiples of C: 

From equation (12),/2" sin"0 = U — j 

When n = 2 , / 2 2 sin2C = ( * - I ) = ^ - 2 + i = / V + - ^ - 2 

From equation (13), when n = 2, ( z2 + -j ) = 2 cos 2C. 
Hence/2 2 sin2C=2 cos 2 C - 2 , and since / = 1, 
-4s in 2 C = 2 c o s 2 C - 2 

sin2 C = - ( 2 - 2 cos 2C), i.e., s in 2 C=-( l -cos 2C) 
4 2 

Similarly to express cos50 in terms of cosines of multiples of 0: 

From equation (11), 2" cos"0 = U + - j 

inomial th< 

/ 1\5 , A 1 , 1 0 1 1 1 
(z + -\ = *5 + 5*4. - + 10*3. -j-+ 10A -j + 5z. -4+-5 

. o 10 5 1 
= zb + 5z*+\0z + — + - 3 + 3 

-('♦?M'4)-»B 

/ 1\5 

Expanding [ z + - I by the binomial theorem gives: 

\5 
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But from equation (13), ^" + — = 2 cos «0 

Hence U + - ) =2 cos 50 + 5(2 cos 30) + 10(2 cos 0) 

Thus25cos50 = 2 cos 50+10 cos 30 + 20 cos 0 

i.e. cos50=-j(cos 50 + 5 cos 30 + 10 cos 0) 
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7 Geometry 

1 Geometry is a part of mathematics in which the properties of 
points, lines, surfaces and solids are investigated. 

Angles 
2 An angle is the amount of rotation between two straight lines. 
Angles may be measured in either degrees or radians (see para 14). 

1 revolution = 360 decrees, thus 1 degree = th of one 
^ * 360 

revolution. 
1 1 

Also 1 minute = —th of a degree and 1 second = —th of a minute. 
60 6 60 

1 minute is written as Γ and 1 second is written as 1". 
Thus 1° = 60' and l '=60". 
3 (i) Any angle between 0° and 90° is called an acute 

angle. 
(ii) An angle equal to 90° is called a right angle. 
(iii) Any angle between 90° and 180° is called an obtuse 
angle. 
(iv) Any angle greater than 180° and less than 360° is 
called a reflex angle. 

4 (i) An angle of 180° lies on a straight line. 
(ii) If two angles add up to 90° they are called com
plementary angles. 
(iii) If two angles add up to 180° they are called sup
plementary angles. 
(iv) Parallel lines are straight lines which are in the 
same plane and never meet. (Such lines are denoted by 
arrows, as in Figure 7.1). 
(v) A straight line which crosses two parallel lines is 
called a transversal (see MN in Figure 7.1). 

5 With reference to Figure 7.1: 
(i) a=c, b=d, e=g and/=A. Such pairs of angles are 
called vertically opposite angles. 
(ii) a=e, b=f, c=g and d=h. Such pairs of angles are 
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called corresponding angles. 
(iii) c=e and b=h. Such pairs of angles are called alter
nate angles. 
(iv) b+e= 180° and c+h= 180°. Such pairs of angles are 
called interior angles. 

Triangles 
6 A triangle is a figure enclosed by three straight lines. The 
sum of the three angles of a triangle is equal to 180°. 

Types of triangles: 
7 (i) An acute-angled triangle is one in which all the 

angles are acute, i.e. all the angles are less than 90°. 
(ii) A right-angled triangle is one which contains a 
right angle. 
(iii) An obtuse-angled triangle is one which contains 
an obtuse angle, i.e. one angle which lies between 90° and 
180°. 
(iv) An equilateral triangle is one in which all the sides 
and all the angles are equal (i.e. each 60°). 
(v) An isosceles triangle is one in which two angles 
and two sides are equal. 
(vi) A scalene triangle is one with unequal angles and 
therefore unequal sides. 

8 With reference to Figure 7.2: 
(i) Angles A, B and C are called interior angles of the 
triangle. 
(ii) Angle Θ is called an exterior angle of the triangle and 
is equal to the sum of the two opposite interior angles, i.e. 
e=A+C. 
(iii) a+ b+c is called the perimeter of the triangle. 

9 With reference to Figure 7.3, the side opposite the right angle 
(side b) is called the hypotenuse. 
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Figure 7.2 Figure 7.3 

The theorem of Pythagoras states: 
'In any right-angled triangle, the square on the hypotenuse is 
equal to the sum of the squares on the other two sides.' 

Hence 6 2 = Α 2 + Λ 

10 Two triangles are said to be congruent if they are equal in 
all respects, i.e. three angles and three sides in one triangle are 
equal to three angles and three sides in the other triangle. Two 
triangles are congruent if: 

(i) the three sides of one are equal to the three sides of 
the other (SSS), 
(ii) they have two sides of the one equal to two sides of 
the other, and if the angles included by three sides are 
equal (SAS), 
(iii) two angles of the one are equal to two angles of the 
other and any side of the first is equal to the correspond
ing side of the other (ASA), or 
(iv) their hypotenuses are equal and if one other side of 
one is equal to the corresponding side of the other (RHS). 

11 Two triangles are said to 
be similar if the angles of 
one triangle are equal to the 
angles of the other triangle. 
With reference to Figure 7.4: 
triangles ABC and PQR are 
similar and the corresponding 
sides are in proportion to 
each other, Figure 7.4 

a b c 
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Circles 
12 A circle is a plain figure enclosed by a curved line, every 
point on which is equidistant from a point within, called the 
centre. 

Properties of circles: 
13 (i) The distance from the centre to the curve is called the 

radius, r, of the circle (see OP in Figure 7.5). 
(ii) The boundary of a circle is called the circumfer
ence, c. 
(iii) Any straight line passing through the centre and 
touching the circumference at each end is called the 
diameter, </, (see QR in Figure 7.5). Thus d= 2r. 

circumference 
(iv) The ratio =a constant for any circle. 

diameter 
This constant is denoted by the Greek letter π (pro
nounced 'pie'), where π = 3.14 159, correct to 5 decimal 
places. 

c 
Hence - = π or c=nd or c=2nr. 

d 
(v) A semicircle is one half of the whole circle. 
(vi) A quadrant is one quarter of a whole circle. 
(vii) A tangent to a circle is a straight line which meets 
the circle in one point only and does not cut the circle 
when produced. AC in Figure 7.5 is a tangent to the circle 
since it touches the curve at point B only. If radius OB is 
drawn, then angle ABO is a right angle. 
(viii) A sector of a circle is the part of a circle between 
radii (for example, the portion OXY of Figure 7.6 is a 
sector). If a sector is less than a semicircle it is called a 
minor sector, if greater than a semicircle it is called a 
major sector. 
(ix) A chord of a circle is any straight line which divides 
the circle into two parts and is terminated at each end by 
the circumference. ST, in Figure 7.6, is a chord. 
(x) A segment is the name given to the parts into which 
a circle is divided by a chord. If the segment is less than 
semicircle it is called a minor segment (see shaded area 
in Figure 7.6). If the segement is greater than a semicircle 
it is called a major segment (see the unshaded area in 
Figure 7.6). 
(xi) An arc is a portion of the circumference of a circle. 
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Figure 7.8 Figure 7.9 

The distance SRT in Figure 7.6 is called a minor arc and 
the distance SXYT is called a major arc. 
(xii) The angle at the centre of a circle, subtended by an 
arc, is double the angle at the circumference subtended by 
the same arc. With reference to Figure 7.7, 

Angle AOG = 2 x angle ABC. 

(xiii) The angle in a semicircle is a right angle (see angle 
BQP in Figure 7.7). 

14 One radian is defined as the angle subtended at the centre 
of a circle by an arc equal in length to the radius. With reference 
to Figure 7.8, 

for arc length /, Θ radians=- or l=rO, where Θ is in radians. 
r 

n l 2*r 
When /= whole circumference (~2nr) then 0=-= = 2π, 

r r 
i.e. 2π radians = 360° or π radians = 180°. Thus 

180° 
1 rad= = 57.30°, correct to 2 decimal places. Since 
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π rad = 180°, then — rad = 90°, — rad = 60°, — rad = 45°, 
2 3 4 

and so on. 
5 The equation of a circle, centre at origin, radius r, is given 

r-
x2+y2 = S 

Figure 7.9 shows a circle x2 + y2 = 9 
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8 Graphs 

Straight line graphs 
1 A graph is a pictorial representation of information showing 
how one quantity varies with another related quantity. The most 
common method of showing a relationship between two sets of 
data is to use cartesian or rectangular axes as shown in Figure 
8.1. 
2 The points on a graph are called co-ordinates. Point A in 
Figure 8.1 has the co-ordinates (3,2), i.e. 3 units in the x direction 
and 2 units in the y direction. Similarly, point B has co-ordinates 
( — 4, 3) and C has co-ordinates (—3, —2). The origin has co
ordinates (0, 0). 

y -axis 

4 

0 B ( - 4 , 3 ) 3 

2 

Origin 1 

» I \ 1 \ 
- 4 ^ 3 ^2 -1 0 

-1 

X -2 
C ( -3 , - 2 ) 

-3 

-4 

-

-

Abscissa 

I 1 
1 2 : 

A (3 , 2) 
l 

Ordinate 

J 4 x -

Figure 8.1 
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3 The horizontal distance of a point from the vertical axis is 
called the abscissa and the vertical distance from the horizontal 
axis is called the ordinate. 
4 Let a relationship between two variables x and^ bej> = 3x + 2. 
When * = 0,j; = 3(0) +2 = 2, 
whenx=l,jy = 3( l )+2 = 5, 
when x = 2,jy = 3(2) + 2 = 8 , and so on. 
Thus co-ordinates (0, 2), (1, 5) and (2, 8) have been produced 
from the equation by selecting arbitrary values of x, and are shown 
plotted in Figure 8.2. When the points are joined together a 
straight-line graph results. 

I 

-y 

y 

8 

6 

4 

2. 

0 

-

-

1 
1 

^ K = 3x + 2 

I 
2 

Figure 8.2 

5 The gradient or slope of a straight line is the ratio of the 
change in the value ofy to the change in the value of x between 
any two points on the line. If, as x increases (-*),y also increases 
(t), then the gradient is positive. 

In Figure 8.3(a) 
change iny CB 7 - 3 4 

the gradient of AC= = =- = - = 2 . 
change in x BA 3 - 1 2 

If as x increases {-*),y decreases (1), then the gradient is negative. 
In Figure 8.3(b), 
the gradient of DF: change my YE_ 11-

change in x ED — 3 
2 = 9 =_ 

^ ~ ^ 3 ~ ~ 
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y, 

3 

2 

1 

0 

I 

1 1 
1 2 

(c) 

y = 3 

1 fc 
3 \ 

Figure 8.3 

Figure 8.3(c) shows a straight line graphj> = 3. Since the straight 
line is horizontal the gradient is zero. 
6 The value ofj when x = 0 is called thej*-asris intercept. In 
Figure 8.3(a) thejv-axis intercept is 1 and in Figure 8.3(b) is 2. 
7 If the equation of a graph is of the form y = mx + c, where m 
and c are constants, the graph will always be a straight line, m 
representing the gradient and c thejy-axis intercept. 

Thus , j=5*+2 represents a straight line of gradient 5 and 
j-axis intercept 2. Similarly, y= — 3*— 4 represents a straight line 
of gradient —3 andj-axis intercept —4. 
8 When a set of co-ordinate values are given or are obtained 
experimentally and it is believed that they follow a law of the form 
y = mx + c, then if a straight line can be drawn reasonably close to 
most of the co-ordinate values when plotted, this verifies that a law 
of the formy = mx + c exists. From the graph, constants m (i.e. 
gradient) and c (i.e. j-axis intercept) can be determined. This 
technique is called 'determination of law'. (See paras 11 to 14.) 
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9 (a) The process of finding co-ordinate values in between the 
given information is called interpolation. 

(b) The process of finding co-ordinate values which are 
outside of a given range of values is called extrapolation. 

Summary of general rules to be applied when drawing 
graphs 

10 (i) Give the graph a title clearly explaining what is 
being illustrated. 
(ii) Choose scales such that the graph occupies as much 
space as possible on the graph paper being used. 
(iii) Choose scales so that interpolation is made as easy as 
possible. Usually scales such as 1 cm = 1 unit, or 1 cm = 2 
units, or 1 cm = 10 units are used. Awkward scales such as 
1 cm = 3 units or 1 cm = 7 units should not be used. 
(iv) The scales need not start at zero, particularly when 
starting at zero produces an accumulation of points within 
a small area of the graph paper. 
(v) The co-ordinates, or points, should be clearly marked. 
This may be done either by a cross, or by a dot and 
circle, or just by a dot (see Figure 8.1). 
(vi) A statement should be made next to each axis 
explaining the numbers represented with their appropriate 
units. 
(vii) Sufficient numbers should be written next to each 
axis without cramping. 

Reduction of non-linear laws to linear 
form 

11 Frequently, the relationship between two variables, say x and 
y, is not a linear one, i.e. when x is plotted againsty a curve 
results. In such cases the non-linear equation may be modified to 
the linear form,y = mx + c, so that the constants, and thus the law 
relating the variables can be determined. This technique is called 
'determination of law9. 
12 Some examples of the reduction of equations to linear 
form include: 

(i) y = ax2 + b compares with T=mX+c, where m = a, c = b 
and X = x2. Hence y is plotted vertically against x2 

horizontally to produce a straight line graph of gradient 
V andj'-axis intercept lb\ 

(ii) y = - + b 
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1 
y is plotted vertically against - horizontally to produce a 

x 
straight line graph of gradient V and j-axis intercept '£'. 
(iii) y = ax2 + bx 

y 
Dividing both sides by x gives - = ax + b. 

x 
y 

Comparing with Y=mX+c shows that - is plotted 
x 

vertically against x horizontally to produce a straight line 
y 

graph of gradient V and —axis intercept lb\ 
x 

(iv) y = axn 

Taking logarithms to a base of 10 of both sides gives: 

i.e. lg y = n lg x + lg a 

which compares with Y=mX+c, 
which shows that lgjy is plotted vertically against lg x 
horizontally to produce a straight line graph of gradient n 
and lg^-axis intercept lg a. 
(v) y = abx 

Taking logarithms to a base of 10 of both sides gives: 

i.e. \gy = \g a + \g bx 

i.e. \gy = x \gb + \g a 
orlgjv=(lg £)x + lga 

which compares with Y=mX+c, 
which shows that lg y is plotted vertically against x 
horizontally to produce a straight line graph of gradient 
lg b and lgj-axis intercept lg a. 
(vi) y = a<f\ 
Taking logarithms to a base of e of both sides gives: 

l n j = ln (aebx) 
i.e. l n j = ln α-f-In ebx 

i.e. In y = \n a + bx In e 
i.e. \ny = bx + \n a 

which compares with Y=mX-\-ci 
which shows that lnjy is plotted vertically against x 
horizontally to produce a straight line graph of gradient b 
and lnj-axis intercept In a. 
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Logarithmic graph paper 
13 (i) Graph paper is available where the scale markings 

along the horizontal and vertical axes are proportional to 
the logarithms of the numbers. Such graph paper is called 
log-log graph paper. 
(ii) A logarithmic scale is shown in Figure 8.4 where the 
distance between, say 1 and 2 is proportional to lg 2 —lg 
1; i.e. 0.3010 of the total distance from 1 to 10. Similarly, 
the distance between 7 and 8 is proportional to lg8 —lg 7, 
i.e. 0.05799 of the total distance from 1 to 10. Thus the 
distance between markings progressively decreases as the 
numbers increase from 1 to 10. 

1 2 3 4 5 6 7 8 9 1 0 

Figure 8.4 

(iii) With log-log graph paper the scale markings are 
from 1 to 9, and this pattern can be repeated several times. 
The number of times the pattern of markings is repeated 
on an axis signifies the number of cycles. When the 
vertical axis has, say, 3 sets of values from 1 to 9 and the 
horizontal axis has 2 sets of values from 1 to 9, then this 
log-log graph paper is called 'log 3 cycle * 2 cycle'. 
Many different arrangements are available ranging from 
'log 1 cycle x 1 cycle' through to 'log 5 cycle x 5 cycle'. 
(iv) To depict a set of values, say, from 0.4 to 161 on an 
axis of log-log graph paper, 4 cycles are required, from 
0.1 to 1, 1 to 10, 10 to 100 and 100 to 1000. 

Plotting graphs of the form y=axn in linear form using 
logarithmic graph paper 

14 From para \2(iv),y = axn reduces to lgjy = w lg x + lg a, 
showing that \gy is plotted vertically against lg x horizontally to 
produce a straight line graph. With log-log graph paper available 
x and y may be plotted directly, without having to firstly determine 
their logarithms. The gradient of the straight line gives n and lg a 
is given by the point where the line passes through the ordinate x— 1 
(i.e. where lg 1=0). A straight line graph representingj = flx" is 
shown on log-log graph paper in Figure 8.5 corresponding to the 
values: 

0.41 
0.45 

0.63 
1.21 

0.92 
2.89 

1.36 
7.10 

2.17 
20.79 

3.95 
82.46 y 

To evaluate constants a and n, two methods are available. 
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Figure 8.5 

Method 1 
Any two points on the straight line, say points A and C are 
selected, and AB and BC are measured. 

AB 11.5 units 
The gradient, n = = = 23 

δ BC 5 units 
Since lg y = n lg x + lg a, when x = 1, lg x — 0 and lg y = lg a. The 
straight line crosses the ordinate x= 1.0 atj> = 3.5 
Hence lg a = lg 3.5, i.e. a = 3.5 
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Method 2 
Any two points on the straight line, say points A and C, are 
selected. A has co-ordinates (2, 17.25) and C has co-ordinates 
(0.5,0.7). 
S'mcey = axn then 17.25 = a(2)n (1) 

a n d 0 . 7 = a(0.5)B (2) 

i.e., two simultaneous equations are produced and may be solved 
for a and n. 
Dividing equation (1) by equation (2) to elimate a gives: 

17.25 (2)" / 2 

\ 0 . i 0.7 (0.5)" V 0 · 5 

i.e., 24 .643=4" 
lg 24.643 = n\g 4 

lg 24.643 
and n= = 2 . 3 , correct to 2 significant figures. 

I g 4 

Substituting « = 2.3 in equation (1) gives: 

17.25 = a ( 2 ) 2 3 

17.25 17.25 
i.e. a = — s ^ - = — — = 3.5, correct to 2 significant figures. 

(2)2·3 4.925 δ 5 

Hence the law of the graph isjy = 3. 

Plotting graphs of the form y=a.bn in linear form using 
log-linear graph paper 

From para 12(v) ,y = a.bn reduces to lgj>= (lg b)x + lg a, showing 
that l g j ; is plotted vertically against x horizontally to produce a 
straight line graph. In this case, graph paper having a linear 
horizontal scale and a logarithmic vertical scale may be used. This 
type of graph paper is called l og- l inear graph paper , and is 
specified by the number of cycles on the logarithmic scale. For 
example, graph paper having 3 cycles on the logarithmic scale is 
called 'log 3 cycle x linear' graph paper. 

T h e gradient of the straight line gives lg b and the intercept 
on the vertical axis where x = 0 gives lg a. If it is not possible to 
read this directly then two points on the straight line are selected 
and simultaneous equations solved. 

Plotting graphs of the form y=aekx in linear form using 
log-linear graph paper 

From para \2(vi),j>=ae reduces to l n j = & * + l n a, showing that 
lnjv is plotted vertically against x horizontally to produce a straight 
line graph. Since lnjy = 2.3026 lgjy, i.e., l n jy=(a constant)(lg x), 
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Figure 8.6 

the same log-linear graph paper can be used for Naperian 
logarithms as for logarithms to a base of 10. 

A graph of the form y = afi* is shown in Figure 8.6. 
Gradient of straight line 

* = -
AB In 100-In 10 2.3026 
BC 3.12-(-1.08) 4.20 

= 0.55, correct to 2 significant figures. 

Since lnj> = A:x + ln a, when x = 0, lnj; = ln a, i.c.,y = a. The vertical 
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axis intercept value at x=0 is 18, hence a= 18. The law of the 
graph is thusj> = 18*055x 

When, for example, x is 3.8, 
j= l&o.55(3.8)= 18,2.09= i8(8.0849) = 146 

When, for example,^ is 85, 85 = 18*055\ Hence e
0bbx = — = 4.7222 

18 
1.5523 

and 0.55* = In 4.7222 = 1.5523. Hence x = = 2.82 
0.55 

Graphical solution of equations 
15 Linear simultaneous equations in two unknowns may be 

solved graphically by: 

(i) plotting the two straight lines on the same axes, and 
(ii) noting their point of intersection. 

The co-ordinates of the point of intersection give the required 
solution. Thus, for example, to solve graphically the simultaneous 
equations: 

2x-j> = 4 
x+y = 5 

the equations are first rearranged intoy = mx + c form, giving: 
j = 2 x - 4 (1) 
j = - * + 5 (2) 

Only three co-ordinates need be calculated for each graph since 
both are straight lines. 

x 
y = 2x-4 

0 1 2 
-4 - 2 0 y= - x + 5 

0 1 2 
5 4 3 

Each of the graphs are plotted as shown in Figure 8.7. The point of 
intersection is at (3, 2) and since this is the only point which lies 
simultaneously on both lines then x=3,^=2 is the solution of the 
simultaneous equations. 
16 A general quadratic equation is of the {ormy=ax2 + bx+c, 
where a, b and c are constants and a is not equal to zero. A graph 
of a quadratic equation always produces a shape called a 
parabola. 
17 The gradient of the curve between O and A and between B 
and C in Figure 8.8 is positive, whilst the gradient between A and B 
is negative. Points such as A and B are called turning points. At 
A the gradient is zero and, as x increases, the gradient of the curve 
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K = 2x-4 

Figure 8.7 

y 

0 

Λ V / 

X 

Figure 8.8 

changes from positive just before A to negative just after. Such a 
point is called a maximum value. At B the gradient is also zero 
and, as x increases, the gradient of the curve changes from negative 
just before B to positive just after. Such a point is called a mi
nimum value. 

Quadratic graphs 
18 (a) 

Graphs ofy= x2, y- 3x? a.ndy=-x2 are shown in Figure 8.9. 

All have minimum values at the origin (0, 0). Graphs of 
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/ = 3x" 

-1 0] 

2h κ ψ 2 

1h 

(c) 

. 0 
-1 f 

/ - 1 

/ "2 

y 

\ 
1 * 

\K = -3x 

\ 

(b) 

j>>= - x 2 , j = - 3 * 2
 Η η ( = ι ^ = _ _ x 2 a r e shown in Figure 8.10. 

All have maximum values at the origin (0, 0). 

When y = ax2 

(i) curves are symmetrical about the j>-axis, 
(ii) the magnitude of V affects the gradient of the curve 
and 
(iii) the sign of V determines whether it has a maximum 
or minimum value. 

(b)> v = ajc2 + c 

Graphs ofy=x2+3,y=x2- 2 , j y = - x 2 + 2 a n d 7 = - 2 * 3 - l 
are shown in Figure 8.11. 
W h e n j = a j c 2 + c : 
(i) curves are symmetrical about the^y-axis, 
(ii) the magnitude of 'a ' affects the gradient of the curve, and 
(iii) the constant V is the^-axis intercept. 

(c) >; = aJt2 + Ajc + c 

Whenever '£' has a value other than zero the curve is 
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y=x'+3 

y=-xz+2 

Figure 8.11 

y = - 2 x z - / 

displaced to the right or left of the j-axis. When - is 
a 

b 
positive, the curve is displaced — to the left of the j-axis, 

t> . as shown in Figure 8.12(a). When - is negative the curve is 
a 

b displaced — to the right of the^-axis, as shown in Figure 

8.12(b). 
19 Quadratic equations of the form ax*+ bx+ c=0 may be 
solved graphically by: 

(i) plotting the graph y = ax2 -I- bx + c, and 
(ii) noting the points of intersection on the x-axis, (i.e. 
where 7=0). 
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12 V 

(a) I 
(b) 

Figure 8.12 

T h e x values of the points of intersection give the required so
lutions since at these points bothj>=0 and ax?+ bx+c=0. T h e 
number of solutions, or roots of a quadrat ic equation depends on 
how many times the curve cuts the x-axis and there can be no real 
roots (as in Figure 8.12(a) or one root (as in Figures 8.9 and 8.10) or 
two roots (as in Figure 8.12(b)). 

From Figure 8.9(b), the solution of the quadrat ic equation 
x2— 5 x + 4 = 0 is x= 1 or x = 4 . 
20 T h e solution of l inear a n d quadrat ic equat ions 
s i m u l t a n e o u s l y may be achieved graphically by: 

(i) plotting the straight line and parabola on the same 
axes, and 
(ii) noting the points of intersection. 

The co-ordinates of the points of intersection give the required 
solutions. Thus , for example, to determine graphically the values of 
x a n d y which simultaneously satisfies the equations: 

y = 2x2 - 3x - 4 and 
j> = 2 - 4 x 

a table of values is first drawn up for each equation. 
y = 2 x 2 - 3 x - 4 is a parabola and a table of values is drawn up as 
shown below. 
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X 

2x2 

-3x 
- 4 

y 

- 2 

8 
6 

- 4 

10 

- 1 

2 
3 

- 4 

1 

0 

0 
0 

- 4 

- 4 

1 

2 
- 3 
- 4 

- 5 

2 

8 
- 6 
- 4 

- 2 

3 

18 
- 9 
- 4 

5 

y = 2 — 4x is a straight line and only three co-ordinates need be 
calculated. 

The two graphs are shown plotted in Figure 8.13 and the points of 
intersection, shown as A and B are at co-ordinates ( — 2, 10) and 
(l-£, —4). Hence the simultaneous solutions occur when x= —2,y 
= 10 and when x= \\,y = —4. (These solutions may be checked by 
substituting into each of the original equations.) 

y = 2xz -3x - 4 



21 A cubic equation of the form ax3 + bx2 + ex + </ = 0 may be 
solved graphically by: 

(i) plotting the graph y = ax3 + £x2 + ex + </, and 
(ii) noting the points of intersection on the x-axis (i.e. 
where y = 0). 

The x-values of the points of intersection give the required solution 
since at these points bothj> = 0 and ax3+ bx?+cx + d = 0. The 
number of solutions, or roots of a cubic equation depends on how 
many times the curve cuts the x-axis and there can be one, two or 
three possible roots, as shown in Figure 8.14. 

(a) (b) (c) 

Figure 8.14 

Thus, for example, to solve the cubic equation 
4x 3 -8x 2 -15x + 9 = 0: 
Let y = 4x3 — 8x2 — 15x + 9. A table of values is drawn up as shown 
below. 

X 

4x3 

-8x 2 

-15x 
+ 9 

y 

- 2 

- 3 2 
- 3 2 

30 
9 

- 2 5 

- 1 

- 4 
- 8 
15 
9 

12 

0 

0 
0 
0 
9 

9 

1 

4 
- 8 

- 1 5 
9 

- 1 0 

2 

32 
- 3 2 
- 3 0 

9 

- 2 1 

3 

108 
- 7 2 
- 4 5 

9 

0 

A graph ofy = 4x3 — 8x2 — 15x + 9 is shown in Figure 8.15. The graph 
crosses the x-axis (wherey = 0) at x= — l-£, x=\ and x = 3 and these 
are the solutions to the cubic equations 4x3 — 8x2 — 15x + 9 = 0. 
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Figure 8.1 5 



Figure 8.17 

Figure 8.18 
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The ellipse 
22 The equation of an ellipse, centre at origin, semi-axes a and b 

is given by: 

The ellipse — H = 1 is shown in Figure 8.16. 

The hyperbola 
23 The equation of a hyperbola is of the form: 

The hyperbola = 1 is shown in Figure 8.17. 

The equation of a rectangular hyperbola is of the form: 

a 
y=-

X 

4 
The rectangular hyperbola y—- is shown in Figure 8.18. 
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9 Mensuration 

1 Mensuration is a branch of mathematics concerned with the 
determination of lengths, areas and volumes. 
2 A po lygon is a closed plane figure bounded by straight lines. 
A polygon which has: 

(i) 3 sides is called a tr iangle 
(ii) 4 sides is called a quadri la tera l 

(iii) 5 sides is called a p e n t a g o n 
(iv) 6 sides is called a h e x a g o n 
(v) 7 sides is called a h e p t a g o n 

(vi) 8 sides is called a oc tagon 

3 There are five types of quadri lateral , these being: 

(i) rectangle, (ii) square, (iii) parallelogram, (iv) rhombus, (v) 
trapezium. (The properties of these are given in paragraphs 4 to 
8.) 

If the opposite corners of any quadrilateral are joined by a straight 
line, two triangles are produced. Since the sum of the angles of a 
triangle is 180°, the sum of the angles of a quadrilateral is 360°. 
4 In a rectangle , shown in Figure 9.1: 

(i) all four angles are right angles, 
(ii) opposite sides are parallel and equal in length, and 
(iii) diagonals AC and BD are equal in length and bisect 
one another. 

5 In a square , shown in Figure 9.2: 

(i) all four angles are right angles, 
(ii) opposite sides are parallel, 
(iii) all four sides are equal in length, and 
(iv) diagonals PR and QS are equal in length and bisect 
one another at right angles. 

6 In a para l l e logram, shown in Figure 9.3: 

(i) opposite angles are equal, 
(ii) opposite sides are parallel and equal in length, and 
(iii) diagonals WY and X Z bisect one another. 
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7 In a rhombus, shown in Figure 9.4: 

(i) opposite angles are equal, 
(ii) opposite angles are bisected by a diagonal, 
(iii) opposite sides are parallel, 
(iv) all four sides are equal in length, and 
(v) diagonals AC and BD disect one another at right 
angles. 

8 In a trapezium, shown in Figure 9.5: 

(i) only one pair of sides is Ey >— 
parallel. / 

9 
10 

H 

Figure 9.5 

Areas of plane figures (see Table 9.1). 
Volumes and surface areas of regular solids (see 
Table 9.2). 

(i) The frustrum of a pyramid or cone is the portion 
remaining when a part containing the vertex is cut off by 
a plane parallel to the base. (See Table 9.2(v)). 
(ii) The volume of a frustum of a pyramid or cone 
is given by the volume of the whole pyramid or cone 
minus the volume of the small pyramid or cone cut off. 
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Table 9.1 

(i) Square 

(ii) Rectangle 

(iii) Parallelogram 

(iv) Triangle 

(v) Trapezium 

L 
V 

(vi) Circle 

(vii) Semicircle 

(viii) Sector of a circle 

(ix) Ellipse 

! 

X 

LI 

~l 

A 
X 

f 

, !t· 
m »I 
' / "' 

/ · > m »I 
b Ί 

A \ « »I 
* b I 

U a »I r _ *i 

/ \ 
b 

® 
- d - I 

^3? 

4i 
^ T 
L· 
^ 

■p-s 

L· 

/ 
n 

h 

< 

- I 
■I 

Ί 

\ 
) 

Area = x2 

Area = / x b 

Area = bx h 

Area = V2 x b x h 

Area = Vila + b)h 

2 *d2 
Area = nr* or —r 4 

Area = yhitr2 or - g -

Area = äfe Ur2) 

or V2r2B {Θ in rads) 

Area = nab 

Perimeter = n(a + b) 
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Table 9.2 

(i) Rectangular pr ism (or cuboid) 

Volume = / x b x h 

Surface area = 2{bh + hi + lb) 

(ii) Cylinder ζ~~Γ—^ 

Volume = nr2h 

Total surface area = 2nrh + 2nr2 

Ü 

(iii) Pyramid i Volume = V3 x A x h, 
where A = area of base, 

h and h = perpendicular height 

I f Total surface area = (sum of areas of 
triangles forming sides) + (area of base) 

Volume = Vsnr b 

Curved surface area = nrl 

Total surface area = nrl + nr2 

(v) Frustum of a cone 

Volume = Vmh(R2 + Rr + r2) 

Curved surface area = nl{R + r) 

Total surface area = nl(R + r) + nr2 + nR2 

Volume = 4/3πτ3 

Surface area = Anr2 

Surface area of zone = 2nrh 
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(iii) The surface area of the sides of a frustum of a 
pyramid or cone is given by the surface area of the 
whole pyramid or cone minus the surface area of the 
small pyramid or cone cut off. This gives the lateral 
surface area of the frustum. If the total surface area of the 
frustum is required then the surface area of the two 
parallel ends are added to the lateral surface area. 
(iv) A frustum of a sphere is the portion contained 
between two parallel planes. In Table 9.2(vi), PQRS is a 
frustum of the sphere. 
(v) A zone of a sphere is the curved surface of a 
frustum. 

Areas of irregular figures 
12 Areas of irregular plane surfaces may be approximately 
determined by using (a) a planimeter, (b) the trapezoidal rule, (c) 
the mid-ordinate rule, and (d) Simpson's rule. Such methods may 
be used, for example, by engineers estimating areas of indicator 
diagrams of steam engines, surveyors estimating areas of plots of 
land or naval architects estimating areas of water planes or 
transverse sections of ships. 

(a) A planimeter is an instrument for directly measuring 
small areas bounded by an irregular curve. 

