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INTRODUCTION

In the past decade there have been a number of exciting new developments in an
area lying roughly between manifold theory and geometry. More specifically, the
principal developments concern:

(1) geometric structures on manifolds,
(2) symplectic topology and geometry,
(3) applications of Yang-Mills theory to three- and four-dimensional manifolds,
(4) new invariants of 3-manifolds and knots.

Although they have diverse origins and roots spreading out across a wide range
of mathematics and physics, these different developments display many common
features—some detailed and precise and some more general. Taken together, these
developments have brought about a shift in the emphasis of current research on
manifolds, bringing the subject much closer to geometry, in its various guises, and
physics.
One unifying feature of these geometrical developments, which contrasts with some
geometrical trends in earlier decades, is that in large part they treat phenomena in
specific, low, dimensions. This mirrors the distinction, long recognised in topology,
between the flavours of "low-dimensional" and "high-dimensional" manifold theory
(although a detailed understanding of the connection between the special roles of
the dimension in different contexts seems to lie some way off). This feature explains
the title of the meeting held in Durham in 1989 and in turn of these volumes of
Proceedings, and we hope that it captures some of the spirit of these different
developments.
It may be interesting in a general introduction to recall the the emergence of some
of these ideas, and some of the papers which seem to us to have been landmarks.
(We postpone mathematical technicalities to the specialised introductions to the
six separate sections of these volumes.) The developments can be said to have
begun with the lectures [T] given in Princeton in 1978-79 by W.Thurston, in which
he developed his "geometrisation" programme for 3-manifolds. Apart from the
impetus given to old classification problems, Thurston's work was important for
the way in which it encouraged mathematicians to look at a manifold in terms of
various concomitant geometrical structures. For example, among the ideas exploited
in [T] the following were to have perhaps half-suspected fall-out: representations of
link groups as discrete subgroups of P5L2(C), surgery compatible with geometric
structure, rigidity, Gromov's norm with values in the real singular homology, and
most important of all, use of the theory of Riemann surfaces and Fuchsian groups
to develop a feel for what might be true for special classes of manifolds in higher
dimensions.
Meanwhile, another important signpost for future developments was Y. Eliashberg's
proof in 1981 of "symplectic rigidity"- the fact that the group of symplectic diffeo-
morphisms of a symplectic manifold is C°-closed in the full diffeomorphism group.
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This is perhaps a rather technical result, but it had been isolated by Gromov in
1970 as the crux of a comprehensive "hard versus soft" alternative in "symplec-
tic topology": Gromov showed that if this rigidity result was not true then any
problem in symplectic topology (for example the classification of symplectic struc-
tures) would admit a purely algebro-topological solution (in terms of cohomology,
characteristic classes, bundle theory etc.) Conversely, the rigidity result shows the
need to study deeper and more specifically geometrical phenomena, beyond those
of algebraic topology.

Eliashberg's original proof of symplectic rigidity was never fully published but there
are now a number of proofs available, each using new phenomena in symplectic
geometry as these have been uncovered. The best known of these is the "Arnol'd
Conjecture" [A] on fixed points of symplectic diffeomeorphisms. The original form
of the conjecture, for a torus, was proved by Conley and Zehnder in 1982 [CZ]
and this established rigidity, since it showed that the symplectic hypothesis forced
more fixed points than required by ordinary topological considerations. Another
demonstration of this rigidity, this time for contact manifolds, was provided in 1982
by Bennequin with his construction [B] of "exotic" contact structures on R3.

Staying with symplectic geometry, but moving on to 1984, Gromov [G] introduced
"pseudo-holomorphic curves" as a new tool, thus bringing into play techniques
from algebraic and differential geometry and analysis. He used these techniques
to prove many rigidity results, including some extensions of the Arnol'd conjecture
and the existence of exotic symplectic structures on Euclidean space. ( Our "low-
dimensional" theme may appear not to cover these developments in symplectic
geometry, which in large part apply to symplectic manifolds of all dimensions: what
one should have in mind are the crucial properties of the two-dimensional surfaces,
or pseudo-holomorphic curves, used in Gromov's theory. Moreover his results seem
to be particularly sharp in low dimensions.)

We turn now to 4-manifolds and step back two years. At the Bonner Arbeitstagung
in June 1982 Michael Atiyah lectured on Donaldson's work on smooth 4-manifolds
with definite intersection form, proving that the intersection form of such a manifold
must be "standard". This was the first application of the "instanton" solutions of
the Yang-Mills equations as a tool in 4-manifold theory, using the moduli space of
solutions to provide a cobordism between such a 4-manifold and a specific union
of CP2 's [D]. This approach again brought a substantial amount of analysis and
differential geometry to bear in a new way, using analytical techniques which were
developed shortly before. Seminal ideas go back to the 1980 paper [SU] of Sacks and
Uhlenbeck. They showed what could be done with non-linear elliptic problems for
which, because of conformal invariance, the relevant estimates lie on the borderline
of the Sobolev inequalities. These analytical techniques are relevant both in the
Yang-Mills theory and also to pseudo-holomorphic curves. Other important and
influential analytical techniques, motivated in part by Physics, were developed by
C.Taubes [Ta].
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Combined with the topological h-cobordism theorem of M. Freedman, proved shortly
before, the result on smooth 4-manifolds with definite forms was quickly used to
deduce, among other things, that R4 admits exotic smooth structures. Many differ-
ent applications of these instantons, leading to strong differential-topological con-
clusions, were made in the following years by a number of mathematicians; the
other main strand in the work being the definition of new invariants for smooth
4-manifolds, and their use to detect distinct differentiate structures on complex
algebraic surfaces (thus refuting the smooth h-cobordism theorem in four dimen-
sions).

From an apparently totally different direction the Jones 'polynomial emerged in a
series of seminars held at the University of Geneva in the summer of 1984. This was
a new invariant of knots and links which, in its original form [J], is defined by the
traces of a series of representations of the Braid Groups which had been encountered
in the theory of von Neumann algebras, and were previously known in statistical
mechanics. For some time, in spite of its obvious power as an invariant of knots
and links in ordinary space, the geometric meaning of the Jones invariant remained
rather mysterious, although a multitude of connections were discovered with (among
other things) combinatorics, exactly soluble models in statistical physics and con-
formal field theories.

In the spring of the next year, 1985, A. Casson gave a series of lectures in Berkeley
on a new integer invariant for homology 3-spheres which he had discovered. This
Casson invariant "counts" the number of representations of the fundamental group
in SU(2) and has a number of very interesting properties. On the one hand it gives
an integer lifting of the well-established Rohlin Z/2 //-invariant. On the other hand
Casson's definition was very geometric, employing the moduli spaces of unitary
representations of the fundamental groups of surfaces in an essential way. (These
moduli spaces had been extensively studied by algebraic geometers, and from the
point of view of Yang-Mills theory in the influential 1982 paper of Atiyah and Bott
[AB].) Since such representations correspond to flat connections it was clear that
Casson's theory would very likely make contact with the more analytical work on
Yang-Mills fields. On the other hand Casson showed, in his study of the behaviour
of the invariant under surgery, that there was a rich connection with knot theory
and more familiar techniques in geometric topology. For a very readable account of
Cassons work see the survey by A. Marin [M].

Around 1986 A. Floer introduced important new ideas which applied both to sym-
plectic geometry and to Yang-Mills theory, providing a prime example of the in-
teraction between these two fields. Floer's theory brought together a number of
powerful ingredients; one of the most distinctive was his novel use of ideas from
Morse theory. An important motivation for Floer's approach was the 1982 pa-
per by E. Witten [Wl] which, among other things, gave a new analytical proof of
the Morse inequalities and explained their connection with instantons, as used in
Quantum Theory.
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In symplectic geometry one of Floer's main acheivements was the proof of a
generalised form of the Arnol'd conjecture [Fl]. On the Yang-Mills side, Floer
defined new invariants of homology 3-spheres, the instanton homology groups [F2].
By work of Taubes the Casson invariant equals one half of the Euler characteristic
of these homology groups. Their definition uses moduli spaces of instantons over
a 4-dimensional tube, asymptotic to flat connections at the ends, and these are
interpreted in the Morse theory picture as the gradient flow lines connecting critical
points of the Chern-Simons functional.
Even more recently (1988), Witten has provided a quantum field theoretic interpre-
tation of the various Yang-Mills invariants of 4-manifolds and, in the other direction,
has used ideas from quantum field theory to give a purely 3-dimensional definition
of the Jones link invariants [W2]. Witten's idea is to use a functional integral in-
volving the Chern-Simons invariant and holonomy around loops, over the space of
all connections over a 3-manifold. The beauty of this approach is illustrated by the
fact that the choices (quantisations) involved in the construction of the represen-
tations used by Jones reflect the need to make this integral actually defined. In
addition Witten was able to find new invariants for 3-manifolds.
It should be clear, even from this bald historical summary, how fruitful the cros-
fertilisation between the various theories has been. When the idea of a Durham
conference on this area was first mooted, in the summer of 1984, the organisers
certainly intended that it should cover Yang-Mills theory, symplectic geometry and
related developments in theoretical physics. However the proposal was left vague
enough to allow for unpredictable progress, sudden shifts of interest, new insights,
and the travel plans of those invited. We believe that the richness of the contribu-
tions in both volumes has justified our approach, but as always the final judgement
rests with the reader.
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PART 1

FOUR-MANIFOLDS AND ALGEBRAIC
SURFACES





The last few years have seen important advances in our understanding of 4-
manifolds: their topology, differential topology and geometry. On the topological
side there is a good picture of the full classification, through Freedman's h-cobordism
and restricted s-cobordism theorems. In the differential topological category we are
now well-aquainted with the special features of 4-manifold theory which are detected
by the instanton solutions of the Yang-Mills equations, but the general classification
is, for the moment, a matter of speculation. The 4-manifolds underlying complex
algebraic surfaces have always provided a particularly interesting stock of examples,
and the fascinating problems of understanding the interaction between the complex
structure and the differential topology lie at the forefront of current research. One
can obtain a good idea of the present position of the subject, and of the progress
that has been made in recent years, by reading the two survey articles [M], [FM].
The five articles in this section cover many facets of the subject. The paper of
Donaldson contains a general account of the use of Yang-Mills moduli spaces to de-
fine 4-manifold invariants, and some discussion of geometrical apects of the theory.
In particular it gives a brief summary of the link between Yang-Mills theory over
complex surfaces and stable holomorphic bundles, which in large measure accounts
for the prominence of algebraic surfaces in the results. The paper of Gompf sur-
veys the general picture of smooth 4-manifolds, especially algebraic surfaces, and
presents partial classification results. It also contains wonderfully explicit "Kirby
calculus" descriptions of some distinct differentiate structures on a family of open
4-manifolds, and ties these in to the ideas of Floer homology which we consider at
greater length in the next section. The paper of Kotschick takes a more algebro-
geometric stance, and surveys what is known about the differential topology of a
special, but very important, class of complex surfaces. This class includes the "Dol-
gachev surfaces", which provided some of the first applications of the new techniques
from Yang-Mills theory and which are also the starting point for Gompf's examples.
The interaction between the complex geometry and the topology is particularly ap-
parent in Kotschick's paper, and leading open problems, of detecting rationality,
can be traced back to early work on algebraic surfaces.

The Dolgachev surfaces are also the starting point for the work described in the
article of Kreck; the general setting is the relative theory, of 2-dimensional surfaces
in 4-manifolds, and the Dolgachev manifolds appear as branched covers. Kreck's
paper gives us an example of the application of the topological s-cobordism theorem,
together with surgery theory, to a very concrete problem.

The paper of Johnson deals with a rather different facet of the topology of algebraic
varieties; the structure of the fundamental group. There has been a good deal of
activity in the last few years on the problems of describing what groups can occur
as the fundamental groups of Kahler manifolds or of complex projective manifolds,
with work of Johnson and Rees, Gromov, Toledo, Corlette, Goldman and Millson
and others. A wide variety of techniques have been used, ranging from algebra to
differential geometry and analysis. These questions are, at least vaguely, related



to the techniques applied in defining differentiate invariants of complex surfaces,
since the moduli spaces of unitary representations of the fundamental group of a
compact Kahler manifold can be interpreted as moduli spaces of stable holomorphic
vector bundles (compare, for example, the contribution of Okonek below).

[FM] Friedman, R. and Morgan, J.W. Algebraic surfaces and 4-manifolds: some
conjectures and speculations Bull. Amer. Math. Soc. (New Series) 18 (1988)
1-18

[M] Mandelbaum,R. Four-dimensional topology: an introduction Bull. Amer.
Math. Soc. (New Series) 2 (1980) 1-159



Yang-Mills Invariants of Four-manifolds

S.K.DONALDSON
The Mathematical Institute, Oxford.

This article is based on three lectures given at the Symposium in Durham. In
the first section we review the well-known analogies between Yang-Mills instantons
over 4-manifolds and pseudo-holomorphic curves in almost-Kahler manifolds. The
second section contains a rapid summary of the definition of invariants for smooth
4-manifolds using Yang-Mills moduli spaces, and of their main properties. In the
third section we outline an extension of this theory, defining new invariants which
we hope will have applications to connected sums of complex algebraic surfaces.
Finally, in the fourth section, we take the opportunity to make some observations
on pseudo-holomorphic curves and discuss the possibility of using linear analysis to
construct symplectic submanifolds, in analogy with the Kodaira embedding theorem
from complex geometry.

SECTION 1, ELLIPTIC TECHNIQUES IN TOPOLOGICAL PROBLEMS

The last ten years have seen the development and application of new techniques in
the two fields of 4-manifold topology and symplectic geometry. There are striking
parallels between these developments, both in detail and in general methodology.
In the first case one is interested primarily in smooth, oriented 4-manifolds, and
the problems of classification up to diffeomorphism. In the second case one is inter-
ested in, for example, problems of existence and uniqueness of symplectic structures
(closed, nowhere degenerate, 2-forms). In each case the structure considered is lo-
cally standard : the only questions are global ones and it is reasonable to describe
both subjects as "topological" in an extended sense of the word.
The new developments which we have in mind bring methods of geometry and anal-
ysis to bear on these topological questions. One introduces, as an auxiliary tool,
some appropriate geometrical structure, which will have local invariants like curva-
ture and torsion. In the case of symplectic manifolds this structure is a Riemannian
metric adapted to the symplectic form or, equivalently, a compatible almost com-
plex structure. Such a metric can appropriately be called almost-Kahler . In the
other case one considers Riemannian metrics on 4-manifolds. With this structure
fixed we study associated geometric objects : in the first case these are the pseudo-
holomorphic curves in an almost complex manifold V (i.e. maps / : E —> V from a
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Riemann surface E with complex-linear derivative) ; in the other case the objects
are the Yang-Mills instantons over a 4-manifold X (i.e. connections A on a princi-
pal bundle P —• X with anti-self-dual curvature). In either case the objects can be
viewed as the solutions of certain non-linear, elliptic, differential equations. Infor-
mation about the original topological problem is extracted from properties of the
solutions of these equations. In the symplectic case this strategy was first employed
by Gromov [15], and the developments in both fields are instances of the use of
"hard " techniques, in the terminology of Gromov [16].
The detailed analogies between these two set-ups are wide ranging. Among the
most important are

(1) In each theory there is a "classical " or "integrable " case. On the one hand
we can consider Kahler metrics on complex manifolds V, and their associated
symplectic forms. Then the pseudo-holomorphic curves are the holomorphic
curves in the ordinary sense. On the other hand we can consider the 4-
manifolds obtained from complex projective surfaces, with Kahler metrics.
Then, as we shall describe in Section 2 (c) below, the Yang-Mills instantons
can be identified with certain holomorphic bundles over the complex surface.
So in either theory our differential geometric objects can be described in
algebro-geometric terms in these important cases.

(2) There is a fundamental integral formula in each case. The area of a compact
pseudo-holomorphic curve equals its topological "degree " ( the pairing of its
fundamental class with the cohomology class of the symplectic form) ; and
the Yang-Mills energy ( mean- square of the curvature) of an instanton over
a compact base manifold is a topological characteristic number of the bundle
carrying the conection.

(3) Both theories are conformally invariant ; with regard to the structures on E
and X respectively.

(4) The non-linear elliptic differential equations which arise in the two cases can
have non-zero Fredholm indices. Thus the solutions are typically not isolated
but are parametrised by moduli manifolds.

(5) Both theories enjoy strong links with Mathematical Physics ( a - models and
gauge theories). A unified treatment of these developments from the point
of view of quantum field theory has been given by Wit ten [22].

(6) Both theories exploit exploit special "low-dimensional" features - they are
tied to the 2-dimensionality of E and the 4-dimensionality of X respectively.

There are many other points of contact between the theories. Notable among these
are the developments in the two fields brought about through the magnificent work
of Floer ( see [10], and the articles on Floer's work in these Proceedings). Many of
the developments in the two fields bear strongly on the representation variety W of
conjugacy classes of representations of the fundamental group of a closed Riemann
surface, which has a natural Kahler structure. For example the Casson invariant of
a 3-manifold can be obtained from the intersection number of a pair of Lagrangian
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submanifolds in W. In a different setting we will encounter the space W in Section
2 (c) below, in our discussion of instantons over complex algebraic surfaces. It is
intriguing that these representation spaces have also come to the fore recently in the
Jones/Witten theory of invariants for knots and 3-manifolds (see the contributions
of Atiyah, Hitchin, Kirby and Witten in the accompanying volume), and it seems
quite likely that this points the way towards the possibility of obtaining some unified
understanding of these different developments in Low-Dimensional Topology and
Geometry.

SECTION 2, YANG-MILLS INVARIANTS

(a) Definition. We will now describe how the Yang-Mills instantons yield invari-
ants of certain smooth 4-manifolds. For more details see [8] or [9]. For brevity we
will confine our discussion here to the gauge group SU(2), so we fix attention on a
principal SU(2) bundle P over a compact, oriented Riemannian 4-manifold X. We
will also assume that X is simply connected. The bundle P is determined up to
isomorphism by the integer k =< C2(P), [X] >, and if P is to support any anti-self-
dual connection k must be non-negative, by the integral formula mentioned in (2)
of Section 1. For each k > 0 we have a moduli space Mk of anti-self-dual connec-
tions on P modulo equivalence, and Mo consists of a single point, representing the
product connection on the trivial bundle.
Let AQ be a solution of the instanton equations, i.e. F^(AQ) = 0, where F + =
(1/2)(F -\-*F) denotes the self-dual part of the curvature. The curvature of another
connection A$ + a can be written

F(A0 + a) = F(A0) + dAoa + a A a,

where dAo is the coupled exterior derivative. Taking the self-dual part we get, in
standard notation,

F+(A0 +a) = d\Qa + (a A a)+ .

The moduli space is obtained by dividing the solutions of this equation by the
action of the "gauge group " Q — Aut P. For small deformations a this division can
be replaced by imposing the Coulomb gauge condition (provided the connection AQ

is irreducible )

d*Aoa = 0 ,

which defines a local transversal slice for the action of Q. Thus ( assuming irre-
ducibility ) a neighbourhood of the point [Ao] in the moduli space is given by the
solutions of the differential equations



8 Donaldson: Yang-Mills invariants of four-manifolds

These are non-linear, first order, equations; the non-linearity coming from the
quadratic term (a A a)+. The linearisation about a = 0 can be written SAOCL = 0,
where 6A0 = d*Ao 0 d\Q is a elliptic operator which plays the role in this four-
dimensional situation of the Cauchy-Riemann operator in the theory of pseudo-
holomorphic curves. The Fredholm index s = ind 8A0 of this operator is given by
the formula:

in which 6+(X) is the dimension of a maximal positive subspace for the inter-
section form on H2(X). The number s is the "virtual dimension" of the moduli
space; more precisely, according to a theorem of Freed and Uhlenbeck [11], [9],
for a generic Riemannian metric on X the part of the moduli space consisting of
irreducible connections will be a smooth manifold of dimension s.
Let us now assume that b+(X) is strictly positive. Then it can be shown that for
generic metrics and all k > 1 every instanton is irreducible. It is easy to see why 6+

enters here. A reducible anti-self-dual connection on P corresponds to an element
c of H2(X;H) which is in the intersection of the integer lattice and the subspace
H~ C H2 consisting of classes represented by anti-self dual forms. The codimension
of H~ is 6+, so if 6+ > 0 and H~~ is in general position there are no non-zero classes
in the intersection. On the same lines one can show that if 6~*~ > 1 then for generic 1
-parameter families of Riemannian metrics on X we do not encounter any non-trivial
reducible connections.
We can now indicate how to define differential topological invariants of the under-
lying 4-manifold X. We introduce the space S* of all irreducible connections on
P, modulo equivalence. It is an infinite dimensional manifold and, under our as-
sumptions the moduli space M* is a submanifold of B*, for generic metrics on X.
Roughly, the invariants we define are the pairings of the fundamental homology class
of the moduli space with the cohomology of B*. To see that this is a reasonable
strategy we have to consider the dependence of the definition on the Riemannian
metric on X. The moduli space itself certainly depends on the choice of metric,
so let us temporarily write Mk(g) for the the moduli space defined with respect
to a metric g. Suppose go , g\ are two generic metrics on X. We join them by a
smooth path gt\ t £ [0,1] of metrics. If 6+ > 1 then, as explained above, we do not
encounter any reducible connections so we can define

M = { ([A],<) £B*x [0,1] | [A] e Mk(gt)}.
For a generic path gt the space Af is a manifold- with- boundary, the boundary

consisting of the disjoint union of Mk(go) and Mk(gi). Using the obvious projection
from AT to B* , we can regard Af as giving a "homology" between the two moduli
spaces.
This idea needs to be amplified in a number of ways. First we need to show that
the moduli space is orientable ( and to fix signs one must find a rule for choosing
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a definite orientation). Second we need to construct cohomology classes on B*.
This second step is an exercise in algebraic topology. Fix a base point in X and
let B be the 50(3) bundle over B* whose points represent equivalence classes of
connections on a bundle which is trivialised over the base point. The space B is
weak-homotopy equivalent to the space Maps(X, BG) of based maps (of "degree"/;)
from X to the classifying space BG (which can be identified with HP00) of the
structure group SU(2). One can show then that the rational cohomology of B is a
polynomial algebra on 2-dimensional cohomology classes labelled by a basis for the
2-dimensional homology of X. That is, the cohomology is generated by the image
of a natural map

which is just the slant product in Maps(X, BG) x X with the 4-dimensional
class pulled back from the generator of H4(BG) under the evaluation pairing
Maps(X, BG) x X —> BG. One can show further that this map \x descends to
a map

and that the rational cohomology of B* is freely generated as a ring by the image
of this map and by a 4-dimensional class ( the Pont ry agin class of the fibration
B —* $*). The upshot of this algebro-topological excursion is that the rational
cohomology classes of B* are labelled by polynomials in the homology of X.
The third and most important step required to define invariants is to understand
the compactness properties of the moduli space. If the moduli spaces were compact
then they would carry fundamental homology classes in the usual way and there
would be little extra to say. However in practice the moduli spaces are scarcely ever
compact, but they do have natural compactifications. The compactification Mk of
Mk is a subset of

Mk U Mfc_i x X U Mk-2 x s2(X) U . . . .

The topology is defined by a notion of convergence of the following kind. If
(#1, . . . ,£/) is a point in the symmetric product sl(X), a sequence [An] in Mk
converges to a limit ([A], (a?i,... xi)) G Mk-i x sl(X) if the connections converge
(up to equivalence) away from x\,..., #/, and the energy densities |F(An)|2 converge
as measures to

t = l

The statement that the closure M^ of Mk in this topology is compact is essentially
a handy formulation of analytical results of Uhlenbeck on Yang-Mills fields. This
theory enters into our discussion of invariants because it can be used to show that
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if the moduli space has even dimension, s = 2d say, then for A; such that 4k >
(36+(X) + 3) there is a natural pairing between the moduli space Mk and a product
of cohomology classes /i(ai) ^ ni&z) ^ ' • * * w v{ad), f°r a ny aii • • • ? ad m H2(X).
We will refer to this range of values of as the "stable range" for k.
The cleanest conceptual definition of these pairings proceeds by extending the
cohomology classes to the compactified space. For / > 0 and c G H2(X) let
sl(c) G H2(sl(X)) be the natural "symmetric sum " of copies of c. Then for a
in H2(X) we let a™ be the class

a<*> = ^(Ma)) + K*2(S
1(C)) e H2(Mk-t x sl(X) ),

where c is the Poincare dual of a. One then shows that, for any fc, there is an
extension Jl(a) of//(a) to H2(Mk), which agrees with a^ on Mkj = Mk H {M^-i x
s*(X)). Consequently, for any a i , . . . , ad there is a class

n = /Z(aa) ^ • • • ^ Jl{ad) 6 i?2d(M*).

Granted this we can define a pairing < II, [M*] > so long as the compactified
space carries a fundamental homology class, and this fact follows from standard
homology theory provided that the "strata " Mk,i making up Mk have codimension
2 or more, for / > 0. But the dimension of Mk,i is certainly bounded by that of
Mfc_/ x sl(X) which is :

(1) dim Mk-t + 4/ = dim Mk - 8/ + 4/ = dim Mk - 4/, if / < k ;
(2) dim sk(X) = 4Jfc, if / = k.

Since 6+ is odd the condition for Mkik to have codimension 2 is that 8k — 3(1 +
6~*~(X)) > 4fc, which is just the stable range condition stated above.
The disadvantage with this approach is that the only definition of the classes JI(a)
known to the author is rather complicated (the main points in the definition are
given in Chapter 7 of [9]). However the same pairing can be defined by a much
more elementary, although less perspicuous, procedure. For a generic surface E in
X the restriction of any ireducible anti-self-dual connection over X to S is again
irreducible, so we get restriction maps :

where B^ is the space of irreducible connections over E, modulo equivalence. If
a is the fundamental class of E in iJ2(-^0 the cohomology class fJ,(a) is pulled back
from #£ by the restriction map. We choose a generic codimension 2 submanifold
in this target space which represents the cohomology class, and let Vs be the pre-
image of this in the moduli space. By abuse of notation we use the same symbol
to denote subsets of all the different moduli spaces Mj (since they are all pulled
back from the same representative over S). Let now Ei , . . . , E<* be surfaces in X,
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in general position, and write Vi for representatives Vz-, as above. The crux of the
matter is to show that, for k in the stable range, the intersection

Mk n Vi n • • • n vd

is compact. We can then define the pairing to be the corresponding algebraic
intersection number ; the number of points, counted with signs. The argument to
establish this compactness is elementary, given two basic facts. First we can choose
the Vi so that all intersections in all the moduli spaces are transverse (and the
product connection is not in the closure of the Vi). Second, if [An] is a sequence in
Vi C Mk which converges to ([A],£i,... ,#/) in the sense considered above, and if
none of the points Xj lies in £,• then the limit [A] is in Vi C Mj. One then goes on
to show that this intersection number is independent of the choice of Riemannian
metric on X by intersecting Af with the Vi. Similar arguments show that the
intersection number is independent of the choice of VJ, and of the surfaces £;,
within their homology classes.

In sum, we have found new invariants of 4-manifolds which are multi-linear functions
in the homology. We introduce the notation

for the set of d-linear, symmetric, functions on H2(X; Z) with values in a ring R.
Then we have

THEOREM 1. Let X be a smooth, oriented, compact and simply connected 4-
manifold with b+(X) = 2a + 1 for a > 1. For each k with 4k > (36+ (X) + 3)
the map :

qk = qk,x : ([Sj],...,[sd]) H ^ n - n ^ n M k )

defines an element of Sym^ z , where d = Ak — 3(1 + a), which is (up to sign) a
differential-topological invariant ofX, natural with respect to orientation -preserving
diffeom eorphisms.

We interpose a few remarks here. First, if 6+ = 1 one can still define invariants,
but these have a more complicated form; see the article by Kotschick in these
Proceedings. Second, it should be possible to extend the range of values of k
for which invariants are defined. In a simple model case (where 6+ = k = 1)
one knows how to introduce a boundary term to compensate for a codimension-1
stratum Mi,!, then one obtains the cT-invariant" of a 4-manifold. This approach
has been extended in the Oxford D.Phil, thesis of K.C.Mong, and can probably be
applied quite generally, although this has yet to be worked out in detail. A simpler
procedure has been developed by J.W. Morgan, using components of the invariants
for a connected sum X$ rCP , to define qk}x for values of k below the "stable
range".
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As a third remark; it would be good to have a definition of the invariants which
was both elementary and conceptually clear. To do this one would need to fully
understand the interaction between the topology used to define the compactification
and the homotopy theory of the spaces of connections. It is worth emphasising that
the anti-self dual equation itself plays no essential part in this discussion. Let B\
denote the space of irreducible connections modulo equivalence on a bundle of Chern
class k. We can define a topology on the union:

B*k = B*k U BUxX U B*k_2xs2(X) U ...

in much the same way as before, decreeing that a sequence [An] converges to
A],(x1,...,x,)i{

(1) The connections converge away from the #,-.
(2) The self-dual parts |F+(An)|2 of the energy densities are uniformly bounded.
(3) The Chern-Weil integrands Tr(F(An)

2) converge as measures to the limit

It would be interesting to identify the homotopy type of Bk. Similar questions can
be posed for the spaces of maps from a Riemann surface, which are relevant to the
analogous "weak" convergence encountered in the theory of harmonic maps and
holomorphic curves.

(b) Connected sums. One of the main features of the invariants constructed
above is that they vanish for a large class of connected sums. We have

THEOREM 2. Let X be a ^-manifold which satisfies the conditions of Theorem 1.
If X can be written as a smooth, oriented, connected sum X = X1JX2 and each of
the numbers 6+(X,) is strictly positive, then qk,x is identically zero for all k.

This strong statement reflects the fact that one can give a rather detailed description
of the moduli spaces over a connected sum, in terms of data on each factor. This uses
analytical techniques, which go back to work of Taubes [18 ], for "glueing" together
anti-self- dual solutions, and the ideas lead on to Floer's instanton homology groups
(which appear in the context of "generalised conected sums" across a homology 3-
sphere ). We will now indicate the kind of analytical techniques involved, and sketch
how they lead to Theorem 2.
Let A\, A2 be instantons on bundles Pi, P<i over the manifolds X\, X2 respectively.
Assume that the connections are irreducible and that the operators dj[ appearing
in the linearisation of the anti-self-dual equations are surjective (which is true for
generic metrics on Xi). We also suppose that the metrics on the X{ are flat in
small neighbourhoods of points X{. We introduce a parameter A > 0 and consider
a conformal structure on the connected sum based on the "glueing" map given, in
local Euclidean co-ordinates about these points, by



Donaldson: Yang-Mills invariants of four-manifolds 13

where £ i—> £ is a reflection. A suitable metric on the conformal class represents a
connected sum with a "neck " of diameter 0(A*/2) ( another, conformally equivalent,
model is a connected sum joined by a tube of radius 0(1) and length O(exp(A~1)).
We want to construct an instanton on X, for a small parameter A, which is close to
A{ away from the neck region in the connected sum. As an approximation to what
we want we fix an identification of the fibres :

We construct a connection AQ on a bundle P over X by flattening the connections
A{ near #,-, and glueing together the bundles using the identification p, spread out
over balls around the #, using the flat structures. We want to find an anti-self-dual
connection AQ -f a near to AQ . This is rather similar to our discussion above of the
local behaviour of the moduli space about a solution, the difference is that now Ao

is not itself a solution. We want to solve the equation

with a small. Suppose that 5 is a right inverse to d\Q i.e. d\QSw = CJ, and that
we have a uniform bound on the operator norm of 5*, mapping from L2 to L4, that
is

\\S(u>)\\L*<C\\u>\\L,,

with a constant C independent of A (which should be regarded as a parameter
throughout the discussion). Note that the L2 norm on 2-forms and L4 norm on
1-forms are conformally invariant, so we need only specify the conformal structure
on X. We will come back to the construction of 5 in a moment, but first we show
how it leads to a solution of our problem. We seek a solution in the form a = S(u>),
so the equation becomes :

w = -(5(w) A 5(«))+ - F+(A0).

We use the Cauchy- Schwartz inequality to estimate the quadratic term, or rather
the corresponding bilinear form:

This means that we can write our equation in the form UJ = T(a;), where T(u>)
(S(UJ) A S(u;))+ - F+(A0), and we have :

-u;2 | |L2,
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say, if the £2-norms of UJ\,LJ2 are smaller than some fixed constant, independent of
A. On the other hand

T(0) = -F+(Ao)

and it is easy to see that this can be made arbitrarily small by making A small (since
one neeeds to flatten the connections over corespondingly small neighbourhoods of
the points X{ ). It follows easily then from the contraction mapping principle that,
for small A, there is a solution to our problem in the form

w= lim Tn(0).
n—•oo

We now come back to explain how to construct the right inverse 5, obeying the
crucial uniform estimate. By standard elliptic theory there are right inverses Si
to the operators d\. over the compact manifolds X{ which are bounded as maps
from L2 to L4. To save notation (and an additional, unimportant, term in the
estimates) let us at this stage ignore the distinction between Ai and the slightly
flattened connection over X, used to form AQ. Let <j>\,<t>2 be cut-off functions on
X whose derivatives are supported in the neck region, with <f>i equal to 1 on the
"X,- side " and to 0 on the other side, and with <j>\ -f- $\ — 1 on X. The function
<f>i can be regarded in an obvious way as a function on X,-, and we can choose the
functions so that ( for small A ) the L4 norm of d<j>i is as small as we please. (This
is essentially the failure of the Sobolev embedding L\ —* C°, when p = 4.) By the
conformal invariance it does not matter whether we measure this L4 norm in X or
in Xi.

Now, as a first approximation to the desired inverse 5*, we set

for any self-dual 2-form LO over X. The cut-off functions allow us to make sense
of this formula, over X, even though the Si are defined over X,-, using obvious
identifications. Moreover we have

This gives, much as before, that

\\d\oNu-io\\L2 <

When A is small we can choose <f>i with derivative small in L4, then this inequality
says that d~^ N — 1 is a contraction ; hence cfjj N is invertible and we can put
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This completes our brief excursion into the analytical aspects of the theory. Taking
the ideas further one shows that, with Ai fixed and A small, one constructs a family
of solutions parametrised by a copy of S0(3), the choice of gluing parameter p.
Letting the A, vary we construct open sets in the moduli space Mk,x which are
fibre bundles over open sets in MkltXi x Mk2,x2-> f°r & — &i + 2̂ and each ki > 0.
When one of the ki is zero, say fc2, the picture is different, since the operator d\^ then
has a cokernel of dimension 36+(-X2). One obtains another open set in Mj^x which
is modelled on a subset Z of Mkyxx > this being the zero set of a section of a vector
bundle E of rank 36+(X2) over MkfXl. The bundle E is the direct sum of b+(X2)
copies of a canonical 3-plane bundle over the moduli space : the vector bundle
associated by the adjoint representation to the principal SO(3) bundle B —> B*
mentioned in (a) above. In particular the rational Euler class of E is zero.

The relation between these different open sets in the manifold Mi^x, a nd their de-
pendence on the parameter A, is rather complicated but to sketch the ideas involved
in the proof of the "vanishing theorem" (Theorem 2) we can proced by imagining
that the moduli space Mktx

 ls actually decomposed into compact components in
this way, labelled by (&i,fc2). We then invoke two mechanisms. First, for com-
ponents with neither ki equal to zero, the SO(3) fibre in the description of the
component fibering over MklyXi x Mk2,x2

 ls trivial as far as the cohomology classes
/x(a) are concerned. These classes are all lifted up from the base in the fibration (
think of restricting to surfaces in X\, X2 ) and so their cup-product must obviously
vanish on the fundamental class. The second mechanism applies when one of the
ki is zero, fc2 say. We can then think ( under our unrealistic hypotheses ) of the
corresponding component of Mk}x as being identified with the zero set Z. Under
this identification the cohomology classes /i(ce) are all obtained by restricting the
corresponding classes over Mk}Xi- ®n the other hand the fundamental class of Z in
the homology of Mk,Xi 1S Poincare dual to the Euler class of E, and hence is zero
in rational homology, so the contribution from this component to all the homology
pairings gives zero.

We emphasise again that all we have tried to do here is to give the main ideas in
the proof of Theorem 2, since we will take up these ideas again in Section 3 ; the
detailed proof is long and complicated and we refer to [8] for this.

(c) Instantons and holomorphic bundles. We will now consider the "integrable
case " mentioned in Section 1. We suppose that our base manifold is endowed with
a compatible complex structure : then we will see that any instanton naturally
defines a holomorphic bundle. In this discussion it is simplest to work with vector
bundles, so we identify our connections with covariant derivatives on the complex
vector bundle associated to the fundamental representation of SU(2). The relation
with holomorphic structures can been seen most simply if we consider first the
case when the base space is C2, with the standard flat metric, and choose complex
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co-ordinates z — x\ + ix2, w = xs + ix±. A covariant derivative has components

and its' curvature has components

The anti-self-dual condition becomes the three equations :

*i2 + F34 = 0

F13 + Fi2 = 0

Fu + F23 = 0.

Now write Dz = (l/2)(Vj + iV2), Dw = (1/2)(V3 + tV4) ; these axe the coupled
Cauchy-Riemann operators in the two complex directions. Then the second and
third of the three anti-self-dual equations can be expressed in the tidy form

[D,,Dw] = 0.

This is the integrability condition which is necessary and sufficient for the exis-
tence of a map g from C2 to GL(2, C) such that :

0 ' 1 D ~ 1

So, in the presence of the complex structure on the base, we can write our three
anti-self-dual equations as the integrability condition plus the remaining equation,
which can be written :

[DZ,D*Z] + [DW,D*J = 0.

For a global formulation of this we suppose X is a complex Kahler surface and
u) is the metric 2-form on X. The anti-self dual forms are just the "primitive" (1,1)
forms: the forms of type (1,1) which are orthogonal to the Kahler form. The
covariant derivative of a connection over X can be decomposed into (1,0) and (0,1)
parts :

We extend the operators to coupled exterior derivatives &A , 9A on bundle-
valued forms , equal to WA, V^ respectively on the 0-forms. If the curvature has

2
type (1,1) then dA = 0 and the connection defines a holomorphic bundle, whose
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local holomorphic sections are the solutions of the equation 3A$ — 0. So an anti-
self-dual connection defines a holomorphic bundle. Conversely, given a holomorphic
bundle, we get an anti-self dual connection from any compatible unitary connection
which satisfies the remaining equation F(A).UJ = 0. This relation can be taken
much further.lt has been shown ( [6], [19] ) that it induces a (1,1) correspondence
between:

(1) The equivalence classes of irreducible anti-self-dual connections ( with struc-
ture group SU(2) in the present discussion).

(2) Equivalence classes of holomorphic SX(2, C) bundles E over X which satisfy
the condition of "stability " with respect to the polarisation [a;] G H2(X).
This stability condition is the requirement that for every line bundle bundle
L which admits a holomorphic map to E we must have c\(L) ^- [UJ] < 0 .

The substance of this assertion is an existence theorem : for any stable bundle
we can find a compatible connection A which satisfies the differential equation
F(A).u) = 0. The effect is that, as far as discussion of moduli questions go (and
in particular for the purposes of defining invariants), we can shift our focus from
the differential geometry of anti-self-dual connections to the algebraic geometry of
holomorphic bundles.

These ideas have been used in two ways. On the one hand we can, in favourable
cases, apply algebraic techniques to describe the moduli spaces explicitly and then
calculate invariants. Two standard techniques are available for constructing rank-2
holomorphic bundles over surfaces. In one we consider a bundle V of rank 2, with a
holomorphic section s which vanishes on a set of points {x;} in X, with multiplicity
one at each point. Then we have an exact sequence

0->C>-> V-» A® J - * 0 ,

where A is the line bundle A2V and J is the ideal sheaf of functions vanishing on
the points £,-. These extensions are classified by a group Ext = Ext1 (A ® T, 0),
which fits into an exact sequence:

tf HA*) -» Ext -> 0 ( t f x ® A);; -> H°(Kx ® A)*,

where the last map is the transpose of the evaluation map at the points X{. So
we can read off complete information about these extensions if we have sufficient
knowledge of the cohomology groups of the line bundles over X. In principle this
approach can be used to describe all bundles over X since, if E is any rank-2 bundle
we can always find a line bundle L such that V — E ^ L has a section vanishing
at an isolated set of points (for a complete theory one needs also to consider zeros
with higher multiplicity).

For the second construction technique we consider a double branched-cover ir :
X —> X. If J is a line bundle over X the direct image ?r*( J) is a rank-2 vector bundle
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(locally free sheaf) over X. Conversely, starting from a rank-2 bundle E over X, if
we have a trace-free section s of the bundle EndE ® L for some line bundle L over
X, which has distinct eigenvalues at the generic point of X, and whose determinant
vanishes with multiplicity one on a curve C in X then we can construct a double
cover X —• X, branched over C. The points of X represent choices of eigenvalue of
s. The associated eigenspace defines a line bundle J1 over X, and E is the direct
image of J = J' <g) [C], where C is regarded as a divisor in X. This theory can be
extended to cases where X is singular and J is a rank-1 sheaf of a suitable kind.

The other application of these ideas is more general. The Yang-Mills invariants give
strong information about the differential topology of complex surfaces even in cases
where one cannot, at present, calculate the invariants explicitly. This comes about
through a general positivity property of the invariants. Let a £ H2(X) be Poincare
dual to the Kahler class [u>] over a surface X, as above. Then we have :

THEOREM 3.

For all large enough k the invariant qk,x satisfies qk,x(&, a , . . . , a) > 0.

For the proof of this one considers the restriction of holomorphic bundles over X to
a hyperplane section S - a complex curve representing a. We have a moduli space
WE of stable bundles over S, just as considered in Witten's interpretation of the
Jones invariants.(See the account of Witten's lectures in these Proceedings). Let
us suppose for simplicity that stable bundles over X remain stable when restricted
to C ( the technical difficultyies that arise here can be overcome by replacing a by
pa for p » 0, and considering restriction to a finite collection of curves.) Then we
have a restriction map

Over WE we have a basic holomorphic line bundle £, again just as considered
in Witten's theory. It is easy enough to show that /i(a) is the pull-back by r of
the first Chern class of C On the other hand C is an ample line bundle over WE;
for large N the sections of CN define a holomorphic embedding j : WE —> CP m .
Furthermore one can easily see that r is an embedding, so the composite j or gives
a projective embedding of M*, and Nfj,(a) is the restriction of the hyperplane class
over projective space. In this way one shows thai^under one important hypothesis,
the pairing NdqjCyx(a'> • • • ? °0 is the degree of the closure of the image of Mk in CPm

(a projective variety). The degree of a non-empty projective variety is positive, and
this gives the result.
The vital hypothesis we require for this argument to work is the condition that, at
least over a dense set of points in M&, the Kahler metric LO behaves like a generic
Riemannian metric, i.e. that for a dense set of anti-self-dual connections A the
cokernel of the operator d\ is zero. In algebro-geometric terms we require that for
a dense set of stable bundles E the cohomology group i]T2(Endoi2) should be zero.
(Here Endo denotes the trace -free endomorphisms).
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To complete the proof of (3) then we must show that this hypothesis is satisfied,
and this is where the condition that k be large enters. What one proves is that the
subset Sk of the moduli space representing bundles E with H2 (End^E) non-zero
has complex dimension bounded by

(4) dimc5fc < 3k + Akxl2 + B,

for some constants A,B. This grows more more slowly than the virtual (complex)
dimension d = 4k — (3/2)(l + 6+(X)) of the moduli space M* , and it follows that
Mk\Sk is dense in M*, for large k. To establish the bound (4) one uses the fact that
H2(EndoE) is Serre- dual to H°(EndoE (g) Kx)- So if E represents a point in Sk
there is a non-trivial section s of the bundle End^E^Kx- Two cases arise according
to whether the determinant of s is identically zero or not. If the determinant is zero
the kernel of s defines a line bundle L* and a section of E 0 L. Then we can fit
into the first construction described above and estimate the number of parameters
available in the group Ext in terms of &. If the determinant is non-zero we fit into
the second construction, using a branched cover, and we again estimate the number
of parameters which determine the branched cover X and rank-1 sheaf J.

(d) Remarks.
One can roughly summarise the first results which are obtained from these Yang-
Mills invariants by saying that they show that there are at least two distinct classes
of such manifolds (up to diffeomorphism), which are not detected by classical meth-
ods. On the one hand we have the connected sums of elementary building blocks,
for example the manifolds :

Xa,(, = ( i )CP2J. . . 2 2

a copies (3 copies

for which the invariants are trivial. Any (simply connected) 4-manifold X with
odd intersection form is homotopy equivalent to one of the Xa^ . On the other hand
we have complex algebraic surfaces, where the invariants are non-trivial. (There is
some overlap between these classes in the case when a = 1.) For a more extensive
discussion of this general picture see the article by Gompf in these proceedings. More
refined results show that the second class of 4-manifolds itself contains many distinct
manifolds with the same classical invariants (that is, homotopy equivalent but non-
diffeomorphic, simply connected smooth 4-manifolds.) The strongest results of this
kind have been obtained by Friedman and Morgan in their work on elliptic surfaces.

Recall that a K3 surface is a compact, simply connected complex surface with
trivial canonical bundle. All K3 surfaces are diffeomorphic, but not necessarily bi-
holomorphically equivalent. Some K3 surfaces are "elliptic surfaces", that is they
admit a holomorphic map TT : 5 —> CP1 whose generic fibre is an elliptic curve
(2-dimensional torus). Starting with such a K3 surface one can construct a family
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of complex surfaces SP}q p,q > 1 by performing logarithmic transformations to a
pair of fibres of TT, with multiplicities p and q. From a differentiate point of view
a logarithmic transform of multiplicity r can be effected by removing a tubular
neighbourhood of a fibre, with boundary a 3-dimensional torus, and glueing it back
using the automorphism of the 3-torus specified in a standard way by the matrix:

in SX(3, Z) = Aut T3. The SPiq are again elliptic surfaces and, as was pointed
out by Kodaira [17 ], are homotopy equivalent to S if p + q is even. In particular
b*(Sp,q) = 3 and, for k > 4, Theorem 1 gives an invariant qk,sp qi which is a
multilinear function of degree d = 4k — 6. Friedman and Morgan have announced a
partial evaluation of these invariants, for k > 4 using a description due to Friedman
of the moduli spaces of stable holomorphic bundles over 5 M , for a suitable Hodge
metric [12],[13]. Friedman's description of the moduli spaces starts from an analysis
of the restriction of bundles on SPiq to the fibres of the elliptic fibration. On a
fibre the bundle is either decomposable into a connected sum, or an extension of
the trivial bundle by itself. The first condition is open and for a bundle which
decomposes on the generic fibre the choice of a factor in such a decomposition
defines a double branched cover of the surface; then the bundle can be recovered
using the second construction mentioned above. Friedman also analyses the other
bundles by the first technique, using extensions, and these turn out to have fewer
moduli. In this way Friedman is able to obtain a very general and quite detailed
description of the moduli spaces.
To state the result of Friedman and Morgan we regard the invariants as polynomial
functions on the homology of the 4-manifolds. There are two basic such functions:
the intersection form Q - viewed as a quadratic polynomial, and the linear function:

given by pairing with the cohomology class —Ci(SPiq). The Yang-Mills invariants
can be expressed as polynomials in Q and KPiq and have the form:

(5)

Here / = (d/2) = (l/4)dim Mk, and we have written QW for the "divided power"
{\/l\)Ql. The formulae depend a little on ones choice of conventions for multiplica-
tion in the ring Sym^ z : explicitly we have, for example :

2) + (a1.a4Xa2.a3).
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In the formula (5) the a,- are unknown integers. Friedman and Morgan deduce
from this partial calculation that the product (pq) is a differentiable invariant of
the 4-manifold SPiq. In particular there are infinitely many diffeomorphism types
realised within the one homotopy ( or homeomorphism ) class. (Indeed Friedman
and Morgan work much more generally, considering all simply connected elliptic
surfaces with 6+ > 3.)

A natural question to ask is to what extent such information can be derived without
recourse to algebraic geometry and explicit descriptions of the moduli spaces. One
obvious approach to this is to think about the differentiate description of the
logarithmic transformation in terms of cutting and pasting along a 3-torus. One
can get a good theoretical understanding of the effect on the Yang-Mills invariants
of such cutting and pasting operations across a homology 3-sphere using Floer's
instanton homology groups. One would like to have an extension theory of this to
more general 3-manifolds, like the 3-torus. The author has been told that analytical
results in this direction have been obtained by T. Mokwra.

Another general problem is to find if there are any other simply connected 4-
manifolds, beyond the connected sums and algebraic surfaces noted above. We
call attention to a very interesting family of 4-manifolds, which provides at present
many candidates for such examples. These candidates are obtained by starting
with a complex algebraic surface X defined over the real numbers, so there is an
anti-holomorphic involution a : X —> X with fixed point set a real form X R of X -
a real algebraic surface. We let Y be the quotient space X/cr, which naturally has
the structure of a smooth manifold ( since the fixed point set has real codimension
2 ). If X is simply connected and X R is non-empty the quotient Y is also simply
connected and its' classical numerical invariants can be found from the formulae

b+(Y) = Pg(X) , 2X(Y) = X(X) + X(XR) .

Going backwards, the manifold X can be recovered as the double cover of Y,
branched over the obvious copy of XR.
This construction has been used by Finashin, Kreck and Viro in the case when X
is a Dolgachev surface ( with pg = 0 ). In this case the quotient Y does not give a
new differentiate structure - for a suitable choice of a it is diffeomorphic to the 4-
sphere. Instead they show that the branch surfaces give new exotic knottings in S4

-see Kreck's article in these Proceedings. A similar picture holds if we take X to be
one of the manifolds S M considered above. First, if (5, a) is a K3 surface with anti-
holomorphic involution then S/a is one of the standard manifolds : S2 x S2 or X\^.
Indeed, Yau's solution of the Calabi conjecture gives a a— invariant hyperkahler
metric on S, compatible with a family of complex structures. It is easy to see that
with respect to one such complex structure, J say, the map a is a holomorphic
involution of S. (This complex structure is orthogonal to the original one present in
our explicit complex description of S.) Then J induces a complex structure on the
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quotient space T = (5/cr), such that the projection map is a holomorphic branched
cover. But it is a simple fact from complex surface theory that if a K3 surface is
a branched cover of a surface T then T is a rational surface; hence S/a is rational
and so diffeomeorphic to S2 x S2 or some X\^.
Now the argument of Finashin, Kreck and Viro shows that the quotient of a loga-
rithmic transform Sp,q by an anti-holomorphic involution is again diffemorphic to
one of these standard manifolds. By this means one can get "knotted complex
curves" in, for example, S2 x 52 , i.e. embedded surfaces homologous to a complex
curve of the same genus, but not isotopic to a complex curve.
While we do not obtain any new manifolds by this quotient construction in the
two cases considered above, in more general cases the problem of understanding the
diffeomorphism type of the quotient seems to be quite open. An attractive feature
of this class of manifolds is that one can still hope to get some explicit geometrical
information about the Yang-Mills solutions. The anti-holomorphic involution a of
X induces an anti-holomorphic involution a of the moduli spaces Mk,x- Recently
S-G.Wang has shown that the moduli space Mjty can essentially be identified with a
component of the fixed-point set of b in M ^ x ( the "real" bundles over X ). On the
other hand these real bundles can, in principle, be analysed algebro-geometrically.

SECTION THREE, TORSION INVARIANTS

(a) More cohomology classes. The theory outlined in Section Two can be ex-
tended in a number of directions. In this Section we will consider one such extension;
where we define additional invariants which exploit the torsion in the homology of
the space of connections. This extension was greatly stimulated by conversations
with R.Gompf during the Durham Symposium, and for aditional background we
refer again to Gompf's article in these Proceedings.
Our starting point is the following question : does the connected sum of a pair of
algebraic surfaces decompose into "elementary " factors ? For example, can we split
off an S2 x S2 summand ? The invariants we have defined so far are not at all useful
for these problems, since they are trivial on such connected sums. So we will now
look for finer invariants, which will not have such drastic "vanishing" properties.
These invariants use more subtle topological features.
As we explained in Section Two the rational cohomology of the space B* of equiv-
alence classes of irreducible connections on an SU(2) bundle over a compact 4-
manifold X is very simple. The integral cohomology of B* the other hand, is much
more complicated. For example, consider the case when X — S4 and, as in Section
2, let B be the space of "framed " connections - homotopy equivalent to an S0(3)
bundle over B*. This basic example was discussed in detail by Atiyah and Jones
[1]. The space B is homotopy equivalent to Q3S3 - the third loop space of 53 . The
rational cohomology is trivial, but the cohomology with finite co-efficient groups is
very rich. Many non-zero homology classes are detected by a virtual bundle which
corresponds, in the framework of connections, to the index of the family of coupled
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Dirac operators parametrised by B. In general on an arbitrary spin 4-manifold X
we can use the Dirac family to construct corresponding classes, as in [7]. One can
then go on to consider the problem of pushing these classes down to B*. For our
application below we want a certain class u E H1(B*] Z/2), or equivalently a real
line bundle 77 over B*. This is defined when the Chern class k of the bundle P over
X we are considering is even . We recall the construction from [7]. Over A there is
a determinant line bundle fj with fibres

fjA = AmaxkerDA ® Amax kerD*A,

where DA is the Dirac operator coupled to A via the fundamental representation
of SU(2), and regarded as a real operator. This admits a natural action of the
gauge group Q\ and the element —1 in the centre of Q (which acts trivially on A)
acts as (—iyndDA on the fibres of fj. On the other hand the numerical index of the
coupled operator compares with that of the ordinary Dirac operator D by

ind DA = k + 2 ind D.

(The factor 2 appears here as the dimension of the fundamental representation.)
It follows that (—1) G Q acts trivially on fj precisely when k is even, and in this case
the bundle descends to a line bundle rj —» B*. We then put u = wi(rj).

(b) Additional invariants.
Consider first a general case where we have a cohomology class 0 G H9(B*\ R), for
some co-efficient group R, and a Yang-Mills moduli space M* C B* of dimension
s. If we can construct a natural pairing between a fundamental class of the moduli
space and 0 we obtain a numerical invariant of X. We recall that in Section 2 such
a pairing could be obtained, when 0 is a product of classes /i(ce), by extending
the cohomology classes to the compactified space M& which carries a fundamental
homology class once A; is large. It seems that this approach cannot be extended,
without reservation, to all the cohomology of B*.(It is certainly not true that all
the cohomology of B* extends to Mfc.) However, as we shall now show, it can be
carried through when the class 0 contains a large enough number of factors of the
form /J,(a). Suppose then that the virtual dimension s of the moduli space under
consideration has the form s = 2c? + r, where r = 1 or 2 and 0 is a cohomology class
of the shape :

0 = fi(ai) ^ • • • w ^(a d ) ^ </>,

where <f> G Hr(B*; R). To construct a pairing between 0 and the moduli space we
proceed as follows. As in the second construction of Section 2 we let V\,..., Va be
codimension 2 representatives for the £j(a;), based on surfaces Et- in X, and chosen
so that all multiple intersections are transverse to all moduli spaces. Then the
intersection :
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/ = Mk n Vi n • • • n vd

is an r-dimensional, oriented, submanifold of Mk C B*. If / is compact we can
evaluate the remaining factor <j> on I to obtain an invariant in the co-efficient group
R.
The argument to show that / is compact, when k is large, is just the same as
that used in the basic case (when r = 0) considered in Section 1. In terms of the
compactified space, we exploit here the fact that the lower strata have codimension
at least 4, and this is where the hypothesis r < 2 enters. In fact, at this point we
only need r < 3. In detail ; suppose that [Aa] is an infinite sequence in I. Taking
a subsequence we may assume that it converges to ([A], (#i , . . . , x/) in M*.. There
are at most 2/ of the surfaces which contain one of the points #,, so [A] must lie in
at least d — 21 of the Vj. If / = fc, so A is flat, [A] does not lie in any of the V}, so
in this case we must have d <2k i.eAk < 3(1 + 6+(X)) + r. So if we assume that

this case does not occur. On the other hand if / < k the dimension of Mk-i is
2d + r — 8/ and this must be at least 2{d — 21), since A lies in d — 21 of the Vj. Hence
r > 4/, and since r < 3 we must have / = 0. So A is a limit point of the sequence
in/.
Now a similar argument involving families shows that for any two generic metrics
on X, or choices of Vj, the intersections are cobordant in B*. This is where we need
to use the assumption that r < 2, since we introduce an extra parameter into our
"dimension counting".It follows then that the pairings are the same. Finally let us
note that the group of orientation- preserving self- homotopy equivalences of X acts
naturally on the cohomology of /?*. For simplicity we suppose that the class <f> is
fixed by this action, we just call such a class an invariant class . Then to sum up
we obtain

THEOREM 7. Let X be a compact, smooth, oriented,and simply connected 4-
manifold with b~*~(X) > 1. Let <j> be an invariant class in Hr(B*,R) for r < 2.
If 4k > 3(l + &+(X) + r and the dimension s = 8k-3(l + b+(X) equals 2d + r then
the map

qk,+,x : H2(X; Z) x • • • x H2(X : Z) -> R,

given by ^,0,x([Si], . . . , [Sd]) =< 4> , Mk H Vi H V2 fl • • • n Vd > defines an element of
SymxR which is (up to sign) a differential-topological invariant of X, natural with
respect to orientation preserving diffeomorphisms.

