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Introduction

In 1985 Andreas Floer discovered new topological invariants of certain
3-manifolds, the ‘Floer homology groups’. This book originated from a
series of seminars on this subject held in Oxford in 1988, the manuscript
for the book being written sporadically over the intervening 12 years.
The original plan of the project has been modified over time, but the
basic aims have remained largely the same: these are, first, to give a
thorough exposition of Floer’s original work, and, second, to develop
some further aspects of the theory which have not appeared in detail in
the literature before. The author can only apologise for the long delay
in completing this project.

Floer’s original motivation for introducing his groups – beyond the
intrinsic interest and beauty of the construction – seems to have been
largely as a source of new invariants in 3-manifold theory, refining the
Casson invariant which had been discovered shortly before. It was
soon realised however that Floer’s conception fitted in perfectly with
the ‘instanton invariants’ of 4-dimensional manifolds, which date from
much the same period. Roughly speaking, the Floer groups are the
data required to extend this theory from closed 4-manifolds to man-
ifolds with boundary. From another point of view the Floer groups
appear, formally, as the homology groups in the ‘middle dimension’ of
an infinite-dimensional space (the space of connections modulo equiva-
lence) associated to a 3-manifold. This picture is obtained by carrying
certain aspects of the Morse theory description of the homology of a
finite-dimensional manifold over to infinite dimensions. All of this is
closely related to ideas from quantum field theory – indeed, one of
Floer’s starting points was the renowned paper of Witten, [49], which
inter alia forged a link between quantum mechanics and Morse theory
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2 Introduction

– and the connection with mathematical physics permeates the whole
subject.
The formal properties of the Floer groups, and their relation with

invariants in four dimensions, fit into a general conceptual framework of
‘topological quantum field theories’ which was propounded in the late
1980s by Segal, Atiyah, Witten and others. We recall from [2] that a
topological field theory, in d + 1 dimensions, consists of two functors
on manifolds. The first assigns to each closed, oriented, d-manifold Y

a vector space H(Y ) (over, say, the complex numbers). The second
assigns to each compact, oriented (d+ 1)-dimensional manifold X with
boundary Y a vector

Z(X) ∈ H(Y ).

These are required to satisfy three axioms:

(1) The vector space assigned to a disjoint union Y1 ∪ Y2 is the tensor
product

H(Y1 ∪ Y2) = H(Y1)⊗ H(Y2).

(2) H(Y ) = H(Y )∗, where Y is Y with the reversed orientation.
(3) Suppose X is a (d + 1)-manifold with boundary (which may be

disconnected), and that X contains Y and Y as two of its boundary
components. Let X� be the oriented manifold obtained from X by
identifying these two boundary components. Then we require that

Z(X�) = c(Z(X)),

where the contraction c : H(∂X) → H(∂X�) is induced from the
dual pairing H(Y )⊗ H(Y ) → C and the decomposition

H(∂X) = H(Y )⊗ H(Y )⊗ H(∂X�).

These axioms have some simple consequences. First, Axiom 1 implies
that if Y = ∅ is the empty d-manifold then H(∅) is canonically isomor-
phic to C. Thus if X is a closed (d + 1)-manifold the vector Z(X) is
a numerical invariant of X. Second, suppose that a (d + 1)-manifold
U is a cobordism from Y1 to Y2, so the oriented boundary of U is a
disjoint union Y 1 ∪ Y2. Then, by Axioms 1 and 2, Z(U) is an element
of H(Y1)∗ ⊗ H(Y2) and hence gives a linear map

ζU : H(Y1) → H(Y2).
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If V is a cobordism from Y2 to a third manifold Y3 then Axiom 3
states that

ζV ◦U = ζV ◦ ζU : H(Y1) → H(Y3),

where V ◦ U is the obvious composite cobordism. So we obtain a
functor from the category of d-manifolds, with morphisms defined by
cobordisms, to the category of vector spaces and linear maps.

The original motivation which led Segal and others to develop this
kind of axiomatic picture was to abstract in a tidy mathematical form the
basic structure of quantum field theories (more precisely, of conformal
field theory on Riemann surfaces). The theories which are usually
considered in physics differ from the set-up considered above in that
they operate on manifolds with some additional differential-geometric
structure, for example a Riemannian metric or a conformal structure.
It is precisely the absence of these geometric structures in our set-up
which leads to the designation topological quantum field theories, and
which means that we obtain topological (or, more precisely, differential-
topological) invariants of manifolds. In a typical physical set-up the
corresponding space H(Y ) would be an infinite-dimensional Hilbert
space defined, at least schematically, by associating to Y a space of
‘fields’ C(Y ) (an element of C(Y ) might be a tensor field over Y ), and
then letting H(Y ) be a space of L2 functions on C(Y ). The vector Z(X)
is obtained by functional integration over a space of fields on X, with
given boundary value on Y .

The Yang–Mills invariants, and Floer groups, fit into this general
scheme, with d = 3. In outline, for a 3-manifold Y , we take the Floer
groups (with complex co-efficients say)

H(Y ) = HF∗(Y ).

For a closed 4-manifold X the Yang–Mills instantons define a nu-
merical invariant Z(X), and for a 4-manifold with boundary we obtain
invariants with values in the Floer homology of the boundary. Actually,
as we shall see, the simple axioms above need to be modified slightly to
apply to the Yang–Mills set-up and the theory has a number of special
features. For example, the invariants of a closed 4-manifold are not in
general just numbers but functions on the homology of the manifold
– so we might regard the functor as being defined on a category of
4-manifolds containing preferred homology classes. Nevertheless these
axioms capture the essence of the matter. Contrasting with the phys-
ical set-up outlined above, we can say very roughly that in place of
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the infinite-dimensional space C(Y ) of all fields (i.e. connections) we
restrict in this topological theory to the finite set of flat connections
(modulo equivalence) over Y , and we restrict to ‘instanton’ connections
over 4-manifolds, so that in place of the functional integration over
connections we now have merely to count the instantons with given flat
boundary values. To make rigorous sense of this, a key step is to add
half-infinite tubes to our 4-manifolds, so that we have a picture in which
the boundary is ‘at infinity’.
An important goal then of this book is to develop this picture, of

the Floer groups as part of a topological field theory, in detail. It is
important to emphasise at the outset that, even after all this time, we
are not able to complete this task. On the one hand there are, as we shall
see, rather fundamental technical reasons why one cannot expect to have
this simple picture without imposing some restrictions on the manifolds
which are considered. On the other hand, even within the confines of the
theory that one might reasonably hope for, there are crucial technical
difficulties, arising from the non-compactness of instanton moduli spaces
which – despite much labour by many mathematicians – have not yet
been fully overcome. Failing, therefore, a definitive treatment we round
off the book, in Chapter 8, by seeking to explain the problems that
remain, and further developments one may expect in the future. We
shall see that – far from being dull, technical matters – these difficulties
lead to striking and unexpected formulae involving classical special
functions.
Throughout the early 1990s an important motivation for the develop-

ment of Floer theory was the hope that this might lead to new calcu-
lations of 4-manifold invariants, via cutting and pasting techniques. It
has to be said that, at least on a narrow interpretation, this programme
did not yield as much fruit as one might have hoped, and its goals have
been to a large extent overtaken by events. The main lines of progress
in this area (aside from algebro-geometrical techniques) came roughly
thus. Firstly, through work of Mrowka and others involving cutting and
pasting along 3-tori which, while it probably could be incorporated in
a suitable generalisation of Floer theory, was not formulated explicitly
in these terms. Secondly, through work of Kronheimer and Mrowka
using singular connections (although again a version of Floer theory
appeared in their arguments). Thirdly, and most decisively, through the
introduction in 1994 of the Seiberg–Witten invariants. Leaving aside the
well-known issue of the equivalence of the two theories, this last gives
a more economical and powerful basis for the entire subject and makes
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the older instanton theory largely redundant as far as applications to
4-manifold topology go.
While it cannot be denied that the material in this book is less topical

now than a decade ago (and at some points the text may have a slightly
dated air, reflecting the long period over which it has been written)
the author hopes that it is still worthwhile to present this material.
We mention three grounds for this hope. First, the main thrust of the
first part of the book is to develop certain differential-geometric and
analytical techniques which apply to a wide range of problems, going
beyond Yang–Mills theory (for example to the analogous symplectic
Floer theory, to the Seiberg–Witten version of the Floer theory, to
gluing problems for other structures such as self-dual metrics and metrics
of special holonomy). Second, Floer’s fundamental idea of defining
‘middle-dimensional homology’ for suitable infinite-dimensional mani-
folds is such an appealing one, and again one which in principle could
appear in many different contexts, that it seems to deserve a thorough
treatment. Third, while, as we have said above, some of the original
motivation for the theory vis-à-vis 4-manifold topology is now reduced,
there are intriguing questions which remain to be settled in setting
up the Floer theory and understanding the whole relation between
the instanton invariants and the Seiberg–Witten invariants. Some of
these, in particular the appearance of modular forms, are touched on in
Chapter 8. The Seiberg–Witten version of the Floer theory is a topic
which is being very actively developed at the time of writing and, in
conjunction with Floer’s original groups, is expected to have important
consequences in 3-manifold theory.
There are many topics omitted from this book. (In some cases

these are things which we had hoped to include, in earlier and more
ambitious plans, but found the energy wanting when it came to the
point.) There are absolutely no examples: this is an entirely ‘theoretical’
treatment. We do not discuss the Casson invariant of homology spheres
[46], or Floer’s exact surgery sequence [8]. We do not mention Fukaya’s
extension of Floer’s homology groups [9]. We do not have anything to
say explicitly about the related theories developed by Taubes [47] and
Morgan, Mrowka and Rubermann [36]. We do not say anything about
the various interesting links between Floer’s theory and the moduli
spaces of flat connections over surfaces, and with algebraic geometry.
Finally we say nothing about many of the deeper and more recent
developments, connected with the Seiberg–Witten theory, such as the
work of Muñoz [37] and Froyshov [25] on the ‘finite type’ condition. We
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do not discuss the Seiberg–Witten equations [51], [13], and the variant
of the Floer theory they define. Except for the discussion of Fintushel
and Stern’s work of 1993 in Chapter 8 we have confined ourselves to an
exposition of ideas that were current circa 1990.
On the other hand, we do digress from the narrow goal of setting

up the Floer theory at a number of points. Thus, for example, we
develop some of the main analytical results (in Chapter 4) in more
generality than we need, because the ideas seem interesting and useful
in other applications. We attempt to say a little about the background
in mathematical physics, and the analogy with the symplectic theory.
The general scheme of the book is as follows. The first part (Chapters

2–5) aims to give a complete definition of the Floer groups of a homology
3-sphere: essentially following Floer’s original paper. Chapter 6 develops
the basic connection with 4-manifold invariants. The thrust of the
first part is towards the geometrical and analytical techniques: at the
beginning of Chapter 6 we step back to discuss the overall conceptual
picture. Some readers may wish to look at the beginning of Chapter 6
at an earlier stage. Chapter 7 is devoted to refinements of the theory,
mainly involving ideas from algebraic topology. This sets the stage for
Chapter 8 in which, as we have mentioned, we discuss open problems
and likely further developments.
The author expresses thanks to all the colleagues who have provided

both help with this work and encouragement to complete the task. Two
people should be mentioned in particular. Dieter Kotschick made notes
of the original course of seminars which was the starting point for this
project, and provided a great deal of help with the early development
of the manuscript. Mikio Furuta was a participant in the seminar and
contributed some invaluable ideas and drafts covering the less standard
material in Chapter 7. In particular the formulation of the ‘category of
chain complexes’ in that Chapter is due to Furuta.
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Basic material

2.1 Yang–Mills theory over compact manifolds

In this Section we recall the rudiments of Yang–Mills theory in the
standard situation – treated in numerous references – of a compact base
manifold. (In general in this Chapter we follow the notation of [17].) So
let V be a compact, connected, smooth manifold of dimension n, G be
a compact Lie group and P → V be a principal G bundle over V . The
gauge group G of automorphisms of P , covering the identity on V , acts
on the space A of all connections on P by

g(A) = A− (dAg)g−1.

In Yang–Mills theory one needs to work with connections modulo
gauge equivalence, i.e. modulo the action of G, and to do this one
can form the quotient spaces B = A/G. This quotient is made more
complicated by the possible existence of reducible connections, by which
we mean connections A whose stabilisers ΓA in G are larger than the
centre C(G) of G. (The stabiliser ΓA is always a compact Lie group –
the centraliser of the holonomy group of the connection A.) To avoid
these complications one can restrict to the subset

B∗ = {[A] ∈ B : ΓA
∼= C(G)}.

This is an open, dense subset of B (so long as the dimension n is
greater than 1). We can make B∗ into a smooth infinite-dimensional
Banach manifold if we complete our spaces in suitable Sobolev norms.
For example, we can take connections of class Lp

k−1, acted on by gauge
transformations of class Lp

k (i.e. k derivatives in Lp). If the indices k
and p satisfy the inequality k− (n/p) > 0 the Lp

k gauge transformations
are continuous and the completion is naturally a Banach Lie group.

7



8 Basic material

For the rest of this Chapter we shall denote by G and A these Sobolev
completions. Thus G is a Banach Lie group acting smoothly on the
Banach manifold A.

To see the manifold structure of B∗ explicitly we have to find slices
for the action of G. Fixing a background connection A0 we have

A = A0 +Ω1(gP )

where gP is the bundle of Lie algebras associated to P by the adjoint
action of G. The tangent space to the orbit G(A0) at A0 is the image of
the covariant derivative

dA0 : Ω0(gP ) → Ω1(gP ).

If V is equipped with a Riemannian metric then the space of connec-
tions becomes an infinite-dimensional, affine, Euclidean space, with the
G-invariant metric inherited from the standard L2 metric on Ω1(gP ).
(This is not, of course, the same as an Lp

k−1 metric used in completing
A.) There is then a standard choice of complementary subspace, namely
the L2 orthogonal complement. By Hodge theory, this is just the kernel
of the formal adjoint operator

d∗A0
: Ω1(gP ) → Ω0(gP ).

The set of connections A0 + a, for small a and with d∗A0
a = 0, forms

a local slice for the action of G, and these slices give charts for B∗. At
the linear level we can identify the tangent space

T[A0]B∗ = Ω1(gP )/ Im dA0 = ker d∗A0
. (2.1)

The curvature FA or F (A) of an Lp
k−1 connection lies in Lp

k−2, so long
as the inequality k > n/p holds. The curvature can be regarded as a
G-equivariant map

F : A → Ω2(gP ),

whose derivative at a connection A0 is the coupled exterior derivative

dA0 : Ω1(gP ) → Ω2(gP ).

This is obtained by linearising the formula

FA+a = FA + dAa+ a ∧ a. (2.2)

Down on B∗ we can think of the curvature as a section of a bundle
of Banach spaces, the bundle over B∗ associated to the action of G on
Ω2(gP ).
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2.2 The case of a compact 4-manifold

Now we specialise to the case when V = X4 is an oriented Riemannian
4-manifold. On X we have the Hodge ∗-operator, which acts on (bundle-
valued) 2-forms, with square 1. Decomposing the curvature FA of a
connection A according to the decomposition Ω2 = Ω+ ⊕ Ω− of the
2-forms into self-dual and anti-self-dual parts (the ±1 eigenspaces of ∗)
we write FA = F+

A + F−
A ∈ Ω+(gP ) ⊕ Ω−(gP ). The instanton or anti-

self-dual (ASD) Yang–Mills equation for a connection over any oriented
Riemannian 4-manifold is the equation

F+(A) = 0.

We refer to the solutions as ‘instantons’ or ‘ASD connections’. Note
that the instanton equation is conformally invariant.
The linearisation of the ASD equation about a given solution A is

obtained by taking the self-dual part of Equation 2.2. We have

F+
A+a = d+Aa+ (a ∧ a)+,

where d+A is the projection of the exterior derivative to Ω+(gP ). We get
a complex

Ω0(gP )
dA→ Ω1(gP )

d+
A→ Ω+(gP ). (2.3)

Notice that these operators are defined for any connection A over X,
not just the instantons, and in general the composite d+A ◦ dA is given
by the algebraic action of F+

A .
Plainly the linearisation of the instanton equation is the equation, for

a ∈ Ω1(gP ),

d+Aa = 0.

The instanton equation is gauge-invariant, so to study the solutions
near A we may as well restrict to the slice defined by Equation 2.1. Thus
the linearised equation modulo gauge equivalence can be written as the
single equation

DA(a) = 0, (2.4)

where DA = −d∗A ⊕ d+A : Ω1(gP ) → Ω0(gP ) ⊕ Ω+(gP ). The operator
d+A is not elliptic by itself but the gauge-fixing condition built into DA

makes this latter operator elliptic. (Thus the instanton equation, viewed
modulo gauge transformations, is a non-linear elliptic PDE.) Like any
elliptic operator over a compact manifold, DA has a Fredholm index:

indDA = dimkerDA − dimkerD∗
A.



10 Basic material

The Atiyah–Singer index theorem gives a topological formula for this
index which takes the form

indDA = c(G)κ(P )− dimG(1− b1 + b+).

Here c(G) is a normalising constant, κ(P ) is a characteristic number
of P obtained by evaluating a 4-dimensional characteristic class on the
fundamental cycle [X], b1 is the first Betti number of X and b+ is the
rank of a maximal positive subspace for the intersection form on H2(X).
We now focus on the case when G = SU(2) and we can take κ to be the
second Chern class c2(P ). Then the index formula becomes

8c2(P )− 3(1− b1 + b+). (2.5)

(In Chapter 5 we will discuss the case of U(2) and SO(3) connections.)
Chern–Weil theory expresses the topological characteristic number

κ(P ) as a curvature integral. Specialising again to the case of the group
SU(2) where κ = c2 we have

κ(P ) =
1

8π2

∫
X

Tr
(
F 2
A

)
. (2.6)

This applies, of course, to any connection A on P . The wedge product
form is equal to the square of the norm on self-dual 2-forms and opposite
on the anti-self-dual forms, so we have the fundamental equation

κ(P ) =
1

8π2

∫
X

(∣∣F−
A

∣∣2 − ∣∣F+
A

∣∣2) dµ. (2.7)

So a connection is an instanton if and only if

κ(P ) =
1

8π2

∫
X

|F |2 dµ. (2.8)

This shows, in particular, that κ(P ) ≥ 0 if P supports an ASD connec-
tion. (And if κ(P ) = 0 the connection must be flat – associated to a
representation of π1(X).)

2.3 Technical results

We will now recall briefly the main theorems about Yang–Mills instan-
tons, from the point of view of applications to 4-manifold differential
topology. These will be used in Chapters 4 and 5 when we extend
the theory to certain non-compact base manifolds. We refer to [17] for
proofs.
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The analytical theory of instantons is underpinned by two basic
theorems of Uhlenbeck. These are, in the first instance, local results:
they deal with connections over the 4-ball B4 and the punctured 4-ball
B4 \ {0} respectively, and the hypotheses involve the curvature integral

‖F‖2 ≡
∫

|F |2 dµ,

which we have encountered already in the Chern–Weil theory for in-
stantons above. Note that, like the instanton equation, this integral
is conformally invariant – it depends only on the conformal class of
the Riemannian metric. The first theorem asserts that there is a
constant ε such that any connection A over B4 with ‖F (A)‖2 < ε

can be represented by a connection matrix which satisfies the Coulomb
gauge-fixing condition, and whose L2

1 norm is estimated by the L2 norm
of F . If the connection also satisfies the ASD equations then one obtains
interior estimates on all higher derivatives of the connection matrix.
The Ascoli–Arzelà theorem then implies that any sequence of such ASD
connections, with small curvature, has a convergent subsequence. The
second theorem, Uhlenbeck’s ‘removable singularities theorem’, asserts
that any ASD connection over the punctured ball whose curvature
is in L2 can be extended smoothly over the puncture. Strictly, this
also involves extending the bundle on which the original connection is
defined. These two results, together with some ‘patching’ arguments,
lead to a global compactness principle which we will use in the following
form.

Proposition 2.1 Let U be an oriented Riemannian 4-manifold, possibly
non-compact, and Aα an infinite sequence of ASD connections on a
bundle P over U . If the curvatures satisfy a fixed L2 bound ‖F (Aα)‖ ≤
C, for some C ∈ R, then there is a subsequence {α′} such that the
connections Aα′ converge as α′ → ∞ in the following sense. There are
points x1, . . . , xl ∈ U (not necessarily distinct), with l ≤ C/8π2, an ASD
connection A on a bundle Q over U and bundle isomorphisms

ρα′ : Q|U\{x1,...,xl} → P |U\{x1,...,xl}

such that

(1) ρ∗α′(Aα′) converges to A, uniformly with all derivatives on compact
subsets of the punctured manifold,
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(2) the curvature densities |F (Aα′)|2 converge to

|F (A)|2 + 8π2
l∑

i=1

δxi ,

in the sense that for any compactly supported, continuous, function
f on U we have∫

U

f |F (Aα′)|2 dµ →
∫
U

f |F (A)|2 dµ+ 8π2
∑

f(xi).

We shall refer to this kind of convergence as ‘weak convergence’. The fact
that one only gets over the punctured manifold is the famous ‘bubbling
phenomenon’. Notice that (2) implies that∫

U

|F (A)|2 + 8π2l ≤ C,

and if U is compact equality must hold. Also, if U is compact, the
hypotheses on the curvature are automatically satisfied by the Chern–
Weil equality Equation 2.8. Then the last part of the Proposition implies
that

κ(Q) ≤ κ(P ) + l.

The next piece of theory we need refines our discussion in Section 2.2
of the linearisation of the ASD equations. For a bundle P over a compact
oriented 4-manifold X, with Riemannian metric g, we define the moduli
space, MP (g), of instantons on P to be the set of solutions of the ASD
equation modulo gauge equivalence. Thus MP (g) is a subset of the
quotient B = A/G of all connections modulo equivalence. On the other
hand, we have attached an integer to P , the index of the operator DA,
for any connection A on P . This is the ‘virtual dimension’ of the moduli
space MP (g), in that roughly speaking MP (g) is typically a manifold of
this dimension. More precisely, we have

Proposition 2.2 (1) If the structure group of P is SU(2) and κ(P ) > 0
then for generic metrics g on X the intersection M∗

P (g) of the moduli
spaceMP (g) with B∗ (the ‘irreducible’ connections) is a smooth manifold
of dimension indDA. For each [A] ∈ M∗

P (g) the tangent space to
the moduli space is naturally identified with the kernel of DA and the
cokernel of this operator is zero.
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(2) If, in addition, the 4-manifold X satisfies the condition b+(X) >
0 (i.e. the intersection form is not negative definite) then, for generic
metrics on X, M∗

P (g) = MP (g).

In Proposition 2 we mean by ‘generic metrics’ the metrics in a second
category subset of the space of Ck metrics for some fixed k > 2. (It may
reassure the reader to know that for all practical purposes one can work
with an open dense subset of the smooth metrics, or even real analytic
metrics.) The third topic we wish to mention is the orientation of the
moduli spaces. For a generic metric as above the SU(2) moduli spaces
are orientable manifolds. The discussion of the orientations is in reality
completely independent of the moduli space: it is a part of index theory
dealing with a determinant line bundle, a real line bundle λ → B, whose
fibres are

λ[A] = Λmax kerDA ⊗ (Λmax kerD∗
A)

∗.

There is a canonical isomorphism between the restriction of λ to
M∗

P (g) and the orientation line bundle of the moduli space, so a trivial-
isation of λ induces an orientation of the moduli space.

Proposition 2.3 The line bundle λ is trivial over B. A trivialisation
of λ can be specified canonically by an orientation of H1(X;R) ⊕ H+

where H+ ⊂ H2(X;R) is a maximal positive subspace.

2.4 Manifolds with tubular ends

In this book we will study moduli spaces of instantons over non-compact
4-manifolds. For any complete oriented Riemannian 4-manifold X we
get natural moduli problems – to study connections A on bundles over
X with finite ‘energy’, i.e.∫

X

|F (A)|2 dµ < ∞,

modulo gauge equivalence. The naturality of this class of connections is
suggested by the importance of the L2 norm of the curvature through-
out the whole theory. In this direction there are certainly interesting
analytical questions which can be asked about rather general classes of
non-compact 4-manifolds, but in this book we shall be considering only
manifolds of a very simple, standard, form.
The manifolds we will consider are 4-manifolds with tubular ends.

Such a manifold is a complete Riemannian 4-manifold X which contains
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a finite number of ‘ends’ Ui, i = 1, . . . , n: open subsets of X isometric
to half-tubes Yi× (0,∞), where Yi are compact Riemannian 3-manifolds
(which we will refer to as the ‘cross-sections’ of the tubes). Thus the
closure X \⋃n

i=1 Ui is a compact manifold-with-boundary. We suppose
all our manifolds are oriented, and for definiteness we assume that the
orientations at the ends are given by

dt ∧ dy1 ∧ dy2 ∧ dy3,

where dt is the standard 1-form on R and dy1 dy2 dy3 defines the orien-
tation of the cross-section.
The half-tube S3×(0,∞) (where the 3-sphere has the standard round

metric) is conformally equivalent to the punctured ball B4 \ {0}, with
the Euclidean metric. A conformal equivalence is given, with respect to
‘generalised polar co-ordinates’ (r, θ) on the punctured ball, by the map

(t, θ) → (e−t, θ).

This means that a manifold X with tubular ends, whose ends each
have the 3-sphere as cross-section, is conformally equivalent to a punc-
tured manifold X̃\{p1, . . . , pn}, where X̃ is compact. Both the instanton
equation and the L2 norm of the curvature are conformally invariant
so the moduli problem for X is equivalent to that on the punctured
manifold. In turn, by Uhlenbeck’s removable singularities theorem, this
is equivalent to the moduli problem for the compact manifold X̃. Thus
it is natural to expect that the theory for manifolds with general tubular
ends will have many of the same basic features as the theory for compact
manifolds, and in the subsequent Sections we will see that this is indeed
the case.

2.5 Yang–Mills theory and 3-manifolds

2.5.1 Initial discussion

We now switch to three dimensions and fix attention on a compact
oriented 3-manifold Y . The main theme of this Section is to see the
interaction between gauge theory in three dimensions (on Y ) and four
dimensions (in the fashion considered above), specifically on the tube
Y ×R. The main idea is that one can pass from connections on Y ×R
to one-parameter families of connections over Y . In a sense, this is
rather an elementary thing. We can explain the main point first in a
simple way, using local trivialisations and co-ordinates. Let t be the
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standard parameter on the factor R in Y ×R and let yi (i = 1, 2, 3) be
local co-ordinates on a patch in Y . (It is, of course, natural to have in
mind a situation where Y ×R is ‘space-time’, and t appears as the time
co-ordinate.) A connection over the tube is given locally by a connection
matrix:

A = A0 dt+
3∑

i=1

Ai dyi,

where A0 and the Ai depend on all four variables t, y1, y2, y3. We get
a one-parameter family of connection matrices over an open set in Y

in an obvious way, by discarding A0 and considering t as an additional
parameter. (As a point of notation, throughout this book, when we
are discussing connections over 4-manifolds and 3-manifolds at the same
time we will often use bold face for the former, but we will not do
always do this, and we will revert to plain symbols when no confusion
seems likely.) Slightly less obvious is the interaction between this
construction and the notion of gauge equivalence of connections. For any
given connection over the tube we can use parallel transport along the
‘R-factor’ to choose a connection matrix with A0 = 0 (sometimes called
a temporal gauge). Thus, in this gauge, we do not lose any information
by discarding A0. In this situation the curvature in a mixed tyi-plane is
given by the simple formula

F0i =
∂Ai

∂t
. (2.9)

Now let Y have a Riemannian metric with ∗-operator ∗3. If φ is a
1-form on Y then, for the 4-dimensional ∗-operator defined with respect
to the product metric on Y ×R,

∗(dt ∧ φ) = ∗3φ. (2.10)

Thus the anti-self-dual forms are just those of the shape φ∧ dt+ ∗3φ,
and the instanton equation in a temporal gauge has the form of an
‘evolution’ equation for a one-parameter family A(t) over Y :

∂A(t)
∂t

= ∗3F (A(t)). (2.11)

The observation that the instanton equation can be cast in this form
lies at the root of Floer’s approach, as we shall see.
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2.5.2 The Chern–Simons functional

We will now go over these ideas again, taking a more systematic and
invariant approach. We begin with bundle theory. If P is a bundle
over the 3-manifold Y , and u is an automorphism of P (covering the
identity) we can form a bundle Pu over Y × S1 by using u to glue the
ends of π∗

1(P ) over Y × [0, 1]. It is an elementary fact that this sets up a
one-to-one correspondence between isomorphism classes of bundles over
Y × S1, isomorphic to P on Y × {pt.}, and the connected components
of the gauge group GP of P on Y . On the other hand, if we choose a
connectionA on the bundle Pu over Y ×S1 we get, in the manner above,
a one-parameter family of gauge equivalence classes of connections over
Y , giving us a map

γu,A : S1 → BP .

This cannot, in general, be lifted to a loop in AP . Indeed, if we cut
open the circle and lift the resulting map of [0, 1] to AP , the images in
AP of the end points differ precisely by the action of the automorphism
u. If we assume that the structure group G is connected and restrict
to the (contractible) open subset A∗

P of irreducible connections we get
in this way a natural isomorphism between π1(B∗

P ) and the group of
components π0(GP ). In sum, then, we see that the fundamental group
of the space B∗

P is isomorphic to the set of equivalence classes of bundles
on Y ×S1. In particular, the 4-dimensional characteristic class over the
product detects essential loops in the connection space. It is easy to see
that these loops remain essential if we include the reducible connections,
so we get a homomorphism

κ : π1(BP ) → Q, (2.12)

i.e. a class κ̂ in H1(BP ;Q).
Let us now specialise to bundles with gauge group G = SU(2). In this

case the bundle P over Y is necessarily trivial and we get an isomorphism

c2 : π1(BP ) → Z.

We will now take a more differential-geometric approach to these
matters, by introducing the Chern–Simons function which lies at the
heart of the Floer theory. This is a map

ϑ : BP → R/Z, (2.13)
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which can be defined in various ways. We will describe three slightly
different approaches: the equivalence between these is not a matter of
any difficulty, but the different points of view are useful. For simplicity
we will work in the case of SU(2) bundles

First definition This follows a formal pattern which will recur several
times in different contexts in this book (for example in the discussion
of orientation in Chapter 5). Choose an oriented 4-manifold X ′ with
boundary Y , and an extension of the bundle P over X ′. (Here we use
the triviality of the cobordism group in three dimensions.) Then, for a
given connection A on P , choose an extension A′ over X ′ and set

ϑ(A) =
1

8π2

∫
X′

Tr
(
F 2

A′
)
. (2.14)

The key point is that this is the integral which, in the case of a closed
base manifold, would give the characteristic number c2. If X ′′ and A′′

are different choices we form a connection A on a closed 4-manifold

X = X ′ ∪Y X ′′

by gluing over Y . Then the integrality of the Chern–Weil form over the
closed manifold (Equation 2.6) implies that, modulo Z, the two choices
give the same value for ϑ. (The connection Ã may not be smooth,
but a moment’s thought shows that this does not affect the argument.)
The definition is manifestly gauge-invariant, and so defines a map as
in Formula 2.13. This has a number of more or less formal properties,
deriving from the nature of the definition. First, ϑ is 0 on the trivial
connection, since we can make a trivial extension over X. Second, if
Z is a 4-manifold with two boundary components Y and Y ′ and A is
a connection on a bundle over Z which restricts to A and A′ over the
boundaries we have

ϑ(A′) = ϑ(A) +
1

8π2

∫
Z

Tr
(
F 2

A

)
mod Z. (2.15)

This follows from the obvious gluing argument.
Third, consider a connection A on a bundle P over S1 × Y . The

Chern–Simons function gives us a map

θ : S1 → R/Z ≡ S1,

with θ(t) = ϑ(A|{t}×Y ). We claim that the degree of this map is just the
Chern number c2(P). This is clear from the Chern–Weil formula for c2,
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since as a special case of Equation 2.15 we have, for any t and t′,

θ(t′)− θ(t) =
1

8π2

∫
[t,t′]×Y

Tr
(
F 2

A

)
mod Z,

so the map θ̃ : [0, 1] → R,

θ̃(t) =
1

8π2

∫
[0,t]×Y

Tr
(
F 2

A

)
,

gives a lift of θ, and hence the degree of θ is θ̃(1) = c2(P).

Second definition Here we work directly on the 3-manifold. We choose
a trivialisation, so that a connection becomes identified with a Lie
algebra-valued 1-form, and set

ϑ′(A) =
1

8π2

∫
Y

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
. (2.16)

This turns out to depend on the trivialisation only up to an integer.
We can see this in a way which ties in with our first definition, by
choosing a connection A on the bundle π∗(P ) over Y × [0, 1] which
agrees with A on Y × {1} and is the trivial product connection over
Y × {0}. Then, as a special case of Equation 2.15, we have

ϑ(A) =
1

8π2

∫
Y×[0,1]

Tr
(
F (A)2

)
.

On the other hand, in the trivialisation of our bundle over Y × [0, 1],
the connection is given by a connection form A and an easy calculation
gives the identity of 4-forms on Y × [0, 1]:

d

(
Tr
(
A ∧ dA+

2
3
A ∧A ∧A

))
= Tr

(
F (A)2

)
. (2.17)

Now the equality of ϑ and ϑ′, modulo integers, follows from Stokes’
theorem, since∫

Y×[0,1]

Tr
(
F (A)2

)
=
∫
Y

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
.

One might object that this definition relies on our ability to ‘spot’ the
expression in Equation 2.16 which satisfies Equation 2.17. To derive
the expression systematically one can consider an explicit choice of
connection A, given in a trivialisation by

At,y = tAy.
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Then one can perform the integral in Equation 2.17 explicitly. It is
useful to have also the formula

ϑ(A+ a) = ϑ(A) +
1

8π2

∫
Y

Tr
(
dAa ∧ a+

2
3
a ∧ a ∧ a

)
(2.18)

which is a simple generalisation of Equation 2.16.
We mention here that the Chern–Simons theory itself is not in any way

special to three dimensions: there are analogous invariants in any odd
dimension associated to the even-dimensional Chern–Weil integrands –
the prototype is the case of connections with group S1 and with S1 as
the base manifold. Then the analogous invariant, associated to the first
Chern class, is just the holonomy of a connection around the circle. For
the general theory of these ‘secondary characteristic classes’, which can
be developed more systematically by working on the total space of the
principal bundle, see [10].

Third definition A third approach to the definition of the Chern–
Simons function takes the point of view of differential geometry on the
infinite-dimensional spaces AP ,BP of connections (although the infinite-
dimensionality is not at all significant here, since one can always restrict
to finite-dimensional subsets). We consider the 1-form ρ on AP which
assigns to a tangent vector a ∈ Ω1(gP ) at a point A ∈ AP the number

ρA(a) =
∫
Y

Tr(FA ∧ a). (2.19)

Then we have

ρA+b(a)− ρA(a) =
∫
Y

Tr(dAb ∧ a) + O(b)2,

by Equation 2.2. Now∫
Y

Tr(dAb ∧ a− b ∧ dAa) =
∫
Y

d
(
Tr(b ∧ a)

)
= 0,

by Stokes’ theorem. Thus the leading term in Equation 2.19 is symmetric
in a, b. This is precisely what it means for ρ to be a closed 1-form. It
follows that ρ can be written as the derivative of a function 8π2ϑ′′ on the
contractible space AP . Now, by a similar application of Stokes’ theorem
one sees that ρ vanishes on tangent vectors a = dAξ along the G orbits,
so ρ descends to a form on the quotient B∗

P , and ϑ′′ descends at least
locally to BP . More precisely, it descends to define a map into R modulo
a homomorphic image of H1(BP ) given by the ‘periods’ of the 1-form. It
is then easy to see, by linearising Equation 2.18 about a = 0, that when
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suitably normalised this is just the Chern–Simons map. More precisely,
the derivative of ϑ is (8π2)−1ρ.
The preceding discussion shows that the critical points of the Chern–

Simons function on BP are the gauge equivalence classes of flat connec-
tions on P . This is one of the fundamental facts underpinning Floer’s
theory. The holonomy of a connection sets up a one-to-one correspon-
dence between the flat connections (modulo gauge equivalence) and
the representations of the fundamental group π1(Y ) in SU(2) (modulo
conjugation), and thus depends only on the topology of the 3-manifold.
Perhaps somewhat surprisingly, we will make almost no use of this basic
fact in this book, but it is obviously of great importance in understanding
the relation between the differential-geometric constructions and man-
ifold topology. We write RY for the set of equivalence classes of flat
connections over Y , and R∗

Y for the equivalence classes of irreducible
flat connections.

2.5.3 The instanton equation

We now turn to the instanton equations. First we should make the
relation between connections over the tube and one-parameter families of
connections over Y more precise. As in Subsection 2.5.2, a connection A
over Y ×R defines, by restricting to slices Y ×{pt.}, a map γA : R → BP

and this is plainly gauge-invariant. Conversely, suppose γ is a path in
BP , and γ̃ : R → AP is a lift. Write At = γ̃(t). Then we can define a
connection in four dimensions, on the bundle π∗(P ), in the familiar way

At,y = A(t)y.

This is an inverse to the preceding construction, in that γA = γ, but
the connection A depends on the choice of lift γ̃. Different choices of
lift will give connections over the tube which are not gauge-equivalent.
We can get a precise correspondence in two ways. On the one hand we
can work with paths γ̃ in AP . The constructions above show that there
is a natural one-to-one correspondence:

Bπ∗(P ),Y×R ↔ Maps(R,AP )
GP

.

On the other hand we can make a canonical choice of a lift γ̃ of any
path in BP . For this we use a Riemannian metric on Y and the Coulomb
gauge slices considered in Section 2.1. We say that a lift At = γ̃ of γ is
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horizontal if

d∗At

(
∂At

∂t

)
= 0.

Then any path in BP has a horizontal lift, unique up to the action
of GP . Away from reducible connections this assertion is a simple
consequence of the existence and uniqueness of solutions to ordinary
differential equations (see [17][Section 6.3.1]), and the ideas can be
extended to reducibles (we need not worry about potential technical
difficulties here since we need the result only for motivation). The
horizontal condition can be expressed directly in terms of the connection
in four dimensions. We say a connection A on π∗(P ) is in temporal
gauge if the covariant derivative of any section lifted up from Y along
the vector d

dt in the R-direction vanishes. For such a connection we have
the invariant version of Equation 2.9:

∂

∂t
At = it(FA),

where it denotes contraction by the vector d
dt , and At is the family of

connections on P obtained by restriction to slices. It follows then that

d∗At

(
d

dt
(At)
)

= it(d∗AFA).

So the connections over the tube which give horizontal paths, viewed
as one-parameter families, are those satisfying the equation

it(d∗AFA) = 0. (2.20)

We obtain a natural one-to-one correspondence

{[A] ∈ Bπ∗(P ),Y×R : it(d∗AFA) = 0} ↔ Maps (R,BP ).

Now, turning to instantons, we recall first the well-known fact that the
ASD equation FA+∗FA = 0, together with Bianchi identity dAFA = 0,
implies that any instanton over Y ×R satisfies the Yang–Mills equation

d∗AFA = 0,

and hence the horizontality condition Equation 2.20. So an instanton
over the tube yields a horizontal path, and we can identify the instantons,
up to gauge equivalence, with a subset of the paths in BP . By Equa-
tion 2.11 the condition for such a path γ to correspond to an instanton
is just that it satisfies the differential equation

d

dt
At = ∗3F (At).
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This is the equation for the integral curves of a vector field V over the
space of connections defined by

V(A) = ∗3F (A).

We can interpret this as an equation for a path either in AP , or in
the quotient: the two are equivalent since the vector field on AP is
GP -invariant and horizontal, because d∗AFA = ∗dAFA = 0 by the
Bianchi identity. This is just the same observation linking horizontality
to the instanton equation that we made above, viewed now from the
3-dimensional point of view.
We observe next that the vector field V is dual to the 1-form ρ we

considered above, with respect to the L2 metric on 1-forms. That is:

ρA(a) =
∫
Y

Tr(FA ∧ a) =
∫
Y

(∗FA, a) = 〈V(A), a〉.

Again, we can work here either on AP or on the quotient BP , using
the metric on the tangent space of BP induced from the L2 metric by
the horizontal slice.
We see then that the vector field V can be regarded as the gradient of a

multiple of the Chern–Simons function (since ρ = 8π2dϑ). Of course this
function only maps to the circle, but the gradient of such a map obviously
makes sense. Thus we see that the instanton equation over Y ×R can be
interpreted as the gradient flow equation for the Chern–Simons function
on BP .

A useful example to have in mind is the well-known 1-instanton on
R4, which has curvature density

|F | = 1
(1 + r2)2

.

When viewed as a connection over S3 × R, as in Section 2.4 above,
we get a connection with curvature density

|F | = 4
cosh2(t)

,

which, in the 3-dimensional picture, appears as a path which begins at
the flat (trivial) connection at t = −∞, winds once around the essential
loop in the space of connections modulo equivalence, and returns to the
same flat connection at t = +∞.
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2.5.4 Linear operators

We will now discuss the Chern–Simons function in more detail. We will
consider the local behaviour of the function in a neighbourhood of a
flat connection A, i.e. around a critical point, and we shall see that this
naturally brings in the twisted de Rham complex

Ω0(gP )
dA→ Ω1(gP )

dA→ Ω2(gP )
dA→ Ω3(gP ), (2.21)

defined by the flat connection. We denote the cohomology groups of this
complex by Hi

A. As usual, the derivative Q of V = 8π2 gradϑ at A is
intrinsically defined as a map from tangent vectors to tangent vectors;
by Equation 2.2 it is given by

QA(a) = ∗dA(a). (2.22)

Notice that, again, ∗dA(a) is horizontal when A is flat so the discussion
applies equally well to the quotient space. Thus we really want to
consider the Hessian as an operator:

QA : ker d∗A → ker d∗A.

This is, however, not very convenient. It is more practical to work
with another operator which is essentially equivalent to the Hessian.
For any connection A on P we let

LA : Ω0
Y (gP )⊕ Ω1

Y (gP ) → Ω0
Y (gP )⊕ Ω1

Y (gP )

be given by the matrix of differential operators(
0 −d∗A

−dA ∗dA

)
.

In classical vector calculus notation this is(
0 −div

− grad curl

)
.

The operator LA is self-adjoint, elliptic, and its square is the coupled
Laplace operator on forms:

L2
A = ∆A = d∗AdA + dAd

∗
A.

Indeed, LA can be thought of as ‘one half’ of the Euler characteristic
operator dA + d∗A, mapping odd forms to even forms, when we identify
2-forms with 1-forms and 3-forms with 0-forms, using the ∗-operator
on Y .



24 Basic material

To relate LA with the Hessian, we decompose the 1-forms as

Ω1(gP ) = ker d∗A ⊕ Im dA.

Then, if A is flat,

LA = QA ⊕ SA (2.23)

where SA : Im dA ⊕ Ω0(gP ) → Im dA ⊕ Ω0(gP ) is the operator(
0 −dA

−d∗A 0

)
and the square of SA can be regarded as two copies of the Laplacian ∆A

on 0-forms, with the kernels of ∆A in the two spaces being identified.
Now, as a self-adjoint elliptic operator, the spectrum of LA is real and

discrete. Our direct sum decomposition shows that it is the union of
the spectra of QA and SA. On the other hand, the eigenvalues of SA
are precisely the numbers of the form ±√

λ where λ is an eigenvalue
of the Laplacian on 0-forms. So we obtain the spectrum of QA by
discarding these positive and negative square roots of the spectrum of
∆A on Ω0(gP ). The spectrum of QA also consists of square roots of the
spectrum of the Laplacian on forms – this time on the kernel of d∗A on
1-forms. However, it is important to note that we cannot predict from
this Laplacian alone which sign of the square root will appear in the
spectrum of QA.

We shall now describe the kernel of LA in terms of the cohomology
groups Hi

A of the de Rham complex. From the discussion above we see
that the kernel of LA decomposes into the direct sum of the kernel of
QA = ∗dA in ker d∗A ⊂ Ω1(gP ) and a copy of the kernel of dA in Ω0(gP ).
The first of these is precisely the harmonic space

ker dA ∩ ker d∗A ⊂ Ω1(gP ),

which is identified by the Hodge theory with the cohomology group
H1

A. The second space, the space of covariant constant sections of gP ,
is precisely the cohomology group H0

A. These two cohomology groups
have a separate significance for the flat connection A. The cohomology
H0

A is non-zero if and only if the connection is reducible, and the kernel
is the Lie algebra of the isotropy group ΓA of A in GP . (This isotropy
group is ±1 for an irreducible SU(2) connection.) The cohomology H1

A

is non-zero if and only if the connection can be deformed infinitesimally,
within the space BY of gauge equivalence classes of flat connections
on P – more precisely H1

A is the Zariski tangent space of this space.
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These cohomology groups will play a very important role in setting up
the theory in the next two Chapters, so we will fix on the following
terminology.

Definition 2.4 The flat connection A is

• acyclic if both cohomology groups H0
A, H

1
A are zero,

• non-degenerate if H1
A is zero (and H

0
A may or may not be zero).

Notice that the higher cohomology groups of A are obtained by Poincaré
duality from the first two, so the connection is acyclic if and only if
the twisted de Rham complex is acyclic in the usual sense. The use
of ‘non-degenerate’ corresponds to the standard definition of a non-
degenerate critical point of a function, as in the Morse theory. We take
the discussion further in Appendix A to this Chapter, where we discuss
finite-dimensional models for the Chern–Simons functional around a flat
connection.

We now return to the 4-dimensional point of view; and see how the
linearisation in three dimensions discussed above ties up with those in
four dimensions. Recall from Section 2.2 that in the usual instanton
theory over a 4-manifold X one introduces a linear operator

DA = −d∗A ⊕ d+A : Ω1
X → Ω0

X ⊕ Ω+
X ,

to describe the deformations of ASD connections. In the case when X

is a Riemannian tube Y ×R we can identify the self-dual 2-forms with
cotangent vectors on Y , using the map

ξ → ξ ∧ dt+ ∗3ξ,
as in Equation 2.10, and similarly identify the 1-forms on X with Λ1

Y ⊕
Λ0
Y by taking the dt component in the obvious way. Thus if A is a

connection π∗(A) on a bundle π∗(P ) over the tube, we can regard DA

as a map from the space of sections over the tube of the pull-back bundle,
which we just denote by Λ0

Y ⊕Λ1
Y , to itself. In these terms we can write

the 4-dimensional covariant derivative dA on Ω0 as

d =
(

grad
d
dt

)
and d+A as

d+A =
(
d

dt
, curl− grad

)
,
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from which it follows that

DA =
d

dt
+ LA : Γ(Λ0

Y ⊕ Λ1
Y ) → Γ(Λ0

Y ⊕ Λ1
Y ). (2.24)

Here the notation means that we take sections of the pull-back bundle
over the tube, and we have suppressed the bundle of Lie algebras gP .
This formula will be central to the analysis of instantons on tubes in the
following Chapters.
We have seen that the flat connections over Y can be viewed as the

zeros of the vector field V, the critical points of the Chern–Simons func-
tion, and the instantons on the tube are gradient flow lines of this vector
field. This is of course reminiscent of a familiar picture in the calculus
of variations where one characterises geometric objects as the critical
points of a Lagrangian on some infinite-dimensional function space, for
example geodesics and the energy function on the space of loops. In
such a case also one has an associated evolution equation representing,
at least formally, the gradient flow of the Lagrangian. There is however
a radical difference between this instanton theory and such classical
problems. In the classical theory the Hessian is typically represented
by a second order operator of Laplace type, with a positive symbol.
For example in the geodesic case this would be the Jacobi operator.
The spectrum of this operator is then bounded below, with only finitely
many negative eigenvalues. The number of negative eigenvalues yields
the index of the critical point and, at least in favourable cases, the set
of critical points and their indices is related, via the Morse theory, to
the topology of the function space. Similarly the evolution equation
is a parabolic equation of heat equation type and one has solutions
for positive time to the initial value problem; in favourable cases it
can be shown that the solutions of the evolution equation converge to
critical points as time tends to infinity. There is no symmetry between
positive and negative time, and – as is well known – we cannot solve the
‘backward’ heat equation, even for a short time, with general smooth
initial data.
The instanton theory we have discussed has quite a different character:

the Hessian has infinitely many positive and negative eigenvalues, and
this reflects the rough symmetry between positive and negative time
(which can be interchanged if we simultaneously reverse the orientation
of Y ). As with a backward heat equation, we cannot solve the initial
value problem for instantons, even for a short time, so the vector field V
does not really define a flow on BP . Similarly, we do not expect the set
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of critical points to have any relation to the ordinary homology groups
of B.
In this Section we have developed the 3-dimensional point of view in

rough parallel with the topics discussed, from the 4-dimensional point
of view, in Section 2.2. One topic which we have omitted so far, and
which will be developed at length in Chapter 3 below, is the analogue
of the Fredholm index theory for the D-operators in four dimensions.
We shall see that, roughly speaking, this Fredholm theory goes over to
a theory which will allow us to define the Morse indices of the critical
points of the Chern–Simons function, taking values in Z/8 rather than
the usual positive integers. We shall see that this can be regarded as
a ‘renormalised’ count of the (infinite number of) negative eigenvalues,
and the ambiguity of 8 will be derived from the factor 8 in the index
Formula 2.5. Granted this, we can summarise in the following table a
rough dictionary for translating between the 3- and 4-dimensional points
of view.

Four dimensions Three dimensions

X4 Y 3 ×R

c2(P ) ∈ Z π1(BY ) = Z

Chern–Weil integrand Chern–Simons functional θ

F+(A) = 0 ∂At

∂t = ∗3F (At)

instantons minimise Yang–Mills ∗3F is the gradient of
functional θ : BY → R/Z

Fredholm index of Morse index of
DA flat connection ∈ Z/8

2.6 Appendix A: local models

In this Appendix we will explain that the Chern–Simons functional
has a finite-dimensional local model, near each critical point (i.e. flat
connection). The results are not used in any important way in the
book (only in the Appendix to Chapter 4). The discussion is not really
specific to the Chern–Simons case. Two general contexts in which the
ideas are developed are on the one hand the theory of ‘centre manifolds’
in PDE theory and on the other hand in the Kodaira–Spencer–Kuranishi
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deformation theory of geometric structures; the structures in our case
being flat connections over 3-manifolds.
We will first fix some notation. To simplify our discussion let us move

to a set-up based on fixed Sobolev spaces, for example connections of
class L2

1. We let U be the L2 orthogonal complement of the harmonic
space H1

A in T = ker d∗A ⊂ L2
1, and U

′ be the L2 closure in T ′ = ker d∗A ⊂
L2. The linear map QA from T to T ′ is the direct sum of an invertible
component q mapping U to U ′ and the zero component on H1

A. The
curvature gives a map a %→ ∗F (A + a) = ∗(da + a ∧ a) from T to the
fixed vector space of L2 1-forms. However, we really want to consider
it as a section of the bundle which assigns the vector space ker d∗A+a to
a ∈ T . To describe it concretely we need a local trivialisation of this
bundle, and we obtain this from the L2 projections

πa : ker d∗A+a → T = ker d∗A.

Then the curvature is represented by the map a %→ πaF (A+ a) from T

to T .
Now we have explained in Section 2.1 that a neighbourhood of the

point [A] in the quotient space B is modelled on a quotient of T , dividing
by the natural action of ΓA. We obtain other ‘local co-ordinates’ by
applying diffeomorphisms of T . We say that a diffeomorphism φ from a
neighbourhood N of 0 in T to itself is ‘L2-compatible’ if it distorts the
L2 norm by a bounded amount, i.e. if there is a constant C such that

C−1‖ξ‖L2 ≤ ‖(dφ)aξ‖L2 ≤ C‖ξ‖L2 ,

for all a in N . (These are the natural co-ordinate changes in our theory,
since we are using the L2 norm to define the gradient of ϑ.)

Proposition 2.5 (1) There are an L2-compatible diffeomeorphism φ on
a neighbourhood N , a linear isomorphism l : U → U ′ and a smooth map
f : N → H1

A, such that for a = h⊕ b ∈ N ⊂ H1
A ⊕ U ,

πφ(a)F (A+ φ(a)) = l(b) + f(h).

In particular, if f0 denotes the restriction of f to H1
A the diffeomorphism

φ identifies a neighbourhood of 0 in the zero set of the curvature map
a → F (A + a) in T with a neighbourhood of 0 in the zero set of the
finite-dimensional map f0 : H1

A → H1
A.

(2) In addition we can suppose N and φ are chosen so that there is a



2.6 Appendix A: local models 29

smooth function ϑ̃ : H1
A → R and for a = h⊕ b ∈ N ,

ϑ(A+ φ(a)) = 〈b, l(b)〉+ ϑ̃(h).

The maps f and ϑ̃ can be taken to be real analytic, and if A is reducible
we may choose the maps to commute with the natural actions of ΓA.

In brief, this proposition asserts that the Chern–Simons function is lo-
cally equivalent to the direct sum of a non-degenerate quadratic function
and a function on the finite-dimensional space H1

A.
The idea of these local models will be familiar to readers who have

studied the moduli spaces of instantons; see [17][Chapter 4]. The model
for the curvature (1) is just like that in the instanton theory; it is
obtained by applying the implicit function theorem to the composite of
a %→ πaF (A+a) with the projection from T ′ to U ′. This is a smooth map
with surjective derivative at 0, so it is equivalent under a diffeomorphism
of the domain to a linear map, and this gives the required model.
Part (2) is a version of the Morse lemma. We sketch the main steps

in the proof. First, suppose that H1
A = 0, so Qa is an isomorphism

and the critical point is non-degenerate in the usual sense. Then we
can apply the infinite-dimensional version of the Morse lemma due to
Palais, [30]. Since ϑ is a smooth function, on the L2

1 connections, this
result shows that it is locally equivalent to a quadratic function under
a diffeomorphism. The only point to check is that this diffeomorphism
is L2-compatible, and this follows readily from an examination of the
proof (the derivative of the diffeomorphism differs from the identity by
a pseudo-differential operator of order −1). For the general case, when
H1 &= 0, we proceed as follows. The construction of part (1) tells us that
after applying a diffeomorphism φ (with dφ equal to the identity at 0) ϑ
is equivalent to a function H1

A ×U such that for each h ∈ H1
A the point

(h, 0) is a critical point of the restriction of ϑ to the slice Uh = {h}×U.

When h = 0 this is a non-degenerate critical point by construction, so
the same is true for all small enough h. So we may apply an obvious
parametrised version of the Morse lemma to the family of functions,
with h as a parameter, given by restricting ϑ to the Uh. Thus we may
assume that ϑ is quadratic + constant on each Uh and, by applying a
family of linear maps, that the quadratic part is the same for all h. This
then gives the required description as the sum of a function of h and a
quadratic form on U .
As a simple example, consider the trivial flat connection A over the

3-torus T 3. Then H1
A is the tensor product H1(T 3) ⊗ su(2). We define
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a trilinear form on H1
A by taking the tensor product of the cup product

on H1(T 3) and the form

(h1, h2, h3) %→ 〈h1, [h2, h3]〉
on the Lie algebra. The resulting form is symmetric and so defines a
cubic function on H1

A and one can show that, up to a constant, this is
the function ϑ̃ in this case. More generally the same recipe gives the
cubic term in the Taylor expansion of ϑ̃ at the trivial connection on any
3-manifold. If this is degenerate one needs to take account of the higher
order terms, which are defined by ‘Massey products’ on the cohomology.

2.7 Appendix B: pseudo-holomorphic maps

There is a detailed analogy between the differential geometry of

• Yang–Mills connections, and especially Yang–Mills instantons, over a
4-manifold.

• harmonic maps from a Riemann surface to a Riemannian mani-
fold, and especially pseudo-homolomorphic maps to an almost Kahler
manifold.

This analogy extends to particular phenomena appearing over tubes
which we have studied, in the Yang–Mills case, in this Chapter, and
there is a version of Floer’s theory which applies to the mapping set-up,
yielding information about symplectic manifolds. In fact Floer’s work
in the Yang–Mills case grew out of his work in symplectic geometry
(which led most notably to his proof of the ‘Arnold conjecture’). In this
Appendix we will recall briefly the basic points of this analogy, although
we shall not make any use of the ideas in the rest of the book.
We begin with a fixed compact Riemann surface Σ and symplectic

manifold (M,ω). We define the degree of a map f : Σ → M by

d =
∫
Σ

f∗(ω).