(b) Trapezoidal rule. To determine the area PQRS in 
Figure 9.6: 

(i) Divide base PS into any number of equal intervals, 
each of width d, (the greater the number of intervals, the 
greater the accuracy). 
(ii) Accurately measure ordinates J>J,J>2>_?3> e t c · 

(iii) Area PQRS = α ψ ^ + j 2 + y3 + Λ + Λ + Λ Ί 

In general, the trapezoidal rule states: 

* ^ = /width o f \ r i / first+ \ sum of Ί 
\ interval/L2\last ordinate/ remaining ordinatesJ 

(c) Mid-ordinate rule. To determine the area ABCD of 
Figure 9.7: 

(i) Divide base AD into any number of equal intervals, 
each of width d, (the greater the number of intervals, the 
greater the accuracy). 
(ii> Erect ordinates in the middle of each interval (shown 
by broken lines in Figure 9.7). 
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(iii) Accurately measure ordinates J>|,J>2» ̂ 3 > etc. 
(iv) Area ABCD = φ , + j 2 + j 3 +j>4 + j 5 + j 6 +j>7) 

In general, the mid-ordinate rule states: 

Area = (width of interval)(sum of mid-ordinates) 
(d) Simpson's rule To determine the area PQRS of Figure 

9.6: 

(i) Divide base PS into an even number of intervals, each 
of width d, (the greater the number of intervals, the 
greater the accuracy). 
(ii) Accurately measure ordinates j j , y^y^ etc. 

d 
(iii) Area PQRS = A(yx +y7) + My2 + Λ + Λ ) + 2(y3 + Λ ) ] 

In general, Simpson's rule states: 

1/width o f \ r / first + 
Area -T 3\ interval/l^y la st ordinate/ 

+ 2( 

\ / 8 u m . f 
>/ yeven ordinates 

( sum of remaining 
odd ordinates 

Volume of irregular solids 
13 If the cross-sectional areas Αγ, Α2, A<$, etc., of an irregular 
solid bounded by two parallel planes are known at equal intervals 
of width d (as shown in Figure 9.8), then by Simpson's rule: 

Volume, V= - [ ( ^ + ΑΊ) + 4 (A2 + A4 + AJ + 2(A3 + Λ5)] 

Mean or average value of a waveform 
14 (i) The mean or average value,y, or the waveform shown 

in Figure 9.9 is given by: 

area under curve 
y— 

length of base, b 

)] 
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Figure 9.9 

(ii) If the mid-ordinate rule is used to find the area under 
the curve, 

sum of mid-ordinates 
then: y 

number of mid-ordinates 
y\ +J>2 +Λ +Λ +Λ +Λ +Ĵ 7 for Figure 9.9 ] 

(iii) For a sine-wave, the mean or average value: 
(a) over one complete cycle is zero (see Figure 9.10(a)). 
(n) over half a cycle is 0.637 * maximum value, or 

2 
— x maximum value, 
π 

(c) of a full-wave rectified waveform (see Figure 9.10(b)) is 
0.637 x maximum value, 

(d) of a half-wave rectified waveform (see Figure 9.10(c)) is 
0.318 x maximum value, or —x maximum value. 

π 

Prismoidal rule for finding volumes 
15 The prismoidal rule applies to a solid of length x divided by 
only three equidistant plane areas, Αλ, A2 and A3 as shown in 
Figure 9.11 and is merely an extension of Simpsons rule for volumes 
(see para 13). 
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Figure 9.10 

Figure 9.11 
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\M 
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. ? — 1 — ι — ► 
m m 

X 

With reference to Figure 9.11, Volume, 

Volume, V=^\_Al+4A2 + A3] 6 

The prismoidal rule gives precise values of volume for regular 
solids such as pyramids, cones, spheres and prismoids. 
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Theorems of Pappus 
16 (i) The first theorem of Pappus states: 

'If a plane curve is rotated about an axis in its own plane 
but not intersecting it, the surface area generated is given 
by the product of the arc length and the distance moved 
by the centroid of the curve. 

i.e. Surface area generated=arc length x distance 
moved through by the centroid. 

In Figure 9.1'2, if the curve of length s is rotated one revolution 
about the x-axis and C is the position of the centroid of the curve 

C —f—Area A 

Figure 9.12 

then the distance moved by the centroid when the curve revolves 
one revolution about OX is 2ity (i.e., the circumference of a 
circle). 
Hence by Pappus' theorem, surface area = arc length x 2nj> 

=2nsy square units. 
(ii) The second theorem of Pappus states: 
'If a plane area is rotated about an axis in its own plane 
but not intersecting it, the volume of the solid formed is 
given by the product of the area and the distance moved 
by the centroid of the area.' 
i.e. Volume generated = area x distance moved through 
by the centroid. 

In Figure 9.13, let C be the centroid of area Λ, and \tty be 
the perpendicular distance of C from axis OX, then the distance 
moved by the centroid when area A makes one revolution about 
OX is 2ity (i.e. the circumference of a circle). 
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Hence by Pappus' theorem, Volume generated = area x 2ity 
i.e. V—lnAy cubic units. 

Centroids of simple shapes 
17 A lamina is a thin, flat sheet having uniform thickness. The 
centre of gravity of a lamina is the point where it balances 
perfectly, i.e. the lamina's centre of mass. When dealing with a 
shape or area (i.e. a lamina of negligible thickness and mass) the 
term centre of area or centroid is used for the point where the 
centre of gravity of a lamina of that shape would lie. 
18 (i) The centroid C of a rectangle lies on the intersection 

of the diagonals (see Figure 9.14(a)). 
(ii) The centroid C of a triangle lies on the intersection 
of its medians, a median being a line which joins the 
vertices of a triangle with the mid-point of the opposite 
side. It may be shown that the centroid lies at one-third 
of the perpendicular height above any side as base (see 
Figure 9.14(b)). 
(iii) The centroid C of a circle lies at its centre (see 
Figure 9.14(c)). 
(iv) The centroid C of a semicircle of radius r lies on 

4r 
the centre line at a distance from the diameter (see 

3π 
Figure 9.14(d)). 

19 The first moment of area is defined as the product of the 
area and the perpendicular distance of its centroid from a given 

(a) 

(c) (d) | 
Figure 9.14 
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X 

Figure 9.15 

Figure 9.16 

axis in the plane of the area. In Figure 9.15, the first moment of 
area A about axis XX is given by (Ay) cubic units. 
20 A composite area consists of two or more areas having 
different shapes joined together. The centroid of a composite area 
is found by dividing the whole area into parts, the centroids of 
which are known, and then taking moments (i.e. finding the first 
moment of area) about two orthogonal axes (i.e. two axes lying in 
the same plane and at right angles to each other). For the 
composite area shown in Figure 9.16: 
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Sum of moments about YY, Σαχ = αλΧ\ + α2*2 + fl3*3 
Sum of moments about XX, Lay = αψ\ + α^ + a$y$ 

If A = flj + a2 + 03 and x and j are the distances of the centroid of 
the composite area about axes YY and XX respectively, then: 

Ax = Lax, from which x = 
Lax first moment of area about YY 

total area 
and 

_ Lay first moment of area about XX 
Ay = Lay, from which y= = 

A total area 

Thus, for example, to find the centroid of the metal template 
shown in Figure 9.17 about AB and CD (the circular area being 
removed) a tabular approach is used as shown below. 

Part 

Triangle 

Rectangle 

Circle 

Semicircle 

Σα = 

Area 
a cni-

1 
8.0) 12.0) 

2 

= 48.0 

- 20.0)i 8.0) 

= 160.0 

-πι2.0)'-' 
= - 12.566 

(minus since 
circle is 
removed) 

1 
it'4.0)'-

2 

= 25.133 

A = 220.567 

Distance of 
centroid from 
AH 
(i.e. x cm) 

1 
8.0) 

3 

= 2.667 

1 
8.0) 

2 

= 4.0 

3.0 

4.0 

Σ, 

First moment 
of area about 
AB 
(i.e. ax cm1) 

48.0)(2.667) 

= 128.0 

(160.0) (4.0) 

= 640.0 

(-12.566)13.0) 

= -37.70 

(25.133)14.0) 

= 100.5 

x = 830.8 

Distance of 
centroid from 
CD 
(i.e. v cm) 

1 
20.0+ (12.0) 

3 

= 24.0 

1 
(20.0) 

2 

= 10.0 

5.0 

-4(4.0) 

3π 

= - 1.698 
(minus since) 
Ixlow CD) 

Σ, 

First moment 
or area about 
CD 
li.e. ay cm*) 

(48.0) (24.0) 

= 1152.0 

1160.0) (10.0) 

= 1600.0 

(-12.566X5.0) 
= -62.83 

(25.133)1-1.698) 

= -42.68 

>= 2646.49 
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4.0 cm 
dia. 

M5.0 cm f 
V*J\ 

12.0 cm 

20.0 cm 

IB Figure 9.17 

If x a n d j are the distances of the centroid from AB and CD 
respectively, then, 

„ ΣΟΧ 830.8 
Ax= Σαχ, from which x = = = 3.77 cm, 

A 220.567 

and 
_ _ _ Σ ^ 2646.49 

Ay= Σαν, from which y = = = 12.0 cm J A 220.567 

Hence the centroid lies at a point 3.77 cm to the left of AB 
and 12.0 cm above CD. 
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10 Trigonometry 

1 Trigonometry is concerned with the measurements of the 
sides and angles of triangles and their relationship with each other. 

Trigonometric ratios of acute angles 
2 With reference to the right angled triangle shown in Figure 
10.1: 

opposite side b 
(i) s ine0 = , i.e. sin 0 = -

hypotenuse c 
adjacent side a 

(ii) cosine 0 = , i.e. c o s 0 = -
hypotenuse c 

opposite side b 
(iii) tangent 0 = — : ;—, i.e. t a n a = -

adjacent side c 
hypotenuse . c 

(iv) secant 0 = — ; ;—, i.e. sec 0 = -
adjacent side a 

hypotenuse c 
(v) cosectant 0 = , i.e. cosec θ = -

opposite side b 
adjacent side # a 

(vi) cotangent u = , i.e. cot u = -
opposite side b 

Identities 
3 A trigonometric identity is an expression that is true for all 
values of the unknown variable. (The sign ' = ' means 'is identical 
to'.) 
4 From para 2, 

b 

sin Θ c b sin Θ 
(i) — = - = - = tan 0, i.e. tan 0 = — 

cos 0 a a cos 0 

c 
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cos Θ c a cos Θ 
(ii) ——— = - = - = cot 0, i.e., cot 0 = ——— 

sin u b b sin θ 

(iii) sec 0 = — 
cos 

(iv) cosec 0 — -

(v) cot 0 = 
1 

tan 0 

Secants, cosecants and cotangents are called the reciprocal 
ratios. 
5 Applying Pythagoras' theorem to the right-angled triangle 
shown in Figure 10.1 gives: 

Dividing each term of equation (1) by c1 gives: 

.2 

b\2 

Figure 10.1 (cos 9f + (sin Θ)2 = 1 

Hence 

cos20+8in20 = l 
Dividing each term of equation (1) by a2 gives: 

\ + 

Hence 

l + tan^^sec 2 ^ 
Dividing each term of equation (1) by b2 gives: 

(1) 

(2) 

(3) 
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Hence 

(4) 

Fractional and surd forms of trigonom
etric ratios 

(i) In Figure 10.2 ABC is an equilateral triangle of side 2 units. 
AD bisects angle A and bisects the side BC. Using Pythagoras' 
theorem on triangle ABD gives: AD = V ( 2 2 - l 2 ) =V3· 
Hence 

BD 1 AD V3 BD 1 
sin 30° = — = - ; cos 30° = = — ; tan 30° = = —-

AB 2 AB 2 AD V3 
AD J3 BD 1 AD 

sin 60° = = — ; cos 60° = = - ; tan 60° = = V3 
AB 2 AB 2 BD 

(ii) In Figure 10.3, PQR is an isosceles triangle with 
PQ,= QR= 1 unit. By Pythagoras' theorem, 
PR=V(12+12) = V2 

1 1 
Hence sin 45° = ; cos 45° = —-; tan 45°= 1 

V 2 ' v/2 ' 

(iii) A quantity which is not exactly expressible as a rational 
number is called a sard. For example, y/2 and *J3 are called 
surds because they cannot be expressed as a fraction and the 
decimal part may be continued indefinitely. For example, y/2 
= 1.4142136... 
(iv) From paras, (i) and (ii), sin 30°=cos 60°, 
sin 45°=cos 45° and sin 60°=cos 30°. In general, 
sin 0=cos(9O°-0) and cos0=sin(9O°-0). For example, it 
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may be checked that sin 25° = cos 65°, sin 42° = cos 48°, 
cos 84° 10' = sin 5° 50', and so on. 

Angles of any magnitude 
(i) Figure 10.4 shows rectangular axes XX' and YY' 
intersecting at origin 0. As with graphical work, measure
ments made to the right and above 0 are positive whilst 
those to the left and downwards are negative. Let OA be 
free to rotate about 0. By convention, when OA moves 
anticlockwise angular measurement is considered positive, 
and vice versa. 

90° 
Y | 

Quadrant 2 

180°. 

Quadrant 3 

Quadrant 1 

A X 360° 

J-
Quadrant 4 

270° 

Figure 10.4 

(ii) Let OA be rotated anticlockwise so that Θχ is any 
angle in the first quadrant and let perpendicular AB be 
constructed to form the right-angled triangle OAB (see 
Figure 10.5). Since all three sides of the triangle are po
sitive, all six trigonometric ratios are positive in the first 
quadrant. (Note: OA is always positive since it is the 
radius of a circle.) 
(iii) Let OA be further rotated so that Θ2 is any angle in 
the second quadrant and let AC be constructed to form 
the right-angled triangle OAC. Then: 

sin θ7 = — = -|-, cos 02 = — = - , t a n 0 2 = — = - , 

cosec 0« = — = + , sec 0o = — = 
+ -

- , co t0 2
= = — = - · 
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90° 

180° 

Quadrant 2 

A 

hp - Θ2Κ 

Ί7° 
I / 
| / 

fY 
Quadrant 3 

Quadrant 1 

A 

Ι̂* Χ ^ + Λ 
\Λ f Β 

\ 1 

\ 1-
+ \ ι \ 1 

Quadrant 4 

270° 
Figure 10.5 

0° 
360° 

(iv) Let OA be further rotated so that 02 is any angle in 
the third quadrant and let AD be constructed to form the 
right-angled triangle OAD. Then: sin 03=— = — (and 

hence cosec 03 is —), cos 03 = — = — (and hence sec 03 is 

— ), tan 03=—= + (and hence cot 03 is + ). 
(v) Let OA be further rotated so that 04 is any angle in 
the fourth quadrant and let AE be constructed to form 

the right-angled triangle OAE. Then: sin 04 = — = -

(and hence cosec 04 is - ) , cos 04 = — = + (and hence 
sec 04 i 
(vi) The results obtained in (ii) to (v) are summarised in 
Figure 10.6. The letters underlined spell the word CAST 
when starting in the fourth quadrant and moving in an 
anticlockwise direction. 
Naturally, a calculator is able to determine the value of 
the trigonometric ratio of any angle directly. For 
example, sin 240° = —0.8660. With reference to Figure 
10.7, 240° is an angle in the third quadrant where only 
Tangent (and therefore cotangent) is positive. Hence the 
sine of an angle in the third quandrant is negative and sine 
240° = —sine 60° = —0.8660, as previously obtained. 
Similarly, correct to 4 significant figures, cos 115° = 

is +) , tan 04 = —= - (and hence cot 04 is - ) . 
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90° 

Sine (and cosecant 
positive 

180°-

Tangent 
(and cotangent) 
positive 

All positive 

0° 
"360° 

Cosine 
(and secant) 
positive 

270° 

Figure 10.6 

90° 

S 
240* 

180°-
0=60' 

T 
W 

0° 
360° 

270° Figure 10.7 

-0.4226, tan 211.42° = 0.6109, sec 301° = -
= 1.9416, and so on. cos 301 
A knowledge of angles of any magnitude is needed 
however when finding, for example, all the angles 
between 0° and 360° whose tangent is, say, 1.7629. If 
1.7629 is entered into a calculator and then the inverse 
tangent key is pressed (or tan-1 key) the answer 60.44° 
appears. However, there is a second angle between 0° 
and 360° which the calculator does not give. Tangent is 
also positive in the third quadrant (from CAST of fig. 
10.6). The other angle is 180° + 60.44°, i.e, 240.44°. 
Thus 60.44° and 240.44° are the angles between 0° and 
360° whose tangent is 1.7629. 
Be careful! Your calculator only gives you one of these 
answers. The second answer needs to be deduced from a 
knowledge of angles of any magnitude. 

137 



The solution of triangles and their areas 
(i) To 'solve a triangle' means 'to find the values of 
unknown sides and angles'. If a triangle is right-angled, 
trigonometric ratios and the theorem of Pythagoras may 
be used for its solution. However, for a non-right-angled 
triangle, trigonometric ratios and Pythagoras' theorem 
cannot be used. Instead, two rules, called the sine rule 
and the cosine rule are used. 
(ii) With reference to 
triangle ABC of Figure 10.8: A 
the sine rule states: 

b 
sin A sin B sin C 

The rule may be used only 
when: 
(a) 1 side and any 2 angles 
are initially given, and 
(b) 2 sides and an angle 
(not the included angle) are Figure 10.8 
initially given. 
(iii) With reference to triangle ABC of Figure 10.8, the cosine 
rule states: 

al = t>1 + c1-2bccosA 
or b2=a1 + cl-2ac cos B 
or c2 = al+b1-2ab cos C 

The rule may be used only when: 
(a) 2 sides and the included angle are initially given; or 
(b) 3 sides are initially given. 
(iv) The area of any triangle such as ABC as Figure 10.8 is 
given by: 

1 
(a) - x base x perpendicular height; or 

1 . 1 . 1 
(b) -ab sin C or -ac sin B or ~bc sin A; or 

(b) y/[s{s — a)(s — b)(s — c)], where s = -
a + b + c 

Lengths and areas on an inclined plane 
In Figure 10.9, rectangle ADEF is a plane inclined at an 



F 

I Α Λ 

Λ 
/ 

Figure 10.9 

angle of Θ to the horizontal plane ABCD 

DC DC 
cos θ = , from which, DE = 

DE cos Θ 

Hence the line of greatest slope on an inclined plane is 
given by: 

(cir)(ifc (its projection on to the horizontal plane] 

Area of ADEF = (AD) (DE) = (AD) (—) 
\cos Θ ) 

= I \ (area of horizontal plane) 

\cos e) 
10 The angle between a line and a plane is defined as the 
angle between the line and its projection on the plane. In Figure 
10.10, the line PQ, meets a plane at P. If QR is constructed 
perpendicular to the plane then the projection of PQ,on the plane 
is PR. The angle between the line PQand the plane in Figure 10.10 
is 0. 
11 Figure 10.11 shows two planes ABCD and ABEF intersecting 
along the line AB. The angle between the planes is defined as the 
angle between any two straight lines drawn on each plane which meet 
at, and are perpendicular to, the line of intersection of the planes. In 
Figure 10.11, PQand PR are both perpendicular to AB thus the angle 
between the two intersecting planes is L RPQ,. 
12 Three-dimensional triangulation problems rely on the ability 
to (i) visualise the problem and (ii) solve triangles. A clearly 
labelled sketch is thus usually invaluable. Determining the location, 
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Figure 10.10 Figure 10.11 

speed and direction of moving objects, such as ships and aircraft, 
usually involves the solution of three-dimensional problems. 
13 (i) If, in Figure 10.12(a), BC represents horizontal ground 

and AB a vertical flagpole, then the angle of elevation 
of the top of the flagpole, A, from the point C is the angle 
that the imaginary straight line AC must be raised (or 
elevated) from the horizontal CB, i.e., angle Θ. 
(ii) If, in Figure 10.12(b), P Q represents a vertical cliff 
and R a ship at sea, then the angle of depression of the 
ship from point P is the angle through which the 
imaginary straight line PR must be lowered (or depressed) 
from the horizontal to the ship, i.e., angle φ. (Note, 
L PRQ, is also φ - alternate angles between parallel 
lines.) 

.^Si dB ob. 

*3j> 

Figure 10.12 

14 Bearings provide a method of specifying the position of an 
object with respect to the points of the compass. There are 
two methods of stating bearings: 
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N N 
N15°W\ A 

V 1 5 ° ^ 

/ / 
S41°W 

w 
/N30°E 

s ' 
(a) (b) 

Figure 10.13 

(i) A bearing of N 30° E means an angle of 30° measured 
from the north towards east as shown in Figure 13(a). 
Similarly, bearings of S 41° W and N 15° W are also 
shown. 
(ii) The angle denoting the bearing is measured from 
north in a clockwise direction, north being considered as 
0°. Three figures are always stated. Bearings of 030°, 221° 
and 345° are shown in Figure 10.13(b), and are equivalent 
to N 30° E, S 41° W and N 15° W respectively. 

Graphs of trigonometric functions 
15 (i) In Figure 10.14, OR represents a vector that is free to 

rotate anticlockwise about 0 at a velocity of ω rad/s. A 
rotating vector is called a phasor. After a time t seconds 

Figure 10.14 
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OR will have turned through an angle (Ht radians (shown 
as angle TOR in Figure 10.14). If ST is constructed 
perpendicular to OR, then 

ST 
sin ωί= , i.e. ST = OT sin of. 

OT 
If all such vertical components are projected on to a 
graph ofy against CO/, a sine wave results of maximum 
value OR. 
(ii) If phasor OR of Figure 10.14 makes one revolution 
(i.e. 2π radians) in T sec, then the angular velocity, 

2π 2π 
ω= rad/s, from which 7~= sec. T is known as 

T ω 
the periodic time. 
(iii) The number of complete cycles occurring per second 
is called the frequency/. 

Frequency = 

f-

number of cycles 
second 

1 
Ύ 

ω 
— Hz, i.e., 
2π 

2π 
Hz 

1 Hence angular velocity, ω = 2nf rad/s. 
16 (i) Figure 10.15 shows graph of7 = sin CO/, for ω = - , 1,2 

and 3 rad/s. The graphs are plotted either from a 
calculated table of values or by the rotating vector 
approach. 

y = sin 2f 

y = sin Vzf 



Kl 

1.0 

y = cos 2t y = cos t 
y = cos3t/ /y = cosV2t 

0.δ|- \ \ 

-0.5 h 

-1.0r 

w 
1 ^L v \ 

K Λ \ Γϋ/4 Ϊ/2 3W4T ττν ;5π/4 3π/2 7^74/ 27T(s) 

\ / / 
^ / ' — . 

Figure 10.16 

17 

(ii) Figure 10.16 shows graphs ofj> = cos ω/, for ω = - , 1,2 

and 3 rad/s. 
(iii) Each of the waveforms shown in Figures 10.15 and 
10.16 repeat themselves after period time 7* 
/ 2π \ 
[ = seconds 1 and such functions are known as \ ω J 
per iodic funct ions . I t is noted from the graphs that 
in 2 π sec: 

1 1 1 
sin - / and cos -t complete - cycle, 

2 2 F 2 

sin / and cos t complete 1 cycle, 
sin 2t and cos 2t complete 2 cycles, and 
sin 3/ and cos 3/ complete 3 cycles. 

(i) Figure 10.17 shows graphs ofj> = sin2/ and y = cos2/ 
which may be obtained by drawing up a table of values. 
Both are periodic functions of periodic time π seconds 
and both contain only positive values. 
(ii) Figure 10.18(a) shows a graph o f j = sin23*, which has 

π 
a periodic time of— seconds. 
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y 

1.0 

0 
r, 

π/2 

y = sin2 t 

ΥΛ 
π 3π/2 

(a) 

V 
2ττ 

r 
5π/2 f(s) 

/ 

1.0 

0 

2 K = cos* t 

V? 
ff/2 7Γ 

V 
3π/2 

(b) 

Λ 
2π 

V 
5π/2 f(s) 

Figure 10.17 

(iii) Figure 10.18(b) shows a graph ofjy = cos22/, which has 
π 

a periodic time of — seconds. 

(iv) In general, ifj> = sin2(D/ orjy = cos2co/ then the periodic 
π 

time is given by — seconds. 
ω 

(v) Graphs of the form y = sin2co* and y = cos2(üt are not 
sine waves and cannot be produced by the rotating 
vector approach. 

The general form of a sine wave, 
R sin(a>r±<z) 

18 Amplitude is the name given to the maximum or peak value 
of a sine wave. Each of the graphs shown in Figures 10.15 and 10.16 
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y 

1.0 

0 

y = sin2 3f 

fm 
π/2 π 

w 
3π/2 

(a) 

V 
2π 
t 

5π/2 f(s) 

K = c o s 2 2f 

Figure 10.18 

have an amplitude of 1. However, ify = 4 sin cof, the maximum 
value, and thus amplitude is 4. 
19 Lagging and leading angles 

(i) A sine or cosine curve may not always start at zero. 
To show this a periodic function is represented by 
j=sin((ö/±a) orj>=cos((D/±a), where a is a phase 
displacement compared with^ = sin ω/ or j = cos (ut. 

(ii) By drawing up a table of values, a graph of 

j>=sinl (Ot 1 may be plotted as shown in Figure 10.19. 

Ifj>=sin (ut is assumed to start at zero, then 
/ π \ π / 

y=sin( (ut ) starts — radians later ( i.e., has a zero 
\ 3j 3 \ 
n \ ( π \ 

value — rads later ). Thusj>=sin[ (üt— — ) is said 
π 

to lagj>=sin (ot by — rads. 

(iii) By drawing up a table of values, a graph of 
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y = sinojf 
K = sin (ωί -π/3) 

2π ujf(rad) 

Figure 10.19 

j = c o s ( ω / + — 1 may be plotted as shown in Figure 10.20. If 
/ π \ 

= cosl m + — 
V 4 / 

ier I i.e. 1 

earlier I. T h u s y = cosl (Ot-\ I is said to l ead > = 

j = cos (at is assumed to start at zero, thenj> = 

starts — radians earlier [ i.e. has a value of 1, — rad 
4 V 4 

= COS (Ot 

π 
by — rad. 

7 4 

Figure 10.20 
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(iv) Generally, a graph ofy = sin (ω* - a) lags y = sin ω/ 
by angle a, and a graph ofj> = sin(co/ + a) leads 
^ = sin ω/ by angle a. 
(v) A cosine curve is the same shape as a sine curve but 

π π 
starts — rad earlier, i.e. leads by — rad. Hence 

2 7 2 
cos (D/=sin ini ω/+ — I. 

(vi) In terms of ume,y=R sin(<ö/— a) lagsj=/? sin ω/ 
a 

by — sec, andj=/? sin(<ö/+a) leads j>=/? sin (Ot by 
ω 

a 
— sec. 
ω 

Summary 
20 Given a general sinusoidal periodic function y = R sin((D*±a), 

2π 
then: R = amplitude, ω = angular velocity, = periodic time, 7", 

ω 
ω 

= frequency,/, and a=angle of lead or lag (compared with 

y=R sin (Ot). 
Thus, for example, an alternating voltage 

0=300 sin (200π/+ 0.26) volts represents a sine wave of amplitude 
(i.e., maximum value) 300 V, angular velocity ω=200π rad/s, 

2π 2π 
periodic time T= = = 0.01 s or 10 ms, frequency 
^ ω 200π 
/ = —= 100 Hz and the phase angle is 0.26 rad or 14° 54' 

leading 300 sin 200π/. 

Combination of two periodic functions 
of the same frequency 

21 There are a number of instances in engineering and science 
where waveforms combine and where it is required to determine 
the single phasor (called the resultant) which could replace two or 
more separate phasors. Uses are found in electrical alternating 
current theory, in mechanical vibrations, in the addition of forces 
and with sound waves. There are several methods of determining 
the resultant and two such methods are shown below. 

(i) Plotting the periodic functions graphically This may be 
achieved by sketching the separate functions on the same axes and 
then adding (or subtracting) ordinates at regular intervals. 
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(Alternatively, a table of values may be drawn up before plotting 
the resultant waveform.) 

Thus, for example, j | =4 sin (ut andj>2 = 3 sinl {»<-l·) are shown 

plotted in Figure 10.21. Ordinates are added at 15° intervals and 
the resultant is shown by the broken line. The amplitude of the 
resultant is 6.1 and it lagsjvj by 25° or 0.436 rads. Hence the 
sinusoidal expression for-the resultant waveform is: 
yR = 6A sin (ω/-0.436). 

6.1 

Λ 
4 

2 

0 

-2 

-4 

-6 

/ 

/ 

/ / 
/ 9i 

f iri 

*-2S° 

£ 
r 
2 

25° 

.- y.|=4sin ωΐ 

«A K2=^sin (ωί-π/3) 

\ \ X i i 180° \ ^270° 360° ωϊ 
n \ \ 3π/2 /2η 

Figure 10.21 

(ii) Resolution of phasors by drawing or calculation 
The resultant of two periodic functions may be found from 

their relative positions when the time is zero. For example, 

y\-\ sin (Ot andy2
= 3 sin( (ut— — ) then each may be represented 

as phasors as shown in Figure 10.22, y\ being 4 units long and drawn 
π 

horizontally and y2 being 3 units long, laggingyx by — radians or 

60°. 
To determine the resultant of^j +j2> } \ is drawn horizontally 

as shown in Figure 10.23, andj>2 is joined to the end ofjj at 60° to 
the horizontal. The resultant is given hyyR. This is the same as the 
diagonal of a parallelogram which is shown completed in Figure 
10.24. 
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' 60° or π/3 rads 

y2=3 

Figure 10.22 Figure 10.23 

Resultant, yR in Figures 10.23 and 10.24 is determined either by 
(a) scaled drawing and measurement, or 
(b) by use of the cosine rule, (and then sine rule to calculate 

angle φ), or 
(c) by determining horizontal and vertical components of 

lengths oa and ab in Figure 10.23, and then using 
Pythagoras' theorem to calculate ob. 

In this case, by calculation,yR-6.083 and angle φ= 25.28° or 
0.441 rads. Thus the resultant may be expressed in sinusoidal form 
asjÄ=6.083 sin(ω/—0.441). If the resultant p h a s o r , ^ ^ — y2 is 
required, thenjy2 is still 3 units long but is drawn in the opposite 
direction, as shown in Figure 10.25, and^Ä is determined by 
measurement or calculation. 

Figure 10.25 

Compound angles 
22 Angles such as (A + B) or (A — E) are called compound angles 
since they are the sum or difference of two angles, A and B. 
23 The compound angle formulae for sines and cosines of the 
sum and difference of two angles A and B are: 

sin(;4 + Z?) =sin A cos B + cos A sin B 
sm(A—B) =sin A cos B — cos A sin B 
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cos(A +B) =cos A cos B- sin A sin B 
cos(A — B) =cos A cos 5 +sin A sin 5 

(Note, sin(4 + Z?) is not equal to (sin Λ + sin B), and so on.) 
24 The formulae stated in para 23 may be used to derive two 
further compound-angle formulae: 

tan A + tan B 
t a n ( 4 + £ ) = 

1 — tan A tan B 
tan A — tan B 

tan{A-B)= 
1 + tan A tan B 

25 The compound-angle formulae are true for all values of A 
and By and by substituting values of A and B into the formulae 
they may be shown to be true. 
26 (i) R sin(G)* + a) represents a sine wave of maximum value 

2π ω 
/?, periodic time , frequency and leading R sin (Ot 
by angle a. (See para 20.) 
(ii) R sin (ω/+ a) may be expanded using the compound-
angle formula for sin(A + B), where A =(ot and B = OL. 
Hence R sin((D/ + a) =/?[sin (at cos a +cos ωί sin a] 

= R sin ω/ cos OL+R cos ω/ sin a 
= (R cos a) sin a>/+ (R sin a) cos (ut 

(iii) If a = /? cos a and b = R sin a, where a and £ are 
constants, then R sin(G)/ + a) =a sin &t + b cos a>f. i.e. a 
sine and cosine function of the same frequency when 
added produce a sine wave of the same frequency. 

a 
(iv) Since a-R cos a, then cos a=—, and since 

R 
b 

b—R sin a, then sin flt=—. 
R 

If the values of a and 6 are known then the values of R and a may 
be calculated. The relationship between constants a, bt R and a are 
shown in Figure 10.26. From Figure 10.26 by Pythagoras' theorem 

J?=vV+*2) 
and from trigonometric ratios: 

b 
a = arctan -

a 
Thus, for example, to express 4.6 sin ω* — 7.3 cos ω/ in the form 
R sin (a* + a), 

let 4.6 sin a>/-7.3 cos ω/ = Α sin(a>/ + a) 
then 4.6 sin ωί— 7.3 cos a>/ = Ä[sin ω/ cos a +cos <ot sin a] 

= (Ä cos a) sin ωί+ (Ä sin a) cos ω/ 
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Figure 10.26 
Figure 10.27 

Equating coefficients of sin ω/ gives: 4.6=/? cos a, from which, 
4.6 

cos a = -
R 

Equating coefficients of cos (Ot gives — 7.3=/? sin a, from which 
- 7.3 

sin a = 
/? 

There is only one quadrant where cosine is positive and sine is 
negative, i.e., the fourth quadrant, as shown in Figure 10.27. By 
Pythagoras' theorem: /? = V[(4.6)2 + ( - 7.3)2] =8.628. From 
trigonometric ratios: 

a = arctan| — )= -57.78° or - 1.008 radians. 

Hence 4.6 sin mt - 7.3 cos *t = 8.628 sin (·»* - 1.008) 

Double angles 
27 (i) If, in the compound-angle formula for sin(4 + Z?), we 

let B = A then sin 2A = 2 sin A cos A. Also, for example, 

sin 4Λ = 2 sin 2 A cos 2 A 

and 
sin 8Λ =2 sin 4A cos 4Λ, and so on. 

(ii) If, in the compound-angle formula for cos(A +B), we 
let B = A then cos 2A =cosi< - s in 2 ^ 
Since cos*4-I- sin2i4 = 1, then cos2i4= 1 — sin2^, and 
sin2i4= 1 —cos2i4, and two further formula for cos 2A can 
be produced. 
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Thus cos 2A = cos2A - sin2A = (1 - sin2 A) - sin2A 
i.e., cos 2,4 = 1 - 2 sin2^ 
and cos 2A = cos2A - sin2A = cos2i4 - (1 - cos2 A) 
i.e., cos 2/4=2 cos2/4-l . 
Also, for example, 

cos 4Λ =cos22v4 - sin22.4 or 1 - 2 sin22^ or 2 cos224 - 1 
and 
cos 6Λ =cos23^ - sin23A or 1 - 2 sin23^ or 2 cos23^ - 1, 
and so on. 
(iii) If, in the compound-angle formula for tan (A + B), we 
let B = A then 

2 tan A 
tan 2/4 = 

\-tai?A 
2 tan 2A 

Also, for example, tan 4A = ~— and V \-\z.n22A 
5 

2 tan-Λ 
2 

tan 5A = and so on. 
1 - tan2-^ 

2 

Changing products of sines and cosines 
into sums or differences 

(i) sin(A+B)+sin(A-B) =2 sin A cos B (from the 
formulae in para 23) 

i.e. sin A cos B=-[sin(^ + B)+sin(A - B)] (1) 

(ii) sin (A + B) - s in (A-B) = 2 cos A sin B 

i.e. cos A sin B=-[sin(/4 + B) - sin(^ - B)] (2) 

(iii) cos(,4 +B)+ COS{A - B) = 2 cos A cos 2? 

i.e. cos A cos £=-[cos(/4 + B) +cos(^ - B)] (3) 

(iv) cos(.4 + B) - cos(i4 - B) = - 2 sin A sin B 

i.e. sin Λ sin B= —[cos(^ + B) - cos(,4 - B)] (4) 



Thus, for example, sin 4* cos 3x = -[sin(4x + 3x) +sin(4x-3x)] from 

equation (1) 
1 

= -(sin 7x + sin x) 

and 3 cos to cos /=3.J-[cos(4/+/) + cos(4/— t)] > from equation (3) s to cos /= 3«)-[cos(4*+1) + cos(4/-1)] I 

3 
= -(cos 5/ +cos 3/). 

