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Introduction

The aim of this book is to present hyperbolic partial differential equations
at an elementary level. In fact, the required mathematical background is
only a third year university course on differential calculus for functions
of several variables. No functional analysis knowledge is needed, nor any
distribution theory (with the exception of shock waves mentioned below).
All solutions appearing in the text are piecewise classical Ck solutions.
Beyond the simplifications it allows, there are several reasons for this
choice: First, we believe that all main features of hyperbolic partial dif-
ferential equations (PDE) (well-posedness of the Cauchy problem, finite
speed of propagation, domains of determination, energy inequalities, etc.)
can be displayed in this context. We hope that this book itself will prove our
belief. Second, all properties, solution formulas, and inequalities established
here in the context of smooth functions can be readily extended to more
general situations (solutions in Sobolev spaces or temperate distributions,
etc.) by simple standard procedures of functional analysis or distribution
theory, which are “external” to the theory of hyperbolic equations: The
deep mathematical content of the theorems is already to be found in
the statements and proofs of this book. The last reason is this: We do
hope that many readers of this book will eventually do research in the field
that seems to us the natural continuation of the subject: nonlinear hyper-
bolic systems (compressible fluids, general relativity theory, etc.). In this
area, a large part of the work is devoted to prove global existence in time
of classical solutions, in which case the whole work is about understanding
the behavior and decay of smooth solutions.

There are of course many excellent books and textbooks partially or com-
pletely devoted to the subject of hyperbolic equations, some of which are
quoted in the References at the end. But having discarded the books clearly
too difficult to read for a first approach or that use abundantly distribution
theory and Sobolev spaces, we found it somewhat hard to indicate refer-
ences providing an easy introductory exposition of such subjects as, for
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instance, inequalities for variable coefficient equations, geometrical optics,
etc. (Or, the references were scattered in many different books.)

The content of this book can be roughly divided into two parts. The first
part includes all aspects of the theory having to do with vector fields and
integral curves:

i) Cauchy problem for vector fields and (linear) method of characteristics
(Chapter 1);

ii) Differential operators or systems in the plane, which reduce to systems
of coupled vector fields (Chapter 2);

iii) Quasilinear scalar equations and eikonal equations, solved by nonlinear
methods of characteristics, involving weaving by vector fields (Chapter 3).

We believe this part especially intuitive and easy to visualize: It is what
makes hyperbolic PDE so attractive. Chapter 4 is a short introduction to
conservation laws in one space dimension (shocks, simple waves, rarefaction
waves, Riemann problem, etc.), which uses the language of vector fields and
characteristics. This is the only place where the concept of solution “in the
sense of distribution” is needed, but it is easy to understand in the special
case of shock waves.

The second part describes the world of the wave equation and its
perturbations for space dimensions two or three. Our treatment here,
though completely elementary, emphasizes concepts proved useful by recent
research developments: Lorentz fields and Klainerman inequality, weighted
inequalities, conformal energy inequalities, etc. Following this orientation,
we insisted more on inequalities than on explicit or approximate solutions.
Chapter 5 presents the classical solution formula, along with the geometry
of Lorentz fields, null frames, etc. In Chapter 6, we teach the reader how
to prove an energy inequality, starting from the simplest case of a strip
to proceed to inequalities in domains of determination; we also include an
improvement of the standard inequality, Morawetz and KSS inequalities,
and conformal inequality. Finally, Chapter 7 is devoted to variable coeffi-
cient equations or symmetric systems: We present the available inequali-
ties with their amplification factors, Klainerman “energy method,” and we
touch upon geometrical optics and parametrics.

The natural readership for this book comprises senior or graduate
students in mathematics interested in PDE; But the book can also be used
by researchers of other fields of mathematics or sciences seeking to learn the
basic facts about techniques they have heard of. The chapters are essen-
tially independent, the language of vector fields or submanifolds, which is
widely used throughout the book, being presented in two short Appendices.
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In some chapters, Notes at the end explain the sources and references for
further learning. At many places (and especially for energy inequalities in
Chapters 6 and 7), instead of writing the proofs of the Theorems in the
traditional formal way, we have presented them as “do it yourself” instruc-
tions with clearly identified steps. Finally, about 100 exercises are proposed,
so that this book may be a useful textbook.



Chapter 1

Vector Fields and Integral
Curves

Throughout the book we will use the notation Rn
x to denote the space Rn

with variable x; similarly, R2
x,t will denote the plane with coordinates (x, t),

and so on.

1.1 First Definitions

In Rn we denote coordinates by x = (x1, . . . , xn). However, we will often
take coordinates (x, y) or (x, t) in the plane. The usual scalar product of
two vectors x and y is denoted by dot notation:

x · y = Σxiyi.

Definition 1.1. A vector field defined on a domain Ω ⊂ Rn is a function

X : Ω → Rn, X(x) = (X1(x), . . . , Xn(x)).

We will always assume (unless otherwise specified) that the components
Xi(x) are C1 real functions in Ω.

Definition 1.2. An integral curve of the vector field X is a C1 function

x : I → Ω ⊂ Rn, x(t) = (x1(t), . . . , xn(t))

defined on some interval I of R for which x′(t) = X(x(t)).

S. Alinhac, Hyperbolic Partial Differential Equations, Universitext,  
DOI 10.1007/978-0-387-87823-2_1, © Springer Science+Business Media, LLC 2009 



2 Chapter 1 Vector Fields and Integral Curves

Geometrically, this means that X is tangent to the curve at every point.
Thanks to the Cauchy–Lipschitz theorem (see Appendix, Theorem A.1),
there is through each x0 ∈ Ω a unique integral curve with x(0) = x0.

Remark: A C1 change of parameter t = φ(s) yields the new curve
y(s) = x(φ(s)), to which X is also tangent, since y′(s) = (φ′(s))X(y(s)).
Hence, the definition we have chosen corresponds to a specific choice of the
parameter and avoids ambiguity in practice.

Example 1.3. IfX is constant, the integral curves are straight lines parallel
to X .

Example 1.4. In the plane, let X(x, y) = (y,−x). The integral curves of
X are defined by

x′(t) = y(t), y′(t) = −x(t).

The curve with starting point (x0, y0) given by

x(t) = x0 cos t+ y0 sin t, y(t) = y0 cos t− x0 sin t,

is the circle centered at the origin through (x0, y0).

Example 1.5. In the plane, the integral curves of X(x, y) = (x, 1) are
defined by

x′(t) = x(t), y′(t) = 1.

The curve with starting point (x0, y0) is x(t) = x0e
t, y(t) = y0 + t.

Example 1.6. In the plane, the integral curve of X(x, t) = (x2, 1) with
starting point (x0, t0) is defined by

x′(s) = x2(s), t′(s) = 1, x(0) = x0, t(0) = t0,

which gives x(s) = x0/(1 − x0s), t(s) = t0 + s.

1.2 Flows

Let X : Ω → Rn be a vector field. To emphasize the way an integral curve
of X depends on its starting point, we introduce the following definition.

Definition 1.7. The flow of X is the function

Φ : Rt × Rn
y ⊃ U → Rn

defined by
∂tΦ(t, y) = X(Φ(t, y)), Φ(0, y) = y.
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In other words, for fixed y, the function t �→ Φ(t, y) is just the integral
curve of X starting from y at time t = 0. It is defined on an open max-
imal interval I = ]T∗(y), T ∗(y)[ (see Appendix, Theorem A.3), so that the
domain of definition U of Φ is

U = {(t, y) ∈ Rt × Ω, t ∈]T∗(y), T ∗(y)[}.

It can be shown that U is open (a nontrivial fact!) and Φ ∈ C1(U). In
general, using the definition and Taylor’s formula, we obtain the approxi-
mation formula

Φ(t, y) = y + tX(y) + (t2/2)X ′(y)X(y) + o(t2), t→ 0,

where X ′(y) = DyX is the n × n matrix that represents the differential
of X .

Example 1.8. In the above Examples 1.4–1.6, the formulas given for
(x(t), y(t)) define Φ(t, x0, y0). The domain U is the whole of R3, except in
Example 1.6, where

U = V × Ry,

V being the open region of Rt × Rx between the two branches of the
hyperbola {tx = 1}.

1.3 Directional Derivatives

Definition 1.9. Fix x0 and a in Rn. For f ∈ C1 in a neighborhood of x0,
the derivative of f at x0 in the direction of a is

d

dt
[f(x0 + at)](t = 0) = (a · ∇f)(x0).

An analogous and more flexible definition is obtained by replacing the line
through x0 by a C1 curve γ = {γ(t), t ∈ I} with γ(0) = x0. We define the
derivative of f at x0 along γ by

d

dt
[f(γ(t))](t = 0) = γ′(0) · ∇f(x0).

The important point here is that this derivative depends only on γ′(0)
and ∇f(x0), and not on the actual curve γ in a neighborhood of x0.

In the special case where γ is an integral curve of a field X , we obtain for
all t the formula

d

dt
[f(γ(t))] = (X · ∇f)(γ(t)).
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The goal of this formula is to help us visualize the quantity X ·∇f , which
occurs in many problems. This implies in particular the following theorem.

Theorem 1.10. Let X be a vector field in Ω and f ∈ C1(Ω). Then
X · ∇f = 0 in Ω if and only if f is constant along any integral curve of X
in Ω.

As a consequence, it is customary to identify the field X with the operator
X · ∇ = ΣXi∂i defined by

(X · ∇)u(x) = ΣXi(x)(∂iu)(x).

We will say for instance “the field a∂x + b∂y,” meaning X = (a, b) in the
plane, etc. We will write Xu (where X is considered an operator) for X ·∇u
(where X is considered a vector).

1.4 Level Surfaces

We give here two classical applications of derivatives along curves, in the
context of submanifolds of Rn (see Appendix, Theorem A.11).

Proposition 1.11.a. Let f ∈ C1(Rn) be a real function with ∇f �= 0,
and S be the submanifold of Rn defined by the single real equation

S = {x, f(x) = 0}.

Then, for any x0 ∈ S, ∇f(x0) is orthogonal to Tx0S.

Proof: In fact, for any C1 curve γ : t �→ γ(t) with γ(0) = x0 drawn
on S, f is zero along γ, hence its derivative along γ vanishes, that is,
γ′(0) · ∇f(x0) = 0. Since the vectors γ′(0) span Tx0S, the proposition is
proved. �

Proposition 1.11.b. Let S be as in Proposition 1.11.a, and g ∈ C1(Rn)
be a real function such that its restriction to S has a minimum (or a max-
imum) at x0 : then ∇g(x0) is colinear to ∇f(x0).

Proof: The restriction of g to any C1 curve γ on S has also a minimum
(or a maximum) at x0, hence its derivative γ′(0) · ∇g(x0) along γ is zero
for t = 0. In other words, ∇g(x0) is orthogonal to Tx0S, hence colinear to
∇f(x0). �
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1.5 Bracket of Two Fields

Definition 1.12. Let X(x) = ΣXi(x)∂i and Y (x) = ΣYj(x)∂j be two fields
on Ω ⊂ Rn. The operator

XY − Y X

is a vector field, called the bracket of X and Y , and denoted by [X,Y ].

This follows from

ΣXi∂i(ΣYj∂ju) = ΣΣXiYj∂
2
iju+ ΣX(Yj)∂ju

and the fact that the second order terms cancel in the difference
(XY − Y X)(u).

Example 1.13. In R3, for all i, j, [∂i, ∂j ] = 0. Also, [∂1, ∂2 + x1∂3] = ∂3,
and

[x2∂3 − x3∂2, x3∂1 − x1∂3] = −(x1∂2 − x2∂1).

1.6 Cauchy Problem and Method of Charac-
teristics

Definition 1.14. Let Σ ⊂ Ω ⊂ Rn be a hypersurface and X a field
on Ω. Given f ∈ C0(Ω) and u0 ∈ C1(Σ), the Cauchy problem for X
with initial hypersurface Σ and data (u0, f) is the problem of finding
u ∈ C1(Ω) with

Xu = f, x ∈ Σ ⇒ u(x) = u0(x).

If X is not tangent to Σ on a subdomain ω ⊂ Σ, the union of all integral
curves of X starting from points x0 ∈ ω can be visualized as a “tube”
T with base ω, called “domain of determination of ω.” For x0 ∈ T , the
integral curve starting from x0 intersects Σ at a point p(x0); if f ≡ 0, the
solution u of the Cauchy problem necessarily satisfies

u(x0) = u0(p(x0)).

This is the “method of characteristics.” It remains to prove, how-
ever, that p is a C1 function, so that u is actually a solution of the Cauchy
problem. We will discuss this in Sections 1.7 and 1.8. The method of char-
acteristics also allows us to handle the non-homogeneous Cauchy problem
(f �≡ 0), as will be seen on examples.
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Let us first examine some examples in the plane with coordinates (x, t),
and Σ = {t = 0}:

Example 1.15. The simplest case is the Cauchy problem

∂tu = 0, u(x, 0) = u0(x).

The solution is u(x, t) = u0(x). The integral curves of X = ∂t are ver-
tical lines {x = C}, and u is constant on each one of them. To solve the
inhomogeneous equation ∂tu = f , one writes

u(x, t) = u(x, 0) +
∫ t

0

f(x, s)ds = u0(x) +
∫ t

0

f(x, s)ds.

We say that the function u is obtained from u0 by integration of f along
the integral curves of ∂t.

Example 1.16. The next case is the advection equation

∂tu+ a∂xu = f, u(x, 0) = u0(x),

where a is a real constant. The integral curves of X = (a, 1) are the lines
(x(t) = x0 + at, t), and

d

dt
(u(x0 + at, t)) = (Xu)(x0 + at, t) = f(x0 + at, t).

Thus

u(x, t) = u0(x− at) +
∫ t

0

f(x+ a(s− t), s)ds.

For f ≡ 0, the equation is thought of representing a propagation at speed
a, since the graph of u(·, t) is just the graph of u0 translated by at.

Example 1.17. Consider now the Cauchy problem for the field of
Example 1.5:

∂tu+ x∂xu = f, u(x, 0) = u0(x).

The domain of determination of Σ is here the whole of R2. For (x0, t0)
given, the point p is

p(x0, t0) = (x0e
−t0 , 0)

and the solution u of the Cauchy problem for f ≡ 0 is then u(x, t) =
u0(xe−t). In the inhomogeneous case, we write

d

dt
(u(x0e

t, t)) = f(x0e
t, t),
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which gives

u(x, t) = u0(xe−t) +
∫ t

0

f(xes−t, s)ds.

Example 1.18. In the case of Example 1.6, we have for t ≥ 0 on the
integral curve starting at (x0 < 0, 0),

−xt = − x0t

1 − x0t
≤ 1.

It is left as an exercise (Exercise 5) to show that the domain of
determination of Σ is only {(x, t), xt ≥ −1}, and there the solution of the
homogeneous equation is

u(x, t) = u0

(
x

1 + xt

)
.

Important Remark: Consider in the plane R2
x,t the Cauchy problem

∂tu+ a(x, t)∂xu = 0, u(x, 0) = u0(x)

for some complex function a (
a �= 0): We claim that this Cauchy problem
cannot be “well-posed.” In the case where a is constant, two different kinds
of arguments can be used to justify this claim: First, it is well-known (think
of the case a = i of the Cauchy–Riemann operator) that the solutions of
the equation ∂tu+ a∂xu = 0 are analytic functions of (x, t), hence u0 must
also be real analytic; no solution exists for u0 ∈ C∞ in general. The second
argument is more subtle and due to Hadamard: suppose a = α+ iβ, β > 0,
and consider the functions

vn(x, t) = e−
√

nein(x−at), n ∈ N,

which are solutions of the equation. Then vn(x, 0) and all its derivatives
are small in any Ck norm, while vn is very big for t = t0 > 0 and large
n. No reasonable control of the solution vn by its data vn(x, 0) is to be
expected.

In the more general case of a complex function a(x, t), the first argument
no longer works, but the second can be modified to show that, even if
the solution u were to exist and be unique for all data u0, it would not
depend reasonably of u0; it is this concept of “continuous dependence” (in
a sense we should make, of course, more precise) which is at the heart of
Hadamard’s concept.
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1.7 Stopping Time

We come back now to the smoothness of the function p defined at the
beginning of Section 1.6. Let us assume that for some x0 the integral curve
of X starting at x0 intersects Σ at time T0 at the point p0 = Φ(T0, x

0)
(Φ is the flow of X). For x close to x0, we look for T (x) close to T0 such
that the integral curve of X starting from x intersects Σ at time T (x)
(the “stopping time”).

Proposition 1.19. Assume that Σ is defined near p0 as {f = 0} for
some f ∈ C1, ∇f(p0) �= 0. If X(p0) in not tangent to Σ, then T ∈ C1 in
a neighborhood of x0.

Proof: We want to solve for T the equation f(Φ(T, x)) = 0 for x given
close to x0. This can be done using the implicit function theorem, provided

∂t[f(Φ(t, x))](T0, x
0) = (X · ∇f)(p0) �= 0,

that is, if X is not tangent to Σ at p0 (which is an obvious necessary
condition; See Exercise 4). The intersection point is then p(x) = Φ(T (x), x),
and p also is a C1 function. �

1.8 Straightening Out of a Field

An alternative approach to that of the preceding section (Section 1.7) is
contained in the following proposition.

Proposition 1.20. Let X be a field in Ω ⊂ Rn, 0 ∈ Ω, with X(0) �= 0.
Then there exists a C1 diffeomorphism Ψ from a neighborhood U of 0 onto
a neighborhood V of 0, Ψ(0) = 0, such that the image by Ψ of the integral
curves of X in U are parallel lines.

Proof: To see this, let us assume Xn(0) �= 0, and, since we are dealing
only with integral curves, assume in fact Xn ≡ 1 close to the origin. Let Φ
be the flow of X . Consider now the map

(x′, t) �→ F (x′, t) = Φ(t, (x′, 0)), x′ = (x1, . . . , xn−1).

Since the differential D0F is an upper triangular matrix with one on the
diagonal, it is invertible, and the implicit function theorem shows that F
is a local diffeomorphism taking (0, 0) to itself; we will take then Ψ = F−1.
Using the notation of Section 1.7 with Σ = {xn = 0}, we see that Ψ con-
tains both the information about the stopping time and the intersection
point,

Ψ(x) = (p̃(x), T (x)), p(x) = (p̃(x), 0).
�
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1.9 Propagation of Regularity

Proposition 1.21. Let X be a C∞ field on Ω ⊂ Rn. Assume given some
function u ∈ C1(Ω) such that

Xu = f ∈ C∞(Ω).

If u ∈ Ck in a neighborhood of x0 ∈ Ω, then u ∈ Ck in a neighborhood of
all points of the integral curve of X starting from x0.

Proof: The simplest way of proving this is perhaps to straighten out the
field X : according to Proposition 1.20 and its proof, the diffeomorphism Ψ
is in this case a C∞ diffeomorphism, so it is enough to prove the proposition
for X ≡ ∂n: In this case, the explicit formula of Example 1.15 yields the
result. �

1.10 Exercises

1. Let S2 be the unit sphere in R3, and e be a tangent vector to it at m.
Let f be a C1 function on R3 vanishing on the sphere. Show that the
derivative of f at m in the direction of e is zero.

2. In the plane with coordinates (x, y), let R+ = {(x, 0), x ≥ 0} and
A = R2 − R+. Find f ∈ C∞(A), not independent of y, and satisfying
∂yf = 0.

3. Let X be a nonvanishing field in Rn and a ∈ C1(Rn) a complex function.
Explain how the study of the equationXu+au = f can be (locally) reduced
to the study of the equation Xv = g.

4. In the context of Section 1.7, give an explicit example where the stopping
time, defined as T (x0) for the point x0, is not necessarily defined near x0.

5. Let X = ∂t + x2∂x be the field in the plane considered in Example 1.18.
Show that the domain of determination of {t = 0} for X is {(x, t), xt ≥ −1}.
Construct a solution u of Xu = 0 in the plane, vanishing on {t = 0} but
not identically zero.

6. Let u : R2
x,t ⊃ Ω → R be a C1 function and consider the field X =

∂t + u∂x. Show that the integral curves of X are straight lines if and only
if u is solution of Burgers equation

∂tu+ u∂xu = 0.
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7. Let u : R2
x,t ⊃ Ω → R be a C1 function solution of the Cauchy problem

∂tu+ u∂xu = u2, u(x, 0) = u0(x).

Compute the integral curve of the field X = ∂t + u∂x starting from
(x0, 0) ∈ Ω.

8. Let D = {(x, t) ∈ R2
x,t, x ≥ 0, t ≥ 0, x+ t ≤ 1}. For which values of the

real constant λ does the Cauchy problem

(∂t + λ∂x)u = 0, u(x, 0) = u0(x)

have a unique solution in D?

9. Let a and α ≥ 0 be real constants and consider the field in the
plane R2

x,t

X = t∂t + atα∂x, t ≥ 0.

Discuss, according to α, the behavior of the integral curves of X in the
upperhalf plane. For which values of α does the Cauchy problem Xu = f,
u(x, 0) = u0(x), have at most one solution u, u ∈ C1({t > 0}) ∩
C0({t ≥ 0})?

10. Let X1 = (−x, y), X2 = (−x, y + x2) be two fields in the plane R2
x,y.

Compute the flows Φ1 and Φ2 of these fields. Verify for each the flow
property

Φ(t2,Φ(t1, x)) = Φ(t1 + t2, x).

Compute for each field a function Fi(x, y) such that Fi is constant along
each integral curve of Xi. Find a C∞ diffeomorphism D of the plane such
that the image by D of an integral curve of X1 is an integral curve of X2.
Show that one can arrange to have also F2(D) = F1.

11. Let X be a C1 field on Rn. Assume that, for some x0, the flow Φ(t, x0)
is defined for all t ∈ R+ and Φ(t, x0) → a as t→ +∞. Show that X(a) = 0.

12. Let S be a hypersurface in Rn, and X a field tangent to S. Show that
an integral curve of X starting from x0 ∈ S remains on S (Hint: Near a
given point, choose coordinates so that S is defined by {x1 = 0}).

13. Let S be a hypersurface in Rn and X a field tangent to S. Show that
if f ∈ C1 vanishes on S, so does Xf . Now let Y be another field tangent
to S. Show that the bracket [X,Y ] is tangent to S.

14.(a) Consider in R3 the two fields X1 = ∂1+2x1∂3, X2 = ∂2+2∂3. Check
that their bracket is zero and compute their flows Φ1 and Φ2. Show that,
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for all x and t,

g(t, x) ≡ Φ2(t,Φ1(t, x)) = Φ1(t,Φ2(t, x)) ≡ h(t, x).

(b) Consider now the two fields X1 = ∂1, X2 = ∂2 + x1∂3. Compute their
bracket and their flows Φ1 and Φ2. Show that in this case, in contrast with
the preceding case,

g(t, x) − h(t, x) = t2(0, 0, 1).

(c) More generally, for any two C1 fields X1 and X2, using the preceding
notation, show the formulas

∂tg(0, x) = X1(x) +X2(x),

∂2
t g(0, x) = (X ′

1X1 +X ′
2X2 + 2X ′

2X1)(x).

Deduce from these formulas

g(t, x) − h(t, x) = t2[X1, X2](x) +O(t3).

15.(a) Let us consider again the two fields of exercise 14(a): Check that
g = x2

1+2x2−x3 satisfiesX1g = 0, X2g = 0. In contrast, consider a function
g ∈ C2(R3) satisfying X1g = X2g = 0 for the two fields of Exercise 14(b).
Show that g is constant.

(b) Let us consider two independent fields X1 and X2 in the plane. Define
the functions α and β by

[X1, X2] = αX1 + βX2.

Write down a necessary condition on fi ∈ C1 for a C2 solution u to exist
for the system

X1u = f1, X2u = f2.

Show that this condition is (locally) sufficient.

16. Let u be a real C1 solution of the equation

a(x, y)∂xu+ b(x, y)∂yu = −u

in the closed unit disc D of the plane. We assume here that a and b are
given C1 real coefficients, with

a(x, y)x + b(x, y)y > 0
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on the unit circle. Show that u ≡ 0 (Hint: One can show that u cannot
have a positive maximum).

17. Let X be a constant coefficients vector field X = ∂t +Σai∂i in Rt×Rn
x .

Let ω ⊂ Σ = {t = 0} be a compact domain with C∞ boundary, and T the
tube formed by the integral curves of X starting from ω. Denote by Ts

the set
Ts = {x, (x, s) ∈ T }.

For a given u : Rt × Rn
x → C, we define Et(u), the “energy” of u at

time t, by

Et(u) =
1
2

∫
Tt

|u(x, t)|2dx.

(a) Show the identity 2(Xu)(u) = ∂t(u2) + Σ∂i(aiu
2).

(b) Using (a) and Stokes formula (see Appendix, A.2), prove for all real
u ∈ C1 the “energy identity”

Et(u) = E0(u) +
∫
T ∩{0≤s≤t}

(Xu)udxds.

(c) Deduce from (b) the “energy inequality”

Et(u)1/2 ≤ C[E0(u)1/2 +
∫ t

0

||(Xu)(·, s)||L2(Ts)ds],

for some appropriate constant C.

(d) Extend this result to complex-valued functions u.



Chapter 2

Operators and Systems in
the Plane

2.1 Operators in the Plane: First Definitions

We will work in the plane R2 with coordinates (x, t).

Definition 2.1. A differential operator P of order m ∈ N is defined by

(Pu)(x, t) = Σk+l≤makl(x, t)∂k
x∂

l
tu(x, t).

Here, the coefficients akl are C∞, given functions (to simplify). The
operator

Pm = Σk+l=makl(x, t)∂k
x∂

l
t

is the “principal part” of P , the rest P −Pm being the “lower order terms.”

Definition 2.2. Assume a0m �= 0. The Cauchy problem for the differen-
tial operator P with initial surface Σ = {t = 0} and data (u0, . . . , um−1, f)
is the problem of finding u ∈ Cm such that

Pu = f, u(x, 0) = u0(x), . . . , (∂m−1
t u)(x, 0) = um−1(x).

Here f ∈ C0 and the m functions u0, . . . , um−1 are given with uk ∈
Cm−k.

We remark that if u ∈ C∞(R×[0, T [) is a solution of the Cauchy problem,
all traces (∂k

t u)(x, 0) are known from the data; in fact, using the equation

S. Alinhac, Hyperbolic Partial Differential Equations, Universitext,  
DOI 10.1007/978-0-387-87823-2_2, © Springer Science+Business Media, LLC 2009 
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for t = 0, we obtain (∂m
t u)(x, 0) from

a0m(x, 0)(∂m
t u)(x, 0) + Σk+l≤m,l<makl(x, 0)∂k

xul(x) = f(x, 0).

Differentiating any number of times with respect to x yields ∂m
t ∂

p
xu(x, 0).

Differentiating the equation once with respect to t gives us ∂m+1
t (x, 0), and

so on.

Definition 2.3. For fixed (x, t), the roots of the polynomial equation in τ

Σk+l=makl(x, t)τ l = 0

are denoted by −λ1(x, t), . . . ,−λm(x, t), and the λi are called the charac-
teristic speeds of P .

This terminology can be understood from Example 1.16. Note that this
equation involves only the coefficients of the principal part of P .

Definition 2.4 (Hyperbolicity). We say that P is hyperbolic in
Ω ⊂ R2 if all the characteristic speeds λi are real in Ω. We call it strictly
hyperbolic if they are also distinct.

In dealing with the Cauchy problem, we will always make the assumption
that P is hyperbolic. If P is strictly hyperbolic, the functions λi are C∞

by the implicit function theorem, and we will order them

λ1(x, t) < · · · < λm(x, t).

We can also write P = a0mΠ(∂t +λi(x, t)∂x)+Q, where Q is an operator
of order m−1. Hence the principal part of P is just a product of real vector
fields (modulo lower order terms).

Example 2.5. The one-dimensional wave equation (also called “vibrating
string” equation) is (c being a positive constant)

P = ∂2
t − c2∂2

x = (∂t − c∂x)(∂t + c∂x) = (∂t + c∂x)(∂t − c∂x).

The operator P is associated to the quadratic form τ2 − c2ξ2, the level
sets of which are hyperbola in the plane (ξ, τ). This explains the denomi-
nation “hyperbolic.” More generally, for a and b real constants satisfying
a2 − 4b > 0, the operator

P = ∂2
t + a∂2

xt + b∂2
x

is strictly hyperbolic.

Example 2.6. The operator P = ∂2
t − x2∂2

x = (∂t + x∂x)(∂t − x∂x) + x∂x

is hyperbolic, but not strictly hyperbolic for x = 0.
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Example 2.7. The operator P = ∂2
t − t2∂2

x = (∂t + t∂x)(∂t − t∂x) + ∂x is
hyperbolic, but not strictly hyperbolic for t = 0.

Example 2.8. The Tricomi operator P = ∂2
t + t∂2

x is strictly hyperbolic
for t < 0, hyperbolic but nonstrictly for t = 0, and not hyperbolic for t > 0.

2.2 Systems in the Plane: First Definitions

Definition 2.9. A first order system is an operator of the form

L = S(x, t)∂t +A(x, t)∂x +B(x, t),

where S, A, and B are C∞ N ×N matrices, and L acts on C1 vectors in
CN by

LU = S∂tU +A∂xU +BU.

Definition 2.10. Assume S invertible. The Cauchy problem for the
system L with initial surface Σ = {t = 0} and data (U0, F ) is the problem
of finding U ∈ C1 such that

LU = F, U(x, 0) = U0(x),

where F ∈ C0 and U0 ∈ C1 are given.

Definition 2.11 (Hyperbolicity). The system L is hyperbolic if all the
eigenvalues λi of S−1A are real. These eigenvalues are called the charac-
teristic speeds of L. We call L strictly hyperbolic if the characteristic speeds
are distinct. The system is symmetric hyperbolic if S and A are hermitian
and S is positive definite.

The importance of symmetry is not obvious and is explained in
Exercise 13. See also Chapter 7, Section 7.3, where the notion is discussed
in detail.

If L is strictly hyperbolic, the eigenvalues λi(x, t) are C∞, since they
are simple roots of a polynomial (the characteristic polynomial) with C∞

coefficients. Assume that, in the domain D where we work, we can choose
a basis of smooth eigenvectors (r1(x, t), . . . , rN (x, t)) of S−1A. Then

P (x, t)−1S−1(x, t)A(x, t)P (x, t) = Λ(x, t),

where P has the eigenvectors ri as its columns, and Λ is diagonal. Setting
U = PV , we find that the Cauchy problem

LU = F, U(x, 0) = U0(x)
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is equivalent to the Cauchy problem

∂tV + Λ∂xV + CV = G, V (x, 0) = V0(x) = P−1(x, 0)U0(x),

with

C = P−1∂tP + ΛP−1∂xP + P−1S−1BP, G = P−1S−1F.

The principal part of the system is now diagonal, the functions Vi satis-
fying the N equations

(∂t + λi(x, t)∂x)Vi(x, t) + ΣCij(x, t)Vj(x, t) = Gi(x, t), i = 1, . . . , N.

We think of this new system as scalar equations coupled through the co-
efficients Cij . If L has constant coefficients S and A and is homogeneous
(that is, B ≡ 0), then C ≡ 0 and we just have a collection of N scalar
equations, which can be solved as explained in Chapter 1.

Important Remark: We explained in Chapter 1 why the Cauchy prob-
lem for a nonreal field could not be well-posed in the sense of Hadamard.
Since a system with different speeds λk can be diagonalized, it follows
that hyperbolicity is a necessary condition for the Cauchy problem for the
system L to be well-posed.

2.3 Reducing an Operator to a System

Just like one does for ordinary differential equations, one can reduce scalar
operators of orderm tom×m first order systems. Assume that the operator
P contains no terms of order less than m− 1.

• If u is a Cm solution of the Cauchy problem

Pu = f, u(x, 0) = u0(x), . . . , (∂m−1
t u)(x, 0) = um−1(x),

we introduce as new unknowns the m functions

U0 = ∂m−1
x u, . . . , Uk = ∂k

t ∂
m−1−k
x u, . . . , Um−1 = ∂m−1

t u.

Then U is a C1 solution of the Cauchy problem

∂tU0 = ∂xU1, . . . , ∂tUm−2 = ∂xUm−1,

∂tUm−1 = −(a0m)−1Σk≥1akl∂xUl + (a0m)−1f,

U0(x, 0) = ∂m−1
x u0(x), . . . , Um−1(x, 0) = um−1(x).
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• Conversely, if U is a C1 solution of the above Cauchy problem, we define
u by

∂m
t u = ∂tUm−1, u(x, 0) = u0(x), . . . , (∂m−1

t u)(x, 0) = um−1(x).

Then we obtain successively

∂m−1
t u = Um−1, ∂x∂

m−2
t u = Um−2, . . . , ∂

m−1
x u = U0,

and u turns out to be a Cm solution of the Cauchy problem for P . Just as
we did in Section 2.3, we emphasize the fact that, since an operator can be
reduced to a system with the same characteristic speeds (see Exercise 9),
these speeds must be real in order for the Cauchy problem to be well-posed.