This is a topological invariant, depending only on the homotopy class
of f and the cohomology class of ω. An almost Kahler structure on
(M,ω) is defined to be an almost complex structure

I : TM → TM, I2 = −1,

such that ω is the imaginary part of a Hermitian metric g on TM .
If the almost complex structure is integrable this is precisely a Kahler
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metric, in the standard sense. These almost Kahler structures exist for
any symplectic manifold, and the space of the structures is contractible.
Now, just as for any Riemannian target manifold, the harmonic map
equations for a map from Σ to (M, g) are the Euler–Lagrange equations
of the energy functional

E(f) =
∫
Σ

|df |2.

(Here the notation may be slightly simpler if one chooses a metric
within the conformal class on Σ but one can then check that the integral
is conformally invariant.) We compare this integral with the one defining
the degree of f . At each point of Σ we can decompose the derivative df
into complex linear and anti-linear parts

df = ∂f + ∂f.

Then it is easy to see that

f∗(ω) = (|∂f |2 − |∂f |2)volΣ,
while |df |2 = |∂f |2 + |∂f |2. So we have

d = E+ − E−, E = E+ + E−,

where E± are the squares of the L2 norms of ∂f, ∂f . We call a map f

pseudo-holomorphic if it satisfies the analogue of the Cauchy–Riemann
equations ∂f = 0, i.e. if E− = 0. Then we see that pseudo-holomorphic
maps are harmonic, and minimise the energy functional in their ho-
motopy class. Of course the analogy we are working around is with
the Yang–Mills instantons, F+(A) = 0, which minimise the Yang–Mills
functional over connections on a given bundle, where the degree of a
map is the analogue of the Chern number of a bundle.

We will now go to the case of tubes, so we suppose Σ is a cylinder

Σ = S1 ×R,

with the standard conformal structure. Of course this is not compact
but this is not a serious handicap since one can work with maps which
extend to the conformal compactification

S2 = Σ ∪ {±∞}.
We can clearly think of a map f from Σ as a one-parameter family
γt, t ∈ R, of maps

γtS
1 → M,
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i.e. as a path in the infinite-dimensional space LM of loops in M . Just
as in the Yang–Mills case, the topological invariant in the ‘space-time’
picture dimension manifests itself in loop space. For any path γt in
LM with end points on the constant loops we can associate a map
f : S2 → M and the degree of f goes over to give a cohomology class

δ ∈ H1(LM ;Z).

The analogue of the Chern–Simons functional is defined as follows. Sup-
pose for simplicity thatM is simply connected andH2(M) = π2(M) = Z
(for example we could take M = CPn). We also suppose that ω is an
integral cohomology class, so the degrees are all integers. Then any loop
γ in M bounds a disc ∆ and we define

ϕ(γ) =
∫
∆

ω mod Z.

The argument to see that this is independent of the choice of discs is the
familiar one: gluing two choices along γ to obtain a sphere. Note that
ϕ depends only on the symplectic structure.
Now the space LM has a standard Riemannian metric. A tangent

vector to LM at a loop γ is a section ξ of γ∗(TM) over S1 (a vector
field ‘along γ’) and we can take the usual L2 inner product 〈 , 〉, using the
pull-back of g. We claim that the gradient flow lines of the (R/Z)-valued
function ϕ correspond to the pseudo-holomorphic maps of the tube. To
see this we first note that the derivative (dϕ)γ – a cotangent vector on
LM – is the map

ξ %→
∫
S1
ω(ξ, γ′).

Here γ′ is the velocity vector of γ and we have dropped the distinction
between TM and its pull-back γ∗(TM) in our notation. This formula
follows immediately from the definition of ϕ, if one thinks of extending
the disc ∆ by a small collar. Now from the algebraic relation between the
symplectic, complex and metric structures, we can write the cotangent
vector above as

ξ → 〈ξ, Iγ′〉.

So the gradient of ϕ is Iγ′ and a curve γt is a gradient line if

d

dt
(γT ) = Iγ′,
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and these are precisely the Cauchy–Riemann equations defined by I. It
may be clearer to introduce a variable s in the circle, so γ′ = dγ

ds and the
equation is

dγ

dt
= I

dγ

ds
.

This is all we will say about the symplectic case, except to note
one facet of the analogy which may help the reader particularly in
the analysis of Chapter 2 of this book. There is a linear differential
operator over the cylinder associated to any map, obtained by linearising
the pseudo-holomorphic condition. These operators are variants of the
Cauchy–Riemann operator. For the basic model we take maps into C,
when we get the linear operator

∂ =
d

dt
+B,

where B is the operator −i d
du over the circle. More generally, one could

consider this twisted by a flat connection over the circle. This leads
to a simple model for the more complicated 3-dimensional situation
considered above. The analysis of the next Chapter can all be applied to
operators of this form; on the other hand the proofs in the 3-dimensional
case may become more transparent if one works by analogy with the
simpler situation. For example the decomposition of the space into
two infinite-dimensional subspaces, spanned by positive and negative
eigenspaces, is just the decomposition of L2(S1) into the Hardy spaces

L2 = H+ ⊕H−,

H+ =
{∑

ane
inθ : n ≥ 0

}
,

H− =
{∑

ane
inθ : n < 0

}
.

2.8 Appendix C: relations with mechanics

We begin by considering, in classical mechanics, the motion of a particle
of unit mass on a Riemannian manifold M in a potential V . Thus the
motion q(t) is governed by Newton’s law:

∇t∇tq = − gradV (q),

which are the Euler–Lagrange equations for the action integral∫ (
1
2 |∇q|2 − V (q)

)
dt.
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The energy of the motion is 1
2 |∇q|2 + V (q).

Suppose we have found a function σ on M satisfying the differential
equation

V = − 1
2 | gradσ|2 (2.25)

Then a gradient path q(t) of σ, i.e. a solution of the first order equation

∇tq = gradσ,

is automatically a solution of Newton’s second order equation. To see
this, suppose for simplicity that the metric on M is Euclidean, then we
have

d2qi
dt2

=
d

dt

{
∂σ

∂qi

}
=
∑
j

∂

∂qj

{
∂σ

∂qi

}
dqj
dt

,

which is ∑
j

∂2σ

∂qi∂qj

∂σ

∂qj
.

On the other hand the gradient of V is given by

∂V

∂qi
= − ∂

∂qi

∑
j

(
∂σ

∂qj

)2
= −2

∑
j

∂2σ

∂qi∂qj

∂σ

∂qj
.

We can also derive this fact directly from the Lagrangian. For any path
q(t), with given end points, we have∫ (

1
2 |∇tq|2 − V (q)

)
dt =

∫ (
1
2 |∇tq − gradσ|2 −

(
dσ

dt

))
dt (2.26)

= 1
2

∫
|∇tq − gradσ|2dt− δσ. (2.27)

Since the variation δσ in σ is fixed by the end conditions the La-
grangian is equivalent to that given by the first integral – the integral of
|∇tq− gradσ|2 – which is plainly an extremum, and indeed an absolute
minimum, for the gradient path.
The solutions of the equation of motion found in the manner above

are characterised by the fact that their total energy 1
2 |∇tq|2+V is zero.

The potential V is not unique, we can change it by a constant without
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changing the mechanical problem. Thus we can immediately generalise
Equation 2.25 to a family of equations:

1
2 | gradσ|2 + V = E, (2.28)

with a parameter E.
The geometric meaning of this construction is clarified by considering

the particular case of free motion on M , with V = 0. Then if we fix a
reference point p in M we can obtain solutions σE(q) = 1√

E
d(q, p0) from

the Riemannian distance function of M (at least in a neighbourhood of
p0). In general, when the potential is present, for a given energy E ≥ 0,
and for points q close to p0, we can suppose there will be a unique
particle motion with energy E which starts at p0 at time 0 and passes
through q at some subsequent time τ(q, E). Then if we define σE(q) to
be the action of this path we obtain solutions of Equation 2.28 whose
corresponding gradient lines are the motions through p0.

Equation 2.28 is closely related to the Hamilton–Jacobi equation for a
function S(q, t):

∂S

∂t
= 1

2 |∇S|2 + V. (2.29)

In the framework above, a solution S(q, t) is obtained as the action of
the motion beginning at p0 at time 0, and arriving at q at time t.

We will now explain the relation between Yang–Mills theory and this
classical mechanical picture. We consider the Yang–Mills equations over
‘space-time’ Y ×R, but first with respect to the Lorentzian metric dy2−
dt2. We decompose the curvature F of a connection over the tube into
‘electric’ and ‘magnetic’ components E,B:

F = ∗B + E ∧ dt.

The shift to the Lorentzian metric means that the Lagrangian for the
Yang–Mills equation is the indefinite expression∫

Y×R

(|E|2 − |B|2),
and the Lorentzian Yang–Mills equations themselves can be written

d∗,LA FA = 0,

where d∗,L is the formal adjoint defined by the Lorentzian metric. A
moment’s thought shows that the component itd∗,L is the same as itd∗,
formed from the Euclidean metric. Thus Yang–Mills solutions, in either
signature, yield horizontal curves of the kind considered in Section 2.3.
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So, as we explained above, we can identify the solutions with a subset of
the paths [At] in BP . Now the magnetic component B of the curvature
is just the curvature of the connection At restricted to Y while, as we
have seen, the electric term can be identified with the velocity vector
of the path in BP . So the Lorentzian Yang–Mills Lagrangian can be
written, in terms of paths in BP , as∫ (‖∇tAt‖2 − V (At)

)
dt,

where the potential function V on BP is the 3-dimensional Yang–Mills
action

V (A) =
∫
Y

|FA|2.

We see then that the 4-dimensional Lorentzian Yang–Mills solutions
can be regarded as the motions of a particle moving on the Riemannian
manifold BP in the potential V = ‖F‖2. As a simple model to have
in mind, in the case when Y is the 3-sphere we can picture V as a
well, with a minimum at the trivial flat connection, and we can think
of Lorentzian Yang–Mills solutions as representing oscillations about
this minimum. To obtain the Euclidean Yang–Mills solutions in this
framework we merely have to change the sign of the potential, so that
for example the trivial flat solution now becomes highly unstable. (This
reflects the fact that the initial value problem is ill-posed in the Euclidean
case.)

We can now fit the discussion of Section 2.3 into the general framework
in mechanics reviewed above. Locally in BP we can regard the Chern–
Simons function ϑ as a real-valued function and we have

| gradϑ|2 = ‖F‖2 = V.

So the Chern–Simons function σ = ϑ satisfies Equation 2.25 in this
infinite-dimensional setting, but with the reversed potential, and the fact
that the gradient lines (i.e. the Yang–Mills instantons) give solutions to
the Euclidean Yang–Mills equations becomes a special case of the general
principle above. Moreover, the fact that the instantons are absolute
minima of the Euclidean action, with suitable end conditions, becomes
a special case of Equation 2.26.

The utility of this point of view may seem to be limited by the fact
that we have to reverse the potential on B from the physical, Lorentzian,
case. To give physical motivation to this we have to pass beyond classical
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mechanics to a quantum mechanical picture. Thus we return to our
general model on the manifoldM and consider the Schrödinger equation:

h2∆ϕ+ V ϕ = Eϕ, (2.30)

where h (Planck’s constant) is a small parameter. The solutions are
the wave functions which give the energy eigenstates of the quantum
mechanical version of the motion of particle in the potential V . We
want to recall the main ideas of the short wave or quasi-classical or
WKJB asymptotic description of solutions of the Schrödinger equation,
for small values of h. We begin by considering the region in M where
V < E, i.e. the region accessible by particles with energy E governed by
the classical equation. We seek ‘wavelike’ solutions in the form

φ(x) = A(x)eihσ(x),

where σ is real. If we substitute this into Equation 2.30 we get, after a
short calculation,

h−2(|∇σ|2 + (V − E))A+ h−1(∇ · (A∇φ) + 2(∇A) · (∇φ)) + ∆A = 0

(2.31)

The idea is that for small h we get good approximations to the
solutions by imposing the leading terms of Equation 2.31 separately,
i.e. by looking first at solutions σ of

|∇σ|2 = E − V,

which is just Equation 2.28 that we have studied in the classical setting.
We then look at amplitude functions A which make the h−1 term vanish,

∇ · (A∇φ) + 2(∇A) · (∇φ) = 0.

If σ is given this becomes an ordinary differential equation

∇vA = −3(∆σ)A

for A along the trajectory of the vector field v = gradσ, which, as we
have seen, corresponds to a classical motion with energy E. The basic
idea then is that we can approximate the quantum wave functions for
the problem by integrating this ODE along a suitable family of classical
trajectories. More generally we can consider linear combinations of these
functions, with different choices of σ and A. There is a similar discussion
relating the time-dependent Schrödinger equation

h2∇φ+ V φ = i
dφ

dt
,
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to the Hamilton–Jacobi Equation 2.29.
We now move to the region, inaccessible in the classical picture, where

V > E. The appropriate asymptotic model takes the form

φ = Aehσ,

and in the same fashion as before we obtain the equations

|∇σ|2 = (V − E), ∇ · (A∇φ) + 2(∇A) · (∇φ) = 0.

This gives us asymptotic model solutions by integrating an ODE along
a suitable family of gradient lines of a solution σ to the first equation; i.e.
along a suitable family of classical trajectories of particle motions with
energy −E in the reversed potential −V . Rather than the oscillatory,
wave-like, solutions in the first case the solutions are now typically expo-
nentially growing or decaying along the gradient lines, and the relevant
solutions are picked out by the details of the problem. For example,
consider the simple 1-dimensional case of motion in a potential well. To
get an L2 wave function we have to pick out the decaying solutions in
each component of the region V > E. The amplitudes of these, and
the relevant wave-like solution in the region V < E, are determined by
a more sophisticated analysis of ‘matching conditions’ in the transition
regions between the two regimes (cf. [40] in the 1-dimensional case).
The idea we hope to have brought out in this brief sketch is that

the solutions of the classical problem with the reversed potential are
quite relevant in quantum theory; and at least by analogy we expect the
classical solutions of the Riemannian Yang–Mills equations to be relevant
to the quantum field theory, i.e. quantum mechanics on BY . We will refer
the reader to proper references for more details; but we should note
that a particularly important application occurs in the quasi-classical
modelling of tunnelling in quantum mechanics. For this we consider
a case when the potential V has two minima, say at q0 and q1 where
V (q0) = V (q1) = 0, separated by an energy barrier of level E0 > 0.
The classical motions with energy E < E0 fall into two classes, located
near either q0 or q1, but in the quantum picture a particle located at
one time near q0 can tunnel through the barrier to be found at q1 at a
later time, even if the energy is less than E0. Another way of expressing
this is that the eigenspace belonging to the least energy eigenstate E is
1-dimensional although there is a second eigenvalue E′ ∼ E + Ce−D/h

near by. The gap between the eigenvalues measures the strength of the
tunnelling, and the co-efficients C,D in the asymptotic approximation
for the gap can be found from the instantons for the quantum mechanical



2.8 Appendix C: relations with mechanics 39

problem. By definition these are the solutions q(t) of the classical
equations for a particle moving in potential −V with energy 0, with

q(t) → q0 as t → −∞, q(t) → q1 as t → ∞.

In our infinite-dimensional case q0, q1 become flat connections and
the ‘tunnelling instantons’ with minimal action are just the Yang–Mills
instantons over the tube with these flat limits. Connections of this kind
are in turn precisely the central object of study in Floer’s theory.
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Linear analysis

We will now begin work in earnest, and develop the basic analytical
material which underpins Floer’s theory. This consists principally of
results on linear differential operators over manifolds with tubular ends,
results which go back at least to the work of Atiyah, Patodi and Singer
[4] in the early 1970s. Another general reference is [33]. These manifolds
are not compact, so we cannot appeal to the familiar package of theorems
for elliptic operators over compact manifolds directly. Although analysis
on general non-compact manifolds can present many serious difficulties
the manifolds we have to deal with are, comparatively, very simple.
Standard techniques bring the main questions immediately down to the
case of operators over the tubes themselves. Here one can use separation
of variables to bring the usual results of elliptic theory over the compact
cross-section of the tube to bear. The special ‘non-compact’ features are
effectively reduced to problems of ordinary differential equations over the
real line.

3.1 Separation of variables

Let us begin then by supposing that, as in the previous Chapter, A
is a flat SU(2) connection over a compact 3-manifold Y , that A is the
corresponding connection on the pull-back bundle P = π∗(P ) over Y ⊗R
and that D = DA = d∗A + d+A is the deformation operator of A (acting
on the forms with values in the associated adjoint bundle gP ). We have
seen that, regarded as a map from the space of sections of the pull-back
of (Λ0

Y ⊕ Λ1
Y )(gP ) to itself, this operator can be written as

D =
d

dt
+ L,

40
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where L = LA is the differential operator d∗A + dA over Y . We shall
assume that A is an acyclic connection, so that L is an invertible
operator; there is thus a complete eigenspace decomposition φλ, with
Lφλ = λφλ, where λ may have either sign but |λ| ≥ δ for some δ > 0.

We use separation of variables to prove two key lemmas.

Lemma 3.1 Let ρ be a smooth, compactly supported, section of (Λ0 ⊕
Λ+)(gP ) over Y × R. There is a smooth section f of (Λ0 ⊕ Λ1)(gP )
which satisfies the equation Df = ρ, and with ‖f‖ ≤ δ−1‖ρ‖.
To prove this we write

ρ =
∑
λ

ρλ(t)φλ,

where ρλ are smooth, compactly supported, functions on R. Then we
seek a solution f =

∑
fλ(t)φλ.The equation becomes

Df =
(
d

dt
+ L

)(∑
fλφλ

)
=
∑(

d

dt
fλ + λfλ

)
φλ =

∑
ρλφλ.

This is satisfied if
d

dt
fλ + λfλ = ρλ

for each λ. But it is elementary that this latter equation has a bounded
solution, for λ &= 0. If λ < 0 the solution is

fλ(t) = e−λt

∫ t

−∞
eλτρλ(τ) dτ,

and if λ < 0 it is

fλ(t) = −eλt
∫ ∞

t

e−λτρλ(τ) dτ.

In either case the solution decays as e−|λt| at infinity (and in fact,
vanishes on one half-line).
We have also(

d

dt
fλ

)2
+ λ2f2λ =

(
d

dt
fλ + λfλ

)2
− λ

d

dt
(fλ)2

= ρ2λ +
d

dt
(f2λ).

Since fλ decays at infinity we can integrate this over the line to obtain∫ ∞

−∞

(
d

dt
fλ

)2
+ λ2f2λ dt =

∫
ρ2λ dt.
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In particular

‖fλ‖2L2(R) ≤ δ−2‖ρλ‖2L2(R).

Hence the sum
∑

λ fλφλ defines an L2 section f of (Λ0⊕Λ1)(gP ) over
Y ×R, with

‖f‖2L2(Y×R) =
∑
λ

‖fλ‖2L2(R) ≤ δ−2
∑

‖ρλ‖L2(R) = ‖ρ‖2L2(Y×R).

It is quite routine to show that the proposed solution f does indeed
satisfy the equation Df = ρ, and is smooth. Indeed, it follows easily
from the construction that f is a weak solution of the equation, and
then we can use elliptic regularity to verify smoothness. Thus the proof
of the lemma is complete.

The separation of variables also gives more or less immediately that
f is the unique L2 solution to the equation, i.e. the only L2 solution to
the equation Df = 0 is f = 0. However, we will deduce this from a
rather stronger, quantitative, result. For T > 1 we consider the finite
tube Y × (−T, T ) and two ‘bands’:

B+
T = Y × (T − 1, T ), B−

T = Y × (−T,−T + 1).

Lemma 3.2 Let f be a solution of Df = 0 over the finite tube Y ×
(−T, T ). Then∫

Y×(−T,T )

|f |2 ≤ cδ

(∫
B+

T

|f |2 +
∫
B−

T

|f |2
)
,

where cδ = 1
1−e−2δ .

For the proof we again expand f as f =
∑

fλφλ, with functions fλ
on (−T, T ) which satisfy d

dtfλ + λfλ = 0. Hence fλ(t) can be written
fλ(t) = aλe

−λt, for a constant aλ. The point will be that the integral
over the band B+

T controls the fλ for λ < 0 and the integral over the
other band controls those for λ > 0. Consider first the eigenvalues λ > 0,
for which fλ decay for positive t. We have∫ T

−T

|fλ|2 dt = a2λ

∫ T

−T

e−2λt dt < a2λ

∫ ∞

−T

e−2λt dt = a2λ
e2λT

λ
.

Similarly
∫ −T+1

−T
|fλ|2 dt = a2λ

e2λT −e2λ(T−1)

λ , so∫ T

−T

|fλ|2 dt ≤ 1
1− e−2λ

∫ −T+1

−T

f2λ ≤ 1
1− e−2δ

∫ −T+1

−T

f2λ.



3.1 Separation of variables 43

We now write f = f+ + f−, where

f+ =
∑
λ>0

fλφλ, f− =
∑
λ<0

fλφλ.

Summing the previous inequality over the positive spectrum we get∫
Y×(−T,T )

|f+|2 ≤ cδ
∑
λ>0

∫ −T+1

−T

f2λ dt = cδ

∫
B−

T

|f+|2.

Similarly, for the negative spectrum, we have∫
Y×(−T,T )

|f−|2 ≤ 1
e2δ − 1

∫
B+

T

|f−|2.

Hence ∫
Y×(−T,T )

|f |2 =
∫
Y×(−T,T )

(|f+|2 + |f−|2)
≤ 1

1− e−2δ

(∫
B+

T

|f |2 +
∫
B−

T

|f |2
)

(since e2δ − 1 > 1− e−2δ), as required.

Note that Lemma 3.2 immediately gives that an L2 solution f to
Df = 0 defined over the infinite tube Y ×R is zero, since the integral
of |f |2 over the bands B+

T , B
−
T tends to zero as T tends to infinity, and

the constant cδ is independent of T .
Simple extensions of the proof of Lemma 3.2 give pointwise bounds

on all derivatives of the solution, decaying exponentially with T .

Lemma 3.3 For any integer l > 0 and positive s < 1 there is a constant
C such that for all T > 1 and solution f over the finite tube, as in
Lemma 3.2,

|∇(l)fy,t| ≤ Ce−δ(T−|t|)
(∫

B+
T

|f |2 +
∫
B−

T

|f |2
)

for all |t| ≤ T − s.

To prove this we observe first that by the usual elliptic estimates, applied
to a fixed band, it suffices to prove that for t ≤ T − s∫

Y×(t−s,t+s)

|f |2 ≤ 2e−δ(T−|t|)
(∫

B+
T

|f |2 +
∫
B−

T

|f |2
)
,

and this follows easily from the corresponding estimates for the fλ.
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One can obtain from Lemmas 3.1 and 3.2 corresponding results for
solutions over a half-line – just consider a sequence of finite tubes
– and we conclude that any L2 solution over a half-line must decay
exponentially. In particular, this applies to the solutions of Lemma 3.1,
outside the support of ρ. Similarly, the proof of Lemma 3.2 extends
easily to show that if Df = ρ over Y × (−T, T ) then

‖f‖2L2 ≤ δ−2‖ρ‖2 + cδ(‖f |2B+
T

+ ‖f |B−
T
‖2).

It is probably not necessary to point out that in the proofs above
we have only used very formal properties of the situation. Lemma 3.1
extends to a general operator over a tube Y × R of the form d

dt + L

where L is an elliptic operator over Y . In the proofs of Lemmas 3.1 and
3.2 we encounter the decomposition into the spans of the positive and
negative eigenspaces of L, which occurs for any self-adjoint operator and
in particular for ‘Dirac type’ operators over odd-dimensional manifolds
Y . The paradigm is the operator d

du over the circle, which we met in
the discussion of Appendix B to the previous Chapter. Then we get the
decomposition into ‘Hardy spaces’,

L2 = H+ ⊕H−,

of functions with only positive or negative terms in their Fourier series.
(Of course in this case there is a zero eigenvalue, so we have to make
a suitable convention for the constants.) In the general case we get a
decomposition over Y

f = f+ + f−,

where f+ extends to an L2 (and in fact exponentially decaying) solution
Df+ = 0 over Y ×R+ and f− to a decaying solution over Y ×R−. In
the paradigm above this becomes the Hardy space decomposition of a
function on the equator in the Riemann sphere into the boundary values
of holomorphic functions over the upper and lower hemispheres.

We now define a Hilbert space L2
1 to be the completion of the smooth,

compactly supported, gP -valued 1-forms over the cylinder in the norm

‖f‖2L2
1
= ‖Df‖2 + ‖f‖2,

where, as usual in this book, a norm symbol without further specifica-
tion denotes an L2 norm. (We also simplify our notation by omitting
explicit reference to the bundle whose sections we are considering.) The
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differential operator D trivially extends to give a bounded map

D : L2
1 → L2,

and the content of Lemma 3.1 is the assertion that this is invertible.
Thus we have

Proposition 3.4 The operator D : L2
1 → L2 is an isomorphism: there

is an inverse Q : L2 → L2
1 with

‖Qρ‖L2 ≤ δ−1‖ρ‖L2

for ρ ∈ L2.

We define Q on the smooth, compactly supported sections by the
formulae of Lemma 3.1. The uniform bound on the L2 norm of the
solution constructed there means that Q extends, by continuity, to the
completions and DQ = 1. The operator is a two-sided inverse since the
kernel of D in L2

1 is zero: any L2 solution of Df = 0 is smooth, by
elliptic regularity for the operator D, and hence is identically zero by
the discussion following Lemma 3.2.

3.1.1 Sobolev spaces on tubes

There are a number of definitions of the ‘Sobolev space’ L2
1 which turn

out to be equivalent. Since it is often useful to apply these different
definitions we shall review them now.
First, we could have equivalently defined L2

1 as the space of L2

bundle-valued 1-forms f over Y ×(−∞,∞) such that Df , defined distri-
butionally, is also in L2. The equivalence of these points of view is part of
the standard equivalence of ‘weak and strong’ definitions of derivatives.
It is obvious that the space defined by the first (‘strong’) definition is
contained in that defined by the second; what needs to be shown is that
any L2 section f with Df in L2 can be approximated in the given norm
by smooth, compactly supported, sections. The proof of this requires
two steps. In the first step we approximate any compactly supported f

by a sequence of smooth sections. This is achieved by a convolution and
is already part of the standard theory over compact manifolds. The other
step, in which we approximate a general element by compactly supported
ones, is more relevant to us here. The corresponding statement is valid
for any first order operator over a complete Riemannian manifold, where
the symbol of the operator is bounded uniformly relative to the metric,
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in the obvious sense. We introduce smooth functions βT which are
supported in the compact set [−(T + 1), T + 1] ⊂ R, equal to 1 over
[−(T − 1), (T − 1)], and with |∇βT | ≤ 1 everywhere. Thus βT is a
smoothing of the characteristic function of Y × [−T, T ].
Then

D(βT f) = βTDf + (∇βT ) ∗ f,
where ∗ denotes an algebraic operation. The first term on the right hand
side converges to Df in L2 and the second tends to 0, since its norm
is bounded by the integral of |f |2 over the two bands supporting ∇βT ,
which tends to zero with T if f is in L2.

Another equivalent definition of the space L2
1 uses the full covariant

derivative ∇, defined by the connection A, in place of the differential
operator D. We have a Weitzenbock formula:

D∗Df = ∇∗∇f +Rf,

where R is a curvature term, which is uniformly bounded over Y ×R.
Thus for smooth compactly supported sections f∫

Y×R

|Df |2 =
∫
Y×R

|∇f |2 + (Rf, f).

It follows that the norm given by the square root of

‖∇f‖2 + ‖f‖2

is equivalent to the L2
1 norm defined above, on the compactly supported

sections, and so the two norms define the same completion L2
1. Of course

the argument of the first part shows that we can get the same space by
taking the L2 sections f such that ∇f is in L2.

Another application of these ideas is to the formal adjoint operator.
We can define the formal adjoint operator D∗ as a map,

D∗ : L2
1 → L2.

There is a complete symmetry between D and D∗; indeed, since L is
self-adjoint on Y we have

D =
d

dt
+ L, D∗ = − d

dt
+ L

so the operators are interchanged by switching the co-ordinate t to −t
(which changes the orientation on the tube). The fact that we shall use
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often is that if f, g,Df and D∗g are all in L2 the integration by parts
formula

〈Df, g〉 = 〈f,D∗g〉 (3.1)

is valid. This follows immediately from the fact established above that
the compactly supported sections are dense in L2

1. Expressed more
directly, we apply the formula to the functions βT f and g and estimate
the error term as above. (We can weaken the hypothesis for Equation 3.1
to hold. All we need is that the pointwise inner product (f, g) is in L1

over the tube, so that ∫
Y×R

(∇βT ∗ f, g) → 0

as T → ∞. Then Equation 3.1 holds in the sense that if the integral
defining one term converges absolutely then so does that defining the
other, and the two integrals are equal.)

3.2 The index

We will now develop an index theory for operators over 4-manifolds with
tubular ends. Thus we wish to associate an ‘analytical index’ to suitable
‘topological data’. We begin with a convenient definition. Let X be a
4-manifold with tubular ends, as defined in Chapter 2.

Definition 3.5 An adapted bundle P over X is a smooth bundle with a
fixed flat connection over each end. Two adapted bundles are equivalent
if there is a bundle isomorphism between them which preserves the flat
structures over the ends.

Obviously we have a similar notion for a manifold with boundary. To
any adapted bundle and end Y × R+ of X we can associate a limit
connection – a flat connection A over Y – and we can naturally identify
the restriction of P to the end with the pull-back of a bundle P over Y .
Notice that, while any SU(2) bundle over X is trivial as a C∞ bundle,
this is not true of adapted bundles, even with the same limiting flat
connections. For example, it is easy to see that an adapted bundle over
X with all limits trivial is equivalent to an ordinary bundle P̂ over the
compactified space X̂ obtained by adding a point at infinity to each end
to make a cone singularity. Thus we have an extra invariant given by
the Chern number

〈c2(P̂), [X̂]〉,
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where [X̂] is the natural fundamental class of X̂. More generally it is
easy to see that the equivalence classes of adapted bundles with given
flat limits are put into one-to-one correspondence with the integers by
a relative Chern number. This can be defined by choosing an adapted
connection on P – i.e. a connection A which agrees with the given flat
structures over the ends. Then the integral

1
8π2

∫
X

Tr
(
F 2

A

)
is an invariant of P only (which reduces mod Z to the sum of the Chern–
Simons invariants of the limits).
With these preliminaries in place we proceed to set up our index

problem. Let P be an adapted bundle X with an adapted connection
A as above. For the moment we assume that each of the limiting
flat connections is acyclic. We define the Sobolev space L2

1 to be the
completion of the smooth compactly supported forms under the norm(‖∇Af‖2L2 + ‖f‖2L2 ]

)1/2
.

The deformation operator D = DA extends to a Hilbert space com-
pletion to give a bounded operator D : L2

1 → L2 just as before (and
the same remarks on the various different definitions of the space L2

1

hold good). We also have a formal adjoint operator D∗, and the
integration-by-parts Equation 3.1 is valid for sections of the appropriate
kind. Notice that the domains of D and D∗ are quite distinct in general.
In a more detailed notation:

D∗ : L2
1(Ω

0
X ⊕ Ω+

X)(gP )) → L2(Ω1
X(gP )),

D : L2
1(Ω

1
X)(gP ) → L2((Ω0

X ⊕ Ω+
X)(gP )).

(We shall not usually be so explicit in our choice of notation.)
Now it need not be true that the operator D is invertible, as happened

in the case of tubes themselves. Instead, as we shall see next, the
tube theory shows that D is a Fredholm operator. This is just what
we would have, as a matter of routine, over a compact base manifold.
For compact manifolds one obtains this Fredholm property by piecing
together a finite number of inverses defined in local charts, in which the
operator is modelled on a constant co-efficient operator over Euclidean
space. In our case the proof is much the same except that we have two
kinds of models – the familiar Euclidean ones, in a system of charts
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covering a compact interior portion of the manifold, and models over
the ends in which we use the tube theory.

Proposition 3.6 For any adapted connection A over a 4-manifold X

with tubular ends, as above, which has acyclic limits over each end, the
operator D : L2

1 → L2 is Fredholm. That is

(i) kerD ⊂ L2
1 = kerD ∩ L2 is finite-dimensional,

(ii) the image of D is a closed subspace of finite codimension in L2.

Moreover, the cokernel L2/ ImD is isomorphic to the kernel of D∗ in
L2
1.

This is the extension of the basic global theorem for elliptic operators
from the compact case to manifolds with tubular ends. For the proof we
can choose from a number of standard approaches, all of which involve
much the same ingredients.
To prove (i) we consider first the operator D over a half-tube Y ×

(0,∞), of the kind occurring as an end ofX. Let B be the band Y ×(0, 1)
and recall that Lemma 3.2 gives an inequality∫

Y×(0,∞)

|f |2 ≤ cδ

∫
B

|f |2

for any solution f of Df = 0 over the half-tube. In particular the L2

norm of a solution f of Df = 0 over all of X is controlled by that over
a fixed compact subset X0 of X.
Now we show that the kernel of D on P over X has finite dimension

by showing that the unit ball, in the L2 norm, of the kernel is compact.
Let fi be a sequence of sections over X with ‖fi‖L2 ≤ 1 and Dfi = 0.
By the standard theory for the elliptic operator D over compact sets
we may (taking a subsequence) suppose that the fi converge in L2 over
compact subsets to a limit f∞. The limit is in L2, with ‖f∞‖L2 ≤ 1,
and satisfies Df∞ = 0. If we apply Lemma 3.2 to the differences fi−f∞
we see that fi converges in L2 over each tubular end and hence over X
as required.

We now turn to the proof of the second assertion of Proposition 3.6,
using the ‘parametrix’ method. Again, let Y × (0,∞) be an end of X
and let Q be the inverse operator given by Proposition 3.4. For any
section ρ over X we define Q̂(ρ) by restricting ρ to Y × (0,∞) ⊂ X,
applying Q, and restricting again to Y × (0,∞) ⊂ Y ×R. Thus Q̂ is a
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bounded operator, with respect to L2 norms, and

DQ̂(ρ) = ρ on Y × (0,∞).

Now cover X0 by a finite number of small Euclidean patches. Appeal-
ing to standard, local, elliptic theory we can choose these so that D has
a right inverse over each patch; so combining with the inverses over the
finite number of ends of X we arrive at a situation where we have a cover
X =

⋃n
i=1 Ui such that each intersection Ui ∩ Uj is pre-compact in X,

and L2-bounded operators Q̂i such that DQ̂iρ = 0 on a neighbourhood
of the closure of Ui. Let βi be a partition of unity subordinate to this
cover and define an operator P : L2 → L2 by

P (ρ) =
n∑

i=1

βiQ̂i(ρ).

Note that P (ρ) is smooth, if ρ is, unlike Q̂i(ρ). Also, DP (ρ) − ρ is
supported on the overlaps Ui ∩ Uj , for i &= j. On a given element, U1

say, of the cover we write

P (ρ) = Q̂1(ρ)+(β1−1)Q̂1(ρ)+
n∑

i=2

βiQ̂i(ρ) = Q̂1(ρ)+
n∑

i=2

βi(Q̂i−Q̂1)(ρ),

using the fact that
∑

βi = 1. Thus, on U1, we have

D P (ρ) = ρ+D
(∑

βifi

)
,

where fi = (Q̂i − Q̂1)(ρ), so Dfi = 0. Note that, by the standard local
elliptic estimates, all derivatives of fi over the support of βi are bounded
by fixed multiples of the L2 norm of fi, and hence by multiples of the
L2 norm of ρ, since Q̂1 and Q̂i are bounded in L2 operator norm. So if
we write

DP (ρ)− ρ = S(ρ),

all derivatives of S(ρ) over U1 are bounded by multiples of ‖ρ‖L2 . Clearly
the same is true for all the other elements of the cover. Since S(ρ) is
supported in a fixed compact set the Ascoli–Arzelà theorem implies that
S is a compact operator from L2 to L2. A standard result of functional
analysis asserts then that the image of 1 + S is closed and of finite
codimension in L2. It follows trivially from the factorisation 1+S = DP

that the same is true of S, so the proof of (ii) is complete.

Finally, since ImD is closed the cokernel L2/ ImD is isomorphic to
the L2-orthogonal complement kerD⊥. If g is orthogonal to the image of
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D then it follows immediately from the definition of the formal adjoint
that D∗(g) = 0. Conversely, if g is in L2 and D∗g = 0 then

〈Df, g〉 = 〈f,D∗g〉 = 0,

if f,Df ∈ L2, by Equation 3.1. Thus g is in the orthogonal complement
of the image of D and we have shown that (ImD)⊥ = kerD∗ ∩ L2.

One should notice here one difference between our set-up and the usual
compact case: the failure of a ‘Rellich lemma’ in our function spaces.
That is, the embedding L2

1 → L2 is not compact. To see this one need
only consider the translates of a compactly supported section over the
tube. Of course, in the usual case this Rellich lemma gives immediately
the finite dimensionality of kerD.

We now associate to the adapted bundle with connection the usual
Fredholm index of the operator DA

ind(P) = dimkerD − dim cokerD = dimkerD − dimkerD∗.

This depends at the outset on the particular connection A chosen, and
on the metric on X. However, standard elliptic theory tells us that
this index is unchanged by continuous variations in the data through
Fredholm operators, and this immediately shows that the index depends
only on the adapted bundle P over the oriented 4-manifold X. We
handle variations in the connection and of the metric over compact sets
by an argument just like that in the case of closed manifolds. Then
we handle variations in the metric on Y by extending Section 2.1 in
an obvious way to families of operators d

dt + Lz, depending on a real
parameter z. If Lz is always invertible these give continuous families of
invertible operators over the tube.

3.2.1 Remarks on other operators

We have now achieved our main goal of associating an analytical index
to an adapted bundle. Before developing the properties of this index in
the next Section we want to interpose two remarks which will be needed
in Chapter 4. First, the arguments in the proof of Proposition 3.6, while
they have been given for the elliptic operator DA, apply more generally.
Consider in particular the full covariant derivative

dA : Ω0
X(gP ) → Ω1

X(gP ),

and its formal adjoint d∗A. We claim that the image of the extension dA :
L2
1 → L2 is closed in L2. In this 4-dimensional case we can deduce the
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result from Proposition 3.6, since the image of dA is the image of L2
1(Ω

0)
under DA, the summand L2

1(Ω
0) is obviously L2

1 closed in L2
1(Ω

0 ⊕Ω+)
and Fredholm operators preserve closedness. On the other hand one
can give a direct proof that the image of dA is closed, permuting the
ingredients used in the proof of Proposition 3.6 but without passing
through DA. This is obviously desirable – for example when considering
manifolds of other dimensions. First, it is clear that the kernel of dA
on sections is zero, since the connection is assumed to be irreducible.
Then the closedness of Im dA will follow easily (by considering Cauchy
sequences) from a Poincaré inequality

‖f‖L2 ≤ C‖dAf‖L2 .

The reader may find it a useful exercise to establish such an inequality,
using separation of variables over the tubular ends and standard local
elliptic theory in the interior.
As a corollary of the closedness of Im dA we obtain

Corollary 3.7 If A is an adapted connection over X with acyclic limits
there is an L2-orthogonal decomposition

L2(Ω1
X(gP )) = (Im dA : L2

1 → L2)⊕ ker d∗A.

(Yet another approach to this would be to develop the Fredholm theory
of the Laplacian ∆A.)

The other remark we wish to place here is that the Fredholm theory
applies to connections which are not precisely flat over the ends. Suppose
as above that P is an adapted bundle andA an adapted connection. Let
A′ = A+ a be another connection on P and suppose that a lies in C0,
the space of continuous sections with |a| tending to zero at infinity in
X. Then DA′ maps L2

1 to L2, where the spaces are defined using A as
before, and we claim that it is a Fredholm operator. Suppose first that
|a| is small over the end Y × (0,∞) in X, compared with the constant
δ which depends only on the flat limit over Y . We consider an operator
D′ = D + a′ over the full tube Y × R, with a′ defined by extending
the restriction of a by zero. If |a′| is small this is a small perturbation
of the operator D, in the operator norm from L2

1 to L2, and so D′ is
invertible. Similarly, by the remarks after the proof of Lemma 3.2 above,
we have for any solution f of the equation D′f = 0 over the half-tube,
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i.e. Df = ρ = −a′f ,
‖f‖L2 ≤ const. (‖f |B ‖L2 + c

1/2
δ ‖ρ‖L2)

≤ const. (‖f |B ‖+ (c1/2δ sup |a′|)‖f‖).
So if sup |a′| is sufficiently small we get a bound on the L2 norm of

f from that of the restriction of f to B. Then, starting with these two
ingredients, the proof of Proposition 3.6 shows that DA′ is Fredholm.

Finally if a is in C0 we can always reduce to the situation considered
above by redefining the parameter on the end of X – i.e. by considering
the manifold to be a union of a compact piece and ends of the form
Y × (T,∞) for large T , in the original parametrisation.

In Section 3.3 below we will see that a Sobolev embedding L2
1 ⊂ L4

holds in this situation. It follows then from the argument above that
DA′ is Fredholm if a = a1 + a2 where a1 ∈ C0 and a2 ∈ L4.

3.3 The addition property

The index invariant defined in the previous Section has a simple formal
property which is basic to Floer’s theory. Let A be an adapted con-
nection (with acyclic limits) on a bundle P over a 4-manifold X with
tubular ends, as considered above, and suppose that X contains two
boundary components Y, Y , where Y is isometric to Y with the reversed
orientation. More precisely, X has an end Y × (0,∞) and another end
Y × (0,∞). Suppose that the limiting flat connections appearing over
Y and Y are the same. We fix an isometry between Y and Y and
consider the family of Riemannian 4-manifolds X�(T ), depending on a
real parameter T > 0, obtained by identifying the two ends of X. For
fixed T we first delete the infinite portions (Y × [2T,∞), Y × [2T,∞)
from the two ends, and then identify (y, t) ∈ Y × (0, T ) ⊂ X with
(y, 2T − t) ∈ Y × (0, T ) ⊂ X. This gives a Riemannian manifold X�(T ),
with two fewer ends than X. Clearly these are all diffeomorphic for
different values of T . We will denote the manifolds by X� when the T
dependence is not important.

Suppose that the flat limits ofA over Y and Y are the same, and fix an
identification between these flat bundles. There is then an obvious way of
constructing an adapted bundle P � over X�(T ), using the flat structures
to identify the bundles over the ends, and the adapted connection A

gives a natural connection A� on P �. We know that the index of the
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operator DA� , which we denote by ind(P �), over X� is independent of
T , and the result we wish to prove in this section is the simple formula:

Proposition 3.8 If X and X� are 4-manifolds as above, and P � is
obtained from an adapted bundle P over X with acyclic limits then

ind(P �) = ind(P ).

The most important case of this for us will be when X is disconnected,
say a disjoint union of two components X = X1 ∪X2, and the two ends
which are identified are contained in different components of X. Then
X�(T ) is connected. The procedure is a generalisation of the connected
sum operation on manifolds (which occurs when Y is a 3-sphere). A
connection A over X is a pair of connections A1, A2 on bundles P1, P2
over X1, X2. The index of the operator DA over X is trivially the sum
of the indices for the two components, so we obtain the additivity of the
index with respect to generalised connected sums:

Proposition 3.9 In this situation

ind(P �) = ind(P1) + ind(P2).

Although Proposition 3.8 is more general than Proposition 3.9, we will
give the proof of this second result, since the notation is slightly simpler
in this case, while the proof is identical in all essentials. The proof goes
by analysing the operator DA� over X�(T ) for large values of T , and
comparing its kernel and cokernel with those for the operators over the
constituent manifolds. For S ≤ 2T let Xi(S) denote the open set in Xi

obtained by deleting the portion Y × [S,∞) from the end. Then Xi(S)
can also be regarded as an open set in X�(T ), in an obvious way, and
similarly functions etc. over Xi which are supported in Xi(S) can be
regarded as functions onX�(T ) (extending by zero). To simplify notation
we write Di for DAi

and D� for DA� . The proof involves four steps; for
the first three steps we suppose that the operators Di over Xi have zero
cokernel, so admit bounded right inverses

Qi : L2 → L2
1

with ‖Qi(ρ)‖L2 ≤ C‖ρ‖L2 , say, and DiQi = 1.

Step 1 In the first step we construct, for large T , an injection

α : kerD� → kerDA1 ⊕ kerDA2 .
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In fact we construct a map α which is close to being an isometric
embedding, with respect to the metrics on the kernels induced by the L2

norms. To do this we fix functions φ1, φ2 on X�(T ) such that φ21+φ22 = 1,
with φi supported in Xi(3T/2) and such that ‖∇φi‖L∞ = ε(T ), where
ε(T ) → 0 as T → ∞. It is easy to write down such functions, indeed
we can obviously take ε(T ) = const. T−1. We then put, for f ∈ kerD�,
α(f) = (f1, f2) where

fi = φif −QiDi(φif).

Here we are regarding φif as being defined over Xi in the obvious way,
using the fact that φi is supported in Xi(2T ). The section fi lies in the
kernel of Di, since Qi is a right inverse. It is also a small perturbation
of φif in that we have

‖fi − φif‖ = ‖QiDi(φif)‖
≤ C‖Di(φif)‖
≤ C‖|∇φi|f‖
≤ Cε(T )‖f‖.

Here we have used the fact that D�f = 0, and that Di can be identified
with D� over the support of ∇φi. To complete the first step we now
observe that, for any f on X�(T ),

‖φ1f‖2 + ‖φ2f‖2 = ‖f‖2,
since φ21 + φ22 = 1. Otherwise said, the map f %→ (φ1f, φ2f) defines an
isometric embedding of L2

X�(T ) in L2
X1 ⊕ L2

X2 . This means that α is
approximately an isometry for large T : precisely,

|‖α(f)‖ − ‖f‖| = |‖α(f)‖ − ‖(φ1f, φ2f)‖|
≤ ‖(f1 − φ1f, f2 − φ2f)‖
≤ √

2Cε(T )‖f‖,
so α is injective once ε(T ) < (1/

√
2C).

Step 2 For the second step we show that, under the same assumption of
the existence of the right inverses Qi, the operator D� is also surjective
for large T . To do this it suffices to construct a map P : L2 → L2

1 over
X�(T ) such that

‖D�P (ρ)− ρ‖ ≤ k‖ρ‖,
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where k < 1. For then the operator PD� − 1 is invertible and Q =
P (PD� − 1)−1 is a right inverse for D�. We construct P by splicing
together the operators Qi over the individual manifolds. Write βi = φ2i ,
where φi are the cut-off functions above. Thus β1 + β2 = 1. Note that,
since 0 ≤ φi ≤ 1, the gradient of βi is bounded by 2ε(T ). We now follow
the procedure used in the proof of (ii) in Proposition 3.6 – we define

P (ρ) = β1Q1(ρ1) + β2Q2(ρ2)

over X�(T ), where ρi is the restriction of ρ to Xi(2T ) ⊂ X�(T ), extended
by zero over the remainder of Xi. Similarly, βiQi(ρi) is regarded as a
section over X�(T ), extending by zero outside the support of βi. Then

D�P (ρ) = (β1D�Q1(ρ1) + β2D
�Q2(ρ2))

+((∇β1) ∗Q1(ρ1) + (∇β2) ∗Q2(ρ2)).

Here, as before, we use ∗ to denote a certain algebraic operation
(essentially the symbol of the operator). Now βiD

�Qi(ρi) = βiρi = βiρ,
since we can identify D� with Di and ρi with ρ over the support of βi.
So the first two terms in the expression above yield ρ and the remainder
has norm bounded by

2∑
i=1

‖(∇βi) ∗Qi(ρi)‖ ≤ 4Cε(T )‖ρ‖.

So ‖D�Pρ−ρ‖ ≤ 4Cε(T )‖ρ‖, and we achieve the desired ‘approximate
inverse’ by taking T so large that ε(T ) ≤ 1/4C. This completes the
second step in the proof.

Step 3 In the third step we construct, under the same assumption of
the surjectivity of Di, a linear injection α′ : kerD1 ⊕ kerD2 → kerD�

for large enough T . For this we first return to the construction of the
operator Q above, and note that it admits an L2 bound:

‖Q(ρ)‖ ≤ 3C‖ρ‖,
say, for all large enough values of T . For the operator norm of P is
clearly at most 2C, and we can make the norm of (1−D�Q)−1 as close
to 1 as we please. With this observation the map α′ can be constructed
in a similar fashion to the map α in the first step. For elements fi of
the kernels of the Di over Xi we set α′(f1, f2) = g −QD�g, where

g = β1f1 + β2f2.
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Here we have identified appropriate sections over Xi and X, in the
way which will now be familiar to the reader. Just as in the first step,
we see that the L2 norm of the ‘correction term’ QD�g is bounded by an
arbitrarily small multiple of ‖(f1, f2)‖. It remains only to show that the
L2 norm of g is close to that of (f1, f2) for large T . Let fσ, σ = 1, . . . , d,
be an orthonormal basis for the fixed space kerD1. Then F =

∑ |fσ|2
is an integrable function of X1. For any η > 0 we can thus choose T0 so
that, in the end Y × [0,∞) ⊂ X1,∫

(T0/2,∞)

F ≤ η.

For T ≥ T0 then, ∫
(T/2,∞)

|f1|2 ≤ η‖f1‖2,

for any f1 ∈ kerD1. We can suppose the same inequality over X2 holds
and then, since βi = 1 on the segment Y × (0, T/2) of the tube in Xi,
we clearly have

‖β1f1 + β2f2‖2 ≥ (1− η)‖(f1, f2)‖2,
so α′ is almost an isometry.

These first three steps complete the proof of the ‘gluing formula’
(Proposition 3.9) in the case when the Di are surjective. For in this case
we have, by step 2, ind(Xi, Pi, Ai) = dimkerDi, ind(P �) = dimkerD�

for large T . By step 1, dimkerD� ≤ dimkerD1 + dimkerD2, and step
3 gives the reverse inequality, so dimkerD� = dimkerD1 + dimkerD2

as required. (It follows that α and α′ are both isomorphisms, for large
T . It is easy to see also that they are approximately inverse maps.)

Step 4 In the final step we remove the assumption that the operators
Di are surjective. We do this by modifying the operators. We can choose
maps

Ui : Rni → (Ω0 ⊕ Ω+
Xi

)(gP i),

with images supported in the interior of the Xi, and such that

D̃i ≡ Di ⊕ Ui : Ω1 ⊕Rni → (Ω0 ⊕ Ω+)

is surjective. The index of D̃i is ind(Pi) (consider the homotopy Di ⊕
sUi, 0 ≤ s ≤ 1, through Fredholm operators). We can form an obvious
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operator D̃� = D� ⊕ U1 ⊕ U2 over X�(T ), and the proof above goes over
without any change to show that ind D̃� = ind D̃1 + ind D̃2 so

indD� = ind D̃� − (n1 + n2)

= (ind D̃1 − n1) + (ind D̃2 − n2)

= indD1 + indD2,

as required.

3.3.1 Weighted spaces

We will now extend the theory to include adapted bundles over 4-
manifolds whose limits are not acyclic. Thus, going back to three
dimensions, we have to consider a flat connection A over a 3-manifold
Y for which 0 appears in the spectrum {λ} of the operator LA. We now
let δ be the minimum absolute value of a non-zero eigenvalue of L.
Over the tube Y ×R it is not now true that D = d

dt + L defines an
invertible operator, or even a Fredholm operator, from L2

1 to L2. The
trouble comes from the component

d

dt
: L2

1 → L2

in the spectral decomposition of D, corresponding to the zero eigenspace
of LA. It is easy to see that d

dt is not a Fredholm operator from L2
1(R) to

L2(R). For we can take a sequence of functions gn on R, with gn(t) = 1
for t ∈ (−n, n), supported in (−(n+ 1), (n+ 1)), with ‖ d

dtgn‖ ≤ const.
and ‖gn‖ → ∞. If d

dt were Fredholm this would imply that it had a
non-trivial kernel in L2

1, which is clearly not the case (the constants are
not in L2).

To recover a Fredholm theory we use weighted function spaces. For
any α we define the weighted L2 norm on the sections of (Λ0

Y ⊕Λ1
Y )(gP )

over Y ×R by

‖f‖2L2,α =
∫
Y×R

e2αt|f |2.

That is, ‖f‖L2,α = ‖eαtf‖L2 . Similarly, we define a weighted L2
1 norm

by

‖f‖L2,α
1

= ‖eαtf‖L2
1
.

(Note that this is equivalent to the norm ‖eαt∇f‖+ ‖eαtf‖.)
We then define Hilbert spaces L2,α, L2,α

1 to be the completions of
the smooth, compactly supported, sections in these norms. (The same
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argument as before shows that it is equivalent to define L2,α
1 as the

sections f ∈ L2,α with Df ∈ L2,α.) Roughly speaking, for α > 0 these
spaces admit functions which decay exponentially as t → ∞ (and grow
exponentially as t → −∞), and for α < 0 we get exponential decay at
+∞ and growth at −∞.

Now the deformation operator over Y × R extends to a bounded
operator

D = DA =
d

dt
+ LA : L2,α

1 → L2,α.

We claim that this operator is invertible for any weight α which does
not lie in the spectrum of LA. In particular this is true for non-zero α

with |α| < δ. This follows easily from the previous result for the acyclic
case. We only have to observe that multiplication by eαt gives isometries
from L2,α

1 to L2
1 and L2,α to L2. Composing with these isometries we

see that D : L2,α
1 → L2,α is equivalent, as a map of Hilbert spaces, to

eαtDe−αt : L2
1 → L2.

Now

eαtDe−αt = eαt
(
d

dt
+ L

)
e−αt

=
d

dt
+ (L− α).

That is, the use of the weighted spaces is effectively the same as replacing
L by L−α. Now the previous results apply as well to L−α as to L, so
long as it is an invertible operator over Y , i.e. so long as α is not in the
spectrum of L, and we deduce that D is then invertible on the weighted
spaces, just as before.

We can now go on to set up the index theory over a general 4-manifold
X with tubular ends. We have to choose a weight αi for each end
Yi × (0,∞) of X. Fix a positive function W on X which is equal to eαit

on the ith end and define norms:

‖f‖L2,α = ‖Wf‖L2 , ‖f‖L2,α
1

= ‖Wf‖L2
1

with completions L2,α, L
2,α
1 . Different choices of W , with the same

weight vector α = (α1, α2, . . .), give equivalent norms.

The argument used before goes through without change to show that
D : L2,α

1 → L2,α is Fredholm so long as αi does not lie in the spectrum
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of the operator L over Yi. We thus have an index:

ind(P, α) = indDA : L2,α
1 → L2,α,

for any compatible connection A. It follows from the remarks in Section
2.1 that this index does not change if α is varied in such a way that αi

avoids the spectrum of L over Yi. Conversely, as we shall see below, the
index will change if αi is moved across an eigenvalue.

We begin by considering the gluing problem. Suppose we are in the
situation of Proposition 3.8, with a 4-manifold X which contains Y =
Y1 and Y = Y2 among its ends, and we have an adapted connection
A on a bundle P which agrees on these two cross-sections. Let α =
(α1, α2, . . .) be a vector of weights, and consider D = DA : L2,α

1 →
L2,α. This is conjugate, by the function W , to an operator of the form
D + ν : L2

1 → L2, where ν is an algebraic operator, represented as
multiplication by αi in our description over the ith end. The operator
D is represented as d

dt1
+ LY over the first end and as d

dt2
+ LY over

the second, where now we write t1, t2 for the ‘time’ co-ordinates over the
different ends. When we identify the ends to form X� we reverse the
time co-ordinates, so d

dt1
corresponds to − d

dt2
, and this marries up with

the natural identification LY = −LY . (The apparent overall difference
in sign between the operators is absorbed by the orientation conventions
we have used in our representation of the operator over a tube.) Thus,
in our gluing operation, the operator

d

dt1
+ LY + α1

over the first end can naturally be identified with

d

dt2
+ LY + α2

over the second if

α1 = −α2.
In this case the arguments we used before go through without any

change to show that

ind(P �, (α3, . . . , αN )) = ind(P, (α1,−α1, α3, . . . , αN )). (3.2)

We now consider the dependence of the index on the weights. To
simplify notation we consider a situation where there is only one end
and we compare weights α+, α−, where α+ is slightly larger than zero
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(i.e. below the positive spectrum of LY ) and α− is slightly smaller than
zero. So we have two indices

ind+(P ) = ind(P, α+), ind−(P ) = ind(P, α−).