Changing sums or differences of sines 
and cosines into products 

29 In the compound-angle formulae let (A + B) = A'and (A — B) - Y. 
X+Y X-Y 

Solving the simultaneous equations gives A = and B = . 

Thus sin(A + B) + sm{A - B) = 2 sin A cos B, 
becomes 

sin *+s in K=2 s i n / — — J cos/ — — j (5) 

Similarly, 

sin X-s in F = 2 W ~ y - \ Μ~γ~ J (6) 

cos * + c o s K=2 cos/ J c o s / — — J (7) 

( X+ Y\ iX— Y\ Jsinf—— j (8) 

/7x+3x\ . Πχ-3χ\ 
Thus, for example, sin 7x— sin 3x=2 cosj J sinl — - — J 

from 

and 

from 

equation (6) 

equation (8) 

cos 50--cos 

= 2 

20=-

= -

cos 5x sin 2x 

Z50+20 
• 2 s i n ( - 2 -

\ * 
. 70 . 30 

- 2 sin— sin— 
2 2 
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11 Hyperbolic functions 

1 Functions which are associated with the geometry of the conic 
section called a hyperbola are called hyperbolic functions. 
Applications of hyperbolic functions include transmission line 
theory and catenary problems. 
2 By definition: 

. L e*-e-x 

(i) Hyperbolic sine of x, sinh χ= (1) 

'sinh x1 is often abbreviated to 'sh x' and is pronounced as 
'shine x'. 

e*+e-x 

(ii) Hyperbolic cosine of x, cosh x= (2) 

'cosh x' is often abbreviated to 'ch x' and is pronounced as 
'kosh x\ 

sinh x e*—e~x 

(iii) Hyperbolic tangent of x, tanh JC = = — — 
cosh x e*+e x 

'tanh x' is often abbreviated to 'th x' and is pronounced as 
'than x\ 

1 2 
(iv) Hyperbolic cosecant of x, cosechjc=-. _ _ __ 

sinh JC e*-e x 

'cosech x' is pronounced as 'coshec x'. W 

1 2 
(v) Hyperbolic secant of x, sech JC= =— —- (5) 

cosh x er+e 
'sech x' is pronounced as 'shec x'. 

1 ^ + e"x 

(vi) Hyperbolic cotangent of x, coth JC = — = — — 
(6) 'coth x' is pronounced as 'koth x'. 
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Some properties of hyperbolic functions 
(i) Replacing x by 0 in equation (1) gives: 

e°-e-° 1-1 
sinh 0= = =0 

2 2 
(ii) Replacing x by 0 in equation (2) gives: 

J>+e-° 1+1 
cosh 0= = 1 

2 2 
(iii) If a function of x,f(-x) = -f{x) then/(x) is called 
an odd function of x. Replacing x by — x in equation (1) 
gives: 

e-x+e~{-x) _e-*-e* 
sinh ( — x)=. — -m 

= —sinh x 

Replacing x by — x in equation (3) gives: 

tanh (-,) = _ 7 - _ ^ = - r 7 - ^ = - ^ 7 T - ^ j 
= — tanh x 

Hence sinh x and tanh x are both odd functions, (see para 

5), as also are cosech x I = ) and 
\ sinh x I 

/ 1 \ 
coth ; \ tanh x ) 
(iv) If a function of x,f{ — x) =/(*)> then/(x) is called an 
even function of x. Replacing x by — x in equation (2) 
gives: 

e-* + e-(-x) e~* + f 
cosh (— x) = = = cosh x. 

K ' 2 2 
Hence cosh x is an even function, (see para 5), as also is 

sech x \ cosh x ) 
Hyperbolic functions may be evaluated readily using a 
calculator. Some scientific notation calculators possess sinh, 
cosh and tanh functions; however, if a calculator does not 
have these functions then the hyperbolic functions are 
evaluated from their definitions. For example, 

e0.27 _ e~0 .27 

sinh 0.27 = = 0.2733, correct to 4 significant 
figures. 

Similarly, cosh 0.60 = 1.1855, tanh 1.293 = 0.8599 and 
sech 2.48 = 0.1663, each correct to 4 significant figures. . « 



Graphs of hyperbolic functions 
(i) A graph ofy = sinh x may be plotted using values of 
hyperbolic functions obtained using a calculator. 
The curve is shown in Figure 11.1. Since the graph is 
symmetrical about the origin, sinh x is an odd function (as 
stated in para 2 (iii)). 
(ii) A graph of? = cosh x may be plotted using values of 
hyperbolic functions obtained using a calculator. The 
curve is shown in Figure 11.2. Since the graph is 
symmetrical about thej-axis, cosh x is an even function (as 
stated in para 2(iv)). 

Figure 11.1 Figure 11.2 

The shape ofj> = cosh x is that of a heavy rope or 
chain hanging freely under gravity and is called a 
catenary. Examples include, transmission lines, a 
telegraph wire or a fisherman's line. 
(iii) Graphs of^=tanh x,j=cosech x,^=sech x and 

y = coth x are shown in Figure 11.3, values being 
determined by calculator from the definitions in para 
2(iii)-(vi). 

Hyperbolic identities 
6 For every trigonometric identity there is a corresponding 
hyperbolic identity. Hyperbolic identities may be proved by 

i i /f + e-* 
either (i) replacing sh x by ( — ) and ch x by f 

r | 1 and ch x by ( I, 

(ii) by using Osborne's rule, which states: 
'the six trigonometric ratios used in tngonometrical identities relating general 
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1 1 I 
3 - 2 1 0 

K=coth x ""^-2 

- \ • K=coth x 

1 1 1 
1 2 3 x 

p 

(b) 

Figure 11.3 

angles may be replaced by their corresponding hyperbolic functions, but the 
sign of any direct or implied product of two sines must be changed'. 

For example, since cos2* + sin x= 1 then, by Osborne's rule, 
ch x — sh2x = 1, i.e. the trigonometric functions have been changed 
to their corresponding hyperbolic functions and since sin2* is a 
product of two sines the sign is changed from + to —. 

Table 11.1 shows some trigonometrical identities and their 
corresponding hyperbolic identities. 

Differentiation of hyperbolic functions 

(i) - ( s i n h x ) = - | 
dtf-e-* \_/ex-(-e-x)\_/ex + e~x \ 

= cosh x 
dy 

Ify = sinh a#, where 'a ' is a constant, then — = a cosh ax. 
dx 
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Table 11.1 

Trigonometric identity 

cos2x+sin x=1 
1 + tan2x=sec x 
cot x + 1 =cosec x 

Compound angle formulae 
s\r\{A±B) = s\r\A cosB± 

cos A sin B 
cos (A ± B) = cos A cos B + 

sin A sin B 
tan A ± tan B 

tan (/A ± ß) = 
1 + tan /A tan ß 

Double angles 
sin 2x = 2 sin x cosx 
cos 2x = cos x—sin x 

= 2 cos2x-1 
= 1 -2 sin2x 

Corresponding hyperbolic 
identity 

ch2x-sh2x=1 
1 -th2x=sech2x 
coth x - 1 =cosech x 

sh (A + B) = sh A ch B± 
chAchB 

ch {A + B) = ch A ch B ± 
sh /A sh B 

t h ^ + t h B 
♦ h M -\-P\-

1 ± t h ^ t h ß 

sh 2x = 2 sh x ch x 
ch 2x = ch x + sh2x 

= 2 c h 2 x - 1 
= 1+ 2 sh2 x 

d d/e*+e-
( i i ) - ( c o s h x ) = - ^ - T 

sinh x 

* If v = cosh ax, where V is a constant, then — = a sinh ax. 
dx 

(iii) Using the quotient rule of differentiation the derivatives 
of tanh x, sech x, cosech x and coth x may be determined using 
the results of (i) and (ii) and are summarised in the tables of 
derivatives on page 180. 

8 Equations of the form ach jr + 6sh x = c, where a, b and 
c are constants may be solved either by: 

(a) plotting graphs ofy-a ch x+ b sh x andy-c and noting the 
points of intersection, or more accurately, 

(b) by adopting the following procedure: 

/<*-<"* \ , . (e* + e-x\ (i) Change sh x to I ) and ch x to I — J 

(ii) Rearrange the equation into the form pe* + qe~x + r = 0, 
where p, q and r are constants. 
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(iii) Multiply each term by / , which produces an equation of 
the form p ^ ) 2 + re*+ q = 0 (since (e~x)(e*) = e° = \ ) . 
(iv) Solve the quadratic equation p(e*)2 + rf + q = 0 for / by 
factorising or by using the quadratic formula. 
(v) Given / = a constant, (obtained by solving the equation 
in (iv)), take Naperian logarithms of both sides to give 
x=ln (constant). 

Thus, for example, to solve the equation 
2.6 ch x+5.1 sh x=8.73, correct to 4 decimal places, the above 
procedure is followed. 

(i) 2 .6chx + 5.1 shx = 8.73 

73 

(ii) 1.3/+1.3*-* + 2.55^-2.55*-x = 8.73 
i.e., 3.85/-1.25<r*-8.73 = 0 
(iii) 3.85(/)2-8.73^-1.25=0 

■(-8.73)±V[(-8.73)2-4(3.85)(-1.25)] 
(iv) ** = 

2(3.85) 
= 8.73±v/95.463_8.73±9.7705 

7/70 770 

Hence ^ = 2.4027 or / = -0.1351 
(v) * = ln 2.4027 or x = In(-0.1351) which has no real 
solution. Hence x=0.8766, correct to 4 decimal places. 

Series expansions for cosh x and sinh x 
(i) By definition 

2 3 4 5 XT X° X XJ 

^=1+* + — + — + — + — + ... 
2! 3! 4! 5! 

Replacing x by — x gives: 

x2 x3 *4 x5 

e~*=\-x+— + + ... 
2! 3! 4! 5! 

1 1Γ/ x2 x3 x* x5 

(ii) cosh x = -{eK + e~x)=A [ 1 + x + — + — + — + —+ .. 
2V 2^ I 2! 3! 4! 5! 

■ ) 

/ x1 χό x 4 *> V 
-f( l -x + + + ... 

V 2! 3! 4! 5!. / 
1/ 2x2 2x4 \ = -(2 + —+ -—+ ... .2\ 2! 4! J 
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i.e. cosh x= 1 + —+ —+ . . . (valid for all values of x) 
2! 4! v ' 

cosh x is an even function and contains only even powers 
of x in its series expansion. 

1 1Γ/ x2 x3 x4 x5 \ 
(iii) sinhx = - ( * * - 0 = H I 1+* + — + — + — + — + . . . 

2 \ \ 2 ! 3 ! 4 ! 5 ! / 
/ x2 x3 xA x5 \ 

-I \-x + -I- + . . . ) 
V 2! 3! 4! 5! ) 
1/ 2x3 2x5 \ 

= -[2x4- — + — + ... I 
2^ 3! 5! / 

x3 x5 

i.e. sinh * = * + :τ7 + 7 7 + · · · (valid for all values of x) 
sinh x is an odd function and contains only odd powers of 
x in its series expansion. 

Relationship between trigonometric and 
hyperbolic functions 

10 On page 89, it is shown that 

cos θ+j sin Θ = (Ρ (7) 

and 

cos θ-j sin e = e~ft (8) 

Adding equations (7) and (8) gives: 

cos0 = - ( e * + e - * ) (9) 

Subtracting equation (8) from equation (7) gives: 

sin 0 = —(*'»-*->*) (10) 

11 Substituting fl for Θ in equations (9) and (10) gives: 

cosj0 = - ( ^ + * ~ > ^ ) and 

smje=j.{e*e*-e-W) 

S i n c e / = - l , c o s j 0 = -(f-ö + <rö)=-('e + '~ö) 

Hence from para 2, cos j$ = cosh 0 (11) 
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Similarly, s i n ß = —{e-e-e9) = :{ee-e~e) 

- 1 

j 2V = — sinh Θ (see para 2) 
j 

1 1 j j 
But - - = - - x - = - - n - = j , hence sin jd=j sinn 0 (12) 

J J J J 

Equations (11) and (12) may be used to verify that in all 
standard trigonometric identities, fi may be written for θ and the 
identity still remains true, j 
12 From para 2, cosh 9 = -(e +e~ ) and substituting fl for Θ 

gives: 

cosh7"0 = -(*r+έ>~^) =cos Ö, from equation (9), 

i.e. cosh j0 = c o s d (13) 

Similarly, from para 2, sinh 9 = -(e —e~ ) 

Substituting fi for Θ gives: 

sinh fi = -(eP — e~-P) =j sin 0, from equation (10). 

Hence sinh jd=j sin 0 (14) 
sin fi 13 T a n > 0 
cos fi 

sin j 0 j sinh Θ 
From equations (11) and (12), — = — =j tanh σ 

cos fi cosh 0 

Hence tan j$ =j tanh 0 (15) 

sinhj'0 
Similarly, tanh fi — — 

cosh j'0 
sinh fi j sin 0 

From equation (13) and (14), - = — =j tan Θ 
cosh fi cos Θ 

Hence tanh y0=y tan 0 (16) 
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12 Differential calculus 

1 Calculus is a branch of mathematics involving or leading to 
calculations dealing with continuously varying functions. Calculus 
is a subject which falls into two parts: (i) differential calculus 
(or differentiation) and (ii) integral calculus (or integration). 
2 In an equation such a s j = 3x +2x — 5,y is said to be a 
function of x and may be written as j =/(*). An equation written 
in the form/(x) = 3x2 + 2x — 5 is termed functional notation. The 
value of/(x) when x = 0 is denoted by/(0), and the value of/(x) 
when x = 2 is denoted by/(2), and so on. 

Thus when/(x) = 3x2 + 2x-5, then/(0) = 3(0)2 + 2(0) - 5= - 5, 

and/(2) =3(2)2 + 2(2) - 5 = 11, 
and so on. 

3 If a tangent is drawn at a point P on a curve, then the 
gradient of this tangent is said to be the gradient of the curve at 
P. In Figure 12.1, the gradient of the curve at P is equal to the 
gradient of the tangent PQ. 

f(x) 

Figure 12.1 

4 For the curve shown in Figure 12.2, let the points A and B 
have co-ordinates {x\,j>\) and (^ J^ ) respectively. In functional 
notation yx =f{x{) and jy2 =/(*2) a s shown. 

BC BD-CD f{x2)-f(x\) 
The gradient of the chord AB = = = 

6 AC ED (*2-*i) 
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5 For the curve /(*) =x2 shown in Figure 12.3 

/ ( 3 ) - / ( l ) 9 - 1 
(i) the gradient of chord AB = = = 4, W δ 3 - 1 2 

/ ( 2 ) - / ( l ) 4 - 1 
(ii) the gradient of chord AC = = = 3, v ; 2 - 1 1 
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(iii) the gradient of chord AD = 
/(1.5) -f(\) 2.25-1 

1.5-1 0.5 
= 2.5, 

(iv) if E is the point on the curve (1.1,/(1.1)) then the 

gradient of chord AE =* 
f(\. \)-f(\) 1.21-1 

= 2.1, 
1.1-1 0.1 

(v) if F is the point on the curve (1.01,/(1.01)) then the 

gradient of chord AF = 
/(1.01)-/(1) 1.0201-1 

1.01-1 0.01 
= 2.01. 

Thus as point B moves closer and closer to point A the gradient of 
the chord approaches nearer and nearer to the value 2. This is 
called the limiting value of the gradient of the chord AB and 
when B coincides with A the chord becomes the tangent to the 
curve. 

Differentiation from first principles 
6 (i) In Figure 12.4, A and B are two points very close 

together on a curve, δχ (delta x) and by (delta y) 
representing small increments in the x andjy directions 
respectively. 

B(x + Sx, y + 5y) 



by 
Gradient of chord AB= — 

Ox 
However by=f(x+bx—f{x) 

by f(x + bx)-f(x) 
Hence —= 

Ox Ox 

by 
As bx approaches zero, — approaches a limiting value 

Ox 
and the gradient of the chord approaches the gradient of 
the tangent at A. 
(ii) When determining the gradient of a tangent to a 
curve there are two notations used. The gradient of the 
curve at A in Figure 12.4 can either by written as 

limit by limit [f{x+b*x)-f(x)\ 
bx-*0bx bx->0\ bx J 

dy l imits 
In Leibniz notation, —= e — 

dx bx-+0dx 
In functional notation 

limit tf{x+öx)-J(x) (/(r+fa)-/[x)) 

/«-,_^(—yx J 
dy 

(iii) — is the same as f'(x) and is called the differential 
dx 

coefficient or the derivative. The process of finding the 
differential coefficient is called differentiation. Sum
marising, the differential coefficient, 

dy limit dy limit (f{x+bx)— f(x) lit ΓΑΛ 

dx bx-+0dx <5*->0( bx 

For example, to differentiatey = 3x2 from first principles: 

y=f(x)=3x2 

f{x+bx)=3{x+bxY = 3(x2+2xbx+bx2) = 3x2 + £>xbx+3bx2 

_ limit (f(x+Sx)-f(x)) limit (3χ2 + £>άχ+3δχ2)- {3x2)l 
f,{X)~bx-+0{ bx J bx-+0{ bx J 

limit {^xbx-\-^bx2 ) limit f 
\ i K {6x+3bx 

bx^0{ bx j <5x->0 
dy 

i .e . , / ' (*)=6*=^ 
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7 When differentiating, results can be expressed in a number of 
ways. For example: 

(i) ify = 3x2 then— = 6x, 
dx 

(ii) iif(x) = 3x2 then/'(*) = 6* 
(iii) the differential coefficient of 3x is 6x, 
(iv) the derivative of 3* is 6x, and 

(v) -H3*2)=6*. 
dx 

Standard derivatives 

y or/W 

axn 

sin ax 
cos ax 
tan ax 
sec ax 
cosec ax 
cot ax 
*** 

In ax 

dy 
— or/ '(x) 
ax J 

anx"-1 

a cos ax 
— a sin ax 
a sec2 ax 
a sec ax tan ax 
— a cosec ax cot ax 
— a cosec ax 
at* 
1 

X 

Thus, ifj = 4x7 then — = 28x6, 
ax 

a> 5 
y^x-Sx1*,^--* l / 2 _ _ 

ax 2 2x1/2 2 V x ' 

6 „ _An dy 

'W - ? * - * - * . ^ - ( 6 ) ( - ^ - ' - « · - 7 ' 1 

- 8 _ _ 8 
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dy 
y = 3 sin ωί, — = 3ω cos ω/, 

J dt 

e5x dx e
5x 

y = J-r = 2e->x,-=-\0e 

dy 4 
j> = 4 In 3x, — =— 

dx x 
9 The differential coefficient of a sum or difference is 
sum or difference of the differential coefficients of the separate 
terms. Thus , if/(x) =p(x) +q{x) — r(*)> (where / , p, q and r are 
functions), then / ' (x) =p' (x) + q (x) — r' (x). 

Differentiation of a product 
10 When y = uv, and u and v are both functions of *, then 

dy dv du 
— = i/ \-v— 
dx dx dx 

This is known as the product rule. 
For example, ifj = 3;r sin 2x then 

— = (3*2) (2 cos 2x) + (sin 2x) (6x) 
dx 

= 6x2 cos 2x + 6* sin 2x 

Differentiation of a quotient 
u 

11 When y = -, and u and v are both functions of x then 
v 

du dv 
v «— 

dy dx dx 
djc= ? 

This is known as the quotient rule. 
2 cos 3x 

For example, ifjv = 5 

Then, 
dy (x3) ( - 6 sin 3x) - (2 cos 3*) (3x2) 
dx= (T)2" 

— 6*3 sin 3x — 6x2 cos 3x — 6x2 

= — 0 = —c—[x sin 3x + cos 3*) 
x6 x6 

-6 
= —^-[x sin 3x + cos 3x) 



Function of a function 
12 It is often easier to make a substitution before differentiating. 
If u is a function of x then 

dy dy du 
dx du dx 

This is known as the 'function of a function' rule (or 
sometimes, the chain rule). 

For example, if̂ v = (3* — 1) then, by making the substitution 
u= (3x— l),y=u , which is of the 'standard' form shown in para 8. 
Hence 

dy Q du 
— = 9a8 and — = 3. 
du dx 

Then 
dv dv du 

: ( 9 M 8 ) ( 3 ) = 2 7 « 8 = 2 7 ( 3 X - 1 
dx du dx 

Since y is a function of u, and u is a function of x, then y is a 
function of a function of x. 

Successive differentiation 
13 When a function y =/(*) is differentiated with respect to x the 

dy 
differential coefficient is written as — or/ ' (x) . If the expression is 

dx 
differentiated again, the second differential coefficient is obtained 

d2y 
and is written as —«- (pronounced dee twoy by dee x squared) or 

dx 
f"(x) (pronounced/double-dash x). By successive differentiation 

cfiy <Py 
further higher derivatives such as —5- and —7- may be obtained. 

dx dx 
Thus if 

, dy „ d2y 9 d3y d4y d5y 
y=5x4, — =20x3, -4=60*2, ~ 4 = 120*, - 4 = 120 and - 4 = 0 J dx dx1 dx3 dx4 dx5 

Implicit differentiation 
14 When an equation can be written in the form y=f(x) it is 
said to be an explicit function of x. Examples of explicit functions 
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include 

y = 2x3 - 3x + 4, y = 2x In x and j = 
3/ 

In these examplesy may be differentiated with respect to x by 
using standard derivatives, the product rule and the quotient rule 
of differentiation respectively. 
15 Sometimes with equations involving, say, y and x, it is 
impossible to makejy the subject of the formula. The equation is 
then called an implicit function and examples of such functions 
include y3 + 2x2 —χ — x and sin y = x2 + 2xy. 
16 It is possible to differentiate an implicit function by using 
the function of a function rule, which may be stated as 

du du dy 

dx dy dx 

Thus, to differentiate j 3 with respect to x, the substitution u=y is 
made, from which, 

du 0 

dy 

V: -<**$) 

Hence, 

d 

by the function of a function rule. 
17 A simple rule for differentiating an implicit function is 
summarised as: 

18 The product and quotient rules of differentiation must be 
applied when differentiating functions containing products and 
quotients of two variables. For example 

—(x2J>) = (*2)^M + W ^ * 2 ) ' by t h e product rule 

-<*(£) +j(2*), by using equation (1) 

2 * . i 
= x \-2xy. 
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19 An implicit function such as 3x2 +_/* — 5x +y = 2, may be 
differentiated term by term with respect to x. This gives: 

d 0 d 0 d d d 
(3*2) + (f) _ {5χ) + W ( 2 ) 

dx dx dx dx dx 

dy dy 
6X + 2 J > ^ - - 5 + 1 — = 0, 

dx dx 

using equation (1) and standard derivatives. An expression for the 
dy 

derivative — in terms of x a n d j may be obtained by rearranging 
dx 

this latter equation. Thus: 

dy 
(2y+l)— = 5 -6 * 

dx 

from which, 

<fy_5-6jc 
dx~2y + l 

Logarithmic differentiation 
20 With certain functions containing more complicated products 
and quotients, differentiation is often made easier if the logarithm 
of the function is taken before differentiating. This technique, 
called 'logarithmic differentiation' is achieved with a know
ledge of 

(i) the laws of logarithms, 
(ii) the differential coefficients of logarithmic functions, 
and 
(iii) the differentiation of implicit functions. 

21 Three laws of logarithms may be expressed as: 

(i) \og(AxB)=\ogA + \ogB 

= log A — log B (ii) log/^-W 
(iii) log An = n log A. 

22 In calculus, Naperian logarithms (i.e. logarithms to a base of 
V) are invariably used. Thus for two functions f(x) and g(x) the 
laws of logarithms may be expressed as: 

(i) \n\f(x).g(x)=\nf(x)+\ng(x) 
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«>ffi lnf(x)-\ng(x) 

(iii) ln[/Ix)]»=« ln /W 
23 Taking Naperian logarithms of both sides of the equation 

/Wiw 

gives: 

lnj>: 

1 AW J 
which may be simplified using the laws of logarithms given in para 
22, giving: 

\ny = \nf{x)+\n g(x)-\n h(x). 
This latter form of the equation is often easier to differentiate. 
24 (i) The differential coefficient of the logarithmic function 

In x is given by: 

d 1 
- ( In* ) — 
ax x 

(ii) More generally, it may be shown that 

ip™-m (2) 
For example, ify = In (3x2 + 2x — 1) then 

dy 6x + 2 
^ = 3x2 + 2 x - l 

Similarly, ifj> = ln(sin 3x) then 

dy 3 cos 3x 
— = = 3 cot 3x 
dx sin 3x 

(iii) By using the function of a function rule: 

25 Differentiation of an expression such as 

( i+*)V(*- i ) 
y~~ xJ(x + 2) 
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may be achieved by using the product and quotient rules of 
differentiation; however the working would be rather complicated. 

With logarithmic differentiation the following procedure is 
adopted: 

(i) Take Naperian logarithms of both sides of the equation. Thus 

f ( l + * ) V ( » - l ) | f(l+«)»(*-!)"*] 
nJ "\ V(* + 2) J "t *(* + 2)"2 J 

(ii) Apply the laws of logarithms. Thus 

l n j = ln(l+x)2 + l n (x - l ) 1 / 2 - l n^ - ln (^ - f2 ) 1 / 2 , 

by laws (i) and (ii) of para 22. i.e., 

1 1 
l n j = 2 1 n ( l + x ) + - l n ( * - l ) - l n x - - l n ( x + 2), 

by law (iii) of para 22. 
(iii) Differentiate each term in turn with respect to x using 
equations (2) and (3). Thus 

!*_ 2 ^ i l i 
ydx (\ + x) (x-\) x (x+2) 

dy 
(iv) Rearrange the equation to make — the subject. Thus 

dx 

dy ( 2 1 1 1 
Tx=y\{\+x) + 2 (x - l ) ~ϊ~2(χ + 2) 

(v) Substitute fory in terms of x. Thus 

dy ( l + j t ) V ( j c - l ) r 2 1 1 1 ) 
dx Xy/(x + 2) {(l+jc) 2(x-l) x 2(jt + 2)j 

26 Whenever an expression to be differentiated contains a term 
raised to a power which is itself a function of the variable, then 
logarithmic differentiation must be used. 

dy 
For example, to find — given y=x*. 

dx 
Taking Naperian logarithms of both sides oiy—x* gives: 

lnjy = ln x* = x In x by law (iii) of para 22. 

Differentiating both sides with respect to x gives: 
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using the product rule, i.e. 

\dy dy 
= 1 + In x, from which, — =y( 1 + In x) 

ydx dx 

dy 
i . e . , -^- = j c x ( l + l n x ) 

dx 

Partial differentiation 
27 In engineering, it sometimes happens that the variation of 
one quanti ty depends on changes taking place in two, or more 
other quantities. For example, the volume V o( a cylinder is given 
by V=Tirh. The formula will change if either radius r or height h 
is changed. The formula for volume may be stated mathematically 
as V=f(r, h) which means 'V is some function of r and h\ Some 
other practical examples include: 

(i) time of oscillation, / = 2π / ( - ) , i.e. / = / ( / , g) 

(ii) torque T=I(X i.e. T=f{I, a) 
mRT 

(iii) pressure of an ideal gas/> = , i.e. p=f(T,V) 

1 
(ιν) resonant f requency/0 = ————, i . e . / 0 = / ( / , , C), 

and so on. 
28 (i) When differentiating a function having two variables, 

one variable is kept constant and the differential 
coefficient of the other variable is found with respect to 
that variable. The differential coefficient obtained is called 
a part ia l der ivat ive of the function. 
(ii) A 'curly dee' , d, is used to denote a differential 
coefficient in an expression containing more than one 
variable. 

9 'dV 
Hence if V-nrh then —— means the 'partial derivative 

Or 
of F w i t h respect to r, with h remaining constant'. 

OV d 9 
Thus — = (nh)—{r2) = {nh) (2r) = 2nrh. 

Or dr 
'dJT 

Similarly, —— means ' the partial derivative of V with 
oh 

respect to A, with r remaining constant'. 
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Thus ^=(nr2)^(h) = nr2(\) = nr
2. 

oh dh 
dV oV 

(iii) —— and —— are examples of first order partial 
or oh 

_, . . . dnV 
derivatives, since n= 1 when written in the form . 

dr" 
Thus, for example, if Z — 5*4 + 2x3y2 — 3y then 

dZ d o d „ dy 
- ^ = - ( 5 x 4 ) + (2?)-(χ>) - (3j0f( l . ) 
Ox dx dx dx 

= 20x3 + ( 2 / ) ( 3 x 2 ) - ( 3 j ) ( 0 ) 

= 20JC3 + 6JTV 
and 

dZ A d o d o i/ 
^ = ( 5 / ) - ( l ) + ( 2 x 3 ) - ( / ) - 3 - W 
oy dy dy dy 

= ( 5 / ) ( 0 ) + ( 2 x 3 ) ( 2 j ) - 3 

= 4 J C 3. V - 3 . 

29 As with ordinary differentiation, where a differential 
coefficient may be differentiated again, a partial derivative may be 
differentiated partially again to give higher order partial 
derivatives. 

dV 
(i) Differentiating —— of para 28 with respect to r, 

Or 
d/dV\ 

keeping h constant, gives —( ), which is written as 
dr\ dr I 

d2V 
dr2 ■ 

d2V d 
Thus —v-=~{2nrh) = 2nh. 

or or 
dV 

(ii) Differentiating —— with respect to A, keeping r 
oh 

constant, gives 

d/dV\ 

which is written as 

d2v 
W 
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Thus 

(iii) Differentiating —— with respect to r, keeping h 
oh 

constant, gives 
d /dV^ 
dr\dh 

which is written as 

d2V 
drdh 

Thus 
d2v d/dv\ _ / „ n 

drdh dr\dh -K<">-
dV 

(iv) Differentiating —— with respect to A, keeping r 
or 

constant 
d idV 
dh\fr 

> gives 

\ 
7 

which is written as 
d2V 
'dhdr'' 

Thus 

e2v _ 

(v)17 

_d/dV\_d 
fa\dr~)~~dh 

d2V d2V 
' ~oW ~dr~dh 

{2nrh) = 2nr. 

d2v 
a n d ~ ~ dhdr 

are examples of second order partial 
derivatives. 
(vi) It is seen from (iii) and (iv) that 

d2v j2v 
c^~~dhdr~ 

and such a result is always true for continuous functions 
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(i.e. a graph of the function has no sudden jumps or 
breaks). 
Thus, for example, given £=4rxy— 2x + Ty2, 

( a ) - ^ -=8* )> 3 -6x 2 

ox 

( b ) — = 1 2 * y + 1 4 y 

^ = ^ ) = ^ ( 1 2 ^ + 1 4 7 ) = 2 4 ^ + 1 4 -

(7x<7v oxyoy J ox 

oyox oy\ox ) oy 

( #Z &Z 
[ it is noted that ir~^~-^r-
γ oxoy oyox 

30 (i) First order partial derivatives are used when finding 
the total differential, rates of change and errors for 
functions of two or more variables. 
(ii) Second order partial derivatives are used in the 
solution of partial differential equations, in waveguide 
theory, and in such areas of thermodynamic covering 
entropy and the continuity theorem. 

Total differential 
31 In paras 27-29, partial differentiation is introduced for the 
case where only one variable changes at a time, the other variables 
being kept constant. In practice, variables may all be changing at 
the same time. If Z=AU> v> w> · · ·)> i-e> t n e variables in the 
equation are u, v, w, . . . , then the total differential , άζ, is given 
by the sum of the separate partial differentials of Z· 

K °Z °Z 
du dv dw 

(4) 

The total differential is used as a basis for solving partial differen
tial equations. 
Thus, for example, if £ = / ( « , v, w) and £ = 3 M 2 - 2 Z > + 4 H ; V 
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dZ dZ dZ Then, the total differential dZ~-—du + dv+ dw 
du dv dw 

K 
——=6« (i.e. y and w are kept constant) 
du 

*z , 
—— = — 2+Swv (i.e., u and w are kept constant) 
dv 
dZ 9 9 
-—= \2irur (i.e., u and v are kept constant) 
dw 

Hence dZ=6u du + (8VM>3-2)</V + (12VV)</M>. 

Rates of change 
32 Sometimes it is necessary to solve problems in which different 
quantities have different rates of change. From equation (4), the 

dZ 
rate of change of Z-, 1S given by: 

dt 
> dZ dw I 

(5) 
dZ 
dt 

JZdu dZdv 
du dt dv dt dw 

dw 
~dT + ... 

Thus, for example, if the height of a right circular cone is 
increasing at 3 mm/s and its radius is decreasing at 2 mm/s then 
the rate of change of volume may be determined when the height 
is, say, 32 mm and the radius is 15 mm. 
Volume of a right circular cone, 

3 

Using equation (5), the rate of change of volume, 

dV dVdr dVdh 
= + 

dt dr dt dh dt 
dV 2 dV 1 „ 

=-nrh and ——nr. 
dr 3 dh 3 

Since the height is increasing at 3 mm/s, i.e. 0.3 cm/s, then 
dh_ 
—— +0.3 and since the radius is decreasing at 2 mm/s, i.e. 
dt 

dr 
0.2 cm/s, t hen—=-0 .2 . 

dt 
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dV (2 \ (\ Λ -0.4 
Hence—=[~nrh ( -0 .2)+ ( - 7 ^ ( + 0.3) = Urh+OAnr2 

dt \3 J \3 J 3 
However, Λ = 3.2 cm and r= 1.5 cm. 

dV - 0 . 4 9 Hence — = π(1.5)(3.2)+ (0.1)π(1.5)2 

dt 3 
= -2.011+0.707= -1.304 cm3/s. 

Thus the rate of change of volume is 130 cm3/s decreasing. 

