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Creation, Compression, Restoration, Recognition

Compression, restoration and recognition are three of the key components of digital
imaging. The mathematics needed to understand and carry out all these components is
here explained in a textbook that is at once rigorous and practical with many worked
examples, exercises with solutions, pseudocode, and sample calculations on images. The
introduction lists fast tracks to special topics such as Principal Component Analysis,
and ways into and through the book, which abounds with illustrations. The first part
describes plane geometry and pattern-generating symmetries, along with some text on
3D rotation and reflection matrices. Subsequent chapters cover vectors, matrices and
probability. These are applied to simulation, Bayesian methods, Shannon’s Information
Theory, compression, filtering and tomography. The book will be suited for course use
or for self-study. It will appeal to all those working in biomedical imaging and diagnosis,
computer graphics, machine vision, remote sensing, image processing, and information
theory and its applications.
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Preface

This text is a successor to the 1992 Mathematics for Computer Graphics. It retains the
original Part I on plane geometry and pattern-generating symmetries, along with much
on 3D rotation and reflection matrices. On the other hand, the completely new pages
exceed in number the total pages of the older book.

In more detail, topology becomes a reference and is replaced by probability, leading
to simulation, priors and Bayesian methods, and the Shannon Information Theory. Also,
notably, the Fourier Transform appears in various incarnations, along with Artificial
Neural Networks. As the book’s title implies, all this is applied to digital images, their
processing, compresssion, restoration and recognition.

Wavelets are used too, in compression (as are fractals), and in conjuction with B-splines
and subdivision to achieve multiresolution and curve editing at varying scales. We con-
clude with the Fourier approach to tomography, the medically important reconstruction
of an image from lower-dimensional projections.

As before, a high priority is given to examples and illustrations, and there are exercises,
which the reader can use if desired, at strategic points in the text; these sometimes
form part of the exercises placed at the end of each chapter. Exercises marked with a
tick are partly, or more likely fully, solved on the website. Especially after Chapter 6,
solutions are the rule, except for implementation exercises. In the latter regard there are
a considerable number of pseudocode versions throughout the text, for example ALGO
11.9 of Chapter 11, simulating the d-dimensional Gaussian distribution, or ALGO 16.1,
wavelet compression with limited percentage error.

A further priority is to help the reader know, as the story unfolds, where to turn back
for justification of present assumptions, and to point judiciously forward for coming
applications. For example, the mentioned Gaussian of Chapter 11 needs the theory of
positive definite matrices in Chapter 8. In the introduction we suggest some easy ways
in, including journeys by picture alone, or by light reading.

Much of the material of this book began as a graduate course in the summer of 1988,
for Ph.D. students in computer graphics at the Ohio State University. My thanks are due
to Rick Parent for encouraging the idea of such a course. A further part of the book was
developed from a course for final year mathematics students at the University of Glasgow.

xi
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Introduction

Beauty is in the eye of the beholder ...

Why the quote? Here beauty is a decoded message, a character recognised, a discovered
medical condition, a sought-for face. It depends on the desire of the beholder. Given
a computer image, beauty is to learn from it or convert it, perhaps to a more accurate
original. But we consider creation too.

It is expected that, rather than work through the whole book, readers may wish to
browse or to look up particular topics. To this end we give a fairly extended introduction,
list of symbols and index. The book is in six interconnected parts (the connections are
outlined at the end of the Introduction):

I The plane Chapters 1–6;
II Matrix structures Chapters 7–8;
III Here’s to probability Chapters 9–11;
IV Information, error and belief Chapters 12–13;
V Transforming the image Chapters 14–16;
VI See, edit, reconstruct Chapters 17–18.

Easy ways in One aid to taking in information is first to go through following a sub-
structure and let the rest take care of itself (a surprising amount of the rest gets tacked
on). To facilitate this, each description of a part is followed by a quick trip through that
part, which the reader may care to follow. If it is true that one picture is worth a thousand
words then an easy but fruitful way into this book is to browse through selected pictures,
and overleaf is a table of possibilities. One might take every second or third entry, for
example.

Chapters 1–6 (Part I) The mathematics is geared towards producing patterns automati-
cally by computer, allocating some design decisions to a user. We begin with isometries –
those transformations of the plane which preserve distance and hence shape, but which
may switch left handed objects into right handed ones (such isometries are called
indirect). In this part of the book we work geometrically, without recourse to matrices.
In Chapter 1 we show that isometries fall into two classes: the direct ones are rotations

xiii
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or translation, and the indirect ones reflections or glides. In Chapter 2 we derive the rules
for combining isometries, and introduce groups, and the dihedral group in particular. In
a short Chapter 3 we apply the theory so far to classifying all 1-dimensional or ‘braid’
patterns into seven types (Table 3.1).

From Chapter 4 especially we consider symmetries or ‘symmetry operations’ on
a plane pattern. That is, those isometries which send a pattern onto itself, each part
going to another with the same size and shape (see Figure 1.3 ff). A plane pattern is
one having translation symmetries in two non-parallel directions. Thus examples are
wallpaper patterns, floor tilings, carpets, patterned textiles, and the Escher interlocking
patterns such as Figure 1.2. We prove the crystallographic restriction, that rotational
symmetries of a plane pattern must be multiples of a 1/2, 1/3, 1/4 or 1/6 turn (1/5 is
not allowed). We show that plane patterns are made up of parallelogram shaped cells,
falling into five types (Figure 4.14).

In Chapter 5 we deduce the existence of 17 pattern types, each with its own set of
interacting symmetry operations. In Section 5.8 we include a flow chart for deciding
into which type any given pattern fits, plus a fund of test examples. In Chapter 6 we
draw some threads together by proving that the 17 proposed categories really are distinct
according to a rigorous definition of ‘equivalent’ patterns (Section 6.1), and that every
pattern must fall into one of the categories provided it is ‘discrete’ (there is a lower limit
on how far any of its symmetries can move the pattern).

By this stage we use increasingly the idea that, because the composition of two sym-
metries is a third, the set of all symmetries of a pattern form a group (the definition
is recalled in Section 2.5). In Section 6.3 we consider various kinds of regularity upon
which a pattern may be based, via techniques of Coxeter graphs and Wythoff’s con-
struction (they apply in higher dimensions to give polyhedra). Finally, in Section 6.4 we
concentrate the theory towards building an algorithm to construct (e.g. by computer) a
pattern of any type from a modest user input, based on a smallest replicating unit called
a fundamental region.
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Chapters 1–6: a quick trip Read the introduction to Chapter 1 then note Theorem 1.18
on what isometries of the plane turn out to be. Note from Theorem 2.1 how they can all be
expressed in terms of reflections, and the application of this in Example 2.6 to composing
rotations about distinct points. Look through Table 2.2 for anything that surprises you.
Theorem 2.12 is vital information and this will become apparent later. Do the exercise
before Figure 2.19. Omit Chapter 3 for now.

Read the first four pages of Chapter 4, then pause for the crystallographic restriction
(Theorem 4.15). Proceed to Figure 4.14, genesis of the five net types, note Examples
4.20, and try Exercise 4.6 at the end of the chapter yourself. Get the main message of
Chapter 5 by using the scheme of Section 5.8 to identify pattern types in Exercises 5
at the end of the chapter (examples with answers are given in Section 5.7). Finish in
Chapter 6 by looking through Section 6.4 on ‘Creating plane patterns’ and recreate the
one in Exercise 6.13 (end of the chapter) by finding one fundamental region.

Chapters 7–8 (Part II) After reviewing vectors and geometry in 3-space we introduce
n-space and its vector subspaces, with the idea of independence and bases. Now come
matrices, representing linear equations and transformations such as rotation. Matrix
partition into blocks is a powerful tool for calculation in later chapters (8, 10, 15–17).
Determinants test row/equation independence and enable n-dimensional integration for
probability (Chapter 10).

In Chapter 8 we review complex numbers and eigenvalues/vectors, hence classify
distance-preserving transformations (isometries) of 3-space, and show how to determine
from the matrix of a rotation its axis and angle (Theorem 8.10), and to obtain a normal
vector from a reflection matrix (Theorem 8.12). We note that the matrix M of an isometry
in any dimension is orthogonal, that is MMT = I , or equivalently the rows (or columns)
are mutually orthogonal unit vectors. We investigate the rank of a matrix – its number
of independent rows, or of independent equations represented. Also, importantly, the
technique of elementary row operations, whereby a matrix is reduced to a special form,
or yields its inverse if one exists.

Next comes the theory of quadratic forms
∑

ai j xi x j defined by a matrix A = [ai j ],
tying in with eigenvalues and undergirding the later multivariate normal/Gaussian dis-
tribution. Properties we derive for matrix norms lead to the Singular Value Decomposi-
tion: a general m × n matrix is reducible by orthogonal matrices to a general diagonal
form, yielding approximation properties (Theorem 8.53). We include the Moore–Penrose
pseudoinverse A+ such that AX = b has best solution X = A+b if A−1 does not exist.

Chapters 7–8: a quick trip Go to Definition 7.1 for the meaning of orthonormal vectors
and see how they define an orthogonal matrix in Section 7.2.4. Follow the determinant
evaluation in Examples 7.29 then ‘Russian’ block matrix multiplication in Examples
7.38. For vectors in coordinate geometry, see Example 7.51.

In Section 7.4.1 check that the matrices of rotation and reflection are orthogonal.
Following this theme, see how to get the geometry from the matrix in 3D, Example 8.14.
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Next see how the matrix row operations introduced in Theorem 8.17 are used for solving
equations (Example 8.22) and for inverting a matrix (Example 8.27).

Now look at quadratic forms, their meaning in (8.14), the positive definite case in Table
8.1, and applying the minor test in Example 8.38. Finally, look up the pseudoinverse of
Remarks 8.57 for least deviant solutions, and use it for Exercise 24 (end of chapter).

Chapters 9–11 (Part III) We review the basics of probability, defining an event E to
be a subset of the sample space S of outcomes, and using axioms due to Kolmogorov
for probability P(E). After conditional probability, independence and Bayes’ Theorem
we introduce random variables X : S → RX , meaning that X allocates to each outcome
s some value x in its range RX (e.g. score x in archery depends on hit position s). An
event B is now a subset of the range and X has a pdf (probability distribution function),
say f (x), so that the probability of B is given by the integral

P(B) =
∫
B

f (x) dx,

or a sum if the range consists of discrete values rather than interval(s). From the idea of
average, we define the expected value µ = E(X ) = ∫

x f (x) dx and variance V (X ) =
E(X − µ)2. We derive properties and applications of distributions entitled binomial,
Poisson and others, especially the ubiquitous normal/Gaussian (see Tables 9.9 and 9.10
of Section 9.4.4).

In Chapter 10 we move to random vectors X = (X1, . . . , Xn), having in mind message
symbols of Part IV, and pixel values. A joint pdf f (x1, . . . , xn) gives probability as an
n-dimensional integral, for example

P(X < Y ) =
∫
B

f (x, y) dx dy, where B = {(x, y) : x < y}.

We investigate the pdf of a function of a random vector. In particular X + Y , whose pdf
is the convolution product f ∗g of the pdfs f of X and g of Y , given by

( f ∗g)(z) =
∫
R

f (t)g(z − t) dt.

This gives for example the pdf of a sum of squares of Gaussians via convolution properties
of the gamma distribution. Now we use moments E(Xr

i ) to generate new pdfs from old, to
relate known ones, and to prove the Central Limit Theorem that X1 + · · · + Xn (whatever
the pdfs of individual Xi ) approaches a Gaussian as n increases, a pointer to the important
ubiquity of this distribution.

We proceed to the correlation Cov(X, Y ) between random variables X, Y , then the
covariance matrix Cov(X) = [Cov(Xi , X j )] of a random vector X = (Xi ), which yields
a pdf for X if X is multivariate normal, i.e. if the Xi are normal but not necessar-
ily independent (Theorem 10.61). Chapter 10 concludes with Principal Component
Analysis, or PCA, in which we reduce the dimension of a data set, by transforming
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to new uncorrelated coordinates ordered by decreasing variance, and dropping as many
of the last few variables as have total variance negligible. We exemplify by compressing
face image data.

Given a sample, i.e. a sequence of measurements X1, . . . , Xn of a random variable X ,
we seek a statistic f (X1, . . . , Xn) to test the hypothesis that X has a certain distribution
or, assuming it has, to estimate any parameters (Section 11.1). Next comes a short intro-
duction to the Bayesian approach to squeezing useful information from data by means
of an initially vague prior belief, firmed up with successive observations. An important
special case is classification: is it a tumour, a tank, a certain character, . . . ?

For testing purposes we need simulation, producing a sequence of variates whose
frequencies mimic a given distribution (Section 11.3). We see how essentially any distri-
bution may be achieved starting from the usual computer-generated uniform distribution
on an interval [0, 1]. Example: as suggested by the Central Limit Theorem, the sum of
uniform variables U1, . . . , U12 on [0, 1] is normal to a good approximation.

We introduce Monte Carlo methods, in which a sequence of variates from a suitably
chosen distribution yields an approximate n-dimensional integral (typically probability).
The method is improved by generating the variates as a Markov chain X1, X2, . . . , where
Xi depends on the preceding variable but on none earlier. This is called Markov Chain
Monte Carlo, or MCMC. It involves finding joint pdfs from a list of conditional ones,
for which a powerful tool is a Bayesian graph, or net.

We proceed to Markov Random Fields, a generalisation of a Markov chain useful for
conditioning colour values at a pixel only on values at nearest neighbours. Simulated
annealing fits here, in which we change a parameter (‘heat’) following a schedule de-
signed to avoid local minima of an ‘energy function’ we must minimise. Based on this,
we perform Bayesian Image Restoration (Example 11.105).

Chapters 9–11: a quick trip Note the idea of sample space by reading Chapter 9 up to
Example 9.2(i), then random variable in Definition 9.32 and Example 9.35. Take in the
binomial case in Section 9.4.1 up to Example 9.63(ii). Now look up the cdf at (9.29) and
Figure 9.11.

Review expected value at Definition 9.50 and the prudent gambler, then variance at
Section 9.3.6 up to (9.39) and the gambler’s return. Now it’s time for normal/Gaussian
random variables. Read Section 9.4.3 up to Figure 9.20, then follow half each of Examples
9.75 and 9.76. Glance at Example 9.77.

Check out the idea of a joint pdf f (x, y) in Figure 10.1, Equation (10.4) and Example
10.2. Then read up the pdf of X + Y as a convolution product in Section 10.2.2 up
to Example 10.18. For the widespread appearance of the normal distribution see the
introduction to Section 10.3.3, then the Central Limit Theorem 10.45, exemplified in
Figure 10.7. See how the covariance matrix, (10.44), (10.47), gives the n-dimensional
normal distribution in Theorem 10.61.

Read the introduction to Chapter 11, then Example 11.6, for a quick view of the
hypothesis testing idea. Now the Bayesian approach, Section 11.2.1. Note the meaning
of ‘prior’ and how it’s made more accurate by increasing data, in Figure 11.11.
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The Central Limit Theorem gives a quick way to simulate the Gaussian/normal: read
from Figure 11.21 to 11.22. Then, note how the Choleski matrix decomposition from
Chapter 8 enables an easy simulation of the n-dimensional Gaussian.

On to Markov chains, the beginning of Section 11.4 up to Definition 11.52, and
their generalisation to Markov random fields, modelling an image, Examples 11.79 and
preceding text. Take in Bayesian Image Restoration, Section 11.4.6 above Table 11.13,
then straight on to Figure 11.48 at the end.

Chapters 12–13 (Part IV) We present Shannon’s solution to the problem of mea-
suring information. In more detail, how can we usefully quantify the information in a
message understood as a sequence of symbols X (random variable) from an alphabet
A = {s1, . . . , sn}, having a pdf {p1, . . . , pn}. Shannon argued that the mean information
per symbol of a message should be defined as the entropy

H (X ) = H (p1, . . . , pn) =
∑

−pi log pi

for some fixed basis of logarithms, usually taken as 2 so that entropy is measured in bits
per symbol. An early vindication is that, if each si is encoded as a binary word ci , the
mean bits per symbol in any message cannot be less than H (Theorem 12.8). Is there
an encoding scheme that realises H? Using a graphical method Huffman produced the
most economical coding that was prefix-free (no codeword a continuation of another).
This comes close to H, but perhaps the nearest to a perfect solution is an arithmetic code,
in which the bits per symbol tend to H as message length increases (Theorem 12.35).
The idea here extends the method of converting a string of symbols from {0, 1, . . . , 9}
to a number between 0 and 1.

In the widely used LZW scheme by Lempel, Ziv and Welch, subsequences of the
text are replaced by pointers to them in a dictionary. An ingenious method recreates
the dictionary from scratch as decoding proceeds. LZW is used in GIF image encoding,
where each pixel value is representable as a byte, hence a symbol.

A non-entropy approach to information was pioneered by Kolmogorov: the informa-
tion in a structure should be measured as its Minimum Description Length, or MDL,
this being more intrinsic than a probabilistic approach. We discuss examples in which
the MDL principle is used to build prior knowledge into the description language and to
determine the best model for a situation.

Returning to Shannon entropy, we consider protection of information during its trans-
mission, by encoding symbols in a redundant way. Suppose k message symbols average
n codeword symbols X , which are received as codeword symbols Y. The rate of trans-
mission is then R = k/n. We prove Shannon’s famous Channel Coding Theorem, which
says that the transition probabilities {p(y|x)} of the channel determine a quantity called
the channel capacity C, and that, for any rate R < C and probability ε > 0, there is a
code with rate R and

P(symbol error Y �= X ) < ε.
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The codes exist, but how hard are they to describe, and are they usable? Until recent years
the search was for codes with plenty of structure, so that convenient algorithms could be
produced for encoding and decoding. The codewords usually had alphabet {0, 1}, fixed
length, and formed a vector space at the least. Good examples are the Reed–Solomon
codes of Section 13.2.4 used for the first CD players, which in consequence could be
surprisingly much abused before sound quality was affected.

A new breakthrough in closeness to the Shannon capacity came with the turbocodes
of Berrou et al. (Section 13.3.4), probabilistic unlike earlier codes, but with effective
encoding and decoding. They depend on belief propagation in Bayesian nets (Section
13.3.1), where Belief(x) = p(x |e) quantifies our belief about internal node variables x
in the light of evidence e, the end node variables. Propagation refers to the algorithmic
updating of Belief(x) on receipt of new information. We finish with a review of belief
propagation in computer vision.

Chapters 12–13: a quick trip Look up Shannon’s entropy at (12.7) giving least bits per
symbol, Theorem 12.8. Below this, read ‘codetrees’, then Huffman’s optimal codes in
Construction 12.12 and Example 12.13. Proceed to LZW compression in Section 12.7
up to Example 12.38, then Table 12.7 and Figure 12.20.

For Kolmogorov’s alternative to entropy and why, read Section 12.8.1 up to (12.34)
and their ultimate convergence, Theorem 12.54. For applications see Section 12.8.3 up
to ‘some MDL features’ and Figure 12.26 to ‘Further examples’.

Get the idea of a channel from Section 13.1 up to mutual entropy, (13.3), then
Figure 13.2 up to ‘Exercise’. Look up capacity at (13.23) (don’t worry about C(β)
for now). Next, channel coding in Section 13.1.6 to Example 13.33, the Hamming code,
and we are ready for the Channel Coding Theorem at Corollary 13.36.

Read the discussion that starts Section 13.2.5. Get some idea of convolution codes at
Section 13.3.2 to Figure 13.33, and turbocodes at Figures 13.39 and 13.40. For the belief
network basis of their probabilistic handling, look back at Section 13.3.1 to Figure 13.24,
then the Markov chain case in Figure 13.25 and above. More generally Figure 13.26.
Finally, read the postscript on belief networks in Computer Vision.

Chapters 14–16 (Part V) With suitable transforms we can carry out a huge variety
of useful processes on a computer image, for example edge-detection, noise removal,
compression, reconstruction, and supplying features for a Bayesian classifier.

Our story begins with the Fourier Transform, which converts a function f (t) to a new
function F(s), and its relative the N -point Discrete Fourier Transform or DFT, in which
f and F are N-vectors:

F(s) =
∫ ∞

−∞
f (t)e−2π ist dt, and Fk =

∑N−1

n=0
e−2π ikn/N fn.

We provide the background for calculus on complex numbers. Significantly, the relations
between numbers of the form e−2π ik/N result in various forms of Fast Fourier Transform,
in which the number of arithmetic operations for the DFT is reduced from order N 2 to
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order N log2N, an important saving in practice. We often need a convolution f ∗g (see
Part III), and the Fourier Transform sends

f ∗g → F ◦G (Convolution Theorem),

the easily computed elementwise product, whose value at x is F(x)G(x); similarly for the
DFT. We discuss the DFT as approximation to the continuous version, and the significance
of frequencies arising from the implied sines and cosines. In general a 1D transform yields
an n-dimensional one by transforming with respect to one variable/dimension at a time.
If the transform is, like the DFT, given by a matrix M, sending vector f → M f , then the
2D version acts on a matrix array g by

g → MgMT (= G),

which means we transform each column of g then each row of the result, or vice versa, the
order being unimportant by associativity of matrix products. Notice g = M−1G(MT)−1

inverts the transform. The DFT has matrix M = [w kn], where w = e−2π i/N , from which
there follow important connections with rotation (Figure 15.4) and with statistical prop-
erties of an image. The Convolution Theorem extends naturally to higher dimensions.

We investigate highpass filters on images, convolution operations which have the
effect of reducing the size of Fourier coefficients Fjk for low frequencies j, k, and so
preserving details such as edges but not shading (lowpass filters do the opposite). We
compare edge-detection by the Sobel, Laplacian, and Marr–Hildreth filters. We introduce
the technique of deconvolution to remove the effect of image noise such as blur, whether
by motion, lens inadequacy or atmosphere, given the reasonable assumption that this
effect may be expressed as convolution of the original image g by a small array h. Thus
we consider

blurred image = g∗h →G ◦ H.

We give ways to find H, hence G by division, then g by inversion of the transform (see
Section 15.3). For the case when noise other than blur is present too, we use probability
considerations to derive the Wiener filter. Finally in Chapter 15 we investigate compres-
sion by the Burt–Adelson pyramid approach, and by the Discrete Cosine Transform, or
DCT. We see why the DCT is often a good approximation to the statistically based K–L
Transform.

In Chapter 16 we first indicate the many applications of fractal dimension as a param-
eter, from the classical coastline measurement problem through astronomy to medicine,
music, science and engineering. Then we see how the ‘fractal nature of Nature’ lends
itself to fractal compression.

Generally the term wavelets applies to a collection of functions �
j

i (x) obtained from
a mother wavelet �(x) by repeated translation, and scaling in the ratio 1/2. Thus

�
j

i (x) = �(2x j x − i), 0 ≤ i < 2 j .

We start with Haar wavelets, modelled on the split box �(x) equal to 1 on [0, 1/2), to−1
on [1/2, 1] and zero elsewhere. With respect to the inner product 〈 f, g〉 =

∫
f (x)g(x) dx
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for functions on [0, 1] the wavelets are mutually orthogonal. For fixed resolution J, the
wavelet transform is

f → its components with respect to φ0(x) and �i
j (x), 0 ≤ j ≤ J, 0 ≤ i < 2 j ,

where φ0(x) is the box function with value 1 on [0, 1]. Converted to 2D form in the usual
way, this gives multiresolution and compression for computer images. We pass from
resolution level j to j + 1 by adding the appropriate extra components. For performing
the same without necessarily having orthogonality, we show how to construct the filter
bank, comprising matrices which convert between components at different resolutions.
At this stage, though, we introduce the orthogonal wavelets of Daubechies of which Haar
is a special case. These are applied to multiresolution of a face, then we note the use for
fingerprint compression.

Lastly in Part V, we see how the Gabor Transform and the edge-detectors of Canny
and of Marr and Hildreth may be expressed as wavelets, and outline the results of Lu,
Healy and Weaver in applying a wavelet transform to enhance constrast more effectively
than other methods, for X-ray and NMR images.

Chapters 14–16: a quick trip Look at Equations (14.1) to (14.4) for the DFT, or Dis-
crete Fourier Transform. Include Notation 14.3 for complex number foundations, then
Figure 14.3 for the important frequency viewpoint, and Figure 14.6 for the related filtering
schema.

For an introduction to convolution see Example 14.11, then follow the polynomial
proof of Theorem 14.12. Read Remarks 14.14 about the Fast Transform (more details
in Section 14.1.4). Read up the continuous Fourier Transform in Section 14.2.1 up to
Figure 14.13, noting Theorem 14.22. For the continuous–discrete connection, see points
1, 2, 3 at the end of Chapter 14, referring back when more is required.

In Chapter 15, note the easy conversion of the DFT and its continuous counterpart to
two dimensions, in (15.6) and (15.10). Observe the effect of having periodicity in the
image to be transformed, Figure 15.3, and of rotation, Figure 15.4.

Notice the case of 2D convolution in Example 15.14 and the convolution Theorems
15.16 and 15.17. Look through the high-versus lowpass material in Sections 15.2.2 and
15.2.3, noting Figures 15.15, 15.18, and 15.20. Compare edge-detection filters with each
other in Figure 15.23. Read up recovery from motion blur in Section 15.3.1, omitting
proofs.

For the pyramid compression of Burt and Adelson read Section 15.4 up to Figure
15.37 and look at Figures 15.39 and 15.40. For the DCT (Discrete Cosine Transform)
read Section 15.4.2 up to Theorem 15.49 (statement only). Note the standard conversion
to 2D in Table 15.8, then see Figures 15.42 and 15.43. Now read the short Section 15.4.3
on JPEG. Note for future reference that the n-dimensional Fourier Transform is covered,
with proofs, in Section 15.5.2.

For fractal dimension read Sections 16.1.1 and 16.1.2, noting at a minimum the key
formula (16.9) and graph below. For fractal compression take in Section 16.1.4 up to
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(16.19), then Example 16.6. A quick introduction to wavelets is given at the start of
Section 16.2, then Figure 16.23. Moving to two dimensions, see Figure 16.25 and its
introduction, and for image compression, Figure 16.27.

A pointer to filter banks for the discrete Wavelet Transform is given by Figure 16.28
with its introduction, and (16.41). Now check out compression by Daubechies wavelets,
Example 16.24. Take a look at wavelets for fingerprints, Section 16.3.4. Considering
wavelet relatives, look at Canny edge-detection in Section 16.4.3, then scan quickly
through Section 16.4.4, slowing down at the medical application in Example 16.28.

Chapters 17–18 (Part VI) B-splines are famous for their curve design properties, which
we explore, along with the connection to convolution, Fourier Transform, and wavelets.

The ith basis function Ni,m(t) for a B-spline of order m, degree m-1, may be obtained
as a translated convolution product b∗b∗ · · ·∗b of m unit boxes b(t). Consequently, the
function changes to a different polynomial at unit intervals of t , though smoothly, then
becomes zero. Convolution supplies a polynomial-free definition, its simple Fourier
Transform verifying the usually used Cox–de Boor defining relations. Unlike a Bézier
spline, which for a large control polygon P0 . . . Pn requires many spliced component
curves, the B-spline is simply

Bm(t) =
∑n

i=0
Ni,m(t)Pi .

We elucidate useful features of Bm(t), then design a car profile, standardising on cubic
splines, m = 4. Next we obtain B-splines by recursive subdivision starting from the
control polygon. That is, by repetitions of

subdivision = split + average,

where split inserts midpoints of each edge and average replaces each point by a linear
combination of neighbours. We derive the coefficients as binomials, six subdivisions
usually sufficing for accuracy. We recover basis functions, now denoted by φ

j
1 (x), starting

from hat functions. In the previous wavelet notation we may write

� j−1 = � j P j (basis), where f j = P j f j−1,

the latter expressing level j − 1 vectors in terms of level j via a matrix P j . Now we aim
for a filter bank so as to edit cubic-spline-based images. It is (almost) true that for our
splines (a) for fixed j the basis functions are translates, (b) those at level j + 1 are scaled
from level j . As before, we take V j = span � j and choose wavelet space W j−1 ⊆ V j

to consist of the functions in V j orthogonal to all those in V j−1. It follows that any f in
V j equals g + h for unique g in V j−1 and h in W j−1, this fact being expressed by

V j−1 ⊕ W j−1 = V j .

A basis of W j−1 (the wavelets) consists of linear combinations from V j , say the vector of
functions � j−1 = � j Q j for some matrix Q j . Orthogonality leaves many possible Q j ,
and we may choose it to be antipodal (half-turn symmetry), so that one half determines
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the rest. This yields matrices P, Q, A, B for a filter bank, with which we perform editing
at different scales based on (for example) a library of B-spline curves for components of
a human face.

In the first appendix we see how to determine simple formulae for filter bank matrices,
using connections with polynomials. The second appendix introduces surfaces wavelets
as a natural generalisation from curves, and we indicate how a filter bank may be obtained
once more.

(Chapter 18) An artificial neural network, or just net, may be thought of firstly in
pattern recognition terms, converting an input vector of pixel values to a character they
represent. More generally, a permissible input vector is mapped to the correct output by
a process in some way analogous to the neural operation of the brain (Figure 18.1). We
work our way up from Rosenblatt’s Perceptron, with its rigorously proven limitations,
to multilayer nets which in principle can mimic any input–output function. The idea is
that a net will generalise from suitable input–output examples by setting free parameters
called weights. We derive the Backpropagation Algorithm for this, from simple gradient
principles. Examples are included from medical diagnosis and from remote sensing.

Now we consider nets that are mainly self-organising, in that they construct their own
categories of classification. We include the topologically based Kohonen method (and
his Learning Vector Quantisation). Related nets give an alternative view of Principal
Component Analysis. At this point Shannon’s extension of entropy to the continuous
case opens up the criterion of Linsker that neural network weights should be chosen
to maximise mutual information between input and output. We include a 3D image
processing example due to Becker and Hinton. Then the further Shannon theory of rate
distortion is applied to vector quantisation and the LBG quantiser.

Now enters the Hough Transform and its widening possibilities for finding arbitray
shapes in an image. We end with the related idea of tomography, rebuilding an image
from projections. This proves a fascinating application of the Fourier Transform in two
and even in three dimensions, for which the way was prepared in Chapter 15.

Chapters 17–18: a quick trip Go straight to the convolution definition, (17.7), and result
in Figure 17.7, of the φk whose translates, (17.15) and Figure 17.10, are the basis functions
for B-splines. (Note the Fourier calculation below Table 17.1.) See the B-spline Definition
17.13, Theorem 17.14, Figure 17.12, and car body Example 17.18. Observe B-splines
generated by recursive subdivision at Examples 17.33 and 17.34.

We arrive at filter banks and curve editing by Figure 17.32 of Section 17.3.3. Sam-
ple results at Figure 17.37 and Example 17.46. For an idea of surface wavelets, see
Figures 17.51 and 17.52 of the second appendix.

Moving to artificial neural networks, read Perceptron in Section 18.1.2 up to
Figure 18.5, note the training ALGO 18.1, then go to Figure 18.15 and Remarks follow-
ing. Proceed to the multilayer net schema, Figure 18.17, read ‘Discovering Backprop-
agation’ as far as desired, then on to Example 18.11. For more, see the remote sensing
Example 18.16.
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Now for self-organising nets. Read the introduction to Section 18.2, then PCA by
Oja’s method at (18.28) with discussion following, then the k-means method at Equation
(18.30) and Remarks 18.20. Consider Kohonen’s topologically based nets via Example
18.21 (note the use of ‘neighbourhoods’) and remarks following.

Revisit information theory with differential entropy in Table 18.3, and the Gaussian
case in Theorem 18.29. Now observe the application of mutual entropy to nets, in Example
18.34 down to Equation (18.47). Pick up rate distortion from (18.60) and the ‘compression
interpretation’ below, then look at Theorem 18.48 (without proof) and Example 18.49.
With notation from (18.67) and (18.68), note Theorem 18.50. Read Section 18.3.6 to find
steps A, B then see the LBG quantization in Example 18.59 and the discussion following.

The last topic is tomography. Read through Section 18.4.2 then note the key projection
property, (18.79), and the paragraph below it. Observe Figure 18.63, representing the
interpolation step, then see the final result in Examples 18.65 and 66. Finally, note
‘higher dimensions’.

Which chapters depend on which

1–6 Each chapter depends on the previous ones.
7 Depends generally on Chapter 1.
8 Depends strongly on Chapter 7.
9 Little reliance on previous chapters. Uses some calculus.
10 Depends strongly on Chapters 8 and 9.
11 Builds on Chapter 10.
12 Basic probability from Chapter 9; last section uses random vectors from

Chapter 10.
13 Section 13.1 develops entropy from Section 12.1, whilst Section 13.2

uses vector space bases from Section 7.1.5. Belief networks in Section
13.3 recapitulates Section 11.4.4 first.

14 Uses matrices from Section 7.2, complex vectors and matrices from
Section 8.1.1, convolution from Section 10.2.2; evaluating the FFT uses
big O notation of Section 10.3.3.

15 Builds on Chapter 14. The Rotation Theorem of Section 15.1.3 uses the
Jacobian from Section 10.2.1, rotation from Section 7.4.1. Filter
symmetry in Section 15.2.3 uses Example 8.21(iii). The Wiener filter,
Section 15.3.4, needs functions of a random vector, Section 10.2, and
covariance, Section 10.4.2. Compression, Section 15.4, uses entropy
from Chapter 12.

16 Fractals, Section 16.1, uses the regression line from Section 11.1.4.
Sections 16.2 and 16.3 use vector spaces from Section 7.1.5, with inner
product as in (7.8), and the block matrices of Section 7.2.5. Also the
general construction of 2D transforms in Section 15.1.1, and the DCT in
Section 15.4.2. Section 16.4 makes wide use of the Fourier Transform
from Chapters 14 and 15.
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17 Depending strongly on Section 16.2 and Section 16.3, this chapter also
requires knowledge of the 1D Fourier Transform of Chapter 14, whilst
Section 17.3.2 uses dependent vectors from Section 7.1.5 and symmetry
from Example 8.21(iii).

18 The first three sections need probabililty, usually not beyond Chapter 10
except for Bayes at Section 11.2. Section 18.3 builds on the mutual
entropy of Chapter 13, whilst Section 18.4.1 uses the Sobel edge-detectors
of Section 15.2.4, the rest (Hough and tomography) requiring the Fourier
Transform(s) and Projection Theorem of Section 15.1.

Table of crude chapter dependencies.

A chapter depends on those it can
‘reach’ by going down the graph.

18 17

16

1412

13

11

10

94

7–8

1–3

5–6

15

Some paths to special places

Numbers refer to chapters. Fourier Transform means the continuous one and DFT the discrete. ONB is
orthonormal basis, PCA is Principal Component Analysis, Gaussian equals normal.

n-dim Gaussian or PCA (a choice)
ONB → eigenvalues/vectors → similarity → covariance → PCA or n-dim Gaussian

7 8 8 10 10

Simulating Gaussians
Independent vectors → moments → Central Limit Theorem → Cholesky factors → simulation
10 10 10 8 11

Huffman codes
Entropy → noiseless encoding → codetrees → Huffman
12 12 12 12

Channel Coding Theorem
Random variables → joint pdf → entropy → mutual entropy → capacity → Shannon Theorem

9 10 12 13 13 13

JPEG
ONBs & orthogonal matrices → complex numbers → Discrete Cosine Transform → JPEG

7 8 15 15
Wiener filter
Complex nos. → Fourier Transform → Convolution Thm → pdfs & Fourier → Wiener filter

8 14,15 15 15 15
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Haar Wavelet Transform (images)
Inner product & ONBs → 1D Haar → 2D Haar→ Haar Image Transform

7 16 16 16

B-splines & Fourier
Fourier Transform (1D) → Convolution Thm. → φk as convolution → Fourier Transform

14 14 17 17

Perceptron
Dot product → perceptron → edge-detector → learning algorithm

7 18 18 18

Vector quantisation
Entropy → mutual entropy → rate distortion → LBG versus k-means

12 13 18 18

Tomography
Complex numbers→DFT→Fourier Transform→Rotation & Projection Thms→Tomography

8 15 15 15 18



A word on notation

(1) (Vectors) We write vectors typically as x = (x1, . . . , xn), with the option x = (xi ) if n is
known from the context. Bold x emphasises the vector nature of such x.

(2) (Rows versus columns) For vector–matrix multiplication we may take vector x as a row,
indicated by writing x A, or as a column, indicated by Ax. The row notation is used through
Chapters 1–6 in harmony with the image of a point P under a transformation g being denoted
by Pg , so that successive operations appear on the right, thus:

xABC . . . and P f gh··· .

Any matrix equation with vectors as rows may be converted to its equivalent in terms of
columns, by transposition: e.g. x A = b becomes ATxT = bT. Finally, to keep matrices on
one line we may write Rows[R1, . . . , Rm], or just Rows[Ri ], for the matrix with rows Ri , and
similarly for columns, Cols[C1, . . . , Cn].

(3) (Block matrices) Every so often it is expedient to perform multiplication with matrices which
have been divided (partitioned) into submatrices called blocks. This is described in Section
7.2.5, where special attention should be paid to ‘Russian multiplication’.

(4) (Distributions) Provided there is no ambiguity we may use the letter p generically for prob-
ability distributions, for example p(x), p(y) and p(x, y) may denote the respective pdfs of
random variables X , Y and (X, Y ). In a similar spirit, the symbol list following concentrates
on those symbols which are used more widely than their first context of definition.

Here too we should mention that the normal and Gaussian distributions are the same thing,
the word Gaussian being perhaps preferred by those with a background in engineering.
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Symbols

|λ| Absolute value of real number λ, modulus if
complex

page 8, 166, 167

|AB|, |a| Length of line segment AB, length of vector a 7
AB Line segment directed from point A to B 7
A(a1, a2) Point A with Cartesian coordinates (a1, a2) 7
a = (a1, a2) General vector a or position vector of point A 7
a · b Dot/scalar product

∑
ai bi 127

a × b Vector product of vectors a, b 141
g: X → Y Function (mapping) from X to Y
Pg and g(P) Image of P under mapping g 11
TAB The translation that sends point A to point B 17
Ta The translation given by x → x + a 11
RA(φ) Rotation in the plane about point A, through

signed angle φ

11, 12

RA(m/n) Rotation as above, through the fraction m/n of a
turn

12

Rm, RAB (In the plane) reflection in mirror line m, in line
through A, B

12

I The identity mapping, identity element of a
group

39, 40

g−1 The inverse of a function or group element g 32
hg The product g−1hg, for transformations or group

elements g, h
29

D2n The dihedral group of order 2n 38
R, Q, Z, N The real numbers, rationals, integers, and

naturals 1, 2, 3, . . .

23, 24

[a, b], (a, b) Closed interval a ≤ x ≤ b, open interval
a < x < b

230

xxix
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Rn Euclidean n-space 120, 121
i, j, k Unit vectors defining coordinate axes in 3-space 116
δik The Kronecker delta, equal to 1 if i = k,

otherwise 0
119

δ(x) The Dirac delta function 544
I = In The identity n × n matrix 127
Am×n Matrix A with m rows and n columns 127
aik or (A)ik The entry in row i , column k, of the matrix A 126, 127
diag {d1, . . . , dn} The square matrix whose diagonal elements are

di , the rest 0
128

AT, A−1 The transpose of matrix A, its inverse if square 128, 129
|A| or det A The determinant of a square matrix A 131
Tr A The trace (sum of the diagonal elements aii) of a

matrix A
164, 165

Eik Matrix whose i, k entry is 1, and the rest 0 140
〈A, B〉 Inner product of matrices (as long vectors) 203
‖A‖F, ‖A‖R Frobenius and ratio norms of matrix A (subscript

F may be omitted)
193

R(A), N (A) Row space, null space, of matrix A 172, 177
C The complex numbers z = x + yi, where

i2 = −1
162, 163

Re z, Im z, z̄, |z| Real part, imaginary part, conjugate, modulus
of z

163

eiθ The complex number cos θ + i sin θ 163
{xn}n≥1 Sequence x1, x2, x3, . . . 276
Z2 The field of size 2 469
A = AX Alphabet for a channel random variable X 445
A Attractor of an Iterated Function system 653
log x, log2 x, ln x Logarithm to given base, to base 2, to base e

(natural)
398

S Sample space in probability theory 210
Ac, A ∪ B, A ∩ B Complement, union, intersection, of sets or events 210, 211
P(A) Probability that event A occurs 212

nCr or
( n

r

)
Number of ways to choose r things from n.

Equals n!/(r !(n − r )!)
215

|A| Size of set or event A
P(A | B) Conditional probability of A given B 219
P(X = x) Probability that random variable X takes value x 227
E(X ) and V (X ) Expected value and variance of random

variable X
235, 237
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X ∼ N (µ, σ 2) X is normal (Gaussian) with E(X ) = µ,

V (X ) = σ 2
245

�(x) Gamma function 238
�α,u(x) Gamma distribution with parameters α, u 249
X Sample mean 305
θ̂ Estimate of distribution parameter θ 309
f ∗g Convolution product: functions (‘continuous’),

arrays (‘discrete’)
271, 531

h = f ◦ g Elementwise product h(x) = f (x)g(x) 533
U [a, b] Uniform distribution on interval [a, b] 230
Cov(X, Y ) Covariance/correlation between random

variables X , Y
285

Cov(X ) Covariance matrix of random vector X = (Xi ) 287
H (X ) =

H(p1, . . . , pn)
Entropy of random variable X with pdf
{p1, . . . , pn}

397

H (x) Same as H (x, 1 − x), 0 ≤ x ≤ 1 399
d(p‖q) Kullback–Liebler distance between probability

distributions p(x), q(x)
432

H (X, Y ), H (X |Y ) Joint entropy, conditional entropy 446
I (X ; Y ) Mutual entropy 446
f → F Fourier Transform. F is also written f̂ or F[ f ] 523, 524, 542
R f g Cross-correlation of functions f, g 544
sinc(x) (sin πx)/πx (sometimes (sin x)/x , as in

Section 14.3)
542

∇2 f Laplacian of f 573
LoG, DoG Laplacian of Gaussian, Difference of Gaussians 594
ψ(x), ψ j

i (x) Mother wavelet, derived wavelets 659
W j , � j (x) Wavelet space, basis 665
V j , � j (x) Scaling space, basis 665
V
⊕

W Sum of vector spaces 662
P, Q, A, B Filter bank matrices 666, 667
P0 . . . Pn Control polygon 668
b(t), φk(x) Box function, spline function 693
Ni,m(x) B-spline basis function of order m, degree m-1, 698
(. . . , r−1, r0, r1, . . .) Averaging mask for subdivision 711
e j

i (x) Hat function 711
〈 f, h〉 Inner product of functions f and h 660, 748
G Gram matrix of inner products: gik = 〈 fi , hk〉

(allows h = f )
721
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f∗(x) Reciprocal polynomial of f (x) (coefficents in
reverse order)

483

tanh(x) Hyperbolic tangent (ex − e−x )/(ex + e−x ) 769
�w Update to weight vector w 771
h(X ) Differential entropy of continuous random

variable X
794

R, R(D) Code rate, Shannon’s Rate Distortion function 464, 805
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The plane
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Isometries

1.1 Introduction

One practical aim in Part I is to equip the reader to build a pattern-generating computer
engine. The patterns we have in mind come from two main streams. Firstly the geometri-
cal tradition, represented for example in the fine Moslem art in the Alhambra at Granada
in Spain, but found very widely. (See Figure 1.1.)

Less abundant but still noteworthy are the patterns left by the ancient Romans (Field,
1988). The second type is that for which the Dutch artist M. C. Escher is famous,
exemplified in Figure 1.2, in which (stylised) motifs of living forms are dovetailed
together in remarkable ways. Useful references are Coxeter (1987), MacGillavry (1976),
and especially Escher (1989). In Figure 1.2 we imitate a classic Escher-type pattern.

The magic is due partly to the designers’ skill and partly to their discovery of certain
rules and techniques. We describe the underlying mathematical theory and how it may
be applied in practice by someone claiming no particular artistic skills.

The patterns to which we refer are true plane patterns, that is, there are translations
in two non-parallel directions (opposite directions count as parallel) which move every
submotif of the pattern onto a copy of itself elsewhere in the pattern. A translation is
a movement of everything, in the same direction, by the same amount. Thus in Figure
1.2 piece A can be moved to piece B by the translation represented by arrow a, but no
translation will transform it to piece C. A reflection would have to be incorporated.

Exercise The reader may like to verify that, in Figure 1.1, two smallest such transla-
tions are represented in their length and direction by the arrows shown, and determine
corresponding arrows for Figure 1.2. These should be horizontal and vertical.

But there may be much more to it.
More generally, we lay a basis for understanding isometries – those transformations

of the plane which preserve distance – and look for the easiest ways to see how they
combine or can be decomposed. Examples are translations, rotations and reflections. Our
approach is essentially geometrical. An important tool is the idea of a symmetry of a plane
figure; that is, an isometry which sends every submotif of the pattern onto another of the

3
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Figure 1.1 Variation on an Islamic theme. For the original, see Critchlow (1976), page
112. The arrows indicate symmetry in two independent directions, and the pattern is
considered to continue indefinitely, filling the plane.

Figure 1.2 Plane pattern of interlocking birds, after M. C. Escher.

same size and shape. (The translations we cited for Figure 1.2 are thus symmetries, but
we reiterate the idea here.) For example, the head in Figure 1.3(a) is symmetrical about
the line AB and, corresponding to this fact, the isometry obtained by reflecting the plane
in line AB is called a symmetry of the head. Of course we call AB a line of symmetry. In
Figure 1.3(b) the isometry consisting of a one third turn about O is a symmetry, and O is
called a 3-fold centre of symmetry. In general, if the 1/n turn about a point A (n maximal)
is a symmetry of a pattern we say A is an n-fold centre of symmetry of the pattern.
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(a) (b)

Figure 1.3

The key idea is that the collection of all symmetries, or symmetry operations, of a
figure form a group G (see Section 2.5). Here this means simply that the composition
of any two symmetries is another, which is sometimes expressed by saying that the set
of symmetries is closed under composition. Thus, for Figure 1.3(a) the symmetry group
G consists of the identity I (do nothing) and reflection in line AB. For Figure 1.3(b), G
consists of I, a 1/3 turn τ about the central point, and a 2/3 turn which may be written τ 2

since it is the composition of two 1/3 turns τ . In fact, every plane pattern falls into one
of 17 classes determined by its symmetry group, as we shall see in Chapter 5. That is,
provided one insists, as we do, that the patterns be discrete, in the sense that no pattern
can be transformed onto itself by arbitrarily small movements. This rules out for example
a pattern consisting of copies of an infinite bar · · · · · ·.
Exercise What symmetries of the pattern represented in Figure 1.1 leave the central
point unmoved?

Section 6.3 on tilings or tessellations of the plane is obviously relevant to pattern
generation and surface filling. However, I am indebted to Alan Fournier for the comment
that it touches another issue: how in future will we wish to divide up a screen into pixels,
and what should be their shape? The answer is not obvious, but we introduce some of
the options. See Ulichney (1987), Chapter 2.

A remarkable survey of tilings and patterns is given in Grünbaum and Shephard (1987),
in which also the origins of many familiar and not-so-familiar patterns are recorded. For
a study of isometries and symmetry, including the ‘non-discrete’ case, see Lockwood
and Macmillan (1978), and for a connection with manifolds Montesinos (1987).

Now, a plane pattern has a smallest replicating unit known as a fundamental region F
of its symmetry group: the copies of F obtained by applying each symmetry operation
of the group in turn form a tiling of the plane. That is, they cover the plane without
area overlap. In Figure 1.2 we may take any one of A, B, C as the fundamental region.
Usually several copies of this region form together a cell, or smallest replicating unit
which can be made to tile the plane using translations only. Referring again to Figure
1.2, the combination of A and C is such a cell.
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Section 6.4, the conclusion of Part I, shows how the idea of a fundamental region
of the symmetry group, plus a small number of basic generating symmetries, gives
on the one hand much insight, and on the other a compact and effective method of
both analysing and automating the production of patterns. This forms the basis of the
downloadable program polynet described at the end of Chapter 6. This text contains
commercial possibilities, not least of which is the production of books of patterns and
teach-yourself pattern construction. See for example Oliver (1979), Devaney (1989),
Schattschneider and Walker (1982), or inspect sample books of wallpaper, linoleum,
carpeting and so on.

We conclude by noting the application of plane patterns as a test bed for techniques
and research in the area of texture mapping. See Heckbert (1989), Chapter 3.

1.2 Isometries and their sense

We start by reviewing some basic things needed which the reader may have once known
but not used for a long time.

1.2.1 The plane and vectors

Coordinates Points in the plane will be denoted by capital letters A, B, C, . . . It is often
convenient to specify the position of points by means of a Cartesian coordinate system.
This consists of (i) a fixed reference point normally labelled O and called the origin,
(ii) a pair of perpendicular lines through O, called the x-axis and y-axis, and (iii) a chosen
direction along each axis in which movements are measured as positive.

Thus in Figure 1.4 the point A has coordinates (3, 2), meaning that A is reached from
O by a movement of 3 units in the positive direction along the x-axis, then 2 units in
the positive y direction. Compare B (−2, 1), reached by a movement of 2 units in the
negative (opposite to positive) x-direction and 1 unit in the y-direction. Of course the two
component movements could be made in either order.

Figure 1.4 Coordinate axes. The x-axis and y-axis are labelled by lower case x , y and
often called Ox , Oy. Positive directions are arrowed.
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(i) (ii) (iii)

Figure 1.5(a) Directed and undirected line segments.

Lines The straight line joining two points A, B is called the line segment AB. As in the
case of coordinates, we need the technique of assigning to AB one of the two possible
directions, giving us the directed line segments AB or BA, according as the direction is
towards B or towards A. This is illustrated in Figure 1.5(a).

Length |AB| denotes the length of the line segment AB, which equals of course the
distance between A and B. Sometimes it is useful to have a formula for this in terms of
the coordinates A (a1, a2) and B (b1, b2):

|AB| =
√

(b1 − a1)2 + (b2 − a2)2. (1.1)

Exercise Prove Formula (1.1) by using the theorem of Pythagoras.

Vectors A vital concept as soon as we come to translation (Section 1.2.2(a)), a vector
is any combination of a distance, or magnitude, and a direction in space. (For now, the
plane.) Thus every directed line segment represents some vector by its direction and
length, but the same vector is represented by any line segment with this length and
direction, as depicted in Figure 1.5(b).

a a

a  =  AB  =  CD

Figure 1.5(b) Directed line segments representing the same vector a.

A letter representing a vector will normally be printed in bold lower case thus: a, and
although the directed line segment AB of Figure 1.5(b), for example, has the additional
property of an initial point A and end point B we will sometimes allow ourselves to
write for example a = AB = C D = b, to mean that all four have the same magnitude
and direction. With the length (magnitude) of a vector x denoted by |x|, the statement
then includes |a| = |AB| = |C D| = |b|. Also it is often convenient to drop the letters,
in a diagram, leaving an arrow of the correct length and direction thus: −→. The angle
between two vectors means the angle between representative directed line segments AB,
AC with the same inital point.

Components and position vectors By contrast with the previous paragraph, we may
standardise on the origin as initial point, representing a vector a by segment OA. Then



8 Isometries

we write

a = (a1, a2),

A

B

a

b

O

Figure 1.6

where a1, a2 play a double role as the coordinates of point A, and
the components of vector a. Further, since a now defines uniquely the
position of the point A, we call a the position vector of A (with respect
to origin O). Similarly a point B has position vector b = (b1, b2), and
so on (Figure 1.6). Alternatively we may write rA for the position
vector of A.

Of course x, y will remain alternative notation for the coordinates,
especially if we consider a variable point, or an equation in Cartesian coordinates, such
as x = m for the line perpendicular to the x-axis, crossing it at the point (m, 0).

Scalar times vector In the context of vectors we often refer to numbers as scalars,
to emphasise that they are not vectors. We recall that the magnitude or absolute value
of a scalar λ is obtained by dropping its minus sign if there is one. Thus |λ| = −λ if
λ < 0, otherwise |λ| = λ. If a is a vector and λ a scalar then we define λa as the vector
whose magnitude equals the product |λ| |a|, and whose direction is that of a if λ > 0 and
opposite to a if λ < 0. If λ = 0 then we define the result to be the anomalous vector 0,
with zero magnitude and direction undefined. As in the illustration below, we usually
abbreviate (−1) a to −a, (−2) a to −2a, and so on. Also (1/c) a may be shortened to a/c
(c �= 0).

Examples

a (3/2)a −a

Adding vectors To add two vectors we represent them by directed line segments placed
nose to tail as in Figure 1.7(a). Subtraction is conveniently defined by the scalar times
vector schema: a − b = a + (−b), as in Figure 1.7(b). Diagrams are easily drawn to
confirm that the order in which we add the vectors does not matter: a + b = b + a (a
parallelogram shows this), and a + (b + c) = (a + b) + c.

a

ba + b

A

B

C

a − b

a

−b

(a) (b)

Figure 1.7 Finding (a) the sum and (b) the difference of two vectors by placing them
nose to tail.
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Rules Let a, b be the position vectors of A, B. Then

a + b = (a1 + b1, a2 + b2), (1.2a)

λa = (λa1, λa2), (1.2b)

AB = b − a. (1.2c)

Proof For (1.2a) we refer to Figure 1.7(a), and imagine coordinate axes with point A
as origin, taking the x-direction as due East. Then a1 + b1 = (amount B is East of A) +
(amount C is East of B) = amount C is East of A = first component of C. The second
components may be handled similarly. Equation (1.2b) is left to the reader. To establish
(1.2c), we note that the journey from A to B in Figure 1.6 may be made via the origin:
AB = AO + O B = (−a) + b.

The section formula The point P on AB with AP : PB = m : n (illustrated below) has
position vector p given by

p = 1

m + n
(mb + na). (1.3)

Often called the section formula, this is extremely useful, and has the virtue of covering
cases such as (i), (ii) shown below in which P does not lie between A and B.

A B P

2 1(i)

P A B

3 2(ii)

This means that AP and PB are in opposite di-
rections and so m, n have opposite signs. Thus in
Case (i) AP = −3PB and we may write AP : PB =
3 : −1 (or, equally, −3 : 1), whilst Case (ii) entails
AP = −(3/5)PB, or AP : PB = −3 : 5.

This said, (1.3) is easily proved, for nAP = mPB,
so by (1.2) n(p − a) = m(b − p), which rearranges as (m + n) p = mb + na.

Exercise Draw the diagram for proving (1.2a), marking in the components of a and b.

Application 1.1 This is a handy illustration of the use of vectors to prove a well-known
fact we will need in Chapter 6: the medians of a triangle ABC all pass through the point
G (centre of gravity), whose position vector is

g = 1
3 (a + b + c).

A

B CD

EF
•G

2

1

To prove this, label the midpoints of the sides by
D, E, F as shown. By (1.3), D has position vector
d = (1/2)(b + c). So, again by (1.3), the point that di-
vides median AD in the ratio 2 : 1 has position vector
(1/3)(2d + 1a), which equals (1/3)(a + b + c) on sub-
stituting for d. But this expression is symmetrical in

a, b, c, and so lies on all three medians, dividing each in the ratio 2 : 1.

Note The use of components gives an important way to calculate with vectors, which will
come into its own in Chapter 7. Before then, our arguments will be mostly geometrical,
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with components as a tool in some exercises. However, we give both a geometrical and
a coordinate proof of (1.14) a little further on, which the reader may find interesting for
comparison purposes at that point.

Exercise Use position vectors and (1.3), which applies equally in 3-space (indeed, in
any dimension), to prove the following facts about any tetrahedron ABCD. (i) The four
lines joining a vertex to the centroid of its opposite face are concurrent at a point G which
divides each such line in the ratio 3 : 1, (ii) the three lines joining midpoints of pairs of
opposite edges all meet in G.

1.2.2 Isometries

Definition 1.2 A transformation g of the plane is a rule which assigns to each point P a
unique point Pg, or P ′, called the image of P under g. (Note that Pg does not mean P
‘to the power of’ g.) We think of g as moving points around in the plane. We also call g
a map or mapping of the plane onto itself, and say g maps P to P ′. An isometry of the
plane is a transformation g of the plane which preserves distances. That is, for any two
points P , Q:

|P ′Q′| = |P Q|. (1.4)

The reader is advised not to think first of the formula (1.4) but to start from the idea of
isometries preserving distance. Of course the same definition is applicable to 3-space or
even higher dimensions, and we pursue this in Part II (Chapters 7–8). An important first
consequence of the definition is as follows.

An isometry g transforms straight lines into straight
lines, and preserves the (unsigned) size of angles. (1.5)

Proof of (1.5). We refer to Figure 1.8. It suffices to show that if points A, B, C lie on a
straight line, then so do their images A′, B ′, C ′. Suppose B lies between A and C . Then
elementary geometry tells us that

|AC | = |AB| + |BC |,

A

B

D

E
F

A'

B'

C'

D'

E'

F'

C

Figure 1.8 Points A, B, C on a straight line, a triangle DEF, and their images under an
isometry. The magnitude of angle φ is preserved.
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a
a

a

Figure 1.9 The translation Ta is an isometry as |P′Q′| = |PQ| always.

and therefore, from condition (1.4) of an isometry, the same holds with A, B, C replaced
by A′, B ′, C ′. Consequently, A′, B ′, C ′ also lie on a straight line, and the first assertion
of (1.5) is established: straight lines are transformed to straight lines. Now, given this,
let us view the angle φ between two lines as the vertex angle of some triangle DEF,
transformed by g into another triangle, D′E ′F ′ – which must be congruent to DEF
because the lengths of the sides are unchanged by g. Thus the vertex angle is unchanged,
laying aside considerations of sign. This completes the proof.

Notation 1.3 The following are convenient at different times for referring to the image
of P under a transformation g:

(i) P ′, (ii) Pg, (iii) g(P).

We shall explain in Section 1.3.1 the significance of our choosing (ii) rather than (iii).
In each case the notation allows us to replace P by any figure or subset F in the plane.
Thus figure F g consists of the images of the points of F , or F g = {xg: x ∈ F}. For
example, if F is the lower palm tree in Figure 1.9, with g = Ta (see previous page) then
F g is the upper. The heads of Figure 1.11 provide a further example.

Three types of isometry At this juncture it is appropriate to discuss the three most
familiar types of isometry in the plane. The remaining type is introduced in Section 1.3.2.

(a) Translation For any vector a the translation Ta of the plane is the transformation in
which every point is moved in the direction of a, through a distance equal to its magnitude
|a|.

Thus PP′ = a (in magnitude and direction). To show that Ta is an isometry, suppose
it sends another point Q to Q′. Then a = QQ′, so that PP′ and QQ′ are parallel and
equal, making a parallelogram PP′Q′Q. Hence, by an elementary theorem in geometry,
|P′Q′| = |PQ|, and Ta has indeed preserved distances.

Notation 1.4 P ′ is also called the translate of P (by Ta). Notice that Ta sends x to
x+ a, when we identify a point X with its position vector x. More geometrically, if
a = PQ we may write unambiguously Ta = TPQ, the translation which takes P to Q.

(b) Rotation As illustrated in Figure 1.10, let the transformation RA(φ) be
RA(φ) = rotation about the point A through the angle φ.
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A

P
Q

Q'

P' <

Figure 1.10 Rotation about the point A through positive angle φ.

Notice that φ is a signed angle; it is positive if the rotation is anticlockwise
(counterclockwise), negative in the clockwise case. In Figure 1.10 we see why rota-
tion is an isometry: by definition, |AP ′| = |AP|, |AQ′| = |AQ| and, signs excluded,
β + γ = φ = α + γ, hence α = β. This establishes congruence of triangles PAQ, P′AQ′

(two sides and the included angle), which includes the equality |P′Q′| = |PQ|. Thus
RA(φ) preserves distance and so is an isometry.

Remarks 1.5

1. We will often use the special notation RA(1/n) for a 1/n turn about point A and RA(m/n) for
m nths of a turn, negative m denoting a clockwise direction. Thus RA(2/3) is a 2/3 turn about
A. Note that RA(φ) is distinguished from reflection notation below by the ‘(φ)’ part.

2. A rotation through any number of complete turns leaves every point where it began, and so
is the identity isometry I of Section 1.1 One whole turn is the angle 2π , measured in radians.
Thus rotation through φ + 2π is the same isometry as rotation through φ. We only count the
final position of each point, not its route to get there.

3. A 1/2 turn RA(π ), or RA(1/2), reverses the direction of every line segment AB starting at A.
In particular the 1/2 turn about the origin sends the point (x, y) to (−x,−y).

4. The effect of a rotation through the angle φ may be obtained by rotation in the opposite
direction, for example through the angle −(2π − φ). So RA(2/3) is equivalent to RA(−1/3),
a clockwise 1/3 turn.

(c) Reflection Let Rm denote the transformation of the plane obtained by reflecting every
point P in the line m. That is, as we indicate in Figure 1.11, PP′ is perpendicular to m,
and P , P ′ are at equal distances from m but on opposite sides.

Q Q'

P P'

m

Figure 1.11 Reflection in a line m.
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Notation 1.6 We may call m the mirror, or mirror line, for the reflection. It is often useful
to let RAB denote reflection in a line m which contains points A, B, and let Rax+by=c

denote reflection in the line ax + by = c.

Example 1.7 The following simple formula will be especially useful in Section 6.4.4,
and meanwhile for alternative ways to establish many results in the text (cf. the second
part of Theorem 1.18) and Exercises. It states that, in coordinates, reflection in the line
x = m is given by

(x, y) → (2m − x, y), (1.6)

meaning that the isometry Rx=m sends the point (x, y) to (2m − x, y).

x x'

Proof From the definition of reflection, the y coor-
dinate is unchanged since the mirror is parallel to
the y-axis, but x becomes m + (m − x), which equals
2m − x .

Example 1.8 We use coordinates to show that reflection is an isometry. We may choose
the coordinate system so that the mirror is the y-axis, giving m = 0 in the reflection
formula (1.6). Referring to Figure 1.11, suppose the coordinates are P(p1, p2), and so
on. Then the distance formula (1.1) gives

|P ′Q′|2 = (q ′
1 − p′1)2 + (q ′

2 − p′2)2

= (−q1 + p1)2 + (q2 − p2)2

= |PQ|2, as required.

Exercise Give a geometrical proof that, in Figure 1.11, we have |P′Q′| = |PQ| and hence
that Rm is an isometry, considering also the case where P , Q are on opposite sides of the
mirror.

1.2.3 The sense of an isometry

In Figure 1.11 the reflection transforms the right looking face into one that looks to
the left (and vice versa). We will see in Theorem 1.10 that an isometry which reverses
one face will consistently reverse all. In more directly geometrical terms, it reverses the
direction of an arrow round a circle as in Figure 1.12, so we proceed as follows.

Sense Any three non-collinear points A, B, C lie on a unique circle, and the sense of
an ordered triple ABC means the corresponding direction round the circle, as in Figure
1.12. This is also the direction of rotation of BC (about B) towards B A. We give angle
ABC (letters in that order) a positive sign if triple ABC is anticlockwise; then CBA is
clockwise and angle CBA is negative.

Notice that the cyclically related triples ABC, BCA, CAB all specify the same direction
round a circle (anticlockwise in Figure 1.12) and that their reverses CBA, ACB, BAC



14 Isometries

m
ABC is anticlockwise A'B'C' is clockwise
Angle ABC is positive Angle A'B'C' is negative

Figure 1.12 Reflection Rm reverses the sense of ordered triple ABC.

correspond to the opposite direction. Now we are ready for a definition which, happily,
accounts for all isometries.

Definition 1.9 An isometry is direct if it preserves the sense of any non-collinear triple
and indirect if it reverses every such sense. We note that the reflection isometry Rm in
Figure 1.12 is indirect, since it reverses the sense of ABC (it must be one or the other
by Theorem 1.10 below).

Theorem 1.10 (a) Every isometry is either direct or indirect. (b) An isometry is deter-
mined by its effect on any two points and whether it is direct or indirect, or alternatively
by its effect on three non-collinear points.

Proof (a) Let g be an isometry and let A, B, P , Q be points with P and Q on the same
side of the line AB, as in Figure 1.13(a).

(a) (b)

Figure 1.13

Then the images P ′ and Q′ must be on the same side of A′B ′ as shown in
Figure 1.13(b) since, given A′, B ′ and P ′, there are exactly two possible positions Q′,
Q′′ for the image of Q, and by elementary geometry |P′Q′′| �= |PQ|, which rules out Q′′.
Since, therefore, points on the same side of a line are transformed to points on the same
side of its image, we have that, for any two points A, B:

if the isometry g preserves (reverses) the sense of one triple
containing A, B then it preserves (reverses) the sense of every
such triple, (1.7)
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P Q

R

X

Y

Z

Case (a)

P Q

R XY

Z

Case (b)

P Q

R
X

Y Z

Case (c)

Figure 1.14 Diagram for the proof that if g preserves the sense of triple PQR then it
preserves the sense of XYZ: (a) is the general case and (b), (c) are sample special cases.

where the parentheses mean that the statement holds with ‘reverses’ in place of
‘preserves’, and all triples referred to are non-collinear. Let g preserve the sense of PQR.
We must deduce that g preserves the sense of an arbitrary triple XYZ, and we shall do
this with (1.7) by changing one point at a time:

g preserves the sense of PQR
⇒ g preserves the sense of PQZ (unless P, Q, Z are collinear – see Figure

1.14(b))
⇒ g preserves the sense of PYZ (unless P, Y, Z are collinear – see Figure 1.14(c))
⇒ g preserves the sense of XYZ (since X, Y, Z are not collinear).

Special cases can be handled by judicious use of (1.7). For example, in Figure 1.14(b)
we may proceed in the order PQR → XQR → XQZ → XYZ. This completes the proof
of part (a), reversal cases being handled similarly.

Proof (b) We refer to Figure 1.13. Suppose the images A′, B ′ of A, B under the isometry
g are given. Let Q be any point. If Q happens to lie on AB then Q′ lies on A′B ′,
by (1.5), and the equalities |Q′A′| = |Q A|, |Q′B ′| = |Q B| determine its exact position.
Otherwise these equalities leave two possibilites, represented by Q′, Q′′ in Figure 1.13(b).
Since triples A′B ′Q′ and A′B ′Q′′ have opposite senses, the image of Q is now determined
by whether g is direct or indirect. Alternatively, if we specify the image C ′ of a third
point C (C not collinear with A, B), then the distances of Q′ from the other three images
determine its position. This completes the proof of (b).

Example 1.11 By considering when the sense of a triple is preserved we have the
following categorisation from Theorem 1.10.

Rotation, translation Direct.

Reflection Indirect.

We shall determine the result of performing first a half turn about the point A shown
in Figure 1.15, then a half turn about B. Since both operations preserve distance and the
senses of all triples, the result must be a direct isometry g. But which one? According to
Theorem 1.10 we will have it when we find an isometry which is direct and which has
the right effect on two points. Now, the result of g is that A moves to A′, and B to B ′′ via
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BAB' A' B"

Figure 1.15 Half turns.

B ′. But A → A′, B → B ′′ is achieved by the direct isometry T2AB , which is therefore
(by Theorem 1.10) the one we seek.

Exercise Find the result of a half turn about the point A (Figure 1.15), followed by a
reflection in a mirror through B at right angles to AB; or give the argument in the proof
of Theorem 1.10 for special case (c) (cf. the argument for Case (b)).

1.3 The classification of isometries

1.3.1 Composing isometries

We wish to prove Theorem 1.15, a simple and useful result which will assist us in
classifying all possible isometries of the plane. First some notation is required. If g, h
are two isometries, then their composition, or product, gh, is the transformation obtained
by performing first g, then h. Since g and h both preserve distances, so does their
composition, which is therefore also an isometry. In denoting this composition by gh
(or g · h), we are deliberately writing the transformations in the order in which they
are performed, by contrast with the other standard system defined by (gh)(A) = g(h(A))
where gh means ‘perform h, then g’. Occasionally, the latter will be convenient. Normally
in Part 1 we will use our present definition, which is equivalent to

Agh = (Ag)h
. (1.8)

In words this says: ‘to apply the isometry gh to an arbitrary point A, apply g, then h’. In
the sense of (1.8), Ag behaves like A to the power of g. It follows that, for a composition
of three isometries f , g, h, we have the associative law

f (gh) = ( f g)h. (1.9)

Power notation gm denotes m successive repetitions g · g · · · g of an isometry g, where
m ≥ 1. Consequently we have the power law (1.10) below for m, n = 0, 1, 2, . . . in which
we write write g0 = I , the identity (do nothing) isometry.

gm gn = gm + n = gngm, (gm)n = gmn. (1.10)

Example 1.12 The composition of a 1/7 turn, a 2/7 turn, and a 4/7 turn about a given
point A is a complete turn. Thus all points are returned to their original positions and the
resulting isometry is the identity. We may write RA(1/7) RA(2/7)RA(4/7) = I , without
bracketing any pair together. On the other hand, two successive reflections Rm Rm in the
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a

b

c

d

Figure 1.16 Resolving vector a along and perpendicular to d : a = b + c.

same mirror, or n successive 1/n turns about a point A, also give the identity, so we may
write

R2
m = I = [RA(1/n)]n. (1.11)

Composition of translations The rule is

TaTb = Ta+b = TbTa, (1.12)

where the vector sum a + b is obtained by placing representatives of a and b nose to
tail in the manner of Figure 1.7. The first equality is a definition and the second is a
consequence, conveniently placed here, which the reader is asked to prove below.

Exercise Use a parallelogram to show that TaTb = TbTa, where Ta is translation by the
vector a. Express (Ta)n as a single translation; or let g denote a 3/10 turn about some
point. Show that (g5)3 has the effect of a 1/2 turn.

Resolving a translation into components This means re-expressing the corresponding
vector as a sum of two others. See below.

Referring to Figure 1.16, suppose we are given a fixed direction, say that of a vector
d. Then we may express any vector a as the sum of a vector b in the direction of d plus
a vector c perpendicular to d:

a = b + c.

This is called resolving a into components along and perpendicular to d. To achieve this,
we represent a by a directed line segment OA, and then position a point B so that OB
has the direction of d and BA is perpendicular to d. Then the required components are
b = OB and c = BA. Note that we do not require OB = d.

At the same time we have resolved the translation Ta into components along and
perpendicular to d in the sense that

Ta = TcTb = TbTc. (1.13)

Remarks 1.13 (1) Resolving a with respect to the positive x-direction gives the (Carte-
sian) components of a. (2) TAB is the unique translation which sends point A to point B.
In particular, we interpret TAA as the identity isometry I (do nothing).
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Exercise Resolve the vector a = (4, 0) along and perpendicular to the direction of OA,
where A is the point (1, 1).

1.3.2 The classification of isometries

Definition 1.14 We say an isometry g fixes a point A if Ag = A. This is especially
pertinent since a rotation fixes its centre (the point about which rotation is made), and
a reflection fixes the points of its mirror, whilst a translation moves everything. For
this culminating section of Chapter 1 we first reduce (Theorem 1.15) the classification
problem to that of isometries that fix some point (Theorem 1.16), plus the question of
what happens when one of these is combined with a translation (see (1.14), (1.15)).

Theorem 1.15 Let A be any point in the plane. Then every isometry g is the composition
of an isometry that fixes A and a translation. Either order may be assumed.

Proof Let the isometry g send A to A′. Then T = TA′ A is a translation that sends A′

back to A. We have

A
g−→ A′ T−→ A

so the isometry h = g · T fixes A. The argument then runs:

h = gTA′ A,

therefore hTAA′ = gTA′ ATAA′ = g,

the last equality being because the combined effect of translation TA′ A followed by TAA′

is to do nothing (i.e. their composition is the identity isometry). In conclusion, we have
g = hT1, where, as required, h fixes A and T1 is a translation (here TAA′). A slight vari-
ation of the argument gives g in the form T2 h, for different h fixing A, and translation T2.

Exercise Adapt the proof above to obtain the isometry g as a composition g =
T h.

Theorem 1.16 An isometry that fixes a point O is either
(a) a rotation about O (direct case), or
(b) reflection in a line through O (indirect case).

Proof Let an isometry g fix O and send A to A′, B to B ′.

Case g direct Here angles AOB, A′OB′ are equal in sign as well as magnitude and so,
as in Figure 1.17(a), angles AOA′, B O B ′ enjoy the same property. Hence g is rotation
about O .

Case g indirect Now angles AO B, A′O B ′ are equal in magnitude but opposite in sign,
as in Figure 1.17(b), so in the case B = C , for any point C on the bisector m of angle
AO A′, we see that g fixes C . Since g preserves length and angles (in magnitude) g
reflects points B not on m to their mirror image in m.
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(a) (b)

Figure 1.17 Diagrams for the proof of Theorem 1.16.

Arrow

Image of arrow
under glide g

Figure 1.18 Black arrow, and its image under glide reflection g, composed of reflection
Rm and translation Ta, in either order. The lightest arrow is an intermediate image, after
reflection first. The darker shows translation done first.

Notice that we have incidentally shown that a rotation is direct and a reflection is
indirect. Theorem 1.16 classifies isomorphisms that fix one or more points. What about
those that fix none? We know from Theorem 1.15 that, given any point A we care to
choose, we can represent any such isometry g as a composition h · T , where T is a
translation and h is an isometry that fixes A. Thus such isometries are obtainable from
the point-fixing ones, rotation and reflection, by composing them with translations.
The result includes a fourth type of isometry called a glide, which we shall now introduce.

Glides A glide reflection, or glide, with (mirror) line m is the composition of the reflection
Rm in m with a translation Ta parallel to m. Obviously it does not matter in what order
these two operations are done. The result is the same, as we can see in Figure 1.18. By
convention, the mirror of a glide is drawn as a line of dashes. Notice that the composition
of a glide RmTa with itself is the translation T2a, as illustrated in Figure 1.19, in which the
first ladder yields the rest by repeated application of the glide. This illustrates the easy
to see, but very useful, Remark 1.17.

Remark 1.17 The composition of two indirect isometries is direct. The composition of
a direct and an indirect isometry is an indirect isometry.
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Figure 1.19 Images of ladder under repeated application of glide Ta Rm.

Proof The composition of two indirect isometries reverses the sense of every ordered
triple twice, and therefore leaves their sense unchanged. If just one of the isometries is
indirect, then the result is one reversal only, and so we obtain an indirect isometry.

Theorem 1.18 (Classification) Every isometry is one of the four types:

direct – translation or rotation;

indirect – reflection or glide.

Proof Suppose we are given an isometry g. Then by Theorem 1.15 g is the composition
of a translation with a point-fixing isometry. By Theorem 1.16, the latter isometry is a
rotation or reflection, according as it is direct or indirect. Therefore it suffices to establish
the following composition rules, in which the composition may be carried out in either
order (though the order will affect precisely which rotation or glide results). We give the
proofs for only one order, the other being proved similary.

rotation · translation = rotation; (1.14)

reflection · translation = glide. (1.15)

To prove (1.14), suppose that the rotation is τ and the translation is Ta. Referring to
Figure 1.20(a), a line parallel to a, suitably placed relative to the centre of rotation O ,
contains a point A and its image A′ under τ such that the vector A′A equals a. Then τ · Ta

fixes A and is direct, so by Theorem 1.16 it is a rotation.
To establish (1.15), let the reflection be Rm, followed by translation Ta. Since this

translation resolves into components Tv parallel to m and Tw perpendicular to m, we

a

O

AA'

BB'

A' A

m

w v

n

(a) (b)

Figure 1.20
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only need to show that RmTw is reflection in a mirror n parallel to m and at a distance
(1/2)|w| from m, as indicated in Figure 1.20(b). But Theorem 1.10 tells us that an isometry
is determined by its effect on any two points and whether it is direct or indirect. Now,
RmTw, like the reflection Rn, is indirect (Remark 1.17), being the composition of an
indirect and a direct isometry. Like Rn, it fixes every point A on n, and so by Theorem
1.10 it is indeed the reflection Rn. Finally, we have

RmTa = Rm(TwTv) = (RmTw )Tv = RnTv,

which is a glide, as asserted.

Proof of (1.15) using coordinates We may (and do) choose the coordinate system
so that the mirror of the glide is the y-axis x = 0. Let the translation part be T(t, u).
Then the reflection followed by translation has the effect (x, y) → (−x, y) → (−x + t,
y + u). But by the reflection formula (1.6) this is also the result of reflection in the line
x = t/2 followed by translation T(0, u), thus it is a glide, since T(0, u) is parallel to the
y-axis. If the translation is performed first, the corresponding reflection is in the line
x = −t/2, with the same translation part as before.

Exercises 1

1 Verify that, in Figure 1.1, two smallest translations are represented in their length and
direction by the arrows shown, and determine corresponding arrows for Figure 1.2. These
should be horizontal and vertical.

2
√

(i) What symmetries of the pattern represented in Figure 1.1 leave the central point unmoved?
(ii) Prove Formula (1.1) by using the Theorem of Pythagoras. (iii) Draw the diagram for
proving (1.2a), marking in the components of a and b.

3 Use position vectors and (1.3), which applies equally in 3-space (indeed, in any dimension),
to prove the following facts about any tetrahedron ABC D. (i) The four lines joining a vertex
to the centroid of its opposite face are concurrent at a point G which divides each such line
in the ratio 3 : 1 (ii) The three lines joining midpoints of pairs of opposite edges all meet in
G.

4 Give a geometrical proof that, in Figure 1.11, we have |P′Q′| = |PQ| and hence that Rm is
an isometry, considering also the case where P , Q are on opposite sides of the mirror.

5
√

Find the result of a half turn about the point A in the diagram of Example 1.11, followed by
a reflection in a mirror through B at right angles to AB; or give the argument in the proof of
Theorem 1.10 for the special case in Figure 1.14 (c) (see the argument for Case (b)).

6
√

Use a parallelogram to show that TaTb = TbTa, where Ta is translation by the vector a.
Express (Ta)n as a single translation. Or if g denotes a 3/10 turn about some point, what
fraction of a turn is (g5)3 ?

7
√

Resolve the vector a = (4, 0) along and perpendicular to the direction of OB, where B is the
point (1,1).

8
√

(i) Use coordinates to prove that the composition of reflections in parallel mirrors at distance
d apart is translation through a distance 2d perpendicular to the mirrors. (ii) What is the
result of reflection in the x-axis followed by reflection in the y-axis?
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9
√

For distinct points A, B determine the composition of a half turn about A followed by the
translation TAB , by considering the net effect upon A, B.

10 Mirror lines m, n intersect in a point A at angle φ. Determine the composition Rm Rn Rm,
using Theorem 1.16, and following the motion of a point on one of the mirrors.

11
√

The vertices A, B, C of an equilateral triangle are ordered in the positive sense. (i) Prove
that RC (1/3)RB(1/3) = RA(2/3), by considering the images of A and C , or otherwise
(see Theorem 1.10). (ii) Determine the composition RA(−1/3)RB(1/3) [Hint: let D be the
midpoint of BC].

12 The vertices A, B, C, D of a square are counterclockwise and E , F are the respective
midpoints of AD, DC . Show that RE (1/2)RB D is a glide with translation vector E F .

13
√

Find a formula for reflection in the line with equation ax + by = 1. [Hint for gradients:
recall that tan (θ + π/2) = −cot θ . In Section 7.4 we develop a more streamlined method
for the occasions when it is expedient to work with isometries in terms of coordinates.]
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How isometries combine

In Chapter 1 we combined two isometries g, h to produce a third by taking their compo-
sitions gh (do g, then h) and hg. There is another way to combine two isometries, of great
practical use in the context of plane patterns, and which we will introduce in Section 2.3.
We begin by highlighting two geometrical ways to find the composition (or product) of
isometries. The first was already used in the proof of Theorem 1.18.

Method 1

(A) Determine the sense of the composition from those of its parts (Remark 1.17).
(B) Determine the effect of the composition on two convenient points P, Q.
(C) Find an isometry with the right sense and effect on P, Q. This must be the one required by

Theorem 1.10.

Notice that (C) is now made easier by our knowledge of the four isometry types (Theorem
1.18). This method can be beautifully simple and effective for otherwise tricky composi-
tions, but the second approach, given by Theorem 2.1 and Corollary 2.2, is perhaps more
powerful for getting general results and insights. With Theorems 1.15 and 1.16 it says
that every isometry can be decomposed into reflections, and it tells us how to combine
reflections.

Method 2 Decompose the given isometries into reflections, using the available free-
dom of choice, so that certain reflections in the composition cancel each other out. See
Examples 2.3 to 2.7. We note for later:

Method 3 Use Cartesian coordinates (See Chapter 7).

Notation We take this opportunity to recall some standard abbreviations from the list of
symbols before Chapter 1 that will be useful from time to time. Each one is a subset of
the next.

N The set of natural numbers 1, 2, 3, . . .

Z The integers . . . ,−2,−1, 0, 1, 2, . . .

Q The rationals, or rational numbers {m/n: m, n are integers and n �= 0}

23
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φ

P''P'P

m n

d

P

P'P''
m

n

A

(b)(a)

Figure 2.1 The proof of Theorem 2.1.

R The reals, or real numbers, corresponding to the points of a line extending indefinitely
in both direction (the real line). Certain postulates are involved, which we do not need
to touch on until Definition 13.22.

2.1 Reflections are the key

Theorem 2.1 Composing isometries (see Figure 2.1)

(a) If lines m, n are parallel at distance d then the composition of reflections Rm Rn is a translation
of magnitude 2d perpendicular to these lines,

(b) If lines m, n intersect in the point A at angle φ then Rm Rn is a rotation through an angle 2φ

about A: Rm Rn = RA(2φ).

φ
π- φ

Figure 2.2

The proof (omitted) is by elementary geometry in Figure 2.1.
Notice in Figure 2.2 that crossing lines offer us two angles to
choose from. Signs apart, these angles add up to π , so, unless the
lines are perpendicular, one angle is acute and is taken as the angle
between the lines. Also, by mentioning m first, we imply a signed

turn of φ from m to n (if no order is implied then the angle may be taken as unsigned).

Corollary 2.2 Decomposing isometries

(i) A rotation about a point A may be expressed as the product Rm Rn of reflections in lines
through A at half the rotation angle.

(ii) A translation may be expressed as the product Rm Rn of reflections in lines perpendicular to
the translation direction, at one half the translation distance.

(iii) In case (i) the direction and in (ii) the position of one line may be chosen arbitrarily. The
other line is then determined (see Figure 2.3).

φ/2
m

n
q

A

φ/2

p

Figure 2.3 Two alternatives: RA(φ) = Rm Rn = Rp Rq .
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Table 2.1. Notation for the four isometry types in the plane.

Translation symmetry. Distance and direction of the arrow
Continuous line, representing position of mirror
Broken line, representing mirror line of glide
Glide with its translation component indicated

1/2 turn, 1/3 turn, 1/4 turn . . .
Two coincident mirrors

Remark 2.2a For a rotation of 1/n of a turn, i.e. an angle of 2π/n, the mirrors should
be at an angle π/n. Examples of using this second method are given in Section 2.2.

2.2 Some useful compositions

At the end of this section we give Table 2.2, showing the result of all types of products of
isometries. First, we gain practice with special cases which are foundational to the study
of isometries and plane patterns, and whose first use will be in the classification of braid
patterns in Chapter 3. The notation of Table 2.1 will help to visualise what is going on.

First we try a composition problem already solved in the proof of Theorem 1.18 (the
four isometry types). For clarity, a small ‘×’ denotes composition.

Example 2.3

reflection Rm × translation Ta perpendicular to mirror
= reflection in a mirror n parallel to the original one,

at one half translation distance, |a|/2, from it. (2.1)

Thus, by repeatedly composing the latest mirror reflection with the translation Ta , we
get a whole string of mirror positions:

| | | | | . . .

at intervals of half the translation distance.

Proof of (2.1) By Corollary 2.2 we can express the translation Ta as the product of
reflections in two parallel mirrors, one of which we may choose to be m itself. If the second
mirror is n then we can compute as shown in Figure 2.4, with successive diagrams below
each other to show relative horizontal positions. The argument is expressed geometrically
on the left, and algebraically on the right.

Example 2.4

reflection Rm × rotation with centre on the mirror
= reflection Rn in mirror at one half rotation angle to m. (2.2)

We include this example before any further illustration, because it is exactly analogous
to Example 2.3, with translation regarded as a special case of rotation in the manner of
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m

a
RmTa

 =

 =

m n

n

= Rm (Rm Rn) = (Rm Rm) Rn

= Rn, since Rm Rm = I.

Figure 2.4 Computing the result of reflection followed by translation. The argument is
represented geometrically on the left and algebraically on the right.

φ/2 A

m

n

= n ____________
Rm RA(φ) = Rm(Rm Rn)
= Rn, since RmRm = I.

Figure 2.5 Rotation plus reflection computed (geometry on the left, algebra on the right).

Theorem 2.1(b). It will be used soon to investigate the group of all symmetries of the
regular n-gon, in Section 2.4, the dihedral group. Now, if the rotation is RA(φ) then the
argument for Example 2.4 can be put simply in terms of geometry (Figure 2.5, left) or
in terms of algebra (Figure 2.5, right), after the pattern of Example 2.3.

Example 2.5 Rotation × translation = rotation (same angle). This adds to the composi-
tion statement (1.14) the fact that the result of composing translation with a rotation is a
rotation through the same angle. In Exercise 3 the reader is asked to establish this by the
methods of Examples 2.3 to 2.7. The argument will of course be a slight generalisation
of what we give below for an important special case.

1/2 turn × translation
= 1/2 turn at half translation distance away from the original. (2.3)

Proof of (2.3) As before, the left side of Figure 2.6 is both a geometric proof and an
illustration of the result, using results (2.1) and (2.2).

Note Analogously to Example 2.3, by repeatedly following the latest 1/2 turn with the
translation we get a line of 1/2 turns at intervals of one half the translation distance, thus:

. . .

We emphasise that the composition of translation with any rotation is a rotation about
some point, through the same angle, as the reader is invited to prove below.
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A a

 = p

m

n

 = p

m

 =
B

RA(1/2) Ta

= (Rm Rn) (Rn Rp)

= RmRp, since Rn2 = I

= RB(1/2).

Figure 2.6 Calculating 1/2 turn × translation.

Exercise Use the methods above: (a) to establish the general case of Example 2.5, (b) to
show that the product of two 1/2 turns is a translation through twice the distance between
them.

Application Symmetries of a braid pattern We recall from Section 1.1 that a symmetry
of a figure F is an isometry which sends every subfigure of F into a congruent subfigure
(i.e. one of the same size and shape). It is important to appreciate that

any composition of symmetries of a figure
is also a symmetry of the figure. (2.4)

The reason is simply that such a composition, being the result of performing one sym-
metry, then the other, also satisfies the above criteria for being itself a symmetry.
Figure 2.7(a) is a braid pattern. That is, a pattern F with a translation symmetry Ta

(b)

(c)

(a)

Figure 2.7 Some braid patterns.
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such that the translation symmetries of F are all the repetitions, i.e. powers,

T n
a = Tna, (2.5)

where n is a positive or negative integer. Indeed, F actually consists of the translates
Tna(M) (n = 0,±1,±2, . . .) of a basic motif M, for example the woman’s head in Figure
2.7(a). There we have also indicated the translation vector a (it could equally well be
taken as −a) (see (3.1)). By implication, F extends infinitely to the left and right of the
representative part we have drawn.

The above remarks hold true for Figure 2.7(b), but with basic motif , which has a
reflection symmetry Rm. Clearly, whichever copy of the frog we choose as basic motif, Rm

is a symmetry of the whole pattern. Since any composition of symmetries is a symmetry,
Example 2.3 tells us that there are also reflection symmetries Rn with n midway between
every two successive copies of the frog. Here, this conclusion is also easily reached by
inspection, but some of its 2-dimensional relatives are rather less obvious. Theorem 2.12
expresses such symmetries in terms of a small number of ‘basic’ ones.

In Figure 2.7(c) the basic motif has a 1/2 turn symmetry and so, by the note below
(2.3), there are 1/2 turn symmetries with centres spaced at a half the repetition distance
of the basic motif. Thus the symmetries include 1/2 turns halfway between successive
copies of the motif. In more complicated examples these ‘extra’ 1/2 turns are harder to
spot visually, especially if we don’t know that they must be there (see Figure 2.11 later
in the chapter). It was convenient to introduce braid patterns here because they give rise
to some nice but not too hard applications of our theory and techniques so far. Their
classification is completed in Chapter 3, the shortest chapter of the book.

Example 2.6 Composing rotations: Euler’s construction Since a rotation is a direct
isometry, the product of two rotations is also direct, so, of the four types, it must be a
translation or rotation (Theorem 1.18). Euler’s construction is to draw the lines m, n,
p as in Figure 2.8 (a) or (b) and so determine the new rotation centre and angle, or
direction and distance of the translation. Here is the result.

The plane is turned through the sum of the component
rotation angles, and we have a translation precisely
when this sum is a multiple of the complete turn 2π. (2.6)

m

n

p

AB

α / 2         

m

n

p

AB

C

α / 2

 γ / 2

β / 2

(a) (b)

β / 2

Figure 2.8 Euler’s construction for the composition of two rotations.
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Proof in Case (a)

RA(α)RB(β) = (Rm Rn)(Rn Rp)
= Rm Rp, since R2

n = I
= RC (−γ )
= RC (α + β), since α + β = 2π − γ.

Exercise Use Euler’s construction in the triangle of Figure 2.8 made equilateral to show
the following, and find such implied 3-fold centres in Figure 1.1.

The existence of 1/3 turn symmetries of a figure, at two vertices of an
equilateral triangle, implies the same symmetry at the third vertex. (2.7)

Example 2.7 The product of glides and reflections

The product of two glides, or of reflection and glide,
is a rotation through twice the angle between their lines
– unless the lines are parallel, when the result is a translation. (2.8)

Proof of (2.8) A reflection is a glide with zero translation part, so we need only consider
the product of two glides. Suppose first that the mirrors are not parallel, but intersect at
angle φ. Then since we may switch the translation and reflection parts of a glide, and
combine reflection with rotations (Theorem 2.1), the two glides may be combined as

(Ta Rm)(Tb Rn) = Ta(Rm Rn)Tb = Ta RA(2φ)Tb.

But, by Example 2.5, rotation combined with translation is a rotation through the same
angle, so the result follows. In the parallel case RA(2φ) is replaced by a translation
(Theorem 2.1), so the result is a translation. Figure 2.9 shows the specifics when the mirror
lines cross at right angles, in the notation of Table 2.1. Case (i) is part of Theorem 2.1.

Proof of (iii) We compute the product of glides h = Ta Rm, g = Tb Rp, as indicated in
Figure 2.10. This can also be established as RA(1/2) by verifying that hg fixes the point
A and sends the intersection of mirrors p and n to the same point as does RA(1/2). This
is sufficient, by Theorem 1.10, since the product of two glides must be direct.

Example 2.8 The symmetries of the plane pattern in Figure 2.11 include horizontal
glides in the positions indicated by dotted lines thus ‘. . . . . . ’, and vertical glide lines

(i) (ii) (iii)

Figure 2.9 The right angle crossing of symmetry and glide lines of a pattern implies
the presence of 2-fold centres as shown (cf. Table 2.1). We may think of each glide as
pulling the 2-fold centre a 1/2 translation distance from the crossing.
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A

a

b

m

n

p q

(TaRm) (TbRp)

= (RqRpRm) (RmRnRp)         (Theorem 2.1)

= RqRp RnRp     since Rm
2 = I

= RqRp RpRn     since p   n

= RqRn         since   Rp
2 = I

= RA(1/2)                  (Theorem 2.1).

Figure 2.10 Proof of the assertion in Figure 2.9 (iii); p⊥n means ‘p, n perpendicular’.

Figure 2.11 A plane pattern with perpendicular glide lines. Finding the vertical ones is
part of the next exercise.

too. The three emphasised points show successive images of one such glide (which?),
illustrating that a glide performed twice gives a translation.

Exercise (a) Follow the successive images of a white subfigure under repetitions of
a glide, noting that a horizontal glide must map horizontal lines to horizontal lines
(suitable observations of this kind can greatly facilitate analysis of a pattern). (b) Find
the vertical glide symmetries of the pattern represented, and verify that each small ‘box’
bounded by horizontal and vertical glide lines has a 2-fold centre of symmetry at its
centre, as predicted in Figure 2.9(iii).

We conclude this section with Table 2.2, showing all possible compositions of isometry
types, derived from Theorem 2.1 (and Corollary 2.2), the composition and decomposition
theorems. Examples 2.5 to 2.7 contain derivations or special cases for the rows indicated.
The last row follows also from the fact that the composition of a direct and an indirect
isometry must be indirect (Remark 1.17) and therefore a glide (Theorem 1.18), with
reflection as the special case of a glide with zero translation part. The table is unaffected
by changing orders of composition.

Exercise Verify line (c) of Table 2.2.
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Table 2.2. How isometry types combine.

Every line is a consequence of Theorem 2.1. Rows (a) and (b) come from Examples 2.5 to 2.7, whilst
Examples 2.3 and 2.4 supply important special cases in row (c). The table is unaffected by changing
orders of composition. It justifies the idea of the point group in Chapter 6, a key step in the classification
of plane patterns into 17 types.

Isometries combined Type of the product

(a) Direct Direct Rotationa

Rotation φ Translation Rotation φ (Example 2.5)
Rotation α Rotation β Rotation α + β (Example 2.6)

(b) Indirect Indirect Rotationa

Reflection/glide Reflection/glide
at angle φ

Rotation 2φ (Example 2.7)

(c) Indirect Direct Glideb

Reflection/glide Translation line parallel to original
Reflection/glide Rotation α line at α/2 to original

aTranslation, if this angle is a whole number of turns.
bPure reflection in Examples 2.3 and 2.4.

