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Introduction

The main goal of this book is to present the basic results on asymmetric normed
spaces. Since the basic topological tools come from quasi-metric spaces and quasi-
uniform spaces, the first chapter contains a thorough presentation of some funda-
mental results from the theory of these spaces. The focus is on those which are
most used in functional analysis – completeness, compactness and Baire category.
For a good presentation of the general theory of quasi-uniform and quasi-metric
spaces, a well-established and thickly developed branch of general topology, one
can consult the classical monograph by Fletcher and Lindgren [80] and some sub-
sequent survey papers by Künzi (see the bibliography at the end of the book). The
survey paper [45] may be viewed as a skeleton of this book.

A quasi-metric is a function 𝜌 on 𝑋×𝑋 satisfying all the axioms of a metric
with the exception of the symmetry: it is possible that 𝜌(𝑦, 𝑥) ∕= 𝜌(𝑥, 𝑦) for some
𝑥, 𝑦 ∈ 𝑋. In this case 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥) is another quasi-metric on 𝑋, called the
conjugate of 𝜌, and 𝜌𝑠 = 𝜌 ∨ 𝜌 is a metric on 𝑋 . Asymmetric metric spaces are
called quasi-metric spaces. The term quasi-metric was proposed as early as 1931 by
Wilson [239], see also [1]. Quasi-metric spaces were considered also by Niemytzki
[168] in connection with the axioms defining a metric space and metrizability. In
[27], [186] they are called oriented metric spaces and in [187] spaces with weak
metric.

This apparently innocent modification of the axioms of a metric space drasti-
cally changes the whole theory, mainly with respect to completeness, compactness
and total boundedness. There are a lot of completeness notions in quasi-metric
and quasi-uniform spaces, all agreeing with the usual notion of completeness in
the case of metric or uniform spaces, each of them having its advantages and
weaknesses.

Also, concerning compactness, the situation is totally different in quasi-metric
spaces – for instance, sequential compactness does not agree with compactness,
in contrast to the case of metric spaces. In spite of these peculiarities there are
a lot of positive results relating compactness with various kinds of completeness
and total boundedness. Baire category also needs a special treatment, including
some bitopological results.

Quasi-uniform spaces form a natural extension of both quasi-metric spaces
and uniform spaces. A quasi-uniformity is a family 𝒰 of subsets of 𝑋 ×𝑋, called

vii



viii Introduction

entourages, satisfying all the axioms of a uniformity excepting symmetry: one does
not suppose that 𝒰 has a base formed of symmetric entourages. Again, 𝒰−1 =
{𝑈−1 : 𝑈 ∈ 𝒰} is another quasi-uniformity on 𝑋 , called the conjugate of 𝒰 , and
𝒰𝑠 = 𝒰 ∨𝒰−1 is a uniformity. The notions of completeness can be transposed from
quasi-metric spaces to quasi-uniform spaces by replacing sequences with nets or
filters. Again the focus is on the relations between compactness, completeness and
total boundedness within this framework.

On a quasi-metric space (𝑋, 𝜌) there are two natural topologies generated
by the quasi-metric 𝜌 and its conjugate 𝜌, respectively by the quasi-uniformity 𝒰
and its conjugate 𝒰−1, making quasi-metric and quasi-uniform spaces bitopologi-
cal spaces. For this reason the first chapter of the book contains a quite detailed
introduction to bitopological spaces, including Urysohn and Tietze type theorems
for semi-continuous functions on bitopological spaces, compactness and Baire cat-
egory.

Following the advice of Einar Hille [105] that “a functional analyst is an
analyst, first and foremost, and not a degenerate species of a topologist”, after
this detour in topology we turn to functional analysis. Functional analysis in the
asymmetric case, meaning the study of asymmetric normed spaces, asymmetric
locally convex spaces and of operators acting between them, with emphasis on
linear functionals and dual spaces, is treated in the second chapter.

An asymmetric norm is a positive definite sublinear functional 𝑝 on a real
vector space 𝑋. Since the possibility that 𝑝(𝑥) = 𝑝(−𝑥) for some 𝑥 ∈ 𝑋 is not
excluded, 𝑝(𝑥) = 𝑝(−𝑥), 𝑥 ∈ 𝑋, is another asymmetric norm on 𝑋 called the con-
jugate of 𝑝, and 𝑝𝑠 = 𝑝∨ 𝑝 is a norm on 𝑋. The topological notion are considered
with respect to the attached metric 𝜌𝑝(𝑥, 𝑦) = 𝑝(𝑦 − 𝑥), 𝑥, 𝑦 ∈ 𝑋. Any asym-
metric norm can be obtained as the Minkowski gauge functional of an absorbing
convex subset of 𝑋 . Asymmetric locally convex spaces are defined as vector spaces
equipped with a topology generated by a family of asymmetric seminorms.

Of great importance is the asymmetric norm 𝑢 on ℝ given by 𝑢(𝑡) = 𝑡+, 𝑡 ∈
ℝ, with conjugate �̄�(𝑡) = 𝑡− and 𝑢𝑠 = ∣⋅∣. The topology generated by 𝑢 is called the
upper topology of ℝ, while that generated by its conjugate 𝑢, the lower topology.
If (𝑇, 𝜏) is a topological space, then a real-valued function 𝑓 on 𝑇 is upper semi-
continuous as a function from 𝑇 to (ℝ, ∣ ⋅ ∣) if and only if it is continuous from 𝑇
to (ℝ, 𝑢). Similarly, 𝑓 is (𝜏, ∣ ⋅ ∣)-lower semi-continuous if and only if it is (𝜏, 𝑢)-
continuous.

The main differences with respect to the classical functional analysis (mean-
ing analysis over the fields ℝ or ℂ) come from the fact that the asymmetric norm 𝑝
does not generate a vector topology on 𝑋 : the addition is continuous with respect
to the product topology on 𝑋 , but the multiplication by scalars is continuous only
when restricted to (0;∞) × 𝑋. Also, for each fixed 𝑥, the function 𝑓 : ℝ → 𝑋
given by 𝑓(𝑡) = 𝑡𝑥, 𝑡 ∈ ℝ, is continuous. The dual space of an asymmetric normed
space (𝑋, 𝑝), denoted by 𝑋♭

𝑝, formed by all linear and ∣ ⋅ ∣-upper semi-continuous
functions, or, equivalently, linear continuous functionals from (𝑋, 𝑝) to (ℝ, 𝑢), is
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not a linear space but merely a cone contained in the dual space 𝑋∗ = (𝑋, 𝑝𝑠)∗

of the associated normed space (𝑋, 𝑝𝑠). The situation is similar for the set of all
continuous linear operators between two asymmetric normed spaces, as well as for
asymmetric locally convex spaces.

In spite of these differences, many results from classical functional analysis
have their counterparts in the asymmetric case, by taking care of the interplay
between the asymmetric norm 𝑝 and its conjugate 𝑝. Among the positive results
we mention: Hahn-Banach type theorems and separation results for convex sets,
Krein-Milman type theorems, analogs of the fundamental principles – open map-
ping and closed graph theorems – an analog of the Schauder theorem on the com-
pactness of a conjugate mapping. Applications are given to best approximation
problems and, as relevant examples, one considers normed lattices equipped with
asymmetric norms and spaces of semi-Lipschitz functions on quasi-metric spaces.

It is difficult to localize the first moment when asymmetric norms were used,
but it goes back as early as 1968 in a paper by Duffin and Karlovitz (1968) [70],
who proposed the term asymmetric norm. Krein and Nudelman (1973) [129] used
also asymmetric norms in their study of some extremal problems related to the
Markov moment problem. Remark that the relevance of sublinear functionals for
some problems of convex analysis and of mathematical analysis was emphasized
also by H. König in the 1970s. A systematic study of the properties of asymmetric
normed spaces started with the papers of S. Romaguera, from the Polytechnic
University of Valencia, and his collaborators from the same university and from
other universities in Spain: Alegre, Ferrer, Garćıa-Raffi, Sánchez Pérez, Sánchez
Álvarez, Sanchis, Valero (see the bibliography). Besides its intrinsic interest, their
study was motivated also by applications in Computer Science, namely to the
complexity analysis of programs, results obtained in cooperation with Professor
Schellekens from the National University of Ireland.

Containing very recent results, some of them appearing for the first time in
print, in the focus of current research, on quasi-metric, quasi-uniform, asymmetric
normed and asymmetric locally convex spaces, the book can be used as a reference
by researchers in this domain. Due to the detailed exposition of the subject, the
book can be also used as an introductory text for newcomers.

Acknowledgement. The author expresses his gratitude to the staff of Birkhäuser-
Springer, particularly to the Editors Anna Mätzener and Sylvia Lotrovsky, for the
professional work and excellent cooperation during the publication process, and
to Ute McCrory from Springer DE for support.

I want to mention also that this research was supported by

Grant CNCSIS 2261, ID 543.

Notation. We present here, for the convenience of the reader, some symbols that
are used throughout the text, which could differ from the standard ones. Other
notations are standard or explained in the text, some of them being included in
the index at the end of the book.
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∙ ℕ = {1, 2, . . .} – the set of natural numbers (positive integers);
∙ [𝑎; 𝑏], (𝑎; 𝑏), (𝑎; 𝑏], [𝑎; 𝑏) – intervals;
∙ (𝑎, 𝑏) – an ordered pair;
∙ 𝐵𝜌[𝑥, 𝑟] = {𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) ≤ 𝑟} – a closed ball in a quasi-metric space (𝑋, 𝜌);

∙ 𝐵𝜌(𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) < 𝑟} – an open ball;
∙ 𝜌𝑝(𝑥, 𝑦) = 𝑝(𝑦 − 𝑥) – the quasi-metric associated to an asymmetric norm 𝑝;

∙ 𝐵𝑝 = {𝑥 ∈ 𝑋 : 𝑝(𝑥) ≤ 1} – the closed unit ball of an asymmetric normed
space (𝑋, 𝑝);

∙ 𝐵′𝑝 = {𝑥 ∈ 𝑋 : 𝑝(𝑥) < 1} – the open unit ball;
∙ 𝑆𝑝 = {𝑥 ∈ 𝑋 : 𝑝(𝑥) = 1} – the unit sphere;
∙ 𝑢 is the standard asymmetric norm 𝑢(𝑡) = 𝑡+ on ℝ.

Cluj-Napoca, July 2012 Ştefan Cobzaş



Chapter 1

Quasi-metric and
Quasi-uniform Spaces

The first chapter of the book is concerned with the topological properties of quasi-
metric, quasi-uniform, asymmetric normed and asymmetric locally convex spaces.
A quasi-metric on a set 𝑋 is a positive function 𝜌 on 𝑋 × 𝑋 satisfying all the
axioms of a metric excepting symmetry: it is possible that 𝜌(𝑦, 𝑥) ∕= 𝜌(𝑥, 𝑦) for
some 𝑥, 𝑦 ∈ 𝑋. Similarly, a quasi-uniformity is a family 𝒰 of subsets of 𝑋 × 𝑋
satisfying all the requirements of a uniformity excepting symmetry: 𝑈 ∈ 𝒰 does
not imply that 𝑈−1 = {(𝑦, 𝑥) : (𝑥, 𝑦) ∈ 𝑈} belongs to 𝒰 . The lack of symmetry in
the definition of quasi-metric spaces and of quasi-uniform spaces causes a lot of
troubles, mainly concerning completeness, compactness and total boundedness in
such spaces. There are several notions of completeness in quasi-metric and quasi-
uniform spaces, all agreeing with the usual notion of completeness in the case of
metric or uniform spaces, each of them having its advantages and weaknesses. Also,
countable compactness, sequential compactness and compactness do not agree in
quasi-metric spaces, in contrast to the metric case. In spite of these differences,
there are a lot of positive results relating compactness, completeness and total
boundedness in quasi-metric and in quasi-uniform spaces which are presented in
this chapter. A quasi-metric 𝜌 and its conjugate 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥), 𝑥, 𝑦 ∈ 𝑋, gener-
ate in the usual way two topologies 𝜏𝜌 and 𝜏𝜌, that makes 𝑋 a bitopological space,
with a similar situation for quasi-uniform spaces. For this reason we have included
in this chapter a quite detailed study of bitopological spaces including pairwise
separation properties, Urysohn and Tietze type theorems for semi-continuous func-
tions and Baire category.

. Cobza , Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, 
DOI 10.1007/978-3-0348-0478-3_1, © Springer Basel 2013 
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2 Chapter 1. Quasi-metric and Quasi-uniform Spaces

1.1 Topological properties of quasi-metric
and quasi-uniform spaces

In this section we shall present the basic topological properties of quasi-metric and
quasi-uniform spaces, with emphasis on asymmetric normed spaces and asymmet-
ric locally convex spaces. Since quasi-metric and quasi-uniform spaces are par-
ticular cases of bitopological spaces, a quite detailed presentation of bitopological
spaces is also given, including compactness, normality, regularity, a Tikhonov type
theorem on the existence of semi-continuous functions and Tietze-Urysohn type
theorems on the extension of semi-continuous functions.

1.1.1 Quasi-metric spaces and asymmetric normed spaces

A quasi-semimetric on a set 𝑋 is a mapping 𝜌 : 𝑋 × 𝑋 → [0;∞) satisfying the
following conditions:

(QM1) 𝜌(𝑥, 𝑦) ≥ 0, 𝑎𝑛𝑑 𝜌(𝑥, 𝑥) = 0;

(QM2) 𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧) ,

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. If, further,

(QM3) 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥) = 0⇒ 𝑥 = 𝑦 ,

for all 𝑥, 𝑦 ∈ 𝑋, then 𝜌 is called a quasi-metric. The pair (𝑋, 𝜌) is called a quasi-
semimetric space, respectively a quasi-metric space. The conjugate of the quasi-
semimetric 𝜌 is the quasi-semimetric 𝜌(𝑥, 𝑦) = 𝜌(𝑦, 𝑥), 𝑥, 𝑦 ∈ 𝑋. The mapping
𝜌𝑠(𝑥, 𝑦) = max{𝜌(𝑥, 𝑦), 𝜌(𝑥, 𝑦)}, 𝑥, 𝑦 ∈ 𝑋, is a semimetric on 𝑋 which is a metric
if and only if 𝜌 is a quasi-metric. Sometimes one works with extended quasi-
semimetrics, meaning that the quasi-semimetric 𝜌 can take the value +∞ for
some 𝑥, 𝑦 ∈ 𝑋. The following inequalities hold for these quasi-semimetrics for all
𝑥, 𝑦 ∈ 𝑋 :

𝜌(𝑥, 𝑦) ≤ 𝜌𝑠(𝑥, 𝑦) and 𝜌(𝑥, 𝑦) ≤ 𝜌𝑠(𝑥, 𝑦) . (1.1.1)

An asymmetric norm on a real vector space 𝑋 is a functional 𝑝 : 𝑋 → [0,∞)
satisfying the conditions

(AN1) 𝑝(𝑥) = 𝑝(−𝑥) = 0⇒ 𝑥 = 0;

(AN2) 𝑝(𝛼𝑥) = 𝛼𝑝(𝑥);

(AN3) 𝑝(𝑥+ 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦) ,

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ≥ 0.
If 𝑝 satisfies only the conditions (AN2) and (AN3), then it is called an asym-

metric seminorm. The pair (𝑋, 𝑝) is called an asymmetric normed (respectively
seminormed) space. Again, in some instances, the value +∞ will be allowed for
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𝑝 in which case we shall call it an extended asymmetric norm (or seminorm). An
asymmetric seminorm 𝑝 defines a quasi-semimetric 𝜌𝑝 on 𝑋 through the formula

𝜌𝑝(𝑥, 𝑦) = 𝑝(𝑦 − 𝑥), 𝑥, 𝑦 ∈ 𝑋 . (1.1.2)

Defining the conjugate asymmetric seminorm 𝑝 and the seminorm 𝑝𝑠 by

𝑝(𝑥) = 𝑝(−𝑥) and 𝑝𝑠(𝑥) = max{𝑝(𝑥), 𝑝(−𝑥)} , (1.1.3)

for 𝑥 ∈ 𝑋, the inequalities (1.1.1) become

𝑝(𝑥) ≤ 𝑝𝑠(𝑥) and 𝑝(𝑥) ≤ 𝑝𝑠(𝑥) , (1.1.4)

for all 𝑥 ∈ 𝑋. Obviously, 𝑝𝑠 is a norm when 𝑝 is an asymmetric norm and (𝑋, 𝑝𝑠)
is a normed space.

The conjugates of 𝜌 and 𝑝 are denoted also by 𝜌−1 and 𝑝−1, a notation that
we shall use occasionally.

If (𝑋, 𝜌) is a quasi-semimetric space, then for 𝑥 ∈ 𝑋 and 𝑟 > 0 we define the
balls in 𝑋 by the formulae

𝐵𝜌(𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) < 𝑟} – the open ball, and

𝐵𝜌[𝑥, 𝑟] = {𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) ≤ 𝑟} – the closed ball.

In the case of an asymmetric seminormed space (𝑋, 𝑝) the balls are given by

𝐵𝑝(𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑝(𝑦−𝑥) < 𝑟}, respectively 𝐵𝑝[𝑥, 𝑟] = {𝑦 ∈ 𝑋 : 𝑝(𝑦−𝑥) ≤ 𝑟} .

The closed unit ball of 𝑋 is 𝐵𝑝 = 𝐵𝑝[0, 1] and the open unit ball is 𝐵′𝑝 =
𝐵𝑝(0, 1). In this case the following formulae hold true:

𝐵𝑝[𝑥, 𝑟] = 𝑥+ 𝑟𝐵𝑝 and 𝐵𝑝(𝑥, 𝑟) = 𝑥+ 𝑟𝐵′𝑝 , (1.1.5)

that is, any of the unit balls of 𝑋 completely determines its quasi-metric structure.
If necessary, these balls will be denoted by 𝐵𝑝,𝑋 and 𝐵′𝑝,𝑋 , respectively.

The conjugate 𝑝 of 𝑝 is defined by 𝑝(𝑥) = 𝑝(−𝑥), 𝑥 ∈ 𝑋, and the associate
seminorm is 𝑝𝑠(𝑥) = max{𝑝(𝑥), 𝑝(𝑥)}, 𝑥 ∈ 𝑋. The seminorm 𝑝 is an asymmetric
norm if and only if 𝑝𝑠 is a norm on 𝑋. Sometimes an asymmetric norm will be
denoted by the symbol ∥ ⋅ ∣, a notation proposed by Krein and Nudelman, [129,
Ch. IX, §5], in their book on the theory of moments.
Remark 1.1.1. Since the terms “quasi-norm”, “quasi-normed space” and “quasi-
Banach space” are already “registered trademarks” (see, for instance, the survey
by Kalton [106]), we can not use these terms to designate an asymmetric norm,
an asymmetric normed space or an asymmetric biBanach space. A quasi-normed
space is a vector space 𝑋 equipped with a functional ∥ ⋅ ∥ : 𝑋 → [0;∞), satisfying
all the axioms of a norm, excepting the triangle inequality which is replaced by

∥𝑥+ 𝑦∥ ≤ 𝐶(∥𝑥∥+ ∥𝑦∥), 𝑥, 𝑦 ∈ 𝑋 ,
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for some constant 𝐶 ≥ 1. It is obvious that for 𝐶 = 1 the functional ∥ ⋅ ∥ is a
norm. The reverse situation is also encountered: in [232] a quasi-metric space is
a metric space (𝑋, 𝜌) in which the triangle inequality is replaced by 𝜌(𝑥, 𝑧) ≤
𝐶 (𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧)) , for some 𝐶 > 0.

Note also that the alternative terms “quasi-pseudometric” is used by many
topologists instead of “quasi-semimetric”. We have preferred the term semimetric
to be in concordance with the notion of seminorm – in this way an asymmetric
seminorm induces a quasi-semimetric.

1.1.2 The topology of a quasi-semimetric space

The topology 𝜏(𝜌) of a quasi-semimetric space (𝑋, 𝜌) can be defined starting from
the family 𝒱𝜌(𝑥) of neighborhoods of an arbitrary point 𝑥 ∈ 𝑋 :

𝑉 ∈ 𝒱𝜌(𝑥) ⇐⇒ ∃𝑟 > 0 such that 𝐵𝜌(𝑥, 𝑟) ⊂ 𝑉

⇐⇒ ∃𝑟′ > 0 such that 𝐵𝜌[𝑥, 𝑟
′] ⊂ 𝑉 .

To see the equivalence in the above definition, we can take, for instance,
𝑟′ = 𝑟/2.

A set 𝐺 ⊂ 𝑋 is 𝜏(𝜌)-open if and only if for every 𝑥 ∈ 𝐺 there exists 𝑟 = 𝑟𝑥 > 0
such that 𝐵𝜌(𝑥, 𝑟) ⊂ 𝐺. Sometimes we shall say that 𝑉 is a 𝜌-neighborhood of 𝑥
or that the set 𝐺 is 𝜌-open.

The convergence of a sequence (𝑥𝑛) to 𝑥 with respect to 𝜏(𝜌), called 𝜌-

convergence and denoted by 𝑥𝑛
𝜌−→ 𝑥, can be characterized in the following way:

𝑥𝑛
𝜌−→ 𝑥 ⇐⇒ 𝜌(𝑥, 𝑥𝑛)→ 0 . (1.1.6)

Also

𝑥𝑛
𝜌−→ 𝑥 ⇐⇒ 𝜌(𝑥, 𝑥𝑛)→ 0 ⇐⇒ 𝜌(𝑥𝑛, 𝑥)→ 0 . (1.1.7)

The following proposition contains some simple properties of convergent se-
quences.

Proposition 1.1.2. Let (𝑥𝑛) be a sequence in a quasi-semimetric space (𝑋, 𝜌).

1. If (𝑥𝑛) is 𝜏𝜌-convergent to 𝑥 and 𝜏𝜌-convergent to 𝑦, then 𝜌(𝑥, 𝑦) = 0.

2. If (𝑥𝑛) is 𝜏𝜌-convergent to 𝑥 and 𝜌(𝑦, 𝑥) = 0, then (𝑥𝑛) is also 𝜏𝜌-convergent
to 𝑦.

Proof. 1. Letting 𝑛→∞ in the inequality 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑥𝑛)+𝜌(𝑥𝑛, 𝑦), one obtains
𝜌(𝑥, 𝑦) = 0.

2. Follows from the relations 𝜌(𝑦, 𝑥𝑛) ≤ 𝜌(𝑦, 𝑥) + 𝜌(𝑥, 𝑥𝑛) = 𝜌(𝑥, 𝑥𝑛)→ 0 as
𝑛→∞. □
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Using the conjugate quasi-semimetric 𝜌 one obtains another topology 𝜏(𝜌). A
third one is the topology 𝜏(𝜌𝑠) generated by the semimetric 𝜌𝑠. Sometimes, (see,
for instance, Menucci [151] and Collins and Zimmer [50]) the balls with respect
to 𝜌 are called forward balls and the topology 𝜏(𝜌) is called the forward topology,
while the balls with respect to 𝜌 are called backward balls and the topology 𝜏(𝜌)
the backward topology. We shall use sometimes the alternative notation 𝜏𝜌, 𝜏𝜌, 𝜏𝜌𝑠
to designate these topologies.

As a space with two topologies, 𝜏𝜌 and 𝜏𝜌, a quasi-semimetric space can be
viewed as a bitopological space in the sense of Kelly [111] (see also the book [72])
and so, all the results valid for bitopological spaces apply to a quasi-semimetric
space. A bitopological space is simply a set 𝑇 endowed with two topologies 𝜏 and
𝜈. A bitopological space is denoted by (𝑇, 𝜏, 𝜈).

The following example is very important in what follows.

Example 1.1.3. On the field ℝ of real numbers consider the asymmetric norm
𝑢(𝛼) = 𝛼+ := max{𝛼, 0}. Then, for 𝛼 ∈ ℝ, �̄�(𝛼) = 𝛼− := max{−𝛼, 0} and
𝑢𝑠(𝛼) = ∣𝛼∣. The topology 𝜏(𝑢) generated by 𝑢 is called the upper topology of
ℝ, while the topology 𝜏(�̄�) generated by �̄� is called the lower topology of ℝ. A
basis of open 𝜏(𝑢)-neighborhoods of a point 𝛼 ∈ ℝ is formed of the intervals
(−∞;𝛼+ 𝜀), 𝜀 > 0. A basis of open 𝜏(�̄�)-neighborhoods is formed of the intervals
(𝛼− 𝜀;∞), 𝜀 > 0.

In this space the addition is continuous from (ℝ×ℝ, 𝜏𝑢 × 𝜏𝑢) to (ℝ, 𝜏𝑢), but
the multiplication need not be continuous at every point (𝛼, 𝛽) ∈ ℝ× ℝ.

The continuity property can be directly verified. To see the last assertion,
let 𝑉 = (−∞;𝛼𝛽 + 𝜀), be a 𝜏𝑢-neighborhood of 𝛼𝛽, for some 𝜀 > 0. Since the
𝜏𝑢-neighborhoods of 𝛼 and 𝛽 contain −𝑛, for 𝑛 ∈ ℕ sufficiently large, it follows
that 𝑛2 = (−𝑛)(−𝑛) does not belong to 𝑉, for 𝑛 large enough.

Remark 1.1.4 (communicated by M.D. Mabula). In the asymmetric normed space
(ℝ, 𝑢) the sequence 𝛼𝑛 = (−1)𝑛, 𝑛 ∈ ℕ, is 𝑢-convergent to 1 and �̄�-convergent to
−1, but it is not convergent in (ℝ, ∣ ⋅ ∣).

For a sequence (𝑥𝑛) in a quasi-semimetric space (𝑋, 𝜌), denote by 𝐿((𝑥𝑛))
the set of all 𝜌-limits of the sequence (𝑥𝑛), that is

𝐿𝜌((𝑥𝑛)) = {𝑥 ∈ 𝑋 : lim
𝑛

𝜌(𝑥, 𝑥𝑛) = 0}. (1.1.8)

The following proposition gives a characterization of this set in (ℝ, 𝑢).

Proposition 1.1.5 ([51]). Let (𝛼𝑛) be a sequence of real numbers. Then

𝐿𝑢((𝛼𝑛)) =

{
[lim sup𝑛 𝛼𝑛;∞) if lim sup𝑛 𝛼𝑛 ∈ ℝ,

ℝ if lim sup𝑛 𝛼𝑛 = −∞.
(1.1.9)

If lim sup𝑛 𝛼𝑛 =∞, then the sequence (𝛼𝑛) is not 𝑢-convergent.
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Similarly,

𝐿𝑢((𝛼𝑛)) =

{
(−∞; lim inf𝑛 𝛼𝑛] if lim inf𝑛 𝛼𝑛 ∈ ℝ,

ℝ if lim sup𝑛 𝛼𝑛 =∞.
(1.1.10)

If lim sup𝑛 𝛼𝑛 = −∞, then the sequence (𝛼𝑛) is not �̄�-convergent.

Another important topological example is the so-called Sorgenfrey topology
on ℝ.

Example 1.1.6 (The Sorgenfrey line). For 𝑥, 𝑦 ∈ ℝ define a quasi-metric 𝜌 by
𝜌(𝑥, 𝑦) = 𝑦 − 𝑥, if 𝑥 ≤ 𝑦 and 𝜌(𝑥, 𝑦) = 1 if 𝑥 > 𝑦. A basis of open 𝜏𝜌-open neigh-
borhoods of a point 𝑥 ∈ ℝ is formed by the family [𝑥;𝑥+𝜀), 0 < 𝜀 < 1. The family
of intervals (𝑥− 𝜀;𝑥], 0 < 𝜀 < 1, forms a basis of open 𝜏𝜌 -open neighborhoods of
𝑥. Obviously, the topologies 𝜏𝜌 and 𝜏𝜌 are Hausdorff and 𝜌𝑠(𝑥, 𝑦) = 1 for 𝑥 ∕= 𝑦,
so that 𝜏(𝜌𝑠) is the discrete topology of ℝ.

We shall present, for the convenience of the reader, the separation axioms.
A topological space (𝑇, 𝜏) is called

∙ 𝑇0 if for any pair 𝑠, 𝑡 of distinct points in 𝑇 , at least one of them has a
neighborhood not containing the other;

∙ 𝑇1 if for any pair 𝑠, 𝑡 of distinct points in 𝑇 , each of them has a neighborhood
not containing the other (this is equivalent to the fact that the set {𝑡} is closed
for every 𝑡 ∈ 𝑇 );

∙ Hausdorff or 𝑇2 if for any pair 𝑠, 𝑡 of distinct points in 𝑇 , there exist neigh-
borhoods 𝑈 of 𝑠 and 𝑉 of 𝑡 such that 𝑈 ∩ 𝑉 = ∅;

∙ regular if for each 𝑡 ∈ 𝑇 and each closed subset 𝑆 of 𝑇, not containing 𝑡,
there are disjoint open subsets 𝑈, 𝑉 of 𝑇 such that 𝑡 ∈ 𝑈 and 𝑆 ⊂ 𝑉. In other
words a point and a closed set not containing it can be separated by open
sets. This is equivalent to the fact that every point in 𝑇 has a neighborhood
base formed of closed sets. If 𝑇 is regular and 𝑇1, then it is called a 𝑇3 space.

∙ completely regular, or Tikhonov, or 𝑇3 1
2
, if for every 𝑡 ∈ 𝑇 and every closed

subset 𝑆 of 𝑇 not containing 𝑡 there is a continuous function 𝑓 : 𝑇 → [0; 1]
such that 𝑓(𝑡) = 1 and 𝑓(𝑠) = 0 for each 𝑠 ∈ 𝑆.

∙ normal if any pair 𝑆1, 𝑆2 of disjoint closed sets can be separated by open sets,
that is there exist two disjoint open sets 𝐺1 ⊃ 𝑆1 and 𝐺2 ⊃ 𝑆2. A normal 𝑇1

space is called a 𝑇4 space.

In general, we shall say that a bitopological space (𝑇, 𝜏, 𝜈) has a property 𝑃
if both the topologies 𝜏 and 𝜈 have the property 𝑃.

Now we introduce, following Kelly [111], some separation properties specific
to a bitopological space (𝑇, 𝜏, 𝜈).

The bitopological space (𝑇, 𝜏, 𝜈) is called pairwise Hausdorff if for each pair of
distinct points 𝑠, 𝑡 ∈ 𝑇 there exists a 𝜏 -neighborhood 𝑈 of 𝑠 and a 𝜈-neighborhood
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𝑉 of 𝑡 such that 𝑈 ∩𝑉 = ∅. It is obvious that if 𝑇 is pairwise Hausdorff, then both
of the topologies 𝜏 and 𝜈 are 𝑇1.

Remark 1.1.7. Taking into account the symmetry (𝑥 ∕= 𝑦 ⇐⇒ 𝑦 ∕= 𝑥) it follows
that a bitopological space (𝑇, 𝜏, 𝜈) is pairwise Hausdorff if and only if for every
pair of distinct points 𝑥, 𝑦 from 𝑋 the following condition holds:

(∃𝑈 ∈ 𝜏, ∃𝑉 ∈ 𝜈, 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑉 ∧ 𝑈 ∩ 𝑉 = ∅)
∧ (∃𝑈1 ∈ 𝜏, ∃𝑉1 ∈ 𝜈, 𝑦 ∈ 𝑈1 ∧ 𝑥 ∈ 𝑉1 ∧ 𝑈1 ∩ 𝑉1 = ∅) .

(1.1.11)

The topology 𝜏 is called regular with respect to 𝜈 if every 𝑡 ∈ 𝑇 has a 𝜏 -
neighborhood base formed of 𝜈-closed sets or, equivalently, if for every 𝑡 ∈ 𝑇 and
every 𝜏 -closed subset 𝑆 of 𝑇 not containing 𝑡, there exist a 𝜏 -open set 𝑈 and a
𝜈-open set 𝑉 such that 𝑡 ∈ 𝑈, 𝑆 ⊂ 𝑉 and 𝑈 ∩ 𝑉 = ∅.

One says that the bitopological space (𝑇, 𝜏, 𝜈) is pairwise regular if 𝜏 is regular
with respect to 𝜈 and 𝜈 is regular with respect to 𝜏.

The bitopological space (𝑇, 𝜏, 𝜈) is called pairwise normal if given a 𝜏 -closed
subset 𝐴 of 𝑇 and a 𝜈-closed subset 𝐵 of 𝑇 with 𝐴 ∩ 𝐵 = ∅, there exist a 𝜈-
open subset 𝑈 of 𝑇 and a 𝜏 -open subset 𝑉 of 𝑇 such that 𝐴 ⊂ 𝑈, 𝐵 ⊂ 𝑉, and
𝑈 ∩ 𝑉 = ∅. Equivalently, the bitopological space (𝑇, 𝜏, 𝜈) is pairwise normal if
given an 𝜏 -closed set 𝐶 and a 𝜈-open set 𝐷 with 𝐶 ⊂ 𝐷 there exist a 𝜈-open set
𝐺 and a 𝜏 -closed set 𝐹 such that

𝐶 ⊂ 𝐺 ⊂ 𝐹 ⊂ 𝐷 , (1.1.12)

or, equivalently, there exists a 𝜈-open set 𝐺 such that

𝐶 ⊂ 𝐺 ⊂ 𝐺
𝜏 ⊂ 𝐷 , (1.1.13)

where 𝐺
𝜏
denotes the closure of 𝐺 with respect to 𝜏. A bitopological space (𝑇, 𝜏, 𝜈)

is called quasi-semimetrizable if there exists a quasi-semimetric 𝜌 on 𝑇 such that
𝜏 = 𝜏𝜌 and 𝜈 = 𝜏𝜌. If 𝜌 is a semimetric, then 𝜏 = 𝜈.

The following topological properties are true for quasi-semimetric spaces. We
use the abbreviation lsc for lower semicontinuous and usc for upper semicontinu-
ous.

Proposition 1.1.8. If (𝑋, 𝜌) is a quasi-semimetric space, then

1. Any ball 𝐵𝜌(𝑥, 𝑟) is 𝜏(𝜌)-open and a ball 𝐵𝜌[𝑥, 𝑟] is 𝜏(𝜌)-closed. The ball
𝐵𝜌[𝑥, 𝑟] need not be 𝜏(𝜌)-closed.

Also, the following inclusions hold:

𝐵𝜌𝑠(𝑥, 𝑟) ⊂ 𝐵𝜌(𝑥, 𝑟) and 𝐵𝜌𝑠(𝑥, 𝑟) ⊂ 𝐵𝜌(𝑥, 𝑟) ,

with similar inclusions for the closed balls.

2. The topology 𝜏(𝜌𝑠) is finer than the topologies 𝜏(𝜌) and 𝜏(𝜌). This means
that:
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∙ any 𝜏(𝜌)-open (closed) set is 𝜏(𝜌𝑠)-open (closed); similar results hold
for the topology 𝜏(𝜌);

∙ the identity mappings from (𝑋, 𝜏(𝜌𝑠)) to (𝑋, 𝜏(𝜌)) and to (𝑋, 𝜏(𝜌)) are
continuous;

∙ a sequence (𝑥𝑛) in 𝑋 is 𝜏(𝜌𝑠)-convergent to 𝑥 ∈ 𝑋 if and only if it is
𝜏(𝜌)-convergent and 𝜏(𝜌)-convergent to 𝑥.

3. If 𝜌 is a quasi-metric, then the topologies 𝜏(𝜌) and 𝜏(𝜌) are 𝑇0, but not
necessarily 𝑇1 (and so nor 𝑇2, in contrast to the case of metric spaces).
The topology 𝜏(𝜌) is 𝑇1 if and only if 𝜌(𝑥, 𝑦) > 0 whenever 𝑥 ∕= 𝑦. In this
case, 𝜏(𝜌) is also 𝑇1 and, as a bitopological space, 𝑋 is pairwise Hausdorff.

4. For every fixed 𝑥 ∈ 𝑋, the mapping 𝜌(𝑥, ⋅) : 𝑋 → (ℝ, ∣ ⋅ ∣) is 𝜏𝜌-usc and 𝜏𝜌-lsc.
For every fixed 𝑦 ∈ 𝑋, the mapping 𝜌(⋅, 𝑦) : 𝑋 → (ℝ, ∣ ⋅ ∣) is 𝜏𝜌-lsc and 𝜏𝜌-usc.

5. ([145]) The mapping 𝜌(𝑥, ⋅) : 𝑋 → (ℝ, ∣ ⋅ ∣) is 𝜏𝜌-continuous at 𝑥 ∈ 𝑋, if and
only if 𝜏𝜌-cl(𝐵𝜌(𝑥, 𝑟)) ⊂ 𝐵𝜌[𝑥, 𝑟] for all 𝑟 > 0.

Similar results hold for an asymmetric seminorm 𝑝, its conjugate 𝑝 and the
associated seminorm 𝑝𝑠.

Proof. 1. For 𝑦 ∈ 𝐵𝜌(𝑥, 𝑟) we have 𝐵𝜌(𝑥, 𝑟
′) ⊂ 𝐵𝜌(𝑥, 𝑟), where 𝑟

′ := 𝑟−𝜌(𝑥, 𝑦) > 0.
Also, if 𝑦 ∈ 𝐵𝜌[𝑥, 𝑟] and 𝑟′ := 𝜌(𝑥, 𝑦) − 𝑟 > 0, then 𝐵𝜌(𝑥, 𝑟

′) ∩ 𝐵𝜌[𝑥, 𝑟] = ∅, or,
equivalently, 𝐵𝜌(𝑥, 𝑟

′) ⊂ 𝑋 ∖𝐵𝜌[𝑥, 𝑟]. Indeed, if 𝑧 ∈ 𝐵𝜌(𝑥, 𝑟
′) ∩𝐵𝜌[𝑥, 𝑟], then

𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦) = 𝜌(𝑥, 𝑧) + 𝜌(𝑦, 𝑧) < 𝑟 + 𝑟′ = 𝜌(𝑥, 𝑦) ,

a contradiction.

The inclusions from 1 follows from the inequalities (1.1.1) and, in their turn,
they imply the assertions from the second point of the proposition.

The assertions from 2 are obvious.

3. If 𝑥, 𝑦 are distinct points in the quasi-metric space (𝑋, 𝜌), then max{𝜌(𝑥, 𝑦),
𝜌(𝑦, 𝑥)} > 0. If 𝜌(𝑥, 𝑦) > 0, then 𝑦 /∈ 𝐵𝜌(𝑥, 𝑟), where 𝑟 = 𝜌(𝑥, 𝑦). Similarly, if
𝜌(𝑦, 𝑥) > 0, then 𝑥 /∈ 𝐵𝜌(𝑦, 𝑟

′), where 𝑟′ = 𝜌(𝑦, 𝑥). Consequently, 𝜏(𝜌) is 𝑇0 and
𝜏(𝜌) as well.

Suppose that 𝜌(𝑥, 𝑦) > 0 for every 𝑥 ∕= 𝑦. Then 𝑦 /∈ 𝐵𝜌(𝑥, 𝜌(𝑥, 𝑦)). Since
𝜌(𝑦, 𝑥) > 0 too, 𝑥 /∈ 𝐵𝜌(𝑦, 𝜌(𝑦, 𝑥)), showing that the topology 𝜏𝜌 is 𝑇1. Similarly
𝜏𝜌 is 𝑇1.

Also, 𝐵𝜌(𝑥, 𝑟) ∩ 𝐵𝜌(𝑦, 𝑟) = ∅, where 𝑟 > 0 is given by 2𝑟 := 𝜌(𝑥, 𝑦) > 0.
Indeed, if 𝑧 ∈ 𝐵𝜌(𝑥, 𝑟) ∩𝐵𝜌(𝑦, 𝑟), then

𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦) < 𝑟 + 𝑟 = 𝜌(𝑥, 𝑦) ,

a contradiction which shows that the bitopological space (𝑋, 𝜏𝜌, 𝜏𝜌) is pairwise
Hausdorff.

It is easy to check that if 𝜏𝜌 is 𝑇1, then 𝜌(𝑥, 𝑦) > 0 for every pair of distinct
elements 𝑥, 𝑦 ∈ 𝑋.
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4. To prove that 𝜌(𝑥, ⋅) is 𝜏𝜌-usc and 𝜏𝜌-lsc, we have to show that the set
{𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) < 𝛼} is 𝜏𝜌-open and {𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) > 𝛼} is 𝜏𝜌-open, for every
𝛼 ∈ ℝ, properties that are easy to check.

Indeed, for 𝑦 ∈ 𝑋 such that 𝜌(𝑥, 𝑦) < 𝛼, let 𝑟 := 𝛼− 𝜌(𝑥, 𝑦) > 0. If 𝑧 ∈ 𝑋 is
such that 𝜌(𝑦, 𝑧) < 𝑟, then

𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧) < 𝜌(𝑥, 𝑦) + 𝑟 = 𝛼,

showing that 𝐵𝜌(𝑦, 𝑟) ⊂ {𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) < 𝛼} .
Similarly, for 𝑦 ∈ 𝑋 with 𝜌(𝑥, 𝑦) > 𝛼 take 𝑟 := 𝜌(𝑥, 𝑦) − 𝛼 > 0. If𝑧 ∈ 𝑋

satisfies 𝜌(𝑧, 𝑦) = 𝜌(𝑦, 𝑧) < 𝑟, then

𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦) < 𝜌(𝑥, 𝑧) + 𝑟 ,

so that 𝜌(𝑥, 𝑧) > 𝜌(𝑥, 𝑦)− 𝑟 = 𝛼. Consequently, 𝐵𝜌(𝑦, 𝑟) ⊂ {𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) > 𝛼}.
5. Suppose that 𝜌(𝑥, ⋅) is continuous on 𝑋 . If 𝑦 ∈ 𝜏𝜌-cl(𝐵𝜌(𝑥, 𝑟)), then there

exists a sequence (𝑦𝑛) in 𝐵𝜌(𝑥, 𝑟) such that 𝑦𝑛
𝜌−→ 𝑦 as 𝑛→∞. The continuity of

𝜌(𝑥, ⋅) implies 𝜌(𝑥, 𝑦) = lim𝑛→∞ 𝜌(𝑥, 𝑦𝑛) ≤ 𝑟, that is 𝑦 ∈ 𝐵𝜌[𝑥, 𝑟].

To prove the converse, suppose that there exists 𝑥 ∈ 𝑋 such that 𝜌(𝑥, ⋅) is
discontinuous at some 𝑦 ∈ 𝑋. Then there exist 𝑟 > 0 and a sequence (𝑦𝑛) in 𝑋

such that 𝑦𝑛
𝜌−→ 𝑦 and 𝜌(𝑥, 𝑦𝑛) ∈ (−∞, 𝜌(𝑥, 𝑦)− 𝑟)∪ (𝜌(𝑥, 𝑦) + 𝑟,∞) for all 𝑛 ∈ ℕ.

If there exists an infinity of 𝑛 ∈ ℕ such that 𝜌(𝑥, 𝑦𝑛) > 𝜌(𝑥, 𝑦) + 𝑟, then, by the
𝜏𝜌-usc of the function 𝜌(𝑥, ⋅), 𝜌(𝑥, 𝑦) + 𝑟 ≤ lim sup𝑛 𝜌(𝑥, 𝑦𝑛) ≤ 𝜌(𝑥, 𝑦), leading to
the contradiction 𝑟 ≤ 0.

Consequently 𝜌(𝑥, 𝑦𝑛) < 𝜌(𝑥, 𝑦) − 𝑟, that is 𝑦𝑛 ∈ 𝐵𝜌(𝑥, 𝜌(𝑥, 𝑦) − 𝑟) for all
𝑛 ∈ ℕ excepting a finitely many. By hypothesis, 𝑦 ∈ 𝐵𝜌[𝑥, 𝜌(𝑥, 𝑦) − 𝑟], that is
𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑦)− 𝑟, leading again to the contradiction 𝑟 ≤ 0. □

One can define other pairwise separation axioms. Call a bitopological space
(𝑇, 𝜏, 𝜈) pairwise 𝑇0 if for any pair 𝑥, 𝑦 of distinct points in 𝑇 either there exists
a 𝜏 -open set 𝑈 such that 𝑥 ∈ 𝑈 and 𝑦 /∈ 𝑈 or there exists 𝑉 ∈ 𝜈 such that 𝑦 ∈ 𝑉
and 𝑥 /∈ 𝑉. Again, by symmetry, it follows that the space (𝑇, 𝜏, 𝜈) is pairwise 𝑇0 if
and only if

[(∃𝑈 ∈ 𝜏, 𝑥 ∈ 𝑈 ∧ 𝑦 /∈ 𝑈) ∨ (∃𝑉 ∈ 𝜈, 𝑦 ∈ 𝑉 ∧ 𝑥 /∈ 𝑉 )]

∧ [(∃𝑈1 ∈ 𝜏, 𝑦 ∈ 𝑈1 ∧ 𝑥 /∈ 𝑈1) ∨ (∃𝑉1 ∈ 𝜈, 𝑥 ∈ 𝑉1 ∧ 𝑦 /∈ 𝑉1)] .
(1.1.14)

Taking into account the mutual distributivity of the operators ∧ and ∨ it
follows that this condition is equivalent to

[(∃𝑈 ∈ 𝜏, 𝑥 ∈ 𝑈 ∧ 𝑦 /∈ 𝑈) ∧ (∃𝑈1 ∈ 𝜏, 𝑦 ∈ 𝑈1 ∧ 𝑥 /∈ 𝑈1)]

∨ [(∃𝑈 ∈ 𝜏, 𝑥 ∈ 𝑈 ∧ 𝑦 /∈ 𝑈) ∧ (∃𝑉1 ∈ 𝜈, 𝑥 ∈ 𝑉1 ∧ 𝑦 /∈ 𝑉1)]

∨ [(∃𝑉 ∈ 𝜏, 𝑦 ∈ 𝑉 ∧ 𝑥 /∈ 𝑉 ) ∧ (∃𝑈1 ∈ 𝜏, 𝑦 ∈ 𝑈1 ∧ 𝑥 /∈ 𝑈1)]

∨ [(∃𝑉 ∈ 𝜏, 𝑦 ∈ 𝑉 ∧ 𝑥 /∈ 𝑉 ) ∧ (∃𝑉1 ∈ 𝜈, 𝑥 ∈ 𝑉1 ∧ 𝑦 /∈ 𝑉1)] .

(1.1.15)
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Similar conditions hold for the notion of pairwise 𝑇1. A bitopological space
(𝑇, 𝜏, 𝜈) is called pairwise 𝑇1 if for any pair 𝑥, 𝑦 of distinct points in 𝑇 the following
condition holds:

[(∃𝑈 ∈ 𝜏, 𝑥 ∈ 𝑈 ∧ 𝑦 /∈ 𝑈) ∧ (∃𝑉 ∈ 𝜈, 𝑦 ∈ 𝑉 ∧ 𝑥 /∈ 𝑉 )]

∧ [(∃𝑈1 ∈ 𝜏, 𝑦 ∈ 𝑈1 ∧ 𝑥 /∈ 𝑈1) ∧ (∃𝑉1 ∈ 𝜈, 𝑥 ∈ 𝑉1 ∧ 𝑦 /∈ 𝑉1)] .
(1.1.16)

In the case of a quasi-semimetric space the following proposition holds.

Proposition 1.1.9. Let (𝑋, 𝜌) be a quasi-semimetric space. If the associated bitopo-
logical space (𝑋, 𝜏𝜌, 𝜏𝜌) is pairwise 𝑇0, then 𝜌(𝑥, 𝑦) > 0 for any pair of distinct
points 𝑥, 𝑦 ∈ 𝑋.

Proof. Suppose that there exists 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ∕= 𝑦 and 𝜌(𝑥, 𝑦) = 0. Then
𝑦 ∈ 𝐵𝜌(𝑥, 𝑟) and 𝑥 ∈ 𝐵𝜌(𝑥, 𝑟) for every 𝑟 > 0, so that the condition (1.1.14) does
not hold. □

Taking into account Proposition 1.1.8.3, one obtains the following corollary.

Corollary 1.1.10. For a quasi-semimetric space (𝑋, 𝜌) the following are equivalent.

1. The bitopological space (𝑋, 𝜏𝜌, 𝜏𝜌) is pairwise 𝑇0.

2. The bitopological space (𝑋, 𝜏𝜌, 𝜏𝜌) is pairwise 𝑇1.

3. The bitopological space (𝑋, 𝜏𝜌, 𝜏𝜌) is pairwise Hausdorff.

Better continuity properties of the distance function holds in the class of
the so-called balanced quasi-metric spaces. Following Doitchinov [63], a 𝑇1 quasi-
metric space (𝑋, 𝜌) is called balanced if the following condition holds:

[lim
𝑚,𝑛

𝜌(𝑣𝑚, 𝑢𝑛) = 0 ∧ ∀𝑛, 𝜌(𝑢, 𝑢𝑛) ≤ 𝑟 ∧ ∀𝑚, 𝜌(𝑣𝑚, 𝑣) ≤ 𝑠] ⇒ 𝜌(𝑢, 𝑣) ≤ 𝑟 + 𝑠,

(1.1.17)
for all sequences (𝑢𝑛), (𝑣𝑚) in 𝑋 and all 𝑢, 𝑣 ∈ 𝑋 .

A pair (𝑋, 𝜌) where 𝜌 is a balanced quasi-metric is called a balanced quasi-
metric space or a 𝐵-quasi-metric space.

In the following proposition we collect some consequences of this definition.

Proposition 1.1.11 ([63]). Let (𝑋, 𝜌) be a 𝐵-quasi-metric space.

1. The following assertions hold for all sequences (𝑥𝑚), (𝑦𝑛) in 𝑋 and all
𝑥, 𝑦 ∈ 𝑋.

(i) [lim𝑛 𝜌(𝑥, 𝑥𝑛) = 0 ∧ ∀𝑛, 𝜌(𝑦, 𝑥𝑛) ≤ 𝑟] ⇒ 𝜌(𝑦, 𝑥) ≤ 𝑟;
(1.1.18)

(ii) [lim𝑛 𝜌(𝑥𝑛, 𝑥) = 0 ∧ ∀𝑛, 𝜌(𝑥𝑛, 𝑦) ≤ 𝑟] ⇒ 𝜌(𝑥, 𝑦) ≤ 𝑟;

(i) [lim𝑛 𝜌(𝑥, 𝑥𝑛) = 0 ∧ lim𝑛 𝜌(𝑦, 𝑥𝑛) = 0] ⇒ 𝑥 = 𝑦;
(1.1.19)

(ii) [lim𝑛 𝜌(𝑥𝑛, 𝑥) = 0 ∧ lim𝑛 𝜌(𝑥𝑛, 𝑦) = 0] ⇒ 𝑥 = 𝑦 ;
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[lim𝑛𝜌(𝑥𝑛,𝑥)=0 ∧ lim𝑛𝜌(𝑦,𝑦𝑚)=0 ∧ ∀𝑚,𝑛, 𝜌(𝑥𝑛,𝑦𝑚)≤𝑟]⇒𝜌(𝑥,𝑦)≤𝑟;
(1.1.20)

(i) [lim𝑛𝜌(𝑥𝑛,𝑥)=0 ∧ lim𝑚𝜌(𝑦,𝑦𝑚)=0]⇒ lim𝑚,𝑛𝜌(𝑥𝑚,𝑦𝑛)=𝜌(𝑥,𝑦);

(ii) lim𝑛 𝜌(𝑥𝑛, 𝑥) = 0 ⇒ lim𝑛 𝜌(𝑥𝑛, 𝑦) = 𝜌(𝑥, 𝑦);

(iii) lim𝑛 𝜌(𝑥, 𝑥𝑛) = 0 ⇒ lim𝑛 𝜌(𝑦, 𝑥𝑛) = 𝜌(𝑦, 𝑥) . (1.1.21)

2. The topologies 𝜏(𝜌) and 𝜏(𝜌) are 𝑇2 (Hausdorff). For every fixed 𝑦 ∈ 𝑋 the
function 𝜌(⋅, 𝑦) is 𝜏(𝜌) continuous on 𝑋 and 𝜌(𝑦, ⋅) is 𝜏(𝜌)-continuous on 𝑋.

Proof. 1. To prove (1.1.18).(i) and (ii), take in (1.1.17) 𝑢𝑛 = 𝑥𝑛, 𝑣𝑚 = 𝑥, 𝑢 =
𝑦, 𝑣 = 𝑥, respectively, 𝑢𝑚 = 𝑥, 𝑣𝑛 = 𝑥𝑛, 𝑢 = 𝑥, 𝑣 = 𝑦 (with 𝑚,𝑛 having
interchanged roles).

To prove (1.1.19).(i) let 𝜀 > 0. Since 𝜌(𝑦, 𝑥𝑛) → 0, there exists 𝑛𝜀 ∈ ℕ such
that 𝜌(𝑦, 𝑥𝑛) ≤ 𝜀 for all 𝑛 ≥ 𝑛𝜀. Since 𝜌(𝑥, 𝑥𝑛)→ 0, an application of (1.1.18).(i)
yields 𝜌(𝑦, 𝑥) ≤ 𝜀. Since 𝜀 > 0 was arbitrarily chosen, this implies 𝜌(𝑦, 𝑥) = 0 and
so 𝑥 = 𝑦 (in the definition of a balanced qm space we have required that the
topology 𝜏(𝜌) is 𝑇1). The assertion (ii) follows similarly.

The proof of (1.1.20). By (1.1.18).(ii) lim𝑛 𝜌(𝑥𝑛, 𝑥) = 0 and ∀𝑛, 𝜌(𝑥𝑛, 𝑦𝑚) ≤
𝑟, imply 𝜌(𝑥, 𝑦𝑚) ≤ 𝑟, for every 𝑚 ∈ ℕ. Since lim𝑚 𝜌(𝑦, 𝑦𝑚) = 0, an application of
(1.1.18).(i) yields 𝜌(𝑥, 𝑦) ≤ 𝑟.

To prove (1.1.21).(i) let 𝜀 > 0. Observe first that the inequality

𝜌(𝑥𝑚, 𝑦𝑛) ≤ 𝜌(𝑥𝑚, 𝑥) + 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑦𝑛) ,

and the hypotheses imply the existence of 𝑘0 ∈ ℕ such that

𝜌(𝑥𝑚, 𝑦𝑛) ≤ 𝜌(𝑥, 𝑦) + 𝜀 ,

for all 𝑚,𝑛 ≥ 𝑘0. The proof will be complete if we prove the existence of 𝑙0 ∈ ℕ
such that

𝜌(𝑥𝑚, 𝑦𝑛) > 𝜌(𝑥, 𝑦)− 𝜀 ,

for all 𝑚,𝑛 ≥ 𝑙0.

If contrary, then there exists the subsequences (𝑥𝑚𝑖) of (𝑥𝑚) and (𝑦𝑛𝑗 ) of
(𝑦𝑛) such that

𝜌(𝑥𝑚𝑖 , 𝑦𝑛𝑗 ) ≤ 𝜌(𝑥, 𝑦)− 𝜀 ,

for all 𝑖, 𝑗 ∈ ℕ. Since lim𝑖 𝜌(𝑥𝑚𝑖 , 𝑥) = 0 = lim𝑗 𝜌(𝑦, 𝑦𝑛𝑗 ), an application of (1.1.20)
yields the contradiction 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑦)− 𝜀.

The assertions from (ii) and (iii) follow from (i).

2. The fact that the topologies 𝜏(𝜌) and 𝜏(𝜌) are 𝑇2 follows from (1.1.19).(i)
and (ii), respectively.

The 𝜏(𝜌)-continuity of the function 𝜌(⋅, 𝑦) follows from (1.1.21).(ii) and the
𝜏(𝜌)-continuity of the function 𝜌(𝑦, ⋅) follows from (1.1.21).(iii). □
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As it is well known the distance function to a subset plays a key role in the
study of metric spaces. As we shall see, the same is true in the asymmetric case
where, due to the asymmetry, we have two kinds of distance functions.

Let (𝑋, 𝜌) be a quasi-semimetric space. For a nonempty subset 𝐴 of 𝑋 and
𝑥 ∈ 𝑋 put

𝜌(𝑥,𝐴) = inf{𝜌(𝑥, 𝑦) : 𝑦 ∈ 𝐴} and 𝜌(𝐴, 𝑥) = inf{𝜌(𝑦, 𝑥) : 𝑦 ∈ 𝐴} . (1.1.22)

It is obvious that 𝜌(𝐴, 𝑥) = 𝜌(𝑥,𝐴). A sequence (𝑦𝑛) in 𝐴 such that lim𝑛 𝜌(𝑥, 𝑦𝑛) =
𝜌(𝑥,𝐴) is called a minimizing sequence for 𝜌(𝑥,𝐴), with a similar definition for
minimizing sequences for 𝜌(𝐴, 𝑥). Since 𝐴 ∕= ∅, minimizing sequences always exist.

In the following proposition we collect the basic properties of the distance
functions.

Proposition 1.1.12. Let (𝑋, 𝜌) be a quasi-semimetric space, 𝐴 a nonempty subset
of 𝑋 and 𝑥, 𝑥′ ∈ 𝑋. The following are true.

1. 𝜌(𝑥,𝐴) ≤ 𝜌(𝑥, 𝑥′) + 𝜌(𝑥′, 𝐴) and 𝜌(𝐴, 𝑥) ≤ 𝜌(𝐴, 𝑥′) + 𝜌(𝑥′, 𝑥).
2. 𝜌(𝑥,𝐴) = 0 ⇐⇒ 𝑥 ∈ 𝜏𝜌-cl(𝐴) and 𝜌(𝐴, 𝑥) = 0 ⇐⇒ 𝑥 ∈ 𝜏𝜌-cl(𝐴).

3. The function 𝜌(⋅, 𝐴) : 𝑋 → ℝ is 𝜏𝜌-lsc and 𝜏𝜌-usc, and the function 𝜌(𝐴, ⋅) :
𝑋 → ℝ is 𝜏𝜌-usc and 𝜏𝜌-lsc.

Proof. 1. For any 𝑦 ∈ 𝐴,

𝜌(𝑥,𝐴) ≤ 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑥′) + 𝜌(𝑥′, 𝑦) .

Taking the infimum with respect to 𝑦 ∈ 𝐴 one obtains 𝜌(𝑥,𝐴) ≤ 𝜌(𝑥, 𝑥′) +
𝜌(𝑥′, 𝐴). The second inequality from 1 can be proved similarly.

2. The proof of the first assertion follows from the equivalences

𝜌(𝑥,𝐴) = 0 ⇐⇒ ∃(𝑦𝑛) in 𝐴, lim
𝑛→∞ 𝜌(𝑥, 𝑦𝑛) = 0

⇐⇒ ∃(𝑦𝑛) in 𝐴, 𝑦𝑛
𝜌−→ 𝑥 ⇐⇒ 𝑥 ∈ 𝜏𝜌- cl(𝐴) .

The second equivalence from 2 can be proved similarly.

3. Suppose that for some 𝛼 ∈ ℝ, 𝜌(𝑥,𝐴) > 𝛼. Taking 𝑟 := 𝜌(𝑥,𝐴) − 𝛼 > 0,
it follows that

𝜌(𝑥,𝐴) ≤ 𝜌(𝑥, 𝑥′) + 𝜌(𝑥′, 𝐴) < 𝜌(𝑥,𝐴)− 𝛼+ 𝜌(𝑥′, 𝐴) ,

for every 𝑥′ ∈ 𝑋 with 𝜌(𝑥, 𝑥′) < 𝑟. Consequently, 𝜌(𝑥′, 𝐴) > 𝛼 for every 𝑥′ ∈
𝐵𝜌(𝑥, 𝑟), proving the 𝜏𝜌-lsc of the mapping 𝜌(⋅, 𝐴) at 𝑥.

Similarly, if 𝜌(𝑥,𝐴) < 𝛼,

𝜌(𝑥′, 𝐴) ≤ 𝜌(𝑥′, 𝑥) + 𝜌(𝑥,𝐴) ,
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implies 𝜌(𝑥′, 𝐴) < 𝛼 for every 𝑥′ ∈ 𝑋 with 𝜌(𝑥′, 𝑥) < 𝑟, where 𝑟 := 𝛼−𝜌(𝑥,𝐴) > 0.
So 𝜌(𝑥′, 𝐴) < 𝛼 for every 𝑥′ ∈ 𝐵𝜌(𝑥, 𝑟), proving the 𝜏𝜌-usc of the mapping 𝜌(⋅, 𝐴)
at 𝑥.

The case of the distance function 𝜌(𝐴, ⋅) can be treated similarly. □

Based on the properties of the distance mapping we can prove further bitopo-
logical properties of quasi-semimetric spaces.

Proposition 1.1.13 (Kelly [111]). Let (𝑋, 𝜌) be a quasi-semimetric space.

1. The topology of a quasi-metric space is pairwise regular and pairwise normal.

2. If 𝜏𝜌 ⊂ 𝜏𝜌, then the topology 𝜏𝜌 is semimetrizable.

3. If the mapping 𝜌(𝑥, ⋅) : 𝑋 → (ℝ, ∣ ⋅ ∣) is 𝜏𝜌-continuous for every 𝑥 ∈ 𝑋, then
the topology 𝜏𝜌 is regular.
If 𝜌(𝑥, ⋅) : 𝑋 → (ℝ, ∣ ⋅ ∣) is 𝜏𝜌-continuous for every 𝑥 ∈ 𝑋, then the topology
𝜏𝜌 is semi-metrizable.

Similar results hold for an asymmetric seminormed space (𝑋, 𝑝).

Proof. 1. Since {𝐵𝜌[𝑥, 𝑟] : 𝑟 > 0} is a 𝜏(𝜌)-neighborhood base of the point 𝑥 formed
of 𝜏(𝜌)-closed sets and {𝐵𝜌[𝑥, 𝑟] : 𝑟 > 0} is a 𝜏(𝜌)-neighborhood base of the point
𝑥 formed of 𝜏(𝜌)-closed sets, it follows that the bitopological space (𝑋, 𝜏(𝜌), 𝜏(𝜌))
is pairwise regular.

To prove the normality of 𝑋 , let 𝐴,𝐵 ⊂ 𝑋, , such that 𝐴 is 𝜏(𝜌)-closed, 𝐵
is 𝜏(𝜌)-closed and 𝐴 ∩𝐵 = ∅.

By the assertions 3 and 4 of Proposition 1.1.12,

𝐴 = {𝑥 ∈ 𝑋 : 𝜌(𝑥,𝐴) = 0} and 𝐵 = {𝑥 ∈ 𝑋 : 𝜌(𝑥,𝐵) = 0} .

Let

𝑈 = {𝑥 ∈ 𝑋 : 𝜌(𝑥,𝐴) < 𝜌(𝑥,𝐵)} and 𝑉 = {𝑥 ∈ 𝑋 : 𝜌(𝑥,𝐵) < 𝜌(𝑥,𝐴)} .

It is obvious that 𝑈 ∩ 𝑉 = ∅. By Proposition 1.1.12 the mapping 𝜌(⋅, 𝐴) is
𝜏(𝜌)-usc, so that the set 𝑈 is 𝜏(𝜌)-open. By the same proposition, the mapping
𝜌(𝐴, ⋅) is 𝜏(𝜌)-usc, so that the set 𝑉 is 𝜏(𝜌)-open.

If 𝑥 ∈ 𝐴, then 𝑥 /∈ 𝐵, so that 𝜌(𝑥,𝐴) = 0 < 𝜌(𝑥,𝐵), showing that 𝐴 ⊂ 𝑈.
Similarly, 𝐵 ⊂ 𝑉.

2. The semimetric topology 𝜏𝜌𝑠 is the smallest topology finer than 𝜏𝜌 and 𝜏𝜌,
so that 𝜏𝜌 = 𝜏𝜌𝑠 .

3. If the mapping 𝜌(𝑥, ⋅) : 𝑋 → (ℝ, ∣ ⋅ ∣) is 𝜏(𝜌)-continuous, then the balls
𝐵𝜌[𝑥, 𝑟] = {𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) ≤ 𝑟} are 𝜏(𝜌)-closed for every 𝑟 > 0. Since they form a
𝜏(𝜌)-neighborhood base of the point 𝑥, it follows that the topology 𝜏(𝜌) is regular.

Suppose now that the mapping 𝜌(𝑥, ⋅) : 𝑋 → (ℝ, ∣ ⋅ ∣) is 𝜏(𝜌)-continuous for
every 𝑥 ∈ 𝑋 . The 𝜏(𝜌)-continuity of 𝜌(𝑥, ⋅) implies that the spheres 𝐵𝜌(𝑥, 𝑟) =
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{𝑦 ∈ 𝑋 : 𝜌(𝑥, 𝑦) < 𝑟} are 𝜏(𝜌)-open for every 𝑟 > 0, showing that the topology
𝜏(𝜌) is finer than 𝜏(𝜌).

The topology 𝜏𝑠 generated by the semimetric 𝜌𝑠 = max{𝜌, 𝜌} is the smallest
topology finer that both 𝜏(𝜌) and 𝜏(𝜌), that is 𝜏𝑠 = 𝜏(𝜌) ∨ 𝜏(𝜌) = 𝜏(𝜌), implying
the semimetrizability of 𝜏(𝜌). □
Remark 1.1.14. 1. The properties from the assertions 3, 4, 5 of Proposition 1.1.8
are taken from Kelly [111].

2. The lower and upper continuity properties from the assertion 4 of Propo-
sition 1.1.8 are equivalent to the fact that the mapping 𝜌(𝑥, ⋅) : 𝑋 → ℝ is (𝜏𝜌, 𝜏𝑢)-
continuous, respectively (𝜏𝜌, 𝜏�̄�)-continuous. Similar equivalences hold for the semi-
continuity properties of the mapping 𝜌(⋅, 𝑦).

3. The quasi-metric space (ℝ, 𝑢) from Example 1.1.3 is not 𝑇1 because, for
instance, any neighborhood of 1 contains 0.

1.1.3 More on bitopological spaces

Kelly [111] proved several basic results on bitopological spaces including extensions
of the classical theorems of Uryson and Tietze to semi-continuous functions defined
on bitopological spaces. The Urysohn type theorem proved in [111] is the following.

Theorem 1.1.15. Let (𝑇, 𝜏, 𝜈) be a pairwise normal bitopological space, 𝐴 ⊂ 𝑇 𝜏-
closed and 𝐵 ⊂ 𝑇 𝜈-closed with 𝐴 ∩ 𝐵 = ∅. Then there exists a 𝜏-lsc and 𝜈-usc
function 𝑓 : 𝑇 → [0; 1] such that

∀𝑡 ∈ 𝐴, 𝑓(𝑡) = 0 and ∀𝑡 ∈ 𝐵, 𝑓(𝑡) = 1 . (1.1.23)

Proof. The proof follows the line of the proof of the classical Urysohn theorem as
given, for instance, in Pedersen [172]. Put 𝐴0 = 𝐴 and 𝐶1 = 𝑇 ∖ 𝐵. Then 𝐴0 is
𝜏 -closed, 𝐶1 is 𝜈-open and 𝐴0 ⊂ 𝐶1. By (1.1.12) there exists a 𝜏 -closed set 𝐴1/2

and a 𝜈-open set 𝐶1/2 such that

𝐴0 ⊂ 𝐶1/2 ⊂ 𝐴1/2 ⊂ 𝐶1 .

Applying the same condition to the pairs𝐴0 ⊂ 𝐶1/2 and 𝐴1/2 ⊂ 𝐶1, we affirm
the existence of two 𝜏 -closed sets 𝐴1/4, 𝐴3/4 and of two 𝜈-open sets 𝐶1/4, 𝐺3/4 such
that

𝐴0 ⊂ 𝐶1/4 ⊂ 𝐴1/4 ⊂ 𝐶1/2 ⊂ 𝐴1/2 ⊂ 𝐶3/4 ⊂ 𝐴3/4 ⊂ 𝐶1 .

Continuing in this manner, for any dyadic rational number 𝑝 ∈ {𝑖 ⋅ 2−𝑘 : 1 =
1, 2, . . . , 2𝑘 − 1}, 𝑘 ∈ ℕ, one finds a 𝜏 -closed set 𝐴𝑝 and a 𝜈-open set 𝐶𝑝. Putting,
for convenience, 𝐴𝑝 = ∅ for 𝑝 < 0, 𝐴𝑝 = 𝑇 for 𝑝 ≥ 1, 𝐶𝑝 = ∅ for 𝑝 ≤ 0 and 𝐶𝑝 = 𝑇
for 𝑝 > 1, it follows that these sets satisfy the relations

𝐶𝑝 ⊂ 𝐶𝑞 ⊂ 𝐴𝑞 ⊂ 𝐴𝑟 for all dyadic rational numbers 𝑝 ≤ 𝑞 ≤ 𝑟, and

𝐴𝑝 ⊂ 𝐶𝑞 for all dyadic rational numbers 𝑝 < 𝑞 .
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Define the function 𝑓 : 𝑇 → ℝ by

𝑓(𝑡) = inf{𝑝 : 𝑡 ∈ 𝐶𝑝}, 𝑡 ∈ 𝑇 .

It follows that

𝑓(𝑡) = inf{𝑝 : 𝑡 ∈ 𝐴𝑝}, 0 ≤ 𝑓(𝑡) ≤ 1, ∀𝑡 ∈ 𝑇,

𝑓(𝑡) = 0, 𝑡 ∈ 𝐴, and 𝑓(𝑡) = 1, 𝑡 ∈ 𝐵 = 𝑇 ∖ 𝐶1 .

To prove that 𝑓 is 𝜈-usc we have to show that for every number 𝛼, 0 < 𝛼 ≤ 1,
the set 𝑓−1([0;𝛼)) is 𝜈-open. Let 0 < 𝛼 ≤ 1 and 𝑡 ∈ 𝑇 such that 𝑓(𝑡) < 𝛼. Using
the definition of 𝑓 in terms of the 𝜈-open sets 𝐶𝑝, it follows that there exists a
dyadic number 𝑝 such that 𝑝 < 𝛼 and 𝑡 ∈ 𝐶𝑝, that is

𝑓(𝑡) < 𝛼 ⇐⇒ ∃𝑝, 𝑝 < 𝛼, 𝑡 ∈ 𝐶𝑝 ⇐⇒ 𝑡 ∈ ∪𝑝<𝛼𝐶𝑝 .

Consequently, 𝑓−1([0;𝛼)) = ∪𝑝<𝛼𝐶𝑝 showing that the set 𝑓−1([0;𝛼)) is 𝜈-
open.

To show that 𝑓 is also 𝜏 -lsc we shall use the expression of 𝑓 in terms of
the 𝜏 -closed sets 𝐴𝑝, 𝑓(𝑡) = inf{𝑝 : 𝑡 ∈ 𝐴𝑝}. We have to show that for every
𝛽, 0 ≤ 𝛽 < 1, the set 𝑓−1((𝛽, 1]) is 𝜏 -open. Let 𝑡 ∈ 𝑇 such that 𝑓(𝑡) > 𝛽. If 𝑡 ∈ 𝐴𝑝

for every 𝑝 > 𝛽, then, by the definition of 𝑓, 𝑓(𝑡) ≤ 𝑝. Consequently, 𝑓(𝑡) ≤ 𝑝 for
every 𝑝 > 𝛽, implying 𝑓(𝑡) ≤ 𝛽. This shows that

𝑓(𝑡) > 𝛽 ⇐⇒ ∃𝑝 > 𝛽, 𝑡 ∈ 𝑇 ∖𝐴𝑝 ⇐⇒ 𝑡 ∈ ∪𝑝>𝛽(𝑇 ∖𝐴𝑝) .

It follows that the set 𝑓−1((𝛽, 1]) = ∪𝑝>𝛽(𝑇 ∖𝐴𝑝) is 𝜏 -open. □

The following theorem extends to bitopological spaces a result of Katětov
[107, 108] asserting that a topological space 𝑇 is normal if and only if for any pair
of functions 𝑓, 𝑔 : 𝑇 → ℝ such that 𝑓 is usc, 𝑔 is lsc and 𝑓 ≤ 𝑔, there exists a
continuous function ℎ : 𝑇 → ℝ such that 𝑓 ≤ ℎ ≤ 𝑔. The proof given here follows
the ideas suggested in Engelking [73, Exercise 2.7.2] for normal spaces.

Theorem 1.1.16 (Lane [144]). A bitopological space (𝑇, 𝜏, 𝜈) is pairwise normal if
and only if for every pair 𝑓, 𝑔 : 𝑇 → ℝ of functions such that 𝑓 is 𝜈-usc, 𝑔 is 𝜏-lsc,
and 𝑓 ≤ 𝑔, there exists a 𝜏-lsc and 𝜈-usc function ℎ : 𝑇 → ℝ such that 𝑔 ≤ 𝑓 ≤ ℎ.

The following lemma extends to pairwise normal spaces a separation result
valid in normal spaces.

Lemma 1.1.17. Let (𝑇, 𝜏, 𝜈) be a pairwise normal bitopological space. Let 𝐴,𝐵 ⊂ 𝑇
such that 𝐴 is 𝜏-𝐹𝜎 , 𝐵 is 𝜈-𝐹𝜎 and

𝐴
𝜏 ∩𝐵 = ∅ = 𝐴 ∩𝐵

𝜈
. (1.1.24)

Then there exist a 𝜈-open set 𝑈 ⊃ 𝐴 and a 𝜏-open set 𝑉 ⊃ 𝐵 such that
𝑈 ∩ 𝑉 = ∅.
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The sets 𝑈 and 𝑉 satisfy also the relations

𝐴 ⊂ 𝑈 ⊂ 𝑈
𝜏 ⊂ 𝑇 ∖𝐵 and 𝐵 ⊂ 𝑉 ⊂ 𝑉

𝜈 ⊂ 𝑇 ∖𝐴 . (1.1.25)

Proof. Let 𝐴 = ∪∞𝑛=1𝐴𝑛 and 𝐵 = ∪∞𝑛=1𝐵𝑛, with 𝐴𝑛 𝜏 -closed and 𝐵𝑛 𝜈-closed.
Applying (1.1.13) to the sets 𝐴1 ⊂ 𝑇 ∖𝐵𝜈

, there exists a 𝜈-open set 𝑈1 such that

𝐴1 ⊂ 𝑈1 ⊂ 𝑈
𝜏

1 ⊂ 𝑇 ∖𝐵𝜈
.

By the same condition (with 𝜏 and 𝜈 interchanged), there exists a 𝜏 -open set
𝑉1 such that

𝐵1 ⊂ 𝑉1 ⊂ 𝑉
𝜈

1 ⊂ 𝑇 ∖ (𝐴𝜏 ∪ 𝑈
𝜏

1) .

Continuing in this manner, we find inductively the 𝜈-open sets 𝑈𝑛 and the
𝜏 -open sets 𝑉𝑛 such that

𝐴𝑛 ∪ 𝑈
𝜏

1 ∪ ⋅ ⋅ ⋅ ∪ 𝑈
𝜏

𝑛−1 ⊂ 𝑈𝑛 ⊂ 𝑈
𝜏

𝑛 ⊂ 𝑇 ∖ (𝐵𝜈 ∪ 𝑉
𝜈

1 ∪ ⋅ ⋅ ⋅ ∪ 𝑉
𝜈

𝑛−1),

𝐵𝑛 ∪ 𝑉
𝜈

1 ∪ ⋅ ⋅ ⋅ ∪ 𝑣𝜈𝑛−1 ⊂ 𝑉𝑛 ⊂ 𝑈
𝜈

𝑛 ⊂ 𝑇 ∖ (𝐴𝜏 ∪ 𝑈
𝜏

1 ∪ ⋅ ⋅ ⋅ ∪ 𝑈
𝜈

𝑛) ,

for all 𝑛 ∈ ℕ, where 𝑈0 = 𝑉0 = ∅.
It follows that the set 𝑈 = ∪∞𝑛=1𝑈𝑛 is 𝜈-open, 𝑉 = ∪∞𝑛=1𝑉𝑛 is 𝜏 -open, 𝐴 ⊂

𝑈, 𝐵 ⊂ 𝑉 and 𝑈 ∩ 𝑉 = ∅.
Since 𝑉 is 𝜏 -open and 𝑈 ∩ 𝑉 = ∅, it follows that 𝑈

𝜏 ∩ 𝑉 = ∅, so that
𝑈
𝜏 ∩ 𝐵 = ∅, i.e., 𝑈𝜏 ⊂ 𝑇 ∖ 𝐵. The second set of inclusions in (1.1.25) follows

similarly. □

Proof of Theorem 1.1.16. Suppose first that 𝑓, 𝑔 : 𝑇 → [0; 1]. For 𝑟 ∈ ℚ ∩ [0; 1] let
𝐴𝑟 = 𝑔−1([0; 𝑟)) (𝐴0 = ∅), 𝐵𝑟 = 𝑓−1([0; 𝑟]) and 𝐶𝑟 = 𝑇 ∖𝑓−1([0; 𝑟]) = 𝑓−1((𝑟; 1]).
Since 𝑔 is 𝜏 -lsc the set 𝑔−1([0; 𝑟′]) is 𝜏 -closed, so that the set 𝐴𝑟 = ∪{𝑔−1([0; 𝑟′]) :
𝑟′ ∈ ℚ, 0 < 𝑟′ < 𝑟} is 𝜏 -𝐹𝜎 . Since 𝑓 is 𝜈-usc, the set 𝑓−1([𝑟′; 1]) is 𝜈-closed, so
that 𝐶𝑟 = ∪{𝑓−1([𝑟′; 1]) : 𝑟′ ∈ ℚ, 𝑟 < 𝑟′ < 1} is 𝜈-𝐹𝜎 and 𝐵𝑟 = 𝑇 ∖𝐶𝑟 is 𝜈-𝐺𝛿. It
is easy to check that

𝐴
𝜏

𝑟 ∩ 𝐶𝑟 = ∅ = 𝐴𝑟 ∩ 𝐶
𝜈

𝑟 . (1.1.26)

Indeed, if (𝑡𝑖 : 𝑖 ∈ 𝐼) is a net in 𝐴𝑟 that is 𝜏 -convergent to 𝑡 ∈ 𝑇, then, by
the 𝜏 -lsc of the function 𝑔, 𝑔(𝑡) ≤ lim inf 𝑖 𝑔(𝑡𝑖) ≤ 𝑟, because 𝑔(𝑡𝑖) ≤ 𝑟, 𝑖 ∈ 𝐼. It
follows that 𝑡 /∈ 𝐶𝑟. Similarly, using the 𝜈-usc of the function 𝑓 one obtains that
𝑡 /∈ 𝐴 for every 𝑡 ∈ 𝐶

𝜈

𝑟 .

As in the proof of the bitopological Urysohn theorem (Theorem 1.1.15), we
shall work with the set Λ2 = {𝑖 ⋅ 2−𝑘 : 𝑖 = 0, 1, 2, . . . , 2𝑘, 𝑘 ∈ ℕ} of dyadic rational
numbers in [0; 1] (including 0 and 1).

The equalities (1.1.26) show that the sets 𝐴1 and 𝐶1 satisfy the hypotheses
of Lemma 1.1.17, so that, by (1.1.25) there exists a 𝜈-open set 𝑈1 such that

𝐴1 ⊂ 𝑈1 ⊂ 𝑈
𝜏

1 ⊂ 𝐵1 . (1.1.27)
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Similarly, there exists a 𝜈-open set 𝑈1/2 such that

𝐴1/2 ⊂ 𝑈1/2 ⊂ 𝑈
𝜏

1/2 ⊂ 𝐵1/2 ∩ 𝑈1 .

At the next step we find two 𝜈-open sets 𝑈1/4, 𝑈3/4 such that

𝐴1/4 ⊂ 𝑈1/4 ⊂ 𝑈
𝜏

1/4 ⊂ 𝐵1/4 ∩ 𝑈1/2, and

𝐴3/4 ∪ 𝑈
𝜏

1/2 ⊂ 𝑈3/4 ⊂ 𝑈
𝜏

3/4 ⊂ 𝐵3/4 ∩ 𝑈1 .

Continuing in this manner, one obtains by induction, the 𝜈-open sets 𝑈𝑟
satisfying (1.1.27) and

𝐴(2𝑖−1)⋅2−𝑚 ∪𝑈
𝜏

(𝑖−1)⋅2−𝑚+1 ⊂ 𝑈(2𝑖−1)⋅2−𝑚 ⊂ 𝑈
𝜏

(2𝑖−1)⋅2−𝑚 ⊂ 𝐵(2𝑖−1)⋅2−𝑚 ∩𝑈𝑖⋅2−𝑚+1 ,

for 𝑖 = 1, 2, . . . , 2𝑚−1, 𝑚 ∈ ℕ, where 𝑈0 = ∅. It follows that the inclusions
(i) 𝐴𝑟 ⊂ 𝑈𝑟 ⊂ 𝑈

𝜏

𝑟 ⊂ 𝐵𝑟
(1.1.28)

(ii) 𝑈𝑟 ⊂ 𝑈
𝜏

𝑟 ⊂ 𝑈𝑟′ ,

hold for all 𝑟, 𝑟′ ∈ Λ2 with 𝑟 < 𝑟′.
Put, for convenience, 𝑈𝑟 = 𝑇 for 𝑟 > 1 and define the function ℎ : 𝑇 →

[0; 1] by

ℎ(𝑡) = inf{𝑟 : 𝑟 ∈ Λ2 ∪ (1,∞) such that 𝑡 ∈ 𝑈𝑟}, 𝑡 ∈ 𝑇 .

Since the sets 𝑈𝑟 are 𝜈-open, reasoning as in the proof of the 𝜈-usc of the function
𝑓 in Theorem 1.1.15, one can show that the function ℎ is 𝜈-usc.

By (1.1.28).(ii),
ℎ(𝑡) = inf{𝑟 ∈ Λ2 : 𝑡 ∈ 𝑈

𝜏

𝑟} ,

and the sets 𝑈
𝜏

𝑟 are 𝜏 -closed, so that, following again the ideas of the proof of the
𝜏 -lsc of the function 𝑓 in Theorem 1.1.15, one can show that the function ℎ is
𝜏 -lsc.

It remains to show that 𝑓 ≤ ℎ ≤ 𝑔. Let 𝑡 ∈ 𝑇. If 𝑟 ∈ Λ2, 𝑟 < 𝑓(𝑡), then,
for every 𝑟′ ∈ Λ2, 0 ≤ 𝑟′ < 𝑟, 𝑡 /∈ 𝑓−1([𝑜, 𝑟′]) = 𝐵𝑟′ , and so 𝑡 /∈ 𝑈𝑟′ , implying
ℎ(𝑡) ≥ 𝑟. That is ℎ(𝑡) ≥ 𝑟 for every 𝑟 ∈ Λ2 with 𝑟 < 𝑓(𝑡), and so 𝑓(𝑡) ≤ ℎ(𝑡).

If 𝑟 ∈ Λ2 is such that 𝑔(𝑡) < 𝑟, then 𝑡 ∈ 𝑔−1([0; 𝑟)) = 𝐴𝑟 ⊂ 𝑈𝑟, and so
ℎ(𝑡) ≤ 𝑟. Since ℎ(𝑡) ≤ 𝑟 for every 𝑟 ∈ Λ2 with 𝑔(𝑡) < 𝑟, it follows that ℎ(𝑡) ≤ 𝑔(𝑡).

The general case, when 𝑓, 𝑔 : 𝑇 → ℝ, 𝑓 is 𝜈-usc, 𝑔 is 𝜏 -lsc and 𝑓 ≤ 𝑔, can be
reduced to the preceding one by composing with the function𝜓 : ℝ→ (0; 1),

𝜓(𝑡) =
∣𝑡∣+ 𝑡+ 1

2(∣𝑡∣+ 1) , , 𝑡 ∈ ℝ .

The function 𝜓 is a strictly increasing homeomorphism between ℝ and (0; 1),
and its inverse 𝜓−1 : (0; 1)→ ℝ is strictly increasing and continuous. Consequently,
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applying the proved result to the functions 𝑓 = 𝜓 ∘ 𝑓 and 𝑔 = 𝜓 ∘𝐺 we confirm
the existence of a 𝜏 -lsc and 𝜈-usc function ℎ̃ : 𝑇 → (0; 1) such that 𝑓 ≤ ℎ̃ ≤ 𝑔.
But then, the function ℎ = 𝜓−1 ∘ ℎ̃ : 𝑇 → ℝ is 𝜏 -lsc, 𝜈-usc and 𝑓 = 𝜓−1 ∘ 𝑓 ≤
ℎ ≤ 𝜓−1 ∘ 𝑔 = 𝑔.

To prove the converse, suppose that 𝐴,𝐵 are two disjoint subsets of 𝑇 such
that 𝐴 is 𝜈-closed and 𝐵 is 𝜏 -closed. Then the characteristic function 𝜒𝐴 of the
set 𝐴 is 𝜈-usc and 𝜒𝑇∖𝐵 is 𝜏 -lsc. The inclusion 𝐴 ⊂ 𝑇 ∖ 𝐵 implies 𝜒𝐴 ≤ 𝜒𝑇∖𝐵 ,
so that, by hypothesis, there exists a 𝜈-usc and 𝜏 -lsc function ℎ : 𝑇 → [0; 1] such
that 𝜒𝐴 ≤ ℎ ≤ 𝜒𝑇∖𝐵 . By the 𝜏 -lsc of ℎ, the set 𝑈 = ℎ−1((12 ; 1]) is 𝜏 -open and

𝐴 ⊂ 𝑈. By the 𝜈-usc of the function ℎ, the set 𝑉 = ℎ−1([ 12 ; 1]) is 𝜈-closed and
𝐴 ⊂ 𝑈 ⊂ 𝑉 ⊂ 𝑇 ∖𝐵. □

The proof of the following result follows that in topological spaces, see En-
gelking [73, Theorem 1.5.15].

Proposition 1.1.18 (Kelly [111]). A pairwise regular bitopological space (𝑇, 𝜏, 𝜈)
satisfying the second countability axiom (i.e., both 𝜏 and 𝜈 satisfy this axiom) is
pairwise normal.

As it is well known, a relatively easy consequence of the Urysohn theorem
is the Tietze extension theorem, but the proof given for topological spaces can-
not be adapted to bitopological spaces. Kelly [111] proved a Tietze type theorem
asserting that any real-valued 𝜏 -usc and 𝜈-lsc function defined on 𝜏 -closed and
𝜈-closed subset of a pairwise normal bitopological space 𝑇 admits a 𝜏 -usc and
𝜈-lsc extension to the whole space 𝑇. Lane [144] showed by a counterexample that
the result is false in this form, and gave a proper formulation.

The example is the following.

Example 1.1.19. Let 𝑇 be an uncountable set and 𝐴 = {𝑡1, 𝑡2, . . . } be an infinite
countable subset of 𝑇. Let 𝜏 be formed by the empty set and the complements
of finite or countable subsets of 𝑇 , and let 𝜈 be the discrete topology. Then the
bitopological space (𝑇, 𝜏, 𝜈) is pairwise normal, the function 𝑓 : 𝐴 → ℝ, 𝑓(𝑡𝑖) =
𝑖, 𝑖 ∈ ℕ, is 𝜏 -lsc and 𝜈-usc, but has no 𝜏 -lsc and 𝜈-usc extension to 𝑇 .

Indeed, if 𝐴,𝐵 are disjoint subsets of 𝑇 such that 𝐴 is 𝜏 -closed and 𝐵 is
𝜈-closed, then 𝐴 is also 𝜈-open and 𝑇 ∖ 𝐴 is 𝜏 -open, so that (𝑇, 𝜏, 𝜈) is pairwise
normal. The set 𝐴 = {𝑡1, 𝑡2, . . . } is 𝜏 - and 𝜈-closed and the function 𝑓 : 𝐴 →
ℝ, 𝑓(𝑡𝑖) = 𝑖, 𝑖 ∈ ℕ, is 𝜏 -lsc and 𝜈-usc. Suppose that 𝐹 : 𝑇 → ℝ is a 𝜏 -lsc and
𝜈-usc extension of 𝑓. Then the sets 𝐴𝑖 = {𝑡 ∈ 𝑇 : 𝐹 (𝑡) ≤ 𝑖}, 𝑖 ∈ ℕ, are 𝜏 -closed.
Because 𝐴𝑖 ∕= 𝑇, 𝐴𝑖 must be at most countable, implying that 𝑇 = ∪𝑖∈ℕ𝐴𝑖 is
countable, in contradiction to the hypothesis.

A general Tietze type theorem holds only for bounded semi-continuous func-
tions.

Theorem 1.1.20. Let (𝑇, 𝜏, 𝜈) be a pairwise normal bitopological space and 𝐴 a
𝜏-closed and 𝜈-closed subset of 𝑇 . Then every bounded, 𝜏-lsc and 𝜈-usc function



1.1. Topological properties of quasi-metric and quasi-uniform spaces 19

𝑓 : 𝐴→ ℝ admits a 𝜏-lsc and 𝜈-usc extension 𝐹 : 𝑇 → ℝ such that

inf 𝐹 (𝑇 ) = inf 𝑓(𝐴) and sup𝐹 (𝑇 ) = sup 𝑓(𝐴) . (1.1.29)

Proof. Let

𝛼 = inf 𝑓(𝐴) and 𝛽 = sup 𝑓(𝐴) .

Define the functions 𝑔, ℎ : 𝑇 → ℝ by 𝑔(𝑡) = ℎ(𝑡) = 𝑓(𝑡) for 𝑡 ∈ 𝐴, 𝑔(𝑡) = 𝛼
and ℎ(𝑡) = 𝛽 for 𝑡 ∈ 𝑇 ∖ 𝐴. It is easily seen that 𝑔 is 𝜈-usc, ℎ is 𝜏 -lsc and 𝑔 ≤ ℎ.
By Theorem 1.1.16 there exists a 𝜏 -lsc and 𝜈-usc function 𝐹 : 𝑇 → ℝ such that
𝑔 ≤ 𝐹 ≤ ℎ. It follows that 𝐹 is the desired extension of 𝑓. □

Lane [144] gave some sufficient conditions on the subset 𝐴 of the bitopological
space 𝑇 in order for any 𝜏 -lsc and 𝜈-usc real-valued function to have a 𝜏 -lsc and
𝜈-usc extension to 𝑇. In particular this is true for quasi-metric spaces.

Proposition 1.1.21. Let (𝑋, 𝜌) be a quasi-semimetric space and 𝐴 a nonempty 𝜏𝜌-
and 𝜏𝜌-closed subset of 𝑋. Then any 𝜏𝜌-lsc and 𝜏𝜌-usc function 𝑓 : 𝐴 → (ℝ, ∣ ⋅ ∣)
admits a 𝜏𝜌-lsc and 𝜏𝜌-usc extension to the whole space 𝑋.

Proof. By Proposition 1.1.12, the function ℎ1(𝑥) = 𝜌(𝐴, 𝑥), 𝑥 ∈ 𝑋, is 𝜏𝜌-usc and
𝜏𝜌-lsc, while the function ℎ2(𝑥) = 𝜌(𝑥,𝐴), 𝑥 ∈ 𝑋, is 𝜏𝜌-lsc and 𝜏𝜌-usc.

The function 𝑔 = 𝑓/(1 + ∣𝑓 ∣) is 𝜏𝜌-lsc and 𝜏𝜌-usc and −1 < 𝑔(𝑥) < 1 for all
𝑥 ∈ 𝑋. By Theorem 1.1.20 𝑔 has a 𝜏𝜌-lsc and 𝜏𝜌-usc extension 𝐺 : 𝑋 → [−1, 1].
The function 𝐺+ = 𝐺 ∨ 0 is 𝜏𝜌-lsc, 𝜏𝜌-usc and 0 ≤ 𝐺+ ≤ 1, while the function
𝐺− = −(𝐺 ∧ 0) is 𝜏𝜌-usc, 𝜏𝜌-lsc and 0 ≤ 𝐺− ≤ 1.

The function 𝐺1 = 𝐺+/(1 + ℎ1) is 𝜏𝜌-lsc, 𝜏𝜌-usc and 0 ≤ 𝐺1(𝑥) < 1, 𝑥 ∈ 𝑋,
while the function 𝐺2 = 𝐺+/(1 + ℎ2) is 𝜏𝜌-usc, 𝜏𝜌-lsc and 0 ≤ 𝐺2(𝑥) < 1, 𝑥 ∈ 𝑋.
Also, for every 𝑥 ∈ 𝐴,

𝐺1(𝑥) = 𝐺+(𝑥) and 𝐺2(𝑥) = 𝐺−(𝑥) .

It follows that the function 𝐺 = 𝐺1 −𝐺2 is 𝜏𝜌-lsc, 𝜏𝜌-usc and −1 < 𝐺(𝑥) <
1, 𝑥 ∈ 𝑋. Also, for every 𝑥 ∈ 𝐴,

𝐺(𝑥) = 𝐺1(𝑥)−𝐺2(𝑥) = 𝐺+(𝑥)−𝐺−(𝑥) = 𝐺(𝑥) = 𝑔(𝑥) ,

that is𝐺 is a 𝜏𝜌-lsc and 𝜏𝜌-usc extension of 𝑔. But then the function 𝐹 = 𝐺/(1−∣𝐺∣)
is 𝜏𝜌-lsc and 𝜏𝜌-usc extension of the function 𝑓. □

Remark 1.1.22. The proof of Theorem 1.1.20, based on Theorem 1.1.16, is taken
from [144]. Another proof, based on the Urysohn theorem for bitopological spaces
(Theorem 1.1.15) is given in [78]. In [78] some conditions on the set 𝐴 ⊂ 𝑇 ensuring
the existence of a 𝜏 -usc and 𝜈-lsc extension 𝐹 of an arbitrary 𝜏 -usc and 𝜈-lsc 𝐹
on 𝐴 are given too.
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A bitopological space (𝑇, 𝜏, 𝜈) is called pairwise perfectly normal if it is pair-
wise normal and every 𝜏 -closed (𝜈-closed) subset of 𝑇 is 𝜈-𝐺𝛿 (𝜏 -𝐺𝛿).

The following characterization of pairwise perfectly normal bitopological
spaces extends a well-known result in topology, see, e.g., Engelking [73, Theorem
1.5.19].

Theorem 1.1.23 ([78], [144]). A bitopological space (𝑇, 𝜏, 𝜈) is pairwise perfectly
normal if and only if for any pair 𝐴,𝐵 of subsets of 𝑇 such that 𝐴 is 𝜏-closed, 𝐵
is 𝜈-closed and 𝐴 ∩ 𝐵 = ∅, there exists a 𝜏-lsc and 𝜈-usc function 𝑓 : 𝑇 → [0; 1]
such that 𝐴 = 𝑓−1(0) and 𝐵 = 𝑓−1(1).

Bı̂rsan studied in the paper [24] pairwise completely regular bitopological
spaces and extended to this setting Hausdorff’s embedding theorem. A bitopo-
logical space (𝑋, 𝜏, 𝜈) is called 𝜏 -completely regular with respect to 𝜈 if for every
𝑥 ∈ 𝑋 and every 𝜏 -open neighborhood 𝑈 of 𝑥 there exits a 𝜏 -lsc and 𝜈-usc function
𝑓 : 𝑋 → [0; 1] such that 𝑓𝑥) = 1 and 𝑓(𝑋 ∖ 𝑈) = {0}. Equivalently, (𝑋, 𝜏, 𝜈) is
𝜏 -completely regular with respect to 𝜈 if and only if for every 𝜏 -closed set 𝑍 and
every point 𝑥 ∈ 𝑋 ∖ 𝑍 there exists a 𝜏 -lsc and 𝜈-usc function 𝑓 : 𝑋 → [0; 1] such
that 𝑓(𝑥) = 1 and 𝑓(𝑍) = {0}.

Consider the bitopological space (ℝ, 𝜏𝑢, 𝜏�̄�) from Example 1.1.3 and let 𝐼 =
[0; 1] with the induced induced topologies.

By definition a bitopological cube is a product 𝐼𝐴 of 𝐴 copies of the bitopo-
logical space 𝐼, where 𝐴 an arbitrary nonempty set. Any bitopological cube is
pairwise completely regular and pairwise compact.

A bitopological space (𝑋, 𝜏, 𝜈) is called weakly pairwise Hausdorff if for every
pair 𝑥, 𝑦 of distinct points from 𝑋 there exist a 𝜏 -open neighborhood 𝑈 of one of
these points and a 𝜈-open neighborhood 𝑉 of the other one with 𝑈 ∩ 𝑉 = ∅. The
space (ℝ, 𝜏𝑢, 𝜏�̄�) is weakly pairwise Hausdorff but not pairwise Hausdorff.

Theorem 1.1.24 ([24]). A weakly pairwise Hausdorff bitopological space is pair-
wise completely regular if and only if it is bi-homeomorphic to a subspace of a
bitopological cube.

A mapping 𝑓 : (𝑋, 𝜏1, 𝜏2) → (𝑌, 𝜈1, 𝜈2) between two bitopological spaces
is called bi-continuous if it is both (𝜏1, 𝜈1)-continuous and (𝜏2, 𝜈2)-continuous. If
𝑓 is a bijection such that both 𝑓 and 𝑓−1 are bi-continuous, then 𝑓 is called a
bi-homeomorphism.

The paper [25] is concerned with bitopological groups and [26] with some
properties relating quasi-uniform and bitopological spaces.

An important problem in topology is that of metrizability of topological
spaces. As we have seen, quasi-semimetric spaces are bitopological spaces, and so
the corresponding problem in this setting would be that of quasi-metrizability of
bitopological spaces. The following result is the analog of Urysohn metrizability
theorem and improves Proposition 1.1.18.
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Theorem 1.1.25 (Kelly [111]). If (𝑇, 𝜏, 𝜈) is a pairwise regular bitopological space
such that both 𝜏 and 𝜈 satisfy the second axiom of countability, then it is quasi-
semimetrizable. If further, 𝑇 is pairwise Hausdorff, then it is quasi-metrizable.

Lane [144] proved a bitopological version of the Nagata-Smirnov metrizability
theorem.

1.1.4 Compactness in bitopological spaces

We shall briefly present some results on compactness in bitopological spaces ob-
tained by Bı̂rsan [23].

If 𝒜,ℬ are two covers of a set 𝑋 one says that ℬ refines 𝒜 (or that ℬ is a
refinement of 𝒜) if

∀𝐵 ∈ ℬ, ∃𝐴 ∈ 𝒜, 𝐵 ⊂ 𝐴 . (1.1.30)

Following [23], a bitopological space (𝑋, 𝜏, 𝜈) is called:

∙ 𝜏 -compact with respect to 𝜈 if every 𝜏 -open cover of 𝑋 admits a finite 𝜈-open
refinement that covers 𝑋 ;

∙ pairwise compact if it is 𝜏 -compact with respect to 𝜈 and 𝜈-compact with
respect to 𝜏.

It is obvious that a topological space (𝑋, 𝜏) is compact if and only if for
every open cover of 𝑋 there exists a finite refinement of 𝑋 which is an open cover
of 𝑋 , so that the above definitions are natural extensions of the usual notion
of compactness. The bitopological compactness can be characterized in terms of
closed sets.

Proposition 1.1.26 ([23]). Let (𝑋, 𝜏, 𝜈) be a bitopological space. The following are
equivalent.

1. The space 𝑋 is 𝜏-compact with respect to 𝜈.

2. If a family 𝐹𝑖, 𝑖 ∈ 𝐼, of 𝜏-closed sets has empty intersection, then there
exists a finite family 𝐻𝑗 , 𝑗 ∈ 𝐽, of 𝜈-closed sets having empty intersection
and such that for every 𝑗 ∈ 𝐽 there exists 𝑖 ∈ 𝐼 with 𝐻𝑗 ⊃ 𝐹𝑖.

Proof. 1 ⇒ 2. Let 𝐹𝑖, 𝑖 ∈ 𝐼, be a family of 𝜏 -closed sets with empty intersection.
Then their complements 𝐺𝑖 = ∁(𝐹𝑖), 𝑖 ∈ 𝐼, are 𝜏 -open and cover𝑋 , so there exists
a finite refinement 𝑍𝑗 , 𝑗 ∈ 𝐽, of {𝐺𝑖} with 𝜈-open sets that covers 𝑋 . Putting
𝐻𝑗 = ∁(𝑍𝑗), 𝑗 ∈ 𝐽, it follows that each 𝐻𝑗 is 𝜈-closed, ∩𝑗∈𝐽𝐻𝑗 = ∁ (∪𝑗∈𝐽𝑍𝑗) = ∅.
Also, for every 𝑗 ∈ 𝐽 there exists 𝑖 ∈ 𝐼 such that 𝑍𝑗 ⊂ 𝐺𝑖 ⇐⇒ 𝐻𝑗 ⊃ 𝐹𝑖.

The implication 2 ⇒ 1 is proved similarly. □

Proposition 1.1.27 ([23]). If the bitopological space (𝑋, 𝜏, 𝜈) is pairwise Hausdorff
and (𝑋, 𝜏) is compact, then 𝜏 ⊂ 𝜈.
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Proof. It is sufficient to show that every 𝜏 -closed subset of 𝑋 is 𝜈-closed. Let
𝑍 ⊂ 𝑋 be 𝜏 -closed and 𝑦 /∈ 𝑍. Then for every 𝑧 ∈ 𝑍 there exists a 𝜏 -open set
𝑈𝑧 containing 𝑧 and a 𝜈-open set 𝑉𝑧 containing 𝑦 such that 𝑈𝑧 ∩ 𝑉𝑧 = ∅. By the
𝜏 -compactness of 𝑋 , the 𝜏 -open cover 𝑈𝑧, 𝑧 ∈ 𝑍, of 𝑍 contains a finite subcover
𝑈𝑧1, . . . , 𝑈𝑧𝑛 . It follows that 𝑉 = ∩𝑛𝑘=1𝑉𝑧𝑘 is a 𝜈-open neighborhood of 𝑦 and
𝑉 ∩ 𝑍 ⊂ 𝑉 ∩ (∪𝑛𝑘=1𝑈𝑧𝑘) = ∅, so that 𝑉 ⊂ 𝑋 ∖ 𝑍. Consequently 𝑋 ∖ 𝑍 is 𝜈-open
and 𝑍 is 𝜈-closed. □

This proposition has the following corollary.

Corollary 1.1.28. Let (𝑋, 𝜏, 𝜈) be a pairwise Hausdorff bitopological space.

1. If both the topologies 𝜏 and 𝜈 are compact, then 𝜏 = 𝜈.

2. If the space 𝑋 is 𝜏-compact with respect to 𝜈, then 𝜏 ⊂ 𝜈.

3. If (𝑋, 𝜏, 𝜈) is pairwise compact, then 𝜏 = 𝜈.

It is known that a subset of a topological space is compact if and only if it
is compact with respect to the induced topology, a result that does not hold in
bitopological spaces.

Call a subset 𝑌 of a bitopological space (𝑋, 𝜏, 𝜈) 𝜏 -compact with respect to 𝜈
if it is 𝜏 ∣𝑌 -compact with respect to 𝜈∣𝑌 as a bitopological subspace of 𝑋 .

Proposition 1.1.29 ([23]). Let (𝑋, 𝜏, 𝜈) be a bitopological space and 𝑌 ⊂ 𝑋.

1. If every 𝜏-open cover of 𝑌 admits a finite refinement that is a 𝜈-open cover
of 𝑌 , then 𝑌 is 𝜏-compact with respect to 𝜈.