(c) Loss of compactness. Unfortunately, the author does not know any interest-
ing potential applications for the invariants of Theorem 7. So we now go further
and see what can be done if we take r = 3 in the set-up above. For definiteness we
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now fix the class (j> £ #3(/?*; Z/2) to be u3, the cup-cube of the class u described
in (a). Thus we should assume that X is spin and that the Chern class k is even,
the dimension formula shows that we must then have 6+(X) even . The essential
fact about this class u3 is that it can detect the "glueing parameter" which appears
when we join together instantons over two different regions, after the fashion of our
connected sum construction in 2(b). We shall use this fact twice below so we will
recall the main point now. Consider a pair of irreducible connections A\, A2 on
bundles Pi, P2 over spin manifolds X\, X2. Let the Chern classes of the bundles be
ki ,k2, with &i -f k2 even. Flattening the connections in small balls we construct a
connection Ao(p) for each gluing parameter p, and in this way we obtain a family
of gauge -equivalence classes of connections over the connected sum parametrised
by 50(3). Up to homotopy this family is independent of the particular connections
A{, or the particular flattening procedure. We can restrict our determinant line
bundle to this family, getting a real line bundle over 50(3). A simple application
of the Atiyah-Singer "Excision Axiom " shows that this bundle is

(8) 77 = (-l)fcl£,

where £ is the Hopf line bundle over 50(3), viewed as projective 3-space.(See [7].)
Note that there is no loss in symmetry in this formula, since k\ + k2 is even. It
follows then that the pairing of u3 with the fundamental class of 50(3) is (—l)fcl.
With this fact at hand we will now go back to our discussion of invariants. Let
the dimension of the moduli space Mk(g) be 2c? -f 3 and let I(g) be the intersection
of the moduli space with Vj, . . . , V .̂ As we noted above, I(g) is still compact for
generic metrics g (so long as 4k > 6 + 36+) and we can form the pairing of [I(g)]
with u3. The argument to show that this is independent of the choices of surfaces
and codimension-2 representatives VJ goes through just as before, and we obtain a
multilinear function

by setting /?,([Ei],..., [Srf]) =< u\ I(g) >.
The new feature that we encounter is that f3g is not now independent of the generic
metric g. The problem comes from the next stratum Mk,i = Mk-i x X in the
compactified space. The moduli space Mk-i has dimension 2(c? — 2) — 1 so in a
typical 1-parameter family of metrics gt we should expect there to be some isolated
times when Mk-i(gt) meets d — 2 of the VJ, say Vi,. . . , Vd~2. If A is a connection
in such an intersection and x is a point in the intersection Vd-\ H V& then the pair
([A], z) can lie in the closure of X — M fi V\ • • • f) V ,̂ and in that case X does not
give a compact cobordism from I(go) to I(gi).
All is not lost, however, through this failure of compactness. The same analytical
techniques used for connected sums allow one to model quite precisely the behaviour
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of the compactified moduli space around ([A], #), see [7]. The link L of the stratum
Mky\ in the compactified space is a copy of 50(3), representing the gluing parameter
which attachs a highly concentrated instanton to the background connection A. It
follows from the discussion in the previous paragraphs that the pairing of u3 with L
is 1. On the other hand a simple topological argument shows that a suitable trunca-
tion of the space X is a compact manifold-with-boundary, whose boundary has, in
addition to I (go) and /(<h), a component for each pair ([A], x), and this component
is a small perturbation of the link L. So the difference (f3go — / ^ ( p i ] , . . . , [£<*]))
is exactly the total number of pairs ([A],#). (Here we have, of course, to allow all
partitions of { 1 , . . . , d} of type (d — 2,2) when counting the pairs ([A], x) .)
To understand this better we consider briefly another kind of generalisation of the
Yang-Mills invariants. Suppose we have a situation where the moduli space Mj has
virtual dimension —1, and so is empty for generic metrics. We define an invariant
for a path of metrics gt by counting the number of points in the associated moduli
space Af. If 6+ > 3 this number depends on the path only through its' homotopy
class, with fixed (generic) end points. This collection of invariants of paths give a
class in H1(7Z*)^ where 72.* is the space of Riemannian metrics on X with trivial
isometry group, modulo diffeomorphism. More generally, if we have a moduli space
of dimension (2c? — 1) we can take the intersection with subvarieties Vi to obtain a
multi-linear invariant of paths of metrics :

This is independent of the representatives Vi, and yields a homotopy invariant of
paths. It naturally defines a class in the twisted cohomology i71(7^*;II), where
II is the local co-efficient system over 7Z* corresponding the representation of the
diffeomorphism group on the multilinear, Z/2 -valued functions in the homology of
X. ( We can, of course, go further in this direction to define higher cohomology
classes over 72.*.)
Our analysis of the ends of the manifold J now leads immediately to the formula

(9) 0gi-0,o=Q-°(\St]),

where a is the (d — 2) -linear invariant of paths defined by the moduli space Mk-i,
as described above. In (9) we take any path from go to (/j, and on the right hand
side we use the multiplication in the ring of multilinear functions Sym*̂  z ,2 with
the intersection form Q of X. In particular the functions /3gt are equal modulo the
ideal generated by the intersection form, and we obtain an intrinsic invariant in the
quotient graded- ring

Symx?z /2/ < Q > .

( Notice that another consequence of (9) is that the product of the cohomology
class defined by a with Q is zero in H1 (72,*; II).)

To sum up then we have :
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THEOREM 10. Let X be a compact, simply connected, oriented, spin 4-manifold
with b+(X) > 1. Suppose k is even and is such that Sk - 3(1 + b+ (X) = 2d + 3 and
4k > 3(1 + 6+ (X) + 3. Then the pairing

/9*fx([Si],..., [srf]) =< u3, M* n vl n . • • n vd >

defines a differential- topological invariant flk,x Iri Symx z/2/ ^ ^ -^

(Invariants with this kind of ambiguity have appeared in a slightly different con-
text in the works of Kotschick and Mong. The identification of the precise correction
factor arising from the failure of compactness has been discussed, in this other con-
text, by Kotschick. )

(d)Invariants for connected sums. We suppose now that the manifold X ap-
pearing in Theorem 9 is a smooth, oriented, connected sum X\ JIX2 and that each of
6+(-X"i), 6+(X2) is odd. We shall use the analytical techniques described in Section
2 (b) to partially calculate the new invariant of X in terms of the factors in the sum.
The arguments involved are very similar to those in the Vanishing theorem for the
rational invariants - but we shall see by contrast that these torsion invariants for X
need not be trivial, due to the fact that they detect the glueing parameter which
appeared in our description of the moduli space. The discussion here is very similar
to that in [7] for the complementary problem of the existence of 4-manifolds: it
is also very similar to Furuta's use of such torsion classes in his generalisation of
Floer's cohomology groups ; see Furuta's article in these proceedings.
To analyse the invariant f3kyx

 w e fix a partition d = d\ + d2 and homology classes
[Ei], . . . , [S^J in X\, represented by surfaces Ej in the obvious way, and classes
P i ] , . . . , [S'J in X2. Recall that 8A; - 3(1 + &+(X)) = 2d + 3, where

4fc > 6 + 36+(X).

We shall evaluate the pairing /? = /?* fx(Pi],..., [Sdl], p i , . . . , [E^J) assuming that

(11) </,

The point of this condition is that if we define k{ by

both of fci, &2 a re in the range where the polynomial invariants qkitXi developed
in Section 2(a) are defined. Let us write <Zi,#2 €  Z for the evaluation of these
invariants on the classes p j ] , [E^], in if2(-^i),#2(^2) respectively.
We now proceed in the familiar fashion, considering a family of metrics g(X) on
X, with the neck diameter O(Aa/2), and "converging" to given, sufficiently generic,
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metrics #i,#2 on Xi,X2. We let /(A) C Mk,X(g(\)) be the intersection of moduli
space with all of the Vj and Vj. We will show that, for small A, /(A) is a disjoint
union of copies of S0(3). In one direction, suppose that A\ is a connection over X\
which represents a point of

h = Mfcllxlnvin---nVi1,

and similarly that A2 is a connection over X2 which represents a point of the in-
tersection I2 of Mk2ix2

 w ^h the Vj. Then the glueing theory sketched in 2(b) shows
that, for small enough A, there is a family of ASD connections over X parametrised
by a the product of a copy of S0(3) ( the gluing parameter ), and neighbourhoods
of the points [A{] in their respective moduli spaces. Taking the intersection with
the Vj and Vj is effectively the same as removing these two latter sets of parameters
in the family; so we obtain a copy J([Ai], [A2]) of S0(3) in the intersection, which
clearly forms a complete connected component of /(A).
Now, under the condition (10) the sets Ji,/2 are finite, so for small A we find
|/i|.|/2| copies of SO(3) in I(A). We will now show that these make up all of /(A).
Again the argument takes a familiar form : suppose we have a sequence An —> 0
and connections An in /(An). After taking a subsequence we can suppose that the
connections converge to limits B\, J?2 over the complement of sets of sizes l\, I2 in
the two punctured manifolds; where Bi is an anti-self-dual connection on a bundle
with Chern class /c; over Xi. We have an "energy" inequality

(12) «i +/C2+/1 +l2 <k.

Now the argument is the usual dimension counting. First note that at least one
of the K{ must be strictly positive, by (11). Suppose next that /C2, say, is zero, so
B2 is the product connection. Then each surface E^ must contain one of the I2
exceptional points in X2, so:

d2 < 2 Z2.

Over the other piece : at least di —2 li of the Vj must meet the moduli space for
Chern class «i, so :

2di < 4/i + 8*i - 3(1 + 6+(Xi).

Combining these inequalities with (11) we obtain a contradiction. Similarly, in
the case when neither KI nor K2 is zero one deduces that in fact /x = /2 = 0 and
k = KI + «2. It follows then that for large n the point [A(n)] lies in I([Bi], [J52]),
and hence that J(A) is indeed the union of these components, for small A.
We can now use the relation (8) between the class u and the gluing construction
to evaluate /?. The copies /([Ai],[A2]) of 50(3) are small perturbations of those
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obtained by flattening the connections, so the cohomoloogy classes restrict in just
the same way. We obtain the formula

f3 = 0 if k\, &2 even

= <?i.<?2 if &i, &2 odd.

We can sum up in the following theorem

THEOREM 13. Let X be a simply connected, spin, 4-manifold with b+(X) even
and k be even with 4k > 6 + 3b~*~(X). If X can be written as a connected sum
X = Xijl-X ,̂ with each ofb^(Xi) odd, the invariant /?fc,x h&s the form :

Pk,x = ( ^2 (ikux1-qk2,x2 ) + € i + e2 mod 2,

where e; contains terms of degree at most (3/2)(l + 6+(-X",-)) in H2(Xi).

We see then that the torsion invariants are more sensitive than those defined by
the rational cohomology: the latter are killed by connected sums, since the glueing
parameter is rationally trivial, but the torsion classes can detect the gluing parame-
ter and give potentially non-trivial invariants. Moreover, if X\ and X2 are complex
algebraic surfaces we can hope to calculate some components of the new invariant
for the conected sum, using Theorem 13, and hence show, for example, that the
manifold does not split off an S2 x S2 summand. In this direction, one can use a
theorem of Wall [20], which tells us that if X = Y$(S2 x S2) and 6+(y) > 1 then
the automorphism group of X realises all symmetries of the intersection form. The
invariants for such a manifold must be preserved by the automorphism group, and
this gives strong restrictions. The author has, however, not yet found any examples
where this scheme can be applied: in a few simple examples various arithmetical
factors seem to conspire against the success of the method. Perhaps more elaborate
examples will be successful, or perhaps there is some deeper phenomenon in play
which makes these torsion invariants also vanish on connected sums.

SECTION 4, REMARKS ON HOLOMORPHIC AND PSEUDO-HOLOMORPHIC CURVES

(a) Curves, Line bundles and Linear systems.
We will now change tack and make make two remarks on the relation between holo-
morphic and pseudo-holomorphic curves. These remarks can be motivated by the
analogies with Yang-Mills theory on 4-manifolds described in Section 1. We have
seen in Section 2 that, at present, the utility of the Yang-Mills invariants is derived
largely from the link with algebraic geometry in the case when the 4-manifold is
a complex algebraic surface. One might hope that, in a similar way, the space
of pseudo-holomorphic curves in a general almost Kahler manifold captures infor-
mation which depends only on the symplectic structure and which reduces, in the
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special case of Kahler manifolds, to well-known facts about complex curves. This is
certainly true to some extent : for example Gromov proved in [15] that a symplectic
4- manifold which has the homotopy type of CP2 and contains a complex line of
self-intersection 1 (for a suitable, compatible, almost complex structure) is sym-
plectomorphic to the standard CP2. Gromov's argument reduces in the integrable
case to classical geometry, effectively a step in the Enriques-Castuelnuevo theorem
[14]. For many more general results on these lines see the contribution of Mac Duff
to the Proceedings. Observe, by the way, that an embedded (real) surface E in a
symplectic manifold (V,u>) is pseudo-holomorphic with respect to some compatible
almost complex structure if and only if it is a symplectic submanifold , i.e. if u>
restricts to a symplectic form on E. So Gromov's Theorem asserts that a symplec-
tic homotopy CP2 in which a generator of the homology can be represented by a
symplectic 2-sphere is standard.

With this in mind we consider what can be said about moduli spaces of holo-
morphic and pseudo-holomorphic curves. In the integrable case one can of course
apply a great deal of existing algebro-geometric theory. First, in a general way,
the moduli spaces of holomorphic curves will be quasi-projective varieties - and
the coresponding hyperplane class has a simple toploogical description, much as in
the Yang-Mills case. While it is a difficult problem to find holomorphic curves in
general there is one class of examples which are easy to find and describe - the
curves given by complete intersections of hyper surf aces in a complex manifold. We
recall that in a hypersurface W in a complex manifold V can be identified with a
line bundle £ over V and a holomorphic section s of £. If V is simply connected
then the line bundle £ is in turn specified uniquely by its' first Chern class - an
integral class of type (1,1). Having fixed £ the corresponding hypersurfaces form
a linear system , parametrised by the projective space P(F(£)*). Thus the study
of complete intersection curves, and in particular of all holomomorphic curves in
a complex surface, reduces to questions about line bundles and their holomorphic
sections.

This familiar theory has a number of simple consequences. We will concentrate
on the case of symplectic 4-manifolds and complex surfaces, although some of our
remarks apply in higher dimensions. First, the existence of any holomorphic curves
at all in some complex manifolds is a very unstable phenomenon. Take for example
a generic (Kahler) metric on a K3 surface. The integer lattice in H2 only meets
the subspace of (1,1) classes in the origin, so there are no non-trivial holomorphic
curves. (Note that the ideas here are very close to those we encountered when
discussing how to avoid reducible instantons ). The same phenomenon applies more
generally, and we shall now see how it can be understood in the framework of the
local deformation theory of solutions to the holomorphic equation, and cohomology.

Let us now go back for a while to review some of the general theory of pseudo-
holomorphic curves, of a given genus g and a given homotopy class, in an almost
complex manifold V. We can define two moduli spaces ME and Ai ; the first being
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the space of holomorphic maps from a fixed Riemann surface E, and the second
being the space of all pseudo holomorphic curves of the given topological type, in
which the induced complex structure is allowed to vary. (Thus M% is a fibre of the
natural map from M to the moduli space of Riemann surfaces of genus g.) The
linearisation of the equation defining M. about a given solution / : E —> V (which
we take, for simplicity, to be an embedding) is given by a linear elliptic operator
8f, acting on sections of the normal bundle. The Fredholm index s of Sf is easily
calculated to be

s = 2(E.S + l - # )

and this index is the virtual dimension of the moduli space M. of all the pseudo-
holomorphic curves. To describe .Ms locally we introduce a similar operator £/,o>
acting on the pull back of the tangent bundle of V. The Fredholm index of Sfj0 is
s — (6g — 6), and this is the virtual dimension of MY,-

Now for a generic almost-Kahler structure on V one can show that the operators
8f and Sfyo are surjective, for all embedded pseudo-holomorphic curves (the analogue
of the Freed-Uhlenbeck result in the Yang-Mills case), see [15]. This means that
the moduli spaces M, ME are smooth manifolds whose dimension agrees with
their virtual dimension. We will now see that the picture for Kahler metrics is quite
different. Consider a holomorphic curve / : E —> V in a complex Kahler surface
V ; for simplicity we assume / is an embedding. The cokernels of Sf and Sf^ can
be identified with the sheaf cohomology groups H1^; i/), JY1(S, T V | E ) respectively,
where v is the normal bundle of E in V. We have then :

PROPOSITION 14.
If V is a compact complex surface with pg(V) > 0 and E is an embedded curve

in V then 7J1(S; u) and H 1(E; Tl^|s) are both non-zero, except for the cases
(1) pg(V) = 1 and S ( or some multiple thereof ) is cut out by the section of

Kv.
(2) E is an exceptional curve in V ( i.e. an embedded 2-sphere with self-

intersection — 1 ) .
(3) V is an elliptic surface, and E is a multiple fibre in V - a 2-torus whose

normal bundle is a holomorphic root of the trivial bundle.

To prove this it suffices to consider the normal bundle, since the holomorphic
map from TV|s to v induces a surjection on H1. Now if £ is the line bundle over
V corresponding to E the normal bundle v is the restiction of £ to S and we have
an exact sequence

0 -> Oy -> £ -+ £|E = v -> 0.

This induces a long exact cohomology sequence, the relevant part of which is:
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The space H2(V;O) has dimension pg(V) which is positive by hypothesis. To
show that H1^) is non-zero it suffices to show that the map to H2(V;£) is not
injective. By Serre duality this is equivalent to showing that the map between the
duals

m. : H°(V; ? ® Kv) -> H°(V; Kv)
is not surjective. Here m3 is multiplication by the section s of £ cutting out E. So

ms is surjective if and only if all sections of the canonical line bundle Ky vanish on
E. Thus we have established that -ff^E; v) is non-zero i/S is not a fixed component
of \KV\ •

To complete the proof we examine the case when S is a fixed component of \Ky\.
Thus we can write Ky = [E -f C], where C is another curve in V. Now if E is an
exceptional curve in V then certainly all sections of Ky must vanish on E, so we get
a fixed component this way, as allowed for in case (i) of the Proposition. Conversely,
leaving aside exceptional curves, we may as well replace V by its minimal model.
So we assume now that V is itself minimal. We now appeal to the classification of
surfaces, as on p. 188 of [2]. The only cases that can occur are when V is an minimal
elliptic surface or a minimal surface of general type. In the first case the curve E
must be a fibre of the elliptic fibration. If it is an ordinary fibre the normal bundle
is trivial and Hl(y) is non-zero, so the only curves that occur in this way are the
multiple fibres allowed for in part(3) of the Proposition. In the second case, when
V is of general type, we can assume C is non-empty, otherwise we fall into category
(i) of the proposition. Then we must have E.C > 0, since \Ky\ is connected ( [2],
page 218 ). On the other hand some routine manipulation using the adjunction
formula shows that the holomorphic Euler characteristic x(u) 1S given by —S.C, so
H1^) must be non-zero.

We see then that for most purposes the Kahler metrics are quite unlike the generic
almost-Kahler metrics as far as the pseudo-holomorphic curves which they defined
are concerned. Again, one should contrast this discussion with that for holomorphic
bundles and instantons where the key result, obtained from the estimate (4), was
the fact that the Kahler metrics behave quite like the generic metrics.

A partial remedy for the degeneracy we have noted above can be achieved by
allowing the symplectic form to vary. Fix a conformal structure on V such that
the symplectic form LJ is self-dual. Then UJ is an element of the space 7Y+ of self-
dual harmonic forms, which has dimension 6+(V). There is an open set U C 7i+

containing u such that any uJ £ U is a non-degenerate 2-form, defining a symplectic
structure on V. Also there is a unique metric in the conformal class which is almost-
Kahler with metric form u/. Thus we have a natural family of almost- Kahler
structures on V parametrised by U. Fixing the volume of V we get a b~*~ — 1
dimensional family parametrised by the subset 5(17) of the sphere 5(W+). We can
then consider an enlarged moduli space M.^ whose points consist of pairs (a/, /) ,
where uJ is in S(U) and / : E —> V is pseudo-holomorphic with respect to the
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corresponding structure. Thus the space M. considered before is a fibre of the
natural map from M.* to S(U).
The point of this construction is that the space M* is in many respects the more
appropriate generalisation of the moduli space of holomorphic curves in a Kahler
surface. The Hodge decomposition of the cohomology shows that if the original
metric is Kahler then M. = -M+ - i.e. there are no pseudo-holomorphic curves, in
the given homology class, for the perturbed structures. Moreover the dimension of
M + in the Kahler case is then typically equal to the virtual dimension s + b+(V) — 1.
From this point of view the degeneracy detected by Proposition 14 in the Kahler case
appears as the degeneracy of the map from M* to Ai. The great drawback with
this approach, as far as applications go, is the fact that in general we will lose the
basic compactness properties in the manifold Af+, since the symplectic structure
itself will break down at the boundary of U.(In the special case of a K3 surface,
with a hyperkahler metric, the set S{U) is the whole 2-sphere and this breakdown
does not occur : the importance of considering all the complex structures in this
case was pointed out to the writer by Mario Micallef.)

(b) Harmonic theory on almost Kahler manifolds.
We will now focus on a specific question - the existence of symplectic submanifolds
in a general almost Kahler manifold. To be quite precise we will consider the
following problem :

PROBLEM. Let V be a compact 2n-dimensional manifold and uo a symplectic form
on V with integral periods, i.e. [u>] €  H2(V;H) is the reduction of a class a
in H2(X;Z). Is there a positive integer k such that the Poincare dual of ka is
represented by a symplectic submanifold of V ?

( We have mentioned in (i) that, when n = 2, such a submanifold would be pseudo-
holomorphic for a suitable almost-Kahler structure on V.)
The reason for phrasing the problem in this way is that there is a simple, famil-
iar, answer in the case when the form is compatible with an integrable complex
structure. There is then a holomorphic line bundle £ —> V with Ci(£) = a, and
a compatible unitary connection on £ having curvature form —2niuj. Thus { is a
positive line bundle and, according to the Kodaira embdding theorem, £ is ample,
i.e the sections of some power £k , k >> 0, define a projective embedding of V.
Given this we obtain many holomorphic curves, Poincare dual to ka, as hyperplane
sections in the projective space, or equivalently as the zero sets of holomorphic sec-
tions of £*. These holomorphic curves are a fortiori symplectic submanifolds, so we
answer the problem affirmatively in the "classical" case.
It seems that there is esentially only one proof of the Kodaira theorem known; using
vanishing theorems and harmonic theory over Kahler manifolds ( see for example
[14] , [21]). Thus it is natural to ask whether this kind of proof can be adapted
to answer the problem in the general, non-integrable case. In the remainder of this
section we will make some first moves in this direction. Let us consider then an
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almost- Kahler manifold V, of any dimension and mimic, as far as possible, the
usual differential geometric theory from the Kahler case.

First, we can decompose the differential forms on V into bi-type (since this is a
purely algebraic operation) and define operators :

d : fl™ -> ft**1'* , d :

by taking the relevant components of the exterior derivative d. In general we do
2

not have d = d -f $, and d is not zero. Instead we have,

and

where N is the Nijenhius tensor in T1'0 0 A0'2, which defines bundle maps from
AP+1'* to A™+2 (see [4]).
We will now go on to consider vector bundles over V. Let E —> V be a complex
Hermitian bundle with a connection having co variant derivative V# and curvature
FE- We decompose V#, much as in Section 2(c), to write:

We can extend these operators to E— valued differential forms, getting operators
9E^E with :

dE = dE + dE + N + iV,

such that d# = VEI8E = ^E
 o n sections of £J. The important case for us will be

when E is a complex line bundle £fc. Let s be a smooth section of £*, with zero set
Z C V. It is a simple exercise in linear algebra to show that Z will be a symplectic
submanifold of V if the section s satisfies the condition:

(15) \de(s)\<\de(s)\ on Z.

This condition is thus a natural generalisation, from the point of view of the
zero set, of the notion of a holomorphic section in the integrable case. We can
interpret the problem of finding a symplectic submanifold as the problem of finding
"approximately holomorphic" sections in this sense. To see why it is plausible
that such sections should exist we will go on to consider the interaction between
curvature and the coupled 3-operator , in the almost-Kahler case.



Donaldson: Yang-Mills invariants of four-manifolds 35

First, turning back to the general differential geometric theory for the bundle E
over V, we have:

, dEdE + dEdE = F1/ + NlV + NN,

where Fg'q is the (p, q) component of the curvature. We wish to combine these
formulae with the "Kahler identities". To state these we introduce the algebraic
map

A: «#*-> ft^T1'*"1,

which is the adjoint of multiplication by the metric form u;, with respect to the
standard inner product on the forms. The basic Kahler identities extend to the
almost-Kahler case, in that we have:

PROPOSITION 16. On any almost Kahler manifold the formal adjoints of the oper-
ators 9, d are :

These identities can be verified by checking that the usual proof for the Kahler
case, as for example in [21], does not use the equations d = d2 = 0. Consider for
example the formula for the operator d on forms of type (0,<?). This is very easy
to prove. We need to show that any 0 G O°'g,</> E O0'9"1 with compact supports
satisfy :

< 0, d<f> > = < iAd0, <f)>=< idO, to A <j> > .

This follows from the algebraic identity:

PApALO2n-2r= \p\2dfi

for p 6 (l°' r. We have:

<O,d<f>>= fo Adj>Aujn-q = [ 0 Ad~4>Aun~r,

which equals

I dO A~4>Aun~r = I DO A~4> A Lon~r,

using Stokes' theorem and the fact that UJ is closed. Now the same algebraic identity
shows that the last expression is just < iAdO,u> A <j> >, as required. The Kahler
identities extend to bundle-valued forms ( since the connection is trivial to first
order). We apply this first to the two Laplacians on sections of E to get:

(17) (V'EYV'E ~ (ykYV'E = iHFh'1 +NN + NN).
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Turning now to the E -valued (0,#) forms, we can consider three Laplace- type
operators. First we have the "<? -Laplacian "

A = dE&E + QE^E-

Second we have the 9-Laplacian on Q,°E
q :

a = d*EdE.

The Kahler identities give :

(18) A = a + iAiF1/ +NN+ ~NN).

On the other hand there is a unique connection on the bundle A0'9 0 E compatible
with the metric and having &E for its (0,1) component. We write the covariant
derivative of this connection as V = V' + V" , so V = &E- We can form the third
operator

•" = V"*V".

Applying (17) to the bundle E <g> A°'g we get :

(19) D' - • " = iA«,

where $ is the (1,1) part of the curvature of the connection V. Combining (18)
with (19) we obtain :

(20) A = • " + iAF1/ + iA(NN + ~NN$).

Now suppose that E is the line bundle £fc, where £ has curvature 2i:iuj. Then it is
easy to see that the operator iAFE

f is multiplication by 2?rfc(n — q) on (0, q) forms.
The curvature $ has two components - one from £k and one from the bundle A0'9.
The former gives a contribution 2?rfcn to zA$ and the latter is independent of k.
Similarly the term NN -f NN does not vary with k. In sum then we get the two
formulae

(21) A = D"

and

(22) A = a - 2irk(n - q) + C2 on OM(£fc),

where Ci, C*2 are tensors which depend only on the geometry of the base manifold.
The most important of these formulae for us is the first, which shows that, for large
fc, A is a very positive operator on Q0>g(£fc), for all q > 0.
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Now it is easy to see, in various ways, that when k is large the operator D = <9#-f dE

taking ft°'even(£*) to ft°>odd(£*) has a large kernel. The quickest route is to use the
Atiyah-Singer index theorem, which shows that the index of this operator is given
by the familiar "Riemann-Roch " formula

index D =< ch (£*) Td (V), [V] >,

where the Todd class is defined in the usual way by the almost complex structure
on V. This formula represents a polynomial of degree n in k and the leading term
is kn Volume(V), thus we have:

dim ker D > indexD = JfcnVolume(V) + 0{kn~l).

Consider now an element of the kernel of D, which we write in the form (s + <r),
where s is a section of £k and a contains the terms in 0°'2r(£fc) for r > 1. We write:

0 - D*D(s + a) = A(s + a) + {t + (B*)2)(s + a).

Here we have, for simplicity, written 9, d for the operators coupled to £fc, using the
fixed connection. We obtain then:

(23) ACT = d * i W + d*N*s + Nds

and

(24) As = d*N*v.

Taking the inner product of equation (23) with a and using the formula (21) above
we get:

| | W | | 2 + 2TTA;||<7||2 =< CKJ,<7 > - 2 < d*N*a,<T >-< d*N*,s > .

Here all norms are L2. The key observation now is that the term d*N*a is bounded
pointwise by a multiple of |V"<r|+ |<r|, where the multiple is independent of k. This is
plain when one expands out the terms by the Leibnitz rule, in local co-ordinates, and
observes that d* only involves the derivatives in the "antiholomorphic " directions.
We get then, for large enough fc, an estimate of the form:

IIv'V||2 + (2xfc - O H 2 < const.(lkl| + NixiMi + H

It is elementary to deduce from this that

\\a\\ < const. fc~1/2||,s|| , ||V"cr|| < const. ||s||,



38 Donaldson: Yang-Mills invariants of four-manifolds

with constants independent of A;.Now use (19), and the fact that the curvature is of
order fc, to obtain

||V'<7||2 < | | V " < J | | 2 + const. k\\a\\2,

which gives a bound on the "holomorphic" derivative:

||V'<r|| < const. ||s||.

Using the first order relation ds = —d* o, we deduce that

\\ds\\ < const. ||s||.

On the other hand, returning to the equation (24), and using (22), we get:

|2 = <

so
||<9s||2 > 27rA:n||5||2 - cons t . ||s||2 - const. || V"<7||||s||,

from which we deduce that

\\ds\\ > const. ifc1/2|M|.

We see then that each element of the kernel of D gives rise, when k is large, to
an "approximately holomorphic" section s of £*, in that the L2 norm of ds is much
less than that of ds. Precisely, we have a bound

||as|| < const. iT 1 / 2 ||&9||.

We sum up in the following proposition.

PROPOSITION 25. Let £ be a line bundle with a Hermitian connection over an
almost- Kahler manifold (V,o;) whose curvature is 2iriu There is a linear space Hk
of sections of£k, with

dim Hk - Volume V kn ,

and a constant C, independent of k, such that

for all s in Hk.

Here we have identified the space Hk, as defined above, with a space of sections
of £k by taking the 0°(£fc) component.
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This L2 result falls, of course, a long way short of proving the existence of a section
satisfying the pointwise inequality (15) which would give a symplectic submanifold,
but it seems possible that a more sophisticated analysis of the kernel of D, for large
k, would show that suitable elements of this kernel do indeed satisfy (15). (One can
compare here the work of Demailly [5] and Bismut [3] in the integrable case.) In
a similar vein, one can show that for large k the sections Hk generate £fc, s o they
define a smooth map :

jk : V

It is interesting to investigate in what sense jk is, for large &, an "approximately
holomorphic" map.
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On the topology of algebraic surfaces

ROBERT E. GOMPF

The University of Texas at Austin

1 INTRODUCTION

A major focus of current research in topology is the classification problem for
smooth, closed, simply connected 4-manifolds. While we are still a long way from
a complete solution of this problem, progress is now being made, driven mainly
by the new gauge-theoretic tools introduced by Donaldson. In this article, we
will break the problem into several smaller problems, and discuss what is known
about each.

The most basic approach to a classification problem is to list examples.
The simplest example of a smooth, closed, simply connected 4-manifold is the
4-sphere S4. After this, we may think of CP2, S2 x 52 and perhaps the famous
K3 surface. The latter example has second Betti number 62 = 22 and signature
a — — 16, and it is the simplest known example which is spin and has nonzero
signature. We see that except for 54 , these examples are all algebraic surfaces,
or 4-manifolds obtained as zero loci in CPn of collections of homogeneous poly-
nomials. In fact, they are hypersurfaces in CP3, cut out by a single polynomial.
For each d > 1, there is a unique diffeomorphism type of smooth hypersurface
in CP3 obtained from a degree d polynomial. For d = 1,2,4 we obtain CP2,
S2 x S2 and K3. The degree 3 hypersurface is the connected sum CP2 # 6 CP2

of seven CP2 's, six of which have reversed orientation. (Algebraically, it is CP2

blown up at 6 points.) For each d > 5 we obtain a new example of a smooth,
closed, simply connected 4-manifold. In general, the simply connected algebraic
surfaces provide a rich class of examples.

Next, we ask what simply connected 4-manifolds are not algebraic surfaces.
Connected sums of algebraic surfaces provide many examples. For example,
M = CP2 # CP2 is not algebraic, since its tangent bundle admits no complex
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structure. (If it did, we would have the characteristic class identity c2[Af] =
(2c2 +pi )[M] = 2X(M) + 3a(M) = 2 • 4 + 3 • 2 = 14. But it is easily checked that
no element of H2(M;Z) has square 14.) In fact, Donaldson's invariants show
that simply connected algebraic surfaces can never split as connected sums of
pieces with b% > 0 [6], so we obtain many new examples this way.

What simply connected 4-manifolds are not connected sums of algebraic
surfaces? Here we are stymied. Although many attempts have been made to
construct such examples, none has been proven successful. In fact, many con-
structions have yielded only known examples such as connected sums # iLCP2 of
CP2 's with both orientations. It is possible that all simply connected 4-manifolds
are sums of algebraic surfaces.

We now see that the classification problem for smooth, closed, simply con-
nected 4-manifolds splits into three subproblems:

Problem A. Classify simply connected algebraic surfaces up to diffeomorphism.

Problem B. Understand how algebraic surfaces behave under connected sum.

Problem C. Is every smooth, closed, simply connected 4-manifold a connected
sum of algebraic surfaces?

As previously indicated, Problem C is a major open problem, about which noth-
ing is known. We will address Problems A and B in the next two sections.

2 ALGEBRAIC SURFACES

There is a partial classification of algebraic surfaces (or, more generally,
compact, complex surfaces) due to Kodaira [19]. (See also [3].) In the sim-
ply connected setting, algebraic surfaces (up to diffeomorphism) fall into three
types: rational, elliptic, and general type. The rational surfaces include CP2

and its blow-ups CP2 #n CP2, as well as S2 x S 2 . This provides a complete list
of diffeomorphism types of rational surfaces, although there are many algebraic
structures on these manifolds. The elliptic surfaces represent many more diffeo-
morphism types, including the K3 surface, and will be described in detail below.
The simply connected surfaces of general type include everything which is nei-
ther rational nor elliptic, such as the hypersurfaces in CP3 of degree d > 5. This
collection is poorly understood. Fortunately, it is fairly "small" in the following
sense: For any fixed integer 6, there are only finitely many simply connected
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surfaces of general type (up to diffeomorphism) with second Betti number 62 < b

[11].

The "largest" class of simply connected algebraic surfaces is the simply con-
nected elliptic surfaces, which will now be described. (See also [3], [15], [16],
[20].) Without loss of generality, we will restrict attention to minimal ellip-
tic surfaces. (Arbitrary elliptic surfaces are obtained from these by blow-ups,
i.e., connected sums with CP2.) In general, an elliptic surface is a compact,
complex surface with an elliptic fibration, a holomorphic map ?r : V —> C onto
a complex curve (i.e., Riemann surface), such that the generic fibers of ?r are
"elliptic curves," i.e., complex tori. By elementary arguments, TT will have only
finitely many critical values, whose preimages are called singular fibers, and away
from these ?r will be a fiber bundle projection with torus fibers (called regular
fibers). Note that if V is simply connected then C must be the Riemann sphere
CP1 = 52 , since any homotopically nontrivial loop in C would lift to a nontrivial
loop in V. Note also that for any simply connected, closed 4-manifold, the Euler
characteristic X > 2, since 61 =63 = 0 .

The simplest example of a simply connected elliptic surface is the rational
elliptic surface, which we denote by V\. To construct this surface, we begin with a
generic pencil of cubic curves on CP2. That is, we let Po and Pi denote a generic
pair of homogeneous cubic polynomials on C3. For each t — [to, 1̂] G CP1, we let
Ft denote the zero locus of t0P0 +t1P1 in CP2. For all but finitely many values of
t, Ft will be a smoothly embedded torus in CP2. The base locus B of the pencil
{Ft\t G CP1} is the set of points in CP2 where Po and Pi simultaneously vanish.
Since this is a generic pair of cubics, the base locus consists of exactly 9 points.
Clearly, B C Ft for any t G CP1. For any z G CP2 — B, however, there is a unique
Ft containing z, as can be seen by solving toPo(z) + t\P\(z) = 0 uniquely (up to
scale) for t. Now we blow up each point p G B. (See, for example [15].) That is,
we delete p from CP2 and replace it by CP1, thought of as the set of complex
tangent lines through p in CP2. If the new CP1 is suitably parametrized, each
Ft will intersect it precisely in the point t. Thus, the 9 blow-ups will make the
sets Ft disjoint so that they fiber the new ambient manifold CP2 # 9 CP2. This
is our rational elliptic surface V\, with the elliptic fibration TT : V\ —* CP1 given
by Ft H-> t.

We obtain other elliptic surfaces by a procedure called fiber sum. Suppose
V and W are elliptic surfaces. Let N C V be the preimage under TT of a closed
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2-disk containing no critical values of TT. (Thus, N is diffeomorphic to T2 x D2.)
Let tp : N *—> If be a fiber-preserving, orientation reversing embedding onto
a similar neighborhood in W, and let M be obtained by gluing V — int N to
W — int(p(N) along their boundaries via the map <p\dN. We call M the fiber
sum of V and W along <p. We construct manifolds Vn, n > 2, by taking the fiber
sum of n copies of V\. This turns out to be independent of all choices (except n).
In particular, the map <p may be changed by self-diffeomorphisms of JV, using
the monodromy of the bundle part of V\. Although this fiber sum construction
is not holomorphic in nature, the manifold Vn actually admits an (algebraic)
elliptic surface structure whose fibration is the obvious one. Note that since Vi
has Euler characteristic X = 12 and signature a — —8, we have X(Vn) = Yin and
cr(yn) = —Sn. As an example, V2 is diffeomorphic to the K3 surface.

To construct further examples, we introduce an operation called logarithmic
transform. Let V be an elliptic surface, with N C V as before, a closed tubular
neighborhood of a regular fiber. In the smooth category, a logarithmic transform
is performed by deleting intiV and gluing N « T2 x D2 back in, by some dif-
feomorphism i/> : T2 x S1 —> ON. The multiplicity is defined to be the absolute
value of the winding number of TT O tj)\ point xS1 as a map into 7r(dN) wS 1 , A
logarithmic transform of multiplicity zero destroys the fibration TT and the com-
plex structure, but any positive multiplicity p can be realized by a holomorphic
logarithmic transform. This changes the fibration by the addition of a singular
fiber called a smooth multiple fiber, a smoothly embedded torus which is p-fold
covered by nearby regular fibers.

Let Vn(pi,... ,pfc) denote the manifold obtained from Vn by logarithmic
transforms of multiplicities p\,..., pk. The diffeomorphism type of this manifold
is completely determined by n and the unordered fc-tuple {pi, ...,/>*.}. (This is
due to the monodromy of the bundle part of Vn and the symmetries of T2 x D2.
See, for example, [13].) In particular, we may add or delete p,-'s equal to one
without disturbing the diffeomorphism type, since the trivial logarithmic trans-
form (regluing N by the identity map) has multiplicity one. If no pi equals zero,
Vn(pi,... ,pfc) will admit algebraic surface structures which are elliptic. Further-
more, any minimal elliptic surface over S2 with nonzero Euler characteristic will
be diffeomorphic to some Vn(pi,... ,p&)5 (pi, . . . ,pfc > 2) [17], [23]. The mani-
folds Vn(pi,... ,p&) which are simply connected are precisely those which can be
put in the form Vn(p, g), p, q relatively prime (including p = 0,^ = l )by adding
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or deleting pi's equal to one. (Note that this includes Vn and Vn(p).)

The homeomorphism classification of the manifolds Vn(p, q) (p, q relatively
prime) is a corollary of Freedman's Classification Theorem for simply connected,
closed, topological 4-manifolds [8], For a fixed odd n, the manifolds Vn(p, q) all
fall into one homeomorphism type, that of #2n-i CP2 #ion-i CP2. For fixed
even n, there will be two homeomorphism types, distinguished by the existence
of a spin structure. If p and q are both odd (and n is even) then Vn(p, q) will
admit a spin structure, and it will be homeomorphic to # i K3 # 1 S2 x S2.
Otherwise it will not admit a spin structure and be homeomorphic to

The diffeomorphism classification of the manifolds Vn(p, q) is much more
complex, and only partially understood. It is well-known that the algebraic
surfaces V\ (p) (p > 1) are rational, and hence difFeomorphic to CP2 # 9 CP2.
(A topological proof of this appears in [13].) Each Vn(0) is difFeomorphic to
#2n-i CP2 #ion-i CP2 [13]. Further results require Donaldson's invariants from
gauge theory [5], [6]. In the n = 1 case, Friedman and Morgan [9] and Okonek
and Van de Ven [24] showed that each difFeomorphism type is realized by only
finitely many Vi(p, q) (2 < p < #), and in particular, no two of the manifolds
Vi(2,q) q = 1,3,5,7,... are difFeomorphic. For n > 2 (p,q > 1), Friedman
and Morgan [10] showed that the product pq is a smooth invariant, implying a
similar finiteness result, and showing that no two of the manifolds Vn(p) p =
0,1,2,.. . are difFeomorphic. (The p = 0 case follows from the decomposition
Vn(0) « # ±CP2 , together with Donaldson's theorem [6] that a simply connected
algebraic surface cannot be decomposed into two pieces with 6j > 0.)

These results about elliptic surfaces are quite surprising from a topologist's
viewpoint. Observe that we have many families (one for each odd n and two
for each even n), each of which contains only one homeomorphism type, but
infinitely many difFeomorphism types. We may interpret each family as a sin-
gle topological manifold which admits infinitely many nondifFeomorphic smooth
structures. This contrasts strikingly with topology in dimensions ^ 4, where
a compact manifold admits only finitely many difFeomorphism types of smooth
structures. (In fact, high dimensional smoothing theory would predict that a
simply connected, closed 4-manifold should admit no more than one difFeomor-
phism type of smooth structure.) Furthermore, a classical result of Wall [26]
implies that all members of a given family will be smoothly /i-cobordant, so we
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have infinite families of counterexamples to the smooth /i-Cobordism Conjecture
for 4-manifolds. In Section 4, we will further analyze the topology of elliptic
surfaces, and use these to construct other surprising examples.

3 CONNECTED SUMS OF ALGEBRAIC SURFACES

We begin by considering connected sums of algebraic surfaces with ratio-
nal surfaces. Observe that connected sum with CP2 is the same as blowing-up,
which keeps us within the category of algebraic surfaces. Thus, we should not
expect too much information to be lost during this procedure. In fact, Donald-
son's invariants are stable under blow-ups [9], [10], so that our infinite families of
distinct elliptic surfaces remain distinct after sum with any number of CP2's. In
contrast, sum with +CP2 is much more damaging. Mandelbaum and Moishezon
[20], [23] showed that if M is a simply connected elliptic surface, then M # CP2

always decomposes as a connected sum of ±CP2 's. They obtained similar results
for many other algebraic surfaces, including hypersurfaces in CP3 and complete
intersections, which are those algebraic surfaces obtained as transverse intersec-
tions of N hypersurfaces in CP N + 2 . Mandelbaum has conjectured that for any
simply connected algebraic surface M, M # CP2 should decompose as # ±CP2 .

Sum with S2 x S2 is similarly damaging. In fact, Wall [25] showed that if
M is a simply connected non-spin 4-manifold, then M # S2 x S2 is diffeomorphic
to M #S2xS2, where S2xS2 denotes the twisted 52-bundle over S2, which is
difFeomorphic to CP2 # CP2. (An analogous phenomenon occurs in dimension 2:
If M2 is nonorientable, then M # 51 x S1 is difFeomorphic to M # S1 xS1 where
S1xS1, the Klein bottle, is difFeomorphic to RP 2 #RP 2 . ) It follows immedi-
ately that if M is a simply connected elliptic surface or complete intersection,
and if M is nonspin, then M # S2 x S2 « # ±CP2 . If M is spin, such a decom-
position cannot occur (since M # S2 x S2 will be spin and # ±CP2 will not),
but we might expect a similar decomposition into simple spin manifolds. In
fact, Mandelbaum showed that for M a simply connected, spin elliptic surface,
M •#• S2 x S2 decomposes as a connected sum of K3 surfaces (with their usual
orientations) and S2 x S2's. This suggests the following:

Definition. A 4-manifold M dissolves if it is difFeomorphic to either

#k CP2 #e CP2 or ±(#fc K3 #e S2 xS2) for some k,£ > 0.

Note that for any given M, at most one of the two possibilities can occur, and
this, as well as k,£ and the sign (db) are determined by the (oriented) homotopy
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type of M. (In fact, the intersection form suffices.) We can now state the results
of Mandelbaum and Moishezon for elliptic surfaces concisely: If M is a simply
connected elliptic surface, then M # CP2 and M # S2 x S2 dissolve.

We now turn to more general connected sums. It can be shown that for M, N
simply connected elliptic surfaces, M # N dissolves [14]. This result still holds if
M and N are also allowed to be complete intersections other than CP2, provided
that at least one of M, N is not spin [12]. One is free to conjecture that M # N
dissolves for M,N any simply connected algebraic surfaces except CP2. These
results, as well as those of Mandelbaum and Moishezon, are proven essentially by
elementary cut-and-paste techniques. Ultimately, they rely on various versions
of a lemma of Mandelbaum [21] which shows how to decompose fiber sums and
related objects into ordinary connected sums in the presence of an S2 x S2 or
S2xS2. A unified discussion of the results for elliptic surfaces appears in [14].

The case of connected sums with compatible orientations seems harder. For
example, there is no known example of irrational algebraic surfaces Mi , . . . , Mk
such that #i=1 Mi dissolves. It is conceivable that such sums never dissolve,
and perhaps such connected sum decompositions (for simply connected, minimal
irrational surfaces) are even unique. However, the usual Donaldson invariants
will vanish for these sums, making analysis of this situation difficult.

The crucial dependence of the topology on orientations is even more graph-
ically illustrated by the following result. Suppose M is made as a fiber sum of
two elliptic surfaces with nonzero Euler characteristic, but assume that the sum
reverses orientation (i.e., the gluing map tp preserves orientation). If M is simply
connected, then it dissolves [14]. Of course, fiber sums with the usual choice of
orientation are elliptic, so they never dissolve (except for the rational case and
V2 = K3). In practice, this difference arises from the "negativity" of most ir-
rational algebraic surfaces. Most (and perhaps all) simply connected, irrational
algebraic surfaces contain embedded spheres with negative normal Euler number,
but few (and perhaps no) such manifolds contain embedded spheres with positive
normal Euler number. (In fact, such spheres cannot exist if the algebraic surface
has &2~ > 1. Otherwise, by blowing up we could obtain a sphere with normal
Euler number one. A tubular neighborhood of this would be diffeomorphic to
CP2 — {point}, and we would have a connected sum decomposition of an algebraic
surface into two pieces (one of which is CP2), both of which have b£ > 0. This
contradicts a theorem of Donaldson [6].) When we connected sum or fiber sum
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an algebraic surface with one of reversed orientation, this typically introduces
spheres of positive normal Euler number. It is the interaction of positive spheres
with negative spheres which provides the S2 x S2 summand required for the ap-
plication of Mandelbaum's lemma. This also explains why CP2 behaves more
like a typical algebraic surface than CP2 does: CP2 contains embedded spheres
with normal Euler numbers +1 and +4, but no negative spheres. One further
example of this phenomenon is the following: If V is a simply connected elliptic
surface and M is a nonorientable 4-manifold, then V # M is diffeomorphic to
W # M for some W which dissolves [14]. (Roughly, this is because positive and
negative are indistinguishable in a nonorientable manifold.)

4 NUCLEI OF ELLIPTIC SURFACES

The new theory of Floer and Donaldson (for example, [2]) motivates the
study of homology 3-spheres in 4-manifolds. Specifically, if a 4-manifold is split
into two pieces along a homology 3-sphere, we can understand Donaldson's in-
variants of the 4-manifold in terms of certain invariants of the pieces which take
values in the "instanton homology" of the boundary homology sphere. In this
section, we will show how to split an elliptic surface along a homology 3-sphere
with known instanton homology, in such a way that one piece is very small but
still contains all of the topological information of the elliptic surface. This "nu-
cleus" is itself an interesting 4-manifold with boundary. (For more detail, see
[13].)

We begin with any Vn(pi,... ,pfc). We will find embedded in this the
Brieskorn homology sphere S(2, 3,6n — 1), whose instanton homology was com-
puted by Fintushel and Stern [7]. This splits the manifold into two pieces. The
small piece, or nucleus iVn(pi,... ,pfc) has Euler characteristic 3 (compared with
Yin for the ambient space). Its diffeomorphism type depends only on n and
p i , . . . ,pfc, and doesn't change if we add or delete p '̂s equal to 1 (just as with
Vn(pi,... ,pfc)). The large piece, with X = 12n — 3, is independent of p i , . . . , p^,
and will be denoted 3>n. It can be shown that $ n is actually diffeomorphic to a
well-known manifold, namely the Milnor fiber of E(2, 3,6n — 1). This is the locus
of x2 +y3 +26 n~1 = e in the closed unit ball in C3. The boundary, S(2,3,6n -1),
has at most two self-diffeomorphisms (up to isotopy) [4], and the nontrivial one
(when it exists) extends over the Milnor fiber as complex conjugation. Thus,
there is a canonical procedure for reconstructing Vn(pi,... ,£>&) from its nucleus
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•Wn(pi> • • • iPk)- (Simply glue on the Milnor fiber by any diffeomorphism of the
boundaries.) In particular, Vn(pi,... ,p*) and Vn(qi,...,qi) will be diffeomor-
phic if their nuclei are diffeomorphic.

We consider the nuclei in detail. It is not hard to verify from the construc-
tion we will give that the inclusion Nn(pi,... ,£>&) c—• Vn(j>i,... ,pfc) induces an
isomorphism of fundamental groups. We will restrict attention to the simply
connected case: iVn(p, g), p, q relatively prime. In this case, the nucleus has
&! = 0 and b2 = 2. It follows from Freedman theory that two of the manifolds
Vn(p, q) will be homeomorphic if and only if their nuclei are. We have already
seen that nondiffeomorphic Vn(p, <?)'s have nondiffeomorphic nuclei. (The con-
verse also holds in the cases where two Vn(p, #)'s are known to be the same. That
is, the nuclei N\{p) are all diffeomorphic.) It follows that our families of home-
omorphic but nondiffeomorphic elliptic surfaces yield families of homeomorphic
but nondiffeomorphic nuclei. Thus, we may trim away much useless complexity
from the elliptic surfaces, and see their most important topological properties
captured in the much simpler nuclei. As a measure of the simplicity of these
nuclei, consider the ones Nn(p) with a single multiple fiber. (Note that these are
all nondiffeomorphic if n > 1.) Each Nn(p) has a handle decomposition with only
three handles: One 0-handle and two 2-handles. (Equivalently, it has a perfect
Morse function with only three critical points.) These handle decompositions
can be drawn explicitly.

The art of drawing pictures of 4-manifolds as handlebodies is called Kirby
calculus. (See, for example, [18].) Suppose, for example, that H is a 4-dimensional
handlebody built with one 0-handle and k 2-handles. The 0-handle is just a 4-ball
B4, and each 2-handle is a copy of D2 x D2, glued onto the boundary dBA = S3

along S1 x D2, by some embedding fi:S
1xD2-> S3 (1 < i < jfc). Figure 1 is

a schematic picture of this, which is literally a pair of 2-dimensional 1-handles
glued to a 0-handle (D2) to yield a punctured torus. To specify fi up to isotopy,
we need two pieces of information. First, we specify filS1 x {0} up to isotopy,
which is just a knot in S3. Then, we specify the twisting of the normal vectors
as follows: If p ^ 0 is a point in D2, then f^S1 x {0}) and / t (5 1 x {p}) are a
pair of disjoint knots in S3. Their linking number, an integer called the framing
of the 2-handle, specifies the normal twisting as required. To completely deter-
mine if, we must simultaneously specify all gluing maps of 2-handles. This is
achieved by a framed link, or a link / : \\k S1 c—» S3 with an integer attached to
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each component. Identifying S3 with R3 U{oo}, we may draw the framed link to
obtain a complete picture of H. (For comparison, the 2-dimensional handlebody
drawn literally in Figure 1 is specified by the nontrivial link of two 0-spheres in
S1, together with a framing in Z2 for each 1-handle. If we change one framing,
z.e., put a half-twist in one 1-handle, the manifold is changed to a punctured
Klein bottle.)

Now we can see the manifolds Nn(p). The simplest pictures, Nn(0) and
Nn = Nn(l) are shown in Figure 2. The boxes indicate twists in the link. In the
picture for iVn(0), for example, the box indicates n 360° left-handed twists. Our
previous discussion implies

Theorem.

a) For any fixed odd integer n > 3, the two handlebodies shown in Figure 2 are

homeomorphic but not diffeomorphic.

b) For each homeomorphism type shown in Figure 2 (n > 1 arbitrary) there are

infinitely many diffeomorphism types.

Figure 2 is undoubtably the most visualizable example known of homeomorphic
but nondiffeomorphic manifolds, with the possible exception of Akbulut's ex-
ample [1] of two such manifolds, each built with a single 2-handle. (His proof
depends on a calculation in Donaldson-Floer theory by Fintushel and Stern and,
of course, Freedman theory for the topological part.)

Figure 3 shows a general Nn(p). The ribbon at the top represents a spiral
with p loops.

Theorem.

Fix n > 2. If n is even, fix the mod 2 residue of p. Then the manifolds in the
infinite family given by Figure 3 are all homeomorphic, but no two are diffeo-
morphic.

It remains to sketch the construction of the nuclei. Details (and further
properties of the nuclei) can be found in [13]. First, consider Vn. By perturbing
the elliptic fibration if necessary, we may assume that Vn has a singular fiber of
a type called a cusp fiber. This is a 2-sphere in Vn which is smoothly embedded
except at one non-locally flat point where it is locally a cone on a trefoil knot
(z.e., the zero locus of x2 + y3 in C2). A regular neighborhood of this will be a
handlebody made by attaching a 2-handle to a 0-framed trefoil knot. We may
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also find a section for Vn, i.e., a smoothly embedded 2-sphere intersecting each
fiber transversely in a single point. (In Vi, any of the nine CP l5s created by the
blow-ups will work. Vn is made by fiber sum from n copies of V\, and a section is
obtained by splicing together sections of Vi.) The section will have normal Euler
number — n. Let JVn C Vn denote a regular neighborhood of the section union
the cusp fiber. The reader can check that this is obtained from a handlebody
on a 0-framed trefoil by adding a 2-handle along a — n-framed meridian. This is
seen explicitly in Figure 2. An easier task is to verify that the intersection form
of Nn is [J 2n] which is unimodular, proving that dNn is indeed a homology
sphere. A routine computation with Kirby calculus shows that dNn, as seen in
Figure 2, is — 2(2,3,6n — 1). More work shows that the closed complement 4>n is
the Milnor fiber. (Question: Can this be seen directly by algebraic geometry?)

To construct nuclei in general, observe that by construction Nn contains a
neighborhood of a singular fiber. Such a neighborhood contains a continuous
family of regular fibers. Change Vn to Vn(pi,... ,Pfc) by performing logarithmic
transforms on k regular fibers in the interior of JVn. This will not disturb the
homology sphere or $ n , but it will change Nn to a new manifold iVn(pi,... ,pjfc),
which is the nucleus of Vn(pi,... ,£>*). Figure 3 may now be derived by Kirby
calculus. Details appear in [13].
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The topology of algebraic surfaces with
irregularity and geometric genus zero
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Interest in algebraic surfaces with pg = h°(O(K)) = 0 goes back to the work
of Enriques and Castelnuovo in the 19th Century. After Clebsch had proved that
curves with pg = 0 are rational, these authors considered the analogous question
for surfaces. It was clear to them that in this case the irregularity q = h}(O(K))
has to be controlled as well.

In 1894 Enriques constructed his now famous surface, which is irrational with
0. — Vg — 0? disproving the most obvious rationality criterion. Two years later
Castelnuovo proved that the modified conditions q = P<i — 0 do imply rationality.
Thus he substituted the second plurigenus from Pk = h°(O(Kk)) for the first. (For
the Enriques surface K is a 2-torsion bundle, so the bigenus is one.)

Over the next forty years more examples of irrational surfaces with q = pq = 0
were constructed. Like the Enriques surface they were all elliptic. Only in 1931 did
Godeaux [G] find a surface of general type with these invariants. His construction
was disarmingly simple: divide the Fermat quintic in CP3 by the standard free Z5-
action on the coordinates. Campedelli also gave an example of a surface of general
type, introducing his "double plane" construction. This has H\(X, Z) = Z?>.

On the basis of these examples Severi conjectured in 1949 that the two conditions
JJTI(X, Z) = 0 and pg = 0 should imply rationality. (Recall that q = 0 implies
H\(X,Q) = 0.) This was disproved by Dolgachev, who in 1966 gave examples
of simply connected irrational elliptic surfaces with vanishing geometric genus, cf.
[Dv]. Then, in her 1982 Warwick thesis, R. Barlow constructed a simply connected
surface of general type with pg = 0, cf. [Bl]. To this day it is the only such example.

In this paper we want to summarize the progress made in understanding alge-
braic surfaces with pg = 0 since the survey of Dolgachev [Dv]. In view of the
spectacular advances in 4-manifold topology initiated by Freedman and Donaldson
we extend the classification programme from the algebraic or analytic to the smooth
and topological categories. Although the results are not yet complete, a coherent
picture emerges. Namely, if the topology of a surface is sufficiently complicated (e.g.
large fundamental group), then it determines the smooth structure. On the other
hand, if the topology is simple (e.g. rational surfaces) then there are homeomorphic
surfaces which are not diffeomorphic to the given one.