2.3 The image of a line of symmetry

Notation 2.9 Let F be some figure in the plane. By definition, a line m is a line of
symmetry of F if Rm is a symmetry of F, that is if Rm maps F onto itself; a point A is
an n-fold centre (of symmetry) if RA(1/n) is a symmetry of F. We normally take n to be
the largest possible. For example, the centre of a regular square is thought of as a 4-fold
centre and only in a secondary sense as 2-fold. Sometimes 2-, 3-, . . . 6-fold centres are
called dyad, triad, tetrad, pentad, hexad respectively.

A typical consequence of the main result of this section, Theorem 2.12, is that if A is
an n-fold centre then so is the image of A under any translation symmetry Tv of F. Thus
we get at least a whole line of n-fold centres {Tmv(A): m = 1, 2, 3, . . .} at a translation
distance |a| apart. (A stronger result holds for lines of symmetry perpendicular to the
translations, one gets them at |a|/2 apart: see Example 2.3.) All four parts of Theorem
2.12 follow from one basic fact which implies that an isometry sends lines of symmetry
to lines of symmetry, proved as Lemma 2.10. For this, we need the idea of an inverse
isometry.

Inverse isometries The list of isometry types in Theorem 1.18 shows that every
isometry g is a bijection. That is, g transforms distinct points to distinct points and
every point is the transform of some point. Thus every isometry g has a unique inverse
transformation g−1, sending Pg back to the point P. See Figure 2.12.

The inverse mapping g−1 obviously preserves distances because g does, and so is
also an isometry. Also, if g reverses the sense of a triple then g−1 undoes the effect, so
directness and indirectness are preserved by taking inverses. Further, if g is a symmetry of
a figure F then so is g−1. If g fixes a point P then g−1 fixes P too because g is bijective. More
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g

m

n

A

g-1

g-1

Figure 2.12 A rotation g and its inverse isometry. Here g = RA(1/6) maps a line m to
line n, and g−1 = RA(−1/6) = RA(5/6) maps n back to m.

formally, P = P (gg−1) = (Pg)g−1 = Pg−1
. We observe too that either property, g f = I

or f g = I , implies that f = g−1. It follows from the associative property (1.8) that

(gh)−1 = h−1g−1 (g, h isometries), (2.9)

the argument being: (h−1g−1)(gh) = h−1(g−1g)h = h−1 I h = h−1h = I . We therefore
have the following table of inverse isometries, which may also be deduced directly.

g Rm Ta RA(φ) RA(1/n) RmTa

g−1 Rm T−a RA(−φ) RA(1/n)n−1 RmT−a
(2.10)

Proof of (2.10) We will verify the last two columns of the table. Firstly,
RA(1/n) · RA(1/n)n−1 = RA(1/n)n = I (see (1.11)), hence the inverse of RA(1/n)
is RA(1/n)n−1. For the glide we have (RmTa)(T−a Rm) = Rm(TaT−a)Rm = Rm I Rm =
Rm Rm = I .

Conjugates Here is a widely used piece of notation which we shall immediately require
for Lemma 2.11. It will appear at intervals throughout the whole book. We recall that mg

denotes the image of a line m under an isometry g. A suggestively similar notation Rg is
used for the conjugate of an isometry R by an isometry g, defined as the composition

Rg ≡ g−1 Rg. (2.11)

As we recall from (2.4), the composition of two (hence any number of) symmetries of
a figure is also a symmetry, so if R, g are symmetries then so is Rg. We now show that,
if S is a third isometry, then

(RS)g = Rg · Sg. (2.12)
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A

Ag

m

g

mg

Figure 2.13 The image of a mirror is a mirror.

Proof of (2.12) Starting from the right of (2.12), we have

Rg · Sg = g−1 Rg · g−1Sg by (2.11)

= g−1 R(g · g−1)Sg by associativity (1.9),

= g−1 RI Sg

= g−1(RS)g

= (RS)g, by (2.11).

Lemma 2.10 Let g be an isometry, m a line. If R is reflection in m then Rg is reflection
in mg (Figure 2.13).

Proof Clearly Rg ≡ g−1 Rg is an indirect isometry, R being indirect, so it suffices to
show that Rg has the same effect as reflection in mg, on any two points (Theorem 1.10).
In fact Rg fixes the point Ag for every point A in m, for

(Ag)g−1 Rg = Agg−1 Rg by (1.8)

= ARg since gg−1 = I

= (AR)g by (1.8)

= Ag since R fixes A (A being in m).

This proves Lemma 2.10.

Definition 2.11 Let a = AB and g be an isometry. Then ag = (AB)g.

This means that the new vector ag is represented in magnitude and direction by the
image under g of any directed line segment which represents a. The significance of this
appears in the proof of Theorem 2.12(c) below, where it is shown that, in terms of the
expression (2.11) for a conjugate,

(Ta)g = Tb, where b = ag. (2.13)

Theorem 2.12 Any symmetry g of a figure F maps as follows:
(a) lines of symmetry to lines of symmetry,
(b) n-fold centres to n-fold centres,
(c) the direction of one translation symmetry to the direction of another of the same magnitude

(Figure 2.15),
(d) glidelines to glidelines with same translation magnitude.

In each case, if R is the old symmetry then the conjugate Rg(= g−1 Rg) is the new.
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ng

mg
g

m

π/n

A
π/n

n

Figure 2.14 An isometry g maps one n-fold centre to another.

Proof Let g be a symmetry of the figure F. To prove (a), suppose that m in Figure 2.14
is a line of symmetry of F. Then R = Rm is a symmetry, hence so is Rg ≡ g−1 Rg. But
by Lemma 2.10 this symmetry is the operation of reflection in the image mg of m under
g, i.e. mg is a line of symmetry of F.

(b) Let A be an n-fold centre of symmetry of F. We wish to prove that Ag is an n-fold
centre. That is, RAg (1/n) is a symmetry of F. The key observation is that, by Corollary
2.2, we can decompose the symmetry RA(1/n) as Rm Rn, where m, n are lines intersecting
in A at angle π/n. This is illustrated in Figure 2.14. Since g and RA(1/n) are symmetries
of F, so is the composition

g−1 RA(1/n)g = g−1(Rm Rn)g
= (Rm Rn)g by (2.11)
= (Rm)g(Rn)g by (2.12)
= Rmg Rng by Lemma 2.10,

where the last expression equals RAg (1/n) or RAg (−1/n), according as g is direct or not,
since the angle between mg and ng is the same in magnitude as that between m and n
(see (1.5)). In the indirect case of g it still follows that RAg (1/n) is a symmetry, being
the inverse of RAg (−1/n).

(c) This time we use Corollary 2.2 to write any translation Ta as a product of reflections
Rm Rn in parallel mirrors, as in Figure 2.15.

Then, arguing as in (b), we obtain g−1Tag = Rmg Rng . Since m and n are parallel
and at a distance |a|/2, the same holds for mg and ng. Therefore the new isometry is a
translation through distance |a| at right angles to mg and ng, as indicated in Figure 2.15.
The change in direction is found by applying g to a representative directed line segment
AB for a. With Figure 2.15, this justifies (2.13): (Ta)g = Tb, where b = ag.

m

n
a

m g n g

ag

g

Figure 2.15 An isometry g maps translation vector a to ag .



2.3 The image of a line of symmetry 35

B

AA

Figure 2.16 A plane pattern and, side by side with it, a representation of where its 1/2
and 1/4 turn symmetries are located. The points A correspond. The notation is found in
Table 2.1.

(d) Let m be a glide line and RmTa the corresponding glide symmetry. Since g is an
isometry, so is

(RmTa)g = (Rm)g(Ta)g by (2.12),
= (Rm)gTb, where b = ag, by Part (c).

Here the new translation vector ag is parallel to mg, and of the same magnitude as a,
so mg is indeed a glide line, as claimed. The proof is complete.

Example 2.13 The first part of Figure 2.16 represents a finite portion of a plane pattern,
whose translation symmetries include two of equal length but at right angles. We see also
points of 4-fold rotational symmetry, such as the one marked ‘A’. By its side we represent
the same area but this time we indicate (in the notation of Table 2.1) all the centres of
rotational symmetry. They are either 2-fold or 4-fold.

It is useful to know, and a nice application of results so far, to show that

the presence of all the rotational symmetries in Figure 2.16 is implied by the
translations, together with a single 1/4 turn at the point A. (2.14)

We consider three stages.

(i) The images of A under translation must be 4-fold centres, by the key Theorem 2.12, account-
ing for about a half of those shown, and forming the vertices of a division of the plane into
squares.

(ii) By Euler’s construction (Example 2.6) 1/4 turns at the vertices of a square imply 1/4 turns at
the centre (see Exercise 2.2 at the chapter’s end), and hence the presence of a second lattice
of 4-fold centres.

(iii) There are points which are not 4-fold centres but are 2-fold centres, and this may be seen as
follows. The 1/2 turn about A is a symmetry, since it equals the square of a 1/4 turn, and by
(2.3) it combines with a translation to form a 1/2 turn about a further point which is not a
4-fold centre. This accounts for the 2-fold centres.
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A

B

Figure 2.17 All the symmetries of the
pattern of Figure 2.16. Here the glide-
lines are shown thickened for emphasis
(cf. Table 2.1).

The remaining symmetries There are
many more symmetries of Figure 2.16,
both reflections and glides, and the pres-
ence of all of them may be predicted once
we observe that AB is a line of symme-
try. They are shown in Figure 2.17. Many
lines of symmetry are obvious, but find-
ing them all by inspection of the pattern
is harder in this case. The theory does aid
our intuition.

The (thickened) glidelines divide the
plane into squares, and the side of a square
gives the magnitude of every glide’s trans-
lation part.

Exercise Satisfy yourself that each sym-
metry portrayed in Figure 2.17 maps sym-
metry elements like to like. That is, n-fold
centres to n-fold centres, and so on.

Figure 2.18 (by Mary Small)

Exercise Find examples of mirrors,
glidelines, and 1/n turn symmetries in
the (plane-filling) pattern of Figure 2.18
(made, incidentally, from repetitions of
the letter ‘M’).

Exercise Draw a diagram showing all the
symmetries of the pattern in Figure 2.19,
with translation symmetries Tu, Tv in two
independent directions. Verify that these

translations map lines of symmetry to other lines of symmetry, dyad centres to dyad
centres, and glidelines to glidelines.

2.4 The dihedral group

This section leads to a more general look at groups in the next one. For now, we simply
observe that the collection G of all symmetries of a figure F, with the usual law of
composition (gh means ‘do g then h’), satisfies

(i) the composition of any two symmetries of F is a third;
(ii) if f, g, h are symmetries of F then f (gh) = ( f g)h;

(iii) there is a symmetry I (do nothing) of F such that gI = g = Ig for every symmetry g of F;
(iv) for every symmetry g of F there is a unique symmetry g−1 (the inverse of g) with gg−1 =

I = g−1g.
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Figure 2.19 Imitation Escher. The symmetries include reflection, glides and 1/2 turns.

This means that G satisfies the requirements to be a group (see Section 2.5) and so
is called the symmetry group, or group of symmetries, of F. Much that is useful flows
from this, not least that we can now classify patterns by their symmetry groups. We
begin not with plane or even 1-dimensional patterns, but with the regular n-gon, since its
symmetry group provides building blocks for classifying more general patterns (as we
shall see especially in Section 6.2).

Definition 2.14 The dihedral group D2n (n ≥ 2) is the symmetry group of a regular
n-gon. The regular 2-gon is thought of as a special case, with ‘curved’ sides:

Example 2.15 It is easy to see from Figure 2.20 that D10, the symmetry group of a
regular pentagon, consists of:

five reflection – one in each line of symmetry,
five rotations – the identity I, 1/5 turn, . . . , 4/5 turn about the centre,
total = 10.

There is a slight difference for polygons with an even number of edges, exemplified
above by the square, whose lines of symmetry join either opposite vertices or mid-points

n = 3 n = 4 n = 5

Figure 2.20 Lines of symmetry of some regular n-gons.
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of opposite edges. However, we can see that in all cases

D2n consists of reflections in n equally spaced lines
of symmetry through the centre C, and n rotations
I, τ, τ 2, . . . , τ n−1, where τ = RC (1/n), and τ n = I.
In particular, D2n has exactly 2n elements. (2.15)

The rotation subgroup Since the product of two rotations about C is a third, the collec-
tion Cn = I, τ, τ 2, . . . , τ n−1 of all rotations forms itself a group, the rotation subgroup
of D2n . It is cyclic of order n, meaning that the elements of Cn consist of the powers of a
single element, and the size of the group is n. The name Cn is given to groups with this
structure in widely varying contexts. See e.g. Birkhoff and MacLane (1963).

Example 2.16 Relationships in D12 Let τ be the 1/6 turn about the centre of a regular
hexagon, as in Figure 2.21, with symmetry lines s, m, n, . . . , r . We give two points of
view, each useful for its insights.

s

m

n
p

q

r

π/6

τ

Figure 2.21 Symmetries of a regular hexagon (6-gon).

View 1 τ maps s to n, so Rn = Rτ
s (= τ−1 Rsτ ), by Theorem 2.12. But Rm also maps s

to n, so

Rn = Rs
Rm,

= Rm Rs Rm, since Rm
−1 = Rm.

The two expressions for Rn must be equal, and they are, since τ = Rs Rm (Theorem 2.1)
and τ−1 = Rm Rs (see (2.9)).

View 2 By Example 2.4 in Section 2.2 the composition of a turn about the hexagon
centre with reflection in a line of symmetry equals reflection in a line at half the rotation
angle to the original line. So taking the various powers of τ we obtain, with reference
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to Figure 2.21:

Rsτ = Rm,

Rsτ
2 = Rn,

. . .

Rsτ
5 = Rr .

Definition 2.17 We say a symmetry group G is generated by a subset g1, g2, . . . , gs if
every element g of G is expressible as a product of certain gi (with or without repetition
or powers greater than one). That is, g is a word in the gi . We express this by writing
G = Gp{g1, g2, . . . , gs}. An odd (even) word will mean one whose length is odd (even).
Correspondingly, we say a word has even or odd parity. (The definitions of odd and even
are the same for any group.)

Theorem 2.18 Let R, S be reflections in any two adjacent lines of symmetry of an n-gon,
and τ the 1/n turn about the centre. Then

(a) D2n consists of n rotations: I, τ, τ 2, . . . , τ n−1, and n reflections, which may be written
R, Rτ, Rτ 2, . . . , Rτ n−1,

(b) We have D2n = 〈R, S: R2 = S2 = (RS)n = I 〉, the notation 〈. . .〉 meaning that D2n is
generated by R, S subject only to the given relations and their consequences. Moreover,
however they are expressed, a reflection symmetry is an odd word and a rotation is an even
word in R, S.

Proof Part (a) is (2.15) with View 2 applied to general D2n . For (b) we first substitute τ =
RS. Then clearly R2 = S2 = I and (RS)n = τ n = I (see (1.11)), so the given relations
do hold. But any relation independent of these would imply equalites amongst the 2n
distinct elements we have enumerated, a contradiction. Concerning parity, any expression
for a rotation (reflection) as a word in R, S must be even (odd) by Remark 1.17, because
a rotation isometry is direct and a reflection indirect.

Exercises for Section 2.4 The symmetry groups of Figure 2.22 are all cyclic or dihedral.
Name them. Answers are given near the end of the following section.

Figure 2.22 Figures with cyclic or dihedral symmetry groups.
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2.5 Appendix on groups

Definition 2.19 A set G is a group with respect to a composition rule g, h → gh if the
following axioms hold.

(A) [Associativity] f (gh) = ( f g)h for all f, g, h in G.
(B) [Identity] G contains an identity element, that is, an element I, such that for every g in G we

have Ig = g = gI.
(C) [Inverses] every element g in G has an inverse. That is, a corresponding element g−1 exists

in G such that gg−1 = I = g−1g.

Theorem 2.20 The set of all symmetries of a figure F forms a group under composition.

For a proof, see the beginning of Section 2.4. The following theorem is often useful for
finding an identity or inverse.

Theorem 2.21 Let J be an element of a group G.

(i) The identity of G is unique, and if gJ = g or Jg = g for some g in G, then J is that identity.
(ii) The inverse of an element is unique, and if gh = I for some pair g, h in G, then g and h are

inverses of each other.

Proof (i) Let J, K be identities in G. Then J equals JK as K is an identity, which equals
K because J is an identity. Thus the identity is unique, and now we have the following
chain of implications for any inverse g−1 of g : g J = J ⇒ g−1g J = g−1g ⇒ J = I .
The other proofs are in the same spirit but require more work. They may be found in
Birkhoff and MacLane (1963).

Definition 2.22 The order of an element g of a group is the least positive integer r such
that gr = I ; if no such r exists we say g has infinite order.

Examples 2.23 A reflection has order 2, a 1/n turn has order n, but a translation has
infinite order. In D12, with t = 1/6 turn, the element t has order 6, and τ 3 has order 2,
whilst

order of τ 4 = least r such that τ 4r is a whole number of turns

= least r such that 6|4r (‘6 is a factor of 4r ’)

= 3.

When are groups ‘the same’? The symmetry group of a regular n-gon has the same
structure wherever the particular n-gon is situated in the plane. This means that we
can write any two such groups as G = Gp{g1, . . . , gm}, H = Gp{h1, . . . , hm}, so that
replacing g by h transforms the multiplication table of G into that of H. We then say
that the map φ from G to H defined by φ(gi ) = hi is an isomorphism between G and H,
and that G and H are isomorphic. (A multiplication table for G shows the product gr gs

at the intersection of a row labelled gr with a column gs . It is common to use the word
‘multiplication’ where, as here, we write a composition in the notation associated with



Exercises 2 41

I R  I τ
_________________ ________________ 

I I R I I τ
R R I τ τ  I

Figure 2.23 Multiplication tables of isomorphic but not equivalent symmetry groups
G = {I, R} and H = {I, τ }, where R2 = I = τ 2.

multiplication and call it also a product.) But an isomorphism alone does not satisfy us
in the present context of symmetries. For example, if R is a reflection and τ is a 1/2 turn,
then the groups G = {I, R} and H = {I, τ } are isomorphic, with φ(I ) = I, φ(R) = τ .
Their multiplication tables are shown in Figure 2.23.

But we don’t want to regard these two as essentially the same. A satisfactory tactic
is to impose the additional restriction that φ must pair like with like: reflections with
reflections, m/n turns with m/n turns, glides with glides, and translations with transla-
tions (not necessarily with the same direction or distance). If φ satisfies this, we call φ

an equivalence, and say G and H are equivalent or ‘the same’. In particular, the isometry
groups of all regular n-gons, for a fixed n, are not only isomorphic but equivalent, and
we call any one (an instance of) the dihedral group D2n . Equivalence will be the basis of
our classification of plane patterns into 17 types. (See Chapter 5 and Sections 6.1 to 6.2
for more details.)

Answers for Section 2.4: D6, C4, C3, D8.

Exercise In D14, what are the orders of each of τ, τ 2, . . . , τ 7?

Exercise Write out the multiplication tables of C4 and D4.

Exercises 2

1 Use Euler’s construction to show that some combination of 1/4 turns at the vertices of a
square is a 1/4 turn about the centre, or show that this result can be obtained from a 1/4
turn at a vertex and a vertex to vertex translation.

2
√

Show that the existence of 1/3 turn symmetries at two vertices of an equilateral triangle im-
plies the existence of 1/3 turn symmetries about the third vertex and that a further symmetry
translating one vertex to another implies a 1/3 turn symmetry about the triangle centre.

3 Show that the composition of a rotation through angle φ, with a translation, is rotation about
some point, through the same angle φ (use decomposition into reflections).

4 Verify that the product of a reflection in line m, followed by a glide at right angles to m, is
that given in Figure 2.9(ii). (Express the glide as a product of reflections.)

5
√

What kind of isometry can be the result of three reflections? Of four?
6 (a) For the pattern of Figure 2.18, draw a diagram showing all 2- and 4-fold centres of

symmetry.
(b) Find a glideline, and verify that the corresponding glide g sends n-fold centres to n-fold
centres for n = 2, 4.
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(c) Choose a 1/4 turn symmetry and verify that successive applications of it map the above
glideline into successive glidelines.

7 Indicate in a diagram the reflection, glide and 1/n turn symmetries of Figure 2.19. Choose
a symmetry and satisfy yourself that it sends mirrors to mirrors, glidelines to glidelines, and
n-fold centres to n-fold centres.

8
√

Let A be a point and g be the isometry RA(2/7). Express in the form gn (for smallest positive
integer n) the isometries g2, g−1g5.

9
√

Show that, if (Rm Rn)2 = I, for lines m, n, then (Rn Rm)2 = I . Do this first by algebra, using
the fact that a reflection has order 2, then by geometry, considering turns. How do you know
that m and n are not parallel?

10
√

What is the inverse of an isometry of the form Rm Rn Rp, where m, n, p are mirror lines?
11 Indicate in suitable diagrams the lines of symmetry of (a) a regular pentagon, (b) a regular

octagon. What is the rotation subgroup Cn of the symmetry group in each case?
12 Let R, S be the reflections in successive lines of symmetry round a regular hexagon. Write

each element of the dihedral group as a word in R, S. Determine the order of each element.
13 Construct multiplication tables for the dihedral groups D4 and D6.
14
√

What are the symmetry groups of (a) to (c) in Figure 2.24?

     

(a) (b) (c)

Figure 2.24

15
√

Prove that, in any group, the order of an element g equals the order of its inverse, g−1. Verify
this for the group D14. Show that the groups C14 and D14 cannot be isomorphic.



3

The seven braid patterns

In Chapters 1 and 2 we have classified plane isometries, discovered some important
principles of how they combine, and made a first application to patterns whose symmetry
group is either the dihedral group D2n or its rotation subgroup Cn . Before investigating
plane patterns it is a logical and useful step to classify the 1-dimensional, or braid,
patterns, be aware of their symmetries, and get a little practice in both recognizing and
creating them.

Definition 3.1 We sayv is a translation vector of pattern F if Tv is a translation symmetry.
Then a braid (band, frieze) pattern is a pattern in the plane, all of whose translation
vectors are parallel. In particular, a and −a are parallel. We will usually call this parallel
direction horizontal, and the perpendicular direction vertical. Other names used are
longitudinal and transverse, respectively. A symmetry group of a braid is sometimes
called a line group.

As noted in Section 1.1, we are investigating patterns which are discrete: they do
not have translation or other symmetries which move the pattern by arbitrarily small
amounts. Thus, amongst the collection of all translation symmetries of the pattern there
is a translation Ta of least but not zero magnitude. Of course it is not unique, for example
T−a has the same magnitude |a| as Ta . We rephrase an observation from the prelimi-
nary discussion of braids preceding Figure 2.7. It may be derived more formally from
Theorem 3.3.

A braid pattern F consists of a finite motif M repeated
along a line at regular intervals |u|, where u is a
translation vector of F of least magnitude. (3.1)

Note on glides If a figure F has translation vectors a parallel to lines of symmetry m,

then every composition g = RmTa is both a glide and a symmetry of F. However, we
do not wish to emphasise this. In fact it is customary to restrict mention of ‘glide-lines’
and ‘glide symmetries’ to the case in which neither Rm nor Ta alone is a symmetry of F
even though their composition is a symmetry of this figure. We note that g2 = T2a , and
therefore twice the translation part of a glide symmetry must be a translation vector of
the figure. Hence the following convention.

43
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Tu T-u T2u

Figure 3.1 Braid pattern with least translations Tu, T−u.

Convention 3.2 A glide symmetry or glideline of a figure F will normally refer to a
composition RmTa/2, where a is a translation vector of F parallel to m, of minimum
possible length.

Theorem 3.3 The symmetries of a braid pattern F

(a) The translation symmetries of F are the iterates Tnu of a translation symmetry Tu of least
possible magnitude |u| , where n = 0,±1,±2, . . .

(b) The only possible 1/n rotation symmetries of F are the identity (n = 1), and 1/2 turns (n = 2).
(c) Any line of symmetry of F is either horizontal or vertical.
(d) A glideline of F must be horizontal.

Proof (a) Let Tu have least possible magnitude among the translation symmetries of
F . Suppose v is a translation vector. Then by repeated subtraction or addition of u we
obtain v= nu + w for some positive or negative integer n, where the vector w satisfies
0 ≤ |w | < |u|. Hence another translation vector isv− nu = w . Since |u| is least possible
and 0 ≤ |w | < |u|, we must have w = 0, so v has the form nu as asserted.

(b) Let v be a translation vector. If some 1/n turn is a symmetry then (by Theorem
2.12(c)) so is the translation of magnitude |v| in the direction of a 1/n turn of v. But the
only translations of magnitude |v| are ±v, so n equals 1 or 2.

(c) A reflection symmetry in a line which is not parallel or perpendicular to a transla-
tion vector v conjugates Tv to give a translation not parallel to v (by Theorem 2.12(c)).
But this is impossible, since F is a braid pattern.

(d) If g is a non-horizontal glide symmetry then g2 is a translation not parallel to the
translation vectors of F. As in (c) above, this is not possible.

The classification of braids In fact, everything which is not explicitly forbidden by
Theorem 3.1 is possible except that the presence of certain combinations of symme-
tries implies other symmetries. The following observations enable us to complete the
classification.

A horizontal and a vertical line of symmetry intersect in a
2-fold centre of symmetry. (3.2)

Vertical mirrors are separated by 1/2 the minimum
translation distance. (3.3)

The presence of reflection and glide as in Figure 3.2 (a) implies 2-fold
centres of symmetry A at points 1/4 the minimum translation distance
from the mirror, as in Figure 3.2(b). (3.4)
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implies
(a) (b)

A

Figure 3.2 How half turn symmetries of a braid pattern arise from reflections and glides.

Exercise Verify assertions (3.2) to (3.4).

Notation 3.4 Each braid pattern type is specified by four symbol r | n| x | y with the
following meaning.

r Initial symbol denoting a braid as distinct from plane pattern.
n The highest degree of rotational symmetry in the pattern. That is, n is the

largest integer for which the pattern has a 1/n turn symmetry.
x m if F has a vertical line of symmetry,

g if F has a vertical glide line,
1 if F has neither.

y The same as above, but for horizontal lines. In both cases, the ‘1’ is omitted
if it would be the last symbol.

Remark 3.5 The case x = g is ruled out for braids by Theorem 3.3, but the x, y symbols
will be used later with similar meanings for plane patterns. Our preparatory work in
Theorem 3.3 and (3.1) to (3.4) shows not only that there are seven braid types, but that
each has a fixed configuration of symmetries. In Table 3.1 we give a simple example of
each type with the symmetries indicated. The notation is that of Table 2.1 (a continuous
line is a mirror and a broken one a glide, and so on). To prevent a glut of symbols, the basic
translation symmetry is the same for each example, and is given only in the first one.

Note The symmetry configuration is useful for pattern identification.

Constructing braid patterns

The idea is to construct a motif M for translation in accordance with (3.1). To achieve the
necessary symmetries in M we can start with a submotif, say , and append its images
under suitable isometries. For example, in the pattern for r2mm in Table 3.1 we reflect
in a vertical mirror corresponding to the first ‘m’, to get , then reflect in a horizontal
mirror, obtaining as translation motif M. Inspection will show how each example in
Table 3.1 was created in this way from the same submotif. For more refined braids, a
subtler choice of submotif is required.

Identifying braid patterns We ask

(1) Are there vertical mirrors?
(2) Is there a horizontal mirror or glide line?
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Table 3.1. The seven braid pattern types and their symmetries

r1

r2

1/2 turns

r1m

r11m

r11g

r2mm

r2mg

vertical mirrors

horizontal mirror

horizontal glide

horizontal and
vertical mirrors

vertical mirrors &
horizontal glide

Note that there are 1/2 turn symmetries if and only if the answers to both (1) and (2) are
affirmative.

Exercises 3

1
√

Determine the braid types in Figure 2.7, the first row of Figure 2.19, and Figure 3.1.
2
√

Determine the braid types in Figure 3.3. Suggest a motif and submotif in each case.
3 Verify your answers to Exercise 3.2 by predicting the total pattern of symmetries and checking

with Table 3.1.
4 Prove statements (3.2) to (3.4).
5 Construct a flow chart for identifying braid types, building on the two suggested questions.
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Figure 3.3 Braid patterns (a) to (g) for Exercise 3.2.

6 Write a computer program to produce a braid pattern for which the user specifies the type
and a submotif. You may wish to extend this to optional printing of the symmetry pattern in
the background.
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Plane patterns and symmetries

4.1 Translations and nets

Review 4.1 We recapitulate on some basic ideas. An isometry of the plane is a transfor-
mation of the plane which preserves distances, and is consequently a translation, rotation,
reflection or glide (by Theorem 1.18). We may refer to any subset F of the plane as a
pattern, but in doing so we normally imply that F has symmetry. That is, there is an
isometry g which maps F onto itself. In this case g is called a symmetry or symmetry
operation of F. Again, a motif M in (of) F is in principle any subset of F, but we generally
have in mind a subset that is striking, attractive, and/or significant for our understanding
of the structure of F.

Since the symmetry g has the two properties of preserving distance and sending every
point of F to another point of F, it sends M to another motif M ′ of F, which we may
describe as being of the same size and shape as M, or congruent to M. By now we have
many examples of this situation. An early case is that of the bird motifs of Figure 1.2,
mapped onto other birds by translations and reflections. We observed that the composition
of two symmetries of F, the result of applying one symmetry, then the other, qualifies
also as a symmetry, and so the collection of all symmetries of F forms a group G (see
Section 2.5). We call G the symmetry group of F. Chapter 3 dealt with braid patterns
F, in which F has translation vectors but they are all parallel. The term plane pattern is
reserved for F if there are translation vectors of F (vectors v for which Tv is a symmetry)
in two non-parallel directions, and F may be assumed to denote such a pattern from
now on.

The discreteness hypothesis As noted from time to time, we are restricting attention
to patterns F whose symmetries do not move F continuously, that is by arbitrarily small
amounts. Thus there is some least nonzero distance achieved by the translations, and if F
has rotation symmetries then they too have a least nonzero magnitude. The same applies
to the translation part of any glides, since a glide followed by itself is a translation. By the
end of Chapter 6 we will have met at least two patterns corresponding to each possible
discrete symmetry group, therefore we note a pattern-independent characterisation of

48
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(a) (b)

Figure 4.1 (a) Part of a plane pattern, whose translations include Tru for all r, however
small. The G-images of a point O centring a circle of any radius include, for example, a
diameter of the circle as shown in (b), hence infinitely many points. This infringes (4.1),
so the pattern is not discrete.

Figure 4.2 Escher-type birds (the pattern extends indefinitely over the plane).

such groups G:

for any point O in the plane, a circle of finite size around O
contains only a finite number of G-images of O. (4.1)

By G-images of the point O we mean the images Og for all isometries g belonging to G.
By Criterion (4.1), a non-discrete example is Figure 4.1(a).

By contrast, we easily see that the plane pattern of Figure 4.2 has the property:

The translation vectors of the plane pattern F have a BASIS, that is,
a pair u, v such that any translation vector of F can be uniquely
expressed as mu + nv (m, n = 0,±1,±2, . . . ). (4.2)

In Theorem 4.6 we give a formal proof that (4.2) holds for all (discrete) plane patterns.
Consequently here, as for braid patterns, the whole of F consists of the translations of
one part, which we have called the basic motif M. A simple choice of M in Figure 4.2 is
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a square containing exactly four birds (can you suggest a suitable selection?). Later we
discuss the options for M.

Definition 4.2 The translation subgroup Let T denote the set of all translation symmetries
of a plane pattern F, including the identity I = T0. It is easy to verify that T is a group
(see Section 2.5), from a relation recalled from (1.12):

TvTw = Tv+w . (4.3)

We call T the translation subgroup of G and say T is 2-dimensional or plane, since it
contains vectors in two non-parallel directions. By ‘the vector v is in T’ we will mean
‘the translation Tv is in T’, or equivalently ‘v is a translation vector of F’. From the
definition of scalar times vector in Section 1.2.1 we have for vectors v, w:

v, w are parallel ⇔ v = αw for some nonzero α. (4.4)

Definition 4.3 A net N representing the plane translation group T is the orbit, or set of
T-images, of some point O in the plane. In symbols:

N = {Og: g is in T} = OT . (4.5)

We may call O the basepoint or initial point of the net (this point need not be the origin
of x, y coordinates). For Figure 4.2 we obtain a ‘square’ net of which a part is portrayed
below (rotated slightly and scaled down for convenience).

We note that changing the basepoint to any other point of the net
gives back the same set of points. Yet the net of translations of a pat-
tern is not unique: choosing a new basepoint A that is not in the net
we already have gives an alternative net AT representing the same set
of translations. This freedom facilitates our classifying plane patterns
by allowing Convention 4.4 below. We divide them into five classes by net type, then
investigate what symmetries are allowed by each type.

Convention 4.4 We choose the basepoint of the net to lie on both

(i) a point of highest rotational symmetry of the pattern, and
(ii) a line of symmetry of the pattern,

where condition (i) takes precedence over (ii) if they are incompatible, and refers to an
n-fold centre with n as large as possible.

Exercise Find suitable net basepoints for Figures 4.2 and 1.1.

4.2 Cells

Construction 4.5 The vertices of a net may be joined up to form congruent parallelo-
grams called cells. A cell for a plane translation group T or its net N is by definition a
parallelogram whose adjacent sides, when directed, represent some basis u, v for T. If
we locate this cell so that one of its vertices is the basepoint of the net we call it a base



4.2 Cells 51

Figure 4.3 Three rows of a ‘hexagonal’ net portrayed. The cells of the three bases
together form a regular hexagon.

Figure 4.4 Plane pattern with hexagonal net. Convention 4.4 allows the basepoint at
the centre of any white star, a six-fold centre of symmetry which also lies on a line of
symmetry. We indicate four net points giving cell 2 of Figure 4.3. The points where three
dark ‘lozenges’ meet are points of only 3-fold rotational symmetry, not the highest in
the figure.

cell or unit cell, and its translates occupy the net points as vertices and tile or tessellate
the plane. That is, they fill the plane, with no area overlap. We say N admits this unit cell.
In Figure 4.3 we show three choices of unit cell admitted by what is called a hexagonal
net (see Section 4.3.3). These diamond-shaped cells are congruent but produce different
tessellations (remember all cells in the tiling were to be translates of one cell). Figure 4.4
exhibits a pattern with the hexagonal net, whilst Figure 4.8 shows some non-congruent
cells and their tilings for a different net.

Exercise Find net points in Figure 4.4 giving cell 1 and cell 3 of Figure 4.3. Locate a
cell which violates Convention 4.4 for basepoints.

Surprisingly, not only does each choice of cell type have the same area, namely
the least possible area of a parallelogram made by joining up points of the net, but
also . . . there are infinitely many possible cells of different shape. Our starting point,
Theorem 4.6, tells us how to make the most useful choice (for the one exception see
Section 4.3.3, Type (iii)).
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Theorem 4.6 Every plane translation group T contains a basis u, v. We may take u, v
to satisfy a minimum length condition:

u is a nonzero vector in T of least possible length, and
v is a nonzero vector in T, not parallel to u, and as short as

possible (note: |u| ≤ |v|). (4.6)

Proof Since T is discrete, T does contain vectors u, v satisfying (4.6). Certainly the set
U = {mu + nv: m, n = 0,±1,±2, . . .} is a subgroup of T, since the composition of two
translation symmetries is another. We require to prove that every vector w of T is in
U. To this end we apply the subgroup U to some basepoint O, to obtain a net N. Then
U = {OR: R ∈ N }. Let w = OP . We must prove that (i) the point P is in N, and will do
so by obtaining a contradiction in the contrary cases (ii) and (iii) of Figure 4.5 for the
position of P relative to a cell ABCD of the net N.

(i)

A B
P

P

(ii)

B

P

A

CD

(iii)

Figure 4.5 Diagrams for the proof of Theorem 4.6.

(i) P is a point of the net N.
(ii) P is in the interior of an edge AB of a cell. Thus |AP| < |AB|.

The vector AP = OP − OA is in T (since OP ∈ T and OA ∈ U , a subgroup of T) and
furthermore AB, being a cell edge, has length |u| or |v|. Therefore |AP| < |AB| contradicts
the fact that u and v satisfy the minimum length condition (4.6) for T.

(iii) P is in the interior of a cell ABCD.

Since the four (unsigned) angles which P subtends at the cell edges sum to 360◦, at
least one, say angle APB, is at least 90◦. Therefore in triangle APB we have APB as the
greatest angle and hence AB as greatest side. Thus |AP| < |AB|. Similarly to Case (ii),
this contradicts the fact that u, v satisfy the minimum length condition (4.6) (note that
AP cannot be parallel to u since P is in the interior of the cell).

It remains to prove the uniqueness of an expression for a vector w in T. Suppose
that w = mu + nv = ru + sv for integers m, n, r, s. Subtracting, we obtain (m − r )u =
(s − n)v. Since u, v are independent it follows that m − r = 0 = n − s (see (4.4)), hence
m = r, n = s, and the expression is unique.

A

O B

Figure 4.6 Diagram for Notation 4.7.

Notation 4.7 For vectors a, b we define area (a, b)
to be the area of a parallelogram with adjacent
sides representing a, b if these vectors are non-
parallel, and otherwise zero. (See Figure 4.6). Let u,
v be a basis of the plane translation group T. Then
area(u, v) is the area of a cell defined by u, v.
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Suppose a, b are related to u, v by (i) below.

(i)
a = au + bv,
b = cu + dv,

(ii) A =
[

a b
c d

]
, det A = ad − bc. (4.7)

The equations (i) may be specified by their matrix of coefficients A, an array of numbers
in two rows and two columns called a 2 by 2 matrix. Thus we may define A by its
column vectors, writing A = [x y], where x = (a, c), y = (b, d). Here A is called an
integral matrix because its entries a, b, c, d happen to be integers. The determinant of A,
denoted by det(A) or simply det A, is the number ad-bc. The following lemma suggests
its importance.

Lemma 4.8 (Determinant formulae for areas) We have

(a) area(a, b) = | det M |, where M = [ab] (a, b arbitrary vectors),
(b) area(a, b) = | det A| area(u,v), if a, b are related to u, v by (4.7).

a

b

Figure 4.7 Diagram for
proof of Lemma 4.8.

Proof (a) We begin with a, b non-parallel in the manner
of Figure 4.7. Thus the coordinates satisfy 0 < b1 < a1 and
0 < a2 < b2, and we have

area(a, b)
= 2(area of OAB)
= 2(area OBC + area ABCD − area OAD)
= b1b2 + (a1 − b1)(a2 + b2) − a1a2

= a1b2 − a2b1

= | det M |, as required.

If we interchange the positions of A, B the area becomes −(det M), hence the need
to take the absolute value (areas are unsigned in this context).

Considering variants of Figure 4.7, we find that the determinant formula (a) holds
in all cases of a, b non-parallel. In the case a = αb for some scalar α we have
det M = αb1b2 − αb2b1 = 0 = area(a, b), so the formula remains true. Cases a = 0
and b = 0 are trivial.

Proof (b) Applying Part (a) to both area(a, b) and area(u, v), we obtain

area(a, b) = |a1b2 − a2b1|
= |(au1 + bv1)(cu2 + dv2) − (au2 + bv2)(cu1 + dv1)| by (4.7)

= |(ad − bc)(u1v2 − u2v1)|
= |det A|area(u,v), as required.

Exercise Prove that area(a, b) = | det[a b]| for A, B on opposite sides of the y-axis.

Theorem 4.9 Let u, v be a basis of T and a, b a pair of non-parallel vectors in T. Then

area(a, b) ≥ area(u,v),

with equality (i.e. | det A| = 1) if and only if a, b is also a basis.
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Proof The vital fact that u, v is a basis allows a, b to be expressed in terms of u, v by a
relation (4.7)(i), giving area(a, b) = | det A| area(u, v), by Lemma 4.8. We require that
| det A| ≥ 1, and it is true for reasons so simple they are easily missed. By definition of
basis in (4.2) the entries in matrix A are integers, so det A itself is an integer from its
definition. It cannot be zero because area(a, b) is nonzero, hence | det A| ≥ 1, and the
first assertion follows.

For the equality assertion, suppose a, b as well as u, v is a basis. Then, by the first
part, area(u, v)≥ area(a, b) ≥ area(u, v), so the areas are equal. For the converse assume
that u,v is a basis and the two areas are equal, implying that det A = ±1 by Lemma 4.8.
Then equations (4.7)(i) have a unique solution

u = (da − bb)/ det A, v = (−ca + ab)/ det A (4.8)

for u, v in terms of a, b. Furthermore the coefficients of a, b are integers, since det A
equals ±1 and a, b, c, d are integers. Thus any vector w in T may be expressed in the
form w=ma+ nb by, for example, expressing w in terms of the basis u, v, then applying
(4.8). The expression is unique as required, because w = ma + nb = ra + sb implies
(m − r )a = (s − n)b, and hence m = r, n = s, since a, b are not parallel (see (4.4)).
Thus a, b is a basis.

Remarks 4.10 (1) We develop matrices in Chapter 7, so we have here a nice flier or
motivation for later. In effect we have proved for the occasion some basic results such as
Lemma 4.8. With Chapter 7 behind us it would be natural to invoke ‘matrix inverses’ in
the proof of Theorem 4.9.
(2) We recall for the next corollary that a cell for a plane translation group T is a
parallelogram whose adjacent sides, directed, represent basis vectors for T.

Corollary 4.11
(a) A pair u, v in T is a basis if and only if area(u, v) is least possible for non-parallel vectors

in T.
(b) All cells have this least area.
(c) There are infinitely many cell shapes.
(d) All cells satisfying the minimum length condition (4.6) are congruent.

v

u u

v

a

b(a) (b)

b

(c)

Figure 4.8 Three candidates for cell of a square net (one that admits a square cell). (a) A
cell (square) which satisfies the minimum length condition (4.6), and (b) one which does
not. By Corollary 4.11(d), every cell satisfying (4.6) is square, for this net. By Corollary
4.11(c), infinitely many parallelograms have the right area for a cell, but by Corollary
4.11(b) the long parallelograms (c) above do not. So a, b is not a basis of T.
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Proof Parts (a) and (b) follow from the observation that by Theorem 4.9, if x, y is a basis
and area(a, b) is least possible, then area(a, b) ≥ area(x, y) ≥ area(a, b), so the areas are
equal. In (c) we start with, say, the basis u, v given by Theorem 4.6. Then for every 2 by
2 matrix A with integer entries and determinant 1 there is (Theorem 4.9, last part) a new
basis a, b given by (4.7). Also, unless two matrices have identical entries they cannot
yield the same pair a, b, because of the uniqueness of their expression in terms of the
basis u, v.

To produce an infinitude of matrices establishing (c) we shall use two facts from
elementary number theory (Niven & Zuckerman, 1980, Theorems 1.3 and 1.17):
(i) there are infinitely many choices for a pair of distinct prime numbers p, q, and
(ii) for any such pair of integers with no common factor there are integers x, y such that

px + qy = 1. Then the matrix A =
[

p −q
y x

]
has determinant px − (−q)y = 1, and

(c) is proved. (Other matrices will do: see Example 4.12.)

u

v

u

π- 

Figure 4.9

For (d), we note that if a cell satisfies (4.6) then the
lengths of u, v are determined, though not necessarily
their directions. But, by Part (b), the cell’s area is deter-
mined. It equals |u||v| sin φ, where φ is the (unsigned)
angle between u and v, with 0 < φ < π , and |u| sin φ is
the ‘height’ of the cell. Thus sin φ is determined and hence, although there is an apparent
ambiguity in that sin φ = sin(π − φ), the two possible parallelograms are congruent. See
Figure 4.9.

Example 4.12 Some integral matrices with determinant ±1.[
2 1
1 1

] [
1 −1
0 1

] [
2 3
1 2

] [
3 2
4 3

] [
2 3
5 7

]

The second part of Figure 4.10 is a scaled down version of the first, and indicates how a
tiling would proceed. The tiles are in alternate black and white layers.

What the eye sees The cell designs which the eye sees first are usually those with shortest
edge length, our choice of cell in Theorem 4.6. As we take more complicated matrices
to make new cells from this original, the new cells become rather thin and elongated.

u

v

Figure 4.10 New cells from old by the first matrix of Example 4.12.
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However, if we are looking for a tiling from which to begin a design, we can always use
a matrix of determinant, say, 4, and/or scale the earlier net, to suit our purposes.

Exercise Do as in Figure 4.8 with your own matrix.

4.3 The five net types

We are moving towards a classification of plane patterns by symmetries, which will aid
both their recognition and their creation. This section motivates the first step, of dividing
them into five classes by net type.

Review 4.13 Soon (in Chapter 5) we will make extensive use of the notation in Table
2.1, of a continuous line for a mirror, broken line for glide, arrow for translation, and
regular n-gon for n-fold centre of symmetry. Where construction lines or cell edges are
required in addition, the mirror lines will usually be thickened. We choose a basepoint,
at first arbitrarily, and join up the points of the resulting net so as to obtain cells of
the unique size and shape which satisfy the minimum length condition (4.6) (see
Corollary 4.11(d)). Later we will need to reposition the basepoint, for example to satisfy
Convention 4.4 and to take advantage of the powerful Net Invariance Theorem 4.14 to
come. To recapitulate, we let

F = a given plane pattern;
G = the group of all symmetries of F;
T = the subgroup comprising all translation symmetries;
N = net: all translates of some basepoint by the elements of T;
M = motif: a part of pattern F whose translates form the whole.

Theorem 4.14 (Net invariance) Let g be a symmetry of a pattern. If g fixes a point of
some net for T then the net is invariant under g. That is, g maps net points to net points.

Proof Let g fix the net point A. Then so does g−1 (see Notation 2.9 ff). In symbols, the
double equality Ag = A = Ag−1

holds. Noting too that any other net point P is the image
AT of a translation symmetry T, we have:

Pg = (AT )g = AT g = (Ag−1
)T g = Ag−1T g

But, by Theorem 2.12(c), g−1T g is a translation symmetry of the pattern, and therefore
Pg = Ag−1T g is a point of the net, as required.

Exercise Verify Theorem 4.14 in Figure 4.4, for a 1/6 turn and a reflection.

4.3.1 Nets allowing a reflection

In spite of Theorem 4.14, we cannot guarantee that cells will be mapped into cells, no
matter how carefully we choose the position of the net and the division into cells. What
we do find is that the alternative properties a net may have in order to allow a mirror



4.3 The five net types 57
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A

A'

m
cell

B m
cell

A

A'

(a) (b)

Figure 4.11 (a) One edge AB equals a diagonal BA′ in length. (b) Adjacent cell edges
are perpendicular.

symmetry already suggest the five net types required for a full classification of plane
isometries. Naturally enough, since a study of reflections reveals so much about plane
isometries.

Suppose the pattern F has at least one mirror line m. It will have others too because of
translation symmetries, and perhaps glides and rotations, but we focus attention on the
effect of m alone. Since there either is or is not a cell edge parallel to m, we may divide
considerations into these two cases. For simplicity we will consider m as horizontal in
Case 1, and other convenient directions in Case 2. We will not go into full detail, since
we are using these cases simply to highlight the likely relevance of three criteria for a
potential cell: are its edges at right angles, are they equal, does one edge have the same
length as one diagonal?

Case 1 The mirror m is parallel to a cell edge We position the net so that m lies along
a cell edge. Let A be a vertex (net point) as close to m as possible but not actually on it.
Then the mirror m reflects A into another vertex A′ (Theorem 4.14), and the minimum
length condition, it may be verified, allows no more than the two possibilites shown in
Figure 4.11. Note that the three horizontal lines in each diagram are successive lines
composed of cell edges.

Case 2 The mirror m is parallel to no cell edge. Place the net so that m contains a vertex
A. Let AB be an edge. In particular, B is not on m. Then again there are two subcases
(see Figure 4.12).

C
m

A

C'

B

B' m

A B

(a) (b)

Figure 4.12 (a) m is at right angles to AB. One edge equals a diagonal in length. (b) m
is not at right angles to AB. Adjacent cell edges are equal.
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R

A B

CD

2 /5 2 /5

SR

2  /n
B

C

φ

φ

(a) (b)
A

Figure 4.13 Diagram for proof of the crystallographic restriction.

4.3.2 Rotations – the crystallographic restriction

We begin with some consequences of our discreteness hypothesis which don’t depend on
the presence of translation symmetries of the pattern F. Let F have rotation symmetries
about a point A and let α be the smallest positive angle for which R = RA(α) is a
symmetry. We claim that α is 1/n of a turn for some integer n. Firstly, α must be some
fraction of a turn, for if not then R, R2, R3, . . . are all different. Imagine their angles
marked on a circle. Since there are infinitely many the marks must come arbitrarily close,
contradicting the minimality of α. So now we have α = 2πr/n for some integers r, n
with no common factor.

Appealing (again) to elementary number theory (Niven & Zuckerman, 1980), there
is some integer multiple k of r/n which differs from 1/n by an integer. Thus Rk =
RA(2π/n) is a symmetry. Since the least rotation is 2πr/n we must have r = 1, and
α = 2π/n as asserted. Now we are ready to prove the famous crystallographic restriction
for plane patterns, so named for its relation to the early work of crystallographers in
classifying crystals by their symmetry groups. See e.g. Phillips (1971).

Theorem 4.15 The crystallographic restriction If a plane pattern has an n-fold centre
of symmetry, then n = 2, 3, 4 or 6.

Proof Let A, B be n-fold centres of symmetry as close together as possible and R, S
the corresponding 1/n turns, R = RA(1/n), S = RB(−1/n). Our proof refers to Figure
4.13. There are two cases to consider: (a) general n, (b) n = 5.

We first establish that n ≤ 6, using Figure 4.13(a). The image C = B R of B under R is
by Theorem 2.12(b) an n-fold centre, so from the hypothesis that |AB| is least possible we
have |AB| ≤ |BC |. By elementary geometry, the same inequality holds for their opposite
angles in triangle ABC : φ ≤ 2π/n. Since the angles of triangle ABC must sum to π ,
we have 2φ = π − 2π/n, whence π/2 − π/n ≤ 2π/n, or π/2 ≤ 3π/n, and so n ≤ 6.
It remains to rule out n = 5, using Figure 4.13(b). So let n = 5 and consider the points
C = B R, D = AS . Then, since 2π/5 < π/2 we have the contradiction |CD| < |AB|.

4.3.3 The five net types

We are now in a good position to motivate the classification of nets. Consider the Venn di-
agram in Figure 4.14, in which an enclosed subregion represents the set of all cells ABCD
with a certain property and the intersection of two such regions represents cells having
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(a)

Figure 4.14 Genesis of the five net types.

both respective properties. The universal set, represented by an enclosing rectangle, is
all possible cells (parallelograms). Section 4.3.1 on reflections suggests highlighting
properties AB = BC and AB⊥BC . These define the two large regions, and hence four
possible net types, labelled (i) to (iv) in Figure 4.14.

The third property appearing in Section 4.3.1, that one side of a cell has the same length
as one of the diagonals (the diamond shape), is put in as subcase (v) of (iii). According to
the Net Invariance Theorem 4.14 this is the only net type to allow the 1/6 and 1/3 turns
of the crystallographic restriction, since such a turn about any net point must send every
net point into another. The net is called hexagonal because its points form the vertices
and centres of a tiling of the plane by hexagons (see Figure 6.13). Again, it is not hard
to see from Theorem 4.14 that (iv), the square net, is the only type to allow 1/4 turn
symmetries.

Thus far we have divided nets into five types by their uniquely shaped cells which
satisfy the minimum length condition (4.6) (Corollary 4.11(d)): rectangular, square,
diamond, rhombus (other than square or diamond), and general parallelogram (none of
those preceding). To complete the classification we extend the rhombus class to include
all nets which admit a rhombus cell, even if it does not satisfy (4.6). Thus nets such as
that of Figure 4.15 are reallocated from the general parallelogram to this type which,
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A

B

C

D

E

F

Figure 4.15 Constructing the centred rectangles from a rhombus cell. FADE is an alter-
native cell which satisfies the minimum length condition (4.6).

because of the definition and lemma following, is known as centred rectangular. This is
how type (iii) in Figure 4.14 is to be interpreted.

Definition 4.16 A net is centred if its points are the vertices and centres of a set of
rectangles tiling the plane (all being translates of one rectangle).

Lemma 4.17 A net is centred if and only if it admits a rhombus cell.

Proof Figure 4.14(a) shows how a centred net admits a rhombus cell. For the reverse
implication we recall that a parallelogram is a rhombus (all four sides equal in length) if
and only if its diagonals bisect each other at right angles. In Figure 4.15 the diagonal AC
is a common edge of two rectangles whose definitions are completed by our specifying
that their centres are the vertices D, B of the other diagonal. In this way we recover
Figure 4.14(a). (On the other hand, the parallelograms ACDE and FADE are cells of the
net which do satisfy the minimum length condition (4.6).)

Remark 4.18 In view of Lemma 4.17, the square and hexagonal nets are centred, since
the square and diamond are special cases of a rhombus. To avoid confusion we do not
emphasise this, but we show in Figure 4.16 the centred rectangles superimposed in dotted
outline on these two types.

Résumé 4.19 The net types (numbered i to v in Figure 4.14).

(i) The general parallelogram net with no special properties nevertheless has 1/2 turn symme-
tries about the vertex of each cell, the midpoint of each cell edge, and the cell centre. See
Section 5.2.

(a) (b)

Figure 4.16 How (a) the square net and (b) the hexagonal net with its diamond cells
may be exhibited as centred. In the first case the centred rectangle is square.
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parallelogram rectangular centred rectangular square hexagonal

Figure 4.17 Dot patterns representing the five net types.

(ii) The rectangular net gives the option of mirrors in either one or two directions, and 1/2 turn
symmetries.

(iii) The centred rectangular net Because the diagonals of a rhombus bisect each other at right
angles, the points of this net can be grouped as the vertices of centred rectangles, as indicated
in Figure 4.14(a). This insight not only gives the net its name, but is important in practice,
for it is usually easier to see that copies of a motif mark the vertices and centre of a rectangle
than to be sure that they are equidistant from their neighbours, especially if the motif has a
very irregular shape. Mirror and rotation properties are as for (ii).

Note that a rhombus, though it will have least possible area (Corollary 4.11), may violate
the minimum length condition (4.6). (This unavoidable exception causes no harm in the
sequel.) It can nevertheless occur as Case 2b in Section 4.3.1.

(iv) The square net This is the first in our list which Theorem 4.14 (net invariance) allows to
have 4-fold rotational symmetry. As a result it can support mirrors at 45◦ as well as 90◦. On
the other hand, Theorem 4.14 forbids 1/3 or 1/6 turns for this net.

(v) The hexagonal net The cell is a diamond, formed from two equilateral triangles, whose
internal angles are of course 60◦, or π/3. Consequently, each point of the net is in six
equilateral triangles, tiling a regular hexagon. The hexagons in turn tile the plane. Thus it
makes sense to call this net hexagonal. Later we see the various possibilities for reflections
and glides. Here we note that 1/3 and 1/6 turns are permitted (for the first time), whilst 1/4
turns are not, by Theorem 4.14.

Example 4.20 One pattern of each net type.

Parallelogram net

Rectangular net Centred rectangular net

Figure 4.18



Square net Hexagonal net

Figure 4.18 (continued)

(a (b) (c) 

 (d)  (e) 

 (f) ‘Dutch cover’   (g) ‘Bats’

Figure 4.19 Patterns for Exercise 4.6.
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Exercises 4

1
√

What is the highest rotational symmetry in Figure 4.2, and where?
2
√

Find suitable net basepoints for Figures 4.2 and 1.1.
3 Find net points in Figure 4.4 giving cell 1 and cell 3 of Figure 4.3. Locate a cell which violates

Convention 4.4 for basepoints.
4 Write down a matrix A with integer entries and determinant ±1. Starting with a tiling of the

plane by rectangles, use matrix A to derive a tiling by parallelograms of the same area, as in
Figure 4.4. Repeat for other such matrices A.

5 Prove that the diagonals of a rhombus (parallelogram with all four sides equal) bisect each
other at right angles. Draw a tiling of the plane by rhombi and convert it into the corresponding
tiling by (centred) rectangles.

6
√

Identify the nets of the plane patterns (a) to (g) represented in Figure 4.19.
7 Prove that area(a, b) = |det[a b]| for a case in which A, B are on opposite sides of the y-axis.
8 Verify Theorem 4.14 for the indicated net, in Figure 4.4, using a 1/6 turn, a 1/3 turn, a 1/2

turn, and a reflection.
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The 17 plane patterns

In this chapter we introduce and exemplify the division of plane patterns into 17 types by
symmetry group. This begins with the broad division into net type. The chapter concludes
with a scheme for identifying pattern types, plus examples and exercises. It then remains
to show that all the types are distinct and that there are no more; this will be done in
Chapter 6.

5.1 Preliminaries

Here we recapitulate on some important ideas and results, then introduce the signature
system which will label each type of plane pattern according to its symmetry group. For
the basics of a plane pattern F and its group of symmetries G, see Review 4.1. We have
introduced the subgroup T of G, consisting of all translation symmetries of F (Definition
4.2), and the representation of those translations by a net N of points relative to a chosen
basepoint O (Definition 4.3). The points of N are the vertices of a tiling of the plane by
parallelogram cells (Construction 4.5 – see especially Figure 4.3).

The division of patterns into five classes according to net type (determined by T) is
motivated by reflection issues in Section 4.3.1. In Section 4.3.3 we described the five
types, indicating case by case which of the feasible rotational symmetries for a plane
pattern (Section 4.3.2) are permitted by net invariance, Theorem 4.14. The result is a very
natural fit, for example the last type, the hexagonal net, allows 3-fold and 6-fold centres
but not 4-fold. Indeed, we might have led up to the net types by starting with rotations
rather than reflections.

Translations u, v, represented by adjacent sides of a cell, will denote a basis for
the translation symmetries, except in the case of a centred net when it is convenient to
use a 3-vector approach to integrate the rhombus and centred rectangle viewpoints (see
Section 5.4).

Glide symmetries, we recall, are appropriately limited to the kind RmTw/2 whose
translation component has one half the length of the shortest translation vector w parallel
to it, and RmTw/2 = Tw/2 Rm (see Convention 3.2 and preceding discussion).

64
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New symmetries from old We remind the reader of two main ways of deducing the
presence of further symmetries of a figure from those already identified. (a) Any sym-
metry maps mirrors to mirrors, glidelines to glidelines, n-fold centres to n-fold centres,
and translation directions to translation directions, in accordance with Theorem 2.12.
(b) The composition of two symmetries is another, details being given in Table 2.2.
This said, the following observations as to what symmetries can exist or coexist for a
given pattern are important ingredients in classifying plane patterns. The first results
from (a), because a rotation moves any mirror to the position of another, non-parallel
mirror.

The presence of both rotation and reflection symmetries implies at
least two mirror directions. Similarly for glides. (5.1)
The presence of non-parallel mirrors, glides, or a combination,
implies rotations. (Table 2.2(b).) (5.2)
The least angle between the lines of two mirrors, glides, or a
combination, is π/n for n = 2, 3, 4, or 6. (5.3)

Observation (5.3) holds because the product of reflections in mirrors at angle θ is
rotation through angle 2θ , which the crystallographic restriction Theorem 4.15 lays
down to be a multiple of 2π/n, n = 2, 3, 4, 6. We will append n = 1 as represent-
ing the case of no rotational symmetry. A special case of (5.2), the mirror–glide
combination, was considered in Chapter 3 on braids, for lines at right angles (see
(3.4)). For convenience we reproduce as Figure 5.1 the three situations portrayed in
Figure 2.9: the position of one of the 1/2 turns produced by right angle crossing of
glide/reflection lines with each other. In summary, the translation component w of a
crossing glide ensures that the implied 2-fold centre is a translation by (1/2)w from
the intersection. This happens in two directions for the glide/glide crossing, as seen in
Figure 5.1(iii).

(i) (ii) (iii)

Figure 5.1 The crossing at right angles of the line of a mirror/glide symmetry with
another in either category implies 2-fold centres in the positions shown. This notation
was given in Table 2.1.

Notation 5.1 Each plane pattern type is specified by four symbols z n x y , a
development of the braid notation 3.4, interpreted as follows.
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z Initial symbol c if net is centred rectangular, otherwise p for ‘primitive’.
n The highest degree of rotational symmetry in the pattern. That is, n is the largest

integer for which the pattern has an n-fold centre.
x m if F has a line of symmetry,

g if, failing the above, F has a glideline, 1 if F has neither.
y The same as for x, but for lines in a ‘second direction’.

In both cases the 1 is omitted if it would be the last symbol.

Interpreting x, y As with the braid patterns of Chapter 3 it is convenient to consider
one mirror direction as horizontal for the purpose of illustration, but we do not wish to
consider patterns to be of different type simply because of our choice of which mirror is
‘horizontal’. Again, we don’t want a pattern to change its type by being rotated through
90 degrees or any other angle. Thus the formulation above allows xy = mg but not
xy = gm, because the distinction is not required. In the hexagonal net the distinction
for mirror directions is between perpendicular and parallel to the sides of a triangle.
This will be explained in its own place, Section 5.6, but see below.

Convention 5.2 We have just noted that it makes sense for certain patterns to be consid-
ered as of the same type (or ‘equivalent’). Since we are about to draw representative cases
of patterns we will anticipate the formal definition of equivalence in Chapter 6 by agree-
ing that a pattern remains the same type if we (a) transform the plane by an isometry –
reflect, rotate, translate or glide, (b) change scale uniformly – i.e. we simply enlarge or
contract, (c) change scale in one direction so as not to change the net type.

Presenting the cases In Sections 5.2 and 5.3, the order of cases for each net is guided
by (5.1) to (5.3). We proceed from low to high rotational symmetry, with increasing
number of mirrors or glides. In each case, after the symbol znxy, with its usual shortening
highlighted, we give the following.

1. The outline of a representative cell, normally with vertices following the Basepoint Convention,
4.4, near the end of Section 4.1.

2. An example motif M, whose images under all the translation symmetries in a group of the
given type znxy form a pattern of that type. M in turn consists of images of a very simple
submotif placed at the cell vertices, and at other positions and in other ways required by
the symmetries in znxy. Notice that M does not include the cell itself.

3. Below the cell, a representation of the rotation centres, mirrors and glide lines which intersect
it. Cf. Figure 2.17, in which this is continued over nine cells.

4. A small list of symmetries (generators) which generate (Definition 2.17) the whole group.
5. Any outstanding explanation of the symmetry configuration.

5.2 The general parallelogram net

Possible 1/n turns: n = 1, 2. No mirrors, by Section 4.3.1.
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p1 p2

Example

Symmetries None besides 
translation

Generators:             Translations u, u, plus one 1/2 turn (see (2.3)).

Figure 5.2

5.3 The rectangular net

Possible 1/n turns: n = 1, 2. The case of no m/g is covered under p1, p2.
Case n = 1 One reflection or glide.

Example

Symmetries

Generators: Translations u,   , u,   plus one glide 
  one reflection

pm p1m p1gpg

Figure 5.3

Case n = 2 Two reflection or glide directions (note: neither need be horizontal).

Basepoint position For convenience in drawing the motif in cases pmg and pgg we have
(only) here set the net basepoint at an intersection of mirror lines which is not a centre of
symmetry, giving priority to the second rather than the first criterion of Convention 4.4.

Exercise Redraw the diagrams for pmg, pgg so as to follow basepoint Convention 4.4;
or satisfy yourself that the given generators do result in the configurations of symmetries
shown in Cases 1 and 2 for the rectangular net.
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p2ggp2mgp2mm

Example

Symmetries

Generators:
(See Figures
5.1,  5.2).

Translations u, Translations u,
2 perpendicular
reflections

a reflection 
a glide

Translations u,
2 perpendicular 
glides

Figure 5.4

5.4 The centred rectangular net

u
w

• • •

• • •

• •

Cell = rhombus (shaded).

Its diagonals bisect each
other at right angles

w = (1/2)u + (1/2)  .

Centre of rectangle.

Figure 5.5 Translations, net and cell in the centred case.

‘Centred’ entails that, in addition to translations along the sides of the rectangle, there is
a translation symmetry T−w from the centre to one (and hence to every) corner. In some
patterns it is easier to spot a rhombus, in others a centred rectangle. Note that a rhombus
is a parallelogram with diagonals perpendicular. To get from the rectangle model to
a rhombus, start at the centre. Lines to two adjacent vertices form adjacent edges of a
rhombus cell, as illustrated in Figure 5.5. For the reverse step, see the proof of Lemma
4.17. In Figure 5.6 we get two of the seventeen types.

Explanation for symmetries The 1/2 turns in cmm arise from mirror–mirror and
mirror–glide crossings; see Figure 5.1. For the glides, suppose we have a horizontal
mirror line m, along a cell wall, and translations u, v, w as in Figure 5.5. Then the sym-
metries of the pattern include the composition RmTw , which is shown in Figure 5.7 to
be one of the horizontal glides indicated, whose line cuts off 1/4 of a cell. Combining
it with a vertical translation u gives the other glides of cm. A second mirror direction
explains the glides of cmm.

This completes the net types with highest rotational symmetry n = 2.
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Example

• •

•

•

• •

•

• •

cm c1m c2mm

Symmetries

Generators: Translations u, w or   , w,
  one reflection

Translations u, w or , w,
  two perp. reflections

Case n = 1 Case n = 2

•

cmm

Figure 5.6

u
m

n

Figure 5.7 How reflection and then diagonal translation produces a glide.

5.5 The square net

The square net is the only one to allow 1/4 turn symmetries. See Figure 5.8. With only
1/2 turns or none it counts as a special case of the rectangular net, so we consider only
the square net with 1/4 turns: n = 4. There are three associated pattern types. The last
two are distinguished by having either a mirror diagonally across the cell, or a glide (not
both), and we choose generators accordingly.

Explanation for symmetries

Rotations in all three types The translations u, vmap a 4-fold centre at one vertex of the
cell to 4-fold centres at the other vertices (Theorem 2.12). A 1/4 turn at the centre can
be obtained as the product of a translation with a 1/4 turn at a vertex (see Exercise 2.1).
A 1/2 turn at the midpoint of an edge is the product of a translation with a 1/2 turn
(= two 1/4 turns) at a vertex (Example 2.5).

Mirrors and glides in p4m It is an easy exercise to show that translations u, v plus
the known rotations produce the mirrors of p4m from any one mirror, in particular
from the diagonal one we take as generator. Assuming these, consider Figure 5.9(a).
The combination of the 1/2 turn and reflection indicated in boldface is RA(1/2)Rn =
(Rl Rm)Rn = Rl(Rm Rn) = Rl TAB , which is a glide since AB = u/2 + v/2. The 1/4 turn
symmetry about the cell centre rotates the glideline AB successively into three others,
forming the ‘box’ of glidelines as indicated.
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Example

p4m p4mm p4gm

Symmetries

Mirror
directions

Glide
directions

Generators
Translations
one 1/4 turn. one 1/4 turn, 

one diagonal reflection. 
one 1/4 turn,  
one diagonal glide.

p4 p4g

Figure 5.8

Mirrors of p4g We are given one diagonal glide, so rotation about the centre gives the
other. In Figure 5.9(b), the combination of glide and 1/2 turn shown boldface equals
(TAB Rl)(Rl Rm) = TAB Rm = (Rn Rm)Rm = Rn. Then by rotation we have the ‘box’ of
mirrors shown, included in the symmetries of p4g.

Glides of p4g In Figure 5.9(c) let g be the diagonal glide in bold (a generator for p4g
by assumption), and h the horizontal glide backwards along mirror n, both through the
distances indicated. Then gh = (RmTAC/2)(TD A/2 Rn) = RmTDC/2 Rn. This isometry is
direct, being the product of one direct and two indirect isometries, so is determined by
its effect on any two points (Theorem 1.10). Since gh fixes A and sends B to D, as does
RA(1/4), we have gh = RA(1/4), whence h = g−1 RA(1/4). Now since the glide h is the
product of two symmetries in the group, h is itself a symmetry, and rotation gives the
‘box’ of glidelines appertaining to p4g.
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m

l

n

A

B

m

n

A

B

A

B

D

m

nl

C

(a) (b) (c)

Figure 5.9 (a) Origin of side AB of the box bounded by glidelines in p4m, (b) origin of
one side of the box, now formed from mirrors, in case p4g, (c) start of the glide box for
p4g.

5.6 The hexagonal net

Cell = 60◦ rhombus = 2 equilateral triangles, called a diamond.

Rotation symmetries of the net

6-fold at triangle vertices
3-fold at triangle centres
2-fold at midpoints of triangle edges

Figure 5.10

Case n = 3 (See Figure 5.11.) Here we suppose that the symmetries include a 1/3 turn
(at one triangle vertex), but no 1/6 turn. For the illustrations we take a change of motif.

Symmetries

Examples

p3 p3m1 p31m

Generators    (glides all parallel to mirrors)

Translations u,   ,  u,   ,  u,   ,
1/3 vertex turn. 1/3 vertex turn, 1/3 vertex turn,

reflection in a reflection in a
triangle altitude. triangle edge.

Figure 5.11
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Explanation for symmetries Rotations By Theorem 2.10 the translation symmetries
map the 3-fold centre onto 3-fold centres at every triangle vertex. By Euler’s construction,
Example 2.6, the 1/3 turns at two adjacent triangle vertices may be combined to produce
a 1/3 turn about the triangle centre (see the solution to Exercise 2.2), which now translates
to every triangle centre. Introducing no reflections or glides we now have case p3.

The two sets of mirror directions Combining 1/3 turns with a reflection produces mir-
rors at angles of 60◦, the angle in a triangle of the net. Hence, starting with a mirror
perpendicular to the u-direction, along the altitude of one triangle, we obtain mirrors
along the altitudes of all triangles. This is case p3m1. It is notationally convenient to
consider this as a case of one mirror direction only, counting all the altitude directions as
one, via 1/3 turns. On the other hand, a mirror in the u-direction, along a triangle edge,
yields mirrors along the sides of all triangles, via the 1/3 turns, giving case p31m.

v

A

B C

D

m
l(a)

u

A

B E

m

l

(b)

C

Figure 5.12 Source of the glides in (a) p3m1, (b) p31m. To achieve a more readable
picture the dotted glide lines represent position only. A glide distance is, as always, one
half the shortest translation in a parallel direction.

Glides of p3m1 In Figure 5.12(a) the glide g = TBD/2 Rl may be followed by Rm to satisfy
gRm = TBD/2(Rl Rm) = TBD/2TAC/2 = Tv . Hence g equals Tv Rm, which is a product of
symmetries, hence itself a symmetry. The reader can now see how all other glide lines
of p3m1 are generated from this one by reflection and rotation.

Glides of p31m In Figure 5.12(b), the glide g = TC B/2 Rm may be followed by Rl to
satisfiy gRl = TCB/2TAE = Tu, so that g equals Tu Rl and is itself a symmetry. Rotating
the glide line by 1/3 turns about the triangle centres gives us the triangle of glides shown.

Case n = 6 (See Figure 5.13.)

Rotations On the one hand, a 1/6 turn squared is a 1/3 turn, so we have all the 1/3 turn
symmetries of Case n = 3. On the other hand, a 1/6 turn cubed is a 1/2 turn, giving us
a 1/2 turn at the midpoint of every triangle edge via translation, in the manner of (2.3).
There are thus two cases, according as we do (p6m) or do not (p6) have reflections at
all (see below).

Reflections and glides In case p6m we may compose a 1/6 turn about a triangle vertex
with reflection in a mirror along the side of a triangle. The result is reflection in an
altitude. Therefore we have the mirror directions of both p3m1 and p31m.

This concludes the 17 plane patterns and their symmetries, and one choice for the
generators of those symmetries. There follow a set of examples, a scheme for identifying
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Example

p6mm

Symmetries
The rotations of p6,
the glides and reflections
of p3m1 and p31m

Generators Translations u, v,
a 1/6 vertex turn,

u, v,
reflection in a triangle
edge or altitude.

p6 p6m

Figure 5.13

the type, and a series of identification exercises for the reader. In the next chapter we see
how to generate examples of any type to order.

5.7 Examples of the 17 plane pattern types

p2:  'Roman mosaic'

p1:  'The jokers'

pg:  'Trees'

Figure 5.14



pgg

pm pmm

p4:  'Jigsaw 1'

pmg cmm: 'Carpet 1'

cm: 'In clover' p4m: 'Windows'

p4g p3

Figure 5.14 (continued)



p6 p6m

p3m1 p31m

Figure 5.14 (continued)

5.8 Scheme for identifying pattern types

Case A  Pattern has 1/2 turns or none.

Case B Pattern has 1/n turns: n = 3, 4, or 6.

NO

ANY MIRRORS?

YES NO

GLIDE DIRECTIONS?

two one none

1/2 TURNS?

YES NOnone mirror glide

A SECOND
MIRROR OR GLIDE
DIRECTION?

A SECOND
MIRROR
DIRECTION?

NO YES

CENTRED NET?

YES

cm cmm pm pmm pgm pgg pg p2 p1

Hexagonal net
only

Hexagonal net
only

Square net
only

ANY REFLECTIONS? ANY REFLECTIONS?
ANY DIAGONAL
MIRRORS OR GLIDES?

none triangle
edge

triangle
altitude none mirror glide NO YES

p6mp6p4gp4mp4p3m1p31mp3

Figure 5.15
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Exercise Use the scheme in Figure 5.15 to check the type of one pattern from each net,
in Section 5.7.

Notes

(i) Nets versus rotation The first question in our identification algorithm concerns rotations
rather than nets, because of possible ambiguity. For example, the square is a special case
of a rectangle, which is in turn a parallelogram. Indeed, the net of a p1 or p2 pattern
can coincidentally be any one of the five net types, though counted as a parallelogram for
classification purposes. On the other hand, n = 3 or 6 requires the hexagonal net and n = 4
the square, giving an important check as we proceed.

(ii) 1/2 turns can be hard to spot, and therefore we use them (in the first instance) only to
distinguish between p1 and p2. Notice that (i) does not require us to identify 1/2 turns, but
simply to decide whether 1/3, 1/4 or 1/6 turn symmetries are present.

(iii) Glides As remarked earlier, for glide spotting it may help to think of a fish gliding left–right
as it proceeds forwards.

(iv) Confirming the decision Having decided the type of a pattern from the scheme above, we
can test this not only by the net but by the presence of any symmetries we choose which are
predicted for this type (see Sections 5.2 to 5.6).

Example 5.3 (Roman ‘Pelta’ design, Figure 5.16). Following the scheme to find the
pattern type, we see that there are 1/4 turn symmetries, and so go to Case B: n = 4. We
confirm that the net is square, choosing 4-fold centres as net points (Convention 4.4). But
notice that a valid square cell, satisfying the minimum length condition (4.6) has edges
not horizontal and vertical, but at 45 degrees to the horizontal. This is seen by focussing
on one net point and noting its nearest net points. Sample vertices for a cell are marked
in the pattern with a small square: . Now we can truthfully answer the question relative
to this cell: ‘is there a diagonal mirror, glideline, or neither?’ There is a diagonal glide
(horizontal on this page), so the pattern has type p4g.

Exercise Show that the perpendicular glides in Figure 5.17 imply the 1/2 turns.
Note: each 2-fold centre is 1/4 translation distance from a glideline.

Figure 5.16 Roman ‘Pelta’ design.
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implies (b)(a) u/2

/2

Figure 5.17 Some half turns that must be present in a symmetry group having translations
u,v and glidelines as in (a).

Exercises 5

1
√

Identify the type of each of the patterns in Figure 5.18.

(a) 'Clan fencing'   (b)  Roman mosaic,  Ostia 

(c) Windmills

(e) Persian tiling

(d)   Crazy paving 

(f)

Figure 5.18

2
√

Identify the type of each pattern in Figure 5.19.

(a) (b) 

Figure 5.19



78 The 17 plane patterns

(c) (d) 

(f) Arabic pattern(e) 

Figure 5.19 (continued)

3
√

Determine the type of each pattern represented in Figure 5.20.

 (a)    Roman,  from Ostia  (b)

(e) (f)

 (c)   ‘Boots’ (d)   Wicker fence 

Figure 5.20
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More plane truth

We have indicated how nets fall naturally into five types for the purpose of classifying
plane patterns, and found 17 possible configurations or groups of symmetries. But should
they all be considered different, and are there more? After dealing with these questions
via Sections 6.1 and 6.2, we look at some techniques for producing plane patterns to
order. The most important for our purposes will be the use of a fundamental region,
developed in Section 6.4.3, and concluded with the algorithm of Figure 6.32, by which
most plane pattern examples in this book were produced.

6.1 Equivalent symmetry groups

Here we recapitulate and enlarge upon some material of Section 2.5 on groups in general.
For two symmetry groups G, H to be considered ‘the same’, or equivalent, there must
be a pairing between their elements so that their multiplication tables are the same apart
from names of elements (cf. Figure 2.23). So far, this says that G and H are abstractly
isomorphic. But we impose the additional requirement that like symmetries must pair
with like.

Example 6.1 G = {I, Rm}, H = {I, Rp}, where m, p are different lines. (We
permit ourselves to use the same symbol for the identity in either group.) Here G and H
are equivalent according to the definitions that follow.

Definition 6.2 Groups G, H are isomorphic if there is a bijection, or pairing, φ: G → H
such that

φ(fg) = φ( f )φ(g), for all f, g in G, (6.1)

where φ( f ) means the image of element f under map φ. Then φ is called an isomorphism
from G to H. Informally, (6.1) is described as saying that φ preserves multiplication. It
follows that, for all g in G,

φ(I ) = I, (6.2)

φ(g−1) = φ(g)−1, (6.3)

g and φ(g) have the same order, (6.4)

79
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where the Is in (6.2) denote in order the identity elements in G and H. If necessary we
may distinguish them by subscripts thus: IG, IH .

Proof of (6.2) We have

φ(I ) = φ(I 2) since I = I 2

= φ(I ) φ(I ) by (6.1), φ being an isomorphism.

By Theorem 2.21(i) on uniqueness of identities this is sufficient to prove that φ(I ) = I .

Proof of (6.3) Here we argue that

φ(g−1)φ(g) = φ(g−1g), φ being an isomorphism,

= φ(I ), which equals I by (6.2).

This time we apply Theorem 2.21(ii), and Statement (6.3) follows.

Proof of (6.4) We observe, firstly, that φ(gr ) = φ(g · g · . . . · g) = φ(g) φ(g) · · ·
φ(g) = φ(g)r . Hence if φ(g)r = I we may write φ(gr ) = I = φ(I ), which implies that
gr = I , since φ is bijective (part of the definition of isomorphism). Now, this argument
reverses: if gr = I then φ(g)r = I, so the least power which equals the identity is the
same for both g and φ(g). That is, they have the same order.

Example 6.3 The cyclic group C4 and dihedral group D4 both have size 4 (see Section
2.4). Are they isomorphic? Let us first try a sledgehammer approach and use Theorem
2.18 to write out the multiplication tables of these groups (an exercise at the end of
Chapter 2). Let C4 have a 1/4 turn T as generator, and let D4 contain a reflection
R and 1/2 turn τ . Then with elements listed as the first row of their table we have
Table 6.1.

Table 6.1. The multiplication tables of C4 and D4.

C4 I T T 2 T 3 D4 I τ R Rτ

I I T T 2 T 3 I I τ R Rτ

T T T 2 T 3 I τ τ I Rτ R
T 2 T 2 T 3 I T R R Rτ I τ

T 3 T 3 I T T 2 Rτ Rτ R τ I

We observe that in the C4 table row 2 is a cyclic shift of row 1, and so on down the
rows, whilst the entries for D4 partition into four quarters. It follows that the elements of
D4, say, cannot be reordered so as to give the same table as C4 apart from the names. We
will not give a more detailed argument because there is a very simple reason, based on
(6.4) above, why the two groups are not isomorphic. That is, that C4 has an element of
order 4, whilst D4 has not. However, the tables are instructive.
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Example 6.4 The symmetry group of a cube is isomorphic to the group S4 of all permu-
tations of four objects. In fact, the symmetries of a cube permute its four main diagonals
(see e.g. Coxeter, 1973).

Definition 6.5 Symmetry groups G, H are equivalent if there is an isomorphism φ :
G → H that sends like to like (then φ is called an equivalence), that is

reflections to reflections, translations to translations,
glides to glides, and 1/n turns to 1/n turns. (6.5)

Example 6.6 In the notation of Definition 2.17, let T1 = Gp{Tu, Tv}, T2 = Gp{Tw , Tx},
where vectors u, v are at right angles and w, x are at 60◦. A typical element of T1 is
Tmu+nv with m, n integers. Then

φ(Tmu+nv) = Tmw+nx (6.6)

is an isomorphism satisfying (6.5). Thus T1 and T2 are equivalent, as are all plane
translation subgroups, by an isomorphism φ which pairs the elements of a basis of the
one group with a basis (see (4.2)) of the other. See Figure 6.1.

u

v

φ
x

w

Figure 6.1 Equivalence φ between translation groups with bases u, v and w, x.

Example 6.7 The groups G = {I, R} and H = {I, τ } are isomorphic, where R is a
reflection and τ a 1/2 turn, both therefore of order 2. But they are not equivalent, since
the only possible isomorphism from G to H maps a reflection to a 1/2 turn, infringing
(6.5). In fact the conclusion follows without considering isomorphisms: we may simply
note that G has a reflection whilst H does not.

Example 6.8 Pattern 6.2(a) is stretched to form pattern 6.2(b). This destroys the vertical
symmetry, and so the symmetry groups of the two are not equivalent.

According to the scheme described in Section 5.8, the first pattern has type cm, whilst
the second is designated p1. Of course, if we had instead stretched (a) equally in all
directions we would still have had the ‘same’ symmetry group for (b).

Exercise Why cannot the groups C6 and D6 be isormorphic?

Remarks 6.9
(1) An isometry g of the plane sends every pattern F to one of the same type. That is, their

symmetry groups are equivalent. For, by Theorem 2.12, the isometry g maps like to like,
satisfying (6.5), and this theorem gives us the equivalence φ(R) = g−1 Rg. For example, if
m is a mirror line of F then g−1 Rmg is the operation of reflection in the mirror line mg of
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(a) (b)

Figure 6.2 Two patterns (a), (b) whose symmetry groups are not equivalent.

F g . As required, φ satisfies the definition of an isomorphism; in detail φ(RS) = g−1(RS)g =
(g−1 Rg)(g−1Sg) = φ(R)φ(S).

(2) Uniform scaling of the plane with respect to some origin, namely enlargement or scaling down,
fortunately does not change the type of a pattern (if it did, the inconvenience would prompt
a change of definition of equivalence). If g(x) = r x (r > 0) defines such a transformation
then the formal equivalence required is given by φ(R) = g−1 Rg. Note in particular that g
preserves angles, shapes and the ratios between distances.

(3) Let g be a stretch (or contraction) in one direction, say g(x, y) = (r x, y) (r > 0).

(a) The groups of F and F g are not equivalent if F has 3-, 4- or 6-fold centres, since g changes
angles.

(b) g does map 2-fold centres to 2-fold centres, for if A, B, C are collinear points with
|AB| = |BC | then the same holds for their images.

(c) A stretch parallel to an edge sends a rectangular cell to a rectangular cell.

Table 6.2. Tests for equivalence. If any property in the list is possessed by
symmetry group G but not H then they are inequivalent, by Definition 6.5.

1. G has an n-fold centre 4. G has both reflections and glides
2. G has reflections 5. G has reflections in at least two directions
3. G has glides 6. G has glides in at least two directions

6.2 Plane patterns classified

We have in Chapter 5 a description of 17 types of plane group, each with a distinct
signature or symbol, of the form znxy. To establish that this list does classify plane
patterns up to equivalence, we must prove assertions A, B, C below.

A. Plane groups with different signatures are not equivalent,
B. Plane groups with the same signature are equivalent,
C. All plane groups are included in the signature system.

Besides their nets, which concentrate on translation, a further powerful tool we shall
use for distinguishing between symmetry groups is their point group P which, in a
complementary way, ignores translation and uses only reflection and rotation.
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6.2.1 Patterns with different signatures – the point group

Definition 6.10 Let A be any given point of the plane. Then the point group P of a plane
group G consists of the identity and:

(1) all those RA(m/n) for which there is an m/n turn in G,
(2) for every mirror or glideline of G, the reflection in the parallel mirror through A.

If A needs to be specified, we refer to ‘the point group at A’. That P is indeed a group may
be seen as follows (see Section 2.5). From Table 2.2, the product of every two elements of
P is also in P . For example if P contains RA(α), RA(β) then G contains RP (α), RQ(β)
for some points P, Q and hence their product RS(α + β), say. Thus, by definition of P ,
we have RA(α + β) in P . Multiplication in P is associative simply because its elements
are transformations, P contains an identity by definition. The inverse of an element of
P is in P because (i) a reflection is its own inverse, and (ii) if RA(φ) is in P then RD(φ)
is in G for some point D, so is the inverse RD(−φ), and hence RA(−φ) is in P .

Example 6.11 Figure 6.3 is an example, with glidelines thickened and lightened.
All the mirrors of P are shown in Figure 6.3(c), understood to intersect at the basepoint

A, and we see that they are the lines of symmetry of a square, the regular 4-gon. The rest
of P consists of I, R, R2, R3, where R is a 1/4 turn about A. Hence P is the dihedral
group D8, discussed in Section 2.4. Now we prove a key result for the usefulness of the
point group.

(a) plane pattern. (b) symmetries near a cell. (c) the symmetries in the point
group P, except the 1/2 turn.

Figure 6.3 From pattern to point group P = D8.

Theorem 6.12 The net is invariant under the point group.

(a) For any plane pattern group G, the net at a given point A is mapped onto itself by the point
group P at A, and, consequently,

(b) P is contained in the point group of the net.

Proof Let B be a net point. Then B = AT for some translation T. Suppose that g is an
element of P . Then we have Bg = (AT )g = AT g = Ag−1T g. But g−1Tg is a translation
of the net, by Theorem 2.12, so Bg is indeed a point of the net.
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Table 6.3. The plane pattern types by net and point group

Net Plane group G Point group of G

Parallelogram p1 1 {I }
(2) p2 2 C2

Rectangular pm, pg 1M
(2MM) pmm, pmg, pgg 2MM D4

Centred rectangular cm 1M
(2MM) cmm 2MM D4

Square p4 4 C4
(4MM) p4m, p4g 4MM D8

Hexagonal p3 3 C3
(6MM) p3m1, p31m 3M D6

p6 6 C6
p6m 6MM D12

The basis for using the point group P is that if plane groups G, H are equivalent then so
are their point groups, and hence:

if the point groups of G and H are not
equivalent, then neither are G and H. (6.7)

It is customary to denote the point group by nxy analogously to the plane groups, except
that now both ‘m’ and ‘g’ are replaced by M. We recall that n corresponds to the smallest
1/n turn in G. In Table 6.3 we list the point group of each net and of each of the 17
plane pattern types. These may be inferred in each case from the rotation, glide and
mirror symmetries given in Sections 5.2 to 5.6 (cf. Figure 6.3). The cyclic and dihedral
notation is given also. Note that it does not cover the group 1M , consisting of the identity
and a single reflection, {I, Rm}. The point group of each net (itself a plane pattern)
is given in parenthesis beneath its name, and must contain the point group of each
corresponding plane group, by Theorem 6.12. Dihedral groups D2m and rotation groups
Cm are reviewed in Section 2.4. We are now ready to prove assertion A as the next
theorem.

Theorem 6.13 Plane groups with distinct signatures are inequivalent.

Proof We must prove inequivalence of all pairs chosen from the 17 types listed in Sections
5.2 to 5.6. The number of such pairs is 17·16/2 = 136. Since patterns with different point
groups are inequivalent by (6.7), Table 6.3 shows that all pairs are distinguished by the
point group except for the 11 pairs dealt with under four cases, next.

Now we continue the proof of Theorem 6.13.
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pmm pmg pgg

Figure 6.4 Recapitulation of some symmetry configurations.

Case 1 M: three pairs from pm, pg, cm These are handled easily by Table 6.2, since pm
has one mirror direction but no glides, pg one glide direction but no reflections, whilst
cm has both.

Case D4: six pairs from pmm, pmg, pgg, cmm None of the first three groups are equivalent
by an argument similar to Case 1M (see Figure 6.4). Further, cmm differs from both
pmm and pgg by having both glides and reflections, and from pmg by having two mirror
directions (see Section 5.4 for the symmetries in cmm).

Case D6: the pair p3m1, p31m In the first group, reflection may be composed with
translation of minimum length to obtain a reflection, but not in the second.

Case D8: the pair p4m, p4g The first has more mirror directions than the second.

Exercise Verify some of the point groups given in Table 6.3.

6.2.2 The classification is complete

Starting from a series of 17 hypotheses which are easily seen to cover all possible
discrete plane pattern groups G, we arrive each time at one of the types listed in Chapter
5. We exhibit equivalence by having the correct net type, and symmetries in the correct
positions relative to a basis u, v for the translation vectors (5.2) of G. The equivalence
map φ is a natural extension of (6.6) in Example 6.6. Let us temporarily denote a group
listed in Chapter 5 by H, with basis x, y. If a point A has position vector a = ru +
sv let A′ be the point with position vector a′ = rx + sy. Then φ : G → H is given
by Ta → T ′

a, RAB → RA′B ′, RA(m/n) → RA′(m/n). We will incidentally confirm that
there are no more symmetries than stated in each case of H. Much use will be made of
discreteness: as examples, u and v will always be shortest translation vectors in their
respective directions, and we can always choose a mirror and glideline to be as close as
possible without coinciding. At the finish we will have established assertions A, B, C at
the head of this section and so shown that discrete plane patterns may be classified into
the 17 types of Chapter 5, distinguished by their labels znxy.

Case 1 Discrete plane groups with no reflections or glides

Case 1.1 (Only translation symmetries) All such groups are equivalent by Example 6.6,
and form type p1.
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Case 1.2 (n = 2) We assume G has a 1/2 turn at the basepoint O, and deduce that G has
all the symmetries of p2 and no more. We recall for here and future use

RO (1/2)RA(1/2) = T2OA, (6.8)

RA(1/2) = RO (1/2)T2OA. (6.9)

In fact (6.9) is proved in Figure 2.6 and implies (6.8) (multiply both sides by RO (1/2)).
We now have 2OA ∈ T ⇒ RA(1/2) ∈ G (by (6.9)) ⇒ 2OA ∈ T (by (6.8)). Thus the 1/2
turns of G are at the same points as for p2, namely those A for which 2OA is a translation
vector, geometrically the cell vertices, midpoints of edges, and centres (see Section 5.2).
The position vectors of these points are all (1/2)(ru + sv), for r, s in Z, the set of integers,
including zero and the negatives. Thus G is of type p2.

u

v

Figure 6.5 Case 1.3.

Case 1.3 (n = 4) We assume G contains RO (1/4). Then the
net is square and there are no 1/3 turns (Résumé 4.19). By the
argument of Section 5.5, G contains the rotational symmetries
listed for p4, namely 1/4 turns at the cell vertices and centres,
and 1/2 turns at the midpoints of the edges. We record the
position vectors ru + sv or (r + 1/2)u + (s + 1/2)v for the
1/4 turns, and ru + (s + 1/2)v or (r + 1/2)u + sv for the 1/2
turns (r, s in Z). There are no more 1/2 turns RA(1/2) (so no
1/4 turns) because (6.8) implies 2OA = ru + sv (r, s in Z);
and we have accounted for all such points, since the 4-fold
centres also supply 1/2 turns. Thus G is of type p4.

Case 1.4 (n = 3) We suppose G contains RO (1/3), and set the basepoint as usual at O.
The net is necessarily hexagonal (Résumé 4.19), with basis u, v along the sides of one
of the equilateral triangles making up the unit cell. There are the 3-fold centres at the
vertices and centres of every equilateral triangles in the net (see Section 5.6), the position
vectors being (1/3) (ru + sv), for r, s in Z. However, there are no 1/2 turns, for such
would imply a 1/6 turn, say RA(1/2)RO (–1/3) = RB(1/6). It remains to show that there
are no more 1/3 turns RA(1/3), for which we make use of Figure 6.6.

Suppose RA(1/3) is a symmetry but A is not a vertex. We need only deduce it must
be a triangle centre. We have RA(2/3)RO (1/3) = TAC , shown enlarged in Figure 6.6(b).
By relocating the basepoint if necessary we may assume |OA| < |OP|, and then AC is
shorter than the long diagonal of a cell OPQR. Since AC is a translation vector of G

(a)

30 30

60

(b)

u

R Q

C

C B A

O
O P

A

S

Figure 6.6 There is no 1/3 turn at a point A which is not a triangle vertex or centre.
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we have AC = Q R for a triangle edge QR. By elementary geometry A is the centre of
triangle OPQ. Thus there are no more 1/3 turns and G is of type p3.

Case 1.5 (n = 6) Our hypothesis is that G contains RO (1/6) (but still no reflections or
glides). As in Case 1.4, this implies that the net is hexagonal and that there are no 1/4
turns. But this time there are 1/2 turns. By taking the square and cube of the 1/6 turn we
obtain the rotation symmetries deduced for p6 in Section 5.6: 1/6 turns at the triangle
vertices, 1/3 turns at their centres and 1/2 turns at the midpoints of edges. Our task is
to explain why there can be no more symmetries. This was done for 1/3 turns in Case
1.4. We will rule out new 1/6 turns by ruling out new 1/2 turns (their cubes). Suppose
RA(1/2) is a symmetry. We may suppose |OA| < |OP| as illustrated in Figure 6.6. Then
there is a translation symmetry RO (1/2)RA(1/2) = T2OA, by (6.8). Therefore A is the
midpoint of an edge, so is already accounted for. Hence G is of type p6.