Small changes 
33 It is often useful to find an approximate value for the change 
(or error) of a quantity caused by small changes (or errors) in the 
variables associated with the quantity. If £=f(u, v, w, ...) and Su, 
δν, Sw, . . . denote small, changes in u, v,w, ... respectively, then 
the corresponding approximate changes δζ in Z is obtained from 
equation (4) by replacing the differentials by the small changes. 
Thus 

du dv dw 
(6) 

Ä*0 
Thus, for example, if the modulus of rigidity G = , where R is the 
radius, Θ the angle of twist and L the length, then the approximate 
percentage error in G may be determined when, say, R is increased by 
2%, Θ is reduced by 5% and L is increased by 4%. Using equation (6), 
the approximate error in G, ÖG is given by: 

e ÖG c d G* n d Gi r 

dR δθ dL 
RA6 ÖG 4Ä30 dG R* dG - R*9 

Since G-
L ' dR L ' de L ' dL L2 

2 
Since R is increased by 2%, SR = R = 0.02R 

y 100 
Similarly, δθ = -0.050 and ÖL = 0.04L. 

e /4/?30 \ /R4\ Λ /Ä*0 \ 
Hence äGtei j(0.02Ä) + ( -—)(-0 .050)+ /—J-1(0.04/:) 

Ä*0 /?40 e 1 
~ [ 0 . 0 8 - 0 . 0 5 - 0 . 0 4 ] « - 0 . 0 1 — i . e . , <5G= G 

L L 100 
Hence the approximate percentage error in Gis a 1% decrease. 
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Differential coefficients of inverse tri
gonometric functions 

34 

V orf(x) 

X 
(i) arcsin 

a 

arcsin f(x) 

x 
(ii) arccos 

a 
arcos/(x) 

X 
(iii) arctan 

a 

arctan f(x) 

X 
(iv) arcsec -

a 

arcsec f(x) 

X 
(v) arccosec 

a 

arccosec f(x) 

X 
(vi) arccot -

a 

arccot/(x) 

dv 
'- orf(x) 
dx 

1 

v/{i-[/W]2} 

- i 
v V " * 2 ) 

-f'(x) 
VO-[/I*)]]2} 

a 

o + i/w?} 

f(*W{[f(x)]'2-i} 

— a 

/Wv/{[/I*)]2-i} 

— a 

{i + [/I*)]2} 



Thus, for example, ifj = arcsin 5x2 then 

dy \0x 
oi~V(l-25x4) 

3 
Similarly, ifjy = arctan -^- then 

dy (-6/Z3) (-6/f3) 6/ 
A / 9 \ / f + 9 \ i* + 9 \ r4+9 

Differential coefficients of hyperbolic 
functions 

35 

y o r / ( * ) 

sinh ax 
cosh ax 
tanh ax 

, sech ax 
cosech ax 
coth ax 

dy 

f or/'W 
ax 

a cosh ax 
a sinh ax 
a sech2 ax 
— a sech ax tanh ax 
— a cosech ax coth ax 
— a cosech ax 

Thus, for example ifjy=4 sh 2x ch 3x 

dy 3 
then — = 4(2 ch 2x) - - ( 3 sh 3x) 

ax 7 
9 

=8ch 2 JC— sh 3JC 
7 

Similarly, ifj = 5 t h — 2 coth 4x 

dy (\ 9x\ o 
then — = 5| -sech - | - 2 ( — 4 cosech^ 4x) 

dx \2 2J K J 

5 -x ~ 
= - sech - + 8 cosech2 Ax. 

2 2 
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Differential coefficients of inverse 
hyperbolic functions 

36 

y orf(x) 

X 
(i) arsinh 

a 

ars inh / (x ) 

X 
(ii) arcosh -

a 

arcosh f(x) 

X 
(iii) a r tanh -

a 

a r t a n h / ( x ) 

X 
(iv) arsech-

a 

arscch / (x) 

X 
(v) arcosech 

a 

arcosech f(x) 

X 
(vi) arcoth 

a 

a rco th / (x ) 

dy 
T or-/"W 
ax 

1 

V(*2 + *2) 

ν/{[/ϊ*)]2+1} 

1 

vV-*2) 

V{[/W]2-i} 

a 

{i-[/W]2} 

— o-
xJ~(ar-72J 

-f'(x) 
AxWV-W*)]2} 

— a 

xJix^Va2)' 

/Wv/{[/W]2+U 

{i-[/W]2} 



Thus, for example, if^ = arcosh(5x2 — 1) then 

dy 10* 10* 10* 
dx V[(5AT2- l ) 2 - 1] V[25x4-10x2] J[5x2{5x2-2)] 

10 

^[5(5^-2)] 
Similarly, ifj> = arcoth(sin x) then 

dy cos x cos x 1 
— = - r-2~= 2~= =sec x 
ax 1 — sin x cos x cos x 

Applications of differentiation 
Velocity and acceleration 

37 If a body moves a distance x metres in a time / seconds then: 

(i) distance, x =/(/) 
dx 

(ii) velocity, u=f (/) or —, which is the gradient of the 
dt 

distance/time graph, 
dv „ d2x 

I'm) acceleration, a=—-f it) or —s-, which is the 
' dt J ' d P 

gradient of the velocity/time graph. 

Thus, for example, if the distance x metres moved by a missile in a 
time t seconds is given by: x = 3Z3 - 2Z2 + \t — 1 

dx o 
then velocity, v——-9r —4/+4 

A 
and acceleration, a κ= 18/—4 

dt 
Thus after a time of 1.5 s, velocity y = 9(1.5)2-4(1.5) + 4= 18.25 m/s 
and acceleration a = 18(1.5) —4 =23 m/s . 

Rates of change 
38 (i) If a quantity y depends on and varies with a quantity 

x then the rate of change ofy with respect to x is —. Thus, 
dx 

for example, the rate of change of pressure p with height h 
. dp 
is —. 

dh 
(ii) A rate of change with respect to time is usually just 
called 'the rate of change', the 'with respect to time' being 
assumed. Thus, for example, a rate of change of voltage, v 
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dv $ 
is — and a rate of change of temperature, o is —, and so 

Turning points 
39 (i) In Figure 12.5 the gradient (or rate of change) of the 

curve changes from positive between O and P to negative 
between P and Q , and then positive again between Q,and 
R. At point P, the gradient is zero and, as x increases, the 

Positive gradient 

Figure 12.5 

gradient of the curve changes from positive just before P to 
negative just after. Such a point is called a m a x i m u m 
point and appears as the 'crest of a wave' . At point Q t h e 
gradient is also zero and, as x increases, the gradient of 
the curve changes from negative just before Q to positive 
just after. Such a point is called a m i n i m u m point and 
appears as the 'bottom of a valley'. Points such as P and 
Q a r e given the general name of turning points. 
(ii) It is possible to have a turning point, the gradient on 
either side of which is the same. Such a point is given the 
special name of a po int o f inf lexion, and examples are 
shown in Figure 12.6. 
(iii) Maximum and minimum points and points of 
inflexion are given the general term of s ta t ionary 
points . 
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Minimum point 

Figure 12.6 

Procedure for f inding a n d d i s t ingu i sh ing b e t w e e n s ta t ionary 
po in t s 

dy 
40 (i) Giveny=f(x) , determine — (i.e.,f '{x)). 

dx 
4y 

(ii) Let — = 0 and solve for the values of x. 
V ' dx 
(iii) Substitute the values of x into the original equation, 

y=f{x), to find the correspondingjy-ordinate values. This 
establishes the co-ordinates of the stationary points. 
To determine the nature of the stationary points: 
either ,2 

d y 
(iv) Find —~- and substitute into it the values of x found 

dr 
in (ii). If the result is: 

(a) positive — the point is a minimum one, 
(b) negative — the point is a maximum one, 
(c) zero — the point is a point of inflexion 

or 
(v) Determine the sign of the gradient of the curve just 
before and just after the stationary points. If the sign 
change for the gradient of the curve is: 

(a) positive to negative — the point is a maximum one, 
(b) negative to positive — the point is a minimum one, 
(c) positive to positive, or negative to negative — the point 

is a point of inflexion. 
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example, to find the turning points on the curve y = x3 — 3x + 5: 

(i) ^ = 3 ^ - 3 
ax 

(ii) 3 x 2 - 3 = 0 , hence x= ± 1 . 
(iii) When* = + l,jy = l3 - 3(1) + 5 =3 
W h e n x = - l , j = ( - l ) 3 - 3 ( - l ) + 5 = 7 
Thus the turning points occur at (1, 3) and ( - 1 , 7) 

(iv) S i n c e — = 3 ^ - 3 , - V = 6 x 
dx dxr 

db . When x- + 1, —ψ is positive. 

Hence (1, 3) is a. minimum point. 
db . 

When x= — 1, —j is negative. 
Hence (— 1, 7), is a maximum point. 



13 Integral calculus 

1 The process of integration reverses the process of differen
tiation. In differentiation, if/(x) = 2x2 then/'(x) =4*. Thus the 
integral of 4x is 2-t2, i.e., integration is the process of moving from 

f'(x) tof(x). By similar reasoning, the integral of 2/ is ?. 
2 Integration is also a process of summation or adding parts 
together and an elongated S, shows as J, is used to replace the 
words 'the integral of. Hence, from para 1, |4x=2x2and \2t=^. 

dy 
3 In differentiation, the differential coefficient — indicates that 

dx 
a function of x is being differentiated with respect to x, the dx 
indicating that it is 'with respect to x\ In integration the variable 
of integration is shown by adding d (the variable) after the 
function to be integrated. Thus J4x dx means 'the integral of 4x 
with respect to x\ and J2/ dt means 'the integral of 2/ with respect 
to t\ 
4 As stated in para 1, the differential coefficient of 2xr is 4x, 
hence J4x dx~2x2. However, the differential coefficient of (2x2+ 7) 
is also 4x. Hence J4x dx is also equal to (2x2+ 7). To allow for the 
possible presence of a constant, whenever the process of integration 
is performed, a constant V is added to the result. Thus 
J4x dx= 2)? + c and \2t dt= P + c. V is called the arbitrary constant 
of integration. 
5 The general solution of integrals of the form ja*" dx, where a 
and n are constants is given by: 

ox"*1 

\ax" dx = —+c J n + 1 
This rule is true when n is fractional, zero, or a positive or negative 
integer, with the exception of n= — 1. Using this rule gives: 

Γ 3x4+1 3 
(i) \3x*dx= +<r=-x5 + £, U J 4+1 5 

, 2x~2 + l 2x~x -2 
(ii) \^ dx=\2x~z dx = + <; = + c = + c, -jäx=\ 2x~2 dx = -

■2 + 1 
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and 
χ(1/2)+1 χ3/2 2 , 

au) yx dx=\xw iX=-——+c=—+c=-jj+c (1/2)+1 

Each of these three results may be checked by differentiation. 
6 (i) The integral of a constant k is kx+c. For example, 

(ii) When a sum of several terms is integrated the result is 
the sum of the integrals of the separate terms. For 
example, 

${3x+2x2-5)dx=$3x dx+ fix2 dx-\b dx 
3x2 2JC3

 m 

7 Since integration is the reverse process of differentiation the 
standard integrals listed below may be deduced and readily 
checked by differentiation. 

Standard integrals 

(i) J 

(ϋ) J 

(üi) . 

(iv) _ 

M 

(vi) _ 

(vii) m 

(viii) ^ 

(ix) 

ax" dx 

cos ax dx 

sin ax dx 

sec ax dx 

cosec ax dx 

cosec ax cot 

sec ax tan 

Yx dx 

A 
-dx 
X 

ax 

ax 

dx 

dx 

= 

= 

= 

= 

= 

= 

= 

= 

= 

axn+l 

-t- c (except when n= — 1) 
n+ 1 

1 
- sin ax+ c 
a 

1 
cos ax+c 

a 

1 
- tan ax+c 
a 

1 
— -cot ax+ c 

a 

1 
cosec ax+c 

a 

1 
-sec ax+c 
a 

1 
-eax+c 
a 

In x+c 
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Thus, for example, 

3 sin 2x dx = - - cos 2x+ c 
J 2 

5 , 
2(3) 6 

and 

6 . f 6 6 f l 
— dx = - \-dx = 

)5x 5)x - I n jr + c 

8 Integrals containing an arbitrary constant c in their results 
are called indefinite integrals since their precise value cannot be 
determined without further information. Definite integrals are 
those in which limits are applied. If an expression is written as 
[*]*, '/>' is called the upper limit and V the lower limit. The 
operation of applying the limits is defined as [*]*= {b—a). The 
increase in the value of the integral AT as x increases from 1 to 3 is 

x dx. Applying the limits gives: 

l 

1 

3 
Note that the V term always cancels out when limits are 

applied and the arbitrary constant need not be shown with definite 
integrals. Similarly, 

π/6 

ί ρ2 -f/& 2Γ π Ί 2 2 

2cos3x</*= -s in 3* =- lsin 3 sin 0 = - ( 1 - 0 ) = -
o 

9 Functions which require integrating are not always in the 
'standard' form shown in para 7. However, it is often possible to 
change a function into a form which can be integrated by using 
either: 

(i) an algebraic substitution, 
(ii) a trigonometric or hyperbolic substitution, 
(iii) partial fractions or 
(iv) integration by parts. 
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10 With algebraic substitutions, the substitution usually made 
is to let u be equal to/(x) such that/(*/) du is a standard integral. 

It is found that integrals of the form k\[f(x)]nf (x) dx and k I dx 
J If MY 

(where k and n are constants) can both be integrated by 
substituting u forf(x). For example, to determine j"(5x+2)8 dx, 

du du 
let u=5x+2, then —=5 and dx= — 

dx 5 

Hence 

J < * + 2 > - * - J ^ * - 1 £ ) H 

=i„9+c 
45 

Rewriting « as (5x+ 2) gives 

J (5*+2) 8 Ä=- i (5x + 2 p + c 
45 

Similarly, to determine 

let «=(7j>+4), then —=7 and dy-—. 
dy 7 

Hence 

f 1 , f / l V « lf l 1 1 

J<^*-J(;)7-7J;*vta"+i"7v'+*+e· 
Similarly, to determine 

let «=(5/— 1), then —=5 and dt= — 
dt 5 

Hence 

J6V5'"1 rf/=f6^—=-f^ du=-f+c=-p-l+c. 

Also, to determine J2 sin30 cos 0 dÖ, 
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du du 
let w=sin Θ, then —-— =cos Θ and du = -άθ cos Θ 

Hence 

f2 sin30 cos Θ d0= ί2(ι/)3 cos ö ^ — = 2fw3 du, 
cos 0 

by cancelling, 

# 
= 2ί — )+<;=-sin40+i 

(Note thatsin30=(sin0)3). 
To determine |3x(2x2-5)5 </X, 

9 du du 
let Μ = ( 2 Α Τ - 5 ) , then —= 4* and </*= — 

ώ* 4 * 

Hence 

J3x(2x2-5)5 </X=J3X(H)5—=-{M
5 <ώ, 

by cancelling. 
The original variable V , has been completely removed, and the 
integral is now only in terms of u and is a 'standard integral'. 
Hence 

3 
4' 

To determine 
3x 

ί , 5 ^ = 4 ί ^ + . = -(2χ2-5)6 + ̂ ^ 2 - 5 ) 6 + ί. 

tc 

1; IV(4*2-3) 

i —=8* and dx——. 
dx 8* 

Hence 

let u= (4x2— 3), then — =Sx and dx= 

Γ 3x _ Γ3* /du\ 3 Γ 1 3f _, /2 

JV(4x2-3) ^ = J>^J = 8j> ^ = 8j" 
1 

tt 1-1 wo 
/3\ 2 /3V _L 3 / 

2 " " 2 =
3
 / / A 9 = -V(4^-3) + < 
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11 Table 13.1 summarises the integrals that require the 
use of a trigonometric or hyperbolic substitution. 
Thus, for example, 

1 
-(1 + cos 8/) dt, from 1 of Table 13.1 
2 

J2cos24tdt = 2\ 

sin 8/ 
= , + — + c 

jsin2* cos3* dx=lsin2x cos2* cos x dx 

= Jsin2*(l — sin2*) cos x dx, from 5(a) of Table 13.1 

= J(sin2* cos *—sin4* cos *) dx 

=-3—r+c 

Jsin2/ cos4* dt=jsin2t (cos2/)2 dt 
[VI-cos 2 A / l + cos 2Λ2 

from 5(b) of Table 13.1 

= -j( l - cos 2t) (1 + 2 cos 2t+ cos22f) dt 
8 

= -J(l + 2 cos 2/+cos22/-cos 2t-2 cos22/-cos22f) dt 
8 

= -f(l + cos 2*-cos22/-cos320 dt 8 

= - 1 +cos 2t-( ^ i - i j - c o s 2/(1 —sin22/) I dt 

lf /1 cos 4/ \ 
= 8j(2 ^ + c o * 2 / s i n 2 2 / U 

\(t sin At sin32A 

r\ l r\ 
-cos 5* sin 2x dx = - -[sin (5* + 2*) - sin (5* - 2*)] dx, from 7 

of Table 13.1 

\(/ . „ . „ x , 1 / cos7x COS3JC\ 
= -J(sm 7x-sin 3*) dx —-A 1 — \ + c 
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Table 13.1 

Method 

Use cos 2x= 2 cos2 x - 1 

Use cos 2x= 1 - 2 sin2 x 

Use 1 + tan2x = sec2 x 
Use cot2 x + 1 =cosec2 x 

(a) If either AT? or n is odd (but not both), use 
cos x+sin x=1 
(b) If both m and n are even, use either 
cos 2x= 2 cos2 x - 1 or cos 2x= 1 - 2 sin2 x 

Use -[sin (/! + £) +sin ( Λ - β ) ] 
2 
1 

Use -[sm{A + B) - s\n{A- B)] 
2 
1 

Use -[cos(/ l + B) - cos{A -B)} 
2 

1 
Use --[cos(A + B)-cos{A-B)] 

2 

arcsin -+c 
a 

a2 x x 
— arcsin — \--sJ{a2-x2) + c 
2 a 2 

Use x = a sin Θ 
substitution 

(x+J(x2 + a2)\ 

{—.—Γ arsinh —\-c or In· 

- arsinh -+-s/(x2 + az) + c 
a 2 

Use x = a tan Θ 
substitution 

Use x = a sinh 0 
substitution 

arcosh -+c or I n | - ^ — r c 

- N/ ( x 2- a 2) arcosh - + c 
2 2 a 

I Use x = .9 cosh t 
substitution 
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~Τ7λ or dx = \ arcsin - , from 10 of Table 13.1 
J V P - * 2 ) [ 3Jo 
0 

π 
= (arcsin 1 — arcsin 0) = — or 1.5708 

4 
f Π 6 x x Ί 4 

V(16-x2) dx=\ — arcsin -+-^{16-**) , from 11 of Table 13.1 
o 

= (8 arcsin 1 + 2^0) - (8 arcsin 0 + 0) 

= 8 arcsin 1 = 8( —)=4π or 12.57 

12 The process of expressing a fraction in terms of simpler 
fractions — called partial fractioiis — is discussed in the section 
on Algebra (Chapter 3) and the forms of partial fractions used are 
summarised on page 35. Thus, for example, 

f 11-3x (7 2 5 \ 

JTT^T *-XiTTiTsJ dx (sce page 36) 

= 21n(jc-l)-51n(x+3) + c 

f2x + 3 (Y 2 7 \ 

7 
= 21n(*-2) +« 

(»-2) 
f3 + 6* + 4x 2 -2* 2 f/2 1 3 - 4 * \ 

J *V+3) rf*=J(;+7+7Ti,r(seepage37) 

1 3 x 
= 2 In x —+— j - arctan—T--2 ln(jr2 + 3) + c 
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Integration by parts 
13 From the product rule of differentiation: 

d du dv 
—(uv) = v—+u—, 
dx dx dx 

where u and v are both functions of x. Rearranging gives: 

dv _ d du 
u———{uv) — v— 
dx dx dx 

Integrating both sides with respect to x gives: 

dv d .du 
\u— dx- —(uv) dx— \v— dx 3 dx 3dx{ J J dx 

i.e. J«— dx-uv— \v— dx 
dx dx 

or jw dv = uv — jv du 

This is known as the integrat ion by p a r t s f o r m u l a and 
provides a method of integrating such products of simple functions 
as \xe* dx, \t sin t dt, \e cos Θ $ and \x In x dx. 
14 Given a product of two terms to integrate the initial choice 
is: 'which part to make equal to u and 'which part to make equal 
to v\ T h e choice must be such that the 'a part ' becomes a constant 
after successive differentiation and the 'dv part ' can be integrated 
from standard integrals. 

Invariably, the following rule holds: ' I f a product to be 
integrated contains an algebraic term (such as x, t2 or 30) then this 
term is chosen as the u part ' . The one exception tö this rule is 
when a 'In #' term is involved; in this case In x is chosen as the 'u 
part ' . Thus, for example, to determine 

J* cos x dx, 

du 
let u = x, from which — - 1, i.e., du — dx 

dx 

and let dv=cos x dx, from which, v= Jcos x dx=s'm x. Expressions 
for u, du, v and dv are now substituted into the parts formula as 
shown below. 

Γ Λ 
fitt» ! dv i = 
11 x i i cos x dx i — ■ 
JL . J L J 

u \ \ v \ ~ \ \ v \ \du\ 
[x)\ i (sin x)\ - J J (sin x)\ \(dx)\ 
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i.e. 

jx cos x dx= x sin x— (— cos x) + c 

-x sin x+cos x+c. 
(This result may be checked by differentiating the right hand side, 
i.e. 

d 
—(x sin x+ cos x+ c) = [{x) (cos x) + (sin x) (1)] — sin x+ 0 
</x 

= x cos x, which is the function being 
integrated.) 

When determining jx In x </x, the logarithmic function is chosen as 
the '« part'. Thus when 

du 1 dx 
u=\n x, then —=- , i.e., du~—. 

dx x x 

x* 
Letting dv = x dx gives v = \x dx 

Substituting into JM dv=uv—\v du gives 

x2 l f x2 I/*2 

Hence 

l f x* l /x*\ 
l n x - - j x ^ x = y l n x - ^ - l + <; 

jc2/ 1\ x2 

fjr In JC dx=—(in x - - )+c or —(2 In j r - l ) + c. 

Applications of integration 
(a) /4reas t/rtcter a/?c/ between curves 

15 (i) Let A be the area shown shaded in Figure 13.1 and let 
this area be divided into a number of strips each of width 
δχ. One such strip is shown and let the area of this strip 
be δΑ. Then: 

SA^ySx (1) 

The accuracy of statement (1) increases when the width of 
each strip is reduced, i.e. area A is divided into a greater 
number of strips. 
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Figure 1 3.1 

(ii) Area A is equal to the sum of all the strips from x — a 
to x — b, i.e. 

limit x = b . 
A= V ybx 

(iii) From statement (1), 

bA 

(2) 

(3) 

bA 
In the limit, as bx approaches zero, -— becomes the 

Ox 
dA limit (bA \ dA 

differential coefficient . Hence [ -— ] = -y-=y, 
dx bx 

imit /bA \ dA 
x^O\bx~)~~dx~~J 

from statement (3). By integration, I dx = [y dx, i.e. 

A = \y dx. The ordinates x=a and x=b limit the area and 
such ordinate values are shown as limits. Hence 

[=Udx (4) 

(iv) Equating statements (2) and (4) gives: 
b b 

limitxZ,b Γ Γ 
Shaded area of Figure 13.1, A = > yöx— I y dx— \Ax) dx 

**—°χ = α J J 
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(v) If the area between a curve x =f{y), the j-axis and 

ordinatesj=/> and y — q is required then area - / . * 

Thus determining the area under a curve by integration 
merely involves evaluating a definite integral. 

16 There are several instances in engineering and science where 
the area beneath a curve needs to be accurately determined. For 
example, the areas between limits of a: 
velocity/time graph gives distance travelled, 
force/distance graph gives work done, 
voltage/current graph gives power, and so on. 
17 Should a curve drop below the x-axis, then j>( =/(*)) becomes 
negative and \f(x) dx is negative. When determining such areas by 
integration, a negative sign is placed before the integral. For the 
curve shown in Figure 13.2, the total shaded area is given by 
(area £+area F+area G). 

Figure 13.2 

By integration, 

total shaded area = = UJC) dx- j / W dx + Ux) dx. 
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y=f2 \x) 

(Note that this is not the same as \f{x) dx.) 

a 
It is usually necessary to sketch a curve in order to check whether 
it crosses the x-axis. 
18 The area enclosed between curves_y =f\(x) and j>=f2(x) 
(shown shaded in Figure 13.3) is given by: 

Shaded area -U(x)dx-L(x)dx 

■ί' = GiUWiOr)] Λ 

Thus, for example, to determine the area enclosed by the curve 
y—x + 2x — 5x— 6 and the x-axis (i.e., the shaded area shown in 
Figure 13.4): 

- l 2 

Shaded area = j i / x - \ y dx, the minus sign before the second 

- 3 - 1 
integral being necessary since the enclosed area is below the x-axis. 
Hence 

- 1 2 

- 3 1 
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X 

Lc3 
2x2 

\-5x 
- 6 

[y 

- 3 

-27 
18 
15 

- 6 

0 

- 2 

- 8 
8 

10 
- 6 

4 

-1 

- 1 
2 
5 

- 6 

0 

0 1 2 

0 1 8 
0 2 8! 
0 - 5 -10 

- 6 - 6 - 6 

- 6 - 8 0 

Figure 13.4 

}w •3 + 2x2-5x-6) 

(x3 + 2 x 2 - 5 x - 6 ) dx = 

1 

12 

*4 2x3 5x2 

— +— 
4 3 

16 
4 + — - 1 0 -

3 

45 ) 
18 — + 1 8 

= 5 - square units 

Γχ* 2χ·* 5x' I " 

}-Γτ-
}-H-

δ*2 f 
2 J - . 

-»}-{4} 
-J3—1= — 15-

1 12] 4 square units 

square uni t s . 
/ 1\ / 3 \ 1 

Hence shaded a r e a = | 5 - I— ( — 15- 1=21— 
\V V V 12 

To determine the area enclosed between the curves y = x1 + 1 and 
jv = 7 — x: 

At the points of intersection, the curves are equal. Thus , 
equating they-values of each curve gives: x 2 + 1 = 7 —x, from which 
x^+x— 6 = 0 . Factorising gives (x— 2)(x+ 3) = 0, from which x = 2 
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and x= — 3. By firstly determining the points of intersection the 
range of x-values have been found. Tables of values are 
produced as shown below 

X 

J = ^ + l 
- 3 
10 

- 2 
5 

- 1 0 
2 1 

1 
2 

2 
5 

X 

y=7 — x 
- 3 0 2 
10 7 5 

y— 1— x is a straight line thus only two points are needed, plus one 
more as a check. A sketch of the two curves is shown in Figure 13.5. 

2 2 

Shaded area= | (7-x) dx- | (x2 + l) dx 

- 3 - 3 

2 2 

= f [(7-*)-(*2+l)] <**= I (6-x-x2)dx 

- 3 - 3 

-[6"-Τ-τΙ.,=(,2-2-5)-(-,8^+9) 
=(4)-(-4) 
= 20- square units. 

=x2+ 1 



V 

0 

A 
1 
I x=a 

V 

1 
1 
1 
1 

x=b 

-flx) 

y 

1 
X 

Figure 13.6 

(b) Mean or average values 
19 (i) The mean or average value of the curve shown in 

Figure 13.6, between x = a and x = b is given by: 

mean or average value, y-
area under curve 

length of base 

(ii) When the area under a curve may be obtained by 
integration, then 

mean or average value,y-

±fy i.e.,.y=- \f(x)dx. 

(iii) For a periodic function, such as a sine wave, the mean 
value is assumed to be 'the mean value over half a cycle', 
since the mean value over a complete cycle is zero. 

For example, the mean value of a voltage v= 10 sin Θ volts 
over half a cycle (i.e., between 0 and π rad) is given by: 

π π 
1 f l f 

Mean value, y = 1 v & = — I 10 sin θ άθ 
π-Oj π] 

201 



10 π 10 
=—[l-cos0] =—{(-cos π) - (-cos 0)} 

π 0 π 

10, , 20 
= — { ( ! ) - ( - 1 ) } = — = 6 3 6 6 V. 

π π 
2 , . 

(For a sine wave, the mean value = — x maximum value, i.e. 
it 

2 
— x 10 = 6.366 V in this case.) 
π 

/?oof mean square value 
20 T h e root mean square value of a quantity is ' the square root 
of the mean value of the squared values of the quanti ty ' taken over 
an interval. With reference to Figure 13.6, the r.m.s. value of 

y~f{x) over the range χ—α to x-b is given by: 
b 

r.m.s. value = hW 
One of the principal applications of r.m.s. values is with 

alternating currents and voltages. The r.m.s. value of an alternat
ing current is defined as that current which will give the same 
heating affect as the equivalent direct current. 

For example, the r.m.s. value of a voltage v= 10 sin 0 volts 
over the range 0 = 0 to 0 = π is given by: 

r.m.s. value = ^prfflL Ιί1-ί(\0ύηθ)2Μ 

m sin2 θ άθ>, which is not a 'standard' integral. 

ö 

From 2 of Table 13.1, page 192, cos 20 = 1 - 2 sin20 and this 
formula is used whenever sin20 needs to be integrated.Rearranging 

cos 2 0 = 1 - 2 sin20 gives sin20 = - 2 ( 1 - c o s 20). Hence 

n n 
1 0 0 Γ · 2 Λ J /noon Λ Λ 
v j s m 2 0 ^ j ^ | v J _ ( l -cos 20)^0 

o 
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Η-τ)} 
10 

= V2 

= 7.071 V 

(Note that for a sine wave, the r.m.s. value = * maximum 
V2 

1 \ 
value, i.e. x 10=7.071 V in this case. I 

V2 ) 
(d) Volumes of solids of revolution 

21 If the area under the curvey = f(x) , (shown in Figure 13.7(a)), 
between x—a and x—b is rotated 360° about the x-axis, then a 
volume known as a so l id o f revolut ion is produced as shown in 
Figure 13.7(b). The volume of such a solid may be determined 
precisely using integration. 
22 (i) Let the area shown in Figure 13.7(a) be divided into a 

number of strips each of width δχ. One such strip is 
shown shaded. 
(ii) When the area is rotated 360° about the x-axis, each 
strip produces a solid of revolution approximating to a 
circular disc of radius y and thickness bx. 
Volume of disc = (circular cross-sectional area) (thickness) 
= (ny2)(Sx). 

(iii) Total volume, V, between ordinates x=a and x= b is 
given by: 

b 
limit x=b

 Ύ f -
Volume, V= Λ > πγίδχ= \ny* dx 

Sx-+0r=a 

Thus, for example, the volume of the solid of revolution produced 
when the cu rvey = x2 + 4 is rotated one revolution about the x-axis 
between the limits x= 1 and x = \ is given by: 

volume = π^2 dx = π (x2 + 4)z dx 
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y 

0 
1 

x=a 

y=fix) 

H i 

Figure 13.7 

+ 16) dx = π[(χ4 + 8χ: 

1 

r*5 sx3 η4 

= π[(204.8+170.67+ 64)- (0 .2+ 2.67+16)] 

= 420.6π cubic units. 
23 If a curve x=f(y) is rotated about thej-axis 360° between the 

limits y = c and y = d, as shown in Figure 13.8, then the volume 
generated is given by: 

d 
limit y=d l i m i t s , f , 

Volume = Y nx dy= nx* dy. 

(e) Centroids 
24 A lamina is a thin, flat sheet having uniform thickness. The 
centre of gravity of a lamina is the point where it balances 
perfectly, i.e. the lamina's centre of mass. When dealing with an 
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x=f(y) 

Figure 13.8 

area (i.e. a lamina of negligible thickness and mass) the term 
centre of area or centroid is used for the point where the centre of 
gravity of a lamina of that shape would lie. 
25 The first moment of area is defined as the product of the area 
and the perpendicular distance of its centroid from a given axis in 
the plane of the area. In Figure 13.9, the first moment of area A 
about axis XX is given by (Ay) cubic units. 
26 Centroid of area between a curve and the x-axis 

(i) Figure 13.10 shows an area PQRS bounded by the 
curve y=f(x)-> the x-axis and ordinates x = a a.ndx = b. Let 
this area be divided into a large number of strips, each of 
width δχ. 

A typical strip is shown shaded drawn at point (x,y) 
on f(x). The area of the strip is approximately rectangular 
and is given by yöx. 

Figure 1 3.9 
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The centroid, C, has co-ordinates H) 
(ii) First moment of area of shaded strip about axis OY 
= (yox)(x) = xyöx. Total first moment of area PQRS about 

^xydx=\xyt 
* - 0 * = a J 

limit xl! . . 
axis OY= 2l xy δχ= \xy dx. 

Ox 

(iii) First moment of area of shaded strip about axis OX 

Total first moment of area PQRS about axis OX 

-if Wdx 

=\ydx' 
(iv) Area of PQRS A = \y dx (from para 15) 

(v) Let x and y be the distances of the centroid of area A 
about OY and OX respectively then: 

b 

(x) (A) = total first moment of area A about axis OY= xy dx 

-l· 
xy dx 

from which, x=-
\,yd* 

and iy){A) = total first moment of area A about axis OX 
b 



;j% 
from which, y-

y dx 

l· 
Thus, to find the position of the centroid of the area bounded by 
the curvey = 3x2, the x-axis and the ordinates x = 0 and x = 2: 

0 _ 0 _ 0 _ L 4 J0 , 1 2 

[ydx [^dx UxUx [X]° 8 

0 0 0 

i r2 l r 2 i f 2 

- / Λ - U ^ f d x -\9x*dx 9Trh 2 9/32\ 
- = _ o = _o = _o =

 2 L 2 Jo =
 2V 5 / 

V r2 8 8 8 8 r 
18 
—=3.6 
5 

Hence the centroid lies at (1.5, 3.6). 