^Supported by NSF Grant Number DMS-8610730
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The reader should be warned that nothing is proved in this article. For back-
ground for the papers referred to in the third section consult the forthcoming book
by S. K. Donaldson and P. B. Kronheimer (Oxford UP). The philosophy is well
explained in [FM2].

I would like to thank R. Gompf for pointing out an erroneous claim about (non-
algebraic) 4-manifolds with 2-torsion in Hi(X, Z) made in the oral version of this
lecture.

1. ALGEBRAIC CLASSIFICATION

The following theorem is part of the classification of surfaces [BPV], Chapter
VI.

THEOREM 1 (Enriques-Kodaira). Let X be a smooth minimal compact complex
algebraic surface with q = p9 =0 . Then X is one of the following:

A) a minimal rational surface
B) an Enriques surface
C) a minimal properly elliptic surface
D) a minimal surface of general type.

We can describe these surfaces in more detail:
A) The minimal rational surfaces are P2 and the Hirzebruch surfaces Sn , n =
0,2,3,4,.... Here S n is the P1-bundleP(C)0 0(n)) over P1 . Thus E° = P 1 x P1 .
The surface E1 is not minimal, it is P2 blown up once. Note that K2 = 9 for P 2

and K2 = 8 for En.
B), C) Let XQ be the rational elliptic surface obtained from P 2 by blowing up the
nine base points of a generic cubic pencil. Then Dolgachev [Dv] proved that the
surfaces in B), C) are precisely those obtained from Xg by performing logarithmic
transformations on at least two different smooth fibers. We denote the surface
obtained in this way by X(pi, . . . ,p^), where the pi are the multiplicities of the
logarithmic transformations, and call it a Dolgachev surface. (Some authors reserve
this name for the case when there are only two multiple fibers and their multiplicities
are relatively prime.) Up to the deformation X(p\,... ,p^) does not depend on the
choices involved in the construction. Now X(2,2) is the Enriques surface. It is
distinguished from the other Dolgachev surfaces by its Kodaira dimension (= 0,
rather than 1). Note second K2 = 0 for all of these surfaces, just like for X9.
D) For a minimal surface of general type we have c\ > 0 and c2 > 0. If in addition
q = Pg = 0, then c\ + c2 = 12 by Noether's formula, and K2 = c\ G {1,2,... , 9}.
Examples of surfaces realizing all these values of K2 are contained in the table
on page 237 of [BPV]. The reader can also find there an overview of different
methods used in those constructions. Among them are the classical Godeaux and
Campedelli constructions mentioned in the introduction. For a modern discussion
of these see [R3]. The author knows of only three new constructions which have
appeared since [BPV]. One is J. H. Keum's method using branched double covers of
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Enriques surfaces [Ke]. He uses this to give examples of surfaces with K2 = 2,3,4.
Some of them are known to coincide with surfaces constructed earlier by different
methods and contained in the table of [BPV], whereas others are new. Another
recent method of construction is due to M. Oka [O2], who uses singularity theory
and toroidal embeddings. Unfortunately this method has not yet produced new
examples. Finally, a new surface with K2 = 2 is contained in Xiao Gang's book on
genus 2 fibrations [X] , Example 4.11, cf. also [Be].

Having long lists of examples is interesting, but it cannot be the ultimate aim of
the theory. Rather the aim is to give complete constructions of all such surfaces.
To this end one introduces another invariant, besides #, pg and K2. This is the
group TorsX of torsion divisors. If q = 0 then TorsX = H\(X, Z). For given q,
pg and K2 one tries to pin down the possible groups for TorsX, and then gives an
exhaustive construction for the whole moduli scheme of surfaces with a fixed torsion
group.

Let us look at the case q = pg = 0, K2 = 1 in detail. These surfaces are
called numerical Godeaux surfaces, in honor of Lucien Godeaux who constructed
the first such surface [G]. In this case a result of Deligne and Bombieri [Bo] implies
|TorsX| < 6. This has been refined by Reid [Rl], who has also determined the
moduli spaces in some cases, by using explicit presentations of the canonical ring.
His result is:

THEOREM 2 (Reid). For a numerical Godeaux surface TorsX is one of 0, 7*2, Zz,
Zt4 or Z5. In the last three cases the moduli schemes are irreducible 8-dimensional
varieties.

It is natural to conjecture that the irreducibility result will extend to the cases
of torsion 0 or Z2. However, the problem becomes harder for smaller groups, and
two recent attempts on the case of Z2 by Reid [R2] and by Catanese-Debarre [CD]
seem to have failed. At least the existence of such surfaces is known. Examples
have been constructed by Barlow [Bl] for the case of no torsion and by Oort-Peters
[OP] and by Barlow [B2] for the case TorsX = Z2. (The Oort-Peters surface is a
close cousin of Xiao's surface mentioned above. Both of them are genus 2 fibrations
[X].)

Of course one would like to have an analogue of Theorem 2 for K2 > 1 as well.
However, except for some unpublished work of Reid on the case K2 = 2, not much
seems to be known.

2. HOMEOMORPHISM TYPES

In order to identify the homeomorphism types of some of the surfaces described
in 1, we have to determine their fundamental groups. The rational surfaces are, of
course, simply connected. For the elliptic surfaces we have the result of Dolgachev
[Dv]: 7Ti(X(p,q)) — Zjt, with k = g.c.d.(p,q). In particular X(p,q) is simply
connected if p and q are relatively prime. The fundamental group is non-abelian if
there are more than two multiple fibers.



58 Kotschick: The topology of algebraic surfaces with q = pg = 0

For surfaces of general type the answers are less coherent. In general it is very
hard to control TTI in complicated constructions. Only for Oka's method is there
a general theorem [Ol], which says that TTI is always finite cyclic. This should
encourage attempts to use his methods to find new surfaces (say simply connected
ones). Here are some other results. If K2 = 9, then Yau's uniformization result
implies that the fundamental group is infinite. If K2 = 8, then the only known
examples have infinite TTI, and for K2 = 7, the fundamental group is unknown. For
K2 = 6 the example cited in [BPV] has infinite TTI . For 1 < K2 < 6 surfaces with
various finite fundamental groups are known. For K2 = 4 there is also an example
of J. H. Keum [Ke] with fundamental group Z4 X (Z2)2.

As in the previous section, more is known in the case of numerical Godeaux
surfaces, i.e. K2 = 1. Here # i (X, Z) = 0, Z2, Z3, Z4 or Z5 by Theorem 2. Moreover,
TTI = Hi for all surfaces with Hi = Z3, Z4 or Z5, and for the other known surfaces
except possibly the Oort-Peters example. This is because the Barlow surface [Bl]
is simply connected by construction, and the construction in [B2] gives TTI = Z2.
In the cases of torsion Z3, Z4 or Z5 all surfaces have the same topological type
because of the irreducibility of moduli (Theorem 2). Thus it is enough to exhibit
one example with TTI = Hi for each case. This is done in [Be]1 for Z3 and in [M]
for Z4. For Z5 it is obvious in view of the classical Godeaux construction.

We now give the homeomorphism classification in simple cases, which are the
only ones where it is known. For the simply connected case we call on Freedman's
work [Fl], who proved that smooth 4-manifolds are classified by their intersection
forms.

THEOREM 3 (Freedman). The simply connected Dolgachev surfaces are homeomor-
phic to X9, and the Barlow surface is homeomorphic to Xg. Moreover any simply
connected minimal surface of general type with p9 = 0 is homeomorphic to X9-.K2
or to S2 x S2.

In the non-simply connected case we can only deal with the case TTI = Z&, due
to the work of Hambleton-Kreck. Building on the fact that surgery works [F2]
they extend Freedman's classification to the case TTI = Z& with k odd [HK1].
They have also dealt with the case of even k [HK2]. Here the classification is
more complicated, because it involves the so-called u^-type of the manifold. Some
consequences of their results are:

THEOREM 4 (Hambleton & Kreck). A numerical Godeaux surface with TTI = Zjt is
homeomorphic to XgjfUk, where E* is any rational homology sphere with TTI = Zfc.
Similarly the Dolgachev surfaces X(p, q) and X(q', q1) are homeomorphic if and only
if g.c.d.(p,q) = g.c.d.(p',q') = k and, when k is even, f + •*; = ^- + •*: rnod 2.

1 Beware, the construction of a simply connected surface suggested in [Be] does not work. On the
other hand, the constructions using double covers of Enriques surfaces are essentially contained in
[Ke].
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Here the complication in the case of even k comes precisely from the it^-type.
If k is odd and in the case ^ + f = 1 mod 2 for even k the intersection form of
X(p,q) is diagonal and X(p,q) is homeomorphic to Xg#T>k- In the remaining case

the intersection form is H 0 E&, where H = ( x M is the standard hyperbolic, and

E% is taken to be negative definite. This case includes the Enriques surface.

3. DlFFERENTIABLE STRUCTURES

In the previous section we did not discuss the homeomorphism classification for
those manifolds for which it coincides with the diffeomorphism classification. This
is the case for the Hirzebruch surfaces En , which by construction are diffeomorphic
to S2-bundles over S2. It is a trivial consequence of Wall's work [W] that S n is
S2 x S2 for n even and P 2 ^ P for n odd. A much deeper result is the following
consequence of a theorem of Ue [U]:

THEOREM 5 (Ue). The diffeomorphism type of a Dolgachev surface with three or
more multiple fibers is determined by its fundamental group.

Although this result is far from trivial, its proof is in a sense elementary. On
the other hand, Theorems 3 and 4 given in the previous section are proved us-
ing Freedman's surgery [Fl], [F2]. This means that they leave room for non-
diffeomorphic surfaces in the same homeomorphism type. Indeed, in many cases
such non-diffeomorphic pairs can be found using gauge theory. (This of course
disproves the 4-dimensional /i-cobordism conjecture [Dl], [D2].)

The first result of this type was obtained by Donaldson [Dl], [D2], who proved
that X(2,3) is not diffeomorphic to X$. His argument was extended by Friedman
and Morgan [FMl] to show, among other results, the following:

THEOREM 6 (Friedman & Morgan). No Dolgachev surface is diffeomorphic to Xg.
Moreover the map from deformation types to diffeomorphism types of simply con-
nected Dolgachev surfaces is finite-to-one.

Friedman and Morgan [FMl] also showed that this is still true after an arbitrary
number of blowups. As a corollary one finds that Xk has infinitely many smooth
structures for k > 9. We have given a simpler proof of Theorem 6 in [K3]. This
uses a new invariant (f>i defined using gauge theory on SO(3)-bundles with non-
trivial Stiefel-Whitney class, instead of Donaldson's F-invariant coming from SU(2)-
bundles [Dl], [D2]. Using this type of argument we have also proved [K2]:

THEOREM 7 (Kotschick). The Barlow surface is not diffeomorphic to X$.

The generalization of this to arbitrary blowups is very complicated, and has not
been completed yet. Thus, to prove the optimal Theorem 8 below, we have reverted
in [K4], see also [Kl], Chapter V, to the case of the Donaldson invariant instead
of our own invariants from [K3].
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THEOREM 8 (Kotschick). For all k the k-fold blowup of the Barlow surface is not
diffeomorphic to a rational or (blown up) Dolgachev surface.

The proof of Theorem 8 is rather interesting, because it uses naturally the ge-
ometry of surfaces of general type, and suggests a way of extending the proof to
arbitrary such surfaces. If this is successful it will prove the following folk conjecture
in the case p9 = 0 and TTI = 0:

CONJECTURE. Surfaces of different Kodaira dimension are not diffeomorphic.

Now let us look at the case of non-simply connected surfaces. In view of Theorems
4 and 5 the interesting cases are those of finite (cyclic) fundamental groups. For
these one can obtain results by going over to the universal cover and applying the
theory of Donaldson polynomials [D3]. This is done for elliptic surfaces in [FM3]
and for the Godeaux surface in [HK1]. However, direct arguments are possible as
well.

Thus Maier [Ma] extended the work of Donaldson [Dl], [D2] and of Friedman and
Morgan [FM1] to non-simply connected Dolgachev surfaces, proving that they give
infinitely many smooth structures on every Xg^Ejt. Similarly Okonek [Ok] treated
the case of elliptic surfaces homeomorphic to the Enriques surface. Technically this
is the simplest possible case, because the P-invariant [Dl], [D2] takes a simple
form, allowing arguments of the type used for SO(3)-invariants in [K3]. Finally,
our own method of proof using SO(3)-invariants [K2], [K3] works uniformly for
any fundamental group, as long as the intersection form is odd. Thus we can deal
with non-simply connected numerical Godeaux surfaces and with those Dolgachev
surfaces which have diagonal intersection forms. Our method does not apply to the
Enriques surface (at least not in the naive form given in [K3] cf. the discussion in
§4 of [K3]).
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ON THE HOMEOMORPHISM CLASSIFICATION OF SMOOTH KNOTTED

SURFACES IN THE 4-SPHERE

Matthias KRECK

Max-Planck-Institut fiir Mathematik, Bonn

1. In [FKV] an infinite family of smooth (real) surfaces F(k) embedded in S

was constructed which has the following properties:

i) The knottings (S4,F(k)) and (S4,F(^)) are not diffeomorphic for k±£.

ii) F(k) = #10(RP2)
4iii) XjfS* •

iv) The normal Euler number (with local coefficients) of F(k) in S is 16.

The knottings (S ,F(k)) are constructed from the Dolgachev surfaces

D(2,2k+1). There are antiholomorphic involutions c on D(2,2k-f 1) with fixed

point set F(k) = #10(RP2) and orbit space D(2,2k+l)/c diffeomorphic to S4.

Thus the diffeomorphism type of D(2,2k+1), the ramified covering along the

knotting, is an invariant and one can distinguish these Dolgachev surfaces by

Donaldson's T-type invariants [D], [FM], [OV]. It was also proved in [FKV] that

the number of homeomorphism types of these knottings is finite and it was con-

jectured that they are all homeomorphic to the standard embedding (S ,F) with

normal Euler number 16. The main result of this note is an affirmative answer to

this conjecture.

t\ A

More precisely consider the standard embedding of RP into S with nor-

mal Euler class —2. This can be considered as the fixed point set of the standard

antiholomorphic involution c on CP embedded into CP /c 2 S . Then the

standard embedding (S ,F) with normal Euler class 16 is obtained by taking the

connected sum (S4,RP2)#9(-S4,RP2).

Theorem: Let S = #10(RP2) be embedded into S with normal Euler number
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16 and ^ ( S ^ S ) = TL^. Then (S4,S) is homeomorphic to (S4,F), the standard

embedding with normal Euler number 16. The homeomorphism can be chosen as a

diffeomorphism on a neighborhood of S and F.

Corollary: The knottings (S ,F(k)) are all homeomorphic to (S ,F) implying

that the standard knotting (S ,F) has infinitely many smooth structures.

Remark: Recently R. Gompf [G] constructed non-diffeomorphic embeddings of a

punctured Klein bottle K (= Klein bottle minus open 2-ball) into D with

a\ (D — K) = 2?2 and intersection form of the 2—fold ramified covering along K

equal to <1> © <—1> . The same methods as used for the proof of our Theorem

show that they are pairwise homeomorphic if they have same relative normal Euler

number and the knots dK in S are equal. We will comment the necessary modi-

fications of the proof in section 5. I was informed by 0 . Viro that he has similar

knottings of K in D which are related to the construction in [V].

2. Proof: Since F and S have isomorphic normal bundles we can choose a linear

identification of open tubular neighborhoods and denote the complements by C

and C'. We identify the boundaries, so that dC = dC =: M. We want to

extend the identity on M to a homeomorphism from C to C'. Since C and

C' are Spin—manifolds a necessary condition for this is that we can choose

Spin-structures on C and C' which agree on the common boundary. Another

necessary condition is that the diagram

(1)

^ ( C ) > ff/2

commutes. One can show that by choosing the linear identification of the tubular

neighborhoods appropriately one can achieve these two necessary conditions. I am

indepted to 0 . Viro for this information. To obtain condition (1), choose sections

s and s' from F resp. S (delete an open 2-disk) to M such that the

composition with the inclusion to C and C resp. are trivial on x- . Since the

normal Euler numbers of the knottings are equal one can choose the linear
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identification of the tubular neighborhoods such that they commute with s and
s' resp. yielding (1). To obtain the compatibility of Spin structures on M it is
enough to control them on the image of s and s' . Note that for each embedded
circle a in F , s(a) bounds an immersed disk D in C . The normal bundle of
a determines a 1-dimensional subbundle of v(D) I ^ . The Spin structure on the

image of s is characterized by the obstruction mod 4 to extending this
subbundle to v(D) and gives a quadratic form q : H^F ) > ff/4ff [GM]. Thus

we have to control that the identification of F and S respects this form or
equivalently that the Brown invariants in TL/S1 agree. But this follows from the
generalized Rochlin formula [GM].

In the following we will assume that the Spin—structures on dC = dCf = M
agree and the diagram (1) commutes. There is another obvious invariant to be
controlled, the intersection form on the universal covering. For this we assign to
our knotted surface the 2—fold ramified covering along F denoted by X. A simple
calculation shows that X is 1-connected, e(X) = 12 and sign(X) = -8. Thus the
intersection form on X is indefinite and odd (since otherwise the signature were
divisible by 16 by Rochlin's Theorem). By the classification of indefinite forms, the
intersection form on X is <1> ©9 < - l > . The long exact homology sequence
combined with excision and Poincare duality leads to an exact sequence

0 _4 H V ) -* H2(£) - » H2(X) — Hjj(F) - 4 0
2/2

and the map H2(X) —> H (F) = L is a«—> a o [F], the mod 2 intersection

number of a with F. Since 8 is Spin and X is not Spin (see above) the map
<*•—> a o [F] is given by w2(X) : a o [F] = <w2(X),a>. Since the image of

H (F) is contained in the radical of the intersection form on H2(8) and the form

on H2(X) restricted to the kernel of w2 is non-singular, the image of H (F) is

the radical of the form on H2(C). The form on EL(C)/rad is the restriction of

<1> ©9<- l> £ E g © < l > © < - l > to the kernel of x*—*xox which is
4 2] ~E +2f01l
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We know that the covering transformation r acts trivially on H (F) and

by - 1 on H2(X) (since X / r = S4). Thus, if we take the A = Z?[Z?2] module

structure given by r on H2(G) into account we have an exact sequence

where + or - indicates the trivial or non—trivial A—action. Moreover one can

show that H2(C) = ff_©A9 ([FKV], Lemma 5.2A). We can summarize these

considerations as follows:

(2) the radical of the intersection form is H2(C), , the +1 eigenspace;

the form on H2(C)/rad is Eg02[ }J ] .

The proof is finished by the following proposition which is the main step.

Proposition: Let C and C ' be 4-dimensional Spin manifolds with fundamental

group ZL, dC = dCf = M and inducing same Spin-structure on M such that

the conditions (1) and (2) are fulfilled. Then there is a homeomorphism from C to

C ' inducing on M the identity.

3. Proof of the Proposition. We use the method of [K]. The normal 1—type of C is

the fibration p : B = RP00 x B Spin > BO and a normal smoothing of X in

(B,p) is given by the non—trivial map C —> BRP00 and a Spin—structure on C

(given by a lift of the normal Gaufi map to B Spin). Thus it is uniquely deter-

mined by a Spin-structure. By assumption there exist normal smoothings of C

and C in (B,p) which agree on the common boundary. Thus we can form

C U (- € ' ) > a closed manifold with (B,p)-structure. An easy computation with the

Atiyah-Hirzebruch spectral sequence shows that fL(B,p) ^ ff, detected by the sig-

nature. Since sign C = sing C 7 , C U —C/ is zero bordant in (B,p).
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Let W be a zero bordism. Then there exists an obstruction B(W,C) G g

such that C is h-cobordant to C ' rel. boundary if and only if 0(W,C) is zero

bordant [K]. This implies our statement using the topological h-cobordism

Theorem [F].

We will not repeat the definition of 0(W,C). Instead we formulate some

elementary properties which are enough to show that in our situation 0(W,C) is

zero bordant. Elements in IJTL/2) are represented by pairs (H(Ar),U), where

H(Ar) is the hyperbolic form on Ar * Ar and U C Ar x Ar is a half rank free

direct summand. Note that the difference to the ordinary Wall groups is, that

there U is an addition self annihilating (a hamiltonian). Note also that we can

forget here the quadratic refinement of the form since it is determined by it. Since

the ordinary Wall group LK(^O)
 vanishes one can characterize zero bordant ele-

ments in ^5(^9) a s

(3) [H(Ar),u] 6 ^5(Z72) is zero bordant if U has a hamiltonian complement V.

By construction of 0(W,C) and some elementary considerations it has the

following properties:

(4) If (H(Ar),U) represents 0(W,C) then (H(Ar),Ux) represents 0 ( W , C ) .

(5) There exists a surjective homomorphism d : U —> H2(G) inducing an isome-

try of the form on U with the intersection form on H2(C).

s f

(6) If V = Ab -̂> H2(C) is a free A-resolution, 0(W,C) has a representative

(H(AS),V) such that d occurring in (5) is equal to f.

Since H2(C) = 2Z_ © A we can take V = A with the obvious map
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The natural thing for showing that B(W,C) is zero bordant is to prove

that in the restriction of (H(AS),V) to the ±l-€igenspaces , V ± have hamiltonian

complements and then to construct from them a hamiltonian complement for V.

The restriction of the hyperbolic form b on H(AS) to the ±1 eigenspaces is

twice the hyperbolic form on H(2S). In particular the restriction to V ± is divi-

sible by two. After dividing by 2 we call this form b ± and V ± sits isometri-

callyin H(Z?S).

By assumption (2) the form b , vanishes identically on V and thus

(H(A), ,V , ) represents an element in the ordinary L—group L- = {0}.

We have V ~ A10 —L» H2(C) = 1L_ © A9 > H2(C)/rad = l]° and

f |V_ maps onto 22^°. Thus the form b__ on V_ is

Since by (4), (H(A1O),VX) represents Q(W,C) and the form on H 2 ( C ) is

minus the form on EL(C), we know from (5) that the form on VX is —b_. Thus

we have an isometric embedding V__ © V_ = b_© (—b_) into H(2 ) and we are

searching for a hamiltonian complement of V__ in H(Z? ).

The different isometry classes of embeddings of a pair of direct summands V_

and V__ (they are direct summands since V and V are so) into H(Zf ) = H

are equivalently classified by analyzing in how many different ways the hyperbolic

form can be reconstructed from the sublattice V_ © V_. To do this we consider

the adjoint Adb_ : V_ —> V__. Denote the cokernel of Adb_ by L, a finite

abelian group since Det b _ ^ 0. On L we have an induced quadratic form

Q/2 given by q([x])= ^ bJCAdbJ"^ | L | -x), (Ad \>J~\ | L | • x)).
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Similarly starting with V__ we get a quadratic form denoted by (L ,q ).

Of course (L,q) and (L ,—q ) are isometric and by means of this isometry iden-

tify them with (L,q). We can reconstruct H and the embeddings of V_ and V^

as follows. H = Ker (V* * (V^)*—> L), V_ = Ker p 2 : V*x (V^)* —> (V^)*,

V^ = Ker px : V*x(V^)* —> V* . Here the map V* x (V^)* —4 L is the diffe-

rence of the projections onto L. This reconstruction follows from a standard argu-

ment similar to ([W], p. 285 ff).

Thus we have to analyze the isometries between (L,q) and (L ,—q ) = (L,q)

modulo those which can be lifted to isometries of V_. Indeed, (H,V_) is zero bor-

dant if and only if the corresponding isometry of (L,q) can be lifted to V_. This

follows since if V_ has a hamiltonian complement, (H,V_J is isomorphic to an

element which corresponds to Id on L. On the other hand the element correspon-

ding to a liftable isometry of (L,q) has an obvious hamiltonian complement.

Unfortunately there exist isometries of (L,q) which cannot be lifted to

V_ . We have to show that the corresponding elements of IJJL^) don't occur in

our geometric situation. The key for this is that we know that since C and C '

are bordant rel. boundary in n.(B,p) they are stably diffeomorphic [K], i.e.

C#r(S2xS2) is diffeomorphic to C / #r(S 2 xS 2 ) for some r and in particular

there exists a bordism W between C#r(S2xS2) and C / #r(S 2 xS 2 ) with

Q(W,C#r(S2xS2)) zero bordant. Obviously W is bordant to W#r(S2xD3)

#r(S xD ) where the boundary connected sum takes place along C and C'

respectively and W is appropriately chosen. If (H(A ),V) represents 0(W,C)

then (H(A s + 2 r) , veH(A r x {0})) represents 0(W,C#r(S2 x S2)). Denote

V__ := V_ © H(Arx {0})_. Then L = L © H(2 r)/2. We know that the isometry of

(L,q) corresponding to B(W,C)__ can after adding Id on H(2 r)/2 be lifted to

an isometry of V . We call an isometry (L,q) with this property a restricted

isometry.

Lemma: The group of restricted isometries of (L,q) modulo those induced by

isometries of V is trivial.
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Before we prove this Lemma we finish our argument that 0(W,C) is zero

bordant, i.e. V in H(A ) has a hamiltonian complement T. We know that V ±

have hamiltonian complements T ± . We also know that V is a direct summand

(over A) in H(A10) = H. Choose ZF-bases ai of V , b. of V_, ci of T and

d. of T_, such that (a. 4- b.)/2 is a A-base of V and ai o c. = b. o d. = 26"...

Then we know that for each d. there are elements a> 6 V , , A 6 V_ and

7 ^ T + such that a. + /?. + 7. + di = 0 mod 2 in H and p.:= (a^p^j^d^/2

form a A—basis of H/V. We want to choose these elements so that they generate a

hamiltonian, i.e. the form is trivial between those base elements.

Since a^+ b. = 0 mod 2 we can assume /?. = 0. Write a^ = Ea.. ai and

7.= E7..C. with a.. 6 {0,±l} and 7.. 6 {0,1}. A simple computation with eva-

luation of the form implies 7.. = 6>> and thus 7. = c.. Similarly one can show

a-. = a> mod 2 and a . = 0. Since we are free to change the sign of a.. we can

assume a.. = —a» for i ^ j . With these assumptions it is easy to check that

p- o p. = 0 for all i,j and we are finished.

4. Proof of the Lemma. In an equivalent formulation we have to study the

following situation. Consider in H(ZT) © Eg the lattice 4-H(Z?)©2-E8 and

consider L = H(2Z)/4H(2) © Eg/2Eg = I*i® L
2 ^ ^ t h e i n d u c e d Quadratic form

q which is on L1 given by q[x] = ^ b(x,x) and on L2 by q[x] = ^ b(x,x) and

L. ± La. A simple calculation shows that the only isometries of (L.,q|L..) are

±1 and ± L 0 , which obviously can be lifted to L. = H(Z?). The nontrivial

analogous lifting statement holds for L2 ([BS], p. 416). Thus we are finished if

modulo isometries of H(2Z) © Efi each restricted isometry of L preserves L. and

We denote the standard symplectic basis of H(Z?) by e and f. Let

g:(L,q) —> (L,q) be a restricted isometry. Write g[e] = a[e] + b[f] 4- [x] with
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x 6 Eg. Since g[e] has order 4, a or b must be odd. Since g is restricted,

g©Id on L©H(2 r ) /2 can be lifted to an isometry of H(2) © Eg © H(2r) under

which e is mapped to ae + %i + x + 2y + 2z where a = a mod 4, b = t) mod 4,

y 6 Eg and z 6 H(2 r). Computing the quadratic form of this element yields

2ab + (x + 2y) o (x + 2y) = 0 mod 8.

Since a or b is odd we can after acting with an appropriate liftable

isometry assume a = 1 or g[e] = [e] + b[f] + [x]. Now consider

g(e) : = e + (b - 4c)f + x + 2y, where 2b + (x + 2y) o (x + 2y) = 8c. Then

g(e) • g(e) = 0. We can extend g to an isometry of H(ZZ) © Eg by setting

g(f) = f. Then g(e) and g(f) span a hyperbolic plane in H(2) ©E g whose

orthogonal complement is isometric to Eg and we use this isometry to extend g.

After composing with g~~ we obtain h with h[e] = [e]. Since h[e] o h[f] = j

we must have h[f] = a[e] + [f] 4- [y]. By the same argument as above we obtain an

isometry A of H(2) © Eg with t(e) = e and k[f\ = a[e] + [f] -f [y] and after

composing again with n we obtain an isometry which preserves H(2)/4H(2)

finishing our proof.

5. Some knottings in D . Let K be the punctured compact Klein bottle with
1 A Q

boundary S . We consider smooth embeddings of (K,#K) into (D ,S ) with

fixed relative normal number, a\(D — K) = # 2 , intersection form of the 2—fold

ramified covering equal to < 1 > © < - 1 > and (S ,dK) a fixed knot. We

claim that two such knottings (D ,K) and (D ,K r) are homeomorphic rel.

boundary. The proof is similar as for our Theorem and we indicate the necessary

changes.

As in section 2 we choose linear identifications of open tubular neighbor-

hoods of K and K7 and denote their complements by C and C ' . We identify

dC = dC' = M and choose our identification such that the Spin structures on M

agree and the diagram (1) commutes. A similar consideration as in section 2 shows

that H2(8) = TL_ © A and the radical of the intersection form is I = H2(8)

and the form on H2(8)/rad is 2 fj Jl.
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Then we proceed as in section 3. Most of the arguments there don't make

any special assumptions which are not fulfilled in our situation. The only difference

is in the analysis of (H(A )__,V_). Again this is determined by an isometry of

(L = coker 4 L Q ,q). The situation is easier than in section 4, since the lifting

problem is simpler. The problem is here whether any isometry on (L,q) is induced

from an isometry of H(2Z). But as mentioned in section 4 this holds, finishing the

argument.

I would like to thank R. Gompf, 0 . Viro and C.T.C. Wall for useful conver-

sation and M. Kneser for the information about a reference.
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Flat Algebraic Manifolds

F.E.A. JOHNSON

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE LONDON. LONDON WClE, 6BT

The relationship between the class 36, of fundamental

groups of compact Kahler manifolds, and the class 9,

of fundamental groups of smooth complex projective

varieties, is not well understood; one clearly has *iP C

36, but, although some compact Kahler manifolds are

non-algebraic, there is, at present, no known example

of a group in 36 which is definitely not in P̂. It is

known that membership of 36 is severely restricted [5] .

In this paper, we consider the subclasses 6̂-fXat' ^flat

consisting of fundamental groups of compact Kahler

(resp. complex projective) manifolds whose underlying

Riemannian manifold is flat ; we show

Theorem I : The classes 36-f|at and f̂]_a-t
 a r e identical.

This follows easily from

Theorem 11 : A smooth compact flat Riemannian manifold

X admits the structure of a flat Kahler manifold if

and only if it also admits the structure of a smooth

flat complex projective variety.
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In a previous paper with E.G. Rees ([6]), we showed

that f̂la-fc may be characterised as the class of

extension groups G of the form

0

in which $ is finite, G is torsion free, and the

operator homomorphism p : <£ —• GL»2n(Z) admits a complex

structure; that is, the image of p may be conjugated by

a real matrix so as to be contained within the

subgroup GLn(C). By an amalgamation of Bertini's

Theorem and the Lefschetz Hyperplane Theorem, we see

that every group in ^ is the fundamental group of a

smooth complex algebraic surface ; (see, for example,

(1.4) of [7]). Thus we obtain ;

Theorem III : Let G be a torsion free group occurring

in an extension of the form 0 -• Z n —• G —• $ -• 1

where $ is finite and the operator homomorphism admits

a complex structure ; then there exists a smooth

complex projective surface X such that G = TT^(X).

Our starting point is the formal similarity between

the rational group ring of a finite group and the ring

of rational endomorphisms of an abelian variety ; each

is semisimple and admits a positive involution. The

proof proceeds by an analysis of the rational holonomy

representation p : $ —• GL2n(Q)? using Albert's

classification of positively involuted semisimple

algebras [1] . For restricted classes of holonomy group

$, for example, the symmetric groups, the full

complication of the proof may not emerge ; when $ is

nilpotent, a short proof using only classical

representation theory has been given by the author's

student N.C. Carr ( [3]).
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The paper is organised as follows ; positively

involuted algebras are dealt with in §1 , abelian

varieties in §2, and rational representation theory in

§3. Theorems I and II are proved in §4, as (4.3)

and (4.2) respectively.

The problem investigated here arose out of joint work

with Elmer Rees, to whom the author would like to

express his gratitude for many interesting

conversations and much help and good advice, not least

his unsparing (and often unsuccessful) efforts to

instill the virtues of brevity into the author's

prose.

§ 1 : Positive division algebras :

Let A be a finite dimensional semisimple algebra over a

field OC. An involution r on A is an isomorphism of A

with its opposite algebra such that r = 1^. When K is

a real field, the involution r is said to be positive when

TrK(xr(x)) > 0 for all nonzero x E A, where 5Tr K'

denotes 'reduced trace'. When K = Q, the class of such

positively involuted algebras has been determined by

Albert [1], [12]. We recall his results.

We may express A in the form A = A^0 . . .© Am, where

each A^ is a simple two-sided ideal. If r is a positive

involution on A, it follows easily that r(A^) = A^ for

each i, so it suffices to consider the case where A is

simple; that is, A = M n(D), where D is a finite

dimensional division algebra over DC. An involution <r

on D extends to an involution a on A thus ;

ff((Xij)) = OCXji))

with transposed indices as indicated. By the Skolem-

Noether Theorem, each involution on Mn(D) has this

form. Moreover, a is positive if and only if <r is

positive : that is ;
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Proposition 1.1; Let (A,r) be a positively involuted

finite dimensional semisimple algebra over a real

field IK. Then there is an isomorphism of involuted K-

algebras (A,r) = ( Mni (D1) , f1) x . . .x (Mnm (Dm) , fm) where

(D^,r^) is a positively involuted division algebra .

Let F be a field, s a field automorphism of F of order

n , and let a be a nonzero element of F such that

s(a) = a. The cyclic algebra (F,s,a) is constructed as

follows ; (F,s,a) is a two sided F-vector space of

dimension n, with basis ([Xr] )Q<r<n-1' sukject to the

relations

[Xr]A = sr(A)[Xr] (A e F)

and is an algebra with centre E = { x G F: s(x) = x }

and multiplication

[X] — _ , P<™] 0 < rf [Xr+1

I afX0!a[Xu] r = n-1

In the case n = 2, we may take F = EVb for some

nonzero b G E. Then (F ,s ,a) i s isomorphic to the

quaternion algebra ( ' j with bas is { l , i , j , k } over E, subject

to the r e l a t i ons i j = - j i = k; i = a . l ; j = b . l .

An involution r of a simple algebra A is said to be

of the first kind when i t r e s t r i c t s to the iden t i ty on the

centre % of A; otherwise, r i s said to be of the second kind.

A quaternion algebra f ' j admits two e s s e n t i a l l y

d i s t i n c t involutions of the f i r s t kind, namely conjugation,

c, and reversion, r , defined thus ;

C ( X/-v ~p X-j 1 -J- XrjJ "T" X o K ) — Xp

Albert [1] , [12] , showed that a positively involuted

division algebra (D,r), of finite dimension over Q,
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falls into one of four classes ; here E and K are

algebraic number fields.

Lj D = E is totally real and r= lir- ;

II : D = f—ĵ -J, where E is totally real, a is totally

positive, b is totally negative, and r is reversion ;

III : D = ra' j, where E is a totally real, a and b

are both totally negative, and r is conjugation;

IV : D = (HC,s,a), where s is an automorphism of K

whose fixed point field E is an imaginary quadratic

extension, E = E0(\/b), of a totally real field EQ , and

a £ E; moreover, if L is a maximal totally real

subfield of §C, there exists a totally positive element

d G L such that IV /nr O ) = Nn /IT (d) •
t/t0

 L/t0

Albert's results [12] may be summarised thus ;

Theorem 1,2 : The finite dimensional rational division

algebras which admit a positive involution of the first

kind are precisely those of type I , II or III ;

those which admit a positive involution of the second kind

are precisely those of type IV .

§2 : Riemann matrices and abelian varieties :

Let K be a subring of the real number field R; a, Riemann

matrix over K is a pair (A,t) where A is a free K-module of

finite rank, and t is a complex structure on the real

vector space A®gR ; that is, t : Afg^R > A<8)ĵR is a

real linear map such that t = -1 ; rk^(A) must

then be even. There is a category *%Jb>^ of Riemann

matrices over K whose morphisms <j> :(Â ,t-̂ ) —• ^25^2)

are K-linear maps <j> : A ^ — ^ 2 such that t
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^ An object (A,!:) in ^JH^ is simple over K if and

only if A contains no nontrivial K-submodule B such

that t(B0|^R) = B<8)|̂ R. ^Jt^ has finite products given

by (A1?t^) x (A2,t2) = (A-̂  x k^ > t^ x t2) • By a Riemann

form on (A,t) € ^Jb^ we mean a nonsingular skew K-

bilinear form ft : A x A • K such that

(i) if /?n: A<g>|̂R x A0^R —• R denotes the R-bi linear form

obtained from 0, then for each x,y G A<S>ĵ R,

]9R(tx,ty) = /?R(x,y) ;

(ii) the associated form ft : AgJ^R x A(8)|̂R • R,

î (x,y) = /?j|(tx,y) is positive definite symmetric.

A Riemann matrix is algebraic when it admits a Riemann

form. If (A,t) € t%J^K, we write (A,t)* = (A*,t*) where

A* = HomK(A,K) is the K-dual of A, t* is the R-dual of

t, making the identifications A*<8>ĵ K = Hom^(A,R) =

HomR(A(8)j^R,R) . The correspondence (A,t) >-»• (A,t)* gives

a contravariant functor * : f̂êltn̂  • jfê t̂ . A Riemann

form p on (A,t) gives rise to an injective K-linear

map 3 : A • A* such that /?(x)(y) = /?(x,y) for all

x, y € A. When K is a field, (3 is bijective, and,

identifying A with A**, we obtain a Riemann form /?* on

(A,t)* thus ;

(A,t) is algebraic precisely when (A,t)* is algebraic ;

moreover, a Riemann form on (A,t) induces an

isomorphism 3 : (A,t) • (A,t)* in «&Jb̂ . In this

case, if K is a subfield of R, the K-algebra End|^(A,t)

admits a positive involution, denoted by 5~'» thus :

4> =(3)~10*(^). This is the classical theorem of Rosati

[10] . Taken together with the complete reducibility

theorem of Poincare [8] , [9] , we obtain :
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Theorem 2.1 : Let DC be a subfield of R , and let

(A,t) be an algebraic Riemann matrix over K. Then

(A,t) is isomorphic in 'ikJk^ to a product

( A , t ) = ( A ^ t j ) ^ 1 - * x . . . x ( A m , t m ) ( e m )

where (A^,t^) (l<i<m) are simple Riemann matrices over

K, and the isomorphism types (A^,t^) and multiplicities

e^ are unique up to order. Moreover, End^(A, t) , the

algebra of K-endomorphisms of (A,t), is a product

m
EndK(A,t) = n Me.(Di)

i=l 1

where D- = End^ (A • ,t•) is a positively involuted
1 i ^ l l

division algebra over K. In particular, End^(A,t) is a

positively involuted semisimple K-algebra.

We construct algebraic Riemann matrices in two ways :

I : CM-algebras :

By a CM-algebra we mean a quadruple (A,E,r,a) where

(i) E is a totally real algebraic number field of

finite degree over Q ;

(ii) (A,r) is a finite dimensional positively

involuted E-algebra such that r̂- = 1̂ - ;

(iii) aEA has the property that a is a totally

negative element of E ; in particular,

(iv) F = E(a) is a purely imaginary extension of E ;

(v) T(F) = F and r restricts to the nontrivial

element of Gal(F/E) .

In a CM-algebra (A,E,r,a), we do not assume that E is

the centre of A. With a CM-algebra (A,E,r,a), we

associate the canonical complex structure t : A0̂ -R —• A<g>£-R

g i v e n by t(x<g>l) = a x 0 i .
2
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Proposition 2.2: Let (A,E,r,a) be a CM-algebra with

canonical complex structure t. Then (A,t) is an

algebraic Riemann matrix over E.

Proof : It is easy to check that p : A x A • E

defined by

/?(x,y) = TrE(ayr(x) - axr(y))

is a Riemann form for (A,t) £ ^Jtio^. •

For algebras of type III or IV, the following

statement is tautologous; for algebras of type II, it

is a restatement of an observation of Shimura ([12],

p.153, Proposition 2 ).

Proposition 2.3: Let (A,r) be a positively involuted

finite dimensional division algebra of type II, III

or IV over Q; then there exists a subfield E C A, and

£ 6 A such that (A,E,r,f) is a CM-algebra.

II : The doubling construction :

Let K be a subfield of IR.To each finite dimensional K-

vector space V , we associate a Riemann matrix D(V) ,

the double of V, over K thus ; D(V) = (VeV,t<g>l) where t:

VeV —• V0V is the DC-linear map t(x1,x2) = (-x2,x1).

Observe that D(V) is algebraic since

y2)) = JT (fj(x2)fj(y1) -
j l

is a Riemann form for D(V), where (^i)i<i<n *
s a basis

for the K-dual of V. The doubling construction can be

obtained from the CM-algebra construction as follows;

D(DC) is the Riemann matrix obtained from the CM-

algebra K(V-^1). However, V = Kn so that D(V) = D(K)n

Suppose that E, F are rings such that E C F C R. There

extension of scalars f u n c t o r
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8F(A,t) = (A<g>EF,t) ( = (A,t)<8>EFj on making the

identification F<g>ER ft* R. When E is also a field ,

and F is a finite algebraic extension of E, we write

J a : or is a field imbedding 1
E \ <j : F —> E : <r£ = 1£ J

where E is the algebraic closure of E. Suppose that,

in addition, F is also real over E, in the sense that for

each <T e ̂ FF, <r(F) C R. We may identify

(A®rF) n
where, for each <r G ^p, ̂ R « R. Thus, if t is a

complex structure on A, there exists a natural complex

structure

so that we obtain a restriction ofscalars functor

; <fcF/E(A,t) = (A,

The constructions gt, %-_,._ preserve algebraic ity. Let

IC be a finite algebraic extension of Q. Applying the

construction ^B^/Q ̂ ° a Riemann matrix (A,t) G ̂ R)̂t>|̂,

enables us to construct a Riemann matrix over Q. We

denote by A(t) the complex vector space obtained from

A<8>|̂ R by means of t, and regard A as being imbedded

in A(t) by means of x »—• x0l . A Riemann matrix (A,t)

over Z determines a complex torus A(t)/A ; clearly every

complex torus may be so described. An abelian variety is a

complex torus which is algebraic, that is, which admits a

holomorphic imbedding into some ff*n(C)- The following

result from the classical theory of theta-functions

[8] justifies the usage "algebraic Riemann matrix".
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Proposition 2.4: Let (A,t) be a Riemann matrix over Z.

Then the following conditions are equivalent ;

(i) A(t)/A is an abelian variety ;

(ii) (A,t) is an algebraic Riemann matrix over Z ;

(iii) (A,t)®jQ is an algebraic Riemann matrix over Q.

Conversely, if (A,t) is an algebraic Riemann matrix

over Q, and A-. , AQ C A are free abelian subgroups

of maximal rank, then A(t)/A1 is an abelian variety

isogenous to A(t)/A2? so that extension of scalars

from Z to Q yields a bijection

isogeny classes of

abelian varieties } — ®Q f Q-isomorphism classes of 1

1 algebraic Riemann matrices over Q J

§3 : Representations of finite groups :

Throughout this section we fix a finite group $; let K

be a subfield of R. The group algebra K [$] is

semisimple, by Maschke's Theorem, and has a positive

involution r given by ;

r(a) = £ agg"1 ( a = £ agg )

By (1.1), there is an isomorphism of involuted K-

algebras

(K[#],r) = ( Mril(D1),f1) x . . . x ( Mnm (Dm) ,fm)

where each D- is a finite dimensional division algebra

over K, admitting the positive involution r̂ . Let V be

a simple (left) K [$] module; for some unique i (1<

i<m), V is isomorphic to a simple left ideal of

> and EndKp^-.(V) = Dj. We are principallyn.(i

interested in the two cases K = Q ; K = R.
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When K = R, each finite dimensional division algebra

is isomorphic to R, H or C; an isotypic module V =

W^G^ is said to be of type R , HI or C according to the

type of the division algebra EndR r-̂-i (W) . Similarly

when K = Q, an isotypic module V = W(e) is ascribed

the type (I, II, III or IV) of the division algebra

EndRp^-.(W). A complex structure for the K [$] -module V, is an

element t £ End« p̂ -. (V0^R) such that t = -1.

Proposition 3.1 : Let V be a finitely generated R [$] -

module: the following conditions on V are equivalent ;

(i) V admits a complex structure ;

(ii) each isotypic component of V admits a complex

structure ;

(iii) each simple summand of type R occurs with even

multiplicity in V .

Proof : (i) =>> (ii) : Write V in its isotypic

decomposition V = W 1 0 . . . 0 W m where each W i is

isotypic, with HomRr$](Wi'Wj) = {°} f o r i^J-

Corresponding to the Wedderburn decomposition of R [$]

as a product of simple two sided ideals, we may write

the identity element 1 of R [$] as a sum of central

idempoteutjK-L + e2 + • • + en with m < n, such that

e^e. = 0 for i ^ j , and , for 1 < i < m,

(*) w. = n A(J)

where A(j) = |v 6 V : e-.v = 0 }. Let t be a complex

structure on V. Since t is R[$]-linear, it commutes

with each e.. Hence t(A(j)) C A(j) for each j, and

so, by (*) above, t(Wi) C W i for each i. That is, each

isotypic component of V admits a complex structure.

q.E.p. (i) => (ii) .
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(ii) =>- (iii): Let W = V be an isotypic R[$]-module

with EndRr-$-,(V) = R, so that EndR r-^ (W) = Mn(R). A

complex structure t on W induces a complex structure

t* on the real vector space EndRr-,-i(W) thus; tste(f) =

tof. It follows that n 2 = dimR (EndR p̂ -, (W) ) is even,

and hence n is even. Q.E.D. (ii) => (iii) •

(iii) => (i) : Let V = VR 0 Vc 0 VH where

w O W -I KX> W O VI7 M 7 w J*

• i ^ * - " • ^J "j \ i / v x e\ \js . . . . . . v i / ^ ^ S

H 1 2 t

and where V^, U-, W^ are all simple R [$] -modules, with

EndR[*](Vi) - R' EndR[*](Uj) ~ C, and
Clearly, each U. admits a complex structure. Moreover,

since C C H, each W, admits a complex structure.

However, since each a- is even, by taking complex
a-

structures on doubles, each V admits a complex

structure. V is now a direct sum of submodules each of

which admits a complex structure, and so admits a

complex structure. Q.E.D. (ii) => (iii): •

Recall that if W is a finitely generated Q [$]-module,

W contains a $-invariant Z-lattice L, and that any two

such are commensurable. We say that a complex

structure t on W is a ^-structure for W when for some (and

hence for any) ^-invariant Z-lattice, W(t)/L is an

abelian variety. We wish to give an analogue of (3.1)

for the existence of ^-structures : first we note :
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Proposition 3.2: Let V be a simple Q [#] -module; if

V is of type II , III or IV then V admits a 3>-

structure ; if V is of type I then VeV admits a

^-structure.

Proof: The second statement follows easily from the

doubling construction of §2. To prove the first, put D

= Endop^-,(V). By (2.2), there exists a subfield E of

the division algebra D, and an element £ £ D such that

(D,E,r,f) is a CM-algebra, where r is the canonical

involution on D inherited from Q [$] . Then (D,E,r,£)

has the canonical complex structure t: D<g>£-R — • D<g>p-R defined thus;

t(x0l) = £x <S> 1. (D,t) is an algebraic Riemann

algebraic over E. However, V is a vector space over D,

of dimension m, say, and also has a canonical complex

structure T:V<8)̂ -R —• V<8>̂-R defined by the same formula

as t , namely T(v0l) = £y <g> JL • Clearly there is

an isomorphism of Riemann matrices (V,T) = (D,t) m, so

that (V,T) is also algebraic. Since £ G D, and the D-

action on V commutes with that of $, it follows easily

that T commutes with the ^-action on V; that is, T is

a ^-structure for V. D

Theorem 3.3: Let W be a finitely generated

module. Then the following conditions on W

equivalent;

(i) each Q[$]-simple summand of type I has even

multiplicity in W;

(ii) W admits a ^-structure ;.

(iii) W admits a complex structure.

Proof: Write W = V(|) 0 V(||) 0 V(|||) 0 V(|V) where, for T = I,

II, III,IV, (̂x) denotes a direct sum of simple Q [$] -
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modules of type T.

(i) =» (ii) : By (3.2), V(n)0 V(m) 0 V(iy) admits a

structure ; by hypothesis, each simple summand of X

has even multiplicity, so that, again by (3.2), V

admits a 9-structure. Hence V admits a ^-structure.

(ii) => (iii): Obvious .

(iii) (i): Let W = be the isotypic

decomposition o"f W, with V- a simple left ideal of

Mni(D.), where Q[*] = M ^ D ^ x .. x Mnm(Dm) is the

Wedderburn decomposition of Q [$] . On writing the

identity element 1 of Q [$] as a sum of primitive

central idempotents 1 =

see that

+

€j I v£ v
if i = j

Hence Horn R r$-i(
Vi®oR > v -®Q

extending scalars, we obtain

= {°} w h e n i j . On

r,0R
if

Since e-(8)l is a sum of primitive central idempotents in

R[$] , no R[$]-simple summand of V- is isomorphic to any

R [$] -simple summand of V^, and hence

Hom« p,-i(V̂ <8>QR, V-<8)QR) = 0 for i ^ j . Now suppose that

V^ is of type I; that is,

algebraic number field with d- =

is a totally real

(D^). Then

V± 0 U2 0 . . . 0 Ud where

are isomorphically distinct simple R[$]-modules

we may write

D.®r.R = R x . . . x R .
i V! d •

for
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and identify V^<8>QR with the subspace Uj0 U2 ® . . ® U^

of Mn.(R) x . . . x Mn (R) where U r is the
_ d. -

subspace of the r^0 copy of Mn(R) consisting of

matrices concentrated in the first column. Clearly

each U r is R [$] -simple, and for r ^ s, Ur and Va

correspond to distinct simple factors ofR[$], and so

are not R[$]-isomorphic.

We assume that W admits a complex structure; that is,

W ® Q R admits a complex structure. Since

Horn R[$-|(Vi®QR, Vj<g>QR) = {0} for i ^ j, it follows

that the multiplicity of each Ur in W<8>QR is the same

as the multiplicity of V. in W , namely e.. Now each

Ur is a type R-summand of W<8>QR, SO that, by (3.1),

e^ is even when V- is a type I summand . D

§4 : Flat Kahler manifolds and flat algebraic manifolds :

Recall that a closed flat Riemannian manifold X is

isometric to one of the form X = Q\E(II)/Q, x where

E(n) is the group of Euclidean motions of Rn, 0(n) is

the isotropy group of the origin, and G = T-^(X) is a

torsion free discrete cocompact subgroup of E(n).

Moreover, there is a natural exact sequence

0 • A > G > $ • 1

in which $, the holonomy group of X, is finite, and A

= Zn is the translation subgroup of G. Conversely,

given any such torsion free extension, G imbeds as a

discrete cocompact subgroup of E(n) , and XQ = Q\E(II)/Q/ X

is a compact flat Riemannian manifold. For these

details, we refer the reader to [2] , [4], [13].

Since the Kahler condition is purely local, a closed

flat Riemannian manifold of real dimension 2n which

admits a compatible complex structure is automatically

Kahler. We denote by f̂la/t ^ n e class of groups which

occur as the fundamental group of some compact flat
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Kahler manifold, and by -̂pi +- the subclass of

consisting fundamental groups of smooth flat complex

projective varieties. We may represent a compact flat

Kahler manifold X in the form X = G^^n^U(n) w n e r e

H(n) = Cn X U(n) is the group of "Herraitian"

isometries of Cn, and G is a torsion free discrete

cocompact subgroup of H(n). The classes f̂]_a-fc» ^flat

may be characterised in the following way, which for

^f lat *s a'lrea'ciy known (see [6] ) .

Theorem 4.1 : -̂fia-fc (resp. ^fiat) consists precisely

of those torsion free groups G which occur in an

extension

in which the operator homomorphism p : $ —• GL»2n(2)

admits a ^P-structure (resp. complex structure), and in

which $ is finite. Given any such pair (S,p), there is

a smooth flat complex projective variety (resp.

compact, complex flat Kahler manifold) X whose

fundamental group is G, and whose holonomy

representation is p.

Proof : We give the proof for smooth projective

varieties: the proof for Kahler manifolds is slightly

simpler [6].

Let X be a smooth flat projective variety of complex

dimension n; the universal covering X of X is

holomorphically equivalent to Cn. Considering X as a

Hermitian manifold, ir̂ (X) = G occurs in an extension

0

in which $ is finite; A, the kernel of the holonomy
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representation of TT-J(X), is isomorphic to Z and acts

on C n as a group of translations. Let X be the

finite covering of X with ^(X) = A. Then X = Cn/A is

a complex torus which, being a finite holomorphic

covering of a smooth projective variety, is algebraic.

The operator homomorphism p : <£ —• GL«->(2) extends to

the holonomy representation p : $ —• GL2n(R) of the

Riemannian manifold X. However, the Hermitian metric

on X is preserved by the holonomy representation so

that Im(p) is contained in U(n) . Thus p admits a

complex structure, which, since Cn/A is algebraic, is

also a ^-structure.

Conversely, if 0 -• Z -• G -» $ -+ 1 is a torsion free

extension in which the operator homomorphism p admits a

^-structure t : Z2n<g>zR —• Z2n®zR, and where $ is

finite, let i denote the inclusion, i : Z C V =

Z <g>yR . We have a corresponding inclusion i : GL2n(Z)

C GLR(V), and induced maps i*: H*($,Z2n) —> H*($,V)

where Z 2 n (resp. V ) denotes the Z [$] (resp. R [$] )

module in which <& acts by p (resp. i/?) . Up to

congruence, G is classified by the pair (i,c), where c

G H2($,Z2n) is the characteristic class of the

extension defining G . Let L(G) be the extension

0 —> V > L(G) • $ —> 1

classified by the pair (ip, i*(c)). Then there is a

morphism of exact sequences

0 _• Z 2 n • G > $ • 1

n n »
0 —• Y • L(G) • ^ • 1

in which G is imbedded as a discrete cocompact

subgroup of the Lie group L(G) . The identity component

of L(G) is V, and L(G) has finitely many connected

components, indexed by the elements of $. Since $ is
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finite and V is divisible, i^c) = 0, so that L(G)

splits as a semidirect product: L(G) = V X $.

Write X = Q\L(G)/^. Then X is a compact: flat: Riemannian

manifold having a finite covering X = 2n^^^ which,

since p admits a 9-structure, is a complex algebraic

torus, and on which $ acts freely by complex analytic

dif f eomorphisms to give X. Thus X is also a smooth

flat complex projective variety ([11] pp. 395-398). By

construction, ^(X) = G, and the holonomy

representation of X is p. D

Thus we obtain

Theorem 4.2 ; Let X be a smooth compact flat

Riemannian manifold; if X admits the structure of a

flat Kahler manifold, then X also admits the

structure of a flat smooth complex projective variety.

Proof : Let 6 = (0 -» Z2n -+ ̂ (X) -> $ -• 1) be the exact

sequence defining the fundamental group of X, with

holonomy representation p : $ • GL2n(2). Since X

admits a flat Kahler structure, p admits a complex

structure. By (3.3), p admits a ^-structure, and, by

(4.1), X admits the structure of a smooth flat complex

projective variety. D

Corollary 4.3 : The classes SG-fia-fc and

identical .

By the Bertini-Lefschetz Theorem , we obtain ;

Corollary 4.4 : Every element of

fundamental group of a smooth compact complex

algebraic surface.
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PART 2

FLOER'S INSTANTON HOMOLOGY GROUPS
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The seminal ideas of Andreas Floer have attracted a great deal of interest over
the past few years. In his work Floer has developed a number of important new
insights, notably through the novel use of ideas from Morse theory. His work also
fits perfectly into an overall theme of these Proceedings by illustating the paral-
lels between symplectic geometry and gauge theory in 3 and 4 dimensions. On
the symplectic side a decisive achievement of Floer's programme was his proof of
Arnol'd's conjecture on fixed points, a conjecture which had its origins in Hamilto-
nian mechanics and the work of Poincare. See also the introduction to the section
on symplectic geometry in Volume 2. Floer's lecture on this work is described in
the notes by Kotschick in this section.

The other papers in this section are related to Floer's work in gauge theory. The
ideas here are closely related to those involved in the section above, on the use of
Yang-Mills instantons in 4-manifold theory. The Floer instanton homology groups
of a 3-manifold Y are defined by instantons on the cylinder Y x R, interpolating
between flat connections at the two ends. The space of flat connections over F, or
representations of the fundamental group, occupies a central place in the theory,
and Floer's groups can be regarded as a refinement of this space of representa-
tions. Roughly speaking, if one tries to extend an argument for instantons over
closed 4-manifolds to instantons over a 4-manifold-with-boundary, one finds that
the new phenomena that arise, which have to do with connections which are flat
but not trivial over the 3-dimensional boundary, are captured by the Floer homol-
ogy groups of the boundary. Similarly, if a 4-manifold X is split into two pieces by
a 3-dimensional submanifold F, then the instantons on X can be analysed in terms
of those on the two pieces and the Floer homology of Y.