Case 2 Discrete plane groups with reflections/glides all parallel

Case 2.1 (Mirrors only) Let G have reflection in a mirror m. Since all mirrors of G are
parallel there is no rotation symmetry, for it would rotate the mirrors to new directions. We
find a basis u,vof T as shortest translation vectors respectively parallel and perpendicular
to m. To prove this is so we note that in T every vector parallel to some vector x of T
equals αx for some constant α, and so the set of all such vectors forms a line group
(Definition 3.1). Then Theorem 3.3(a) gives the first assertion below. The second is an
elementary observation, illustrated in Figure 6.7(b).

In T , all vectors parallel to a given line n are integer multiples ru,
where u is a shortest vector parallel to n. (6.10)

If x is parallel to u then subtracting a suitable multiple tu leaves w1

= x − tu, with |w1| ≤ (1/2)|u|. (6.11)

Suppose u, v is not a basis and that w is a shortest translation vector they do not express
(w need not be unique). We obtain a contradiction. Resolve w parallel to u and v, say
w = w1 + w2, as in Figure 6.7(b). By (6.11) we may suppose that |w1| ≤ (1/2)|u|,
for otherwise we could subtract multiples of u to ensure this, and w would still not be
expressible in terms of u,v, but would be shorter. This is illustrated in Figure 6.7(b) by the

x = AC illustrates (6.11)

A C

DE

u

w

w1

w2 w2

u

v

w

(b)(a)

B

m

Figure 6.7 (a) Vector w is not expressible in the basis u, v. (b) How the u component
of w can be shortened until |w | ≤ (1/2) |u|.
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replacing of AD by AE for w. But now RmTw = (RmTw2 )Tw1 , which is a (non-allowed)
glide since RmTw2 is a reflection (see (2.1)), and its translation part w1 is shorter than u.
This contradiction shows that, after all, u, v is a basis of T. Finally, combining Rm with
multiples tv (t in Z) gives precisely the reflections of pm.

Case 2.2 (Glides only) As in the previous case there can be no rotations. Let g = RmTx

be a glide in G with shortest translation part. Let u, v be shortest translation vectors
respectively parallel and perpendicular to the mirror m. Then since x is as short as
possible we have |x| ≤ (1/2)|u| by (6.11). But g2 = T2x, so |2x| ≥ |u| by minimality
of |u|. Hence |x| =(1/2)|u| and we may take g = RmTu/2. We have derived a useful
ancillary result for other cases:

if G has glides parallel to translation vector u, shortest in its own
direction, then G has a glide with translation part u/2, and this is
least for glides parallel to u. (6.12)

If u,v is not a basis for the translation symmetries, let w be a shortest vector not expressible
in terms of them. Decompose w parallel to u and v as in Figure 6.7(b): w = w1 + w2. As
before, we have |w2| ≤ (1/2)|u| by (6.11). Now, gTw or gT−w is a glide with translation
part (parallel to u) strictly shorter than u/2. The only way this can be true is for g to be
a reflection, but these are not allowed in this case, so we have a contradiction and u, v
do indeed form a basis (in the next case reflections are allowed, and we infer a centred
net). Combining g with translations rv, perpendicular to m, we obtain all the glides of
pg. The presence of further glides in G would imply translations which are not integral
multiples of v, contradicting (6.10). Hence G is of type pg.

Case 2.3 (Mirrors and glides) There are still no rotations because all mirrors and glide-
lines are in one direction. Let u be a shortest vector in that direction. We shall construct a
centred rectangular cell for G. As in Case 2.2, we may assume by (6.12) that G contains
a glide g = RmTu/2. Let n be a mirror of G as close as possible to the mirror line m of
this glide. Represent u by AB with n lying along AB. We have Rn g = Rn RmTu/2 = Tw,
say. Now let AE represent w and AD, BC both represent v = 2w − u. Then we have
the rectangle ABCD with centre E of Figure 6.8.

u

w

n

m

A B

D C

E

Figure 6.8 The centred rectangular cell, found from parallel mirrors and glides.

Notice that w is a shortest translation vector in its own direction, otherwise it would
combine with Rn to give a glide too close to n. We prove that u, w (hence also v, w) is
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a basis for the translation vectors in the group. Let x be such a vector. Then since u, w
are not parallel we have x = λu + µw for some constants λ, µ which must be shown to
be integers to establish the basis assertion. By (6.11) we may subtract integer multiples
of u, w from x so as to leave |λ|, |µ| < 1. But then µ = 0, otherwise RnTx would be a
glide with line closer to n than that of g. Thus x = λu. Now, by the minimality of |u|
we may infer that λ = 0, which means that the original λ, µ were integers. Thus we
have shown that u, w is a basis. Finally, Tv generates all the reflections and glides of cm
by composition with Rn and g. Further glides or reflections cannot be present, for they
would generate translations which cannot belong to the group. We have established that
G has type cm.

Case 3 Discrete groups with reflections/glides in exactly two directions

Case 3.1 (Mirrors only) Here n = 2. The two directions must be at right angles, or
mirrors would reflect each other into new directions. The shortest translation vectors u,
v in the respective directions form a basis by the argument of Case 2.1. But now we
obtain the mirrors and 2-fold centres of pmm, reproduced in Figure 6.4. The existence of
further mirrors or 1/2 turn symmetries would contradict the minimality of |u|, |v|. Thus
G has type pmm.

Case 3.2 (Glides only) Again n = 2; the glides are in two perpendicular directions or
they would generate more glide directions. The argument of Case 2.2 (glides only, one
direction) applies here also to show that shortest vectors u, v in the respective direc-
tions form a basis. By (6.12) there are glides RmTu/2 and RnTv/2 with least translation
parts. They generate the symmetry configuration of pgg, shown in Figure 6.4. Fur-
ther glides or 1/2 turns would contradict the minimality of |u|, |v|. In short, G is of
type pgg.

Case 3.3 (Glides and mirrors, no glide and mirror parallel) As before, n = 2 is implied.
The mirrors are all in one direction and the glides in another, perpendicular to the first.
The usual arguments show that shortest vectors u, v in the respective directions form a
basis. A glide with shortest translation part has the form RnTv/2, by (6.12). One mirror
and this glide, together with translations, generate the symmetry configuration of pmg
(see Figure 6.4) and no more. We have G of type pmg.

Case 3.4 (Glides and mirrors: some mirror and glide parallel) As before, we have n = 2
and two perpendicular directions for mirrors and/or glides. However, things work out a
little differently because glides and mirrors are allowed to be parallel.

Let mirror n have glidelines parallel to it and let the glide g = RmTu/2 be as close as
possible, where u is a shortest translation vector parallel to m (cf. (6.12)). We perform
the construction of Case 2.3 (cm) to obtain the centred rectangle ABCD, with u, w and
v, w equally valid as bases, and u,v, w shortest translation vectors in their respective
directions (see Figure 6.8). Now consider the mirror/glides in our second direction. We
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u

v

Figure 6.9 The cmm symmetries.

choose the basepoint as A, lying at the right angle
intersection with n of a mirror P along AD. Then
g = RnTu/2 is a glide parallel to u with least possi-
ble translation part. Now RP and g, together with
translations Tru (r in Z ) generate the remaining
mirrors and glides of cmm, combining with those
in the first direction to give the 1/2 turns. We have
exactly the symmetry configuration of cmm (and
no more), as reproduced in Figure 6.9, and so G
falls into type cmm.

Case 4 Discrete plane groups with mirrors and 1/4 turns

Case 4.1 (Some mirror contains a 4-fold centre) We recall from Case 1.3 that as a
consequence of 1/4 turns being present, the net is square, no 1/3 or 1/6 turns are possible,
and the rotational symmetries are those of p4 and no more, as depicted in Figure 6.10.
It remains to decide what configurations of mirrors and glides are possible. Now, every
mirror must reflect r-fold centres to r-fold centres (Theorem 2.12), and this restricts its
position to one of those shown in p4m or p4g. It may or may not pass through a 4-fold
centre, and in this present case we suppose that one mirror does so. Whichever mirror we
choose for this role, its presence implies (by combination with rotations and translations)
that of all mirrors in p4m. Also, combining 1/2 turns and diagonal reflections gives the
box of glides in p4m (see Section 5.5). Any further reflections or glides imply the
presence of disallowed translations or rotations, and so are ruled out. Hence the present
choice of first mirror considered leads to G being of type p4m.

Figure 6.10 Possible symmetry configurations over a cell for a discrete plane pattern
with 1/4 turn symmetries; cf. Figure 6.3.

Case 4.2 (No mirror contains a 4-fold centre) From the discussion of Case 4.1 up to
choice of mirror, the remaining choice is to have a mirror containing a 2-fold but not
a 4-fold centre. This generates the mirrors and glides of p4g (Section 5.5). Again, the
configuration is complete, or contradictions arise, and so G has type p4g.

Case 5 Discrete plane groups with mirrors and 1/3 turns

Case 5.1 (Mirrors along triangle edges, no 1/6 turn) In Case 1.4 we dealt with the
consequences of allowing a 1/3 turn. The net is hexagonal, meaning that a cell is diamond-
shaped, consisting of two equilateral triangles back to back. Quarter turns are ruled out,
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p3 p3m1 p31m

Figure 6.11 Possible symmetry configurations over a half cell for a discrete plane pattern
with 1/3 turn symmetries.

but there are 1/3 turns at every vertex and centre, as depicted for p3 in Figure 6.11. What
are the options for a mirror? It must reflect 3-fold centres to 3-fold centres (Theorem
2.12), and consequently lies along a triangle edge or altitude. The two cases cannot arise
at once, for then we would have a 1/6 turn (this situation is dealt with as Case 5.3). (∗)
So let us suppose that there is a mirror along some triangle altitude. Invoking translations
and rotations we generate the reflections and glides of p3m1, recalled in Figure 6.11 (see
also Figure 6.6 for the argument). As usual, a check shows that no more are possible
without contradiction. We conclude that G is of type p3m1.

Case 5.2 (Mirrors in triangle edges, no 1/6 turn) Here we follow Case 5.1 up to the
choice of mirror direction (∗). Then we specify that some mirror lies along a triangle
edge. Again referring to Figures 6.11 and 6.6 we obtain precisely the symmetries of
p31m, and so G is of this type.

Case 5.3 (Mirrors and 1/6 turns) The 1/6 turn combines with an altitude reflection to
give an edge reflection, and therefore we have the glide/mirror symmetries of both p3m1
and p31m. A 1/6 turn at one vertex is translated to all (Theorem 2.12). Its square is a 1/3
turn, ensuring that the rotational symmetries of p3 are included, and its cube is a 1/2 turn
which combines with translations to produce a 1/2 turn at the midpoint of every triangle
edge. A little checking shows that further symmetries would violate the hypotheses of
this case. Thus G is of type p6m.

This completes a fairly rigorous justification of the standard classification of discrete
plane groups of symmetries, and hence of plane patterns. A concise ‘pure mathematical’
derivation may be found in Schwarzenberger (1980), and a more geometrical approach
in Lockwood and Macmillan (1978).

Exercise Verify some of the point groups given in Table 6.4.

6.3 Tilings and Coxeter graphs

Definition 6.14 A plane tiling or tessellation is a countable set of regions F1, F2, . . .

called tiles or faces, which cover the plane without area overlap. To say the faces are
countable means that we can index them by integers 1, 2, 3, . . . as we have just done.
Two tiles may have a common boundary, say a line segment, but this contributes no area.
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For our purposes we may assume each face is continuously deformable to a closed disk
D = {(a, b): a, b real, a2 + b2 ≤ 1}. Thus a tile is not allowed to have ‘holes’. A tiling
is polygonal if every tile is a (not necessarily regular) polygon.

(a) (b)

Figure 6.12 General tilings.

6.3.1 Archimedean tilings

We consider tilings by polygons which fit edge to edge, that is, each edge of a polygon
is an edge of exactly one other. This rules out (a) of Figure 6.12, even though the tiles
are polygons. Nevertheless it will prove a very convenient starting point. A simple but
important special case is that of the regular tilings {m, n} by regular m-gons, n at a
point. It is easy to prove directly by the approach of (6.13) shortly below that the three
well-known tilings of Figure 6.13 are the only possibilities. Note that we exhibit {3, 6}
as the dual of {6, 3}, dual being defined after Figure 6.13.

•

•

• •

•

•

•

{4, 4} {6, 3} in bold

{3, 6} light,

Figure 6.13 The regular tilings, with {3, 6} as dual of {6, 3}.

Definition 6.15 The dual of a polygonal tiling is the division into polygonal regions
obtained by joining the centre of each polygon to that of every polygon with which it has
a common edge. Of course the dual of {4, 4} is a translated copy of itself, and taking the
dual of {3, 6} in Figure 6.13 gives us back {6, 3}. We require some notation introduced
by Ludwig Schläfli (see Coxeter, 1973).

Notation 6.16 (See Figure 6.14.) A vertex around which we have in cyclic order an
n1-gon, an n2-gon, . . . , an nr -gon, is said to have type (n1, n2, . . . , nr ). We abbreviate
repeated numbers by an index. Thus (4, 6, 12), (6, 12, 4) and (12, 6, 4) are the same
vertex type, as are (4, 8, 8) and (4, 82).

Definition 6.17 A tiling by regular polygons is Archimedean of type (a, b, . . .) if each
vertex has the same type, (a, b, . . .). This of course includes the regular tilings, of types
(44), (63), (36). We now investigate what other Archimedean tilings exist. Firstly, con-
sider the situation at an individual vertex. We may anticipate that some possibilities for
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{3, 3, 4, 3, 4} {3, 4, 3, 12} {3, 4, 6, 4} {3, 6, 3, 6}

Figure 6.14 New vertex types by rearrangement of entries in Table 6.5.

arranging polygons around this point will not extend to a tiling, but we will not miss
any that do by starting this way. (Archimedes’ name is given to these tilings because he
studied polyhedra with faces obeying similar rules to this plane case. See Coxeter, 1973.)

Since the interior angle of a regular n-gon (n ≥ 3) has angle π − 2π/n and the angles
at a point sum to 2π , we have for a vertex of type (n1, n2, . . . , nr ) that r is at least 3 and
(π − 2π/n1) + (π − 2π/n2) + · · · + (π − 2π/nr ) = 2π, or

(1 − 2/n1) + (1 − 2/n2) + · · · + (1 − 2/nr ) = 2. (6.13)

We show that this equation can have, fortunately, only a finite number of solutions,
and enumerate them. Since Equation (6.13) is unaffected by the order of the integers
ni we may assume they are arranged in non-decreasing order. Further, n ≥ 3 implies
1 − 2/n ≥ 1/3, so there cannot be more than six terms on the left hand side of (6.13),
thus

3 ≤ n1 ≤ n2 ≤ · · · ≤ nr , and 3 ≤ r ≤ 6. (6.14)

And now, since 1 − 2/n (n ≥ 3) is increasing with n, the number of solutions is finite.
They are found as follows. For each of r = 3, 4, 5, 6 we test the r-tuples (n1, . . . , nr ),
in lexicographical order, to see if they satisfy (6.13), until r (1 − 2/n1) ≥ 2.4 The last
condition means of course that the left hand side of (6.13) must now be at least 2. The
solutions are given in Table 6.5, lexicographically for each r.

Table 6.5. Solution sets for r regular n-gons
surrounding a point.

r = 3 r = 3 r = 4 r = 5 r = 6

3, 7, 42 4, 5, 20 32, 4,12 34, 6 36

3, 8, 24 4, 6, 12 32, 62 33, 42

3, 9, 18 4, 82 3, 42, 6
3, 10, 15 52, 10 44

3, 122 63
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We may pick out the regular tilings as special cases. Four of the solutions as given can
be rearranged to produce, up to cyclic permutations and reverse ordering, exactly one
further point type each, as shown in Figure 6.14.

We now have 21 point types that are guaranteed to exist as the surroundings of a single
point, but how many extend to a tiling? We will shortly give a list (Figure 6.23) but, as
noted in Grünbaum & Shephard (1987), a finite diagram does not automatically prove
the existence of a tiling. We have to give, in effect, an algorithm for constructing the
constructible to an arbitrary number of tiles. We take the opportunity to do so in terms
of isometries, applying and reinforcing ideas already built up. There are far-reaching
extensions to three and higher dimensions (Coxeter, 1973, 1974).

Exercise Verify that the solutions of Equation (6.13) for r = 3 are as given in Table 6.5.

6.3.2 Coxeter graphs and Wythoff’s construction

This construction applies to a configuration of mirrors whose mutual angles are all
of the form π /p, p ≥ 2. It can be used in three dimensions, and more generally in n
dimensions, but our concern here will be the 2-dimensional plane. The Coxeter graph of
a group generated by reflections R, S, . . . has nodes labelled R, S, . . . We join typical
nodes R, S by an edge marked p if their mirrors are at angle π/p, p ≥ 3. But we do not
join these nodes if p = 2. Corresponding mirror lines are likewise labelled R, S, . . . as
illustrated in Figure 6.15.

Key Example 6.18 Mirrors forming a right-angled triangle thus:

give Coxeter graph:

Figure 6.15

R S

pNote 6.19 The Coxeter graph here depicted denotes the dihedral group
D2p = Gp{R, S}, the symmetry group of a regular p-gon, generated by re-
flections R, S in two mirrors at angle π/p. (See Section 2.4 and especia-
lly Theorem 2.18.)

Wythoff’s construction The 3-node graph in Figure 6.15 gives in principle up to seven
distinct tilings of the plane for each allowable pair p, q ≥ 3, corresponding to our assign-
ing a special significance to one or more nodes by placing a small circle round each. This
works as follows. The vertices of the tiling are the images under the group of one fixed
initial point. The construction allocates these points to edges, and edges to polygonal
faces, based on their belonging to initial edges, which belong in turn to initial faces. This
works consistently because, for example, if A is a vertex of an edge e then Ag is a vertex
of edge eg for any isometry g. We begin with the simplest case.
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R S T

p qOne node ringed
The instructions are:

(a) Choose an initial point A on the intersection of all
mirrors with unringed nodes, S and T in Figure
6.16(a).

(b) Form an initial edge AB, symbolised as
⊙
R , where

B = AR .
(c) Form an initial polygon (tile) t0, symbolised as

R S

p

whose edges are the images of AB under Gp{R, S},
namely the rotated copies of AB through successive
1/p turns SR: AB, BC, CD, . . . It is shown in Figure
6.16(b) as a regular hexagon.

(d) Our tiling is defined to consist of the images of the
initial polygonal tile t0 under Gp{R, S, T }. The in-
ductive step as applied to A is given below.

π/p π/q

R

S

T

A

B(a)

A

BC

D
π/p

R

S

T

(b)

Figure 6.16(a),(b)

Form the q images of t0 under successive 1/q turns TS about A.

In Figure 6.16(c), p = 6 and q = 3.
At every stage, a vertex P of the tiling formed so far has 1/q turns in terms of R, S,
T and we use them to surround P with q copies of t0 as was done the first time for A.

BC

t0

P

(c)

R T

S A

Figure 6.16(c)

For example:

RA(1/q) = TS, so by Theorem 2.12 we have
RB(1/q) = TSSR, since the 1/p turn SR maps

A to B, and
RC (1/q) = TS(SR)2

, since (SR)2 maps A to C ,
and so on.

It remains to observe that all the isometries we have, such
as the above, for t0, go over into any adjacent p-gon via a
reflection T (SR)r

in their common edge.

Exercise Find a basis for the translation symmetries of {6, 3} in terms of R, S, T above.

Exercise
R S T

3 6
has dual

R S T

3 6 . Verify this by construct-

ing both from the same mirrors R, S, T as shown in Figure 6.13.

It is very useful to understand this basic procedure first before going beyond what we
have just constructed, namely a regular tiling {p, q} for each allowable p, q that gives a
right-angled triangle: (4, 4), (3, 6) or (6, 3).
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Initial polygons The general rule is: for each node, if deleting it and the adjacent edges
leaves a 2-node subgraph with at least one node ringed, then this subgraph defines an
initial polygon (unless the corresponding mirrors are at angle π/2). More details below.

R S T

p qA non-regular tiling Now let us obtain something new, still with
only one node ringed, by interpreting Wythoff instructions (a) to (d)
for this graph.

A

B

C

D

E

F

G

R

S

T
π/p

Figure 6.17(a)

To show the relationship of this to {p, q} and
{q, p}we put our right-angled RST triangle as before
within a regular p-gon (p = 6 in Figure 6.17(a)).
The initial point A is on the intersection of mirrors
R and T (by Wythoff rule (a) above).

The initial edge
⊙
S = AB is common to two ini-

tial faces: the p-gon
R S

p
= ABCDEF, and q-gon

TS

q
= ABG.

A

B G

Figure 6.17(b)

We note that FAG is a straight line because π/p + π/q = π/2.
Thus, in the tiling, A is surrounded by the initial pair of tiles plus
their images under the 1/2 turn RT, as shown here. Furthermore, it
is clear from the construction, by a discussion similar to that for the
preceding cases, that every point of the tiling is surrounded in the
same way. Thus we have an Archimedean tiling of type (p, q, p, q).
The one new case is (3, 6, 3, 6). In three and higher dimensions we
get rather more (see remarks at the end of this chapter).

Cases with two rings

R S T

p qCase 1: Initial vertices and edges The only unringed vertex is T.
On mirror T we place initial vertex A at the intersection with the
angle bisector of mirrors R, S, as in Figure 6.18(a). This is the
unique position which ensures that the initial edges

⊙
R = AB and

⊙
S = AL have the

same length. Further, this is half the side length of the regular p-gon in which we place
the RST triangle. See Figure 6.18(b).

π/2p

R

S

T

π/2p
A

B

L

(a)    (b)

A

B

CD

L

M

R

S

T

Figure 6.18
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π/p
R

S

T

A

B

L

(a)

A

L

M

BC

D

F

(b) N

E

Figure 6.19

Initial faces (= tiles, polygons)

(i)
p

R S

(ii)
q

S T

Diagram (i) The edges are the images of both AB and AL under 1/p
turns SR, giving a regular 2p-gon ABC . . . L , inscribed as shown
in Figure 6.18(b).
Diagram (ii) A regular q-gon AL . . . M formed from the images of
AL under 1/q turns TS.

Conclusion Polygons (i) and (ii) with their images under the 1/2 turn RT surround vertex
A, giving it type (q, 2p, 2p). Hence we have a tiling of this type. Altogether the p, q
pairs 4, 4; 3, 6; 6, 3 yield two new tilings, of types (3, 122) and (4, 82).

R S T

p q

Case 2 The initial point A is the intersection of mirror S with the
bisector of the angle between mirrors R and T, hence the initial
edges

⊙
R = AB, and

⊙
T = AL have the same length, as shown in

Figure 6.19 (a).

Initial faces (tiles): (i)
R S

p
and (ii)

S T

q

Diagram (i) is a p-gon ABC . . . F whose edges are the images of AB under 1/p turns SR
and are parallel to corresponding edges of the background polygon. Diagram (ii) is the
q-gon AL . . . M bounded by q images of AL (q = 3 in Figure 6.19(b)). Now we apply
the 1/2 turn RT to (i) and (ii). They, with their copies, each provide one edge of a square
ABNL. We see that A has type (p, 4, q, 4). This gives one new tiling, of type (3, 4, 6, 4).

R S T

p q

Cases with three rings

Case 1 In the previous cases, with just two rings, the potential
ambiguity of initial vertex A was resolved by using an angle bisector.
Now we specify that A lie on two (hence all three) angle bisectors of
the RST triangle. Thus A is the centroid of the triangle, and is equidistant from all three
sides. The initial edges are:

⊙
R = AL,

⊙
S = AM,

⊙
T = AN , shown in Figure 6.20(a),

and have equal lengths. L , M, N are the centroids of the images of the RST triangle
under respective reflections R, S, T .

Initial faces: (i)
R S

p
and (ii)

S T

q
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π/

(a) (b)

A

M

NL

P

L

N

A
R

S

M

P
T

Figure 6.20

Here (i) is a 2p-gon AL . . . M inscribed within the background p-gon as in Figure 6.20
(b), whilst (ii) is a 2q-gon AN . . . M (q = 3). These, together with their images under
the 1/2 turn RT, contribute one edge each to bounding a square ANPL, also with A as
a vertex. The type is (4, 2q, 2p), giving us (besides some old ones) a new tiling type,
(4, 6, 12). The point types we have not covered are (34, 6), (33, 42), (32, 4, 3, 4). They
are not difficult, but we refer to Grünbaum and Shephard (1987) and give next a finite
sample of all Archimedean tilings and their types. There appear 10 of the 21 types we
identified as possible around a single point. One, (34, 6), has a right handed and a left
handed form obtained from it by an indirect isometry.

6.4 Creating plane patterns

6.4.1 Using nets and cells

Given a net type and a cell, we can do a little design work focussed on any or all of
the vertices, edges, or cell interior, whilst keeping the same translation symmetries. A
simple example is Figure 6.21(a). From a viewpoint which may intersect this, we can
redraw the left edge with a meaningful cavity provided we put a corresponding bulge on
the right edge. Similarly for horizontal edges, as in Figure 6.21(b). See also the excellent
discussion in McGregor and Watt (1984), p. 237.

(a) type p4m (b) type p1

Figure 6.21 Patterns formed by modifying aspects of a cell which is (a) a square, (b) a
general parallelogram type.

Figure 6.21 shows two examples, followed by an exercise for the reader. Creative
experimentation can reveal a great diversity of possibilities.
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Exercise Design a pattern by embellishing the hexagonal net.

6.4.2 Patterns from tilings

Every tiling of the plane has a symmetry group. A great variety of tilings are described in
Grünbaum & Shephard (1987). In particular, our Archimedean tilings have independent
translations in two directions, their symmetry groups are clearly discrete (see Review
4.1 ff.), and therefore they must be some of the 17 plane groups. The first three tilings
in Figure 6.23 are already nets, but the last nine give new examples in their own right.
However, we can modify them in many ways, such as those shown in Figure 6.22.

Type p1 from (32, 4, 3, 4) Type p6mm from (4, 6, 12)

Figure 6.22 Two plane patterns from simple additions to Archimedean tilings.

Exercise Design a sweater pattern by embellishing Archimedean tiling (33, 42).

6.4.3 Using the fundamental region

Definition 6.20 A fundamental region F for a discrete group G of isometries of the
plane is a closed region satisfying (see Definition 6.14)

the images of F under G tile the plane. (6.15)

That is, the images cover the plane with no area overlap. It will be useful in the sequel
to restate this no-overlap condition as

no point of F is mapped to any other by an element of G

(except boundary to boundary). (6.16)

What about a single cell as candidate for F? Its images cover the plane, and for group
p1 condition (6.16) holds also, so the cell is indeed a fundamental region. But in all other
cases (6.16) fails to hold and, in a sense, that is our opportunity.

m

Example 6.21 The plane group pm has a rectangular cell which,
with basepoint on one of the parallel mirrors, is bisected by another
of these mirrors, as illustrated to the right with vertical mirror m.
Because m reflects each half of the cell into the other, condition
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(36) (44) (63)

(34, 6) (34, 6) (33, 42)

(32, 4, 3, 4) (3, 4, 6, 4) (3, 6, 3, 6)

(3, 122) (4, 82)(4, 6, 12)

Figure 6.23 The Archimedean tilings.
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(6.16) fails. But either the shaded or the unshaded half may be taken as fundamental
region. Two step-by-step examples will illustrate how we may use the fundamental
region as a tool to obtain patterns of any given type ‘to order’.

Construction 6.22 A pattern generation method Cut a cell down to a fundamental
region, insert a submotif, then rebuild the cell.

Figure 6.24 The pg cell with its 1/2 turns, and three choices of fundamental region
(shaded). Condition (6.16) is satisfied (no overlap) because the central 1/2 turn sends
the fundamental region onto an unshaded area. There are no mirrors here.

Example 6.23 We make a p2 pattern by Construction 6.22; first we need a suitable
fundamental region, and we can get it as a subarea of a cell. Three ways to do this are
shown in Figure 6.24. Then, as in Figure 6.25, we

1. draw an asymmetric motif in the chosen fundamental region;
2. add in its image under the central 1/2 turn;
3. now put in the p2 translates of this combined motif. The guidelines may or may not

be part of the pattern. They are not mirrors.

Figure 6.25 Stages in constructing a pattern of type p2 from an initial motif.

Example 6.24 We create a pattern of type cmm, again by Construction 6.22. This time
finding a fundamental region F takes several steps, shown in Figure 6.26, in which we
start with a cell and repeatedly discard an area because it is the image of another part of
the cell under a symmetry in cmm, and so is not required for F , by (6.16). Unlike in the
previous example, we may take the cell edges as mirrors. There are glides too, as well
as 1/2 turns (Section 5.4).
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m
n

(a) (b) (c) (d)

Figure 6.26 (a) The symmetries of cmm. In cutting down the cell to a fundamental
region we discard (b) the lower (white) half of the cell since it is the image of the shaded
half under the mirror m, (c) the right half of the cell because of mirror n, (d) another
1/8th because of the 1/2 turn shown.

The shaded area (d) of Figure 6.26 is a fundamental region F , since it cannot be
further subdivided by symmetries of cmm (Condition (6.16)), and its images fill the cell
(without overlap) and hence the whole plane after translations are applied (Condition
(6.15)). Now we put a simple motif M = in F and rebuild the cell, working back
the way we came, and including the motif in each image of F . See Figure 6.27.

m
n

Rebuilding the cell

Apply the 1/2 turn

And finally...

reflect in mirror n reflect in mirror m

(1)

(2)

(3)

A pattern of type cmm

Figure 6.27 Building a cmm type pattern: (1) draw motif in fundamental region, (2) fill
the cell, (3) tile the plane.

Remarks 6.25
(i) As in Examples 6.23 and 6.24 above, it often helps to create a pleasing result if the motif is

in contact with the boundary of the fundamental region.
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5      6       7 8

1      2       3      4

Figure 6.28 Eight
congruent choices
of F in Example
6.24.

Figure 6.29 Reconstruction of cell contents from fundamental region 7.

(ii) There are many possible choices of fundamental region and, in
choosing a succession of symmetries in G to reduce the cell to a
fundamental region, we have in fact found a set of generators for G.
A diagram of the configuration of symmetries around a cell, as in
Sections 5.2 to 5.6, enables us to assess the choices (Figure 6.28).
For a given effect, some may be more convenient than others.

Convenient generators are the horizontal and vertical mirrors
crossing the cell, as in Example 6.24, together with a suitable choice
of one of the four half turns at a point P interior to the cell. One way this can work is shown
in Figure 6.29.

(iii) The fundamental region emphatically need not be a parallelogram, or even a polygon. See,
for example, Figure 1.2, an Escher-like picture of type pg in which this region may be taken
to be one bird (cf. Escher, 1989, p. 30). For a non-polygonal cell, see the p1 pattern in Figure
6.21.

(iv) By trying out various submotifs it is not unusual to hit on an Escher-type dovetailing that we
did not design. This occurred, to the good fortune of the present writer, in Figure 6.30, in
which the submotif was a roughly ‘mouse-drawn’ bird, shaded in black.

(v) To reproduce an existing pattern by the fundamental region method, we may

(a) decide on a cell,
(b) cut it down to a fundamental region F ,

(b) (c) (d) Lady-birds

0 26 52 x y
0

0
10

25

25

13

8
16
17
26

26
17

17

18

14
9
1

1

-1

-1
5 9

18

5

26

52 (a)

Figure 6.30 Stages in computer generation of a cm pattern with square cell. (a) Bird
motif in fundamental region. The scale is in pixels. (b) Copies of unshaded motif filling
the cell, corresponding to generators of cm. (c) Local pixel coordinates of ‘moused-in’
submotif. (d) The cm pattern obtained by tiling the plane with cells. Note the Chinese
ladies outlined in white.
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300 60

1

52

(c)

63
3
30 1

6

yx

(a) (b)

Figure 6.31 Converting a plane pattern to a generating submotif. (a) A common Islamic
pattern, (b) a suitable submotif, (c) its calculated coordinates.

(c) note the portion of the picture contained in F ,
(d) recreate this submotif and apply to it the group of symmetries, building up to a cell, then

to the plane area it is desired to cover. See Figure 6.31.

Exercise Notice that in Figure 6.31 the submotif does not quite lie within the fundamental
region. What is gained by this? Redraw diagram (b) to produce the same pattern (a), but
this time starting from a submotif lying entirely within the fundamental region. Use your
diagram to reconstruct the pattern by hand.

6.4.4 Algorithm for the 17 plane patterns

Nomenclature Coordinates are rectangular, measured in pixels or otherwise, from an
origin at O, the top left hand corner of the given cell. G is the centroid of the cell, with
coordinates (xg, yg). For the hexagonal net only, G1 and G2 are the centroids of the two
equilateral triangles shown forming a cell. Their coordinates are (xg1, yg1), (xg2, yg2).
On the other hand, the subscripted g1 and g2 are glides, with mirror position and trans-
lation component together represented by a dashed directed line segment -----→. Without
the arrowhead thus: ------, only the position of the glideline is being specified, but its
translation component may be taken to be one half the shortest translation symmetry
along its line (see (6.12)).

How to read the list Figure 6.32 describes the algorithm by listing isometries to be
applied in succession to a cell, starting with a submotif in the fundamental region, so
that tiling the plane with the drawn-in cell will produce a pattern of prescribed type.
This was the procedure followed in Examples 6.23 and 6.24. Thus for example ‘Do:
Rm, Rn’ in pmm means: ‘In addition to the pixels already illuminated in the cell, turn on
all their images under Rm (but don’t turn any off). Then repeat this for Rn.’

Exercise Reposition the pmg cell so that the vertices are 2-fold centres, and obtain a
new fundamental region and generator system.
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m

p1
None Do: RG (1/2)

p2

pm

pg

Do: Rm

Do: g1

m

n

pmg

pmm

H

m

pgg

g2

G

cm

g2 m

cmm

m

K
n

Do: g2, RG (1/2)

Do: RH (1/2), Rm

Do: g2, Rm

Do: RK (1/2), Rm, Rn

Do: Rm, Rn

Figure 6.32 (Algorithm for the 17 plane patterns) Isometry sequence to fill a cell, centre
G, starting with a submotif in the fundamental region.
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     Do: RG(1/4), RG(1/2)

Do: RP , RG(1/4), RG(1/2)

Do: Rq, RG(1/4), RG(1/2)

p4m

p4g

p

   

q

p3

p4

•

•
G1

G2

p3m1

r

Do: RG1
(1/3), RG1

(1/3), RG2
(1/3), RG2

(1/3)

Do: Rr then (as for p3) RG1
(1/3), RG1

(1/3), RG2
(1/3), RG2

(1/3)

Figure 6.32 (Continued)

Exercise Follow through the steps by which the fundamental region is made to tile the
cell in case pgg.

Exercise Verify that the cell of p4g is rebuilt from the fundamental region as implied.
Can you suggest a way to do it using a glide?

Exercise Explain why no 1/6 turn is required as generator in case p6m.

Other approaches Having followed Figure 6.32, the reader will be able to find other
formulations of fundamental region F and associated isometries f, g, h, . . . If it is desir-
able or necessary to fill the cell by straight copies of F rather than the procedure above,
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s

Do: R  then (as for p3) RG1
(1/3), RG1

(1/3), RG2
(1/3), RG2

(1/3)

Do: Rr then (as for p6) RG1
(1/3), RG1

(1/3),  RG(1/2)

p6

p31m

GG1

G1

Do: RG1
(1/3), RG1

(1/3), RG(1/2)

p6m

r

G

Figure 6.32 (Continued)

the way to do this may be inferred by noting that, for example: (F ∪ F f )g = F g ∪ F f g,
so that we have the following table.

Done so far Result

f F ∪F f

f, g F ∪F f ∪F g ∪ F fg

f, g, h F ∪F f ∪F g ∪ F fg ∪ F h ∪F fh ∪ F gh ∪F fgh

There may well now be redundancies, enabling us to delete some of the terms above in
the unions.

Exercise Suppose the above method is applied. Can any terms in the union be dropped
in the case of p4g or p3?

Exercise Derive the formulae for Rm and RG(1/4) in Table 6.6 (hint: use Corollary 2.2).

Remarks

1. There is a useful method of tiling the plane or higher dimensions starting from a collections
of points. This is the Voronoi triangulation. It has been found useful in computer graphics and
in our Sections 11.2 and 18.3.6. (Dobkin, 1988).
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Table 6.6. Coordinate form for generators of the 17 plane groups. G(xg, yg) is the
centre of gravity of a cell. In hexagonal net, yg = xg/

√
3, G1 and G2 have

respective coordinates (2/3)(xg, yg) and (4/3)(xg, yg).

First
isometry

Generating appearance Result (x, y) → x ′ (x ′, y′), y′

Rm pm 2xg − x y
Rn pmm x 2yg − y
Rp p4m y x
Rq p4g xg − y xg − x
Rr p3m1 (x + y

√
3)/2 (x

√
3 − y)/2

Rs p31m (4xg − x − y
√

3)/2 (4yg − x
√

3 + y)/2

RG(1/2) p2 2xg − x 2yg − y
RH (1/2) pmg xg − x 2yg − y
RK (1/2) cmm 2xg − x yg − y
RG(1/4) p4 y 2xg − x

g1 pg x + xg 2yg − y
g2 pgg xg − x y + yg

RO (1/3) −(x + y
√

3)/2 (x
√

3 − y)/2
RG1 (1/3) p3 4xg/3 − (x + y

√
3)/2 (x

√
3 − y)/2

RG2 (1/3) p3 8xg/3 − (x + y
√

3)/2 (x
√

3 − y)/2

Note: Some of the formulae above are conveniently derived by techniques found in Section 7.4.
The matrix of a transformation, though they could be done by a judicious combination of Theorem
2.1 and brute force. Many are straightforward, and are set as exercises.

2. In Wythoff’s construction for 3-space, mirror lines become firstly the intersection of planes
with the surface of a sphere (great circles). We get a fundamental region bounded by such curves
and a unifying approach to the polyhedra with some degree of regularity such as the Platonic
solids (cube, icosahedron, . . . ) and many others. The techniques cover tilings of 3-space and
beyond (Coxeter, 1973, 1974).

3. All this is intimately connected with the construction of ‘error-correcting codes’ for commu-
nications. See Section 13.2 and e.g. Conway & Sloane (1988).

Exercises 6

1
√

Why cannot the groups C12 and D12 be isomorphic? Give an example of two symmetry
groups which are isomorphic but not equivalent (not from amongst the 17 types). See
Section 2.4 and Table 6.2.

2 Write out the ten elements of D10 in terms of reflections R, S in mirrors at the least possible
angle (see Section 2.4).

3 In a pattern of type pgg pick out symmetries which yield the elements of the point group.
(Cf. Example 6.11. See Section 5.7 and Exercise 5.1.) Do the same for one of type p3m1.

4
√

Prove that there are only three regular tilings of the plane.
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5 Write a computer program to produce the solutions of Table 6.5 for Archimedean plane
tilings.

6 Find a basis for the translation symmetries of the plane tiling by squares, in terms of three
generating reflections R, S, T for the symmetry group.

R S T

p q7 This Coxeter diagram, with p = 3, q = 6, produces an
Archimedean plane tiling of type (3, 6, 3, 6) by Wythoff’s
construction. Apply this construction by hand up to at least
six hexagons.

8 Obtain a tiling of type (3, 4, 6, 4) from the Coxeter diagram
shown, with p = 3, q = 6. R S T

p q

9 Obtain a plane pattern by suitable shading of one of the Archi-
medean tilings of Figure 6.23. Which of the 17 types results?
Find the plane pattern type of each example in the table.

10. Starting with the hexagonal net, design plane patterns of type (i) p6m, (ii) p3m1.
11 For each plane pattern in Examples 4.20, find a fundamental region and submotif, then

regenerate the pattern. State the type. Record what you do at each stage.
12 Repeat Exercise 6.11 for patterns (a) to (g) in Exercise 4.6.
13

√
Identify the pattern type in Figure 6.33. Find fundamental regions of two distinct shapes
and their associated submotifs and generators. Illustrate by regenerating (enough of) each
pattern by hand.

14
√

Referring to Figure 6.32, type pmg, reposition the basepoint at a 2-fold centre. Can you find
a fundamental region F within the cell? If so, give at least one possible list of symmetries
with their images of F which tile the cell. Does this work for pgg with basepoint at the
intersection of two glidelines?

15 For one pattern type in each net type, use Figure 6.32 to design a plane pattern, using the
same submotif in the fundamental region for each case.

16 Extend Exercise 15 to all 17 types.
17 Write a computer program implementing the method of Figure 6.32 for pattern type cmm,

in which the user specifies what lies inside the fundamental region.
18 Extend Exercise 17 to all patterns with rectangular cell.
19 Derive at least four lines of Table 6.6.
20 Project: implement all procedures of Figure 6.32.

Figure 6.33 Pattern for Exercise 13.
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Program polynet

This software is an implementation of the plane pattern algorithm of Figure 6.32, and
may be down loaded, with manual, from www.maths.gla.ac.uk/∼sgh.

Operation Choose the pattern type–this determines the net type
Draw motif in an enlarged fundamental region
Save and/or print the resulting pattern

Features Works (so far) on any Macintosh computer
Adjusts to screen size
Works in colour, black and white, or greyscale
User may vary size and shape of cell within its net type
Motif specified via mouse or exact typed coordinates

Notes The majority of plane patterns in this book were produced by polynet, for example
Figure 6.30, in case of design plus accident, and Figure 6.31, in which motif coordinates were
precisely calculated.

Indeed, many users have obtained surprising and striking results by complete ‘accident’,
by drawing partly ouside the fundamental region and thereby creating overlap which can be
very hard to predict.
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Matrix structures





7

Vectors and matrices

In this chapter we ease the transition from vectors in the plane to three dimensions and
n-space. The angle between two vectors is often replaced by their scalar product, which
is in many ways easier to work with and has special properties. Other kinds of vector
product are useful too in geometry. An important issue for a set of vectors is whether it is
dependent (i.e. whether one vector is a linear combination of the others). This apparently
simple idea will have many ramifications in practical application.

We introduce the first properties of matrices, an invaluable handle on transformations in
2-, 3- and n-space. At this stage, besides identifying isometries with orthogonal matrices,
we characterise the matrices of projection mappings, preparatory to the Singular Value
Decomposition of Chapter 8 (itself leading to an optimal transform in Chapter 10.)

7.1 Vectors and handedness

This section is something like an appendix. The reader may wish to scan quickly through
or refer back to it later for various formulae and notations. We reviewed vectors in the
plane in Section 1.2.1. Soon we will see how the vector properties of having direction
and length are even more useful in 3-space. The results of Section 1.2.1 still hold, but
vectors now have three components rather than two.

7.1.1 Recapitulation – vectors

A vector v consists of a magnitude |v|, also called the length of v, and a direction. Thus,
as illustrated in Figure 7.1, v is representable by any directed line segment AB with the
same length and direction. Note that |v| = |AB|. Vectors may be added ‘nose to tail’, also
illustrated in Figure 7.1. Further, if α is a real number, often called in this context a scalar,
we can form the product αv: scale the length of v by a factor |α|, and reverse its direction
if α is negative. This is a very convenient system, allowing us to write −αa for (−α)a,
−a for (−1)a, and a/α for (1/α)a, and to define subtraction by a − b = a + (−b) (see
Figure 1.7).

115
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u u +

A B (1/3)

(2/3)

(−2/3)

Figure 7.1 Vector addition, and multiplying a vector by a scalar.

We use 0 for the anomalous vector with length 0 and direction undefined, and refer
to vector a as being nonzero if a �= 0. Two vectors are (by definition) equal if they have
the same magnitude and direction. We follow the custom of writing a = PQ = RS to
mean that the length and direction of all three are the same, although PQ and RS have the
additional property of a position in space (not necessarily the same position). Now we
give a simple definition and remark with far-reaching usefulness in the sequel. Note that
in forming a/|a| we are scaling the length |a| of a by a factor 1/|a|, so the new length
is 1.

Definition 7.1 A unit vector is a vector of length 1. A set of mutually orthogonal, i.e.
perpendicular, unit vectors is said to be orthonormal.

If a is any nonzero vector then a/|a| is a unit vector. (7.1)

7.1.2 Recapitulation – coordinate axes

In ordinary Euclidean 3-space, three mutually orthogonal unit vectors i, j, k, starting
from a chosen origin O, define coordinate axes as in Figure 7.2. A directional convention
we will normally use is that vectors arrowed down and to the left point out of the paper
towards the reader. This means that any point P has unique coordinates x, y, z (with
respect to i, j, k), defined by

OP = xi + y j + zk. (7.2)

We use (x, y, z) to mean, according to context,

1. The point P,
2. The position vector OP of P,
3. Any vector with the same magnitude and direction as OP.

P(x, y, z)

O

i
j

k

x

y

z

QR

(a) (b)

Figure 7.2 How coordinates (x, y, z) define the position of a point P, starting from the
origin. Vector i points towards the reader, with j , k in the plane of the paper.
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In 2 and 3 we call x, y, z the components of the vector with respect to i , j , k, which
itself is an orthonormal set, since i , j , k are orthogonal, of length 1. They are also called
a basis for 3-space because any vector is a unique linear combination (7.2) of them. To
add vectors, we add corresponding components. To multiply by a scalar, we multiply
each component by that scalar.

Notation 7.2 The point A will have position vector a, with components (a1, a2, a3).
Similarly for other letters, except P(x, y, z). For the distance |OP| we have

|OP|2 = x2 + y2 + z2, by Pythagoras,

hence

|AB| =
√

(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2. (7.3)

Proof In Figure 7.2(b) we have |OP|2 = |OQ|2 + |QP|2 by Pythagoras in triangle
OPQ,= (x2 + y2) + z2, by Pythagoras in triangle OQR. For (7.3) we may imagine the
line segment AB translated so that A becomes the origin and B plays the part of P. Then
P has coordinates x = b1 − a1, and so on, and |AB|2 = |OP|2.

Direction cosines For general OP these are the cosines of the angles α, β, γ between OP
and the positive directions on the x-, y- and z-axes. The angle γ is shown in Figure 7.3.
Thus with |OP| = r we have x = r cos α, y = r cos β, z = r cos γ .

Exercise Prove that cos2 α + cos2 β + cos2 γ = 1.

7.1.3 Right handed versus left handed triples

In Section 1.2.3 we used the idea of the sense (clockwise or anti-clockwise) of a non-
collinear triple of points in the plane. Here we investigate its analogue in 3-space. By
convention i, j, k is always a right handed system or triple, as in the definition below.

Definition 7.3 Vectors a, b, c are coplanar if the points O, A, B, C are coplanar. An
ordered triple a, b, c of non-coplanar vectors is right handed if:

γ

P(x, y, z)

z = r cos

O

x

y

z

γ

r

(x, y, 0)

Figure 7.3 The direction cosine of OP with respect to the z-axis is cos γ .
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a
b

c

Right handed: a, b, c   b, c, a   c, a, b
Left handed: c, b, a   a, c, b   b, a, c

Figure 7.4 Right handed versus left handed triples, with a towards the reader.

in plane OAB viewed from C, the rotation about O that moves A to B by the shorter
route is anti-clockwise (i.e. the sense of OAB is anti-clockwise),

otherwise a, b, c is a left handed triple (NB: a, b, c need not be orthogonal in this
definition).

We see that if a, b, c is right handed then so are the cyclic shifts of this ordering, namely
b, c, a and c, a, b. The other possible orderings, the reverses of the above, are then the
left handed ones.

Right Hand Corkscrew Rule The righthandedness condition is equivalent to the state-
ment: c points to the same side of plane OAB as the direction of motion of a right handed
screw placed at O perpendicular to this plane, and turning OA towards OB. An alternative
description of right-handedness in the case a, b, c are mutually perpendicular is: if the
first finger of the right hand points along OA and the second along OB, then the thumb,
when at right angles to the first two, points along OC.

With a computer screen in mind it is quite usual to take our b, c as defining respectively
x-, y-axes, in the plane of the page/screen. Then the z-axis points towards the reader in a
right handed system and into the page/screen in the left handed case.

Exercise Is the triple a, b, c right or left handed, where a = (0, 0,−1), b = (−1, 1, 0),
and c = (1, 0, 2)? What if the order of a, b is interchanged? See Theorems 7.41, 7.42.

7.1.4 The scalar product

Given a pair of vectors we may calculate, as below, a scalar product. From this flows a
systematic and short way to determine for example (i) the angle between vectors and (ii)
whether a triple is right handed.

Definition 7.4 The dot (or inner) product of vectors u and v is

u · v = u1v1 + u2v2 + u3v3. (7.4)

Angles Other notations are (u, v), 〈u, v〉, (u|v). The angle properties of this product
stem from (7.5) to (7.7) following.

u · u = |u|2. (7.5)
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u

φ

If φ is the angle between nonzero vectors u, v
(that is, the one satisfying 0 ≤ φ ≤ π ) then

cos φ = u ·v
|u||v| . (7.6a)

(Component formula) A vector u has components u · i, u · j, u · k. (7.6b)

These are its direction cosines if u is a unit vector. Thirdly, expressing the inner product
in terms of distances (see also (7.8)).

2u · v = |u|2 + |v|2 − |u − v|2. (7.7)

Proof Formula (7.5) is the trivial but useful observation that u · u = u2
1 + u2

2 + u2
3, whilst

(7.6) comes from the Cosine Rule in triangle OUV (Figure 7.5) and (7.7) is by direct
calculation:

u u −

O

U

V

φ

Figure 7.5 The cosine rule.

2|u||v| cos φ = |u|2 + |v|2 − |u − v|2 (Cosine Rule)

= (
u2

1 + u2
2 + u2

3

)+ (
v2

1 + v2
2 + v2

3

)
− (u1 − v1)2 − (u2 − v2)2 − (u3 − v3)2

= 2u1v1 + 2u2v2 + 2u3v3 = 2u · v.
So cos φ = u · v/|u||v|. The deduction (7.6b) about components is typified by u1 =
|u| cos α (where α is the angle between u and the x-axis) = |i ||u| cos α(as |i | = 1) =
u · i (by (7.6a)). Thus, if |u| = 1 then u1 = u · i = cos α.

Basic properties Definition 7.4 of scalar product u · v was given in coordinates, but by
(7.7) it is independent of the choice of i, j, k, even if we should choose a left handed
system. The basic commutative and distributive laws stated below are a consequence of
(7.4).

v · u = u · v,
u · (v+ w) = u · v+ u · w,

u · (αv) = α(u · v) = (αu) · v. (7.8)

Notice that (7.7) now follows from (7.8) without the Cosine Rule, for |u − v|2 = (u −
v) · (u − v) = u · u + v · v− u · v− v · u = |u|2 + |v|2 − 2u · v. Any scalar product of
two vectors that satisfies (7.8) is called an inner product, with the dot product as standard
inner product. We need the compact notation of the Kronecker delta δik, defined as 1 if
i = k and 0 otherwise.

Theorem 7.5 (a) Two nonzero vectors u,v are perpendicular if and only if u · v = 0.
(b) Three vectors e1, e2, e3 are mutually orthogonal unit vectors (form an orthonormal
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set) if and only if

ei · ek = δik. (7.9)

Proof The argument is simple but important. We use the notation of (7.6).
(a) u · v = 0 ⇔ cos φ = 0 ⇔ φ = π/2 (i.e. u and v are perpendicular).
(b) (7.9) combines two statements: (i) ei · ei = 1 ⇔ |ei |2 = 1 ⇔ ei is a unit vector, and

(ii) ei · ek = 0 if i �= k. That is, the three vectors are mutually perpendicular.

Notice that e1, e2, e3 play the same role as the orthonormal i, j, k. This often helps
notationally, as in Chapter 8. Further results about vector products must be postponed
until we have reviewed matrices in Section 7.2.

Exercise Show that the vectors a = (1, 2, 3) and b = (6, 3,−4) are perpendicular (The-
orem 7.5). Find the angle between a diagonal OA of a cube and an adjacent face diagonal
by using suitable coordinates for A. (Use (7.6).)

7.1.5 A trip through n-space

Though 3-space is an important concern, it is essential for the sequel that we consider
vectors with more than three components. The current Section, 7.1.5, will be more abstract
than most in Chapter 7, but it serves as an introduction to general abstract vector spaces,
as well as providing a necessary foundation for our particular cases.

We define Rn to be the set of all n-tuples x = (x1, x2, . . . , xn), where we call x both
a vector with components xi and a point with coordinates xi , as in the case n = 3. We
perform the same calculations with coordinates as before, for example adding vectors
and multiplying by a scalar. The dot product extends simply to

u · v = u1v1 + u2v2 + · · · + unvn,

for which (7.1) to (7.9) continue to hold, with the proviso that the angle between vectors
u, v is now defined by (7.6a): cos φ = u · v/|u||v|, where |u| = √∑

u2
i = u · u, and the

component formula (7.6b) requires a separate proof (Theorem 7.14). The unit sphere in
n-space is Sn−1 = {x ∈ Rn: |x| = 1}.

Setting n = 3, we obtain the usual model of our three-dimensional world. Thus S1 is
a circle in the plane and S2 the usual sphere in 3-space.

Definition 7.6 Vectors u1, u2, . . . , uk in Rn are called linearly dependent, or LD, if some
linear combination λ1u1 + λ2u2 + · · · + λkuk equals 0 (i.e. the zero vector (0, 0, . . . , 0)),
where not all the coefficients λi are zero. In this case any vector with nonzero coeffi-
cient, say λ1 �= 0, equals a linear combination of the rest, u1 = (−λ2/λ1)u2 + · · · +
(−λk/λ1)uk . The ui are called (linearly) independent, or LI, if they are not dependent.
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An often useful test is:

u1, u2, . . . , uk are independent (LI) if, for any scalars ci ,

c1u1 + c2u2 + · · · + ckuk = 0 ⇒ all ci are zero.

Theorem 7.7 Any n + 1 vectors in Rn are linearly dependent.

Proof We use the Principle of Mathematical Induction. That is, if the result holds for
n = 1, and its truth for n = k implies its truth for n = k + 1 for k = 1, 2, 3, . . . , then
the result holds for all n ∈ N. Proceeding with the proof we check the case n = 1: if a, b
are two numbers then there are coefficients λ, µ, not both zero, such that λa + µb = 0.
This is almost trivial, for if a = b = 0 we may take λ = µ = 1, whilst if a �= 0 then λ =
−b/a, µ = 1 will do; the remaining case a = 0, b �= 0 is covered by λ = 1, µ = −a/b.
So suppose that Theorem 7.7 is true for some positive integer n = k. We are to deduce
the truth for n = k + 1.

Thus let u1, . . . , uk+2 be k + 2 arbitrary vectors in Rk+1. To deduce they are dependent,
suppose, reordering if necessary, that ck+2 �= 0, and consider the k + 1 vectors

vi = ui − (ci/ck+2)uk+2 (1 ≤ i ≤ k + 1).

Since the last coordinate of each is 0 by construction, these amount to k + 1 vectors
in Rk , so by the inductive hypothesis there are scalars λi (1 ≤ i ≤ k + 1), not all zero,
such that

∑
λivi = 0. But from the definition of the vi this gives a linear relation on

u1, . . . , uk+2 with not all coefficients zero. Hence these vectors are LD and the theorem
follows by induction.

Theorem 7.8 If u1, u2, . . . , un are linearly independent vectors of Rn then they form a
basis of Rn, that is, any a in Rn is a unique linear combination of u1, u2, . . . , un.

Proof The n + 1 vectors a, u1, u2, . . . , un are dependent by Theorem 7.7, so we have
that λ0a + λ1u1 + λ2u2 + · · · + λnun = 0 with not all coefficients zero. In fact λ0 is
nonzero, otherwise the ui would be dependent. Thus a is some combination of the vectors
ui . Furthermore, the combination is unique, because a =∑

λi ui =
∑

λ′i ui implies∑
(λi − λ′i )ui = 0 and hence, since the ui are independent, each coefficient λi − λi

′

is zero, or λi = λ′i .

Definition 7.9 We have considered n-space, Rn , consisting of n-vectors, but we need
something broader because, for example, a plane through the origin in R3 is effectively
a copy of R2. We define more generally a vector space V to be either Rn for some n, or
a subset thereof closed under vector addition and multiplication by scalars. If U, V are
vector spaces with U,⊆ V we say U is a subspace of V (or V is a superspace of U). As
before, a basis of V is a subset B = {v1, . . . ,vn} such that every element of V is a unique
linear combination of the vi (this idea was first introduced at (4.2)). To find B we may
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i

P

O

y

x

v2

v1
j

Figure 7.6 Exemplifying Part (ii) of Theorem 7.10. With respect to the basis {i, j} we
have OP = 3i + 2 j , but taking {v1,v2} as basis gives OP = v1 + 2v2.

use its property (see below) of being a maximal linearly independent subset (MLI) of V.
That is, B itself is LI but the set v1, . . . ,vn, a is dependent for any a in V.

Theorem 7.10 (a) B = {v1, . . . ,vn} is a basis of a vector space V if and only if B
is a maximal linearly independent subset. (b) Every basis of V has the same size. See
Figure 7.6.

Proof (a) If B is a basis it is clearly MLI, for any further element a of V is by definition
a linear combination of the vi . Conversely, suppose B is MLI and let a be in V. Then
the n + 1 vectors v1, . . . ,vn, a are dependent so a is a linear combination

∑
λivi . To

show this combination is unique, as required for a basis, suppose that also a =∑
µivi .

Then, by subtraction, 0 =∑
(λi − µi )vi , implying by the independence of the vi that

λi = µi for each i. Thus our arbitrarily chosen vector a is a unique linear combination
of v1, . . . ,vn , which therefore form a basis.
(b) Suppose u1, . . . , um and v1, . . . ,vn are bases of V, with m > n, and express each ui

in terms of the v-basis, say

u1 = a11v1 + · · · + a1nvn,

u2 = a21v1 + · · · + a2nvn,

. . .

um = am1v1 + · · · + amnvn.

Then we have m vectors of coefficients (ai1, . . . , ain), 1 ≤ i ≤ m. Since these vectors lie
in Rn , and m > n, they are dependent by Theorem 7.7. But this implies that u1, . . . , um

are dependent, a contradiction since they form a basis. Hence m > n is impossible, and
by symmetry so is n > m. Thus m = n as asserted.

Definition 7.11 The dimension of a vector space is the number of linearly independent
vectors required for a basis. This is well-defined, by Theorem 7.10, and shown by Theo-
rem 7.8 to be n for Rn , as we would hope. The zero vector is by definition in V , and if it
is the only member then V is allocated dimension 0 since no basis elements are required.
Agreeably, lines and planes have respective dimensions 1 and 2.

We may abbreviate a list e1, e2, . . . , en to {ei }1≤i≤n , or simply to {ei } if the range
of i is known from the context. Then {ei } is called an orthonormal set if its members
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are mutually orthogonal unit vectors or, more briefly, ei · ek = δik (1 ≤ i, k ≤ n) as used
earlier for the case n = 3 in (7.9). If in addition {ei } is a basis, it is called an orthonormal
basis, or ONB.

Finding a basis Let u1, . . . , um lie in vector space V . Their span, defined as

span{u1, . . . , um} = {all linear combinations of the ui },
is a subspace of V. If it is the whole of V we say the ui span V. Theorem 7.10 shows
that the ui form a basis of V if and only if two of the following hold (they imply the
remaining one):

1. {u1, . . . , um} spans V,

2. m = DimV (the dimension of V ),

3. {u1, . . . , um} is linearly independent. (7.10)

Example 7.12 (i) Extend the sequence of vectors u1, u2, u3 below to a basis of R4,
(ii) find a basis for the space spanned by v1,v2,v3 below.

u1 = (1, 2, 3, 4), v1 = (1, 2, 1),
u2 = (0, 1, 5, 1), v2 = (0, 1, 2),
u3 = (0, 0, 2, 3), v3 = (1, 3, 3).

Solution (i) We are given the dimension is 4, and the vectors ui are LI because of the
‘triangle’ of zeros. Formally,λu + µv+ νw = 0 ⇒ (λ, 2λ+ µ, 3λ+ 5µ+ 2ν) = 0 ⇒
λ, µ, ν = 0, so Definition 7.6 applies. Thus by criteria 2, 3 of (7.10) we only have to find
a vector that is not a linear combination of them. An easy solution is u4 = (0, 0, 0, 1).

(ii) Since v3 = v1 + v2 this vector is not required. Also v1,v2 are LI, for one is not
a multiple of the other. Hence {v1,v2} is a basis by satisfying criteria 1, 3 above. The
space they span thus has dimension 2.

Remarks 7.13 (1) Extending to a basis As exemplified in (i) above, every LI subset of
V may be extended to a basis: we repeatedly append any vector not dependent on those
already chosen. Since we are working within some Rn of finite dimension, we must finish
with an MLI set, hence a basis.

(2) A dimension argument If X = {x1, . . . , xs} and Y = {y1, . . . , yt} are sets of lin-
early independent vectors in a space V , with s + t > dim V , then span(X) and span(Y)
have a nonzero vector z in common.

Proof of (2) The set X ∪ Y has more than DimV vectors, so it is LD. Hence one vector,
say x1, is a linear combination of the rest. That is, it is a linear combination of vectors of
which some are in X, some in Y, some possibly in both, and we may write x1 = x + y,
where x is in span(X) and y in span(Y). Then z = x1 − x = y is common to span(X )
and span(Y ).

(3) Orthogonal vectors are independent.
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Proof of (3) Let u1, . . . , um be nonzero orthogonal vectors in a space V, and suppose
there is a linear relation

∑
λi ui = 0. Then for any k with 1 ≤ k ≤ m we have

0 = uk ·
∑

i
λi ui =

∑
i
λi (uk · ui ) = λk(uk · uk) (the us being orthogonal)

= λk |uk |2.
Since uk �= 0, this implies that λk = 0 (1 ≤ k ≤ m), and so u1, . . . , um are independent.

Theorem 7.14 (The Component Formula) Suppose that the n vectors e1, e2, . . . , en in
Rn are an orthonormal set, that is, ei · ek = δik (= 1 if i = k, otherwise 0). Then {ei } is
an orthonormal basis of Rn, and any vector a in Rn has components ai = a · ei with
respect to this basis. That is, a = a1e1 + · · · + anen (and |a|2 =∑

a2
i ).

Proof Firstly, the ei are independent as shown above and, since there are n of them,
they form a basis by Theorem 7.8. (They are given to be an orthonormal set, so this
basis is orthonormal.) Thus a = a1e1 + · · · + anen for unique coefficients ai . Take the
scalar product of each side with e1, say. We obtain a · e1 = (a1e1 + · · · + anen) · e1 which
(again since e1 · ei = 0 if i �= 1) gives a · e1 = a1e1 · e1 = a1 as required. Similarly for
the other coefficients ai .

Definition 7.15 The coordinates xi of the point x = (x1, x2, . . . , xn) are the components
of x w.r.t. the standard basis e1, e2, . . . , en , where ei has a 1 in the i th place and zeros
everywhere else. That is, x = x1e1 + x2e2 + · · · + xnen with e1 = (1, 0, . . . , 0), e2 =
(0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1). Note that the ei are used to refer to basis
vectors generally, so cannot be assumed to be the standard basis unless explicitly de-
fined to be, as in this paragraph. In ordinary 3-space, whichever orthonormal basis
i, j, k we choose becomes the standard basis by definition, for in coordinate terms
i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Example 7.16 One orthonormal basis of R4 is e1 = (1/2)(1, 1, 1, 1), e2 = (1/2)(1, 1,

− 1, − 1), e3 = (1/2)(1,−1, 1,−1), e4 = (1/2)(1,−1,−1, 1). The components of
a = (1, 2, 3, 4) with respect to this basis are a · e1 = (1/2) × (1+ 2+ 3 + 4) =
5, a · e2 = (1/2)(1 + 2 − 3 − 4) = −2, a · e3 = (1/2)(1 − 2 + 3 − 4) = −1, a · e4 =
(1/2)(1 − 2 − 3 + 4) = 0. So in fact a is a linear combination of just the first three basis
vectors.

Exercise Express the vector (2, 1, 0, 1) as a linear combination of the basis vectors in
Example 7.16. Check your answer.

Definition 7.17 (Extending to an ONB) An orthonormal subset e1, e2, . . . , em of V ,
with m < DimV , may be extended to an ONB by repetitions of the following steps for
m, m + 1, . . . , (DimV ) − 1; that is, until the extended set has size dim V .

1. Find a vector w independent of e1, e2, . . . , em ,
2. Subtract from w its components w.r.t. the ei , to obtain, say, u,
3. Divide u by its own length to obtain em+1, where e1, e2, . . . , em+1 is orthonormal.
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Figure 7.7 Illustration of projection and the Gram–Schmidt process.

This is called the Gram–Schmidt process. To verify its efficacy we note first that u �= 0
since we obtained it by subtracting from w only a linear combination of e1, e2, . . . , em ,
of which w is independent by construction. It remains to show ei · u = 0 for 1 ≤ i ≤ m.
But

ei · u = ei · [w −
m∑

k=1

(w · ek)ek] = ei · w −
m∑

k=1

(w · ek)ei · ek

= ei · w − w · ei (since ei · ek = δik) = 0.

If no orthonormal subset is specified we start with {e1}, where e1 is as any nonzero vector
in V, divided by its own length.

Example 7.18 (i) Considering Figure 7.7, the vectors e1, e2 form an ONB for the plane
R2 (shaded). An equally valid ONB results if we rotate the pair in its own plane, or
change the sign and hence sense of either.

(ii) If in the Gram–Schmidt process we have a basis e1, e2, w of R3, as depicted in
Figure 7.7, the next step is to subtract from w the sum of its components with respect to
e1 and e2. This sum is represented in the figure by OW1 + OW2 = OW′. It is called the
projection of w (= OW) onto the subspace spanned by e1, e2. Subtracting it from OW
gives OW3 which, scaled to unit length, gives e3.

Exercise Find an orthonormal basis for span{u2, u3} of Example 7.12.

Definition 7.19 Following Example 7.18 we state more generally that if e1, . . . , ek is an
ONB for a subspace V of U that extends to an ONB e1, . . . , en for U then ek+1, . . . , en

spans a subspace called the orthogonal complement V⊥ of V in U and

(a) any w in U is a unique sum w ′ + w⊥, with w ′ ∈ V , w⊥ ∈ V⊥,

(b) w ′ is called the orthogonal projection of w onto V.

In Figure 7.7, OW ′ is the projection of OW onto the plane span{e1, e2}, and span{e3} is
the orthogonal complement of span{e1, e2} in R3. Because of the unique expression of a
vector in terms of basis elements, V⊥ is the subspace consisting of the vectors of U that
are orthogonal to every vector in V. This in turn shows that V⊥ is independent of which



126 Vectors and matrices

ONB is chosen. The definition via some basis makes it clear that taking the orthogonal
complement twice brings us back to V.

Remark 7.20 The following result is used in various forms throughout the book: for
vectors x, y in Rn we have (a) x · y ≤ |x||y|, and therefore (b) |x + y| ≤ |x| + |y|, and
(c) |x − y| ≤ |x − z| + |z − y|, the last called the triangle inequality because it states
that (not only in the plane but in n-space) the length of one side of a triangle does not
exceed the sum of the lengths of the other two sides.

(a) x · y ≤ |x||y|

x y

zProof For all values of a real number t we have the inequality 0 ≤
(tx + y) · (tx + y) = |x|2t2 + 2(x · y)t + |y|2, by the formula c · c =
|c|2 and (7.8). Since this quadratic in t can never be negative, it cannot
have two distinct roots

−x · y ±
√

(x · y)2 − |x|2|y|2,
and so (x · y)2 ≤ |x|2|y|2. Because |x|2|y|2 ≥ 0, we may infer assertion (a). Furthermore,
(b) is equivalent to |x + y|2 ≤ |x|2 + |y|2 + 2|x||y|, or, by the formula |c|2 = c · c, to
(a). Finally, |x − y| = |(x − z) + (z − y)| ≤ |x − z| + |z − y|, by (b).

7.2 Matrices and determinants

Matrices are used in linear equation solving (Example 7.35) and linear transformations,
each of which covers a great deal of ground. Our first major use will be in the probability
chapters 9 to 11, and then generally throughout the text. Determinants play a supporting
role in all this, for example detecting whether transformations are invertible, vectors
dependent, or coordinate systems right handed.

This section is a reminder of the most basic theory and an introduction to what
might not appear in a first course. Possible examples of the latter are matrix multiplica-
tion tips, Linear Dependence Rule 7.28(5), Vandermonde determinants, and especially
Section 7.2.5 on block matrix multiplication.

7.2.1 Matrices

Let A =

⎡
⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn

⎤
⎥⎥⎦ ,

an array of m rows of numbers
arranged in n columns.

Then we say A is the m × n matrix [aik], and call aik the ikth entry, or element. Thus
the rows of A are indexed by the first subscript, i, and the columns by the second, k.
Especially in proving results, it is sometimes useful to write (A)ik for aik. We may write



7.2 Matrices and determinants 127

Am×n to emphasise that matrix A is m × n; the set of such matrices, with real entries, is
Rm×n . Equality of matrices, say A = B, means that A and B have the same type m × n
(i.e., the same number of rows and columns) and that aik = bik for each pair i, k.

Definition 7.21 (Two special matrices) The sequence of all elements of type aii (the
diagonal elements) is called the main diagonal. The identity m × n matrix I (written In

if ambiguity might arise) has diagonal elements 1 and the rest 0. The zero m × n matrix
has all its entries zero, and is usually denoted by ‘O’ (or often just ‘0’ if not displayed),
the context making clear that this is the intended meaning. If necessary we write Om×n ,
or simply On if m = n. Thus for example:

O3 =
⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ , I3 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

Row vectors Any row [ai1 . . . ain] forms a 1 × n matrix or row vector, which may
be identified with a vector in Euclidean n-space, ai = (ai1, . . . , ain). Also we write
A = Rows(ai ) = Rows(a1, . . . , am), possibly with [ ] instead of ( ), to mean that matrix
A has rows a1, . . . , am . Thus I2 = Rows[(1, 0), (0, 1)]. Similarly for columns.

By analogy with the matrix notation A = [aik] we may specify a row (or column)
vector by its ith element, writing [xi ] for [x1 . . . xn] and (xi ) for (x1, . . . , xn). Thus for
example [2i + 1]1≤i≤3 = [3 5 7].

Matrix sums and products Matrices may be added, and multiplied by scalars, in the
same way as vectors. Multiplication is different. If (and only if) the rows of matrix A
have the same length n as the columns of matrix B, then the product AB exists, defined by

(AB)ik = (row i of A) · (column k of B) =
n∑

s=1

aisbsk, (7.11)

which is the inner product of row i of A and column k of B, regarded as vectors. Thus
if A is m × n and B is n × p then AB exists and is m × p. We emphasise that n is the
row length of A and column length of B. In forming AB we say B is pre-multiplied by
A, or A is post-multiplied by B.

Examples 7.22 Sometimes we subscript a matrix by its dimensions m × n, distinguished
by the ‘×’. For example it may be helpful to write Am×n Bn×p = Cm×p.

(1) [a1 a2 a3]

⎡
⎣b1

b2

b3

⎤
⎦ = a1 a1 + a2 b2 + a3 b3 = a · b,

(2)

[
1 2 1
2 3 5

]⎡⎣2 1
0 3
0 1

⎤
⎦ =

[
2 8
4 16

]
,

2 × 3 3 × 2 2 × 2
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(3) row i of AB = (row i of A)B,
(4) col j of AB = A(col j of B).

Cases (3) and (4) provide a useful insight to bear in mind: the rows of a product correspond
to those of the first matrix, whilst the columns correspond to those of the second.

Exercise Write down the products AB and BA for several pairs of 2 × 2 matrices A, B
until you obtain AB different from BA. Can you get this using only the numbers 0 and 1?

Definition 7.23 A diagonal matrix D is one which is square and has all its off-diagonal
entries zero: dij = 0 whenever i �= j . Thus D may be defined by its diagonal entries,
D = diag(d11, d22, . . . , dnn). The identity matrix D = I is an important special case, as
we begin to see soon in (7.14).

Example 7.24 The case n = 3.⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦
⎡
⎣1 2 5

6 5 9
1 0 7

⎤
⎦ =

⎡
⎣ λ1 2λ1 5λ1

6λ2 5λ2 9λ2

λ3 0 7λ3

⎤
⎦ .

This leads us to see that, D being an n × n diagonal matrix,

diag(λi )Rows(Ri ) = Rows(λi Ri ),

Cols(Ci )diag(λi ) = Cols(λi Ci ).
(7.12)

In particular,

diag(a1, . . . , an) diag(b1, . . . , bn) = diag(a1b1, . . . , anbn), (7.13)

a matrix multiplied by the identity is unchanged,

AI = A and IB = B. (7.14)

Example 7.25 The product of n copies of A is written An , with A0 defined to be I. The
usual index laws hold: Am An = Am+n, (Am)n = Amn .

Exercise (i) Find the product A of the 2 × 2 and 2 × 3 matrices of Examples 7.22(2)
above. Can they be multiplied in either order? (ii) Write down a diagonal matrix D such
that DA is matrix A with the first row unchanged and the second row multiplied by −2.

Transposes The transpose AT of a matrix A is obtained by rewriting the successive
rows as columns. In symbols, (AT)ik = (A)ki = aki . Thus for example

A =
[

1 2 3
4 5 6

]
, AT =

⎡
⎣1 4

2 5
3 6

⎤
⎦ .

Notice that we now have the option of writing a column vector as the transpose of a row
vector thus: [x1 x2 . . . xn]T. We have the following three calculation rules of which the
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second, (AB)T = BT AT, is often called the reversal rule for matrix transposes.

(A + B)T = AT + BT, (AB)T = BT AT, (AT)T = A. (7.15)

Proof We prove the reversal rule by showing that (AB)T and BT AT have the same ik
entry for each pair i, k. We have

((AB)T)ik = (AB)ki by definition of transpose
=∑

s aksbsi by definition of AB
=∑

s(BT)is(AT)sk by definition of transpose
= (BT AT)ik by definition of BT AT.

The third line used implicitly the commutativity of multiplication amongst numbers. In
the context of transposition, two useful concepts are the following. A square matrix A
is symmetric if AT = A, and skew-symmetric (anti-symmetric) if AT = −A. Notice that
in the skew case every diagonal element aii satisfies aii = −aii, hence the main diagonal
consists of zeros.

Symmetric:

⎡
⎣1 3 7

3 −2 5
7 5 6

⎤
⎦ Skew-symmetric:

⎡
⎣ 0 5 −6
−5 0 2

6 −2 0

⎤
⎦ .

In particular, a symmetric matrix is determined by its elements on and above the main
diagonal, whilst a skew-symmetric matrix requires only those above. As we see above,
a 3 × 3 skew-symmetric matrix requires only three elements to specify it.

Remarks 7.26 (a) AAT is symmetric for any matrix A, whilst for square A we have (b)
A + AT is symmetric but A − AT is skew, and (c) A can be expressed uniquely as the
sum of a symmetric and a skew-symmetric matrix, namely

A = (1/2)(A + AT) + (1/2)(A − AT), (7.16)

called respectively the symmetric and skew-symmetric parts of A.

Proof (AAT)T = (AT)T AT = AAT, by (7.15), whereas (A + AT)T = AT + (AT)T =
AT + A = A + AT, again by (7.15). The skew case is an exercise below. (c) The
equality holds trivially. To prove uniqueness, suppose that A has two expressions
A1 + B1 = A2 + B2 (i), where A1, A2 are symmetric and B1, B2 skew-symmetric. Then
taking the transpose of each side yields a second equation A1 − B1 = A2 − B2 (ii).
Adding (i) and (ii) we obtain 2A1 = 2A2, and subtracting, 2B1 = 2B2. Thus the sym-
metric and skew-symmetric matrices in (7.16) are unique.

Exercise Prove that if matrix A is square then A − AT is skew-symmetric.
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Example 7.27 The matrix A below splits into symmetric and skew-symmetric parts as
shown.

A =
⎡
⎣1 5 7

3 2 1
2 6 0

⎤
⎦ =

⎡
⎣ 1 4 4.5

4 2 3.5
4.5 3.5 0

⎤
⎦+

⎡
⎣ 0 1 2.5

−1 0 −2.5
−2.5 2.5 0

⎤
⎦ .

This technique will be useful in (8.6) of the next chapter for determining the axis of a
rotation in 3-space from its matrix.

Exercise Find the symmetric and skew-symmetric parts of the transpose of A above.
Finally in this section we note that fortunately matrix multiplication is associative,

that is, if all the implied products exist then

(AB)C = A(BC). (7.17a)

As a result, we may bracket the product of any number of matrices in any way we wish, or
omit the brackets altogether when writing such a product. The proof involves writing out
the ikth element of (AB)C as a double summation and reversing the order of summation,
which gives the ikth element of A(BC); indeed both may be written

(ABC)ik =
∑
r,s

airbrscsk (7.17b)

and similarly (by induction) for any size of product. Another useful expression, from
straightforward application of Examples 7.22(3), (4), is

(ABC)ik = (row i of A)(col k of BC)

= (row i of A) × B × (col k of C). (7.17c)

Lastly, a most ubiquitous formula which we require first in Section 7.2.4, and often in
Chapter 8. Let A be an m × n matrix and X = [x1 x2 . . . xm], Y = [y1 y2 . . . yn]. Then

X AY T =
∑
r,s

ars xr ys . (7.17d)

Exercise Deduce Formula (7.17d) from (7.17b).

7.2.2 Determinants

Determinants (first introduced at (4.7)) are important for computing with vectors and
transformations, and for distinguishing between direct and indirect isometries in the
plane (see Section 1.2.3), and in 3-space and higher dimensions. Their role in integration
will be exploited in later chapters on probability.
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First results

We have already introduced 2 × 2 determinants, proving certain results and making
constructions for cells of plane patterns (see Notation 4.7 ff.):∣∣∣∣a b

c d

∣∣∣∣ = ad − bc.

(In case n = 1, the determinant of A = [a11] is defined to be a11.) This enables us to
define the determinant of an n × n matrix A, denoted by det A or more briefly |A|, by
specifying how it is to be computed from determinants of (n − 1) × (n − 1) matrices.
We first define the minor of an element aik to be the determinant of the submatrix of A
obtained by deleting row i and column k. The cofactor Aik of aik is the corresponding
minor prefixed by + or − according to the sign of (−1)i+k . Then the determinant of A is
given by

|A| = a11 A11 + a12 A12 + · · · + a1n A1n. (7.18a)

For example,

n = 3:

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3

c2 c3

∣∣∣∣− a2

∣∣∣∣b1 b3

c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2

c1 c2

∣∣∣∣ .
Notice the cofactor signs alternate as we proceed along the row; indeed they must do
so, from their definition (−1)i+k , as we proceed along any row or column. Moreover,
since a row or column may contain a proportion of zeros, it is useful to be aware of the
following possibilities.

Expansion by row i: |A| =
n∑

r=1

air Air . (7.18b)

Expansion by column k: |A| =
n∑

s=1

ask Ask . (7.18c)

The determinant below is most simply expanded by its third column, which contains two
zeros ∣∣∣∣∣∣∣∣

1 2 3 4
2 1 0 9
5 −2 0 6
2 4 8 1

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣
2 1 9
5 −2 6
2 4 1

∣∣∣∣∣∣− 8

∣∣∣∣∣∣
1 2 4
2 1 9
5 −2 6

∣∣∣∣∣∣ .

There follow some rules that will be very useful in the sequel; they are proved in the last
section, 7.5. The first rule will be used to justify the expansion of |A| by any row, given
the expansion by row 1, whilst |AT| = |A| extends this to expansion by any column. (For
machine computation, see Golub & van Loan, 1996.)
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Rules 7.28 (Evaluating determinants)

1. Switching two rows or columns changes the sign of a determinant. Hence a deter-minant
with two identical rows or columns must equal zero.

2. Multiplying each element of a row (or each element of a column) by the same scalar α

multiplies the determinant by α.
3. The value of a determinant is unaffected by the addition of a multiple of one row to another.

Similarly for columns.
4. |AB| = |A||B| and |AT| = |A|.
5. |A| = 0 if and only if some linear combination a1C1 + a2C2 + · · · + anCn of the columns

(or of the rows) of A is zero. Of course, not all the coefficients ai are allowed to be zero.
Thus the condition amounts to linear dependence of the columns (or of the rows). (For the
case n = 3 see also Theorems 7.41(c) and 7.42).

Example 7.29 In evaluating the determinant below we have first simplified by subtracting
2× column 1 from column 2, then 5× column 1 from column 3 (Rule 3).∣∣∣∣∣∣

1 2 5
2 5 2
1 6 3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 0 0
2 1 −8
1 4 −2

∣∣∣∣∣∣ = 1 ·
∣∣∣∣1 −8
4 −2

∣∣∣∣ = −2 + 32 = 30.

Exercise Use some of Rules 1–5 to evaluate the above determinant in a different way
(the answer should of course be the same).

Three special cases

(1) (Diagonal matrices)

∣∣∣∣∣∣
d 0 0
0 e 0
0 0 f

∣∣∣∣∣∣ = d

∣∣∣∣e 0
0 f

∣∣∣∣ (plus two zero terms) = def

More generally, the determinant of diag (d1, . . . , dn) equals d1d2 . . . dn , the product
of the diagonal elements.
(2) (Triangular matrices) An upper triangular matrix is one with its nonzero elements
confined to the diagonal and above. That is, it looks like the example following, with a
triangle of zeros below the diagonal.∣∣∣∣∣∣∣∣

d1 1 2 3
d2 4 5

d3 6
d4

∣∣∣∣∣∣∣∣
= d1

∣∣∣∣∣∣
d2 4 5

d3 6
d4

∣∣∣∣∣∣ = d1d2

∣∣∣∣d3 6
d4

∣∣∣∣ = d1d2d3d4.

Expanding each determinant above by its first column, we see that, for this larger class
than (1), the determinant is still the product of the diagonal elements. The same holds for a
lower triangular matrix, with zeros above the diagonal, because the upper and lower types
are transposes of each other, and |AT| = |A|. In fact, converting a matrix to triangular
form by row operations can be the easiest way to evaluate a determinant. Notice too



7.2 Matrices and determinants 133

that the rows of a triangular matrix with nonzero diagonal elements are independent, by
Rule 5.

Triangular matrices are developed further in Section 8.3.3, where they provide an
important matrix factorisation algorithm which is used for simulation with the normal
distribution in Section 11.3.5 and later.

Exercise Find |A|, where A = Rows [(1, 2, 3, 4), (0, 0, 2, 9), (0, 0, 0, 4), (0, 5, 6, 0)].

Notation We use det A rather than |A| if the vertical lines | | might be construed as the
modulus or absolute value of a number, or as the norm of a vector. Thus the absolute
value of the determinant is written | det A|. Notice that when we evaluate the determinant
of a matrix the result is a polynomial in the matrix elements, since we use multiplication,
addition and subtraction, but not division. Here is a result which may give this polynomial
in a factorised form, bypassing a potentially tedious calculation; then we are ready for
Vandermonde.

Theorem 7.30 (Factor Theorem) Let α be a real number, f (x) a polynomial. Then x − α

is a factor of f (x) if and only if f (α) = 0.

Proof Suppose we divide x − α into f (x), obtaining quotient q(x) and remainder R.
That is, f (x) = q(x)(x − α) + R. Setting x = α, we obtain R = f (α). Hence the result.

Example 7.31 (i) Let f (x) = x5 − x4 + x2 + 9x − 10. It is not obvious that this poly-
nomial has a factor x − 1, but f (1) = 1 − 1 + 1 + 9 − 10 = 0 so, by the Factor Theorem,
x − 1 is a factor.

(ii) Let f (x) = x3 − (a + b + c)x2 + (ab + bc + ca)x − abc. This looks pretty
symmetrical; in fact we find that f (a) = 0, and the same for f (b), f (c). By the
Factor Theorem (x − a), (x − b), (x − c) are all factors of the third degree
polynomial f (x), which is therefore a constant multiple K of their product: f (x) =
K (x − a)(x − b)(x − c). Finally, the coefficient of x3 in f (x) is 1, so K = 1.

(iii) The Factor Theorem is particularly powerful for certain polynomials defined as
determinants. Let f (x) be the quadratic polynomial:

f (x) =
∣∣∣∣∣∣

1 1 1
x b c
x2 b2 c2

∣∣∣∣∣∣ , so that f (b) =
∣∣∣∣∣∣

1 1 1
b b c
b2 b2 c2

∣∣∣∣∣∣ ,
which equals zero since two columns are identical (Rule 1). By the Factor Theorem
x − b is a factor of the quadratic polynomial f (x). Similarly, so is x − c, and hence
f (x) = K (x − b)(x − c), where the constant K is given by (expanding f (x) by its first
column)

K = [coefficient of x2 in f (x)] =
∣∣∣∣1 1
b c

∣∣∣∣ = c − b.

Exercise Repeat (iii) for the 4 × 4 matrix with i th row [xi bi ci di ], 0 ≤ i ≤ 3.
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(3) (Vandermonde determinants) An inductive step based on the arguments above (NB
the exercise) gives a formula for the general Vandermonde determinant,

� =

∣∣∣∣∣∣∣∣∣∣

1 1 . . . . . . 1
a1 a2 . . . . . . an

a2
1 a2

2 . . . . . . a2
n

. . . . . . . . . . . . . . .

an−1
1 an−1

2 . . . . . . an−1
n

∣∣∣∣∣∣∣∣∣∣
=
∏
i > j

(ai − a j ),

in which the requirement i > j causes exactly one of the differences ap − aq and aq − ap

for each pair p �= q to appear in the product. In particular � is nonzero if and only if the
ai are distinct (that is, no two are equal). Sometimes it is more convenient to change >

to < in the formula and prefix (−1)N , where N is the number of factors. Let us verify the
formula in the case n = 3, which asserts that � = (a3 − a2)(a3 − a1)(a2 − a1). We have
already computed this case as f (x) with (a1, a2, a3) = (x, b, c), and the results agree
(check).

A Vandermonde determinant is nonzero if and
only if the ai are distinct.

The property in the box above is used in, for example, the moment-generating functions of
probability (Section 10.3.2) and in the theory of error-correcting codes (Section 13.2.4).

Exercise Use some of Rules 1 to 5 to evaluate the determinant of Example 7.29 differ-
ently. The answer of course should be the same. Give the argument of Example 7.31(iii)
in the case n = 4.

7.2.3 The inverse of a matrix

Let A be an n × n matrix. Then there is an inverse matrix of A, i.e. an n × n matrix A−1

such that

AA−1 = I = A−1 A, (7.19)

provided the necessary and sufficient condition det A �= 0 holds. This follows from
Cramer’s Rule below. Inverses are unique, for if A−1 exists and AP = I then left multi-
plication by A−1 gives P = A−1. Calculations are reduced by the fact that, for an n × n
matrix P,

AP = I ⇔ PA = I ⇔ P is the inverse of A, (7.20)

and furthermore

(AB)−1 = B−1 A−1, (AT)−1 = (A−1)T, and |A−1| = |A|−1. (7.21)
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The first formula of (7.21) is called the Reversal Rule for matrix inverses, and includes
the assertion that if A and B are invertible then so is AB. The second asserts that if A
is invertible then so is AT, with inverse the transpose of A−1. Compare the similar rule
for transposes in (7.15). A single application of each rule shows that if A, B commute,
that is AB = BA, then so do their transposes, and so do their inverses if they exist.
Finally, if an inverse exists then Cramer’s Rule below will find it, for AB = I implies
no linear combination of rows of A is zero, thus |A| �= 0 (see Example 7.22(3) and
Rule 7.28(5)).

Exercise Deduce the Reversal Rule for inverses from (7.19). Does (7.20) help?

Theorem 7.32 (Cramer’s Rule) The inverse of a matrix A = [aik] with nonzero deter-
minant is |A|−1[bik], where bik is the cofactor of aki (see (7.18)).

Proof With B = [bik] we have (B A)ij =
∑

k bikak j =
∑

k ak j Aki . If i = j this is the
expansion of |A| by column i of A. Otherwise it is the same as the expansion

∑
k aki Aki

of |A| by column i, but with akj in place of aki (for all k). The result is the determinant
of a matrix with ith and jth columns identical (note: Aki does not involve column i of A),
and hence is zero by Rule 7.28(1). Thus BA = |A|I , or (|A|−1 B)A = I , as required.

Case n = 2 Let A =
[

a b
c d

]
. Then A−1 = 1

|A|
[

d −b
−c a

]
, if |A| �= 0. (7.22)

For example

[
3 2
6 5

]−1

= 1

3

[
5 −2

−6 3

]
.

Inverses in practice Though convenient to state, Cramer’s formula involves much
arithmetic if n > 2, and we give it only for completeness, since most inverses we re-
quire will be evident by shortcuts. As a simple example the matrix corresponding to
a rotation through an angle θ has inverse corresponding to rotation by −θ (see Ex-
amples 7.35 below). Also, any polynomial equation in a matrix yields a formula for
the inverse. For example A2 − 3A − I = 0 rearranges to A(A − 3I ) = I , showing that
A−1 = A − 3I . For an important method based on row operations and involving less
calculation than Cramer’s Rule, see ALGO 8.2 in the next chapter. Here we note the
following.

A diagonal matrix D = diag(d1, . . . , dn) is invertible if and only if its
diagonal elements are nonzero, and then D−1 = diag(d−1

1 , . . . , d−1
n ).

Matrix inverses, and bases Let {ui } and {vi } (1 ≤ i ≤ n) be bases for the same vector
space. Expand each basis element in terms of the other basis, say

ui =
n∑

j=1

pijv j ; v j =
n∑

k=1

qjkuk .

Then P = [pi j ] and Q = [qjk] are mutual inverses, or PQ = I. (7.23)
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Proof Substitute for vj in the expression for ui to obtain

ui =
∑

j

pij

∑
k

qjkuk =
∑

k

(∑
j

pijqjk

)
uk =

∑
k

(PQ)ikuk .

This expresses ui in terms of the basis {uk} and since (by definition of basis) such an
expression is unique, it must reduce to ui = ui . Thus (P Q)ik = 1 if i = k, otherwise 0.
In other words, PQ = I .

Example 7.33 Let E = Rows(e1, . . . , ek) and A = Rows(u1, . . . , uk), where the ei are
orthonormal and the ui only independent, both lying in Rn with n > k. Prove that
(i) E ET = Ik and (ii) the matrix AAT is invertible.

Solution (i) (E ET)i j = ei · e j = δi j , since the ei are given to be orthonormal. That is,
E ET = Ik . For (ii) we apply Part (i) to an ONB {ei } for span(u1, . . . , uk), which may
be found by the Gram–Schmidt process of Definition 7.17. Then each ui is a unique
linear combination, say

∑
j pije j , or, equivalently, row i of A = (row i of P)E, where

P = [pi j ]. Thus A = PE (if in doubt, see Example 7.22 (3)). But {ui } are independent
and so themselves form a basis of span{u1, . . . , uk}. Hence P is invertible by (7.23) and
we may argue that AAT = PEET PT = PPT, which is invertible by (7.21).

Exercise Let the square matrix A satisfy (I − A)3 = 0. Deduce that A−1 exists, and find
an expression for it.

7.2.4 Orthogonal matrices

Definition 7.34 An n × n matrix A is called orthogonal if AAT = I . Such matrices
will turn out to be exactly those that describe point-fixing isometries in n-space. The
orthogonality condition is equivalent to each of

(a) AT A = I ,
(b) A has an inverse, and A−1 = AT,

(c) the rows (or columns) of A form a set of n orthonormal vectors, that is, mutually orthogonal
unit vectors.

Proof
AT A = I ⇔ AT is the inverse of A by (7.20)

⇔ AAT = I by (7.20)

⇔ (AAT)ik = δik (1 if i = k, otherwise 0)

⇔ (row i of A) · (column k of AT) = δik

⇔ (row i of A) · (row k of A) = δik

⇔ the rows of A form an orthonormal set of vectors.

A slight addition to the argument justifies the assertion about columns of A, and is left as an
exercise. A nice consequence of (c) is that orthogonality is preserved under permutation
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of the rows or of the columns, and sign changes of whole rows or columns. Notice that
orthogonality in the form (c) may be the simplest way to check by inspection, as in the
following example.

Examples 7.35 (i) (Prime example) In Section 7.4.1 we will show how the matrix given
below describes rotations:

A =
[

cos φ sin φ

− sin φ cos φ

]
.

It is orthogonal for any angle φ because (i) its rows have length
√

(cos2 φ +
sin2 φ) = 1, and (ii) they are orthogonal, since their inner product is (cos φ)(− sin φ) +
(sin φ)(cos φ) = 0.

(ii) A classical use of matrices is to write equations in compact form, exemplified as
follows. The system of three equations

x + 2y − 2z = 6
2x + y + 2z = 9
2x − 2y − z = −3

⎫⎬
⎭ becomes

1

3

⎡
⎣1 2 −2

2 1 2
2 −2 −1

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ 2

3
−1

⎤
⎦ ,

which we write as AX = H , where X = [x y z]T. It happens here that A is orthogonal,
so the inverse of A is immediately known to be AT. Multiplying both sides of the equa-
tion by A−1 we have a standard argument: AX = H ⇒ AT AX = AT H ⇒ X = AT H ,
whence x = 2, y = 3, z = 1. Notice that AX = H is equivalent to the transposed equa-
tion XT AT = H T, that is to say [x y z]AT = [2 3 −1]. This way round is used in
Section 7.4.

Exercise Verify that the matrix A of (ii) is orthogonal by inspecting the rows, as in
Definition 7.34(c). Make a new orthogonal matrix based on A.

Remarks 7.36 (1) The determinant of an orthogonal matrix If A is orthogonal then
|A|2 = |A||AT| = |AAT| = |I | = 1, hence A has determinant ±1 (which of Rules 7.20
were used?)