Proposition 3.10 In this situation the index difference is

ind+(P )− ind−(P ) = −dimkerLY .

(Of course, in the notation of Chapter 2, the dimension of the kernel of
LY is the sum of the dimensions of the cohomology groups H0

ρ , H
1
ρ .)

To establish this formula we first use the gluing Equation 3.2 to reduce
to the tube Y ×R. We consider the deformation operator D0 defined
by the flat connection over Y ×R, acting on spaces constructed from a
weight function eσ, with

σ(t) = αt for t ) 0,

= −αt for t * 0,

where α is a small positive number.
We apply Equation 3.2 to the disjoint union X ∪ (Y ×R). Gluing the

tube to X, with the given weights, changes one index problem to the
other one. So for a bundle P over X the gluing result gives

ind+(P )− ind−(P ) = index D0.

To compute the index of D0 on the spaces weighted by eσ we use the
same argument as before to see that this is the same as the index of

D′
0 ≡ eσ(t)D0e

−σ(t) =
d

dt
+ (L− σ′(t)) : L2

1 → L2.

Now the operation of multiplication by σ′(t) commutes with L, so we
can decompose D′

0 according to the spectrum of L

D′
0

(∑
λ

fλφλ

)
=
∑
λ

((
d

dt
+ λ− σ′(t)

)
fλ

)
φλ.

What we require, then, is the following simple result on ordinary
differential equations.

Lemma 3.11 Let τ be a smooth, real-valued function on R, with τ(t) =
τ+ for t ) 0 and τ(t) = τ− for t * 0, where τ+, τ− are non-zero.
Define K+,K− to be the space of L2 solutions to the equations(

d

dt
+ τ(t)

)
f = 0,

(
− d

dt
+ τ(t)

)
f = 0
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respectively. Then

• if τ+, and τ− have the same sign then K+ and K− are both zero,
• if τ+ > 0 and τ− < 0 then K+ = R and K− = 0,
• if τ+ < 0 and τ− > 0 then K+ = 0 and K− = R.

The reader will have no difficulty in supplying a proof of this Lemma.
We apply the results to the co-efficients fλ(t), with τ = λ−σ′, to deduce
that, for an element f of the kernel of D′

0, the co-efficients fλ vanish
for all λ; so the kernel is trivial. Similarly we see the adjoint of D′

0

has a kernel isomorphic to kerLY , so the index of D′
0 is −dimkerL as

required.

To round off this discussion of the index theory we consider two special
cases. One case is when the ends of the 4-manifold X have spheres
for cross-sections, so there is a smooth compactification X̂. If P is an
adapted bundle with trivial limit over the ends it extends naturally to a
bundle P̂ over X̂. The other special case is when the bundle P over the
4-manifold is trivial; so we may reduce to the operator D = d∗ ⊕ d+ on
ordinary forms. We begin with the model case of the ‘flask’ manifoldW ,
obtained by adding a punctured 4-sphere to a tube S3 ×R+. Let ind+W ,
ind−W denote the indices for the operator D coupled to the trivial bundle
(of rank 3), with small positive and negative weights respectively. We
have

Lemma 3.12 The indices for W are ind+W = −3, ind−W = 0

Observe thatW admits an orientation reversing isometry and the double
WLW is diffeomorphic to S4. We know that the index of the operator
D over S4 is −3 so the gluing rule gives ind+W + ind−W = −3. On the
other hand by Proposition 8,

ind+W = ind−W − 3

and we are done.
We have then

Corollary 3.13 If the ends of X have the form S3 ×R and the limits
of P are trivial then

ind+(P) = ind(P̂) = 8c2(P̂) − 3(1− b1(X) + b+(X)).

To prove this we cap off each end with a copy of the flask W , and use
the gluing relation.
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We now turn to the second special situation, when the bundle is trivial
but we allow any tubular ends. It will come as no surprise that the
index in this situation can be related to cohomology via a version of
the Hodge theory. We can do more and look at the actual kernels of
the operators D and D∗ on the weighted spaces. We let ker+ denote
the kernel on the spaces with a small positive weight (i.e. the decaying
solutions) and ker− denote that with a negative weight (i.e. allowing
bounded solutions). Here one should remember that the kernel of the
formal adjoint D∗ considered on the spaces with negative weights is
isomorphic to the cokernel of D considered on the spaces with positive
weights, and vice versa. We consider first a simple situation when X

has one end which has a homology 3-sphere Y as cross-section. Then X

behaves like a closed manifold as far as cohomology goes (more precisely,
the compactification X̂ is a homology manifold), in particular the cup
product defines a non-degenerate quadratic form on the real cohomology
group H2(X).

Proposition 3.14 When the cross-section of the end is a homology
3-sphere we have

ker+D = ker−D ∼= H1(X),

and

ker+D∗ = H+(X), ker−D∗ = H0(X)⊕H+(X),

where H+(X) ⊂ H2(X) is a maximal positive subspace for the cup
product (intersection) form.

Notice here that the adjoint of D on the positively weighted spaces is
the operator D∗ on the negatively weighted spaces, so the index of D
on the positively weighted spaces is b1 − (1 + b+), in agreement with
Corollary 3.13.
The proof is a straightforward exercise, most of which we leave to the

reader. To define a map from ker+D to H1(X), for example, one needs
to verify that if α is an L2

1 1-form over X with d+α = 0 then dα = 0.
This follows by considering integrals∫

X

d(βTα ∧ dα)

where βT are cut-off functions as in Subsection 2.1.1.
The formulae for a general manifold X, with boundary Y , are slightly

more complicated. We now have absolute and relative cohomology
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groups H∗(X), H∗(X,Y ), related by Poincaré duality and to H∗(Y )
by the usual long exact sequence. There is a quadratic form on the
image, I say, of the map H2(X,Y ) → H2(X) and, even though this
may be degenerate, the notion of a maximal positive subspace makes
sense.

Proposition 3.15

• ker+D ∼= ImH1(X,Y ) → H1(X),
• ker−D ∼= H1(X),
• ker+D∗ ∼= H+(X),
• ker−D∗ ∼= H0(X)⊕H+(X),

where H+(X) ⊂ I is a maximal positive subspace for the cup product
form.

Again, we leave the proof as an exercise for the reader.

3.3.2 Floer’s grading function; relation with the Atiyah,

Patodi, Singer theory

The discussion of the previous Subsection has shown that to any adapted
SU(2) bundle P over a 4-manifold X with tubular ends, which is acyclic
over each end, we can associate an integer invariant ind(P). If the limits
are not acyclic we can associate a pair of invariants ind+(P), ind−(P)
whose difference is the dimension of the kernel of the L operators over
the ends. Suppose that P′ is another adapted bundle over X with the
same flat limits as P. We have seen that P,P′ need not be isomorphic as
adapted bundles and the distinction between them is precisely measured
by the difference in the relative Chern classes

c2(P′)− c2(P) ∈ Z.

Proposition 3.16 If the limits are acyclic then

ind(P′)− ind(P) = 8(c2(P′)− c2(P)),

and in general ind±(P′)− ind±(P) = 8(c2(P′)− c2(P)).

This is a rather routine consequence of the index formula for closed
manifolds, using an excision argument. In our present context it is
natural to use the gluing Equation 3.2. We puncture X and modify
the metric to make a new manifold X0 with one extra end, having a 3-
sphere as cross-section. Then we can recover X by gluing X0 to another
manifold, the flask W of Lemma 3.12, in the obvious way. It is clear
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that we can obtain P and P′ by gluing a bundle P0 over X0 to suitable
adapted bundles P1,P′

1 over W . Of course the flat limit of the bundles
over the end of W is necessarily trivial and hence not acyclic. However,
we can apply our gluing relation Equation 3.2. The Chern class is plainly
additive,

c2(P) = c2(P0) + c2(P1),

so, using the gluing relation for the index, it suffices to show that, over
X1,

ind+(P1)− ind+(P′
1) = 8c2(P1)− c2(P′

1)).

But, by Corollary 3.13, the index with positive weights ind+, in the
case when the ends are spheres, agrees with the usual index of the
operator we obtain by compactifying the manifold. Then the result
follows immediately from the index Formula 2.5 for the base manifold
S4.

Consider in particular the case when the base manifold is a tube Y ×R.
For any pair of acyclic flat connections ρ, ρ′ over Y we can define a
relative index

δY (ρ, ρ′) ∈ Z/8

as follows. We choose a bundle P over the tube with limits ρ at +∞
and ρ′ at −∞ and we set

δY (ρ, ρ′) = ind(P) mod 8. (3.3)

By Proposition 3.16 this definition does not depend on the bundle P
used. This relative index is a crucial ingredient in Floer’s theory – we
shall see that it will induce the grading in the Floer homology groups.
In the case of SU(2) bundles, which we are considering here, it can
be refined slightly to a (Z/8)-grading function δY on the acyclic flat
connections (as we mentioned at the end of Chapter 2). To define this
we use the trivial flat connection θ as a reference point. For an acyclic
connection ρ we choose a bundle P over the tube with flat limits ρ at
+∞ and θ at −∞. Then we put

δY (ρ) = ind−(P) mod 8. (3.4)

Our addition relation for the index now gives

δY (ρ, ρ′) = δY (ρ)− δY (ρ′).

More generally we have
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Proposition 3.17 Let X be a 4-manifold with one tubular end Y ×R+,
where Y is a homology 3-sphere, and let P be an adapted SU(2) bundle
over X with acyclic limit ρ. Then

ind(P) = δY (ρ) + 3(1− b1(X) + b+(X)) mod 8.

This is a straightforward consequence of the gluing relation and the
Hodge theory (Proposition 3.14).

The ideas we have been discussing are closely related to the index
theory for manifolds with boundary developed by Atiyah, Patodi and
Singer in their series of papers beginning with [4]. In particular there are
two concepts from this theory – the eta-invariant and the spectral flow of
a family – which it is natural to mention here, although they will not be
used later in this book. We begin with spectral flow. Observe first that
throughout this Chapter there was no need to restrict to connections
with flat limits. We could more generally consider any connection on a
bundle over a 4-manifold with tubular ends which is equal to a pull-back
π∗(A) of a connection A from Y over an end Y × R+. We call the
connection A acyclic if the operator LA over Y is invertible and we define
an index ind(P ) in the acyclic case and weighted indices ind± in the
general case. Thus we can extend our grading function δY to the open set
U ⊂ BP of all acyclic connections. The picture that emerges is that U is
partitioned by δ into eight pieces U0, . . . , U7, separated by codimension-1
‘walls’ of non-acyclic connections. A typical one-parameter family of
connections As, s ∈ [0, 1], will meet the walls in isolated points – the
points where Ls ≡ LAs

acquires a zero eigenvalue. We can think of the
spectrum of this family as a 1-dimensional subset of [0, 1] × R. The
spectral flow of the family is defined to be the algebraic intersection
number of the spectrum with the zero axis – i.e. we count an eigenvalue
that increases through zero with a +1 and one that decreases with a
−1. (To interpret this more precisely one may need to perturb to a
sufficiently generic situation.) This gives another way of viewing the
relative index in that we have

Proposition 3.18 Let A0 and A1 be two acyclic connections and As be
a path between them. Then δY (A0, A1) is equal, mod 8, to the spectral
flow of the path of operators Ls over Y .

This can easily be deduced form the theory above, and we sketch
the argument. First, by continuity, the result is true if there are no
zero eigenvalues anywhere in the path. We can then use the additive
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properties to reduce to a case when there is just one eigenvalue crossing
and this is transverse, increasing say. We extend to an infinite path
in the obvious way and consider the operator D = d

dt + Lt over the
tube. We then manufacture a family of the form L̃t = eσL1e

σ with the
opposite flow, taking a weight function σ equal to 1 for t * 0 and to
the exponential of εt for t ) 0, for a suitable ε. This gives an operator
D̃ = d

dt + L̃t. We can adapt our gluing formula to show that the index
of the ‘connected sum’ of D and D̃ is the sum of the individual indices.
Since we can calculate the latter index explicitly as in Lemma 3.11, it
suffices to show that the index of the connected sum is 0, and this is done
by perturbing by the addition of a positive scalar to shift the spectrum
away from the zero axis.

We now turn to the Atiyah, Patodi and Singer eta-invariant. This
arises when one attempts to generalise integral formulae for the index,
in the closed case, to manifolds with tubular ends. LetA be a connection
on a bundle P over a 4-manifold with a tubular end, which is equal to
the constant acyclic connection A over the end. Then the Chern–Weil
integrand Tr(F 2

A) is compactly supported. Combining the theory of
Chapter 2 and this Chapter, we know that the real number

γ(A) = ind(P )− 1
8π2

∫
X

Tr
(
F 2

A

)− 3(1− b1(X) + b+(X))

gives a lift of the Chern–Simons invariant ϑ(A) toR. The Atiyah, Patodi
and Singer theory gives a spectral formula for this number

γ(A) = ηA(0)− ηθ(0) + 3/2.

Here ηA(0) is defined as follows. For +s ) 0 the Dirichlet series
formed from the spectrum{λ} of LA,

ηA(s) =
∑
λ

sgn(λ)|λ|−s,

converges to define an analytic function ηA(s). This can be analytically
continued to a neighbourhood of 0 and ηA(0) is the value so obtained.
The next term ηθ(0) in the formula is obtained in the same way using the
trivial flat connection θ, except one must then remove the zero eigenvalue
from the series. The final term 3/2 appears as a correction term due to
the 3-dimensional zero eigenspace.



68 Linear analysis

3.3.3 Refinement of weighted theory

The version of the weighted theory that we shall actually need in Chapter
4 is a little different from that above. Recall that we introduced the
operator DA = −d∗A + d+A in four dimensions as a tool to study the de-
formation complex. Thus the two parts d∗A and d+A have a quite distinct
geometrical significance, although the discussion so far throughout this
Chapter treats them on an equal footing. The refinement we discuss
now brings in the separate nature of these two components.
Suppose X is a 4-manifold with a tubular end, and W is a weight

function equal to eαt over the end, where α is positive. We fix a
connection on an adapted bundle P as before, with flat limit ρ. We
have then an operator, acting on sections of gP ,

dA : L2,α
1 → L2,α.

We consider the adjoint operator, with respect to the weighted norms.
That is, the operator d∗,αA defined by the condition that∫

X

W 2(dAf, a) =
∫
X

W 2
(
f, d

∗,α
A a
)
,

for all f and a of compact support. Clearly this operator is just

d
∗α
A (a) = W−2d∗A

(
W 2a

)
.

In particular, over the end of X we can write

d
∗,α
A = d∗A + 2αit(a)

(where it is the contraction with the vector d
dt ). Now let us consider the

operator

DA,α = −d∗,αA + d+A,

acting on the gP -valued 1-forms in L
2,α
1 over X, i.e.

DA,α : L2,α
1 → L2,α.

Proposition 3.19 For small positive α the operator DA,α is Fredholm
of index

indDA,α = ind+(P ) + dimH0
ρ .

This can be seen as a variant of Proposition 3.9 which says that the
jump in the index from ind+ to ind− is the sum of the dimensions of the
cohomology groups H0

ρ , H
1
ρ : the operator DA,α allows us to the see the

two phenomena separately.
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The proof of Proposition 3.19 follows the same lines as that of Proposi-
tion 3.9. Consider the operator DA,α over the tube, acting on weighted
spaces with weight function eαt. As before, this is equivalent to an
operator, D′′ say, acting on unweighted spaces, where

D′′(a) = eαtDA,α(e−αta) = DA,α − α.

Thus D′′(a) = DA + 2αit − α. Now recall that, over the tube, DA is
regarded as acting on the sections of the direct sum Λ0

Y ⊕Λ1
Y (tensored

with the flat bundle). Let R be the linear operator that acts as +1 on
Λ0
Y and −1 on Λ1(Y ). Then we have

D′′ = DA + αR =
d

dt
+ LY + αR.

The essential thing, therefore, is to consider the spectrum of LY + αR

on sections of Λ0
Y ⊕ Λ1

Y over the 3-manifold Y . Recall that in Subsec-
tion 2.5.4 we decomposed LY as a sum LY = Q ⊕ S where Q acts on
ker d∗ ⊂ Ω1 and S acts on Ω0 ⊕ Im d ⊂ Ω1 by the matrix(

0 −d
−d∗ 0

)
.

The eigenvalues of S have the form( ±√
µdψµ

ψµ

)
where ψµ is an eigenfunction of the Laplacian on 0-forms with eigenvalue
µ. Now the operator LY + αR also decomposes into two pieces. One
piece is Q − α, so the spectrum of this piece is just the spectrum of Q
shifted by −α. The other piece can be written as( −α −d

−d∗ α

)
.

It is straightforward to check then that the spectrum of this second piece
is the set of numbers of the form ±

√
µ+ α2, where µ runs over the

spectrum of the Laplacian, but in the case of a zero eigenvalue, µ = 0,
we take only the positive square root. Thus, if α is small and positive,
the effect of the replacing of S by S + αR is to shift the eigenvalues in
the positive direction and in particular to replace the zero eigenvalue by
α.
Now to prove Proposition 3.19 we consider an operator over the tube

of the form

DA − α+ σ(t)it,
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where the function σ(t) is zero for t * 0 and equal to 2 for t ) 0.
The same spectral decomposition argument shows that the index of this
operator is the dimension of H0

ρ (i.e. the multiplicity of the eigenvalue
µ = 0). Then the familiar gluing argument and the additivity property
give Proposition 3.19.

3.4 Lp theory

When we develop the non-linear analysis of Yang–Mills fields on mani-
folds with tubular ends in Chapter 4, we will need other function spaces,
and appropriate extensions of the results above. These are the spaces
Lp
k of sections with ‘k derivatives in Lp’. As usual, we concentrate here

on the changes that need to be made in going from compact manifolds
to manifolds with tubular ends. We begin by reviewing the main results
which hold over compact sets. First, over any space of finite measure the
Lp spaces are naturally ordered by inclusion: for p > q the Lp norm is
strictly stronger than the Lq norm. The Sobolev inequalities allow us to
increase the strength of the exponent defining the norm in exchange for
taking derivatives. If U is a compact Riemannian manifold of dimension
d, possibly with boundary, for any p, r > 1 there is a constant cU,p,r
such that for any section f of a bundle over U (with metric and unitary
connection),

‖f‖Lq ≡
(∫

U

|f |q
)1/q

≤ cU,p,r

((∫
U

|∇f |p
)1/p

+
(∫

U

|f |r
)1/r)

≡ cU,p,r(‖∇f‖Lp + ‖f‖Lr ), (3.5)

where the indices p and q are related by

1 − d

q
= −d

p
. (3.6)

The second basic local result allows us to exchange the full covariant
derivative ∇ for an elliptic operator D. If U ′ ⊂⊂ U is a subdomain we
have(∫

U ′
|∇f |p

)1/p
≤ c′U,U ′,p,r

(∫
U

|Df |p
)1/p

+
(∫

U

|f |r
)1/r

. (3.7)

This inequality, for general p, is derived from the comparatively deep
results of the Calderon–Zygmund theory [43]. Given these Lp results for
compact sets it is, however, straightforward to extend them to manifolds
with tubular ends. In effect when we pass to a non-compact manifold
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the interesting new features, beyond the local theory, involve decay at
infinity. But in controlling this decay the Lq norm is weaker than the Lp

norm, if q > p, so the Lp results (at least the results we shall consider)
have rather little to do with the special ‘non-compact’ features of the
theory.

We begin with the tube Y ×R and suppose, as in Section 3.1, that
D is the operator defined by an acyclic connection over Y . There are a
number of equivalent definitions of Sobolev spaces Lp

k, just as we have
seen already in Subsection 3.1.1 for the case p = 2. We will take, as
a starting point, the definition of the Lp

k norm (initially on compactly
supported, smooth, sections) through the formula

‖f‖Lp
k
=

 k∑
j=0

∫
Y×R

|∇(j)f |p
1/p

where ∇(j) is the j-fold iterated covariant derivative. We could define
another norm ‖ ‖′

Lp
k
inductively using the operator D:

‖f‖′Lp
k
= ‖Df‖′Lp

k−1
+ ‖f‖Lp .

To see that these are equivalent norms, and hence define the same
completion Lp

k, we divide the tube into a set of bands Bn, the integer
translates of the model band B = Y ×(0, 1). We let B+

n be the translates
of a slightly larger band, so we can apply Inequalities 3.5 and 3.7 to
the pairs (Bn, B

+
n ), with constants which are plainly independent of n.

Then, when k = 1, we have

‖∇f‖pLp =
∞∑

n=−∞

∫
Bn

|∇f |p ≤ const.
∞∑

n=−∞

(∫
B+

n

|Df |p +
∫
Bn

|f |p
)
(3.8)

≤ 2 const. ‖Df‖pLp + const. ‖f‖pLp . (3.9)

Here the factor of 2 comes from the overlap between different sets B+
n .

This inequality shows that the norms ‖ ‖Lp
1
, ‖ ‖′

Lp
1
are equivalent, and

the argument for larger k is similar. Of course there are many other
possible definitions of an Lp

k norm over a manifold with tubular ends,
which turn out to be equivalent.
We can obtain Sobolev inequalities in a similar fashion, appealing to

the results over bands. Let p, q be indices related by Equation 3.6 (with
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d = 4 of course). Then q > p and so for any positive an,

∞∑
n=−∞

aq/pn ≤
( ∞∑

n=−∞
an

)q/p
.

Now, for any f on Y ×R:

‖f‖qLq =
∑
n

∫
Bn

|f |q

≤ const.
∑
n

(∫
Bn

|∇f |p + |f |p
)q/p

≤ const.

(∑
n

∫
Bn

|∇f |p + |f |p
)q/p

≤ const. ‖f‖Lp
1
.

In general we have

Proposition 3.20 If X is a 4-manifold with tubular ends, k ≥ l, q ≥ p

and the indices p, q are related by

k − 4/p ≥ l − 4/q

then there is a constant

cX,p,q

such that for any section s of a unitary bundle over X,

‖s‖Lq
l
≤ cX,p,q‖s‖Lp

k
.

Let us pause to make three remarks related to the discussion above.
First, the results apply very generally. If X is any manifold of bounded
geometry we can obtain a Sobolev inequality like Proposition 3.20 over
X by taking a suitably ‘uniform’ cover and applying the local result on
each member of the cover. Similarly for the equivalent definitions of Lp

k.
Second, we should point out that the inequality

‖f‖Lq ≤ const. ‖f‖Lp
1
,

for compactly supported f , does not hold over a tube. To see this one just
considers functions with larger and larger supports. The inequality does
hold over Rn, for suitable exponents, and is indeed what is normally
called the Sobolev inequality. This is an instance of the difference
between the function theory on Euclidean spaces and on manifolds with
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tubular ends. The final point to mention is that we also have the
pointwise inequality over a tube

‖f‖L∞ ≤ const. ‖f‖Lp
k
, (3.10)

when k−d/p > 0. This follows immediately by reducing to bands. Thus
we get embeddings Lp

k ⊂ C0.

We now turn to the global properties of the elliptic operator D on Lp

spaces. Plainly the operator extends to give a bounded map

D : Lp
k → Lp

k−1.

The main result we need is an extension of Proposition 3.4:

Proposition 3.21 The operator D defines a Banach space isomorphism
from Lp

k to L
p
k−1.

This will follow easily from a simpler statement. Let Q be the inversion
operator constructed in Proposition 3.4, defined initially on the smooth,
compactly supported, sections.

Lemma 3.22 There is a constant Cp such that, for all ρ,

‖Qρ‖Lp ≤ ‖ρ‖Lp

To deduce Proposition 3.21 from Lemma 3.22 we use the second norm
‖ ‖′

Lp
k
to define our Lp

k spaces: then for any smooth, compactly sup-
ported, ρ,

‖Qρ‖′Lp
k

= ‖DQρ‖′Lp
k−1

+ ‖Qρ‖Lp = ‖ρ‖′Lp
k−1

+ ‖Qρ‖Lp

≤ ‖ρ‖′Lp
k−1

+ const. ‖ρ‖Lp ≤ const. ‖ρ‖′Lp
k−1

.

So we can extend the operator to an inverse on the completion, as
asserted by Proposition 3.21.
To prove Lemma 3.22 we assume to begin with that p ≥ 2. We

will think of the inverse Q as being defined by convolution with an
operator-valued function K on R:

Q(ρ)s =
∫ ∞

−∞
K(s− t)ρt dt.

The eigenspace representation of Kτ shows that its L2(Y )-operator
norm decays exponentially:

‖K(τ)‖ ≤ e−δτ .
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We now wish to appeal to the elementary fact that convolution defines
a bounded bilinear map from Lp × L1 to Lp:

‖k ∗ g‖Lp(R) ≤ ‖k‖Lp(R) ‖g‖L1(R). (3.11)

To apply this we introduce, temporarily, a ‘mixed’ norm ‖ ‖p,2 over
Y ×R

‖f‖p,2 =
(∫ ∞

−∞

(∫
Y

|f |2
)p/2)1/p

.

Since its operator norm decays exponentially, the kernel K is inte-
grable, as a function with values in the space of operators from L2 to
L2, so we can apply Formula 3.11, in a version in which g takes values
in a Hilbert space and k takes values in the operators on this Hilbert
space. We deduce that Q is bounded with respect to the (p, 2) norm:

‖Qρ‖p,2 ≤ δ−1‖ρ‖p,2. (3.12)

We now compare the Lp norm with ‖ ‖p,2. Suppose for simplicity that
Y has volume 1. Then, comparing the Lp norm with the L2 norm over
Y we have, since p ≥ 2,

‖f‖p,2 ≤ ‖f‖Lp , (3.13)

so ‖Qρ‖p,2 ≤ ‖ρ‖pL. Now let f = Qρ, so Df = ρ. We consider the
situation over one of the bands Bn. The inequalities above give∫

Bn

|f |p ≤ const.

(∫
B+(n)

|ρ|p +
(∫

Bn

|f |2
)p/2)

.

For a function supported on the finite band Bn the (p, 2) norm
dominates the L2 norm. Applying this to the last term in the expression
above, then summing over n and writing f = Qρ, we get∫

Y×R

|Qρ|p ≤ 2 const.
∫
Y×R

|ρ|p + ‖Qρ‖pp,2.

Combined with Formula 3.13 this proves the Lemma, in the case when
p ≥ 2. If p ≤ 2 we use a standard duality argument. Let p′ be the
conjugate index to p so that Lp′

is the dual of Lp. Let Q∗ be the adjoint
of Q, the inversion operator for the formal adjoint D∗. We can apply
the argument above with Q∗ in place of Q, so Q∗ is a bounded operator
on Lp′

. Now, if 〈 , 〉 denotes the standard pairing between Lp and Lp′
,

‖Pρ‖Lp = sup〈Pρ, g〉,
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where g runs over the unit ball in Lp′
. Thus

sup〈Pρ, g〉 = sup〈ρ, P ∗g〉 ≤ sup ‖ρ‖Lp‖P ∗g‖Lp′

≤ const. sup ‖ρ‖Lp‖g‖Lp′ ≤ const. ‖ρ‖Lp .

This completes the proof of Lemma 3.22.

We could now go on to set up the whole linear theory in the Lp setting.
In the case when the limits are acyclic the operatorD defines a Fredholm
map from Lp

k to Lp
k−1. The index of this map is independent of p and

k, as the reader will easily be able to verify, so is given by the invariant
ind(P) we studied above. We can also introduce exponentially weighted
norms,

‖f‖Lp,α
k

= ‖Wf‖Lp
k
,

and obtain Fredholm operators with indices ind+, ind−. If α is a vector
of weights αi, one for each end of a 4-manifold X, we let Lp,α

k be the
norm obtained from a weight function W as before. We have then

Proposition 3.23 Suppose each weight αi is positive. Then for k > l,
k − 4/p = l − 4/q,

L
p,α
k ⊂ L

q,α
l ,

and for k − 4/p > 0

L
p,α
k ⊂ C0.

This is a trivial consequence of the corresponding unweighted inequality,
replacing f by Wf .
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Gauge theory and tubular ends

This Chapter occupies a central position in the book as a whole. Building
on the results of Chapter 3, we develop the theory of instantons over
non-compact manifold with tubular ends. The theory can be considered
as a modification of the standard set-up over compact manifolds and
we shall see that many of the results go over to the non-compact
case; in particular the instanton equations become non-linear Fredholm
equations and we get finite-dimensional moduli spaces of solutions. The
original reference for most of this material is [45] (in the more general
setting of manifolds with ‘periodic ends’).
The work in this Chapter falls into three main parts. First we study

the decay of instantons over tubular ends. We shall see that, under
suitable conditions, an instanton with L2 curvature can be represented
by a connection form which decays exponentially down the tube. This
can be regarded as a counterpart of the elliptic regularity theory for the
instanton equations; it implies that all of the possible natural definitions
of ‘decaying instantons’ are equivalent. The proofs are straightforward
modifications of those of previous results for the case when the cross-
section is a 3-sphere. In the second part we set up function spaces to
present the instanton equations as non-linear Fredholm equations. We
shall consider two cases, depending upon the form of the limiting con-
nections over the cross-sections of the tubes. The simplest case is when
these are acyclic; recall that this means that they are irreducible and
the twisted cohomology groups are all zero. The slightly more difficult
case which we shall treat in detail arises when the limiting connection
is non-degenerate but reducible, in the terminology of Chapter 2. For
example, this occurs if the limit is the trivial connection over a homology
3-sphere. In this case one has to introduce the weighted spaces to obtain
a Fredholm theory, and these bring in some new features.

76
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The third part of the work in this Chapter treats the ‘gluing theory’ for
instantons over manifolds with tubular ends. Again, we treat the acyclic
case first before moving on to the more complicated situation where the
limits are reducible. Finally, in the Appendix to this Chapter, we discuss
other extensions of the theory in which we allow non-isolated limits, and
give a few additional analytical results (which will not be used in the
rest of the book).

4.1 Exponential decay

We return to the now familiar picture of a 4-manifold X with tubular
ends and assume that for each end Y × (0,∞) ⊂ X the cross-section
Y satisfies the non-degeneracy condition of Chapter 2, i.e. for each flat
SU(2) connection ρ over Y the cohomology group H1(Y, ρ) is zero.
Now let A be an instanton over X and suppose the curvature F (A) is

in Lp for some p ≥ 2. (Recall that the Lp norm gives weaker control of
decay behaviour for larger p.) The first result we have is

Proposition 4.1 Under these conditions, for each end Y × (0,∞) of X
there is a flat connection ρ over Y (unique up to equivalence) such that
A converges to ρ, in the sense that the restrictions A|Y×{T} converge
(modulo gauge equivalence) in C∞ over Y as T → ∞.
We consider a family of bands BT = Y × (T − 1, T ) which we identify
with the model B = Y × (0, 1) by translation. Let AT be the connection
over B obtained from the restriction of A to BT in this way, so the
integrability of |F (A)|p over the end implies that

‖F (AT )‖Lp(B) → 0 as T → ∞.

Uhlenbeck’s weak compactness result from Chapter 2 now implies
that for any sequence Ti → ∞ there are a subsequence T ′

i and a flat
connection ρ over B such that, after suitable gauge transformations,

AT ′
i
→ ρ

in C∞ over compact subsets of B. In particular the restriction of [AT ′
i
]

to the cross-section Y × {1/2} converges in C∞ to ρ.
It is now easy to see that, since the flat connections over Y are isolated,

the limit is unique – independent of the sequence and subsequence
chosen. First consider the metric d( , ) on the space of equivalence classes
BY of connections over Y induced from the L2 metric over Y . We have
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shown that the continuous path [AT ] in BY converges to the space of flat
connections R ⊂ BY , in the sense that d([AT ],R) → 0. But the points
of R are isolated so there is a δ > 0 with d(ρ, σ) ≥ δ for distinct points
ρ, σ in R. For large T the connections [AT ] have distance less than δ/2
from some point of R. But by the intermediate value theorem applied
to the continuous functions d(ρ, [AT ]) this point must be independent of
T , so we obtain a flat connection ρ such that AT converges to ρ in the
L2 distance. But now it follows similarly that the convergence is in C∞,
since any sequence has a C∞-convergent subsequence.

The effect of this result is that we can partition these Lp-integrable
instantons into classes labelled by the limiting flat connection over the
ends. We shall now go on to study this limiting behaviour in more
detail. We may as well fix attention on a connection A over a half-tube
Y × (0,∞) which converges in the sense above to a given flat connection
ρ at infinity, where H1(Y ; ad ρ) = 0. Let δ be the smallest positive
eigenvalue of Lρ restricted to ker d∗ρ ⊂ Ω1.

Theorem 4.2 If F (A) is in Lp for some p ≥ 2 then there is a constant
C such that

|F (A)| ≤ Ce−δt.

We prove this using a differential inequality derived from the instanton
equation. For clarity we first suppose that we can take p = 2, and for
T > 0 we set

J(T ) =
∫ ∞

T

|F (A)|2.

Now we can on the one hand express J(T ) as the integral of the Chern–
Weil 4-form −Tr(F 2) over Y ×(T,∞), using the basic property 2.15. By
taking the limit over finite tubes Y × (T, T ′) with T ′ → ∞ we see that

(8π2)−1J(T ) = ϑ(AT )− ϑ(ρ), (4.1)

where ϑ is the Chern–Simons function, and as aboveAT is the connection
over Y obtained by restriction to Y × T . Since AT is close to ρ we can
choose a local lifting of the Chern–Simons function toR, so Equation 4.1
holds in R rather than just R/Z.
On the other hand the T derivative of J can obviously be expressed

as minus the integral over Y ×{T} of the curvature density |F (A)|2, and
this is exactly twice the 3-dimensional curvature density 2|F (AT )|2, by
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the relation Equation 2.10 between the two components of the curvature
for an instanton over a tube. Thus

dJ

dT
= −2‖F (AT )‖2L2(Y ). (4.2)

To connect these two observations we establish an inequality between
the gauge-invariant quantities ϑ(AT ) and ‖F (AT )‖L2 , valid for any
connection over Y which is close to ρ. We write, for fixed large T ,

AT = ρ+ a,

so we may suppose that a is as small as we please in C∞. Also, we may
suppose that a satisfies the Coulomb condition:

d∗ρa = 0.

Now, using Equation 2.18,

ϑ(AT )− ϑ(ρ) =
∫
Y

Tr
(
a ∧ dρa+

2
3
a ∧ a ∧ a

)
. (4.3)

On the other hand F (ρ+ a) = dρa+ a ∧ a so

‖FAT
‖2L2(Y ) ≤ ‖dρa‖2 + ‖a ∧ a‖2 + 2|〈dρa, a ∧ a〉|. (4.4)

Consider now the quadratic terms in Formulae 4.3 and 4.4. The
Coulomb condition d∗ρa = 0 means that ∗dρa = Lρa and then, from
the spectral decomposition for L and the definition of δ, we see that∫

Y

Tr(a ∧ dρa) = 〈a, Lρa〉 ≤ δ‖Lρa‖2 = δ‖dρa‖2.

We next estimate the remaining terms in the two expressions. We use
the fact that the kernel of Lρ in Ω1 is trivial, so

‖a‖L2
1
≤ const. ‖Lρa‖L2 ,

and combine this with the Sobolev embeddings L2
1 → Lr, for r ≤ 6, in

three dimensions. We get

ϑ(AT )− ϑ(ρ) ≤ δ‖dρa‖2 + const. ‖dρa‖3,
and

‖dρa‖2 − ‖F (AT )‖2 ≤ const. (‖dρa‖3 + ‖dρa‖4).
(Here all norms are L2.)

This gives, when dρa is small enough (i.e. when T is large enough),

ϑ(AT )− ϑ(ρ) ≤ δ‖F (AT )‖2 + const. ‖F (AT )‖3. (4.5)
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Putting all this together, we get a differential inequality

dJ

dt
≤ −δJ + const. J3/2.

It is easy to see that this implies that J decays exponentially. Indeed,
for any δ′ ≤ δ we have dJ/dt ≤ −δ′J , for T ≥ T0 say, and this inequality
immediately gives J(T ) ≤ Ce−δ′T , with C = J(T0)eδ

′T0 . From this one
can go back to improve the exponent to δ, although this is not really
important for us.
Finally, having obtained the exponential decay of J we deduce that

of the curvature density itself via elliptic estimates on the model band.
Notice that we can get get estimates on all the covariant derivatives of
curvature in this way. Obviously J(T ) dominates the L2 norm of the
curvature of A over the band BT , and this gives a bound on all higher
derivatives over an interior domain.

We now go back to consider the case when F (A) is only assumed to
lie in Lp for some p > 2. We introduce a small positive parameter σ and
set now

J(T ) =
∫ ∞

T

e−σt|F (A)|2.

The integral converges because of the exponential factor. Now

dJ/dT = e−σT ‖F (AT )‖2.
On the other hand, integrating by parts, we get

J(T ) = e−σT (ϑ(AT ) − c) + σ

∫ ∞

T

e−σt(ϑ(At)− c),

for any constant c. We can choose c = ϑ(ρ) so, applying the inequality
Formula 4.5 to each connection At for t ∈ [T,∞), we have for large T

J(T ) ≤ 2δ−1

(
− dJ

dT

)
+ 2σδ−1J(T ).

Now if we choose σ < δ/2, say σ = δ/4, we can rearrange this to get

dJ

dT
≤ −4δ−1J(T ),

which implies that J decays exponentially, so the curvature is in L2 after
all.
Now write A0 for the flat connection on a bundle P0 over the half-tube

lifted from ρ over Y .
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Proposition 4.3 Let A be a connection on a bundle Q over X which
satisfies the conditions stated at the beginning of this Section. For each
end Y × (0,∞) ⊂ X there is a bundle map χ : P0 → Q|Y×(0,∞) such
that A = χ∗(A0) + a with

|a| ≤ const. e−δt.

Moreover, we can choose a so that all derivatives decay exponentially:

|∇(l)a| ≤ const. e−δt.

Choose first any temporal gauge representation A0 + b; so b has zero dt
component as in Chapter 2. The instanton equation db/dt = ∗3F gives∣∣∣∣dadt

∣∣∣∣ = |F (A)t| ≤ const. e−δt,

so bt converges to some limit b∞, at an exponential rate:

|bt − b∞| ≤ const. e−δt.

Similarly, the decay of the derivatives of the curvature of A on the tube
implies that b∞ is smooth and all Y derivatives of bt converge. Now we
know that the gauge equivalence classes [ρ + bt] converge to [ρ], i.e. we
can find gauge transformations gt over Y so that gt(ρ + bt) → ρ. After
possibly taking a subsequence we can suppose then that the gt converge
in C∞ to some limit g and g(ρ+ b∞) = ρ (compare [17][Section 2.3.7]).
Then we apply the constant gauge transformation g over the tube to
modify the representative to at = bt + g(ρ) − ρ, which tends to zero at
infinity. Replace a by ρ + a − g(ρ) to get a representative which tends
to zero at infinity.

We shall also need a variant of these decay results for connections over
long, but finite, tubes, in the same spirit as Lemma 3.2. Recall that we
denote by B±

T the bands Y × ±(T − 1, T ) ⊂ Y ×R.

Proposition 4.4 Suppose all flat connections over Y are non-
degenerate. There are constants C, δ, Cl such that for any T > 2 and
any instanton A over Y × (−T, T ) with ‖F (A)‖2 < C there is a flat
connection A0 over the tube such that A is gauge-equivalent to A0 + a

with

|∇(l)a| ≤ Cle
−δ(T−|t|)(I+ + I−),
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over Y × (−T + 1
2 , T − 1

2 ), where

I2± =
∫
B±

T

|F (A)|2.

To prove this one follows much the same argument as before, deriving a
differential inequality for

I(t) =
∫
Y×(−t,t)

|F (A)|2.

4.2 Moduli theory

The decay results of the previous Section mean there is little possibility
of argument about the appropriate moduli spaces of instantons over the
manifold X, at least in the case when the flat connections over the ends
are non-degenerate. The union of the moduli spaces, as a set, will be the
gauge equivalence classes of instantons with Lp curvature and we have
seen that this is independent of the choice of exponent p ≥ 2. (More
generally, the arguments of the previous Section show that any sensible
definition of instantons which are ‘flat at infinity’ will agree with this
one.) Moreover we have seen that we can assign to any such instanton
A a definite limit over each end of X and hence an adapted bundle P .
Thus we obtain moduli spaces MP , labelled by the adapted bundles.

In this Section and the next we will study one of these moduli spaces
MP (which we will normally denote by M). We wish to describe it in
the same general framework which we are familiar with in the compact
case, and for this we need to choose suitable function spaces. Of course,
as in the compact case, there is a good deal of choice in these – one
can use many different function spaces which give the same moduli
space. We will treat two cases; first the ‘acyclic case’, which is rather
straightforward, and then, in Section 4.3, the non-degenerate case. For
the remainder of Section 4.2 then we suppose that P is an adapted
bundle whose limits over the ends of X are all acyclic. We let A0

be any connection on P which agrees with the flat connections over
the ends, under the fixed identifications given by the definition of an
adapted bundle. We will write ∇0 for the covariant derivative of A0,
and similarly for other operators. We fix an exponent p with 2 < p < 4
and let q = 4p

(4−p) , so q > 4. Note also that q > 2p.
We define our space of connections A to be those of the form A0 + a

with a in Lp
1, i.e.

|a|, |∇0a| ∈ Lp.
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The curvature of A0 + a differs from that of A0 by d0a + a ∧ a. The
linear term is obviously in Lp and the same is true of the quadratic term
by the Sobolev theorem (Proposition 3.20) which tells us that

a ∈ Lp
1 ⇒ a ∈ Lq.

So |a| is in Lp ∩ Lq, and since p < 2p < q we obtain by Hölder’s
inequality that |a| ∈ L2p. Hence a ∧ a is indeed in Lp. Now taking the
self-dual component of the curvature we get a map

F+ : A → Lp(Ω+(gP ))

and it is clear that this is a smooth map. (In this Section we shall
normally emphasise in our notation the function spaces rather than the
differential-geometric aspects, so we will for example write F+ : A →
Lp.)

Similarly, we can for each A in A regard the operator DA = D0 + a

as a bounded map

DA : Ls
1 → Ls

for any s with 1 < s < 4. To see this we use the embedding

Ls
1 ⊂ Ls ∩ Lr,

with r = 4s/(4− s); then q > 4 implies that

1
r
+

1
q

≤ 1
s
.

On the other hand 1
s ≤ 1

s + 1
p , so Hölder’s inequality tells us that

multiplication maps

(Ls ∩ Lr)× (Lp ∩ Lq) → Ls, (4.6)

and we can apply this to the algebraic action of a on Ls
1.

An argument of just the same kind as that in the discussion following
Corollary 3.7 shows that DA is Fredholm on Ls

1 and that the index is
independent of A ∈ A. Thus to compute the index we can reduce to the
model case D0 which was treated in Chapter 3, and we get

Proposition 4.5 For any A in A the index of DA : Ls
1 → Ls is given

by the invariant indP .

We now turn to gauge transformations. The appropriate definition of
equivalence of connections in A is immediate – we say A1, A2 are equiv-
alent if there is an Lp

2,loc bundle automorphism g such that g(A1) = A2.
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Notice, of course, that we are in the range where Lp
1,loc functions are

continuous, so there is no difficulty at all in interpreting what one means
by a gauge transformation of this class. Our task is to show that this
equivalence relation is generated by the action of an appropriate gauge
group G on A. The definition of G is forced on us. If g is an Lp

2,loc gauge
transformation then g(A0) is in A if and only if d0gg−1 is in Lp

1, so we
put

G = {g ∈ AutP : d0gg−1 ∈ Lp
1}. (4.7)

Now we know that Lp
1 ⊂ Lq and so, since also g is pointwise bounded,

d0g is in Lp ∩ Lq for g ∈ G. In particular d0g is in L4, since p < 4 < q.
Now Hölder’s inequality tells us that multiplication is a bounded map:

L4 × Lq → Lp.

Let us write α = d0gg
−1, so d0g = αg and ∇0(d0g) = (∇0α)g +

α(∇0g). The multiplication Formula 4.6 implies that the second term
is in Lp, and the first is obviously so since g is bounded. Thus d0g is in
Lp
1 and by just the same argument we see that

G = {g ∈ AutP : ∇0∇0g,∇0g ∈ Lp}.
Likewise, if g, h ∈ G then

∇0∇0(gh) = (∇0∇0g)h+ 2∇0g∇0h+ g∇0∇0h,

and the multiplication property shows this is in Lp. It follows that
(pointwise) multiplication is defined in G. Also, expanding out the
derivatives of g−1, we see that this is in G, so G is a group Similarly, if
A0 + a ∈ A and g ∈ G then

g(A0 + a) = A0 − (d0g)g−1 + gag−1,

and using the same multiplication property we can see that gag−1 is in
Lp
1, so g(A0 + a) ∈ A and G acts on A. Conversely, the same sort of

argument shows that if A1, A2 are any two elements G and if g is an
Lp
2,loc gauge transformation with g(A1) = A2 then g is in G. Thus G

does generate the required equivalence relation.
Next, we can define a topology on this gauge group G. We fix a base

point x0 in X and define a system of neighbourhoods of the identity

Uε = {g ∈ G : ‖∇0∇0g‖ ≤ ε, ‖∇0g‖ ≤ ε, |g(x0)− 1| ≤ ε}. (4.8)

These define a topology which is independent of the base point x0 in X

(and so it is finer than the topology of uniform convergence over compact
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subsets). Moreover it is easy to check that the action G × A → A (with
the Lp

1 topology on A) is continuous.

All of this is quite satisfactory, but there is one further fact to establish
in order to work effectively with this gauge group. We want to show that
the Lp norms of the first two derivatives of g control the deviation of
g from the identity. To do this we have to use the hypothesis that
the limiting connections are acyclic. Note that this hypothesis has not
been used in the arguments above. We state the results in the next two
Propositions.

Proposition 4.6 If the limiting connections ρi are irreducible then there
is a constant C such that for any section ξ of gP with ∇0ξ and ∇0∇0ξ ∈
Lp we have |ξ| → 0 at infinity in X and

sup |ξ| ≤ C (‖∇0∇0ξ‖Lp + ‖∇0ξ‖Lp).

The proof is a minor modification of that for Formula 3.10 (which in-
volved also the Lp norm of the section itself). If the covariant derivative
∇A0 has trivial kernel, i.e. if the connection ρ is irreducible, then over
the the model band B = (0, 1)× Y we have an inequality

‖f‖C0(B) ≤ ‖∇0f‖Lq(B)

and we can apply this inequality, over the translates of B, to the
restrictions of ξ. We will write L(G) for the set of sections of gP
considered in Proposition 4.6.
Next we have a corresponding result for gauge transformations:

Proposition 4.7 Under the conditions of Proposition 4.6, if g is in G
then either |g(x)− 1| → 0 or |g(x) + 1| → 0 as x tends to infinity in X.

Again we consider the picture over the model band. If gn is a sequence of
gauge transformations over B with ‖∇0∇0gn‖Lp , ‖∇0g‖Lp → 0 then by
the Rellich lemma there is a uniformly convergent subsequence, and the
limit g∞ must satisfy ∇0g∞ = 0. By our hypothesis this implies that
g∞ = ±1. We apply this to the restriction of a gauge transformation
over the end of X to the translates of B: arguing just as in the proof of
Proposition 4.1 we see that g must converge to either plus or minus 1 at
each end.

By the same argument we see that, in the acyclic case, the topology
on G is stronger than the uniform topology, that is:
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Proposition 4.8 If gn → 1 in G then supX |gn(x)− 1| → 0.

This has the important consequence that in the acyclic case we can
effectively linearise about the identity.

Proposition 4.9 (i) The pointwise exponential map exp : L(G) → G
defines a homeomorphism from sufficiently small neighbourhoods of the
origin in L(G) to neighbourhoods of the identity in G, and the translates
of these neighbourhoods make G into a Banach Lie group modelled on
L(G).
(ii) The action of G on A is smooth.

The proofs are routine, for example in (i) one merely has to use the fact
that if ξ is small the derivatives of ξ and exp(ξ) are comparable.

We are now in a good position to study the quotient B of A by G, in
the acyclic case. The extra ingredient we need is a system of slices for the
action, and these are provided by the usual Coulomb gauge condition.
By the discussion in the last part of Chapter 3 we have a direct sum
decomposition

Lp
1 = (Lp

1 ∩ ker d∗0)⊕ d0(L
p
2).

The same argument shows that the corresponding decomposition holds
for any connection A in A:

Lp
1 = (Lp

1 ∩ ker d∗A)⊕ dA(L
p
2).

Thus the implicit function theorem can be applied to show that the
Coulomb slices

TA,ε = {A+ a : d∗Aa = 0, ‖a‖Lp
2
≤ ε}

give local transversals for the action. Notice that there can be no
reducible connections in A, since the connections are assumed to be
irreducible at infinity.
We obtain then

Proposition 4.10 The quotient B is a Banach manifold modelled on
the TA,ε and the self-dual part of the curvature defines a section of a
bundle over B which is Fredholm, with index indP .

The significance of the index is that it gives the ‘virtual dimension’ of
the instanton moduli space. If a point [A] in the moduli space is ‘regular’
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in that

d+A : Lp
1 → Lp

is surjective (or equivalently DA is surjective), then a neighbourhood
of [A] in the moduli space is a manifold of this dimension. More
generally, the virtual dimension gives the dimension of the moduli space
of solutions of a generic perturbation of the equation. In fact there is no
difficulty in extending the discussion for compact manifolds to show that,
so long as the instantons are not flat, we can make these perturbations
by changing the Riemannian metric on X. In fact the argument of
Freed and Uhlenbeck, as presented in [17], shows that it suffices to
make an arbitrarily small change in the metric over an arbitrarily small
neighbourhood in X (so in particular we do not need to modify the
metric over the ends). Recall that the instantons on an adapted bundle
P are flat if and only if the relative Chern class κ(P ) ∈ R is zero. To
sum up, we obtain

Theorem 4.11 For generic metrics on X all non-flat instanton solu-
tions are regular, and all moduli spaces MP with κ(P ) &= 0 are smooth
manifolds of dimension dimMP = ind(P ).

4.3 Moduli theory and weighted spaces

We now wish to consider how the moduli theory of the previous Section
must be changed in the case when some of the limiting flat connections
are reducible. The first point in the previous Section where the irre-
duciblity hypothesis was required was in Proposition 4.6 – the fact that
the sections of gP whose first two derivatives lie in Lp tend to 0 at each
end of X. If the limiting connections are reducible this is no longer true.
The prototype case is when the connection A0 is the product connection
on the trivial bundle, so ∇0 is just ordinary differentiation of functions.
Consider for example a function ξ which equals tγ on an end. Then
∇ξ and ∇2ξ are in Lp if γ ≤ 1 − 1/p, but if γ > 0 the function is
unbounded. Thus we cannot invert the pointwise exponential map on
any neighbourhood Uε of the identity and G, as defined above, is not
a Lie group. (So, for example, we cannot apply the implicit function
theorem to linearise the action of G on the Lp

1 connections.)
To get around this problem we will introduce weights into our function

spaces, but before embarking on this we will examine the breakdown in
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the set-up above in more detail. Let ρ be a reducible flat connection
over one of the ends Y × (0,∞), let Kρ ⊂ Ω0

Y (gP ) be the space of
covariant-constant sections, and K⊥

ρ ⊂ Ω0
Y (gP ) be the L2 orthogonal

complement. Then if ξ is a section of gP over the half-tube we can write
ξ = k + ξ′ by decomposing for each time t

ξt = kt + ξ′t ∈ Kρ ⊕K⊥
ρ . (4.9)

Then the derivative of k in the Y direction is zero by construction,
and the derivative in the t variable can be obtained by projecting ∇0ξ

to the subspace Kρ. So the Lp norms of the t derivatives of ξ control
those of k. Hence ∇2

0ξ, ∇0ξ < ∞ implies ∇2
0ξ

′, ∇0ξ
′, ∇2

0k, ∇0k < ∞.
Now the argument we used in the previous case applies to ξ′, so we see
that ξ′ → 0 at infinity. The problem comes about entirely from the
finite-dimensional component k, where we only know

dk

dt
,
d2k

dt2
∈ Lp

and, as we have seen, this does not control k over [0,∞).
Suppose, however, we were given that ∇0ξ was also in L1 over the

tube. Then the same argument will show that, in this decomposition,
dk/dt is in L1; so k, and hence also ξ, tends to a limit at infinity.
Similarly, working in the gauge group rather than its Lie algebra, one
sees that if g is a bundle automorphism such that ∇2

0g,∇0g ∈ Lp and
∇0g ∈ L1 then g(x) tends to a limit in the isotropy group Γρ as X tends
to infinity in X.

To proceed now with the theory: we choose an exponent α > 0 as
in Chapter 3, less than the first positive eigenvalue of Lρ, and define
weighted spaces of forms Lp,α

k as before. We consider the space of
connections

Aα = {A0 + a : a ∈ L
p,α
1 }.

Our previous results carry over to this class. These connections have
curvature in Lp,α since

‖a ∧ a‖Lp,α = ‖Wa ∧ a‖Lp ≤ ‖
√
Wa‖2L2p

≤ const. ‖Wa‖2L2p ≤ const. ‖a‖2Lp,α
1

. (4.10)

Here we have used Proposition 3.23 and the fact that the weight function
W is bounded below, so

√
W ≤ const.W . Our decay results show

that all the instantons we need to study are captured by these spaces.
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Following the lines of the previous Section, we define a group Gα of gauge
transformations g such that

∇0g ∈ L
p,α
1 .

Now, by Hölder’s inequality,

∫
Y×[0,∞)

|∇0g| ≤
(∫

Y×[0,∞)

|∇0g|pepαt
)1/p(∫

Y×[0,∞)

e−p′αt

)1/p′

,

where p′ is the conjugate exponent. So, from the discussion above, each
element g of Gα tends to a limit in Γρ at infinity, and we get an evaluation
homomorphism

ev : Gα → Γρ. (4.11)

Similarly, in the bundle of Lie algebras, if we set

L(Gα) =
{
ξ ∈ Ω0

X(gP ) : ∇0ξ ∈ L
p,α
1

}
,

then the elements of L(Gα) tend to limits at infinity, and we again have
an evaluation map ev, taking L(Gα) to Kρ. The evaluation maps are
continuous: indeed we can suppose our base point x0 is on one end of the
tube in X, then the evaluation at infinity ev(ξ) is equal to lim k(x) which
is k(x0) +

∫
k′ dt, and this varies continuously with ξ by the inequality

above.
We now have

Proposition 4.12 The pointwise exponential map defines charts making
the gauge group Gα into a Banach Lie group modelled on L(Gα), acting
smoothly on Aα. The evaluation map at each end is a smooth Lie
homomorphism, with surjective derivative.

Again, the verification of these properties is straightforward. Note that
the kernel of the evaluation maps is a smooth subgroup Gα

0 ⊂ Gα say,
the analogue of the ‘based’ gauge group in the usual compact case. By
construction

Gα/Gα
0

∼= Γρ.

It is at this stage that we bring in the discussion of Subsection 3.3.3.
Recall that we introduced an operator d∗,αA which is the adjoint of the
covariant derivative with respect to the weighted norms. The importance
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of this is that it gives the appropriate ‘Coulomb gauge condition’ in this
setting; i.e. there is a decomposition of bundle-valued 1-forms

Lp,α
1 =

(
ker d∗,αA ⊂ Lp,α

1

)⊕ d
(
Lp,α
2

)
.

The proof of this follows just the same pattern as in the unweighted
case. However, now we must beware, because the Lie algebra L(Gα) is
not the same as Lp

2. Sections in the latter space tend to zero at infinity,
whereas those in the former tend to constant values inKρ. The subspace
Lp
2 ⊂ L(Gα) is precisely the kernel of the evaluation map at infinity, and

this is the Lie algebra of the subgroup Gα
0 . Thus the Coulomb condition

gives us slices for the action of Gα
0 . Thus we can construct a quotient

B̃ = Aα/Gα. The action of Gα is free and the Coulomb slices make B̃
into a Banach manifold, with local models

T B̃[A] = ker d∗,αA ∩ Lp,α
1 .