27 Centroid of area between a curve and the y-axis 
If x and y are the distances of the centroid 
of area EFGH in Figure 13.11 from OY 
and OX respectively, then, by similar 
reasoning as in para 26: 

d 

limit *ζί c (x\ 1 Γ o 
(x)(total area) =^ _ ^ Σ M j O M - g K * ' 
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from which, 
x = -cJ 

fcJdy 
\>dy 

y=d 

V 

Y=d 

.Λ 
t 

y=c 

0 

§ _ _ _ _ 
X | 

y 
H 

C(f y) / 

~~~/G 

- /F 
L^x=f 

X 

Figure 13.11 

i 
limit f f 

and (y) (total area)= I (AÖ)>^= \xydy, 
h~+o J J 

from which, iv — ί*·__ί-

(f) Second moments of areas 
28 (i) The first moment of area about a fixed axis of a 

lamina of area A, perpendicular distance^ from the 
centroid of the lamina is defined as Ay cubic units. 
(ii) The second moment of area of the same lamina as 
in (i) is given by Aji1, i.e., the perpendicular distance from 
the centroid of the area to the fixed axis is squared. 
(iii) Second moments of areas are usually denoted by / 
and have units of mm4, cm4, and so on. 

29 Several areas, alt ^ 03, . . . at distancesj^,^, V3, . . . from a 
fixed axis, may be replaced by a single area A> where A =a\ +a2 
+ A* + . . . at distance k from the axis, such that K IS 
called the radius of gyration of Area A about the given axis. Since 

AI? = Yjaf = / then the radius of gyration, k = /( — J. 

30 The second moment of area is a quantity much used in the 
theory of bending of beams, in the torsion of shafts, and in 
calculations involving water planes and centres of pressure. 
31 The procedure to determine the second moment of area of 
regular sections about a given axis is (i) to find the second moment 
of area of a typical element and (ii) to sum all such second 
moments of area by integrating between appropriate limits. 

For example, the second moment of area of the rect
angle shown in Figure 13.12 about axis PP is found by initially 
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Figure 13.12 

considering an elemental strip of width δχ and parallel to and 
distance x from axis PP. Area of shaded strip = box. 
Second moment of area of the shaded strip about PP= (^(bSx). 
The second moment of area of the whole rectangle about PP is 
obtained by summing all such strips between x = 0 and * = /, i.e. 

It is a fundamental theorem of integration that 

limit 
δχ 

Thus the second moment of area of the rectangle about 

/ 

VV = b[x2 dx 

o 

-* 3 Ί ' bl3 

f 
-kl-»-

1 3 Jo 3 
oftf Since the total area of the rectangle, 

A = lb, then 7PP = 

/pp = ΑΙίγγ thuS App2 = 
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i.e. the radius of gyration about axis PP, 

k?P-

A polar axis is an axis through the centre of a circle, perpendicular 
to the plane of the circle as shown by axis ZZ in Figure 13.13. 
Consider the elemental annulus of width δχ shown shaded in Figure 
13.13, radius x from the centre, 0. If δχ is very small, then the area 
of the elemental annulus is approximately given by (circumference 
x width), i.e. area of annulus &{2πχ){δχ). 

Second moment of area of annulus about the centre of the circle 
7ax2{2nr dx). Total second moment of area of the circle about ZZ, 

limit x r
 0 

i.e. l77= \2πχό dx=2m 
' Tür4 

Radius of gyration, kzz- ^r2 V2 

Parallel axis theorem 
32 In Figure 13.14, axis GG passes through the centroid C of area 
A. Axes DD and GG are in the same plane, are parallel to each 
other and distance d apart . The parallel axis theorem states: 

^ D D ^ G G + ^rf2 

Using the parallel axis theorem the second moment of area of a 
rectangle about an axis through the centroid may be determined. 

b? 
In the rectangle shown in Figure 13.15, 7PP = (from para 31). 

From the parallel axis theorem 

A»P = / G G + W 

= 'GG + -

2) 
bP 
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Figure 13.13 

from which, 

Figure 13.14 

/ G G ~"3 T~~12~ 

Perpendicular axis theorem 
33 In figure 13.16, axes OX, OY and OZ are mutually per
pendicular. If OX and OY lie in the plane of area A then the 
perpendicular axis theorem states: 

A ) Z = ^ O X + / O Y 
A circle of radius r, having three mutually perpendicular axes OX, 

I 
-t* 

^1 ' 

H k 

Figure 13.15 Figure 1 3.16 
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OY and ZZ is shown in Figure 13.17. From para 31 

By symmetry, 

/ox = 'ΟΎ 
Using the perpendicular axis theorem: 

hz = lox + AOY = 2^ox 

i.e. —— = 2/0χ, from which, 7 o x = 

Hence the second moment of area of a circle about 
. nr4 

a diameter is — 
4 

Radius of gyration, kox = /——= / 
y] area \j ( ! ) ■ 

Figure 13.18 shows a circle of radius r having a tangent PP parallel 
to diameter XX. By the parallel axis theorem: 

' ρ ρ ^ χ χ + Λ*2 

From above, 

' Y Y — _ 

Thu 

/pp = —(*?)? =-nr*. Figure 13 18 

Thus the second moment of area of a circle about 

a tangent is 
•wc 

Radius of gyration, 

f^™=J\ .A 
2 ' 
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Summary of standard results of the 
second moments of areas of regular 
sections 

Shape 

Rectangle 

length / 

breadth b 

Triangle 

Perpen
dicular 
height h 
base b 

Circle 

radius r 

Semic irc le 
radius r 

Position of axis 

(1) Coinciding with b 

(2) Coinciding with / 

(3) Through centroid, 
parallel to b. 

(4) Through centroid, 
parallel to /. 

(1) Coinciding with b 

(2) Through centroid, 
parallel to base 

(3) Through vertex 
parallel to base 

(1) Through centre, 
perpendicular 
to plane 
(i.e. polar axis) 

(2) Coinciding with 
diameter 

(3) About a tangent 

Coinciding with 
diameter 

Second moment 
of area, I 

bl3 

T~ 
lb3 

ΊΓ 
bl3 

12 

lb3 

Ϊ2~ 

bh3 

12 

bh3 

36" 

bh3 

Tir4 

~2~ 

Tür4 

~4~ 

5π 
r 

4 

7Tr4 

Radius of 
gyration, k 

I 

V3 
b 

1 

b 

7Ϊ2" 

h 

V6 

A 

V2 

r 

V2 

r 

2 

r 
2 

r 

2 
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I 

1 

V 

1.0 cm 

2.0 cm 

" I 
■f 

X 

8.0 cm 

T 
6.0 cm 

Figure 13.19 

For example, to determine the second moment of area about axis 
XX for the composite area shown in Figure 13.19: 

nr* π(4.0)4 

For the semicircle, /χχ = -

For the rectangle, 7XX = 

= 100.5 cm4 

8 8 
bl3 (6.0) (8.0)3

 4 
-= 1024 cnr 3 3 

For the triangle, about axis TT through centroid CT, 

bh3 (10.0)(6.0)3 

ITT~ 36 36 
= 60 cm4. 

By the parallel axis theorem, the second moment of area of the 
triangle about axis XX. 

= 60 + |-(10.0)(6.0)T8.0 + -(6 .0) | = 360cm4. 

Total second moment of area about XX = 100.5+ 1024 + 360 

= 1484.5 = 1480 cm4, correct to 3 significant figures. 
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14 Differential equations 

1 A differential equation is one that contains differential 
dy mm cfiy dy _ 

coefficients. Examples include: (i) —= 7x and (ii) —s-+5—+2y-0 
dx dx' dx 

2 Differential equations are classified according to the highest 
derivative which occurs in them. Thus example (i) above is a first 
order differential equation, and example (ii) is a second order 
differential equation. 
3 Starting with a differential equation it is possible, by 
integration and by being given sufficient data to determine 
unknown constants, to obtain the original function. This process is 
called 'solving the differential equation'. 
4 (i) A solution to a differential equation which contains 

one or more arbitrary constants of integration is called the 
general solution of the differential equation. 
(ii) When additional information is given so that 
constants may be calculated the particular solution of 
the differential equation is obtained. The additional 
information is called boundary conditions. 

5 Differential equations are widely used in engineering and 
science. There are several different type of differential equation 
and each requires their own method of solution. 

(a) ^ = / ( x ) t y p e 
ax dy 

6 A differential equation of the form — =/{x) is solved by direct 
dx 

integration, i.e. 

y=J(x)dx. 

For example, to solve the differential equation 

dy 9 1 
—=3* — sin 2x, given the boundary conditionsy= 1- when x-0: 

dy 9 Integrating both sides of — = 3x -s in 2x gives: 
dx 
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f—<fc=f(3x2-sin2*) dx 

? 1 i.e. y = x + - cos 2x + c, which is the general solution. 

1 1 1 
y = 1 - when x = 0, hence 1 - = 0 + - cos 0 + c 

2 2 2 

from which, c = 1. 
Thus the particular solution is: 

v=jc3H— cos 2jr + l . 
2 

(b) ^ = / ( K ) type 
« * dy 

7 A differential equation of the form — =f(y) is initially 
dx 

dy 
rearranged to give dx = , and then the solution is obtained by 

M 
direct integration, 

-MS 
Thus, for example, to determine the particular solution of 

o dy 1 
{jr — 1)— = 3j>, given y = 1 when x = 2-, 

dx 6 

the differential equation is firstly rearranged giving: 

<&=—-— dy=^n-w:)dy 

Integrating gives: 

/ · i.e. x = \ny + c, which is the general solution. 
6 3 

1 1 1 1 
y= 1 when x = 2-, hence 2- = In 1 + c J 6 6 6 3 

from which, c = 2. 
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Hence the particular solution is: 

v2 1 

(C) ^-=/ (x) .y(y) 
ax dy 

8 A differential equation of the form —=f(x)-g[y), where f(x) is 
dx 

a function of x only and g(y) is a function ofy only, may be 
dy 

rearranged as =/(*) dx, and then the solution is obtained 
g(?\ 

by direct integration, i.e. 

When two variables are rearranged into two separate groups 
as shown above, each containing only one variable, the variables 
are said to be separable. 

dy dy 
Differential equations of the forms —=/(*) and —=/W are 

dx dx 
merely special cases of 'separating the variables'. 

dy π 
For example, to solve — = 2y cos x, given y= 1 when x = —, 

dy 

the variables are first separated giving: — = cos x dx. 

Integrating both sides gives: 
I — =1 cos x dx 

1 
i.e. - In y = sin x + c 

2 
π 1 π 

y = 1 when x = —, hence - In 1 = sin \-c from which c = — 1 
J 2 2 2 

Hence the solution is - In v = sin x — 1 
2 

dQ 
(d) - £ - = * Q type 

dt dQ 
9 The general solution of an equation of the form = kQ is 
Q — A^ where A is a constant. 
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This solution may be checked: Differentiating Qj=Atl with 
dQ .. 

respect to / gives: = k(Ar) = kQ. 
dt 

This provides an alternative method of solution of type (b) 
given in para 7. 

dy 
For example, in solving — = 5jy, given y = 2 when x = 1, it is 

dx 
dy . dQ 

recognised that — = by is of the form —— = kQ (wherey— Q, x— t 
dx dt 

and k = 5). 
Hence the solution is y = Ae5x. 
Given y — 2 when x= 1 enables A to be determined. 

2 
Thus 2=Ae5{l\ i.e., A=^- = 2e~5. 

r 
Hence the particular solution is: 

y={2e~5)e5x 

which may also be obtained using the method shown in (b). 
dil 

10 Examples of the natural laws of the form = kQ include: 
dt 

dd , 
(i) Newton's law of cooling: — = — k0. T h e law is Θ=Θ0β~κ 

dt 
di 

(ii) Decay of current in an inductive circuit: — = ki. The 
dt 

law is i = Aeit 

. dl . ui 
(iii) Linear expansion: — = kl. The law is l = l0e^ $ 

(e) Homogeneous first order differential 
equation 

11 Certain first order differential equations are not of the 
'variable-separable' type but can be made separable by changing 
the variable. j 
12 An equation of the form P— = Q, where P and Q,are 

dx 
functions of both x and y of the same degree throughout, is said to 
be h o m o g e n e o u s injy and x. 

For example, f{x,y) = x2 + 3xy + y2 is a homogeneous function 
since each of the three terms are of degree 2. Similarly, 
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x- 3y 
f(x>J>)~ is homogeneous in x and^y since each of the four 

2x+y 
terms are degree 1. 

xl — y 
However, f(x,y) =—9 «- is not homogeneous since the term 

2;r +yr 
my in the numerator is of degree 1 and the other three terms are 
of degree 2. 

Procedure to solve differential equations of the form 

dx 

dy dy Q, 
13 (i) R e a r r a n g e d — = Q,into the f o r m — = — . 

dx dx P 
(ii) Make the substitution y = vx (where v is a function 

dy dv 
of x), from which, — = »(1) + * — , by the product rule. 

dx dx 
dy . dy d 

(iii) Substitute for both y and — in the equation — = — . 
dx dx P 

Simplify by cancelling, and an equation results iri which 
the variables are separable. 
(iv) Separate the variables and solve using the method 
shown in para 8. 

y 
(v) Substitute v = - to solve in terms of the original 

x 
variables. 

dy x2 + y 
For example, to solve the equation x— = , given that x= 1 

dx y 
when j = 4 , using the above procedure: 

dy x2+y2 . dy x2 +y2 

(i) Rearranging x— = gives — = which is 
dx y dx xy 

homogeneous in x andjy since each of the three terms on 
the right hand side are of the same degree (i.e. degree 2). 

dy dv 
(ii) Lety = vx then — = v + x— 

dx dx 
dy dy x2 -\-y2 

(iii) Substituting f o r j and — in the equation — = -dx dx xy 
gives: 

v + x-
dv x2 + (vx)2 x2 + v2x2 l+v2 

dx x(vx) vx v 
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do l+v2 

(iv) Separating the variables gives: x— = 
dx v 

Ι+ιϊ-ν2 1 

1 
Hence, v dv = - dx. 

x 
Γ Γ\ v2 

Integrating both sides gives: I v dv= I - dx, i.e. — = ln x + c 

y . y 
(v) Replacing v by - gives: —«- = ln x + c, which is the 

x 2x 
general solution. 

16 
When x = 1, y = 4, thus: — = In 1 + c from which, c = 8. J 2 

v2 

Hence the particular solution is —^ = ln x + 8 

o r ^ 2 = 2jc2(lnjr + 8). 

(f) Linear first order differential 
equations 

dy 
14 An equation of the form YPy^Qj where P and Q,are 

dx 
functions of x only is called a l inear differential equat ion s incey 
and its derivatives are of the first degree. 

dy 
15 (i) T h e solution of — + P y = Q , i s obtained by multiplying 

dx 
throughout by what is termed an integrat ing factor. 

dy 
(ii) Multiplying (- Py — Q by say R, a function of x 

dx 
only, gives 

dy 
R— + RPy = RQ (1) 

dx 

(iii) The differential coefficient of a product Ry is 
d dy dR 

obtained using the product rule, i.e. —(Ry) =R Yy , 
dx dx dx 

which is the same as the left-hand side of equation (1), 
dR 

when R is such that RP = . 
dx 
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dR 
(iv) If = RP, then separating the variables gives 

dx 
dR CdR . 

=P dx. Integrating both sides gives I = J^* dx R J R 
i.e. \nR=\Pdx+c 

from which, R=JP dx+c=Jp dxec 

i.e. R=AvPdx, where A-i=-a constant 
(v) Substituting R— in equation (1) gives: 

Aeip <**(^\ + AeSpd*Pj=AeS<'<<* Q. 

(2) 

(vi) The left-hand side of equation (2) is —{ye* *), 
dx 

which may be checked by differentiating ye* with 
respect to x, using the product rule. 

(vii) From equation (2), —[yJPdx) = e^p dxQ Integrating 
dx 

both sides gives: 

ye\pdx = \e\PdxQdx (3) 

(viii) e*p dx is the integrating factor. 

Procedures to solve differential equations of the form 
dy 
— +Py=Q 
dx 

16 (i) Rearrange the differential equation into the form 
dy 
— + Py=QJI where P and Q^are functions of x. 
dx 

(ii) Determine JP dx. 
(in) Determine the integrating factor 
(iv) Substitute e*p *** into equation (3). 
(v) Integrate the right-hand side of equation (3) to give 
the general solution of the differential equation. Given 
boundary conditions, the particular solution may be 
determined. 

\dy 
For example, to solve \-4y = 2 given x = 0 whenjy = 4, 

xdx 
221 



using the above procedure: 
dy 

(a) Rearranging gives h4xy = 2x, which is of the form 
dx 

dy 
j ^ + py = Qj where P = 4* and Q=2x. 
dx 

,2 (b) \P dx=ftx dx=2x' 2 
(c) Integrating factor e>p dx-p-x 

(d) Substitution into equation (3) gives :ye —rx (2x) dx 

(e) Hence the general solution is: ye = -e2"* + c, by using 
the substitution u = 2x2. 

n l o · 7 

When x = 0, v = 4, thus 4 r =-e +c. from which, c = -
J 2 2 

Hence the particular solution xsyr* =-rx + - or 

1 7 1 
>> = - + Γ*"2χ2 or.y = -{ l+7e- 2 x 2 ) . 

(g) ̂ ^ + ^ + c y = 0 *vpe 

cry dy 
17 An equation of the form a—ψ + b hcy = 0, where a, b and c 

dx1 dx 
are constants, is called a linear second order differential 
equation with constant coefficients. 

d 9 d2 

18 If D represents — and D* represents —s-, then the equation in 
dx dx1 

para 17 may be stated as (aD* + bD + c)y = 0. This equation is said 
to be in 'Z)-operator' form. 

dy d2y 0 19 \{y=Aemx, then —=Amemx and -^-=Ατη2<Τχ. 
dx dx1 

d2y dy _ 
Substituting these values into a—ψ+ b—+cy-0 gives: 

dx; dx 
a(Am2emx)-{-b{Amemx)+c{Aemx) =0 

i.e.,Aemx(am2 + bm + c)=0. 

Thus y=Aemx is a solution of the given equation provided that 
{am2+bm+c) = 0. 
20 am2 + bm + c = 0 is called the auxiliary equation, and since 
the equation is a quadratic, m may be obtained either by 
factorising or by using the quadratic formula. 
21 Since, in the auxiliary equation, a, b and c are real values, 
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then the equation may have either 
(i) two different real roots (when />2>4ac), or 
(ii) two real equal roots (when b2 = \ac), or 
(iii) two complex roots (when b2 < 4?ac) 

Procedure to solve differential equations of the form 
d2y dy 

a—-+b—+cy=0 
dx2 dx 

d2y dy 
22 (a) Rewrite the differential equation a—s-+ b—+ cy=0 as 

dxr dx 
{aD2 + bD + c)y = 0. 

(b) Substitute m for D, and solve the auxiliary equation 
am2+bm+c=0, for m. 

(c) If the roots of the auxiliary equation are: 
(i) real and different, say m = <x and m=ß, then the 
general solution is 
y = Ae*x + B**x 

(ii) real and equal, say m = <x. twice, then the general 
solution is 

y = (Ax + B)e*x, 
(iii) complex, say m = oc±jß, then the general solution is 
y=fx{C cos £r + Dsin ßx). 

(d) Given boundary conditions, constants A and B, or C and 
D, may be determined and the particular solution of 
the differential equation obtained. 

d2y dy 
For example, to solve 2—s-+5 3j=0, given that when 

dxr dx 
dy x = 0, y = 4 and — = 9, using the above procedure: 
dx 

i\\ cy-^-+ 5—— 3^=0 in Z)-operator form is 
[) dx2 <** 
(2/)2+5Z)-3)j=0, where D = —. 

dx 
(ii) Substituting m for D gives the auxiliary equation 
2m 2 +5m-3 = 0 

Factorising gives: (2m- l)(m + 3) =0, from which m = - or 

m= - 3 
(iii) Since the roots are real and different the general 
solution is y = Ae(1 /2)* + Be ~ 3x 
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(iv) When * = 0,_)> = 4, hence 4 = A + B (1) 

S i n c e ^ ^ + Zfe-3* then ^ = -Ae^*-3Be~3x 
J dx 2 

dy 1 
When x = 0, — = 9, thus 9 = -A-3B (2) 

dx 2 

Solving the simultaneous equations (1) and (2) gives A =6 
and B= -2. Hence the particular solution is 
y = ee(W* - 2e~3x 

d2y dy 
To solve 9-4—24—+ 16>=0, given that when /=0, 

dr dx 
dy _ 

y— - 3 , using the above procedure: 
dt 

d2y dy 
(a) 9-V— 24-^--*-16>=0 in Z)-operator form is 

dr dt 

{9D2-24D + 16)jv=0, where D = —. 

(b) Substituting m for D gives the auxiliary equation 
9m2-24m+16=0. Factorising gives: (3m-4)(3m-4) = 0, 

4 
i.e., m=- twice. 

3 
(c) Since the roots are real and equal, the general solution 

is 
y=(At + B)eW 

(d) When t = 0,y = 3 hence 3 = (0 + B)e°, i.e., 5 = 3. 

Sincej=(^+Z?)*(4>3><, then * = (At+B)(U*l*A+A*lW, 
dt \3 ) 

by the product rule. 

When * = 0, — = 3 thus 3 = {0 + B)-e° + Ae°, 
dt y3 

4 
i.e. 3 = -B + A 

3 
from which, Λ = — 1, since B = 3. 
Hence the particular solution is 

y = ( + t+3)ei4/3)t or y=(3-t)e*' 

d2y dy 
To solve —s-+6—+ \3y=0, given that when x=Q,y=3 

dxr dx 
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dy 
and — = 7, using the above procedure: 

dx 

(a) - Z + 6 — + 13j=0 in Z)-operator form is (Z>2+6Z>+ 13)j=0 
dx dx 

d 
where D = —. 

dx 

(b) Substituting m for D gives the auxiliary equation 
m2+6m+13 = 0. 
Using the quadratic formula: m 

-6± N / [ (6 ) 2 -4 ( l ) (13) ] - 6 ± V ( - 1 6 ) m = = 
2(1) 2 

- 6 ± 7 4 
= -3±j2 

(c) Since the roots are complex, the general solution is 
y = e~3x(C cos 2jt + D sin 2x). 

(d) When x = 0, j = 3 hence 3 = e° (C cos 0 + D sin 0), i.e. 
C=3. 
Since7=£-3*(C cos 2*+Z) sin 2*), 

Then —= <T3x ( -2Csin 2x+2Z) cos 2*) -
*/* 

3e~3x(C cos 2x+Z) sin 2*), by the product rule, 
= e-3x{{2D-3C) cos 2x- (2C+3Z)) sin 2*} 

dy 
When x = 0, — = 7, hence 

dx 

7 = e°{{2D-3C) cos 0 - (2C+ 3Z>) sin 0} 
i.e., 7 = 2D-3C, from which,/) = 8, since C = 3 
Hence the particular solution is 
y = e ~ 3x(3 cos 2x + 8 sin 2JC) 

Since a cos ω/+ £ sin (M=R sin(aw+a), where 

R=yJ{a2+b2) and a = arctan -, (see para 26, page 150), then 
b 

3 cos 2x+8 sin 2x=V(32+82) sin( 2*+arctan-J 

= V73 sin(2x + 20° 33') = V73 sin(2x + 0.359) 
Thus the particular solution may also be expressed as 

y= V73*-3xsin(2x+ 0.359) 
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d2y dy 
<h) a-rj-+t>—+cy=f(x) type 

dir dx 
d2y dy 

23 If in the differential equation a—*-+b—+ cy=f(x) 
dx dx 

the subs t i tu t ion^^M + Z; is made then: 

d2{u+v) d{u+v) 
+ b- -+c{u+u)=J(x) 

dx2 dx 

Rearranging gives: 

/ d2u du \ ( d v ( d2u du \ ( dlv dv \ 
I a—5-+ b—+ CM 1+ ( a—T+ b—+ cv )= 
V dx2 dx ) \ dx2 dx ) * 

■ft) 

If we let 

d2v dv 
^ + * - + ™ = / ( * ) (2) 

then 

d2u du 
a-^+b— + cu=Q (3) 

dx1 dx 

24 The general solution, u, of equation (3) will contain two 
unknown constants, as required for the general solution of equation 
(1). T h e method of solution of equation (3) is shown in para 22. 
The function u is called the c o m p l e m e n t a r y funct ion, (GF). 
25 If the particular solution, v, of equation (2) can be de
termined without containing any unknown constants theny = u + v 
will give the general solution of equation (1). The function v is 
called the part icu lar integral , (PI). Hence the general solution of 
equation (1) is given by: 

y = CF + V\ 

Procedure to solve differential equations of the form 
d2y dy 

a—Y+b—+cy=f(x) 
dxz dx 

26 (i) Rewrite the given differential equation as 
(aD2+bD+c)y=f{x). 
(ii) Substitute m for D, and solve the auxiliary equation 

am +bm + c = 0 for m. 
(iii) Obtain the complementary function, u, which is 
achieved using the same procedure as in para 22. 

226 



(iv) To determine the particular integral, v, flrsdy assume 
a particular integral which is suggested by/(x), but which 
contains undetermined coefficients. Table 14.1 
gives some suggested substitutions for different functions 
M-
(v) Substitute the suggested PI into the differential 
equation 

(aD2 + bD+c)=f(x) 
and equate relevant coefficients to find the constants 
introduced. 
(vi) The general solution is given byj> = CF + PI, i.e. 
y=u+v. 
(vii) Given boundary conditions, arbitrary constants in 
the CF may be determined and the particular solution of 
the differential equation obtained. 

d2y dy 
For example, to solve —0-— 3—=9, given that when x - 0 , j - 0 

dsc dx 
dy 

and — = 0, using the procedure for para 26: 
dx 

d2y dy 
(i) —0—3—=9 in Z)-operator form is (D2-3D)y=9 

dxr dx 
(ii) Substituting m for D gives the auxiliary equation 
m2-3m=0 
Factorising gives: m(m — 3) =0, from which, m = 0 or m = 3 

(iii) Since the roots are real and different, the CF, 

u = Ae° + Be*x, i.e.,u = A+Be*x 

(iv) Since the CF contains a constant (i.e. A) then let the 
PI, v = kx (see Table 14.1(a)). 
(v) Substituting v=kx into (D3-3D)v = 9 gives 
{D2-3D)kx=9, D{kx)=k and D2(kx) = 0 
Hence (D2-3D)kx = 0-3k = 9, from which, k= - 3 
Hence the PI, v= -3x 
(vi) The general solution is given byy=u+ v, i.e. 
y = A+Be*x-$x 
(vii) When * = 0,j>> = 0 then 0 = A + Be°-0, i.e. 0=A + B (I) 

— = 3Be3x-3; — = 0 when * = 0, thus 0 = 3Ä?°-3, from 
dx dx 
which, B= 1. From equation (1), A= — 1 
Hence the particular solution isjy= — 1 + \e3x — 3x, i.e., 
y = e3x-3x-l 

d2y dy 
To solve 2—s— 11—+ \2y-3x— 2, using the procedure of para 26: 

dxr dx 
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d2y dy 
2-4-11—-

dx2 dx 

i) 2-~-\\^+ 12j>=3*-2 in Z)-operator form is 

( 2 Z ) 2 - l l £ + 1 2 ) 7 = 3 x - 2 . 

(ii) Substituting m for D gives the auxiliary equation 
2 m 2 - l l m + 1 2 = 0 

3 
Factorising gives: (2m — 3)(m — 4) = 0 , from which m = - or 

m = 4 
(iii) Since the roots are real and different, the CF, 
u = AeW1)x + Be4x 

(iv) Since f(x) = x — 2 is a polynomial let the PI , v = ax + b, 
(see TflWi 14.1(b)). 
(v) Substituting y = a*+ /> into (2Z)2 - 112) + 12)z; = 3 * - 2 
gives: 

( 2 Z ) 2 - l l Z ) + 1 2 ) ( a x + 6 ) = 3 x - 2 , 

i.e. 2D2 {ax + A) - 1 ID {ax + 6) + 12 (AX + b) = 3* - 2 
i.e. 0 - l l f l + 1 2 a * + 1 2 £ = 3 x - 2 . 
Equating the coefficients of A: gives: 12a = 3, from which. 

1 
a — -

4 
Equating the constant terms gives: — \\a+ \2b = — 2, i.e. 

11 3 1 
+ 1 2 6 = - 2 from which, 126 = - , i.e., b = — 

4 4 16 
1 1 

Hence the PI , v = ax + b= -x-\ 
4 16 

(vi) The general solution is given by 

j = u + v, i.e. y = AeW1)x + BeAx + -x+—. 
4 16 

d2y dy . 2 
To solve —ψ— 2—+y=3e , given that when x = 0 , j> and 

dx dx 3 
o> 1 
— = 4 - , using the procedure of para 26: 
dx 3 

d2y dy . 
(i) —ψ— 2 — + j = 3 £ in Z)-operator form is 

dx dx 
{D2-2D+\)y=3e*x 

(ii) Substituting m for Z) gives the auxiliary equation 
m 2 - 2 m + l = 0 
Factorising gives: {m— \){m— 1) = 0 , from which, m= 1 
twice. 
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(iii) Since the roots are real and equal the CF, 
u = (Ax + B)ex 

(iv) Let the particular integral, v-ke^x (see Table 14.1(c)). 
(v) Substituting v = ke4x into {D2 - 2D + 1) v = 3e*x gives 
(D2-2D+\)ke4x = 3e*x, 
i.e., D2{ke4x-2D(ke4x) + 1 (ke*x) = 3e4x 

i.e., 16ke*x - Ue4x + ke*x = 3eu. 

Hence 9keu = 3e*x, from which, * = -
3 

Hence the PI, v = ke4x = -e4x 

3 
(vi) The general solution is given by y = u + v, i.e. 

y = (Ax + BW+-eAx 

2 2 1 
(vii) When x = 0,y = — , thus — = {0 + B)e° + -e°, from 
which, B=-\. 

— ={Ax + B)ex + ex(A)+-e*x 

dx 3 
dy 1 13 4 

Whenx = 0, — = 4-, thus— = B + A+-
dx 3 3 3 

from which, Λ =4, since B= — 1. 

Hence the particular solution is ^ = (4x — l)e* + -e . 

To solve 2—n-+3—— 5j>=6 sin 2*, using the procedure 
dxr dx 

of para. 26: 
d2y dy 

(i) 2—s-+ 3—— 5jy=6 sin 2x in D-operator form is 
dx2 dx 

(2Z>* + 3Z>- 5]j=6 sin 2x. 
(ii) The auxiliary equation is 2m2 + 3m — 5 = 0, from which 

5 
(m- 1) (2m -I-5) = 0, i.e., m = 1 or m = - - . 

(iii) Since the roots are real and different the CF, 
u^Af + Be-W2*. 
(iv) Let the PI, v=C sin 2x+D cos 2x (see Table 14.1(d)). 
(v) Substituting v=C sin 2x+Z) cos 2x into 
(2D2+3Z)-5)z/=6 sin 2x gives: 
(2Z>2 + 3Z) - 5) (C sin 2* -I- Z> cos 2x) = 6 sin 2x 
D(C sin 2x + D cos 2*) = 2C cos 2x - 2D sin 2x 
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D2(C sin 2x + D cos 2x) =D(2C cos 2x-2D sin 2x) 
= — 4C sin 2x — 4Z) cos 2x 

Hence (2Z>2 + 3Z>- 5) (C sin 2x+ Z) cos 2x) 
= -8Csin 2*-8Z)cos2x. 

+ 6C cos 2x - 6D sin 2x - 5C sin 2x - 5D cos 2x 
= 6 sin 2x. 

Equating coefficient of sin 2x gives: — 13C— 6D=6 (1) 
Equating coefficients of cos 2x gives: 6C— \3D=0 (2) 
6 x (1) gives: - 78C- 36Z> = 36 (3) 
13x (2) gives: 78C- 169Z>=0 (4) 
(3)+(4) gives: -205/ )= 36 (5) 

- 3 6 
from which, Z) = 

205 

- 3 6 
Substituting D = into equation (1) or (2) gives 

- 7 8 
C= 

205 
- 7 8 36 

Hence the PI, v = sin 2x cos 2x 
205 205 

(vi) The general solution,jy = « + z;, i.e., 
2 

y=Aex + Be-5/2x-—-(39 sin 2JC + 1 8 cos 2x) 
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15 Boolean algebra and 
logic circuits 

1 A two-s tate device is one whose basic elements can only 
have one or two conditions. Thus, two-way switches, which can 
either be on or off, and the binary numbering system, having the 
digits 0 and 1 only, are two-state devices. In Boolean algebra, if A 
represents one state, then A, called 'ηοι-Λ', represents the second 

The or-function 
2 In Boolean algebra, the OR-function for two elements A and 
B is written as A + B, and is defined as 'A, or B, or both A and B\ 
T h e equivalent electrical circuit for a two-input OR-function is 
given by two switches connected in parallel. With reference to 
Figure 15.1(a), the lamp will be on when A is on, when B is on, or 
when both A and B are on. In the table shown in Figure 15.1(b), 
all the possible switch combinations are shown in columns 1 and 2, 
in which a 0 represents a switch being off and a 1 represents the 
switch being on, these columns being called the inputs. Column 3 
is called the output and a 0 represents the lamp being off and a 1 
represents the lamp being on. Such a table is called a truth table. 

1 1 1 2 
Input 
(switches) 

A B 

0 

0 

1 

1 

0 

1 

0 

1 

3 I 
Output 
(lamp) 

z =A + B\ 

0 

1 

1 

1 

(a) Switching circuit for or — function 
Figure 1 5.1 

(b) Truth table for or - function 
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The and-function 
3 In Boolean algebra, the AND-function for two elements A 
and B is written as A.B and is defined as 'both A and B\ The* 
equivalent electrical circuit for a two-input AND-function is given 
by two switches connected in series. With reference to Figure 
15.2(a) the lamp will be on only when both A and B are on. T h e 
truth table for a two-input AND-function is shown in Figure 15.2(b). 

Q 

Input 
(switches) 

A 

0 

0 

1 

1 

B 

0 

1 

0 

1 

Output I 
(lamp) 

Z = A.B 

0 

0 

0 

1 

(a) Switching circuit for and - function 

Figure 15.2 

(b) Truth table for and — function 

Input 
A 

Output 
Z= A 

The not-function 
4 In Boolean algebra, the N O T - Table 1 5.1 
function for element A is written as 
Ä, and is defined as ' the opposite 
to A\ Thus if A means switch A is 
on. A means that switch A is off. υ 1 
The truth table for the N O T - _ J -
function is shown in Table 15.1. 
5 In paras 2, 3 and 4 above, the Boolean expressions, equiva
lent switching circuits and truth tables for the three functions used 
in Boolean algebra are given for a two-input system. A system may 
have more than two inputs and the Boolean expression for a three-
input OR-function having elements A, B and C is A +B + C. 
Similarly, a three-input AND-function is written as A.B.C. T h e 
equivalent electrical circuits and truth tables for three-input 
OR and AND-functions are shown in Figures 15.3(a) and (b) 
respectively. 
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Input Output Input 

1 Input 
\ A B C 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

Output I 
Z = A+B + C\ 

0 

1 

1 

1 

1 

1 

1 

1 

(a) The or — function 
electrical circuit and 
truth table 

Γ Input 
\ A B C 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

Output 
Z = A.B.C\ 

0 

0 

0 

0 

0 

0 

0 

1 

(b) The and — function 
electrical circuit and 
truth table 

Figure 15.3 

6 To achieve a given output, it is often necessary to use 
combinations of switches connected both in series and in parallel. 
If the output from a switching circuit is given by the Boolean 
expression £=A.B+ A.B, the truth table is as shown in Figure 
15.4(a). In this table, columns 1 and 2 give all the possible 
combinations_of_/l and B. Column 3 corresponds to A.B and 
column 4 to A.B, i.e., a 1 output is obtained when A = 0 and when 
B = 0. Column 5 is the OR-function applied to columns 3 and 4 
giving an output of ζ = Α.Β + Α.Β. The corresponding switching 
circuit is shown in Figure 15.4(b) in which A and B are connected 
in series to give A.B, A and B are connected in series to giye_A.B, 
and A.B and A.B are connected in parallel to give A.B + A.B. The 
circuit symbols used are such that A means the switch is on when 
A is 1, A means the switch is on when A is 0, and so on. 
7 When describing a complex switching circuit by means of a 
Boolean expression, often many terms and many elements per term 
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I 1 
A 

0 

0 

1 

1 

2 
B 

0 

1 

0 

1 

3 4 
A.B A.B 

0 1 

0 0 

0 0 

1 0 

5 l 
Z=AB + A.B 

1 

0 

0 

1 

Input 

(a) Truth table for Ζ = Α.Β + Α.Ή 

B 
Output Z 

- ♦ Ä · — · B +-

(b) Switching circuit for Z = A.B + Ä.B. 
Figure 1 5.4 

are used. Frequently, the laws and rules of Boolean algebra may be 
used to simplify the Boolean expression and some of the laws and 
rules are given in Table 15.2. These rules and laws may be verified 
by using truth tables. 

Table 15.2 

Reference 

1 
2 

3 
4 

5 
6 

7 
8 
9 

10 

11 
12 
13 
14 

15 
16 
17 

1 18 

Name 

Commutative 
Laws 

Associative 
Laws 

Distributive 
Laws 

Sum 
Rules 

Product 
Rules 

Absorption 
Rules 

Double 'not' rule 

Rule or Law 

A+B = B+A 
A.B = B.A 

(A+B)+C = A+(B4€) 
(A.B).C = A.(B.C) 

A.(B+C) = A.B+A.C 
A+(B.C) =(A+B).(A+C) 

A+0 = A 
A+1 = 1 
A+A = A 
A+A= 1 

A.0 = 0 
A.l = A 
A.A = A 
A . A = 0 

A+A.B = A 
A.(A+B) = A 
A+A.B = A+B 

I= /4 
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For example, (/>+/,.Q).(Q+ QP) may be simplified as follows: 

Table 15.2 
reference 

{P+ P.Q).(Q+ Ο,Ρ) = P-(Q+ &P) + P-QiQ+ Q..P) 5 
= P.Q+P.Q.P+P.(l(L+P-<l<iP 5 

= P.Q+P.Q+P.Q+P.(IQ.P 13 

= P.(l+P.Q+P.Q+0 14 

= P.Q+P.Q+P.(l 1 

=P.(Q+Q)+P.Q. 5 

= /U + £ ß , 10 

= P+P.Q 12 

= / > + £ 17 
8 De Morgan's laws may be used to simplify not-functions 
having two or more elements. The laws state that: 

(i) A + B=A.B, and 
(ii) ZiT=J+i? 

Each law may be verified by using a truth table. Thus, for 