(2) Creating orthogonal matrices For a matrix S which is skew (i.e. ST = −S),
the product A = (I − S)(I + S)−1 is orthogonal. First we establish the non-obvious
fact that (I + S)−1 actually exists: if it does not, then by Rule 7.28(5) some lin-
ear combination

∑
i xi Ci of the columns of I + S is zero. That is, (I + S)X = 0,

where X = [x1 x2 . . .]T �= 0. But this gives a contradiction by 0 = XT(I + S)X =∑
i j (I + S)i j xi x j (by (7.17d))=∑

i x2
i +

∑
i �= j si j xi x j =

∑
i x2

i (since s ji = −si j ) > 0.
For orthogonality,

AAT = (I − S)(I + S)−1((I + S)−1)T(I − S)T

= (I − S)(I + S)−1((I + S)T)−1(I + S) by (7.21) and ST = −S
= (I − S)(I + S)−1(I − S)−1(I + S)
= I since I + S and I − S commute.

It can be shown that every orthogonal matrix can be obtained from such a product, by
changing the sign of certain whole rows or columns of A.
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Example S =
[

0 1
2

− 1
2 0

]
, I + S =

[
1 1

2

− 1
2 1

]
, (I + S)−1 = 4

5

[
1 − 1

2
1
2 1

]
,

by (7.22), and so (I − S)(I + S)−1 =
[

1 − 1
2

1
2 1

]
4

5

[
1 − 1

2
1
2 1

]
= 1

5

[
3 −4

4 3

]
.

Definition 7.37 The set of all n × n orthogonal matrices, with multiplication as its law
of composition, is called the orthogonal group O(n) (it is a group, see Definition 2.19).

Exercises Show that the product of two orthogonal matrices is another orthogonal matrix
and hence that the orthogonal group is indeed a group. (Hint: see (7.15).)

7.2.5 Block matrices

An idea which aids proofs and calculations surprisingly often is that of a block matrix,
one partitioned into submatrices called blocks by dividing lines (drawn or imaginary)
between columns and/or rows. Some notable applications are the Singular Value De-
composition in Section 8.4, Principal Component Analysis in Section 10.4, the Discrete
Fourier Transform in Chapter 15, wavelets in Chapter 16, and B-splines in Chapter 17.

By convention a block of all zero elements may be designated by a single zero. Apart
from simply drawing attention to features of a matrix, the convenience of block structure
is that matrices can be multiplied ‘blockwise’, as if the blocks were single elements,
provided the column divisions of the first are identical to the row divisions of the second.
For example, if A, B, P, Q are matrices, I is the p × p identity matrix, and p, q, r
indicate numbers of rows or columns in a block, then we may write

p r
p
q

[
I 0
A B

]
p
r

[
I P
0 Q

]
= p

q

[
I P
A AP + B Q

]
. (7.24)

There is no restriction other than matrix size on the number of divisions. More generally,
we may specify a block matrix by its (i, j) blocks; thus A = [Aij]m×n, B = [Bi j ]n×p

imply AB = [Ci j ]m×p, where Cij =
∑

k Aik Bkj. The actual matrices may be represented
as ⎡

⎣ A11 . . . A1n

. . . . . . . . .

Am1 . . . Amn

⎤
⎦
⎡
⎣B11 . . . B1p

. . . . . . . . .

Bn1 . . . Bnp

⎤
⎦ =

⎡
⎣C11 . . . C1p

. . . . . . . . .

Cm1 . . . Cmp

⎤
⎦ . (7.25)

Of course we were already using the idea of blocks in the notation Rows(R1, . . . ,

Rm) and Cols(C1, . . . , Cn) = [C1 . . . Cn]. Several other types we encounter deserve
special names by analogy with ordinary matrix/vector multiplication, and we offer these
to aid the memory.
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1 Block ‘scalar times vector’

B[C1 . . . Cn] = [BC1 . . . BCn], (7.26)

Rows(R1, . . . , Rm)B = Rows(R1 B, . . . , Rm B). (7.27)

2 Block ‘inner product’

[A1 . . . An]

⎡
⎣ B1

. . .

Bn

⎤
⎦ = A1 B1 + · · · + An Bn (no. of columns of Ai = no. of rows of Bi ).

(7.28)

Three constantly recurring cases of this have Ai as a single column, hence Bi as
a single row. The second case was already used to prove invertibility of I + S in
Remarks 7.36.

[x1 . . . xn]

⎡
⎣ R1

. . .

Rn

⎤
⎦ = x1 R1 + · · · + xn Rn (Ai = xi , Bi = Ri ), (7.29)

[C1 . . . Cn]

⎡
⎣ y1

. . .

yn

⎤
⎦ = y1C1 + · · · + ynCn (Ai = Ci , Bi = yi ), (7.30)

(Russian multiplication) [C1 . . . Cn]

⎡
⎣ R1

. . .

Rn

⎤
⎦ = C1 R1 + · · · + Cn Rn . (7.31)

3 Block ‘weighted inner product’

[C1 . . . Cn]

⎡
⎢⎣

d1
. . .

dn

⎤
⎥⎦
⎡
⎣ R1

. . .

Rn

⎤
⎦ = d1C1 R1 + · · · + dnCn Rn. (7.32a)

This is a formula prominent in the Singular Value Decomposition of Chapter 8 (see
Theorem 8.53). It follows from (7.31) with di Ri in place of Ri .

Examples 7.38 (i) Case (7.31) above is at first sight a strange one. After all, we have
defined matrix multiplication to be done by rows times columns, not, as here, by columns
times rows. Nevertheless it fulfils the requirements for block multiplication, and here is
an example.

Standard multiplication:

⎡
⎣1 −1

2 0
3 2

⎤
⎦[ 2 3 0

−1 4 1

]
=
⎡
⎣3 −1 −1

4 6 0
4 17 2

⎤
⎦,

3 × 2 2 × 3 3 × 3



140 Vectors and matrices

Russian (7.31):

⎡
⎣1

2
3

⎤
⎦[2 3 0

]+
⎡
⎣−1

0
2

⎤
⎦[−1 4 1

] =
⎡
⎣2 3 0

4 6 0
6 9 0

⎤
⎦+

⎡
⎣ 1 −4 −1

0 0 0
−2 8 2

⎤
⎦ ,

and the two answers are identical.

(ii) Let Eij be the m × n matrix of zeros except for 1 in position (i, j). Let C1 . . . Cn

be column m-vectors and R1 . . . Rm be row n-vectors. Then

[C1 . . . Cn]Eij

⎡
⎣ R1

. . .

Rm

⎤
⎦ = Ci R j . (7.32b)

Proof Let ei be a column m-vector of zeros except for 1 in position i, and let f j be a
row n-vector of zeros except for 1 in position j. Then Eij = ei f j and the left hand side
of (7.32b) becomes

[C1 . . . Cn]ei f j Rows(R1, . . . , Rm) = Ci R j by (7.30) and (7.29).

Special case (especially useful in Chapter 15) Let M = [C1 . . . Cn]. Then

MEij MT = Ci C j
T. (7.32c)

Corollary Let A be any m × n matrix. Then in the present notation A =∑
ij aij Eij, hence

[C1 . . . Cn]A Rows(R1, . . . , Rm) =
∑

ij
aijCi R j . (7.32d)

Exercise Let A = Cols[(1, 0,−2), (2, 3, 5)] and B = Rows[(6, 1), (0, 7)]. Express AB
as the sum of two matrices using (7.31). Now check your answer by standard matrix
multiplication.

7.3 Further products of vectors in 3-space

Note that, in the vector context, the word scalar is used for an object to emphasise its
identity as a number rather than a vector. Besides the scalar product of two vectors, there
are three other ways of forming new vectors or scalars from vectors which, amongst
other uses, provide effective means of calculation in terms of coordinates.

7.3.1 The standard vector product

Definition 7.39 Let non-parallel nonzero vectors a, b be at angle φ. Thus 0 < φ < π

(by definition of angle between vectors, and ‘parallel’). The vector product c = a × b of
the ordered pair a, b is defined by (see Figure 7.8):
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a

b

φ

a × b 

b × a 

Figure 7.8 Diagram
for Definition 7.39.

(a) |a × b| = |a||b| sin φ. Note that this is the area of the par-
allelogram with a, b as adjacent edges, since this area equals base
length, |a|, times height, |b| sin φ.

(b) a × b is perpendicular to a and b, and is such that a, b, c =
a × b, is a right handed triple. We define a × b to be the zero
vector if a, b are parallel or either vector is zero.

Properties
a × a = 0, (7.33)

b × a = −a × b, (7.34)

αa × b = a × αb = α(a × b), if α is a scalar, (7.35)

a × (b + c) = (a × b) + (a × c). (7.36)

The hardest to prove is (7.36), which may be done (Hoggar, 1992) using the scalar
triple product defined below. Once available, it gives the connection to an exceedingly
important and useful determinant formula (Theorem 7.42) for the vector product, start-
ing with the immediately deducible products from the right handed system i, j, k of
Section 7.1.3:

i × j = k = − j × i, i × i = 0,

j × k = i = −k × j, j × j = 0,

k × i = j = −i × k, k × k = 0. (7.37)

Notice that the cyclic permutation i → j → k → i applied to each line above yields
another. As a consequence we have the practical determinant formula

a × b =
∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ . (7.38)

Exercise Use (7.38) to compute the product (1, 2, 3) × (2, 0,−5), then check that it is
orthogonal to both vectors.

7.3.2 Triple products of vectors

Definition 7.40 The scalar triple product of vectors a, b, c is the scalar [a, b, c] =
a · (b × c).

Theorem 7.41 Let a, b, c be nonzero vectors. Then

(a) [a, b, c] equals ± the volume of the figure (parallelepiped) with opposite faces parallel and
a, b, c represented by adjacent edges, as shown in Figure 7.9,

(b) [a, b, c] is constant under cyclic shifts of a, b, c and reverses sign under interchanges,



142 Vectors and matrices

φ

a

b

c

O

b × c

Figure 7.9 A solid bounded by parallelograms whose volume is ±a · (b × c).

(c) [a, b, c] = 0 if and only if a, b, c are coplanar; in particular [a, b, c] = 0 if any two of a, b, c
are equal or parallel,

(d) the triple a, b, c is right handed if [a, b, c] > 0 and left handed if [a, b, c] < 0,
(e) let a, b, c be unit vectors. Then a, b, c is a right handed or left handed orthonormal set

according as [a, b, c] = 1 or −1 (it may be neither).

Proof We think of the volume as V = (area of base) times (height) = |b × c| ×
|a|| cos φ| = ±[a, b, c]. If a, b, c is right handed then b × c points to the same side
of the base as does a and so 0 ≤ φ < π/2, cos φ > 0. Consequently we have V =
|a||b × c| cos φ = [a, b, c]. In the left handed case −π ≤ φ < −π/2, and cos φ < 0,
therefore V = |a| |b × c| (− cos φ) = −[a, b, c]. This is sufficient to establish (a) to (d).
Extending the argument gives (e) (see e.g. Hoggar, 1992).

Theorem 7.42 Scalar triple products are given by the following determinant.

[a, b, c] =
a1 a2 a3

b1 b2 b3

c1 c2 c3

.

Proof We have [a, b, c] = a · (b × c) = a1(b × c)1 + a2(b × c)2 + a3(b × c)3, which
equals the above determinant, by (7.38).

Remarks 7.43 (1) For a left handed coordinate system we must switch the last two rows
in the determinant formula of (7.38) and Theorem 7.42 above. (2) The latter has a nice
spinoff in two dimensions; by considering the various cases we obtain Corollary 7.44
below.

Exercise Determine whether the following ordered triple of vectors forms a right handed
triple, a left handed triple, or is coplanar: (1, 1, 1), (1,−1, 1), (0, 1, 0).

Corollary 7.44 Let A(a1, a2, 0), B(b1, b2, 0) be points in the xy-
plane, distinct from the origin. Then a × b = (0, 0, D), where

D = a1 a2

b1 b2
.

If D = 0 then the points O, A, B are collinear (or A = B). If D �= 0 then rotation of
OA about O towards OB is anti-clockwise if D > 0, and clockwise if D < 0. In any case,
the triangle with adjacent sides OA, OB has area half the absolute value |D|.
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Corollary 7.45 The area of a triangle in the xy-plane with vertices A, B, C is

1/2 the absolute value of
1 1 1
a1 b1 c1

a2 b2 c2

.

Proof From Definition 7.39, twice the area is |AB × AC |.
Theorem 7.46 (Evaluating vector and scalar triple products) The following equalities
hold:

a × (b × c) = (a · c)b − (a · b)c,

[αa + βb, c, d] = α[a, c, d] + β[b, c, d].

Proof Since b × c is perpendicular to the plane of b, c (as vectors starting from the origin,
say), a × (b × c) lies in that plane, and so equals λb + µc for some scalars λ, µ. We
check the first coordinates in the equality, then the corresponding results for the other
coordinates are obtained by cyclically permuting the subscripts 1 → 2 → 3 → 1. The
second formula follows from (7.8) and the definition [u,v, w] = u · (v× w).

Example 7.47 [a, b, a + c] = [a, b, a] + [a, b, c] (by Theorem 7.46) = [a, b, c], since
[a, b, a] has two entries equal and so is zero by Theorem 7.41(c). See also Exercise 7.17
at the end of the chapter.

Exercise Express [a + 2b − 3c, a − c, b] as a multiple of [a, b, c] or prove more
generally that

[x1a + x2b + x3c, y1a + y2b + y3c, z1a + z2b + z3c =
x1 x2 x3

y1 y2 y3

z1 z2 z3

[a, b, c].

7.3.3 Vectors and coordinate geometry

We include this short section to give at least a sample of how the use of vectors can
simplify calculations and proofs in 3-dimensional coordinate geometry (cf. Application

u

r

a

A

P

O

m

Figure 7.10
Diagram for
Example 7.48.

1.1 in the plane). We will concentrate on lines and planes, starting
with their equations. As before, an arbitrary point A has coordinates
(a1, a2, a3), which are the components of its position vector a.

Example 7.48 (See Figure 7.10.) The line m through the point A,
parallel to the vector u, has a parametric equation

r = a + tu, i.e.

⎧⎨
⎩

x = a1 + tu1

y = a2 + tu2

z = a3 + tu3
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That is to say, all points of this form, with t ∈ R, are on the line, and every point of the
line may be so expressed. We call u a direction vector for m.

Proof Let the point P have position vector r . Then: P is on m ⇔ AP is parallel to
u ⇔ AP = tu (some t ∈ R) ⇔ r − a = tu, i.e. r = a + tu (t ∈ R). Alternatively we
could invoke the section formula (1.3).

Example 7.49 Determine where the line through points
A(1, 2, 1) and B(2, 8, 4) cuts the sphere x2 + y2 + z2 = 2. See
Figure 7.11 (not to scale).

B

A

P

Q

Figure 7.11
Diagram for
Example 7.49.

Solution A direction vector for the line, m say, is AB = (1, 6, 3).
The point on m with parameter t is then r = a + t AB, or in coor-
dinates (1 + t, 2 + 6t, 1 + 3t), which is on the sphere when t sat-
isfies (1 + t)2 + (2 + 6t)2 + (1 + 3t)2 = 2. The solutions are ap-
proximately t = −0.16 and t = −0.53, giving intersection points
P(0.84, 1.04, 0.52) and Q(0.47,−1.18,−0.59).

Example 7.50 Any vector perpendicular to plane π is called a
normal vector to π (see Figure 7.12). The plane π through a
point A, having a normal vector n = (l, m, n), has equation

lx + my + nz = la1 + ma2 + na3.

n

A

π

p

Figure 7.12 Diagram for
Example 7.50.

Proof Let the point P have position vector r . Then P is on
π ⇔ AP is perpendicular to n ⇔ (r − a) · n = 0 (by Theo-
rem 7.5) ⇔ r · n = a · n.

One reason why the vector product is so useful is that it gives us a simple way to
compute the coordinates of a vector at right angles to two given vectors. Here are some
applications of this.

Example 7.51 Find (i) the equation of the plane π through points A(1, 0, 1),
B(2,−1, 3), C(2, 3,−2), (ii) the foot of the perpendicular from Q(1, 1,−2) to π . See
Figure 7.13.

AB × AC

A

B C

π

Figure 7.13 Diagram for Exam-
ple 7.51.

Solution (i) One vector normal to π is AB × AC =
(1,−1, 2) × (1, 3,−3) = (−3, 5, 4) by (7.38). Since
A is on π , the latter has equation −3x + 5y + 4z =
−3(1) + 5(0) + 4(1) = 1.

(ii) The required point R is on the line through
Q(1, 1,−2) parallel to the normal (−3, 5, 4). A typ-
ical point on this line is (1 − 3t, 1 + 5t,−2 + 4t).
At R, on the plane, t satisfies −3(1 − 3t) + 5(1 +
5t) + 4(−2 + 4t) = 1, giving t = 7/50. Hence R is
(29/50, 17/10,−36/25).
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Exercise Use the ideas of Examples 7.48 to 7.51 to find an equation for the plane
through points A(1, 2, 3), B(−1, 0, 1) and at right angles to the plane x − y +
2z = 5. (4x − y − 3z = −7.)

O

p × q

qp

r

Figure 7.14 Real life
application.

A ‘real life’ application This cropped up in work on ‘inverse
displacement mapping’ (see Patterson, Hoggar and Logie, 1991).
We have a sample ray (line) for which the parametric equation
of Example 7.48 is r = p + tq , as illustrated in Figure 7.14. The
radius vector OR from the origin to the ray meets a unit sphere,
centre O, at the point with angular coordinates u, v (think of lat-
itude and longitude). Finding an equation v = f (u) for the ray is
rather hard work until we observe that, since p × q is perpendicu-
lar to OE and ER, it is perpendicular to the plane of triangle OER,
and in particular to OR. Hence (p × q) · r = 0, leading after some simplification to the
ray equation v = (2/π ) tan−1(k · cos(πu + a)), where k, a are given by the coordinates
of constant vectors p, q. Details are found in the cited paper.

7.4 The matrix of a transformation

We explore the relationship between transformations, especially the length-preserving
isometries (see Chapter 1), their defining matrices, and the orthonormal basis being
used. After deriving the matrices corresponding to plane rotations and reflections, we see
why a transformation is linear if and only if it may be defined by a matrix with respect to
some basis of the space transformed. We establish important consequences of changing
that basis, and the constancy of the determinant and of the orthogonality property.

Most vectors will be written in row form in this chapter and the next; however, to
convert an equality into the same statement for vectors in column form, we simply
transpose both sides of an equation. This applies firstly to (7.39) below.

7.4.1 Rotations and reflections

φ

P(x, y)

P'(x', y')

α x

y

r

r

Figure 7.15

Theorem 7.52 Rotation through angle φ about the origin in the xy-plane is given by
(x, y) → (x ′, y′), where in matrix notation

[x ′ y′] = [x y]

[
cos φ sin φ

− sin φ cos φ

]
. (7.39)
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φ
O

m

x

y

P

P'

Figure 7.16

The matrices arising in this way form the special orthogonal group SO(2) of 2 × 2
matrices satisfying M MT = I, |M | = 1.

Remark The column version is obtained by transposing:[
x ′

y′

]
=
[

cos φ − sin φ

sin φ cos φ

] [
x
y

]
.

Proof of (7.39) In polar coordinates, with |OP| = r = |OQ| in Figure 7.15, we have
x = r cos α, y = r sin α, and so

x ′ = r cos(α + φ) = r cos α cos φ − r sin α sin φ = x cos φ − y sin φ,

y′ = r sin(α + φ) = r cos α sin φ + r sin α cos φ = x sin φ + y cos φ,

which together form matrix equation (7.39). For the last part we note first that the matrix
of rotation in (7.39) is indeed in SO(2), so it remains to show that every 2 × 2 matrix

M =
[

a b
c d

]
, with MMT = I , |M | = 1,

arises from a rotation. Now, these conditions on M imply that MT = M−1, |M | = 1, or
by the matrix inverse formula (7.22) for the 2 × 2 case,[

a c
b d

]
=
[

d −b
−c a

]
, hence c = −b, d = a, and M =

[
a b
−b a

]
.

Thus, from |M | = 1, we have a2 + b2 = 1 and so may write a = cos φ, b = sin φ for
some angle φ, giving M the rotation form (7.39).

Remarks 7.53 (1) If M is the matrix for rotation through φ then M−1 is that
for −φ. (2) An orthogonal matrix has determinant ±1.

Theorem 7.54 Reflection in a mirror m through the origin in the plane, at angle φ to
the x-axis, is given by [x y] → [x ′ y′], where

[x ′ y′] = [x y]

[
cos 2φ sin 2φ

sin 2φ − cos 2φ

]
. (7.40)

Such matrices are those in the orthogonal group O(2) which have determinant −1.
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Proof We use the previous theorem to calculate this matrix as a composition. As in Part I,
let Rm be the reflection in any mirror m. Then

Rm = ROx ROx Rm (RO X is reflection in the x-axis)

= ROx RO (2φ), by Theorem 2.1,

where the last isometry is rotation about the origin through angle 2φ. Since these maps
are written in their order of application, Rm has matrix

[
1 0
0 −1

] [
cos 2φ sin 2φ

− sin 2φ cos 2φ

]
=
[

cos 2φ sin 2φ

sin 2φ − cos 2φ

]

as stated. Now, this matrix is orthogonal, of determinant −1, and the theorem asserts
that every 2 × 2 matrix M with M MT = I , of determinant −1, has the form (7.40) for
some angle, written as 2φ. This follows in the same way as the last part of Theorem
7.52. Alternatively, with D = diag(1,−1) and so D2 = I , the matrix N = DM satisfies
N N T = I, |N | = |D||M | = 1 so, by Theorem 7.52,

N =
[

cos α sin α

− sin α cos α

]
, for some angle α.

Now D2 = I converts N = DM to M = DN, which has the stated form (7.40) when we
replace α by 2φ.

Exercise Compute the product AB, where A is the matrix of rotation about O through
90 degrees and B gives reflection in the line y = x

√
3. Does your answer agree with

geometrical predictions?

3D Rotations What we can readily say at this stage is
that, in three dimensions, rotation through φ about the
z-axis does not change the z-coordinate, and so is given
by

[x ′ y′ z′] = [x y z]

⎡
⎣ cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎤
⎦ .

(7.41)

For the case of rotation about an arbitrary axis in three dimensions see Hoggar (1992),
where we classify isometries in 3-space. Meanwhile, here is a short recapitulation.
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→
M = α  0

0    α

Figure 7.17 Dilation x → αx, α > 0.

= 1   0
α    1

→

Figure 7.18 Shear (x, y) → (x + αy, y), α > 0.

How to
Determine the angle between vectors (7.6)
Multiply by a diagonal matrix (7.12)
Evaluate a determinant Rules 7.28
Detect left handed vs right handed system Theorems 7.41, 7.42
Detect clockwise vs anti-clockwise rotation Corollary 7.44
Evaluate a × b, [a, b, c], and a × (b × c) (7.38), Theorem 7.42,

and Theorem 7.46.

7.4.2 Linearity

Definition 7.55 A transformation T of n-space is linear if, for all vectors x and real
numbers α,

T(x + y) = T(x) + T(y), T(αx) = αT(x). (7.42)

This certainly holds if T is given by a matrix, T(x) = xM , for T(x + y) = (x + y)M =
xM + yM = T(x) + T(y), and T(αx) = (αx)M = α(xM) = αT(x). The converse is
proved in Theorem 7.56. Note though that a linear map must fix the origin, since
T(0) = T(0x) = 0T(x) = 0, for any x. The definition of linear applies to any map (func-
tion) from n-space to m-space, though we do not yet require this degree of generality.

We know that origin-fixing isometries of the plane are linear because we have classified
them and produced matrices for each case. Let us note here, however, that linear maps
go way beyond isometries, for example in dilation and shear (see Figures 7.17 and 7.18).
This will be further explored under Fractal Compression in Chapter 16.

In fact, it is very useful to define certain transformations to be of the same type if
one can be obtained from the other by composition with an isometry. We note though
that, as is fitting, a linear transformation T maps lines to lines, for the line L joining
points a,b consists of the points x = a + t(b − a) for all real numbers t, and by linearity
T x = T a + t(T b−T a). Hence T maps L to the line joining points T a and T b.
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We will often need the coordinate formula (Theorem 7.14) which is requoted here for
convenience.

The ith coordinate of a vector u in an
orthonormal basis {ek} is u · ei .

(7.43)

Theorem 7.56 If T is a linear transformation of n-space, then it is given by a matrix M
as follows.

T (x) = xM, M = [mij], mij = T (ei ) · e j (7.44a)

where the coordinates of x are taken with respect to any orthonormal basis {ei }. In
particular, the ith row of M consists of the coordinates mi1, mi2, . . . , min of T (ei ). Taking
ei = (0 . . . 0 1 0 . . . 0) with ith entry 1,

{i, j, k} → {u,v, w} under matrix M = Rows[u,v, w]. (7.44b)

Proof Let T be linear. Statement (7.44) simply asserts that the j th coordinate of T(x) is∑
i xi mij, with mij as defined. This is true because by Formula (7.43) the component is

T (x) · e j = (T (
∑

i xi ei )) · e j =
∑

i xi T (ei ) · e j , by linearity, (7.42).

Remarks 7.57 (1) The proof above holds if any n linearly independent (i.e. non-
coplanar, in the case n = 3) vectors are taken as basis, except that we no longer have the
explicit formula mij = T (ei ) · e j .

(2) We may express a linear map in the form T(y) = N y, where y is a column vector,
by the abovementioned technique of transposing each side of a matrix equation. Thus
xM in Equation (7.44) becomes MT xT and we may write T(y) = Ny, where N = [nij]
and nij = T (e j ) · ei (note: nij = m ji ). That is, the components of T (e j ) form column j
of N .

Example 7.58 Find the matrices of the linear transformations of R3 given by (i) T (i) =
j + k, T ( j) = i − j + k, T (k) = 2i − j , and (ii) T (x, y, z) = (2x + y, x + z, x
+ y − 3z).

Solution (i) Theorem 7.56, case (7.44b) applies. For instance, T (i) = j + k, so the first
row of M consists of the components (0, 1, 1). Thus M is the second matrix below.

(ii) The matrix of the transformation is defined by T (x, y, z) = [x y z]M , so by
definition of matrix multiplication the coefficients of x, y, z in successive coordinates
form the columns of the first matrix below.⎡

⎣2 1 1
1 0 1
0 1 −3

⎤
⎦ ,

⎡
⎣0 1 1

1 −1 1
2 −1 0

⎤
⎦ .
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x

x'

x

U

Figure 7.19 Projection x′ of x onto a subspace U, and consequent expression as x ′ + x⊥.

Exercise Find the matrix M when basis i, j, k is transformed to j, (i + k)/
√

2,

(i − k)/
√

2. Verify that M is orthogonal and state its determinant.

7.4.3 Projection mappings

We have introduced (Definition 7.19) the orthogonal projection x′ of an element x of
the vector space V onto a subspace U of V. This splits x into its component x′ in U and
a component x⊥ orthogonal to U; that is, x⊥ is orthogonal to every vector in U. This
is briefly recalled in Figure 7.19, following which we give some key results useful in
the sequel (e.g. the optimisation properties of Singular Value Decomposition in Section
8.4.3 and application to compression in Chapter 10).

Theorem 7.59 Let the subspace U of V have as ONB the rows u1, . . . , uk of a matrix E.
Then (a) the orthogonal projection p : V → U has matrix P = ET E (see also (7.45)),

(b) P2 = P = PT and p(V ) = U,

(c) the unique decomposition of any x in V as x = x′ + x⊥ (x′ ∈ U, x⊥ ∈ U⊥) is
given by x′ = xP, x⊥ = x(I − P).

Proof (a) We have p: x →∑
i (x · ui )ui =

∑
i xuT

i ui = x
∑

i uT
i ui = xET E (by Rus-

sian matrix multiplication, (7.31)). For (b) notice that E ET has i, j entry ui · u j = δij,
hence E ET = I and P2 = ET(E ET)E = ET E = P . Clearly PT = P . Also p(V ) ⊆
U by construction, and if x is in U then x =∑

xi ui (1 ≤ i ≤ k) has components
x j = x · u j , so the formula of (a) for p(x) gives p(x) =∑

(x · u j )u j =
∑

x j u j = x.
Thus U ⊆ p(V ) and hence U = p(V ). (c) For uniqueness we refer to the discussion in
Definition 7.19. It remains to show that x(I − P) is orthogonal to every vector u in U.
Let u = p(v) for some v in the larger space V . Then

x(I − P) · u = x(I − P)(vP)T since u = vP
= x(I − P)PTvT by the reversal rule for transposes
= x(P − P2)vT since P = PT

= 0 since P2 = P.
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Example 7.60 Let u = (1, 2,−2), v = (2, 1, 2). Find the respective matrices P, Q of
the orthogonal projections onto span{u} and span{u,v}.

Solution We have |u| = 3 = |v| and u · v = 0, so the rows of U = (1/3) Rows (u,v)
are orthonormal and the matrices P, Q are given by Theorem 7.59 (a) as

P = 1

9

⎡
⎣ 1

2
−2

⎤
⎦[1 2 −2

] = 1

9

⎡
⎣ 1 2 −2

2 4 −4
−2 −4 4

⎤
⎦ ,

Q = U TU = 1

9

⎡
⎣ 1 2

2 1
−2 2

⎤
⎦[1 2 −2

2 1 2

]
= 1

9

⎡
⎣5 4 2

4 5 −2
2 −2 8

⎤
⎦ .

Notice that by (7.31) the matrix Q is the sum of the matrices of projections onto
span{u} and span{v}, as it should be.

Exercise Why is the last sentence true?

Remarks 7.61 (1) The properties of P as a matrix are enough to ensure that P gives a
projection. Let P be the matrix of a plane transformation p : x → xP , where P2 = P =
PT. Then p is the orthogonal projection mapping onto its image U. For it suffices to show
that x − xP lies in the orthogonal complement of U, and this is performed in the proof
of Theorem 7.59 (c).

P is a projection matrix if and only if P2 = P = PT.

(2) Projection onto a column space p: V → span{uT
1 , . . . , uT

k }. By the usual trans-
position argument, x → xP if and only if xT → PTxT. Since PT = P , the matrix is
unchanged.

To project onto a k-space with given ONB:

E = matrix of ONB as ROWS (so E ET = Ik),

P = ET E, projection matrix, symmetric, (7.45)

as rows: x → xP, as columns xT → PxT.

7.4.4 Changing bases

Theorem 7.62 Given ONBs {ei }, { f i } of an n-dimensional vector space V, there is a
unique linear mapping that sends ei to f i (1 ≤ i ≤ n). Its matrix w.r.t. {ei } is [ f i · e j ],
and is orthogonal.

Proof A transformation T of V with T ei = f i is linear if and only if T (
∑

xi ei ) =∑
xi T (ei ). But this defines T uniquely. The matrix M of T, given by Theorem 7.56,
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satisfies

(M MT)ij =
∑

k

mikm jk

=
∑

k

(T (ei ) · (ek)(T (e j ) · ek)

=
∑

k

( f i · ek)( f j · ek)

= f i · f j calculated in coordinates w.r.t. {ei } (see Theorem 7.14)

= δij as required for orthogonality.

Example 7.63 Find the matrix M of any isometry which will map the axes i, j, k so as
to send i into u = (1, 1, 1)/

√
3.

Solution For this, we complete u in any way to a set of three mutually orthogonal unit
vectors u,v, w . First we satisfy the orthogonality condition, then we divide each vector by
its own length. One possibility is v = (1,−1, 0)/

√
2, w = (1, 1,−2)/

√
6, as illustrated

below.

i j k

u
v

w

⎡
⎣1/

√
3 1/

√
3 1/

√
3

1/
√

2 −1
√

2 0
1/
√

6 1/
√

6 −2/
√

6

⎤
⎦

The matrix M : an entry is the scalar product of corresponding vectors on the borders.
Thus the w, j entry is w · j .

Now we take i, j, k → u,v, w respectively. With the formula mij = T(ei ) · e j of
Theorem 7.56, the matrix is now particularly simple to write down, the rows being
the coordinates of u,v, w with respect to i, j, k, as indicated by the bordering (same
matrix as above).

Remark 7.64 (From single vector to a basis) The example above suggests a simple
scheme for extending a unit vector u = (a, b, c) with a, b, c �= 0, to an orthonormal
basis, by appending (−b, a, 0), (a, b, c − 1/c), then dividing each vector by its length.
Now for the non-ONB case.

Theorem 7.65 If a basis {ei } of n-space is transformed to {ei A} by an invertible matrix
A then

(a) the coordinates undergo x → x A−1,
(b) the matrix M of a linear transformation becomes AM A−1.

Proof (a) The short argument is that moving the axes (i.e. the ONB) one way is equivalent
to moving points the opposite way. Thus coordinates should change by x → x A−1.
(b) To map a point y in the new coordinate system we may convert it to old coordinates,
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apply the old matrix, then convert back to new coordinates. That is, y → y A → y AM →
y AM A−1. Thus the new matrix is AM A−1.

Example 7.66 What are the new coordinates of point (1, 6, 4) if the basis i, j, k is
cycled round to j, k, i? We have i, j, k → j, k, i under the matrix A = Rows[ j, k, i] by
(7.44b), so the corresponding transformation of coordinates is x → x A−1, which equals
x AT since A happens to be orthogonal.

i j k

j
k
i

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ [1 6 4]

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ = [6 4 1]

A AT result

Exercise Verify that the rows of matrix AT with A as above are the coordinates of the
old basis in terms of the new. Is this true for any change of orthonormal basis?

Example 7.67 What becomes of the matrix of half turn about the z-axis after the basis
i, j, k is changed to ( j + k)/

√
2, (k + i)/

√
2, (i + j)/

√
2? For the matrix M of the 1/2

turn about the z-axis we don’t need to recall the sine and cosine of π/2, for geometry
shows us immediately the images of i, j, k are respectively j, −i, k, enabling us to write
M straight down. The new matrix is

AMA−1 = 1√
2

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦
⎡
⎣ 0 1 0
−1 0 0

0 0 1

⎤
⎦ 1√

2

⎡
⎣−1 1 1

1 −1 1
1 1 −1

⎤
⎦ =

⎡
⎣1 0 −1

1 0 0
1 −1 0

⎤
⎦ .

Exercise Calculate the 3 × 3 matrix for a rotation of π/6 about the z-axis. Determine
the new matrix N when the axes are changed by i → j → k → i . Verify your answer
geometrically.

Remark 7.68 The determinant of the matrix of a linear transformation T is the same, with
respect to any ONB. For, if M is the matrix with respect to one ONB, the determinant
after changing ONB by a matrix A is, by Theorem 7.65, |AMA−1| = |A||M ||A−1| =
|AA−1||M | = |M |. Thus we may speak of the determinant of T independently of a
choice of basis.

Isometries and orthogonal matrices

Definition 7.69 A transformation T of n-space is an isometry if T preserves distances:

|T x − T y| = |x − y| for all x, y in Rn, (7.46)

and hence T preserves angles (up to sign), areas and volumes. Especially important for
us is: if T fixes the origin, TO = O, then

Tx · Ty = x · y for all x, y in Rn, (7.47)
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and hence

if {ei } is an orthonormal basis of n-space
then so is {T ei }. (7.48)

Proof Equation (7.47) follows from (7.46) because an inner product is completely ex-
pressible in terms of distances, by (7.7) (see also above Theorem 7.5). The argument
begins with |T x| = |T x − T O| = |x − O| = |x|, and then

2 T x · T y = |T x|2 + |T y|2 − |T x − T y|2 by (7.7) for n-space

= |x|2 + |y|2 − |x − y|2 by (7.46)

= 2x · y by (7.7).

For (7.48) we now have Tei · T ej = ei · ej = δij, by (7.47). This completes the
proof.

The following theorem was stated in Chapter 1 for the plane, but the proof given there
is clearly valid for general Rn . It is simple and useful, and we shall need to keep it in
mind.

Theorem 7.70 If A is any point of n-space then any isometry T is composed of a trans-
lation and an isometry that fixes A.

Shortly we concentrate on the isometries that fix the origin O, and prove the important
facts that they are linear, that their matrices form the orthogonal group, and that the
determinant distinguishes between direct and indirect isometries (for the last, see
Theorem 8.10).

Theorem 7.71 (Isometries and the orthogonal group) An isometry T of n-space
which fixes the origin is linear. With respect to any orthonormal basis the matrix of
T is orthogonal.

Proof Let {ei } be an orthonormal basis. Then by (7.48) so is { f i }, where f i = T ei . Let
x =∑

xi ei and T x =∑
zi f i . Then

zi = (T x) · f i by the component formula (7.43)

= (T x) · T ei by definition of f i

= x · ei by (7.47), since T is an isometry

= xi by the component formula (7.43).

Thus T (
∑

xi ei ) =
∑

xi f i for any vector
∑

xi ei . Now let y =∑
yi ei and

α be a scalar. Then T (αx + y) = T
∑

(αxi + yi )ei =
∑

(αxi + yi ) f i = α
∑

xi f i

+∑
yi f i = αT (x) + T (y). Thus T is linear. Finally, its matrix is orthogonal by

Theorem 7.62.

Remarks 7.72 (1) It is easy to see that every orthogonal matrix N produces an isometry
by x → xN, in fact |xN|2 = x(N )(xN )T = x(NN T)xT = x I xT = |x|2. The converse
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is the hard part, and we included it in Theorem 7.71. Thus, using any fixed coordinate
system,

the orthogonal group O(n) corresponds to the group of all
isometries that fix the origin.

(2) We have the expression mij = T (ei ) · e j for the elements of the matrix M of T ,
assuming only that T is linear, not necessarily an isometry, and that the ei are orthonormal.
If in addition T is an isometry then the T ei are also orthonormal, (7.48), in particular they
are unit vectors, and as a result mij is the cosine of the angle between T ei and e j . In this
situation we call M the matrix of cosines; every orthogonal matrix can be so represented.

7.5 Permutations and the proof of determinant rules

This section may be omitted on a first reading, its main purpose being to justify the
important Rules 7.28 for evaluating determinants. It is numbered from Definition 1
through to Theorem 10.

Definition 1 A permutation σ of n objects is a reordering of them. If σ reorders the
objects a1a2 . . . an as b1b2 . . . bn we may write σ : a1a2 . . . an → b1b2 . . . bn . Usually the
objects are integers or represented by integers.

Now we introduce tools for analysing and combining permutations. The permutation
c1c2 . . . ck → ckc1 . . . ck−1 of all or part of a list of objects is called a cycle of period k, or
simply a k-cycle. It may be written out as c1 → c2 → · · · → ck → c1, or abbreviated to
(c1c2 . . . ck). Thus (1234) is the same 4-cycle as (2341). In the special case of a 2-cycle
(c1c2), exchanging c1 and c2 is called a transposition. As an interchange of elements
in a larger list it is called simple if c1 and c2 are adjacent. Thus in the list 24613 the
transposition (46) is simple but (41) is not.

Example 2 Find the permutation of 12 . . . 6 given by the composition (124)(2316). We
simply find the final position of each integer. By convention the cycles are processed
starting with the leftmost.

1 → 2 → 3 The cycle (124) sends 1 to 2 then (2316) sends the 2 to 3.

2 → 4 The cycle (124) sends 2 to 4, which is left unchanged by (2316).
3 → 1 The cycle (124) leaves 3 unchanged but (2316) sends it to 1.

4 → 1 → 6 The cycle (124) sends 4 to 1 then (2316) sends 1 to 6.

Also 5 is unmoved and 6 → 2, so the resulting combined permutation is 123456 →
341652.

Example 3 We express the permutation of Example 2 as a composition of cycles which
are disjoint (i.e they cycle disjoint sets), as compared with the non-disjoint cycles (124)
and (2316). The method is to choose one integer, and to follow its progress. This gives
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a cycle. Now repeat until all of 12 . . . 6 lie in one of the cycles which, by construction,
are disjoint.

1 → 3 → 1 cycle (13), a non-simple transposition (1, 3 not adjacent)
2 → 4 → 6 → 2 cycle (246).

The result (13)(246)(5) is called a cycle decomposition, and may be similarly obtained
for any permutation. It is by construction unique (up to the order in which the cycles are
written, which is immaterial).

Definition 4 Let the cycle decomposition of a permutation σ have exactly N cycles of
even period. Then the parity of σ is even/odd according as N is even/odd. The sign of σ

is sgn(σ ) = (−1)N , namely 1 if the parity is even and −1 if it is odd. Example 3 has just
one cycle of even period, hence sgn(σ ) = −1.

Proposition 5 When a permutation is multiplied by a transposition, its parity is reversed.

Proof We suppose the permutation σ is written in cycle form and that (a1b1) is a transpo-
sition. The respective possible cases, that a1 and b1 are in the same cycle or in different
ones, are covered in the following two lines, in which we represent only the affected
cycles of σ .

(a1 . . . ar b1 . . . bs)(a1b1) = (a1 . . . ar )(b1 . . . bs),
(a1 . . . ar )(b1 . . . bs)(a1b1) = (a1 . . . ar b1 . . . bs).

This suffices because either one or all three of r, s, r + s must be even. For example if
r , s are even then in the first case displayed one even cycle is converted to two, and
therefore the total number of even cycles changes parity, as asserted.

Corollary 6 A product of N transpositions has the parity of N.

Remarks 7 Any permutation may be expressed as a product of transpositions since
transpositions can convey an element to its desired position in the sequence without
disturbing the ordering of the rest. For example, to move x to fourth position in xabcd, we
move it in succession past a, b, c using the sequence of simple transpostions (xa)(xb)(xc),
to achieve abcxd. More generally, the first object in a sequence may be moved to the
i th position, keeping other objects in the same ordering, by a sequence of i − 1 simple
transpositions which thus constitutes a permutation of sgn (−1)i−1.

Remarks 8 (Inverses) We first observe that a transposition (ab) satisfies (ab)(ab) = 1,
here denoting the identity permutation, which leaves the order of objects unchanged.
Moreover, if σ = (a1b1)(a2b2) . . . (ar br ) for some positive integer r , and τ is this product
in reverse order, then στ = τσ = 1. Thus every permutation σ has an inverse τ , usually
written σ−1. Importantly, σ−1 has the same parity as σ . A simple and useful exercise is
to state why this is so.
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In particular, a transposition is its own inverse and, for a general cycle,
(a1a2 . . . an)−1 = (an . . . a2a1). Applying this to Example 2: [(124)(2316)]−1 = (2316)−1

(124)−1 = (6132)(421).

Remarks 9 (Determining the parity by inspection) Given a permutation σ of 12 . . . n, let
λi be the number of integers k less than i that are placed after i in the new order. Each such
wrongly reordered pair is called an inversion. We claim that the parity of σ is that of the
total number of inversions. To see this, observe that we can restore the greatest integer n
to its original position by λn simple transpositions. Then n − 1 is greatest amongst those
that precede n, so we can restore it by λn−1 transpositions, and so on down to 2, leaving
1 in first position.

For example, σ : 12 . . . 6 → 261453 has (λ1 . . . λ6) = (0, 1, 0, 1, 1, 4). The parity is
therefore that of 1 + 1 + 1 + 4 = 7, which is odd. The actual restorative steps are
261453 → 214536 → 214356 → 213456 → 123456. In preparation for the applica-
tion to determinants we compute a table of parities for all permutations abc of 123.
For this, a further shortcut is to note that, by Proposition 5, permutations differing by a
transposition have opposite parity and sign.

abc 123 132 213 231 312 321
sgn(σ ) 1 −1 −1 1 1 −1

Theorem 10 (Determinant formula) Let the n × n matrix A be written

A =

⎡
⎢⎢⎣

a1 a2 . . . an

b1 b2 . . . bn

. . . . . . . . . . . .

z1 z2 . . . zn

⎤
⎥⎥⎦ .

Then |A| =∑
σ ±ar bs . . . zt , where the sum is taken over all permutations

σ : 12 . . . n → rs . . . t , and the sign is that of σ . In particular, the diagonal term a1b2 . . . zn

has positive sign.

Proof For n = 1 the result is trivial, whilst for n = 2 it states (21 being a transposition of
12), that |A| = a1b2 − a2b1, which accords with the original definition preceding (7.18).
Now, though not necessary for the proof (for which indeed n = 1 would suffice to start
the induction), we illustrate further with the case n = 3, using the parity table of Remarks
9. The assertion becomes

|A| = a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1

= a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + a3(b1c2 − b2c1),

in agreement with the example following (7.18). Now assume inductively that the the-
orem holds for determinants of size n − 1 (some n ≥ 2) and that A is an n × n matrix
as displayed above. Translating the definition |A| =∑

a1i A1i (1 ≤ i ≤ n) from (7.18)
into the present notation we see that, for given i , any term involving ai has the form
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±ai br cs . . . zt , with sign given by the inductive hypothesis on the A1k to be

(−1)i+1 sgn(12 . . . î . . . n → rs . . . t) (î means “omit i”)
= (−1)i−1 sgn(i12 . . . î . . . n → irs . . . t) (noting (−1)2 = 1)
= sgn(12 . . . i . . . n → irs . . . t), (see below),

since i is moved from first to ith position by i − 1 simple transpositions. Thus the formula
is implied for determinants of size n and hence for all positive integer sizes by induction.

The proofs of Rules 7.28 Let A be an n × n matrix. We first establish that |AT| = |A|
(part of Rule 4), so that rules which apply both to rows and to columns will only require
to be proved for rows or for columns. Now, if we transpose matrix A, interchanging the
roles of rows and columns, then the same terms result as before in Theorem 10, but with
σ replaced by its inverse. However, since σ−1 has the same sign as σ (by Remarks 8),
the value of the determinant is unchanged.

Rule 1 Switching two rows of the matrix A changes each σ in Theorem 10 by a single
transposition, reversing the sign of each term and hence of |A|. But if two rows are
identical then switching them has no effect, implying −|A| = |A|, or |A| = 0.

Expansion of |A| by row i To obtain this formula, (7.18b), we cycle the rows of A so that
i becomes the top row, expand by row 1 (the definition of |A|), then perform the reverse
cycle. Since a cycle and its inverse have the same parity, Rule 1 shows we have achieved
+|A|.
Rule 2 If each element of a given row is multiplied by the same scalar α then so is each
term in the formula of Theorem 10, and hence |A| becomes α|A|. Alternatively, we can
expand by row i if this is the one multiplied by α, and the same result follows.

Rule 3 We write A = Rows[R1 . . . Rn] to mean that Ri is the ith row of A(1 ≤ i ≤ n),
and form a new matrix B by adding α× row 2 to row 1. Then, expanding |B| by row 1:

|B| = |A| + |Rows[αR2, R2 . . . Rn]|
= |A| + α|Rows[R2, R2 . . . Rn]| by Rule 2

= |A| by Rule 1, since the second matrix has two rows identical.

More generally, if a multiple of row j is added to row i, we may see the determinant is
unchanged by first expanding by row i.

Rule 4 We have established the second part. The first is proved, in the case |A| �= 0, by
writing A as the product of special matrices M1, . . . , Mn for which |Mi B| = |Mi ||B| for
any n × n matrix B. Details await a discussion on elementary row operations in Chapter
8. The relevant results are at Example 8.27(ii). The case |A| = 0 is left as an exercise,
with the hint that a linear relation between rows of A implies the same relation between
the rows of AB.
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Rule 5 (i) Suppose that there is a linear relation
∑

ai Ci = 0 with some ak �= 0. For sim-
plicity let k = 1. Then C1 =

∑
(−ai/a1)Ci , summing over just 2 ≤ i ≤ n. Subtracting

this linear combination from column C1 we obtain a matrix with a zero column, and
hence zero determinant. It follows from Rule 3 that |A| = 0.

(ii) We show conversely that |A| = 0 implies the columns of A are linearly depen-
dent. For n = 1 we have the trivial linear dependence relation 1 · a11 = 0, so assume
inductively that the result holds for matrices of size n − 1, and that A is n × n. We may
assume C1 �= 0, otherwise there is the trivial relation 1 · C1 + 0 · C2 = 0. Clearly, per-
muting and scaling the rows of A does not affect the existence of linear relations amongst
the columns, so we may reorder the rows so that the top element of C1 is nonzero, in
fact 1, without loss of generality. Write row 1 as [1 d2 . . . dn] and subtract di× column
1 from column i, for i = 2, . . . , n, Then we have

A →
[

1 0 . . . 0
? B

]
,

where B is a matrix of size n − 1. Considering expansion by row 1 we see that |A|
is a nonzero multiple of |B| and therefore |B| is zero. The inductive hypothesis now
implies a linear dependency between the columns B1, . . . , Bn−1 of B, say

∑
i λi Bi = 0,

with not all coefficients λi being zero, and hence the relation
∑

i λi (Ci+1 − di+1C1) =
0 (1 ≤ i ≤ n − 1) between the columns of A, in which not all the coefficients of columns
are zero.

Exercises 7

1 (i) Find the distance between the points (1, 4) and (−3, 7). (ii) Give an example of a left
handed orthonormal triple of vectors.

2
√

By drawing a sketch, decide whether the triple of vectors (1, 1, 0), (1, −1, 0), (0, 0, −1) is
left or right handed. According to their inner products, should any two of them be at right
angles?

3
√

Find the angle between a main diagonal and an adjacent edge of a cube by using suitable
coordinates for the endpoints of the diagonal (see (7.4) to (7.6)).

4
√

Find two vectors b, c such that {(1, 1, 1)/
√

3, b, c} is an ONB for 3-space. What are the
components of (1, 2, 1) in this basis?

5 Find every possible product of two of the three matrices in Example 7.22 (2) (see Section
7.2.1).

6
√

(a) Write down a 4 × 4 triangular matrix with diagonal {1, 2, 3, 5}. Deduce that the rows
are independent. (b) What is the determinant of the 4 × 4 Vandermonde-type matrix with
(i, j) element a j

i (0 ≤ i, j ≤ 3)? Evaluate this in the case an = n.
7
√

Prove that, when the implied products exist, (i) (AB)T = BT AT, (ii) AT B + BT A is
symmetric, (iii) AT B − BT A is skew-symmetric.

8
√

What is the inverse of the matrix diag(2, −1, 3)? A square matrix A satisfies A4 = I . What
can we say about (i) the determinant of A, (ii) the inverse of A? Can you find such an
example?
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9
√

(a) Solve the simultaneous equations 2x + 3y = 1, x − 5y = 7 by first inverting a 2 × 2
matrix. (b) Show that, if the matrix A has an inverse, then so does its transpose, and (AT)−1 =
(A−1)T. (Use (7.20), (7.21).)

10
√

Prove that (i) for a 2 × 2 matrix, if the rows are an orthonormal set then so are the columns,
(ii) for a 3 × 3 matrix, the determinant of AT equals the determinant of A. (This is Case 4
of Rules 7.28. Use (7.18).)

11
√

Prove that the set of all orthogonal n × n matrices forms a group (see Section 2.5).
Prove that the product of two upper (lower) triangular matrices is upper (lower)
triangular.

12
√

After checking that the vectors (1/2)(1, 1, 1, 1), (1/2)(1, 1, −1, −1), and (1/2)(1, −1, 1,
−1) form an orthonormal set, find a fourth vector which, with them, forms the rows of an
orthogonal matrix. Is the determinant +1 or −1?

13
√

Let P = Cols[(1, 0,−3), (2, 0, 4)] and Q = Rows[(1, 1, 2),(0, −1, 3)]. Compute the matrix
product PQ by Russian multiplication and check your result.

14 Let A = Cols[(1, 0, −2), (2, 3, 5)] and B = Rows[(6, 1), (0, 7)]. Express AB as the sum of
two matrices using (7.31). Now check your answer by standard matrix multiplication.

15
√

For each of the following triples of vectors, determine whether it is left handed, right handed,
or coplanar. Check the first two by a rough sketch.
(a) (1, 1, −3), (2, 1, 6), (3, −1, 4), (b) (1, 1, 1), (−1, 0, 0), (0, 1, 0),
(c) (1, 2, 3), (4, 5, 6), (5, 4, 3), (d) (1, 1, 0), (0, 1, 1), (1, 0, 1).

16
√

For the points A(2,−5), B(−3,−40), determine by evaluating a determinant whether
rotation of OA towards OB (O fixed) is clockwise or anticlockwise. Now check by a
sketch.

17
√

(a) Find the equation of the plane
∑

through the points A(1, 2, 3), B(−1, 2, 3), C(2, 0, 1),
and the foot Q of the perpendicular from P (1, 4, 2) to this plane. (b) Prove the second formula
of Theorem 7.46. (c) Simplify [a + b, b + c, c + a] by cyclic symmetry and Theorem 7.46.
(You should get 2[a, b, c].)

18
√

(a) Use the parametric form of a straight line to find a formula for reflection in L: ax +
by + c = 0. (Hint: (p, q) → (p, q) − 2t(a, b) for a certain t.) (b) Using this formula where
necessary, find the images of an arbitrary point (x, y) after reflection in (i) m: x = a,
(ii) p:y = x , (iii) q: x + y = c.

19 Determine the matrix for plane rotation about the origin through an angle π/6. What should
its sixth power equal? Does it?

20 Write down the matrix Rn for rotation of π/n about the origin in the cases n = 1, 2, 3, 4.
Verify that R2

4 = R2, R4
4 = R1 and R2

1 = I .
21
√

Find the matrix M of the transformation T (u) = uM in the cases (a) T (x, y, z) =
(3x − y, 2x + z, x − y + z), (b) T maps i, j, k to (i + k), ( j + k), (i − j), (c) T(i +
j) = √

2k, T (i − j) = √
2i, T (k) = j . Are any of these transformations isometries?

(Note. |M | = ±1 is not sufficient to prove that a matrix M is orthogonal.)
22
√

Check that the following are orthonormal triples, then find the matrix M that sends the first
triple to the second. (a) (1/3)(1, 2, 2), (1/3)(2, −2, 1), (1/3)(2, 1, −2), (b) j, (i + k)/

√
2,

(i − k)/
√

2. (Hint: take i, j, k as go-between and use (7.44b).) Check your answer.
23
√

Find the matrix of any isometry that maps i, j, k so as to send k into w = (1/
√

6)
(1, 2, −1).
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24
√

Find the matrix of projection in 3-space onto the subspace spanned by (−2, 1, 2), (2, 2, 1).
Express the images of i, j, k as linear combinations of the two basis vectors. (Hint: Russian
multiplication gives the coefficients free.)

25
√

Calculate the matrix M for a rotation T (u) = uM of π/4 about the z-axis. What does
this become if the axes are changed from i, j, k to ( j − k)/

√
2, (k − i)/

√
2, k? (Hint: see

Theorem 7.65.)
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Matrix algebra

We begin this chapter with the characterisation of a matrix by its eigenvalues and
-vectors and, in the first of many applications, use them to classify isometries in 3-space.
In Section 8.2 appears the technique of row operations on a matrix, usually designed to
convert them to a standard form. This leads naturally to the notion of the rank of a matrix,
which determines for example how many are independent in a set of linear equations, as
well as to a method of matrix inversion.

In Section 8.3 we see how the matrix A of a quadratic form q =∑
ai j xi x j is equiv-

alent in some sense to the diagonal matrix of its eigenvalues λi , and consequently we
can tell which forms may be re-expressed as a sum of squares

∑
λi y2

i . The signs of the
λi show how q ‘behaves’, important for studying the normal/Gaussian distribution in
n-space (see Section 10.4.3). Section 8.4 builds up to the remarkable Singular Value De-
composition (SVD), the representation of an arbitrary m × n matrix A by a diagonal one:
A = U T DV , where U and V are orthogonal and Dm×n is generalised diagonal. Matrix
norms both provide a tool of proof and express some striking optimisation properties of
the SVD which we shall use for Principal Component Analysis and data compression in
Chapter 10.

8.1 Introduction to eigenvalues

Eigenvalues and their corresponding eigenvectors are fundamental tools for the sequel.
They will reappear time and again to good effect, and one must make friends with them.
This section provides the minimal requirement of complex numbers, gives a grounding
in the main topic, and applies it in this first instance to the classification of isometries in
3-space.

8.1.1 Complex numbers

For a fuller revision of complex numbers, see Section 9.1 of Hoggar (1992), but here
is a quick ‘fix’. The set C of complex numbers is an extension of the real numbers for
which every quadratic equation has a solution because of the presence of the symbol i
(not to be confused with a basis vector, though there are connections) which acts as a

162
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square root of −1. We may express the complex numbers as C = {x + yi: x, y ∈ R},
with multiplication requiring the extra definition i2 = −1.

Thus, for example, (1 − 2i)(3 + i) = 3 − 2i2 − 5i = 5 − 5i = 5(1 − i). And z2 +
2z + 5 = 0 ⇔ (z + 1)2 = −4 = 4i2 ⇔ z = −1 ± 2i. The complex number z = x + yi
is said to have real part x = Rez, imaginary part y = Im z, conjugate z = x − yi, and
modulus |z| ≥ 0, where |z|2 = x2 + y2 = (x + yi)(x − yi) = zz, the squared length of
the vector (x, y) in the plane. The complex number cos φ + i sin φ of modulus 1 is denoted
by eiφ , because it behaves like this power for any angle φ. For example (see (14.24))

eiφ · eiθ = ei(φ+θ), (d/dt)eαt = αeαt (α = a + bi).

More on unit complex numbers and their derivatives is brought out at their place of
application to the Discrete Fourier Transform, in Sections 14.1.1 and 14.2.1 (and Hoggar,
1992). We will occasionally need to allow such numbers as matrix entries, when the
following definitions are useful. The conjugate of a matrix A is obtained in the obvious
way, by conjugating its entries. In symbols, A = [ai j ] . This operation is usually combined
with transposition to give the conjugate transpose

A∗ = (A)T = AT.

Indeed, A∗ plays a similar role for complex matrices to that of AT for the real case. In
particular the equality (AB)∗ = B∗A∗ holds, as shown by

(AB)∗ = (AB)T = (A B)T = B
T

A
T = B∗A∗,

the same reversal rule as is satisfied by the transpose. A simplification occurs if one
matrix in the product is a scalar, λ, when, because multiplication of complex num-
bers is commutative, ab = ba, we have (λA)∗ = λA∗. Moreover, a complex vector
x = (xk) satisfies

xx∗ = xxT = �xk xk = �|xk |2 = |x|2,
where the last equality may be taken as definition of vector length in the complex case.
Notice that for real numbers this becomes the usual definition of length and the operation
∗ becomes the same as transpose. The definition of dot product extends to complex
vectors as

x · y = xyT = �xk yk .

Example If x = (4 + i, 3), then |x|2 = |4 + i|2 + 32 = 42 + 12 + 32 = 26.
The collection of all complex n-vectors is called complex n-space, Cn . Correspondingly,
we have linear combinations with complex coefficients, bases, and orthogonality. Right
now we need the fact, not true in the real case, that EVERY polynomial with complex
coefficients (which includes real ones) is a product of linear factors. This is one version of
the Fundamental Theorem of Algebra (see Hoggar, 1992). We note, too, that a polynomial
equation of degree n cannot have more than n distinct solutions, for each solutionα implies
a factor x − α of the polynomial, by the argument of Theorem 7.30 applied unchanged
to complex numbers.
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8.1.2 Eigenvalues and eigenvectors

Definition 8.1 The real or complex number λ is an eigenvalue of the n × n matrix M,
with eigenvector x = (x1, . . . , xn), if

xM = λ x and x �= 0. (8.1)

Notice that

(i) x �= 0 means not all entries of x are zero,
(ii) if x satisfies (8.1) then so does βx for every nonzero complex number β,

(iii) if M and λ are real and (8.1) is satisfied by some complex x then by taking either the real
parts or the imaginary parts of x, which cannot all be zero, we obtain a real nonzero solution
for x.

The context For most of this section our examples will show how eigenvalues and
-vectors arise naturally with rotations and reflections. The context will widen from
Section 8.3 on.

Examples 8.2 (a) Rotation For M as the matrix of rotation about axis vector a, we have
aM = 1a. Thus M has an eigenvalue 1 with eigenvector a.

(b) Reflection If M is the matrix of reflection in a mirror through O with normal
vector n, then nM = −n. That is, −1 is an eigenvalue, with n as an eigenvector. From
observation (ii), any multiple of n is also an eigenvector corresponding to −1, as we
know it should be.

(A) The axis vectors of a rotation with matrix M are the
eigenvectors of M with eigenvalue 1.

(B) The normal vectors to the plane, for a reflection with (8.2)
matrix M, are the eigenvectors of M with eigenvalue −1.

(C) The eigenvalues of a reflection matrix M are ± 1.

Proof of (C) xM = λx ⇒ xM2 = λxM ⇒ x = λ2x (since M2 = I ) ⇒ λ2 = 1, as we
assume x �= 0. Notice that the equation λ2 = 1 cannot have more than two solutions,
even if we admit complex numbers (again, by Theorem 7.30). Next we will see how one
may compute eigenvalues in general.

Calculating eigenvalues We derive an equation whose roots are precisely the eigenval-
ues of a given n × n matrix M. Let λ be any real or complex number, then

xM = λx, for some x �= 0,

⇔ x(M − λI ) = 0, for some x �= 0 (the eigenvector equation), (8.3)

⇔ some linear combination
∑

i
xi Ci of the rows of

M − λI is zero (not all xi zero)

⇔ |M − λI | = 0 (the eigenvalue equation), (8.4)
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by Rule 7.28(5). Thus for each solution λ = α of the eigenvalue equation (8.4) we have
a nonzero vector x satisfying (8.1). It’s very useful to highlight the three simplest terms
of (8.4), by taking a look at the matrix M − λI . We may write

M − λI =

⎡
⎢⎢⎣

m11 − λ m12 . . . m1n

m21 m22 − λ . . . m2n

· · · · · · · · · · · ·
mn1 mn2 . . . mnn − λ

⎤
⎥⎥⎦ .

(i) |M − λI | is a polynomial in λ whose constant term, obtained by setting λ = 0,
is just |M |. (ii) All positive powers of λ come from diagonal elements mkk − λ.
In particular λn appears in the expansion of |M − λI | only in the diagonal term
D(λ) = (m11 − λ)(m22 − λ) . . . (mnn − λ), which has leading power (−λ)n . (iii) every
other term contains at most n − 2 of the diagonal elements, because in forming the sub-
determinant which multiplies an element M1k of the first row (k ≥ 2) we omit row 1 and
column k, and hence both (m11 − λ) and (mkk − λ). We conclude therefore that the coef-
ficient of λn−1 in the determinant |M − λI | equals the coefficient of λn−1 in D(λ), namely
(−1)n−1(m11 + m22 + · · · + mnn). Dividing out a factor (−1)n we may write the eigen-
value equation as

λn − c1λ
n−1 + c2λ

n−2 − · · · + (−1)n|M | = 0 (eigenvalue equation), (8.5)

where c1 = m11 + m22 + · · · + mnn , written Trace (M), or Tr M.
We’ll return more formally to the important Tr M after some examples on 2 × 2 matri-

ces, in which (8.5) can be written down by inspection. We note that, by the Fundamental
Theorem of Algebra, the left hand side of the eigenvalue equation (8.5) is the product of
n linear factors λ− αi , possibly with repetitions, in which some αi may be complex. We
view the equation as having n roots, counted according to their multiplicities.

Example 8.3 Calculate the eigenvalues of the following matrices, and find eigenvectors
for the third matrix.

(i)

[
2 3
3 4

]
, (ii)

[
1 0
0 2

]
, (iii)

[
0 −1
1 0

]
, (iv)

[
1 1
1 1

]
.

Solution In the 2 × 2 case we can read off the eigenvalue equation directly from (8.5):

(i) λ2 − (2 + 4)λ+ (8 − 9) = 0, or λ2 − 6λ− 1 = 0; solution λ = 3 ±√
(10);

(ii) λ2 − 3λ+ 2 = 0 and λ = 1, 2;
(iii) λ2 + 1 = 0, with classic solution λ = ±i;
(iv) λ2 − 2λ = 0, λ = 0, 2.

For an eigenvector x = [x y] of (iii) corresponding to eigenvalue λ = i we have the
standard equation of (8.3): x(M − λI ) = 0. Written out, this is

[x y]

[−i −1
1 −i

]
= 0, or

{−ix + y = 0,

−x − iy = 0.
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Now the matrix (M − λI ) has determinant 0 so by Rule 7.28 (5), each column of the
matrix, and hence each equation, must be a multiple of the other. And, indeed, on inspec-
tion we find that the first equation is i times the second, using i2 = −1. Thus the only
condition x, y must satisfy is x = −iy and we may take x = [−i 1]. Starting again with
eigenvalue λ = −i we find a corresponding eigenvector [i 1].

Exercise Derive the second eigenvector in part (iii) above.

Definition 8.4 The trace of an n × n matrix M is (we recall) the sum of its diagonal
elements, Tr M = m11 + m22 + · · · + mnn . Notice that if A is r × s and B is s × r then
Tr(AB)= Tr(BA) because �i, j ai j b ji = �i, j b ji ai j . By Lemma 8.5(b) below, the trace and
determinant of the matrix of an isometry T depend not on the choice of basis, but only
on T itself. Hence they are described as invariants of T and referred to as the trace and
determinant of T. The trace will be useful for, amongst other things, identifying the angle
of rotation of T when rotation is present (see Theorem 8.10).

Lemma 8.5 Let M be an n × n matrix. Then
(a) Tr M equals the sum of the eigenvalues of M, and |M| equals their product;
(b) the eigenvalue equation of M is unchanged if we replace M by AMA−1, where A is an invertible

n × n matrix. In particular, if M is the matrix of an isometry, then the new matrix under a
change of orthonormal basis has the same trace and determinant as M.

Proof (a) Let the eigenvalues be λ1, . . . , λn , of which some may be equal. Then the left
hand side of the eigenvalue equation (8.5) is identical to (λ − λ1) × (λ− λ2) · · · (λ− λn).
The coefficient of λn−1 is −∑

λi , which must therefore equal the coefficient −∑
mii

of λn−1 in (8.5). This gives the first assertion of (i). For the second we observe that the
two equal constant terms are (−1)nλ1λ2 · · · λn and (−1)n|M |.

(b) We recall Rule 7.28(4), that |BC | = |B‖C | for the determinant of the product of
two matrices B, C . Thus, since |A||A−1| = |AA−1| = 1, we have |M − λI | = |A||M −
λI ||A−1| = |A(M − λI )A−1| = |AMA−1 − AλI A−1| = |AMA−1 − λI |. Thus, replac-
ing M by AMA−1 leaves the eigenvalue equation (8.5) and hence the trace and deter-
minant unchanged. This proves (b), since the change of basis by a matrix A changes M
to AMA−1 (Theorem 7.65), and A is an orthogonal matrix (Theorem 7.71), for which
AT = A−1 (Definition 7.34(b)).

Let M be an n × n matrix. Then
Tr M equals the sum of the eigenvalues of M,
and |M| equals their product.

Theorem 8.6 (a) The eigenvalues of an orthogonal matrix M have modulus 1.
(b) A linear isometry T of 3-space fixing the origin satisfies Tv = ±v for some nonzero
vector v.

Proof (a) We denote the complex conjugate of a number or matrix by an overbar. Equating
the transposed complex conjugates of both sides of (8.1), we obtain MTxT = λxT, which
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we combine with the original (8.1) to get xMMTxT = λxλxT. This simplifies to xxT =
|λ|2xxT, and hence to |λ|2 = 1, for the reasons that MMT = I and xxT =∑

i xi xi =∑
i |xi |2, which is nonzero since x �= 0.
(b) Let M be the matrix of T . Since M is 3 × 3 the eigenvalue equation (8.5) is cubic

and so has at least one real root α. On the other hand, we know that M is orthogonal and
therefore, by part (a), |α| = 1, implying α = ±1. Then xM = λx becomes xM = ±x.
Finally, by remark (iii) of Definition 8.1, we may choose x to be real and so take v = x.

Exercise Prove that square matrices A and AT have the same eigenvalues.

M =
⎡
⎣ cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎤
⎦

M − λI =
⎡
⎣ c − λ s 0

−s c − λ 0
0 0 1 − λ

⎤
⎦

Example 8.7 Find eigenvalues and -vectors for
the rotation matrix M (shown) of θ about the
z-axis.

We already know 1 is an eigenvalue with
eigenvector [0 0 1]. Write c = cos φ, s = sin φ,
so that c2 + s2 = 1. Then the eigenvalue equa-
tion is |M − λI | = 0 (8.4), with M − λI as
shown.

Thus (λ − 1)(λ2 − 2cλ+ 1) = 0, with λ = 1 a solution as predicted. For the oth-
ers, λ = cos φ ± i sin φ = e±iφ . These two complex conjugate numbers have modulus
c2 + s2 = 1 in agreement with Theorem 8.6.

Eigenvectors With λ = eiφ the leading entry of M − λI is c − λ = −is, whence the
eigenvalue equation [x y z](M − λI ) = 0 gives, after taking out common factors s, the
three equations ix + y = 0, x − iy = 0, (1 − c − is)z = 0. Thus we have only two inde-
pendent equations, in agreement with |M − λI | = 0 (see Rule 7.28 (5)). An eigenvector
is (1, −i, 0). Corresponding to λ = e−iφ we may take (1, i, 0) as eigenvector.

Example 8.8 The matrices M in (i) and (ii) below are for, respectively, a rotation and a
reflection that fix the origin. Find the axis of (i) and plane of (ii) via eigenvectors.

(i)
1

9

⎡
⎣−7 4 4

4 −1 8
4 8 −1

⎤
⎦ , (ii)

1

7

⎡
⎣−2 3 −6

3 6 2
−6 2 3

⎤
⎦ .

Solution (i) An axis vector is any eigenvector with eigenvalue 1, by (8.3). The eigenvector
equation is x(M − λI ) = 0, here x(M − I ) = 0. With x written [x y z] as usual, the first
two equations are−16x + 4y + 4z = 0, 4x − 10y + 8z = 0, with solution z = y = 2x .
An axis vector is (1, 2, 2).

(ii) Here a normal to the plane is any eigenvector with eigenvalue −1, by (8.2) (B).
The eigenvector equation is x(M + I ) = 0. Any two independent equations will do,
and it is convenient to take the last two: 3x + 13y + 2z = 0,−6x + 2y + 10z = 0, with
solution z = −2y, x = −3y. A normal to the plane is (−3, 1,−2); an equation for it is
3x − y + 2z = 0.
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Remarks 8.9 Let A be an n × n matrix.

(1) We have seen how eigenvalues and -vectors can be used to identify rotation axes and reflection
normals. However, other methods may be faster for practical calculation: see Theorem 8.12
for reflection and Theorem 8.13 for rotation.

(2) Let f (t) be a polynomial. If λ is an eigenvector of A with eigenvalue x then f (λ) is an eigenvalue
of f (A) with the same eigenvector. An inductive proof can be given (Exercise 8.3) but an
example makes the process clear. Let x A = λx. Then x AA = λx A = λ2x. This takes care of
f (t) = t2. Thus if A has eigenvalues {1, i, −i} then A2 has eigenvalues {1,−1,−1}.

(3) A satisfies its own eigenvalue equation, essentially because if f (λ) = 0 then x f (A) =
f (λ)x = 0, for all eigenvectors x.

(4) (Inverses) If A−1 exists, its eigenvalues are {1/λ: λ is an eigenvalue of A}. Of course, all
eigenvalues of an invertible matrix are nonzero because, for example, |A| is their product
(Lemma 8.5), and is nonzero by (7.19).

Exercise Verify that the matrix for reflection in plane x + 2z = 0 has determinant −1
and that all its eigenvalues have modulus 1.

8.1.3 Linear isometries in 3-space

We have shown (Theorem 8.6) that a linear isometry T satisfies Tv = ±v for some
nonzero vector v, and noted that we may replace v by any multiple of itself. Thus we
may choose a coordinate system i, j, k with k = v, T k = ±k.

φ >  0

kSince T preserves angles it maps the xy-plane onto itself and, by
Theorem 1.16, it must do so either by a rotation of some angle φ

about the origin O, or by reflection in a line m through O with polar
angle, say, φ. We consider these two cases in turn.

Case 1 T rotates the xy-plane.

M =
⎡
⎣ cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎤
⎦

M =
⎡
⎣ cos φ sin φ 0
− sin φ cos φ 0

0 0 −1

⎤
⎦

(a) Suppose T k = k. Then by (7.41) T has matrix M as
given on the right. Hence |M | = 1 and T is the rotation
Rk(φ).
(b) Suppose T k = −k. Then the matrix of T equals
that of part (a) times the matrix that sends [x y z] to
[x y −z], namely diag (1, 1,−1). So we have matrix M
as shown, |M | = −1, and T is the product of a reflection
z →−z in the xy-plane and the rotation Rk(φ). Thus T
is a rotary reflection, as defined below.

Definition A rotary reflection is any composition of a rotation and a reflection (note: it
can be expressed so that axis and normal coincide).

Case 2 T acts on the xy-plane as a reflection Rm . See Figure 8.1.
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φ
m

x

y

k

Π

Figure 8.1 Diagram for Case 2.

(a) Suppose T k = k. Then the matrix of T is by (7.40)

M =
⎡
⎣ cos 2φ sin 2φ 0

sin 2φ − cos 2φ 0
0 0 1

⎤
⎦ .

Here |M | = −1 and T is reflection in the
plane � which contains m and k.

(b) Suppose T k = −k. Then M is as above, but with bottom diagonal entry−1 instead of
1. We have, for the first time in this situation, the diagonal entry−1 along with |M | = +1.
Referring to Figure 8.1, we see that T is the product of reflection z →−z in the xy-plane
with reflection in the plane �. Since these planes are at right angles the result is a 1/2
turn about their intersection, the line m.

We now have our classification. Note that a rotation angle φ,−π ≤ φ ≤ π , is deter-
mined only up to sign by its cosine alone. We must in addition know the sign, and, in both
parts of the theorem below, the rotation angle φ has the sign of [a, v, Tv] for any non-
axial vector v. However, we can avoid this determinant calculation by the later Theorem
8.13, which supplies the unique axis corresponding to a positive angle of rotation.

Theorem 8.10 (Classification) Let T be a linear isometry of 3-space. Then there are the
following possibilites.

(i) |T | = 1. Unless T is the identity it is a rotation, with axis vector a given by T a = a (eigenvalue
1). The rotation angle φ satisfies 2 cos φ + 1 = Tr T .

(ii) |T | = −1. T is a rotary reflection. If T x = −x for all vectors x (matrix −I) then T is an
inversion. Otherwise T has an axis vector a given by Ta = −a (eigenvalue −1). The rotation
angle φ satisfies 2 cos φ − 1 = Tr T. It is pure reflection if Tr T = 1.

Corollary 8.11 (Euler’s Theorem) The composition of rotations about two axes through
a point A is rotation about a third axis through A.

Proof Take A as origin for right handed coordinates. Let the rotations be T1, T2. Then
|T1| = |T2| = 1 and so |T1T2| = |T1||T2| (Rule 7.28)= 1. By the Classification Theorem,
8.10, we know that T1T2 must be a rotation.
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x

x'

x

U

x − 2x

Figure 8.2 The relation between the projection x′ and reflection x − 2x⊥ of x.

Calculating axes and normals in practice

Theorem 8.12 The matrix of reflection in a plane through the origin with UNIT normal
n is the symmetric matrix M = I − 2nTn. Hence a normal is any nonzero row of M − I.
See Figure 8.2.

Proof Under reflection, x → x − 2x⊥ = x − 2 (projection of x onto span{n}) = x −
2x(nTn) (Theorem 7.59 with u1 = n) = x(I − 2nTn).

Exercise Use the result above to find a reflection normal for Example 8.8(ii).

Theorem 8.13 The matrix for rotation θ about an axis along unit vector a (or −θ

with −a) is

M = Aθ = (cos θ )I + (1 − cos θ ) aTa + sin θ

⎡
⎣ 0 a3 −a2

−a3 0 a1

a2 −a1 0

⎤
⎦ , (8.6)

where the third term equals (1/2)(M − MT). Hence, given the matrix M of a rotation,
either

(i) M is symmetric, giving a 1/2 turn about any nonzero row of M + I as axis, or
(ii) we may take axis (sin θ ) a given as above and angle θ > 0 defined by cos θ =

(TrM − 1)/2.

Proof Formula (8.6) is obtained as PBP−1 by mapping a to k by an orthogonal matrix
P (see Example 7.63), rotating about k by the known matrix A of (7.41), then applying
P−1. More details are found in Hoggar (1992), Theorem 8.49.

(i) If M is symmetric the third term is absent since by (7.16) every matrix is uniquely
the sum of a symmetric and a skew matrix. Hence sin θ = 0, implying θ = 0 or θ = π .
If θ = 0 then M = I , otherwise M = −I + 2aTa, so M + I = 2aTa, in which every
row is a multiple of a.

(ii) If M is not symmetric then by (7.16) the skew third term is present and gives
(sin θ )a. Since reversing the sign of a reverses that of θ this product is constant under
such reversals and we may simply take θ > 0 and divide the vector by its own length to
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get a corresponding unit axis vector.

Rotation angle: cos θ = (TrM − 1)/2, θ > 0.

Axis given by M − MT, in (8.6).
M symmetric: θ = π, axis = row of (M + I ).

Example 8.14 Find the result of reflection in the plane � : x = y, followed by reflection
in the plane �: x + y + 2z = 0.

Solution A normal for � is a = (1,−1, 0), with reflection matrix M1 = I − 2aTa/2.
The extra 2 normalises both copies of a to unit length as required, that is, we take
2(aT/

√
2)(a/

√
2). A normal for � is b = (1, 1, 2), yielding matrix M2 = I − 2bTb/6.

Thus

M1 = I −
⎡
⎣ 1 −1 0
−1 1 0

0 0 0

⎤
⎦ =

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦ ,

M2 = I − 1

3

⎡
⎣1 1 2

1 1 2
2 2 4

⎤
⎦ = 1

3

⎡
⎣ 2 −1 −2
−1 2 −2
−2 −2 −1

⎤
⎦ .

Hence M1 M2 = 1

3

⎡
⎣−1 2 −2

2 −1 −2
−2 −2 −1

⎤
⎦ = M, say.

Notice that pre-multiplication by M1 simply reassembles the rows of M2 in the order 213.
Let us see what our theorems reveal before any geometrical considerations. Firstly, M is
orthogonal since the rows are mutually orthogonal, and of unit length after the scaling by
1/3. Secondly, the determinant, after column operations C2 → C2 + 2C1, C3 → C3 −
2C1, comes out as (36 − 9)/33 = 1. By Theorem 8.10, M is a rotation. Moreover, M is
symmetric, and so we have by Theorem 8.13 a 1/2 about an axis from any nonzero row
of M + I . The first row is (2, 2,−2)/3 so we may take (1, 1,−1) as axis.

Geometry – why the 1/2 turn? The normals and hence the planes are at right angles,
so we expect a rotation through π (a 1/2 turn) about their line of intersection. We need
not solve equations to find this, for since it contains the origin (because � and � do), any
vector at right angles to both will do. One such is the vector product (1,−1, 0) × (1, 1, 2),
which equals (−2,−2, 2) by the determinant formula (7.38), in agreement with our
previous conclusion.

Example 8.15 Find the composition of 1/4 turn about the z-axis followed by 1/2 turn
about the axis (0, 1, 1) (taken from the symmetry group of the regular cube centred at
the origin).
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Solution A 1/4 turn means angle π/2, with cosine 0 and sine 1. The axis is (0, 0, 1). In
fact the respective rotation matrices are

M1 =
⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦+

⎡
⎣ 0 1 0
−1 0 0

0 0 0

⎤
⎦ =

⎡
⎣ 0 1 0
−1 0 0

0 0 1

⎤
⎦ ,

M2 = −I + 2

2

⎡
⎣0 0 0

0 1 1
0 1 1

⎤
⎦ =

⎡
⎣−1 0 0

0 0 1
0 1 0

⎤
⎦

Hence M = M1 M2 =
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦ and 1

2 (M − MT) = 1

2

⎡
⎣ 0 −1 1

1 0 −1
−1 1 0

⎤
⎦.

The last matrix is computed because M is not symmetric and so is not simply a 1/2
turn. By Theorem 8.13, an axis vector is (−1,−1,−1), with θ > 0 given by cos θ =
(TrM − 1)/2 = −1/2, hence θ = 2π/3. Thus the result is a 1/3 turn. (Equivalently, it
is a −1/3 turn about the axis (1, 1, 1).)

Exercise Find the composition of a 1/3 turn about (1, 1, 1) followed by 1/3 turn about
(1, 1,−1).

Remark There is a nice way to achieve 3D rotations by the use of quaternions, Hoggar
(1992), Chapter 9.

8.2 Rank, and some ramifications

The rank of a matrix is its number of independent rows, or equivalently the dimension of
its row space (space spanned by the rows). Like the trace and determinant, it represents
some significant features of the whole array by a single number with many applications.

8.2.1 Rank and row operations

For an arbitrary m × n matrix A with rows R1, . . . , Rm , the range or row space R(A)
and rank r (A) are defined by

R(A) = span{R1, . . . , Rm},
r (A) = DimR(A). (8.7)

For a convenient way to determine and make use of these constructs, suppose M is a
p × m matrix for some p. Then, as observed in Examples 7.22,

row i of MA = [row i of M]A = [x1 . . . xm]A, say

= x1 R1 + · · · + xm Rm, by (7.29). (8.8)
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Thus each row of the product MA is a linear combination of rows of A, and therefore
contained in R(A). This gives the first part of:

Theorem 8.16 If the matrix product MA exists then R(MA) is a subspace of R(A) and
hence r (M A) ≤ r (A), with equality in both cases if M is invertible.

Proof It remains to consider the case of M an m × m invertible matrix. Using the first part
twice gives R(A) = R(M−1MA) ⊆ R(MA) ⊆ R(A). Since the first and last expressions
are equal, so are they all, and in particular R(MA) = R(A) as required.

Theorem 8.17 Rank and row space are invariant under (elementary) row operations,
namely, with i �= j and a �= 0,

(a) interchange rows i, j (Ri ↔ R j ),
(b) multiply row i by the nonzero constant a (Ri → a Ri ),
(c) add b times row j to row i (Ri → Ri + bR j ),
(d) do (b) then (c) (Ri → a Ri + bR j ).

An operation f converts an m × n matrix A into the
product MA, where M = f (Im) and is invertible.

(|MA| = |M ||A| if A is square.)

Proof We begin by showing that M performs as stated. Let A have rows R1, . . . , Rm .
Case (d) covers all except (a), which is similar. So consider f : Ri → aRi + bR j with
a �= 0 and j �= i . Now, when M = f (I ) is formed the only change to I is that row
i = [x1 . . . xn] = [0 . . . a . . . b . . . 0] is all zeros except for xi = a, x j = b. Hence MA is
the same as A except for

row i of M A = [0 . . . a . . . b . . . 0]A
= a Ri + bR j by (8.8)
= row i of f (A) as required.

Now we observe that f has inverse Ri → (Ri − bR j )/a, which therefore gives an inverse
for M. Since M is invertible, the rank and row space are invariant by Theorem 8.16. Finally,
the determinant equality holds by a case by case check. In Case (a), |M | = −|I | = −1,
and so we may write |MA| = −|A| = |M ||A|, whilst in Case (d) we have |M | = a|I | = a,
giving |M A| = a|A| = |M ||A|.

Example Let

[
1 2
3 4

]
→

[
1 2
0 −2

]
under the operation R2 → R2 − 3R1. Find M.

Solution

[
1 0
0 1

]
→

[
1 0

−3 1

]
(= M).

Check: M A =
[

1 0
−3 1

] [
1 2
3 4

]
=
[

1 2
0 −2

]
.
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0 … 0 α1 x … … … … … … … … x
0 … 0 α2 x … … … … … x

0 … 0 α3 x … x

ZEROS

Figure 8.3 Echelon form of a matrix, with three nonzero rows. A sequence x . . . x
denotes entries which are not necessarily zero. Entries below the staircase shape are all
zero. The αi are leading entries.

Now we can use row operations to reduce A to echelon form, as depicted in
Figure 8.3.

ALGO 8.1 Reducing a matrix to echelon form

1. Permute the rows by operations of type (a) so that a leftmost nonzero
entry α1 of the matrix is in row 1.
2. Use type (c) operations to get zeros in each entry directly below α1.
By construction, all columns to the left of the leading entry α1 consist
of zeros.

We proceed iteratively: repeat 1, 2 for the submatrix obtained by
deleting the αi row and all columns up to and including that of αi .

Call the new leading entry αi+1. The process terminates when either
αi is in the last row, or the remaining rows are all zero.

Here directly below means ‘in the same column, one or more places down’. Notice that
entries to the right of αi in the same row need not be zero (see x . . . x in Figure 8.3). Also,
it may be worth arranging that αi = 1, especially if computing by hand (this becomes
more important in Section 8.2.3).

Echelon properties We may characterise an echelon form by (a) each leading entry
αi + 1 is below and to the right of its predecessor, (b) all entries but αi are zero in the
submatrix with top right entry αi . This guarantees that the nonzero rows in the echelon
form are independent. Since the row space remains the same under row operations
(Theorem 8.17) we have the following result.

Theorem 8.18 (a) The rank of a matrix A equals the number of nonzero rows in any
echelon form of A. These rows provide a basis for the row space. (b) Any echelon form
of A may be written PA for some invertible matrix P. (c) We may instead choose P so that
the first r (A) rows of PA are an ONB for R(A), and the rest are zero.

Proof (a) Let an echelon form E of A have d nonzero rows. Since these rows are inde-
pendent and span R(E) they consitute a basis thereof. This gives the first equality in:
d = Dim R(E) = Dim R(A) = r (A), as required.

(b) By Theorem 8.17 the sequence of row operations which convert A to an echelon
form E may be achieved by pre-multiplication by a sequence of invertible matrices thus:
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E = Mr · · · M2 M1 A. Now we may take P = Mr · · · M2 M1, which is invertible because
the Mi are invertible.

(c) By Theorem 8.17 it suffices to note that the following steps produce the desired
effect on A, and may be achieved by a sequence of row operations.

(1) Reorder the rows of A so that the first r = r (A) rows form a basis of R(A).
This is possible because every spanning set of a vector space contains a basis (see
Remark 7.13(1)).

(2) Use the Gram–Schmidt process (Definition 7.17) to convert the basis to an
orthonormal one.

(3) For i = r + 1 to m the current ith row Ri is a unique linear combintion of the
first r, say Ri = ai1 R1 + · · · + air Rr . Perform Ri → Ri − ai1 R1 − · · · − air Rr .

Example 8.19 We find range, rank, and the matrix P that converts A to echelon form.

A =

⎡
⎢⎣

1 5 9
2 6 10
3 7 11
4 8 12

⎤
⎥⎦ R2 → R2 − 2R1

R3 → R3 − 3R1

R4 → R4 − 4R1

⎡
⎢⎣

1 5 9
0 −4 −8
0 −8 −16
0 −12 −24

⎤
⎥⎦ R3 → R3 − 2R2

R4 → R4 − 3R2

R2 → (−1/4)R2

⎡
⎢⎣

1 5 9
0 1 2
0 0 0
0 0 0

⎤
⎥⎦ (echelon form).

The operations we used are shown between each matrix and their result. The last opera-
tion, scaling row 2, was not essential, but performed for aesthetic purposes. By Theorem
8.17 we have found two things: R(A) = span{(1, 5, 9), (0, 1, 2)}, and so A has rank 2.
Now we find P by applying to I4 the row operations we applied to A. Scaling row 2 is
given a separate stage (can you see why?). Lastly we verify that PA is the echelon form
as Theorem 8.17 predicts.

I =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 0 0 0
−2 1 0 0
−3 0 1 0
−4 0 0 1

⎤
⎥⎥⎦→

⎡
⎢⎢⎣

1 0 0 0
−2 1 0 0

1 −2 1 0
2 −3 0 1

⎤
⎥⎥⎦

→

⎡
⎢⎢⎣

1 0 0 0
1/2 −1/4 0 0

0 −2 1 0
2 −3 0 1

⎤
⎥⎥⎦ = P.

Check: PA =

⎡
⎢⎢⎣

1 0 0 0
1/2 −1/4 0 0

1 −2 1 0
2 −3 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 5 9
2 6 10
3 7 11
4 8 12

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 5 9
0 1 2
0 0 0
0 0 0

⎤
⎥⎥⎦ , the echelon form.

Column operations For every row operation there is a corresponding operation on
columns, equivalent to transposing (columns become rows), performing the desired
operation on rows instead, then transposing back again: A → AT → MAT → AMT.
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Thus, if forming PB performs a set of row operations on a matrix B then forming
CPT performs these operations on the columns of a matrix C.

Theorem 8.20 The rank of a matrix is invariant under the following operations:

(a) transposition: r (AT) = r (A),
(b) both row and column operations,
(c) left and right multiplication by invertible matrices.

Proof (a) Observe that column operations do not affect linear relationships between
the rows of A. For a column operation changes A to AP, with P invertible, so∑

xi (row i of A) = 0 ⇔ x A = 0 (x = (xi )) ⇔ xAP = 0. Hence we need only consider
A in echelon form, as in Figure 8.3. But column operations easily eliminate all nonzero
elements except the αi , so both r (AT) and r (A) equal the number of αi .

Part (b) now follows since, as remarked, column operations may be achieved by a
combination of row operations and transpositions. For (c), invariance under left multipli-
cation by an invertible matrix was established in Theorem 8.16. Invariance under right
multiplication follows by (a), since we only need to combine left multiplication with
suitable transpositions to achieve right multiplication.

Examples 8.21 (i) (Rank) Notice that Theorem 8.20(a) implies r (A) ≤ Min(m,n). Here
are some matrices whose ranks can be stated by inspection.

A =
⎡
⎣2 3

4 5
6 7

⎤
⎦ , B =

⎡
⎣1

3
2

⎤
⎦ [2 1 5] =

⎡
⎣2 1 5

6 3 15
4 2 10

⎤
⎦ , C =

⎡
⎣6 2 27

0 5 18
0 0 4

⎤
⎦ .

Firstly, r (A) = r (AT) = 2, since the two columns are LI (one is not a multiple of the
other). The construction of B shows each row is a multiple of the first, so the rank is 1.
The same applies to any matrix of form abT. The matrix C is already in echelon form,
so r (C) = 3.

Exercise Find invertible P such that PB is an echelon form of matrix B above.

(ii) (Operations) Consider the equality M(AB) = (MA)B in the case where M is the
row operation matrix of Theorem 8.17. This shows that a row operation on any matrix
product AB can be achieved by performing the operations on the rows of A, then forming
the matrix product. Using the connection with column operations observed above, we
conclude that

any row operation on an extended matrix product A1 A2 · · · An (n ≥ 2)
may be achieved by performing that operation on the rows of A1 and any
column operation by performing it on the columns of An .

(iii) (The permutation case) If P performs only permutations of rows then P is orthogonal.
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Proof P is obtained by permuting the rows of the orthogonal matrix I and is therefore
itself orthogonal (see Definition 7.34(c)). This remark is used in Section 15.2.3, the
Fourier Transform, and in Section 17.3.2, cubic B-splines.

8.2.2 Rank, nullity and linear equations

We define the null space N (A) and nullity n(A), of an m × n matrix A, as follows:

N (A) = {x ∈ Rm : x A = 0},
n(A) = dim N (A). (8.9)

It is a simple exercise to show that the null space is a subspace of Rm . It is associated
with solving a set of linear equations (see below), for which we sometimes require the
reduced echelon form of a matrix, in which each leading term αi is 1, and all other entries
in the same column as αi are zero. An example follows.

Example 8.22 (Solving equations) We find the null space and nullity of the matrix A of
Example 8.19. Notice that x A = 0 ⇔ ATxT = 0, and since row operations on AT give
an equivalent equation set the argument may be handled thus:⎡

⎣1 2 3 4
5 6 7 8
9 10 11 12

⎤
⎦
⎡
⎣ x1

· · ·
x4

⎤
⎦ = 0 ⇔

⎡
⎣1 2 3 4

0 −4 −8 −12
0 −8 −16 −24

⎤
⎦
⎡
⎣ x1

· · ·
x4

⎤
⎦ = 0

⇔
⎡
⎣1 2 3 4

0 1 2 3
0 0 0 0

⎤
⎦
⎡
⎣ x1

· · ·
x4

⎤
⎦ = 0

⇔
⎡
⎣1 0 −1 −2

0 1 2 3
0 0 0 0

⎤
⎦
⎡
⎣ x1

· · ·
x4

⎤
⎦ = 0

⇔
{

x1 = x3 + 2x4,

x2 = −2x3 − 3x4

⇔
{

x = (x3 + 2x4,−2x3 − 3x4, x3, x4)
= x3(1,−2, 1, 0) + x4(2,−3, 0, 1).

Here, the reduced echelon form was convenient for solving the equations, enabling us to
conclude that N (A) = span{(1,−2, 1, 0), (2,−3, 0, 1)}, and the nullity is 2.

To bring out a relation between rank and nullity we return briefly to linear maps. We
define the kernel, ker f, and image, im f, of a linear map f : Rm → Rn by

ker f = {x ∈ Rm : f (x) = 0}, (8.10)

im f = {y ∈ Rn: y = f (x) for some x ∈ Rm}. (8.11)
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Theorem 8.23 If the matrix A defines the linear map f : Rm → Rn, x → x A, then
(a) N (A) = ker f,
(b) R(A) = im f, and
(c) rank r (A) + nullity n(A) = m.

Proof (a) and (b) are immediate from the definitions. For (c), let e1, . . . , es be a basis of
ker f and extend it to a basis e1, . . . , em of Rm . We claim that { f (ei )} spans im f. For let
y be in im f with y = f (x). Then x =∑

λi ei for m constants λi , so y = f (
∑

λi ei ) =∑
λi f (ei ). But f (e1), . . . , f (es) = 0 by definition of ker f and hence f (es+1), . . . , f (em)

alone span im f : we must show they are independent. Let
∑

λi f (ei ) = 0 (s + 1 ≤ i ≤
m). This may be re-expressed as f (

∑
λi ei ) = 0. Thus the vector sum in parenthesis is

in ker f but is not a nonzero linear combination of e1, . . . , es . Hence it is zero, implying
λs+1 = · · · = λm = 0. But this shows in turn that f (es+1), . . . , f (em) are independent
(Definition 7.6). Finally, we are entitled to conclude that dim ker f + dim im f = s +
(m − s) = m, as asserted.

rank r (A) + nullity n (A) = m (A = Am×n).