Of course there is some extra symmetry which has been ignored in
forming this quotient. The full quotient B = Aα/Gα is obtained by
dividing B̃ by the natural Γρ-action, and the dense open subset B∗ ⊂ B
of irreducible connections is a smooth manifold, a (Γρ/± 1)-quotient of
a corresponding subset of B̃.
We now proceed to the instanton equation over X. This defines a

Γρ-invariant Fredholm section of a bundle over B̃ with linearisation given
by the operators DA,α. The virtual dimension of the moduli space M̃ ⊂
B̃ is thus the index of this operator in the weighted space, which is
ind+(P ) + dimH0

ρ , by Proposition 3.19. The genuine moduli space MP

is the quotient M̃/Γρ and so this has virtual dimension ind+ P .
We have then for any instantons with any given flat limit ρ

Theorem 4.13 For generic smooth metrics on X all instantons which
are not flat are regular and for each bundle P the framed moduli space

M̃P ⊂ B̃P

is a smooth manifold of dimension ind+ P + dimH0
ρ with a smooth Γρ

action. The open set M∗
P in the instanton moduli space MP is a smooth

manifold of dimension ind+(P ). Moreover, if b+X ≥ 1 then for generic
metrics on X there are no non-trivial reducible instanton solutions, so
MP = M∗

P .

Of course we can go on to describe the structure around reducible
solutions, just as in the compact case.
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It is worth pointing out that we could have used these weighted spaces
in the previous acyclic case. The moduli spaces will be unchanged so
long as the weight α is less than the first eigenvalue δ. If we take α >

δ, but not equal to an eigenvalue, we still get a good theory but the
moduli spaces we describe will be different, they will be submanifolds
of the true moduli space constructed above. In fact if we represent an
instanton solution in temporal gauge over an end, so we have a family
dAt

dt = LρAt+At∧At, we can define an element f1(A) of the δ eigenspace
of Lρ by the limit of the L2-orthogonal projections of At/‖At‖.
Then if α lies between δ and the next eigenvalue the moduli space

Aα/Gα can be identified with the zero set of the map f1. Similarly, on
the zero set of f1 we get a map f2 by projecting to the second eigenspace,
when α lies between the second and third eigenvalues the moduli space
will be the common zero set of f1, f2 and so on. In the case when there
is a non-trivial isotropy group Γρ the maps fi are equivariant maps on
M̃ which descend to sections of bundles overM . In the model case when
Y = S3 and there is a smooth conformal compactification X ∪ {x∞},
the projection f1(A) can be identified with the curvature of A at the
point x∞, and the higher terms with the covariant derivatives of the
curvature.

4.4 Gluing instantons

In this Section we consider the non-linear version of the additivity
property of the index developed in Chapter 3. Thus we return to the
family of Riemannian manifolds X�(T ), obtained by gluing a pair of
ends Y, Y in a manifold X, depending on a parameter T ≥ 0, and a
bundle P � over X�(T ) obtained by gluing the ends of P over X. We
wish to compare instantons on X and X�(T ), when T is large. As
before, the most important case will be when X is a disjoint union
X1 ∪ X2 and the two boundary components lie in the different pieces,
and to simplify our notation we will restrict attention to this case, the
changes required for the general case being quite trivial. One basic
model of this set-up is the particular case when Y is a round 3-sphere
and X1, X2 have conformal compactifications X̂1, X̂2. The manifolds
X�(T ) are then diffeomorphic to the ordinary connected sum of X1, X2

and the parameter T can be regarded in another conformal model as the
inverse of the exponential of the size of the ‘neck’. Thus our discussion
generalises the problem of describing instantons over a connected sum.
Specialising still further, we can consider the case when X̂2 is the
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standard 4-sphere. Then the connected sum is conformally diffeomorphic
to the original manifold X̂1, but under this diffeomorphism connections
which are close to some fixed connection over X2 = S4 \ {pt.} are taken
to ‘highly concentrated’ connections over the fixed manifold X̂1 when
T is large. So our discussion also generalises the problem of describing
such ‘concentrated connections’ over a compact manifold.
A sizeable body of gluing results have been developed in these various

contexts, going back to the seminal paper of Taubes [44], and using a
variety of technical methods. Developing a full theory is a long and fairly
arduous business – in part because of the weight of analytical detail and
in part because of the diversity of hypotheses one may consider. We wish
here to strike a balance, on the one hand giving all the essential details
in the gluing results required in this book, but without on the other
hand reproducing a lot of well-documented material. We will follow the
general strategy used in [17], for the case of connected sums. We will
show how the main constructions go over to the framework of tubes,
but we will leave some of the detailed steps for the reader to check
through. As before, we will divide our discussion into two parts: first,
in the preliminary part of this Section, the easier acyclic case and then,
in the Subsection following, the more general non-degenerate case where
we encounter ‘gluing parameters’. In the Appendix we will extend the
discussion to certain classes of degenerate flat limits.

We fix attention then on the situation where the flat connection ρ

over the common end Y of X1, X2 is acyclic (for simplicity we assume
there are no other ends, although these would make no real difference
to our discussion). We suppose A1, A2 are instantons on the bundles
P1, P2 which are regular points in their moduli spaces, so the operators
DAi

have zero cokernel, and their kernels H1
i ≡ H1

Ai
have dimension

dimH1
i = ind(Pi).

Our first goal is to show that in this situation there is an instanton on
the bundle P over X�(T ), for large T , which is close to Ai over Xi (or,
more precisely, over the large common open region in X�(T ) and Xi). We
first construct a connection A0 on the bundle P over X�(T ) which will
be close to the desired solution. By Proposition 4.3 we can represent A1

over the end Y × [0,∞) of X1 as ρ+ a1 where a1 and all its derivatives
decay exponentially along the cylinder. Choose a fixed cut-off function
χ, with χ(t) = 1 for t < 0 and χ(t) = 0 for t ≥ 1, and let A′

1 be the
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flattened connection equal to A1 outside the tube and to

ρ+ (χ(t− T − 1)a1(t))

over the tube. Thus A′
1 agrees with ρ over the region Y × [T,∞) in the

end and F+(A′
i) is supported in the band Y × (T −1, T ). Now it is clear

that this ASD part of the curvature of A′
1 decays exponentially with T .

More precisely we have for any p, k

‖F+(A′
1)‖Lp

k
≤ Cp,ke

−εT .

We define a connection A′
2 in a symmetrical fashion overX2. Since the

connections A′
i agree with ρ over the ends [T,∞) × Y, [T,∞) × Y , and

since Γρ = ±1, they glue together in a canonical way to give a connection
A0 over X�(T ). The compatibility of the metrics on the manifolds clearly
implies that

‖F+(A0)‖Lp
k(X

�(T )) ≤ Cp,ke
−εT . (4.12)

Now, following Taubes’ approach in [44], we seek a nearby solution
A0 + a to the instanton equations over X�(T ). Thus we want to solve
the equation

d+A0
a+ (a ∧ a)+ = −F+(A0), (4.13)

with a small. The linearised version of this problem would be to solve
d+A0

a = −F+(A0), that is, to find a right inverse for the operator d+A0
,

and this is essentially the problem we have already solved in Chapter 3.
There is a slight additional complication that the connections A′

i which
we are gluing together now depend on T . To get around this we observe
that DA′

i
−DAi is the operation of multiplication by a term which decays

exponentially and whose L2
1 to L2 operator norm is O(e−εT ). Thus

when T is large a right inverse for DAi gives us right inverses Qi for the
operator DA′

i
with operator norm independent of T :

‖Qiφ‖L2
1
≤ Ci‖φ‖L2 ,

where Ci depends only on Ai.
We can now apply the construction of Chapter 3 using these Qi to get,

when T is large, an approximate right inverse P and true right inverse
Q for d+A0

, with

P = Q(d+A0
Q)−1.

We seek our solution to Equation 4.13 in the form a = Qφ so we have
to solve the equation

φ+ (Q(φ) ∧Q(φ))+ = −F+(A0). (4.14)
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In turn we solve this equation using the contraction mapping principle
in suitable function spaces. Abstractly, if we can find Banach spaces
(U, ‖ ‖U ), (V, ‖ ‖V ) over X�(T ) such that

• Q defines a bounded map from U to V with operator norm bounded
by C, independent of T ,

• there is bounded multiplication

‖a ∧ ‖U ≤ M‖a‖V ‖b‖V ,
with M independent of U

then the contraction mapping principle implies that Equation 4.14 has
a solution φ when ‖F+(A0)‖U is small enough (for example less than
(100MC2)−1). Moreover the U norm of φ is of the same order as that
of F+

A0
, and φ is the unique small solution in this sense.

The simplest function spaces to use to obtain a solution are U =
L2, V = L4. Plainly these satisfy the second condition above. For the
first condition we observe that by the Sobolev embedding L2

1 → L4

over the manifolds Xi the operators Qi : L2(Xi) → L4(Xi) satisfy
T -independent bounds. Now, going back to the calculation in the
proof of Proposition 3.9 with P (φ) = β1Q1(φ1) + β2Q2φ2 the difference
DA0Q(φ)− φ is a sum of terms

∇βi ∗Q(φi)

and, just as for the L2 norms in the proof of Proposition 3.9, the
L4(X�(T )) norm of this is bounded by

‖Q(φi)‖L4(Xi)‖∇βi‖L∞ ≤ 2ε(T )‖φ‖L2 .

It follows then that the L2 to L4 operator norm of Q is bounded
independently of T , and we obtain L2 solutions φ to Equation 4.14,
giving L2

1 solutions a = Qφ to Equation 4.13.
There are however many different possible choices of function space in

which we can solve the equation. For example we can work in any
spaces UT = Lp

k(X
�(T )) with p ≥ 2, k ≥ 0. Here, for definiteness,

we will define the Lp
k norm by the sum of the Lp norms of the first

k covariant derivatives. To establish the first property above we use the
same argument as in the proof of Proposition 3.9, modified slightly if
k > 1. We have inverses Qi for DA′

i
which satisfy a uniform Lp

k to Lp
k+1

bound,

‖Qiφ‖Lp
k+1

≤ Cp,k‖φ‖Lp
k
.
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We define Q in the same fashion as before,

Q(ρ) = φ1Q1(φ1ρ) + φ2Q2(φ2ρ),

using the same cut-off functions φi. Then the L2
k(X

�(T )) norm of the
error term DAQρ − ρ is estimated by the sum of the Lp

k(Xi) norms of
∇φi ∗ Q(φiρ). The crucial point here of course is the fact that we can
compute norms equally either in X�(T ) or in Xi, and this is an obvious
consequence of the fact that the identification between the manifolds is
an isometry.
Now observe, extending the discussion in the proof of Proposition 3.9,

that the C0 norm of any iterated derivative of φi tends to zero as T
tends to infinity. This means that we have

‖∇φi ∗Qiφiρ‖Lp
k
≤ cT ‖Qi(φiρ)‖Lp

k
,

where cT tends to zero as T → ∞. Thus

‖∇φiQi(φiρ)‖Lp
k
≤ cT cp,k‖φiρ‖.

Then by the same bound on the derivatives of φi we have

‖φiρ‖Lp
k
≤ aT ‖ρ‖Lp

k
,

with aT → 1 as T → ∞. Putting these inequalities together we see that
the Lp

k operator norm of DAQ − 1 tends to zero as T tends to infinity,
so we can modify Q to obtain a right inverse P satisfying the uniform
estimate above as an operator from Lp

k to Lp
k+1.

As for the uniform multiplication property, this follows from the
uniformity of the Sobolev constants on X�(T ). We need to see that
the Sobolev inequalities

‖f‖Lq(X�(T )) ≤ Cp,q,k‖f‖Lp
k(X

�(T ))

with q = 4p/(4− pk) and

‖f‖L∞(X�(T )) ≤ Cp,k‖f‖Lp
k(X

�(T ))

with pk > 4, hold with constants independent of T . This uniformity fol-
lows from the fact that the Sobolev inequalities hold on the non-compact
manifolds Xi (Proposition 3.20). Indeed if we choose a suitable partition
of unity β1 + β2 = 1, for example βi = φ2i , and apply the Sobolev
inequalities over Xi to βif , we obtain the desired estimate over X.

We see then that we can solve Equation 4.14 without difficulty in
any of these function spaces. This is precisely the advantage of Floer’s
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approach, using tubes, over the approaches (in the case when Y = S3)
using other conformal models, in which the choice of function space is a
relatively subtle matter.
Standard bootstrapping (at least starting with k > 0 or p > 2) shows

that the solution A we have constructed is smooth, and this is then the
instanton over X�(T ) for large T , made by ‘gluing together’ A1 and A2.

The construction applies equally well in a family. Let N1, N2 be pre-
compact subsets of the moduli spaces MPi

,MP2 all of whose points are
regular. For large T we obtain a map

τ = τT : N1 ×N2 → MP ,

by applying this construction to Ai ∈ Ni. To complete the picture we
need to address two problems:

(1) Show that, for T ) 0, τ is a diffeomorphism to its image, and that
the points in the image are regular points.

(2) Describe the image of τ , and show to what extent ‘all’ instantons
on X�(T ) for large T are obtained in this way.

As we have stated above, the discussion of these follows that for the case
of connected sums quite closely, so we will be fairly brief.
We begin with point (1). This naturally breaks into two parts, the

first being to show that the derivative of τ is an isomorphism. This is
tied up with the additivity of the index in Chapter 3. On the one hand,
if dτ is an isomorphism and the image point is regular then

i(P ) = dimH1
A = dimH1

A1
+ dimH1

A2
= ind(P1) + ind(P2).

On the other hand, if we apply the index result Proposition 3.9, it
suffices to show only that A is regular and that dτ is injective. The
fact that A is regular, i.e. that d+A is surjective, follows easily from the
existence of the operator Q satisfying uniform estimates. Recall that we
have A = A0 + a, and our estimates give ‖a‖L4 ≤ Ce−εT . On the other
there is a right inverse Q for d+A0

, with bounded L2 to L4 operator norm.
It follows that the L2 operator norm of d+AQ − 1 tends to zero and so
d+A is surjective. Next, to show that the derivative dτ is injective we can
consider restriction to some compact sets Gi ⊂ Xi, which we can regard
as being simultaneously subsets of X. Thus we can restrict connections
on P and Pi to the same space BGi

. When T is large the composite of τT
with the restriction maps from MP is C1-close to the restriction maps
from Ni to BGi

and it follows readily that τT is an injective immersion,
for large T .
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We now turn to problem (2). We fix function spaces with norms ‖ ‖U
(on 2-forms) and ‖ ‖V (on 1-forms), satisfying the two conditions above.
We would like to show first that there is a constant κ such that for large
T any instanton A� over X�(T ) which is of the form

A� = A0 + b,

with ‖b‖V ≤ κ, is gauge-equivalent to a solution τT (B1, B2) for points
[Bi] close to [Ai] in MPi . (More precisely, [Bi] will be of distance O(κ)
from [Ai].) To do this we suppose first that the indices ind(Pi) are both
zero, so the instantons Ai are isolated in their moduli spaces. What we
obtain immediately from our construction is that if b lies in the image
of Q, say b = Qφ, then if κ is small and T is large the solution is the
given one. This just reflects the fact that Equation 4.14 has a unique
small solution. So we need to prove that A� is gauge-equivalent to a
connection of the form A0 +Qφ.

At this point we can forget the instanton condition. We would like
to prove that, for suitable parameters, any A + b with ‖b‖V ≤ κ is
gauge-equivalent to a connection A0 + Qφ with ‖φ‖U = O(κ). We can
show this using the method of continuity, applied to the family A + tb

with 0 ≤ t ≤ 1. This is fairly straightforward exercise; it is worked
through in detail in [24] for the case of connected sums, although the
case at hand is actually substantially simpler, due to the acyclic nature
of A and consequent absence of a ‘gluing parameter’. We have to show
that the set of parameters t for which there exists a solution pair ut, φt
with

ut(A+ tb) = A+Qφt,

with ‖φ‖V = O(κ), is both open and closed. To prove openness we
use the implicit function theorem. Consider for example time t = 0. If
ut = eξt the linearised equation is

tb = dA0ξ +Qφ,

so the implicit function theorem gives a solution for small t provided
that

dA ⊕Q : Ω0
X�(T )(gP )⊕ Ω+

X�(T )(gP ) → Ω1
X�(T )(gP )

is surjective. But it is easy to see that the index of this operator is minus
ind(P ) (the operator Q can be deformed to

(d+A0
)∗
(
d+A0

(d+A0
)∗ + 1

)−1
),
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which is zero by the additive property and our assumption that ind(Pi) =
0. On the other hand, using suitable function spaces, we can prove that,
when T is large, the operator is injective. If dAξ +Qφ = 0 then

φ = −d+A0
dA0ξ = −[F+

A0
, ξ].

Now suppose that dA0 is injective on Ω0(gP ) and moreover that we have
a bounded multiplication, for ζ ∈ Ω0

X�(T )(gP ), f ∈ Ω+
X�(T )(gP ):

‖ζf‖U ≤ C‖dA0ζ‖V ‖f‖U , (4.15)

with a constant C independent of T . Then combining this with the
uniform bound on Q we get

‖dAξ‖V = ‖Qφ‖V ≤ C‖φ‖U ≤ C‖F+
A0

‖U‖dAξ‖V .
Then, since ‖F+

A0
‖U → 0 as T → ∞, this implies that, for large T , dA0ξ

and hence also ξ and φ are zero, as required.
To establish the uniform multiplication law Formula 4.15 we need a

uniform Sobolev embedding,

‖ζ‖L∞ ≤ C‖dA0ζ‖V . (4.16)

(Note that Formula 4.16 obviously implies Formula 4.15 if we take V =
Lp.) This uniform inequality is crucial to the proof. It is also the vital
ingredient required to show that if b and Qφ are small then ut is close
to the identity, so we always stay in a regime in which the non-linear
problem is well approximated by its linearisation at t = 0.

Lemma 4.14 If pk ≥ 4 then there is a constant Cp,k, independent of
T , such that

‖ζ‖L∞(X�(T )) ≤ Cp,k‖dA0ζ‖Lp
k(X

�(T )).

Again the proof follows rather trivially from the corresponding inequal-
ities on the non-compact manifolds Xi.

Corollary 4.15 If pk ≥ 4 then there are constants Cp,k,j , for 0 < j < k,
such that

‖ζf‖Lp
j (X

�(T )) ≤ Cp,k,j‖ζ‖Lp
k
‖f‖Lp

j
.

This follows from expanding out terms in ∇r(ζf), using Hölder’s in-
equality, and the previous results.
Armed with Lemma 4.14 and Corollary 4.15 it is a simple matter to

carry through the continuity argument. The openness, with suitable
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choices of parameters, follows from Inequality 4.15, and its extension to
connections near A0. For the closedness we obtain a priori bounds on
a solution. Here it is perhaps most convenient to choose the norms,

‖f‖U = ‖f‖Lp , ‖b‖V = ‖b‖Lq + ‖d+A0
b‖Lp ,

with q = 4p/4 − p, although this is by no means essential. Then for
suitable κ and T , we get an Lp bound on F+(A0 + bt). This gives, by
gauge invariance, an Lp bound on F+(A0 +Qφt) and this in turn gives
an a priori bound on the Lp norm of φ.

We are now within sight of our goal in this section: a general ‘gluing
theorem’ in the acyclic case. There are two more observations to make.
First we should return to discuss the more general situation when ind(Pi)
need not be zero. We choose local co-ordinates

χi : Ui ⊂ MPi
→ Rni

around given points in the moduli spaces MPi using functions which
depend on the restriction of connections to compact sets Gi ⊂ Xi – i.e.
the χi extend to BGi . Then we can regard the functions χi as being
functions also on the moduli space MP , and we can consider the ‘cut
down’ moduli space

L = χ−1
1 (y1) ∩ χ−1

2 (y2) ⊂ MP

which has virtual dimension 0. We can work with this cut down space
just as we did with the full instanton moduli space in the previous
case and we can show that there is a unique point in L represented
by connections close to a connection A0 over X�(T ) formed by gluing
together A1 = χ−1

1 (y1) ∈ N1 and A2 = χ−1
2 (y2) ∈ N2.

Finally we will firm up the notion of connections A� over X�(T ) which
are ‘close’ to connections Ai over Xi. One notion is that of connections
which are close, in the norm ‖ ‖V , to the glued connection A0. Another
notion is that of connections which are close to the Ai over some compact
subsets Gi in Xi. For instantons these are essentially equivalent. For
given Gi and q as above let us define

dcomp(A�;A1, A2) = inf ‖u(A�)−A1‖Lq(G1) + inf ‖u(A�)−A2‖Lq(G2)

where the infimum is taken over all gauge transformations u. Also, with
say the norm ‖ ‖V given above, we put

d(A�;A1, A2) = inf ‖u(A�)−A0‖V .
It is clear that dcomp is controlled by d. On the other hand we have
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Proposition 4.16 Let Ai be instantons over Xi as above, with acyclic
limits. There are compact subsets Gi ⊂ Xi and constants δ, C > 0 such
that for any instanton solution A′ on the bundle P over X�(T ) which
satisfies di(A′, Ai) ≤ δ we have

d(A�;A1, A2) ≤ Cdcomp(A�;A1, A2).

To prove this we choose the sets Gi and δ so that any instanton over
X�(T ) which satisfies the condition stated has very small energy over the
complement X�(T ) \ (G1 ∪ G2) ∼= Y × (−T, T ) ⊂ X�(T ). Then we can
apply Proposition 4.4.
Putting the work in this Section together we obtain

Theorem 4.17 Let Ni be compact sets of regular points in the moduli
spaces MPi

. For any sufficiently small κ > 0, and for sufficiently large
T , there are neighbourhoods Vi of Ni and a smooth map

τT : V1 × V2 → MP,X�(T ) ,

such that, for suitable compact sets Gi ⊂ Xi,

• τT is a diffeomorphism to its image, and the image consists of
regular points,

• dcomp(τT (A1, A2);A1, A2) ≤ κ for all Ai in Ui,
• any connection A� in MP with dcomp(A�;A1, A2) ≤ κ for some
Ai ∈ Ni lies in the image τT (V1 × V2).

4.4.1 Gluing in the reducible case

We will now modify the constructions of the earlier part of this Section
to include the case when the limiting flat connection ρ is reducible, with
non-trivial stabiliser Γρ and Lie algebra H0

ρ . Of course this includes the
model example of a connected sum. (This more general gluing theorem
is not needed for the basic Floer theory, so some readers may prefer to
skip it.) We retain the assumption that the flat limit is non-degenerate.
The problem we need to face is that the analytical setting for con-

structing the instanton moduli spaces on the individual 4-manifolds
X1, X2 now involves weighted norms, and we need to see how this affects
the gluing discussion. We will explain two approaches to this. The first
is to observe that in reality, as far as the construction of solutions goes,
the difficulty is illusory. The problem of constructing solutions involves
finding right inverses for the d+ operators whereas, in this situation, the
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weights are only needed because of the fact that the covariant derivative
of our model over the tube has a non-trivial kernel. Thus, in the same
vein as our discussion in Subsection 3.3.3, the phenomena have to do
with different terms in the deformation complex

Ω0
X → Ω1

X → Ω+
X .

In line with this, and related to the discussion in Subsection 3.3.3,
one can proceed by putting weights separately on the terms in the
deformation complex. Over a tubular end Y × (0,∞) we write the
1-forms as

Ω1
X = Γ(Λ0

Y ⊕ Λ1
Y ).

Then we use Lp norms defined by exponential weights on the terms Ω0
X

and Γ(Λ0
Y ) ⊂ Ω1

X , but put no weights on the terms Ω+
X and Γ(Λ1

Y ) ⊂ Ω1
X .

A discussion like that in Subsection 3.3.3 shows that this leads to a
Fredholm theory while the weights do not enter into the norm on the
2-forms, which is the crucial thing in the gluing construction.
Alternatively we can proceed as follows, exploiting the exponential

decay of the curvature of instantons with the given flat, non-degenerate,
limit. We form the manifold X�(T ) as before, and an approximate
solution A0, made by gluing together A′

1 and A′
2. Notice that there

is now a ‘gluing parameter’ involved in defining A0, arising from the
stabiliser Γρ, but for the moment we fix this. Now we define a function
WT on X�(T ) with

WT = eα(T−|t|). (4.17)

Here we are identifying the connecting region in X�(T ) with Y × (−T, T )
in the obvious way. Over the manifolds-with-tubular-ends X1, X2 we
have fixed weight functionsW1,W2. So over the connecting regionW1 =
eα(T+t) and W2 = eα(T−t). We observe that WT is dominated by both
W1 and W2 in the regions of common definition. Now we take the norms
‖ ‖U , ‖ ‖V , on 2-forms and 1-forms respectively, to be the Lp and Lp

1

norms defined by the weight function WT .
The first issue is to construct an approximate right inverse to d+A0

.
The Fredholm theory for the operators DAi

, or equally the operators
DAi,α of Subsection 3.3.3, gives (assuming initially as usual that the
relevant groups H2

Ai
vanish) inverses Qi, bounded with respect to the

Wi-weighted norms over Xi. We perform the ‘splicing’ construction a
little differently from that in Chapter 3, setting

P (ρ) = γ1Q1(ψ1ρ) + γ2Q2(ψ2ρ).
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Here, over the connecting region Y × (−T, T ), the function ψ1 is the
characteristic function of (−T, 0) extended in the obvious way – by 1
over the ‘X1 side’ and 0 over the ‘X2 side’. The function γ1 is chosen
to be equal to 1 over the support of ψ1 and with |∇γ1| = O(T−1).
Symmetrically for ψ2 and γ2. Now we have γ1ψ1+γ2ψ2 = 1 everywhere,
so it follows that

d+A0
P (ρ) = ∇γ1 ∗Q1(ψ1ρ) +∇γ2 ∗Q2(ψ2ρ).

The WT -weighted norm of ψ1ρ is equal to the W1-weighted norm (since
the weight functions are equal on its support). Thus

‖Q1(ψ1ρ)‖Lp,α
1

≤ const. ‖ρ‖U .
On the other hand, the WT -weighted norm of

∇γ1 ∗Q1(ψ1ρ)

is less than the W1-weighted norm (since the weight function is smaller),
so we conclude that

‖∇γ1 ∗Q1(ψ1ρ)‖U ≤ const. T−1‖ρ‖U ,
and we can proceed as before. The bounded multiplication property

‖a ∧ b‖U ≤ M‖a‖V ‖b‖V
follows from the same unweighted case using the arguments of Propo-
sition 3.23 and Formula 4.10. The only other point is to see that the
initial error term F+(A0) is small in the U norm, when T is large. The
problem here is that the weight functionW is very large over the support
of F+(A0), in fact O(eαT ). However, the exponential decay of curvature
(Formula 4.12) tells us that the L∞ norm of F+(A0) is O(e−δT ) so

‖F+(A0)‖Lp,α = O(e(α−δ)T ),

and this is small provided we fix α < δ. With these remarks in place,
the construction of the glued solutions goes through as before. We now
turn to the gluing parameter; there is a family of choices giving a family
of gauge equivalence classes of connections A0 parametrised by

GlA1,A2 = Γρ/(ΓA1 × ΓA2).

The global situation in moduli space is now rather more complicated
because we may encounter reducible connections Ai and the isotropy
groups ΓAi

may change. Let M̃i be the based moduli spaces defined in
Section 4.3. The group Γρ acts on M̃i with quotient Mi and isotropy
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groups ΓAi
. Let πi : M̃i → Mi be the quotient map, Ni be pre-compact

sets of regular points in Mi and Ñi = π−1
i (Ni). Our construction gives

then smooth maps

τ̃T : Ñ1 ×N2 → MP1,

which are constant on Γρ orbits, and so induce maps

τT : E = Ñ1 ×Γρ Ñ2 → MP1.

The form of E will vary depending on the isotropy. If there are no
reducible connections in the Ni then E is the total space of a Γρ × Γρ

bundle over N1 × N2, with with fibres Γρ/C(G). The arguments used
before, modified as in [17][Chapter 7], go over to prove that, for large T ,
the map τT maps E isomorphically to a neighbourhood in MP1.

4.5 Appendix A: further analytical results

In this Chapter we have developed the fundamentals of Yang–Mills
theory over a 4-manifold with tubular ends in the case when the limiting
flat connections are non-degenerate. This essentially suffices for setting
up the Floer theory since, as we shall see in Chapter 5, one may always
perturb the problem to achieve this non-degeneracy. However, there are
good reasons for studying more general situations, in which the limiting
flat connections are degenerate – certainly this often occurs for familiar
3-manifolds. This point of view has been developed extensively by
Taubes [47] and Morgan, Mrowka and Rubermann [36]. For one thing,
the ideas are useful in calculations in Floer theory; for another, they are
essential in studying more geometrical aspects of the instanton moduli
spaces – particularly in connection with algebraic geometry. Thus in
this Appendix we will say a little about this more general situation.

4.5.1 Convergence in the general case

The first question we wish to address is the limiting behaviour of finite
energy instantons over a general 4-manifold with tubular ends. Thus,
fixing attention on one end, we may as well consider an ASD connection
A over a half-tube Y × (0,∞) with∫

Y×(0,∞)

|F (A)|2 < ∞.
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As usual, we let [At] ∈ BY denote the connection over Y obtained by
restricting A to the slice Y × {t}. Then, with no other assumptions on
Y , we wish to prove

Theorem 4.18 The connections [At] converge (in the C∞ topology on
BY ) to a limiting flat connection [A∞] over Y .

First, the space RY ⊂ BY of equivalence classes of flat connections is a
finite union of disjoint path components R(0)

Y ∪ · · · ∪ R(N)
Y say. (Each

is a real algebraic variety.) Our previous argument using the Uhlenbeck
convergence theorem on bands shows that for any sequence Ti → ∞
there is a subsequence Ti′ such that [ATi′ ] converges to a flat limit. If
we knew that we obtained the same limit for any sequence we would
be done. The previous argument, for the case when the flat connections
are isolated, extends immediately to show that there is some component,
R(0)

Y say, of the flat connections, such that

[At] → R(0)
Y as t → ∞

(since the distance, in the L2 metric, between the different components
R(λ)

Y is positive). The problem is to show that the path [At] cannot
‘spiral in’ towards R(0)

Y , with many different limit points.
However if we know that

I =
∫ ∞

0

‖F (At)‖L2(Y ) < ∞, (4.18)

then this spiralling cannot occur and the path must have a unique limit
point. For, by the instanton equation, the L2 norm of the derivative of
the path At in BY is ‖F (At)‖. So, by the triangle inequality, for any
sequence t(i) the sum of the L2 distances∑

i

d([At(i)], [At(i+1)])

is bounded by I (the total length of the path). Since d is a metric this
implies that there can be at most one limit point.
Our task then is to show the finiteness of the curvature integral For-

mula 4.18. (It is easy to show, using the elliptic estimates on bands, that
this is equivalent to the condition that the curvature of A be in L1 over
the tube.) Observe first that the Chern–Simons function ϑ is constant
on the path component R(0)

Y . We may suppose the restrictions At lie in
some neighbourhood N of this component on which the Chern–Simons



4.5 Appendix A: further analytical results 105

function can be lifted to a real-valued function and, without any loss,
we may suppose that ϑ = 0 on R(0)

Y .
We define a function f on [0,∞) by

f(t) = ‖F (At)‖L2(Y ).

We know that f is in L2 and we wish to show that f is in L1. As before,
we put

J(T ) =
∫ ∞

T

|F (A)|2.

So our Chern–Weil equality becomes

1
8π2

J(T ) = ϑ(At).

On the other hand we have

dJ

dt
= −2‖F (At))‖2L2(Y ).

The crux of our proof is an inequality relating the two invariants ϑ
and ‖F‖ of connections over Y .

Proposition 4.19 There are a neighbourhood N of R0
Y , a constant λ

with 1/2 ≤ λ < 1 and a C > 0 such that for any connection [A] ∈ R(0)
Y

ϑ(A)λ ≤ C‖F (A)‖L2(Y ).

We will now complete the proof of the Theorem, assuming this Proposi-
tion, before returning to the proof of Proposition 4.19. Clearly we may
assume that the inequality applies to each At, so we have a differential
inequality

dJ

dt
≤ −C ′J2λ.

Of course, if λ = 1/2 we are in just the situation considered before,
leading to exponential decay. Otherwise, we integrate this inequality to
get

J(T ) ≤ C ′′T−a

for an exponent a = 1
2λ−1 > 1. Now choose b with a > b > 1 and
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consider

S(T ) = 2
∫ T

1

f2tb dt

=
∫ ∞

1

(
−dJ

dt

)
tb dt,

=
(−tbJ(t))T

1
+
∫ T

1

btb−1J(t) dt.

We know that J(t) is O(t−a) and we deduce then that S(T ) converges
as T → ∞, so ∫ ∞

1

f2tb dt < ∞.

Finally, write

f = (f tb/2) (t−b/2),

and apply the Cauchy–Schwarz inequality to get∫ ∞

1

f dt ≤
(∫ ∞

1

f2tb dt

)(∫ ∞

1

t−b dt

)
< ∞

(since b > 1); thus we have shown that f is integrable, as required.

It remains then to establish the inequality of Proposition 4.19, relat-
ing the Chern–Simons invariant and the curvature. This follows from
rather general considerations, using a method due (in another geometric
problem) to L. Simon [42]. Consider first a finite-dimensional situation
in which we have a function φ on an open set U in Rn whose critical
set contains a component K, on which f = 0. Let U ′ ⊂⊂ U be any
(pre-compact) interior domain. We have then

Proposition 4.20 If f is real analytic then there are constants A and
µ with 1/2 < µ < 1, such that for all x in some neighbourhood of U ′∩K

|f(x)|µ ≤ A|∇f |.

This follows from fundamental structure theorems of Lojaszewicz for
real analytic functions, see [34], [18]. For a very simple example take
n = 1 and f(x) = xk. Then ∇f = kxk−1 so we can take

µ =
k − 1
k

.
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The inequality of Proposition 4.19 is clearly an analogue of this
finite-dimensional result, since the curvature is identified with the gra-
dient of the function ϑ, relative to the L2 metric. On the other hand
this infinite-dimensional case is easily reduced to the finite-dimensional
result. First, since the critical set is compact, we can immediately reduce
to proving the inequality on a small neighbourhood of any flat connection
[ρ] ∈ R(0)

Y . Now we use the generalised Morse lemma of Appendix A
to Chapter 2, so that we may assume the Chern–Simons function is
represented on this neighbourhood as

ϑ(x, y) = q(y) + h(x),

where h is a real analytic function on the finite-dimensional space H1
ρ

and q is a quadratic form on the orthogonal complement. The local
diffeomorphism of BY which puts ϑ in this form is L2-compatible so it
suffices to prove that, for the gradient ∇′ϑ defined relative to the product
structure, we have

|ϑ|µ ≤ A|∇′ϑ|,
for suitable constants. But ∇′ϑ = (∇q,∇h) so

|∇′ϑ|2 = |∇q|2 +∇h|2.
The desired inequality therefore follows, since it holds for the non-
degenerate quadratic function q and the finite-dimensional part h, by
Proposition 4.20.

While we have obtained the general convergence result Theorem 4.18
by appealing to the abstract inequality Proposition 4.20, for specific
3-manifolds Y one can verify this directly, and also obtain more detailed
results. An important case, which arises often in examples, occurs when
the Chern–Simons functional is locally a ‘Morse–Bott’ function, i.e. when
we can take the function h in the local model to be identically zero, and
H1

ρ represents the tangent space to the moduli space of flat connections
at ρ. In this case we can take λ = 1/2 and our argument again give
exponential convergence. We take this up in the next Subsection.

New phenomena, studied in detail in [47], [36], appear when we con-
sider, for example, SU(2) connections over the 3-torus T 3 = S1×S1×S1.
The variety of flat connections is a quotient of the Jacobian 3-torus J
by the group of order 2, acting as ±1. It is naturally decomposed into
the smooth part JMB representing the abelian flat connections with ad ρ
non-trivial, around which the Chern–Simons functional is Morse–Bott,



108 Gauge theory and tubular ends

and the eight connections where ad ρ is trivial, which are also the fixed
points of the action. Connections with limits in JMB converge expo-
nentially fast, and can be studied within the weighted space framework.
The second case can be essentially reduced to considering connections
with the trivial limit θ. One can write down a local model explicitly on
the finite-dimensional space

H1
θ = g ⊗H1(T 3;R) = g ⊗R3 = g × g × g.

Here g is the Lie algebra of the structure group, SU(2). As in Appendix
A to Chapter 2, the model is given by the function

h(ξ1, ξ2, ξ3) = (ξ1, [ξ2, ξ3]),

for ξi ∈ g. The special features here arise from the translations, R3,
acting on the base manifold. The ordinary gradient flow of the function
h on g × g × g yields Nahm’s equations

dξi
dt

= [ξj , ξk], i, j, k cyclic.

On the other hand one obtains these equations directly if one seeks
T 3-invariant instantons on T 3 ×R, in the form

A = ξ1 dx1 + ξ2 dx2 + ξ3 dx3.

It is not hard to verify that the inequality of Proposition 4.20 holds
for this h with λ = 2/3. Then, by a simple extension of the proof of
Proposition 4.19 we get

|F (A)| = O(t−2+δ)

for any δ > 0 and instanton A over the tube. On the other hand we
can write down explicit solutions which do not decay exponentially, and
in fact with |F (A)| = O(t−2), through Nahm’s equations. We just let
ηi ∈ (g) satisfy the SU(2) relation ηi = [ηj , ηk], and set

ξi(t) =
1
t
ηi.

4.5.2 Gluing in the Morse–Bott case

It is obviously desirable to extend the gluing theory to more general
situations, relaxing the non-degeneracy hypothesis, and here we will
prove a simple result in this direction. We consider the Morse–Bott case,
so we suppose that the variety of flat connections RY is a smooth r-
manifold and the Chern–Simons functional is non-degenerate transverse
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to RY . (The discussion is really local in RY , so it suffices to assume
this non-degeneracy locally.) We have seen then that any instanton
on a bundle P1 over a 4-manifold X1 with end Y × [0,∞) converges
exponentially to a limit in RY . The first item to discuss is the moduli
theory of such instantons. For simplicity we suppose that all connections
in RY are irreducible. (An important case when these assumptions hold
is when Y is the product of a surface and a circle, and we work with
non-trivial SO(3) bundles.)
Fix a connection ρ ∈ RY . We construct a moduli theory for instantons

with limit ρ using weighted spaces with a small positive weight α. The
entire discussion from the body of this Chapter goes through, and we
get a moduli space MX1(ρ) say, described as the zero set of a Fredholm
section. The expected dimension of MX1(ρ) is the index ind−(P1). Of
course we can then define a larger moduli space MX1 , as a set, as the
union of theMX1(ρ) as ρ varies over RY . The essence of what is going on
here is that the positive weight forces the variations in the connections
that we are considering to decay at infinity, so the limit ρ is preserved.
One might hope that if we used instead a small negative weight –
allowing variations which grow at infinity – we would get a moduli
theory in which the limit is allowed to vary, and so describe MX1 , but
unfortunately this does not work. The non-linear instanton equations
do not behave well on the function spaces defined with negative weights.
However, we can get around this by regarding ρ as a parameter, so we get
a smoothly varying family of Fredholm moduli problems parametrised
by ρ ∈ RY . There is no difficulty in extending the usual discussion of
local models to families and we arrive at the following picture. Let T
denote the tangent space of RY at ρ and let [A] be a point in MX1(ρ).
In the familiar way there are cohomology groups H1

A, H
2
A defined by the

deformation theory of A using the weighted spaces with small positive
weight. There is a real analytic ‘Kuranishi map’

ψ : T ×H1
A → H2

A,

such that a neighbourhood of [A] in MX1 can be identified with a
neighbourhood of 0 in

ψ−1(0) ⊂ T ×H1
A.

This means that we can endow MX1 with the structure of a real analytic
space. Moreover the expected dimension of MX1 is

dimT + dimH1
A − dimH2

A = dimT + ind+(P1) = ind−(P1),
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by Proposition 3.10. We say that a point A in MX1 is a regular point
if the derivative of the map ψ there is surjective. In this case MX1 is
locally a manifold of the expected dimension. By construction, MX1

comes with a restriction map

rX1 : MX1 → RY .

We now move on to the gluing problem, so we suppose that we have
another manifold X2 with end Y ×(0,∞) and form X = X�(T ) as before.
The general idea is that a portion of the moduli space MX is modelled
on the fibre product

MX1 ×RY
MX2 ≡ {(A1, A2) ∈ MX1 ×MX2 : rX1(A1) = rX2(A2)}.

(4.19)
That is, we can glue together instantons Ai over Xi provided that
their limits are the same. Notice first that this is consistent with the
linear gluing formula from Chapter 3 since (writing dim for the expected
dimension)

dimMX = ind+(P1) + ind−(P2) = ind−(P1) + ind−(P2)− dimT

= dimMX1 + dimMX2 − dimRY .

We consider first the case when all the groups H2
Ai

vanish, for all
A1 ∈ MX1 , A2 ∈ MX2 . This means that the MXi are smooth mani-
folds and the restriction maps rXi

are submersions. In particular the
dimensions of the MXi

are not less that the dimension of RY . To make
the gluing construction, given a pair of connections Ai over Xi with a
common limit ρ, we choose a weight function W on the manifold X�(T )

just as in Equation 4.17. The gluing analysis in the weighted spaces
goes through just as in Subsection 4.4.1, and we construct a family of
solutions parametrised by the fibre product. We now move on to the
more general case. The example to have in mind is when the MXi

are
smooth manifolds, but of lower dimension than RY and such that the
maps rXi

are immersions. In this case the expected dimension of each
individual fibre MXi

(ρ) is negative and the fibres are generically empty.
The fact that not all the fibres are empty means that we are forced
to encounter non-trivial obstruction spaces H2

Ai
and this prevents us

from constructing an inverse operator Q satisfying uniform estimates.
In fact to get a good gluing theorem in this situation we need an extra
hypothesis.
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Proposition 4.21 Suppose (A1, A2) ∈ MX1 × MX2 with rX1(A1) =
rX2(A2) = ρ. Suppose that

• the points Ai are regular points of the moduli spaces MXi (so
these are locally smooth manifolds of the expected dimension),

• the map rX1 × rX2 : MX1 × MX2 → RY × RY is transverse to
the diagonal at (A1, A2).

Then for large T there is an open set in the moduli space MX modelled
on a neighbourhood of (A1, A2) in MX1 ×RY

MX2 .

For example, suppose that theMXi
are compact and the rXi

are injective
immersions, so the moduli spaces MXi

can be regarded as submanifolds
of RY . Then if these submanifolds intersect transversally the moduli
space MX can be identified (for large T ) with the intersection MX1 ∩
MX2 ⊂ RY .

We can essentially reduce the proof of Proposition 4.21 to the case
considered before. To simplify notation, let us suppose we are in the
case when the map rX2 is a local diffeomorphism whereas MX1 consists
of a single point A1 with limit ρ. We can suppose then that for each
σ near ρ there is a unique A2(σ) ∈ MX2 with rX2(A2(σ)) = σ and
the content of Proposition 4.21 is that for large T we can construct an
instanton on X�(T ) = X by gluing A1 and A2(ρ). Under the current
hypotheses the dimension of H2

A1
is the same as that of RY . We fix

a set of compactly supported representatives χ1, . . . , χr ∈ Ω+
X1

(gP ) for
the obstruction space H2

A1
. We want to consider an equation, for a

connection A over X1 and an r-vector (ξ1, . . . , ξr) ∈ Rr:

F+(A) +
r∑

p=1

ξpχp = 0. (4.20)

A little care is needed because this is not, as it stands, a gauge-invariant
equation. One can construct similar gauge-invariant equations, by the
devices used in [15] for example, but for the problem at hand we can get
around the difficulty as follows. For each σ ∈ RY near to ρ we choose a
connection A1 + aσ on the fixed bundle P , with limit σ where aσ varies
smoothly with σ and aρ = 0. Of course the aσ cannot decay along the
tube, but we can require that ‖aσ‖L∞ → 0 as σ → ρ. We then consider
connections in the form

A = A1 + aσ + b,

where b is in Lp,α
k and satisfies the gauge fixing condition d∗A1

b = 0.
Then we study Equation 4.20 for connections A of this form, so the
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equation is an equation for the triple (σ, b, ξ). It follows then from the
implicit function theorem that for each σ close to ρ there is a unique
small solution (b(σ), ξ(σ)) to Equation 4.20. Using this solution we can
regard i as a function of σ and the ξp then give a set of local co-ordinates
on RY .

We now perform the gluing construction for each σ near to ρ. We
glue the connection A1+aσ+b(σ) over X1 to the connection A2(σ) over
X2. We obtain then a family of connections A0(σ) on a bundle P over
X = X�(T ). Now we study the equation over X

F+(A0(σ) + c) +
∑
p

ηpχp = 0. (4.21)

This makes sense because the bundle P is canonically identified with P1
over the support of the χp. The construction of the inverse operator in
the previous situation adapts easily to give a uniformly bounded right
inverse (Q, q) to the operator

(c, η) %→ d+A0
c+
∑

ηpχp.

Thus if we write c = Qφ we can apply the implicit function theorem in
Banach spaces to the equation

F+(A0(σ) +Qφ) +
∑
p

ηpχp = 0,

just as before, and we conclude that for each σ there is a unique small
solution (φ(σ), η(σ). Now Q(φ) is O(e−εT ) for some ε > 0 and it follows
that η(σ) − ξ(σ) is also O(e−εT ). Then when T is sufficiently small a
standard degree argument, applied over a small ball in RY centred at
ρ, shows that there is a solution σ to the equation η(σ) = 0 close to ρ,
and this yields the desired instanton over X. The rest of the proof of
Proposition 4.21 follows familiar lines.
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The Floer homology groups

This Chapter brings the first part of the book to its conclusion, with
the construction of the Floer homology groups of a homology 3-sphere,
using instantons over a 4-dimensional tube. Most of the technical
work has been done in the previous two Chapters, but there are three
further topics which we have kept for this Chapter. The first, which
we take up in Section 5.1, is a discussion of compactness properties of
instanton moduli spaces over manifolds with tubular ends. These are
crucially important in Floer’s theory, but the proofs are straightforward
applications of the basic results summarised in Chapter 2. The next
topic is the orientation of the moduli spaces or, better, of orientation
line bundles formed from virtual index bundles. The key point here
is a simple extension of the additive formula of Proposition 3.8. The
other technical topic is a discussion of suitable perturbations of the
instanton equation, which are constructed in Section 5.5. For purposes of
exposition we give the main idea of Floer’s theory at the earliest possible
stage in this Chapter by working modulo 2 (which avoids orientations)
and making a general position assumption (which avoids perturbations).
These two extra topics are then fitted on to give the general definition
of the Floer groups, using SU(2) bundles over homology spheres. In the
last Section 5.6 we discuss a straightforward extension of the theory to
SO(3) connections.

5.1 Compactness properties

As usual, we let X be a 4-manifold with tubular ends. We want to
know what convergence properties hold for sequences of instantons over
X with bounded energy. Recall that over compact subsets of X we have
the general result from Chapter 2: any such sequence has a ‘weakly

113
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convergent’ subsequence. This weak convergence modifies the strong
(C∞) convergence that one would have for solutions of linear elliptic
equations. The prototype example which shows that this modification
is necessary is given by simply rescaling the standard instanton I1 over
R4, i.e. considering a family of pull-backs by δλ : R4 → R4, δλ(x) = λx,

Iλ = δ∗λ(I1).

The new feature we have to understand now derives from the fact
that X is not compact – it has ends modelled on half-tubes. The most
important case to have in mind is when X is itself a tube Y ×R. On
these tubes the translations

cT : Y ×R → Y ×R; cT (y, t) = (y, t+ T )

play a role analogous to that of the dilations on R4 above. Indeed,
in the model case when Y = S3 the standard conformal equivalence
R4\{0} ≡ S3×R takes the dilation δexp(T ) to the translation cT . Under
this conformal equivalence the weakly convergent family of instantons Iλ
over R4, with curvature concentrating to a delta-function at 0, is taken
over to a divergent family of instantons over the tube, with curvature
sliding off to infinity. Just as the family of instantons Iλ was the basic
model for the phenomenon of weak convergence this kind of sliding off
provides the basic model for the new phenomena we encounter over
tubes. There is a natural transversal for the action of the translations
on the moduli spaces. We define a centred instanton on Y × R to be
one where ∫ ∞

−∞
t|F |2 = 0,

that is, where the curvature density has centre of mass 0. Then we can
define M ′

P to be the moduli space of centred instantons and, except in
the case when the instantons are flat (and hence constant in t), we have

MP = R×M ′
P . (5.1)

We will sometimes refer to M ′
P as the (translation-)reduced moduli

space.
We begin with a result which will give convergence over cylindrical

ends.

Lemma 5.1 Suppose all flat connections over Y are non-degenerate.
There are ε, δ > 0 such that if [Aα] is any sequence of instantons over
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Y × [0,∞) with ∫ ∞

0

|F (Aα)|2 ≤ ε,

then there are a subsequence α′, a flat connection ρ and an instanton
ρ+ a over the half-tube such that up to equivalence Aα′ = A+ aα′ , and
for each p, k and h > 0,∫ ∞

h

|∇(k)
A (aα′ − a)|pepδt → 0

as α′ → ∞.
This is a consequence of Proposition 4.3 on exponentially decaying
gauges. Since there are only finitely many choices of ρ we may choose ε
and a subsequence so that the A′

α′ are represented as ρ + aα′ , where
all derivatives of the aα′ satisfy uniform exponential bounds. Then
by Ascoli–Arzelà we may suppose that the aα′ converge pointwise to
a limit a, and the dominated convergence theorem gives convergence in
exponentially weighted Lp

k spaces.

Corollary 5.2 Under the hypotheses above, a sequence of instantons
[Aα] over Y × [0,∞) converges in Lp

k,w over a subdomain Y × [r,∞),
r > 0, to a limit [A] if and only if [Aα] converges on compact subsets,
and for some h > 0 ∫ ∞

h

|F (Aα)|2 →
∫ ∞

h

|F (A)|2.

In particular, applying this to both ends, convergence in a moduli space
MP , defined by the Lp

k topologies, is equivalent to convergence over
compact subsets:

Lemma 5.3 A sequence [Aα] of connections on a given adapted bundle
P over X converges to a limit [A] in the same moduli space MP if and
only if the [Aα] converge in C∞ on compact subsets of Y ×R to [A].

The point here is that the hypotheses imply that no curvature is ‘lost’
at the ends. In one direction, Lp

k convergence gives C∞ convergence on
compact subsets by local elliptic regularity for the instanton equations.
In the other direction, by the Chern–Weil theory∫

Y×R

|F (Aα)|2 =
∫
Y×R

|F (A)|2,

and we can apply Corollary 5.2.
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We now make some useful definitions. By a translation vector T we
mean a sequence of real numbers

T (1) < T (2) < · · · < T (n).

Let [Aα] be a sequence of instantons on an adapted bundle P over the
tube Y ×R, and Tα be a sequence of translation vectors, with Tα(i)−
Tα(i − 1) → ∞ as α → ∞. We say [Aα] is Tα-convergent to limits
[A(1)], . . . , [A(n)], where the A(i) are instantons over Y ×R (defined, in
general, on different bundles), if for each i the translates

c∗Tα(i)
(Aα)

converge on compact subsets over the tube to [A(i)]. Similarly, we say
that the connections are weakly Tα-convergent if the translates converge
weakly on compact sets. In the latter case the limiting data will comprise
connections [A(i)] as above together with elements Z(i) of the symmetric
products of Y ×R. Now let ρ+ and ρ− be the limiting flat connections of
P at ±∞. We define a chain P = (P (1), . . . , P (n)) of adapted bundles
from ρ− to ρ+ to be a sequence of bundles with limiting flat connections
ρ+(i), ρ−(i) such that

ρ− = ρ−(1), ρ+(1) = ρ−(2), . . . , ρ+(i) = ρ−(i+ 1), . . . , ρ+(n) = ρ+.

We write κ(P ) =
∑n

i=1 κ(Pi), so clearly κ(P ) = κ(P ) mod Z. We say
that the sequence [Aα] is chain-convergent if there are a sequence Tα of
translation vectors, a chain of adapted bundles P (1), . . . , P (n) as above
and connections A(i) on P (i) such that the [Aα] are Tα-convergent
to A(1), . . . , A(n). Similarly we can define weak chain convergence,
when theAα are weakly Tα convergent to (A(1), Z(1)), . . . , (A(n), Z(n)).
Notice that, by Lemma 5.3, chain convergence with a chain of only
one term (n = 1) is equivalent to a sequence of translates of the Aα

converging in MP .
It is very useful to see this chain convergence in the 3-dimensional

picture of Chapter 2: viewing an instanton over the tube as a path
in BY . In this picture a chain-convergent sequence is a sequence of
paths which dally for longer and longer periods close to the relevant flat
connections.

We can now state our main compactness result in the form:

Theorem 5.4 Any sequence [Aα] of connections on an adapted bundle
P over Y × R has a weak chain convergent subsequence. If the limit
(P ,Z) has κ(P ) = κ(P ) then the subsequence is chain-convergent.
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We choose ε as in Lemma 5.1. We may also suppose that any non-flat
instanton over the tube has energy greater than ε, and that ε < 8π2, the
energy of a ‘single instanton’. We begin by constructing the first term
P1 in a limiting chain for a sequence Aα. For each α the energy of Aα

is more than ε so there is a unique Tα = Tα(1) such that∫ Tα

−∞
|F (Aα|2 = ε.

Replacing the Aα by their translates we may without loss suppose
that Tα = 0 for each α. Now by our basic compactness result there
is a subsequence of the Aα which is weakly convergent on compact
subsets of the tube, and we may as well suppose this subsequence is
the whole sequence. So Aα → A(1) say, on compact sets, where A(1) is
an instanton on a bundle P (1) over the tube.
We claim now that for any h > 0

lim
∫ −h

−∞
|F (Aα)|2 =

∫ −h

−∞
|F (A(1))|2. (5.2)

This says that no energy is lost at the end in the limit. Note that we
may not be able to take h = 0 if the Aα are weakly converging with
a concentrated instanton at t = 0. On the other hand, since ε < 8π2

the connections are converging strongly over (−∞,−h). Suppose on the
contrary that

e = lim
∫ h

−∞

(|F (Aα)|2 − |F (A(1))|2)
is strictly positive. Note that e ≤ ε by Theorem 5.4. Define Sα ≤ −h
by ∫ Sα

−∞
|F (Aα)|2 = e.

Then it follows immediately from the strong convergence on compact sets
that Sα → −∞. Now let A′

α be the translates of the Aα by Sα. Taking
a subsequence we can suppose that the A′

α converge, and the limit
would then be an instanton with energy at most e ≤ ε, contradicting
the definition of ε. Observe here that the A′

α cannot be only weakly
convergent, since they have energy at most ε in the range (0,−Sα).
This completes the proof of the energy equality, Equation 5.2.
Now we can apply Lemma 5.3 to see that the Aα are converging in Lp

k

over the negative end, and in particular that the limiting flat connection
ρ−(1) of P (1) at −∞ is equal to ρ−.
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Now it might happen that the energy of the ideal connection A(1)
is equal to the limit of the energy of the Aα. In that case we can
apply Lemma 5.3 also to the positive end to see that the positive limit
ρ+(1) of P (1) is equal to ρ+, and then we are done since the Aα are
weakly chain-convergent to a chain with the single term P (1). (It is also
immediate that the convergence is strong if and only if κ(P1) = κ(P ),
i.e. if and only if P and P (1) are isomorphic.) So suppose that

κ(P ) = κ(A(1)) + ν

with ν > 0. Thus we ‘lose’ ν units of energy at the +∞ end in the limit.
Put

ε′ = min(ν, ε)

(in fact, the argument below will show that ν ≥ ε, so ε′ is equal to ε).
We define numbers Tα(2) by∫ Tα(2)

−∞
|F (Aα)|2 = ε−,

and consider the translates Aα(2) = cTα(2)(Aα). The same argument
as before shows that Tα(2) → +∞ and, after going to a subsequence,
we can suppose the Aα(2) are weakly convergent on compact sets, to a
non-trivial limit A(2) on a bundle P (2), with κ(A(2)) ≤ ν.

The task now is to see that the ‘right hand’ limit ρ+(1) of P (1) is
equal to the ‘left hand’ limit ρ−(2) of P (2). For this we apply the decay
result Proposition 4.4. There is an η > 0 such that for any T > 1 any
instanton over (−T, T ) with energy less than η can be represented as
ρ+ a, for some flat connection ρ, such that for |t| ≤ T − 1,

|∇(l)a| ≤ Cle
−δ(t−T ).