Example 2.12. In the case m = 2, U0 = ∂xu, U1 = ∂tu, we obtain from
the wave equation P = ∂2

t − c2∂2
x the system

∂tU0 = ∂xU1, ∂tU1 = c2∂xU0 + f.

If we modify the procedure slightly by setting

U0 = c∂xu, U1 = ∂tu,

we obtain a symmetric system. We can even try right away

U0 = ∂tu+ c∂xu, U1 = ∂tu− c∂xu,

and obtain a diagonal system. We note that U0 and U1 are just then the
factors of P .

Example 2.13. For P = ∂2
t − x2∂2

x of Example 2.6 above, we can try the
same approach, setting

U0 = x∂xu, U1 = ∂tu.

Then
∂tU0 = x∂xU1, ∂tU1 = x∂xU0 − U0 + f,

and again we obtain a symmetric system.

Example 2.14. If we try the same procedure for P = ∂2
t − t2∂2

x, setting

U0 = t∂xu, U1 = ∂tu,

we obtain now the system

∂tU0 = t∂xU1 +
U0

t
, ∂tU1 = t∂xU0 + f,
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which is singular on {t = 0}. The difference with Example 2.13 is not
just a consequence of our awkwardness: It reflects a true difference in the
behavior of the solutions of the Cauchy problems.

Example 2.15. For the Tricomi operator we use U0 = ∂xu, U1 = ∂tu; To
get a nice system, we multiply the first line by −t and obtain the symmetric
system

−t∂tU0 + t∂xU1 = 0, ∂tU1 + t∂xU0 = f.

Note that the system is symmetric hyperbolic exactly when t < 0.

If the operator P has terms of order less than m − 1, one can try to
express them in terms of the new unknowns. For instance, if m = 2,
u(x, t) = u0(x)+

∫ t

0 U1(x, s)ds, etc. The obtained system will not be strictly
speaking a first order system, but the additional (integral) terms can be
handled as zero order terms and cause no trouble.

For the operator in Example 2.13, if one chooses U0 and U1 as indicated
in order to obtain a symmetric system, it will not be possible to express
smoothly a lower order term such as a(x, t)∂xu with the help of U , unless
a(0, t) = 0. In fact, it can be shown that the well-posedness of the Cauchy
problem for P = ∂2

t − x2∂2
x + a(x, t)∂x requires precisely this condition.

Thus, turning a nonstricly hyperbolic operator into a hyperbolic symmetric
system is a subtle issue, one that requires sometimes additional conditions
on the lower order terms, called “Levy conditions.”

2.4 Gronwall Lemma

The following elementary lemma will be useful here and later on.

Lemma 2.16 (Gronwall Lemma). Let A, φ ∈ C0([0, T [) such that,
for 0 ≤ t < T ,

φ(t) ≤ C +
∫ t

0

A(s)φ(s)ds.

Assume that A ≥ 0. Then φ(t) ≤ C exp(
∫ t

0 A(s)ds).

The proof is left as Exercise 3.
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2.5 Domains of Determination I (A priori Es-
timate)

Definition 2.17. For a hyperbolic operator P , the field ∂t + λi∂x is called
the i-characteristic field, and its integral curves are called i-characteristics
of P . The same definition holds for first order systems.

Note that we have shown that P is equal to the product of its character-
istic fields (up to lower order terms) and that a system can be reduced to
the diagonal system of its characteristic fields (modulo zero order coupling
terms).

Definition 2.18. A closed domain D ⊂ Rx × [0,∞[ with base

ω = D ∩ {t = 0}

is a domain of determination of ω for an operator P (or a system L) if for
any m = (x0, t0) ∈ D, and all i, the backward i-characteristic (that is,
for t ≤ t0) drawn from m reaches ω while remaining in D.

Example 2.19. Consider the wave equation, and take ω = [a, b] on the
x-axis. A triangle D bounded by a line through (a, 0) (with positive slope)
and a line through (b, 0) (with negative slope) is a domain of determina-
tion if the lines have slopes respectively less than c and greater than −c.
The biggest possible D is bounded by lines with slopes c and −c, respec-
tively. More generally, as a consequence of the usual comparison theorem for
solutions of ordinary differential equations (see Appendix, Theorem A.7),
we have the following theorem.

Theorem 2.20. For a strictly hyperbolic operator or system, the biggest
domain of determination D with base ω = [a, b] on the x-axis is the curved
triangle bounded by the x-axis, the fastest characteristic (corresponding
to λm) from (a, 0), and the slowest characteristic (corresponding to λ1)
from (b, 0).

For a domain of determination D, we will denote by pi(m) the point
where the backward i-characteristic γi(m) = {(xi(t,m), t)} drawn from m
meets ω. We can now prove the following a priori estimate.

Theorem 2.21. Let D be a compact domain of determination with
base ω on the x-axis for a first order strictly hyperbolic system L. Set
Dt = {x, (x, t) ∈ D}. Then there exists a constant C such that, for any
U ∈ C1(D̄),

max
0≤s≤t

||U(·, s)||L∞(Ds) ≤ C{||U0||L∞(ω) +
∫ t

0

||(LU)(·, s)||L∞(Ds)ds}.
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Proof: As explained in Section 1.6, we reduce the Cauchy problem
LU = F,U(x, 0) = U0(x) to the problem

∂tV + Λ∂xV + CV = G, V (x, 0) = V0(x).

Integrating the equation for Vi along the i-characteristic between 0 and t,
we obtain

Vi(m) = (V0)i(pi(m)) +
∫ t

0

[Gi − (CV )i](xi(s,m), s)ds.

We fix t and take the sup norm in x to get, for some numerical
constant C1,

||Vi(·, t)||L∞(Dt) ≤ ||V0||L∞(ω)+C1

∫ t

0

{||F (·, s)||L∞(Ds)+||V (·, s)||L∞(Ds)}ds.

We set now φ(t) = max0≤s≤t ||V (·, s)||L∞(Ds). Summing the above
inequalities over i, we obtain for 0 ≤ t′ ≤ t ≤ T (with another
constant C2)

||V (·, t′)||L∞(Dt′ ) ≤ C2||V0||L∞(ω) + C2

∫ T

0

||F (·, s)||L∞(Ds)ds

+ C2

∫ t

0

||V (·, s)||L∞(Ds)ds.

Taking the supremum in t′ we get for t ≤ T

φ(t) ≤ A+ C2

∫ t

0

φ(s)ds,A = C2||V0||L∞(ω) + C2

∫ T

0

||F (·, s)||L∞(Ds)ds.

Using the Gronwall lemma, we finally get φ(t) ≤ C3A, which is the desired
result. �

In particular, the theorem implies the uniqueness of a possible solution to
the Cauchy problem in D. From the proof of the theorem, we see that it can
be extended to a noncompact domain (for instance, a strip {0 ≤ t ≤ T }),
provided the appropriate obvious assumptions on the coefficients of L have
been made. Such a theorem is called an a priori estimate, since it applies
to any U .
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2.6 Domains of Determination II (Existence)

We prove now an existence theorem in a domain of determinationD, chosen
as in Section 2.5.

Theorem 2.22. Let D be a compact domain of determination with base ω
on the x-axis for a first order strictly hyperbolic system L. Let F ∈ C1(D)
and U0 ∈ C1(ω). Then there exists a unique solution U ∈ C1(D) of the
Cauchy problem

LU = F, U(x, 0) = U0(x).

Proof: Step 1. We resume the notation of the proof of Theorem 2.21.
We first prove that the system on V , written in integral form

Vi(m) = (V0)i(pi(m)) +
∫ t

0

[Gi − (CV )i](xi(s,m), s)ds,

has a C0 solution in D. To this aim, we define a sequence V n ∈ C0(D) by

V n+1
i (m) = (V0)i(pi(m)) +

∫ t

0

[Gi − (CV n)i](xi(s,m), s)ds, V 0 = 0.

Introducing δn(t) = ||V n+1(·, t)−V n(·, t)||L∞(Dt), we obtain by subtract-
ing the equations for n+ 1 and n and taking the supremum for fixed t as
before,

δn(t) ≤ C1

∫ t

0

δn−1(s)ds.

We claim now that for some constants c0 and c1, we have for all n,
δn(t) ≤ c0c

n
1 t

n/n!. For n = 0, this is certainly true for c0 big enough,
which we now fix accordingly. Assume that this is true for n: then we get
from the above inequality and the induction hypothesis

δn+1(t) ≤ C1

∫ t

0

c0c
n
1

sn

n!
ds = C1c0c

n
1

tn+1

(n+ 1)!
.

This shows that the claim is true if c1 ≥ C1. If t ≤ T in D, we obtain
then

||V n+1 − V n||L∞(D) ≤ c0
(c1T )n

n!
,

which is the general term of a convergent series. Hence, V n converges
uniformly in D to some V ∈ C0(D), which is a solution of the system on
V written in integral form.

Step 2. However, this does not imply that V is C1 and satisfies the
differential system! To handle this difficulty, we set Wn = ∂xV

n, which is
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allowed since in fact V n belongs to C1(D) if F and U0 do. Differentiating
with respect to x the integral expression of V n+1, we obtain

Wn+1
i (m) = ∂x[(V0)i(pi(m)) +

∫ t

0

Gi(xi(s,m), s)ds] −
∫ t

0

[(∂xC)V n

+ CWn]i(xi(s,m), s)(∂xxi(s,m))ds.

Just as before, we prove that V n and Wn converge uniformly in D to
continuous functions V and W . This implies that V admits a continuous
partial derivative ∂xV = W . Since

∂tV
n+1 + Λ∂xV

n+1 + CV n = G,

∂tV
n also converges uniformly to a continuous function. Hence V admits

continuous partial derivatives and is in C1. We can then differentiate the
system in integral form satisfied by V to recover the original system, and
this finishes the proof. �

2.7 Exercises

1.(a) Consider in the plane R2
x,t the wave operator P = ∂2

t − ∂2
x. Prove

that any C2 function u of the form u(x, t) = φ(x + t) or u(x, t) = ψ(x − t)
satisfies Pu = 0. Deduce from this an explicit formula for the solution u of
the homogeneous Cauchy problem in a domain

D = {(x, t), t ≥ 0, t+ |x| ≤ a}.

(b) Find explicitly the solution of the Cauchy problem Pu = f in D with
zero Cauchy data on {t = 0}.

2. Let D be the unit closed disc in the plane with coordinates (x, y), and
∂D the unit circle. What are all the C2 solutions of the equation ∂2

xyu = 0
in R2? in D? Show that the boundary value problem in D

∂2
xyu = f, u|∂D = u0

does not have a unique solution. If we impose the stronger boundary con-
ditions u = ∇u = 0 on ∂D, show that the corresponding boundary value
problem in D has at most one solution. Write down necessary conditions
on f for such a solution to exist.

3. Prove the Gronwall lemma (Section 2.4)
(Hint: Set ψ(t) = C +

∫ t

0 A(s)φ(s)ds, and solve the differential inequality
on ψ).
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4. We consider a C2 real solution u of the wave equation

Pu = (∂2
t − ∂2

x)u = 0

in the cylinder C = {(x, t), t ≥ 0, a ≤ x ≤ b} ⊂ R2
x,t. Assume that u

satisfies the boundary conditions

u(a, t) = 0, (∂tu+ ∂xu)(b, t) = 0.

(a) Define the energy of u at time t by

E(t) =
1
2

∫ b

a

[(∂tu)2 + (∂xu)2](x, t)dx.

By computing
∫
C∩{0≤t≤T}(Pu)(∂tu)dxdt, show

E(T ) − E(0) = −
∫ T

0

(∂tu)2(b, t)dt.

The energy is said to “dissipate” along the boundary {x = b}.

(b) Show that for t ≥ 2(b − a), u ≡ 0 (so much energy dissipated that
there is nothing left!).

5. Prove an a priori estimate analogous to that of Theorem 2.21 for a
second order strictly hyperbolic operator P .

6. Prove an existence theorem analogous to that of Theorem 2.22 for a
second order strictly hyperbolic operator P .

7. Let P be a strictly hyperbolic operator of order two in R2
x,t, and u ∈

C2(Rx × R+
t ) be a solution of Pu = 0. Assume that the Cauchy data of

u vanish outside [a, b]. Let x = x1(t) be the 1-characteristic of P through
(a, 0), and x = x2(t) the 2-characteristic through (b, 0). Prove that the
support of u is contained in the set

{(x, t), t ≥ 0, x1(t) ≤ x ≤ x2(t)}.

8. Consider a strictly hyperbolic homogeneous operator P with constant
coefficients. Show that if D is not a domain of determination of its base
[a, b] for P , no uniqueness can hold for the Cauchy problem in D.

9. Prove that when an operator P is reduced to a first order system L as
in Section 2.3 the characteristic speeds are the same for P and L.

10. Let A be a real square matrix. Show that if there exists a hermitian
positive definite S such that SA is hermitian, then the eigenvalues of A are
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real. Conversely, if all eigenvalues of A are real and distinct, there exists
such an S. Explain why this is relevant for hyperbolic systems.

11.(a) Let P be the wave operator with real coefficient c ∈ C1(R2)

P = ∂2
t − c2(x, t)∂2

x, 1/2 ≤ c ≤ 2.

Prove for all u ∈ C2(R2) the identity

(Pu)(∂tu) =
1
2
∂t[c2(∂xu)2 + (∂tu)2] − ∂x[c2(∂xu)(∂tu)]

+ 2c(∂xc)(∂xu)(∂tu) − c(∂tc)(∂xu)2.

(b) Assume that in the strip ST = {0 ≤ t ≤ T } for some constant C,

|∂xc| + |∂tc| ≤ C.

Assume for simplicity that u is real and that u(·, t) has compact support
for all t. Using the formula of (a) to compute

∫
St

(Pu)(∂tu)dxds, prove for
t ≤ T the inequality

E(t) ≤ E(0) + C1

∫ t

0

E(s)ds+ C1

∫ t

0

||f(·, s)||L2E1/2(s)ds,

where Pu = f and E(t) = (1/2)
∫
[c2(∂xu)2 + (∂tu)2]dx. Proceed then as

in Exercise 17 of Chapter 1, using the Gronwall lemma, to establish the a
priori L2 inequality

max
0≤s≤t

E1/2(s) ≤ C2E
1/2(0) + C2

∫ t

0

||f(·, s)||L2ds, t ≤ T.

Such an a priori inequality in L2 norm is called an “energy inequality.”

12. We keep the notation of Exercise 11. Let D be a compact domain
of determination for P , and set DT = {(x, t) ∈ D, 0 ≤ t ≤ T }. On the
nonhorizontal part Λ of the boundary of DT , we denote the components
of the unit outgoing normal by (nx, nt > 0). Proceeding as in Exercise 11,
prove the a priori inequality

E(T ) +
∫

Λ

(n2
t − c2n2

x)
(∂tu)2

2nt
dσ ≤ E(0) + C1

∫ T

0

E(t)dt

+ C1

∫ T

0

||f(·, t)||L2E1/2(t)dt,
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where dσ is the length element on Λ and E is now defined by an integration
on D ∩ {t = T }. If |nx| ≤ nt/c on Λ, this yields exactly the same energy
inequality as in Exercise 11. Show that this condition on ∂D is always
satisfied for a domain of determination (this is a remarkable fact, since it
shows that the method of proof does not require more assumptions than
what is known to be necessary anyway).

13.(a) Let L = S∂t + A∂x + B be a symmetric hyperbolic system, where
we take for simplicity S and A to be real. Prove, for all real U ∈ C1(R2),
the identity

2tULU = ∂t(tUSU) + ∂x(tUAU) − tU(∂tS + ∂xA− 2B)U.

Give appropriate conditions on the coefficients of L in a strip ST =
{0 ≤ t ≤ T } to obtain, as in Exercise 11, the energy inequality

max
0≤s≤t

||U(·, s)||L2 ≤ C1||U0||L2 + C1

∫ t

0

||f(·, s)||L2ds.

(b) We keep the notation of Exercise 12 and set E(t) =
∫
(x,t)∈D

|U(x, t)|2dx.
Prove the inequality

||U(·, T )||2L2 +
∫

Λ

tU(ntS + nxA)Udσ ≤ C2||U0||2L2 + C2

∫ T

0

E(t)dt

+ C2

∫ T

0

||f(·, t)||L2E1/2(t)dt.

Show that the conditions

nx > 0 ⇒ nt + λ1nx ≥ 0, nx < 0 ⇒ nt + λNnx ≥ 0

imply that the matrix ntS + nxA is nonnegative. Prove then an energy
inequality analogous to that of (a). Are these conditions always satisfied
for a domain of determination?



Chapter 3

Nonlinear First Order
Equations

3.1 Quasilinear Scalar Equations

We consider in Rn
x the Cauchy problem with data u0 given on the initial

surface Σ0 = {xn = 0} for the quasilinear scalar equation

Σai(x, u)∂iu(x) = b(x, u), u(x′, 0) = u0(x′), x′ = (x1, . . . , xn−1).

The coefficients a = (a1, . . . , an) and b are given real C∞ functions on
Rn

x × Ru, and u0 : Rn−1 → R is a given C1 function. We look for a C1

real solution
u : Rn

x ⊃ Ω → R.

First we tranform this Cauchy problem into a purely geometric problem.
To a real function u ∈ C1(Ω) we associate its graph in Ω × Rz,

S = {(x, z), x ∈ Ω, z = u(x)}.

The method of characteristics is based upon the following observation:

Observation 3.1. The function u is a solution of the equation in Ω if
and only if the field

V (x, z) = (a1(x, z), . . . , an(x, z), b(x, z)) ∈ Rn+1

is tangent to S.

S. Alinhac, Hyperbolic Partial Differential Equations, Universitext,  
DOI 10.1007/978-0-387-87823-2_3, © Springer Science+Business Media, LLC 2009 
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Note that the field V is given with the coefficients a and b and does not
depend on u. Since a normal to S is

N = ∇(u(x) − z) = (∂1u, . . . , ∂nu,−1),

and, at a point of S,

(N · V )(x, u(x)) = Σ∂iu(x)ai(x, u(x)) − b(x, u(x)),

the observation is proved. �

Thus the Cauchy problem for u is equivalent to the following geometric
problem: find an n-submanifold S in Rn+1 such that

i) S is the graph of some function;

ii) S contains the (n− 1)-submanifold Σ = {(x, z), x ∈ Σ0, z = u0(x)};

iii) V is tangent to S.

Since V is tangent to S, the integral curves of V starting from points of
Σ belong to S (see Exercise 1.12). Hence we take for S the union of the
integral curves of V starting from Σ. We call this construction “weaving”
(see Appendix, Theorem A.15).

We have however to be careful about the following questions:

1. Is S a submanifold?

2. Is S the graph of a C1 function?

The answers to these questions can be only local in general.

1. Given a point m0 = (x0, u0(x0)) ∈ Σ, S is an n-submanifold in a
neighborhood of m0 if V is not tangent to Σ at m0 (see “weaving,”
Appendix, Theorem A.15).

2. For S to be the graph of a smooth function near m0, it is enough
to have an(m0) �= 0. In fact, Tm0S is spanned by Tm0Σ and V (m0)
and cannot contain a vertical vector W unless W is already in Tm0Σ,
which is impossible. Now, if f = 0 is an equation of S (with ∇f �= 0),
the condition about Tm0S implies ∂zf �= 0. Then, using the implicit
function theorem, we can solve in C1 the equation f = 0 in z, that
is, S is the graph of a C1 function (see Appendix, Theorem A.14 for
a more general statement).
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To summarize, we have proved the following theorem.

Theorem 3.2. Let x0 ∈ Σ0 and assume an(x0, u0(x0)) �= 0. Then there
exists a unique solution u ∈ C1 of the Cauchy problem in a neighborhood of
x0, and its graph is the union of the integral curves of V starting from Σ.

Observe also that the projections on Rn
x of the integral curves of V are

just integral curves of the field x �→ a(x, u(x)).

Though the statement of the above theorem is only local, the method
sometimes yields global results, as shown in examples.

Example 3.3. Suppose we deal with a linear equation, i.e., a and b do not
depend on u. The integral curves of V are now defined by

x′(s) = a(x(s)), z′(s) = b(x(s)).

The x-part corresponds to integral curves of a; the z-part corresponds
to integrating b along the characteristic curves. Thus we are back to the
(linear) method of characteristics explained in Chapter 1.

Example 3.4. In the plane with coordinates (x, t), consider the Cauchy
problem for Burgers equation

∂tu+ u∂xu = 0, u(x, 0) = u0(x).

In this case, V (x, t, z) = (z, 1, 0), and the integral curve of V starting
from (x0, 0, z0) satisfies

x′(s) = z(s), t′(s) = 1, z′(s) = 0,
x(s) = x0 + sz0, t(s) = s, z(s) = z0.

Thus S is the image of

F : (y, s) �→ F (y, s) = (y + su0(y), s, u0(y)).

Though S is a union of horizontal lines, it is not necessarily everywhere
the graph of a smooth function! To see this, observe that at a point
m = (y + su0(y), s, u0(y)) ∈ S, TmS is spanned by

∂yF = (1 + su′0(y), 0, u
′
0(y)), ∂sF = (u0(y), 1, 0).

There exists a nontrivial vertical linear combination of these two vectors
if and only if

1 + su′0(y) = 0.

If u′0 is not everywhere nonnegative, such points always exist (see
Exercises 1–7 for a more precise discussion).
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The method of characteristics is an effective way of finding solutions.
In the case of Burgers equation, for instance, finding u reduces to solving
in y, for given (x, t), the equation

y + tu0(y) = x,

and then take u(x, t) = u0(y). For instance, if we take u0(x) = x2, we get
for (x, t) close to zero

y =
−1 + (1 + 4xt)1/2

2t
, u(x, t) = y2.

In practice, one often proceeds as follows: Suppose the solution u exists
in a domain containing the x-axis. The characteristic (that is, the integral
curve of ∂t + u∂x) starting from (x0, 0) is then

t �→ (x = x0 + tu0(x0), t)

and u(x, t) = u0(x0) on it. In other words,

u(x, t) = u0(x − tu(x, t)),

and one can solve this implicit equation for u to get the solution (this is of
course equivalent to solving in y the equation x = y + tu0(y) as above).

3.2 Eikonal Equations

We consider in Rn
x fully nonlinear equations of the form

F (x,∇u(x)) = 0,

where F : Rn
x × Rn

ξ ⊃ Ω → R is a given C∞ function. We look for a C1

real solution u : Rn ⊃ ω → R.

Definition 3.5. The Hamiltonian field HF associated to F is the field
on Ω ⊂ Rn

x × Rn
ξ defined by

HF (x, ξ) = Σ(∂ξiF )∂xi − Σ(∂xiF )∂ξi .

Note that, by Theorem 1.10 of chapter 1, F is constant along the integral
curves of HF , since HFF = 0. If the equation is linear, that is, if F (x, ξ) =
Σai(x)ξi, the Hamiltonian field is simply

HF = Σai(x)∂xi − Σ(∂xiF )∂ξi ,

projecting as a onto Rn
x .
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For simplicity, we first explain the method of characteristics for an equa-
tion in the plane R2

x,y

F (x, y, ∂xu, ∂yu) = 0.

We assume here that ∂ξF, ∂ηF do not both vanish. Just as in the quasi-
linear case, we reduce our problem to a purely geometric problem. To a
couple of C1 real functions p, q on ω ⊂ R2

x,y we associate the 2-manifold in
ω × R2

ξ,η ⊂ R4 defined by

S = {(x, y, ξ, η), (x, y) ∈ ω, ξ = p(x, y), η = q(x, y)}.

The method is based on the following observation:

Observation 3.6. Suppose F = 0 on S. Then ∂yp = ∂xq in ω if and
only if the Hamiltonian field HF is tangent to S.

In fact, HF tangent to S means, on S, HF (ξ − p) = 0, HF (η − q) = 0,
that is

∂xF + ∂ξF∂xp+ ∂ηF∂yp = 0, ∂yF + ∂ξF∂xq + ∂ηF∂yq = 0.

On the other hand, differentiating F (x, y, p(x, y), q(x, y)) = 0 with respect
to x and y yields

∂xF + ∂ξF∂xp+ ∂ηF∂xq = 0, ∂yF + ∂ξF∂yp+ ∂ηF∂yq = 0.

Subtracting the above two equations, we obtain

∂ξF (∂yp− ∂xq) = 0, ∂ηF (∂yp− ∂xq) = 0,

which yields the observation. �

Consider now the Cauchy problem with data u0 given on the initial
hypersurface Σ0 = {(x, y), y = 0}. Suppose there exists a solution
u ∈ C2(ω) of the Cauchy problem

F (x, y, ∂xu, ∂yu) = 0, u(x, 0) = u0(x).

Then, for y = 0,
F (x, 0, u′0(x), ∂yu(x, 0)) = 0.

To handle the Cauchy problem with data u0 on Σ0, we give a real u0 ∈ C2

on Σ0 and make the following assumption:

Assumption 3.7. There exists a C1 real function η(x) with

F (x, 0, u′0(x), η(x)) = 0.



32 Chapter 3 Nonlinear First Order Equations

We see that η(x) is a “candidate” for the future ∂yu(x, 0). Defining then
the 1-manifold Σ ⊂ R4 by

Σ = {(x, 0, u′0(x), η(x))},

we have to solve the following geometric problem: Find a 2-submanifold
S ⊂ R4 such that the following conditions are met:

i) S is the graph of a C1 map Ω � (x, y) �→ (ξ = p(x, y), η = q(x, y));

ii) S contains Σ;

iii) F = 0 on S;

iv) HF is tangent to S.

If we can solve this problem, we know that ∂yp = ∂xq in Ω. If Ω is a disc, for
instance (or more generally a star-shaped domain), there will be v ∈ C2(Ω)
with

∂xv = p, ∂yv = q.

For y = 0, we have then

p(x, 0) = (∂xv)(x, 0) = ∂x(v(x, 0)) = u′0(x), (∂yv)(x, 0) = η(x).

Adjusting v by a constant, we obtain our solution u with

u(x, 0) = u0(x), (∂yu)(x, 0) = η(x).

Just as before, condition (iv) implies that integral curves of HF starting
from Σ stay on S. Hence, we take for S the union of all integral curves of
HF starting from Σ. However, we have to be careful about the following
questions:

1. Is S a submanifold?

2. Is S the graph of a C1 couple (p, q)?

3. Does F vanish on S?

Again, the answers to questions 1 and 2 are in general only local:

1. and 2. Let m0 = (x0, 0, u′0(x0), η(x0)) ∈ Σ, and assume ∂ηF (m0) �= 0.
Then HF is not tangent to Σ, hence S is a manifold (see Appendix, A.2);
moreover, by the same argument as in Section 3.1, Tm0S cannot contain a
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vertical vector, hence S is the graph of a C1 map (Again, see Appendix,
Theorem A.14).

3. By construction, F = 0 on Σ, and HFF = 0. Hence, condition (iii) is
satisfied by our choice of S.

We have proved the following theorem:

Theorem 3.8. Let x0 ∈ R and assume that there exists η0 ∈ R such
that, at m0 = (x0, 0, u′0(x0), η0),

F (m0) = 0, ∂ηF (m0) �= 0.

Then there is a C1 real function η near x0 in Rx such that

F (x, 0, u′0(x), η(x)) = 0, η(x0) = η0.

There is a unique solution u ∈ C2 in a neighborhood of (x0, 0) of the
Cauchy problem

F (x, y, ∂xu(x, y), ∂yu(x, y)) = 0, u(x, 0) = u0(x), (∂yu)(x, 0) = η(x).

The graph of ∇u is the union of the integral curves of HF starting from

Σ = {(x, 0, u′0(x), η(x))}.
To complete the proof, it remains for us to observe that the existence

of the function η is an immediate consequence of the implicit function
theorem. An equivalent approach is as follows: Use the implicit function
theorem to rewrite the equation F (x, y, ∂xu, ∂yu) = 0, for (x, y, ∂xu, ∂yu)
in a neighborhood of (x0, 0, u′0(x0), η0) as ∂yu = G(x, y, ∂xu) for some C∞

function G. Theorem 3.8 shows that the Cauchy problem has as many
branches of solutions as the number of roots η0 we can find.

We turn now to the general case of an equation F (x,∇u(x)) = 0 for
x ∈ Rn, where the construction is exactly the same. We write x =
(x1, . . . , xn−1, xn) = (x′, xn) ∈ Rn−1

x′ × Rxn , and we want to solve the
Cauchy problem with data u0 on Σ0 = {xn = 0}, close to (x′0, 0). We
assume that there is a real η0 such that, at m0 = (x′0, 0,∇x′u0(x′0), η0),

F (m0) = 0, ∂ξnF (m0) �= 0.

We thus obtain locally near x′0 a C1 real function η(x′) satisfying

F (x′, 0,∇x′u0(x′), η(x′)) = 0, η(x′0) = η0.

Defining the (n− 1)-submanifold Σ ⊂ Rn
x × Rn by

Σ = {(x′, 0,∇x′u0(x′), η(x′))},
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we take for S the union of all integral curves of HF starting from Σ. Then,
locally near m0, S = {ξ = p(x)} for some

p : Rn
x ⊃ Ω → Rn

ξ

of class C1.

Claim: The functions ωij = ∂jpi − ∂ipj all vanish.

Admitting this claim, we obtain, if Ω is a ball (or more generally a star-
shaped domain), p = ∇u for some u ∈ C2, with the desired properties.
To prove the claim, we establish that the functions ωij satisfy a linear
homogeneous system of ordinary differential equations (ODE) and all vanish
on Σ0:

• Let us write that HF is tangent to S: For all i, HF (ξi − pi(x)) = 0,
which gives

∂iF (x, p(x)) + Σ(∂ξjF )(x, p(x))∂jpi(x) = 0, i = 1, . . . , n.

Differentiating this with respect to xk, we obtain (all derivatives of F
being taken at the point (x, p(x)))

∂2
ikF + Σ(∂2

iξj
F )∂kpj + Σ(∂2

kξj
F )∂jpi

+ Σ(∂2
ξjξl

F )(∂kpl)(∂jpi) + Σ(∂ξjF )∂2
jkpi = 0.

Subtracting the similar equality with i and k exchanged, we get with
X = Σ(∂ξjF )(x, p(x))∂j ,

Xωik + Σ(∂2
iξj
F )ωjk + Σ(∂2

kξj
F )ωij + Σ(∂2

ξjξl
F )(ωlk∂jpi − ωli∂jpk) = 0.

This is our system of ODE.

• By definition of the submanifold Σ,

p(x′, 0) = (∂1u0(x′), . . . , ∂n−1u0(x′), η(x′)).

Differentiating the equation satisfied by η with respect to xi (i < n),

∂iF + Σj<n(∂ξjF )∂2
iju0 + (∂ξnF )∂iη = 0.

Comparing with the above equation HF (ξi−pi) = 0 for xn = 0, we obtain
∂ipn(x′, 0) = ∂npi(x′, 0). Hence all ωij vanish on Σ0, and satisfy the linear
homogeneous system of ODE above. The claim is proved. �
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Example 3.9. Let Σ0 be a smooth curve in the plane and consider the
Cauchy problem

F (x, y, ∂xu, ∂yu) = (∂xu)2 + (∂yu)2 − 1 = 0,

with u = 0 on Σ0. Then

HF = 2ξ∂x + 2η∂y.

The manifold Σ above Σ0 is the collection of unit normals to Σ0, and an
integral curve of HF starting from a point of Σ projects on the normal to
Σ0, the gradient of u being constant along this curve and equal to the unit
normal. Hence u is just the distance to Σ0 locally. Too far away from Σ0,
the distance function can become nonsmooth: for instance, the distance to
a circle ceases being C1 at the center.

Example 3.10. Let

F = ξ2n − (ξ21 + · · · + ξ2n−1) = 0.

To solve the eikonal equation with data u(x′, 0) = ω · x′ (ω being a pa-
rameter), we have two choices:

∂nu = ±|∇x′u|, or ∂nu(x′, 0) = ±|ω|.

The solutions are easily seen to be u(x) = x′ · ω ± xn|ω|.

3.3 Exercises

1. Compute explicitly the solutions of Burgers equation close to the origin
for the data

u0(x) = x2 + bx+ c, u0(x) = (1 + x)−1.

2.(a) Let u0 ∈ C1(R) be a real function vanishing outside [a, b]. Prove that
for all

0 ≤ t < T̄ ≡ (max−u′0)−1,

the map y �→ y + tu0(y) is a strictly increasing bijection of R onto itself.
Deduce from this that there exists a unique C1 solution u of the Cauchy
problem for Burgers equation

∂tu+ u∂xu = 0, u(x, 0) = u0(x), 0 ≤ t < T̄ .

(b) Suppose now u′0 ≥ 0 everywhere. Show that Burgers equation has
then a global unique solution for t ≥ 0.
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3.(a) Consider

u0(x) = −ax+ b
x3

3
, a > 0, b > 0,

and set T̄ = 1/a. Display, according to the three cases 0 ≤ t < T̄ , t = T̄ ,
t > T̄ , the behavior of the function ft(y) = y + tu0(y). Show that there
exists for t ≥ T̄ an increasing function c(t) ≥ 0, with c(T̄ ) = 0, c′(T̄ ) = 0,
such that inside the cusp region

{(x, t), t ≥ T̄ ,−c(t) ≤ x ≤ c(t)},

the equation (in y) y + tu0(y) = x has three solutions:

y1(x, t) ≤ y2(x, t) ≤ y3(x, t).