Corollary 8.24 The solutions of a set AxT = 0, of m linear equations in n unknowns
form a subspace of Rn of dimension n − r(A). We distinguish three cases.

(a) r (A) = n. The zero solution is the only one.
(b) m < n. There is always a nonzero solution.
(c) m = n. There is a nonzero solution if and only if |A| = 0.

Proof The equations may be written x AT = 0, so the solutions are by definition the
null space of the n × m matrix AT. But Dim N (AT) = n − r (AT) (by Theorem 8.23) =
n − r (A) by Theorem 8.20. Thus in (a) the solution space has dimension 0, hence contains
only the zero solution. In case (b), r (A) ≤ m < n, so the solution space dimension
n − r (A) is positive. Finally, in (c) with m = n, there is a nonzero solution ⇔ the
columns of A are dependent ⇔ |A| = 0 (Rules 7.28).

Examples 8.25
(i) In Rn , the vectors x perpendicular to independent vectors a, b are defined by a · x = 0, b · x =

0, and so form a subspace of dimension n − 2.
Reason: the vectors x form the null space of A = Rows(a, b), which has rank 2 since a, b
are independent. We apply Theorem 8.23(c).

(ii) (Rank 1 matrices) The special n × n matrix B = aTa, where a is an n-vector, has rank 1
because every row is by definition a multiple of a (the ith row is ai a). Hence the solutions of
BxT = 0 form a subspace of dimension n − 1 (the null space of B), by Theorem 8.23(c).

(iii) Each further independent linear relation placed on the entries of vectors in an n-space reduces
the dimension of the resulting subspace by 1.
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(iv) Sometimes it is useful to consider the column null space of A, defined as the (row) null space
of AT. Such a situation occurs in Section 17.3.1, spline wavelets. It’s the same as the

space of solutions of AxT = 0, with dimensions n − r (A),
which equals n − m if m < n and the rows are LI.

Exercise Find a basis for the 4-vectors at right angles to (1, 1, 0, 1) and (1, 0,−2, 3).

8.2.3 Inverting a matrix by row operations

Theorem 8.26 The following are equivalent for an n × n matrix A:
(a) A is invertible, (b) |A| �= 0, (c) A has rank n, (d) A has reduced echelon form In.

Proof The equivalence of (a) and (b) was established with Cramer’s Rule, Theorem
7.32. To incorporate (c) and (d), let E be the reduced echelon form of A, with P A = E
and P invertible (Theorem 8.18). Then r (A) = n ⇔ E has n nonzero rows ⇔ E is In

(since A is square) ⇔ |E | �= 0 ⇔ |A| �= 0 (since P is invertible and Theorem 8.20 (c)
applies).

ALGO 8.2 To invert an n × n matrix A

Form the block matrix [AIn] (see Section 7.2.5);
perform row operations on [AIn] that reduce A to I;
then [AIn] becomes [I A−1].

Validity The operations convert [AI ] to [PA PI], where PA = I and hence P = A−1.
By Theorem 8.26, the algorithm will produce a result if and only if an inverse exists.

Examples 8.27(i) Convert [A I ] below to [I P], and verify that A−1 = P , (ii) show that
every invertible matrix is a product of row operation matrices.

Solution (i)

⎡
⎣1 2 3 1 0 0

1 2 4 0 1 0
2 3 4 0 0 1

⎤
⎦→

⎡
⎣1 2 3 1 0 0

0 0 1 −1 1 0
0 −1 −2 −2 0 1

⎤
⎦

→
⎡
⎣1 2 3 1 0 0

0 −1 −2 −2 0 1
0 0 1 −1 1 0

⎤
⎦→

⎡
⎣1 2 3 1 0 0

0 1 2 2 0 −1
0 0 1 −1 1 0

⎤
⎦

→
⎡
⎣1 0 −1 −3 0 2

0 1 2 2 0 −1
0 0 1 −1 1 0

⎤
⎦→

⎡
⎣1 0 0 −4 1 2

0 1 0 4 −2 −1
0 0 1 −1 1 0

⎤
⎦ .
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Hence A−1 =
⎡
⎣−4 1 2

4 −2 −1
−1 1 0

⎤
⎦ .

Check:

⎡
⎣−4 1 2

4 −2 −1
−1 1 0

⎤
⎦
⎡
⎣1 2 3

1 2 4
2 3 4

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

(ii) Let A be invertible. Then some sequence of row operation matrices Mi converts A
to its reduced echelon form In (Theorem 8.26(d)), say (Mr · · · M2 M1)A = I . But this
implies that A = M−1

1 M−1
2 · · · M−1

r , another product of row operation matrices.

Every invertible matrix is a product of row
operation matrices.

Exercise Use row operations to invert the matrix with rows [1 2 −2], [2 −2 −1],
[2 1 2].

8.3 Similarity to a diagonal matrix

The results of this section are important for many purposes, including the study of
normal distributions and Gaussian noise. We shall require some background on complex
numbers, which was given at Section 8.1.1. However, our first task in the present section
will be to use this background to show that, in the important special case of a symmetric
matrix S, certain potentially complex numbers are actually real, and S may have behaviour
very close to that of a diagonal matrix.

8.3.1 Diagonalisation

Definition 8.28 Let A, B be n × n matrices. We say A is similar to B (by P)
if A = PBP−1 for some invertible matrix P. Then B = QAQ−1 with Q = P−1, so
B is similar to A and the relation is symmetric. If P may be chosen orthogonal we
say A is orthogonally similar to B; in this case we may and often do substitute PT for
P−1. Our main focus is the case of B diagonal, when P is said to diagonalise A.

Theorem 8.29 (a) If A is similar to D = diag (α1, . . . , αn) by an invertible matrix P then
row i of P is an eigenvector of A with eigenvalue αi (1 ≤ i ≤ n), (b) If A is symmetric
then its eigenvalues are real, and the eigenvectors may be chosen to be real.

Proof (a) We have PAP−1 = D, hence PA = DP, and equating ith rows of either side
gives (row i of P)A = αi (row i of P), as required.

(b) Let A be symmetric, with an eigenvalue λ and corresponding eigenvector x. Then
x A = λx (x �= 0), and, on taking the conjugate transpose of both sides, Ax∗ = λx∗

(A being both real and symmetric). Since matrix multiplication is associative we may
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write x(Ax∗) = (x A)x∗ and by substitution x · λx∗ = λx · x∗, or (λ− λ)xx∗ = 0. But
xx∗ = |x |2, which is positive because x is by definition nonzero, and we may infer
λ− λ = 0, which implies λ is real as required. Since the corresponding eigenvector
equation is real linear and has solutions, it has a real solution.

What matrices can be diagonalised? The most useful answer by far can be given for
symmetric matrices, in which case we have the strong result below, with full orthogonal
diagonalisation.

Theorem 8.30 A square matrix A is orthogonally similar to a diagonal matrix if and
only if A is symmetric.

Proof (i) Let A be orthogonally similar to a diagonal matrix D, say PAPT = D. Then
A = PTDP and is symmetric since AT = PT DT(PT)T = PTDP.

(ii) The converse, the harder part, is performed by induction on n. The result is true
for n = 1, because λ = 1 · λ · 1−1 for any scalar λ. Assume it holds for matrices of size
n − 1, let An×n be symmetric, and let λ1 be a real eigenvalue of A with real eigenvector
u1 (Theorem 8.29). Extend to an ONB u1, . . . , un of Rn and take these as rows of an
n × n orthogonal matrix Q. Then, for 1 ≤ i ≤ n,

(1, i) entry of QAQT = (row 1 of Q)A(row i of Q)T by formula (7.17c.)
= u1 AuT

i = λ1u1uT
i = λ1δ1i .

Thus the first row of QAQT is [λ1 0 . . . 0] and, since QAQT is symmetric, we have in
terms of block matrices (see Section 7.2.5)

QAQT =
[

λ1 0
0 B

]
(where B is symmetric, of size n − 1).

By the inductive hypothesis there is an orthogonal matrix P with PBPT =
diag(λ2, . . . , λn) = D, say. Define

R =
[

1 0
0 P

]
.

Then R is orthogonal, hence so is RQ, and (RQ)A(RQ)T = R · QAQT · RT

=
[

1 0
0 P

] [
λ1 0
0 B

] [
1 0
0 PT

]
=
[

λ1 0
0 PBPT

]
= diag(λ1, . . . , λn). (8.12)

Hence the result, by induction; it is displayed below.

A square matrix A is orthogonally similar to a
diagonal matrix if and only if A is symmetric.

Remark 8.31 Let A be a symmetric matrix. The two preceding results not only show that
if A is symmetric it may be diagonalised by an orthogonal matrix P (sometimes called
the modal matrix of A), but yield the following practical consequences for calculation:
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(i) the diagonal elements are the eigenvalues of A with the correct multiplicities,
(ii) the rows of P are eigenvectors corresponding to the eigenvalues of A in their diagonal order,

and provide an ONB for Rn ,
(iii) rows corresponding to an eigenvalue λ of multiplicity k provide an ONB for the eigenspace

Vλ, the k-dimensional space of all eigenvectors of λ,
(iv) eigenvectors corresponding to distinct eigenvalues are orthogonal (Exercise 8.15).

Example 8.32 We use the remark above to assist in finding an orthogonal matrix P to
diagonalise the matrix A shown below. In first finding the eigenvalues (here by hand)
it is worth using a row operation R1 → R1 − R2 to obtain a zero. Having taken out a
factor t + 1 from row 1, it is worth doing C2 → C2 + C1 to reduce to a simple 2 × 2
determinant.

A =
⎡
⎣ 3 4 −2

4 3 −2
−2 −2 0

⎤
⎦ , |A − t I | =

∣∣∣∣∣∣
3 − t 4 −2

4 3 − t −2
−2 −2 −t

∣∣∣∣∣∣

=
∣∣∣∣∣∣
−1 − t 1 + t 0

4 3 − t −2
−2 −2 −t

∣∣∣∣∣∣ = (t + 1)

∣∣∣∣∣∣
−1 1 0

4 3 − t −2
−2 −2 −t

∣∣∣∣∣∣
= (t + 1)

∣∣∣∣∣∣
−1 0 0

4 7 − t −2
−2 −4 −t

∣∣∣∣∣∣ = −(t + 1)[−t(7 − t) − 8] = −(t + 1)2(t − 8).

Eigenvalue λ = 8 (We list the eigenvalues in order: 8, −1, −1.) An eigenvector x with
eigenvalue 8 is by definition any solution of x(A − 8I ) = 0. However, it is convenient to
use the symmetry of A to rewrite this as (A − 8I )xT = 0 so that we may solve by finding
the reduced echelon form. But λ = 8 has multiplicity 1 so the matrix A − 8I has nullity
1, hence rank 2 (Corollary 8.24). Thus any two LI rows determine x (up to the usual
multiplication by a scalar). We select rows 1, 2 and compute the reduced echelon form.[−5 4 −2

4 −5 −2

]
→
[−1 −1 −4

4 −5 −2

]
→
[

1 1 4
0 −9 −18

]
→
[

1 0 2
0 1 2

]
. Solution: (2, 2,−1).

Eigenvalue λ = −1 Now λ has multiplicity 2 and A − λI has rank 1 (Corollary 8.24),
so any nonzero row will do. The first gives, after a scaling by 1/2,

2x1 + 2x2 − x3 = 0. (8.13)

We need a pair of orthogonal solutions. Method: choose one easy solution x = (1,−1, 0),
then determine another from the two conditions (8.13) and orthogonality to x. These
combine to give in matrix terms[

1 −1 0
2 2 −1

]
→

[
1 −1 0
0 4 −1

]
. Solution: (1, 1, 4).
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After normalising the eigenvectors to unit length we may take the diagonalising matrix P
to have rows (2, 2,−1)/3, (1,−1, 0)/

√
2, (1, 1, 4)/

√
18. The reader may wish to check

that P is indeed orthogonal and fulfils its role as diagonaliser of A. First see the comment
below!

Checking PAPT = D. We can avoid the square roots caused by normalising the eigen-
vectors as follows. Let P = Rows(Ri ), where Ri = ui/|ui |. Then PAPT = diag(λi ) ⇔
Ri ART

j = λiδi j ⇔ ui AuT
j = λi |ui |2δi j . Thus the condition to check may be written

QAQT = diag(λi )diag(|ui |2), where Q = Rows(ui ).

Our check for the present example becomes⎡
⎣2 2 −1

1 −1 0
1 1 4

⎤
⎦
⎡
⎣ 3 4 −2

4 3 −2
−2 −2 0

⎤
⎦
⎡
⎣ 2 1 1

2 −1 1
−1 0 4

⎤
⎦ =

⎡
⎣72 0 0

0 −2 0
0 0 −18

⎤
⎦

= diag (9, 2, 18) × diag (8,−1,−1), as required.

P as rotation matrix The orthogonality of P means it is either a rotation matrix, case
|P| = 1, or rotation combined with reflection, case |P| = −1 (Theorem 8.10). Our
present P has negative determinant, but may be converted into a rotation and still di-
agonalise A, as follows: choose any row of P and change its sign, say R1 →−R1. Then
(i) the determinant is multiplied by (−1) (Rules 7.28), becoming+1, but the rows of P re-
main orthonormal and so P is now rotation, and (ii) since we have performed R1 →−R1

on the rows of P and C1 →−C1 on the columns of PT, the product D = PAPT has sign
change of both first row and column, by Remark 8.3. However, D is diagonal, so the net
effect is no change.

Exercise Diagonalise the matrix Rows ([1 2], [2 1]).

8.3.2 Quadratic forms

The quadratic form associated with a symmetric matrix Q is the function (see 7.17d)

q(x) = xQxT =
∑

i j
qi j xi x j . (8.14)

Such forms are important for higher-dimensional normal distributions, as well as many
other areas of applied mathematics, science and engineering. Their behaviour is illu-
minated by re-expression as a sum of squares a1z2

1 + · · · + anz2
n via an invertible lin-

ear transformation x = z P . The first observation is that on substituting for x we obtain
q(x) = z(PQPT)zT, whence PQPT = diag (a1, . . . , an). This can be regarded as a method
of diagonalising by a matrix P which is not necessarily orthogonal. First an example.

Example 8.33 (The completion of squares method) We express the quadratic form

q(x) = 2x2
1 + 13x2

2 + x2
3 − 2x1x2 − 2x1x3 − 4x2x3 (8.15)
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as a sum of squares; then, as described above, find an invertible matrix P for which PQPT

is diagonal. To obtain such a sum of squares we repeatedly choose a variable xi for which
the form has both a cross-term xi x j (for some j) and a square x2

i , gather all the terms
involving xi , and ‘complete the square’ with them. We shall discuss termination shortly.
Here we can most easily begin with x3 because x2

3 has the simplest coefficient, namely
1. Thus

q(x) = [
x2

3 − 2x1x3 − 4x2x3
]+ 2x2

1 + 13x2
2 − 2x1x2

= [
(x3 − x1 − 2x2)2 − x2

1 − 4x2
2 − 4x1x2

]+ 2x2
1 + 13x2

2 − 2x1x2

= (x3 − x1 − 2x2)2 + x2
1 + 9x2

2 − 6x1x2

= (x3 − x1 − 2x2)2 + (x1 − 3x2)2

= z2
1 + z2

2 + 0z2
3,

where⎧⎨
⎩

z1 = −x1 − 2x2 + x3,

z2 = x1 − 3x2,

z3 = x1,

whence

⎧⎨
⎩

x1 = z3,

x2 = 1
3 (x1 − z2) = 1

3 (z3 − z2),
x3 = x1 + 2x2 + z1 = z1 − 2

3 z2 + 5
3 z3.

Thus PQPT = diag(1, 1, 0) under the transformation x = zP , where

P =
⎡
⎣0 0 1

0 −1/3 −2/3
1 1/3 5/3

⎤
⎦ , Q =

⎡
⎣ 2 −1 −1
−1 13 −2
−1 −2 1

⎤
⎦ .

If we run out of terms x2
k but some cross-term xi x j remains we may transform this to

the difference of two squares by setting xi = yi − y j and x j = yi + y j , so that xi x j =
y2

i − y2
j . The off-diagonal terms of Q are well-defined, by (8.15), because Q is specified

to be symmetric. For example, the term−2x1x2 in q(x) yields q12 + q21 = −2 and hence
q12 = −1 = q21.

The possibility of orthogonal P and consequent appearance of eigenvalues is important
to keep in mind, as evidenced by the following conclusion from Theorem 8.30.

Corollary 8.34 Let Q be a symmetric matrix with eigenvalues λ1, . . . , λn. Then the form
q(x) may be expressed as a sum of squares in z = xP for some orthogonal P:

q(x) = λ1z2
1 + · · · + λnz2

n. (8.16)

Rank of a form Since, by Theorem 8.20, left or right multiplication by an invertible
matrix preserves rank, we have

rank Q = rank PQPT = number of nonzeros in sum of squares form,

which applies for every P for which PQPT is diagonal, so we may consistently define
the rank of a form q as the rank of its matrix Q, or the number of nonzeros in any sum of
squares form of q. Thus, in the example above, the rank of q and Q is 2. The eigenvalue



8.3 Similarity to a diagonal matrix 185

Table 8.1. Main types of quadratic form q(x). Note that the third column
applies in particular when the ai are the eigenvalues of Q.

Q and q said to be: Condition on q Coefficients ai

Positive definite (pd) x �= 0 ⇒ xQxT > 0 all ai > 0
Positive semi-definite (psd) x �= 0 ⇒ xQxT ≥ 0 all ai ≥ 0
Indefinite (see e.g. Figure 8.4) xQxT > 0, yQyT < 0 ai > 0, a j < 0

for some x, y for some i, j

Figure 8.4 Saddle shape resulting from the indefinite form z = x2 − y2.

option (8.16) shows that for general symmetric Q the rank of Q is its number of nonzero
eigenvalues, and its nullity the number that are zero. Applying this to our particular case
of Q, the eigenvalues are 8 ±√

29, 0 implying again rank 2.
Type of a form We consider the values that may be taken by a form q(x) = xQxT

as x varies. Since x = z P is an invertible transformation, these values are exactly the
same when q is expressed in squares, a1z2

1 + · · · + anz2
n . Notice firstly that xQxT is

automatically zero if x is zero. If the form is otherwise always positive we say it is
positive definite. If never negative, it is positive semi-definite, and if both signs occur,
indefinite. These three main cases are reviewed in Table 8.1.

We say further that Q, q are negative (semi-)definite if their negatives are posi-
tive (semi-)definite. Notice that Example 8.33 is positive semi-definite, and that by
inverting a matrix we invert the eigenvalues (Remarks 8.9). We have proved the
following.

Corollary 8.35 (a) A symmetric matrix Q is positive definite, positive semi-definite, or
indefinite, according as its eigenvalues are positive, or non-negative, or include both
signs, (b) a positive definite matrix has a positive definite inverse.



186 Matrix algebra

A quadratic form is positive definite if all its eigenvalues are positive, positive
semi-definite if none are negative, and indefinite if both signs occur.

Example 8.36 (i) Is the origin a maximum, minimum or saddle for

q(x) = x1x3 + x2x3 + x2x4 + x3x4?

This is (by definition) the same as asking if the form is negative definite, positive definite
or indefinite. On inspection we guess it can take both signs, so let us first set some
variables zero to simplify things, say x2 = x4 = 0. This leaves only the first term x1x3

and we are done. For example, q(1, 0, 1, 0) = 1 but q(1, 0,−1, 0) = −1. Thus the form
is indefinite and the origin is a saddle point.

(ii) Use eigenvalues to determine the type of the form (8.15). The eigenvalue equation
is

|tI − Q| =
∣∣∣∣∣∣
t − 2 1 1

1 t − 13 2
1 2 t − 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
t − 2 0 1

1 t − 15 2
1 3 − t t − 1

∣∣∣∣∣∣
= (t − 2)[(t − 15)(t − 1) − 6 + 2t] + [3 − t − t + 15]

= t3 − 16t2 + 35t.

Fortunately, we only have to solve a quadratic, and the eigenvalues are 0, 8 ±√
29. These

are non-negative so the form is positive semi-definite by Corollary 8.35, in agreement
with our earlier expression as a sum of squares, z2

1 + z2
2 + 0z2

3 (Example 8.33).
(iii) Show that the form below is positive definite:

q(x) = x2
1 + 2x2

2 + 6x2
3 + 15x2

4 − 2x1x2 − 2x1x3 − 2x1x4 − 4x2x4. (8.17)

The easiest way available at present is to ‘complete the squares’ as used for (8.15). But
since n = 4 one has to solve an equation of degree 4 for the eigenvalues. Resorting to
machine computation yields the approximate values 0.017, 2.432, 6.200, 15.351. Given
the three significant decimal places, we are entitled to conclude these values really are
positive and hence that the form is positive definite. However, we are about to introduce
a method which involves no polynomial equation-solving.

Exercise Find the rank and type of the quadratic form x2 − 4xy + 4y2 in the quickest
way.

Positive definite needs symmetric We could say a matrix Q is positive definite simply if
xQxT =∑

qi j xi x j is positive except when all xi are zero, and similarly for the other
types, without requiring Q to be symmetric. However, in practice it is a huge advantage
to have Q symmetric, not least because it can be diagonalised and has real eigenvalues,
as we have begun to see.

Exercise Show that a positive definite matrix has positive diagonal. (Hint: fix i, and set
x j = 0 for j �= i .)
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8.3.3 Positive definite forms

The most important question is whether a form/matrix is positive definite (a special
case of positive semi-definite), and this may be determined without the equation-solving
process of computing eigenvalues, or even finding a sum of squares form. Consider linear
transformations x = yP of the form

xk = yk + (terms in yk+1, . . . , yn) for 1 ≤ k ≤ n, hence

yk = xk + (terms in xk+1, . . . , xn) for 1 ≤ k ≤ n. (8.18)

To derive the second line from the first we observe that xn = yn implies yn = xn and
work downwards, and similarly for the first line from the second. The first statement is
equivalent to saying that P is a lower triangular matrix, one in which the above-diagonal
entries are zero (see after Example 7.29). Indeed, P is called unit triangular because the
diagonal consists of ones. In particular |P| = 1. Considering y = P−1x in the second
line of (8.18), we see without further calculation that P−1 is also unit triangular. Thus it
is appropriate to call transformations of type (8.18) triangular. The case n = 3 looks like

[x1 x2 x3] = [y1 y2 y3]

⎡
⎣ 1 0 0
× 1 0
× × 1

⎤
⎦ , (8.19)

where each ‘×’ represents some real number. Now observe that under a transformation
(8.18) the discriminant of a form (the determinant of its matrix) is unchanged, since
|PQPT| = |P|2|Q| = |Q|. The result we want is a criterion on the leading principal
minor �k of Q, namely the determinant of the submatrix obtained by deleting all but
the first k rows and columns. Thus, for example,

�1 = q11, �2 =
∣∣∣∣q11 q12

q21 q22

∣∣∣∣ , �3 =
∣∣∣∣∣∣
q11 q12 q13

q21 q22 q23

q31 q32 q33

∣∣∣∣∣∣ .
Theorem 8.37 A form is positive definite if and only if its leading principal minors �k

are positive.

Proof (i) Suppose the form q is positive definite. Then so is the form in x1, . . . , xk

obtained by setting the remaining variables to zero. Its matrix is

Qk =
⎡
⎣q11 . . . q1k

. . . . . . . . .

qk1 . . . qkk

⎤
⎦ , |Qk | = �k . (8.20)

But by Corollary 8.35 the eigenvalues of Qk are all positive and by Lemma 8.5 the
determinant |Qk | = �k is their product. Therefore �k is positive.

(ii) For the converse suppose �i > 0 for 1 ≤ i ≤ n. Assume inductively that, for some
k with 2 ≤ k ≤ n, the terms of q(x) with some subscript less than k can be expressed as
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a sum of squares whose coefficients are positive and have product �k−1. Say

q(x) = t11 y2
1 + · · · + tk−1,k−1 y2

k−1 +
∑
i, j≥k

ti j yi y j , (8.21)

where t11 · t22 · · · tk−1,k−1 = �k−1. Perform the following transformation of type (8.18),
based on the square completing technique of Example 8.33, where z2

k will incorporate
all terms that involve yk :{

zk = yk + (tk,k+1/tkk)yk+1 + · · · + (tkn/tkk)yn,

zi = yi for 1 ≤ i ≤ n, i �= k.

Then q(x) = t11z2
1 + · · · + tkk z2

k+ (a quadratic form in zk+1, . . . , zn). Now consider the
form q(x) and its expression in terms of z. Set zk+1, . . . , zn = 0 and hence xk+1, . . . xn =
0. The resulting forms in k variables are related by a triangular transformation (8.18)
and so have the same discriminant, that is t11 · · · tkk = �k . But the inductive hypothe-
sis includes t11 · t22 · · · tk−1,k−1 = �k−1, hence we may write tkk = �k/�k−1 > 0. Since
trivially t11 > 0, we have by induction up to n that q is a sum of squares with positive
coefficients tii and so is positive definite.

A form is positive definite if and only if
all its leading principal minors are positive.

Exercise Can the matrix Rows ([1 −2 3], [−2 5 0], [3 0 t]) be positive definite
(Theorem 8.37)? An example is worked out below.

Example 8.38 We use Theorem 8.37 show that the form (8.17) is positive definite.

Q =

⎡
⎢⎢⎣

1 −1 −1 −1
−1 2 0 −2
−1 0 6 0
−1 −2 0 15

⎤
⎥⎥⎦ , hence �4 =

⎡
⎢⎢⎣

1 0 0 0
−1 1 −1 −3
−1 −1 5 −1
−1 −3 −1 14

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0

−1 −1 4 −4
−1 −3 −4 5

⎤
⎥⎥⎦

= 1 · 1 · (20 − 16) = 4 > 0,

where the zeros in the last two matrices were obtained by column operations designed
to reduce the original near enough to triangular form to make the determinant evaluation
very simple. Next

�3 =
[

1 −1 −1
−1 2 0
−1 0 6

]
=
[

1 0 0
−1 1 −1
−1 −1 5

]
= 4 > 0, �2 =

[
1 −1

−1 2

]
= 1 > 0, �1 = 1 > 0.

Every leading principal minor is positive, and so q is positive definite by Theorem 8.37.

Remark Whatever the dimensions of a matrix A, it holds good that AAT and AT A are
not only square but symmetric, albeit of different sizes if A is non-square. These products
play a central role in developing the Singular Value Decomposition (Section 8.4.2) of a
matrix, the basis of Principal Component Analysis; the following theorem is basic and
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important for this. For the mention of multiplicity see Remark 8.31 and, for positive
semi-definite, Table 8.1.

Theorem 8.39 Let Am×n be a real matrix. Then (a) AAT and AT A are positive semi-
definite (psd). They have the same nonzero eigenvalues with the same multiplicities, and
both have the same rank, k, as A. (b) If AAT has eigenvectors w1, . . . , wt (t ≤ k) for
positive eigenvalues λ1, . . . , λt , then {λ−1/2

i wi A} play the same role for AT A and are
orthonormal if {wi } are orthonormal. (c) If a matrix Q is positive semi-definite, then it
factorises as Q = AT A for some matrix A whose nonzero rows are orthogonal.

Proof (a) The psd property Let x be an arbitrary nonzero m-vector. Then x(AAT)xT =
yyT (y = x A) = |y|2 = 0. Thus AAT is by definition psd. Replacing A by AT shows AT A
is also psd. Equal eigenvalues Now we need only prove the equal eigenvalue property
and the rest is immediate from part (b). Let Am×n have rank k. Then there is an invertible
matrix P such that the first k rows of PA form a matrix U with orthonormal rows, and the
remaining rows are zero (Theorem 8.18). Thus AAT has (Theorem 8.20) the same rank
as the product

PAAT PT =
[

U
0

] [
U T 0

] = [
UU T 0

0 0

]
=
[

Ik 0
0 0

]
. (8.22)

Hence r (AAT) = k. The same argument with A replaced by AT, of equal rank k (Theorem
8.20), shows that AT A also has rank k. For (b) we suppose that, for 1 ≤ i ≤ t ,

wi (AAT) = λi wi (wi �= 0, λi �= 0). (8.23)

Then wi A �= 0, and is an eigenvector of AT A because (wi A)(AT A) = wi (AAT)A =
λi (wi A). Now let {wi } be orthonormal. Then the vectors {wi A} are orthogonal, for if i �= j
then (wi A)(wj A)T = wi (AAT)wj

T = λi wi wj
T = 0. Note that this still holds if λi = λ j .

Finally |wi A|2 = (wi AAT)wi
T = λi wi wi

T = λi (since |wi |2 = 1), so that (1/
√

λi )w i A is
a unit vector. This completes the proof of (b).

(c) A positive semi-definite matrix Q has real eigenvalues λ1, . . . , λn ≥ 0, and
Q = PT · diag (λi ) · P for some orthogonal P (Theorems 8.29 and 8.30), so let A =
diag(λi

1/2)P .

Example 8.40 We check the ranks and eigenvalues predicted in Theorem 8.39.

A =
[

1 0 −1
2 3 1

]
, AAT =

[
2 1
1 14

]
, AT A =

⎡
⎣5 6 1

6 9 3
1 3 2

⎤
⎦ .

Ranks The three ranks equal 2 by inspection, for the rows of A are independent, as are
those of AAT, and the third row of AT A equals the second minus the first (and these two
are LI).

Eigenvalues We have |t I − AAT| = t2 − t Tr(AAT) + |AAT| = t2 − 16t + 27, with pos-
itive eigenvalue roots 8 ±√

37. Thus the eigenvalues of AT A should be 8 ±√
37 and 0.
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Table 8.2. The effect of matrix operations on the type of a triangular matrix T
and its main diagonal. The matrix M performs row operations

Ri = Ri + a Rj so as to convert A to B.

Triangle type Diagonal type
Operation (upper/lower) (unit/zero/positive) Reference

Transpose switched preserved Reader’s inspection
Multiplication T1T2 preserved preserved Above & Exercise 7.11
Inversion preserved preserved Exercise 8.14
Row ops. M A = T M, T opposite P has unit diagonal Proof of Theorem 8.41

We obtain

|AT A − t I | =
∣∣∣∣∣∣
5 − t 6 1

6 9 − t 3
1 3 2 − t

∣∣∣∣∣∣ =
∣∣∣∣∣∣
5 − t 0 1

6 −9 − t 3
1 −9 + 6t 2 − t

∣∣∣∣∣∣
= −t(t2 − 16t + 27), yielding the predicted eigenvalues.

Remarks (1) The second part of Theorem 8.39 is very useful for reducing eigenvector
calculations when AAT and AT A have significantly different sizes (we may choose the
smaller), and is exemplified at the end of Chapter 10. Meanwhile we offer Exercise 8.20.

(2) Though we stressed orthogonality in Theorem 8.39, the lesser property of indepen-
dence of eigenvectors wi of AAT implies independence of the corresponding eigenvectors
wi A of AT A (Exercise 8.4).

Factorising positive definite matrices We have established that a positive semi-definite
matrix Q may be factorised in the form AT A. However, if Q is positive definite more
follows, leading for example to a method for generating multivariate normal samples
(Section 11.3.5) for the purpose of simulation (another use relates to deblurring an
image, Section 15.3).

For this factorisation we turn once more to the triangular matrices introduced in
Example 7.29 and most recently discussed at (8.18). Suppose U is upper triangular,
its nonzero entries lying on and above the main diagonal. Then so is U−1 if it exists
(Exercise 8.14), whilst U T is lower triangular, with a triangle of zeros above the main
diagonal.

The main diagonal plays an important role. As previewed in (8.18), the type of a
matrix diagonal is defined to be unit/zero/positive if every diagonal element is respec-
tively one/zero/positive. Table 8.2 records how such properties are affected by the matrix
operations we use, in preparation for the factorisation result.

Exercise Upper triangular matrix products UV preserve diagonal type. (Hint: (U V )kk =
ukkvkk).
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Theorem 8.41 (Choleski factorisation) If a matrix S is positive definite it may be fac-
torised uniquely as U TU for some U upper triangular with positive diagonal. Indeed, U
is determined by ALGO 8.3 below.

ALGO 8.3 The Choleski decomposition

To express a positive definite matrix S = Rows(S1, . . . , Sn) in the form U TU , where U is
upper triangular with positive diagonal and U = Rows (R1, . . . , Rn), we perform in
succession for k = 1, 2, . . . , n:

1. Compute ukk = √[
skk −

∑k−1
i=1 u2

ik

]
,

2. Set Rk = (1/ukk)
[
Sk −

∑k−1
i=1 uik Ri

]
.

Proof We first derive steps 1 and 2 of ALGO 8.3. The case n = 3 of U TU = S is
represented below to help visualise general n.

⎡
⎣u11 0 0

u12 u22 0
u13 u23 u33

⎤
⎦
⎡
⎣u11 u12 u13

0 u22 u23

0 0 u33

⎤
⎦ =

⎡
⎣ s11 s12 s13

s21 s22 s23

s31 s32 s33

⎤
⎦ . (8.24)

Equating the (k, k) element of U TU to that of S in the general case of n, we obtain∑
i≤k u2

ik = skk , or, after rearranging,

u2
kk = skk − u2

1k − · · · − u2
k−1,k . (8.25)

Equating the kth row of U TU to that of S yields, on similar rearrangement,

ukk Rk = Sk − u1k R1 − · · · − uk−1,k Rk−1. (8.26)

The existence of U is equivalent to the existence of a solution to Equations (8.25) and
(8.26) with 1 ≤ k ≤ n. In such a solution, we have 0 �= |S| = |U |2 = u2

11 · · · u2
nn , hence

all ukk �= 0. The equations determine each Rk in terms of the previous ones, and uniquely
so if we insist on the positive square root for ukk in (8.25). This gives ALGO 8.3.
On the other hand, replacing ukk by −ukk replaces Rk by −Rk but leaves the rest un-
changed, because only squared elements of U appear in (8.25). It remains to prove that U
exists.

Stage 1 Let Ak be the the submatrix in the first k rows and first k columns of S. Suppose
row operations involving no interchange or scaling are performed on the first k rows of S,
to eliminate, column by column, all nonzero elements below the diagonal in Ak . Let Mk

be the result of the operations being performed on a k × k identity matrix Ik , so the result
of the operations on Ak is Mk S (Theorem 8.17), and Mk is lower triangular with unit
diagonal. Now, for the elimination to succeed, the diagonal element in each successive



192 Matrix algebra

column must be nonzero. Then the following matrix product holds:

⎡
⎢⎢⎢⎣

Mk 0

0 Id−k

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

Ak ××

×× ××

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

b11

0
. . . ××

0 0 bkk

×× ××

⎤
⎥⎥⎥⎥⎥⎥⎦

, (8.27)

where the pairs ×× denote unknown submatrices. By block multiplication (7.25)
and taking determinants, we have b11b22 · · · bkk = |Mk | · |Ak | = |Ak |, the leading prin-
cipal k × k minor of S, which is positive because S is positive definite (Theorem
8.37). Thus b11b22 · · · bkk > 0, and if the first k − 1 factors are positive so is the
kth; this provides an inductive demonstration that the process may be continued to obtain
M S = B upper triangular with positive diagonal, where M = Mn is lower triangular
with unit diagonal.

Stage 2 Write M S = DU1, where D = diag(bkk) and so U1 is unit upper triangu-
lar. Denoting an inverse tranpose by −T, we have the following symmetric matrices:
U−T

1 SU−1
1 = U−T

1 (M−1 DU1)U−1
1 = U−T

1 M−1 D. Since U−T
1 M−1 is therefore both sym-

metric and triangular (Table 8.2), it is diagonal. But U1 and M both have unit diag-
onal so (Table 8.2) U−T

1 M−1 = I , whence M−1 = U T
1 . Substituting, S = M−1 DU1 =

U T
1 DU1 = U TU , where U = D1/2U1 is upper triangular and exists because D has posi-

tive diagonal. Thus U exists and the proof is complete.

Example 8.42 We show the calculation of U from the matrix S below, by ALGO 8.3.

S =
⎡
⎣1 0 1

0 4 −2
1 −2 11

⎤
⎦ , U =

⎡
⎣1 0 1

0 2 −1
0 0 3

⎤
⎦ .

k = 1. u11 = √
s11 = 1, R1 = (1/u11)S1 = [1 0 1].

k = 2. u22 = √
[s22 − u2

12] = √
[4− 0] = 2, R2 = (1/2)[S2 − u12 R1] = [0 2 −1].

k = 3. u33 = √
[s33−u2

13−u2
23] = 3, R3 = (1/3)[S3 − u13 R1 − u23 R2] = [0 0 3].

8.4 The Singular Value Decomposition (SVD)

In the previous section we saw that a symmetric matrix A could be diagonalised by an
orthogonal matrix P. Here we tackle the case of a general (real) m × n matrix A, and
derive the powerful Singular Value Decomposition of A. This provides a more numerically
stable foundation than diagonalising when we introduce the K–L Transform of Principal
Component Analysis in Chapter 10. Some preliminary results are required.
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8.4.1 Matrix norms

Classically, many results depend on a matrix having greatest possible rank, but have little
to say if, for example, small errors happen to lower the rank. Matrix norms are a way to
approach this problem. We must extend the definition of length, or norm, from vectors to
matrices. We recall that the norm for n-vectors is a function n(x) = √

(x2
1 + · · · + x2

n ),
or in the complex case

√
(|x1|2 + · · · + |xn|2), which satisfies for all x, y:

(1) n(x) ≥ 0, with equality if and only if x = 0,
(2) n(x + y) ≤ n(x) + n(y),
(3) n(ax) = |a|n(x), for a scalar a,

where property (2) is Remark 7.20. Each property has proved its worth, but the one
without which the others are rendered ineffective is the ‘bottom line’ that if n(x) = 0
then x itself is zero (the zero vector). Any function on m × n matrices that satisfies (1),
(2), (3) above will be called a matrix norm. There are two distinct matrix norms we shall
need, both now and later. Firstly, we may take the view that, with elements listed row by
row, our matrix is an element of mn-space, giving the Frobenius sum of squares norm,
or F-norm,

‖A‖F = √(∑
i, j

a2
i j

)
(F-norm). (8.28)

Another possibility is to measure the size of A by the way it magnifies lengths, yielding
the ratio norm, or R-norm

‖A‖R = sup
x �=0

|x A|
|x| (R-norm). (8.29)

Notation 8.43 (i) We see later that replacing x A by ATxT in (8.29) leaves ‖A‖ un-
changed, giving what to some will be the more familiar way round, multiplying a vector
variable by a matrix on the left.

(ii) Matrices blocked into rows Write U = Rows(u1, u2, . . . , uk) for the matrix U
with rows as listed, or U = Rows(u1, U1), where U1 = Rows(u2, . . . , uk).

(iii) A nonzero vector x may be expressed as sy, where |y| = 1 (set s = |x|).
(iv) We continue to use single lines for the norm |x| of a vector regarded as such, and

to reserve the double line symbolism ‖A‖ for a matrix. As indicated, we will sometimes
drop the subscript R or F when the current choice of matrix norm is otherwise known.

Theorem 8.44 We have in the usual row/column notation
(a)‖A‖R = Max{|x A|: |x | = 1},
(b) ‖A‖F = √

�|Ri |2 = √
�|C j |2 = √

Tr(AAT).

Proof (a) In Notation 8.43(iii) above we may write |x A|/|x| = |sy A|/|sy| (with |y| =
1) = |y A|, so ‖A‖R = sup{|y A| : |y| = 1}. But the continuous function y → y A on the
compact space {y: |y| = 1} must achieve a greatest value (see e.g. Hoggar, 1992), hence
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the simplification to both unit vectors and strict maximum. Part (b) is immediate from
the definitions of trace and norm.

Exercise Deduce Theorem 8.44(b) from the definitions.

Remark 8.45 The three norms, vector norm, F-norm and R-norm (or just norm) all apply
to a row or column matrix, but we shall show that, happily, the definitions agree.

Proof Let A be a row vector a. Then ‖a‖R = Max{|xa|: |x| = 1}, where x is by definition
a row vector such that the matrix product xa exists. Hence x is 1 × 1, or a scalar, and
therefore ‖a‖R = 1 · |a| as asserted. On the other hand, ‖a‖F = |a| immediately from
the Frobenius definition, and similarly if A is a column vector.

It remains to prove that ‖A‖R = |A| when A is a column vector aT. Here ‖aT‖R =
Max{|xaT|: |x| = 1} = Max{|x · a|: |x | = 1} ≤ 1 · |a| (by Remark 7.20). But this upper
bound is achieved with x = a/|a|, so the proof is complete.

The three norms agree on vectors. (8.30)

Theorem 8.46 The three norms (vector and two matrix) are invariant under multiplica-
tion by an orthogonal matrix.

Proof Let P, Q be orthogonal matrices of appropriate dimensions. (a) The vector norm
case is covered by results on isometries (Remarks 7.72 for xP; also |QxT| = |xQT| = |x|
since QT is also orthogonal, see Definition 7.34).

(b) Ratio norm ‖PAQ‖R = ‖A‖R, because the former equals:

Max{|xPAQ| : |x| = 1}
= Max{|yAQ| : |y| = 1}, since y = xP runs through all unit vectors as x does
= Max{|y A| : |y| = 1}, since |(yA)Q| = |y A|, Q being orthogonal.

(c) Frobenius norm We handle the pre- and post-multiplication situations sepa-
rately. ‖P A‖F = √∑|column j of PA|2 (by Theorem 8.44) = √∑|PC j |2 (Examples
7.22) = √∑|C j |2 (because P is orthogonal) = ‖A‖F. Similarly, ‖AQ‖ = √

�|Ri Q|2 =√∑|Ri |2 = ‖A‖.

The three norms are invariant under multiplication by an orthogonal matrix.

(8.31)

Example 8.47 (i) Show that the norms of a symmetric matrix A with eigenvalues
λ1, . . . , λn are ‖A‖R = Max|λi |, and ‖A‖F = √∑

λ2
i ; (ii) deduce that if P is a pro-

jection matrix onto a k-dimensional subspace then P has R-norm 1 but F-norm k1/2. (See
more generally (8.5).)

Solution (i) Because A is symmetric it may be diagonalised by an orthogonal matrix
(Theorem 8.30), which does not change the norms (Theorem 8.46), so we need only
consider the case A = D = diag(λ1, . . . , λn), where the diagonal elements must be the
eigenvalues by Theorem 8.29. The expression for Frobenius norm is now immediate. To
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obtain an expression for the ratio norm we may assume for simplicity that |λ1| ≥ |λi | for
2 ≤ i ≤ n. Then

‖D‖2
R = Max{|x D|2 : |x| = 1} = Max

{
x2

1λ
2
1 + · · · + x2

nλ
2
n : |x| = 1

}
= Max

{
(1 − y2 − · · · − yn)λ2

1 + y2λ
2
2 + · · · + ynλ

2
n : 0 ≤ yi ≤ 1

}
(setting yi = x2

i ).

The function f (y2, . . . , yn) to be maximised has partial derivatives ∂ f/∂yi = −λ2
1 +

λ2
i ≤ 0, where 2 ≤ i ≤ n, so the greatest value occurs when each yi takes its least value

0, giving ‖A‖2
R = ‖D‖2

R = λ2
1 and ‖A‖R = |λ1| as required.

(ii) Since P satisfies PT = P = P2 (Theorem 7.59), its eigenvalues λ satisfy λ2 = λ

(Remarks 8.9), hence λ = 0 or 1. Its rank is given to be k, so there are k ones. Thus, by
(i), P has R-norm 1 but F-norm k1/2.

Theorem 8.48 Let A, B be matrices and x a vector. Then both R-norm and F-norm
satisfy

(a) |x A| ≤ |x|‖A‖, if the product x A exists,
(b) ‖AB‖ ≤ ‖A‖‖B‖, if the product AB exists.

Proof (a) follows from (b) as the special case A = x, since vector and ma-
trix norms agree. We prove (b). For the ratio norm, ‖AB‖ = Max|x AB| (|x | = 1)
≤ max |x A|‖B‖ (why?) ≤ ‖A‖‖B‖. For the F-norm, write A = Rows(R1, . . . ,

Rm), B = [C1, . . . , Cn], so that the ij element of AB is Ri · C j , a dot product. By definition
‖AB‖2

F =∑
i, j |Ri · C j |2 ≤

∑
i, j |Ri |2|C j |2 (Remark 7.20) = (

∑
i |Ri |2)(

∑
j |C j |2) =

‖A‖2
F‖B‖2

F.

An approximation result We note that matrix norms can be used to investigate quan-
titively the effects of ill-conditioning in a set of linear equations (Golub & van Loan,
1996) though we do not pursue this here.

The result below is a generalisation of the idea of regression, or representing a set
of data points by a straight line y = mx + c. We shall use it to establish optimising
properties of the ‘SVD’ at the end of this chapter, later to be applied in Chapter 10. See
Remarks 8.57 for the relation to the pseudoinverse, and the generalisation to complex
matrices.

Theorem 8.49 (a) The best F-norm approximation to matrix Ym×n by a product MX,
where Mm×k has its k < n columns independent, is given by X = (MT M)−1 MTY .
(b) The best approximation to matrix Yn×m by a product XM, where Mk×m has its k < n
rows independent, is given by X = Y MT(M MT)−1.

Proof Notice that (a) and (b) are equivalent via the operation of transpose. To show
that (b) implies (a), for example, apply (b) to Y T, MT, XT, then transpose the resulting
formula for XT. We prove (b). It suffices to establish the special case n = 1, which gives
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the general case row by row. Thus we consider

Y1×m − X1×k Mk×m (M has linearly independent rows).

With Y = (ys) and M = Cols(Cs), we minimise S(X ) = ‖Y − X M‖2 =∑
s(ys −

XCs)2. Since X lies in Rm , a space with no boundary, any maximum or minimum occurs
at a turning point (see e.g. Hoggar, 1992), that is, where, for 1 ≤ r, m,

0 = ∂S

∂xr
= �s2(ys − XCs)

∂

∂xr
(−XCs)

= −�s2(ys − XCs)(Cs)r , since ∂/∂xr (x1a1 + · · · + xkak) = ar .

This says that �s(ys − XCs)CT
s = 0 as row vector, or �s ysCT

s = X�sCsCT
s . We rec-

ognize the left hand side as YMT (see e.g. (7.29)), and the right hand side as XMMT, an
example of ‘Russian multiplication’, (7.31). Noting that MMT is invertible because the
rows of M are independent (see Example 7.33(ii)), we may write X = Y MT(M MT)−1.
Since S(X ) can be arbitrarily large, this unique turning point gives the least value of
S(X ), and the proof is complete. The case n = 1 is important in its own right, as we
discuss in Remarks 8.57.

Exercise Find the two norms of Rows([1 2], [2 1]).

8.4.2 The SVD – existence and basics

We have seen that a symmetric matrix A can be diagonalised as PAPT by a single orthogo-
nal matrix P. Remarkably, an arbitrary m × n matrix can be converted by two orthogonal
matrices to a generalised diagonal matrix diag(s1, . . . , sp)m×n , which is diag(s1, . . . , sp)
extended to size m × n by rows and columns of zeros. Below we illustrate the two cases
of m �= n, with p = Min(m, n).

diag(s1, . . . , sp)m×n =

⎡
⎢⎣

s1
. . .

sp

⎤
⎥⎦ (m < n), or

⎡
⎢⎣

s1
. . .

sp

⎤
⎥⎦ (m > n).

The process is the singular value decomposition, or SVD. The continued presence of
orthogonality in spite of matrix A not being symmetric or even square is a powerful factor
in deriving results.

Theorem 8.50 (The Singular Value Decomposition, or SVD) Let A be a real
m × n matrix. Then there are orthogonal matrices U = Rows(u1, . . . , um) and
V = Rows(v1 . . . ,vn), and non-negatives s1 ≥ s2 ≥ · · · ≥ sp ≥ 0, such that

U AV T = diag (s1, . . . , sp)m×n = D, say,

or equivalently A = U T DV, (8.32)
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Proof We establish the result for the case when A is a row vector, the case of a column
vector being similar, then provide the inductive step from an (m − 1) × (n − 1) matrix
to an m × n matrix. Let A be a row vector a and define the orthogonal 1 × 1 matrix
U = [1]. Extend the unit vector v1 = a/|a| to an ONB {v1,v2, . . . ,vn} forming the
rows of an orthogonal matrix V. Then UAV T = [avT

1 avT
2 . . . avT

n ] = [|a|0 . . . 0], which
has the required form.

Now let A be a general m × n matrix; we shall use the ratio norm. By Theorem
8.44 there are unit vectors x in Rm and y in Rn such that ‖A‖ = |x A| = σ , say, and
x A = σ y. Extend x, y to ONBs forming the rows of respective orthogonal matrices U ,
V , so that we may write U = Rows(x, U1), V = Rows( y, V1), where U1 consists of
m − 1 orthonormal rows and V1 of n − 1. We calculate B = UAV T in terms of block
matrices:

B =
[

x
U1

]
A
[

yT V T
1

] = [
x

U1

] [
AyT AV T

1

] = [
x AyT x AV T

1
U1 AyT U1 AV T

1

]
=
[

σ 0
wT B1

]
,

where we defined B1 = U1 AV T
1 as (m − 1) × (n − 1), also wT represents the column

vector U1 AyT, and two verifications are required:
(1) x AyT = σ yyT = σ |y|2 = σ ;
(2) x AV1

T = σ yV1
T, which is the zero vector since Rows(y, V1) is orthonormal.

The inductive step We must first show that w = 0, an excellent use of matrix norms.
Considering the block matrix product [σ |w]B = [σ 2 + wwT|B1] we have, with ‘norm’
denoting vector norm,

‖B‖ ≥ norm[σ 2 + wwT|wB1]/norm[σ |w], by Theorem 8.48, hence
‖B‖2 ≥ (σ 2 + wwT)2/(σ 2 + wwT) (neglecting w B1)

= σ 2 + wwT.

But σ 2 = ‖A‖2 (by definition) = ‖U AV T‖2 (by Theorem 8.46) = ‖B‖2 ≥ σ 2 + wwT

by the argument above. Hence wwT = 0, implying w = 0. Now we assume inductively
that, B1 being (m − 1) × (n − 1), there are orthogonal U0, V0 for which U0 B1V T

0 equals
a generalised diagonal matrix D. Then B, and hence A, can be transformed to diagonal
form, completing the induction, for[

1 0
0 U0

] [
σ 0
0 B1

] [
1 0
0 V T

0

]
=
[

1 0
0 U0 B1V T

0

]
=
[

1 0
0 D

]
. (8.33)

First properties of the SVD

The si are called the singular values of A and are unique (though U,V are not – see later).
To see this, and for later use, let s1, . . . , sr be the positive numbers amongst the si , that is

s1 ≥ · · · ≥ sr > sr+1 = · · · = sp = 0. (8.34)

From (8.32), denoting the diagonal matrix by D, we have the m × m matrix
AAT = U T DV · V T DTU = U T(DDT)U . Thus AAT is diagonalised by U T and so has
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eigenvalues the diagonal elements of DDT = diag(s2
1 , . . . , s2

r , 0, . . . , 0). The nonzero si

are the positive square roots of these eigenvalues, determined by A via AAT, and hence
are unique. Their number, r, is the common rank of A, AAT, and AT A (Theorem 8.39).

The SVD gives an immediate result for the norm of an m × n matrix. Since our
two versions of matrix norm are invariant under both orthogonal transformations in
(8.32), we need only determine these norms for a diagonal matrix, writing ‖A‖ =
‖diag(s1, . . . , sr )‖. The work was done in Example 8.47; the result is Theorem 8.51
below.

Theorem 8.51 For an arbitrary m × n matrix with nonzero singular values
s1 ≥ · · · ≥ sr , the norms are invariant under matrix transpose, and are given by

(a) ‖A‖2
R = s1 = √

(greatest eigenvalue of AAT),
(b) ‖A‖2

F =
√(

s2
1 + · · · + s2

r

)
.

(8.35)

If A is symmetric the s2
i are the eigenvalues of AAT = A2, so A has eigenvalues ±si (by

Remark 8.9). Thus

if A has eigenvalues λi then its singular values are |λi |.
Formula 8.35(a) is used for Iterated Function Systems in Fractal Compression, Section
16.1.3. Its advantage is that, though the eigenvalues of A may not be real, those of AAT

are.

But what is the SVD? For a concrete example let A = U T DV be 2 × 2 with D =
diag(3, 0.8). Consider the transformation x → x A in stages: x → xU T → xU T D →
xU T DV , applied to the unit circle centred at the origin. The first stage rotates/ reflects
the circle but leaves it intact, the second scales the minor and major axes by respectively
3 and 0.8, and the third rotates/reflects the result. This is depicted in Figure 8.5. More
generally, the si are the lengths of the semi-axes of the hyperellipsoid {y = x A : |x| = 1}.
Theorem 8.52 Let Am×n have nonzero singular values s1 ≥ · · · ≥ sr and Singular Value
Decomposition A = U T DV . Then

(a) U A = DV = Rows(s1v1, . . . , srvr , 0, . . . 0)m×n, or ui A = sivi (1 ≤ i ≤ m),
(b) R(A) = span{v1, . . . ,vr }, and N (A) = span{ur+1, . . . ,vm},

Figure 8.5 Circle and its image under x → x A, where A has singular values 3.0, 0.8
and V = Rows{v1,v2}.
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Proof For (a) we post-multiply both sides of (8.32) by the inverse V of V T, then make a
row-by-row restatement. For (b) we have, since {ui }1≤i≤m is an ONB,

R(A) = {y A: y ∈ Rm} =
{(∑

xi ui

)
A: x = (xi ) ∈ Rm

}
,

=
{(∑

xi sivi

)
A: x ∈ Rm

}
, by (b)

= span{v1, . . . ,vr } since si = 0 for i > r.

N (A) =
{(∑

xi ui

)
: x ∈ Rm,

(∑
xi ui

)
A = 0

}
=
{(∑

xi ui

)
: x ∈ Rm,

∑
xi sivi = 0

}
=
{∑

xi ui : x1 = · · · = xr = 0
}
= span{ur+1, . . . , um}.

Exercise Why do the singular values of the matrix [1 3] consist of just
√

10?

8.4.3 Optimisation properties of the SVD

Theorem 8.53 Let Am×n have nonzero singular values s1 ≥ · · · ≥ sr and SV decompo-
sition A = U T DV . Let Dk be the result of setting si = 0 for i > k in D, where k ≤ r .
Then, in the usual notation (8.32), A is the sum of r matrices of rank 1,

(a) A =
r∑

i=1

si uT
i vi (= U T DV ). (8.36)

The projection Ak of A onto the first k columns of U T has rank k and is given by

Ak =
k∑

i=1

si uT
i vi (= U T DkV ). (8.37)

(b) Amongst m × n matrices of rank k this, the sum of the first k matrices of (8.36),
is closest possible to A in both norms. The actual distances are (see Figure 8.6)

‖A − Ak‖R = sk+1 and ‖A − Ak‖F = √(
s2

k+1 + · · · + s2
r

)
. (8.38)

(c) ‖p(A)‖F is maximised over projections p onto k-dimensional subspaces of
m-space.

ArA1 A2 Ar−1

A

s3 srs2 0

Figure 8.6 Distances in the R-norm between a matrix A of rank r and its SVD-derived
approximations Ak of rank k (Theorem 5.53(b)). The singular values are {si }. For F-norm
distances, replace sk+1 by

√
(s2

k+1 + · · · + s2
r ).



200 Matrix algebra

Proof (a) Formula (8.36) is the block ‘weighted inner product’ (7.32a) applied to U T DV .
The first k columns of U T form a matrix ET = U T[Ik |0]T so, by Theorem 7.59 for columns
(Remark 7.61(2)), the projection of A onto them is ET E A = U T[Ik |0]T[Ik |0]UU T DV =
U T(Ik)m×n DV = U T Dk V , since U is orthogonal. Block formula (7.32a) converts this to
the required form in (8.37). Its rank, unchanged by U,V, equals r (Dk), namely k.
(b) Formula (8.38) and optimality in the R-norm In either norm, ‖A − Ak‖ = ‖U T(A −
Ak)V ‖ = ‖D − Dk‖ = ‖diag(sk+1, . . . , sr )‖, yielding the given expressions (8.38), as a
consequence of (8.35). Now we must show that Ak is as close to A as possible for an
m × n matrix of rank k. Suppose Bm×n has rank k and let {x1, . . . , xm−k} be an ONB for
the null space N (B) (see Theorem 8.23(c)). Considering dimensions (Remark 7.13(2)),
there must be a nonzero vector and hence a unit vector z, common to span{x1, . . . , xm−k}
and span{u1, . . . , uk+1}, since they total m + 1 vectors in m-space. This enables us to
argue that

z A = z
∑r

i=1
si uT

i vi =
∑k+1

i=1
si zuT

i vi since zuT
i = 0 for i > k + 1,

and hence

‖A − B‖2 ≥ ‖z(A − B)‖2 since |z| = 1 (see Theorem 8.48)

= ‖z A‖2 since zB = 0

=∑k+1
i=1 s2

i

(
zuT

i

)2
, since zuT

i is a scalar and {vi} is orthonormal

≥ s2
k+1 (see below)

since z is in span{u1, . . . , uk+1}, and zuT
i is the component of z with respect to ui ,

implying
∑k+1

i=1 (zuT
i )2 = |z|2 = 1; the argument is that s1 ≥ s2 ≥ · · · ≥ sk+1, so the sum∑k+1

i=1 s2
i (zuT

i )2 is least when (zuT
i )2 = 0 except for (zuk+1)2 = 1.

(b) Optimality in the F-norm, and (c) Let Mm×k be given, with k independent columns.
We consider approximations to A of the form Z = Mm×kCk×n , as C varies. Then MC runs
through all m × n matrices with at most k independent columns, because the columns
of MC are linear combinations of those of M (see (7.30)). By Theorem 8.49, the best
approximation satisfies C = (MT M)−1 MT A. Thus Z = M(MT M)−1 MT A. We show
this is a projection onto the column space of M.

By Theorem 8.18(c) in column form there is an invertible matrix P such that
MP = E , a matrix with orthonormal columns. By Remarks 7.61 the matrix of pro-
jection onto the column space of M is PM = EET, where Ik = ET E = PT MT M P , and
therefore MT M = (PT)−1 P−1 = (PPT)−1. Thus A projects to EET A = MPPT MT A =
M(MT M)−1 MT A = Z , showing that, for given M, the best approximation is the projec-
tion A → PM A onto CS(M). Now consider

‖PM A‖2 = ‖PMU T D‖2 since A = U T DV and V is orthogonal

=
∑n

i=1
||PM

(
si uT

i

)||2 by Theorem 8.44, since U T D = Cols
(
si uT

i

)
=
∑n

i=1
s2

i p2
i (see below), (8.39)
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where pi ≤ 1 is the length of projection of a unit vector ui , and so∑n

i=1
p2

i =
∑

i

∣∣PMu
T
i

∣∣2 = ||PMU T||2 = ||PM ||2 = k (Example 8.47).

Since s1 ≥ s2 ≥ · · · , the greatest value of (8.39) occurs when the first k si s are 1 and the
rest zero, therefore

‖PM A‖2 ≤ s2
1 + · · · + s2

k . (8.40)

Now let M be chosen so as to minimise ‖A − PM A‖2. Then

s2
k+1 + · · · + s2

n = ‖A − Ak‖2 by (8.38)
≥ ‖A − PM A‖2 by optimality of M
= ‖A‖2 − ‖PM A‖2 (see below)
≥ s2

k+1 + · · · + s2
n by (8.40),

the last equality holding because PM projects vectors orthogonally and the F-norm is
used. Since the first and last lines are equal in the chain of equality/inequality, all terms
are equal, implying that Ak is closest possible to A and that ‖PM A‖2 is maximised by
this choice. This completes the proof of Theorem 8.53.

Example 8.54 Below is shown the SV decomposition A = U T DV of a rank 3 matrix
A with singular values s1, s2, s3 = 5, 3, 1. Determine the best approximations of ranks 1
and 2. Verify the predicted error in the Frobenius norm for A1.

A = 1

21

⎡
⎣ 12 −48 −15

80 −47 −16
−13 −32 −52

⎤
⎦ = 1

7

⎡
⎣3 −2 −6

6 3 2
2 −6 3

⎤
⎦
⎡
⎣5

3
1

⎤
⎦
⎡
⎣2 −2 −1

2 1 2
1 2 −2

⎤
⎦ 1

3
.

Solution We first write down the terms of the ‘Russian Sum’
∑

si uT
i vi of (8.36):

A = 5

21
·
⎡
⎣3

6
2

⎤
⎦ [

2 −2 −1
]+ 3

21
·
⎡
⎣−2

3
−6

⎤
⎦ [

2 1 2
]+ 1

21
·
⎡
⎣−6

2
3

⎤
⎦ [

1 2 −2
]

= 5

21
·
⎡
⎣ 6 −6 −3

12 −12 −6
4 −4 −2

⎤
⎦+ 3

21
·
⎡
⎣ −4 −2 −4

6 3 6
−12 −6 −12

⎤
⎦+ 1

21
·
⎡
⎣−6 −12 12

2 4 − 4
3 6 − 6

⎤
⎦ .

Hence, by (8.37), A1 = 5

21
·
⎡
⎣ 6 −6 −3

12 −12 −6
4 −4 −2

⎤
⎦ and A2 = 1

21
·
⎡
⎣ 18 −36 −27

78 −51 −12
−16 −38 −46

⎤
⎦.
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Check : Predicted ‖A − A1‖2 = s2
2 + s2

3 = 9 + 1 = 10. But A − A1 = 1

21
·⎡

⎣−18 −18 0
20 13 14

−33 −12 −42

⎤
⎦, so ‖A − A1‖2 = (182 + 182 + 202 + 132 + 142 + 332 + 122 +

422)/212 = 10, which agrees.

Exercise Find the best rank 1 approximation to Rows([1 2], [2 1]).

Remark 8.55 (Duality) The projection (8.37) Ak of A onto the first k columns of U T is
identical to the projection of A onto the first k rows of V.

Proof The SVD for A transposes to AT = V T DTU , an SVD for AT, so (Theorem 8.53)
the projection Bk of AT onto the first k columns of V T is given by

Bk =
∑k

i=1
siv

T
i ui . (8.41)

Hence the projection of A onto the first k rows of V is BT
k = �si uT

i vi by (8.41) = Ak by
(8.37).

Remark 8.56 (Choices in the SVD) We recall that an orthogonal matrix P is a rotation if
|P| = 1, otherwise |P| = −1 (Theorem 8.10). Now, a row operation on U has the effect
of performing the same operation on D (Example 8.21(ii)). Hence, if the last k rows of D
are zero we can change the sign of any of the last k rows of U without affecting D (more
generally we could replace the last k rows of U by an ONB for their span). Thus U with
|U | = −1 can be converted into a rotation matrix if desired by changing the sign of a
single row of U (hence the sign of |U |). Similarly for the last k columns of D and of VT.

In all cases we can change the signs of |U | and |V | simultaneously by changing the
sign of, say, the first row of U and the first row of V, for, as in diagonalisation (Example
8.32), the net effect on the diagonal matrix D is no change.

Remarks 8.57 (1) (The Moore–Penrose pseudoinverse) The matrix equation M X = Y
has unique solution X = M−1Y provided M−1 exists. If not, then Theorem 8.49 shows
that the closest we can get to a solution is, by minimising ‖Y − M X‖,

X = M+Y, with M+ = (MT M)−1 MT,

where M+ is the Moore–Penrose pseudoinverse of M, and exists provided the columns
of M are independent, so that MT M is invertible. (Exercise 8.28 derives M+ from the
SVD.)
(2) In the complex case, the result above holds with transpose ‘T’ replaced by conjugate
transpose ‘∗’ (we appeal to this in Chapter 15, Theorem 15.24). This is easily deduced
from the real case via the correspondence

ρ = A + iB ↔
[

A B
−B A

]
= R
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between complex matrices, and real ones of twice the dimensions; for if also σ ↔ S then
the following properties hold (see Exercise 8.27):

(a) ρσ ↔ RS (if ρσ exists), (b) In ↔ I2n, (c) ρ∗ ↔ RT, and (d) ‖ρ‖2 = (1/2)‖R‖2.

The pseudoinverse of M is M+ = (MT M)−1 MT.

The best solution of Y = M X is X = M+Y.

(3) Sometimes it is useful to have an explicit expression for a vector of derivatives
∂ f/∂ y = [∂ f/∂yi ]. The following gives an alternative approach to Theorem 8.49; a
generalisation is used in the Wiener filter of Section 15.3.4.

(a) ∂/∂ y(a · y) = a, (b) ∂/∂ y ‖B y‖2 = 2BT B y (Frobenius norm).

Proof (a) ∂/∂yi (a1 y1 + · · · + an yn) = ai , and [ai ] = a.

(b) ∂/∂yp‖B y‖2 = ∂/∂ypTr[(B y)(B y)T](put A = B y in Theorem 8.44)
= ∂/∂yp

∑
i (
∑

r bir yr )2 =∑
i 2(

∑
r bir yr )bip

= 2
∑

i,r bT
pi bir yr

= 2(BT B y)p, as required.

(4) We record the product rule for differentiating matrices, and some consequences. Let
Ḃ denote ∂B/∂t = [∂bi j/∂t]. Then for matrices A (symmetric, constant), P, Q and row
vectors x, y,

(a) ∂/∂t PQ = ṖQ + PQ̇, (b)∂/∂t x AyT = ẋ AyT + x A ẏT, (c)∂/∂x x AxT = 2x A.

Proof (a) is an exercise, (b) follows. For (c) ∂/∂t x AxT = ẋ AxT + x AẋT = 2x AẋT, and
hence ∂/∂x x AxT = [∂/∂xi x AxT] = 2x A[δki ] = 2x AI = 2x A.

(5) The Frobenius norm may be obtained from an inner product of matrices

〈A, B〉 = Tr(ABT) =
∑

i j
aij bij

in the form ‖A‖2
F = 〈A, A〉, because 〈A, B〉 is the usual dot product when the rows are

concatenated into vectors of length mn. This fits with Theorem 8.44(ii).

Exercise Verify that ‖A‖2
F = 〈A, A〉 for the matrix Rows[(1, −1, 2), (2, 3, 0)].

Exercises 8

1
√

Plot the complex number α = (1 + i)/
√

2 and hence state its modulus and argument. Now
plot the distinct powers α, α2, . . . , and express them in the standard form a + ib.

2
√

(i) Find the modulus of the complex vector (1 − 2i, 3 + i,−2 + 5i). (ii) Let w= e2π i/N , where
N = 2M is even. Show wN = 1 and wM = −1. Deduce that 1 + w + w2 + · · · + wN−1 = 0
and verify this for Exercise 8.1.

3
√

Show that one of A, B below is a rotation matrix. Find a rotation axis and corresponding
angle. Check the axis by an eigenvector method. Verify the angle by choosing a simple
vector u perpendicular to the axis and calculating the cosine of the angle between u and its
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rotated image.

A = 1

9

⎡
⎣ 4 −1 8
−7 4 4

4 8 −1

⎤
⎦ , B = 1

7

⎡
⎣−2 3 −6
−6 2 3

3 6 2

⎤
⎦ .

4
√

(i) Show that if x is an eigenvector of matrix M with eigenvalue λ then x is also an eigen-
value of M−1, with eigenvector λ−1. Verify this for M = Rows((2,−1), (1, 4)). (ii) Let
w1, . . . , w t be independent eigenvectors of AAT with nonzero eigenvalues λi . Prove that
{w i A} are independent.

5
√

Why is z = x + iy purely imaginary if and only if z + z = 0? (i) Show that an eigenvalue
λ of a skew matrix S is a pure imaginary number ic (c real) (Hint: set AT = −A instead of
AT = A in the proof of Theorem 8.29(b), to obtain λ+ λ = 0). (ii) Deduce that if S is skew
then I + S is necessarily invertible.

6
√

Use Formula (8.6) to find the matrix for a 1/3 turn about the axis (1, 1, 1). Compute the
result of this followed by a 1/4 turn about the z-axis.

7
√

Find the result of reflection in the plane �: x = z, followed by reflection in the plane
�: x + 2y + z = 0.

8
√

(i) Show that matrix A or matrix B of Exercise 8.3 is rotary reflection but not pure reflection,
(ii) if this isometry is preceded by reflection in the plane x = 0, what is the resulting
isometry?

9
√

Show that if M = I − 2nTn, a reflection matrix, then M2 = I (Hint: nnT = n · n).
10
√

Perform elementary row operations to convert the matrix A = Rows[(1, 2, 3, 4),
(5, 6, 7, 8), (9, 10, 11, 12)] to echelon form E, hence find a matrix P such that PA = E .
Check your answer. What are the rank and range of A?

11
√

Use elementary COLUMN operations to reduce the matrix B = Rows((1, 2, 3, 4),
(5, 6, 7, 8)) to a number of columns equal to its rank. What column operation matrix Q
achieves the same effect?

12
√

Determine by inspection the rank and nullity of each matrix below.

(i)

⎡
⎣2 4

7 14
6 12

⎤
⎦ , (ii)

⎡
⎣1 2 3

2 4 6
5 6 7

⎤
⎦ , (iii)

⎡
⎣1 5 5

0 2 7
0 0 3

⎤
⎦ , (iv)

⎡
⎣1

4
6

⎤
⎦[5 6 8

]
.

13
√

What is the dimension of the space V of vectors in 4-space that are perpendicular to all of
the following: (1,−1, 0, 7), (2,−4, 3, 0), (3,−5, 3, 7) (see Corollary 8.24). Find a basis
for this space.

14
√

Use row operations to invert A = Rows((1, 4, 3), (0, 1, 5), (0, 0, 1)) and
B = Rows((1, a, b), (0, 1, c), (0, 0, 1)). Do your answers agree? Why is the inverse
of an upper triangular matrix upper triangular? Why is the diagonal type (positive/unit)
preserved under inversion?

15
√

Show that eigenvectors x, y corresponding to distinct eigenvectors λ, µ of a symmetric
matrix A are orthogonal (Hint: x(AyT) = (x A)yT).
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16
√

Determine the eigenvalues of the matrix A below and hence find an orthogonal matrix P
which diagonalises A. Check your answer (see below Example 8.32).

A =
⎡
⎣5 2 4

2 8 −2
4 −2 5

⎤
⎦ .

17
√

Express as a sum of squares the quadratic function q(x) below. Write down its matrix Q and
rank r. Use your conversion to sum of squares to find an invertible matrix P such that PQPT

is diagonal. Must the diagonal elements be the eigenvalues of Q (see Theorem 8.29)?

q(x) = x2
1 + 2x2

2 + 13x2
3 − 2x2x3 − 2x1x2 − 4x1x3.

18
√

What type is the form q(x) of Exercise 8.17? Verify this by computing the eigenvalues
of Q.

19
√

Determine whether the form below gives a maximum or minimum at the origin, without
completing squares or computing eigenvalues from a fourth degree polynomial equation:

q(x) = x2
1 + 5x2

2 + 3x2
3 + 5x2

4 + 4x1x2 + 2x1x3 + 4x2x3 + 4x2x4.

20
√

Let A = Rows[(1, 0, 3, 2), (2, 3, 0, 1)]. Find eigenvalues and vectors for the 4 × 4 matrix
AT A by finding them first for the 2 × 2 matrix AAT (Theorem 8.39). Check your answers
on AT A.

21
√

Let S = Rows[(1, 2, 1), (2, 5, 4), (1, 4, 7)]. Verify that S is positive definite and find its
Choleski factorization by ALGO 8.3. This may be done by hand or by computer.

22
√

Let x = (1, 2,−1), A = Rows[(1,−1, 2), (2, 3, 4), 0, 1, 2)], and B = Rows[(1, 1, 0),
(0, 1, 1), (1, 0, 1)]. By computing the various quantities, verify that |x A| ≤ |x |‖A‖ and
‖AB‖ ≤ ‖A‖‖B‖, in the F-norm.

23
√

Calculate the R-norms (ratio norms) of the matrices A = Rows[(1, 2), (2, 1)] and B =
Rows[(1, 2), (3, 1)]. Obtain a formula for the R-norm of an arbitrary 2 × 2 matrix A in
terms of ‖A‖F and Det(A).

24
√

What is wrong with the following system of equations: x + 2y = 5, 3x + 4y = 11, x + y =
4? Find the best compromise solution (Remarks 8.57).

25
√

Express the matrix A, with its given Singular Value Decomposition, as a ‘Russian’ sum of
matrices of rank 1, and write down its best approximation A1 of rank 1.

1

6

⎡
⎣ 7 −5 7 −5

5 −1 5 −1
−4 8 −4 8

⎤
⎦ = 1

3

⎡
⎣1 2 2

2 1 −2
2 −2 1

⎤
⎦
⎡
⎣1 0 0 0

0 3 0 0
0 0 0 0

⎤
⎦ 1

2

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 −1 −1 1

−1 −1 1 1

⎤
⎥⎥⎦ .

26
√

Find the singular values, an SVD, and the best rank 1 approximation of the symmetric matrix
(1/9)Rows[(−7, 10,−2), (10,−4, 8), (−2, 8, 2)].

27
√

Show that, if f (A + iB) = Rows[(A, B), (−B, A)] in block matrix form, then f (ρσ ) =
f (ρ) f (σ ), f (In) = I2n, f (ρ∗) = f (ρ)T, and ‖ρ‖2

F = (1/2)‖ f (ρ)‖2
F .

28
√

Use the SVD to derive the pseudoinverse without differentiating.





Part III

Here’s to probability
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Probability

In this chapter we recapitulate the beginnings of probability theory. The reader to whom
this subject is completely new may wish first to consult a more leisurely introduction,
such as McColl (1997).

9.1 Sample spaces

Figure 9.1 A. N. Kol-
mogorov, 1903–1987,
sketch by Ward Somer-
ville.

There are different schools on the meaning of probability. For
example, it is argued that a statement such as ‘The Scottish
National Party has a probability of 1/5 of winning the election’
is meaningless because the experiment ‘have an election’ cannot
be repeated to order. The way out has proved to be an axiomatic
approach, originated by Kolmogorov (see Figure 9.1) in 1933, in
which all participants, though begging to differ on some matters
of interpretation, can nevertheless agree on the consequences
of the rules (see e.g. Kolmogorov, 1956b). His work included
a rigorous definition of conditional expectation, a crucial and
fruitful concept in current work in many areas and applications
of probability.

9.1.1 Sample spaces and events

Model 9.1 We begin with the idea that, corresponding to an experiment E, there is a
set S, the sample space, consisting of all possible outcomes. In the present context an
event A is a set of outcomes, that is A ⊆ S. Then it is a matter of definition that, if E is
performed with outcome a, the event A occurs if and only if a ∈ A.

Often, but not always, the outcomes are conveniently represented by numbers, as
illustrated in examples below.

209
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Examples 9.2

(i) E: Toss a coin twice,

S = {HH, HT, TH, TT}, where H signifies the outcome Heads and T is Tails,

A = {Both tosses have the same result} = {HH, TT}.

(ii) E: Throw a die,

S = {1, 2, 3, 4, 5, 6},
A = {Even throw} = {2, 4, 6}.

(iii) E: A sequence of letters from the English alphabet A = {a, . . . , z} is transmitted, and
the first three are recorded,

S = {x1x2x3: each xi is in A},
A = {Letter b appears exactly twice} = {bbx, bxb, xbb: x is in A\{b}}.

(iv) E: {Record the lifetime of a memory chip},

S = {x ∈ R: x ≥ 0},
A = {Lifetime is between 5 and 10 units} = {x: 5 ≤ x ≤ 10} = [5, 10].

Thus, in (iii) above, if E is performed with outcome abc the event A does not occur,
but it does, should the outcome be bbc. Notice that sample spaces and events may be
specified in a variety of ways. Also, whilst it may be convenient to model the sample
space by a continuous range of real numbers, the times will be recorded in practice up
to some minimum unit of measurement, so not all real numbers in such an interval are
attained in practice. A set such as S, of which every set to be considered is a subset,
is called a universal set. Some standard notation and rules for subsets are given in
Table 9.1.

New events from old Here are some nice consequences of the definition of an event as
a subset of S. If E is performed with outcome a, then the ‘universal event’ S necesarily
occurs, because a ∈ S, but the empty event ø does not, since by definition a /∈ ø. Further,
if A and B are events then so are their complements, union and intersection, and

event Ac occurs ⇔ A does not,
event A ∪ B occurs ⇔ A, B or both occur,
event A ∩ B occurs ⇔ both A and B occur.

For illustration take Example 9.2(iv) and let B be the event: lifetime is between 8 and
17 units, in symbols the interval [8, 17]. Then A ∪ B = [5, 10] ∪ [8, 17] = [5, 17], a
lifetime between 5 and 17 units. On the other hand, if two events A, B are disjoint
(A ∩ B = ø) then they cannot occur together, and so are also called mutually exclusive.
However, we shall normally use the shorter term disjoint.
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Table 9.1. Rules for operations on subsets A, B, C of a set X (the ‘universal set’).

DEFINITIONS x ∈ A means ‘x is a member of A’, A ⊆ B means ‘A is a subset of B’.
See Figure 9.2.

A ∪ B = {x ∈ X: x ∈ A or x ∈ B (or both)}, the union of A and B,

A ∩ B = {x ∈ X: x ∈ A and x ∈ B}, the intersection of A and B,

A\B = {x ∈ A: x /∈ B}, the complement of B in A, also written A − B,

Ac = X\A = {x ∈ X: x /∈ A}, the complement of A.

A, B are called disjoint or non-overlapping if A ∩ B = ø, the empty set.
A is a proper subset of B if A ⊆ B and A is neither empty nor the whole of B.
A is a superset of B if A ⊇ B.

BASIC RULES

(a) A ∪ B = B ∪ A, A ∩ B = B ∩ A (symmetry laws)
(b) (A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C) (associative laws)
(c) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (distributive laws)

(d) De Morgan’s laws (A ∪ B )c = Ac ∩ B c,
(A ∩ B)c = Ac ∪ Bc.

SOME OBVIOUS LAWS

A ∪ ø = A, A ∩ X = A, (Ac)c = A,
A ∩ ø = ø. A ∪ X = X , A ∪ A = A = A ∩ A.

Figure 9.2 Basic set operations: union, intersection and complement.

But is every subset an event? The answer is YES if S is finite or countably infinite (see
e.g. Hoggar, 1992). Otherwise some sets cannot be considered as events, for technical
reasons beyond the scope of our discussion. This will not affect the present text, and it
suffices in all cases to rule that the complement of an event is an event, as is every finite
or countable union or intersection of events.

Exercise Use one of De Morgan’s Laws (see Table 9.1) to express A ∩ B ∩ C as a the
complement of a union.

9.1.2 First rules of probability

We include here the agreed axioms which ensure consistency, and some simple but
important consequences. Historically, the motivation for these axioms is as follows. If
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an event A occurs n A times in N trials of an experiment, its relative frequency is defined
to be

f A = n A

N
, (9.1)

representing intuitively the likelihood, or probability, of event A occurring. Hence we
look at the rules governing frequency to suggest suitable probability axioms. For example,
fS = N/N = 1, and more generally 0 ≤ f A ≤ 1. Further, for disjoint events A, B

f A∪B = n A∪B

N
= n A + nB

N
= n A

N
+ nB

N
= f A + fB . (9.2)

Definition 9.3 A probability function (on the sample space S) is a function P which
associates with each event A a real number P(A), called the probability of A, and satisfying
the following axioms:

P1: 0 ≤ P(A) ≤ 1,

P2: P(S) = 1,
P3: If events A, B are disjoint then P(A ∪ B) = P(A) + P(B),
P4: If A1, A2, . . . are pairwise disjoint events then P(A1 ∪ A2 ∪ . . .) = P(A1) +

P(A2) + · · · .
A sample space S endowed with the function P is called a probability space, though we
shall not normally emphasise the distinction. Notice that, by applying P3 repeatedly, we
may obtain for pairwise disjoint events A1, . . . , An the result

P
(⋃n

i=1
Ai

)
=

∑n

i=1
P(Ai ) (9.3)

for every finite n. This does not imply P4, the infinite case, which may be written as (9.3)
with n replaced by the infinity symbol. Here are some first consequences of the axioms,
tailored to calculating probabilities we do not know on the basis of those we do.

Rule 9.4 (Complements) Any event A satisfies P(Ac) = 1 − P(A).

Rule 9.5 (Subsets) (i) P(ø) = 0, (ii) if A ⊆ B then P(A) ≤ P(B).

Rule 9.6 (Unions) If A, B are any events, P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Proof In Rule 9.4 the union of disjoint sets A and Ac is S so by Axiom P3 we have P(A) +
P(Ac) = P(S), which equals 1 by Axiom P2. Rearranging terms gives the rule. For Rule
9.5(i) we have by definition ø = Sc, so Rule 9.4 gives P(ø) = 1 − P(S) = 1 − 1 = 0. For
(ii), decompose B into disjoint events A, B\A. Then P(A) ≤ P(A) + P(B\A), which
equals P(B) by Axiom P3. To establish Rule 9.6 we decompose A ∪ B into the union
of three disjoint sets as shown in Figure 9.3, namely X = A\B, Y = A ∩ B, Z = B\A.
The following argument yields the result.

P(A ∪ B) = P(X ) + P(Y ) + P(Z ) by (9.3) or P3
= [P(X ) + P(Y )] + [P(Y ) + P(Z )] − P(Y ) on rearranging
= P(A) + P(B) − P(A ∩ B) by P3.
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YX Z

A B

Figure 9.3 Decomposing A ∪ B into disjoint sets X , Y , Z .

This result generalises to three sets by writing A ∪ B ∪ C = (A ∪ B) ∪ C , applying Rule
9.6 twice, and using the Set Theory Laws of Table 9.1. (A formula for n sets exists but
will not be displayed here.) We obtain

P(A ∪ B ∪ C)

= P(A) + P(B) + P(C) − P(A ∩ B) − P(B ∩ C) − P(C ∩ A) + P(A ∩ B ∩ C).

(9.4)

Example 9.7 Suppose that events A, B, C each have probability 1/4, that neither
A, B nor A, C can occur together, and that P(B ∩ C) = 1/8. Determine the probability
that at least one of A, B, C occurs.

Solution We require P(A ∪ B ∪ C) and so wish to use formula (9.4). Since A, B cannot
occur together we have A ∩ B = ø, P(A ∩ B) = 0, and similarly for A, C . The probabil-
ity of A ∩ B ∩ C seems to be missing, but the rules come to our aid: A ∩ B ∩ C is a subset
of A ∩ B, so is also empty, with zero probability (by Rule 9.5). We are ready to calculate:

P(A ∪ B ∪ C) = 1/4 + 1/4 + 1/4 − 0 − 0 − 1/8 + 0 = 5/8.

Exercise Derive Equation (9.4) from Rule 9.6.

9.1.3 Finite sample spaces

For a finite sample space S = {a1, a2, . . . , an}, Axiom P4 is redundant, and any probabil-
ity function assigns to each outcome ai a probability pi in such a way that, corresponding
to respective Axioms P1 to P3 there hold:

F1: 0 ≤ pi ≤ 1,

F2: p1 + p2 + · · · + pn = 1,
F3: An event A has probability P(A) =∑

pi (ai ∈ A).

Before proceeding to the first major application of finiteness in the next section, we
exemplify the use of Rules 9.4 to 9.6.

Example 9.8 Three companies denoted by H, I, M compete to get their new computer
model to the market. Assuming H is twice as likely to win as I, which is twice as likely
to win as M, determine (i) their respective probabilites of being first, (ii) the probability
that I is not first.

Solution (i) Let X be the event: company X is first, and let P(M) = p. Since I is twice
as likely as M to win, P(I ) = 2p. Similarly P(H ) = 4p. But by F2 the sum of the
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probabilities is 1, and so p + 2p + 4p = 1, or p = 1/7. Thus P(M) = 1/7, P(I ) =
2/7, P(H ) = 4/7. Finally, (ii), by the Complement Rule 9.4 the probability that I does
not win is 1 − P(I ) = 5/7.

Exercise What is the probability that H is not first, in Example 9.8?

9.1.4 Finite equiprobable spaces

Frequently we wish to assume all outcomes in a finite sample space S are equally likely.
That is, we may assign equal probability p to each outcome. S is then said to be equiprob-
able. In the notation of the previous section we have 1 = p1 + p2 + · · · + pn = np,
whence p = 1/n, and if |A| = r then P(A) =∑

pi (ai ∈ A) = r/n, or

P(A) = |A|
|S| = number of elements in A

number of elements in S
. (9.5)

Example 9.9 (Traditional) Suppose a playing card is chosen at random from a standard
deck of 52 cards. Define the events A: the card is a spade, B: the card is a Jack, King or
Queen (the face cards). Determine the probabilities of A, B, A ∩ B, A ∪ B.

Solution The phrase at random in this context means that we may assume all cards are
equally likely. Then according to (9.5) and, for the last part, Rule 9.6,

P(A) = number of spades

number of cards
= 13

52
= 1

4
, whilst P(B) = |B|

|S| =
12

52
= 3

13
.

P(A ∩ B) = (number of face spade cards)/(number of cards) = 3/52.

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) = 1/4 + 3/13 − 3/52 = 11/26.

Methods of counting We review some techiques that will be extremely useful for
equiprobable spaces. The key is the Multiplication Principle (MP): suppose an oper-
ation is performed in r steps, or stages, and that there are ni ways to perform stage i,
independently of what went before. Then

number of ways to complete the operation = n1 × n2 × · · · × nr . (9.6)

The operation with its choice may be thought of as working through a decision tree, as
indicated in Figure 9.4 with r = 2. These are especially useful for keeping track of the
structure in complicated cases.

Example 9.10 (i) How many 3-letter words can be formed from an 8-letter alphabet?
(ii) In how many of these are the letters distinct?

Start   Stage 1  Stage 2

Figure 9.4 Decision tree illustrating the Multiplication Principle. There are three choices
at the first stage and two at the second, hence a total of 3 × 2 = 6 possibilities.
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Solution We may choose a word in three steps, letter by letter. In case (i) there are
exactly eight choices at each stage, so the total is 8 × 8 × 8 = 512. Case (ii) is different:
the first letter has eight choices, the second seven, and the third six, hence by MP a total
of 8 · 7 · 6 = 336.

Notation 9.11 (Permutations and combinations) (i) A combination of r objects from n
is a choice of r of the objects without regard to order. The number of such choices is

denoted by

(
n
r

)
or nCr , and is often read as ‘n choose r ’.

(ii) A permutation of r objects from n is a choice of r of the objects in a particular order.
The number of such permutations is denoted by nPr . In the case r = n they are called
simply permutations of the n objects.
(iii) For a positive integer n, we make the abbreviation n! = n(n − 1) · · · 1, read as ‘n
factorial’, and extend the notation by defining 0! = 1.

Theorem 9.12 The following formulae hold for 1 ≤ r ≤ n (and for r = 0 in (iii)):

(i) the number of permutations of n objects is n!,
(ii) nPr = n(n − 1) · · · (n − r + 1) = n!/(n − r )!,

(iii)

(
n
r

)
= n!

r !(n − r )!
=
(

n
n − r

)
,

(iv)

(
n
r

)
= n(n − 1) · · · (n − r + 1)

r !
,

(v) (Binomial Formula) (x + y)n =
∑n

r=0

(
n
r

)
xn−r yr

= xn + nxn−1 y +
(

n
2

)
xn−2 y2 + · · · + yn.

(vi)

(
n

r − 1

)
+
(

n
r

)
=
(

n + 1
r

)
(see Pascal’s Triangle below proof).

Proof (i) is the special case r = n of (ii). In the latter case imagine we build up a
permutation object by object.

Choose the first – there are n ways.
Choose the second – there are now n − 1 ways . . .

Choose the r th – there are n − r + 1 ways.

By the Multiplication Principle the total number of choices is n(n − 1) · · · (n − r + 1)
as stated. The expression n!/(n − r )! equals this after cancelling factors 1, 2, . . . , n − r
in top and bottom.
(iii) In the case r = 0, all three expressions equal 1 trivially. Now suppose 1 ≤ r ≤ n as
before, but this time choose a permutation in two stages:

Choose the r objects – there are nCr ways.
Put them in order, i.e. permute them. By (i) there are r ! ways.
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By the MP the number of ways to do the combined process is nCr × r !. But this by
definition equals nPr , so nCr = nPr/r !, and invoking the two formulae of (ii) we obtain
(iii) and (iv). Note that replacing r by n − r in the first equality of (iii) gives the second
(equivalently, we choose n − r to reject!).
(v) We are expanding the binomial, or two-term expresssion, x + y, to the power n.
Writing this out as (x + y)(x + y) · · · (x + y) we see it is by definition the sum of products
of an x or y from each binomial x + y. All products with exactly r factors y and n − r
factors x are equal, with one such product for each choice of r binomials from which to
select y. Thus the term xn−r yr appears in the sum with coefficient nCr , for r = 0, 1, . . . , n,

as given in (v).
(vi) The right hand side of (vi) is the number of ways to choose r objects from n + 1.
But any given object X can be chosen or rejected. If it is rejected there remain r choices
from n; if accepted, there are r − 1 choices from n. This yields the two terms in the left
hand side of (vi).

Pascal’s Triangle It is often convenient to construct the Pascal’s Triangle below, in
which the nth level lists the coefficients in the expansion (v) of (x + y)n . Formula (vi)
says that a coefficient in level n + 1 is the sum of its two neighbours above to left and
right, giving an easy way to build up to, say, the coefficients in (x + y)5. We show this
carried out below.

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

Exercise Use the Binomial Theorem and/or Pascal’s Triangle to expand (x + 1)6.

Example 9.13 (i) Calculate the number of ways to choose a team of 18 people from 20,
(ii) A committee of five is chosen by lot from a pool of eight women and five men. Find
the probability that three women and two men are chosen.

Solution (i) Number of ways =
(

20

18

)
=
(

20

2

)
= 20.19

1.2
= 190, by Theorem 9.12

parts (iii), (iv).
(ii) We write S = {choices of 5 from 13}, and seek the probability of event A =
{3 women and 2 men}. We have by Theorem 9.12: |S| =

(
13

5

)
= 13 · 12 · 11 · 10 · 9

1 · 2 · 3 · 4 · 5
=

1287, and by the Multiplication Principle |A| =
(

8

3

)(
5

2

)
= 8 · 7 · 6

1 · 2 · 3
· 5 · 4

1 · 2
= 560. By

(9.5), P(A) = |A|/|S| = 0.44 approx.

Exercise Solve (ii) above for a pool of five women and five men.
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9.2 Bayes’ Theorem

This section covers the basics of conditional probability and independence, leading to
Bayes’ Theorem. We emphasise the latter because it has come to increasing prominence
as a practical method, almost a philosophy, in recent times (see e.g. Leonard and Hsu,
1999). Of special interest in this volume is the application to object recognition in digital
images.

9.2.1 Conditional probability

Intuitively, some events are not ‘independent’ and it should be possible to update prob-
abilites in the light of new relevant information. For example, the proportion of the UK
population with defective vision is 0.1% so a natural model for a person chosen at ran-
dom would be P(defective vision) = 1/1000. However, the proportion is much greater
for men, namely 0.4%, so we should like to say P(defective vision, given the subject
is male) = 4/1000. The way to a formal definition is through relative frequency, (9.1).
In this notation the relative frequency of an event A among those outcomes in which an
event M occurred is n A∩M/nM . We may also think of this as the conditional relative fre-
quency of A, given that M occurred. If the total number of outcomes is n, our expression
connects to previously defined frequencies:

n A∩M

nM
= n A∩M/n

nM/n
= f A∩M

fM
. (9.7)

This suggests the formal definition below (for arbitrary sample spaces), in which we
continue to use M as a convenient marker for the given event.

Definition 9.14 Let A, M be events with P(M) > 0. The conditional probability of A
given M is defined to be

P(A|M) = P(A ∩ M)

P(M)
. (9.8)

The reduced sample space view As suggested by the Venn diagram of Figure 9.5,
conditional probability given M is in some sense measuring probability with respect to
a reduced sample space M (and the diagram can help one to remember that it is M that
appears in the denominator of the definition above).

M A

Figure 9.5 Illustration of Equation (9.8), suggesting P(A|M) = P(A ∩ M)/P(M) is a
probability with respect to M as reduced sample space.
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Table 9.2. Number of office computers in various
categories for Example 9.16.

Old New (N ) Total

Connected (C) 40 25 65
Not connected 30 5 35
Total 70 30 100

Conditional probability axioms So far so good, but to be a genuine probability, one to
which we can apply probability results, P(A|M) (for fixed M) must satisfy axioms P1
to P4, which in this case look like:

C1: 0 ≤ P(A|M) = 1,

C2: P(S|M) = 1,

C3: P(A ∪ B|M) = P(A|M) + P(B|M), if A ∩ B = ø,
C4: P

(⋃∞
i=1 Ai ) |M

) =∑∞
i=1 P(Ai |M), where {Ai } is a countable union of pairwise disjoint

events.

Proof C1, C2 are a useful short exercise and C3, which we now prove, points to a proof
of C4. We consider (A ∪ B) ∩ M , which is a union of two disjoint events A ∩ M and
B ∩ M , because A, B are given to be disjoint. Axiom P3 applies to give P((A ∪ B) ∩
M) = P(A ∩ M) + P(B ∩ M). Dividing both sides of this equation by P(M), we obtain
C3.

Theorem 9.15 Let A, M be events in a finite equiprobable sample space. Then

P(A|M) = |A ∩ M |
|M | = number of ways A, M can occur together

number of ways M can occur
. (9.9)

Proof P(A|M) = P(A ∩ M)/P(M) by Definition (9.8)
= (|A ∩ M |/|S|) ÷ (|M |/|S|) by (9.5)
= |A ∩ M |/|M |) upon cancelling |S|.