To use this we want to see that there is no energy ‘lost’ in the limit
between A(1) and A(2). We can choose L such that for all large α the
energy of Aα in the band (L, Sα − L) is less than η. In fact we may as
well suppose that L = 0. Then we apply Proposition 4.4 to the translate
Bα = c1/2Sα

(Aα). Transforming the bounds we see that there is some
flat connection ρ over Y such that

‖Aα|τ − ρ‖ ≤ Ce−δτ ,
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while

‖Aα(2)|−τ − ρ‖ ≤ Ce−δτ ,

and these immediately give that ρ = ρ+(1) = ρ−(2).
Now, either the energies of A(1) and A(2) account for the total energy

κ of the Aα or there is some remainder ν ≥ ε. In the first case the
argument above shows that the flat limit ρ+(2) is equal to ρ+ and we
are done. In the second case we use the same procedure to construct the
third sequence of translates, and so on.
The process must terminate after a finite number of steps since each

instanton A(i) uses up more than ε energy, and this completes the proof
of Theorem 5.4.

We now turn back to a general 4-manifold X with a tubular end
Y × [0,∞). (For simplicity we assume there is just one end.) It is easy
to adapt the definitions and proofs above to this case. Let Aα be a
sequence of instantons on an adapted bundle P over X, with flat limit
ρ. We say the sequence is chain-convergent if there are a connection
A(0) on an adapted bundle P (0) over X with limit ρ(0), and a chain P

from ρ0 to ρ with instantons A(i) on P (i), such that

• the Aα converge to A(0) over compact subsets of X,
• appropriate translates cTα(i)(Aα) converge to the A(i) on compact
subsets of the tube,

• κ(P ) =
∑n

0 κ(Pi).

Here the only point to note is that in the second item each individual
translate will only be defined on a half-tube, but since the union of
these exhaust the whole tube as α → ∞ this does not affect the notion
of convergence on compact subsets.
Similarly we define weak chain convergence, with weak convergence

(to ideal instantons) replacing strong convergence over compact sets,
and we have as before

Proposition 5.5 Any sequence of instantons on P over X has a weak
chain-convergent subsequence.

There is a third situation we will want to consider, in which we have a
sequence of connections Aα on a bundle P over a family of manifolds
X�(Tα) as in Section 4.4, where the neck-length parameters Tα → ∞.
We suppose X�(Tα) is formed by gluing a common end Y in manifolds
X1, X2, which may have additional ends with cross-sections Yλ. Let
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ρλ be the flat limit of P over Yλ. In this situation (if the curvature is
bounded) the appropriate limiting data consists of

• instantons Ai on bundles P i over Xi, with flat limits ρ+, ρ− over the
ends Y, Y , and σλ over the Yλ,

• a chain of connections A over the tube Y ×R, beginning at ρ− and
ending at ρ+,

• chains of connections Aλ over tubes Yλ×R beginning at σλ and ending
at ρλ.

We say that the connections [Aα] are chain-convergent to this limiting
data if the connections converge to [Ai] over compact subsets of Xi,
and if appropriate translates of the restrictions of the Aα to the tube
Y ×(−Tα, Tα) ⊂ X�(Tα) converge to the links A(j) in the chain. Similarly
for weak chain convergence. We again have a compactness theorem

Proposition 5.6 In any sequence Tα → ∞ and sequence of instantons
Aα on bundles P → X�(Tα) there is a weak chain-convergent subse-
quence.

Again, the proof is a minor variant of that of Theorem 5.4.

In our applications we will combine these basic compactness results
with two other ingredients. The first is an immediate consequence of
the additivity formula for the index. If we define the index of a chain
(P ,Z) to be the sum

ind(P ,Z) =
∑
j

(ind(P (j)) + 8|Z(j)|)

then we have the following Proposition, which merely spells out what
has already been established in Chapter 3 in our present language.

Proposition 5.7 If a sequence of connections Aα on a bundle P over
Y ×R is weakly chain-convergent to a chain of ideal connections A,Z
on adapted bundles

ind(P ) = ind(P ,Z) +H,

where H is the sum of the dimensions of the Lie algebras H0
ρ of the

vertices ρ of the chain.

Of course there are similar statements for connections over a manifold
with tubular ends, or over a family of manifolds X�(T ).
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The second ingredient is the gluing construction of Chapter 4. This
provides, roughly speaking, a converse to the weak compactness results
above. Again, there are a number of cases to consider, the basic case
being that of a family of manifolds X�(T ). Given compact, regular,
subsets Ni in moduli spaces MPi

as in Section 4.4, we constructed a
family NT = Im τT of instantons over X�(T ) for large T . If Tα → ∞
and we choose points Aα ∈ NTα

corresponding to fixed connections Ai

in Ni (some choice may be involved if the limit is reducible) then Aα is
chain-convergent to Ai in the sense above (with the trivial chain on the
tube).
Now if X1 and X2 are both copies of a tube Y × R then plainly

X�(T ) = Y ×R for each T . Thus our gluing results of Chapter 4 apply
in this case to yield an ‘addition’ operation on instantons over tube. If
we have a two-term chain of instantons A(1), A(2), with H2

A(i) = 0, then
for large T we can construct an instanton on the tube which is close to
the translate c−T (A(1) over the half-tube Y × (−∞, 0) and to cT (A(2))
over Y × (0,∞). More precisely, given compact regular subsets Ni of
the centred moduli spaces M ′

P (i) our construction gives us a family of
connections NT , an open subset in the centred moduli space M ′

P (1)�P (2).
In this language our results from Chapter 4 give

Proposition 5.8 If A(i) are instantons in Ni and Aα is a sequence of
centred connections over Y ×R which is chain-convergent to A(1), A(2)
then for large enough α and suitable T , [Aα] lies in the subset NT .

Of course we can easily generalise this to longer chains, or more compli-
cated kinds of convergence for example where there are limiting chains
over the ‘neck’ in X�(Tα).

Let us complete this discussion of compactness properties by spelling
out the particular conclusions we will need in the next Section. We
consider a moduli space of instantons MP on an adapted bundle P over
a tube Y × R, and with non-trivial limits ρ−, ρ+ at either end. We
suppose the metric on Y is such that all moduli spaces MQ, for all
bundles Q are regular. Then we have the compactness principle:

• If dimMP < 9 then any sequence in MP has a chain-convergent
subsequence. (That is, we do not lose ‘concentrated instantons’.)

• If dim MP < 5 then any sequence inMP has a subsequence converging
to a limit A on a chain P of length n ≤ dimMP and with non-trivial
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limits ρ−(j), ρ+(j). (That is, the limit does not factor through the
trivial connection.)

5.2 Floer’s instanton homology groups

We can now explain the main construction in Floer’s theory, in a
simplified version in which we ignore orientation and make a general
position hypothesis. We assume the following hypotheses.

• Y is a homology 3-sphere such that all irreducible SU(2) connections
over Y are non-degenerate.

• There is a metric on Y such that all moduli spaces of instantons on
the Riemannian tube Y ×R are regular, i.e. all the groups H2

A vanish
for instantons A over the tube.

The first condition implies that the space R∗
Y of equivalence classes of

irreducible flat connections is finite, and that we have a mod 8 degree

δY : R∗
Y → Z/8,

as in Chapter 3. The Floer chain group C∗ of Y (with Z/2 co-efficients)
is the (Z/2)-vector space generated by R∗

Y , i.e. for each ρ ∈ R∗
Y we have

a basis element 〈ρ〉 ∈ C∗. The map δY defines a (Z/8)-grading

C∗ =
⊕
i∈Z/8

Ci,

with Ci generated by the 〈ρ〉 with δY (ρ) = i.
The (mod 2) Floer homology groups HFi will be obtained from these

chain groups by adding algebraic information extracted from the (re-
duced) moduli spaces of dimension 1 or 2. We define a linear differential

d : Ci → Ci−1,

in terms of the canonical bases

d(〈ρ〉) =
∑

n(ρ, σ)〈σ〉
where the matrix elements n(ρ, σ) are given as follows. If ρ ∈ Ci, σ ∈
Ci−1 and if P is an adapted bundle over the tube which is asymptotic to
ρ at −∞ and to σ at +∞ then the index ind(P ) is δ(σ)−δ(ρ) = 1 mod 8.
There is thus a unique such bundle, up to equivalence, with ind(P ) = 1.
By hypothesis the moduli space MP = MP (g) is regular, with

dimMP = ind(P ) = 1.
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However, the translations act freely on MP , with quotient M ′
P , so

dimM ′
P = 0,

and M ′
P is a discrete set of points. According to the compactness

principle of the previous Section, M ′
P is compact (there can be at most

one term in a limiting chain) so is a finite set. We put

n(ρ, σ) = Number of points in M ′
P mod 2.

We claim next that

d2 : Ci → Ci−2

is identically zero. Thus for each 〈ρ〉 ∈ Ci, τ ∈ Ci−2 we have to show
that ∑

〈σ〉∈Ci−1

n(ρ, σ)n(σ, τ) = 0.

To see this we consider a bundle Q over the tube, asymptotic to ρ at
−∞ and to τ at +∞ and with

ind(Q) = 2.

Then we have a 1-dimensional reduced moduli space M ′
Q of instantons

on Q modulo translation. This moduli space M ′
Q need not be compact,

but we claim that the ends of M ′
Q can be naturally identified with the

pairs (A(1), A(2)) of connections on a two-term chain P (1), P (2) from ρ

to τ , so ind(P (1)) = ind(P (2)) = 1. This is an immediate consequence
of the compactness principle together with Proposition 5.7. For each
pair A(1), A(2) we construct an open subset NT in the moduli space
M ′

Q with a fixed parameter T ) 0 using our gluing construction and
Theorem 5.4 tells us that any divergent sequence in M ′

Q eventually lies
in one of these sets. It follows then that∑

〈σ〉
n(ρ, σ)n(σ, τ)

is the number of ends of the 1-manifold M ′
Q. Since a 1-manifold has

an even number of ends this gives the required identity, working always
modulo 2.

5.3 Independence of metric

From the definition given above, the Floer homology groups appear to
depend on the metric chosen on Y (which defines the instantons on the
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tube). However, as we shall now show, the groups are in fact independent
of this metric, up to canonical isomorphism. To show this we will develop
the functorial property of the Floer groups with respect to cobordisms,
described briefly in Chapter 1. This is one of the main topics in the book
and we shall take the same ideas a good deal further in Chapters 6 and
7. Here we will just treat the class of ‘h-cobordisms’ which is quite suf-
ficient for immediate applications. Thus we suppose that Y0, Y1 are two
oriented homology 3-spheres and X is a 4-manifold with two-component
boundary ∂X = Y0 ∪ Y1, and such that the inclusions of each boundary
component induce isomorphisms on homotopy groups. We assume that
the 3-manifolds satisfy the hypotheses of the previous Section, for fixed
Riemannian metrics gi on Yi. Thus we have Floer homology groups
which we will temporarily denote by HFi(Y0, g0), HFi(Y1, g1). Then we
choose a generic metric G on the 4-manifold X0, equal to the tubular
metric formed from the gi on collar neighbourhoods of each end.

We will show first that in this situation the Riemannian cobordism
(X,G) defines linear maps on the Floer chain groups

ζX,G : Ci(Y0) → Ci(Y1).

We will see that these are functorial: if X ′ is a similar cobordism from Y1
to Y2 and (X�(T ), G�(T )) is the Riemannian manifold formed by gluing
across Y1 with a long neck of length O(T ), then for large enough T ,

ζX′,G′ ◦ ζX,G = ζX�(T ),G�(T ) : Ci(Y0) → Ci(Y2).

Also, the product cobordism induces the identity map. Moreover we
will see that these maps ζX,G commute with the differentials defined
above and hence induce maps on the Floer homology groups. Then we
will show that these induced maps are independent of the metric G so
we have

ζX : HFi(Y0, g0) → HFi(Y1, g1),

and these are also functorial with respect to the composition operation.
The fact that the Floer groups of a 3-manifold Y are themselves in-
dependent of the metric is a formal consequence of these properties.
For if g0 and g1 are two metrics on Y we can make a Riemannian
cobordism with underlying manifold X = Y × [0, 1] and a metric G

which agrees with g0 at one end and g1 at the other. This induces
a map ζX : HFi(Y, g0) → HFi(Y, g1), and similarly we get a map
ζX′ : HFi(Y, g1) → HFi(Y, g0) using a cobordism X ′. Then the
composite XLX ′ can be deformed to the product metric on (Y, g0)×[0, 1]



5.3 Independence of metric 125

– with the structure on the ends fixed throughout the deformation – so
it follows from the properties above that ζX′ ◦ ζX = id, and similarly for
ζX ◦ ζX′ .

Let us now work through these constructions in more detail. We
extend X to a complete manifold with tubular ends, by adjoining tubes
in the obvious way, and for simplicity we still call the resulting manifold
X. For any pair of flat connections ρ over Y0 and σ over Y1 with

δY0(ρ) = δY1(σ)

there is an adapted bundle P (ρ, σ) over X – unique up to isomorphism
– with these flat limits at the ends and with

ind(P (ρ, σ)) = 0.

We define the maps ζX,G by counting instantons over X, with the
given Riemannian metric G, in much the same way as we defined the
boundary maps in the previous Section, making perturbations. For ρ
and σ as above and for generic metrics G the moduli space MP (ρ,σ) is
0-dimensional, i.e. discrete, by construction. (Here we use the fact that
the only flat bundles over X are those extending the flat bundles over
the ends, which follows from the topological hypothesis.) The key fact
we need is again the compactness of this moduli space.

Proposition 5.9 If ρ, σ and P (ρ, σ) are as above, the moduli space
MP (ρ,σ) is compact.

As usual, this is just a matter of analysing the possible limits using the
compactness principles. For any sequence in MP (ρ,σ) we can pass to a
subsequence which is weakly chain-convergent to limiting data consisting
of

• an ideal instanton B,W on a bundle Q over X, having flat limits
ρ′, σ′,

• a chain of ideal connections A0, Z0 over Y0 ×R, going from ρ to ρ′,
• a similar chain A1, Z1 from σ′ to σ over Y1 ×R.

The addition formula tells us that

ind(Q) + ind(A0) + ind(A1) + dimH0
ρ′ +dimH0

σ′ + 8(|W |+ |Z0|+ |Z1|)
(5.3)

is equal to ind(P (ρ, σ)), and hence is zero. There are now two cases
to consider. If the connection B is irreducible then its index ind(B)
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is non-negative by general position. Since the index of any non-trivial
chain is strictly positive we deduce that in fact ρ = ρ′, σ = σ′ and B is
a limit point of the subsequence in MP (ρ,σ), as required.

Suppose on the other hand thatB is a reducible instanton overX. Our
assumptions on homology imply that B must be the trivial connection,
which has index

−3(1− b1 + b+) = −3.

On the other hand the isotropy algebras H0
ρ′ , H0

σ′ have dimension 3 so,
under our assumptions, we get

ind(A0) + ind(A1) ≤ 3− 3− 3 < 0,

and this gives a contradiction.
We see then that MP (ρ,σ) is a finite set, and we put

NX,G(ρ, σ) = Number of points in MP (ρ,σ).

Then we define

ζX,G(〈ρ〉) =
∑
〈σ〉

NX,G(ρ, σ)〈σ〉.

Now the fact that the product cobordism induces the identity map
follows immediately from the action of translations, which means that
non-flat instantons over the tube have index at least 1. The functorial
property, for sums X�(T ) with T ) 0, is an immediate consequence of
the gluing result. Similarly the chain property

dY1 ◦ ζX,G + ζX,GdY0 = 0 : Ci(Y0) → Ci(Y1), (5.4)

for large T , is obtained from an argument like that which we used to
prove d2Y = 0 above. We consider the matrix element, Dρ,τ say, of the
sum in Equation 5.4 corresponding to 〈ρ〉 ∈ Ci(Y0), 〈τ〉 ∈ Ci−1(Y1). By
definition this is

Dρ,τ =
∑
σ

nY0(ρ, σ)NX(σ, τ) +
∑
σ′

NX(ρ, σ′)nY1(σ
′, τ).

Now there is a bundle Q over X with flat limits ρ and τ and ind(Q) = 1.
We consider the 1-dimensional moduli space MQ of instantons on Q.
The same argument as we used before shows that any sequence in MQ

has a chain-convergent subsequence, with limit given by either

• an instanton on a bundle P = P (ρ, σ), for some flat connection σ over
Y1, with ind(P ) = 0 and a one-term chain from σ to τ over Y1×R, or
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• an instanton on a bundle P ′ = P ′(σ′, τ), for some flat connection σ′

over Y0, with ind(P ′) = 0, and a one-term chain from ρ to σ′ over
Y0 ×R.

Using the description of the ends given by the gluing theory we see
that Dρ,τ represents precisely the number of ends of MQ, and hence is
zero modulo 2.

It remains only to show that the map induced by ζX,G on the Floer
homology groups is independent of the metric G. This is an instance
of the general principle that ‘counting instantons’ or more generally
‘counting solutions to an equation’ should give an invariant independent
of deformations. The argument refines that used in the basic case of
compact 4-manifolds and for more general discussion of this case we
refer to [17]. We will show that if G(0), G(1) are two generic metrics
on X, equal to the same product structures on the ends, then the maps
ζ0 = ζX,G(0), ζ1 = ζX,G(1) are chain-homotopic. More precisely, given a
generic one-parameter family of metrics G(t) all fixed on the ends and
interpolating between G(0) and G(1), we will define a chain homotopy

H : Ci(Y0) → Ci+1(Y1),

such that

ζ1 − ζ0 = dY1 ◦H +H ◦ dY0 . (5.5)

Then, in the familiar way, this proves that ζ0, ζ1 induce the same map
on homology. We define H by its matrix elements, in the usual way, so
we fix attention on basis elements 〈ρ〉 ∈ Ci(Y0), 〈τ〉 ∈ Ci+1(Y1), and we
consider the bundle R over X with limits ρ and τ and with

ind(R) = −1.

We know that for generic metrics on X the moduli space MR is empty,
since the index is negative. However in generic one-parameter families
of metrics we do expect to encounter solutions. Thus, given our path
G(t) of metrics we let N be the moduli space of pairs (A, t) where A is
an instanton on the bundle R relative to the Riemannian metric G(t) on
X. Then a familiar general position argument shows that, for generic
one-parameter families G(t), the space N is a discrete regular set, and
an analysis of the possibilities as above shows that N is compact. (Here
we need an obvious extension of our convergence results to families of
metrics.) We can thus define the matrix element of H to be the number
of points in this parametrised moduli space N .
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Finally, then, we must see that this map satisfies the chain homotopy
condition Equation 5.5. In the way which should now be quite familiar,
this formula is distilled from the description of the end of an appropriate
1-dimensional moduli space. We fix attention on basis elements 〈ρ〉 ∈
Ci(Y1), 〈σ〉 ∈ Ci(Y1) and the corresponding entry lρ,σ in the matrix of the
map dH+Hd−(ζ1−ζ2). We need to show that we can obtain this number
by counting the ends of an appropriate moduli space. We consider the
moduli space L of pairs (A, t) as before, but now where A is an instanton
on the bundle P (ρ, σ), with index 0 and flat limits ρ, σ. Then for
generic families G(t) this moduli space L is a 1-dimensional manifold-
with-boundary. The map (A, t) %→ t gives a smooth map from L to the
closed unit interval and the boundary of L is the pre-image of the end
points, i.e. the union of the two moduli spaces MP (ρ,σ)(g0),MP (ρ,σ)(g1)
whose points define the matrix entries of ζ1 and ζ2.

We obtain the desired formula when we take account of the ends of
L, in addition to the boundary points considered above. Suppose we
have a sequence (Aα, tα) in L, and tα → t. Then, perhaps taking a
subsequence, we may suppose that Aα either converges to a limiting
G(t)-instanton or is chain-convergent to either

• a G(t) instanton A on a bundle of index −1 over X, with limits ρ and
σ′ say, and a one-term chain over Y1 ×R from σ′ to σ, with index 1,
or

• a one-term chain over Y0 ×R from ρ to some ρ′ with index 1, and a
G(t) instanton A on a bundle of index −1 over X, with limits ρ′ and
σ.

(Notice that in these cases we cannot have t = 0, 1 by our general
position assumptions.) The final ingredient is to show that conversely
if we are given a suitable G(t) instanton A and the matching instanton
I, say, over Y0 × R or Y1 × R then there exists a corresponding end
of L. This is a straightforward extension of the gluing theory which
we will now sketch briefly. (This is in the same vein as the gluing
construction in the Appendix to Chapter 4.) If we fix t it may not be
possible to construct a G(t) instanton by gluing together A and I, since
the cohomology group H2

A is non-zero and this represents an obstruction
to the gluing operation. In terms of our proof, we do not have the basic
left inverse PA to begin the construction. However, we do know that
H2

A is precisely 1-dimensional, and is generated by the time derivative

d

ds
(F (A) + ∗G(s)F (A))|s=t.
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This is just the condition that the parametrised moduli space be regular
at (A, t). We represent the metrics G(t+ h) (or, rather, their conformal
classes) relative to G(t) by bundle maps µh : Λ− → Λ+ and set M =
dµh

dh |h=0. Then the regularity condition can be expressed by saying that
there is a linear operator P : Ω+ → Ω1 and a linear functional π on Ω+

such that

ρ = d+A(Pρ) + π(ρ)M(F−(A)). (5.6)

Now let us form flattened connections A′, I ′ from A, I, as in Chapter 4,
and a glued connection Ã, all depending on a parameter T ) 0. We
want to solve the equation for two variables (a, h):

F+(Ã+ a) + µh(F−(Ã+ a)) = 0,

with a and h both small. The linearised version of this is to solve the
equation

F+(Ã) + d+
Ã
a+ hM(F−(Ã)) = 0.

In just the same way as before, one sees that one can solve the non-linear
problem for large T if there are linear maps P̃ , π̃ satisfying uniform
estimates, such that

ρ = d+
Ã
P̃ (ρ) + π̃(ρ)M(F−(Ã)).

Now one shows first that small deformations PA′ , π′ of the solutions
PA, π of Equation 5.6 satisfy the corresponding equation

ρ = d+A′(PA′(ρ)) + π′(ρ)M(F−(A′)).

The instanton I is a regular solution, so there is a right inverse PI . Then
we can glue together (PA′ , π′) and PI to manufacture (PÃ, π̃). The
argument from Chapter 4 goes through without any essential change,
since under our bundle identifications M(F−(Ã)) = M(F−(A′)). (The
map M is supported in the interior of X.)
In this way we see that there is exactly one end of L for each pair (A, I)

of limiting data of the two types above. But, summing the number of
these ends over all choices of σ′, ρ′, we see that (modulo 2) these two
terms give exactly the matrix entries of dY1H and HdY0 respectively.
So, once again, the chain homotopy Equation 5.5 follows from the fact
that

Number of boundary points of L+Number of ends of L = 0 mod 2.
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5.4 Orientations

We will now extend the theory of the previous Section to define integral
Floer homology groups, or more generally Floer homology groups with
co-efficients in any abelian group. For this we need to introduce orienta-
tions, and take due account of signs. We continue with our assumption
that all flat limits we encounter are non-degenerate.
In Chapter 3 we have defined Fredholm operators associated to an

adapted bundle P over a 4-manifold X with tubular ends. Specifically,
here, we take the operators on unweighted spaces in the case of acyclic
(i.e. irreducible) limits and those with small positive weights in the case
of the reducible (i.e. trivial) limit. It follows then, just as in the compact
case, that there is a determinant bundle λP → BP over the space of
compatible connections. This is a real line bundle with the property
that over a regular moduli space MP ⊂ BP , the restriction of λP is
isomorphic to the orientation bundle ΛmaxTMP . Thus if λP is trivial
over the space BP of all connections the moduli space MP is a fortiori
orientable, and a choice of trivialisation of λP fixes an orientation of
the moduli space. As a matter of language, in this Section, when we
talk about trivialisations of line bundles and canonical isomorphisms
between line bundles we are really referring to the orientation class, so
our isomorphisms are canonical up to multiplication by positive scalars.
The fact that the line bundles λP are trivial follows from straight-

forward topological properties of the space BP . The whole discussion
is, as usual, a variant of that in the compact case. Let us first digress
to discuss briefly the homotopy type of this space. It is convenient to
introduce also the space B̃P of framed connections, fixing a frame over a
base point in X. Suppose first that the flat limit of P over each end of X
is trivial. Then we can regard P as being a bundle over the compactified
space X̂, as in Section 3.2. An argument just like that in the case of
a compact base space X (see [17]) shows then that there is a natural
homotopy equivalence

B̃P - Maps∗P (X̂, BG),

where BG is the classifying space of the structure group G under
consideration (here SU(2)), and Maps∗P denotes the homotopy class of
based maps corresponding to the given bundle P .
On the other hand we can see that the homotopy type of B̃P is

independent of the given G bundle P by using the familiar addition
operation. First, using a temporal trivialisation, it is easy to see that



5.4 Orientations 131

B̃P has as a deformation retract the subspace B̃f
P of equivalence classes

of framed connections which are flat over fixed tubular ends in X. The
framing at the base point gives us then a definite isomorphism over
the end with the standard flat model. Hence if X1 and X2 are two
such manifolds with matching ends Y, Y , and P1, P2 are bundles with
matching limits over these ends, we get a gluing map

L : B̃f
P1

× B̃f
P1

→ B̃f
P1�P2

. (5.7)

Suppose in particular that Y × [0,∞) is an end of X and P has flat limit
ρ over Y . Fix another connection B on a bundle over the tube Y ×R
with flat limits ρ at −∞, σ at ∞. Then taking the connected sum with
B gives a map

LB : B̃f
P → B̃f

Q,

say, where Q is a bundle over X with flat limit σ. If B′ is a connection
on the ‘reflected’ bundle over the tube (switching ±∞) the composite
map LB′LB is homotopic to the identity on B̃f

P . To see this we just fix a
path of connections over the tube beginning with BLB′ and ending with
the flat connection ρ, then glue this path to the connections over X.
Thus we see that LB induces a homotopy equivalence between B̃P and
B̃Q. (And at the level of homotopy this is independent of the connection
B.)
This argument gives

Proposition 5.10 For any adapted bundle P over X there is a homo-
topy equivalence

B̃P - Maps∗0(X̂, BG),

where Maps∗0 denotes the component of the trivial map.

We now bring in the determinant line bundles. The essential point is
the existence of an ‘excision formula’ generalising the addition property
Proposition 3.9 for the numerical index. Let A1 and A2 be connections
on bundles P1, P2 over manifolds X1, X2 as above, and let A� = A1LA2

be the connected sum connection, constructed with some large gluing
parameter T .

Proposition 5.11 There is a natural isomorphism

λP �(A�) = λP1(A1)⊗ λP2(A2)
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This follows from our proof of the addition formula Proposition 3.9. We
assume for simplicity that the connection ρ is irreducible: in fact this
is the only case we need below, although the result is also true for the
(trivial) reducible limit. In the simplest situation, where the operators
DA1 , DA2 have trivial cokernels, we have constructed in Chapter 3 an
isomorphism from kerDA1 ⊕ kerDA2 to kerDA� . This isomorphism
induces the desired isomorphism of determinant lines. The specific
isomorphism of the kernels depends on various choices but it is easy
to see from the construction that these are all homotopic and so induce
the same isomorphism of determinant lines (up to positive scalars, as
usual). In the more complicated case when the operators have non-trivial
cokernels we get the required isomorphism from an exact sequence, just
as in [17][Chapter 7].
We return now to the problem of trivialising these line bundles.

The lift of λP to B̃P is naturally an adG-equivariant line bundle λ̃P
and so, since adG is connected, it suffices to show that λ̃P is trivial.
The argument for this, involving embedding the gauge group SU(2) in
SU(n), goes exactly as in the case of compact 4-manifolds treated in
[13]. Again, just as in the compact case, one can fix an isomorphism
between these lines λP for adapted bundles with the same flat limits. If
P, P ′ are two such bundles then P can be obtained from P ′ by adding
instantons in small neighbourhoods of points in X, then one uses an
excision argument again. Thus one gets in sum a line λX,ρ associated
to X and the flat limits. Moreover, if all the flat limits are trivial then
the line λρ can be identified with a line λX obtained from the real
cohomology of X:

λX = λθ ≡ Λmax(H0(X) ⊕H1(X) ⊕H+(X)).

Now we claim that the line λX,ρ ⊗ λ∗
X is independent of the manifold

X with boundary Y . This follows a familiar theme in this book –
a pattern exemplified already by the definition of the Chern–Simons
function and of the grading δY (ρ). For suppose that X1, X2 are two
choices and choose some 4-manifold W with (oriented) boundary Y .
Let Z1 = X1LYW and Z2 = X2LYW . We choose connections Ai

over Xi and B over W with flat limit ρ. Then we have two glued
connections, A1LB,A2LB say, over Z1 and Z2 respectively. Now our
excision isomorphism of Proposition 5.11 gives isomorphisms

λZi
∼= λ(AiLB)) ∼= λPi(Ai)⊗ λ(B) ∼= λXi,ρ ⊗ λW,ρ, (5.8)
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while

λZi
∼= λXi

⊗ λW . (5.9)

The second isomorphism just follows from the standard Mayer–Vietoris
isomorphisms

H1(X) = H1(X1)⊕H1(X2), H+(X) = H+(X1)⊕H+(X2).

Putting together Formulae 5.8 and 5.9, we see that λXi,ρ ⊗ λ∗
Xi

is
the same for either manifold X1, X2 – each is canonically isomorphic to
λW,ρ ⊗ λ∗

W . Thus we get a line

λρ = λX,ρ ⊗ λX

associated solely to the flat connections ρ. To sum up then, there
is a line λρ associated to each irreducible flat connection ρ such that
trivialisations of λρ and of the line λX yield a definite orientation of the
determinant line associated to any bundle over a 4-manifold X, with
homology orientation, and with boundary Y .

With all this background in place we can proceed to define the
integral Floer chain groups. For a homology 3-sphere Y , satisfying the
hypotheses of the previous Section, we fix a trivialisation of each line λρ
and decree that the symbol 〈ρ〉 is associated to ρ and this trivialisation.
Then we define the integral chains C∗(Y ) to be the free abelian group
generated by these symbols 〈ρ〉, with grading as before. In this group we
can regard −〈ρ〉 as being attached to ρ with the opposite trivialisation
of the line. Another way to say this is, if we use real co-efficients, that

C∗(Y ) =
⊕

λρ,

where the sum runs over the flat connections.
We next want to define the differential d : Ci → Ci−1, by a sum

d〈ρ〉 =
∑

n(ρ, σ)〈σ〉,
as in Section 5.3, except now we need each matrix entry n(ρ, σ) to be
an integer. This integer is obtained by counting the points in the 0-
dimensional moduli space M ′

P (ρ,σ) with suitable signs ±1. Let A be an
instanton on P (ρ, σ). By our regularity hypothesis the cokernel of DA

is zero, and the kernel is generated by the action of the translations,
so we can fix a canonical trivialisation of λP (ρ,σ)(A). Now if we choose
X as above we can glue A (after flattening the ends) to a connection
on a bundle P (ρ) with flat limit ρ to get a connected sum bundle P (σ)
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with flat limit σ. Our addition formula of Proposition 5.11 gives an
isomorphism

λP (σ) ∼= λP (ρ) ⊗ λP (ρ,σ)(A),

and then the trivialisation of the last term in this equation induces an
isomorphism between λP (σ) and λP (ρ), and hence between λρ and λσ.
Finally then we get our sign s(A) ∈ {±1}, for fixed symbols 〈ρ〉, 〈σ〉, by
comparing the chosen trivialisations of λρ, λσ under this isomorphism.
Then we define

n(ρ, σ) =
∑

A∈M(ρ,σ)

s(A).

One now has to check that, with this definition of dY , we have d2Y = 0
so we can can define Floer groups

HFi(Y,Z) =
ker dY : Ci → Ci−1

Im dY : Ci+1 → Ci
.

Likewise one has to check that a Riemannian 4-manifold X with bound-
ary ∂X = Y1 ∪ Y 0 as in Section 5.3 induces a chain map ζX which,
up to chain homotopy, is independent of the metric. These are all
straightforward exercises, using oriented moduli spaces and oriented
boundaries, which we leave for the reader. The basic point to note
is that the gluing construction we have used to describe the ends of the
relevant moduli spaces is compatible with the addition isomorphisms we
have fixed in Proposition 5.11 for the indices. Notice that while there are
a number of points where we have to fix conventions to define the signs
s(A) above these are not really important since a change in convention
will just change the sign of dY and this does not affect the homology.

5.5 Deforming the equations

Up till now we have assumed that geometric data underlying the Floer
theory is in ‘general position’ in that, first, the flat irreducible connec-
tions are acyclic and, second, the moduli spaces of instantons on the
cylinder are regular (and so in particular are of the proper dimension).
This Section is devoted to the extension of the theory in this case when
these conditions do not hold. The approach is to recover the earlier
picture by making a suitable small deformation of the problem: in spirit
and technique this follows closely the similar discussion for 4-manifold
invariants; cf. [13]. As usual we concentrate here on the case of SU(2)
connections but the arguments can be adapted, with minor changes, to
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other structure groups and to this end we formulate some of our results
more generally.
We begin by describing the perturbations that we will allow. Let

γ be an embedded loop in our homology 3-sphere Y , and extend the
embedding to a solid torus S1 × D2 → Y . Thus for each point z in
the disc we have a parallel copy γz of γ. If A is an SU(2) connection
on a bundle over Y we let τz(A) be the trace of the holonomy of the
connection around γz. Now choose a smooth, positive, 2-form µ of
compact support on the disc and with integral 1. We define

σ(A) =
∫
D2

τz(A)µ(z). (5.10)

This is plainly a gauge-invariant quantity: more precisely σ defines a
smooth G-invariant function, taking values in the interval [−2, 2], on
the space A of connections. More generally, if σ1, . . . , σN are functions
formed in this way and η : RN → R is smooth, we may consider a
G-invariant function

η(A) = η(σ1(A), . . . , σN (A)). (5.11)

We call such functions η the admissible functions on A. For any such
function we may perturb the Chern–Simons function Φ to Φ + η.
Strictly we should now redo the entire differential-geometric and an-

alytical theory for this perturbed situation, but in reality the previous
discussion goes through with only small changes. We begin by consid-
ering the derivative of the function σ with respect to the connection A.
This requires some notation. Let p be a point on a loop γz in Y . The
holonomy around γz can be viewed as an element of the fibre of the
adjoint bundle over p, a copy of SU(2). Let π : SU(2) → su(2) be the
projection given by

π(u) = u− 1
2Tr(u)1. (5.12)

This is equivariant with respect to the adjoint actions of SU(2) on itself
and its Lie algebra, so induces a map from the adjoint bundle of groups
to the adjoint bundle of Lie algebras gP . Let TA(p) be the element of
the latter bundle defined by applying this map to the holonomy. In this
way we get a section TA of the bundle gP over the solid torus in Y , which
has the property that its covariant derivative along the family of loops
is zero. Now pull the 2-form µ back from the disc to the solid torus by
the obvious projection. For simplicity we also denote this pull-back by
µ. Plainly this can be viewed as a smooth 2-form on Y , supported in
the solid torus.
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Lemma 5.12 The derivative of σ(A) with respect to the connection A

is the map

a %→ −
∫
Y

Tr(a ∧ (TAµ)).

Here the product TAµ makes sense as a smooth bundle-valued 2-form
over Y , even though TA is only defined in the solid torus, because µ

vanishes outside the solid torus. We will leave the proof of Lemma 5.12,
which is largely a matter of notation, as an exercise.

We now turn to the critical points of the perturbed function Φ + η.
Using the Lemma and the chain rule, these are solutions of the equation

FA =
N∑
i=1

∂iη TA,i µi. (5.13)

Here ∂iη denotes the partial derivative of η : RN → R in the ith variable,
evaluated at the point (τ1(A), . . . , τN (A)), while TA,i and µi are defined
as above – supported in the solid torus defining σi.

Although it is not really necessary for our purposes here, it will be
convenient to assume that the solid tori defining σi are disjoint, so
make up a ‘link’ in the 3-manifold. We may then simplify our notation
by writing TA for TA,i, with the obvious meaning. The solutions of
Equation 5.13 have a simple geometric interpretation, due to Floer,
which is worth mentioning here although it will not play any role in
our work. (See [8] for a more detailed account, in a case in which
this interpretation is important.) If the solid tori are disjoint then
Equation 5.13 and the fact that TA is covariant constant in the loop
direction imply that the connection A is reducible over each solid torus.
Moreover for each torus the holonomies around all the loops γz are the
same, with trace τi say. Likewise the holonomies around all meridians
are the same, with trace θi say. The content of the equation is the
condition that

θi = ∂iη(τ1, . . . , τN ). (5.14)

This is an equation which only involves the flat connection obtained by
restricting A to the complement in Y of all the solid tori (since we can
push the loop defining τi to the boundary). Conversely, if we are given
such a flat connection one may construct a solution of Equation 5.13. In
sum, just as the critical points of the original Chern–Simons functional
correspond to representations of the fundamental group of Y , the critical
points of the perturbed functional correspond to representations of the
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fundamental group of the link complement in Y , satisfying the boundary
condition Equation 5.14.

The perturbed instanton equations on the cylinder, corresponding to
the gradient of the perturbed functional can be written either in ‘3+1
notation’ as

∂A

∂t
= ∗3

(
FA −

∑
∂iη µi TA

)
,

or in 4-dimensional notation as

F+
A =

∑
∂iη µ+i TA. (5.15)

Here TA is defined in the obvious way and µ+ is the self-dual 2-form,
supported in a copy of S1 × D2 × R, obtained by pulling back µ and
taking the self-dual part. Now suppose that we have a 4-manifold X

with a tubular end modelled on Y × R. We can introduce a cut-off
function ψ supported on the cylindrical end and equal to 1 outside a
compact set. Then we may consider solutions of the equation over the
complete 4-manifold X:

F+
A = ψ

∑
(∂iη) µ+i TA, (5.16)

which obviously reduces to Equation 5.15 over the end. Similarly, if we
have a pair of perturbations we can write down an equation over the
infinite tube Y ×R which agrees with one perturbed equation for t large
and positive and with the other for t large and negative.

With this differential geometry in place we can now turn to discuss
the analysis. The holonomy around a circle is obtained by solving an
ODE of the shape

du

ds
= uA,

and if A is square integrable on the circle the solution u will lie in the
Sobolev space L2

1 and is therefore continuous. Moreover the value of
the solution u regarded as a function of A ∈ L2 will vary continuously.
The restriction of an L2

2 function in four dimensions will be in L2
1/2

on a 1-dimensional submanifold, so certainly in L2. This means that
the whole set-up will behave well provided we work with connections
in four dimensions of class at least L2

2. We have perturbed linearised
operators LA,η which differ from LA by a compact perturbation (in
fact a pseudo-differential operator of order −∞), so the spectral theory
and linear analysis go through without change. The crucial issue is



138 The Floer homology groups

compactness. First we have a local discussion over a 4-ball. The
perturbation terms ∂iη µi TA are obviously universally bounded in L∞

for all connections. Uhlenbeck’s theorem tells us that for suitable ε any
sequence of connections over the ball with ‖F‖L2 < ε and ‖F+‖L∞ ≤ C

has a subsequence converging (after gauge transformation) weakly in
Lp
1 for all p. Second, extend to the subsets carrying the perturbation.

The arguments for gluing gauge transformations work equally well with
weak Lp

1 convergence, once p > 2. Thus if we have a sequence of
solutions of Equation 5.15 over the tube we get weak Lp

1 convergence of a
subsequence over products N×(a, b) ⊂ Y ×R of a solid torus N defining
the perturbation with a small interval (a, b) in the R-variable, provided
we can find a cover of this set by 4-balls over which the curvature of all
the connections is small in L2. Then restriction theorems for Sobolev
spaces give strong L2 convergence over the loops, once p > 3. In this way
we can show that a subsequence converges weakly in Lp

1 over N × (a, b)
to an Lp

1 solution of the Equation 5.15. From there it is fairly routine
bootstrapping to show that the limit and convergence are both actually
in C∞.

Next we have to discuss the bubbling phenomenon. Again, our
starting point is the fact that F+ is universally bounded in L∞ for
any solution of Equation 5.15. The proof of the removable singularities
theorem given in [11], [24] (or indeed, of the decay results in Chapter
4 above) extends easily to show that any connection over a punctured
4-ball with F+ bounded in L∞ and with ‖F‖L2 < ∞ has bounded
curvature and may be represented over the entire 4-ball by a connection
matrix in Lp

1, for all p. From this it follows, much as above, that if Z is a
finite subset ofN×(a, b) andA is a smooth connection over (N×(a, b))\Z
whose curvature has finite L2 norm and which satisfies Equation 5.15
almost everywhere, then A is gauge-equivalent to a smooth solution
over N × (a, b). Similarly for the variants of the equation such as
Equation 5.16.
Finally, we consider the global picture. It is obviously not appropriate

to study solutions of the perturbed instanton equations over the entire
cylinder with curvature in L2, since the ‘stationary solutions’ obtained
from the critical points will not satisfy this condition. Instead we study
the solutions of the perturbed Equations 5.15 with

∫ ∣∣∣∣∣F− −
∑
i

(∂iη) µ−
i TA

∣∣∣∣∣
2

< ∞.
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In (3 + 1)-dimensional notation this is just the condition that∫ ∣∣∣∣dAdt
∣∣∣∣2 < ∞.

We may then take the whole discussion of Chapters 2, 3, 4 to the
perturbed situation, systematically replacing the Chern–Simons func-
tional by Φ + η. We get control of the connections over bands in the
end as before using the universal L∞ bound on the perturbation. The
final conclusion is that the perturbed equations enjoy exactly the same
analytical properties, including the partial compactness, as the original
equations.

5.5.1 Transversality arguments

We will now justify our choice of perturbation by showing that these
allow us to achieve the general position conditions assumed before. We
begin with an elementary result, which we state in more generality than
we need.

Lemma 5.13 For r ≥ 1 let g1, . . . , gM and g′1, . . . , g
′
M be elements of

U(r) and suppose that for all words W

Tr(W (g1, . . . , gM )) = Tr(W (g′1, . . . , g
′
M )).

Then there is a u ∈ U(r) such that g′i = ugiu
−1 for each i.

Here a ‘word’ means, as usual, a formal expression in non-commuting
variables. Thus another way of stating the hypothesis of the lemma is
that if ρ, ρ′ are two homomorphisms from the free group FrM on M

symbols to SU(r) and if Tr(ρ(X)) = Tr(ρ′(X)) for all X in FrM then
there is a u such that ρ′(X) = uρ(X)u−1 for allX. Said differently again,
the assertion is that two finite-dimensional unitary representations of
FrM with the same character are conjugate. For the proof, we let I(ρ, ρ′)
be the image of the homomorphism (ρ, ρ′) from FrM to SU(r)×SU(r).
This is a subgroup of SU(r) and by assumption for any element (v, v′)
of I(ρ, ρ′) we have Tr(v) = Tr(v′). Let H be the closure of I(ρ, ρ′) in
SU(r) × SU(r). By a fundamental theorem from Lie group theory this
is a Lie subgroup, and plainly Tr(v) = Tr(v′) for any (v, v′) ∈ H. In
other words the two representations of H obtained by projecting to the
two factors in SU(r)×SU(r) have the same character. But, by another
basic theorem, we know that a representation of a compact group is
determined up to conjugacy by its character and our result follows.
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Now by a straightforward compactness argument we can deduce that,
for fixed r,M , there is a finite number of words W1, . . . ,WN such that
if

Tr(Wα(g1, . . . , gM )) = Tr(Wα(g′1, . . . , g
′
M ))

for all α = 1, . . . , N , then the gi, g
′
i are simultaneously conjugate, as

above. In the case most relevant to us, when the elements lie in SU(2),
it almost suffices to take the M +M(M − 1)/2 words

xi, i = 1, . . . ,M, xix
−1
j , i, j = 1, . . . ,M, i < j. (5.17)

It is an easy and enjoyable exercise to check that if the traces of these
words, evaluated on two systems gi, g′i in SU(2), are equal then either
the gi, g′i are simultaneously conjugate as above or there is a u such
that g′i = ug−1

i u−1. Thus we need some extra words, for example the
commutators, to rule out the latter alternative.
Consider the product SU(r)M and the action of SU(r) on this set by

simultaneous conjugation. Write SU(r)M/SU(r) for the quotient space.
For any word W the trace defines a function χW : SU(r)M/SU(r) → R.
Thus if we fix a set of N words Wα as above we get a map

χ : SU(r)M/SU(r) → RN .

The content of the discussion above is that we can choose words so that
χ is an embedding of the quotient space in RN . Now let (SU(r)M )∗
denote the subset of SU(r)M of points whose stabiliser under the action
consists only of the centre of SU(r). The quotient of this subset is then
a manifold.

Lemma 5.14 We may choose words Wα such that χ is an immersion
of (SU(r))M∗ /SU(r) in RM .

For simplicity we do this in the case of SU(2), and we consider the set of
N0 = M +M(M − 1)/2 words given in Formula 5.17 above. (Obviously
the immersive condition is preserved if we extend our set of words.)
We identify the tangent space to SU(2)M at a point (g1, . . . , gM ) with
the product of M copies of the Lie algebra, by left translation. The
derivative of χ at this point is then given by the linear map L : su(2)M →
RN0 ;

L(ξ1, . . . , ξM ) = (〈ξi, γi〉; 〈ξi − ξj , γij〉).
Here 〈 , 〉 denotes the standard inner product on su(2) = R3 and

γi = gi − 1
2 Tr(gi)1, γij = gig

−1
j − 1

2 Tr(gig
−1
j )1.
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(The expression appearing here is just the projection π from SU(2)
to its Lie algebra considered in Equation 5.12 above.) It is again an
exercise in linear algebra, using induction on M , to show that, provided
the gi do not lie in a single one-parameter subgroup, this map L has a
3-dimensional kernel, the set of (ξ1, . . . , ξM ) with

ξi = η − giηg
−1
i

for η ∈ su(2). Of course the problem here is just an infinitesimal version
of the one considered previously.

To sum up, we have shown that we may choose words so that the map
χ gives an embedding of SU(2)r/SU(2) in Euclidean space, and is an
immersion on the manifold subset (SU(2)r)∗/SU(2).

Return now to the space of SU(2) connections over a homology 3-
sphere Y . Let K ⊂ B∗

Y be a compact subset and K̃ → K be a compact
subset of the tangent bundle of B∗

Y , restricted to K. For example, if
K is a submanifold, K̃ could be the unit sphere bundle in TK. It is a
basic fact that a connection is determined, up to gauge equivalence, by
its holonomy. The infinitesimal version of this is the fact that for any
tangent vector a to B∗

Y at a connection A we may choose a finite set of
loops δi, i = 1, . . . ,M , in Y , with a common base point, such that the
derivatives of the holonomy maps around δi map a to a non-zero tangent
vector of (SU(2)M )∗/SU(2). By compactness, we may choose these
loops such that this derivative maps the fibres of K̃ → K injectively
to the tangent spaces of (SU(2)M )∗/SU(2). Fix an map χ as above,
defined by words Wα. For each word Wα we form a loop γ̃α out of the
δi, using the usual product operation. Then the traces of the holonomies
around the loops γ̃α map the fibres of K̃ → K injectively into the tangent
space of RN . The loops γ̃α cannot be disjoint and embedded but we
may approximate them arbitrarily closely by disjoint embedded loops
γα in Y and it is clear that, for a good enough approximation, the
traces of the holonomies around the γα will have the same property.
Likewise, if we perform the averaging construction of Equation 5.10 with
a sufficiently concentrated 2-form µ we see that we can find functions
σα – for α = 1, . . . , N – on the space of connections, whose derivatives
give fibrewise embeddings.
Now suppose that K has local ‘finite-dimensional models’, as we have

seen holds true when K is the space R∗
Y of flat connections. Thus

we suppose that in a neighbourhood of any point K is contained in a
finite-dimensional submanifold. It follows easily then from the discussion
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above (adjoining the unit spheres in the tangent spaces of these finite-
dimensional manifolds to K̃) that we can choose σ = (σ1, . . . , σN ) in
such a way that σ gives an embedding of K in RN and the derivative
D(σ) of σ gives an embedding of K̃ in the tangent space of RN . (That
is, we first choose our loops to get an embedding in (SU(2)M )∗/SU(2)
and then apply the Lemma to embed in RN .)

The work that remains now is fairly standard differential topology.
Recall that R∗

Y denotes the set of equivalence classes of irreducible flat
connections, the critical points of the unperturbed problem. Let R̃∗

Y be
the set of equivalence classes of pairs (A, a) where [A] ∈ R∗

Y and a ∈ H1
A

with ‖a‖ = 1. (This can be thought of as the set of unit vectors in the
Zariski tangent space of R∗

Y .)

Proposition 5.15 Suppose σ is chosen so that D(σ) gives an embedding
of R̃∗

Y in TR
N . Then we may find arbitrarily small ε ∈ RN such that if

η(x1, . . . , xN ) =
∑

εixi the critical points of the functional Φ+η : B∗ →
R/Z are non-degenerate.

To prove this we pull back the cotangent bundle of B∗
Y to get a bundle, E

say, over B∗
Y ×RN . Thinking of εi as co-ordinates on RN , the expression

Φ +
∑

εidσi defines a section, Φ say, of E . The hypothesis says that
the derivative of Φ is surjective at all points in R∗

Y × {0}. So, by the
implicit function theorem, the zero set Z of Φ is a smooth N -dimensional
submanifold in a neighbourhood of this set. Now consider the projection
π from Z to RN . By Sard’s theorem there are arbitrarily small ε which
are regular values of π, and any such regular value satisfies the condition
stated in the Proposition.
Notice that, since the zero set R∗

Y is compact, the set of parameters
ε which satisfy the condition of Proposition 5.15 is actually open and
dense.

We now move on to the gradient lines. We should first fix a per-
turbation as in Proposition 5.15 to make the critical points of the
perturbed functional non-degenerate then we have a good Fredholm
theory for solutions of the deformed instanton equation as discussed
above. The remaining issue is to arrange, by making a further small
perturbation, that all the moduli spaces of deformed instantons are cut
out transversally. To simplify our notation let us suppose that in fact
the original Chern–Simons functional has non-degenerate critical points
and focus on the further deformation which needs to be made.
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Suppose then that A is an instanton over the tube and the cokernel
H2

A is non-zero. Recall that if we view A as a one-parameter family
of connections over Y , the vector space H2

A can be identified with the
time-dependent bundle-valued 1-forms φ over Y satisfying the equation

dφ

dt
= − ∗3 dA ∗3 φ,

which decay as t → ±∞.

Lemma 5.16 For each t the L2 inner product over Y ,〈
φ,

dA

dt

〉
is zero.

To prove this we recall that the instanton condition is dA
dt = ∗3FA and

differentiate with respect to t:

d

dt

〈
φ,

dA

dt

〉
=
〈
dφ

dt
, ∗3FA

〉
+
〈
φ, ∗3 dF

dt

〉
= −〈∗3dA ∗3 φ, ∗3FA〉+ 〈φ, ∗3dA ∗3 FA〉 = 0.

Thus the inner product is constant in t, but since all terms decay at ±∞
the constant must be zero.
(There is a more conceptual proof of the lemma involving reparametri-

sations of the gradient line: in particular the analogous result is true for
any gradient equation.)
Now a variant of the ‘unique continuation’ result of [17][Chapter 4]

shows that the path At, viewed as a map from R to BY , is one-to-one
and maps into the set of irreducible connections. Since the At converge
to critical points at ±∞ the image is contained in a compact set in BY .
We may thus choose our map σ as above so that the composite σ(At)
defines an embedded path ν in RN . Fix some t0 ∈ R such that φt0 does
not vanish (in fact, by a unique continuation result, any t0 will do). By
the immersive condition and the Lemma we may suppose σ is chosen
such that the images under Dσ of dA

dt and φ, evaluated at t0, are a pair
of linearly independent vectors, p, q say, in RN . Of course X is just the
velocity vector of the path ν at the parameter value t0. Now we choose a
small neighbourhood U of ν(t0) inRN such that the intersection ν−1(U)
of the path ν with U is a small interval about t0. It is clear then that
we can find a function η on RN supported in the small set U such that
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(dη)ν(t0)(q) > 0 and moreover (dη)ν(t)(qt) ≥ 0 for all t, where

qt = (Dσ)At(φt).

This means that, writing η = η ◦ σ as before,∫ ∞

−∞
dη(φt) dt > 0.

(Here φt is regarded as a tangent vector to B∗
Y at At.)

Now let K be any compact subset of a moduli space of instantons
over the tube. Evaluating at some t0, this maps to a compact set in B∗

Y .
Similarly the set of unit vectors in the cokernel spaces H2

A for A ∈ K

forms a compact set of tangent vectors. By using the construction above,
and a covering argument, we can find a σ and a finite set of functions
η1, η2, . . . , ηr on RN such that for any A ∈ K and φ ∈ H2

A there is an
ηα with ∫ ∞

−∞
dηα(φt) dt &= 0.

We can now use the same standard argument as in the proof of Propo-
sition 5.15. We consider the family of perturbed instanton equations
parametrised by δ ∈ Rr:

dA

dt
= ∗FA + grad ηδ, (5.18)

where ηδ is the function

ηδ =
r∑

α=1

δαηα

on BY . We regard Equation 5.18 as defining a section of a suitable
bundle over the product of the space of connections over the cylinder
with the parameter space Rr. The condition above asserts that this
section has transverse zeros near K × {0}, and we then apply Sard’s
theorem to the projection map to Rr. We obtain a perturbation ηδ such
that the perturbed instanton moduli space, in a neighbourhood of K, is
cut out transversally.
Our discussion of the gluing theory for instantons on the cylinder

shows that if a sequence of instantons Ai is chain-convergent and if the
H2 spaces vanish for all the instantons in the limiting chain, then H2

Ai
=

0 for large i. Similarly for weak chain convergence in which bubbling
off may occur. The corresponding results are true for the perturbed
instanton equations. This means that we can extend our transversality
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results from the compact sets considered above to all instanton moduli
spaces, using induction on the energy level. To sum up then we have

Proposition 5.17 There are arbitrarily small perturbations η such that
all the critical points of Φ + η are non-degenerate and all perturbed
instanton moduli spaces are regular.

With all this discussion in place we are now able to define the Floer
groups for a general homology 3-sphere. We choose a suitable small
perturbation η and apply the construction of Sections 5.2 and 5.4 to
the perturbed functional. The argument of Section 5.3, applied to
suitable deformed instanton equations, shows that the Floer groups are
independent, up to canonical isomorphism, of the perturbation.

There is one important point to notice here, involving the reducible
connection θ. We know that this is a non-degenerate critical point of the
original Chern–Simons functional Φ since H1

θ = H1(Y ;R) ⊗ su(2) = 0.
Thus the same will be true for small enough perturbations Φ+ η. More
precisely, we want θ to be a non-degenerate critical point of the functions
Φ+sη for all s ∈ [0, 1]. If we have a pair of such perturbations the index
for the perturbed instanton equation over the cylinder with limits θ at
±∞ (in the trivial homotopy class) is −3, as before. This means that the
only perturbed instanton of this kind is the trivial connection over the
cylinder, which is the essential fact used in Section 5.3. Another point
to note is that we can use the perturbations of the instanton equation
discussed above to get around a problem with the flat connections over
4-manifolds. Recall that this is the case not covered by the Freed–
Uhlenbeck generic metrics theorem: one obviously cannot make the
moduli space of flat instantons regular by changing the metric. However,
one can achieve regular moduli spaces by making a small perturbation
of the kind discussed here.

5.6 U(2) and SO(3) connections

Throughout our work so far we have concentrated on SU(2) connections.
We will now consider a straightforward extension of the theory, involving
the structure groups U(2) and SO(3). Consider first a U(2) bundle E
over a manifold V (it will be convenient to work with complex vector
bundles here). The bundle gE of trace-free, skew adjoint, automor-
phisms of E is a real vector bundle with structure group SO(3). The
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characteristic classes of these bundles are related by

w2(gE) = c1(E) mod 2, p1(gE) = c1(E)2 − 4c2.