For some time after Floer's work first appeared there was a dearth of explicit ex-
amples on which to test the theory, due to the difficulty of performing calculations.
This picture is now beginning to change, with progress on a number of fronts which
is well-illustrated by the papers in this section. On the one hand, in the new de-
velopments which he described in his lectures in Durham, Floer has found exact
sequences for his homology groups which open up the possibility of making system-
atic calculations from a Dehn surgery description of a 3-manifold. (The development
of a similar programme in one dimension higher, for the Yang-Mills invariants of
4-manifolds, also forms an important goal of current research.) On the other hand,
for a particular class of 3-manifolds - the Seifert fibred manifolds- special geometric
features have been used to calculate the Floer homology groups. Two approaches
to this are described in the contributions of Fintushel and Stern and of Okonek
below. The simplifying feature here is that, as shown by Fintushel and Stern, one
can obtain the Floer groups directly from the representations, without considering
instantons. The technique of Okonek brings the problem of describing the represen-
tations into the realm of algebraic geometry, and holomorphic bundles on a complex
algebraic surface: a natural problem is to see if algebro-geometric techniques can be
brought to bear on other calculations of the Floer groups (and of the "cup products"



96

which can be defined in Floer homology). The paper of Fintushel and Stern also
describes an application of the calculations for Seifert manifolds to obtain a result
on 4-manifolds (a result which has in turn been used by Akbulut to detect exotic
structures on open 4-manifolds). Here one should refer also to the contribution of
Gompf in the preceding section.
Before Floer introduced his more general theory, ideas which can now be seen as
going in a similar direction were developed by Fintushel and Stern, Furuta and oth-
ers. Here the 3-manifolds concerned are lens spaces and, instead of 4-manifolds with
boundaries, one can consider compact 4-dimensional orb if olds. These developments,
and their striking topological applications, are described in the paper of Fintushel
and Stern. Yang-Mills theory over orbifolds has had a number of other applications:
for example Furuta and Steer have developed a theory for 2-dimensional orbifolds,
generalising the work of Atiyah and Bott, which gives another, rather complete,
description of the Floer homology of Seifert manifolds.
The contribution of Furuta deals with some more geometrical aspects. As we have
mentioned, Floer's homology groups depend in general on knowledge of the instan-
tons over cylinders, and these are normally quite inaccessible. The work of Atiyah,
Drinfeld, Hitchin and Manin (ADHM) gives a complete description of the instantons
over the 4-sphere in terms of matrix data. This can then be used to describe instan-
tons on quotients of 54 , and in particular (by conformal invariance) on the cylinder
with a lens space as cross-section. This is at present the only kind of example where
one can obtain such explicit information. There are many different reductions of
the ADHM description which can be made in this fashion and the investigation of
these is at present an active area of research, with work by Furuta, Braam, Austin,
Kronheimer and others. These descriptions involve an attractive blend of geome-
try, representation theory and matrix algebra. In his paper below Furuta gives a
number of applications of these ideas, including an analogue of Floer's homology
groups for lens spaces in which the groups can in principle be computed completely
in terms of matrix algebra, via the ADHM description.
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We describe a long exact sequence relating the instanton homology of two homol-
ogy 3-spheres which are obtained from each other by ±l-surgery. The third term
is a Z4-graded homology associated to knots in homology 3-spheres.

1. Instanton homology.

Let M be a homology 3-sphere, i.e. an oriented closed 3-dimensional smooth
or topological manifold whose first homology group Hi(M,Z) vanishes. Poincare,
who first conjectured that M would have to be the standard 3-sphere, the first
nontrivial example, now known as the Poincare sphere. Its fundamental group is
of order 120. Since then, many other examples were found, all of which have an
infinite fundamental group. For example,

M(p,q,r) = {x e C3 | |z| = 1 and x\ + x\ + xr
z = 0}

is a homology 3-sphere if p, g, and r are relative prime. In this case, M(p, q, r) is
called a Brieskorn sphere. Properties of Brieskorn spheres were studied e.g. in [M].
Recently, Donaldson's theory of instantons on 4-manifolds applied successfully to
the study of 3-manifolds. First, Fintushel and Stern [FS] proved that the Poincare-
sphere has infinite order in "integral cobordism". Pursuing the same approach
Furata [Fu] proved that all manifolds M(2,3,6fc — 1) are linearly independent for
any k £ N (see also [FS2]). There is a strong feeling that instantons have more
to say about 3-manifolds, even though the above results rely very much on special
properties of the Brieskorn spheres and of their fundamental groups. In [Fl] and
in the present paper, we therefore approach the problem from the other side, by
constructing instanton-invariants on 3-manifolds which can be defined rather gen-
erally, leaving computations and applications (some luck provided) to the future.
The invariant, as defined in [Fl], takes on the form of a graded abelian group /*(A)
graded by Zs. This as well as the definition of /* suggests that one should consider
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it as a homology theory, and we will in fact refer to it as instanton homology. It is
the purpose of the present paper to expose further properties of /* to justify this
terminology.

Since we will need a slight extension of instanton homology, we briefly review the
construction. Let A be a general SO3-bundle over an oriented closed 3-manifold M.
Instanton homology is a result of applying methods of Morse theory to the following
(infinite dimensional) variational problem: Consider the space A(A) of L*-Sobolev
connections on A. Choosing a reference connection (which we will always assume
to be the product connection 0 if A is the product bundle), we can identify A(A)
with the space Lf^&^A)) of Sobolev 1-forms with values in the adjoint bundle
ad(A) = (A x sos)/SO3. The Sobolev coefficients are fixed rather arbitrarily to
ensure that each connection is actually continuous on M. A(M) is acted upon by
the gauge group

We rather want to restrict ourselves to the subgroup

(Note that SO3 is the group of inner automorphisms of SU2 as well as of SO3.)
The double covering SO3 = SUil~I-2 defines an extension

(1.1) 1 -• Qs{A) -v g(A)^H\M, Z2) -> 0,

where i/"1(M, Z2) has the usual additive group structure. The homomorphism rj can
be described topologically as the obstruction to deforming g to the identity over the
1-skeleton of M. In fact, we can define Qs as the set of all gauge transformations in
M which are homotopic to one of the "local" transformations which map the exterior
of some 3-ball B3 in M to the identity. We therefore have a natural isomorphism
7T0(£s) ^ Z, through the degree deg(#) of the map M/(M - B3) -+ SU2 ^ S3.
The quotient space B(A) = A{A)/Qs is then a finite covering of the space of gauge
equivalence classes of connections on M, with covering group H\(M, Z2).

To define the Chern Simons function (see [CS]) note that TaA(A) = L^O^A)),
so that the integral of tv(Fa A a) over M, for (a, a) E TA(M) defines a canonical
one-form on A(M). It turns out to be closed; in fact, there exists a function 6 on
A(A) such that

(1.2) d*(a)a= ftv(Fa A a).
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It is almost gauge invariant in the sense that

(1.3) *(<?(<*)) = B(a) + deg(y).

Hence it defines, up to an additive constant, a function a. : B(A) —• R/Z. It can
also be described as the "secondary Pontrjagin class". Recall that on a principal
bundle X over a closed 4-manifold, the first Pontrjagin class is represented by the
4-form pi(a) = tr(Fa A Fa) for any connection a. Here, Fa = da + a A a is the
curvature 2-form. (For forms with values in ad(X), the exterior product is here
extended by matrix composition in the adjoint representation of sos.) It follows
that the integral Jp\(a) is an integer and is independent of A. If the boundary
dX = A is not empty, then this is generally not true any more, but J*pi(a) modulo
the integers depends only on the restriction of a to M and is given by fi. This can
actually be used to define $, since every SO3-bundle M can be extended to some
SO3 -bundle X as above.

By definition, the critical set of fi is the set of flat connections on M, which we
will denote by 1Z(A). It is well known that the holonomy yields an injective map

1l(A) -> Hom(7ri(M),503)/ad(503).

Flat connections are therefore sometimes referred to as representations (of the fun-
damental group). Conversely, for each representation one can construct an SO3-
bundle with a flat connection whose holonomy is prescribed by the representation.

It is 7£(A) which will become the set of simplices in instanton homology. To
understand this, recall the following statement of (finite dimensional) Morse theory.

THEOREM (Thom-Smale-Witten). Let f be a function on a closed manifold B with
nondegenerate critical set C(f). Let Cp(f) denote the free abelian group over all
x G C(f) with Morse index p. Then there exist homomorphisms

dp : Cp(f) -> <?,_!(/)

such that dpdp+i = 0 and

kerdp/imdp+1 = HP(B).

In fact, if g is a metric on B such that the gradient field on f induces a Morse-Smale
fiow on B, then the matrix elements (da, b) with respect to the natural basis can
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be defined as the intersection number of the unstable manifold of x and the stable
manifold of y in arbitrarily level sets between /(a) and f(b).

In particular, it follows that \Cp(f)\ > dimHp. It is the defining property of
Morse-Smale flows that the intersections above are transverse. The manifolds in-
volved can all be given natural orientations, so that the matrix elements are integers.
They would define homomorphisms with any Z-module (i.e. any abelian group) as
coefficients, and the same is true for instanton homology. We will, however, restrict
ourselves to coefficients in Z for the sake of brevity.

We want to apply a similar procedure to the Chern Simons function. To define the
gradient flow, note that the set B*(A) of irreducible (i.e. nonabelian) connections
is a smooth Banach manifold with tangent spaces

(1.3) TaB* = {aeLi(tf(A))\d:a = 0},

see e.g. [FU] or [Fl]. Note moreover that for any metric a on the base manifold,
fa(a) := *Fa E L^Q 1 <g> su2) satisfies d*Jff{o) = 0 due to the "Bianchi identity"
daFa = 0. Finally, the gauge equivariance of Fa implies that /^(^(a)) = gf<T(a)g~1,

so that /<r is in fact a section of the bundle C whose fibres La are obtained by
replacing L\ by L4 in (1.4). Even though it is not a tangent field over B* in the sense
of Banach manifolds, it has properties similar to vector fields on finite dimensional
manifolds. The reason is that the flow trajectories of fa, i.e. the solutions of the
"flow equation"

(1-4)

are in 1—1 correspondence to self dual connections a on the infinite cylinder M x R

with vanishing r-component and with a|jvfx{r} = a(T)- O n e c a n a^ so show (see
[Fl]) that they "connect" two critical points if and only if their Yang Mills action
H-FIAII! is finite. Three problems arise if we try to fit this gradient flow into the
framework of the above theorem. First, we have mentioned above that the Chern
Simons function is well defined only locally. Surprisingly, it turns out that we can
simply ignore this point, since not only the function, but also the Morse index is
ill defined along nontrivial loops in B(A). Second, since flat connections are not
necessarily nondegenerate as critical points of fi, we perturb $ by a function of the
form

(1.5) hK : B(A) -> R; hK(a) f
JD
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where h is a character of G, and Kg(a) the parallel transport along a thickened knot

K:TX Dx SO3 -* A.

Here, D is the two disc and T = dD the 1-sphere. The measure dfi(O) can be
assumed to be smooth and supported in the interior of D. Let us denote by s a
triple s = (<r, A, /i), where a is a metric on A and (A, h) a disjoint collection of
knots labeled by characters of G. It defines a perturbation £ of the Chern-Simons
function, with L2 -gradients

f.(a) = *Fa+s'(a)

where s' is a smooth section of TB*(A) and in this sense a compact perturbation
of *Fa. The critical points and trajectories of f3 in B*(A) are now given by
(1.6)

K.(A) = {a 6 B*(A) I /.(a) = 0}

M.(A) = {a : R -> «4(A) | ^ l l + / ,(a(r)) = 0 and lim a(r) £

Analytically, we consider M3(A) as a perturbation of the space of self-dual connec-
tions on R x A. In fact, the temporal gauge (see [Fl]) defines a bijection

MS(A) C{ae A(R x A) | Fa + *Fa = s'(a) and ||Fa + 3'(a)||2 < oo}/Q(R x A)

where
.4(R x A) = U a f / , € ^(A )a+ + )9_ + L?(^d(A))

and for each a E 7ta(i4), a± are chosen such that for TT : R x A —> A,

for some representative a of a. The flow equation is then given by a non-linear
Q(R x A)-equivariant map

/ , : A(R x A) -+ J7(fi"(R x A))

fs(a) = ±(Fa+*Fa) + s'(a).

We call s stable if the operators

/ » = d~tS + s"(a) : LKnUR x A) - £2(l£(R x A))

are surjective for all a G A^S(A). This implies (see [Fl]) that 7£5(A) is non-
degenerate as the critical set and contains no non-trivial reducible representations.
By compactness, it is then also finite. The set of stable parameters plays the role of
the Morse-Smale gradient flows, and is denoted by S(A). Then we proved in [Fl]:
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THEOREM 1. S(A) is not empty and contains for any metric a on A elements (<r, h)
such that

is arbitrarily small. Then 7ls(A) is finite and M3(A) decomposes into smooth

manifolds of nonconstant dimensions satisfying

dim M3(a,f3) = fi(a) - fi(l3)(mod8)

for some function fj, = 1Z3{A) —>• Zg. There exists a natural orientation onM a which

is well defined up to a change of orientation of a G 713(A) (meaning a simultaneous

change of the orientations on M(a,(3) and A4(/?, ot) for all j3 in 1Z3(A)) and which

has the following property: Denote by Rp, p G Zg, the free abelian group over the

elements a oflZ3 with fi(a) = p. Define the homomorphism

93,p - Rp —+ Rp-i

d9tP(a) = £ o(a)/3,

where o(a) = 0 for dima Ais(a,f3) ^ 0. Then if A allows no non-trivial abelian

connections, we have dpdp+\ = 0, and the homology groups

Ip(A,s) := ker<9p/im<9p+i

are canonically isomorphic for any s G S(A).

The only point in the proof of Theorem 1 that differs from the case of trivial SU2-
bundles is the question of orientations. This is not a property of the moduli space
alone, but follows from a global property of the operator family DA over B(M). To
be more precise, define the determinant line bundle A of D as the real line bundle
with fibers

Aa = det Da = det(keiDa) ®R det(cok£>a).

Local trivializations can be defined as follows. For any finite dimensional subspace
E C La such that cokDa maps injectively into Hom(i2, R), define the projection
TT^ : La —> La/E. Then det ker 7r^Da can be identified naturally with det(-Dv4), and
can clearly be extended smoothly on a neighborhood of A in B. If now in addition
fs(A) G E, then the set

{a + Z\teTaB and fs(a + 0 G E]

is a smooth manifold locally at A, and its orientation is determined by an orientation
of A and E. In particular, any orientation on A defines an orientation on M.
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LEMMA 1.1. Let X be an SO$-bundle over a compact ^-manifold X, and let Gs(X)
denote the group of associated SU2-gauge transformations defined as in (1.1). Then
A is orientable on A{X)/Qs(X).

PROOF: Since Qs contains only the S^-gauge transformations, orientability can
be proved in the same way as Proposition 3.20 and Corollary 3.22 of [D]. •

The canonical isomorphism of the instanton homology groups can be understood
best in the following functional framework.

DEFINITION 1.1: 5Oa[3] is the category whose objects are principal S03-bundles
A, B over closed oriented 3-manifolds and whose morphisms X : A —> B are princi-
pal SO3 bundles over oriented smooth 4-manifolds together with an oriented bundle
isomorphism gx - AU( — B) —> dX. In this case we also write A = X+ and B = X_.

Note that every equivariant diffeomorphism g of M defines an "endomorphism"
Zg = (M x [0,1], g) of M, where g : M U M -» M x {0,1} is the union of go(x) =
(g(x),0) and g\{x) = (x, 1). We will restrict ourselves to the (full) subcategory
5OJ[3] consisting of bundles M which do not admit a nontrivial abelian connection.
That is, the objects in 5O3[3] are either trivial bundles over homology 3-spheres,
or nontrivial bundles with no reducible flat connections. We define a functor /*
from 50J [3] into the Zg-graded abelian groups by means of the following auxiliary
structures on M. Consider conformal structures a on

which are equivalent to product metrics on the ends, and on a collection X x D xR
of thickened cylinders in X^. Let h be a time dependent character of G associated
to the components of A, and define

M3(X) = {ae A(X) I Fa + ^Fa = s\a) and \\Fa + s'(a)\\2 < oo}/£(X)

as in (1.5). Denote by S(X) the set of all such (cr, A, h) such that MS(X) is stable,
and which define stable limits s± £ S(X±).

THEOREM 2. S(X) is nonempty and for s G S(X),
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has the following properties

(1) vx,sd3 =ds+vx,S'
(2) Let (X, s) : (A, sA) -> (B, sB) and (F, sY) : ( 5 , s#) -> (C, *c) be two stabie

cobordisms. For p G R+ iarge enough de£ne on the bundle

X$pY = ( R _ x i ) U l U ([-p, p] x B) U y U (R+ x C) : A - C.

Then for p large enough, the obvious perturbed parameter Trxttp^Y on

is regular, and induces the composite

vp =

(3) The homomorphism

does not depend on the choice of sx G S(X).

These are three properties that allow us to consider /* as a functor on the category
5O3[3] rather than a functor on the category of pairs (A, s). (The same argument
is used e.g. in the definition of algebraic homologic theories through projective
resolutions.) J* has a cyclic Zs-grading, meaning that Zg acts freely on /* by
increasing the grading. If M is a nontrivial bundle, then there usually does not exist
a canonical identification of the grading label p with an element of Z8. However,
if Hi(M) = 0 then the gauge equivalence class of the product connection 6M is
a nondegenerate (though reducible) element of R. In this case, we can therefore
define a canonical Zg-grading of /*(M) through the convention that

//(a) = dim M(a,0M).

2. Dehn surgery.

For a knot K in a homology 3-sphere M, denote by KM the homology 3-sphere
obtained by (+1)-surgery on K. We want to show that /*(M) and I*(KM) are related
by an exact triangle (a long exact sequence) whose third term is an invariant of K.

In fact, it will turn out that it depends only on the knot complement K of K, SO that
it is the same for all exact sequences relating KqM and K 9 + 1 M . We may say that
"integral closures" K(a) with Hi(K(a)) = 0 is an affine Z-family of manifolds. The
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only closure of K which is canonical is K := K(K), which is homology-equivalent
to S2 x S1. Although there exist, consequently, reducible representations of TTI(.K'),

none of them can be represented by flat connections in the SO3 -bundle P over K
with nonzero W2(P) G H2(K, Z2). In fact, restriction yields a 1-1 correspondence

K(K,P) ~ {p e Kom(in(K),SU2) I P(K) = - 1 } .

In fact, the elements of this set do not extend to SU2- represent at ions on /c, but
their induced SO3-representations do. Since K is trivial in H\(K), all abelian rep-
resentations of 7Ti(K) would assign it the identity 1 G SU2. It is easy to see that
if rj(g) ^ 0, then g2 generates TTO(QS(P))- Our knot invariant now takes on the
following form:

DEFINITION 2.1. The instanton homology of a knot K in a homology 3-sphere with
complement K is defined as the Z4 -graded abelian group

Im(K) = h(K U j x D x 5O3),

where &({!} x dD x 1) is non-trivial in the fibre but trivial in H\(K). The surgery
triangle of K is the triple

(2.1) h(K) -> h(M) -> I*(KM) -+ h(K)

of surgery cobordisms, where w is trivial relative to the boundaries and with the
ends identiGed in such a way that its total degree is — 1.

The extensions of the framed surgery cobordisms to SO3-bundles is unique de-
termined by the prescription in Definition 2.1. That the total degree of (2.1) is
equal to —1 modulo 4 follows from an index calculation. The construction becomes
perfectly symmetric in the three maps of (2.1) if one formulates the surgery problem
for general knots (/c, A), which are principal SO3-bundle A over a closed oriented
3-manifold M = A/5O3, together with an equivariant embedding

K^T x D x SO3 -> A.

Viewed from the knot complement K, (K, A) defines sections /c0, K\ of the bundle
dK over two simple closed curves in \dK\ = T2, through

Ko = {1} x dD x {1}

*i = T x { l } x { l } .
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This class of knots is acted upon by the group

r = z2 K 5/2z
(2.2)

= (Diff(T2)/DifFi(T2)) xi H\T2,Z2)

of isotopy classes of equivariant difFeomorphisms of the bundle T2 x SO3. In the
complementary picture,

e(i,K) = (ioe-\K).

For 0 = (^ P)x(a,b)€  5/2Z XI 1\ with Z2 = {0,1}, we have

( 6 t f ) o = {(tn,t*>,p(at) \ t e T } ~ a{rm

(8jf)i = {(*m,*V(fa) | t G T } - b{mnv + $*»).

EXAMPLE 1: The restriction

Aut(T xDx 5O3) = Z2 ix Z -> Aut(T2 x SO3)

defines the subgroup To of surgeries leaving KV = i a ( { l } x T x { l } ) invariant. Hence
it describes the subgroup of all surgeries on K which do not change the topology
of the bundle A = K(KV). In fact, To is generated by the operator e changing the
orientation of K, the operator $ changing the framing of K and the operator ^ of
order 2 changing the trivialization of A over the core of K:

EXAMPLE 2: The element

= V " 1 ° ,
of order 2 in PS7(2, Z) corresponds to framed ("honest") surgery on the framed
(and lifted) knot K.

E together with To spans F. However, there is a more canonical generating system

2 = Z2 * Z3

where Z2 is generated by E and Z3 by
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satisfying

0 ^

1 + 3 + 3 2 = 1 + 3 + 3 " 1 = 0.

Hence (xpE)3 = id for any xp E H1^2,^). If xp = (0,1) changes the lifting
along the longitudinal, i.e. xj> G To, then ^ 3 corresponds to a framed surgery on
K. Denote by XK the corresponding surgery cobordism. Replacing K by xpSK and
repeating the process, we obtain a "surgery triangle" associated to a framed knot
K. We abbreviate it as

AK

(2.4) YKy \ZK

XK

where

KA = KUa(D x T x 5O3).

The attaching maps a and a are determined by

a(dD x {1}) = V>*i

a(9D x {1}) = /co + «i.

The surgery triangle of K coincides with (2.4) if H\{K) — Z and K\ is canonical,

i.e. K\ = 8SK for some subbundle (5/<-, dSx) C (i^, 9J^) with two-dimensional base.

Therefore exactness of (2.1) follows from the following result

THEOREM 3. If all bundles M, KM, and MK are in 5OJ[3], then (X,Y,Z) :=

(XK,YK,ZK) induces an exact triangle.

Because of the symmetry of (1.7) with respect to S, we only need to prove exact-
ness of the two homomorphisms

The sequence property X+Y* = 0 follows from a connected sum decomposition.

(This is simlar to the vanishing theorem for Donaldson's invariants.)

LEMMA 2.1.

XY = Z\P

where P is the SO3-bundle over CP2 with wi(P) = 1 and pi(P) = 0. There exists
some s E p(X) such that the discrete part of A4S(X) is empty.



108 Floer: Instanton homology, surgery and knots

3. Instanton homology for knots.

All 3-manifolds are interrelated through surgery on knots, and are interrelated
in many ways. What is needed is a method to "decrease the complexity" of 3-
manifolds by surgery, such that the third term which arises is simpler, too. A
way of doing this is to consider the instanton homology of certain 3-manifolds as
"relative" homologies I*(A, A) for a link (a disjoint collection of knots) in A. Then
by surgery we can reduce the problem to 2*(A) for a link in 5 3 . At least in 5 3 there
is an organized scheme of simplification of links, by the skein move, where two parts
of A pass through each other. In knot theory, such a move often involves a third
link A/7, which is described as follows.

DEFINITION 3.1. A crossing 7 of a link A in A is an embedding 7 : D x / —> A such

that 7~"1[A] is given by the graphs of the functions

e ± : [ 0 , l ] - Z > ; e±(t) = e±i i r t.

Then define 7A by replacing the graph of e± by the graph of

e±(t) = e±(l-t).

To define A/7, replace e± by the sets [-1/2,1/2] x {0,1}.

Topologically, 7A is obtained by a ±l-surgery on the circle 7 defined by the

crossing, and which does not change K. We will therefore use the operative notation

where A is omitted if it is the three sphere. Of course, A\ differs from A by the
connected sum with the non-trivial bundle over T x S2. One still obtains skein
relations between links in A, if one extends the concept of instanton homology for
links: For any 3-manifold Q\ with dQ\ = A x T, one can define invariants for
framed knots by "closing up" A\A x D by Q\. It turns out that the following two
types of closures are needed.

DEFINITION 3.2. For a knot K : T x D x SO3 -> A, we define A(K) to be the

bundle obtained by (framed) surgery on K. Moreover, let S9fb be the oriented

surface of genus g with b boundary components, and let UQ,UI denote the non-

trivial SO3-bundles over 5o,2 x T and S\,\ x T, respectively. (Uo, U\ are unique up

to automorphism). Let A[K] be obtained by gluing U\ to the complement of K, where
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T is identified with the normal fibre. These definitions extend componentwise to
links A. If £ is a link of two components in M and A is a bundle over its complement
which does not extend to M, then we define A(£) to be obtained by gluing U$ to
A.

All gluings are performed according to the given framings, or more precisely
by using the parametrizations of the normal neighborhoods that we assume to be
given for every knot. We sometimes refer to a link of the type £ in Definition 2 as
a "charged link in A", and consider A as a "discontinuous SO3-bundle over M". If
K, A, and £ are disjoint links, then we define

A general combination of these three constructions leads to homology groups

The reason for this definition is the fact that there exists a self-contained skein
theory for link homologies defined in this way.

Actually, J* does not depend on the framing of A, and it is entirely independent
of the parametrization of A near £. This will follow from the "excision" property
of Theorem 6. Note that the construction is natural with respect to "strict" link
cobordisms, which are cobordism of pairs of the form

In fact, we can define for any closure Ux with dU\ = 9A,

X. = X UAXJ (UX XI):AUXUXX {-1} -> A' UA< Ux x {±1}.

This applies in particular to all cobordisms obtained by framed surgery on a link
disjoint from A, e.g. for the surgery triangle

Ay UA UX

(3.1) / \
A UA UX —> 7 A UXUX = A U 7 A UX

of surgery on a skein loop 7 = dD7. Now a redefinition of the top term of (3.1)
yields the following skein relations for /*:
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THEOREM 4. Assume that 7 crosses K and a component of a link A with boundary
conditions given by U\, and let \ + K be the connected sum along 7 and (/c, A') =
7(/c, A). Til en we have an exact triangle

h{A UA+K UX)
(1) / \

I,(A(«) UA UX) —> I,

In particular,

(la) . / \

I.(A(K)\\) —»

If 7 crosses two components Ao, Ai of A, then we have an exact triangle

)
\

If 7 is a crossing of a knot, and if the lifting of 7 extends to D7, then (A(/c))7 =
A[K/J] and we have an exact sequence

(2) 1- / \ 7o

with 7* = (X"(7))^. Finally, for a crossing between two components of a link A we
nave an exact triangle

(3) / \
I,(A\A) —> h(A\7 • A)

There is no skein relation for a crossing of a single charged component. In fact,
it is unnecessary to unknot a charged component since whenever A+ and A_ are
separated by a two-sphere in A, 7*(A\A) = 0. (There are no flat connections on the
non-trivial bundle over S2.) It therefore suffices to consider crossings of A+ with
A_ or normal or framed components.
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THEOREM 5. Set A = H*(T2) = Z4. Then in the situations of Theorem 1, we have

exact triangles

(1') 7- / \ 70

(2') 7- >/ \ 7o
I ( A A ) / ( A

A
(3') / \

/.(i4\Ai,A0) —>
The proof of Theorem 4 proceeds by elementary topology, showing that the top

term of the surgery triangle (4) of 7 is diffeomorphic to the top terms in the triangles
of Theorem 4. The proof of Theorem 5 involves the Kiinneth formula of /*. Let
U denote the non-trivial SO2-bundle over the two-torus. Then /* is multiplicative
with respect to connected sums along [/-bundles in the following sense:
THEOREM 6. A, B be closed connected bundles containing two-sided homologically

non-trivial thickened U-bundles VA &nd UB- Define

C = A+uB = A\UA UU B\UB-

Here, the identification is uniquely determined by requiring that the boundary of

W = ((-00,0] x (A II B)) U ([0,00) x C)

has boundary

dW = U xT = d(U x D).

Then the cobordism

W := W U (U x D) : All B -> C

induces an isomorphism

W* : PA ®gu PB -^ J*(A +u B),

where gu(a 0 b) = guA a<g>b + a® guB a.

Naturality with respect to surgery cobordisms and the canonical excision isomor-
phisms go, Qi determine the functor I* in a similar way as ordinary homology is
determined by the Eilenberg axioms: Let SO% [3] denote the category of bundles over
A over closed oriented 3-manifolds such that either H\(A/G) = 0 or u>(i4)[S] = 0 on
some oriented surface in A/G. Let the morphisms in 5OJ[3] be given by arbitrary
5O3-bundles over 4-dimensional cobordisms.
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THEOREM 7. Let J* be a functor on SO%[3] such that the surgery triangle induces
an exact triangle and such that W induces an isomorphism. Then any functor
transformation I* —> J* which is an isomorphism on I*(S3) = 0 and I*(U xT)/gu =
Z is a functor equivalence.

PROOF: Note that a is an isomorphism I*(A(/c)\£, A) if K U £ U A have no crossing.
Assume that a is an isomorphism whenever K, U £ U A have less than k crossings, and
consider a link /i with fc-crossings. Then for any fi = A U £, the 5-lemma applied to
the exact triangle

It(S
3\£ UA UX) —» h(S3\e UA Ux)

\ /
J.(53\eo U ^

corresponding to a skein between £+ and A implies that if a is an equivalence on
I*(S*\£ ^A U\), then it is an equivalence on /J)8(5

3\£1 UA #A) where £* is obtained
from £ by £+ passing through an arbitrary number of components of A and £_. Since
i* as well as J* are trivial if £+ is separated from A\£+ by a sphere, we conclude
that a is an isomorphism on /*(S'3(/c)\£, A) for all £.

Similarly, a is an isomorphism J*(S3(/c), A) if it is an isomorphism on /*(S3(/c1), A1)
for (/c1, A1) obtained from «, A by skein. Since (K, A) is skein related to the trivial
link, this proves by induction that a is a functor equivalence. Since all 3-manifolds
can be obtained as A = S3(K) for some framed link K in 5 3 , this also proves that
a is an equivalence on J*(A\£, A) for any link £ U A with £ = 0 or £ = (£+,£_) in
3-manifold A. •

Let us apply Theorem 4 to some simple examples. First, note that if r is the
trivial knot, A the standard link, and 3i the trefoil knot, then

are [/-bundle over T. Hence

h(S3, T) S 7,(53\A1) = 7»(53(3i)) ^ Z2.

This isomorphism is also represented in the skein triangles

= /»(53\2r)—>h{
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/ \ •
7,(3!) — h(r)

More generally, we obtain

i»(S3\Afc) —• J,(S3\Afc+1)

and hence h(S3\\k+1) = lk(q). Note that

This is essentially the relation that was used by Casson to determine the knot
invariant

\\K) = X(KPS3) - A(/cP"153)

= X((h(S3(K))/g)

= A^l) ,

where AK(t) is the Alexander polynomial.
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Instanton Homology

Lectures by ANDREAS FLOER

Department of Mat hematics, University of California,Berkeley

Notes by DIETER KOTSCHICK )

The Institute for Advanced Study, Princeton, and
Queens' College, Cambridge

(Editors Note.Floer gave three lectures at Durham; two on his work in Yang-
Mills theory and one on his work in symplectic geometry. As an addition to Floer's
own contribution to these Proceedings, immediately above. Dieter Kotschick kindly
agreed to write up these notes, which give an overview of Floer's three talks.)

These are notes of the lectures delivered by Andreas Floer at the LMS Symposium
in Durham. After a general introduction, the three sections correspond precisely to
his three lectures. The reference for the first lecture is [Fl], and for the third [F2]
and [F3]. For details of the second lecture see Floer's article in this volume.

The unifying theme behind the topics discussed here is Morse theory on infinite
dimensional manifolds. Recall that classical Morse theory on finite-dimensional
manifolds, as developed by M. Morse, R. Thorn, S. Smale and others, can be viewed
as deriving the homology of a manifold from a chain complex spanned by the critical
points of a Morse function, with boundary operator defined by the flow lines between
critical points. This was the approach taken by J. Milnor in his exposition of Smale's
work on the structure of high-dimensional smooth manifolds [M].

This point of view was described in the language of quantum field theory by E.
Witten [W]. To him, critical points are the groundstates of a theory, and flow lines
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between them represent tunneling by "instantons". These ideas form the back-

ground against which Floer developed the theories described in these lectures, in

which the manifold considered is infinite-dimensional. In the first of these theories

the manifold under consideration is the space of gauge equivalence classes of (irre-

ducible) connections on a bundle over a 3-manifold. The gradient lines are given,

literally, by the instantons of 4-dimensional Yang-Mills theory. In the second theory

the manifold considered is the loopspace of a symplectic manifold, and the gradient

lines or instantons are Gromov's pseudoholomorphic curves [G].

A common feature of these "Morse theories" is that there is no Palais-Smale

condition satisfied by the Morse function. In each case the Hessian at a critical point

has infinitely many positive and negative eigenvalues, and a "Morse index" is defined

by a suitable renormalisation. This is quite different from the classical infinite-

dimensional variational problems, such as the energy function on loops, for example.

In fact these instanton homology theories on infinite dimensional manifolds should

be considered as "middle dimensional" homology theories, as suggested by M. F.

Atiyah [A] and others.

Instanton Homology for 3-manifolds

Let M be an oriented 3-manifold. Considering finite-action instantons over M x R ,

we want to construct invariants of M from moduli spaces. Let P be an SO (3)-

bundle over M, extended trivially to M x R, and denote by Mg(M x R) the space

of gauge equivalence classes of connections on P —> M x R satisfying

(1) / \\F\\ 2 < o o

MxR

(2) F + *F = 0,

where (2) is the anti-self-duality equation with respect to the product metric (gx

canonical) on M x R.

The condition of finite energy (1) forces elements of Mg(M x R) to converge to

well-defined flat connections on the ends of the cylinder M x R . Denote by 7l(M)

the space of gauge equivalence classes of flat connections on P —* M. Then

M(A,B),
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where Ai(A, B) denotes the moduli space of finite-action instantons interpolating
between A and B.

We always assume that there are no nontrivial reducible flat connections on P —» M.
This is the case in particular if M is a homology 3-sphere, and also if M has the
homology of S1 x S2 and W2(P) ^ 0. Moreover, just for the sake of exposition, we
assume that 7£(M) is discrete. (If it is not we can still carry out all the constructions
after replacing 7Z(M) by the solution space of a suitable perturbation of the flatness
equation, cf. [Fl].)

Now all the moduli spaces M(A, B) can be oriented in a coherent fashion by consid-
ering extensions to a 4-manifold X with boundary dX = M, and using Donaldson's
theory [D].

The action of R by translation on M x R induces an action on each
and we denote by Ai(A, B) the reduced moduli space M(AyB)/R. Uhlenbeck's
compactness principle [U] has the following consequences:

(a) 0-dimensional components of JA(A, B) are compact, and

(b) if a sequence in a 1-dimensional component of A4(A, B) has no convergent sub-
sequence, then some subsequence decomposes asymptotically into instantons in

, C) and -M(C, 2?), where C is a nontrivial flat connection.

With all these technicalities in place we can define instanton homology. Let 71* (M)
be the set of gauge equivalence classes of nontrivial flat connections on P —> M.
Then counting, with signs given by the orientations, the number of 0-dimensional
components of M.(A, B) gives a linear map dg on the free abelian group generated
by the elements of 7Z*(M) (via (a) above). Moreover, (b) can be used to prove
d] = 0. Thus

Definition [Fl]: The instanton homology of M is

I*(M,g) = ker

The two cases we are interested in are when M is a homology 3-sphere, in which
case there is only one SO(3)-bundle over M (the trivial one), and when H*(M, Z) =
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H^S1 x S2,Z) and P —• M is the unique SO(3)-bundle with w2 ^ 0. In each case
there is a grading on the instanton homology, which we have indicated by writing
/*. In the first case * £ Zg, and in the second * €  Z4.

The whole construction underlying the definition of instanton homology has certain
functorial properties. Most importantly, if X4 is a cobordism between M3 and
iV3, then counting points in zero-dimensional moduli spaces over X gives a chain
homomorphism 1Z*(M) • Z -> 1Z*(N) • Z. Applying this to M x R with a "twisted"
metric gives homomorphisms

which can be seen to be inverses of each other. This proves that /*(M) is, in fact,
independent of the metric g.

The definition of I*(M) given above does not bring out completely the variational
origin of the whole theory. There is a function (the "Chern-Simons functional")
on the space of connections on P —> M3, such that 7l(M) is the critical set of the
function, and the -M(A, B) parametrize gradient lines between the critical points A
and B. We will come back to this point of view in the third lecture, to explain the
analogy with constructions in symplectic geometry.

Instanton Homology and Dehn Surgery

The definition of instanton homology given in the previous lecture is enough to
allow one to calculate it completely in simple cases. Indeed, such calculations have
been carried out by several people for the Seifert fibered homology 3-spheres, with
the most complete results in [FS].

Leaving aside the study of examples, we want to describe a more systematic ap-
proach to such calculations by producing an "exact triangle" relating the instanton
homology of a homology 3-sphere M with that of M', obtained from M by Dehn
surgery on a knot. This is in the spirit of the usual exact sequences for standard
homology theories. It gives, in principle, a universal computational tool, because
every homology 3-sphere, or, more generally, every orientable 3-manifold, can be
obtained from S3 by a sequence of Dehn surgeries [L].

Let JC be a knot in M. We think of this as an embedded solid torus K: S1 xD2 <—+ M.
The knot complement is K = M\ ^(S1 x D2) with boundary dK = T2, a 2-torus.
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We denote by K the "closure" of K obtained by gluing in S1 x D2 interchanging
parallels and meridians on T2. Then #*(/?, Z) = H^S1 x S2,Z).

We want to do (+1)-Dehn surgery on JC. To this end we take out JC^S1 x D2) and
glue it back in mapping the meridian to the diagonal in T2. This gives another
homology 3-sphere M'.

Now for any such surgery we have a surgery cobordism obtained as follows: take Mx
[0,1] and attach a 2-handle D 2 x D 2 t o M x { l } using /C. The resulting 4-manifold X
has two boundary components; one is M, and the other is the surgered manifold. As
explained in the previous lecture, each cobordism gives a homomorphism between
the instanton homologies of the ends. We apply this to the triple M, M', K related
by surgery cobordisms. For K we use a Zg-graded double cover I*(A") of the Z4-
graded I*(K). The result is:

Theorem (Floer): The triangle

h{M) —• h(M')

\ /

UK)
is exact.

It turns out that this can be proved by analyzing the effect of Dehn surgery on
the representation space of the fundamental group. No detailed understanding of
instantons on tubes is needed.

First, to see that for two consecutive maps a, /? in the triangle ker ft C ima holds,
one looks at the representation spaces 7£(-) = Hom(7r1(-), SO(3))/SO(3) for all the
manifolds involved. (For K the condition W2 ^ 0 has to be imposed.) Now each of
the manifolds M, M', K contains K D dK = T2. Thus for each of these manifolds
fc(-) C Tl(K) C H(dK) = T2/Z2. It can be shown that a suitable perturbation of
TZ(M') splits into 7l(M) and 7l(K) and that this implies ker fl C ima.

To prove ima C ker /?, i.e. /? o a = 0, one uses a connected sum decomposition
of the 4-manifold defining ft o a, in the spirit of Donaldson's vanishing theorem.
For example, one could use one of the arguments in [K], §6. The point is that this
4-manifold splits off CP2 as a connected summand, and that the relevant SO(3)-
bundle has W2 ^ 0 on CP2. This means that any 0-dimensional moduli space on
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the 4-manifold giving /? o a must be empty, which implies j3 o a = 0. For a more

detailed account of Floer's proof of this theorem, we refer to his article in these

Proceedings.

Finally, we note that the above theorem ties in nicely with Casson's work, described

in [AM]. Casson defined a numerical invariant A(M) for homology 3-spheres M by

counting, with suitable signs, the number of nontrivial representations of TTI(M) in

SU(2). In fact, \(M) is one half this number, and Casson showed that \(M) is

always an integer. Casson gave the following formula for the change of his invariant

under Dehn surgery:

A(M') = A(Af) + A'(/C),

where A'(/C) is a knot invariant extracted from the Alexander polynomial.

The relation of Casson's invariant with instanton homology is simply that the Euler

characteristic^/*(M)) = £(- l )*dim /;(M), is 2A(M), as proved by Taubes [T],

[Fl]. The mystery of the integrality of A now becomes the mystery of the evenness

of x(/*)- However, the above theorem, and the fact that going around the triangle

once gives a shift in the grading by —1, show

M')) = X(h(M))

Now working inductively from S3 to any given M using [L], we find that

is always even, as x(I*(S3)) = 0, and Dehn surgery changes the Euler characteristic

by 2x(/*(A')). Note that this proves A'(/C) = x(I*(K))-

Symplectic Instanton Homologies

There are deep analogies between gauge theory on 3- and 4-dimensional manifolds

as used in the previous two lectures, and the theory of J-holomorphic curves in

symplectic manifolds, as initiated by Gromov [G] and developed in [F2,3]. We

summarize some of these analogies in the following table, in which X is a smooth

oriented 4-manifold, and V is a symplectic 2n-manifold with symplectic form UJ.

1) A choice of conformal struc- A choice of almost complex

ture gives the ASD equation structure gives a 3-operator
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for maps

for connections on P.

2) If X = M x R, the ASD
equation is

dA

3) In fact, * M i ^ M ) is the grad-
ient of the Chern-Simons
function.

4) This setup for M3 x R leads
to instanton homology.

u: C -> V,

C a Riemann surface.

If C = S1 x R, the B-
equation is

Similarly, j | ^ - is the grad-
ient of the symplectic action
defined below.

Here we obtain an "index
cohomology" which turns
out to be J?*(V,Z2).

Roughly speaking, the space of connections on M3 on the left hand side is replaced
on the right by the loop space LV of V. Point loops correspond to flat connections,
and holomorphic maps S1 x R —• V to instantons on M3 x R. The variational
problem underlying the symplectic theory comes from the symplectic action function
a defined as follows. Fix a loop z0 E I/P, and set

a(z) = / u*u,
Slx[0,l]

where u: S1 x [0,1] —» V interpolates between z and ZQ.

In both of these theories the PDEs considered are elliptic, we have Fredholm equa-
tions and finite-dimensional trajectories. Moreover, the spaces of trajectories have
similar compactness properties.

Now let us look at some applications. Let H: S1 x V —> R be a time-dependent
Hamiltonian function on P. Then the critical points of

a(z)+ f H(t,z(t))dt
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are solutions of

i.e. they are the fixed points of the exact symplectic diffeomorphism defined by H.

Assume ^(V) = 0. Then it turns out that the cohomology of the complex generated

by the solutions of (*), with boundary operator defined by the flow lines of the

modified function, is isomorphic to f/"*(V, Z2). This gives the following

Theorem [F2]: Let V be a closed symplectic manifold with ^{V) = 0, and <f> an

exact diffeomorphism of V with nondegenerate fixed points. Then the number of

fixed points is at least the sum of the Z2-Betti numbers ofV.

This result was previously conjectured by V. I. Arnold, and special cases were proved

by Conley and Zehnder, Hofer and others. A more general theorem, covering the

case of degenerate fixed points, was obtained in [F3].

In fact, the above theorem can be recovered from a more general relative version

for Lagrangian submanifolds L C V. This says that if TT2(V, L) = 0, then

\Ln<f>(L)\ >

To deduce the fixed-point theorem above from this Lagrangian intersection result,

one considers V and the graph of a symplectomorphism as two Lagrangian subman-

ifolds of the product V xV. To prove the Lagrange intersection result Floer used a

homology constructed with a boundary operator defined by "holomorphic strips";

i.e.pseudo- holomorphic maps from [0,1] x R to V which map one boundary, {0} x R,

to L and the other, {1} x R, to <j>(L).These can be regarded as the gradient lines of

a function on the space of paths in V beginning on L and ending on <t>(L), and the

critical points of the function are the constant paths , mapping to the intersection

points of L and <j>(L),

Among the various interesting questions raised by these results, we mention

the following :

(1) Is it possible to remove the assumption on TT2 ? Evidence that this can be done in

some cases comes from Fortune's proof [Fo] of the above theorem for V = CPn.
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On the other hand the "relative theorem" is false for a nullhomologous small

circle on a surface (the Lagrangian condition is vacuous here). The methods

described in this lecture have been pushed through in the case that [LO] is zero

in 7T2(V), or more generally if, on ^ ( V ) , u is a multiple of the first Chern class

of V (defined by the almost-complex structure).

(2) What can be said for symplectic diffeomorphisms which are not exact, i.e. not

deformations of the identity? Similarly, can one estimate |LflZ/| by something

better than the intersection number of the homology classes of L, V if V ^

(3) Let S be a surface and V the representation space of TTI(S) in a compact

semisimple Lie group. The representations coming from a handlebody Hi with

boundary S make up a Lagrangian submanifold Li CV. Thus the representa-

tion space of a 3-manifold M is identified via a Heegard splitting with L\ HZ/2.

This is the approach that Casson took to define his invariant. It was sug-

gested by Atiyah [A] that this should extend to give a link between instanton

homology in the symplectic and 3-manifold cases. Can this be made rigorous?

(4) If, in answer to (2), instanton homology for Lagrangian intersections in the

non-exact case is a new invariant, are there exact sequences etc. which can be

used to calculate the homology groups?
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Invariants for Homology 3-Spheres

RONALD FINTUSHEL1 AND RONALD J. STERN2

1. Introduction
In this paper we survey our work of the last few years concerning invariants for

homology 3-spheres. We shall pay special attention to the role of gauge theory, and
we shall try to place this work in a proper context. Homology 3-spheres exist in
abundance. Let us begin with a list of some examples and constructions.

i. The binary icosohedral group / is a subgroup of SU(2) of order 120. The
quotient of its action on S3 is the Poincare homology 3-sphere P3 , and so TTI(P3) =
/. In fact, it is known that the only finite non-trivial group that can occur as the
fundamental group of a homology 3-sphere is / , and it is still unknown if P 3 is the
only homology 3-sphere E with fundamental group /. (But of course this depends
on the 3-dimensional Poincare conjecture.)

ii. The Brieskorn homology 3-sphere E(p, g, r) is defined as {z\ + z\ -f^J = 0} fl55

where p, #, r are pairwise relatively prime. It is the link of the Brieskorn singularity
of type O,tf,r) [B]. In fact £(2,3,5) = P3 , and if 1/p + 1/q + 1/r < 1 then
7ri(£(p,g,r)) is infinite.

iii. The Seifert fibered homology 3-spheres E = S(ai , . . . ,an) (see [NR]) are a
rather ubiquitous collection of homology 3-spheres. These 3-manifolds possess an
51-action with orbit space 52 . If S ^ S3, then the S1 -action has no fixed points and
has finitely many exceptional orbits (multiple fibers) with pairwise relatively prime
orders a\,..., an. If n > 3, then E ^ 53 and the orders classify E = S(ai , . . . , an) up
to diffeomorphism. If n < 2, then E = 53 . As our notation predicts, the Brieskorn
sphere E(p, <j, r) is Seifert fibered with 3 exceptional orbits of orders p, q, and r. In
fact the Seifert fibered homology 3-spheres are the links of singularities in Brieskorn
complete intersections [NR]. Also one can show that for S = E(ai , . . . , an) we have

(1.1) 7Ti(S) =< xu...,xn,h\h central; xf = h~bi,i = l,...,n;a?i • • • xn = h~b° > .

Here bo,bi,...,bn are chosen so that

i = l

where a = a\ • • • an. We say that S has Seifert invariants {b0; (ai, bi),..., ( a n , bn)}.
(These are, of course, not unique.)

Martially supported by NSF Grant DMS8802412
2Partially supported by NSF Grant DMS8703413
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iv. Given a knot K in S3 one can perform a 1/n , n G Z, Dehn surgery on K to
obtain a homology 3-sphere. The homology 3-spheres Y,(p,q,pqn ± 1) are obtained
by dzl/n surgery on the (p<,q) torus knot; the homology 3-spheres S(p, <?,r, s) with
qr — ps — ±1 are obtained by a ±1 surgery on the connected sum of the (q,r)
and (— p,s) torus knots. It is not known if every irreducible homology 3-sphere
can be obtained by a Dehn surgery on some knot in S3. However, every homology
3-sphere can be obtained as an integral surgery on a link in 53 . Recently, Gordon
and Luecke [GL] have shown that nontrivial Dehn surgery on a nontrivial knot
never yields S3. Furthermore, any homology 3-sphere obtained by Dehn surgery on
a knot is irreducible.

v. Given a knot K in S3 one can take the n-fold cyclic cover of S3 branched over
K, denoted Kn. This is a homology 3-sphere when | Yl7z=i A(u>*)l = 1> where A(t)
is the Alexander polynomial of K normalized so that there are no negative powers
of t and has non-zero constant coefficients and LJ = e~^. The homology 3-sphere
E(p, #, r) is the r-fold cover of the (p, q) torus knot and every E(a i , . . . , an) is the
2-fold cover of S3 branched over a rational knot (see [BZ]). Not every homology
3-sphere is a cyclic branched cover [My]. However, every 3-manifold is an irregular
branched cover of the figure eight knot [HLM].

Oriented homology 3-spheres Si and S2 are said to be homology cobordant if there
is an oriented 4-manifold W with dW = Ei ]J — E2 and such that the inclusions
Sj —> W induce isomorphisms in integral homology. Equivalently, Ei and E2 are
homology cobordant provided (—Ei)jtE2 bounds an acyclic 4-manifold. The set of
equivalence classes of oriented homology 3-spheres under this relation is denoted
0 ^ . With the operation of connected sum "#", ©^ is an abelian group, the
homology cobordism group of oriented homology 3-spheres. The additive inverse in
©^ is obtained by a reverse of orientation.

Until recently the only fact known concerning the group 0 ^ was the existence
of the Kervaire-Milnor-Rochlin homomorphism /i : ©3 —• Z2 defined as /^(E) =
sign(W4)/8 (mod 2) where W is a parallelizable 4-manifold with boundary E. The
proof that /i(E) is independent of the choice of W4 and depends only on the class
of E in ©^ utilizes Rochlin's theorem, which states that the signature of a closed
spin (i.e. almost-parallelizable) 4-manifold is divisible by 16. Since E(2,3,5) is the
Eg-singularity, /i(E(2,3,5)) = 1 and fi is a surjection.

The group ©^ has a distinguished history in the study of manifolds. Its structure
is closely related to the question of whether a topological n-manifold M n , n > 5, is
a polyhedron. In [GS] and [Mat] it is shown that Mn is a polyhedron if and only
if an obstruction TM £ #5(Mn;ker(// : ©^ —• Z2)) vanishes, and that if TM = 0
there are |i/"5(Mn;ker)u)| triangulations up to concordance. Furthermore, TM = 0
for all M if and only if there is a homology 3-sphere E with /i(E) = 1 and such
that EOS bounds a smooth acyclic 4-manifold. At the time that these papers were
written (circa 1978) a reasonable conjecture was that ©^ = Z2, so that ker/j, = 0.
To date, the existence of a homology sphere with the above properties is unknown.
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However, in §5 we shall utilize techniques from gauge theory to show that the group
O^ is infinite and, in fact, infinitely generated.

Another importance of Q^ arises in 4-manifold theory. One can study 4-manifolds
by splitting them along embedded homology 3-spheres. In §9 we shall give an ex-
ample of this approach. In the other direction, one can attempt to construct 4-
manifolds by studying the bounding properties of homology 3-spheres, for example
their image in 0 ^ . E a homology 3-sphere S bounds the 4-manifold U with inter-
section form /(/, and if —E bounds V with intersection form JV, then X = UUV has
intersection form I\j © Iy. Conversely, if the intersection form of a closed 4-manifold
X decomposes as I\ ©12, then there is a homology 3-sphere E in X splitting it into
two 4-manifolds W\ and W2 with intersection forms Ii and I2 respectively [FT].
This has been useful in constructing exotic 4-manifolds and group actions. For ex-
ample in [FS1] it is shown that E(3,5,19) bounds a contractible manifold W4 and
that the double of W4 U* W4 along the free involution t : E —> E contained in the
S1 -action on E is S4 with a free involution r (obtained by interchanging the copies
of W4) that is not in any sense smoothly equivalent to the antipodal map. Thus
S4/r is a smooth homotopy RP4 that is not s-cobordant to RP4. Other related
constructions are given in [FS2].

Prior to the 1980's there were few invariants for homology 3-spheres. One had
the Kervaire-Milnor-Rochlin invariant discussed above and the rj and p invariants
introduced by Atiyah-Patodi-Singer [APS1-3] and discussed in §6. Another, not so
well-used, invariant is the Chern-Simons invariant discussed in §3. As we shall see,
it is the Chern-Simons invariant that motivates many of the exciting new insights in
3-manifold topology. Of course the fundamental group also plays an important role
in 3-manifold topology. However, its role was not underscored until the introduction
of Casson's invariant in 1983.

2. Casson's Invariant
It is natural to study TTI(E) to obtain invariants of a homology 3-sphere E. One

way to do this is via representation spaces. Consider the compact space 7£(E)
of conjugacy classes of representations of TT^E) into SU(2). "Generically" this
is a finite set of points which can be assigned orientations. Casson's invariant,
A(E), is half the count (with signs) of those points corresponding to nontrivial
representations. (Of course the construction of this invariant when 7£(E) is not
finite is considerably more difficult. See [AM] for an exposition.) Casson showed
that A(E) = //(E) (mod 2) and used this new invariant to settle an outstanding
problem in 3-manifold topology; namely, showing that if E is a homotopy 3-sphere,
then /i(E) = 0.

The natural correspondence

representations of TTI(E) into 517(2) flat SU(2) connections over E
/V^ ZJ ) == ; ; —̂̂  ; "

conjugation gauge equivalence
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indicates that there should be a differential-geometric approach to the definition of
A(£), which was discovered by Taubes [T2]. ("Gauge equivalence" means equiv-
alence under the action of the automorphism group of the (trivial) S77(2) bundle
supporting these connections.) First fix a Riemannian metric on E. Then from this
point of view, one computes A(S) by counting equivalence classes of nontrivial flat
connections with sign given by the parity of the spectral flow of the elliptic operator:

Db : (J2£ 0 fl^) ® «u(2) -> (J2& © 12 )̂ ® su(2)

given by (<x,fl) »—• (c/£/?,c/&a + *c/&/?) as the connection b varies along a path from
the trivial connection 0 to the given flat connection a, and db denotes the covariant
derivative corresponding to the connection b and dl is its formal adjoint. The
spectral flow is the net number of negative eigenvalues of Df, which become positive
as b varies along the path. (Since D$ has three zero eigenvalues, one must fix
a convention for dealing with them.) At a flat connection, a, the kernel of the
operator Da measures the dimension of the Zariski tangent space of ?£(£).

Let AY be the space of all 517(2) connections over E, and let BY be the quotient
of AY modulo gauge equivalence. An appropriate Sobolev norm on AY, turns BY,
into a Hilbert manifold (with a positive codimensional singular set which meets
7£(E) only in the trivial connection). The tangent space to AY at a point a is
fi^ <g)fiu(2), and the normal space to the orbit of a under gauge equivalence may be
identified with the solutions of the equation d*a(l = 0. Thus, loosely speaking, we
may view the map sending a connection a to the Hodge star of its curvature *Fa as
a vector field on AY whose critical set consists of the flat connections. In the next
section we shall see that this is actually the gradient vector field of a function on
AY - The Hessian of this function at a is thus *da, and at a critical point it preserves
the equation d^/3 = 0. It is easy to see that for a nontrivial flat connection a, the
kernel of *da on {d£/? = 0} may be identified with the kernel of Da. Since Da is
self-adjoint, we can add a compact perturbation term so that the corresponding
vector field has a zero-dimensional critical set. This explains the statement above
that 7£(£) is generically a finite set of points.

3. Chern-Simons Invariants
Let S be a homology 3-sphere. Each principal 5!7(2)-bundle P over E is trivial,

i.e. is isomorphic to E x SU(2). As we have alluded in the last section, given a
trivialization, one can identify the space of connections AY of Sobolev type L\ with
the space L^(fi1(E) ® *u(2)) of 1-forms on S with values in the Lie algebra 5u(2)
in such a way that the zero element of AY corresponds to the product connection
0 on E x SU(2). The gauge group of bundle automorphisms of P can be identified
with Q = L^_|_1(E, SU(2)) acting on AY by the nonlinear transformation law

g(a) =gag ~1
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We shall assume that k +1 > Z/p so that Q consists of continuous maps. The group
Q is not connected; in fact 7ro(£/) = Z given by the degree of g : S —> SU{2). The
quotient /?£ = A%/G can be considered as an infinite dimensional manifold except
near those connections a for which the isotropy group

Qa = {g e g\g(a) = a}

is larger than {dbid}. Such connections are called reducible. For example, the trivial
connection 0 is reducible since its isotropy group consists of all constant maps
g : E —+ SU(2). Irreducible connections form an open dense set B£ m ^s* The set
of flat connections is invariant under Q.