Example 9.16 An office contains 100 computers. Some have internet connection (C),
and some are new (N ). Table 9.2 shows the numbers in each category. A new employee
arrives first thing, chooses a computer at random, and finds it has a connection. Find the
probability that it is (i) new (ii) old.

Solution (i) In the notation implied, we are asked for P(N |C), and by (9.9) it is given
by |N ∩ C |/|C | = 25/65 = 5/13.
(ii) Here we require the probability of a complementary event. If the probability were
not conditional we would use the formula P(Ac) = 1 − P(A) (Rule 9.4). Can we do
so here? The answer is YES, for conditional probability satisfies the standard axioms
P1 to P4, and hence obeys the consequent rules, such as Rule 9.4. Thus P(N c|C) =
1 − P(N |C) = 8/13.
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Table 9.3. Numbers of defective and good items chips
after various selections.

Defective Good Total

At start 4 11 15
After first defective 3 11 14
After second defective 2 11 13

Theorem 9.17 (Chain Rule for conditional probabilities)

(i) P(A)P(B|A) = P(A ∩ B) = P(B)P(A|B),
(ii) P(A ∩ B ∩ C) = P(A)P(B|A)P(C |A ∩ B),

(iii) P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2|A1) · · · P(An|A1 ∩ A2 ∩ · · · ∩ An−1).

Proof (i) In (9.8) multiply both sides by P(M), then set M = B to get
P(A ∩ B) = P(B)P(A|B); the latter equals P(A)P(B|A) because A ∩ B = B ∩ A.
Equality (ii) is a special case of (iii), which is in turn a consequence of the first equality of
(i) and the inductive step given by setting A = A1 ∩ A2 ∩ · · · ∩ An−1 and B = An therein.

Example 9.18 A box contains 15 memory chips, of which four are defective. Three are
chosen at random. Find the probabilities that (i) all three are defective, (ii) exactly one
is defective.

Solution (i) Let event Ai = {i th item chosen is defective}. According to (9.5) the prob-
ability P(A1), that the first item taken is defective, is 4/15. Given A1 occurred, there
remain three defectives out of a total of 14, and taking a second defective leaves two
defectives out of 13. Displaying the figures in Table 9.3 helps to make, and to confirm
the correctness of, the argument.

The Chain Rule, Theorem 9.17, gives

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2|A1) P(A3|A1 ∩ A2) (9.10)

= 4

15
× 3

14
× 2

13
(by (9.9)) = 0.01 approx.

(ii) Let D = defective and G = good. Then, in an obvious notation, our cal-
culation is

P({DGG, GDG, GGD}) = P(DGG) + P(GDG) + P(GGD) (by (9.3))

= 4

15
× 11

14
× 10

13
+ 11

15
× 4

14
× 10

13
+ 11

15
× 10

14
× 4

13
= 0.48 approx.

In more detail the sample space is a set of ordered triples

S = {x1x2x3: xi = i th item chosen}.
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Thus, for example, there is no outcome for which DGG and GDG both occur, since the
first item cannot be simultaneously defective and good. Indeed DGG, GDG and GGD
are pairwise disjoint, as required for our application of (9.3). Keeping S in mind, there
is another way to proceed, using (9.5):

P(DGG) = number of ways to choose one defective, then two good, items

number of ways to choose a sequence of three items

= 4 · 11 · 10

15 · 14 · 13
, as obtained above.

Exercise In Example 9.18, calculate P(DGD).

9.2.2 Independence

In the previous section we introduced the idea that the occurrence of one event M might
affect the probability of another event A, writing the modified probability as P(A|M).
Here we focus on the equally important opposite, that A, M are independent – the
occurrence of one event has no bearing on that of the other. Intuitively this says that
P(A|M) = P(A) and P(M |A) = P(M), both equivalent to P(A ∩ M) = P(A)P(M)
by (9.8). Here are the formal definitions.

Definitions 9.19 Events A, B are independent if

P(A ∩ B) = P(A)P(B). (9.11)

More generally, a finite collection of events A1, A2, . . . , An are pairwise independent
if every pair is independent, i.e. satisfies (9.11). They are mutually independent (or just
independent) if every sub-collection A, B, C, . . . satisfies

P(A ∩ B ∩ C ∩ · · ·) = P(A)P(B)P(C) . . . (9.12)

In particular, A, B, C , . . . are pairwise independent. Most often, independence is an
assumption in our model of a situation, as in the next example. However, sometimes
(9.11) and (9.12) can be tested on the basis of other assumptions, and this we do in
Example 9.21 to show that, in the case of three or more events, independence does not
follow from pairwise independence. The value of the extra conditions involved is to
ensure that the operations of union, intersection and taking complements yield many
new independent events from old. Theorems 9.22 and 9.23 cover a useful range of such
cases, with an application to circuits in Example 9.24.

Example 9.20 Diseases A, B are caught independently, with respective probabilites 0.1
and 0.2. What is the probability of catching at least one of them?
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Solution Define events X: disease X is caught. We calculate as follows.

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) by Rule 9.6
= P(A) + P(B) − P(A)P(B) by (9.11)
= 0.1 + 0.2 − (0.1)(0.2)
= 0.28.

Example 9.21 A fair coin is tossed twice. Define events A: first throw is heads, B:
second throw is heads, and C: exactly one throw is heads. Show that the events A, B, C
are pairwise independent but not (mutually) independent.

Solution In the usual notation, we have an equipotential sample space S= {HH, HT, TH,
TT}with A= {HH, HT}, B= {HH, TH}, C= {TH, HT}. By Formula (9.5), P(A)= 2/4=
1/2 =P(B)=P(C). Similarly, P(A ∩ B) = P({HH}) = 1/4 = P(A ∩ C) = P(B ∩ C).
Thus A, B, C are pairwise independent. However, they are not independent, for

P(A ∩ B ∩ C) = P(ø) = 0 �= P(A)P(B)P(C).

Theorem 9.22 (i) If events A, B are independent then P(A ∩ B) = P(A) + P(B) −
P(A)P(B).
(ii) If events A, B, C are independent, so are A ∪ B and C.

Proof Part (i) is a simple observation covered in Example 9.20. For (ii) the argument is

P((A ∪ B) ∩ C) = P((A ∩ C) ∪ (B ∩ C))
= P(A ∩ C) + P(B ∩ C) − P(A ∩ B ∩ C) by Rule 9.6
= P(A)P(C) + P(B)P(C) − P(A)P(B)P(C) by (9.12)
= [P(A) + P(B) − P(A)P(B)]P(C)
= P(A ∪ B)P(C) by (i).

Theorem 9.23 Let events A1, . . . , An be independent. Then (i) so are their complements,
(ii) if the sequence is split, say as A1, . . . , Ar , Ar+1, . . . , As, As+1, . . . , At . . . , then the
unions

B =
r⋃

i=1

Ai , C =
s⋃

i=r+1

Ai , D =
t⋃

i=s+1

Ai , . . .

are independent. And similarly for intersections.

Proof For the purpose of this proof it is convenient to begin with (ii). Note that the
last part, concerning intersections, is an immediate consequence of (9.12) because, for
example, P(B) =∏

P(Ai )(1 ≤ i ≤ r ). In particular, the three events A1, A2, A3 ∩ · · · ∩
An are independent. Then, denoting the third set by E, we have by Theorem 9.22(ii)
the independence of A1 ∪ A2 and E . That is, P((A1 ∪ A2) ∩ E) = P(A1 ∪ A2)P(E),
whence, by the independence of A3, . . . , An ,

P((A1 ∪ A2) ∩ A3 ∩ · · · ∩ An) = P(A1 ∪ A2)
∏n

i=3
P(Ai ),
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P Q

A

B

C

D

Figure 9.6 On–off circuit. Current flows between terminals P, Q if and only if relay D
and at least one of A, B, C is closed. Each relay is closed with probability p.

which says that that the n − 1 events A1 ∪ A2, A3, . . . , An are independent. Applying
this result repeatedly, with suitable relabelling of subscripts, yields (ii) of the present
theorem. For (i) we must show that P(∩Ac

i ) = �P(Ac
i ), or equivalently by De Morgan’s

Laws,

1 − P(A1 ∪ · · · ∪ An) =
∏n

i=1
(1 − P(Ai )). (9.13)

Case n = 1 is 1 − P(A1) = 1 − P(A1), manifestly true, so let us assume inductively that
(9.13) holds with n − 1 in place of n. We may write Theorem 9.22(i) in the form

1 − P(A ∪ B) = (1 − P(A))(1 − P(B)) (given A, B independent). (9.14)

By Part (ii) the events A = A1 ∪ · · · ∪ An−1 and B = An are independent, and so (9.14)
supplies the inductive step:

1 − P(A1 ∪ · · · ∪ An) = (1 − P(A1 ∪ · · · ∪ An−1))(1 − P(An))

=
∏n

i=1
(1 − P(Ai )), by the inductive hypothesis,

completing the proof of (i) by induction.

Example 9.24 In the on–off circuit shown in Figure 9.6, relays A, B, C, D work inde-
pendently, each with probability p of being closed. Find the probability of the event E ,
that current flows between terminals P, Q.

Solution Let X be the event: relay X is closed. From the circuit’s definition we may write
E = (A ∪ B ∪ C) ∩ D. Now, since A, B, C are independent, so are their complements
by Theorem 9.23 (i), and so we have

P(A ∪ B ∪ C) = P[(Ac ∩ Bc ∩ Cc)c] by De Morgan’s Laws
= 1 − P(Ac ∩ Bc ∩ Cc) by Rule 9.4
= 1 − P(Ac)P(Bc)P(Cc) by independence
= 1 − (1 − p)3 by Rule 9.4.

Also, the events A ∪ B ∪ C and D are independent by Theorem 9.23(ii), and so

P(E) = P(A ∪ B ∪ C)P(D) = [1 − (1 − p)3]p.

Exercise Repeat Example 9.24 with C in series with D.
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Independent trials In Example 9.21 we wrote down a sample space for repeated tossing
of a coin, basing it on the sample space for a single toss. More generally, suppose
experiment E has finite sample space S and probability function P. Then the experiment
consisting of n independent trials of E has by definition the sample space and probability
function

T = S × S × · · · × S = {(x1, x2, . . . , xn): xi is in S}, (9.15)

P(x1, x2, . . . , xn) = P(x1)P(x2) · · · P(xn), (9.16)

where we have used P as a general symbol for probability. The formal verification that
(9.16) satisfies the axioms for a probability function is routine except for P(T ) = 1. The
latter is included in the following result, which will be much used in the information
theory sequel, as well as providing simplifications in the examples below.

Theorem 9.25 If A, B, . . . , T is a finite collection of finite sets of numbers, then(∑
a∈A

a

)(∑
b∈B

b

)
· · ·

(∑
t∈T

t

)
=

∑
ab · · · t (a ∈ A, b ∈ B, . . . ,t ∈ T ). (9.17)

Hence if X, Y, . . . , Z is a finite collection of finite probability spaces then∑
P(x)P(y) · · · P(z) (x ∈ X, y ∈ Y , . . . , z ∈ Z) = 1. (9.18)

Proof Because multiplication of numbers is distributive over addition, a(b + b′) =
ab + ab′, the left hand side of (9.17) is the sum over all products of factors taken one at
a time from each bracketed expression. This is easily seen in Example 9.26. To deduce
(9.18) we let the set A have elements P(x) (x ∈ X ), and so on, and start from the right hand
side of (9.17) to obtain

∑
P(x)P(y) · · · P(z) = (

∑
P(x))(

∑
P(y)) · · · (∑ P(z)) =

1 · 1 · · · 1 = 1.

Example 9.26 The conclusion of (9.17) for a simple but representative special case:

(a1 + a2)(b1 + b2 + b3) = a1(b1 + b2 + b3) + a2(b1 + b2 + b3)

= a1b1 + a1b2 + a1b3 + a2b1 + a2b2 + a2b3.

Example 9.27 A die is thrown five times. Find the probabilites of the events A: the third
throw is a four, B: 1, 2, 3 are thrown in succession.

Solution The sample spaces are S = {1, 2, . . . , 6} for a single trial, and for the five
throws T = {(x1, . . . , x5): 1 ≤ xi ≤ 6}. We have therefore

P(A) =∑
P(x)P(y)P(4)P(z)P(t) (x, y, z, t ∈ S)

= (1/6)
∑

P(x)P(y)P(z)P(t) (x, y, z, t ∈ S) since P(4) = 1/6
= 1/6 by (9.18).

It is now clear, as we would hope, that in the repeated trials model the probability
of a throw achieving a given score does not depend on where this throw comes in
the sequence of trials. For the second probability we may write B as the union of sets
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Table 9.4. Statistics of hypothetical diseases A, B, C.

A B C

Comparative frequency of occurrence 20% 50% 30%
Probability of disease leading to symptom 0.4 0.1 0.5

{123xy}, {x123y}, {xy123}, where x, y in each set range over the elements of S, and these
sets are disjoint because 123xy always has third symbol 3 whilst x123y has third symbol
2 and xy123 has third symbol 1. Thus, since the three sets have equal probabilities,

P(B) = 3
∑

x,y
P(1)P(2)P(3)P(x)P(y) (x, y ∈ S)

= 3P(1)P(2)P(3) by (9.18)

= 3(1/6)3.

Example 9.28 A typist hits each key with probability 0.02 of error. Assuming errors
occur randomly, find the probabilities of the events (i) a ten-letter word is mistyped, (ii)
a ten-letter word has just two errors, and these are consecutive.

Solution (i) Since an incorrect word may have anything from one to ten errors it is prob-
ably simplest to use the complementary event, and to argue that the required probability
is

1 − P(no error in ten symbols) = 1 − (0.98)10 = 0.18 approx.

(ii) For each ‘trial’ symbol let G, B be respective outcomes correct, incorrect. Since there
are nine starting places for the two errors, the probability is

9P(BBGG . . . G) = 9 (0.02)2(0.98)8 = 0.003 approx.

Such trials as above, where each has exactly two outcomes, are called Bernoulli trials.
Often they may be thought of as success or failure. They are the basis of the important
Binomial Distribution, to be introduced in Section 9.4.1.

Exercise Find the probability that two out of four dice thrown show a 6.

9.2.3 Bayes’ Theorem

How may we determine the probability of a ‘cause’? A patient reports a certain vision
problem. The specialist knows that only diseases A, B, C can cause the symptom expe-
rienced. Neglecting the possibility of two diseases at once, for which disease should a
doctor test first?

Given information such as that depicted in Table 9.4, the solution comes by a result
known as Bayes’ Theorem, or Rule, which has applications in many areas besides med-
ical diagnosis; in this text, for example, information theory, image processing, object
recognition and tomography. The first step is the result below.
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A1

A2

A3

A4

Figure 9.7 Events Ai form a partition of the sample space S. That is, S = ∪Ai and the
Ai are pairwise disjoint (mutually exclusive). Then an event B (shaded) is the union of
its intersections with the Ai .

Figure 9.8 Rev. Thomas Bayes,
1702–1761, sketch by Ward
Somerville.

Theorem 9.29 Let A1, . . . , An be a partition of the sample space (see Figure 9.7) and
let B be any event. Then for any i,

P(Ai |B) = P(B|Ai )P(Ai )

P(B)
(Bayes’ Rule), (9.19)

where P(B) is given by the Total Probability Formula

P(B) = P(B|A1)P(A1) + · · · + P(B|An)P(An). (9.20)

Proof Bayes’ Rule is named after its originator,
the Rev. Thomas Bayes (shown in Figure 9.8), for
its rich implications, explored more today than in
his own time (in the field of object recognition to
name but one). It may be regarded as arising from
the simple observation: P(B)P(Ai |B) = P(B ∩
Ai ) (by Theorem 9.17(i)) = P(Ai ∩ B) = P(Ai ) ×
P(B|Ai ) = P(B|Ai )P(Ai ). Dividing through by
P(B) gives the rule. Now let us derive the formula
for P(B) (not due to Bayes but frequently incorpo-
rated in his formula (9.19)). As illustrated in Fig-
ure 9.7, event B is the union of pairwise disjoint
events

B = (B ∩ A1) ∪ · · · ∪ (B ∩ An) (9.21)

and because they are disjoint we have by (9.3) that P(B) =∑
P(B ∩ Ai ). On substituting

P(B ∩ Ai ) = P(B|Ai )P(Ai ) we complete the proof.

Example 9.30 At a party, tray 1 holds two glasses of red wine and three of white, whilst
tray 2 holds six red and four white. A mischievous guest transfers a glass at random from
tray 1 to tray 2. Shortly after, the hostess (who prefers red wine) closes her eyes and takes
a glass from tray 2. Find (i) the probability it is red, (ii) given that it is red, the probability
the transferred glass was white.
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Table 9.5. Numbers of glasses containing red and white wine. Event
A: red was transferred, event B: red was later selected.

Tray 1 red white Tray 2 red white
At start 2 3 At start 6 4

After A 7 4
After Ac 6 5

Solution (i) Here we are asked not for the probability of a cause A: ‘the wine trans-
ferred was red’, but for that of a result B: ‘the wine selected was red’. Hence we re-
quire just the Total Probability Formula (9.20). Our partition can be of the simplest
type: A and its complement Ac. The relevant probabilities can be picked out from
Table 9.5.
(ii) Now for a cause: we require P(Ac|B) which, according to Bayes’ Rule, equals
P(B|Ac)P(Ac)/P(B). We happen to have computed the various factors already, and
the answer is (18/55)/(32/55) = 9/16 = 0.56 approx. This is less than the uncondi-
tional value of 0.60, and represents an adjustment to a probability in the light of further
information, facilitated by Bayes’ Rule.
We have

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac) = 7

11
· 2

5
+ 6

11
· 3

5
= 32

55
= 0.58 approx.

Example 9.31 Given the data of Table 9.4, for which disease should the doctor test first?
Let X be the event ‘the disease is X ’, and let E be the occurrence of the symptom. We
are to assume that exactly one disease must be present, and must calculate which is most
likely. The assumption tells us that A, B, C partition the sample space, and by Bayes’
Rule with numerator and denominator finally scaled by 100 we have

P(A|E) = P(E |A)P(A)

P(E |A)P(A) + P(E |B)P(B) + P(E |C)P(C)
(9.22)

= (0.4)(0.2)

(0.4)(0.2) + (0.1)(0.5) + (0.5)(0.3)
= 8

8 + 5 + 15
= 2

7
.

Given the form of Bayes’ Rule, the numbers we need to complete the calculation are
already displayed. Indeed, P(B|E) = 5/28 and P(C |E) = 15/28. Since the latter is the
largest of the three disease probabilities given the symptom, one should test first for
disease C.

Exercise Given the wine switch was white, what is the probability the hostess tasted
red?
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9.3 Random variables

Definition 9.32 A random variable X on a sample space S is a function assigning a
real number X (s) to every outcome s, as illustrated below. The range space, or range,
RX is the set of values taken by X. The assertion X is concentrated on T means that
RX is contained, perhaps strictly, in the set T. We say X is discrete if RX is discrete,
meaning RX is finite or we may write it in the form {x1, x2, . . .} (the countably infinite
case, see Example 9.36 below). We shall focus first on discrete X and later on the
somewhat different, continuous, type of random variable, in which the range, is typically
a continuous interval. In all cases a random variable will be denoted by a capital, and
typical values by corresponding lower case letters, often subscripted.

ale ae

9.3.1 Discrete random variables

If the random variable X is discrete, each element of RX is assigned a probability, that
of its pre-image in S. That is,

P(X = a) = P({s ∈ S: X (s) = a}). (9.23)

Example 9.33 A sample space for the experiment ‘throw two dice’ is the set of pairs
S = {(x, y): x, y = 1, 2, . . . , 6}. Let the random variable X be the total score, X (x, y) =
x + y. Then, for example, writing xy for a pair (x, y) in S,

P(X = 5) = P({xy: x + y = 5}) = P({14, 23, 32, 41}) = 4/36.

Definition 9.34 The probability distribution function (pdf) of a discrete random variable
X is the function p: RX → [0, 1] given by p(x) = P(X = x). Equivalently, it is the set
of pairs (x, p(x)), customarily displayed as a table or bar chart, as in the next example.
The probability axioms along with (9.23) imply

p(xi ) ≥ 0 (xi ∈ RX ), and
∑

p(xi ) = 1. (9.24)

(Indeed, any function Z from a discrete set T into [0, 1] is called a (discrete) probability
function on T if it satisfies (9.24), for Z gives T the structure of a probability space as in
Definition 9.3ff, with S = T .)

Example 9.35 Suppose the random variable X is the number of heads in two throws of
a coin. Let us find the pdf of X. Here S = {HH, HT, TH, TT } and RX = {0, 1, 2}. Hence

p(0) = P(X = 0) = P(TT ) = 1/4,

whilst p(1) = P(X = 1) = P(HT, TH ) = 2/4,

and p(2) = P(X = 2) = P(HH ) = 1/4.
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0 2

x 0 1 2
p(x) 1/4 1/2 1/4(a)

(b)

1

Figure 9.9 Probability distribution of Example 9.36 represented by (a) bar chart,
(b) table.

Example 9.36 (i) A sequence of ultra-fast disk drives is tested until one is found that
fails the test. Assuming a drive has probability 1/5 of failure, find the pdf of the number
X tested, and show it satisfies (9.24). See Figure 9.9.

Solution Clearly RX = {1, 2, 3, . . .}, an infinite set, and X = n if and only if the first
n − 1 drives pass and the nth fails. Hence p(n) = P(X = n) = (4/5)n−1(1/5). Our
verification becomes

∑
n≥1

p(n) =
∑

n≥1

(
4

5

)n−1 (1

5

)
=
(

1

5

)(
1 + 4

5
+ 42

52
+ · · ·

)
= 1,

according to the ubiquitous formula for the sum of a geometric progression:

1 + r + r2 + · · · = 1

1 − r
if |r | < 1 . (9.25)

(ii) Let X be a random variable and M an event with the same sample space. Show that∑
x

P(X = x |M) = 1. (9.26)

Solution The events {X = x} partition the sample space, so∑
x

P(X = x |M) =
∑

x
P({X = x} ∩ M)/P(M)

=
[∑

x
P({X = x} ∩ M)

]
/P(M) = P(M)/P(M).

Exercise Tabulate the pdf of X in Example 9.33.

9.3.2 Continuous random variables

If instead of discrete values X takes, say, all values in some interval, then a new type of
pdf must be introduced in which sums are replaced by integrals.

Definition 9.37 A random variable X is continuous if there is a real function f (x)(x ∈ R),
called the probability density function, or pdf, of X, satisfying

P(a ≤ X ≤ b) =
∫ b

a
f (x) dx,

where f (x) ≥ 0 for all x, and
∫ ∞

−∞
f (x) dx = 1. (9.27)
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1 3 4 x2

0 .35

0 .3

0 .25

0 .1

0 .05

0 .15

0 .2

f (x)

Figure 9.10 Graph of the pdf f (x) = cx(4 − x), 0 ≤ x ≤ 4. Only one value of the
constant c is possible (calculated in Example 9.38), because the area beneath the curve
must be 1. The shaded area represents P(1 ≤ X ≤ 2), according to Equation (9.27).

Thus P(a ≤ X ≤ b) is the area beneath the graph of f (x) between x = a and x = b
(see Figure 9.10), and the second equality in (9.27) arises from P(S) = 1. Now, the
requirement is not that f be continuous, simply that it be integrable, and changing the
value of f (x) at isolated points does not affect the value of the integrals in (9.27). Thus,
given one pdf there are many possible pdfs that yield the same probabilities. We take
advantage of this to insist not only that f (x) is never negative, but that

f (x) = 0 for x outside RX . (9.28)

With this understanding we need only specify f (x) for x in the range RX . A further sim-
plification comes from observing that, according to (9.27), the probability that X equals
any specific value is zero. This implies, for example, P(a ≤ X ≤ b) = P(a < X ≤
b) + P(X = a) = P(a < X ≤ b) = P(a < X < b). Thus inequalities may be taken as
strict or not, according to convenience. Now it is time for examples.

Example 9.38 The quality of a computer monitor is given by a continuous random vari-
able X with pdf f (x) = cx(4 − x), 0 ≤ x ≤ 4. Find (i) the constant, c, (ii) the probability
that X exceeds 1, given that it does not exceed 2, (iii) the size of the largest batch that
can be tested before the probability of all being special (defined by X > 3) falls below
0.01.

Solution (i) The second property in (9.27) gives c = 3/32, because

1 =
∫ ∞

−∞
f (x)dx = c

∫ 4

0
x(4 − x)dx = c

[
2x2 − x3/3

]4

0 = 32c/3.

(ii) We are asked for the conditional probability P(A|B) with A: X > 1 and B: X ≤ 2.
Notice that, since by implication the range is [0, 4], event B is the same as 0 ≤ X ≤ 2,
whilst A ∩ B is 1 < X ≤ 2. We therefore have

P(A|B) = P(A ∩ B)

P(B)
= P(1 ≤ X ≤ 2)

P(0 ≤ X ≤ 2)
= c[2x2 − x3/3]2

1

c[2x2 − x3/3]2
0

= 11/3

16/3
= 11

16
.
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(iii) Unlike Part (ii), the actual value of c is required. The easiest way to begin is to
calculate

P(X ≤ 3) =
∫ 3

0
f (x)dx = (3/32)[2x2 − x3/3]3

0 = 27/32.

Then P(special) = 1 − 27/32 = 5/32 = 0.156 25. The probability of two specials is
(5/32)2 = 0.024 . . . , and of three is (5/32)3 = 0.0038 . . . Hence the largest batch size
is just 2.

Remark 9.39 A linguistic point: the abbreviation ‘pdf’ refers to distribution in the
discrete case and to density in the continuous case of a random variable to reflect their
differing ways of determining probabilities. In this double capacity ‘pdf’ reflects the
common task of yielding probabilities. Indeed, distribution is commonly used for either
case.

Exercise Find P(1 ≤ X ≤ 3) in Example 9.38.

9.3.3 The cdf of a random variable

A tool whose applications begin in the next section is the cdf, a function expressing the
accumulation of probabilities from that of the least value in RX to that of a specified
value. Following Remark 9.39 we aim for unity between the discrete and continuous
cases.

Definition 9.40 The cumulative distribution/density function, or cdf, of a random variable
X is the function defined for all real numbers by F(x) = P(X ≤ x). That is,

F(x) =

⎧⎪⎪⎨
⎪⎪⎩
∑

j
p(x j ) (x j ≤ x), if X is discrete with pdf p,∫ x

−∞
f (s)ds, if X is continuous with pdf f. (9.29)

A first consequence of both definitions is that P(a ≤ X ≤ b) = F(b) − F(a).

Example 9.41 (Discrete case) Suppose the random variable X takes values 1, 2, 3
with respective probabilities 1/6, 1/2, 1/3. Figure 9.11 shows the pdf and cdf superim-
posed.

Example 9.42 (Uniform distribution) The random variable X is called uniform if
it is continuous, with range some finite interval [a, b], and if the probability of a
subinterval is proportional to its length. Since the area under the graph of the pdf
f (x) must equal 1 (see (9.27)), we must have f (x) = 1/(b − a) on [a, b] and hence,
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F(x)1

1 2 3 x

Figure 9.11 Graphs of a discrete pdf (black) and its cdf (grey).

1

2

1/2

F(x)

x

Figure 9.12 The pdf of a uniform random variable with values in interval [0, 2] (black),
and its cdf (grey). As illustrated here, if F(x) once attains height 1, it must remain there.
In this case F(x) = x/2 for 0 ≤ x ≤ 2.

as shown in Figure 9.12,

F(x) =

⎧⎪⎨
⎪⎩

0, if x < a,
x − a

b − a
, a ≤ x ≤ b,

1, if x ≥ b.

(9.30)

Example 9.43 (Exponential distribution) Let X be a continuous random variable with
pdf f (x) = αe−αx , x > 0, for some positive parameter α. (i) Determine the cdf, (ii) show
X has the property that, for s, t > 0,

P(X > s + t | X > s) = P(X > t). (9.31)

Solution We have F(x) = 0 for x = 0, and, for x > 0, F(x) =
∫ x

0
αe−αsds =[−e−αs

]x

0 = 1 − e−αx . The respective functions are represented in Figure 9.13.
(ii) Observe that P(X > x) = 1 − F(X ) = e−αx . Thus the conditional proba-
bility in (9.31) is P(X > s + t & X > s)/P(X > s) = P(X > s + t)/P(X > s) =
e−α(s+t)/e−αs = e−αt = P(X > t), as required. We remark that this distribution occurs

2 4 6 8 x

0.2

0.4

0.6

0.8

1

f (x)

F(x)

Figure 9.13 f (x) and F(x) for the exponential distribution.
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widely in reliability theory, where Property (9.31) is viewed as stating that X has no
memory.

Theorem 9.44 The following hold for a random variable X. (i) F(x) is non-decreasing;
that is, s < t implies F(s) ≤ F(t). Further, (ii) F(x) tends to 0 as x tends to −∞, and to
1 as x tends to +∞.

(iii)

⎧⎨
⎩

If X is discrete then p(x j ) = F(x j ) − F(x j−1),

if X is continuous then f (x) = dF

dx
, wherever F is differentiable.

Proof This is immediate from the definition (9.29) of F except for the statement about
dF/dx , which is the Fundamental Theorem of Calculus – integration is ‘opposite’ to
differentiation.

Remark 9.45 The various parts of the result above are illustrated in Figures 9.11 to 9.13.
In particular, f (x) = dF/dx may be seen in Figure 9.13: as f (x) decreases towards zero,
so F(x) increases less rapidly, approaching but never quite reaching the upper limit of
1. The relation between F and f will be first used in the next section, to determine new
pdfs from old.

Exercise Derive the cdf of a uniform random variable, given in (9.30).

9.3.4 Functions of a random variable

We recall that a random variable is a function X: S → R; thus if y = u(x) represents
a real function on real x then Y = u(X ) defines another random variable. For exam-
ple X = voltage, Y = power in a system, or Y = cost in terms of X. We give two
methods for determining a pdf g(y) for Y. Firstly, a general method illustrated in Exam-
ple 9.46: we deduce the cdf G(y) of Y in terms of that of X , then use g(y) = dG/dy
(Theorem 9.44). Secondly, with more restrictions, we may apply the direct formula of
Theorem 9.47 below. As implied, we use lower case letters to denote a pdf and corre-
sponding upper case for the cdf.

Example 9.46 (General method) Let the random variable X have pdf f (x) = 2x, 0 <

x < 1. Find a pdf g(y) for the random variable Y = 3X + 1.

Solution It is convenient to establish the range of Y at the start. This is the image of
the interval RX = (0, 1) under the function x → 3x + 1, namely RY = (1, 4). On these
intervals we have

G(y) = P(Y ≤ y) = P(3X + 1 ≤ y) = P

(
X ≤ y − 1

3

)
= F

(
y − 1

3

)
, and so

g(y) = dG/dy = F ′
(

y − 1

3

)
d/dy

(
y − 1

3

)
= f

(
y − 1

3

)
× 1

3

= (2/9)(y − 1), 1 < y < 4.
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x

y  = u(x)

(a) (b)

y  = u(x)

x

Figure 9.14 (a) u(x) strictly increasing, (b) u(x) strictly decreasing.

Theorem 9.47 Let X be a continuous random variable with pdf f (x), and let Y = u(X ),
where u is strictly increasing or strictly decreasing on RX . Then a pdf for the random
variable Y is

g(y) = f (x) |dx/dy| = f (x)/|u′(x)|, y ∈ RY (9.32)

(where we substitute for x to get an equation in terms of y), provided dx/dy exists for this
range of y.

Proof We give the proof in both cases of u (see Figure 9.14) since their difference is
instructive. Let x, y be a pair with y = u(x).

(a) u increasing Here dy/dx is positive and hence so is dx/dy. We argue as follows.

G(y) = P(Y ≤ y) since G(y) is the cdf of Y
= P(X ≤ x) since u is increasing
= F(x) since F(x) is the cdf of X.

Hence

g(y) = dG

dy
(Theorem 9.44) = dF

dx

dx

dy
(Chain Rule)

= f (x)|dx/dy|, since dx/dy is positive and so equals its
absolute value.

(b) u decreasing In this case dx/dy is negative, and so equals −|dx/dy|. However, this
is compensated for by reversal of the inequality in the second line below, compared with
the corresponding argument above.

G(y) = P(Y ≤ y) since G(y) is the cdf of Y
= P(X ≥ x) since u is decreasing
= 1 − P(X < x) by the Complement Rule 9.4
= 1 − F(x) since F(x) is the cdf of X.

We now have g(y) = dG

dy
= −dF

dx

dx

dy
= + f (x)|dx/dy|, completing the proof.

Example 9.48 (i) Re-solve the last example using Theorem 9.47, and compare. (ii) The
mean time to failure of a certain electronic component is a continuous random variable
T with pdf f (t) = 2e−2t , t > 0. Find a pdf for the cost per unit time of use, Y = 250/T .
(iii) Given that the continuous random variable X has a pdf f (x), determine the pdf of
Y = X2. Apply this in the case that X is uniformly distributed on [−1, 1].
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Solution (i) The function y = u(x) = 3x + 1 is strictly increasing so Theorem 9.47
does apply. We need to note that x = (y − 1)/3, giving dx/dy = 1/3 and f (x) = 2x =
2(y − 1)/3. Hence g(y) = f (x)|dx/dy| = 2(y − 1)/3×1/3 = (2/9)(y − 1) as before.
Essentially we have bypassed the logical argument and performed the necessary
calculation.

(ii) Here the variable t takes the place of x. The function y = u(t) = 250/t is strictly
decreasing so once more we may automate the calculation by means of Theorem 9.47.
We calculate that t = 250/y, dt/dy = −250/y2, f (t) = 2e−2t = 2e−500/y . The new pdf
is therefore g(y) = f (t)|dt/dy| = 500y−2e−500/y.

(iii) This time we cannot apply the formula, since u(x) = x2 both increases and de-
creases (except on intervals of fixed sign). However, the general method does work,
though in a slightly different way from Example 9.46. For y in RY we may argue that

G(y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √
y)

= F(
√

y) − F(−√y) and, differentiating to obtain g:

g(y) = F ′(
√

y)
d

dy
(
√

y) − F ′(−√y)
d

dy
(−√y), writing F ′ for dF/dx

= [ f (
√

y) + f (−√y)]/2
√

y, because F ′ = f.

Since X is to be uniformly distributed on [−1, 1], it has pdf f (x) =1/(interval
width) = 1/2, for x in [−1, 1], and zero elsewhere. Hence g(y) = (1/2 + 1/2)/2

√
y =

1/(2
√

y) (y ∈ [0, 1]).

Theorem 9.49 Let a, b be constants, with a positive. If the continuous variable X has
pdf f(x) then Y = a X + b and Z = X2 have respective pdfs given, over their ranges, by

1

|a| f

(
y − b

a

)
and

1

2
√

z
( f (

√
z) + f (−√z)). (9.33)

Proof Suppose a > 0. Then P(aX + b ≤ y) = P(X ≤ (y − b)/a) = F((y − b)/a).
Differentiating this gives the pdf as stated (see Theorem 9.47), since dF/dx = f . The
case a < 0 is left as an exercise. The second formula of the theorem is worked out
similarly to Example 9.48(iii).

Exercise Find the pdf of Y = e2x , when X has pdf f (x) = 2x, 0 ≤ x ≤ 1.

9.3.5 Expected value

We seek a function of a random variable to correspond to mean, or average. If in N trials
the random variable X takes values x1, x2, . . . , xn with relative frequencies fi = ni/N
(note that N =∑

ni ) then the mean value is (1/N )
∑

ni xi =
∑

xi fi . As in Section
9.1.2 we take the appearance of fi as our cue for invoking P(X = xi ), abbreviated to
p(xi ) or just pi , and make the following definitions. If X is continuous then f (x) denotes
as usual its pdf.
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(a) 3 2 1 0 (b)

0 1 2 3

Figure 9.15 (a) Target for Example 9.52. (b) Score as a function u(i) of ring number, i.

Definition 9.50 The expected value E(X ) of a random variable X is given by

E(X ) =

⎧⎪⎪⎨
⎪⎪⎩
∑

xi p(xi ), if X is discrete,∫ ∞

−∞
x f (x)dx, if X is continuous.

Example 9.51 (The prudent gambler) A gambler is invited to play a game in which
he tosses two fair coins, winning x chips if x heads appear but losing five if no heads
are seen. Should he accept? Let X be the amount won. Then RX = {1, 2,−5}, and the
respective probabilities are simply those of 1, 2, 0 heads, namely 1/2, 1/4, 1/4. Thus, by
Definition 9.50,

E(X ) = 1 · 1

2
+ 2 · 1

4
− 5 · 1

4
= −0.25.

With his expected score negative he would, no doubt, knowing this, reject the invitation.

Example 9.52 A marksman scores A points if he hits rings 0, 2 in the target shown
in Figure 9.15, and B points for rings 1, 3. Find his expected score in terms of the
probabilities pi of ring i being hit, 0 ≤ i ≤ 3.

Solution If Y denotes the score, then RY = {A, B}. The pdf of Y consists of two pairs
(A, P(Y = A)), (B, P(Y = B)) so, provided we can evaluate the probabilities, we need
not directly invoke the function u expressing score in terms of ring number, and shown
as (b) in Figure 9.15. We have, by Definition 9.50,

E(Y ) = AP(Y = A) + BP(Y = B)

= A(p0 + p2) + B(p1 + p3)

= Ap0 + Bp1 + Ap2 + Bp3

= u(0)p0 + u(1)p1 + u(2)p2 + u(3)p3.

The last but one line answers the question as set. However, the very last line shows how
we may proceed more generally to arrive at the first assertion of the theorem below (the
second is essentially similar). It removes the need for an additional calculation of the pdf
of Y from that of X when we only wish to find the expected value E(Y ).
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Theorem 9.53 Let X be a random variable and let Y = u(X ). Then, in the usual notation,

E(Y ) =

⎧⎪⎪⎨
⎪⎪⎩

∑
u(xi )p(xi ), if X is discrete,∫ ∞

−∞
u(x) f (x)dx, if X is continuous.

(9.34)

Example 9.54 Given that current X is uniform on the interval [−1, 1] and power is
Y = u(x) = X2, compute the expected values of current and power.

Solution Since X is uniform it has pdf f (x) = 1/(interval width) = 1/2. Hence E(X ) =∫ 1

−1
x · 1

2
dx = [x2/4]1

−1 = 0, as we would intuitively expect. For the expectation E(Y )

we have a choice of methods. Method 1 (usually harder) First calculate the pdf of Y
then apply the definition of E(Y ). By (9.32) this pdf is g(y) = 1/(2

√
y), 0 ≤ y ≤ 1.

Method 2 Use Theorem 9.53. Let us compare the integrations.

Method 1. E(Y ) =
∫ 1

0
yg(y)dy =

∫ 1

0

1

2
y1/2dy = 1/3.

Method 2. E(Y ) =
∫ 1

−1
u(x) f (x)dx =

∫ 1

−1
x2 1

2
dx = 1/3.

Example 9.55 (An application of Theorem 9.53) Let X be a discrete random variable
taking values x1, x2, . . . , xn . Shannon’s entropy function H measures the amount of
information provided by an observation of X as (see Chapter 12)

H (X ) = E(u(X )), where u(xi ) = log(1/pi ). (9.35)

With logs to base 2 the information is measured in binary digits, or ‘bits’. Here is an
example. Suppose a coin is tossed until either a head appears, or four tails have landed.
Let us find the number of information bits supplied by an observation of X, the number of
coin tosses. The pdf of X is given by p(1) = P(H ) = 1/2, p(2) = P(TH) = 1/4, p(3) =
P(TTH) = 1/8, p(4) = P(TTTH) + P(TTTT) = 1/16 +1/16 = 1/8. Hence

H (X ) =
∑

u(xi )pi (by Theorem 9.53) =
∑

pi log(1/pi )

= 1

2
log 2 + 1

4
log 4 + 1

8
log 8 + 1

8
log 8

= 1

2
· 1 + 1

4
· 2 + 2 · 1

8
· 3

= 1.75 bits.

Remark 9.56 Finally in this section, we derive an elementary yet useful result, apply-
ing equally to both discrete and continuous random variables. Its proof presents a nice
opportunity for parallel proofs in the two cases. Here, as is often the case, there is no
difficulty in converting a proof in one case to a proof in the other simply by interchanging
integration and summation. It leads in Section 9.5.2 to Jensen’s Inequality (much used in
Information Theory), another result that does not require us to specify whether a random
variable is discrete or continuous.
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Corollary 9.57 For any random variable X, constants a, b and functions u(x), v(x), we
have

E(a X + b) = aE(X ) + b,

E[u(X ) + v(X )] = E[u(X )] + E[v(X )]. (9.36)

Proof Two necessary equalities are provided by (9.24) and (9.27), namely, in the
usual notation,

∑
f (xi ) = 1 = ∫∞

−∞ f (x)dx . Then by Theorem 9.53 we may re-express
E(a X + b) in the discrete and continuous cases as respectively (the rest is similar)∑

(axi + b)p(xi ) = a
∑

xi p(xi ) + b
∑

p(xi ) = aE(X ) + b,∫
(ax + b) f (x)dx = a

∫
x f (x)dx + b

∫
f (x)dx = aE(X ) + b.

Exercise Solve Example 9.54 with u(x) = x4.

9.3.6 Variance

In the context of measured values one argues that the mean is a dubious guide to what
we may expect in any given measurement in the absence of at least some idea of the
typical divergence from the mean. For example, a mean annual income of 10 000 units
in a population of 89 million earners could mean 9 million are rich on 90 000 units
annually, whilst the rest are starving on 1000. The well-tried second statistic to the
mean is the average squared divergence from it (or the square root of this, the standard
deviation). Since, when we pass from measurements to a probability model, mean or
average becomes expected value, the natural thing to use is the variance E[(X − µ)2],
where µ denotes the expected value of X.

Definition 9.58 The variance V (X ) of a random variable X, discrete or continuous, is
given by

V (X ) = E[(X − µ)2], where µ = E(X ). (9.37)

The positive square root, σ = σx , is called the standard deviation (thus V (X ) = σ 2),
and is widely used in practice. However, calculations are often phrased in terms of V (X )
because it has simpler mathematical properties. For this purpose the following theorem
is very useful.

Theorem 9.59 Let a, b be constants, and X a random variable with E(X ) = µ. Then

V (X ) = E(X2) − µ2, (9.38)

V (a X + b) = a2V (X ). (9.39)

Proof We have

V (X ) = E(X2 − 2µX + µ2) by definition

= E(X2) − 2µE(X ) + µ2 by (9.36)

= E(X2) − 2µ2 + µ2,
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hence the expression in (9.38). Continuing, we note that E(X + b) = µ+ b and hence
V (X + b) = E[((X + b) − (µ + b))2] = E[(X − µ)2] = V (X ). Finally, E(aX ) = aµ,
giving V (a X ) = E[(a X − aµ)2] = E[a2(x − µ)2] = a2 E[(x − µ)2] = a2V (X ). This
completes the proof.

Example 9.60 (Return of the prudent gambler) Variance gives another slant on the
decision making in Example 9.51. We recall the possible winnings X = 1, 2,−5 with
respective probabilities 1/2, 1/4, 1/4. The expected value µ was−0.25. For the variance
we calculate:

E(X2) = 12 · 1

2
+ 22 · 1

4
+ 52 · 1

4
= 7.75,

hence, using Theorem 9.59, V (X ) = E(X2) − µ2 = 7.6875, with square root σ = 2.8
approx. Since this dwarfs the small expected loss, the gambler may figure he should try
a couple of games in the hope of coming out on top.

Example 9.61 We find the variance of X, a continuous random variable with the expo-
nential distribution f (x) = αe−αx , x > 0, where α is a positive constant. From Table 9.6
there holds the formula∫ ∞

0
xne−x dx = n! (n any non-negative integer). (9.40)

Hence E(X ) =
∫ ∞

0
xαe−αx dx = (with z = αx, dz = αdx)

∫ ∞

0
(z/α)e−zdz = 1/α.

Secondly, E(X2) =
∫ ∞

0
x2αe−αx dx = (with z = αx)

∫ ∞

0
(z/α)2e−zdz = 2/α2. Thus

V (X ) = 1/α2.

Table 9.6. The gamma function �(x) and beta function B(u, v). Playing an important
role for the pdfs of the same names, in Section 9.4.4, they are introduced here for the

useful integration formulae they provide.

DEFINITIONS �(p) =
∫ ∞

0
x p−1e−x dx, p > 0. B(u, v) = �(u)�(v)/�(u + v).

PROPERTIES

(a) �(2) = 1 = �(1);
(b) �(p + 1) = p�(p);
(c) �(p)�(1 − p) = π/ sin pπ , hence �(1/2) = √

π ;

(d) �(n + 1) = n! =
∫ ∞

0
xne−x dx for n = 0, 1, 2, . . . (thus � is a generalised

factorial);

(e)
∫ 1

0
xu−1(1 − x)v−1dx = B(u, v) = 2

∫ π/2

0
cos2u−1 θ sin2v−1 θ dθ (u, v > 0).
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Exercise Find the variance of a random variable X uniformly distributed on the interval
[a, b] (the answer is given in Table 9.9 of Section 9.4.4).

9.4 A census of distributions

9.4.1 The binomial distribution

We may think of this distribution as that of the number of heads obtained on n tosses
of an unfair coin, or as that of the identically structured example in which we test n
independent examples from a production line and count the number of perfect samples
(or equally the number of imperfect ones). In terms of symbols we single out some event
A in a trial of experiment E, often regarding it as ‘success’, and let X be the number of
times event A occurs in n independent trials of E, where P(A) = p.

In this case we say X is a binomial random variable, or has the binomial distri-
bution, with parameters n, p. Denoting the distribution by Bin(n, p), we may write
X ∼ Bin(n, p). The sample space is T = {(a1, a2, . . . , an) : ai = A or Ac}. Here is a
formula for the distribution.

Theorem 9.62 If X is a binomial random variable with parameters n, p then

P(X = r ) =
(

n
r

)
pr (1 − p)n−r , r = 0, 1, . . . , n. (9.41)

Proof Since P(Ac) = 1 − p, the probability of the sequence AA . . . AAc . . . Ac

(r symbols A followed by n − r symbols Ac) is pr (1 − p)n−r . But this is unchanged
if the sequence is permuted, since we multiply the same real numbers; and the quantity
of sequences so obtained is the number of ways to choose r out of n positions for an ‘A’,
namely

( n
r

)
. Now the result follows by Axiom P3, since the sequences are individual

outcomes, and thus disjoint.

Example 9.63 Suppose 1/3 of a certain organisation are smokers. Of five chosen at
random, find the probabilities that (i) exactly two smoke, (ii) at least two smoke, (iii) the
last chosen is the third smoker to be found.

Solution Here we make five trials of the experiment ‘check for a smoker’. The success
event A is ‘the person smokes’. Then the number X who smoke is a binomial random
variable with parameters n = 5, p = 1/3. We calculate as follows.

(i) P(X = 2) =
(

5

2

)(
1

3

)2 (2

3

)3

= 80

243
by (9.41).

(ii) P(X ≥ 2) = 1 − P(X = 0) − P(X = 1) by the complement rule

= 1−
(

2

3

)5

−
(

5
1

)(
1

3

)(
2

3

)4

= 131

243
by (9.41).
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(iii) P(5th chosen is 3rd smoker) = P(2 smoke in the first 4 and the 5th smokes)

= P(2 smoke in the first 4)P(the 5th smokes)

=
(

4
2

)(
1

3

)2 (2

3

)2

·
(

1

3

)
= 8

81
.

Remark 9.64 Notice that in (ii) we could have calculated P(X ≥ 2) as P(X = 2) +
P(X = 3) + P(X = 4) + P(X = 5) but were able to reduce the calculation from four to
two terms using the Complement Rule to infer P(X ≥ 2) = 1 − P(X = 0) − P(X = 1).
In (iii) we used independence between the first four samples and the fifth to simplify the
problem, before applying the binomial formula (9.41).

Theorem 9.65 Let X be a binomial random variable with parameters n, p. Then the
expected value and variance are given by

E(X ) = np and V (X ) = np(1 − p). (9.42)

Proof Substituting for P(X = r ) from (9.41) we have

E(X ) =
n∑

r=0

rP(X = r ) =
n∑

r=0
r
(n

r

)
pr (1 − p)n−r

=
n∑

r=1

r
(n

r

)
pr qn−r where q = 1− p, since the r = 0 term is zero

=
n∑

r=1

n

(
n − 1
r − 1

)
pr qn−r by the formula for

(n
r

)
, Theorem 9.12

= np
n−1∑
s=0

(
n − 1

s

)
psqn−1−s on setting s = r − 1

= np(p + q)n−1 by the Binomial Formula, Theorem 9.12(v)
= np since p + q = 1.

The variance can be derived similarly, with somewhat more effort; however, both E(X )
and V (X ) can be obtained after the theory of Section 10.2.3 by a much simpler calculation,
so we will be content with the one direct derivation at this stage.

9.4.2 The Poisson distribution

We seek a distribution for a random variable X which counts for example

� phone calls in one minute at an exchange,
� misprints in one page of a large text,
� alpha particles emitted by a radioactive source per second,
� vehicles passing a busy intersection per hour,
� white blood corpuscles in a sample.
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0 . . .1 1 1 100 01

Figure 9.16 Time/space subdivided so that each box contains one or zero event.

Why should such a search be successful? One thing common to these examples is the
counting of isolated arrivals in time or space. Let us tentatively assume the further features
listed below.

(A) The events do not bunch together arbitrarily closely, so for a small enough portion of space
or time we may neglect the possibility of more than one occurring,

(B) they occur at a fixed average rate λ per unit of time or space,
(C) events in one interval do not affect occurrence in any other (non-overlapping) interval.

Suppose time/space is divided into a sufficiently large number n of equal boxes, so that
in accordance with (A), each box contains either one or zero event (Figure 9.16).

At this stage of modelling, X is a binomial random variable based on n trials. By
hypothesis the probability of the event under consideration occurring in any one box is
a constant, p. But we know that in the binomial case E(X ) = np (Theorem 9.65), and
hence we may equate np and λ. For a model allowing arbitrarily large n, we let n tend to
infinity whilst keeping np = λ or p = λ/n. Then

P(X = r ) =
(n

r

)
pr (1 − p)n−r

= n(n − 1)(n − 2) · · · (n − r + 1)

r !

(
λ

n

)r (
1 − λ

n

)n−r

= λr

r !

[(
1 − 1

n

)(
1 − 2

n

)
· · ·

(
1 − r − 1

n

)](
1 − λ

n

)−r (
1 − λ

n

)n

.

Since (1 − x/n) → 1 as n →∞, for any fixed x, so does any finite product of such
factors, and it remains to investigate (1 + x/n)n . According to the Binomial Formula
(Theorem 9.12), the coefficient of xk in this expression is

(n
k

)
· 1

nk
= n(n − 1) · · · (n − k + 1)

nkk!
=
(

1 − 1

n

)
· · ·

(
1 − k − 1

n

)/
k! → 1/k!

Hence (1 + x/n)n →∑∞
k=0

xk

k! , which is the series expansion of ex (see Swokowski,
2000, or Moore, 2003). Setting x = −λ, we obtain P(X = r ) → e−λλr/r !. Notice that
besides E(X ) constant at value λ, we have V (X ) = λ(1 − λn) (by Theorem 9.65) which
tends to λ as n →∞. All this both motivates the next definition (first given by Poisson
in 1837, see Figure 9.17) and establishes the theorem following it.
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Definition 9.66 A discrete random variable X has a Poisson distribution Po(λ) if

P(X = r ) = e−λλr

r !
(r = 0, 1, 2, . . .). (9.43)

Figure 9.17 Siméon Denis Pois-
son, 1781–1840, sketch by Ward
Somerville.

Theorem 9.67 (a) If X has the Poisson distribution
Po(λ) then E(X ) = λ = V (X ), (b) the binomial distri-
bution Bin(n, p) tends to the Poisson Po(λ) as n →∞
with np = λ.

Remark 9.68 According to (b) above, the Poisson dis-
tribution is a candidate for approximating the binomial
distribution Bin(n, p) for large n. When used as such
we shall call it the Poisson approximation to the bino-
mial. The discussion above Definition 9.66 shows the
accuracy is better for r small relative to n. We will test
this after a Poisson example.

Example 9.69 A book of 600 pages contains 40 typo-
graphical errors. If these occur randomly throughout
the text, what is the probability that ten pages selected
at random will (i) be error-free, (ii) contain not more
than two errors.

Solution We assume that typing errors are a Poisson process. Let X be the number of
errors on ten pages. The mean error rate over one page is 40/600 = 1/15, and over ten
pages is E(X ) = λ = 10/15 = 2/3. For (i) we require P(X = 0) = e−2/3 (by (9.43)) =
0.51 approx. For (ii) we calculate

P(X ≤ 2) = p(0) + p(1) + p(2) where as usual p(x) denotes P(X = x)

= e−λ(1 + λ+ λ2/2) with λ = 2/3, by (9.43)

= 0.97 approx.

Example 9.70 Compare results from the binomial distribution and Poisson approxima-
tion for the following problem. A certain connector is sold in boxes of 100. Given that
the probability of an individual item being defective is 0.005, determine the probability
that not more than one in a box is defective.

Solution Let X denote the number of defective items in a box. Then X is binomial with
parameters 100, 0.005, so the probability is (to four decimal places)

P(X ≤ 1) = p(0) + p(1) = (0.995)100 + 100(0.005)(0.995)99 = 0.9102.

The Poisson approximation has λ = np = 0.5, giving

P(X ≤ 1) = P(X = 0) + P(X = 1) = e−λ(1 + λ) = e−0.5(1.5) = 0.9098.
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Example 9.71 A volume of fluid contains on average five bacteria per cc. Find the
probability that (i) a sample of 1 cc contains no bacterium, (ii) a sample of 2 cc does not
exceed four bacteria.

Solution (i) X = number of bacteria in a 1 cc sample is Poisson with parameter λ = 5.
Hence P(X = 0) = e−λ = 0.0067 approx. (ii) In a 2 cc sample the expected value is
λ = 10, and, if Y is the number of bacteria found, then P(Y ≤ 4) = e−λ(1 + 10 + 50 +
1000/6 + 104/24) = 0.029.

9.4.3 The normal distribution

The normal, or Gaussian, distribution is in some sense the mother, or perhaps
archetype, of all distributions; see Figure 9.18. Many processes are well-modelled

Figure 9.18 Abraham de
Moivre, 1667–1754, sketch
by Ward Somerville. He and
Laplace used the normal/
Gaussian distribution before
Gauss.

by this distribution; some examples for which it is
often valid are
� numerical features in manufacture, such as height,

lifetime, . . . ,
� ditto for individuals in a population, human or

otherwise,
� scores in an examination,
� errors in measurement,
� noise in a general sense, including visual distortions.

Moreover, the normal distribution, although itself con-
tinuous, may be used as an approximation even for some
discrete discributions such as the binomial and Poisson
cases (see later). Probably the best explanation for this
universal behaviour is to be found in the celebrated Cen-
tral Limit Theorem (Theorem 10.45), which asserts that
any random variable which is the sum of a large number
N of others tends to be normally distributed as N tends
to infinity.

A further characteristic is mathematical simplicity, in ways which will appear as we
proceed. The normal/Gaussian distribution N (µ, σ 2) has two parameters µ, σ 2 which
are, as the notation suggests, the expected value and variance of any corresponding
random variable. However, results for the general normal case flow from those for the
simplest case N (0, 1), which we define below.

The standard normal distribution

Definition 9.72 A continuous random variable Z has the standard normal distribution
N(0, 1) if its pdf has the form

φ(z) = 1√
(2π )

e−z2/2 (z ∈ R). (9.44)
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−3 −2 −1 1 2 3
z

0.1

0.2

0.4

0.3

f (z)

α−α

Figure 9.19 Graph of the standard normal distribution φ(z). By symmetry, P(Z ≥ α) =
P(Z ≤ −α).

This is illustrated in Figure 9.19. Notice first that it is a valid distribution, for (i)
φ(z) ≥ 0 because every real power of e is positive, and (ii) the constant

√
(2π) has been

chosen so that
∫
φ(z)dz = 1, over the whole real line R; this equality, together with

E(Z ) = 0, V (Z ) = 1, follows from the lemma below. Of course the symmetry of the
graph about the y-axis suffices in itself to show that E(Z ) = 0 (why?). Note the standard
notation below: an integral over R is an integral from −∞ to ∞.

Lemma 9.73 ∫
R

xne−x2/2dx =
{√

2π , if n = 0, 2,
0, if n = 1.

Proof Denote the integral value by I . In the hardest case, n = 0, the difficulty of inte-
grating e−x2/2 is circumvented by using properties of infinity! We first express the square
of I as an integral over the whole plane. To evaluate this we change to polar coordinates
(for more on this, see Remarks 10.13), integrate over a disk D(R) of radius R centred at
the origin, then let R tend to infinity to obtain the integral over the whole plane. Thus

I 2 =
∫
R

e−x2/2dx
∫
R

e−y2/2dy =
∫∫

R2

e−(x2+y2)/2dx dy

= Lim
R−→∞

∫∫
D(R)

e−r2/2 r dr dθ

= Lim
R−→∞

∫ 2π

0
dθ

∫ R

0
re−r2/2dr = Lim

R−→∞
2π
[− e−r2/2

]R

0

= Lim
R−→∞

2π
(
1 − e−R2/2

)
,

which equals 2π ; hence I = √
2π . (Hence

∫
R φ(z)dz = (1/

√
2π )(

√
2π ) = 1.) Given

this, the calculation for n = 2 proceeds by parts:∫
R

x2e−x2/2dx = [
x
(− e−x2/2

)]∞
−∞ +

∫
R

e−x2/2dx =
√

2π.

Finally we have for n = 1∫
R

xe−x2/2dx = [− e−x2/2
]∞
−∞ = 0 − 0 = 0.
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Table 9.7. The cdf �(z) of the standard normal distribution to two decimal
places. To four places the value is zero for z ≤ −4, and for

z = −3,−2,−1 it is respectively 0.0013, 0.0228, and 0.1587.

z 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

�(z) 0.50 0.54 0.58 0.62 0.66 0.69 0.73 0.76 0.79 0.82 0.84

Theorem 9.74 The standard normal distribution with pdf φ(z) and cdf �(z) has expected
value 0 and variance 1. It satisfies for any real number a, and for b ≥ 0,

(i)�(−a) = 1 − �(a), and (ii) P(|Z | ≤ b) = 2�(b) − 1. (9.45)

Proof We have E(Z )= 0 by Lemma 9.73 with n = 1, and then V (Z ) = E(Z2) − E(Z )2

(by (9.38))= 1 by Lemma 9.73. For (i) we observe that �(−a) = P(Z ≤ −a) = P(Z ≥
a) (by symmetry) = 1 − P(Z ≤ a) = 1 −�(a). Finally, P(|Z | ≤ a) = P(−a ≤ Z ≤
a) = �(a) − �(−a) = 2�(a) − 1, by part (i).

The cumulative distribution function �(z) cannot be written usefully in terms of standard
functions, so it is tabulated for the purpose of calculating probabilities. A sample is Table
9.7, with �(z) for negative z given by (i) of (9.45).

Example 9.75 With Z a standard normal random variable, Z ∼ N (0, 1), we have

(i) P(Z ≤ 0) = 0.5,
(ii) P(0.2 ≤ Z ≤ 0.4) = �(0.4) − �(0.2) = 0.66 − 0.58 = 0.08,

(iii) P(Z ≤ −0.1) = 1 −�(0.1) (by (9.45)) = 1 − 0.54 = 0.46,
(iv) P(|X | ≤ 0.3) = 2�(0.3) − 1 (by (9.45)) = 2(0.62) − 1 = 0.24.

The normal distribution in general

Starting with a standard normal variable Z, we may multiply by σ and add µ to create
a new random variable X = σ Z + µ, with mean µ and variance σ 2 according to (9.36)
and (9.39). Furthermore, by (9.33) the pdf of X may be expressed as f (x) =
(1/σ ) f ((X − µ)/σ ), or

f (x) = 1√
2πσ 2

e−
1
2 ( x−µ

σ )2

(x ∈ R). (9.46)

See Figure 9.20.
When X has this pdf, (9.46), we say X is normal with mean/expected value µ and vari-

ance σ 2; in symbols, X ∼ N (µ, σ 2). Setting µ = 0 and σ = 1, we recover the standard
normal distribution as a special case. As suggested above, calculations with the normal
distribution are often best done by reducing to this case and using tables: we simply
observe that if X ∼ N (µ, σ 2) then (X − µ)/σ ∼ N (0, 1). The next example illustrates
this.
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σ = 1

σ = 1/2

Figure 9.20 The normal distribution with two values of σ . Both have µ = 3 and so
are symmetrical about x = 3. The smaller value of σ causes variable values to be more
closely clustered around the mean.

Example 9.76 The radius of a certain cable is normally distributed with mean 0.7 units
and variance 0.0004. (i) Find the probability that the radius exceeds 0.71. (ii) The cable
is considered defective if its radius differs from the mean by more than 0.008. How
satisfactory is the manufacturing process?

Solution The radius X satisfies X ∼ N (0.7, 0.0004), hence the variable Z = (X −
0.7)/0.02 is standard normal. The solutions are therefore, with the help of (9.45),

(i) P(X > 0.71) = P

(
X − 0.7

0.02
>

0.71 − 0.7

0.02

)
= P(Z > 1/2) = 1 −�(1/2) = 0.31,

(ii) P(good cable) = P(|X − 0.7| ≤ 0.008) = P(|Z | ≤ 0.4) = 2�(0.4) − 1 (by (9.45)) = 0.32.
This is too small! The process must be improved to increase the proportion of successful
outputs.

Measuring in units of σ Let X ∼ N (µ, σ 2). Then we have for any number k
that

P(X ≤ µ+ kσ ) = P(Z ≤ k) where Z ∼ N (0, 1)

= �(k), independently of µ, σ.

µµ − 3σ µ + 3σµ + σµ − σ

See Table 9.8.
This independence has important practical consequences. Here are two viewpoints

from which it may be applied. (i) The probability of being between j and k standard
deviations from the mean depends only on j, k, and not on which particular normal
distribution is involved. Specifically,

P(µ+ jσ ≤ X ≤ µ + kσ ) = �(k) − �( j). (9.47)
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Table 9.8. The probability that a random variable X in
N (µ, σ 2) is within kσ of the mean is by definition

P(|X − µ| ≤ kσ ), or equivalently
P(µ− kσ ≤ X ≤ µ + kσ ). Here are some key values.

k 1 2 3

P(µ− kσ ≤ X ≤ µ + kσ ) 0.6826 0.9544 0.9974

(ii) We can compare the likelihoods of outcomes from different normally distributed
variables by reducing both to N (0, 1). This is exemplified below.

Example 9.77 If maths scores are N (40, 400) and biology N (60, 100), which is more
creditable: a score of 70 in maths or 80 in biology?

Solution A natural first thought is that, moving from maths to biology, the mean goes
up by 20 whereas the score goes up by only 10, therefore the maths score is better. But
now consider the more delicate approach of (ii) above.

Maths scores have µ = 40, σ = 20, so the score of 70 reduces to 1.5 in N (0, 1). In
biology, however, µ = 60 and σ = 10 so that 80 reduces to 2. This is higher than 1.5 and
we conclude that biology represents a better score. The problem is solved, but to dispel
any lingering doubt let X, Y be the maths and biology scores respectively. The biology
score is the less likely to be exceeded, for, with Z ∼ N (0, 1),

P(X ≥ 70) = P(Z ≥ 1.5)

> P(Z ≥ 2.0) (see Figure 9.19) = P(Y ≥ 80).

9.4.4 Other distributions

We introduce here, briefly, some distributions we shall occasionally require, and which
are also useful for illustrating general results and providing exercises.

The discrete case The binomial distribution, the topic of Section 9.4.1, is that of the
number of times an event A occurs in n Bernoulli trials. We recall that a trial is Bernoulli
if it has exactly two outcomes – an event A does or does not occur. We sometimes need
the natural generalisation to the multinomial distribution, in which the outcomes of each
of n independent trials must be one of k events Ai (1 ≤ i ≤ k). If event Ai has probability
pi and occurs Xi times, then

P(Xi = ni , 1 ≤ i ≤ k) = n!

n1!n2! · · · nk!
p1

n1 p2
n2 · · · pk

nk .

The geometric and Pascal distributions are often used in the context of testing a batch
of manufactured articles for defects, whilst a random variable X with a hypergeometric
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Table 9.9. Some discrete distributions including binomial and Poisson.
In Bernoulli trials p = P(success), in the hypergeometric case

p = r/N. Always q = 1 − p.

Name P(X = r ) Context E(X ) V (X )

Binomial,
( n

r

)
pr (1 − p)n−r X = number of successes in n p npq

Bin(n, p) r = 0, 1, . . . , n. Bernoulli trials (Section 9.4.1)

Poisson, e−λλr/r ! X = number of occurrences of an λ λ
Po(λ) r = 0, 1, 2, . . . isolated event in time or space, with

mean rate λ (Section 9.4.2)

Pascal
( r−1

k−1

)
pkqr−k X = number of Bernoulli trials if last k/p kq/p2

r ≥ k ≥ 1 integers trial is kth success (Example 9.63)

Geometric pqr−1 case k = 1 of Pascal 1/p q/p2

( s
r

) ( N−s
N−r

)
/
( N

n

)
, np npq · N − n

N − 1
r = 0, 1, . . . , n

Hypergeometric X = number of special objects in
random choice of n objects (without
replacement) from N of which s are
special (Example 9.13)

distribution may be thought of as the number of men (or women) in a committee chosen
from a pool of both sexes. Further information about these distributions is given in
Table 9.9.

The continuous case

Arguably second only to the ubiquitous normal distribution, the uniform distribution
is widely used in its capacity as a simple but effective starting point for simulating
many others (Section 11.3), because it is especially easy to simulate on a computer (see
Section 11.3.2). The gamma distribution is used in reliability theory (Meyer, 1970) in
predicting the time to multiple failure, with the exponential distribution as the special
case of a single failure. However, the gamma distribution is also useful in providing
links between other distributions (Section 10.2.2), indeed another special case is the
chi-squared distribution, that of a sum of squares of normal variables, and used in
hypothesis testing (Section 11.1.6). We mention finally the Cauchy distribution, that of
the ratio of two normal variables (Example 10.16). Below we give another instance of
Cauchy, together with a summary table (9.10) of those noted here.

Example 9.78 Let � be uniformly distributed on the interval [−π/2, π/2]. We show that
X = a tan � has the Cauchy distribution of Table 9.10. This situation arises when, for
example, X defines the spot illuminated by a narrow beam whose direction is measured
by angle θ , as represented in Figure 9.21.

Proof X is well defined, strictly increasing, and takes all real values, for θ in the open
interval (−π/2, π/2). From Table 9.10, the random variable � has pdf f (θ ) = 1/π on
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a

x

θ

spot

beam

source

Figure 9.21 The position of the spot illuminated by a narrow beam is given by x =
a tan θ . Hence if θ is uniformly distributed then x has the Cauchy distribution.

this interval. Hence, by Formula (9.32), the random variable X has pdf

g(x) = f (θ )/|dx/dθ | = 1/(πa sec2θ) = 1/[πa(1 + tan2 θ )] = a/[π (a2 + x2)],

which is indeed the Cauchy distribution.

Exercise Derive the Pascal pdf of Table 9.9.

9.5 Mean inequalities

Here we present two famous inequalites which we shall need in succeeding chapters,
concerning the mean of a pdf; they are valid for both discrete and continuous random
variables.

9.5.1 Chebychev’s Inequality

How does σ measure variability about the mean µ = E(X )? Given µ, σ we cannot
reconstruct the actual pdf unless we already know something about its structure (if
normal, it is given exactly by these parameters). Neverthelesss, we can in all cases give
very useful bounds on the quantities P(|X − µ| ≥ c) for any constant c. The result is
known as Chebychev’s Inequality, which we give in the variously convenient forms
appearing below.

Theorem 9.79 (Chebychev’s Inequality) Let X be a random variable, discrete or con-
tinuous, with mean µ and variance σ 2 both finite. Then, for any positive numbers ε, k
and real c,

P(|X − c| ≥ ε) ≤ E[(X − c)2]/ε2, (9.48a)

P(|X − µ| ≥ ε) ≤ σ 2/ε2, (9.48b)

P(|X − µ| ≥ kσ ) ≤ 1/k2. (9.48c)

Proof Let X be continuous with pdf f (x); then

σ 2 = E[(X − µ)2] =
∫

R
(x − µ)2 f (x)dx .

But, since (x − µ)2 f (x) ≥ 0 for all values of x, the integral cannot increase when the
range of integration is reduced, hence

σ 2 ≥
∫
|x−µ|≥ε

(x − µ)2 f (x)dx ≥
∫
|x−µ|≥ε

ε2 f (x)dx = ε2
∫
|x−µ|≥ε

f (x)dx,
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which by definition equals ε2 P(|X − µ| ≥ ε). Dividing through by ε2, we obtain Equa-
tion (9.48b), then setting ε = kσ gives (9.48c). The proof for discrete X is similar, with
integrals replaced by sums. Version (9.48a) is proved with c replacing µ, the steps being
identical.

Example 9.80 Setting k = 2 in (9.48c) we obtain P(|X − µ| ≥ 2σ ) ≤ 0.25 for all pdfs,
discrete and continuous. How does this compare with the exact value, say for X ∼
N (µ, σ 2)? In that case we have, using the complementary event,

P(|X − µ| ≥ 2σ ) = 1 − P(|X − µ| < 2σ ) = 1 − P(|(X − µ)/σ | < 2)
= 2 − 2�(2) (by (9.45)) = 0.0456,

about one fifth of the upper bound 0.25.

Remark 9.81 In practice Chebychev’s Inequality is used to obtain estimates when it is
impossible or inconvenient to compute exact values, or when we wish to prove a general
result. Indeed, the inequality is most important for the derivation of the illuminating
Law of Large Numbers, giving limits on how large a sample must be taken for relative
frequency to be close to probability. We shall be ready to do this after random vectors
are introduced in the next chapter.

Zero variance We close this section with an observation related to the next. According to
the Chebychev form (9.48b), zero variance implies that P(|X − µ| ≥ ε) = 0 and hence
P(|X − µ| ≤ ε) = 1, for all ε > 0. It follows that P(X = µ) = 1, and in this case we
say (see introduction to Section 9.3) that X is concentrated at the single point µ.

Exercise If discrete X is concentrated at a point, what does the pdf look like?

9.5.2 Jensen’s Inequality

In this section we prove a result concerning expected value, known as Jensen’s Inequality.
It will be applied to good effect time and again in Chapter 13 on information theory. First
some definitions and a little discussion are necessary.

Definitions 9.82 Let lower case p denote the position vector, or coordinate vector, of a
point P, and xP its x-coordinate. The point on a line segment AB dividing AB internally
in the ratio t : 1, where 0 ≤ t ≤ 1, has position vector (1 − t)a + tb, which we shall also
write sa + tb subject to s + t = 1 (see (1.2)). Thus AB consists precisely of such points.
Let u(x) be a real function defined on some real interval I. If A, B are points on the graph
of u the segment AB is called a chord of u. Then we say that:

u(x) is a convex function if all its chords lie on or above the graph. (9.49)
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xA xBsxA + txB

u(sxA + txB)

su(xA) + tu(xB)

u(x)

A

B
t

1

Figure 9.22 The graph of a convex function u(x): every chord AB lies above the graph.
The t : 1 ratio is indicated above the chord.

That is, if, for distinct points A, B on the graph, we have as depicted in Figure 9.22,

su(xA) + tu(xB) ≥ u(sxA + t xB). (9.50)

The function u(x) is called strictly convex if the inequality in (9.50) is strict (for 0 < t <

1). If it is reversed we have the definition of u(x) as a concave function. Equivalently,
−u(x) is convex. Notice that, geometrically, the minus sign is equivalent to a reflection in
the x-axis. Clearly, adding any constant to u(x), or multiplying it by a positive constant,
does not affect its being convex or being concave, whilst multiplying by a negative
constant interchanges these properties. Thus, for x ≥ 1, log x is concave but 2 − log x
is convex, as illustrated in Figure 9.23. This statement is independent of the base of
logs because logd x = (logd e) loge x , so that we convert from one base to another by
multiplying by a positive constant.

1 2 3 4 5 6 7

0.5

1

1.5

1 2 3 4 5 6 7

0.5

1

1.5

2

Figure 9.23 For x ≥ 1 the function log x is concave and 2 − log x is convex.

Suppose the derivatives u′(x) and u′′(x) exist. For u to be strictly convex, as in
Figure 9.22, it clearly suffices for the gradient u′(x) to be an increasing function of
x, and this will be so if its derivative in turn, u′′(x), is positive. Hence the following result
from calculus.

Theorem 9.83 If the real function u(x) on interval I is twice differentiable, then we have
the following, in which, if the left hand part is strict, then so is the right.

u′′(x) ≥ 0 on I ⇒ u(x) is convex,

u′′(x) ≤ 0 on I ⇒ u(x) is concave.
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x1

P1
P0

x2x0

P2

L

Figure 9.24 Diagram for Jensen’s Inequality.

Note If u(x) = log x to base e then u′(x) = 1/x and u′′(x) = −1/x2 < 0, confirming by
Theorem 9.83 that the log function to any base is concave, indeed strictly so. Here is the
result we are aiming at.

Theorem 9.84 (Jensen’s Inequality) (a) Let u(x) be a concave or convex function on the
open interval I in RX . Then

E[u(X )] ≤ u(E[X ]) (u concave), (9.51a)

E[u(X )] ≥ u(E[X ]) (u convex). (9.51b)

(b) Suppose concavity/convexity is strict, but equality holds in (9.51). If X is discrete it
is concentrated at the mean, X = E[X ]. If X is continuous then u(X ) = u(E[X ]) except
at a set of isolated points of RX .

Proof Let u(x) be convex. It suffices to prove the results in this case, because if
v(x) is concave then u(x) defined as −v(x) is convex. (a) Let x0 be an arbitrary
point of I = (a, b). Then because a < x0 < b the interval contains points x1 strictly
between a and x0, and x2 strictly between x0 and b. Thus x1 < x0 < x2. Consider
the triangle P1 P0 P2 of corresponding points on the graph of u(x), as portrayed in
Figure 9.24.

By convexity of u(x), the point P0 lies below (or on) the chord P1 P2 and so slope
P1 P0 ≤ slope P0 P2. Hence P1, and indeed any graph point to the left of P0, lies above
(or on) the line L through P0 and P2. Similarly any graph point to the right of P2 lies
above (or on) L. Now consider x2 as a variable and let it tend to x0.

The slope of P0 P2 decreases but is bounded below by that of P1 P0, and hence P0 P2

tends to a line L0 through P0 of slope λ, say, and such that any graph point lies on or
above L0. That is,

u(x) ≥ u(x0) + λ(x − x0).

Substituting the random variable X for x in this inequality gives a relation between the
values of two random variables at every point of a common sample space:

u(X ) ≥ u(x0) + λ(X − x0). (9.52)
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Therefore the same inequality holds for their expectations, so applying (9.36) to the right
hand side and then setting x0 = E[X ] we obtain, for both discrete and continuous X,

E[u(X )] ≥ u(x0) + λ(E[X ] − x0)

= u(E[X ]) (9.53)

(b) The case of equality Now we suppose further that convexity is strict and that
E[u(X )] = u(E[X ]). Consider firstly the case that X is discrete, RX = {xi }. We show by
induction that, for n = 2, 3, . . . , if

∑
pi = 1 (all pi ≥ 0), then∑n

i=1 pi u(xi ) ≥ u(
∑n

i=1 pi xi ), where equality implies all but one pi is zero.

Proof (This includes an alternative proof of (9.51) for X discrete.) In the starting case
n = 2 we have p1 + p2; hence by strict convexity p1u(x1) + p2u(x2) > u(p1x1 + p2x2),
unless of course we are really considering only one point, when p1 = 1 or p2 = 1.
Suppose inductively that the result holds for n = k − 1 (≥ 2) and consider the case
n = k. Assuming pk �= 1 (or there is nothing to prove), we obtain

k∑
i=1

pi u(xi )= pku(xk) + (1 − pk)
∑k−1

i=1
qi u(xi ) qi = pi/(1 − pk),

∑
qi = 1

≥ pku(xk)+ (1− pk)u
(∑k−1

i=1
qi xi

)
by the inductive hypothesis

≥ u
(

pk xk + (1 − pk)
∑k−1

i=1
qi xi

)
by case n = 2

= u
(∑k

i=1
pi xi

)
since (1− pk)qi = pi , 1≤ i < k.

Overall equality implies (i) equality in case n = 2, whence pk = 0, qi = pi , and (ii)
equality in case n = k − 1, whence exactly one pi equals 1 and the rest are zero. This
completes the proof by induction on n. If X is continuous the sums are replaced by
integrals, which may be viewed as the limits of ever closer approximation by sums. This
results in the slightly different conclusion given for this case. More information may be
found in McEliece (1983).

Example 9.85 Given a concave function u(x), all we need to make Jensen’s Inequality
work for us is a set of non-negative numbers pi summing to 1, and an arbitrary set of
corresponding real numbers xi . Then we regard {xi } as the values taken by a random
variable, with pdf given by {pi }. With this framework the inequality translates to

∑
pi u(xi ) ≤ u

(∑
pi xi

)
. (9.54a)

In particular, since the log function is concave,

∑
pi log(xi ) ≤ log

(∑
pi xi

)
. (9.54b)
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This gives an easy proof of hard-looking but necessary results we shall require later in
information theory, such as (putting xi = 1/pi above)

∑n

i=1
pi log

1

pi
≤ log

∑n

i=1
pi · 1

pi
= log n. (9.55)

Exercise What does Jensen’s Inequality state in the case u(x) = ex ?

Exercises 9

1
√

(i) Derive Formula (9.4) for P(A ∪ B ∪ C). (ii) Suppose that events A, B, C each have
probability 1/3, that A ∩ B and B ∩ C have probability 1/4, but that A, C cannot occur
together. Find the probability that at least one of A, B, C occurs.

2
√

A random 3-letter word is formed using a 26-letter alphabet V. Write down an expression for
the sample space and for the event A: the word has three distinct letters. Find the probability
of A, and of the event that at least two letters are the same.

3
√

A sample of six components is taken from a box containing 15 good and five defective
ones. Find the probability that exactly half the sample are good.

4
√

A ball is drawn at random from a bag containing four red balls, five white, and six blue.
Find the probability it is (a) red, (b) white, (c) not red, (d) red or blue.

5
√

Write down the Chain Rule formula for P(A ∩ B ∩ C ∩ D). From the bag of Exercise 9.4,
four balls are removed in succession. Find the probability that exactly two in succession
are red.

6
√

Black box 1 consists of components A, B in parallel; it functions if A, B or both function.
Black box 2 is similar with components C, D. The boxes are connected in series. If the
components work independently with respective probabilities 0.8, 0.6, 0.5, 0.7, find the
probability of functioning of each box separately, and of the series combination.

7
√

Prove that if events A and B are independent then so are A and Bc.
8
√

Four dice are thrown. Find the probabilities of (a) a total score of five, (b) at least one six.
9
√

A company has three factories A, B, C all producing computer X, the respective outputs
forming 20%, 50% and 30% of the total. The respective proportions of defective machines
are 1/20, 1/15 and 1/10. Find the probability that a randomly chosen computer (a) is
defective, (b) came from factory A, given that it was defective. Which factory is it most
likely to have come from, if defective?

10
√

Compute the pdf of X in Example 9.33. Can you express p(n) as a formula? Verify that∑
p(n) = 1.

11
√

The pdf of a continuous random variable X is f (x) = cx2(3 − x), 0 ≤ x ≤ 3. Determine
(a) the constant, c, (b) P(X ≤ 1), (c) the conditional probability that X is less than 1/2,
given that it lies between 0 and 1.

12
√

Let the random variable X be uniform on the interval [0, 2] and let Y = ex . Find (a) the pdf
of Y, (b) the expected value of Y by two methods, (c) the variance of Y. (Sections 9.3.4 to
9.3.6)

13
√

Suppose 1/4 of a population have the Z phobia. Find the probabilities that, of four people
chosen at random (a) exactly two have the phobia, (b) at least one has it, (c) the last chosen
is the third found to have the phobia. (Section 9.4.1)



Exercises 9 257

14
√

An average of 90 phone calls are received by a company during the working day of 8 am
to 5 pm. Assuming a Poisson process, find the probability that not more than two calls are
received during a 30 minute period. (Section 9.4.2)

15
√

If noise in certain pixels is normally distributed, with mean 5 and variance 4, what is the
probability that noise exceeds level 6? (Section 9.4.4)

16
√

Let X be a Poisson random variable with parameter 5. Use a suitable form of Chebychev’s
Inequality to show that the probability that X lies in {3, 4, 5, 6, 7} is at least 4/9. (Section
9.5.1)

17
√

Let X be binomial with n = 5, p = 1/3. Write down Jensen’s Inequality in the case u(x) =
1/(x + 1), and verify its truth numerically. (Section 9.5.2)
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Random vectors

10.1 Random vectors

The pair (X, Y ) is called a 2-dimensional random variable, or random vector, if X and
Y are random variables with the same sample space. See Figure 10.1.

We consider two cases: discrete, meaning that the ranges of X, Y are both discrete,
and continuous, in which the pairs (X, Y ) range over an uncountable plane subset (for
example a rectangle or disk). The discrete case is often used as a stepping stone to the
continuous (see Section 18.3 on information theory), but both are essential in their own
right. We shall seek to draw out common properties as well as distinctions, and to present
corresponding definitions in parallel. As a foretaste, we define the cdf in both cases as
F(x, y) = P(X ≤ x, Y ≤ y).

RX

RY

Sample space

S

X

Y

Figure 10.1 (X, Y ) is a 2-D random variable when X, Y are random variables with
the same sample space. If instead the respective sample spaces are SX and SY we may
maintain the structure of this figure by taking S = SX × SY .

10.1.1 Discrete versus continuous

The discrete case Here we make the discrete space of pairs R = RX × RY into a
probability space by associating with each (x, y) in R a number p(x, y) representing
P(X = x, Y = y) such that, for B ⊆ R,

P(B) =
∑

(x,y)∈B

p(x, y), (10.1)

where p(x, y) ≥ 0 for all x, y, and
∑

(x,y)∈R

p(x, y) = 1. (10.2)

We call the function p the joint distribution, or joint pdf of (X, Y ). When numerical
values are taken we may distinguish the variable, say V, by writing for example pV (a)

258
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Table 10.1. General form of the joint pdf of a discrete random
vector (X, Y ), showing marginal distributions p(x), p(y). If
necessary we write q(y) in place of p(y), for distinctiveness.

X\Y y1 y2 . . . yn Sum

x1 p(x1, y1) p(x1, y2) . . . p(x1, yn) p(x1)
x2 p(x2, y1) p(x2, y2) . . . p(x2, yn) p(x2)
. . . . . . . . . . . . . . . . . .
xm p(xm, y1) p(xm, y2) . . . p(xm, yn) p(xm)

Sum p(y1) p(y2) . . . p(yn)

for P(V = a). Or with the present X, Y one may use q(b) for P(Y = b) alongside p(a)
for P(X = a). If R is finite, p(x, y) may be represented in a table, of the general form
of Table 10.1.

What about the distributions of X, Y individually, known as their respective
marginal distributions? As suggested by Table 10.1, we write RX = {x1, x2, . . .}, RY =
{y1, y2, . . .}, terminating when finite with xm, yn . Now, since X = xi must occur with
Y = y j for one and only one value of j at a time, we have

P(X = xi ) = P(X = xi , Y = y1 or X = xi , Y = y2 or . . .)

= P(X = xi , Y = y1) + P(X = xi , Y = y2) + · · · ,

by the Total Probability Formula, (9.20), and similarly for P(Y = y j ). Hence the marginal
distribution formulae as indicated in Table 10.1,

p(xi ) =
∑

j p(xi , y j ), p(y j ) =
∑

i p(xi , y j ). (10.3)

Notice that, for simplicity of notation, we often use x, y for typical elements of RX , RY ,
rather than xi , y j as above, provided this suffices for clarity. Thus the first part of (10.3)
might be written p(x) =∑

y p(x, y).

Example 10.1 We calculate sample probabilities from the pdf shown in Table 10.2:

p(5, 2) = 1/20,

p(5) = 1/10 + 1/20 + 1/20 = 1/5,

q(3) = 1/5 + 1/20 = 1/4,

P(X < Y ) = p(1, 2) + p(1, 3) = 2/5 + 1/5 = 3/5.
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Table 10.2. Example pdf for a discrete random vector
(X, Y ) with RX = {1, 5}, RY = {1, 2, 3}.

X\Y 1 2 3

1 1/5 2/5 1/5
5 1/10 1/20 1/20

The continuous case A random vector (X, Y ) is by definition continuous if it takes
values in some uncountable region R of the plane, and there is a real function f (x, y)
that assigns a probability to every event B in R by

P(B) =
∫∫
B

f (x, y)dx dy, (10.4)

where f (x, y) ≥ 0 for all x, y and
∫∫
R

f (x, y) dx dy = 1. (10.5)

Similarly to the 1-dimensional case, f (x, y) is called the (joint) probability density func-
tion, or pdf, of (X, Y ), and we insist without loss of generality that f (x, y) = 0 for (x, y)
outside R. Also, although the pdf of (X, Y ) is actually induced from the original sample
space S, we continue to focus on the range space of (X, Y ). The marginal distributions
are pdfs for X, Y individually, given by

g(x) =
∫ ∞

−∞
f (x, y)dy and h(y) =

∫ ∞

−∞
f (x, y)dx . (10.6)

For example, P(a ≤ X ≤ b)=P(a ≤ X ≤ b, Y ∈ R)=∫ b
a dx

∫∞
−∞ f (x, y)dy=∫ b

a g(x)dx .
Thus g is indeed a pdf for X.

Example 10.2 Calculate P(B), where B is the event {X + Y ≥ 1}, for the continuous
random vector (X, Y ) with joint pdf f (x, y) = y2 + xy/3, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1 (see
Figure 10.2).

B: x + y ≥ 1

Bc:
x + y < 1

21 x

y

1

0

y = 1 − x

Figure 10.2 Region of integration for event B : x + y ≥ 1. A rectangle bounds the region
outside of which f (x, y) = 0.
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The integration is slightly simpler if we calculate P(B) as 1 − P(Bc) by the Comple-
ment Rule:

P(Bc) =
∫ 1

x=0
dx
∫ 1−x

0
(y2 + xy/3)dy =

∫ 1

0
[(1 − x)3/3 + x(1 − x)2/6]dx

=
∫ 1

0
(u3/3 + (1 − u)u2/6)du (putting u = 1 − x) = 7/72.

Hence, P(B) = 65/72.

Random n-vectors The definitions (10.1) to (10.6) for the case n = 2 extend naturally
to general n and we shall comment on these as the occasion arises, perhaps most notably
in Section 10.2.5.

10.1.2 Independence

Definition 10.3 Let (X, Y ) be a random vector. We say X, Y are independent if their
joint pdf is the product of the marginal pdfs. Equivalently, their joint pdf factorises
into a function of x times a function of y (an exercise for the reader, shortly below).
Thus, in the discrete case P(X = x, Y = y) = P(X = x)P(Y = y) or in shorter notation
p(x, y) = p(x)p(y). More generally, random variables X1, . . . , Xn are independent if
they have a joint pdf which is the product of a pdf for each Xi separately.

We have the following result, expressing consistency with the 1-dimensional version
of independence.

Theorem 10.4 Let (X, Y ) be a random vector and let A, B be events depending only on
the individual random variables X, Y respectively (see Figure 10.3). Then, if X, Y are
independent,

P(A ∩ B) = P(A)P(B). (10.7)

Proof (Continuous case) We have P(A ∩ B) equal by definition to∫ ∫
A∩B

f (x, y) dx dy =
∫ ∫
A∩B

g(x)h(y) dx dy =
∫
A

g(x) dx
∫
B

h(y) dy = P(A)P(B).

y

A∩BB

A

x

Region R

Figure 10.3 Here the random vector (X, Y ) takes values in the elliptical region R, but
event A depends only on X, and event B only on Y.
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Example 10.5 (i) The discrete variables with joint pdf displayed in Table 10.2 are not
independent because P(X = 1, Y = 2) = 2/5 = 0.40, whereas

P(X = 1)P(Y = 2) =
(

1

5
+ 2

5
+ 1

5

)(
2

5
+ 1

20

)
= 4

5
· 9

20
= 0.36.

(ii) Daily demand for coal is a continuous random variable X with a pdf g(x) = e−x (x >

0), whilst, independently, supply is a continuous random variable Y with pdf h(y) =
ye−y (y > 0). Find the probability that demand exceeds supply.

Solution We require P(X > Y ). Since X and Y are given to be independent, (X, Y ) has
joint pdf f (x, y) = e−x ye−y = ye−x−y (x, y > 0).

y = x

B: y < x …

x

y

Figure 10.4 Region representing the event {X > Y }.

The event X > Y corresponds to the region B in Figure 10.4, with probability∫∫
B

ye−x−ydx dy =
∫ ∞

0
ye−ydy

∫ ∞

x=y
e−x dx =

∫ ∞

0
ye−2ydy = 1/4 (by parts).

Exercise Show that a continuous pdf f (x, y) = g(x)h(y) has marginal pdfs g(x),
h(y).

10.1.3 Conditional probability

The discrete case Let (X, Y ) be a discrete random vector and let x, y be arbitrary
elements of the ranges RX , RY . Continuing the spirit of previous abbreviated no-
tation, we write p(x |y) for P(X = x |Y = y), which equals P(X = x, Y = y)/
P(Y = y) from the definition of conditional probability. Then we have the compact
expressions

p(y|x) = p(x, y)

p(x)
(p(x) > 0), (10.8)

p(x, y) = p(x)p(y|x), (10.9)

whence the Chain Rule for Conditionals on random variables X1, . . . , Xn ,

p(x1, x2, . . . , xn) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xn | x1, x2, . . . , xn−1).

p(y) =
∑

x
p(x)p(y|x) (total probability), (10.10)
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Table 10.3. Transition matrix of values p(y|x) for the
channel of Example 10.6.

x\y 0 1 ∗
0 0.7 0.2 0.1
1 0.7 0.1 0.2

p(x |y) = p(y|x)p(x)/p(y) (Bayes’ Theorem), (10.11)

X, Y are independent ⇔ p(y) = p(y|x) ⇔ p(x) = p(x |y). (10.12)

Here (10.9) is a rearrangement of (10.8) and (10.10) is the Total Probability For-
mula (9.20) which gives the denominator in Bayes’ Theorem. Notice that for fixed
a ∈ RX the function k(y) defined as p(y|a) is indeed a distribution, because

∑
y k(y) =

p(a)−1 ∑
y p(a, y) (by (10.8)) = p(a)−1 p(a) = 1. It is called the conditional distribu-

tion of Y given X = a. Correspondingly, the expected value of Y given X = a is given
by

∑
y yk(y), or

E(Y | X = a) =
∑

y
yp(y | a). (10.13)

Example 10.6 Let the random variable X, taking values 0, 1, denote the input to a
noisy channel, and Y its output, which is 0, 1, or a special symbol ∗ if the input was
unrecognisable. The channel is characterised by its transition matrix, a table of values
of p(y|x), shown as Table 10.3.

Given that symbols 0, 1 are input with equal probability 1/2, determine (i) the probability
of output ∗, (ii) the probability that 0 was sent, given that it was unrecognisable, (iii) the
conditional pdf of Y given X = 1, and (iv) the expected value of Y given X = 1, if we
let ∗ = 2.

Solution (i) Since numerical values are to be used here we shall adopt the notation
p(b|a) = P(Y = b|X = a) and p(a) = P(X = a). Then P(Y = ∗) = p(∗|0)p(0) +
p(∗|1)p(1) = (0.1) 1

2 + (0.2) 1
2 = 0.15.

(ii) Here we determine the probability of a ‘cause’, so Bayes’ Theorem is appropriate.
It gives P(X = 0|Y = ∗) = p(∗|0)p(0)/P(Y = ∗) = (0.1)(0.5)/0.15 = 1/3.

(iii) The pdf of Y given X = 1 is by definition the second row of Table 10.3, and so
(iv) the expected value is 0(0.7) + 1(0.1) + 2(0.2) = 0.5.

The continuous case We want a continuous analogue of the conditional distribution as
used in the discrete case. The problem is that the probability of a continuous random
variable taking a specific value is zero, and only intervals, or areas in the 2D case, have
nonzero probabilities. To solve this we start on safe ground by considering P(Y ≤ η|a ≤
X ≤ a + ε), which is a cdf for Y given that X lies in the interval [a, a + ε]. This interval
may be arbitrarily small provided it remains an interval rather than a value.
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The crucial question is, does the cdf collapse to zero as ε tends to zero? We shall
see that the answer is NO; in fact subsequent differentiation to obtain a pdf gives an
expression formally identical to that for the discrete case, a highly desirable state of
affairs. We need an ancillary result.

Lemma 10.7 Let a real function φ(x) have a continuous derivative on an open interval
containing a, a + ε, where ε > 0. Then, for some function λ(ε) with λ(ε) → 0 as ε → 0,∫ a+ε

a
φ(x)dx = εφ(a) + ελ(ε).

Proof Rearranging, we must show that µ(ε) → 0 as ε → 0, where

µ(ε) = 1

ε

∫ a+ε

a
φ(x)dx − φ(a)

= 1

ε

∫ a+ε

a
(φ(x) − φ(a))dx, since

∫ a+ε

a
φ(a)dx = εφ(a).