An SO(3) bundle W lifts to U(2), i.e. arises as gE for some E, if
and only if the Stiefel–Whitney class w2(W ) ∈ H2(V ;Z/2) can be
lifted to an integral class. A connection on E induces connections
of gE and on the line bundle Λ2E; conversely it is easy to see that
connections on these two bundles determine a unique connection on
E. The advantage of working with U(2) bundles is that the discussion
of ‘reducible connections’ is straightforward. A U(2) connection has a
non-trivial stabiliser under the action of the gauge group (that is, larger
than the scalars) if and only if it is compatible with splitting E = L1⊕L2.
In the case of SO(3) on the other hand there are a number of different
possibilities; see [8]. Fix a connection α on the line bundle Λ2E and
let AE be the set of connections on E compatible with α. Let GE be
the unitary automorphisms of E of determinant 1; then the stabiliser of
a generic connection in A is ±1, just as in the SU(2) picture, and the
reducible connections, with non-trivial stabiliser, arise from splittings as
above. There is a natural map from AE/GE to the space AgE

/GgE
of

equivalence classes of connections on the SO(3) bundle gE and this map
is finite-to-one. In fact there is an action of the group H1(V ;Z/2) on
AE/GE and AgE

/GgE
is the quotient space. To see this action, think of

an element χ of H1(V ;Z/2) as a homomorphism from πV to ±1 ⊂ S1.
As such it defines a flat complex line bundle Lχ such that L2

χ is trivial
(as a line bundle-with-connection). This mean that E⊗Lχ is isomorphic
to E and if A is a connection in AE the connection A⊗χ induced by A
and χ on E ⊗ Lχ defines the same connection α on Λ2E = Λ2(E ⊗ Lχ.
Thus the action of χ is given by

χ([A]) = [A⊗ χ].

It is clear that A and A⊗ χ define the same connection on gE and that
an SO(3) connection arises from a unique U(2) connection, up to this
action. In this framework, the possible complications of the stabilisers in
the SO(3) gauge group arise as the stabilisers of the H1(V ;Z/2) action
on AE .

Now let Y be a 3-manifold and X be an oriented Riemannian 4-
manifold. We study U(2) connections over X and Y which induce
flat connections or instantons respectively on the associated SO(3)
bundles, with some arbitrary, fixed, connection on Λ2, as above. The
connection on Λ2 plays no real geometrical role – it is obvious that
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different choices give equivalent moduli spaces – but this set-up gets
around some technical difficulties which arise if one tries to work di-
rectly with SO(3) connections. For simplicity of language we will still
refer to these U(2) connections as ‘flat’ connections and ‘instantons’
respectively, with the understanding that they are really projectively
flat connections/instantons, with fixed determinant.
We say that a U(2) bundle E over a manifold V is ‘admissible’ if c1(E)

defines an odd element of the free abelian group H2(V ;Z)/Torsion. The
importance of this is that an admissible bundle E cannot support any flat
connection. For the hypothesis implies that there is a surface Σ ⊂ V such
that E has odd degree over Σ. But if E is reducible there is a splitting
E = L1 ⊕ L2 and the ‘flat’ condition implies that the curvatures of L1

and L2 are equal. The Chern–Weil theory tells us that the degrees of
L1 and L2 over Σ are equal, so the degree of E is even; a contradiction.
In four dimensions this means that the theory of U(2) moduli spaces on
an admissible bundle E follows just the same lines as the SU(2) case
summarised in Chapter 2. If b+ > 0 there are no reducible solutions
for generic metrics and if b+ > 1 there are no reducibles in generic
one-parameter families. The moduli space dimension is given by

dimME = 2(c1(E)2 − 4c2(E))− 3(1 − b1 + b+). (5.19)

The compactification of the moduli space involves bundles with the same
c1 and lower values of c2. Thus we get a theory for each class c ∈
H2(X;Z) which is odd in H2/Torsion. Classes c, c′ which differ by
an even element 2λ give equivalent theories: we just replace E by E ⊗
L where c1(L) = λ. The moduli spaces are all canonically oriented
by a choice of ‘homology orientation’ of X, just as in the SU(2) case;
however, the equivalence between the theories for E and E ⊗L changes
the orientation according to the parity of c1(L)2.
We now turn to the Floer groups. Let Y be an oriented Riemannian

3-manifold and E be an admissible bundle over Y . (Note that this
means that the first Betti number of Y is non-zero). The Chern–Simons
functional is defined as a map from AE/GE to R/Z, much as before,
and its critical points are the flat connections. The holonomy of these
flat connections takes values in copies of SU(2) (since the determinant
is fixed), so the discussion of perturbations from the previous Section
can be taken over with only minor changes. A loop in AE/GE gives a
connection on a bundle E over Y ×S1. The fact that the connections are
fixed on Λ2E means that the first Chern class of E is pulled back from
that of E under the projection from Y ×S1 to Y : there is no component
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in

H1(Y )⊗H1(S1) = H1(Y ) ⊂ H2(Y × S2). (5.20)

Thus the index associated to E by Equation 5.19 is 0 modulo 8 and
this means that we get a (Z/8)-relative index δ(ρ, σ), as before, and
hence a graded chain group. An important difference is that the grading
is, initially, only an affine (Z/8)-grading; that is we need to make an
arbitrary choice of the term of degree 0 since we do not have the trivial
connection to compare with, as in the SU(2) case. The definition of the
Floer differential, and the verification that ∂2 = 0, go through without
essential change.
The proof that the Floer groups are independent of choices brings

in some new features. As before, the crucial thing is to show that a
cobordism X from Y0 to Y1 induces a map on the Floer groups. More
precisely, now we should suppose that we have a bundle E over X

which restricts to the chosen bundles Ei → Yi over the ends, and fix
a connection α on Λ2E, agreeing with the given ones over the ends.
Now recall that the group H1(Y ;Z/2) acts on the space AE/GE . The
action preserves the critical points of the Chern–Simons functional on
Y . One might expect that the Floer complex can also be chosen to be
invariant under the action, which would lead to anH1(Y ;Z/2)-action on
the Floer homology. However, there are possible obstructions to making
the desired perturbation – to achieve transversality for instanton moduli
spaces over the tube – invariant under the action. So instead we proceed
as follows. We restrict attention to the subgroup G ⊂ H1(Y ;Z/2) of
classes which lift to integer co-efficients, i.e. the kernel of the Bockstein
map from H1(Y ;Z/2) to H2(Y ;Z). For a class χ ∈ G the line bundle
Lχ is trivial. Explicitly, Lχ can be constructed as the trivial bundle-
with-connection form ia where da = 0 and∫

γ

a = πχ̂(γ),

and χ̂ is an integral lift of χ. Thus there is a connection αX on the trivial
line bundle L over Y × [0, 1] which is trivial over Y × {0} and equal to
ia over Y × {1}. Taking this as our fixed connection on Λ2, we get an
induced map on the Floer chains defined by the trivial cobordism but this
non-trivial αX , in the familiar way. The conclusion is that there is indeed
an action ofG on the Floer groups, though it is a subtle question whether
this can be induced by an action on a suitably perturbed complex. If
we are given a cobordism X from Y0 to Y1 we need to specify both
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the topological type of the bundle E over X and also a choice of the
connection on the determinant (modulo a certain equivalence relation).
Different choices of the latter give different maps on the Floer groups –
differing by these group actions. In the proof that the Floer groups are
independent of choices we are concerned with a cobordism X which is
topologically a product Y × [0, 1] and we fix the connection on Λ2 to be
that pulled back from the projection to Y and this fixes the ambiguity.
Then the proof of invariance goes through as before.
The action of G ⊂ H2(Y ;Z/2) on the Floer groups does not in general

preserve the grading. To see this, let A be a connection on the bundle
π∗(E) over Y ×R which restricts to A0 over Y × {0}, to a connection
isomorphic to A0 ⊗ χ over Y × {1}, and with fixed determinant equal
to π∗(αY ) over all of Y × [0, 1]. According to the general procedure of
Chapter 2, the shift in the grading induced by χ is given by the index
of the D operator on an SO(3) bundle over Y × S1 obtained by gluing
π∗(gE) over the two ends of Y ×[0, 1]. If we assume as before that χ is the
reduction of an integral class χ̂, then we can obtain this SO(3) bundle
from a U(2) bundle E over Y × S1 as follows. The connection A0 ⊗ χ

is isomorphic but not equal to a connection on E with determinant αY ;
that is, there is a unitary automorphism g of E such that g∗(A0⊗χ)−A0.
Then E is obtained by gluing π∗(E) by the automorphism g over the
ends. Now, as before, we can write A0 ⊗ χ as A0 + ia1. Let h : Y → S1

be the determinant of g. Then we have dhh−1 = 2ia, so h defines the
class χ̂ in H1(Y ;Z). It follows then that the U(2) bundle E has first
Chern class

c1(E) + χ̂θ ∈ H2(Y )⊕H1(Y )⊗H1(S1) = H2(Y ),

where θ is the fundamental class of S1. Hence

〈c1(E)2, [Y × S1]〉 = 2〈χ̂c1(E), [Y ]〉.
It follows then from Equation 5.19 that the index of D on the associated
SO(3) bundle is equal to 4χc1(E) modulo 8, so the action of G preserves
the grading modulo 4. (One can extend, at least in part, this discussion
of the group action from the group G to all of H1(Y ;Z/2), by using
SO(3) bundles rather than U(2) bundles. However, there are difficulties
in fixing the orientations in that setting.)
Finally we return to the question of the grading in this U(2) set-up.

Here we follow the discussion of Froyshov in [25]. Suppose ρ is a flat
connection on an admissible bundle E over Y . We can find a 4-manifold
X1 with boundary Y and an adapted bundle E1 over X extending ρ.
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Reversing orientation, we can find a 4-manifold Z with boundary Y

and a similar extension EZ over Z. Then by gluing we can form a
closed 4-manifold X = X1 ∪Y Z and a bundle E over Z. The dimension
equation Formula 5.19 and our gluing formula tell us that

indE1 + indEZ = −3(1− b1(X) + b+(X)) mod 2,

since the contribution 2(4c2 − c21) is plainly even. On the other hand we
know that

(1− b1(X) + b+(X)) = ind−(X1) + ind−(Z)− (1 + b1(Y ).

So

indE1 − 3 ind−(X1) = − indEZ + 3 ind−(Z)− 3(1 + b1(Y )) mod 2,

and the right hand side is independent of the choice of X1. So we
conclude that, modulo 2, indE1 − 3 ind−(X1) is an invariant of the flat
connection ρ and this enables us to fix the grading of the Floer groups
modulo 2. We define

δ(ρ) = indE1 − 3 ind−(X1) mod 2,

to fix the mod 2 grading. (Recall that

ind−(X1) = b1 − b+,

where b+ is the dimension of a maximal positive subspace for the
intersection form on Im : H2(X1, Y ) → H2(X1).)
We can refine this discussion by fixing a spin structure on Y . Then we

may take the 4-manifolds X1, Z above to be spin 4-manifolds, inducing
the given structure on the boundary. This means that X is a closed,
spin, 4-manifold and so has even intersection form. Thus the term c21 in
Equation 5.19 is even and hence 2(4c2 − c21) is zero modulo 4. It follows
that, defined in this way, δ(ρ) is well-defined modulo 4; hence we see
that a spin structure on Y defines a definite (Z/4)-grading on the Floer
groups.
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Floer homology and 4-manifold invariants

In this Chapter we discuss the relationship between the Floer homology
groups and the invariants of 4-manifolds defined by Yang–Mills instan-
tons. We have already noted in Chapter 1 that this relation has the
general shape of a ‘topological quantum field theory’ (TQFT), and we
have studied a prototype situation in Chapter 5, where we saw that an
h-cobordism W between homology 3-spheres Y0, Y1 induces a map

ζW : HF∗(Y0) → HF∗(Y1). (6.1)

Before beginning the technical development in earnest we digress to
give some motivation for the general picture; motivation which is very
important in understanding the significance of Floer’s basic construction.
In Section 6.3 we summarise the theory of instanton invariants of closed
4-manifolds and the vanishing theorem for the invariants of connected
sums. (One could think of this as a rather simple prototype for the more
general splittings encompassed by Floer’s theory.)

6.1 The conceptual picture

We begin by contemplating the standard picture in finite-dimensional
Morse Theory. That is, we consider a compact n-manifold B and a
Morse function f : B → R. There are a finite number of critical points
br of f , and the Hessian of f at br is a non-degenerate quadratic form on
the tangent space of B. The index i(br) is the dimension of a maximal
negative subspace for the Hessian, the ‘number of negative eigenvalues’.
The fundamental assertion of Morse theory is that the homology of B
may be computed from a chain complex

(C∗, ∂) (6.2)

151
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where the chain group Cλ is the free abelian group with generators the
critical points br with index λ. (More precisely, to build in signs, we
should take the generators to be pairs consisting of a critical point br
and an orientation O of a maximal negative subspace for the Hessian
at br, and identify −(br,O) with (br,O), where O is the opposite
orientation.) There are many points of view on this: one way goes via
a cell decomposition of B induced by the gradient flow φt : B → B; the
one-parameter family of diffeomorphisms generated by the vector field
grad f (defined using some fixed Riemannian metric on B). For any
point x in B the gradient flow φt(x) converges to some critical point br
of f – a zero of grad f – as t → ∞, for a suitable r = r(x). Typically this
limit is a local maximum of f , that is, it has index n. More precisely,
this is true for an open, dense set Bn ⊂ B. This subset Bn has one
component for each critical point of index n. For large t the gradient
flow contracts any given compact subset of one of these components into
a small neighbourhood of the critical point, and one sees from this that
each component is diffeomorphic to an open n-ball. Similarly, the set
Bλ of points which flow as t → ∞ to critical points of index λ is a union
of open λ-balls, embedded in B. Thus we can think of building up the
entire manifold B by starting with B0 – the finite set of minima – and
successively adding the higher-dimensional cells making up the Bλ for
λ > 0, finishing off with the n-cells. The additional fact we need to
know, for this procedure to give a cell decomposition, is that all cells are
attached to cells of lower dimension, i.e. that

Bλ ⊂ B0 ∪ · · · ∪Bλ. (6.3)

This is true for a generic choice of function f and Riemannian metric
on B. To understand why, we introduce, for each critical point br, the
ascending and descending manifolds Ur, Vr consisting of points which
flow to br as t → +∞,−∞ respectively. So Ur is just one of the cells
considered in the decomposition {Bλ} above, and Vr appears in just the
same way if one replaces the function f by −f . Suppose bs is another
critical point, with f(bs) > f(br). Choose some level c which is a regular
value of f and with f(bs) > c > f(br). Then W = f−1(c) is a smooth
(n−1)-manifold. The descending set Vr meetsW in an embedded sphere
Σr of dimension dimVr−1 = n−i(r)−1 and symmetrically Us∩W = Σs

is an embedded sphere of dimension i(s) − 1. We assume that the set-
up satisfies the Smale condition, that for any r, s these spheres meet
transversally in W . In particular, if dimΣr + dimΣs < dimW = n− 1,
that is, if i(r) ≥ i(s), then the spheres are disjoint. Now from the
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definitions, the points of intersection of spheres Σr,Σs are in one-to-one
correspondence with integral curves x(t) of the vector field grad f with
x(t) → br as t → −∞ and x(t) → bs as t → +∞, modulo the obvious
change of parametrisation t %→ t + c. We will call such curves gradient
trajectories from br to bs. So, to sum up, we see that, if the Smale
condition holds, there are no gradient trajectories between points br
and bs with i(r) ≥ i(s).

Now to establish Formula 6.3, we suppose that x is a point in the
closure Bλ. Thus there are a critical point bs of index λ and a sequence
xi in Us ⊂ B converging to x. For each i there is an integral curve xi(t)
for t ∈ [0,∞) with xi(0) = xi and xi(t) → bs as t → ∞. The key then is
to analyse the sense in which these curves converge (possibly after taking
subsequences). First, by considering the behaviour for large t, one shows
that there is an increasing sequence ci ≥ 0 such that the curves xi(t) =
xi(t+ci) converge on compact subsets of (−c,∞) where c = lim ci. Now
different cases arise. If c is finite, then the limit is an integral curve
starting with x and converging to bs, so in this case x is in Us and is
a point of Bλ. On the other hand if c is infinite the limit is a gradient
trajectory from some other critical point to bs. Arguing in a similar way,
one finds a chain of critical points bs1 , bs2 , . . . , bsk

say, with bsk
= bs, such

that there are gradient trajectories joining consecutive pairs bsi
, bsi+1

and that the original point x lies in Us1 . Now the existence of the
gradient trajectories and the result of the previous paragraph show that

i(s1) < i(s2) < · · · < i(sk) = λ

so we see finally that x lies in B0∪· · ·∪Bλ−1 as asserted in Formula 6.3.

The existence of the chain complex Formula 6.2 follows in a standard
way from this cell decomposition. To write the complex explicitly we
need to know the degrees of the ‘attaching maps’ by which the bound-
aries of the cells of Bλ are glued to the (λ− 1)-skeleton B0 ∪ · · · ∪Bλ−1.
The ‘Witten complex’ gives a recipe for these in terms of the gradient
trajectories connecting critical points – a recipe which is implicit in
the two cell decompositions, by ascending and descending sets, above.
Suppose br, bs are points of adjacent indices λ− 1, λ. Then the spheres
Σr,Σs are of complementary dimensions in W , and so meet in a finite
set of points. In other words there are a finite number of trajectories
from br to bs, modulo translation. The orientation data (which we
are not discussing in detail) allows us to fix signs to give an algebraic
intersection number of the spheres, hence an algebraic ‘count’ of the
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gradient trajectories, giving a number n(br, bs). This array of numbers
is just what is needed to define the matrix of a linear map

∂ : Cλ → Cλ−1,

and the conclusion of our discussion is the assertion that this recipe
makes (C∗, ∂) into a chain complex with homology the ordinary ho-
mology of B. Notice by the way that Poincaré duality is built into
this theory: replacing f by −f we get another complex computing the
homology of f which is precisely the dual of the original one: this
is a manifestation of the two cell decompositions by ascending and
descending sets. A consequence of this is that it is largely a matter of
choice and convention whether one works with homology or cohomology.

It is probably not necessary to labour the analogy we wish to make
between the discussion above and the definition of Floer’s homology
groups. In place of the function f on the compact manifold B we take
the Chern–Simons functional on the space of connections B over a 3-
manifold Y . The critical points are the flat connections and the gradient
trajectories are the finite energy instantons over the tube. The analysis
of the convergence of integral curves sketched above is parallel to our
analysis of ‘chain convergence’ of instantons in the previous Chapter
(and the reader who has followed the proofs there will have no difficulty
in filling in the details in the more elementary, finite-dimensional, case).
The salient differences – beyond the overriding and obvious one that B
is infinite-dimensional – are

• the Chern–Simons functional is circle-valued rather than real-valued,
• the index is only defined modulo 8,
• the space B is not a manifold due to the presence of reducible connec-

tions.

Putting these aside for the moment, however, there are clearly good
grounds for thinking of the Floer groups, formally, as some kind of
‘homology’ groups of the space B. Of course this conception should not
be confused with the ordinary homology groups of B, which are perfectly
well-defined. Rather one should think of the Floer homology as being a
kind of ‘middle-dimensional’ homology of B, since the negative subspace
of the Hessian of the Chern–Simons functional is infinite-dimensional
and can be thought of as roughly ‘half’ the dimension of the whole
space (in the same sense as the Hardy space of positive Fourier series
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has a right to be thought of as being of roughly ‘half’ the dimension of
L2(S1)). See [3] for a discussion in a similar spirit.

There are two particular points we want to bring out, against this
background. The first is a general principle that, given any construction
in ‘ordinary’ algebraic topology, one can seek an analogue in the Floer
theory by expressing the construction in terms of gradient trajectories of
a Morse function and taking these over to instanton moduli spaces. We
shall see examples of this in Chapter 7 when we consider cup products
and phenomena arising from reducible connections (which of course have
analogues when one takes quotient spaces of finite-dimensional manifolds
by a group action which is not free). The second, which we will explain
now, is to see why – independent of any of the details of the situation –
one might expect a middle-dimensional homology to be the right setting
for discussing gluing problems in Yang–Mills theory.
Consider, then, a closed 4-manifoldX decomposed into two pieces by a

3-manifold Y . We would like to understand a moduli space M of instan-
tons over X in terms of the pieces. Let Li be the (infinite-dimensional)
moduli space of instantons over the manifold-with-boundary Xi, with
smooth boundary values. (These paragraphs are intended to be entirely
motivational and schematic, so we ignore all technicalities.) There are
boundary value maps Li → BY , which we assume to be embeddings.
Then (assuming no complications with reducible connections etc.) the
moduli space M can be viewed as the intersection L1 ∩ L2 ⊂ BY .
Suppose we are in the case when M is 0-dimensional. Then we have
an invariant of X defined by counting (with signs) the points of M,
that is to say the algebraic intersection number of L1,L2 in BY . Now in
a finite-dimensional situation, when we have submanifolds L1, L2 ⊂ B,
we know that the algebraic intersection factors through the homology
groups, so the data we need to record from Li is just the homology classes
[Li] ∈ H∗(B). This suggests that one should seek ‘homology groups’
H∗(BY ) of BY , with an intersection pairing, such that the boundary
value spaces carry fundamental classes in the groups and the pairing
gives the algebraic intersection number. If one has this then the structure
of the resulting theory would be to assign a vector space

H(Y ) = H(BY )

to Y , with an intersection pairing, such that

• the manifolds-with-boundary Xi define invariants ψi = [Li] ⊂ H(Y ),
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• the invariant of X given by counting points of M is the pairing
〈ψ1, ψ2〉.

As we shall see, the Floer groups do furnish (at least in favourable
cases) a theory of this kind, with one notable difference to be discussed
below, and we might interpret this as saying that Floer’s construction
gives a way of making a rigorous homology theory in which the boundary
value spaces carry fundamental classes. One can develop this further
by asking the following question. Suppose, in the finite-dimensional
situation, we have a Morse function f on B and also a q-dimensional
submanifold L1; how do we identify the fundamental class [L1] ∈ Hq(B)
in the Witten complex description of the homology? The answer is that
one computes the intersection numbers of L with ascending manifolds
Vr and then [L1] is represented by the chain∑

(L1 · Vr)〈br〉 ∈ Cq.

(In particular this chain is a cycle, and modulo boundaries, is inde-
pendent of continuous deformations of L1.) Now suppose we have
another submanifold L2 of complementary dimension n − q; how do
we see that the algebraic intersection L1 · L2 goes over to the Poincaré
duality built into the Morse complex? We deform L1 continuously into
Lt
1 = φ−t(L1) and L2 into Lt

2 = φt(L2) where t is large. Then one
sees that, if the manifolds are in general position, the intersection points
Lt
1 ∩ Lt

2 are localised in small neighbourhoods of the critical points and
the contribution from a critical point pr is (L1 · Vr)(L2 · Ur), so that

L1 · L2 =
∑

(L1 · Vr)(L2 · Ur),

as required. Now take this over to the infinite-dimensional case. There
is no real analogue of the gradient flow, since we cannot solve the
initial value problem for the instanton equations, but if ρ is a critical
point of the Chern–Simons functional, i.e. a flat connection, we can
still make sense of the ‘ascending’ and ‘descending’ manifolds belonging
to ρ. They just correspond to the connections A over Y for which
there is an instanton over one of the half-tubes Y × [0,∞), Y × (−∞, 0]
respectively, with boundary value A and asymptotic to ρ at ±∞. Thus
the intersection points of L1 with the ascending manifold Vρ belonging to
ρ correspond to instantons over the complete 4-manifold X̂1, obtained by
adding a half-tube to the boundary, which are asymptotic to ρ at infinity.
So, if we follow the prescription above from the finite-dimensional case,



6.1 The conceptual picture 157

the chain we expect to associate to X1 in the Floer complex of Y is just∑
ρ

nρ,X1〈ρ〉,

where nρ,X1 is the count of instantons over the complete manifold X1

which are asymptotic to ρ. Likewise the ‘gluing argument’ which tells
us that the number of points (counted with sign) in the moduli space
MX is ∑

ρ

nρ,X1nρ,X2

is a counterpart of the localisation discussion under the positive and
negative flows above. In the 4-manifold case we would deform the
metric on X by pulling out a long ‘neck’. Equivalently, we attach
long tubes Y × [0, T ], Y × [−T, 0] to the boundaries of X1, X2 to give
Riemannian manifolds-with-boundary XT

1 , X
T
2 . The boundary value

spaces LT
i correspond precisely to the deformations φ−T (L1), φT (L2)

considered above. (The point is that, while the ‘flow’ φt is not really
well-defined as a map, the image of Li is, so long as t has the appropriate
sign.)
We will now go back over one point in the discussion above. Instead

of a single homology H(Y ) we really prefer to distinguish two (graded)
groups HF (Y ), HF (Y ) and in place of the bilinear form on H(Y ) we
have a pairing between HF (Y ), HF (Y ). This reflects the fact that the
boundary value spaces Li are fundamentally different kinds of objects;
for example one should not expect our theory to give a meaning to the
self-intersection L1 · L1. To see this a little more clearly we can ask
what special structure an infinite-dimensional manifold should have for
there to be a chance of defining a Floer-like theory. For any connection
A over Y we have a self-adjoint linear operator QA which, as we have
explained in Chapter 2, can be thought of as an endomorphism of the
tangent space of B at [A]. Thus we have a splitting

TB[A] = T+ ⊕ T− ⊕ T 0, (6.4)

where T+, T− are the spans of the positive and negative eigenspaces of
QA respectively, and T 0 is the kernel. We expect the kernel to be trivial
for generic A but non-trivial on a codimension-1 subset, and this means
that we do not quite get a direct sum decomposition of the tangent
bundle. However, following the ideas of Segal [39][Chapter 7], we may
consider the set of ‘positive’ subspaces V ⊂ TB[A] which are ‘commen-
surable’ with T+ in the sense that the projection π+ : V → T+ is
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Fredholm and the projection π− : V → T− is Hilbert–Schmidt. Although
this definition depends on the splitting Equation 6.4, it is insensitive to
the essentially finite-rank changes which occur when the kernel jumps,
so this set of positive subspaces forms a bundle Gr+ over BY . Then we
may consider ‘positive’ submanifolds L+ of BY , whose tangent space lies
everywhere in Gr+, and similarly negative submanifolds L−, interchang-
ing signs. Of course the boundary value spaces are examples of these.
The intersection of a positive and a negative submanifold, if transverse,
is a finite-dimensional manifold in BY . We should think of the dual
Floer groups HF∗(Y ), HF ∗(Y ) = HF∗(Y ) as homology groups whose
cycles are the positive and negative submanifolds, respectively, with
the pairing between them given by intersection. One can contemplate
abstracting this and studying a general infinite-dimensional manifold
B with this kind of ‘Segal structure’ on its tangent space. One might
hope to construct a corresponding Floer-type theory from some kind
of homology classes of positive and negative submanifolds. If one has
a function F on B whose covariant second derivative ∇∇F defines the
structure, in the manner of the operators QA above, then one can try to
set up the corresponding Morse–Witten complex, using gradient paths.
A large part of the theory could be set up in this generality – roughly
speaking those parts having to do with the local properties of the spaces
of trajectories – but the crucial issue of the compactness of these spaces
lies deeper and is harder to axiomatise.

6.2 The straightforward case

We now resume the technical development. We will work throughout
this Chapter with the class of oriented 4-manifolds with boundary, as in
the TQFT axioms, but we also require that the boundary be a disjoint
union of homology 3-spheres. We also fix orientations on the homology,
in the sense of Chapter 2. Let X be such a 4-manifold, with boundary

Y =
n⊔

i=0

Yi.

We define a (Z/8)-graded vector space

HF∗(Y ) = HF∗(Y0)⊗HF∗(Y2)⊗ · · · ⊗HF∗(Yn) (6.5)

and we want to define a vector

ΨX ∈ HF∗(Y ).
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(For simplicity we will work throughout this Chapter with rational co-
efficients, HF∗(Yi) = HF∗(Yi;Q).) Of course, in the case when there are
two boundary components this agrees with Formula 6.1 when we make
the usual identification

HF∗(Y0 2 Y1) ∼= Hom(HF∗(Y0), HF∗(Y1)),

using the duality HF∗(Y0) = HF∗(Y0)∗.
The strategy for defining ΨX is to go through a chain

ψX ∈ C∗(Y1)⊗ · · · ⊗ C∗(Yn),

where C∗(Yi) is the Floer chain complex of the homology 3-sphere Yi,
defined using the critical points of the Chern–Simons functional, if this is
non-degenerate, and a small generic perturbation otherwise. This chain
is defined in the following fashion. Suppose to begin with that we are in
the good situation where the flat connections are non-degenerate, and we
fix generic metrics on Yi. Then, in the familiar way, we choose a generic
metric with half-infinite tubular ends on X, having the given metrics
on the cross-sections of the ends. For any collection of irreducible flat
connections ρi over Yi we have an index

i(X; ρ0, . . . , ρn) ∈ Z/8,

which is the Fredholm index, modulo 8, of the deformation operator of
any SU(2) connection with these flat limits. Our chain ψX will be a
sum

ψX =
∑

νX(ρ0, . . . , ρn)ρ0 ⊗ · · · ⊗ ρn,

where ν(ρ0, . . . , ρn) vanishes if i(X; ρ0, . . . , ρn) &= 0. This is the same as
saying that ψX lies in a particular degree with respect to the grading
on C∗(Y0)⊗ · · · ⊗C∗(Yn), and by comparing with the trivial connection
one sees that this degree is

deg(ψX) = −3(1− b1(X) + b+2 (X)) mod 8.

If i(X; ρ0, . . . , ρn) = 0 there is an adapted SU(2) bundle E over X
with these limits which defines a moduli space of dimension 0, and we
define νX(ρ0, . . . , ρn) to be the number of points in ME , counted with
signs and after perhaps making suitable perturbations. One then needs
to show that

• ψX is a cycle in the tensor product complex,
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• if we change the choice of metric, or perturbation of the instanton
equation, overX then ψX changes by a boundary in the tensor product
complex.

(Notice again that, in the case where there are two boundary components
and we interpret ψX as a linear map, then the first item above is the
same as saying that we get a chain map and the second is the same as
saying that the map is unique up to chain homotopy.)
Further, one wants to show that if X1, X2 are two 4-manifolds of this

type with some common boundary components, say

∂X1 = L1 2
k⊔

i=1

Yi,

∂X2 = L2 2
k⊔

i=1

Y i,

and ifX is the manifold obtained fromX1, X2 by identifying the common
boundary components Yi then there is a gluing relation

ΨX = 2k−1〈ΨX1 ,ΨX2〉 ∈ HF∗(L1 2 L2),

where the pairing on the right hand side of this formula is obtained
from the obvious contraction on the tensor product of Floer groups.
The strategy for proving this gluing relation is to choose metrics on X

in which the ‘necks’ joining X1, X2 across the Yi are very long, and then
show that for such metrics one has equality at the chain level. The factor
2k−1 above arises because of the centre ±1 of SU(2). When k = 1,
so there is a single common boundary component, we have a ‘gluing
parameter’ of ±1 in the choice of the identification we make when gluing
instantons on bundles P1, P2 with matching limits. However, this gluing
parameter can be cancelled by applying the automorphism group ±1 to
P1, or P2. When we have k common boundary components we need to
specify gluing data in a copy of the group (±1)k and the cancellation
from the automorphisms on either side reduces this to the quotient by
the diagonal action of ±1, so we can construct 2k−1 instantons over X
from each pair of instantons over Xi with matching limits.

The strategies we have outlined above should be quite familiar since,
as we have said, they follow very closely the work we have already done
in detail in Chapter 5. One just applies the same compactness and
gluing principles to analyse appropriate 0- and 1-dimensional moduli
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spaces. With this said, we will omit further discussion of the proofs and
move on. The point we need to address now is that the real picture
is a little more complicated than what we have outlined. On the one
hand it falls short of the outline because of some difficulties associated
with the trivial connection, and with manifolds X with b+(X) small.
On the other hand the true picture goes beyond the outline, in that we
can define more invariants, using higher-dimensional moduli spaces (and
invariants defined by moduli spaces of connections with trivial limits).
Both of these aspects enter already into the theory for closed 4-manifolds
and we will begin the next Section by reviewing that theory, making
use of a device of Morgan and Mrowka – forming connected sum with
auxiliary CP2s – which sidesteps a lot of the difficulties associated with
the trivial connection. We shall then go on to develop the theory for
manifolds-with-boundary.

6.3 Review of invariants for closed 4-manifolds

In this Section we will summarise material which is discussed in more
detail in [17] – although we will work in a slightly more general setting
than that reference.
Let X be a closed, connected, oriented 4-manifold with a homol-

ogy orientation (recall that this means an orientation of the line
ΛmaxH1(X)⊗ΛmaxH+(X)). Let E → X be an admissible bundle with
structure group U(2), as in Section 5.6. Recall that we fix some standard
connection on Λ2E, then we call a connection on E an instanton if it
induces an ASD connection on the associated SO(3) bundle gE and the
given connection on Λ2E. If b+(X) > 0 then for generic metrics on
X there are no S1 instantons with non-zero first Chern class, and for
generic metrics on X no reducible instantons on any bundle with the
same first Chern class as E. There is a universal SO(3) bundle

gE → ME ×X.

The slant product with the class − 1
4p1(gE) defines maps

µ : Hi(X;Q) → H4−i(ME ;Q), i = 0, 1, 2, 3. (6.6)

We define A(X) to be the free graded-commutative ring generated by
the Hi(X;Q), i < 4, with the grading such that elements of Hi(X) have
dimension 4− i in A(X). (So A(X) is the tensor product of an exterior
algebra on Hodd(X) and a polynomial algebra on H2(X) ⊕Q.) Then,
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taking cup products, we get an induced homomorphism

µ : A(X) → H∗(ME).

The moduli space ME has an expected dimension

ind(E) = 2(4c2(E)− c1(E)2)− 3(1− b1 + b+(X)). (6.7)

If 4c2−c21 &= 0 we know that, for generic metrics on X, the moduli space
is a smooth manifold of this dimension; and in any case one can choose
some auxiliary perturbations of the ASD equations as in Chapter 5 to
achieve this condition on a slightly perturbed moduli space, which we
will not distinguish in our notation. The homology orientation of X
induces an orientation of the moduli space. Now we define invariants
formally by evaluating cohomology classes on a fundamental class of the
moduli space

〈λ〉E = 〈µ(λ), [ME ]〉, λ ∈ A(X). (6.8)

This is completely straightforward if the moduli space is compact, which
will happen if the dimension is less than 8, but in general it will not be
and one needs to specify precisely what the evaluation means. Differ-
ent approaches to doing this are discussed in [17] (which concentrate
on the powers of the 2-dimensional classes – the most interesting for
applications). One approach is to show that the classes extend over the
natural compactification of ME . A more elementary approach, which
we will stick to here, is as follows. Let λ = σ1 . . . σk be a class in Λ(X),
so σi are homology classes in X. Choose generic cycles representing
these classes and small neighbourhoods Ui of these cycles. Irreducible
instantons over X remain irreducible over these neighbourhoods so each
cohomology class µ(σi) can be pulled back toME under the map defined
by restriction of connections to Ui. Then a rather general argument
shows that one can choose generic cochains on the spaces of irreducible
connections over the Ui such that the pull-backs give representative
cochains whose cup product is a compactly supported representative
for µ(σ1) . . . µ(σk) = µ(λ). The pairing Equation 6.8 is then defined
by evaluating this compactly- supported cochain on the fundamental
class. The scheme sketched here is worked out in detail in [17] for the
even-dimensional generators, and when X is simply connected. The
use of the odd cohomology classes makes no difference at all: the only
minor point which arises in making this extension is that, if one is in
the situation where a perturbation of the equations is needed, one needs
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to arrange the perturbation and the neighbourhoods Ni, so that the
solutions of the deformed equation are irreducible.
Now suppose we vary the metric on X (or the perturbations used

to define the instanton equations) in a one-parameter family. Then a
standard cobordism argument shows that the pairings we have defined
do not change, so long as we do not encounter any reducible solutions
in the family. If b+(X) > 1 then this holds for generic paths, so to sum
up for this case we have

Theorem 6.1 Let X be a closed oriented 4-manifold with a homology
orientation, and with b+(X) > 1. If E is an admissible U(2) bundle
over X, evaluation on the moduli space ME defines a map, depending
only on the smooth structure of X and the given topological data from
Ad(X) to Q, where the degree d is ind(E)/2.

If b+(X) = 1 the theory is considerably more complicated. One can
predict precisely when the reductions will occur, in terms of the periods
of the self-dual harmonic form on X. Let HX be the quotient of the
positive cone

{ω ∈ H2(X;R) : ω2 > 0}
by the action of the scalars (which is naturally a hyperbolic space). A
metric g on X determines a point ωg ∈ HX , via its self-dual harmonic
form. For a given bundle E there is a collection of ‘walls’, making
up a subset WE ⊂ HX such that if ωg is not in WE no bundle E′

with c1(E′) = c1(E) and c2(E′) ≤ c2(E) admits a reducible instanton.
Let CX be the set of connected components of the complement of the
walls HX \WE : this is a collection of open ‘chambers’ in the hyperbolic
space. Then Kotschick and Morgan [28] have shown that the invariant
defined by a generic metric g depends only on the chamber containing
ωg. (This is fairly straightforward for low-dimensional moduli spaces,
but the general case involves substantial technical difficulties.) To sum
up we have

Theorem 6.2 If X and E are as in Theorem 6.1, except that now
b+(X) = 1, then evaluation on the moduli spaces defines a map on the
set of chambers

γX : CX → Hom(Ad(X),Q).

We will now explain, following Morgan and Mrowka [35], how to use a
‘stabilisation’ to embed other invariants in the family we have defined
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above. Let CP
2
be the complex projective plane with the reverse of the

standard orientation, and let V be the rank-2 bundle over CP
2
given

by the direct sum V = C ⊕ L, where c1(L) is the Poincaré dual of
the standard generator e for H2(CP2). Then if E is any U(2) bundle
over a 4-manifold X the ‘connected sum’ bundle ELV over XLCP 2

is admissible, even if E itself is not. A homology orientation of X
induces one on XLCP 2 and the dimension ind(ELV ) is ind(E) + 2.
Plainly A(XLCP 2) is obtained by adjoining the element e, of degree
2, to A(X).

Proposition 6.3 Let X,E be as in Theorem 6.1, so E is admissible,
and b+(X) = b+(XLCP 2) > 1. Then for any λ ∈ Ad(X), where d =
ind(E0)/2, we have

〈λ〉E =
1
2
〈eλ〉E�V .

We will recall in outline the proof of Proposition 6.3. Suppose for simpli-
city that ind(E) = 0, so the invariant in question is just a number
obtained by counting points in the discrete set ME0 = {[Aα]}, say.
There is a single instanton connection AV on the bundle V over CP 2

and this is reducible, induced by the splitting V = C⊕L. We consider a
metric onXLCP 2 of the familiar kind, in which the neck of the connected
sum is very long. Then the standard ‘gluing arguments’ show that the
connections in the moduli spaceME0�V are obtained by gluing the Aα to
AV across the connected sum. There is a gluing parameter of SO(3) but
this has to be divided by the isotropy group ΓAV

∼= S1. So we find in sum
that the moduli spaceME�V , for such a metric, is a union of components
Sα, each of which is a copy of S2 = SO(3)/S1. A calculation shows that

〈µ(e), Sα〉 = ±2,

and one shows also that the signs match up. Summing over α this
establishes the desired formula.
Now suppose that E is not an admissible bundle overX; for example E

might be an SU(2) bundle. Then ELV is admissible over the connected
sum and the right hand side of the formula in Proposition 6.3 is still
defined. Thus is this case we define invariants of X by

〈λ〉E =
1
2
〈eλ〉E�V (6.9)

So in sum we obtain
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Theorem 6.4 If X is a manifold with b+(X) > 1 and a homology
orientation, and if E is any U(2) bundle over X, there is an invariant
〈 〉E : A(X) → Q, defined by the moduli space of the connected sum.

This stabilisation procedure may seem mysterious. The background to
have in mind is that if E is not an admissible bundle, for example an
SU(2) bundle, the procedure we have used to define invariants still works
so long as the second Chern class is large enough: in the ‘stable range’
discussed in [17]. The same argument as above shows that in this case
the two approaches agree. Below the stable range it is plausible that one
could still extract invariants by adding on counter terms, in the manner
of [14]. However, the Morgan and Mrowka device allows one to avoid all
of these complications. It would be possible to combine this discussion
with that of chambers for the exceptional case when b+(X) = 1, but we
will not go into this here.
A great benefit of the Morgan and Mrowka stabilisation trick is that

it allows one to give a very simple proof of the vanishing theorem for
connected sums:

Proposition 6.5 If the manifold X of Theorem 6.4 is a connected sum
X = X1LX2 and if b+(X1), b+(X2) are both positive then for any bundle
E over X the invariant 〈 〉E vanishes identically.

The proof is the usual argument, as in [17], reducing to the case of
admissible bundles and showing that for a metric with a long neck
the support of a representative for µ(λ) in the moduli space is actually
empty. The point is that one can arrange that no reducible connections
appear, which made for the complications in the earlier proofs. As
we have mentioned at the beginning of this Chapter, this vanishing
theorem makes one starting point for the discussion of Floer homology.
We can think of Floer’s theory as an answer to the question of how
Proposition 6.5 changes if in place of ordinary connected sums we allow
generalised splittings across other 3-manifolds.

6.4 Invariants for manifolds with boundary and b+ > 1

Now let X be a (connected) 4-manifold as considered in Section 6.2,
with boundary a disjoint union of homology spheres, with a homology
orientation and with b+(X) > 1. Let v be any class in H2(X;Z). This
class determines, up to isomorphism, a topological U(2) bundle E over
X (which of course reduces to SU(2) over each boundary component).
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The main results of this Section are as follows.

Theorem 6.6 The instanton moduli spaces over X define a map

ΨX = Ψv,X : A(X) → HF (∂X),

such that

deg(Ψ(λ)) = deg(λ)− 3(1− b1(X) + b+(X)) mod 8,

which is an invariant of the smooth manifold X, the class v and the
homology orientation.

For tidiness, we can also include here the case when the boundary is
empty, that is, when X is a closed 4-manifold, if we define the Floer
homology of the empty set to beQ and use the invariants of the previous
Section. (In this case there are different bundles E with the given first
Chern class, but the grading takes care of this.)
Let X1 and X2 be two such connected 4-manifolds with k diffeo-

morphic boundary components Yi as in Section 6.2, and define X =
X1 ∪Yi X2 by identifying these boundary components. The inclusion
maps Hi(X1)⊕Hi(X2) → Hi(X), i = 0, 1, 2, 3, define an obvious map

σ : A(X1)⊗A(X2) → A(X),

and we also have the contraction map on Floer homology

τ : HF∗(∂X1)⊗HF∗(∂X2) → HF∗(∂X).

Theorem 6.7 Let v1, v2 be classes in H2(X1), H2(X2) and v = v1+v2 ∈
H2(X). Then

Ψv,X ◦ σ = 2k−1τ ◦ (Ψv1,X1 ⊗Ψv2,X2).

Of course, one should not let the algebraic formulation disguise the
real essence of the assertion, which is that one can compute pairings
for moduli spaces over X by decomposing the homology classes into
components in X1, X2 and then using relative invariants for these two
pieces, with values in the Floer homology. Notice that a particular case
of Theorem 6.7, when the boundary of X is empty, gives a relation
between the invariants of Section 6.3, for closed manifolds, and the new
invariants we are considering in this Section.
Having set up these main results – one of the main goals of this book

– we hope that there is little need to say anything about the proofs,
which are straightforward combinations of the proofs and definitions for
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closed manifolds outlined in the previous Section, and the basic Floer
homology constructions we have seen in Chapter 5.



7

Reducible connections and cup products

We have now seen how the Floer groups fit into a topological field theory
for a restricted class of 4-manifolds: with b+ > 1 and with homology
sphere boundaries. The difficulties in extending this theory to cover
a wider range arise from the presence of reducible connections, either
as instanton solutions over 4-manifolds or as flat connections over their
boundaries, and one theme of this Chapter is to explore refinements of
the theory which take these into account. The other theme is to develop
the product structure on the Floer groups, from various points of view.
These products interact with the reducible connections in an interesting
way, and we shall develop some algebro-topological machinery to handle
this. As usual we shall emphasise the case of homology 3-spheres,
although making some remarks about more general 3-manifolds. At the
end of the Chapter we will bring the ideas together to discuss the Floer
homology of connected sums. Throughout this Chapter the symbol Y
will denote an oriented homology 3-sphere, and we use Floer groups with
rational co-efficients.

7.1 The maps D1, D2

In Chapter 5 we defined the Floer boundary map ∂ : Ci → Ci−1 by
counting instantons over the tube with irreducible limits. We ignored
the reducible connection θ. We now bring it into the picture by defining
maps

D1 : C1(Y ) → Q, D2 : Q → C−4(Y ).

These are defined in just the same way as the boundary ∂. If 〈ρ〉 is
a generator of C1(Y ) there is a 1-dimensional moduli space Mρθ of
instantons over the tube with limit ρ at −∞ and θ at +∞: this follows

168
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from the way we fixed the grading of the Floer chains. We count, with
suitable signs, the points in the translation-reduced space M ′

ρθ to obtain
a number nρ and define D1(〈ρ〉) = nρ. Similarly for the map D2. The
same argument that established that ∂2 = 0 gives the relations

D1∂ = ∂D2 = 0.

We define a (Z/8)-graded chain complex CF ∗(Y ) with chain groups

CF i = Ci, i &= 0, CF 0(Y ) = C0 ⊕Q, (7.1)

and differential ∂ + D1. This gives homology groups HF ∗(Y ) (which
are independent of the various choices made, as the reader may wish to
check now). The ordinary Floer complex is a quotient of C∗, and we
have an exact homology sequence

0 → HF 0 → HF0 → Q → HF−1 → HF−1 → 0,

while HF i = HFi for i &= 0,−1.
We can use the map D2 in a similar way to define a complex with

groups

CF i(Y ) = CF i, i &= −3, CF−3(Y ) = C−3 ⊕Q (7.2)

and differential ∂+D2. This gives homology groups HF ∗(Y ), and there
is an induced map HF∗(Y ) → HF ∗(Y ). Now recall that if, as usual, Y
is Y with the opposite orientation, we have a dual pairing:

CFi(Y )⊗ CF−3−i(Y ) → Q.

Changing orientations, and taking the adjoints, interchangesD1 and D2,
so we get a perfect pairing

HF ∗(Y )⊗HF ∗(Y ) → Q, (7.3)

which is compatible in an obvious way with the pairing on the ordinary
Floer groups and the maps HF ∗(Y ) → HF∗(Y ), HF∗(Y ) → HF ∗(Y ).

7.2 Manifolds with b+ = 0, 1

Now suppose that Y is the boundary of an oriented 4-manifold X1

with b+(X1) > 1. We define a map ψ0 : A(X1) → Q in the famil-
iar fashion, evaluating classes on moduli spaces of connections with
boundary value the trivial connection θ over Y . Combining this with
the previous map ψ : A(X1) → C∗(Y ) we get a map ψ : A(X1) →
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CF ∗(Y ). Our gradings have been defined so that ψ shifts gradings by
3(1− b1(X1) + b+(X1)) mod 8.

Proposition 7.1 For λ ∈ A(X1), the class ψ(λ) is a cycle for ∂ +D1,
and the classes defined by different metrics on X1 differ by a (∂ +D1)-
boundary.

Thus we conclude that, passing to homology, we have a map

Ψ : A(X1) → HF ∗(Y ), (7.4)

which plainly lifts our former invariant Ψ over the natural map from
HF ∗(Y ) to HF∗(Y ). The proof of Proposition 7.1 is straightforward.
The point is that when we consider θ as a boundary value it behaves
no differently from the irreducible flat connections, so the reader can
copy the proof of Theorem 6.4 word for word. To see that Ψ(λ) is a
cycle we consider moduli spaces of dimension deg λ + 1 and boundary
value θ, cut down by a representative for λ of codimension deg λ. This
gives a 1-dimensional space with ends which correspond to factorisations
into a connection over X1 with boundary value ρ, for 〈ρ〉 ∈ C1(Y ), and
an instanton on the tube running from ρ to θ. The assertion follows
by counting the ends, since these instantons on the tube are precisely
the data used to define D1. Similarly, the variation under the change
of metrics follows by considering the ends in one-parameter families of
moduli spaces with boundary value θ and dimension deg λ.
Now if X = X1 ∪Y X2 is a 4-manifold split into two pieces, in the

familiar way, and if b+(X1), b+(X2) are both greater than 1, we can if
we want cast the basic gluing relation in the following way. Composing
the pairing Formula 7.3 with the natural maps

HF ∗(Y ) → HF∗(Y ) → HF ∗(Y ),

we get a pairing

HF ∗(Y )⊗HF ∗(Y ) → Q.

We have invariants

ΨX1 : A(X1) → HF ∗(Y ), ΨX2 : A(X2) → HF ∗(Y ),

and we have a gluing relation

ΨX = 〈ψX1
, ψX2

〉. (7.5)

At this stage, however, we have not really gained anything by this extra
complication. The point is that, since the pairing on HF ∗(Y )⊗HF ∗(Y )
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factors through the familiar pairing on HF∗(Y ) ⊗ HF∗(Y ), the gluing
formula Equation 7.5 is a consequence of the earlier result Theorem 6.7,
and hence contains no more information. The invariants ΨXi

do, poten-
tially, contain more information than the ΨXi – they record data from
the moduli spaces of connections with trivial boundary values – but this
is thrown away in our gluing formula. This is just the same mechanism
that gives the vanishing theorem for connected sums. We will now go
on to see how this formalism allows us to extend the theory to manifolds
with b+ = 0, 1, where the trivial connection plays an active role.

7.2.1 The case b+ = 1

Consider a closed manifold X = X1 ∪Y X2 where b+(X1) = 1 and
b+(X2) > 1. We have to reconcile the conflict between the facts that

• since b+(X1) = 1 we encounter difficulties in defining invariants for
X1, because of reducible connections appearing in one-parameter
families of metrics, as we have described in Section 7.1 in the case
of closed 4-manifolds,

• we do have straightforward invariants for the closed manifold X, since
b+(X) > 1, and we expect a gluing relation expressing these in terms
of data over X1, X2.

This apparent conflict is resolved using the formalism above. Consider
the manifold X1, with b+(X1) = 1 and ∂X1 = Y . For generic metrics
g on X1 there are no non-trivial reducible connections so we can carry
through the theory just as before to define a map

ΨX1,g : A(X1) → HF∗(Y ),

which will only change in a one-parameter family gt at parameter values
t for which there are integral anti-self-dual harmonic forms on X1. For
each, generic, metric the discussion of the gluing relation goes through
just as before, so we have

ΨX = 〈ΨX1,g,ΨX2〉. (7.6)

Now recall that we have a map from HF∗(Y ) to HF ∗(Y ). We define
ΨX1,g to be the composite of ΨX1,g with this map. The main result of
this Section is

Proposition 7.2 For λ ∈ A(X1) with deg λ < 8 the class ΨX1,g(λ) is
independent of the generic metric g on X1.
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Given this, we obtain a metric-independent invariant ΨX1
– at least in

the range deg λ < 8 – and in this range we have a satisfactory gluing
formula

ΨX = 〈ΨX1
,ΨX2〉,

which follows from Equation 7.6, and the compatibility between the
different Floer groups.
The content of Proposition 7.2 is that the chain ψ(λ) changes by

classes in the image of the D2 map for Y . The restriction deg λ < 8 in
Proposition 7.2 is almost certainly unnecessary. We include it in order to
avoid complications in our analysis below of the ends of moduli spaces –
complications which are very similar to those we referred to in Section 7.1
in the theory for closed manifolds. Very likely the techniques used by
Kotschick and Morgan in [28] can be used to remove this restriction, but
we will not go into this here.

We will just give the proof of Proposition 7.2 in the case of 0-
dimensional moduli spaces: i.e. we consider the image of the identity
in A(X1) under ΨX1,g. We will also suppose that X1 is simply con-
nected. The general case is similar. Let gt, 0 ≤ t ≤ 1, be a generic
one-parameter family of metrics and ρ a flat connection over Y of Floer
degree 3(1 − b1(X) + b+(X) – so there is an adapted bundle over X1

with boundary value ρ and index 0. For generic parameter values
t the corresponding moduli space M(t) is a finite set, and defines a
number nρ(t), counting the points with signs. There are two reasons
why the numbers nρ(t) can change. First, we may encounter irreducible
connections in moduli spaces of virtual dimension −1, just as in the
ordinary case, and this allows the chain

∑
nρ(t) to change by the image

of ∂ in the familiar way. What we want to examine now is the new
mechanism by which nρ(t) can change, due to the reducible solutions, so
we may as well suppose that in the interval [0, 1], there are no irreducible
solutions of index −1 but the period point of ω(gt) crosses a single wall
defined by a class e ∈ H2(X;Z), at time t = 1

2 say. Thus there is a
reducible solution A0 over X1, with the metric g 1

2
, having the trivial

connection θ as boundary value. Examining the usual compactness
argument we see that any change in nρ(t) across t = 1

2 arises due to
factorisations in which we have a non-flat reducible instanton A0 over
X1 with limit θ glued to an instanton I on the tube running from θ to
ρ, where

ind(A0) + ind(I) + 3 = 0.
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(In the usual way, we may contemplate more complicated factorisations
but these will be ruled out in the end by index considerations.) Now,
since A0 is not flat, indA0 is at least

2 − 3(1− b1 + b+) = −4,

so we see that the only possibility is that ind(A0) = −4, ind(I) = 1.
Thus the instanton I on the tube occurring in the factorisation is one of
those which are counted in defining the map D1.

We now pass on to the reverse step. Suppose A0 is a reducible
instanton over X1, for the metric g 1

2
, and I is an instanton over the

tube with index 1 running from θ to ρ. We consider the problem of
gluing these two connections together to make a solution of the instanton
equations with respect to gt, where t is near 1

2 . The deformation complex
for A0 has the form

H1
A0

= Cp, H2
A0

= R⊕Cp+1,

where the stabilser ΓA0 = S1 acts in the standard way on C and trivially
onR. We may suppose that p = 0, by choosing our path of metrics to be
sufficiently generic. Then to analyse the gluing problem we introduce a
space V = S2× (L,∞), where S2 = SO(3)/S1 is the effective parameter
in gluing the two connections across the trivial connection θ over Y ,
and the factor (L,∞) contains the usual parameter T measuring the
separation in the sum. The component C in H2

A0
defines a bundle H →

V, in fact just the pull-back of the tangent bundle over S2, and our
general gluing machinery says that there is a family of sections σt of H
and maps ft : V → R such that for each time t near 1

2 the common zeros
of σt and ft model the gt instantons which can be formed by gluing A0

to I.
The essential point now is that ft(x, T ) has a limit at as T → ∞, and

this limit is just the function associated to the deformation problem over
X1. In particular one finds that, if the path gt is transverse to the wall
associated to A0, then at vanishes at t = 1

2 , but a
′( 12 ) &= 0. It follows

that for any fixed large enough T we can find δ > 0 such that for all
x ∈ S2, the function ft(x, T ) changes sign, with non-zero derivative, in
the interval (12 − δ, 12 + δ). So for fixed x and T there is some (unique)
parameter t = t(x, T ) near 1

2 such that ft(x, T ) = 0. As T → ∞ the
function t(x, T ) tends to 1

2 from either above or below. Let us suppose
that t(x, T ) < 1

2 . For fixed T the other component σt represents a vector
field on S2, and so the algebraic sum of its zeros represents the Euler
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number, +2, of S2. We conclude then that, counted with signs, there
are two families of common zeros (x(t), T (t)) of ft, σt for t slightly less
than 1

2 , which diverge as t → 1
2 in the sense that T (t) → ∞ as t → 1

2 .
Hence we conclude that the change in the number nρ(t) associated to the
splitting of this kind is ±2. Taking account of signs and summing over all
the instantons I of index 1 we find that ψ(gt) changes by 2D2(1) ∈ C−4.