2. If the set 𝑌 is 𝜈-open, then the converse is also true.

It is shown by an example [23, Example 8] that the second assertion from
the above proposition is not true for arbitrary subsets.

The preservation of compactness by continuous mappings takes the following
form.

Proposition 1.1.30 ([23]). Let (𝑋, 𝜏1, 𝜏2) and (𝑋, 𝜈1, 𝜈2) be bitopological spaces.
Suppose that 𝑋 is 𝜏1-compact with respect to 𝜏2. If the mapping 𝑓 : 𝑋 → 𝑌 is
(𝜏1, 𝜈1)-continuous and (𝜏2, 𝜈2)-open, then 𝑓(𝑋) is 𝜈1-compact with respect to 𝜈2.

Proof. One shows that the hypotheses from Proposition 1.1.29.1 are fulfilled. □

In the same paper [23], Bı̂rsan extended to this setting Alexander’s subbase
theorem and Tikhonov’s theorem on the compactness of the product of compact
topological spaces.

Theorem 1.1.31 (Alexander’s subbase theorem, [23]). Let (𝑋, 𝜏, 𝜈) be a bitopolog-
ical space, 𝒜 a subbase of the topology 𝜏 and ℬ a subbase of the topology 𝜈.

1. If every cover of 𝑋 with sets in 𝒜 admits a finite refinement with elements
from 𝜈 that covers 𝑋, then 𝑋 is 𝜏-compact with respect to 𝜈.
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2. If every cover of 𝑋 with sets in 𝒜 admits a finite refinement with elements
from ℬ that covers 𝑋, then the bitopological space 𝑋 is pairwise compact.

The bitopological product of a family (𝑋𝑖, 𝜏𝑖, 𝜈𝑖), 𝑖 ∈ 𝐼, of bitopological spaces
is the bitopological space (𝑋, 𝜏, 𝜈), where 𝑋 =

∏
𝑖∈𝐼 𝑋𝑖, 𝜏 =

∏
𝑖∈𝐼 𝜏𝑖 and 𝜈 =∏

𝑖∈𝐼 𝜈𝑖. The so-defined bitopological product has properties similar to that of the
usual topological product.

Proposition 1.1.32. Let (𝑋𝑖, 𝜏𝑖, 𝜈𝑖), 𝑖 ∈ 𝐼, be a family of bitopological spaces,
(𝑋, 𝜏, 𝜈) their bitopological product.

1. For each 𝑖 ∈ 𝐼 the projection 𝑝𝑖 : 𝑋 → 𝑋𝑖 is bi-continuous and bi-open, i.e.,
(𝜏, 𝜏𝑖)-continuous, (𝜈, 𝜈𝑖)-continuous and (𝜏, 𝜏𝑖)-open and (𝜈, 𝜈𝑖)-open.

2. If (𝑋, 𝜏, 𝜈) is 𝜏-compact with respect to 𝜈 (pairwise compact), then for each
𝑖 ∈ 𝐼 the bitopological space (𝑋𝑖, 𝜏𝑖, 𝜈𝑖) is 𝜏𝑖-compact with respect to 𝜈𝑖
(respectively, pairwise compact).

Theorem 1.1.33 (Tikhonov compactness theorem, [23]). Let (𝑋𝑖, 𝜏𝑖, 𝜈𝑖), 𝑖 ∈ 𝐼,
be a family of bitopological spaces. If each bitopological space 𝑋𝑖 is 𝜏𝑖-compact
with respect to 𝜈𝑖 (pairwise compact), then their bitopological product (𝑋, 𝜏, 𝜈) is
𝜏-compact with respect to 𝜈 (respectively, pairwise compact).

In spite of the good results holding for this notion of compactness, it has
a serious drawback – a finite set need not be compact – as it is shown by the
following example.

Example 1.1.34 ([23]). Consider a three point set 𝑋 = {𝑎, 𝑏, 𝑐} with the topologies
𝜏 = {∅, {𝑎}, {𝑏, 𝑐}, 𝑋} and 𝜈 = {∅, {𝑐}, {𝑎, 𝑏}, 𝑋}. Then the topologies 𝜏 and 𝜈 are
compact, but 𝜏 is not compact with respect to 𝜈, nor 𝜈 is compact with respect
to 𝜏.

The paper [23] contains also examples of

∙ a pairwise compact, not pairwise normal, bitopological space (𝑋, 𝜏, 𝜈) with
𝜏 ∕= 𝜈;

∙ a pairwise Hausdorff bitopological space (𝑋, 𝜏, 𝜈) which is 𝜏 -compact with
respect to 𝜈, but not pairwise normal;

∙ a pairwise normal, pairwise compact bitopological space (𝑋, 𝜏, 𝜈) which is
not pairwise regular.

There are also other notions of compactness in bitopological spaces, a good
analysis of various relations holding between them is done in the paper [52]. Note
that our terminology differs from that in [52]. For convenience we shall call a
bitopological space pairwise 𝐵-compact if it is pairwise compact in the sense con-
sidered by Bı̂rsan.

Let (𝑋, 𝜏, 𝜈) be a bitopological space. A cover 𝒜 ⊂ 𝜏 ∪𝜈 of 𝑋 is called (𝜏, 𝜈)-
open. If, in addition, 𝒜 contains a nonempty set from 𝜏 and a nonempty set from
𝜈, then 𝒜 is called pairwise open.
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The bitopological space (𝑋, 𝜏, 𝜈) is called:

∙ pairwise S-compact provided that every pairwise open cover of 𝑋 contains a
finite subcover (Swart [231]);

∙ semi-compact provided that every (𝜏, 𝜈)-open cover of 𝑋 contains a finite
subcover (Datta [53, 54]);

∙ pseudo-compact provided that every bi-continuous function 𝑓 : (𝑋, 𝜏, 𝜈) →
(ℝ, 𝜏𝑢, 𝜏�̄�) is bounded (Saegrove [213]);

∙ pairwise real-compact provided it is bi-homeomorphic to the intersection of
a
∏

𝑖∈𝐼 𝜏𝑢-closed subset and a
∏

𝑖∈𝐼 𝜏�̄�-closed subset of a product of 𝐼 copies
of (ℝ, 𝜏𝑢, 𝜏�̄�) (Saegrove [213]);

∙ bicompact provided it is both pseudo-compact and pairwise real-compact
(Saegrove [213]).

In the following theorem we collect some results from [52].

Theorem 1.1.35. Let (𝑋, 𝜏, 𝑛𝑢) be a bitopological space.

1. The bitopological space (𝑋, 𝜏, 𝜈) is semi-compact if and only if it is compact
with respect to the topology 𝜏 ∨ 𝜈.

2. The bitopological space (𝑋, 𝜏, 𝜈) is semi-compact if and only if it is pairwise
compact, 𝜏-compact and 𝜈-compact.

3. The bitopological space (𝑋, 𝜏, 𝜈) is pairwise 𝑆-compact if and only if each
𝜏-closed proper subset of 𝑋 is 𝜈-compact and each 𝜈-closed proper subset of
𝑋 is 𝜏-compact.

4. If the bitopological space (𝑋, 𝜏, 𝜈) is semi-compact or pairwise 𝐵-compact,
then it is pseudo-compact.

5. If the bitopological space (𝑋, 𝜏, 𝜈) is pairwise Hausdorff and either semi-
compact, bicompact or pairwise 𝐵-compact, then 𝜏 = 𝜈.

5. If the bitopological space (𝑋, 𝜏, 𝜈) is either semi-compact, bicompact or pair-
wise 𝐵-compact, then both of the topologies 𝜏 and 𝜈 are compact.

Remark 1.1.36.

1. Any finite bitopological space is semi-compact and pairwise 𝑆-compact. Con-
sequently, Example 1.1.34 furnishes also an example of a semi-compact and
pairwise 𝑆-compact bitopological space which is not pairwise 𝐵-compact.

2. Example 3 in [52] gives a pairwise 𝐵-compact bitopological space which is
neither pairwise 𝑆-compact nor semi-compact.

3. Example 1 in [52] gives a pairwise 𝑆-compact bitopological space (𝑋, 𝜏, 𝜈)
such that (𝑋, 𝜈) is not compact.

Paracompactness is even a more delicate matter to be treated within the
framework of bitopological spaces. For some attempts and discussions see the
papers [29], [55], [124], [178] and [179].
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We mention also the following metrizability conditions.

Theorem 1.1.37. Let (𝑇, 𝜏, 𝜈) be a bitopological space and (𝑋, 𝑞) a quasi-metric
space.

1. If the bitopological space 𝑇 is quasi-metrizable and 𝜏 is locally (countably)
compact with respect to 𝜈, then (𝑇, 𝜈) is metrizable. The same conclusion
holds if locally compact is replaced by paracompact.

2. If the topology 𝜏(𝜌) is sequentially compact, then the topology 𝜏(𝜌) is metriz-
able. The same is true if 𝜏(𝜌) is compact.

3. If (𝑋, 𝜌) is sequentially compact and Hausdorff, then the topology 𝜏(𝜌) is
metrizable.

Remark 1.1.38. Assertions 1 and 2 are taken from [178] while the third one is
from [227].

1.1.5 Topological properties of asymmetric seminormed spaces

In general the topology generated by an asymmetric norm is 𝑇0 but not 𝑇1. Indeed,
it is easy to check that the space (ℝ, 𝑢) from Example 1.1.3 is 𝑇0 but −1 belongs to
every neighborhood of 1. A condition that the topology of an asymmetric normed
space be Hausdorff was found by Garćıa-Raffi, Romaguera and Sánchez-Pérez [91],
in terms of a functional 𝑝⋄ : 𝑋 → [0;∞) associated to an asymmetric seminorm
𝑝 defined on a real vector space 𝑋, a result that was extended to asymmetric
locally convex spaces in [41], see Subsection 1.1.7. The separation properties of an
asymmetric seminormed space will be presented in Proposition 1.1.40.

The functional 𝑝⋄ is defined by the formula

𝑝⋄(𝑥) = inf{𝑝(𝑥′) + 𝑝(𝑥′ − 𝑥) : 𝑥′ ∈ 𝑋}, 𝑥 ∈ 𝑋. (1.1.31)

In the following proposition we present the properties of 𝑝⋄.

Proposition 1.1.39. The functional 𝑝⋄ is a (symmetric) seminorm on 𝑋, 𝑝⋄ ≤ 𝑝,
and 𝑝⋄ is the greatest seminorm on 𝑋 majorized by 𝑝.

Proof. First observe that, replacing 𝑥′ by 𝑥′ − 𝑥 in (1.1.31), we get

𝑝⋄(−𝑥) = inf{𝑝(𝑥′) + 𝑝(𝑥′ + 𝑥) : 𝑥′ ∈ 𝑋}
= inf{𝑝(𝑥′ − 𝑥) + 𝑝((𝑥′ − 𝑥) + 𝑥) : 𝑥′ ∈ 𝑋} = 𝑝⋄(𝑥) ,

so that 𝑝⋄ is symmetric. The positive homogeneity of 𝑝⋄, 𝑝⋄(𝛼𝑥) = 𝛼𝑝⋄(𝑥), 𝑥 ∈
𝑋,𝛼 ≥ 0, is obvious. For 𝑥, 𝑦 ∈ 𝑋 and arbitrary 𝑥′, 𝑦′ ∈ 𝑋 we have

𝑝⋄(𝑥+ 𝑦) ≤ 𝑝(𝑥′ + 𝑦′) + 𝑝(𝑥′ + 𝑦′ − 𝑥− 𝑦) ≤ 𝑝(𝑥′) + 𝑝(𝑥′ − 𝑥) + 𝑝(𝑦′) + 𝑝(𝑦′ − 𝑦) ,

so that, passing to infimum with respect to 𝑥′, 𝑦′ ∈ 𝑋, we obtain the subadditivity
of 𝑝⋄,

𝑝⋄(𝑥+ 𝑦) ≤ 𝑝⋄(𝑥) + 𝑝⋄(𝑦) .
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Suppose now that there exists a seminorm 𝑞 on 𝑋 such that 𝑞 ≤ 𝑝, i.e.,
∀𝑧 ∈ 𝑋, 𝑞(𝑧) ≤ 𝑝(𝑧), and 𝑝⋄(𝑥) < 𝑞(𝑥) ≤ 𝑝(𝑥), for some 𝑥 ∈ 𝑋 . Then, by the
definition of 𝑝⋄, there exists 𝑥′ ∈ 𝑋 such that 𝑝⋄(𝑥) < 𝑝(𝑥′) + 𝑝(𝑥′ − 𝑥) < 𝑞(𝑥),
leading to the contradiction

𝑞(𝑥) ≤ 𝑞(𝑥′) + 𝑞(𝑥− 𝑥′) = 𝑞(𝑥′) + 𝑞(𝑥′ − 𝑥) ≤ 𝑝(𝑥′) + 𝑝(𝑥′ − 𝑥) < 𝑞(𝑥) . □

In the following proposition we collect the separation properties of an asym-
metric seminormed space.

Proposition 1.1.40 ([91]). Let (𝑋, 𝑝) be an asymmetric seminormed space.

1. The topology 𝜏𝑝 is 𝑇0 if and only if for every 𝑥 ∈ 𝑋, 𝑥 ∕= 0, 𝑝(𝑥) > 0 or
𝑝(−𝑥) > 0, in other words, if and only if 𝑝 is an asymmetric norm.

2. The topology 𝜏𝑝 is 𝑇1 if and only if 𝑝(𝑥) > 0 for every 𝑥 ∈ 𝑋, 𝑥 ∕= 0.
3. The topology 𝜏𝑝 is Hausdorff if and only if 𝑝⋄(𝑥) > 0 for every 𝑥 ∕= 0.

Proof. The assertion from 1 follows from Proposition 1.1.8.3.

2. If 𝑝⋄(𝑥) > 0 whenever 𝑥 ∕= 0, then 𝑝⋄ is a norm on 𝑋, so that the topology
𝜏𝑝⋄ generated by 𝑝⋄ is Hausdorff. The inequality 𝑝⋄ ≤ 𝑝 implies that the topology
𝜏𝑝 is finer than 𝜏𝑝⋄ , so it is Hausdorff, too.

Suppose 𝑝⋄(𝑥) = 0 for some 𝑥 ∕= 0. By the definition (1.1.31) of 𝑝⋄, there
exists a sequence (𝑥𝑛) in 𝑋 such that lim𝑛[𝑝(𝑥𝑛) + 𝑝(𝑥𝑛 − 𝑥)] = 𝑝⋄(𝑥) = 0. This
implies lim𝑛 𝑝(𝑥𝑛) = 0 and lim𝑛 𝑝(𝑥𝑛−𝑥) = 0, showing that the sequence (𝑥𝑛) has
two limits with respect to 𝜏𝜌. Consequently, the topology 𝜏𝑝 is not Hausdorff. □
Remark 1.1.41. It is known that a 𝑇0 topological vector space (TVS) is Hausdorff
and completely regular (see [149, Theorem 2.2.14]), a result that is no longer true
in asymmetric normed spaces. An easy example illustrating this situation is that
of the space (ℝ, 𝑢) from Example 1.1.3, which is 𝑇0 but not 𝑇1.

The following proposition shows that an asymmetric normed space is not
necessarily a topological vector space.

Proposition 1.1.42. If (𝑋, 𝑝) is an asymmetric normed space, then the topology
𝜏𝑝 is translation invariant, so that the addition + : 𝑋 × 𝑋 → 𝑋 is continuous.
Also any additive mapping between two asymmetric normed spaces (𝑋, 𝑝), (𝑌, 𝑞)
is continuous if and only if it is continuous at 0 ∈ 𝑋 (or at an arbitrary point
𝑥0 ∈ 𝑋).

The scalar multiplication is not always continuous, so that an asymmetric
normed space need not be a topological vector space.

Proof. The fact that the topology 𝜏𝑝 is translation invariant follows from the
formulae (1.1.5). Example 1.1.3 shows that the multiplication by scalars need not
be continuous. □

Another example was given by Borodin [28].
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Example 1.1.43. In the space 𝑋 = 𝐶0[0; 1], where

𝐶0[0; 1] =

{
𝑓 ∈ 𝐶[0; 1] :

∫ 1

0

𝑓(𝑡)𝑑𝑡 = 0

}
,

with the asymmetric seminorm 𝑝(𝑓) = max 𝑓([0; 1]), the multiplication by scalars
is not continuous at the point (−1, 0) ∈ ℝ×𝑋.

To prove this, we show that (−1)𝐵𝑝[0, 𝑟] is not contained in 𝐵𝑝[0, 1] for any
𝑟 > 0. Indeed, let 𝑡𝑛 = 1/𝑛 and

𝑓𝑛(𝑡) =

{
𝑟(𝑛− 1)(𝑛𝑡− 1), 0 ≤ 𝑡 ≤ 𝑡𝑛,

𝑟 𝑛
𝑛−1

(
𝑡− 1

𝑛

)
, 𝑡𝑛 < 𝑡 ≤ 1 ,

for 𝑛 ∈ ℕ. Then 𝑓𝑛 ∈ 𝐶0[0; 1], 𝑝(𝑓𝑛) = 𝑟, −𝑓𝑛 ∈ 𝐶0[0; 1] and 𝑝(−𝑓𝑛) = (𝑛−1)𝑟 >
1 for sufficiently large 𝑛.

Remark 1.1.44. It is known (and easy to check) that if a topology is separable, then
any coarser topology is separable. In particular, if the semimetric space (𝑋, 𝜌𝑠) is
separable, then the quasi-metric space (𝑋, 𝜌) is also separable (with respect to the
topology 𝜏𝜌).

The following example shows that the converse is not true, in general.

Example 1.1.45 (Borodin [28]). There exists an asymmetric normed space (𝑋, 𝑝)
which is 𝜏𝑝-separable but not 𝜏𝑝𝑠-separable.

Take

𝑋 =

{
𝑥 ∈ ℓ∞ : 𝑥 = (𝑥𝑘),

∞∑
𝑘=1

𝑥𝑘
2𝑘
= 0

}
, (1.1.32)

with the asymmetric norm 𝑝(𝑥) = sup𝑘 𝑥𝑘. It is clear that 𝑝 is an asymmetric
norm on 𝑋 satisfying 𝑝(𝑥) > 0 whenever 𝑥 ∕= 0 and 𝑝𝑠(𝑥) = ∥𝑥∥∞ = sup𝑘 ∣𝑥𝑘∣
is the usual sup-norm on ℓ∞. Because 𝜑(𝑥) =

∑∞
𝑘=1 2

−𝑘𝑥𝑘, 𝑥 = (𝑥𝑘) ∈ ℓ∞, is
a continuous linear functional on ℓ∞, it follows that 𝑋 = ker𝜑 is a codimension
one closed subspace of ℓ∞. Since ℓ∞ is nonseparable with respect to 𝑝𝑠, 𝑋 is also
nonseparable with respect to 𝑝𝑠.

Let us show that 𝑋 is 𝑝-separable. Consider the set 𝑌 formed of all 𝑦 = (𝑦𝑘)
such that 𝑦𝑘 ∈ ℚ for all 𝑘 and there exists 𝑛 = 𝑛(𝑦) such that 𝑦𝑘 = 𝑦𝑛+1 for all
𝑘 > 𝑛. It is clear that 𝑌 is contained in 𝑋 and that 𝑌 is countable. To show that
𝑌 is 𝑝-dense in 𝑋, let 𝑥 ∈ 𝑋 and 𝜀 > 0.

Choose 𝑛 ∈ ℕ such that

𝑛∑
𝑖=1

2−𝑖𝜀−
𝑛∑
𝑖=1

2−𝑖𝑥𝑖 > ∥𝑥∥∞
∞∑

𝑗=𝑛+1

2−𝑗 . (1.1.33)



28 Chapter 1. Quasi-metric and Quasi-uniform Spaces

This is possible because the left-hand side of (1.1.33) tends to 𝜀 for 𝑛→∞,
while the right-hand side tends to 0. Choose 𝑦𝑘 ∈ ℚ ∩ (𝑥𝑘 − 2𝜀;𝑥𝑘 − 𝜀) for 𝑘 =
1, . . . , 𝑛, and let

𝑦𝑘 = 𝛼 := −
(

𝑛∑
𝑖=1

2−𝑖𝑦𝑖

)
:

⎛⎝ ∞∑
𝑗=𝑛+1

2−𝑗

⎞⎠ ,

for 𝑘 > 𝑛. Then 𝑦 = (𝑦𝑘) ∈ 𝑌, 𝜀 < 𝑦𝑘−𝑥𝑘 < 2𝜀, for 𝑘 = 1, . . . , 𝑛 and, by (1.1.33),

𝑦𝑘 = 𝛼 >

(
𝑛∑
𝑖=1

2−𝑖(𝜀− 𝑥𝑖)

)
:

⎛⎝ ∞∑
𝑗=𝑛+1

2−𝑗

⎞⎠ > ∥𝑥∥∞ ,

for 𝑘 > 𝑛. It follows that 𝑥𝑘 − 𝑦𝑘 ≤ ∥𝑥∥∞ − 𝑦𝑘 < 0 for 𝑘 > 𝑛, so that 𝑝(𝑥− 𝑦) =
max{𝑥𝑘 − 𝑦𝑘 : 1 ≤ 𝑘 ≤ 𝑛} < 2𝜀.

As it is well known, by the classical Banach-Mazur theorem, any separable
real Banach space can be linearly and isometrically embedded in the Banach space
𝐶[0; 1] of all continuous real-valued functions on [0; 1] with the sup-norm, see, for
instance, [74, Theorem 5.17]. In other words, 𝐶[0; 1] is a universal space in the
category of separable real Banach spaces. The validity of this result in the case of
asymmetric normed spaces was discussed by Alimov [11] and Borodin [28]. The
above example shows that some attention must be paid to the notion of separability
that we are using.

Denote by (𝐶[0; 1], 1, 0) the space of all real-valued continuous functions on
[0; 1] functions with the asymmetric norm

∥𝑓 ∣ = max{𝑓+(𝑡) : 𝑡 ∈ [0; 1]}, (1.1.34)

for 𝑓 ∈ 𝐶[0; 1], where 𝑓+(𝑡) = max{𝑓(𝑡), 0}, 𝑡 ∈ [0; 1] .
Theorem 1.1.46 ([28]). Any 𝑇1 asymmetric normed space (𝑋, 𝑝) such that the asso-
ciated normed space (𝑋, 𝑝𝑠) is separable is isometrically isomorphic to a subspace
of the asymmetric normed space (𝐶[0; 1], 1, 0).

Since any linear isometry from (𝑋, 𝑝) to (𝐶[0; 1], 1, 0) induces a linear isome-
try from (𝑋, 𝑝𝑠) to the usual Banach space 𝐶[0; 1], the separability condition with
respect to the symmetric norm 𝑝𝑠 is necessary for the validity of the Banach-Mazur
theorem.

Some complements to this result were given by Alimov [11].

Theorem 1.1.47 ([11]). A 𝑇1 asymmetric normed space (𝑋, 𝑝) is isometrically iso-
morphic to an affine variety 𝑍 of the usual Banach space 𝐶[0; 1] if and only if the
topology 𝜏𝑝 is metrizable and separable.

Proof. Note that the topology 𝜏𝑝 of a 𝑇1 asymmetric normed space (𝑋, 𝑝) is metriz-
able if and only if 𝜏𝑝 = 𝜏𝑝 = 𝜏𝑝𝑠 , so that the topology 𝜏𝑝 is generated by the
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associated norm 𝑝𝑠. Also, in this case, it does not matter with respect to which of
the topologies 𝜏𝑝, 𝜏𝑝, or 𝜏𝑝𝑠 , is considered the separability.

Suppose that the topology 𝜏𝑝 is metrizable and separable. Then the topology
generated by the norm 𝑝𝑠 agrees with that generated by the asymmetric norm 𝑝,
implying the existence of two numbers 0 < 𝑅 < 𝑅′ such that 𝑅𝐵𝑝𝑠 ⊂ 𝐵𝑝 ⊂ 𝑅′𝐵𝑝𝑠 ,
where 𝐵𝑝𝑠 , 𝐵𝑝 denote the corresponding closed unit balls. Since 𝛼𝛿𝐵𝛿𝑝𝑠 = 𝛿 𝐵𝑝𝑠 ,
we can suppose, replacing, if necessary, 𝑝𝑠 by 𝑞 = 𝛼𝑝𝑠 for some 0 < 𝛼 < 1, that
there exist a norm 𝑞 on 𝑋 and the numbers 0 < 𝑟 < 𝑟′ < 1 such that

𝑟𝐵𝑞 ⊂ 𝐵𝑝 ⊂ 𝑟′𝐵𝑞 ⊂ 𝐵𝑞.

In the space 𝑋 ×ℝ consider the sets 𝑈 = co [(𝐵𝑝 × {1}) ∪ (𝐵𝑞 × {0})] , 𝑉 =
𝑈 ∪ co({𝑣} ∪𝐵𝑝 × {1}), where 𝑣 = (0, 1 + 𝑟), and 𝑊 = 𝑉 ∪ (−𝑉 ). It follows that
the sets 𝑈, 𝑉 are convex and 𝑊 is a bounded absolutely convex body, so that it
generates a norm ∥ ⋅ ∥ on 𝑋 ×ℝ. Since 𝑊 ∩ (𝑋 × {0}) = 𝐵𝑞 ×{0}, it follows that
∥(𝑥, 0)∥ = 𝑞(𝑥) for every 𝑥 ∈ 𝑋. If 𝑌 is a countable dense subset of (𝑋, 𝑞), then
𝑌 ×ℚ is a countable dense subset of (𝑋×ℝ, ∥ ⋅ ∥). By the classical Banach-Mazur
theorem there exists an isometric linear mapping 𝜑 : (𝑋×ℝ, ∥⋅∥)→ (𝐶[0; 1], ∥⋅∥∞).
The image 𝑍 = 𝜑(𝑋 × {1}) of the hyperplane 𝑋 × {1} by 𝜑 is an affine variety
in 𝐶[0; 1]. Since 𝑊 ∩ (𝑋 × {1}) = 𝐵𝑝 × {1} and 𝜑 is an isometry, it follows that
the set 𝐾 = 𝑍 ∩𝐵𝐶[0;1] is isometric to 𝐵. In particular, the Minkowski functional
𝑃𝐾,𝜉 of the set 𝐾 with respect to the point 𝜉 = 𝜑(0, 1) agrees with the Minkowski
functional of the set 𝐵, that is with the asymmetric norm 𝑝. □

Remark 1.1.48. Let 𝐾 be a convex subset of a linear space 𝑋. The set 𝐾 is called
absorbing with respect to a point 𝜉 ∈ 𝐾 if for every 𝑥 ∈ 𝑋 there exists 𝑡 > 0 such
that 𝑥 ∈ 𝜉 + 𝑡(𝐾 − 𝜉). The Minkowski functional 𝑝𝐾,𝜉 of the set 𝐾 with respect
to 𝜉 is defined by

𝑝𝐾,𝜉(𝑥) = 𝑝𝐾−𝜉(𝑥− 𝜉) = inf{𝑡 > 0 : 𝑥 ∈ 𝜉 + 𝑡(𝐾 − 𝜉)}. (1.1.35)

The isometry mentioned at the end of the proof of Theorem 1.1.46 is given
by the formula

𝑝𝐾,𝜉(𝜑(𝑥)) = 𝑝𝐾−𝜉(𝜑(𝑥− 𝑣)) = 𝑝(𝑥), 𝑥 ∈ 𝑋.

A corollary of the Banach-Mazur theorem asserts that any separable metric
space can be isometrically embedded in 𝐶[0; 1] (see [74, Corollary 5.18]). Kleiber
and Pervin [117] extended this result to metric spaces of arbitrary density character
𝛼, where 𝛼 is an uncountable cardinal number, by proving that such a space can
be isometrically embedded in the space 𝐶([0; 1]𝛼). The density character of a
topological space 𝑇 is the smallest cardinal number 𝛼 such that 𝑇 contains a
dense subset of cardinality 𝛼. As remarked by Alimov [11], these results hold also
for a quasi-metric space (𝑋, 𝜌), the density character being that of the associated
metric space (𝑋, 𝜌𝑠).
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1.1.6 Quasi-uniform spaces

Quasi-semimetric spaces are particular cases of quasi-uniform spaces. A quasi-
uniformity on a set 𝑋 is a filter 𝒰 on 𝑋 ×𝑋 such that

(QU1) Δ(𝑋) ⊂ 𝑈, ∀𝑈 ∈ 𝒰 ;
(QU1) ∀𝑈 ∈ 𝒰 , ∃𝑉 ∈ 𝒰 , such that 𝑉 ∘ 𝑉 ⊂ 𝑈 ,

where Δ(𝑋) = {(𝑥, 𝑥) : 𝑥 ∈ 𝑋} denotes the diagonal of 𝑋 and, for𝑀,𝑁 ⊂ 𝑋×𝑋,

𝑀 ∘𝑁 = {(𝑥, 𝑧) ∈ 𝑋 ×𝑋 : ∃𝑦 ∈ 𝑋, (𝑥, 𝑦) ∈𝑀 and (𝑦, 𝑧) ∈ 𝑁} .
The composition 𝑉 ∘ 𝑉 is denoted sometimes simply by 𝑉 2. Since every

entourage contains the diagonal Δ(𝑋), the inclusion 𝑉 2 ⊂ 𝑈 implies 𝑉 ⊂ 𝑈.

If the filter 𝒰 satisfies also the condition
(U3) ∀𝑈, 𝑈 ∈ 𝒰 ⇒ 𝑈−1 ∈ 𝒰 ,

where
𝑈−1 = {(𝑦, 𝑥) ∈ 𝑋 ×𝑋 : (𝑥, 𝑦) ∈ 𝑈} ,

then 𝒰 is called a uniformity on 𝑋. The sets in 𝒰 are called entourages. The pair
(𝑋,𝒰) is called a quasi-uniform space.

For 𝑈 ∈ 𝒰 , 𝑥 ∈ 𝑋 and 𝑍 ⊂ 𝑋 put

𝑈(𝑥) = {𝑦 ∈ 𝑋 : (𝑥, 𝑦) ∈ 𝑈} and 𝑈 [𝑍] =
∪
{𝑈(𝑧) : 𝑧 ∈ 𝑍} .

A quasi-uniformity 𝒰 generates a topology 𝜏(𝒰) on 𝑋 for which the family of sets

{𝑈(𝑥) : 𝑈 ∈ 𝒰}
is a base of neighborhoods of the point 𝑥 ∈ 𝑋. A mapping 𝑓 between two quasi-
uniform spaces (𝑋,𝒰), (𝑌,𝒲) is called quasi-uniformly continuous if for every
𝑊 ∈ 𝒲 there exists 𝑈 ∈ 𝒰 such that (𝑓(𝑥), 𝑓(𝑦)) ∈ 𝑊 for all (𝑥, 𝑦) ∈ 𝑈. By
the definition of the topology generated by a quasi-uniformity, it is clear that a
quasi-uniformly continuous mapping is continuous with respect to the topologies
𝜏(𝒰), 𝜏(𝒲).

The family of sets
𝒰−1 = {𝑈−1 : 𝑈 ∈ 𝒰} (1.1.36)

is another quasi-uniformity on 𝑋 called the conjugate quasi-uniformity. With re-
spect to the topologies 𝜏(𝒰) and 𝜏(𝒰−1), 𝑋 is a bitopological space. The equiva-
lences of the separation axioms from Corollary 1.1.10 holds in this case too.

Proposition 1.1.49. For a quasi-uniform space (𝑋,𝒰) the following are equivalent.

1. The bitopological space (𝑋, 𝜏(𝒰), 𝜏(𝒰−1) is pairwise 𝑇0.

2. The bitopological space (𝑋, 𝜏(𝒰), 𝜏(𝒰−1) is pairwise 𝑇1.

3. The bitopological space (𝑋, 𝜏(𝒰), 𝜏(𝒰−1) is pairwise Hausdorff.
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Proof. Obviously, it is sufficient to prove the implication 1 ⇒ 3. Suppose, for
instance, that for 𝑥 ∕= 𝑦 in 𝑋, there exists 𝑈 ∈ 𝒰 such that 𝑦 /∈ 𝑈(𝑥). Taking
𝑉 ∈ 𝒰 such that 𝑉 2 ⊂ 𝑈, it follows that 𝑉 (𝑥) ∩ 𝑉 −1(𝑦) = ∅. Indeed

𝑧 ∈ 𝑉 (𝑥)∩𝑉 −1(𝑦) ⇐⇒ (𝑥, 𝑧) ∈ 𝑉 ∧(𝑧, 𝑦) ∈ 𝑉 ⇒ (𝑥, 𝑦) ∈ 𝑉 2 ⊂ 𝑈 ⇒ 𝑦 ∈ 𝑈(𝑥) ,

a contradiction. As the other cases (see (1.1.15)) can be treated similarly, it follows
that the bitopological space (𝑋, 𝜏(𝒰), 𝜏(𝒰−1) is pairwise Hausdorff. □

If (𝑋, 𝜌) is a quasi-semimetric space, then

𝑉𝜀 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝜌(𝑥, 𝑦) < 𝜀}, 𝜀 > 0 ,

is a basis for a quasi-uniformity 𝒰𝜌 on 𝑋. The family

𝑉 −𝜀 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝜌(𝑥, 𝑦) ≤ 𝜀}, 𝜀 > 0 ,

generates the same quasi-uniformity. Since 𝑉𝜀(𝑥) = 𝐵𝜌(𝑥, 𝜀) and 𝑉 −𝜀 (𝑥) = 𝐵𝜌[𝑥, 𝜀],
it follows that the topologies generated by the quasi-semimetric 𝜌 and by the quasi-
uniformity 𝒰𝜌 agree, i.e., 𝜏𝜌 = 𝜏(𝒰𝜌).

If 𝑃 is a family of quasi-semimetrics, then the family of sets 𝑉𝑑,𝜀, 𝑑 ∈ 𝑃, 𝜀 >
0, generates a quasi-uniformity on 𝑋 , the sets

𝑉𝑑,𝜀 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑑(𝑥, 𝑦) < 𝜀}, 𝜀 > 0, 𝑑 ∈ 𝑃 ,

being a base for this quasi-uniformity.

The following proposition is an adaptation of [110, Ch. 6, Thm. 11].

Proposition 1.1.50. Let (𝑋,𝒰) be a quasi-uniform space and 𝑑 a quasi-semimetric
on 𝑋. Then the function 𝑑 is quasi-uniformly continuous on 𝑋 if and only if
𝑉𝑑,𝜀 ∈ 𝒰 for every 𝜀 > 0.

Proof. The space 𝑋 × 𝑋 is considered equipped with the quasi-uniformity gen-
erated by the base {𝑈 × 𝑈 : 𝑈 ∈ 𝒰}. Consequently, due to the symmetry in the
definition of product quasi-uniformity, the function 𝑑 : (𝑋 ×𝑋,𝒰 × 𝒰)→ (ℝ,𝒰𝑢)
is quasi-uniformly continuous if and only if for every 𝜀 > 0 there exists 𝑈 ∈ 𝒰
such that for every (𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝑈, ∣𝑑(𝑥, 𝑦) − 𝑑(𝑢, 𝑣)∣ < 𝜀.

Now, if 𝑑 is supposed quasi-uniformly continuous, then for every 𝜀 > 0 there
exists 𝑈 ∈ 𝒰 such that the above condition is satisfied. Taking (𝑢, 𝑣) = (𝑦, 𝑦) ∈ 𝑈
it follows that (𝑥, 𝑦) ∈ 𝑉𝑑,𝜀 for every (𝑥, 𝑦) ∈ 𝑈, that is 𝑈 ⊂ 𝑉𝑑,𝜀, and so 𝑉𝑑,𝜀 ∈ 𝒰 .

Conversely, suppose that 𝑉𝑑,𝜀 ∈ 𝒰 for every 𝜀 > 0 and prove that the quasi-
semimetric 𝑑 is quasi-uniformly continuous on 𝑋. Given 𝜀 > 0, (𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝑉𝑑,𝜀
imply 𝑑(𝑥, 𝑦) < 𝜀 and 𝑑(𝑢, 𝑣) < 𝜀, so that 𝑑(𝑥, 𝑦) − 𝑑(𝑢, 𝑣) < 𝜀 and 𝑑(𝑢, 𝑣) −
𝑑(𝑥, 𝑦) < 𝜀, that is ∣𝑑(𝑥, 𝑦) − 𝑑(𝑢, 𝑣)∣ < 𝜀, proving the quasi-uniformity of the
function 𝑑 on 𝑋 ×𝑋. □
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To prove that every quasi-uniformity is generated by a family of quasi-
seminorms in the way described above, we need the following result in general
topology.

Proposition 1.1.51 (Kelley [110]). Let 𝑋 be a nonempty set and {𝑈𝑛 : 𝑛 ∈ ℕ} a
family of nonempty subsets of 𝑋 × 𝑋 such that 𝑈0 = 𝑋 × 𝑋, each 𝑈𝑛 contains
the diagonal Δ(𝑋) and

𝑈𝑛+1 ∘ 𝑈𝑛+1 ∘ 𝑈𝑛+1 ⊂ 𝑈𝑛 , (1.1.37)

for all 𝑛 ∈ ℕ ∪ {0}. Then there exists a quasi-semimetric 𝑑 on 𝑋 such that

𝑈𝑛+1 ⊂ {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑑(𝑥, 𝑦) < 2−𝑛} ⊂ 𝑈𝑛 , 𝑛 ∈ ℕ ∪ {0} . (1.1.38)

If, in addition, each 𝑈𝑛 is symmetric, then there exists a semimetric 𝑑 satisfying
(1.1.38).

Proof. For the convenience of the reader, we include a proof of this result. Observe
that the fact that each 𝑈𝑛 contains the diagonal and (1.1.37) implies that 𝑈𝑛+1 ⊂
𝑈𝑛 for all 𝑛 ∈ ℕ ∪ {0}.

Define a function 𝑓 : 𝑋 ×𝑋 → [0;∞) by
𝑓(𝑥, 𝑦) = 2−𝑛 if (𝑥, 𝑦) ∈ 𝑈𝑛 ∖ 𝑈𝑛+1, for some 𝑛 ∈ ℕ ∪ {0}, and
𝑓(𝑥, 𝑦) = 0 if (𝑥, 𝑦) ∈ ∩𝑛𝑈𝑛 .

(1.1.39)

Observe that there exists at most one 𝑛 ∈ ℕ∪{0} such that (𝑥, 𝑦) ∈ 𝑈𝑛∖𝑈𝑛+1,
so that the function 𝑓 is well defined.

From the definition of the function 𝑓 it is clear that

𝑓(𝑥, 𝑦) ≤ 2−𝑛 ⇐⇒ (𝑥, 𝑦) ∈ 𝑈𝑛 . (1.1.40)

A sequence 𝑥0, 𝑥1, . . . , 𝑥𝑛+1 of points in 𝑋 with 𝑥0 = 𝑥 and 𝑥𝑛+1 = 𝑦 is
called a chain connecting 𝑥 and 𝑦 and 𝑛 is called the length of the chain. Define
𝑑 : 𝑋 ×𝑋 → [0;∞) by

𝑑(𝑥, 𝑦) = inf

𝑛∑
𝑖=0

𝑓(𝑥𝑖, 𝑥𝑖+1) , (1.1.41)

where the infimum is taken over all chains connecting 𝑥 and 𝑦. From the definition
it is clear that 𝑑(𝑥, 𝑦) ≤ 𝑓(𝑥, 𝑦), so that, taking into account (1.1.40),

𝑈𝑛+1 ⊂ {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑑(𝑥, 𝑦) < 2−𝑛} .
Indeed, (𝑥, 𝑦) ∈ 𝑈𝑛+1 implies 𝑓(𝑥, 𝑦) ≤ 2−𝑛−1, so that 𝑑(𝑥, 𝑦) ≤ 2−𝑛−1 < 2−𝑛.

Let us prove that

𝑓(𝑥0, 𝑥𝑛+1) ≤ 2
𝑛∑
𝑖=0

𝑓(𝑥𝑖, 𝑥𝑖+1) , (1.1.42)

for all chains 𝑥0, 𝑥1, . . . , 𝑥𝑛+1 in 𝑋 .
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The proof will be done by induction over the length 𝑛 of the chain. For 𝑛 = 0
the inequality (1.1.42) is trivial. Suppose that it holds for every 𝑚, 0 ≤ 𝑚 < 𝑛,
and prove it for 𝑛. Let 𝑎 =

∑𝑛
𝑖=0 𝑓(𝑥𝑖, 𝑥𝑖+1). The case 𝑎 = 0 is trivial, as well as

the case when 𝑓(𝑥𝑖, 𝑥𝑖+1) = 𝑎 for some 𝑖 ∈ {0, . . . , 𝑛}.
Excluding these situations, let 𝑘 be the greatest number between 0 and 𝑛

such that
∑𝑘

𝑖=0 𝑓(𝑥𝑖, 𝑥𝑖+1) ≤ 𝑎/2.

If 0 ≤ 𝑘 < 𝑛 − 1, then ∑𝑛
𝑖=𝑘+2 𝑓(𝑥𝑖, 𝑥𝑖+1) ≤ 𝑎/2 so that, by the induction

hypothesis,
𝑓(𝑥0, 𝑥𝑘+1) ≤ 𝑎, 𝑓(𝑥𝑘+2, 𝑥𝑛+1) ≤ 𝑎 ,

and, obviously, 𝑓(𝑥𝑘+1, 𝑥𝑘+2) ≤ 𝑎.

Let 𝑚 ≥ 0 be the smallest integer such that 2−𝑚 ≤ 𝑎. Then

𝑓(𝑥0, 𝑥𝑘+1) ≤ 2−𝑚, 𝑓(𝑥𝑘+1, 𝑥𝑘+2) ≤ 2−𝑚 and 𝑓(𝑥𝑘+2, 𝑥𝑛+1) ≤ 2−𝑚 ,

so that, by (1.1.40), (𝑥0, 𝑥𝑘+1), (𝑥𝑘+1, 𝑥𝑘+2), (𝑥𝑘+2, 𝑥𝑛+1) ∈ 𝑈𝑚, implying

(𝑥0, 𝑥𝑛+1) ∈ 𝑈𝑚 ∘ 𝑈𝑚 ∘ 𝑈𝑚 ⊂ 𝑈𝑚−1,

which, by the same equivalence, yields

𝑓(𝑥0, 𝑥𝑛+1) ≤ 2−𝑚+1 = 2 ⋅ 2−𝑚 ≤ 2 𝑎 .

If 𝑘 = 𝑛− 1, then, reasoning as above,

𝑓(𝑥0, 𝑥𝑛) ≤ 2−𝑚 and 𝑓(𝑥𝑛, 𝑥𝑛+1) ≤ 2−𝑚,

implying (𝑥0, 𝑥𝑛), (𝑥𝑛, 𝑥𝑛+1) ∈ 𝑈𝑚, so that

(𝑥0, 𝑥𝑛+1) ∈ 𝑈𝑚 ∘ 𝑈𝑚 ⊂ 𝑈𝑚 ∘ 𝑈𝑚 ∘ 𝑈𝑚 ⊂ 𝑈𝑚−1.

(The inclusion 𝑈𝑚 ∘𝑈𝑚 ⊂ 𝑈𝑚 ∘𝑈𝑚 ∘𝑈𝑚 follows from the fact that Δ(𝑋) ⊂ 𝑈𝑚.)

Now, (1.1.42) and the definition (1.1.41) of 𝑑 imply 𝑓(𝑥, 𝑦) ≤ 2𝑑(𝑥, 𝑦).
Consequently, if 𝑑(𝑥, 𝑦) < 2−𝑛, then

𝑓(𝑥, 𝑦) < 2−𝑛+1 ⇐⇒ 𝑓(𝑥, 𝑦) ≤ 2−𝑛 ⇐⇒ (𝑥, 𝑦) ∈ 𝑈𝑛 ,

so that the second inclusion in (1.1.38) holds too.

If, in addition, each 𝑈𝑛 is symmetric, then, obviously, the function 𝑓 and also
𝑑, are symmetric. □
Theorem 1.1.52. Any quasi-uniform space is generated by a family of quasi-uni-
formly continuous quasi-semimetrics in the way described above.

Proof. It is clear that a family 𝑃 of quasi-semimetrics generates a quasi-uniformity
𝒰𝑃 and that each quasi-semimetric in 𝑃 is quasi-uniformly continuous with respect
to 𝒰𝑃 .
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Given a quasi-uniform space (𝑋,𝒰), let 𝑃 denote the family of all quasi-
uniformly continuous quasi-semimetrics on 𝑋. By Proposition 1.1.50, 𝑉𝑑,𝜀 ∈ 𝒰 for
every 𝑑 ∈ 𝑃 and every 𝜀 > 0, implying 𝒰𝑃 ⊂ 𝒰 .

Conversely, for 𝑈 ∈ 𝒰 , choose a family 𝑈𝑛 ∈ 𝒰 , 𝑛 ∈ ℕ, of entourages
such that 𝑈1 = 𝑈 and 𝑈𝑛+1 ∘ 𝑈𝑛+1 ∘ 𝑈𝑛+1 ⊂ 𝑈𝑛 for all 𝑛 ∈ ℕ. By Proposition
1.1.51 there exists a quasi-semimetric 𝑑 satisfying (1.1.38). The first inclusions
in (1.1.38) show that 𝑑 is quasi-uniformly continuous, while {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 :
𝑑(𝑥, 𝑦) < 2−2} ⊂ 𝑈1 = 𝑈 shows that 𝑈 belongs to 𝒰𝑃 , and so 𝒰 ⊂ 𝒰𝑃 . □

The following quasi-metrizability criterium for a quasi-uniform space is the
analog of a well-known one for uniform spaces.

Corollary 1.1.53. A quasi-uniform space (𝑋,𝒰) is quasi-semimetrizable if and only
if the quasi-uniformity 𝒰 has a countable basis.

Proof. The necessity is clear. Suppose now that the quasi-uniformity 𝒰 has a
countable basis 𝐵𝑘, 𝑘 ∈ ℕ. Apply Proposition 1.1.51 for 𝑈𝑘

1 = 𝐵𝑘 to find a family
𝑑𝑘 of quasi-uniformly continuous semimetrics 𝑑𝑘, 𝑘 ∈ ℕ, satisfying (1.1.38). It
follows that the family {𝑑𝑘 : 𝑘 ∈ ℕ} generates the quasi-uniformity 𝒰 . It is a
standard procedure to check that 𝑑 =

∑
𝑘 2
−𝑘𝑑𝑘/(1+𝑑𝑘) is a quasi-semimetric on

𝑋 which generates 𝒰 . □

Remark 1.1.54. For other quasi-metrizability and metrizability results for quasi-
uniform spaces see Künzi [137] and the references given therein.

As it was shown by Pervin [175], every topological space is quasi-uniformizable.

Theorem 1.1.55 ([175]). Let (𝑋, 𝜏) be a topological space. Then the family of subsets

ℬ = {(𝐺× 𝐶) ∪ ((𝑋 ∖𝐺)×𝑋) : 𝐺 ∈ 𝜏} (1.1.43)

is a subbase of a quasi-uniformity on 𝑋 that generates the topology 𝑋.

As Pervin remarked in [175] the quasi-uniformity generating the topology is
not unique.

Example 1.1.56. Let ℝ with the natural quasi-uniformity 𝒰𝑑 be generated by the
quasi-metric 𝑑(𝑥, 𝑦) = max{𝑦 − 𝑥, 0}. Then the quasi-uniformity 𝒰 generated by
the subbase (1.1.43) is not even comparable with the quasi-uniformity 𝒰𝑑, although
both generate the same topology 𝜏𝑑 = 𝜏𝑢 on ℝ (see Example 1.1.3).

An account of the theory of quasi-uniform and quasi-metric spaces up to
1982 is given in the book by Fletcher and Lindgren [80]. The survey papers by
Künzi [132, 133, 134, 135, 136, 137] are good guides for subsequent developments.
Another book on quasi-uniform spaces is [153]. The properties of bitopologies and
quasi-uniformities on function spaces were studied in [197].
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A function 𝑓 : (𝑋,𝒰) → (𝑌,𝒱) between two quasi-uniform spaces is called
quasi-uniformly continuous on a subset 𝐴 of 𝑋 if

∀𝑉 ∈ 𝒱 , ∃𝑈 ∈ 𝒰 , ∀(𝑥, 𝑦), (𝑥, 𝑦) ∈ (𝐴× 𝐴) ∩ 𝑈 ⇒ (𝑓(𝑥), 𝑓(𝑦)) ∈ 𝑉 . (1.1.44)

A quasi-uniform isomorphism is a bijective quasi-uniformly continuous function
𝑓 such that the inverse function 𝑓−1 is also quasi-uniformly continuous.

As it is well known, if (𝑋,𝒰), (𝑌,𝒱) are uniform spaces, then any continuous
functions 𝑓 : 𝑋 → 𝑌 is uniformly continuous on every compact subset of 𝑋 . This
result is no longer true in the case of quasi-uniform spaces. Lambrinos [141] gives
an example of a continuous function from a compact quasi-uniform space (𝑋,𝒰)
to a a quasi-uniform space (𝑋,𝒱) that is not quasi-uniformly continuous and gives
a proper formulation to this result.

Theorem 1.1.57. A continuous function from a compact quasi-uniform space to a
uniform space is uniformly continuous.

This result corrects an example given without proof in [153, p. 5] of a con-
tinuous function from a compact quasi-uniform space to a uniform space which is
not quasi-uniformly continuous.

In fact Lambrinos proves a slightly more general result concerning continuous
functions on topologically bounded sets, a notion considered by him in the paper
[140]. A subset 𝐴 of a topological space (𝑋, 𝜏) is called 𝜏 -bounded (or topologically
bounded) if any family of open sets covering 𝑋 contains a finite subfamily covering
𝐴. Obviously, a compact set is topologically bounded and the space 𝑋 is topolog-
ically bounded if and only if it is compact. Lambrinos [140] gives an example of a
topologically bounded set that is not relatively compact.

Theorem 1.1.57 will be a consequence of the following more general result.

Theorem 1.1.58. A continuous function from a quasi-uniform space (𝑋,𝒰) to a
uniform space (𝑋,𝒱) is uniformly continuous on every 𝜏(𝒰)-bounded subset of 𝑋.

Proof. Suppose that 𝐴 is a 𝜏(𝒰)-bounded subset of 𝑋 . For an arbitrary 𝑉 ∈ 𝒱 let
𝑊 be a symmetric entourage in 𝒱 such that 𝑊 2 ⊂ 𝑉.

By the continuity of 𝑓, for every 𝑥 ∈ 𝑋 there exists 𝑈𝑥 ∈ 𝒰 such that
𝑓(𝑈𝑥(𝑥)) ⊂ 𝑊 (𝑓(𝑥)). Let 𝑆𝑥 ∈ 𝒰 such that 𝑆2

𝑥 ⊂ 𝑈𝑥, 𝑥 ∈ 𝑋. Since the family
{𝜏(𝒰)- int𝑆𝑥(𝑥) : 𝑥 ∈ 𝑋} is an open cover of 𝑋 , there exists 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 such
that 𝐴 ⊂ ∪𝑛𝑘=1𝑆𝑥𝑘

(𝑥𝑘).

Put 𝑈 := ∩𝑛𝑘=1𝑆𝑥𝑘
and show that the condition (1.1.44) is satisfied by 𝑈

and 𝑉 .

For (𝑥, 𝑦) ∈ 𝑈∩(𝐴×𝐴) there exists 𝑗 ∈ {1, . . . , 𝑛} such that 𝑥 ∈ 𝑆𝑥𝑗(𝑥𝑗) ⇐⇒
(𝑥𝑗 , 𝑥) ∈ 𝑆𝑥𝑗 . Since 𝑆2

𝑥𝑗
⊂ 𝑈𝑥𝑗 , it follows that 𝑆𝑥𝑗 ⊂ 𝑈𝑥𝑗 and 𝑥 ∈ 𝑈𝑥𝑗(𝑥𝑗).

Since (𝑥, 𝑦) ∈ 𝑈 = ∩𝑛𝑘=1𝑆𝑥𝑘
, it follows that (𝑥, 𝑦) ∈ 𝑆𝑥𝑗 , so that (𝑥𝑗 , 𝑦) ∈
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𝑆2
𝑥𝑗
⊂ 𝑈𝑥𝑗 . Consequently, 𝑥, 𝑦 ∈ 𝑈𝑥𝑗(𝑥𝑗), implying

𝑓(𝑥) ∈ 𝑊 (𝑓(𝑥𝑗)) ⇐⇒ (𝑓(𝑥𝑗 , 𝑓(𝑥)) ∈ 𝑊

⇐⇒ (𝑓(𝑥), 𝑓(𝑥𝑗)) ∈𝑊 (𝑊 is symmetric),

𝑓(𝑦) ∈ 𝑊 (𝑓(𝑥𝑗)) ⇐⇒ (𝑓(𝑥𝑗), 𝑓(𝑦)) ∈𝑊 ,

so that (𝑓(𝑥), 𝑓(𝑦)) ∈ 𝑊 2 ⊂ 𝑈. □

1.1.7 Asymmetric locally convex spaces

In this subsection we shall present some properties of asymmetric locally convex
spaces. Note that they were considered as early as 1997 in the paper [5]. In our
presentation we shall follow the paper [41]. A more general approach, based on
the theory of ordered locally convex cones, is considered in [109] and [212].

Let 𝑃 be a family of asymmetric seminorms on a real vector space 𝑋 . Denote
by ℱ(𝑃 ) the family of all nonempty finite subsets of 𝑃 and, for 𝐹 ∈ ℱ(𝑃 ), 𝑥 ∈ 𝑋,
and 𝑟 > 0 let

𝐵𝐹 [𝑥, 𝑟] = {𝑦 ∈ 𝑋 : 𝑝(𝑦 − 𝑥) ≤ 𝑟, 𝑝 ∈ 𝐹} = ∩{𝐵𝑝[𝑥, 𝑟] : 𝑝 ∈ 𝐹}

and
𝐵𝐹 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑝(𝑦 − 𝑥) < 𝑟, 𝑝 ∈ 𝐹} = ∩{𝐵𝑝(𝑥, 𝑟) : 𝑝 ∈ 𝐹}

denote the closed, respectively open multiball of center 𝑥 and radius 𝑟. It is im-
mediate that these multiballs are convex absorbing subsets of 𝑋 .

The asymmetric locally convex topology associated to the family 𝑃 of asym-
metric seminorms on a real vector space 𝑋 is the topology 𝜏𝑃 having as basis of
neighborhoods of any point 𝑥 ∈ 𝑋 the family 𝒩 (𝑥) = {𝐵𝐹 (𝑥, 𝑟) : 𝑟 > 0, 𝐹 ∈
ℱ(𝑃 )} of open multiballs. The family {𝐵𝐹 [𝑥, 𝑟] : 𝑟 > 0, 𝐹 ∈ ℱ(𝑃 )} of closed
multiballs is also a neighborhood basis at 𝑥 for 𝜏𝑃 .

We shall abbreviate locally convex space as LCS.

It is easy to check that for every 𝑥 ∈ 𝑋 the family 𝒩 (𝑥) fulfills the require-
ments of a neighborhood basis at 𝑥 so that it defines a topology 𝜏𝑃 on 𝑋 (or
𝜏(𝑃 )).

Obviously, for 𝑃 = {𝑝} we obtain the topology 𝜏𝑝 of an asymmetric semi-
normed space (X,p) considered above, i.e., 𝜏{𝑝} = 𝜏𝑝.

The sets

𝑈𝐹,𝜀 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑝(𝑦 − 𝑥) < 𝜀, 𝑝 ∈ 𝐹} , 𝐹 ∈ ℱ(𝑃 ), 𝜀 > 0 , (1.1.45)

form a subbasis of a quasi-uniformity 𝒰𝑃 on 𝑋 generating the topology 𝜏𝑃 .

We say that the family 𝑃 is directed if for any 𝑝1, 𝑝2 ∈ 𝑃 there exists 𝑝 ∈ 𝑃
such that 𝑝 ≥ 𝑝𝑖, 𝑖 = 1, 2, where 𝑝 ≥ 𝑞 stands for the pointwise ordering: 𝑝(𝑥) ≥
𝑞(𝑥) for all 𝑥 ∈ 𝑋 . If the family 𝑃 is directed then for any 𝜏𝑃 -neighborhood of
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a point 𝑥 ∈ 𝑋 there exist 𝑝 ∈ 𝑃 and 𝑟 > 0 such that 𝐵𝑝(𝑥, 𝑟) ⊂ 𝑉 (respectively
𝐵𝑝[𝑥, 𝑟] ⊂ 𝑉 ). Indeed, if 𝐵𝐹 (𝑥, 𝑟) ⊂ 𝑉 then there exists 𝑝 ∈ 𝑃 such that 𝑝 ≥ 𝑞 for
all 𝑞 ∈ 𝐹 so that 𝐵𝑝(𝑥, 𝑟) ⊂ 𝐵𝐹 (𝑥, 𝑟) ⊂ 𝑉. Also 𝑊 ∈ 𝒰𝑃 if and only if there exist
𝑝 ∈ 𝑃 and 𝜀 > 0 such that 𝑈𝑝,𝜀 ⊂ 𝑊, that is the family of sets (1.1.45) is a basis
for the quasi-uniformity 𝒰𝑃 .

For 𝐹 ∈ ℱ(𝑃 ) let

𝑝𝐹 (𝑥) = max{𝑝(𝑥) : 𝑝 ∈ 𝐹}, 𝑥 ∈ 𝑋. (1.1.46)

Then 𝑝𝐹 is an asymmetric seminorm on 𝑋 and

𝐵𝐹 [𝑥, 𝑟] = 𝐵𝑝𝐹 [𝑥, 𝑟] and 𝐵𝐹 (𝑥, 𝑟) = 𝐵𝑝𝐹 (𝑥, 𝑟). (1.1.47)

The family

𝑃𝑑 = {𝑝𝐹 : 𝐹 ∈ ℱ(𝑃 )}, (1.1.48)

where 𝑝𝐹 is defined by (1.1.46), is a directed family of asymmetric seminorms
generating the same topology as 𝑃 , i.e., 𝜏𝑃𝑑

= 𝜏𝑃 . Therefore, without restricting
the generality, we can always suppose that the family 𝑃 of asymmetric seminorms
is directed.

Because 𝐵𝐹 [𝑥, 𝑟] = 𝑥+𝐵𝐹 [0, 𝑟] and 𝐵𝐹 (𝑥, 𝑟) = 𝑥+𝐵𝐹 (0, 𝑟), the topology
𝜏𝑃 is translation invariant

𝒱(𝑥) = {𝑥+ 𝑉 : 𝑉 ∈ 𝒱(0)} ,

where by 𝒱(𝑥) we have denoted the family of all neighborhoods with respect to
𝜏𝑃 of a point 𝑥 ∈ 𝑋.

The addition + : 𝑋 × 𝑋 → 𝑋 is continuous. Indeed, for 𝑥, 𝑦 ∈ 𝑋 and the
neighborhood 𝐵𝐹 (𝑥+𝑦, 𝑟) of 𝑥+𝑦 we have 𝐵𝐹 (𝑥, 𝑟/2)+𝐵𝐹 (𝑦, 𝑟/2) ⊂ 𝐵𝐹 (𝑥+𝑦, 𝑟).

As we have seen in Proposition 1.1.42, the multiplication by scalars need not
be continuous, even in asymmetric seminormed spaces.

For an asymmetric seminorm 𝑝 on a vector space put

𝑝(𝑥) = 𝑝(−𝑥), and 𝑝𝑠(𝑥) = max{𝑝(𝑥), 𝑝(𝑥)} ,

for all 𝑥 ∈ 𝑋.

If 𝑃 is a family of asymmetric seminorms on 𝑋, then

𝑃 = {𝑝 : 𝑝 ∈ 𝑃} and 𝑃 𝑠 = {𝑝𝑠 : 𝑝 ∈ 𝑃} .

The following proposition contains some simple properties of asymmetric
LCS.

Proposition 1.1.59. Let 𝑃 be a directed family of asymmetric seminorms on a real
vector space 𝑋. Then
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1. For every 𝑝 ∈ 𝑃, 𝑥 ∈ 𝑋 and 𝑟 > 0,

𝐵𝑝(0, 𝑟) = −𝐵𝑝(0, 𝑟), 𝐵𝑝[0, 𝑟] = −𝐵𝑝[0, 𝑟],

𝐵𝑝𝑠(𝑥, 𝑟) = 𝐵𝑝(𝑥, 𝑟) ∩𝐵𝑝(𝑥, 𝑟) and 𝐵𝑝𝑠 [𝑥, 𝑟] = 𝐵𝑝[𝑥, 𝑟] ∩𝐵𝑝[𝑥, 𝑟] .

2. Any 𝜏(𝑃 )-open set is 𝜏(𝑃 𝑠)-open and any 𝜏(𝑃 )-open set is 𝜏(𝑃 𝑠)-open, that
is 𝜏(𝑃 ) ⊂ 𝜏(𝑃 𝑠) and 𝜏(𝑃 ) ⊂ 𝜏(𝑃 𝑠). The same inclusions hold for the corre-
sponding closed sets.

3. Any 𝜏(𝑃 )-continuous (or 𝜏(𝑃 )-continuous) mapping 𝑓 from 𝑋 to a topolog-
ical space 𝑇 is 𝜏(𝑃 𝑠)-continuous.

4. A ball 𝐵𝑝(𝑥, 𝑟) is 𝜏(𝑃 )-open. A ball 𝐵𝑝[𝑥, 𝑟] is 𝜏(𝑃 )-closed and it need not
be 𝜏(𝑃 )-closed.

Proof. The assertions 1 and 2 are immediate and 3 is a consequence of 2, so we
only need to prove 4.

For 𝑦 ∈ 𝐵𝑝(𝑥, 𝑟) let 𝑟′ := 𝑟 − 𝑝(𝑦 − 𝑥) > 0. Since 𝑝(𝑧 − 𝑦) < 𝑟′ implies
𝑝(𝑧−𝑥) ≤ 𝑝(𝑧−𝑦)+𝑝(𝑦−𝑥) < 𝑟′+𝑝(𝑦−𝑥) = 𝑟 it follows that 𝐵𝑝(𝑦, 𝑟

′) ⊂ 𝐵𝑝(𝑥, 𝑟).

To prove that 𝐵𝑝[𝑥, 𝑟] is 𝜏(𝑃 )-closed let 𝑦 ∈ 𝑋 ∖ 𝐵𝑝[𝑥, 𝑟]. Then 𝑟′ := 𝑝(𝑦 −
𝑥) − 𝑟 > 0 and 𝐵𝑝(𝑦, 𝑟

′) ⊂ 𝑋 ∖ 𝐵𝑝[𝑥, 𝑟]. Indeed, if there exists an element 𝑧 ∈
𝐵𝑝[𝑥, 𝑟] ∩𝐵𝑝(𝑦, 𝑟

′), then one obtains the contradiction

𝑝(𝑦 − 𝑥) ≤ 𝑝(𝑦 − 𝑧) + 𝑝(𝑧 − 𝑥) = 𝑝(𝑦 − 𝑧) + 𝑝(𝑧 − 𝑥) < 𝑟′ + 𝑟 = 𝑝(𝑦 − 𝑥) .

Consequently, 𝑋 ∖𝐵𝑝[𝑥, 𝑟] is 𝜏(𝑃 )-open and so 𝐵𝑝[𝑥, 𝑟] is 𝜏(𝑃 )-closed. □
Example 1.1.60. In ℝ with the upper topology 𝜏𝑢, where 𝑢(𝑥) = max{𝑥, 0}, 𝑥 ∈
ℝ,we have 𝐵𝑢[0, 1] = (−∞; 1] and ℝ ∖ 𝐵𝑢[0, 1] = (1;+∞) is 𝜏�̄�-open, but not
𝜏𝑢-open.

The following property is easy to check.

Proposition 1.1.61. Let (𝑋,𝑃 ) be an asymmetric LCS. A net (𝑥𝑖 : 𝑖 ∈ 𝐼) is 𝜏𝑃 -
convergent to 𝑥 if and only if

∀𝑝 ∈ 𝑃, lim
𝑖

𝑝(𝑥𝑖 − 𝑥) = 0 . (1.1.49)

The topology 𝜏𝑝 generated by an asymmetric norm is not always Hausdorff.
A necessary and sufficient condition in order that 𝜏𝑝 be Hausdorff is given in
Proposition 1.1.40.

The following characterization of the Hausdorff separation property for lo-
cally convex spaces is well known, see, e.g., [238, Lemma VIII.1.4].

Proposition 1.1.62. Let (𝑋,𝑄) be a locally convex space, where 𝑄 is a family of
seminorms generating the topology 𝜏𝑄 of 𝑋.

The topology 𝜏𝑄 is Hausdorff separated if and only if for every 𝑥 ∈ 𝑋, 𝑥 ∕= 0,
there exists 𝑞 ∈ 𝑄 such that 𝑞(𝑥) > 0.



1.1. Topological properties of quasi-metric and quasi-uniform spaces 39

In the case of asymmetric locally convex spaces we have the following sepa-
ration properties.

Proposition 1.1.63. Let 𝑃 be a family of asymmetric seminorms on a real vector
space 𝑋.

1. The topology 𝜏𝑃 is 𝑇0 if and only if for every 𝑥 ∕= 0 in 𝑋 there exists 𝑝 ∈ 𝑃
such that 𝑝(𝑥) > 0 or 𝑝(−𝑥) > 0.

2. The topology 𝜏𝑃 is 𝑇1 if and only if for every 𝑥 ∕= 0 in 𝑋 there exists 𝑝 ∈ 𝑃
such that 𝑝(𝑥) > 0.

3. The topology 𝜏𝑃 is 𝑇2 if and only if for every 𝑥 ∕= 0 in 𝑋 there exists 𝑝 ∈ 𝑃
such that 𝑝⋄(𝑥) > 0, where 𝑝⋄ is given by (1.1.31).

Proof. 1. Let 𝑥 ∕= 𝑦 in 𝑋 . Then 𝑥− 𝑦 ∕= 0 and 𝑦 − 𝑥 ∕= 0, so that, by hypothesis,
there exists 𝑝 ∈ 𝑃 such that 𝑝(𝑥−𝑦) > 0 or 𝑝(𝑦−𝑥) > 0. If, say 𝑟 := 𝑝(𝑦−𝑥) > 0,
then 𝑦 /∈ 𝐵𝑝(𝑥, 𝑟). Similarly, 𝑟

′ := 𝑝(𝑥− 𝑦) > 0 implies 𝑥 /∈ 𝐵𝑝(𝑦, 𝑟
′).

Conversely, if 𝜏𝑃 is 𝑇0, then for 𝑥 ∕= 0 there exists 𝑈 ∈ 𝒱(0) such that 𝑥 /∈ 𝑈,
or there exists 𝑈 ′ ∈ 𝒱(𝑥) such that 0 /∈ 𝑈 ′. Let 𝐹 ∈ ℱ(𝑃 ) and 𝑟 > 0 such that
𝐵𝐹 (𝑜, 𝑟) ⊂ 𝑈. Since 𝑥 /∈ 𝑈, there exists 𝑝 ∈ 𝐹 such that 𝑝(𝑥) ≥ 𝑟 > 0. In the
second case, let 𝐹 ′ ∈ ℱ(𝑃 ) and 𝑟′ > 0 such that 𝐵𝐹 ′(𝑥, 𝑟) ⊂ 𝑈 ′. Since 𝑥 /∈ 𝑈 ′,
there exists 𝑞 ∈ 𝐹 ′ such that 𝑞(−𝑥) = 𝑞(0− 𝑥) ≥ 𝑟′ > 0.

2. If 𝑥 ∕= 𝑦, then there exists 𝑝1, 𝑝2 ∈ 𝑃 such that 𝑟1 := 𝑝1(𝑦 − 𝑥) > 0
and 𝑟2 := 𝑝2(𝑥 − 𝑦) > 0, implying 𝑦 /∈ 𝐵𝑝1(𝑥, 𝑟1) and 𝑥 /∈ 𝐵𝑝2(𝑥, 𝑟2), that is the
topology 𝜏𝑃 is 𝑇1.

Conversely, if 𝜏𝑃 is 𝑇1, then for every 𝑥 ∕= 0 in 𝑋 there exists 𝑈 ∈ 𝒱(0) such
that 𝑥 /∈ 𝑈. If 𝐹 ∈ ℱ(𝑃 ) and 𝑟 > 0 are such that 𝐵𝐹 (0, 𝑟) ⊂ 𝑈, then 𝑥 /∈ 𝐵𝐹 (0, 𝑟),
so there exists 𝑝 ∈ 𝐹 with 𝑝(𝑥) = 𝑝(𝑥− 0) ≥ 𝑟 > 0.

3. Suppose that 𝑃 is directed and let

𝑃 ⋄ = {𝑝⋄ : 𝑝 ∈ 𝑃} ,

where for 𝑝 ∈ 𝑃, 𝑝⋄ is defined by (1.1.31).
By Proposition 1.1.39, 𝑝⋄ is a seminorm on 𝑋 . Denote by 𝜏𝑃⋄ the locally

convex topology on 𝑋 generated by the family 𝑃 ⋄ of seminorms. The topology 𝜏𝑃
is finer than 𝜏𝑃⋄ . Indeed, 𝐺 ∈ 𝜏𝑃⋄ is equivalent to the fact that for every 𝑥 ∈ 𝐺
there exist 𝑝 ∈ 𝑃 and 𝑟 > 0 such that 𝐵𝑝⋄(𝑥, 𝑟) ⊂ 𝐺. Because, by Proposition
1.1.39, 𝑝⋄(𝑦− 𝑥) ≤ 𝑝(𝑦− 𝑥) < 𝑟 it follows that 𝐵𝑝(𝑥, 𝑟) ⊂ 𝐵𝑝⋄(𝑥, 𝑟) ⊂ 𝐺, so that
𝐺 ∈ 𝜏𝑃 . If for every 𝑥 ∈ 𝑋, 𝑥 ∕= 0, there exists 𝑝 ∈ 𝑃 such that 𝑝⋄(𝑥) > 0, then,
by Proposition 1.1.62, the locally convex topology 𝜏𝑃⋄ is separated Hausdorff, and
so will be the finer topology 𝜏𝑃 .

Conversely, suppose that the topology 𝜏𝑃 is Hausdorff and show that 𝑝⋄(𝑥) =
0 for all 𝑝 ∈ 𝑃 implies 𝑥 = 0.

Let 𝑥 ∈ 𝑃 be such that 𝑝⋄(𝑥) = 0 for all 𝑝 ∈ 𝑃 . By the definition (1.1.31) of
the seminorm 𝑝⋄, for every 𝑝 ∈ 𝑃 and 𝑛 ∈ ℕ there exists an element 𝑥(𝑝,𝑛) ∈ 𝑋
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such that

𝑝(𝑥(𝑝,𝑛)) + 𝑝(𝑥(𝑝,𝑛) − 𝑥) <
1

𝑛
. (1.1.50)

Define the order on 𝑃 ×ℕ by (𝑝, 𝑛) ≤ (𝑞,𝑚) if and only if 𝑝 ≤ 𝑞 and 𝑛 ≤ 𝑚.
Since the family 𝑃 of asymmetric seminorms is directed, the set 𝑃 × ℕ is also
directed with respect to the order we just defined. Therefore, {𝑥(𝑝,𝑛) : (𝑝, 𝑛) ∈
𝑃 × ℕ} is a net in 𝑋 and by (1.1.50) we have

𝑝(𝑥(𝑝,𝑛)) <
1

𝑛
and 𝑝(𝑥(𝑝,𝑛) − 𝑥) <

1

𝑛
, (1.1.51)

for all (𝑝, 𝑛) ∈ 𝑃 × ℕ.

We shall prove that the net {𝑥(𝑝,𝑛)} converges to both 0 and 𝑥. Since the
topology 𝜏𝑃 is Hausdorff this will imply 𝑥 = 0.

To prove that the net {𝑥(𝑝,𝑛)} converges to 0 we have to show that for every
𝑝 ∈ 𝑃 the net {𝑝(𝑥(𝑝,𝑛))} tends to 0, i.e.,

∀𝑝 ∈ 𝑃, ∀𝜀 > 0, ∃(𝑝0, 𝑛0) ∈ 𝑃 × ℕ, ∀(𝑞, 𝑛) ∈ 𝑃 × ℕ,

(𝑞, 𝑛) ≥ (𝑝0, 𝑛0) ⇒ 𝑝(𝑥(𝑞,𝑛)) < 𝜀 .

Let 𝑝 ∈ 𝑃 and 𝜀 > 0. Put 𝑝0 = 𝑝 and let 𝑛0 ∈ ℕ be such that 1/𝑛0 < 𝜀. Then
for every (𝑞, 𝑛) ∈ 𝑃 × ℕ such that 𝑞 ≥ 𝑝 and 𝑛 ≥ 𝑛0 we have

𝑝(𝑥(𝑞,𝑛)) ≤ 𝑞(𝑥(𝑞,𝑛)) <
1

𝑛
≤ 1

𝑛0
< 𝜀 .

The convergence of {𝑝(𝑥(𝑝,𝑛) − 𝑥)} to 0, which is equivalent to the 𝜏𝑃 -
convergence of {𝑥(𝑝,𝑛)} to 𝑥, can be proved similarly, using the second inequality
in (1.1.51). □

The following proposition emphasizes some continuity properties of the alge-
braic operations in an asymmetric LCS.

Proposition 1.1.64. Let (𝑋,𝑃 ) be a symmetric LCS, where 𝑃 is a directed family
of asymmetric seminorms generating the topology of 𝑋.

1. The addition + : 𝑋 × 𝑋 → 𝑋 is continuous, so that for every 𝑎 ∈ 𝑋 the
mapping 𝜓𝑎 : 𝑋 → 𝑋 given by 𝜓𝑎(𝑥) = 𝑥 + 𝑎, 𝑥 ∈ 𝑋, is a homeomorphism
of 𝑋.

2. For each fixed 𝑥 the mapping 𝑓 : ℝ→ 𝑋, 𝑓(𝑡) = 𝑡𝑥, is continuous.

3. The mapping 𝑔 : (0;∞)×𝑋 → 𝑋, 𝑔(𝑡, 𝑥) = 𝑡𝑥, is continuous.

Proof. 1. The continuity of + follows from the fact that the topology generated
by 𝑃 is translation invariant. Since both the mapping 𝜓𝑎 and its inverse 𝜓−𝑎 are
continuous, it follows that 𝜓𝑎 is a homeomorphism.
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2. Let 𝑥 ∈ 𝑋 , 𝛼 ∈ ℝ, 𝑝 ∈ 𝑃 and 𝜀 > 0. Then for every ∣𝑡− 𝛼∣ < 𝛿,

𝑝(𝑡𝑥− 𝛼𝑥) ≤ 𝑝𝑠(𝑡𝑥− 𝛼𝑥) = ∣𝑡− 𝛼∣𝑝𝑠(𝑥) ≤ 𝛿𝑝𝑠(𝑥) < 𝜀 ,

provided that 𝛿 > 0 is chosen so that 𝛿𝑝𝑠(𝑥) < 𝜀.

3. Let 𝛼 > 0, 𝑥 ∈ 𝑋, 𝑝 ∈ 𝑃 and 𝜀 > 0 be given. For 0 < 𝛿 < 𝛼 and 𝑟 > 0
let ∣𝑡− 𝛼∣ < 𝛿 and 𝑝(𝑦 − 𝑥) < 𝑟. Then

𝑝(𝑡𝑦 − 𝛼𝑥) ≤ 𝑡𝑝(𝑦 − 𝑥) + ∣𝑡− 𝛼∣𝑝𝑠(𝑥) < (𝛼+ 𝛿)𝑟 + 𝛿𝑝𝑠(𝑥) .

If, in addition, we choose 𝛿, 𝑟 such that 𝛿𝑝𝑠(𝑥) < 𝜀/2 and 𝑟 < 𝜀/2(𝛼 + 𝛿),
then 𝑝(𝑡𝑦 − 𝛼𝑥) < 𝜀, proving the continuity of 𝑔 at (𝛼, 𝑥). □

Example 1.1.65. The multiplication by scalars need not be continuous from ℝ×𝑋
to 𝑋 , as the space (ℝ, 𝑢) from Example 1.1.3 shows.

Indeed, (−1) ⋅ 1 = −1. If 0 < 𝜀 < 1, then 𝑊 = (−∞;−1 + 𝜀) is a 𝑢-
neighborhood of −1 = (−1) ⋅ 1, (−1,−1) ∈ 𝑈 × 𝑉 for any neighborhood 𝑈 of −1
and 𝑉 of 1, but (−1)(−1) = 1 > −1 + 𝜀, that is (−1)(−1) /∈ 𝑊.

Remark 1.1.66. As a consequence of the assertion 1 from Proposition 1.1.64, if 𝑌
is a closed subset of an asymmetric LCS (𝑋,𝑃 ), then 𝑌 + 𝑍 is closed for every
finite subset 𝑍 of 𝑋 .

In a symmetric Hausdorff topological vector space 𝑋 , if 𝑌 ⊂ 𝑋 is closed,
then 𝑌 + 𝑍 is closed for every compact subset 𝑍 of 𝑋 . I do not know if this
assertion is true in an asymmetric LCS.

Indeed, for each 𝑧 ∈ 𝑍 the mapping 𝜓𝑧(𝑥) = 𝑥 + 𝑧, 𝑥 ∈ 𝑋, is a home-
omorphism, so that 𝑌 + 𝑧 = 𝜓𝑧(𝑌 ) is closed and so will be the finite union
𝑌 + 𝑍 = ∪{𝑌 + 𝑧 : 𝑧 ∈ 𝑍}.

The difficulty when 𝑍 is compact arises from the following fact. If (𝑦𝑖 + 𝑧𝑖 :
𝑖 ∈ 𝐼) is a net in 𝑌 + 𝑍 converging to some 𝑥 ∈ 𝑋, then the net (𝑧𝑖) admits a
subnet (𝑧𝑖𝑗 : 𝑗 ∈ 𝐽) converging to some 𝑧 ∈ 𝑍. But this does not imply that the
net 𝑦𝑖𝑗 = (𝑦𝑖𝑗 + 𝑧𝑖𝑗 )− 𝑧𝑖𝑗 , 𝑗 ∈ 𝐽, converges to 𝑦 := 𝑥− 𝑧 ∈ 𝑌, as in the symmetric
case. We do not know a concrete example illustrating this situation.

Convex sets in asymmetric locally convex spaces have some properties similar
to those valid in locally convex spaces.

Proposition 1.1.67. Let (𝑋,𝑃 ) be an asymmetric LCS, where 𝑃 is a directed family
of asymmetric seminorms generating the topology of 𝑋 and 𝑌 ⊂ 𝑋.

1. If ℬ(0) is a base of 0-neighborhoods, then

𝑌 = ∩{𝑌 −𝐵 : 𝐵 ∈ ℬ(0)} . (1.1.52)

2. If the subset 𝑌 is convex, then 𝑌 is convex too.
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3. If the subset 𝑌 is convex and
∘
𝑌 ∕= ∅, then

(1 − 𝛼)
∘
𝑌 + 𝛼𝑌 ⊂

∘
𝑌 , (1.1.53)

for every 0 < 𝛼 < 1. Consequently, if 𝑌 is convex with nonempty interior,
then the interior of 𝑌 is a convex set too.

4. If the subset 𝑌 is convex, absorbing and
∘
𝑌 ∕= ∅, then 0 ∈

∘
𝑌 .

Proof. 1. If 𝑥 ∈ 𝑌 , then for every 𝐵 ∈ ℬ(0), (𝑥+𝐵)∩𝑌 ∕= ∅. If 𝑢 ∈ 𝐵 and 𝑦 ∈ 𝑌
are such that 𝑥+ 𝑢 = 𝑦, then 𝑥 = 𝑦 − 𝑢 ∈ 𝑌 −𝐵.

Conversely, suppose that 𝑥 belongs to the intersection from the right-hand
side of (1.1.52) and let 𝑉 ∈ 𝒱(𝑥). Then there exists 𝐵 ∈ ℬ(0) such that 𝑥+𝐵 ⊂ 𝑉.
Since 𝑥 ∈ 𝑌 − 𝐵, there exists 𝑦 ∈ 𝑌 and 𝑢 ∈ 𝐵 such that 𝑥 = 𝑦 − 𝑢 implying,
𝑦 = 𝑥+ 𝑢 ∈ (𝑥+𝐵) ∩ 𝑌 ⊂ 𝑉 ∩ 𝑌. It follows that 𝑥 ∈ 𝑌 .

2. Take ℬ(0) to be a base formed of convex neighborhoods of 0 (for instance,
𝑝-balls for 𝑝 ∈ 𝑃 ). Then 𝑌 − 𝐵 is convex for every 𝐵 ∈ ℬ(0) and so will be the
intersection (1.1.52).

3. Let 𝑥 ∈
∘
𝑌 , 𝑦 ∈ 𝑌 and 0 < 𝛼 < 1. If 𝑈 ∈ 𝒱(0) is such that 𝑥 + 𝑈 ⊂ 𝑌,

then (1− 𝛼)𝑈 ∈ 𝒱(0) and, by the convexity of 𝑌,
(1− 𝛼)𝑥 + 𝛼𝑦 + (1− 𝛼)𝑈 = (1− 𝛼)(𝑥 + 𝑈) + 𝛼𝑦 ⊂ 𝑌 ,

showing that (1− 𝛼)𝑥 + 𝛼𝑦 ∈
∘
𝑌 .

4. Let 𝑥0 ∈
∘
𝑌 . Since 𝑌 is absorbing and convex, there exists 𝛼 > 0 such that

−𝛼𝑥0 = 𝛼(−𝑥0) ∈ 𝑌. By 3,

0 =
1

𝛼+ 1
(−𝛼𝑥0) +

𝛼

𝛼+ 1
𝑥0 ∈

∘
𝑌 . □

It is well known that any finite-dimensional Hausdorff topological vector
space 𝑋 is topologically isomorphic to the Euclidean ℝ𝑚, where 𝑚 = dim𝑋.
Garćıa-Raffi [86] proved that the result still holds for finite-dimensional 𝑇1 asym-
metric normed spaces, a result that was subsequently extended to 𝑇1 asymmetric
LCS in [44]. The isomorphism result is the following.

Proposition 1.1.68. Let (𝑋,𝑃 ) be an asymmetric LCS whose topology 𝜏(𝑃 ) is 𝑇1.
If 𝑋 is finite dimensional with dim𝑋 = 𝑚, then it is topologically isomorphic to
the Euclidean space ℝ𝑚.

As we shall work with nets we shall present some properties related to nets
in LCS. A net is an application of a directed set (𝐼,≤) to a set 𝑋, 𝜑 : 𝐼 → 𝑋,,
also denoted by (𝑥𝑖 : 𝑖 ∈ 𝐼), where 𝑥𝑖 = 𝜑(𝑖), 𝑖 ∈ 𝐼. A subset 𝐽 of the directed
set 𝐼 is called cofinal in 𝐼 provided that for every 𝑖 ∈ 𝐼 there exists 𝑗 ∈ 𝐽 with
𝑖 ≤ 𝑗. One says that a net 𝜓 : 𝐽 → 𝑋 is a subnet of the net 𝜑 : 𝐼 → 𝑋 if there
exists a monotone mapping 𝜆 : 𝐽 → 𝐼 (i.e., 𝑗1 ≤𝐽 𝑗2 implies 𝜆(𝑗1) ≤𝐼 𝜆(𝑗2)) such
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that 𝜓 = 𝜑 ∘ 𝜆 and 𝜆(𝐽) is cofinal in 𝐼. A subnet of the net (𝑥𝑖 : 𝑖 ∈ 𝐼) is denoted
also by (𝑥𝜆(𝑗) : 𝑗 ∈ 𝐽). If 𝐽 is a cofinal subset of 𝐼, then (𝑥𝑗 : 𝑗 ∈ 𝐽) is a subnet of
(𝑥𝑖 : 𝑖 ∈ 𝐼). It is clear that, if 𝐽1 is a cofinal subset of the directed set 𝐼 and 𝐽2 is
a cofinal subset of 𝐽1, then 𝐽2 is also a cofinal subset of 𝐼.

The following result is probably well known, but for the sake of reader con-
venience we include a proof.

Lemma 1.1.69. Let (𝐼,≤) be a directed set. If 𝐼 = 𝐽1 ∪ ⋅ ⋅ ⋅ ∪ 𝐽𝑚, where 𝐽𝑘 are
nonempty subsets of 𝐼, 𝑘 = 1, . . . ,𝑚, then at least one of the sets 𝐽𝑘 is cofinal
in 𝐼.

Proof. If 𝐽1 is a cofinal subsets of 𝐼, then we are done. If 𝐽1 is not cofinal in 𝐼,
then there exists 𝑖1 ∈ 𝐼 such that there is no 𝑗 ∈ 𝐽1 with 𝑖1 ≤ 𝑗. Putting

𝐼1 = {𝑖 ∈ 𝐼 : 𝑖 ∕= 𝑖1 and 𝑖1 ≤ 𝑖} ,
it follows that 𝐼1 ⊂ 𝐽2 ∪ ⋅ ⋅ ⋅ ∪ 𝐽𝑚. We pose two distinct cases.

I. 𝐼1 = ∅. In this case 𝑖1 is the greatest element of 𝐼. Indeed for 𝑖 ∈ 𝐼 there
exists 𝑖2 ∈ 𝐼 such that 𝑖1 ≤ 𝑖2 and 𝑖 ≤ 𝑖2. By hypothesis 𝑖2 = 𝑖1, so that 𝑖 ≤ 𝑖1. If
𝑘 ∈ {1, . . . ,𝑚} is such that 𝑖1 ∈ 𝐽𝑘, then 𝐽𝑘 is a cofinal subset of 𝐼.

II. 𝐼1 ∕= ∅. In this case the set 𝐼1 is cofinal in 𝐼. Indeed, since 𝐼1 is nonempty
there exists an element 𝑗1 ∈ 𝐼1. If 𝑖 ∈ 𝐼 is arbitrary, then there exists 𝑗 ∈ 𝐼
such that 𝑖 ≤ 𝑗 and 𝑗1 ≤ 𝑗, implying 𝑗 ∈ 𝐼1 and 𝑖 ≤ 𝑗. Since 𝐼1 is contained in
𝐽2 ∪ ⋅ ⋅ ⋅ ∪ 𝐽𝑚, it follows that 𝐽2 ∪ ⋅ ⋅ ⋅ ∪ 𝐽𝑚 is also a cofinal subset of 𝐼.

Repeating the argument with 𝐽2 ∪ ⋅ ⋅ ⋅ ∪ 𝐽𝑚 instead of 𝐼 and continuing in
this manner, we get that some 𝐽𝑘 is a cofinal subset of 𝐼. □

Proposition 1.1.68 will be an immediate consequence of the following lemma.

Lemma 1.1.70. Let (𝑋,𝑃 ) be an asymmetric LCS of finite dimension 𝑚 ≥ 1 with
basis 𝑒1, . . . , 𝑒𝑚 and let 𝑥𝑖 = 𝛼1,𝑖 𝑒1 + ⋅ ⋅ ⋅+ 𝛼𝑚,𝑖 𝑒𝑚, 𝑖 ∈ 𝐼, be a net in 𝑋.

1. If for every 𝑘 ∈ {1, . . . ,𝑚} the net (𝛼𝑘,𝑖) converges in ℝ to some 𝛼𝑘 ∈ ℝ,
then the net (𝑥𝑖) converges to 𝑥 = 𝛼1𝑒1 + ⋅ ⋅ ⋅ + 𝛼𝑚𝑒𝑚 with respect to the
topology 𝜏(𝑃 ).

2. If the topology 𝜏(𝑃 ) is 𝑇1 and the net (𝑥𝑖) converges with respect to 𝜏(𝑃 ) to
𝑥 = 𝛼1𝑒1 + ⋅ ⋅ ⋅ + 𝛼𝑚𝑒𝑚, then the net (𝛼𝑘,𝑖) converges in ℝ to 𝛼𝑘 for every
𝑘 ∈ {1, . . . ,𝑚}.

Proof. 1. For any 𝑝 ∈ 𝑃 ,

𝑝(𝑥𝑖 − 𝑥) = 𝑝

(
𝑚∑
𝑘=1

(𝛼𝑘,𝑖 − 𝛼𝑘)𝑒𝑘

)
≤ 𝑝𝑠

(
𝑚∑
𝑘=1

(𝛼𝑘,𝑖 − 𝛼𝑘)𝑒𝑘

)

≤
𝑚∑
𝑘=1

∣𝛼𝑘,𝑖 − 𝛼𝑘∣𝑝𝑠(𝑒𝑘)→ 0, for 𝑖 ∈ 𝐼 .

Here 𝑝𝑠(𝑥) = max{𝑝(𝑥), 𝑝(−𝑥)} denotes the symmetric norm associated to 𝑝.
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2. Suppose, by contradiction, that 𝑝(𝑥𝑖) → 0 for every 𝑝 ∈ 𝑃, but at least
one of the nets (𝛼𝑘,𝑖), say (𝛼1,𝑖), does not converge to 0 in ℝ. Then there exists
𝜀 > 0 such that for every 𝑖 ∈ 𝐼 there exists 𝑗 ∈ 𝐼, 𝑗 ≥ 𝑖, such that ∣𝛼1,𝑗 ∣ ≥ 𝜀. This
implies that the set 𝐽 = {𝑗 ∈ 𝐼 : ∣𝛼1,𝑗 ∣ ≥ 𝜀} is cofinal in 𝐼, and, consequently,
(𝑥𝑗 : 𝑗 ∈ 𝐽) is a subnet of (𝑥𝑖 : 𝑖 ∈ 𝐼), so it also converges to 0 with respect to
𝜏(𝑃 ). It follows also that 𝑀𝑗 := max{∣𝛼1,𝑗 ∣ : 1 ≤ 𝑘 ≤ 𝑚} ≥ 𝜀 for all 𝑗 ∈ 𝐽.

If 𝑦𝑗 :=𝑀−1
𝑗 𝑥𝑗 , 𝑗 ∈ 𝐽, then

𝑝(𝑦𝑗) =
1

𝑀𝑗
𝑝(𝑥𝑗) ≤ 1

𝜀
𝑝(𝑥𝑗)→ 0, 𝑗 ∈ 𝐽 .

Writing 𝑦𝑗 = 𝛽1,𝑗 𝑒1 + ⋅ ⋅ ⋅ + 𝛽𝑚,𝑗 𝑒𝑚, 𝑗 ∈ 𝐽, it follows that for every 𝑗 ∈
𝐽, ∣𝛽𝑘,𝑗 ∣ ≤ 1, 𝑘 = 1, . . . ,𝑚, and at least one of the numbers 𝛽𝑘,𝑗 has modulus 1.

If 𝐽𝑘 := {𝑗 ∈ 𝐽 : ∣𝛽𝑘,𝑗 ∣ = 1}, 𝑘 = 1, . . . ,𝑚, then, by Lemma 1.1.69, at least
one of the sets 𝐽𝑘, say 𝐽1, is cofinal in 𝐽. By the same lemma, one of the sets
𝐽𝑠1 = {𝑗 ∈ 𝐽1 : 𝛽1,𝑗 = (−1)𝑠}, 𝑠 = 1, 2, is cofinal in 𝐽1. Denote it by 𝐴1. Since the
net (𝛽2,𝑗 : 𝑗 ∈ 𝐴1) is bounded, there exists a subnet (𝛽2,𝛼 : 𝛼 ∈ 𝐴2) of it converging
to some 𝛽2 ∈ ℝ. Similarly, the bounded net (𝛽3,𝛼 : 𝛼 ∈ 𝐴2) contains a subnet
(𝛽3,𝛼 : 𝛼 ∈ 𝐴3) converging to some 𝛽3 ∈ ℝ. Continuing in this way we obtain
the subnets (𝛽𝑘,𝛼 : 𝛼 ∈ 𝐴𝑚) converging to 𝛽𝑘 ∈ ℝ for every 𝑘 = 1, . . . ,𝑚, with
∣𝛽1∣ = 1. Let 𝑧𝛼 = 𝛽1,𝛼𝑒1+ ⋅ ⋅ ⋅+𝛽𝑚,𝛼𝑒𝑚, 𝛼 ∈ 𝐴𝑚, and 𝑧 := 𝛽1𝑒1+ ⋅ ⋅ ⋅+𝛽𝑚𝑒𝑚 ∕= 0.
By the first part of the lemma, the net (−𝑧𝛼) is 𝜏(𝑃 )-convergent to −𝑧, which is
equivalent to 𝑝(−𝑧𝛼+𝑧)→ 0 for every 𝑝 ∈ 𝑃. Since 𝜏(𝑃 ) is 𝑇1, there exists 𝑝0 ∈ 𝑃
such that 𝑝0(𝑧) > 0. It follows that

0 < 𝑝0(𝑧) ≤ 𝑝0(−𝑧𝛼 + 𝑧) + 𝑝0(𝑧𝛼) ,

in contradiction to the fact that 𝑝0(𝑧𝛼)→ 0. □
Remark 1.1.71. There are infinite-dimensional asymmetric normed spaces which
are Hausdorff but not normable. An example is given in [91]. On the space 𝑋 of
all sequences of real numbers with finite support,

𝑝(𝑥) = ∥𝑥+∥1 + ∥𝑥+∥2, 𝑥 ∈ 𝑋,

is an asymmetric norm on 𝑋 , the induced topology 𝜏𝑝 is Hausdorff, but (𝑋, 𝑝)
is not isomorphic to any normed space, in other words, the topology 𝜏𝑝 is not
normable. Here ∥ ⋅ ∥1 and ∥ ⋅ ∥2 are the ℓ𝑝-norms for 𝑝 = 1, 2.
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1.2 Completeness and compactness in quasi-metric
and quasi-uniform spaces

Completeness, total boundedness and compactness look very different in quasi-
metric and quasi-uniform spaces with respect to metric or uniform spaces. The lack
of symmetry in the definition of quasi-metric and quasi-uniform spaces causes a lot
of troubles, mainly concerning completeness, compactness and total boundedness
in such spaces. There are several notions of completeness in quasi-metric and quasi-
uniform spaces, all agreeing with the usual notion of completeness in the case of
metric or uniform spaces, each of them having its advantages and weaknesses. Also,
countable compactness, sequential compactness and compactness do not agree in
quasi-metric spaces, in contrast to the metric case.

The aim of this section is to present these notions of completeness as well as
the relations existing between total boundedness, completeness and compactness
in the setting of quasi-metric and of quasi-uniform spaces.

1.2.1 Various notions of completeness for quasi-metric spaces

We shall describe briefly some of these notions of completeness along with some
of their properties.

In the case of a quasi-metric space (𝑋, 𝜌) there are several completeness
notions, which we present following [185], starting with the definitions of Cauchy
sequences.

A sequence (𝑥𝑛) in (𝑋, 𝜌) is called

(a) left (right) 𝜌-Cauchy if for every 𝜀 > 0 there exist 𝑥 ∈ 𝑋 and 𝑛0 ∈ ℕ such
that

∀𝑛 ≥ 𝑛0, 𝜌(𝑥, 𝑥𝑛) < 𝜀

(respectively 𝜌(𝑥𝑛, 𝑥) < 𝜀);

(b) 𝜌𝑠-Cauchy if it is a Cauchy sequence is the semimetric space (𝑋, 𝜌𝑠), that is
for every 𝜀 > 0 there exists 𝑛0 ∈ ℕ such that

∀𝑛, 𝑘 ≥ 𝑛0, 𝜌𝑠(𝑥𝑛, 𝑥𝑘) < 𝜀,

or, equivalently, ∀𝑛, 𝑘 ≥ 𝑛0, 𝜌(𝑥𝑛, 𝑥𝑘) < 𝜀;

(c) left (right) 𝐾-Cauchy if for every 𝜀 > 0 there exists 𝑛0 ∈ ℕ such that

∀𝑛, 𝑘, 𝑛0 ≤ 𝑘 ≤ 𝑛 ⇒ 𝜌(𝑥𝑘, 𝑥𝑛) < 𝜀

(respectively 𝜌(𝑥𝑛, 𝑥𝑘) < 𝜀);

(d) weakly left (right) 𝐾-Cauchy if for every 𝜀 > 0 there exists 𝑛0 ∈ ℕ such that

∀𝑛 ≥ 𝑛0, 𝜌(𝑥𝑛0 , 𝑥𝑛) < 𝜀

(respectively 𝜌(𝑥𝑛, 𝑥𝑛0) < 𝜀).
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Sometimes, to emphasize the quasi-metric 𝜌, we shall say that a sequence is
left 𝐾-𝜌-Cauchy, etc.

It seems that 𝐾 in the definition of a left 𝐾-Cauchy sequence comes from
Kelly [111] who was the first to consider this notion (see also [50]).

Some remarks are in order.

Proposition 1.2.1 ([185]). Let (𝑋, 𝜌) be a quasi-semimetric space.

1. These notions are related in the following way:

𝜌𝑠-Cauchy ⇒ left 𝐾-Cauchy

⇒ weakly left 𝐾-Cauchy ⇒ left 𝜌-Cauchy,

The same implications hold for the corresponding right notions.
No one of the above implications is reversible.

2. A sequence is left Cauchy (in some sense) with respect to 𝜌 if and only if it
is right Cauchy (in the same sense) with respect to 𝜌.

3. A sequence is 𝜌𝑠-Cauchy if and only if it is both left and right 𝐾-Cauchy.

4. A 𝜌-convergent sequence is left 𝜌-Cauchy and a 𝜌-convergent sequence is right
𝜌-Cauchy.

5. If each convergent sequence in a regular quasi-metric space (𝑋, 𝜌) admits a
left 𝐾-Cauchy subsequence, then 𝑋 is metrizable ([138]).

A quasi-semimetric space (𝑋, 𝜌) is called:

∙ 𝜌-sequentially complete if every 𝜌𝑠-Cauchy sequence is 𝜏𝜌-convergent ([9]);

∙ left 𝜌-sequentially complete if every left 𝜌-Cauchy sequence is 𝜏𝜌-convergent
([185]);

∙ bicomplete if the associated semimetric space (𝑋, 𝜌𝑠) is complete, i.e., every
𝜌𝑠-Cauchy sequence is 𝜏𝜌𝑠-convergent;

∙ left (right) Smyth sequentially complete if every left (right) 𝐾-Cauchy se-
quence is 𝜌𝑠-convergent.

A bicomplete asymmetric normed space (𝑋, 𝑝) is called a biBanach space.

To each of the other notions of Cauchy sequence corresponds a notion of
sequential completeness, by asking that each corresponding Cauchy sequence be
convergent in (𝑋, 𝜏𝜌).

By the assertion 4 from above, each 𝜌-convergent sequence is left 𝜌-Cauchy,
but for each of the other notions there are examples of 𝜌-convergent sequences that
are not Cauchy, which is a major inconvenience. Another one is that a complete (in
some sense) subspace of a quasi-metric space need not be closed. The assertion 5
from Proposition 1.2.1 shows that putting too many conditions on a quasi-metric,
or on a quasi-uniform space, in order to obtain results similar to those in the
symmetric case, there is the danger of forcing the quasi-uniformity a uniformity.
In fact, this is a general problem when dealing with generalizations.
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It follows that the implications between these completeness notions are ob-
tained by reversing the implications between the corresponding notions of Cauchy
sequence from Proposition 1.2.1.1.

Proposition 1.2.2. These notions of completeness are related in the following way:

𝜌-sequentially complete ⇒ weakly left 𝐾-sequentially complete ⇒
left 𝐾-sequentially complete ⇒ left 𝜌-complete.

The same implications hold for the corresponding notions of right completeness.

In spite of the obvious fact that left 𝜌-Cauchy is equivalent to right 𝜌-
Cauchy, left 𝜌- and right 𝜌-completeness do not agree, due to the fact that right
𝜌-completeness means that every left 𝜌-Cauchy sequence converges in (𝑋, 𝜌), while
left 𝜌-completeness means the convergence of such sequences in the space (𝑋, 𝜌).
For concrete examples and counterexamples, see [185].

In fact, as remarked Mennucci [151, §3.ii.2], starting from these seven notions
of Cauchy sequence, one can obtain (taking into account the symmetry between 𝜌
and 𝜌) 14 different notions of completeness, by asking that every sequence which
is Cauchy in some sense for 𝜌 converges with respect to one of the topologies
𝜏(𝜌), 𝜏(𝜌) or 𝜏(𝜌𝑠). Mennucci [151] works with the notion of left Smyth complete-
ness considered by Smyth [225] (see also [216], [229], [230]) in connection with
some questions in theoretical computer science.

We mention the following example from [185].

Example 1.2.3. On the set 𝑋 = ℕ define the quasi-metric 𝜌 by 𝜌(𝑚,𝑛) = 0
if 𝑚 = 𝑛, 𝜌(𝑚,𝑛) = 𝑛−1 if 𝑚 > 𝑛, 𝑚 even, 𝑛 odd, and 𝜌(𝑚,𝑛) = 1 otherwise.
Since there are no non-trivial right𝐾-Cauchy sequences, 𝑋 is right𝐾-sequentially
complete. The quasi-metric space 𝑋 is not right 𝜌-sequentially complete because
the sequence {2, 4, 6, . . .} is right 𝜌-Cauchy but not convergent. This sequence is
left 𝜌-Cauchy but not weakly left 𝐾-Cauchy in (𝑋, 𝜌). Also, the space (𝑋, 𝜌) is
left 𝐾-sequentially complete but not left 𝜌-sequentially complete.

The following simple remarks concerning Cauchy sequences in quasi-semi-
metric spaces are true.

Proposition 1.2.4 ([27, 186]). Let (𝑥𝑛) be a left 𝐾-Cauchy sequence in a quasi-
semimetric space (𝑋, 𝜌).

1. If (𝑥𝑛) has a subsequence which is 𝜏𝜌-convergent to to 𝑥, then (𝑥𝑛) is 𝜏𝜌-
convergent to 𝑥.

2. If (𝑥𝑛) has a subsequence which is 𝜏𝜌-convergent to 𝑥, then (𝑥𝑛) is 𝜏𝜌-
convergent to 𝑥.

3. If (𝑥𝑛) has a subsequence which is 𝜌𝑠-convergent to 𝑥, then (𝑥𝑛) is 𝜌𝑠-
convergent to 𝑥.

Proof. 1. Suppose that (𝑥𝑛) is left 𝐾-Cauchy and (𝑥𝑛𝑘
) is a subsequence of (𝑥𝑛)

such that lim𝑘 𝜌(𝑥, 𝑥𝑛𝑘
) = 0. For 𝜀 > 0 choose 𝑛0 such that 𝑛0 ≤ 𝑚 < 𝑛 implies
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𝜌(𝑥𝑚, 𝑥𝑛) < 𝜀, and let 𝑘0 ∈ ℕ be such that 𝑛𝑘0 ≥ 𝑛0 and 𝜌(𝑥, 𝑥𝑛𝑘
) < 𝜀 for all

𝑘 ≥ 𝑘0. Then, for 𝑛 ≥ 𝑛𝑘0 , 𝜌(𝑥, 𝑥𝑛) ≤ 𝜌(𝑥, 𝑥𝑛𝑘0
) + 𝜌(𝑥𝑛𝑘0

, 𝑥𝑛) < 2𝜀.