Given any connection <z, we can take a path 7 : J = [0,1] —» Az from the trivial
connection 0 to a. This path determines a connection Ay in the trivial SU(2) bundle
over E x / . Let

This definition is independent of the choice of path 7 because -4s is contractible.
However, the function CS(0, •) : A% —* R does depend on the trivialization of P.
If 0' is the trivial connection with respect to another trivialization, and 7' is a
path in A% from 0' to a, we can glue the connections A1 and Ay together over
E x {0} and along E x {1} via a gauge transformation to obtain a connection A in
an 5J7(2)-bundle E over E x 51 and

CS(0, a) - CS(0', a) = -^ I Tr(FA A FA) = c2(E)

an integer. A similar argument shows that if g £ Q then CS(01g(a)) = deg(#) +
CS(0,a), so that CS(0, •) descends to a function CS : B% —*• R/Z, independent of
the choice of trivialization. It has an L2-gradient given by a «—> *Fa; hence it is a
function on S(S) whose critical set is 7£(S). At an a 6 7£(S), the Hessian is *da.
This R/Z invariant can be regarded as a (mod Z) charge of the connection A7, for
Tr(FA^ A FAy) is the Chern-Weil integrand.

Chern-Simons invariants were overlooked by low dimensional topologists since it
was shown in [APS 1-3] that the pa invariants discussed in §6 (well-defined as real
numbers) were congruent to CS(a) mod Z. The only utility of CS(a) appeared
to be that it determined the nonintegral part of pa> As it turns out, it is the
Chern-Simons functional that plays a central role in the modern understanding of
homology 3-spheres. As a simple starting point, noting that 7£(S) is compact, we
define

f(E) = min{CS(a)|a <E ft(E)} G [0,1).

We shall see in §5 that coupled with the techniques of [FS3] these invariants are
extremely useful.
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4. Representations of E(ai , . . . , an)
A Seifert fibered homology sphere £ = £(«! , . . . , an) admits a natural 5 1 -action

whose orbit space is 5 2 . Orient E as the link of an algebraic singularity or equiva-
lently as a Seifert fibration with Seifert invariants {&o; (a;, &;)> 2 = 1> • • • >n} as in §1.
With this orientation S bounds the canonical resolution, a negative definite simply
connected smooth 4-manifold. Let W = W(cti,... , an) denote the mapping cylin-
der of the orbit map. It is a 4-dimensional orbifold with boundary dW = S and
W has n singularities whose neighborhoods are cones on the lens spaces L(aj,6,)
(see [FS3]). If we orient W so that its boundary is — E its intersection form will
be positive definite. Let Wo denote W with open cones around the singularities
removed. Then

ic^Wo) = 7 n ( S ) / <h> = T{au . . . , a n )

=< xi,...,zn|a^1' = l ,i = l,...,n; xi • -xn = 1 > .

When n = 3 this is the usual triangle group and in general it is a genus zero Fuchsian
group. The element h G ̂ i(E) is represented by a principal orbit of the 5 1 -action.
It is central, and for any representation a of TTI(S) into 5*7(2) we have a(h) = dbl.
Thus a gives rise to a representation of IC\(WQ) into 50(3). Conversely, any flat
5*0(3) bundle over W$ restricts to one over E, and there it lifts to a flat 5*7(2)
bundle since S is a homology sphere. Thus 5*7(2)-representations of TTI(£) are in
one-to-one correspondence with 50(3)-representations of 7T1(W0)-

Given a G 7£(E), let Va denote the flat real 3-plane bundle over WQ determined
by a. When V a is restricted over L(a,j,bj) C dWo it splits as Laj ® R where R
is a trivial real line bundle and LQj is the flat 2-plane bundle corresponding to
the representation 7Ti(L(aj,bj)) —> Za. of weight / j , where &(XJ) is conjugate in
5*7(2) to e*il>/a>. (The presentation (1.1) shows that a(xj) is an ayth or 2a^th
root of unity.) The preferred generator of 7Ti(L(aj,bj)) corresponds to the deck
transformation

of 5 3 where C = e2lzjfai. Thus LaJ is the quotient of 5 3 x IR2 by this laj -action.
The bundle LQ j extends over the cones cL(aj,bj) as (C2 x R2) 0 R, an 50(3)-

F-bundle whose rotation number over the cone point is lj (with respect to the
preferred generator). So Va extends to an 50(3) V-bundle over W. In [FS6] we
determine which (h^hih) can arise for representations of TTI(WQ), n = 3, thus
determining 7£(E) for all Brieskorn spheres E.

Here is another way to think about representations a : TTI(E) —> 5*7(2). After
conjugating in 5*7(2), we may assume that a(xx) = enih/ai G 5 1 C 5*7(2). For
j = 1, . . . ,n let Sj be the conjugacy class of enilj/a>. This is a 2-sphere in 5*7(2)
which contains a(xj). So a(xix2) lies on the 2-sphere a(xi) • 52, and generally,
a(xi ...XJ+I) lies on the 2-sphere a{x\ ...XJ) • Sj+\. Finally, since a(h) = ±1,
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the presentation (1.1) implies that a(x\ . . . xn) = ±1. Thus a corresponds to a
mechanical linkage in SU(2) with ends at enill^ai and a{x\ . . . xn) = ±1 and with
arms corresponding to radii of the spheres a(x\,..., Xj) • 5j+i. (See Figure 1, where

Figure 1

Representations TTI(E) —> SU(2) thus correspond to choices of (Zi , . . . , / n) such
that a linkage from e71"1'1^1 to a(#i .. .xn) = dbl exists; numerical criteria for this
are given in [FS6]. The connected component of any a £ 7^(E) is the correspond-
ing component in the configuration space of mechanical linkages modulo rotations
leaving S1 invariant.

For example, consider a Brieskorn sphere E(a!,a2,o3). A representation corre-
sponds to a linkage as in Figure 2.

Figure 2

This linkage is rigid modulo rotations leaving S1 fixed. Thus 7£(E(ai,a2, 03))
consists of a finite number of isolated representations. More generally we have:
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PROPOSITION 4.1 [FS6]. Let S = E(ai,...,an). If a : TTI(E) -» 5(7(2) is a rep-
resentation with a(cii) ^ dzl for i = 1, ...,ra, and a(aj) = ±1 for i = m -f 1, ...,n,
tnen tne connected component Ha of a in the space 7?-(E) is a closed manifold of
dimension 2m — 6.

In [FS6] we conjectured that any connected component of 7£(E) has a Morse
function with critical points only of even indices. This was proved to be the case
in [KKl] using the mechanical linkages discussed above. Furthermore, these com-
ponents were also shown to be rational algebraic manifolds in [BO] and Kahler
manifolds in [FuS].

One can show further that, as the critical set for the Chern-Simons function,
7£(£) is nondegenerate. That is, the Hessian +da of the Chern-Simons function is
nondegenerate normal to 7£(S). Our next goal is to compute the Chern-Simons
invariant of a representation a : 7Ti(E(ai,..., an) —> SU(2). Our technique will
work with the corresponding SO (3 )-represent at ion a1. li A is an 5Z7(2)-connection
which interpolates from the trivial 5C/(2)-connection to a, and if A1 is an 50(3)-
connection interpolating from the trivial 50(3)-connection to a', then the Chern-
Simons invariant of a is obtained by integrating the Chern form of A, i.e. CS(a) =
fzxjc2(A) G R/Z; whereas CS(a') = JzxjPiiA') is obtained by integrating the
(50(3)) Pontryagin form of A1. We have CS(a') G R/4Z since Pi(A') = 4c2(A) if
A is a lift of A' (c.f. [HH]).

An 50(2) V-vector bundle L over W is classified by the Euler class e G H2{Wo) =
Z of its restriction over Wo = W — (neighborhood of singular points). Let Le denote
the V-bundle corresponding to the class e times a generator in #2(Wo,Z), and let
B be any connection on Le which is trivial near dW. Then the relative Pontryagin
number of Le is ^- = fwpi(B) where a = a\ • • • an. Let A be the SO (3)- connect ion
on Va over WU (E x R+) = W which is built from the flat (V-) connection a1 over
W and from a connection A' over S x R + which interpolates from a' to the trivial
connection. The rotation numbers U of the representation a' depend on choices
of generators for the fundamental groups of the lens space links of W. These are
then determined by the Seifert invariants of E. We shall suppose that S has Seifert
invariants {6Q; («I? &I)5 • • • >(an,6n)} with 6Q even. (This can always be arranged.)
If one of the a[s is even, assume it is ai, and arrange the Seifert invariants so that
the &;, i ^ 1, are even. This specifies rotation numbers U for ot . Let e = J3"=1 h^:
(mod 2a), and let Le be the corresponding 50(2) V-vector bundle. Then stabilize
to get an 50(3) F-vector bundle Le ® R with connection Ae which is trivial over
the end E x R+.

Truncate W by removing neighborhoods of the singular points, leaving Wo, and
let SWo = dWo \ E (a disjoint union of lens spaces). Let E be the 50(3) vector
bundle over WQ carrying the connection A, i.e. E is the restriction of Va. Also let
Ee^o be the restriction of Ee over Wo, and let YQ — WQ USW0 WO.

Over Yo we can construct the 50(3) vector bundle E U E by gluing by the
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identity over SWo, and we obtain the connection "A U A". The relative Pontryagin
number of E U E is JYQ PI(A U A) = 0, since orientations get reversed. The number
e is chosen so that it is possible to form the bundle E U Ee$ over Yo, gluing by
a connection-preserving bundle isomorphism over 8WQ. In [FS6] it is shown that
w2(E U E) — w2(E U E€i o). Then, since the connections A U Ae$ and A U A are
asymptotically trivial, we have (just as we would for a closed 4-manifold) Jy pi(AU
A) = JYoPi(A U Ae,0) (mod 4Z). Thus

f f f e2

0 = / pi(A) — I pi(Ae) = I Pi(A) (mod 4Z).
Jw0 Jw0 JWo a

But
I pi(A)= I pi(a')+ I Pi(A') = 0-CS(a').

Hence we have

THEOREM 4.2. Let £ = £(ai,. . . ,an) and let a be a representation of TTI(£) into

SU(2) with associated representation a1 into 50(3). Then CS(a') = - ^ mod 4Z

and CS(a) = — ~ mod Z where e = Y17—1 "̂f7 (m°d 2a).

Another very interesting technique for computing Chern-Simons invariants is
discussed in [KK2]. It applies to homology spheres which are obtained from surgery
on a knot.

5. Gauge Theory for E ( a i , . . . , a n )
The success of Donaldson's approach to 4-manifolds [Dl-4] has motivated the

use of similar techniques in the study of homology cobordism properties of homology
3-spheres. The approach taken in [FS3] is to study the mapping cylinder, W, of
the orbit map S (a i , . . . , an) —> S2, which appeared prominently in the last section.
Suppose, for example, that £ (a i , . . . , a n ) is the boundary of a simply connected,
positive definite 4-manifold U. If we use the orientation on W which was described
in the last section we can form the union W U J7, obtaining a simply connected
orbifold X. Even though X is not a manifold, it is a rational homology manifold,
and thus has a well-defined rational intersection form, with respect to which it is
positive definite. Let XQ = Wo U U. There is a preferred class UJ £ H2{X\T) =
H2(Xo,dXo; Z) which is represented by the 2-sphere orbit space in W', and u2 = K
As in §4, we form the 50(3) V-bundle L^ 0 R over X, where L^ is the 50(2)
F-bundle whose Euler class in H2{XQ) is Poincare dual tow. In [FS3] we studied
the moduli space M of self-dual connections on E^. For a fixed metric on X this
is the solution space of the equation FA = *FA in Bx> In [FS3] we showed that
(perhaps after a compact perturbation) M. is a compact manifold except at the
single reducible self-dual connection, which has a neighborhood homeomorphic to
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a cone on a complex projective space. Its formal dimension as computed by the
index theorem is

_ . Z ^—v Z v—v TTaK /TTfcx . o/^^x
i u a i , . . . ,an;u>) = 3 + n + / — > c o t ( — ^ - J c o t f — J s i n f — ) .

a *—J a{ *—** CL\ a,* o,{

If this integer is positive, it will actually give the dimension of M.. (Note that
since dimA^ = iJ(ai , . . . ,an;o;), the existence of the singular point in M. implies
that the dimension i?(ai, . . . , an;u;) is odd. This argument applied to W, consid-
ered as an orbifold with a noncompact end, rather than to X works independently
of the bounding properties of E(a i , . . . , an). In fact, it is shown in [FS3] that
i^(ai,. . . ,an;o;) is odd even when it is negative.) If i?(ai, . . . ,an;u;) > 0, this
means that the complex projective space which is the link of the unique singularity
of M. is null-cobordant. In the case that we have a CP2 m this is an immediate
contradiction, for CP2m has even Euler characteristic and thus cannot bound a
compact manifold. In the case of CP 2 m + 1 one can get a similar contradiction using
the so-called "basepoint fibration". Actually one has a slightly stronger statement:

THEOREM 5.1 ([FS3]). If R{au. . .,an;u>) > 0 then E(a l 5 . . . , a n ) cannot bound a
smooth positive definite 4-manifold whose first homology has no 2-torsion.

Easy calculations show that R(2, 3, 6k - 1) = 1 for all k > 0.

COROLLARY 5.2 ([FS3]). If R(au... ,an;u?) > 0 then E(a i , . . . , a n ) has infinite
order in the homology cobordism group 0|*.

PROOF: Suppose a multiple mS(a i , . . . , an) (connected sum) is trivial in 0 ^ , then
it bounds an acyclic 4-manifold U. Since —[/is also acyclic we may assume that
m > 0. By attaching 3-handles to U we obtain a 4-manifold V whose boundary
is the disjoint union of m copies of E(ai , . . . ,an) , and with H\(V) = 0 = H2(V).
Recall that E(a i , . . . , a n ) bounds a negative definite simply connected 4-manifold
— its canonical resolution, N. Now attach m — 1 copies of — N to the boundary
components of V to obtain a positive definite 4-manifold W with H\(W) = 0 and
with dW = E(a l 5 . . . , an). This contradicts Theorem 5.1.

Thus we see that the Brieskorn spheres E(2, 3,6fc — 1), k > 0 all have infinite
order in 0 ^ . In particular this is true for the Poincare homology sphere E(2,3,5).
For other interesting results concerning the moduli spaces of self-dual connections
over orbifolds one should read the work of Furuta [Ful],[Fu2].

Let us now return to the invariant r(E) defined in §3. Here we shall change
its definition in order to allow us to use SO(3)-representations and the orientation
conventions which we have adopted. Hence define

r(£) = min{-CS(a')|o' : ^ ( S ) -> 50(3)} G [0,4).



Fintushel and Stern: Invariants for homology 3-spheres 135

This may be interpreted as follows. Fix a trivial connection 0 so that we may
view the Chern-Simons function as integer-valued on A%. The application of a
gauge transformation g to an 50(3) connection changes its Chern-Simons invariant
by 4 • deg(g). So gauge equivalent to a given flat connection there is a unique
connection a whose Chern-Simons invariant CS(0,a) calculated with respect to 9
lies in the interval (—4,0]. We are minimizing — CS(0, a) over the compact space
7£(E). For Brieskorn spheres either of the two techniques for finding representations
described in §4 will determine all of the (finitely many) numbers e that occur in
Theorem 4.2, and thus give us a finite procedure for the calculation of r(E(p, q, r)).
In fact Theorem 4.2 implies that r(S(p, q,r)) is the minimum of all j— G [0,4)
where e is chosen as in that theorem. Note that p^rr(E(p, q,r)) G Z.

For example, for p and q relatively prime, r(£(p, q,pqk — 1)) = l/(pq(pqk —
1)), for k > 1. One way to see this is to use one of the algorithms presented in
§4 to find a representation with associated Euler number e = 1. Another way
to see this is to consider the orbifold W which is the mapping cylinder of the
orbit map H(p,q,pqk — 1) —» 52 and study the moduli space M. of asymptotically
trivial self-dual 5O(3)-connections with Pontryagin charge ~ in the V-bundle E =
I i ©R over W. (Here, and throughout the rest of the paper, we shall write W
to mean I f U S x R+.) Then dim.M = R(p,q,r\u) = 1 (cf. [FS3]), so that
(perhaps after a compact perturbation) M. is a 1-manifold with a single boundary
point corresponding to the unique reducible self-dual connection. The component
of Ad containing the reducible connection must then have a noncompact end. This
indicates that a self-dual connection "pops off" the end [Tl,§10]. That is, there
is a sequence of connections in M. which limits to the 'union' of a nontrivial self-
dual connection C over S x R which is asymptotically trivial near +oo and is
asymptotically a flat connection a1 near — oo together with a self-dual connection
over W which is asymptotic to OL . Since C is self-dual and nontrivial, its charge
"dr5" /EXD8 ^ ( F C A FC) > 0. Now for any asymptotically trivial connection A in E
over W we have ^ fw Tr(FA A FA) = e2/(pq(pqk - 1)) = l/(pq(pqk - 1)). Then
0 < -CS(0,a') = ĝ y / E x R Tr(Fc A FC) < l/(pq(pqk - 1)), so that -CS(0,a') =
l/(pq(pqk - 1)).

Our result of Corollary 5.2 was expanded by Furuta [Fu2], who showed that 0 ^
is infinitely generated. Below is the proof of Furuta's result which we gave in [FS6]
using the r-invariant. (Furuta's proof is similar.)

THEOREM 5.3 (FURUTA). Let p and q be pairwise relatively prime integers. The
collection of homology 3-spheres {^(p^q^pqk — l)\k > 1} are linearly independent
over Z in ©|*.

PROOF: Fix k > 2 and suppose that T,(p,qypqk — 1) = X)j=i nj^{Pi^'>P^J ~~ 1) m

0 ^ , where rtj G Z and rik < 0. Then there is a cobordism Y between S(p, q,pqk — 1)
and the disjoint union Uj=i njE(p,g,]?£/ — 1) with Y having the cohomology of a
(1 + ̂  \rij |)-punctured 4-sphere. Now cap off the — rik copies of — E(p, q,pqk — 1) by
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adjoining to Y the positive definite manifolds —Nk bounded by —T,(p^q^pqk — 1),
where Nk denotes the canonical resolution. Let V be the resulting positive definite
4-manifold, and, as usual, let W denote the mapping cylinder of the orbit map
Y,(p,q,pqk - 1) -> S2. Finally, let X = W US(p>g>pgjfe_i) V and consider the 50(3)
V-bundle E = L (&U over the positive definite orbifold X, where the Euler class
of L comes from the dual of u>. For any asymptotically trivial connection A in E
over X we have g^j Jx ^(^A A FA) = l/(pq(pqk — 1)). The moduli space M of
asymptotically trivial self-dual connections in E has dimension i?(p, q,pqk — 1; 1) =
1, so that (perhaps after a compact perturbation) there is a component of M. which
is an arc with one endpoint corresponding to the reducible self-dual connection. As
in the argument above, the noncompactness of M. implies that there is a nontrivial
self-dual connection C over Y = ±E(p, q,pqj - 1) x R, for some j < &, which is
asymptotically trivial near +oo and is asymptotically a flat connection a' near —oo.
Also, there is a self-dual connection B over X which is asymptotically flat at the
ends of X- so & Jx Tv(FB A FB) > 0. However, pq(plk-i) = s^ Ix T r ( ^ A F*) =
3 ^ JY Tv(FcAFc)+^ fx TV(FBAFB) > r(E(p, ^ , ^ - 1 ) ) + ^ Jx Tr(FBAFB) >
pg(plj-i)i a contradiction.

Other non-cobordism relationships can be detected by the explicit computa-
tions of r(S(p,g,r)). For example, r(S(2,3,7)) = 25/42 and r(-E(2,3,7)) =
4 - 121/42 = 47/42. Thus, the proof of Theorem 5.3 shows that 2(2,3,5) is not a
multiple of E(2,3, 7) in 0 ^ . Further uses of these r invariants will be given in §7.

6. r] and p-Invariants
Atiyah, Patodi, and Singer introduced in [APS 1-3] a real-valued invariant for flat

connections in trivialized bundles over odd-dimensional manifolds. These invariants
arose from their study of index theorems for manifolds with boundary. In this
section we shall describe these invariants and show how they have been used in low
dimensional topology.

Let B be a self-adjoint elliptic operator on a compact manifold M. The eigen-
values A of B are real and discrete. Atiyah, Patodi, and Singer [APS1] define the
function

rj(s) = £(signA)|Ar.

In [APS1] it is shown that rj(s) has a finite value at s = 0. Note that for a finite-
dimensional operator -B, the 77-function evaluated at 0, ^(0), counts the difference
between the number of positive and negative eigenvalues of B.

Now let 2 be a 3-manifold with a flat connection a in a trivialized £7(n)-bundle
over 2. Let Q^d denote the space L^(0(2) (8) un), and consider the self-adjoint
elliptic operator

Ba = icda - da*: o° d e nld -> ft°d 0 ^ d .
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Since the operator Ba involves the • operator, it depends upon a Riemannian metric
on S and changes sign when the orientation is changed. The importance of the 77-
invariant to low-dimensional topology is due to the role that the 77-invariant of Ba

plays in the computation of twisted signatures of 4-manifolds with boundary.
Let X be a 4-manifold with boundary E and let fi : TTI(X) —> U(n) be a unitary

representation of its fundamental group. This defines a flat vector bundle Vp over
X, or equivalently a local coefficient system. The cohomology groups H*(X; Vp)
and H*(X, E; Vp) have a natural pairing into C given by cup product, the inner
product on Vp, and the evaluation of the top cycle of X mod S. This induces
a nondegenerate form on H*(X; Vp), the image of the relative cohomology in the
absolute cohomology. On H2{X\Vp) this form is Hermitian and the signature of
this form is denoted by sign/?(X).

Assume that the metric on E is extended to a metric on X which is a product
near S and that the restriction of f3 to S is a. It is shown in [APS3] that

signp(X) = n L(px) - rya
Jx

(0)

where L(pi) is the Hirzebruch L-polynomial of X. Thus rya(O) may be viewed as
a signature defect. However, it depends on the choice of a Riemannian metric
on E. To resolve this dependency, Atiyah, Patodi, and Singer define the reduced
^-function by

Pa(s) = r}a(s) - rje(s)

where 0 is the trivial U(n) connection. An application of the above signature
formula to S x / shows that pa(0) is independent of the Riemannian metric on S
and is a diffeomorphism invariant of S and a. It is denoted by pa(E). Furthermore,
if E = dX with a extending to a flat unitary connection f) over J\T, then

(6.1) />.(E) = n • sign(X) - sign^X)

The pa-invariants were made important in low dimensional topology via the
Casson-Gordon invariants for knots [CG]. We shall next discuss these invariants
and indicate how gauge theory can enter into their considerations.

A smooth knot K in S3 is called slice if there is a smooth 2-disk D C B4 with
K = dD. Oriented knots ifo, K\ are cobordant if there is a smoothly embedded
oriented annulus C in 53 x I with dC = K\ x {1} — Ko x {0}. Addition of cobordism
classes of oriented knots is given by connected sum, resulting in the knot cobordism
group ©i in which slice knots represent the trivial element.

Suppose the knot K C 5 3 bounds an oriented surface F C S3. Thicken F to an
embedding F x I C S3. Then given x,y e Hi(F), let \(x,y) = linking number of
a; x 0 and y x 1. This defines the Seifertform, a bilinear form A : Hi (F) x #1 (F) -> Z,
such that A(x,y) — A(y,#) is the intersection number of x and y. It is called null-
cobordant if it vanishes on a subgroup of H\(F) of dimension ^dimHi(F)). J.
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Levine has proved (in all dimensions) that if K is slice, then any Seifert form for K
is null-cobordant. Such a knot is called algebraically slice. Furthermore, in higher
(odd) dimensions the analogous condition is necessary and sufficient for K to be
slice.

A knot K is called a ribbon knot if it bounds an immersed disc (ribbon) in S3

each of whose singularities consists of two sheets intersecting in an arc which is
interior to one of the sheets. Ribbon knots are slice, for one can push the interior
of the ribbon into BA and then deform slightly a neighborhood of each arc. An old
problem of Fox, which is still unresolved, asks whether every slice knot is ribbon. In
[CG], Casson and Gordon present an invariant for detecting when an algebraically
slice knot fails to be ribbon and a modified version of this invariant that detects
when it fails to be slice. We discuss these ribbon invariants and indicate how gauge
theory makes them slice invariants.

Let L be the double branched covering of the knot K in S3. If K is slice, then
the double covering of B4 branched over the slicing disc is a 4-manifold W with
H*(W;Q) = 0, and if the image of H^L) in HX(W) has order m, then |# i (£) | =
m2. Furthermore, if the slicing disc is obtained by deforming a ribbon, then ^\{L)
surjects onto TTI(W).

Let x : H\{L) —> 17(1) be a representation with image the ra-th roots of unity,
Cm . Then x ls induced by a map L —> 7^(Cm,l). Since O3if(Cm , l) is torsion,
rL bounds a compact 4-manifold W over if(Cm , 1), for some r > 0. Thus the
representation x factors through H\{W) and induces a flat U(l) bundle Vx over W.
Then the Casson-Gordon invariant a(K, x) is defined by

(6.2) a(K, X) = J(sign(W0 - signx(W)).

Hence it follows from (6.1) that cr(K, x) = Pxi-^)-
Casson-Gordon invariants were originally applied to those knots K in S3 whose

double branched covering is a lens space L = L(p, q). This contains the collection
of 2-bridge knots. If a knot K in this class is ribbon, then TTI(L) = Zm2 and
TTI(W) = Zm. Using W to compute <r(K,x)i o n e g e t s t n a t H0(W] Vx) = 0 if x 1S

non-trivial, and since the m-fold covering of W is simply-connected, Hi(W\ Vx) =
Hs(W;Vx) = 0 (this is where the ribbon assumption is used). Also the Euler
characteristic of W with Vx coefficients is the same as its Euler characteristic with
Z coefficients, namely 1; so that H2(W',VX) has dimension 1. Thus a(K,x) — ±1.
Calculations then show that there are algebraically slice 2-bridge knots K for which
there is a x with <J(A", x) ifi i l ; hence they are not ribbon. Casson-Gordon then
proceed in [CG] to refine these invariants. By considering infinite cyclic coverings
they define invariants of (K, x) ^na^ show that these K are also not slice in the case
that m is a prime power order.

At this point gauge theory can enter the picture to show that in fact if K is slice,
then cr(K, x) = =tl f° r anY m - This was done in [FS4] as follows. Consider the
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orbifold X =cone(L) UL W. The bundle Vx over W extends as a flat V-bundle over
X. The flat connection determined by Vx is both self-dual and anti-self-dual. Now
consider the moduli spaces M+ and M- of self-dual and anti-self-dual connections
in the 5O(3) V-bundle Ex — Vx © R. Each contains the reducible flat connection
determined by \ a nd ls compact (since these flat connections are representations
into a compact group). Using the index theorem one computes that the formal
dimension of M± is —2 it cr(K, x)- As in the proof of Theorem 5.1, this is an
odd integer. If dim-M± > 0, then a perturbation of the equations has a moduli
space that is a compact manifold of dimension dimM± with an odd number of
singularities of the form a cone on a complex projective space, and as in (5.1), an
odd number of complex projective spaces cannot bound in B. Thus the formal
dimensions of both M±, are negative, and so &{K, x) — ±1-

This program was extended by G. Matic in [Ma] and independently D. Ruberman
in [R]. They show that if L is a rational homology sphere which has an integral
homology sphere as a finite cover, and if L bounds a rationally acyclic 4-manifold W
which has a character x with image Cm, then the same conclusion holds. The main
new ingredient is the gauge theory for manifolds with ends developed by C. Taubes
in [Tl]. Rather than coning off the boundary, the idea is to add an open collar
to W4 and consider self-dual and anti-self-dual connections that are asymptotically
flat. With the results of [Tl] in place, the proof is formally the same.

Note that the only pa-invariants that were used in the above set-up were those
associated with representations a : ^\{L) —> U{2) that factored through a finite
group. In general, there are many irreducible representations. What role do these
invariants play in the study of Q\l We should keep this question in mind during
the next few sections, where these irreducible representations play an essential role.

7. An Integer Instanton Invariant
Let S be a homology 3-sphere, and let a1 : 71"! (E) —* 50(3) be an irreducible

(i.e. non-trivial) representation, which corresponds to a flat connection in the trivial
bundle over E. Fix a trivialization of the 5O(3)-bundle over E; this gives us a fixed
trivial connection 9. The Chern-Simons invariant CS(0,a') of a' is the Pontryagin
charge of a connection on the trivial bundle over E x IR that tends asymptotically
to af near +oo and to 6 near —oo. (Recall from §3 that this calculation takes place
in A^,-, not in B%.) Let c/(E) denote that connection gauge equivalent to a1 with
-CS(0,a'(E))G[O,4).

We can associate an integer to the representation a1 as follows. Let M(a'(Y,),0)
denote the moduli space of self-dual connections over E x IR whose Pontryagin charge
is —CS(^,a'(S)) and that are asymptotically c/(S) near —oo and 0 near +oo. Let
dimA/((a/(S), 9) denote its virtual dimension as predicted by the index theorem and
define

I(a') = dimA4(c*'(E),0) + ha>
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where ha> is the sum of the dimensions of Hl(E; Va/), i = 0,1. This definition does
not depend on our original trivialization 0, for if 0 is changed by a gauge equiv-
alence, then a'(S) will change by the same gauge equivalence. When considered
with appropriate boundary conditions (c.f. [APS1],[T1]), the self-duality operator
(whose index gives the formal dimension of the above moduli spaces) restricts to the
boundary of a smooth 4-manifold as a self-adjoint elliptic operator. Let rj(s) denote
its 77-function. The Atiyah-Patodi-Singer index theorem can be used to compute
I(a '):

I(a') = / i ( S x R)cA(VL)c&(g) - \{h9 + rje(O)) + ±(V(E) +

where the forms A(Y, x R) and c/i(V_) are computed from the Riemannian connec-
tion on E x R (choose a product metric, say) and 0 is the 50(3) bundle over S x R
carrying the connection <*'(£). Recalling that pa> = T]a'(0) — 770(0) and noting that
h$ = 3 we have

(7.1) I(a') =

JSxR

The integral term of (7.1) is

.)ch(g) = 2 I pi(0) + £ / (C-S)
SxW JExIR

where C and 5 are the L-polynomial and the Euler form of S x R. Since
is our 5O(3)-bundle over S x R with connection c/(E), we have
-CS(0,a'(S)). We then get as in [APS1,§4] that the integral term is

(7.2) - | |

Combining (7.1) and (7.2) we have

(7.3) I(a') = -2CS(«, a'(E)) - | + * ^ > + ^ 6 Z.

We now have a relationship between the Chern-Simons invariants introduced in
§3 and the pa-invariants of the self-duality operator, namely

4CS(a') = pa> + hQ' - 3 mod 2Z.

Like the Chern-Simons invariant, the integer invariant I(ot) is useful in detecting
when homology 3-spheres are not homology cobordant.
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In [FS6] we computed /(a ') for a' G 7£(E(p, q,r)). We now indicate the key
ideas behind the computation. As in §5 we have the integer

2 "" f\ »» x

(7.4) fl(ai,...,an;e-u;) = 3 + ra + 2^ — ^ cot(—j-)cot(—)smJ( )

(a = a i , . . . , a n ) , which is the virtual dimension of the moduli space of asymp-
totically trivial self-dual connections in the 50(3) V-bundle Le.u 0 R over W. It
follows from Proposition 4.1 that ha> = 0 for each nontrivial representation of a
Brieskorn sphere. Combining (7.4) with the choices of e that arise from represen-
tations of 7Ti(E(p, q,r)) (see §4) and Theorem 4.2 yields the computation of /(«');
for -CS(0, a'(S)) = ^ r - 4ib G [0,4). Then I(a') = R(p, q, r; e) - Sk.

THEOREM 7.5 (c./.[FS6]). Suppose R(au... ,an;u;) > 1. If E(ai , . . . ,an) is ho-
mology cobordant to a homology 3-sphere E, then

(1) r ( E ) < r ( E ( a i , . . . , a n ) ) = i , and
(2) 1 < I(a') < iZ(ai,..., an;uj) for some representation a1 G ^ (S) with

0<-CS(a#)<i-
Furthermore, E(ai , . . . ,an) is not homology cobordant via a simply-connected ho-
mology cobordism to any other homology sphere.

PROOF: Let X be the union of the mapping cylinder W of E(ai , . . . ,an) and the
homology cobordism, and consider the 50(3) V-bundle E = L©R over #, where L
is the 5O(2) V-bundle whose Euler class comes from the dual of the preferred class
uj G H2(W;Z). Let Ad denote the moduli space of asymptotically trivial self-dual
connections on E with Pontryagin charge ^. We now apply the ideas of the proof
of Theorem 5.3 to Ad.

The moduli space Ai contains a single reducible connection, and so is nonempty.
Thus Ai is a manifold of odd dimension iZ(ai,... ,an;u;) > 1, and has one singu-
larity, a cone on a complex project ive space. As in (5.1) this complex project ive
space cannot be null-cobordant inside Bx- Therefore Ai has an 'asymptotic end'
as in (5.3). Since the smallest Pontryagin number of a bundle on the suspension of
a lens space L(a,-, &;) which admits a self-dual (V-) connection is -^ > ^ ,no instan-
ton can pop off at a cone point. This means that there is a nontrivial flat 50(3)
connection a' on E and a sequence of connections in Ad which limits to the 'union'
of self-dual connections B over X and C over E x R, where B tends asymptotically
to a' and C is asymptotic to a1 at —oo and to 6 at -j-oo. The Pontryagin charge
of C is -CS(0,a ;); hence 0 < -CS(0,a') < \. Notice that this also means that
a'(S) = a1. Now if we apply the very same argument to W rather than to X we
will find a flat connection /?' on E(a1 ? . . . ,an) with 0 < -CS(^,/?/) < \. Since the

Chern-Simons invariants of flat connections on E(ai , . . . , an) are all of the form ~ ,
this proves the assertion (1).
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To prove assertion (2), note that by the translational invariance of the self-duality
equation on E x R we get 1 < M.x(a',0) for the component of the moduli space
containing the connection C. Furthermore, if M.x{<*') is the component of the
moduli space containing B, then by the index theorem of [APS1]

ha>R(ai,... ,an',uj) = dirriwM = dimMx(a') + dimM^(a\6) -f ha

> dim.ME(a/,0) + ha> = I(a') > 1.

The last statement follows as in Proposition 1.7 of [Tl]. Let U be a simply-
connected homology cobordism from £(a i , . . . ,an) to E, and let V be the simply-
connected homology cobordism from S(a i , . . . , an) to itself obtained by doubling U
along £. We obtain a reducible (asymptotically trivial) self-dual connection on the
bundle E = Le®R over the union X of the mapping cylinder W of £(« i , . . . , an) with
infinitely many copies of V adjoined. Let M. be the moduli space of asymptotically
trivial self-dual connections on E. Now, since X has a simply-connected end, M. is
compact ([Tl]). As above, since dimM — R(ai,..., an) > 0, we can cut down to
obtain a compact moduli space with one end point, a contradiction.

For example, r(2, 7,15) = r(2,3,35) and i2(2,3,35;u>) = 1. However, for the
unique a in ft(£(2,7,15)) with CS(a) = r(£(2, 7,15)), we have /(a) = - 5 ; so that
£(2,7,15) is not homology cobordant to £(2,3,35).

8. Instanton Homology and an Extension
We now return to our discussion in §2 of Casson's invariant and Taubes' interpre-

tation in terms of gauge theory. In the situation where all nontrivial representations
of TTI(£) in 5?7(2) are nondegenerate, recall that A(£) = \ E a 6 ^ ( E ) ( - l ) S F ( a )

where SF(a) is the spectral flow of the operator Db of §2 as b varies from 6 to a.
Equivalently we can restate this for 50(3) representations with the orientation con-
ventions we have been using, i.e. A(£) = \ £a/€ «K*(i;)(-l)

SF(Q'''*) where SF(a',0)
is the spectral flow of Db (defined now for 50(3) connections) as b varies from a' to
the trivial 50(3) connection. Floer interpreted this sum as an Euler characteristic.
The idea is as follows.

If a flat 50(3) connection is changed by a gauge transformation #, its spectral
flow to a fixed trivial connection changes by 8 • deg(#). Similarly, if the choice of
trivial connection is changed, the spectral flow again changes by a multiple of 8.
This means that SF(a;,^) is well-defined on 7£*(£) as an integer mod 8. Floer
defines chain groups i2n(£) indexed by Zg as

«„(£) = I(a e 7l*(£)|SF(a/,6>) = n (mod 8))

(so A(£) = \ £^= 0(-l)nrank(i?n(£))) . The boundary operator is given by
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where A41(at,/?') is the union of 1-dimensional components of the moduli space of
self-dual connections on E x R which tend asymptotically to a1 as t —> — oo and to
ft' as t —> +00, and "#" denotes a count with signs. Floer [F] shows that this defines
a chain complex. Its homology is the instanton homology /*(£) graded by Z8, and
again can be defined even when there are nondegenerate representations of TTI(E).
Since flat connections are the critical points of the Chern-Simons function, and
since it can be shown that the gradient trajectories of the Chern-Simons function
are exactly the finite-action self-dual connections on S x R, this theory becomes
quite analogous to Witten's calculation of the homology of a manifold from a Morse
function [W]. Instanton homology is a very important new invariant and deserves
a much more complete description than we have given here. We refer the reader to
the original source [F] and to the excellent survey papers [At] and [Br].

In [FS8] we show how to extend this theory to one with integer grading. For
simplicity continue the assumption that all nontrivial (50(3)) representations of
TTI(E) are nondegenerate, and also assume that there is no nontrivial representation
with Chern-Simons invariant congruent to 0 mod 4. (These restrictions are satisfied
by Brieskorn spheres and in general can be removed.) As in the previous section,
we fix a trivial 50(3) connection 0 over S.

For any integer m, let 7£m(S) be the free abelian group generated by the a' G
7£*(E) with I(ct') = m. (Since we are assuming that all these representations are
nondegenerate, ha> = 0 here.) For n G Z8 and s G Z with s = n (mod 8), define the
free abelian groups

Then

• • • C Fs+8JRn(S) c FsRniZ) c F-sRnCZ) C • • • C

is a finite length decreasing filtration of Rn(T,). Furthermore, it can be shown
(using the fact that the Chern-Simons functional is non-increasing along gradient
trajectories) that Floer's boundary operator d : FsRn(T,) —> ir'5_ii?n_i(E) preserves
the filtration. Thus Floer's Zg-graded complex (ii*(E), d) has a decreasing bounded
filtration (F3#*(E),<9). For n G Z8 and s = n (mod 8) let Ij,n(S) denote the
homology of the complex

We then have a bounded filtration on /n(E) defined by

F37n(S) = im[I.|B(E) -> JB(E)]

with
• • • C F s + 8 /n(S) C F, JB(E) C Fs_8/n(S) C • • • C /„(£).

As usual, there is a homology spectral sequence:
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THEOREM 8.1 [FS8]. There is a convergent E1 -spectral sequence (iSJn(E),d r)
such that for n G Z8 and s G Z with s = n (mod 8) we have

£~B(E) S F./B(E)/f.+8/B(E)

Fbrtjhermore, the groups J5J n(S) are topological invariants.

In particular for 6 G Z the groups /«(E) = E] n(E) give an integer-graded version
of instanton homology. As in §7 this theory is easily seen to be independent of our
choice of bundle-trivialization. See [FS8] for more details.

In [FS6] we gave an algorithm for computing i*(E(p,q,r)). We list some exam-
ples. The groups Ii are free over Z and vanish for odd i, so we denote the instanton
homology J*(S(p,g,r)) of S(p,g,r) as an ordered 4-tuple ( /c /1 , /2 , /3) where fi is
the rank of /2i+i(2(p,<7?r))-

1,(2(2,3,6**1))
f (k3i Mi

_ I V 2 ' 2 '

~~ 1 (k k k k
^ V 2 ' 2 ' 2 ' 2

, i±1 , if l , if l) for h odd
2 ' 2 ' 2 ) * O T

for fc odd

for fc even^ v 2 ' 2 ' 2 ' 2 /

/,(E(2,5,IO^±3)) = ( ^ ^ ; ^ % ; " T ~ ) fr*odd

I ( 2 ' 2 ' 2 ^ ' 2 ) f ° r fc e V e n

f (3fc=Fl,3fc±l,3fc=]=l,3fc±l) for A; odd

/•(E(2,7,14Jfc ± 3)) = (3Jfc, 3fc ± 1,3ifc, 3A: ± 1)

/•(S(2,7,14Jfc ± 5)) = (3Jfc ± 1,3Jfc ± 1,3fc ± 1,3k ± 1)

for k odd

for k even\ 2 ' 2 ' 2 ' 2 /\ 2 ' 2 ' 2 ' 2 /

, 4 , 1 2 * 5 ) ) <
5 H 5 H 5 H , for ib even

v 2 ' 2 ' 2 ' 2 / e v e n

(4fc ± l,4fc, 4fc db l,4fc p̂ 1) for A; even

We conclude by listing some explicit computations of the Poincare-Laurent poly-
nomials p(ai,a2,Q>z)(t) of the homology groups /#(S(p,g,r)).

p(2,3,17) = < + t3 + 2t5 +t7
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p(2,3,23) = t + 2tz + 2t5 + 2t7 + t9

p(2,3,29) = t + t3 + 3*5 + 2t7 + 2*9 + t 1 1

p(2,3,35) = * + 2t3 4- 3*5 + 3*7 + 2t9 + t11

p(2,3,41) = t 4- *3 + 4*5 + 3*7 + 3*9 4- 2 t n

p(2,3,47) = t + 2*3 4- 3tf5 + 4*7 + 3*9 + 2 t n + t13

p(2,3,53) = * + *3 + 4*5 + 4t7 + 4t9 + 3 t n + 1 1 3

p(2,3,59) = t + 2t3 + 3t5 + ht1 + 4t9 + 3tu + 2t13

p(2,3,65) = t + t3 + 4*5 + 5t7 + bt9 + 4tn + 2t13

p(2,3,71) = < H- 2t3 + 3t5 + 5t7 + 5t9

p(2,3,7) = t ~ 1 + t 3

p(2,3,19) = 2t~l +t + 2t3 +t5

p(2,3,25) = 2^"1 + 2t + 2t3 + 2t5

p(2,3,31) = 2*"1 + 2* + 3t3 + 2t5 + t7

p(2,3,37) = t'1 + 3t + 3t3 4- 2t5 4- 2t7

p(2,3,37) = 2t~l 4- 3^ 4- 4t3 + 3t5 + 2t7

p(2,3,43) = t" 1 4- 4< 4- 4t3 4- 4t5 4- 3t7

p(2,3,49) = 2t~l + 3t 4- 5t3 4- 4*5 4- 3t7 + t9

p(3,4,13) = *~5 4- 2t"3 4- St"1 + 2t 4- 2t3

p(4,5,21) = 4^"9 4- 5 f 7 4- 8t"5 4- 6^"3 4- 5*"1 4-1 + t3

p(5,6,31) = 2t~15 + 10t"13 4- l l ^" 1 1 4-15*~9 4-13^"7 4-8*~5 4-5t"3 4-4t
For a ' G 7e(S(2,3,6k - 1)), CS(a') = -^^ mod 4 where e = 1 mod 6. Choos-

ing the largest e and computing i2(2,3,6fc — l;e -a;), it can be shown that for
a given any positive integer iV, there is a K with /2N-i(£(2,3,6K — 1)) ^ 0.
Similarly, it can be shown that for any negative integer iV, there is a K with

, K + 1, K{K + 1) + 1)) ^ 0.

9. Homotopy K3 Surfaces Containing S(2,3,7)
In this section we shall describe an application of the technology which we have

discussed in previous sections to the problem of computing the Donaldson invariants
of smooth 4-manifolds homotopy equivalent to the K3-surface (i.e. homotopy KZ-
surfaces). The Donaldson invariant may be briefly described as follows. Given a
smooth simply-connected 4-manifold, M, for a generic metric g on M, the moduli
space, -Mfc,Af (#) C Bk,M of anti-self-dual 5t/(2)-connections (*FA = —FA) with
c2 = k is a manifold of dimension 8A: — 3(1 4- b%). (It may have singular points
if &+ = 0.) If &2 is odd, then this dimension is even, say 2c?. Donaldson has
defined a homomorphism fi : H2(M;Z) —> H2(Bk,M',?-) (see [D4]) and has shown
that if k > | ( 1 4- 6̂ ") then there is a well-defined pairing q(z\,..., Zd) = A*(̂ i) U
...t*(zd)[MktM(g)]- This defines Donaldson's invariant q : ®dH2(M',Z) —> Z. Our
theorem is:
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THEOREM 9.1 [FS7]. If the Brieskorn sphere E(2,3,7) is embedded in a 4-manifold
which is homotopy equivalent to a A'3-surface, then there are classes z\,..., 2i0 G
#2(M; Z) such that q(z\,... ,^io) = 1 (mod 2)

This result plays a role in an important result of S. Akbulut.

THEOREM 9.2 [Ak]. There is a compact contractible 4-manifold W which has a
fake relative smooth structure.

To prove this Akbulut gives a construction which produces a homotopy K3 sur-
face M containing E(2, 3, 7) and a compact, contractible 4-manifold W together
with a self-diffeomorphism / of dW which extends to a self-homeomorphism of W
such that either

(1) all of the Donaldson polynomial invariants of M are trivial, or
(2) there is no self-diffeomorphism of W extending / .

Theorem 9.1 then implies that (1) is false; so Akbulut's construction gives (2).
The proof of Theorem 9.1 proceeds via a degeneration argument. The intersection

form form of a iiT3-surface is 2Eg 0 3i7, and S(2,3, 7) embeds in the standard K3-
surface, splitting it into two submanifolds, X and Y, where X has intersection
form E$ 0 H and boundary E(2,3, 7) and Y has intersection form E$ 0 2H and
boundary — S(2,3,7). Using the work of Donaldson [D2], it is not difficult to see
that if S(2,3, 7) embeds in any homotopy 7\T3-surface, M, then it splits M a s X U F
in a similar manner. The idea is then to study the effect of letting the metric g
degenerate to a metric which stretches a tube S(2,3, 7) x (—1,1) in M until it has
infinite length.

For the homology classes 2 l 5 . . . , 2i0, we choose classes 2 i , . . . , 24 G H2(X] Z) =
Es(&H such that z\, z2 G i?8 satisfy z\ = z\ =2 and z\ -z2 = 1, and choose 23,24 G H
with z\ = z\ = 0 and 23-24 = 1. Similarly choose 25, . . . , 210 G H2(Y; Z) = Es ®2H
such that 25,26 form a pair in Eg and 27, z$ and 29, 210 form pairs in the two copies
of H. Suppose for a moment that q(zi,..., Z\Q) ^ 0 and follow the above-described
degeneration of metrics. In the process M is pulled apart into noncompact manifolds
X+ and Yl (X+ = X U R+, and F_ = R~ U Y). A finite-action anti-self-dual
connection on X+ or Yl is asymptotically flat, and the techniques of §4 can be
used to show that S(2,3, 7) has only two gauge equivalence classes of nontrivial flat
connections.

If q(zi,..., 210) 7̂  0 the degeneration process will produce nontrivial "relative"
Donaldson invariants which can be described roughly as qx(zi, • • •, ̂ 4) = Y1P A*(^i)^
• • • U fJ>(z4)[-M-^(p)]^ where p is a flat connection on S(2,3, 7), and ^ ( 2 5 , . . . , 210) =
]Pp//(25)U- • -Ufj,(zio)[M.\?(p)]. One can now make counting arguments (see [FS7])
to the effect that only one possible p can appear in the above sums, and furthermore,
for this p we have

q(zu. . . , 210) = qx(zu- • •, z4)(p) - qv(z5,.. •, zlo)(p).
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The proof is now concluded by constructing the moduli spaces M*x(p) and
•My(p) whose appropriate relative invariants are odd. The philosophy is to ap-
ply the proofs of Donaldson's Theorems B and C of [D2]. These theorems prove
that there are no closed 4-manifolds which have the intersection forms of X or 7 .
Applying the proofs to X and F, rather than contradictions we obtain information
about the asymptotic behavior of certain moduli spaces. As in the proof of (5.3) we
get anti-self-dual connections popping off the ends of M.2,x{Q) and -M 3 )Y(0) which
leave us the correct moduli spaces over X and Y (see [FS7]).
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1. INTRODUCTION

This note contains a somewhat expanded version of my talk given at the Durham
Geometry Symposium. In this talk, which was based on a joint paper with S.Bauer
[B/O], I tried to explain how some fairly remote results in algebraic geometry —
like e.g. Deligne's solution of the Weil conjectures — can be used to calculate the
instanton homology of Seifert fibered homology 3-spheres.

Instanton homology groups /n(£),n G Z/g have recently been defined by A.Floer
for every oriented 3-dimensional Z-homology sphere S[F].
They provide an important link between the geometry of 3- and 4-dimensional
manifolds [Al]. In fact, Donaldson has shown that his polynomial invariants 7̂ -
for a 4-manifold X [D2], which can be decomposed along a homology sphere S
into two pieces factor through the Floer homology of S [Al]. A nice introduction
to the Donaldson-Floer theory can be found in Atiyah's survey articles [Al],[A2].

The definition of the groups /n(S) uses gauge theoretic constructions in dimension
3 and 4, so that it is difficult to compute them for a general homology sphere.
For the subclass of Seifert fibered homology spheres however, Fintushel and Stern
have found a way to calculate the instanton homology provided that a certain
conjecture holds [F/S2].
This conjecture, which I will explain in a moment, has recently been settled by
Kirk and Klassen [K/K], so that the Fintushel-Stern program can be carried out.
What it comes down to is to understand the representation spaces

i?*(£) = Hom*(7r1(E),5t7(2))/coni.

of conjugacy classes of irreducible 5Z7(2)~representations of the fundamental group

The Floer homology of a Seifert fibered homology sphere S is determined by the
Betti numbers of the components of #*(£) and certain (explicitely computable)
integers associated to each component [F/S2].
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One way to study these representation spaces i?*(£) is to identify them — via Don-
aldson's solution of the Kobayashi-Hitchin conjecture [Dl] — with moduli spaces
of stable vector bundles over certain algebraic surfaces [O/V2]. In this way they
become complex projective varieties which turn out to be smooth and rational.
Moreover, these moduli spaces come with a stratification whose individual strata
can be described in terms of secant varieties of rational normal curves [B/O].
Using a trick due to Deligne-Illusie [D/I], one can assume that everything is de-
fined over an algebraic number ring, so that the Weil conjectures can be applied.
The explicit geometric description of the strata of the moduli spaces then allows
to determine the Zeta functions associated to the components and thereby to com-
pute their Betti numbers.
The final result is an algorithm which, in principle, could be implemented on a
computer.

2. FLOER HOMOLOGY

I recall very briefly the idea of the definition of Floer's instanton homology groups;
a much more detailed description can be found in Floer's paper [F] and the survey
article [BR].
Let £ be an oriented Z-homology sphere of dimension 3. Consider the space B of
gauge equivalence classes of Si7(2)-connections on the trivial S£/(2)-bundle over
£. The map A \—> FA> sending a connection A to its curvature, defines a natural
1-Form F on B which is locally exact. More precisely, F is — up to a constant —
the differential of the Chern-Simons function

/ : B —> R / 4 Z .

This function associates to a connection A the integral

tr(FAtAFAt)
Ex [0,1]

where At := (1 — t)A + tO is a path of connections from A to the trivial connection
0, thought of as a connection on £ x [0,1].
The critical set of the Chern-Simons function, i.e. the zeros of F, can be identified
— via the monodromy representation — with the space

conj.

of conjugacy classes of SJ7(2^representations of 7Ti(£).
Suppose now that all non-trivial critical points of / are non-degenerate (if not one
uses a suitable Fredholm perturbation); this means that -R(£) is finite and that the
Hessian of / (considered as an operator on the tangent space) is an isomorphism
at every critical point a = [A] in iP(£) = i?(£)\{[0]}.
Let 5(0, a) G Z/3 denote the spectral flow associated to a path of connections
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from the trivial connection to A [BR]. Floer's instanton homology /*(£) is then
defined as the homology of the following chain complex (R+,d):
The nth chain groupi?n of R+ = 0 Rn is the free abelian group generated by

eZ/
the elements a G #*(£) with S(0,a) = n.
The boundary operator d : Rn —• Rn-i is given by

da= £ rn(

here m(a,(3) is the number of oriented 1-dimensional components of the moduli
space Mx(a>(3) of self-dual connections (relative to a product metric) on S x R,
which are asymptotic to a and /3 for t tending to ±oo [F]. Floer shows that
d2 = 0 and proves that the homology of the instanton chain complex (R*,d) is
independent of the various choices (metric, perturbation).

3. SEIFERT FIBERED HOMOLOGY 3-SPHERES

Let 7T : S —> ^/S1 ^ e a ^ e ^ e r t fibration of a homology 3-sphere £ with n excep-
tional orbits 7r"1(xt-), i = 1 , . . . , n of multiplicities a i , . . . , an. The multiplicities are
necessarily pairwise relatively prime and the orbit space S/«i is homeomorphic
t o ( 5 2 ; ( ^ 1 , a 1 ) , . . . , ( x n , a n ) ) [N/R].
Conversely, given n pairwise coprime integers a, > 2, there exists a Seifert fibered
homology 3-sphere S with these multiplicities; its diffeomorphism type is deter-
mined by a = ( a i , . . . , an) [N/R].
Denote such a homology sphere by S(o) = S ( a i , . . . , an). I will always assume that
the multiplicities are indexed in such a way that at most a\ is even. The links of
certain Brieskorn complete intersections provide standard models of Seifert fibered
homology spheres [N/R]. The fundamental group of S(a) has the following repre-
sentation [F/S2]:
Let o := oi • . . . • an and choose integers 6, &;, i = 1 , . . . , n with

( )

7ri(S(a)) = (tu...,tn,h | h central, t? = /i~6i,*i • . . . • tn = hb) .

If n > 3, then this group is infinite with center (h) = Z, except for TTI (S(2,3,5)) =
5L(2, F5) with center (h) = Z/2. The quotient TTI ( S ( O ) ) / /^\ is isomorphic to the

2-orbifold fundamental group Trf6 (E(a)/5X) of the decomposition surface [F/S2].
It is isomorphic to a cocompact Fuchsian group of genus 0 with representation

(*i,.. . ,tn \tV = l , t i • . . .•<„ = !>.
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4. REPRESENTATION SPACES OF SEIFERT FIBERED HOMOLOGY SPHERES

Fix a Seifert fibered homology sphere D(a) = £ (a i , . . . , an) with n > 3 exceptional
fibers and consider a representation

a : TTx (S(a)) —• SU(2).

If a is irreducible, then the generator h of the center must be mapped to ±1 E
SU{2)\ the images a(U) of the remaining generators are conjugate to diagonal
matrices

•>«•> ~

with Ui = exp \l~^J and certain numbers /, G Z / a r These numbers
(dz/i, . . . , ±/n) are the rotation numbers of the representation a.

Proposition 1 ([F/S2],[B/O]) The representation R* (E(a)) of a Seifert fibered
homology sphere is a closed differentiate manifold with several components. The
rotation numbers of an irreducible representation a are invariants of the connected
component of a in R* (S(a)). A component with rotation numbers (± / i , . . . , ±ln)
has dimension 2(m — 3), where m — ${i \ 2/, ^ 0}.

Furthermore, there exists at most one component in R* (S(a)) realizing a given
set of rotation numbers [B/O].

In the special case of 3 exceptional orbits, i.e. for Brieskorn spheres S(ai,a2,a3),
the associated representation spaces are finite.
Fintushel and Stern have shown that the number of elements in R* (S(ai,a2,a3))
is equal to — | times the signature of the Milnor fiber of the corresponding singu-
larities [F/S2].
The Casson invariant of a Brieskorn sphere is therefore equal to | times the sig-
nature of its Milnor fiber.
The latter result has recently been generalized by Neumann and Wahl [N/W].

5. THE INSTANTON CHAIN COMPLEX OF SEIFERT SPHERES

In this section I recall the relevant results of Fintushel and Stern's paper [F/S2].
Again, fix a Seifert fibered homology sphere S(a) = E(ai , . . . ,a n ) ,n > 3. For any
integer e let

R{a, e) = 3 + m + ]T — V cot —^ cot — sin2 ,
a t t t a.' jfel V ai ) \aiJ \ ai J

where m = j){i | e ^ 0(mod a,)}. This number is the virtual dimension of a certain
moduli space of instantons; it is always odd [F/Sl].
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Theorem 1 ([F/S2]) The spectral flow S(0,a) of an element a e R* (E(fl)) with
rotation numbers (±/ i , . . . , ±/n) is given by

5(0, a) = -R(a, e) - Z(mod 8),

ife satisfies e = £?=i Uf(mod 2a).

If now every representation a 6 R* (E(a)) is non-degenerate, then the grading in
the instanton chain complex is always even, so that the boundary operator must
vanish. This assumption holds if n = 3, i.e. for Brieskorn spheres S(ai,a2,a3).
Explicit examples of instanton homology groups I* (E(ai,a2,a3)) can be found in
[F/S2].
In the general case n > 3 the elements of R* (S(a)) are usually degenerate, so
that one has to perturb the Chern-Simons function. Fintushel and Stern use
a Morse function on R* (S(a)) to produce a perturbation with non-degenerate
critical points.

Theorem 2 ([F/S2]) Let g : R* (E(a))a —• R a Morse function on the compo-
nent of a in R* (£(a)). The critical points of g are basis elements of the instanton
chain complex.
A critical point /3 G R* (S(a))a of g with Morse index fJ>g(/3) has grading

In order to make explicit computations possible Fintushel and Stern show how
R* (S(a)) can be described as a configuration space of certain linkages in S3 [F/S2].
With this method they find copies of S2 as 2-dimensional components. On the
basis of these examples they make the following

Conjecture Every component of R* (£(&)) admits Morse functions with only even
index critical points.
Note that this conjecture implies that the instanton chain complex of S(a) is
concentrated in even dimensions, the boundary operator vanishes and the Floer
homology can be read off from the rotation numbers and the Betti numbers of the
components of R* (S(a)).