7.2.2 The case b+ = 0

We will now discuss how the theory of Chapter 6 can be modified
for manifolds with b+ = 0. This discussion will be taken further in
Subsection 7.3.5 below. To avoid complications we will work with simply
connected 4-manifolds, as in the previous Subsection, although again this
is not really essential.
Begin by considering the case when X1 is a simply connected 4-

manifold with one boundary component Y , and b+(X1) = 0. Fix a first
Chern class v1 ∈ H2(X1); then for each irreducible flat connection ρ over
Y we can define a number nρ by counting instantons in 0-dimensional
moduli spaces, as usual, and thus a Floer chain ψ. The compactness
argument which proves that, modulo Im ∂, the class ψ is independent
of metric goes through. The only new phenomenon we have to consider
here are splittings in which an instanton over X1 with limit θ is glued to
an instanton I over the tube from θ to ρ, where A might be reducible.
But then we have

indA+ 3 + ind I = 0

and this possibility is ruled out since indA ≥ −3 for any instanton (with
equality if and only if A is trivial), while ind I ≥ 1. The usual theory
must, however, be modified in two ways.

• If ψ is in CF−3 then ∂ψ need not vanish. For in the usual proof one
looks at the ends of 1-dimensional moduli spaces M(σ), for 〈σ〉 ∈
CF−4. However, if the Chern class v1 is zero (i.e. we are considering
SU(2) bundles) there can now be other ends of this space resulting
from splittings where the trivial connection over X1, with index −3,
is glued to an instanton I over the tube with index 1 running from θ

to σ. These instantons over the tube are just the ones which are used
to define the map D2, and we conclude that, when P is trivial,

∂ψ = −D2(1) ∈ CF−4. (7.7)
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Thus the chain ψ = ψ ⊕ (1) ∈ CF∗ ⊕ Z ∼= CF ∗ is a cycle, and the
preceding discussion tells us that the homology class of ψ is metric-
independent.

• If v21 = 2 mod 4 and ψ is in CF1 thenD1ψ need not vanish. Again, the
usual proof of this fact involves looking at the ends of a 1-dimensional
moduli space M(θ), with θ as boundary value. But now Mθ may
contain points corresponding to reducible connections over X1, and
these will lead to extra boundary components, just as one studies for
closed 4-manifolds with b+ = 0 [19]. We conclude that

D1ψ = S(X1, v1), (7.8)

where S(X1, v1) counts, with signs, the relevant reductions. These
reductions are labelled by classes e ∈ H2(X1;Z) with e2 = −2 and
e = v1 mod 2, where e and −e define the same reduction. The sign,
σ(e), associated to the reduction is +1 if ( e−v1

2 )2 is even and −1
otherwise. So the contribution is

S(X1, v1)) = 1
2

∑
e

σ(e), (7.9)

where the sum runs over classes e with e2 = −2, equal to v1 modulo
2.

So to sum up we have

Proposition 7.3 If X1 is simply connected with boundary the homology
sphere Y , and b+(X1) = 0, then for a class v1 ∈ H2(X1) we have Floer
classes

• ΨX1,v1 ∈ HF∗(Y ), if v1 &= 0 mod 2, and if v21 = 2 mod 4 this
satisfies

D1(ΨX1,v1) = S(X1, v1),

• ΨX1,v1
∈ HF ∗, if v1 = 0 mod 2.

The first case above gives a simple generalisation of results on the non-
existence of closed 4-manifolds with non-standard intersection forms:

Corollary 7.4 If S(X1, v1) &= 0 then the Floer group HF1(Y ) &= 0.

The point here is that the number S(X1, v1) depends only on the
intersection form of X1, and the chosen class v1. For example, suppose
the intersection form of X1 is the standard ‘diagonal’ form. It is easy to
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see that the only case when reductions occur is when the form has rank
2 and v1 = (1, 1) in the standard basis. Then there are two reductions,
labelled by

±(1, 1),±(1,−1),

and the sign σ is +1 on the first term and −1 on the second, so we see
that S(X1, v1) is always zero if the intersection form is standard, and
indeed this must be so by Corollary 7.4 since in that case we can take
X1 to be a connected sum of copies of CP

2
minus a ball, in which case

Y = S3 andHF∗(Y ) = 0. On the other hand if we take the non-standard
form E8, for example, one readily checks that, for a suitable v1, we have
S(X1, v1) = 1, so we conclude that if Y bounds a 4-manifold with this
intersection form then HF1(Y ) &= 0.
We now move on to the gluing rules in this context. Suppose X1 is as

above and occurs in a decomposition X = X1 ∪Y X2 of a closed, simply
connected 4-manifold. If b+(X2) is also zero, then b+(X) = 0 and we
have not defined any invariants for X, so nothing more needs to be said.
If b+(X2) > 1 we have

Proposition 7.5 If b+(X) = b+(X2) > 1 then the invariant Ψ(X) ∈ Q,
defined by v1 + v2 ∈ H2(X), and 0-dimensional moduli spaces, is given
by

Ψ(X) = 〈Ψ(X1),Ψ(X2)〉
or

Ψ(X) = 〈Ψ(X1),Ψ(X2)〉
in the two cases of Proposition 7.3.

We will leave the interested reader to formulate a similar statement for
the case when b+(X2) = 1 and the invariants depending on chambers.

The proofs here do not differ in substance from those of the usual
gluing formulae. The point is to see that the pairing between HF ∗(Y )
and HF ∗(Y ) handles the reductions tidily.

7.3 The cup product

7.3.1 Algebro-topological interpretation

Suppose we have a cobordism W between homology 3-spheres Y0, Y1,
and that b+(W ) > 1. By Theorem 6.6 we have a Floer class Ψ( 12Point),
where Point is the generator of H0(W ). (The factor of 1/2 is included
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here to simplify the formulae later: note that this factor has to be taken
into account when comparing our formulae with others in the literature).
In the familiar way this can be viewed as a map on the Floer homology,
say UW : HF∗(Y0) → HF∗(Y1). In this Subsection we extend the
discussion to the case when W is the trivial product cobordism. This
does not of course fit the hypotheses above due to difficulties from the
reducible connection, and the whole point of the work is to examine
these in more detail. To begin with however we move to the framework
of U(2) connections, so instead of the homology sphere Y we consider
a 3-manifold Z with non-trivial H1, and we work with an admissible
bundle over Z, with c1 &= 0. Then in this case there are no difficulties
with reducible connections so the product cobordism gives maps

U : HFi(Z) → HFi−4(Z).

The first thing we want to explain is the formal interpretation of these
in terms of the space of connections BZ . So let us go back to our finite-
dimensional analogue of Section 6.1: the compact manifold B with a
Morse function f . Suppose we have a cohomology class [α] ∈ Hν(B),
represented by some explicit cochain α; for example a closed differential
form on B. From algebraic topology one knows that this defines product
maps

α : Hi(B) → Hi−ν(B),

and we now ask how these maps can be represented in terms of the
Morse complex description of H∗(B). (The maps we are considering
are ‘cap products’ on homology: it is perhaps more usual to work with
the ‘cup products’ on cohomology but this merely involves a change of
notation, using the Poincaré duality built into the Morse complex.) Let
pr, ps be critical points of index i, i− ν respectively and consider the set
Pr,s ⊂ B of points which flow as t → ∞ to pr and as t → −∞ to ps: i.e.
the intersection of the ascending manifold from ps and the descending
manifold from pr. If f is suitably generic this is a manifold of dimension
ν and its closure Pr,s in B is given by adjoining the points pr, ps and
certain other manifolds Pr′,s′ corresponding to ‘broken trajectories’.

We evaluate α on Pr,s to get a number Ar,s, and we interpret the
resulting array of numbers as the matrix of a linear map A : C∗ → C∗−ν .
We claim then that A is a chain map which induces the cap product on
homology. The proof of the first assertion, i.e. that ∂A = ±A∂ follows
the familiar pattern. Given a critical point rv of index i − ν − 1 we
consider the (ν + 1)-dimensional manifold Pr,v. The boundary of this,
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as a set, is made up of various pieces, involving the intermediate critical
points, but the codimension-1 components of the boundary just involve
critical points pu of index either i− 1 or i− ν:

Pr,v = Pr,v ∪
⋃

u:i(u)=i−1

Pu,v ∪
⋃

u:i(u)=i−ν

Pr,u ∪R,

where R is contained in a union of manifolds of dimension at most ν−2.
From the point of view of homology each codimension-1 component of
the boundary must be counted with a multiplicity equal to a (signed)
number of flow lines (we are ignoring the issue of orientation throughout
this discussion). For example if i(u) = i − 1 the intersection of the
neighbourhood of a point in Pu,v with Pr,v is a union of a finite number
of manifolds-with-boundary, one for each flow line from pr to pu, coming
together along the boundary. So the boundary in homology of Pr,v is

∂homologyPr,v =
∑

r:i(r)=i−1

nr,u[Pu,v] +
∑

r:i(r)=i−ν

nu,v[Pr,u]. (7.10)

Now the fact that

0 = 〈dα, Pr,v〉 = 〈α, ∂homologyPr,v〉 =
∑

np,rAr,s +
∑

Ap,rnr,s

translates into the formula ∂A±A∂ = 0.
Going back to the space of connections on the 3-manifold Z, we con-

sider the cohomology class u ∈ H4(B∗
Z) defined by 1

2µ(Point). We choose
a representative for this defined by restriction to a small neighbourhood
N of a point in Z (so strictly this representative will only be defined
over the subset of connections which are irreducible over N) and follow
though the recipe above, interpreting flow lines as instanton moduli
spaces. Then we see that we arrive at exactly the same conclusion
as we reached in the 4-dimensional theory of the previous Section –
evaluating the cochain on the subset of B∗

Z is just the same as evaluating
on the moduli space via restriction of connections over the tube Z×R to
N×{0}. The upshot is that we interpret the map U : HF∗ → HF∗−4 as
the cap product between the ordinary 4-dimensional cohomology class
and the Floer homology, thought of as the semi-infinite-dimensional
homology of BZ .

While this 4-dimensional product will be of primary interest to us,
notice that the discussion applies equally well to other homology classes.
For any class z ∈ H∗(Z) we can consider the corresponding class i∗(z) ∈
H∗(Z × [0, 1]) and, applying the theory of Chapter 6, get a map from
HF∗(Z) to HF∗+i−4(Z) which we interpret as the cap product with µ(z)
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in H4−i(B∗
Z). In fact, provided one works with low-dimensional moduli

spaces, so that we do not encounter bubbling of instantons, one can
mimic the finite-dimensional theory directly; so any cohomology class
α ∈ Hν(B∗

Z) with ν < 7 defines a product map on the Floer groups.
(In rational cohomology all classes are generated by the µ(z), but there
could be other torsion classes.)

7.3.2 An alternative description

There is another, more 3-dimensional, point of view which gives a
slightly different representation of this cup product at the chain level.
Suppose first that we have a compact, oriented, 3-dimensional manifold
M parametrising a family of connections over the tube Z ×R, all with
fixed flat limits ρ, σ and normalised to have ‘centre of mass’ 0, in the
sense that ∫

Z×R

t|F |2 = 0. (7.11)

Let ad ρ, adσ be fixed flat SO(3) bundles over Z corresponding to ρ

and σ. Each point A ∈ M gives a one-parameter family At in BZ , as
discussed in Chapter 2. Then we can define a map i : M × (−∞,∞) to
BZ by

i(A, s) = Atan−1(πs/2).

The assumption on the limits means that this map extends to the
suspension

ΣM = M × [−1, 1]/ ∼,
where ∼ is the usual equivalence relation identifying M×{±1} to a pair
of points. We assume that all the connections At are irreducible, so we
get a map

i : ΣM → B∗
Z .

We may then pull back the 4-dimensional cohomology class u ∈ H4(B∗
Z)

and evaluate this on the fundamental class in H4(ΣM) = Z. On the
other hand, we may fix a base point z0 in Z and fix frames for the fibres
of the SO(3) bundles ad ρ, adσ over the base point. Then the holonomy
of the connection A along the line {y0} ×R gives, using these frames,
an element of SO(3), so we get a map

h : M → SO(3),

which has an integer degree.
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Lemma 7.6 The degree of the holonomy map h is 4〈i∗(u),ΣM〉.

The proof is straightforward when one unwinds the definitions. Pulling
back the base point fibration over B∗

Z gives an SO(3) bundle over ΣM
and the frames we have chosen are frames for this bundle over the two
vertices of this suspension. These extend to trivialisations of the bundle
over the two cones making up the suspension, and the transition function
is precisely h. Thus the assertion is the standard ‘transgression’ formula,
expressing the characteristic class of a bundle over a suspension in terms
of the homotopy class of the transition function.
In our application we want to consider the case where M is a (reduced)

moduli space of instantons over the tube. The number 〈i∗(u),ΣM〉 is
the same as the number we obtain by evaluating the 4-dimensional class
in defining the chain map U above. So, when all these moduli spaces are
compact, we can immediately use Lemma 7.6 to give another description
of U . The complication comes from the fact that these moduli spaces
will not normally be compact and we have to modify the holonomy
construction to get a genuine chain map. For simplicity we suppose
that we can lift our frames for the bundles over the base point to U(2)
(the extension of the construction to avoid this assumption is left as an
exercise for the reader). We choose such frames for all flat connections
over Y . Since the determinants of our connections are fixed we get a
holonomy map into a copy of SU(2) inside U(2). So for any reduced
moduli space M ′

ρσ we have a map

h̃ : M ′
ρσ → SU(2).

Our first thought is to choose a representative α for the generator
of H3(SU(2)), pull this back and evaluate on the 3-dimensional moduli
spaces to obtain the matrix entries of a linear map L on the Floer chains
in the usual way; but unfortunately this need not give a chain map. To
see why consider a pair of flat connections ρ, τ of index difference 5.
Thus there is a 4-dimensional (reduced) moduli space M4 of instantons
from ρ to τ . The compactification is a manifold-with-corners and the
codimension-1 faces are of four kinds, corresponding to factorisations
through a connection σ with indσ = ind ρ − i for i = 1, 2, 3, 4. The
holonomy map extends to the compactification and

h̃ρτ = h̃ρσh̃στ , (7.12)

on the face M ′
ρσ ×M ′

στ ⊂ M ′
ρτ .
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We can pull α back to all of these faces and evaluate, and we know that
the sum of all these contributions is zero. The sum of contributions from
factorisations with i = 1 and i = 4 gives the matrix entries of ∂L±L∂ in
the usual way: the problem is that we would like the contributions from
the other terms with i = 2, 3 to vanish. To achieve this we will deform all
the holonomy maps h̃ρσ, preserving the product relation Equation 7.12.
We exploit the fact that SU(2) is the 3-sphere. Choose a family of
smooth maps,

ψr : SU(2) → SU(2),

for r ∈ (0, 1], such that

• each ψr is equivariant with respect to the adjoint action of SU(2),
• ψ1 is the identity,
• ψr(−1) = −1 for all r,
• when r is small ψr crushes the complement of the r-ball about −1 to
1 ∈ SU(2).

Now the frames we have chosen for the fibres of the flat bundles over the
base point can be extended to frames for sufficiently nearby connections:
that is, we can choose disjoint closed neighbourhoodsNσ ⊂ B∗

Y of the flat
connections σ and trivialisations of the base point fibration over these
neighbourhoods. Given any instanton A in Mρτ there are a finite set of
intervals I1, . . . , Ip inR defined by the condition that t ∈ ⋃ Ip if and only
if At lies in some Nσ for σ &= ρ, τ . So each interval Ij is associated to a
flat connection σj . There is a similar half-infinite interval Ip+1 associated
to the connection τ . Write the intervals Ij for j ≤ p as [aj , bj ] and the
interval Ip+1 as [ap+1,∞) with a1 < b1 < a2 < b2 < · · · < bp < ap+1.
Fix a small positive number δ and a function r(T ) with r(T ) = 1 if T
is small and r(T ) = δ if T is large. Let Tj be the length bj − aj of the
interval Ij , and define the modified holonomy Hρτ (A) as follows. We
parallel transport the chosen frame over the base point for ρ, i.e. at −∞,
to a frame over the point (a1, z0) in R×Z. This gives a frame which we
can compare with the chosen frame for σ1 using the identifications we
have fixed, so we get a group element g1, comparing the two frames. We
next apply the map ψr1 to g1, where r1 = r(T1), to get g′1 = ψr1(g1) We
can think of g′1 as defining a frame for our bundle over b1 × y0. Then we
parallel transport this to a2 × y0 and repeat the process. (For the final
interval Ip+1 we apply the map ψδ.) The upshot is that we define maps

Hρ,τ : M ′
ρτ → SU(2)



182 Reducible connections and cup products

for all ρ, τ such that Hρ,τ = Hρ,σHστ on the relevant face of the
boundary, but now having the property that they map the bulk of the
moduli spaces to the identity. To say this more precisely, assume that
the original holonomy maps h̃ρσ are transverse to −1. (We leave as
another exercise for the reader to modify the construction to avoid this
assumption.) Then in particular the holonomy h̃ does not take the value
−1 on any moduli space of dimension less than 3, and it follows that
the modified holonomy is equal to the identity (for suitable values of the
various parameters) near any boundary point associated to factorisations
with i = 2 or 3. We take a representative α for H3(SU(2)) and for
connections ρ, σ of index difference 4 we define

nρσ = 〈H∗
ρ,σ(α),M

′
ρσ〉.

These are the matrix entries of a linear map Ũ and this is a chain map
since the construction makes the contributions from the other faces of
the compactification of the 5-dimensional moduli space equal to zero.

Proposition 7.7 The chain map Ũ induces the cap product U on
HF∗(Z).

First, we have seen that the cap product U can be induced by any
representative for the cohomology class in H4(B∗

Z). In particular we
can take a connection Γ on the base point fibration E over B∗

Z and the
Chern–Weil representative by a 4-form which this defines. This gives one
chain map U say. Likewise we take the standard (translation-invariant)
volume form on SU(2) to define the cochain α, this gives another chain
map Ũ . Now our modified-holonomy construction defines a trivialisation
of E over certain moduli spaces of instantons on the tube, viewed as
subsets of B∗

Z . In particular if ρ and τ have index difference 3 we get a
trivialisation of E over M ′

ρτ ×R which extends to the compactification
in B∗

Z . Then the Chern–Simons form of Γ in this trivialisation is a
3-form over the 3-manifold M ′

ρτ ×R and we can integrate this to define
a number cρτ . We view this collection of numbers as the matrix of
a linear map c : C∗ → C∗−3 in the usual fashion. We claim that c

gives a chain homotopy between U and Ũ . Suppose ρ and σ have index
difference 4. The modified holonomy does not give a trivialisation of
E over M ′

ρσ ×R but we can divide this space into two pieces P+, P−,
where P− is the intersection with a small neighbourhood of σ, such that
we do get trivialisations over the two pieces. We can just let

P+ = {(A, t) ∈ M ′
ρσ ×R : t ≤ β}, P− = {(A, t) ∈ M ′

ρσ ×R : t ≥ β},
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for some large β ∈ R. These trivialisations extend to the closures of
P± in B∗

Z . The transition function relating the two trivialisations over
M ′

ρσ × {β} ∼= M ′
ρσ is exactly our map Hρσ. Now∫
M ′

ρσ×R

TrF 2
Γ =
∫
P+

TrF 2
Γ +
∫
P−

TrF 2
Γ ,

and on each piece P± we can write

TrF 2
Γ = dφ±

say, where φ± are the Chern–Simons forms in the two trivialisations.
Over the intersection M ′ ×{β} these two Chern–Simons forms differ by
the pull-back H∗

ρσ(α) of the volume form. If we apply Stokes’ theorem
to the two pieces P± we get∫

M ′
ρσ×R

TrF 2
Γ =
∫
M ′

ρσ

H∗
ρσ(α) +

∫
∂P+

φ+ +
∫
∂P−

φ−,

where ∂P+, ∂P− are the portions of the codimension-1 part of the
boundary of M ′

ρσ × R which lie in the closure of P+, P− respectively,
counted with appropriate multiplicity. A little thought shows that the
contribution from these latter terms is precisely given by the matrix
entry of ∂c± c∂, which establishes the chain homotopy relation.

7.3.3 The reducible connection

So far we have been working in the framework of non-trivial U(2)
bundles, where all flat connections are irreducible. We will now discuss
how the preceding theory must be modified in the case when Y is a
homology 3-sphere. We can carry through the same constructions to
define maps

U : Ci → Ci−4

by evaluating appropriate cochains. There is just one point of difference
which occurs when 〈ρ〉 is in CF1 and 〈σ〉 is in CF−4, so we have
a 4-dimensional reduced moduli space M ′

ρσ. The boundary of M ′
ρσ

contains a new contribution coming from factorisations through the
trivial connection θ. For each pair of instantonsA from ρ to θ andB from
θ to ρ there is an end of the moduli space M ′

ρσ modelled on the space of
gluing parameters SO(3). Clearly the holonomy map on this boundary
component is a translate of the identity map of SO(3), so it follows
from the 3-dimensional description of the previous Subsection that this



184 Reducible connections and cup products

contributes ±1/4 when one evaluates the cochain. The number of pairs
(A,B), counted with signs, is just the matrix entry of the composite
D2 ◦D1 : CF1 → CF−4, and one arrives at the following.

Proposition 7.8 If Y is a homology 3-sphere the procedure above defines
a map U : C∗ → C∗−4 such that

∂U − U∂ = − 1
4D2 ◦D1

on CF1 (and ∂U = U∂ on the other chain groups).

Of course there are many choices involved in the definition of the map U
of the above Proposition: we may need to make a generic perturbation to
define the Floer chains C∗ and we need to choose a representative cochain
to define U . It is not so easy now to distil out the topologically invariant
data. To do this we define a (Z/8)-graded chain complex (C̃F ∗, ∂̃) with

C̃F i = Ci ⊕ Ci−3

for i &= 0, and

C̃F 0 = C0 ⊕Q⊕ C−3.

The differentials are given by the direct sum of three terms

•
(

∂ U

0 ∂

)
: C̃F i → C̃F i−1, (7.13)

• 1
2D1 : (C1 ⊂ C̃F 1) → (Q ⊂ C̃F 0),

• 1
2D2 : (Q ⊂ C̃F 0) → (CF−4 ⊂ C̃F−1).

Then one can check that the four equations

∂2 = 0, (7.14)

D1∂ = 0, (7.15)

∂D2 = 0, (7.16)

∂u− u∂ + 1
4D1D2 = 0 (7.17)

we have established are equivalent to the single equation ∂̃2 = 0.
We have a filtration

C∗ ⊂ C∗ ⊕Q ⊂ C̃F ∗, (7.18)
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so we have a filtered chain complex. Notice that the complex CF∗ ⊕Q
here is the same as CF ∗ and that the quotient

C̃F ∗/CF∗

can be identified with CF ∗. We have a vector space involution σ :
C̃F ∗ → C̃F ∗ which maps Q to itself by the identity map and which is
the canonical identification of the copy CFi ⊂ C̃F i with CFi ⊂ C̃F i+3.
Thus, to abstract the algebra of the set-up we make the following
definition.

Definition 7.9 An (F , σ)-complex C̃∗ consists of the following data:

• a (Z/8)-graded complex C̃∗ of rational vector spaces,
• a subcomplex C∗ ⊂ C̃∗,
• an injection Q → C̃0 such that

C∗ ⊂ C∗ ⊕Q ⊂ C̃∗

defines a filtration of C̃∗,
• an involution σ : C̃∗ → C̃∗ which is the identity map on Q and
such that the restriction of σ to C∗ is of degree 3 and induces an
isomorphism from C∗ to C̃∗/C∗ ⊕Q and hence gives a canonical
vector space isomorphism

C̃∗ = C∗ ⊕Q⊕ σC∗.

We require that the component of the differential mapping σC∗
to σC∗ should be σ∂σ−1, where ∂ is the differential in C∗, and
we require that the component of the differential mapping Q to Q
should vanish.

We have seen then that, making various choices, we can associate an
(F , σ)-complex to a homology sphere Y .

We now go on to consider maps between these complexes. So suppose
that C̃∗, C̃ ′

∗ are (F , σ)-complexes as above. The space of all Q-linear
maps Hom(C̃∗, C̃ ′

∗) has a standard grading and differential, making
it into a (Z/8)-graded complex. The degree-0 cycles in this complex
are just the chain maps from C̃∗ to C̃ ′

∗ and two maps differ by a
boundary in the complex precisely when they are chain-homotopic. We
let HomF (C∗, C ′

∗) denote the maps λ : C̃∗ → C̃ ′
∗ which

• respect the filtrations of C̃∗, C̃∗,
• have zero component mapping Q ⊂ C̃∗ to Q ⊂ C̃ ′

∗,
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• satisfy σ′ ◦ λ = λ ◦ σ.

Such a map λ is determined by four components:

• λ1 : (C∗ ⊂ C̃∗) → (C ′
∗ ⊂ C̃ ′

∗);

• λ2 : (σC∗ ⊂ C̃∗+3) → C ′
∗ ⊂ C̃ ′

∗);

• λ3 : (σC∗ ⊂ C̃∗+3) → (Q ⊂ C̃ ′
0);

• λ4 : (Q ⊂ C̃0) → (C ′
∗ ⊂ C̃ ′

∗).

Thus, as a rational vector space,

HomF (C̃∗, C̃ ′
∗) = Hom(C∗, C ′

∗)⊕Hom(C∗, C ′
∗)

⊕ Hom(C∗,Q)⊕Hom(Q, C ′
∗).

Now we have an obvious copy of Q in Hom(C̃∗, C̃ ′
∗), and a direct sum

decomposition of Hom(C̃∗, C̃ ′
∗) as Q, four copies of Hom(C∗, C ′

∗), two
copies of Hom(C∗,Q) and two copies of Hom(Q, C ′

∗). So we have a
vector space isomorphism

Hom(C̃∗, C̃ ′
∗) = HomF (C̃∗, C̃ ′

∗)⊕Q⊕ τ(HomF (C̃∗, C̃ ′
∗)), (7.19)

for a suitable injection τ : HomF → Hom.

Lemma 7.10 HomF (C∗, C ′
∗) ⊂ HomF ⊕ Q are subcomplexes of

Hom(C∗, C ′
∗) and, for a suitable choice of the map τ , the decomposition

Equation 7.19 makes Hom(C̃∗, C̃ ′
∗) into an (F , σ)-complex.

We leave the proof to the reader. Now define a category C as follows. An
object of C is an (F , σ)-complex and a morphism is an equivalence class
of degree-0 chain maps in HomF⊕Q up to chain homotopies by elements
of HomF ⊕Q (that is, a homology class in the (HomF ⊕Q)-complex).
We define another category H whose objects are oriented homology 3-
spheres with base points, and whose morphisms are oriented homology
cobordisms, with a choice of homotopy class of path joining the base
points on the boundary.
Then we have

Theorem 7.11 The construction above defines a functor from the
category H to the category C.
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We will outline the proof of this result.
Let Y, Y ′ be two oriented homology 3-spheres, with base points, and,

making appropriate choices, let

C̃F ∗ = (C∗, ∂, U,D1, D2), C̃F
′
∗ = (C ′

∗, ∂
′, U ′, D′

1, D
′
2)

be the data defined as above for the two manifolds
Now let W be a homology cobordism from Y to Y ′ and choose a path

joining the base points on the boundary. We need to show first that,
with suitable choices, W defines a chain map λ in HomF . To do this we
need to define maps λ1, . . . , λ4 as above and a further component λ5 in
Q. These are given as follows.

• The map λ1 is the ordinary map on the Floer chains, as defined in
Chapter 5, using 0-dimensional moduli spaces of instantons over W .

• The map λ2 is defined by 3-dimensional moduli spaces of instantons
over W . We define a modified holonomy map on these moduli spaces,
much as above, and evaluate the pull-back of a 3-cochain to get the
matrix entries of the maps.

• The map λ3 is defined by counting instantons over W with limits an
irreducible connection ρ over Y and the trivial connection θ′ over Y ′.

• The map λ4 is defined by counting instantons over W with limits the
trivial connection θ over Y and an irreducible connection ρ′ over Y ′.

• The map λ5 is the identity map from Q to Q (which corresponds
geometrically to the trivial connection over W ).

To obtain the relations satisfied by these maps we consider four kinds
of moduli spaces of instantons over W :

• One-dimensional moduli spaces of instantons with irreducible limits
at either end. Counting the boundary components gives the relations

∂′λ1 = λ1∂

which we have seen already in Chapter 5.
• Four-dimensional moduli spaces of instantons with irreducible limits
at either end. We extend the modified holonomy map, and hence the
3-cochain, over these moduli spaces. The fact that the evaluation on
the boundary gives 0 yields the relation

∂′λ2 − λ2∂ = λ4D1 −D′
1λ3.
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• One-dimensional moduli spaces with an reducible limit over Y and
the trivial limit θ′ over Y ′. The boundary of these gives

D1 = λ5D1 = D′
1λ1.

• One-dimensional moduli spaces with the trivial limit θ over Y and an
irreducible limit over Y ′. The boundary of these gives

λ1D2 = D′
2 = D′

2λ5.

These relations are precisely what is needed to show that the map λ is
a chain map.
To complete the proof we need to show two further things: first, that

changing the various choices used to define λ changes the map by an
appropriate chain homotopy; second, that if we have another cobordism
from Y ′ to Y ′′ say then, with suitable choices, the chain maps of the
composite cobordism are the composite of the two chain maps as above.
Both of these follow just the same principles as in the case of the ordinary
Floer groups and we leave details to the reader.

7.3.4 Equivariant theory

There are a number of variants of the Floer groups that we can define
which build in the information from the trivial connection and cup
product. The point of Theorem 7.11 is that this discussion now becomes
purely a matter of algebra: any functor from the category C will give rise
to a topological invariant of homology 3-spheres. The first construction
we consider runs as follows. Given an object in our category C –
represented by (C∗, ∂,D1, D2, U) – let Q[[y]] denote the ring of formal
power series in an indeterminate y and define a (Z/8)-graded vector
space

CF ∗ = CF ∗(Y ) = C∗(Y )⊕Q[[y]],

where the generator y is thought of as having degree 4, so for example

CF 0 = C0 +Q+Q(y2) +Q(y4) + · · · .
We define a differential ∂ to be the sum

∂ = ∂+D1+ yD1 ◦U +
y2

2!
D1 ◦U ◦U +

y3

3!
D1 ◦U ◦U ◦U + · · · . (7.20)

Here D1 is the familiar map from C1 to Q ⊂ Q[[y]] and ‘y’ denotes the
operation of multiplication by y in Q[[y]]. In a more condensed notation
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we can write

∂ = ∂ +D1e
yU .

We also define a degree-(−4) map

U : CF ∗ → CF ∗,

by

U = U + 1
4D2 +

∂

∂y
(7.21)

where D2 means, strictly, the composite of the map we have considered
before from Q to C−4 with the ‘evaluation map’ Q[[y]] → Q setting y to
0. For example

U(y2 + y + 3) =
3
4
D2(1) + 2y + 1 ∈ C−4 ⊕Q[[y]].

It is an exercise in algebra to check that (CF ∗, ∂) is a chain complex
and U is a chain map, so we get a cohomology group

HF ∗(Y )

with an endomorphism which we will again denote by

U : HF ∗ → HF ∗.

In other words HF∗ is a module over the polynomial ring Q[u] in one
variable. Similarly one checks that, up to the obvious equivalence, this
depends only on the chain homotopy class of the original data, so in
particular we get an invariant of homology 3-spheres. This construction
can be seen as a generalisation of that of the HF ∗. Indeed we can make
a sequence of such constructions, for each p ≥ 0, by following the same
procedure as above but setting yp = 0. In each case we get a chain
complex and homology group. The case p = 1 gives HF ∗ whereas HF ∗
is in a natural way the limit of these constructions as p → ∞. It is only
in this limit however that we can define the product map on homology.
Clearly the obvious inclusions of chain complexes define maps on

homology

HF ∗ → HF ∗ → HF∗. (7.22)

We have already discussed in Section 7.1 how the basic 4-manifold
invariants can be lifted from HF∗ to HF ∗. We can now take this further
and try to lift our invariants toHF ∗. LetX1 be a 4-manifold with b+ > 1
and boundary Y . Recall that A(X1) is the ring generated formally by the
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homology of X1. In particular A(X1) is a module over the polynomial
ring Q[u] on one variable, corresponding to one half the generator of
H0(X1).

Proposition 7.12 There is a way to define a Q[u]-module homomor-
phism ψ : A(X1) → HF ∗(Y ) which lifts the previous linear map of
vector spaces ψ : A(X1) → HF ∗(Y ).

Of course, as usual, this map ψ will be an invariant of the smooth
manifold-with-boundary (X1, Y ).

Proposition 7.12 may be compared with the corresponding assertion
working with non-trivial bundles over a 3-manifold Z with non-trivial
H1. In that case the ordinary Floer group already has a cap product,
i.e. is a Q[u] module, and the fact that the invariant of a 4-manifold
with boundary is a module homomorphism follows immediately from
the basic theory. In the case of a homology sphere the construction of
HF ∗ is just what is needed to repair the damage done by the trivial
connection. (A slightly different approach is discussed in Section 8.1
below.)

The proof of Proposition 7.12 brings in some new ideas. First, the
other homology classes in X1 will play no real role in the discussion, so
we may as well concentrate on the copy of Q[u] in A(X1), and since our
map is to be aQ[u]-homomorphism it suffices to define ψ on the identity.
As usual, this will be defined via a chain in the CF -complex. This chain
has a component in CF∗ ⊂ CF ∗, which will just be the familiar Floer
chain defined by 0-dimensional moduli spaces with irreducible limits.
The new feature is that we have to define a component∑

j

njy
j ,

say, in Q[[y]]. The basic idea is that nj is given by evaluating µ( 12pt.)
j

on a 4j-dimensional moduli space of instantons over X1 with the trivial
limit θ. (Thus, depending on the value of (1− b1+ b+) modulo 8, either
all the nj will be zero – if there is no moduli space of dimension 4j – or all
the nj will be zero for j odd or for j even.) At this level, the chain data
appears to be exactly the same as we have used already in defining ψ(U j)
in HF ∗(Y ). However, in fact Proposition 7.12 is a genuine refinement of
the HF theory, and the class ψ contains more information. This comes
about because we use particular kinds of representatives for µ(pt.) to
define the numbers nj .
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For simplicity we will just consider the definition of the number n1, in
the case when there is a 4-dimensional moduli space Mθ of instantons
over X1 with the trivial limit. We fix some representative cochain S for
the 4-dimensional cohomology class over B∗

Y , let us say by a codimension-
4 submanifold. We choose this to be in general position with respect
to all the relevant finite-dimensional moduli spaces, in particular we
arrange that no irreducible flat connection lies in the support of S. Now
for any L > 0 we can restrict a connection over X1 to the copy YL =
Y × {L} ⊂ Y × (0,∞) ⊂ X1 of Y . Pulling back by this restriction map
we get a 4-dimensional cochain SL, or more precisely a codimension-4
subset, over Mθ. For fixed, generic, L we can evaluate this (i.e. count
the subset) on the moduli space to get a number n1(L). This is just a
part of the standard theory. Similarly, the standard theory tells us that
if we change L, or any other parameter, the number n1(L) will change
by D1(λ) for some λ in CF1. The new feature here is that we show
more:

• for sufficiently large L the numbers n1(L) do not vary with L, i.e.
n1(L) has a limit, n1 say, as L tends to infinity;

• under a compactly supported variation of metric on X1 the number
n1 changes by D1(λ) for some λ ∈ CF5.

To prove the first part, consider how the number n1(L) might change
as L increases through some critical value L∞. This can only happen if
there are a sequence Li → L∞ and connections Ai ∈ Mθ such that Ai lies
in SLi but the Ai do not converge in Mθ as i tends to infinity. Standard
arguments rule out any ‘bubbling’ and one sees that the only thing that
can happen is that the Ai are chain-convergent, given for large i by
gluing an instanton A over X1 with irreducible limit ρ to an instanton
I over the tube running from ρ to θ. (Again, familiar arguments rule
out longer chains.) Let Mρ be the moduli space of instantons over X1

containing A. The additivity of the index shows that the dimension
of Mρ is at most 3. Now we may suppose that L∞ is chosen large
enough so that the restriction of any connection in Mρ to the segment
Y × (L∞ − 1, L∞ + 1) is either close to ρ or well approximated by an
instanton J on the tube running from some other flat connection σ to
ρ. The connection A cannot be of the first kind, since ρ does not lie
in the support of S. In the second case, the index of J is also at most
3 and the moduli space Mρ in a neighbourhood of A is modelled on a
product of the moduli space Mσρ of instantons on the tube, containing
J , and another factor Mσ, of instantons over X1. It follows then that,
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near the connections Ai, the restriction map from Mθ to YL, for L near
L∞, is close to the restriction map from Mσρ to YL. But Mσρ contains
a translation parameter, which is obviously equivalent to changes in L.
We suppose by general position that the restriction of Mρσ to YL∞ –
which yields a set of dimension at most 3 in B∗

Y – does not meet the
support of S. Then it follows that the restriction of Mρσ to any YL does
not meet S and this gives the desired contradiction.

For the second part, we carry through a similar discussion with L fixed
and sufficiently large and a one-parameter family of metrics on X1, all
fixed over the tubular end. The same argument shows that the only
way a change could occur is when a sequence Ai is chain-convergent
to a connection A in Mρ glued to an instanton I running from ρ to
θ, and where in turn the moduli space near A is modelled by gluing a
moduli space of instantons Mσρ over the tube to connections B over
X1 with limit σ. Our dimension counting now shifts by 1, since in the
one-parameter family of metrics we expect to meet solutions B with
index −1, and this allows Mσρ to have dimension 4. Conversely, the
usual gluing arguments show that for any connectionsB, I, J as above we
get a contribution to the change in n1. But if we use this representative
S to define the cap product map U on C∗(Y ), the number of pairs I, J
counted with signs just gives D1U(λ), where λ is the Floer chain defined
by counting the solutions B of index −1 in the one-parameter family.
This establishes the second item above. Of course we see more: the
change in n1 by D1U(λ) is accompanied in a change in the ordinary
Floer chain by ∂λ, which just says that the class in the complex CF

does not change.

The proof of Proposition 7.12 in the general case is similar. We define
ni by choosing large parameters

0 * L1 * L2 * · · · * Li,

and pull-back representatives Si by the restriction map to the YLi . The
same analysis shows that the intersection of Mθ with all the Si defines
a number ni which is independent of the Lα, provided these are all
sufficiently large, and that a change under a one-parameter family of
metrics is associated to configurations of connections corresponding to
the composite map D1u

i. The fact that the map so defined both is a
Q[u]-homomorphism and lifts ψ is a reflection of the compatibility of the
chain data noted above. One can go on to show that the constructions
are independent of the choices made over Y .
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Now, in much the same way as we defined two groups HF ∗, HF ∗, we
can define another group HF ∗. Here we take a formal variable x and let

CF ∗ = C∗ ⊕Q[x],

where Qxp ⊂ Q[x] is assigned degree 4p− 3. Notice that in this case we
are taking polynomials, rather than formal power series. The differential
has the ordinary component ∂ on C∗ and an additional component
mapping Q[x] to CF∗ given by

∂(f(x)) = f(u)D2(1).

One checks this is a chain complex and we define HF ∗(Y ) to be its
homology. There is a chain map U on CF ∗ given by

U(ρ+ f(x)) = uρ+ 1
4D1ρ+ xf(x),

and this makes HF ∗ a Q[u]-module. This construction is the adjoint of
the previous one, in the sense that the obvious pairing

CF ∗(Y )⊗ CF ∗(Y ) → Q

induces a pairing

HF ∗(Y )⊗HF ∗(Y ) → Q (7.23)

under which

HF ∗(Y ) = Hom(HF ∗(Y ),Q).

The products are adjoint with respect to the pairing. We also have
natural maps

HF∗(Y ) → HF ∗(Y ) → HF ∗(Y ),

adjoint to Formula 7.22.

As usual, finite-dimensional analogues shed light on the construc-
tions of the preceding paragraphs. Suppose V is some compact finite-
dimensional manifold and a compact group G acts on V . Let EG → BG

be a universal G bundle – so EG is a weakly contractible space on which
G acts freely. The equivariant cohomology H∗

G(V ) is defined to be the
ordinary cohomology of the ‘homotopy quotient’

VG =
V × EG

G
,

where G acts on both factors. We may also consider the equivariant
homology H∗(VG). There is a projection map from VG to BG which
induces a map from H∗(BG) to the cohomology ring H∗(VG), and
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this makes H∗
G(V ) into a module over H∗(BG). At one extreme, if

G acts freely on V then VG is weak homotopy equivalent to the ordinary
quotient space V/G, so H∗

G(V ) = H∗(V/G) and the H∗(BG) module
structure is just given by the products with the characteristic classes of
the G bundle V → V/G. At the other extreme, if G acts trivially the
homotopy quotient is the product V ×BG and the module structure is
the product in H∗(BG) on the second factor.

Now suppose that f : V → R is a G-invariant function on V . We seek
a generalisation of the Morse description of ordinary cohomology to the
equivariant case. The function f induces a function f̃ : VG → R. The
fact that the spaces EG and VG are not finite-dimensional manifolds does
not really matter much. One can either work with finite-dimensional
approximations or adapt the theory directly to an infinite-dimensional
situation. Now the function f̃ cannot be a Morse function. Consider
the projection map π from VG to the quotient V/G. For each point
[x] in V/G we choose a representative x in V and look at the stabiliser
Γx ⊂ G in G. Up to conjugation this is independent of the representative
chosen. The fibre π−1(x) is EG/Γx which is homotopy-equivalent to the
classifying space BΓx. By construction, the function f̃ is constant along
the fibres of π, so its critical set is a union of fibres. We assume that
the function f is an ‘equivariant Morse function’, which means that the
critical set C of f̃ is a finite union of fibres of π,

C = π−1(x0) ∪ · · · ∪ π−1(xn),

and the Hessian of the function is non-degenerate transverse to the fibres.
We are thus in the general setting of ‘Morse–Bott’ theory. To each
component Ci = π−1(xi) of the critical set we assign an index µi – the
dimension of a maximal negative subspace of the Hessian in the normal
directions. We let Cp be the union of the components with index p.
On these components we take a suitable model (Ω∗, d) for the ordinary
cohomology cochain complex: for example (if we are working with real
co-efficients) we could use the differential forms and exterior derivative.
The result we want is the following, which is a more or less standard
part of Morse–Bott theory. (We refer to [5] for more details.)

Proposition 7.13 There is a way to define a filtered complex with
groups

Epq = Ωq(Cp),
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and differential d =
∑

r≥0 dr,

dr : Epq → Ep+r q−r+1,

where d0 = d : Ω∗(Cp) → Ω∗(Cp), and whose cohomology is the
equivariant cohomology H∗(VG).

The higher differentials dr can be defined using the manifolds of gradient
flow lines M(Ci, Cj) between critical sets. We have end point maps

e− : M(Ci, Cj) → Ci, e+ : M(Ci, Cj) → Cj ,

and the differentials are the composites (e−)∗e∗+ of the pull-back and
push-forward (integration over fibres) maps on forms. This description
leads to an important general restriction on the differentials, reflecting
the symmetry. We can start with a G-invariant Riemannian metric on
V and then take the product metric on V × EG. Let N be a moduli
space of gradient lines on V : clearly G acts on N . The gradient lines
on V × EG are just N × EG, and hence we see that the corresponding
moduli space of gradient lines M in VG is itself the homotopy quotient
M = NG = N ×G EG. Now consider the end point maps

M → Ci, M → Cj .

Suppose that Γi is trivial – so the G-action on M is free – but Γj is
non-trivial. Then the fibres of the end point map e+ contain non-trivial
Γ orbits which map non-trivially under e−. It follows that the composite
of push-forward and pull-back in this situation is trivial. Thus the part
of the differential mapping H∗(Cj) = H∗(Point) to H∗(Ci) = H∗(BΓ)
vanishes.
Proposition 7.13 implies that there is a spectral sequence converging

to the equivariant cohomology whose E1 term is

Epq
1 = Hq(Cp).

In other words E∗∗
1 is the sum⊕

H∗(BΓxi
),

but with the grading on H∗(BΓxi
) shifted by µi. Now, to be concrete,

suppose we have an example where the stabilisers Γxi
are trivial for

all i > 0, whereas Γx0 = SO(3). Working with rational cohomology,
H∗(BSO(3)) is the polynomial ring generated by one element x in H4.
Then the E1 term is C∗ ⊕ R[x], (where C∗ is generated by isolated
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critical points) and, taking account of the vanishing phenomenon above,
the differentials are

d1 : C∗ → C∗+1, d4j+1 : R → Ca+4j ,

for some fixed a. Explicitly d1 is given by counting gradient lines, i.e.
points in N/G, and d4j+1 is given by evaluating the pull-back of xj under
the end point map on a moduli space N/G. We arrive then at a complex
which is almost an exact analogue of the one we have used to construct
HF ∗(Y ). The only differences are that, first, our gradings are reversed,
i.e. the Floer differential decreases degree. This is simply a matter of
book-keeping and convention. Second, in the Floer case we defined the
differential analogous to d4j+1 by using the jth power of the product
map u. But, much as we have seen in the proof of Proposition 7.12,
these give the same complex, up to chain homotopy.

The conclusion of this discussion is that we can regard the group
HF ∗(Y ), with its Q[u]-module structure, as the Floer analogue of the
equivariant cohomology of the space of connections modulo the gauge
group. Likewise we can regard the group HF ∗(Y ) as the analogue of
the equivariant homology, using the duality Formula 7.23. We can apply
the same ideas directly to the chain complex C̃F ∗(Y ). The simplest
invariant we can form from this is its homology H̃F ∗(Y ). This can be
interpreted in the above spirit as the Floer analogue of the cohomology
of the space B̃Y of ‘framed’ connections over Y .

7.3.5 Limitations of existing theory

So far the theory has unrolled in a smooth, perhaps anodyne, fashion.
We have been developing more and more elaborate algebraic gadgets but
ones which encode the same basic geometrical operations: evaluating
cohomology classes on moduli spaces and their boundaries. Moreover
the Floer theory has followed very closely the analogous constructions in
ordinary, finite-dimensional, homology theory. In essence this is because
the moduli spaces we have been dealing with behave as though they
were compact, except for the familiar ‘factorisation’ phenomenon. But
now we meet a problem in which the other non-compactness mechanism
– bubbling at points – plays a real role. Suppose that X1 is a manifold
with boundary Y , and with b1(X1) = b+(X1) = 0. Recall that in
Subsection 7.2.2 we defined an invariant Ψ(X1) ∈ HF ∗(Y ) – the extra
component in the differential being just what was needed to take account
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of the trivial connection when considering 0-dimensional moduli spaces
over X1. One might hope that this extends to a map from A(X1) to
HF ∗(Y ), performing a similar task for the higher-dimensional moduli
spaces. We proceed in this direction by taking the familiar map ψ :
A(X1) → C∗(Y ) into the chain groups, evaluating classes on moduli
spaces of instantons with irreducible flat limits. It will be useful in this
Subsection to work with U(2) bundles, so we specify a first Chern class
v1 ∈ H2(X1), but we shall not always make this explicit in our notation.
For each λ ∈ A(X1) we would like to define an element fλ(x) of Q[x] so
that

∂(ψ(λ) + fλ) = ∂(ψ(p)) + fλ(u)D2(1)

vanishes. Suppose, for example, that λ = αd for some α ∈ H2(X1) and
that ψ(λ) lies in CF−3, so ∂(ψ(λ)) is in CF−4. Let 〈σ〉 be a generator of
CF−4. We expect that the required identity should follow by considering
the ends of a (2d+ 1)-dimensional moduli space Mσ of instantons with
limit σ. That is, we want to exploit the formula

〈µ(α)d, ∂Mσ〉 = 0 (7.24)

where, strictly, ∂Mσ is the boundary of a suitable large compact subset
of Mσ. The 〈σ〉 component of ∂ψ(αd) gives, in the familiar way, the
contribution from ends of this moduli space arising from factorisations
through irreducible flat connections over Y . We would like to define fαd

to take account of factorisations through the trivial connection. We write
Mθσ for the moduli space of instantons on the tube running from the
trivial connection θ to σ. In a familiar way again, we focus attention on
the abelian reducible instantons over X1, corresponding to cohomology
classes e ∈ H2(X1) with e = v1 mod 2. Given such a class e we can
consider the part of the end of Mσ obtained by gluing the reducible
solution over X1 to an instanton running from θ to σ over the tube. If
e · e = −r, our dimension formulae tell us that

dimMθσ = 2(d− r) + 1,

since the moduli space of instantons over X1 containing the given
reduction has dimension 2r − 3. In particular d ≥ r. We can analyse
this situation using similar techniques to the ‘blow-up trick’ described
in Section 6.3. The local model for this part of the end of Mσ is a Cr−1

bundle over the total space of an S2 bundle over Mθσ. The Cr−1 fibres
are easily dealt with: we can choose (r − 1) standard representives for
µα (as codimension-2 submanifolds) whose intersection (counted with
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multiplicity) is (α · e)r−1 times the zero section of the bundle. Thus
evaluating µ(α)d on this part of the end of the moduli space comes
down, ignoring issues of compactness, to evaluating µ(α)d−r+1 on the
total space E of an S2 bundle over the 2(d − r)-dimensional reduced
moduli space M ′

θσ = Mθσ/R. Now the bundle E is the sphere bundle
associated to an SO(3) bundle over Mθσ, which is just the usual base
point fibration. The restriction of the cohomology class µ(α) is 2(α · e)
times the standard generator h of H2(E) whose square h2 ∈ H4(E) is
the lift of four times the Pontryagin class of the bundle, which is just
−2 times our standard 4-dimensional cohomology class U . Finally there
is an orientation factor, as in Proposition 7.3, which brings in a term
(−1)

1
2 (d+e·e)σ(e) where σ(e) = +1 if the square of 1

2 (e − v1) is even
and σ(e) = −1 otherwise. Putting this all together, we expect that the
contribution to 〈∂Mσ, µ(αd)〉 from this part of the end is

23(d−r)/2+1(−1)
1
2 (d+e·e)σ(e)(α · e)d〈U 1

2 (d−r),Mθσ/R〉.
(This is to be interpreted as zero if d− r is odd.) In turn we can relate
the evaluation of powers of U to the product map on C∗ by moving
points apart along the tube, much as in the proof of Proposition 7.12.
Taking account of all the reductions, this discussion suggests finally that
we should define

fαd(x) =
∑

23(d+e·e)/2(−1)
1
2 (d+e·e)σ(e)(α · e)dx(d+e·e)/2, (7.25)

where e runs over the integral classes with d + e · e a non-negative
even integer, and with e = v1 mod 2. Now the main point is that this
‘naive’ answer is not correct in general, although it is correct provided
the moduli spaces which arise have sufficiently low dimension. Our
notation above ignores the fact that there are moduli spaces of different
dimensions over the tube, with the same flat limits. The difficulty occurs
once one has to consider a moduli space M j

θσ, say, of dimension j > 8.
There is then another moduli space M j−8

θσ with these same flat limits
and dimension j − 8. We know that there are additional parts of the
boundary of M j

θσ corresponding to bubbling on the tube. Equally there
is another part of the boundary of our original moduli space Mσ made
up of the following configurations. Take the reducible solution over X1

and glue in a small instanton at a point q in X1, then glue this to a
connection represented by a point of M j−8

θσ . These regions in the end of
the moduli space do make a contribution to the pairing Equation 7.24,
but this is not taken into account by the putative Formula 7.25. (The
two regions intersect, when the point q moves down the tubular end
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of X1.) As the moduli space dimensions increase one has to consider
more and more complicated bubbling over many points. The conclusion
of the discussion above is that, lacking a close analysis of these extra
contributions, we do not know how to define a map from A(X1) to
HF ∗(Y ) with the desired properties. We will say more about this in the
next Chapter. However, the tools we have do allow us to define such a
map on a subset of A(X1). Let

Aν(X1) ⊂ A(X1)

denote the elements of A(X1) of total degree at most 6. (Recall that we
are assuming b1(X1) = 0, so there are only even-dimensional classes in
A(X1).) Thus Aν(X1) is spanned by products

αdup

with p = 1 and d ≤ 1 or p = 0 and d ≤ 3. We define

ψ : Aν(X1) → HF (Y ) (7.26)

following the procedure outlined above. Thus, at the chain level, for
each basis element αdUp we take the ordinary Floer chain in CF∗(Y )
and a Q[x] component

fαdUp(x) =
∑

23(d+e·e)/2σ(e)(α · e)dx 1
2 (d+e·e)+p, (7.27)

where the sum runs over integral classes with −e·e ≤ d−2p, with d+e·e
even and with e = v1 mod 2. (Notice that these classes come in pairs,
corresponding to the same geometrical reduction, and we have adjusted
the factor of 2 accordingly.) Then one can show without difficulty that
this gives a cycle in CF ∗ and the homology class is independent of
choices, so we get a map as in Formula 7.26. We also have a partial
gluing formula.

Proposition 7.14 If X is a closed 4-manifold decomposed as a sum
X1 ∪Y X2 with b+(X1) = 0 and b+(X2) > 1 then the invariants of X
which lie in the image of Aν(X1) ⊗ A(X2) can be computed from the
relative invariants

Aν(X1) → HF ∗(Y ), A(X2) → HF ∗(Y )

of the two pieces via the pairing Formula 7.23.

The proof uses familiar techniques and is left to the reader.
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We encounter similar difficulties when we seek to generalise Proposi-
tion 7.3. If we have a moduli space Mθ over the manifold X1 with the
trivial limit θ and of dimension 2d+ 4p+ 1 we can assert that

〈µ(α)dUp, ∂Mθ〉 = 0, (7.28)

where again ∂Mθ denotes the boundary of a suitable large compact
piece of the irreducible part of the moduli space. There are two familiar
contributions. The first comes from factorisations through irreducible
flat connections ρ with 〈ρ〉 ∈ CF1. The contribution from these is D1(ρ)
times the pairing between µ(αd)Up and the (2d+4p)-dimensional moduli
space Mρ. The second comes from abelian reductions. Write

cαdUp = 2−3p
∑

σ(e)(α · e)d, (7.29)

where the sum runs over classes e with −e ·e = d+2p and e = v1 mod 2.
Simple minded arguments, ignoring bubbling, would give

D1(ψ(αdUp)) = cαdUp ∈ Q.

To clarify the relation with the previous discussion, set

gαdUp(x) =
∑
e

23(d+e·e)/2(−1)
1
2 (d+e·e)σ(e)(α · e)dx 1

2 (d+e·e)+1+p,

where now the sum runs over classes with 1
2 (d+e·e)+1+p a non-negative

integer (and e = v1 mod 2). Thus

gαdUp(x) = xfαdUp(x) + 1
4cαdUp .

Clearly we can recover the polynomial fαdUp from gαdUp , by removing
the constant term and dividing by x, but gαdUp contains a little more
information. Now there is an obvious map

R : HF ∗(Y ) → Q[x],

which is not in general a homomorphism of Q[u]-modules because of
the component D1 occurring in the definition of the product on HF ∗.
Clearly for αdUp ∈ Aν(X1) we have R(ψ(αdup) = fαdup(x). The
additional information we have now is summarised by

Proposition 7.15 If the class v1 is not zero modulo 2, and if the degree
of λ in Aν(X1) is at most 4, then

R
(
uψ(λ)

)
= gλ(x).
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What this is asserting is that, for the restricted range of classes to which
our results apply, the map ψ is a Q[u]-homomorphism. On the other
hand, this statement encapsulates certain relations between the Floer
groups and the intersection form ofX1. (Recall that the mapD1 appears
as a component of the product on HF .) For example we recover the first
statement of Proposition 7.3 when we take d = 0. Thus the relevant
class λ is the identity in Aν(X1). If v21 = 2, the number cλ is just
S(X1, v1). As another example consider λ = α2, and a class v1 with
v21 = 0 mod 4. Then we get a class ψ(α2) ∈ HF

1
and the map from

HF1 to HF
1
is an isomorphism, so we can lift this to a class ψ ∈ HF1.

Then Proposition 7.15 asserts that

D1(ψ) =
∑

σ(e)(α · e)2, (7.30)

where the sum runs over elements e with e2 = −4 and e = v1 mod 2.
What this means, just as in the discussion following Corollary 7.4, is
that if we have a 4-manifold X1 with negative definite intersection form,
and if we find classes v, α such that the sum on the right hand side of
Equation 7.30 is not zero, then we can assert that the map D1 : HF1 →
Q is not zero, in particular the Floer group HF1 of the boundary is
non-trivial. Conversely, if we have a homology 3-sphere Y for which we
know that HF1(Y ) = 0 we know that Y cannot bound any 4-manifold
with this intersection form. (An exercise for the reader is to check that
this sum does vanish for the standard positive definite form.) Again we
shall come back to say more about these matters in Chapter 8.