Note that y3(x, t) is in fact defined in the region

{t < T̄} ∪ {(x, t), t ≥ T̄ , x > −c(t)},

while y1(x, t) is defined in the region

{t < T̄} ∪ {(x, t), t ≥ T̄ , x < c(t)}.

(b) Consider the Cauchy problem for Burgers equation with the initial
data

u0(x) = −ax+ b
x3

3
, a > 0, b > 0

as in 3.(a), and let S be the surface {z = u(x, t)} constructed by the method
of characteristics. Display, according to the values of t, the behavior, for x
close to zero, of the curve

{(x, z), (x, t, z) ∈ S}.

Show that the projection onto the (x, t) plane of the subset of points m
of S where TmS contains vertical vectors is just the cusp {(x, t), t ≥ T̄ ,
x = ±c(t)} from 3.(a).

4. Let u0(x) be 1 for x ≤ −1, −1 for x ≥ 1, and linear in between. Compute
explicitly the solution u of the Cauchy problem for Burgers equation

∂tu+ u∂xu = 0, u(x, 0) = u0(x), 0 ≤ t ≤ 1.

What happens for t = T̄ = 1? Why is this in constrast with the “generic”
case displayed in Exercise 3.(a)?
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5.(a) Let u ∈ C2(R × [0, T [) be a real solution of the Cauchy problem for
Burgers equation

∂tu+ u∂xu = 0, u(x, 0) = u0(x).

Let (x(s) = x0 +su0(x0), s) be the integral curve of ∂t +u∂x starting from
(x0, 0). Show that the function q(s) = (∂xu)(x(s), s) satifies q′ + q2 = 0.
Compute q explicitly. If u′0(x0) < 0, q becomes infinite at s = s(x0) > 0.
Deduce from this that

T ≤ T̄ ≡ (max−u′0)−1.

Taking Exercise 2 into account, we see that for a given u0 ∈ C2 there exists
a C2 solution u of the Cauchy problem exactly in the strip {0 ≤ t < T̄}. The
number T̄ is called the lifespan of the smooth solution. In the sequence
we assume T = T̄ .

(b) Show that the points x of {t = T̄} where ∂xu blows up are exactly
the critical values of the function

y �→ y + T̄ u0(y).

Deduce from Sard’s theorem that they form a set of measure zero.

(c) Let xm be a minimum of u′0 with u′0(xm) < 0. Let (x(t), t) be the char-
acteristic starting from (xm, 0), and M0 = (x(s(xm)), s(xm)). Prove that
in a neighborhood of M0 in {t ≤ T̄ }, ∂xu is negative and max |(∂xu)(., t)| =
(T̄ − t)−1.

(d) Using for t < T̄ the formula u(y + tu0(y), t) = u0(y) for the solution
u, prove that ∫

|∂xu(x, t)|dx =
∫

|u′0(x)|dx.

6.(a) Let
a : Ru → Rn, a(u) = (a1(u), . . . , an(u))

be a C2 function, and fix u0 ∈ C1(Rn
x), a bounded real function. Define

Ψt : Rn → Rn, Ψt(y) = y + ta(u0(y)).

Compute the differential Dx0Ψt. Define T̄ by

T̄−1 = max−Σa′i(u0(y))(∂iu0)(y).

Show that if t < T̄ this differential is invertible. Using Hadamard’s
Theorem, prove that Ψt is a global diffeomorphism from Rn onto itself.



38 Chapter 3 Nonlinear First Order Equations

(b) Let u ∈ C2(Rn
x × [0, T [) be a real solution of the quasilinear Cauchy

problem
∂tu+ Σai(u)∂iu = 0, u(x, 0) = u0(x).

Show that the integral curve of ∂t + Σai(u)∂i starting from (x0, 0) is

t �→ (x(t), t), x(t) = x0 + ta(u0(x0)).

Set d = Σ∂i(ai(u)). Prove that

(∂t + Σai(u)∂i)d+ d2 = 0.

Deduce from this that T ≤ T̄ .

(c) Assume now that the maximum defining (T̄ )−1 is attained at some
point x0. Deduce from (a) and (b) that there exists a solution u of the
Cauchy problem in the strip 0 ≤ t < T̄ , with u(Ψt(y), t) = u0(y), and that
d becomes infinite at the point m0 = ΨT̄ (x0).

(d) Let n = 2 for simplicity. Show that there exists a nonzero vector field
X with no t component such that Xu is bounded near m0 (in other words,
not all components of ∇u blow up).

7.(a) Let u ∈ C2 be a real solution of the Cauchy problem for Burgers
equation

∂tu+ u∂xu = 0, u(x, 0) = u0(x).

The time at which ∂xu blows up along the characteristic starting from x0 is
s(x0) = −1/u′0(x0) (see Exercise 5.(a)). Assuming u′0(x0) < 0, u′′0(x0) �= 0,
describe the set

γ = {(x, t), x = y + s(y)u0(y), t = s(y)}

for y close to x0. Show that γ is a smooth curve, and an envelope of the
characteristics.

(b) Assume now

u′0(x0) < 0, u′′0(x0) = 0, u′′′0 (x0) > 0.

Describe the set γ and show that it is the envelope of the characteristics.
Prove that γ is the boundary of the cusp region discussed in Exercise 3.

8. Let u ∈ C3 be a real solution of Burgers equation for 0 ≤ t < T̄ ≡
(max(−u′0))−1. Compute explicitly the function

r(t) = (∂2
xu)(x0 + tu0(x0), t), t < T̄ .

What is the blowup rate of ∂2
xu when t→ T̄?
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9. Consider the scalar equation

∂tu+ a(u)∂xu = 0,

where a ∈ C∞(R) and u ∈ C1 are real. Prove that one can reduce the
above to Burgers equation by setting v = a(u). In particular, compute the
blowup time T̄ for a given real initial data u(x, 0) = u0(x), u0 ∈ C1

0 .

10. Let u ∈ C1(Rx × [0, T [) be a real solution of the equation

∂tu+ a(x, t, u)∂xu = f(u),

where a and f are C∞ and real, f(0) = 0. Assume that u0(x) = u(x, 0)
vanishes outside [a, b]. What can be said about the support of u?

11. Consider the Cauchy problem in the plane

∂tu+ u∂xu = u2, u(x, 0) = u0(x),

where u0 ∈ C2
0 (R) is real and not identically zero.

(a) Show the inequalities max(u0 − u′0) > 0, max(u0 − u′0) ≥ maxu0.
Prove that if there is x0 where

u0(x0) = maxu0 > 0, u′′0(x0) < 0,

then max(u0 − u′0) > maxu0.

(b) Use the method of characteristics to solve the equation. Prove that a
C2 solution u exists for

0 ≤ t < T̄ ≡ (max(u0 − u′0))
−1.

(c) Let u ∈ C2(R × [0, T [) be a solution of the Cauchy problem. Denote
by (x(t), t) the characteristic starting from (x0, 0) and q(t) = (∂xu)(x(t), t).
Establish the ODE satisfied by q, and compute q explicitly. Deduce from
this that T ≤ T̄ (hence, as in Exercise 5, T̄ is the lifespan).

12.(a) Let F (x, ξ) (x ∈ Rn, ξ ∈ Rn) be C∞, real, and (positively)
homogeneous with respect to ξ. Show that a C1 solution u of the eikonal
equation F (x,∇u) = 0 is constant along the characteristics.

(b) Let S ⊂ Rn be a (n− 1)-submanifold defined by an equation {f = 0}
(with ∇f �= 0). Assume F as in (a) and also

x ∈ S ⇒ F (x,∇f(x)) = 0.

(If F happens to be the symbol of a differential operator P , we say that the
surface S is characteristic for P .) Show that an integral curve (x(s), ξ(s))
of HF with x(0) ∈ S, ξ(0) = ∇f(x(0)), satisfies

x(s) ∈ S, ξ(s) = ∇f(x(s)).
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13.(a) Consider the Cauchy problem in the plane

G(x, t, ∂xφ, ∂tφ) ≡ ∂tφ− F (x, t, ∂xφ) = 0, φ(x, 0) = φ0(x).

Compute HG and explain how the graph S̃ ⊂ R4 of ∇φ is constructed by
the method of characteristics.

(b) Set ψ = ∂xφ. What is the new Cauchy problem for ψ corresponding
to that for φ? Suppose the Cauchy problem for ψ is solved by the method
of characteristics using a field V (see Section 3.1) and let S ∈ R3 be the
graph of ψ. Explain how the solution φ can be recovered from ψ. Show
that S is the projection of S̃ and V the projection of HG.

3.4 Notes

The material in this chapter can be found in many places, for instance
Courant-Hilbert [8], Evans [9], John [12], Taylor [23], and Vainberg [24].
We concentrated on smooth solutions of the Cauchy problem, with no
attempt to discuss nonsmooth solutions or other boundary value prob-
lems for Hamiton–Jacobi equations. Some hints about blowup of smooth
solutions are given in the Exercises.



Chapter 4

Conservation Laws in
One-Space Dimension

4.1 First Definitions and Examples

Definition 4.1. Conservation laws in the plane R2
x,t are special nonlinear

systems in divergence form

∂tu+ ∂x(F (u)) = 0.

Here, (x, t) ∈ R2 are the coordinates in the plane, u : R2 ⊃ Ω → RN is
an unknown vector function, and F : RN → RN is a C∞ given function.

If u ∈ C1, the system can be equivalently written as

∂tu+ F ′(u)∂xu = 0,

and this is a quasilinear system on u. In accordance with the assumptions
we made in Chapters 2 and 3, we will always assume that the N×N matrix
A(u) = F ′(u) has real and distinct eigenvalues

λ1(u) < · · · < λN (u),

with right and left eigenvectors rj(u), �j(u):

A(u)rj(u) = λj(u)rj(u), t�j(u)A(u) = λj(u)t�j(u).

We say that we have a stricly hyperbolic system of conservation laws.
In the sequence, all systems will be assumed to be strictly hyperbolic.

S. Alinhac, Hyperbolic Partial Differential Equations, Universitext,  
DOI 10.1007/978-0-387-87823-2_4, © Springer Science+Business Media, LLC 2009 
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The simplest example is Burgers equation, written as

∂tu+ ∂x

(
u2

2

)
= 0.

The next example in simplicity is the so-called p-system: consider a
nonlinear second order equation in the plane of the form

∂2
t φ− ∂x[p(∂xφ)] = 0,

where p : R → R is given and φ is real. Transforming it into a first order
system, we set

u1 = ∂xφ, u2 = ∂tφ.

We thus obtain the p-system

∂tu1 − ∂xu2 = 0, ∂tu2 − ∂x[p(u1)] = 0.

This system is stricly hyperbolic if p′ > 0.

A physical example is given by the complete Euler system:

∂tρ+ ∂x(ρu) = 0, ∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t[ρ(u2/2 + e)] + ∂x[ρu(u2/2 + e+ p/ρ)] = 0.

Here ρ > 0 is the density of the fluid, u ∈ R is its velocity, p its pressure,
and e its internal energy. The function e = e(ρ, p) is known from physical
considerations about the nature of the fluid, thus (ρ, u, p) are the unknowns
of this 3 × 3 system.

We remark that the systems that we consider here, being written in diver-
gence form, that is, with the derivatives before the nonlinear terms, admit
interesting (continuous or not) solutions that are not C1. We first display
examples of such solutions.

4.2 Examples of Singular Solutions

4.2.1. Shocks
Let γ = {(x, t), x = φ(t)} be a C1 curve, and ur and ul be C1 functions
respectively for x ≥ φ(t) and x ≤ φ(t). The function u defined (almost
everywhere) to be ur for x > φ(t) and ul for x < φ(t), discontinuous across
the shock curve γ, is called a shock. The following theorem characterizes the
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shocks that are solutions, in the sense of distribution theory, of a given sys-
tem of conservation laws. For people not familiar with distribution theory,
the theorem can be admitted and used as a definition of a shock solution.

Theorem 4.2 (Rankine–Hugoniot relation). A shock u is a solution
(in the sense of distribution theory) of the system of conservation laws

∂tu+ ∂x(F (u)) = 0

if and only if

i) ur and ul are solutions of the system on either side;

ii) the Rankine–Hugoniot relation

[F (ur) − F (ul)](φ(t), t) = φ′(t)[ur − ul](φ(t), t)

holds on γ (ur and ul being the corresponding right and left limits).

Proof: To prove the theorem without relying too much on distribution
theory, we approximate u and F (u) as follows:

uε = ũrHε(x− φ(t)) + ũlHε(−(x− φ(t))),
Fε = F (ũr)Hε(x− φ(t)) + F (ũl)Hε(−(x− φ(t))).

Here, ũr and ũl are C1 extensions of ur and ul beyond γ; Hε(s) is an
approximation of the Heaviside function H , defined by

Hε(s) =
1
2

(
1 +K

(s
ε

))
,

K being an odd C∞ increasing function with limits ±1 at s = ±∞. Thus
H ′

ε is an even function converging to the Dirac mass δ as ε → 0. In the
sense of distributions,

uε → u, Fε → F (u),

hence ∂tuε → ∂tu, ∂xFε → ∂xF (u). Now, in the classical sense,

∂tuε =(∂tũr)Hε(x− φ(t)) + (∂tũl)Hε(−(x− φ(t))) − φ′(t)H ′
ε(ũr − ũl),

∂xFε =(∂xF (ũr))Hε(x− φ(t)) + (∂xF (ũl))Hε(−(x− φ(t)))
+H ′

ε(F (ũr) − F (ũl)).

Hence, in the sense of distributions,

∂tuε +∂xFε → ∂tu+∂x(F (u)) = δ(x−φ(t))[F (ur)−F (ul)−φ′(t)(ur −ul)],

which proves the theorem. �
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4.2.2. Examples for Burgers Equation

For Burgers equation

∂tu+ ∂x

(
u2

2

)
= 0,

the Rankine–Hugoniot relation simply reads φ′(t) = 1
2 (ur + ul)(φ(t), t).

Example 4.3. Take φ(t) = t/2, ur ≡ 0 and ul ≡ 1: this is a piecewise
constant shock solution. The shock front x = t/2 moves to the right with
speed 1/2; the speed ul to the left is greater than the shock speed, which
is in turn greater than the speed ur to the right. It is like a breaking wave.
Such a shock is called a compressive shock.

Example 4.4. Take now φ(t) = t/2, ur ≡ 1, and ul ≡ 0; this is again
a piecewise constant shock solution. But now, the speed to the right is
greater than the shock speed: the particles move away from the shock.

We will see below in this chapter that compressive shocks are physically
(and mathematically ) admissible, while “rarefaction shocks” as in example
4.4 are not admissible.

4.2.3. Rarefaction waves We give only one example for Burgers equa-
tion and will come back to the subject in Section 4.4 for general systems.
Consider the function u(x, t) which is 0 for x ≤ 0, 1 for x ≥ t, and x/t in
between. This is a continuous function for t > 0, and

∂t

(x
t

)
+
(x
t

)
∂x

(x
t

)
= − x

t2
+
x

t2
= 0,

which proves that u is a solution of Burgers equation, called a (centered)
rarefaction wave.

We remark that the Cauchy data for this solution u (the Heaviside
function) are the same as for the shock solution of Example 4.4 above:
We thus have two solutions of Burgers equation with the same Cauchy
data; this is an embarrassing mistake. We will see later for what reasons
we will discard the bad shock of Example 4.4, and keep the rarefaction wave
u as the admissible solution for these data.

4.3 Simple Waves

In this section and Sections 4.4 and 4.5 only, we enlarge the discussion to
general quasilinear systems of the form

∂tu+A(u)∂xu = 0,
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where A(u) is an N ×N matrix depending smoothly on u. We assume as
before that A has real and distinct eigenvalues

λ1(u) < · · · < λN (u),

with corresponding right and left eigenvectors rj(u), �j(u) (j = 1, . . . , N).

Definition 4.5. A C1 simple wave in Ω ⊂ R2
x,t is a solution u of the

system of the form

u(x, t) = U(ψ(x, t)),

where U : R ⊃ I → RN is a C1 curve defined on some real interval and
ψ : Ω → I is a C1 function.

In other words, a simple wave solution has its values on a curve (the
image of U). It can be thought of as an intermediate case between constant
solutions (values at one point) and general solutions (values on a 2-surface
of RN)). Since both U and ψ are C1,

∂tu = U ′(ψ)∂tψ, ∂xu = U ′(ψ)∂xψ,

∂tu+A(u)∂xu = [∂tψ +A(u)∂xψ]U ′(ψ).

For u to be a solution of the system, it is enough (and almost necessary)
to take, for some j,

U ′(s) = rj(U(s)), ∂tψ + λj(U(ψ))∂xψ = 0.

We take these relations as the definition of a j-simple wave.

What we have gained is this: We obtain a solution of the system by
computing an integral curve of rj (that is, solving a system of ODE) and
solving a scalar equation for ψ. From this construction, we obtainN families
of simple waves, one for each mode λj . Note that for a scalar equation, all
waves are simple.

Example 4.6. Consider a 2-system in diagonal form

∂tu1 + λ1(u)∂xu1 = 0, ∂tu2 + λ2(u)∂xu2 = 0.

Here, the matrix A is diagonal, the rj form the standard basis of R2.
A 1-simple wave means that u2 is a constant, a 2-simple wave that u1 is a
constant.
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4.4 Rarefaction Waves

The structure of the rarefaction solution of Burgers equation given in
Section 4.2 may seem very special, but strikingly enough, we will show
how to construct such solutions for general systems!

Definition 4.7. A (centered) rarefaction wave is a solution of the system

∂tu+A(u)∂xu = 0

with the following structure:

i) For some sl < sr, the solution u is constant with value ul ∈ RN for
x ≤ slt, constant with value ur ∈ RN for x ≥ srt,

ii) The exists U ∈ C1([sl, sr],RN) with U(sl) = ul, U(sr) = ur, such
that for slt ≤ x ≤ srt,

u(x, t) = U(x/t).

From the definition, we see that a rarefaction wave is a special case of
simple wave (though not quite C1), with ψ = x/t. For u to be a j-simple
wave, the function ψ(x, t) = x/t has to satisfy

∂tψ + λj(U(ψ))∂xψ = 0;

that is, λj(U(s)) = s, and in particular, λj(ul) = sl, λj(ur) = sr.
This leads us naturally to a new definition.

Definition 4.8. The eigenvalue λj(u) is genuinely nonlinear if

rj(u) · ∇λj(u) �= 0.

In this case, rj is said to be normalized if it is chosen so that

rj(u) · ∇λj(u) ≡ 1.

The eigenvalue λj is linearly degenerate if

rj(u) · ∇λj(u) ≡ 0.

For instance, for the Burgers equation, r1(u) = 1, r1∇λ1 = 1. In the case
of the 2-system in diagonal form considered in Section 4.3, λ1 is genuinely
nonlinear if and only if ∂1λ1 �= 0.
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The following theorem gives the existence of rarefaction waves.

Theorem 4.9. Assume that, for some j, λj is genuinely nonlinear, and
let rj be the corresponding normalized eigenvector. Let ul be a given con-
stant state in RN , and define sl = λj(ul), and U by

U ′(s) = rj(U(s)), U(sl) = ul.

For some sr > sl, set ur = U(sr). Then the function u, which is ul

for x ≤ slt, ur for x ≥ srt, and U(x/t) in between, is a rarefaction wave
solution of the given system.

To prove the theorem, it is enough to note that λj(U(s)) ≡ s, since there
is equality for s = sl and

d

ds
[λj(U(s))] = U ′(s) · ∇λj(U(s)) = (rj · ∇λj)(U(s)) ≡ 1. �

We say that we have connected the constant state ur to ul by a
j-rarefaction wave. Note that this is possible only if ur belongs to the
half-integral curve of rj through ul indicated by the direction of rj . We call
this half-curve the j-rarefaction curve from ul.

4.5 Riemann Invariants

Consider a quasilinear strictly hyperbolic system ∂tu + A(u)∂xu = 0 as in
Section 4.3.

Definition 4.10. A j-Riemann invariant is a C1 real function R on
Ω ⊂ RN

u such that
rj(u) · ∇R(u) ≡ 0.

In other words, the function R is constant along the integral curves of
rj . One striking application of this concept is the diagonalization of 2 × 2
systems.

Theorem 4.11. Consider a quasilinear 2 × 2 system, and let R1(u) and
R2(u) be 1- and 2-Riemann invariants defined on Ω ⊂ R2. Assume that

K : (u1, u2) �→ (v1 = R1(u), v2 = R2(u))

is a diffeomorphism from Ω onto Ω′. Then, for a C1 function u with values
in Ω, the system ∂tu+A(u)∂xu = 0 is equivalent to the diagonal system

∂tv1 + λ̄2(v)∂xv1 = 0, ∂tv2 + λ̄1(v)∂xv2 = 0,
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where
λ̄j(v) = λj(K−1v).

To prove this, remember that t�jrk = 0 when j �= k. Hence ∇R2, which
is orthogonal to r2, is colinear to �1 (this is where the crucial assumption
N = 2 comes in!). Multiplying the system to the left by t∇R2, we obtain

t∇R2∂tu+ λ1
t∇R2∂xu = ∂tR2 + λ1∂xR2 = 0,

since ∂R2 = t∇R2∂u. Proceeding similarly with R1, we prove the
theorem. �

Note the curious crossing of indices. The assumption that K be a diffeo-
morphism is not unrealistic: in fact, the differential DuK is a 2× 2-matrix
with lines respectively proportional to �2 and �1; hence DuK is invertible,
and K is at least a local diffeomorphism.

4.6 Shock Curves

For Burgers equation it is easy to construct a shock solution: One can fix
arbitrary constant states ul ∈ R and ur ∈ R and separate them by a line
x = φ(t) with φ′(t) = 1

2 (ul + ur). More generally, one can fix arbitrary
C1 solutions ul and ur and separate them by a curve x = φ(t) solving the
differential equation

φ′(t) =
1
2
(ul + ur)(φ(t), t).

To construct shock solutions for a strictly hyperbolic system of conserva-
tion laws ∂tu + ∂x(F (u)) = 0, it is important to notice that the Rankine–
Hugoniot relation is a vector relation in RN . We will restrict ourselves
to piecewise constant shocks, that is, solutions where two constant states
(ul, ur) are separated by a line x = st. Fixing the constant state ul ∈ RN ,
we look for ur ∈ RN and s ∈ R such that

F (ur) − F (ul) = s(ur − ul).

Theorem 4.12. Let ul ∈ RN be given. For each j = 1, . . . , N , there
exists, for ε close to zero, a C∞ curve

ε �→ (ur(ε), s(ε)) ∈ RN
u × R
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satisfying
F (ur(ε)) − F (ul) = s(ε)(ur(ε) − ul),

and such that

ur(ε) = ul + εrj(ul) +O(ε2), s(ε) = λj(ul) +O(ε).

We call this curve the j-shock curve through ul.

Proof: The problem we have to solve is a purely algebraic problem, for
which we cannot use the implicit function theorem, since we know (or sus-
pect) that there are N families of solutions. To prepare for the use of the
implicit function theorem, we rephrase the problem as follows:

Step 1. Define

A(u, v) =
∫ 1

0

F ′(tu+ (1 − t)v)dt, A(u, v) = A(v, u), A(u, u) = F ′(u),

so that
F (u) − F (v) = A(u, v)(u − v),

and the Rankine–Hugoniot relation looks now like an eigenvalue problem:

A(ur, ul)(ur − ul) = s(ur − ul).

(If A were a constant matrix, this really would be an eigenvalue problem!)
For u and v close to ul (which we assume from now on), the matrix A(u, v)
is close to A(ul), hence its eigenvalues

λ1(u, v) < · · · < λN (u, v)

are real and distinct. The corresponding right and left eigenvectors are
denoted by rj(u, v) and �j(u, v) as usual. The Rankine–Hugoniot relation
can be equivalently rewritten as

∀k, [t�k(ur, ul)(ur − ul)](λk(ur, ul) − s) = 0.

We now fix j (recall that ul is already fixed). Define Φ : RN → RN−1 by

Φ(ur) =
[
t�1(ur, ul)(ur − ul), . . . , t�N(ur, ul)(ur − ul)

]
,

where the term with index j has been omitted. If ur satisfies Φ(ur) = 0, the
choice s = λj(ur, ul) provides a solution of the Rankine–Hugoniot relation.
We have thus eliminated the unknown s.

Step 2. To solve Φ(ur) = 0, we use the implicit function theorem: split
the variables ur as

ur = (x, v), x = (ur)1, v = ((ur)2, . . . , (ur)N ),
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and think of Φ as a function of (x, v). For ur = ul, Φ = 0. Assuming for
simpicity j = 1, we see that the partial derivative (∂vΦ)(ul) is represented
by the (N − 1) × (N − 1) matrix that is formed by the lines

t�2(ul, ul), . . . , t�N (ul, ul),

with the first column discarded. Since these lines are independent, some
(N − 1) × (N − 1) minor has to be invertible, we can as well assume that
it is ∂vΦ. Hence we obtain, for x close to (ul)1, a curve v = v(x) with

Φ(x, v(x)) = 0.

Setting ε = x − (ul)1, and differentiating Φ with respect to ε yields, for
ε = 0,

t�k(ul, ul)u′r = 0, k �= j.

Hence u′r is colinear to rj(ul), which gives the theorem. �

If the eigenvalue λj is genuinely nonlinear, we can improve the theorem
as follows.

Theorem 4.13. Assume λj to be genuinely nonlinear, and the corre-
sponding rj normalized. Then the j-shock curve can be parametrized to
satisfy

ur(ε) = ul + εrj(ul) +O(ε2), s(ε) = λj(ul) +
ε

2
+O(ε2).

Proof: From s = λj(ur(ε), ul), we obtain s′(0) = ∂1λj(ul, ul)u′r(0). On the
other hand, since λj(u, v) = λj(v, u), then ∂1λj(u, u) = ∂2λj(u, u). Since
λj(u, u) = λj(u), then ∂uλj(u) = 2∂1λj(u, u). If we choose to parametrize
the shock curve in such a way that u′r(0) is the normalized eigenvector
rj(ul), we obtain the claim. �

Corollary 4.14. Assume the same hypothesis as in Theorem 4.13. Then

s(ε) =
1
2
[λj(ul) + λj(ur)] +O(ε).

In particular, if λj(ul) �= λj(ur), s is different from λj(ul) and from
λj(ur).

This is immediate, since λj(ur) = λj(ul) + ε+O(ε2).

4.7 Lax Conditions and Admissible Shocks

In the previous section, we have constructed (small) shock solutions to a
strictly hyperbolic system of conservation laws. Which of these solutions
are admissible shocks?
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Definition 4.15. A (small amplitude) j-shock solution (ul, ur, s) is said
to satisfy the Lax conditions if

λj(ul) > s > λj(ur).

We will consider as admissible only the shocks satisfying the Lax condi-
tions. This will be justified by two different types of arguments: a stability
argument, which we give below, and an entropy argument, which will be
explained in Section 4.10.

In view of Corollary 4.14, an admissible shock for a genuinely nonlinear
eigenvalue λj is (ul, ur(ε)) with ε < 0: ur has to be on the correspond-
ing half-curve through ul. Note that, for the same mode j, the (half)-
rarefaction curve and the (half)-shock curve through ul match to form a
C1 curve, representing the states ur which can be connected to ul by either
a rarefaction wave or a shock wave. We call this curve the j-solution curve
through ul.

Theorem 4.16. Let (ūl, ūr, s̄) be a constant states shock solution to the
scalar equation (N = 1)

∂tu+ ∂x(F (u)) = 0.

If this solution is linearly stable, then it satisfies the Lax conditions.

Proof: First, let us explain what “lineary stable” means. Consider the
solution ū as being ūl for x < s̄t, ūr for x > s̄t. To test stability, the idea
is to solve the Cauchy problem for modified initial data ul = ūl + u̇0

l (for
x < 0) and ur = ūr + u̇0

r (for x > 0), where u̇0
l and u̇0

r are small. One
expects the solution u again to be a shock, with a shock curve x = φ(t)
starting from (0, 0), close to x = s̄t, separating states ur and ul close to
ūr and ūl. However, since ur and ul are defined in the variable domains
x > φ(t) and x < φ(t), it is not clear how to define “stability.”

To this aim, we transform the problem into a problem where the various
unknown functions are defined on fixed domains. We perform the change
of variables

X = x− φ(t), T = t, vr(X,T ) = ur(x, t), vl(X,T ) = ul(x, t).

A shock solution (ul, ur, x = φ(t)) is tranformed into a solution of the
system

∂T vl + (F ′(vl) − φ′(T ))∂Xvl = 0, X < 0,
∂T vr + (F ′(vr) − φ′(T ))∂Xvr = 0, X > 0,

F (vr) − F (vl) = φ′(T )(vr − vl), X = 0,
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with the same initial data. The first two equations are the transformed
of the equations on ul and ur, respectively, while the third is just the
Rankine–Hugoniot relation. Suppose that a solution

(vl = v̄l + v̇l, vr = v̄r + v̇r, φ(T ) = s̄T + φ̇)

of this new system is closed to the constant states solution (v̄l = ūl,
v̄r = ūr, φ̄ = s̄T ), that is, v̇l, v̇r, φ̇ have magnitude ε. We have then

∂T v̇l + (F ′(v̄l) − s̄)∂X v̇l = q−, X < 0,
∂T v̇r + (F ′(v̄r) − s̄)∂X v̇r = q+, X > 0,

F ′(v̄r)v̇r − F ′(v̄l)v̇l = φ̇′(v̄r − v̄l) + s̄(v̇r − v̇l) + q0, X = 0,

where the q+, q−, and q0 stand for quantities of magnitude ε2. The system
defined by the lefthand sides of the above equations is called the “linearized
system on (v̄l, v̄r, φ̄).” “Linear stability” means that the linearized system is
well-posed, that is, it possesses a unique solution (v̇l, v̇r, φ̇) for all righthand
sides q+, q−, q0, and initial data (v̇0

l , v̇
0
r).

In the present case, the uniqueness of the solution for the first linearized
equation requires

F ′(v̄l) − s̄ ≥ 0,

while uniqueness for the second linearized equation requires

F ′(v̄r) − s̄ ≤ 0.

To have v̇l and v̇r well-defined on X = 0 for T > 0, we need strict
inequalities, and these are exactly the Lax conditions. �

4.8 Contact Discontinuities

In dealing with rarefaction waves and shock solutions to strictly hyperbolic
systems of conservation laws, we have emphasized the case of genuinely
nonlinear eigenvalues. Linearly degenerate eigenvalues, however, exist
in natural situations, such as the Euler equations, for example
(see Exercise 4). We now briefly discuss this case.

Theorem 4.17. Let λj be a linearly degenerate eigenvalue and let the
constant states ur, ul belong to the same integral curve of rj . Then λj(ul) =
λj(ur) ≡ λ, and the function u = ul for x ≤ λt and u = ur for x ≥ λt is a
shock solution.

Proof: Let u(s) be the integral curve of rj through the given state ul: by
definition, λj is constant along this curve, with value say λ. We claim
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that F (u(s)) − λu(s) is a constant; In fact, its derivative with respect
to s is

F ′(u(s))rj(u(s)) − λj(u(s))rj(u(s)) ≡ 0.

If ur belongs to the integral curve of rj through ul, the constant states
function u which is ul for x < λt and ur for x > λt is a solution of our
system, since

F (ur) − λur = F (ul) − λul,

which is the Rankine–Hugoniot relation. In other words, the j-solution
curve in this case is just the full integral curve of rj through ul. �

Note that u can be viewed either as a shock solution for which λj(ul) =
λj(ur) (in sharp contrast with the genuinely nonlinear case!), or as a rar-
efaction wave for which the fan between x = slt and x = srt is reduced to
one line.

4.9 Riemann Problem

The Riemann problem is the Cauchy problem

∂tu+ ∂x(F (u)) = 0, u(x, 0) = u0(x),

where u0 is a constant state ul ∈ RN for x < 0 and a constant state
ur ∈ RN for x > 0. The reasons for studying this particular problem
derive from its model character (one expects the solution corresponding to
general data with some discontinuity to behave analogously), and from its
importance in the theory of finite difference schemes. From Sections 4.4,
4.6, 4.7, and 4.8, we only know how to solve this problem if ur belongs
to some j-solution curve through ul, λj being either genuinely nonlinear or
linearly degenerate.

Theorem 4.18. Assume that all eigenvalues of the system are either
genuinely nonlinear or linearly degenerate. Then, for all ul, there exists
η > 0 such that we can solve the Riemann problem for all initial data
(ul, ur) with |ul − ur| ≤ η.