6. THE ALGEBRAIC GEOMETRY OF THE REPRESENTATION SPACES

R* (£(&)) Every representation a : TTI (£(&)) —• 517(2) induces a representation
a : 7T^6(S(a)/51) —• PU(2) s.t. the following diagram commutes:

MEOO) " ^ SU(2)
j

-=• PU(2).

This correspondence yields an identification of R* (S(a)) with the representation
space

Horn' ( < 6 (SCaVS1) ,PU(2)) /conj.
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of the orbifold fundamental group in PU(2). Recall that

In the sequel I shall denote this group by T(a).

Theorem 3 ([B/O]) The representation space Horn* (T(a),PU(2)) /conj. admits
the structure a of smooth complex protective variety whose components are rational.

The proof has two essential steps:

i) Interpretation of Horn* (F(a), PU{2)) /c<mj. as moduli space of stable vector
bundles:

Consider a rational elliptic surface over P 1 — denned by a generic pencil of
plane cubic curves — and perform logarithmic transformations of multiplicities
a i , . . . , an along smooth fibers over x\,..., xn £ P 1 [B/P/V]. The resulting ellip-
tic surfaces X(a) = X(a\,... , an) over P 1 are algebraic with fundamental group

(The algebraic structure of X(a) depends on the choices which are involved in the
logarithmic transformations, but the C°°-type does not [U]). Choose a (sufficiently
nice) ample divisor H = H(a) on X = X(a) and let M^{c\^ c2) denote the moduli
space of ^-stable rank-2 bundles over X with Chern classes ci,c2 [O/S/S].
Using Donaldson's solution of the Kobayashi-Hitchin conjecture [Dl] and some
simple arguments [O/Vl] one obtains an identification of
Horn* (TTX (X(a)), PU(2)) /C(mj. with the differentiate space underlying the disjoint
union ,M£(0,0) II Mx(K,Q). Here K = -ci(X) is the canonical class of X.

ii) Description of the moduli space of stable vector bundles:
The moduli spaces A4 ?(0,0) and Mx(K,0) can be handled by similar methods;
but a little trick allows to avoid computing the latter. Indeed, the homomorphism

r : T(2au a2,..., an) —• T(au • • •, On)

sending a generator ti of F(2ai,a2,... ,an) to the corresponding generator in
F(ai, a2 , . . . , an) induces an isomorphism

T* : A4*(0,0) E M$(K, 0) —* A<|(0,0)

with the moduli space .M^(0,0) of stable bundles over an elliptic surface X of
type X(2ai ,a2 , . . . ,an) .
Consider now a stable 2-bundle S over X with trivial Chern classes. £ admits a
unique representation as an extension

(*) 0—>O(-D)—>£—>O(D)—^0
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of line bundles, where D ~ dF + J27=i d%F{ is a vertical divisor with 0 < d\ < a».
Here F denotes a generic fiber of X over P1, ciiF* ~ F, i = 1,. . . , n the n multiple
fibers over the points # i , . . . xn £ P1 .
The line bundles O(D) which occur in such extensions form a finite subset / C
NS(X) in the Neron-Severi group of X.
Conversely, for every line bundle O(D) £ / and every (non-trivial) extension
class [e] £ P (Ext1 (O(D),O(-D)f) one obtains a simple 2-bundle £ given by the
extension

e : 0 —> O(-D) —>£ —> O(D) —> 0.

Denote by M.sx(0,Q) the moduli space of simple 2-bundles over X with triv-
ial Chern classes. This is a locally (but not globally) Hausdorff complex
space containing *MjJ(0,0) as (Hausdorff) open subspace [O/V2]. Let P(D) —
P (Ext1 (0(£>), £>(-£>))) and define Zariski open subsets U(D) C P(D) by
U(D) = P(D) n Mf(0,0). Then one has a cartesian diagram

IIP(D) <-+ Ma
x(0,0)

i

u u
UU(D) -=-> A4^(0,0)

and a stratification UU(D) of AlJ(0,0) by locally closed subspaces U(D), each
sitting as a Zariski-open subset in its 'own' projective space. In order to prove
the smoothness of ^^ (0 ,0 ) as a complex algebraic variety, one shows that the
coefficients d{ of a divisor D determine the rotation numbers of the component
which contains U(D).
More precisely, if a representation a : TTI (X(a)) —> SU(2) corresponds to a vector
bundle £ given by a class [e] £ U(D) with D ~ dF + £?=1 d{Fi, then a has the
rotation numbers (±/ i , . . . , ±/n)«
The rationality of all components of j\4^(0,0) now follows immediately.

The next point is to understand the projective varieties P(D)\U(D) parametrizing
(simple but) unstable bundles.
A bundle £ given by [e] £ P(D) is unstable if and only if X contains a vertical curve
E with O(D - E) £ I s.t. [e] is contained in the projective kernel P (Ker(#£1)) of
the multiplication map

•E : Ext1 (O(D),O(-D))—> Ext1 (O(D - E),O(-D)).

These kernels form a projective bundle P (Ker(« | E |)) over the linear system | E \
which admits a natural map

to the projective space P(D). The image of ip\E\ is the subvariety Dest(| E |) of
bundles which are destabilized by curves in | E |.
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Recall that the join Wx * . . . * Wk of subvarieties Wi , . . . , Wk C P ^ is the smallest
closed subvariety of P ^ containing span(wi,..., wk) for every tuple (wi, . . . , wk) £
W\ x . . . x Wk. The secant variety Sec&(W) = W * . . . * W (k times) is a particular
case.

Proposition 2 ([B/O]) Suppose that dimP(jD) > 0. There exists a natural em-
bedding of (P1; # 1 , . . . , xn) as a rational normal curve N(D) C P(-D) with marked
points x~, such that the following holds:

i) Every destabilizing subvariety Dest(\ E |) ofP(D) is a join
Seck(N(D)) * {#n} * • • • * {xit} of a secant variety of N(D) and some of the
points Xj.

ii) P(D)\U(D) is a finite union of destabilizing subvarieties Dest(\ E |).

Hi) The intersection Dest(\ E \)C\Dest(\ E' |) of two destabilizing subvarieties in
P(D) is a finite union of other destabilizing subvarieties.

The following picture illustrates a typical 2-dimensional situation

N{D)

X2

7. THE BETTI NUMBERS OF THE MODULI SPACES

The way in which the stratification of M = Mx(®,0) has been defined makes it
difficult to describe the normal bundles of the various strata.
To circumvent this difficulty one can use an approach which has been applied by
Harder and Narasimhan in a similar situation [H/N]. Their idea was to calculate
the Betti numbers of a moduli space by 'counting points over finite fields and then
use the Weil conjectures'. In the situation at hand the space M is not a priori
defined over a number ring. However, one can find an extension of M over the
spectrum of a subring A C C and a closed point in Spec (A) with residue field Fq

of positive characteristic p, so that there exists a good prime / / p with

for all i.
Consider now the Zeta function of A4p
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where Vk{M.^ ) counts the number of points in MY *• By Deligne's solution of
the Weil conjectures Z(A4^ , t) can be written in the form

' • ' ' P'2n-
• « ) = Po.....p2n

with polynomials P{ of degree dimi/^(.A/fp ; Qi), whose zeros all have absolute
value p~% [D]. In our situation we have to determine the Zeta functions of the strata
U(D) or, equivalently, of the varieties P(D)\U(D) of unstable bundles. Using the
explicit description of these varieties as joins over secant varieties of rational normal
curves, it is possible to calculate these Zeta functions. One finds that associated
to each component of A4, there are natural numbers 60 = 1> &2> • • •> &2(m-3)> so that
the counting function Vk of the component has the form

2(m-3)

i=0

Of course, this implies that the Zeta function of this component has the product
decomposition

More precisely:

Theorem 4 ([B/O]) The odd Betti numbers of the moduli space A^^(0,0) are
zero. The even Betti numbers can be determined by a numerical algorithm.

Explicit formulas can be found in [B/O].

8. FINAL REMARKS

As I already mentioned in the introduction, the conjecture of Fintushel and Stern
has been shown to be true. In fact, there are at least three different (announce-
ments of) proofs.
The first one — by Kirk and Klassen [K/K] — uses the concept of linkages in 53

to construct directly a Morse function with only even index critical points.
A second proof has been announced by Furuta and Steer [F/ST]. Their starting
point is the observation that the representation space
Horn* (IT™ b(E(a)/S1),PU(2)) /c<mj. can be interpreted as moduli space of equivari-
ant Yang-Mills connections over a suitable covering surface of ^(aj/S1. Extending
the Atiyah-Bott method [A/B] to this equivariant setting they give formulas for
the Poincare polynomials of the instanton homology.
There is still another interpretation of Horn* (7r^r6(S(a)/51),Pt/(2)) /con;-., going
back to Mehta and Seshadri [M/S]. These authors show that representation spaces
of cocompact Fuchsian groups can be identified with moduli spaces of parabolic
vector bundles on marked Riemann surfaces.
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Using this description of R* (S(o)) Bauer [B] gives a third proof of the conjecture.
Finally, I like to mention another point of view which might be interesting. The
fundamental group TTI (S(a)) of a Seifert fibered sphere is isomorphic to the local
fundamental group of a corresponding Brieskorn complete intersection singularity.
Thus unitary representations of this group should give rise to reflexive modules
over the local ring of such singularities; equivalently, they should define vector
bundles over their minimal resolutions. It might be useful to consider the relevant
singularities as group quotients of cone singularities [P].
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Zo-invariant SU(2) instantons
over the Four Sphere

MIKIO FURUTA
The University of Tokyo, Hongo Tokyo 113, Japan and
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1. INTRODUCTION

The purpose of this article is to give a classification of invariant SU(2)-instantons
on S4 for some equivariant SU(2)-bundles over 54 and to give some applications.
We use the term instanton for anti-self-dual connection here. It is well known that
the moduli spaces of SU(2)-instantons on the standard four sphere S4 are smooth
manifolds. When a group F acts on 54 isometrically and P is a F-invariant SU(2)-
bundle, the moduli space M(P) of F-invariant instantons on P is defined as the
quotient of the space of F-invariant instantons divided by the F-equivariant gauge
transformations. Then M(P) has a natural smooth structure as well. Instantons
on S4 are classified by the ADHM-construction [2] or the monad description [5],
so, in principle, we have a description of invariant instantons. On the other hand,
for some group actions the invariant instantons have some geometric interpretation:
M. F. Atiyah pointed out as an important example that when F is the rotations
around 52 in S4, the F-invariant instantons are interpreted as hyperbolic monopoles
[1]. In this article we consider subgroups of the maximal torus of S0(4) as F
and F-equivariant SU(2)-bundles over S4 for which the moduli spaces of invariant
instantons are one-dimensional, in particular when F is a finite cyclic group Za of
order a.
A crucial observation is as follows. Suppose F is a cyclic group and the F-action
is semifree with fixed point set {0,oo}. The quotient 53/F is called a lens space.
Because (53/F) x R is conformally equivalent to (S4 \ {0,oo})/F, a F-invariant
instanton on 54 induces an instanton on (53/F) x R. Conversely Uhlenbeck's
removable singularity theorem [19] implies that an instanton on (53/F) x R with
L2-bounded curvature comes from a F-invariant instanton on S4.
In Section 2 a classification of invariant instantons is described for some equiv-
ariant bundles over 54 . This is a special case considered by D. M. Austin [3]
and Y. Hashimoto and the author [13]. (The results of [13] are an extension of
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Hashimoto's MSc thesis (University of Tokyo, 1987)). As a byproduct the Euler
numbers of the moduli spaces of SU(2)-instantons on S4 are given [10]. In Section 3
an analogue of Floer's instanton homology group is defined for lens spaces with odd
order fundamental groups [12]. Using the classification in Section 2 and the above
correspondence between invariant instantons on S4 and instantons on (5 3 /F) x R,
these groups are described explicitly. In Section 4 an application to cobordisms
among lens spaces is explained; this is an extension of an argument in [11].

Acknowledgement. The author is grateful to M. Crabb for his reading through the
manuscript and all his comments.

2. DESCRIPTION OF ONE-DIMENSIONAL MODULI SPACE

2.1 S1 x S1 -invariant instantons.
Let T = S1 x S1 be a maximal torus of SO(4). Then topological isomorphism

classes of T-equivariant SO(3)-bundles over S4 with negative first Pontrjagin class
are parametrized by {(ki,k2) : ^1,^2 €  N} . We write P(ki,k2) for the T-bundle
corresponding to (&i, k2). Then P(&i, k2) is characterized by

(i) The T-action on P(A;i,&2)oo (resp. P(A:i,fc2)o) is given by the conjugacy
class of a homomorphism / : T —> SO(3) defined by

( cosfl - s i n 0 0N

sintf cos<9 0
0 0 1

where e%e = t*lt2
2 (resp. tklt2

k2). We call / the isotropy representation at
00 (resp. 0).

In this subsection we consider T-invariant instantons on P(ki,k2). Taking a
double covering T of T, if necessary, we may consider T-invariant instantons on
a T-equivariant SU(2)-bundle P(ki,k2) instead of P(ki,k2). (The choice of the
double covering depends on ki and k2.) Note that c2(P(k1^k2))[S4] = kik2.
The ADHM-construction reduces classification of SU(2)-instantons to that of cer-
tain holomorphic SL2(C)-bundles over P 3 . Moreover S. K. Donaldson reduced the
classification to that of holomorphic SL<2(C)-bundles over P 2 = C2 U /<*> which are
trivial over l^. A pair of an SU(2)-instanton and a base point of the SU(2)-bundle
at 00 corresponds to a pair of a holomorphic SL2(C)-bundle and a holomorphic
trivialization of the bundle on 1^.
By considering this procedure equivariantly, we can reduce the classification of T-
invariant SU(2)-instantons to that of T-equivariant holomorphic SL2~bundles over
P 2 which are trivial on l^. Here we regard T as a subgroup of U(2) = SO(4) fl
GL2(C) which acts on P 2 naturally.
Since the T-action preserves the holomorphic structure of the bundle, it can be
extended to an action of the complexification T c . Because P 2 has a dense T -orbit,
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it would be expected that a small number of data should classify Tc-equivariant
holomorphic bundles. In fact such equivariant SL2(C)-bundles were classified by
T. Kaneyama [17]. (Kaneyama assumed that the Tc-acton is algebraic. This is
shown by, for instance, looking at a Tc-action on monads, which we shall mention
later.)
In our case they are parametrized by {k\,k2) G N and are expressed as E(k\,k2)
in the following exact sequence.

0 -> O(-Jhi - k2) -^ O © O{-k2) © Oi-h) -> E(kuk2) -* 0,

where <p(f) = (sj14"*2f,z\xf,z\2/). (We write (zo,z1,z2) for the homogeneous
coordinate of P2.) Let t G T c be a lift of (tut2) G T c = C* x C*. Then the
action oft on E{k\, k2) is induced from the actions on O{ — ki — k2), O, O( — k2) and
O( — k\) which are defined below.

*• f(zo,zuz2) = tikli2qk*i2f(zo,t?zut?z2) f e o{-h -k2)
t-f(zo,z1,z2) = t^'2qk>'2f(zo,ti

1zut?z2) feO

t • f(zo,zuz2) = t\^2t-k^2f{zQ,t^zut^z2) f G O(-k2)

t • f(zo,z1,z2) = t-k^2tk
2^

2f(z0,tT
1z1,q

1z2) f G O(-h)

The T-invariant instantons on the T-equivariant SU(2)-bundle P(k\,k2) over S4

correspond to the Tc-equivariant SL2(C)-bundle E(ki,k2). Note that the base
points of an SU(2)-bundle at 00 are parametrized by SU(2) and the trivializations of
a holomorphic bundle on /QQ are, if any, parametrized by SL^C). So, in general, one
holomorphic bundle gives rise to a family of (non-based) instantons parametrized
by SL»2(C)/SU(2). But we have now group symmetries. If we consider the base
points and the trivializations compatible with the T-action and the Tc-action,
then they are parametrized by U(l) and C* respectively. Hence one Tc-equivariant
holomorphic bundle gives rise to a family of T-invariant instantons parametrized by
C*/U(l) = R+. So we have

THEOREM 1 [3,13]. M(P(ku fc2)) = R+.

Note that the dilation r : S4 -> S4 (r G R+) r(x) = rx, (x G R4 U {00} = S4)
induces a free R-f-action on M(P(k\,k2)). Theorem 1 says that M(P(ki,k2))
consists of exactly one orbit.
In particular the dimension of M(P(ki,k2)) is one. This can also be shown from
the Atiyah-Bott-Lefschetz formula. Let P^ be an SU(2)-bundle over S4 such that
c2(Pk)[S4} = k and Mk be the moduli space of instantons on P&. The SO(5)-action
on S4 cannot be lifted to Pk if k ^ 0, but there is an SO(5)-action on Mk because
the action can be lifted up to gauge transformations. Forgetting the T-action we
can think of M(P(ki, k2)) as a submanifold of Mk for k = kik2. (Since every non-
trivial instanton on 54 is irreducible, the map M(P(ki,k2)) —» Mk is injective. Its
image is contained in the fixed point set Mj.) For [A] G M(P(fci, k2)) the tangent
space (TMk)[A\ is a T-module. From the Atiyah-Bott-Lefschetz formula we have
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LEMMA 1 [12].

aij = \{e €  {±1} : |t| < h - i±£, \j\ < k2 - i ^ } | ,

where si and s2 are the components of (T54)o as complex representation spaces of
T: (TS4)0 = si + 52. (We fix an identification S4 = C2 U {oo}.)

The constant term of the above two-variable Laurent polynomial is one. This gives
the dimension of M(P(ki, k2)).
We already gave an expression of the holomorphic T-bundle corresponding to an ele-
ment of M(P(ki, k2)). But to consider Za-invariant instantons later it is convenient
to give the monad description.
We recall the monad description [5]. Let V be a fc-dimensional complex vector space
and W a 2-dimensional complex vector space. Suppose four linear maps e*i, a2, a, b
are given, where b : W —> V, «i, a2 : V —> V and a : V —• W. When they satisfy

[ai,a2] + ba = 0,

one has maps A^ and Bz below parametrized by Z = (ZQ, Z\, Z2) G C3 \ {0}:

They satisfy 5^A^ = 0. Moreover if Az is injective and Bz is surjective for every
Z, one has a holomorphic bundle U[Z]GP2 -^er ^ z / I m Az over P2 . A trivialization
on Zoo corresponds to an isomorphism W = C2.
For example P(3, 2) is given by

and «!, «2, a, 6 defined below.

T
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Other matrix elements of ai,a2,a
 an (l

T-action on W and V by

a r e defined to be zero. Here we define a

4- p _ iV + V ± f _ ±\l±V £
1 ^\iv — L i L

2 °fiu i L J }iv — L\L2 J l*>v •>

where t E T is a lift of (^i,^) £ ^\ Then these data define a T-equivariant
holomorphic SL2(C)-bundle. In general the monad for P{k±, k2) is given in a similar
way.
To recover an instanton from a holomorphic bundle, one has to solve a (finite
dimensional) variational problem [5]: find a hermitian metric on V such that
|| «i ||2 + || OL2 ||

2 + || a ||2 + || b ||2 attains the minimum. (The metric of W
is fixed because W is associated to the fibre of the SU(2)-bundle at oo.) Then
a solution gives rise to a set of data for the ADHM-construction from which one
can find a connection form. For P(ki, k2) the variational problem is reduced to an
equation which is similar to Kirchhoff's law. Firstly let us write down solutions for
P(3,2). Let r G R+ be a parameter.

2' - 1 , - ^

/§•!

Here a metric on V is given so that {e^} is an orthonormal basis, and the positive
number written at each arrow describes the square norm of a matrix element of ai ,
a2, a and b for this basis. In general, if we call these positive numbers flows, the
equation is

(i) At each vertex the sum of the entering flows is zero. (In the above example
we have, for instance, r + (1 -f y/E)r/2 — (3 + \/5)r/2 = 0 at the vertex e^i.)

(ii) At each unit square the two products of the flows corresponding to a\a2 and
OL2OL\ agree.

(Every monad describing P(ki,k2) satisfies (ii). So (i) is the essential equation.)
The author does not know how to solve this equation for general P(ki,k2).

2.2 S1 -invariant instantons.
If one takes a sufficiently complicated subgroup of T, one could expect that its fixed
point set in Mk is the same as the fixed point set for the T-action. For a natural
number p let Tp be the subgroup {(t,tp) : t £ S1} of T. We show that Tp satisfies
this property if p is odd and larger than k. The following argument is outlined in
[10]. For a fixed point [A] E M^p there is a unique lift of the Traction to an action
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on the adjoint bundle ad Pk = Pk xac*5u(2) preserving A. Suppose that the isotropy
representation of the X^-action on (ad Pk) at oc (resp. 0) is

( cos 0 - sin0 0 \
sin<9 cos# 0 I ,

0 0 l)

where e10 — tl°° (resp. e10 = tl°). Then one can use the Atiyah-Bott-Lefschetz
formula to calculate the Tp-action on (TMk)[A\- The result is

1 -4-

The right hand side must be a Laurent polynomial in t with non-negative coefficients
and its value at t = 1 must be equal to dim Mk = 8k—3. From these requirements we
can easily show, replacing l^ and Zo by — l^ and — l0 if necessary, that / ^ = k\ +pk2,
l0 = fci — pk2 and k = k\k2 for some fci, k2 £ N. (Looking at the value at 1 we have
2(^o - ll)IP ~ 3 = 8 ^ - 3> i. e. / ^ - Zg = Apk. Looking at the value at e2ni/r we
have /o = i^oo mod p. Note that we assumed that p is odd.)
Then the Traction on ad P is isomorphic to a restriction of the T-action on adP(k\ ,k2).
Moreover if p is larger than fc, then the constant term of the Laurent polynomial is
one. Hence the dimension of Mk

 p is one. Since R + acts freely on M j p , it must be
a disjoint union of copies of R+. Because T is commutative, the T-action on Mk
preserves Mk

p as a set. Since an action of a compact group on R+ must be trivial,
the T-action on Mk

p must be trivial, so we have Mk
p = Mj^.

We know from Theorem 1 that M j is a disjoint union of R+'s and the number of
components is equal to the number d(k) of positive divisors of k. As an application
we find the Euler characteristic number of Mk •

THEOREM 2. x(Mk) =

Here x(M fc) = £\(-l)«"dim iP(M*,R) .

PROOF: Let X be Mk \ M£. Then we have shown XT? = 0. The Traction on
X may not be free. So the quotient space X/Tp is not smooth in general, but is
an orbifold, or a V-manifold. The projection map X —> X/Tp is not in general a
circle bundle, but is a circle bundle in the category of orbifolds (a circle V-bundle).
Then we still have a version of the Thorn-Gysin exact sequence for the de Rham
cohomology groups:

-> Hl-2(X/TP,R) -> H\X/TP,R) -> H\X,R) ->,

where H*(X, R) is the de Rham cohomology of X and F*(X/Tp , R) is here denned
as the cohomology of the chain complex of smooth differential forms on X which are
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basic for the T^-action. Then if H*(X, R) and iJ*(X/Tp , R) are finite dimensional,
we obtain that x(X) = x(X/Tp) - x(X/Tp) = 0 and

X(Mk) = x(Mfc
T) + X(X) = d(k) + 0 = d(k).

It suffices to see the finiteness of dim iif*(iWfc,R). This follows from the fact that
the moduli space of based instantons M* is an S0(3)-bundle over Mk and that Mk
is a quasi-affine variety [5]. (In fact Hashimoto gave an explicit embedding of M*
into an affine space by identifying Mk with a space of representations of a certain
algebra [14].) I

The above argument does not give which Betti number is not zero. But the following
facts are known.

(i) J. Hurtubise showed that the first Betti number of Mk is zero. In fact
TTi(Mfc) = 0 if k is odd and 7Ti(M*) = Z2 if even [15].

(ii) Y. Kamiyama showed that the second Betti number of Mk is also zero. In
fact H2(Mk, Zp) = 0 for a prime number p larger than k [16].

2.3 Za-invariant instantons. Let V\ and V2 be two faithful complex 1-dimensional
representation spaces of Z a . We think of (Vi © V2) U {00} as S4 with a Za-action.
For simplicity we assume from now on that a is odd. (When a is even, the argument
is parallel except that we need a double covering of Z a . For the details see [3,13].)
Let L b e t h e ke rne l of t h e m a p Z x Z -> H o m ( Z a , 5 1 ) def ined b y (i,j) H-> Vf>1® V2

®3

Then Hom(Za, 51) can be identified with lattice points on the torus (R x H)/L.
A Za-equivariant SU(2)-bundle P over S4 is specified by the Za-actions on (P)oo
and (P)o a n d the second Chern class C2(P). A Za-action on (-P)oo o r (P)o corre-
sponds to a conjugacy class of a homomorphism from Za to SU(2), i. e. the isotropy
representation. These three satisfy a compatibility condition. Note that the set
Hom(Za, SU(2))/conj. can be identified with the unordered pairs {/i,/2} such that
/1 + /2 = 0 mod L. The compatibility condition is described as follows [12]. Let
{/o, —/o} and {/ocn ~~/oo} be the pairs corresponding to the isotropy representations
at 0 and 00. Take one of the rectangles on R x R which satisfy.

(i) The four edges are parallel to R x {0} or {0} x R, so the vertices are written
as (zi ,yi) , (xuy2), (s 2 ,y i ) , (^2,2/2) for xx < x2 and yl < y2- Moreover
XiiX2,yi and y2 are integers,

(ii) The projection of the two-point set {(#1,2/2), (#2? 2/i)} ^° (R X R) /L is equal
t o {/o,~/o} and the projection of {(x1,y1),(x2,y2)} is {/oo,-/oo}-

Then the area (x2 — Xi)(y2 — y\) of the rectangle is well defined mod a and the
compatibility condition is

c2(P)[S4} = (x2 - x1)(y2 - yi) mod a.

In fact the T-equivariant bundle P(x2 — x\,y2 — y\) can be regarded as a Za-
equivariant bundle P by restriction of the action, which satisfies c2(P) = (x2 —
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xi)(l/2 — V\) a n <i n a s the required isotropy representations at 0 and oo. (Here, since
a is odd, we have a unique lift Za —> T of Za C T.)
If we identify Hom(Za, SU(2))/conj. with the set of isomorphism classes of flat
SU(2)-connections on the lens space 5 3 / Z a , then the above formula could give the
Chern-Simons invariants of these flat connections.
The Za-equivariant bundles with one-dimensional moduli spaces are classified by
using Lemma 1.

THEOREM 3 [3,13,12]. Let {/o,-/o} and {/oo,-/oo} be any two unordered pairs
corresponding to two elements of Hom(Za, SU(2))/cory. If the projection of a rectan-
gle on R x R satisfying (i) and (ii) above to ( R x R ) / I does not have self-intersection
except vertices, then P(x2 — #1,2/2 — Vi) with the restricted Za-action has a one-
dimensional moduli space of invariant instantons. Conversely all Za-equivariant
SU"(2)-bundles with one-dimensional moduli spaces are given in this way. Moreover
for each such Za-equivariant SU(2)-bundle, the one-dimensional moduli space is
diffeomorphic to R+.

PROOF: Suppose that a rectangle with vertices {(xi,yj) : i,j = 1,2} satisfies the
above assumption. From Lemma 1 it is equivalent to say that the number of iden-
tity representations in a Za-module (TMk)[A] ls o n e f° r [A] £ M(P), where P is
P(x2 — #1,2/2 — 2/i) with the restricted Za-action. Hence M(P) is one-dimensional.
Conversely if the moduli space for a Za-equivariant SU(2)-bundle P is non-empty
and one-dimensional, then, as in the previous subsection, the Za-action can be ex-
tended to a T-action for a double cover T of T and Za-invariant instantons are
actually T-invariant. Hence we can use the classification of T-invariant instantons
to obtain the result. |

The monad description of P(x2 — X\,y2 — Hi) c a n be explained using the corre-
sponding rectangle: the space V which appears in the monad is spanned by vectors
corresponding to unit squares {(21, z2), (zi + 1, ̂ 2), (21,22 -f l),(<zi + 1,22 + 1)}
(21,22 E Z) sitting in the rectangle. The maps a\ and a2 could be seen as 'flows'
on the rectangle from the left to the right and from the bottom to the top respec-
tively. The space W can be understood as a vector space spanned by two vectors
corresponding to the two-point set {/oo, —/oo}- The maps a and b are local 'flows'
around these two points.
When a rectangle on (R x R ) / £ has self-intersection only on an edge, Lemma 1
can be used to see that the dimension of the corresponding moduli space is three.
In fact in this case the 'flow' obtains one more (complex) dimensional freedom at
the tangential edge. Similarly suppose that two rectangles corresponding to one-
dimensional moduli spaces have intersection only on their edges and that the two
vertices of the one rectangle for the isotropy representation at 00 are equal to the
two vertices of the other for the isotropy representation at 0, then the union of the
two rectangles could be used to construct a three-dimensional moduli space. These
pictures could give the monad description of all three-dimensional moduli spaces
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to show that the the possibility of the difFeomorphism type of three-dimensional
moduli space is only (S2 — { n-points }) x R+, where n = 0,1,2 [3].
In general it is convenient to describe a Za-equivariant monad as a collection of
finite dimensional vector spaces assigned to each unit square of (R x R)/£ and
{/oo> ~~/oo} together with four 'flows'. The dimension of the vector space assigned
to /oo or —foo should be one.

When we fix the vector spaces, we can construct a deformation of a monad by
deforming the 'flows', which gives a family of instantons. Take an oriented closed
path on the torus (R x R)/L which lies in (Z x R)/L U (R x Z)/L. Then for each
non-zero complex number c new flows are defined as follows.

(i) In the place where the flow does not go across the path, the new flow is the
same as before.

(ii) To give the new flow, each component of flow (which is a homomorphism
between vector spaces) is multiplied by cl when it goes across the path,
where i is the multiplicity of the intersection between the path and the flow.

(When the path goes through /©o or —/oo? we can arrange the new flow so that, for
instance, the local flow a is the same as before and b is multiplied by cl as above.)
Since a torus has two closed paths homologically independent of each other, we can
construct a family of Za-equivariant holomorphic SL2(C)-bundles parametrized by
C* x C*, which gives a map from C* x C* to the moduli space divided by dilations.
If P is a Za-equivariant bundle such that M(P)/R+ is compact, then the image of
this map should have a compact closure.
A similar idea is used in [13] to classify P such that M(P)/R+ is compact: the
cases we have described (M(P) £ R+ and M(P) = S 2 x R + ) turn out to be the
only possibilities.
It is now well known that an end of a moduli space corresponds to a splitting of the
bundle associated with 'bubbles'. Therefore by collecting our results, the following
criterion can be shown.

THEOREM 4 [3,13]. A Za-equivariant SU(2)-bundle allows an invariant instanton
on it, if and only if it is isomorphic to a connected sum of finitely many T-eq invariant
SU(2)-bundles with non-negative second Chern class. The connected sum is con-
structed by gluing neighbourhoods of 0 and oo together.

To glue P(k\, ^2) and P(li, 12) at 0 and 00, one needs the condition that the isotropy
representation of P(A?i, k2) at 0 is isomorphic to that of P(/i, I2) at 00 if restricted
to Za. (In [13] the above theorem is shown under the assumption a > c2(P)[S4:].
Austin proved it in general by using a different argument in [3].)

EXAMPLE 1. Let Vo be the standard complex one-dimensional representation space
of Za. Let /1 and I2 be natural numbers coprime to each other, V\ = Vo

 2 and V2 =
V^®""'1. Suppose that a is sufficiently large compared with li and /2. (The precise
condition will be given soon later.) Then P(/i, I2) has the following properties,

(i) P{1\^2) with the restricted Za-action has a one-dimensional moduli space.
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The isotropy representation at oo is trivial and that at 0 is Vo®
 ll2 <g)V®~ ll2.

(ii) Let P be a Za-equivariant SU(2)-bundle over S4 such that the isotropy rep-
resentation at 0 is the same as that of P(/ i , h)- Suppose that there exists at
least one invariant instanton on P and C2(P)[54] < c2(P(/i, fa))[S4](= Z1/2).
Then P

PROOF: (i) If we substitute s\ = V\ and s2 = V2 in the Laurent polynomial given
in Lemma 1, then the number of identity representations of Za in it is equal to the
dimension. It turns out to be one if a is sufficiently large so that the conditions
xl2 — yl\ = 0 mod a, |fci| < l\ and \k2\ < l2 for integers x and y imply x = /1, y = l2

or x = -lu y = -l2.
(ii) From Theorem 4 we may assume that P = P(ki,k2) for some ki,k2 and the
isotropy representations of P(k\,k2) and P(h,l2) at 0 agree. Therefore if a is
sufficiently large so that the conditions k\l2 -f- k2l\ = ±2/1/2 mod a and kik2 < l\l2

imply ^i = Ii and k2 = l2l then we obtain the result. |

We use this example in Section 4.

3. AN ANALOGUE OF FLOER'S INSTANTON HOMOLOGY FOR LENS SPACES

For an oriented homology 3-sphere S, A. Floer defined the instanton homology
groups f/"/*(S) using instantons on E x R, [9]. For closed 4-manifold or V-manifolds,
it has been important to consider some cohomology classes on moduli spaces of
instantons [6,7]. For instance Donaldson's polynomial invariant is defined by using
certain cohomology classes. For 4-manifolds with boundaries, R. Fintushel and
R. Stern used some Z2-cohomology classes introduced by Donaldson [6] to compute
the polynomial invariants valued in the instanton homology groups in a special case
[8]. However it has not been made clear how these Z2-cohomology classes are related
to the instanton homology in a general context. In this section we use one of the
Z2-cohomology classes to define an analogue of the instanton homology groups for
lens spaces with odd order fundamental groups, as an attempt to understand this
cohomology class. For the details see [12].
A lens space is not a homology 3-sphere. It is only a rational homology 3-sphere and
every flat SU(2)-connection is reducible. When the instanton homology is defined,
a reducible flat connection gives rise to a difficulty which ought to be solved in
itself: a reducible connection has a non-trivial symmetry and it causes a quotient
singularity in the space of connections. We do not deal with this problem here.
However when one uses a cohomology class of degree one, as we shall see, it is
rather easier to evaluate the class on certain moduli spaces if a flat connection has
exactly one-dimensional symmetry.
Recall that the instanton homology groups are defined by using a chain complex
(C, d) under a certain transversality assumption.

(i) C is spanned by the classes of irreducible flat SU(2)-connections on S.
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(ii) The matrix element of d for irreducible flat connections Ai and A2 is given
by counting the number (with sign) of the components of a one-dimensional
moduli space of instantons o n S x R which connect A\ to A2.

For a lens space S3 /Zia with a odd, firstly we define ( C , df) similarly.

(i)' C as a Z2-vector space spanned by the classes of non-trivial (reducible) flat
SU(2)-connections on S3/Za.

(ii)' The matrix element of & for non-trivial flat connections A\ and A 2 is given by
counting the number (up to mod 2) of the components of a one-dimensional
moduli space of instantons on (5 3 /Z a ) x R which connect Ai to A2.

While Floer showed d2 = 0, there is no reason for the square of & to be zero as we
shall see. Recall that the proof of d2 = 0 depends on the two facts below.

(iii) The matrix element of d2 for Ai and A 3 is given by counting the number
(with sign) of the ends of a two-dimensional moduli space of instantons on
E x R which connect A\ to A3.

(iv) The two-dimensional moduli space has a free R action and the quotient is
one-dimensional. Hence the number of ends (with sign) is zero.

The reason why the two dimensional moduli space comes in is explained as follows
[9]. Suppose we are given a non-empty one-dimensional moduli space of instantons
which connect A\ to A2, and similarly A2 to A3. Then one can construct an end
of a moduli space M(Ai,A 3) of instantons which connect Ai to A3. When A2

is irreducible, the dimension of the moduli space is two, which is the sum of the
dimensions of two moduli spaces. However if A2 is a non-trivial reducible connec-
tion, then M(Ai,As) becomes three-dimensional, where the extra one dimension
comes from the dimension of the symmetry of A2. In this case the number of ends
M(Ai, A 3 ) /R is not necessary zero (mod 2) since its dimension is two.
The idea to define an analogue of instanton homology groups is as follows.

(iv)' In the above situation suppose A2 is a non-trivial reducible flat connection
and suppose we have a Z2-cohomology class u of degree one. An end of
M(A! ,A 3 ) /R is diffeomorphic to S1 x (0,1). (Here S1 is the symmetry of
A2 which gives an extra parameter in gluing two connections.) Then the
number of ends such that u[Sl] = 1 should be zero mod 2, since it is the
evaluation of u by the boundary of truncated M(A\, A3) /R.

We define u by using the Dirac operator D(A\, A3) twisted by the bundle on which
A\ and A3 are connected. If the numerical index of Z)(Aj, A3) is even, then the
determinant line bundle for the family of the Dirac operators descends to a real line
bundle on M(Ai, A3) [6]. Then u is defined as its first Stiefel-Whitney class. Let
JD(AI , A2) and D(A2^As) be similar twisted Dirac operators. Then we have

ind D( Ai, A3) = ind D( Ax, A2) + ind D( A2, A3)

(when E is a lens space). Hence if indZ}(Ai,A3) is even, then the parities of
indD(Ai,A2) and indD(A2,A3) agree and moreover we can show that it is also
equal to w[5x] [12 Proposition 3.2].
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Now we define a map d" : C —> C" as follows.
(ii)" The matrix element of d" for A\ and A 2 is given by the number (up to mod

2) of components of a one-dimensional moduli space of instantons which
connect A\ to A2 such that the associated twisted Dirac operator has odd
index.

Then the argument in (iv)' implies d"2 = 0. An analogue of the instant on homology
is defined as the homology group of (C",<9").

REMARK. We can introduce a Z8-grading for (C',d") [12].

Recall that instantons on(5 3 /Z a )xR with L2 -bounded curvatures can be regarded
as Za-invariant instantons on S4. We can use the classification of Za-equivariant
SU(2)-bundles which have one-dimensional moduli spaces of invariant instantons to
describe the boundary map d" explicitly. In addition to Theorem 3 we only have
to calculate the index of the twisted Dirac operator up to mod 2. It can be shown
that the index is equal to the second Chern number mod 2. Hence we obtain the
following description.

PROPOSITION 1. [12 Theorem 4.2]
(i) C is a Z2 -vector space spanned by the pairs {/, —/} (f ^ 0) of lattice points

of(RxR)/L.
(ii) The matrix elements of d" correspond to rectangles on (R x R)/£ with-

out self-intersection such that the centre of the rectangles are of the form
(a/2, a/2) mod L

4. COBORDISMS AMONG LENS SPACES

One could regard a moduli space M of instantons on a 4-manifold X as a cobordism
between its ends and its singularities. When both can be described by some topo-
logical data of X, each cohomology class of M of degree dim M — 1 gives rise to a
certain equation for the data. Such an idea was first developed by Donaldson [4] and
subsequently used by Fintushel and Stern [7] and T. Lawson [18] for V-manifolds.
Suppose given a sequence of instantons. Then an end of the moduli space of instan-
tons corresponds to divergence of their curvatures at some points on the 4-manifold.
On a smooth 4-manifold the divergence could be captured by instantons on 54 [4].
On the other hand the divergence on a V-manifold could be understood by using
instanton on S4/I\ where Y is a finite subgroup of SO(4).
Lawson used a certain non-existence result of invariant instantons on S4 to see
compactness of some moduli spaces for V-manifolds and used it to obtain some
results in topology [18].
In this section we use Example 1 in Section 2.3 to give an application to topology.
Let Ii and l2 be natural numbers coprime to each other and a be an odd num-
ber sufficiently large compared with l\ and 2̂- Let us identify S3 with the unit
sphere of the Za-module V® 2 0 V®~ l, where Vo is the standard one-dimensional
representation. We write L(a; I1J2) f°r the quotient 53/Za .
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THEOREM 5. Suppose X be an oriented closed 4-dimensional V-manifold which
satisfies

(i) TTI(X) = 1. (The fundamental group of the underlying space of X, not the
orbifold fundamental group of X.)

(ii) H2(X,Q) = 0.
(iii) There is a singular point p whose neighbourhood is of the form cL(a; Z1? l2)

(the cone on L(a; Z1? l2)).

Then there is a singular point (^ p) whose neighbourhood is of the form S3 /F with
\T\>a/(hl2).

SKETCH OF A PROOF: Let us identify S4 with (VQ0'2 0 VQ0"'1) U {OO}. Then we
can think of X as a 'connected sum' of X and S4/Za at p and oo. Let P be an
SU(2)-V-bundle denned by a 'connected sum' of X x SU(2) and P(lul2)/Za. (We
can take the connected sum because the Za-action on (P(/i,Z2))oo is trivial.)
Let M(P) be the moduli space of instantons on P. Then, after deforming slightly if
necessary, M(P) has a structure of a smooth one-dimensional manifold. Using the
one-dimensional moduli space of invariant instanton on P(li,l2), we can construct
an end of M(P) diffeomorphic to an interval [4,6,11]. The property of P(h^l2)
showed in Example 1 (ii) says that this is the only end where curvature of instantons
diverges at p. Since the number of ends of a one-dimensional manifold is even, there
must be an end where curvature of instantons diverges at some other point q. The
amount of £2-norm of the curvature concentrated on q is equal to or less than the
total amount of the L2-norm. When we write the neighbourhood of q as c(S3 /T),
then this inequality implies |F| > a/(lil2). D

COROLLARY 1. Let S be the connected sum L(a; lu /2)#(#r=i^3/Za t)7 where
53/Za . is a lens space with fundamental group Za.. Suppose that a is an odd num-
ber sufficiently large compared with l\ and l2, and that ai < a/(/i l2) for i = 1,... , n.
Then S cannot be smoothly embedded in S4.

PROOF: Suppose there is an embedding E C 54. Then 54 is divided into two pieces.
From one of them a counterexample of the previous theorem can be constructed. |

Other applications of P(l\,l2) are given in [11] when l\ = l2 = 1.
We remark that, using an argument similar to the above, one could conversely show
the existence of some invariant instantons on S4 topologically without appealing to
any classification. The simplest example would be to show that M\ is non-empty:
let P be an SU(2)-bundle over P2 with c2(P)[P2] = 1, then the moduli space M(P)
of instantons on P cannot be compact because a singular point of M(P) requires an
end of M(P), which implies Mj ^ 0. In order to consider invariant instantons on S4

one could use, instead of P2 , the quotient of a weighted S1 -action on S5 = 5(C3),
which is a rational P2 with (at most) three singular points of the form c(53/Za).
A similar argument was used by Fintushel and Stern for another direction [7].
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Differential geometry has proved to be a natural setting for large parts of mathe-
matical physics and conversely mathematical physics has provided a supply of new
ideas and problems for differential geometers. Perhaps the best known example of
this two-way interaction is given by the instanton solutions of the Yang-Mills equa-
tions - first noted by physicists but now playing an important role in several areas
of mathematics. There are, however, many other very interesting special equations
and theories; some of them, like the "monopole" equations, close relatives of the
Yang-Mills instantons and some rather different. In this section we have a number
of papers which exemplify this rich interaction.
The paper of Manton describes the Skyrme model, which is of practical interest
in physics and is also very attractive mathematically. The theory appears to offer
a number of challenging problems in the calculus of variations; being a variant of
the well-known harmonic map theory in which the energy integrand is modified by
a quartic term. The intriguing scheme described by Manton, relating the Skyrme
model to instantons, also displays very well the beautiful classical geometry involved
in the explicit description of the instanton solutions.
An important line of research on instantons, going back to the seminal paper of
Atiyah and Jones [AJ], bears on the limiting behaviour of the homotopy and ho-
mology groups of the instanton moduli spaces over 54 , for large Chern numbers.
The "Atiyah-Jones conjecture" suggests that these agree with the homotopy and
homology groups of the third loop space of the structure group. From quite differ-
ent directions, Taubes and Kirwan have made important advances on this problem
recently. Analogous problems and results apply to the moduli spaces of monopoles.
The paper of Cohen and Jones below describes more refined results in this direction,
giving a complete description of the homology of all the monopole moduli spaces in
terms of the braid groups (which also enter into the Jones theory of link invariants,
as described in Atiyah's lecture in Durham).
Next we have two papers on the oldest branch of differential geometry—the geome-
try of submanifolds. The article of Hartley and Tucker develops a general framework
for dealing with variational problems for submanifolds, more complicated than the
simple minimal surface problem. A well-known instance of this kind of theory in
the mathematical literature is the work initiated by Willmore, for surfaces in R3.
The paper of Burstall gives a fine illustration of the application of the holomorphic
geometry of the Penrose twistor space to minimal surfaces.
The papers of Tod and Wood are quite closely related. Both consider special differ-
ential geometric structures in 3-dimensions, with particular reference to Thurston's
homogeneous geometries, which have to do with the space of geodesies in a 3-
manifold (the mini-twistor space, in Tod's terminology). These structures seem to
have a good deal of potential, posing many natural questions (for example the ex-
istence of Einstein-Weyl structures on general 3-manifolds) and offering scope for
significant interactions with 4-dimensional geometry. Note that there are similari-
ties between the discussion in the last section of Wood's paper, on the passage from
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a Seifert 3-manifold to an elliptic surface, and the technique described in the paper
of Okonek for studying the representations of the fundamental group of a Seifert
manifold.

[AJ] Atiyah, M.F. and Jones, J.D.S. Topological aspects of Yang-Mills theory
Commun. Math. Phys. 61 (1978) 97-118
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ABSTRACT The first part of this paper is a brief review of the Skyrme model,
and some of the mathematical problems it raises. The second part is a summary
of the proposal by M.F. Atiyah and the author to derive families of Skyrme fields
from Yang-Mills instantons.

1 THE SKYRME MODEL
Hadronic physics at modest energies (a few GeV) is concerned with the interactions
of nucleons (protons and neutrons) and of pions. About 30 years ago, Skyrme
suggested a model for these particles which is still useful (Skyrme, 1962), despite
the fact that the particles are now believed to be bound states of quarks. In the
Skyrme model only the pion field appears, and the nucleons are quantum states of
a classical soliton solution of the pion field equations, known as the Skyrmion.

Nucleons have baryon number 1, their antiparticles have baryon number —1, and
pions have baryon number 0. In any physical process the total baryon number
is unchanged. In the Skyrme model, a field configuration has a conserved integral
topological charge which Skyrme identified with the baryon number. The Skyrmion
has charge 1, and there is a similar solution with charge —1.

Skyrme's pion field is a scalar field U taking values in SU(2). I shall mainly consider
fields at a given time, and not discuss dynamics much. In this case, U is a map
from physical space R3 to SU(2). The uniform field U = 1 represents the vacuum,
and all field configurations are assumed to be asymptotically like the vacuum so
C/(x) —• 1 as |x| —• oo. Space may therefore be compactified to a 3-sphere of
infinite radius. Let SS(R) denote a 3-sphere with its standard metric and radius R.
SU(2) with its standard metric is £3(l). U is effectively a map

U : S3{oo) -> 53(1) . (1)

Its degree, deg U, is a topological invariant and an integer. Skyrme identified deg U
with the baryon number.
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U maps an infinitesimal sphere of radius € , centred at x, to a neighbourhood of
C/(x). To lowest order in e, this neighbourhood is an ellipsoid, with principal axes
Mie>M2£ and /^e, say. The energy density at x, proposed by Skyrme, is (Manton,
1987)

e(x) = MI + A + Ml + M1M2 + A»\ + M3M1 (2)

and the total field energy is

E = f e(x) d3x . (3)
./R3

Note the following about this energy expression:
1) E is the potential energy of the Skyrme field at a given time . Using Lorentz
invariance one can obtain the kinetic energy and hence the Lagrangian for dynamical
fields. The kinetic energy expression defines a metric on the function space of static
fields.
2) The vacuum field U = 1 has zero energy, and deg U = 0.
3) Presumably, finite energy implies that U (x) —• const as |x| —* 00, but this
may not have been rigorously proved.
4) E is in dimensionless form. The energy unit and length unit are determined
from experimental properties of hadrons.
5) The symmetries of E are the Euclidean group of R3 , and the 0(4) group of
53(1). The latter is the "chiral symmetry" group. The choice of a vacuum U = 1
breaks this down to 0(3) which is "isospin symmetry".

It follows immediately from (2) that

e(x) > 6/ii/x2M3 , (4)

and since /X1/X2M3 ls the modulus of the Jacobian of the map £/, and the volume of
53(1) is 2TT2, the energy satisfies the inequality (Fadeev, 1976)

E > 127r2|deg*7| . (5)

Let En denote the infimum of the energy for fields of degree n. The symmetry
U -> U~l (the inverse in SU{2)) changes the sign of degC/, so En = E-n. It has
been shown (Castillejo and Kugler, 1987) that En < Ei + En-i for any integer / not
equal to 0 or n, and Esteban has shown, assuming this inequality, that the infimum
is attained for each integer n by a smooth field whose energy is concentrated in a
single region of space (Esteban, 1986). The physical meaning of the strict inequality
is that there are attractive forces in the Skyrme model. It is easy to prove that
En < Ei + En-i by considering fields of degrees / and n — I glued together at a large
separation, but the strict inequality is less obvious.
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The vacuum is the lowest energy field of degree 0. The lowest energy field of degree
1 is not known for certain, but physicists have assumed, and numerical evidence
makes it likely, that it is spherically symmetric. The lowest energy spherically
symmetric field is known as the Skyrmion, and its standard form is

U(x) = cos/(r)l + t'sin/(r)x-<7 . (6)

Here r = |x|,x = x/r and ol,o2 and a3 are the Pauli matrices. The profile
function /(r) has been determined numerically, by solving the variational equation
for / obtained from the energy functional. The boundary conditions are /(0) = TT
and /(r) —> 0 as r —» oo, so U is continuous at the origin and deg U — 1. The energy
of the Skyrmion is 1.231... x 12?r2 (Adkins, Nappi and Witten, 1983; Jackson and
Rho, 1983). A six-parameter family of Skyrmions is generated from (6) by the action
of symmetries. The centre can be moved to an arbitrary point, and the orientation
changed by conjugating U with some fixed element of SU(2). Replacing / by —/
gives the anti-Skyrmion with the same energy but degree —1. The physical nucleons
and anti-nucleons are obtained by promoting the position and orientation collective
coordinates to dynamical variables and quantizing these. The quantum states are
characterized by their momentum, their spin and their isospin. The nucleons have
spin | and isospin | , with the isospin "up" for the proton and "down" for the
neutron.

Skyrme's motivation for choosing the energy density (2) was to have a simple gen-
eralization of the harmonic map energy density \i\ -f ^ + fi\ whose variational
equations had non-trivial solutions in R3. Skyrme's energy density is geometrically
natural in three dimensions, and one may use it to define the energy of maps from
any 3-dimensional Riemannian manifold M to another Riemannian manifold N.
In this general context one may ask: (i) Is the infimum of the energy for maps in
each homotopy class attained by some smooth map that satisfies the variational
equations? (ii) Are there saddle-point solutions, i.e. non-minimal solutions of the
variational equations? (iii) Is the Skyrme energy functional in some sense a Morse
function? These questions are open.

Some explicit (numerical) solutions to the equations have been found for special
geometries. For example, solutions of all degrees are known for maps U : S3(R) —>
#3(l), where R is finite (Jackson, Manton and Wirzba, 1989). Most of these are
saddle points, and most do not have good limiting behaviour as R —> oo. Other
solutions, representing Skyrme crystals, are known for maps from a flat 3-torus to
S3(l) (Kugler and Shtrikman, 1988; Castillejo et al, 1988). On the other hand,
no solutions other than the vacuum are known for maps of degree zero from R3 to
S3(l), despite an attempt to find a saddle-point solution (Bagger, Goldstein and
Soldate, 1985).
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A more detailed problem is the following. It is fairly easy to understand that the
energy bound 12TT2 is exceeded by the Skyrmion because R3 and £3(l) are not
isometric (Manton, 1987). More generally, there is a topological lower bound on
the energy for maps U : M —• N which cannot be attained unless U is an isometry.
The problem is to find a stronger lower bound in the case that M and N are
geometrically distinct and there are no isometric maps between them.

For maps of degree 2 from R3 to £3(l) , two solutions of the Skyrme field equations
are known. The first has the spherically symmetric form (6), but with /(0) = 2?r.
The energy is 1.83... x 24TT2, which is greater than that of two well-separated
Skyrmions (Jackson and Rho, 1983). It is a saddle-point of the energy functional
and has six unstable modes as well as six zero modes (Wirzba and Bang, 1989). The
other solution is axisymmetric and has energy 1.18... x 247T2, which is less than
that of two well-separated Skyrmions (Kopeliovich and Shtern, 1987; Verbaarschot,
1987; Schramm, Dothan and Biedenharn, 1988). The energy density is concentrated
in a toroidal region. It is likely that this solution is the lowest energy Skyrme field
of degree 2, and it has eight zero modes.

One of the central problems in hadronic physics is to understand the interaction
of two nucleons at low energy. It is known experimentally that there is one bound
state of a proton and neutron - the deuteron - and there is a wealth of scattering
data. Much can be described with semi-phenomenological nucleon-nucleon poten-
tial models, but there is no deep understanding of these. It is not yet possible to
calculate low energy phenomena using QCD, the theory of quarks and their inter-
actions. It is therefore a challenge to see if the Skyrme model can describe them.
In principle, one should treat the Skyrme model as a quantum field theory and re-
strict attention to the sector where the fields have degree 2. In practice, this leads
to all sorts of conceptual and computational difficulties. Instead, one may try to
select a finite dimensional submanifold of Skyrme fields, whose coordinates are the
physically relevant degrees of freedom at low energy, i.e. collective coordinates, and
one should quantize.

The simplest version of this idea is to quantize the eight collective coordinates of
the orbit of the lowest energy degree 2 solution (Braaten and Carson, 1988). One
of the quantum states is qualitatively like the deuteron. However, to describe the
deuteron quantitatively and to describe nucleon-nucleon scattering one needs at
least 12 collective coordinates since two well-separated Skyrmions have 6 collective
coordinates each, namely their positions and orientations. A candidate for a 12-
dimensional set of Skyrme fields of degree 2 is the unstable manifold of the orbit
of the spherically symmetric solution (Manton, 1988). This manifold has not been
investigated in detail, but it probably includes well-separated Skyrmions in all po-
sitions and orientations, as well as the orbit of lowest energy fields. It is an open
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problem to determine numerically which fields lie on this manifold, and to ascertain
whether the manifold is smooth at the lowest energy fields or has cusps there. It
needs to be smooth to give a physically sensible model.

2 SKYRME FIELDS FROM INSTANTONS
One natural way to obtain static Skyrme fields is as the holonomy of instantons
(Atiyah and Manton, 1989).

Suppose Ap is any SU(2) Yang-Mills gauge potential in (Euclidean) R4 with finite
action and 2nd Chern class A:. In a suitable gauge, A^[x) decays faster than |x | - 1 as
|x| —> oo. Let the time-lines in R4 denote the lines parallel to the time axis. They
are labelled by points of R3. Let U{x) be the holonomy of A^ along the time-line
labelled by x. Formally

U{x) = Pexp- f°° AT{X,T)(LT (7)
J — oo

where r is the (Euclidean) time-cordinate and P denotes path ordering. U takes
values in SU(2), and hence may be regarded as a Skyrme field in R3.

U is unchanged under a large class of gauge transformations, but to ensure a com-
pletely gauge invariant definition of U one should regard A^ as defined on R4

conformally compactified to S4, and U as the holonomy along a circle on S4 which
starts and ends at the point at infinity. In most cases, this is equivalent to closing
the contour in (7) with a semi-circle at infinity. U is then well-defined up to conju-
gation by a fixed (x-independent) element of SU(2). Also, in this way, one ensures
that U(x) —> 1 as |x| —• oo. It is a basic topological fact that the field £/, regarded
as a Skyrme field, has degree k.

The moduli space of A;-instantons (anti-self-dual Yang-Mills fields of 2nd Chern
class k), Mfc, is an 8A:-dimensional connected manifold (not 8A:-3 because one allows
conjugation by fixed elements of SU(2)) (Atiyah, 1979). The holonomies have one
dimension less, as a time-translation doesn't affect them. These instantons therefore
generate a connected (Sk — l)-dimensional manifold of Skyrme fields of degree k,
Mk =

There is no precise relationship between the anti-self-duality equations for Yang-
Mills fields in R4 and the Skyrme equations in R3, so it is not surprising that none
of the instanton-generated Skyrme fields are solutions of the Skyrme equations.
However, some are good approximations to solutions discussed in Sect. 1, and Mk
smoothly interpolates between these approximate solutions. In fact, the coordinates

seem to correspond well to the collective coordinates of Skyrme fields relevant
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to fc-nucleon physics at low energy. The symmetry group acting on Mk is the prod-
uct of 5O(3) (the adjoint action of SU{2) on U) and the 15-dimensional conformal
group of R4 . The SO(3) survives the holonomy construction as the isospin sym-
metry of Skyrme fields, but the conformal group is broken down to the Euclidean
group of R 3 and dilations.

The 1-instantons generate a 7-dimensional set of spherically symmetric Skyrme
fields. The seven coordinates define the centre, the orientation and the scale size.
In the standard position, the Skyrme field is of the form (6), with

/(r) = , r [ l - ( l + £ ) * ] . (8)

A is the scale parameter. For this simple profile, the minimal value of the Skyrme en-
ergy is 1.24 . . . x 12?r2 when A2 = 2.11..., which exceeds the energy of the Skyrmion
by less than 1%.