example, to simplify the Boolean expression (A.B )+ (Ä+ B) 
applying de Morgan's law (ii) to the first term gives: 

TF=T+ B=A + B, since Ä = A 
Applying de Morgan's law (i) to the second term gives: 

A + B = A.B = A.B 

Thus, ( A.B) + {A+B) = (A + B)+A.B 
Removing the bracket and reordering gives: 

A+A.B + B 

But, by rule 15, Table 15.2, A + A.B = \ . 
It follows that: A-\-A.B = A. 
Thus: (Ä.B ) + {Ä + B) =A+B. 

Karnaugh maps 
(/') Two-variable Karnaugh maps 
9 A truth table for a two-variable expression is shown mJTable 
15.3(a), the T in the third row output showing that £ = A.B. Each 
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Table 15.3 

Inputs 
A , B 

0 

0 

1 

| 1 

0 

1 

0 

1 

Output 
z 

0 

0 

1 

0 

Boolean 
expression 

Ä.B 

Ä.B 

A.B 

A.B 

(a) 

K 
0 

1 

0 

0 

0 

1 

1 

0 

^ 
0(B) 

KB) 

0 
(A) 

Ä.B 

Ä.B 

1 
(A) 

A.B 

A.B 

(b) (c) 

of the four possible Boolean expressions associated with a two-
variable function can be depicted as shown in Table 15.3(b) in 
which one cell is allocated to each row of the truth table. A matrix 
similarjto that shown in Table 15.3(b) can be used to depict 
Z=A.B, by putting a 1 in the cell corresponding to A.B and O's in 
the remaining cells. This method of depicting a Boolean expression 
is called a two-variable Karnaugh map, and is shown in Table 
15.3(c). 

To simplify a two-variable Boolean expression, the Boolean 
expression is depicted on a Karnaugh map, as outlined above. Any 
cells on the map having either a common vertical side or a 
common horizontal side are grouped together to form a couple. 
(This is a coupling together of cells, not just combining two 
together). The simplified Boolean expression for a couple is given 
by those variables common to all cells in the couple. 

(/'/) Three-variable Karnaugh maps 
A truth table for a three-variable expression is shown in Table 15.4(a), 
the l_'s_in the_output column showing that : 
Z=A.B.C+A.B.C+A.B.C. 

Each of the eight possible Boolean expressions associated with 
a three-variable function can be depicted as shown in Table 
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Table 15.4 

A 

0 

0 

0 

0 

1 

1 

1 

1 

Inputs 
B 

0 

0 

1 

1 

0 

0 

1 

1 

c 

0 

1 

0 

1 

0 

1 

0 

1 

Output 
z 

0 

1 

0 

1 

0 

0 

1 

0 

! Boolean 
expression 

Ä.B.C 

Ä.B.C 

Ä.B.C 

Ä.B.C 

A.B.C 

A.B.C 

A.B.C 

A.B.C 

(a) 

\ A . 
c \ 
0 

1 

Boo 

0 

1 

01 

0 

1 

11 

1 

0 

10 

0 

0 

\ A . 
c \ 
0(C) 

KC) 

B 00 
(Ä.B) 

Ä.B.C 

Ä.B.C 

01 
(Ä.B) 

Ä .B .C 

Ä.B.C 

11 
(A.B) 

A .B .C 

A.B.C 

10 
(A.B) 

A.B.C 

A.B.C 

(b) (c) 

15.4(b), in which one cell is allocated to each row of the truth 
table. A matrix_similar_to that shown in Table 15.4(b) can be used 
to depict: Z = A.B.C + A.B.C + A.B.C, by putting l's in the cells 
corresponding to the Boolean terms on the right of the Boolean 
equation and 0's in the remaining cells. This method of depicting a 
three-variable Boolean expression is called a three-variable 
Karnaugh map, and is shown in Table 15.4(c). 

To simplify a three-variable Boolean expression, the Boolean 
expression is depicted on a Karnaugh map as outlined above. Any 
cells on the map having common edges either vertically or 
horizontally are grouped together to form couples of four cells or 
two cells. During coupling the horizontal lines at the top and 
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bottom of the cells are taken as a common edge, as are the vertical 
lines on the left and right of the cells. The simplified Boolean 
expression for a couple is given by those variables common to all 
cells in the couple. 

(Hi) Four-variable Karnaugh maps 
A truth table for a four-variable expression is shown in 
Table 15.5(a), the 1 's in the output column showing that: 

Z = Ä.B.C.D + Ä.B.C.D + A.B.C.D + A.B.C.D 

Each of the sixteen possible Boolean expressions associated with a 
four-variable function can be depicted as shown in Table 15.5(b), 
in which one cell is allocated to each row of the truth table. A 
matrix similar to that shown in Table 15.5(b) can be used to depict 

Z=Ä.B.C.D+1B.C.D+A.B.C.D+A.B.C.D 
by putting l's in the cells corresponding to the Boolean terms on 
the right of the Boolean equation and O's in the remaining cells. 
This method of depicting a four-variable expression is called a 
four-variable Karnaugh map, and is shown in Table 15.5(c). 

To simplify a four-variable Boolean expression, the Boolean 
expression is depicted on a Karnaugh map as outlined above. Any 
cells on the map having common edges either vertically or 
horizontally are grouped together to form couples of eight cells, 
four cells or two cells. 

During coupling, the horizontal lines at the top and bottom 
of the cells may be considered to be common edges, as are the 
vertical lines on the left and right of the cells. The simplified 
Boolean expression for a couple is given by those variables common 
to all cells in the couple. 

(iv) Summary of procedure when simplifying a Boolean expression 
using a Karnaugh map 

(a) Draw a four, eight or sixteen-cell matrix, depending on 
whether there are two, three or four variables. 

(b) Mark in the Boolean expression by putting l's in the 
appropriate cells. 

(c) Form couples of 8, 4 or 2 cells having common edges 
forming the largest groups of cells possible. (Note that a 
cell containing a 1 may be used more than once when 
forming a couple. Also note that each cell containing a 1 
must be used at least once.) 

(d) The Boolean expression for a couple is given by the 
variables which are common to all cells in the couple. 
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Table 15.5 
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1 

0 

0 
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1 

0 

1 

0 

1 

.0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

Output 
z 
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0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

Boolean 
expression 

A.B.C.D 

A.B.C.D 

Ä.B:C.D 

Ä.B.C.D 

A.B.C.D 

Ä.B.C.D 

Ä.B.C.D 

Ä.B.C.D 

A.B.C.D 

A.B.C.D 

A.B.C.D 

A.B.C.D 

A.B.C.D 

A.B.C.D 

A.B.C.D 

A.B.C.D 

\ A . E 
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0.0 

0.1 

1.1 

1.0 
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0 

0 

0 

1 

0.1 

0 

0 

0 

1 
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0 

0 

0 

1 

1.0 

0 

0 

0 

1 

C . D \ 
00 

(CD) 
01 

(CD) 
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(CD) 
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(CD) 

B 00 
(A.B) 

Ä.B.C.D 

Ä.B.C.D 

Ä.B.C.D 

Ä.B.C.D 

01 
(A.B) 

Ä.B.C.D 

Ä.B.C.D 

Ä.B.C.D 

Ä.B.C.D 

11 
(A.B) 

A.B.C.D 

A.B.C.D 

A.B.C.D 

A.B.C.D 

10 
(A.B) 

A.B.C.D 

A.B.C.D 

A.B.C.D 

A.B.C.D 
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Table 15.6 

\ p 

0 

1 

0 

Γ,Ί 
I 1 L-J 

1 

0 

0 

Table 
\ X . 

0 

1 

15.7 
Y 
0.0 

0 

'j] 

0.1 

n: 
0 

1.1 

1 

0 

1.0 

0 

i — 

For example, to simplify P.{£+ P.Q using Karnaugh map 
techniques by the above procedure: 

(a) the two-variable matrix is drawn and is shown in Table 
15.6, 

(b) T h e term P.Qis marked with a 1 in_ the top left-hand cell, 
corresponding to P = 0 and Q,= 0. P.Qis marked with a 1 
in the bottom left-hand cell corresponding to P = 0 and 
Of i· 

(c) T h e two cells containing l's have a common horizontal 
edge and thus a vertical couple, shown by the broken line, 
can be formed. 

(d) T h e variable common to both cells in the couple is P = 0, 
i.e. P, thus P.(l+P.Q= P. 

To simplify Ϊ ί . ^ + Ϊ ^ + Ι ^ + Ι ί ^ using Karnaugh map 
techniques by the above procedure: 

(a) a three-variable matrix is drawn and is shown in Table 
15.7. 

(b) T h e l's on the matrix correspond to the expression given, 
i.e., for X.T.Z, X = 0, T= 1 and £ = 0 and hence 
corresponds to the cell in the top row and second column, 
and so on. 

(c) Two couples can be formed, shown by the broken lines. 
T h e couple in the bottom row may be formed since the 
vertical lines on the left and right of the cells are taken as 
a common edge. 

(d) T h e variables common to the couple in the top row are 
T— 1 and £ = 0 , that is T-Z and the variables common to 
the couple in the bottom row are Γ = 0 , Z = 1> t n a t 1S ^·Ζ· 
Hence 

x. r.z+x r.z+x. r.z+x. f.z = r.z+ Τ·Ζ 
To simplify A.B.C.D + A.B.C.D + Ä.B.C.D + A.B.CD + Ä.B.C.D 
using Karnaugh map techniques, using the procedure given above, 
a four-variable matrix is drawn and is shown in Table 15.8. T h e l's 
marked on the matrix correspond to the expression given. Two 
couples can be formed and are shown by the broken lines. T h e 
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Table 15.8 
\ A . 

C . D \ 
0.0 

0.1 

1.1 

1.0 

3 
0.0 0.1 

[ 1 
1 
1 1 

1.1 | | 
I 1 I 
L_J 

ΊΊ u 

1.0 

four-cell couple has B=\, C= 1, i.e. B.C as the common variables 
to all four cells and the two-cell couple has A.B.D as the common 
variables to both cells. Hence, the expression simplifies to: 

B.C +A.B.D, i.e. B.{C + A.D) 

Logic circuits 
10 In practice, logic gates are used to perform the AND, OR and 
N O T functions introduced in paras 2 to 4. Logic gates can be made 
from switches, magnetic devices or fluidic devices, but most logic 
gates in use are electronic devices. Various logic gates are 
available. For example, the Boolean expression (A.B.C) can be 
produced using a three-input, AND-gate and (C + D) by using a 
two-input OR-gate. The principal gates in common use are 
introduced in paras 11 to 15. 

The term 'gate ' is used in the same sense as a normal gate, the 
open state being indicated by a binary T and the closed state by a 
binary Ό ' . A gate will only open when the requirements of the 
gate are met and, for example, there will only be a T output on a 
two-input AND-gate when both the inputs to the gate are at a Ί ' 
state. 

The AND-gate 
11 Two different symbols used for a three-input AND-gate are 
shown in Figure 15.5(a) and the truth table is shown in Figure 
15.5(b). This shows that there will only be a ' Γ output when A is 1 
and B is 1 and C is 1, written as: 

Z = A.B.C. 

The OR-gate 
12 Two different symbols used for a three-input or-gate are 
shown in Figure 15.6(a) and the truth table is shown in Figure 
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INPUTS I OUTPUT 
A B C Z=A.B.C 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 I 1 

(b) 
Figure 1 5.5 

15.6(b). This shows that there will be a 'Γ output when A is 1, or 
B is 1, or C is 1, or any combinations of A, B or C is 1, written as 
Z = A + B + C. 

THE 'invert-gate or NOT-gate 
13 Two different symbols used for an invert-gate are shown in 
Figure 15.7(a) and the truth table is shown in Figure 15.7(b). This 
shows that a Ό' input gives a T output and vice versa, i.e. it is an 
Opposite to' function. The invert of A is written A and is called 
'not-Λ'. 

The N AND-gate 
14 Two different symbols used for a NAND-gate are shown in 
Figure 15.8(a) and the truth table is shown in Figure 15.8(b). This 
gate is equivalent to an AND-gate and an invert-gate in series (not-
and = nand) and the output is written as Z = A.B.C. 

The NOR-gate 
15 Two different symbols used for a NOR-gate are shown in Figure 
15.9(a) and the truth table is shown in Figure 15.9(b). This gate is 
equivalent to an or-gate and an invert-gate in series, (not-or 
= nor), and the output is written as: 

Z = A + B + C. 

BRITISH AMERICAN 

(a) 
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0 0 0 
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OUTPUT] 
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(b) 
Figure 1 5.6 
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BRITISH AMERICAN 
(a) 

INPUTS 
A B C 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

[ i i i 

A.B.C. 

0 

0 

0 

0 

0 

0 

0 

1 

OUTPUT 
Z = A .B .C. 

_0_ | 

(b) 
Figure 15.8 

Combinational logic networks 
16 In most logic circuits more than one gate is needed to give 
the required output. Except for the invert-gate, logic gates 
generally have two, three or four inputs and are confined to one 
function only, thus, for example, a two-input, OR-gate or a four-
input AND-gate can be used when designing a logic circuit. 
For example, Figure 15.10 shows a logic system to meet the 
requirement of Z~A.B+ C. 

With reference to Figure 15.10 an invert-gate shown as (1), 
gives B. The AND-gate shown as (2), has inputs of A and B, giving 
A.B. The OR-gate, shown as (3), has inputs of A.B and C, giving 
Z = A.B + C. 

Similarly a logic system to meet the requirements of 
{P+Q).(R + S) is shown in Figure 15.11. The given expression shows 
that two invert-functions are need to give Q a n d R and these are 
shown as gates (1) and (2). Two or-gates, shown as (3) and (4), 
give {P+Q) and (R + S) respectively. Finally, an AND-gate, shown 
as (5), gives the required output. 

Z = ( P + ß) .(Ä + 5). 
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Universal logic gates 
17 The function of any of the five logic gates in common use can 
be obtained by using either NAND-gates or NOR-gates and when 
used in this manner, the gate selected is called a universal gate. 

(i) NAND-gates A single input to a NAND-gate gives the 
invert-function, as shown in Figure 15.12(a). 

When two NAND-gates are connected, as shown in Figure 
15.12(b), the output from the first gate is A.B.C and this is inverted 

by the second gate, giving Z = A.B.C = A.B.C, i.e., the AND-
function is produced. When A.B and C are the inputs to a NAND-
gate, the output is A.B.C. 

Ao—\ & p — O Z = Ä 

(a) 

A . B . C. A B C. 

Figure 15.12 

Ä.B.C. A B C . 

b—OZ=A+B+C 

By de Morgan's law, A.B.C= A+ B+ C=A+B + C, i.e. a 
nand-gate is used to produce the or-function. The logic circuit is 
shown in Figure 15.12(c). If the output from the logic circuit in 
Figure 15.12(c) is inverted by adding an additional nand-gate, the 
output becomes the invert of an or-function, i.e., the nor-
function, as shown in Figure 15.12(d). 

When designing logic circuits, it is often easier to start at the 
output of the given circuit. For example, when designing a logic 
circuit, using nand-gates only having not more than three inputs, 
to meet the requirements of the Boolean expression 
Z = A + B + C + D, the given expression shows there are four 
variables joined by or-functions. 
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If a four-input NAND-gate is used to give the required 
expression, the inputs are Ä, B, C and D, i.e. A,B,C and D. 
However if three inputs are not to be exceeded, two of the 
variables are joined and the inputs to the three-input NAND-
gate, shown as (1) in Figure 15.13 is A.B, C and D. The AND-
function is generated by using two NAND-gates connected in 
series, shown by gates (2) and (3). 

A . B . C D, i.e., 
Z = (A + B + C+D) 

Figure 15.13 

The logic circuit required to produce the given equation is as 
shown in Figure 15.13. 

(ii) NOR-gates A single input to a NOR-gate gives the 
invert-function, as shown in Figure 15.14(a). When two 
nor-gates are connected, as shown in Figure 15.14(b), the 
output from the first gate is A +B + C, and this is inverted 
by the second gate, giving £ = 4̂ + B + C = A + B + C, i.e., 
the OR-function is produced. Inputs of Ä, B and C to a 
NOR-gate give an output of A + B + C. 

By de Morgan's law: A + B + C= A.B.C = A.B.C, i.e., the NOR-
gate can be used to produce the AND-function. The logic circuit is 



1 
A 

c o 

Figure 

1 

15 

1 

A + B + C, i.e., 
A . B .C 

D 

°c 

15 

1 

D + A . B . C, i.e. 

0 —o Z = D . |A+B + C~) 

shown in Figure 15.14(c). When the output of the logic circuit, 
shown in Figure 15.14(c) is inverted by adding an additional NOR-
gate, the output then becomes the invert of an OR-function, i.e., 
the NOR-function as shown in Figure 15.14(d). 

For example, to design a logic circuit using nor-gates only to 
meet the requirements of the equation £ = Ζ).(Λ + B + C), it is usual 
in logic circuit design to start the design at the output. The AND-
function between D and the terms in the bracket can be produced 
by using inputs of D and Ä + B + C to a NOR-gate, i.e.. by de 
Morgan's law, inputs of D and A.B.C. Also, inputs of A.B and C to 
a NOR-gate give an output of Ä + B + C, which by de Morgan's law 
is A.B.C. The logic circuit to produce the required equation is as 
shown in Figure 15.15. 
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16 Statistics 

1 Data is obtained largely by two methods: 

(a) by counting — for example, the number of stamps sold by 
a post office in equal periods of time, and 

(b) by measurement— for example, the heights of a group of 
people. 

2 When data is obtained by counting and only whole numbers 
are possible, the data is called d i screte . Measured data can have 
any value within certain limits and is called cont inuous . 
3 A s e t is a group of data and an individual value within the 
set is called a m e m b e r of the set. Thus , if the masses of five 
people are measured correct to the nearest 0.1 kilograms and are 
found to be 53.1 kg, 59.4 kg, 62.1 kg, 77.8 kg and 64.4 kg, then 
the set of masses in kilograms for these five people is: 

{53 .1 ,59 .4 ,62 .1 , 77.8,64.4} 

and one of the members of the set is 59.4. 
A set containing all the members is called a populat ion. 

Some members selected at random from a population is called a 
s a m p l e . Thus all car registration numbers form a population, but 
the registration numbers, of, say, 20 cars taken at random 
throughout the country is a sample drawn from that population. 
4 T h e number of times that the value of a member occurs in a 
set is called the f requency of that member. Thus in the set: 

{2, 3, 4, 5, 4, 2, 4, 7, 9}, 

member 4 has a frequency of three, member 2 has a frequency of 2 
and the other members have a frequency of one. 
5 The re lat ive frequency with which any member of a set 

frequency of member 
occurs is given by the ratio: . For 

total frequency of all members 
the set: 

{2, 3, 5, 4, 7, 5, 6, 2, 8}, 

2 
the relative frequency of member 5 is - . Often, relative frequency 
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is expressed as a percentage and the percentage relative 
frequency is: (relative frequency x 100)%. 
6 When the number of members in a set is comparatively small, 
say ten or less, the data can be represented diagrammatically 
without further analysis. For sets having more than ten members, 
those members having similar values are grouped together into 
classes to form a frequency distribution. To assist in accurately 
counting members in the various classes, a tally diagram is used. 
A frequency distribution is merely a table showing classes and their 
corresponding frequencies. The new set of values obtained by 
forming a frequency distribution is called grouped data. 
7 The terms used in connection with grouped data are shown 
in Figure 16.1(a). The size or range of a class is given by the upper 
class boundary value minus the lower class boundary value, 
and in Figure 16.1 is 7.65 — 7.35, i.e., 0.3. The class interval for 

(a) 
Class interval 

Lower 
class 
boundary 

1 

Class 
mid-point 

Upper 
class 
boundary 

1 

(b) 
to 7.3 7.4 to 7.6 7.7 to) 

7.35 7.5 7.65 
Figure 16.1 

the class shown in Figure 16.1 is 7.4 to 7.6 and the class mid-point 
value is given by 

upper class boundary value — lower class boundary value 

and in Figure 16.1 is 

7.65-7.35 
i.e. 7.5. 
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8 A cumulative frequency distribution is a table showing the 
cumulative frequency for each value of upper class boundary. The 
cumulative frequency for a particular value of upper class 
boundary is obtained by adding the frequency of the class to the 
sum of the previous frequencies. 
9 Ungrouped data can be presented diagrammatically in 

several ways and these include: 
(a) p i c t o g r a m s , in which pictorial symbols are used to 

represent quantities, 
(b) hor izonta l bar charts , having data represented by 

equally spaced horizontal rectangles, and 
(c) vert ical bar charts , in which data is represented by 

equally spaced vertical rectangles. 

For example, the number of television sets repaired in a workshop 
by a technician in six, one-month periods is as shown below. 

Month Janua ry February March April May J u n e 
No. repaired 11 6 15 9 13 8 

This data may be presented as a pictogram as shown in Figure 
16.2 where each symbol represents two television sets. Thus in 
January , 5£ symbols are used to represent the 11 sets repaired, in 
February, 3 symbols are used to represent the 6 sets repaired, and 
so on. 

The distance in miles travelled by four salesmen in a week 

Month 

January 

February 

March 

April 

May 

June 

Number of TV sets repaired p^2sets 

^ 

E3 
& 

P 
m 
ΪΜ 

ii 
U 
ü 
% 

ts 
P3 

^ ϋ θ ϋ ^ 
m 
Ss 
H 
li a 

is 
m 

rtS&ta 
fa 

NPi3ta 1 
li 1 

Figure 16.2 
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are as shown below. 

Salesman P Q, R S 
Distance travelled (miles) 413 264 597 143 

To represent this data diagrammatically by a horizontal bar chart, 
equally spaced horizontal rectangles of any width, but whose 
length is proportional to the distance travelled, are used. Thus , the 
length of the rectangle of salesman P is proportional to 413 miles, 
and so on. T h e horizontal bar chart depicting this data is shown in 
Figure 16.3. 

s 
c R 
F 
ω 0 
D 
(/"> p 

C 

3 
:χ;::χ£::::::::££££ 

1 
) 100 

1 

3 
J 

1 1 
200 300 400 

Distance travelled, miles 

1 
500 

1 m 

600 

Figure 1.63 

The number of issues of tools or materials from a store in a 
factory is observed for seven, one-hour periods in a day, and the 
results of the survey are as follows: 

Period 
Numbe r of issues 

1 
34 

2 
17 

3 
9 

4 
5 

5 
27 

6 
13 

7 
6 

In a vertical bar chart, equally spaced vertical rectangles of any 
width, but whose height is proportional to the quanti ty being 
represented, are used. Thus the height of the rectangle for period 1 
is proportional to 34 units, and so on. T h e vertical bar chart 
depicting this data is shown in Figure 16.4. 
10 Trends in ungrouped data over equal periods of time can be 
presented diagrammatically by a percentage c o m p o n e n t bar 
chart. In such a chart, equally spaced rectangles of any width, but 
whose height corresponds to 100%, are constructed. T h e rectangles are 
then sub-divided into values corresponding to the percentage relative 
frequencies of the members. For example, the number of various types 
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of dwellings sold by a company annually over a three-year period is as 
shown below. 

Tear 1 Year 2 Tear 3 

4-roomed bungalows 
5-roomed bungalows 
4-roomed houses 
5-roomed houses 
6-roomed houses 

24 
38 
44 
64 
30 

17 
71 
50 
82 
30 

7 
118 
53 

147 
25 

To draw a percentage component bar chart to represent this data, 
a table of percentage relative frequency values, correct to the 
nearest 1%, is the first requirement. Since, 

percentage relative frequency = 
frequency of member x 100 

total frequency 

then for 4-roomed bungalows in year 1: 

percentage relative frequency = 
24 x 100 

24 + 38 + 44 + 64 + 30' = 12% 

The percentage relative frequencies of the other types of dwellings 
for each of the three years are similarly calculated and the results 
are as shown in the table below. 

Year 1 Year 2 Year 3 

4-roomed bungalows 
5-roomed bungalows 
4-roomed houses 
5-roomed houses 
6-roomed houses 

12% 
19% 
22% 
32% 
15% 

7% 
28% 
20% 
33% 
12% 

2% 
34% 
15% 
42% 

7% 
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The percentage component bar chart is produced by constructing 
three equally spaced rectangles of any width, corresponding to the 
three years. The heights of the rectangles correspond to 100% 
relative frequency, and are sub-divided into the values in the table 
of percentages shown above. 

A key is used (different types of shading or different colour 
schemes) to indicate corresponding percentage values in the rows of 
the table of percentages. The percentage component bar chart is 
shown in Figure 16.5. 
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§ 5 - r o o m e d bungalow« 

1^4-roomed bungalows 

Figure 16.5 

11 A pie diagram is used to show diagrammatically the parts 
making up the whole. In a pie diagram, the area of a circle 
represents the whole, and the areas of the sectors of the circle are 
made proportional to the parts which make up the whole. 

For example, the retail price of a product costing £2 is made 
up as follows: materials 10p, labour 20p, research and development 
40p, overheads 70p, profit 60p. To present this data on a pie 
diagram, a circle of any radius is drawn, and the area of the circle 
represents the whole, which in this case is £2. The circle is sub-
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divided into sectors so that the areas of the sectors are proportional 
to the parts, i.e. the parts which make up the total retail price. For 
the area of a sector to be proportional to a part , the angle at the 
centre of the circle must be proportional to that part. T h e whole, 
£2 or 200p, corresponds to 360°. Therefore, 

10 
10p corresponds to 360 x degrees, i.e. 18° 

20 
20p corresponds to 360 x degrees, i.e. 36° 

and so on, giving the angles at the centre of the circle for the parts 
of the retail prices as: 18°, 36°, 72°, 126° and 108° respectively. 
The pie diagram is shown in Figure 16.6. 

|ρΞ|.8° Figure 16.6 

12 Grouped data may be presented diagrammatically in three 
ways: 
(a) by using a frequency polygon, which is the graph 

product by plotting frequency against class mid-point 
values and joining the co-ordinates with straight lines, 

(b) by producing a h i s t o g r a m , in which the areas of vertical 
adjacent rectangles are made proportional to the 
frequencies of the classes, and 

(c) by drawing an og ive or cumula t ive frequency 
d is tr ibut ion curve, which is a graph produced by 
plotting cumulative frequency against upper class 
boundary values and joining the co-ordinates by straight 
lines. 
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For example, the masses of 50 ingots in kilograms are 
measured correct to the nearest 0.1 kg and the results are 
as shown below: 

8.0 8.6 8.2 7.5 8.0 9.1 
8.3 7.1 8.1 8.3 8.7 7.8 

8.5 7.6 8.2 7.8 
8.7 8.5 8.4 8.5 

7.7 8.4 7.9 8.8 7.2 8.1 7.8 8.2 7.7 7.5 
8.1 7.4 8.8 8.0 8.4 8.5 
7.4 8.2 8.4 7.7 8.3 8.2 

8.1 7.3 9.0 8.6 
7.9 8.5 7.9 8.0 

The range of the data is the member having the largest 
value minus the member having the smallest value. 
Inspection of the set of data shows that : 

range = 9 . 1 - 7 . 1 = 2 . 0 

The size of each class is given approximately by 

range 

number of classes 

If about 7 classes are required, the size of each class is 
2.0/7, that is, approximately 0.3 

To assist with accurately determining the number in each 
class, a tally diagram is produced as shown in Table 16.1(a). This is 
obtained by listing the classes in the left-hand column and then 
inspecting each of the 50 members of the set of data in turn and 
allocating it to the appropriate class by putting a T in the 
appropriate row. Each fifth ' Γ allocated to a particular row is 
marked as an oblique line to help with final counting. 

A frequency d is tr ibut ion for the data is shown in Table 
16.1(b) and lists classes and their corresponding frequencies. Class 

Table 16.1 

Class 

I 7.I to7.3 

I 7.4107.6 

7.7to7.9 

8.0 to 8.2 

8.3to8.5 

8.6toa8 

8.9to9.l 

Tally 

111 I 
MVr 

-M-++- lilt 

IWr W+t Mil 

wr-wt 1 
-W+ 1 

II 

Class 

7.1 to 7.3 

7.4 to 7.6 

7.7 to 7.9 

8.0 to 8.2 

8 .3 to 8.5 

8.6 to 8.8 

8.9 to 9.1 

Class 
mid-point 

7.2 

7.5 

7.8 

8.1 

8.4 

8.7 

9.0 

Frequency 

3 J 
5 

9 

14 

II 

6 

2 

(a) Tally diagram (b) Frequency distribution 
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mid-points are also shown in this table, since they are used when 
constructing a frequency polygon and histogram. 

A frequency polygon is shown in Figure 16.7(a), the co
ordinates corresponding to the class mid-point/frequency values, 
given in Table 16.1(b). The co-ordinates are joined by straight lines 
and the polygon is 'anchored-down' at each end by joining to the 
next class mid-point value and zero frequency. 

A histogram is shown in Figure 16.7(b), the width of a 
rectangle corresponding to (upper class boundary value— lower 
class boundary value) and height corresponding to the class 

l4h 

»10U 
o 
ω 8h-

4 I 
2 r -

0 

Frequency polygon 

j 

(a) 

72 75 78 8.1 8.4 8 7 
Class mid-point values 

9.0 

14 

12 

10 

% 81 

Histogram 

/ 

(b) 

Figure 16.7 
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frequency. The easiest way to draw a histogram is to mark class 
mid-point values on the horizontal scale and to draw the rectangles 
symmetrically about the appropriate class-midpoint values and 
touching one another. A histogram for the data given in Table 
16.1(d) is shown in Figure 16.7(b). 

A cumulative frequency distribution is a table giving values of 
cumulative frequency for the values of upper class boundaries, and 
is shown in Table 16.2. Columns 1 and 2 show the classes and their 
frequencies. Column 3 lists the upper class boundary values for the 
classes given in column 1. Column 4 gives the cumulative 
frequency values for all frequencies less than the upper class 
boundary values given in column 3. Thus, for example, for the 7.7 
to 7.9 class shown in row 3, the cumulative frequency value is the 
sum of all frequencies having values of less than 7.95, i.e., 3 + 5 + 9 
= 17, and so on. 

Table 16.2 

1 2 3 4 
Class Frequency Upper class boundary Cumulative frequency 

7.1-7.3 
7.4-7.6 
7.7-7.9 
8.0-8.2 
8.3-8.5 
8.6-8.8 
8.9-9.1 

3 
5 
9 

14 
11 
6 
2 

Less than 
7.35 3 
7.65 8 
7.95 17 
8.25 31 
8.55 42 
8.85 48 
9.15 50 

The ogive for the cumulative frequency distribution given in 
Table 16.2 is shown in Figure 16.8. The co-ordinates corresponding 
to each upper class boundary/cumulative frequency value are 
plotted and the co-ordinates are joined by straight lines. (Note: not 
the best curve drawn through the co-ordinates as in experimental 
work.) The ogive is 'anchored' at its start by adding the co
ordinate (7.05, 0). 

Measures of central tendency and 
dispersion 
Measures of central tendency 

13 A single value, which is representative of a set of values, may 
be used to given an indication of the general size of the members 
in a set, the word 'average' often being used to indicate the single 
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Figure 16.8 

value. The statistical term used for 'average' is the arithmetic mean 
or just the mean. Other measures of central tendency may be used 
and these include the median and the modal values. 

Discrete data 
14 The ar i thmet i c m e a n value is found by adding together 
the values of the members of a set and dividing by the number of 
members in the set. Thus, the mean of the set of numbers: 

{4, 5, 6, 9} 

4 + 5 + 6 + 9 
i.e. 6 

In general, the mean of the set: 

U j , x2, x3, . . ., xn} 

x{ + x 2 + * 3 + · · · xn · l̂·*" x = , written as 
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where 2L is the Greek letter 'sigma' and means 'the sum of, and x, 
(called x-bar), is used to signify a mean value. 
15 The m e d i a n va lue often gives a better indication of the 
general size of a set containing extreme values. T h e set: \7 , 5, 74, 
10} has a mean value of 24, which is not really representative of 
any of the values of the members of the set. T h e median value is 
obtained by: 

(a) ranking the set in ascending order of magnitude, and 
(b) selecting the value of the middle member for sets 

containing an odd numbers of members, or finding the 
value of the mean of the two middle members for sets 
containing an even number of members. 

For example, the set \7 , 5, 74, 10} is ranked as 15, 7, 10, 74}, and 
since it contains an even number of members (four in this case), 
the mean of 7 and 10 is taken, giving a median value of 8.5. 
Similarly, the set: {3, 81 , 15, 7, 14} is ranked as {3, 7, 14, 15, 81} 
and the median value is the value of the middle number, i.e. 14. 
16 The m o d a l value, or just the m o d e , is the most commonly 
occurring value in a set. If two values occur with the same 
frequency, the set is 'bi-modaF. T h e set 

{5, 6, 8, 2, 5, 4, 6, 5, 3} 

has a modal value of 5, since the member having a value of 5 
occurs three times. 

Grouped data 
17 The mean value for a set of grouped data is found by 
determining the sum of the (frequency x class mid-point values) 