Proof: To solve the general Riemann problem, fix ul and define in a
neighborhood V of the origin in RN

ε the function

V � ε �→ Φ(ε1, . . . , εN ) ∈ RN

as follows: Let u1 be the point of parameter ε1 on the 1-solution curve
through u0 = ul, u2 be the point of parameter ε2 on the 2-solution curve
through u1, and so on until we reach uN = Φ(ε1, . . . , εN ). Note that Φ(0) =
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ul. Assume that D0Φ is invertible: then Φ is a local diffeomorphism, and all
ur sufficiently close to ul can be connected to ul by a broken solution curve
corresponding to some ε. This broken curve is “coding” for a true solution
u of the Riemann problem: u is obtained simply by placing one next to
the other, from left to right, the solution patterns corresponding to the
situation “uk is the point of parameter εk on the k-solution curve through
uk−1.” For instance, if N = 3, all eigenvalues are genuinely nonlinear and
ε1 < 0, ε2 > 0, ε3 < 0, the solution u is the juxtaposition, from left to right,
of a 1-shock separating ul and u1, a 2-rarefaction connecting u1 to u2, and
a 3-shock separating u2 from ur.

To prove that D0Φ is invertible, we remember that its columns are
(∂ε1Φ(0), . . . , ∂εN Φ(0)). Since Φ(0, . . . , 0, εk, 0, . . . , 0) is just the point of
parameter εk on the k-solution curve through ul,

∂εk
Φ(0) = rk(ul).

The eigenvectors rk being independent, the claim is proved. �

The case of a linear system (with A a constant matrix) corresponds to
all eigenvalues linearly degenerate; all discontinuities are contact
discontinuities.

4.10 Viscosity and Entropy

Another approach to admissible solutions of conservation laws is based on
physical considerations: the system of conservation laws

∂tu+ ∂x(F (u)) = 0

is viewed as an approximation of a better system, supposedly closer to
reality,

∂tu+ ∂x(F (u)) = ε∂2
xu,

as the “viscosity” ε > 0 goes to zero. This terminology comes from the case
of compressible fluids governed by the complete Euler system with viscosity.
One could of course consider that this better system is the only one we
should study, but we will not follow this orientation. We ask instead the
following question: Suppose there exists a sequence uε of solutions of the
better system that converge to u in such a way that u is a solution to our
system of conservation laws. Does u enjoy any special “physical” property
to distinguish it from any other solution of the system?

The answer is yes.
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4.10.1 Entropy

To display the special features (or at least some special features) of these
“physical solutions,” we need a new concept.

Definition 4.19. Let (q, g) be a pair of real C1 functions on Ω ⊂ RN
u .

We say that q is an entropy, with entropy flux g, for the system

∂tu+ ∂x(F (u)) = 0

if, identically on Ω,
t∇q(u)F ′(u) = t∇g(u).

The idea underlying this definition is to find additional scalar conservation
equations for C1 solutions of the system. In fact, for all u ∈ C1 we have
the identity

∂t(q(u))+∂x(g(u)) = [−t∇q(u)F ′(u)+t∇g(u)](∂xu)+t∇q(u)[∂tu+∂x(F (u))].

For a scalar conservation law N = 1, q can be chosen arbitrarily and then
g follows by integration. For a 2-system, equality of the cross derivatives
of g yields one condition on q, which is a second order PDE on q; If we
can find a solution q of this PDE, then g follows (locally) by integration
(see Exercise 12). In general, however, q has to satisfy too many equations
in order for tF ′(u)∇q to be the gradient of some function, and there are no
such pairs (q, g).

What is the point of the concept if no such objects exist? The point is
that for physical systems of interest special symmetries of the system allow
q to exist. This is the case for instance for the Euler system, and that is
where the name “entropy” comes from (see Exercise 4).

4.10.2 Limits of Viscosity Solutions

The following theorem is the answer to the question asked in the introduc-
tion of this section.

Theorem 4.20. Suppose that there exists a sequence uε ∈ C2(Ω) of
solutions of

∂tuε + ∂x(F (uε)) = ε∂2
xuε,

such that

i) for some M , |uε(x, t)| ≤M ;
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ii) for some u, uε → u almost everywhere in Ω.

Then if (q, g) is a pair entropy/entropy flux with q convex,

∂t(q(u)) + ∂x(g(u)) ≤ 0.

This last inequality means that the distribution defined by the lefthand
side is in fact a negative measure (this sounds terrible, but we will see below
examples of how this works in practice for simple patterns). To prove
the theorem, note that, thanks to the Lebesgue dominated convergence
theorem,

∂t(q(u)) + ∂x(g(u))

is the limit, in the sense of distributions, of Qε ≡ ∂t(q(uε)) + ∂x(g(uε)).
By the algebraic relation on (q, g), Qε = εt∇q(uε)∂2

xuε. Now ∂x(q(uε)) =
t∇q(uε)∂xuε,

∂2
x(q(uε)) = t∇q(uε)∂2

xuε + t(∂xuε)q′′(uε)(∂xuε).

The convexity of q precisely means that q′′ is nonnegative; hence
Qε ≤ ε∂2

x(q(uε)). Since the righthand side above goes to zero with ε in
the distribution sense, the theorem is proved. �

It seems here that some heuristic explanation is needed to really
understand the point of this proof: If u is a shock, the solutions uε realize a
smooth transition from ul to ur in an interval of size roughly ε
(see Exercise 14). Hence a derivative of uε of order k is likely to have
magnitude ε−k. The terms manipulated in the above proof are thus highly
singular in ε.

4.10.3 Application to the Case of a Shock

If u is a shock with states ul and ur separated by a shock curve x = φ(t),
the same computation as given in Section 4.1 for the proof of the Rankine–
Hugoniot relation yields

∂t(q(u)) + ∂x(g(u)) = δ(x − φ(t))[g(ur) − g(ul) − φ′(q(ur) − q(ul))].

Hence, in this case, the negative measure condition of Theorem 4.20 sim-
ply means

g(ur) − g(ul) ≤ φ′(q(ur) − q(ul)).
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Let us consider for instance Burgers equation: We can choose

q(u) =
u2

2
, g(u) =

u3

3
.

Since φ′ = (ur + ul)/2, the condition reads

(ur − ul)
[
u2

r + urul + u2
l

3
− (ur + ul)2

4

]
≤ 0,

that is (ur − ul)3/12 ≤ 0, hence ur ≤ ul, which is the Lax condition.

More generally, we have the following theorem.

Theorem 4.21. Let ∂tu+∂x(F (u)) = 0 be a system of conservation laws,
λj be a genuinely nonlinear eigenvalue, and u(ε) a j-shock curve throught
the constant state ul, namely,

u(ε) = ul + εrj(ul) +O(ε2), s(ε) = λj(ul) +
ε

2
+O(ε2).

If (q, g) is a pair entropy/entropy flux, then

g(u(ε))−g(ul)−s(ε)[q(u(ε))−q(ul)] =
ε3

12
[trj(ul)q′′(ul)rj(ul)]+O(ε4), ε→ 0.

If q is strictly convex, admissible shocks for q correspond to ε < 0, that
is, they satisfy the Lax conditions.

Proof: Set

δ(ε) = g(u(ε)) − g(ul) − s(ε)[q(u(ε)) − q(ul)].

Taking the derivative with respect to ε of the Rankine–Hugoniot relation,
we obtain

[F ′(u(ε)) − s(ε)]u′(ε) = s′(ε)(u(ε) − ul).

Then, using the definition of the pair (q, g) and Taylor formula,

δ′(ε) = t∇q(u(ε))[F ′(u(ε)) − s(ε)]u′(ε) − s′(ε)[q(u(ε)) − q(ul)]

= s′(ε)[q(ul) − q(u(ε)) − t∇q(u(ε))(ul − u(ε))] = O(ε2).

Hence

δ(0) = δ′(0) = δ′′(0) = 0, δ′′′(0) =
1
2

trj(ul)q′′(ul)rj(ul),

which completes the proof. �
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4.11 Exercises

1.(a) Show that if u ∈ C1 is a real solution of Burgers equation

∂tu+ ∂x

(
u2

2

)
= 0,

it is also a solution of the equation

∂t(u2) + ∂x

(
2u3

3

)
= 0.

(b) Compare the Rankine–Hugoniot conditions for the two conservation
laws. Conclude that two different conservation laws can have the same
smooth solutions without having the same shock solutions.

2. For the following systems, compute the eigenvalues and the eigenvectors;
discuss conditions for the eigenvalues to be either genuinely nonlinear or
linearly degenerate:

(a) The p-system

∂tu− ∂xv = 0, ∂tv − ∂x(p(u)) = 0, p′ > 0.

(b) The isentropic Euler system (in nonconservative form)

∂tρ+ ∂x(ρu) = 0, ∂tu+ u∂xu+
∂xp

ρ
= 0,

where p ≡ p(ρ) is given with c2 ≡ dp/dρ > 0.

3. For a quasilinear strictly hyperbolic N ×N system

∂tu+A(u)∂xu = 0,

the integral curves of rj(u) contain the images of simple waves. By per-
forming a change of unknowns u = Φ(v), we obtain a new system

∂tv + Ã(v)∂xv = 0.

Compute its eigenvalues and eigenvectors λ̃j(v) and r̃j(v). Show that the
integral curves of rj are the image by Φ of the integral curves of r̃j (check
that this is coherent with the way Φ transforms simple waves). Show that
the concept of genuinely nonlinear eigenvalue is invariant.
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4. Consider the full Euler system from Section 4.1. Show that a C1 solution
(ρ, u, p) of this system is also a solution of the system in nonconservative
form

Dtρ+ ρ∂xu = 0, Dtu+
∂xp

ρ
= 0, Dte+

p

ρ
∂xu = 0,

where Dt = ∂t + u∂x. Show that there exists (at least locally in (ρ, p)) a
function s(ρ, p) (the “entropy”) such that the last equation can be replaced
by Dts = 0. Deduce from this that u is a linearly degenerate eigenvalue of
the system.

5. Consider u ∈ C2(R × [0, T [) a solution of the Cauchy problem for the
2-system in diagonal form

∂tu1 + λ1(u)∂xu1 = 0, ∂tu2 + λ2(u)∂xu2 = 0.

Establish the system satisfied by (∂xu1, ∂xu2). Determine nonvanishing
functions Fi(u) such that, setting vi = Fi(u)∂xui, one obtains a diagonal
system

∂tvi + λi(u)∂xvi +Gi(u)v2
i = 0, i = 1, 2.

6. Consider a strictly hyperbolic N ×N system of conservation laws

∂tu+ ∂x(F (u)) = 0.

Let λ(u) be a real, simple, genuinely nonlinear eigenvalue of F ′(u), and
r(u) its normalized eigenvector. Fix U0 and define the integral curve of r

U ′(s) = r(U(s)), U(0) = U0.

On the other hand, consider a λ-shock curve (V (t), μ(t)) defined by

F (V (t)) − F (U0) = μ(t)(V (t) − U0), V (0) = U0, μ(0) = λ(U0).

Show that one can find a function φ(s), with φ(0) = 0, φ′(0), and φ′′(0)
appropriately chosen such that

U(s) − V (φ(s)) = O(s3).

Deduce from this that the solution curve for λ is indeed C2.

7. Consider Burgers equation with a “source term”

∂tu+ u∂xu = u2.
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(a) Let C be a real constant: Compute explicitly the solution uC with
initial value C. Compute the integral curves γ of the vector field ∂t +uC∂x.

(b) Let now C− < C+ be two given real constants. Let γ± be the integral
curves through the origin of the fields ∂t + uC±∂x. In the sector between
γ− and γ+, we set

u(x, t) =
ex − 1
t

.

Check that u is indeed a solution of the equation in this sector, matching
on γ± the solutions uC± so as to form a continuous solution of the equation
for t > 0 small enough.

8. Consider the p-system

∂tu = ∂xv, ∂tv = ∂x(p(u)),

where we assume p′ > 0, p′′ > 0.

(a) Write the Rankine–Hugoniot relation for a shock connecting the con-
stant state (ur, vr) (on the right) to the constant state (ul, vl) (on the left),
separated by a line of speed s. Considering the left state as given, deter-
mine explicitly the shock curves, taking ε = ur − ul as a parameter. Write
down the Lax conditions as inequalities on ur and ul.

(b) Compute explicitly the Riemann invariants for this system. Explain
how this system can be diagonalized.

9. Consider a strictly hyperbolic quasilinear N ×N system

∂tu+A(u)∂xu = 0.

(a) Let u be a k-simple wave. Show that u is constant along the integral
curves of ∂t + λk(u)∂x. Deduce from this that these curves are in fact
straight lines.

(b) In the case of a diagonal 2-system, show that a C1 solution u, constant
with value C to the right of an integral curve γ of ∂t + λ2(u)∂x is 2-simple
to the left of γ. What can be said for a general 2-system?

10. Consider a strictly hyperbolic 2-system of conservation laws with gen-
uinely nonlinear eigenvalues, say

λ1(u) < 0 < λ2(u).

Suppose given a solution for t ≤ 0 which consists of three constant states
(u−, v, u+) (from left to right), separated by straight lines x = s2−t and
x = s1−t (this solution represents the collision at the origin at time zero of
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a 1-shock and a 2-shock, moving with respective speeds s1− and s2− towards
each other). We assume |u+ − u−| = ε small enough, and we want to
compute the solution for positive values of time.

(a) Draw a picture in the plane R2
u of

i) the solution curves connecting v to u− (for the value ε2 of the param-
eter) and u+ to v (for the value ε1),

ii) the solution curves corresponding to the solution of the Riemann
problem for t ≥ 0 and initial values u− (left) and u+ (right).

Show that the solution of (ii) consists of a 1-shock with speed s1+ connect-
ing w to u− (with parameter ε′1) and a 2-shock with speed s2+ connecting
u+ to w (with parameter ε′2). Show also that

ε′1 = ε1 +O(ε2), ε′2 = ε2 + O(ε2).

(b) Compute, modulo O(ε2), the changes of speed si
+ − si

−, i = 1, 2 (Note
that, in the linear case, the speeds do not change!)

(c) Using the same method, study the interaction of a rarefaction wave
coming from the left with a shock coming from the right; do the same for
two rarefaction waves.

11. Consider the p-system

∂tu = ∂xv, ∂tv = ∂x(u3/3).

We want to solve the Riemann problem with (constant) initial data
(ul > 1, vl) for x < 0 and (ur, vr) for x > 0.

(a) We take first

ūr = ul − 1, v̄r = vl − ul +
1
2
.

Show that the solution is a 1-rarefaction wave.

(b) We take now

ur = ul − 1, vr = vl − ul +
1
2

+ η = v̄r + η.

Assuming η small enough, discuss according to the sign of η the nature of
the solution. Compute modulo O(η2) the magnitude of the new wave.
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12. Consider the p-system

∂tu = ∂xv, ∂tv = ∂x(p(u)), p′ > 0.

Find the necessary and sufficient second order PDE q has to satisfy in
order to be an entropy function. Show that this equation is hyperbolic.
What are its characteristic fields? How can one construct convex entropies?

13. Let q be a convex entropy for a system

∂tu+ ∂x(F (u)) = 0.

Show that q′′ is a symmetrizer for the linearized system ∂t +F ′(u)∂x, that
is, q′′F ′ is symmetric.

14. Consider a scalar equation “with viscosity”

∂tu+ ∂x(F (u)) = ε∂2
xu, F

′′ > 0, ε > 0.

We look for a formal solution of this equation, i.e.

uε(x, t) = Σk≥0ε
kUk(s, t), s =

x− φ(t)
ε

,

where the functions Uk have limits U±
k independent of t as s→ ±∞. Such

a solution would represent a quick smooth transition between the states
ΣεkU−

k (left) and ΣεkU+
k (right). Formally, the functions uε converge to

the function u which is U−
0 left of x = φ(t) and U+

0 to the right. Hence we
assume that (U−

0 , U
+
0 , φ

′) satisfy the Rankine–Hugoniot relation.

Establish the equation satisfied by U0, and integrate it once using the
function

Φ(u) = F (u) − F (U−
0 ) − φ′(t)(u − U−

0 ).

We remark that the Rankine–Hugoniot relation is just Φ(U+
0 ) = 0. Show

that the existence of an appropriate U0 implies the Lax conditions

F ′(U−
0 ) ≥ φ′ ≥ F ′(U+

0 ).

4.12 Notes

In this chapter, we concentrated on constant state solutions and simple
waves, our aim being to present the main concepts (shock and rarefaction
waves, entropy) and explain how to solve the Riemann problem. This seems
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to be the minimal knowledge required to understand the constructions of
finite difference schemes in numerical analysis or further theoretical develop-
ments. A simple account of conservation laws from this point of view can be
found in Chapters 15–20 of Smoller [21]. Simple waves are used intensively
in the superb book by Courant and Friedrichs [7], which offers a rich view of
many physical problems. Some more information about blowup of smooth
solutions is contained in Alinhac [4]. The full mathematical theory of solu-
tions of conservation laws can be found in Hörmander [10] or in Serre [19].
The book by Majda [17] concentrates on multidimensional issues.



Chapter 5

The Wave Equation

In this chapter, we review quickly the main properties of the solutions of
the wave equation

� ≡ ∂2
t − Δx, Δx = Δ = ∂2

x1
+ · · · + ∂2

xn

in Rn
x ×Rt, concentrating on the cases n = 2 and n = 3. Since we promised

not to use distribution theory, we will make no attempt to prove the solution
formulas in the most general context. It is understood that the functions we
manipulate are supposed to allow the formula to be defined in the classical
sense.

5.1 Explicit Solutions

To analyze the Cauchy problem for the wave equation

�u = f, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x),

we concentrate first on the homogeneous case f ≡ 0, with u0 = 0, and
denote the corresponding solution by u = S(u1). Then, the solution for
f = 0 and general (u0, u1) is

u = S(u1) + ∂tS(u0),

since, for t = 0, ∂2
t S(u0) = ΔxS(u0) = 0.

S. Alinhac, Hyperbolic Partial Differential Equations, Universitext,  
DOI 10.1007/978-0-387-87823-2_5, © Springer Science+Business Media, LLC 2009 
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5.1.1 Fourier Analysis

The simplest way to analyze the Cauchy problem for the wave equation
is to perform a Fourier transformation with respect to x alone; With an
obvious abuse of notation, define

û(ξ, t) =
∫
Rn

e−ixξu(x, t)dx.

Then, formally, the Cauchy problem becomes

∂2
t û(ξ, t) + |ξ|2û(ξ, t) = f̂(ξ, t), û(ξ, 0) = û0(ξ), (∂tû)(ξ, 0) = û1(ξ).

This is a Cauchy problem for an ODE in t, which can be solved explicitly.

Theorem 5.1. Assume that u0, u1, and f decay enough as |x| → +∞.
Then the solution u of the Cauchy problem with data (u0, u1, f) is given by
the formula

û(ξ, t) = û0(ξ) cos t|ξ| + û1(ξ)
sin t|ξ|
|ξ| +

∫ t

0

f̂(ξ, s)
sin(t− s)|ξ|

|ξ| ds.

To see this, we look for û (according to the method of variation of param-
eters) in the form

û(ξ, t) = A(ξ, t) cos t|ξ| +B(ξ, t) sin t|ξ|.

We impose then

∂tA cos t|ξ| + ∂tB sin t|ξ| = 0, −∂tA sin t|ξ| + ∂tB cos t|ξ| =
f̂

|ξ| ,

and the initial conditions A(ξ, 0) = û0(ξ), B(ξ, 0) = û1(ξ)/|ξ|. This gives
the formula. �

In particular, ˆS(v)(ξ, t) = v̂(ξ)sin t|ξ|/|ξ|, and we can check directly the
formula given at the beginning of this section. We also remark the fact
known as the Duhamel principle.

Principle 5.2 (Duhamel principle) The solution u of the Cauchy prob-
lem with zero initial data and righthand side f is given by

u(x, t) =
∫ t

0

S(f(·, s))(x, t− s)ds.
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5.1.2 Solutions as Spherical Means

Because of Duhamel principle, it is enough to obtain a formula for S(v),
the solution of the Cauchy problem with f ≡ 0 and data (0, v).

Theorem 5.3. In the case n = 3,

S(v)(x, t) =
t

4π

∫
|y|=1

v(x − ty)dσ1(y) =
1

4πt

∫
|y|=t

v(x − y)dσt(y).

Here, dσR is the surface element on the sphere of radius R.

Proof: Taking into account the formula

Ŝ(v)(ξ, t) = v̂(ξ)
sin t|ξ|
|ξ| ,

it is enough to prove

ˆ(dσR)(ξ) = 4πR
sinR|ξ|

|ξ| ,

since then ˆ(v ∗ dσt)(ξ) = 4πtv̂(ξ)sin t|ξ|/|ξ| = 4πt ˆS(v)(ξ, t). We use spheri-
cal coordinates (for details, see Section 5.2)

x1 = R sinφ cos θ, x2 = R sinφ sin θ, x3 = R cosφ, dσR = R2 sinφdφdθ.

Since dσR is invariant by rotations, so is its Fourier transform, so we can
take

ξ = |ξ|(0, 0, 1).

For this value of ξ, we can compute explicitly the integral

ˆdσR(ξ) =
∫
e−ix3|ξ|R2 sinφdφdθ = 2πR2

∫
e−iR|ξ|udu = 4πR

sinR|ξ|
|ξ| .

This is the formula of the theorem. �

It is important to notice that S(v)(x, t) is t times the spherical mean
of the function v on the sphere of center x and radius t.

To handle the case n = 2, we use the so-called “method of descent”
introduced by Hadamard.

Theorem 5.4. In the case n = 2,

S(v)(x, t) =
1
2π

∫
|y|≤t

v(x− y)(t2 − |y|2)−1/2dy.
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Proof: We can think of v as a function on R3 independent of x3: then,
since the solution is unique, Sv is also independent of x3, and

S(v)(x1, x2, t) =
1

4πt

∫
|y|=t

v(x1 − y1, x2 − y2)dσt(y).

When parametrizing the (half)-sphere of radius t in R3
y by (y1, y2), we

have
dσt(y) = t(t2 − y2

1 − y2
2)

−1/2dy1dy2,

and this gives the result. �

5.1.3 Finite Speed of Propagation, Domains of
Determination

Inspection of the above solution formula shows the two following important
facts.

Theorem 5.5. For n = 3, the value of the solution S(v) at (x, t) depends
only on the values of v on the sphere of radius t centered at x. For n = 2,
the value of the solution S(v) at (x, t) depends only on the values of v on
the ball of radius t centered at x.

In other words, the propagation speed is at most one in all directions.
What happens to v at points y further away from x than t is not seen by
S(v)(x, t); the information, leaving y at time t = 0, has not yet reached x
at time t. Hence, the information speed is less than one.

More generally, for n = 3, the solution u(x, t) of the full Cauchy problem
depends on the values of u0, u1, and ∂nu0 (the normal derivative) on the
sphere of radius t centered at x, and on the values of f on the lateral
boundary of the truncated cone

C(x,t) = {(y, s), 0 ≤ s ≤ t, |y − x| ≤ t− s}.

In the case n = 2, the sphere has to be replaced by the ball, and the
boundary of the truncated cone by the full truncated cone. We can now
introduce a new concept, similar to the concept introduced for systems in
the plane in Definition 2.18.

Definition 5.6. Let D be a closed domain in Rn
x × [0,∞[ with base

ω = {(x, 0) ∈ D}. We say that D is a domain of determination of
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its base ω if, for all (x, t) ∈ D, the full truncated cone C(x,t) is contained
in D.

For instance, for all M > 0 and z ≥M , the “spherical” region

{(x, t), t ≥ 0, (t+ z)2 + |x|2 ≤ z2 +M2}

is a domain of determination of its base {|x| ≤ M}. The following
statement, which explains the name “determination,” is an immediate corol-
lary of the solution formula.

Corollary 5.7. Let D be a domain of determination of its base ω in
{t = 0}. If u ∈ C2(D) is a solution of the Cauchy problem in D with f = 0
in D and u0, u1 = 0 in ω, then u = 0 in D.

5.1.4 Strong Huygens Principle

In the case n = 3, the solution formula display a remarkable phenomenon,
which is called lacuna: S(v)(x, t) depends only on the values of v on the
sphere of radius t centered at x. What happens to v at points y closer to x
than t has already been seen by S(v)(x, t). For instance, suppose that u is a
solution of the homogeneous Cauchy problem (f ≡ 0) with data u0 and u1

vanishing for |x| ≥M . Then

(t ≥M, |x| ≤ t−M) ⇒ u(x, t) = 0.

Hence, in this case, not only u(x, t) = 0 for |x| ≥ t + M , which is a
consequence of the propagation with speed one, but also u(x, t) = 0 inside
an upside down cone with vertex at (0,M). This property, specific of the
case n = 3, will be used in Section 6.6.

5.1.5 Asymptotic Behavior of Solutions

When the Cauchy data u0, u1 of a solution u are C∞
0 functions, the solution

formula allows a precise description of this solution for large time.

Theorem 5.8. Consider, for n = 3, the solution u = S(v) of the Cauchy
problem

�u = 0, u(x, 0) = 0, (∂tu)(x, 0) = v(x),

where v ∈ C∞ vanishes for |x| ≥ M . Then, using polar coordinates
r = |x|, x = rω, we have for t ≥ 2M the representation

u(x, t) =
1
r
F

(
r − t, ω,

1
r

)
,
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where

F : R × S2 ×
[
0,

1
M

]
� (ρ, ω, z) �→ F (ρ, ω, z) ∈ C

is a C∞ function, vanishing for |ρ| ≥M .

Proof: Set ρ = r− t and take for simplicity x = r(1, 0, 0). From Sections
5.1.3 and 5.1.4 we already know that u vanishes for |ρ| ≥ M . For |ρ| ≤M
and big t (and r), the portion of the sphere of radius t centered at x touching
the support of v is very small. It can be parametrized by y ∈ R2 as
(r− (t2 − |y|2)1/2, y). The surface element dσt (very close to dy for large t)
is given by dσt = t(t2 − |y|2)−1/2dy. Hence

S(v)(x, t) = (4π)−1

∫
|y|≤M

v(r − (t2 − |y|2)1/2, y)(t2 − |y|2)−1/2dy.

We write now

(t2 − |y|2)1/2 = r

[(
1 − ρ

r

)2

− |y|2
r2

]1/2

,

which shows that r(t2 − |y|2)−1/2 and

r − (t2 − |y|2)1/2 =

[
1 +

((
1 − ρ

r

)2

− |y|2
r2

)1/2
]−1 [

2ρ+
|y|2 − ρ2

r

]

are C∞ functions of (ρ, 1/r, y). If we had taken x = rω to start with,
we would have obtained C∞ functions of ω as well. This proves the
theorem. �

It is important (especially when dealing with nonlinear perturbations of
the wave equation) to notice the “decay rate” t−1 of the solution.

If we define the “profile at infinity” as F0(ρ, ω) = F (ρ, ω, 0), we observe
that

4πF0(ρ, ω) =
∫

ω.y=ρ

v(y)dy

is the Radon transform of v.

We leave as an exercise for the reader the corresponding statement for
n = 2 (Exercise 4).

5.2 Geometry of The Wave Equation

In analyzing the behavior of the solutions of the wave equation, it is con-
venient to distinguish special vector fields, the Lorentz vector fields, which
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are the usual rotations, the hyperbolic rotations, and the scaling operator.
We explain here their definitions and properties.

5.2.1 Rotations and Scaling Vector Field

In this section we discuss rotation and scaling vector fields in R2
x or R3

x with-
out any reference to the wave equations, to which we return in
Section 5.2.2.

Rotation and scaling fields in R2
x,y. In the plane R2

x,y define the usual
polar coordinates by

x = r cos θ, y = r sin θ, r = (x2 + y2)1/2, ω = (cos θ, sin θ).

For u ∈ C1(R2), setting v(r, θ) = u(r cos θ, r sin θ), we get

r∂rv(r, θ) = (x∂xu+ y∂yu)(r cos θ, r sin θ),
∂θv(r, θ) = (x∂yu− y∂xu)(r cos θ, r sin θ).

We write this formulas abusively

r∂r = x∂x + y∂y, ∂θ = x∂y − y∂x.

The vector field S = x∂x+y∂y is the scaling vector field, and its integral
curve starting from the point m0 is the ray through the origin t �→ etm0.
We also note that if f is a C1 positively homogeneous function of degree
μ, that is

f(λx, λy) = λμf(x, y), λ > 0,

the Euler identity (obtained by differentiating the above formula with
respect to λ) reads

(Sf)(x, y) = μf(x, y).

The vector field R = x∂y − y∂x is the rotation field, since its integral
curve starting from m0 = (x0, y0) is the circle centered at the origin

t �→ (x0 cos t− y0 sin t, x0 sin t+ y0 cos t).

Note that the vectors

(cos θ, sin θ), (− sin θ, cos θ)

form an orthonormal basis of the plane; we say that

∂r = cos θ∂x + sin θ∂y, r
−1∂θ = − sin θ∂x + cos θ∂y ,
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form, at each point (x, y), an orthonormal frame. The decomposition of
the usual vector fields ∂x and ∂y on this frame is given by the formula

∂x = (cos θ)∂r − (sin θ)(r−1∂θ), ∂y = (sin θ)∂r + (cos θ)(r−1∂θ).

Finally, straightforward computations give the following commutations
formula

[R, ∂r] ≡ R∂r − ∂rR = 0, [R,Δ] ≡ RΔ − ΔR = 0, [S,Δ] = −2Δ,

where Δ = ∂2
x + ∂2

y is the Laplace operator in the plane. This Laplacian is
expressed in polar coordinates by

Δ = ∂2
r + r−1∂r + r−2∂2

θ ,

since

∂2
θ = y2∂2

x + x2∂2
y − 2xy∂2

xy − r∂r ,

r2(∂2
r + r−1∂r) = (r∂r)2 = x2∂2

x + y2∂2
y + 2xy∂2

xy + r∂r.

Rotations and scaling fields in R3
x. In the space R3

x, the polar coordinates
are

x = rω, r = |x|, ω ∈ S2.

For ω on the unit sphere S2, we use the spherical coordinates (θ, φ), where
θ is the longitude with respect to the plane {x2 = 0} and φ the (co)latitude
with respect to the x3-axis. Thus

x1 = r sinφ cos θ, x2 = r sinφ sin θ, x3 = r cosφ.

For u ∈ C1(R3), setting v(r, θ, φ) = u(r sinφ cos θ, r sinφ sin θ, r cosφ), we
obtain r∂rv = Σxi∂iu, and

∂θv = x1∂2u− x2∂1u, ∂φv =
cosφ
sinφ

(x1∂1u+ x2∂2u) − (x2
1 + x2

2)
1/2∂3u.

As in the previous discussion, the vector field S = Σxi∂i is called
the scaling vector field, and its integral curves are the rays through
the origin.

We define now the three rotation fields R1, R2, R3 by R = x∧∂, that is

R1 = x2∂3 − x3∂2, R2 = x3∂1 − x1∂3, R3 = x1∂2 − x2∂1.

Since ∇r = x/r, we see that Rir = 0, which means that, for any
point m, the fields Ri(m) are tangent to the sphere through m centered
at the origin. Since we have three (independent) vector fields tangent to
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the 2-submanifold S2, there must be some relation between them; this
relation is clearly ΣxiRi = 0. By inspection, we also obtain the formula

∂θ = R3, ∂φ = − sin θR1 + cos θR2.

At any point m not on the x3-axis, the three vector fields

∂r, eθ = (r sinφ)−1∂θ, eφ = r−1∂φ

form an orthonormal frame. The decomposition of the usual vector fields
∂i on this frame is given by the formula

∂ = ω∂r − ω ∧
(
R

r

)
.

This formula can be checked by straightforward computation, for instance(
ω ∧ R

r

)
1

= ω2
R3

r
−ω3

R2

r
= ω2(ω1∂2−ω2∂1)−ω3(ω3∂1−ω1∂3) = −∂1+ω1∂r.

It is sometimes handy to use the notation ∂̄i = ∂i−(xi/r)∂r . These vector
fields are tangent to the spheres (this follows from the previous formula, or
from the direct observation that ∂̄ir = 0); for any real function u ∈ C1(R3),
we have the decomposition formulas

Σ(∂iu)2 = (∂ru)2 + Σ(∂̄iu)2 = (∂ru)2 +
∣∣∣∣Rr u

∣∣∣∣
2

.

As in dimension n = 2, there is also the remarkable commutation formula:

[Ri, ∂r] = 0, [Ri,Δ] = 0, [S,Δ] = −2Δ,

where Δ = Σ∂2
i is the usual Laplace operator. For the first formula, we

have, for instance,

r[R1, ∂r] = [R1,Σxi∂i] = R1 −R1 = 0.

For the second we get from the definition [R1, ∂
2
1 ] = 0,

[R1, ∂
2
2 ]u = x2∂3∂

2
2u− x3∂

3
2u− ∂2

2(x2∂3u− x3∂2u) = −2∂2
23u,

and similarly [R1, ∂
2
3 ]u = 2∂2

23u, which gives the result. In the same way,
we obtain

[S, ∂2
i ]u = Σxj∂j∂

2
i u− ∂2

i (Σxj∂ju) = −2∂2
i ,

which gives the last formula.
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To express the Laplacian in polar coordinates, we first compute

Δω ≡ ΣR2
i = (x2

2 + x2
3)∂

2
1 + (x2

1 + x2
3)∂

2
2 + (x2

1 + x2
2)∂

2
3

− 2Σi<jxixj∂
2
ij − 2r∂r,

r2(∂2
r + 2r∂r) = (r∂r)2 + r∂r = Σxi∂

2
i + 2Σi<jxixj∂

2
ij + 2r∂r,

to obtain finally

Δ = ∂2
r +

2
r
∂r + r−2Δω.