The 2-instantons generate a 15-dimensional manifold of Skyrme fields. Some of
these 2-instantons may be identified with two well-separated 1-instantons, and as
the time-separation tends to infinity, the resulting Skyrme field tends to a product
of two Skyrme fields of degree 1. 14 of the 15 dimensions are accounted for by the
positions, orientations and scales of these two degree 1 fields, and the last is the
time separation of the instantons which has little effect in the limit. If the spatial
separation is also large, then the time-separation may be continuously increased
from —00 to 00. The effect is to reverse the order of the product of the Skyrme
fields. A particularly symmetric configuration can occur when the time-separation
is zero.

2-instantons with rotational symmetry about the time-line x = 0 generate Skyrme
fields of the form (6). The profile function f(r) is quite complicated in general.
However, the 2-instantons with time reversal symmetry which correspond to two
well-separated single instantons of the same scale size A (they have the same orien-
tation because of the symmetry) give, in the limit of infinite separation, the simple
profile

f(r) = 2» [ l - ( l + £ ) ' ] . (9)

The Skyrme energy is minimized when A2 = 2.62... and then E = 1.86... x 24?r2.
This is probably the lowest energy Skyrme field of degree 2 with SO(3) symmetry
that is generated from instantons. Its energy again exceeds the energy of the SO(3)
symmetric solution of the Skyrme equations by about 1%.
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A general formula for 2-instantons is known (Jackiw, Nohl and Rebbi, 1977).
Hartshorne has given a geometric characterisation of 2-instantons, and shown that
all can be expressed in this form (Hartshorne, 1978). These instantons are obtained
from an SU(2) matrix UQ and a potential

where Xi, X2 and X3 are distinct points in R4 (poles), and Ai,A2 and A3 are
positive constants (weights), [x — X t)

2 denotes the square of the Euclidean distance
from x to Xi. In terms of UQ and p the time-component of the gauge potential is

'o"1 • (11)

An arbitrary Uo is necessary to obtain the full 16-dimensional moduli space of
instantons. The recipe for obtaining the associated Skyrme fields is to take the
formula (7) and multiply by —1. The factor —1 comes from closing the contour.

The formula (11) depends on 17 parameters (the pole positions, ratios of the weights,
and Uo), but, as shown by Jackiw et al., there is a 1-parameter family of changes
to the poles and weights whose effect is simply a gauge transformation. This may
be described geometrically as follows, according to Hartshorne. Suppose for the
moment that Xi,X2 and X3 are not collinear. Then associated with the poles and
weights are two coplanar conies in R4. (See Figure). Let Ai,A2 and A3 be the
interior points on the sides of the triangle Xi X2 X3, defined by

X1A3 _ A^ X2Ai _ A^ X3A2 _ A^ . .
A2 A1X3 A3 A2X1 Ai

The first conic is the unique ellipse which is tangent to the sides of the triangle at
Ai, A2 and A3. The existence of the ellipse follows, by the converse of Brianchon's
theorem, from the concurrency of the lines A\ Xi, A2 X2 and As X3, and this in
turn follows, by Ceva's theorem, because

Xi As • X2 Ai • X3 A2 _ , x
A3X2.A1X3.A2X1

The second conic is the circumcircle of the triangle Xi X2 X3.

Now, we have a pair of conies with a triangle Xi X2 X3 circumscribing one and
inscribed in the other. By Poncelet's theorem, there is a porism (a one-parameter
family) of such triangles. A second triangle XJX2X3 is shown in the Figure, tangent
to the ellipse at A\, Af

2 and A3. Each triangle of the porism has associated poles
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(the vertices) and weights (defined up to an irrelevant multiplicative constant by
the analogue of formulae (12)), but they all give the same instanton, up to gauge
tranformations. The pair of conies is the gauge invariant data which defines the
instanton.

This geometrical characterization of instantons is easy to visualise, but not very
convenient for computations. An equivalent algebraic characterization is very useful.
Here, the porism of triangles is described by a one-parameter linear family of cubic
equations. Let t denote the (real) rational coordinate along the circle t = tan |0 ,
where 6 is an angular coordinate. Suppose that the vertices of one triangle of the
porism have coordinates t\,t2 and £3. Associated with the triangle is the cubic
equation

p(t) = ( t - = 0 (14)
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Associated with a second triangle of the porism, with vertices t\, tf
2 and £3 is the

cubic equation
p'(t) = (t-tJit-t'Jit-t'J = 0. (15)

It is a remarkable fact that any triangle of the porism is associated with a cubic
equation of the form

Hp{t) + n'p'{t) = 0. (16)

The porism is therefore given by a (projective) line of cubic equations, with inho-
mogeneous parameter fir//J>. The same characterization of the porism as a line of
cubics also applies when the circle degenerates to a line. In this case, t is simply a
linear coordinate.

2-instantons are rather well understood, but the evaluation of the associated Skyrme
fields involves computing the holonomy. In practice, this means integrating the
ordinary differential equation

J = C{T)9 (17)

along a time-line. C is a 2 x 2 matrix of rational functions of r which depend on the
instanton parameters as well as on x, and ^ is a 2-component vector. Eq. (17) is
of Fuchsian type, and since the integral is from —00 to -f-oo one may complete the
path of integration with a large semi-circle in the complex r-plane. The holonomy
is therefore a monodromy of the operator C. Since the problem is non-abelian, the
monodromy cannot be calculated by simply adding residues. It would be very inter-
esting if these monodromies could be determined without numerically integrating
(17).

So far, it has only been possible to calculate the Skyrme fields for special instan-
tons where the holonomy is abelian along each time-line. Expressions (8) and (9)
are examples. For the general 50(3) symmetric 2-instanton one can also give an
expression for the profile /(r) . The potential p depends only on r and r = |x|,

'('•') = ( r _ T% + r2 + ( r _ ^ + r» + ( r - T% + r2 '

and it may be written as the ratio of two polynomials in r and r. The numerator is
quartic in r (and in r), and since p is positive for real r its roots are two complex
conjugate pairs a ± ib and c ± id, with b and d positive. Then the Skyrme profile is

f ( r ) = 7r(b + d ) . (19)

This is not a simple expression, because b and d depend in a complicated (but
algebraic) way on r. An explicit formula could be found, since the quartic equation
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is solvable by radicals. Things simplify when there is time-reversal symmetry and
the quartic reduces to a quadratic in r2.

Another special 2-instanton generates a good approximation to the minimal energy
Skyrme field of degree 2. The conies associated with this instanton are a pair of
concentric circles in a spatial plane (perpendicular to the time-lines) with the ratio
of the radii equal to 2. The triangles tangent to the inner circle, with vertices on
the outer, are all equilateral. The Skyrme field generated from this 2-instanton is
axisymmetric about the spatial line perpendicular to the plane of the circles and
passing through their centres. It has not been possible to compute the Skyrme field
at a general point because the holonomy is non-abelian, but on the axis of symme-
try and in the plane of the circles the holonomy is abelian and can be computed
straightforwardly. Suppose the field is in its standard position and orientation,
with the X3-axis as symmetry axis, and suppose the outer circle has radius R. Let
x\ = r coscj) , X2 = r sin<£ and Xs = z . Then, on the axis

U{O,O,z) = exp in \ (l + ?pj * - ll a3 , (20)

and in the plane

U(r cos<£, r sin^,0) = exp i f(r) (a1 cos 2<f> - a2 sm2(f>) , (21)

where

(r--r«W
There is qualitative agreement with the numerical solution of the Skyrme equations,
if one chooses the scale R appropriately. It would be interesting to quantitatively
compare the instanton-generated Skyrme field with the numerical solution, and to
compute its energy.

M2j the set of Skyrme fields of degree 2 generated from 2-instantons, appears to
provide a sensible subset of Skyrme fields with which to model low-energy two
nucleon interactions. However, one needs to understand the topology of M2 better.
The Skyrme energy functional can be regarded as a Morse function on M2 and one
should verify that all the critical points correspond closely to true critical points of
the Skyrme model.

M2 is a s e t of static fields, but if the coordinates (moduli) of M2
 v ary with time,

then the fields become dynamical. The Skyrme Lagrangian, restricted to M2» de-
fines a Lagrangian on M2, but the computations which are necessary to find and
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solve the equations of motion are heavy. Since the Skyrme model is itself only an
approximation, it would be natural to seek a Lagrangian on M2, defined directly
in terms of instanton moduli, and of the same qualitative form as the Skyrme La-
grangian. This requires that one find a metric g and potential energy V directly
in terms of instanton moduli. Given such data, the natural Hamiltonian to use
for the quantized dynamics is H = —V2 + F, where V2 is the Laplacian on M2

constructed using the metric g. The wave functions are (complex) scalar functions
on M2 • The novel feature of such a model in a nuclear physics context is that the
curvature and the non-trivial topology of M2

 a r e important. Curvature alone can
lead to non-trivial scattering and quantum bound states.
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REPRESENTATIONS OF BRAID GROUPS AND
OPERATORS COUPLED TO MONOPOLES

RALPH L. COHEN AND JOHN D.S. JONES

Let Mk be the moduli space of based S{7(2)-monopoles in R3 of charge &, see
for example [4]. Associated to each monopole c there is a natural real differential
operator 6C, the coupled Dirac operator. The space of solutions of the Dirac equation
6cf = 0 is ^-dimensional and as c varies these ^-dimensional spaces form a real
vector bundle over the space of monopoles. One of the main purposes of this paper
is to explain how this bundle is related to representations of the braid group.

Braid groups appear in the theory of monopoles in the following way. Let Rat*
be the space of rational functions on C which map infinity to zero and have k poles,
counted with multiplicity. In [10], Donaldson showed that there is a diffeomorphism

The topological properties of the space Rat* are extensively studied in [8] and in
particular it is shown that, for large enough JV, there is a homotopy equivalence

Here T,N means iV-fold suspension, fak is the braid group on 2k strings, and
is its classifying space, an Eilenberg-MacLane space of type A"(/?2fc, 1). Combining
these two results shows that the space of monopoles Mk and the space Bfak have
the same homology and cohomology; indeed if E is any (generalised) cohomology
theory, then E*(Mk) and E*(Bf32k) are isomorphic. Our aim is to investigate this
isomorphism between the K-theory of Mk and the K-theory of Bfck-

Vector bundles over a classifying space BIT arise most naturally from representa-
tions of the group TT. Indeed a well-known theorem, due to Atiyah [2], shows that
if the group ?r is finite then the A'-theory of BIT can be computed from the repre-
sentation ring of 7T by completion. The braid group /?2k is not finite and Atiyah's
theorem does not hold; but nonetheless many interesting bundles arise from repre-
sentations. On the other hand the moduli space Mk consists of analytic objects,
connections. One very natural way of constructing vector bundles over Mk is to
construct differential operators using the connections and to form the index bundles
for the corresponding families of operators parametrised by Mk- The isomorphism
between the AT-theory of Mk and the A"-theory of Bfak suggests that there may
be a natural correspondence between representations of /?2fc and operators coupled

The first author was partially supported by grants from the NSF and PYI. Both authors were
supported by NSF grant DMS-8505550
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to monopoles. Here we will study the coupled Dirac operator and the permutation
representation of the braid group.

It is natural to look at other representations of the braid group, in particular
those used in Vaughan Jones's construction of polynomial invariants of knots and
links, and to see if these representations have some interpretation in terms of the
space of monopoles. We will make some comments on this project in §6. The Jones
polynomials have been given a gauge theoretic interpretation by Wit ten [18] and it
is natural to wonder if there is any direct connection between these various points
of view.

In this article we will summarise some of the ideas involved in establishing the
relationship between the permutation representation of the braid group and the
index bundle for the family of Dirac operators; full details will be given in [9].

The authors are indebted to Michael Atiyah, Simon Donaldson, Nigel Hitchin, and
Cliff Taubes, for helpful conversations and correspondence concerning this project.
The first author would like to thank the mathematics departments at Oxford Uni-
versity and University of Paris VII for their hospitality while some of this work was
being carried out.

§1 MONOPOLES

The purpose of this section is to summarise the basic facts concerning monopoles
and Yang-Mills-Higgs theory and to show that there are many interesting topological
features in the theory. Fix the structure group to be SU(2) with Lie algebra su(2).
We use the standard invariant inner product on su(2) and so su(2) becomes a three
dimensional Euclidean space. We study S{7(2)-monopoles on R 3 equipped with its
standard (Euclidean) metric and orientation.

We consider pairs (A, <p) where:

(1) A is a connection on the trivial bundle 517(2) on R3,
(2) (f is an su(2) valued function on R 3 .

So A is a 1-form on R3 with values in su{2)\

A =
11=1

where A^ : R3 —> su(2) and the x^ are the coordinates on R3. The connection A
is called the gauge potential and ip the Higgs field. The pair (A,cp) is required
to satisfy several conditions. First we require the Yang-Mills-Higgs action of (A, (p)
to be finite, that is

(I) U(A,(p) = I (\\FA\\ -+• H^A^II ) dvol < oo.
JR3

Here FA — dA + A A A is the curvature of the connection A, Dyi is the covariant
derivative operator defined by A, and dvol is the usual volume form on R 3 . We also
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require a condition on the behaviour of <p at infinity. There are several different
conditions which may be imposed. Here we use the weakest condition which seems
to be sufficient [17]

(ii) i - M e £ 6 ( R 3 ) .

Notice that we do not assume any asymptotic conditions on the gauge potential A.
In addition we impose a base point condition

(III) lim <p(t,O,O) = (1,0,0).
t—>oo

Let A be the space of pairs (A,(p) E A which satsify these three conditions.
There is a natural map

/ : O2S2 -» A,

where Q,2S2 is the space of all smooth maps S2 —> 52, which preserve the base
point (1,0,0) in S2. This map / is defined explicitly as follows. We identify the
unit sphere S2 with the sphere in su(2). Now given a map

a : S2 ~> S2 C su(2)

define the pair I (a) = (A,(p) by the formula

In this formula ft : R —> [0,1] is a smooth cut-ofF function which is identically 0 if
t < 1/2 and identically 1 if t > 3/4, and [, ] is the Lie bracket on su(2).

PROPOSITION. The map I : fi252 —> A is a homotopy equivalence.

This is proved in [17]. It immediately shows that there is a definite topological
aspect to the study of monopoles.

There is a group of gauge transformations

a = MaPo(R
3,5C/(2))

which acts on the space A. Here Map0 means those maps g : R3 —» SU(2) which
satisfy the base point condition

lim flr(*,0,0) = 1.
t—>oo
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Because of this base point condition Q is contractible. Gauge transformations act
on A by

g*(A,<p) = (g-1 Ag + g-Ug^

This formula makes sense since g is a matrix valued function and A is a matrix of
1-forms. The action of Q on A is free and has local slices, see [17], and so we form
the quotient spaces

B = A/G.

The quotient map is a principal fibre bundle with fibre Q and since Q is contractible
we deduce that the projection A —• B is a homotopy equivalence. The natural maps
fit into a diagram

A > O252

B

and since each of these maps is a homotopy equivalence we deduce the following
proposition.

PROPOSITION. There is a natural homotopy equivalence

B -> fi252.

In view of these results A and B break up into components labelled by the integers
Z and we use the subscript k to denote the fc-th component. This integer k is the
charge of the pair (A, (p). The above propositions show that

where Q^S2 means the space of all base point preserving maps S2 —> S2 of degree k.
The Yang-Mills-Higgs functional is invariant under the gauge group Q and so

defines a function U on B. The space Mk Q Bk of based 5?7(2)-monopoles of
charge k is defined to be the space of absolute minima of U. If k > 0 then Mk can
be identified with the space of pairs (A, ip) which satisfy the Bogomolnyi equation

where * is the Hodge star operator on R3, modulo gauge equivalence. If k < 0
then Mk can be identified with the space of pairs (A, <p) which satisfy the equation

We concentrate on the case where k > 0 and so study the space of solutions of
the equation DA^ — *-F!A» This space Mk is a smooth manifold of dimension Ak
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and its geometrical properties are extensively studied in [4]. For example, when
k = 1 a monopole is uniquely determined by its centre, which is a point in R 3 , and
a "phase" parameter in S1; thus

= SX x R 3 .

In fact monopoles can be regarded as "time invariant instantons" in the following
sense. Given the pair (A, <p) we can form an su(2) connection

a = A + <p dt

o n R 4 = R 3 x R . This connection is independent of t and it is easy to check that
(A, <p) satisfies the Bogomolnyi equation if and only if a is self-dual,

*Fa = Fa

where * is the star operator on R4.
The following theorem, due to Cliff Taubes [17], shows that these spaces M.k

have some very interesting topological features.

THEOREM. The inclusion i : Mk —• Bk is &n "asymptotic homotopy equivalence";
that is there is a function q(k) with q(k) —+ oo as k —> oo such that the map i
induces an isomorphism of homotopy groups nq provided q < q(k).

Note that the homotopy type of Bk — ^\S2 is independent of k so the spaces Mk
provide finite dimensional approximations to a fixed homotopy type which become
better and better approximations as k —> oo.

§2 BRAIDS

In the previous section we saw that the space of monopoles is a finite dimen-
sional homotopical approximation to the space O252 of all base-point preserving
maps S2 —> S2. In fact there is a more classical finite dimensional homological
approximation to this space and this is where braid groups come into the picture.

Define Ck = Cjt(R2) to be the space of unordered fc-tuples of distinct points in
the plane R 2 . Then recall that the braid group /3k is the fundamental group of Ck

fa = *i(Ck).

Indeed it is well-known that Ck is the classifying space of the braid group /?*, that
is

7rf-(Cjfc) = 0, if i > 2.

It is usual to draw braids as follows:
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7

Let Ck — Cfc(R2) be the space of ordered fc-tuples of distinct points in R2. The
symmetric group E* acts freely on Ck by permuting points and the quotient is Ck-
The covering Ck —» Ck corresponds to a homomorphism

p : /3k —> 2*.

In terms of the diagram representing a braid this is given by mapping a braid to
the permutation of its end points.

There is a natural map
2 2

defined as follows. First replace the space Ck by the homotopy equivalent space
of configurations of k disjoint disks in the plane. Now given a configuration D =
{Di,..., Dk} of k disjoint disks define a map / D : S2 —> S2 as follows. Regard the
domain of / D as R 2 U OO and then / D maps the complement of D\ U • • • U Dk to the
base point of S2 and on the disk Di it is the usual identification of Di/dDi with S2.
Then D H / D gives the required map j : Ck —* fi|52. The main theorem relating
Ck and 0 | 5 2 is the following result due to May, Milgram, and Segal [14], [15], [16].

THEOREM. The map j : Ck —* ^\S2 is an asymptotic homology equivalence.

Now we see that there must indeed be a relation between the monopole space
and the space Bflk = Ck> There are maps

Mh Ck

and the map i is an asymptotic homotopy equivalence whereas the map j is an
asymptotic homology equivalence. So the space Mk is a finite dimensional homo-
topical approximation to H|52 and the space Ck is a finite dimensional homological
approximation to the same space. However the precise relation between braids and
monopoles is rather more subtle than the above remarks might lead one to expect
and it is explained in detail in §3.
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One may think of the map j : C* —> Q^S2 as superimposing, or gluing in, a
standard map, the identity of S2 or, to put it another way, the identification of
D2 jdD2 with the sphere S2, at each of k distinct points in the plane. There is a
similar superposition process in the theory of instantons on R4; in this particular
case this is the 't Hooft construction of instantons on R 4 and in the case of a general
4-manifold this is the patching process due to Taubes. If we follow the analogy with
instantons, compare [5], we might think that there is a gluing process for monopoles
which superimposes a standard k = 1 monopole at each of k distinct points in the
plane and that this process leads to a map A : Cfc(R3) —• Mk with the property
that the composite

C*(R2) -> Ck(R
3) ^Mk^Bk~ n2

kS
2

is homotopic to the map j used above. Suppose indeed that such a map A exists,
then computing the induced homomorphisms on fundamental groups quickly gives
a contradiction;

R2)) = f3k,
 2 2

and the induced homomorphism j * is surjective. But 7Ti(Cfc(R3)) is the symmetric
group Xljt and the homomorphism

j t : ^(CkiR2))->

cannot factor through £*.
This argument shows that the gluing proceedure for monopoles is considerably

more delicate than that for instantons. Indeed it is possible to superimpose "well-
separated monopoles" but great care must be taken with this construction and
this is one of the points where the theory of monopoles is very different from the
corresponding theory of instantons.

§3 RATIONAL FUNCTIONS

To understand the full relation between braids and monopoles we need to use
Donaldson's theorem relating Mk and Ratjt, the space of rational functions on C
which map infinity to 0 and have k poles.

THEOREM. There is a diffeomorphism Mk — Ratfc.

The proof of this theorem is given in [10], [11], [12]. Now let Rat^ be the subspace
of Ratfc consisting of those rational functions with k distinct simple poles; this is
the subspace of generic rational functions. If / G Rat^ then f(z) can be written in
the form
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where the b{ are distinct complex numbers and the az are non-zero complex numbers,
therefore

Rat" = Ck x E t (C*)k.

Here Ck is the space of ordered A:-tuples of distinct points in C and C* is the space
of non-zero complex numbers. The symmetric group E* acts on both Ck and (C*)*
by permutations. From this we deduce that RatJ is the classifying space Bfii,k of
the semi-direct product

#>,* = h x (Z)*

where /?* acts on (Z)fc by permuting factors. This group /?2,* can be thought of
as the group of framed braids and it is naturally a subgroup of the group fak-
The inclusion /?2,fc —» /?2fc is given by the cabling process which can be described as
follows. Start with k pairs of pieces of string and twist the z-th pair n{ times where
rii G Z. Now braid the k pairs according to the braid 6 E /?*. This gives a braid on
2k strings and the map which sends (/?;ni, ...,nfc) to this braid gives the inclusion
fo,k - » fok.

We now have the following diagram.

Rat? = B/32,k —?—> Bf32k

•I
Rat* = Mk

and the following theorem follows directly from one of the main results of [8].

THEOREM. Let E be any cohomology theory, then

<p* : E*(B/32k) -+

V>* : E*{Mk) ->

axe both split injective and the splittings induce a natural isomorphism

We will use this theorem in the case where E is A'-theory but before doing so we
discuss some of its implications. It is a reasonably straightforward piece of group
theory to check the following lemma concerning the braid group, for example see [7].

LEMMA. (1) The abelianisation of the braid group /3k is the integers Z.
(2) If k > 5 then the commutator subgroup [/3k,0k] Q flk is perfect.

Given this lemma we can form the Quillen plus construction to kill [/?2fc,/̂ 2Jk] to
get the space B/3^k, and this space then has fundamental group Z and the same
homology, with any twisted coefficients, as Bfck- We know that iriMk = Z and, by
the above theorem, H*(M.k\ Z) = H^{B02k\ Z) and so the following question seems
very natural
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QUESTION. IS there a homotopy equivalence

B/3+k ~Mk.

The essential difficulty is whether there is a map Bfok —* Mk which abelianises
the fundamental group and induces an isomorphism in homology with any twisted
coefficient system. Both spaces are as nice as possible, they are 4fc-dimensional
manifolds and both have natural complex structures. A theorem due to Kan and
Thurston [13] asserts that any space is homotopy equivalent to a space obtained
by applying Quillen's plus construction to a space of the form Bit. It would be
rather remarkable if it were possible to obtain the monopole space by applying
the plus constrution to B@2k- If there is such an equivalence this would give the
neatest possible way of expressing the relation between braid groups and monopoles,
however for many purposes the above theorem is completely satisfactory since it
provides a definite method of producing the isomorphism E*(Mk) •—* E*(Bp2k) as
we shall see in a specific example.

§4 THE COUPLED DIRAC OPERATOR

Now we turn to the construction of vector bundles on the space Mk using diff-
erential operators and the purpose of this section is to describe the basic operator,
the coupled Dirac operator, and its index bundle. Let 53 be the space of spinors
on R3 and write E for the usual 2-dimensional complex representation of 517(2).
Then the Dirac operator coupled to a pair c = (A, y>) £ A is the operator

dc : C°°(R3; 53 ® E) -> C°°(R3; 53 ® E)

defined by the formula

dc(f) = X > ; ® 1) • (DA,i(f)) + (1 ® V)f.
1 = 1

Here et- is the z-th generator of the Clifford algebra C3 of R 3 and DA,I is covariant
differentiation in the z-th direction in R 3 defined using the spinor connection on 53

and the given connection Aon E. The ei act on 53 via the usual spin representation
of C3 and su(2) acts on E via the standard representation of the Lie algebra su(2).

In fact this operator is the time invariant Dirac operator on R 4 coupled to a time
invariant instanton in the following sense. Given the pair (A, (p) form the connection
a = A -f <p dt on R4, as in §1. Now we can form the Dirac operator on R4 coupled
to the connection a

da : C°°(R 4 ; 5 + 0 E ) ^ C°°(R 4; 54" 0 E).
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where Sf~ are the positive and negative spinors on R 4. We can restrict this operator
to the subspace of functions onR4 = R 3 xR which are independent of the fourth
coordinate t and since a is independent of t we get an operator

da : C°°(R 3; 5+ ® E) -> C°°(R3; 54" ® E).

Now using e\ to identify 5^ and 5^ we can form the operator

e4 -da : C°°(R3;54
+ ® £) - • C°°(R3;54

+ ® £)•

Using the usual identification of the C3 module £3 with S^ where e; G C3 acts as
e4ef this operator e4 • 9a can be identified with the operator dc defined above.

Now note that Spin(3) is isomorphic to 5*7(2) and under this isomorphism the
spin representation S3 becomes the usual 2-dimensional representation E of 517(2).
Therefore 53 ®E is the 4-dimensional representation E®Eoi 5*7(2) x 5*7(2). This
representation has a real structure; indeed using the fact that Spin(4) is isomor-
phic to 5*7(2) x 5*7(2) the underlying real representation is the double covering
Spin(4) —» 50(4). The outcome is that there is there is a 4-dimensional real rep-
resentation R of 5*7(2) x 5*7(2) whose complexification is E ® E. Therefore the
operator dc has a real structure and there is an operator

whose complexification is dc. This operator 6C is the one we use and we refer to it
as the real Dirac operator coupled to (A,<̂ >).

In [17] Taubes shows that this operator extends to a Fredholm operator on the
appropriate Sobolev spaces. Furthermore if c\ and C2 are gauge equivalent the oper-
ators SCl and SC2 are isomorphic and so we get a family of operators Sc parametrised
by the points c G B. Taubes also shows that this is a continuous family and therefore
has an index bundle

ind(S) G K0\B).

Recall briefly how this index bundle is defined. Let

Kc = ker^c, Cc = coker£c

so both Kc and Cc are finite dimensional real vector spaces. Suppose in fact that
the spaces Kc form a vector bundle K over A and the spaces Cc also form a vector
bundle C over A. Then

ind(S) = K - C.

In general the spaces Kc do not form a vector bundle, nor do the spaces Cc, since
the kernel and cokernel of Sc may jump in dimension, but we can reduce to this
case by a deformation, compare [2],
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Now we must identify this index bundle

ind(«) G K0°(B)

using the equivalence of B with Q?S2. There is the usual isomorphism

S2 = Sp(l)/U(l)

and we can compose this equivalence with the stabilisation

Sp(l)/U(l) -» Sp/U = lim Sp(n)/U(n)
n—• oo

to get a natural map S2 —> Sp/U. Now apply Q2 to this map and use the equivalence

occuring in real Bott periodicity, and we get a map

This map gives us an element 7 G KO°(Q,2S2) with corresponding components
lk e KO°(n2s2).

THEOREM. Using the natural isomorphism ofKO°(Bk) with KOQ(Sl\S2) the index
bundle ind(8) can be identified with jk'

ind(S) t-» 7fc

This theorem is proved by adapting Atiyah's proof of Bott preriodicity [1] using
elliptic operators and it is given in [9]. In some sense the proof is straightforward
but in detail it is quite tricky since it must necessarily involve the intricacies of
8-fold Bott periodicity in real Ar-theory. The complexification of the bundle 7 is
trivial so there is no way to avoid the extra complications of real K-theory and get
non-trivial results.

The appearance of 5p(l)/?7(l) in the above description of 7 is very natural. In
the theory of monopoles for general Lie groups the asymptotic conditions imposed
on the pair (A, (p) are that <p approaches a fixed orbit of the adjoint action of the
group on its Lie algebra. In our case we see that using the identification of Sp(l)
with SU(2) the unit 2-sphere in the Lie algebra su(2) can be identified with the
orbit of Sp(l) acting on a fixed unit vector, that is Sp(l)/U(l).
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§5 THE DIRAC OPERATOR AND REPRESENTATIONS OF THE BRAID GROUP

Now we look at the operator

where c G Mk> The first simplification is that since c now satisfies the Bogomolnyi
equation we can use the vanishing theorem of [17].

THEOREM.
Cc = coker(6c) = 0

Therefore the spaces Kc = ker(£c) form a ^-dimensional real vector bundle over
the monopole space Mk and this is the index bundle ind(£) of the family of operators
Sc where c G M^. Now we use the theorem of [8] described in §3 to identify
the corresponding bundle over Bfck, more precisely the corresponding element in
KO°(Bpk). To do this we must first identify z/>*(ind(£)) where

is the map described in §3.
There is a natural representation

defined as follows. Let at be the generator of the z-th copy of Z in /?2,fc = flk K (Z)fc,
then in the representation TT̂ , ai changes the sign of the z-th basis vector in Rk

and a braid b £ /?*. C /32ik permutes the basis of Rk. Another way to describe this
representation is as the composition

h,k =PkK (Z)1 -» Efc K (Z/2)fc C O(k)

where the first homomorphism is the obvious quotient and E& K (Z/2)fc is identified
with the subgroup of O(k) generated by the permutation matrices and the diagonal
matrices with ±l 's along the diagonal. This representation defines a bundle over
Bft2,k which will still be denoted by TT*. The corresponding bundle can be described
quite explicitly as follows. Let H be the real Hopf line bundle over C* = R xS 1 ;
then TTfc is the bundle

Ck x E t (H)k - Ck x S t (C*)k.

THEOREM.
</>*(ind(£)) = 7Tfc 6 KO\B(32,k)

The proof of this theorem is given in [9] so here we try to describe the intuition
behind it. First we deal with the case k = 1, then M.\ = R 3 x S1 and ind(6) is the
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non-trivial 1-dimensional line bundle over M\, that is the (real) Hopf line bundle
over the circle S1. This of course immediately verifies the theorem in the case k = 1
since #2,1 = Z, M\ = ##2,1 and the Hopf line bundle is just TTI. These facts have
the following intuitive interpretation. A 1-monopole is determined by its centre in
R 3 and a phase, which determines its component in S1. The space of solutions of
the Dirac equation Sc(f) = 0 is one dimensional and any non-trivial solution of this
equation has the property that if we rotate the phase of the monopole through 2TT
then this solution changes sign.

Now we look at the general case of M. k and restrict attention to the subspace of
"well separated monopoles"; this is the subspace obtained by gluing in 1-monopoles
at k distinct points in R 3 . Then it is natural to expect the solutions of the Dirac
equation coupled to such a monopole to be fc-dimensional with one basic solution
associated to each of the ^-distinct points. If the points are permuted then so is
the basis and if the phase of the i-th. 1-monopole is rotated through 2?r then the
sign of the i-th basis vector changes. Therefore the representation TT* should appear
quite naturally. However as we have already pointed out the gluing process for
monopoles is quite subtle so that while this heuristic argument is quite convincing,
considerable care is needed to give a precise proof.

The next step is to look for the corresponding element of KO^^Bfok)- First we
show that there is an element x G KO°(B/32k) with the property that

<p*(x) = 7rk

where <p : Bf$2,k —> Bfak is induced by the inclusion j : /?2,fc —> /?2Jfe- The obvious
starting point is the permutation representation p2k '• @2k —* O(2k) and so the first
step is to compute the representation j*(p2k)- Let q : /?2,fc —> fik be the quotient
homomorphism /3k K (Z)* —> /?*.

LEMMA.

3*{p2k) = K2k ®q*(pk)

The proof of this lemma is quite straightforward. If we write the basis of R 2k as
e i , . . . , &2k then in the representation j*(p2k) the generator a; of the i-th factor Z
acts by interchanging e2i_i and t2i and leaving the other basis vectors fixed while
a braid b G Pk permutes the k pairs (ei, e2),. • •, {^2k-i ? ^2k)- Therefore in the basis

/ l = e l — e 2 , • • • , fk = C2k-1 — ^2k, fk+1 = Ci + e 2 , . . . , J2k = ^2k-l + ^2k

the representation j*(p2k) is precisely 7T2k ® Q*(pk)-
To find the element x G KO°(B/32k) such that y>*(a?) = 'md(S) G K0°(Mk) we

need to find a way to subtract off pk from p2k- In KO°(B^2k) there is a natural
way to do this; at the level of representations things are more delicate and will be
analysed carefully in [9] . The inclusion i : /?* —* $2k induces a surjection

t* : KO\Bp2k) -> KO\Bpk)

and this map has a natural splitting. More precisely we use the following proposition
from [6].
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PROPOSITION. There is a natural map

a : KO*(Bpk) -> KO*(Bf32k)

such that

(1) i* • a = 1, where i : fik —• &2k is the inclusion
(2) j * - a = q* where j : ̂ 2,k —> p2k is the inclusion.

From this proposition we see that the element x we have been looking for is
P2k — a(Pk)- Now by analysing the splittings which occur in the theorem of [8]
we end up with the following result, proved in [9], which gives the precise relation
between the index bundle for the family of Dirac operators coupled to monopoles
and the permutation representation of the braid group.

THEOREM. Using the natural isomorphism of K0°(Mk) with KO°(Bf32k) the in-
dex bundle ind(S) can be identified with p2k ~ a(Pk):

K0\Mh) = KOo(B02k)
ind(6) <-> p2k - ®(pk)

§6 FURTHER COMMENTS

It is natural to wonder which of the other representations of the braid groups
appear in index bundles of operators parametrised by the space of monopoles. The
above proceedure can be generalised as follows. We can couple the Dirac operator on
R3 to the pair (A,(p) using any representation of 5(7(2). The Dirac operator has a
quaternionic structure and so if we couple it to a representation with a quaternionic
structure the corresponding index bundle will have a real structure. This gives a
homomorphism

RSP(SU(2)) -> K0\Bp2k)

where RSp is the quaternionic representation ring. Similarily we get a homomor-
phism

RO(SU(2)) — KSP°(B/32k)

where RO is the real representation ring and KSp is quaternionic if-theory. These
two homomorphisms will be studied in detail in [9]. These constructions give the
most general natural elements of if-theory which can be constructed by these meth-
ods.

The representations which are used in Vaughan Jones's work all occur in continu-
ous one parameter families which for special values of the parameter factor through
the permutation group En. The corresponding bundles are homotopic, therefore
isomorphic, and so define the same element of A"-theory. So A"-theory is not suffi-
ciently sensitive to detect the difference between these inequivalent representations
and every AT-theory class which arises from these representations factors through
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the permutation group. However the index bundles come as sub-bundles of a trivial
bundle of Hilbert spaces and so they inherit natural connections. It seems reason-
able to guess that the holonomy of these natural connections is closely related to
representations of the braid groups and if true this would give a more precise way
of associating representations of the braid groups to these index bundles. One final
point worth mentioning is that the space of monopoles on hyperbolic space is also
diffeomorphic to the space of rational functions Rat*, see [3], and it may be possible
to exploit this fact. We plan to return to these ideas in future work.

REFERENCES

1. M.F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math., Oxford
(2) 19 (1968), 113-140.

2. M.F. Atiyah, "K-theory," W.A. Benjamin, New York, 1967.
3. M.F. Atiyah, Magnetic monopoles in hyperbolic space, in "Proceedings of the Bombay collo-

quium on vector bundles, 1984," Oxford University Press, Oxford, 1987, pp. 1-34.
4. M.F. Atiyah and N.J. Hitchin, "The Geometry and Dynamics of Magnetic Monopoles,"

Princeton Univ. Press, Princeton, 1988.
5. M.F. Atiyah and J.D.S. Jones, Topological aspects of Yang-Mills theory, Comm. Math. Phys.

61 (1978), 97-118.
6. E.H. Brown Jr. and F.P. Peterson, On the stable decomposition of f22Sr+2, Trans, of the

A.M.S. 243 (1978), 287-298.
7. Joan Birman, "Braids, links and, mapping class groups," Annals of mathematics studies, 82,

Princeton Univ. Press, Princeton, 1974.
8. F.R. Cohen, R.L. Cohen, B.M. Mann, and R.J. Milgram, The topology of rational functions

and divisors of surfaces, Acta Math, (to appear).
9. R.L. Cohen and J.D.S. Jones, Monopoles braid groups and the Dirac operator, to appear.

10. S.K. Donaldson, Nahm's equations and the classification of monopoles, Comm. Math. Phys.
96 (1984), 387-407.

11. N.J. Hitchin, On the construction of monopoles, Comm. Math. Phys. 89 (1983), 145-190.
12. J. Hurtubise, Monopoles and rational maps: a note on a theorem of Donaldson, Comm.

Math. Phys. 100 (1985), 191-196.
13. D.M. Kan and W.P. Thurston, Every connected space has the homology of a K(ir, 1), Topol-

ogy 15 (1976), 253-259.
14. J.P. May, "The Geometry of Iterated Loop Spaces," Lecture Notes in Mathematics 271,

Springer-Verlag, 1972.
15. R.J. Milgram, Iterated loop spaces, Ann. Math 84 (1966), 386-403.
16. G.B. Segal, Configuration spaces and iterated loop spaces, Invent. Math. 21 (1973), 213-221.
17. C.H. Taubes, Monopoles and maps from S2 to S2; the topology of the configuration space,

Comm. Math. Phys 95 (1984), 345-391.
18. E. Witten, Quantum field theory and the Jones polynomials, Comm. Math. Phys. 121 (1989),

351-399.

Mathematics Department, Stanford University, Stanford California 94305
Mathematics Institute, University of Warwick, Coventry CV4 7AL England





Extremal Immersions and the Extended Frame
Bundle

D H Hartley, R W Tucker

Department of Physics, University of Lancaster, UK
1989

Abstract

We present a computationally powerful formulation of variational problems that
depend on the extrinsic and intrinsic geometry of immersions into a manifold. The
approach is based on a lift of the action integral to a larger space and proceeds by
systematically constraining the variations to preserve the foliation of a Pfaffian sys-
tem on an extended frame bundle. Explicit Euler-Lagrange equations are computed
for a very general class of Lagrangians and the method illustrated with examples
relevant to recent developments in theoretical physics. The method provides a
means of determining spatial boundary conditions for immersions with boundary
and enables a construction to be made of constants of the motion in terms of Euler-
Lagrange solutions and admissible symmetry vectors.

INTRODUCTION

Current trends in theoretical physics have focussed attention on the properties of
spacetime immersions that extremalise various aspects of their geometrical struc-
ture. Thus string theories are based on models that extremalise the induced area
of two dimensional time-like world sheets. Their generalisations to p-dimensional
immersions provide a dynamical prescription for (p — 1)-dimensional membranes.
Extremalising the integral of the natural induced measure has provided a very rich
phenomenological interpretation in the context of particle physics and has led to
a number of speculations connecting gravitation to the other forces of Nature. In
these developments the properties of the ambient embedding space for the various
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immersions play a minor role at the classical level. At the quantum level consistency
conditions constrain their dimensionality when the ambient space is flat.

A number of recent papers [1] have begun to investigate the properties of spacetime
immersions that extremalise integrals of certain of their extrinsic properties. Such
an approach incorporates the ambient space into the fundamentals of the theory
in a non-trivial way. At the classical level such models promise a rich and varied
phenomenological interpretation and offer important challenges for the quantisation
program of non-linear systems.

In order to appreciate the properties of individual models constructed from their
extrinsic geometrical properties it is important to be able to study a class of models.
In this manner we may put individual properties into their proper perspective.
However the classical methods of the variational calculus applied to such higher-
order Lagrangian systems become increasingly unwieldy for the models that we have
in mind. The traditional approach is to formulate the calculus of variations on a
bundle of k—order jets. In principle this formulation is available to us but we have
found a more economical approach based on the use of exterior differential systems
on an extended frame bundle. This idea has been inspired by the work of Griffiths
[2] who has considered 1—dimensional variational problems in this context. For
variational problems that are concerned with the extremal properties of immersions
this approach seems both natural and powerful.

We consider below a class of immersions determined from properties of their shape
tensor. (The immersions with extremal volume are included as a special case.)
Immersions in this class lie at the basis of a number of recent membrane mod-
els in theoretical physics and have been studied by Willmore and others in the
mathematical literature [3],[4]. We believe that the approach to be described will
provide a unifying route to the Euler-Lagrange equations of these and more general
geometrical actions.

1. The Darboux Frame and Second Fundamental Forms

Let C be a p—dimensional submanifold of an m—dimensional (pseudo-)Riemannian
manifold (M, #) with Levi-Civita connection V. For any point p £ C write TPM =
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TPC 0 (TpC)1- and denote by V the Levi-Civita connection of the induced metric g

on C. Then

) VY,ZeTC 1.1

defines the shape tensor h G Ti(TM). For the ranges a, 6,c = 1,. . . ,m; a, /?, 7 =

1,. . . ,p; z,j,fc = /?+ 1,.. . ,m. Let {ea} = {e\eQ} be a local g—orthonormal

coframe for M such that {ea}p G Tp*C and {e% G (T^C)-1. We introduce the

matrix rjab = g(ea,eb) with inverse T]ab. If C is the image of the embedding map

f:D->M 1.2

then {ea} constitutes a local Darboux coframe adapted to C if

/ V ' = 0 Vi 1.3

Denoting the dual orthonormal frame as {Xa} = {Afi,Xa} we may expand the

shape tensor h in terms of the normal basis to define the set of m — p second

fundamental forms Hl on M:

h(X,Y) = H\X,Y)Mi VX,YeTC 1.4

Since V ^ a ^ = — u>pc(Xa)Xc in terms of the connection 1—forms coa
b in a Darboux

frame:

g(h(Xa,X0),Afi) = -u:0c(Xa)

or
i ( ) i ( ) 1.5

Since

' < ) ^ V } j 1.6

and each el restricts to zero on C we see that:

1.7

where here and below ~ denotes restriction by pullback. The restricted structure

equations imply that each Hl is a symmetric second degree tensor.
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2. Differential Ideals of Exterior Forms [5]

A set of differential forms {aA} (1 < pA < n) with aA E APA(T*B) on an

n—dimensional smooth manifold B generates a differential idealX(B) in the exterior

algebra A(T*B) consisting of all forms of the type KA A aA where -KA £ A(T*B).

The differential ideal is closed if for all A, daA = pAB AaB for some pAB €  A(T*B).

Two sets of differential forms {aA} and {f3B}, not necessarily with the same number

of elements, are said to be algebraically equivalent if they generate the same ideal:

in which case any subspace ofT(B) that annuls all forms in one set will also annuls

all forms in the equivalent set. In this case we write {aA} = {PB}- The associated

space of an ideal T(B) generated by {aA} is the smallest subspace Q* C T*B such

that the exterior algebra generated by the 1—forms in Q* contains a subset that

generates 2(B). The associated Pfaff system of {aA} is this set {6l,d2,... 0r} of

1—forms that span Q* and the rank of the ideal 2(B) is defined as the dimension

of Q*. In the following we are mainly concerned with ideals generated by a set

of 1—forms, known as a Pfaffian system. Then any Pfaffian system of rank r is

algebraically equivalent to a set of r linearly independent 1—forms. An integral

manifold of an ideal T(B) is a mapping

T\D->B 2.1

of maximal rank such that all forms in the ideal vanish when restricted to D, i.e.

T*OL = 0 Va E I(B) 2.2

The closure of a Pfaffian system {0A} is the ideal containing {6A,d0A}. Since d

commutes with pull backs, integral manifolds of the Pfaffian system {0A} are also

integral manifolds of its closure and conversely. Clearly the closure of a Pfaffian

system is closed. The system is said to be completely integrable if it is algebraically

equivalent to a set of r exact 1—forms where r is the rank of the system. This occurs

iff the system is (locally) closed. In this case one has a (local) foliation on B whose

leaves £A = constant are the integral manifolds of {8A} = {d£A} More generally a

system 5 of forms {a^}, not containing 0—forms, has as its characteristic system

Ch(S) the associated Pfaff system of its closure 5 = {aA, daA} [6]. If r is the rank

of this associated Pfaff system then Ch(S) always possesses local integral manifolds
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of dimension dim B — r. These are the characteristic manifolds for 5, and can be
used to determine integral manifolds of 5 itself. In the following we have been able
to bypass the explicit construction of Ch(S) by examining directly the structure of 5
in order to determine the appropriate integral manifold for our particular problem.

3. Variations of Exterior Systems

A regular exterior differential system on a smooth manifold B consists of a differen-
tial ideal 2(B) C A(T*B) and a preferred set {Qa} of linearly independent 1—forms
on B. An integral manifold of such a system consists of a smooth mapping

f:D-+B 3.1

such that / is an integral manifold oiX(B) together with the condition that {f*Q,a}
is non-zero. The problem discussed below entails finding an appropriate space B
for an ideal T(B) in formulating our variational principle.

In the first instance we deal with an integral Jc (3 of a p—form f3 on a manifold M.
In our applications we have in mind that M is a spacetime. Thus we wish to find
the extremum of the integral

A(C,/)= [ (3 3.2
Jc

where / : D —> M is a p—dimensional immersion, C — f(D) and /3 some prescribed
form constructed from properties of the immersion and the ambient space M. In
terms of the Hodge p—form, *1, defined with respect to the induced metric on C
we define the Lagrangian 0—form C by

P = C*l 3.3

A variation of / is a map
F:D x [-e,e] -> M

such that f(p) = F(p,0) for all p G D. This defines a family of immersions ft :
D x {t} —» M with ft{D) = Ct, t G [—e,e], and we seek a critical immersion
f = f0 such that

dAti d f nlu J ^ 0 3A
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subject to conditions on 8CQ. Denoting V = i7* J7 to be a variational vector field
on M we have in terms of the Lie derivative

I 3.5

The problem is to compute £v/? when (3 depends on properties of the immersion.

A relatively simple case occurs when /3 = *1 and p — m — 1. In this case suppose

V = A/", the normal vector field to the varied hypersurfaces and choose f3 = ijs/ * 1

in terms of the Hodge in—form on M, since this pulls back to the volume form on

D. Clearly Cj^f/3 = ijs/d/3 = ij\fd * A/', where A/is the metric dual of jV, so using

d*Af = -(TrH)*l 3.6

we have
£A[V] = - /

JC

(TrH)*l 3.7

Hence closed immersions of zero mean curvature ("minimal immersions") will ex-

tremalise our integral. To accommodate the induced variations in /3 in the more

general case we reformulate our problem by lifting / to a map / : D —> B for some

suitable space B such that C = f(D) becomes a p—dimensional integral manifold

of a regular Pfaffian differential system {0A,d0A} ,{fta} on B. We now regard /?

as a p—form on B such that f*/3 — f*f3 and look for integral manifolds / that

extremalise the integral

A(C,/)= /
Jc

3.8
c

for admissible variations F : D x [—e, e] —> i? , generated by the vector field V =

F*-g-t on B, and appropriate conditions on dC. By an admissible variation we shall

mean that the various maps ft:Dx{t}—> B are also integral manifolds of our

system {0A,d0A}. This implies that admissible variations are generated by fields

V that satisfy:

f*C^0A = 0 VA 3.9

i.e.

C^0A ~ 0 3.10

Since

A 0A) = C^XA A 0A + \ A A C^0A 3.11
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for any forms A^ it follows that admissible variations satisfy

C^(\AA0A)~O 3,12

Thus given some p—form ft on M we have elevated the variational problem to the

determination of an integral manifold / of a differential exterior system such that

for all variations satisfying 3.12 we have

L = 0 3.13

modulo boundary data.

Let us first consider the case where V is chosen to vanish on dC. (One might

equivalently postulate dC = 0 although in the classical spacetime context this is

a somewhat unphysical condition.) Then since C^ = i^d + di^ equation 3.13 is

equivalent to

/ i~dft = 0 3.14
Jc

Note this statement is invariant under ft —>• ft + A^ A 0A since dOA pulls back to zero

on JD, and under ft —> ft + dp. Furthermore 3.14 is satisfied if

i^dft = d£ 3.15

provided V is admissible and ^ vanishes on dC.

Now suppose we seek a set of (p — 1)—forms A^ so that for all V, (V|fi^ = 0)

t^i-iy-iXAAivO* 3.16

Then 3.15 becomes with the aid of 3.12

XA A0A) ~ 0 3.17

Such an equation respects the invariances above and will be adopted as the set

of Euler-Lagrange equations for the integral manifolds that extremalise 3.8 for all

variations that vanish on dC.

When C has a boundary on which we relax the condition V| a£ = 0 the above

conclusions need refining. In general we do not expect to be able to impose either
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arbitrary or unique boundary conditions that determine C from the Euler-Lagrange

equations. On the other hand we do not expect that 3.17 will need modification in

the presence of boundaries. Thus we adopt 3.17 as before but re-examine

6A\V] = I
Jc

3.18

JaC
\ ^ p + l ^ P 3.19

C

where we have used Stoke's theorem in the second integral. At this point we can no

longer assert that A be stationary under arbitrary variations. However from 3.17

we may write

6A[V] = / i^P - / i*d(\A A 9A) 3.20

Jec Jc
or using 3.10

«A[V]= / *v(/3 + AAA0A) 3.21
Jac

for admissible variations. At this point it is useful to introduce the notion of an

admissible symmetry vector. V is an admissible symmetry vector, denoted f, if in

addition to 3.12

£ f fi - 0 3.22

If such a vector field exists

JdC

or
f

3.23
JdC

where

jt = it0 + \AA6A) 3.24

When M has a Lorentzian structure we may classify subspaces of TpD according to

the signature of the restriction of f*g to TpD. (Recall / : D —> M.) We shall suppose

that for physical applications f(D) is an orient able time-like (or null) p—chain rep-

resenting the history in M of some spacelike (p — 1)—chain. (For timelike signature

f*g contains one timelike eigenvalue.) Then suppose we write

dC = f(D+ + D~ + DT) 3.25
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where D± are spacelike (p — 1)—chains (corresponding to parameter time slices that
"cap"Z}) and Dr is a timelike (p — 1)—chain (corresponding to the history of a
spacelike (p — 2)—chain). Conditions on D^ constitute initial and final data. Thus
we adopt spatial boundary conditions that ensure:

O 3 - 2 6

for all admissible V, so that

SA[V] = I £^P= f i^0 + \AA 0A)
JC Jf(D+ + D-)

^0 + A ) 3.27
f(D+ + D-)

for admissible V.

It follows from the global boundary condition 3.26 that if T is an admissible sym-
metry vector

Q(t) = f f*jf 3.28

is a constant of the motion for any spacelike (p — 1)—chain D^ C D with boundary
in DT.

4. The Extended Frame Bundle and its Darboux Leaves

Having set up a general variational formalism we wish to apply it to the problem of
extremalising 3.2 where / : D —> M is an immersion and fj depends on properties
of its extrinsic geometry.

Consider the orthonormal frame bundle (OM,TT) of M, elements of which are
{p, {Xa}} for peM. Extend this to the bundle B = (OM xRfc,?r) for some k. A
local coordinate system for UB C B is given by {xa, aa6, Hl

ap] where {xa} are chart
functions for UM C M, aab = — aha parameterise the m-dimensional (pseudo)-
orthogonal group and Hl

ap = Hlpa are coordinates for Rfc. With the index ranges
declared in section 1, we have k = |p(p+l)(m — p) and dim B = m+^m(m — l)-\-k.
Let us denote a local coframe by a set of 1—forms

T^B 4.1
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Indices attached to forms on B will be raised and lowered using the matrix rjab

introduced in section 1. A variation of C gives rise to a local foliation of M by

leaves Ct. Our first aim is to construct a local foliation T> of B by subbundles

(P(Ct),7r) over Ct such that local sections <JM ' UM —> B give rise to a choice of

a local Darboux frame field adapted to each leaf Ct. Having established a set of

"Darboux leaves", U(Ct), we shall lift our variational problem into B in order to

determine a critical leaf T>(C0) by the Euler-Lagrange equations on B. From such

a leaf we may obtain the solution CQ on M of our original problem by projection.

Any section CTM that restricts to ac0 - Co —> V(CQ) fixes a Darboux frame adapted

to Co.

Thus we seek an exterior differential system on B whose integral manifolds include

the leaves V(Ct). Consider then the system 5 = {0\0l
Q} where in terms of the

coframe 4.1

6l = el 4.2

6i
a=u>i

ot-H
i
af>ef' 4.3

together with the preferred forms 0Q = ea.

We claim that 5 possesses as a local integral manifold the leaf T>(C) where C is a

p—dimensional submanifold of M and that locally

V(C) ~ C x SO(C) x (SOiC))-*- 4.4

where SO(C) is the structure group for the orthonormal frame bundle of C and

(SO(C))1- the structure group for the bundle of orthonormal frames normal to C.

To justify this assertion we must obtain from S its closure 5 and examine its integral

manifolds. From the first structure equations:

d8l = -ul
a A ea = -LO\ A ea - u^ A ej 4.5

= -Ljtj A 0j + eQ A 0*a 4.6

using the symmetry of Hl
a@. Furthermore

de\ = du\ - dH^p A e? - Wap A dep 4.7

= R\ - u\ A u;h
a - dHl

a3 A e13 + Hl
aa A ^ c A ec 4.8
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using both structure equations. Splitting

R'c = ^ a 6 c e 6 A ec

into different index ranges and using 4.2,4.3 gives:

dBl
a = ^R'c^e" A e 1 ! R \ ^ A 6* + Ji?'' ajk6> A 6k

-(6>V + E{
Me?) A c A - Jj A (0j

a + Hj
apeP)

-dH\p Ae^ + iT a / ? c^ 7 A e^ - H\p(0/ + # / 7 A c^) A ^' 4.9

Under pull back to integral manifolds we may work modulo products of the forms

4.2,4.3 hence:

+(Ht'a/jie
/? - H^pHj^et) A ̂ ' + (*ja;'?a - ^u;1',-) A 0 ^ 4.10

In the first term the expression in brackets is c*7 symmetric except for the curvature

term. However using the symmetry properties

Rl-ya/3 = ~Rt-y/3a 4.11

R%a0y + R% fija + F^yap = 0 4.12

fa'cfr + R\0ay A ê  = \R\^ A ê  4.13

we may write

d0*a * -Va-y A e H (JJ ' o «e ' - Hi
afiHi^e<) A ̂  + (5JW"Q - ^ w ^ ) A # „ 4.14

in terms of the 1—forms:

Cay = t\a = " ^ ( ^ ' ^ 4 ^ { ^ { ^ *

4.15

The closure of 5 is the system 5 = {B*,0{
a,d0{,d0{

Q}. From 4.6 and 4.14 we see

that integral manifolds of the system

{0i,ei
a,e<*i3} 4.16
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are integral manifolds of 5. The rank of Pf(S) is the number of linearly independent

1—forms in it. Hence:

rankPf(S) = (m-p)+p(m-p)+-(m-p)p(p+l) = (m-p)(l+p+-p(p+l)) 4.17

It follows that the integral manifolds of Pf(S) give rise to a local foliation V in

B whose leaves have codimension equal to the rank of Pf(S). Since dim B =

| ra(m + 1) + 2 ( m ~~ P)P(P + 1) w e have:

dim (leaf V) = dim B - rankPf(S) =p+ -p(p - 1) + -(m - p)(m -p - 1) 4.18
Zt Zi

Thus the dimension of leaf T) coincides with that of a bundle locally isomor-

phic to C x SO(C) x (5O(C))-L. We may reorganise the local coframe for B

as {ea,u;a/3,u>u,tf-7,^'Q,^aij} and we observe that a suitable coframe for leafV

would be {ea,u;a /?,u;u}. Thus the maximal integral manifolds of Pf(S) are just

the Darboux bundles (Z>(C),TT) which are those subbundles of B whose cotangent

spaces are locally spanned by such coframes. Since integral manifolds of Pf(S) are

integral manifolds of S and hence 5 we identify the bundles (X>(C),TT) as leaves

of the foliation associated with system 4,2,4.3. We have already seen in section 1

that the equations 0l ~ 0, 6l
Q ~ 0 (pulled back to C = TT(V(C)) C M enable us

to identify the pull backs of {e1} and {Hl
ap} as the normal coframe and second

fundamental forms of C respectively.

It is of interest to examine the pull back equation £l
ap ~ 0. This equation may be

written in terms of a pull back of the exterior covariant derivative D on sections of

A(T*C) as

Cay = !(J**a/?7 + R\fia)e
fi + DW al + ̂ jH'^ 4.19

Thus from 4.11,4.12,4.13

+(ipu?i
jH

i
ay - i^jH'^e13 A e1 = 0 4.20

In terms of the curvature operator RXY o n Mi

i i
y X a ) 4.21
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Furthermore:

Xy) 4.22

j 4.23

in terms of the connection V induced on TC and the normal connection V-1 on

{TC)^. Thus

and 4.20 becomes:

x^Xj)H'a$ 4.25

which is just the Codazzi equation for C C M.