2. Suppose that (𝑥𝑛) is left 𝐾-Cauchy such that there exists a subsequence
(𝑥𝑛𝑘

) which is 𝜌-convergent to some 𝑥 ∈ 𝑋. For 𝜀 > 0 let 𝑘0 ∈ ℕ be such that

∀𝑘 ≥ 𝑘0, 𝜌(𝑥𝑛𝑘
, 𝑥) < 𝜀, (1.2.1)

and let 𝑛0 ∈ ℕ be such that

∀𝑛,𝑚 ∈ ℕ, 𝑛0 ≤ 𝑚 < 𝑛 ⇒ 𝜌(𝑥𝑚, 𝑥𝑛) < 𝜀 . (1.2.2)

For 𝑛 ≥ 𝑛0 let 𝑘 ≥ 𝑘0 be such that 𝑛𝑘 > 𝑛. Then by (1.2.1) and (1.2.2)

𝜌(𝑥𝑛, 𝑥) ≤ 𝜌(𝑥𝑛, 𝑥𝑛𝑘
) + 𝜌(𝑥𝑛𝑘

, 𝑥) < 2𝜀 ,

proving that the sequence (𝑥𝑛) is 𝜌-convergent to 𝑥.

3. Suppose there is a subsequence (𝑥𝑛𝑘
)𝑘∈ℕ of (𝑥𝑛) such that 𝑥𝑛𝑘

𝜌𝑠−→ 𝑥.

Then, by Proposition 1.1.8.2, 𝑥𝑛𝑘

𝜌−→ 𝑥 and 𝑥𝑛𝑘

𝜌−→ 𝑥, so that, taking into account

the assertions 1 and 2, 𝑥𝑛
𝜌−→ 𝑥 and 𝑥𝑛𝑘

𝜌−→ 𝑥. Appealing again to Proposition

1.1.8.2, it follows that 𝑥𝑛
𝜌𝑠−→ 𝑥. □

Remark 1.2.5. Property 3 from Proposition 1.2.4 was kindly communicated to us
by M.D. Mabula.

A series
∑

𝑛 𝑥𝑛 in an asymmetric seminormed space (𝑋, 𝑝) is called conver-
gent if there exists 𝑥 ∈ 𝑋 such that 𝑥 = lim𝑛→∞

∑𝑛
𝑘=1 𝑥𝑘. The series

∑
𝑛 𝑥𝑛 is

called absolutely convergent if
∑∞

𝑛=1 𝑝(𝑥𝑛) < ∞. It is well known that a normed
space is complete if and only if every absolutely convergent series is convergent.
A similar result holds in the asymmetric case too.

Proposition 1.2.6.

1. If a sequence (𝑥𝑛) in a quasi-semimetric space (𝑋, 𝜌) satisfies∑∞
𝑛=1 𝜌(𝑥𝑛, 𝑥𝑛+1) <∞,

then it is left 𝐾-Cauchy.

2. An asymmetric seminormed space (𝑋, 𝑝) is left 𝐾-sequentially complete if
and only if every absolutely convergent series is convergent.

Proof. 1. For 𝜀 > 0 let 𝑛0 ∈ ℕ be such that
∑∞

𝑖=0 𝜌(𝑥𝑛0+𝑖, 𝑥𝑛0+𝑖+1) < 𝜀. Then for

𝑛 ≥ 𝑛0 and 𝑘 ∈ ℕ, 𝜌(𝑥𝑛, 𝑥𝑛+𝑘) ≤
∑𝑘−1

𝑖=0 𝜌(𝑥𝑛+𝑖, 𝑥𝑛+𝑖+1) < 𝜀.

2. Suppose that (𝑋, 𝑝) is left 𝐾-sequentially complete and let (𝑥𝑛) be a
sequence in 𝑋 such that

∑∞
𝑛=1 𝑝(𝑥𝑛) < ∞ and let 𝑋𝑛 = 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛, 𝑛 ∈ ℕ.

For 𝜀 > 0 let 𝑛0 ∈ ℕ be such that
∑∞

𝑖=0 𝑝(𝑥𝑛0+𝑖) < 𝜀. Then for 𝑛 ≥ 𝑛0 and
𝑘 ∈ ℕ, 𝑝(𝑋𝑛+𝑘 − 𝑋𝑛) = 𝑝(𝑥𝑛+1 + ⋅ ⋅ ⋅ + 𝑥𝑛+𝑘) ≤ 𝑝(𝑥𝑛+1) + ⋅ ⋅ ⋅ + 𝑝(𝑥𝑛+𝑘) < 𝜀,
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showing that the sequence (𝑋𝑛) is left 𝐾-Cauchy. By the left 𝐾-completeness of
the space 𝑋 there exists 𝑥 ∈ 𝑋 such that 𝑥 = lim𝑛→∞𝑋𝑛 =

∑∞
𝑘=1 𝑥𝑘.

Conversely, suppose that every absolutely convergent series in (𝑋, 𝑝) is con-
vergent and let (𝑥𝑛) be a left 𝐾-Cauchy sequence in 𝑋 . Let 𝑛1 ∈ ℕ be such
that 𝑝(𝑥𝑚 − 𝑥𝑛) < 2−1 for all 𝑛,𝑚 ∈ ℕ with 𝑛1 ≤ 𝑛 < 𝑚. Now let 𝑛2 > 𝑛1

be such that 𝑝(𝑥𝑚 − 𝑥𝑛) < 2−1 for all 𝑛,𝑚 ∈ ℕ with 𝑛2 ≤ 𝑛 < 𝑚. Con-
tinuing in this manner we find a sequence of indices 𝑛1 < 𝑛2 < ⋅ ⋅ ⋅ such that
𝑝(𝑥𝑛𝑘+1

− 𝑥𝑛𝑘
) < 2−𝑘 for all 𝑘 ∈ ℕ. It follows that

∑∞
𝑘=1 𝑝(𝑥𝑛𝑘+1

− 𝑥𝑛𝑘
) = 1, so

that, by hypothesis, there exists 𝑥 ∈ 𝑋 such that 𝑦 =
∑∞

𝑘=1(𝑥𝑛𝑘
− 𝑥𝑛𝑘−1

). But
𝑌𝑘 = (𝑥𝑛2 − 𝑥𝑛1) + ⋅ ⋅ ⋅+ (𝑥𝑛𝑘+1

− 𝑥𝑛𝑘
) = 𝑥𝑛𝑘+1

− 𝑥𝑛1 , for every 𝑘 ∈ ℕ. It follows

that 𝑥𝑛𝑘

𝑝−→ 𝑦+ 𝑥𝑛1 as 𝑘 →∞. By Proposition 1.2.4, the sequence (𝑥𝑛) converges
to 𝑦 + 𝑥𝑛1 . □

By Proposition 1.2.2 a weakly left 𝐾-sequentially complete quasi-semimetric
space is left 𝐾-sequentially complete. As remarked by Romaguera [190] these
notions are in fact equivalent.

Proposition 1.2.7 ([190], Proposition 1). A quasi-semimetric space is weakly left
𝐾-sequentially complete if and only if it is left 𝐾-sequentially complete.

Proof. It remains to show that a left 𝐾-complete quasi-semimetric space is weakly
left 𝐾-complete. Suppose that the space (𝑋, 𝜌) is left 𝐾-complete and let (𝑥𝑛) be
a weakly left 𝐾-Cauchy sequence in 𝑋.We have to show that (𝑥𝑛) is 𝜌-convergent
to some 𝑥 ∈ 𝑋.

Let 𝑛(1) be the smallest natural number such that

∀𝑛 ≥ 𝑛(1), 𝜌(𝑥𝑛(1), 𝑥𝑛) < 1 . (1.2.3)

If 𝜌(𝑥𝑛(1), 𝑥𝑛) = 0 for all 𝑛 ≥ 𝑛(1), then 𝑥𝑛
𝜌−→ 𝑥𝑛(1). Supposing that

𝜌(𝑥𝑛(1), 𝑥𝑚(1)) > 0 for some 𝑚(1) > 𝑛(1), let 𝑘2 ∈ ℕ be such that

1

𝑘2
≤ 𝜌(𝑥𝑛(1), 𝑥𝑚(1)) < 1 , (1.2.4)

and let 𝑛(2) be the smallest natural number such that

∀𝑛 ≥ 𝑛(2), 𝜌(𝑥𝑛(2), 𝑥𝑛) < 1/𝑘2 . (1.2.5)

By the choice of 𝑛(1), 𝑛(2) ≥ 𝑛(1), and by (1.2.4), 𝑛(2) ∕= 𝑛(1) so that
𝑛(2) > 𝑛(1).

Again, if 𝜌(𝑥𝑛(2), 𝑥𝑛) = 0 for all 𝑛 ≥ 𝑛(2), then 𝑥𝑛
𝜌−→ 𝑥𝑛(2). If not, choose

𝑚(2) > 𝑛(2) such that 𝜌(𝑥𝑛(2), 𝑥𝑚(2)) > 0, then pick 𝑘3 ∈ ℕ such that

1

𝑘3
≤ 𝜌(𝑥𝑛(1), 𝑥𝑚(1) <

1

𝑘2
,
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and take 𝑛(3) to be the smallest natural number such that

∀𝑛 ≥ 𝑛(3), 𝜌(𝑥𝑛(2), 𝑥𝑛) < 1/𝑘3 .

Continuing in this manner we can get at some step 𝑖 an element 𝑥𝑛(𝑖) such

that 𝜌(𝑥𝑛(𝑖), 𝑥𝑛) = 0 for all 𝑛 ≥ 𝑛(𝑖), implying 𝑥𝑛
𝜌−→ 𝑥𝑛(𝑖).

If such an 𝑖 does not exist, we find the sequences of natural numbers

1 = 𝑘1 < 𝑘2 < ⋅ ⋅ ⋅ and 𝑛(1) < 𝑛(2) < ⋅ ⋅ ⋅

such that

∀𝑛 ≥ 𝑛(𝑖), 𝜌(𝑥𝑛(𝑖), 𝑥𝑛) < 1/𝑘𝑖 , (1.2.6)

for all 𝑖 ∈ ℕ.

It is easy to check that the condition (1.2.6) implies that the sequence
(𝑥𝑛(𝑖))𝑖∈ℕ is left 𝐾-Cauchy, so that, by the left 𝐾-completeness of the space (𝑋, 𝜌),
it is 𝜌-convergent to some 𝑥 ∈ 𝑋.

Let us show that the sequence (𝑥𝑛) is 𝜌-convergent to 𝑥. For 𝜀 > 0 let 𝑖0 ∈ ℕ
be such that 𝑘−1

𝑖0
< 𝜀 and 𝜌(𝑥, 𝑥𝑛(𝑖)) < 𝜀, for all 𝑖 ≥ 𝑖0. Then for every 𝑛 ≥ 𝑛(𝑖0),

𝜌(𝑥, 𝑥𝑛) ≤ 𝜌(𝑥, 𝑥𝑛(𝑖0)) + 𝜌(𝑥𝑛(𝑖0), 𝑥𝑛) < 𝜀+
1

𝑘𝑖0
< 2𝜀 ,

proving the 𝜌-convergence of (𝑥𝑛) to 𝑥. □

Concerning Baire’s characterization of completeness in terms of descending
sequences of closed sets we mention the following result, [185, Th. 10]. The diam-
eter of a subset 𝐴 of 𝑋 is defined by

diam(𝐴) = sup{𝜌(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐴} . (1.2.7)

It is clear that the diameter, as defined, is in fact the diameter with respect
to the associated semimetric 𝜌𝑠.

Theorem 1.2.8 ([185], Theorem 10). A quasi-semimetric space (𝑋, 𝜌) is 𝜌-sequen-
tially complete if and only if each decreasing sequence 𝐹1 ⊃ 𝐹2 . . . of nonempty
closed sets with diam𝐹𝑛 → 0 as 𝑛 → ∞ has nonempty intersection, which is a
singleton if 𝜌 is a quasi-metric.

Proof. Let 𝐹1 ⊃ 𝐹2 ⊃ ⋅ ⋅ ⋅ be a sequence of nonempty 𝜏𝜌-closed sets with
diam(𝐹𝑛) → 0 for 𝑛 → ∞. Choosing 𝑥𝑛 ∈ 𝐹𝑛, 𝑛 ∈ ℕ, it follows that the se-
quence (𝑥𝑛) is 𝜌𝑠-Cauchy, so that it is 𝜏𝜌-convergent to some 𝑥 ∈ 𝑋. Since for
every 𝑛 ∈ ℕ, 𝑥𝑛+𝑘 ∈ 𝐹𝑛+𝑘 ⊂ 𝐹𝑛 for all 𝑘 ∈ ℕ, letting 𝑘 → ∞ and taking into
account the closedness of the set 𝐹𝑛 it follows that 𝑥 ∈ 𝐹𝑛 for all 𝑛 ∈ ℕ, that is
𝑥 ∈ ∩𝑛𝐹𝑛.
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Suppose that 𝜌 is a quasi-metric. Since 𝜌 is a quasi-metric if and only if 𝜌𝑠

is a metric, the hypothesis diam(𝐹𝑛)→ 0 implies that ∩𝑛𝐹𝑛 can contain at most
one element.

We shall prove the converse by contradiction. Suppose that there exists a
𝜌𝑠-Cauchy sequence (𝑥𝑛) in 𝑋 which is not 𝜌-convergent. Then (𝑥𝑛) is left 𝐾-
𝜌-Cauchy, so that, by Proposition 1.2.4 it is 𝜌-convergent provided it contains a
𝜌-convergent subsequence. Consequently (𝑥𝑛) does not contain 𝜌-convergent sub-
sequences, so that the set 𝐹𝑛 = {𝑥𝑘 : 𝑘 ≥ 𝑛} is 𝜏𝜌-closed for every 𝑛 ∈ ℕ. Since
(𝑥𝑛) is 𝜌

𝑠-Cauchy it follows that diam(𝐹𝑛) → 0 for 𝑛 → ∞. If 𝑥 ∈ ∩∞𝑛=1𝐹𝑛, then
the inequalities 𝜌(𝑥, 𝑥𝑛) ≤ diam(𝐹𝑛), 𝑛 ∈ ℕ, imply lim𝑛 𝜌(𝑥, 𝑥𝑛) = 0, that is

𝑥𝑛
𝜌−→ 𝑥, in contradiction to the hypothesis. Consequently ∩∞𝑛=1𝐹𝑛 = ∅, which

ends the proof of the reverse implication. □

The following characterization of right 𝐾-completeness was obtained in [35]
using a different terminology.

Proposition 1.2.9. A quasi-semimetric space (𝑋, 𝜌) is right 𝐾-sequentially com-
plete if and only if any decreasing sequence of closed 𝜌-balls

𝐵𝜌[𝑥1, 𝑟1] ⊃ 𝐵𝜌[𝑥1, 𝑟1] ⊃ ⋅ ⋅ ⋅ with lim
𝑛→∞ 𝑟𝑛 = 0

has nonempty intersection.

If the topology 𝜏𝜌 is Hausdorff, then ∩∞𝑛=1𝐵𝜌[𝑥𝑛, 𝑟𝑛] contains exactly one
element.

Proof. Suppose that (𝑋, 𝑝) is right 𝐾-complete and let 𝐵𝜌[𝑥𝑛, 𝑟𝑛], 𝑛 ∈ ℕ, be a
sequence of closed 𝜌-balls satisfying the requirements of the proposition.

We show first that the sequence (𝑥𝑛) formed with their centers is right 𝐾-
Cauchy. For 𝜀 > 0 there exists 𝑛0 ∈ ℕ such that 𝑟𝑛 < 𝜀 for all 𝑛 ≥ 𝑛0. If
𝑛0 ≤ 𝑛 < 𝑚, then 𝑥𝑚 ∈ 𝐵𝜌[𝑥𝑛, 𝑟𝑛] so that

𝜌(𝑥𝑛, 𝑥𝑚) ≤ 𝑟𝑛 < 𝜀 ⇐⇒ 𝜌(𝑥𝑚, 𝑥𝑛) ≤ 𝑟𝑛 < 𝜀 ,

showing that (𝑥𝑛) is right 𝐾-Cauchy. It follows that there exists 𝑥 ∈ 𝑋 such that

𝑥𝑛
𝜌−→ 𝑥. For every 𝑘 ∈ ℕ, 𝑥𝑛 ∈ 𝐵𝜌[𝑥𝑘, 𝑟𝑘] for all 𝑛 ≥ 𝑘. Since, by Proposition

1.1.8, the ball 𝐵𝜌[𝑥𝑘, 𝑟𝑘] is 𝜏𝜌-closed, it follows that 𝑥 = 𝜌-lim𝑛→∞ 𝑥𝑛 ∈ 𝐵𝜌[𝑥𝑘, 𝑟𝑘],
showing that 𝑥 ∈ ∩∞𝑘=1𝐵𝜌[𝑥𝑘, 𝑟𝑘].

If 𝑦 ∈ ∩∞𝑛=1𝐵𝜌[𝑥𝑛, 𝑟𝑛], then for all 𝑛 ∈ ℕ, 𝜌(𝑥𝑛, 𝑦) ≤ 𝑟𝑛 ⇐⇒ 𝜌(𝑦, 𝑥𝑛) ≤ 𝑟𝑛,

so that 𝑥𝑛
𝜌−→ 𝑦. If the topology 𝜏𝜌 is Hausdorff, then 𝑦 = 𝑥.

To prove the converse, let (𝑥𝑛) be a right 𝐾-Cauchy sequence in (𝑋, 𝜌). Then
there exists 𝑛1 such that 𝑛1 ≤ 𝑛 < 𝑚 implies 𝜌(𝑥𝑚, 𝑥𝑛) ≤ 1/2 ⇐⇒ 𝜌(𝑥𝑛, 𝑥𝑚) ≤
1/2. In particular 𝜌(𝑥𝑛1 , 𝑥𝑛) ≤ 1/2 for all 𝑛 ≥ 𝑛1. Consider the ball 𝐵𝜌[𝑥𝑛1 , 1].

Let now 𝑛2 > 𝑛1 be such that 𝑛2 ≤ 𝑛 < 𝑚 implies 𝜌(𝑥𝑚, 𝑥𝑛) ≤ 1/22 ⇐⇒
𝜌(𝑥𝑛, 𝑥𝑚) ≤ 1/22, so that 𝜌(𝑥𝑛2 , 𝑥𝑛) ≤ 1/22 for all 𝑛 ≥ 𝑛2.



52 Chapter 1. Quasi-metric and Quasi-uniform Spaces

It follows that 𝐵𝜌[𝑥𝑛2 , 1/2] ⊂ 𝐵𝜌[𝑥𝑛1 , 1]. Indeed, 𝜌(𝑥𝑛2 , 𝑦) ≤ 1/2 implies

𝜌(𝑥𝑛1 , 𝑦) ≤ 𝜌(𝑥𝑛1 , 𝑥𝑛2) + 𝜌(𝑥𝑛2 , 𝑦) ≤
1

2
+
1

2
= 1 .

Continuing in this manner we obtain a sequence 𝑛1 < 𝑛2 < ⋅ ⋅ ⋅ such that

∀𝑛 ≥ 𝑛𝑘, 𝜌(𝑥𝑛𝑘
, 𝑥𝑛) ≤ 1

2𝑘
.

It follows that 𝜌(𝑥𝑛𝑘
, 𝑥𝑛𝑘+1

) ≤ 2−𝑘 and the balls 𝐵𝜌[𝑥𝑛𝑘
, 2−(𝑘−1)] satisfy

𝐵𝜌[𝑥𝑛𝑘+1
, 2−𝑘] ⊂ 𝐵𝜌[𝑥𝑛𝑘

, 2−(𝑘−1)], 𝑘 ∈ ℕ.

By hypothesis there exists 𝑥 ∈ ∩∞𝑘=1𝐵𝜌[𝑥𝑛𝑘
, 2−(𝑘−1)].

The relations 𝜌(𝑥, 𝑥𝑛𝑘
) = 𝜌(𝑥𝑛𝑘

, 𝑥) ≤ 2−(𝑘−1) → 0 as 𝑘 → ∞, show that
𝜌-lim𝑘→∞ 𝑥𝑛𝑘

= 𝑥. By Proposition 1.2.4.2, the right 𝐾-Cauchy sequence (𝑥𝑛) is
𝜌-convergent to 𝑥. □
Remark 1.2.10. It is obvious that the conclusion of Proposition 1.2.9 remains
true for every family 𝐹1 ⊃ 𝐹2 ⊃ ⋅ ⋅ ⋅ of nonempty 𝜏𝜌-closed sets in a right 𝐾-
sequentially complete quasi-metric space (𝑋, 𝜌) for which there exists the balls
𝐵𝜌[𝑥𝑛, 𝑟𝑛] ⊃ 𝐹𝑛, 𝑛 ∈ ℕ, satisfying the hypotheses of the proposition.

As it is well known in the case of semimetric spaces, the sequential complete-
ness is equivalent to the completeness defined in terms of filters or of nets. Roma-
guera [190] proved a similar result for left 𝐾-complete quasi-semimetric spaces.

A filter ℱ in a quasi-semimetric space (𝑋, 𝜌) is called left 𝐾-Cauchy if for
every 𝜀 > 0 there exists 𝐹𝜀 ∈ ℱ such that

∀𝑥 ∈ 𝐹𝜀, 𝐵𝜌(𝑥, 𝜀) ∈ ℱ . (1.2.8)

Also a net (𝑥𝑖 : 𝑖 ∈ 𝐼) is called left 𝐾-Cauchy if for every 𝜀 > 0 there exists
𝑖0 ∈ 𝐼 such that

∀𝑖, 𝑗 ∈ 𝐼, 𝑖0 ≤ 𝑖 ≤ 𝑗 ⇒ 𝜌(𝑥𝑖, 𝑥𝑗) < 𝜀 . (1.2.9)

Proposition 1.2.11. For a quasi-semimetric space (𝑋, 𝜌) the following are equiva-
lent.

1. The space (𝑋, 𝜌) is left 𝐾-sequentially complete.

2. Every left 𝐾-Cauchy filter in 𝑋 is 𝜏𝜌-convergent.

3. Every left 𝐾-Cauchy net in 𝑋 is 𝜏𝜌-convergent.

Proof. 1 ⇒ 2. If ℱ is a left 𝐾-Cauchy filter in (𝑋, 𝜌), then for every 𝑛 ∈ ℕ there
exists 𝐹𝑛 ∈ ℱ such that

∀𝑥 ∈ 𝐹𝑛, 𝐵𝜌(𝑥, 2
−𝑛) ∈ ℱ .

Pick 𝑥1 ∈ 𝐹1 and 𝑥𝑛 ∈ 𝐹𝑛 ∩
(∩𝑛−1

𝑘=1𝐵𝜌(𝑥𝑘, 2
−𝑘)

)
for 𝑛 > 1.



1.2. Completeness and compactness in quasi-metric and quasi-uniform spaces 53

The sequence (𝑥𝑛) is left 𝐾-Cauchy. Indeed, for 𝜀 > 0 let 𝑘 ∈ ℕ be such that
2−𝑘 < 𝜀. Then, by the choice of 𝑥𝑛, for 𝑘 ≤ 𝑚 < 𝑛, 𝑥𝑛 ∈ 𝐵𝜌(𝑥𝑚, 2−𝑚), implying
𝜌(𝑥𝑚, 𝑥𝑛) < 2−𝑚 ≤ 2−𝑘 < 𝜀.

By hypothesis, there exists 𝑥 ∈ 𝑋 such that

𝑥𝑛
𝜌−→ 𝑥 ⇐⇒ 𝜌(𝑥, 𝑥𝑛)→ 0 . (1.2.10)

We want to show that 𝑥 = limℱ which is equivalent to the condition

∀𝑘 ∈ ℕ, 𝐵𝜌(𝑥, 2
−𝑘) ∈ ℱ .

Let 𝑘 ∈ ℕ. By (1.2.10) there exists 𝑛 > 𝑘 such that 𝜌(𝑥, 𝑥𝑛) < 2−𝑘−1. If
𝜌(𝑥𝑛, 𝑦) < 2−𝑛, then

𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑥𝑛) + 𝜌(𝑥𝑛, 𝑦) <
1

2𝑘+1
+
1

2𝑛
≤ 1

2𝑘
,

showing that 𝐵𝜌(𝑥𝑛, 2
−𝑛) ⊂ 𝐵𝜌(𝑥, 2

−𝑘). Since 𝐵𝜌(𝑥𝑛, 2
−𝑛) ∈ ℱ , it follows that

𝐵𝜌(𝑥, 2
−𝑘) ∈ ℱ .

2 ⇒ 3. If (𝑥𝑖 : 𝑖 ∈ 𝐼) is a left 𝐾-Cauchy net in 𝑋 , then the sets 𝐹𝑖 =
{𝑥𝑗 : 𝑗 ≥ 𝑖}, 𝑖 ∈ 𝐼, form the base of a filter ℱ on 𝑋 . For 𝜀 > 0 let 𝑖0 be such
that 𝑖0 ≤ 𝑖 ≤ 𝑗 implies 𝜌(𝑥𝑖, 𝑥𝑗) < 𝜀. If 𝑖 ≥ 𝑖0, then 𝜌(𝑥𝑖, 𝑥𝑗) < 𝜀 for every 𝑗 ≥ 𝑖,
showing that 𝐹𝑖 ⊂ 𝐵𝜌(𝑥𝑖, 𝜀). Consequently, 𝐵𝜌(𝑥𝑖, 𝜀) ∈ ℱ for every 𝑥𝑖 ∈ 𝐹𝑖0 .

By hypothesis there exists 𝑥 ∈ 𝑋 such that 𝑥 = limℱ . Using the definition
of the filter ℱ , it is easy to check that 𝑥 = lim𝑖 𝑥𝑖. Indeed, for 𝜀 > 0, 𝐵𝜌(𝑥, 𝜀) ∈ ℱ ,
so there exists 𝑖0 ∈ 𝐼 such that 𝐹𝑖0 ⊂ 𝐵𝜌(𝑥, 𝜀), implying 𝜌(𝑥, 𝑥𝑖) < 𝜀 for every
𝑖 ≥ 𝑖0.

The implication 3 ⇒ 1 is obvious. □

A filter ℱ in a quasi-uniform space (𝑋,𝒰) is called left 𝒰-Cauchy if for every
𝑈 ∈ 𝒰 there exists 𝑥 ∈ 𝑋 such that 𝑈(𝑥) ∈ ℱ . The quasi-uniform space (𝑋,𝒰)
is called left 𝒰-complete if every left 𝒰-Cauchy filter is convergent with respect to
the induced topology 𝜏(𝒰). In quasi-semimetric spaces these notions correspond
to those of left 𝜌-Cauchy sequence and sequential left 𝜌-completeness. Call a quasi-
semimetric space left 𝜌-complete if the associated quasi-uniform space (𝑋,𝒰𝜌) is
left 𝒰𝜌-complete. We have seen in Proposition 1.2.11 that a quasi-semimetric is
left 𝐾-complete if and only if the associated quasi-uniform space (𝑋,𝒰𝜌) is left
𝐾-complete.

In the case of left 𝜌-completeness this equivalence does not hold in general.

Proposition 1.2.12 (Künzi [131]). A Hausdorff quasi-metric space (𝑋, 𝜌) is left 𝜌-
sequentially complete if and only if the associated quasi-uniform space (𝑋,𝒰𝜌) is
left 𝒰𝜌-complete.
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Proof. Suppose that (𝑋, 𝜌) is left 𝜌-sequentially complete and let ℱ be a left
𝒰𝜌-Cauchy filter. Then, for every 𝑘 ∈ ℕ, there exists 𝑥𝑘 ∈ 𝑋 such that 𝐵𝑘 :=
𝐵𝜌(𝑥𝑘, 2

−𝑘) ∈ ℱ . Let
𝐾 = ∩∞𝑛=1𝜏𝜌- cl (∩𝑛𝑘=1𝐵𝑘) . (1.2.11)

Claim I. Any sequence 𝑦𝑛 ∈ ∩𝑛𝑘=1𝐵𝑘, 𝑛 ∈ ℕ, is left 𝜌-Cauchy.

For 𝜀 > 0 let 𝑘 ∈ ℕ be such that 2−𝑘 < 𝜀. If 𝑛 ≥ 𝑘, then 𝑦𝑛 ∈ 𝐵𝑘, so that
𝜌(𝑥𝑘, 𝑦𝑛) < 2−𝑘 < 𝜀.

Claim II. The set 𝐾 is a singleton.

Let 𝑦𝑛 ∈ ∩𝑛𝑘=1𝐵𝑘, 𝑛 ∈ ℕ. Then the sequence (𝑦𝑛) is left 𝜌-Cauchy, so that,

by hypothesis, there exists 𝑥 ∈ 𝑋 such that 𝑦𝑛
𝜌−→ 𝑥. Since 𝐾 is 𝜏𝜌-closed it follows

that 𝑥 ∈ 𝐾.

Let 𝑦 ∈ 𝐾. By the definition (1.2.11) of the set 𝐾, for every 𝑛 ∈ ℕ there
exists the elements

𝑥𝑛 ∈ 𝐵𝜌(𝑥, 2
−𝑛) ∩𝐵1 ∩ ⋅ ⋅ ⋅ ∩𝐵𝑛 and 𝑧𝑛 ∈ 𝐵𝜌(𝑦, 2

−𝑛) ∩𝐵1 ∩ ⋅ ⋅ ⋅ ∩𝐵𝑛 .

It follows that 𝑥𝑛
𝜌−→ 𝑥 and 𝑧𝑛

𝜌−→ 𝑦. Define a sequence (𝑤𝑛) by 𝑤2𝑘−1 = 𝑥𝑘
and 𝑤2𝑘 = 𝑧𝑘. By Claim I the sequence (𝑤𝑛) is left 𝜌-Cauchy, because 𝑤𝑛 ∈
𝐵1∩⋅ ⋅ ⋅∩𝐵𝑛, 𝑛 ∈ ℕ, so that it is 𝜌-convergent to some 𝑤 ∈ 𝑋. Since 𝜏𝜌 is Hausdorff
this limit is unique, implying 𝑥 = lim𝑘 𝑤2𝑘−1 = 𝑤 and 𝑦 = lim𝑘 𝑤2𝑘 = 𝑤, that is
𝑦 = 𝑥.

Claim III. limℱ = 𝑥.

Supposing the contrary, there exists an open neighborhood 𝑉 of 𝑥 such that
𝑉 /∈ ℱ . It follows that 𝐵1 ∩ ⋅ ⋅ ⋅ ∩𝐵𝑛 ⊈ 𝑉, that is 𝐵1 ∩ ⋅ ⋅ ⋅ ∩𝐵𝑛 ∖ 𝑉 ∕= ∅ for every
𝑛 ∈ ℕ. Let 𝑦𝑛 ∈ 𝐵1 ∩ ⋅ ⋅ ⋅ ∩𝐵𝑛 ∖ 𝑉, 𝑛 ∈ ℕ. By Claim I the sequence (𝑦𝑛) is left 𝜌-

Cauchy, so that there exists 𝑦 ∈ 𝑋 such that 𝑦𝑛
𝜌−→ 𝑦. It follows that 𝑦 ∈ 𝐾 = {𝑥},

so that 𝑦𝑛
𝜌−→ 𝑥, in contradiction to the fact that 𝑦𝑛 /∈ 𝑉 ∈ 𝒱𝜌(𝑥) for all 𝑛 ∈ ℕ.

The converse is easy to prove and holds in general: any left 𝒰𝜌 complete
quasi-semimetric space (𝑋, 𝜌) is 𝜌-sequentially complete.

If (𝑥𝑛) is a left 𝜌-Cauchy sequence in (𝑋, 𝜌), then the sets 𝐹𝑛 = {𝑥𝑘 : 𝑘 ≥
𝑛}, 𝑛 ∈ ℕ, form the base of a filter ℱ on 𝑋 . It is easy to check that ℱ is 𝒰𝜌-
Cauchy, so it is 𝜏𝜌-convergent to some 𝑥 ∈ 𝑋, implying 𝑥𝑛

𝜌−→ 𝑥. Indeed, for
𝜀 > 0, 𝐵𝜌(𝑥, 𝜀) ∈ ℱ , so there exists 𝑛0 ∈ ℕ such that 𝐹𝑛0 ⊂ 𝐵𝜌(𝑥, 𝜀), implying
𝑥𝑛 ∈ 𝐵𝜌(𝑥, 𝜀) for all 𝑛 ≥ 𝑛0. □

Künzi [131] considers a more general notion of completeness, namely that
of cluster completeness meaning that every Cauchy (of some kind) filter or net,
has a cluster point. If one considers sequences, then one says cluster sequentially
complete. (Our terminology differs from that in [131] where a quasi-uniform space
such that any Cauchy filter is convergent is called convergence complete and a
quasi-uniform space such that any Cauchy filter has a cluster point is called com-
plete.)
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Using this terminology, by Proposition 1.2.4 a left 𝐾-cluster sequentially
complete quasi-semimetric space is left 𝐾-sequentially complete.

Künzi [131] gives examples of

∙ a 𝑇1 quasi-metric space (𝑋, 𝜌) that is 𝒰𝜌-cluster complete, but not left 𝜌-
sequentially complete (Example 1);

∙ a 𝑇1 quasi-metric space (𝑋, 𝜌) that is left 𝜌-sequentially complete, but not
𝒰𝜌-cluster complete (Example 2);

∙ a 𝑇1 quasi-metric space (𝑋, 𝜌) that is left 𝜌-sequentially complete and 𝒰𝜌-
cluster complete, but not 𝒰𝜌-complete (Example 3).

Call a quasi-semimetric space (𝑋, 𝜌)

∙ point-symmetric if 𝜏(𝜌) ⊂ 𝜏(𝜌), and

∙ locally symmetric if for every 𝑥 ∈ 𝑋 and every 𝜀 > 0 there exists 𝛿 > 0 such
that

∪{𝐵𝜌(𝑦, 𝛿) : 𝑦 ∈ 𝐵𝜌(𝑥, 𝛿)} ⊂ 𝐵𝜌(𝑥, 𝜀), (1.2.12)

or, equivalently, if

∀𝑧 ∈ 𝑋, (∃𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) < 𝛿 ∧ 𝜌(𝑧, 𝑦) < 𝛿 ⇒ 𝜌(𝑥, 𝑧) < 𝜀) . (1.2.13)

A point-symmetric quasi-semimetric is called also a strong quasi-semimetric.
Observe that if 𝜌 is point-symmetric, then the topology 𝜏(𝜌) is semimetrizable
(metrizable if 𝜌 is a quasi-metric), see Proposition 1.1.13.

We mention the following result.

Proposition 1.2.13.

1. A locally symmetric quasi-semimetric space is point-symmetric.

2. A quasi-semimetric space (𝑋, 𝜌) is point-symmetric if and only if

𝑥𝑛
𝜌−→ 𝑥 ⇒ 𝑥𝑛

𝜌−→ 𝑥 , (1.2.14)

for every sequence (𝑥𝑛) in 𝑋.

3. ([10]) A weakly right 𝐾-sequentially complete 𝑇1 quasi-metric space is point-
symmetric

4. ([10]) A countably compact 𝑇1 quasi-metric space is point-symmetric.

Proof. 1. If 𝑌 ⊂ 𝑋 is 𝜏(𝜌)-open, then for every 𝑥 ∈ 𝑌 there exists 𝜀 > 0 such
that 𝐵𝜌(𝑥, 𝜀) ⊂ 𝑌 . Choosing 𝛿 > 0 according to (1.2.12), it follows that the 𝜏(𝜌)-
open set ∪{𝐵𝜌(𝑦, 𝛿) : 𝑦 ∈ 𝐵𝜌(𝑥, 𝛿)} contains 𝑥 and is contained in 𝑌 , so that 𝑌 is
𝜏(𝜌)-open.

The equivalence from 2 follows from the fact that in a quasi-semimetric space
all the topological properties can be expressed in terms of sequences, a property
valid in any first countable topological space.
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3. The proof is based on 2. The space (𝑋, 𝜌) is 𝑇1 if and only if 𝜌(𝑥, 𝑦) =
0 ⇐⇒ 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ 𝑋. Let (𝑥𝑛) be a sequence in 𝑋 that is 𝜏(𝜌)-convergent
to 𝑥 ∈ 𝑋. Define the sequence (𝑦𝑛) by 𝑦2𝑘−1 = 𝑥 and 𝑦2𝑘 = 𝑥𝑘 for 𝑘 ∈ ℕ. It
is obvious that (𝑦𝑛) is weakly right 𝐾-Cauchy, so there exists 𝑦 ∈ 𝑋 such that

𝑦𝑛
𝜌−→ 𝑦. Since 𝜌(𝑦, 𝑥) = 𝜌(𝑦, 𝑦2𝑘−1)→ 0 as 𝑘 → ∞, it follows that 𝜌(𝑦, 𝑥) = 0, so

that 𝑦 = 𝑥. The relations 𝜌(𝑥, 𝑥𝑘) = 𝜌(𝑦, 𝑦2𝑘)→ 0 for 𝑘 →∞ show that 𝑥𝑛
𝜌−→ 𝑥.

4. Suppose, by contradiction, that there exists 𝐺 ∈ 𝜏(𝜌) ∖ 𝜏(𝜌). It follows
that

(i) ∀𝑥 ∈ 𝐺, ∃𝑛𝑥 ∈ ℕ, 𝐵𝜌(𝑥, 2
−𝑛𝑥) ⊂ 𝐺,

(1.2.15)
(ii) ∃𝑥0 ∈ 𝐺, ∀𝑛 ∈ ℕ, 𝐵𝜌(𝑥, 2

−𝑛) ∩ ∁(𝐺) ∕= ∅,
where for 𝑍 ⊂ 𝑋, ∁(𝑍) = 𝑋 ∖ 𝑍.

Since a topological space is countably compact if and only if every filter with
a countable base has a cluster point, it follows that the filter ℱ generated by the
countable filter base {𝐵𝜌(𝑥, 2

−𝑛) ∩ ∁(𝐺) : 𝑛 ∈ ℕ} has a cluster point 𝑦 ∈ 𝑋,
implying

𝑦 ∈ 𝐵𝜌(𝑦, 2
−𝑛) ∩𝐵𝜌(𝑥0, 2

−𝑛) ∩ ∁(𝐺) , (1.2.16)

for every 𝑛 ∈ ℕ.

From 𝑦 ∈ ∁(𝐺), it follows that 𝑦 ∕= 𝑥0, so that there exists 𝑛 ∈ ℕ with

𝑥0 /∈ 𝐵𝜌(𝑦, 2
−𝑛) ⇐⇒ 𝜌(𝑦, 𝑥0) ≥ 2−𝑛 .

By (1.2.16) there exists 𝑧 ∈ 𝐵𝜌(𝑦, 2
−𝑛−1) ∩ 𝐵𝜌(𝑥0, 2

−𝑛−1), leading to the
contradiction

2−𝑛 ≤ 𝜌(𝑦, 𝑥0) ≤ 𝜌(𝑦, 𝑧) + 𝜌(𝑧, 𝑥0)

= 𝜌(𝑦, 𝑧) + 𝜌(𝑥0, 𝑧) < 2−𝑛−1 + 2−𝑛−1 = 2−𝑛 . □

We have seen in Proposition 1.2.7 that sequential weak left 𝐾-completeness
and sequential left 𝐾-completeness are equivalent notions in any quasi-semimetric
space. The following example shows that this result is not true for right complete-
ness.

Example 1.2.14 (Császár, see [10]). Let 𝑋 = {0}∪{1/𝑛 : 𝑛 ∈ ℕ} and let the quasi-
semimetric 𝑑 be defined by 𝑑(0, (2𝑘)−1) = (2𝑘)−1, 𝑑(𝑛−1, (2𝑘)−1) = (2𝑘)−1−𝑛−1

if 𝑛 > 2𝑘, 𝑑(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 otherwise. Then 𝜏(𝑑) is the
discrete topology, so that 𝜏(𝑑) ⊂ 𝜏(𝑑), that is the space (𝑋, 𝑑) is point-symmetric.
A right𝐾-Cauchy sequence in (𝑋, 𝑑) is either eventually constant or a subsequence
of (1/2𝑘), say 𝑥𝑖 = 1/2𝑘𝑖, 𝑖 ∈ ℕ. In this last case 𝑑(0, 𝑥𝑖) = (2𝑘𝑖)

−1 → 0 as 𝑖→∞.
Consequently (𝑋, 𝑑) is right 𝐾-sequentially complete. However the sequence (1/𝑛)
is weakly right 𝐾-Cauchy without being 𝜏(𝑑)-convergent.

Although, an equivalence result can be obtained under some supplementary
conditions on the space 𝑋.
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Proposition 1.2.15 ([10]). A right 𝐾-sequentially complete locally symmetric quasi-
semimetric space is weakly right 𝐾-sequentially complete,

Proof. Suppose that (𝑥𝑛) is a weakly right 𝐾-Cauchy sequence in a locally sym-
metric quasi-semimetric space (𝑋, 𝜌). Let 𝑛1 be the first natural number such
that

∀𝑛 > 𝑛1, 𝜌(𝑥𝑛, 𝑥𝑛1) < 1/2 . (1.2.17)

If 𝜌(𝑥𝑛, 𝑥𝑛1) = 0 for all 𝑛 > 𝑛1, then 𝑥𝑛
𝜌−→ 𝑥𝑛1 , so that, by Proposition

1.2.13.2, 𝑥𝑛
𝜌−→ 𝑥𝑛1 . Else, let 𝑚1 be the first natural number greater than 𝑛1 such

that 𝜌(𝑥𝑚1 , 𝑥𝑛1) > 0, and let 𝑘2 ∈ ℕ be such that

1

2𝑘2
≤ 𝜌(𝑥𝑚1 , 𝑥𝑛1) <

1

2𝑘2−1
. (1.2.18)

Since 𝜌(𝑥𝑚1 , 𝑥𝑛1) < 1/2, it follows that 𝑘2 > 1.

Let 𝑛2 be the first natural number such that

∀𝑛 > 𝑛2, 𝜌(𝑥𝑛, 𝑥𝑛2) <
1

2𝑘2
.

If 𝑛2 < 𝑛1, then, by the definition of the number 𝑛1, there exists𝑚, 𝑛2 < 𝑚 <
𝑛1, such that 𝜌(𝑥𝑚, 𝑥𝑛2) ≥ 1/2, leading to the contradiction 1/2 ≤ 𝜌(𝑥𝑚, 𝑥𝑛2) <
1/2𝑘2.

If 𝑛1 ≤ 𝑛2 < 𝑚1, then 𝜌(𝑥𝑛2 , 𝑥𝑛1) = 0, implying

1

2𝑘2
≤ 𝜌(𝑥𝑚1 , 𝑥𝑛1) ≤ 𝜌(𝑥𝑚1 , 𝑥𝑛2) + 𝜌(𝑥𝑛2 , 𝑥𝑛1) = 𝜌(𝑥𝑚1 , 𝑥𝑛2) <

1

2𝑘2
,

a contradiction, again.

Consequently 𝑛1 ≥ 𝑚1 > 𝑛1, and 𝜌(𝑥𝑛2 , 𝑥𝑛1) < 1/2.

Continuing in this manner, it is possible that at some step 𝑖, 𝜌(𝑥𝑛, 𝑥𝑛𝑖) = 0

for all 𝑛 ≥ 𝑛𝑖, implying 𝑥𝑛
𝜌−→ 𝑥𝑛𝑖 . If such an 𝑖 does not exist, then we find the

increasing sequences of natural numbers

𝑛1 < 𝑛2 < ⋅ ⋅ ⋅ and 𝑘1 < 𝑘2 < ⋅ ⋅ ⋅

such that

∀𝑖 ∈ ℕ, ∀𝑛 > 𝑛𝑖, 𝜌(𝑥𝑛, 𝑥𝑛𝑖) <
1

2𝑘𝑖
.

It follows that

∀𝑖 ∈ ℕ, 𝜌(𝑥𝑛𝑖+1 , 𝑥𝑛𝑖) <
1

2𝑘𝑖
. (1.2.19)

It is easy to check that (1.2.19) implies that the sequence (𝑥𝑛𝑖)𝑖∈ℕ is right
𝐾-Cauchy, so there exists 𝑥 ∈ 𝑋 such that 𝑥𝑛𝑖

𝜌−→ 𝑥 ⇐⇒ lim𝑖→∞ 𝜌(𝑥, 𝑥𝑛𝑖) = 0.

For 𝜀 > 0 choose 𝛿 > 0 according to (1.2.13).
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Let 𝑖0 ∈ ℕ be such that

∀𝑖 ≥ 𝑖0, 𝜌(𝑥, 𝑥𝑛𝑖) < 𝛿 ,

and let 𝑗 ≥ 𝑖0 be such that 2
−𝑘𝑗 < 𝛿. Then for 𝑛 > 𝑛𝑗 ,

𝜌(𝑥, 𝑥𝑛𝑗 ) < 𝛿 and 𝜌(𝑥𝑛, 𝑥𝑛𝑗 ) <
1

2𝑘𝑗
< 𝛿 .

Applying (1.2.13) with 𝑦 = 𝑥𝑛𝑗 and 𝑧 = 𝑥𝑛, it follows that 𝜌(𝑥, 𝑥𝑛) < 𝜀 for

all 𝑛 > 𝑛𝑗 , that is 𝑥𝑛
𝜌−→ 𝑥. □

The analog of Proposition 1.2.11 can also be obtained only under some sup-
plementary hypotheses on the quasi-semimetric space 𝑋 .

A filter ℱ in a quasi-semimetric space (𝑋, 𝜌) is called a right 𝐾-Cauchy filter
if for every 𝜀 > 0 there exists 𝐹𝜀 ∈ ℱ such that 𝐵𝜌(𝑥, 𝜀) ∈ ℱ for every 𝑥 ∈ 𝐹𝜀. A
net (𝑥𝑖 : 𝑖 ∈ 𝐼) is called a right 𝐾-Cauchy net if for every 𝜀 > 0 there exists 𝑖0 ∈ 𝐼
such that 𝜌(𝑥𝑗 , 𝑥𝑖) < 𝜀 for all 𝑖, 𝑗 ∈ 𝐼 with 𝑖0 ≤ 𝑖 ≤ 𝑗.

Call the space (𝑋, 𝜌) right 𝐾-complete if every right 𝐾-Cauchy filter in 𝑋 is
𝜏𝜌-convergent to some 𝑥 ∈ 𝑋.

The quasi-semimetric space (𝑋, 𝜌) is called 𝑅1 if for all 𝑥, 𝑦 ∈ 𝑋, 𝜏𝜌-cl{𝑥} ∕=
𝜏𝜌-cl{𝑦} implies the existence of two disjoint 𝜏𝜌-open sets 𝑈, 𝑉 such that 𝑥 ∈ 𝑈
and 𝑦 ∈ 𝑉.

Proposition 1.2.16 ([10]). Let (𝑋, 𝜌) be a quasi-semimetric space. The following
are true.

1. If 𝑋 is right 𝐾-complete, then every right 𝐾-Cauchy net in 𝑋 is conver-
gent. In particular, every right 𝐾-complete quasi-semimetric space is right
𝐾-sequentially complete.

2. If the quasi-semimetric space (𝑋, 𝜌) is 𝑅1 then 𝑋 is right 𝐾-complete if and
only if it is right 𝐾-sequentially complete.

Proof. 1. If (𝑥𝑖 : 𝑖 ∈ 𝐼) is a right 𝐾-Cauchy net in 𝑋 , then 𝐹𝑖 = {𝑥𝑗 : 𝑗 ∈
𝐼, 𝑖 ≤ 𝑗}, 𝑖 ∈ 𝐼, is the base of a filter ℱ in 𝑋. For 𝜀 > 0 let 𝑖0 ∈ 𝐼 be such that
𝜌(𝑥𝑗 , 𝑥𝑖) < 𝜀 ⇐⇒ 𝜌(𝑥𝑖, 𝑥𝑗) < 𝜀 for all 𝑖, 𝑗 ∈ 𝐼 with 𝑖0 ≤ 𝑖 ≤ 𝑗. Then for every
𝑛 ≥ 𝑛0, 𝐹𝑛 ⊂ 𝐵𝜌(𝑥𝑛, 𝜀), implying 𝐵𝜌(𝑥𝑖, 𝜀) ∈ ℱ for every 𝑖 ≥ 𝑖0, that is the filter
ℱ is right 𝐾-Cauchy. By hypothesis, ℱ is convergent to some 𝑥 ∈ 𝑋. It is easy to
check that the net (𝑥𝑖 : 𝑖 ∈ 𝐼) is 𝜌-convergent to 𝑥.

2. We have to prove only that a right 𝐾-sequentially complete quasi-semi-
metric space (𝑋, 𝜌) is right 𝐾-complete. Let ℱ be a right 𝐾-Cauchy filter on
𝑋. Then for every 𝑛 ∈ ℕ there exists 𝐹𝑛 ∈ ℱ such that 𝐵𝜌(𝑥, 2

−𝑛) ∈ ℱ for all

𝑥 ∈ 𝐹𝑛. Let 𝑥1 ∈ 𝐹1 and 𝑥𝑛 ∈ 𝐹𝑛 ∩
∩𝑛−1
𝑘=1 𝐵𝜌(𝑥𝑘, 2

−𝑘), 𝑛 > 1. It follows that
the so-constructed sequence (𝑥𝑛) is right 𝐾-Cauchy, so it is 𝜌-convergent to some
𝑥 ∈ 𝑋.We shall show that the filter ℱ converges with respect to 𝜏𝜌 to 𝑥. Supposing



1.2. Completeness and compactness in quasi-metric and quasi-uniform spaces 59

the contrary, there exists 𝑚 ∈ ℕ such that 𝐵𝜌(𝑥, 2
−𝑚) /∈ ℱ . We construct a new

sequence (𝑦𝑛) in the following way: take 𝑦1 ∈ 𝐹1 ∩𝐵𝜌(𝑥1, 2
−1) ∖𝐵𝜌(𝑥, 2

−𝑚) and

𝑦𝑛 ∈ 𝐹𝑛 ∩𝐵𝜌(𝑥𝑛, 2
−𝑛) ∩

𝑛−1∩
𝑘=1

𝐵𝜌(𝑦𝑘, 2
−𝑘) ∖𝐵𝜌(𝑥, 2

−𝑚) ,

for 𝑛 > 1. The relations 𝑦𝑛 ∈
∩𝑛−1
𝑘=1 𝐵𝜌(𝑦𝑘, 2

−𝑘), 𝑛 > 1, imply that (𝑦𝑛) is also a
right 𝐾-Cauchy sequence, so it is 𝜌-convergent to some 𝑦 ∈ 𝑋.

If 𝜏𝜌-cl{𝑥} = 𝜏𝜌-cl{𝑦}, then 𝑥 ∈ 𝜏𝜌-cl{𝑦}, implying 𝜌(𝑥, 𝑦) = 0. The relations

𝜌(𝑥, 𝑦𝑛) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑦𝑛) = 𝜌(𝑦, 𝑦𝑛) → 0, 𝑛 → ∞, imply that 𝑦𝑛
𝜌−→ 𝑥, in

contradiction with the fact that 𝑦𝑛 /∈ 𝐵𝜌(𝑥, 2
−𝑚) for all 𝑛 ∈ ℕ.

If 𝜏𝜌-cl{𝑥} ∕= 𝜏𝜌-cl{𝑦}, then there exists 𝜀 > 0 such that 𝐵𝜌(𝑥, 𝜀)∩𝐵𝜌(𝑦, 𝜀) =
∅. Since 𝑦𝑛 ∈ 𝐵𝜌(𝑥𝑛, 2

−𝑛) it follows that 𝜌(𝑦𝑛, 𝑥𝑛) < 2−𝑛 → 0, 𝑛→∞. But then

𝜌(𝑦, 𝑥𝑛) ≤ 𝜌(𝑦, 𝑦𝑛) + 𝜌(𝑦𝑛, 𝑥𝑛)→ 0, 𝑛→∞ .

Consequently, 𝑥𝑛
𝜌−→ 𝑥 and 𝑥𝑛

𝜌−→ 𝑦, implying that, for sufficiently large
𝑛, 𝑥𝑛 ∈ 𝐵𝜌(𝑥, 𝜀) ∩𝐵𝜌(𝑦, 𝜀) = ∅, a contradiction. □

Stoltenberg [226] considered a more general notion of a right Cauchy net.
A net (𝑥𝑖 : 𝑖 ∈ 𝐼) in a quasi-semimetric space (𝑋, 𝜌) is called right 𝑆𝑡-Cauchy
provided that for every 𝜀 > 0 there exists 𝑖𝜀 ∈ 𝐼 such that

∀𝑖, 𝑗 ≥ 𝑖𝜀, 𝑖 ≤ 𝑗 ∨ 𝑖 ≁ 𝑗 ⇒ 𝜌(𝑥𝑗 , 𝑥𝑖) < 𝜀 , (1.2.20)

where 𝑖 ≁ 𝑗 means that 𝑖, 𝑗 are incomparable (that is no one of the relations 𝑖 ≤ 𝑗
and 𝑗 ≤ 𝑖 holds). Observe that

𝜌(𝑥𝑗 , 𝑥𝑖) < 𝜀 and 𝜌(𝑥𝑗 , 𝑥𝑖) < 𝜀 , (1.2.21)

for all 𝑖, 𝑗 ≥ 𝑖𝜀, 𝑖 ≁ 𝑗.

It is obvious that, particularized to sequences, the notions of right 𝐾-com-
pleteness and right 𝑆𝑡-completeness agree.

Proposition 1.2.17 ([226]). A 𝑇1 quasi-metric space (𝑋, 𝜌) is right 𝐾-sequentially
complete if and only if every right 𝑆𝑡-Cauchy net in 𝑋 is 𝜏𝜌-convergent.

Proof. We have only to prove that the sequential right 𝐾-completeness implies
that every right 𝑆𝑡-Cauchy net in 𝑋 is 𝜏𝜌-convergent.

Let (𝑥𝑖 : 𝑖 ∈ 𝐼) be a right 𝑆𝑡-Cauchy net in 𝑋 . Let 𝑖𝑘 ≥ 𝑖𝑘−1, 𝑘 ≥ 2, such
that (1.2.20) holds for 𝜀 = 1/2𝑘, 𝑘 ∈ ℕ.

The inequalities 𝜌(𝑥𝑖𝑘+1
, 𝑥𝑖𝑘) < 2−𝑘, 𝑘 ∈ ℕ, imply that the sequence (𝑥𝑖𝑘 )𝑘∈ℕ

is right 𝐾-Cauchy, so it converges to some 𝑥 ∈ 𝑋.
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We distinguish two cases.

Case I. ∃𝑖0 ∈ 𝐼, ∃𝑘0 ∈ ℕ, ∀𝑘 ≥ 𝑘0, 𝑥𝑖𝑘 ≤ 𝑖0.

Then for every 𝑘 ≥ 𝑘0 and 𝑖0 ≤ 𝑖 we have 𝑖𝑘 ≤ 𝑖0 ≤ 𝑖, so that 𝜌(𝑥𝑖, 𝑥𝑖0) < 2−𝑘,
implying 𝜌(𝑥𝑖, 𝑥𝑖0) = 0. Since the quasi-metric space (𝑋, 𝜌) is 𝑇1, it follows that
𝑥𝑖 = 𝑥𝑖0 for all 𝑖 ≥ 𝑖0 (see Proposition 1.1.8), so that the net (𝑥𝑖 : 𝑖 ∈ 𝐼) is
𝜏𝜌-convergent to 𝑥𝑖0 .

Case II. ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ ℕ, ∃𝑘′ ≥ 𝑘, 𝑖𝑘′ ≰ 𝑖.

For 𝜀 > 0 let 𝑘0 ∈ ℕ be such that 2−𝑘0 < 𝜀 and 𝜌(𝑥, 𝑥𝑖𝑘 ) < 𝜀 for all 𝑘 ≥ 𝑘0.

For 𝑖 ≥ 𝑖𝑘0 let 𝑘 ≥ 𝑘0 be such that 𝑖𝑘 ≰ 𝑖. Again there are two situations. If
𝑖𝑘 ≁ 𝑖, then, since 𝑖𝑘0 ≤ 𝑖𝑘 and 𝑖𝑘0 ≤ 𝑖, it follows that 𝜌(𝑥𝑖𝑘 , 𝑥𝑖) < 2−𝑘0 < 𝜀. If
𝑖𝑘, 𝑖 are comparable, then we must have 𝑖 ≤ 𝑖𝑘, so that 𝜌(𝑥𝑖𝑘 , 𝑥𝑖) < 2−𝑘0 < 𝜀.

In both cases

𝜌(𝑥, 𝑥𝑖) ≤ 𝜌(𝑥, 𝑥𝑖𝑘 ) + 𝜌(𝑥𝑖𝑘 , 𝑥𝑖) < 2𝜀 ,

for all 𝑖 ≥ 𝑖𝑘0 , showing that the net (𝑥𝑖 : 𝑖 ∈ 𝐼) is 𝜏𝜌-convergent to x. □

Stoltenberg gives in [226] examples of

∙ a right 𝐾-sequentially complete 𝑇1 quasi-metric space (𝑋, 𝜌) containing a
right 𝐾-Cauchy net that is not 𝜏𝜌-convergent (Example 2.4);

∙ a right 𝐾-sequentially complete 𝑇1 quasi-semimetric space (𝑋, 𝜌) containing
a right 𝑆𝑡-Cauchy net that is not 𝜏𝜌-convergent, showing that Proposition
1.2.17 does not hold for quasi-semimetric spaces (Example 2.6).

1.2.2 Compactness, total boundedness and precompactness

A subset 𝑌 of a quasi-metric space (𝑋, 𝜌) is called precompact if for every 𝜀 > 0
there exists a finite subset 𝑍 of 𝑌 such that

𝑌 ⊂ ∪{𝐵𝜌(𝑧, 𝜀) : 𝑧 ∈ 𝑍} . (1.2.22)

If for every 𝜀 > 0 there exists a finite subset 𝑍 of 𝑋 such that (1.2.22) holds,
then the set 𝑌 is called outside precompact.

One obtains the same notions if one works with closed balls 𝐵𝜌[𝑧, 𝜀], 𝑧 ∈ 𝑍.

Proposition 1.2.18. Let (𝑋, 𝜌) be a quasi-semimetric space.

1. A subset 𝑌 of 𝑋 is (outside) precompact if and only if for every 𝜀 > 0 there
exists a finite subset 𝑍 of 𝑌 (resp. of 𝑋) such that 𝑌 ⊂ ∪{𝐵𝜌[𝑧, 𝜀] : 𝑧 ∈ 𝑍}.

2. A subset 𝑌 of 𝑋 is (outside) precompact if and only if the set 𝜏𝜌-cl(𝑌 ) is
(outside) precompact.

3. A subset 𝑌 of 𝑋 is precompact if and only if for every 𝜀 > 0 there exists a
finite subset 𝑥1, . . . , 𝑥𝑛 of 𝑋 such that 𝑌 ⊂ ∪𝑛𝑖=1𝐵𝜌(𝑥𝑖, 𝜀) and 𝑌 ∩𝐵𝜌(𝑥𝑖, 𝜀) ∕=
∅, for all 𝑖 = 1, . . . , 𝑛.
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Proof. The nontrivial part of the assertion 1 follows from the inclusion 𝐵[𝑥, 𝜀] ⊂
𝐵(𝑥, 2𝜀).

2. Let 𝜀 > 0. Since 𝑌 is precompact there exists a finite set 𝑍 ⊂ 𝑌 such that
𝑌 ⊂ ∪{𝐵𝜌[𝑧, 𝜀] : 𝑧 ∈ 𝑍}. Since every ball 𝐵𝜌[𝑧, 𝜀] is 𝜏𝜌-closed (see Proposition
1.1.8, it follows that 𝜏𝜌-cl(𝑌 ) ⊂ ∪{𝐵𝜌[𝑧, 𝜀] : 𝑧 ∈ 𝑍}.

Conversely, if 𝜏𝜌-cl(𝑌 ) is precompact, then for given 𝜀 > 0 there exists a
finite subset {𝑧1, . . . , 𝑧𝑘} of 𝜏𝜌-cl(𝑌 ) such that 𝜏𝜌-cl(𝑌 ) ⊂ ∪𝑘𝑖=1𝐵𝜌(𝑧𝑖, 𝜀). For every
𝑖 ∈ {1, 2, . . . , 𝑘} there exists 𝑦𝑖 ∈ 𝑌 such that 𝜌(𝑦𝑖, 𝑧𝑖) = 𝜌(𝑧𝑖, 𝑦𝑖) < 𝜀. For 𝑦 ∈ 𝑌
there exists 𝑖 ∈ {1, 2, . . . , 𝑘} such that 𝑦 ∈ 𝐵(𝑧𝑖, 𝜀), implying

𝜌(𝑦𝑖, 𝑦) ≤ 𝜌(𝑦𝑖, 𝑧𝑖) + 𝜌(𝑧𝑖, 𝑦) < 2𝜀 ,

showing that 𝑌 ⊂ ∪𝑘𝑖=1𝐵𝜌(𝑦𝑖, 2𝜀), that is 𝑌 is precompact.

3. For 𝜀 > 0 let {𝑥1, . . . , 𝑥𝑛} ⊂ 𝑋 such that the conditions hold for 𝜀/2. If
𝑦𝑖 ∈ 𝑌 ∩𝐵𝜌(𝑥𝑖, 𝜀/2), 𝑖 = 1, . . . , 𝑛, then 𝑌 ⊂ ∪𝑛𝑖=1𝐵𝜌(𝑥𝑖, 𝜀).

Indeed, for any 𝑦 ∈ 𝑌 there exists 𝑘 ∈ {1, . . . , 𝑛} such that 𝜌(𝑥𝑘, 𝑦) < 𝜀/2,
implying

𝜌(𝑦𝑘, 𝑦) ≤ 𝜌(𝑦𝑘, 𝑥𝑘) + 𝜌(𝑥𝑘, 𝑦) = 𝜌(𝑥𝑘, 𝑦𝑘) + 𝜌(𝑥𝑘, 𝑦) < 𝜀 . □

Proposition 1.2.19 ([4]). Let (𝑋, 𝜌) be a quasi-semimetric space and (𝑥𝑛) a se-
quence in 𝑋.

1. If (𝑥𝑛) is weakly left 𝐾-Cauchy, then {𝑥𝑛 : 𝑛 ∈ ℕ} is precompact.

2. If (𝑥𝑛) is 𝜌-convergent, then it is outside precompact. If 𝑥 is a limit of (𝑥𝑛),
then {𝑥} ∪ {𝑥𝑛 : 𝑛 ∈ ℕ} is precompact.

3. There exist 𝜌-convergent sequences which are not precompact.

Proof. 1. For 𝜀 > 0 there exists 𝑘 such that 𝜌(𝑥𝑘, 𝑥𝑛) < 𝜀, for every 𝑛 ≥ 𝑘,
implying {𝑥𝑛 : 𝑛 ∈ ℕ} ⊂ ∪{𝐵𝜌(𝑥𝑖, 𝜀) : 1 ≤ 𝑖 ≤ 𝑘}.

2. If 𝑥 is a limit of (𝑥𝑛), then for every 𝜀 > 0 there exists 𝑘 ∈ ℕ such that
𝑝(𝑥𝑛, 𝑥) < 𝜀, for all 𝑛 > 𝑘, implying {𝑥} ∪ {𝑥𝑛 : 𝑛 ∈ ℕ} ⊂ 𝐵𝜌(𝑥, 𝜀) ∪ {𝐵𝜌(𝑥𝑖, 𝜀) :
1 ≤ 𝑖 ≤ 𝑘}.

If (𝑥𝑛) is 𝜌-convergent to some 𝑥 ∈ 𝑋, then the above reasoning shows that
{𝑥𝑛 : 𝑛 ∈ ℕ} is outside precompact.

3. We shall present a counterexample in the space ℓ∞ of all bounded real
sequences equipped with the asymmetric norm 𝑝(𝑥) = sup𝑖 𝑥

+
𝑖 , for 𝑥 = (𝑥𝑖)

∞
𝑖=1 ∈

ℓ∞. Consider the sequence 𝑥𝑛 = (1, 1, . . . , 1
𝑛
, 0, 0, . . . ), 𝑛 ≥ 1. If 𝑧 = (1, 1, . . . ),

then 𝑝(𝑥𝑛 − 𝑧) = 𝑝(0, . . . , 0
𝑛
,−1,−1, . . . ) = 0, for all 𝑛, so that (𝑥𝑛) converges to

𝑧 with respect to 𝑝. Let 𝜀 = 1/2 and let 𝑛1 < 𝑛2 < ⋅ ⋅ ⋅ < 𝑛𝑘 be an arbitrary finite
subset of ℕ. Then, for every 𝑛 > 𝑛𝑘, 𝑝(𝑥𝑛 − 𝑥𝑛𝑖) = 1, 𝑖 = 1, . . . , 𝑘, showing that
{𝑥𝑛 : 𝑛 ∈ ℕ} is not contained in ∪{𝐵𝜌(𝑥𝑛𝑖 , 𝜀) : 1 ≤ 𝑖 ≤ 𝑘}. □
Proposition 1.2.20 ([27]). A 𝜏𝜌-compact quasi-semimetric space (𝑋, 𝜌) is precom-
pact and separable.
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Proof. The precompactness is obvious: for 𝜀 > 0, {𝐵𝜌(𝑥, 𝜀) : 𝑥 ∈ 𝑋} is an 𝜏𝜌-open
cover of 𝑋 , so there exists a finite subset 𝑍𝜀 of 𝑋 such that 𝑋 = ∪{𝐵𝜌(𝑧, 𝜀) :
𝑧 ∈ 𝑍𝜀}.

To prove the separability, let 𝑍𝑘 ⊂ 𝑋 be a finite subset such that 𝑋 =
∪{𝐵𝜌(𝑧, 1/𝑘) : 𝑧 ∈ 𝑍𝑘}, 𝑘 ∈ ℕ. Obviously, 𝑍 = ∪∞𝑘=1𝑍𝑘 is countable. For an
arbitrary 𝜀 > 0 let 𝑘 ∈ ℕ be such that 1/𝑘 < 𝜀. Then for 𝑥 ∈ 𝑋 = ∪{𝐵𝜌(𝑧, 1/𝑘) :
𝑧 ∈ 𝑍𝑘} there exists 𝑧 ∈ 𝑍𝑘 ⊂ 𝑍 such that 𝑥 ∈ 𝐵𝜌(𝑧, 1/𝑘) ⊂ 𝐵𝜌(𝑧, 𝜀), proving the
𝜏𝜌-density of 𝑍 in 𝑋 . □

We mention also the following result from [196].

Proposition 1.2.21. In a precompact quasi-semimetric space (𝑋, 𝜌) every sequence
admits a left 𝜌-Cauchy subsequence.

If 𝑋 is countable, then the converse assertion is also true.

Proof. Suppose that (𝑋, 𝜌) is precompact and let (𝑥𝑛) be a sequence in 𝑋. By
the precompactness of 𝑋 there exists a finite subset 𝑍1 of 𝑋 such that 𝑋 =
∪{𝐵𝜌(𝑧, 1/2) : 𝑧 ∈ 𝑍1}. It follows that there exists 𝑧1 ∈ 𝑍 and an infinite subset
𝑀1 : 𝑛

1
1 < 𝑛1

2 < ⋅ ⋅ ⋅ , of ℕ such that 𝜌(𝑧1, 𝑥𝑛𝑘
1
) < 1/2 for all 𝑘 ∈ ℕ. Similarly,

there exist an infinite subset 𝑀2 : 𝑛
2
1 < 𝑛2

2 < ⋅ ⋅ ⋅ , of 𝑀1 and 𝑧2 ∈ 𝑋 such that
𝜌(𝑧2, 𝑥𝑛𝑘

2
) < 1/22 for all 𝑘 ∈ ℕ.

Continuing in this manner we obtain the infinite sets ℕ ⊃ 𝑀1 ⊃ 𝑀2 ⊃
⋅ ⋅ ⋅ , 𝑀𝑘 : 𝑛

𝑘
1 < 𝑛𝑘2 < ⋅ ⋅ ⋅ , and the points 𝑧𝑘 ∈ 𝑋 such that 𝜌(𝑧𝑘, 𝑥𝑛𝑘

𝑖
) < 1/2𝑘 for

all 𝑖 ∈ ℕ.

We show that the diagonal sequence (𝑥𝑛𝑘
𝑘
)𝑘∈ℕ is left 𝜌-Cauchy. Indeed, given

𝜀 > 0 let 𝑘 ∈ ℕ such that 2−𝑘 < 𝜀. Then for every 𝑖 > 𝑘, 𝑥𝑛𝑖
𝑖
∈ 𝐵𝜌(𝑧𝑘, 2

−𝑘) ⇐⇒
𝜌(𝑧𝑘, 𝑥𝑛𝑖

𝑖
) < 2−𝑘 < 𝜀.

Suppose that the set 𝑋 is countable, 𝑋 = {𝑥𝑛 : 𝑛 ∈ ℕ}. If 𝑋 is not precom-
pact then there exists 𝜀 > 0 such that for every finite subset 𝑍 of 𝑋 there exists
𝑥 ∈ 𝑋 with 𝜌(𝑧, 𝑥) ≥ 𝜀 for all 𝑧 ∈ 𝑍. It follows that for every 𝑛 ∈ ℕ there exists
𝑦𝑛 ∈ 𝑋 such that 𝜌(𝑥𝑘, 𝑦𝑛) ≥ 𝜀 for all 𝑘 = 1, . . . , 𝑛. It is obvious that the sequence
(𝑦𝑛) does not contain any left 𝜌-Cauchy subsequence. □

The set 𝑌 is called totally bounded if for every 𝜀 > 0, 𝑌 can be covered
by a finite family of sets of diameter less than 𝜀, where the diameter of a set
is defined by (1.2.7). Total boundedness implies precompactness. Indeed, if 𝑌 ⊂
∪{𝐴𝑖 : 1 ≤ 𝑖 ≤ 𝑛} where diam(𝐴𝑖) < 𝜀 and 𝐴𝑖 ∩ 𝑌 ∕= ∅, for 𝑖 = 1, . . . , 𝑛, then,
taking 𝑧𝑖 ∈ 𝐴𝑖 ∩ 𝑌, 1 ≤ 𝑖 ≤ 𝑛, it follows that 𝑌 ⊂ ∪{𝐵𝜌(𝑧𝑖, 𝜀) : 1 ≤ 𝑖 ≤ 𝑛}.

As it is known, in metric spaces the precompactness, the outside precompact-
ness and the total boundedness are equivalent notions, a result that is no longer
true in quasi-metric spaces, where outside precompactness is strictly weaker than
precompactness, which, in its turn, is strictly weaker than total boundedness, see
[143] or [153].
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It is obvious that 𝜌𝑠-precompactness implies 𝜌-precompactness and 𝜌-precom-
pactness, but the converse is not true, as the following example shows.

If (𝑋, 𝑝) is an asymmetric seminormed space, then the terms 𝑝-precompact,
𝑝-precompact, etc are understood as 𝜌𝑝-precompact, 𝜌𝑝-precompact, etc, where by
𝜌𝑞 we denote the quasi-semimetric 𝜌𝑞(𝑥, 𝑦) = 𝑞(𝑦 − 𝑥), 𝑥, 𝑦 ∈ 𝑋, corresponding
to an asymmetric seminorm 𝑞. Total boundedness is defined similarly.

Example 1.2.22 ([4]). There exists a subset of an asymmetric normed space (𝑋, 𝑝)
that is both 𝑝- and 𝑝-precompact, but not 𝑝𝑠-precompact.

Consider the space ℓ∞ with the asymmetric norm 𝑝(𝑥) = sup𝑖 𝑥
+
𝑖 , 𝑥 = (𝑥𝑖) ∈

ℓ∞. Then 𝑝𝑠(𝑥) = sup𝑖 ∣𝑥𝑖∣ is the usual sup-norm on ℓ∞. Let 𝑥0 = (1, 1, . . . ).
Because for 𝑥 ∈ 𝐵𝑝𝑠 , 𝑥𝑖 − 1 ≤ ∣𝑥𝑖∣ − 1 ≤ 0, it follows that 𝑝(𝑥 − 𝑥0) = 0, so that
𝑥 ∈ 𝑥0 + 𝜀𝐵𝑝 for every 𝜀 > 0, showing that 𝐵𝑝𝑠 is 𝑝-precompact. The relations
𝐵𝑝𝑠 = −𝐵𝑝𝑠 ⊂ −𝑥0 + 𝜀(−𝐵𝑝) = −𝑥0 + 𝜀𝐵𝑝 show that 𝐵𝑝𝑠 is also 𝑝-precompact.

Since any normed space with precompact unit ball is finite dimensional, it
follows that 𝐵𝑝𝑠 is not 𝑝

𝑠-precompact.

It is also obvious that a precompact set is outside precompact, but the con-
verse is not true, even in asymmetric normed spaces.

Example 1.2.23 ([4]). There exists a set that is outside precompact but not pre-
compact.

In the same space consider the sequence 𝑥𝑛 = (1, 1, . . . , 1
(𝑛)

, 0, . . . ), 𝑛 ∈ ℕ and

let 𝑥 = (1, 1, . . . ). Then 𝑝(𝑥𝑛− 𝑥) = 𝑝((0, . . . , 0,−1,−1, . . . )) = 0, that is 𝑥𝑛 𝑝−→ 𝑥.
By Proposition 1.2.19.2, the set 𝐴 = {𝑥𝑛 : 𝑛 ∈ ℕ} is outside precompact but not
precompact. Indeed, let 𝜀 = 1/2. If 𝑥𝑛1 , . . . , 𝑥𝑛𝑘

∈ 𝐴, where 𝑁1 < 𝑛2 < ⋅ ⋅ ⋅ < 𝑛𝑘,
then 𝑝(𝑥𝑛𝑘+1 − 𝑥𝑛𝑘

) = 1, showing that 𝐴 is not precompact.

Remark 1.2.24. The above example shows also that the set 𝐵 = 𝐴 ∪ {𝑥} is pre-
compact, but not hereditarily precompact, because its subset 𝐴 is not precompact.

Recall the following general results.

Proposition 1.2.25 ([73]).

1. Any sequentially compact topological space is countably compact.

2. If a countably compact topological space satisfies the first axiom of countabil-
ity, then it is sequentially compact.

From this proposition one obtains immediately the following consequence.

Corollary 1.2.26. A quasi-semimetric space is sequentially compact if and only if
it is countably compact.

In contrast to the case of metric spaces, compactness and sequential com-
pactness are different notions in quasi-metric spaces.
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Example 1.2.27 ([130]). Let 𝜔1 be the first uncountable ordinal. The space 𝑋 =
[1, 𝜔1), equipped with the quasi-semimetric 𝑑(𝑥, 𝑦) = 1 if 𝑥 < 𝑦 and 𝑑(𝑥, 𝑦) = 0
otherwise, is sequentially compact but not compact.

This space is also an example of a sequentially compact quasi-semimetric
space that is not precompact.

Other examples are given in [75] and [214].

Indeed, if (𝑥𝑛) is a sequence in 𝑋 , then there exists 𝑥 ∈ 𝑋 such that 𝑥𝑛 ≤ 𝑥

for all 𝑛 ∈ ℕ, implying 𝑑(𝑥, 𝑥𝑛) = 0 for all 𝑛 ∈ ℕ, that is 𝑥𝑛
𝑑−→ 𝑥.

For each 𝑥 ∈ 𝑋, 𝐵(𝑥, 1) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) = 0} = {𝑦 ∈ 𝑋 : 𝑦 ≤ 𝑥} is a
countable set, and the family 𝐵(𝑥, 1), 𝑥 ∈ 𝑋, covers 𝑋 . The existence of a finite
subset 𝑥1, . . . , 𝑥𝑘 of 𝑋 such that 𝑋 = 𝐵(𝑥1, 1) ∪ ⋅ ⋅ ⋅ ∪ 𝐵(𝑥𝑘, 1) would imply that
𝑋 is countable, a contradiction.

The sequential compactness of𝑋 plus precompactness would imply compact-
ness (see Proposition 1.2.32), so 𝑋 is not precompact.

The following condition for a sequentially compact quasi-semimetric space to
be compact was given in [130].

Proposition 1.2.28. A sequentially compact quasi-semimetric space (𝑋, 𝜌) such that
cl{𝑥} is compact for every 𝑥 ∈ 𝑋 is compact.

Proof. If 𝑋 is compact, then the closed subset cl{𝑥} is compact for every 𝑥 ∈ 𝑋.

Suppose now that 𝑋 is sequentially compact and cl{𝑥} is compact for every
𝑥 ∈ 𝑋. Let 𝐴 = {𝑥 ∈ 𝑋 : ∀𝑦 ∈ cl{𝑥}, cl{𝑦} = cl{𝑥} and let 𝑀 be the subset of 𝐴
obtained by choosing exactly one element in each set cl{𝑥}.

We have
𝑦 ∈ cl{𝑥} ⇐⇒ 𝜌(𝑦, 𝑥) = 0 .

Observe first that 𝜌∣𝑀 is a 𝑇1 quasi-metric on 𝑀. Indeed, for 𝑥, 𝑦 ∈ 𝑀 ,
𝜌(𝑥, 𝑦) = 0 implies 𝑥 ∈ cl{𝑦}, so that cl{𝑥} = cl{𝑦}, and, by the definition of the
set 𝑀, 𝑥 = 𝑦.

Let us show now that 𝑀 is sequentially compact. If (𝑥𝑛) is a sequence in 𝑀 ,
then, by the sequential compactness of the space 𝑋 , there exists a subsequence
(𝑥𝑛𝑘

) of (𝑥𝑛) converging to some 𝑥 ∈ 𝑋, that is 𝜌(𝑥, 𝑥𝑛𝑘
) → 0 as 𝑘 → ∞.

Since cl{𝑥} is compact, an application of Zorn’s lemma shows that it contains a
nonempty minimal closed subset 𝐶. If 𝑦 ∈ 𝐶, then cl{𝑦} ⊂ 𝐶, so that, by the
minimality of 𝐶, cl{𝑦} = 𝐶. It follows that 𝐶 ⊂ 𝐴, so there exists 𝑧 ∈ 𝑀 such
that cl{𝑧} = 𝐶. If 𝑦 ∈ 𝐶 ⊂ cl{𝑥}, then 𝜌(𝑦, 𝑥) = 0, and 𝑧 ∈ 𝐶 = cl{𝑦} implies
𝜌(𝑧, 𝑦) = 0. The relations

𝜌(𝑧, 𝑥𝑛𝑘
) ≤ 𝜌(𝑧, 𝑦) + 𝜌(𝑦, 𝑥) + 𝜌(𝑧, 𝑥𝑛𝑘

) = 𝜌(𝑧, 𝑥𝑛𝑘
)→ 0, 𝑘 →∞ ,

show that 𝑥𝑛𝑘

𝜌−→ 𝑧 ∈𝑀.

As a sequentially compact quasi-metric space, 𝑀 is compact. Let 𝐺𝑖, 𝑖 ∈ 𝐼,
be an open cover of the space 𝑋 and let 𝐺𝑖𝑘 , 1 ≤ 𝑘 ≤ 𝑛, be a finite cover of 𝑀 .
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Let 𝑥 ∈ 𝑋. Since cl{𝑥} is compact, there exists a nonempty minimal closed
subset 𝐶 of cl{𝑥}. Reasoning as above, it follows that there exists 𝑧 ∈𝑀 such that
cl{𝑧} = 𝐶 ⊂ cl{𝑥}, so that 𝜌(𝑧, 𝑥) = 0. Let 𝑘 ∈ {1, . . . , 𝑛} be such that 𝑧 ∈ 𝐺𝑖𝑘

and let 𝑟 > 0 such that 𝐵𝜌(𝑧, 𝑟) ⊂ 𝐺𝑖𝑘 . Then 𝑥 ∈ 𝐵𝜌(𝑧, 𝑟) ⊂ 𝐺𝑖𝑘 , showing that
𝑋 = ∪𝑛𝑘=1𝐺𝑖𝑘 . Therefore the space 𝑋 is compact. □
Corollary 1.2.29. A sequentially compact 𝑇1 quasi-metric space is compact.

Proof. Let (𝑋, 𝜌) be a 𝑇1 quasi-metric space. It follows that cl{𝑥} = {𝑥} for
every 𝑥 ∈ 𝑋, so that cl{𝑥} is compact. By Proposition 1.2.28 the space 𝑋 is
𝜏(𝜌)-compact.

A direct proof. As an exercise we present the elegant direct proof of this result
given by Künzi [137, Proposition 2.1.11]. Suppose that the 𝑇1 quasi-metric space
(𝑋, 𝜌) is countably compact but not compact. Then there exists an open cover 𝒢
of 𝑋 without any countable subcover.

For every 𝑥 ∈ 𝑋 choose 𝐺𝑥 ∈ 𝐺 such that 𝑥 ∈ 𝐺𝑥. By Proposition 1.2.13.4,
𝜏(𝜌) ⊂ 𝜏(𝜌), so there exists 𝑛𝑥 ∈ ℕ with 𝐵𝜌(𝑥, 2

−𝑛𝑥) ⊂ 𝐺𝑥.

Let 𝜔 and 𝜔1 be the first countable, respectively the first uncountable, ordinal
number. Then ℕ can be identified with [1;𝜔) = {𝛼 : 1 ≤ 𝛼 < 𝜔}.

We shall construct inductively a transfinite sequence {𝑥𝛼}𝛼<𝜔1 in the follow-
ing way. Let 𝑥1 ∈ 𝑋 arbitrary and 𝑥𝛼 ∈ ∁(∪𝛽<𝛼𝐺𝑥𝛽

) for 2 ≤ 𝛼 < 𝜔1, where for
𝑍 ⊂ 𝑋, ∁(𝑍) = 𝑋 ∖ 𝑍.

For 𝑖 ∈ ℕ let 𝐵𝑖 = {𝛼 < 𝜔1 : 2−𝑛𝑥𝛼 = 𝑖}. Since ∪𝑖∈ℕ𝐵𝑖 = [1;𝜔1),
there exists 𝑘 ∈ ℕ such that the set 𝐵𝑘 is uncountable. Take a strictly increasing
sequence 𝛼1 < 𝛼2 < ⋅ ⋅ ⋅ in 𝐵𝑘. By the countable compactness of 𝑋 , the sequence
(𝑥𝛼𝑛)𝑛∈ℕ has a cluster point 𝑥. The sets 𝐹𝑛 = ∁(∪𝑖<𝑛𝐺𝑥𝛼𝑖

) are nonempty closed
and 𝐹1 ⊃ 𝐹2 ⊃ ⋅ ⋅ ⋅ . Since 𝑥𝛼𝑖 ∈ 𝐹𝑛 for every 𝑖 > 𝑛 it follows that 𝑥 ∈ ∩𝑛∈ℕ𝐹𝑛.

But 𝑥 ∈ 𝐹𝑛 implies 𝑥 /∈ 𝐵𝜌(𝑥𝛼𝑖 , 2
−𝑘) for all 𝑖 < 𝑛. It follows that

𝜌(𝑥𝛼𝑛 , 𝑥) ≥ 2−𝑘 ⇐⇒ 𝜌(𝑥, 𝑥𝛼𝑛) ≥ 2−𝑘 ,

for all 𝑛 ∈ ℕ, in contradiction to the fact that 𝑥 is a cluster point of the sequence
(𝑥𝛼𝑛). □
Proposition 1.2.30. A sequentially compact quasi-semimetric space (𝑋, 𝜌) is se-
quentially left 𝐾-complete and 𝒰𝜌-complete.

Proof. If (𝑥𝑛) is a left 𝐾-Cauchy sequence in 𝑋 , then it contains a subsequence
(𝑥𝑛𝑘

) converging with respect to 𝜏𝜌 to some 𝑥 ∈ 𝑋. By Proposition 1.2.4.2, the
sequence (𝑥𝑛) is 𝜏𝜌-convergent to 𝑥.

Let ℱ be a 𝒰𝜌-Cauchy filter in 𝑋. Then for every 𝑛 ∈ ℕ there exists 𝑥𝑛 ∈ 𝑋
such that 𝐵(𝑥𝑛, 2

−𝑛) ∈ ℱ . By the sequential compactness of the space 𝑋 , there
exists a subsequence (𝑥𝑛𝑘

) of (𝑥𝑛) that is 𝜏𝜌-convergent to some 𝑥 ∈ 𝑋. Let us
show that limℱ = 𝑥 which is equivalent to

𝐵(𝑥, 2−𝑛) ∈ ℱ ,
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for all 𝑛 ∈ ℕ. For 𝑛 ∈ ℕ there exists 𝑘 ∈ ℕ such that 𝑛𝑘 > 𝑛 and 𝑥𝑛𝑘
∈

𝐵(𝑥, 2−(𝑛+1)). The implication

𝜌(𝑥𝑛𝑘
, 𝑦) < 2−𝑛𝑘 ⇒ 𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑥𝑛𝑘

) + 𝜌(𝑥𝑛𝑘
, 𝑦) < 2−(𝑛+1) + 2−𝑛𝑘 ≤ 2−𝑛

shows that 𝐵(𝑥𝑛𝑘
, 2−𝑛𝑘) ⊂ 𝐵(𝑥, 2−𝑛), so that 𝐵(𝑥, 2−𝑛) ∈ ℱ . □

Corollary 1.2.31 ([185]). A compact quasi-semimetric space is left 𝐾-complete.

Proof. Let (𝑋, 𝜌) be a 𝜏𝜌-compact quasi-semimetric space. A compact topological
space is countably compact, and a first countable countably compact topologi-
cal space is sequentially compact (Proposition 1.2.25). Consequently (𝑋, 𝜌) is 𝜏𝜌-
sequentially compact. If (𝑥𝑛) is a left 𝐾-Cauchy sequence in 𝑋 , then it contains a
subsequence 𝜌-convergent to some 𝑥 ∈ 𝑋. By Proposition 1.2.4, the sequence (𝑥𝑛)
is 𝜌-convergent to 𝑥. □

Based on Proposition 1.2.30 one can prove the following result.

Proposition 1.2.32. A precompact countably compact quasi-semimetric space is
compact.

Proof. Let (𝑋, 𝜌) be precompact countably compact quasi-semimetric space. The
space 𝑋 is compact if and only if any ultrafilter on 𝑋 is 𝜏𝜌-convergent. Let ℱ be
an ultrafilter on 𝑋 . Show first that ℱ is 𝒰𝜌-Cauchy, which means that for every
𝜀 > 0 there exists 𝑥 ∈ 𝑋 such that 𝐵(𝑥, 𝜀) ∈ ℱ . Since 𝑋 is precompact, there
exists a finite subset 𝑍 of 𝑋 such that 𝑋 = ∪{𝐵(𝑧, 𝜀) : 𝑧 ∈ 𝑍}. Since 𝑋 ∈ ℱ and
ℱ is an ultrafilter, it follows that there exists 𝑥 ∈ 𝑍 such that 𝐵(𝑥, 𝜀) ∈ ℱ . By
Proposition 1.2.30 the space 𝑋 is 𝒰𝜌-complete, so that the 𝒰𝜌-Cauchy filter ℱ is
𝜏𝜌-convergent. □

We mention also the following result.

Proposition 1.2.33 ([131]). A precompact left 𝜌-sequentially complete quasi-semi-
metric space (𝑋, 𝜌) is compact.

Proof. Let (𝑥𝑛) be a sequence in 𝑋 . By Proposition 1.2.21, the sequence (𝑥𝑛) con-
tains a left 𝜌-Cauchy subsequence (𝑥𝑛𝑘

), which, by hypothesis, is 𝜌-convergent to
some 𝑥 ∈ 𝑋 . Consequently 𝑋 is sequentially compact. Since for quasi-semimetric
spaces, countable compactness and sequential compactness are equivalent (see
Proposition 1.2.25), the conclusion follows from Proposition 1.2.32. □

The following theorem is the analogue of a well-known result in metric spaces.
The necessity follows from Proposition 1.2.20 and Corollary 1.2.31. The sufficiency
was proved in [138].

Theorem 1.2.34. A quasi-semimetric space is compact if and only if it is precom-
pact and left 𝐾-sequentially complete.

For the proof of sufficiency we shall need the following result of König [118].
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Lemma 1.2.35. Let 𝐸𝑘, 𝑘 ∈ ℕ, be nonempty finite sets, 𝐸 = ∪∞𝑘=1𝐸𝑘 and 𝑅 ⊂
𝐸 × 𝐸 a relation in 𝐸 such that the condition

∀𝑦 ∈ 𝐸𝑛+1, ∃𝑥 ∈ 𝐸𝑛, 𝑥𝑅𝑦 , (1.2.23)

holds for every 𝑛 ∈ ℕ. Then there exists a sequence 𝑎𝑘 ∈ 𝐸𝑘, 𝑘 ∈ ℕ, such that
𝑎𝑘𝑅𝑎𝑘+1 for all 𝑘 ∈ ℕ.

Proof. Consider the set 𝒮 of all 𝑠 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝐸1×⋅ ⋅ ⋅×𝐸𝑛 such that 𝑥𝑖𝑅𝑥𝑖+1,
1 ≤ 𝑖 ≤ 𝑛− 1, where 𝑛 ≥ 2. Let #𝐸𝑘 = 𝑛𝑘. Since, by condition (1.2.23), for every
𝑘 ≥ 2 there exist at least 𝑛𝑘 distinct elements (𝑥1, 𝑥2, . . . , 𝑥𝑘) in 𝒮, it follows that
the set 𝒮 is infinite. For 𝑥1 ∈ 𝐸1 let

𝒮1(𝑥1) = {𝑠 ∈ 𝒮 : 𝑠 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑛 ≥ 2} .

Since 𝒮 = ∪{𝒮1(𝑥1) : 𝑥1 ∈ 𝐸1}, it follows that there exists 𝑎1 ∈ 𝐸1 such that
the set 𝒮1(𝑎1) is infinite. Let now

𝒮2(𝑎1, 𝑥2) = {𝑠 ∈ 𝒮 : 𝑠 = (𝑎1, 𝑥2, 𝑥3, . . . , 𝑥𝑛), 𝑛 ≥ 2} .

Since ∪{𝒮1(𝑎1, 𝑥2) : 𝑥2 ∈ 𝐸2} = 𝒮1(𝑎1), it follows that there exists 𝑎2 ∈ 𝐸2

such that the set 𝒮2(𝑎1, 𝑎2) is infinite. Supposing, by induction, that there are
given 𝑎𝑖 ∈ 𝐸𝑖, 1 ≤ 𝑖 ≤ 𝑛, such that the sets

𝒮𝑘(𝑎1, . . . , 𝑎𝑘) = {𝑠 ∈ 𝒮 : 𝑠 = (𝑎1, . . . , 𝑎𝑘, 𝑥𝑘+1, . . . , 𝑥𝑚), 𝑚 ≥ 𝑘 + 1}
are infinite for all 𝑘 = 1, 2, . . . , 𝑛; put

𝒮𝑛+1(𝑎1, . . . , 𝑎𝑛, 𝑥𝑛+1)

= {𝑠 ∈ 𝒮 : 𝑠 = (𝑎1, . . . , 𝑎𝑛, 𝑥𝑛+1, 𝑥𝑛+2, . . . , 𝑥𝑚), 𝑚 ≥ 𝑛+ 1} ,

then it follows that

∪{𝒮𝑛+1(𝑎1, . . . , 𝑎𝑛, 𝑥𝑛+1) : 𝑥𝑛+1 ∈ 𝐸𝑛+1} = 𝒮𝑛(𝑎1, . . . , 𝑎𝑛) ∖ {(𝑎1, . . . , 𝑎𝑛)},
so there exists 𝑎𝑛+1 ∈ 𝐸𝑛+1 such that the set 𝒮𝑛+1(𝑎1, . . . , 𝑎𝑛, 𝑎𝑛+1) is infinite.

The sequence (𝑎𝑛) obtained in this way satisfies 𝑎𝑘𝑅𝑎𝑘+1 for all 𝑘 ∈ ℕ. □

Now we can prove Theorem 1.2.34.

Proof of Theorem 1.2.34. Since a compact space is countably compact, and in a
quasi-semimetric space countable compactness and sequential compactness are
equivalent, the sequential left 𝐾-completeness of 𝑋 follows from Prop. 1.2.30.

We know (Proposition 1.2.20) that every compact quasi-semimetric space is
precompact. For 𝜀 > 0, 𝑋 = ∪{𝐵(𝑥, 𝜀) : 𝑥 ∈ 𝑋}, so there exists a finite subset 𝑍
of 𝑋 such that 𝑋 = ∪{𝐵(𝑧, 𝜀) : 𝑧 ∈ 𝑍}, showing that the quasi-semimetric space
𝑋 is precompact.
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Conversely, suppose that the quasi-semimetric space (𝑋, 𝜌) is precompact
and left 𝐾-sequentially complete. For every 𝑘 ∈ ℕ there exists a finite subset 𝑍𝑘
of 𝑋 such that 𝑋 = ∪{𝐵(𝑧, 2−𝑘) : 𝑧 ∈ 𝑍𝑘}.

For 𝑘 ∈ ℕ let

𝐸𝑘 = {𝑧 ∈ 𝑍𝑘 : 𝑥𝑚 ∈ 𝐵(𝑧, 2−𝑘+1) for infinitely many 𝑚 ∈ ℕ} ,

and 𝐸 = ∪∞𝑘=1𝐸𝑘.

Define a relation 𝑅 on 𝐸 by the conditions

𝑥𝑅𝑦 ⇐⇒ ∃𝑘 ∈ ℕ, 𝑥 ∈ 𝐸𝑘 ∧ 𝑦 ∈ 𝐸𝑘+1 ∧ 𝜌(𝑥, 𝑦) < 2−𝑘 .

Let us show that the relation 𝑅 satisfies the hypotheses of Lemma 1.2.35.
If 𝑦 ∈ 𝐸𝑘+1, then 𝑦 ∈ 𝑍𝑘+1 and 𝑥𝑚 ∈ 𝐵(𝑦, 2−𝑘) for infinitely many 𝑚 ∈ ℕ. Let
𝑥 ∈ 𝑍𝑘 be such that 𝑦 ∈ 𝐵(𝑥, 2−𝑘). The implication

𝜌(𝑦, 𝑧) < 2−𝑘 ⇒ 𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧) < 2−𝑘 + 2−𝑘 = 2−𝑘+1

shows that 𝐵(𝑦, 2−𝑘) ⊂ 𝐵(𝑦, 2−𝑘+1). Consequently 𝑥𝑅𝑦.

Now, by Lemma 1.2.35 there exists the elements 𝑎𝑘 ∈ 𝐸𝑘 such that 𝑎𝑘𝑅𝑎𝑘+1

for all 𝑘 ∈ ℕ. It follows that each ball 𝐵(𝑎𝑘, 2
−𝑘+1) contains an infinity of terms

𝑥𝑚 of the sequence (𝑥𝑛). Let 𝑛1 be such that 𝑥𝑛1 ∈ 𝐵(𝑎1, 1) and 𝑛2 > 𝑛1 such
that 𝑥𝑛2 ∈ 𝐵(𝑎2, 2

−1), and so on. One obtains a sequence 𝑛1 < 𝑛2 . . . such that
𝑥𝑛𝑘

∈ 𝐵(𝑎𝑘, 2
−𝑘+1), 𝑘 ∈ ℕ. Since 𝜌(𝑎𝑘, 𝑎𝑘+1) < 2−𝑘, 𝑘 ∈ ℕ,

∑∞
𝑘=1 𝜌(𝑎𝑘, 𝑎𝑘+1) <

1, so that by Proposition 1.2.6.1, the sequence (𝑎𝑘) is left 𝐾-Cauchy. Since 𝑋 is

left 𝐾-sequentially complete, there exists 𝑥0 ∈ 𝑋 such that 𝑎𝑘
𝜌−→ 𝑥0. It follows

that 𝜌(𝑥0, 𝑥𝑛𝑘
) ≤ 𝜌(𝑥0, 𝑎𝑘) + 𝜌(𝑎𝑘, 𝑥𝑛𝑘

) < 𝜌(𝑥0, 𝑎𝑘) + 2
−𝑘 → 0, that is 𝑥𝑛𝑘

𝜌−→ 𝑥0,
showing that the space 𝑋 is sequentially compact. By Proposition 1.2.32 the space
𝑋 is compact. □

In the metric case precompactness admits the following characterization: a
semimetric space 𝑋 is precompact if and only if every sequence in 𝑋 has a Cauchy
subsequence. In the quasi-metric case this holds only for hereditarily precompact
spaces. A quasi-semimetric space (𝑋, 𝜌) is called hereditarily precompact if every
subset of 𝑋 is precompact. Any subset of an outside precompact set is outside
precompact, but there are examples of precompact sets that are not hereditarily
precompact, see Remark 1.2.24.

Proposition 1.2.36 ([138]). For a quasi-semimetric space (𝑋, 𝜌) the following are
equivalent.

1. The space 𝑋 is hereditarily precompact.

2. Every countable subset of 𝑋 is precompact.

3. Every sequence in 𝑋 has a left 𝐾-Cauchy subsequence.

4. Every sequence in 𝑋 has a weakly left 𝐾-Cauchy subsequence.
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Proof. Obviously, 1 ⇒ 2.

2⇒ 3. For a sequence (𝑥𝑛) in𝑋 put 𝐴0 = {𝑥𝑛 : 𝑛 ∈ ℕ}. By hypothesis, there
exists a finite subset 𝐹1 of 𝐴0 such that 𝐴0 ⊂ ∪{𝐵(𝑥, 1) : 𝑥 ∈ 𝐹1}. It follows that
there exists 𝑛1 ∈ ℕ such that 𝑥𝑛1 ∈ 𝐹1 and the set 𝑀1 = {𝑛 ∈ ℕ : 𝑛 ≥ 𝑛1, 𝑥𝑛 ∈
𝐵(𝑥𝑛1 , 1)} is infinite. Put 𝐴1 = {𝑥𝑛 : 𝑛 ∈𝑀1, 𝑛 > 𝑛1} and let 𝑛2 ∈𝑀1, 𝑛2 > 𝑛1,
be such that the set 𝑀2 = {𝑛 ∈ 𝑀1 : 𝑛 ≥ 𝑛2, 𝑥𝑛 ∈ 𝐵(𝑥𝑛2 , 1/2)} is infinite. Put
𝐴2 = {𝑥𝑛 : 𝑛 ∈𝑀2, 𝑛 > 𝑛2} and pick 𝑛3 ∈𝑀2, 𝑛3 > 𝑛2, such that the set 𝑀3 =
{𝑛 ∈𝑀2 : 𝑛 ≥ 𝑛3 and 𝑥𝑛 ∈ 𝐵(𝑥𝑛3 , 1/3)} is infinite. Continuing in this manner we
find the infinite sets 𝑀1 ⊃ 𝑀2 ⊃ ⋅ ⋅ ⋅ and the indices 𝑛1 < 𝑛2 < ⋅ ⋅ ⋅ , 𝑛𝑘 ∈ 𝑀𝑘,
such that 𝜌(𝑥𝑛𝑘

, 𝑥𝑛) < 1/𝑘, for all 𝑛 ∈𝑀𝑘. For 𝜀 > 0 let 𝑘 ∈ ℕ such that 1/𝑘 < 𝜀.
For 𝑘 ≤ 𝑖 < 𝑗, 𝑛𝑗 ∈ 𝑀𝑗 ⊂ 𝑀𝑖, so that 𝜌(𝑥𝑛𝑖 , 𝑥𝑛𝑗 ) < 1/𝑖 ≤ 1/𝑘 < 𝜀, showing that
the subsequence (𝑥𝑛𝑘

) is left 𝐾-Cauchy.

The implication 3 ⇒ 4 is again obvious (see Proposition 1.2.1).

4 ⇒ 1. Suppose that there exists a subset 𝐴 of 𝑋 which is not precompact.
Then there exists 𝜀 > 0 such that 𝐴∖∪{𝐵(𝑥, 𝜀) : 𝑥 ∈ 𝐹} ∕= ∅ for every finite subset
𝐹 of 𝐴. For 𝑥1 ∈ 𝐴 let 𝑥2 ∈ 𝐴∖𝐵(𝑥1, 𝜀), 𝑥3 ∈ 𝐴∖(𝐵(𝑥1, 𝜀) ∪𝐵(𝑥2, 𝜀)) , . . . , 𝑥𝑛+1 ∈
𝐴 ∖ (𝐵(𝑥1, 𝜀) ∪ ⋅ ⋅ ⋅ ∪𝐵(𝑥𝑛, 𝜀)) , 𝑛 ∈ ℕ. Then 𝜌(𝑥𝑛, 𝑥𝑚) ≥ 𝜀 for all 𝑚,𝑛 ∈ ℕ with
𝑛 < 𝑚, so that the sequence (𝑥𝑛) does not contain any weakly left 𝐾-Cauchy
subsequence. □

One says that a a subset 𝑌 of a quasi-semimetric space (𝑋, 𝜌) has the Lebesgue
property if for every 𝜏𝜌-open cover 𝒢 of 𝑌 there exists 𝜀 > 0 such that the family
{𝐵𝜌(𝑥, 𝑟) : 𝑥 ∈ 𝑋} refines 𝒢, that is

∀𝑥 ∈ 𝑋, ∃𝐺 ∈ 𝒢, 𝐵𝜌(𝑥, 𝑟) ⊂ 𝐺 . (1.2.24)

The following result is an extension of a known result in metric spaces.

Proposition 1.2.37. Any countably compact quasi-semimetric space has the Le-
besgue property.

Proof. Let 𝒢 be a countable 𝜏𝜌-open covering of the quasi-semimetric space (𝑋, 𝜌).
For every 𝑥 ∈ 𝑋 there exists 𝐺𝑥 ∈ 𝒢 and 𝑟𝑥 > 0 such that 𝑥 ∈ 𝐵𝜌(𝑥, 𝑟𝑥) ⊂ 𝐺𝑥. By
the countable compactness of the space 𝑋 there exists 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 such that
𝑋 = ∪𝑛𝑘=1𝐵𝜌(𝑥𝑘, 2

−1𝑟𝑘), where 𝑟𝑘 = 𝑟𝑥𝑘
, 𝑘 = 1, . . . , 𝑛.

Put 𝜀 = min{2−1𝑟𝑘 : 1 ≤ 𝑘 ≤ 𝑛} and show that this 𝜀 satisfies (1.2.24). For
𝑥 ∈ 𝑋 let 𝑘 ∈ {1, . . . , 𝑛} be such that 𝑥 ∈ 𝐵𝜌(𝑥𝑘, 2

−1𝑟𝑘). Then

𝐵𝜌(𝑥𝑘, 𝜀) ⊂ 𝐵𝜌(𝑥𝑘, 𝑟𝑘) ⊂ 𝐺𝑥𝑘
.