The operator
Δω = ΣR2

i

is called the “Laplace operator on the unit sphere.” A tedious computation
shows that

Δω = ∂2
φ + [(sinφ)−1∂θ]2 +

cosφ
sinφ

∂φ.

5.2.2 Hyperbolic Rotations and Lorentz Fields

We return now to the space time Rn
x × Rt for n = 2 or n = 3, and to the

wave equation � = ∂2
t − Δ. In analogy with the usual spatial rotations

R = x ∧ ∂, we define the hyperbolic rotations Hi by

Hi = t∂i + xi∂t, i = 1, . . . , n.

These vector fields are tangent to the hyperboloids {t2−|x|2 = C}, which
explains their names. We have seen that the spatial rotations commute with
�, [�, R] = 0. Just the same, the fundamental property of the hyperbolic
rotations is the commutation relations

[Hi,�] = 0.

This is easily established since

[t∂i, ∂
2
t ] = −2∂2

ti, [t∂i, ∂
2
j ] = 0, [xi∂t, ∂

2
t ] = 0, [xi∂t, ∂

2
i ] = −2∂2

ti,

and [xi∂t, ∂
2
j ] = 0 for j �= i. We define the Lorentz vector fields to be

i) the usual derivatives ∂t, ∂i (i = 1, . . . , n);

ii) the spatial rotations R = x1∂2 − x2∂1 (for n = 2) or R = x ∧ ∂ (for
n = 3);

iii) the hyperbolic rotations Hi = t∂i + xi∂t (i = 1, . . . , n);
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iv) the scaling vector field S = t∂t + Σxi∂i.

In the sequence the letter Z will denote any one of these vector fields.
The following theorem summarizes the commutation relations that we have
obtained.

Theorem 5.9. All Lorentz vector fields commute with the wave operator,
except for S, which satisfies

[�, S] = 2�.

5.2.3 Light Cones, Null Frames, and Good Derivatives

We saw in section 5.1.3 the importance of the backwards cone Cx,t for the
wave equation. It turns out that the forward cones {t− r = C} also play
an important role. We restrict our attention here to the case n = 3, though
analogous and simpler considerations hold for the case n = 2. Let us define
first the two (orthogonal) vector fields

L = ∂t + ∂r, L = ∂t − ∂r.

At any point, the vector fields

(L,L, eθ, eφ)

form an orthonormal basis which is called a null frame (see Exercise 9 to
understand the origin of this terminology). For any point m0 = (x0, t0),
x0 �= 0, the tangent space at m0 to the forward cone {t − r = t0 − r0}
through m0 is spanned by the three vectors

L, eθ, eφ,

or, equivalently,

r−1R1, r
−1R2, r

−1R3, L = ∂t + ∂r

at this point.

The reason for introducing these fields is best seen by considering a
solution u = S(v) with v ∈ C∞ vanishing for |x| ≥ M : we have the
representation formula (see 5.1.5)

u(x, t) = r−1F

(
r − t, ω,

1
r

)
,
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where F is a C∞ function vanishing for |ρ = r − t| ≥ M . We establish
easily

Lu = −2r−1(∂ρF )
(
r − t, ω,

1
r

)
+O(r−2), Lu = O(r−2),

(
R

r

)
u = O(r−2).

Thus, as far as the behavior of u when t → +∞ is concerned, Lu behaves
like t−1, while the other derivatives Lu and (R/r)u behave like t−2. In this
context, we will speak of “bad” or “good” derivatives.

The difference between “bad” and “good” derivatives can also be seen by
relating them to the Lorentz fields. In fact, we have the formula

ΣωiHi = t∂r + r∂t, S = t∂t + r∂r ,

(r + t)L = ΣωiHi + S, (r − t)L = ΣωiHi − S,

(t+ r)
R

r
= R+ ω ∧H.

Using these formulas, the following theorem is easily proved.

Theorem 5.10. There exists a constant C such that, for all u ∈ C1

(Rn
x × Rt) and t ≥ 0,

(1 + r + t)|(Lu)(x, t)| ≤ C(Σ|Zu|)(x, t),
(1 + r + t)|r−1(Riu)(x, t)| ≤ C(Σ|Zu|)(x, t),

(1 + |r − t|)|(Lu)(x, t)| ≤ C(Σ|Zu|)(x, t),

where the sums are extended over all Lorentz vector fields. In particular,

(1 + |r − t|)|(∂u)(x, t)| ≤ C(Σ|Zu|)(x, t),

where ∂ stands for ∂t or ∂i.

The importance of these formulas appears when one studies the behavior
at infinity of global solutions of the wave equation. The key fact is that the
Lorentz fields Z commute nicely with �, while the fields L, R/r do not.
Suppose that, for a certain C1 function u, and all Lorentz fields Z, we have
obtained a control

|Zu|(x, t) ≤M(x, t)

by a certain function M , say, going to zero at infinity. This implies, thanks
to the above formula, for t ≥ 0 and irrelevant numerical constant C,

(1 + r + t)|(Lu)(x, t)| ≤ CM(x, t),

(1 + r + t)|r−1(Riu)(x, t)| ≤ CM(x, t),
(1 + |r − t|)|(Lu)(x, t)| ≤ CM(x, t).
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In other words, the “good” derivatives (Lu, r−1Riu) decay faster than M
at infinity by a factor 1+ r+ t, while the “bad” derivative Lu decays faster
only away from the light cone with equation {t = r}.

Let us say a few words here to explain why we emphasize the role played
by the Lorentz fields: What we have in mind is to obtain the qualitative
behavior of global solutions to wave equations with variable coefficients (see
Chapter 7), or to nonlinear wave equations. Let P be a given second order
operator close to �: the Lorentz fields Z do not commute any more with the
given operator P , but the commutator [P,Z] may have small coefficients,
so that, writing

PZu = Z(Pu) + [P,Z]u,

it is possible to get a control |Zu| ≤M(x, t) by a known function as above.
The point of the argument is that it does not rely on an explicit represen-
tation formula, but on a priori inequalities for P (see Chapter 7 for more
details).

5.2.4 Klainerman’s Inequality

We will see in subsequent chapters that it is essential in the study of
hyperbolic multidimensional equations or systems to use L2 norms. To con-
nect these norms with L∞ norms, a simple tool is the so-called “Sobolev
Lemma.”

Lemma 5.11 (Sobolev Lemma). For all positive integers m,n, with
m > n/2, there exist constants Cn,m such that for all u ∈ S(Rn

x) (the
Schwartz space),

||u||L∞ ≤ Cn,mΣ|α|≤m||∂α
x u||L2 .

Proof: Since the Fourier transform of ∂α
x u is i|α|ξαû(ξ), by Plancherel’s

theorem,

A2 ≡ Σ|α|≤m|∂α
x u|2L2 ≥ C

∫
(1 + Σξ2m

i )|û(ξ)|2dξ.

We write now û as

û = [û(1 + |ξ|2m)1/2][(1 + |ξ|2m)−1/2].

Since m > n/2, the function in the last bracket belongs to L2; since, for
some C > 0,

1 + |ξ|2m ≤ C(1 + Σξ2m
i ),
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the L2 norm of the function in the first bracket is less than CA. By the
Fourier inversion formula and Hölder inequality, we thus obtain

||u||L∞ ≤ C||û||L1 ≤ CA,

which is the inequality we wanted to prove. �

The Klainerman inequality is best understood when one compares it to
the Sobolev lemma: In this lemma, we use L2 norms of products ∂α

x of
the usual derivatives applied to u to obtain a control of |u(x, t)|. In the
Klainerman inequality, the idea is to use, in R3

x×Rt, L2 norms of products
Zk of Lorentz vector fields Z applied to u to obtain a weighted control of
|u(x, t)|.

Theorem 5.12 (Klainerman inequality) There is a constant C such
that, for all u ∈ S(Rn

x × [t− 1, t+ 1]),

(1 + |t| + r)n−1(1 + ||t| − r|)|u(x, t)|2 ≤ CΣ0≤k≤(n+2)/2|Zku(·, t)|2L2 .

Here Zk in the righthand side means a product of k of the Lorentz vector
fields Z, and the sum is extended to all such products.

Proof: We will not give a complete proof of this inequality (see
Hörmander’s book). We restrict ourselves to n = 3 and prove only

(1 + t+ r)2|u(x, t)|2 ≤ CΣ0≤k≤2|Zku(·, t)|2L2

for t/2 ≤ r ≤ 3t/2, t ≥ 1. In this region R, for fixed t, we use the variables
ρ = r − t, θ, φ. We have

∂ρ = ∂r = Σωi∂i, ∂θ = R3, ∂φ = − sin θR1 + cos θR2,

hence derivatives like ∂k
ρ∂

p
φ∂

q
θu are bounded by a constant times Σ|Zmu|,

where m ≤ k + p + q and we use in fact only the fields Z = ∂i or Z = R.
Thus

Σk+p+q≤2

∫
|ρ|≤t/2

|∂k
ρ∂

p
φ∂

q
θu|2dx ≤ CΣm≤2|Zmu(·, t)|2L2 .

But dx = (t + ρ)2dρ sinφdθdφ, so that, writing the lefthand side as an
integral in (ρ, θ, φ), we gain a factor t2. We use now a slight extension of
Sobolev lemma in these variables (ρ, θ, φ), saying that for some constant C
(independent of t),

||u||L∞(R) ≤ CΣk+p+q≤2

∫
R

|∂k
ρ∂

p
φ∂

q
θu|2dρdφdθ,

and this yields the result. �

We see how this inequality can be combined with the inequalities of
Theorem 5.10 to give a rather good description of the behavior of
solutions.
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5.3 Exercises

1.(a) For n = 3, prove the formula

�
(v
r

)
=
(

1
r

)
[∂2

t − ∂2
r − r−2Δω]v.

Analogously, compute �(v/
√
r) for n = 2 and compare. In the sequence

we always assume n = 3.

(b) Suppose that the function u(r, t) can be written

u(r, t) = z(r2, t)

for some z ∈ C∞. Then u is thought of as an even function of r defined for
all r ∈ R. Show that, if such a u is a solution of the wave equation, v = ru
satisfies on Rr × Rt

∂2
t v − ∂2

rv = 0.

Write then explicitly u knowing its Cauchy data (u0(r), u1(r)). As an
application, compute the solution u with Cauchy data (r2, 0).

(c) More generally, if u(r, t) is a rotationally invariant solution of �u = 0,
write explicitly u knowing its Cauchy data. As an application, compute
the solution u with Cauchy data (r, 0).

(d) Compute explicitly u with data (0, v(r)) when v is the characteristic
function of the ball of radius a. Show that u is discontinuous at (0, a).

2.(a) For n = 3, consider the solution u = S(v) and its explicit
expression as a spherical mean of v. Using Stokes formula (see Appendix,
Formula A.17), transform the integral of v on the sphere of center x and
radius t into the integral on the ball of the divergence of some field (Hint:
One can write

v(y) = Σv(y)
[
yi − xi

t

] [
yi − xi

t

]
.

(b) Assuming |v|+ |∇v| ∈ L1(R3
x), deduce from (a) that, for some C ≥ 0

and t ≥ 1,

|u(x, t)| ≤ C

t
.

3. Let λ ∈ C be a given number, and let v ∈ C2(R2
x × Rt) be the solution

of the Cauchy problem

∂2
t v − (∂1

1 + ∂2
2)v + λ2v = 0, v(x, 0) = v0(x), (∂tv)(x, 0) = v1(x).



80 Chapter 5 The Wave Equation

Prove that
u(x1, x2, x3, t) = eiλx3v(x1, x2, t)

is a solution of the wave equation in R3
x × Rt. Deduce from this a repre-

sentation formula for v.

4. For n = 2 prove that, if v ∈ C∞
0 , the solution S(v) has the polar

coordinate representation

u(x, t) = r−1/2F

(
r − t, ω,

1
r

)

for a C∞ bounded function F .

5. Consider, in Rn
x × Rt (n = 2 or n = 3), C∞ solutions u and v of

�u = f, �v = g

with zero Cauchy data. Prove that if |f | ≤ g, then |u| ≤ v.

6. In R3
x, establish that [Ri, Rj ] = −εijkRk, where εijk is the signature of

the permutation
(1, 2, 3) �→ (i, j, k).

Compute [S,Ri]. Is it possible to give a geometric interpretation of the
result using Exercise 14 of Chapter 1?

7. In R3
x × Rt, away from {r = 0}, define the vector fields

Ti = ∂i + ωi∂t, ω =
x

r
.

Prove the formula

Ti = ∂̄i + ωiL, ω ∧ T =
R

r

and show that, at each point m0, the fields Ti span the tangent space at
m0 to the cone of equation {t− r = C} through m0.

8. Define on R3
x × Rt the functions

u(x, t) = r + t, u(x, t) = t− r.

Show that they are solutions (for r �= 0) of the eikonal equation

(∂tφ)2 − Σ(∂iφ)2 = 0.

Establish the relations

2∂u = L, 2∂u = L, 2S = uL− uL.
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9.(a) In the interior of the light cone

Ω = {(x, t) ∈ R3
x × Rt, r < |t|},

we define the conformal inversion I by the formula

I(x, t) = (X,T ), X = (t2 − r2)−1x, T = −(t2 − r2)−1t.

Show that I maps Ω into itself, and that I2 = id.

(b) Suppose that u and v are two C1 functions defined on Ω with u = v(I).
Show then

(∂iu)(x, t) = [(T 2 −R2)∂Xiv + 2Xi(T∂T v +R∂Rv)](X,T ), R = |X |,
(∂tu)(x, t) = [(R2 + T 2)∂T v + 2RT∂Rv](X,T ),

and find the transformed of the Lorentz vector fields Ri, Hi, and S. Show
also that L and L transform respectively to

(T +R)2(∂T + ∂R), (T −R)2(∂T − ∂R).

The vector field
K0 = (r2 + t2)∂t + 2rt∂r,

which appears as the transform of ∂T by I, will be important in Chapter 7.
Show that it can be written as

K0 =
1
2
[(t+ r)2L+ (t− r)2L] = u2∂u + u2∂u.

(c) On R3
x×Rt, we define the (nonpositive) scalar product of two vectors

U = (U1, U2, U3, U0), V = (V1, V2, V3, V0),

by the formula

< U, V >= U0V0 − U1V1 − U2V2 − U3V3.

Show that

< L,L >= 0, < L, L >= 0, < L,L >= 2, < L, r−1Ri >= 0.

In the vocabulary of relativity theory, the scalar product < · > is the
metric, and the basis

(L,L, eθ, eφ)
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is a null frame. Show that for any point m = (x, t) ∈ Ω and any vector V ,
the vector W = (DmI)(V ) satifies

< W,W > = (t2 − r2)−2 < V, V >.

This is the reason why I is said to be “conformal.”

(d) In the case n = 3, using the above computations and the formula

�
(w
r

)
=
(

1
r

)
(LL− r−2Δω)w,

prove that �u = f implies

(∂2
T − ΔX)

(
v

T 2 −R2

)
= (T 2 −R2)−3f(I), v = u(I).

What is the corresponding formula for n = 2 ?

(e) Consider two functions u0, u1 ∈ C∞(R3
x) vanishing for |x| ≥ M . Fix

some t0 > M , and let u be the solution of the Cauchy problem

�u = 0, u(x, t0) = u0(x), (∂tu)(x, t0) = u1(x),

for t ≥ t0. We know that u is supported in the set r ≤ t−t0+M . Prove that
the traces v(X,T0) and (∂T v)(X,T0) of the transformed function v = u(I)
on the plane {T = T0 = −1/t0} are C∞ functions v0 and v1, compactly
supported in the set |X | < −T0. Recover from (d) the representation
formula for u obtained in Section 5.1.5.

10. Let v ∈ C∞
0 (R2

x), and u = Sv. Using the formula from Theorem 5.4,
show that, for |x| ≤ α(1 + t), α < 1,

|u(x, t)| ≤ C

1 + t
, |∂u(x, t)| ≤ C

(1 + t)2
.

5.4 Notes

Basic informations about the wave equation can of course be found in
all PDE books, for instance Evans [9], Hörmander [10], John [12], Lax
[15], Taylor [23]. A simple account (with exercises) in the framework of
distribution theory is Zuily [25]. We put emphasis on the geometry of the
wave equation, reflecting recent research progress; this material is taken
mainly from Hörmander [10] or Shatah-Struwe [20]. One can also read
Christodoulou and Klainerman [6].



Chapter 6

Energy Inequalities for
the Wave Equation

We explain in this chapter what energy inequalities for the wave equation
are, and how to obtain them, starting from the simplest cases.

6.1 Standard Inequality in a Strip

We define the strip ST ⊂ Rn
x × Rt to be

ST = {(x, t), x ∈ Rn, 0 ≤ t < T }.

Let u ∈ C2(ST ) be a solution of the Cauchy problem

�u ≡ (∂2
t − Δx)u = f, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x).

Assumptions 6.1:

i) the function u is real;

ii) for each t, 0 ≤ t < T , u(·, t) has compact support.

To obtain an energy inequality, we always proceed in three steps.

Step 1. Establishing a differential identity. Using the simple formula

(∂2
t u)(∂tu) =

1
2
∂t(∂tu)2,

S. Alinhac, Hyperbolic Partial Differential Equations, Universitext,  
DOI 10.1007/978-0-387-87823-2_6, © Springer Science+Business Media, LLC 2009 
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(∂2
i u)(∂tu) = ∂i[(∂iu)(∂tu)] − (∂iu)(∂2

tiu) = ∂i[(∂iu)(∂tu)] − 1
2
∂t[(∂iu)2],

we write the product (�u)(∂tu) in divergence form

(�u)(∂tu) =
1
2
∂t[Σ(∂iu)2 + (∂tu)2] − Σ∂i[(∂iu)(∂tu)].

Note that due to the magic of integration by parts, the minus sign
before Δ in the wave operator has changed to a plus sign in the expression
|∂u|2 ≡ Σ(∂iu)2 + (∂tu)2.

Step 2. Integration over the domain. Using the above expression in
divergence form, we integrate over the strip St for t < T :∫

St

(�u)(∂tu)dxds = E(t) − E(0),

where the energy of u at time t is defined by

E(t) = Eu(t) =
1
2

∫
[Σ(∂iu)2 + (∂tu)2](x, t)dx =

1
2

∫
|∂u|2(x, t)dx.

We have obtained the following theorem.

Theorem 6.2. If f ≡ 0, the energy of the solution u is constant in time.

In the inhomogeneous case f �≡ 0, we proceed further.

Step 3. Handling the remainder term

To handle the term
∫

St
(�u)(∂tu)dxds, we proceed in two steps:

(a) First, we apply the Cauchy–Schwarz inequality for fixed s:∣∣∣∣
∫ t

0

ds

∫
(�u)(∂tu)dx

∣∣∣∣ ≤
∫ t

0

ds||f(·, s)||L2 ||(∂tu)(·, s)||L2

≤
∫ t

0

ds||f(·, s)||L2(2E(s))1/2.

(b) Next, we introduce the quantity φ(t) = max0≤s≤tE(s)1/2. For
0 ≤ t′ ≤ t < T , by extending the domain of integration, we get

E(t′) ≤ E(0) +
∫ t

0

ds||f(·, s)||L2(2E(s))1/2,

hence, by taking the supremum in t′,

φ(t)2 ≤ φ(0)2 +
√

2φ(t)
∫ t

0

||f(·, s)||L2ds.
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We have proved the following theorem.

Theorem 6.3. Let u ∈ C2(ST ) satisfy the Assumptions 6.1. For t < T ,
the following a priori energy inequality holds

max
0≤s≤t

E(s)1/2 ≤ E(0)1/2 +
√

2
∫ t

0

||(�u)(·, s)||L2ds.

We explain now how to extend Theorem 6.3 to more general functions u
than that satisfying Assumptions 6.1.

First, to deal with the case of a complex u, it is possible, of course, to
split u into real and imaginary part

u = v + iw, �u = g + ih, �v = g, �w = h.

Writing separately the inequalities for v and w yields an inequality for
u. A more elegant way to do this is as follows: In step 1, we consider the
quantity (�u)( ¯∂tu) instead of (�u)(∂tu). Then

(∂2
t u)( ¯∂tu) = ∂t(|∂tu|2) − (∂tu)( ¯∂2

t u),

which yields 2�[(∂2
t u)( ¯∂tu)] = ∂t(|∂tu|2). Similarly,

(∂2
i u)( ¯∂tu) = ∂i[(∂iu)( ¯∂tu)] − (∂iu)( ¯∂2

tiu), 2�[(∂iu)( ¯∂2
tiu)] = ∂t(|∂iu|2).

Gathering the terms, we obtain finally the new differential identity of
step 1:

2�[(�u)( ¯∂tu)] = ∂t(Σ|∂iu|2 + |∂tu|2) − Σ∂i{2�[(∂iu)( ¯∂tu)]}.

The energy of u at time t is now defined by

E(t) = Eu(t) =
1
2

∫
[Σ|∂iu|2 + |∂tu|2](x, t)dx.

Steps 2 and 3 are exactly the same as before, hence both theorems remain
true for complex functions u. In the next sections, for simplicity, we prove
all inequalities only for real u, leaving the extension to complex u to the
reader.

The assumption 6.1(ii) about u is satisfied if (u0, u1) vanish for |x| ≥ M
and �u vanishes for |x| ≥ M + t. However, all we need in the proof of
Theorem 6.3 is ∫

Rn

Σ∂i[(∂iu)(∂tu)]dx = 0
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for the terms appearing in the differential identity of step 1 of the proof.
This will be the case also if u is sufficiently decaying when |x| → +∞
for fixed t < T . In the sequence we will always use this expression in the
statements. The question about telling from the data (f, u0, u1) whether the
solution u of the Cauchy problem is sufficiently decaying when |x| → +∞
is touched upon in Exercise 3.

6.2 Improved Standard Inequality

We called the energy inequality in Section 6.1 “standard inequality.” It
turns out that a somewhat more careful computation gives additional con-
trol of some special derivatives.

Theorem 6.4. For all ε > 0, there exists a constant Cε such that, for all
u ∈ C2(Rn

x × [0,∞[) sufficiently decaying when |x| → +∞,

max
0≤s≤t

E(s)1/2 +
[∫

St

(1 + |r − s|)−1−ε[Σ(Tiu)2](x, s)dxds
]1/2

≤ Cε

[
E(0)1/2 +

∫ t

0

||(�u)(·, s)||L2ds
]
.

Here,
r = |x|, ω = x/r, (Tiu)(x, t) = [∂iu+ ωi∂tu](x, t).

Proof: The proof of the theorem is a typical example of the proof of a
weighted inequality. It follows the same essential Steps 1, 2, and 3 as in
Section 6.1.

Step 1. Establishing a differential identity. For a smooth function a(x, t)
to be chosen later, we write

(�u)(∂tu)ea =
1
2
∂t[ea(Σ(∂iu)2 + (∂tu)2)] − Σ∂i[ea(∂iu)(∂tu)] +

ea

2
Q,

where
Q = −(∂ta)[Σ(∂iu)2 + (∂tu)2] + 2(∂tu)Σ(∂ia)(∂iu).

This is an extension of the differential identity “in divergence form”
previously obtained: We have now terms in divergence form plus a sum
Q of quadratic terms in ∂iu, ∂tu (with coefficients depending on ∂ia, ∂ta).
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We choose now a(x, t) = b(r − t). The additional quadratic terms in the
above expression become then

Q = b′[Σ(∂iu)2 + (∂tu)2 + 2(∂tu)(∂ru)] = b′Σ(Tiu)2.

If we choose b′(s) = (1 + |s|)−1−ε, the function b is bounded, and so is a.

Step 2. Integration over the domain. We now integrate in the strip St to
obtain, with �u = f ,

Ea(t) − Ea(0) +
1
2

∫
St

ea(1 + |r − s|)−1−ε[Σ(Tiu)2](x, s)dxds

≤
∫

St

ea|f ||∂tu|dxds,

where the modified energy of u at time t is

Ea(t) =
1
2

∫
ea[Σ(∂iu)2 + (∂tu)2](x, t)dx.

Note that the integrand in the expression of Ea is the same as before,
only multiplied by ea. Since a is bounded, there exists cε > 0 such that,
for all t,

c−1
ε E(t) ≤ Ea(t) ≤ cεE(t).

All the exponential factors can be cancelled from the inequality and
replaced by appropriate constants. The end of the proof (Step 3) is then
exactly the same as before. �

It is important to understand what we really gain in the above theorem:
in a region

{|r − t| ≥ C0t}, C0 > 0,

(that is, deep inside the light cone {r = t} or far away from it), the factor
(1+ |r− t|)−1−ε is less than C(1+ t)−1−ε, hence integrable. Thus, for some
constant Cε and any t,∫

St∩{|r−s|≥C0s}
(1 + |r − s|)−1−ε[Σ(Tiu)2](x, s)dxds ≤ Cε max

0≤s≤t
E(s).

This is an already controlled quantity, and there is no improvement over
the standard inequality in this region. In contrast, in a thin strip, say
|r − t| ≤ C0, around the light cone {r = t}, we obtain that the special
energy

Ẽ(t) =
1
2

∫
[Σ(Tiu)2](x, t)dx

is not just bounded, but also an L2 function of t.
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To understand how this can be possible, we remark first that the special
derivatives Ti are the “good” derivatives in the sense of Section 5.2.3, since
L = ∂t + ∂r = ΣωiTi, R/r = ω ∧ T , and also Ti = ∂̄i + ωiL = [(R/r) ∧ ω]i
+ ωiL. In the case u = S(v) with v ∈ C∞

0 , the representation formula of
Theorem 5.8 for u shows that all derivatives of u are less than C/t, while
the special derivatives Tiu satisfy |Tiu| ≤ C/t2.

6.3 Inequalities in a Domain

Consider a domain D ⊂ Rn
x × Rt which is an open subset of the closed

half-space
{(x, t), x ∈ Rn, t ≥ 0}.

For t ≥ 0, we define Σt = {x, (x, t) ∈ D}, Dt = {(x, s) ∈ D, 0 ≤ s ≤ t}.
Thus the “base” of D̄ is Σ̄0, Dt consists of the points of D between Σ0 and
Σt, and we denote by Λt the “lateral boundary” of Dt,

Λt = {(x, s) ∈ ∂D̄t, s �= 0, s �= t}.

We assume that on the upper part of ∂D̄ there exists piecewise a unit
outward normal N to ∂D, namely,

N = (N1, . . . , Nn, N0), N0 > 0.

Let u be a real function in C2(D̄) with traces u0(x) = u(x, 0) and u1(x) =
(∂tu)(x, 0) on Σ̄0, and �u = f . We define the energy of u at time t by

E(t) = Eu(t) =
1
2

∫
Σt

[(Σ(∂iu)2 + (∂tu)2](x, t)dx.

Theorem 6.5. Assume that the unit outward normal N to the upper part
of ∂D satisfies

N2
0 ≥ ΣN2

i .

Then, for all u ∈ C2(D̄) sufficiently decaying when |x| → +∞,

max
0≤s≤t

E(s)1/2 ≤ E(0)1/2 +
√

2
∫ t

0

||f(·, s)||L2(Σs)ds.

Proof: The proof follows closely the proof of Theorem 6.3. Here, step 1
is exactly the same as in section 6.1. We write

(�u)(∂tu) =
1
2
∂t[Σ(∂iu)2 + (∂tu)2] − Σ∂i[(∂iu)(∂tu)].
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For the integration over Dt in step 2, we use Stokes formula, which we
recall here (see also Appendix, Formual A.17).

Formula 6.6 (Stokes formula). Let X = (X1, . . . , Xp) be a vector field
on a domain Ω ⊂ Rp, which possesses piecewise a unit outward normal N
on its boundary ∂Ω. Then∫

Ω

(Σ∂iXi)(x)dx =
∫

∂Ω

(X ·N)dσ,

where dσ is the area element on ∂Ω.

Using formula 6.6 we integrate (�u)(∂tu) in Dt and obtain∫
Dt

(�u)(∂tu)dxds = E(t) − E(0) +
∫

Λt

Idσ,

with
2I = N0[Σ(∂iu)2 + (∂tu)2] − 2(∂tu)ΣNi∂iu.

Forming squares, we obtain

2I = N0Σ(∂iu− (Ni/N0)∂tu)2 +N−1
0 (∂tu)2(N2

0 − ΣN2
i ).

The integral term on
∫

Dt
((�u)(∂tu)dxds is handled exactly as in step 3

above. �

In general, the following terminology is used for vectors N =
(N1, . . . , Nn, N0):

i) N is “timelike” if N2
0 > ΣN2

i ;

ii) N is “null” if N2
0 = ΣN2

i ;

iii) N is “spacelike” if N2
0 < ΣN2

i .

The condition on N in Theorem 6.5 is that N is nonspacelike, and this
is equivalent to asking that ∂D has slope at most 1 everywhere. From
Chapter 2 we know that this is a necessary condition for uniqueness when
n = 1. Simple geometric considerations show that this condition on N is
equivalent to saying that D is a domain of determination of its base Σ0 for
the wave equation, in the sense of Chapter 5. The remarkable fact is that
this necessary assumption on D is also sufficient to make our method work
(it could be that this method would require stronger assumptions).

It is important to notice that the boundary terms on Λt, which we have
discarded in the proof of the above theorem, may have some interest. For
instance, assume that D is a (truncated) light cone. In this case, the
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outgoing normal N is a null vector. The vector fields ∂i − (Ni/N0)∂t span
the tangent space to Λt, and the term

2
∫

Λt

Idσ =
∫

Λt

N0{Σ[∂iu− (Ni/N0)∂tu]2}dσ

gives the additional control of the L2 norm on Λt of those derivatives of u
which are tangent to Λt.

6.4 General Multipliers

Consider again a domain D as in Section 6.3 and u ∈ C2(D̄). Up to
now, to establish an energy inequality, we have considered the quantity∫

Dt
(�u)(∂tu)dxds. More generally, one can consider the quantity

∫
Dt

(�u)
(Xu)dxds, where X = X0∂t + ΣXi∂i (with X0 > 0) is a given vector field,
called the multiplier. The first step in the proof can be carried out as usual.

Step 1. Establishing a differential identity. The following identity holds

(�u)(Xu) =
1
2
∂t{X0[Σ(∂iu)2 + (∂tu)2] + 2(∂tu)ΣXi∂iu}

+
1
2
Σ∂i{Xi[Σ(∂iu)2 − (∂tu)2] − 2X0(∂tu)(∂iu)

− 2(∂iu)ΣXj∂ju} +Q.

Here, Q denotes a quadratic form in the derivatives of u whose coefficients
are derivatives of the components X0, Xi, of X , which we do not attempt
to write explicitly.

Step 2. Integration over the domain. When integrating (�u)(∂tu) on Dt

with outer normal N , we obtain from the divergence terms in (�u)(∂tu)
the boundary terms

∫
∂Dt

edσ where the energy density e = e(N,X) is

e =
1
2
(N0X0 − ΣNiXi)(∂tu)2 +

1
2
(N0X0 + ΣNiXi)Σ(∂iu)2

+ (∂tu)(N0A−X0B) −AB,

with
A = ΣXi∂iu = Xu, B = ΣNi∂iu = Nu.

The integral

Eu(t) =
∫

Σt

edσ
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is called the energy of u at time t, and we have

∫
∂Dt

edσ = Eu(t) − Eu(0) +
∫

Λt

edσ.

i) In the special case where N = (0, 1) (the flat part of ∂Dt), we obtain

e = X0[Σ(∂iu)2 + (∂tu)2] + 2(∂tu)A,

e = X0Σ[∂iu+
(
Xi

X0

)
∂tu]2 +X−1

0 (∂tu)2(X2
0 − ΣX2

i ).

Hence, if X is nonspacelike, the quadratic form e is nonnegative, and so
is the energy.

ii) On the other hand, if X = ∂t, on the lateral boundary Λt of Dt,

e = N0[Σ(∂iu)2 + (∂tu)2] − 2(∂tu)B,

and we proved in Theorem 6.5 that it is nonnegative if N is nonspacelike.

The following theorem summarizes the interplay between the choice of X
and the geometry of ∂D.

Theorem 6.7. Assume that, on the upper part of ∂D, N and X are
nonspacelike. Then

∫
Dt

(�u)(Xu)dxds = Eu(t) − Eu(0) +
∫

Λt

edσ +
∫

Dt

Qdxds,

where Eu(t) and e are nonnegative.

The proof of the general case is a tedious but straightforward computation
that we leave to the reader. One can also find in Exercise 13 a more
geometric proof. �

This theorem leaves of course open the question about the sign ofQ, which
is a delicate question in general. We saw in Section 6.2 a first example,
whereX = eb(r−t)∂t generates a nonnegativeQ. The next section is devoted
to a second example where X = ∂r, generating an “almost nonnegative ” Q,
and a third example will be seen in Section 6.7 whereX = (r2+t2)∂t+2tr∂r

also generates an “almost nonnegative ” Q. Other examples are given in
Exercise 4 and Exercises 7, 8, 10, 12 of Chapter 7.
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6.5 Morawetz Inequality

In constrast with Sections 6.1-6.4 where we use timelike multipliers to
obtain energy inequalities, the computation below due to Morawetz uses
the spacelike multiplier X = ∂r. Of course, in this case, the energy on hor-
izontal slabs {t = T } will not be positive, but interesting quadratic terms
Q in ∂u will appear. This inequality can only be used when coupled with
an energy inequality giving a control of Eu(t).