7.4 Connected sums

The main goal of this Section is to prove a result, essentially due to
Fukaya [26], which describes the Floer homology of a connected sum of
homology 3-spheres. The result has both an algebraic, formal, aspect
which will bring in the constructions of Subsection 7.3.3 and a geometric
aspect. We will begin with the latter.

7.4.1 Surgery and instanton invariants

Suppose X is a closed oriented 4-manifold with b+(X) > 1 and we have
a moduli space MX of instantons over X of dimension 3. Let γ be an
embedded circle in X. We then have a numerical invariant 〈µ(γ),MX〉.
(We will omit the discussion of orientations needed to fix signs here.)
On the other hand we may perform a ‘surgery’ on γ to construct a new
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manifold Xγ . That is, we fix a trivialisation of the normal bundle of
γ, so a tubular neighbourhood is identified with S1 × D3. We cut out
this neighbourhood and glue in D2 × S2, which has the same boundary
S1 × S2, to obtain Xγ . Straightforward topology shows that X and
Xγ have the same signature, while χ(Xγ) = χ(X) + 2. Thus there is a
moduli space MXγ of instantons on Xγ of dimension dimMX − 3 = 0.
This means that we have another invariant L(MXγ

) given by counting,
with signs, the points in MXγ

.

Theorem 7.16 With suitable sign conventions,

L(MXγ
) = 〈µ(γ),MX〉.

(The result we shall actually need, in Subsection 7.4.2 below, will be a
little different, but for the sake of exposition we choose to begin with
the case above, to avoid extraneous complications.)
The proof of Theorem 7.16 is an exercise in gluing theory. Let

X0 denote the complement of the tubular neighbourhood of γ in X,
equipped with a metric with cylindrical end. Then we obtain X and
Xγ respectively by gluing the manifolds S1 ×D3, D2 × S2 respectively
(thought of again as having cylindrical ends) to X0, in the familiar
fashion. The problem is that the cross-section of the cylinder, S1 × S2,
does not fit the standard hypotheses we have assumed up to now (the
relevant bundle being in this case the trivial SU(2) bundle). So, rather
than appealing to any general formalism, we proceed in an ad hoc fashion
in this special case.
The flat SU(2) connections over S1 × S2 are all reducible. They are

parametrised naturally by a closed interval [0, 1] with the point t ∈ [0, 1]
mapping to a connection Γt with holonomy

gt =
(

eiπt 0
0 e−iπt

)
,

around the S1 factor. We consider a small perturbation εη of the Chern–
Simons functional (where ε is a positive, real parameter) which has a
maximum at the trivial connection Γ0 and a minimum at Γ1 and with

d

dt
η(Γt) < 0,

for t ∈ (0, 1). The deformed functional has then just two critical points
Γ0,Γ1. Our gluing theory from Chapter 4 enables us to analyse the
appropriate deformed instantons over X and Xγ in terms of the pieces
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in their decompositions. Straightforward index arguments tell us that
the relevant moduli spaces over X0 are

• a 3-dimensional moduli space M3
X0

of connections with limit Γ1,
• a 0-dimensional moduli space M0

X0
of connections with limit Γ0.

Now we turn to the other pieces in the decomposition. For the un-
perturbed functional, i.e. for the ordinary instanton equations, each
connection Γt obviously extends to a unique flat, reducible, solution
over S1 × D3, whereas over D2 × S2 only the trivial connection Γ0
extends. After perturbation the situation is similar. Over S1 ×D3 both
connections Γ0,Γ1 extend to reducible solutions with isotropy SO(3),
say Θ0,Θ1, while over D2 × S2 only Γ0 extends, again to the trivial
solution which we will denote by Φ0. Index arguments show that the
obstruction spaces H2 vanish for each of the connections Θ0,Θ1,Φ.
We now take a parallel copy γ′ of the original circle γ. So we may

think of γ′ as being contained in X0. Familiar arguments show that
〈µ(γ),MX〉 is the same as the invariant 〈µ(γ′),M3

X0
〉 computed on X0.

This is because, after deformation, the connections in the moduli space
MX are obtained from those in M3

X0
by gluing to the reducible solution

Θ1. Similarly the invariant L(MXγ ) is equal to the number of points
L(M0

X0
), since the relevant connections are obtained by gluing to the

reducible solution Φ. So the identity we have to prove is

〈µ(γ′),M3
X0

〉 = L(M0
X0

), (7.31)

involving only the manifold X0.

Lemma 7.17 For sufficiently small ε there is a reducible connection
B over S1 × S2 × R which represents a gradient line of the deformed
Chern–Simons functional ϑ + εη running from the critical point Γ0 to
the critical point Γ1. Moreover B is the unique connection with these
properties.

This Lemma is an instance of a general principle. Suppose one has
Morse–Bott function F with a critical manifold C. If one deforms the
function by adding a perturbation εf then for small ε the gradient lines
of the function F +εf which stay near to C are modelled by the gradient
lines of the function f restricted to C. In our case the corresponding
model is to take the function η(Γt) on [0, 1] which plainly has a gradient
line running from 0 to 1.
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To outline the proof of Lemma 7.17 in more detail, observe first that it
suffices to work with S1 connections, which simplifies things somewhat.
We identify the space of S1 connections, up to a covering, with the kernel
of d∗ on the 1-forms, and write this vector space as a product V0 × V1,
where V0 is the 1-dimensional space of harmonic 1-forms and V1 is its
orthogonal complement in the kernel of d∗. We write points of this space
as pairs (x, y) ∈ V0 × V1. The unperturbed Chern–Simons functional is
given in these co-ordinates by a quadratic form in the y-variable, and its
gradient is an (unbounded) linear operator L : V1 → V1 whose spectrum
is bounded away from 0. Thus the instantons on the tube, i.e. gradient
lines of the unperturbed problem, are solutions (x(t), y(t)) of the system

dx

dt
= 0, (7.32)

dy

dt
= Ly. (7.33)

The trivial connection Γ0 corresponds to the point (0, 0) in V0 × V1
and the connection Γ1 to (1, 0), say. Consider a perturbation η(x, y)
which is the restriction to the reducible connections of a perturbation
on the SU(2) connections, as considered above. The gradient of η can
be expressed as a pair of components (F (x, y), G(x, y)) say. The fact
that the perturbation extends to SU(2) connections entails that F and
G both vanish at the points (0, 0) and (1, 0). We want to solve the
perturbed equations

dx

dt
= εF (x, y), (7.34)

dy

dt
= Ly + εG(x, y), (7.35)

for small ε. Consider the restriction of F to the line y = 0. As we have
observed above, there is obviously a function u(t) such that

du

dt
= F (u(t), 0)),

defined for all t ∈ R, with u(t) → 0 as t → −∞ and u(t) → 1 as
t → +∞. Write

x(t) = u(εt) + εp(t), (7.36)

y(t) = εq(t). (7.37)

Then we need to solve the equations

dp

dt
= F (u(εt) + εp, εq)− F (u(εt), 0), (7.38)
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dq

dt
= Lq + εG(u(εt) + εp, εq). (7.39)

We can write these equations schematically as Fε(p, q) = 0. The
approach is to find a solution using the implicit function theorem. The
relevant linearised operator L is given by

L(p, q) =
(
dp

dt
,
dq

dt
− Lq

)
,

and this is an operator of the type we have studied in Chapter 3 so can
be inverted on Sobolev spaces using a weight function which behaves as
eα|t| as t → ±∞, for small positive α. On the other hand, if we start
with the approximate solution (p0, q0) given by p0 = 0, q0 = 0 we have

Fε(p0, q0) = (0, εG(u(εt), 0)).

We assume that the critical points of the perturbation are non-
degenerate; this means that u(t) converges exponentially as t → ±∞
and hence, since G vanishes at (0, 0) and (1, 0), the term G(u(εt, 0)
decays exponentially as t → ±∞. So if α is sufficiently small the initial
error Fε(p0, q0) lies in our weighted Sobolev space, and has small norm
when ε is small. It is then a straightforward exercise, similar to the
gluing theorems for instantons in Chapter 4, to show that there is a
solution to the problem close to (p0, q0). The discussion of uniqueness
is similar.
With this Lemma in place, we may now analyse the end of the moduli

space M3
X0

in the usual way. For each point in M0
X0

we get a component
of the end, modelled on S2 × (0,∞), by gluing the corresponding con-
nection to the gradient line from Γ0 to Γ1. The 2-sphere factor arises
from the gluing parameter S0(3) modulo the isotropy S1 of the gradient
line. The formula expresses the fact that the cohomology class µ(γ′)
can be localised on these ends. To do this we fix a specific family of
representatives for the cohomology class. This falls into the same line
of ideas as the proof of Proposition 7.12. Fix a base point x0 in X0.
For large L we consider a loop σL in X0 which begins at x0, travels
a distance L down the cylindrical end of X0, then runs once around
the S1 factor in the cross-section before retracing its route back to x0.
Now, as in Subsection 7.3.2, we assume that the base point fibration
over M3

X0
, associated to the base point x0, lifts to an SU(2) bundle and

fix a trivialisation of this bundle. So the holonomy around σL gives a
map

hL : M3
X0

→ SU(2).
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Now fix τ ∈ (0, 1) and a representative for the generator of H3(SU(2)) =
H3(S3) supported in a small neighbourhood of the point gτ ∈ SU(2).
Pulling this back to the moduli space by hL we obtain the desired family
of representative φL of µ(γ′), one for each large L.

We now claim that as L → ∞ the support of φL moves into the ends
of M3

X0
. Indeed for any fixed point [A] ∈ M3

X0
the trace of the holonomy

around the S1 factor tends to −2 at infinity, since the limit is Γ1 = −1
whereas in the support of φL the trace must be close to 2 cos(πτ) > −2.
So the proof is completed by showing that the contribution of each end is
1. Consider the description of an end as S2×(0,∞), where the S2 arises
from the gluing parameter and (0,∞) from translation of the gradient
line B. In this description the map hL is given approximately by

(z, s) %→ exp(b(z)c(s− L)),

where we regard S2 as the sphere in the Lie algebra of SU(2), b is a
rotation of the sphere and c : (0,∞) → (0, π) is a diffeomorphism. It is
clear then that the restriction of φL is supported in a neighbourhood of
the point (z0, c−1(πτ) + L) in the end, and evaluates to 1.

7.4.2 The HomF-complex and connected sums

We now proceed to the formal, algebraic, part of the discussion. Recall
that in Subsection 7.3.3 we defined, for any homology cobordism W

between homology 3-spheres Y, Y ′, a particular chain map from C̃∗(Y )
to C̃∗(Y ′) lying in HomF (C̃F ∗, C̃F

′
∗) ⊕ Q, and this was independent

of choices up to a chain homotopy in HomF ⊕ Q. We saw that the
homomorphisms Hom(C̃F ∗, C̃F

′
∗) can be made into an (F , σ)-complex

via a filtration

HomF (Y, Y ′) ⊂ HomF (Y, Y ′) ⊕Q ⊂ Hom(C̃F ∗, C̃F
′
∗).

Here, and in what follows, we just write HomF (Y, Y ′) for
HomF (CF∗(Y ), CF∗(Y ′))

Theorem 7.18 The (F , σ)-complex associated to a connected sum Y LY ′

is equivalent in C to Hom(C̃F ∗(Y ), C̃F ∗(Y ′)). In particular,

(1) the Floer homology HF∗(Y LY ′) can be computed as the homology of
the complex HomF (Y, Y ′),

(2) the homology HF (Y LY ′) can be computed as the homology of the
complex HomF (Y, Y ′)⊕Q.
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The change of orientation on one factor may seem strange and one can
easily avoid it by discussing a tensor product in the category C; however,
we find the Hom formulation slightly more convenient.

The complex HomF (Y, Y ′) is itself a filtered complex, with a filtration
given by the terms

• Hom(Q, C ′
∗),

• Hom(σC∗, C ′
∗)⊕Hom(Q, C ′

∗),

• Hom(C∗, C ′
∗)⊕Hom(Q, C ′

∗)⊕Hom(σC∗,Q),

• HomF (Y, Y ′).

Here the first term corresponds to the maps λ with λ1 = λ2 = λ3 = 0,
the second term to maps with λ1 = λ3 = 0 and the third term to maps
with λ1 = 0.

This filtration implies that there is a spectral sequence converg-
ing to the Floer homology of Y LY ′ whose E1 term is (ignoring the
grading) given by the sum of two copies of Hom(HF∗(Y ), HF∗(Y ′)),
Hom(HF∗(Y ),Q) and HF∗(Y ′). The differentials in the spectral se-
quence are various maps induced by D1, D2, U,D

′
1, D

′
2, U

′.

Before beginning the proof of Theorem 7.18 it may be worthwhile to
explain why the result should not be surprising. Suppose for simplicity
that the flat connections on Y, Y ′ are non-degenerate, so we have finite
sets {ρα}, {σβ} of irreducible flat connections over Y, Y ′ respectively.
The irreducible flat connections over the connected sum are of three
kinds:

• connections obtained by gluing ρα to σβ , for each pair (α, β); for each
such pair we get a family of flat connections over the connected sum
parametrised by a copy of SO(3);

• connections obtained by gluing ρα over Y to the trivial connection
over Y ′;

• connections obtained by gluing a σβ to the trivial connection over Y .
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In the second and third cases the connections that are constructed
are isolated. Now if we perturb the Chern–Simons functional over the
connected sum the SO(3) families of the first type break up into isolated
connections, and we know from Morse–Bott theory that in rational
cohomology each pair (α, β) should contribute two generators to the
resulting description of the Floer homology of the connected sum. So at
the level of chain groups this straightforward analysis gives precisely the
picture we would expect from Theorem 7.18. The point of the theorem
is that it shows that the Floer differentials are compatible with this
analysis of the flat connections, which is not at all easy to prove by a
direct attack. (But see [32].)
For simplicity we shall just prove the first item in Theorem 7.18,

that the Floer homology of the connected sum can be computed from
the complex HomF , leaving the proof of the general statement for the
interested reader. Our task then is to define chain maps

α : C∗(Y LY ′) → HomF (Y, Y ′), β : HomF (Y, Y ′)′ → C∗(Y LY ′),

and then to prove that the two composites give the identity on homology.
As usual these maps will be induced by appropriate cobordisms.
Consider in general a cobordism V from a disjoint union of Y and

another homology 3-sphere P to Y ′. Thus V has three oriented boundary
components Y , P , Y ′. In just the same way as we defined a map for a
cobordism W in Subsection 7.3.3 we can define a chain map

αV : C∗(P ) → HomF (Y, Y ′).

This records data from counting points in 0-dimensional moduli spaces
over V and from 3-dimensional moduli spaces over V on which we
evaluate the holonomy along a path from Y to Y ′. The only point to
notice is that we map into HomF rather than HomF ⊕Q, since we do not
encounter the trivial connection over V (because we are only considering
irreducible connections over P ). Likewise, if U is a cobordism from Y ′

to the disjoint union of Y and another manifold Q, we get a chain map

β̂U : C∗(Q) → HomF (Y ′, Y ).

Now recall from Subsection 7.3.3 that a map λ in HomF (Y, Y ′) is deter-
mined by four components λ1, . . . , λ4 which – suppressing the involutions
σ, σ′ – can be taken to be maps

λ1, λ2 : C̃F (Y ) → C̃F (Y ′), λ3 : CF∗(Y ) → Q, λ4 : Q → CF∗(Y ′).
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A map µ in HomF (Y ′, Y ) is determined by four components µi,
interchanging Y and Y ′. We define a bilinear pairing by

B(λ, µ) = Tr(µ1λ2) + Tr(µ2λ1) + Tr(µ3λ4) + Tr(µ4λ3).

Lemma 7.19 The pairing B defines an isomorphism between
HomF (Y ′, Y ) and the dual complex HomF (Y, Y ′)∗.

We leave the proof to the reader. Note that the pairing is not induced
by taking the trace of the composite map from C̃F (Y ) to C̃F (Y ).

Using Lemma 7.19, and the familiar duality on the ordinary Floer
chains, we can use β̂U to get a chain map

βU : HomF (Y, Y ′) → C∗(Q).

Our first task is to give a geometric interpretation to the composite map

βUαV : C∗(P ) → C∗(Q).

To do this we glue U and V along their two common boundary com-
ponents, so we get a 4-manifold Z which is a cobordism from P to Q.
Paths in U, V joining Y and Y ′ glue together to give a loop in Z.

Proposition 7.20 The composite βUαV is chain-homotopic to the
map ψ(γ) ∈ C∗(P )∗ ⊗ C∗(Q) defined by evaluating the class µ(γ) on
3-dimensional moduli spaces of instantons over Z, with irreducible limits
over P,Q.

The proof follows familiar lines. Imagine constructing Z by first gluing U
to V along Y ′ giving a manifold Z∗ say, with four boundary components:
P , Q and two copies of Y . We have a path γ′ in Z∗ which runs from
one copy of Y to the other. Now if λi and µj are the maps defined by
instanton moduli spaces over U, V in the manner of Subsection 7.3.3, the
first three terms µ1λ2 + µ2λ1 + µ3λ4 in the pairing B(λ, µ) correspond
geometrically to evaluating the holonomy along γ′ on 3-dimensional
moduli spaces of instantons over Z∗. The first two terms correspond to
instantons obtained by gluing 3-dimensional and 0-dimensional moduli
spaces over U and V with an irreducible limit over Y ′. The third term
corresponds to gluing instantons in 0-dimensional moduli spaces with
the trivial limit over Y ′ and the holonomy detects the gluing parameter,
just as in Proposition 7.8. If we now proceed to construct Z from Z∗ by
gluing the two copies of Y we can apply the same approach to analyse
the pairing of µ(γ) with a 3-dimensional moduli space over Z. This
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pairing is the sum of two pieces. The first is obtained by evaluating
the holonomy along γ∗ on 3-dimensional moduli space of instantons
over Z∗, for connections with the same irreducible limits over the two
copies of Y . The contribution from these corresponds to the three terms
µ1λ2 + µ2λ1 + µ3λ4, as above. The second piece comes from gluing
connections in 0-dimensional moduli spaces over Z∗ with the trivial
limit over the two copies of Y , and the holonomy around γ detects
the resulting gluing parameter. The contribution from this corresponds
to the fourth term µ4λ3 in the formula for B.

Now let Zγ be the manifold obtained from Z by performing a surgery
on the loop γ, as in Subsection 7.4.1. So Zγ is another cobordism from
P to Q.

Corollary 7.21 The map βUαV : C∗(P ) → C∗(Q) is chain-homotopic
to the ordinary map on the Floer groups induced by the cobordism Zγ .

This follows from the previous result by the same argument as used in
the proof of Theorem 7.16 – the boundary components play no real role
in the argument.
Now suppose that the manifold Q can be identified with P . Thus we

have

αV : CF∗(P ) → HomF (Y, Y ′), βU : HomF (Y, Y ′) → HF∗(P ).

To get a geometric interpretation of the composite

αV βU : HomF (Y, Y ′) → HomF (Y, Y ′),

we glue U and V along the two copies of P in their boundaries to get a
manifold W with four boundary components: two copies of Y ′ and two
copies of Y . Working through the definitions and using familiar gluing
arguments we find that the various components of the chain map αV βU
are as follows.

• The component from λ1 to λ2 is given by counting points in 0-dimen-
sional moduli spaces over W with four irreducible limits.

• The component from λ2 to λ1 is given by evaluating the product
of cochains defined by two holonomy maps on 6-dimensional moduli
spaces with four irreducible limits.

• The components from λ1 to λ1 and from λ2 to λ2 are given by
evaluating the two different holonomy maps on 3-dimensional moduli
spaces with four irreducible limits.
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• The components from λ2 to λ3 and λ4, and from λ3 and λ4 to λ1, are
given by evaluating holonomy maps on 3-dimensional moduli spaces
with one trivial limit and three irreducible limits.

• The components from λ1 to λ3 and λ4, and from λ3 and λ4 to λ2,
are given by counting points in 0-dimensional moduli spaces with one
trivial limit and three irreducible limits.

• The components from λ3 to λ3 and from λ4 to λ4 are given by counting
points in 0-dimensional moduli spaces with two trivial limits and two
irreducible limits, where the trivial limits are over one of the pairs
Y , Y ′ in the boundary.

• The components from λ3 to λ4 and from λ4 to λ3 are given by counting
points in 0-dimensional moduli spaces with two trivial limits and two
irreducible limits, where the trivial limits are over either the two copies
of Y or the two copies of Y ′ in the boundary.

We can now proceed to complete the proof. There is a standard
cobordism between the connected sum of two manifolds and their disjoint
union. We take this as our manifold V , with suitable orientations,
and let U be the same manifold with orientation reversed. Thus P

is the connected sum Y LY ′. It is then clear that the surgeried manifold
Zγ is the product (Y LY ′) × [0, 1] so by Corollary 7.21 the composite
βUαV induces the identity map on HF∗(Y LY ′). On the other hand the
manifold W can likewise be identified as the internal connected sum
of Y × [0, 1] and Y ′ × [0, 1]. So αV βU is chain-homotopic to a map
R : HomF → HomF say, where R is defined by the same procedure as
above but using instanton moduli spaces for a metric on W in which
the neck of the connected sum is made very long. These instantons over
W are given by instantons over the two tubes, glued over the neck. If
the connections over the tubes are irreducible there is an SO(3) gluing
parameter. It follows then that all the terms above vanish except for

• those from λi to λi for i = 1, 2, 3, 4,
• the component from λ2 to λ1, given by 6-dimensional moduli spaces.

The maps in the first case just give the identity maps on the four
components. The only difficulty comes from the second case: the
component from λ2 to λ1, at this chain level, might not vanish. However,
we can get around this without further work. It follows from the above
analysis that the chain map R is an isomorphism from HomF to itself
(since it differs from the identity by an off-diagonal term), so certainly
induces an isomorphism on homology. It follows then that αV βU induces
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an isomorphism on homology. But since we know, from the first part of
the proof, that βUαV induces the identity map on HF∗(Y LY ′), it follows
that αV βU must induce the identity on the homology of HomF , and the
proof is complete.
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Further directions

In this last Chapter we discuss some issues which lie beyond the core of
this book, and which offer scope for further work.

8.1 Floer homology for other 3-manifolds

In this book we have defined and studied Floer groups in two cases:
either for SU(2) bundles over homology 3-spheres or for admissible U(2)
bundles. A natural question is whether one can define Floer groups more
generally. Of course the whole problem revolves around the treatment
of the reducible connections, and the discussion of Chapter 7 suggests
that one should not expect there to be a single answer to this question
– as opposed to a number of variants of Floer’s basic construction.
Suppose then that Y is any compact oriented 3-manifold and we

consider connections on an SU(2) bundle over Y . (The discussion
applies equally well to the U(2) case, and indeed in large part goes
over to general gauge groups.) We may perturb the Chern–Simons
functional with a perturbation η to arrange that all critical points are
non-degenerate; in particular there are a finite number of irreducible
critical points. The simplest thing one can do is to set up a chain
complex (CF η

∗ , ∂) using just these irreducibles. The whole theory of
Chapters 5 and 6 extends without essential change to this case. In
particular the same reasoning shows that ∂2 = 0 because we do not
encounter reducible critical points in the factorisations corresponding
to the boundary of 1-dimensional moduli spaces. Thus we obtain some
Floer homology groups HF η

∗ (Y ) in this general situation. Moreover the
solutions of suitably perturbed instanton equations yield invariants for
4-manifolds-with-boundary Y , satisfying the familiar gluing rules. This
simple approach is not really satisfactory however because the Floer
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homology defined by the complex CF η
∗ will in general depend on the

perturbation η chosen. As usual, the same phenomenon can be seen
in finite-dimensional analogues. Suppose for example we consider the
complex plane C (as an analogue of the space of connections A), with
the standard action of the circle (as an analogue of the gauge group).
The circle-invariant function Φ(z) = |z|4 has a single degenerate critical
point at z = 0, which is the fixed point of the action. We consider the
family of perturbations

Φε(z) = |z|4 + ε|z|2.
For non-zero ε the function Φε is non-degenerate, regarded as a circle-
invariant function. When ε is positive the only critical point is at the
origin whereas if ε is negative there is another orbit of critical points
|z| =√ ε

2 . Down on the quotient space C\{0}/S1 ∼= R+ – analogous to
B∗ – there is a single critical point for ε < 0 which is not present when
ε > 0. Clearly the problem is that as the parameter ε increases through
zero the ‘irreducible’ critical point is sucked into the reducible one and
disappears. It is easy to reproduce this phenomenon any time one has a
fixed point of a circle action on a manifold – one can change the functions
Φε slightly to make them equal to Φ for large |z| and then glue this model
into a neighbourhood of the fixed point. In such a case the homology
groups, constructed using the analogue of the CF η

∗ complex, must be
different for positive and negative values of ε. This follows from the fact
that just one critical point is lost so the Euler characteristics in the two
cases must differ by 1. In turn exactly the same thing can occur in the
infinite-dimensional Floer theory situation. Going back to the case of
a homology 3-sphere, one sees that the essential thing there is that the
only reducible critical point is the trivial connection, which is already
non-degenerate for the original Chern–Simons functional. The key point
is that in Chapter 5 we chose our perturbations to be sufficiently small
so that the Hessian at θ did not acquire a kernel, which meant that we
did not encounter this phenomenon.
The machinery of equivariant homology and cohomology overcomes

this defect in the finite-dimensional situation. Going back to our model
example on C we observe that when ε < 0 there is a gradient line
running from the ‘reducible’ critical point z = 0 to the irreducible critical
point. Suppose we have a compact manifold M with a circle action
having a single fixed point O, and we consider a family of invariant
functions Φε on M which behave like this model near the critical point.
Then for any non-zero ε we can form complexes C

ε

∗, C
ε

∗ in the same
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manner as our complex CF ∗, CF ∗. That is, we take a generator for
each irreducible critical point to get Cε

∗ and adjoin copies of Q[[y]],Q[x]
respectively, corresponding to the fixed point. The formal variables x, y
in this case have degree 2, corresponding to the generator of H∗(CP∞).
The differentials in C

ε

∗, C
ε

∗ are defined just as in Subsection 7.3.4. In C

we take

∂ + yD1 ◦ h+ 1
2y

2D1 ◦ h2 + · · · ,
and in C we take

∂(ψ, f(x)) = ∂ψ + f(h)D2(1).

Here D1 is defined by counting gradient lines from irreducible critical
points to the fixed point, and D2 by counting those from the fixed point
to the irreducibles, in just the same fashion as our complexes of Chapter
7. The cap product map h : Cε

∗ → Cε
∗−2 is defined using a representative

for the first Chern class of the S1 fibration M \ {O} → M \ {O}/S1, in
the manner of Subsection 7.3.2. Now the homology of these complexes
does not change as ε crosses 0 – more precisely there is a canonical
isomorphism between the homology groups for different values of ε. Of
course, following the discussion of Subsection 7.3.4 above, and [5], the
groups we get are the standard equivariant homology and cohomology
groups of the manifold M with the circle action. However, it is instruc-
tive to see directly what happens as ε increases through 0. We write H±

∗
for the Hε

∗ when ε is close to zero and positive or negative respectively;

similarly for H
±
∗ . First consider the case of C. When ε < 0 there is a

generator 〈p〉 say, corresponding to the ‘irreducible’ critical point. So
we have

Q〈p〉 ⊕Q[x] ⊂ Cε

∗.

The gradient line running from O to p means that the map D2 sends
1 ∈ Q[x] to 〈p〉. Let us suppose that there are no other relevant gradient
lines, involving other critical points. Then in forming the homology we
‘lose’ two generators, so we are left with a copy of xQ[x] ⊂ H−

∗ . When
ε is positive we have a local contribution of just Q[x] to Cε

∗ and no
differential so we get a copy of Q[x] ⊂ H+

∗ . The canonical isomorphism
between H−

∗ and H+

∗ maps the powers xn ∈ H−
∗ to xn−1 ∈ H+

∗ . The
point is that when ε passes through zero the index of the fixed point O
changes by 2, which accounts for the shift in degree. In the case of C∗
the relevant differential is D1 and this is zero in both cases (since there
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is no gradient line from p to O). Thus we have a local contribution to

H
−
∗ of

〈p〉 ⊕Q[y]

and to H
+

∗ of Q[y]. The isomorphism between these two maps 〈p〉 ∈ H
−
∗

to 1 ∈ Q[y] ⊂ H
+

∗ and yn ∈ Q[y] ⊂ H
−
∗ to yn+1 ∈ H

+

∗ . Again, the shift
in degree is a reflection of the change of index of O.
We may take all this discussion over to the gauge theory case. For

a fixed perturbation of the Chern–Simons functional we have the chain
complex CF η

∗ , ∂ defined by the irreducible critical points. Let us discuss
the case of CF ∗. For each reducible critical point σ, with stabiliser
Γσ ⊂ SO(3), we take a copy of the rational cohomology group H∗(BΓσ).
The most important cases are when Γσ is the circle or SO(3) and the
cohomology rings are polynomial rings with generators in dimension 2
or 4 respectively. The direct sum of these, over all the reducibles (and
with suitable grading), gives the contribution CF red

∗ from reducibles in
the desired chain complex and we set

CF ∗ = CF η
∗ ⊕ CF red

∗ .

Now we want to discuss the differential. The component from CF η
∗ to

CF η
∗ is just ∂. Let us write D2 for the component of the differential

mapping CF red
∗ to CF η

∗ . Then D2 is a sum of pieces D2 =
⊕

pD
p
2 . The

first piece D0
2 is given by the map

D0
2 :
⊕
σ

H0(BΓσ) =
⊕
σ

Q → CFη
∗,

which is defined just as for the mapD2 in Chapter 5, counting instantons
with one reducible limit at ∞. To define the other pieces, we have to
proceed a little differently from Subsection 7.3.4, since when Γσ = S1

the generator of H2(BS1) does not correspond to a cohomology class
over the space B∗

Y as was the case for SO(3). We consider a (p + 1)-
dimensional moduli space Mσρ of instantons with one reducible limit
σ at −∞ and one irreducible limit ρ at +∞. There is a Γσ bundle
over Mσρ defined by ‘taking a base point at −∞’. We choose suitable
representatives for the characteristic classes of Γσ bundles, associated
with Hp(BΓσ), then evaluate these representatives on the reduced space
Mσρ/R. This gives a map

nσρ : Hp(BΓσ) → Q = Q〈ρ〉.
Taking the sum of these over all σ, ρ gives Dp

2 .
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We now come to an important point. Suppose that there are no non-
trivial reducible instantons on the tube Y×R, or more precisely that there
are no non-trivial reducible solutions of the relevant perturbed equation.
If this hypothesis holds the sketch above outlines the complete story:

there are no further components of the differential in CF ∗. Of course
the outline needs to be filled in, but there are no essential new difficulties
in showing that this procedure defines a chain complex, with homology
groups HF ∗(Y ) that are independent of the small perturbations used.
This is essentially the theory developed in [6]. In a similar fashion we
can define groups HF ∗(Y ).
When the hypothesis above does not hold new difficulties appear.

Consider, for example, a pair of reducible critical points σ1, σ2 with
stabilisers Γσi

∼= S1, and a reducible instanton a from σ1 to σ2. There are
two different indices we can assign to a, first the index indSU(2)(a) which
gives the formal dimension of the moduli space of SU(2) instantons
containing a, and second the index indS1(a) which gives the formal
dimension of the moduli space of S1 instantons. The difference of these
indices is the index of a complex linear operator. Suppose for example
that indS1(a) = 0 and indS1(a) = 2q > 0. Then we can suppose that a
is an isolated point in the moduli space of S1 instantons from σ1 to σ2
and there is an ‘obstruction space’ H2

a
∼= Cq. Now suppose we have an

irreducible instanton A from σ2 to an irreducible critical point ρ and we
consider the gluing problem of gluing A to a to construct an instanton
from σ1 to ρ. The presence of the obstruction space H2

a means that we
cannot normally do this. Instead we get a section of a Cq bundle over
M ′

σ2ρ and the gluing problem can be solved at the zeros of this section
(assuming these are transverse). In other words, to find the contribution
to the end ofMσ1ρ arising from factorisations through σ2 we need to find
the zeros of this section. What this means is that ∂◦D2 need not vanish,
and to get a chain complex we need to add in data arising from these
obstruction bundles and sections. The general picture we expect is that
there is now another component of the differential in CF ∗, say

E : CF red
∗ → CF red

∗ .

In the case above the contribution to E arising from a will be the map

H∗(BΓσ1) = H∗(CP∞) → H∗(BΓσ2) = H∗(CP∞),

which maps the standard generator hr of H2r(CP∞) to hr−q if r ≥ q

and to 0 if r < q.
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As usual, of course, there is no difficulty in mimicking this whole
discussion in a finite-dimensional context. However, in the Floer theory
case great care needs to be taken on account of bubbling phenomena.
The point is that the analysis of the ends of moduli spaces in the presence
of reducible instantons on the tube is close to the analogous problem over
compact manifolds when b+ = 0, which is fraught with difficulties as we
have explained in Subsection 7.3.5 (and which we return to below). Thus
while the discussion above certainly gives part of the story – the analogue
of the ‘naive’ theory in Subsection 7.3.5 – it is not clear to the author
whether this needs to be modified to take account of bubbling, and if so
precisely what additional terms are required. Certainly in many specific
cases one can arrange that there is no contribution from these reducible
instantons, and so obtain a definition of the equivariant Floer groups,
but more work is required for a complete theory.
One of the drawbacks of the equivariant theory HF ∗, HF ∗ – even in

cases when the technical difficulties discussed above have been overcome
– is that the groups are necessarily infinite-dimensional. On the one
hand this makes them less useful as a source of potential 3-manifold
invariants: for example one cannot take the Euler characteristic. On the
other hand the infinite-dimensionality is unnecessary in many cases in
so far as the gluing problem is concerned. If we have 4-manifolds X1, X2

with boundary Y, Y respectively and if there are no reducible instantons
over X1 and X2 then the invariants of X = X1∪Y X2 can be described in
terms of relative invariants with values in the finite-dimensional groups
HF η

∗ (Y ) defined by some fixed perturbation η. The extra refinement
of passing to HF,HF involves redundant information from this point
of view. Thus we would like to have some finite-dimensional Floer
groups which on the one hand are independent of perturbations, but
on the other hand serve as repositories for the relative invariants in
this situation. One can hope to do this as follows. Assume that one has
defined a satisfactory map E above, and hence a differential on CF ∗(Y ).
From the form of the differential the natural inclusion gives a chain map
CF η

∗ → CF ∗ and hence an induced map on homology. Similarly there

is a map from HF ∗(Y ) to HF η
∗ (Y ). Composing these we get a map

π : HF ∗(Y ) → HF ∗(Y ).

If the equivariant theory has the expected properties this map will be a
topological invariant. In particular we may define

ĤF ∗(Y ) = Imπ ⊂ HF ∗(Y ).
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This group will be finite-dimensional and one can define relative in-
variants for 4-manifolds with boundary, provided there are no reducible
instantons over the 4-manifolds, with values in ĤF , essentially because
π factors through HF η

∗ . For example in the case of homology 3-spheres
ĤF ∗(Y ) is obtained from HF∗(Y ) by taking

ĤF i = HFi if i &= 0, 1, 4, 5,

ĤF 5 =
⋂
j

kerD1u
2j+1 ⊂ HF5,

ĤF 1 =
⋂
j

kerD1u
2j ⊂ HF1,

ĤF 0 = HF0

/(⊕
Imu2j+1D2

)
,

ĤF 4 = HF4

/(⊕
Imu2jD2

)
.

These groups have been introduced and studied by Froyshov [25].

8.2 The blow-up formula

The gluing theory we developed in Chapter 7 is incomplete, as we
explained in Subsection 7.3.4, because it does not take into account
the additional boundary of moduli spaces arising from the ‘bubbling’
phenomenon. The prototype here is the case when the manifold Y is a
3-sphere, so the gluing problem involves a connected sum. In particular
we consider the case of a 4-manifoldX = X1LX2 whereX2 is a connected
sum of copies ofCP

2
. (We will work with SU(2) connections throughout

this Section, although the whole discussion goes over to the U(2) case.)
The gluing problem asks how we can calculate pairings 〈µ(α)d,MX〉,
for α ∈ H2(X2), in terms of invariants for the manifold X1. Plainly
it suffices to consider the case when X2 = CP

2
and α is the standard

generator E of H2(CP
2
). As we have seen in Chapters 6 and 7, this is

easy when d is small since the bubbling phenomena does not then occur,
for dimensional reasons. For some larger values of d, direct calculations
were made by Orszvath [38] and Leness [31]. These calculations involve
a very careful description of the boundary of the moduli spaces, and
become more and more complicated as d increases. In a remarkable
paper [20], Fintushel and Stern showed how a comparatively simple
but indirect argument gives the complete answer to this problem. The
strategy is to consider a double connected sum X1LCP

2
LCP

2
, so there
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are two homology classes E1, E2 in the two factors, represented by
disjoint embedded spheres of self-intersection −1. Joining these spheres
by a tube we get an embedded surface Σ of self-intersection −2. The
boundary of a tubular neighbourhood of Σ is a copy of RP3, so we have
another decomposition

X1LCP
2
LCP

2
= X0LRP3Z

say. While the 3-manifold RP3 does not precisely fit into the framework
of the gluing theory we developed in the earlier Chapters, since it
is a rational but not integral homology sphere, it is straightforward
to extend the familiar techniques to this case. In particular there
are straightforward formulae expressing invariants defined by pairings
〈µ(Σ)rµ(β)s,M〉, with β ∈ H2(X0), in terms of moduli spaces over X0,
provided that r is small; in fact r ≤ 4. Now the homology class of Σ
is E1 + E2. The key observation is that β = E1 − E2 is contained in
H2(X0) (since β ·Σ = 0). This means that we have a good understanding
of pairings

〈µ(E1 + E2)4µ(E1 − E2)s,M〉,

for any value of s, and Fintushel and Stern show that this translates
into a certain recursion relation involving the different terms in the
desired formula for the invariants of a single blow-up. We will refer
to the original paper for further details of the argument and move on to
state the conclusion. In the single blow-up X = X1LCP

2
the invariant

〈Ed〉X = 〈µ(E)d,MX〉 is a (finite) sum∑
i

1
d!
Bd,i〈U i,M4i

X1
〉,

where M4i
X1

is a moduli space of dimension 4i over X1 and the Bd,i are
universal numerical co-efficients. Let

B(t, x) =
∑
d,i

Bd,it
dxi, (8.1)

where x, t are initially formal variables. Fintushel and Stern’s result is
that if x, t are taken to be any complex numbers the sum in Equation 8.1
converges and the function B(t, x) is

B(t, x) = e−t2x/3σ3(t), (8.2)
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where σ3 is a Weierstrass sigma-function associated with the equation(
d℘

dt

)2
= 4℘3 − g2℘− g3, (8.3)

with g2 = (16x2 − 12)/3, g3 = (64x3 − 72)/27 !
We should recall here that our basic 4-dimensional class U differs by

a factor of 2 from the more usual one, and this factor has to be brought
in when comparing our formulae with others in the literature.

Let us try to understand the meaning of this remarkable result in
terms of the original geometric data. We refer to [48] for information
about these classical special functions, and we will use the notation of
that text. First, the definition of the sigma-function. Given g2, g3 ∈ C
such that the cubic

P (y) = 4y3 − g2y − g3

has distinct roots inC we get an elliptic curve z2 = P (y). The expression
dy√
P (y)

defines a holomorphic form φ on the curve, whose periods give a
lattice Λ ⊂ C. From this lattice we construct the familiar function ℘(t)
which satisfies Equation 8.3. Then we define ζ(t) by the conditions that
ζ ′(t) = −℘(t) and

ζ(t) = t−1 + 0 + at+ · · ·
for small t. Next we define the sigma-function by

σ′

σ
= ζ

and

σ(t) = t+ bt2 + · · ·
for small t. This function σ(t) is an odd function of t. The function σ3(t)
that we need is an even function which is obtained as follows. Choose a
basis 2ω1, 2ω2 for the lattice Λ; then

σ3(t) = Ce−η3tσ(t− ω1 − ω2), (8.4)

where C and η3 are constants which can be fixed by the requirements
that σ3 is even and σ3(0) = 1. Notice that, unlike σ, the function σ3
is not completely determined by the original polynomial F (y) since we
need to make this choice of basis. More invariantly, the choice involved
is a non-zero element of order 2 in the curve, or equivalently a root of P .
So the function σ3 is determined by a cubic polynomial P , with distinct
roots, and a choice of a root.
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We now bring in the connection with theta-functions. For any q in
the unit disc we define

θ3(z; q) =
∞∑

n=−∞
qn

2
e2nz = 1 + 2q cos 2z + 2q4 cos 4z + 2q9 cos 6z + · · · .

(8.5)
Similarly we put

θ1(z; q) = 2
∞∑
−∞

(−1)nq(n+1/2)
2
e(2n+1)z

= 2q1/4 sin z − 2q9/4 sin 3z + 2q25/4 sin 5z − · · · .
Suppose we have chosen a basis for the lattice Λ as above. Then,
according to (21.43) in [48], the sigma-function can be expressed as
follows.

σ(z) =
2ω1
πθ′1

exp
(
−θ′′′1 ν

2

6θ′1

)
θ1(ν; eπiω2/ω1). (8.6)

Here ν = πz/2ω1. The symbols θ′1, θ
′′′
1 denote the derivatives of θ1 with

respect to z, evaluated at z = 0 and q = eiπω2/ω1 . It is also shown on
page 471 of [48] that

θ′′′1
θ′1

= 24
∞∑
n=1

q2n

(1− q2n)2
− 1. (8.7)

Using the definition of σ3, with this choice of basis for Λ, one finds that

σ3(z) =
1

θ3(0;ω2/ω1)
exp
(
−ν2θ′′′1

6θ′1

)
θ3(ν; eiπω2/ω1). (8.8)

It is important to notice that this description depends on a choice
of basis for Λ; different bases give different descriptions, via theta-
functions, of the same sigma-function. In fact the assertion that the
different formulae describe the same sigma-function is precisely the
‘modular’ property of the theta-function, in the q-variable.
We now turn to the case when

g2 =
16x2 − 12

3
, g3 =

64x3 − 72
27

. (8.9)

The reader will readily check that the roots of F (y) = 4y3 − 4g2y − g3
are −2x/3 and x/3 ± √

x2 − 1. (The first of these is the distinguished
root used to fix the ambiguity in the definition of σ3.) The roots are
distinct so long as x &= ±1. It will be convenient to think primarily of x
as being real and large (although of course the formulae will extend to
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complex values by analytic continuation). The three roots are then all
real and are ordered as

−2x
3

< x− < x+

where

x− =
x

3
−
√
x2 − 1, x+ =

x

3
+
√
x2 − 1.

We next make a choice of basis for Λ. The pre-image of the interval
[−2x/3, x−] in the Riemann surface S is an embedded circle Γ1. Likewise
the pre-image of the interval [x−, x+] is a circle Γ2. With suitable
orientations Γ1,Γ2 give a standard basis for the homology and the
corresponding integrals are

ω1 =
∫ x−

−2x/3

dy√
P (y)

, ω2 =
∫ x+

x−

dy√
P (y)

. (8.10)

Then ω1 is real and positive, and we choose the sign of the square root
so that ω2 is a positive multiple of i: thus τ = ω2/ω1 lies in the upper
half-plane. By a linear change of variable, taking −2x/3 to 0 and x+ to
1, we can write

ω1 =
π

2
√
a
F (λ), ω2 =

π

2
√
a
G(λ), (8.11)

where

F (λ) =
2
π

∫ λ

0

dw√
w(1− w)(λ− w)

, G(λ) =
2
π

∫ 1

λ

dw√
w(1− w)(λ− w)

,

(8.12)

a = x+
√
x2 − 1, λ =

x− √
x2 − 1

x+
√
x2 − 1

. (8.13)

Our aim is to derive series representations for ω1 and q = eπiω2/ω1 as
x → ∞. Clearly λ ∼ 1/4x2 as x → ∞, so we want to expand in the
small parameter λ. This is easy for the function F (λ). Making a change
of variable we write

F (λ) =
2
π

∫ 1

0

dw√
w(1− w)(1− λw)

,

then put w = sin2 θ and expand

(1 − λw)−1/2 = 1 +
1
2
λw +

1 · 3
222!

λ2w2 + · · · ,
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then integrate term by term using the fact that∫ π/2

0

sin2k θ dθ =
π

2
1 · 3 · · · · · (2k − 1)

2kk!
.

This gives

F (λ) = (1 + a21λ+ a22λ
2 + · · ·),

where

ak =
1 · 3 · · · · · (2k − 1)

k!2k
.

Thus F (λ) is the standard hypergeometric function F ( 12 ,
1
2 ; 1;λ) (in the

notation of [48]). Using this we could write down a development of ω1,

ω1 =
π

2
√
2x

1 +∑
i≥1

bix
−2i


where the co-efficients bi are derived in a completely straightforward,
but laborious, way from Equations 8.11 and 8.13. The first few terms of
this series are

ω1 =
π

2
√
2x

(
1 +

3
16x2

+
73

210x4
+ · · ·

)
.

The function G(λ) is more difficult to handle because it has a loga-
rithmic term as λ → 0. If we allow λ to take complex values and to
move around the origin the integral defining G(λ) is changed after one
circuit by subtracting 2F (λ), due to the different branches of the square
root involved in the definition. It follows then that

G(λ) = − i

π
log λ F (λ) +H(λ),

where H(λ) is analytic near 0. To find the series we can use the fact that
G(λ) satisfies the same hypergeometric equation as F (λ). Now, from
page 252 of [23], a second solution of this equation is log λF (λ) + 2R(λ)
where R(λ) has the power series

a21(2− 1)λ+ a22

([
2 +

2
3

]
−
[
1 +

1
2

])
λ2

+ a23

([
2 +

2
3
+

2
5

]
−
[
1 +

1
2
+

1
3

])
λ3 + · · · . (8.14)

It follows then that

πG(λ) = −i log λ F (λ)− 2iR(λ) + cF (λ)
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for some constant c. In turn

q = eπiω2/ω1 = λeice2R(λ)/F (λ).

Putting all this together, and except for the unknown co-efficient eic,
we could write down a power series for q in inverse powers of x, as
x → ∞. To identify the co-efficient we can use the fact that the function
f(λ) = G(λ)/F (λ) is the inverse of the standard modular function J .
That is f maps the upper half-plane to a hyperbolic triangle bordered
by the imaginary axis, the line +(τ) = 1 and the circle |2τ − 1| = 1, and
extends to a conformal equivalence from the universal cover of C\{0, 1}
and the upper half-plane. The function J has a product description

J(τ) = 16q
∞∏
n=1

(
1 + q2n

1 + q2n−1

)8
. (8.15)

Hence λ = J(τ) ∼ 16q as q → 0 so q ∼ λ/16 as λ → 0 and we see that
eic = 1/16. (Of course another method of finding the power series for
q(λ) is to invert the power series for J resulting from Equation 8.15).
So we conclude that

q =
λ

16
e2R(λ)/F (λ).

Putting everything together we can go back and substitute these power
series for q and ω1 into the formulae for the sigma-function and in turn
for the blow-up function. The conclusion is that we can write

B(x, t) = p(x)et
2s(x)/8xθ3(

√
2xr(x)t, h(x)/64x2), (8.16)

where p, h, r, s are power series in x−2, with leading term 1. The first
few terms are

p(x) = 1− 1
32x2

− 3
210x4

+ · · · , (8.17)

h(x) = 1 +
1

8x2
+

213
210x4

+ · · · , (8.18)

r(x) = 1− 3
16x2

− 161
210x4

+ · · · , (8.19)

s(x) = 1 +
5

48x2
+ · · · . (8.20)

Now if we expand out the theta-function we find that the resulting
sum contains certain terms which are precisely the ‘naive’ contributions
we discussed in Chapter 7 – ignoring bubbling. One way of saying this
is to replace the functions p, h, r by 1 (the leading term in the power
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series), and replace s by 0 (since it occurs inside the exponential with
denominator 8x) and define

B̂(x, t) = θ3(
√
2xt, 1/64x2).

Now we expand B̂ as a Laurent series in x and polynomial in t

B̂(x, t) =
∑ B̂nd

d!
xntd,

and we find that the co-efficients B̂nd give exactly the naive gluing
formula from Subsection 7.3.4. Thus the co-efficients in the power series
p, h, r, s determine the extra contributions which arise from the bubbling
on the boundary of the moduli spaces, after the fashion of the work of
Orszvath, Leness et al. Another way of expressing this is to introduce a
parameter ε and define

B(x, t; ε) = p(x/ε)et
2ε2s(x/ε)/8xθ3(

√
2xr(x/ε), h(x/ε)/64x2);

then we can expand B(x, t; ε) in powers of ε,

B(x, t; ε) =
∞∑
n=0

Bn(x, t)εn.

Clearly B(x, t) =
∑

Bn(x, t) while the first term B0 is just the ‘naive’
term B̂. It is reasonable to expect that the term Bn is the contribution
from the part of the boundary of the moduli space arising from n

‘bubbling points’.
The discussion applies equally well to multiple blow-ups. First recall

that we can associate a theta-function to any definite integral form. Let
L be a free abelian group of rank g; write V = L⊗R ∼= Rg and let ( )
be a positive definite integral form on L. The associated theta-function
is a function of two variables, q, t where q lies in the unit disc in C and
t is in V .

Θ(t; q) =
∑
λ∈L

q(λ·λ)e2i(λ,t).

Let X = X1LX2 where X2 is a connected sum of g copies of CP
2
and

b+(X1) > 1. We define a formal power series in t ∈ H2(X2) by

B(t) = 〈et〉X ,
by which me mean that we expand et = 1+ t+ t2

2 + · · · and evaluate the
corresponding products on the relevant moduli spaces over X. Then it
is an easy consequence of the single blow-up formula above that B(t) is
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convergent and has a representation B(t) = B(t, x) (where the variable
x refers to the action of the 4-dimensional class over X2 as before) with

B(t, x) = p(x)get
2s(x)/8xΘ(r(x)

√
2xt, h(x)/64x2).

Here Θ is the theta-function of minus the intersection form onH2(X1),
and p, s, r, h are the same functions of x as before. Again, the function
B̂(t, x) obtained by replacing p, r, h by 1 and s by 0 gives the naive gluing
formula.

There is another, at least conjectural, aspect of these formulae. Recall
that our approach above has been to find expansions of the functions
for large x. The formula above achieves this, but from the point of view
of this formula it is not at all obvious that B(x, t) is actually defined
and holomorphic for all x ∈ C; for example this is certainly not true for
the naive approximation B̂(x, t). What this means is that if we derive a
Laurent expansion B(t, x) =

∑∞
n=−∞ bn(t)xn from the formulae above

then the co-efficients bn(t) for negative n are identically zero. This gives
a system of identities satisfied by the intersection form, i.e. the standard
diagonal form. To see this explicitly write Pa,l,m for the polynomial
function of t

Pa,l,m =
1

(2a)!m!

∑
λ

(t, λ)a(t2)m,

where the sum runs over vectors λ in the lattice with (λ, λ) = l. Then
we can expand the theta-function to write

B(t, x) =
∑

Aa,l,m,j(−1)a23(a−m−2l)xa−m−2l−2jPa,l,m(t),

where Am,l,a,j is the co-efficient of x−2j in the expansion of

p(x)gs(x)mh(x)lr(x)2a.

The identities we obtain are the vanishing of the co-efficients of negative
powers of x. For example the vanishing of b−1 gives, taking the part of
degree 2 in the variable t, the identity 2P0,0,1 = P1,1,0, i.e.

2(t, t) =
∑

(λ,λ)=1

(λ, t)2. (8.21)

Taking the part of degree 6 in b−1 gives

−P3,2,0 + P2,2,1 + (2g − 32)P3,1,0 = 0.
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The vanishing of the part of b−2 of degree 0 in t gives

2g =
∑

(λ,λ)=1

1. (8.22)

The point is that these identities are true for the standard form,
although less obviously so when the degree increases, but definitely not
for all non-standard forms.
The first application of Yang–Mills instantons to 4-manifold theory

was to show that the only definite intersection forms realised by the
smooth 4-manifolds are the standard ones. The strategy was to take a
moduli spaceM over such a manifold, truncate it to a compact manifold-
with-boundary M0 and then assert that

〈φ, ∂M0〉 = 0 (8.23)

for a suitable cohomology class φ defined by the familiar construction.
Different moduli spaces and cohomology classes could be applied to
produce essentially the same result: for example the argument of [11]
(which fits into this framework if one uses the cobordism invariance of
the Pontryagin numbers, and the fact that the first Pontryagin class of
a moduli space is a multiple of our standard 4-dimensional generator),
of [12] and of [19]. In principle if one takes any moduli space M one
can identify components of ∂M0 and write the identity Equation 8.23 as
equalities between sums of different contributions from various pieces.
(Of course there is no immediate motivation for this from 4-manifold
theory, once one has already proved that all intersection forms are
standard.) The difficulties in finding these individual contributions
are much the same as in the direct attack on the blow-up problem:
calculations of some terms, analogous to those of Orszvath and Leness,
were made by Selby in his thesis [41]. In the light of the discussion above,
it is natural to conjecture that the relevant identities are precisely those
which arise from the vanishing of the negative terms Bn(t). For example
the arguments of [11] exploits the identity Equation 8.22 and that of [12]
the identity Equation 8.21. One can extend the whole discussion of this
Section to U(2) bundles and one recovers similarly the argument of [19]
as the first term in the corresponding expansion.

We now change back to the picture of a generalised connected sum
X = X1LYX2 and take up again the discussion of Subsection 7.3.4.
We will modify our notation slightly from that Chapter, to fit in the
preceding discussion. Essentially we want to use the exponentials et

rather than powers αd. Thus, in this new notation, we saw in Chapter
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7 that we can define for each class t ∈ H2(X2) a Floer chain ψ(et) ∈
CF∗(Y ). More precisely we have a formal power series on H2(X2) with
values in the Floer chains, but we assume for simplicity that this is
convergent. As we have explained in Chapter 7 we would like to define
an object F (t, x) (which we think of as a function of two variables t, x
or as a formal power series in t with values in power series in x), such
that ψ(et) + F (t, x) is a cycle in CF ∗ and so defines an element ψ(t)
of HF ∗(Y ). More precisely we would like the homology class to be
independent of metric and there to be a gluing formula with respect to
generalised connected sums. Now define

G(t, x) = p(x)g exp(t2s(x)/8x)ΘX2(r(x)
√
2xt;h(x)/64x2) (8.24)

where p, r, h, s are the same functions as before, g is the second Betti
number of X2, and ΘX2 is the theta-function of the intersection form on
H2(X2). Let

G(t, x)+

be the power series obtained by expanding G as a Laurent series in x and
then discarding all the terms in negative powers of x. So G(t, x)+ is a
power series in x and t. Our discussion of Fintushel and Stern’s blow-up
formula suggests that the solution to our problem from Chapter 7 might
be to take

F (t, x)+ = G(t, x)+. (8.25)

This would fit in with the model case when Y = S3, as we have explained
above. (Of course Equation 8.25 is only a conjecture: it may be that
the correct formula is a variant of this, given for example by modifying
the functions p, h, r, s in some way.)

There is also an analogue of the discussion of the previous paragraph
going back to Chapter 7. Let us assume for the moment that the picture
suggested above is correct so we have a topological invariant ψ(et) ∈
HF ∗(Y ). Recall that we have an endomorphism u of HF ∗(Y ) and a
natural map R from HF ∗(Y ) to Q[y]. By definition the terms of degree
greater than k in R(uk(f(t)) are just the terms of xkG(t, x). So it is
reasonable to expect that

R(ukψ(et)) =
[
xkG(t, x)

]
+
. (8.26)

This would be a natural generalisation of Proposition 7.15. Let us
assume that Equation 8.26 is correct. In contrast to the case of the
standard form the function G(t, x) may now have non-trivial negative
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terms in its Laurent expansion, the precise form of the poles depending
only on the intersection form of X2. The Equation 8.26 yields a set of
constraints on the ordinary Floer groups of Y , depending on the inter-
section form on X2 of which Propositions 7.3 and 7.15 are prototypes. If
this picture is correct, these constraints could be regarded as the proper
generalisation of the theorem on the non-realisability of non-standard
forms by closed 4-manifolds, to the case of 4-manifolds with boundary.
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