Indeed, if 𝑦 ∈ 𝐵𝜌(𝑥𝑘, 𝜀), then

𝜌(𝑥𝑘, 𝑦) ≤ 𝜌(𝑥𝑘, 𝑥) + 𝜌(𝑥, 𝑦) <
𝑟𝑘
2
+ 𝜀 ≤ 𝑟𝑘 . □

Proposition 1.2.38 ([152]). Every subset with the Lebesgue property of a quasi-
semimetric space is weakly left 𝐾-sequentially complete.
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Proof. Suppose, by contradiction, that 𝑌 is a Lebesgue subset of a quasi-semi-
metric space (𝑋, 𝜌) and that (𝑥𝑛) is a weak left 𝐾-Cauchy sequence that does not
converge to any 𝑥 ∈ 𝐴. Then for every 𝑥 ∈ 𝑌 there exists 𝑟𝑥 > 0 such that the set
{𝑛 ∈ ℕ : 𝑥𝑛 /∈ 𝐵(𝑥, 𝑟𝑥)} is infinite. The family of open sets {𝐵(𝑥, 𝑟𝑥) : 𝑥 ∈ 𝑌 } is an
open cover of 𝑌 , so that there exists 𝜀 > 0 such that for every 𝑥 ∈ 𝑌 there exists
𝑦 ∈ 𝑌 with 𝐵(𝑦, 𝜀) ⊂ 𝐵(𝑥, 𝑟𝑥). Since the sequence (𝑥𝑛) is weakly left 𝐾-Cauchy,
there exists 𝑛𝜀 ∈ ℕ such that 𝜌(𝑥𝑛𝜀 , 𝑥𝑛) < 𝜀 for every 𝑛 > 𝑛𝜀, By the Lebesgue
property of the set 𝑌 there exists 𝑥 ∈ 𝑌 such that 𝐵(𝑥𝑛𝜀 , 𝜀) ⊂ 𝐵(𝑥, 𝑟𝑥), leading
to the contradiction 𝑥𝑛 ∈ 𝐵(𝑥𝑛𝜀 , 𝜀) ⊂ 𝐵(𝑥, 𝑟𝑥) for all 𝑛 > 𝑛𝜀. □

By Proposition 1.2.2 a weakly left 𝐾-Cauchy sequentially complete quasi-
semimetric space is weakly left 𝐾-Cauchy sequentially complete, so that

Corollary 1.2.39. If (𝑋, 𝜌) is a quasi-semimetric space, then every Lebesgue subset
of 𝑋 is left 𝐾-Cauchy sequentially complete.

Combining Propositions 1.2.37, 1.2.38, 1.2.32 and Theorem 1.2.34 one ob-
tains.

Theorem 1.2.40 ([152]). Let 𝑌 be a subset of a quasi-semimetric space (𝑋, 𝜌). The
following are equivalent.

1. The set 𝑌 is compact.

2. The set 𝑌 is precompact and sequentially compact.

3. The set 𝑌 is precompact and has the Lebesgue property.

A quasi-metric space (𝑋, 𝜌) is called equi-normal if 𝜌(𝐴,𝐵) := inf{𝜌(𝑎, 𝑏) :
𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} > 0 for every pair 𝐴,𝐵 of nonempty disjoint 𝜏𝜌-closed subsets
of 𝑋 . As it is remarked in [194], every Lebesgue quasi-metric is equi-normal,
and every equi-normal quasi-metric is point-symmetric (or strong, meaning that
𝜏(𝜌) ⊂ 𝜏(𝜌)). Other properties of Lebesgue, point-symmetric and equi-normal
quasi-metrics are studied in [15, 189, 194]. The papers [27] and [186] contain
results on the relations between compactness, completeness and precompactness
as well as numerous examples and counterexamples.

Fixed point theorems in quasi-metric spaces were proved by Hicks, Huffman
and Carlson [31, 103, 104], Romaguera [191] and Romaguera and Checa [195].
Chen et al. [34, 35] proved fixed point theorems using a slightly different notion of
convergence (see [32]). In [33] some optimization problems in quasi-metric and in
asymmetric normed spaces are discussed. A version of Ekeland variational principle
in quasi-metric spaces with applications to fixed point theorems is given in [46].
Another version of Ekeland variational principle with applications to optimization
problems was proved by Ume [233].
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1.2.3 Baire category

As it is well known, the Baire category theorem plays a fundamental role in the
proofs of two fundamental principles of functional analysis: the uniform bounded-
ness principle (called also the Banach-Steinhaus theorem) and the open mapping
theorem. With the aim to check for possible extensions of these principles to the
asymmetric case, we shall present some Baire category results in quasi-metric
spaces.

Recall that a subset 𝑆 of a topological space (𝑇, 𝜏) is called

∙ dense in 𝑇 if cl(𝑆) = 𝑇 ;

∙ nowhere dense if int(cl(𝑆)) = ∅;
∙ of first Baire category if 𝑆 can be written as a countable union of nowhere
dense sets;

∙ of second Baire category if it is not of first Baire category;

∙ residual if 𝑇 ∖ 𝑆 is of first Baire category.
One says that 𝑇 is a Baire space if every nonempty open subset of 𝑇 is of

second Baire category. For the convenience of the reader we include some results
on Baire category.

Proposition 1.2.41. Let 𝑇 be a topological space and 𝑆 ⊂ 𝑇.

1. If the set 𝑆 is nowhere dense, then every subset of 𝑆 is nowhere dense.

2. If the set 𝑆 is of first Baire category, then every subset of 𝑆 is of first Baire
category.

3. The union of a countable family of first Baire category sets is a set of first
Baire category.

4. The set 𝑆 is nowhere dense if and only if 𝑆 is nowhere dense.

5. (i) If the set 𝑆 is nowhere dense, then 𝑇 ∖ 𝑆 is dense in 𝑇 .
(ii) If 𝑆 is closed, then 𝑆 is nowhere dense if and only if 𝑇 ∖𝑆 is dense in 𝑇 .

The following theorem contains some useful characterizations of Baire spaces.

Theorem 1.2.42 ([110]). Let 𝑇 be a topological space. The following are equivalent.

1. 𝑇 is a Baire space.

2. For every family 𝐺𝑛, 𝑛 ∈ ℕ, of open dense subsets of 𝑇 , their intersection
∩∞𝑛=1𝐺𝑛 is dense in 𝑇.

3. For every family 𝐹𝑛, 𝑛 ∈ ℕ, of closed subsets such that int (∪∞𝑛=1𝐹𝑛) ∕= ∅
there exists 𝑛 ∈ ℕ such that int(𝐹𝑛) ∕= ∅.

4. Any residual subset of 𝑇 is dense in 𝑇 .

5. Any first category subset of 𝑇 has empty interior.

The following proposition extends a well-known result for topological vector
spaces.
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Proposition 1.2.43. A second category asymmetric LCS is a Baire space.

Proof. Let (𝑋,𝑃 ) be an asymmetric LCS and suppose, by contradiction, that 𝑋
contains a nonempty open set 𝐺 that is of first Baire category in 𝑋 . If 𝑥0 ∈ 𝐺, then
𝑈 := −𝑥0 +𝐺 is an open neighborhood of 0 which is a set of first Baire category
too. For 𝑥 ∈ 𝑋 the sequence (𝑛−1𝑥)𝑛∈ℕ converges to 0 as 𝑛 → ∞, implying the
existence of 𝑛 ∈ ℕ such that 𝑛−1𝑥 ∈ 𝑈 ⇐⇒ 𝑥 ∈ 𝑛𝑈. It follows that 𝑋 = ∪∞𝑛=1𝑛𝑈,
so that the space 𝑋 is of first Baire category. □

The first Baire type result for quasi-metric spaces was proved by Kelly [111]
(see also [185]).

Theorem 1.2.44. Let (𝑋, 𝜌) be a quasi-semimetric space. If 𝑋 is right 𝐾-𝜌-sequent-
ially complete, then (𝑋, 𝜏𝜌) is of second category in itself.

Proof. Let 𝑋 = ∪∞𝑛=1𝑋𝑛 where the sets 𝑋𝑛 are 𝜏𝜌-closed for all 𝑛 ∈ ℕ, and
suppose, by contradiction, that 𝜏𝜌-int(𝑋𝑛) = ∅ for all 𝑛 ∈ ℕ. Then 𝑋 ∖ 𝑋1 is
nonempty and 𝜏𝜌-open, so there exist 𝑥1 ∈ 𝑋 and 0 < 𝑟1 < 1 such that𝐵𝜌[𝑥1, 𝑟1] ⊂
𝑋 ∖𝑋1. Similarly, the set 𝐵𝜌(𝑥1, 𝑟1) ∖𝑋2 is nonempty and 𝜏𝜌-open so there exist
𝑥2 ∈ 𝑋 and 0 < 𝑟2 < 1/2 such that 𝐵𝜌[𝑥2, 𝑟2] ⊂ 𝐵𝜌(𝑥1, 𝑟1) ∖ 𝑋2. Continuing in
this manner one obtains the points 𝑥𝑛 ∈ 𝑋 and the numbers 0 < 𝑟𝑛 < 1/𝑛 such
that 𝐵𝜌[𝑥𝑛, 𝑟𝑛] ⊂ 𝐵𝜌(𝑥𝑛−1, 𝑟𝑛−1) ∖𝑋𝑛 for all 𝑛 ∈ ℕ, where 𝐵𝜌(𝑥0, 𝑟0) = 𝑋.

It follows

∞∩
𝑛=1

𝐵𝜌[𝑥𝑛, 𝑟𝑛] ⊂
∞∩
𝑛=1

(
𝑋 ∖𝑋𝑛

)
= 𝑋 ∖

∞∪
𝑛=1

𝑋𝑛 = ∅,

in contradiction to Proposition 1.2.9. □

Remark 1.2.45. The right 𝐾-𝜌-completeness from Theorem 1.2.44 can be formu-
lated in the equivalent form: every left 𝐾-𝜌-Cauchy sequence is 𝜌-convergent.

Other Baire type results were proved by Gregori and Ferrer [76] (rediscovered
in [21]). A topological space (𝑋, 𝜏) is called quasi-regular if every nonempty open
subset of 𝑋 contains the closure of some nonempty open set, that is for every
nonempty open subset 𝑉 of 𝑋 there exists a nonempty open set 𝑈 such that

𝑈 ⊂ 𝑉 . (1.2.25)

Theorem 1.2.46 ([76]). If the quasi-semimetric space (𝑋, 𝜌) is 𝜏𝜌-quasi-regular and
left 𝜌-sequentially complete, then it is a Baire space.

Proof. The proof is similar to the proof of Theorem 1.2.44. Let 𝐺𝑛, 𝑛 ∈ ℕ, be a
family of dense open subsets of 𝑋, 𝐺 = ∩∞𝑛=1𝐺𝑛 and 𝑈 ⊂ 𝑋 nonempty open. We
have to show that 𝑈 ∩ 𝐺 ∕= ∅. Since 𝐺1 is dense in 𝑋, 𝑈 ∩ 𝐺1 ∕= ∅, so that, by
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(1.2.25), there exist 𝑥1 ∈ 𝑋 and 0 < 𝑟1 < 1 such that 𝜏𝜌-cl(𝐵1) ⊂ 𝑈 ∩𝐺1, where
𝐵1 = 𝐵𝜌(𝑥1, 𝑟1). Similarly 𝐵1 ∩ 𝐺2 is nonempty open so there exist 𝑥2 ∈ 𝑋 and
0 < 𝑟2 < 1/2 such that 𝜏𝜌-cl(𝐵2) ⊂ 𝐵1∩𝐺2, where 𝐵2 = 𝐵𝜌(𝑥2, 𝑟2). Continuing in
this manner one obtains the open balls 𝐵𝑛 = 𝐵𝜌(𝑥𝑛, 𝑟𝑛) with 0 < 𝑟𝑛 < 1/𝑛 such
that 𝜏𝜌-cl(𝐵𝑛) ⊂ 𝐵𝑛−1 ∩ 𝐺𝑛, 𝑛 ∈ ℕ, where 𝐵0 = 𝑈. As in the proof of Theorem
1.2.44, the relations 𝑥𝑛 ∈ 𝐵𝜌(𝑥𝑛, 𝑟𝑛) ⊂ 𝐵𝜌(𝑥𝑚, 𝑟𝑚), valid for all 𝑛,𝑚 ∈ ℕ with
𝑚 < 𝑛, imply that the sequence (𝑥𝑛) is left 𝐾-𝜌-Cauchy, so that, by hypothesis,

there exists 𝑥 ∈ 𝑋 with 𝑥𝑛
𝜌−→ 𝑥 as 𝑛 → ∞. Since 𝑥𝑚 ∈ 𝐵𝜌(𝑥𝑛, 𝑟𝑛) = 𝐵𝑛 for

all 𝑚 > 𝑛, it follows that 𝑥 ∈ 𝜏𝜌-cl(𝐵𝑛) ⊂ 𝐵𝑛−1 ∩ 𝐺𝑛 ⊂ 𝑈 ∩ 𝐺𝑛 for all 𝑛 ∈ ℕ,
implying 𝑥 ∈ ∩𝑛∈ℕ (𝑈 ∩𝐺𝑛) = 𝑈 ∩𝐺. □

Taking into account the implications from Proposition 1.2.2, we get the fol-
lowing

Corollary 1.2.47. A quasi-regular quasi-semimetric space (𝑋, 𝜌) is a Baire space
in any of the following cases

(a) (𝑋, 𝜌) is left 𝜌-sequentially complete;

(b) (𝑋, 𝜌) is weakly left 𝐾-sequentially complete;

(c) (𝑋, 𝜌) is left 𝐾-sequentially complete.

1.2.4 Baire category in bitopological spaces

We shall present now, following the paper [7], pairwise Baire bitopological spaces
and their properties.

Let (𝑇, 𝜏, 𝜈) be a bitopological space. A subset 𝑆 of 𝑇 is called

∙ (𝜏, 𝜈)-nowhere dense if 𝜈-int(𝜏 -cl(𝑆)) = ∅;
∙ of (𝜏, 𝜈)-first category if it is the union of a countable family of (𝜏, 𝜈)-nowhere
dense sets;

∙ of (𝜏, 𝜈)-second category if it is not of (𝜏, 𝜈)-first category;

∙ (𝜏, 𝜈)-residual if 𝑇 ∖ 𝑆 is of (𝜏, 𝜈)-first category.
The space (𝑇, 𝜏, 𝜈) is called

∙ (𝜏, 𝜈)-Baire if each nonempty 𝜏 -open subset of 𝑇 is of (𝜈, 𝜏)-second category;

∙ pairwise Baire if it is both (𝜏, 𝜈)-Baire and (𝜈, 𝜏)-Baire.

The following properties are the bitopological analogs of properties from
Proposition 1.2.41.

Proposition 1.2.48. Let (𝑇, 𝜏, 𝜈) be a bitopological space and 𝑆 ⊂ 𝑇 .

1. If 𝑆 is (𝜏, 𝜈)-nowhere dense, then every subset of 𝑆 is (𝜏, 𝜈)-nowhere dense.

2. If 𝑆 is of (𝜏, 𝜈)-first category, then every subset of 𝑆 is of (𝜏, 𝜈)-first category.
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3. The union of a countable family of (𝜏, 𝜈)-first category sets, is of (𝜏, 𝜈)-first
category.

4. A subset 𝑆 of a bitopological space (𝑇, 𝜏, 𝜈) is (𝜏, 𝜈)-nowhere dense if and
only if 𝜏-int(𝑇 ∖ 𝑆) is 𝜈-dense in 𝑇.

Proof. Only the equivalence from 4 needs a proof. Suppose that 𝜈-int(𝜏 -cl(𝑆)) = ∅.
Then for any nonempty set 𝑉 ∈ 𝜈, 𝑉 ∩ (𝑇 ∖ 𝜏 -cl(𝑆)) ∕= ∅. Since 𝑇 ∖ 𝜏 -cl(𝑆) ⊂ 𝜏 -
int(𝑇 ∖𝑆) it follows that 𝑉 ∩ 𝜏 -int(𝑇 ∖𝑆) ∕= ∅, that is 𝜏 -int(𝑇 ∖𝑆) is 𝜈-dense in 𝑇.

To prove the converse, suppose that there exists 𝑡 ∈ 𝜈-int(𝜏 -cl(𝑆)). Then

𝜏 - cl(𝑆) ∩ 𝜏 - int(𝑇 ∖ 𝑆) = ∅ . (1.2.26)

Indeed, if some 𝑠 ∈ 𝑇 belongs to this intersection, then, as 𝜏 -int(𝑇 ∖ 𝑆) is a
𝜏 -neighborhood of 𝑠, it follows that 𝑆∩𝜏 -int(𝑇 ∖𝑆) ∕= ∅, yielding the contradiction
𝑆 ∩ (𝑇 ∖ 𝑆) ∕= ∅.

Since 𝜏 -cl(𝑆) is a 𝜈-neighborhood of 𝑡 the relation (1.2.26) shows that 𝑡 /∈ 𝜈-
cl(𝜏 -int(𝑇 ∖ 𝑆), that is 𝜏 -int(𝑇 ∖ 𝑆) is not 𝜈-dense in 𝑇. □

The following theorem contains some characterizations of pairwise Baire
spaces similar to those of Baire spaces (see Theorem 1.2.42) and with similar
proofs.

Theorem 1.2.49 ([7]). For a bitopological space (𝑇, 𝜏, 𝜈) the following are equiva-
lent.

1. The space 𝑇 is (𝜏, 𝜈)-Baire.

2. The intersection of each countable family of 𝜏-dense 𝜈-open subsets of 𝑇 is
𝜏-dense in 𝑇 .

3. 𝜏-int (∪∞𝑛=1𝐹𝑛) = ∅ for every family 𝐹𝑛, 𝑛 ∈ ℕ, of 𝜈-closed sets with empty
𝜏-interiors.

4. For every subset 𝑀 of 𝑇 of first (𝜈, 𝜏)-category the set 𝑇 ∖𝑀 is 𝜏-dense in 𝑇 .

Proof. As an exercise of acquaintance with the notions we shall give the proofs of
these equivalences.

1 ⇒ 2. Let 𝐺𝑛, 𝑛 ∈ ℕ, be a family of 𝜈-open 𝜏 -dense subsets of 𝑇 and
suppose that their intersection is not 𝜏 -dense in 𝑇, that is 𝐺 := 𝑇 ∖𝜏 -cl(∩∞𝑛=1𝐺𝑛) ∕=
∅. Then 𝐺 ∈ 𝜏 and 𝐺 ⊂ 𝑇 ∖ ∩∞𝑛=1𝐺𝑛 = ∪∞𝑛=1(𝑇 ∖𝐺𝑛).

The set 𝐹𝑛 := 𝑇 ∖ 𝐺𝑛 is 𝜈-closed and 𝑇 ∖ 𝐹𝑛 = 𝐺𝑛 is 𝜏 -dense in 𝑇 . By
Proposition 1.2.48.4, 𝐹𝑛 is (𝜈, 𝜏)-nowhere dense, implying that the nonempty 𝜏 -
open set 𝐺 is of (𝜈, 𝜏)-first category, that is 𝑇 is not (𝜏, 𝜈)-Baire.

2 ⇒ 1. To prove the converse, suppose that 𝑇 is not (𝜏, 𝜈)-Baire. Then
there exists a nonempty set 𝐺 ∈ 𝜏 such that 𝐺 = ∪∞𝑛=1𝑆𝑛, where each 𝑆𝑛 is
(𝜈, 𝜏)-nowhere dense. By Proposition 1.2.48.4 this is equivalent to the fact that
the 𝜈-open set 𝐺𝑛 := 𝜈-int(𝑇 ∖ 𝑆𝑛) is 𝜏 -dense in 𝑇 . Since

∩∞𝑛=1𝐺𝑛 ⊂ ∩∞𝑛=1(𝑇 ∖ 𝑆𝑛) = 𝑇 ∖ ∪∞𝑛=1𝑆𝑛 = 𝑇 ∖𝐺 ,
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and 𝑇 ∖𝐺 is 𝜏 -closed, this implies

𝜏 - (∩∞𝑛=1𝐺𝑛) ⊂ 𝑇 ∖𝐺 ∕= 𝑇 ,

that is ∩∞𝑛=1𝐺𝑛 is not 𝜏 -dense in 𝑇.

1 ⇒ 3. Let 𝐹𝑛 be 𝜈-closed with 𝜏 -int(𝐹𝑛) = ∅ for all 𝑛 ∈ ℕ. It follows that
𝐹𝑛 is (𝜈, 𝜏)-nowhere dense. If 𝐺 := 𝜏 -int(∪𝑛𝐹𝑛) ∕= ∅, then 𝐺 ⊂ ∪𝑛𝐹𝑛 implies that
𝐺 is a nonempty 𝜏 -open set which is of first (𝜈, 𝜏)-category, in contradiction to
the fact that the space 𝑇 is (𝜏, 𝜈)-Baire. Consequently 𝜏 -int(∪𝑛𝐹𝑛 = ∅.

3 ⇒ 4. Let𝑀 = ∪∞𝑛=1𝑆𝑛, where 𝜏 -int(𝜈-cl(𝑆𝑛)) = ∅, 𝑛 ∈ ℕ, and let 𝐹𝑛 = 𝜈-
cl(𝑆𝑛), 𝑛 ∈ ℕ. If 𝑇 ∖𝑀 is not 𝜏 -dense in 𝑇, then the smaller set 𝑇 ∖ ∪𝑛𝐹𝑛 is not
𝜏 -dense in 𝑇 too, so there exists a nonempty set𝐺 ∈ 𝜏 such that𝐺∩(𝑇 ∖∪𝑛𝐹𝑛) = ∅.
But then 𝐺 ⊂ ∪𝑛𝐹𝑛, in contradiction to the fact that 𝜏 -int (∪∞𝑛=1𝐹𝑛) = ∅.

4 ⇒ 1. Suppose by contradiction that 𝑇 is not (𝜏, 𝜈)-Baire. Then there
exists a nonempty set 𝐺 ∈ 𝜏 which is of first (𝜈, 𝜏)-category. Then 𝑇 ∖ 𝐺 is 𝜏 -
closed, so that 𝜏 -cl(𝑇 ∖𝐺) = 𝑇 ∖ 𝐺 ∕= 𝑇, that is 𝐺 is a set of first (𝜈, 𝜏)-category
that is not 𝜏 -dense in 𝑇. □

Fukutake [84] proved the following result.

Theorem 1.2.50. If (𝑇, 𝜏, 𝜈) is a bitopological space such that 𝜏 ⊆ 𝜈 and 𝜈 is
metrizable and complete, then 𝑇 is 𝜏-𝜈-Baire.

To present the corresponding pairwise Baire result we need a new notion.
The bitopological space (𝑇, 𝜏, 𝜈) is called pairwise fine if every nonempty 𝜏 -open
set contains a nonempty 𝜈-open set, and every nonempty 𝜈-open set contains a
nonempty 𝜏 -open set.

Theorem 1.2.51 ([7]). Let (𝑇, 𝜏, 𝜈) be a pairwise fine bitopological space. Then 𝑇
is pairwise Baire if and only if both (𝑇, 𝜏) and (𝑇, 𝜈) are Baire topological spaces.

The notion of quasi-regularity can be also adapted to bitopological spaces,
see [7]. A bitopological space (𝑇, 𝜏, 𝜈) is called

∙ 𝜏 -𝜈-quasi-regular if each nonempty 𝜏 -open subset of 𝑇 contains the 𝜈-closure
of a nonempty 𝜏 -open set;

∙ pairwise quasi-regular if it is both 𝜏 -𝜈-quasi-regular and 𝜈-𝜏 -quasi-regular.

A cover 𝒰 of 𝑇 is called pairwise open if 𝒰 ⊂ 𝜏 ∪ 𝜈 and both 𝒰 ∩ 𝜏 and 𝒰 ∩ 𝜈
contain at least one nonempty set.

Let (𝑇, 𝜏, 𝜈) be a bitopological space. We say that

∙ 𝑇 is pairwise compact if every pairwise open cover of 𝑇 contains a finite
subcover;

∙ the topology 𝜏 is locally compact with respect to 𝜈 if each point 𝑡 ∈ 𝑇 admits
a 𝜏 -open neighborhood 𝑈 such that 𝜈-cl(𝑈) is 𝜈-compact;

∙ the space 𝑇 is pairwise locally compact if 𝜏 is locally compact with respect
to 𝜈 and 𝜈 is locally compact with respect to 𝜏 , or, equivalently, if each point
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𝑡 ∈ 𝑇 admits a 𝜏 -open neighborhood 𝑈 and a 𝜈-open neighborhood 𝑉 such
that both 𝜈-cl(𝑈) and 𝜏 -cl(𝑉 ) are pairwise compact.

We mention the following results.

Proposition 1.2.52 ([145]). Let (𝑇, 𝜏, 𝜈) be a bitopological space.

1. If 𝑇 is pairwise Hausdorff and 𝜈 is locally compact with respect to 𝜏 , then
𝜏 ⊂ 𝜈.

2. If 𝑇 is pairwise Hausdorff and (𝑇, 𝜏) compact, then 𝜏 ⊂ 𝜈.

3. If (𝑋, 𝜌) is a 𝑇1 quasi-metric space and 𝜏𝜌 is locally compact with respect to
𝜏𝜌, then 𝜏𝜌 ⊂ 𝜏𝜌.

Proof. Only the first assertion needs a proof, the others being direct consequences
of it.

Let 𝑡 ∈ 𝑇 and 𝑈 ∈ 𝜏 such that 𝑡 ∈ 𝑈. Since 𝜈 is locally compact with respect
to 𝜏 , there exists 𝑉 ∈ 𝜈 containing 𝑡 such that the set 𝑉

𝜏
is 𝜏 -compact. Let

𝐶 = 𝑉 ∖ 𝑈. Then 𝐶
𝜏 ⊂ 𝑉

𝜏
, so that 𝐶

𝜏
is also 𝜏 -compact.

Observe that 𝑡 /∈ 𝐶
𝜏
. Indeed, the hypothesis 𝑡 ∈ 𝐶

𝜏
leads to the contradiction

∅ ∕= 𝑈 ∩ 𝐶 = 𝑈 ∩ (𝑉 ∖ 𝑈) = ∅.
Since 𝑇 is pairwise Hausdorff, for every 𝑠 ∈ 𝐶

𝜏
there exists 𝑈𝑠, 𝑉𝑠 such that

𝑠 ∈ 𝑈𝑠 ∈ 𝜏, 𝑡 ∈ 𝑉𝑠 ∈ 𝜈, and 𝑈𝑠 ∩ 𝑉𝑠 = ∅.
The 𝜏 -compactness of 𝐶

𝜏
implies the existence of 𝑠1, . . . , 𝑠𝑛 ∈ 𝑇 such that

𝐶
𝜏 ⊂ ∪𝑛𝑖=1𝑈𝑠𝑖 .

Let 𝑊 := 𝑉 ∩ ∩𝑛𝑖=1𝑉𝑠𝑖 ∈ 𝜈. Then 𝑡 ∈ 𝑊 and 𝑊 ∩ (∪𝑛𝑖=1𝑈𝑠𝑖) = ∅, so that
𝑊 ∩ 𝐶 = ∅.

If 𝑠 ∈ 𝑊, then 𝑠 ∈ 𝑉 and 𝑠 /∈ 𝐶 = 𝑉 ∩ ∁(𝑈), so that 𝑠 ∈ ∁
(
∁(𝑉 ) ∩ 𝑈

)
=

𝑈 ∪∁(𝑉 ), implying 𝑠 ∈ 𝑈. Consequently,𝑊 ⊂ 𝑈, showing that 𝑈 ∈ 𝒱𝜈(𝑡) and that
𝜏 ⊂ 𝜈. □

We mention also the following result.

Theorem 1.2.53 ([144]). A bitopological space (𝑇, 𝜏, 𝜈) is quasi-uniformizable if and
only if it is pairwise completely regular.

It is well known that a quasi-regular locally compact topological space is a
Baire space (see [102]). The following theorem contains the bitopological analog
of this result.

Theorem 1.2.54 ([7]). Every pairwise fine, pairwise normal and pairwise locally
compact bitopological space is pairwise Baire.
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1.2.5 Completeness and compactness in quasi-uniform spaces

The completeness notions for quasi-metric spaces considered in the previous sub-
sections can be extended to quasi-uniform spaces by replacing sequences by filters
or by nets.

Let (𝑋,𝒰) be a quasi-uniform space, 𝒰−1 = {𝑈−1 : 𝑈 ∈ 𝒰} the conjugate
quasi-uniformity on 𝑋, and 𝒰𝑠 = 𝒰 ∨𝒰−1 the coarsest uniformity finer than 𝒰 and
𝒰−1. The quasi-uniform space (𝑋,𝒰) is called bicomplete if (𝑋,𝒰𝑠) is a complete
uniform space. This notion is useful and easy to handle, because one can appeal to
well-known results from the theory of uniform spaces, but it is not very appropriate
for the study of the specific properties of quasi-uniform spaces.

Call a filter ℱ on a quasi-uniform space (𝑋,𝒰)
∙ left 𝒰-Cauchy (right 𝒰-Cauchy) if for every 𝑈 ∈ 𝒰 there exists 𝑥 ∈ 𝑋 such
that 𝑈(𝑥) ∈ ℱ (respectively 𝑈−1(𝑥) ∈ ℱ);

∙ left 𝐾-Cauchy (right 𝐾-Cauchy) if for every 𝑈 ∈ 𝒰 there exists 𝐹 ∈ ℱ such
that 𝑈(𝑥) ∈ ℱ (respectively 𝑈−1(𝑥) ∈ ℱ) for all 𝑥 ∈ 𝐹 .

The notions of left and right 𝐾-Cauchy filter were defined and studied by
Romaguera in [190, 192].

A net (𝑥𝑖 : 𝑖 ∈ 𝐼) in (𝑋,𝒰) is called
∙ left 𝒰-Cauchy (right 𝒰-Cauchy) if for every 𝑈 ∈ 𝒰 there exists 𝑥 ∈ 𝑋 and

𝑖0 ∈ 𝐼 such that (𝑥, 𝑥𝑖) ∈ 𝑈 (respectively (𝑥𝑖, 𝑥) ∈ 𝑈) for all 𝑖 ≥ 𝑖0;

∙ left 𝐾-Cauchy if

∀𝑈 ∈ 𝒰 , ∃𝑖0 ∈ 𝐼, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖0 ≤ 𝑖 ≤ 𝑗 ⇒ (𝑥𝑖, 𝑥𝑗) ∈ 𝑈 . (1.2.27)

∙ right 𝐾-Cauchy if

∀𝑈 ∈ 𝒰 , ∃𝑖0 ∈ 𝐼, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖0 ≤ 𝑖 ≤ 𝑗 ⇒ (𝑥𝑗 , 𝑥𝑖) ∈ 𝑈 . (1.2.28)

Observe that

(𝑥𝑗 , 𝑥𝑖) ∈ 𝑈 ⇐⇒ (𝑥𝑖, 𝑥𝑗) ∈ 𝑈−1 ,

so that a net is right 𝐾-Cauchy with respect to 𝒰 if and only if it is left 𝐾-Cauchy
with respect to 𝒰−1. A similar remark applies to 𝒰-nets.
The quasi-uniform space (𝑋,𝒰) is called
∙ left 𝒰-complete (left 𝐾-complete) if every left 𝒰-Cauchy (respectively, left

𝐾-Cauchy) filter in 𝑋 is 𝜏(𝒰)-convergent;
∙ left 𝒰-complete by nets (left 𝐾-complete by nets) if every left 𝒰-Cauchy (re-
spectively, left 𝐾-Cauchy) net in 𝑋 is 𝜏(𝒰)-convergent;

∙ Smyth left 𝐾-complete by nets if every left 𝐾-Cauchy net in 𝑋 is 𝒰𝑠-con-
vergent.
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The notions of right completeness are defined similarly, by asking the 𝜏(𝒰)-
convergence of the corresponding right Cauchy filter (or net) with respect to the
topology 𝜏(𝒰) (or with respect to 𝜏(𝒰𝑠) in the case of Smyth completeness).

The notion of Smyth completeness (see [133] and [225], [229], [230]) has ap-
plications to computer science, see [216]. In fact, there are a lot of applications
of quasi-metric spaces, asymmetric normed spaces and quasi-uniform spaces to
computer science, abstract languages, the analysis of the complexity of programs,
see, for instance, [89, 92, 171, 207, 208, 209, 210, 216].

Notice also that these notions of completeness can be considered within the
framework of bitopological spaces in the sense of Kelly [111], since a quasi-uniform
space is a bitopological space with respect to the topologies 𝜏(𝒰) and 𝜏(𝒰−1). For
this approach see the papers by Deák [57, 58].

The study of some bitopological and quasi-uniform structures on concrete
spaces of semi-continuous or continuous functions was done in the papers [79] and
[139], respectively.

The notions of total boundedness and precompactness can be also extended
to quasi-uniform spaces.

A subset 𝑌 of a quasi-uniform space (𝑋,𝒰) is called
∙ precompact if for every 𝑈 ∈ 𝒰 there exists a finite subset 𝑍 of 𝑌 such that

𝑌 ⊂ 𝑈(𝑍);

∙ outside precompact if for every 𝑈 ∈ 𝒰 there exists a finite subset 𝑍 of 𝑋 such
that 𝑌 ⊂ 𝑈(𝑍);

∙ totally bounded if for every 𝑈 ∈ 𝒰 there exists a finite family of subsets
𝑍𝑖, 𝑖 = 1, . . . , 𝑛, of 𝑋 such that 𝑍𝑖 × 𝑍𝑖 ⊂ 𝑈, 𝑖 = 1, . . . , 𝑛, and 𝑌 ⊂
∪𝑛𝑖=1𝑍𝑖, or, equivalently, if 𝑌 is totally bounded with respect to the associated
uniformity 𝒰𝑠.
The space (𝑋,𝒰) is called hereditarily precompact if every subset of it is

precompact.

We mention the following simple properties of Cauchy filters. The sequential
versions of the assertions 2 and 3 are contained in Proposition 1.2.4.

Proposition 1.2.55. Let (𝑋,𝒰) be a quasi-uniform space.

1. Any left 𝐾-Cauchy filter is left 𝒰-Cauchy. The same is true for right Cauchy
filters.

2. If 𝑥 is a cluster point of a left 𝐾-Cauchy filter ℱ , then ℱ is 𝜏(𝒰)-convergent
to 𝑥.

3. If 𝑥 is a cluster point of a right 𝐾-Cauchy filter ℱ , then ℱ is 𝜏(𝒰)-convergent
to 𝑥.

Proof. 1. Let ℱ be a left 𝐾-Cauchy filter. For 𝑈 ∈ 𝒰 there exists 𝐹 ∈ ℱ such
that 𝑈(𝑥) ∈ ℱ for all 𝑥 ∈ 𝐹. Taking an element 𝑥 in the nonempty set 𝐹 it follows
that ℱ is left 𝒰-Cauchy.
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2. Let 𝑥 be a 𝜏(𝒰)-cluster point of a left 𝐾-Cauchy filter ℱ on 𝑋, that
is 𝑥 ∈ ∩{𝜏(𝒰)-cl(𝐹 ) : 𝐹 ∈ ℱ}. For 𝑈 ∈ 𝒰 let 𝑉 ∈ 𝒰 such that 𝑉 2 ⊂ 𝑈. Let
𝐹 ∈ ℱ be such that 𝑉 (𝑦) ∈ ℱ for all 𝑦 ∈ 𝐹. By hypothesis, the set 𝐹 ∩ 𝑉 (𝑥) is
nonempty. Taking a point 𝑧 in this intersection, then 𝑉 (𝑧) ∈ ℱ . Let 𝑦 ∈ 𝑉 (𝑧) ⇐⇒
(𝑧, 𝑦) ∈ 𝑉. Since (𝑥, 𝑧) ∈ 𝑉 it follows that (𝑥, 𝑦) ∈ 𝑉 2 ⇐⇒ 𝑦 ∈ 𝑉 2(𝑥), that is
𝑉 (𝑧) ⊂ 𝑉 2(𝑥) ⊂ 𝑈(𝑥). Consequently, 𝑈(𝑥) ∈ ℱ and ℱ is 𝜏(𝒰)-convergent to 𝑥.

3. Let 𝑥 be a 𝜏(𝒰)-cluster point of a right 𝐾-Cauchy filter ℱ on 𝑋. For
𝑈 ∈ 𝒰 let 𝑉 ∈ 𝒰 be such that 𝑉 2 ⊂ 𝑈, and let 𝐹 ∈ ℱ be such that 𝑉 −1(𝑦) ∈ ℱ
for all 𝑦 ∈ 𝐹.

Let 𝑦 ∈ 𝐹. Since 𝑉 −1(𝑦)∩𝑉 (𝑥) ∕= ∅, there exists 𝑧 ∈ 𝑉 −1(𝑦)∩𝑉 (𝑥). It follows
that (𝑧, 𝑦) ∈ 𝑉 and (𝑥, 𝑧) ∈ 𝑉, so that (𝑥, 𝑦) ∈ 𝑉 2 ⇐⇒ 𝑦 ∈ 𝑉 2(𝑥). Consequently,
𝐹 ⊂ 𝑉 2(𝑥) ⊂ 𝑈(𝑥), showing that 𝑈(𝑥) ∈ ℱ , that is ℱ is 𝜏(𝒰)-convergent to 𝑥. □

Now we shall present, following [218] a characterization of compactness in
quasi-uniform spaces.

Proposition 1.2.56 ([218]). Let (𝑋,𝒰) be a quasi-uniform space.

1. The space (𝑋,𝒰) is precompact if and only if every ultrafilter on 𝑋 is left
𝒰-Cauchy.

2. If (𝑋,𝒰) is compact, then every left 𝒰-Cauchy filter is 𝜏(𝒰)-convergent.

Proof. 1. Suppose that (𝑋,𝒰) is precompact and let ℱ be an ultrafilter on 𝑋.
Then for every 𝑈 ∈ 𝒰 there exists a finite subset 𝑍 of 𝑋 such that 𝑋 = ∪{𝑈(𝑧) :
𝑧 ∈ 𝑍}. Since ℱ is an ultrafilter there exists 𝑧 ∈ 𝑍 such that 𝑈(𝑧) ∈ ℱ , proving
that the ultrafilter ℱ is left 𝒰-Cauchy.

To prove the converse suppose that (𝑋,𝒰) is not precompact. Then there
exists 𝑈 ∈ 𝒰 such that for every finite subset 𝑍 of 𝑋, 𝑋 ∖ 𝑈(𝑍) = 𝑋 ∖ ∪{𝑈(𝑧) :
𝑧 ∈ 𝑍} ∕= ∅. The family {𝑋 ∖ 𝑈(𝑍) : 𝑍 ⊂ 𝑋, 𝑍 finite nonempty} is the base of
a filter 𝒢 on 𝑋. Let ℱ be an ultrafilter on 𝑋 such that 𝒢 ⊂ ℱ . Then for every
𝑥 ∈ 𝑋, 𝑋 ∖ 𝑈(𝑥) ∈ 𝒢 ⊂ ℱ . Consequently 𝑈(𝑥) /∈ ℱ for all 𝑥 ∈ 𝑋, so that the
ultrafilter ℱ is not left 𝒰-Cauchy.

2. Suppose that 𝑋 contains a left 𝒰-Cauchy filter ℱ that is not convergent.
Then for every 𝑥 ∈ 𝑋 there exists 𝑈𝑥 ∈ 𝒰 such that 𝑈𝑥(𝑥) /∈ ℱ . Let 𝑉𝑥 ∈ 𝒰 such
that 𝑉𝑥∘𝑉𝑥 ⊂ 𝑈𝑥, 𝑥 ∈ 𝑋. Taking into account the compactness of 𝑋, there exists a
finite subset 𝑥1, . . . , 𝑥𝑛 of 𝑋 such that 𝑋 = ∪𝑛𝑘=1𝑉𝑥𝑘

(𝑥𝑘). Let 𝑉 = ∩𝑛𝑘=1𝑉𝑥𝑘
∈ 𝒰 .

Since the filter ℱ is left 𝒰-Cauchy, there exists 𝑧 ∈ 𝑋 such that 𝑉 (𝑧) ∈ ℱ .
Let 𝑘 ∈ {1, . . . , 𝑛} be such that 𝑧 ∈ 𝑉𝑥𝑘

(𝑥𝑘) ⇐⇒ (𝑥𝑘, 𝑧) ∈ 𝑉𝑥𝑘
. If we show

that 𝑉 (𝑧) ⊂ 𝑈𝑥𝑘
(𝑥𝑘), then 𝑈𝑥𝑘

(𝑥𝑘) ∈ ℱ , in contradiction to the choice of the sets
𝑈𝑥 ∈ 𝒰 . Indeed, 𝑦 ∈ 𝑉 (𝑧) ⇐⇒ (𝑧, 𝑦) ∈ 𝑉 ⊂ 𝑉𝑥𝑘

implies (𝑥𝑘, 𝑦) ∈ 𝑉𝑥𝑘
∘𝑉𝑥𝑘

⊂ 𝑈𝑥𝑘
,

so that 𝑦 ∈ 𝑈𝑥𝑘
(𝑥𝑘). □

The following characterization of compactness is the analog of a well-known
result in uniform spaces.
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Theorem 1.2.57 ([218]). A quasi-uniform space (𝑋,𝒰) is compact if and only if it
is precompact and left 𝒰-complete.

Proof. It is clear that a compact quasi-uniform space is precompact. By Proposi-
tion 1.2.56.2 it is left 𝒰-complete too.

Let ℱ be an ultrafilter on 𝑋 . By Proposition 1.2.56.1, ℱ is left 𝒰-Cauchy, so
that it is 𝜏(𝒰)-convergent, proving the 𝜏(𝒰)-compactness of 𝑋 . □

We shall present now following [229] the equivalence between completeness
in terms of filters and in terms of nets.

A filter ℱ in a quasi-uniform space (𝑋,𝒰) is called
∙ round if

∀𝐴 ∈ ℱ , ∃𝐵 ∈ ℱ , ∃𝑈 ∈ 𝒰 , 𝑈(𝐵) ⊂ 𝐴 ; (1.2.29)

∙ 𝑆𝑢-Cauchy if

∀𝑈 ∈ 𝒰 , ∀𝐴 ∈ ℱ , ∃𝑥 ∈ 𝐴, 𝑈(𝑥) ∈ ℱ . (1.2.30)

For a net 𝜑 = (𝑥𝑖 : 𝑖 ∈ 𝐼) in (𝑋,𝒰) let
𝐸𝑖 = {𝑥𝑗 : 𝑗 ∈ 𝐼, 𝑗 ≥ 𝑖}, 𝑖 ∈ 𝐼, and 𝐹𝑖,𝑈 = 𝑈(𝐸𝑖), (𝑖, 𝑈) ∈ 𝐼 × 𝒰 . (1.2.31)

Then 𝐹𝑖,𝑈 = 𝑈(𝐸𝑖), (𝑖, 𝑈) ∈ 𝐼 × 𝒰 is the base of a filter on 𝑋 denoted by
Φ(𝜑) (or Φ(𝑥𝑖)).

Proposition 1.2.58 ([229]). Let (𝑋,𝒰) be a quasi-uniform space.

1. If 𝜑 = (𝑥𝑖 : 𝑖 ∈ 𝐼) is a left 𝐾-Cauchy net, then the associated filter Φ(𝜑) is
round 𝑆𝑢-Cauchy and

(i) 𝑥𝑖
𝒰−→ 𝑥 =⇒ 𝒱𝒰 (𝑥) ⊂ Φ(𝜑) (i.e., lim𝒰 Φ(𝜑) = 𝑥);

(ii) 𝑥𝑖
𝒰−1−−−→ 𝑥 =⇒ Φ(𝜑) ⊂ 𝒱𝒰(𝑥);

(iii) 𝑥𝑖
𝒰𝑠−−→ 𝑥 =⇒ Φ(𝜑) = 𝒱𝒰 (𝑥).

2. To each round 𝑆𝑢-Cauchy filter 𝒢 one can associate a left 𝐾-Cauchy net
𝜑 = (𝑥𝜆 : 𝜆 ∈ Λ) such that Φ(𝜑) = 𝒢.

Proof. 1. Let Φ(𝜑) be the filter associated to the left 𝐾-Cauchy net 𝜑=(𝑥𝑖 : 𝑖∈𝐼).
Claim I. The filter Φ(𝜑) is round.

For (𝑖1, 𝑈) ∈ 𝐼 × 𝑈 let 𝑉 ∈ 𝒰 such that 𝑉 2 ⊂ 𝑈 and let 𝑖0 ∈ 𝐼, 𝑖0 ≥ 𝑖1 be
such that (1.2.27) holds for 𝑉 . The conclusion will follow if we show that

𝑈(𝐹𝑖0,𝑉 ) ⊂ 𝐹𝑖1,𝑈 . (1.2.32)

We have

𝑦 ∈ 𝑈(𝐹𝑖0,𝑉 ) ⇐⇒ ∃𝑧 ∈ 𝐹𝑖0,𝑉 , (𝑧, 𝑦) ∈ 𝑉,

𝑧 ∈ 𝐹𝑖0,𝑉 ⇐⇒ ∃𝑖 ≥ 𝑖0 ≥ 𝑖1, (𝑥𝑖, 𝑧) ∈ 𝑉 ,

so that (𝑥𝑖, 𝑦) ∈ 𝑉 2 ⊂ 𝑈, implying 𝑦 ∈ 𝑈(𝑥𝑖) ⊂ 𝑈(𝐸𝑖1) = 𝐹𝑖1,𝑈 .
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Claim II. The filter Φ(𝜑) is 𝑆𝑢-Cauchy.

Let again 𝐹𝑖1,𝑈 ∈ Φ(𝜑), 𝑉 ∈ 𝒰 and 𝑊 ∈ 𝒰 such that 𝑊 2 ⊂ 𝑉. Since the net
(𝑥𝑖) is left 𝐾-Cauchy, there exists 𝑖0 ∈ 𝐼, 𝑖0 ≥ 𝑖1 such that

∀𝑖, 𝑗 ∈ 𝐼, 𝑖0 ≤ 𝑖 ≤ 𝑗 ⇒ (𝑥𝑖, 𝑥𝑗) ∈ 𝑊 . (1.2.33)

Let us show that 𝐹𝑖0,𝑊 ⊂ 𝑉 (𝑥𝑖0 ), which implies 𝑉 (𝑥𝑖0 ) ∈ Φ(𝜑), that is
(1.2.30) holds for 𝑥𝑖0 ∈ 𝐹𝑖1,𝑈 (with 𝑉 instead of 𝑈).

Observe first that 𝑖0 ≥ 𝑖1 and (𝑥𝑖0 , 𝑥𝑖0) ∈ 𝑈 imply 𝑥𝑖0 ∈ 𝑈(𝐸𝑖1 ) = 𝐹𝑖1,𝑈 Also

𝑦 ∈ 𝐹𝑖0,𝑊 ⇐⇒ ∃𝑖 ≥ 𝑖0, (𝑥𝑖, 𝑦) ∈ 𝑊 .

By (1.2.33), (𝑥𝑖0 , 𝑥𝑖) ∈ 𝑊, so that (𝑥𝑖0 , 𝑦) ∈ 𝑊 2 ⊂ 𝑉, showing that 𝑦 ∈
𝑉 (𝑥𝑖0 ).

The proof of (i). For 𝑈 ∈ 𝒰 let 𝑉 ∈ 𝒰 such that 𝑉 2 ⊂ 𝑈. By hypothesis there exists
𝑖0 ∈ 𝐼 such that 𝐸𝑖0 ⊂ 𝑉 (𝑥). If we show that 𝑉 (𝐸𝑖0 ) ⊂ 𝑈(𝑥), then 𝑈(𝑥) ∈ Φ(𝜑).

Again,
𝑦 ∈ 𝑉 (𝐸𝑖0 ) ⇐⇒ ∃𝑖 ≥ 𝑖0, (𝑥𝑖, 𝑦) ∈ 𝑉 .

By the choice of 𝑖0, (𝑥, 𝑥𝑖) ∈ 𝑉, so that (𝑥, 𝑦) ∈ 𝑉 2 ⊂ 𝑈, that is 𝑦 ∈ 𝑈(𝑥).

The proof of (ii). For 𝐹𝑖1,𝑈 ∈ Φ let 𝑉 ∈ 𝒰 such that 𝑉 2 ⊂ 𝑈.

Let 𝑖0 ≥ 𝑖1 such that

𝐸𝑖0 ⊂ 𝑉 −1 ⇐⇒ ∀𝑖 ≥ 𝑖0, (𝑥𝑖, 𝑥) ∈ 𝑉 .

Let 𝑦 ∈ 𝑉 (𝑥) ⇐⇒ (𝑥, 𝑦) ∈ 𝑉. Since for every 𝑖 ≥ 𝑖0 ≥ 𝑖1, (𝑥𝑖, 𝑥) ∈ 𝑉,
it follows that (𝑥𝑖, 𝑦) ∈ 𝑉 2 ⊂ 𝑈, that is 𝑉 (𝑥) ⊂ 𝑈(𝐸𝑖1 ) = 𝐹𝑖1,𝑈 , showing that
𝐹𝑖1,𝑈 ∈ 𝒱𝒰(𝑥).

The assertion (iii) is a consequence of (i) and (ii).

2. Let now 𝒢 be a round 𝑆𝑢-Cauchy filter in (𝑋,𝒰). Consider the set

Λ = {(𝑈,𝐴) : 𝑈 ∈ 𝒰 , 𝐴 ∈ 𝒢} .

By the condition (1.2.30),

∀(𝑈,𝐴) ∈ 𝒰 × 𝒢, ∃𝑥(𝑈,𝐴) ∈ 𝐴, 𝑈(𝑥(𝑈,𝐴)) ∈ 𝒢 . (1.2.34)

Consider the elements 𝑥(𝑈,𝐴), (𝑈,𝐴) ∈ 𝒰 × 𝒢, given according to (1.2.34)
and define the order on Λ by

(𝑈,𝐴) ≤ (𝑉,𝐵) ⇐⇒ 𝑉 ⊂ 𝑈 ∧ 𝐵 ⊂ 𝐴 ∩ 𝑈(𝑥(𝑈,𝐴)) . (1.2.35)

It is clear that the so-defined relation is transitive. For (𝑈,𝐴), (𝑉,𝐵) ∈ Λ let
𝑊 = 𝑈 ∩ 𝑉 and 𝐶 = 𝐴 ∩ 𝐵 ∩ 𝑈(𝑥(𝑈,𝐴)) ∩ 𝑉 (𝑥(𝑉,𝐵)). Then (𝑈,𝐴) ≤ (𝑊,𝐶) and
(𝑉,𝐵) ≤ (𝑊,𝐶), showing that the set (Λ,≤) is directed.
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Claim III. The net 𝜑 = (𝑥𝜆 : 𝜆 ∈ Λ) is left 𝐾-Cauchy.
For 𝑈 ∈ 𝒰 take 𝜆0 = (𝑈,𝑋). If (𝑈,𝑋) ≤ (𝑉,𝐵) ≤ (𝑊,𝐶), then

𝑥(𝑊,𝐶) ∈ 𝐶 ⊂ 𝑉 (𝑥(𝑉,𝐵)) ⊂ 𝑈(𝑥(𝑉,𝐵)) ,

that is (𝑥(𝑉,𝐵), 𝑥(𝑊,𝐶)) ∈ 𝑈.

Claim IV. 𝒢 ⊂ Φ(𝜑).
Let 𝐴 ∈ 𝒢. By (1.2.29), there exist 𝑈 ∈ 𝒰 and 𝐵 ∈ 𝒢 such that 𝑈(𝐵) ⊂ 𝐴.

Put 𝜆 = (𝑋 ×𝑋,𝐵). Then

𝜇 = (𝑊,𝐶) ≥ 𝜆 ⇒ 𝐶 ⊂ 𝐵 ,

so that for every 𝜇 ≥ 𝜆, 𝑥𝜇 ∈ 𝐶 ⊂ 𝐵, that is 𝐸𝜆 ⊂ 𝐵, so that 𝑈(𝐸𝜆) ⊂ 𝑈(𝐵) ⊂ 𝐴,
implying 𝐴 ∈ Φ(𝜑).
Claim V. Φ(𝜑) ⊂ 𝒢.

Let 𝑈(𝐸𝜆) ∈ Φ(𝜑) for some 𝜆 = (𝑉,𝐵) ∈ 𝒰 × 𝒢. If (𝑊,𝐶) ∈ Λ, is such that
(𝑊,𝐶) ≥ (𝑉,𝐵) and (𝑊,𝐶) ≥ (𝑈,𝑋) then 𝑊 ⊂ 𝑉 and 𝑊 ⊂ 𝑈, implying

𝑊 (𝑥(𝑊,𝐶)) ⊂ 𝑈(𝑥(𝑊,𝐶)) ⊂ 𝑈(𝐸𝜆) .

Since, by (1.2.34), 𝑊 (𝑥(𝑊,𝐶)) ∈ 𝒢, it follows 𝑈(𝐸𝜆) ∈ 𝒢. □

As a consequence of Proposition 1.2.58 one obtains.

Corollary 1.2.59 ([229]). Let (𝑋,𝒰) be a quasi-uniform space.

1. The space (𝑋,𝒰) is left 𝐾-complete by nets if and only if every round 𝑆𝑢-
Cauchy filter in 𝑋 is 𝒰-convergent.

2. The space (𝑋,𝒰) is Smyth left 𝐾-complete by nets if and only if every round
𝑆𝑢-Cauchy filter in 𝑋 is the neighborhood filter of some 𝑥 ∈ 𝑋.

Proof. 1. Suppose that every round 𝑆𝑢-Cauchy filter in 𝑋 is 𝒰-convergent. Let
𝜑 = (𝑥𝑖 : 𝑖 ∈ 𝐼) be a left 𝐾-complete by net in 𝑋 . Then the associated filter
Φ(𝜑) is round and 𝑆𝑢-Cauchy, so that it converges to some 𝑥 ∈ 𝑋. Taking into
account the definition of Φ(𝜑) (see (1.2.31)) it is easy to check that the net 𝜑
converges to 𝑥.

Suppose that 𝑋 is left 𝐾-complete by nets and let 𝒢 be a round 𝑆𝑢-Cauchy
filter in 𝑋. By Proposition 1.2.58.2, one can associate to 𝒢 a left 𝐾-Cauchy net
𝜑 = (𝑥𝜆 : 𝜆 ∈ Λ) such that Φ(𝜑) = 𝒢. By hypothesis the net 𝜑 is 𝒰-convergent to
some 𝑥 ∈ 𝑋. By the assertion 1.(i) of the same proposition, the net 𝒢 = Φ(𝜑) is
𝒰-convergent to 𝑥.

The proof of 2 is similar. □
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Remark 1.2.60. 1. If 𝒢 is a filter in a uniform space (𝑋,𝒰), then one takes Λ =
{(𝑥,𝐴) : 𝐴 ∈ 𝒢, 𝑥 ∈ 𝐴} with the order

(𝑥,𝐴) ≤ (𝑦,𝐵) ⇐⇒ 𝐵 ⊂ 𝐴 .

The net 𝜑 associated to the filter 𝒢 is defined by

𝜑(𝑥,𝐴) = 𝑥, (𝑥,𝐴) ∈ Λ .

One shows that if the filter 𝒢 is Cauchy, then the associated net 𝜑 is Cauchy
too, and if 𝒢 is 𝒰-convergent to some 𝑥 ∈ 𝑋 , then the net 𝜑 is also 𝒰-convergent
to 𝑥. As it is remarked in [229], in the quasi-uniform case this definition does not
yield the equivalence between completeness with filters and nets.

Exploiting the ideas of Sünderhauf [229] (see Proposition 1.2.58), Künzi [133]
(see also [137, Lemma 2.6.11]) was able to prove the equivalence between the left
𝐾-completeness and the left 𝐾-completeness by nets.

Theorem 1.2.61. A quasi-uniform space (𝑋,𝒰) is left 𝐾-complete if and only if
every left 𝐾-Cauchy net in 𝑋 is 𝜏(𝒰)-convergent.

Proof. The proof of an implication is standard. Suppose that (𝑋,𝒰) is left 𝐾-
complete and let (𝑥𝑖 : 𝑖 ∈ 𝐼) be a left 𝐾-Cauchy net in 𝑋 . Then the sets 𝐸𝑖 =
{𝑥𝑗 : 𝑗 ∈ 𝐼, 𝑖 ≤ 𝑗}, 𝑖 ∈ 𝐼, form the base of a left 𝐾-Cauchy filter ℱ on 𝑋 . Indeed,
for 𝑈 ∈ 𝒰 let 𝑖0 ∈ 𝐼 such that 𝑖0 ≤ 𝑖 ≤ 𝑗 implies (𝑥𝑖, 𝑥𝑗) ∈ 𝑈. Then, for every
fixed 𝑖 ≥ 𝑖0, (𝑥𝑖, 𝑥𝑗) ∈ 𝑈 for all 𝑗 ≥ 𝑖, that is 𝐸𝑖 ⊂ 𝑈(𝑥𝑖) showing that 𝑈(𝑥) ∈ ℱ
for every 𝑥 ∈ 𝐸𝑖0 .

By hypothesis, ℱ is 𝜏(𝒰)-convergent to some 𝑥 ∈ 𝑋. It is easy to check that
the net (𝑥𝑖) is also 𝜏(𝒰)-convergent to 𝑥.

To prove the converse, let ℱ be a left 𝐾-Cauchy filter on 𝑋 . Then for every
𝑈 ∈ 𝒰 there exists 𝐹𝑈 ∈ ℱ such that 𝑈(𝑦) ∈ ℱ for all 𝑦 ∈ 𝐹𝑈 . For arbitrary 𝑈 ∈ 𝒰
and 𝐴 ∈ ℱ , 𝐴 ∩ 𝐹𝑈 ∕= ∅, so there exists 𝑥(𝑈,𝐴) ∈ 𝐴 such that 𝑈(𝑥(𝑈,𝐴)) ∈ ℱ .
Put Λ = {(𝑈,𝐴) : 𝑈 ∈ 𝒰 , 𝐴 ∈ ℱ}, define the order on Λ by (1.2.35) and the net
𝜑 : Λ→ 𝑋 by 𝜑(𝑈,𝐴) = 𝑥(𝑈,𝐴), (𝑈,𝐴) ∈ Λ.

As in the proof of Proposition 1.2.58 (Claim III), one shows that the net
𝜑 is left 𝐾-Cauchy. By hypothesis it is 𝜏(𝒰)-convergent to some 𝑥 ∈ 𝑋. Let us
show that the filter ℱ is 𝜏(𝒰)-convergent to 𝑥. For 𝑈 ∈ 𝒰 let 𝑉 ∈ 𝒰 such that
𝑉 2 ⊂ 𝑈. Let (𝑈0, 𝐴0) ∈ Λ such that 𝑥(𝑈,𝐴)) ∈ 𝑉 (𝑥) for all (𝑈,𝐴) ∈ Λ with
(𝑈,𝐴) ≥ (𝑈0, 𝐴0). Defining 𝐵 by

𝐵 := 𝐴0 ∩ 𝐹𝑉 ∩ 𝑈0(𝑥(𝑈0,𝐴0)) ∈ ℱ ,

it follows that (𝑈0 ∩ 𝑉,𝐵) ∈ Λ and (𝑈0 ∩ 𝑉,𝐵) ≥ (𝑈0, 𝐵0), so that

𝑥(𝑈0∩𝑉,𝐴) ∈ 𝑉 (𝑥) ⇐⇒ (𝑥, 𝑥(𝑈0∩𝑉,𝐴)) ∈ 𝑉 . (1.2.36)
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Let us prove now that 𝑉 (𝑥(𝑈0∩𝑉,𝐵)) ⊂ 𝑉 2(𝑥). Indeed,

𝑦 ∈ 𝑉 (𝑥(𝑈0∩𝑉,𝐵)) ⇐⇒ (𝑥(𝑈0∩𝑉,𝐵), 𝑦) ∈ 𝑉 ,

which, combined with (1.2.36), leads to

(𝑥, 𝑦) ∈ 𝑉 2 ⇐⇒ 𝑦 ∈ 𝑉 2(𝑥) .

The relations

ℱ ∋ (𝑈0 ∩ 𝑉 )(𝑥(𝑈0∩𝑉,𝐵)) ⊂ 𝑉 (𝑥(𝑈0∩𝑉,𝐵)) ⊂ 𝑉 2(𝑥) ⊂ 𝑈(𝑥) ,

show that 𝑈(𝑥) ∈ ℱ . □

The following result appears in [138].

Proposition 1.2.62. If 𝒰 ,𝒱 are hereditarily precompact quasi-uniformities on a set
𝑋, then 𝒰 ∨ 𝒱 is also hereditarily precompact.

Proof. We shall present the proof given in [137]. It is based on Ramsey theorem,
see for instance [100]. Suppose that 𝒰 ∨ 𝒱 is not hereditarily precompact. Then,
there exists an infinite subset 𝑊 of 𝑋, 𝑈 ∈ 𝒰 and 𝑉 ∈ 𝒱 s.t 𝑊 ∖ (𝑈 ∩ 𝑉 )(𝑍) ∕= ∅
for every finite subset 𝑍 of𝑊 . Then for 𝑥1 ∈ 𝑊 there exists 𝑥2 ∈𝑊 ∖(𝑈 ∩𝑉 )(𝑥1).
Taking by induction 𝑥𝑛+1 ∈ 𝑊 ∖ (𝑈 ∩ 𝑉 )({𝑥1, . . . , 𝑥𝑛}), then 𝑥𝑛 /∈ (𝑈 ∩ 𝑉 )(𝑥𝑘)
for all 𝑛, 𝑘 ∈ ℕ with 𝑛 > 𝑘. Let 𝑆 = {𝑥𝑛 : 𝑛 ∈ ℕ} and denote by [𝑆]2 the set of all
two-element subsets of 𝑆. Define a function ℎ : [𝑆]2 → {0, 1} by ℎ({𝑥𝑘, 𝑥𝑛}) = 1
if 𝑘 < 𝑛 and 𝑥𝑛 /∈ 𝑈(𝑥𝑘) and ℎ({𝑥𝑘, 𝑥𝑛}) = 0 if 𝑘 < 𝑛 and 𝑥𝑛 ∈ 𝑈(𝑥𝑘) (so that
𝑥𝑛 /∈ 𝑉 (𝑥𝑘)). By Ramsey Theorem, [100, Theorem A, p.19], there exists an infinite
subset 𝑌 of 𝑆 such that the map ℎ is constant on [𝑌 ]2. Since the subspace (𝑌,𝒰∣𝑌 )
is precompact, ℎ cannot be equal to 1 on [𝑌 ]2. Since (𝑌,𝒱∣𝑌 ) is also precompact,
ℎ cannot be equal to 0 on [𝑌 ]2, a contradiction that shows that (𝑋,𝒰 ∨ 𝒱) must
be hereditarily precompact. □

The above proposition has the following corollary.

Corollary 1.2.63 ([138, 137]). A quasi-uniform space (𝑋,𝒰) is totally bounded if
and only if both 𝒰 and 𝒰−1 are hereditarily precompact.

A filter ℱ on a quasi-uniform space (𝑋,𝒰) is called 𝒰-stable if for every
𝑈 ∈ 𝒰 , ∩{𝑈(𝐹 ) : 𝐹 ∈ ℱ} ∈ ℱ .

Proposition 1.2.64 ([137]). A quasi-uniform space (𝑋,𝒰) is hereditarily precompact
if and only if every (ultra)filter on 𝑋 is 𝒰−1-stable.

Proof. Suppose that 𝑋 contains a subset 𝑌 that is not precompact. Then there
exists 𝑈 ∈ 𝒰 such that 𝑌 ∖ 𝑈(𝑍) ∕= ∅, for every finite subset 𝑍 of 𝑌. Since
(𝑌 ∖ 𝑈(𝑍1)) ∩ (𝑌 ∖ 𝑈(𝑍2)) = 𝑌 ∖ 𝑈(𝑍1 ∪ 𝑍2), it follows that {𝑌 ∖ 𝑈(𝑍) : 𝑍 ⊂
𝑌, 𝑍 finite} is a filter base on 𝑋. Let ℱ be an (ultra)filter on 𝑋 containing it.



1.2. Completeness and compactness in quasi-metric and quasi-uniform spaces 85

Observe that 𝑥 ∈ 𝑈−1(𝑌 ∖𝑈(𝑍)) implies the existence of 𝑦 ∈ 𝑌 ∖𝑈(𝑍) such
that (𝑥, 𝑦) ∈ 𝑈. But 𝑦 ∈ 𝑌 ∖ 𝑈(𝑍) is equivalent to 𝑦 ∈ 𝑌 and (𝑧, 𝑦) /∈ 𝑈 for all
𝑧 ∈ 𝑍. It follows that 𝑥 ∈ 𝑋 ∖ 𝑍 and

∩{𝑈−1(𝐹 ) : 𝐹 ∈ ℱ} ⊂ ∩{𝑈−1(𝑌 ∖ 𝑈(𝑍)) : 𝑍 ⊂ 𝑌, 𝑍 finite}
⊂ ∩{𝑋 ∖ 𝑍 : 𝑍 ⊂ 𝑌, 𝑍 finite} = 𝑋 ∖ ∪{𝑍 : 𝑍 ∈ 𝑌, 𝑍 finite} = 𝑋 ∖ 𝑌 .

For fixed 𝑦 ∈ 𝑌, ℱ ∋ 𝑋 ∖ 𝑈(𝑦) ⊂ 𝑌, implying 𝑌 ∈ ℱ . It follows that 𝑋 ∖ 𝑌 /∈ ℱ ,
so that the filter ℱ is not 𝒰−1-stable.

To prove the converse suppose that there exists a filter ℱ on 𝑋 which is not
𝒰−1-stable. It follows that there exists 𝑈 ∈ 𝒰 such that ∩{𝑈−1(𝐹 ) : 𝐹 ∈ ℱ} /∈ ℱ .

Let 𝐹1 ∈ ℱ . If for every 𝐹 ∈ ℱ , 𝐹1 ∖ 𝑈−1(𝐹 ) = ∅, then 𝐹1 ⊂ 𝑈−1(𝐹 ), so
that 𝐹1 ⊂ ∩𝐹𝑈−1(𝐹 ), implying ∩𝐹𝑈−1(𝐹 ) ∈ ℱ , in contradiction to the choice
of the set 𝑈. Consequently, there exists 𝐴2 ∈ ℱ such that 𝐹1 ∖ 𝑈−1(𝐴2) ∕= ∅.
Taking 𝐹2 = 𝐹1 ∩ 𝐴2, it follows that 𝐹2 ∈ ℱ , 𝐹2 ⊂ 𝐹1 and 𝐹1 ∖ 𝑈−1(𝐹2) ∕= ∅. By
induction one obtains the sets 𝐹1 ⊃ 𝐹2 ⊃ ⋅ ⋅ ⋅ in ℱ such that 𝐹𝑛 ∖ 𝑈−1(𝐹𝑛+1) ∕= ∅
for all 𝑛 ∈ ℕ. Pick 𝑥𝑛 ∈ 𝐹𝑛 ∖ 𝑈−1(𝐹𝑛+1), 𝑛 ∈ ℕ, and put 𝑌 = {𝑥𝑛 : 𝑛 ∈ ℕ}. The
proof will be done if we show that the set 𝑌 is not 𝒰-precompact. For 𝑛 > 𝑘 in
ℕ, 𝑥𝑛 ∈ 𝐹𝑛 ⊂ 𝐹𝑘+1 and 𝑥𝑘 ∈ 𝐹𝑛 ∖ 𝑈−1(𝐹𝑘+1), so that

(𝑥𝑛, 𝑥𝑘) /∈ 𝑈−1 ⇐⇒ (𝑥𝑘, 𝑥𝑛) /∈ 𝑈 ⇐⇒ 𝑥𝑛 /∈ 𝑈(𝑥𝑘) .

It follows that the set 𝑌 is not 𝒰-precompact. □

Our next aim is to prove the analog of Theorem 1.2.34 to quasi-uniform
spaces: a quasi-uniform space is compact if and only if it is precompact and left
𝐾-complete, a result due to Künzi [133]. To do this we need some preliminary
results.

Let ℱ be a filter in a quasi-uniform space (𝑋,𝒰). For a filter base (or subbase)
ℬ one denotes by Fil(ℬ) the filter generated by ℬ. Let also

env(ℬ) = Fil({𝑈(𝐵) : 𝑈 ∈ 𝒰 , 𝐵 ∈ ℬ, }) − the envelope of ℬ , (1.2.37)

and

co-env(ℬ) = Fil({𝑈−1(𝐵) : 𝑈 ∈ 𝒰 , 𝐵 ∈ ℬ, }) − the co-envelope of ℬ . (1.2.38)

The filter ℱ is called

∙ round if ℱ = env(ℱ);
and

∙ co-round if ℱ = co-env(ℱ).
Note that this definition of roundness is in concordance with that given in

(1.2.29).
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Recall also that the filter ℱ is called

∙ left 𝑆𝑢-Cauchy provided that

∀𝑈 ∈ 𝒰 , ∀𝐹 ∈ ℱ , ∃𝑥 ∈ 𝐹, 𝑈(𝑥) ∈ ℱ , (1.2.39)

and

∙ left 𝐾-Cauchy provided that

∀𝑈 ∈ 𝒰 , ∃𝐹 ∈ ℱ , ∀𝑥 ∈ 𝐹, 𝑈(𝑥) ∈ ℱ . (1.2.40)

Proposition 1.2.65. Let (𝑋,𝒰) be a quasi-uniform space and ℱ a filter on 𝑋.

1. If ℱ is round and left 𝑆𝑢-Cauchy, then there exists a maximal round left
𝑆𝑢-Cauchy filter ℱ̃ ⊃ ℱ .

2. If ℱ is round and left 𝑆𝑢-Cauchy, then there exists a left 𝐾-Cauchy filter
𝒦 ⊃ ℱ .

3. The filter ℱ is round left 𝑆𝑢-Cauchy if and only if there exists a left 𝐾-Cauchy
filter 𝒦 ⊃ ℱ such that env(𝒦) ⊂ ℱ .

4. Any maximal co-round left 𝑆𝑢-Cauchy filter ℱ is left 𝐾-Cauchy.

Proof. The proof of 1 is obtained by an application of Zorn’s Lemma.

2. For 𝑈 ∈ 𝒰 and 𝐹 ∈ ℱ put

𝑀(𝑈, 𝐹 ) = {𝑥 ∈ 𝐹 : 𝑈(𝑥) ∈ ℱ} . (1.2.41)

It is easy to check that the sets 𝑀(𝑈, 𝐹 ) satisfy the conditions

(i) 𝑀(𝑈, 𝐹 ) ∕= ∅;
(ii) 𝑈1 ⊂ 𝑈2 ⇒𝑀(𝑈1, 𝐹 ) ⊂𝑀(𝑈2, 𝐹 );

𝐹1 ⊂ 𝐹2 ⇒𝑀(𝑈, 𝐹1) ⊂𝑀(𝑈, 𝐹2);
(1.2.42)

(iii) 𝑀(𝑈1, 𝐹 ) ∩𝑀(𝑈2, 𝐹 ) =𝑀(𝑈1 ∩ 𝑈2, 𝐹 ),

𝑀(𝑈, 𝐹1) ∩𝑀(𝑈, 𝐹2) =𝑀(𝑈, 𝐹1 ∩ 𝐹2),

𝑀(𝑈1, 𝐹1) ∩𝑀(𝑈2, 𝐹2) ⊃𝑀(𝑈1 ∩ 𝑈2, 𝐹1 ∩ 𝐹2) .

The assertion from (i) follows from the fact that ℱ is left 𝑆𝑢-Cauchy. The
last inclusion in (iii) needs also some motivation:

𝑀(𝑈1, 𝐹1)∩𝑀(𝑈2, 𝐹2) ⊃𝑀(𝑈1, 𝐹1∩𝐹2)∩𝑀(𝑈2, 𝐹1∩𝐹2) =𝑀(𝑈1∩𝑈2, 𝐹1∩𝐹2) .

It follows that the family (1.2.41) is a filter base. Denote by 𝒦 the filter
generated by this family and show that 𝒦 is left 𝐾-Cauchy and finer than ℱ .

For any 𝐹 ∈ ℱ , the inclusion 𝑀(𝑈, 𝐹 ) ⊂ 𝐹 implies 𝐹 ∈ 𝒦, that is ℱ ⊂ 𝒦.
Let us show that 𝒦 is left 𝐾-Cauchy. For 𝑈 ∈ 𝒰 , 𝑀(𝑈,𝑋) ∈ 𝒦 and 𝑈(𝑥) ∈

ℱ ⊂ 𝒦 for every 𝑥 ∈𝑀(𝑈,𝑋).
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3. Suppose that the filter ℱ is left 𝑆𝑢-Cauchy and let 𝒦 the left 𝐾-Cauchy
filter finer that ℱ generated by the family (1.2.41). It remains to show that
env(𝒦) ⊂ ℱ , where env(𝒦) is the filter generated by the family of sets

{𝑉 (𝑀(𝑈, 𝐹 )) : 𝑈, 𝑉 ∈ 𝒰 , 𝐹 ∈ ℱ} .

Let 𝑈, 𝑉 ∈ 𝒰 and 𝐹 ∈ ℱ .

We have

𝑥 ∈𝑀(𝑈 ∩ 𝑉, 𝐹 ) ⇐⇒ 𝑥 ∈ 𝐹 ∧ (𝑈 ∩ 𝑉 )(𝑥) ∈ ℱ .

The inclusions

(𝑈 ∩ 𝑉 )(𝑥) ⊂ 𝑉 (𝑥) ⊂ 𝑉 (𝑀(𝑈 ∩ 𝑉, 𝐹 )) ⊂ 𝑉 (𝑀(𝑈, 𝐹 )) ,

imply 𝑉 (𝑀(𝑈, 𝐹 )) ∈ ℱ , so that env(𝒦) ⊂ ℱ .

Suppose now that ℱ is a filter on 𝑋 and there exists a left 𝐾-Cauchy filter
𝒦 ⊃ ℱ such that env(𝒦) ⊂ ℱ .

For 𝑈 ∈ 𝒰 and 𝐹 ∈ ℱ let 𝑉 ∈ 𝒰 such that 𝑉 2 ⊂ 𝑈.

Because 𝒦 is left 𝐾-Cauchy, there exists 𝐾 ∈ 𝒦 such that 𝑉 (𝑥) ∈ 𝒦 for all
𝑥 ∈ 𝐾. Since ℱ ⊂ 𝒦, it follows that 𝐹 ∩𝐾 ∕= ∅, so that there exists 𝑥 ∈ 𝐹 with
𝑉 (𝑥) ∈ 𝒦.

Since 𝑉 2(𝑥) ⊂ 𝑈(𝑥) and 𝑉 2(𝑥) = 𝑉 (𝑉 (𝑥)) ∈ env(𝒦), it follows that 𝑈(𝑥) ∈
ℱ , that is ℱ is left 𝑆𝑢-Cauchy.

4. Let ℱ be a maximal co-round left 𝑆𝑢-Cauchy filter on 𝑋 . Let 𝒦 be the
left 𝐾-Cauchy filter finer than ℱ associated to ℱ according to the construction
given in the proof of the assertion 2. If we show that 𝒦 is co-round, then, by the
maximality of ℱ , we must have ℱ = 𝒦, implying that ℱ is left 𝐾-Cauchy.

For 𝑈 ∈ 𝒰 and 𝐸 ∈ ℱ let 𝑉 ∈ 𝒰 and 𝐹 ∈ ℱ such that

𝑉 2 ⊂ 𝑈 and 𝑉 −1(𝐹 ) ⊂ 𝐸 .

To prove that 𝒦 is co-round it is sufficient to show that 𝑉 −1(𝑀(𝑉, 𝐹 )) ⊂
𝑀(𝑈,𝐸).

Let 𝑦 ∈ 𝑉 −1(𝑀(𝑉, 𝐹 )). We have

𝑦 ∈ 𝑉 −1(𝑀(𝑉, 𝐹 )) ⇐⇒ ∃𝑥 ∈𝑀(𝑉, 𝐹 ), (𝑦, 𝑥) ∈ 𝑉 .

But, according to (1.2.41),

𝑥 ∈𝑀(𝑉, 𝐹 ) ⇐⇒ 𝑥 ∈ 𝐹 and 𝑉 (𝑥) ∈ ℱ .

We have also 𝑉 (𝑥) ⊂ 𝑈(𝑦). Indeed, 𝑧 ∈ 𝑉 (𝑥) ⇐⇒ (𝑥, 𝑦) ∈ 𝑉. Since
(𝑦, 𝑥) ∈ 𝑉, it follows that (𝑦, 𝑧) ∈ 𝑉 2 ⊂ 𝑈, that is 𝑧 ∈ 𝑈(𝑦).

It follows that 𝑈(𝑦) ∈ ℱ , and since 𝑥 ∈ 𝐹,

(𝑦, 𝑥) ∈ 𝑉 ⇒ 𝑦 ∈ 𝑉 −1(𝑥) ⊂ 𝑉 −1(𝐹 ) ⊂ 𝐸 .

Consequently, 𝑦 ∈ 𝐸 and 𝑈(𝑦) ∈ ℱ which is equivalent to 𝑦 ∈𝑀(𝑈,𝐸). □
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The following result will be used in the proof of the characterization of com-
pactness.

Proposition 1.2.66 ([133]). A quasi-uniform space is precompact if and only if every
maximal co-round filter is left 𝐾-Cauchy.

Proof. Let (𝑋,𝒰) be a quasi-uniform space. Supposing that (𝑋,𝒰) is not precom-
pact, there exists 𝑈 ∈ 𝒰 such that 𝑋 ∖ 𝑈(𝑍) ∕= ∅ for every finite subset 𝑍 of 𝑋 .
It follows that the family {𝑋 ∖ 𝑈(𝑥) : 𝑥 ∈ 𝑋} is the subbase of a filter on 𝑋 .
Denote by ℱ the co-envelope of this filter and let 𝒢 ⊃ ℱ be a maximal co-round
filter on 𝑋 .

For 𝑈 ∈ 𝒰 let 𝑉 ∈ 𝒰 be such that 𝑉 2 ⊂ 𝑈.

For 𝑥 ∈ 𝑋 arbitrary, 𝑉 −1(𝑋 ∖ 𝑉 2(𝑥)) ∩ 𝑉 (𝑥) = ∅. Indeed, if there is 𝑦 ∈
𝑉 (𝑥) ∩ 𝑉 −1(𝑋 ∖ 𝑉 2(𝑥)), then (𝑥, 𝑦) ∈ 𝑉 and

𝑦 ∈ 𝑉 −1(𝑋 ∖ 𝑉 2(𝑥)) ⇐⇒ ∃𝑧 ∈ 𝑋 ∖ 𝑉 2(𝑥), (𝑦, 𝑧) ∈ 𝑉 .

It follows that
(𝑥, 𝑧) ∈ 𝑉 2 ⇐⇒ 𝑧 ∈ 𝑉 2(𝑥) ,

in contradiction to the choice of the element 𝑧.

Because 𝑉 −1(𝑋 ∖𝑉 2(𝑥)) ∈ ℱ ⊂ 𝒢 and 𝑉 (𝑥)∩𝑉 −1(𝑋 ∖𝑉 2(𝑥)) = ∅ it follows
that 𝑉 (𝑥) /∈ 𝒢, so that the maximal co-round filter 𝒢 is not left 𝑆𝑢-Cauchy.

To prove the converse, suppose that (𝑋,𝒰) is precompact and let ℱ be a
maximal co-round filter on 𝑋 .

First we show that ℱ is left 𝑆𝑢-Cauchy. For 𝑈 ∈ 𝒰 and 𝐸 ∈ ℱ , let 𝑉 ∈ 𝒰
and 𝐹 ∈ ℱ such that

𝑉 2 ⊂ 𝑈 and 𝑉 −1(𝐹 ) ⊂ 𝐸 .

By the precompactness of (𝑋,𝒰) there exists a finite subset 𝑍 of 𝑋 such that
𝑉 (𝑧) ∩ 𝐹 ∕= ∅ for every 𝑧 ∈ 𝑍 and

𝐹 ⊂ 𝑉 (𝑍) .

It follows that
𝑍 ⊂ 𝑉 −1(𝐹 ) ⊂ 𝐸 .

Indeed, for 𝑧 ∈ 𝑍 there exists 𝑥 ∈ 𝐹 such that

(𝑥, 𝑧) ∈ 𝑉 ⇐⇒ (𝑧, 𝑥) ∈ 𝑉 −1 ⇐⇒ 𝑧 ∈ 𝑉 −1(𝑥) ⊂ 𝑉 −1(𝐹 ) ⊂ 𝐸 .

Suppose that, for a fixed 𝑧 ∈ 𝑍,

(𝑋 ∖ 𝑈(𝑧)) ∩𝐵 ∕= ∅ ,

for all 𝐵 ∈ ℱ . It follows that the filter 𝒢(𝑧) generated by the family {𝑊−1([𝑋 ∖
𝑈(𝑧)] ∩𝐵) :𝑊 ∈ 𝒰 , 𝐵 ∈ ℱ} is co-round.
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From
𝑊−1([𝑋 ∖ 𝑈(𝑧)] ∩𝐵) ⊂𝑊−1(𝐵) ,

it follows that 𝑊−1(𝐵) ∈ 𝒢(𝑧), so that ℱ ⊂ 𝒢(𝑧). Since ℱ is maximal, it follows
that ℱ = 𝒢(𝑧).

Taking 𝐵 = 𝑋 ∈ ℱ and 𝑊 = 𝑉 one obtains

𝑉 −1(𝑋 ∖ 𝑈(𝑧)) ∈ ℱ . (1.2.43)

Let us show that

𝑉 −1(𝑋 ∖ 𝑈(𝑧)) ⊂ 𝑋 ∖ 𝑉 (𝑧) . (1.2.44)

Indeed, suppose that there exists 𝑦 ∈ 𝑉 (𝑧)∩𝑉 −1(𝑋 ∖𝑈(𝑧)). Then (𝑧, 𝑦) ∈ 𝑉
and

𝑦 ∈ 𝑉 −1(𝑋 ∖ 𝑈(𝑧)) ⇐⇒ ∃𝑥 ∈ 𝑋 ∖ 𝑈(𝑧), (𝑦, 𝑥) ∈ 𝑉 .

But (𝑧, 𝑦) ∈ 𝑉 and (𝑦, 𝑥) ∈ 𝑉 implies

(𝑧, 𝑥) ∈ 𝑉 2 ⇐⇒ 𝑥 ∈ 𝑉 2(𝑧) ⊂ 𝑈(𝑧) ,

in contradiction to the choice of the element 𝑥.

Now, by (1.2.43) and (1.2.44), 𝑋 ∖ 𝑉 (𝑧) ∈ ℱ .

But 𝐹 ⊂ 𝑉 (𝑍) implies (𝑋 ∖ 𝑉 (𝑍)) ∩ 𝐹 = ∅, so that there must exist 𝑧 ∈ 𝑍
such that 𝑋 ∖ 𝑉 (𝑧) /∈ ℱ .

Consequently, there exist 𝑧0 ∈ 𝑍 and 𝐵0 ∈ ℱ such that

(𝑋 ∖ 𝑈(𝑧0)) ∩𝐵0 = ∅ ⇐⇒ 𝐵0 ⊂ 𝑈(𝑧0) ,

implying 𝑈(𝑧0) ∈ ℱ . Consequently the filter ℱ is left 𝑆𝑢-Cauchy.

Since it is co-round and maximal, by Proposition 1.2.65.4 it is left 𝐾-Cauchy.
□

Now we can prove the characterization of compactness in quasi-uniform
spaces.

Theorem 1.2.67. A quasi-uniform space is compact if and only if it is precompact
and left 𝐾-complete.

Proof. Suppose that the quasi-uniform space (𝑋,𝒰) is precompact and left 𝐾-
complete. To prove the compactness it suffices to show that every ultrafilter on 𝑋
is convergent.

Let 𝒢 be an ultrafilter on 𝑋 . For 𝑈 ∈ 𝒰 put
𝑀(𝑈) = {𝑥 ∈ 𝑋 : 𝑈(𝑥) ∈ 𝒢} .

Since 𝑋 is precompact, for every 𝑈 ∈ 𝒰 there exists a finite subset {𝑧1, . . . , 𝑧𝑛} of
𝑋 such that

𝑈(𝑧1) ∪ ⋅ ⋅ ⋅ ∪ 𝑈(𝑧𝑛) = 𝑋 ∈ 𝒢 .
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Since 𝒢 is maximal, there exists 𝑘, 1 ≤ 𝑘 ≤ 𝑛, such that 𝑈(𝑧𝑘) ∈ 𝒢. It follows
that the family {𝑀(𝑈) : 𝑈 ∈ 𝒰} is the base of a filter ℱ on 𝑋.

Let us show that ℱ is co-round. If for 𝑈 ∈ 𝒰 , 𝑉 ∈ 𝒰 is such that 𝑉 2 ⊂ 𝑈,
then

𝑉 −1(𝑀(𝑉 )) ⊂𝑀(𝑈) . (1.2.45)

Indeed,

𝑦 ∈ 𝑉 −1(𝑀(𝑉 )) ⇐⇒ ∃𝑥 ∈𝑀(𝑉 ), (𝑦, 𝑥) ∈ 𝑉 .

Let us show that
𝑉 (𝑥) ⊂ 𝑈(𝑦) . (1.2.46)

Indeed, 𝑥 ∈ 𝑀(𝑉 ) ⇐⇒ 𝑉 (𝑥) ∈ 𝒢. But then 𝑧 ∈ 𝑉 (𝑥) ⇐⇒ (𝑥, 𝑧) ∈ 𝑉
implies

(𝑦, 𝑧) ∈ 𝑉 2 ⊂ 𝑈 ⇒ 𝑧 ∈ 𝑈(𝑦) .

By the inclusion (1.2.46), 𝑈(𝑦) ∈ 𝒢 or, equivalently, 𝑦 ∈𝑀(𝑈). The inclusion
(1.2.45) shows that ℱ is co-round. Let now ℋ ⊃ ℱ be a maximal co-round filter on
𝑋 . By Proposition 1.2.66, ℋ is left 𝐾-Cauchy, so that, by hypothesis, it converges
to some 𝑥 ∈ 𝑋.

Let us show that the ultrafilter 𝒢 converges also to 𝑥. For 𝑈 ∈ 𝒰 let 𝑉 ∈ 𝒰
be such that 𝑉 2 ⊂ 𝑈. Since 𝑀(𝑉 ) ∈ ℱ ⊂ ℋ and 𝑉 (𝑥) ∈ ℋ there exists 𝑦 ∈
𝑀(𝑉 ) ∩ 𝑉 (𝑥). Since 𝑦 ∈𝑀(𝑉 ), 𝑉 (𝑦) ∈ 𝒢. If we show that

𝑉 (𝑦) ⊂ 𝑈(𝑥) , (1.2.47)

then 𝑈(𝑥) ∈ 𝒢, proving that 𝒢 converges to 𝑥.

To prove (1.2.47), observe that 𝑦 ∈ 𝑉 (𝑥) ⇐⇒ (𝑥, 𝑦) ∈ 𝑉, so that 𝑧 ∈ 𝑉 (𝑦)
implies (𝑦, 𝑧) ∈ 𝑉 and (𝑥, 𝑧) ∈ 𝑉 2 ⊂ 𝑈. Consequently, 𝑧 ∈ 𝑈(𝑥). □

The Lebesgue property (see (1.2.24)) can be extended from quasi-metric
spaces to quasi-uniform spaces. We present some properties related to this no-
tion following [147]. One says that a quasi-uniform space (𝑋,𝒰) has the Lebesgue
property if for every 𝜏(𝒰)-open cover 𝒢 of the space 𝑋 there exists 𝑈 ∈ 𝒰 such
that {𝑈(𝑥) : 𝑥 ∈ 𝑋} refines 𝒢, that is

∀𝑥 ∈ 𝑋, ∃𝐺 ∈ 𝒢, 𝑈(𝑥) ⊂ 𝐺 . (1.2.48)

The analog of Proposition 1.2.37 holds in the quasi-uniform case too.

Proposition 1.2.68. Any compact quasi-uniform space has the Lebesgue property.

Proof. Let 𝒢 be a 𝜏(𝒰)-open cover of the quasi-uniform space (𝑋,𝒰). For every
𝑥 ∈ 𝑋 choose s 𝐺𝑥 ∈ 𝒢 and 𝑈𝑥 ∈ 𝒰 such that 𝑈2

𝑥(𝑥) ⊂ 𝐺𝑥. If 𝑉𝑥 denotes the 𝜏(𝒰)-
interior of the set 𝑈𝑥, then the 𝜏(𝒰)-open cover {𝑉𝑥(𝑥) : 𝑥 ∈ 𝑋} of 𝑋 contains a
finite subcover 𝑋 = ∪{𝑉𝑧(𝑧) : 𝑧 ∈ 𝐹}, where 𝐹 ⊂ 𝑋 is nonempty and finite. Put
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𝑈 = ∩{𝑈𝑧 : 𝑧 ∈ 𝐹} and show that 𝑈 satisfies (1.2.48). For 𝑥 ∈ 𝑋 let 𝑧 ∈ 𝐹 be
such that 𝑥 ∈ 𝑉𝑧(𝑧) ⊂ 𝑈𝑧(𝑧).

Then
𝑈(𝑥) ⊂ 𝑈2

𝑧 (𝑧) ⊂ 𝐺𝑧 .

Indeed, 𝑦 ∈ 𝑈(𝑥) ⇐⇒ (𝑥, 𝑦) ∈ 𝑈 and 𝑥 ∈ 𝑈𝑧(𝑧) ⇐⇒ (𝑧, 𝑥) ∈ 𝑈𝑧, so that
(𝑧, 𝑦) ∈ 𝑈𝑧 ∘ 𝑈 ⊂ 𝑈2, that is 𝑦 ∈ 𝑈2

𝑧 (𝑧). □

A quasi-uniform space (𝑋,𝒰) is called point-symmetric provided that

𝜏(𝒰) ⊂ 𝜏(𝒰−1) . (1.2.49)

It follows that
𝜏(𝒰𝑠) = 𝜏(𝒰−1) . (1.2.50)

The following result is the quasi-uniform analog of Proposition 1.2.13.4.

Proposition 1.2.69. If the topology 𝜏(𝒰) of a quasi-uniform space (𝑋,𝒰) is 𝑇1 and
compact, then 𝒰 is point-symmetric.

Proof. Suppose on the contrary that there exists 𝐺 ∈ 𝜏(𝒰)∖𝜏(𝒰−1), meaning that

(i) ∀𝑥 ∈ 𝐺, ∃𝑈𝑥 ∈ 𝒰 , 𝑈𝑥(𝑥) ⊂ 𝐺,

(ii) ∃𝑥0 ∈ 𝐺, ∀𝑈 ∈ 𝒰 , 𝑈−1(𝑥0) ∩ ∁(𝐺) ∕= ∅ .
The family {𝑈−1(𝑥0) ∩ ∁(𝐺) : 𝑈 ∈ 𝒰} is the base of a filter ℱ on 𝑋 , which,

by the compactness of 𝑋 , has a cluster point 𝑦. Since ∁(𝐺) is closed 𝑦 ∈ ∁(𝐺), so
that 𝑦 ∕= 𝑥0. As the topology 𝜏(𝒰) is 𝑇1 there exists 𝑈0 ∈ 𝒰 such that 𝑥0 /∈ 𝑈0(𝑦).

Also
∀𝑈 ∈ 𝒰 , 𝑈(𝑦) ∩ 𝑈−1(𝑥0) ∩ ∁(𝐺) ∕= ∅ .

Let 𝑉 ∈ 𝒰 such that 𝑉 2 ⊂ 𝑈0. Since 𝑉 ⊂ 𝑈0 it follows that 𝑥0 /∈ 𝑉 (𝑦).

Choosing an element 𝑧 ∈ 𝑉 (𝑦) ∩ 𝑉 −1(𝑥0) it follows that (𝑦, 𝑧) ∈ 𝑉 and
(𝑧, 𝑥0) ∈ 𝑉, so that (𝑦, 𝑥0) ∈ 𝑉 2 ⊂ 𝑈0, leading to the contradiction 𝑥0 ∈
𝑈0(𝑦). □

The following proposition is an extension of Theorem 1.1.57.

Proposition 1.2.70. Let (𝑋,𝒰), (𝑌,𝒱) be quasi-uniform spaces such that 𝒰 has
the Lebesgue property and 𝒱−1 is point-symmetric. Then any continuous mapping
𝑓 : (𝑋,𝒰)→ (𝑌,𝒱) is quasi-uniformly continuous (in fact, (𝒰 ,𝒱𝑠)-quasi-uniformly
continuous).

Proof. For 𝑉 ∈ 𝒱 let 𝑊 ∈ 𝒱 such that 𝑊 2 ⊂ 𝑉. The condition on 𝒱 means
that 𝜏(𝒱−1) ⊂ 𝜏(𝒱) so that 𝜏(𝒱) = 𝜏(𝒱𝑠). Putting 𝑊 𝑠 = 𝑊 ∩ 𝑊−1 it follows
that for every 𝑥 ∈ 𝑋, there exists 𝑊𝑥 ∈ 𝒱 such that 𝑊𝑥(𝑓(𝑥)) ⊂ 𝑊 𝑠(𝑓(𝑥)).
Since {𝑓−1

(
𝜏(𝒱)- int(𝑊𝑥(𝑓(𝑥)

)
: 𝑥 ∈ 𝑋} is a 𝜏(𝒰)-open cover of 𝑋 , the Lebesgue

property of 𝒰 yields an entourage 𝑈 ∈ 𝒰 such that
∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑋, 𝑈(𝑥) ⊂ 𝑓−1 (𝑊𝑦(𝑓(𝑦))) ,
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implying
∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑋, 𝑓(𝑈(𝑥)) ⊂𝑊𝑦(𝑓(𝑦) ⊂𝑊 𝑠(𝑓(𝑦))) .

The proof will be done if we show that (𝑓(𝑥), 𝑓(𝑧)) ∈ 𝑉 for every (𝑥, 𝑧) ∈ 𝑈.
Since 𝑥 ∈ 𝑈(𝑥) it follows that 𝑓(𝑥) ∈ 𝑓(𝑈(𝑥)) ⊂ 𝑊 𝑠(𝑓(𝑦), and so (𝑓(𝑦), 𝑓(𝑥)) ∈
𝑊−1 ⇐⇒ (𝑓(𝑥), 𝑓(𝑦)) ∈𝑊.

Also (𝑥, 𝑧) ∈ 𝑈 ⇐⇒ 𝑧 ∈ 𝑈(𝑥) implies 𝑓(𝑧) ∈ 𝑓(𝑈(𝑥)) ⊂ 𝑊 𝑠(𝑓(𝑦)) so that
(𝑓(𝑦), 𝑓(𝑧)) ∈ 𝑊 and (𝑓(𝑥), 𝑓(𝑧)) ∈ 𝑊 2 ⊂ 𝑉. □

Other results on the relations between completeness, compactness, precom-
pactness, total boundedness and other related notions in quasi-metric and quasi-
uniform spaces can be found in the papers [10, 101, 131, 138, 139, 173, 174, 185,
190, 196, 214].

1.2.6 Completions of quasi-metric and quasi-uniform spaces

Two difficult problems in the study of quasi-metric and quasi-uniform spaces are
those of completion and compactification for such spaces. As it is mentioned in
the paper [185], the authors did not succeed to obtain a satisfactory theory for
these problems. Some progress in this direction was obtained by Alemany and Ro-
maguera [9], Doitchinov [62, 66], Gregori and Romaguera [101], Romaguera and
Sánchez-Granero [199]. We shall discuss in Section 2.1 the existence of a bicom-
pletion for an asymmetric normed space, following the paper [88]. The existence
of a bicompletion of a normed cone was proved by Oltra and Valero [170].

As it is well known, every metric space (𝑋, 𝜌) admits a completion, mean-
ing a complete metric space (𝑋∗, 𝜌∗) and an isometric embedding 𝜑 : 𝑋 → 𝑋∗

such that 𝜑(𝑋) is dense in 𝑋 . The standard construction (see, e.g., [73, Ex-
ercise 4.5.6]) consists in considering 𝑋∗ as the space of equivalence classes of
Cauchy sequences in 𝑋 . Two Cauchy sequences (𝑥𝑛), (𝑦𝑛) in 𝑋 are considered
equivalent if lim𝑛 𝜌(𝑥𝑛, 𝑦𝑛) = 0. For two equivalence classes 𝜉, 𝜂 ∈ 𝑋∗ one puts
𝑑∗(𝜉, 𝜂) = lim𝑛 𝜌(𝑥𝑛, 𝑦𝑛), where (𝑥𝑛) ∈ 𝜉 and (𝑦𝑛) ∈ 𝜂. One shows that (𝑋∗, 𝑑∗) is
a complete metric space fulfilling all the requirements of a completion for (𝑋, 𝑑).
Furthermore, the completion of a metric space is unique up to an isometric iso-
morphism.

It turns out that these ideas are not easy to transpose to quasi-metric spaces.
Call a mapping 𝑓 between two quasi-metric spaces (𝑋, 𝜌) and (𝑌, 𝑑) a quasi-
isometry if

𝑑(𝑓(𝑥), 𝑓(𝑦)) = 𝜌(𝑥, 𝑦) , (1.2.51)

for all 𝑥, 𝑦 ∈ 𝑋. Then it is natural to call a completion of a quasi-metric space
(𝑋, 𝜌) a complete quasi-metric space (𝑋∗, 𝜌∗) such that there exists a quasi-
isometry 𝜑 : 𝑋 → 𝑋∗ with 𝜑(𝑋) dense in (𝑋∗, 𝜏𝜌∗).

First of all, the definition depends on the kind of completeness we consider
(see Subsection 1.2.1), but as it is shown by some examples a completion of an
arbitrary quasi-metric space does not exist in general.
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An approach similar to that in the metric case, proposed by Doitchinov [63],
will be briefly described in what follows. Let (𝑋, 𝜌) be a quasi-metric space. A
sequence (𝑥𝑛) in 𝑋 is called a 𝐷-Cauchy sequence if there exists another sequence
(𝑦𝑛) in 𝑋 such that

lim
𝑚,𝑛

𝜌(𝑦𝑚, 𝑥𝑛) = 0 . (1.2.52)

The quasi-metric space (𝑋, 𝜌) is called 𝐷-complete if every 𝐷-Cauchy sequence
converges. A sequence (𝑦𝑛) satisfying (1.2.52) is called a cosequence to (𝑥𝑛).

The 𝐷-completeness of spaces of semi-Lipschitz functions will be discussed
in Theorem 2.6.20 from Section 2.6.

Some of the advantages of this definition are mentioned in the following
proposition.

Proposition 1.2.71. Let (𝑋, 𝜌) be a quasi-metric space. Then

1. Every convergent sequence is 𝐷-Cauchy.

2. Every subsequence of a 𝐷-Cauchy sequence is 𝐷-Cauchy.

3. If (𝑋, 𝜌) is a metric space, then the notion of 𝐷-Cauchy sequence agrees with
that of a usual Cauchy sequence.

As a major drawback, Doitchinov [63] mentions the fact that a 𝐷-complete
subspace of a quasi-metric space (𝑋, 𝜌) need not to be 𝜏(𝜌)-closed.

The construction proposed by Doitchinov [63] follows the ideas from the
metric case, but it is more complicated due to the nature of quasi-metric spaces. Let
(𝑋, 𝜌) be a balanced quasi-metric space (see (1.1.17)). Two 𝐷-Cauchy sequences
(𝑥𝑛), (𝑦𝑛) are called equivalent if they have the same cosequences.

The following proposition emphasizes the steps needed for the construction
of the completion. The proofs are based on the properties of balanced quasi-metric
spaces, see Proposition 1.1.11.

Proposition 1.2.72. Let (𝑋, 𝜌) be a balanced quasi-metric space.

1. Let 𝑥𝑛 → 𝑥 (i.e., lim𝑛 𝜌(𝑥, 𝑥𝑛) = 0). Then (𝑦𝑚) is a cosequence to (𝑥𝑛) if
and only if lim𝑚(𝑦𝑚, 𝑥) = 0.

2. If (𝑥′𝑛), (𝑥′′𝑛) are two 𝐷-Cauchy sequences with a common cosequence (𝑦𝑚),
then 𝑥′𝑛 → 𝑥 implies 𝑥′′𝑛 → 𝑥.

3. If (𝑥′𝑛), (𝑥
′′
𝑛) are two equivalent 𝐷-Cauchy sequences, then 𝑥′𝑛 → 𝑥 implies

𝑥′′𝑛 → 𝑥.

4. If (𝑥′𝑛), (𝑥
′′
𝑛) are two 𝐷-Cauchy sequences with a common cosequence (𝑦𝑚),

then they are equivalent.

5. A 𝐷-Cauchy sequence is equivalent with any of its subsequences.

6. The collection of all sequences converging to a point 𝑥 forms a class of equiv-
alent sequences.
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One denotes by 𝑋∗ the set of all equivalence classes of 𝐷-Cauchy sequences
and one puts

𝜌∗(𝜉, 𝜂) = lim
𝑚,𝑛

𝜌(𝑦𝑚, 𝑥𝑛) , (1.2.53)

for 𝜉, 𝜂 ∈ 𝑋∗, where (𝑥𝑛) is a 𝐷-Cauchy sequence in the class 𝜉 and (𝑦𝑚) is a
cosequence to the class 𝜂. One shows that the so-defined mapping 𝜌∗ : 𝑋∗×𝑋∗ →
ℝ+ is well defined, 𝜌

∗ is a balanced quasi-metric on 𝑋∗, and the quasi-metric space
(𝑋∗, 𝜌∗) is 𝐷-complete.

Furthermore, the application 𝜑𝑋 : 𝑋 → 𝑋∗ given by

𝜑𝑋(𝑥) = {(𝑥𝑛) : 𝑥𝑛 → 𝑥}, 𝑥 ∈ 𝑋 , (1.2.54)

is a quasi-metric embedding of (𝑋, 𝜌) into (𝑋∗, 𝜌∗) and the image 𝜑𝑋(𝑋) of 𝑋
by 𝜑𝑋 is dense in 𝑋∗. The construction given above is called the standard 𝐷-
completion of a quasi-metric space (𝑋, 𝜌). We mention the following properties of
this completion.

Theorem 1.2.73. Let (𝑋, 𝜌) be a balanced quasi-metric space.

1. If (𝑋, 𝜌) is 𝐷-complete, then it coincides (up to a quasi-isometry) with its
standard 𝐷-completion.

2. If (𝑋, 𝜌) is a metric space, then its standard 𝐷-completion coincides with the
usual metric completion of 𝑋.

3. The standard completion is the minimal 𝐷-complete balanced quasi-metric
space containing (𝑋, 𝜌), in the sense that if (𝑌, 𝑑) is a 𝐷-complete balanced
quasi-metric space such that (𝑋, 𝜌) ⊂ (𝑌, 𝑑), then (𝑋∗, 𝜌∗) ⊂ (𝑌, 𝑑). (All the
inclusions are understood as quasi-metric embeddings.)