Theorem 6.8. Let u ∈ C2(R3
x × [0, T [) be sufficiently decaying when

|x| → ∞ and satisfy �u = 0. Then for all 0 ≤ t < T ,

4π
∫ t

0

u2(0, s)ds+
∫

St

r−1[Σ(∂iu)2 − (∂ru)2]dxds ≤ 4Eu.

Note that Σ(∂iu)2 − (∂ru)2 = |(R/r)u|2.

We give a detailed proof of this theorem as an exercise in the technique
just described in Sections 6.1–6.4, following the same three Steps as before.

Proof:

Step 1. Establishing a differential identity. We write 2(�u)(∂ru) as a sum
of terms in divergence form plus a sum Q of quadratic terms in ∂tu, ∂iu,
just as in Sections 6.2 or 6.4. More precisely,

(∂2
t u)(∂ru) = (∂2

t u)(Σωi∂iu)

= ∂t[(∂tu)(∂ru)] − 1
2
Σ∂i[ωi(∂tu)2] +

1
2
(∂tu)2Σ∂iωi,

(∂2
j u)(∂ru) = ∂j [(∂ju)(∂ru)] − 1

2
Σ∂i[ωi(∂ju)2] − Σi(∂ju)(∂iu)(∂jωi)

+
1
2
(∂ju)2Σ∂iωi.

Since

∂j(ωi) = r−1(δij − ωiωj), Σ∂iωi =
2
r
,

Σ(∂iu)(∂ju)(∂jωi) = r−1[Σ(∂iu)2 − (∂ru)2],

we obtain, gathering the terms,

2(�u)(∂ru) = ∂t[2(∂tu)(∂ru)] + Σ∂i{ωi[Σ(∂ju)2

− (∂tu)2] − 2(∂iu)(∂ru)} +Q,

Q =
2
r
[Σ(∂iu)2 − (∂ru)2] +

2
r
[(∂tu)2 − Σ(∂iu)2].
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We note here a special feature of great importance: the sum Q of the
quadratic terms in ∂u contains two different terms. The first term is
nonnegative and gives a control of (R/r)u. The second term is an
expression with no special sign, but which is of the form

a[(∂tu)2 − Σ(∂iu)2],

with a = 2/r. The following lemma allows us to further transform this
expression.

Lemma 6.9. The following identity holds:

au(�u) = ∂t[au∂tu− 1
2
(∂ta)u2] − Σ∂i[au∂iu− 1

2
(∂ia)u2] − a[(∂tu)2

− Σ(∂iu)2] +
u2

2
�a.

We skip the straightforward proof, which uses the by now familiar tech-
nique of step 1. This lemma suggests considering the product

2(�u)
(
∂ru+

u

r

)
,

in which the bad quadratic terms cancel.

Step 2. Integration over the domain. Since we introduced the singular
term u/r, we consider now the integral of 2(�u)(∂ru + u

r ) not in the full
strip St, but in the domain

{(x, s), 0 ≤ s ≤ t, |x| ≥ ε > 0},

which is the exterior of a thin cylinder. The upper and lower boundary
terms are the integrals ∫

|x|≥ε

dx
[(
∂ru+

u

r

)
(∂tu)

]

taken at time t and 0, respectively. The lateral boundary term on the
cylinder |x| = ε with outer normal N = (−ω, 0) is∫

ε−1{ε[(∂tu)2 − Σ(∂iu)2] + 2ε(∂ru)2 + 2u∂ru+ ε−1u2}ε2dtdσS2 ,

where dσS2 is the area element on the unit sphere of R3. Letting ε go to
zero, this last term goes to

4π
∫ t

0

u2(0, s)ds.
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Since �u = 0, there is no step 3 here. Since the multiplier X = ∂r is
spacelike, the upper and lower boundary integrals have no special sign, and
we have to control them. We write

2
∣∣∣∣
∫

(∂ru+
u

r
)(∂tu)dx

∣∣∣∣ ≤
∫

(∂tu)2 +
∫ (

∂ru+
u

r

)2

dx,

and expand the last term. For the double product, we integrate by parts

2
∫

(∂ru)
u

r
dx = 2

∫
(∂ru)urdrdω =

∫
∂r(u2)rdrdω = −

∫
u2

r2
dx,

hence finally

2
∣∣∣∣
∫

(∂ru+
u

r
)(∂tu)dx

∣∣∣∣ ≤
∫

[(∂tu)2 + (∂ru)2]dx ≤ 2Eu,

which completes the proof. �

6.6 KSS Inequality

The following inequality is named after its authors M. Keel, H. Smith and
C. Sogge (See Notes).

Theorem 6.10. There exists C such that, for all u ∈ C2(R3
x × [0, T [)

sufficiently decaying when |x| → +∞, and t < T ,

[log(2 + t)]−1/2

[∫
St

(1 + r)−1|∂u|2(x, s)dxds
]1/2

≤ CE1/2
u (0) + C

∫ t

0

||(�u)(·, s)||L2ds.

Proof: We only handle the case �u = f with u(x, 0) = 0, (∂tu)(x, 0) = 0,
the homogeneous case being handled similarly. In contrast with the pre-
ceding inequalities, the proof here does not involve a multiplier method
and integrations by parts. It uses only the standard energy inequality,
combined with three new ideas, which are truncation, scaling, and
dyadic decomposition.

Step 1. The aim of this first step is to prove the inequality

[∫ t

0

∫
|x|≤2

|∂u|2dxds
]1/2

≤ C

∫ t

0

||(�u)(·, s)||L2ds.
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Note that this is a part of the inequality of Theorem 6.10 which is slightly
better than the general inequality, since the factor [log(2 + t)]−1/2 is not
there. The idea is to use a clever truncation process jointly with the
strong Huygens principle. We define the disjoint regions Rk in
the (x, t) space by

Rk = {(x, t), k ≤ |x| + t < k + 1, k = 0, 1, . . .}

and define fk to be f in Rk and zero otherwise, thus f = Σfk. Let then vk

be the solution of the Cauchy problem

�vk = fk, vk(x, 0) = 0, (∂tvk)(x, 0) = 0.

Obviously, u = Σvk. The function vk is zero for t + |x| < k because the
propagation speed is less than 1, and is also zero for t ≥ k + 1 + |x| by the
strong Huygens principle. Hence, in the cylinder

|x| ≤ 2, l ≤ t ≤ l+ 1,

vk vanishes identically unless |k − l| ≤ 2. This implies, for some constant
C, the inequality

∫ l+1

l

∫
|x|≤2

|∂u|2dxdt =
∫ l+1

l

∫
|x|≤2

|Σ|k−l|≤2∂vk|2dxdt

≤ 5Σ|k−l|≤2

∫ l+1

l

∫
|x|≤2

|∂vk|2dxdt.

For each k, the standard energy inequality applied to vk yields

max
t≤l+1

||∂vk(·, t)||2L2 ≤ 4

(∫ l+1

0

||fk(·, t)||L2dt

)2

.

Fixing N ≤ t and assuming l ≤ N − 1, we thus obtain

∫ l+1

l

∫
|x|≤2

|∂u|2dxdt ≤ CΣ|k−l|≤2

(∫ N

0

||fk(·, t)||L2dt

)2

.

Summing on l and taking the square roots, this yields

[∫ N

0

∫
|x|≤2

|∂u|2dxdt
]1/2

≤ C

⎡
⎣Σ0≤k≤N+1

(∫ N

0

||fk(·, t)||L2dt

)2
⎤
⎦

1/2

.
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In the righthand side of the above inequality, we recognize the standard
euclidean norm in RN+2 of

∫ N

0 A(t)dt, where the vector A(t) is

A(t) = (||f0(·, t)||L2 , . . . , ||fN+1(·, t)||L2).

Now
||A(t)|| = (Σ||fk(·, t)||2L2)1/2 ≤ ||f(·, t)||L2 ,

since the fk have disjoint supports in x for fixed t. The norm of the integral
of A being less than the integral of the norm of A, we obtain finally

[∫ N

0

∫
|x|≤2

|∂u|2dxdt
]1/2

≤ C

∫ N

0

||f(·, t||L2dt.

We remark now that the above inequality holds in fact for any t instead
of N : [∫ t

0

∫
|x|≤2

|∂u|2dxds
]1/2

≤ C

∫ t

0

||f(·, s)||L2ds.

To see this, let N be the integer part of t; splitting

∫ t

0

∫
|x|≤2

|∂u|2dxds =
∫ N

0

+
∫ t

N

≤ C

(∫ t

0

||f(·, s)||L2ds

)2

+ max
N≤s≤t

∫
|x|≤2

|∂u|2(x, s)dx

gives the result.

Step 2. The aim of this second step is to take advantage of the homo-
geneity properties of the wave equation to pass from the inequality of
step 1 (controlling the solution in the cylinder |x| ≤ 2) to an inequality in
an annulus[∫ t

0

∫
R≤|x|≤2R

|x|−1|∂u|2dxds
]1/2

≤ C

∫ t

0

||(�u)(·, s)||L2ds.

Again, this is a part of the inequality of Theorem 6.10 with no logarithmic
factor. Note that the constant C does not depend on R! The idea is to use
a scaling argument, which is as follows: Let v be any C2 function with
�v = g and zero traces on {t = 0}. Then, for any R > 0, the function
wR(y, τ) = v(Ry,Rτ) is the solution of �wR = gR with traces (0, 0) and

gR(y, τ) = R2g(Ry,Rτ).
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We write, using the change of variables x = Ry, s = Rτ ,∫ t

0

∫
R≤|x|≤2R

|x|−1|∂v|2(x, s)dxds

=
∫ t/R

0

∫
1≤|y|≤2

R3|y|−1|∂v|2(Ry,Rτ)|2dydτ

≤ R

∫ t/R

0

∫
|y|≤2

|∂wR|2(y, τ)dydτ.

We now use for the function wR the inequality proved in step 1 and obtain

∫ t/R

0

∫
|y|≤2

|∂wR|2dydτ ≤ C

(∫ t/R

0

||gR(·, τ)||L2dτ

)2

.

From the definition of gR we get

||gR(·, τ)||2L2 =
∫

|gR(y, τ)|2dy = R

∫
g(x,Rτ)2dx,

∫ t/R

0

||gR(·, τ)||L2dτ = R−1/2

∫ t

0

||g(·, s)||L2ds.

Hence, finally,

∫ t

0

∫
R≤|x|≤2R

|x|−1|∂v|2(x, s)dxds ≤ C

(∫ t

0

||g(·, s)||L2ds

)2

.

Step 3. Dyadic decomposition. To finish the proof, we remark first that∫ t

0

∫
|x|≥t

(1 + |x|)−1|∂u|2dxds ≤ C log(2 + t) max
0≤s≤t

Eu(s),

so we need only prove

∫ t

0

∫
|x|≤t

(1 + |x|)−1|∂u|2dxds ≤ C log(2 + t)
(∫ t

0

||f(·, s)||L2ds

)2

.

Let N be the smallest integer such that t ≤ 2N+1. We split the integral
into a sum of integrals on dyadic shells∫ t

0

∫
|x|≤t

(1 + |x|)−1|∂u|2dxds ≤
∫ t

0

∫
|x|≤2N+1

(1 + |x|)−1|∂u|2dxds
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=
∫ t

0

∫
|x|≤1

(1 + |x|)−1|∂u|2dxds

+ Σ0≤k≤N

∫ t

0

∫
2k≤|x|≤2k+1

(1 + |x|)−1|∂u|2dxds.

Using N + 2 times the inequality of step 2, we have the same bound for
each term, and the result follows. �

It is important to understand precisely what Theorem 6.10 says: We have,
for any α > 0,

∫
St∩{|x|≥αt}

(1 + r)−1|∂u|2dxds ≤ C

∫ t

0

ds

1 + s

∫
|∂u|2dx

≤ C( max
0≤s≤t

Eu(s)) log(2 + t).

In other words, the standard energy inequality would imply Theorem 6.10
if the integral on St on the lefthand side were replaced by an integral on
St ∩ {|x| ≥ αt} only. Thus, Theorem 6.10 provides an improved behavior
of all derivatives of the solution far away inside the light cone (that is, in
regions |x| ≤ αt, α < 1), while Theorem 6.3 provides an improved behavior
of some special derivatives of the solution close to the boundary of the light
cone (that is, in regions |x| ≥ αt, α > 0).

6.7 Conformal Inequality

We turn now to an energy inequality obtained, in the spirit of Section 6.4,
using the nonspacelike multiplier

K0 = (r2 + t2)∂t + 2rt∂r.

Theorem 6.11. For n ≥ 3 there exists C such that, for all u ∈ C2(Rn
x ×

[0, T [), sufficiently decaying when |x| → +∞, and all t < T ,

Ec
u(t)1/2 ≤ CEc

u(0)1/2 + C

∫ t

0

||g(·, s)||L2ds.

Here, g = (r2 + t2)1/2�u, and the conformal energy Ec is defined by

Ec(t) = Ec
u(t) =

1
2

∫
[(Su)2 + |Hu|2 + |Ru|2 + u2](x, t)dx.
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Recall from Chapter 5 the definitions of the Lorentz fields

S = t∂t+ r∂r, Hi = t∂i + xi∂t, R = x ∧ ∂.

Proof: The first step of the proof is as in Sections 6.1–6.4.

Step 1. Establishing a differential identity. We write (�u)(K0u) as the
sum Q of quadratic terms in ∂u and terms in divergence form:

(r2 + t2)(∂2
t u)(∂tu) =

1
2
∂t[(r2 + t2)(∂tu)2] − t(∂tu)2,

(r2 + t2)(∂2
i u)(∂tu) = ∂i[(r2 + t2)(∂iu)(∂tu)] − 1

2
∂t[(r2 + t2)(∂iu)2]

− 2xi(∂tu)(∂iu) + t(∂iu)2,

txi(∂2
t u)(∂iu) = ∂t[txi(∂tu)(∂iu)] − 1

2
∂i[txi(∂tu)2]

− xi(∂tu)(∂iu) +
t

2
(∂tu)2,

txi(∂2
j u)(∂iu) = ∂j [txi(∂iu)(∂ju)] − 1

2
∂i[txi(∂ju)2]

− tδij(∂iu)(∂ju) +
t

2
(∂ju)2.

Gathering the terms, we obtain finally

(�u)(K0u) =
1
2
∂t[(r2 + t2)((∂tu)2 + Σ(∂iu)2) + 4rt(∂tu)(∂ru)]

+ Σ∂i[txi(−(∂tu)2 + Σ(∂ju)2) − (r2 + t2)(∂tu)(∂iu)

− 2rt(∂ru)(∂iu)] + (n− 1)t[(∂tu)2 − Σ(∂iu)2].

We see that Q reduces to a multiple of (∂tu)2 − Σ(∂iu)2. Just as in the
proof of Morawetz inequality, we use Lemma 6.9 to tranform this term :

(n− 1)t[(∂tu)2 − Σ(∂iu)2] = − (n− 1)tu(�u) + ∂t

[
(n− 1)tu(∂tu)

−
(

(n− 1)
2

)
u2

]
− Σ∂i[(n− 1)tu∂iu].

Step 2. Integration over the domain. Integrating over the strip St, we
obtain the identity∫

St

(�u)(K0u+ (n− 1)tu)dxds = Ẽu(t) − Ẽu(0),
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where the modified energy Ẽ is

Ẽu(t) =
1
2

∫
{(r2 + t2)[(∂tu)2 + Σ(∂iu)2] + 4rt(∂tu)(∂ru)

+ 2(n− 1)tu(∂tu) − (n− 1)u2}dx.

This energy is the sum of two different contributions: The first two terms
come from using the multiplier K0 and are nonnegative, since K0 is non-
spacelike; this can be checked directly by writing

(r2 + t2)[(∂tu)2 + (∂ru)2 + |
(
R

ra

)
u|2] + 4rt(∂tu)(∂ru)

= (Su)2 + (t∂ru+ r∂tu)2 + (r2 + t2)|
(
R

r

)
u|2.

The last two terms come from using Lemma 6.9 to get rid of the bad
quadratic terms Q, and it is not immediately clear that they do not destroy
the positivity of Ẽ. So we pause for a moment to discuss the sign of Ẽ.

Step 2’. Consider the simple identity Σ∂i(xiu
2) = nu2 +2ru∂ru. Writing

2(n− 1)ut∂tu = 2(n− 1)u(Su− r∂ru)

and using the above identity, we obtain∫
[2(n− 1)tu∂tu− (n− 1)u2]dx =

∫
[2(n− 1)uSu+ (n− 1)2u2]dx,

which gives

Ẽ =
1
2

∫ {
(Su+ (n− 1)u)2 + (t∂ru+ r∂tu)2 + (r2 + t2)

∣∣∣∣
(
R

r

)
u

∣∣∣∣
2
}
dx.

Noticing that

|Hu|2 = Σ(Hiu)2 = (t∂ru+ r∂tu)2 + t2[Σ(∂iu)2 − ∂ru)2]

= (t∂ru+ r∂tu)2 +
t2

r2
|Ru|2,

we finally obtain

Ẽ =
1
2

∫
{(Su+ (n− 1)u)2 + |Hu|2 + |Ru|2}dx.

This computation can be considered a true miracle! It proves that the
modified energy is always nonnegative.
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But we can obtain more. In fact, if we start writing the integrand of Ẽ
as a sum of squares, we get

(r2 + t2)[(∂tu)2 + (∂ru)2] + 4rt(∂tu)(∂ru) + 2(n− 1)tu∂tu− (n− 1)u2

= (r2 + t2)[∂tu+
t

r2 + t2
(2r∂ru+ (n− 1)u)]2 + (r2 + t2)(∂ru)2

− (n− 1)u2 − t2

r2 + t2
(2r∂ru+ (n− 1)u)2.

Setting v = r(n−1)/2u to take into account the volume element rn−1drdω,
we rewrite the last three terms above as

(r2 − t2)2

r2 + t2
(∂rv)2 + (n− 1)v2(−1 + (n− 1)

r2 + t2

4r2
) − (n− 1)

r2 + t2

r
v∂rv.

Assume now n ≥ 3. Then v = O(r) near r = 0, and we can integrate by
parts the last term with respect to r between r = 0 and r = +∞:∫

r2 + t2

r
v∂rvdr = −1

2

∫
v2

(
1 − t2

r2

)
dr.

If n = 2 and we assume that v = O(r), the same computation is allowed.
Suppose then that we take u radial, ∂tu appropriately chosen, and v = O(r):
since we already know that Ẽ ≥ 0, the above computation gives us the
Poincaré inequality:∫ +∞

0

(r2 − t2)2

r2 + t2
(∂rv)2dr ≥

1
4

∫ +∞

0

(
1 +

t2

r2

)
v2dr.

Returning now to the case n ≥ 3, we have automatically then that v =
O(r) near zero, and we can use the above Poincaré inequality to obtain

Ẽ ≥ 1
2

∫
{(r2 + t2)|

(
R

r

)
u|2 +

(n− 2)2

4
u2

(
1 +

t2

r2

)
}dx.

Using again the miracle computation above, we obtain for some C > 0,

Ẽ ≥ C

∫
[(Su)2 + |Hu|2 + |Ru|2 + u2]dx.

Step 3. Handling the remainder term. This last step is analogous to the
usual one: We have to bound∫

St

(�u)(K0u+ (n− 1)tu)dxds.
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To do this, we observe that

K0u = tSu+ r(t∂ru+ r∂tu),

(K0u+ (n− 1)tu)2 ≤ 2(r2 + t2)[(Su+ (n− 1)u)2 + (t∂ru+ r∂tu)2].

We apply the Cauchy–Schwarz inequality and get∣∣∣∣
∫

(�u)(K0u+ (n− 1)tu)dx
∣∣∣∣ =

∣∣∣∣
∫
g[(r2 + t2)−1/2(K0u+ (n− 1)tu)]dx

∣∣∣∣
≤C||g||L2

(∫
{(Su+ (n− 1)u)2

+ (t∂ru+ r∂tu)2}dx
)1/2

,

where g = (r2 + t2)1/2�u. Thanks to the miracle computation, we obtain∣∣∣∣
∫

(�u)(K0u+ (n− 1)tu)dx
∣∣∣∣ ≤ C||g||L2Ẽ(t)1/2.

The rest of the proof is then straightforward. �

6.8 Exercises

1. Consider a function u ∈ C2(Rn
x × [0, T ]). Compute the energy Eu(t) cor-

responding to the multiplier Xu = ∂tu + α∂1u, in the spirit of
Section 6.4; for which values of α is this energy positive definite? non-
negative? Answer the same questions for the multiplier Xu = ∂tu+ α∂ru.

2. Let u ∈ C2(Rn
x × [0, T [) be a solution of �u = 0 with Cauchy data

u0, u1 ∈ C∞, vanishing for |x| ≥M . Set

Ji(t) =
∫
Rn

(∂iu)(x, t)(∂tu)(x, t)dx,

K(t) =
∫
Rn

(Σxi∂iu)(x, t)(∂tu)(x, t)dx,

Fi(t) =
1
2

∫
Rn

xi[(∂tu)2 + Σ(∂iu)2](x, t)dx,

F (t) =
1
2

∫
Rn

|x|2[(∂tu)2 + Σ(∂iu)2](x, t)dx.
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Show that all these quantities are well defined. Prove

∂tJi = 0, ∂tFi = −Ji, ∂tF = −2K,

and compute ∂tK. What can be said about the sign of ∂tK for t large?
(Hint: Use Exercise 9)

3. Prove that the standard energy inequality is “scale invariant” in the
following sense: Assume given a real function u ∈ C2(Rn

x × [0, T [), and set

�u = f, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x).

Define uλ(x, t) = u(λx, λt) (λ > 0). Then

�uλ = fλ, uλ(x, 0) = u0λ(x), (∂tuλ)(x, 0) = u1λ(x).

Compute fλ, u0λ, and u1λ. Write down the standard energy inequality
for uλ and translate it into an inequality for u in terms of f , u0, u1. What
do you obtain?

4. Let u ∈ C2(Rn
x × [0, T ]) be real, and set

�u = f, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x).

For R > 0, write down the energy inequality for u in the truncated light
cone

CR = {(x, t), 0 ≤ t ≤ T, |x| ≤ R+ T − t}.

Deduce from this that if∫
{|∇u0|2 + u2

1}(x)dx <∞,

∫ T

0

||f(·, s)||L2(Rn)ds <∞,

the function u satisfies the standard energy inequality in the full strip
Rn

x × [0, T ].

5.(a) Let u ∈ C2(Rn
x × [0, T ]) be a solution of the equation

Pu ≡ �u+ α0∂tu+ Σαi∂iu = f,

where α0, αi ∈ C0(Rn
x × [0, T ]). In order to obtain an inequality for u in

terms of its traces u0, u1, and f , apply the standard inequality to

�u = f − α0∂tu− Σαi∂iu.
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Setting
A(t) = max

x
|α0(x, t)| + Σ max

x
|αi(x, t)|, t ≤ T,

use the Gronwall lemma to obtain the inequality

max
0≤s≤t

Eu(s)1/2 ≤
[
Eu(0)1/2 +

√
2
∫ t

0

||f(·, s)||L2ds

]
exp

(
2
∫ t

0

A(s)ds
)
.

(b) A rougher way of handling the same problem is to prove a weighted
inequality. To do this, compute as usual∫

DT

(Pu)(∂tu)e−2λtdxdt,

where λ is a constant. Show that if λ ≥ max0≤t≤T A(t), then

sup
0≤t≤T

[e−λtEu(t)1/2] ≤ Eu(0)1/2 +
√

2
∫ T

0

e−λt||f(·, t)||L2dt.

(c) Suppose now that P contains a zero order term

Pu ≡ �u+ α0∂tu+ Σαi∂iu+ βu.

What kind of inequality can be obtained for u?

6.(a) Consider the semilinear wave equation

�u = F (∂tu, ∂1u, . . . , ∂nu),

where u ∈ C2 is assumed to be real and F is a C1 real function of its
arguments. Let

C(x0,t0) = {(x, t), 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}

be a closed (truncated) light cone. Assume that u, v ∈ C2(C(x0,t0)) are two
solutions of the equation, with the same traces

u(x, 0) = v(x, 0), (∂tu)(x, 0) = (∂tv)(x, 0).

Show that u = v in C(x0,t0).

(b) Assume you are given two real functions u0, u1 ∈ C∞(Rn). Let us
call a closed light cone C(x0,t0) “admissible” is there exists u ∈ C2(C(x0,t0)),
solution of the equation with traces u0, u1 on {t = 0}. Consider Ω the union
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of all such admissible cones. Show that ∂Ω has slope equal to at most one
and that there exists a unique solution u of the equation in Ω with traces
u0, u1 on {t = 0}. The set Ω is called the maximal domain of determination
of u0, u1 (the nonobvious fact is that Ω is not reduced to {t = 0}!).

7. Let u ∈ C2(R3
x × [0,∞[) be a solution of the wave equation with

traces u0, u1 ∈ C∞
0 (R3). Use the representation formula from Chapter 5

to prove

[∫
(|∂tu|p + Σ|∂iu|p)(x, t)dx

]1/p

∼ t(2/p)−1, t→ +∞.

Deduce from this that no “energy conservation” in the sense of Lp can
hold for p �= 2.

8. Let u ∈ C3(Rn
x × [0,∞[) (n ≥ 3), and set

�u = f, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x).

Assume that u0 and u1 are C∞ functions vanishing for |x| ≥M . Suppose
we want to obtain a control of ||(∂Zu)(·, t)||L2 , for all the Lorentz fields Z.
We can either

(a) commute the derivatives ∂t, ∂i with the equation �u = f , and then
apply the conformal energy inequality, or

(b) commute the Lorentz fields Z with the equation �u = f , and then
apply the standard energy inequality.

Compare the two inequalities thus obtained.

9. Let u ∈ C2(R3
x × [0,∞[) satisfy a perturbed wave equation

�u+ α(x, t)Zu = 0, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x),

where α ∈ C0 is given and Z is a Lorentz field (say Z = S,Ri, or Hi).
One wants to obtain an energy inequality for u; assume, for simplicity, that
both traces u0, u1 have compact supports.

(a) A first possibility is to use the conformal energy inequality,
which, precisely, gives a control of the Lorentz fields. Show that if
tmaxx |α(x, t)| ∈ L1

t , then, for some C and all t, Σ||(Zu)(·, t)||L2 ≤ C.

(b) A more subtle strategy is to use the improved standard energy inequal-
ity, which gives an additional control of the special derivatives Ti = ∂i+ωi∂t.
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Prove the following identities, connecting the Lorentz fields with the
fields Ti:

∂t + ∂r = ΣωiTi, S = tΣωiTi + (r − t)∂r,

R = x ∧ T, Hi = tTi + ωi(r − t)∂t.

Prove the pointwise bound

|Zu| ≤ C(1 + t)Σ|Tiu| + C|r − t||∂u|.

(c) Write

|α||Tiu| = (|α| < r − t >1/2+ε)(|Tiu| < r − t >−1/2−ε)

and use the usual Cauchy–Schwarz argument to show that if

||(1 + t)max
x

|α| < r − t >1/2+ε ||L2
t

is small enough, the term∫ T

0

||(1 + t)(αTiu)(·, t)||L2dt

can be absorbed in the lefthand side of the improved standard energy
inequality. Show that, to handle the other term∫ T

0

|| < r − t > (α∂u)(·, t)||L2dt,

it is enough to have maxx | < r − t > α| ∈ L1
t . Finally, show that this

condition is implied by the previous condition on α. Compare with the
condition obtained in (a).

10. Let u ∈ C2(R3
x × [0,∞[) and assume (with the notation of

Section 6.7)

Ec
u(0) +

∫ +∞

0

||g(·, t)||L2dt <∞, g = (r2 + t2)1/2�u.

Show that ∫
[(∂tu)2 − Σ(∂iu)2]dx = O(t−1), t→ +∞.

(Hint: Write

(∂tu)2 − Σ(∂iu)2 = (∂tu− ∂ru)(∂tu+ ∂ru) − |(R/r)u|2,
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and use the conformal energy identity, along with the identities from
Chapter 5,

(r + t)(∂t + ∂r) = S + ΣωiHi,
R

r
=
(

1
t

)
(ω ∧H).

This phenomenon is called “equipartition of energy.”

11.(a) Let u ∈ C∞(R2
x × [0,∞[) satisfy �u = 0. Give a simple sufficient

condition on the traces

u0(x) = u(x, 0), u1(x) = (∂tu)(x, 0)

of u, which implies EZku(0) < ∞ for all products Zku of k Lorentz fields
applied to u.

(b) Assume that the condition of (a) on the traces of u is satisfied. Show
that, for k ≤ 2,

||(∂Zku)(·, t)||L2 <∞,

and deduce from Klainerman inequality

(1 + r + t) < r − t >1/2 |∂u|(x, t) ≤ C.

In particular, in a region r ≤ Ct,C < 1 inside the light cone,

|∂u|(x, t) ≤ C

(1 + t)2
.

(This exercise shows that, by using energy inequalities, we do not obtain
the optimal decay rate of the solution inside the light cone; compare with
Exercise 10 of Chapter 5).

12. Let u ∈ C∞(Rn
x × [0,∞[), with

�u = f, u(x, 0) = 0, (∂tu)(x, 0) = 0, f(x, 0) = 0.

Assume that f(·, t) has zero spatial mean, in the sense that there exist n
functions gi ∈ C∞, vanishing for |x| ≥M + t such that

f(x, t) = Σ∂igi(x, t), gi(x, 0) = 0.

Define n functions vi by

�vi = gi, vi(x, 0) = 0, (∂tvi)(x, 0) = 0.

Note that u = Σ∂ivi.
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(a) Show, for each i,

||(∂2
t vi)(·, t)||L2 + Σ||(∂j∂tvi)(·, t)||L2 ≤ C

∫ t

0

||(∂tgi)(·, s)||L2ds.

(b) Using (a) and

gi(x, t) =
∫ t

0

(∂tgi)(x, s)ds,

show the inequalities

||(∂ju)(·, t)||L2 ≤ Σ||(∂2
ijvi)(·, t)||L2

≤ CΣ||(Δvi)(·, t)||L2

≤ CΣ(||(∂2
t vi)(·, t)||L2 + ||gi(·, t)||L2)

≤ CΣ
∫ t

0

||∂tgi(·, s)||L2ds.

(Hint: Use Plancherel formula to show

||∂2
ijw||L2 ≤ ||Δw||L2 .

(c) Deduce from (a) and (b)

||(∂u)(·, t)||L2 ≤ CΣ
∫ t

0

||(∂tgi)(·, s)||L2ds.

Compare with a direct application of the standard energy inequality.
13.(a) In Section 6.4, we have associated to a general multiplier X and a
domain D an energy density e(N,X). Set

N = (N1, . . . , Nn, N0), Ñ = (−N1, . . . ,−Nn, N0),

and define ẽ(Ñ ,X) = e(N,X). Prove the formula

ẽ(Ñ ,X) = (Xu)(Ñu) − 1
2
< Ñ,X > [(∂tu)2 − Σ(∂iu)2],

where the scalar product <,> (defined in Exercise 5, Chapter 5), is

< (X1, . . . , Xn, X0), (Y1, . . . , Yn, Y0) > = X0Y0 − ΣXiYi.

In particular, note that ẽ is symmetric.

(b) Prove (by a direct computation or geometric arguments) that if
X and Y satisfy

< X,X > = 0, < Y, Y >= 0, X0 > 0, Y0 > 0,

then ẽ(X,Y ) ≥ 0.
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(c) Consider two timelike vectors X,Y , with X0 > 0, Y0 > 0. In the
plane spanned by X and Y , there are two vectors X ′ and Y ′ such that

< X ′, X ′ > = 0, < Y ′, Y ′ > = 0, X ′
0 > 0, Y ′

0 > 0.

Writing X and Y as linear combinations of X ′ and Y ′ with positive
coefficients, conclude from (b) and (c) that ẽ(X,Y ) ≥ 0. This proves
Theorem 6.7.

14.(a) Let us consider the Klein–Gordon equation

�u+ u = f.

Prove that the same energy inequality holds as for the wave equation, the
standard energy being now

E0(t) =
1
2

∫
[(∂tu)2 + Σ(∂iu)2 + u2]dx.

(b) Fix M > 0 and consider the Cauchy problem

�u+ u = f, u(x, 2M) = u0(x), (∂tu)(x, 2M) = u1(x),

where u0 and u1 vanish for {|x| ≥M}, and f vanishes forM+|x| ≥ t. Using
the standard multiplier ∂t, establish an energy inequality by computing∫

DT

(�u+ u)(∂tu)dxdt,

where, for T ≥ 2M ,

DT = {(x, t), t ≥ 2M, t2 − |x|2 ≤ T 2}.