5. The Variational Problem on the Extended Frame Bundle

In section 4 we established a set V of integral manifolds for the differential system

(5, {na}) on B. Leaves T>(Ct) of its foliation contain the orthonormal frame bundle

for a p—dimensional submanifold Ct C M together with the bundle of normal

frames. For any Ct let

af : Ct -> V(Ct) 5.1

be any section of (Z>(C<),TT). Extend the map arbitrarily to give a local section

OM 'UM -> B 5.2

of B such that <JM restricts to a1 on Ct. The section CFM defines an orthonormal

coframe {cr^e61} and connection forms {^w a j} on M together with a set of func-

tions {a^jH1^^} which we have seen in 4 are the components of the shape tensor

of Ct C M. The map <TM also defines a lift Ct of Ct to B:

Ct = <rM(Ct) = a'(Ct) 5.3

and since Ct = ft(D), a lift ft:D->Bof the immersion ft = F\t : D x {t} -> M;

ft=cFMo ft 5.4
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so that

Ct = /,(£>) 5.5

We may now lift our original variational problem onto B. For any p—form J3 on B

such that

~ P 5-6

we have

A(C,/) = / p = I **Mp = fp = A(Cj) 5.7
Jc Jc Jc

We now seek to extremalise A(C,/) under variations that preserve the foliation T>

and are subject to conditions on dC. Thus for variations that vanish on dC we seek

an immersion

fo:D-> B 5.8

such that

0|t=o = 0 5.9

where Ct = ft(D) and the variations preserve the exterior differential system

(5,0«):

ffOi = ft*Oi
a = 0 V<6[-e,e] 5.10

Then the solution (fo,Co = fo(D)) to the original problem is obtained by simple

projection TT : V(CQ) -» M.

We illustrate this procedure with

p = £(g(Trh,Trh))n 5.11

where on B

g(Trh,Trh) = ̂ "V' ' '# '*« '# V

corresponds to the square of the length of the trace of the shape tensor and 0 =

IIa(eaA) so (T^jft = *1. According to 3.17 we must compute;

%^d{P + A,- A 9{ + \ia A 0iQ) - 0 5.12

where

6l = el 5.13
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Oia=wia-Hi
Qfie

f' 5.14

and the (p — 1)—forms A; and Am are to be determined. We have

d(fi + \i A el + xia
 A eia) = dp + d\i A el + 77A; A d e{

+dXia A 0ia + r]\ia A dOia 5.16

where rŷ 7 — ( " l ) 9 ^ f° r a n v g—form V;- Using equations 4.6 and 4.14 we have

+ {e^ A Xj + d A / + ( « 5 ^ a - ^w'jO A A,-a} A QJp + {e? A A,-0} A ^'a /9 5.17

"Normal" variations of B are maps between leaves of the foliation V generated by the

vector fields {Xj, X; a ,Xj a / ? } on I?, dual to the system {#\#l
a>£*<*/?}• Contracting

5.17 successively with these vectors yields:

/*{vijtidfi + d\j - J^ A A,- + i;A<or A (Riapj - HiayHj''p)ep} = 0 5.18

- 6%wi>) A A ' a } = 0 5.19

/ ' { w . , ^ + ^AVa} = 0 5.20

These are the Euler-Lagrangian equations for any Lagrangian j3 on C. From the

structure equations it follows that

dtt = -Hia
ar]n A 6{ - ian A 0{ A 0ia 5.21

so for our choice 5.11 of ̂

ixjdf3~ -CHja
a£l 5.22

ixifidJ3~0 5.23

iXia0dp~2C'Hityr,Qfin 5.24

where £' = d ^ ^ . The equations 5.18-5.20 are all pulled back to D. In the following

we shall write equations on C that are readily pulled back to D by applying maps

induced from / . Thus the Euler-Lagrange equations may be written

D±Xj + r,\ia A (Riapj - Hi^H^^ = 0 5.25
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ep A Xj + D\j[3 + u>ji A \{p = 0 5.26

(-l) (p-1)2£'fr I"7
7»ya/j*l + ep A Af'a = 0 5.27

where for any form fiQi

Dfjiai = d/iat- — u / a A /i^,- 5.28

is the exterior covariant on sections of A(T*C) and

D^Hai = dfiai - Uji A flaj 5.29

is the exterior covariant derivative on sections of A((T*C)~L) induced from the nor-

mal bundle. From 5.27,5.34

a ( ) ' f r % * e a 5.30

By the first structure equation, D*ea = 0, so

DX{
a = ( - I ) ( p ~ 1 ) 2d(£ / i f i 7

7 )*e a 5.31

Then 5.26 becomes

e/* A Xj + ( - l ) ( p - 1 ) 2 D ± ( £ / i f i 7
7)*c'9 = 0 5.32

with solution

( ) ( 7 ) 5.33

We have the relations

e^ A *ea = 77^*1 5.34

Z)-1-*!)-1^ = A ^ l 5.35

where A-1 is the Laplacian induced from the connection in the normal bundle on

any 0—form 3>:

Ax = V^V^-Vi 5.36

and

A = VXaX
Q 5.37

Inserting At- and \l
a into 5.25 and using 5.34 and 5.35 we obtain finally

A^C'Hi**) - \cHi«a - CHfaiRMpi - H^Hifr) = 0 5.38
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This is the Euler-Lagrange equation for the immersion C into M which extremalises

£(g(Trh,Trh))*l

A few specific examples may serve to illustrate the scope of this result. Consider

first

C = 1 5.39

The action above is the p—dimensional volume of C and since C = 0 the Euler-

Lagrange equation is simply:

HiQ
a = 0 5.40

This is the familiar equation for an immersion with extremal volume.

As a more complicated example take

C = l + KHia
aHiPp 5.41

for some constant K. This is the generalisation to p—dimensional immersions into

a curved spacetime of Polyakov's "rigid string "Lagrangian density [7]. We have

C! = AC 5.42

so the Euler-Lagrangian equation is:

Q fP j^iM) = 0 5.43KAHiQ ( l +

Finally take the real root

C = (±g(Tr h, Tr h))c'2 = \Trh\c 5.44

for some real value c > 1. Then 5.38 becomes

cA±{\Trh\c-2Hi
a

a}-\Trh\cHi
a

a-c\Trh\c-2Hj
a

a(R
j^i-H

j^Hi^) = 0 5.46

This equation agrees with that obtained by Chen and Willmore [3] for the special

case p = m — 1 with M flat, and with that obtained by Weiner [4] for the case

c = p = 2 in a space of constant sectional curvature.
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6. Boundary Conditions and Constants of the Motion

In this section we seek admissible variation vector fields V G TB for the differ-

ential system 5 defined in section 4. This will enable us to specify appropriate

boundary conditions and derive conserved quantities for the variational problem

discussed in 5. Adopt the coframe { e 0 , ^ , ^ ^ ^ ^ , ^ ^ } for B and let

{ X a , W a ^ W i j , X h W i
Q , W i

a ^ } be the dual frame with Wa/3 = - W ^ W . j =

-Wji,WiQ / ? = W / a . Any vector V eTB can be written

V = VaXa + Vaf3Wap + V^Wij + V{Xi + ViQWia + Viaf*WiQp 6.1

with appropriate index symmetries understood in the summation. As described in

section 3 V generates an admissible variation iff

C^0{ ~ C^0{
a ~ 0 6.2

Writing C^ = diy -f iyd, we can use the dOl and dOl
a given in 4.6 and 4.14 to find

C^O1 ~ dV{ + to{jVj - eay l 'a - D±Vi - eQV\ 6.3

and

o W - H'^HSrie'Vi - ePV\p

~ bV\ - (R{
al3j - Hi

ayHj-'0)e
0Vj - e 'V '^ 6.4

where the mixed exterior derivative D is

bV\ = dV\ - ^ ^ 0 + utjV'n 6.5

All the equations 6.2 to 6.5 hold under restriction by pullback to D or equivalently

to M. We shall suppress again pullback maps and write {ea,e1} as a Darboux

frame for the immersion of D in M; with dual frame {Xa, A/̂ }. Putting 6.3 and 6.4

into 6.2 gives

V\ = (D^XXa) 6.6

l l 6.7
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These are the constraints which must be satisfied by V of the form 6.1 if it is to
generate admissible variations. We note that the Va,VaP and V^ components
are unconstrained. They merely induce leaf preserving diffeomorphisms on V(C).
Furthermore we see that 6.6 and 6.7 completely determine Vl

a and V%
ap in terms

of the V1. Thus apart from leaf preserving diffeomorphisms an admissible V can
be given in terms of a single vector V^ £ (TC)-1 given by

In terms of the connections V, V"1, 6.6 and 6.7 can be written

6.9

i 6.10

It is interesting to note that the left-hand side of 6.10 is symmetric in a/3 whilst
the right-hand side appears at first to be asymmetric. However, the antisymmetric
part of the right-hand side vanishes by virtue if the Ricci equation:

R*jap = R % jap — (H%a-iHp p — H% p^H'j1
a) 6.11

Having established the admissible variation vectors V E TB, we can now seek spa-
tial boundary conditions. In principle such conditions need not bear any relation
to an extremalisation procedure. However the determination of the critical immer-
sion by such a process always involves integrals over possible boundaries and it is
therefore natural to elevate the variational principle in such a manner that both the
Euler-Lagrange equations and compatible boundary conditions be simultaneously
determined. It is worth noting that for the higher order Lagrangian systems con-
sidered in this paper, a determination of boundary conditions from a prescription
that considers only admissible variations vanishing on a boundary is no longer suffi-
cient to exhaust all possibilities. Specifying the derivatives of admissible boundary
variations (arbitrarily) enlarges the space of possible boundary conditions. In this
paper we have adopted the view that for immersions into a Lorentzian spacetime
the variational procedure determines spatial boundary conditions in any manner
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that results in the (lifted) variational integral being stationary modulo integrals

over (lifted) space-like chains. Thus from 3.26 the conditions should ensure that

Jv = ° 6-12

J f(Dr)
where

~ z'v/3 + T7A, A i^0{ + r)\iQ A i^0ia 6.13

For our choice /? = CO,

i^/3 = CVaiXa a ~ £*VT 6.14

where the vector VT G TC is defined by

VT = VaXQ 6.15

and VT is the dual form related to it by the metric g. Substituting A;, \{a from

5.33, 5.30 and using 1.6 jy becomes

j? ^ *{CVT + 2(£'Hi%D±Vi - ViD±(C'HiPp))} 6.16

Thus

/ iv = / H£VT + 2(C'Hi%D±Vi - V^^C'Hi^))} 6.17
Jf(Dr) Jf(Dr)

If the spatial boundary f(DT) of f(D) has a unit normal field n £ TC then the

induced volume element on f(Dr) is

#1 = *n 6.18

The integral 6.17 can be rewritten in terms of n, V-1 and the vector Tr h = Hia
aNi,

so that the boundary condition 6.12 becomes

{CVT(n) + 2{C'Tr h{V^V^) - ^(V^C'Tr h))}}#l = 0 6.19
f(Dr)

To satisfy these boundary conditions for arbitrary VT, V^ and dV^ we can take

either:

#1 = 0 on f(Dr) 6.20
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or

£ = 0 and V^(C'Trh) = 0 and C'Trh = 0 on f(Dr)

6.21

For example, for an open membrane in Lorentzian spacetime with the Lagrangian

5.39 the boundary condition on DT is

#1 = 0 6.22

Condition 6.22 implies that the induced metric on the spatial boundary is degen-

erate. For strings, this is the familiar condition that the ends of the string move

at the speed of light. For (p — 1)—dimensional membranes (p > 2), it implies that

the spatial boundary sweeps out a null surface, possessing a single null direction

and (p — 2) space-like directions. This is a stronger condition than requiring the

boundary to move at the speed of light (although the latter still applies).

For the Lagrangian with 5.41 the conditions 6.21 are incompatible for an immersion

with boundary and 6.22 may be imposed in the Lorentzian context. On the other

hand for admissible variations that vanish on / (D r ) , but not their derivatives we

see from 6.19 that an alternative boundary condition is

C Trh = 0 6.23

Thus for the Lagrangian 5.41 with 5.42 we may impose

Trh^O on f(Dr) 6.24

For the Lagrangian 5.44 we have the alternative boundary conditions on f(DT):

Tr h = Vn(Tr h) = 0 6.25

To find the constants of the motion given by 3.28 we need to determine the admis-

sible symmetry vectors T. Recall that V = T is an admissible symmetry vector if it

satisfies 3.12 and 3.22. Thus for solutions of 3.17 the current j f = it(f3 + XA A 0A)

satisfies

djt ~ 0 6.26
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Since d commutes with pull backs this may be written on C as

d*{CtT + 2(C'Hi%DJLri - rD^C'HiPp))} = 0 6.27

Noting that

i ' ^ ^ ) ± ( ' i P ± T i ) = D±(£'Hi%) A iD^i + C'H^^TM

6.28

and that

d*(£fT) = V • (£rT)*l 6.29

the symmetry vector condition 6.26 may be further rewritten

V . (CTT) + 2(CfHi%A±Ti - riA±(£'H/l3)) = 0 6.30

If this condition is satisfied, then by an argument similar to the one in section 3 the

quantity

Q(f)= / f*{CtT(n) + 2{CtTrh(V^) - f^(V^(£'Tr fc))}}#l 6.31

is a constant of the motion for any space like (p — 1)—chain D a (with boundary in

Dr) with unit (timelike) normal vector field n £ f(TD) and:

#1 = *n 6.32

Conclusions

As can be seen from the preceeding calculations, the differential system of con-

straints on the extended frame bundle that we have used provides a convenient

framework for tackling a wide class of higher-order variational problems depending

on the extrinsic geometry of immersions. In this approach the Euler-Lagrange equa-

tions are expressed in terms of geometrical quantities relevant to the problem. As

illustrated in section 6, the "natural" boundary conditions which arise for higher-

order problems depend on a somewhat arbitrary choice of details in the variational

principle. We have adopted boundary conditions at the boundaries of space-like
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chains only, thus allowing for the specification of initial and final conditions. This
has also enabled us to construct constants of the motion in the presence of symmetry
vectors.

The general approach is both powerful and flexible, and clearly lends itself to a
number of generalisations.
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Minimal surfaces in quaternionic symmetric spaces

F.E. BURSTALL

University of Bath

We describe some birational correspondences between the twistor spaces of quater-
nionic Kahler compact symmetric spaces obtained by Lie theoretic methods. By
means of these correspondences, one may construct minimal surfaces in such sym-
metric spaces. These results may be viewed as an explanation and a generalisation
of some results of Bryant [1] concerning minimal surfaces in S4.

This represents work in progress in collaboration with J.H. Rawnsley and S.M. Sala-
mon.

BACKGROUND
This work has its genesis in our attempt to understand the following result of Bryant

[1]:

Theorem. Any compact Riemann surface may be minimally immersed in S4.

To prove this, Bryant considers the Penrose fibration ?r : C P 3 —> S4 = HP 1 . The
perpendicular complement to the fibres (with respect to the Fubini-Study metric)
furnishes C P 3 with a holomorphic distribution 7i C T1>0CP3 and it is well-known
that a holomorphic curve in C P 3 tangent to H (a horizontal holomorphic curve)
projects onto a minimal surface in S4. Bryant gave explicit formulae for the horizon-
tality condition on an affine chart which enabled him to integrate it and provide a
"Weierstrafi formula" for horizontal curves. Indeed, if / , g are meromorphic functions
on a Riemann surface M then the curve $ ( / , g) : M —> C P 3 given on an affine chart

by

is an integral curve of 7i. For suitable / , g, <&(f,g) is an immersion (indeed, an
embedding) and the theorem follows.

In [6], Lawson gave an interesting interpretation of Bryant's method by introduc-
ing the flag manifold D 3 = U(3)/U(l) x U(l) x U(l) which may be viewed as the
twistor space of CP 2 (the twistor fibring being the non-±holomorphic homogeneous
fibration of D 3 over CP 2) . Again we have a holomorphic horizontal distribution K
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perpendicular to the fibres of the twistor fibration but, this time, horizontal curves
are easy to construct. Indeed, viewing D3 as P(T1)0CP2), K is just the natural con-
tact distribution and a holomorphic curve in CP2 has a canonical horizontal lift into
D3 given by its tangent lines.

The remarkable fact, implicit in Bryant's work and brought to the fore by Lawson, is

Theorem. There is a birational correspondence $ : D3 —> CP 3 mapping K into 7i.

Recall that a birational correspondence of projective algebraic varieties is a holomor-
phic map which is defined off a set of co-dimension 2 and biholomorphic off a set of
co-dimension 1.

Thus it suffices to produce horizontal curves in D3 which avoid the singular set of $
and this may be done by taking the lifts of suitably generic curves in CP2.

Lawson gave an analytic expression for $ but a geometrical interpretation of the map
seemed quite hard to come by. An algebro-geometric interpretation has been given
by Gauduchon [4] but it is our purpose here to show how this map arises naturally
from Lie theoretic considerations.

QUATERNIONIC SYMMETRIC SPACES
The 4-sphere and CP 2 may be viewed as the 4-dimensional examples of the quater-
nionic Kahler compact symmetric spaces. These are 4n-dimensional symmetric spaces
TV with holonomy contained in Sp(l)Sp(?z). Geometrically, this means that there is a
parallel subbundle E of End(TTV) with each fibre isomorphic to the imaginary quater-
nions. There is one such symmetric space for each simple Lie group; the classical ones
in dimension An being

HP n , G2(Cn+2), G4(Rn+4).

Following [7], we consider the twistor space Z of Ar which is the sphere bundle of E
or, equivalently,

Z = {jGE: j 2 = - l } .

This twistor space is a Kahler manifold, indeed a projective variety, and once more
the perpendicular complement to the fibres 7i is a holomorphic subbundle which is
called the horizontal distribution. Our main theorem is then

Theorem. Let Nl9 N2 are compact irreducible quaternionic Kahler symmetric spaces
of the same dimension with twistor spaces Z\, Z2. Then there is a birational corre-
spondence Z\ —• Z2 which preserves the horizontal distributions.

For this we must study the homogeneous geometry of the twistor spaces: if TV is
the symmetric space G/K then G acts transitively on Z and, moreover, this action



Burstall: Minimal surfaces in quaternionic symmetric spaces 233

extends to a holomorphic action of the complexified Lie group Gc. Further, the
horizontal distribution is invariant under this Gc action. In fact, Z is a special kind
of Gc-space: it is a flag manifold, that is, of the form Gc/P where P is a parabolic
subgroup.

For any flag manifold Gc/P, let p be the Lie algebra of P. We have a decomposition
of the Lie algebra of Gc

g c = P ® n

where n is the nilradical of p so that IT = T]pGc/P is a nilpotent Lie algebra. Let N
be the corresponding nilpotent Lie group and consider the TV orbits in Gc/P. The
orbit H of the identity coset is a Zariski dense open subset of Gc/P (it is the "big
cell" in the Bruhat decomposition of the flag manifold). In fact, the map n —» H
given by

is a biholomorphism with polynomial components (since n" is nilpotent) and so ex-
tends to give a birational correspondence of Gc/P with P(rF© C). Thus Gc/P is
a rational variety: a classical result of Goto [5]. However, more is true: let Gf/Pi
and Gf/P2 be flag manifolds and suppose that the nilradicals ni and n2 are isomor-
phic as complex Lie algebras. Then we have an isomorphism <j> : n*! —> Ff2 which
we may exponentiate to get an isomorphism of Lie groups $ : N1 -+ N2 and thus
a biholomorphism f̂  —> O2 which extends to a birational correspondence between
the flag manifolds. Moreover, on Hi, this biholomorphism is TVVequivariant and so
will preserve any invariant distribution so long as <j> does when viewed as a map

We now specialise to the case at hand: if Z is the twistor space of a quaternionic
Kahler compact irreducible symmetric space then Z is a rather special kind of flag
manifold. In fact, Wolf [8] has shown that here n is two-step nilpotent with 1-
dimensional centre and so is precisely the complex Heisenberg algebra. Thus any
two of our twistor spaces of the same dimension have isomorphic IT and so the main
theorem follows.

APPLICATIONS TO MINIMAL SURFACES
The relevance of these constructions to minimal surface comes from the well-known
fact that, just as in the 4-dimensional case, horizontal holomorphic curves in Z project
onto minimal surfaces in N. Moreover, in some of the classical cases, horizontal
holomorphic curves are quite easy to come by. For example, the twistor space of
<32(C

n+2) is the flag manifold Z = U(n + 2)/U(l) x U(n) x U(l) which we may realise
as the set of flags

{£CTT C Cn+2:dim^ = 1, diniTr = n + 1}.
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Horizontal, holomorphic curves in this setting are just a special kind of d'-pair in the
sense of Erdem-Wood [3] and may be constructed as follows: if / : M —> CPn+1 is
a holomorphic curve, we may construct the associated holomorphic curves fr : M —>
G>+i(Cn+2) given locally by

/ r = / A _ A . . . A _

Generically, / is full so that f x , . . . , fn are defined and then the map ip : M —> Z
given by

V> = ( / c /„)
is horizontal and holomorphic. Note that for n = 1, tp is just the lift of / : M —> CP 2

discussed above. Composing these curves with the birational correspondences of the
previous section, we then have horizontal holomorphic curves in all the other twistor
spaces of the same dimension so long as we can ensure that the curves avoid the
singular sets of the correspondences. Thus, for example, one has the possibility of
constructing minimal surfaces in the 8-dimensional exceptional quaternionic symmet-
ric space G2/SO(4) from holomorphic curves in CP 3 .

However, to carry out such a programme, a rather more detailed analysis of these
singular sets is required so as to ensure that they are avoided for suitably generic / .
Work is still in progress on this issue.

EXTENSIONS
Many parts of the above development apply to arbitrary generalised flag manifolds.
Burstall-Rawnsley [2] have shown that any flag manifold fibres in a canonical way over
a Riemannian symmetric space of compact type and, moreover, any such symmetric
space with inner involution is the target of such a fibration. In this setting, the
perpendicular complement to the fibres is not in general holomorphic but there is a
sub-distribution thereof, the superhorizontal distribution, which is holomorphic and
(JTC-invariant. Again, holomorphic integral curves of this distribution project onto
minimal surfaces in the symmetric space.

The above discussion applies so that isomorphisms of nilradicals exponentiate to
give birational correspondences of flag manifolds which preserve the super-horizontal
distributions. However, apart from the quaternionic symmetric case, we have not yet
found any examples of differing flag manifolds with isomorphic nilradicals.
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Three-dimensional Einstein-Weyl Geometry
K.P.TOD
The Mathematical Institute, Oxford

Abstract. I review what is known about 3-dimensional Einstein-Weyl spaces.

1. Introduction.

The Einstein-Weyl equations are a naturally-arising, conformally-invariant, gener-
alisation of the Einstein equations. In the special case of 3-dimensions, the Einstein
equations on a space force it to have constant curvature. The metric is then charac-
terised locally by a single number, the Ricci scalar. By contrast, the Einstein-Weyl
equations allow some functional freedom locally. Further, the equations fall into
the small class of non-linear partial differential equations which can be solved by
the twistor correspondence.

In this article I shall review the definition of an Einstein-Weyl structure (§2) and
its twistor correspondence (§3). I also give some examples of Einstein-Weyl spaces
(§4), and describe some general and some particular properties (§5,§6).

I am very grateful to the organisers of the LMS Durham Symposium for inviting
me to take part in a most stimulating and worthwhile conference.

2. Einstein-Weyl spaces.

A Weyl space is a smooth (real or complex) manifold W equipped with

(1) a conformal metric
(2) a symmetric connection or torsion-free covariant derivative (the Weyl con-

nection )

which are compatible in the sense that the connection preserves the conformal metric.
This compatability ensures in particular that orthogonal vectors stay orthogo-

nal when parallel propogated in the Weyl connection and that the null geodesies,
which can be defined just given a conformal metric, are also geodesies of the Weyl
connection.

In local co-ordinates (or using the "abstract index convention" [8]) we write a
chosen representative g for the conformal metric as g^ and we write the Weyl
covariant derivative as Da. The compatability condition becomes
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(2.1) Dagbc =uagbc

for some 1-form u> = ujadxa. Under change of representative metric we have

(2.2) u> ->& =UJ + 2 —

where £1 is a smooth, strictly positive, function on W.
Note that the 1-form u> encodes the difference between the Weyl connection and

the Levi-Civita connection of the chosen representative metric. Thus we can think
of a Weyl space as a pair (#,u>) modulo (2.2).

The Weyl connection has a curvature tensor and hence a contracted curvature
tensor or Ricci tensor. The skew part of the Ricci tensor is a 2-form which is
automatically a multiple of dcu. To impose the Einstein condition on W we require
that the symmetric part of the Ricci tensor be proportional to the conformal metric,
[4]. In local co-ordinates (or abstract indices) the Einstein condition is

(2.3) W{ah) = Agab some A

where Wab is the Ricci tensor of the Weyl connection. When W is 3-dimensional,
as we shall assume from now on, we also have the identity

(2.4) W[ab] = -3Fab

where Fab is the 2-form du. (As is customary in the relativity literature we
denote symmetrisation and anti-symmetrisation by round and square brackets re-
spectively.)

A Weyl space satisfying the Einstein condition we shall call an Einstein- Weyl
space.

Since the Weyl connection can be written in terms of the Levi-Civita connection
of the chosen representative metric g and the 1-form CJ, we can rewrite (2.3) as an
equation on gab and oja. We find that the condition is

(2.5) Rab ~ l^{a^b) - ~UaUb OC gab

where Rab is the Ricci tensor of the Levi-Civita connection of g and Va is the
corresponding covariant derivative.
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Note that if the chosen representative metric g is actually an Einstein metric on
W then (2.5) is satisfied with the 1-from to vanishing. Since (2.5) is invariant under
(2.2), any W conformal to an Einstein space is an Einstein-Weyl space. These
examples have Fai in (2.4) vanishing and, locally at least, are characterised by this
property. Thus the Einstein-Weyl equation (2.3) is a natural conformally-invariant
equation which generalises the Einstein equation.

That the Einstein-Weyl equation has a direct geometrical content is shown by
the following

PROPOSITION 2.1 [2]. IfW is 3-complex dimensional and satisfies the Einstein-
Weyl equation then W admits a 2-complex dimensional family of totally geodesic
null hyper surf aces.

(That is, the hypersurfaces are totally geodesic with respect to the Weyl connection
and have normal which is of zero length or null with respect to the conformal metric.
Cart an calls the hypersurfaces "isotropes".) If W is 3 real dimensional we need to
suppose that it is real analytic and then complexify it to use this Proposition. We
shall return to this point in §5. This result was re-interpreted by Hitchin [4] in a
way that we may conveniently call a corollary.

COROLLARY 2.2 [4]. Such a W admits a twistor construction.

To say what this means we shall consider twistor constructions in the next section.
To conclude this section we note that there is another characterisation of the

Einstein-Weyl condition equivalent to Proposition (2.1) and obtainable by a con-
sideration of the geodesic deviation equation in W :

PROPOSITION(2.3) [9]. The Einstein-Weyl condition is equivalent to the existence
of a complex structure on the space of Jacobi fields along each geodesic.

We shall see the connection between these two characterisations below.

3. Twistor correspondences.

The idea of twistor constructions or twistor correspondences, as I shall use the
term here, is that one has two manifolds with a non-local correspondence; one space
has some differential geometric objects satisfying local equations; the other does not
but is a complex manifold, and under the correspondence the local equations on one
space are solved automatically by virtue of the the complex analyticity of the other
space.

The first example, which I shall call the Penrose correspondence [6], begins with
a 4-complex dimensional manifold M with a conformal structure. The conformal
curvature C of the conformal structure on M is required to be anti-self-dual as a
2-form:

*c - -c.
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This condition is the integrability condition for M to admit a 3-complex dimen-
sional family of 2-dimensional surfaces on which the conformal metric degenerates
completely ("totally null" surfaces). Call these a-planes, then the space of a-planes
is a 3-dimensional complex manifold £, the twistor space of M. A point p of M.
is represented in Q by the a-planes through it, which define a holomorphic curve
Cp in Q. The curve Cp is a copy of CP1 and automatically has normal bundle
N = O(l) 0 0(1) . This gives the non-local correspondence between Q and M.

To define the conformal metric on M it is sufficient to be able to recognise which
vectors are null. A tangent vector v at a point p in M corrresponds to a section Lv

of the normal bundle N of Cp. Define this vector to be null if Lv has a zero. Prom
the character of N this is a quadratic condition. Remarkably, the conformal metric
obtained in this way automatically has anti-self-dual conformal curvature tensor.

This is the twistor correspondence; it becomes a twistor construction if one can
find a way of building complex manifolds like Q, since these will in turn generate
"space-times"M which automatically satisfy local equations.

The second example, which I shall call the Hitchin correspondence [4], relates
a 3- complex- dimensional Einstein-Weyl space W to the 2-complex -dimensional
manifold T whose points are the totally geodesic null hypersurfaces in W, the
existence of which is guaranteed by Proposition 2.1. ( T is sometimes called the
mini-twistor space of W, by analogy with the previous case.) A point p of W is
represented by the set of surfaces through it, which forms a holomorphic curve Cp

in T. Again, Cp is a copy of CP1 , but now the normal bundle is N = O{2). This
defines the non-local correspondence between W and T.

To define the conformal metric on W, we note as before that a vector v at a
point p of W defines a section Lv of the normal bundle N of Cp. We define v to be
null if Lv has coincident zeros. Again, this is a quadratic condition by virtue of the
character of N.

To define the Weyl connection on W is more complicated. The idea is as follows:
take a curve Cp in T corresponding to a point p in W; now take two points G\, a2 on
Cp and consider all the curves Cq which meet Cp in ct\ and <r2. The corresponding
point q in W lies on a geodesic 7 = 7(crl5 cr2). Geometrically, we can think of 7 as
being the intersection of the two null hypersurfaces in W corresponding to &i and
(72 in T. (This intersection is automatically a geodesic, since the hypersurfaces are
totally geodesic.)

If the Einstein-Weyl space W is the complexification of a real space with positive-
definite conformal structure then one has an alternative description of T. A real
geodesic 7 will lie in the intersection of a complex conjugate pair of totally geodesic
null hypersurfaces, so symbolically cr2 = cfi. We can define an orientation on 7 and
associate a\ with one orientation and &2 with the opposite orientation. Then T
appears as the space of oriented geodesies of W. (This picture of T arises readily
from Proposition 2.3.)

The two twistor correspondences can be fitted into a larger picture (Figure 3.1),
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which we summarise as follows.

PROPOSITION 3.1.

(1) Suppose M has a 1-parameter family of conformal isometries (by which
we mean self-diffeomorphisms preserving the conformal structure). The in-
finitesimal generator X is called a conformal Killing field. The space of
trajectories of X automatically has a conformal metric, and also has a nat-
ural Weyl connection which satis£es the Einstein condition ,[5]. The vector
field X induces a holomorphic vector field on the twistor space Q, and the
quotient is T'.

(2) If W is an Einstein-weyl space then one can construct conformally anti-
self-dual spaces M , as fibre bundles over W, from solutions (V, a) of the
monopole equation

dV = *c?a.

Here V is a function and a is a 1-form on A4 (more generally we can work
with a connection on a circle bundle over W [5]).

(3) Given a mini-twistor space T, the protective tangent bundle P(TT) is the
twistor space for an anti-self-dual manifold A4, and the boundary dM at
infinity is the Einstein-Weyl 3-manifold associated to T,[4].

Penrose correspondence
Q - • M

fl) |t 0 ) (1) | | (2)
Hitchin correspondence

T * W

Figure 3.1 Fitting together the Penrose and Hitchin correspondences. The
numerals refer to Proposition 3.1.
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4. Examples.
4.1 The quadric.

The simplest example of the Hitchin correspondence has for T the complex
quadric Q in CP3 . The curves Cp are the conies in Q and a geodesic of the
Weyl structure is defined by the set of conies meeting a fixed line in CP3 . The
Einstein-Weyl space W is the complexification of S3 or the hyperbolic space H3.
Suitable choices of reality structure give one or the other. Choosing 5 3 and applying
the construction of (3.1)(3) fills in S3 with the 4-dimensional hyperbolic space H4.

This example essentially just gives an Einstein space. The following Proposition
suggests that Einstein-weyl spaces may be rare :

PROPOSITION 4.2, [4].

IfT is an open set in a compact surface then T is Q or a cone in CP3 , and W
is an Einstein space. (The cone gives Bat space R3.)

However, one can analyse an initial value problem, locally, to find:

PROPOSITION 4.3, [2], 4. An Einstein-weyl space W is determined by an initial
value problem with data 4 functions of two variables, or by a characteristic initial
value problem with data 2 functions of 2 variables.

4.4 Einstein-Weyl spaces from S4.

To find some more examples explicitly we may follow the suggestion of Proposition
3.1(1). The Einstein metric on 54 is conformally flat and has many conformal
Killing fields. In this way we obtain two classes of Einstein-Weyl spaces [9] :
Class 1

A 3-parameter family of Einstein-Weyl structures on S3, generalising the 1-
parameter family of Einstein metrics.

Class 2
A 2-parameter family of Einstein-Weyl structures on R3.

The corresponding conformal Killing fields are shown diagrammatically in Figure
4.1. In both classes we can take the equatorial S3 as a representative for W, although
in Class 2 we must remove a point.
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Class 1 Class 2

Figure 4.1

4.5 S1 x S2

This is a manifold which admits no Einstein metric. It can be given an Einstein-
Weyl structure by rescaling the flat metric in R3 following (2.2), [9]:

with x — l°gr a nd

4.6 Other examples.

g = dx2 + d62 + sins20d<j>2

w = -2dx,

= r""1, and imposing periodicity in X-

By ad hoc methods one finds that there are Einstein-Weyl structures on three more
of Thurston's eight homogeneous geometries [10], in which the metric is closely
related to the natural one. These are R x H2, twisted R x H2 ( or the universal
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cover of SX(2,R) ) and twisted R x R2 ( or "Nil"). However in all three of these
examples the metric is an indefinite version of the natural one [9],
It is also possible to produce these examples by constructing the mini-twistor space
T directly, [7],[9].

5. Ellipticity and analyticity.
An attractive feature of the Einstein equations is that positive-definite solutions are
automatically real-analytic in suitable co-ordinates, [3]. An analogous statement is
true here:

PROPOSITION 5.1, [9]. In co-ordinates which are harmonic with respect to the Weyl
connection, and with the conformal freedom (2.2) restricted by the condition d*u> =
0 the Einstein-Weyl equations in the positive-definite case are elliptic. Positive-
definite Einstein-Weyl spaces are therefore real analytic in a suitable gauge.

The construction of the mini-twistor space T requires the complexification of W and
hence is only possible when W is real analytic. The above Proposition therefore
has the corollary:

COROLLARY 5.2. Every Einstein-Weyl space W has a mini-twistor space T.

It also follows from Proposition 5.1 that the linearisation of the Einstein-Weyl equa-
tions about, say, the Einstein metric on 53 gives an elliptic system for the pertur-
bation. In this way one can show the following:

PROPOSITION 5.3 , [9].

The Einstein-Weyl structures found in Class 1 of Section 4.4 include all the solu-
tions obtained by linearising about the Einstein metric.

Note however that there exists another family, disconnected from the Einstein
metric and bifurcating from Class 1.

6. Geodesies.

In an Einstein space the behavior of geodesies is closely regulated by the Ricci
scalar, which is automatically constant, [1], From a study of the geodesic devia-
tion equation one finds that a positive Ricci scalar forces all the geodesies to have
conjuagate points, and ultimately forces the space to be compact, while a negative
Ricci scalar forces geodesies to diverge from each other exponentially rapidly. In an
Einstein-Weyl space different things can happen, as we shall see from two examples.
The first is S1 x S2 from Section 4.5. We draw this as the region between two con-
centric spheres in R3 (Figure 6.1). Geodesies are straight lines, and must reappear
on the inner sphere on the same radius as they meet the outer sphere. Therefore
any non-radial geodesic will close in asymptotically on the radial one parrallel to it,
[9].

The second example is the "Berger sphere" [5], which lies in Class 1 of Section
4.4. This has
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limiting geodesic

Figure 6.1

g = a\

where a\ are the standard basis of left-invariant 1-forms on S3.
By a direct integration of the geodesic equations one finds that the (73 directions

form geodesies, and that geodesies in all other directions close in asymptotically on
these ones [9].

In these two examples the space of geodesies, which is the mini-twistor space T,
will be non-Hausdorff.

What one finds from a study of the geodesic deviation equation in a 3-dimensional
Einstein-Weyl space is that the space of Jacobi fields along each geodesic admits a
complex structure (Proposition 2.3).. This is the fundamental property which leads
to the existence of the twistor correspondence.
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HARMONIC MORPHISMS, CONFORMAL FOLIATIONS AND SEIFERT FIBRE SPACES
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1 INTRODUCTION

A harmonic morphism is a mapping between Riemannian manifolds which

preserves Laplace's equation in the sense that it pulls back harmonic

functions on the codomain to harmonic functions on the domain (see

below). The aim of this paper is to introduce harmonic morphisms to

the non-specialist and show how they occur naturally in low dimension-

al geometry. In particular, we shall show that each of Thurston's

geometries apart from Sol has a natural map which can be character-

ized as the unique non-constant harmonic morphism to a surface (§3),

and in §4, we shall show that, for any closed Seifert fibre space

A/3 , there is a harmonic morphism with fibres equal to the fibres of

M . Finally, in §5 we use these ideas to give a simple explanation

of why the product of a circle and a closed oriented Seifert fibre

space with oriented fibres is naturally an elliptic surface.

The author wishes to thank several participants at the conference for

useful conversations about this work, especially K.P. Tod, J.H. Rubin-

stein and J.D.S. Jones. Most of the work in this paper represents

work of the author with Paul Baird. it is hoped that this informal

account will prove useful for those wishing to taste the flavour of

the subject but unable to read the full account in (Baird & Wood,

1988, 1989a, 1989b).

2 DEFINITIONS AND BASIC PROPERTIES

2.1 Harmonic morphisms

Let M and 7v be C"y Riemannian manifolds of dimensions m and

n respectively, and let rp:M —> 7v be a & mapping. Then <p is

called a harmonic morphism if, for any harmonic function /:£/—»IR
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defined on an open subset U of N with <p (U) non-empty,

fr(p:ip (U) —* R is aiso a harmonic function. Because of the exis-

tence of harmonic coordinates (Greene & Wu, 1962) any harmonic mor-

phism is necessarily d° . Harmonic morphisms can be characterized in

terms of harmonic maps as follows: Say that <p is horizontally

(weakly) con formal if, at each point xem where dip 10 , writing

V = ker dp and H = V n T M , d(p I „ maps H conformally
X X X X X X n X

X

onto T {x)N , that is, for all ve Hx , lldp (v)ll = X(A-)IIVI! for
some X(x) > 0 . Setting X(x) = 0 at points where dp r± 0 (called

critical points) we obtain a continuous function X:M—»IR , with X"

smooth, called the dilation of <p . Note that a horizontally weakly

conformal map with X s l is just a Riemannian submersion. We have

Theorem 2.1 (Fuglede, 1978; Ishihara, 1979)

A smooth map (p:M —> N is a harmonic morphism if and only if it is

(a) a harmonic map and (b) horizontally weakly conformal.

We remark that in the case M= IR3 , TV= K2 = C , this says that

<p:lR' —¥ (C is a harmonic morphism if and only if it satisfies

o + ^ =0 (1)
dx2

z dx3
2

(2)

the first equation expressing harmonicity of <p and the second,

horizontal conformality.

In particular, if tp is non-constant, /n> n . Further, if

/n = 77 = 2 , then f) is a harmonic morphism if and only if it is a

weakly conformal map, and if m=n>2 , the only harmonic morphisms

are homothetic maps. Thus we concentrate on the case m> n . Har-

monic morphisms to surfaces (i.e. two-dimensional Riemannian mani-

folds) have many nice properties For example we have
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Theorem 2.2 (Baird & Eells, 1981)

Let (p:M—*l\T be a submersion to a surface. Then <p is a harmonic

morphism if and only if it is horizontally conformal and its fibres

are minimal submanifolds.

In the case that m = 3 , minimal fibres means that the fibres are

geodesies. Another property of harmonic morphisms to a surface is

that composition of such a map with a conformal map of surfaces gives

another harmonic morphism. In particular, the concepts of harmonic

morphism to a C° 2-manifold with a conformal structure (i.e. an

equivalence class of smooth metrics) and harmonic morphism to a Rie-

mann surface (i.e. a one-dimensional complex manifold) are well-

defined without specifying a particular Hermitian metric on the sur-

face. For this reason, by surface we shall henceforth mean a 6

2-manifold with a conformal structure.

We can now give some examples of harmonic morphisms, concentrating on

ones from 3-manifolds to surfaces.

(la) Let IH denote hyperbolic 3-space thought of as the open

unit disc D3 = {(A*I,X2,A'3) : \x\2 < 1} of R3 (where

\ x \ z = Xi2+x2
2 + x3

z ) w i t h t h e m e t r i c A^dx?Al-\ x\2)Z . T h e n g e o d e -

sies are circular arcs hitting the boundary 3D orthogonally.

Identify the hyperbolic plane 1FT with the equatorial disc A*3 = 0
3 3

of D' . Draw all the geodesies of IH which cut this disc orthogon-

ally. Define a map <p:IH —* IH by projection down these geodesies.

(\b) As a limiting case of (3), choose a point xoe.dtf' .

Then, for each xeM3 , let <p(x) = the point of intersection of the

geodesic through x with dD . This defines a map <p:lH —•» d& \{xo\

s* (C where we identify dZT\{A'ol = Suxol with (C by stereographic

projection.

(2) Orthogonal projection 1R" —»R" , (A*I,A*2,A'3) I—» (A*I,A'2)

(3) The Hopf map S3 —> S2 . With S3 = \(zuz2) e <C2 :
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lzi! + I z21 = II. This can be defined as (z<,Z2) i—» z\/Zz £ (CuM

followed by the inverse of stereographic projection cr:6^ —•» CuM

These are essentially the only harmonic morphisms from a simply-

connected three-dimensional space form to a surface. Precisely,

Theorem 2.3. (Baird & Wood, 1988, 1989a)

Up to isometries of the domain, any non-constant harmonic morphism of

W , IR̂" or 5" to a surface is one of the above four examples followed

by a weakly conformal mapping of the codomain to a surface.

In particular, the only solutions (p:(R3—><E to the equations (1) and

(2) above are linear ones <p(x\.xz>x<3) = 31X1+32^2+33^3 where the

a, €  (C satisfy 31" +32^+33'" = 0 , composed with a weakly conformal

self-mapping of C . More interestingly from the geometrical point of

view, the Hopf map & —-» £t is characterized as the unique non-

constant harmonic morphism from S~ to S> (up to conformal self map-

pings of £' .

2.2 Conformal foliations

A smooth foliation on a Riemannian manifold is called conformal (resp.

Riemannian) if its leaves are locally the fibres of a horizontally

conformal (resp. Riemannian) submersion. Let <p:Ar —* AT be a sub-

mersive harmonic morphism of a Riemannian 3-manifold to a surface.

Then, by Theorem 2.2, the fibres give a conformal foliation of m by

geodesies. Conversely, given a conformal foliation by geodesies of a

suitable subset U of ilf3 (for example, geodesically convex), we can

form its leaf space, a surface, in fact a Riemann surface if MJ and

the foliation are oriented. Then the canonical projection of U onto

its leaf space is a harmonic morphism. In particular, we can t r ans -

late the above results into the theorem that, up to isometries, R
J3 3

and Sr have just one conformal foliation by geodesies and M has two.

The above results on the three space forms are global: indeed, there
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is a large supply of harmonic morphisms (or conformal foliations by

geodesies) defined on open subsets of a space form. For let SF be a

conformal foliation by geodesies of a geodesically convex subset of a

space form EJ = IR , ST or frT and let tt be its leaf space. Then

we have an injective map i:N^ —» (7^3 into the space of all geodesies

which describes the foliation. Now G's can be given the structure

of a complex surface (Hitchin, 1982; Baird & Wood, 1989a). Then,

because the foliation is conformal, i is holomorphic. Conversely, a

holomorphie injective map defines a conformal foliation by geodesies

on a suitable open subset of E . Choosing this subset to be geodes-

ically convex, the natural projection of it onto its leaf space is a
3 3

harmonic morphism. For example, if E = IR , GU3 may be identified

with the unit tangent bundle of if . Using stereographic projection

a from a point x0 arid its differential as a chart T S i ^ , , —>
D \[Xo\

(Cx(C , a tangent vector at a point a' (x) e sfWxol is represented

by a pair (x9v)e<E*<£ . We can then, for example, define a holomor-

phic map C—> T&" by z—>(z,e z) where 6 is a constant. This

defines a 1-parameter family of conformal foliations by geodesies of

dense open subsets of BT. For example, if 8 = 0 this is the folia-

tion of R3\|0l by radii and if 0 = n it is a foliation which

twists through the unit disc (see Baird & Wood, 1988; Baird, 1987).

The corresponding harmonic morphisms are radial projection

IRAiOj—> £f' and a harmonic morphism W\D~—>D' where D** is the

unit disc in the (A'I,A'2)-plane. Similar constructions provide harmon-

ic morphisms and conformal foliations by geodesies of open subsets of

S3 and !H3 (Baird & Wood, 1988, 1989a).

We note that in relativity theory, a conformal foliation by geodesies

is a geodesic shear-free congruence (Penrose & Rindler, 1984; Huggett

& Tod, 1985) and there are analogies between the theory of conformal

foliations by geodesies of a space form and that of geodesic shear-

free congruences of null geodesies in space-time.



252 Wood: Harmonic Morphisms

3 . HARMONIC MORPHISMS AND THURSTON'S GEOMETRIES

By a geometry we shall mean a simply-connected C 3-dimensional

Riemannian homogeneous space which admits a compact quotient, see

(Scott, 1983). Thurston showed that there are exactly eight geomet-

ries. Three of these are the space forms (1) IH3 , (2) IR3 , (3) S3 ;

we have described canonical harmonic morphisms of these in § 1 ( IH

having two), we shall now list the other geometries together with a

canonical metric and canonical harmonic morphism n to a surface

(which are all Riemannian submersions with geodesic fibres). The

fibres of the latter give a canonical conformal foliation by geodesies

of the geometry, in fact all these foliations are Riemannian.

(4) Ŝ xIR with the product of standard metrics and n = projec-

tion onto the first factor.

(5) IH xR with the product of standard metrics and n = projec-

tion onto the first factor.

(6) Nil ; this can be identified with R3 with the metric ds*

= dxZ + dy* + {dz-xdy)Z , and then 7r:Nil—>R2 is defined by (xty,z)

i—» (A\y) .

(7) The universal cover SL2dR)~ of SL2(IR) ; this can be

identified with the upper half-plane IR3 = {(x,y,z) e R3 : y> 0} with

the metric dsZ = (dx2+dy2)/yZ + (dx/y + dz)z , and then TC:SL2(IR)" —>

IH is defined by (xtytz) i—>(xty) .

Note that the last two examples, as for the Hopf map -> —•> -s , have

non-integrable horizontal spaces and these three geometries with

their canonical metrics and foliations defined above are naturally

Sasakian manifolds. We have omitted the last geometry (8) Sol

because of the following:

Theorem 3.1 (Baird-Wood 1989b)

Any non-constant harmonic morphism from an open subset of a 3 -

dimensional geometry not of constant curvature to a surface is the

restriction of one of the four maps n listed above in (4)-(7) fol-
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lowed by a weakly conformal map of its codomain to a surface. In

particular, there is no harmonic morphism to a surface from any open

subset of Sol .

Theorem 3.2 (loc.cit.)

Any conformal foliation by geodesies of an open subset of a 3-

dimensional geometry not of constant curvature is the restriction of

one of the four standard examples induced by the maps n in (4)-(7)

as explained above. In particular, no open subset of Sol supports a

conformal foliation by geodesies.

The last result is shown in the following way: Given any conformal

foliation by geodesies, let U, X, Y be an orthonormal frame with U

along the foliation. Set Z= X+iY . Then from the Jacobi equation

we can show that

Ricci(Z,2) = 0 (3)

But for this equation, one of the following holds: (i) if the eigen-

values of the Ricci curvature are all distinct there is essentially

one solution Z , {W if two of the eigenvalues of the Ricci cur-

vature are the same there are essentially two solutions ; (Hi) if

all three eigenvalues of the Ricci curvature are the same, in which

case the 3-manifold is of constant curvature, any Z is a solution .

In the case of a Riemannian product m x|R or a Sasakian 3-manifold,

it can be shown that case (i) applies, in particular this applies to

the geometries (4)-(8). Thus, in these cases there is only one pos-

sible direction for a conformal foliation by geodesies. In the cases

(4)-(7) this really does give a conformal foliation by geodesies,

however in the case of Sol the foliation is not, in fact, conformal.

Note that the local uniqueness (Theorem 3.2) of a conformal foliation

by geodesies of a geometry not of constant curvature is in contrast to

the abundance of such foliations on an open subset of 3-dimensional
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space form (see §2) where Theorem 2.3 asserts global uniqueness.

Furthermore, any isometry of a geometry (4)-(7) must preserve any

conformal foliation by geodesies, this is not the case for the space

forms. Lastly note that the analysis above, together with a unique

continuation theorem for harmonic morphisms of conformal foliations by

geodesies, shows that no C Riemannian 3-manifold of non-constant

curvature can support more than two distinct non-constant harmonic

morphisms to surfaces or conformal foliations by geodesies.

4. HARMONIC MORPHISMS AND SEIFERT FIBRE SPACES

By a fibred solid torus Tp,q we mean D xi with the end D xji}

identified to the end DZx{0\ by a twist through 2nq/p for some

integers p,q with ptO . If (7=0 this gives the solid torus DZxS^

with its product foliation by circles. By a fibred solid Klein bottle

we mean //"xi with its ends identified by a reflection. By a Seifert

fibre space (without reflections) we mean a 3-manifold with a decom-

position into circles (called fibres) such that each circle has a

neighbourhood and a fibre preserving homeomorphism to a fibred solid

torus jHp,q . If g=0 the fibre is called regular, otherwise we

shall call it singular, the integers (p,q) are called the

(unnormalized) orbit or Seifert invariants of the fibre. If we also

allow fibred solid Klein bottles we obtain a Seifert fibre space with

reflections. It is result of Epstein that any foliation by circles of

a compact 3-manifold is a Seifert fibre space possibly with reflec-

tions. If the manifold is orientable, this is necessarily without

reflections. We shall here concentrate on the latter sort of Seifert

fibration for reasons explained after Theorem 4.1. As an example, for

any non-zero co-prime integers p,q , consider the foliation 5P)Q by

circles of S3 = Kzuz2)e C2: I Zii 2+ I z2\
 2=1 1 given by

Z\P/z2
q = constant (4)
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For p = <7= 1 this is the foliation associated to the Hopf fibra-

tion. For p, q > 1 , the circles z\ - 0 and z2 = 0 are singular

fibres with (unnormalized) orbit invariants (p,q) and (q,p) r e s -

pectively.

Now it follows from Scott (1983) that any closed Seifert fibre space

is of the form EJ/T where E is one of the geometries (2)-(7) with

its canonical foliation, or E3 = S3 with the foliation 5P,Q for

some p , q , and T is a group of isometries which acts freely and
3 3

properly discontinuously on E . Note that (H and Sol do not

give rise to any Seifert fibre spaces. For example, if we factor the

geometry Ŝ xflR by the group generated by («,p) where a is a

rotation of S by an angle 2nq/p about the diameter joining points

±a and j3 is translation of 1R by 1 unit, we obtain a Seifert
SL 1 1 1

fibration on S x £ with singular fibres \a\*S and {-a}xS both

with orbit invariants (p,q).

Associated to any Seifert fibre space without reflections is the

natural projection onto its leaf space £ . The latter is an orbifold

with cone points of angle 2n/p corresponding to singular fibres with

orbit invariants (p,q) . For example, for the foliation 5p>q on

6 above, the leaf space is homeomorphic to & but with two cone

points of angles 2n/p and 2n/q respectively; in Scott's notation,

X = S^(p,q) . For the foliation on S^xS described above, the leaf
space is f?{p,p) . Now in all cases apart from 5 P , q , the metric

induced from the standard metric on the geometry makes the Seifert

fibre space Es /T a Riemannian foliation by geodesies. In the case

of 5p,q we can give S' a metric g such that this becomes a

Riemannian foliation by geodesies. Indeed, we let (ST ,g) be the

ellipsoid <?p,q = lU.z?) e (C2 : I Zil 2/p2 + I z2\
 2/q2 = 1 I with the

metric induced from the ambient Euclidean space (see Eells & Ratto,

1988; Baird & Wood, 1989b). The metric on the Seifert fibre space

induces a metric, and thus a conformal structure on the leaf space

except at the cone points. In fact we can give the leaf space a
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conformal structure even at the cone points as follows: At a cone

point, the leaf space is of the form D /Zp where D^ is a disc with

a rotationally symmetric metric g . Then by the Uniformization Theo-

rem (Ahlfors, 1979), there is a conformal diffeomorphism

(D^,g)—> (D s tandard) . After composing this with the map z\—> 7?

of the codomain it factors to a homeomorphism ZT/2£P—* (D*\standard)

which we use to give the leaf space a conformal structure at the cone

points. Our construction gives a homeomorphism h from the leaf

space £ to a smooth surface with conformal structure £ s which we

call the smoothed leaf space. We can use this smoothing procedure to

establish the following:

Theorem 4.1 (Baird & Wood, 1989b)

Let M be a closed Seifert fibre space without reflections. Then

there exists a smooth metric on AT and a smooth harmonic morphism

to a smooth surface with conformal structure such that the fibres of

<p coincide with the fibres of W .

Proof. Let <p be the composition of the natural projection onto

the leaf space with the map h above. This certainly has geodesic

fibres and is horizontally conformal away from critical fibres; it is

thus a harmonic morphism off the polar set given by those fibres. It

is also continuous everywhere; it follows (cf. Baird & Wood, 1989a)

that it is a smooth harmonic morphism everywhere.

Remarks. Note that each point of a singular fibre of M is a

critical point of <p . In fact, at such a point, <p has the form of

a submersion followed by z i—» zp . Note also that, given a Seifert

fibre space M with reflections, there cannot be any harmonic morphism

(p-.M3—*!^ to a surface, with fibres coinciding with the fibres of

AT , for, again, all points of the singular fibres would have to be

critical points of <p . But now the singular fibres corresponding to

fibred solid Klein bottles are whole surfaces and so not polar contra-

dicting the fact (Fuglede, 1978) that the critical points of a har-
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monic morphism form a polar set.

As an example, consider the foliation JFp,q on the ellipsoid Qp,q .

The leaf space is the orbifold i^(p,q) with a rotationally symmetric

metric. Composing with the smoothing map h:S"(p,q) —•> & , which

will be of the form (*) (r,0) i—»(f\r),6) in spherical polar co-

ordinates, gives (up to conformal self-mappings of S" of the form

(*)) the harmonic morphism #p,q —* S2 of Eells & Ratto (1988). Note

that our method does not require discussion of any ordinary differen-

tial equation, this being implicit in the use of the Uniformization

Theorem.

The ellipsoid QP>q actually has two Riernannian foliations, the

second one given by replacing q by -q in (4). These foliations

are interchanged under the reflection (zuz2) i—> {z\,Zz) . Now for

any non-zero coprime integers (r,s) we have a free properly discon-

tinuous action of 1r on #p,q given by (zi,z2) i—»

{zie^*1 r,z2e^Tri":' r) which preserves these foliations. Then the

foliations factor to foliations on the lens space with ellipsoidal

metric L(/\s) = #p,q/Zr . These last foliations are not isometri-

cally related unless r=2 in which case the lens space is real projec-

tive 3-space. In (Baird & Wood, 1989b) the closed oriented Rieman-

nian 3-manifolds supporting a pair of oriented Riemannian foliations

by geodesies are classified. They are the 3-torus T , S , any lens

space and S"xS , all with one of an infinite family of non-standard

metrics. The constructions above then yield harmonic morphisms in

various homotopy classes from these manifolds to 2-tori and the 2 -

sphere.

5 THE PRODUCT OF A SEIFERT FIBRE SPACE WITH A CIRCLE

Let m be an oriented Riemannian 3-manifold with an oriented confor-

mal foliation by geodesies. Then there is a natural almost Hermitian
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structure J on the product M*S described as follows. At any

point (x,y) e M~y.S let ei,e2,ea be an oriented orthonormal basis

for TKMP with e3 along the foliation and let e4 be the unit

positive tangent to S1 at y . Then set J(ei) = e2 , J{e2) = -e^ ,

J(e3) = e4 and J(e4) = - e 3 . Then a straightforward calculation of the

Nijenhuis tensor shows that J is integrabie. Now suppose that M

is a closed oriented Seifert fibre space with oriented fibres. Then,

as in §4, it can be given the structure of a conformal (in fact Rie-

mannian) foliation by geodesies and we can construct a harmonic mor-

phism (p:J\f —* iv to a Riemann surface whose fibres are the fibres of

M~ . The composition M~*S —* M —> AT of the projection onto the

first factor with tp is clearly holomorphic and has tori as fibres,

so we have shown in a very natural way the well-known:

Theorem 5.1

The product of a closed oriented Seifert fibre space with oriented

fibres and the circle S is naturally an elliptic surface.

As an example, start with the Hopf map S"—»£~ . Then we get a

Hermitian structure on £>xS , the well-known Hopf surface (see, for

example, Besse, 1981), together with a surjective holomorphic map

S x S —* ST . If we take, instead, the Eells-Ratto harmonic morphism

Qp.q—* £? . we get a Hermitian structure on <2p,qxS1 which gives

S xS a non-standard metric and Hermitian structure as an elliptic

surface. Similarly, using the harmonic morphisms discussed at the end

of §4, we obtain non-standard metrics and Hermitian structures on

xS , 5 xS xS xS and L(p,q)yS together with holomorphic maps

xS1—> S* , 51x51x51x51 —^^^xS1 and 1 2
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