4. If (𝑋, 𝜌) ⊂ (𝑌, 𝑑) are balanced quasi-metric space, then their standard 𝐷-
completions satisfy (𝑋∗, 𝜌∗) ⊂ (𝑌 ∗, 𝑑∗).

5. (The extension property.) Any quasi-uniformly continuous mapping

𝑓 : (𝑋, 𝜌)→ (𝑌, 𝑑)

between two balanced quasi-metric spaces has a unique quasi-uniformly con-
tinuous extension 𝑓∗ : (𝑋∗, 𝑟ℎ𝑜∗) → (𝑌 ∗, 𝑑∗), in the sense that 𝑓∗ ∘ 𝜑𝑋 =
𝜑𝑌 ∘ 𝑓, where 𝜑𝑋 : 𝑋 → 𝑋∗ and 𝜑𝑌 : 𝑌 → 𝑌 ∗ are the standard embeddings
given by (1.2.54).

A natural question is what happens with the conjugate quasi-metric. As it
was shown by Doitchinov [63], there is no difference between right and left 𝐷-
completeness.

Proposition 1.2.74. Let (𝑋, 𝜌) be a quasi-metric space and 𝜌 the conjugate quasi-
metric.

1. The quasi-metric 𝜌 is balanced if and only if 𝜌 is balanced.

2. The quasi-metric space (𝑋, 𝜌) is 𝐷-complete if and only if (𝑋, 𝜌) is 𝐷-
complete.
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3. The standard 𝐷-completions (𝑋∗, 𝜌∗) of (𝑋, 𝜌) and (�̄�∗, (𝜌)∗) of (𝑋, 𝜌) are
related by the equality

(�̄�∗, (𝜌)∗) = (𝑋∗, 𝜌∗) . (1.2.55)

Replacing sequences by nets Doitchinov [65] extended this method to quasi-
uniform spaces. A completion of a quasi-uniform space (𝑋,𝒰) is a complete quasi-
uniform space (𝑋∗,𝒰∗) such that there exists a quasi-uniform embedding 𝜑𝑋 :
𝑋 → 𝑋∗ with 𝜑𝑋(𝑋) dense in 𝑋∗.

A net (𝑥𝑖 : 𝑖 ∈ 𝐼) in (𝑋,𝒰) is called 𝐷-Cauchy if there exists another net
(𝑦𝑗 : 𝑗 ∈ 𝐽) such that

lim
𝑖,𝑗

𝜌(𝑦𝑗 , 𝑥𝑖) = 0 . (1.2.56)

The condition (1.2.56) means that

∀𝑈 ∈ 𝒰 , ∃𝑖𝑈 ∈ 𝐼, ∃𝑗𝑈 ∈ 𝐽, ∀𝑗 ≥ 𝑗𝑢, ∀𝑖 ≥ 𝑖𝑈 , (𝑦𝑗 , 𝑥𝑖) ∈ 𝑈 .

A net (𝑦𝑗 : 𝑗 ∈ 𝐽) satisfying (1.2.56) is called a conet to (𝑥𝑖). A quasi-uniform
space (𝑋,𝒰) is called 𝐷-complete if every 𝐷-Cauchy net in 𝑋 is convergent.

As we have seen, standard 𝐷-completions were obtained for the class of
balanced quasi-metric spaces. In this case again the construction is possible only
for a restricted class of quasi-uniform spaces, called quiet quasi-uniform spaces. A
quasi-uniform space (𝑋,𝒰) is called quiet if for every 𝑈 ∈ 𝒰 there exists 𝑉 ∈ 𝒰
such that

(∀𝑖 ∈ 𝐼, (𝑥, 𝑥𝑖) ∈ 𝑉 ) ∧ (∀𝑗 ∈ 𝐽, (𝑦𝑗 , 𝑦) ∈ 𝑉 ) ∧ lim
𝑖,𝑗
(𝑦𝑗 , 𝑥𝑖) = 0 ⇒ (𝑥, 𝑦) ∈ 𝑈,

(1.2.57)
for all pairs of filters (𝑥𝑖 : 𝑖 ∈ 𝐼) and (𝑦𝑗 : 𝑗 ∈ 𝐽) in 𝑋 and all 𝑥, 𝑦 ∈ 𝑋 .

Adapting the construction with sequences given in quasi-metric spaces to
nets in quasi-uniform spaces, Doitchinov was able to prove the existence of a
𝐷-completion of a quasi-uniform space having properties similar to those of the
standard 𝐷-completion of a quasi-metric space.

The notion of 𝐷-completeness and the construction of 𝐷-completion can be
also treated through filters, see Doitchinov [61, 66]. A filter ℱ in a quasi-uniform
space (𝑋,𝒰) is called 𝐷-Cauchy provided there exists a so-called co-filter 𝒢 in 𝑋
such that for every 𝑈 ∈ 𝒰 there are 𝐺 ∈ 𝒢 and 𝐹 ∈ ℱ with 𝐺× 𝐹 ⊂ 𝑈.

The quasi-uniform space (𝑋,𝒰) is called 𝐷-complete provided that every
𝐷-Cauchy filter converges.

A related notion of completeness was considered by Andrikopoulos [13]. For
a comparative study of the completeness notions defined by filters and nets see
also Andrikopoulos [14], Deák [56, 57, 58]. Stoltenberg [226] proved the existence
of a left 𝑆𝑡-completion for every quasi-uniform space.

Call a quasi-uniform space (𝑋,𝒰) Smyth complete if every round 𝑆𝑢-Cauchy
filter is the neighborhood filter of a unique point 𝑥 ∈ 𝑋.
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Theorem 1.2.75 ([228]). A quasi-uniform space (𝑋,𝒰) admits a Smyth completion
if and only if every round 𝑆𝑢-Cauchy filter on 𝑋 is stable.

For other results on this line, see also Sünderhauf [229, 230].

A quasi-uniform space (𝑋,𝒰) is called half-complete if every 𝒰𝑠-Cauchy filter
on𝑋 is 𝜏(𝒰)-convergent. The existence of half-completions of quasi-uniform spaces
is discussed by Romaguera in [9], the existence of left 𝐾-completions of quasi-
metric and quasi-uniform spaces in [190] and that of right 𝐾-completions in [192].

Romaguera [193] considered another class of quasi-uniform spaces, called
fitting quasi-uniform spaces. He showed that every quiet-quasi-uniform space is
fitting, the bicompletion of a fitting quasi-uniform space is again fitting and a
totally bounded fitting quasi-uniform space is a uniform space.

The existence of a compact completion of a quasi-semimetric spaces is given
in [185].

Theorem 1.2.76. Any quasi-semimetric space has a compact (left, right) comple-
tion.

Proof. For a quasi-semimetric space (𝑋, 𝜌) let 𝑧 /∈ 𝑋 and 𝑋∗ = 𝑋 ∪{𝑧}.Without
loss of generality we can suppose 𝜌(𝑥, 𝑦) ≤ 1 for all 𝑥, 𝑦 ∈ 𝑋.Define 𝜌∗ : 𝑋∗×𝑋∗ →
[0;∞) by

𝜌∗(𝑥, 𝑦) =

⎧⎨⎩
𝜌(𝑥, 𝑦) if 𝑥, 𝑦 ∈ 𝑋,

0 if 𝑥 = 𝑧, 𝑦 ∈ 𝑋∗,
1 if 𝑥 ∈ 𝑋, 𝑦 = 𝑧 .

Then 𝜌∗ is a quasi-semimetric on 𝑋∗, 𝐵𝜌∗(𝑧, 𝜀) = 𝑋∗ and 𝐵𝜌∗(𝑥, 𝜀) =
𝐵𝜌(𝑥, 𝜀) for every 𝑥 ∈ 𝑋 and 0 < 𝜀 ≤ 1.

It follows that 𝑋 is dense in 𝑋∗, 𝜌∗∣𝑋∗×𝑋∗ = 𝜌 and the identity map from
(𝑋, 𝜌) to (𝑋∗, 𝜌∗) is a quasi-isometry. Since every sequence in 𝑋∗ is convergent to
𝑧 it follows that (𝑋∗, 𝜌∗) is complete in all senses of completeness definitions. Any
open cover of 𝑋∗ contains 𝑋∗, so that 𝑋∗ is compact. □

The completion given in Theorem 1.2.76 is the smallest one-point compacti-
fication of (𝑋, 𝜌). A disadvantage is that (𝑋∗, 𝜌∗) is never 𝑇1 because 𝜌

∗(𝑧, 𝑦) = 0
for all 𝑦 ∈ 𝑋∗. Another disadvantage is that this completion is not unique, in
general. A related question is that of the quasi-semimetrizability of the one-point
Alexandrov compactification of a quasi-semimetric space.

In [185] it is shown also the existence of a complete metric space completion.
The proof is based on the following remark. For a topological space 𝑇 denote by
𝑈(𝑇 ) the space of all bounded usc functions with the metric 𝑑(𝑓, 𝑔) = sup{∣𝑓(𝑡)−
𝑔(𝑡)∣ : 𝑡 ∈ 𝑇 }.

The proof of the following result is based on standard methods of mathemat-
ical analysis.

Theorem 1.2.77. The space (𝑈(𝑇 ), 𝑑) is a complete metric space.



1.2. Completeness and compactness in quasi-metric and quasi-uniform spaces 97

Based on this result one can prove the following.

Theorem 1.2.78. Any quasi-semimetric space has a quasi-completion.

Proof. Let (𝑋, 𝜌) be a quasi-semimetric space and 𝑧 ∈ 𝑋 fixed. Assume again
𝜌(𝑥, 𝑦) < 1 for all 𝑥, 𝑦 ∈ 𝑋 and define 𝑖 : 𝑋 → 𝑈(𝑋) by 𝑖(𝑥)(𝑡) = 𝜌(𝑥, 𝑡)+ 𝜌(𝑧, 𝑡),
for 𝑡 ∈ 𝑋, 𝑥 ∈ 𝑋. Then ∣𝑖(𝑥)(𝑡)∣ < 2 for all 𝑥, 𝑡 ∈ 𝑋. By Proposition 1.1.8.4, the
functions 𝜌(𝑥, ⋅) and 𝜌(𝑧, ⋅) are 𝜏𝜌-lsc, so that 𝑖(𝑥) ∈ 𝑈(𝑋) for every 𝑥 ∈ 𝑋.

One shows that

𝑑(𝑖(𝑥), 𝑖(𝑦)) := sup{∣𝑖(𝑥)(𝑡)− 𝑖(𝑦)(𝑡)∣ : 𝑡 ∈ 𝑋}
= max{𝜌(𝑥, 𝑦), 𝜌(𝑦, 𝑥)} = 𝜌𝑠(𝑥, 𝑦) .

The desired completion of (𝑋, 𝜌) is 𝑋∗ = 𝑑-cl(𝑖(𝑋)). □
Remark 1.2.79. Here a quasi-isometry is an application 𝑓 between two quasi-semi-
metric spaces (𝑋, 𝜌1) and (𝑋, 𝜌2) such that 𝜌2(𝑓(𝑥), 𝑓(𝑦)) = 𝜌𝑠1(𝑥, 𝑦). Also by a
quasi-completion of a quasi-semimetric space (𝑋, 𝜌) one understands a complete
metric space (𝑌, 𝑑) and a quasi-isometry 𝑖 : (𝑋, 𝜌)→ (𝑌, 𝑑) with 𝑖(𝑋) dense in 𝑌.
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Chapter 2

Asymmetric Functional Analysis

An asymmetric seminorm is a positive sublinear functional 𝑝 on a real vector
space 𝑋. If 𝑝(𝑥) = 𝑝(−𝑥) = 0 implies 𝑥 = 0, then 𝑝 is called an asymmetric
norm. The conjugate asymmetric seminorm is given by 𝑝(𝑥) = 𝑝(−𝑥), 𝑥 ∈ 𝑋, and
𝑝𝑠 = 𝑝 ∨ 𝑝 is a seminorm, respectively a norm on 𝑋 if 𝑝 is an asymmetric norm.
An important example is the asymmetric norm 𝑢 on ℝ given by 𝑢(𝑡) = 𝑡+, 𝑡 ∈ ℝ,
generating the upper topology on ℝ. In this case 𝑢(𝑡) = 𝑡− and 𝑢𝑠(𝑡) = ∣𝑡∣, 𝑡 ∈ ℝ.
The dual 𝑋♭

𝑝 of an asymmetric normed space (𝑋, 𝑝) is formed by all upper semi-
continuous linear functionals from (𝑋, 𝑝) to (ℝ, ∣ ⋅ ∣), or equivalently, by all contin-
uous linear functionals from (𝑋, 𝑝) to (ℝ, 𝑢). In contrast to the usual case, 𝑋♭

𝑝 is
not a linear space but merely a cone contained in the dual 𝑋∗ of the normed space
space (𝑋, 𝑝𝑠). The aim of this chapter is to present some basic results on asymmet-
ric normed spaces, their duals and on continuous linear operators acting between
them. Applications are given to best approximation in asymmetric normed spaces.
As important examples one considers asymmetric norms on normed lattices and
spaces of semi-Lipschitz functions on quasi-metric spaces. Asymmetric locally con-
vex spaces are considered as well.

2.1 Continuous linear operators between asymmetric
normed spaces

The basic objects of functional analysis are normed spaces and locally convex
spaces and spaces of continuous linear operators acting between them, with spe-
cial emphasis on continuous linear functionals and the duals of these spaces. The
situation is quite different in the asymmetric case, mainly due to the fact that the
dual of an asymmetric normed space or of an asymmetric LCS 𝑋 , meaning the
set of all lower semi-continuous linear functionals on 𝑋 , is not a linear space but
merely a cone in the space of all continuous linear functionals on 𝑋 . In spite of the
existing differences, some results from the symmetric case have their counterparts
in the asymmetric one, a study that was initiated in [90]. As an application one
considers the important case of asymmetric norms on normed lattices.

. Cobza , Functional Analysis in Asymmetric Normed Spaces, Frontiers in Mathematics, 
DOI 10.1007/978-3-0348-0478-3_2, © Springer Basel 2013 
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2.1.1 The asymmetric norm of a continuous linear operator

Let (𝑋, 𝑝) and (𝑌, 𝑞) be two asymmetric seminormed spaces. Denote by 𝐿𝑎(𝑋,𝑌 )
the space of all linear operators from 𝑋 to 𝑌 . A linear operator 𝐴 : 𝑋 → 𝑌
is called (𝑝, 𝑞)-continuous if it is continuous with respect to the topologies 𝜏𝑝 on
𝑋 and 𝜏𝑞 on 𝑌. The set of all (𝑝, 𝑞)-continuous linear operators from 𝑋 to 𝑌 is
denoted by 𝐿𝑝,𝑞(𝑋,𝑌 ). For 𝜇 ∈ {𝑝, 𝑝, 𝑝𝑠} and 𝜈 ∈ {𝑞, 𝑞, 𝑞𝑠}, the (𝜇, 𝜈)-continuity
and the set 𝐿𝜇,𝜈(𝑋,𝑌 ) are defined similarly. The space of all continuous linear
operators between the associated seminormed spaces (𝑋, 𝑝𝑠) and (𝑌, 𝑞𝑠) is denoted
by 𝐿(𝑋,𝑌 ).

In the case of linear functionals, i.e., when 𝑌 =(ℝ,𝑢), we put 𝑋♭
𝑝=𝐿𝑝,𝑢(𝑋,ℝ)

and 𝑋∗ = 𝐿((𝑋, 𝑝𝑠), (ℝ, ∣ ⋅ ∣)). The meaning of 𝑋♭
𝑝 is clear. A linear operator

𝐴 : (𝑋, 𝑝)→ (𝑌, 𝑞) is called (𝑝, 𝑞)-semi-Lipschitz (or (𝑝, 𝑞)-bounded) if there exists
a number 𝛽 ≥ 0 such that

𝑞(𝐴𝑥) ≤ 𝛽 𝑝(𝑥) , (2.1.1)

for all 𝑥 ∈ 𝑋.

The characterizations of the continuity of linear mappings will be based on
the following proposition.

Proposition 2.1.1. Let 𝑋 be a real vector space, 𝑓, 𝑔 : 𝑋 → ℝ sublinear functionals
and 𝛼, 𝛽 > 0.

Then the following conditions are equivalent:

∀𝑥 ∈ 𝑋, 𝑔(𝑥) ≤ 𝛽 ⇒ 𝑓(𝑥) ≤ 𝛼, (2.1.2)

and
∀𝑥 ∈ 𝑋, 𝑢(𝑓(𝑥)) ≤ 𝛼

𝛽
𝑢(𝑔(𝑥)). (2.1.3)

If 𝑔(𝑥) ≥ 0 for all 𝑥 ∈ 𝑋, then these two conditions are also equivalent to

∀𝑥 ∈ 𝑋, 𝑓(𝑥) ≤ 𝛼

𝛽
𝑔(𝑥). (2.1.4)

Proof. (2.1.2) ⇒ (2.1.3) Let 𝑥 ∈ 𝑋. If 𝑔(𝑥) ≤ 0, then 𝑔(𝑛𝑥) = 𝑛𝑔(𝑥) ≤ 0 <
𝛼, 𝑛 ∈ ℕ, so that 𝑛𝑓(𝑥) = 𝑓(𝑛𝑥) ≤ 𝛽, 𝑛 ∈ ℕ, implying 𝑓(𝑥) ≤ 0 and

𝑢(𝑓(𝑥)) = 0 =
𝛼

𝛽
𝑢(𝑔(𝑥)) .

If 𝑔(𝑥) > 0, then 𝑔
(

𝛽
𝑔(𝑥)𝑥

)
= 𝛽, so that

𝑓

(
𝛽

𝑔(𝑥)
𝑥

)
≤ 𝛼 ⇐⇒ 𝑓(𝑥) ≤ 𝛼

𝛽
𝑔(𝑥) ⇐⇒ 𝑢(𝑓(𝑥)) ≤ 𝛼

𝛽
𝑢(𝑔(𝑥)) .

(2.1.3) ⇒ (2.1.2) Let 𝑥 ∈ 𝑋. If 𝑔(𝑥) ≤ 0 < 𝛽, then 𝑢(𝑔(𝑥)) = 0, so that

𝑓(𝑥) ≤ 𝑢(𝑓(𝑥)) ≤ 𝛼

𝛽
𝑢(𝑔(𝑥)) =

𝛼

𝛽
𝑔(𝑥) ≤ 𝛼 .
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If 𝑔(𝑥) > 0, then, by hypothesis,

𝑓(𝑥) ≤ 𝑢(𝑓(𝑥)) ≤ 𝛼

𝛽
𝑢(𝑔(𝑥)) =

𝛼

𝛽
𝑔(𝑥) ≤ 𝛼 .

Since 𝑔(𝑥) ≥ 0, 𝑥 ∈ 𝑋, implies 𝑢(𝑔(𝑥)) = 𝑔(𝑥), 𝑥 ∈ 𝑋, the equivalence (2.1.3)
⇐⇒ (2.1.4) is obvious. □

The following proposition contains some characterizations of continuity, sim-
ilar to those known in the symmetric case.

Proposition 2.1.2. For a linear operator 𝐴 between two asymmetric seminormed
spaces (𝑋, 𝑝), (𝑌, 𝑞), the following are equivalent.

1. The operator 𝐴 is continuous on 𝑋.

2. The operator 𝐴 is continuous at 0 ∈ 𝑋 (or at an arbitrary point 𝑥0 ∈ 𝑋).

3. The operator 𝐴 is (𝑝, 𝑞)-semi-Lipschitz.

4. The operator 𝐴 is (𝒰𝑝,𝒰𝑞)-quasi-uniformly continuous on 𝑋.

Proof. The equivalence 1 ⇐⇒ 2 holds for any additive operator (see Proposition
1.1.42).

2 ⇒ 3 By the continuity of 𝐴 at 0 ∈ 𝑋 there exists 𝑟 > 0 such that
𝐴(𝐵𝑝[0, 𝑟]) ⊂ 𝐵𝑞[0, 1], meaning that

𝑝(𝑥) ≤ 𝑟 ⇒ 𝑞(𝐴𝑥) ≤ 1 ,

for every 𝑥 ∈ 𝑋. Applying Proposition 2.1.1 to the sublinear functionals 𝑓(𝑥) =
𝑞(𝐴𝑥) and 𝑔(𝑥) = 𝑝(𝑥), it follows that

𝑞(𝐴𝑥) ≤ 1

𝑟
𝑝(𝑥),

for all 𝑥 ∈ 𝑋.

3 ⇒ 4 Suppose that (2.1.1) holds with some 𝛽 > 0 and let 𝜀 > 0. For
𝑉 = {(𝑦1, 𝑦2) ∈ 𝑌 × 𝑌 : 𝑞(𝑦2 − 𝑦1) < 𝜀} ∈ 𝒰𝑞, let 𝑈 := {(𝑥1, 𝑥2) ∈ 𝑋 ×𝑋 : 𝑝(𝑥2 −
𝑥1) < 𝜀/𝛽} ∈ 𝒰𝑝. Then for every (𝑥1, 𝑥2) ∈ 𝑈, 𝑞(𝐴𝑥2 − 𝐴𝑥1) = 𝑞(𝐴(𝑥2 − 𝑥1)) ≤
𝛽𝑝(𝑥2 − 𝑥1) < 𝜀, showing that (𝐴𝑥1, 𝐴𝑥2) ∈ 𝑉.

The implication 4 ⇒ 1 is a general result: any quasi-uniformly continu-
ous mapping between two quasi-uniform spaces is continuous with respect to the
topologies induced by the quasi-uniformities. □

Based on these properties one can introduce an asymmetric seminorm on the
cone 𝐿𝑝,𝑞(𝑋,𝑌 ) by

∥𝐴∣𝑝,𝑞 = sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) ≤ 1} , (2.1.5)

for every 𝐴 ∈ 𝐿𝑝,𝑞(𝑋,𝑌 ).
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The seminorm ∥ ⋅ ∥ := ∥ ⋅ ∣𝑝𝑠,𝑞𝑠 is the usual operator seminorm on the space
𝐿(𝑋,𝑌 ) = 𝐿𝑝𝑠,𝑞𝑠(𝑋,𝑌 ) given for 𝐴 ∈ 𝐿(𝑋,𝑌 ) by

∥𝐴∥ = sup{𝑞𝑠(𝐴𝑥) : 𝑥 ∈ 𝑋, 𝑝𝑠(𝑥) ≤ 1} . (2.1.6)

We mention the following results, whose proofs are similar to those for normed
spaces.

Proposition 2.1.3. Let (𝑋, 𝑝) and (𝑌, 𝑞) be asymmetric seminormed spaces and
𝐴 ∈ 𝐿𝑝,𝑞(𝑋,𝑌 ). Then the number ∥𝐴∣𝑝,𝑞 is the smallest semi-Lipschitz constant
for 𝐴 and ∥ ⋅ ∣𝑝,𝑞 is an asymmetric seminorm on the cone 𝐿𝑝,𝑞(𝑋,𝑌 ), which is an
asymmetric norm if 𝑞 is an asymmetric norm.

The asymmetric seminorm ∥𝐴∣𝑝,𝑞 can be calculated also by the formula

∥𝐴∣𝑝,𝑞 = sup{𝑞(𝐴𝑥)/𝑝(𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) > 0} . (2.1.7)

A cone (in fact, a convex cone) is a subset 𝑍 of a linear space 𝑋 such that
𝑤+𝑧 ∈ 𝑍 and 𝜆𝑧 ∈ 𝑍 for all 𝑤, 𝑧 ∈ 𝑍 and 𝜆 ≥ 0. A cone is called also a semilinear
space. In order to study spaces of linear operators between asymmetric normed
spaces and the duals of such spaces, we shall consider asymmetric norms on cones.

Remark 2.1.4. In fact, one can define an abstract notion of cone as a set 𝐾 with
two operations, addition + which is supposed to be commutative, associative and
having a neutral element denoted by 0, and multiplication by nonnegative scalars
(denoted by ⋅), satisfying the properties
(i) (𝜆𝜇)𝑎 = 𝜆(𝜇𝑎), (ii) 𝜆(𝑎+ 𝑏) = 𝜆𝑎+ 𝜆𝑏, (iii)(𝜆+ 𝜇)𝑎 = 𝜆𝑎+ 𝜇𝑎,

(iv) 1 ⋅ 𝑎 = 1, and (v) 0 ⋅ 𝑎 = 0 .
(2.1.8)

The cone 𝑋 is called cancellative if 𝑎+ 𝑐 = 𝑏+ 𝑐⇒ 𝑎 = 𝑏 for all 𝑎, 𝑏, 𝑐 ∈ 𝑋.
A cone 𝑋 is cancellative if and only if it can be embedded in a vector space.

The theory of locally convex cones, with applications to Korovkin type ap-
proximation theory for positive operators and to vector-measure theory, is de-
veloped in the books by Keimel and Roth [109] and Roth [212], respectively. A
recent paper by Galanis [85] discusses Gâteaux and Hukuhara differentiability on
topological cones (called by him topological semilinear spaces and meaning cones
for which the operations of addition and multiplication by positive scalars are
continuous).

The following proposition shows that continuous linear operators between
two asymmetric normed spaces are continuous with respect to the associated norm
topologies. Also the set of all these continuous linear operators is a cone (a can-
cellative one).

Proposition 2.1.5. Let (𝑋, 𝑝) and (𝑌, 𝑞) be asymmetric seminormed spaces. Any
(𝑝, 𝑞)-continuous linear operator 𝐴 : 𝑋 → 𝑌 is also (𝑝𝑠, 𝑞𝑠)-continuous and the set
𝐿𝑝,𝑞(𝑋,𝑌 ) is a convex cone in 𝐿(𝑋,𝑌 ). Also

𝐿𝑝,𝑞(𝑋,𝑌 ) = 𝐿𝑝,𝑞(𝑋,𝑌 ) , (2.1.9)
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and

∥𝐴∣𝑝,𝑞 = ∥𝐴∣𝑝,𝑞 ≥ ∥𝐴∣𝑝𝑠,𝑞𝑠 , (2.1.10)

for every 𝐴 ∈ 𝐿𝑝,𝑞(𝑋,𝑌 ).

In particular, every (𝑝, 𝑢)-continuous linear functional is (𝑝𝑠, ∣ ⋅ ∣)-continuous
and 𝑋♭

𝑝 is a cone in the space 𝑋∗ of all continuous linear functionals on the normed
space (𝑋, 𝑝𝑠).

Proof. Observe that

∀𝑥 ∈ 𝑋, 𝑞(𝐴𝑥) ≤ 𝛽𝑝(𝑥) ⇐⇒ ∀𝑥 ∈ 𝑋, 𝑞(𝐴𝑥) ≤ 𝛽𝑝(𝑥),

proving the equality (2.1.9). Taking into account Proposition 2.1.3 (the fact that
the seminorm is the smallest semi-Lipschitz constant), this equivalence implies
also the equality ∥𝐴∣𝑝,𝑞 = ∥𝐴∣𝑝,𝑞.

Also, 𝑞(𝐴𝑥) ≤ 𝛽𝑝(𝑥) ≤ 𝛽𝑝𝑠(𝑥) and 𝑞(𝐴𝑥) ≤ 𝛽𝑝(𝑥) ≤ 𝛽𝑝𝑠(𝑥), implies
𝑞𝑠(𝐴𝑥) ≤ 𝛽𝑝𝑠(𝑥), proving the inclusion 𝐿𝑝,𝑞(𝑋,𝑌 ) ⊂ 𝐿𝑝𝑠,𝑞𝑠(𝑋,𝑌 ) and the in-
equality ∥𝐴∣𝑝𝑠,𝑞𝑠 ≤ ∥𝐴∣𝑝,𝑞. □

The following example shows that 𝐿𝑝,𝑞(𝑋,𝑌 ) is not a subspace of 𝐿(𝑋,𝑌 ).

Example 2.1.6. On the space 𝑋 = 𝐶0[0; 1] from Example 1.1.43 consider the
functional 𝜑(𝑓) = 𝑓(1), 𝑓 ∈ 𝐶0[0; 1]. Then 𝜑 is continuous on (𝑋, 𝑝), but −𝜑 is
not continuous.

Another example is furnished by the functional id : (ℝ, 𝑢)→ (ℝ, 𝑢) which is
(𝑝, 𝑢)-continuous, but − id is not.

Indeed, 𝜑(𝑓) = 𝑓(1) ≤ max 𝑓([0; 1]) = 𝑝(𝑓), 𝑓 ∈ 𝐶0[0; 1], so that 𝜑 is (𝑝, 𝑢)-
continuous. Taking 𝑓𝑛(𝑡) = 1−𝑛𝑡, 𝑡 ∈ [0; 1], it follows that 𝑝(𝑓𝑛) = 1 and−𝜑(𝑓𝑛) =
−𝑓𝑛(1) = 𝑛− 1, so that −𝜑 is not bounded on the unit ball of (𝑋, 𝑝), so it is not
continuous.

2.1.2 Continuous linear functionals on an asymmetric
seminormed space

In this subsection we consider an asymmetric seminormed space (𝑋, 𝑝) with non-
trivial seminorm 𝑝 (that is 𝑝 ∕= 0) with conjugate seminorm 𝑝 and the (symmetric)
seminorm 𝑝𝑠. Note that in this case the fact that a linear functional 𝜑 : (𝑋, 𝑝)→ ℝ
is (𝑝, 𝑢)-semi-Lipschitz is equivalent to

𝜑(𝑥) ≤ 𝛽𝑝(𝑥) , (2.1.11)

for all 𝑥 ∈ 𝑋.
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Note also that the continuity of a function 𝑓 from an asymmetric normed
space (𝑋, 𝑝) to (ℝ, 𝑢) is equivalent to its upper semicontinuity from (𝑋, 𝑝) to
(ℝ, ∣ ⋅ ∣).

Denote by 𝑋♭
𝑝 and 𝑋♭

𝑝 the cones of 𝑝-continuous, respectively 𝑝-continuous,
linear functionals on 𝑋 and let 𝑋∗ = (𝑋, 𝑝𝑠)∗ be the dual of the seminormed
space (𝑋, 𝑝𝑠). When there is no danger of confusion the space 𝑋♭

𝑝 will be denoted

simply by 𝑋♭ and we shall call it the asymmetric dual of the space (𝑋, 𝑝).

Let

𝐵𝑝 = {𝑥 ∈ 𝑋 : 𝑝(𝑥) ≤ 1} and 𝐵′𝑝 = {𝑥 ∈ 𝑋 : 𝑝(𝑥) < 1}
be the closed, respectively open, unit ball of 𝑋 .

The functionals given by

∥𝜑∣𝑝 = sup𝜑(𝐵𝑝), 𝜑 ∈ 𝑋♭
𝑝, and ∥𝜓∣𝑝 = sup𝜓(𝐵𝑝), 𝜓 ∈ 𝑋♭

𝑝, (2.1.12)

are asymmetric norms on 𝑋♭
𝑝 and 𝑋♭

𝑝, respectively.

The functional defined by

∥𝑥∗∥ = sup𝑥∗(𝐵𝑝𝑠) = sup{𝑥∗(𝑥) : 𝑥 ∈ 𝑋, 𝑝𝑠(𝑥) ≤ 1}, 𝑥∗ ∈ 𝑋∗ , (2.1.13)

is a norm on the space 𝑋∗ = (𝑋, 𝑝𝑠)∗ and the space 𝑋∗ is complete with respect
to this norm, i.e., it is a Banach space.

We mention the following properties of continuous linear functionals.

Proposition 2.1.7. Let (𝑋, 𝑝) be a space with asymmetric seminorm.

1. The functionals given by (2.1.12) are asymmetric norms on 𝑋♭
𝑝, and 𝑋♭

𝑝,
respectively, satisfying

𝜑 = 0 ⇐⇒ ∥𝜑∣𝑝 = 0 and 𝜓 = 0 ⇐⇒ ∥𝜓∣𝑝 = 0 . (2.1.14)

Also, if 𝜑 ∕= 0, then

𝜑(𝑥0) = ∥𝜑∣𝑝 ⇒ 𝑝(𝑥0) = 1 , (2.1.15)

for any 𝑥0 ∈ 𝐵𝑝.

2. The norm ∥𝜑∣𝑝 of a functional 𝜑 ∈ 𝑋♭
𝑝 is the smallest semi-Lipschitz constant

for 𝜑 and it can be also calculated by the formula

∥𝜑∣𝑝 = sup{𝜑(𝑥)/𝑝(𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) > 0} .

3. The cones 𝑋♭
𝑝 and 𝑋♭

𝑝 are contained in 𝑋∗ and

∥𝜑∥ ≤ ∥𝜑∣𝑝 and ∥𝜓∥ ≤ ∥𝜓∣𝑝 ,

for every 𝜑 ∈ 𝑋♭
𝑝 and every 𝜓 ∈ 𝑋♭

𝑝.
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4. The following hold:

𝜑 ∈ 𝑋♭
𝑝 ⇐⇒ −𝜑 ∈ 𝑋♭

𝑝 and ∥𝜑∣𝑝 = ∥ − 𝜑∣𝑝 .

Consequently, 𝑋𝑝 = −𝑋𝑝 and the linear spans of 𝑋♭
𝑝 and 𝑋♭

𝑝 agree, being
given by

sp(𝑋♭
𝑝) = sp(𝑋

♭
𝑝) = 𝑋♭

𝑝 +𝑋♭
𝑝. .

Proof. All of the assertions from 1 and 2, excepting (2.1.14) and (2.1.15), are
consequences of Propositions 2.1.2 and 2.1.3.

To prove (2.1.14), observe that if 𝜑 ∕= 0, then there exists 𝑥0 ∈ 𝑋 such that
𝜑(𝑥0) > 0, implying

0 < 𝜑(𝑥0) ≤ ∥𝜑∣𝑝 𝑝(𝑥0) .

If there exists 𝑥0 ∈ 𝑋 with 𝑝(𝑥0) < 1 such that 𝜑(𝑥0) = ∥𝜑∣𝑝 > 0, then 𝑥1 =
[𝑝(𝑥0)]

−1𝑥0 satisfies 𝑝(𝑥1) = 1 and 𝜑(𝑥1) = 𝜑(𝑥0)/𝑝(𝑥0) > ∥𝜑∣𝑝, a contradiction,
showing that (2.1.15) holds, too.

3. Let 𝜑 ∈ 𝑋♭
𝑝. The inequalities

𝜑(𝑥) ≤ ∥𝜑∣𝑝𝑝(𝑥) ≤ ∥𝜑∣𝑝𝑝𝑠(𝑥), 𝑥 ∈ 𝑋 ,

imply 𝜑 ∈ 𝑋∗ and ∥𝜑∥ ≤ ∥𝜑∣𝑝. The situation for the conjugate seminorm 𝑝 is
similar.

4. Let now 𝜑 : 𝑋 → ℝ be a linear functional. The assertion will be a conse-
quence of the following equalities:

∥ − 𝜑∣𝑝 = sup{−𝜑(𝑥) : 𝑝(𝑥) ≤ 1} = sup{𝜑(−𝑥) : 𝑝(−𝑥) ≤ 1} = ∥𝜑∣𝑝 .

It follows that 𝑋♭
𝑝 = −𝑋♭

𝑝, so that sp(𝑋
♭
𝑝) = 𝑋♭

𝑝 −𝑋♭
𝑝 = 𝑋♭

𝑝 +𝑋♭
𝑝 = sp(𝑋

♭
𝑝). □

In the following proposition we collect some simple properties of the norm
∥ ⋅ ∣𝑝 that we shall need in the proofs of the separation theorems.
Proposition 2.1.8. If 𝜑 is a continuous linear functional on a space with asymmet-
ric seminorm (𝑋, 𝑝), 𝑝 ∕= 0, then the following assertions hold.

1. We have
∥𝜑∣𝑝 =sup{𝜑(𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) < 1}

=sup{𝜑(𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) = 1} (2.1.16)

and
−∥𝜑∣𝑝 = inf{𝜑(𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) < 1}

= inf{𝜑(𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) = 1} . (2.1.17)

2. If 𝜑 is both 𝑝- and 𝑝-continuous (i.e., 𝜑 ∈ 𝑋♭
𝑝 ∩𝑋♭

𝑝), then

𝜑(𝐵′𝑝) = (−∥𝜑∣𝑝; ∥𝜑∣𝑝) and 𝜑(𝐵′𝑝) = (−∥𝜑∣𝑝; ∥𝜑∣𝑝) .
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3. If 𝜑 ∈ 𝑋♭
𝑝 ∖𝑋♭

𝑝 and 𝜓 ∈ 𝑋♭
𝑝 ∖𝑋♭

𝑝, then

𝜑(𝐵′𝑝) = (−∞, ∥𝜑∣𝑝) and 𝜓(𝐵′𝑝) = (−∥𝜓∣𝑝;∞) .

Proof. 1. We can suppose 𝜑 ∕= 0. Then 𝑐 := sup{𝜑(𝑥) : 𝑝(𝑥) < 1} ≤ ∥𝜑∣𝑝. If
𝑥 ∈ 𝑋 is such that 𝑝(𝑥) = 1, then 𝑝(𝑛(𝑛+ 1)−1𝑥) = 𝑛(𝑛+ 1)−1𝑝(𝑥) < 1, so that
𝑛(𝑛 + 1)−1𝜑(𝑥) = 𝜑(𝑛(𝑛 + 1)−1𝑥) ≤ 𝑐, for all 𝑛 ∈ ℕ. Letting 𝑛 → ∞, it follows
that 𝜑(𝑥) ≤ 𝑐, implying ∥𝜑∣𝑝 = sup𝜑(𝐵𝑝) ≤ 𝑐, that is ∥𝜑∣𝑝 = 𝑐.

By Proposition 2.1.7,

∥𝜑∣𝑝 = sup{𝜑(𝑥/𝑝(𝑥)) : 𝑥 ∈ 𝑋, 𝑝(𝑥) > 0} = sup{𝜑(𝑦) : 𝑦 ∈ 𝑋, 𝑝(𝑦) = 1}.

By (2.1.16) applied to 𝑝, ∥𝜑∣𝑝 = sup𝜑(𝐵′𝑝), so that
inf{𝜑(𝑥) :𝑝(𝑥)<1}=inf{𝜑(−𝑥) :𝑝(−𝑥)<1}=−sup{𝜑(𝑥) :𝑝(𝑥)<1}=−∥𝜑∣𝑝 ,

proving the first equality in (2.1.17).

The second equality is proved similarly.

2. By the first assertion of the proposition,

sup𝜑(𝐵′𝑝) = ∥𝜑∣𝑝 and inf 𝜑(𝐵′𝑝) = −∥𝜑∣𝑝 .

By Proposition 2.1.7.1, −∥𝜑∣𝑝 < 𝜑(𝑥) < ∥𝜑∣𝑝 for every 𝑥 ∈ 𝐵′𝑝.
The convexity of 𝐵′𝑝 and the linearity of 𝜑 imply that 𝜑(𝐵

′
𝑝) is convex, that

is it is an interval in ℝ, so that

𝜑(𝐵′𝑝) = (inf 𝜑(𝐵
′
𝑝); sup𝜑(𝐵

′
𝑝)) = (−∥𝜑∣𝑝; ∥𝜑∣𝑝) .

3. If 𝜑 ∈ 𝑋♭
𝑝 ∖𝑋♭

𝑝, then

∞ = sup{𝜑(𝑥) : 𝑝(−𝑥) < 1} = sup{−𝜑(𝑥) : 𝑝(𝑥) < 1} = − inf{𝜑(𝑥) : 𝑝(𝑥) < 1} ,
that is inf 𝜑(𝐵′𝑝) = −∞, and sup𝜑(𝐵′𝑝) = ∥𝜑∣𝑝.

Reasoning as above, it follows that 𝜑(𝐵′𝑝) = (−∞; ∥𝜑∣𝑝).
For the second equality, note that sup𝜑(𝐵′𝑝) = ∞ and, by (2.1.17),

inf 𝜑(𝐵′𝑝) = −∥𝜑∣𝑝, implying 𝜑(𝐵 ′̄𝑝) = (−∥𝜑∣𝑝;∞). □

2.1.3 Continuous linear mappings between asymmetric locally
convex spaces

Let (𝑋,𝑃 ), (𝑌,𝑄) be two asymmetric locally convex spaces with the topologies
𝜏𝑃 and 𝜏𝑄 generated by the families 𝑃 and 𝑄 of asymmetric seminorms on 𝑋
and 𝑌 , respectively. In the following when we say that (𝑋,𝑃 ) is an asymmetric
locally convex space, we understand that 𝑋 is a real vector space, 𝑃 is a family
of asymmetric seminorms on 𝑋 and 𝜏𝑃 is the asymmetric locally convex topology
associated to 𝑃 .
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A linear mapping 𝐴 : 𝑋 → 𝑌 is called (𝑃,𝑄)-bounded if for every 𝑞 ∈ 𝑄
there exist 𝐹 ∈ ℱ(𝑃 ) (the family of all nonempty finite subsets of 𝑃 ) and 𝛽 ≥ 0
such that

∀𝑥 ∈ 𝑋, 𝑞(𝐴𝑥) ≤ 𝛽max{𝑝(𝑥) : 𝑝 ∈ 𝐹}. (2.1.18)

If the family 𝑃 is directed, then the (𝑃,𝑄)-boundedness of 𝐴 is equivalent
to the condition: for every 𝑞 ∈ 𝑄 there exist 𝑝 ∈ 𝑃 and 𝛽 ≥ 0 such that

∀𝑥 ∈ 𝑋, 𝑞(𝐴𝑥) ≤ 𝛽𝑝(𝑥). (2.1.19)

The continuity of the mapping 𝐴 from (𝑋, 𝜏𝑃 ) to (𝑌, 𝜏𝑄) is called (𝜏𝑃 , 𝜏𝑄)-
continuity. We shall use also the terms (𝑃,𝑄)-continuity for this property, and
(𝑃, 𝑢)-continuity in the case of (𝜏𝑃 , 𝜏𝑢)-continuous linear functionals, where 𝑢 is
the quasi-metric on ℝ given in Example 1.1.3.

Because both of the topologies 𝜏𝑃 and 𝜏𝑄 are translation invariant, we have
the following result.

Proposition 2.1.9. Let (𝑋,𝑃 ) and (𝑌,𝑄) be asymmetric locally convex spaces and
𝐴 : 𝑋 → 𝑌 a linear mapping. The following conditions are equivalent.

1. The mapping 𝐴 is (𝑃,𝑄)-continuous on 𝑋.

2. The mapping 𝐴 is continuous at 0 ∈ 𝑋.

3. The mapping 𝐴 is continuous at some point 𝑥0 ∈ 𝑋.

The following proposition emphasizes the equivalence of continuity and
boundedness for linear mappings.

Proposition 2.1.10. Let (𝑋,𝑃 ) and (𝑌,𝑄) be two asymmetric locally convex spaces
and 𝐴 : 𝑋 → 𝑌 a linear mapping. The following assertions are equivalent.

1. The mapping 𝐴 is (𝑃,𝑄)-continuous on 𝑋.

2. The mapping 𝐴 is continuous at 0 ∈ 𝑋.

3. The mapping 𝐴 is (𝑃,𝑄)-bounded.

4. The mapping 𝐴 is (𝒰𝑃 ,𝒰𝑄)-quasi-uniformly continuous on 𝑋.

Proof. The equivalence 1 ⇐⇒ 2 follows from the preceding proposition.

Suppose the families 𝑃 and 𝑄 to be directed.

2 ⇒ 3. For 𝑞 ∈ 𝑄 consider the 𝜏𝑄-neighborhood 𝑉 = 𝐵𝑞(0, 1) of 𝐴(0) =
0 ∈ 𝑌 , and let 𝑈 be a neighborhood of 0 ∈ 𝑋 such that 𝐴(𝑈) ⊂ 𝑉. If 𝑝 ∈ 𝑃 and
𝑟 > 0 are such that 𝐵𝑝(0, 𝑟) ⊂ 𝑈, then

∀𝑥 ∈ 𝑋, 𝑝(𝑥) ≤ 𝑟 ⇒ 𝑞(𝐴𝑥) ≤ 1 .

By Proposition 2.1.1 applied to f(x) = q(Ax) and 𝑔(𝑥) = 𝑝(𝑥), this relation implies

∀𝑥 ∈ 𝑋, 𝑞(𝐴𝑥) ≤ 1

𝑟
𝑝(𝑥) .
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3⇒ 4. For 𝑊 ∈ 𝒰𝑄 there exists 𝑞 ∈ 𝑄 and 𝜀 > 0 such that 𝑊𝑞,𝜀 = {(𝑦, 𝑦′) ∈
𝑌 × 𝑌 : 𝑞(𝑦′ − 𝑦) < 𝜀} ⊂𝑊. If 𝑝 ∈ 𝑃 and 𝛽 > 0 are such that (2.1.19) holds, then
(𝑓(𝑥), 𝑓(𝑦)) ∈ 𝑊𝑞,𝜀 for every (𝑥, 𝑦) ∈ 𝑈𝑝,𝑟, where 𝑟 := 𝜀/𝛽.

The implication 4 ⇒ 1 holds for arbitrary quasi-uniform spaces. □

In the case of linear functionals on an asymmetric locally convex space we
have the following characterization of continuity, where 𝑢 is as in Example 1.1.3.

Proposition 2.1.11. Let (𝑋,𝑃 ) be an asymmetric locally convex space, where 𝑃
is a directed family of asymmetric seminorms on 𝑋, and 𝜑 : 𝑋 → ℝ a linear
functional. The following assertions are equivalent.

1. The functional 𝜑 is (𝑃, 𝑢)-continuous at 0 ∈ 𝑋.

2. The functional 𝜑 is (𝑃, 𝑢)-continuous on 𝑋.

3. The functional 𝜑 is upper semi-continuous from (𝑋, 𝜏𝑃 ) to (ℝ, ∣ ⋅ ∣).
4. There exist 𝑝 ∈ 𝑃 and 𝛽 ≥ 0 such that

∀𝑥 ∈ 𝑋, 𝜑(𝑥) ≤ 𝛽𝑝(𝑥). (2.1.20)

5. The functional 𝜑 is (𝑃, 𝑢)-quasi-uniformly continuous on 𝑋.

Using Proposition 2.1.1 and the inequality

𝑓(𝑦)− 𝑓(𝑥) ≤ 𝑓(𝑦 − 𝑥), 𝑥, 𝑦 ∈ 𝑋, (2.1.21)

valid for any sublinear functional on a vector space 𝑋 , it is easy to check that
these results hold for the slightly more general case of sublinear functionals.

Proposition 2.1.12. Let (𝑋,𝑃 ) be an asymmetric locally convex space, where 𝑃 is a
directed family of asymmetric seminorms on 𝑋, and let 𝑓 : 𝑋 → ℝ be a sublinear
functional. The following assertions are equivalent.

1. The functional 𝑓 is (𝑃, 𝑢)-continuous at 0 ∈ 𝑋.

2. The functional 𝑓 is (𝑃, 𝑢)-continuous on 𝑋.

3. The functional 𝑓 is upper semi-continuous from (𝑋, 𝜏𝑃 ) to (ℝ, ∣ ⋅ ∣).
4. There exist 𝑝 ∈ 𝑃 and 𝛽 > 0 such that

∀𝑥 ∈ 𝑋, 𝑓(𝑥) ≤ 𝛽𝑝(𝑥) .

5. The functional 𝑓 is (𝑃, 𝑢)-quasi-uniformly continuous on 𝑋.

Proof. 1 ⇒ 2 Let 𝑥 ∈ 𝑋. For 𝜀 > 0 there exist 𝑝 ∈ 𝑃 and 𝑟 > 0 such that

𝑝(𝑧) < 𝑟 ⇒ 𝑓(𝑧) < 𝜀.

Then, for any 𝑦 ∈ 𝑋 such that 𝑝(𝑦 − 𝑥) < 𝑟 we have

𝑓(𝑦)− 𝑓(𝑥) ≤ 𝑓(𝑦 − 𝑥) < 𝜀,

proving the (𝑃, 𝑢)-continuity of 𝑓 at 𝑥.
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The equivalence 2 ⇐⇒ 3 is true for an arbitrary function from 𝑋 to ℝ.

2 ⇒ 4. Since (−∞; 1] is a 𝜏𝑢-neighborhood of 𝑓(0) = 0 ∈ ℝ, there exist
𝑝 ∈ 𝑃 and 𝑟 > 0 such that 𝑓(𝐵𝑝[0, 𝑟]) ⊂ (−∞; 1], i.e.,

∀𝑥 ∈ 𝑋, 𝑝(𝑥) ≤ 𝑟 ⇒ 𝑓(𝑥) ≤ 1 .

By Proposition 2.1.1 this implies

∀𝑥 ∈ 𝑋, 𝑓(𝑥) ≤ 1

𝑟
𝑝(𝑥) .

4 ⇒ 5. For 𝜀 > 0 let 𝑈𝑢,𝜀 = {(𝑠, 𝑡) ∈ ℝ2 : 𝑢(𝑡− 𝑠) < 𝜀}. If 𝑝 ∈ 𝑃 and 𝛽 > 0
are given by 4, let 𝑉𝑝,𝜀/𝛽 = {(𝑥, 𝑦) ∈ 𝑋2 : 𝑝(𝑦 − 𝑥) < 𝜀/𝛽}.

The inequalities

𝑓(𝑦)− 𝑓(𝑥) ≤ 𝑓(𝑦 − 𝑥) ≤ 𝛽𝑝(𝑦 − 𝑥) < 𝜀

show that 𝑓(𝑉𝑝,𝜀/𝛽) ⊂ 𝑈𝑢,𝜀.

The implication 5 ⇒ 1 is a general topological property. □

The above proposition has the following useful corollary.

Corollary 2.1.13. Let (𝑋,𝑃 ) be an asymmetric LCS.

1. Let 𝑓, 𝑔 be sublinear functionals defined on an asymmetric locally convex space
(𝑋,𝑃 ). If 𝑓 ≤ 𝑔 and 𝑔 is (𝑃, 𝑢)-continuous, then 𝑓 is (𝑃, 𝑢)-continuous too.
In particular the result is true when 𝑓 is linear.

2. Every asymmetric seminorm 𝑝 ∈ 𝑃 is quasi-uniformly (𝑃, 𝑢)-continuous.

Proof. By Proposition 2.1.12, there exist 𝑝 ∈ 𝑃 and 𝛽 ≥ 0 such that ∀𝑥 ∈
𝑋, 𝑔(𝑥) ≤ 𝛽𝑝(𝑥). It follows that ∀𝑥 ∈ 𝑋, 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ 𝛽𝑝(𝑥), which, by
the same proposition, implies the continuity of 𝑓 .

The second assertion is a consequence of the first one and of the translation
invariance of the topology. □
Remark 2.1.14. If the family 𝑃 is not directed, then the family 𝑃 = {𝑝𝐹 : 𝐹 ∈
ℱ(𝑃 )}, where 𝑝𝐹 (𝑥) = max{𝑝(𝑥) : 𝑝 ∈ 𝐹}, is a directed family of seminorms
generating the same topology as 𝑃 .

Consequently, the (𝑃, 𝑢)-continuity of a functional 𝜑 (or 𝑓) is equivalent to
the condition: there exist 𝐹 ∈ ℱ(𝑃 ) and 𝛽 ≥ 0 such that

∀𝑥 ∈ 𝑋, 𝜑(𝑥) ≤ 𝛽𝑝𝐹 (𝑥) = 𝛽max{𝑝(𝑥) : 𝑝 ∈ 𝐹}. (2.1.22)

As in the case of asymmetric normed spaces, see Subsection 2.1.4, the set
𝐿𝑃,𝑄(𝑋,𝑌 ) of all (𝑃,𝑄)-continuous mappings between two asymmetric LCS (𝑋,𝑃 )
and (𝑌,𝑄) is a convex cone in the space 𝐿𝑎(𝑋,𝑌 ) of all linear operators between
𝑋 and 𝑌. In fact it is contained in the linear space 𝐿(𝑋,𝑌 ) = 𝐿((𝑋,𝑃 𝑠), (𝑌,𝑄𝑠))
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of all continuous linear operators between the locally convex spaces (𝑋,𝑃 𝑠) and
(𝑌,𝑄𝑠). Indeed, supposing 𝑃,𝑄 directed, then for 𝐴 ∈ 𝐿𝑃,𝑄(𝑋,𝑌 ) and 𝑞 ∈ 𝑄
there exist 𝑝 ∈ 𝑃 and 𝛽 ≥ 0 such that

∀𝑥 ∈ 𝑋, 𝑞(𝐴𝑥) ≤ 𝛽𝑝(𝑥) ≤ 𝛽𝑝𝑠(𝑥) .

Since
𝑞(𝐴𝑥) = 𝑞(−𝐴𝑥) = 𝑞(𝐴(−𝑥)) ≤ 𝛽𝑝(−𝑥) ≤ 𝛽𝑝𝑠(𝑥) ,

it follows that
∀𝑥 ∈ 𝑋, 𝑞𝑠(𝐴𝑥) ≤ 𝛽𝑝𝑠(𝑥) ,

showing that 𝐴 ∈ 𝐿(𝑋,𝑌 ).

Here for 𝑝 ∈ 𝑃, 𝑝(𝑥) = 𝑝(−𝑥), 𝑝𝑠(𝑥) = max{𝑝(𝑥), 𝑝(−𝑥)}, 𝑥 ∈ 𝑋, and
𝑃 𝑠 = {𝑝𝑠 : 𝑝 ∈ 𝑃} with similar definitions for the family 𝑄.

For an asymmetric locally convex space (𝑋,𝑃 ) denote by 𝑋♭ = 𝑋♭
𝑃 the set of

all linear (𝑃, 𝑢)-continuous functionals. It follows that 𝑋♭
𝑃 is a convex cone in 𝑋#

the algebraic dual space of 𝑋 , i.e., the space of all linear functionals on 𝑋 . In fact,
by the above remark, it is contained in the dual space 𝑋∗ = 𝐿((𝑋,𝑃 𝑠), (ℝ, ∣ ⋅ ∣)).
Remark 2.1.15. It is easy to check that a linear functional 𝜑(𝑡) = 𝑎𝑡, 𝑡 ∈ ℝ, is
(𝜏𝑢, 𝜏𝑢)-continuous if and only if 𝑎 ≥ 0. Indeed if 𝑎 ≥ 0, then 𝜑(𝑡) = 𝑎𝑡 ≤ 𝑢(𝑎𝑡) =
𝑎𝑢(𝑡), 𝑡 ∈ ℝ. If 𝑎 < 0, then, reasoning as above, one concludes that 𝜑 fails to be
continuous.

2.1.4 Completeness properties of the normed cone of continuous
linear operators

Following [90], we can consider an extended asymmetric norm on the space 𝐿(𝑋,𝑌 )
of all linear continuous operators from (𝑋, 𝑝𝑠) to (𝑌, 𝑞𝑠), defined by the same
formula:

∥𝐴∣∗𝑝,𝑞 = sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) ≤ 1} = sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝} , (2.1.23)

for every 𝐴 ∈ 𝐿(𝑋,𝑌 ). If 𝐴 ∈ 𝐿𝑝,𝑞(𝑋.𝑌 ), then 𝐴 ∈ 𝐿(𝑋,𝑌 ), and so −𝐴 ∈
𝐿(𝑋,𝑌 ), but, as the above examples show, it is possible that ∥ − 𝐴∣∗𝑝,𝑞 = ∞, so
that ∥ ⋅ ∣∗𝑝,𝑞 could be effectively an extended asymmetric norm.

With the asymmetric norm ∥ ⋅ ∣∗𝑝,𝑞 one associates a symmetric extended norm
on 𝐿(𝑋,𝑌 ) defined by

∥𝐴∥∗𝑝,𝑞 = ∥𝐴∣∗𝑝,𝑞 ∨ ∥ −𝐴∣∗𝑝,𝑞 . (2.1.24)

Since

∥ −𝐴∣∗𝑝,𝑞 = sup{𝑞(−𝐴𝑥) : 𝑝(𝑥) ≤ 1} = sup{𝑞(𝐴𝑥) : 𝑝(−𝑥) ≤ 1}
= sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝} ,
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it follows that
∥𝐴∥∗𝑝,𝑞 = sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝 ∪𝐵𝑝} . (2.1.25)

The norm ∥𝐴∥∗𝑝,𝑞 can be calculated also by the formula

∥𝐴∥∗𝑝,𝑞 = sup{𝑞𝑠(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝} . (2.1.26)

Indeed, denoting by 𝜆 the right side member of the above equality, we have
𝑞(𝐴𝑥) ≤ 𝑞𝑠(𝐴𝑥) ≤ 𝜆 for every 𝑥 ∈ 𝐵𝑝, so that ∥𝐴∣∗𝑝,𝑞 ≤ 𝜆. Similarly 𝑞(−𝐴𝑥) ≤
𝑞𝑠(𝐴𝑥) ≤ 𝜆 for every 𝑥 ∈ 𝐵𝑝 implies ∥ − 𝐴∣∗𝑝,𝑞 ≤ 𝜆, so that ∥𝐴∥∗𝑝,𝑞 ≤ 𝜆. Also,
𝑞(𝐴𝑥) ≤ ∥𝐴∣∗𝑝,𝑞 ≤ ∥𝐴∥∗𝑝,𝑞 and 𝑞(−𝐴𝑥) ≤ ∥ −𝐴∣∗𝑝,𝑞 ≤ ∥ − 𝐴∥∗𝑝,𝑞 = ∥𝐴∥∗𝑝,𝑞 for every
𝑥 ∈ 𝐵𝑝, implies 𝜆 ≤ ∥𝐴∥∗𝑝,𝑞.

Recall that an asymmetric normed space (𝑋, 𝑝) is called biBanach if the
associated normed space (𝑋, 𝑝𝑠) is a Banach space (i.e., a complete normed space).

Proposition 2.1.16 ([90]). Let (𝑋, 𝑝) and (𝑌, 𝑞) be asymmetric normed spaces.

1. The functional ∥ ⋅ ∣∗𝑝,𝑞 given by (2.1.23) is an extended asymmetric norm on
the space 𝐿(𝑋,𝑌 ) and ∥𝐴∥ ≤ ∥𝐴∥∗𝑝,𝑞 for all 𝐴 ∈ 𝐿(𝑋,𝑌 ). An operator 𝐴 ∈
𝐿(𝑋,𝑌 ) belongs to 𝐿𝑝,𝑞(𝑋,𝑌 ) if and only if ∥𝐴∣∗𝑝,𝑞 <∞. Also ∥𝐴∣∗𝑝,𝑞 = ∥𝐴∣𝑝,𝑞
for 𝐴 ∈ 𝐿𝑝,𝑞(𝑋,𝑌 ).

2. If the space (𝑌, 𝑞) is biBanach, then the space (𝐿(𝑋,𝑌 ), ∥ ⋅ ∥∗) is complete.

3. The set 𝐿𝑝,𝑞(𝑋,𝑌 ) is closed in (𝐿(𝑋,𝑌 ), ∥⋅∥∗𝑝,𝑞), so it is complete with respect
to the restriction of the extended norm ∥ ⋅ ∥∗𝑝,𝑞 to 𝐿𝑝,𝑞(𝑋,𝑌 ).

Proof. We shall omit the subscripts 𝑝, 𝑞 in what follows.

1. It is easy to check that ∥ ⋅ ∣∗ is an extended asymmetric norm on 𝐿(𝑋,𝑌 ).

We can suppose ∥𝐴∥∗ <∞. Then

𝑞(𝐴𝑥) ≤ ∥𝐴∣𝑝(𝑥) ≤ ∥𝐴∥∗𝑝𝑠(𝑥), and

𝑞(−𝐴𝑥) ≤ ∥ −𝐴∣𝑝(𝑥) ≤ ∥𝐴∥∗𝑝𝑠(𝑥) ,

so that 𝑞𝑠(𝐴𝑥) ≤ ∥𝐴∥∗𝑝𝑠(𝑥), for all 𝑥 ∈ 𝑋, implying ∥𝐴∥ ≤ ∥𝐴∥∗.
2. Let (𝐴𝑛) be a ∥ ⋅ ∥∗-Cauchy sequence in 𝐿(𝑋,𝑌 ), that is for every 𝜀 > 0

there exists 𝑛0 ∈ ℕ such that

∥𝐴𝑚 −𝐴𝑛∥∗ ≤ 𝜀 (2.1.27)

holds for all𝑚,𝑛 ≥ 𝑛0. By the first point of the theorem, ∥𝐴𝑚−𝐴𝑛∥ ≤ ∥𝐴𝑚−𝐴𝑛∥∗,
so that (𝐴𝑛) is a Cauchy sequence in the Banach space (𝐿(𝑋,𝑌 ), ∥ ⋅ ∥), and so
(𝐴𝑛) has a ∥ ⋅ ∥-limit 𝐴 ∈ 𝐿(𝑋,𝑌 ).

It remains to show that (𝐴𝑛) converges to 𝐴 with respect to the norm ∥ ⋅ ∥∗.
The inequality 𝑞𝑠(𝐴𝑛𝑥−𝐴𝑥) ≤ ∥𝐴𝑛 −𝐴∥ 𝑝𝑠(𝑥) implies

lim
𝑛→∞ 𝑞𝑠(𝐴𝑛𝑥−𝐴𝑥) = 0 , (2.1.28)
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that is the sequence (𝐴𝑛𝑥) converges to 𝐴𝑥 in the normed space (𝑌, 𝑞𝑠), for every
𝑥 ∈ 𝑋.

For 𝜀 > 0 let 𝑛0 be such that (2.1.27) holds. Then, by (2.1.26), for every
𝑥 ∈ 𝐵𝑝,

𝑞𝑠(𝐴𝑚𝑥−𝐴𝑛𝑥) ≤ ∥𝐴𝑚 −𝐴𝑛∥∗ ≤ 𝜀 .

By (2.1.28), the inequality 𝑞𝑠(𝐴𝑚𝑥−𝐴𝑛𝑥) ≤ 𝜀 yields for 𝑛→∞,

𝑞𝑠(𝐴𝑚𝑥−𝐴𝑥) ≤ 𝜀 ,

for every 𝑥 ∈ 𝐵𝑝 and 𝑚 ≥ 𝑛0. Taking into account (2.1.26), it follows that ∥𝐴𝑚−
𝐴∥∗ ≤ 𝜀 for every 𝑚 ≥ 𝑛0.

3. To show that 𝐿𝑝,𝑞(𝑋,𝑌 ) is closed in (𝐿(𝑋,𝑌 ), ∥⋅∥∗) let (𝐴𝑛) be a sequence
in 𝐿𝑝,𝑞(𝑋,𝑌 ) which is ∥ ⋅∥∗-convergent to some 𝐴 ∈ 𝐿(𝑋,𝑌 ). For 𝜀 = 1 let 𝑛0 ∈ ℕ
be such that ∥𝐴𝑛−𝐴∥∗ ≤ 1 for all 𝑛 ≥ 𝑛0. Then ∥𝐴∥∗ ≤ ∥𝐴−𝐴𝑛0∥∗+ ∥𝐴𝑛0∥∗ ≤
1 + ∥𝐴𝑛0∥∗, which implies that both 𝐴 and −𝐴 belong to 𝐿𝑝,𝑞(𝑋,𝑌 ). □

Remark 2.1.17. 1. If a sequence (𝐴𝑛) in 𝐿𝑝,𝑞(𝑋,𝑌 ) converges to 𝐴 ∈ 𝐿(𝑋,𝑌 ) with
respect to the conjugate norm (∥ ⋅ ∣∗𝑝,𝑞)−1 of ∥ ⋅ ∣∗𝑝,𝑞, then 𝐴 ∈ 𝐿𝑝,𝑞(𝑋,𝑌 ).

2. As it is known, in the classical case, the completeness of (𝐿(𝑋,𝑌 ), ∥ ⋅ ∥)
implies the completeness of the normed space 𝑌.We do not know if a similar result
holds for the extended norm ∥ ⋅ ∥∗.

Let 𝑛0 be such that ∥𝐴−𝐴𝑛∣∗ ≤ 1 for all 𝑛 ≥ 𝑛0. Then ∥𝐴∣∗ ≤ ∥𝐴−𝐴𝑛0 ∣∗+
∥𝐴𝑛0 ∣∗ ≤ 1 + ∥𝐴𝑛0 ∣∗ <∞, shows that 𝐴 ∈ 𝐿𝑝,𝑞(𝑋,𝑌 ), proving the validity of the
assertion from 1.

2.1.5 The bicompletion of an asymmetric normed space

As it is well known, any normed space (𝑋, ∥ ⋅ ∥) has a completion, meaning that
there exists a Banach space (�̃�, ∥⋅∥̃ ) such that (𝑋, ∥⋅∥) is isometrically isomorphic
to a dense subspace of (�̃�, ∥⋅∥̃ ). The Banach space (�̃�, ∥⋅∥̃ ), called the completion
of 𝑋 is uniquely determined, in the sense that any Banach space 𝑍 such that 𝑋
is isometrically isomorphic to a dense subspace of 𝑍 is isometrically isomorphic to
(�̃�, ∥ ⋅ ∥̃ ).

A bicompletion of an asymmetric normed space (𝑋, 𝑝) is a bicomplete asym-
metric normed space (𝑌, 𝑞) such that 𝑋 is isometrically isomorphic to a 𝜏𝑞𝑠 -dense
subspace of 𝑌. An isometry between two asymmetric normed spaces (𝑋, 𝑝), (𝑌, 𝑞)
is a mapping 𝑇 : 𝑋 → 𝑌 such that

𝑞(𝑇𝑥− 𝑇𝑦) = 𝑝(𝑥− 𝑦), for all 𝑥, 𝑦 ∈ 𝑋 . (2.1.29)

If 𝑇 is linear, then (2.1.29) is equivalent to

𝑞(𝑇𝑥) = 𝑝(𝑥), for all 𝑥 ∈ 𝑋 . (2.1.30)
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Note that, as defined, the isometry 𝑇 is in fact an isometry between the
associated normed spaces (𝑋, 𝑝𝑠), (𝑌, 𝑞𝑠), because

𝑞𝑠(𝑇𝑥− 𝑇𝑦) = 𝑞(𝑇𝑥− 𝑇𝑦) ∨ 𝑞(𝑇𝑦 − 𝑇𝑥) = 𝑝(𝑥− 𝑦) ∨ 𝑝(𝑦 − 𝑥) = 𝑝𝑠(𝑥− 𝑦) ,

for all 𝑥, 𝑦 ∈ 𝑋. The construction of the bicompletion of an asymmetric normed
space was done in [88] (see [170] for the case of normed cones), following ideas from
the normed case, adapted to the asymmetric one. We only sketch the construction,
referring for details to the mentioned papers.

Let (𝑋, 𝑝) be an asymmetric normed space. In the set of all 𝑝𝑠-Cauchy se-
quences in 𝑋 define an equivalence relation by

(𝑥𝑛) ∼ (𝑦𝑛) ⇐⇒ lim
𝑛→∞ 𝑝𝑠(𝑥𝑛 − 𝑦𝑛) = 0 . (2.1.31)

Lemma 2.1.18.

1. The relation ∼ is an equivalence relation on the set of all 𝑝𝑠-Cauchy sequences
in 𝑋.

2. If (𝑥𝑛) is a 𝑝𝑠-Cauchy sequence then the sequence (𝑝(𝑥𝑛)) is convergent and
lim𝑛 𝑝(𝑥𝑛) = lim𝑛 𝑝(𝑦𝑛) whenever (𝑦𝑛) is a 𝑝𝑠-Cauchy sequence equivalent to
(𝑥𝑛).

Proof. The verification of 1 is routine.

2. The inequalities 𝑝(𝑥𝑛) − 𝑝(𝑥𝑚) ≤ 𝑝(𝑥𝑛 − 𝑥𝑚) ≤ 𝑝𝑠(𝑥𝑛 − 𝑥𝑚), valid for
all 𝑚,𝑛 ∈ ℕ, and the fact that (𝑥𝑛) is 𝑝

𝑠-Cauchy, imply that (𝑝(𝑥𝑛)) is a Cauchy
sequence in ℝ, so it converges to some 𝛼 ∈ ℝ. If (𝑦𝑛) is another 𝑝

𝑠-Cauchy sequence
equivalent to (𝑥𝑛), then the inequalities

𝑝(𝑥𝑛)− 𝑝(𝑦𝑛) ≤ 𝑝(𝑥𝑛 − 𝑦𝑛) ≤ 𝑝𝑠(𝑥𝑛 − 𝑦𝑛),

𝑝(𝑦𝑛)− 𝑝(𝑥𝑛) ≤ 𝑝(𝑦𝑛 − 𝑥𝑛) ≤ 𝑝𝑠(𝑦𝑛 − 𝑥𝑛) = 𝑝𝑠(𝑥𝑛 − 𝑦𝑛)

and the condition lim𝑛 𝑝𝑠(𝑥𝑛 − 𝑦𝑛) = 0 imply lim𝑛 𝑝(𝑥𝑛) = lim𝑛 𝑝(𝑦𝑛). □

Denote by �̃� the linear space of all equivalence classes of 𝑝𝑠-Cauchy sequences
with addition and multiplication by scalars defined, as usual, by [(𝑥𝑛)] + [(𝑦𝑛)] =
[(𝑥𝑛 + 𝑦𝑛)] and 𝜆[(𝑥𝑛)] = [(𝜆𝑥𝑛)], where [(𝑥𝑛)] denotes the equivalence class con-
taining the 𝑝𝑠-Cauchy sequence (𝑥𝑛). Based on Lemma 2.1.18, one can define on
the space �̃� an asymmetric norm 𝑝 by

𝑝([(𝑥𝑛)]) = lim
𝑛

𝑝(𝑥𝑛) , (2.1.32)

for any 𝑝𝑠-Cauchy sequence (𝑥𝑛) in 𝑋.

As it is known, equipped with the norm

𝑝𝑠([(𝑥𝑛)]) = lim
𝑛

𝑝𝑠(𝑥𝑛) , (2.1.33)
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the space (�̃�, 𝑝𝑠) is a Banach space and the mapping 𝑖 : 𝑋 → �̃� defined by

𝑖(𝑥) = [(𝑥𝑛)] where 𝑥𝑛 = 𝑥, ∀𝑛 ∈ ℕ , (2.1.34)

is a linear isometry of 𝑋 into (�̃�, 𝑝𝑠) such that 𝑖(𝑋) is 𝑝𝑠-dense in �̃�. Hence, the
fact that (𝑋, 𝑝) is biBanach, meaning that (�̃�, (𝑝)𝑠) is Banach, will follow once we
prove the equality

(𝑝)𝑠 = 𝑝𝑠 . (2.1.35)

For a 𝑝𝑠-Cauchy sequence (𝑥𝑛) in𝑋, let 𝛼𝑛 = 𝑝(𝑥𝑛) and 𝛽𝑛 = 𝑝(−𝑥𝑛), 𝑛 ∈ ℕ.
Then

𝑝𝑠([𝑥𝑛]) = lim
𝑛

𝑝𝑠(𝑥𝑛) = lim
𝑛
(𝛼𝑛 ∨ 𝛽𝑛) = (lim

𝑛
𝛼𝑛) ∨ (lim

𝑛
𝛽𝑛)

= 𝑝([(𝑥𝑛)]) ∨ 𝑝(−[(𝑥𝑛)]) = (𝑝)𝑠([(𝑥𝑛)]) .
Remark 2.1.19. The fact that 𝛼𝑛 → 𝛼 and 𝛽𝑛 → 𝛽 implies 𝛼𝑛∨𝛽𝑛 → 𝛼∨𝛽 follows
from the relations

𝛼𝑛 ∨ 𝛽𝑛 =
𝛼𝑛 + 𝛽𝑛 + ∣𝛼𝑛 − 𝛽𝑛∣

2
→ 𝛼+ 𝛽 + ∣𝛼− 𝛽∣

2
= 𝛼 ∨ 𝛽 .

We summarize the results in the following theorem.

Theorem 2.1.20. Let (𝑋, 𝑝) be an asymmetric normed space, �̃� the space con-
structed above and 𝑝, 𝑝𝑠 the norms on �̃� given by (2.1.32) and (2.1.33), respec-
tively.

1. The space (�̃�, 𝑝) is biBanach, or, equivalently, (�̃�, (𝑝)𝑠) is a Banach space.

2. The mapping 𝑖 : 𝑋 → �̃�, defined by (2.1.34), is a linear isometry of (𝑋, 𝑝)
into (�̃�, 𝑝) and the space 𝑖(𝑋) is 𝑝𝑠-dense in �̃�.

3. If (𝑌, 𝑞) is an asymmetric biBanach space such that (𝑋, 𝑝) is isometrically
isomorphic to a 𝑞𝑠-dense subspace of 𝑌, then (𝑌, 𝑞) is isometrically isomorphic
to (�̃�, 𝑝).

2.1.6 Asymmetric topologies on normed lattices

Alegre, Ferrer and Gregori, [77] and [6, 8], introduced an asymmetric norm on
a normed lattice and studied the properties of the induced quasi-uniformity and
topology, in connection with the usual properties of normed lattices.

An ordered vector space is real vector space 𝑋 equipped with a partial order
relation such that

𝑥 ≤ 𝑦 ⇒ 𝑥+ 𝑧 ≤ 𝑦 + 𝑧 and 𝑡𝑥 ≤ 𝑡𝑦 , (2.1.36)

for all 𝑧 ∈ 𝑋 and 𝑡 ≥ 0. Denoting by 𝑋+ the cone of positive elements, 𝑋+ =
{𝑥 ∈ 𝑋 ;𝑥 ≥ 0}, it follows that

𝑥 ≤ 𝑦 ⇐⇒ 𝑦 − 𝑥 ∈ 𝑋+ .
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The ordered vector space (𝑋,≤) is called a vector lattice if every pair 𝑥, 𝑦 of
elements in 𝑋 admits a lowest upper bound 𝑥 ∨ 𝑦. Since

𝑥 ≤ 𝑦 ⇐⇒ −𝑦 ≤ −𝑥 ,

it follows that
𝑥 ∧ 𝑦 = − ((−𝑥) ∨ (−𝑦)) ,

so that every pair of elements 𝑥, 𝑦 ∈ 𝑋 has a greatest lower bound.

Put

𝑥+ = 𝑥 ∨ 0, 𝑥− = (−𝑥) ∨ 0 = −(𝑥 ∧ 0) and ∣𝑥∣ = 𝑥+ + 𝑥− .

It follows that 𝑥 = 𝑥+ − 𝑥−.
A norm ∥ ⋅ ∥ on an ordered vector space (𝑋,≤) is called a lattice norm if it

satisfies one of the following equivalent conditions:

(i) ∣𝑥∣ ≤ ∣𝑦∣ ⇒ ∥𝑥∥ ≤ ∥𝑦∥,
(2.1.37)

(ii) 1∘. ∥∣𝑥∣∥ = ∥𝑥∥, and 2∘. 0 ≤ 𝑥 ≤ 𝑦 ⇒ ∥𝑥∥ ≤ ∥𝑦∥ ,
for all 𝑥, 𝑦 ∈ 𝑋. An ordered vector space equipped with a lattice norm is called a
normed lattice and is denoted by (𝑋, ∥ ⋅ ∥,≤). If, in addition, (𝑋, ∥ ⋅ ∥) is a Banach
space, then (𝑋, ∥ ⋅ ∥,≤) is called a Banach lattice.

A normed lattice (𝑋, ∥ ⋅ ∥,≤) is called an 𝐿-space, 𝑀 -space or an 𝐸-space,
provided that

(L) ∥𝑥+ 𝑦∥ = ∥𝑥∥+ ∥𝑦∥,
(M) ∥𝑥 ∨ 𝑦∥ = ∥𝑥∥ ∨ ∥𝑦∥,
(E) ∥𝑥+ 𝑦∥2 + ∥𝑥− 𝑦∥2 = 2∥𝑥∥2 + 2∥𝑦∥2 ,

for all positive 𝑥, 𝑦 ∈ 𝑋.

To an asymmetric norm 𝑝 on a vector space𝑋 one can associate the following
norms, defined for 𝑥 ∈ 𝑋 by the equalities:

𝑝𝑠𝐿(𝑥) = 𝑝𝑠𝐿(𝑥) = 𝑝(𝑥) + 𝑝(−𝑥), 𝑝𝑠𝑀 (𝑥) = 𝑝𝑠(𝑥) = 𝑝(𝑥) ∨ 𝑝(−𝑥),

𝑝𝑠𝐸(𝑥) =
(
𝑝(𝑥)2 + 𝑝(−𝑥)2

)1/2
.

(2.1.38)

The norm 𝑝𝑠𝑀 is the usual norm 𝑝𝑠 we have associated to an asymmetric
norm 𝑝 and all the norms given in (2.1.38) are equivalent.

A subset 𝑍 of a normed lattice𝑋 is called increasing if for every 𝑦, 𝑧 ∈ 𝑋, 𝑧 ∈
𝑍 and 𝑧 ≤ 𝑦 implies 𝑦 ∈ 𝑍. It is called decreasing if for every 𝑦, 𝑧 ∈ 𝑋, 𝑧 ∈ 𝑍 and
𝑦 ≤ 𝑧 implies 𝑦 ∈ 𝑍.

For a normed lattice (𝑋, ∥ ⋅ ∥,≤) consider the functional
𝑝(𝑥) = ∥𝑥 ∨ 0∥, 𝑥 ∈ 𝑋 . (2.1.39)
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Proposition 2.1.21. The functional 𝑝 given by (2.1.39) is an asymmetric norm on
𝑋 with conjugate

𝑝(𝑥) = ∥𝑥−∥, 𝑥 ∈ 𝑋 . (2.1.40)

The topology 𝜏𝑝 (𝜏𝑝) generated by 𝑝 (𝑝) is 𝑇0 but not 𝑇1.

Proof. If 𝑝(𝑥) = 𝑝(−𝑥) = 0, then ∥𝑥+∥ = 0 implies 𝑥+ = 0 and ∥(−𝑥)+∥ = 0
implies 𝑥− = (−𝑥)+ = 0, so that 𝑥 = 𝑥+ − 𝑥− = 0.

Also, 0 ≤ (𝑥+ 𝑦)+ ≤ 𝑥+ + 𝑦+ implies

𝑝(𝑥+ 𝑦) = ∥(𝑥+ 𝑦)+∥ ≤ ∥𝑥+ + 𝑦+∥ ≤ ∥𝑥+∥+ ∥𝑦+∥ = 𝑝(𝑥) + 𝑝(𝑦) .

The positive homogeneity is obvious.

The conjugate 𝑝 of 𝑝 satisfies the equalities

𝑝(𝑥) = 𝑝(−𝑥) = ∥(−𝑥)+∥ = ∥𝑥−∥ .

Since 𝑝 is an asymmetric norm the topology 𝜏𝑝 is 𝑇0. The topology is 𝑇1 if
and only if 𝑝(𝑥) > 0 for every 𝑥 ∕= 0 (see Proposition 1.1.8.3). But 𝑝(𝑥) = ∥𝑥+∥ = 0
is equivalent to 𝑥+ = 0, that is 𝑥 ≤ 0. That is, excepting the trivial case 𝑋+ = 𝑋,
there are non-null elements 𝑥 ∈ 𝑋 with 𝑥 ≤ 0. □

The remark concerning the separation properties is taken from [51], where
some properties of convergent sequences were also proved. Recall that we denote
by 𝐿𝜌((𝑥𝑛)) the set of all 𝜌-limits of a sequence (𝑥𝑛) in a quasi-semimetric space
(𝑋, 𝜌), see (1.1.8).

Proposition 2.1.22 ([51]). Let (𝑋, ∥⋅∥) be a normed lattice, 𝑝 the asymmetric norm
given by (2.1.39) and (𝑥𝑛) a sequence in 𝑋.

1. If (𝑥𝑛) is 𝑝-convergent, then 𝐿𝜌((𝑥𝑛)) is increasing.

2. The sequence (𝑥𝑛) is 𝑝-convergent to every 𝑧 ∈ 𝑋 such that 𝑥𝑛 ≤ 𝑧 for all
𝑛 ∈ ℕ.

Similar results hold for 𝑝-convergence.

3. If (𝑥𝑛) is 𝑝-convergent, then 𝐿𝜌((𝑥𝑛)) is decreasing.

4. The sequence (𝑥𝑛) is 𝑝-convergent to every 𝑦 ∈ 𝑋 such that 𝑦 ≤ 𝑥𝑛 for all
𝑛 ∈ ℕ.

The following proposition contains some properties of this asymmetric norm
and of the corresponding topology and quasi-uniformity.

Proposition 2.1.23. Let (𝑋, ∥⋅∥,≤) be a normed lattice and 𝑝 the asymmetric norm
given by (2.1.39).

1. The norms 𝑝𝑠𝑀 , 𝑝𝑠𝐿 and 𝑝𝑠𝐸 are mutually equivalent norms on 𝑋 which are
also equivalent to the original norm. Further, if 𝑋 is an 𝑀 -space, an 𝐿-space,
or an 𝐸-space, then 𝑝𝑠𝑀 , 𝑝𝑠𝐿, respectively 𝑝𝑠𝐸 agree with the original norm ∥⋅∥.
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2. The quasi-uniformity 𝒰𝑝 determines the normed lattice structure in the sense
that 𝜏∥⋅∥ = 𝜏(𝒰𝑠𝑝 ) and Graph(≤) = ∩𝒰𝑝, where Graph(≤) = {(𝑥, 𝑦) ∈ 𝑋 ×
𝑋 : 𝑥 ≤ 𝑦}.

3. A linear functional 𝜑 : 𝑋 → ℝ is (𝑝, 𝑢)-continuous if and only if it is (∥⋅∥, ∣⋅∣)-
continuous and positive, that is 𝜑(𝑥) ≥ 0 whenever 𝑥 ≥ 0.

4. A subset 𝑌 of 𝑋 is 𝑝-open (𝑝-open) if and only if it is ∥⋅∥-open and decreasing
(resp. increasing).

Proof. 1. Since the norms 𝑝𝑠𝐿, 𝑝𝑠𝐿, 𝑝𝑠𝐿 are mutually equivalent, it remains to show
their equivalence with ∥ ⋅ ∥. From (2.1.40)

∥𝑥∥ = ∥𝑥+ − 𝑥−∥ ≤ ∥𝑥+∥+ ∥𝑥−∥ = 𝑝(𝑥) + 𝑝(−𝑥) = 𝑝𝑠𝐿(𝑥) .

On the other side, by (2.1.37), 𝑥+ ≤ ∣𝑥∣, 𝑥− ≤ ∣𝑥∣ implies ∥𝑥+∥ ≤ ∥𝑥∥ and
∥𝑥−∥ ≤ ∥𝑥∥, so that

𝑝𝑠𝐿(𝑥) ≤ ∥𝑥+∥+ ∥𝑥−∥ ≤ 2∥𝑥∥ .
If 𝑋 is an 𝐿-space, then

𝑝𝑠𝐿(𝑥) = ∥𝑥+∥+ ∥𝑥−∥ = ∥𝑥+ + 𝑥−∥ = ∥∣𝑥∣∥ = ∥𝑥∥ .

The case when 𝑋 is an 𝑀 -space follows similarly using the equality ∣𝑥∣ =
𝑥+ ∨ 𝑥−.

If 𝑋 is an 𝐸-space, then

2 (𝑝𝑠𝐸(𝑥))
2
= 2

(∥𝑥+∥2 + ∥𝑥−∥2)
= ∥𝑥+ + 𝑥−∥2 + ∥𝑥+ − 𝑥−∥2 = ∥∣𝑥∣∥2 + ∥𝑥∥2 = 2∥𝑥∥2 .

2. The quasi-uniformity 𝒰𝑝 is generated by the set

𝑈𝜀 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑝(𝑦 − 𝑥) < 𝜀} ,
and the uniformity 𝒰𝑠𝑝 by the sets

𝑈𝑠
𝜀 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑝𝑠𝑀 (𝑦 − 𝑥) < 𝜀} .

Since the norm 𝑝𝑠𝑀 is equivalent to the norm ∥ ⋅ ∥, it follows that it generates
the same topology as ∥ ⋅ ∥.

To prove the equality Graph(≤) = ∩𝒰𝑝 observe that
(𝑥, 𝑦) ∈

∩
𝒰𝑝 ⇐⇒ ∀𝜀, 𝑝(𝑦 − 𝑥) < 𝜀 ⇐⇒ 𝑝(𝑦 − 𝑥) = 0 ⇐⇒ ∥(𝑥− 𝑦)+∥ = 0

⇐⇒ (𝑥− 𝑦)+ = 0 ⇐⇒ 𝑥− 𝑦 ≤ 0 ⇐⇒ 𝑥 ≤ 𝑦 .

3. Let 𝑓 : (𝑋, 𝑝) → (ℝ, 𝑢) be linear and continuous. Then 𝑓 is (𝑝𝑠𝑀 , ∣ ⋅ ∣)-
continuous, and since the norm 𝑝𝑠𝑀 is equivalent to ∥ ⋅∥, 𝑓 is (∥ ⋅∥, ∣ ⋅ ∣)-continuous.
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The (𝑝, 𝑢)-continuity of 𝑓 implies the existence of 𝛽 ≥ 0 such that
∀𝑧 ∈ 𝑋, 𝑓(𝑧) ≤ 𝛽𝑝(𝑧) .

If 𝑓(𝑥) < 0 for some 𝑥 ≥ 0, then 𝑦 = 𝑥/𝑓(𝑥) ≤ 0, and so 𝑝(𝑦) = ∥𝑦+∥ = 0, that
leads to the contradiction

1 = 𝑓(𝑦) ≤ 𝛽𝑝(𝑦) = 0 .

Conversely, suppose that 𝑓 : (𝑋, ∥ ⋅ ∥) → ℝ, ∣ ⋅ ∣) is linear, continuous and
positive. Then there exists 𝛽 ≥ 0 such that

𝑓(𝑥) ≤ 𝛽∥𝑥∥, 𝑥 ∈ 𝑋 ,

implying
𝑓(𝑥) = 𝑓(𝑥+)− 𝑓(𝑥−) ≤ 𝑓(𝑥+) ≤ 𝛽∥𝑥+∥ = 𝛽𝑝(𝑥) ,

for all 𝑥 ∈ 𝑋, proving the (𝑝, 𝑢)-continuity of the functional 𝑓 .

4. Suppose that 𝐺 ⊂ 𝑋 is 𝑝-open. For 𝑥 ∈ 𝐺 there exists 𝑟 > 0 such that
𝐵𝑝(𝑥, 𝑟) ⊂ 𝐺 Then 𝐵∥ ⋅ ∥(𝑥, 𝑟) ⊂ 𝐵𝑝(𝑥, 𝑟), showing that 𝐺 is ∥ ⋅ ∥-open, and 𝑦 ≤ 𝑥
implies (𝑦 − 𝑥)+ = 0 and 𝑝(𝑦 − 𝑥) = ∥(𝑦 − 𝑥)+∥ = 0 < 𝑟.

Conversely, suppose that 𝐺 is ∥ ⋅ ∥-open and decreasing and let 𝑥 ∈ 𝐺. Then
there exists 𝑟 > 0 such that 𝐵∥ ⋅ ∥(𝑥, 𝑟) ⊂ 𝐺. We shall show that 𝐵𝑝(𝑥, 𝑟) ⊂ 𝐺.
Indeed, let 𝑦 ∈ 𝐵𝑝(𝑥, 𝑟). If 𝑦 ≤ 𝑥, then 𝑦 ∈ 𝐺, because 𝐺 is decreasing. If 𝑦 > 𝑥,
then (𝑦− 𝑥)+ = 𝑦− 𝑥, so that ∥𝑦− 𝑥∥ = ∥(𝑦− 𝑥)+∥ = 𝑝(𝑦− 𝑥) < 𝑟, showing that
𝑦 ∈ 𝐵∥ ⋅ ∥(𝑥, 𝑟) ⊂ 𝐺.

The case of 𝑝-open sets can be treated similarly. □
Remark 2.1.24. Properties 1–3 are taken from [77] and 4 from [6].

In all examples given below of asymmetric normed lattices the order is the
pointwise order

𝑥 ≤ 𝑦 ⇐⇒ ∀𝑘 ∈ ℕ, 𝑥𝑘 ≤ 𝑥𝑘,

if 𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) are sequences (possibly finite) of real numbers, and

𝑓 ≤ 𝑔 ⇐⇒ ∀𝑡 ∈ 𝑇, 𝑓(𝑡) ≤ 𝑔(𝑡),

if 𝑓, 𝑔 are real-valued functions defined on a set 𝑇 .

Consider the Banach lattices ℓ𝑝, 1 ≤ 𝑝 < ∞, of all real sequences 𝑥 = (𝑥𝑘)
such that

∥𝑥∥𝑝 :=
(∑

𝑘

∣𝑥𝑘∣𝑝
)1,𝑝

.

By ℓ∞ one denotes the Banach lattice of all bounded sequences with the
sup-norm ∥ ⋅ ∥∞ and by 𝑐0 its subspace formed by all converging to 0 sequences.

If 𝑇 is a Hausdorff compact topological space, then 𝐶(𝑇 ) denotes the Banach
lattice of all real-valued continuous functions on 𝑇 with the sup-norm ∥ ⋅ ∥∞.
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In all of these cases we shall use the notation

∥𝑥∥+ = ∥𝑥+∥ and ∥𝑥∥− = ∥𝑥−∥
for the asymmetric norm and its conjugate in a normed lattice (𝑋, ∥ ⋅ ∥).

In ℝ𝑚 one considers the Euclidean norm ∥ ⋅ ∥2, but the results hold for any
other lattice norm on ℝ𝑚, because for two equivalent lattice norms ∥ ⋅ ∥, ∣∥ ⋅ ∥∣ on
ℝ𝑚, the corresponding asymmetric norms ∥ ⋅ ∥+, ∣∥ ⋅ ∥∣− are also equivalent ([51,
Proposition 2.5].

We mention the following characterizations of convergence in some of these
asymmetric normed lattices obtained in [51].

Proposition 2.1.25.

1. If a sequence 𝑥𝑛 = (𝑥𝑛,𝑖)𝑖∈ℕ, 𝑛 ∈ ℕ, in 𝑋 = ℓ𝑝, 1 ≤ 𝑝 ≤ ∞, or in 𝑋 = 𝑐0, is
∥ ⋅ ∥+𝑝 -convergent to 𝑥 = (𝑥𝑖)𝑖∈ℕ ∈ 𝑋, then

∀𝑖 ∈ ℕ, 𝑥𝑛,𝑖
𝑢−→ 𝑥𝑖 as 𝑛→∞. (2.1.41)

2. If 1 ≤ 𝑝 <∞, then 𝑥𝑛
∥⋅∥+𝑝−−−→ 𝑥 if and only if (2.1.41) holds and

sup
𝑛∈ℕ

∞∑
𝑖=𝑚

(𝑥+
𝑛,𝑖)

𝑝 → 0 as 𝑚→∞. (2.1.42)

3. If 𝑋 = 𝑐0, then 𝑥𝑛
∥⋅∥+∞−−−→ 𝑥 if and only if (2.1.41) holds and

sup
𝑛∈ℕ

sup
𝑖≥𝑚

𝑥+
𝑛,𝑖 → 0 as 𝑚→∞. (2.1.43)

The following completeness results for these concrete Banach lattices were
obtained also in [51], as consequences of some more general results concerning
completeness in asymmetric normed lattices.

Theorem 2.1.26. The asymmetric normed lattices (ℝ𝑚, ∥ ⋅ ∥±2 ), (𝐶(𝑇 ), ∥ ⋅ ∥±∞),
(ℓ∞, ∥ ⋅ ∥±∞), (𝑐0, ∥ ⋅ ∥+∞) and (ℓ𝑝, ∥ ⋅ ∥+𝑝 ), 1 ≤ 𝑝 < ∞, are all left 𝐾-sequentially
complete.

Now we shall present some Baire properties of the asymmetric topology. As
it is remarked in [6, Proposition 1] the asymmetric topology 𝜏𝑝 of a normed lattice
is never Baire.

Proposition 2.1.27. Let (𝑋, ∥ ⋅ ∥,≤) be a normed lattice.

1. Every nonempty 𝑝-open subset of 𝑋 is 𝑝-dense in 𝑋.

2. Any 𝑝-dense increasing subset of 𝑋 is ∥ ⋅ ∥-dense in 𝑋. Similarly, a 𝑝-dense
decreasing subset of 𝑋 is ∥ ⋅ ∥-dense in 𝑋.

3. The associated asymmetric normed space (𝑋, 𝑝) is never Baire.
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Proof. 1. Let 𝐺 be a nonempty 𝑝-open subset of 𝑋 . For an arbitrary nonempty
𝑈 ∈ 𝜏𝑝 let 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝑈. Since both 𝐺 and 𝑈 are decreasing it follows that
𝑧 = 𝑥 ∧ 𝑦 ∈ 𝐺 ∩ 𝑈, so that 𝐺 is 𝑝-dense in 𝑋.

2. Suppose that 𝑌 ⊂ 𝑋 is 𝑝-dense and increasing. For 𝑥 ∈ 𝑋 and 𝜀 > 0
there exists 𝑦 ∈ 𝑌 such that 𝑝(𝑦 − 𝑥) < 𝜀. Then

𝑦 = 𝑥+ (𝑦 − 𝑥) ≤ 𝑥+ (𝑦 − 𝑥)+

implies 𝑧 := 𝑥+ (𝑦 − 𝑥)+ ∈ 𝑌. Since

∥𝑧 − 𝑥∥ = ∥(𝑦 − 𝑥)+∥ = 𝑝(𝑦 − 𝑥) < 𝜀 ,

it follows that 𝑌 is ∥ ⋅ ∥-dense in 𝑋.

The second case can be treated similarly.

3. For 𝑥 < 0 in 𝑋 consider the family 𝐺𝑛 = 𝐵𝑝(𝑛𝑥, 1), 𝑛 ∈ ℕ, of 𝑝-open sets
and show that ∩𝑛𝐺𝑛 = ∅. Indeed, if 𝑦 ∈ ∩𝑛𝐺𝑛 = ∅, then

𝑛∥𝑥∥ = ∥𝑛𝑥∥ = ∥ − 𝑛𝑥∥ = ∥(−𝑛𝑥)+∥ = ∥(𝑦 − 𝑛𝑥− 𝑦)+∥
≤ ∥(𝑦 − 𝑛𝑥)+∥+ ∥(−𝑦)+∥ < 1 + ∥(−𝑦)+∥ ,

for all 𝑛 ∈ ℕ, leading to the contradiction ∥(−𝑦)+∥ =∞.

Consequently, 𝐺𝑛, 𝑛 ∈ ℕ, is a family of 𝑝-open 𝑝-dense subsets of 𝑋 whose
intersection is not 𝑝-dense in 𝑋 , showing that 𝑋 is not a Baire space. □

For this reason the authors defined in loc. cit. another property: a normed
lattice is called quasi-Baire if the intersection of any sequence of monotonic (all of
the same kind) ∥ ⋅ ∥-dense sets is ∥ ⋅ ∥-dense. By a monotonic set one understands
a set that is increasing or decreasing. Recall that a bitopological space (𝑇, 𝜏, 𝜈) is
called pairwise Baire provided the intersection of any sequence of 𝜏 -open 𝜈-dense
sets is 𝜈-dense, and the intersection of any sequence of 𝜈-open 𝜏 -dense sets is
𝜏 -dense (see Subsection 1.2.4).

Let (𝑋, ∥ ⋅ ∥,≤) be a normed lattice and 𝑋∗ the dual space of (𝑋, ∥ ⋅ ∥). A
subset 𝐹 ⊂ 𝑋∗ is called order determining if

𝑥 ≤ 𝑦 ⇐⇒ ∀𝜑 ∈ 𝐹, 𝜑(𝑥) ≤ 𝜑(𝑦) .

The following proposition puts in evidence the relevance of this notion for
the quasi-Baire property.

Proposition 2.1.28. Let (𝑋, ∥⋅∥,≤) be a normed lattice and 𝐹 an order determining
subset of 𝑋∗. If

sup
𝑥∈𝑋

inf
𝜑∈𝐹

𝜑(𝑥) > 0 ,

then 𝑋 is a quasi-Baire space.
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In fact, the proof given in [6] shows that𝑋 does not contain decreasing proper
dense subsets, so it is quasi-Baire in a trivial way.

Based on this proposition one can give the following example of a quasi-Baire
lattice.

Example 2.1.29 ([6]). Let𝒜 be an algebra of subsets of a nonempty set 𝑇 . Consider
the linear space ℓ∞0 (𝑇,𝒜) generated by the set {𝜒𝐴 : 𝐴 ∈ 𝒜} of characteristic
functions of sets in 𝒜, equipped with the norm ∥𝑥∥ = sup{∣𝑥(𝑡)∣ : 𝑡 ∈ 𝑇 } and the
pointwise order.

Then ℓ∞0 (𝑇,𝒜) is a quasi-Baire space.
Let𝑋 = ℓ∞0 (𝑇,𝒜). It is well known that the dual of𝑋 is the space ba(𝑇,𝒜) of

all finitely additive bounded measures on 𝒜. It is obvious that the Dirac measures
𝛿𝑡, 𝑡 ∈ 𝑇, defined by 𝛿𝑡(𝑥) = 𝑥(𝑡), 𝑥 ∈ 𝑋, determines the order in 𝑋 . Because
𝛿𝑡(𝜒𝑇 ) = 1, for all 𝑡 ∈ 𝑇 , it follows that

sup{ inf
𝑡∈𝑇

𝛿𝑡(𝑥) : 𝑥 ∈ 𝑋} ≥ inf
𝑡∈𝑇

𝛿𝑡(𝜒𝑇 ) = 1 ,

so that, By Proposition 2.1.28, 𝑋 is quasi-Baire.

Theorem 2.1.30 ([6]). A normed lattice (𝑋, ∥ ⋅ ∥,≤) is quasi-Baire if and only if
the associated bitopological space (𝑋, 𝜏𝑝, 𝜏𝑝) is pairwise Baire.

Proof. Suppose that 𝑋 is quasi-Baire and let 𝐺𝑛, 𝑛 ∈ ℕ, be a family of 𝑝-open
𝑝-dense subsets of 𝑋 . By Proposition 2.1.27.1, each 𝐺𝑛 is decreasing, so that, by
the second assertion of the same proposition, 𝐺𝑛 is ∥ ⋅ ∥-dense in 𝑋 . Since 𝑋 is
quasi-Baire, it follows that ∩𝑛𝐺𝑛 is ∥ ⋅ ∥-dense in 𝑋, and so 𝑝-dense too.

Similarly, if 𝐺𝑛, 𝑛 ∈ ℕ, is a family of 𝑝-open 𝑝-dense subsets of 𝑋 , then
∩𝑛𝐺𝑛 is 𝑝-dense in 𝑋 .

Consequently, 𝑋 is pairwise Baire.

Conversely, suppose that 𝑋 is pairwise Baire and let 𝐺𝑛, 𝑛 ∈ ℕ, be a family
of decreasing ∥ ⋅ ∥-open and ∥ ⋅ ∥-dense subsets of 𝑋. By Proposition 2.1.23.4, each
𝐺𝑛 is 𝑝-open and 𝑝-dense in 𝑋 , so that their intersection is 𝑝-dense in 𝑋 . By
Proposition 2.1.27.2, ∩𝑛𝐺𝑛 is ∥ ⋅ ∥-dense in 𝑋.

If the sets 𝐺𝑛, 𝑛 ∈ ℕ, are increasing ∥ ⋅ ∥-open and ∥ ⋅ ∥-dense in 𝑋, one
proceeds similarly. □

We shall present now an example given by Alegre [2] of an asymmetric dual
of a normed lattice.

Consider the real Banach space ℓ1 with the usual norm

∥𝑥∥1 =
∞∑
𝑖=1

∣𝑥𝑖∣, for 𝑥 = (𝑥𝑖) ∈ ℓ1 ,

and the pointwise order

𝑥 ≤ 𝑦 ⇐⇒ ∀𝑖 ∈ ℕ, 𝑥𝑖 ≤ 𝑦𝑖 .
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In this case
𝑥+ = (𝑥+

𝑖 )𝑖∈ℕ .

The dual of ℓ1 is the space ℓ∞ of all bounded sequences of real numbers with
the supremum norm

∥𝑥∥∞ = sup{∣𝑥𝑖∣ : 𝑖 ∈ ℕ}, for 𝑥 = (𝑥𝑖) ∈ ℓ∞ .

The mapping 𝑦 ,→ 𝑓𝑦, where for 𝑦 ∈ ℓ∞,

𝑓𝑦(𝑥) =

∞∑
𝑖=1

𝑥𝑖𝑦𝑖, for 𝑥 = (𝑥𝑖) ∈ ℓ1 ,

is an isometric isomorphism between (ℓ1)∗ and ℓ∞.

Let

𝑋 = {𝑥 = (𝑥𝑛) ∈ ℓ1 : 𝑥1 + 𝑥2 = 0} and 𝐻 = {𝑦 = (𝑦𝑛) ∈ ℓ∞ : 𝑦1 + 𝑦2 = 0} .

Consider on 𝑋 the induced norm ∥ ⋅ ∥1 and the associated asymmetric norm
𝑝(𝑥) = ∥𝑥+∥1, 𝑥 ∈ 𝑋, and consider 𝐻 equipped with the norm ∥ ⋅ ∥∞. Let
𝑋♭
𝑝 = (𝑋, 𝑝)♭ be the asymmetric dual of 𝑋 and let sp(𝑋♭

𝑝) = 𝑋♭
𝑝−𝑋♭

𝑝 be the linear

subspace of 𝑋∗ = (𝑋, ∥ ⋅ ∥1)∗ generated by 𝑋♭
𝑝 equipped with the norm

∥𝑓∥∗1 = sup{∣𝑓(𝑥)∣ : 𝑥 ∈ 𝑋, ∥𝑥∥1 ≤ 1} .

Denote by (𝑒𝑛) the canonical Schauder basis of ℓ
1, where for each 𝑛 ∈ ℕ,

𝑒𝑛,𝑖 = 𝛿𝑛,𝑖, 𝑖 ∈ ℕ ,

(𝛿𝑛,𝑖 is the Kronecker symbol).

Proposition 2.1.31. The mapping Φ defined on (sp(𝑋♭
𝑝), ∥ ⋅ ∥∗1) by

Φ(𝑓) =

(
1

2
(𝑒1 − 𝑒2),

1

2
(𝑒2 − 𝑒1), 𝑓(𝑒3), . . .

)
, 𝑓 ∈ sp(𝑋♭

𝑝) , (2.1.44)

is an isometrical isomorphism between the spaces (sp(𝑋♭
𝑝), ∥ ⋅ ∥∗1) and (𝐻, ∥ ⋅ ∥∞).

Proof. Let 𝑓 ∈ sp(𝑋♭
𝑝) ⊂ 𝑋∗. Then there exists 𝛽 ≥ 0 such that

∣𝑓(𝑥)∣ ≤ 𝛽∥𝑥∥1, 𝑥 ∈ 𝑋 ,

which shows that Φ(𝑓) ∈ 𝐻. It is obvious that Φ : 𝑋 → 𝐻 is linear.

If Φ(𝑓) = 0, then 𝑓(𝑒1 − 𝑒2) = 0, 𝑓(𝑒3) = 0, . . . . Since every 𝑥 ∈ 𝑋 can be
written as 𝑥 = 𝑥1(𝑒1 − 𝑒2) + 𝑥3𝑒3 + ⋅ ⋅ ⋅ it follows that 𝑓(𝑥) = 0, that is 𝑓 is the
null functional on 𝑋 , showing that Φ is injective.
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To show that Φ is surjective, for 𝑦 = (𝑦𝑛) ∈ 𝐻 put

𝜑(𝑥) = 2𝑥1𝑦
+
1 +

∞∑
𝑖=3

𝑥𝑖𝑦
+
𝑖 and 𝜓(𝑥) = 2𝑥1𝑦

−
1 +

∞∑
𝑖=3

𝑥𝑖𝑦
−
𝑖 .