But by Taylor’s Theorem of Elementary Calculus (see e.g. Swokowski, 2000) we may
write φ(x) = φ(a) + R(x − a), where R is a function satisfying |R(y)| ≤ K |y| for some
constant, K. So

µ(ε) = 1

ε

∫ a+ε

a
R(x − a)dx, and

|µ(ε)| ≤ 1

ε

∫ a+ε

a
|R(x − a)|dx = 1

ε

∫ ε

0
|R(y)|dy ≤ K

ε

∫ ε

0
ydy = K ε/2,

where we substitute y = x − a ≥ 0, and note that |y| = y here. Thus µ(ε) → 0 as
required.

Main result We suppose that (X, Y ) has a continuous pdf f (x, y) with marginal distri-
bution g(x) for X. Then

P(Y ≤ η | a ≤ X ≤ a + ε) = P(Y ≤ η, a ≤ X ≤ a + ε)

P(a ≤ X ≤ a + ε)

=
∫ a+ε

a
dx
∫ η

−∞
f (x, y)dy

/∫ a+ε

a
g(x)dx (*)

=
[
ε

∫ η

−∞
f (a, y)dy + ελ1(ε)

]/
[εg(a) + ελ2(ε)],

where λ1, λ2 are the results of applying Lemma 10.7 to (∗) with φ(x) = ∫ η

−∞ f (x, y)dy
and φ(x) = g(x) for the numerator and denominator respectively. In this form we can
divide top and bottom by ε > 0, then let ε → 0, obtaining

P(Y ≤ η | a ≤ X ≤ a + ε) −→
∫ η

−∞
f (a, y)dy/g(a).
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Differentiating to convert the cdf to a pdf, we obtain f (a, η)/g(a), so it is indeed ap-
propriate to define the conditional pdf p(y|x) of Y given X for the continuous case in a
manner formally similar to the discrete case:

p(y|x) = f (x, y)/g(x) (10.14)

and, further, E(Y | X = a) =
∫ ∞

−∞
yp(y|a)dy. (10.15)

Theorem 10.8 If the continuous random variables X, Y have joint pdf f (x, y) and
marginals g, h then X, Y are independent if and only if p(y|x) = h(y). There are the
relations

f (x, y) = g(x)p(y|x), h(y) = ∫g(x)p(y|x)dx, p(x |y) = p(y|x)g(x)/h(y),

and the general Chain Rule for Conditionals, on continuous random variables
X1, . . . , Xn:

p(x1, x2, . . . , xn) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · · p(xn | x1, x2, . . . , xn−1).

Proof This is a series of short applications of definitions, for example h(y) = ∫
f (x, y)dx ,

which equals
∫

g(x)p(y | x)dx by (10.14).

10.2 Functions of a random vector

10.2.1 Product and quotient

Let variable Z = u1(X, Y ), a function of the random vector (X, Y ). Since X, Y are
functions of s, the sample space variable, so is Z, and hence Z is itself a random variable.

RX × RY
Sample space

S
(X, Y) u1 RZ

Figure 10.5 Here u1 represents a function of a random vector.

We shall see how to find a pdf for Z in terms of the joint pdf of (X, Y ), both in general
and for important cases such as X + Y, XY, X/Y, Min(X, Y ).

The discrete case First let us make the point that the discrete case is most easily disposed
of because it requires enumeration rather than integration. The examples below illustrate
what is involved.

Example 10.9 Suppose two production lines produce outputs which are random variables
X, Y with respectively RX = {0, 1, 2}, RY = {1, 2, 3, 4}. (i) Let Z = X + Y , the total
items produced. Then RZ = {1, 2, . . . , 6} and P(Z = 3) = p(0, 3) + p(1, 2) + p(2, 1).

(ii) Let W = X/Y , the ratio of production scores. Then RW = {0, 1/2, 1/3, 1/4,

1, 2, 2/3} and, for example, P(W = 1/2) = p(1, 2) + p(2, 4).

Exercise Determine P(W = 1) above, given that all outcomes (x, y) are equally likely.
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Back to continuous The easiest way to obtain a pdf for Z = u1(X, Y ) is, paradoxically,
to introduce a second function W = u2(X, Y ), use the formula for change of variables
in a 2-dimensional integral, Corollary 10.11, then extract the pdf for Z as a marginal. We
begin with the n-dimensional version (see Sections 10.2.5 and 10.4.3).

Theorem 10.10 Let ψ , φ be inverse transformations between n-dimensional subsets of
real n-space Rn, given by

y = φ(x) = (u1(x), . . . , un(x)),

x = ψ(y) = (v1(y), . . . , vn(y)).

Suppose that the partial derivatives ∂xi/∂y j exist and are continuous. Denote the Jaco-
bian J of ψ , namely the determinant of the n × n matrix with i, j element ∂xi/∂y j , by
either expression:

∂x/∂ y or ∂(x1, . . . , xn)/∂(y1, . . . , yn).

Then, writing dx = dx1 · · · dxn and dy = dy1 . . . dyn, the change of coordinates x → y
in an n-dimensional integral is given by

∫
A

f (x)dx =
∫

φ(A)
f (ψ(y))|∂x/∂ y|dy. (10.16)

The derivatives ∂y j/∂xi exist continuously and ∂x/∂ y = 1/(∂ y/∂x). In the linear case
x = y A, where A is a matrix, the Jacobian reduces to ∂x/∂ y = det(A), with absolute
value 1 in the case of an isometry.

Corollary 10.11 In the case n = 2 above, with φ(x, y) = (z, w), and φ(R) = T , we have∫∫
R

f (x, y)dx dy =
∫∫
T

|J | f (x(z, w), y(z, w))dz dw. (10.17)

Hence, if (X, Y ) has joint pdf f (x, y) then (Z , W ) has joint pdf k(z, w) =
|J | f (x(z, w), y(z, w)).

Corollary 10.12 Let (X, Y ) be a continuous random vector with joint pdf f (x, y). Define
random variables W = XY and Z = X/Y . Then pdfs for W and Z are given by

p(w) =
∫ ∞

−∞

1

|u| f (u, w/u)du (W = XY ), (10.18)

q(z) =
∫ ∞

−∞
|v| f (vz, v)dv (Z = X/Y ). (10.19)

Proof Observe that, in theory, we could transform variables from x, y to w, z and get
both p and q from the new joint pdf. However, more manageable formulae are obtained if
w, z are treated separately, as outlined above Theorem 10.10. Let us change coordinates
from (x, y) to (u, w). Thus, we let w = xy and take as ancillary variable u = x . Then
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x = u, y = w/u and the Jacobian determinant is

J = ∂x

∂u

∂y

∂w
− ∂x

∂w

∂y

∂u
= 1 · 1

u
− 0 = 1

u
.

So a joint pdf for U, W is given by Corollary 10.11 to be f (u, w/u)/|u|, whence (10.18)
is obtained. For the rest we change coordinates from (x, y) to (v, z), taking z = x/y with
ancillary variable v = y. Then y = v, x = vz and the Jacobian ∂(x, y)/∂(v, z) comes
out to just −v. Hence the joint pdf is |v| f (vz, v) for V, Z , by Corollary 10.11, and the
marginal pdf is given by (10.19).

Remarks 10.13 (i) Notice that, in both cases above, we inverted the transformation to
obtain expressions for x, y before computing J , because these were in any case required
for substitution into f (x, y). However, it is sometimes more convenient to perform the
partial differentiations of J with respect to the new variables and use 1/J as noted at the
end of Theorem 10.10.

(ii) A classic application of Corollary 10.11 is the change from plane Cartesian
coordinates x, y to polars r, θ , given by x = r cos θ, y = r sin θ . For integration the
change is from dx dy to r dr dθ (cf. the proof of Lemma 9.73), because the Jacobian
is

∂(x, y)

∂(r, θ )
=
∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r.

As an example the annular region R: 4 ≤ x2 + y2 ≤ 9, x, y ≥ 0, is converted to a rect-
angle S: 2 ≤ r ≤ 3, 0 ≤ θ ≤ π/2, portrayed in Figure 10.6.

Such a transformation may reduce a 2-dimensional integral to the product of two
1-dimensional integrals, such as (using Table 9.6 of Section 9.3.6 for the angle
integration):

∫∫
R

x4 y4

(x2 + y2)3/2
dx dy =

∫∫
S

r8 sin4 θ cos4 θ

r3
r dr dθ

=
π/2∫
0

sin4 θ cos4 θ dθ

3∫
2

r6dr = 6177π

512
.

y

x

R S

r

Figure 10.6
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Table 10.4. The pdfs considered in Example 10.15.

Variable pdf

C g(c) = 1 on [1, 2]
D k(d) = e−d , d > 0

V = D2 h(v) = e−
√

v/2
√

v, v > 0
Z = C/V q(z), z > 0 (see solution)

(iii) So far we have not needed to compute a region of integration explicitly. How-
ever, to apply formulae (10.18) and (10.19) we must reduce their 1-dimensional ranges
of integration to that implied by the range set of f (x, y). This occurs in the next
example.

Example 10.14 Suppose that, in a certain circuit, current I and resistance R are con-
tinuous random variables with respective pdfs g(i) = i/2, 0 ≤ i ≤ 2, and h(r ) = r2/9,

0 ≤ r ≤ 3. Find the pdf of the voltage W = IR.

Solution With I, R assumed independent their joint pdf is f (i, r ) = g(i)h(r ). Since the
ranges of i, r are [0, 2] and [0, 3] the range of W is [0, 6]. Its pdf is therefore given by
(10.18) as

p(w) =
∫ ∞

−∞
g(u)h(w/u)

1

|u|du (0 ≤ w ≤ 6).

Following Remark 10.13(iii), we note that g(u) = 0 unless 0 < u < 2, and h(w/u) = 0
unless 0 ≤ w/u ≤ 3, i.e. u ≥ w/3. Thus for w in its range,

p(w) =
∫ 2

w/3

u

2
(w2/9u2)

1

u
du = (w2/18)

∫ 2

w/3
u−2du = w(6 − w)/36.

Example 10.15 The light intensity Z at a point P is given by Z = C/D2, where C is
the source candlepower and D is the source distance from P . We assume that C, D are
independent, that C is uniformly distributed on the interval [1, 2], and that D has pdf
k(d) = e−d, d > 0. Find the pdf q(z) of Z .

Solution We set V = D2, find the corresponding pdf h(v), then apply (10.19) to C/V .
Clearly the range of Z is z > 0. Table 10.4 shows the various pdfs in the order in which
we shall compute them.

(i) The uniform variable C has pdf g(c) = 1 for c in [1, 2]. The function v(d) =
d2 is increasing, so, by Formula (9.32), V has pdf h(v) = k(d)/|v′(d)| = e−d/2d =
e−

√
v/2

√
v, v > 0.
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(ii) The pdf q(z) of Z. Let f (c, v) be the joint pdf for C, V. Then by (10.19)

q(z) =
∫

R
|v| f (vz, v)dv the integral from −infinity to infinity

=
∫

R
|v|g(vz)h(v)dv since C, V are independent

=
∫

v · 1 · (e−
√

v/2
√

v)dv the range is to be determined

=
∫

x2e−x dx on setting x = √
v

= [−e−x (x2 + 2x + 2)] = [λ(x)], say.

Now for the range of integration. The range of C is [1, 2] so the factor g(vz) is zero
except when 1 ≤ vz ≤ 2, that is, 1/z ≤ v ≤ 2/z. Hence q(z) = λ(

√
2/z) − λ(

√
1/z),

where z > 0.

Example 10.16 (Ratio of normal variables) We find the pdf of Z = X/Y , where X ∼
N (0, σ1

2) and Y ∼ N (0, σ2
2) are independent and so have a joint pdf f (x, y) which is

the product of their individual densities. By Formula (9.46) this product is

f (x, y) = (1/2πσ1σ2)e−(x2/2σ 2
1 +y2/2σ 2

2 ). (10.20)

Using (10.19) for the pdf q(z) of Z, we obtain

q(z) =
∫

R
|v| f (vz, v)dv (nonzero for all z)

=
∫

R

a|v|
2πσ1

2
e−v2(z2+a2)/2σ1

2
dv where a = σ1/σ2

= 2
∫ ∞

0

av

2πσ1
2

e−v2(z2+a2)/2σ1
2
dv by symmetry in v

=
∫ ∞

0

a

πσ 1
2
· σ1

2

z2 + a2
· e−t dt where t = v2(z2 + a2)/2σ1

2

= a

π (z2 + a2)
, z ∈ R,

which is the Cauchy distribution listed in Table 9.10.

10.2.2 Convolution: from X + Y to sum of squares

Theorem 10.17 If the independent continuous random variables X, Y have pdfs
g, h concentrated on (0,∞) then X + Y has pdf the convolution g∗h, given by

(g ∗ h)(s) =
∫ s

0
g(x)h(s − x)dx =

∫ s

0
g(s − x)h(x)dx . (10.21)

Further, convolution is (i) commutative: g∗h = h∗g, (ii) associative: g∗(h∗k) = (g∗h) ∗
k, and (iii) distributive over addition: g∗(h + k) = g∗h + g∗k.
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Proof Since X, Y are independent they have a joint pdf f (x, y) = g(x)h(y). We trans-
form the variables to u = x + y, v = y, so that the pdf sought is that of the random
variable U. Now y = v and x = u − v so the Jacobian is ∂(x, y)/∂(u, v) = 1 · 1 −
(−1)(0) = 1. Hence, according to Corollary 10.11, the pair U, V has joint pdf
1 · f (x(u, v), y(u, v)) = g(u − v)h(v), whence the marginal pdf for U = X + Y is∫

g(u − v)h(v)dv with range of integration R. But g(u − v) is zero unless u − v > 0,
that is v < u, whilst h(v) is zero unless v > 0, so the range reduces to 0 < v < u. This
gives the second integral in (10.21) on substitution of u = s, v = x .

For the first two convolution properties let g, h, k be pdfs of X, Y, Z respectively and
observe that X + Y = Y + X, (X + Y ) + Z = X + (Y + Z ). Alternatively they may be
proved directly. In any case property (i) is the second equality in (10.21). For (iii) we
observe that∫

g(u − v)(h(v) + k(v))dv =
∫

g(u − v)h(v)dv

+
∫

g(u − v)k(v)dv, over any fixed range.

Example 10.18 Given that X, Y are independent continuous random variables with the
same pdf f (t) = te−t , t > 0, we find the pdf of their sum. By the result above, X + Y
has pdf ( f ∗ f )(s) equal to∫ s

0
f (t) f (s − t)dt =

∫ s

0
te−t (s − t)e−(s−t)dt = e−s

∫ s

0
t(s − t)dt = s3e−s/6.

Convolution and the Γ distribution Besides its use in reliability theory, the gamma
distribution, reviewed below, provides links between, and insights into, several other
distributions of importance (see especially Example 10.20). As may be expected, it is
related to the gamma function of calculus, whose most relevant properties for the present
study are reviewed in Table 9.6. A continuous random variable X is said to have a gamma
probability distribution if its pdf is

�α,u(x) = αu

�(u)
xu−1e−αx , x > 0, (10.22)

for some parameters α, u > 0 (Table 9.9). Notice that X is concentrated on (0,∞). The
fact that �α,u is a pdf, that is, it is non-negative and its integral over R is 1, follows from
the definition of �(u) in Table 9.6. This easily yields E(X ) and V (X ), as follows:

E(X )=
∫ ∞

0
x[αu/�(u)]xu−1e−αx dx = (u/α)

∫ ∞

0
[αu+1/�(u + 1)]xue−αx dx = u/α.

Similarly E(X2) = (u(u + 1)/α2)
∫ ∞

0
[αn+2/�(u + 2)]xu+1e−αx dx = u(u + 1)/α2.

And finally V (X ) = E(X2) − E(X )2 = [u(u + 1) − u2]/α2 = u/α2. We are ready to
establish the convolution property of �, for later application.

Theorem 10.19 The gamma distribution satisfies �α,u
∗�α,v = �α,u+v, or in the G nota-

tion (Table 9.9) G(α1, β)∗G(α2, β) = G(α1 + α2, β).
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Proof We have, for some constant K,

(�α,u
∗�α,v)(s) = K

∫ s

0
xu−1e−αx (s − x)v−1e−α(s−x)dx by definition

= K
∫ s

0
xu−1(s − x)v−1e−αsdx on simplifying

= K
∫ 1

0
su+v−1tu−1(1 − t)v−1e−αsdt putting x = st

= K su+v−1e−αs
∫ 1

0
tu−1(1 − t)v−1dt,

which is a constant multiple of �α,u+v(s) by (10.22). But this and the left hand side are
both pdfs, so the multiple must be 1, and the proof is complete.

Example 10.20 Find the distribution of Z = X2
1 + · · · + X2

n , a sum of squares of n
independent normal random variables Xi ∼ N (0, σ 2).

Solution We know that each Xi has pdf g(x) = (2πσ 2)−1/2e−x2/2σ 2
, and according to

(9.33) the variable Y = X2
i has pdf and scena of squares

h(y) = [g(
√

y) + g(−√y)]/2
√

y

= (2πσ 2)−1/2 y−1/2e−y/2σ 2

= K · �1/2σ 2,1/2(y), for some constant, K .

We could calculate K and find that it is 1, but such a calculation would be superfluous,
since K = 1 is implied by the fact that h and g are both pdfs. Thus, by Theorems 10.17
and 10.19, the sum of squares Z has pdf(

�1/2σ 2,1/2 ∗ �1/2σ 2,1/2 ∗ · · · ∗ �1/2σ 2,1/2
)
(z) = �1/2σ 2, n/2(z). (10.23)

Remarks (1) When V (X ) = 1 the distribution above is called the χ2 distribution with
n degrees of freedom or χ2

n (see Table 9.9), and is extensively used to test the validity of
probability models for the ‘real world’ (see Section 11.1.6). A particular concern for us
will be the hypothesis of a normal distribution of errors.

(2) The sum of normal random variables is normal but the convolution method of
showing this presents an impossible integral. Nevertheless, an explicit pdf is easily ob-
tained by the method of moments in Section 10.3.1, Example 10.41.

Exercise What are E(X) and V(X) for the χ2
n distribution.

More on convolution

Notice that in (10.21) the integrand is zero outside the interval [0, s], so we could equally
well write

( f ∗g)(s) =
∫ ∞

−∞
f (x)g(s − x)dx =

∫
R

f (x)g(s − x)dx,
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and indeed this is the definition of f ∗g for functions which are not necessarily pdfs,
but for which the integral does exist. Thus we conveniently obviate the need to write
in finite limits, until we are ready to take them into account. We note here the effect
on convolution, of scaling or translating the variables and of differentiating the func-
tions. This will be useful in Chapter 16, for example, for wavelet edge-detection, and in
Chapter 17 for B-splines by convolution.

Theorem 10.21 Let f ∗g = h and denote differentiation by f ′ etc. Then, for any transla-
tion α and scaling factor d, we have (i) f (t + α)∗g(t) = h(s + α), (ii) f (t/d) ∗ g(t/d) =
d × h(s/d), (iii) with f (t), f ′(t), and g(t) all continuous on the given integration inter-
vals, we have following cases of dh/ds (the third under further conditions noted below).

g(t), f (t) concentrated on h = f ∗g reduces to dh/ds

[a, b]
∫ b

a f (s − t)g(t)dt f ′∗g
[0,∞)

∫ s
0 f (s − t)g(t)dt f ′∗g + f (0)g(s)

All of R
∫∞
−∞ f (s − t)g(t)dt f ′∗g

Proof (i) f (t + a)∗g(t) = ∫
R f (t + a)g(s − t)dt = ∫

R f (z)g(s + a − z)dz
(putting z = t + a) = h(s + a).

(ii) f (t/d)∗g(t/d) = ∫
R f (t/d)g((s − t)/d)dt = ∫

R f (z)g(s/d − z)dz
(putting z = t/d) = d × h(s/d).

(iii) This result requires the Leibnitz formula for differentiating under the integral
sign:

d

dx

∫ b

a
φ(s, t)dt =

∫ b

a

∂φ

∂s
(s, t)dt + b′(0)φ(s, b) − a′(0)φ(s, a),

allowing a, b to be functions of s. In our case, φ(s, t) = f (s)g(s − t). Provided a, b
are finite, it suffices for φ and ∂ f/∂s to be continuous, satisfied since f, f ′ and g are
continuous. In the third case it suffices that |φ(s, t)| ≤ M(t) for some function M(t)
whose integral over R exists. See e.g. Maxwell (1962) or Wrede and Spiegel (2002).

Example We verify Theorem 10.21(iii) for f (t) = t2, g(t) = e−t both concentrated on
[0,∞):

(i) f (t) ∗ g(t) = ∫ s
0 (s − t)2e−t dt = s2 − 2s + 2 − 2e−s , with derivative 2s − 2 + 2e−s ,

(ii) f ′(t) ∗ g(t) + f (0)g(s) = ∫ s
0 2(s − t)e−t dt + 0 = 2s − 2 + 2e−s , as required.

10.2.3 Expectation and variance

Let Z = u(X, Y ) be a 1-dimensional random variable, where X, Y are random variables
on the same sample space. We consider only the cases that X, Y, Z are all continuous
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or all discrete. If discrete, we write in the usual way RZ = {z1, z2, . . .}, the sequence
terminating if the range is finite.

In computing E(Z ) we can avoid determining the pdf of Z if it is not otherwise needed,
by the following result, which is proved similarly to its counterpart in the 1-dimensional
case. We recall that a random vector (X, Y ) has by definition a joint pdf denoted by
p(x, y) in the discrete case, f (x, y) in the continuous.

Theorem 10.22 The following holds with the random vector (X, Y ) replaced by
(X1, . . . , Xn). We cite n = 2 for simplicity: the expectation of Z = u(X, Y ) satisfies

E(Z ) =

⎧⎪⎨
⎪⎩
∑

x,y u(x, y)p(x, y) (Z discrete),∫∫
R2

u(x, y) f (x, y)dx dy (Z continuous).

Proof For the second equality we will be content with the argument that it is the limit of
the discrete case, obtained by dividing regions of integration into ever smaller discrete
parts. A formal argument for the discrete case is that E(Z ) equals the first expression
below by definition, and hence the rest:∑

z

z P(Z = z) =
∑

z

z
∑

x,y: z=u(x,y)

p(x, y) =
∑

z

∑
x,y: z=u(x,y)

u(x, y)p(x, y)

=
∑
x,y

u(x, y)p(x, y).

Theorem 10.23 The following holds with the random vector (X, Y ) replaced by
(X1, . . . , Xn). Let Z = u1(X, Y ) and W = u2(X, Y ) for functions u1, u2. Then E(Z +
W ) = E(Z ) + E(W ).

Proof In the discrete case (the continuous case replaces sums by integrals)

E(Z + W ) =
∑

x,y
[u1(x, y) + u2(x, y)]p(x, y) by Theorem 10.22,

=
∑

x,y
u1(x, y)p(x, y) +

∑
x,y

u2(x, y)p(x, y)

= E(Z ) + E(W ) by Theorem 10.22.

Exercise Repeat the proof steps of Theorem 10.23 with n = 3.

Corollary 10.24 Let X1, . . . , Xn be random variables (not necessarily independent).
Then

E(X1 + · · · + Xn) = E(X1) + · · · + E(Xn). (10.24)

Proof The result follows by induction on n, using Theorem 10.23. For the starting case
n = 2 we set Z = X1, W = X2, and for the inductive step Z = X1 + · · · + Xn−1, W =
Xn .

Remarks 10.25 (i) Let c1, . . . , cn be constants. Since E[ci Xi ] = ci E(Xi ) by (9.36) we
have full linearity of E in the sense that E[

∑
i ci Xi ] =

∑
i ci E(Xi ).
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(ii) So far we do not have a convenient way to prove that a sum of normal random
variables is normal (this will come in Example 10.41), but Corollary 10.24 does enable us
to calculate the expected value of the result, and Corollary 10.27 will give the variance.

Theorem 10.26 The product of independent random variables X1, . . . , Xn satisfies

E(X1 · · · Xn) = E(X1) · · · E(Xn). (10.25)

Proof We consider only the discrete case n = 2, since the extension to general n is simi-
lar, and the continuous case analogous. Let independent random variables X, Y have
a joint pdf p(x)q(y). Then E(XY ) =∑

x,y xy · p(x)q(y) =∑
x xp(x) ·∑y yq(y) =

E(X )E(Y ).

Corollary 10.27 Let X1, . . . , Xn be independent random variables, with µi = E(Xi ),
then

(a) V (X1 + · · · + Xn) = V (X1) + · · · + V (Xn),

(b) V (X1 X2) = V (X1)V (X2) + µ2
1V (X2) + µ2

2V (X1). (10.26)

Proof (a) We prove the result here in the case n = 2. Induction extends it to general n (this
strictly requires the independence results of Theorem 10.36). With (X1, X2) = (X, Y )
the random variable Z = X + Y satisfies

V (Z ) = E[Z2] − (E(Z ))2 by (9.38)

= E(X2 + 2XY + Y 2) − (E(X ) + E(Y ))2 by Corollary 10.24

= E(X2) + 2E(X )E(Y ) + E(Y 2) − (E(X ) + E(Y ))2 by Theorem 10.26

= E(X2) − (E(X ))2 + E(Y 2) − (E(Y ))2 by cancelling

= V (X ) + V (Y ) by (9.38).

(b) Consider the discrete case, the continuous being similar, and let X, Y have re-
spective pdfs p(x), q(y). Firstly, we observe that E(X2Y 2) =∑

x,y x2 y2 p(x)q(y) =∑
x x2 p(x)

∑
y y2q(y) = E(X2)E(Y 2). Hence, if we write W = XY the following

equalities give Equation (10.26b).

V (W ) = E(W 2) − E(W )2 = E(X2)E(Y 2) − (µ1µ2)2 by Theorem 10.26

= (
V (X ) + µ2

1

) (
V (Y ) + µ2

2

)− (µ1µ2)2.

Example 10.28 The above results give a delightfully simple way to calculate E(X ), V (X )
for a binomial random variable X ∼ Bin(n, p). We have X = X1 + · · · + Xn , where Xi

is based on a single trial. Hence

E(Xi ) = 0 · P(Xi = 0) + 1 · P(Xi = 1) = p.

V (Xi ) = E(Xi
2) − (E(Xi ))

2

= 02 · P(Xi = 0) + 12 · P(Xi = 1) − p2

= p − p2.
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By Corollary 10.24: E(X ) = np.
By Corollary 10.27: V (X ) = np(1 − p) (this completes the alternative proof

of (9.42)).

10.2.4 The Law of Large Numbers

The heading of this section is the classic answer to the question of how many trials must
be made so that the relative frequency of an event A is close to its theoretical probability.

Theorem 10.29 (The Law of Large Numbers, Bernoulli form) Let A be an event with
P(A) = p. Suppose that in n independent trials the relative frequency of A is f A = n A/n.
Then for any ε > 0, and δ with 0 < δ < 1,

P(| f A − p| < ε) ≥ 1 − δ provided n ≥ p(1 − p)/ε2δ. (10.27)

Proof We use form (9.48) of Chebychev’s inequality: P(|X − µ| ≥ ε) ≤ σ 2/ε2, or,
taking the complementary event,

P(|X − µ| < ε) ≥ 1 − σ 2/ε2. (10.28)

Now take X = n A, a binomial random variable with parameters n, p and hence with
µ = np and σ 2 = np(1 − p) (Example 10.28). Substituting in (10.28) gives P(|n A −
np| < ε) ≥ 1 − np(1 − p)/ε2, or, replacing ε by nε,

P(| f A − p| < ε) ≥ 1 − p(1 − p)/nε2.

Finally, 1 − p(1 − p)/nε2 ≥ 1 − δ ⇔ p(1 − p)/nε2 ≤ δ ⇔ n ≥ p(1 − p)/ε2δ.

Example 10.30 Given that the proportion of smokers in a population is 5%, how large a
sample must be taken to ensure a probability of at least 0.95 that the observed proportion
lies between 4% and 6%.

Solution (i) For the purpose of applying the Law of Large Numbers, the
probability of event A: a smoker, is p = 5/100 = 1/20,

(ii) a difference of 1% means we require ε = 1/100, (iii) we want prob-
ability ≥ 0.95, so we take δ = 0.05. Then (10.27) states that we must have
n ≥ p(1 − p)/ε2δ = (1/20)(19/20)/(1/100)2(1/20) = 9500.

Example 10.31 (i) How many times must an unbiased die be tossed to be
at least 95% certain that the observed frequency of a 3 is within 0.01 of the theoretical
probability. (ii) A coin, assumed to be unbiased, is tossed 300 times. Can we be 90%
certain that the relative frequency of heads appearing is within 0.1 of its expected value?

Solution (i) We make three observations: (a) the theoretical probability of a 3 is of
course p = 1/6, (b) the difference we tolerate is ε = 0.01, (c) 95% certain means
probability 0.95 and hence δ = 0.05. According to (10.27) this can be achieved with
n ≥ p(1 − p)/ε2δ = (1/6)(5/6)/(0.01)2(0.05) = 27 777.77 . . . and, since n is an inte-
ger, the number of tosses is at least 27 778.

(ii) The model p = 0.5, ε = 0.1 = δ gives p(1 − p)/ε2δ = 250, so the answer is YES.
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Notation 10.32 In the following result and often thereafter we will consider a sequence
of random variables X1, X2, . . . which both are independent and have the same pdf. They
will be described as independent identically distributed, or simply iid.

Theorem 10.33 (The Weak Law of Large Numbers) Let the sequence of random variables
X1, X2, . . . be iid with expected value µ. Then, for any ε > 0,

P(|X1 + X2 + · · · + Xn − nµ| ≥ ε) → 0 as n →∞. (10.29)

Proof Let V (Xi ) = σ 2. Then the random variable X = (1/n)(X1 + · · · + Xn) has mean
µ and variance σ 2/n (see (9.36), (9.39)). Furthermore,

P(|X1 + · · · + Xn − nµ| ≥ ε) = P(|X − µ| ≥ ε/n)
≤ P(|X − µ| ≥ ε)
≤ V (X )/ε2 by Chebychev form (9.48)
= σ 2/(nε2) → 0, as n →∞.

10.2.5 Independence and n-vectors

Here we provide justification for certain assumptions which easily pass unnoticed but
strictly require proof. We recall from Theorem 10.10 the formula for change of variables
φ: x → y with inverse ψ , in an n-dimensional integral,∫

A
f (x)dx =

∫
φ(A)

f (ψ(y)) |∂x/∂ y| dy, (10.30)

observing that, in the linear case x = y A, the Jacobian ∂x/∂ y equals det(A).

Theorem 10.34 Let X1, . . . , Xn be independent random variables and let Yi = ui (Xi )
where, on the range of Xi (1 ≤ i ≤ n), the derivative of ui exists, is continuous, and is
either everywhere positive or everywhere negative. Then Y1, . . . , Yn are independent.

Proof We consider the (harder) continuous case. In the notation of (10.30),

(Y1, . . . , Yn) = y ⇔ (X1, . . . , Xn) = ψ(y).

Hence, if A is an event for the random vector (Y1, . . . , Yn), then, since X1, . . . , Xn are
independent,

P(A) = P(ψ(A)) =
∫

ψ(A)
f1(x1) · · · fn(xn)dx,

where fi is the pdf of Xi . We change coordinates in this integral from x to y. In the
present case, because xi is a function of yi alone, the Jacobian matrix is nonzero only on
its diagonal, so ∂x/∂ y = dx1/dy1 · · · dxn/dyn . Thus, by (10.30),

P(A) =
∫

A
f1(v1(y1)) . . . fn(vn(yn))

∣∣∣∣dx1

dy1
· · · dxn

dyn

∣∣∣∣ dy, where vi = ui
−1

=
∫

A
g1(y1) · · · gn(yn) dy, where gi (yi ) = fi (vi (yi )) |dxi/dyi |.
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That is, Y1, . . . , Yn have a fully factorised joint pdf and so are independent. Notice that
gi is the pdf of Yi , by (9.32).

Example 10.35 If random variables X1, . . . , Xn are independent, then so are ex1, . . . , exn ,
since taking ui to be the function u(x) = ex for each i satisfies the conditions of Theorem
10.34. So too are a1 X1 + b1, . . . , an Xn + bn , where the ai , bi are constants with ai

nonzero.

Theorem 10.36 If random variables X1, . . . , Xn are independent, then so are sums
of disjoint subsets of the Xi . In particular, the variables X1 + X2, X3, . . . , Xn are
independent.

Proof It suffices to prove the result for an independent triple X, Y, Z of continuous
random variables and then to apply this repeatedly (as usual the discrete case is easier). Let
(X, Y, Z ) have joint pdf f (x)g(y)h(z) and write W = X + Y . Then we must find a joint
pdf for (W, Z ). Let A be an event in the (W, Z ) plane and let B = {(x, y, z): (x + y, z) ∈
A}. Then

P(A) =
∫

B
f (x)g(y)h(z) dx dy dz.

We use (10.30) to change coordinates from (x, y, z) to (x, w, z) as follows: x = x, w =
x + y, z = z with inverse transformation x = x, y = w − x, z = z. Then (x, y, z) ∈ B
in the old coordinates if and only if (w, z) ∈ A in the new (x unrestricted), the Jacobian is

∂(x, y, z)

∂(x, w, z)
=
∣∣∣∣∣∣

1 0 0
−1 1 0

0 0 1

∣∣∣∣∣∣ = 1, and

P(A) =
∫

x∈R
(w,z)∈A

f (x)g(w − x)h(z) dx dw dz

=
∫

A
h(z)dz

∫
R

f (x)g(w − x)dx dw

=
∫

A
( f ∗g)(w)h(z)dz, by definition (10.21) of f ∗g.

Thus (W, Z ) has joint pdf factorised as ( f ∗g)(w) × h(z), so W, Z are by definition
independent.

Exercise If X, Y, Z are independent random variables, so are X,−Y, Z and hence
(X − Y )2, Z .

10.3 The ubiquity of normal/Gaussian variables

10.3.1 Moments

We introduce moments of a random variable X, a generalisation of mean and variance,
and the moment generating function MX (t) whose coefficients reveal these moments.
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Their value is twofold: practical – for the derivation of certain pdfs and relations between
them; and theoretical – for establishing the Central Limit Theorem which explains why
the normal distribution crops up in so many places. A basic calculus result we sometimes
use without comment is the series expansion (see e.g. Swokowski, 2000, or Moore, 2003):

ex =
∑∞

n=0

xn

n!
.

Definition 10.37 The moment generating function, or mgf, of a random variable
X is

MX (t) =

⎧⎪⎨
⎪⎩
∑

et xi p(xi ) (xi ∈ RX ), if X is discrete,∫
R

et x f (x)dx, if X is continuous.
(10.31)

MX (t) = E(et X ), in both case. (10.32)

The relation between (10.31) and (10.32) is that if Y = et X then, according to (9.34),
E(Y ) can be obtained by applying the formulae of (10.31). The function MX (t) is indeed
a moment generating function, where the nth moment is defined as E(Xn), because

MX (t) = E

(
1 + t X + t2

2!
X2 + t3

3!
X3 + · · ·

)

= 1 + t E(X ) + t2

2!
E(X2) + t3

3!
E(X3) + · · · (10.33)

Notice that, by elementary calculus, E(Xn) equals the nth derivative MX
(n)(0).

Theorem 10.38 Let α, β be real and X, Y independent random variables. Then

MαX+β(t) = eβt MX (αt), (10.34)

MX+Y (t) = MX (t)MY (t). (10.35)

And similarly for the sum of three or more independent random variables.

Proof MαX+β(t)=E(e(αX+β)t )=E(eαXt · eβt )=eβt E(eαXt )=eβt MX (αt), and MX+Y (t)
= E(e(X+Y )t ) = E(eXt · eY t ). But eXt , eY t are independent because X, Y are (Example
10.35) and so the expected value of their product equals E(eXt )E(eY t ) (by (10.25)),
which is by definition MX (t)MY (t). A similar argument holds for the sum of three or
more such variables.

Example 10.39 (mgfs of some distributions) See Table 10.5.
(1) Poisson, X ∼ Po(λ). By definition, MX (t) = E(et X ) =∑∞

r=0 etr p(r ) =∑∞
r=0 etr e−λλr/r ! = e−λ

∑∞
r=0 (λet )r/r ! = e−λeλet = eλ(et−1).

(2) Binomial, X ∼ Bin(n, p). The calculation of expectation and variance was greatly
simplified in the binomial case by viewing X as the sum of n independent random
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Table 10.5. Moment generating functions of some important pdfs.

Distribution Moment generating function

Uniform on [a, b] (ebt − eat )/t(b − a)
Bin(n, p) (pet + q)n, q = 1 − p
Po(λ) eλ(et−1)

Gamma, �α,u ( α
α−t )u, t < α

Exponential(α) α
α−t , t < α

Chi-squared, n degrees of freedom (1 − 2t)−n/2, t < 1/2
Cauchy does not exist
Normal/Gaussian, N (0, 1) et2/2

N(µ, σ 2) eµt+σ 2t2/2

variables, X = X1 + · · · + Xn , where each Xi is based on one Bernoulli trial with
P(Xi = 1) = p. A similar simplification is afforded in the determination of MX (t) by
the use of Property (10.35). We have, with q = 1 − p,

MXi (t) = E
(
et Xi

) = p · et ·1 + q · et · 0 (by (9.34)) = pet + q.

Hence MX (t) = MX1 (t) · · · MXn (t) (by (10.35)) = (pet + q)n.

(3) Gamma, X ∼ �α,u . Using the properties of the � function in Table 9.6:

MX (t)= E(et X )=
∫ ∞

0
et x (αu/�(u))xu−1e−αx dx = (αu/�(u))

∫ ∞

0
xu−1e−x(α−t)dx

= αu

�(u)
· 1

(α − t)u

∫ ∞

0
yu−1e−ydy on setting y = x(α − t)

= (α/(α − t))u by definition of �(u).

(4) Normal, X ∼ N (0, 1).

MX (t) = E(et X ) = 1√
2π

∫
R

et x e−x2/2dx (now put u = x − t)

= 1√
2π

et2/2
∫

R
e−u2/2du (check this!)

= et2/2 since the integral equals
√

(2π ) (Lemma 9.73).

Exercise Deduce the last line of Table 10.5 from the line before, using (10.34).

10.3.2 Transforms and uniqueness

We state the main result of this section, illustrate its importance by a ‘reproductive
property’, then give a proof for the finite discrete case that offers insight into why the
result should be true.

Theorem 10.40 (Uniqueness property of the moment generating function) If X, Y are
random variables with MX (t) = MY (t) then X, Y have the same pdf.
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Example 10.41 (1) (Reproductive property) Show that any finite sum of independent
normal variables is also normal, hence so is a finite linear combination.

Solution First consider independent variables X ∼ N (µ1, σ
2
1 ) and Y ∼ N (µ2, σ

2
2 ).We

already know X + Y has mean µ1 + µ2 and variance σ 2
1 + σ 2

2 but so far have not shown
that X + Y is actually normal. Now, according to the Uniqueness Theorem 10.40 we
have only to show that MX+Y (t) equals MZ (t), where Z is normal. But this is now easy
thanks to Property (10.35). We have

MX+Y (t) = MX (t)MY (t) by (10.35)
= eµ1t · e(σ1t)2/2 · eµ2t · e(σ2t)2/2 by Table 10.5
= e(µ1+µ2)t · e(σ 2

1 +σ 2
2 )t2/2

= MZ (t), where Z ∼ N
(
µ1 + µ2, σ

2
1 + σ 2

2

)
.

Theorem 10.40 now implies that X + Y = Z . The argument follows the same steps for
any finite number of independent normal variables.

(2) Even without knowing the actual pdfs we can infer from Table 10.5 of mgfs
that the exponential distribution is case u = 1 of the gamma, and that chi-squared with n
degrees of freedom is the case α = 1/2, u = n/2. We can also prove that the reproductive
property is possessed by the Poisson and exponential distributions.

Exercise Why is the difference between normal random variables normal?

Why uniqueness holds The phrase ‘uniqueness property’ for mgfs is used because
Theorem 10.40 says equivalently that, given MX (t), there is a unique pdf that must be
possessed by X. Let us see this for the case of discrete X with finite range {x1, . . . , xn}.
Writing MX (t) in the form

∑
mr (tr/r !), we have E(Xr ) = mr , or xr

1 p1 + xr
2 p2 + · · · +

xr
n pn = mr , for r = 0, 1, 2, . . . Consider the first n equations in matrix form.⎡

⎢⎢⎢⎢⎣
1 1 · · · · · · 1
x1 x2 · · · · · · xn

x2
1 x2

2 · · · · · · x2
n

· · · · · · · · · · · · · · ·
xn−1

1 xn−1
2 · · · · · · xn−1

n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

p1

p2

p3

· · ·
pn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
m1

m2

· · ·
mn−1

⎤
⎥⎥⎥⎥⎦ . (10.36)

The determinant of the coefficient matrix is of Vandermonde type (Examples 7.31) and so
equals the product �(xi − x j ) (i > j), which is nonzero because x1, . . . , xn are distinct.
Thus the probabilities p1, . . . , pn are determined uniquely. The remaining equations can
introduce no inconsistency since they are constructed from the same given pdf. The
conclusion is that this is the only pdf that has this (infinite) set of moments.

Existence The mgf does not always exist. In particular E(X2) fails to exist for the
Cauchy distribution because∫ N

−N

x2dx

x2 + a2
=
∫ N

−N

(
1 − a2

x2 + a2

)
dx = 2N − 2a tan−1 N

a →∞ as N →∞.
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Instead we may use the characteristic function CX (t), defined for all X, and given by

CX (t) = E(eitX) = MX (it), (10.37)

where i denotes the standard square root of −1. The first equality is the definition and
the second is a consequence. We have defined

CX (t) =

⎧⎪⎪⎨
⎪⎪⎩

∑∞
j=1

eitx j p(x j ), if X is discrete,

∫
R

eitx f (x)dx, if X is continuous.
(10.38)

The discrete case is the Fourier series and the continuous is the Fourier Transform (with
i replaced by −i), so we may appeal to the theory in each case for existence and inverse
formulae. We have

p(x j ) = 1

2π

∫ 2π

0
e−itx j CX (t)dt,

f (x) = 1

2π

∫
R

e−itxCX (t)dt. (10.39)

This gives the uniqueness property of CX (t), and of MX (t) = CX (−it) when it exists.

10.3.3 The Central Limit Theorem

We are ready to prove the celebrated Central Limit Theorem, that a large number of inde-
pendent random variables, even though of varying distributions, sum to an approximately
normal distribution. This supplies a reason why normal random variables are found so
widely in practice – anything that is the sum of many small effects is a candidate.

It also points to the normal distribution as a useful approximation to others, and this
too is borne out. We shall see it for binomial variables, a special case that pre-dated the
discovery of our main theorem, and which was known as the De Moivre–Laplace Limit
Theorem.

We begin with some calculus preliminaries, especially the idea that a function f (x)
may behave like a simpler function g(x) when x is large.

Definition 10.42 (Order of magnitude) Let f, g be two real functions. We say f (x) =
O(g(x)) (as x →∞) if, for some constants K , x0,

(i) | f (x)| ≤ K |g(x)| whenever x ≥ x0, or
(ii) | f (x)/g(x)| → K as x →∞ (stronger).

(Alternatively, x → 0 and |X | ≤ x0.)
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Consequence If g(x) → 0 as x →∞ then so does f (x). Both tests fail if | f (x)/g(x)| →
∞. The second is stronger because it implies | f (x)/g(x)| ≤ K + 1, say, for sufficiently
large x.

Example 10.43 (1) f (x) = x2 + sin x gives | f (x)| ≤ x2 + 1 ≤ 2x2 for x ≥ 1, so
f (x) = O(x2)

(2) Let g(n) = 1/n2 + 1/n3. Then g(n) = O(1/n2) as n →∞. But g(n) �= O(1/n3),
since g(n)/(1/n3) = n + 1, unbounded. More generally and most importantly, we have
the boxed observation below.

If f (n) = O(1/na) and g(n) = O(1/nb), with a ≤ b,

then f (n) + g(n) = O(1/na). (10.40)

(3) We have by definition that K f (x) = O( f (x)) for any constant K. Similarly, if
f (x) = O(xs) then f (x)t = O(xst ).

(4) According to the Taylor Theorem of Calculus (see Swokowski, 2000 or Moore,
2003), if f (x) has continuous derivatives up to order n on an open interval I that includes
0, then, for some constant K and sufficiently small x,

f (x) = f (0) + x f ′(0) + · · · + xn−1

(n − 1)!
f (n−1)(0) + R(x), |R(x)| ≤ K |x |n. (10.41)

Hence, setting respectively n = 3 and n = 2, we obtain for the exponential and the natural
logarithm,

ex = 1 + x + x2/2 + R1(x), |R1(x)| ≤ K1|x |3, (10.42a)
log(1 + x) = x + R2(x), |R2(x)| ≤ K2|x |2. (10.42b)

Lemma 10.44 Let λi (n) = O(1/n1+d) (1 ≤ i ≤ n) as n →∞, where 0 < d < 1 and n
is a positive integer. Then �i (1 + w/n + λi (n)) → ew as n →∞.

Proof Denote the product by g(n) and take logarithms to base e. Then

log g(n) =
∑

i
log(1 + w/n + λi (n)) (now set x = w/n + λi (n) in (10.24b))

=
∑

i
{w/n + λi (n) + O[(w/n + λi (n))2]}

=
∑

i
(w/n + ρi (n)), where ρi (n) = O(1/n1+d), by (10.40).

But |∑i ρi (n)| ≤∑
i |ρi (n)| ≤∑

i Ki/n1+d (some Ki ) ≤ n Max{Ki }/n1+d =O(1/nd),
so log g(n) = w + O(1/nd) → w as n →∞. Hence finally g(n) → ew.

Theorem 10.45 (Central Limit Theorem) Let X1, X2, . . . be independent ran-
dom variables, with finite moments, and E(Xi ) = µi , V (Xi ) = σ 2 (independent of
i). If Sn = X1 + · · · + Xn and µ = (µ1 + · · · + µn)/n. Then Sn is asymptotically
normal in the sense that

Lim
n→∞ P

(
a ≤ Sn − nµ

σ
√

n
≤ b

)
= �(b) − �(a). (10.43)



10.3 The ubiquity of normal/Gaussian variables 283

(ii)

(iii)

(i)

(iv)

Figure 10.7 Let Xi be uniform on [−1, 1], i = 1, 2, . . . , and let Sn = X1 + · · · + Xn .
Above are shown the pdfs of S1, S2, S3, S4. Even by the fourth, the shape is close to
normal.

Figure 10.7 illustrates the Central Limit Theorem for sums of uniformly distributed
random variables. The restriction that all Xi have the same variance may be replaced by
technical restrictions on the pdfs involved (Feller, 1968, Vol. 2).

Proof of Theorem 10.45 Let Yi = (Xi − µi )/σ . Then E(Yi ) = 0, E(Yi
2) = V (Yi ) = 1,

and we investigate Sn via (Sn − nµ)/σ
√

n =∑
Yi/

√
n = Z , say. Since the Xi have finite

moments, so do the Yi (see (10.34)). Also, the independence of X1, . . . , Xn implies that
of the variables Yi , that of the Yi/

√
n, and of exponentials eY i/

√
n (with 1 ≤ i ≤ n in each

case) by Example 10.35. We have etYi /
√

n = 1 + tYi/
√

n + t2Y 2
i /2n + O(tYi/

√
n)3, as

n →∞, by (10.42a).
Hence, since E(Yi ) and t are constant as n varies,

MYi /
√

n(t) = E(1) + (t/
√

n)E(Yi ) + (t2/2n)E
(
Y 2

i

)+ O(1/n1.5).

Therefore

MZ (t) = �i MYi /
√

n(t) by (10.35)

= �i (1 + t2/2n + λi (n)), where λi (n) = O(1/n1.5)

→ et2/2 by Lemma 10.44 with d = 1/2. This completes the proof.

Exercise Derive Equation (10.40).

Corollary 10.46 In the usual notation, let X be a binomial random variable with mean
µ and variance σ 2. Then Z = (X − µ)/σ is approximately N (0, 1).

Example 10.47 An electronic device can function if at least 75 of its 100 components
are in order. Each component has, independently, a probability of 0.05 of being defective.
Find the probability that the device functions on being switched on.

Solution Let the random variable X be the number of components that are in order. Then,
in the usual notation, X is binomial with parameters n = 100 and p = P (a component
is in order) = 0.95. Hence µ = np = 95 and σ = √

(npq) = 2.18. We require P(75 ≤
X ≤ 100), however, the normal distribution provides a more accurate value if we take
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Table 10.6. Accuracy of the normal approximation to the
binomial formula for P(X = 3) with parameters

n = 8 and p = 0.2 or 0.5.

p Binomial value Normal approximation

0.2 0.147 0.164
0.5 0.219 0.220

aa − 1 a − 1/2 b b + 1/2

F(x)

x

Figure 10.8 If we approximate a distribution which takes integer values by a continuous
distribution F(x), then a corresponding approximation is to take P(a ≤ X ≤ b) = F(b +
1/2) − F(a − 1/2). Thus P(X ≤ a − 1) = F(a − 1/2), so no area is omitted overall in
using the correction. Also we take P(X = a) = F(a + 1/2) − F(a − 1/2).

account of the fact that we are approximating a discrete variable by a continuous one,
and apply the following continuity correction, suggested by Figure 10.8.

P(74.5 ≤ X ≤ 100.5) = P( 74.5−95
2.18 ≤ Z ≤ 100.5−95

2.18 ) = �(2.52) − �(−9.4) =
�(2.52) = 0.994, since �(−9.4) = 0 to 4 dp by Table 9.7. This compares with a strict
binomial calculation of

∑100

k=75

(
100
k

)
(0.95)k(0.05)100−k = 0.986.

The error amounts to less than 1 in the second decimal place (8 in the third). If we increase
the requirement of the device to 90 correctly functioning components, the respective
calculations give 0.988 and 0.989, an error of 1 in the third decimal place.

Remarks 10.48 (1) Accuracy of the normal approximation to the binomial distribution
increases both with n, and as p, 1 − p become closer to 0.5. Table 10.6 gives some
comparative results.

(2) Other distributions which can conveniently be represented as a sum of independent
variables, and so have a normal approximation, are the Poisson (for large parameter),
Pascal and gamma distributions.

(3) We employ the Central Limit Theorem to generate samples for simulation of the
normal distribution in Chapter 11. This is a very important simulation, and is used often
in subsequent chapters.
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(4) Some other sections where the idea of O( f (x)) is used are Sections 11.1.2, 11.2.1,
11.4.7, 12.5, 14.1.4 and 15.2.1.

10.4 Correlation and its elimination

We shall define correlation between random variables X, Y , and the covariance matrix of
correlations that defines a multivariate normal distribution (Section 10.4.2). Correlation
is a useful tool for investigating independence. Indeed, for normal random variables, zero
correlation is equivalent to independence. In any case, zero correlation alone simplifies
many situations – for example it implies E(XY ) = E(X )E(Y ) and V (X + Y ) = V (X ) +
V (Y ), so it need be no surprise that, having defined correlation, we look for ways to
achieve zero correlation by a change of variables. This is especially profitable for normal
variables because, as mentioned, it results in independence; but the story extends far
beyond this, issuing firstly for us in the much-valued Principal Component Analysis.

10.4.1 Correlation

We write µZ = E(Z ) for any random variable Z and make frequent use of the rules for
expectation and variance established in Section 10.2.3. The idea of variance is generalised
to that of the covariance, or correlation, Cov(X, Y ) of a pair of random variables X, Y .
Also denoted by σXY , it is defined by

σXY = Cov(X, Y ) = E[(X − µX )(Y − µY )]. (10.44)

Setting Y = X we recover V (X ) as σX X , usually written σ 2
X or just σ 2. The following

theorem reflects the connection between covariance and independence. As implied, X, Y
may be either discrete or continuous.

Theorem 10.49 Let X, Y be random variables. Then

(a) E(XY ) = E(X )E(Y ) + σXY ,
(b) if X, Y are independent then σXY = 0,
(c) V (X + Y ) = V (X ) + V (Y ) + 2σXY .

Proof (a) σXY =E[XY − µY X − µX Y + µXµY ] by (10.44)

=E(XY )−µY E(X )−µX E(Y )+µXµY by linearity, Remark 10.25

=E(XY ) − µXµY since µX = E(X ), etc.

(b) X, Y independent ⇒ E(XY ) = µXµY (by (10.25)) ⇒ σXY = 0 by part (a).
(c) V (X + Y ) = E[(X2 + 2XY + Y )2] − (µX + µY )2 by(9.38)

= (
E(X2) − µ2

X

)+ (
E(Y 2) − µ2

Y

)+ 2(E(XY ) − µXµY )
= V (X ) + V (Y ) + 2σXY by part (a).
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q(t) q(t)

tt t0

(i) (ii)

Figure 10.9 Case (i): the graph of the quadratic q(t) lies above the t-axis for all t. Case
(ii): the graph of q(t) meets the axis in a single point t0.

Remarks 10.50 If X, Y are independent then σxy = 0, indeed a nonzero value for σXY

measures to some degree the extent of dependence, for in both (a), (c) above it measures
the difference between quantities which would be equal in the independence case. We can
obtain more information about the type of independence from the correlation coefficient
ρ, given by

ρ = ρXY = σXY /σXσY . (10.45)

This normalised quantity is described as dimensionless because multiplying X, Y by
constants leaves ρ unchanged. In the extremal case below, the form of dependency is
linear.

Theorem 10.51 Let ρ be the correlation coefficient of random variables X, Y. Then ρ2 ≤
1, and in the case of equality there is, with probability 1, a linear relation Y = aX + b.

Proof Write Z = X − E(X ) and W = Y − E(Y ). Then 0 = E(Z ) = E(W ) = E(Z +
tW ) for any scalar t, so that we have a function

q(t) = V (Z + tW ) = E[(Z + tW )2] ≥ 0, for all t.

On the other hand, we can use linearity of E to express q(t) directly as a quadratic
polynomial

q(t) = E(Z2) + 2t E(Z W ) + t2 E(W 2)

and, since its graph is above or touches the t-axis at most once (as in Figure 10.9),
the discriminant D of q(t) cannot be strictly positive. That is, D = [E(Z W )]2 −
E(Z2)E(W 2) ≤ 0, and, since by definition ρ2 is the quotient [E(Z W )]2/E(Z2)E(W 2)
of the two terms, we have ρ2 ≤ 1.

Furthermore, with ρ2 = 1 the discriminant is zero, giving case (ii) in Figure 10.9: there is
some t0 for which q(t0) = 0 (but t0 �= 0, why?). Thus V (Z + t0W ) = 0 = E(Z + t0W ).
Now we may apply Remark 9.81: V (X ) = 0 ⇒ P(X = µ) = 1, to our case, obtaining
P(Z + t0W = 0) = 1. But, after substituting for Z, W we may write this in the form
P(Y = a X + b) = 1, as required.

Remarks 10.52 If ρ = 0 (or equivalently σXY = 0) we say X, Y are uncorrelated. This
condition is equivalent to E(XY ) = E(X )E(Y ), and to V (X + Y ) = V (X ) + V (Y ) (The-
orem 10.49), but it is weaker than independence, as shown by the example in Table 10.7.
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Table 10.7. An example of the joint pdf p(x, y) and marginal pdfs
p(x), q(y) for a discrete pair X, Y (format of Table 10.1), showing

that zero correlation need not imply independence.

X\Y −1 0 1 p(x)

0 1/4 0 1/4 1/2
1 0 1/2 0 1/2
q(y) 1/4 1/2 1/4

However, in the crucial case of normal random vectors, it is equivalent to independence,
as we shall see in the next section (Theorem 10.63).

X, Y uncorrelated is equivalent to each of

ρ = 0, σXY = 0, Cov(X, Y ) = 0,

E(XY ) = E(X )E(Y ), V (X + Y ) = V (X ) + V (Y ). (10.46)

In the Table 10.7 example, X and Y are uncorrelated, for E(Y ) = −1(1/4) +
0(1/2) + 1(1/4) = 0, and E(XY ) =∑

xyp(x, y) = 0 + · · · + 0 = 0. Hence σXY =
E(XY ) − E(X )E(Y ) (Theorem 10.49) = 0, and so ρ = 0.

However X, Y are not independent, because p(0, 1) = 1/4, but p(0)q(1) =
(1/2)(1/4) = 1/8.

10.4.2 The covariance matrix

Notation 10.53 We recall that a random d-vector is a vector X = (X1, . . . , Xd) whose
components are themselves random variables. Case d = 2 is sometimes called the bi-
variate case, and the general case d ≥ 2, the multivariate. By implication there is a joint
distribution p(x) = p(x1, . . . , xd), where x = (x1, . . . , xd) is also abbreviated to (xi ), or
alternatively to [xi ] when we wish to emphasise its role as a row matrix.

The expected value of a vector or matrix is defined as the object of the same di-
mension obtained by replacing each entry with its expected value. Thus, in the present
notation E(X ) = [E(Xi )] = [E(X1), . . . , E(Xd)], also denoted by µ, with components
µi = E(Xi ). The covariance matrix of X, denoted by Cov(X ), �X , or just �, is given
by

Cov(X ) = E[(X − µ)T(X − µ)], (10.47a)

with diagonal elements E[(Xi − µi )2] = V (Xi ), (10.47b)

and ij element E[(Xi − µi )(X j − µ j )] = E(Xi X j ) − µiµ j . (10.47c)
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Hence

Cov(X ) = E[XT X ] − µTµ. (10.47d)

Sometimes this is the formula we need. On the other hand it may be more useful to
suppresss the appearance of µ, and this we can easily do by writing Y = X − µ, so that
E(Y ) = 0. Then

Cov(X ) = E(Y TY ), (Y = X − µ, and E(Y ) = 0). (10.47e)

Notice that XT X has ith row equal to Xi times the vector [X1, . . . , Xd], and therefore has
rank 1: every row is a multiple of a single nonzero row (Section 8.2.2), as seen below.

XT X =

⎡
⎢⎢⎣

X1

X2

. . .

Xd

⎤
⎥⎥⎦ [

X1 X2 . . . Xd
] =

⎡
⎢⎢⎣

X2
1 X1 X2 . . . X1 Xd

X2 X1 X2
2 . . . X2 Xd

. . . . . . . . . . . .

Xd X1 Xd X2 . . . X2
d

⎤
⎥⎥⎦ .

Similarly Y TY . It does not follow that Cov(X ) = E(Y TY ) shares the rank 1 property –
indeed Cov(X ) is invertible in the multivariate normal case of Theorem 10.61 below, and
so has full rank d. However, the properties of expected value do suffice to carry positive
semi-definiteness (Section 8.3.3) over to Cov(X ), as we now show.

Theorem 10.54 A correlation/covariance matrix is positive semi-definite.

Proof As in (10.47e) we write the correlation matrix as Cov(X ) = E(Y TY ),
where E(Y ) = 0. Symmetry is immediate, for E(Yi Y j ) = E(Y j Yi ). Now let a be
an arbitrary d-vector. Then aE(Y TY )aT =∑

i, j ai a j E(Yi Y j ) =
∑

i, j E(ai a j Yi Y j ) =
E(
∑

i, j ai a j Yi Y j )= E[(a1Y1 + · · ·+ adYd)2], which cannot be negative. Thus Cov(X )
is by definition positive semi-definite.

Example 10.55 Suppose the components of X = (X1, . . . , Xd) are independent, with
Xi ∼ N (µi , σ

2
i ). Then Cov(X ) has diagonal elements

∑
i i = E[(Xi − µi )2] = σ 2

i ,
whereas if i �= j then

∑
i j = E[(Xi − µi )(X j − µ j )] = E(Xi − µi )E(X j − µ j ) (by

independence) = 0. Thus

Cov(X ) = diag
(
σ 2

i , . . . , σ 2
d

)
(Xi s independent). (10.48)

Theorem 10.56 (a) We have E(AMB) = AE(M)B, where A, B are constant matrices and
M is a matrix of random variables, (b) Cov(XB) = BTCov(X )B, where X is a random
vector for which the product XB exists, (c) Cov(X ± Y ) = Cov(X ) + Cov(Y ) if X, Y are
independent random vectors (Xi and Y j independent for all i, j ).

E(AMB) = AE(M)B,

Cov(XB) = BTCov(X )B,

Cov(X ± Y ) = Cov(X ) + Cov(Y ) (X, Y independent).
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Proof (a) E(AMB)ij = E
(∑

rs air mrsbs j
)

(see (7.17b) =∑
r,s air E(mrs)bsj =

(AE(M)B)ij.
(b) Let E(X ) = µ. Then E(XB) = µB by (a), whence Cov(XB) =

E[(XB−µB)T(XB−µB)]=E[BT(X −µ)T(X −µ)B]= BT E[(X −µ)T(X −µ)]B (by
(a)) = BTCov(X )B.

(c) We may without loss of generality assume X, Y have zero means and argue
as follows. Cov(X ± Y ) = E[(X ± Y )T(X ± Y )] = E(XT X ) + E(Y TY ) ± E(XTY ) ±
E(Y T X ). But X, Y are independent, so E(XT X ) = E(Y TY ) = 0, and Cov(X ± Y ) =
Cov(X )+ Cov(Y ).

10.4.3 The d-dimensional normal/Gaussian distribution

Definition 10.57 Let Q be a symmetric d × d matrix. The associated quadratic form
(Section 8.3.2) in the coordinate variables x1, . . . , xd is q(x) = xQxT =∑

qi j xi x j . A
continuous pdf φ in Rd is called normal and said to be centred at the origin if it has the
form

φ(x) = γ e−q(x)/2, (10.49)

where γ is a constant, and q(x) is positive definite (strictly positive for x �= 0). Then Q
has positive diagonal because setting xi = 1 and other variables zero gives 0 < q(x) =
qii . The constant γ , we recall, is determined from the pdf condition

∫
φ(x)dx = 1, so

γ = 1/(
∫

e−q(x)/2dx).
A normal density centred at a = (a1, . . . , ad) has the form φ(x − a). We see after the

next result that φ is the joint pdf of d normal variables (not necessarily independent), by
showing that each marginal pdf is of normal type. Meanwhile, the special case d = 1
may be written φ(x) = γ e−(x−µ)2/2, in agreement with the earlier definition (9.46).

Lemma 10.58 In the above notation, φ factorises as

φ(x) = γ e−q̄(x1,...,xd−1)/2 · e−y2
d/2qdd , (10.50)

where q̄ is a quadratic form in only the variables x1, . . . , xd−1 and yd = q1d x1 + · · · +
qdd xd . Thus the variables in a normal pdf can be transformed by a matrix A with |A| > 0,
so as to factor out a 1-dimensional normal pdf.

Proof Using the completion of squares technique (Example 8.33) we set Y = X A as
follows: ⎧⎪⎪⎨

⎪⎪⎩
y1 = x1,

. . .

yd−1 = xd−1,

yd =
∑d

i=1 qid xi ,

i.e. A =

⎡
⎢⎢⎢⎣

1 q1d
. . . q2d

1 . . .

0 qdd

⎤
⎥⎥⎥⎦ . (10.51)

Then |A| = qdd > 0. Define the quadratic form q̄(y) = q(x) − y2
d/qdd which, after can-

cellation, involves only the d − 1 variables y1, . . . , yd−1(= x1, . . . , xd−1) because the
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terms of q involving xd may be written in the form qdd x2
d +

∑
i<d 2qid xi xd , and simi-

larly for y2
d/qdd . This gives the required factorisation (10.50).

Theorem 10.59 For n < d, a marginal pdf g(x1, . . . , xn) of a normal d-dimensional pdf
is normal.

Proof It suffices to take n = d − 1, then the result may be applied repeatedly until the
number of variables is reduced to those required. Thus we must show that the marginal
distribution g(x1, . . . , xd−1) = ∫

R φ(x)dxd has the form (10.49). Now, a change of vari-
ables in Lemma 9.73 shows that for any constants a, λ with λ positive we have

∫
R

e−(x+a)2/λdx =
∫

R
e−x2/λdx =

√
λπ. (10.52)

Hence, in (10.50), ∫
R

e−y2
d/2qdd dxd =

∫
R

e−qdd x2
d/2dxd =

√
2π/qdd, (10.53)

independently of the values of x1, . . . , xd−1 fixed during the integration, and so g has the
required form. Finally,

∫
g(x1, . . . , xd−1)dx1 · · · dxd−1 = 1 because

∫
φ(x)dx = 1.

Corollary 10.60 Given a normal random vector X with pdf φ(x) there is a matrix C with
|C | > 0, such that Z= XC is a row vector whose components Zi are independent normal
random variables.

Proof We apply (10.50) d − 1 times to split off d − 1 squares and so express
q(x) as a sum of squares, q(x) = λ1z2

1 + · · · + λd z2
d , where λi > 0, zi = c1i x1 + · · · +

cdi xd , for 1 ≤ i ≤ d . In matrix form Z = XC , where C = [cij]. Since C is the product
of d − 1 linear transformations with positive determinant, |C | > 0 also. The Zi are by
definition independent normal because they have a joint pdf in factorised form: (constant)
�i exp[−λi z2

i ].

Theorem 10.61 Suppose the pdf f (x) of a normal random vector X has matrix Q. Then
Q = Cov(X )−1, and

f (x) = (2π )−d/2|Q|1/2 exp[−1/2(x − µ)Q(x − µ)T]. (10.54)

Proof We suppose without loss of generality that µ = 0 and apply Corollary 10.60. Note
that X = Z P , where P = C−1, and that the pdf of the Gaussian Zi is a constant times
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exp[−z2
i /2σ 2

i ], where σ 2
i = V (Zi ). The form XQXT transforms to Z (PQPT)ZT, with

diagonal matrix

D = PQPT = diag
(
σ−2

1 , . . . , σ−2
d

)
, σ 2

i = V (Zi )
= Cov(Z )−1 by (10.48)
= [CTCov(X )C]−1 by Theorem 10.56(b), since Z = XC
= P Cov(X )−1 PT since P = C−1.

Equality of the first and last lines, PQPT = PCov(X )−1 PT, shows that Q = Cov(X )−1 as
required. In the first integral below we apply the transformation x = z P , which requires
an extra factor |P| (see (10.30)). Let γ denote the constant factor in the pdf of X. Then

1 =
∫

γ e−
1
2 q(x)dx

= γ

∫
|P| exp

[− 1
2

(
z2

1

/
σ 2

1 + · · · + z2
d

/
σ 2

d

)]
dz since x = z P, as noted

= γ |P| ·�i
(
2σ 2

i π
)1/2

by (10.53)

= γ |P|(2π )d/2|D|−1/2 with D as above

= γ |Q|−1/2(2π )d/2 since|D| = |Q| · |P|2 from D = PQPT.

This rearranges to γ = |Q|1/2(2π )−d/2, and the proof is complete.

Example 10.62 Let the random 3-vector X have pdf γ exp[−q(x)/2], where

q(x) = 6x2
1 + 5x2

2 + x2
3 − 4x1x3 − 2x2x3.

(a) Determine the covariance matrix of X and verify that it is positive definite, (b) find
a matrix C with |C | > 0 such that the components of Z = XC are independent, (c) find
the constant, γ .

Solution (a) By definition q(x) =∑
qijxi x j , with qij = qji. This means that, for example,

−4x1x3 is split as −2x1x3 − 2x1x3, and q13 = q31 = −2. Thus, inverting Q by ALGO
8.2 (Section 8.2.3) or by the method of Theorem 7.32 (Cramer’s Rule), we obtain

Q =
⎡
⎣ 6 0 −2

0 5 −1
−2 −1 1

⎤
⎦ , and Cov(X ) = Q−1 = 1

2

⎡
⎣2 1 5

1 1 3
5 3 15

⎤
⎦ .

Positive definiteness holds because �1, �2, �3 = 6, 30, 4 are all positive (Theorem
8.37).

(b) We begin with q(x) and repeat the following. Select a square term, say x2
i , group

all terms involving xi and complete the square for them. Lemma 10.58 (for example)



292 Random vectors

guarantees there will always remain such a squared term until we are done. We calculate
as follows.

q(x) = 6x2
1 + 5x2

2 +
(
x2

3 − 4x1x3 − 2x2x3
)

= 6x2
1 + 5x2

2 + (x3 − 2x1 − x2)2 − 4x1x2 − 4x2
1 − x2

2

= 2x2
1 + 4x2

2 − 4x1x2 + z2
3, where z3 = x3 − 2x1 − x2,

= 2x2
1 + 4

(
x2

2 − x1x2
)+ z2

3

= 2x2
1 + 4

(
x2 − 1

2 x1
)2 − x2

1 + z2
3

= 2z2
1 + 4z2

2 + z2
3,

where ⎧⎨
⎩

z1 = x1,

z2 = −1/2x1 + x2,

z3 = −2x1 − x2 + x3,

i.e. C =
⎡
⎣1 − 1

2 −2
0 1 −1
0 0 1

⎤
⎦ .

(c) We have |Q| = 4, so by Theorem 10.61 the constant is γ = (2π )−3/2|Q|1/2 =
1/π

√
2π .

Theorem 10.63 If (X1, X2) is normally distributed then X1, X2 are independent if and
only if they are uncorrelated, Cov(X1, X2) = 0. More generally, if (X1, . . . , Xd) has a
normal density then (X1, . . . , Xn) and (Xn+1, . . . , Xd) are independent if and only if
Cov(Xi , X j ) = 0 for i ≤ n < j .

Proof Let Cov(Xi , X j ) = 0 for i ≤ n < j . Then the covariance matrix � = Cov(X ),
and inverse Q, have the forms shown below, where �k and its inverse Qk (k = 1, 2) are
n × n:

� =
⎡
⎣ �1 | 0
−−− | − −−

0 | �2

⎤
⎦ , Q =

⎡
⎣ Q1 | 0
−−− | − −−

0 | Q2

⎤
⎦ .

Indeed, block matrix multiplication gives immediately �Q = I . Thus q(x) =
q1(x1, . . . , xn) + q2(xn+1, . . . , xd), for certain quadratic forms q1, q2. This implies that X
has pdf of the formγ e−q1(x1,...,xn)/2 · e−q2(xn+1,...,xd )/2, i.e. (X1, . . . , Xn) and (Xn+1, . . . , Xd)
are independent. The argument may be reversed and so the result follows.

Theorem 10.64 If (X1, . . . , Xd) has a normal density then so does (Xd |X1, . . . , Xd−1).

Proof We may suppose that (X1, . . . , Xd) has the factorised pdf φ(x) of (10.50) and
hence that (X1, . . . , Xd−1) has the marginal distribution g(x1, . . . , xd−1) calculated from
(10.53). The conditional distribution of (Xd |X1, . . . , Xd−1) is therefore

f (xd) = φ/g =
√

qdd/2πe−y2
d/2qdd , (10.55)



10.4 Correlation and its elimination 293

where yd = q1d x1 + · · · + qdd xd . This has the required form, given that x1, . . . , xd−1

are fixed parameters. Indeed f ∼ N (µ, σ 2), with µ = −(q1d x1 + · · · + qd−1, d xd−1)
/qdd, σ

2 = 1/qdd .

Theorem 10.65 A symmetric matrix S is the covariance matrix of a normal distribution
if and only if S is positive definite.

Proof S is the covariance matrix of a multivariate normal random variable ⇔ S has an
inverse Q which is positive definite (Definition 10.57 and Theorem 10.61) ⇔ S itself is
positive definite (Corollary 8.35).

10.4.4 Principal Component Analysis

The title of the major section 10.4 referred not only to correlation but also to its elim-
ination. We have seen in Section 10.4.3 how eliminating correlation in a multivariate
normal distribution is equivalent to re-expressing the variables as normal ones which are
actually independent. Here we discover the possibility and the benefits of eliminating
correlation in the wider context of Principal Component Analysis, or PCA.

Figure 10.10 Karl Pearson
1857–1936.

At the time of its introduction by Pearson (1901)
(see Figure 10.10), and later independent development by
Hotelling (1933), the required intensity of calculation for
PCA limited its practical use. However, modern computers
have opened the way for PCA into deservedly wide and
effective application, as we hope to indicate. The key idea
is to reduce the dimension of data whilst losing nothing of
significance, by transforming coordinate variables to a new
and uncorrelated set. Important applications to data com-
pression (see e.g. Example 10.69) have resulted in PCA
being referred to as the Karhunen–Loève transformation in
that context. Useful references are Jollife (1986), Jackson
(1991), Bishop (1995) and Schalkoff (1992).

Returning from the Gaussian case to d-vectors of random
variables in general, here are some of the cases we have in
mind.

A Points (X, Y ) in the plane, for example:
(i) the outline of a car body (Example 10.69),

(ii) the distribution of small entities on a microscope slide,
(iii) adjacent pixels of a black and white image.

B General vectors (X1, . . . , Xd ), for example:
(iv) successive pixel colour values in a computer image,
(v) successive symbols sent out by a transmitter.

Principal components The principal components of X = (X1, . . . , Xd) are its compo-
nents with respect to an ONB (orthonormal basis) of d-space, this basis being chosen
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to take account of statistical properties of X in an especially useful way. One idea we
use is ordering variables by variance, for which one motivation is that a variable with
larger variance has greater uncertainty and so carries more information (Chapter 12).
The implementation is ALGO 10.1, following a proof and discussion.

Definition 10.66 (PCA) Let X = (X1, . . . , Xd) be a random vector with E(X ) = 0. Let
R be a unit d-vector. If the dot product X · R has greatest variance when R = R1 we
call R1 the first principal axis of X. Restricting R to be orthogonal to R1, we obtain the
second principal axis R2, with X · R2 of maximal variance. We continue this, so that
Rk+1 is orthogonal to R1, . . . , Rk with V (X · Rk+1) maximal for 1 ≤ k ≤ d − 1. The ith
principal component of X is then Yi = X · Ri .

Method of the modal matrix We now describe how the Yi are obtained, show that
the objectives, as so far described, are achieved, and give examples. For this it is not
necessary to posit any normal distribution, or even a joint distribution for X1, . . . , Xd .
We need only the lesser assumption that Cov(X ) is well defined by a joint distribution
for each pair Xi , X j .

Since � = Cov(X ) is symmetric and positive semi-definite (Theorem 10.54) it has
only non-negative eigenvalues (Corollary 8.35), which we may put in descending order:
λ1 ≥ λ2 ≥ · · · ≥ λd . There is (Remark 8.31) an orthonormal set of corresponding eigen-
vectors R1, . . . Rd , forming the rows of the modal matrix M = Rows(Ri ) of �; these
will be our principal axes, as we now show.

Theorem 10.67 (PCA Theorem) Let X = (X1, . . . , Xd) be a random vector with
E(X ) = 0 and let Cov(X ) have eigenvalues λ1 ≥ · · · ≥ λd with corresponding orthonor-
mal eigenvectors R1, . . . , Rd. Then (a) {Ri } is a set of principal axes for X, (b) the prin-
cipal components Yi of X are uncorrelated, with V (Yi ) = λi , (c) if projecting X onto
span{R1, . . . , Rk} (k < d) gives error ε then

E(ε2) = λk+1 + · · · + λd .

Proof (a), (b) We already know that {Ri } is an ONB, so let X have components {Yi } and
write Y = (Yi ). Then for 1 ≤ i ≤ d , see illustration in Figure 10.11,

Yi = X · Ri = X RT
i , (10.56)

Y = XMT, where M = Rows(Ri ). (10.57)

The modal matrix M diagonalises Cov(X ) (Remark 8.31), and, because M is constant,
we have the relation between covariance matrices (Theorem 10.56):

Cov(Y ) = Cov(XMT) = MCov(X )MT = diag(λ1, . . . , λd). (10.58)

This says both that the Yi are uncorrelated and that V (Yi ) = λi . The Yi will be principal
components if the Ri are principal axes, which fact remains to be proved. Consider an
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X

R1

R2Y2

Y3

Y1

R3

Figure 10.11 Component Yi obtained by projecting X onto the ith eigenvector Ri of
Cov(X ) as prescribed in Equation (10.56).

arbitrary d-vector R with components zi with respect to basis {Ri }. We have

X · R = X ·
∑

zi Ri =
∑

zi XRT
i =

∑
zi Yi , by (10.56).

But E(Y ) = E(X MT) = E(X )MT = 0, and the Yi are uncorrelated, so the variance of
X · R is

V
[∑

zi Yi

]
=
∑

z2
i V (Yi ) =

∑
z2

i λi ,

which is greatest when (zi ) = (1, 0, . . . , 0), i.e. when R = R1. Repeating this argument
for R =∑

zi Ri with i ≥ 2 we obtain R = R2, and so on. Thus the Ri are principal axes,
and we have proved (a) and (b). For (c), we observe that, more generally, the error ε in
expanding X with respect to the orthonormal basis {Ri }, then dropping all components
with subscripts in a set S, is given by ε2 = |∑ Yi Ri |2 (i ∈ S) =∑

Y 2
i (i ∈ S), since {Ri }

is an ONB, and so

E[ε2] =
∑

E
[
Y 2

i

] =∑
λi (i ∈ S).

Remark 10.68 If E(X ) �= 0 we subtract E(X ) from X to reduce the mean to zero,
perform our calculation of the approximation, then add the mean back on again. We may
use PCA for two complementary objectives:

1. Principal Component Analysis We focus on, say, the k most significant components
Y1, . . . , Yk .

2. Data compression: the Karhunen–Loève (K–L) transform. This is especially im-
portant for saving space in computer memory, or in reducing the time taken to transmit
images or other information. We discard the least significant components, say Yk+1 to Yd ,
aiming to retain an acceptably close version of the original. Thus a d-component vector
X is transformed into a k-component one (Y1, . . . , Yk), with k < d.

Example 10.69 We first try a case of type (A), the fairly crude outline of a car body
shown in Figure 10.12 with six points marking the notional corners. These points are to
be thought of as instances of a random pair X = (X1, X2). We are given no distributions,
so expected values must be estimated via means. Let the points be (xk

1 , xk
2 ), 1 ≤ k ≤ 6,
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R1

R2

x1           x2

  1.06       4.87
  6.07       2.89
  8.89       4.09
10.30       3.67
11.01       5.40
  3.85       7.58
        Mean
  6.86       4.75

x1 x2

−5.80       0.12
−0.79 −1.86
  2.03     −0.66
  3.44    −1.08
  4.15       0.65
−3.01       2.83

 Coordinates  Reduced to zero
      mean

Figure 10.12 Rough outline of car, with selected points and directions of the ‘principal
components’ they generate.

and write xi = (x1
i , . . . , x6

i ). We use

E(Xi X j ) = 1

6

∑6

k=1
xk

i xk
j = αxi · x j , (10.59)

where we have taken the constant α to be 1/6. A better value in general is 1/5, as we
shall see in Chapter 11, but here the value of α, given that it is fixed and nonzero, does
not affect the result.
We obtain, after reducing x1, x2 to have zero means,

Cov(X ) = 1

6

[
x1 · x1 x1 · x2

x2 · x1 x2 · x2

]
=
[

12.75 −1.68
−1.68 2.25

]
, (10.60)

with eigenvalues λ1 = 13.01, λ2 = 1.99 whose unit eigenvectors R1, R2 form the rows
of the modal matrix

M = Rows(R1, R2) =
[

0.988 −0.155
0.155 0.988

]
. (10.61)

It can be seen that the directions R1, R2 represent to some extent our intuitive view of
the car and the six points, including an uphill inclination. The ‘uphill’ direction/axis R1

corresponds to the higher variance V (Y1) = 13.01, reflecting a more significant feature.

The K–L transform in practice Usually, even if we are given the covariance matrix
�, it has been computed as an estimation from a suitably large number of instances
of X, viewed as a class in which future cases are envisioned to lie. Determining the
modal matrix Rows(R1, . . . , Rd) of � is Principal Component Analysis, and enables us
to perform the K–L transform

X1, . . . , Xd → Y1, . . . , Yk (k < d)

for every new case, thereby compressing its data. Image compression, reducing the data
that defines a computer image, is often performed on 8 × 8 blocks of pixels, with a colour
property such as grey level or redness defined by a vector X = (X1, . . . , X64), 0 ≤ Xi ≤
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class
matrix

H

of
rank d

approximation

H
~

of
rank k

Figure 10.13 The N × d class matrix H is mapped to an N × d matrix H̃ of rank k < d.

255. For generality let us suppose we have a class of N vectors with zero mean (Remark
10.68), forming the rows of a class matrix HN × d . Then the covariance matrix is taken
to be, similarly to (10.59),

� = αH T H (α �= 0). (10.62)

Suppose the rows of H are mapped to d-vectors which lie in a space of dimension k < d,
forming row by row an N × d matrix H̃ . See Figure 10.13.

With PCA on random variables we minimised the expected error in representing
X1, . . . , Xd by Y1, . . . , Yk . Correspondingly, we choose H̃ so as to minimise the mean
squared norm of the difference between a row of H and the corresponding row of H̃ .
Equivalently, we minimise the sum of these squared norms which, by Theorem 8.44,
equals the Frobenius matrix norm of the difference:∥∥H − H̃

∥∥2
F . (10.63)

But Theorem 8.53 with Remark 8.55 tells us this quantity is least when H̃ = Hk , the
projection of H onto the first k rows of the orthogonal matrix V, in the Singular Value
Decomposition of H:

H = U T DV, (10.64)

and D is the N × d diagonal matrix with diagonal elements s1 ≥ s2 ≥ · · · ≥ sd (the
singular values). But V is the modal matrix of αH T H (for any α �= 0), since firstly (10.64)
implies H V T = U T D and hence secondly V (H T H )V T = DT D = diag(s2

1 , . . . , s2
d ).

Conclusion Let V = Rows(Ri ). For each k ≤ d the K–L transform

X → (X · R1, . . . , X · Rk) (10.65)

minimises the mean squared error for mapping d-vectors in the given class into a space
of dimension k. By the matrix norm formula (8.35), and the fact that the eigenvalues λi

of H T H are the squares of the singular values si of H, this mean error equals

λk+1 + · · · + λd, (10.66)
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Figure 10.14 Successively smaller eigenvalues in Example 10.70.

where λi = s2
i is the ith eigenvalue, in descending order, of H T H (cf. Theorem 10.67).

We have the algorithm:

ALGO 10.1 PCA for a matrix H of sample d-vectors, and the K–L transform
to dimension k < d

1. Compute the SV decomposition H = U T DV (or calculate V directly as the
modal matrix of H T H ).
2. Set V = Rows(Ri ) and Vk = [RT

1 . . . RT
k ], the first k columns of V T.

3. Return the ith principal axis as Ri for i = 1, 2, . . . , d .
4. Return the K–L transform as X → X Vk .

Example 10.70 Here we apply ALGO 10.1 to a digital image. It seems appropriate to use
our earlier greyscale image of the inventor of PCA, Karl Pearson. The original 82 × 109
pixels are trimmed to 80 × 104 and partitioned into 8 × 8 blocks, each yielding a sample
64-vector of values in the range 0 to 255. The total of 130 samples form the rows of our
class matrix H after subtracting the mean (Remarks 10.68 and 10.71). We use a Singular
Value Decomposition to obtain the modal matrix V = Rows(Ri ) of H T H . A sample
vector X has principal components {X · Ri }, corresponding in order to the decreasingly
significant eigenvalues λ1, λ2, . . . (see (10.66)) represented in Figure 10.14.

Figure 10.14 indicates that as many of 50% of the principal axes can be neglected in re-
constituting the picture, and thus encouraged we try varying numbers of components, with
approximated pictures as shown in Figure 10.15 (note: the mean has to be added back).

The picture can be reduced to 32 and perhaps down to 20 components without
significant loss of quality. Such excellent results are a pointer to the value of Principal
Component Analysis. As a postscript we show in Figure 10.16 the first five principal
axis vectors, portrayed as 8 × 8 blocks of grey values.

Remark 10.71 (i) (Zero mean) In calculation we have reduced the set of sample vectors
to zero mean before combining them as rows of a matrix H and estimating Cov(X ) by
αH TH . An alternative is to use the matrix B of samples, with sample mean m, and then
the estimate may be written

α[BT B − N (mTm)] (for N samples). (10.67)
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All 64 components 50 components 32 components

20 components 10 components 5 components

Figure 10.15 Greyscale picture of Example 10.70 with varying number of PCA principal
components used for its reconstruction, out of a full complement of 64.

Figure 10.16 The first five (unit) principal axis vectors. Of length 64, they have their
elements regrouped into 8 × 8 blocks for display purposes.

Proof Let B = Rows(B1, . . . , BN ). Then

H T H =
∑

i
(Bi − m)T(Bi − m) by Russian multiplication (7.31)

=
∑

i
Bi

T Bi − mT
∑

Bi −
(∑

i
BT

i

)
m + N (mTm)

= BT B − N (mTm) substituting m = (1/N )
∑

i
Bi .
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(a) (b)

N

d
d

NH H

Figure 10.17 Shape of the class matrix H in case (a) when there are more samples than
the number of dimensions (the usual case), and in (b) when there are fewer samples.

(ii) If the K–L transform is computed, as we have done, via the SVD rather than
straight diagonalisation, the result is numerically stabler (Ripley, 1996) at the price
of a lengthier computation. Although one of the most computationally intensive, the
K–L transform is valuable as a yardstick against which to compare the performance of
candidate transforms for practical use. In particular, the Discrete Cosine Transform is
compared in Section 15.4.2.

(iii) Usually the number N of sample vectors is greater than their dimension d, and
the class matrix H has the shape of (a) in Figure 10.17.

However, should this not be so, and H has the shape of (b), then we can per-
form PCA or the K–L transform much more quickly by the following considerations.
(1) We only require principal axes Ri corresponding to the nonzero eigenvalues λi of
the d × d matrix H T H , which (Theorem 8.39) are the same as the nonzero eigenval-
ues of the smaller matrix H H T. (2) If {Ri } is an orthonormal set of eigenvectors of
HHT corresponding to {λi }, then by Theorem 8.39 an orthonormal set of eigenvectors
for H T H corresponding to {λi }, as desired, is given by {(1/

√
λi )Ri H}.

Example 10.72 (Using the smaller matrix) With 15 samples of dimension 30, we would
perform SVD or diagonalisation on a 15 × 15 matrix rather than 30 × 30, with a single
multiplication by H at the end. However, we illustrate the method with a toy case, where
H has two samples of size 3 (not here reduced to zero mean).

H =
[

1 2 3
4 2 7

]
, H T H =

⎡
⎣17 10 31

10 8 20
31 20 58

⎤
⎦ , HHT =

[
14 29
29 69

]
, only 2 × 2.

We find eigenvectors for HHT of λ1 = 81.466, λ2 = 1.534, with corresponding unit
orthogonal eigenvectors w1 = [0.395 0.919] and w2 = [0.919 −0.395] (apply the SVD
to H T). Thus the required principal axes are[

R1

R2

]
=
[

1/
√

λ1 0
0 1/

√
λ2

] [
w1

w2

]
H

=
[

1/9.026 0
0 1/1.239

] [
0.395 0.919
0.919 −0.395

] [
1 2 3
4 2 7

]
=
[

0.451 0.291 0.844
0.534 −0.846 0.007

]
.

Example 10.73 Cootes et al. (1995) introduced Active Shape Models – using PCA to
produce a variety of new but realistic faces from a set of samples.
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Mode 1

Mode 2

Mode 3

Figure 10.18 Face variants obtained by using only the first three principal components.
In Mode i the ith component yi is increased from left to right, the rest being fixed.

Figure 10.18 is an illustration due to Porncharoensin (2002). Recalling notation,
the principal axes of the sample data are R1, R2, . . . , with corresponding eigenval-
ues/variances λ1 ≥ λ2 ≥ · · · . It was found in this case that 98% of the total variance∑

λi was already present in the leading three components, so new faces were generated
by

y1 R1 + y2 R2 + y3 R3 (−√λi ≤ yi ≤ √
λi ), (10.68)

with yi taking equally spaced values within one standard deviation
√

λi of the mean.

Some further details The sample consisted of 30 faces, rotated and translated into a
standard position, and characterised by 92 positions used as landmarks. In each mode,
29 component values were used; the results in Figure 10.18 are from the first six.

Remarks 10.74 (1) (The invalid straight line problem) Sometimes a dubious straight
line is drawn through a set of experimental points (xi , yi ). In such a case credibility may
be regained by asserting only that the first principal component of the data is shown, and
that a linear relationship between variables is not claimed to exist (see Example 10.69
and Remarks 11.22).

(2) (PCA as feature organiser) To extract information from a random vector X =
(X1, . . . , Xd) we may look for the most significant features, formally described as
being any functions of X1, . . . , Xd . They may be recognisable to human intuition –
such as mean colour value (X1 + · · · + Xd)/d , or functions evidencing the position of
bounding edges (Chapter 15). General features are considered in Section 11.2.2, but in
PCA we explore linear features, those which are linear combinations

∑
ai Xi .
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Exercises 10

1
√

Suppose the random variables X, Y have a joint pdf f (x, y) = x(x + y), 0 ≤ x, y ≤ 1.
Determine the marginal pdfs g(x), h(y) and deduce that X, Y are not independent.

2
√

Daily demand for power is a random variable X with pdf g(x) = xe−x (x > 0), whilst,
independently, supply Y has a pdf h(y) = 2e−2y (y > 0). Breakdown occurs if supply falls
below half the demand; find the probability that this happens.

3
√

Let the dependent variables X, Y have a conditional pdf p(y|x) = γ e−(1/2)(y−x)2
(x, y in R),

where γ = (2π )−1/2. Determine the expectation E(Y |X = a) of Y given X = a (Lemma
9.73 may be useful).

4
√

Use (10.18) to find the pdf of W = XY , given that X, Y are independent random variables,
that X has pdf g(x) = 2x/9, 0 ≤ x ≤ 3, and that Y is uniformly distributed on the interval
[0, 4].

5
√

Find the pdf of S = T + U , where T and U are independent random variables with respective
pdfs f (t) = sin t and g(u) = cos u, on 0 ≤ t, u ≤ 2π . (Note: 2 sin A cos B = sin(A + B) +
sin(A − B).)

6
√

How many times must an unbiased coin be tossed so that we are 99% certain that the relative
frequency of heads is within 0.01 of a half (use the Law of Large Numbers).

7
√

(i) Let X be standard normal and let Y be N (3, 4). Deduce the mgf of Y from that of X
(see Table 10.5 and Equation (10.34)). (ii) Use mgfs to prove the reproductive property of
Poisson random variables. That is, show that if X ∼ Po(λ) and Y ∼ Po(µ) are independent
then X + Y ∼ Po(λ+ µ).

8
√

(i) Show that sin(1/n) = 1/n + O(n−3) as n tends to ∞. (ii) A robust chip gives correct
results if at least 80 of its 100 components are in order. Each component has, independently,
a probability 0.05 of failure on test. Find to two decimal places the probability that the chip
functions correctly when tested. (The required values of � are found in Example 10.47.
Note that �(a) may be neglected for a ≤ −4.)

9
√

X = (X1, X2, X3) is a random vector, where Xi takes values 0, 1 and the pair Xi , X j has a
joint pdf given by P(Xi = α, X j = β) equal to the α, β element of the matrix Mij below
(1 ≤ i, j ≤ 3). Thus, for example, P(X1 = 1, X3 = 0) = 1/3.

M12 =
[

0 1/2
1/2 0

]
, M13 =

[
1/2 0
1/3 1/6

]
, M23 =

[
a b
c 0

]
.

(i) Use M12 and M13 to determine the marginal pdfs pi (α) = P(Xi = α) and hence com-
pute the values of a, b, c in M23. (ii) Find the values of E(Xi ) and E(X2

i ), 1 ≤ i ≤ 3.
(iii) Determine the covariance matrix Cov(X ) (see (10.47a)). Verify that Cov(X ) is
positive semi-definite, of rank 2.

10
√

Let the random vector X = (X1, X2, X3) have pdf γ exp[−q(x)/2], where

q(x) = 8x2
1 + 4x2

2 + x2
3 − 2x1x2 − 4x1x3 − 2x2x3.

(a) Determine the covariance matrix of X, (b) find a matrix A with positive determinant
such that the components of Z = XA are independent, (c) find the constant, γ . (Hint: see
Example 10.62).

11
√

A matrix N of samples of a random d-vector has Singular Value Decomposition N = AT DB.
How may the principal axes of PCA be extracted from this information (give reasons)?
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Sampling and inference

The purpose of this chapter is to provide a modest introduction to the huge and important
topics of sampling and inference, which will serve our purpose in succeeding chapters.
This is not a stand-alone chapter, indeed it provides many illustrations of the significance
of early sections on probability, just as they in turn utilise the preceding linear alge-
bra/matrix results. So what is the present chapter about? The short answer, which will
be amplified section by section, is the interpretation of data, having in mind ultimately
the interpretation of pixel values in computer images.

We begin with the idea of a sample, a sequence of determinations X1, . . . , Xn of
a random variable X. We seek statistics, i.e. functions f (X1, . . . , Xn), to help answer
questions such as (a) given that a distribution is of a certain type: Poisson, exponential,
normal, . . . , how can we estimate the distribution parameters and with what certainty,
(b) given a sample, what is the underlying distribution, again with what certainty?
Sections 11.2, 11.3 and 11.4 utilise the methods of Section 11.1.

In Section 11.2 we introduce the Bayesian approach, distinct from the Bayesian The-
orem, but ultimately based upon it. The idea is to improve on an imprecise model of a
situation or process by utilising every piece of data that can be gathered. The section
concludes with the Bayes pattern classsifer, a first step in object/pattern recognition.

Section 11.3 tackles the problem of simulation, generating a sequence of samples from
a specified distribution, as required for many applications. Most methods start with the
built-in computer sampling from a uniform distribution and proceed to the desired case
on the basis of relevant theoretical results. A nice method of sampling from multivariate
normal distributions (ALGO 11.9) is enabled by the Choleski decomposition, for which
the work is done in Chapter 8.