and dividing by the sum of the frequencies, i.e. mean value 

- = 7 ΐ*1+ /2*2+ · · · +fnxn = Σ ( Α ) 

where / i s the frequency of the class having a mid-point value of x, 
and so on. 

For example, the frequency distribution for the value of 
resistance in ohms of 48 resistors is: 

2 0 . 5 - 2 0 . 9 3, 2 1 . 0 - 2 1 . 4 10, 2 1 . 5 - 2 1 . 9 11 
2 2 . 0 - 2 2 . 4 13, 2 2 . 5 - 2 2 . 9 9, 2 3 . 0 - 2 3 . 4 2 

The class mid-point/frequency values are : 

20.7 3, 21.2 10, 21.7 11, 22.2 13, 22.7 9 
and 23.2 2. 
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For grouped data, the mean value is given by: 

- Σ(Α) 

w h e r e / i s the class frequency and x is the class mid-point value. 
Hence, mean value, 

__ (3 x 20.7) + (10 x 21.2) + (11 x 21.7) + (13 x 22.2) + (9 x 22.7) + (2 x 23.2) 
48 

1052.1 
= 21 .929 . . . 48 

i.e. the m e a n value i s 21.9 o h m s , correct to 3 significant figures. 
18 The mean, median and modal values for grouped data may 
be determined from a histogram. In a histogram, frequency values 
are represented vertically and variable values horizontally. 

The mean value is given by the value of the variable 
corresponding to a vertical line drawn through the centroid of the 
histogram. 

T h e median value is obtained by selecting a variable value 
such that the area of the histogram to the left of a vertical line 
drawn through the selected variable value is equal to the area of 
the histogram on the right of the line. 

T h e modal value is the variable value obtained by dividing 
the width of the highest rectangle in the histogram in proportion to 
the heights of the adjacent rectangles. 

For example, the time taken in minutes to assemble a device 
is measured 50 times and the results are as shown below: 

14.5-15.5 
20.5-21.5 

5, 
12, 

16.5-17.5 
22.5-23.5 

8, 
6, 

18.5-19.5 
24.5-25.5 

16 
3 

The mean, median and modal values of this distribution may be 
determined from a histogram depicting the data. 

T h e histogram is shown in Figure 16.9. T h e mean value lies at 
the centroid of the histogram. With reference to any arbitrary axis, 
say YY shown at a time of 14 minutes, the position of the 
horizontal value of the centroid can be obtained from the 
relationship AM=2^(am), where A is the area of the histogram, M 
is the horizontal distance of the centroid from the axis YY, a is the 
area of a rectangle of the histogram and m is the distance of the 
centroid of the rectangle from YY. T h e areas of the individual 
rectangles are shown circled on the histogram giving a total area of 
100 square units. The positions, m, of the centroids of the indvidual 
rectangles are 1, 3, 5, . . . units from YY. 
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Thus 1 0 0 M = ( 1 0 x l ) + (16 x 3) + (32 x 5) + (24 x 7) + (12 x 9) 
560 

+ (6* 11) i.e. M= =5 .6 units from YY. 
100 

Thus the position of the mean with reference to the time scale is 
14 + 5.6, i.e. 19.6 m i n u t e s . 

T h e median is the value of time corresponding to a vertical 
line dividing the total area of the histogram into two equal parts. 
T h e total area is 100 square units, hence the vertical line must be 
drawn to give 50 units of area on each side. To achieve this with 
reference to Figure 16.9, rectangle ABFE must be split so that 
50 - (10 + 16) units of area lie on one side and 50 - (24 + 12 + 6) 
units of area lie on the other. This shows that the area of ABFE is 
split so that 24 units of area lie to the left of the line and 8 units of 
area lie to the right, i.e. the vertical line must pass through 19.5 
minutes. Thus the median value of the distribution is 19.5 m i n u t e s . 

The mode is obtained by dividing the line AB, which is the 
height of the highest rectangle, proportionally to the heights of the 
adjacent rectangles. With reference to Figure 16.9, this is done by 
joining AC and BD and drawing a vertical line through the point 
of intersection of these two lines. This gives the mode of the 
distribution and is 1 9 3 m i n u t e s . 
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Dispersion 
19 T h e s tandard deviat ion of a set of data gives an indication 
of the amount of dispersion, or the scatter, of members of the set 
from the measure of central tendency. Its value is the root-mean-
square value of the members of the set and for discrete data is 
obtained as follows: 

(a) determine the measure of central tendency, usually the 
mean value, x, (occasionally the median or modal value 
are specified), 

(b) calculate the deviation of each member of the set from the 
mean, giving (xj—x), (x2 —x), (*3 — x)> ··· 

(c) determine the squares of these deviations, i.e., (xj — x)2, 
(x2-x)2, {x3-xf, ... 

(d) find the sum of the squares of the deviations, that is 
(x 1 -x" ) 2 +(x 2 -x~) 2 + ( x 3 - x " ) 2 + . . . : 

(e) divide by the number of members in the set, n, giving 

(x 1 +x) 2 + (x 2 +x ) 2 + ( x 3 + x ) 2 + . . . 

n 

(f) determine the square root of (e). 

The standard deviation is indicated by σ (the Greek letter small 
'sigma') and is written mathematically as: 

standard deviation o = 

where x is a member of the set, x is the mean value of the set and 
n is the number of members in the set. The value of standard 
deviation gives an indication of the distance of the members of a 
set from the mean value. The set: 

{ l , 4 , 7, 10, 13} 

has a mean value of 7 and a standard deviation of about 4.2. The 
set 

{5, 6, 7, 8, 9} 

also has a mean value of 7, but the standard deviation is about 1.4. 
This shows that the members of the second set are mainly much 
closer to the mean value than the members of the first set. 

For example, to determine the standard deviation from the 
mean of the set of numbers: 

{5, 6, 8, 4, 10, 3}, 

correct to 4 significant figures: 

vm 
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Σχ 5 + 6 + 8 + 4+10 + 3 
The arithmetic mean, x = = = 6 

Standard deviation, o - Σ(χ-χ)2 

The (x-x)2 values are: (5-6) 2 , (6-6) 2 , (8-6) 2 , (4-6) 2 , 
(10-6)2 and (3-6) 2 . The sum of the (x-x)2 values, i.e., 
Σ ( χ - χ ) 2 = 1 + 0 + 4 + 4 + 1 6 + 9 i.e., 

Σ(*-*)2 = 34. 
and 

Σ ( * - χ ) 2 34 
= — = 5.6, since there are 6 members in the set. 

n 6 
Hence, standard deviation, 

= ̂ 5-6 = 2.380, correct to 4 significant figures. 

20 For grouped data, standard deviation, 

•-Ä*] 
where/is the class frequency value, x is the class mid-point value 
and x is the mean value of the grouped data. For example, the 
frequency distribution for the values of resistance in ohms of 48 
resistors is: 

20.5-20.9 
22.0-22.4 

3, 
13, 

21.0-21.4 
22.5-22.9 

10, 
9, 

21.5-21.9 
23.0-23.4 

11. 
2. 

From para 17, the distribution mean value, x=21.92, correct to 4 
significant figures. The 'x-values' are the class mid-point values, i.e. 
20.7,21.2,21.7,.. . Thus the (x-x)2 values are (20.7-21.92)2, 
(21.2-21.92)2 (21.7-21.92)2, . . . , and the / (x -x) 2 values are 
3(20.7-21.92)2, 10(21.2 — 21.92)2, . . . The Zf(x-x)2 values are 
4.4652 + 5.1840+0.5324+ 1.0192+5.4756 + 3.2768, i.e. 19.9532. 

Σ{βχ-χ)2} 19.9532 
—J- — = = 0.415 69 

If 48 
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and the standard deviation, 

= V0-41569 = 0.645, correct to 3 significant figures. 

21 Other measures of dispersion which are sometimes used are 
the quartile, decile and percentile values. The quart i le va lues of 
a set of discrete data are obtained by selecting the values of 
members which divide the set into four equal parts. Thus for the 
set: 

{2, 3 , 4 , 5, 5, 7 , 9 , 11, 13, 14, 17} 

there are 11 members and the values of the members dividing the 
set into four equal parts are 4, 7 and 13. These values are signified 
by Q j , Qj2 and (?3 and called the first, second and third quartile 
values respectively. It can be seen that the second quartile value, 
Qj2, is the value of the middle member and hence is the median 
value of the set. 
22 For grouped data the ogive may be used to determine the 
quartile values. In this case, points are selected on the vertical 
cumulative frequency values of the ogive, such that they divide the 
total value of cumulative frequency into four equal parts. 
Horizontal lines are drawn from these values to cut the ogive. The 
values of the variable corresponding to these cutting points on the 
ogive give the quartile values. 

For example, the frequency distribution given below refers to 
the overtime worked by a group of craftsmen during each of 48 
working weeks in a year. 

25-29 5, 3 0 - 3 4 4, 3 5 - 3 9 7, 4 0 - 4 4 11 
45-49 12, 5 0 - 5 4 8, 5 5 - 5 9 1. 

T h e cumulative frequency distribution (i.e. upper class boun
dary/cumulative frequency values) is: 

29.5 5, 34.5 9, 39.5 16, 44.5 27, 49.5 39, 
54.5 47, 59.5 48 

The ogive is formed by plotting these values on a graph, as 
shown in Figure 16.10. T h e total frequency is divided ito four equal 
parts, each having a range of 48/4, i.e. twelve. This gives 
cumulative frequency values of 0 to 12 corresponding to the first 
quartile 12 to 24 corresponding to the second quartile 24 to 36 
corresponding to the third quartile and 36 to 48 corresponding to 
the fourth quartile of the distribution, i.e. the distribution is 
divided into four equal parts. 
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The quartile values are those of the variable corresponding to 
cumulative frequency values of 12, 24 and 36, marked Q^, Q,2 a n ( ^ 
Q3 in Figure 16.10. These values, correct to the nearest hour, are 37 
h o u r s , 43 h o u r s and 48 h o u r s respectively. T h e Q2 value is also 
equal to the median value of the distribution. One measure of the 
dispersion of a distribution is called the semi- interquart i l e range 
and is given by (Q3 — Qj)/2, and is (48 — 37)/2 in this case, 

1 
i.e., 5 - hours . 

2 
23 When a set contains a large number of members, the set can 
be split into ten parts, each containing an equal number of 
members. These ten parts are then called dec i les . For sets 
containing a very large number of members, the set may be split 
into one hundred parts, each containing an equal number of 
members. One of these parts is called a percent i le . 

Probability 
24 T h e probability of something happening is the likelihood or 
chance of it happening. Values of probability lie between 0 and 1, 
where 0 represents an absolute impossibility and 1 represents an 
absolute certainty. The probability of an event happening usually 
lies somewhere between these two extreme values and is expressed 
either as a proper or a decimal fraction. 
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Examples of probability are : 
that a length of copper wire has zero resistance at 100°C— 0 

that a fair, six-sided dice will stop with a 3 upwards or 0.1667 

that a fair coin will land with a head upwards or 0.5 

that a length of copper wire has some resistance at 100°C— 1 

25 If/? is the probability of an event happening and q is the 
probability of the same event not happening, then the total 
probability is p + q and is equal to unity, since it is an absolute 
certainty that the event either does or does not occur, i.e. p + q= 1. 

26 The expectat ion, E, of an event happening is defined in 
general terms as the product of the probability p of an event 
happening and the number of attempts made, n, i.e., E=pn. Thus , 
since the probability of obtaining a 3 upwards when rolling a fair 

dice is - , the expectation of getting a 3 upwards on four throws of 
6 

1 . 2 
the dice is - x 4, i.e., - . Thus expectation is the average 

6 3 
occurrence of an event. 

27 A dependent event is one in which the probability of one 
event happening affects the probability of another event happen
ing. Let 5 transistors be taken at random from a batch of 100 
transistors for test purposes, and the probability of there being a 
defective transistor, pi, be determined. At some later time, let 
another 5 transistors be taken at random from the 95 remaining 
transistors in the batch and the probability of there being a 
defective transistor, /?2, c a n D e determined. The value of /?2 is 
different from /?, since the batch size has effectively altered from 
100 to 95, i.e., the probability/?2 is dependent on probability/?!. 
Since 5 transistors are drawn, and then another 5 transistors are 
drawn without replacing the first 5, the second random selection is 
said to be w i thout replacement . 

28 An independent event is one in which the probability of an 
event happening does not affect the probability of another event 
happening. If 5 transistors are taken at random from a batch of 
transistors and the probability of a defective transistor/?, is 
determined and the process is repeated after the original 5 have 
been replaced in the batch to give /?2, then px is equal to /?2. Since 
the 5 transistors are replaced between draws, the second selection is 
said to be w i t h rep lacement 
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The addition law of probability 
29 T h e addition law or probability is recognised by the word 
' o r ' joining the probabilities. If pA is the probability of event A 
happening and />B is the probability of event B happening, the 
probability of event A o r event B happening is given by pA+pv 
Similarly, the probability of events A o r B o r C o r . . . N 
happening is given by: pA +/>B +pc + . . .pN. 

The multiplication law of probability 
30 T h e multiplication law of probability is recognised by the 
word 'and' joining the probabilities. If pA is the probability of 
event A happening and pB is the probability of event B happening, 
the probability of event A a n d event B happening is given by 
PAXPB- Similarly, the probability of events A a n d B a n d C a n d . . . 
N happening is given by pA x />B x pc x . . ./>N. 
31 The addition and multiplication laws of probability may be 
combined as shown below. Let pA, />B and pc be the probabilities of 
events A, B and C respectively happening. T h e probabilities of 
events A, B and C not happening may be shown as pA, p% and pc, 
(wherep A +pA = 1, see para 25). Then for example: 

(i) the probability of events (A a n d B) o r C happening is 

(PAXPB)+PC> 
(ii) the probability of (event A o r event B happening) 
and event C happening is (/>A+/>B) XPC> 
(iii) the probability of (events A a n d B happening) o r 
(event A happening and event C not happening) is 
{P\*PB) + (PA+PC)> 
(iv) the probability of (event A and B not happening) o r 
(event C happening) is (pA x/>B) +pc and so on. 

For example, to determine the probability of selecting at random 
the winning horse in a race in which 10 horses are running: 

Since only one of the ten horses can win, the probability of 
selecting at random the winning horse is: 

number of winners # 1 
, i.e., — 

number of horses 10 

To determine the probability of selecting at random the winning 
horse in the first race or the winning horse in the second race if 
there are 10 horses in each race: 

The probability of selecting at random the winning horse in the 
first race or the winning horse in the second race is given by the 
addition law of probability, since the word or joins the two 
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probabilities. From above, the probability of selecting the winning 
horse is 1/10 for the first race and also 1/10 for the second race. 
Hence the probability of selecting the winning horse from the first 
or the second race is 

1 1 1 

To determine the probability of selecting at random the 
winning horses in both the first and second races if there are 10 
horses in each race: 

T h e probability of selecting the winning horse in the first race is 
1 

TO' 
The probability of selecting the winning horse in the second rate is 
1 

IÖ' 
T h e probability of selecting the winning horse in the first a n d 
second race is given by the multiplication law or probability, 

1 1 1 
i.e. probability = — x — = o r 0.01 

P y 10 10 100 
Let a batch of 40 components contain 5 which are defective. 

If a component is drawn at random from the batch and tested and 
then a second component is drawn at random, the probability of 
having one defective component, both with and without replace
ment is determined as follows: 
The probability of having one defective component can be 
achieved in two ways. If/? is the probability of drawing a defective 
component and q is the probability of drawing a satisfactory 
component, then the probability of having one defective com
ponent is given by drawing a satisfactory component and then a 
defective component or by drawing a defective component and 
then a satisfactory one, i.e., by q*p+p* q. 
With r e p l a c e m e n t : 

5 1 35 7 
p = — = - and q = — = -

40 8 40 8 

Hence, the probability of having a defective component is 

1 7 7 1 7 7 14 7 
_ x _ + _ x i.e., _ + _ = _ = _ or 0.2188. 
8 8 8 8 64 64 64 32 
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Without r e p l a c e m e n t : 
1 7 

p\=- and qx = - on the first of the two draws. T h e batch number 
8 8 

5 35 
is now 39 for the second draw, thus />« = — and q9 = —. y i 39 l 39 

1 35 7 5 3 5 + 3 5 70 
^ 2 + ^ 2 = 8 X ^ + 8X39=^1^=^° r 0 · 2 2 4 4 

The Binomial distribution 
32 T h e binomial distribution deals with two numbers only, these 
being the probability that an event will happen, p, and the 
probability that an event will not happen, q. Thus , when a coin is 
tossed, 'up is the probability of the coin landing with a head 
upwards, q is the probability of the coin landing with a tail 
upwards, p + q must always be equal to unity. A binomial 
distribution can be used for finding, say, the probability of getting 
three heads in seven tosses of the coin, or in industry for determining 
defect rates as a result of sampling. 
33 One way of defining a binomial distribution is as follows: 

if p is the probability that an event will happen and q is the probability that 
the event will not happen, then the probabilities that the event will happen 0, 
1, 2, 3, . . . , n times in n tnals are given by the successive terms of the 
expansion of (q+p)n, taken from left to right 

The binomial expansion is used to obtain the terms of (q+p)n. 
For example, to determine the probability of having at least 1 girl 
in a family of 4 children, assuming equal probability of male and 
female bir th: 

The probability of a girl being born, p is 0.5 and the probability of 
a girl not being born (male birth), q, is also 0.5. The number in 
the family, n, is 4. From above, the probabilities of 0, 1, 2, 3, 4 
girls in a family of 4 are given by the successive terms of the 
expansion of (q+pY taken from left to right. 

From section 4, page 41 , (q +/>)4 = qA + 4q3p + 6q2p2 + 4qp3 +/>4. 
Hence the probability of no girls is ^4, i.e., 0.54 =0.0625 

the probability of 1 girl is 4?3/>, i.e., 4 * 0.53x 0.5 =0.2500 
the probability of 2 girls is 6q2p2, i.e., 6 * 0 . 5 2 x 0 . 5 2 = 0.3750 
the probability of 3 girls is 4qp3, i.e., 4>< 0.5 * 0.53 =0.2500 
the probability of 4 girls is />4, i.e., 0.54 =0.0625 

Total probability, (q+p) =1.0000 
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The probability of having at least one girl is the sum of the 
probabilities of having 1, 2, 3 and 4 girls, i.e., 

0.2500 + 0.3750 + 0.2500 + 0.0625 = 0.9375 

[Alternating, the probability of having at least 1 girl is: 
1 — (the probability of having no girls), i.e., 1 —0.0625, giving 
0.9375, as obtained previously.] 
Similarly, the probability of having at least 1 girl and 1 boy in a 
family of 4 is given by the sum of the probabilities of having: 1 girl 
and 3 boys, 2 girls and 2 boys and 3 girls and 1 boy, i.e., 

0.2500 + 0.3750 + 0.2500 = 0.8750 

[Alternatively, this is also the probability of having 1 — (probability 
of having no girls + probability of having no boys), i.e., 1 —2 
x 0.0625 = 0.8750, as obtained previously.] 

34 In industrial inspection, p is often taken as the probability 
that a component is defective and q is the probability that the 
component is satisfactory. In this case, a binomial distribution may 
be defined as: 

the probabilities that 0, 1, 2, 3, ..., n components are defective in a sample 
of n components, drawn at random from a large batch of components, are 
given by the successive terms of the expansion of (q+p)n, taken from left to 
right. 

For example, a package contains 50 similar components and 
inspection shows that four have been damaged during transit. Let 
six components be drawn at random from the contents of the 
package. 

The probability of a component being damaged, p, is 4 in 50, 
i.e. 0.08 per unit. Thus the probability of a component not being 
damaged, q is 1 —0.08, i.e. 0.92. From above, the probability of 
there being 0, 1, 2, . . . , 6, damaged components is given by the 
successive terms of (q +/>)6, taken from left to right. 

(q +pf = q
6 + 6q5+\ 5q4p2 + 20q3p3 + . . . 

Thus, for example, the probability of one damaged component is 

6q5p = 6 x 0.925 x 0.08, i.e., 0.3164, 

and the probability of less than three damaged components is given 
by the sum of the probabilities of 0, 1 and 2 damaged components. 

q6 + 6q5p + 15fV* =0 .92 6 + 6 x 0.925 x 0.08 + 15 x 0.924 x 0.082 

= 0.6064 + 0.3164 + 0.0688 = 0.9916 

272 



The Poisson distribution 
(i) When the number of trials, n, in a binomial distri
bution becomes large, (usually taken as larger than 10), 
the calculations associated with determining the values of 
the terms becomes laborious. If n is large, p is small and 
the product np is less than 5, a very good approximation 
to a binomial distribution is given by the corresponding 
poisson distribution, in which calculations are usually 
simpler. 
(ii) The Poisson approximation to a binomial distribution 
may be defined as follows: 

'the probabilities that an event will happen 0, 1, 2, 3, ..., n 
times in n trials are given by the successive terms of the expression 

if , χ2 λ \ 
e [ / + /H 1 h . . · 1 taken from left to right'. 

The symbol λ is the expectation of an event happening 
and is equal to np. 

For example, let 3% of the gearwheels produced by a 
company be defective and let a sample of 80 gearwheels 
be taken. 

The sample number, n, is large, the probability of a 
defective gearwheel, p, is small and the product np is 
80 x 0.03, i.e., 2.4, which is less than 5. Hence a Poisson 
approximation to a binomial distribution may be used. 
The expectation of a defective gearwheel, λ = ηρ = 2Λ. 

From above, the probabilities of 0, 1, 2, . . . defective 
gearwheels are given by the successive terms of the 
expression 

ί· 
A2 

V.' 

λ 
\-λ + h . . . I, taken from left to right, 

i.e., by e , Xe , . . . T h u s : 
y ' 2 ! 

probability of no defective gearwheels is 

*-A = * - 2 · 4 =0.0907 
probability of 1 defective gearwheel is 
Xe~x = 2Ae-2A =0.2177 

probability of 2 defective gearwheels is 

i"e Λ 'l.Ve '·" 
— = - — - - 0 . 2 6 1 3 



Thus, the porbability of having say 2 defective gearwheels 
is 0.2613, and the probability of having more than 2 
defective gearwheels is 1 — (the sum of the probabilities of 
having 0, 1 and 2 defective gearwheels), i.e., 
1 — (0 .0907+0.2177+0.2613) , that is, 0.4303. 

36 The principal use of a Poisson distribution is to determine the 
theoretical probabilities when/?, the probability of an event 
happening, is known, but q, the probability of the event not 
happening is not known. For example, the average number of 
goals scored per match by a football team can be calculated, but it 
is not possible to quantify the number of goals which were not 
scored. In this type of problem, a Poisson distribution may be 
defined as follows: 

'the probabilities of an event occurring 0, 1,2,3,... times are given by the 

if , χ2 χ3 \ 
successive terms of the expression e \ 1 + λ-\ 1 ( - . . . I. taken from 

J v \ 2! 3! ) 
left to right'. 

The symbol λ is the value of the average occurrence of the event. 
For example, a production department has 35 similar milling 
machines. The number of breakdowns on each machine averages 
0.06 per week. Since the average occurrence of a breakdown is 
known but the number of times when a machine did not break 
down is not known, a Poisson distribution must be used to 
determine, say, the probability of having one machine breaking 
down in a week. 

The expectation of a breakdown for 35 machines is 35 x 0.06, 
i.e., 2.1 breakdowns per week. From above, the probabilities of a 
breakdown occurring 0, 1, 2, . . . times are given by the successive 

terms of the expression e [ 1 +λ-\ l· . . . 1, taken from left to 

right. Hence: 

probability of no breakdowns is e~ =e =0.1225 
probability of 1 breakdown is λβ-λ = 2.\β~2Λ =0.2572 

λ\~λ 2 . 1 V 2 · 1 

probability of 2 breakdowns is — = = 0.2700 
F y 2! 2 x 1 

Thus, the probability of 1 breakdown per week is 0.2572 
The probability of less than 3 breakdowns per week is the sum of 
the probabilities of 0, 1 and 2 breakdowns per week, 

i.e., 0.1225 + 0.2572+0.2700, i.e., 0.6497 
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Normal distribution 
37 When data is obtained, it can frequently be considered to be 
a sample, (i.e. a few members), drawn at random from a large 
population, (i.e. a set having many members). If the sample 
number is large, it is theoretically possible to choose class intervals 
which are very small, but which still have a number of members 
falling within each class. A frequency polygon of this data then has 
a large number of small line segments and approximates to a 
continuous curve. Such a curve is called a frequency or a 
distribution curve. 
38 An extremely important symmetrical distribution curve is 
called the normal curve and is as shown in Figure 16.11. This 
curve can be described by a mathematical equation and is the 
basis of much of the work done in more advanced statistics. Many 
natural occurrences such as the heights or weights of a group of 
people, the sizes of components produced by a particular machine 
and the life length of certain components, approximate to a normal 
distribution. 

Variable 

Figure 16.11 

39 Normal distribution curves can differ from one another in the 
following four ways: 

(a) by having different mean values, 
(b) by having different values of standard deviations, 
(c) the variables having different values and different units, 

and 
(d) by having different areas between the curve and the 

horizontal axis. 
40 A normal distribution curve is standardised as follows: 

(a) The mean value of the unstandardised curve is made the 
origin, thus making the mean value, x, zero. 
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(b) T h e horizontal axis is scaled in standard deviations. This 
x — x 

is done by letting z = , where z is called the n o r m a l 
o 

s tandard variate , x is the value of the variable, x is the 
mean value of the distribution and σ is the standard 
deviation of the distribution. 

(c) The area between the normal curve and the horizontal 
axis is made equal to unity. 

When a normal distribution curve has been standardised, the 
normal curve is called a s tandard i sed n o r m a l curve or a 
n o r m a l probabi l i ty curve, and any normally distributed data 
may be represented by the s a m e normal probability curve. 
41 The area under part of a normal probability curve is directly 
proportional to probability and the value of the shaded area shown 
in Figure 16.12 can be determined by evaluating: 
Z2 

J V(2*) 
Z\ 

x — x 
where z = (see para. 40) 

Probability 
density 

z1 0 Z2 z-value 
Standard deviations 

Figure 16.12 

To save repeatedly determining the values of this function, tables 
of partial areas under the standardised normal curve are available 
and such a table is shown in Table 16.3. 

For example, let the mean height of 500 people be 170 cm, 
and the standard deviation be 9 cm. Assuming the heights are 
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Table 16.3 

A 
\ 

V. 
Θ Z 

z = x—± 0 1 2 3 4 5 6 7 8 9 
σ 

0.0 0.0000 0.0040 0.0080 0.0120 0.0159 0.0199 0.0239 0.0279 0.0319 0.0359 
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0678 0.0714 0.0753 
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1388 0.1406 0.1443 0.1480 0.1517 
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2086 0.2123 0.2157 0.2190 0.2224 
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2760 0.2794 0.2823 0.2852 
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3215 0.3340 0.3365 0.3389 
1.0 0.3413 0.3438 0.3451 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4430 0.4441 
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4509 0.4608 0.4616 0.4625 0.4633 
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4762 0.4767 
2.0 0.4772 0.4778 0.4783 0.4785 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4882 0.4890 
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 
2.8 0.4974 0.4975 0.4076 0.4977 0.4977 0.4978 0.4979 0.4980 0.4980 0.4981 
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993 
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995 
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997 
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 
3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 
3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 
3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 
3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 
3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
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normally distributed, the number of people likely to have heights 
between, say, 150 cm and 195 cm is determined as follows: 

The mean value x is 170 cm and corresponds to a normal 
standard variate value z of zero on the standardised normal curve. 

x — x 
A height of 150 cm has a rvalue given by z = standard 

o 
150-170 

deviations, i.e., or —2.22 standard deviations. Using a 
9 * 

table of partial areas beneath the standardised normal curve (see 
Table 16.3), a ^-value of —2.22 corresponds to an area of 0.4868 
between the mean value and the ordinate z= —2.22. The negative 
rvalue shows that it lies to the left of the £ = 0 ordinate. This area 
is shown shaded in Figure 16.13(a). Similarly, 195 cm has a z-value 

195-170 
of that is 2.78 standard deviations. From Table 16.3, this 

9 
value of z corresponds to an area of 0.4973, the positive value of z 
showing that it lies to the right of the z — 0 ordinate. This area is 
shown shaded in Figure 16.13(b). The total area shaded in Figures 
16.13(a) and 16.13(b) is shown in Figure 16.13(c) and is 0.4868 
+ 0.4973, i.e., 0.9841 of the total area beneath the curve. 

However, from para 41, the area is directly proportional to 
probability. Thus, the probability that a person will have a height 
of between 150 and 195 cm is 0.9841. For a group of 500 people, 
500 x 0.9841, i.e. 492 people are likely to have heights in this 
range. The value of 500 x 0.9841 is 492.05, but since answers based 
on a normal probability distribution can only be approximate, 
results are usually given correct to the nearest whole number. 
Similarly, the number of people likely to have heights of less than 
165 cm is determined as follows: 

165-170 
A height of 165 cm corresponds to , i.e., —0.56 standard 
deviations. The area between £ = 0 and z= —0.56 (from Table 
16.3) is 0.2123, shown shaded in Figure 16.14(a). The total area 
under the standardised normal curve is unity and since the curve is 
symmetrical, it follows that the total area to the left of the z = 0 
ordinate is 0.5000. Thus the area to the left of the z= —0.56 
ordinate, ('left' means 'less than', 'right' means 'more than'), is 
0.5000-0.2123, i.e., 0.2877 of the total area, which is shown 
shaded in Figure 16.14(b). 

From para 41, the area is directly proportional to probability 
and since the total area beneath the standardised normal curve is 
unity, the probability of a person's height being less than 165 cm is 
0.2877. For a group of 500 people, 500 x 0.2877, i.e. 144 people are 
likely to have heights of less than 165 cm. 
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T h e number of people likely to have heights of more than 194 
cm, is determined as follows: 

1 9 4 - 1 7 0 
194 cm corresponds to a z-value of , that is, 2.67 

9 
standard deviations. 
From Table 16.3, the area between £ = 0, £ = 2.67 and the 

standardised normal curve is 0.4962, shown shaded in Figure 
16.15(a). Since the standardised normal curve is symmetrical, the 
total area to the right of the £ = 0 ordinate is 0.5000, hence the 
shaded area shown in Figure 16.15(b) is 0 .5000-0 .4962 , i.e. 0.0038. 
From para 41 , this area represents the probability of a person 
having a height of more than 194 cm, and for 500 people, the 
number of people likely to have a height of more than 194 cm is 