Since 𝜑, 𝜓 : 𝑋 → ℝ are positive and (∥ ⋅ ∥1, ∣ ⋅ ∣)-continuous, it follows that
𝜑, 𝜓 ∈ 𝑋♭

𝑝, and 𝑓 = 𝜑−𝜓 ∈ sp(𝑋♭
𝑝). Since Φ(𝑓) = 𝑦, the mapping Φ is surjective,

so bijective, and

Φ−1(𝑦)(𝑥) = 2𝑥1𝑦1 +
∑
𝑖≥3

𝑥𝑖𝑦𝑖 ,

for any 𝑥 = (𝑥1,−𝑥1, 𝑥3, . . . ) ∈ 𝑋.

The functional Φ−1(𝑦) acts on ℓ1 by the rule

Φ−1(𝑦)(𝑧) = 𝑧1𝑦1 − 𝑧2𝑦2 +
∑
𝑖≥3

𝑧𝑖𝑦𝑖 ,

for any 𝑧 = (𝑧1, 𝑧2, . . . ) ∈ ℓ1.

It remained to prove that Φ is an isometry.

For 𝑧 ∈ ℓ1 with ∥𝑧∥1 ≤ 1, the element 𝑥 given by

𝑥 =

(
1

2
(𝑧1 − 𝑧2),

1

2
(𝑧2 − 𝑧1), 𝑧3, . . .

)
belongs to 𝑋, ∥𝑥∥1 ≤ ∥𝑧∥1 ≤ 1 and Φ−1(𝑦)(𝑥) = Φ−1(𝑦)(𝑧).

It follows that

∣Φ−1(𝑦)(𝑧)∣ = ∣Φ−1(𝑦)(𝑥)∣ ≤ ∥Φ−1(𝑦)∥∗1 .

Since the dual of (ℓ1, ∥ ⋅ ∥1) is (ℓ∞, ∥ ⋅ ∥∞),

sup{∣Φ−1(𝑦)(𝑧)∣ : 𝑧 ∈ ℓ1, ∥𝑧∥1 ≤ 1} = ∥𝑦∥∞ ,

so that ∥𝑦∥∞ ≤ ∥Φ−1(𝑦)∥∗1.
On the other side, for every 𝑥 ∈ 𝑋 ,

∣Φ−1(𝑦)(𝑥)∣ = ∣2𝑥1𝑦1 +
∑
𝑖≥3

𝑥𝑖𝑦𝑖∣ ≤ ∥𝑦∥∞ ∥𝑥∥1 ,

implying ∥Φ−1(𝑦)∥∗1 ≤ ∥𝑦∥∞.

Consequently, ∥Φ−1(𝑦)∥∗1 = ∥𝑦∥∞. □
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2.2 Hahn-Banach type theorems and the separation
of convex sets

One of the fundamental principles of functional analysis is the Hahn-Banach ex-
tension theorem for a linear functional dominated by a sublinear functional. Based
on this theorem one can prove extension results for lsc linear functionals on asym-
metric normed spaces and on asymmetric LCS. Some separation results for con-
vex subsets of asymmetric LCS, relying on the properties of the Minkowski gauge
functional and on the extension results, are also proved. As an application, an
asymmetric version of the Krein-Milman theorem is proved.

2.2.1 Hahn-Banach type theorems

Let 𝑋 be a real vector space. Recall that a functional 𝑝 : 𝑋 → ℝ is called sublin-
ear if

(i) 𝑝(𝜆𝑥) = 𝜆𝑝(𝑥) and (ii) 𝑝(𝑥+ 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦) ,

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ≥ 0.
Notice that, as defined, a sublinear functional need not be positive. A positive

sublinear functional is an asymmetric seminorm.

A sublinear functional is called a seminorm if instead of (i) it satisfies

𝑝(𝜆𝑥) = ∣𝜆∣𝑝(𝑥) ,

for all 𝑥 ∈ 𝑋 and 𝜆 ∈ ℝ. A seminorm is necessarily positive, that is 𝑝(𝑥) ≥ 0 for
all 𝑥 ∈ 𝑋. A seminorm is called a norm if

(iii) 𝑝(𝑥) = 0 ⇐⇒ 𝑥 = 0 .

A function 𝑓 : 𝑋 → ℝ is said to be dominated by a function 𝑔 : 𝑋 → ℝ if

𝑓(𝑥) ≤ 𝑔(𝑥) ,

for all 𝑥 ∈ 𝑋. If the above inequality holds only for 𝑥 in a subset 𝑌 of 𝑋 , then we
say that 𝑓 is dominated by 𝑔 on 𝑌 .

Theorem 2.2.1 (Hahn-Banach Extension Theorem). Let 𝑋 be a real vector space
and 𝑝 : 𝑋 → ℝ a sublinear functional. If 𝑌 is a subspace of 𝑋 and 𝑓 : 𝑌 → ℝ
is a linear functional dominated by 𝑝 on 𝑌 then there exists a linear functional
𝐹 : 𝑋 → ℝ dominated by 𝑝 on 𝑋 such that 𝐹 ∣𝑌 = 𝑓.

We present now the extension results in the asymmetric case.

Theorem 2.2.2. Let (𝑋, 𝑝) be a space with asymmetric seminorm.
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1. If 𝑌 is a subspace of 𝑋 and 𝜑0 : 𝑌 → ℝ is a continuous linear functional
on the asymmetric seminormed space (𝑌, 𝑝∣𝑌 ), then there exists a continuous
linear functional 𝜑 : 𝑋 → ℝ such that

𝜑∣𝑌 = 𝜑0 and ∥𝜑∣𝑝 = ∥𝜑0∣𝑝 .

2. If 𝑥0 is a point in 𝑋 with 𝑝(𝑥0) > 0, then there exists a continuous linear
functional 𝜑 : 𝑋 → ℝ such that

∥𝜑∣𝑝 = 1 and 𝜑(𝑥0) = 𝑝(𝑥0) . (2.2.1)

Proof. 1. The inequality

𝜑0(𝑦) ≤ ∥𝜑0∣𝑝(𝑦) ,
valid for all 𝑦 ∈ 𝑌, shows that the linear functional 𝜑0 is dominated by the sublinear
functional 𝑞(⋅) = ∥𝜑0∣𝑝(⋅). By the Hahn-Banach Theorem (Theorem 2.2.1), it has
a linear extension 𝜑 : 𝑋 → ℝ dominated by 𝑞, that is

𝜑(𝑥) ≤ ∥𝜑0∣𝑝(𝑥) ,

for all 𝑥 ∈ 𝑋 , implying ∥𝜑∣ ≤ ∥𝜑0∣.
The relations

∥𝜑∣ = sup{𝜑(𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) ≤ 1} ≥ sup{𝜑(𝑦) : 𝑦 ∈ 𝑋, 𝑝(𝑦) ≤ 1}
= sup{𝜑(𝑥) : 𝑥 ∈ 𝑋, 𝑝(𝑥) ≤ 1} ,

prove the reverse inequality, so that ∥𝜑∣ = ∥𝜑0∣.
2. Let 𝑌 = ℝ𝑥0 the one-dimensional subspace generated by 𝑥0. Define 𝜑0 :

𝑌 → ℝ by 𝜑0(𝑡𝑥0) = 𝑡𝑝(𝑥0), 𝑡 ∈ ℝ.

Since for 𝑡 ≥ 0, 𝜑0(𝑡𝑥0) = 𝑡𝑝(𝑥0) = 𝑝(𝑡𝑥0) and 𝜑0(𝑡𝑥0) = 𝑡𝑝(𝑥0) ≤ 0 ≤ 𝑝(𝑡𝑥0)
for 𝑡 < 0, it follows that the linear functional 𝜑0 is dominated by 𝑝 on 𝑌, and
∥𝜑0∣ ≤ 1. The equality 𝜑(𝑥0/𝑝(𝑥0)) = 1 implies ∥𝜑0∣ = 1. □

Remark 2.2.3. 1. The conditions (2.2.1) are equivalent to

𝜑(𝑥0) = 𝑝(𝑥0) and ∀𝑥 ∈ 𝑋, 𝜑(𝑥) ≤ 𝑝(𝑥) . (2.2.2)

2. Taking 𝜓 = (1/𝑝(𝑥0)) 𝜑 it follows that 𝜓 satisfies the conditions

𝜓(𝑥0) = 1 and ∀𝑥 ∈ 𝑋, 𝜓(𝑥) ≤ 1

𝑝(𝑥0)
𝑝(𝑥) ,

or, equivalently,

∥𝜓∣𝑝 = 1

𝑝(𝑥0)
and 𝜓(𝑥0) = 1 .
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We agree to call a functional 𝜑 satisfying the conclusions of the first point of
the theorem above a norm preserving extension of 𝜑0.

From the second point of the theorem one obtains as corollary a well-known
and useful result in normed spaces.

Corollary 2.2.4. Let (𝑋, 𝑝) be an asymmetric seminormed space, 𝑥0 ∈ 𝑋 and 𝑋♭
𝑝

its dual. If 𝑝(𝑥0) > 0 then

𝑝(𝑥0) = sup{𝜑(𝑥0) : 𝜑 ∈ 𝑋♭
𝑝, ∥𝜑∣𝑝 ≤ 1} .

Proof. Denote by 𝑠 the supremum in the right-hand side of the above formula.
Since 𝜑(𝑥0) ≤ ∥𝜑∣𝑝 𝑝(𝑥0) ≤ 𝑝(𝑥0) for every 𝜑 ∈ 𝑋♭

𝑝 with ∥𝜑∣𝑝 ≤ 1, it follows

that 𝑠 ≤ 𝑝(𝑥0). Choosing 𝜑 ∈ 𝑋♭
𝑝 as in Theorem 2.2.2.2, it follows that 𝑝(𝑥0) =

𝜑(𝑥0) ≤ 𝑠. □

In the case of asymmetric LCS one obtains the existence of continuous linear
extensions.

Proposition 2.2.5. Let (𝑋,𝑃 ) be an asymmetric LCS and 𝑌 a subspace of 𝑋.
Then every 𝜏(𝑃 )-continuous linear functional on 𝑌 has a 𝜏(𝑃 )-continuous linear
extension to the whole space 𝑋.

Proof. Supposing 𝑃 directed, then for 𝜓 ∈ 𝑌 ♭
𝑃 there exists 𝑝 ∈ 𝑃 and 𝛽 ≥ 0, such

that

∀𝑦 ∈ 𝑌, 𝜓(𝑦) ≤ 𝛽𝑝(𝑦) .

By Theorem 2.2.1 applied to the sublinear functional 𝑞(⋅) = 𝛽𝑝(⋅), 𝜓 has a
linear extension 𝜑 : 𝑋 → ℝ such that 𝜑(𝑥) ≤ 𝛽𝑝(𝑥) for all 𝑥 ∈ 𝑋. It follows that
𝜑 is a continuous linear extension of 𝜓. □

As in the symmetric case, one can prove the existence of some functionals
on an asymmetric normed space related to distances to a subspace, see [40, 48,
49]. This result will be applied in Sect. 2.5 to best approximation problems in
asymmetric normed spaces.

Let (𝑋, 𝑝) be an asymmetric normed space, 𝑌 a nonempty subset of 𝑋 and
𝑥 ∈ 𝑋. Due to the asymmetry of the norm we have to consider two distances from
𝑥 to 𝑌 :

(i) 𝑑𝑝(𝑥, 𝑌 ) = inf{𝑝(𝑦 − 𝑥) : 𝑦 ∈ 𝑌 }, and

(ii) 𝑑𝑝(𝑌, 𝑥) = inf{𝑝(𝑥− 𝑦) : 𝑦 ∈ 𝑌 } . (2.2.3)

Observe that 𝑑𝑝(𝑌, 𝑥) = 𝑑𝑝(𝑥, 𝑌 ), where 𝑝 is the norm conjugate to 𝑝.

Theorem 2.2.6. Let 𝑌 be a subspace of a space with asymmetric norm (𝑋, 𝑝) and
𝑥0 ∈ 𝑋. If 𝑑 := 𝑑𝑝(𝑥0, 𝑌 ) > 0, then there exists a 𝑝-bounded linear functional
𝜑 : 𝑋 → ℝ such that

(i) 𝜑∣𝑌 = 0, (ii) ∥𝜑∣𝑝 = 1, and (iii) 𝜑(−𝑥0) = 𝑑 .
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If 𝑑 := 𝑑𝑝(𝑌, 𝑥0) > 0, then there exists a 𝑝-bounded linear functional 𝜓 : 𝑋 →
ℝ such that

(j) 𝜓∣𝑌 = 0, (jj) ∥𝜓∣𝑝 = 1, and (jjj) 𝜓(𝑥0) = 𝑑 .

Proof. Suppose first that 𝑑 = 𝑑𝑝(𝑌, 𝑥0) > 0, so that 𝑥0 /∈ 𝑌 . Let 𝑍 := 𝑌 ∔ ℝ𝑥0

(∔ stands for the direct sum) and let 𝜓0 : 𝑍 → ℝ be defined by

𝜓0(𝑦 + 𝑡𝑥0) = 𝑡, 𝑦 ∈ 𝑌, 𝑡 ∈ ℝ .

Then 𝜓0 is linear, 𝜓0(𝑦) = 0, ∀𝑦 ∈ 𝑌, and 𝜓0(𝑥0) = 1. For 𝑡 > 0 we have

𝑝(𝑦 + 𝑡𝑥0) = 𝑡𝑝(𝑥0 + 𝑡−1𝑦) ≥ 𝑡𝑑 = 𝑑 ⋅ 𝜓0(𝑦 + 𝑡𝑥0) ,

so that

𝜓0(𝑦 + 𝑡𝑥0) = 𝑡 ≤ 1

𝑑
𝑝(𝑦 + 𝑡𝑥0) .

Since this inequality obviously holds for 𝑡 ≤ 0 , it follows that ∥𝜓0∣ ≤ 1/𝑑. Let
(𝑦𝑛) be a sequence in 𝑌 such that 𝑝(𝑥0 − 𝑦𝑛)→ 𝑑 for 𝑛→∞ and 𝑝(𝑥0 − 𝑦𝑛) > 0
for all 𝑛 ∈ ℕ. Then

∥𝜓0∣ ≥ 𝜓0

(
𝑥0 − 𝑦𝑛

𝑝(𝑥0 − 𝑦𝑛)

)
=

1

𝑝(𝑥0 − 𝑦𝑛)
→ 1

𝑑
,

implying ∥𝜓0∣ ≥ 1/𝑑. Therefore ∥𝜓0∣ = 1/𝑑.
If 𝜓1 : 𝑋 → ℝ is a linear functional such that

𝜓1∣𝑍 = 𝜓0 and ∥𝜓1∣ = ∥𝜓0∣ ,
then the linear functional 𝜓 = 𝑑 ⋅ 𝜑1 fulfills the conditions (j)–(jjj).

Suppose now that 𝑑 = 𝑑𝑝(𝑥0, 𝑌 ) > 0, and let 𝑍 := 𝑌 ∔ℝ𝑥0. Define 𝜑0 : 𝑍 →
ℝ by

𝜑0(𝑦 + 𝑡𝑥0) = −𝑡 ⇐⇒ 𝜑0(𝑦 − 𝑡𝑥0) = 𝑡 for 𝑦 ∈ 𝑌 and 𝑡 ∈ ℝ .

Then 𝜑0 is linear and, for 𝑡 > 0, we have

𝑝(𝑦 − 𝑡𝑥0) = 𝑡𝑝(
1

𝑡
𝑦 − 𝑥0) ≥ 𝑡𝑑 = 𝑑 ⋅ 𝜑0(𝑦 − 𝑡𝑥0) ,

so that

𝜑0(𝑦 − 𝑡𝑥0) ≤ 1

𝑑
𝑝(𝑦 − 𝑡𝑥0) ,

for 𝑡 > 0. Since this inequality is obviously true if 𝜑0(𝑦 − 𝑡𝑥0) = 𝑡 ≤ 0, it follows
that 𝜑0 is bounded and ∥𝜑0∣ ≤ 1/𝑑. Reasoning as above, one obtains the existence
of a functional 𝜑 satisfying the conditions (i)–(iii). □

Other extension results can be found in [8, 28, 90, 224]. By studying quasi-
uniformities on real vector spaces, Alegre, Ferrer and Gregori [5] were able to prove
a Hahn-Banach type extension theorem for pseudo-topological vector spaces. More
general and sophisticated versions of the Hahn-Banach theorem are also known,
see, for instance, [82], [122], [188], and the book [83]. For an extensive list of
references see the survey [30].
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2.2.2 The Minkowski gauge functional – definition and properties

A subset 𝑌 of a vector space 𝑋 is called absorbing if

∀𝑥 ∈ 𝑋, ∃𝑡 > 0, such that 𝑥 ∈ 𝑡𝑌 .

If 𝑌 is absorbing, then the Minkowski functional (or the gauge function) 𝑝𝑌 of
the set 𝑌 is defined by

𝑝𝑌 (𝑥) = inf{𝑡 > 0 : 𝑥 ∈ 𝑡𝑌 } .

It follows that 𝑝𝑌 is a positive and positively homogeneous functional, and

𝑌 ⊂ {𝑥 ∈ 𝑋 : 𝑝𝑌 (𝑥) ≤ 1} .

If Y is convex and absorbing, then 𝑝𝑌 is a positive sublinear functional and

{𝑥 ∈ 𝑋 : 𝑝𝑌 (𝑥) < 1} ⊂ 𝑌 ⊂ {𝑥 ∈ 𝑋 : 𝑝𝑌 (𝑥) ≤ 1} . (2.2.4)

Now suppose that (𝑋,𝑃 ) is an asymmetric LCS and look for conditions on
the set 𝑌 ensuring the (𝑃, 𝑢)-continuity of 𝑝𝑌 .

Proposition 2.2.7. Let 𝑌 be a convex absorbing subset of an asymmetric locally
convex space (𝑋,𝑃 ).

1. The Minkowski functional 𝑝𝑌 is (𝑃, 𝑢)-continuous if and only if 0 is a 𝜏𝑃 -
interior point of 𝑌.

2. If 𝑝𝑌 is (𝑃, 𝑢)-continuous, then

𝜏𝑃 - int(𝑌 ) = {𝑥 ∈ 𝑋 : 𝑝𝑌 (𝑥) < 1}. (2.2.5)

Proof. Suppose the family 𝑃 to be directed.

1. If 0 is a 𝜏𝑃 -interior point of 𝑌, then there exist 𝑝 ∈ 𝑃 and 𝑟 > 0 such that

𝐵𝑝(0, 𝑟) ⊂ 𝑌 ⊂ {𝑥 ∈ 𝑋 : 𝑝𝑌 (𝑥) ≤ 1} ,

i.e.,
∀𝑥 ∈ 𝑋, 𝑝(𝑥) ≤ 𝑟 ⇒ 𝑝𝑌 (𝑥) ≤ 1 .

By Proposition 2.1.1, we have

∀𝑥 ∈ 𝑋, 𝑝𝑌 (𝑥) ≤ 1

𝑟
𝑝(𝑥) ,

which, by Proposition 2.1.12, implies the (𝑃, 𝑢)-continuity of 𝑝𝑌 .

Conversely, suppose that 𝑝𝑌 is (𝑃, 𝑢)-continuous. Since the set (−∞; 1) is
𝜏𝑢-open in ℝ, the set {𝑥 ∈ 𝑋 : 𝑝𝑌 (𝑥) < 1} = 𝑝−1

𝑌 ((−∞; 1)) is 𝜏𝑃 -open, contains
0, and is contained in 𝑌 , implying 0 ∈ 𝜏𝑃 -int(𝑌 ).
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2. Suppose that 𝑝𝑌 is (𝑃, 𝑢)-continuous. By the proof of the first point,
{𝑥 ∈ 𝑋 : 𝑝𝑌 (𝑥) < 1} ⊂ 𝜏𝑃 -int(𝑌 ), so it remains to prove the reverse inclusion.

If 𝑥 ∈ 𝜏𝑃 -int(𝑌 ), then there exist 𝑝1 ∈ 𝑃 and 𝑟 > 0 such that 𝐵𝑝1(𝑥, 𝑟) ⊂ 𝑌.
By Proposition 2.1.12 there exist 𝑝2 ∈ 𝑃 and 𝛽 > 0 such that ∀𝑥 ∈ 𝑋, 𝑝𝑌 (𝑥) ≤
𝛽𝑝2(𝑥). If 𝑝 ∈ 𝑃 is such that 𝑝 ≥ 𝑝𝑖, 𝑖 = 1, 2, then 𝐵𝑝(𝑥, 𝑟) ⊂ 𝐵𝑝1(𝑥, 𝑟) ⊂ 𝑌 and

∀𝑥 ∈ 𝑋, 𝑝𝑌 (𝑥) ≤ 𝛽𝑝(𝑥) .

If 𝑝(𝑥) = 0, then, by the above inequality, 𝑝𝑌 (𝑥) = 0 < 1. If 𝑝(𝑥) > 0, put
𝑥𝛼 = (1 + 𝛼)𝑥 for 𝛼 > 0. If 0 < 𝛼 < 𝑟/𝑝(𝑥), then 𝑝(𝑥𝛼 − 𝑥) = 𝛼𝑝(𝑥) < 𝑟 so that
𝑥𝛼 ∈ 𝑌 and 𝑝𝑌 (𝑥𝛼) ≤ 1. But then, for any such 𝛼 we have

𝑝𝑌 (𝑥) =
1

1 + 𝛼
𝑝𝑌 (𝑥𝛼) ≤ 1

1 + 𝛼
< 1 . □

2.2.3 The separation of convex sets

The separation theorems for convex sets are very efficient tools in the treatment
of optimization problems in Banach or locally convex spaces. The so far developed
machinery allows us to prove the asymmetric analogs of the Eidelheit and Tukey
separation theorems (Theorems 2.2.26 and 2.2.28 in [149]). The presentation fol-
lows [41].

Theorem 2.2.8. Let (𝑋,𝑃 ) be an asymmetric locally convex space and 𝑌1, 𝑌2 two
disjoint nonempty convex subsets of 𝑋 with 𝑌1 𝜏𝑃 -open.

Then there exists a 𝜏𝑃 -continuous linear functional 𝜑 : 𝑋 → ℝ such that

∀𝑦1 ∈ 𝑌1, ∀𝑦2 ∈ 𝑌2 𝜑(𝑦1) < 𝜑(𝑦2) .

Proof. Let 𝑦0𝑖 ∈ 𝑌𝑖, 𝑖 = 1, 2, and let 𝑥0 = 𝑦02 − 𝑦01 . Since the set 𝑌1 is 𝜏𝑃 -open and
the topology 𝜏𝑃 is translation invariant, the set

𝑌 := 𝑥0 + 𝑌1 − 𝑌2 = ∪{𝑥0 − 𝑦2 + 𝑌1 : 𝑦2 ∈ 𝑌2}
is 𝜏𝑃 -open too. It is obvious that 𝑌 is also convex.

We have 0 = 𝑥0 + 𝑦01 − 𝑦02 ∈ 𝑌 and 𝑥0 /∈ 𝑌. Indeed, if 𝑥0 = 𝑥0 + 𝑦1 − 𝑦2,
for some 𝑦1 ∈ 𝑌1 and 𝑦2 ∈ 𝑌2, then the element 𝑦 = 𝑦1 = 𝑦2 would belong to the
empty set 𝑌1 ∩ 𝑌2.

By Proposition 2.2.7, the Minkowski functional 𝑝𝑌 of the 𝜏𝑃 -open convex set
𝑌 is sublinear, (𝑃, 𝑢)-continuous and

𝑌 = {𝑥 ∈ 𝑋 : 𝑝𝑌 (𝑥) < 1} . (2.2.6)

Since 𝑥0 /∈ 𝑌, it follows that 𝑝𝑌 (𝑥0) ≥ 1. By Proposition 2.2.2.2, there
exists a 𝑝𝑌 -bounded linear functional 𝜓 : 𝑋 → ℝ such that 𝜓(𝑥0) = 𝑝𝑌 (𝑥0)
and 𝜓(𝑥) ≤ 𝑝𝑌 (𝑥), 𝑥 ∈ 𝑋. Taking 𝜑 = (1/𝑝𝑌 (𝑥0))𝜓 it follows that

𝜑(𝑥0) = 1 and ∀𝑥 ∈ 𝑋, 𝜑(𝑥) =
1

𝑝𝑌 (𝑥0)
𝜓(𝑥) ≤ 1

𝑝𝑌 (𝑥0)
𝑝𝑌 (𝑥) ≤ 𝑝𝑌 (𝑥) .
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By Proposition 2.1.11, the functional 𝜑 is (𝑃, 𝑢)-continuous. Because 𝑌 is
𝜏𝑃 -open and 0 ∈ 𝑌, by Proposition 2.2.7 we have 𝑌 = {𝑥 ∈ 𝑋 : 𝑝𝑌 (𝑥) < 1}. From
(2.2.6) and the fact that 𝜑(𝑥0) = 1, one obtains

∀𝑦1 ∈ 𝑌1, ∀𝑦2 ∈ 𝑌2, 1 + 𝜑(𝑦1)− 𝜑(𝑦2) = 𝜑(𝑥0 + 𝑦1 − 𝑦2) ≤ 𝑝𝑌 (𝑥0 + 𝑦1 − 𝑦2) < 1 ,

implying

∀𝑦1 ∈ 𝑌1, ∀𝑦2 ∈ 𝑌2, 𝜑(𝑦1) < 𝜑(𝑦2) . □

We prove now the asymmetric analog of Tukey’s separation theorem.

Theorem 2.2.9. Let (𝑋,𝑃 ) be an asymmetric locally convex space and 𝑌1, 𝑌2 two
nonempty disjoint convex subsets of 𝑋, with 𝑌1 𝜏𝑃 -compact and 𝑌2 𝜏𝑃 -closed.

Then there exists a 𝜏𝑃 -continuous linear functional 𝜑 : 𝑋 → ℝ such that

sup𝜑(𝑌1) < inf 𝜑(𝑌2) . (2.2.7)

Proof. Suppose that 𝑃 is directed. For 𝑝 ∈ 𝑃 denote by 𝐵′𝑝 the open unit 𝑝-ball,
𝐵′𝑝 = {𝑥 ∈ 𝑋 : 𝑝(𝑥) < 1}.

Since 𝑌1 ∩ 𝑌2 = ∅ and 𝑌2 is 𝜏𝑃 -closed, for every 𝑦 ∈ 𝑌1 there exist 𝑝𝑦 ∈ 𝑃
and 𝑟𝑦 > 0 such that

(𝑦 + 2𝑟𝑦𝐵
′
𝑝𝑦 ) ∩ 𝑌2 = ∅. (2.2.8)

The 𝜏𝑃 -open cover {𝑦 + 𝑟𝑦𝐵
′
𝑝𝑦 : 𝑦 ∈ 𝑌1} of the 𝜏𝑃 -compact set 𝑌1, contains a

finite subcover {𝑦𝑘 + 𝑟𝑘𝐵
′
𝑝𝑘 : 𝑘 = 1, 2, . . . , 𝑛}, where 𝑝𝑘 = 𝑝𝑦𝑘 and 𝑟𝑘 = 𝑟𝑦𝑘 for

𝑘 = 1, . . . , 𝑛. Take 𝑝 ∈ 𝑃 such that 𝑝 ≥ 𝑝𝑘, 𝑘 = 1, 2, . . . , 𝑛, put 𝑟 := min{𝑟𝑘 : 𝑘 =
1, 2, . . . , 𝑛} and show that

(𝑌1 + 𝑟𝐵′𝑝) ∩ 𝑌2 = ∅. (2.2.9)

Indeed, if 𝑦′ = 𝑦 + 𝑟𝑢 ∈ 𝑌2 for some 𝑦 ∈ 𝑌1, 𝑢 ∈ 𝐵′𝑝, then, choosing 𝑘 ∈
{1, 2, . . . , 𝑛} such that 𝑦 ∈ 𝑦𝑘 + 𝑟𝑘𝐵

′
𝑝𝑘 , we have

𝑦′ = 𝑦 + 𝑟𝑢 ∈ 𝑦𝑘 + 𝑟𝐵′𝑝 + 𝑟𝑘𝐵
′
𝑝𝑘 ⊂ 𝑦𝑘 + 𝑟𝑘𝐵

′
𝑝𝑘 + 𝑟𝑘𝐵

′
𝑝𝑘 = 𝑦𝑘 + 2𝑟𝑘𝐵

′
𝑝𝑘 ,

in contradiction to (2.2.8).

The set 𝑍 := 𝑌1+ 𝑟𝐵′𝑝 is convex, 𝜏𝑃 -open and disjoint from 𝑌2. By Theorem

2.2.8, there exists 𝜑 ∈ 𝑋♭
𝑃 such that

∀𝑦 ∈ 𝑌1, ∀𝑢 ∈ 𝐵′𝑝, ∀𝑦′ ∈ 𝑌2 𝜑(𝑦) + 𝑟𝜑(𝑢) < 𝜑(𝑦′). (2.2.10)

By Proposition 2.1.11, there exists 𝑞1 ∈ 𝑃 and 𝛽 > 0 such that ∀𝑥 ∈ 𝑋, 𝜑(𝑥) ≤
𝛽𝑞1(𝑥). If 𝑞 ∈ 𝑃 is such that 𝑞 ≥ max{𝑝, 𝑞1}, then 𝜑(𝑥) ≤ 𝛽𝑞(𝑥), 𝑥 ∈ 𝑋, and
𝐵′𝑞 ⊂ 𝐵′𝑝, so that

∀𝑦 ∈ 𝑌1, ∀𝑢 ∈ 𝐵′𝑞, ∀𝑦′ ∈ 𝑌2 𝜑(𝑦) + 𝑟𝜑(𝑢) < 𝜑(𝑦′). (2.2.11)
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By (2.2.10), 𝜑 ∕= 0, so that by Propositions 2.1.7 and 2.1.8, ∥𝜑∣𝑞 = sup𝜑(𝐵′𝑞) > 0.
Passing in (2.2.11) to supremum with respect to 𝑢 ∈ 𝐵′𝑞, we get

∀𝑦 ∈ 𝑌1, ∀𝑦′ ∈ 𝑌2 𝜑(𝑦) + 𝑟∥𝜑∣𝑞 ≤ 𝜑(𝑦′) ,

implying
𝑟∥𝜑∣𝑞 + sup𝜑(𝑌1) ≤ inf 𝜑(𝑌2) .

It follows that
sup𝜑(𝑌1) < inf 𝜑(𝑌2) . □

Remark 2.2.10. The inequality in Theorem 2.2.8 can not be reversed, in the sense
that, under the same hypotheses on the sets 𝑌1 and 𝑌2, we can not find a (𝑃, 𝑢)-
continuous linear functional 𝜓 on 𝑋 such that

∀𝑦2 ∈ 𝑌2, ∀𝑦1 ∈ 𝑌1 𝜓(𝑦2) < 𝜓(𝑦1) .

This is due, on one hand, to the fact that the functional −𝜑 need not be (𝑃, 𝑢)-
continuous, where 𝜑 is the linear functional given by Theorem 2.2.8. On the other
hand, analyzing the proof of Theorem 2.2.8, it follows that we should work with
the set 𝑌 ′ := 𝑥0+𝑌2−𝑌1 which need not be 𝜏𝑃 -open, because the 𝜏𝑃 -openness of
𝑌1 does not imply the 𝜏𝑃 -openness of −𝑌1. For instance, if (𝑋, 𝑝) is an asymmetric
LCS, then the fact that the set 𝑌1 is 𝜏𝑝-open implies that −𝑌1 is 𝜏𝑝-open, so that,
in this case, there exists a 𝑝-bounded linear functional 𝜓 : 𝑋 → ℝ such that

∀𝑦2 ∈ 𝑌2 ∀𝑦1 ∈ 𝑌1, 𝜓(𝑦2) < 𝜓(𝑦1) .

The same caution must be taken when applying Theorem 2.2.9.

2.2.4 Extreme points and the Krein-Milman theorem

Following the ideas from the symmetric case, one can prove a Krein-Milman type
theorem for asymmetric LCS. The proof is based on Tukey’s separation theorem
and on the fact that the intersection of an arbitrary family of extremal subsets of a
convex set 𝑌 is an extremal subset of 𝑌 , provided it is nonempty. The presentation
follows [41]. The asymmetric normed case was treated in [40].

We start by recalling some notions and facts. A point 𝑒 in a convex subset of
a vector space 𝑋 is called an extreme point of 𝑌 provided that (1 − 𝑡)𝑥 + 𝑡𝑦 = 𝑒
for some 𝑥, 𝑦 ∈ 𝑌 and 0 < 𝑡 < 1, implies 𝑥 = 𝑦 = 𝑒. A nonempty convex subset 𝑍
of 𝑌 is called an extremal subset of 𝑌 if (1 − 𝑡)𝑥+ 𝑡𝑦 ∈ 𝑍, for some 𝑥, 𝑦 ∈ 𝑌 and
some 0 < 𝑡 < 1 implies 𝑥, 𝑦 ∈ 𝑍 (in fact, [𝑥; 𝑦] ⊂ 𝑍, by the convexity of 𝑍). An
extremal subset is called also a face of 𝑌 . Obviously, a one-point set 𝑍 = {𝑒} is
an extremal subset of 𝑌 if and only if 𝑒 is an extreme point of 𝑌 . Also, if 𝑊 is an
extremal subset of the extremal subset 𝑍 of 𝑌 then 𝑊 is an extremal subset of 𝑌
too. In particular, if 𝑒 is an extreme point of an extremal subset 𝑍 of 𝑌, then 𝑒 is
an extreme point of 𝑌 . The intersection of a family of extremal subsets of 𝑌 is an
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extremal subset of 𝑌 provided it is nonempty. We denote by ext𝑌 the (possibly
empty) set of extreme points of the convex set 𝑌 .

The following proposition is an immediate consequence of the definitions.

Proposition 2.2.11. Let 𝑌 be a nonempty convex subset of a vector space 𝑋 and
𝑓 a linear functional on 𝑋.

If the set 𝑍 = {𝑧 ∈ 𝑌 : 𝑓(𝑧) = sup 𝑓(𝑌 )} is nonempty, then it is an extremal
subset of 𝑌 .

A similar assertion holds for the set 𝑊 = {𝑤 ∈ 𝑌 : 𝑓(𝑤) = inf 𝑓(𝑌 )}.
We can state and prove now the Krein-Milman theorem in the asymmetric

case.

Theorem 2.2.12. Let (𝑋,𝑃 ) be an asymmetric locally convex space such that the
topology 𝜏𝑃 is Hausdorff.

Then any nonempty convex 𝜏𝑃 -compact subset 𝑌 of 𝑋 coincides with the
𝜏𝑃 -closed convex hull of the set of its extreme points

𝑌 = 𝜏𝑃 -cl-co(extY) .

Proof. All the topological notions will concern the 𝜏𝑃 -topology of 𝑋 so that we
shall omit sometimes “𝜏𝑃 -” in the following. By Proposition 1.1.63, for every 𝑥 ∈
𝑋, 𝑥 ∕= 0, there exists 𝑝 ∈ 𝑃 such that 𝑝(𝑥) > 0, so that, by Theorem 2.2.2 (see
also Remark 2.2.3.2), there exists 𝜑 ∈ 𝑋♭

𝑃 with 𝜑(𝑥) = 1.

Fact I. Every nonempty convex compact subset 𝑍 of 𝑋 has an extreme point.

Let
ℱ := {𝐹 : 𝐹 is a closed extremal subset of 𝑍} ,

and define the order in ℱ by 𝐹1 ≤ 𝐹2 ⇐⇒ 𝐹1 ⊂ 𝐹2 and show that the set ℱ is
nonempty and downward inductively ordered. Because 𝑌 is 𝜏𝑃 -compact and the
topology 𝜏𝑃 is Hausdorff, it follows that 𝑌 is convex and 𝜏𝑃 -closed, so that 𝑌 ∈ ℱ .
Since a totally ordered subfamily 𝒢 of ℱ has the finite intersection property, by
the compactness of the set 𝑍 the set 𝐺 = ∩𝒢 is nonempty, closed and extremal.
Therefore 𝐺 ∈ ℱ is a lower bound for 𝒢. By Zorn’s Lemma the ordered set ℱ has
a minimal element 𝐹0. If we show that 𝐹0 is a one-point set, 𝐹0 = {𝑥0}, then 𝑥0

will be an extreme point of 𝑍.

Suppose that 𝐹0 contains two distinct points 𝑥1, 𝑥2, and let 𝑝 ∈ 𝑃 be such
that 𝑝(𝑥1−𝑥2) > 0. Let 𝜑 be a 𝑝-bounded linear functional such that 𝜑(𝑥1−𝑥2) =
𝑝(𝑥1 − 𝑥2) > 0 (see Theorem 2.2.2.2). It follows that 𝜑 ∈ 𝑋♭, so that 𝜑 is upper
semi-continuous as a mapping from (𝑋, 𝜏𝑃 ) to (ℝ, ∣ ⋅ ∣). By the compactness of the
set 𝐹0 the set

𝐹1 = {𝑥 ∈ 𝐹0 : 𝜑(𝑥) = sup𝜑(𝐹0)} = {𝑥 ∈ 𝐹0 : 𝜑(𝑥) ≥ sup𝜑(𝐹0)}
is nonempty and closed. By Proposition 2.2.11, 𝐹1 is an extremal subset of 𝐹0,
and so an extremal subset of 𝑍. Therefore, 𝐹1 ∈ ℱ , 𝐹1 ⊂ 𝐹0, and 𝑥2 ∈ 𝐹0 ∖𝐹1 in
contradiction to the minimality of 𝐹0.
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Fact II. 𝑌 = 𝜏𝑃 -cl co(ext𝑌 ).

The inclusion ext(𝑌 ) ⊂ 𝑌 implies 𝑌1 := 𝜏𝑃 -cl co(ext𝑌 ) ⊂ 𝑌. As a closed subset
of a compact set, the set 𝑌1 is convex and compact. Supposing that there exists a
point 𝑦0 ∈ 𝑌 ∖ 𝑌1, then, by Theorem 2.2.9, there exists 𝜑 ∈ 𝑋♭ such that

sup𝜑(𝑌1) < 𝜑(𝑦0). (2.2.12)

Using again the upper semi-continuity of 𝜑 as a mapping from (𝑋, 𝜏𝑃 ) to
(ℝ, ∣ ⋅ ∣), we see that the set

𝐹 = {𝑦 ∈ 𝑌 : 𝜑(𝑦) = sup𝜑(𝑌 )} = {𝑦 ∈ 𝑌 : 𝜑(𝑦) ≥ sup𝜑(𝑌 )} ,

is nonempty, convex and compact, so that, by Fact I, it has an extreme point 𝑒1.
Since 𝐹 is an extremal subset of 𝑌 , it follows that 𝑒1 is an extreme point of 𝑌,
implying 𝑒1 ∈ 𝑌1. Taking into account (2.2.12) we obtain the contradiction

sup𝜑(𝑌 ) = 𝜑(𝑒1) ≤ sup𝜑(𝑌1) < 𝜑(𝑦0) ≤ sup𝜑(𝑌 ) . □

The following question remains open.

Problem. It is known that in locally convex spaces a kind of converse of the Krein-
Milman theorem holds: If 𝑌 is convex compact and 𝑌 = co(𝑍) for some subset 𝑍
of 𝑌 , then ext(𝑌 ) ⊂ 𝑍. Is this result true in the asymmetric case too?

Now we shall present the existence of a norm preserving extension that pre-
serves also the extremality of the original functional. In the case of normed spaces
the result was obtained by Singer [221] and in the asymmetric case in [40]. The
result will be applied in Section 2.5 to the characterization of best approximation
elements in asymmetric normed spaces.

Let (𝑋, 𝑝) be an asymmetric normed space. In the following theorem, the
symbols 𝐵𝑌 ♭

𝑝
and 𝐵𝑋♭

𝑝
stand for the closed unit balls of the dual spaces 𝑌 ♭

𝑝 and 𝑋♭
𝑝,

𝐵𝑌 ♭
𝑝
= {𝜑 ∈ 𝑌 ♭

𝑝 : ∥𝜑∣𝑝 ≤ 1}
and

𝐵𝑋♭
𝑝
= {𝜓 ∈ 𝑋♭

𝑝 : ∥𝜓∣𝑝 ≤ 1} .

Theorem 2.2.13. Let (𝑋, 𝑝) be a space with asymmetric norm and 𝑌 a subspace
of 𝑋.

If 𝜑0 is an extreme point of the closed ball ∥𝜑0∣ ⋅ 𝐵𝑌 ♭
𝑝

then there exists a

norm preserving extension 𝜑 of 𝜑0 which is an extreme point of the ball ∥𝜑0∣ ⋅𝐵𝑋♭
𝑝

of 𝑋♭
𝑝.
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Proof. Denote by 𝐵♭ the closed unit ball of the space 𝑋♭. Because 𝜓 is an extreme
point of the ball 𝐵♭ if and only if 𝑟 ⋅ 𝜓 is an extreme point of the ball 𝑟𝐵♭, it is
sufficient to prove the theorem for ∥𝜑0∣ = 1. Let 𝜑0, ∥𝜑0∣ = 1, be an extreme
point of the unit ball 𝐵𝑌 ♭ of 𝑌 ♭ and let

𝐸(𝜑0) = {𝜓 ∈ 𝑋♭ : 𝜓∣𝑌 = 𝜑0 and ∥𝜓∣ = 1} .

Clearly, the set 𝐸(𝜑0) convex; by Theorem 2.2.2 it is also nonempty. Further,
the set 𝐸(𝜑0) is an extremal subset of 𝐵

♭ because (1 − 𝛼)𝜑1 + 𝛼𝜑2 ∈ 𝐸(𝜑0), for
some 𝜑1, 𝜑2 ∈ 𝐵♭ and some 0 < 𝛼 < 1, implies (1−𝛼)𝜑1∣𝑌 +𝛼𝜑2∣𝑌 = 𝜑0, so that,
by the extremality of 𝜑0, we have 𝜑1∣𝑌 = 𝜑2∣𝑌 = 𝜑0. Since ∥(1−𝛼)𝜑1+𝛼𝜑2∣ = 1
and 𝜑𝑘 ∈ 𝐵♭ it follows that ∥𝜑𝑘∣ = 1, 𝑘 = 1, 2, so that 𝜑𝑘 ∈ 𝐸(𝜑0), 𝑘 = 1, 2.

We show now that the set 𝐸(𝜑0) is a 𝑤∗-closed subset of the closed ball 𝐵∗

of 𝑋∗ = (𝑋, 𝑝𝑠)∗. Let (𝜑𝛾 : 𝛾 ∈ Γ) be a net in 𝐸(𝜑0) that is 𝑤
∗-convergent to an

element 𝜑 ∈ 𝐵∗, i.e.,

∀𝑥 ∈ 𝑋, 𝜑𝛾(𝑥)→ 𝜑(𝑥) in (ℝ, ∣ ⋅ ∣) .

Since for every 𝑥 ∈ 𝑋 and every 𝛾 ∈ Γ, we have 𝜑𝛾(𝑥) ≤ 𝑝(𝑥), it follows that
𝜑(𝑥) ≤ 𝑝(𝑥), i.e., ∥𝜑∣ ≤ 1. Also, for every 𝑦 ∈ 𝑌 and 𝛾 ∈ Γ, 𝜑𝛾(𝑦) = 𝜑0(𝑦), so that
𝜑∣𝑌 = 𝜑0, and ∥𝜑∣ ≥ ∥𝜑0∣ = 1. It follows that 𝜑 ∈ 𝐸(𝜑0), showing that 𝐸(𝜑0) is
a 𝑤∗-closed subset of the 𝑤∗-compact set 𝐵∗, so it is 𝑤∗-compact too.

By the Krein-Milman theorem the convex 𝑤∗-compact set 𝐸(𝜑0) agrees with
the closed convex hull of its extreme points, so that it has extreme points. Taking
an extreme point 𝜑 of the extremal subset 𝐸(𝜑0) of 𝐵

♭, it follows that 𝜑 is an
extreme point of the unit ball 𝐵♭ of 𝑋♭ and 𝜑∣𝑌 = 𝜑0, ∥𝜑∣ = 1 = ∥𝜑0∣. □

2.3 The fundamental principles

Together with the Hahn-Banach extension theorem, the Open Mapping Theorem
and the Closed Graph Theorem are the cornerstones of the whole edifice of classical
functional analysis. Although in the asymmetric case they do not hold in full
generality, some positive results have been obtained, which will be presented in
this section.

2.3.1 The Open Mapping and the Closed Graph Theorems

As it is known, the proofs of two fundamental principles of functional analysis –
the Open Mapping Theorem and the Closed Graph Theorem for Banach spaces –
rely on Baire’s category theorem. Based on Theorem 1.2.44, C. Alegre [2] extended
these principles to asymmetric normed spaces.

Theorem 2.3.1 (The Open Mapping Theorem, [2]). Let (𝑋, 𝑝) and (𝑌, 𝑞) be asym-
metric normed spaces. Suppose that (𝑋, 𝑝) is right-𝐾-complete and 𝑌 is Hausdorff
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and a (𝑞, 𝑞)-Baire space. If 𝐴 : 𝑋 → 𝑌 is linear, surjective and (𝑝, 𝑞)-continuous,
then for every 𝑝-open subset 𝐺 of 𝑋, 𝐴(𝐺) is 𝑞-open in 𝑌.

Proof. Let 𝐵′𝑝 be the open unit ball of (𝑋, 𝑝). Since 𝐴 is surjective, 𝐴(𝐵′𝑝) is an
absorbing convex subset of 𝑌 , and so will be the 𝑞-closed convex set 𝑞- cl(𝐴(𝐵′𝑝)),
implying 𝑋 = ∪∞𝑛=1𝑛 𝑞- cl(𝐴(𝐵′𝑝)). Since 𝑌 is a (𝑞, 𝑞)-Baire space, there exists

𝑛 ∈ ℕ such that 𝑞- int
(
𝑛 𝑞- cl(𝐴(𝐵′𝑝))

) ∕= ∅ (see Theorem 1.2.49). It follows

𝑞- int
(
𝑞- cl(𝐴(𝐵′𝑝))

) ∕= ∅ ,

so that, by Proposition 1.1.67.4, there exists 𝜀 > 0 such that

𝐵𝑞(0, 𝜀) ⊂ 𝑞- cl(𝐴(𝐵′𝑝)) . (2.3.1)

We show that
𝐵𝑞(0,

𝜀

22
) ⊂ 𝐴(𝐵′𝑝) . (2.3.2)

Indeed, by (2.3.1), 𝑦 ∈ 𝐵𝑞(0, 2
−2𝜀) ⊂ 𝑞- cl(𝐴(2−2𝐵′𝑝) implies 𝐵𝑞(𝑦, 2

−3𝜀) ∩
𝐴(2−2𝐵′𝑝) ∕= ∅, so that there exists 𝑥1 ∈ 2−2𝐵′𝑝 such that

𝑞(𝐴𝑥1 − 𝑦) <
𝜀

23
⇐⇒ 𝑞(𝑦 −𝐴𝑥1) <

𝜀

23
.

It follows that

𝑦 −𝐴𝑥1 ∈ 𝐵𝑞(0,
𝜀

23
) ⊂ 𝑞- cl(𝐴(2−3𝐵′𝑝) ,

so that 𝐵𝑞(𝑦 − 𝐴𝑥1, 2
−4𝜀) ∩ 𝐴(2−3𝐵′𝑝) ∕= ∅, implying the existence of an element

𝑥2 ∈ 2−3𝐵′𝑝 such that

𝑞(𝐴𝑥2 +𝐴𝑥1 − 𝑦) <
𝜀

24
⇐⇒ 𝑞(𝑦 −𝐴𝑥1 −𝐴𝑥2) <

𝜀

24
.

Continuing in this manner, one obtains the elements 𝑥𝑘 ∈ 2−(𝑘+1)𝐵′𝑝 such
that

𝑞(𝐴𝑥𝑛 + ⋅ ⋅ ⋅+𝐴𝑥2 +𝐴𝑥1 − 𝑦) <
𝜀

2𝑛+2
, (2.3.3)

for all 𝑛 ∈ ℕ, implying 𝐴𝑥1 + ⋅ ⋅ ⋅+𝐴𝑥𝑛
𝑞−→ 𝑦 as 𝑛→∞.

Since 𝑝(𝑥𝑘) < 2−𝑘−1 the sequence 𝑠𝑛 = 𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑛, 𝑛 ∈ ℕ, is 𝑝-left-
𝐾-Cauchy (see Proposition 1.2.6), or, equivalently, 𝑝-right-𝐾-Cauchy. The right
𝐾-completeness of (𝑋, 𝑝) implies the right 𝐾-completeness of (𝑋, 𝑝), so there
exists 𝑥 ∈ 𝑋 such that 𝑝(𝑠𝑛 − 𝑥) → 0 as 𝑛 → ∞. The (𝑝, 𝑞)-continuity of the

linear operator 𝐴 implies its (𝑝, 𝑞)-continuity, so that 𝐴𝑥1 + ⋅ ⋅ ⋅+𝐴𝑥𝑛
𝑞−→ 𝐴𝑥 as

𝑛→∞. Since (𝑌, 𝜏𝑞) is Hausdorff, (𝑌, 𝜏𝑞) is also Hausdorff, so that 𝑦 = 𝐴𝑥. From

𝑝(𝑥) ≤𝑝(𝑥− 𝑠𝑛) + 𝑝(𝑠𝑛) ≤ 𝑝(𝑠𝑛 − 𝑥) + 𝑝(𝑥1) + ⋅ ⋅ ⋅+ 𝑝(𝑥𝑛)

<𝑝(𝑠𝑛 − 𝑥) +
1

22
+ ⋅ ⋅ ⋅+ 1

2𝑛+1
−→

(𝑛→∞)

1

2
,

it follows that 𝑥 ∈ 𝐵′𝑝 .
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Finally, we show that (2.3.2) implies that 𝐴(𝐺) is 𝑞-open for every 𝑝-open
subset 𝐺 of 𝑋.

If 𝑦 = 𝐴𝑥 for some 𝑥 ∈ 𝐺, then there exists 𝑟 > 0 such that 𝑥+ 𝑟𝐵′𝑝 ⊂ 𝐺. It
follows that

𝑦 +
𝑟𝜀

4
𝐵′𝑞 ⊂ 𝐴𝑥+ 𝑟𝐴(𝐵′𝑝) = 𝐴(𝑥 + 𝑟𝐵′𝑝) ⊂ 𝐴(𝐺) ,

showing that the set 𝐴(𝐺) is 𝑞-open. □
Remark 2.3.2. Theorem 2.3.1 is proved in [2] under the hypotheses that the asym-
metric normed space (𝑋, 𝑝) is sequentially right 𝐾-complete and (𝑌, 𝑞) is sequen-
tially right 𝐾-complete and Hausdorff. The proof is based on Lemma 3 asserting
that in an asymmetric normed space (𝑌, 𝑞) which is of second Baire category
in itself (and so, by Proposition 1.2.43, a Baire space), 𝑞-cl(𝐴) and 𝑞-cl(𝐴) are 0-
neighborhoods in (𝑌, 𝑞), for any absorbing and starshaped with respect to 0 subset
𝐴 of 𝑋 . While the assertion concerning 𝑞-cl(𝐴) follows from the Baire property, it
is not founded concerning 𝑞-cl(𝐴). So we reformulated the theorem by asking the
space (𝑌, 𝑞) to be (𝑞, 𝑞)-Baire.

A consequence of this deep result is the inverse mapping theorem which, in
essence, is an equivalent form of the open mapping theorem.

Corollary 2.3.3. Let (𝑋, 𝑝) and (𝑌, 𝑞) be two asymmetric normed spaces. If (𝑋, 𝑝)
is right 𝐾-sequentially and (𝑌, 𝑞) is (𝑞, 𝑞)-Baire and Hausdorff, then the inverse
of any bijective continuous linear mapping 𝐴 : (𝑋, 𝜏𝑝)→ (𝑌, 𝜏𝑞) is continuous.

For two asymmetric normed spaces (𝑋, 𝑝) and (𝑌, 𝑞) consider 𝑋×𝑌 endowed
with the asymmetric norm

𝑟(𝑥, 𝑦) = 𝑝(𝑥) + 𝑞(𝑦), (𝑥, 𝑦) ∈ 𝑋 × 𝑌 . (2.3.4)

The proof of the results from the following lemma are similar to those in the
symmetric case.

Lemma 2.3.4. Let (𝑋, 𝑝), (𝑌, 𝑞) be asymmetric normed spaces.

1. The norm 𝑟 defined by (2.3.4) generates the product topology 𝜏𝑝×𝜏𝑞 on 𝑋×𝑌.

2. If (𝑋, 𝑝) and (𝑌, 𝑞) are right (left) 𝐾-sequentially complete, then (𝑋 × 𝑌, 𝑟)
is right (left) 𝐾-sequentially complete.

3. A closed subset of a right (left) 𝐾-sequentially complete normed space is right
(left) 𝐾-sequentially complete.

As in the case of Banach spaces, the closed graph theorem can easily be
derived from the open mapping theorem. The graph 𝐺𝑓 of a mapping 𝑓 : 𝑋 → 𝑌
is the subset of 𝑋 × 𝑌 given by 𝐺𝑓 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑦 = 𝑓(𝑥)}.
Proposition 2.3.5. If (𝑋, 𝜏), (𝑌, 𝜈) are topological spaces, with 𝑌 Hausdorff, and
𝑓 : 𝑋 → 𝑌 is continuous, then the graph 𝐺𝑓 of 𝑓 is closed in 𝑋 × 𝑌 with respect
to the product topology 𝜏 × 𝜈.
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Proof. Let (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ 𝐼, be a net in 𝑋×𝑌 converging to some (𝑥, 𝑦) ∈ 𝑋×𝑌 with
respect to the product topology. This is equivalent to 𝑥𝑖 → 𝑥 in 𝑋 and 𝑦𝑖 → 𝑦 in
𝑌 . Since 𝑦𝑖 = 𝑓(𝑥𝑖), 𝑖 ∈ 𝐼, the continuity of 𝑓 and the uniqueness of the limit (𝑌
is Hausdorff) implies 𝑓(𝑥) = 𝑦, that is (𝑥, 𝑦) ∈ 𝐺𝑓 . □

If 𝑋 and 𝑌 are topological spaces, then a mapping 𝑓 : 𝑋 → 𝑌 is said to have
closed graph provided 𝐺𝑓 is closed in 𝑋×𝑌 with respect to the product topology.

Theorem 2.3.6 (The Closed Graph Theorem, [2]). Let (𝑋, 𝑝) and (𝑌, 𝑞) be asym-
metric normed spaces. If (𝑋, 𝑝) is right 𝐾-sequentially complete, (𝑝, 𝑝)-Baire and
Hausdorff and (𝑌, 𝑞) is right 𝐾-sequentially complete, then any linear mapping
𝐴 : 𝑋 → 𝑌 with closed graph is continuous.

Proof. By Lemma 2.3.4, the product topology 𝜏𝑝 × 𝜏𝑞 is generated by the asym-
metric norm 𝑟(𝑥, 𝑦) = 𝑝(𝑥)+ 𝑞(𝑦) and the space (𝑋 ×𝑌, 𝑟) is right 𝐾-sequentially
complete.

By hypothesis, the graph𝐺𝐴 of𝐴 is a closed subspace of (𝑋×𝑌, 𝑟) so it is also
right 𝐾-sequentially complete with respect to 𝑟. The projections 𝑃1, 𝑃2 : 𝐺𝐴 → 𝑋
defined by 𝑃1(𝑥, 𝑦) = 𝑥 and 𝑃2(𝑥, 𝑦) , for (𝑥, 𝑦) ∈ 𝐺𝐴, are linear and continuous
mappings. The projection 𝑃1 is also bijective, so that, by the inverse mapping
theorem (Corollary 2.3.3), 𝑃−1

1 : 𝑋 → 𝐺𝐴 is also continuous. Observe that 𝑃
−1
1 is

given by 𝑃−1
1 (𝑥) = (𝑥,𝐴𝑥), 𝑥 ∈ 𝑋, so that 𝐴 = 𝑃2 ∘ 𝑃−1

1 will be continuous. □

2.3.2 The Banach-Steinhaus principle

In this subsection we shall prove an asymmetric version of the Banach-Steinhaus
uniform boundedness principle.

Theorem 2.3.7. Let (𝑋, 𝑝) be a right 𝐾-complete asymmetric normed space, (𝑌, 𝑞)
an asymmetric normed space and 𝒜 ⊂ 𝐿𝑝,𝑞(𝑋,𝑌 ). If the family 𝒜 is both 𝑞- and
𝑞-upper pointwise bounded, that is for every 𝑥 ∈ 𝑋,

sup
𝐴∈𝒜

𝑞(𝐴𝑥) <∞ and sup
𝐴∈𝒜

𝑞(𝐴𝑥) <∞ , (2.3.5)

then

sup
𝐴∈𝒜

sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝} <∞ and sup
𝐴∈𝒜

sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝} <∞ . (2.3.6)

Proof. Since the case 𝑋 = {0} is trivial, we can suppose 𝑋 ∕= {0}.
Suppose that

sup
𝐴∈𝒜

sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝} =∞ (2.3.7)

and that the family 𝒜 is 𝑞-upper pointwise bounded.

Put
𝑆𝒜 = {𝑥 ∈ 𝑋 : sup

𝐴∈𝒜
𝑞(𝐴𝑥) =∞}
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and
𝑋𝑛 = {𝑥 ∈ 𝑋 : ∃𝐴 ∈ 𝒜, 𝑞(𝐴𝑥) > 𝑛}, 𝑛 ∈ ℕ .

It is clear that
𝑆𝒜 = ∩∞𝑛=1𝑋𝑛 . (2.3.8)

Since (𝑋, 𝑝) is right𝐾-complete it follows that (𝑋, 𝑝) is also right𝐾-complete
so that, by Theorem 1.2.44 and Proposition 1.2.43, (𝑋, 𝜏𝑝) is a Baire space. If we
show that each 𝑋𝑛 is 𝑝-open and 𝑝-dense in (𝑋, 𝜏𝑝), then by (2.3.8), the set 𝑆𝒜 is
𝑝-𝐺𝛿 and 𝑝-dense in (𝑋, 𝜏𝑝), in contradiction to the 𝑞-upper pointwise boundedness
of the family 𝒜 (which is equivalent to 𝑆𝒜 = ∅).

For 𝑛 ∈ ℕ and 𝐴 ∈ 𝒜 put

𝑋𝑛,𝐴 = {𝑥 ∈ 𝑋 : 𝑞(𝐴𝑥) > 𝑛} .

Claim I. The set 𝑋𝑛,𝐴 is 𝑝-open.

Since the norm 𝑞 is 𝑞-lsc (see Proposition 1.1.8.4) and 𝐴 is (𝑝, 𝑞)-continuous,
it follows that 𝑞 ∘𝐴 is 𝑝-lsc, implying that the set 𝑋𝑛,𝐴 is 𝑝-open.

Since
𝑋𝑛 = ∪{𝑋𝑛,𝐴 : 𝐴 ∈ 𝒜} ,

it follows that the set 𝑋𝑛 is 𝑝-open too.

Claim II. The set 𝑋𝑛 is 𝑝-dense in 𝑋.

Suppose, on the contrary, that some 𝑋𝑛 is not 𝑝-dense in 𝑋 . Then there
exists 𝑥0 ∈ 𝑋 and 𝑟0 > 0 such that

𝐵𝑝[𝑥0, 𝑟0] ∩𝑋𝑛 = ∅ ,

implying
∀𝐴 ∈ 𝒜, ∀𝑥 ∈ 𝐵𝑝[𝑥0, 𝑟0], 𝑞(𝐴𝑥) ≤ 𝑛 .

Let 𝑀𝑥0 = sup{𝑞(𝐴𝑥0) : 𝐴 ∈ 𝒜}. Since for every 𝑢 ∈ 𝐵𝑝, 𝑥 := 𝑥0 + 𝑟0𝑢 ∈
𝐵𝑝[𝑥0, 𝑟0], it follows that 𝑢 = 𝑟−1

0 (𝑥− 𝑥0) and

𝑞(𝐴𝑢) ≤ 1

𝑟0
(𝑞(𝐴𝑥) + 𝑞(−𝐴𝑥0)) ≤ 1

𝑟0
(𝑛+ 𝑞(𝐴𝑥0)) ≤ 1

𝑟0
(𝑛+𝑀𝑥0) ,

for every 𝐴 ∈ 𝒜, in contradiction to (2.3.7).

Consequently, each 𝑋𝑛 is 𝑝-dense in 𝑋.

Since 𝐿𝑝,𝑞(𝑋,𝑌 ) = 𝐿𝑝,𝑞(𝑋,𝑌 ), the proof of the second inequality in (2.3.6)
proceeds similarly. □

The proof given above allows the following formulation of the principle of
condensation of singularities.

Theorem 2.3.8. Let (𝑋, 𝑝) be a right 𝐾-complete asymmetric normed space, (𝑌, 𝑞)
an asymmetric normed space and let 𝒜 ⊂ 𝐿𝑝,𝑞(𝑋,𝑌 ).
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1. If the family 𝒜 is 𝑞-upper pointwise bounded and

sup
𝐴∈𝒜

sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝} =∞ , (2.3.9)

then the set
{𝑥 ∈ 𝑋 : sup

𝐴∈𝒜
𝑞(𝐴𝑥) =∞} (2.3.10)

is 𝑝-𝐺𝛿 and 𝑝-dense in 𝑋.

2. Similarly, if the family 𝒜 is 𝑞-upper pointwise bounded and

sup
𝐴∈𝒜

sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝} =∞ , (2.3.11)

then the set
{𝑥 ∈ 𝑋 : sup

𝐴∈𝒜
𝑞(𝐴𝑥) =∞} (2.3.12)

is 𝑝-𝐺𝛿 and 𝑝-dense in 𝑋.

This principle has the following curious consequence.

Corollary 2.3.9. If (𝑋, 𝑝) is a right 𝐾-complete asymmetric normed space and
(𝑌, 𝑞) is an asymmetric normed space, then 𝐿𝑝,𝑞(𝑋,𝑌 ) = 𝐿𝑝,𝑞(𝑋,𝑌 ).

Proof. Suppose that there exists 𝐴 ∈ 𝐿𝑝,𝑞(𝑋,𝑌 ) ∖ 𝐿𝑝,𝑞(𝑋,𝑌 ). Then

sup{𝑞(𝐴𝑥) : 𝑥 ∈ 𝐵𝑝} =∞ .

Applying Theorem 2.3.8 to the family 𝒜 = {𝐴}, one obtains that ∅ = {𝑥 ∈
𝑋 : 𝑞(𝐴𝑥) =∞} is 𝑝-dense in 𝑋 , a contradiction. □

2.3.3 Normed cones

We shall present some results on abstract normed cones as defined in Remark
2.1.4. As we did mention in Remark 2.1.4, the study of the duals of asymmetric
normed spaces requires the consideration of normed cones.

A linear mapping between two cones 𝑋,𝑌 is an additive and positively ho-
mogeneous mapping 𝐴 : 𝑋 → 𝑌.

An asymmetric seminorm on a cone 𝑋 is a mapping 𝑝 : 𝑋 → ℝ+ such that

(i) 𝑝(0) = 0 and (𝑥,−𝑥 ∈ 𝑋 ∧ 𝑝(𝑥) = 𝑝(−𝑥) = 0) ⇒ 𝑥 = 0

(ii) 𝑝(𝛼𝑥) = 𝛼𝑝(𝑥);

(iii) 𝑝(𝑥+ 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦) ,

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ≥ 0. If
(iv) 𝑝(𝑥) = 0 ⇐⇒ 𝑥 = 0 ,

then 𝑝 is called an asymmetric norm.
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Starting from an asymmetric seminorm 𝑝 on a cone 𝑋 one can define an
extended quasi-semimetric 𝑒𝑝 on 𝑋 by the formula

𝑒𝑝(𝑥, 𝑦) =

{
inf{𝑝(𝑧) : 𝑧 ∈ 𝑋, 𝑦 = 𝑥+ 𝑧} if 𝑦 ∈ 𝑥+𝑋,

∞ otherwise .
(2.3.13)

An extended quasi-semimetric 𝑑 : 𝑋 × 𝑋 → [0;∞] on a cone 𝑋 is called
subinvariant provided that

(i) 𝑑(𝑥 + 𝑧, 𝑦 + 𝑧) ≤ 𝑑(𝑥, 𝑦), 𝑎𝑛𝑑
(2.3.14)

(ii) 𝑑(𝛼𝑥, 𝛼𝑦) = 𝛼𝑑(𝑥, 𝑦) ,

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼 ≥ 0.
For instance, ℝ+ is a cancellative cone and 𝑢(𝛼) = 𝛼 is an asymmetric norm

on ℝ+. The associated extended quasi-metric, given by 𝑒𝑢(𝑥, 𝑦) = 𝑦 − 𝑥 if 𝑥 ≤ 𝑦
and 𝑒𝑢(𝑥, 𝑦) =∞, otherwise, induces the Sorgenfrey topology on ℝ+ (see Example
1.1.6).

The topological notions for a normed cone (𝑋, 𝑝) will be considered with
respect to this extended quasi-semimetric. As before, one associates to 𝑒𝑝 the con-
jugate quasi-semimetric 𝑒𝑝(𝑥, 𝑦) = 𝑒𝑝(𝑦, 𝑥) and the (symmetric) extended semi-
metric 𝑒𝑠𝑝(𝑥, 𝑦) = max{𝑒𝑝(𝑥, 𝑦), 𝑒𝑝(𝑥, 𝑦)).

Some properties of this quasi-semimetric are collected in the following propo-
sition.

Proposition 2.3.10. Let (𝑋, 𝑝) be an asymmetric normed cone.

1. The function 𝑒𝑝 defined by (2.3.13) is a subinvariant extended quasi-semi-
metric on 𝑋.

2. The equality
𝑟 ⋅𝐵𝑒𝑝(𝑥, 𝜀) = 𝑟𝑥 + {𝑦 ∈ 𝑋 : 𝑝(𝑦) ≤ 𝜀𝑟} ,

holds for every 𝑥 ∈ 𝑋 and 𝑟, 𝜀 > 0.

3. The translations with respect to + and ⋅ are 𝜏(𝑒𝑝)-open, that is, if 𝑍 ⊂ 𝑋 is
𝜏(𝑒𝑝)-open, then both 𝑥+ 𝑍 and 𝑟 ⋅ 𝑍 are 𝜏(𝑒𝑝)-open.

Continuous linear mapping between normed cones have properties similar to
those between asymmetric normed spaces, see Proposition 2.1.2.

Proposition 2.3.11 ([234]). Let (𝑋, 𝑝), (𝑌, 𝑞) be asymmetric normed cones and 𝐴 :
𝑋 → 𝑌 a linear operator. The following are equivalent.

1. The operator 𝐴 is continuous on 𝑋.

2. The operator 𝐴 is continuous at 0 ∈ 𝑋.

3. The operator 𝐴 is upper bounded on every ball 𝐵𝑒𝑝 [0, 𝑟].

4. There exists 𝛽 ≥ 0 such that 𝑞(𝐴𝑥) ≤ 𝛽 𝑝(𝑥), for all 𝑥 ∈ 𝑋.
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Proof. The implication 1 ⇒ 2 is trivial and the proofs of the implications 2 ⇒ 3,
and 3 ⇒ 4 are similar to those from Proposition 2.1.2.

4 ⇒ 1. For 𝑥 ∈ 𝑋 and 𝜀 > 0 let 𝑟 > 0 be such that 𝛽𝑟 < 𝜀. If 𝑒𝑝(𝑥, 𝑥
′) < 𝑟,

then there exists 𝑧 ∈ 𝑋 such that 𝑥′ = 𝑥 + 𝑧 and 𝑝(𝑧), 𝑟. It follows that 𝐴𝑥′ =
𝐴𝑥+𝐴𝑧 and 𝑞(𝐴𝑧) ≤ 𝛽𝑝(𝑧) < 𝛽𝑟 < 𝜀, proving the continuity of 𝐴 at 𝑥. □

Based on this proposition one can introduce an asymmetric norm on the
space 𝐿𝑝,𝑞(𝑋,𝑌 ) of continuous linear operators between two asymmetric normed
cones (𝑋, 𝑝) and (𝑌, 𝑞), by

∥𝐴∣𝑝,𝑞 = sup{𝑞(𝐴𝑥) : 𝑝(𝑥) ≤ 1} . (2.3.15)

It follows that
𝑞(𝐴𝑥) ≤ ∥𝐴∣𝑝,𝑞 𝑝(𝑥) , (2.3.16)

for all 𝑥 ∈ 𝑋 and that 𝐿𝑝,𝑞(𝑋,𝑌 ) is an asymmetric normed cone with respect to
(2.3.15), see [234].

We shall present now some closed graph and open mapping results for normed
cones proved by Valero [235]. A uniform boundedness principle for locally convex
cones was proved by Roth [211] (see also Roth [212] and the paper [184]).

An asymmetric normed cone is called bicomplete if it is complete with respect
to the extended metric 𝑒𝑠𝑝. As it was shown by examples in [235], the Closed Graph
and the Open Mapping Theorems do not hold for bicomplete asymmetric normed
cones, some supplementary hypotheses being necessary.

A mapping 𝑓 between two topological spaces (𝑆, 𝜈) and (𝑇, 𝜏) is called almost
continuous at 𝑠 ∈ 𝑆 if for every open subset 𝑉 of 𝑇 such that 𝑓(𝑠) ∈ 𝑉, the set
cl𝜈(𝑓

−1(𝑉 )) is a 𝜈-neighborhood of 𝑠. A subset 𝐴 of a bitopological space (𝑇, 𝜏1, 𝜏2)
is called (𝜏1, 𝜏2)-preopen if 𝐴 ⊂ 𝜏1- int (𝜏2- cl 𝐴). A mapping 𝑓 from a topological
space (𝑆, 𝜈) to a bitopological space (𝑇, 𝜏1, 𝜏2) is called almost open if 𝑓(𝑈) is
(𝜏1, 𝜏2)-preopen for every 𝜈-open subset 𝑈 of 𝑆.

The closed graph theorem proved by Valero [235] is the following.

Theorem 2.3.12. Let (𝑋, 𝑝) and (𝑌, 𝑞) be two asymmetric normed cones such that
the cone 𝑌 is right 𝐾-sequentially complete with respect to the conjugate extended
quasi-metric 𝑒𝑞. If 𝐴 : 𝑋 → 𝑌 is a linear mapping with closed graph in (𝑋 ×
𝑌, 𝑒𝑝 × 𝑒𝑞) which is (𝑒𝑝, 𝑒𝑞)-almost continuous at 0, then 𝐴 is continuous.

An open mapping theorem holds in similar conditions.

Theorem 2.3.13. Let (𝑋, 𝑝) and (𝑌, 𝑞) be two asymmetric normed cones such that
the cone 𝑌 is right 𝐾-sequentially complete with respect to the conjugate extended
quasi-metric 𝑒𝑞. If 𝐴 : 𝑋 → 𝑌 is a linear mapping with closed graph in (𝑋 ×
𝑌, 𝑒𝑝× 𝑒𝑞) which is almost open as a mapping from (𝑋, 𝜏(𝑒𝑝)) to (𝑌, 𝜏(𝑒𝑞), 𝜏(𝑒𝑞)),
then 𝐴 is continuous.

There are also other results on normed cones: the paper [94] discusses the
metrizability of the unit ball of the dual of a normed cone, Oltra and Valero [170]
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study the isometries and bicompletions of normed cones and Valero [234] defines
and studies the properties of quotient normed cones (the study of quotient spaces
of asymmetric normed spaces is done in [3]). Other properties are investigated in
a series of papers by Romaguera, Sánchez Pérez and Valero: in [203] one consid-
ers generalized monotone normed cones, quasi-normed monoids are discussed in
[201], the dominated extension of functionals, of 𝑉 -convex functions and duality
on cancellative and noncancellative normed cones are treated in [200] and [202],
respectively.

2.4 Weak topologies

The aim of this section is to present some basic results on weak topologies on
asymmetric normed spaces and on asymmetric LCS. As it is well known, the weak
topologies play a crucial role in functional analysis. Their asymmetric counter-
parts were studied in the fundamental paper [90], where an Alaoglu-Bourbaki
type theorem on the weak∗-compactness of the closed unit ball of the dual space
is proved. The locally convex variant on the weak-compactness of the polar of
a 0-neighborhood in an asymmetric LCS was proved in [41]. With an appropri-
ate definition of the bidual, reflexivity is studied and an analogue of Goldstine’s
theorem on the weak density of a Banach space in its bidual is proved.

2.4.1 The 𝒘♭-topology of the dual space 𝑿♭
𝒑

This is the analog of the 𝑤∗-topology on the dual of a normed space, which we
shall present following [90].

Let (𝑋, 𝑝) be a space with asymmetric norm and 𝑋♭
𝑝 its asymmetric dual.

The 𝑤♭-topology on 𝑋♭
𝑝 is the topology admitting as a neighborhood basis of a

point 𝜑 ∈ 𝑋♭
𝑝 the sets

𝑉𝑥1,...,𝑥𝑛;𝜀(𝜑) = {𝜓 ∈ 𝑋♭
𝑝 : 𝜓(𝑥𝑘)− 𝜑(𝑥𝑘) < 𝜀, 𝑘 = 1, 2, . . . , 𝑛} , (2.4.1)

for all 𝜀 > 0, and all 𝑛 ∈ ℕ and 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 .

The topology 𝑤♭ is derived from a quasi-uniformity 𝒲♭
𝑝 on 𝑋♭

𝑝 with a basis
formed of the sets

𝑉𝑥1,...,𝑥𝑛; 𝜀 = {(𝜑1, 𝜑2) ∈ 𝑋♭
𝑝 ×𝑋♭

𝑝 : 𝜑2(𝑥𝑖)− 𝜑1(𝑥𝑖) ≤ 𝜀, 𝑖 = 1, . . . , 𝑛} , (2.4.2)

for 𝑛 ∈ ℕ, 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 and 𝜀 > 0. Note that, for fixed 𝜑1 = 𝜑, one obtains the
neighborhoods from (2.4.1).

By the definition of the topology 𝑤♭, the 𝑤♭-convergence of a net (𝜑𝛾) in 𝑋♭
𝑝

to 𝜑 ∈ 𝑋♭
𝑝 is equivalent to

∀𝑥 ∈ 𝑋, 𝜑𝛾(𝑥)→ 𝜑(𝑥) in (ℝ, 𝑢) .

The following proposition shows that, in fact, a stronger result holds.
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Proposition 2.4.1. Let (𝑋, 𝑝) be an asymmetric normed space with dual 𝑋♭
𝑝.

The 𝑤♭-topology is the restriction to 𝑋♭
𝑝 of the 𝑤∗-topology of the space 𝑋∗ =

(𝑋, 𝑝𝑠)∗. Consequently, it is Hausdorff and the 𝑤♭-convergence of a net (𝜑𝛾) in
𝑋♭
𝑝 to 𝜑 ∈ 𝑋♭

𝑝 is equivalent to

∀𝑥 ∈ 𝑋, 𝜑𝛾(𝑥)→ 𝜑(𝑥) in (ℝ, ∣ ⋅ ∣) .

Proof. The first assertion is a direct consequence of the definition of the topology
𝑤♭. The second assertion follows from the remarks that

𝑉𝜀,𝑥 ∩ 𝑉𝜀,−𝑥 = {𝜓 ∈ 𝑋♭
𝑝 : ∣𝜓(𝑥) − 𝜑(𝑥)∣ < 𝜀}

is a 𝑤♭-neighborhood of 0 ∈ 𝑋 and 𝑋♭
𝑝 ⊂ 𝑋∗. □

A deep result in Banach space theory is the Alaoglu-Bourbaki Theorem:

Theorem. (Alaoglu-Bourbaki) The closed unit ball 𝐵𝑋∗ of the dual of a normed
space 𝑋 is 𝑤∗-compact.

The analog of this theorem for asymmetric normed spaces was proved in [90,
Theorem 4]. We include a slightly simpler proof of this result.

Proposition 2.4.2. The closed unit ball 𝐵♭
𝑝 = 𝐵𝑋♭

𝑝
of the space 𝑋♭

𝑝 is a 𝑤∗-closed

subset of the closed unit ball 𝐵∗ of the space 𝑋∗ = (𝑋, 𝑝𝑠)∗.

Proof. Let (𝜑𝛾) be a net in 𝐵♭
𝑝 that is 𝑤∗-convergent to an element 𝜑 ∈ 𝑋∗,

i.e., for every 𝑥 ∈ 𝑋 the net (𝜑𝛾(𝑥)) converges to 𝜑(𝑥) in (ℝ, ∣ ⋅ ∣). Because
∀𝑥 ∈ 𝑋, 𝜑𝛾(𝑥) ≤ 𝑝(𝑥), it follows that 𝜑(𝑥) ≤ 𝑝(𝑥) for all 𝑥 ∈ 𝑋 , showing that
𝜑 ∈ 𝐵♭

𝑝. □

Theorem 2.4.3. The closed unit ball 𝐵♭
𝑝 of the dual 𝑋♭

𝑝 of an asymmetric normed

space (𝑋, 𝑝) is 𝑤♭-compact.

Proof. By the Alaoglu-Bourbaki theorem the ball 𝐵∗ is 𝑤∗-compact, so that, as a
𝑤∗-closed subset of 𝐵∗, the ball 𝐵♭

𝑝 will be 𝑤
∗-compact too. Since the 𝑤♭-topology

is the restriction of 𝑤∗ to 𝑋♭
𝑝, it follows that the set 𝐵

♭
𝑝 is also 𝑤♭-compact. □

Remark 2.4.4. In [41, Proposition 2.11] the Alaoglu-Bourbaki theorem was ex-
tended to asymmetric locally convex spaces: the polar of any neighborhood of 0 is
a 𝑤♭-compact convex subset of the asymmetric dual cone 𝑋♭

𝑃 , see Theorem 2.4.30.
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2.4.2 Compact subsets of asymmetric normed spaces

In this subsection we shall present, following [86] and [4], some results on com-
pactness specific to asymmetric normed spaces. The proof will be given in the next
subsection within the more general context of asymmetric LCS.

Let (𝑋, 𝑝) be an asymmetric normed space. For 𝑥 ∈ 𝑋 put

𝜃(𝑥) = {𝑦 ∈ 𝑋 : 𝑝(𝑦 − 𝑥) = 0} . (2.4.3)

It is clear that 𝜃(𝑥) = 𝑥 + 𝜃(0) and 𝑌 + 𝜃(0) = ∪{𝜃(𝑦) : 𝑦 ∈ 𝑌 }. Also
𝜃(𝑥) = 𝜏(𝑝)-cl({𝑥}), as can be seen from the equivalences

𝑦 ∈ 𝜃(𝑥) ⇐⇒ 𝑝(𝑦 − 𝑥) = 0 ⇐⇒ 𝑝(𝑥 − 𝑦) = 0

⇐⇒ ∀𝜀 > 0, 𝑝(𝑥− 𝑦) < 𝜀 ⇐⇒ ∀𝜀 > 0, 𝑥 ∈ 𝐵𝑝(𝑦, 𝜀)

⇐⇒ 𝑦 ∈ 𝜏(𝑝)- cl({𝑥}) .

The following properties hold.

Proposition 2.4.5 ([86]). Let (𝑋, 𝑝) be an asymmetric normed normed space, 𝑥 ∈ 𝑋
and 𝜀 > 0. Then 𝐵𝑝(𝑥, 𝜀) = 𝜃(0)+𝐵𝑝(𝑥, 𝜀)+ 𝜃(0). Also, if 𝑌 is a 𝜏(𝑝)-open subset
of 𝑋, then 𝑌 = 𝑌 + 𝜃(0).

As it is shown by Garćıa-Raffi [86] the sets 𝜃(𝑥) are involved in the study of
compactness in asymmetric normed spaces.

Proposition 2.4.6. Let (𝑋, 𝑝) be an asymmetric normed space and 𝐾 ⊂ 𝑋.

1. The set 𝐾 is 𝜏𝑝-compact if and only if 𝐾 + 𝜃(0) is 𝜏𝑝-compact.
If 𝐾 + 𝜃(0) is 𝜏𝑝-compact, 𝐾0 ⊂ 𝐾 + 𝜃(0) and 𝐾0 + 𝜃(0) = 𝐾 + 𝜃(0), then
𝐾0 is 𝜏𝑝-compact.

2. A finite sum and a finite union of 𝑝-precompact sets is 𝑝-precompact.

3. The convex hull of a 𝑝-precompact set is 𝑝-precompact.

4. The set 𝐾 is 𝑝-precompact if and only if the 𝜏(𝑝)-closure of 𝐾 is 𝑝-pre-
compact.

5. If 𝐾0 ⊂ 𝐾 ⊂ 𝐾0 + 𝜃(0) and 𝐾0-is 𝜏(𝑝𝑠)-compact, then 𝐾 is 𝑝-compact.

Garćıa-Raffi [86] obtained characterizations of finite-dimensional normed
spaces similar to those known for normed spaces. In the following proposition
all topological notions refer to 𝜏(𝑝).

Theorem 2.4.7. Let (𝑋, 𝑝) be an asymmetric normed space.

1. If 𝑋 is finite dimensional, of dimension 𝑛 ≥ 1, and 𝑇1, then 𝑋 is topologically
isomorphic to the Euclidean space ℝ𝑛.

2. If (𝑋, 𝑝) is 𝑇1, then 𝑋 is finite dimensional if and only if its closed unit ball
𝐵𝑝 is 𝜏(𝑝)-compact.
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3. Suppose that 𝑋 is finite dimensional. Then 𝑋 is 𝑇1 if and only if every
𝜏(𝑝)-compact subset of 𝑋 is 𝜏(𝑝)-closed.

As it is shown in [4, Example 12], the property 5 from Proposition 2.4.6 does
not characterize the 𝑝-compactness. This paper contains also some further results
on the relations between the 𝜏(𝑝𝑠)-compactness of 𝐾0 and the 𝑝-compactness of
𝐾, involving a notion of boundedness called right-boundedness. The unit closed
ball 𝐵𝑝 of (𝑋, 𝑝) is called right-bounded if there exists 𝑟 > 0 such that

𝑟 𝐵𝑝 ⊂ 𝐵𝑝𝑠 + 𝜃(0) .

Note that the inclusion 𝐵𝑝𝑠 + 𝜃(0) ⊂ 𝐵𝑝 is always true.

Theorem 2.4.8. Let (𝑋, 𝑝) be an asymmetric normed normed space.

1. ([86]) If 𝑋 is finite dimensional and the unit closed ball 𝐵𝑝 is right-bounded,
then 𝐵𝑝 is 𝜏(𝑝)-compact.

2. ([4]) Suppose that (𝑋, 𝑝) is biBanach with 𝐵𝑝 right-bounded with 𝑟 = 1. If
𝐾 ⊂ 𝑋 is 𝑝-precompact, then there exists a 𝑝𝑠-compact subset 𝐾0 of 𝐾 such
that 𝐾 ⊂ 𝐾0 + 𝜃(0).

3. ([4]) If 𝐾0 is 𝑝𝑠-precompact and 𝐾 ⊂ 𝐾0 + 𝜃(0), then 𝐾 is outside 𝑝-
precompact.

2.4.3 Compact sets in LCS

In this subsection we shall present, following [44], some properties of compact sets
in LCS.

A subset 𝑌 of a quasi-uniform space (𝑋,𝒰) is called precompact if for every
𝑈 ∈ 𝒰 there exists a finite subset 𝑍 of 𝑌 such that 𝑌 ⊂ 𝑈 [𝑍]. The set 𝑌 is called
totally bounded if for every 𝑈 there exists a finite family 𝐴1, . . . , 𝐴𝑛 of subsets
of 𝑌 such that 𝐴𝑖 × 𝐴𝑖 ⊂ 𝑈, 𝑖 = 1, . . . , 𝑛, and 𝑌 ⊂ ∪𝑛𝑖=1𝐴𝑖. Note that the total
boundedness with respect to 𝒰 is equivalent to the total boundedness with respect
to the associated uniformity 𝒰𝑠.

If in the above definition of precompactness one asks that the finite set 𝑍 be
contained in 𝑋, then one obtains the notions of outside precompactness considered
in [4]. Obviously, the precompactness implies the outside precompactness, but the
reverse implication is not true, even in asymmetric normed spaces, see Example
1.2.23. In uniform spaces the total boundedness, the precompactness and the out-
side precompactness agree, and a set is compact if and only if it is totally bounded
and complete.

If 𝑝 is an asymmetric seminorm on a vector space 𝑋, we say that a subset
𝑌 of 𝑋 is 𝑝-precompact if for every 𝜀 > 0 there exists a finite subset 𝑍 of 𝑌 such
that

𝑌 ⊂
∪
𝑧∈𝑍

𝐵𝑝(𝑧, 𝜀). (2.4.4)
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If for every 𝜀 > 0 there exists a finite subset 𝑍 of 𝑋 such that (2.4.4) holds,
then the set 𝑌 is called outside 𝑝-precompact. One obtains an equivalent notion if
one asks that 𝑌 is covered by the family 𝐵𝑝[𝑧, 𝜀], 𝑧 ∈ 𝑍, of closed balls. The set
𝑍 is called also a (𝑝, 𝜀)-net for 𝑌 (in both cases).

A subset of an asymmetric LCS (𝑋,𝑃 ) is called precompact if it is precom-
pact with respect to the quasi-uniformity 𝒰𝑃 . The following proposition contains
a useful characterization of precompactness in asymmetric LCS in terms of semi-
norms. The proof follows immediately from the definition of the quasi-uniformity
𝒰𝑃 (the fact that 𝑈𝑝,𝜀(𝑥) = 𝐵𝑝(𝑥, 𝜀)).

Proposition 2.4.9. A subset 𝑌 of an asymmetric LCS (𝑋,𝑃 ) is (outside) precom-
pact if and only if it is (outside) 𝑝-precompact for every 𝑝 ∈ 𝑃.

Based on this proposition, the proof of Proposition 1.2.18.3 can be adapted to
obtain the following relation between precompactness and outside precompactness.

Proposition 2.4.10. Let (𝑋,𝑃 ) be an asymmetric LCS. A subset 𝑌 of 𝑋 is 𝑃 -
precompact if and only if for every 𝑝 ∈ 𝑃 and every 𝜀 > 0 there exists a finite
subset {𝑥1, . . . , 𝑥𝑛} of 𝑋 such that 𝑌 ⊂ ∪𝑛𝑖=1𝐵𝑝(𝑥𝑖, 𝜀) and 𝑌 ∩ 𝐵𝑝(𝑥𝑖, 𝜀) ∕= ∅ for
all 𝑖 ∈ {1, . . . , 𝑛}.

As a consequence of Proposition 1.1.59, one obtains the following relations
between various notions of compactness and precompactness. A subset 𝑌 of an
asymmetric LCS (𝑋,𝑃 ) is called 𝑃 -bounded provided sup{𝑝(𝑦) : 𝑦 ∈ 𝑌 } < ∞
for every 𝑝 ∈ 𝑃. This is equivalent to the fact that it is absorbed by every 𝜏(𝑃 )-
neighborhood of 0, that is for every 𝜏(𝑃 )-neighborhood 𝑉 of 0 there exists 𝜆 > 0
such that 𝜆𝑌 ⊂ 𝑉, or, in other words, 𝑌 is topologically bounded.

Proposition 2.4.11. Let (𝑋,𝑃 ) be an asymmetric LCS and 𝑌 a subset of 𝑋.

1. If the set 𝑌 is 𝑃 𝑠-precompact, then it is 𝑃 -precompact and 𝑃 -precompact.
The same is true for the outside precompactness.

2. If the set 𝑌 is 𝜏(𝑃 𝑠)-compact, then it is 𝜏(𝑃 )-compact and 𝜏(𝑃 )-compact.

3. The outside 𝑃 -precompact subsets of 𝑋 are 𝑃 -bounded. In particular, the
𝑃 -precompact subsets of 𝑋 are 𝑃 -bounded as well.

4. A subset of 𝑋 is 𝑃 -precompact if and only if its 𝜏(𝑃 )-closure is 𝑃 -precompact.
The same is true for outside 𝑃 -precompactness.

Proof. 1. For 𝜀 > 0 and 𝑝 ∈ 𝑃 there exists a finite subset {𝑦1, . . . , 𝑦𝑛} of 𝑌
such that 𝑌 ⊂ ∪𝑛𝑖=1𝐵𝑝𝑠(𝑦𝑖, 𝜀). Since 𝐵𝑝𝑠(𝑦𝑖, 𝜀) ⊂ 𝐵𝑝(𝑦𝑖, 𝜀), 𝑖 = 1, . . . , 𝑛, it fol-
lows that 𝑌 ⊂ ∪𝑛𝑖=1𝐵𝑝(𝑦𝑖, 𝜀), so that 𝑌 is 𝑃 -precompact. Similarly, 𝐵𝑝𝑠(𝑦𝑖, 𝜀) ⊂
𝐵𝑝(𝑦𝑖, 𝜀), 𝑖 = 1, . . . , 𝑛, implies that 𝑌 is 𝑃 -precompact. The case of outside pre-
compactness can be treated exactly in the same way.

2. This follows from the fact that a compact subset of a topological space
remains compact for every coarser topology.
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3. For 𝑝 ∈ 𝑃 there exists a finite subset {𝑥1, . . . , 𝑥𝑛} of 𝑋 such that 𝑌 ⊂
{𝑥1, . . . , 𝑥𝑛} + 𝐵𝑝(0, 1), implying 𝑝(𝑦) ≤ max{𝑝(𝑥𝑖) : 1 ≤ 𝑖 ≤ 𝑛} + 1 for every
𝑦 ∈ 𝑌.

4. We give a proof different from that in [4]. Suppose first that 𝑌 is 𝑃 -
precompact and show that 𝑍 = 𝜏(𝑃 )-cl𝑌 is also 𝑃 -precompact, which is equiva-
lent to the fact that 𝑍 is 𝑝-precompact for every 𝑝 ∈ 𝑃.

Let 𝑝 ∈ 𝑃 and 𝜀 > 0. Since 𝑌 is 𝑝-precompact there exists 𝑦1, . . . , 𝑦𝑛 ∈ 𝑌
such that

𝑌 ⊂ ∪𝑛𝑖=1𝐵𝑝[𝑦𝑖, 𝜀]. (2.4.5)

By Proposition 1.1.59.4, the ball 𝐵𝑝[0, 𝜀] is 𝜏(𝑃 )-closed, so that the set

∪𝑛𝑖=1𝐵𝑝[𝑦𝑖, 𝜀] = {𝑦1, . . . , 𝑦𝑛}+𝐵𝑝[0, 𝜀]

is also 𝜏(𝑃 )-closed. But then, the inclusion (2.4.5) implies

𝜏(𝑃 )- cl𝑌 ⊂ ∪𝑛𝑖=1𝐵𝑝[𝑦𝑖, 𝜀] .

Conversely, suppose that 𝑍 = 𝜏(𝑃 )-cl𝑌 is 𝑃 -precompact and prove that 𝑌
is 𝑃 -precompact.

For 𝑝 ∈ 𝑃 and 𝜀 > 0 there exist 𝑧1, . . . , 𝑧𝑛 ∈ 𝑍 such that

𝑍 ⊂ ∪𝑛𝑖=1𝐵𝑝(𝑧𝑖, 𝜀). (2.4.6)

For every 𝑖 ∈ {1, . . . , 𝑛} there exists 𝑦𝑖 ∈ 𝑌 ∩ 𝐵𝑝(𝑧𝑖, 𝜀), that is an 𝑦𝑖 ∈ 𝑌
such that 𝑝(𝑦𝑖 − 𝑧𝑖) < 𝜀, or, equivalently, 𝑝(𝑧𝑖 − 𝑦𝑖) < 𝜀.

Let 𝑦 ∈ 𝑌 ⊂ 𝑍. By (2.4.6) there exists 𝑗 ∈ {1, . . . , 𝑛} such that 𝑦 ∈ 𝐵𝑝(𝑧𝑗 , 𝜀).
But then

𝑝(𝑦 − 𝑦𝑗) ≤ 𝑝(𝑦 − 𝑧𝑗) + 𝑝(𝑧𝑗 − 𝑦𝑗) < 2𝜀 ,

showing that 𝑌 ⊂ ∪𝑛𝑖=1𝐵𝑝(𝑦𝑖, 2𝜀).

In the case of outside precompactness, a subset of an outside precompact set
is also outside precompact, so the outside precompactness of the 𝜏(𝑃 )-closure of
𝑌 implies the outside precompactness of 𝑌. The reverse implication can be proved
exactly as in the case of the precompactness. □
Remark 2.4.12. In the case of asymmetric normed spaces, the result from the
assertion 4 of the above proposition was proved by Garćıa-Raffi [86, Prop. 9].

The following property is a consequence of Propositions 1.1.64.1 and 1.1.67.1,
but for the sake of convenience, we give the proof.

Lemma 2.4.13. Let (𝑋,𝑃 ) be an asymmetric LCS, 𝑄 ⊂ 𝑃 and 𝐷 ⊂ ℝ such that
the family {𝐵𝑞(0, 𝑟) : 𝑞 ∈ 𝑄, 𝑟 ∈ 𝐷} is a basis of 𝜏(𝑃 )-neighborhoods of 0. Then

𝜏(𝑃 )- cl𝑌 =
∩
{𝑌 +𝐵𝑞(0, 𝑟) : 𝑞 ∈ 𝑄, 𝑟 ∈ 𝐷}, (2.4.7)

for every subset 𝑌 of 𝑋.
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Proof of Lemma 2.4.13. Let 𝑥 ∈ 𝜏(𝑃 )- cl𝑌, 𝑞 ∈ 𝑄 and 𝑟 ∈ 𝐷. Then 𝑥 + 𝐵𝑞(0, 𝑟)
is a 𝜏(𝑃 )-neighborhood of 𝑥, so that 𝑌 ∩ (𝑥+𝐵𝑞(0, 𝑟)) ∕= ∅, implying 𝑥+ 𝑢 = 𝑦,
for some 𝑢 ∈ 𝐵𝑞(0, 𝑟) and 𝑦 ∈ 𝑌. But

𝑢 ∈ 𝐵𝑞(0, 𝑟) ⇐⇒ 𝑞(𝑢) ≤ 𝑟 ⇐⇒ 𝑞(−𝑢) ≤ 𝑟 ⇐⇒ −𝑢 ∈ 𝐵𝑞(0, 𝑟) ,

so that 𝑥 = 𝑦 − 𝑢 ∈ 𝑌 +𝐵𝑞(0, 𝑟).

Conversely, suppose that 𝑥 belongs to the intersection from the right-hand
side of the equality (2.4.7). For a 𝜏(𝑃 )-neighborhood 𝑉0 of 0, let 𝑞 ∈ 𝑄 and
𝑟 ∈ 𝐷 be such that 𝐵𝑞(0, 𝑟) ⊂ 𝑉0. By hypothesis, 𝑥 = 𝑦 + 𝑣 for some 𝑦 ∈ 𝑌 and
𝑣 ∈ 𝐵𝑞(0, 𝑟), which, as above, implies that

𝑦 = 𝑥− 𝑣 ∈ 𝑥+𝐵𝑞(0, 𝑟) ⊂ 𝑥+ 𝑉0 .

Consequently, (𝑥 + 𝑉0) ∩ 𝑌 ∕= ∅, showing that 𝑥 ∈ 𝜏(𝑃 )-cl𝑌. □

Proposition 2.4.14. Let (𝑋,𝑃 ) be an asymmetric LCS whose topology 𝜏(𝑃 ) is 𝑇1.
Then 𝑋 is finite dimensional if and only if there exists an outside 𝑃 -precompact
𝜏(𝑃 )-neighborhood of 0.

Proof. Necessity. If dim𝑋 = 𝑚, then, by Proposition 1.1.68, it is isomorphic,
algebraically and topologically, to the Euclidean space ℝ𝑚. Let Φ : ℝ𝑚 → 𝑋 be
an isomorphism. Since the closed unit ball 𝐵ℝ𝑚 is a compact neighborhood of
0 ∈ ℝ𝑚, its image by Φ will be a 𝜏(𝑃 )-compact neighborhood of 0 ∈ 𝑋 which will
be 𝑃 -precompact and so outside 𝑃 -precompact.

Sufficiency. Let 𝑈 = 𝐵𝑝0(0, 𝑟0) be an outside 𝑃 -precompact 𝜏(𝑃 )-neighborhood
of 0. Then there exists a finite subset {𝑥1, . . . , 𝑥𝑛} of 𝑋 such that

𝑈 ⊂ {𝑥1, . . . , 𝑥𝑛}+ 1

2
𝑈

implying

𝑈 ⊂ 𝑍 +
1

2
𝑈, (2.4.8)

where 𝑍 = sp{𝑥1, . . . , 𝑥𝑛} is the linear space generated by {𝑥1, . . . , 𝑥𝑛}. By (2.4.8)
1

2
𝑈 ⊂ 1

2
𝑍 +

1

22
𝑈 = 𝑍 +

1

22
𝑈 ,

so that

𝑈 ⊂ 𝑍 +
1

2
𝑈 ⊂ 𝑍 + 𝑍 +

1

22
𝑈 = 𝑍 +

1

22
𝑈 .

Repeating the argument, one obtains

𝑈 ⊂ 𝑍 +
1

2𝑛
𝑈, (2.4.9)

for all 𝑛 ∈ ℕ.



2.4. Weak topologies 149

We show that { 1
2𝑛𝑈 : 𝑛 ∈ ℕ} is a basis of 𝜏(𝑃 )-neighborhoods of 0. For a

𝜏(𝑃 )-neighborhood 𝑉 of 0, there exists 𝑝 ∈ 𝑃 and 𝑟 > 0 such that 𝐵𝑝(0, 𝑟) ⊂ 𝑉.
Since a 𝑃 -precompact set is topologically bounded (with respect to 𝜏(𝑃 )), there
exists 𝜆 > 0 such that 𝜆𝑈 = 𝜆𝐵𝑝0(0, 𝑟0) ⊂ 𝐵𝑝(0, 𝑟). If 𝑛 ∈ ℕ is such that 2−𝑛 < 𝜆,
then

1

2𝑛
𝑈 =

1

2𝑛
𝐵𝑝0(0, 𝑟0) ⊂ 𝜆𝐵𝑝0(0, 𝑟0) ⊂ 𝐵𝑝(0, 𝑟) ⊂ 𝑉 .

It is easy to check that { 1
2𝑛𝐵𝑝0(0, 𝑟0) : 𝑛 ∈ ℕ} is a basis of 𝜏(𝑃 )-neighbor-

hoods of 0, so that, by Lemma 2.4.13 and by (2.4.9),

𝑈 ⊂
∩
{𝑍 + 1

2𝑛
𝑈 : 𝑛 ∈ ℕ} = 𝜏(𝑃 )- cl𝑍. (2.4.10)

If we show that 𝜏(𝑃 )-cl𝑍 = 𝑍, then by (2.4.10), for every 𝑥 ∈ 𝑋 ∖ {0} there
exists 𝜆 > 0 such that 𝜆𝑥 ∈ 𝑈 ⊂ 𝑍, showing that 𝑋 = 𝑍 is finite dimensional.

Let 𝑥 ∈ 𝜏(𝑃 )-cl𝑍 ∖ 𝑍. Suppose that dim𝑍 = 𝑚 and let 𝑒1, . . . , 𝑒𝑚 be an
algebraic basis of 𝑍. The space 𝑊 = sp(𝑍 ∪ {𝑥}) has dimension 𝑚 + 1 and
𝑒1, . . . , 𝑒𝑚, 𝑥 is an algebraic basis of 𝑊. Since {{ 1

2𝑛𝐵𝑝0(0, 𝑟0) : 𝑛 ∈ ℕ} is a basis of
𝜏(𝑃 )-neighborhoods of 0, it follows that the topology 𝜏(𝑃 ) is generated by 𝑝0, so
we can work with sequences. Suppose that 𝑧𝑘 = 𝛼1,𝑘 𝑒1+⋅ ⋅ ⋅+𝛼𝑚,𝑘 𝑒𝑚+0⋅𝑥, 𝑘 ∈ ℕ,
is a sequence in 𝑍 which converges to 𝑥 = 0 ⋅ 𝑒1 + ⋅ ⋅ ⋅ + 0 ⋅ 𝑒𝑚 + 1 ⋅ 𝑥. Since the
topology 𝜏(𝑃 ) is 𝑇1, Proposition 1.1.63.2, implies that the topology 𝜏(𝑃 ) is also 𝑇1.
By Lemma 1.1.70, lim𝑘 𝛼𝑖,𝑘 = 0, 𝑖 = 1, . . . ,𝑚, and 0 = lim𝑘 𝛼𝑚+1,𝑘 = 𝛼𝑚+1 = 1, a
contradiction. Consequently, 𝜏(𝑃 )-cl𝑍 = 𝑍, and Proposition 2.4.14 is completely
proved. □

The following proposition is the analog of a known result in normed spaces.
In the case of asymmetric normed spaces it was proved in [4, Proposition 8].

Proposition 2.4.15. If 𝑌 is a precompact subset of an asymmetric LCS (𝑋,𝑃 ),
then the convex hull co𝑌 of 𝑌 is also precompact.

Proof. By Proposition 2.4.9 it is sufficient to show that co𝑌 is 𝑝-precompact for
every 𝑝 ∈ 𝑃.

Let 𝑝 ∈ 𝑃 and 𝜀 > 0. By the precompactness of 𝑌 there exists a finite subset
{𝑦01, . . . , 𝑦0𝑛} of 𝑌 such that

𝑌 ⊂ ∪𝑛𝑖=1𝐵𝑝(𝑦
0
𝑖 , 𝜀). (2.4.11)

Let Δ𝑛 = {(𝜆1, . . . , 𝜆𝑛) ∈ ℝ𝑛
+ :

∑𝑛
𝑖=1 𝜆𝑖 = 1} be the standard simplex in

ℝ𝑛
+. The mapping Φ : ℝ𝑛

+ × 𝑋𝑛 → 𝑋 given by Φ((𝛼1, . . . , 𝛼𝑛), (𝑥1, . . . , 𝑥𝑛)) =∑𝑛
𝑖=1 𝛼𝑖𝑥𝑖 is continuous and 𝑊 = co{𝑦01, . . . , 𝑦0𝑛} is the image by this mapping of

the compact subset Δ𝑛×{𝑦01, . . . , 𝑦0𝑛} of ℝ𝑛
+×𝑋𝑛, so it is compact and consequently

𝑃 -precompact.