Show that the energy E(T ) obtained on the hyperboloid HT , which forms
the upper part of ∂DT , can be written

E(T ) =
1
2

∫
HT

[t−2|Hu|2 +
t2 − |x|2

t2
(∂tu)2 + u2]dx.

Note that the vector fields Hi are tangent to the hyperboloid HT . Prove
the energy inequality

E(T )1/2 ≤ E(2M)1/2 +
√

2
∫ T

2M

dt

(∫
Ht

f2dx

)1/2

.

15. Consider a function u as in Exercise 5.9(e), and its tranformed
v = u(I). Translate the standard energy inequality on v, using the multi-
plier ∂T , into an energy inequality on u.
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6.9 Notes

The standard energy inequality is proved in all textbooks. The improve-
ment in Section 6.2 is to be found in Alinhac [2]. (See also Lindblad and
Rodnianski [16]). Morawetz inequality is taken from [18]. We chose to
include KSS inequality because of its simplicity and usefulness, and because
its proof is typical of many such similar arguments in recent research. KSS
inequality is taken from the original paper [13]. The presentation of the
conformal energy inequality follows Hörmander [10].



Chapter 7

Variable Coefficient Wave
Equations and Systems

7.1 What is a Wave Equation?

Consider, in Rn
x × Rt, a second order partial differential operator of the

form
L ≡ ∂2

t + 2Σbi(x, t)∂2
it − Σaij(x, t)∂2

ij + L1, aij = aji,

where all coefficients are real and C∞, and L1 is a first order operator. We
would like L to be an operator similar to the wave operator, and to enjoy
the same properties: Finite speed of propagation, energy inequalities, etc.
We saw in Chapter 2 that, for an operator in the plane, it is natural to
require that its principal part should be the principal part of a product
a real vector fields. Here, suppose first that L is homogeneous (that is,
L1 ≡ 0) with constant coefficients. For any ξ ∈ Rn, we can construct an
operator Lξ by letting L act on functions of t and s = x · ξ only:

L(v(x · ξ, t)) = [∂2
t + 2(b · ξ)∂2

st − (Σaijξiξj)∂2
s ]v(s, t) = [Lξv](x · ξ, t).

The requirement that Lξ should be strictly hyperbolic as an operator in
the plane (s, t) means

δ = (b · ξ)2 + Σaijξiξj > 0, ξ �= 0.

This will motivate the following definitions.

S. Alinhac, Hyperbolic Partial Differential Equations, Universitext,  
DOI 10.1007/978-0-387-87823-2_7, © Springer Science+Business Media, LLC 2009 
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Definition 7.1. We call L hyperbolic (with respect to t) in a region
Ω ⊂ Rn

x × Rt if, for all (x, t) ∈ Ω and all ξ ∈ Rn,

δ = (b(x, t) · ξ)2 + Σaij(x, t)ξiξj ≥ 0.

In other words, L is hyperbolic if the roots −λk(x, t, ξ) (k = 1, 2) in τ of
the characteristic equation

τ2 + 2Σbi(x, t)τξi − Σaij(x, t)ξiξj = 0

are real. The operator L is strictly hyperbolic if these roots are real and
distinct for ξ �= 0. The λk are the “characteristic speeds” of the equation.

Note that when no cross terms (that is, terms like bi∂2
it) are present, the

strict hyperbolicity of L is easily seen: this just means that the quadratic
form Σaijξiξj is positive definite. In general, we can get rid (at least locally)
of cross terms by the following procedure: let us write (with new first order
terms L′

1)
L = (∂t + Σbi∂i)2 − Σ[aij + bibj ]∂2

ij + L′
1.

If, in the region under consideration, we can perform a change of variables

X1 = φ1(x, t), . . . , Xn = φn(x, t), T = t

in such a way that the vector field ∂t + Σbi∂i becomes ∂T (see Chapter 1,
Section 1.8), then the operator L takes the form

L̄ = ∂2
T − Σāij∂

2
XiXj

+ L̄1,

for some new coefficients āij and lower order terms L̄1.

From now on, we always tacitly assume that L is strictly hyperbolic in the
region we consider.

7.2 Energy Inequality for the Wave Equation

We consider a domain D of the closed half-space Rn
x × [0,∞[ exactly as

in Chapter 6, Section 6.3. The following theorem gives an extension of
the standard energy inequality in the case of a variable coefficients wave
equation.

Theorem 7.2. Let L = ∂2
t − Σaij(x, t)∂2

ij be a strictly hyperbolic wave
equation. Assume that there exists 0 < α0 ≤ 1 such that, for all (x, t) ∈ D,
ξ ∈ Rn,

Σaij(x, t)ξiξj ≥ α0|ξ|2.
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Assume that the outward normal N = (N1, . . . , Nn, N0) on the upper part
of ∂D satisfies

N2
0 ≥ ΣaijNiNj.

Then, for all u ∈ C2(D̄) sufficiently decaying as |x| → +∞,

max
0≤s≤t

Eu(s)1/2 ≤ [Eu(0)1/2 +
√

2
∫ t

0

||f(·, s)||L2ds] exp
(

2
α0

∫ t

0

A(s)ds
)
.

Here, f = Lu, the energy Eu(t) is defined as

Eu(t) =
1
2

∫
Σt

[(∂tu)2 + Σaij(∂iu)(∂ju)](x, t)dx,

and the amplification factor A is

A(t) = max
x

[Σ|∂taij | + Σ|∂kaij |](x, t).

Proof: The steps of the proof are exactly the same as for the constant
coefficients case. Once again, we restrict ourselves to the case of a real
function u.

Step 1. Establishing a differential identity. We write the product (Lu)(∂tu)
as usual:

(∂2
t u)(∂tu) =

1
2
∂t[(∂tu)2],

(aij∂
2
iju)(∂tu) = ∂i[aij(∂ju)(∂tu)] − aij(∂ju)(∂2

tiu) − (∂iaij)(∂tu)(∂ju).

To handle the second term above, we use the symmetry of aij = aji:

aij(∂ju)(∂2
tiu) = ∂t[aij(∂iu)(∂ju)] − (∂taij)(∂iu)(∂ju) − aij(∂iu)(∂2

tju).

Summing over i, j gives us

2Σaij(∂ju)(∂2
tiu) = ∂t[Σaij(∂iu)(∂ju)] − Σ(∂taij)(∂iu)(∂ju).

Gathering the terms, we obtain

2(Lu)(∂tu) = ∂t[(∂tu)2 + Σaij(∂iu)(∂ju)] + Σ∂i[−2Σaij(∂ju)(∂tu)] +Q,

Q = −Σ(∂taij)(∂iu)(∂ju) + 2Σ(∂iaij)(∂ju)(∂tu).

Step 2. Integration on the domain. We integrate in the truncated domain
Dt using Stokes formula:∫

Dt

(Lu)(∂tu)dxds = Eu(t) − Eu(0) +
∫

Λt

Idσ +
∫

Dt

Qdxds.
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The boundary integrand I is

2I = N0[(∂tu)2 + Σaij(∂iu)(∂ju)] − 2(∂tu)ΣaijNi∂ju.

Introducing the vector fields

∂̄i = ∂i −
(
N0

Ni

)
∂t,

which span the tangent plane to ∂D, we can write

I = N0Σaij ∂̄iu∂̄ju+N−1
0 (∂tu)2(N2

0 − ΣaijNiNj).

The assumptions of the theorem imply I ≥ 0.

Step 3. Handling the remainder terms. We handle the term
∫

(Lu)(∂tu)dxds
exactly as before:∣∣∣∣

∫
(Lu)(∂tu)dxds

∣∣∣∣ ≤ √
2
∫ t

0

||f(·, s)||L2Eu(s)1/2ds.

It remains to deal with the “error term”
∫

Dt
Qdxds. We have

|Q| ≤ 2A[(∂tu)2 + Σ(∂iu)2] ≤ 2
(
A

α0

)
[(∂tu)2 + Σaij(∂iu)(∂ju)],

hence by integration∣∣∣∣
∫

Dt

Qdxds

∣∣∣∣ ≤ 2
α0

∫ t

0

A(s)Eu(s)ds.

We want to apply the Gronwall lemma (see Chapter 2, Lemma 2.16) to
the inequality we have obtained so far:

E(t) ≤ E(0) +
√

2
∫ t

0

||f(·, s)||L2E(s)1/2ds+
2
α0

∫ t

0

A(s)E(s)ds.

We use the same trick as before: For t′ ≤ t < T , we write

E(t′) ≤ E(0) +
√

2
∫ t

0

||f(·, s)||L2E(s)1/2ds+
2
α0

∫ t′

0

A(s)E(s)ds.

Applying now the lemma, we get

max
0≤t′≤t

E(t′) ≤ [E(0) +
√

2
∫ t

0

||f(·, s)||L2E(s)1/2ds] exp
(

2
α0

∫ t

0

A(s)ds
)
.

This implies immediately the conclusion. �
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7.3 Symmetric Systems

7.3.1 Definitions and Examples

Just as in Chapter 2, it is useful to consider also first order N ×N systems

L = S(x, t)∂t + ΣAi(x, t)∂i +B(x, t).

Here, S, Ai, and B are C∞ N × N matrices, and the operator acts on
functions

u : Rn
x × Rt ⊃ Ω → CN .

We will always assume S to be invertible. To define hyperbolicity, we
can follow the same path as in Section 1: Assuming B = 0 and constant
coefficients, we let L act on functions of t and s = x · ξ only; we thus define
a system Lξ

Lξv(s, t) = S∂tv + (ΣAiξi)∂sv.

For this system to be hyperbolic in the (s, t)-plane, we require S−1ΣAiξi
to have only real eigenvalues. This motivates the following definitions.

Definition 7.3. We call L hyperbolic (with respect to t) in the region
Ω ⊂ Rn

x × Rt if, for all (x, t) ∈ Ω and ξ ∈ Rn, the matrix S−1ΣAiξi has
real eigenvalues. The operator L is strictly hyperbolic if these eigenvalues
are also distinct for ξ �= 0.

Definition 7.4. The system L is symmetric if the matrices S and Ai are
hermitian. The operator is symmetric hyperbolic if, moreover, S is positive
definite.

We will see below why symmetry is an essential feature to obtain energy
inequalities. Let us comment about the concept of symmetric hyperbolic
system: If S = id, symmetry clearly implies hyperbolicity, since an her-
mitian matrix has real eigenvalues. More generally, let X �= 0 such that
S−1AX = λX : This implies

tX̄AX = λtX̄SX.

Since tX̄SX > 0, λ is the quotient of two real quantities, hence λ is real.
In other words, a symmetric hyperbolic operator is actually hyperbolic.
Note that an operator may be symmetric hyperbolic without being strictly
hyperbolic, a fact which is important in applications.

Example 7.5. Just as in Chapter 2, we can reduce a variable coefficients
wave equation

P = ∂2
t − Σaij∂

2
ij
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to a first order symmetric system. To do this, set u0 = ∂tu, ui = ∂iu; then
the n+ 1 equations

∂tu0 = Σaij∂jui, Σjaij∂tuj = Σjaij∂ju0

form a symmetric system L for which

S00 = 1, S0i = 0, Sij = aij .

Note that the condition a >> 0 (this notation meaning “positive defi-
nite”) of strict hyperbolicity of P is equivalent to the condition S >> 0
which makes L symmetric hyperbolic.

Example 7.6. The nonlinear system of compressible isentropic Euler
equations is

∂tρ+ div(ρu) = 0, ∂tui + (Σuj∂j)ui + ρ−1∂iP = 0, i = 1, . . . , n.

Here, ρ > 0 is the density of the fluid, u(x, t) ∈ Rn is its velocity as
observed at time t at the point x, and P is the pressure, considered here
as a given function of ρ (depending on the particular physical fluid we are
considering), of the form, say,

P = P (ρ) = Aργ , A > 0, γ > 1.

If we introduce the new unknown function c instead of ρ,

c = αρ(γ−1)/2,
α(γ − 1)

2
= (Aγ)1/2,

we obtain a new system

Dtc+
c(γ − 1)

2
divu = 0,

Dtui +
c(γ − 1)

2
∂ic = 0, i = 1, . . . , n,

where Dt ≡ ∂t + Σui∂i. For each c̄ given, the linearized system

Dtc+
c̄(γ − 1)

2
divu = 0, Dtui +

c̄(γ − 1)
2

∂ic = 0, i = 1, . . . , n,

is symmetric hyperbolic, but not strictly hyperbolic as soon as n ≥ 3.

Example 7.7. The Maxwell system is

∂tE + curlB = 0, ∂tB − curlE = 0,

where E and B are, respectively, the electric field and the magnetic field.
Considered as a 6 × 6 system with unknown u = (E,B), it is a symmetric
hyperbolic system.
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7.3.2 Energy Inequality

Let us consider a domain D ⊂ Rn
x × [0,∞[ as in Section 7.2, with outer

normal N = (N1, . . . , Nn, N0). We have the following energy inequality.

Theorem 7.8. Let
L = S∂t + ΣAi∂i +B

be a symmetric hyperbolic system in D̄, and assume, for some constant
α0 > 0 and all (x, t) ∈ D, X ∈ CN ,

tX̄S(x, t)X ≥ α0|X |2.

Define the energy Eu(t) by

Eu(t) =
1
2

∫
Σt

[tuSu](x, t)dx.

Assume that, on the upper part of ∂D, the hermitian matrix N0S+ΣNiAi

is nonnegative. Then, for all u ∈ C1(D̄) sufficiently decaying when |x| →
+∞,

max
0≤s≤t

Eu(s)1/2 ≤
[
Eu(0)1/2 +

(
2
α0

)1/2 ∫ t

0

||f(·, s)||L2ds

]
exp

(
2
α0

∫ t

0

A(s)ds
)
.

Here, the amplification factor A is

A(t) = max
x

||C(x, t)||, C =
B + tB̄

2
− 1

2
(∂tS + Σ∂iAi).

Proof: The steps of the proof are again essentially the same as before.
For simplicity, we assume that S, Ai, B, and u are real.

Step 1. Establishing a differential identity. We write tu(Lu) as a sum of
terms in divergence form and quadratic terms in u; Using the symmetry
of S and Ai we obtain

tuS∂tu =
1
2
∂t[tuSu]− 1

2
tu(∂tS)u,

tuAi∂iu =
1
2
∂i[tuAiu] − 1

2
tu(∂iAi)u.

Gathering the terms,

2tuLu = ∂t[tuSu] + Σ∂i[tuAiu] + 2tuCu, C =
B + tB

2
− 1

2
(∂tS + Σ∂iAi).
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Step 2. Integration over the domain. Integrating tuLu in the domain Dt,
we obtain using Stokes formula∫

Dt

tuLudxds = Eu(t) − Eu(0) +
∫

Λt

Idσ +
∫

Dt

tuCudxds.

The lateral boundary terms integrand I is given by

2I = tu(N0S + ΣNiAi)u.

The assumption of the theorem implies I ≥ 0.

Step 3. Handling the remainder term. We handle now the two remaining
integrals on Dt. Since

|tuCu| ≤ ||C|||u|2 ≤ ||C||
α0

(tuSu),∣∣∣∣
∫

Dt

tuCudxds

∣∣∣∣ ≤ 2
α0

∫ t

0

A(s)E(s)ds.

Also, as usual,
∣∣∣∣
∫

Dt

tuLudxds

∣∣∣∣ ≤
(

2
α0

)1/2 ∫ t

0

||f(·, s)||L2E(s)1/2ds.

We have obtained so far the inequality

E(t) ≤ E(0) +
(

2
α0

)1/2 ∫ t

0

||f(·, s)||L2E(s)1/2ds+
2
α0

∫ t

0

A(s)E(s)ds.

The end of the proof is exactly similar to that for Theorem 7.2. �

7.4 Finite Speed of Propagation

The two theorems of Sections 7.2, 7.3 have important corollaries, which
display the finite speed of propagation property for hyperbolic wave equa-
tions or symmetric hyperbolic systems. We give here the simplest form of
this corollary for the wave equation.

Theorem 7.9. Let us consider in Rn
x × [0,∞[ a hyperbolic wave equation

Lu = ∂2
t u− Σaij∂

2
iju+ a0∂tu+ Σai∂iu+ bu.
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Assume that the coefficients aij are C1, and that, for some constant
λ0 > 0 and all ξ ∈ Rn, ξ �= 0, they satisfy everywhere

0 < Σaij(x, t)ξiξj ≤ λ2
0|ξ|2.

Assume that the other coefficients a0, ai, b are bounded. Consider u ∈ C2

(Rn
x × [0,∞[) with

Lu = f, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x).

Assume that u0, u1 vanish for |x| ≥ M , and that f vanishes for
|x| ≥M + λ0t. Then u vanishes for |x| ≥M + λ0t.

Proof: The proof is a typical application of the energy inequality of
Theorem 7.2: In this theorem, we assume L to be homogeneous of order
two. Here, we assume that lower order terms are present. Let R > M and
consider the (rotationally invariant) domain DR defined by

DR = {(x, t), t ≥ 0,M + λ0t ≤ r = |x| ≤ 2R−M − λ0t}.

An outward normal N to the upper boundary of DR is given by

Ni = ± xi

|x| , N0 = λ0,

the sign depending on which point of ∂D we are considering. In all cases,
N satisfies the condition

N2
0 = λ2

0ΣN
2
i ≥ ΣaijNiNj

of Theorem 7.2. Moreover, since DR is compact, the assumptions of
Theorem 7.2 are satisfied with some α0 > 0 and some A < ∞. When
applying Theorem 7.2 to the domain DR, we write

∂2
t u− Σaij∂

2
iju = f − a0∂tu− Σai∂iu− bu = g.

Hence we obtain, for some C, the inequality

φ(t) ≡ max
0≤s≤t

Eu(s)1/2 ≤ C

∫ t

0

||g(·, s)||L2ds.

It is easy to handle the derivatives of u in g :

||a0∂tu+ Σai∂iu||L2 ≤ CE1/2
u .
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The control of bu is more delicate, since the energy inequality controls
only the derivatives of u. We simply write in DR, with various constants
C depending on R,

u(x, t) =
∫ t

0

(∂tu)(x, s)ds, |u(x, t)|2 ≤ C

∫ t

0

(∂tu)2(x, s)ds,∫
Σt

u2(x, t)dx ≤ C

∫ t

0

ds

∫
Σt

(∂tu)2(x, s)dx ≤ C

∫ t

0

E(s)ds ≤ C max
0≤s≤t

E(s).

Finally, the inequality gives us, since f = 0 in DR,

φ(t) ≤ C

∫ t

0

E(s)1/2 + C

∫ t

0

φ(s)ds ≤ C

∫ t

0

φ(s)ds.

Applying the Gronwall lemma yields finally u = 0 in DR. Since R is
arbitrary, this completes the proof. �

We leave it to the reader as Exercise 7 to establish an analogue of this
theorem for systems.

7.5 Klainerman’s Method

Klainerman’s method is an “energy inequality method” which allows one,
in global situations, to obtain pointwise estimates of solutions to vari-
able coefficients wave equations. The denomination “energy method” is
chosen to emphasize the fact that no attempt is made to represent the
solution by some formula, in contrast with the parametrix methods (see
section 7.7). Not only this method gives a good qualitative information on
the behavior of the solutions, but it is an essential tool in studying nonlinear
perturbations of the wave equation.

Consider a variable coefficients wave equation L in Rn
x×Rt. To emphasize

the fact that L is a perturbation of the wave equation, we write, with x0 = t,

L = ∂2
t − Δx + Σ0≤i,j≤naij(x, t)∂2

ij ,

where the coefficients aij are supposed to be “small” (see step 2 below).
There are three steps in the method:

Step 1. Commuting Lorentz fields. Let k be an integer at most equal to
(n+ 2)/2, and compute

ZkLu = 0 = [Zk, L]u+ L(Zku).
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Here Zk means a product of k Lorentz fields (either ∂t, ∂i or S, Hi, or
Ri), and the bracket is the commutator C defined by

Cu = [Zk, L]u = Zk(Lu) − L(Zku).

To understand the structure of the operator C, we have to note a number
of elementary facts:

i) If P = Σ|α|≤paα(y)∂α
y and Q = Σ|α|≤qbα(y)∂α

y are differential opera-
tors (in some y ∈ Rn variable) of orders p and q, respectively, then
[P,Q] ≡ PQ−QP is a differential operator of order at most p+ q−1,
since the terms of order exactly p+q in PQ and in QP cancel, because
they are the same. Here, Zk is of order k, L is of order 2, hence C is
of order at most k + 1.

ii) We can write symbolically a formula analogous to Leibniz formula,

Zk(ab) = Σp+q=k(Zpa)(Zqb),

where the righthand side means a sum of products of p fields applied
to a times q fields applied to b, these fields being taken among the
original fields of the product Zk.

iii) Denoting by ∂l a product of l ordinary derivatives, we have

[Z, ∂l] = [Z, ∂]∂l−1 + · · · + ∂p[Z, ∂]∂l−1−p + · · · + ∂l−1[Z, ∂].

But, as we saw in Chapter 5, [Z, ∂] is either zero or a constant times ∂.
Hence, omitting irrelevant constants, we can write symbolically

[Z, ∂l] = Σ∂l.

iv) By induction on k, we prove now

[Zk, ∂l] = Σ∂lZk−1.

In fact, if Zk+1 = Z0Z
k,

[Zk+1, ∂l] = Z0Z
k∂l − ∂lZ0Z

k = Z0[Σ∂lZk−1] + [Z0, ∂
l]Zk = Σ∂lZk.

v) Finally, putting together the above remarks, we obtain

[Zk, a∂l] = Σ1≤p,p+q≤k(Zpa)∂lZq + a∂lZk−1.
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We have proved the following lemma.

Lemma 7.10. The commutator C is a linear combination, with irrelevant
numerical coefficients, of terms (Zpa)∂Zru, 1 ≤ r ≤ k, p+r ≤ k+1, where
a stands for one of the coefficients aij.

Step 2. Using an energy inequality. We assume now

ΣZ, k≤(n+2)/2EZku(0) <∞,

a condition that can be checked on the Cauchy data of u using the equa-
tion Lu = 0. This condition is certainly true in particular when u0, u1

are smooth with compact support (see also Exercise 11 of Chapter 6).
Applying then an energy inequality for L to the equation L(Zku) = −Cu,
and summing the results for all products Zk, we get a control of

ΣZ, k≤(n+2)/2EZku(t)1/2

by a righthand side which contains only the time integral of ||Cu||L2 . If we
assume for all coefficients a = aij

∫ +∞

0

ΣZ, p≤(n+2)/2||Zpa(·, t)||L∞dt <∞,

the Gronwall lemma will ensure that, for some C independent of t,

ΣZ, k≤(n+2)/2EZku(t) ≤ C.

Step 3. Using Klainerman’s inequality. In the situation of step 2, we
have a control of Σ||(∂Zku)(·, t)||L2 . But the above commutation formula
[Zk, ∂l] = Σ∂lZk−1, applied for l = 1, gives

Σ|Zk(∂u)| ≤ Σp≤k|∂Zpu|.

Hence Klainerman’s inequality (See Theorem 5.12) yields

|∂u|(x, t) ≤ C(1 + r + t)−(n−1)/2 < r − t >−1/2,

which was our goal.

Of course, there are many variations of this argument: In particular cases
the commutator C may contains only terms of a special structure; It is pos-
sible to use, instead of the standard energy inequality for L, some improved
or conformal inequality, etc.
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7.6 Existence of Smooth Solutions

Theorem 7.11. Consider as in Section 7.3 the Cauchy problem for a
symmetric hyperbolic system with C∞ coefficients

Lu = S∂tu+ ΣAi∂iu+Bu = f, u(x, 0) = u0(x).

Let D be a compact domain of determination with base Σ0 satisfying the
assumptions of Theorem 7.8, and assume u0 ∈ Ck(Σ0) and f ∈ Ck(D)
be given, k ≥ 4 + [n/2]. Then there exists a unique solution u ∈ Cσ(D),
σ = k − [n/2] − 3.

Proof:

Step 1. Smoothing operators. We first start with some preliminary consid-
erations about smoothing operators. Fix φ ∈ C∞

0 (Rn
x) a nonnegative even

function φ with
∫
φdx = 1, vanishing for |x| ≥ 1; the family of functions

φε(x) = ε−nφ(x/ε) is an “approximation of the identity,” since∫
φε(x)dx =

∫
φ(y)dy = 1

and φε vanishes for |x| ≥ ε. We define an operator Cε by

Cεv = φε ∗ v, Cεv(x) =
∫
φε(x− y)v(y)dy.

• The operator Cε is smoothing in the sense that it takes a locally
L1 function into a C∞ function.

• It is formally self-adjoint in L2 since

(u,Cεv)L2 ≡
∫
u(x)C̄εvdx =

∫
u(x)φε(x− y)v̄(y)dxdy

=
∫
v̄(y)

∫
φε(y − x)u(x)dx = (Cεu, v)L2 .

• Using the Cauchy–Schwarz inequality, we have

(Cεv(x))2 ≤
∫
φε(x − y)v2(y)dy,

||Cεv||2L2 =
∫

(Cεv(x))2dx ≤
∫
v(y)2dy = ||v||2L2 .

Similarly, we have

||Cεv||L∞ ≤
∫
φε(x− y)|v(y)|dy ≤ ||v||L∞ .
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• If v is continuous, Cεv converges to v uniformly locally.

Finally, the following commutation lemma holds.

Lemma 7.12 (Commutation Lemma) There exists C such that, for
A, v ∈ C1(Rn

x), vanishing for |x| ≥ R, all j and all ε > 0,

||[Cε, A]∂jv ≡ CεA∂jv −ACε∂jv||L2 ≤ C||∇A||L∞ ||v||L2 .

Note that this lemma “gains” one derivative, the derivative originally
acting on v being transferred to A. The commutator can be explicitly
written ∫

φε(x− y)[A(y) −A(x)]∂jv(y)dy.

Integrating by parts, this gives

−
∫
φε(x−y)(∂jA)(y)v(y)dy +

∫
ε−n−1(∂jφ)

(
x− y

ε

)
[A(y)−A(x)]v(y)dy.

The estimate for the first integral is clear, so we concentrate on the second.
Since A(y)−A(x) = B(x, y) · (x− y) with |B(x, y)| ≤ ||∇A||L∞ , the second
integral can be written

Σ
∫
ε−nBk(x, y)[zk(∂jφ)(z)]

(
z =

x− y

ε

)
v(y)dy,

and the estimate follows. This proves the lemma. �

Step 2. Continuation of the proof of Theorem 7.11. After these prelimi-
naries, we start the actual proof of the theorem. The idea is to replace the
original Cauchy problem by the new problem

S∂tv + ΣAi∂iCεv +Bv = f, v(x, 0) = u0(x),

the operatorCε being the one defined above. We will show that this problem
has a solution uε, and that these solutions are bounded independently of ε
in some Cs.

(a) SupposeD ⊂⊂ B(0, R)×[0, T ]: We choose extensions ũ0 ∈ Ck
0 (B(0, R))

of u0 and f̃ ∈ Ck
0 (B(0, R) × [O, T ]) of f ; we also fix ψ ∈ C∞

0 (B(0, R))
being 1 in a neighborhood of D. We claim that there exists a solution
uε ∈ Ck

0 (Rn
x × [0, T ]) of the Cauchy problem

S∂tuε + ψ(x)ΣAi∂iCεuε +Buε = f̃ , uε(x, 0) = ũ0(x).
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In fact, the operator ∂iCε is, for fixed ε, a bounded operator in Ck, since

∂iCεv(x) =
∫
ε−n−1(∂iφ)

(
x− y

ε

)
v(y)dy.

Hence the above new Cauchy problem can be viewed as a Cauchy problem
for an ODE in the t-variable for functions with values in Ck(Rn

x).

(b) We proceed now to evaluate the tangential derivatives vα = ∂α
x uε for

|α| = l ≤ k − 1. To do this, we apply ∂α
x to the equation satisifed by uε,

and obtain
Lεvα ≡ S∂tvα + ψΣAiCε∂ivα = Fα,

where, for fixed t, ||Fα(·, t)||L2 ≤ C + CΣ|β|≤l||∂β
xuε(·, t)||L2 .

(c) The essential point is this: We can obtain for the system S∂t +
ΣψAiCε∂i governing vα an energy inequality with fixed constants indepen-
dent of ε. In fact, (, ) being the L2 scalar product in x,

(vα, ψAjCε∂jvα) = − (∂j [CεψAjvα], vα)
= − (Cε∂j(ψAj)vα, vα) − ([Cε, ψAj ]∂jvα, vα)
− (ψAjCε∂jvα, vα).

Hence

2(vα, Fα) = ∂t

[∫
tvαSvαdx

]
+R,

with |R(t)| ≤ C||vα(·, t)||2L2 , thanks to the commutation lemma. Proceeding
as usual, we obtain, for a fixed constant C, the standard energy inequality
for first order systems

||vα(·, t)||L2 ≤ C||vα(·, 0)||L2 + C

∫ t

0

||Fα(·, s)||L2ds.

(d) Summing all energy inequalities for all α, |α| ≤ k − 1, and using
the Gronwall Lemma, we obtain Σ||∂α

x uε||L2 ≤ C. Using Sobolev lemma
(Lemma 5.11), this gives a control of the Cs (s = k − 2 − [n/2]) norm
in x for fixed t of uε(x, t), and using the system on uε, we finally get a
control of the Cs norm in all variables of uε. Using Ascoli’s theorem, we
obtain a subsequence of uε, which we denote by u′ε, converging in Cs−1 to a
function u. Note that the assumption on k implies s− 1 ≥ 1. Writing

Cεu
′
ε − u = Cε(u′ε − u) + Cεu− u,
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we see that Cεu
′
ε converges to u at least in C1, hence u is a solution of the

Cauchy problem

S∂tu+ ψΣAi∂iu+Bu = f̃ , u(x, 0) = ũ0(x).

Restricting u to D, we obtain a solution of the original Cauchy problem,
and we already know that this solution is unique. �

The “flaw” of this proof is this: For a symmetric hyperbolic system in
Rn

x×Rt, we have no direct control of the Ck norm of the solution by the Ck

norms of the data. We are forced to use L2 norms and energy inequalities
to control the solution, and this implies, via the Sobolev lemma, some loss
of Ck regularity. An optimal result can only be obtained in the framework
of Sobolev spaces, using distribution theory, and this is the reason why we
made no attempt to optimize the loss of derivatives in the present result.

7.7 Geometrical Optics

We finish this chapter by presenting a method for obtaining explicit
approximate solutions of variable coefficients equations. This method has
an extremely wide range of applications, far beyond hyperbolic equations
(local solvability of general equations, counterexamples, etc.). In the first
two paragraphs we sketch the method in the general setting of any operator
P in Rn. Only in Section 7.7.3 do we come back to specific use of it for
the hyperbolic Cauchy problem.

7.7.1 An Algebraic Computation

Let P (x, ∂x) = Σαjk(x)∂2
jk + βj(x)∂j + γ(x) be a second order differential

operator with C∞ coefficients on Rn
x . The following lemma is obtained by

a straightforward computation.

Lemma 7.13. Let a, φ ∈ C∞(Rn) and τ ∈ C be given. Then

exp(−iτφ)P [a(x) exp(iτφ(x))] = −τ2a(x)pm(x,∇φ(x))
+ iτ [(∂ξpm)(x,∇φ(x))∂xa(x) + a(x)q(x)] + P (a).

Here, pm(x, ξ) = Σαjk(x)ξjξk is the principal symbol of P , and
q = Pφ− γφ.

A similar lemma for operators of order m is left as Exercise 11.



7.7 Geometrical Optics 127

7.7.2 Formal and Actual Geometrical Optics

We use the above Lemma 7.13 as follows: We think of τ as a big parameter
(say |τ | → +∞), and try to choose a and φ so that e−iτφP (aeiτφ) is as
small as possible:

First, to cancel the biggest term (i.e. the coefficient of τ2), we look, in the
region of interest, for a function φ (the “phase”) satisfying the so-called
“eikonal equation”

pm(x,∇φ(x)) = 0.

This is a fully nonlinear first order equation exactly of the type studied
in Chapter 3. This equation may not have any solution in general, and if it
has, φ is not necessarily chosen real (so that the exponential factor eiτφ may
be big even if τ ∈ R). If pm is real, however, the procedure of Chapter 3
provides us with at least a local real solution φ.

Second, to cancel the second term (i.e. the coefficient of τ), we choose a
(the “amplitude”) to be solution of the first order linear equation

L1a ≡ (∂ξpm)(x,∇φ(x))∂a + qa = 0.

This equation is called “transport equation.” We remark that the
principal part of L1 is the projection on Rn

x of the Hamiltonian field of pm

taken on the graph of ∇φ: these are precisely the objects which appear when
applying the method of Chapter 3 to construct φ. Again, the transport
equation need not have any solution in general, but it has if pm and φ are
real, according to Chapter 1.

Third, we can improve the procedure by trying formally

a(x) = a0(x) +
a1(x)
τ

+
a2(x)
τ2

+ · · · + ak(x)
τk

+ · · · .