0.0038 x 500, i.e. 2 people . 
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Figure 16.14 

42 It should never be assumed that because data is continuous it 
automatically follows that it is normally distributed. One way of 
checking that data is normally distributed is by using n o r m a l 
probabi l i ty paper , often just called probabi l i ty paper. This is 
special graph paper which has linear markings on one axis and 
percentage probability values from 0.01 to 99.99 on the other axis. 
The divisions on the probability axis are such that a straight line 
graph results for normally distributed data when percentage 
cumulative frequency values are plotted against upper class 
boundary values. 

If the points do not lie in a reasonably straight line, then the 
data is not normally distributed. 
43 T h e mean value and standard deviation of normally 
distributed data may be determined using normal probability 
paper. 

For normally distributed data, the area beneath the 
standardised normal curve and a r v a l u e of unity (i.e. one standard 
deviation) may be obtained from Table 16.3. For one standard 
deviation, this area is 0.3413, i.e., 34.13%. An area of ± 1 standard 
deviation is symmetrically placed on either side of the z = 0 value, 
i.e. is symmetrically placed on either side of the 50 per cent 
cumulative frequency value. Thus an area corresponding to + 1 
standard deviation extends from percentage cumulative frequency 
values of (50 + 34.13)% to ( 5 0 - 3 4 . 1 3 ) % , i.e., from 84.13% to 
15.87%. 
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0 2.67 z-value 

<D> I i i I i i ΧΛ//77 » 
0 2.67 z-value 

Figure 16.15 

For most purposes, these values are taken as 16% and 84%. 
Thus, when using normal probability paper, the standard deviation 
of the distribution is given by: 

(variable value for 84% cumulative frequency) — 
(variable value for 16% cumulative frequency) 

2 
For example, the data given below refers to the masses of 50 
copper ingots. Normal probability paper may be used to determine 
whether the data is approximately normally distributed. 

Class mid
point value 
(kg) 29.5 30.5 31.5 32.5 33.5 34.5 35.5 36.5 37.5 38.5 

Frequency 2 4 6 8 9 8 6 4 2 1 

To test the normality of a distribution, the upper class boun
dary/percentage cumulative frequency values are plotted on 
normal probability paper. The upper class boundary values are : 
30, 31, 32, . . . , 38, 39. The corresponding cumulative frequency 
values, (for 'less than' the upper class boundary values), are : 2, 
( 4 + 2 ) = 6, ( 6 + 4 + 2 ) = 12, 20, 29, 37, 43, 47, 49 and 50. The 
corresponding percentage cumulative frequency values are 
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9 fi 
_ χ 100=4, — * 100= 12, 24, 40, 58, 74, 86, 94, 98 and 100%. 
50 50 
= 4, — x 100= 12, 24, 40, 58, 74, 86, 94, 98 and 100%. 

50 
The co-ordinates of upper class boundary/percentage 

cumulative frequency values are plotted as shown in Figure 16.16. 
When plotting these values, it will always be found that the co
ordinate for the 100% cumulative frequency value cannot be 
plotted, since the maximum value on the probability scale is 99.99. 
Since the points plotted in Figure 16.16 lie very nearly in a straight 
line, the data is approximately normally distributed. T h e mean 
value and standard deviation can be determined from Figure 16.16. 

Since a normal curve is symmetrical, the mean value is the 
value of the variable corresponding to a 50% cumulative frequency 
value, shown as point P on the graph. This shows that the m e a n 
value i s 33.6 kg. The standard deviation is determined using the 
84% and 16% cumulative frequency values, shown as Q,and R in 
Figure 16.16. T h e variable values for Q a n d R are 35.7 and 31.4 
respectively; thus two standard deviations correspond to 
35.7—31.4, i.e. 4.3, showing that the standard deviation of the 

4.3 
distribution is approximately , i.e. 2.15 s tandard deviat ions . 

Linear correlation 
44 Correlation is a measure of the amount of association existing 
between two variables. For linear correlation, if points are plotted 
on a graph and all the points lie on a straight line, then perfect 
l inear correlat ion is said to exist. When a straight line having a 
positive gradient can reasonably be drawn through points on a 
graph pos i t ive o r direct l inear corre lat ion exists. Similarly, 
when a straight line having a negative gradient can reasonably be 
drawn through points on a graph, negat ive or inverse l inear 
corre lat ion exists. When there is no apparent relationship 
between co-ordinate values plotted on a graph then no correlation 
exists between the points. 
45 The amount of linear correlation between two variables is 
expressed by a coefficient o f correlat ion, given the symbol r. 
This is defined in terms of the deviations of the co-ordinates of two 
variables from their mean values and is given by the product-
m o m e n t formula which states: 

Lxy 
coefficient of correlation, r = ,r y 2—V 9 \> ^ 
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where the ^-values are the values of the deviations of co-ordinates 
Zand X, their mean value and thejy-values are the values of the 
deviations of co-ordinates Y from f> their mean value. That is, 
x= (X— X) andj= (Y— T). The results of this determination give 
values of r lying between + 1 and — 1, where + 1 indicates perfect 
direct correlation, — 1 indicates perfect inverse correlation and 0 
indicates that no correlation exists. Between these values, the 
smaller the value of r, the less is the amount of correlation which 
exists. Generally, values of r in the ranges 0.7 to 1 and —0.7 to 
— 1 show that a fair amount of correlation exists. 
46 When the value of the coefficient of correlation has been 
obtained from the product-moment formula, some care is needed 
before coming to conclusions based on this result. Checks should be 
made to ascertain the following two points: 

(a) that a 'cause and effect' relationship exists between the 
variables; it is relatively easy, mathematically, to show that 
some correlation exists between, say, the number of ice 
creams sold in a given period of time and the number of 
chimneys swept in the same periods of time, although 
there is no relationship between these variables; 

(b) that a linear relationship exists between the variables; the 
product-moment formula given in para 45 is based on 
linear correlation. Perfect non-linear correlation may exist, 
(for example, the co-ordinates exactly following the curve 

y = x3), but this gives a low value of coefficient of 
correlation since the value of r is determined using the 
product-moment formula, based on a linear relationship. 

For example, in an experiment to determine the relationship 
between force on a wire and the resulting extension, the following 
data is obtained: 

Force (N) 

Extension (mm) 

10 20 30 40 50 60 70 

0.22 0.40 0.61 0.85 1.20 1.45 1.70: 

The linear coefficient of correlation for this data is obtained as 
follows. Let X be the variable force values and Y be the dependent 
variable extension values. The coefficient of correlation is given by: 

r"V{(2^)(V)} 
where x= (X—X) andy= (Y— Y), X and Y being the mean values 
of the X and Y values respectively. Using a tabular method to 
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determine the quantities of this formula gives: 

X 

10 
20 
30 
40 
50 
60 
70 

Σ^=280 

- 280 
\x=— 

1 

= 40 

r 

0.22 
0.40 
0.61 
0.85 
1.20 
1.45 
1.70 

Σ^=6.43 

6.43 
r = — 

7 

= 0.919 

x={X-X) 

-30 
-20 
-10 

0 
10 
20 
30 

y=(r-i) 
-0.699 
-0.519 
-0.309 
-0.069 
0.281 
0.531 
0.781 

xy 

20.97 
10.38 
3.09 
0 

2.81 
10.62 
23.43 

Σ*7= 

71.30 

x2 

900 
400 
100 
0 

100 
400 
900 

Σ*2 = 
2800 

/ 1 
0.489 
0.269 
0.095 
0.005 
0.079 
0.282 
0.610 

& 2 = 
1.829 

71.3 
Thus r = = 0.996 

V[2800x 1.829] 
This shows that a very good direct correlation exists between the 
values of force and extension. 

Linear regression 
47 Regression analysis, usually termed regress ion , is used to 
draw the line of 'best fit' through co-ordinates on a graph. T h e 
techniques used enable a mathematical equation of the straight line 
fo rmj =mx + c to be deduced for a given set of co-ordinate values, 
the line being such that the sum of the deviations of the co
ordinate values from the line is a minimum, i.e. it is the line of 
'best fit'. 
48 When a regression analysis is made, it is possible to obtain 
two lines of best fit, depending on which variable is selected as the 
dependent variable and which variable is the independent variable. 
For example, in a resistive electrical circuit, the current flowing is 
directly proportional to the voltage applied to the circuit. There 
are two ways of obtaining experimental values relating the current 
and voltage. Either, certain voltages are applied to the circuit and 
the current values are measured, in which case, the voltage is the 
independent variable and the current is the dependent variable. 
Alternatively, the voltage can be adjusted until a desired value of 
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current is flowing and the value of voltage is measured, in which 
case, the current is the independent value and the voltage is the 
dependent value. 

The least-squares regression line 
49 For a given set of co-ordinate values, (Xx, Γ,), (X2, T2), ..., 
(XN, ΓΝ) let the lvalues be the independent variables and the Y-
values be the dependent values. Also, let Z)j, Z>2, . . . , D^ be the 
vertical distances between the line shown as PQin Figure 16.17 and 
the points representing the co-ordinate values. The least-squares 
regression line, i.e. the line of best fit, is the line which makes the 
value of Z)] + Z>2 + . . . D^ a minimum value. 

Figure 16.17 

50 The equation of the least-squares regression line is usually 
written as Υ=α$ + α\Χ, where Ö0 is the Γ-axis intercept value and 
a, is the gradient of the line (analagous to c and m in the equation 
y = mx + c). The values of OQ and αλ to make the sum of the 
'deviations squared' a minimum can be obtained from the two 
equations: 

Στ=α0Ν+αιΣχ (1) 

Σ(ΧΤ)=α0ΣΧ+α]Σχ2 (2) 

where X and Y are the co-ordinate values, N is the number of co
ordinates and a0 and a{ are called the regression coefficients of 
Yon X. Equations (1) and (2) are called the normal equations of 
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the regression line of Y on X. The regression line of Y on X is used 
to estimate values of Y for given values of X. 
51 If the ^-values (vertical-axis), are selected as the independent 
variables, the horizontal distances between the line shown as PQ, in 
Figure 16.17 and the co-ordinate values, (//3, //4, etc.) are taken as 
the deviations. The equation of the regression line is of the form: X 
= b0-\-biY and the normal equations become: 

ΣΧ=*ο*+>ιΣΤ (3) 
Σ(ΑΤϊ)-*οΣΓ+*,Σί« (4) 

where X and Y are the co-ordinate values, b0 and b\ are the 
regression coefficients of X on Y and N is the number of co
ordinates. These normal equations are of the regression line of X 
on Y, which is slightly different to the regression line of Y on X. 
The regression line of X on Y is used to estimate values of X for 
given values of Y. 
52 The regression line of Y on X is used to determine any value 
of Y corresponding to a given value of X. If the value of Y lies 
within the range of Γ-values of the extreme co-ordinates, the 
process of finding the corresponding value of X is called linear 
interpolation. If it lies outside of the range of Y-values of the 
extreme co-ordinates then the process is called linear extrapo
lation and the assumption must be made that the line of best fit 
extends outside of the range of the co-ordinate values given. By 
using the regression line of X on Y, values of X corresponding to 
given values of Y may be found by either interpolation or 
extrapolation. For example, the experimental values relating 
centripetal force and radius, for a mass travelling at constant 
velocity in a circle, are as shown: 

Force (N) 

Radius (cm) 

5 10 15 20 25 30 35 4θΊ 

55 30 16 12 11 9 7 5 

The equation of the regression line of force on radius is determined 
as follows: 
Let the radius be the independent variable X, and the force be the 
dependent variable Y. (This decision is usually based on a 'cause' 
corresponding to X and an 'effect' corresponding to Y.) 
The equation of the regression line of force on radius is of the form 
Υ=α§ + α\Χ and the constants a0 and ÖJ are determined from the 
normal equations: 

Υ=α^Ν-\-α^Χ 
ΧΥ=α0ΣΧ+αιΣχ'2 (see para 50) 
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Using a tabular approach to determine the values of the sum
mations, gives: 

Radius, X 

55 
30 
16 
12 
11 
9 
7 
5 

ΣΧ= 145 

Force, Y 

5 
10 
15 
20 
25 
30 
35 
40 

ΣΓ=180 

tf 
3025 
900 
256 
144 
121 
81 
49 
25 

Σ*2=4601 

XY 

275 
300 
240 
240 
275 
270 
245 
200 

ΣΛΤ=2045 

r2 

25 
100 
225 
400 
625 
900 

1225 
1600 

Σ Γ 2 = 5100 

Thus 180 = 8a 0 +145a 
2045= 145a0 +460 lfl! 

Solving these simultaneous equations gives a0 = 33.7 and a.\ = —0.617, 
correct to 3 significant figures. Thus the equation of the regression line 
of force on radius is: 

Y= 3 3 . 7 - 0.61 IX 

The equation of the regression line of radius on force is of the 
form X=b0-\-biY, and the constants b0 and bx are determined from the 
normal equations: 

YX=b0N+bj:Y 
Σ Λ Ύ = 6 0 Σ ^ + £ ι Σ ^ 2 , {see para 51). 

The values of the summations have been obtained in the above table 
giving: 

145 = 8 ^ + 1 8 0 6 , 
2045 = 1 8 0 ^ + 5100^! 

Solving these simultaneous equations gives 60 = 44.2 and A, = — 1.16, 
correct to 3 significant figures. Thus the equation of the regression line 
of radius on force is: A"=44.2— 1.16Γ. 
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17 Laplace transforms 

1 The solution of most electrical circuit problems can be 
reduced ultimately to the solution of differential equations. The use 
of Laplace transforms provides an alternative method for solving 
linear differential equations. 

Definition 
2 The Laplace transform of the function/(/) is defined by the 
integral 

00 

[e-5tf{t) di, 
0 

where s is a parameter assumed to be a real number. 

Common notations used for the Laplace 
transform 

3 There are various commonly used notations for the Laplace 
transform off(t) and these include: 

(i) W M } or <*?{/(<)} 
(ii) <£{f) or <ef 
(iü) M or J{s) 

Also, the letter/» is sometimes used instead of s as the parameter. 
The notation adopted in this book will be/(*) for the original 
function and &{f(t)} for its Laplace transform. 
Hence, from para 2 

oo 

W ( 0 } = [e-5tf{t)dt (1) 

o 
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Linearity property of the laplace transform 
oo oo 

From equation (1), &{kf{t)}= [e~stkf(t) dt = k\e-stf{t) dt 

i*. SrVAto-MifW} ° ° (2) 
where k is any constant. 

oo 

Similarly, 5Τ{β/(ή + b g(t)} = j e~«{a +f(t) + bg{t)}dt 

0 

0 0 

i.e. ^{*/(0+M0} = *^{/W} + * ^ ( ' ) } , 
(3) 

where a and e any real constants. 
The Laplace transform is termed a linear opetmtor because of the 
properties shown in equations (2) and (3). 

Laplace transforms of elementary functions 
5 Using the definition of a Laplace transform in equation (1), a 
number of elementary functions may be transformed as shown in 
Table 17.1. Thus, for example, 

&[ 1 + 2/ - -/* j = J$?{1}+ 2J^{/} - -i?{*4} 

from equations (2) and (3) of para 4 

= - + 2| m&) 
from (i), (vi) and (viii) of Table 17.1, 

1 2 ^ 8 ^ 

g^e* - 3<T'} = 5.2V'} - 3<e{e-'} 

-te)-G^r) 
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Table 17.1 Elementary standard Laplace transforms 

Function 

f(t) 

(i) 

(ü) 

(in) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 

(xi) 

CXÜ\ 
VX1V 

. 
(Xll l ) 

ίχίν^ VA I VI 

(x\\ 
\AY/ 

1 

k 

e*1 

sin at 

cos at 

t 

? 

f( « = 1 , 2 , 3 , . . . ) 

cosh at 

sinh at 

e*1 

e*1 

e*1 

c*1 

e*< 

f 

sin (üt 

cos ωί 

sinh (Ot 

cosh (üt 

Laplace transforms 

0 

1 

s 
k 

s 

1 

s — a 
a 

7W 
s 

7W 
1 
7 
2! 
7 
7+T 

J 

7^7 
<2 

7^7 
n\ 

{s-a)n+l 

ω 
(j_fl)2 + ü )2 

j — a 

(s-af + ω2 

ω 
( ί_α)2_ω2 

j — a 

(5-α)2-ω2 

291 



from (iii) of Table 17.1, 

5 3 5 ( J + 1 ) - 3 ( J - 2 ) 

s-2 j+1 ( J _ 2 ) ( J + I ) 

2s+ll 
(s-2)(s+l) 

JS?{6 sin 3 / - 4 cos 5/} = 6if{sin 3 / } - 4 ^ {cos 5/} 

={7hr)-{lh?) 
from (iv) and (v) of Table 17.1, 

18 4s 
V + 9 ^ + 25 

48 
i f { 2 ^ - 2 i r { ^ . 2 ( ^ | ? T r ) - -

('-3)* 
from (xi) of 7Ö£/* 17.1, 

&{4e3t cos 5/} = 4&{e3i cos 5/} = 4^ " ~ 3 Λ 

from (xiii) of Table 17.1, 
4 ( J - 3 ) _ 4(s-3) 

~ß-6s + 9 + 25 ?-6s+34 

i f {5 , -^s inh20 = 5 ( ( j _ _ 2
3 ) 2 _ 2 2 ) 

from (xiv) of Table 17.1, 
10 10 10 

(j + 3 ) 2 - 2 2 / + 6 J 4 - 9 - 4 s*+6s+5 

Laplace transforms of derivatives 
(a) First derivative 

Let the first derivative off{t) bef'(t) then, from equation (1), 

W(')} = = L'T(t) dt 
o 

From page 194, when integrating by parts 
. dv . du 
\u—dt—uv— \v—dt 3 dt 3 dt 
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When evaluating 
00 
r do 

e~stf'(t) dt9 let «=*-" and ^ ρ Λ Ο » 

o 
from which, 

du 
ä -*-« and v=if'(t)=J[t) 

Hence 

[e-*f(t) dt=[e-«M]?+ [f{t)i-se-st) dt 
0 0 

oo 

j.-j = [0-f(0)]+s\e-"f(t)dt 

o 

= -/(O) + s&{f(t)}9 assuming e~stf{t)^0 

as / -> oo, andy(0) is the value oif[t) at t = 0. 

Hence 2>{f'(t)} = ! * { / » } - /(O) (4) 

or j?j^|=ijsrw-j<a) 
where j>(0) is the value ofy at x = 0. 

(b) Second derivative 
Let the second derivative o{f{t) be/"(*), then from equation (1), 

\=[e-«f"{t)dt W ' ( < ) } = 

Integrating by parts gives: 
oo oo 

0 0 

= [0-f(0)] + s2>{f'(t)} 
assuming e~stf {t)-+0 as t-> *>, and/ ' (0) is the value of/'(/) at / = 0. 
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Hence 

L[f'(t)}= -f(0) + s[sSe{f(')}-f(0)}, 

from equation (4), 

i.e., JSf{/ 'W}=52Jif{/(r)}-5/0)-/ '(0) 

or <?^\=s2<t>{y}-sy(0)=y'(0) 

dy 
where y(0) is the value of— at x = 0. 

dx 
Equations (4) and (5) are important and are used in the solution of 
differential equations (see para 10). 

Initial value and final value theorem 
7 There are several Laplace transform theorems used to simplify 
and interpret the solution of certain problems. Two such theorems 
are the initial value theorem and the final value theorem. 

(a) The initial value theorem states: 
limit limit 

Λ [/W]= [sse{/(t)}] 
/ -►0 J-KXD 

(b) The final value theorem states: 
limit limit 
t-*oo s->0 

For example, if/(0 = 3*4' then: 

i.e., 3f=o( ) 

v>-v 
i.e., 0 = 0, which illustrates the theorem. 

The initial and final value theorems are used in pulse circuit 
applications where the response of the circuit for small periods of 
time, or the behaviour immediately after the switch is closed are of 
interest. The final value theorem is particularly useful in investigat
ing the stability of systems (such as in automatic aircraft-landing 
systems) and is concerned with the steady state response for large 
values of time /, i.e. after all transient effects have died away. 

limit 
/ -KXD 
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Inverse Laplace transforms 
8 If the Laplace transform of a function/(/) is F(s), i.e. 

<e{f{t)}=F{s) 

then/(/) is called the inverse Laplace transform of F{s) and is 
written as 

For example, since 

j $ f { l } = 1 - t h e n ^ - , | - U l 

Similarly, since 

<£ {sin αί} = .~2 2 t h e n &~X\ 2~1. Jlt^*™ at> l^h 
and so on. 
Tables of Laplace transforms (such as Table 17.1 in para 5) may be 
used to find inverse Laplace transforms. Thus, for example, 

= *(\ß)t 

from (iv) of Table 17.1. 

from (iii) of Table 17.1. 

from (viii) of Table 17.1. 

from (v) of Table 17.1. 

^f 
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from (x) of Table 17.1. 

St-] [ ^ W"]{ %—Λ =e2' sin 3r 
\ß-is+ 13J |(^-2)2+32J 

from (xii) of Table 17.1. 
9 Sometimes the function whose inverse is required is not 
recognisable as a standard type, such as those listed in para 5. In 
such cases it may be possible, by using partial functions, to 
resolve the function into simpler fractions which may be inverted 
on sight. For example, the function, 

2s-3 
F(s) = 

Φ-3) 
cannot be inverted on sight from Table 17.1 in para 5. However, by 
using partial fractions, 

2s-3 \ 1 
=-+ , 

s{s-3) s s-3 
which may be inverted as 1 + e*1 from (i) and (iii) of Table 17.1 in 
para 5. (For a summary of the forms of partial fractions, see page 
35.) 

Procedure to solve differential equa
tions by using Laplace transforms 

10 (i) Take the Laplace transform of both sides of the 
differential equation by applying the formulae for the 
Laplace transforms of derivatives (i.e. equations (4) and 
(5) of para 6) and, where necessary, using a list of 
standard Laplace transforms, such as Table 17.1 in para 5. 
(ii) Put in the given initial conditions, i.e. y(0) andy(0). 
(iii) Rearrange the equation to make S£ {y} the subject. 
(iv) Determine y by using, where necessary, partial 
fractions, and taking the inverse of each term. 

Thus, for example, to solve 

d2y dy 
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dy 
given that when x= 0,^=4 and —=9, using the above procedure: 

dx 

(i) 2 j s f fö}+ 5 j s r { | } - 3 J S fwa B J S f i °> 
2[s2^{y}-xy(0)-y(0)]^5[s^{y)-y(0))-3^{y} = 0i 

from equations (4) and (5) of para 6. 
(ii) j>(0) = 4and/ (0 ) = 9. 
Thus 2[J* &{y}-4s-9]+5[s &{γ}-4]-3&{?} = 0 
i.e. 2s2 &{y}-&s-\Q+5s&{y}-20-3&{y} = 0 
(iii) Rearranging gives: ( 2 ? + 5 J - 3) i ? M = 8 J + 38 

. „t Λ 8 J + 3 8 
i.e. JS? {y }=^ 

U 2 / + 5 ί - 3 
„ ,Γ 8H-38 ) (iv) y=se-x\—z 1 V , J \2s2+5s-3\ 

8 J + 3 8 8*+38 _ A B A{s + 3)3B(2s-\) 
2 ^ + 5 5 - 3 ( 2 J - 1 ) ( J + 3 ) 2J—1 J + 3 ( 2 J - 1 ) ( J + 3) 

Hence 8 J + 38=A(s+ 3) + B{2s- 1) 
1 1 

When s=-, 42=3-Λ, from which, A= 12 
2 2 

When s= - 3 , 14= - 7 B , from which B= -2 
, i 8i+38 ) . ( 1 2 2 ) 

H e n c e j = i ^ - 1 J - ^ }=&~l\ > 
\2x2+5s-3$ [2J-1 s+3) 

Hence .ν = 6έΤ(1/2)ΛΓ-2έΤ3χ, from (iii) of Table 17.1, 

' dx2 dx 
Similarly, to solve - j y - 7— + 10_? = <?2* + 20, given that when x = 0, 

ψ 1 
? = 0 and — = - , using the above procedure: 

dx 3 

(i) ^ j ^ l -7J5 f |—l+10J?0 ' }=JSf { i 2 x +20} 

Hence [?&{?}-sy(0)-y(0)]- 7[s&{y}-j(0)] + \02>{y} 
1 20 

~s~^2 7 
297 



(ii) j(0) = O a n d y ( 0 ) = - -

(ni) (ß-7s+\0)&{y} 
2 b - 4 0 

_ 2 b - 4 0 
~ s(s-2) 

1 3 ( 2 1 ί - 4 0 ) - φ - 2 ) 
s(s-2) 3 3 φ - 2 ) 

^+65^-120 

#w~ 
- ^ + 6 5 * - 1 2 0 

3 J ( J - 2 ) ( J 2 - 7 J + 1 0 ) 

3s(s-2) 
-s*+65s-\20 3 5 i - 1 2 0 Ί 

-2)(s-5) J s(s~2)(s „ 
- ^ + 6 5 ^ - 1 2 0 
s(s 

<+65*-120Ί 
-5)(J-2)2J 

1 . r - / + 65j-120) (ίν)^3^-'{φ-5)(,-2)4 
- ^ + 6 5 5 - 120 ^Α B C D 

s(s-5)(s-2)2 = 7 + ^ 5 " + 7 ^ 2 + ( J - 2 ) 2 

_A(s-5)(s-2)2 + B(s)(s-2)2 + C(s)(s-5)(s-2)+D(s)(s-5) 
s(s-5)(s-2)2 

Hence - ^ + 65*- 120 =A{s-5){s-2)2 + B(s)(s-2)2 + 
C(i ) ( i -5 ) ( j -2 )+ / ) ( j ) ( i -5 ) 

When J = 0 , - 120= - 20Λ, from which, A = 6 
When J = 5 , 180=455, from which, 5 = 4 
When J = 2 , 6= - 6 D , from which, D= - 1 
Equating J3 terms gives: 0=Λ+ 5 + C, from which, C= — 10 

1 m , ( - ^ + 6 5 ^ - 1 2 0 ) 1 . Γ6 4 10 1 ) 
Hence -JSTU U _ j s r i J _ + .1 

3 [ s(s-5)(s-2)2 J 3 ( i i - 5 i - 2 ( J - 2)2J 
r2*] = - [ 6 + 4 ^ - 1 0 ^ * 

3L 

Thxisy = 2 + it?*-1-ip<-'^* 
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Index 

Abscissa, 101 
Acute angle, 94 

triangle, 95 
Adjoint, 73 
Algebra, 24 
Algebraic expression, 26 

method of successive approxi
mations, 31 

substitution for integration, 
189 

Alternate angles, 95 
Amplitude, 144 
AND-function, 233 
AND-gate, 242 
Angles, 94 

of any magnitude, 135 
Angle between a line and a 

plane, 139 
Angle between planes, 139 
Angle of depression, 140 
Angle double, 151 

of elevation, 140 
Arbitrary constant of in

tegration, 186 
Arc, 97 
Areas of irregular figures, 123 
Areas of plane figures, 121 
Areas of triangles, 138 
Areas under and between 

curves, 195 
Areas, first moment of, 128, 208 

second moment of, 208 
Argand diagram, 81 
Argument, 83 
Arithmetic mean value, 260 
Arithmetic operations, 1 

Arithmetical progressions, 43 
Array, 69 
Auxiliary equation, 222 
Average value, 124, 201 

Bar charts, 252 
Base, 6 
BCD, 21 
Bearings, 140 
Binary system, 9 
Binomial distribution, 271 
Binomial theorem, 41 
Boolean algebra, 232 
Boundary conditions, 215 

Cartesian axes, 100 
Cartesian form, 81 
Catenary, 156 
Centre of gravity, 128, 204 
Centre of mass, 128, 204 
Centroids, 128 

by integration, 204 
Chain rule, 168 
Chord, 97 
Class interval, 251 
Classes, 251 
Circle, 97 

equation of, 99 
Circumference, 97 
Coding, 21 
Coefficient of correlation, 282 
Coefficient of proportionality, 

25 
Cofactor, 72 
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Combination of waveforms, 147 
Combinational logic networks, 

245 
Common difference, 44 
Common ratio, 44 
Complementary angle, 94 
Complementary function, 226 
Complex conjugate, 83 
Complex equations, 83 
Complex numbers, 81 

applications of, 86 
Compound angles, 149 
Congruent triangles, 96 
Continued fractions, 3 
Continuous data, 250 
Continuous function, 46 
Convergents, 3 
Coordinates, 100 
Correlation, linear, 282 
Corresponding angle, 95 
Cosecant, 132 
Cosech, 154 
Cosine, 132 

rule, 138 
Cosh, 154 

series, 159 
Cotangent, 132 
Coth, 154 
Couple, 237 
Cubic equations, 28, 115 
Cumulative frequency distri

bution curve, 256 
Cycles, 105, 142 

Deciles, 267 
Decimals, 5 
Definite integrals, 188 
De Moivre's theorem, 84 
De Morgan's laws, 236 
Denary system, 9 
Denominator, 2 
Dependent event, 268 
Depression, angle of, 140 

Derivatives, 165 
standard, 166 

Determinants, 71, 72 
properties of, 73 

Determination of law, 102, 103 
Diameter, 97 
Differential calculus, 162 
Differential coefficients, 165 

of hyperbolic functions, 180 
of intense hyperbolic fun

ctions, 181 
of inverse trigonometric 

functions, 179 
total, 176 

Differential equations, 215 
by Laplace transforms, 296 

%-M type, 215 
dx 

T = / M type, 216 
dx 

j—A*)*W type, 217 
dx dA 
dt 

= kQ type, 217 

Sy dy 
^ + ^ + ^ = 0 type, 222 

d*y dy 
^ + ^ + ζ Τ = / Μ type, 

226 
homogeneous first order type, 

218 
linear first order type, 220 

Differentiation, 165 
from first principles, 164 
implicit, 168 
logarithmic, 170 
of hyperbolic functions, 157 
of a product, 167 
of a quotient, 167 
partial, 173 
successive, 168 

Direct proportion, 4, 25 
Discrete data, 250 
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Dividend, 19 
Divisor, 19 
Double angles, 151 

Elements, 69 
Elevation, angle of, 140 
Ellipse, 118 
Equations, 26 

graphical solution of, 109 
Equilateral triangle, 95 
Errors, 7 
Even function, 53, 155 
Even parity system, 22 
Expectation, 268 
Exponent, 7 
Exponential form, 89 
Exponential functions, 37 
Extrapolation, 103, 287 

Factorisation, 25, 27 
Final value theorem, 294 
Finite discontinuity, 46 
First moment of area, 128, 208 
Formula, 29 
Fourier series, 46 

cosine, 55 
half range, 57, 62 
non-periodic functions, 50 
over any range, 59 
periodic functions, 46 
sine, 56 

Fractions, 2 
partial, 34 

Frequency, 142, 250 
distribution, 251, 257 
polygon, 256, 258 

Frustum, 120 
Function of a function, 168 
Functional notation, 162 

General solution, 215 
Geometric progressions, 44 

Geometry, 94 
Gradient, 101 

of a curve, 162 
Graphical solution of equations, 

109 
Graphs, 100 

of hyperbolic functions, 156 
of trigonometric functions, 

141 
Grouped data, 251 

Half range Fourier series, 57, 
62 

Harmonic analysis, 64 
HCF, 1 
Heptagon, 119 
Hexagon, 119 
Histogram, 256, 258 
Homogeneous first order 

differential equation, 218 
Horizontal bar chart, 252 
Hyperbola, 118 

rectangular, 118 
Hyperbolic functions, 154 

differentiation of, 157, 180 
properties of, 155 

Hyperbolic identities, 156 
Hyperbolic logarithms, 8, 39 
Hypotenuse, 95 

Identity, 26, 132 
Imaginary part, 81 
Implicit differentiation, 168 
Inclined plane, 138 
Indefinite integrals, 188 
Independent event, 268 
Indices, 6, 24 
Initial value theorem, 294 
Integral calculus, 186 
Integrating factor, 220 
Integration, 

applications of, 195 
by algebraic substitutions, 

189 
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Integration (cont.) 
by partial fractions, 193 
by parts, 194 
by trigonometric or 

hyperbolic sub
stitutions, 191 

standards, 187 
Interior angles, 95 
Interpolation, 103, 287 
Inverse hyperbolic functions, 

181 
Inverse laplace transforms, 295 
Inverse of a matrix, 71, 73 
Inverse proportion, 4, 25 
Inverse trigonometric functions, 

differentiation of, 179 
Invert gate, 243 
Isosceles triangle, 95 
Iterative methods, 30 

algebraic, 31 
Newton's, 33 

Karnaugh maps, 236 

Lagging angle, 145 
Lamina, 128, 204 
Laplace transforms, 289 

inverse, 295 
of derivatives, 292 
to solve differential equa

tions, 296 
LCM, 1 
Leading angle, 145 
Limiting value, 164 
Linear correlation, 282 
Linear equations, 26 
Linear first order differential 

equations, 220 
Linear regression, 285 
Logarithms, 8, 170 

of complex numbers, 89 
Logarithmic differentiation, 170 
Logarithmic scale, 105 

Logic circuits, 242 
Log-linear graph paper, 107 
Log-log graph paper, 105 

Maclaurin's theorem, 43 
Mantissa, 7 
Matrices, 69 
Maximum value, 110, 183 
Mean value, 124, 201, 260 
Measures of central tendancy 

259 
Median value, 261 
Member of a set, 250 
Mensuration, 119 
Mid-ordinate rule, 123 
Minimum value, 110, 183 
Minor, 72 
Minuend, 13 
Mixed number, 2 
Mode, 261 
Modulus, 12, 83 
Multiplicand, 17 
Multiplier, 17 

NAND-gate, 243 
Naperian logarithms, 8, 39 
Natural laws of growth and 

decay, 37 
Natural logarithms, 8, 39 
Newton's method, 33 
NOR-gate, 243 
Normal distribution, 275 
Normal standard variate, 276 
NOT-function, 233 
NOT gate, 243 
Numbering systems, 9 
Numerator, 2 

Obtuse angle, 94 
Obtuse triangle, 95 
Octagon, 119 
Odd function, 53, 155 
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Odd parity system, 22 
Ogive, 256 
One's complement method, 13 
OR function, 232 
OR-gate, 242 
Order of precedence, 2 
Ordinate, 101 
Osborne's rule, 156 

Pappus' theorem, 127 
Parabola, 109 
Parallel lines, 94 
Parallel axis theorem, 210 
Parallelogram, 119 
Partial differentiation, 173 
Partial fractions, 34, 2% 
Pascal's triangle, 41 
Particular integral, 226 
Particular solution, 215 
Pentagon, 119 
Percentiles, 267 
Percentages, 5 
Period, 46, 142 
Periodic functions, 46, 143 
Perpendicular axis theorem, 

211 
Pictogram, 252 
Pie diagram, 255 
Planimeter, 123 
Point of inflexion, 183 
Poisson distribution, 273 
Polar form, 83 
Polygon, 119 

frequency, 256 
Population, 250 
Power, 6 
Precedence, order of, 2 
Prismoidal rule, 125 
Probability, 267 

paper, 280 
Product-moment formula, 282 
Product rule, 167 
Proportion, 4, 25 
Pythagoras' theorem, 96, 133 

Quadrant, 97 
Quadratic equation, 27, 109, 

110 
Quadratic formula, 28 
Quadratic graphs, 110 
Quadrilateral, 119 
Quartile values, 266 
Quotient, 19 
Quotient rule, 167 
Quotients, 3 

Radian, 98 
Radius, 97 
Radius of gyration, 208 
Ranking, 261 
Rates of change, 177, 182 
Ratio, 4 
Real part, 81 
Reciprocal, 6 

of a matrix, 71, 73 
ratios, 133 

Rectangle, 119 
Rectangular axes, 100 
Reflex angle, 94 
Regression, linear, 285 
Relative frequency, 250 
Rhombus, 120 
Right angle, 94 

triangle, 95 
Root, 26 

mean square value, 202 

Sample, 250 
Scalene triangle, 95 
Secant, 132 
Sech, 154 
Second moments of area, 

208-214 
Sector, 97 
Segment, 97 
Semicircle, 97 
Semi-interquartile range, 267 
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Separable-variable type of 
differential equation, 217 

Series, 41, 159 
Set, 250 
Similar triangles, 96 
Simpson's rule, 124 
Simultaneous equations, 28, 

74-79, 109 
Sine, 132 

rule, 138 
wave, 142 

Sinh, 154 
series, 159 

Slope, 101 
Small changes, 178 
Square, 119 
Square root, 6 

of a complex number, 85 
Standard deviation, 264 
Standard form, 7 
Standard integrals, 187 
Stationary points, 183 
Statistics, 250 
Straight line graph, 101 
Subtrahend, 13 
Successive differentiation, 168 
Supplementary angle, 94 
Surd, 134 
Surface areas of regular solids, 

122 

Tally diagram, 251 
Tangent, 97, 132 

Tanh, 154 
Taylor's theorem, 43 
Total differential, 176 
Transposition of formulae, 30 
Transversal, 94 
Trapezium, 120 
Trapezoidal rule, 65, 123 
Triangles, 95, 119 

solution of, 138 
Trigonometry, 132 
Trigonometric ratios, 132 
Trigonometric series, 47 
Truth table, 232 
Turning points, 109, 183 
Two's complement method, 14 

Unit matrix, 71 
Universal logic gates, 247 

Velocity and acceleration, 182 
Vertical bar chart, 252 
Volume of solid of revolution, 

203 
Volumes of irregular solids, 124 
Volumes of regular solids, 122 

X's 3 code, 21 

Zone of a sphere, 123 
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