Therefore, there exists a subset {𝑤0
1 , . . . , 𝑤

0
𝑚} ⊂𝑊 such that

𝑊 ⊂ ∪𝑚𝑖=1𝐵𝑝(𝑤
0
𝑖 , 𝜀). (2.4.12)
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We show that
𝑌 ⊂ ∪𝑚𝑖=1𝐵𝑝(𝑤

0
𝑖 , 2𝜀). (2.4.13)

Let 𝑥 ∈ co𝑌 , 𝑥 =∑𝑙
𝑖=1 𝛼𝑖𝑦𝑖 for some 𝛼𝑖 ≥ 0, 𝑦𝑖 ∈ 𝑌 , 𝑖 = 1, . . . , 𝑙,

∑𝑙
𝑖=1 𝛼𝑖 =

1. By (2.4.11), for every 𝑖 ∈ {1, . . . , 𝑙} there exists 𝑗(𝑖) ∈ {1, . . . , 𝑛} such that
𝑝(𝑦𝑖 − 𝑦0𝑗(𝑖)) ≤ 𝜀. Putting 𝑤 :=

∑𝑙
𝑖=1 𝛼𝑖𝑦

0
𝑗(𝑖), it follows that

𝑝(𝑥− 𝑤) = 𝑝(

𝑙∑
𝑖=1

𝛼𝑖(𝑦𝑖 − 𝑦0𝑗(𝑖))) ≤
𝑙∑

𝑖=1

𝛼𝑖𝑝(𝑦𝑖 − 𝑦0𝑗(𝑖)) ≤ 𝜀 .

Since 𝑤 ∈ 𝑊, the equality (2.4.12) implies the existence of 𝑖0 ∈ {1, . . . ,𝑚}
such that 𝑝(𝑤 − 𝑤0

𝑖0
) ≤ 𝜀. But then

𝑝(𝑥− 𝑤0
𝑖0 ) ≤ 𝑝(𝑥− 𝑤) + 𝑝(𝑤 − 𝑤0

𝑖0 ) ≤ 2𝜀 ,

showing that (2.4.13) holds. □

Some relations between precompactness and compactness in asymmetric
normed spaces were studied in [86] and [4]. These results were extended in [44] to
asymmetric LCS.

Let (𝑋,𝑃 ) be an asymmetric LCS. For 𝑝 ∈ 𝑃 let

𝜃0,𝑝 = {𝑧 ∈ 𝑋 : 𝑝(𝑧) = 0}, and

𝜃0 = ∩𝑝∈𝑃 𝜃0,𝑝 .

Let also
𝜃𝑥,𝑝 = {𝑧 ∈ 𝑋 : 𝑝(𝑧 − 𝑥) = 0} = 𝑥+ 𝜃0,𝑝 .

It is immediate that 𝜃𝑥 agrees with the 𝜏(𝑃 )-closure of the set {𝑥}. Indeed
𝑦 ∈ 𝜏(𝑃 )- cl{𝑥} ⇐⇒ ∀𝑝 ∈ 𝑃, ∀𝜀 > 0, 𝑝(𝑥− 𝑦) < 𝜀

⇐⇒ ∀𝑝 ∈ 𝑃, 𝑝(𝑥 − 𝑦) = 0

⇐⇒ ∀𝑝 ∈ 𝑃, 𝑝(𝑦 − 𝑥) = 0

⇐⇒ 𝑦 ∈ 𝜃𝑥 .

As it was shown in [86]

𝐵𝑝(𝑥, 𝜀) = 𝐵𝑝(𝑥, 𝜀) + 𝜃0,𝑝 .

Based on this equality one obtains immediately that

𝑌 = 𝑌 + 𝜃0 ,

for every 𝜏(𝑃 )-open subset 𝑌 of 𝑋. Indeed, 0 ∈ 𝜃0 implies 𝑌 ⊂ 𝑌 +𝜃0. Conversely,
let 𝑥 = 𝑦+𝑧 for some 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝜃0. Since 𝑌 is 𝜏(𝑃 )-open there exist 𝑝 ∈ 𝑃 and
𝜀 > 0 such that 𝐵𝑝(𝑦, 𝜀) ⊂ 𝑌, implying 𝑥 = 𝑦+𝑧 ∈ 𝐵′𝑝(𝑦, 𝜀)+𝜃0 ⊂ 𝐵′𝑝(𝑦, 𝜀)+𝜃0,𝑝 =
𝐵′𝑝(𝑦, 𝜀) ⊂ 𝑌.

As a consequence of this last equality, one obtains the analog of Proposition
6 from [86].
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Proposition 2.4.16. A subset 𝐾 of an asymmetric LCS is 𝜏(𝑃 )-compact if and
only if 𝐾 + 𝜃0 is 𝜏(𝑃 )-compact.

Also, if 𝐾 is 𝜏(𝑃 )-compact, then every subset 𝑍 of 𝐾 + 𝜃0 is 𝜏(𝑃 )-compact.

Remark 2.4.17. In the case of an asymmetric normed space (𝑋, 𝑝), Alegre et al.
[4] give characterizations of 𝜏𝑝 -compact subsets of 𝑋. Among other results, they
prove, under some supplementary hypotheses, that a subset 𝐾 of 𝑋 is 𝜏𝑝 -compact
if and only if there exists a 𝜏𝑝𝑠 -compact subset𝐾0 of𝑋 such that𝐾0 ⊂ 𝐾 ⊂ 𝐾+𝜃0
([4, Theorem 20]). It is possible that similar characterizations hold in the locally
convex case, a topic for further investigation.

2.4.4 The conjugate operator, precompact operators
and a Schauder type theorem

A Schauder type theorem on the compactness of the conjugate of a compact linear
operator on an asymmetric normed space was proved in [43]. We shall briefly
present this result, referring for the details to the mentioned paper.

For a continuous linear operator 𝐴 : (𝑋, 𝑝)→ (𝑌, 𝑞) between two asymmetric
normed spaces, one defines the conjugate operator 𝐴♭ : 𝑌 ♭

𝑞 → 𝑋♭
𝑝 by the formula

𝐴♭𝜓 = 𝜓 ∘𝐴, 𝜓 ∈ 𝑌 ♭
𝑞 . (2.4.14)

Concerning the continuity we have.

Proposition 2.4.18. Let (𝑋, 𝑝), (𝑌, 𝑞) be asymmetric normed spaces and 𝐴 : 𝑋 → 𝑌
a continuous linear operator.

1. The operator 𝐴♭ : (𝑌 ♭
𝑞 , ∥ ⋅ ∣𝑞)→ (𝑋♭

𝑝, ∥ ⋅ ∣𝑝) is additive, positively homogeneous
and continuous. So it is also quasi-uniformly continuous with respect to the
quasi-uniformities 𝒰 ♭𝑞 and 𝒰 ♭𝑝 on 𝑌 ♭

𝑞 and 𝑋♭
𝑝 , respectively.

2. The operator 𝐴♭ is also quasi-uniformly continuous with respect to the 𝑤♭-
quasi-uniformities 𝒲♭

𝑞 on 𝑌 ♭
𝑞 and 𝒲♭

𝑝 on 𝑋♭
𝑝 .

Proof. 1. It is obvious that 𝐴♭ is properly defined, additive and positively homo-
geneous.

For every 𝜓 ∈ 𝑌 ♭
𝑞 ,

∥𝐴♭𝜓∣𝑞 = ∥𝜓 ∘𝐴♭∣𝑞 ≤ ∥𝜓∣𝑞 ∥𝐴∣𝑝,𝑞 ,

implying the continuity of 𝐴♭, which, in its turn, by the linearity of 𝐴, implies the
quasi-uniform continuity with respect to the quasi-uniformities 𝒰 ♭𝑞 and 𝒰 ♭𝑝.

2. For 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 and 𝜀 > 0 let

𝑉 = {(𝜑1, 𝜑2) ∈ 𝑋♭
𝑝 ×𝑋♭

𝑝 : 𝜑2(𝑥𝑖)− 𝜑1(𝑥𝑖) ≤ 𝜀, 𝑖 = 1, . . . , 𝑛}
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be a 𝑤♭-entourage in 𝑋♭
𝑝. Then

𝑈 = {(𝜓1, 𝜓2) ∈ 𝑌 ♭
𝑞 × 𝑌 ♭

𝑞 : 𝜓2(𝐴𝑥𝑖)− 𝜓1(𝐴𝑥𝑖) ≤ 𝜀, 𝑖 = 1, . . . , 𝑛} ,

is a 𝑤♭-entourage in 𝑌 ♭
𝑞 and (𝐴♭𝜓1, 𝐴

♭𝜓2) ∈ 𝑉 for every (𝜓1, 𝜓2) ∈ 𝑈, proving

the quasi-uniform continuity of 𝐴♭ with respect to the 𝑤♭-quasi-uniformities on
𝑌 ♭
𝑞 and 𝑋♭

𝑝. □

A linear operator 𝐴 : (𝑋, 𝑝)→ (𝑌, 𝑞) between two asymmetric normed spaces
is called (𝑝, 𝑞)-precompact if the image 𝐴(𝐵𝑝) of the closed unit ball 𝐵𝑝 of 𝑋 by the
operator 𝐴 is a 𝑞-precompact subset of 𝑌. We shall denote by (𝑋,𝑌 )𝑘𝑝,𝑞 the set of
all (𝑝, 𝑞)-precompact operators from 𝑋 to 𝑌. A subset 𝑌 of a quasi-uniform space
(𝑋,𝒰) is called 𝒰-precompact if for every 𝜀 > 0 there exists a finite subset 𝑍 of 𝑌
such that 𝑌 ⊂ 𝑈 [𝑍]. If there exists a set 𝑍 ⊂ 𝑋 such that 𝑌 ⊂ 𝑈 [𝑍], then 𝑌 is
called outside 𝒰-precompact. It is clear that a subset 𝑌 of an asymmetric normed
space (𝑋, 𝑝) is (outside) 𝑝-precompact if and only if it is (outside) 𝒰𝑝-precompact.

For 𝜇 ∈ {𝑝, 𝑝, 𝑝𝑠} and 𝜈 ∈ {𝑞, 𝑞, 𝑞𝑠} denote by (𝑋,𝑌 )♭𝜇,𝜈 the cone of all

continuous linear operators from (𝑋,𝜇) to (𝑌, 𝜈). The space (𝑋,𝑌 )∗𝑠 := (𝑋,𝑌 )♭𝑝𝑠,𝑞𝑠
is the space of all continuous linear operators between the associated normed
spaces (𝑋, 𝑝𝑠) and (𝑌, 𝑝𝑠), which was denoted also by 𝐿(𝑋,𝑌 ).

On the space (𝑋,𝑌 )∗𝑠 we shall consider several quasi-uniformities. For 𝜇 ∈
{𝑝, 𝑝, 𝑝𝑠} and 𝜈 ∈ {𝑞, 𝑞, 𝑞𝑠} let 𝒰𝜇,𝜈 be the quasi-uniformity generated by the basis
𝑈𝜇,𝜈; 𝜀 = {(𝐴,𝐵);𝐴,𝐵 ∈ (𝑋,𝑌 )∗𝑠, 𝜈(𝐵𝑥−𝐴𝑥) ≤ 𝜀, ∀𝑥 ∈ 𝐵𝜇, }, 𝜀 > 0 , (2.4.15)

where 𝐵𝜇 = {𝑥 ∈ 𝑋 : 𝜇(𝑥) ≤ 1} denotes the unit ball of (𝑋,𝜇). The induced
quasi-uniformity on the semilinear subspace (𝑋,𝑌 )♭𝜇,𝜈 of (𝑋,𝑌 )∗𝑠 is denoted also
by 𝒰𝜇,𝜈 and the corresponding topologies by 𝜏(𝜇, 𝜈). The uniformity 𝒰𝑝𝑠,𝑞𝑠 and
the topology 𝜏(𝑝𝑠, 𝑞𝑠) are those corresponding to the norm (2.1.6) on the space
(𝑋,𝑌 )∗𝑠 , while the quasi-uniformity 𝒰𝑝,𝑞 corresponds to the extended asymmetric
norm ∥ ⋅ ∣∗𝑝,𝑞 given by (2.1.23). In the case of the dual space 𝑋♭

𝜇 we shall use the

notation 𝒰 ♭𝜇 for the quasi-uniformity 𝒰𝜇,𝑢 .
Notice that, for 𝜇 = 𝑝𝑠 and 𝜈 = 𝑞𝑠, the space (𝑋,𝑌 )♭𝑝𝑠,𝑞𝑠 agrees with

(𝑋,𝑌 )∗𝑠, the (𝑝
𝑠, 𝑞𝑠)-compact operators are the usual linear compact operators

between the normed spaces (𝑋, 𝑝𝑠) and (𝑌, 𝑞𝑠), so the following proposition ex-
tends some well-known results for compact operators on normed spaces. For 𝜇 ∈
{𝑝, 𝑝, 𝑝𝑠} and 𝜈 ∈ {𝑞, 𝑞, 𝑞𝑠} one denotes by (𝑋,𝑌 )𝑘𝜇,𝜈 the set of all (𝜇, 𝜈)-precom-
pact linear operators from (𝑋,𝜇) to (𝑌, 𝜈).

Proposition 2.4.19. Let (𝑋, 𝑝), (𝑌, 𝑞) be asymmetric normed spaces. The following
assertions hold.

1. (𝑋,𝑌 )𝑘𝜇,𝜈 is a subcone of the cone (𝑋,𝑌 )♭𝜇,𝜈 of all continuous linear operators
from 𝑋 to 𝑌.

2. (𝑋,𝑌 )𝑘𝑝,𝑞 is 𝜏(𝑝, 𝑞𝑠)-closed in (𝑋,𝑌 )♭𝑝,𝑞.
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Proof. 1. We give the proof in the case 𝜇 = 𝑝 and 𝜈 = 𝑞. The other cases can be
treated similarly.

If 𝐴 : 𝑋 → 𝑌 is (𝑝, 𝑞)-precompact, then there exists 𝑥1, . . . , 𝑥𝑛 ∈ 𝐵𝑝 such
that

∀𝑥 ∈ 𝐵𝑝, ∃𝑖 ∈ {1, . . . , 𝑛}, 𝑞(𝐴𝑥 −𝐴𝑥𝑖) ≤ 1. (2.4.16)

If for 𝑥 ∈ 𝐵𝑝, 𝑖 ∈ {1, . . . , 𝑛} is chosen according to (2.4.16), then

𝑞(𝐴𝑥) ≤ 𝑞(𝐴𝑥 −𝐴𝑥𝑖) + 𝑞(𝐴𝑥𝑖) ≤ 1 + max{𝑞(𝐴𝑥𝑗) : 1 ≤ 𝑗 ≤ 𝑛},

showing that the operator 𝐴 is (𝑝, 𝑞)-bounded.

Suppose that 𝐴1, 𝐴2 : 𝑋 → 𝑌 are (𝑝, 𝑞)-precompact and let 𝜀 > 0. By the
(𝑝, 𝑞)-precompactness of the operators𝐴1, 𝐴2, there exist 𝑥1, . . . , 𝑥𝑚 and 𝑦1, . . . , 𝑦𝑛
in 𝐵𝑝 such that

∀𝑥 ∈ 𝐵𝑝, ∃𝑖 ∈ {1, . . . ,𝑚}, ∃𝑗 ∈ {1, . . . , 𝑛},
𝑞(𝐴1𝑥−𝐴1𝑥𝑖) ≤ 𝜀 and 𝑞(𝐴2𝑥−𝐴2𝑦𝑗) ≤ 𝜀.

It follows that for every 𝑥 ∈ 𝐵𝑝 there exists a pair (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝑚 and
1 ≤ 𝑗 ≤ 𝑛 such that

𝑞(𝐴1𝑥+ 𝐴2𝑥−𝐴1𝑥𝑖 −𝐴2𝑦𝑗) ≤ 𝑞(𝐴1𝑥−𝐴1𝑥𝑖) + 𝑞(𝐴2𝑥−𝐴2𝑦𝑗) ≤ 2𝜀,

showing that {𝐴1𝑥𝑖 + 𝐴2𝑦𝑗 : 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} is a finite 2𝜀-net for
(𝐴1 +𝐴2)(𝐵𝑝).

The proof of the precompactness of 𝛼𝐴, for 𝛼 > 0 and 𝐴 precompact, is
immediate and we omit it.

2. The 𝜏(𝑝, 𝑞𝑠)-closedness of (𝑋,𝑌 )𝑘𝑝.𝑞 .

Let (𝐴𝑛) be a sequence in (𝑋,𝑌 )𝑘𝑝,𝑞 which is 𝜏(𝑝, 𝑞𝑠)-convergent to 𝐴 ∈
(𝑋,𝑌 )♭𝑝,𝑞 .

For 𝜀 > 0 choose 𝑛0 ∈ ℕ such that

∀𝑛 ≥ 𝑛0, ∀𝑥 ∈ 𝐵𝑝, 𝑞(𝐴𝑛𝑥−𝐴𝑥) ≤ 𝜀 and 𝑞(𝐴𝑥 −𝐴𝑛𝑥) ≤ 𝜀 . (2.4.17)

Let 𝑥1, . . . , 𝑥𝑚 ∈ 𝐵𝑝 be such that the points 𝐴𝑛0𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑚, form an
𝜀-net for 𝐴𝑛0(𝐵𝑝). Then for every 𝑥 ∈ 𝐵𝑝 there exists 𝑖 ∈ {1, . . . ,𝑚} such that

𝑞(𝐴𝑛0𝑥−𝐴𝑛0𝑥𝑖) ≤ 𝜀,

so that, by (2.4.17),

𝑞(𝐴𝑥−𝐴𝑥𝑖) ≤ 𝑞(𝐴𝑥−𝐴𝑛0𝑥) + 𝑞(𝐴𝑛0𝑥−𝐴𝑛0𝑥𝑖) + 𝑞(𝐴𝑛0𝑥𝑖 −𝐴𝑥𝑖) ≤ 3𝜀.

Consequently, 𝐴𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑚, is a 3𝜀-net for 𝐴(𝐵𝑝), showing that 𝐴 ∈ (𝑋,𝑌 )𝑘𝑝,𝑞 .
□



154 Chapter 2. Asymmetric Functional Analysis

Now we are prepared to state and prove the analog of the Schauder theorem.

Theorem 2.4.20. Let (𝑋, 𝑝), (𝑌, 𝑞) be asymmetric normed spaces. If the linear op-
erator 𝐴 : 𝑋 → 𝑌 is (𝑝, 𝑞𝑠)-precompact, then 𝐴♭(𝐵♭

𝑞) is precompact with respect

to the quasi-uniformity 𝒰 ♭𝑝 on 𝑋♭
𝑝.

Proof. For 𝜀 > 0 let

𝑈𝜀 = {(𝜑1, 𝜑2) ∈ 𝑋♭
𝑝 ×𝑋♭

𝑝 : 𝜑2(𝑥) − 𝜑1(𝑥) ≤ 𝜀, ∀𝑥 ∈ 𝐵𝑝} ,

be an entourage in 𝑋♭
𝑝 for the quasi-uniformity 𝒰 ♭𝑝 .

Since 𝐴 is (𝑝, 𝑞𝑠)-precompact, there exist 𝑥1, . . . , 𝑥𝑛 ∈ 𝐵𝑝 such that

∀𝑥 ∈ 𝐵𝑝 , ∃𝑗 ∈ {1, . . . , 𝑛}, 𝑞(𝐴𝑥−𝐴𝑥𝑗) ≤ 𝜀 and 𝑞(𝐴𝑥𝑗 −𝐴𝑥) ≤ 𝜀. (2.4.18)

By the Alaoglu-Bourbaki theorem, Theorem 2.4.3, the set 𝐵♭
𝑞 is 𝑤

♭-compact,

so by the (𝑤♭, 𝑤♭)-continuity of the operator 𝐴♭ (Proposition 2.4.18), the set
𝐴♭(𝐵♭

𝑞) is 𝑤
♭-compact in 𝑋♭

𝑝. Consequently, the 𝑤♭-open cover of 𝐴♭(𝐵♭
𝑞),

𝑉𝜓 = {𝜑 ∈ 𝑋♭
𝑝 : 𝜑(𝑥𝑖)−𝐴♭𝜓(𝑥𝑖) < 𝜀, 𝑖 = 1, . . . , 𝑛}, 𝜓 ∈ 𝐵♭

𝑞 ,

contains a finite subcover, i.e., there exist 𝑚 ∈ ℕ and 𝜓𝑘 ∈ 𝐵♭
𝑞, 1 ≤ 𝑘 ≤ 𝑚, such

that
𝐴♭(𝐵♭

𝑞) ⊂
∪
{𝑉𝜓𝑘

: 1 ≤ 𝑘 ≤ 𝑚} . (2.4.19)

Now let 𝜓 ∈ 𝐵♭
𝑞 . By (2.4.19) there exists 𝑘 ∈ {1, . . . ,𝑚} such that

𝐴♭𝜓(𝑥𝑖)−𝐴♭𝜓𝑘(𝑥𝑖) < 𝜀, 𝑖 = 1, . . . , 𝑛 .

If 𝑥 ∈ 𝐵𝑝, then, by (2.4.18), there exists 𝑗 ∈ {1, . . . , 𝑛}, such that

𝑞(𝐴𝑥 −𝐴𝑥𝑗) ≤ 𝜀 and 𝑞(𝐴𝑥𝑗 −𝐴𝑥) ≤ 𝜀 .

It follows that

𝜓(𝐴𝑥) − 𝜓𝑘(𝐴𝑥)

= 𝜓(𝐴𝑥 −𝐴𝑥𝑗) + 𝜓(𝐴𝑥𝑗)− 𝜓𝑘(𝐴𝑥𝑗) + 𝜓𝑘(𝐴𝑥𝑗 −𝐴𝑥)

≤ 𝑞(𝐴𝑥 −𝐴𝑥𝑗) + 𝜀+ 𝑞(𝐴𝑥𝑗 −𝐴𝑥) ≤ 3𝜀 .

Consequently,

∀𝑥 ∈ 𝐵𝑝 , (𝐴♭𝜓 −𝐴♭𝜓𝑘)(𝑥) ≤ 3𝜀 ,

proving that
𝐴♭(𝐵♭

𝑞) ⊂ 𝑈3𝜀[{𝐴♭𝜓1, . . . , 𝐴
♭𝜓𝑚}] . □
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Remark 2.4.21. As a measure of precaution, we have restricted our study to pre-
compact linear operators 𝐴 on an asymmetric normed space (𝑋, 𝑝) with values in
another asymmetric normed space (𝑌, 𝑞), meaning that the image 𝐴(𝐵𝑝) of the
unit ball of 𝑋 by 𝐴 is a 𝑞-precompact subset of 𝑌. A compact linear operator
should be defined by the condition that 𝐴(𝐵𝑝) is a relatively compact subset of
𝑌, that is the 𝜏𝑞-closure of 𝐴(𝐵𝑝) is 𝜏𝑞-compact subset of 𝑌, in concordance to the
definition of compact linear operators between normed spaces.

As can be seen from Section 1.2, the relations between precompactness, total
boundedness and completeness are considerably more complicated in the asym-
metric case than in the symmetric one. The compactness properties of the set
𝐴(𝐵𝑝) need a study of the completeness of the space (𝑋,𝑌 )♭𝜇,𝜈 with respect to
various quasi-uniformities and various notions of completeness, which could be a
topic of further investigation.

2.4.5 The bidual space, reflexivity and Goldstine theorem

The bidual space was introduced in [90], including the definition of the canonical
embedding of an asymmetric normed space in its bidual and the definition of a
reflexive asymmetric normed space. Further properties were proved in [93].

Let (𝑋, 𝑝) be an asymmetric normed space. Denote by 𝑋♭
𝑝 the cone of all

continuous linear functionals 𝑓 : (𝑋, 𝑝)→ (ℝ, 𝑢) and by 𝑋∗ the dual space of the
associated normed space (𝑋, 𝑝𝑠). On 𝑋∗ one considers the extended asymmetric
norm and the extended norm given by

∥𝑓 ∣∗ = sup 𝑓(𝐵𝑝) and ∥𝑓∥∗ = max{∥𝑓 ∣∗, ∥ − 𝑓 ∣∗} ,

respectively. The restriction of ∥ ⋅ ∣∗ to 𝑋♭
𝑝 is denoted by ∥ ⋅ ∣. As we have seen,

sp𝑋♭
𝑝 = 𝑋♭

𝑝−𝑋♭
𝑝 ⊂ 𝑋∗ (Proposition 2.1.7) and a linear functional 𝑓 ∈ 𝑋∗ belongs

to 𝑋♭
𝑝 if and only if ∥𝑓 ∣∗ <∞ (Proposition 2.1.16).

Let

𝑋∗∗
𝑒 = {𝜑 : (𝑋∗, ∥ ⋅ ∥∗)→ (ℝ, ∣ ⋅ ∣) : 𝜑 is linear and continuous}
= (𝑋∗, ∥ ⋅ ∥∗)∗ , (2.4.20)

and

𝑋∗♭
𝑒 = {𝜑 : (𝑋∗, ∥ ⋅ ∣∗)→ (ℝ, 𝑢) : 𝜑 is linear and continuous} = (𝑋∗, ∥ ⋅ ∣∗)♭ .

(2.4.21)
(Here the subscript “e” comes from “extended” and the superscript ∗ means that
we consider linear continuous functionals, while the superscript ♭ means that the
functionals are linear and upper semi-continuous, or, equivalently, continuous to
(ℝ, 𝑢).)

The set 𝑋∗∗
𝑒 is a linear space, 𝑋∗♭

𝑒 is a cone in 𝑋∗∗
𝑒 , and

sp(𝑋∗♭
𝑒 ) = 𝑋∗♭

𝑒 −𝑋∗♭
𝑒 ⊂ 𝑋∗∗

𝑒 .
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For 𝜑 ∈ 𝑋∗♭
𝑒 let

∥𝜑∣∗♭ = sup{𝜑(𝑓) : 𝑓 ∈ 𝐵♭
𝑝} , (2.4.22)

where 𝐵♭
𝑝 = {𝑓 ∈ 𝑋♭

𝑝 : ∥𝑓 ∣ ≤ 1}.
Then ∥ ⋅ ∣∗♭ is an asymmetric norm and the asymmetric normed cone (𝑋∗♭

𝑒 , ∥ ⋅
∣∗♭) is called the bidual space of (𝑋, 𝑝).

For 𝑥 ∈ 𝑋 define Λ(𝑥) : 𝑋∗ → ℝ by

Λ(𝑥)(𝑓) = 𝑓(𝑥), 𝑓 ∈ 𝑋∗ . (2.4.23)

Proposition 2.4.22. Let (𝑋, 𝑝) be an asymmetric normed space and let Λ be the
mapping defined by (2.4.23). Then

Λ(𝑥) ∈ 𝑋∗♭
𝑒 and ∥Λ(𝑥)∣∗♭ = 𝑝(𝑥) ,

for every 𝑥 ∈ 𝑋. Moreover, the mapping Λ is linear, so that it defines a linear
isometric embedding of (𝑋, 𝑝) into the semilinear space (𝑋∗♭

𝑒 , ∥ ⋅ ∣∗♭).
Proof. It is obvious that Λ(𝑥) is a linear functional on 𝑋∗. The inequality

Λ(𝑥)(𝑓) = 𝑓(𝑥) ≤ ∥𝑓 ∣∗𝑝(𝑥) ,
valid for every 𝑓 ∈ 𝑋∗, implies ∥Λ(𝑥)∣∗♭ ≤ 𝑝(𝑥). Since, by Theorem 2.2.2.2, there
exists 𝑓0 ∈ 𝐵♭

𝑝 such that 𝑓0(𝑥) = 𝑝(𝑥), it follows that ∥Λ(𝑥)∣∗♭ = 𝑝(𝑥).

The linearity of the mapping Λ : 𝑋 → 𝑋∗♭
𝑒 is easily verified. □

The space 𝑋∗ induces a topology on sp(𝑋∗♭
𝑒 ) denoted by 𝜎(𝑋∗♭

𝑒 , 𝑋∗) having
as basis of neighborhoods of 0 the sets

𝑉𝑓1,...,𝑓𝑛;𝜀 = {𝜑 ∈ sp(𝑋∗♭
𝑒 ) : ∣𝜑(𝑓𝑘)∣ < 𝜀, 𝑘 = 1, . . . , 𝑛} , (2.4.24)

for 𝜀 > 0, 𝑓1, . . . , 𝑓𝑛 ∈ 𝑋∗, 𝑛 ∈ ℕ. The neighborhoods of an arbitrary point
𝜑 ∈ sp(𝑋∗♭

𝑒 ) are obtained by translating the neighborhoods of 0.

It is obvious that the topology 𝜎(𝑋∗♭
𝑒 , 𝑋∗) is a locally convex topology on

sp(𝑋∗♭
𝑒 ) generated by the family 𝑝𝑓 , 𝑓 ∈ 𝑋∗♭

𝑒 , of seminorms, where for 𝑓 ∈ 𝑋∗

the seminorm 𝑝𝑓 : sp(𝑋
∗♭
𝑒 )→ ℝ is given by

𝑝𝑓 (𝜑) = ∣𝜑(𝑓)∣, 𝜑 ∈ sp(𝑋∗♭
𝑒 ) . (2.4.25)

The following proposition says that, in essence, the spaces 𝑋∗ and sp𝑋∗♭
𝑒

form a dual pair.

Proposition 2.4.23 ([93]). Let (𝑋, 𝑝) be an asymmetric normed space. Then the
following hold.

1. For each 𝑓 ∈ 𝑋∗ the linear functional 𝑒𝑓 : sp𝑋
∗♭
𝑒 → ℝ defined by 𝑒𝑓 (𝜑) =

𝜑(𝑓), 𝜑 ∈ 𝑋∗♭
𝑒 , is continuous from (sp𝑋∗♭

𝑒 , 𝜎(𝑋∗♭
𝑒 , 𝑋∗)) to (ℝ, ∣ ⋅ ∣).

2. If Ψ:sp𝑋∗♭
𝑒 →ℝ is a linear functional, continuous from (sp𝑋∗♭

𝑒 ,𝜎(𝑋∗♭
𝑒 ,𝑋∗))

to (ℝ, ∣ ⋅ ∣), then there exists 𝑓 ∈ 𝑋∗ such that Ψ = 𝑒𝑓 .
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Proof. The first assertion is almost trivial, because for 𝑓 ∈ 𝑋∗ and 𝜀 > 0 the set

(𝑒𝑓 )
−1((−𝜀; 𝜀)) = {𝜑 ∈ sp(𝑋∗♭

𝑒 ) : ∣𝜑(𝑓)∣ < 𝜀} = 𝑉𝑓,𝜀

is a 𝜎(𝑋∗♭
𝑒 , 𝑋∗)-neighborhood of 0.

To prove the converse assertion 2, let Ψ : sp𝑋∗♭
𝑒 → ℝ be a linear functional,

continuous from (sp𝑋∗♭
𝑒 , 𝜎(𝑋∗♭

𝑒 , 𝑋∗)) to (ℝ, ∣ ⋅ ∣). By the characterization of the
continuity of linear functionals on locally convex spaces [238, Korollar VIII.2.4],
there exist 𝑓1, . . . , 𝑓𝑛 ∈ 𝑋∗ and 𝛽 > 0 such that

∣Ψ(𝜑)∣ ≤ 𝛽max{𝑝𝑓𝑘(𝜑) : 1 ≤ 𝑘 ≤ 𝑛}
= 𝛽max{∣𝑒𝑓𝑘(𝜑)∣ : 1 ≤ 𝑘 ≤ 𝑛} .

By [238, Lemma VIII.3.3] this implies that Ψ is a linear combination of
𝑒𝑓𝑘 , 𝑘 = 1, . . . , 𝑛, Ψ =

∑𝑛
𝑘=1 𝛼𝑘𝑒𝑓𝑘 . But then Ψ = 𝑒𝑓 , where 𝑓 =

∑𝑛
𝑘=1 𝛼𝑘𝑓𝑘. □

The remarkable theorem of Goldstine on the weak density of 𝐵𝑋 in 𝐵𝑋∗∗

was extended in [93] to asymmetric normed spaces.

Theorem 2.4.24 (Goldstine Theorem). Let (𝑋, 𝑝) be an asymmetric normed space.
The image by Λ of the unit ball 𝐵𝑝 is 𝜎(𝑋∗♭

𝑒 , 𝑋∗)-dense in the unit ball 𝐵𝑋∗♭𝑒

of 𝑋∗♭
𝑒 .

Proof. Denote by 𝐶 the 𝜎(𝑋∗♭
𝑒 , 𝑋∗)-closure of Λ(𝐵𝑝) in 𝑍 = 𝑋∗♭

𝑒 −𝑋∗♭
𝑒 and let

𝜑 ∈ 𝐶.

Claim I. 𝜑 ∈ 𝑋∗♭
𝑒 .

We have to show that 𝜑 is usc from (𝑋∗, ∥ ⋅ ∣∗𝑝) to (ℝ, ∣ ⋅ ∣). Suppose that (𝑓𝑛)
is a sequence in 𝑋∗ which is ∥ ⋅ ∣∗𝑝-convergent to 𝑓 ∈ 𝑋∗. Then, given 𝜀 > 0, there
exists 𝑛𝜀 ∈ ℕ such that

∀𝑛 ≥ 𝑛𝜀, ∥𝑓𝑛 − 𝑓 ∣∗𝑝 < 𝜀 . (2.4.26)

Since 𝜑 belongs to the 𝜎(𝑋∗♭
𝑒 , 𝑋∗)-closure of Λ(𝐵𝑝) in 𝑍, for every 𝑛 ∈ ℕ

there exists 𝑥𝑛 ∈ 𝐵𝑝 such that

∣𝜑(𝑓𝑛 − 𝑓)− (𝑓𝑛 − 𝑓)(𝑥𝑛)∣ = ∣𝜑(𝑓𝑛 − 𝑓)− Λ(𝑥𝑛)(𝑓𝑛 − 𝑓)∣ < 𝜀 . (2.4.27)

But then, by (2.4.27) and (2.4.26),

𝜑(𝑓𝑛)− 𝜑(𝑓) < (𝑓𝑛 − 𝑓)(𝑥𝑛) + 𝜀 ≤ ∥𝑓𝑛 − 𝑓 ∣∗𝑝 + 𝜀 < 2𝜀 ,

for all 𝑛 ≥ 𝑛𝜀, proving the required upper semi-continuity of the functional 𝜑.

Claim II. ∥𝜑∣∗♭ ≤ 1.
Let 𝜀 > 0 be given. By the definition of 𝐶, for every 𝑓 ∈ 𝐵♭

𝑝 there exists
𝑥 ∈ 𝐵𝑝 such that

∣𝜑(𝑓)− 𝑓(𝑥)∣ = ∣𝜑(𝑓)− Λ(𝑥)(𝑓)∣ < 𝜀 ,
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implying
𝜑(𝑓) < 𝑓(𝑥) + 𝜀 ≤ ∥𝑓 ∣𝑝 + 𝜀 ≤ 1 + 𝜀 .

Since 𝜀 > was arbitrarily taken, it follows that 𝜑(𝑓) ≤ 1 for every 𝑓 ∈ 𝐵♭
𝑝, so

that ∥𝜑∣∗♭ ≤ 1.
By Claim I and Claim II, 𝐶 ⊂ 𝐵𝑋∗♭𝑒

.

Claim III. 𝐵𝑋∗♭𝑒
⊂ 𝐶.

Suppose that there exists 𝜑0 ∈ 𝐶 ∖ 𝐵𝑋∗♭𝑒
. Applying Tukey’s separation the-

orem ([149, Theorem 2.28]) in the locally convex space (𝑍, 𝜎(𝑋∗♭
𝑒 , 𝑋∗) in follows

the existence of a 𝜎(𝑋∗♭
𝑒 , 𝑋∗)-continuous linear functional Ψ : 𝑍 → ℝ such that

sup{Ψ(𝜑) : 𝜑 ∈ 𝐶} < Ψ(𝜑0) . (2.4.28)

By Proposition 2.4.23.2 there exists 𝑓0 ∈ 𝑋∗ such that Ψ(𝜑) = 𝜑(𝑓0), 𝜑 ∈ 𝑍.

It follows that

𝜑0(𝑓0) = Ψ(𝜑0) > sup{𝜑)(𝑓0) : 𝜑 ∈ 𝐶} ≤ sup{Λ(𝑥)(𝑓0) : 𝑥 ∈ 𝐵𝑝} = ∥𝑓0∣∗𝑝 ,

implying 𝑓0 ∈ 𝑋♭
𝑝. But then

∥𝑓0∣∗𝑝 < 𝜑0(𝑓0) ≤ ∥𝜑0∣∗♭∥𝑓0∣∗𝑝 ≤ ∥𝑓0∣∗𝑝 ,

a contradiction which shows that 𝐵𝑋∗♭𝑒
⊂ 𝐶. □

Based on Proposition 2.4.22 one can define the reflexivity of an asymmetric
normed space: an asymmetric normed space (𝑋, 𝑝) is called reflexive if Λ(𝑋) =
𝑋∗♭
𝑒 . In spite of the fact that this definition imposes a strong condition on the cone

𝑋∗♭
𝑒 , namely to be a linear space, there are many interesting examples justifying

this definition, see [90].

Example 2.4.25. If the normed space (𝑋, 𝑝𝑠) is reflexive, then the asymmetric
normed space (𝑋, 𝑝) is reflexive in the above sense. In particular any finite-
dimensional asymmetric normed space is reflexive.

This follows from the inclusions

Λ(𝑋) ⊂ 𝑋∗♭
𝑒 ⊂ 𝑋∗♭

𝑒 −𝑋∗♭
𝑒 ⊂ 𝑋∗∗ = Λ(𝑋) .

The paper [93] contains a characterization of reflexivity of an asymmetric
normed space (𝑋, 𝑝) in terms of the completeness of the unit ball 𝐵𝑝 with respect
to the weak uniformity induced by the space 𝑋∗ on 𝑋 that will be presented in
what follows.

The locally convex topology 𝑤♭
𝑒 = 𝜎(𝑋∗♭

𝑒 , 𝑋∗) on the space 𝑍 = 𝑋∗♭
𝑒 −𝑋∗♭

𝑒

is generated by the uniformity 𝒰♭ formed of the sets
{(𝜑, 𝜓) ∈ 𝑋∗♭

𝑒 ×𝑋∗♭
𝑒 : 𝜓 − 𝜑 ∈ 𝑉 }, 𝑉 ∈ 𝒩 (0) ,

where 𝒩 (0) denotes the family of all 𝑤♭
𝑒-neighborhoods of 0 ∈ 𝑍.



2.4. Weak topologies 159

The uniformity 𝒰♭ is generated by the sets
𝑈𝐹 ;𝜀 = {(𝜑, 𝜓) ∈ 𝑋∗♭

𝑒 ×𝑋∗♭
𝑒 : ∀𝑓 ∈ 𝐹, ∣𝜑(𝑓)− 𝜓(𝑓)∣ < 𝜀} , (2.4.29)

for 𝐹 ⊂ 𝑋∗ nonempty finite and 𝜀 > 0.

Proposition 2.4.26. The uniformity 𝒰♭ given by (2.4.29) is complete on 𝐵𝑋∗♭𝑒
.

Proof. Consider 𝑍 ⊂ ℝ𝑋∗ and let 𝜏 denote the product topology on (ℝ, ∣ ⋅ ∣)𝑋∗ .
Let (𝜑𝑖 : 𝑖 ∈ 𝐼) be a net in 𝑍 and 𝜑 ∈ 𝑍. The equivalences

𝜑𝑖
𝑤♭

𝑒−−→ 𝜑 ⇐⇒ ∀𝑓 ∈ 𝑋∗, 𝜑𝑖(𝑓)
∣⋅∣−→ 𝜑(𝑓)

⇐⇒ 𝜑𝑖
𝜏−→ 𝜑 ,

show that 𝑤♭
𝑒 is the restriction of the product topology to 𝑍. The product unifor-

mity of (ℝ, ∣ ⋅ ∣)𝑋∗ is complete since each factor (ℝ, ∣ ⋅ ∣) is complete. Consequently,
the uniformity 𝒰♭ will be complete on 𝐵𝑋∗♭𝑒

provided that 𝐵𝑋∗♭𝑒
= {𝜑 ∈ 𝑍 :

∥𝜑∣∗♭ ≤ 1} is 𝜏 -closed in (ℝ, ∣ ⋅ ∣)𝑋∗ .
Let (𝜑𝑖 : 𝑖 ∈ 𝐼) be a net in 𝐵𝑋∗♭𝑒

which is 𝜏 -convergent to some 𝜑 ∈ (ℝ, ∣⋅∣)𝑋∗ ,
meaning that

∀𝑓 ∈ 𝑋∗, 𝜑𝑖(𝑓)
∣⋅∣−→ 𝜑(𝑓) . (2.4.30)

The linearity of 𝜑 follows from (2.4.30), the linearity of each 𝜑𝑖, and the fact
that the addition and multiplication are continuous operations in (ℝ, ∣ ⋅ ∣).

Since each 𝜑𝑖 belongs to 𝐵𝑋∗♭𝑒
,

∀𝑓 ∈ 𝐵𝑝, ∀𝑖 ∈ 𝐼, 𝜑𝑖(𝑓) ≤ 1 .

Passing to the limit with respect to 𝑖 ∈ 𝐼, one obtains

∀𝑓 ∈ 𝐵𝑝, 𝜑(𝑓) ≤ 1 ,

showing that ∥𝜑∣∗♭ = sup𝜑(𝐵𝑝) ≤ 1, that is 𝜑 ∈ 𝐵𝑋∗♭𝑒
. □

Denote by 𝑤𝑠 the topology on (𝑋, 𝑝) induced by the dual 𝑋∗ = (𝑋, 𝑝𝑠)∗.
Again this topology is generated by a uniformity 𝒲𝑠 formed of the sets

{(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : 𝑥− 𝑦 ∈ 𝑉 }, 𝑉 ∈ 𝒱𝑠(0) ,
where 𝒱𝑠(0) denotes the family of all 𝑤𝑠-neighborhoods of 0 ∈ 𝑋.

The uniformity 𝒲𝑠 is generated by the sets

𝑊𝐹 ;𝜀 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑋 : ∀𝑓 ∈ 𝐹, ∣𝑓(𝑥)− 𝑓(𝑦)∣ < 𝜀}, (2.4.31)

for 𝐹 ⊂ 𝑋∗ nonempty finite and 𝜀 > 0.

Using this uniformity one can give a characterization of the reflexivity of an
asymmetric normed space.
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Theorem 2.4.27. An asymmetric normed space (𝑋, 𝑝) is reflexive if and only if the
uniformity 𝒲𝑠 is complete on the unit ball 𝐵𝑝 of (𝑋, 𝑝).

Proof. Suppose that 𝐵𝑝 is complete with respect to the uniformity 𝒲𝑠 and let
𝜑 ∈ 𝐵𝑋∗♭𝑒

. By Goldstine’s theorem, Theorem 2.4.24, Λ(𝐵𝑝) is 𝑤♭
𝑒-dense in 𝐵𝑋∗♭𝑒

,
so that for every 𝐹 ⊂ 𝑋∗ nonempty finite and 𝜀 > 0 there exists 𝑥𝐹,𝜀 ∈ 𝑋 such
that

∀𝑓 ∈ 𝐹, ∣𝑓(𝑥𝐹,𝜀)− 𝜑(𝑓)∣ = ∣Λ(𝑥𝐹,𝜀)(𝑓)− 𝜑(𝑓)∣ < 𝜀 . (2.4.32)

The set ℱ(𝑋∗)×(0;∞) of all these pairs is directed with respect to the order

(𝐹1, 𝜀1) ≤ (𝐹2, 𝜀2) ⇐⇒ 𝐹1 ⊂ 𝐹2 and 𝜀2 ≤ 𝜀1 ,

and (2.4.32) shows that the net (𝑥𝐹,𝜀 : (𝐹, 𝜀) ∈ ℱ(𝑋∗)× (0;∞)) is 𝑤♭
𝑒-convergent

to 𝜑.

Let us show that the net (𝑥𝐹,𝜀) is Cauchy with respect to the uniformity𝒲𝑠.
Let 𝐹0 ⊂ 𝑋∗ finite nonempty and 𝜀0 > 0 be given. Then for every 𝐹1, 𝐹2 ⊃ 𝐹0

and 𝜀1, 𝜀2 ≤ 𝜀0, by the choice of 𝑥𝐹,𝜀 (see (2.4.32)) we have

∣𝑓(𝑥𝐹1,𝜀1)− 𝑓(𝑥𝐹2,𝜀2)∣ ≤∣𝑓(𝑥𝐹1,𝜀1)− 𝜑(𝑓)∣+ ∣𝑓(𝑥𝐹2,𝜀2)− 𝜑(𝑓)∣
<𝜀1 + 𝜀2 ≤ 2𝜀0 ,

for all 𝑓 ∈ 𝐹0, showing that 𝑥𝐹1,𝜀1 − 𝑥𝐹2,𝜀2 ∈ 𝑊𝐹 ;𝜀. Consequently the net (𝑥𝐹,𝜀)
is 𝒲𝑠-Cauchy, so that, by hypothesis, it is 𝑤𝑠-convergent to some 𝑥 ∈ 𝐵𝑝. Since
the topology 𝑤𝑠 is Hausdorff it follows that 𝜑 = Λ(𝑥).

If 𝜑 ∈ 𝑋∗♭
𝑒 ∖𝐵𝑋∗♭𝑒

, then 𝜓 = 𝜑/∥𝜑∣∗ ∈ 𝐵𝑋∗♭𝑒
, so that, by the first part of the

proof, there exists 𝑦 ∈ 𝐵𝑝 such that 𝜓 = Λ(𝑦), implying 𝜑 = ∥𝜑∣∗𝜓.
We have shown that Λ(𝑋) = 𝑋∗♭

𝑒 , i.e., the space 𝑋∗♭
𝑒 is reflexive.

Conversely, suppose that Λ(𝑋) = 𝑋∗♭
𝑒 . Then the uniform spaces (𝑋,𝒲𝑠)

and (Λ(𝑋),𝒰♭) can be identified. By Proposition 2.4.26, 𝐵Λ(𝑋) is 𝒰♭-complete,
implying that 𝐵𝑋 is 𝒲𝑠-complete. □
Remark 2.4.28. It is known that, by the Alaoglu-Bourbaki theorem, the closed
unit ball 𝐵𝑋∗∗ of the bidual 𝑋

∗∗ of a a normed space 𝑋 is 𝜎(𝑋∗∗, 𝑋∗)-compact, a
result that is no longer true in the asymmetric case, as it is shown by the example
of the space (ℝ, 𝑢).

Indeed, id ∈ ℝ♭
𝑢 = (ℝ, 𝑢)♭, (ℝ, ∣ ⋅ ∣)∗ = ℝ∗, the sequence 𝑡𝑛 = −𝑛, 𝑛 ∈ ℕ, is

in the unit ball 𝐵𝑢 of (ℝ, 𝑢), but ∣ id(−𝑛)− id(−𝑚)∣ = ∣𝑛−𝑚∣ ≥ 1, showing that
𝐵𝑢 is not 𝜎(ℝ♭

𝑢,ℝ
∗)-compact.
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2.4.6 Weak topologies on asymmetric LCS

We shall present, following [41], some properties of weak topologies on asymmetric
LCS.

The topology 𝒘♭

We consider first the analog of the weak∗-topology (𝑤∗-topology) on the dual of
a locally convex space. In the case of an asymmetric normed space (𝑋, 𝑝) it was
considered in [90], see Subsection 2.4.1.

Let (𝑋,𝑃 ) be an asymmetric locally convex space and 𝑋♭ = 𝑋♭
𝑃 the asym-

metric dual cone. A 𝑤♭-neighborhood of an element 𝜑 ∈ 𝑋♭ is a subset 𝑊 of 𝑋♭

for which there exist 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 and 𝜀 > 0 such that

𝑉𝑥1,...,𝑥𝑛;𝜀(𝜑) := {𝜓 ∈ 𝑋♭ : 𝜓(𝑥𝑖)− 𝜑(𝑥𝑖) < 𝜀, 𝑖 = 1, . . . , 𝑛} ⊂𝑊 .

The 𝑤♭-convergence of a net {𝜑𝑖, 𝑖 ∈ 𝐼} to 𝜑 ∈ 𝑋♭ is equivalent to the fact
that for every 𝑥 ∈ 𝑋 the net {(𝜑𝑖 −𝜑)(𝑥), 𝑖 ∈ 𝐼} converges to 0 in (ℝ, 𝑢), that is

∀𝑥 ∈ 𝑋, ∀𝜀 > 0, ∃𝑖0 ∈ 𝐼 such that ∀𝑖 ≥ 𝑖0, (𝜑𝑖 − 𝜑)(𝑥) < 𝜀 .

Since 𝑋♭ ⊂ 𝑋∗ and

𝑉𝑥;𝜀 ∩ 𝑉−𝑥;𝜀(𝜑) = {𝜓 ∈ 𝑋♭ : ∣(𝜓 − 𝜑)(𝑥)∣ < 𝜀} ,
it follows that the 𝑤♭-topology on 𝑋♭ is induced by the 𝑤∗-topology of the
space 𝑋∗.

Asymmetric polars
Let (𝑋,𝑃 ) be an asymmetric locally convex space, (𝑋,𝑃 𝑠) the associated locally
convex space, 𝑋♭ the asymmetric dual of (𝑋,𝑃 ) and 𝑋∗ = (𝑋,𝑃 𝑠)∗ the conjugate
space of (𝑋,𝑃 𝑠).

The polar of a nonempty subset 𝑌 of (𝑋,𝑃 𝑠) is defined by

𝑌 ∘ = {𝑥∗ ∈ 𝑋∗ : ∀𝑦 ∈ 𝑌, 𝑥∗(𝑦) ≤ 1} .
Define the corresponding set in the case of the asymmetric dual 𝑋♭ by

𝑌 𝛼 = 𝑌 ∘ ∩𝑋♭ = {𝜑 ∈ 𝑋♭ : ∀𝑦 ∈ 𝑌, 𝜑(𝑦) ≤ 1} ,
and call it the asymmetric polar of the set 𝑌 .

As it is well known, the set 𝑌 ∘ is a convex 𝑤∗-closed subset of 𝑋∗ (see, e.g.,
[238, p. 341]). Since the 𝑤♭-topology on 𝑋♭ ⊂ 𝑋∗ is induced by the 𝑤∗-topology
on 𝑋∗, we have the following result.

Proposition 2.4.29. The asymmetric polar 𝑌 𝛼 of a nonempty subset 𝑌 of an asym-
metric locally convex space (𝑋,𝑃 ), is a convex 𝑤♭-closed subset of 𝑋♭.

In the following proposition we prove the asymmetric analog of the Alaoglu-
Bourbaki theorem, see, e.g., [238, Satz VIII.3.11].
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Theorem 2.4.30. The asymmetric polar of a neighborhood of the origin of an asym-
metric locally convex space (𝑋,𝑃 ) is a convex 𝑤♭-compact subset of the asymmetric
dual 𝑋♭.

Proof. Suppose that 𝑃 is directed. If 𝑉 is a 𝜏𝑃 -neighborhood of 0 ∈ 𝑋 , then
there exist 𝑝 ∈ 𝑃 and 𝑟 > 0 such that 𝐵𝑝(0, 𝑟) ⊂ 𝑉 . Because 𝑝𝑠(𝑥) ≤ 𝑟 implies
𝑝(𝑥) ≤ 𝑝𝑠(𝑥) ≤ 𝑟, it follows that 𝐵𝑝𝑠(0, 𝑟) ⊂ 𝐵𝑝(0, 𝑟) ⊂ 𝑉, so that 𝑉 is a
neighborhood of 0 in the locally convex space (𝑋,𝑃 ). By the Alaoglu-Bourbaki
theorem it follows that 𝑉 ∘ is a convex 𝑤∗-compact subset of the dual 𝑋∗. Since
𝑤♭-compactness of 𝑉 𝛼 is equivalent to its 𝑤∗-compactness in 𝑋∗, it is sufficient
to show that the set 𝑉 𝛼 is 𝑤∗-closed in 𝑋∗.

Let {𝜑𝑖 : 𝑖 ∈ 𝐼} be a net in 𝑉 𝛼 that is 𝑤∗-convergent to 𝑓 ∈ 𝑋∗. This means
that for every 𝑥 ∈ 𝑋 the net {𝜑𝑖(𝑥) : 𝑖 ∈ 𝐼} converges to 𝑓(𝑥) in (ℝ, ∣ ⋅ ∣). Since
for every 𝑣 ∈ 𝑉, 𝜑𝑖(𝑣) ≤ 1, for all 𝑖 ∈ 𝐼, it follows that 𝑓(𝑣) ≤ 1 for all 𝑣 ∈ 𝑉 .
Because 𝑓 is linear it is sufficient to prove its (𝑃, 𝑢)-continuity at 0 ∈ 𝑋. Consider
for some 𝜀 > 0 the 𝜏𝑢-neighborhood (−∞ ; 𝜀) of 𝑓(0) = 0 ∈ ℝ. Then 𝑈 = 𝜀

2𝑉 is a
𝜏𝑃 -neighborhood of 0 ∈ 𝑋 , and for 𝑣 ∈ 𝑉 and 𝑢 = 𝜀

2𝑣 ∈ 𝑈 we have

𝑓(𝑢) =
𝜀

2
𝑓(𝑣) ≤ 𝜀

2
< 𝜀 ,

i.e., 𝑓(𝑈) ⊂ (−∞ ; 𝜀), proving the (𝑃, 𝑢)-continuity of 𝑓 at 0.

It follows that 𝑓 ∈ 𝑉 𝛼, so that 𝑉 𝛼 is 𝑤∗-closed in 𝑋∗. □

The topology 𝒘𝜶

The weak topology of a locally convex space (𝑋,𝑄) is defined by the locally convex
basis 𝒲 formed by the sets of the form

𝑉𝑥∗1 ,...,𝑥∗𝑛;𝜀 = {𝑥 ∈ 𝑋 : ∣𝑥∗𝑖 (𝑥)∣ < 𝜀, 1 ≤ 𝑖 ≤ 𝑛}, (2.4.33)

for ∈ ℕ, 𝑥∗1, . . . , 𝑥
∗
𝑛 ∈ 𝑋∗ and 𝜀 > 0. Obviously, we can suppose 𝑥∗𝑖 ∕= 0, 𝑖 =

1, . . . , 𝑛.

The duality theory for locally convex spaces is based on the following key
lemma of algebraic nature.

Lemma 2.4.31. ([238, Lemma VIII.3.3]) Let 𝑋 be a vector space and 𝑓, 𝑓1, . . . , 𝑓𝑛 :
𝑋 → ℝ linear functionals. The following assertions are equivalent.

1. 𝑓 ∈ sp{𝑓1, . . . , 𝑓𝑛}.
2. There exists 𝐿 ≥ 0 such that

∀𝑥 ∈ 𝑋, 𝑓(𝑥) ≤ 𝐿max{𝑓1(𝑥), . . . , 𝑓𝑛(𝑥} .

3.
∩𝑛
𝑖=1 ker 𝑓𝑖 ⊂ ker 𝑓.
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In our case this lemma takes the following form.

Lemma 2.4.32. Let 𝑓, 𝑓1, . . . , 𝑓𝑛 be real linear functionals on a vector space 𝑋,
with 𝑓1, . . . , 𝑓𝑛 linearly independent. Then the following assertions are equivalent.

1. ∀𝑥 ∈ 𝑋, [𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, . . . , 𝑛 ⇒ 𝑓(𝑥) ≤ 0.]
2. ∃𝐿 ≥ 0 such that ∀𝑥 ∈ 𝑋, 𝑓(𝑥) ≤ 𝐿max{𝑓𝑖(𝑥) : 1 ≤ 𝑖 ≤ 𝑛}.
3. ∃𝑎1, . . . , 𝑎𝑛 ≥ 0, such that 𝑓 =

∑𝑛
𝑖=1 𝑎𝑖𝑓𝑖.

Proof. Since the implications 2)⇒ 1) and 3)⇒ 2) are obvious, it is sufficient to
prove 1) ⇒ 3).

If 𝑓𝑖(𝑥) = 0 for 𝑖 = 1, . . . , 𝑛, then 𝑓𝑖(−𝑥) = −𝑓𝑖(𝑥) = 0, 𝑖 = 1, . . . , 𝑛,
so that 𝑓(𝑥) ≤ 0 and −𝑓(𝑥) = 𝑓(−𝑥) ≤ 0, implying 𝑓(𝑥) = 0. Therefore the
condition 3) from Lemma 2.4.31 is fulfilled, so that there exist 𝑎1, . . . , 𝑎𝑛 ∈ ℝ such
that 𝑓 =

∑𝑛
𝑖=1 𝑎𝑖𝑓𝑖. It remains to show that 𝑎𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑛. Because

𝑓1, . . . , 𝑓𝑛 are linearly independent, there exist the elements 𝑥𝑗 ∈ 𝑋 such that
𝑓𝑖(𝑥𝑗) = −𝛿𝑖𝑗 ≤ 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, where 𝛿𝑖𝑗 is the Kronecker symbol. It follows
that 𝑓(𝑥𝑗) ≤ 0 and

−𝑎𝑗 =
𝑛∑
𝑖=1

𝑎𝑖𝑓𝑖(𝑥𝑗) = 𝑓(𝑥𝑗) ≤ 0 ,

for 𝑗 = 1, . . . , 𝑛. □

Let (𝑋,𝑃 ) be an asymmetric locally convex space and 𝑋♭ = (𝑋,𝑃 )♭ its
asymmetric dual cone.

Define the asymmetric weak topology 𝑤𝛼 on an asymmetric locally convex
space (𝑋,𝑃 ) as the asymmetric locally convex topology generated by the asym-
metric locally convex base 𝒲𝛼 formed of the sets

𝑉𝜑1,...,𝜑𝑛;𝜀 = {𝑥 ∈ 𝑋 : 𝜑𝑖(𝑥) < 𝜀, 1 ≤ 𝑖 ≤ 𝑛}, (2.4.34)

for 𝑛 ∈ ℕ, 𝜑1, . . . , 𝜑𝑛 ∈ 𝑋♭ and 𝜀 > 0. The neighborhoods of an arbitrary point
𝑥 ∈ 𝑋 are subsets of 𝑋 containing a set of the form 𝑥 + 𝑉𝜑1,...,𝜑𝑛;𝜀 = {𝑥′ ∈ 𝑋 :
𝜑𝑖(𝑥

′ − 𝑥) < 𝜀, 1 ≤ 𝑖 ≤ 𝑛}.
The sets

𝑉 −𝜑1,...,𝜑𝑛;𝜀 = {𝑥 ∈ 𝑋 : 𝜑𝑖(𝑥) ≤ 𝜀, 1 ≤ 𝑖 ≤ 𝑛}
generate the same topology.

In the following proposition we collect some properties of the topology 𝑤𝛼.

Proposition 2.4.33. Let (𝑋,𝑃 ) be an asymmetric locally convex space and 𝑋♭ =
(𝑋,𝑃 )♭ its asymmetric dual cone.

1. The topology 𝜏𝑃 is finer than 𝑤𝛼.

2. For 𝜑 ∈ 𝑋♭ and 𝜀 > 0 the set {𝑥 ∈ 𝑋 : 𝜑(𝑥) < 𝜀} is 𝑤𝛼-open and {𝑥 ∈ 𝑋 :
𝜑(𝑥) ≥ 𝜀} is 𝑤𝛼-closed.
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3. A net {𝑥𝑖 : 𝑖 ∈ 𝐼} in 𝑋 is 𝑤𝛼-convergent to 𝑥 ∈ 𝑋 if and only if for every
𝜑 ∈ 𝑋♭ the net {𝜑(𝑥𝑖} converges to 𝜑(𝑥) in (ℝ, 𝑢). This means the following:

∀𝜑 ∈ 𝑋♭, ∀𝜀 > 0, ∃𝑖0 such that ∀𝑖 ≥ 𝑖0, 𝜑(𝑥𝑖 − 𝑥) < 𝜀 .

4. The asymmetric dual (𝑋,𝑤𝛼)♭ of the asymmetric locally convex space (𝑋,𝑤𝛼)
agrees with 𝑋♭.

Proof. Suppose 𝑃 is directed.

1. Let 𝑉 = 𝑉𝜑1,...,𝜑𝑛;𝜀 be an element of the locally convex basis (2.4.34).
Because 𝜑𝑖 are (𝑃, 𝑢)-continuous there exist 𝑝𝑖 ∈ 𝑃 and 𝐿𝑖 ≥ 0 such that

∀𝑥 ∈ 𝑋, 𝜑𝑖(𝑥) ≤ 𝐿𝑖𝑝𝑖(𝑥), for 𝑖 = 1, . . . , 𝑛 .

The multiball 𝑈 = {𝑥 ∈ 𝑋 : 𝑝𝑖(𝑥) < 𝜀/(𝐿 + 1), 1 ≤ 𝑖 ≤ 𝑛}, where 𝐿 =
max𝐿𝑖, is contained in 𝑉, showing that 𝑉 is a 𝜏𝑃 -neighborhood of 0 ∈ 𝑋.

2. If 𝑉 = {𝑥 ∈ 𝑋 : 𝜑(𝑥) < 𝜀} and 𝑥0 ∈ 𝑉, then the 𝑤𝛼-neighborhood
{𝑥 ∈ 𝑋 : 𝜑(𝑥 − 𝑥0) < 𝜀− 𝜑(𝑥0)} of 𝑥0 is contained in 𝑉 because

𝜑(𝑥− 𝑥0) < 𝜀− 𝜑(𝑥0) ⇒ 𝜑(𝑥) = 𝜑(𝑥 − 𝑥0) + 𝜑(𝑥0) < 𝜀 .

The assertion 3 follows from definitions.

4. Because 𝜏𝑃 is finer than 𝑤𝛼, the identity map Id: (𝑋, 𝜏𝑃 ) → (𝑋,𝑤𝛼)
is continuous, implying the (𝑃, 𝑢)-continuity of 𝜑∘Id for any 𝜑 ∈ (𝑋,𝑤𝛼)♭, i.e.,
(𝑋,𝑤𝛼)♭ ⊂ (𝑋,𝑃 )♭.

Conversely, if 𝜑 is a (𝑃, 𝑢)-continuous linear functional, then the set 𝑉 =
{𝑥 ∈ 𝑋 : 𝜑(𝑥) < 𝜀} is a 𝑤𝛼-neighborhood of 0 ∈ 𝑋 and 𝜑(𝑉 ) ⊂ (−∞; 𝜀) for every
𝜀 > 0, proving the (𝑤𝛼, 𝜏𝑢)-continuity of 𝜑 at 0, and by the linearity of 𝜑, on the
whole of 𝑋 . □

As in the symmetric case the closed convex sets are the same for the topologies
𝜏𝑃 and 𝑤𝛼.

Proposition 2.4.34. Let (𝑋,𝑃 ) be an asymmetric locally convex space and 𝑌 a
convex subset of 𝑋.

Then 𝑌 is 𝑤𝛼-closed if and only if it is 𝜏𝑃 -closed.

Proof. Because 𝜏𝑃 is finer than 𝑤𝛼, it follows that any (not necessarily convex)
𝑤𝛼-closed subset of 𝑋 is also 𝜏𝑃 -closed.

Suppose now that the convex set 𝑌 is 𝜏𝑃 but not 𝑤
𝛼-closed. If 𝑥0 is a point

in 𝑤𝛼-cl𝑌 ∖ 𝑌, then, applying Theorem 2.2.9 to the sets {𝑥0} and 𝑌 we get a
functional 𝜑 ∈ 𝑋♭ such that

𝜑(𝑥0) < inf 𝜑(𝑌 ) .
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If 𝑚 := inf 𝜑(𝑌 ), then 𝑉 = {𝑥 ∈ 𝑋 : 𝜑(𝑥 − 𝑥0) < 2−1(𝑚 − 𝜑(𝑥0))} is a 𝑤𝛼-
neighborhood of 𝑥0. Because

𝜑(𝑥) = 𝜑(𝑥− 𝑥0) + 𝜑(𝑥0) <
𝑚+ 𝜑(𝑥0)

2
< 𝑚 ,

for every 𝑥 ∈ 𝑉, it follows that 𝑉 ∩ 𝑌 = ∅, in contradiction to 𝑥0 ∈ 𝑤𝛼-cl 𝑌. □

The proposition has the following corollary.

Corollary 2.4.35. Let (𝑋,𝑃 ) be an asymmetric locally convex space. Then for every
subset 𝑍 of 𝑋 the following equality holds:

𝑤𝛼-cl co(𝑌 ) = 𝜏𝑃 -cl co(𝑌 ) .

Proof. By the definition of the closed convex hull and the preceding proposition
we have the equalities

𝑤𝛼-cl co(𝑌 ) =
∩
{𝑌 : 𝑌 ⊂ 𝑋, 𝑌 convex and𝑤𝛼-closed}

=
∩
{𝑌 : 𝑌 ⊂ 𝑋, 𝑌 convex and 𝜏𝑃 -closed}

= 𝜏𝑃 -clco(𝑌 ) . □

Remark 2.4.36. We can define the asymmetric polar of a subset 𝑊 of the dual 𝑋♭

of an asymmetric locally convex space (𝑋,𝑃 ) by

𝑊𝛼 = {𝑥 ∈ 𝑋 : ∀𝜑 ∈ 𝑊, 𝜑(𝑥) ≤ 1} .

Since, for 𝜑 ∈ 𝑋♭, a set of the form {𝑥 ∈ 𝑋 : 𝜑(𝑥) ≤ 1} is not necessarily
𝜏𝑃 -closed, the set 𝑊𝛼 need not be 𝜏𝑃 -closed. Therefore an asymmetric analog of
the bipolar theorem (see [238, Satz WIII.3.9]), asserting that

(𝐴∘)∘ = cl-co(𝐴 ∪ {0}) ,

for any subset 𝐴 of a locally convex space (𝑋,𝑄), does not hold in the asymmetric
case.

2.4.7 Asymmetric moduli of rotundity and smoothness

A convex body in a normed space (𝑋, ∥ ⋅ ∥) is a bounded closed convex set with
nonempty interior. A rooted convex body in a normed space 𝑋 is a pair (𝐾, 𝑧)
where 𝐾 is a convex body and 𝑧 is a fixed point in the interior 𝐾, called a root
for 𝐾. If (𝐾, 𝑧) is a rooted convex body, then 0 ∈ int(𝐾 − 𝑧) = int(𝐾)− 𝑧, so that
the Minkowski functional 𝑝𝐾−𝑧 is well defined and it is an asymmetric norm on 𝑋
satisfying 𝑝𝐾−𝑧(𝑥) > 0 for 𝑥 ∕= 0. The topology defined by 𝑝𝐾−𝑧 is equivalent to
the norm-topology 𝜏∥⋅∥ of𝑋. This follows from the facts that there exists 0 < 𝑟 < 𝑅
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such that 𝐵∥⋅∥(0, 𝑟) ⊂ 𝐾 − 𝑧 ⊂ 𝐵∥⋅∥(0, 𝑅) and 𝐾 − 𝑧 = {𝑥 ∈ 𝑋 : 𝑝𝐾−𝑧(𝑥) ≤ 1} is
the closed unit ball of the asymmetric normed space (𝑋, 𝑝𝐾−𝑧).

Starting from this definition one can introduce geometric properties of convex
bodies, as rotundity, local uniform rotundity, smoothness, uniform smoothness,
expressed in terms of Minkowski functionals, by analogy with those from Banach
space geometry (see, for instance, the book by Megginson [149]). This was done
in a series of papers (see [114, 115, 116]) by V. Klee, E. Maluta, C. Zanco and L.
Vesely, mainly in connection with the existence of good tilings of normed spaces.
A tiling of a normed linear space 𝑋 is a covering 𝒯 of 𝑋 such that each tile
(member of 𝒯 ) is a convex body and no point of 𝑋 is interior to more than one
tile. In contrast to the genuine theory of tilings in finite-dimensional spaces and
an extensive theory for the plane, few significant examples were known and not
even a rudimentary theory of tilings in infinite-dimensional spaces was built, see
[113]. In the above-mentioned papers substantial progress was made in the study
of tilings in infinite-dimensional Banach spaces. Zanco and Zucchi [240] defined
and studied some properties of the asymmetric moduli of smoothness, quantitative
expressions (in terms of Minkowski functionals) of the rotundity and smoothness
properties of convex bodies.

Some uniform geometric properties for families of convex bodies were defined
in [115]. We shall restrict these properties to a single convex body, a situation that
fits better our needs. A convex body 𝐾 in a normed space (𝑋, ∥⋅∥) is called smooth
if for any point 𝑦 ∈ ∂𝐾 (the boundary of 𝐾) there exists exactly one hyperplane
𝐻𝑦 = {𝑥 ∈ 𝑋 : 𝑥∗(𝑥) = 𝑐}, for some 𝑥∗ ∈ 𝑋∗ and 𝑐 ∈ ℝ, supporting 𝐾 at 𝑦. That
is 𝑥∗(𝑦) = 𝑐 and 𝑥∗(𝑥) ≤ 𝑐 for all 𝑥 ∈ 𝐾. The convex body 𝐾 is called rotund
if its boundary ∂𝐾 does not contain nontrivial line segments, or, equivalently, if
𝑑(12 (𝑥 + 𝑦), ∂𝐾) > 0 (the distance with respect to ∥ ⋅ ∥) for every pair of distinct
elements 𝑥, 𝑦 ∈ ∂𝐾. The convex body 𝐾 is called uniformly rotund if for every
𝜀 > 0 there exists 𝛿(𝜀) > 0 such that 𝑑(12 (𝑥 + 𝑦), ∂𝐾) ≥ 𝛿(𝜀) for every 𝑥, 𝑦 ∈ 𝐾
with ∥𝑥− 𝑦∥ ≥ 𝜀. It is obvious that one obtains the same notion if we require that
𝑥, 𝑦 ∈ ∂𝐾.

A rooted convex body (𝐾, 𝑧) is smooth if and only if the Minkowski functional
𝑝 = 𝑝𝐾−𝑧 is Gâteaux differentiable on 𝑋 ∖ {𝑧}. This means that for any point
𝑥 ∈ 𝑋 ∖ {𝑧} there exists a continuous linear functional 𝑝′(𝑥; ⋅) ∈ 𝑋∗ such that, for
every ℎ ∈ 𝑋 ,

lim
𝑡→0

𝑝(𝑥+ 𝑡ℎ)− 𝑝(𝑥)

𝑡
= 𝑝′(𝑥;ℎ) . (2.4.35)

With a rooted smooth convex body (𝐾, 𝑧) one can associate two duality
mappings from ∂𝐾 to 𝑋∗ defined for 𝑦 ∈ ∂𝐾 as follows:

∙ 𝐽(𝐾,𝑧)(𝑦) = the unique functional 𝑥∗ ∈ 𝑋∗ such that ∥𝑥∗∥ = 1 and 𝐻𝑦 − 𝑧 =
{𝑥 ∈ 𝑋 : 𝑥∗(𝑥) = 𝑐}, for some 𝑐 ∈ ℝ, and

∙ 𝐽1
(𝐾,𝑧)(𝑦) = the unique functional 𝑥∗ ∈ 𝑋∗ such that 𝐻𝑦 − 𝑧 = {𝑥 ∈ 𝑋 :

𝑥∗(𝑥) = 1}.
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If 𝐾 = 𝐵𝑋 (the closed unit ball of (𝑋, ∥ ⋅ ∥)) and 𝑧 = 0, then 𝐽 = 𝐽1 is
the ordinary duality mapping, a very important notion in the geometry of Banach
spaces and its applications to nonlinear operator theory, see, for instance, the book
by Ciorănescu [36]. Also, it is clear that 𝐽𝐾,𝑧1 = 𝐽𝐾,𝑧2 for every 𝑧1, 𝑧2 ∈ int𝐾,
so that the duality mapping 𝐽𝐾,𝑧1 does not depend on the root 𝑧, consequently it
can be denoted simply by 𝐽𝐾 .

A normed space (𝑋, ∥ ⋅ ∥) is called uniformly smooth if the norm is uniformly
Fréchet differentiable on the unit sphere 𝑆𝑋 . This means that, putting 𝑓(𝑥) =
∥𝑥∥, 𝑥 ∈ 𝑋, for every 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀) > 0 such that for every 𝑥 ∈ 𝑆𝑋
and every ℎ ∈ 𝑋 with ∥ℎ∥ ≤ 𝛿

∣𝑓(𝑥+ ℎ)− 𝑓(𝑥)− 𝑓 ′(𝑥)ℎ∣ ≤ 𝜀∥ℎ∥ ,

where 𝑓 ′(𝑥) ∈ 𝑋∗ denotes the Fréchet derivative of 𝑓 at 𝑥. The modulus of smooth-
ness of the space 𝑋 is defined for 𝜏 ≥ 0 by

𝜌𝑋(𝜏) = sup

{
1

2
(∥𝑥+ 𝑦∥+ ∥𝑥− 𝑦∥ − 2) : 𝑥 ∈ 𝑆𝑋 , ∥𝑦∥ = 𝜏

}
. (2.4.36)

The uniform smoothness of 𝑋 can be characterized by the condition

lim
𝜏↘0

𝜌𝑋(𝜏)

𝜏
= 0 ,

see, e.g., [149]. Another characterization can be done in terms of the duality map-
ping 𝐽, namely, the space𝑋 is uniformly smooth if and only if the duality mapping
𝐽 : 𝑆𝑋 → 𝑆𝑋∗ is norm-to-norm continuous (see [36]).

Starting from this property one can define the uniform smoothness of a rooted
convex body (𝐾, 𝑧) by asking that the duality mapping 𝐽𝐾,𝑧 : ∂𝐾 → 𝑆𝑋∗ is
norm-to-norm continuous (see [115]). The norm-to-norm continuity of the duality
mapping 𝐽𝐾,𝑧 is equivalent to the norm-to-norm continuity of the duality mapping
𝐽1
𝐾,𝑧 , so that one obtains the same notion of uniform smoothness by working with

the duality mapping 𝐽1
𝐾,𝑧 .

A normed space (𝑋, ∥ ⋅ ∥) is called uniformly rotund (uniformly convex by
some authors) if for every 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀) > 0 such that ∥𝑥 + 𝑦∥ ≥
2(1− 𝛿) for every 𝑥, 𝑦 ∈ 𝑆𝑋 with ∥𝑥− 𝑦∥ ≤ 𝜀.

This property admits also quantitative characterizations in terms of some
moduli. We mention two of them.

Clarkson’s modulus of uniform rotundity 𝛿𝑋 : [0; 2]→ [0; 1] defined by

𝛿𝑋(𝜀) = inf

{
1− 1

2
∥𝑥+ 𝑦∥ : 𝑥, 𝑦 ∈ 𝑆𝑋 , ∥𝑥− 𝑦∥ ≥ 𝜀

}
= inf

{
1− 1

2
∥𝑥+ 𝑦∥ : 𝑥, 𝑦 ∈ 𝑆𝑋 , ∥𝑥− 𝑦∥ = 𝜀

}
.

(2.4.37)



168 Chapter 2. Asymmetric Functional Analysis

Gurarii’s modulus of uniform rotundity 𝛾𝑋 : [0; 2]→ [0; 1] defined by

𝛾𝑋(𝜀) = inf{max
0≤𝑡≤1

(1− ∥𝑡𝑥+ (1− 𝑡)𝑦∥) : 𝑥, 𝑦 ∈ 𝑆𝑋 , ∥𝑥− 𝑦∥ = 𝜀} . (2.4.38)

One has 𝛿𝑋 ≤ 𝛾𝑋 , and a 2-dimensional example given in [240] shows that the
inequality can be strict. Also it is unknown whether the condition ∥𝑥− 𝑦∥ = 𝜀 in
the definition of Gurarii’s modulus can be replaced by the condition ∥𝑥− 𝑦∥ ≥ 𝜀,
as in the definition of Clarkson’s modulus. The uniform rotundity of the space 𝑋
can be characterized in the following way:

𝑋 is uniformly rotund ⇐⇒ ∀𝜀 ∈ (0; 2], 𝛿𝑋(𝜀) > 0 ⇐⇒ ∀𝜀 ∈ (0; 2], 𝛾𝑋(𝜀) > 0 .

The characteristic of convexity corresponding to the moduli 𝛿𝑋 and 𝛾𝑋 are
𝜀0𝑋 = sup{𝜀 ∈ [0; 2] : 𝛿𝑋(𝜀) = 0} = {𝜀 ∈ [0; 2] : 𝛾𝑋(𝜀) = 0}. In terms of this
characteristic of convexity the uniform rotundity of 𝑋 is characterized by the
condition 𝜀0𝑋 = 0 and the rotundity by the condition 𝛿𝑋(2) = 𝛾𝑋(2) = 1. Other
geometric properties of the normed space 𝑋 , as, for instance, the uniform non-
squareness can also be expressed in terms of these moduli.

The analogs of these moduli (Gurarii’s variant in the case of uniform rotun-
dity) and their relevance for the smoothness and rotundity properties of rooted
convex bodies were given in the paper by Zanco and Zucchi [240].

The modulus of smoothness of a rooted convex body (𝐾, 𝑧), 𝜌(𝐾,𝑧) : [0;∞)→
[0; 1) can be defined by replacing the norm in (2.4.36) by the Minkowski functional:

𝜌(𝐾,𝑧)(𝜏) = sup
{1
2
(𝑝𝐾−𝑧(𝑥 + 𝑦) + 𝑝𝐾−𝑧(𝑥− 𝑦))− 1 :

𝑥 ∈ ∂(𝐾 − 𝑧), 𝑦 ∈ 𝑋, 𝑝𝐾−𝑧(𝑦) = 𝜏
}

.
(2.4.39)

For the sake of simplicity suppose 𝑧 = 0 and put 𝜌𝐾 = 𝜌(𝐾,0). The modulus
of smoothness is a continuous convex function such that 𝜌𝐾(𝜏) ≤ 𝜆𝐾𝜏, where

𝜆𝐾 = sup{𝑝𝐾(−𝑦) : 𝑦 ∈ 𝐾} = sup{𝑝
𝐾∩𝐾(𝑦) : 𝑦 ∈ 𝐾} ,

could be taken as a possible measure of eccentricity of 𝐾 with respect to 0. By
analogy with the normed case, the asymmetric norm 𝑝𝐾 is called 𝐾-uniformly
Fréchet differentiable if (2.4.35) holds uniformly with respect to ℎ ∈ 𝐾 and 𝑥 ∈
∂𝐾. One shows ([240, Th. 4.2]) that the following are equivalent:

∙ the rooted convex body (𝐾, 𝑧) is uniformly smooth;

∙ the Minkowski functional 𝑝𝐾−𝑧 is 𝐾-uniformly Fréchet differentiable on ∂𝐾;

∙ lim𝜏↘0

(
𝜌(𝐾,𝑧)(𝜏)/𝜏

)
= 0 for every 𝑧 ∈ int𝐾.

The definition of the modulus of uniform rotundity is more involved and
needs to consider the existence of diametral points in 𝐾. The Minkowski diameter
(𝑀 -diameter) of a rooted convex body (𝐾, 𝑧) is defined by

diam𝑀 (𝐾, 𝑧) = sup{𝑝𝐾−𝑧(𝑥− 𝑦) : 𝑥, 𝑦 ∈ 𝐾} . (2.4.40)



2.4. Weak topologies 169

A pair of points 𝑥, 𝑦 ∈ 𝐾 is called 𝑀 -diametral if

diam𝑀 (𝐾, 𝑧) = max{𝑝𝐾−𝑧(𝑥− 𝑦), 𝑝𝐾−𝑧(𝑦 − 𝑥)}.

The problem of the existence of diametral points of convex bodies with respect
to the norm was studied by Garkavi [98] in connection with some minimax and
maximin problems. The center of the largest ball (whose radius is denoted by 𝑟𝐾)
contained in a convex body 𝐾 is called an 𝐻-center for 𝐾, while the center of
the smallest ball containing 𝐾 is called a Chebyshev center of 𝐾. Both centers
could not exist, and if they exist they need not be unique. If 𝑥0 is an 𝐻-center
for 𝐾, then the set 𝐴𝐾(𝑥0) = {𝑦 ∈ 𝐾 : ∥𝑥0 − 𝑦∥ = 𝑟𝐾} is called the critical set
of the 𝐻-center 𝑥0. Garkavi, loc. cit., proved that a Banach space 𝑋 is reflexive if
and only if every convex body in 𝑋 has an 𝐻-center. Also, the space 𝑋 is finite
dimensional if and only if for any convex body 𝐾 in 𝑋 and any 𝐻-center 𝑥0 of 𝐾
the set 𝐴𝐾(𝑥0) of critical points is nonempty.

By a compactness argument it follows that if 𝑋 is finite dimensional, then
every rooted convex body admits 𝑀 -diametral points. In the case of𝑀 -diametral
points the authors show in [240] that, for every 𝑝 ∈ [1;∞), the space ℓ𝑝 contains a
rooted convex body (𝐾, 0) whose 𝑀 -diameter is not attained. The general prob-
lem of the validity of Garkavi’s results for 𝑀 -diameters remains open, with the
conjecture that the existence of 𝑀 -diametral points for every rooted convex body
is equivalent to the finite dimensionality of 𝑋. For a rooted convex body (𝐾, 𝑧) in
a normed space let

Δ(𝐾,𝑧)(𝜀) = inf
{
max
𝑡∈[0;1]

(1− 𝑝𝐾−𝑧(𝑡𝑥+(1− 𝑡)𝑦)) : 𝑥, 𝑦 ∈ 𝐾 − 𝑧, 𝑝𝐾−𝑧(𝑥− 𝑦) ≥ 𝜀
}

.

(2.4.41)

If (𝐾, 𝑧) has diametral points, then Δ(𝐾,𝑧) is defined on [0; diam𝑀 (𝐾, 𝑧)]
with values in [0; 1] and, if (𝐾, 𝑧) does not have diametral points, then Δ(𝐾,𝑧) is
defined on [0; diam𝑀 (𝐾, 𝑧)) with values in [0; 1).

Based on this notion, one defines the modulus of uniform rotundity 𝛾(𝐾,𝑧) of
a rooted convex body (𝐾, 𝑧) by the conditions:

∙ 𝛾(𝐾,𝑧)(𝜀) = Δ(𝐾,𝑧)(𝜀), for 0 ≤ 𝜀 < diam𝑀 (𝐾, 𝑧),

∙ 𝛾(𝐾,𝑧)(diam𝑀 (𝐾, 𝑧)) = Δ(𝐾,𝑧)(diam𝑀 (𝐾, 𝑧)), if dim𝑋 = 2,

and

∙ 𝛾(𝐾,𝑧)(diam𝑀 (𝐾, 𝑧)) = inf
{
𝛾(𝑌 ∩(𝐾−𝑧),0)(diam𝑀 (𝑌 ∩ (𝐾 − 𝑧), 0)) :

𝑌 is a 2-dimensional subspace of 𝑋
}
, in general.

The last formula is justified by the fact that a similar result holds for both
moduli of uniform rotundity 𝛿𝑋 and 𝛾𝑋 .

One shows that the function 𝛾(𝐾,𝑧) is continuous on some interval [0;𝛽),
where the number 𝛽 > 0 depends on the geometric properties of the convex body
𝐾, expressed in terms of the so-called directional 𝑀 -diameters of 𝐾. Also the
convex body 𝐾 is rotund if and only if inf{𝛾(𝐾,𝑧)(diam𝑀 (𝐾, 𝑧)) : 𝑧 ∈ int𝐾} = 1},
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and is uniformly rotund if and only if 𝜀0(𝐾,𝑧) = 0 for every 𝑧 ∈ int𝐾, where

𝜀0(𝐾,𝑧) = sup{𝜀 ∈ [0; diam𝑀 (𝐾, 𝑧)) : 𝛾(𝐾,𝑧)(𝜀) = 0} is the characteristic of convex-
ity corresponding to the asymmetric modulus 𝛾(𝐾,𝑧).

If a Banach space 𝑋 contains a rooted convex body (𝐾, 0) with 𝜀0(𝐾,0) < 2,
then 𝑋 is superreflexive. Recall that a Banach space 𝑋 is called superreflexive if it
admits an equivalent uniformly rotund renorming (it is known that any uniformly
rotund Banach space is reflexive).

If 0 ∈ int𝐾, then one defines the polar set of 𝐾 by 𝐾𝜋 = {𝑥∗ ∈ 𝑋∗ : ∀𝑦 ∈
𝐾, 𝑥∗(𝑦) ≤ 1}. If 𝐵𝑋 is the unit ball of a normed space (𝑋, ∥ ⋅ ∥), then 𝐵𝜋

𝑋 is
the unit ball of the dual space. Based on Corollary 2.2.4 from the next section, it
follows that this relation is also true in the asymmetric case: 𝐵𝑋♭ = 𝐵𝜋

𝑝 . The well-
known duality relation between uniform smoothness (US) and uniform rotundity
(UR) holds in this case too:

∙ the convex body 𝐾 is UR ⇐⇒ the polar set 𝐾𝜋 is US.

Remark 2.4.37. The results presented above stand in a normed space. It would be
of interest to study these properties in an asymmetric normed space, and to see
their significance for the properties of the corresponding asymmetric normed space.
For instance, is there any connection between the asymmetric uniform rotundity
and the reflexivity of the asymmetric normed space (as defined in Subsection
2.4.5), like in the case of Banach spaces?

The approximation properties of subsets of a Banach space heavily depend
on the geometric properties of the underlying space, see, for instance, the survey
[42]. It would be interesting to see to what extent can these properties be extended
to asymmetric normed spaces?

2.5 Applications to best approximation

The aim of this section is to study best approximation in asymmetric normed
spaces. Due to the asymmetry of the norm, two kind of distances from a point to
a set have to be considered, exemplified on Ascoli’s formula for the distance to
a closed hyperplane. Some characterization and duality results for best approx-
imation by elements in closed convex sets and by elements in sets with convex
bounded complement are proved.

As it is known, the natural framework for treating the problem of best approx-
imation is that of normed spaces, see the books by Singer [222, 223], so that it is
very natural to consider the corresponding problem in asymmetric normed spaces.
Some problems of best approximation with respect to an asymmetric norm, includ-
ing approximation in spaces of continuous or integrable functions, were considered
by Duffin and Karlovitz [70]. Dunham [71] treated the problem of best approxima-
tion by elements of a finite-dimensional subspace of an asymmetric normed normed
space and proved existence results, uniqueness results (guaranteed by the rotun-
dity of the asymmetric norm), and found some conditions ensuring the continuity
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of the metric projection. Pfankuche-Winkler [176] considered the best approxi-
mation problem in some asymmetric normed spaces of Orlicz type. De Blasi and
Myjak [59] proved some generic existence results for the problem of best approxi-
mation with respect to an asymmetric norm in a Banach space. Similar problems
were considered by Li and Ni [146] and Ni [167].

As it is well known, any closed convex subset of a Hilbert space is Cheby-
shev. A famous problem in best approximation theory is that of the convexity of
Chebyshev sets: must any Chebyshev subset of a Hilbert space be convex? There
are a lot of results in this direction as presented, for instance, in the survey paper
by Balaganskii and Vlasov [20], but the general problem is still unsolved. In some
of the papers dealing with this problem one works with asymmetric norms as, for
instance, in Alimov [12].

2.5.1 Characterizations of nearest points in convex sets and duality

As in the normed case, linear functionals are useful in characterizing the nearest
points and for the duality results in best approximation in asymmetric normed
spaces. In the following we shall present some results obtained in the papers [40,
48, 49]. Let (𝑋, 𝑝) be an asymmetric normed space, 𝑌 a nonempty subset of 𝑋
and 𝑥 ∈ 𝑋. Recall that, due to the asymmetry of the norm, we have to consider
two distances from 𝑥 to 𝑌 :

(i) 𝑑𝑝(𝑥, 𝑌 ) = inf{𝑝(𝑦− 𝑥) : 𝑦 ∈ 𝑌 } and (ii) 𝑑𝑝(𝑌, 𝑥) = inf{𝑝(𝑥− 𝑦) : 𝑦 ∈ 𝑌 } .
(2.5.1)

Observe that 𝑑𝑝(𝑌, 𝑥) = 𝑑𝑝(𝑥, 𝑌 ), where 𝑝 is the norm conjugate to 𝑝. Let
also

𝑃𝑌 (𝑥) = {𝑦 ∈ 𝑌 : 𝑝(𝑦 − 𝑥) = 𝑑𝑝(𝑥, 𝑌 )}
and

𝑃𝑌 (𝑥) = {𝑦 ∈ 𝑌 : 𝑝(𝑥− 𝑦) = 𝑑𝑝(𝑌, 𝑥)} ,

denote the metric projections on 𝑌. An element 𝑦 in 𝑃𝑌 (𝑥) is called a 𝑝-nearest
point to 𝑥 in 𝑌, while an element 𝑦 in 𝑃𝑌 (𝑥) is called a 𝑝-nearest point to 𝑥 in 𝑌.

The set 𝑌 is called:

∙ 𝑝-proximinal if 𝑃𝑌 (𝑥) ∕= ∅ for every 𝑥 ∈ 𝑋,

∙ 𝑝-semi-Chebyshev if #𝑃𝑌 (𝑥) ≤ 1 for every 𝑥 ∈ 𝑋 (i.e., every 𝑥 ∈ 𝑋 has at
most one 𝑝-nearest point in 𝑌 ),

∙ 𝑝-Chebyshev if #𝑃𝑌 (𝑥) = 1 for every 𝑥 ∈ 𝑋 (i.e., every 𝑥 ∈ 𝑋 has exactly
one 𝑝-nearest point in 𝑌 ).

The corresponding notions for the conjugate norm 𝑝 are defined similarly.

A consequence of Theorem 2.2.6 is the following characterization of nearest
points.



172 Chapter 2. Asymmetric Functional Analysis

Theorem 2.5.1. Let (𝑋, 𝑝) be a space with asymmetric norm, 𝑌 a subspace of 𝑋
and 𝑥0 a point in 𝑋.

1. Let 𝑑 = 𝑑𝑝(𝑥0, 𝑌 ) > 0. An element 𝑦0 ∈ 𝑌 is a 𝑝-nearest point to 𝑥0 in 𝑌 if
and only if there exists a 𝑝-bounded linear functional 𝜑 : 𝑋 → ℝ such that

(i) 𝜑∣𝑌 = 0, (ii) ∥𝜑∣𝑝 = 1, (iii) 𝜑(−𝑥0) = 𝑝(𝑦0 − 𝑥0) .

2. Let 𝑑 = 𝑑𝑝(𝑥0, 𝑌 ) > 0. An element 𝑦1 ∈ 𝑌 is a 𝑝-nearest point to 𝑥0 in 𝑌 if
and only if there exists a 𝑝-bounded linear functional 𝜓 : 𝑋 → ℝ such that

(j) 𝜓∣𝑌 = 0, (jj) ∥𝜓∣𝑝 = 1, (jjj) 𝜓(𝑥0) = 𝑝(𝑥0 − 𝑦1) .

Proof. 1. Suppose that 𝑦0 ∈ 𝑌 is such that 𝑝(𝑦0 − 𝑥0) = 𝑑 = 𝑑𝑝(𝑥0, 𝑌 ) > 0.
By Theorem 2.2.6, there exists 𝜑 ∈ 𝑋♭

𝑝, ∥𝜑∣𝑝 = 1, such that 𝜑∣𝑌 = 0 and
𝜑(−𝑥0) = 𝑑 = 𝑝(𝑦0 − 𝑥0).

Conversely, if for 𝑦0 ∈ 𝑌 there exists 𝜑 ∈ 𝑋♭ satisfying the conditions (i)–(iii),
then for every 𝑦 ∈ 𝑌 ,

𝑝(𝑦 − 𝑥0) ≥ 𝜑(𝑦 − 𝑥0) = 𝜑(𝑦0 − 𝑥0) = 𝑝(𝑦0 − 𝑥0) ,

implying 𝑝(𝑦0 − 𝑥0) = 𝑑𝑝(𝑥0, 𝑌 ).

The second assertion can be proved in a similar way. □

For a nonempty subset 𝑌 of an asymmetric normed space (𝑋, 𝑝) put

𝑌 ⊥ = 𝑌 ⊥𝑝 = {𝜑 ∈ 𝑋♭
𝑝 : 𝜑∣𝑌 = 0} .

A consequence of Eidelheit’s Separation Theorem (Theorem 2.2.8) is the fol-
lowing duality result for best approximation by elements of convex sets in asym-
metric normed spaces. These extend results obtained in the case of normed spaces
by Nikolski [169], Garkavi [96, 97], Singer [221] (see also Singer’s book [222, Ap-
pendix I] and [99]). Some duality results in the asymmetric case were proved also
by Babenko [19]. The case of so-called 𝑝-convex sets was considered in [47] and
[37, 38].

Theorem 2.5.2. For a nonempty convex subset 𝑌 of a space (𝑋, 𝑝) with asymmetric
norm and 𝑥0 ∈ 𝑋, the following duality relations hold:

𝑑𝑝(𝑥0, 𝑌 ) = sup
∥𝜑∣𝑝≤1

inf
𝑦∈𝑌

𝜑(𝑦 − 𝑥0) (2.5.2)

and
𝑑𝑝(𝑌, 𝑥0) = sup

∥𝜑∣𝑝≤1

inf
𝑦∈𝑌

𝜑(𝑥0 − 𝑦). (2.5.3)

If 𝑑𝑝(𝑥0, 𝑌 ) > 0, then there exists 𝜑0 ∈ 𝑋♭
𝑝 , ∥𝜑0∣𝑝 = 1, such that 𝑑𝑝(𝑥0, 𝑌 ) =

inf{𝜑0(𝑦 − 𝑥0) : 𝑦 ∈ 𝑌 }, i.e., the supremum in the right-hand side of the relation
(2.5.2) is attained.

A similar result holds for the second duality relation.



2.5. Applications to best approximation 173

Proof. We shall prove first the relation (2.5.2) and obtain (2.5.3) as an immediate
consequence. Let 𝑖 = 𝑑𝑝(𝑥0, 𝑌 ) and denote by 𝑠 the quantity in the right-hand
side of the relation (2.5.2).

For any 𝜑 ∈ 𝑋♭
𝑝 with ∥𝜑∣𝑝 ≤ 1 we have

∀𝑦 ∈ 𝑌, 𝜑(𝑦 − 𝑥0) ≤ 𝑝(𝑦 − 𝑥0) ,

implying
∀𝜑 ∈ 𝑋♭

𝑝 with ∥𝜑∣𝑝 ≤ 1, inf{𝜑(𝑦 − 𝑥0) : 𝑦 ∈ 𝑌 } ≤ 𝑖 ,

so that 𝑠 ≤ 𝑖. Taking 𝜑 = 0 in the definition of 𝑠 it follows that 𝑠 ≥ 0, so that
𝑠 = 𝑖 = 0 if 𝑖 = 0.

Suppose now 𝑖 > 0 and let

𝑍 := {𝑥 ∈ 𝑋 : 𝑝(𝑥− 𝑥0) < 𝑖} .

It follows that 𝑍 is nonempty, convex, 𝜏𝑝-open and 𝑍 ∩ 𝑌 = ∅. By the first
separation theorem (Theorem 2.2.8), there exists 𝜓 ∈ 𝑋♭

𝑝 such that

∀𝑧 ∈ 𝑍 ∀𝑦 ∈ 𝑌, 𝜓(𝑧) < 𝜓(𝑦) .

Putting 𝜑 = (1/∥𝜓∣𝑝)𝜓 we have ∥𝜑∣𝑝 = 1 and
∀𝑧 ∈ 𝑍 ∀𝑦 ∈ 𝑌, 𝜑(𝑧 − 𝑥0) < 𝜑(𝑦 − 𝑥0). (2.5.4)

Since

sup{𝜑(𝑧 − 𝑥0) : 𝑧 ∈ 𝑍} = sup{𝜑(𝑤) : 𝑝(𝑤) < 𝑖} = 𝑖∥𝜑∣𝑝 = 𝑖 ,

the inequality (2.5.4) yields

𝑖 = sup{𝜑(𝑧 − 𝑥0) : 𝑧 ∈ 𝑍} ≤ inf{𝜑(𝑦 − 𝑥0) : 𝑦 ∈ 𝑌 } ≤ 𝑠 ,

so that 𝑠 = 𝑖.

Let us show now that the relation (2.5.3) follows from (2.5.2). Since the
relation (2.5.3) holds for 𝑝 too, by Proposition 2.1.7.5 we can write

inf
𝑦∈𝑌

𝑝(𝑥0 − 𝑦) = sup{inf 𝜓(𝑌 − 𝑥0) : 𝜓 ∈ 𝑋♭
𝑝, ∥𝜓∣𝑝 ≤ 1}

= sup{inf(−𝜓)(𝑥0 − 𝑌 ) : −𝜓 ∈ 𝑋♭
𝑝, ∥ − 𝜓∣𝑝 ≤ 1}

= sup{inf 𝜑(𝑥0 − 𝑌 ) : 𝜑 ∈ 𝑋♭
𝑝, ∥𝜑∣𝑝 ≤ 1} ,

showing that the relation (2.5.3) holds too.

Finally, suppose 𝑖 > 0 and let (𝜑𝑛) be a sequence in the unit ball 𝐵𝑋♭
𝑝
of 𝑋♭

𝑝

such that lim𝑛 inf{𝜑𝑛(𝑦 − 𝑥0) : 𝑦 ∈ 𝑌 } = 𝑠 or, equivalently,

lim
𝑛
(inf 𝜑𝑛(𝑌 )− 𝜑𝑛(𝑥0)) = 𝑠. (2.5.5)
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Since the ball 𝐵𝑋♭
𝑝
is a 𝑤∗-compact subset of 𝐵𝑋∗ (see Proposition 2.4.2), it follows

that the sequence (𝜑𝑛) contains a subnet (𝜓𝑗 : 𝑗 ∈ 𝐽) which is 𝑤∗-convergent to
an element 𝜑0 ∈ 𝐵𝑋♭

𝑝
. It follows that

∀𝑧 ∈ 𝑋, lim
𝑗

𝜓𝑗(𝑧) = 𝜑0(𝑧) .

Then, by (2.5.5), lim𝑗 inf 𝜓𝑗(𝑌 ) = 𝜑0(𝑥0) + 𝑠. Since, for every 𝑦 ∈ 𝑌, 𝜓𝑗(𝑦) ≥
inf 𝜓𝑗(𝑌 ), by passing to the limit for 𝑗 ∈ 𝐽 we get

∀𝑦 ∈ 𝑌, 𝜑0(𝑦) ≥ 𝜑0(𝑥0) + 𝑠 ,

so that

𝑠 ≤ inf 𝜑0(𝑌 )− 𝜑0(𝑥0) = inf 𝜑0(𝑌 − 𝑥0) .

The definition of 𝑠 implies 𝑠 = inf 𝜑0(𝑌 − 𝑥0).

It remains to show that ∥𝜑0∣𝑝 = 1. If ∥𝜑0∣𝑝 < 1, then 𝜆 = 1/∥𝜑0∣𝑝 > 1 and
the functional 𝜓0 = 𝜆𝜑0 satisfies ∥𝜓0∣𝑝 = 1 and

𝑠 ≥ inf 𝜓0(𝑌 − 𝑥0) = 𝜆 inf 𝜑0(𝑌 − 𝑥0) = 𝜆𝑠 ,

a contradiction, since 𝑠 = 𝑖 > 0. Observe that 𝑠 > 0 implies 𝜑0 ∕= 0, so that
∥𝜑0∣𝑝 > 0 and 𝜆 is properly defined. □

Based on this duality result one obtains the following characterization of
nearest points.

Theorem 2.5.3. Let (𝑋, 𝑝) be a space with asymmetric norm, 𝑌 a nonempty subset
of 𝑋, 𝑥 ∈ 𝑋, and 𝑦0 ∈ 𝑌.

If there exists a functional 𝜑0 ∈ 𝑋♭
𝑝 such that

(i) ∥𝜑0∣𝑝 = 1, (ii) 𝜑0(𝑦0 − 𝑥) = 𝑝(𝑦0 − 𝑥), (iii) 𝜑0(𝑦0) = inf 𝜑0(𝑌 ) , (2.5.6)

then 𝑦0 is a 𝑝-nearest point to 𝑥 in 𝑌 .

Similarly, if for 𝑧0 ∈ 𝑌 , there exists a functional 𝜓0 ∈ 𝑋♭
𝑝 such that

(j) ∥𝜓0∣𝑝 = 1, (jj) 𝜓0(𝑥− 𝑧0) = 𝑝(𝑥− 𝑧0), (jjj) 𝜓0(𝑧0) = sup𝜓0(𝑌 ) , (2.5.7)

then 𝑧0 is a 𝑝-nearest point to 𝑥 in 𝑌 .

Conversely, if 𝑌 is convex, 𝑑𝑝(𝑥, 𝑌 ) > 0, an 𝑦0 is a 𝑝-nearest point to 𝑥 in
𝑌 , then there exists a functional 𝜑0 ∈ 𝑋♭

𝑝 satisfying the conditions (i)–(iii) from
above.

Similarly, if 𝑧0 ∈ 𝑌 is a 𝑝-nearest point to 𝑥 in 𝑌 with 𝑝(𝑥 − 𝑧0) > 0, then
there exists a functional 𝜓0 ∈ 𝑋♭

𝑝 satisfying the conditions (j)–(jjj).
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Proof. Suppose that 𝜑0 ∈ 𝑋♭
𝑝 satisfies the conditions (i)–(iii). Then for every

𝑦 ∈ 𝑌 ,

𝑝(𝑦0−𝑥) = 𝜑0(𝑦0−𝑥) = 𝜑0(𝑦0)−𝜑0(𝑥) = inf 𝜑0(𝑌 )−𝜑0(𝑥) ≤ 𝜑0(𝑦−𝑥) ≤ 𝑝(𝑦−𝑥) ,

showing that
𝑝(𝑦0 − 𝑥) = inf{𝑝(𝑦 − 𝑥) : 𝑦 ∈ 𝑌 } = 𝑑𝑝(𝑥, 𝑌 ) .

If 𝑧0 ∈ 𝑌 and 𝜓0 ∈ 𝑋♭
𝑝 are such that the conditions (j)–(jjj) hold, then

𝑝(𝑥−𝑧0) = 𝜓0(𝑥−𝑧0) = 𝜓(𝑥)−sup𝜓0(𝑌 ) = inf 𝜓0(𝑥−𝑌 ) ≤ 𝜓0(𝑥−𝑦) ≤ 𝑝(𝑥−𝑦) ,

for all 𝑦 ∈ 𝑌 .

Suppose now that 𝑌 is convex and 𝑦0 is a 𝑝-nearest point to 𝑥 in 𝑌, 𝑝(𝑦0−𝑥) =
𝑑𝑝(𝑥, 𝑌 ) > 0. Let 𝜑0 ∈ 𝑋♭

𝑝 be the functional whose existence is stated in the second
part of Theorem 2.5.3, i.e., ∥𝜑0∣𝑝 = 1 and inf 𝜑0(𝑌 − 𝑥) = 𝑑𝑝(𝑥, 𝑌 ) = 𝑝(𝑦0 − 𝑥).