Choosing successively (if possible)

L1a0 = 0, iL1a1 + Pa0 = 0, iL1a2 + Pa1 = 0, . . .

we obtain e−iτφP (aeiτφ) ∼ 0, this symbol meaning that all coefficients of
the various powers of τ vanish.

This is the formal approach to geometrical optics.
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To define an actual approximate solution u = aeiτφ of Pu = 0, we have
now two choices

i) For some integer N , we take simply

a(x) = a0(x) + · · · + aN (x)
τN

.

Then, locally in x,

e−iτφP (aeiτφ) = O(τ−N ).

ii) We use the Borel lemma (see Exercise 14).

Lemma 7.14 (Borel Lemma) Let an ∈ C be a sequence of numbers.
Then there exists a function f ∈ C∞(R) such that

f(x) ∼ Σanx
n, x→ 0.

This last line (“asymptotically equivalent”) means that for all integers N ,

f(x) − Σ0≤n≤Nanx
n = O(xN+1), x→ 0.

In the present case, we use an extension of Borel lemma for the variable
1/τ → 0, x being a parameter. We thus obtain a C∞ function a(x, 1/τ)
such that

e−iτφP (aeiτφ) ∼ 0.

7.7.3 Parametrics for the Cauchy Problem

Let us assume now that the operator P is a variable coefficients strictly
hyperbolic second order equation in Rn

x × Rt. We will apply the theory
outlined above to solve, in a neighborhood of the origin, say, the homoge-
neous Cauchy problem

Pu = 0, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x).

Step 1. We choose two real “phase” functions φε(x, t, ω) (ε = ±), depend-
ing on the parameter ω ∈ Rn, |ω| = 1, solutions of the Cauchy problem

∂tφε(x, t, ω) + λε(x, t, ∂xφε(x, t, ω)) = 0, φε(x, 0, ω) = x · ω.

Here, λ− < λ+ are the characteristic speeds of the equation.
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Step 2. Taking τ ∈ R, we choose two “amplitudes” aε(x, t, ω, 1/τ)
satisfying all the transport equations and such that

aε

(
x, 0, ω,

1
τ

)
= 1.

The possibility of such a choice is a consequence of the constructive proof
of the Borel lemma.

We obtain in this way two families of approximate solutions of Pu = 0,

vε(x, t, τ, ω) = aε

(
x, t, ω,

1
τ

)
exp(iτφε(x, t, ω)).

Step 3. The “trick” is now to take

ξ ∈ Rn, τ = |ξ|, ω =
ξ

|ξ| ,

and sum the corresponding solutions by writing some integral with respect
to ξ. We thus choose two functions A−(x) and A+(x) (say in S for sim-
plicity), and set

ua(x, t) = (2π)−nΣε

∫
eiτφε(x,t,ω)aε(x, t, ω,

1
τ
)Âε(ξ)(1 − χ(|ξ|))dξ.

Here, χ ∈ C∞
0 (R) is a truncation function which is 1 in a neighborhood

of the origin, used only to avoid any trouble in the integral for ξ close to
the origin. The subscript a stands for “approximate.” Taking into account
the choices made for φε and aε, we get

i) Pua ∈ C∞,

ii) ua(x, 0) − (A− +A+)(x) ∈ C∞,

iii) (∂tua)(x, 0) = (2π)−nΣ
∫
eix.ξ[−iτλε(x, 0, ω) + (∂taε)(x, 0, ω, 1

τ )]
Âε(ξ)(1 − χ(|ξ|))dξ.

(i) results from the fact that, after applying P to the integrals, we get a
similar integral with aε replaced by a rapidly decaying function as
|ξ| → +∞. (ii) is just the Fourier inversion formula, and (iii) is a straight-
forward computation.

Claim 7.15. Given functions u0, u1 ∈ C∞
0 (Rn), we can choose the func-

tions A− and A+ in such a way that, for x close to zero,

ua(·, 0) − u0 ∈ C∞, (∂tua)(·, 0) − u1 ∈ C∞.
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The proof of this claim would require some insight into the theory of
pseudodifferential operators, which is far beyond the scope of this book (the
interested reader may consult the book by S. Alinhac and P. Gérard [5]).
However, we can grasp the essential point if we assume that the “symbols”

sε = −iτλε(x, 0, ω) + (∂taε)
(
x, 0, ω,

1
τ

)

appearing in the formula for ∂tua(x, 0) do not depend on x. In this case,
to prove the claim, we just have to choose Â− and Â+ such that, for |ξ| big
enough,

Â− + Â+ = û0, s−Â− + s+Â+ = û1.

This is possible, since by strict hyperbolicity λ− �= λ+, which implies
s− �= s+ for |ξ| big enough. �

To summarize, we have obtained ua such that

Pua ∈ C∞, ua(·, 0) − u0 ∈ C∞, (∂tua)(·, 0) − u1 ∈ C∞.

We say that ua is a solution modulo C∞ of the Cauchy problem

Pu = 0, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x),

and the formula defining ua is called a “parametrix” of the Cauchy
problem. Since we know (from Section 7.6) how to solve the Cauchy prob-
lem for P with C∞ data, we see that the exact solution u of the Cauchy
problem is the sum of the approximate solution ua and a C∞ function. It is
thus possible to solve (locally at least) the Cauchy problem for non-smooth
data, and to read from the formula defining the explicit approximate solu-
tion ua the singularities (modulo C∞) of the true solution.

7.8 Exercises

1.(a) Consider, in R2
x × Rt, the operator

L = ∂2
t + 2∂2

t1 +
1
2
(∂2

1 − ∂2
2).

Show that L is strictly hyperbolic with respect to t. Compute the energy
Eu(T ) obtained by integrating (Lu)(∂tu) in a strip ST , and observe that E
is not positive.

(b) Performing the change of variables

X1 = x1 − t, X2 = x2, T = t, u(x1, x2, t) = v(x1 − t, x2, t),
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compute the operator L̄ such that

(Lu)(x1, x2, t) = (L̄v)(x1 − t, x2, t).

Deduce from this what could be an appropriate multiplier X for the orig-
inal operator L in order to obtain an energy inequality with a positive
energy.

2. Let u ∈ C2(Rn
x × Rt) satisfy the equation with real C1 coefficients

Lu ≡ ∂2
t u− Δxu+ Σ0≤i,j≤naij(x, t)∂2

iju = f, x0 = t,

and assume that, for each t, u(x, t) vanishes for large |x|. Assume that the
coefficients aij satisfy Σ|aij | ≤ 1/2.

Prove the energy inequality

||(∂u)(·, t)||L2 ≤ 2{||(∂u)(·, 0)||L2 +
∫ t

0

||f(·, s)||L2ds} exp
(

4
∫ t

0

A(s)ds
)
,

where the amplification factor is

A(t) = Σ0≤i,j,k≤n max
x

|∂iajk(x, t)|.

3. In Example 7.5, compute for given ξ, the roots in τ of the characteristic
equation

det(τS + ΣAiξi) = 0

of the obtained system. Compare with the roots of the characteristic
equation

τ2 − Σaijξiξj = 0

of P .

4. In Example 7.6, compute for given ξ, the roots in τ of the characteristic
equation of the linearized Euler system.

5. Consider in ST = Rn
x × [0, T [ a symmetric hyperbolic system with real

C1 coefficients
L ≡ S∂t + ΣAi∂i +B.

Assume that there exist constants α0 > 0 and λ0 > 0 such that, in the
strip ST ,

S ≥ α0, λ0S ≥ 1
2
(∂tS + Σ∂iAi) −

B + tB

2
.
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Show, for all λ ≥ λ0, all t < T , and all u ∈ C1(ST ) sufficiently decaying
when |x| → +∞, the energy inequality

max
0≤s≤t

Eu(s)1/2 ≤ Eu(0)1/2 +
(

2
α0

)1/2 ∫ t

0

||(Lu)(·, s)||L2e−λsds,

where the energy Eu(t) is defined by

Eu(t) =
1
2
e−2λt

∫
[tuSu](x, t)dx.

6. Consider in ST = Rn
x × [0, T [ a symmetric hyperbolic system with

singular real coefficients

L = S∂t + ΣAi∂i +
B

T − t
.

Assume that S,Ai, B ∈ C1(S̄T ), and that there exist constantsM, α0 > 0
such that

S ≥ α0, ||
tB +B

2
|| + ||∂tS + Σ∂iAi|| ≤M.

Show that there are constants C, γ0 such that, for all γ ≥ γ0, all t ≤ T
and u ∈ C2(ST ) sufficiently decaying when |x| → +∞,∫

St

|u|2(T − s)γ−1dxds ≤ C

∫
|u|2(x, 0)dx+ C

∫
St

|Lu|2(T − s)γ+1dxds.

7. Write down, for symmetric hyperbolic systems, a “finite speed of prop-
agation” theorem analogous to Theorem 7.9.

8.(a) To a function v ∈ C2(Rn
x) we associate the function

M(x, t) = (tn−1σn−1)−1

∫
S(x,t)

v(y)dσ(y) =
1

σn−1

∫
Sn−1

v(x+ ωt)dσ(ω),

which is its means over the sphere of radius t centered at x (Here,
Sn−1 is the unit sphere in Rn and σn−1 its area). Prove M(x, 0) = v(x),
(∂tM)(x, 0) = 0, and

∂2
tM − ΔxM + (n− 1)t−1∂tM = 0.

(b) Given α ∈ R, consider more generally, in Rn
x × [0,∞[ the singular

wave equation
Lαu ≡ ∂2

t u− Δxu+
(α
t

)
∂tu = 0.
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Let Σ0 be a smooth compact domain in Rn
x , r ∈ C1(Σ0) a nonnegative

function vanishing on ∂Σ0, and D be the domain in Rn
x × [0,∞[ with base

Σ0 defined by

D = {(x, t), x ∈ Σ0, 0 ≤ t ≤ r(x)}.

Let u ∈ C2(D) be a real function with u(x, 0) = f(x), (∂tu)(x, 0) = 0.
Assuming u(x, r(x)) = f(x), prove the identity

2
∫

D

(Lαu)(∂tu)dxdt = 2α
∫

D

1
t
(∂tu)2dxdt+

∫
Σ0

(1−|∇r|2)[(∂tu)(x, r(x))]2dx.

(c) Deduce from (b) that if α > 0, |∇r| ≤ 1 and Lαu = 0, then f is
harmonic.

(d) State the theorem about harmonic functions that follows from (a),
(b), and (c). (See also for more details Alinhac [1]).

9. Consider in R3
x × [0,∞[ the wave equation

Lu ≡ (1 + c(x, t))∂2
t u− Δxu = 0.

Here, c is a real C∞ coefficient, and assume that for some constant C,
η > 1,

|c| ≤ 1
2
, ΣZ, 0≤k≤3|Zkc| ≤ C(1 + t)−η.

As usual, Zk means a product of k Lorentz fields.

(a) Let u ∈ C2(R3
x × [0,∞[) be a real solution of Lu = 0 with Cauchy

data

u0(x) = u(x, 0), u1(x) = (∂tu)(x, 0)

vanishing for |x| ≥ M . Prove that u vanishes for |x| ≥ M + λ0t for some
λ0 > 0 to be computed explicitly.

(b) Establish an energy inequality for L with constants independent of t
(that is, without amplification factor).

(c) Prove by induction the formulas

[Zk,�] = Σl≤k−1αZ
l�, [Zk, ∂2

t ] = Σl≤k−1αZ
l∂2.

Here, α stands for various constants, and ∂ stands for ∂t or ∂i.
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(d) Using Klainerman’s method, prove that if u ∈ C5 is a solution of
Lu = 0 with Cauchy data vanishing for |x| ≥ M as in (a), then, for some
C and all (x, t) ∈ R3

x × [0,∞[,

|∂u(x, t)| ≤ C(1 + r + t)−1 < r − t >−1/2 .

10.(a) Let u ∈ C2(R3
x ×Rt) be a real solution of �u = 0. Fix γ and T > 0

and set u(x, t) = (T−t)−γw(x, t). Write down the equation for w. Perform,
in the cone

C = {(x, t), 0 ≤ t ≤ T, |x| ≤ T − t},
the change of variables

s = − log(T − t), y =
x

T − t
, w(x, t) = v(y, s).

Write down the equation for v obtained in the cylinder

− logT ≤ s < +∞, |y| ≤ 1.

(Hint: One obtains

Lv = ∂2
sv + 2Σyi∂

2
siv + Σyiyj∂

2
ijv − Δyv + (2γ + 1)∂sv + 2(γ + 1)Σyi∂iv

+ γ(γ + 1)v = 0.

(b) Using the multiplier (1−|y|2)μ∂sv, establish an energy inequality for L
by choosing carefully μ. What are the corresponding multiplier and energy
for �?

11.(a) Let φ ∈ C∞(Rn
x) and τ ∈ C be a parameter. Prove by induction on

|α| the formula

e−iτφ∂α
x (eiτφ) = (iτ)|α|(∇φ)α +

1
2
(iτ)|α|−1Σ(∂2

jkξ
α)(∇φ)∂2

jkφ

+O(|τ ||α|−2), |τ | → +∞.

(b) Let P (x, ∂x) = Σ|α|≤maα(x)∂α
x be a differential operator of order m

in Rn
x . For a given function a ∈ C∞(Rn

x), write down the two main terms
(as |τ | → +∞) of

e−iτφP (aeiτφ).

What are the eikonal equation and the transport equation in this case?

12. Taking for P the standard wave equation �, compare the approximate
solution ua constructed in Section 7.7.3 with the solution obtained by a
partial Fourier transformation in Chapter 5.
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13. Consider a first order (N ×N)-system in Rn
x with C∞ coefficients

L = ΣAi(x)∂i +B(x).

Making all simplifying assumptions you may need, explain how one can
construct approximate vector solutions

ua(x) = a(x, 1/τ)eiτφ(x)

of this system, following the pattern of Section 7.7 (define an eikonal
equation, a transport equation, etc.).

14.(a) Prove the Borel lemma. Hint: Try

f(x) = Σanx
nχ(λnx)

for χ ∈ C∞
0 (R) being 1 close to zero, and a sufficiently increasing sequence

λn → +∞.

(b) Prove the version of Borel lemma “with parameters” actually used in
the construction in Section 7.7.

15.(a) Consider the standard wave equation � in Rn
x × Rt. Check that

φ(x, t) = x2+t is a phase function and compute the corresponding transport
equation L1.

(b) Starting with a0(x1) vanishing close to x1 = 0, show that one can
choose all coefficients ak(x, t) of the amplitude a, and the amplitude a
itself, with the same property.

This construction shows that the Cauchy problem for the wave equation
with data on {x1 = 0} certainly cannot be well-posed, since the data can
be zero and �u very small without u being small.

7.9 Notes

All inequalities discussed in Chapter 6 for the wave equation have analogues
for variable coefficient wave equations, but these analogues are harder to
find in the literature. The analogue of the standard inequality is taken
from Hörmander [10]; analogues of the improved standard inequality and
of Morawetz type inequalities are established in Alinhac [3]. Conformal
inequalities in the framework of variable coefficients can be found in
Hörmander [10] or Klainerman [14]. Hyperbolic symmetric systems are
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discussed in John’s book [12]. Existence of smooth solutions, generally
handled by duality, is not easy to prove in an elementary context; again,
the given result is taken from John (with a different proof, however). Fi-
nally, geometrical optics and its application to constructing parametrices is
discussed in Taylor [23] and Vainberg [24].



Appendix

We gather here without complete proofs some basic facts about ordinary
differential equations and submanifolds of Rn, which we use in the text and
may not be included in all standard differential calculus courses.

A.1 Ordinary Differential Equations

We refer here to the book of Hubbard and West [11].

A.1.1 Cauchy Problem

We consider the Cauchy problem for systems of ordinary differential
equations (ODE)

x′(t) = F (x(t), t), x(t0) = x0.

Here, Ω ⊂ Rn
x is open, I ⊂ R is an interval, m0 = (x0, t0) ∈ Ω × I, and

F : Ω × I → Rn
x

is a C1 function. A solution is a function x : I ⊃ J → Ω of class C1,
defined on a subinterval J � t0 of I, satisfying the equation and the initial
condition.

The Cauchy–Lipschitz (local existence) theorem can be stated as follows:
Let m0 = (x0, t0) ∈ Ω × I, and assume the existence of a > 0, b > 0,
such that R = B̄(x0, b) × [t0 − a, t0 + a] ⊂ Ω × I. Define M = maxR |F |,
α = min(a, b/M).

Theorem A.1 (Cauchy–Lipschitz local existence theorem). There
exists a unique solution x ∈ C1(J), J = [t0 − α, t0 + α] of the Cauchy
problem.
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Proof: The first step in the proof is to write the system in integral form

x(t) = x0 +
∫ t

t0

F (x(s), s)ds.

We now look for x ∈ C0(J) satisfying this equation, since then x ∈ C1(J)
and x is a solution of the Cauchy problem:

Step 1. Set R′ = J × B̄(x0, b). Suppose y ∈ C0(J) has its graph in R′,
and define for t ∈ J

x(t) = x0 +
∫ t

t0

F (y(s), s)ds.

Then also x has its graph in R′, since ||x(t) − x0|| ≤M |t− t0| ≤ b.

Step 2. Using step 1, define a sequence of functions xn ∈ C0(J) by

x0 = x0, x
n+1(t) = x0 +

∫ t

t0

F (xn(s), s)ds.

We claim that, for some constants C0, C1, and all n,

δn(t) ≡ ||xn+1(t) − xn(t)|| ≤ C0C
n
1

|t− t0|n
n!

.

This is true for n = 0 if C0 is chosen big enough, which we assume.
Suppose the inequality true up to n − 1: Subtracting the equations for
xn+1 and xn we obtain

δn(t) = ||
∫ t

t0

[F (xn(s), s) − F (xn−1(s), s)]ds||.

Since F is C1 on the compact R′, there exists a constant C such that,
on R′,

||F (x, t) − F (y, t)|| ≤ C||x− y||.

Using the induction hypothesis, we obtain for t ≥ t0, say,

δn(t) ≤ C

∫ t

t0

||xn(s) − xn−1(s)||ds ≤ CC0C
n−1
1

∫ t

t0

(s− t0)n−1 ds

(n− 1)!

= CC0C
n−1
1

(t− t0)n

n!
.
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This is the desired estimate if C1 ≥ C. Hence ||xn+1 − xn||L∞(J) ≤
C0(C1α)n/n!, which is the general term of a convergent series. Thus
xn+1 − xn is a normally converging sequence in C0(J), and xn converges
uniformly to some x ∈ C0(J), which is solution of the integral equation. �

The uniqueness part of the theorem results from the following stronger
result.

Theorem A.2 (Global Uniqueness Theorem). Let x and y be two
solutions of the Cauchy problem on some interval J ⊂ I containing t0.
Then x ≡ y.

It suffices to prove the theorem for J compact. Then, for some C,

||x(t) − y(t)|| ≤ C

∫ t

t0

||x(s) − y(s)||ds,

and the Gronwall Lemma (Lemma 2.16) implies the result. �

We gave the proof of the Cauchy–Lipschitz theorem in details, since the
proof of the existence theorem in Section 2.6 is modeled after it.

Using these theorems, it is easy to establish the following result.

Theorem A.3 (Maximal Interval Theorem). There exists a unique
maximal solution x ∈ C1(J) of the Cauchy problem defined on an open
interval J =]T∗, T ∗[. If F is defined on Rn×]a, b[ and T ∗ < b, then

||x(t)|| → +∞, t→ T ∗, t < T ∗.

In this statement, “maximal solution” means that there exists no solution
y defined on K ⊃ J and (strictly) extending x. A simple illustration of this
theorem is the scalar Cauchy problem

x′(t) = F (x(t)), x(0) = x0, F ∈ C1(R), F > 0.

Let G(x) =
∫ x

0
ds

F (s) be a primitive of 1/F . For any solution x ∈ C1(I),

d

dt
[G(x(t))] =

1
F

(x(t)) × x′(t) = 1,

hence G(x(t)) = G(x0) + t, and x will exist as long as G(x0) + t is in the
range of G. Suppose for instance∫ 0

−∞

ds

F (s)
= ∞, α =

∫ +∞

0

ds

F (s)
<∞.
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Then G is a strictly increasing function from −∞ to α, and the maximal
interval is ] − ∞, T ∗[ with G(x0) + T ∗ = α, that is T ∗ =

∫ +∞
x0

ds
F (s) . The

other three cases are handled similarly.

It remains for us to understand how the maximal interval depends on the
initial value x0. Though this is a difficult problem, one can easily obtain
the following theorem.

Theorem A.4. Let x̄ ∈ C1(]T∗, T ∗[) be the maximal solution of the
Cauchy problem

x′(t) = F (x(t), t), x(t0) = x̄0.

Fix a and b such that T∗ < a < t0 < b < T ∗. Then there exists ε > 0 such
that all solutions with initial data x(t0) = x0 satisfying ||x0 − x̄0|| ≤ ε are
defined on a maximal interval containing [a, b].

For instance, the solution of x′(t) = x2(t), x(0) = x0 is x(t) =
x0/(1 − tx0). If we take x̄0 = 0, the solution x̄ is global; the solution
with data x0 will be defined on [−M,M ] as soon as |x0| < 1/M .

A.1.2 Flows

In the special case when F does not depend on t, we call the system
“autonomous.” It is enough then to consider the Cauchy problem

x′(t) = F (x(t)), x(0) = x0.

The solution is denoted by Φ(t, x0), and called the flow of F . The point
of this notation is to emphasize the dependence of the solution on its initial
value x0, and this is very convenient, as we shall see in applications (See
Chapters 1–3). By definition, for each x0, the function Φ(t, x0) is defined on
the maximal interval ]T∗(x0), T ∗(x0)[ ; hence Φ is defined on U ⊂ R × Rn

U = {(t, x), x ∈ Ω, T∗(x) < t < T ∗(x)}.

The important result about Φ is the following.

Theorem A.5 (Flow Theorem). Let Φ be the flow of F . Then U is
open and Φ ∈ C1(U).

We do not prove this theorem (though it can be obtained as an application
of the implicit function theorem), but explain why U is open. Let m0 =
(t0 > 0, x0) ∈ U : This implies t0 + η < T ∗(x0) for some η > 0, hence
[0, t0 + η] is contained in ]T∗(x0), T ∗(x0)[. Using the above theorem about
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the maximal interval, we obtain that for some ε > 0, T ∗(x) > t0 + η if
||x− x0|| ≤ ε. Hence B(x0, ε)×]0, t0 + η[ is an open set contained in U and
containing m0.

A.1.3 Lower and Upper Fences

Consider a scalar equation x′(t) = F (x(t), t).

Definition A.6. A real function y ∈ C1([a, b[) is called a lower fence
(resp., an upper fence) for the equation x′(t) = F (x(t), t) if y′(t) ≤ F (y(t), t)
(resp., y′(t) ≥ F (y(t), t)).

The point of this definition lies in the following theorem.

Theorem A.7 (Fence Theorem). Suppose we are given a solution
x ∈ C1([a, b[) of the scalar equation x′(t) = F (x(t), t). If y ∈ C1([a, b[) is a
lower fence (resp., an upper fence) with y(a) ≤ x(a) (resp., y(a) ≥ x(a)),
then for all t ∈ [a, b[, y(t) ≤ x(t) (resp., y(t) ≥ x(t)).

Since F ∈ C1, the proof is very simple, and we give it for a lower fence:
Let δ(t) = x(t) − y(t), δ(a) ≥ 0; then

δ′(t) ≥ F (x(t), t) − F (y(t), t) = α(t)δ(t),

α(t) =
∫ 1

0

(∂xF )(sx(t) + (1 − s)y(t), t)ds,

and the function α is continuous. Setting A(t) =
∫ t

a
α(s)ds and z(t) =

δ(t)e−A(t), we obtain

z′(t) = e−A(t)(δ′(t) − α(t)δ(t)) ≥ 0, z(a) ≥ 0.

Hence z(t) ≥ 0 in [a, b[, which implies δ(t) ≥ 0. �

A.2 Submanifolds

We refer here to the book of M. Spivak [22].

A.2.1 First Definitions

Definition A.8. A set S ⊂ Rn
x is a submanifold of dimension d if, for all

x0 ∈ S, there exists a C1-diffeomorphism φ from a neighborhood U of x0
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onto a neighborhood V of the origin in Rn
y such that

φ(S ∩ U) = V ∩ Πd,

where Πd = {y ∈ Rn, yd+1 = · · · = yn = 0}.

In other words, looking at S through the “glasses” φ, we see only a piece
of d-plane. Obviously, if we split the coordinates in Rn as

x = (y, z), y = (x1, . . . , xd), z = (xd+1, . . . , xn),

the set S defined by S = {x, z = f(y)} for some f ∈ C1 (the graph of f) is
a submanifold of dimension d.

Definition A.9. Suppose x0 ∈ S ⊂ Rn is a submanifold of dimension d
and there exists a curve x ∈ C1(] − η, η[) in Rn with x(t) ∈ S, x(0) = x0.
Then x′(0) is called a tangent vector to S at x0.

From these definitions, we obtain easily the following theorem.

Theorem A.10. The set of all tangent vectors to S at x0 is a subspace
of dimension d denoted by Tx0S, called “tangent plane to S at x0.”

In practice, submanifolds turn out to be defined in two different ways: By
a set of equations, or as parametrized surfaces.

A.2.2 Submanifolds Defined by Equations

The simplest case is this:

Theorem A.11. Let f ∈ C1(Rn) be a real function with ∇f �= 0. Then

S = {x ∈ Rn, f(x) = 0}

is a submanifold of dimension n−1, whose tangent plane TmS is orthogonal
to ∇f(m).

More generally, let f1, . . . , fq ∈ C1(Rn) be q given real functions:

Theorem A.12. If all fi vanish at m and the differentials Dmf1, . . . ,
Dmfq are independent, the set S = {x ∈ Rn, f1(x) = · · · = fq(x) = 0} is a
submanifold of dimension n− q in a neighborhood of m. The tangent plane
TmS is the intersection of the kernels of the Dmfi.

Proof: To see this, let us complete the free system of the q vectors
∇f1(m), . . . ,∇fq(m) by vectors aq+1, . . . , an into a basis of Rn. Set now
gi(x) = ai · (x −m), i = q + 1, . . . , n. Define the map ψ : Rn

x → Rn
y by

x �→ y = ψ(x) = (f1(x), . . . , fq(x), gq+1(x), . . . , gn(x)), ψ(m) = 0.
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The differential Dmψ is represented by a matrix whose lines form a basis
of Rn, hence it is invertible. By the impicit function theorem, ψ is a local
diffeomorphism from a neighborhood U of m onto a neighborhood V of 0.
The image of S∩U by ψ is the piece in V of n−q plane {y1 = · · · = yq = 0}.
Hence S is a submanifold of dimension n− q.

If x ∈ C1(] − η, η[) is a curve on S, fi(x(t)) = 0 for all i, hence, by
differentiation, x′(0) belongs to the kernel of Dmfi. Since this happens for
all i, x′(0) belongs to the intersection E of these kernels. Thus, TmS has
dimension n− d and is included in E which also has dimension n− d, and
this implies TmS = E. �

The condition about the differentials of the defining functions fi is easy
to understand. Suppose q = 2: each equation fi = 0 defines a submanifold
Si of codimension 1, and S = S1 ∩ S2. The condition that ∇f1 and ∇f2
be independent just means that S1 and S2 are not tangent at m, which is
a very reasonable requirement.

A.2.3 Parametrized Surfaces

Let f : Rp
u ⊃ Ω → Rn, f(u) = (f1(u), . . . , fn(u)) be a C1 function, and set

S = {x ∈ Rn, ∃u ∈ Ω, x = f(u)}.

Intuitively, S, a set of points depending on the p parameters (u1, . . . , up),
should be a submanifold of dimension p.

Theorem A.13. Assume m0 = f(u0) and Du0f injective. Then there
exists a neighborhood U of u0 such that f(U) ⊂ S is a submanifold of dimen-
sion p. The tangent space Tm0 [f(U)] is spanned by the vectors (∂1f(u0), . . . ,
∂pf(u0)).

The simplest example is a curve p = 1, for which the condition of the
theorem is just f ′(u0) �= 0, defining the tangent to the curve. In general,
consider the (n× p)-matrix representing Du0f : Its columns are the vectors
∂if(u0), which are independent since the differential is injective. Hence
there is a p×p block B, say the first p lines, which is invertible. This block
B is the differential at u0 of the map

φ : Ω → Rp, φ(u) = (f1(u), . . . , fp(u)).

Let p0 be the projection of m0 on the subspace generated by the first p
vectors. Since B is invertible, φ is a C1 diffeomorphism from a neighbor-
hood U of u0 onto a neighborhood V of the projection p0. Then f(U) is
the graph of f(φ−1) over V , hence a submanifold of dimension p.
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To visualize Tm0 [f(U)], consider the “coordinate curve”

ui �→ ((u0)1, . . . , (u0)i−1, ui, (u0)i+1, . . . , (u0)p).

This is the parallel to the ui-axis through u0. The image of this curve by
f is a C1 curve on S with tangent, by definition, ∂if(u0). Therefore these
vectors are tangent vectors and span a subspace of Tm0 [f(U)] of dimension
p, that is, the whole of the tangent space. �

A.2.4 Graphs

Let the coordinates in Rn
x be split as x = (y, z), y ∈ Rp, z ∈ Rq, p+ q = n.

The subspace Rp
y is thought of as “horizontal,” the subspace Rq

z as “verti-
cal.” Let

f : Rp
y ⊃ ω → Rn−p, f(y) = (f1(y), . . . , fn−p(y))

be a C1 function, and

S = {x = (y, z) ∈ Rn, y ∈ ω, z = f(y)}.

We call S the graph of f over ω. Then the tangent space to S at m0 =
(y0, z0) does not contain any vertical vector (0, V ). Conversely, we have the
following theorem.

Theorem A.14. Let S be a submanifold of dimension p such that TmS
does not contain any vertical vector. Then S is the graph of some C1

function in a neighborhood of m.

Proof: Let S be defined by independent equations g1 = · · · = gq = 0,
and define

g : Rn → Rq, g(x) = (g1(x), . . . , gq(x)), g(m) = 0.

The last n−p columns of the (n−p×n)-matrix representing Dmg form a
square blockB. The assumption about TmS means that no (nonzero) vector
of the form (0, V ) is in the kernel of Dmg, and since Dmg(0, V ) = BV , this
means that B is invertible. Now we can use the implicit function theorem
at m to solve the equation g(y, z) = 0 for z, since ∂zg(m) = B. This yields
a C1 function f : Rp

y → Rq
z defined near the projection p of m, for which

S = {x = (y, z), z = f(y)}.

�
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A.2.5 Weaving

Consider, in Rn
x, a p-submanifold Σ containing m (p < n), and a function

F : Rn → Rn of class C1 in a neighborhood of m. The flow of F , defined
on an open set U , is denoted by Φ.

Theorem A.15 (Weaving). Assume that F (m) is not tangent to Σ at
m. Then there exists a neighborhood V of (m, 0) in U such that

S = {x = Φ(t, y), y ∈ Σ, (y, t) ∈ V }

is a (p+ 1) − submanifold.

Proof: Geometrically, S is the union of the trajectories of the system
x′(t) = F (x(t)) starting from points of Σ. Let Σ be properly parametrized
by u ∈ Rp, that is, assume that there exists f : Rp

u ⊃ ω → Rn
x ,

0 ∈ ω, f(0) = m, such that Σ = f(ω). As in Theorem A.13, assume
that the vectors ∂uif(0) are independent. In this case, S is naturally
parametrized by

(t, u) �→ ψ(t, u) = Φ(t, f(u))

for (t, u) close to (0, 0). According to Theorem A.13, we need only prove
that the vectors (∂tψ, ∂u1ψ, . . . , ∂upψ) are independent. But

∂tψ(0, 0) = F (m), ∂uiψ(0, 0) = ∂uif(0),

and since F is not tangent to Σ, these vectors are independent. �

A.2.6 Stokes Formula

We do not give this formula in full generality, but mention only two very
useful special cases.

Formula A.16 (Green-Riemann formula). In the plane R2
x,y, let D

be a compact domain such that its boundary ∂D is piecewise C1 and can be
oriented clockwise. Then for P,Q ∈ C1(D),∫

D

(∂xQ− ∂yP )dxdy =
∫

∂D

Pdx+Qdy.

The meaning of the integral on the right is∫ b

a

[P (x(t), y(t))x′(t) +Q(x(t), y(t))y′(t)]dt

for a C1 parametrization [a, b] � t �→ (x(t), y(t)) of ∂D.
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In R3
x, a slightly different formulation is customary.

Formula A.17 (Stokes formula). Let D ⊂ R3
x be a compact domain

with (piecewise) C1 boundary ∂D. Let

X : D → R3
x, X(x) = (X1(x), X2(x), X3(x))

be a C1 function.

Then ∫
D

[Σ∂i(Xi(x))]dx =
∫

∂D

[ΣXi(x)Ni(x)]dσ.

Here, N = (N1, N2, N3) is the unit outward normal to ∂D, and dσ is
its surface element. We say that the integral in D of the divergence of X
equals the outgoing flux of X through ∂D.
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