Then

𝑝(𝑦0 − 𝑥) = 𝑑𝑝(𝑥, 𝑌 ) = inf 𝜑0(𝑌 − 𝑥) ≤ 𝜑(𝑦0 − 𝑥) ≤ 𝑝(𝑦0 − 𝑥) ,

implying 𝜑0(𝑦0) = inf 𝜑0(𝑌 ) and 𝜑0(𝑦0 − 𝑥) = 𝑝(𝑦0 − 𝑥).

If 𝑧0 ∈ 𝑌 is such that 𝑝(𝑥 − 𝑧0) = 𝑑𝑝(𝑌, 𝑥) > 0, then, by the second part of
Theorem 2.5.3, there exists 𝜓0 ∈ 𝑋♭

𝑝 such that ∥𝜓0∣𝑝 = 1, and inf 𝜓0(𝑥 − 𝑌 ) =

sup{inf 𝜓(𝑥 − 𝑌 ) : 𝜓 ∈ 𝑋♭
𝑝, ∥𝜓∣𝑝 ≤ 1} = 𝑑𝑝(𝑌, 𝑥). Then, by the duality relation

(2.5.7), we have

𝑝(𝑥0 − 𝑧0) = 𝑑𝑝(𝑌, 𝑥) = inf 𝜓0(𝑥− 𝑌 ) ≤ 𝜓0(𝑥− 𝑧0) ≤ 𝑝(𝑥− 𝑧0)

implying 𝜓0(𝑥 − 𝑧0) = 𝑝(𝑥 − 𝑧0) and 𝜓0(𝑥) − 𝜓(𝑧0) = inf 𝜓0(𝑥 − 𝑌 ) = 𝜓0(𝑥) −
sup𝜓0(𝑌 ), so that 𝜓0(𝑧0) = sup𝜓0(𝑌 ). □

When 𝑌 is a subspace of a space with asymmetric norm (𝑋, 𝑝), one obtains
the following characterization of nearest points. Denote by 𝑌 ⊥ = {𝜑 ∈ 𝑋♭

𝑝 : 𝜑∣𝑌 =
0} the annihilator of 𝑌 in 𝑋♭

𝑝 .

Corollary 2.5.4. Let 𝑌 be a subspace of (𝑋, 𝑝), 𝑥 ∈ 𝑋 and 𝑦0 ∈ 𝑌 . If there exists
𝜑0 ∈ 𝑌 ⊥ such that

(i ′) ∥𝜑0∣𝑝 = 1 and (ii ′) 𝜑0(𝑦0 − 𝑥) = 𝑝(𝑦0 − 𝑥) ,

then 𝑝(𝑦0 − 𝑥) = 𝑑𝑝(𝑥, 𝑌 ), i.e., 𝑦0 is a 𝑝-nearest point to 𝑥 in 𝑌 .

Conversely, if 𝑦0 ∈ 𝑌 is such that 𝑝(𝑦0−𝑥) = 𝑑𝑝(𝑥, 𝑌 ) > 0, then there exists
a functional 𝜑0 ∈ 𝑌 ⊥ which satisfies the conditions (i ′) and (ii ′).

Similarly, in order that 𝑧0 ∈ 𝑌 be a 𝑝-nearest point to 𝑥 ∈ 𝑋 it is sufficient
and, if 𝑑𝑝(𝑌, 𝑥) > 0 also necessary, to exist a functional 𝜓0 ∈ 𝑌 ⊥ such that

(𝑗 ′) ∥𝜓0∣𝑝 = 1 and (𝑗𝑗 ′) 𝜓0(𝑥− 𝑧0) = 𝑝(𝑥− 𝑧0) .
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Proof. If 𝜑0 ∈ 𝑌 ⊥ satisfies the conditions (i ′) and (ii ′), then 𝜑0(𝑦0) = 0 =
inf 𝜑0(𝑌 ), so that, by Theorem 2.5.3, it is a 𝑝-nearest point to 𝑥.

Conversely, if 𝑝(𝑦0 − 𝑥) = 𝑑𝑝(𝑥, 𝑌 ) > 0, then, by the necessity part of the
same theorem, there exists 𝜑0 ∈ 𝑋♭

𝑝 satisfying the conditions (i)–(iii). By (iii) we
have

∀𝑦′ ∈ 𝑌, 𝜑0(𝑦
′ − 𝑦0) ≤ 0 ⇐⇒ ∀𝑦 ∈ 𝑌, 𝜑0(𝑦) ≤ 0 ⇐⇒ ∀𝑦 ∈ 𝑌, 𝜑0(𝑦) = 0 ,

showing that 𝜑0 ∈ 𝑌 ⊥.
The case of a 𝑝-nearest point 𝑧0 is treated similarly. □

Based on Theorem 2.2.13 one can prove the following characterization the-
orem in terms of the extreme points of the unit ball of the dual space 𝑋♭

𝑝. In
the case of a normed space 𝑋 the result was obtained by Singer [221] when 𝑌 is
a subspace of 𝑋 and by Garkavi [97] for convex sets. The asymmetric case was
treated in [40].

Theorem 2.5.5. Let (𝑋, 𝑝) be a space with asymmetric norm, 𝑌 a nonempty subset
of 𝑋, 𝑥 ∈ 𝑋 and 𝑦0 ∈ 𝑌 .

If for every 𝑦 ∈ 𝑌 there is a functional 𝜑 = 𝜑𝑦 in the unit ball 𝐵♭
𝑝 of 𝑋♭

𝑝 such
that

(i) 𝜑(𝑦0 − 𝑥) = 𝑝(𝑦0 − 𝑥) and (ii) 𝜑(𝑦0 − 𝑦) ≤ 0 ,

then 𝑦0 is a 𝑝-nearest point to 𝑥 in 𝑌 .

Conversely, if 𝑌 is convex and 𝑦0 ∈ 𝑌 is such that

𝑝(𝑦0 − 𝑥) = 𝑑𝑝(𝑥, 𝑌 ) > 0 ,

then for every 𝑦 ∈ 𝑌 there exists an extreme point 𝜑 = 𝜑𝑦 of the unit ball 𝐵♭
𝑝 of

𝑋♭
𝑝, satisfying the conditions (i) and (ii) from above.

Similarly, if 𝑧0 ∈ 𝑌 is such that for every 𝑦 ∈ 𝑌 there exists a functional
𝜓 = 𝜓𝑦 ∈ 𝐵♭

𝑝 such that

(j) 𝜓(𝑥− 𝑧0) = 𝑝(𝑥− 𝑧0) and (jj) 𝜓(𝑦 − 𝑧0) ≤ 0 ,

then 𝑧0 is a 𝑝-nearest point to 𝑥 in 𝑌 .

Conversely, if 𝑧0 ∈ 𝑌 is such that 𝑝(𝑥 − 𝑧0) = 𝑑𝑝(𝑌, 𝑥) > 0, then for every
𝑦 ∈ 𝑌 there exists an extreme point 𝜓 = 𝜓𝑦 of the unit ball 𝐵♭

𝑝 of 𝑋♭
𝑝 satisfying

the conditions (j) and (jj).

Proof. Suppose that 𝑦0 ∈ 𝑌 is such that for every 𝑦 ∈ 𝑌 there is a functional
𝜑 = 𝜑𝑦 in 𝑋♭

𝑝 satisfying the conditions (i) and (ii). Then, for every 𝑦 ∈ 𝑌 ,

𝑝(𝑦0 − 𝑥) = 𝜑(𝑦0 − 𝑥) = 𝜑(𝑦0 − 𝑦) + 𝜑(𝑦 − 𝑥) ≤ 𝜑(𝑦 − 𝑥) ≤ 𝑝(𝑦 − 𝑥) ,

showing that 𝑝(𝑦0 − 𝑥) = 𝑑𝑝(𝑥, 𝑌 ).
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Suppose now that 𝑌 is convex and that 𝑦0 ∈ 𝑌 is a 𝑝-nearest point to 𝑥 in
𝑌 such that 𝑑𝑝(𝑥, 𝑌 ) = 𝑝(𝑦0 − 𝑥) > 0. The equalities

𝑝(𝑦0 − 𝑥) = inf{𝑝(𝑦 − 𝑥) : 𝑦 ∈ 𝑌 } = inf{𝑝(𝑤) : 𝑤 ∈ 𝑌 − 𝑥}
show that 𝑦0 − 𝑥 is a 𝑝-nearest point to 0 in 𝑌 − 𝑥. For 𝑦 ∈ 𝑌 ∖ {𝑦0} let 𝑍 :=
sp{𝑦0 − 𝑥, 𝑦 − 𝑥} – the space generated by 𝑦0 − 𝑥 and 𝑦 − 𝑥, and let 𝑊 :=
𝑍 ∩ (𝑌 − 𝑥). Since 𝑦0 − 𝑥 is a 𝑝-nearest point to 0 in 𝑊 , by Theorem 2.5.3, there
exists 𝜓0 ∈ 𝑍♭

𝑝, ∥𝜓0∣𝑝 = 1, such that
𝜓0(𝑦0 − 𝑥) = 𝑝(𝑦0 − 𝑥) and 𝜓0(𝑦0 − 𝑥) = inf 𝜓0(𝑊 ) .

It follows that

𝜓0(𝑦0 − 𝑥) ≤ 𝜓0(𝑦 − 𝑥) ⇐⇒ 𝜓0(𝑦0 − 𝑦) ≤ 0 .

The set 𝐵𝑍♭
𝑝
is a 𝑤∗-compact convex subset of the two-dimensional space 𝑍∗,

so that, by the Carathéodory and Krein-Milman theorems,

𝜓0 =

𝑟∑
𝑖=1

𝛼𝑖𝜓𝑖 (2.5.8)

where 1 ≤ 𝑟 ≤ 3, 𝛼𝑖 > 0,
∑

𝑖 𝛼𝑖 = 1, and 𝜓𝑖 are extreme points of the set 𝐵𝑍♭
𝑝
.

The equality 𝜓0(𝑦0− 𝑥) = 𝑝(𝑦0− 𝑥) and (2.5.8) imply 𝜓𝑖(𝑦0− 𝑥) = 𝑝(𝑦0− 𝑥), 𝑖 =
1, . . . , 𝑟. Also, since 𝜓0(𝑦0 − 𝑦) ≤ 0, at least one of the 𝜓𝑖, say 𝜓1, must satisfy
𝜓1(𝑦0 − 𝑦) ≤ 0.

By Theorem 2.2.13, 𝜓1 has a norm preserving extension 𝜑 ∈ 𝑋♭
𝑝 that is an

extreme point of the unit ball 𝐵♭
𝑝. The functional 𝜑 satisfies all the requirements

of the theorem.

The case of 𝑝-nearest points can be reduced to that of 𝑝-nearest points, by
working in the space (𝑋, 𝑝), taking into account the equality 𝑑𝑝(𝑌, 𝑥) = 𝑑𝑝(𝑥, 𝑌 ),
the fact that 𝜓 ∈ 𝑋♭

𝑝 if and only if −𝜓 ∈ 𝑋♭
𝑝 and that ∥𝜓∣𝑝 = ∥ − 𝜓∣𝑝 (see

Proposition 2.1.7.5). Also, as it is easily seen, 𝜓 is an extreme point of the unit
ball 𝐵♭

𝑝 of 𝑋
♭
𝑝 if and only if −𝜓 is an extreme point of the ball 𝐵♭

𝑝. □

2.5.2 The distance to a hyperplane

As it was shown in [48], the well-known formula for the distance to a closed
hyperplane in a normed space (the so-called Arzelá formula) has an analog in
spaces with asymmetric norm. Remark that in this case we have to work with
both of the distances 𝑑𝑝 and 𝑑𝑝 given by (2.2.3).

Proposition 2.5.6. Let (𝑋, 𝑝) be a space with asymmetric norm, 𝜑 ∈ 𝑋♭
𝑝, 𝜑 ∕=

0, 𝑐 ∈ ℝ,
𝐻 = {𝑥 ∈ 𝑋 : 𝜑(𝑥) = 𝑐}
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the hyperplane corresponding to 𝜑 and 𝑐, and

𝐻< = {𝑥 ∈ 𝑋 : 𝜑(𝑥) < 𝑐} and 𝐻> = {𝑥 ∈ 𝑋 : 𝜑(𝑥) > 𝑐} ,

the open half-spaces determined by 𝐻.

1. We have

𝑑𝑝(𝑥0, 𝐻) =
𝜑(𝑥0)− 𝑐

∥𝜑∣𝑝 (2.5.9)

for every 𝑥0 ∈ 𝐻>, and

𝑑𝑝(𝑥0, 𝐻) =
𝑐− 𝜑(𝑥0)

∥𝜑∣𝑝 (2.5.10)

for every 𝑥0 ∈ 𝐻<.

2. If there exists an element 𝑧0 ∈ 𝑋 with 𝑝(𝑧0) = 1 such that 𝜑(𝑧0) = ∥𝜑∣𝑝
then every element in 𝐻> has a 𝑝-nearest point in 𝐻, and every element in
𝐻< has a 𝑝-nearest point in 𝐻.

3. If there is an element 𝑥0 ∈ 𝐻> having a 𝑝-nearest point in 𝐻, or there is an
element 𝑥′0 ∈ 𝐻< having a 𝑝-nearest point in 𝐻, then there exists an element
𝑧0 ∈ 𝑋, 𝑝(𝑧0) = 1, such that 𝜑(𝑧0) = ∥𝜑∣𝑝. It follows that, in this case, every
element in 𝐻> has a 𝑝-nearest point in 𝐻, and every element in 𝐻< has a
𝑝-nearest point in 𝐻.

Proof. 1. Let 𝑥0 ∈ 𝐻>. Then, for every ℎ ∈ 𝐻, 𝜑(ℎ) = 𝑐, so that

𝜑(𝑥0)− 𝑐 = 𝜑(𝑥0 − ℎ) ≤ ∥𝜑∣𝑝(𝑥0 − ℎ) ,

implying

𝑑𝑝(𝑥0, 𝐻) ≥ 𝜑(𝑥0)− 𝑐

∥𝜑∣ .

By Proposition 2.1.8.1, there exists a sequence (𝑧𝑛) in 𝑋 with 𝑝(𝑧𝑛) = 1, such
that 𝜑(𝑧𝑛)→ ∥𝜑∣ and 𝜑(𝑧𝑛) > 0 for all 𝑛 ∈ ℕ. Then

ℎ𝑛 := 𝑥0 − 𝜑(𝑥0)− 𝑐

𝜑(𝑧𝑛)
𝑧𝑛

belongs to 𝐻 and

𝑑𝑝(𝑥0, 𝐻) ≤ 𝑝(𝑥0 − ℎ𝑛) =
𝜑(𝑥0)− 𝑐

𝜑(𝑧𝑛)
→ 𝜑(𝑥0)− 𝑐

∥𝜑∣ .

It follows that 𝑑𝑝(𝑥0, 𝐻) ≥ (𝜑(𝑥0)− 𝑐)/∥𝜑∣, so that formula (2.5.9) holds.
To prove (2.5.10), observe that for ℎ ∈ 𝐻 ,

𝑐− 𝜑(𝑥′0) = 𝜑(ℎ− 𝑥′0) ≤ ∥𝜑∣𝑝(ℎ− 𝑥′0) ,
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implying

𝑑𝑝(𝑥
′
0, 𝐻) ≥

𝑐− 𝜑(𝑥′0)
∥𝜑∣ .

If the sequence (𝑧𝑛) is as above then

ℎ′𝑛 :=
𝑐− 𝜑(𝑥′0)
𝜑(𝑧𝑛)

𝑧𝑛 + 𝑥′0

belongs to 𝐻 and

𝑑𝑝(𝑥
′
0, 𝐻) ≤ 𝑝(ℎ′𝑛 − 𝑥′0) =

𝑐− 𝜑(𝑥′0)
𝜑(𝑧𝑛)

→ 𝑐− 𝜑(𝑥′0)
∥𝜑∣ ,

so that 𝑑𝑝(𝑥
′
0, 𝐻) ≥ (𝑐− 𝜑(𝑥′0))/∥𝜑∣, and formula (2.5.10) holds too.

2. Let 𝑧0 ∈ 𝑋 be such that 𝑝(𝑧0) = 1 and 𝜑(𝑧0) = ∥𝜑∣. Then, for 𝑥0 ∈ 𝐻>

and 𝑥′0 ∈ 𝐻<, the elements

ℎ0 := 𝑥0 − 𝜑(𝑥0)− 𝑐

𝜑(𝑧0)
𝑧0 and ℎ′0 :=

𝑐− 𝜑(𝑥′0)
𝜑(𝑧0)

𝑧0 + 𝑥′0

belong to 𝐻 ,

𝑝(𝑥0− ℎ0) =
𝜑(𝑥0)− 𝑐

∥𝜑∣ = 𝑑𝑝(𝑥0, 𝐻) and 𝑝(ℎ′𝑛− 𝑥′0) =
𝑐− 𝜑(𝑥′0)
∥𝜑∣ = 𝑑𝑝(𝑥

′
0, 𝐻) .

If an element 𝑥0 ∈ 𝐻> has a 𝑝-nearest point ℎ0 ∈ 𝐻 then

𝑝(𝑥0 − ℎ0) = 𝑑𝑝(𝑥0, 𝐻) =
𝜑(𝑥0)− 𝑐

∥𝜑∣ =
𝜑(𝑥0 − ℎ0)

∥𝜑∣ .

It follows that 𝑧0 = (𝑥0 − ℎ0)/𝑝(𝑥0 − ℎ0) satisfies the conditions 𝑝(𝑧0) = 1 and
𝜑(𝑧0) = ∥𝜑∣. If an element 𝑥′0 ∈ 𝐻< has a 𝑝-nearest point ℎ′0 in 𝐻 , then 𝑧′0 =
(ℎ′0 − 𝑥′0)/𝑝(ℎ

′
0 − 𝑥′0) satisfies 𝑝(𝑧

′
0) = 1 and 𝜑(𝑧′0) = ∥𝜑∣. □

Remark that, according to the assertions 2 and 3 of the above proposition, the
hyperplane 𝐻 generated by a functional 𝜑 ∈ 𝑋♭

𝑝 has some proximinality properties
if and only if the functional 𝜑 attains its norm on the unit ball of 𝑋, a situation
similar to that in normed spaces.

2.5.3 Best approximation by elements of sets
with convex complement

Best approximation by elements of sets with convex complement was considered by
Klee [112], in connection with the still unsolved problem of convexity of Chebyshev
sets in Hilbert space (see the survey [20]). Klee conjectured that if a Hilbert
space contains a non convex Chebyshev set, then it contains a Chebyshev set
whose complement is convex and bounded. The conjecture was solved affirmatively



180 Chapter 2. Asymmetric Functional Analysis

by Asplund [16] who proposed the term Klee cavern to designate a set whose
complement is convex and bounded. This term was used by Franchetti and Singer
[81] who proved duality and characterization results for best approximation by
elements of caverns as well as some existence results. In [47] some of these results
were extended to sets with 𝑝-convex complement. In the paper [40] it was shown
that the duality result proved by Franchetti and Singer, loc cit., holds in spaces
with asymmetric norm too. The proof is based on the formula for the distance to
a hyperplane, Proposition 2.5.6.

We call a subset 𝑌 of (𝑋, 𝑝) upper 𝑝-bounded if there exists 𝑟 > 0 and 𝑥 ∈ 𝑋
such that 𝑌 ⊂ 𝐵𝑝[𝑥, 𝑟] or, equivalently, if sup 𝑝(𝑌 ) <∞.

The duality result is the following.

Theorem 2.5.7. Let (𝑋, 𝑝) be a space with asymmetric norm, 𝑍 a 𝜏𝑝-open, upper
𝑝-bounded convex subset of 𝑋 and 𝑌 = 𝑋 ∖ 𝑍.

Then for every 𝑥 ∈ 𝑍 the following duality relation holds:

𝑑𝑝(𝑥, 𝑌 ) = inf{sup𝜑(𝑌 )− 𝜑(𝑥) : 𝜑 ∈ 𝑋♭
𝑝, ∥𝜑∣𝑝 = 1}. (2.5.11)

Proof. Let 𝑑 = 𝑑𝑝(𝑥, 𝑌 ) and denote by 𝜆 the quantity in the right-hand side of
the relation (2.5.11).

For 𝜑 ∈ 𝑋♭
𝑝 , ∥𝜑∣𝑝 = 1, let 𝑐 = sup𝜑(𝑍). Because 𝑍 is upper 𝑝-bounded and

𝜑 ≤ 𝑝, it follows that 𝑐 is finite. Also 𝜑(𝑧) < 1 for every 𝑧 ∈ 𝑍. Indeed, as the set
𝑍 is 𝜏𝑝-open, for every 𝑧 ∈ 𝑍 there exists 𝑟 > 0 such that 𝐵𝑝(𝑧, 𝑟) ⊂ 𝑍. Choosing
𝑢 ∈ 𝑋 such that 𝜑(𝑢) = 1, it follows that 𝑝(𝑢) ≥ 𝜑(𝑢) = 1 and 𝑧 + (𝑟/𝑝(𝑢))𝑢 ∈
𝐵𝑝(𝑧, 𝑟) ⊂ 𝑍, so that

𝑐 ≥ 𝜑

(
𝑧 +

𝑟

𝑝(𝑢)
𝑢

)
= 𝜑(𝑧) +

𝑟

𝑝(𝑢)
> 𝜑(𝑧) .

Therefore, 𝜑(𝑦) = 𝑐 implies 𝑦 /∈ 𝑍 ⇐⇒ 𝑦 ∈ 𝑌, i.e., the hyperplane
𝐻 = {𝑥′ ∈ 𝑋 : 𝜑(𝑥′) = 𝑐} is contained in 𝑌 .

Taking into account this fact and the formula (2.5.10) we get

𝑑 = 𝑑𝑝(𝑥, 𝑌 ) ≤ 𝑑𝑝(𝑥,𝐻) =
𝑐− 𝜑(𝑥)

∥𝜑∣𝑝 = 𝑐− 𝜑(𝑥) = sup𝜑(𝑌 )− 𝜑(𝑥) .

Since 𝜑 ∈ 𝑋♭
𝑝, ∥𝜑∣𝑝 = 1, was arbitrarily chosen it follows that 𝑑 ≤ 𝜆.

To prove the reverse inequality, observe that 𝑦 ∈ 𝑌 implies 𝑍 ∩ {𝑦} = ∅, so
that, by the first separation theorem (Theorem 2.2.8), there exists 𝜑 ∈ 𝑋♭

𝑝 such
that

∀𝑧 ∈ 𝑍, 𝜑(𝑧) < 𝜑(𝑦) .

Dividing (if necessary) this inequality by ∥𝜑∣𝑝, we can suppose ∥𝜑∣𝑝 = 1, so that
𝜆 ≤ sup𝜑(𝑍)− 𝜑(𝑥) ≤ 𝜑(𝑦 − 𝑥) ≤ 𝑝(𝑦 − 𝑥) ,

for any 𝑦 ∈ 𝑌, implying 𝜆 ≤ 𝑑. □
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2.5.4 Optimal points

Garćıa Raffi and Sánchez Pérez [95] propose a finer approach to the best approx-
imation problem in asymmetric normed spaces.

Let (𝑋, 𝑝) be an asymmetric normed space and 𝑝𝑠(𝑥) = max{𝑝(𝑥), 𝑝(−𝑥)}
the associated norm on 𝑋. A norm 𝑝𝑠0 on 𝑋 that is equivalent to 𝑝𝑠 is called a
𝑝-associated norm on 𝑋. For 𝑌 ⊂ 𝑋 nonempty and 𝑥 ∈ 𝑋 a point 𝑦0 ∈ 𝑃𝑌 (𝑥) is
called 𝑝𝑠0-optimal distance point provided that

𝑝𝑠0(𝑦0 − 𝑥) ≤ 𝑝𝑠0(𝑦 − 𝑥) , (2.5.12)

for all 𝑦 ∈ 𝑃𝑌 (𝑥). A 𝑝𝑠-optimal distance point is called simply an optimal distance
point. The set of all 𝑝𝑠0-optimal distance points to 𝑥 in 𝑃𝑌 (𝑥) is denoted by 𝑂𝑌,𝑝𝑠0

(𝑥)
and that of optimal distance points by 𝑂𝑌 (𝑥).

As it is remarked in [95], the size of the set 𝑃𝑌 (𝑥) of nearest points to 𝑥 in
𝑌 depends on the set 𝜃(𝑥) given by (2.4.3).

Proposition 2.5.8. Let (𝑋, 𝑝) be an asymmetric normed space, 𝑌 ⊂ 𝑋, 𝑥, 𝑦 ∈ 𝑋.
If 𝑃𝑌 (𝑥) ∕= ∅, then

1. 𝑦 ∈ 𝑃𝑌 (𝑥) ⇒ 𝜃(𝑦) ∩ 𝑌 ⊂ 𝑃𝑌 (𝑥).

2. 𝜃(𝑦) ∩ 𝑌 ∕= ∅ ⇒ 𝑝(𝑦 − 𝑥) ≥ 𝑑𝑝(𝑥, 𝑌 ).

3. 𝑃𝑌 (𝑥) =
∪{𝜃(𝑦) ∩ 𝑌 : 𝑦 ∈ 𝐵𝑝[𝑥, 𝑑]}, where 𝑑 = 𝑑(𝑥, 𝑌 ).

The paper contains also the following existence results for optimal distance
points.

Theorem 2.5.9. Let (𝑋, 𝑝) be an asymmetric normed space, 𝑝𝑠0 a 𝑝-associated norm
on 𝑋, 𝑌 a nonempty convex subset of 𝑋 and 𝑥 ∈ 𝑋 such that 𝑃𝑌 (𝑥) ∕= ∅.
1. If the normed space (𝑋, 𝑝𝑠0) is strictly convex, then there is at most one 𝑝𝑠0-

optimal distance point in 𝑃𝑌 (𝑥).

2. In any of the following cases there is at least one 𝑝𝑠0-optimal distance point
in 𝑃𝑌 (𝑥) :

(i) the set 𝑃𝑌 (𝑥) is locally compact (in particular, if 𝑌 is contained in
a finite-dimensional subspace of 𝑋), or

(ii) (𝑋, 𝑝𝑠) is a reflexive Banach space and 𝑌 is 𝑝𝑠-closed.

2.5.5 Sign-sensitive approximation in spaces of continuous
or integrable functions

As we did mention, asymmetric normed spaces and the notation ∥ ⋅ ∣ for an asym-
metric norm were introduced and studied by Krein and Nudelman [129, Ch. IX,
§5] in their book on the moment problem. As an example they considered some
spaces of continuous functions with an asymmetric norm given by a weight func-
tion. Consider a pair 𝜑 = (𝜑+, 𝜑−) of continuous strictly positive functions on an
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interval [𝑎; 𝑏] and denote by 𝐵(𝜑) the space of all continuous functions on [𝑎; 𝑏]
equipped with the norm

∥𝑓 ∣ = max
𝑎≤𝑡≤𝑏

{
𝑓+(𝑡)

𝜑+(𝑡)
+

𝑓−(𝑡)
𝜑−(𝑡)

}
, (2.5.13)

for 𝑓 ∈ 𝐶[𝑎; 𝑏], where 𝑓+(𝑡) = max{𝑓(𝑡), 0} and 𝑓−(𝑡) = max{−𝑓(𝑡), 0}. (It
follows that 𝑓 = 𝑓+ − 𝑓− and ∣𝑓 ∣ = 𝑓+ + 𝑓−.)

The asymmetric norm (2.5.13) is topologically equivalent to the usual sup-
norm on 𝐶[𝑎; 𝑏] (and coincides with it for 𝜑+ = 𝜑− ≡ 1), so that the dual of
𝐵(𝜑) agrees with the dual of 𝐶[𝑎; 𝑏], that is with the space of all functions with
bounded variation on [𝑎; 𝑏] with the total variation norm. The authors give in [129]
the expression of the asymmetric norm of continuous linear functionals in terms
of (𝜑+, 𝜑−) and study some extremal problems in this space.

Later Dolzhenko and Sevastyanov [67, 69] (see also the survey [68]) considered
some best approximation problems in spaces of continuous functions on an interval
Δ = [𝑎; 𝑏] and studied the existence and uniqueness (finite-dimensional Chebyshev
subspaces) and gave characterizations of the best approximation (alternance and
Kolmogorov type criteria). They consider a pair 𝑤 = (𝑤+, 𝑤−) of nonnegative
functions and the asymmetric norm

∥𝑓 ∣𝑤 = sup{∣𝑤+(𝑡)𝑓
+(𝑡)− 𝑤−(𝑡)𝑓−(𝑡)∣ : 𝑡 ∈ Δ} . (2.5.14)

Asymmetric norms on spaces of integrable functions are defined analogously:

∥𝑓 ∣𝑝𝑝,𝑤 =
∫ 𝑏

𝑎

∣𝑤+(𝑡)𝑓
+(𝑡)− 𝑤−(𝑡)𝑓−(𝑡)∣𝑝𝑑𝑡 , (2.5.15)

for 1 ≤ 𝑝 <∞.

The study of sign-sensitive approximation is considerably more complicated
than the usual approximation (in the sup-norm or in 𝐿𝑝-norms) and requires a
fine analysis, based on the properties of weight functions. This analysis is done
in several papers, mainly by Russian and Ukrainian authors. Among these we
mention Dolzhenko and Sevastyanov with the papers quoted above, Sevastyanov
[217], Babenko [17, 18], Kozko [125, 126, 127, 128], Ramazanov [180, 181, 182, 183],
Simonov [219], Simonov and Simonova [220], and the references quoted in these
papers.
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2.6 Spaces of semi-Lipschitz functions

One of the most important classes of asymmetric normed spaces is that of semi-
Lipschitz functions on a quasi-metric space. This section is concerned with their
study, with emphasis on various completeness results and applications to best
approximation in quasi-metric spaces.

The properties of the spaces of semi-Lipschitz functions were studied by
Romaguera and Sanchis [204, 206] and Romaguera, Sánchez-Álvarez and Sanchis
[198]. The paper by Mustăţa [160] is concerned with the behavior of the extreme
points of the unit ball in spaces of semi-Lipschitz functions.

A good presentation of properties of spaces of Lipschitz functions on metric
spaces is given in the book by Weaver [236].

2.6.1 Semi-Lipschitz functions – definition and the extension
property

Let (𝑋, 𝜌) be a metric space and (𝑌, ∥ ⋅ ∥) a normed space. A function 𝑓 : 𝑋 → 𝑌
is called Lipschitz if there exists 𝐿 ≥ 0 such that

∥𝑓(𝑥)− 𝑓(𝑦)∥ ≤ 𝐿𝜌(𝑥, 𝑦) (2.6.1)

for all 𝑥, 𝑦 ∈ 𝑋 . A number 𝐿 ≥ 0 satisfying (2.6.1) is called a Lipschitz constant for
𝑓 . The space of all Lipschitz functions from 𝑋 to 𝑌 is denoted by Lip𝜌,∥⋅∥(𝑋,𝑌 ),
respectively by Lip𝜌(𝑋) when 𝑌 = (ℝ, ∣ ⋅ ∣).

The formula

∥𝑓∥𝜌,∥⋅∥ = sup
{∥𝑓(𝑥)− 𝑓(𝑦)∥

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
(2.6.2)

defines a norm on the space Lip𝜌,∥⋅∥(𝑋,𝑌 ), that is
(
Lip𝜌,∥⋅∥(𝑋,𝑌 ), ∥ ⋅ ∥𝜌,∥⋅∥

)
is

a normed space which is complete, provided 𝑌 is a Banach space, see [236]. The
number ∥𝑓∥𝜌,∥⋅∥ is the smallest Lipschitz constant for 𝑓 .

Suppose now that (𝑋, 𝜌) is a quasi-metric space, (𝑌, 𝑞) an asymmetric normed
space. A function 𝑓 : 𝑋 → ℝ is called semi-Lipschitz provided there exists a
number 𝐿 ≥ 0 such that

𝑞(𝑓(𝑥)− 𝑓(𝑦)) ≤ 𝐿𝜌(𝑥, 𝑦) , (2.6.3)

for all 𝑥, 𝑦 ∈ 𝑋. A number 𝐿 ≥ 0 for which (2.6.3) holds is called a semi-Lipschitz
constant for 𝑓 and we say that 𝑓 is 𝐿-semi-Lipschitz. We denote by SLip(𝑋,𝑌 )
(SLip𝜌,𝑑(𝑋,𝑌 ) if more precision is needed) the set of all semi-Lipschitz functions
from 𝑋 to 𝑌 .

In particular, if 𝑌 is the space (ℝ, 𝑢), 𝑢(𝛼) = 𝛼+, (see Example 1.1.3), the
condition (2.6.3)is equivalent to

𝑓(𝑥)− 𝑓(𝑦) ≤ 𝐿𝜌(𝑥, 𝑦) , (2.6.4)

for all 𝑥, 𝑦 ∈ 𝑋. In this case one uses the notation SLip𝜌(𝑋) = SLip𝜌(𝑋,ℝ).
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A function 𝑓 : 𝑋 → 𝑌 is called ≤𝜌,𝑞-monotone if 𝑞(𝑓(𝑥)−𝑓(𝑦)) = 0 whenever
𝜌(𝑥, 𝑦) = 0. In particular, a function 𝑓 : 𝑋 → ℝ is ≤𝜌,𝑢-monotone, called ≤𝜌-
monotone, if and only if 𝑓(𝑥) ≤ 𝑓(𝑦) whenever 𝜌(𝑥, 𝑦) = 0.

Obviously, a semi-Lipschitz function is ≤𝜌,𝑞-monotone. Since the topology 𝜏𝜌
is 𝑇1 if and only if 𝜌(𝑥, 𝑦) = 0 ⇐⇒ 𝑥 = 𝑦, (Proposition 1.1.8) it follows that any
function on a 𝑇1 quasi-metric space is ≤𝜌,𝑞-monotone.
Remark 2.6.1. It is clear that for 𝛼, 𝛽 ∈ ℝ,

𝛼 ≤ 𝛽 ⇐⇒ 𝛼− 𝛽 ≤ 0 ⇐⇒ 𝑢(𝛼− 𝛽) = (𝛼 − 𝛽)+ = 0.

If 𝑝 is an asymmetric seminorm on a vector space 𝑋 , then

𝑥 ≤𝑝 𝑦 ⇐⇒ 𝑝(𝑥− 𝑦) = 0

defines an order relation on 𝑋 . Similarly, in a quasi-semimetric space (𝑋, 𝜌)

𝑥 ≤𝜌 𝑦 ⇐⇒ 𝜌(𝑥, 𝑦) = 0

also defines an order relation.

Taking into account these order relations, the ≤𝜌,𝑞-monotonicity can be ex-
pressed by the condition

𝑥 ≤𝜌 𝑦 =⇒ 𝑓(𝑥) ≤𝑞 𝑓(𝑦),

justifying the term monotonicity.

Suppose now that (𝑋, 𝜌) is a quasi-metric space and (𝑌, 𝑞) an asymmetric
normed space. For an arbitrary function 𝑓 : 𝑋 → 𝑌 put

∥𝑓 ∣𝜌,𝑞 = sup
{
𝑞(𝑓(𝑥)− 𝑓(𝑦))

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
, (2.6.5)

and ∥𝑓 ∣𝜌 = ∥𝑓 ∣𝜌,𝑢 when 𝑌 is (ℝ, 𝑢).

Proposition 2.6.2. Let (𝑋, 𝜌) be a quasi-metric space and (𝑌, 𝑞) an asymmetric
normed space.

1. The set SLip𝜌,𝑞(𝑋,𝑌 ) is a cone in the linear space Lip𝜌𝑠,𝑞𝑠(𝑋,𝑌 ) of all Lip-
schitz functions from the metric space (𝑋, 𝜌𝑠) to the normed space (𝑌, 𝑞𝑠)
and ∥𝑓∥𝜌𝑠,𝑞𝑠 ≤ ∥𝑓 ∣𝜌,𝑞 for all 𝑓 ∈ SLip𝜌,𝑞(𝑋,𝑌 ).

2. If 𝑓 is semi-Lipschitz, then ∥𝑓 ∣𝜌,𝑞 is the smallest semi-Lipschitz constant
for 𝑓.

3. A function 𝑓 : 𝑋 → 𝑌 is semi-Lipschitz if and only if 𝑓 is ≤𝜌,𝑞-monotone
and ∥𝑓 ∣𝜌,𝑞 <∞.
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Proof. 1. It is clear that 𝑓+𝑔, 𝛼𝑓 ∈ SLip𝜌,𝑞(𝑋,𝑌 ) for all 𝑓, 𝑔 ∈ SLip𝜌,𝑞(𝑋,𝑌 ) and
𝛼 ≥ 0.

If 𝑓 ∈ SLip𝜌,𝑞(𝑋,𝑌 ), then

𝑞(𝑓(𝑥) − 𝑓(𝑦)) ≤ 𝐿𝜌(𝑥, 𝑦) ≤ 𝐿𝜌𝑠(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑋 ,

implying

𝑞𝑠(𝑓(𝑥)− 𝑓(𝑦)) ≤ 𝐿𝜌𝑠(𝑥, 𝑦) ,

for all 𝑥, 𝑦 ∈ 𝑋, so that 𝑓 ∈ Lip𝜌𝑠,𝑞𝑠(𝑋,𝑌 ) and ∥𝑓∥𝜌𝑠,𝑞𝑠 ≤ ∥𝑓 ∣𝜌,𝑞.
2. The inequality 𝑞(𝑓(𝑥) − 𝑓(𝑦))/𝜌(𝑥, 𝑦) ≤ ∥𝑓 ∣𝜌,𝑞 implies 𝑓(𝑥) − 𝑓(𝑦) ≤

∥𝑓 ∣𝜌 𝜌(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝜌(𝑥, 𝑦) > 0. Since a semi-Lipschitz function is
≤𝜌,𝑞-monotone, 𝜌(𝑥, 𝑦) = 0 implies 𝑞(𝑓(𝑥) − 𝑓(𝑦)) = 0 = ∥𝑓 ∣𝜌,𝑞 𝜌(𝑥, 𝑦). Conse-
quently, ∥𝑓 ∣𝜌,𝑞 is a semi-Lipschitz constant for 𝑓.

Suppose that 𝐿 is a semi-Lipschitz constant for 𝑓. Then

𝑞(𝑓(𝑥)− 𝑓(𝑦))/𝜌(𝑥, 𝑦) ≤ 𝐿,

whenever 𝜌(𝑥, 𝑦) > 0, so that ∥𝑓 ∣𝜌,𝑞 ≤ 𝐿, showing that ∥𝑓 ∣𝜌,𝑞 is the smallest
semi-Lipschitz constant for 𝑓.

The above reasonings show also the validity of 3. □

The following example shows that the inequality from Proposition 2.6.2.1
can be strict.

Example 2.6.3. On a three point set set 𝑋 = {𝑥1, 𝑥2, 𝑥3} consider the quasi-metric
𝜌(𝑥1, 𝑥2) = 1, 𝜌(𝑥2, 𝑥1) = 2, 𝜌(𝑥1, 𝑥3) = 𝜌(𝑥3, 𝑥1) = 2, 𝜌(𝑥2, 𝑥3) = 𝜌(𝑥3, 𝑥2) = 2,
and the function 𝑓 : 𝑋 → ℝ given by 𝑓(𝑥1) = 1, 𝑓(𝑥2) = 𝑓(𝑥3) = 2. Then
𝜌𝑠(𝑥𝑖, 𝑥𝑗) = 2 for 𝑖 ∕= 𝑗 and

∥𝑓 ∣𝜌,∣⋅∣ = max
{ ∣𝑓(𝑥𝑖)− 𝑓(𝑥𝑗)∣

𝜌(𝑥𝑖, 𝑥𝑗)
: 1 ≤ 𝑖, 𝑗 ≤ 3, 𝑖 ∕= 𝑗}

}
= 1

>
1

2
= max

{ ∣𝑓(𝑥𝑖)− 𝑓(𝑥𝑗)∣
𝜌𝑠(𝑥𝑖, 𝑥𝑗)

: 1 ≤ 𝑖, 𝑗 ≤ 3, 𝑖 ∕= 𝑗}
}
= ∥𝑓 ∣𝜌𝑠,∣⋅∣.

The following proposition puts in evidence some useful semi-Lipschitz func-
tions.

Proposition 2.6.4. Let (𝑋, 𝜌) be a quasi-metric space, 𝑦 ∈ 𝑋 and 𝑌 ⊂ 𝑋 nonempty.

1. The functions 𝜌(⋅, 𝑦) : 𝑋 → ℝ and 𝑑(⋅, 𝑌 ) : 𝑋 → ℝ are semi-Lipschitz with
semi-Lipschitz constant 1.

2. For fixed 𝑎 ∈ 𝑋, the functions 𝑓(𝑥) = 𝜌(𝑎, 𝑥0)− 𝜌(𝑎, 𝑥) and 𝑔(𝑥) = 𝜌(𝑥, 𝑎)−
𝜌(𝑥0, 𝑎) belong to SLip𝜌,0(𝑋) and ∥𝑓 ∣𝜌, ∥𝑔∣𝜌 ≤ 1.
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Proof. 1. The inequality

𝜌(𝑥, 𝑦) ≤ 𝜌(𝑥, 𝑥′) + 𝜌(𝑥′, 𝑦) , (2.6.6)

valid for 𝑥, 𝑥′ ∈ 𝑋, shows that the function 𝜌(⋅, 𝑦) is semi-Lipschitz. Since the
inequality (2.6.6) holds for all 𝑦 ∈ 𝑌 and fixed 𝑥, 𝑥′, passing to infimum with
respect to 𝑦 ∈ 𝑌 one obtains 𝑑(𝑥, 𝑌 ) ≤ 𝜌(𝑥, 𝑥′) + 𝑑(𝑥′, 𝑌 ), which means that the
function 𝑑(⋅, 𝑌 ) is semi-Lipschitz, too.

The assertions from 2 follow from 1. □

An important result in the study of Lipschitz functions on metric spaces
is the extension of Lipschitz functions, usually known as Kirszbraun’s extension
theorem, see, for instance, the book [237].

In the case of semi-Lipschitz functions a similar result was proved by Mustăţa
[158] (see also [157, 164]). The extension problem for semi-Lipschitz functions
on quasi-metric spaces was considered also by Matoušková [148]. The paper [87]
discusses the existence of an extension of an asymmetric norm defined on a cone
𝐾 to an asymmetric norm defined on the generated linear space 𝑋 = 𝐾 −𝐾.

Proposition 2.6.5. Let (𝑋, 𝜌) be a quasi-metric space, 𝑌 a nonempty subset of 𝑋
and 𝑓 : 𝑌 → ℝ an 𝐿-semi-Lipschitz function.

1. The functions 𝐹,𝐺 defined for 𝑥 ∈ 𝑋 by

𝐹 (𝑥) = inf{𝑓(𝑦) + 𝐿𝜌(𝑥, 𝑦) : 𝑦 ∈ 𝑌 } (2.6.7)

and

𝐺(𝑥) = sup{𝑓(𝑦′)− 𝐿𝜌(𝑦′, 𝑥) : 𝑦′ ∈ 𝑌 } (2.6.8)

are 𝐿-semi-Lipschitz extensions of 𝑓.

2. Any other 𝐿-semi-Lipschitz extension 𝐻 of 𝑓 satisfies the inequalities

𝐺 ≤ 𝐻 ≤ 𝐹 . (2.6.9)

Proof. 1. Let 𝑦, 𝑦′ ∈ 𝑌 and 𝑥 ∈ 𝑋. The inequalities 𝑓(𝑦′) − 𝑓(𝑦) ≤ 𝐿𝜌(𝑦′, 𝑦) ≤
𝐿𝜌(𝑦′, 𝑥) + 𝐿𝜌(𝑥, 𝑦) imply

𝑓(𝑦′)− 𝐿𝜌(𝑦′, 𝑥) ≤ 𝑓(𝑦) + 𝐿𝜌(𝑥, 𝑦) .

Passing to supremum with respect to 𝑦′ ∈ 𝑌 and to infimum with respect to
𝑦 ∈ 𝑌, it follows that 𝐺,𝐹 are well defined and 𝐺 ≤ 𝐹.

Let 𝑥 ∈ 𝑌. Then 𝑓(𝑥) ≤ 𝑓(𝑦)+𝐿𝜌(𝑥, 𝑦) for every 𝑦 ∈ 𝑌, implies 𝑓(𝑥) ≤ 𝐹 (𝑥).
Similarly, 𝑓(𝑦′) − 𝐿𝜌(𝑦′, 𝑥) ≤ 𝑓(𝑥) implies 𝐺(𝑥) ≤ 𝑓(𝑥). Taking 𝑦 = 𝑥 in (2.6.7)
and 𝑦′ = 𝑥 in (2.6.8), it follows that 𝐹 (𝑥) ≤ 𝑓(𝑥) and 𝐺(𝑥) ≥ 𝑓(𝑥), so that
𝐺(𝑥) = 𝑓(𝑥) = 𝐹 (𝑥) for every 𝑥 ∈ 𝑌.



2.6. Spaces of semi-Lipschitz functions 187

To conclude, we have to show that the functions 𝐹,𝐺 are semi-Lipschitz. Let
𝑥, 𝑥′ ∈ 𝑋. The inequalities

𝐹 (𝑥) ≤ 𝑓(𝑦) + 𝐿𝜌(𝑥, 𝑦) ≤ 𝑓(𝑦) + 𝐿𝜌(𝑥, 𝑥′) + 𝐿𝜌(𝑥′, 𝑦) ,

valid for all 𝑦 ∈ 𝑌, yield 𝐹 (𝑥) ≤ 𝐹 (𝑥′) + 𝐿𝜌(𝑥, 𝑥′), showing that 𝐹 is semi-
Lipschitz.

Similar reasonings show that 𝐺 is semi-Lipschitz too.

2. Let 𝐻 be an 𝐿-semi-Lipschitz extension of 𝑓 and 𝑥 ∈ 𝑋. Since

𝐻(𝑥) ≤ 𝐻(𝑦) + 𝐿𝜌(𝑥, 𝑦) = 𝑓(𝑦) + 𝐿𝜌(𝑥, 𝑦) ,

for every 𝑦 ∈ 𝑌, passing to infimum with respect to 𝑦 ∈ 𝑌 one obtains 𝐻(𝑥) ≤
𝐹 (𝑥).

Similarly 𝑓(𝑦′)−𝐻(𝑥) = 𝐻(𝑦′)−𝐻(𝑥) ≤ 𝐿𝜌(𝑦′, 𝑥, ) implies

𝑓(𝑦′)− 𝐿𝜌(𝑦′, 𝑥) ≤ 𝐻(𝑥) ,

for every 𝑦′ ∈ 𝑌. Passing to supremum with respect to 𝑦′ ∈ 𝑌 one obtains 𝐺(𝑥) ≤
𝐻(𝑥). □

The following corollary shows the existence of norm-preserving extensions of
semi-Lipschitz functions.

Corollary 2.6.6. Let 𝑋,𝑌 and 𝑓 be as in Proposition 2.6.5 and

∥𝑓 ∣𝜌 = sup{𝑢(𝑓(𝑦)− 𝑓(𝑦′))/𝜌(𝑦, 𝑦′) : 𝑦, 𝑦′ ∈ 𝑌, 𝜌(𝑦, 𝑦′) > 0} ,
and let 𝐹,𝐺 be given by (2.6.7) and (2.6.8) for 𝐿 = ∥𝑓 ∣𝜌. Then

1. The functions 𝐹 and 𝐺 are semi-Lipschitz norm-preserving extensions of 𝑓 ,
that is

(𝑖) 𝐹 ∣𝑌 = 𝐺∣𝑌 = 𝑓 and (𝑖𝑖) ∥𝐹 ∣𝜌 = ∥𝐺∣𝜌 = ∥𝑓 ∣𝜌 .

2. Any other semi-Lipschitz norm-preserving extension 𝐻 of 𝑓 satisfies the in-
equalities

𝐺 ≤ 𝐻 ≤ 𝐹 .

2.6.2 Properties of the cone of semi-Lipschitz functions – linearity

In the case of real-valued Lipschitz functions on a metric space (𝑋, 𝜌) the function
∥ ⋅ ∥ : Lip(𝑋,ℝ)→ ℝ given by

∥𝑓∥𝜌 = sup
{ ∣𝑓(𝑥)− 𝑓(𝑦)∣

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
,

is only a seminorm on Lip(𝑋,ℝ) because ∥𝑓∥𝜌 = 0 for any constant function. To
obtain a norm one can proceed in two ways:
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∙ one takes the quotient space of Lip(𝑋,ℝ) with respect to the subspace of
constant functions, or

∙ one fixes a point 𝑥0 ∈ 𝑋 and one considers the subspace

Lip0(𝑋,ℝ) = {𝑓 ∈ Lip(𝑋,ℝ) : 𝑓(𝑥0) = 0}
with the induced norm.

We shall follow the second way. A metric space with an a priori fixed point
𝑥0 is called a pointed metric space. If, in addition, 𝑋 is a vector space then one
takes usually 𝑥0 = 0, the null element of 𝑋 .

For a pointed quasi-metric space (𝑋, 𝜌, 𝑥0) and an asymmetric normed space
(𝑌, 𝑞) let

SLip0𝜌,𝑞(𝑋,𝑌 ) =
{
𝑓 ∈ SLip𝜌,𝑞(𝑋,𝑌 ) : 𝑓(𝑥0) = 0

}
. (2.6.10)

In the case 𝑌 = (ℝ, 𝑢) one uses the notation SLip0𝜌(𝑋).

The following proposition contains some simple remarks concerning the re-
lations between 𝜌- and 𝜌-semi-Lipschitz functions, obtained in [215] and in [206]
in the case 𝑌 = ℝ.

Proposition 2.6.7. Let (𝑋, 𝜌) be a quasi-metric space, (𝑌, 𝑞) an asymmetric normed
space and 𝑓 : 𝑋 → 𝑌 a function.

1. The function 𝑓 belongs to SLip𝜌,𝑞(𝑋,𝑌 ) (resp. to SLip0𝜌,𝑞(𝑋,𝑌 )) if and only

if −𝑓 belongs to SLip𝜌,𝑞(𝑋,𝑌 ) (resp. to SLip0𝜌,𝑞(𝑋,𝑌 )). Also the following
equality holds,

∥𝑓 ∣𝜌,𝑞 = ∥ − 𝑓 ∣𝜌,𝑞 .

The correspondence 𝑓 ,→ −𝑓 is an isometric isomorphism between the normed
cones (

SLip𝜌,𝑞(𝑋,𝑌 ), ∥ ⋅ ∣𝜌,𝑞
)

and
(
SLip𝜌,𝑞(𝑋,𝑌 ), ∥ ⋅ ∣𝜌,𝑞

)
,

respectively between(
SLip0𝜌,𝑞(𝑋,𝑌 ), ∥ ⋅ ∣𝜌,𝑞

)
and

(
SLip0𝜌,𝑞(𝑋,𝑌 ), ∥ ⋅ ∣𝜌,𝑞

)
.

2. The sets SLip𝜌,𝑞(𝑋,𝑌 ) ∩ SLip𝜌,𝑞(𝑋,𝑌 ) and SLip0𝜌,𝑞(𝑋,𝑌 ) ∩ SLip0𝜌,𝑞(𝑋,𝑌 )
are linear spaces.

A problem discussed in [206] and [215] is: under what conditions is the cone
SLip𝜌,0(𝑋) a linear space?

We mention also the following result from [215] and [206] (the case 𝑌 = ℝ).

Theorem 2.6.8. Let (𝑋,𝜌) be a quasi-metric space and (𝑌,𝑞) an asymmetric normed
space. The following are equivalent.

1. SLip0𝜌,𝑞(𝑋,𝑌 ) = SLip0𝜌,𝑞(𝑋,𝑌 ).

2. SLip0𝜌,𝑞(𝑋,𝑌 ) is a linear space.



2.6. Spaces of semi-Lipschitz functions 189

3. SLip0𝜌,𝑞(𝑋,𝑌 ) is a linear space.

4. SLip0𝜌,𝑞(𝑋,𝑌 ) ⊂ SLip0𝜌,𝑞(𝑋,𝑌 ).

5. SLip0𝜌,𝑞(𝑋,𝑌 ) ⊂ SLip0𝜌,𝑞(𝑋,𝑌 ).

Similar equivalence results hold for the spaces SLip𝜌,𝑞(𝑋,𝑌 ) and SLip𝜌,𝑞(𝑋,𝑌 ).

Proof. Observe that SLip0𝜌,𝑞(𝑋,𝑌 ) is a linear space if and only if
(
SLip0𝜌,𝑞(𝑋,𝑌 ),+

)
is a group and similarly for SLip0𝜌,𝑞(𝑋,𝑌 ).

1 ⇒ 2. By Proposition 2.6.2, SLip0𝜌,𝑞(𝑋,𝑌 ) = SLip0𝜌,𝑞(𝑋,𝑌 )∩SLip0𝜌,𝑞(𝑋,𝑌 )
is a linear space.

2⇒ 3. Since 𝑓 ∈ SLip0𝜌,𝑞(𝑋,𝑌 ) ⇐⇒ −𝑓 SLip0𝜌,𝑞(𝑋,𝑌 ) and SLip0𝜌,𝑞(𝑋,𝑌 ) is

a linear space, it follows that 𝑓 = −(−𝑓) ∈ SLip0𝜌,𝑞(𝑋,𝑌 ) ⇐⇒ −𝑓 SLip0𝜌,𝑞(𝑋,𝑌 ).

3 ⇒ 4. Follows from 𝑓 ∈ SLip0𝜌,𝑞(𝑋,𝑌 ) ⇒ −𝑓 ∈ SLip0𝜌,𝑞(𝑋,𝑌 ) and −𝑓 ∈
SLip0𝜌,𝑞(𝑋,𝑌 ) ⇐⇒ 𝑓 ∈ SLip0𝜌,𝑞(𝑋,𝑌 ).

The proof of 4 ⇒ 5 is similar to that of the above implication, and 5 ⇒ 4
follows from the equality ¯̄𝜌 = 𝜌.

The implication 5 ⇒ 1 follows from the equivalence 4 ⇐⇒ 5. □
Remark 2.6.9. The equality SLip𝑥0

𝜌,𝑞(𝑋,𝑌 ) = SLip𝑥0
𝜌,𝑞(𝑋,𝑌 ) does not depend on

the point 𝑥0, in the sense that if SLip
𝑥0
𝜌,𝑞(𝑋,𝑌 ) = SLip𝑥0

𝜌,𝑞(𝑋,𝑌 ) for some 𝑥0 ∈ 𝑋,
then SLip𝑥1

𝜌,𝑞(𝑋,𝑌 ) = SLip𝑥1
𝜌,𝑞(𝑋,𝑌 ) for any other point 𝑥1 ∈ 𝑋.

Indeed, the correspondence 𝑓 ,→ 𝑓 − 𝑓(𝑥0) applies SLip
𝑥1
𝜌,𝑞(𝑋,𝑌 ) onto

SLip𝑥0
𝜌,𝑞(𝑋,𝑌 ) and preserves the Lipschitz constants.

In the case 𝑌 = ℝ one obtains the following condition on the metric 𝜌.

Proposition 2.6.10 ([206]). Let (𝑋, 𝜌, 𝑥0) be a pointed quasi-metric space. If

SLip0𝜌(𝑋) = SLip
0
𝜌(𝑋),

then the topology 𝜏𝜌 is 𝑇1 and there exist 𝛽, 𝛽′ > 0 such that

𝜌(𝑥, 𝑥0) ≤ 𝛽𝜌(𝑥0, 𝑥) and 𝜌(𝑥0, 𝑥) ≤ 𝛽′𝜌(𝑥, 𝑥0) , (2.6.11)

for all 𝑥 ∈ 𝑋.

Proof. Let 𝑎, 𝑏 ∈ 𝑋 be such that 𝜌(𝑎, 𝑏) = 0. By Proposition 2.6.4, the func-
tion 𝑓(𝑥) = 𝜌(𝑥, 𝑎) − 𝜌(𝑥0, 𝑎), 𝑥 ∈ 𝑋, is 𝜌-semi-Lipschitz, and so belongs to
SLip0𝜌,𝑞(𝑋) = SLip0𝜌(𝑋), so that there exists 𝜆 > 0 such that 𝜌(𝑥, 𝑎) − 𝜌(𝑦, 𝑎) =
𝑓(𝑥) − 𝑓(𝑦) ≤ 𝜆𝜌(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋. Taking 𝑥 = 𝑏 and 𝑦 = 𝑎 one obtains
𝜌(𝑏, 𝑎) ≤ 𝜆𝜌(𝑎, 𝑏) = 0. Since 𝜌 is a quasi-metric, 𝜌(𝑏, 𝑎) = 𝜌(𝑎, 𝑏) = 0 implies 𝑎 = 𝑏.
By Proposition 1.1.8.3 the topology 𝜏𝜌 is 𝑇1 (and 𝜏𝜌 as well).

The function 𝑔(𝑥) = 𝜌(𝑥, 𝑥0), 𝑥 ∈ 𝑋, belongs to SLip0𝜌(𝑋) = SLip0𝜌(𝑋), so
there exists 𝛽 > 0 such that 𝜌(𝑥, 𝑥0) = 𝑓(𝑥)− 𝑓(𝑥0) ≤ 𝛽𝜌(𝑥0, 𝑥). The existence of
𝛽′ > 0 satisfying the second inequality is proved similarly. □
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The above results have the following consequences.

Corollary 2.6.11. Let (𝑋, 𝜌, 𝑥0) be a pointed quasi-metric space.

1. If SLip0𝜌(𝑋) = SLip
0
𝜌(𝑋), then 𝜏𝜌 = 𝜏𝜌 and hence the topology 𝜏𝜌 is metriz-

able.

2.
(
SLip0𝜌(𝑋),+,∥⋅ ∣𝜌

)
is a topological group if and only if SLip0𝜌(𝑋)=SLip

0
𝜌(𝑋)

and 𝜏𝜌 = 𝜏𝜌.

We mention also the following result.

Proposition 2.6.12. Let (𝑋, 𝜌, 𝑥0) be a pointed quasi-metric space. The following
assertions are equivalent.

1. SLip0𝜌(𝑋) is a vector space and ∥ ⋅ ∣𝜌 is a complete norm on it, that is(
SLip0𝜌(𝑋), ∥ ⋅ ∣𝜌

)
is a Banach space.

2. SLip0𝜌(𝑋) = SLip0𝜌(𝑋) and ∥ ⋅ ∣𝜌 = ∥ ⋅ ∣𝜌.
3. (𝑋, 𝜌) is a metric space.

Proof. 1⇒ 2. By Proposition 2.6.8, SLip0𝜌(𝑋) = SLip0𝜌(𝑋). Since ∥ ⋅ ∣𝜌 is a norm
on SLip0𝜌(𝑋) it follows ∥𝑓 ∣𝜌 = ∥ − 𝑓 ∣𝜌 = ∥𝑓 ∣𝜌.

2 ⇒ 3. If SLip0𝜌(𝑋) = SLip0𝜌(𝑋), then, by Proposition 2.6.10, the topology
𝜏𝜌 is 𝑇1. Consequently, if 𝜌 is not a metric, then there exists a pair 𝑎, 𝑏 ∈ 𝑋 such
that 𝜌(𝑎, 𝑏) > 𝜌(𝑏, 𝑎) > 0. The function 𝑓(𝑥) = 𝜌(𝑥, 𝑏) − 𝜌(𝑥0, 𝑏), 𝑥 ∈ 𝑋, is in
SLip0𝜌(𝑋) and ∥𝑓 ∣𝜌 ≤ 1 (see Proposition 2.6.4). By hypothesis 𝑓 ∈ SLip0𝜌(𝑋). But

∥𝑓 ∣𝜌 = sup{𝑢(𝑓(𝑥)− 𝑓(𝑦))/𝜌(𝑦, 𝑥) : 𝜌(𝑦, 𝑥) > 0} ≥ 𝑢(𝑓(𝑎)− 𝑓(𝑏))

𝜌(𝑏, 𝑎)
=

𝜌(𝑎, 𝑏)

𝜌(𝑏, 𝑎)
> 1 ,

in contradiction to the hypothesis ∥𝑓 ∣𝜌 = ∥𝑓 ∣𝜌.
3 ⇒ 1. If (𝑋, 𝜌) is a metric space, then SLip0𝜌(𝑋) = SLip0𝜌(𝑋) = Lip0(𝑋)

– the space of Lipschitz functions vanishing at 𝑥0. It is well known that Lip0(𝑋)
is a Banach space with respect to the Lipschitz norm ∥ ⋅ ∥𝜌 = ∥ ⋅ ∣𝜌 = ∥ ⋅ ∣𝜌 (see
[236]). □
Remark 2.6.13. Concerning the validity of Proposition 2.6.12 in the case of spaces
of semi-Lipschitz functions with values in an asymmetric normed space (𝑌, 𝑞),
Sánchez-Álvarez [215] has shown that 2 ⇐⇒ 3 and 3 ⇒ 1, but the implication
1⇒ 3 does not hold in general.

2.6.3 Completeness properties of the spaces of
semi-Lipschitz functions

In order to treat some completeness questions for spaces of semi-Lipschitz func-
tions, one defines an extended quasi-metric on SLip𝜌(𝑋) by the formula

𝛿𝜌(𝑓, 𝑔) = sup

{
𝑢((𝑔 − 𝑓)(𝑥)− (𝑔 − 𝑓)(𝑦))

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
. (2.6.12)
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For 𝑓, 𝑔 ∈ SLip𝜌(𝑋) put also

𝛿𝜌(𝑓, 𝑔) = 𝛿𝜌(𝑔, 𝑓) and 𝛿𝑠𝜌(𝑓, 𝑔) = 𝛿𝜌(𝑓, 𝑔) ∨ 𝛿𝜌(𝑓, 𝑔) .

Because [𝜑(𝑥) ∨ 0] ∨ [(−𝜑(𝑥)) ∨ 0] = ∣𝜑(𝑥)∣,

𝛿𝑠𝜌(𝑓, 𝑔) = 𝛿𝜌(𝑓, 𝑔) ∨ 𝛿𝜌(𝑔, 𝑓)

= sup

{ ∣(𝑔 − 𝑓)(𝑥)− (𝑔 − 𝑓)(𝑦)∣
𝜌(𝑥, 𝑦)

: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
.

In fact 𝛿𝜌 can be considered as an extended quasi-metric on the linear space
SLip𝜌(𝑋)− SLip𝜌(𝑋) generated by SLip𝜌(𝑋) in Lip𝜌(𝑋).
Remark 2.6.14. If the topology 𝜏𝜌 is 𝑇1 (equivalently, 𝜌(𝑥, 𝑦) > 0 whenever 𝑥 ∕= 𝑦),
then

𝛿𝜌(𝑓, 𝑔) = 𝛿𝜌(𝑓, 𝑔) .

Indeed

𝛿𝜌(𝑓, 𝑔) = sup

{
𝑢 ((𝑔 − 𝑓)(𝑥) − (𝑔 − 𝑓)(𝑦))

𝜌(𝑦, 𝑥)
: 𝑥, 𝑦 ∈ 𝑋, 𝑥 ∕= 𝑦

}
= sup

{
𝑢 ((𝑓 − 𝑔)(𝑥) − (𝑓 − 𝑔)(𝑦))

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝑥 ∕= 𝑦

}
= 𝛿𝜌(𝑔, 𝑓) = 𝛿𝜌(𝑓, 𝑔) .

The following example, given by Romaguera and Sanchis [204], shows that
𝛿𝜌 could be effectively an extended quasi-metric.

Example 2.6.15. For 𝑥, 𝑦 ∈ ℝ let 𝜌(𝑥, 𝑦) = 𝑥− 𝑦 if 𝑥 ≥ 𝑦 and 𝜌(𝑥, 𝑦) = 1 if 𝑥 < 𝑦,
i.e., (ℝ, 𝜌) is the Sorgenfrey line (see Example 1.1.6). The identity mapping id :
ℝ → ℝ is semi-Lipschitz with ∥ id ∣𝜌 = 1, so that 𝛿𝜌(0, id) = 1, but 𝛿𝜌(id, 0) = ∞
because sup{((𝑦 − 𝑥) ∨ 0)/𝜌(𝑥, 𝑦) : 𝑥 ∕= 𝑦} =∞.

Theorem 2.6.16. Let (𝑋, 𝜌) be a quasi-metric space.

1. ([204]) The space SLip0𝜌(𝑋) is bicomplete with respect to the extended quasi-

metric 𝛿𝜌, that is complete with respect to the extended metric 𝛿𝑠𝜌 = 𝛿𝜌 ∨ 𝛿𝜌.

2. ([206]) The extended quasi-metric space (SLip0𝜌(𝑋), 𝛿𝜌) is right 𝐾-complete.

Proof. 1. Let (𝑓𝑛) be a 𝛿𝑠𝜌-Cauchy sequence in SLip
0
𝜌(𝑋). Then

𝛿𝑠𝜌(𝑓𝑛, 𝑓𝑛+𝑘) = 𝛿𝜌(𝑓𝑛, 𝑓𝑛+𝑘) ∨ 𝛿𝜌(𝑓𝑛+𝑘, 𝑓𝑛)

= sup

{ ∣(𝑓𝑛+𝑘 − 𝑓𝑛)(𝑢)− (𝑓𝑛+𝑘 − 𝑓𝑛)(𝑣)∣
𝜌(𝑢, 𝑣)

: 𝑢, 𝑣 ∈ 𝑋, 𝜌(𝑢, 𝑣) > 0

}
,
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so that for every 𝜀 > 0 there exists 𝑛𝜀 ∈ ℕ such that

∣(𝑓𝑛+𝑘 − 𝑓𝑛)(𝑢)− (𝑓𝑛+𝑘 − 𝑓𝑛)(𝑣)∣
𝜌(𝑢, 𝑣)

≤ 𝜀 , (2.6.13)

for all 𝑛 ≥ 𝑛𝜀, 𝑘 ∈ ℕ and all 𝑢, 𝑣 ∈ 𝑋 with 𝜌(𝑢, 𝑣) > 0.

Claim I. For every 𝑥 ∈ 𝑋, (𝑓𝑛(𝑥))𝑛∈ℕ is a Cauchy sequence in (ℝ, ∣ ⋅ ∣).
Let 𝑥 ∕= 𝑥0 be fixed and 𝜀′ > 0. If 𝜌(𝑥, 𝑥0) > 0 let 𝑛0 ∈ ℕ be such that

(2.6.13) holds for 𝜀 := 𝜀′/𝜌(𝑥, 𝑥0). Taking 𝑢 = 𝑥 and 𝑣 = 𝑥0 in (2.6.13) it follows
that

∣(𝑓𝑛+𝑘 − 𝑓𝑛)(𝑥)∣ ≤ 𝜀𝜌(𝑥, 𝑥0) = 𝜀′ ,

for all 𝑛 ≥ 𝑛𝜀 and all 𝑘 ∈ ℕ. If 𝜌(𝑥0, 𝑥) > 0, then use (2.6.13) with 𝜀 :=
𝜀′/𝜌(𝑥0, 𝑥), 𝑢 = 𝑥0 and 𝑣 = 𝑥 to obtain

∣(𝑓𝑛+𝑘 − 𝑓𝑛)(𝑥)∣ ≤ 𝜀𝜌(𝑥0, 𝑥) = 𝜀′ ,

for all 𝑛 ≥ 𝑛𝜀 and all 𝑘 ∈ ℕ.

Consequently (𝑓𝑛(𝑥))𝑛∈ℕ is a Cauchy sequence in (ℝ, ∣ ⋅ ∣) for every 𝑥 ∈ 𝑋 ,
so that we can define a function 𝑓 : 𝑋 → ℝ by 𝑓(𝑥) = lim𝑛 𝑓𝑛(𝑥), 𝑥 ∈ 𝑋.

To end the proof we have to show that 𝑓 ∈ SLip0𝜌(𝑋) and that 𝑓𝑛
𝛿𝑠𝜌−→ 𝑓.

Claim II. 𝑓 ∈ SLip0𝜌(𝑋).
Let 𝑚 ∈ ℕ be such that (2.6.13) holds for 𝜀 = 1. Then for every 𝑥, 𝑦 ∈ 𝑋

with 𝜌(𝑥, 𝑦) > 0 and 𝑘 ∈ ℕ,

∣(𝑓𝑚+𝑘 − 𝑓𝑚)(𝑥) − (𝑓𝑚+𝑘 − 𝑓𝑚(𝑦)∣ ≤ 𝜌(𝑥, 𝑦) ,

yielding for 𝑘 →∞,

∣(𝑓 − 𝑓𝑚)(𝑥) − (𝑓 − 𝑓𝑚)(𝑦)∣ ≤ 𝜌(𝑥, 𝑦) .

But then

𝑓(𝑥)− 𝑓(𝑦) = (𝑓 − 𝑓𝑚)(𝑥) − (𝑓 − 𝑓𝑚)(𝑦) + 𝑓𝑚(𝑥)− 𝑓𝑚(𝑦)

≤ (1 + ∥𝑓𝑚∣𝜌) 𝜌(𝑥, 𝑦) ,

for all 𝑥, 𝑦 ∈ 𝑋 with 𝜌(𝑥, 𝑦) > 0. Since the pointwise limit of a sequence of ≤𝜌-
monotone functions is ≤𝜌-monotone, it follows that 𝑓 ∈ SLip0𝜌(𝑋).

Claim III. 𝑓𝑛
𝛿𝑠𝜌−→ 𝑓.

For 𝜀 > 0 let 𝑛𝜀 ∈ ℕ be chosen according to (2.6.13). Then for every 𝑥, 𝑦 ∈ 𝑋
with 𝜌(𝑥, 𝑦) > 0

∀𝑛 ≥ 𝑛𝜀, ∀𝑘 ∈ ℕ, ∣(𝑓𝑛+𝑘 − 𝑓𝑛)(𝑥) − (𝑓𝑛+𝑘 − 𝑓𝑛)(𝑦)∣ ≤ 𝜌(𝑥, 𝑦) ,
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which yields for 𝑘 →∞,

∀𝑛 ≥ 𝑛𝜀, ∣(𝑓 − 𝑓𝑛)(𝑥) − (𝑓 − 𝑓𝑛)(𝑦)∣ ≤ 𝜀𝜌(𝑥, 𝑦) .

It follows that

∀𝑛 ≥ 𝑛𝜀, 𝛿𝑠𝜌(𝑓, 𝑓𝑛) ≤ 𝜀 ,

proving Claim III.

2. Let (𝑓𝑛) be a right 𝛿𝜌-𝐾-Cauchy sequence in SLip
0
𝜌(𝑋). Then for every 𝜀 > 0

there exists 𝑛𝜀 ∈ ℕ such that

∀𝑛 ≥ 𝑛𝜀, ∀𝑘 ∈ ℕ, 𝛿𝜌(𝑓𝑛+𝑘, 𝑓𝑛) ≤ 𝜀 ,

that is
𝑢 ((𝑓𝑛+𝑘 − 𝑓𝑛)(𝑢)− (𝑓𝑛+𝑘 − 𝑓𝑛)(𝑣))

𝜌(𝑢, 𝑣)
≤ 𝜀 , (2.6.14)

for all 𝑛 ≥ 𝑛𝜀, all 𝑘 ∈ ℕ and all 𝑢, 𝑣 ∈ 𝑋 with 𝜌(𝑢, 𝑣) > 0.

Claim I. For every 𝑥 ∈ 𝑋, (𝑓𝑛(𝑥))𝑛∈ℕ is a Cauchy sequence in (ℝ, ∣ ⋅ ∣).
Let 𝑥 ∈ 𝑋 ∖ {𝑥0} and 𝜀′ > 0.

Case 1. 𝜌(𝑥, 𝑥0) > 0 and 𝜌(𝑥0, 𝑥) > 0. Take 𝑛0 such that (2.6.14) holds for
𝜀 := 𝜀′/𝜌𝑠(𝑥, 𝑥0). Taking first 𝑢 = 𝑥, 𝑣 = 𝑥0 and then 𝑢 = 𝑥0, 𝑣 = 𝑥, one obtains

(𝑓𝑛+𝑘 − 𝑓𝑛)(𝑥) ≤ 𝜀𝜌(𝑥, 𝑥0) ≤ 𝜀𝜌𝑠(𝑥, 𝑥0) = 𝜀′, respectively

(𝑓𝑛+𝑘 − 𝑓𝑛)(𝑥) ≤ 𝜀𝜌(𝑥0, 𝑥) ≤ 𝜀𝜌𝑠(𝑥, 𝑥0) = 𝜀′ .

Consequently

∀𝑛 ≥ 𝑛0, ∣𝑓𝑛+𝑘(𝑥) − 𝑓𝑛)(𝑥)∣ ≤ 𝜀′ ,

showing that the sequence (𝑓𝑛(𝑥) is ∣ ⋅ ∣-Cauchy.
Case 2. 𝜌(𝑥, 𝑥0) > 0 and 𝜌(𝑥0, 𝑥) = 0. Reasoning like above, given 𝜀 > 0 there
exists 𝑚0 ∈ ℕ such that

∀𝑛 ≥ 𝑚0, ∀𝑘 ∈ ℕ, 𝑓𝑛+𝑘(𝑥)− 𝑓𝑛(𝑥) ≤ 𝜀 . (2.6.15)

Since the functions 𝑓𝑛 are ≤𝜌-monotone, 0 = 𝑓𝑛(𝑥0) ≤ 𝑓𝑛(𝑥) for all 𝑛 ∈ ℕ.

Applying (2.6.14) for 𝜀 = 1/𝜌(𝑥, 𝑥0) and 𝑢 = 𝑥, 𝑣 = 𝑥0, it follows that
there exists 𝑚1 ∈ ℕ such that 𝑓𝑚1+𝑘(𝑥) − 𝑓𝑚1(𝑥) ≤ 1, implying 0 ≤ 𝑓𝑚1+𝑘(𝑥) ≤
𝑓𝑚1(𝑥) + 1 for all 𝑘 ∈ ℕ. Consequently, the sequence (𝑓𝑛(𝑥)) is bounded, so it
contains a subsequence 𝑓𝑛𝑖(𝑥))𝑖∈ℕ converging to some 𝑓(𝑥) ∈ ℝ.

Let 𝑖0 ∈ ℕ such that 𝑛𝑖0 > 𝑚0 and

∀𝑖 ≥ 𝑖0, ∣𝑓𝑛𝑖(𝑥) − 𝑓(𝑥)∣ ≤ 𝜀 . (2.6.16)
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For 𝑛 > 𝑛𝑖0 and 𝑘 ∈ ℕ let 𝑛𝑗 > 𝑛+ 𝑘. Then, combining (2.6.15) and (2.6.16), one
obtains

𝑓𝑛(𝑥) − 𝑓𝑛+𝑘(𝑥)

= 𝑓𝑛(𝑥)− 𝑓𝑛𝑖0
(𝑥) + 𝑓𝑛𝑖0

(𝑥)− 𝑓(𝑥) + 𝑓(𝑥)− 𝑓𝑛𝑗 (𝑥) + 𝑓𝑛𝑗 (𝑥)− 𝑓𝑛+𝑘(𝑥)

≤ 4𝜀 . (2.6.17)

The inequalities (2.6.15) and (2.6.17) show that (𝑓𝑛(𝑥)) is a ∣ ⋅ ∣-Cauchy
sequence.

Case 3. 𝜌(𝑥, 𝑥0) = 0 and 𝜌(𝑥0, 𝑥) > 0. In this case 𝑓𝑛(𝑥) ≤ 𝑓𝑛(𝑥0) = 0 and a
reasoning analogous to that made in Case 2 shows that the sequence (𝑓𝑛(𝑥)) is
Cauchy in this case too.

Consequently we can define a function 𝑓 :𝑋→ℝ by 𝑓(𝑥)=lim𝑛𝑓𝑛(𝑥), 𝑥∈𝑋.

To end the proof we have to show that 𝑓 ∈ SLip0𝜌(𝑋) and that 𝑓𝑛
𝛿𝜌−→ 𝑓.

Claim II. 𝑓 ∈ SLip0𝜌(𝑋).
Applying (2.6.14) for 𝜀 = 1, it follows that there exists 𝑚1 ∈ ℕ such that for

all 𝑥, 𝑦 ∈ 𝑋 with 𝜌(𝑥, 𝑦) > 0,

∀𝑘 ∈ ℕ,
(𝑓𝑚1+𝑘 − 𝑓𝑚1)(𝑥) − (𝑓𝑚1+𝑘 − 𝑓𝑚1)(𝑦)

𝜌(𝑥, 𝑦)
≤ 1 ,

yielding, for 𝑘 →∞ and after some calculation,

𝑓(𝑥)− 𝑓(𝑦)

𝜌(𝑥, 𝑦)
≤ 𝑓𝑚1)(𝑥)− 𝑓𝑚1)(𝑦)

𝜌(𝑥, 𝑦)
+ 1 ≤ ∥𝑓𝑚1∣𝜌 + 1 .

As a pointwise limit of a sequence of ≤𝜌-monotone functions, the function 𝑓
is ≤𝜌-monotone, so it belongs to SLip0𝜌(𝑋).

Claim III. 𝑓𝑛
𝛿𝜌−→ 𝑓.

For 𝜀 > 0 let 𝑛𝜀 ∈ ℕ such that (2.6.14) holds. Considering 𝑛 ≥ 𝑛𝜀 fixed and
letting 𝑘 →∞, one obtains

𝑢 ((𝑓 − 𝑓𝑛)(𝑢)− (𝑓 − 𝑓𝑛)(𝑣))

𝜌(𝑢, 𝑣)
≤ 𝜀 ,

for all 𝑢, 𝑣 ∈ 𝑋 with 𝜌(𝑢, 𝑣) > 0 and all 𝑛 ≥ 𝑛𝜀. It follows that

𝛿(𝑓, 𝑓𝑛) ≤ 𝜀 ,

for all 𝑛 ≥ 𝑛𝜀, proving Claim III. □
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Remark 2.6.17. Sánchez-Álvarez [215] studied the completeness of the space
SLip0𝜌,𝑞(𝑋,𝑌 ), for (𝑋, 𝜌) a quasi-metric space and (𝑌, 𝑞) an asymmetric normed
space, with respect to the extended quasi-metric

𝛿𝜌,𝑞(𝑓, 𝑔) = sup
{𝑞((𝑔 − 𝑓)(𝑥) − (𝑔 − 𝑓)(𝑦))

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
. (2.6.18)

He proved that if the asymmetric normed space (𝑌, 𝑞) is bicomplete, then
SLip0𝜌,𝑞(𝑋,𝑌 ) is complete with respect to the extended metric

𝛿𝑠𝜌,𝑞(𝑓, 𝑔) = 𝛿𝜌,𝑞(𝑓, 𝑔) ∨ 𝛿𝜌,𝑞(𝑔, 𝑓)

([215, Theorem 3.5]).

Assertion 2 from Theorem 2.6.16 was extended to the case when (𝑌, 𝑞) is a
finite-dimensional bicomplete asymmetric normed space (Theorem 4.1 in the same
paper).

We mention also the following result from [215].

Proposition 2.6.18. Let (𝑋, 𝜌) be a 𝑇1 quasi-metric space and (𝑌, 𝑞) a bicomplete
asymmetric normed space. Then the linear space SLip0𝜌,𝑞(𝑋,𝑌 )∩ SLip0𝜌,𝑞(𝑋,𝑌 ) is
complete with respect to the norm

∥𝑓∥𝜌,𝑞 = sup
{
𝑞𝑠(𝑓(𝑥)− 𝑓(𝑦))

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
.

Proof. Observe that

∥𝑓∥𝜌,𝑞 = sup
{
𝑞(𝑓(𝑥)− 𝑓(𝑦)) ∨ 𝑞(𝑓(𝑦)− 𝑓(𝑥))

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
= sup

{
𝑞(𝑓(𝑥)− 𝑓(𝑦))

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
∨ sup

{
𝑞(𝑓(𝑦)− 𝑓(𝑥))

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝜌(𝑥, 𝑦) > 0

}
= ∥𝑓 ∣𝜌,𝑞 ∨ ∥ − 𝑓 ∣𝜌,𝑞 = ∥𝑓 ∣𝑠𝜌,𝑞 ,

so that ∥ ⋅ ∣𝑠𝜌,𝑞 is the norm associated to the asymmetric norm ∥ ⋅ ∣𝜌,𝑞 given by
(2.6.5).

The proof of the completeness follows the line of the proof of the assertion 1
in Theorem 2.6.16. □
Remark 2.6.19. If the metric space (𝑋, 𝜌) is 𝑇1, then

SLip0𝜌,𝑞(𝑋,𝑌 ) ∩ SLip0𝜌,𝑞(𝑋,𝑌 ) = Lip0 ((𝑋, 𝜌𝑠), (𝑌, 𝑞𝑠)) ,

and the norm ∥ ⋅ ∥𝜌,𝑞 agrees with the Lipschitz norm ∥ ⋅ ∥𝜌𝑠,𝑞𝑠 given by (2.6.2).
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Indeed,

∥𝑓∥𝜌,𝑞 = sup
{
𝑞𝑠(𝑓(𝑥)− 𝑓(𝑦))

𝜌(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝑥 ∕= 𝑦

}
= sup

{
𝑞𝑠(𝑓(𝑥)− 𝑓(𝑦))

𝜌𝑠(𝑥, 𝑦)
: 𝑥, 𝑦 ∈ 𝑋, 𝑥 ∕= 𝑦

}
= ∥𝑓∥𝜌𝑠,𝑞𝑠 .

Doitchinov [62, 63, 64] defined and studied a notion of completeness for quasi-
metric spaces with the aim to obtain a satisfactory theory of completion (see [62]
for the quasi-metric case and [66] for quasi-uniform spaces). A sequence (𝑥𝑛) in
a quasi-metric space (𝑋, 𝜌) is called 𝐷-Cauchy if there exists another sequence
(𝑦𝑛) such that lim𝑚,𝑛 𝜌(𝑦𝑚, 𝑥𝑛) = 0. The quasi-metric space (𝑋, 𝜌) is called 𝐷-
complete if every 𝐷-Cauchy sequence converges. A quasi-metric space (𝑋, 𝜌) is
called balanced if for all sequences (𝑥𝑛), (𝑦𝑛) such that lim𝑚,𝑛 𝜌(𝑦𝑚, 𝑥𝑛) = 0 and
for every 𝑥, 𝑦 ∈ 𝑋 and 𝑟1 , 𝑟2 ≥ 0, 𝜌(𝑥, 𝑥𝑛) ≤ 𝑟1 and 𝜌(𝑦𝑛, 𝑦) ≤ 𝑟2 for all 𝑛 ∈
ℕ, implies 𝜌(𝑥, 𝑦) ≤ 𝑟1 + 𝑟2. The concept of balancedness, meaning a kind of
symmetry of a quasi-metric space, was also introduced by Doitchinov in [63], to
develop a satisfactory theory of completion. He proved that a balanced quasi-
metric generates a Hausdorff and completely regular topology, see Proposition
1.1.11 and Subsection 1.2.6.

The following completeness result was proved in [198].

Theorem 2.6.20. Let (𝑋, 𝜌) be a 𝑇1 quasi-metric space and (𝑌, 𝑞) an asymmetric
normed space. If the asymmetric normed space (𝑌, 𝑞) is biBanach, then the space
SLip0𝜌,𝑞(𝑋,𝑌 ) is balanced and 𝐷-complete with respect to the extended quasi-metric
𝛿𝜌,𝑞 defined by (2.6.18).

Proof. The metric 𝜹𝝆,𝒒 is balanced on SLip
0
𝜌,𝑞(𝑋,𝑌 ).

Let (𝑓𝑚), (𝑔𝑛) be two sequences in SLip
0
𝜌,𝑞(𝑋,𝑌 ) and 𝑓, 𝑔 ∈ SLip0𝜌,𝑞(𝑋,𝑌 )

such that

(i) lim
𝑚,𝑛→∞ 𝛿𝜌,𝑞(𝑓𝑚, 𝑔𝑛) = 0,

(ii) ∀𝑚 ∈ ℕ, 𝛿𝜌,𝑞(𝑓𝑚, 𝑓) ≤ 𝑟1, (2.6.19)

(iii) ∀𝑛 ∈ ℕ, 𝛿𝜌,𝑞(𝑔, 𝑔𝑛) ≤ 𝑟2 ,

for some some numbers 𝑟1, 𝑟2 > 0.

We have to show that 𝛿𝜌,𝑞(𝑔, 𝑓) ≤ 𝑟1 + 𝑟2.

Since the metric 𝜌 is 𝑇1, 𝜌(𝑥, 𝑦) > 0 ⇐⇒ 𝑥 ∕= 𝑦, so that the extended
quasi-metric (2.6.18) is given by

𝛿𝜌,𝑞(ℎ1, ℎ2) = sup
𝑥 ∕=𝑦

𝑞((ℎ2 − ℎ1)(𝑥) − (ℎ2 − ℎ1)(𝑦))

𝜌(𝑥, 𝑦)
,

for ℎ1, ℎ2 ∈ SLip0𝜌,𝑞(𝑋,𝑌 ).
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Let 𝑥 ∕= 𝑦 be a fixed pair of distinct elements in 𝑋 . Then, by condition (i) in
(2.6.19), for every 𝜀 > 0 there exists 𝑛𝜀 ∈ ℕ such that

𝑞((𝑔𝑛 − 𝑓𝑚)(𝑢)− (𝑔𝑛 − 𝑓𝑚)(𝑣))

𝜌(𝑢, 𝑣)
≤ 𝜀 , (2.6.20)

for all 𝑚,𝑛 ≥ 𝑛𝜀 and all 𝑢, 𝑣 ∈ 𝑋 with 𝑢 ∕= 𝑣.

It follows that

𝑞((𝑓 − 𝑔)(𝑥) − (𝑓 − 𝑔)(𝑦)) (2.6.21)

≤ 𝑞((𝑓 − 𝑓𝑛𝜀)(𝑥) − (𝑓 − 𝑓𝑛𝜀)(𝑦)) + 𝑞((𝑓𝑛𝜀 − 𝑔𝑛𝜀)(𝑥) − (𝑓𝑛𝜀 − 𝑔𝑛𝜀)(𝑦))

+ 𝑞((𝑔𝑛𝜀 − 𝑔)(𝑥)− (𝑔𝑛𝜀 − 𝑔)(𝑦) ≤ 𝑟1𝜌(𝑥, 𝑦) + 𝜀𝜌(𝑦, 𝑥) + 𝑟2𝜌(𝑥, 𝑦) .

The inequality for the middle term in the second row follows from (2.6.20)
and the equality

𝑞((𝑓𝑛𝜀 − 𝑔𝑛𝜀)(𝑥) − (𝑓𝑛𝜀 − 𝑔𝑛𝜀)(𝑦)) = 𝑞((𝑔𝑛𝜀 − 𝑓𝑛𝜀)(𝑦)− (𝑔𝑛𝜀 − 𝑓𝑛𝜀)(𝑥)) .

Since 𝜀 > 0 is arbitrary in (2.6.21), it follows that

𝑞((𝑓 − 𝑔)(𝑥)− (𝑓 − 𝑔)(𝑦)) ≤ 𝑞((𝑓 − 𝑓𝑛𝜀)(𝑥)− (𝑓 − 𝑓𝑛𝜀)(𝑦)) ≤ 𝑟1𝜌(𝑥, 𝑦)+ 𝑟2𝜌(𝑥, 𝑦) ,

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ∕= 𝑦, that is 𝛿𝜌,𝑞(𝑔, 𝑓) ≤ 𝑟1 + 𝑟2.

The metric 𝜹𝝆,𝒒 is 𝑫-complete on SLip0
𝝆,𝒒(𝑿, 𝒀 ).

Suppose that (𝑓𝑛) is a 𝐷-Cauchy sequence in SLip0𝜌,𝑞(𝑋,𝑌 ) and let (𝑔𝑚) be

a sequence in SLip0𝜌,𝑞(𝑋,𝑌 ) such that

lim
𝑚,𝑛→∞ 𝛿𝜌,𝑞(𝑔𝑚, 𝑓𝑛) = 0 , (2.6.22)

that is (𝑔𝑛) is a cosequence for (𝑓𝑛).

Claim I. For every 𝑥 ∈ 𝑋, (𝑓𝑛(𝑥)) is a Cauchy sequence in (𝑌, 𝑞𝑠).

Let 𝑥 ∈ 𝑋, 𝑥 ∕= 𝑥0. For 𝜀 > 0 let 𝑛𝜀 ∈ ℕ be chosen according to (2.6.20).
Taking in (2.6.20) first 𝑢 = 𝑥, 𝑣 = 𝑥0 and then 𝑢 = 𝑥0, 𝑣 = 𝑥, one obtains

𝑞((𝑓𝑛 − 𝑔𝑚)(𝑥) ≤ 𝜀𝜌(𝑥, 𝑥0) ≤ 𝜀𝜌𝑠(𝑥, 𝑥0), respectively

𝑞((𝑔𝑚 − 𝑓𝑛)(𝑥) ≤ 𝜀𝜌(𝑥0, 𝑥) ≤ 𝜀𝜌𝑠(𝑥, 𝑥0) ,

implying

𝑞𝑠((𝑓𝑛 − 𝑔𝑚)(𝑥) ≤ 𝜀𝜌𝑠(𝑥, 𝑥0) , (2.6.23)

for all 𝑚,𝑛 ≥ 𝑛𝜀. But then,

𝑞𝑠((𝑓𝑛 − 𝑓𝑚)(𝑥) ≤𝑞𝑠((𝑓𝑛 − 𝑔𝑛𝜀)(𝑥) + 𝑞𝑠((𝑔𝑛𝜀 − 𝑓𝑚)(𝑥) ≤ 2𝜀𝜌𝑠(𝑥0, 𝑥) ,
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for all 𝑚,𝑛 ≥ 𝑛𝜀, proving that (𝑓𝑛(𝑥)) is a Cauchy sequence in the Banach space
(𝑌, 𝑞𝑠), so it converges to some 𝑦 ∈ 𝑌.

It follows that we can define a function 𝑓 : 𝑋 → 𝑌 by 𝑓(𝑥) = lim𝑛 𝑓𝑛(𝑥), 𝑥 ∈
𝑋. To end the proof we have to show that 𝑓 ∈ SLip0𝜌,𝑞(𝑋,𝑌 ) and 𝑓𝑛 → 𝑓 with
respect to the extended quasi-metric 𝛿𝜌,𝑞.

Observe that, by (2.6.23), the sequence (𝑔𝑚(𝑥)) also converges to 𝑓(𝑥) in the
norm 𝑞𝑠.

Claim II. 𝑓 ∈ SLip0𝜌,𝑞(𝑋,𝑌 ).

Let 𝑛1 ∈ ℕ be such that (2.6.20) holds for 𝜀 = 1. Then, taking into account
(2.6.19).(ii), one gets

𝑞(𝑓(𝑢)− 𝑓(𝑣)) ≤ 𝑞((𝑓 − 𝑓𝑛1)(𝑢)− (𝑓 − 𝑓𝑛1)(𝑣))

+ 𝑞((𝑓𝑛1 − 𝑔𝑛1)(𝑢)− (𝑓𝑛1 − 𝑔𝑛1)(𝑣)) + 𝑞((𝑔𝑛1)(𝑢)− (𝑔𝑛1)(𝑣))

≤ (𝑟1 + 1 + ∥𝑔𝑛1 ∣𝜌,𝑞)𝜌(𝑢, 𝑣) ,

for all 𝑢, 𝑣 ∈ 𝑋, proving that 𝑓 ∈ SLip0𝜌,𝑞(𝑋,𝑌 ).

Claim III. 𝑓𝑛 → 𝑓 with respect to the extended quasi-metric 𝛿𝜌,𝑞.

Given 𝜀 > 0 let 𝑛𝜀 be chosen according to (2.6.20) and let 𝑥 ∕= 𝑦 in 𝑋 ,
arbitrary, but fixed for the moment.

Let 𝑛 ≥ 𝑛𝜀. Since lim𝑚 𝑞𝑠(𝑔𝑚(𝑢) − 𝑓(𝑢)) = 0 for every 𝑢 ∈ 𝑋, there exists
𝑚 ≥ 𝑛𝜀 such that

𝑞𝑠(𝑔𝑚(𝑥)𝑓(𝑥)) ≤ 𝜀𝜌(𝑥, 𝑦) and 𝑞𝑠(𝑔𝑚(𝑦)− 𝑓(𝑦)) ≤ 𝜀𝜌(𝑥, 𝑦) . (2.6.24)

But then

𝑞((𝑓𝑛 − 𝑓)(𝑥) − (𝑓𝑛 − 𝑓)(𝑦))

≤ 𝑞((𝑓𝑛 − 𝑔𝑚)(𝑦)− (𝑓𝑛 − 𝑔𝑚)(𝑦)) + 𝑞((𝑔𝑚 − 𝑓)(𝑥)− (𝑔𝑚 − 𝑓)(𝑦))

≤ 3𝜀𝜌(𝑥, 𝑦) ,

because, by (2.6.24),

𝑞((𝑔𝑚 − 𝑓)(𝑥)− (𝑔𝑚 − 𝑓)(𝑦)) ≤ 𝑞𝑠((𝑔𝑚 − 𝑓)(𝑥)− (𝑔𝑚 − 𝑓)(𝑦))

≤ 𝑞𝑠((𝑔𝑚 − 𝑓)(𝑥))(𝑥)) + 𝑞𝑠((𝑔𝑚 − 𝑓)(𝑥))(𝑦)) ≤ 2𝜀𝜌(𝑥, 𝑦) .

Since the points 𝑥 ∕= 𝑦 were arbitrarily chosen in 𝑋, it follows that 𝛿𝜌,𝑞(𝑓, 𝑓𝑛) ≤ 3𝜀
for all 𝑛 ≥ 𝑛𝜀, proving the convergence of the sequence (𝑓𝑛) to 𝑓 with respect to
the extended quasi-metric 𝛿𝜌,𝑞. □

Let (𝑋, 𝑝) be a 𝑇1 asymmetric normed space and 𝑋♭
𝑝 its dual. Then 𝑋♭

𝑝 is

contained in the cone SLip0𝜌(𝑋), where

𝜌(𝑥, 𝑦) = 𝑝(𝑥− 𝑦) = 𝑝(𝑦 − 𝑥) = 𝜌𝑝(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝑋 .
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Indeed

𝜑 ∈ 𝑋♭
𝜌 ⇒ ∀𝑥, 𝑦 ∈ 𝑋, 𝜑(𝑥−𝑦) ≤ ∥𝜑∣𝑝 𝑝(𝑥−𝑦) = ∥𝜑∣𝑝 𝜌(𝑥, 𝑦) ⇒ 𝜑 ∈ SLip0𝜌(𝑋) .
It follows also that ∥𝜑∣𝜌 ≤ ∥𝜑∣𝑝. In fact we have equality:

∥𝜑∣𝜌 = sup
{𝑢(𝜑(𝑥 − 𝑦))

𝑝(𝑥− 𝑦)
: 𝑥 ∕= 𝑦

}
= sup{𝑢(𝜑(𝑧)) : 𝑝(𝑧) ≤ 1} = ∥𝜑∣𝑝 .

It follows that the restriction 𝛿♭𝑝 of the extended quasi-metric 𝛿𝜌 to 𝑋♭
𝑝 is

given by

𝛿♭𝑝(𝜑, 𝜓) = sup{
𝑢((𝜓 − 𝜑)(𝑥 − 𝑦))

𝑝(𝑥− 𝑦)
: 𝑥 ∕= 𝑦}

= sup{𝑢((𝜓 − 𝜑)(𝑧)) : 𝑋, 𝑝(𝑧) ≤ 1} = ∥𝜓 − 𝜑∣𝑝 ,

that is it agrees with the extended quasi-metric associated to the extended asym-
metric norm ∥ ⋅ ∣𝑝,𝑢, see (2.1.23) and Proposition 2.1.3.
Theorem 2.6.21 ([198]). If (𝑋, 𝑝) is a 𝑇1 asymmetric normed space, then the dual
space 𝑋♭

𝑝 is balanced and 𝐷-complete with respect to the extended quasi-metric 𝛿♭𝑝 .

Proof. Since 𝑋♭
𝑝 ⊂ SLip0𝜌(𝑋) and the balancedness is a hereditary property it

follows that 𝑋♭
𝑝 is balanced with respect to the extended metric 𝛿♭𝑝 .

If (𝜑𝑛) is a 𝐷-Cauchy sequence in (𝑋♭
𝑝, 𝛿

♭
𝑝), then it is 𝐷-Cauchy in (SLip

0
𝜌(𝑋), 𝛿𝜌),

so that, by Theorem 2.6.20, it converges to some 𝜑 ∈ SLip0𝜌(𝑋). By the proof of
the same theorem, for every 𝑥 ∈ 𝑋 the sequence (𝜑𝑛(𝑥)) converges in (ℝ, ∣ ⋅ ∣) to
𝜑(𝑥), implying the linearity of the limit 𝜑. Since 𝜑 is semi-Lipschitz, there exists
𝛽 > 0 such that

𝜑(𝑥) = 𝜑(𝑥)− 𝜑(0) ≤ 𝑢 (𝜑(𝑥) − 𝜑(0)) ≤ 𝛽 𝜌(𝑥, 0) = 𝛽 𝑝(𝑥) ,

showing that 𝜑 ∈ 𝑋♭
𝑝 . □

2.6.4 Applications to best approximation in quasi-metric spaces

Semi-Lipschitz functions can be used to study some best approximation prob-
lems in quasi-metric spaces. The notions can transposed from asymmetric normed
spaces (see (2.2.3)) to quasi-metric spaces. Let (𝑋, 𝜌) be a quasi-metric space. For
𝑌 ⊂ 𝑋 and 𝑥 ∈ 𝑋 put

𝑑(𝑥, 𝑌 ) = inf{𝜌(𝑥, 𝑦) : 𝑦 ∈ 𝑌 } and

𝑑(𝑌, 𝑥) = inf{𝜌(𝑦, 𝑥) : 𝑦 ∈ 𝑌 } ,

see (1.1.22). Consider also the set

𝑌 ⊥ = {𝑓 ∈ SLip0𝜌(𝑋) : 𝑓 ∣𝑌 = 0} .
The following result is the semi-Lipschitz analog of Theorem 2.5.1.
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Proposition 2.6.22. Let (𝑋, 𝜌) be a quasi-metric space, 𝑌 ⊂ 𝑋 nonempty, 𝑥0 ∈ 𝑋
such that 𝑑(𝑥0, 𝑌 ) > 0 and 𝑦0 ∈ 𝑌. Then 𝑦0 is a nearest point to 𝑥0 in 𝑌 if and
only if there exists 𝑓 ∈ 𝑌 ⊥ such that

(i) ∥𝑓 ∣𝜌 = 1 and (ii) 𝜌(𝑥0, 𝑦0) = 𝑓(𝑥0)− 𝑓(𝑦0) .

In the case of metric spaces and Lipschitz functions similar results were ob-
tained by Mustăţa [154, 155], who proved also many results on the characteri-
zation of the approximation properties in a quasi-metric space in terms of the
semi-Lipschitz functions defined on it. Other results on best approximation and
extensions were obtained in [160, 163].

Let (𝑋, ∥ ⋅ ∥) be a normed space and 𝑋∗ its dual. For a subspace 𝑌 of 𝑋 put

𝑌 ⊥ = {𝑥∗ ∈ 𝑋∗ : 𝑥∗∣𝑌 = 0}

and denote by 𝐸𝑌 (𝑦
∗) the set of all norm-preserving extensions of a continuous

linear functional 𝑦∗ on 𝑌 , that is,

𝐸𝑌 (𝑦
∗) = {𝑥∗ ∈ 𝑋∗ : 𝑥∗∣𝑌 = 𝑦∗ and ∥𝑥∗∥ = ∥𝑦∗∥} .

Phelps [177] proved the following remarkable result relating the approxima-
tion properties of the space 𝑌 ⊥ and the extension properties of the space 𝑌.

Theorem 2.6.23 (Phelps [177]). Let 𝑌 be a closed subspace of a normed space 𝑋.
Then 𝑌 ⊥ is a proximinal subspace of 𝑋∗ and for every 𝑥∗ ∈ 𝑋∗ the following
equality holds:

𝑃𝑌 ⊥(𝑥
∗) = 𝐸𝑌 (𝑥

∗∣𝑌 ) .
Consequently, 𝑌 ⊥ is a Chebyshev subspace of 𝑋∗ if and only if every 𝑦∗ ∈ 𝑌 ∗

has a unique norm-preserving extension to the whole of 𝑋.

Extensions of this result to spaces of Lipschitz functions on metric spaces and
to spaces of semi-Lipschitz functions on quasi-metric spaces were given by Mustăţa
[156, 157, 159, 161, 162, 165] (see also the paper [39] containing a survey of vari-
ous situations where a Phelps type result can occur). An iterative approximation
method to find the global minimum of a semi-Lipschitz function is proposed in
[166]. Romaguera and Sanchis give in [205] characterizations of preferences on
separable quasi-metric spaces admitting semi-Lipschitz utility functions, with ap-
plications to theoretical computer science.
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V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS
Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer-
Verlag, New York, 2001.

[75] J. Ferrer and V. Gregori, A sequentially compact non-compact quasi-
pseudometric space, Monatsh. Math. 96 (1983), 269–270.

[76] , Completeness and Baire spaces, Math. Chronicle 14 (1985), 39–42.

[77] J. Ferrer, V. Gregori, and C. Alegre, Quasi-uniform structures in linear
lattices, Rocky Mountain J. Math. 23 (1993), no. 3, 877–884.

[78] , A note on pairwise normal spaces, Indian J. Pure Appl. Math. 24
(1993), 595–601.

[79] J. Ferrer, V. Gregori, and I.L. Reilly, Some properties of semi-continuous
functions and quasi-uniform spaces, Mat. Vesnik 47 (1995), no. 1–2, 11–18.

[80] P. Fletcher and W.F. Lindgren, Quasi-uniform spaces, M. Dekker, New York
1982.

[81] C. Franchetti and I. Singer, Best approximation by elements of caverns in
normed linear spaces, Boll. Un. Mat. Ital. B (5) 17 (1980), no. 1, 33–43.

[82] B. Fuchssteiner and H. König, New versions of the Hahn-Banach theorem,
General inequalities, 2 (Proc. Second Internat. Conf., Oberwolfach, 1978),
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Szekszárd 1993, Budapest 1995, pp. 303–338.

[134] , Nonsymmetric distances and their associated topologies: about the
origin of basic ideas in the area of asymmetric topology, in: C.E. Aull and
R. Lowen (editors), Handbook of the History of General Topology, Kluwer
Acad. Publ., Dordrecht 2001, pp. 853–868.

[135] , Quasi-uniform spaces in the year 2001, in: Recent progress in gen-
eral topology, II, (North-Holland, Amsterdam, 2002), pp. 313–344.

[136] ,Uniform structures in the beginning of the third millenium, Topology
Appl. 154 (2007), 2745–2756.

[137] , An introduction to quasi-uniform spaces, Beyond topology, 239–304,
Contemp. Math., 486, Amer. Math. Soc., Providence, RI, 2009
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norm, Rev. Anal. Numér. Théor. Approx. 33 (2004), no. 2, 203–208.

[164] , On the extension of semi-Lipschitz functions on asymmetric normed
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