In the final section of this chapter we apply Bayesian methods to obtain a sample from
a distribution when we have relevant if approximate information but not the explicit
distribution. A key idea is to produce samples as a Markov chain whose stationary
distribution is that sought (Metropolis et al., 1953), an idea rendered very practicable by
an improvement due to Hastings (1970). The general method, known as Markov Chain
Monte Carlo, or MCMC, is becoming well established. Our first application will be to
image restoration.

303
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This all requires techniques such as Bayesian networks, for manipulating the host
of conditional probabilities involved. The local connections between pixel values in
an image are modelled naturally by a Markov Random Field, itself equivalent to a
distribution given by a so-called Gibbsian energy function. We end with the promising
combinatorial approach via network flows.

11.1 Statistical inference

Here are some kinds of questions the theory of statistics is designed to address.

1. The life length of a certain piece of equipment is given by an exponential distribution, but what
is the value of the parameter?

2. Black and white noise on a computer image is governed by a Poisson distribution. But, again,
the parameter is unknown.

3. It is claimed that those who smoke increase their risk of lung cancer. How can this be established
or rebutted?

4. Errors in a certain measurement are believed to be normally distributed. How can we test the
truth of this belief?

In all this we are replacing a question about the real world by one about an assumed
probability distribution by which we aim to model certain aspects of that world. The
standard approach is to start with a sample, meaning a sequence of values x1, . . . , xn

taken by a random variable X. In effect we perform an underlying experiment n times:
say testing n light bulbs to destruction, or examining n computer images.

Next, we compute the value of a statistic, a pre-determined function of the xi such
as their mean x̄ = (x1 + · · · + xn)/n. Finally, perhaps the hardest part, we make an
inference from the value of our statistic, concerning the situation under focus. Because
a sample does not determine the whole, our conclusion will not be deterministic, but
rather a statement about probabilities, such as ‘the probability that smoking causes lung
cancer in 80% of cases is 0.99’, or ‘the best estimate of λ according to a certain criterion
is 2.57’. What such a criterion should be is an issue we shall address.

Values of the normal cdf �(z) sufficient for most examples of this chapter may be found
in Table 9.7, whilst Tables 9.9 and 9.10 are résumés on standard distributions. At this stage
we recapitulate some elementary results that will be used frequently in the sequel. Firstly,
for constants a, b and random variable X we have from Section 9.3 that E(aX + b) =
aE(X ) + b and V (a X + b) = a2V (X ). More generally (Section 10.2.3) for constants
c1, . . . , cn and random variables X1, . . . , Xn , which need not be identically distributed,

E
[∑

ci Xi
] =∑

ci E[Xi ] always,

V
[∑

ci Xi
] =∑

c2
i V [Xi ] if the Xi are independent, or just uncorrelated. (11.1)

11.1.1 Sampling

Definition 11.1 Let X be a random variable. Then a random sample from X is a random
vector (X1, . . . , Xn), where the Xi are independent and each has the same distribution
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as X. We say the Xi are iid X , standing for independent, identically distributed to X. The
same meaning is intended when we say the Xi are (statistical) copies of X. A statistic from
the sample is a function of X1, . . . , Xn . Thus it is a particular kind of random variable
Y = H (X1, . . . , Xn) with its own distribution, called the sampling distribution.

Example 11.2 (Some principal statistics)

(i) X = 1

n

∑n

i=1
Xi , the sample mean,

(ii) S2 = 1

n − 1

∑n

i=1
(Xi − X )2, the sample variance

(iii) Mini (Xi ) and Maxi (Xi ), the sample minimum and maximum.

Notice that all four cases above are indeed functions of the sample (X1, . . . , Xn). To
use them for our ultimate aim of inference we need to know how their distributions
depend on that of the Xi . The reaon for the factor n − 1 when n might be expected, in
(ii), will appear shortly when we consider what makes one statistic preferable to another
for estimating or testing the same thing. We begin with a result holding for any random
variable X.

Distribution of the sample mean

Theorem 11.3 Let the random variable X, not necessarily normal, have expectation µ

and variance σ 2. Then

(a) E(X ) = µ, (b) V (X ) = σ 2/n, (11.2)

and for large n we have approximately
X − µ

σ/
√

n
∼ N (0, 1).

Proof (a) The linearity (11.1) of E yields E(X ) = E( 1
n

∑
i Xi ) = 1

n

∑
i E(Xi ) =

1
n (nµ) = µ. For (b) we argue that V (X ) = V ( 1

n

∑
i Xi ) = (1/n2)V (

∑
i Xi ) =

(1/n2)
∑

i V (Xi ) (since the Xi are independent) = (1/n2)(nσ 2) = σ 2/n. The last part
follows from the Central Limit Theorem (Theorem 10.45) because X is the sum of a
large number of random variables, and taking (X − µ)/(σ/

√
n) reduces it to mean 0,

variance 1.

This general result gives the expectation and variance for X in all cases. The actual
distribution is of course another matter; some commonly used cases are covered in Table
11.1. Here is an example in which the distribution of X is easily found from that of X.

Example 11.4 (Normal sampling mean) By the reproductive property of the normal
distribution (Example 10.41), a sum of independent normal variables is normal, as is a
scalar multiple 1/n thereof, by (9.33), so we only need to determine the expectation and
variance. But these are supplied by (11.2), giving X ∼ N (µ, σ 2/n).

Example 11.5 (Exponential sampling mean) The exponential distribution has nearly a
reproductive property, and we can easily find an exact formula using the mgf, or moment
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Table 11.1. The distribution g(x) of Sn = X1 + · · · + Xn, where
the Xi are iid X (independent, identically distributed to X).
The sampling distribution of the mean, Sn/n, is given by

ng(nx) (normal case N (µ, σ 2/n), exponential �na,n).

Distribution of X g(x), the distribution of Sn = X1 + · · · + Xn

binomial(k, p) binomial(nk, p)
Poisson(λ) Poisson(nλ)
normal, N (µ, σ 2) N (nµ, nσ 2)
gamma: �α,u, G(α, β) �α,nu, G(nα, β)
exponential(α) = �α,1 �α,n

generating function, of Section 10.3.1. The mgfs required are found in Table 10.5. The
mgf of exp(α) is α/(α − t) and hence by (10.35) the mgf of Sn =

∑
i Xi is (α/(α − t))n .

But this is the mgf of �α,n , hence Sn ∼ �α,n , the second of three pdfs we are about to
list. To proceed from this point to the pdf of X we recall from (9.33) that if X has pdf
f (x) then Y = a X has pdf (1/|a|) f (y/a); we set a = 1/n. Hence we have the following
pdfs:

X : �α,l(x) = αe−αx, the exponential distribution,

Sn: �α,n(x) = (αn/�(n))xn−1e−αx, the gamma distribution,

X : n�α,n(nx) = (nαn/�(n))(nx)n−1e−αnx = �nα,n(x).

Exercise Check the last equality.

Example 11.6 Assuming that the height H, in metres, of men in a certain population
follows a normal distribution N (1.8, 0.2), how likely is it that, in a sample of 20 men
selected at random, the mean height is under 1.6 metres?

Solution The sample size is n = 20, so H ∼ N (1.8, 0.2/n) = N (1.8, 0.01). Therefore

P(H < 1.6) = P

(
H − 1.8

0.1
<

1.6 − 1.8

0.1

)
= �

(−0.2

0.1

)
= �(−2) = 0.023,

from Table 9.7. This is a very small probability, suggesting the original hypothesis that
H is N (1.8, 0.2) was most likely inaccurate. The example itself points towards methods
of hypothesis testing we shall develop shortly.

Distribution of the sample variance S2

The following observations concerning a sample (Xi ) from a random variable X are often
useful for simplifying calculations here and later. The first holds for any i (1 ≤ i ≤ n),
the third for any constant, c.

E[(Xi − µ)2] = σ 2, (11.3)

E[(X − µ)2] = σ 2/n = V (X ), (11.4)∑n

i=1
(Xi − X )2 =

∑n

i=1
(Xi − c)2 − n(X − c)2. (11.5)
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Proof (11.3) holds because Xi is a copy of X, whilst (11.4) is a recasting of (11.2).
Thirdly,∑n

i=1
(Xi − X )2 =

∑n

i=1
[(Xi − c) − (X − c)]2

=
∑n

i=1
(Xi − c)2 − 2(X − c)

∑n

i=1
(Xi − c) +

∑n

i=1
(X − c)2

=
∑n

i=1
(Xi − c)2 − 2(X − c)(nX − nc) + n(X − c)2

=
∑n

i=1
(Xi − c)2 − n(X − c)2.

A key role is played by the χ2 distribution, that of a sum of squares of standard normal
random variables. Later we’ll see why the phrase ‘degrees of freedom’ is appropriate,
in the more general context of hypothesis testing, Section 11.1.6. Conveniently, χ2 is a
special case of the gamma distribution (Example 10.20), as we now recall.

If Z = X2
1 + · · · + X2

n, and Xi ,∼ N (0, 1), then we say
Z ∼ χ2

n , the χ2 distribution with n degrees of freedom.
In fact χ2

n = �1/2,n/2,

(11.6a)

where

�α,u(z) = [αu/�(u)]zu−1e−αz, E(Z ) = u/α, V (Z ) = u/α2.

Theorem 11.7 Let U = (U1, . . . , Un) be a random vector of iid variables in N (0, 1) and
let the n × n real matrix A be psd (positive semi-definite). Then the psd form UAUT has
χ2 distribution if and only if A2 = A. In the affirmative case the number of degrees of
freedom is r(A), which equals Tr(A).

Proof We recall two key facts about the normal distribution, from Chapter 10.

(1) A linear combination of independent normal random variables is normal (Section 10.3.2),
(2) If normal random variables are uncorrelated then they are independent (Section 10.4.3).

Because A is by implication symmetric, it may be diagonalised by an orthogonal matrix
P (Theorem 8.30); then we may define inverse linear transformations U = ZP and Z =
UPT, resulting in an expression of the original form as a sum of squares whose coefficients
are the nonzero eigenvalues of A:

UAUT = λ1z2
1 + · · · + λr z2

r (see (8.16) ff), (11.6b)

where r is the rank of A. Now, since the Ui are independent normal random variables,
each component Zi of the vector Z is normal by (1). Further, Cov(U ) = I because the Ui

are N(0, 1), and so Cov(Z ) = PCov(U )PT = PPT = I . That is, the Zi are uncorrelated
and hence, in the light of (2), they are iid in N (0, 1). Thus UAUT is χ2 if and only if
λ1 = · · · = λr = 1.
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Suppose A2 = A. Then the eigenvalues λ of A satisfy λ2 = λ (see Remark 8.9), hence
they are all 0 or 1. Thus UAUT = Z1

2 + · · · + Zn
2 is χr

2, where r = r (A), which equals
the sum of the eigenvalues in this case because each nonzero eigenvalue is a 1. But this
sum equals Tr(A) by Lemma 8.5. Suppose conversely that all λi = 1 in (11.6b). Then
PAPT = diag(1 . . . 1, 0 . . . 0) = D, say, where D2 = D, and so A2 = PTDP · PT D P =
PT D2 P = PTDP = A, completing the proof.

Corollary 11.8 If X ∼ N (µ, σ 2), then the sampling sum of squares statistic
T (X1, . . . , Xn) =∑

i (Xi − X )2 has distribution given by T/σ 2 ∼ χn−1
2.

Proof Define new random variables Ui = (Xi − µ)/σ , in N (0, 1). Then by definition
X = �Xi/n and U = �Ui/n, giving U = (X − µ)/σ and Ui − U = (Xi − X )/σ . But
notice that, although {Xi } are iid X and {Ui } are iid N (0, 1) we do not claim that {Ui − U }
are independent. We do know that T is a quadratic form in the Ui , and will see that
Theorem 11.7 may be applied. To this end we define an n-vector j and an n × n matrix
J , of 1s:

j = [1 . . . 1]1×n, J = [1]n×n, (11.7a)

for which, clearly, jT j,= J, and J 2 = n J. (11.7b)

Given this, we may argue as follows, where U = [U1 . . . Un],

T/σ 2 =∑
(Ui − U )2 =∑

U 2
i − nU

2
by (11.5) with c = 0

= UUT − n(U jT/n)2 since
∑

Ui = U jT

= UUT − U jTjU T/n since U jT is a scalar

= UUT − UJUT/n by (11.7b)
= UAUT, where A = I − J/n is symmetric,

and A2 = I 2 − 2IJ/n + J 2/n2 = I − 2J/n + J/n (by (11.7b)) = A. Thus Theorem
11.7 applies to give T/σ 2 ∼ χ2, whose number of degrees of freedom equals Tr(A) =
Tr(I ) − Tr(J )/n = n − n/n = n − 1, as required.

Consequence for S2 With this result we quickly obtain the distribution of S2 (Exercise
11.1), which is simply a multiple of the sum of squares variable T above. We see that by
choosing this multiple to be not the obvious 1/n but instead 1/(n − 1) we ensure that
our estimator for σ 2 actually has σ 2 as expected value. In more detail, [(n − 1)/σ 2]S2 =
T/σ 2 ∼ χ2

n−1 by Corollary 11.8, with expected value n − 1 by (11.6), and hence hence
E(S2) = (σ 2/(n − 1)) × (n − 1) = σ 2.

Getting the desired expectation, and other isues for an estimator, are discussed in the
next section. Meanwhile, we have proved the following corollary.

Corollary 11.9 For a normal distribution, the statistic S2 satisfies E(S2) = σ 2.
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Sampling distribution of the Min/Max It is useful to include this case, listed as Ex-
ample 11.2(iii) at the start of the section, for it is in some sense extremal, and a source
of counterexamples; see also Example 11.13.

Theorem 11.10 Let the continuous random variable X have pdf f(x) and cdf F(x). Then
the statistic M = Max(Xi ) of a sample has pdf g(m) = nF(m)n−1 f (m). For Min(Xi )
the pdf is h(m) = n[1 − F(m)]n−1 f (m).

Proof Denoting the cdf of M by G(m) we have, since the Xi are iid X: G(m) = P(M ≤
m) = P[Xi ≤ m for all i] = F(m)n . Differentiating: g(m) = nF(m)n−1dF/dm =
nF(m)n−1 f (m). The case of Min(Xi ) is left as an exercise.

11.1.2 Estimating parameters

Let X be a random variable. Suppose we know the general type of the distribution of X
(e.g. normal, Poisson, etc.). Can we find a statistic g(X1, . . . , Xn) for estimating µ, σ 2

or more generally a parameter θ upon which the distribution depends? Given g, called
an estimator for θ , the procedure may be summarised as follows.

1. Take a sample from X – that is: perform the underlying experiment, say n times. obtaining a
value xi for Xi (1 ≤ i ≤ n). Call Xi an observation, realisation, or instance of Xi .

2. Compute the estimate θ̂ = g(x1, . . . , xn) of θ .

Definition 11.11 We need criteria for comparing candidate estimators, and the most
basic criterion is that an estimator be unbiased in the sense that it has expected value
equal to the parameter it estimates: E(θ̂) = θ . Given this, we may ask how wildly the
estimate can depart from the expected value – what is its variance? If the variance is least
possible for an unbiased estimate, we say θ̂ is efficient. Thirdly, it is desirable that θ̂ get
closer to θ as the sample becomes large, or more formally we say that θ̂ is a consistent
estimator of θ if

P(|θ̂ − θ | ≤ ε) → 1 as n →∞ (11.8)

for arbitrarily small positive ε. A linear estimator is one of the form
∑

i ai Xi , a quadratic
estimator has the form

∑
i, j qij Xi X j , where the ai and qij are constants. For a summary

see Table 11.3. The following result often enables consistency to be established.

Theorem 11.12 If E(θ̂ ) → θ and V (θ̂ ) → 0 as n →∞, then θ̂ is a consistent estimator.

Proof The Chebychev inequality in the form (9.48a): P(|X − c| > ε) ≤ ε−2 E[(X −
c)2], with X = θ̂ , c = θ , yields

ε2 P(|θ̂ − θ > ε) ≤ E[(θ̂ − θ)2]

= E[(θ̂ − E(θ̂ ) + E(θ̂ ) − θ )2]

= E[{θ̂ − E(θ̂)}2 + {E(θ̂ ) − θ}2 + 2{θ̂ − E(θ̂)}{E(θ̂ ) − θ}].
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Letting n →∞ we have E(θ̂ ) − θ → 0 and E[(θ̂ − E(θ̂ ))2] = V (θ̂ ) → 0. Hence the
above right hand side tends to zero, implying ε2 P(|θ̂ − θ | > ε) → 0. But ε is fixed
(though it may be very small), so P(|θ̂ − θ | > ε) → 0, and hence P(|θ̂ − θ | ≤ ε) → 1.

Exercise Show that the estimate X is unbiased and consistent (Theorem 11.12 and
Equation (11.2)).

Example 11.13 (Unbiased does not imply efficient) A device has lifetime T with expo-
nential pdf f (t) = αe−αt . Determine the pdf h (x) of M = Min(Ti ) for a sample of size
n. Deduce that nM is unbiased but not efficient.

Solution We need F(t) = ∫
αe−αx dx (0 ≤ x ≤ t) = 1 − e−αt , in order to compute the pdf

from Theorem 11.10, which gives h(t) = ne−αt(n−1)αe−αt = nαe−nαt , the exponential
distribution with parameter nα. Now we consider the estimate nM for the mean 1/α. For
the efficiency check we need the fact that V (T ) = σ 2/n = 1/nα2. Recalling that, from
Table 9.6,

∫ ∞

0
xne−x dx = n! for n = 0, 1, 2, . . . , (11.9)

we calculate that E(M) = 1/nα, hence E(nM) = 1/α, which is unbiased. On the other
hand, V (M) = 1/n2α2, giving V (nM) = 1/α2, which is greater than V (T ) (= 1/nα2)
for n ≥ 2, and hence not least possible. Thus nM is unbiased but not efficient.

Theorem 11.14 If X is any random variable then X is the unique efficient linear estimator
for µ, and S2 is the unique efficient quadratic estimator for σ 2.

Proof We have already seen that X is unbiased. Consider any unbiased estimator
µ̂ =∑

i ai Xi . We have E(µ̂) =∑
i ai E(Xi ) =

∑
i aiµ = µ

∑
i ai , hence

∑
i ai = 1.

But V (µ̂) =∑
i a2

i V (Xi ) = σ 2 ∑
i a2

i . Given the constraint on
∑

ai , this is least when
ai = 1/n because we may write∑

i a2
i =

∑
i (ai − 1/n)2 + (2/n)

∑
i ai − n/n2. (11.10)

And the estimate with ai = 1/n is
∑

(1/n)Xi , in other words, X . For consistency we
may apply Theorem 11.12, because E(X ) = µ, a special case of E(θ̂) → θ , and V (X ) =
σ 2/n → 0, as n →∞. Hence X is consistent. We omit the proof for S2, but see Remark
11.15 below.

Remark 11.15 Notice that the estimators for µ, σ are symmetric in X1, . . . , Xn . This
accords with the intuition that an estimate should not depend upon the order in which
the sample observations of Xi are made. A theorem of Halmos asserts that efficiency
implies this symmetry property. Assuming it can considerably shorten a proof. Thus a
quadratic estimator for σ 2 has the form α

∑
i X2

i + β
∑

i �= j Xi X j . For the rest, see e.g.
Lloyd (1984b).
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Table 11.2. Some estimators, their expectation and variance. The last line holds
approximately for non-normal distributions.

parameter θ estimator θ̂ E(θ̂ ) V (θ̂ ) reference

µ X µ σ 2/n (11.2)
σ 2 S2 σ 2 O(1/n) Lloyd (1948b), p. 31
σXY SXY σXY (11.11)
ρ r ρ + O(1/n) O(1/n) Lloyd (1948b), p. 53–4

(normal case) (normal case)

Theorem 11.16 (Bivariate case) If (X,Y) is a random vector and (x1, y1), . . . , (xn, yn)
a sample then the unique efficient bilinear estimator of σXY is

SXY = 1

n − 1

∑n

i=1
(xi − x)(yi − y) = 1

n − 1

∑n

i=1
xi yi − x y. (11.11)

The corresponding estimate for the correlation coefficient ρ = σXY /σXσY is r =
SXY/SX SY , where S2

X = SXX(= S2).
The ‘big O’ notation of Table 11.2 was introduced in Section 10.3.3: f (n) = O(g(n))

means that | f (n)| ≤ K |g(n)| for some constant K and all sufficiently large n. Notice that
the last line of Table 11.2 implies that E(r ) → ρ and V (r ) → 0, as n →∞, and so the
estimator r is consistent by Theorem 11.12. We end this section with a résumé of some
definitions, Table 11.3.

Table 11.3. Some potential properties of an estimator based on
a sample X1, . . . , Xn. In particular X , S2 and SXY are the

unique efficient estimators for X, σ 2 and σXY that are
respectively linear, quadratic and bilinear.

property meaning

unbiased E(θ̂ ) = θ
efficient unbiased AND has minimum variance
consistent P(|θ̂ − θ | ≤ ε) → 1 as n →∞ for all ε > 0

linear of form
∑

i ai Xi (ai constant)

quadratic of form
∑

i, j qij Xi X j (qij constant)

bilinear of form
∑

i, j qij Xi Y j (qij constant)

symmetric unchanged by any reordering of X1, . . . , Xn

11.1.3 Maximum likelihood estimates

So far we have obtained estimates for distribution parameters θ in a distribution-free
manner, that is, independently of which distribution applies. Now we introduce the
maximum likelihood estimate (MLE), chosen to maximise the probability of our specific
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c - h/2 c + h/2c

xi

f(x)

x

Figure 11.1 A point xi is ‘quantised’ to the centre c of the small interval in which it falls.

sample values (x1, . . . , xn) being obtained. We proceed by means of a likelihood function,
defined as follows. In the present notation, let

f (x ; θ ) =
{

the pdf of X (at x), if X is continuous,

P(X = x), if X is discrete.

For example, f (x ; θ ) = θe−xθ if X follows an exponential distribution with parameter
θ , as in Example 11.18 below. Then the likelihood function for a sample of size n is the
product

L(x1, . . . , xn; θ) = f (x1; θ ) · · · f (xn; θ ). (11.12)

In the discrete case this is P(X = X1, . . . , Xn = xn), considered as a function of θ . On
the other hand, if X is continuous, we may argue that the values of xi actually recorded
do not vary continuously but lie on a 1-dimensional mesh of some width h, as depicted
in Figure 11.1. Then

P(X observed as c) = P(c − h/2 ≤ X ≤ c + h/2)

=
∫ c+h/2

c−h/2
f (x)dx = h f (x) approx.

Thus P(X = x1, . . . , Xn = xn) is proportional to the likelihood function L, which is,
therefore, in the continuous case as well as the discrete, a function whose maximisation
results in the greatest probability of x1, . . . , xn being obtained.

Usually there is a unique value of θ to maximise L, conveniently found as the solution of
the equation dL/dθ = 0, or the simultaneous equations {∂L/∂θi = 0} if θ is a vector (θi ).
Also, because L already has the structure of a product, we normally differentiate instead
the log-likelihood function l(θ ) = ln L , which has the simplifying effect of turning prod-
ucts into sums. The solution for θ is unchanged, because ln is a strictly increasing function.

Example 11.17 It is known that a proportion θ of independently manufactured disk
drives are defective, where 0 < θ < 1. A sample of size n is inspected, and k are found
to be defective. Find the maximum likelihood estimate of θ .

Solution Let Xi be the random variable taking the value 1 if the ith article tested was
defective, otherwise 0. Then (X1, . . . , Xn) is a sample from the random variable X with

f (0; θ ) = P(X = 0) = 1 − θ,

f (1; θ ) = P(X = 1) = θ, and hence for x = 0, 1:

f (x ; θ ) = P(X = x) = θ x (1 − θ )1−x .



11.1 Statistical inference 313

Table 11.4. Signs of dl/dθ for θ everywhere to left and
right of the turning point k/n.

θ → k/n →
dl/dθ + 0 −

Thus the likelihood and log-likelihood functions are

L(x1, . . . , xn; θ ) = �iθ
xi (1 − θ )1−xi = θ k(1 − θ )n−k, where k =∑

i xi ,

l(θ ) = ln(L) = k ln θ + (n − k) ln(1 − θ ).

Differentiating:
∂l

∂θ
= k

θ
− n − k

1 − θ
= k/n − θ

θ (1 − θ )/n
,

which is zero if and only if θ = k/n. But how do we know we have found a maximum in
the desired sense of greatest value, and not, for example, a local maximum or minimum?
One simple way to ascertain this is to note the sign of dl/dθ for θ everywhere to left and
right of k/n, as indicated by the respective arrows in Table 11.4 of signs.

This sign pattern holds in spite of the denominator factors θ (1 − θ), since 0 < θ < 1.
Thus a unique maximum (greatest value) is achieved at θ = k/n, which is therefore the
maximum likelihood estimate.

Example 11.18 A type of electronic camera has lifetime following an exponential dis-
tribution. The lifetimes of n cameras are recorded, giving a sample (T1, . . . , Tn). Find
the distribution parameter α which maximises the likelihood function.

Solution The actual pdf for T may be written f (t ; α) = αe−αt , and we calculate thus:

L(t1, . . . , tn; α) = �iαe−αti = αne−α�ti (likelihood function),

l(α) = ln L = n ln α − α�ti (log-likelihood function),

dl

dα
= n

α
− �ti = 0, and

d2l

dα2
= − n

α2
< 0.

Thus α̂ = n/�ti gives the unique maximum of the likelihood function, and hence the
required ML estimate. It is no coincidence that α̂ = 1/T , as the invariance result below
shows.

Theorem 11.19 (Invariance of the MLE) If the MLE for θ is θ̂ and h is any function,
then the MLE for h(θ ) is h(θ̂ ).

Proof Suppose the pdf f (x ; θ ) becomes g(x ; φ), where φ = h(θ). If h is bijective then
for given x the effect of replacing θ by φ is to move points in the graph of f horizontally
but not vertically, moving the abscissa of the unique maximum from θ to h(θ ).

Suppose h is many to one, for example h(θ) = θ2, as illustrated in Figure 11.2. Then the
pdf becomes g(x ; φ) = f (x ; h−1(φ)), in the sense that for each x, φ, one of the perhaps
many values of h−1(φ) must be chosen. The choice should be the greatest value, and
hence we are still left with a unique maximum (see Figure 11.2), occurring at φ = h(θ ).
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0 0
2

θ

f(x; θ)

−θθ θ

g(x; φ) − two possible values

φ
ˆ ˆ ˆ

Figure 11.2 If h(θ ) = θ2 = φ there are possibly two values for g(x ; φ) = f (x ; h−1(θ )).
Nevertheless, a unique maximum of f implies a unique maximum for g.

Example 11.20 We find the ML estimate for θ = (µ, σ ) in the case X is normally dis-
tributed. Firstly, X has pdf f (x) = (2πσ 2)−1/2 exp[−(x − µ)2/2σ 2], so our calculation
is as follows.

L(x1, . . . , xn; µ, σ ) = (2πσ 2)−n/2 exp
∑

i
[−(xi − µ)2/2σ 2],

l(θ ) = ln L = −n ln σ − (n/2) ln(2π ) −
∑

i
(xi − µ)2/2σ 2.

To determine the estimates of µ and σ we have ∂l/∂µ = 0 = ∂l/∂σ . We shall see that,
happily, it suffices to consider these two simultaneous equations individually.

(i)
∂l

∂µ
=
∑

i
(xi − µ)/σ 2 = n

σ 2
(x − µ), since x = �xi/n.

This shows that, for given nonzero σ , there is a unique maximum ( �= greatest value)
of l as µ varies, given by µ = x . It is because this value of µ does not depend on σ

that the simultaneous equations for µ, σ are unlinked (may be solved separately and the
results combined).

(ii)
∂l

∂σ
= − n

σ
+
∑

i
(xi − µ)2/σ 3 = n

σ 3

[
1
n

∑
i
(xi − µ)2 − σ 2

]
.

Hence as σ (> 0) varies there is a unique maximum of l, which occurs when σ 2 =
1
n

∑
i (xi − µ)2. Thus the ML estimate for θ = (µ, σ ) is

(
x,

√
1
n

∑
i (xi − µ)2

)
.

Remarks 11.21 (1) The example above illustrates invariance of the MLE (Theorem
11.19): the same result for σ is obtained whether Equation (ii) is used to solve ∂l/∂σ = 0
for σ directly, or to solve for σ 2 with square root extraction.

(2) The result we obtained by the MLE is not unbiased, for it equals (n − 1)/n times
the unbiased estimate S2 (see Corollary 11.9); however, it therefore becomes unbiased
if we multiply by n/(n − 1) (this scaling method sometimes has disadvantages). Thus,
as n increases, the MLE approaches an unbiased estimate, since n/(n − 1) → 1.

(3) In the general case θ = (θ1, . . . , θk) a solution of {∂l/∂θi = 0}1≤i≤k is a maxi-
mum if and only if the matrix (−H ) is positive definite, where H is the Hessian matrix
[∂2l/∂θi∂θ j ].

(4) For n large and θ real we have approximately (Lloyd, 1948b)

θ̂ ∼ N (θ, 1/B), where B = nE
[(

∂
∂θ

ln f (x ; θ)
)2]

.
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Figure 11.3 Fitting a ‘best’ curve of various types to data points. (a) Straight line,
(b) parabola, (c) another approach is needed to structure this data (see Example 10.69).

11.1.4 Regression and least squares estimates

In its basic form, regression is the process of estimating an assumed relationship y = f (x)
between an independent variable x and a dependent variable y. We shall begin with no
assumption concerning probability, and then see how probability enters in a natural way.

Suppose we are given a set of data points (x1, y1), . . . , (xn, yn). In finding suitable
f (x) there are two crucial questions:

Question 1 How wide is the class of functions f (x) to be considered?
Question 2 How do we decide which permissible f (x) is ‘best’?

Answer 1 One common approach is to restrict the class to polynomial functions, such
as the parabolas y = ax2 + bx + c, or straight lines y = a + bx , of Figure 11.3. Our
discussion will cover all these, but we shall focus for now on straight line approximations.

Later we shall have use for a piecewise linear function (the graph is a sequence of
straight line segments) and will exploit the fact that a power relation y = αxβ is equivalent
to ln y = ln α + β ln x , a linear relation between variables u = ln x and v = ln y (see
fractal dimension, Section 16.1.2). In the same way, other relations may be explored
through the linear approach by a change of variables.

Figure 11.4 Gauss on a stamp.

Answer 2 The method of least squares The general
method of minimising a sum of squares dates at least
back to Gauss, whose remarkable work on many fronts
was recently celebrated by a special stamp issue (see
Figure 11.4). Here we take a permitted choice of f (x)
which minimises the sum of squared deviations of the
curve y = f (x) from the value yi at xi ,

S =
∑

i
[yi − f (xi )]

2. (11.13)

Such a curve is called the best fitting one for the data.
It is also known as the regression curve of y on x, and
y = f (x) is the regression equation of y on x.

In the linear case y = a + bx we must minimise S as a function of a and b, where

S =
∑

i
[yi − a − bxi ]

2. (11.14)
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To do so we consider the solutions of the simultaneous equations ∂S/∂a = 0, ∂S/∂b = 0,

or: ∑n

i=1
2(yi − a − bxi )(−1) = 0,

∑n

i=1
2(yi − a − bxi )(−xi ) = 0.

Substituting x = �xi/n, and y = �yi/n in these equations yields∑
yi = na + b

∑
xi , or y = a + bx, (11.15)∑

xi yi = a
∑

xi + b
∑

x2
i . (11.16)

These are the normal equations for the parameters a, b. Using the first to eliminate a
from the second, we obtain solutions a = â, b = b̂, then express them in terms of SXY

and S2
X by (11.11). The result is

b̂ =
∑

xi yi − nx y∑
x2

i − nx2 =
∑

(xi − x)(yi − y)∑
(xi − x)2

= SXY

S2
X

,

â = y − b̂x .

(11.17)

So far we have, strictly speaking, only established a unique turning point of the quantity
S. To show this gives the least value of S it suffices now to observe that S becomes
arbitrarily large as a and b vary in (11.14). Formulae (11.17) will be used in Chapter 16
both to compute fractal dimensions and in the service of fractal image compression.

Errors and probability Suppose we regard the deviations ei = f (xi ) − a − bxi as
random errors in observation/measurement, or random ‘noise’, letting ei be a random
variable with expected value zero. Then we have random variables Yi , where

Yi = a + bxi + ei , E(Yi ) = a + bxi , (11.18)

the second equality holding since, by hypothesis, xi , a and b, though unknown, have
fixed values. We claim that the estimates for a, b are unbiased (the second assertion will
be proven):

E(â) = a, E(b̂) = b. (11.19)

Firstly, nE(y) = �E(yi )=�E(a + bxi + ei )=na + b�xi =n(a + bx), hence E(y) =
a + bx , and

[�(xi − x)2]E(b̂) = E[�(xi − x)(yi − y)] from Formula (11.17)
= �(xi − x)(E(yi ) − E(y)) since the xs are constants
= �(xi − x)(a + bxi − a − bx) using (11.15)
= [�(xi − x)2]b, implying E(b̂) = b.

Remarks 11.22 (1) Notice that the regression equation may be written y − y = b(x −
x), removing the need to estimate a. Further, if we assume V (ei ) = σ 2 then it can be
shown that b̂ has variance σ 2/�(xi − x2). (2) The direction of the regression line is
that of the leading principal axis of PCA (Section 10.4.4), as applied to the data points.
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(3) Next we see how the assumption of a specific but commonly arising distribution for
the ei brings the least squares and maximum likelihood estimates together.

Theorem 11.23 If the deviations ei are iid N (0, σ 2) for some fixed σ , then the least
squares and maximum likelihood estimates for the regression coefficients a, b coincide.

Proof Since ei is N (0, σ 2), the random variable Yi = a + bxi + ei is N (a + bxi , σ
2)

and so has pdf

fi (yi ) = (2πσ 2)−1/2 exp[−(yi − a − bxi )
2/2σ 2]. (11.20)

Hence the required likelihood and log-likelihood functions for computing the MLE are

L(a, b) = (2πσ 2)−n/2�i exp[−(yi − a − bxi )
2/2σ 2],

l(a, b) = − n
2 ln(2πσ 2) −∑

i (yi − a − bxi )2/2σ 2.

Because of the minus sign before the
∑

, this expression is greatest when
∑

i (yi −
a − bxi )2 is least. That is, we minimise the sum of squared deviations as in the least
squares estimate.

Example 11.24 (Weakness of LSE) Here is an example in which the LSE and MLE differ.
Suppose variables x, y are related by y = α + βx and that data points (xi , yi ) contain an
everywhere positive error in yi , say the constant k. Then LSE regression minimises the
sum of squared deviations to zero and produces a best fit exactly k units above the true
one, as in Figure 11.5.

This is unfortunate, but does the MLE fare any better? Given a true relation y =
α + βx , we have

yi = α + βx + k, as measured, and

Yi = a + bxi + ei , the corresponding random variable,

where the error random variable ei may be considered discrete (its values lying on a fine
mesh), with P(ei = r ) = 1 if r = k, otherwise zero. Then the pdf of Yi and the likelihood
function are

f (yi ) = P(Yi = yi ) = P(a + bxi + ei = α + βxi + k),

L(a, b) = �i P[ei = (α − a) + (β − b)xi + k)]

= 1, if (α − a) + (β − b)xi = 0 for 1 ≤ i ≤ n, otherwise zero.

y

x

5
5

5
5

5 Least squares fit – too high

 MLE estimate – the true line

Figure 11.5 The result of regression by least squares under constant error k in the
y-coordinates.
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Hence there is a unique maximum of L(a, b) and it occurs at (a, b) = (α, β), giving the
true relation between x and y. The LSE gave a poor result because it fails to take into
account the error distribution, and in this case the failure was costly.

Remark 11.25 In spite of its limitations, least squares has provided much service since
its promulgation by Gauss. A fairly general context for the method is that of the ‘black
box’ problem: given an input x = (xi ), how do we achieve the correct process within the
box to get the desired output y = (y j ).

Input Output‘Black box’

Some examples are medical image → probability of tumour, and scanned page →
characters identified. If we possess a sufficiently representative set of input–output pairs
we can sum the squares of deviations between (suitably measured) desired and actual
output, and minimise over all permissible changes of parameters and other structures
within the black box.

As exemplified above, a procedure that incorporates knowledge of pdfs may well give
better results. But suppose we do know something, albeit vague, that we feel should
somehow aid the process. How can we incorporate such information? A viable answer
to this has been developed only in recent times, as an approach via Bayes’ Theorem, and
its introductory steps will be the topic of our next major section, 11.2. Before that we
must cover the topic of hypothesis testing.

11.1.5 Hypothesis testing

In previous sections we saw how parameters of a distribution may be estimated, starting
from a sample. This gives us a working hypothesis. Now we introduce hypothesis testing
(applied in the next section to the wider question of a distribution’s type – normal or
otherwise). As before, we proceed via a sample and appropriate statistic, which we shall
usually denote by Z. The method uses the following general components.

H0: the null hypothesis – e.g. fair coin, Poisson distribution,
H1: the alternative hypothesis, to be accepted if H0 is rejected,

decision rule: accept H0 if z lies in a certain interval I, the
acceptance region,

significance level: the probability p = P(z /∈ I |H0), of rejecting H0

when it is true.

Remark 11.26 We choose an acceptable significance level, say 0.05 (also referred to as
5%), and use it along with H0 to determine what the acceptance region should be. Suppose
the hypothesis tells us that Z is N (0, 1). From tables: 0.95 = P(−1.96 ≤ Z ≤ 1.96) and
so, as illustrated in Figure 11.6,
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Figure 11.6 Normal distribution N (0, 1) showing acceptance and rejection regions for
significance level 0.05, the probability of rejection being represented by the hatched
areas together.

significance level 0.05 ⇒ acceptance region −1.96 ≤ Z ≤ 1.96,

significance level 0.01 ⇒ acceptance region −2.58 ≤ Z ≤ 2.58.

Example 11.27 It is reputed that the weights of individuals in the province of
Archangel follow a normal distribution with mean 140 units and variance 900.
(a) In a sample of 60 people, the average weight was 160. Test the hypothesis at the
5% level of significance. (b) Does the conclusion change if a sample size 30 produces
the same average as before? (c) What conclusions may we draw from a sample size 10
(same average) at the 5% and at the 1% significance levels?

Solution Formally, we take H0: the weight W is N (140, 900). For (a) the sample size is
60 so by (11.2) the sample mean W is in N (µ, σ 2/n) = N (140, 15). To benefit from the
normality of these distributions, we may use the statistic

Z = W − 140√
15

∼ N (0, 1).

Then, by Remark 11.26, the significance level 0.05 has acceptance region −1.96 ≤ Z ≤
1.96. The measured value of our statistic is

z = 160 − 140√
15

= 5.16 approx.,

which lies outside the acceptance region, and therefore we must reject the hypothesis H0.
(b) With sample size n = 30, we have σ 2/n = 30, W is in N (140, 30), and the

statistic Z = (W − 140)/
√

30 is in N (0, 1). This time the statistic has value z =
(160 − 140)/

√
30 = 3.65 approx., so again we reject the hypothesis.

(c) With sample size n = 10 we obtain σ 2/n = 90, so Z = (W − 140)/
√

90 is in
N (0, 1). The measured statistic now becomes z = (160 − 140)/

√
90 = 2.11 approx.,

and at last the hypothesis is not rejected out of hand. At the 5% level it still lies outside
the acceptance region, but if the level is chosen as 1%, with acceptance region −2.58 ≤
z ≤ 2.58, then z = 2.1 lies within, and we should accept the hypothesis (the evidence
against is too slight with this small sample).
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Area 0.05
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Figure 11.7 Standard normal distribution, showing 1-tailed acceptance region for sig-
nificance level 0.05, the probability represented by the single hatched area.

Remark 11.28 (Testing for differences/comparing populations) Suppose (1) X1, X2 are
random variables from different and not necessarily normal distributions, with E(Xi ) =
µi and V (Xi ) = σ 2

i , and (2) large samples of sizes ni (≥ 30) are taken so that X1, X2

may be treated as normal and the variances replaced by their estimates S2
i . Then, using

(11.1) and the reproducing property (Example 10.41), we have:

Conclusion The random variable X1 − X2 is N
(
µ1 − µ2, S2

1/n1 + S2
2/n2

)
.

Remark 11.29 (The 1-tailed significance test) This is used when z ≥ 0 is enforced for
the standard normal statistic z (or z ≤ 0 with analogous conclusions to those below). The
only way we can be wrong (z /∈ I ) is for z to be too large, hence only the positive ‘tail’
of the distribution applies. As illustrated in Figure 11.7, this means that for significance
level 0.05 the acceptance region should be [0, 1.65] because 0.05 = 1 −�(1.65). For
level 0.01 the region is [0, 2.33].

Example 11.30 A new process is designed to manufacture a washing machine part to
finer tolerance. To test this, a batch of 50 is tested from each process, old and new. Result:
the mean error is reduced from 173.3 microns to 171.5 with respective variance estimates
6.4 and 7.1. Is there an improvement at the 0.05 significance level?

Solution Let X1, X2 be random variables for the old and the new error, with true means
µ1, µ2. We are not asked to consider the possibility of the new system being actually
worse, only whether it is better, so we shall need a 1-tailed approach (see Remark 11.29).
We must decide between the hypotheses

H0: µ2 = µ1, there is no difference in accuracy between the tow processes;

H1: µ2 > µ1, the new process is better.

According to Remark 11.28, the random variable X1 − X2 is N (µ1 − µ2, S2
1/50 +

S2
2/50). Thus, under the hypothesis H0, X1 − X2 is N (0, 0.27) and the statistic

Z = X1 − X2√
0.27

is standard normal, N (0, 1).
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Here its value is z = 173.3−171.5
0.52 = 3.46 approx., which is outside the 1-tailed acceptance

region of [0, 1.65] indicated in Figure 11.7. We conclude that the null hypothesis must
be rejected and the claim of improvement accepted.

11.1.6 Hypothesis testing – distributions

Having applied the hypothesis testing method to parameters, we proceed to distribution
types. But how do we make a good guess as to type? We listed in Section 9.4.3 some
general scenarios that lead to the normal distribution, then in Section 10.3.3 we introduced
the Central Limit Theorem, a theoretical basis for a wide range of situations in which
normal is at least a good approximation. However, it is not necessary to appeal always to
the normal distribution when others such as Poisson and exponential are more precise.
The latter, for example, plays a key role in reliability theory, as can be predicted on
theoretical grounds (Meyer, 1970). Indeed, we shall shortly exemplify the exponential
case.

fi

ai+1

Hypothetical pdf

ai

Figure 11.8 Histogram of observed frequencies of events Ai in N independent trials,
compared with possible pdf governing this behaviour.

Both as a pointer to what the distribution might be, and for testing our conclusion
(hypothesis), we need the idea of observed versus theoretical frequency. Referring to
Figure 11.8, let the range of a random variable X be divided into k non-overlapping
intervals by points a1, . . . , ak+1, where the end points can represent±∞. Let X1, . . . , X N

be the result of a sample of N trials. We proceed with the following nomenclature.

N : the number of trials (sample size) of variable X,

Ai : the event that X falls into interval [ai , ai+1),
pi : the probability P(Ai ) computed on the basis of our hypothesised

distribution,
fi : the observed frequency, or number of times Ai occurs in N

independent trials.

Thus fi is Bin(N, pi ), with N large, and so by the Central Limit Theorem (Theorem
10.45) fi is approximately normal, whatever the distribution of X might be. Furthermore,
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Area 0.05
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2 4 6 10 12 146.815

Figure 11.9 The graph of the pdf χ2 with two degrees of freedom, showing (1-tailed)
acceptance region for significance level 0.05, the probability represented by the hatched
area.

E( fi ) = N pi , the theoretical frequency, and V ( fi ) = N pi (1 − pi ), by (9.42). Hence we
are led to consider the statistics

Zi = fi − N pi√
N pi (1 − pi )

∼ N (0, 1), (11.21)

Z = Z2
1 + · · · + Z2

k . (11.22)

There are two obstacles to Z being a statistic we can use, with known distribution χ2
k

(see (11.6)). Firstly, the Zi are dependent, for∑
i [N pi (1 − pi )]1/2 Zi =

∑
i ( fi − N pi ) =

∑
fi − N

∑
pi = N − N = 0.

Secondly, if we estimate unknown parameters from the sample, other dependencies will
be introduced. The problem was solved by Pearson (1900) in a remarkable result stated
below (see also Lloyd, 1984b); notice the change to simpler denominators compared
with (11.21).

Theorem 11.31 (Pearson) With the notation above, the statistic

Z =
k∑

i=1

( fi − N pi )2

N pi
(11.23)

has distribution converging to χ2
k−m−1, where m is the number of parameters estimated by

means of the sample. (Note: v = k − m − 1 is called the number of degrees of freedom,
Remark 10.20).

The testing procedure As a sum of squares, the statistic Z cannot be negative, so the
test is 1-tailed, as seen in Figure 11.9. We accept H0, the hypothesised distribution, if
z lies in [0, C], with C taken from Table 11.5. Otherwise we reject H0.

Example 11.32 (Testing for completely specified distribution) It is believed that the
lifetime of the famous bulb tree follows an exponential distribution with mean 200 years.
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Table 11.5. Values C for which P(χ2
ν > C) = α, the significance level.

α\ν 1 2 3 4 5 6

0.01 6.635 9.210 11.345 13.277 15.086 16.812
0.05 3.841 5.991 7.815 9.488 11.071 12.592

Table 11.6. Theoretical and observed frequencies, N pi and fi , for
events A1 to A4 (Example 11.32).

i ai F(ai ) pi N pi fi

1 0 0 0.39 58.5 48
2 100 1−e−1/2 0.24 36.0 39
3 200 1−e−1 0.15 22.5 34
4 300 1−e−3/2 0.22 33.0 29
5 ∞ 1 — — —

Test this at the 5% significance level, given the following records of lifetimes of 150
trees.

0–100: 48 trees, 100–200: 39 trees, 200–300: 34 trees, over 300: 29 trees.

Solution Assuming the lifetime T is exponential (Table 9.10), the pdf is f (t) =
βe−βt (t ≥ 0), whereβ = 1/E(T ) = 0.005, and the cdf is F(t) = ∫ t

0 f (x)dx = 1 − e−βt .
We let Ai be the event: T falls in interval [ai , ai+1), where (ai ) = (0, 100, 200, 300,∞).
The theoretical frequencies are Npi , where N = 150 and pi = P(Ai ) = F(ai+1) −
F(ai ). These are shown in Table 11.6, compared with the observed frequencies.

Since the number of events is k = 4 and there are no unknown parameters to estimate,
the number of degrees of freedom given by Theorem 11.31 is 4 − 1 = 3. From Table 11.5
the acceptance region for significance level 0.05 is [0, C] with C= 7.815. Our statistic is

z = (48 − 58.5)2

58.5
+ (39 − 36)2

36
+ (34 − 22.5)2

22.5
+ (29 − 33)2

33
= 8.49.

Since z > 7.815, the specified distribution must be rejected.

Example 11.33 (Testing for a normal distribution, parameters unspecified) It is believed
that the pollution factor X of silicon produced by a certain process is normally distributed.
A sample of 250 specimens led to the following figures for the various ranges of X . Test
the normal hypothesis at the 5% significance level (assume estimates of 17.0 and 7.1 for
mean and variance).

0 to 12: 7 cases, 12 to 15: 49 cases, 15 to 18: 109 cases, 18 to 21: 67 cases, over 21: 18 cases.

Solution With estimates of E(X ), V (X ) at µ = 17.0 and σ 2 = 7.1 (omitting the ‘hats’),
and the normal hypothesis on X, the variable Y = (X − µ)/σ is N (0, 1). We let Ai be
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Table 11.7. Theoretical and observed frequencies, NPi and fi ,
for events A1 to A5.

i ai bi �(bi ) pi N pi fi

1 0 −6.30 0 0.032 8 7
2 12 −1.85 0.032 0.198 49.6 49
3 15 −0.74 0.230 0.414 103.5 109
4 18 0.37 0.644 0.287 71.8 67
5 21 1.48 0.931 0.069 17.3 18
6 ∞ ∞ 1 — — —

the event that X falls into the interval [ai , ai+1), where (ai ) = (0, 12, 15, 18, 21,∞). To
use the standard normal tables it is convenient to set bi = (ai − µ)/σ . Then the the-
oretical frequencies are N pi , where N = 250 and pi = P(Ai ) = P(ai ≤ X < ai+1) =
P(bi ≤ Y < bi+1) = �(bi+1) −�(bi ). These are shown in Table 11.7, compared with
the observed frequencies.

Since the number of events is k = 5 and there are two unknown parameters estimated,
the number of degrees of freedom given by Theorem 11.31 is 5 − 1 − 2 = 2. From
Table 11.5 the acceptance region for significance level 0.05 is [0, C] with C = 5.991.
Our statistic is

z = (7 − 8)2

8
+ (49 − 49.6)2

49.6
+ (109 − 103.5)2

103.5
+ (67 − 71.8)2

71.8
+ (18 − 17.3)2

17.3
= 0.771.

Since z < 5.991, the claim of normality is to be accepted (cf. Sections 11.3 and 11.4.3).

Further examples For additional examples and solutions on the topics of this section
see Spiegel et al. (2000).

11.2 The Bayesian approach

We are interested in the kind of input–output problems represented by Table 11.8. What
calculation procedure, represented by the box of Remark 11.25, will convert input into
desirable output?

Much depends on the type and quantity of data at our disposal, such as

1. scanned image,
2. training sets – examples of correct input–output pairs,
3. knowledge of relevant pdfs.

Historically, a tough problem has been how to build into the solution process everything
we know about the problem, including ideas we are unable to express precisely. It is
clearer now how to squeeze useful information from an initial vague yet reasonable belief,
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Table 11.8. Some desirable input–output pairs.

input output

image pixel values list of edges

” ” list of objects
medical image probability of tumour
digital image of eye probability of various pathologies
scanned page characters recognised
sequence of voice frequencies boundaries of consonants

using techniques with Bayes’ Theorem. That is our present topic, drawing strongly on
the multivariate normal distribution of Section 10.4.3.

11.2.1 From prior to posterior

The vague belief is typically expressed in the form of a pdf. We don’t have to worry
(too much) about it being ‘wrong’ because it is to be progressively improved in the light
of data. The choice involves (1) a functional form for the pdf; the fallback position is
of course a normal pdf, but we may have reason to choose another, (2) one or more
parameters, expressed in general as a vector θ = (θ1, . . . , θn) lying in some subset � of
n-space. In the normal case we can express uncertainty by a large value of σ .

p(θ)
Bayes’ Theorem

p(θ|x)

Posterior pdfPrior pdf

Figure 11.10 The basic structure of the Bayes method for estimating probabilities.

In what follows we shall make the common assumption that the problem is reduced
to parameter estimation for the pdf of a random variable or vector X. The Bayesian
method for the examples we have in mind, exemplified by those of Table 11.8, begins
with Figure 11.10. Here a weak prior assumption about the distribution of θ is converted
by Bayes’ Theorem into a posterior version p(θ |x), meaning one computed in the light
of an observation x of X:

p(θ |x) = p(x |θ)p(θ )

p(x)
. (11.24)

Note that x could be replaced by a sequence of observations of X, and that, although
we have used continuous notation, it is easy to represent the corresponding discrete
calculation in a similar manner, with � in place of integration. It is useful to write
(11.24) alternatively as

p(θ |x) ∝ p(x |θ )p(θ), (11.25)

where ∝ means ‘is proportional to’ and, because p(θ |x) is a pdf and so has inte-
gral 1 over the range of θ , the proportionality or normalisation constant 1/p(x) is
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Table 11.9. Some examples of θ and its range �.

Distribution θ �

Bin(n, p) p [0, 1]
Po(λ) λ (0, ∞)

N(µ, σ 2) (µ, σ ) R × [0,∞)

determined by

p(x) =
∫

�

p(x |θ)p(θ )dθ. (11.26)

In general we may need to evaluate this integral by a numerical method, but, if, as in
the next example, the integrand is a constant multiple of a standard pdf (see Table 9.10),
then the value of 1/p(x) may be inferred and the integration bypassed. Moreover, in
Section 11.4 we consider Markov Chain Monte Carlo methods, in which we do not need
an explicit normalising constant because only a ratio of pdfs is required. Some standard
cases of θ and � are noted in Table 11.9. The goal of the Bayesian method is to arrive
at a narrowly peaked pdf for the unknown parameter (suitably generalised in higher
dimensions of �).

Example 11.34 (see Lloyd, 1984c) Companies A, B propose to use a new technique of
chip fabrication. A normally distributed amount X ∼ N (µ, 42) of a noxious substance is
involved, and the proposers need best possible information about µ. On general grounds
µ is governed by a normal pdf, and both parties elect to start from their own choice
of prior N (µ0, σ

2
0 ) and update it in the light of data, using the Bayesian method. Their

choices and the consequences are shown below.

Company A. They are very uncertain and express this by using a relatively large variance,
choosing as prior pA(µ) ∼ N (40, 82).
Company B. Their wider experience leads them to choose prior pB(µ) ∼ N (50, 22).

The results are shown in Figure 11.11. Notice that, at first, the successive posterior
updates of the vague prior pA change the more rapidly, and approach those of pB . By
40 samples the results are very close to each other and considerably narrowed in peak,
but significant improvement is still possible, for by 100 samples the peak is narrower
and has risen to a maximum of height 1. Thus the aim of the Bayesian method has been
achieved.

Analysis To determine explicitly what has happened here, we recall a formula used
earlier for the likelihood function. The independence of samples Xi of a random variable
X, whose pdf depends on a parameter θ , means that

p(x1, . . . , xn | θ ) = �i p(xi | θ ). (11.27)
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Figure 11.11 The priors of Companies A and B in Example 11.34, and their updates
(corresponding posteriors) after 1, 3, 8, 40 and 100 samples. The pA curve is left of the
pB until they coincide.

Note that previously the likelihood function p(x1, . . . , xn | θ) was used to find a unique
estimate for θ . Here with Bayes we do more: we find a pdf for θ by using prior knowledge.

Notation 11.35 (Continuing Example 11.34) The role of θ is played by µ: we assume
X is N (µ, σ 2) with σ known and seek a pdf for µ. Denote the prior by p0(µ), with
posterior pn(µ) after taking account of the n-sized sample x = (x1, . . . , xn). Our first
step is to determine p(x |µ) from (11.27) using the hypothesis that xi has pdf p(xi |µ) =
φ((xi − µ)/σ ), where φ is the standard normal distribution (9.44). Then we can apply
(11.25). We begin with

p(x |µ) = �i p(xi |µ) = �iφ((xi − µ)/σ )

= �i (2πσ 2)−1/2e−(xi−µ)/2σ 2

= (2πσ 2)−n/2 exp [−∑
i (xi − µ)2/2σ 2].
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By the choice of prior,

p0(µ) = φ((µ − µ0)/σ0) = (
2πσ 2

0

)−1/2
exp

[− (µ− µ0)2/2σ 2
0

]
.

Hence the following posterior, where the k j are ‘constants’, independent of µ:

pn(µ|x) ∝ k1 p(x | µ)p0(µ) by (11.25)

= k2 exp
[−∑

i (xi − µ)2/2σ 2 − (µ− µ0)2/2σ 2
0

]
= k2 exp

[−(∑i x2
i − 2µ

∑
i x + nµ2

)
/2σ 2− (

µ2 − 2µµ0 +µ2
0

)
/2σ 2

0

]
= k2 exp

[−µ2
(
n/2σ 2 + 1/2σ 2

0

)+ µ
(∑

xi/σ
2 + µ0/σ

2
0

)+ k3
]

= k4 exp
[−(µ− µn)2/2σ 2

n

] ∼ N
(
µn, σ

2
n

)
,

where k3 contributes a factor ek3 to k4, and µn, σn are ‘constants’ which can be determined
by equating coefficients of µ and µ2 in the last two lines (this is formalised in Lemma
11.37). The result (using

∑
i xi = nx), is

1/σ 2
n = n/σ 2 + 1/σ 2

0 , µn/σ
2
n = nx/σ 2 + µ0/σ

2
0 ,

which on substituting the expression for 1/σ 2
n into the second equation yields

µn = nσ 2
0

nσ 2
0 + σ 2

x + σ 2

nσ 2
0 + σ 2

µ0,

σ 2
n = σ 2

0 σ 2

nσ 2
0 + σ 2

.

(11.28)

And, as implied above, since pn(µ | x) is a pdf, the form obtained shows it to be
N (µn, σ

2
0 ). The constant k4 is therefore (2πσ 2

n )−1/2.

Exercise Write down the constant k2 as a multiple of k1.

Remarks 11.36 (1) Equations (11.28) show that the effect of the specific choice of prior
parameters µ0, σ0 fades away as n increases, because µn = x/(1 + σ 2/nσ 2

0 ) + O(1/n),
which tends to x as n →∞. Also, clearly σ 2

0 →. (For O(1/n), see Section 10.3.3.)
(2) Dependence on the samples xi is via the symmetric expression x , and so, for a

given set {xi }, the order of observation is unimportant. Also, Equation (11.27) shows
that it does not matter whether we update sample by sample, or combine samples, taking
x = (xi ).

(3) After 100 samples the more flexible prior’s successor, though indistinguishable in
our Figure 11.11 illustration from that of prior B, has slightly outperformed it in having a
mean 47.24, marginally closer to the underlying value of the ‘true’ mean 47 of X than B’s
mean of 47.36. The variances of both are indistinguishable from 0.40. The value of x was
47.26. Notice that the Bayesian process has converged to a complete pdf for the mean µ.

(4) Later, the methods of the above example will be extended for the purpose
of assigning digital images into pre-defined classes with associated probabilities, in
accordance with the agenda shown in Table 11.8, with which we began this section.
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In order to produce Figure 11.11 we had to generate, to order, a sequence of
samples whose frequencies followed a prescribed distribution, in this case the normal
distribution. How to do this in general is the topic of the next major section, 11.3.
We conclude the present section with a result useful for calculation, based upon the
equating of coefficients technique which led to (11.28). Once stated, it can be used to
considerably simplify such calculations.

Lemma 11.37 (i) Let a, b, c be constants, with a > 0. Then

exp[−(ax2 + bx + c)] = k exp [−(x − m)2/2s2], (11.29a)∫
R exp [−(ax2 + bx + c)] dx = k

√
π/a, (11.29b)

where a = 1/2s2, m = −b/2a and k = exp [(b2 − 4ac)/4a]. (ii) Up to a constant
multiple, a finite product of normal pdfs �i φ[(x − mi )/si ] is normal with mean M,
variance

∑2, where

1

�2
=
∑

i

1

s2
i

,
M

�2
=
∑

i

mi

s2
i

. (11.30)

Proof (i) Completing the square,

ax2 + bx + c = a

(
x + b

2a

)2

− b2 − 4ac

4a
= (x − m)2

2s2
− b2 − 4ac

4a
,

and equating coefficients of x2 and x gives the expressions for a, m and k. The integral
may be evaluated by a gamma function or by direct substitution in (10.52).

(ii) The point of this result is that it is not multivariate; only a single variable,
x, is involved in the factors. Using the definition of φ and properties of the
exponential function, we have �iφ[(x − mi )/si ] = �i exp[−(x − mi )2/2s2

i ] =
− exp

∑
i [(x − mi )2/2s2

i ], and hence must show that∑
i

[
(x − mi )2/2s2

i

] = (x − M)2/2�2 + K

holds for some constant K, if and only if (11.30) holds. But (11.30) is the result of
equating coefficients of x2 and then of x in the equation above. This completes the proof.

Example 11.38 (i) We express the fourth power of φ[(x − a)/σ ] as a normal pdf f ∼
N (M, �2), up to a constant multiple. Relations (11.30) give 1/�2 = 4/σ 2 and M/�2 =
4a/σ 2, whence � = σ/2 and M = a.

(ii) Let us see what difference the new formula makes to the derivation of (11.28).
Using the proportionality symbol, we may write

Pn(µ | x) ∝ p(x | µ)p0(m) ∝ �i p(xi | µ)p0(µ)

∝ �iφ((xi − µ)/σ ) φ((µ− µ0)/σ0)

∝ φ((µ− M)/S), with µ as variable in place of x in Lemma 11.37,
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whence 1/S2 = n/σ 2 + 1/σ 2
0 and M/S2 = (

∑
xi )/σ 2 + µ0/σ

2
0 . Substituting as before,

we obtain (11.28), with M as µn and S as σn . For another ‘real life’ case, see Example
11.75.

Exercise Express the fifth power similarly, in Example 11.38(i).

11.2.2 Bayes pattern classifiers

In the previous section we discussed a Bayesian approach to squeezing as much informa-
tion as possible out of a set of samples, having in mind, for example, the parameters of a
distribution of some assumed type. Now we consider the problem of object recognition,
interpreted as allocating an image (or part thereof) to one of a given list of classes. Some
examples are (a) a digital image of a human retina → certain pathologies or none, (b)
body scan image → tumour or benign growth, (c) scanned page area → font character,
(d) remote sensing image → weather pattern, or which military hardware, or . . .

The digital image may be improved for the purpose by some form of pre-processing,
for example to bring out boundaries more sharply and to identify subregions. The input to
our automatic classifier is a pattern, or pattern vector, x = (x1, . . . , xn), where each xi is
a number which is the value of a feature, or descriptor, of the image (features were briefly
discussed in PCA, Remark 10.74(2)). Simple examples are perimeter, area, number of
holes, but there are more detailed and sophisticated choices, some of which are indicated
in Table 11.10. cf. Gonzalez and Woods (1993) and Vranic and Saupe (2001a,b).

Table 11.10. Some features/descriptors xi for a digital image.

type some details

geometrical area, perimeter, diameter, curvature at special points
(approximated)

topological number of connected components, of holes
spatial moments mrs =

∑
xr ys over image pixels (x, y)

principal axis vectors see Chapter 10
histogram moments e.g. mr =

∑
gr fg , where g denotes a grey level and fg

its relative frequency amongst the pixel grey values
Fourier descriptors certain coefficients in the Discrete Fourier Transform of

a colour component (see Chapter 15)

A pattern class is a family of patterns with some common properties. We suppose
an image is to be classified into one of an allowable set of M classes w1, . . . , wM . This
classification process is also known as pattern recognition, or PR for short, for our
machine is to recognise to which class each offered pattern x belongs.

Decision-theoretic methods We consider a decision theoretic method, meaning we seek
M decision functions di (x) (1 ≤ i ≤ M) such that

if x ∈ wi then di (x) > d j (x) for j �= i. (11.31)
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Class w1

Class w2

x1

x2

Figure 11.12 In the plane, with points x = (x1, x2), the decision functions d1(x) = x2
and d2(x) = x1 + 1 define a decision boundary d12(x) = x2 − x1 − 1 = 0, for separating
two classes of vectors in the plane.

This implies that if x is in w j then di (x) < d j (x) and, defining

dij(x) = di (x) − d j (x) (i �= j), (11.32)

we may say that the pattern vectors of distinct classes wi , w j lie on opposite sides
of the decision boundary di j (x) = 0, with wi on the positive side because by (11.31)
x ∈ wi ⇒ di j (x) > 0. The result is that the classes are partitioned off from each other
by a set of MC2 decision boundaries (Notation 9.11), where dij(x) = −dji(x), so that dij

and dji specify the same boundary, and other coincidences may occur.

The Bayes minimum risk classifier We suppose that each mis-classification imposes a
quantifiable penalty (e.g. a result of mis-diagnosis) and aim to minimise the average loss.
Let Lkj be the loss incurred when a wk pattern x is assigned to class w j , and p(wk |x) the
conditional probability that x is from wk . Then the mean/expected loss r j (x) in assigning
x to w j is given by

r j (x) =
∑M

k=1
p(x is from wk) × (loss in this case)

=
∑M

k=1
Lkj P(wk |x)

= 1

p(x)

∑M

k=1
Lkj p(x |wk)p(wk) by Bayes’ Theorem, (10.11).

The classifier should assign x to that w j for which the loss r j is least amongst
r1(x), . . . , rM (x). For simplicity suppose the loss function is 0 for correct decisions
and 1 for incorrect ones. That is, Lkj = 1 − δk j , where δk j , called the Kronecker delta,
equals 1 if k = j , and otherwise 0. Because we are only concerned with the relative
magnitudes of the rs, which are unaffected by the value of p(x), we may drop the factor
p(x) and take

r j (x) =
∑M

k=1
(1 − δk j )p(x |wk)p(wk)

=
∑M

k=1
p(x |wk)p(wk) −

∑M

k=1
δk j p(x |wk)p(wk)

= p(x) − p(x |w j )p(w j ) by Total Probability, (10.10),

from the definition of δk j . Thus, once more dropping the p(x), we should assign x to class
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wi if, for all j �= i, p(x |wi )p(wi ) > p(x |w j )p(w j ). This expresses the Bayes classifier
as a decision theoretic method with functions

di (x) = p(x |wi )p(wi ). (11.33)

Implementation To operate a Bayes classifier we need the values of p(wi ), which are
usually not hard to estimate, and of p(x |wi ). The latter is usually assumed to follow
a multivariate normal distribution. Suppose for class w = wi we have a matrix S of N
samples x, with mean m (x and m are n-vectors but we shall not bolden them here). Using
the estimate of the covariance matrix � from (10.67) we may write∑ = (1/N )STS − mTm, and Q = �−1, (11.34)

giving the required multivariate normal pdf from (10.54) as

p(x |w) = (2π )−n/2|Q|1/2 exp[−(1/2)(x − m)Q(x − m)T], (11.35)

where Q is thus the matrix of a quadratic form (x − m)Q(x − m)T in n variables. Because
of the exponential part it is easier to work with the natural logarithm ln of the above, and it
is valid to do so for the comparisons we propose because ln is a strictly increasing function.
We take decision functions (11.33), restoring the subscripts: di (x) = ln[p(x |wi )p(wi )] =
ln p(x |wi ) + ln p(wi ), or

di (x) = ln p(wi ) + (1/2) ln |Qi | − (1/2)(x − mi )Qi (x − mi )
T, (11.36)

where the term −(n/2) ln(2π ), common to all di , is omitted.

Example 11.39 (The distance classifier) Consider the very special case p(wi ) = 1/M
and all �i (and hence all Qi ) equal to the identity matrix I. Then ln |Qi | = ln(1) = 0
and di (x) = − ln M − (1/2)(x − mi )(x − mi )T = − ln M − (1/2)‖x − mi‖2, resulting
in the assignment x → wi if x is closer to mi than to any m j ( j �= i). This method is the
distance classifier, and is a form of n-dimensional quantisation (Section 18.3.4) in which
the n-vector x is quantised to (i.e. replaced by) the nearest of a chosen set of representative
vectors mi . A decision boundary is necessarily a hyperplane, a subset defined by a single
linear equation; in fact the boundary condition di (x) = d j (x) is converted by the relation
(x − m)(x − m)T = xxT − 2mxT + mmT into the linear equation

2(mi − m j )x
T = ‖mi‖2 − ‖m j‖2 (boundary). (11.37)

Thus, given any regular or irregular distribution of points mi , these boundaries partition n-
space into n-dimensional polyhedra Pi = {x ∈ Rn:‖x − mi‖ ≤ ‖x − m j‖ for all j �= i}.
Such polyhedra are called Voronoi regions and are extensively and interestingly studied
in Conway & Sloane (1988). A simple 2-dimensional example is Figure 11.13(a), the
honeycomb of regular hexagons obtained by taking the mi as hexagon centres. The edges
are recovered by (11.37). In 3-space we can obtain the partition into cubes but also into
more exotic possibilities (Coxeter, 1973).

Example 11.40 Generalising the previous example to the case p(wi ) = 1/M and
all Qi equal to some fixed Q, not necessarily the identity, we obtain formally the
same as before, but with distance defined by ‖u‖1 = uQuT (this is a true distance,
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(b)(a)

Figure 11.13 Partitions of the plane obtained by inserting decision boundary lines where
the points mi are (a) centres of a honeycomb partition (thereby recovering the hexagonal
edges), (b) randomly scattered points. In either case, a boundary edge is the perpendicular
bisector of the line joining the points mi , m j that define it.

001 011

111

010 x

y

z

Figure 11.14 The ringed sample points have the same covariance matrix as the set of
their antipodes, in this cube.

for d(x, y) = ‖x − y‖ satisfes the axioms: (a) d(x, y) ≥ 0, and d(x, y) > 0 if x �= y,
(b) d(y, x) = d(x, y), (c) d(x, z) ≤ d(x, y) + d(y, z)). Now ‖x − mi‖1 = ‖x − m j‖2

gives the hyperplane

2(mi − m j )QxT = mi QmT
i − m j QmT

j . (11.38)

For an example we observe that the covariance matrix of a set of sample points is
unchanged under (a) translation x → x + a, since the mean also changes by a, and (b)
the reflection transformation x →−x . Hence in the cube of Figure 11.14 � is the same
for the four ringed sample vertices (class 1) and for their antipodes (class 2).

For computation we use the matrix S of ringed sample points, with mean m1 =
(1/4)[1 3 3]. Then, with the ordering 001, 011, 010, 111, we obtain, noting that
m2 = (1/4)[3 1 1],

∑ = 1

4
STS − mTm = 1

4

⎡
⎣0 0 0 1

0 1 1 1
1 1 0 1

⎤
⎦
⎡
⎢⎢⎣

0 0 1
0 1 1
0 1 0
1 1 1

⎤
⎥⎥⎦− 1

16

⎡
⎣1

3
3

⎤
⎦[1 3 3

]

= 1

16

⎡
⎣3 1 1

1 3 −1
1 −1 3

⎤
⎦ ,

Q =∑−1 = 4

⎡
⎣ 2 −1 −1
−1 2 1
−1 1 2

⎤
⎦ ,

whence (11.38) gives decision boundary d12 : −x1 + x2 + x3 = 2.
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w1

w2

w3

Figure 11.15 Average case of a certain type of face. The classes are w1: eye, w2: mouth,
and w3: nose.

x1
20 4 6 8 10

2

0

4

6

8

10

x2

Figure 11.16 Three classes partitioned by Bayes decision boundaries. Notice the bound-
aries are curves rather than straight lines, reflecting the general case of unequal covariance
matrices. See Example 11.41.

Exercise Locate the decision boundary in Figure 11.14 (hint: where does it cut cube
edges?).

Example 11.41 (A general Bayes classifier) We suppose certain regions of a set of
scanned faces have been identified and are to be automatically allocated by a Bayes
classifier to classes w1: eye, w2: mouth, and w3: nose. Just two features will be selected,
so that the process can be portrayed in the plane:

x1 = aspect ratio (height over width) of a bounding box,

x2 = most frequent grey level.

Figure 11.15 represents the average of a (fictitious) sample set of faces, and the spread
of pattern/feature vectors x is shown in Figure 11.16 with classes distinguished by point
size; Bayesian decision boundaries are determined by (11.36). Assuming the points in
each class to be governed by a bivariate normal distribution, the means and covariance
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matrices are estimated from class samples of equal size 12 (generated by ALGO 11.9 of
Section 11.3), using (11.34).

It is not just a happy coincidence that the curved boundaries can be shortened so as
to radiate out from a single point and still partition the classes from each other, for at
the intersection of, say, boundary d1(x, y) = d2(x, y) with boundary d1(x, y) = d3(x, y)
there holds d2(x, y) = d3(x, y). Thus all three boundaries contain the point given by

d1(x, y) = d2(x, y) = d3(x, y). (11.39)

In the next section we introduce methods for simulation which will be required for the
further development of the Bayes approach in Section 11.4.

References Useful references for the Bayesian approach are: Bishop (1995), Lloyd
(1984c), Leonard & Hsu (1999) and Ripley (1996). A survey of priors for shape analysis
in images is given by Dryden & Mardia (1998), Chapter 11.

11.3 Simulation

11.3.1 The idea of simulation

If a thing cannot, but must, be done, then simulation is a possible way forward. Cannot
may refer for example to expense, danger, or inability to solve or even formulate nec-
essary equations. Things simulated can be terrestrial or space flight, weather, explosion,
a country’s economy, the effect of noise. The last is a case of wide relevance to our
topics of image processing and object recognition. Section 11.4 takes up the problem of
simulation from a pdf we cannot precisely state. In the present context, simulation comes
down to generating a random sample {Xi } from a given distribution f (x). In other words,
we generate a sequence X1, . . . , X N in such a way that the frequencies of the various
range values attained by the Xi are governed by f (x), say. That is, as N increases

1

N
|{i : a ≤ Xi ≤ b}| →

∫ b

a
f (x)dx, or

1

N
|{i : Xi = a}| → p(a). (11.40)

Each Xi is called a random variate and is said to be drawn from f (x). A simple and
immediate application is an estimate of E(X ) from the generated sample:

µ̂ = 1

N
(Xi + · · · + X N ). (11.41)

With large N we expect something like Figure 11.17.

11.3.2 Basis: the uniform distribution

Let U (a, b) denote a uniform distribution on the closed interval [a, b]. The pdf is thus
f (x) = 1/(b − a) (a ≤ x ≤ b). The most frequent use is that of U (0, 1), on which almost
all variate generation is based (the 10 we describe may be sourced in the text from
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Table 11.11. Summary: some main pdfs and their
sample generation.

distribution source of variate generation method

uniform (11.42)
general pdf ALGO 11.1
exponential ALGO 11.2
beta ALGO 11.5
gamma ALGO 11.6
N (µ, σ 2) ALGO 11.7 and ALGO 11.8
multivariate normal ALGO 11.9
general discrete ALGO 11.10
binomial, large n ALGO 11.11
Poisson ALGO 11.12

Figure 11.17 Simulation of the normal distribution. The area of a rectangle represents
the number of generated variates Xi lying between its vertical edges (on the x-axis).

Table 11.11). A typical method of generating variates with this distribution is to generate
a sequence of (pseudo)random integers X0, X1, X2, . . . in the range 0, 1, . . . , m where
m, is large, typically the largest exact integer conveniently handled in the host computer.
The seed, or starting value, X0 is set, and the required sequence of variates Ui ∼ U (0, 1)
defined by

Xn+1 = (aXn + c) Mod m, Ui = Xi/m, (11.42)

where a, c are positive integers and c is chosen to have no divisors in common with m,
to ensure that the sequence {Xn} has period m (Knuth, 1981). Thus, over m generations
every integer from 0 to m − 1 appears exactly once, and so each number in [0, 1] that does
appear does so equally often. With 64-bit words the numbers are spaced at adequately
small intervals of about 5 × 10−20.

Starting from the uniform distribution there are three main methods to obtain random
variates from the given, or target, pdf. These are: (1) the inverse transform method, using
the target cdf, (2) the accept–reject method, in which a series of candidates is proposed
and an acceptance criterion guarantees that it’s correctly distributed, and (3) summing
variates from a simpler distribution. We first consider these in turn for continuous dis-
tributions, leading to ALGO 11.1, ALGO 11.2, and so on. Useful references: Ripley
(1987), Rubinstein (1981).
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RX

[0, 1]

1

u F(x)

X

Figure 11.18 The cdf F(x), over the range RX , of a continuous random variable X.

11.3.3 The inverse transform method (IT)

We wish to generate a variate X with pdf f (x). Whatever the shape of f (x), its cdf F(x)
is certainly non-decreasing, and a failure to increase marks a dropping down of the pdf to
zero (Theorem 9.44), so we may as well take F(x) to be strictly increasing on the range
RX of X. There is thus a bijection F : RX → [0, 1], and we have the following theoretical
basis of the IT method.

Theorem 11.42 Let U ∼ U [0, 1] and X = F−1(U ). Then X has cdf F(x), and hence pdf
f(x).

Proof Considering Figure 11.18, we have

P(X ≤ x) = P(U ≤ u) since F is strictly increasing
= u since U is uniform on [0, 1]
= F(x) by construction.

ALGO 11.1 To generate X with pdf f (x)

Generate U ∼ U [0, 1];
Return X = F−1(U ).

Remarks 11.43 (1) We can allow for F(x) to be constant on part of the range by
setting X = Min{x : U = F(x)}, (2) if RX has the form (−∞, b) we can replace −∞ in
computation by a value c for which F(c) is suitably small. For example, c = −2 in the
case X ∼ N (0, 1), (3) the IT method is most practicable when we have an explicit form
for F−1 on [0, 1].

Example 11.44 Generate a variate with pdf f (x) = 2x, 0 ≤ x ≤ 1. We have RX = [0, 1]
and u = F(x) = ∫ x

0 2tdt = x2. Thus we generate U ∼ U [0, 1] and return X = √
U .

Example 11.45 Generate a random variate from the exponential distribution exp (β).

Here the pdf is f (x) = βe−βt (Table 9.10) and we take u = F(x) = ∫ x
0 βe−βt dt = 1 −

e−βx . But u = 1 − e−βx ⇔ e−βx = 1 − u ⇔ −βx = log(1 − u). Also, since U and 1 −
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F(x)  = 1 − e−x

1

1 2 3 4

Figure 11.19 The cdf of the exponential distribution approaches y = 1 as x increases.

U have the same distribution we may replace log(1 − U ) by log(U ), as is done below.
See Figure 11.19.

ALGO 11.2 To generate X ∼ exp (β)

Generate U ∼ U [0, 1]
Return X = −(log U )/β.

Exercise Write down an IT algorithm for the Cauchy distribution.

11.3.4 The accept–reject method (AR)

(Due to von Neumann, see Rubinstein, 1981.) It is helpful to begin with the algorithm
itself and then to introduce the theoretical underpinning, which here includes the expected
number of trials required in order to achieve acceptance. Given the target pdf f (x), we
employ another pdf h(x) for which it is relatively easy to generate variates, and factorise
f (x) in the form

f (x) = C · h(x)g(x), (11.43)

where C ≥ 1 is a constant, and g(x) is a function satisfying 0 < g(x) ≤ 1 (x ∈ R).

ALGO 11.3 To generate X, with pdf f (x )
factored as in (11.43)

Repeat: Generate U ∼ U [0, 1] and Y ∼ h(Y )
Until U ≤ g(Y ) (acceptance test)
Return Y.

Theorem 11.46 The conditional pdf fY of Y given U ≤ g(Y ) is f (x).

Proof By Bayes’ Theorem

fY (Y = x | U ≤ g(Y )) = P(U ≤ g(Y )|Y = x) h(x)

P(U ≤ g(Y )
. (11.44)

We consider the numerator and denominator separately. For the acceptance test U ≤
g(Y ), we note that U, Y are independent and so have a joint pdf equal to the product of
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u = g(y)

1
u

0 y

Figure 11.20

their individual pdfs, namely 1 · h(y). Evaluating the prob-
ability as an integral (10.4) in Figure 11.20,

P(U ≤ g(Y ) = ∫
u≤g(y)

1 · h(y) du dy

= ∫
R h(y)dy

∫ g(y)
0 1 · du = ∫

R g(y)h(y)dy

= ∫
R

(1/C) f (y)dy = 1/C.

Thus

P(U ≤ g(Y )) = 1/C. (11.45)

On the other hand, setting Y = x , then noting that U is uniform on [0, 1], we have

P(U ≤ g(Y )|Y = x) = P(U ≤ g(x)) = g(x). (11.46)

Substituting this and (11.45) into the Bayes expression (11.44) gives Theorem 11.46.

Corollary 11.47 The expected number of trials before acceptance in ALGO 11.3 is the
constant C of (11.43).

Proof The trials are independent, each with probability p = P(U ≤ g(Y )) = 1/C of
success. Hence the expected number of trials required for success is the expected value
of the geometric distribution (Table 9.9), namely 1/p, which here equals C.

AR2 – a remarkable special case Let h(x) be uniform on the interval [a, b] = RX , that
is h(x) = 1/(b − a), a ≤ x ≤ b. In the following version of the factorisation (11.43),
the expected number of trials is M(b − a), and the constant M is chosen with quick
acceptance in mind (the functions on the second row are the choices for those immediately
above them):

f (x) =
⎧⎨
⎩

C · h(x) · g(x),

M(b − a) · 1

b − a
· f (x)

M
.

(11.47)

Referring to ALGO 11.3, we can obtain Y as Y = a + (b − a)U2, where U2 is uniform
on [a, b]. The result follows:

ALGO 11.4 To generate f (x) by method AR2

Repeat
Generate U1, U2 ∼ U [a, b]
Set Y = a + (b − a)U2

Until U1 ≤ f (Y )/M
Return Y.



340 Sampling and inference

Example 11.48 Generate a variate from f (x) = 3x2, 0 ≤ x ≤ 1, using ALGO 11.4. In
this case the range of X is [a, b] = [0, 1], so that Y = U2, effecting a further simplification.
With M = 3 and hence g(x) = f (x)/3, the process is simply:

Repeat : generate U1, U2 ∼ U [0, 1] until U1 ≤ U 2
2 . Return U2.

Example 11.49 We use ALGO 11.4 to generate from the beta distribution
Be(α, β), a, β > 0, with density

f (x) = xα−1(1 − x)β−1/B(α, β), 0 ≤ x ≤ 1, (11.48)

where the normalising constant is the beta function B(α, β) = �(α)�(β)/�(α + β)
(Table 9.10). The X range is again [0,1], giving Y = U2. We take M to be the least
value of f (x), which occurs when x = (α − 1)/(α + β − 2), with expected number of
trials just 2/π in the case α = β = 1/2.

ALGO 11.5 To generate from Be(α, β) with pdf f (x)

Set M = f ((α − 1)/(α + β − 2))
Repeat

Generate U1, U2 ∼ U [0, 1]
Until U1 ≤ f (U2)/M
Return U2.

Example 11.50 We derive a method of generating from the gamma distribution using
variates of the beta and exponential distributions. In this section we use the second
notation for gamma G(α, β), with pdf in the form

f (x) = xα−1e−x/β

βα�(α)
(α, β > 0), x ≥ 0. (11.49)

Notice that G(1, β) = exp(β), the exponential distribution. We generate for G(α, β) in
the case α = δ with 0 < δ < 1, then extend to general α > 0 by the reproductive property
(Theorem 10.19) in the form

G(m + δ, β) = G(1, β) ∗ · · · ∗ G(1, β)∗G(δ, β). (11.50)

That is, if Y0 ∼ G(δ, β) and Y1, . . . , Ym ∼ G(1, β) are independent, then
∑

Yi ∼ G(m +
δ, β). Returning to G(δ, β), we need the following theorem.

Theorem 11.51 Let δ, β satisfy 0 < δ < 1, β > 0. If W ∼ Be(δ, 1 − δ) and V ∼ exp(1)
then X = βV W is a variate of G(δ, β).



11.3 Simulation 341

Proof We introduce an auxiliary variable u and transform coordinates in the plane from
w, v to u, x as described in Theorem 10.10. We take{

u = v,

x = βwv,
with inverse

{
w = x/βu,

v = u,

and Jacobian J = ∂(w, v)

∂(u, x)
=
∣∣∣∣ −x/βu2 1/βu

1 0

∣∣∣∣ = −1/βu.

The pair (W, V ), being independent, have as joint distribution the product wδ−1(1 −
w)−δ · e−v/B(δ, 1 − d), and, according to Theorem 10.10, substituting for w, v and
multiplying by |J | gives the pdf for (U, X ). After some rearrangement this becomes

fU,X (u, x) = xδ−1(u − x/β)−δe−u · β−δ/B(δ, 1 − δ).

The marginal distribution for X is therefore

fX (x) =
∫ ∞

x/β

fU,X (u, x)du = xδ−1β−δ

B(δ, 1 − δ)

∞∫
x/β

(
u − x

β

)−δ

e−udu.

On substituting y = u − x/β we may evaluate the integral as a gamma function
(Table 9.6) because 1 − δ > 0, then, noting that B(δ, 1 − δ) = �(δ)�(1 − δ)/�(1), we
obtain the pdf (11.49) as required. Hence the following algorithm.

ALGO 11.6 To generate from G(α, β)

Set m = Floor[α], δ = α − m.
Generate W ∼ Be(δ, 1 − δ) and V, X1, . . . , Xm ∼ exp(1)
Set X0 = βV W
Return

∑
Xi (0 ≤ i ≤ m).

11.3.5 Generating for the normal/Gaussian

For this we return to the general AR method (11.43). Since the standard normal pdf φ(x)
is symmetrical about the y-axis, it suffices to generate for x ≥ 0 and assign a random sign
to the variate obtained. Thus, we generate first from f (x) = 2φ(x), x ≥ 0. A factorisation
that leads to a nice method is

f (x) =
{

C · h(x) · g(x),√
2e
π

e−x exp[−(x − 1)2/2].

The expected number of trials is C = 1.3 approx. The acceptance criterion simplifies,
because U ≤ g(Y ) ⇔ − log U ≥ (y − 1)2/2, but− log U ∼ exp(1) (Example 11.45), so
the condition may be written V2 ≥ (V1 − 1)2/2 with V1, V2 ∼ exp(1), and the algorithm
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Sin curve plus normal noise, sigma = 0.1 Sin curve plus normal noise, sigma = 0.04
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Figure 11.21 Sine curve with Gaussian/normal noise added by ALGO 11.7. The
respective distributions are N (0, 0.1) and N (0, 0.04).

becomes:

ALGO 11.7 To generate from N(0, 1)

Repeat
Generate V1, V2 ∼ exp(1)

Until V2 ≥ (V1 − 1)2/2
Generate U ∼ U [0, 1]
If U < 1/2 set V1 = −V1

Return V1 {for N (µ, σ 2) return σ V1 + µ}.

In Figure 11.21, a sine graph is distorted by noise in two ways. For each point (xi , yi )
used in plotting we apply ALGO 11.7 to generate a variate ei , coming in the first case
from N (0, 0.1) and in the second case from N (0, 0.04); we then plot (xi , yi + ei ).

Another approach is given by the Central Limit Theorem 10.45, according to which
the sum of a large number of independent random variables, of whatever distributions,
is approximately normal N (0, 1) after reducing to mean 0 and variance 1. It is most
economical to generate uniformly distributed Ui ∼ U [0, 1]. Each has mean 1/2 and
variance 1/12, so it is convenient to sum exactly 12 of such variates, to give the simple
algorithm below. It is illustrated in Figure 11.22.

ALGO 11.8 To generate from N (0, 1)

Generate U1, . . . U12 ∼ U [0, 1]
Return (

∑
Ui ) − 6.

Multivariate normal generation Let Z = (Z1, . . . , Zd), a random vector with iid
components in N (0, 1). If a potential covariance matrix � satisfies � = U TU with
U non-singular, and we set X = ZU , then Cov(X ) = U TCov(Z )U (Theorem 10.56)
= U T IU = U TU = �. Thus we can obtain multivariate normal variates with any given
covariance, by generating sufficient N (0, 1) variates. A great simplification occurs in the
calculation of suitable U, compared with the usual determination of eigenvalues and
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Figure 11.22 Frequency distribution based on 16 intervals and 3500 generated samples
from ALGO 11.8 for the normal distribution.

vectors, if we specify that U be upper triangular with positive diagonal elements.
This is the Choleski decomposition (see Theorem 8.41) in which, writing U =
Rows(R1, . . . , Rd) and � = [sij] = Rows(S1, . . . , Sd), we perform for successive val-
ues k = 1, 2, . . . , d:

ukk = √[
skk −

∑k−1

i=1
u2

ik

]
, then Rk = (1/ukk)

[
Sk −

∑k−1

i=1
uik Ri

]
. (11.51)

The decomposition is guaranteed to work, by Theorem 8.41, because � is (by definition)
positive definite for multivariate normal vectors. It results in the following algorithm,
which we used for the Bayes classifier of Example 11.41.

ALGO 11.9 To generate from d-dimensional N (µ, �).

Compute U so that � = U TU
Generate Z1, . . . , Zd from N (0, 1)
Set Z = (Z1, . . . , Zd) and return X = ZU + µ.

11.3.6 Generating for discrete distributions

Discrete variates are generally easier to generate than continuous ones. Suppose the
discrete variable X has range {x0, x1, . . .} and pdf P(X = xk) = pk . The cdf may be
represented as a step function (Figure 9.11) with successive heights gk = p0 + p1 +
· · · + pk and, having generated U ∼ U [0, 1], we wish to determine the unique k for
which gk−1 < U ≤ gk (take g−1 = 0). This process is illustrated on the horizontal line
in Figure 11.23, showing how the Inverse Transform Method may be adapted for use in
virtually all cases.

0 g0 g1 g2 1

U

Figure 11.23 The cdf {gk}of a discrete distribution with P(X = xk) = pk . We determine
the unique integer k such that gk−1 < U = gk .
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We can work up from p0 by successively adding p1, p2, . . . until the condition on U is
satisfied. The following does this, utilising U ≤ p0 + p1 + · · · + pk ⇔ U − p0 − p1 −
· · · − pk ≤ 0.

ALGO 11.10 Generate discrete X from (pi )

Generate U ∼ U [0, 1]
Set k = 0
While U − pk > 0:

Set U = U − pk ; set k = k + 1.
Return xk .

For large n the computation of the probabilities may be excessive, and the Cen-
tral Limit Theorem provides an excellent alternative option. We shall give the formu-
lation for the often-used binomial and Poisson cases. For Bin(n, p) the approximate
normal random variable is Z = (X − np + 1/2)/

√
(npq), where as usual q = 1 − p

(Table 9.9). The following is suitable in the cases np > 10, p ≥ 1/2 and nq > 10,

p < 1/2 (Meyer, 1970). The result is rounded to the nearest integer, and taken to be
zero if approximation causes a spill onto the negative x-axis.

ALGO 11.11 Generating Bin(n, p) from N (0, 1)

Generate Z ∼ N (0, 1)
Return Max{0, Round(Z

√
(npq) + np − 1/2)}

The Poisson distribution If X is Poisson with parameter λ > 10 the Central Limit Theorem
gives the variable Z = (X − λ+ 1/2)/

√
λ as a reasonable approximation to N (0, 1).

Including as before the end correction of 1/2, we have the following algorithm.

ALGO 11.12 Generating Poisson Po(λ) from N (0, 1)

Generate Z ∼ N (0, 1)
Return Max{0, Round(λ + Z√λ− 1/2)}

11.4 Markov Chain Monte Carlo

Monte Carlo methods go back a long way in their broad sense of simulation. In more
recent times they have been used to verify the theory of the Student t-distribution, and
by physicists to simulate equations involved in designing an atomic bomb (this group
coined the name Monte Carlo from the Monaco gambling casino).

The early reputation of Monte Carlo methods was damaged by exaggerated claims
of their efficacy. However, this was partly remedied by the idea of Metropolis



11.4 Markov Chain Monte Carlo 345

et al. (1953) to realise a distribution via a Markov chain, as explained in Section
11.4.3, and by improvements due to Hastings (1970). Much is still not fully under-
stood, especially on the issue of convergence, but the method has led to breakthroughs in
many areas of statistical application, including image processing and object recognition
(Gilks et al., 1997).

11.4.1 Markov chains

Our topic in this section was first introduced by Andrei Markov (Figure 11.24) as a
tool for analysing the works of the Russian poet Alexander Pushkin. Since then a huge

Figure 11.24 A. A.
Markov 1856–1922

variety of applications has emerged, including appropriately
speech recognition (Levinson & Shepp, 1991) as well as our
present topic of digital image analysis. In particular, it has proved
a tool of choice for increasing the effectiveness of sample mean
Monte Carlo for performing otherwise intractable integration of
Bayes-related pdfs (see Section 11.4.3). An application to the Dis-
crete Cosine Transform is found in Section 15.5.

A Markov chain may be regarded as the most natural extension
of the idea of independence. Its definition follows.

Definition 11.52 Let X0, X1, X2, . . . be random variables based
on a sequence of trials, each variable having the same range {0, 1, . . . , m}. The range
values are called states of the Xr , and if Xn = i we say the system {Xr } is in state i at
time n (or at the nth step). The system is a Markov chain if its state at time n depends
only on the previous state. That is, the Markov Property holds: for r = 1, 2, 3 . . .

P(Xr = xr |Xr−1 = xr−1, Xr−2 = xr−2, . . . , X0 = x0)

= P(Xr = xr |Xr−1 = xr−1). (11.52a)

Thus the system’s behaviour is governed by the transitional probabilities

pij = P(Xr = j |Xr−1 = i) (r = 1, 2, . . .), (11.52b)

which we shall assume for now to be independent of r (the homogeneous case), together
with the initial probabilities pi = P(X0 = i) which constitute the pdf of X0. The square
matrix Q = [pij] is called the transition matrix of the chain. A graphical diagram of
transition probabilities may be composed from units of the type below, where a circled i
represents the state i. It is also a memory aid for the meaning of pij.

�i
pij−→ �j Q = [pij]

We note that p = [pi ] is a stochastic (row) vector, one whose entries are non-negative
and sum to 1; also Q is a stochastic matrix, where every row is a stochastic vector, because
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j pij =

∑
j P(Xr+1 = j |Xr = i) = 1 (conditional probability obeys the probability

axioms, see (9.26)).

Example 11.53 (The occupancy problem) Consider the random equally likely placement
of balls into N cells, in which each cell may contain up to N balls. Define the state of a
corresponding system to be the number of occupied cells: 0, 1, 2, . . . , or N , and let Xr

be the state after the rth ball is inserted. On the insertion of a ball the state remains the
same or increases by 1. Thus pi,i+1 = P(Xr+1 = i + 1|Xr = i) = P(next ball placed
in empty cell) = (number of empty cells)/N = (N − i)/N , whereas pii = P (ball put
in occupied cell) = i/n. The initial distribution is p = (1, 0 . . . , 0) since the cells start
unoccupied. The system is homogeneous, since pi,i+1 and pii are independent of r . The
case N = 3 is shown below.

Q =

⎡
⎢⎢⎣

p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
. . . . . . . . . . . .

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 1/3 2/3 0
0 0 2/3 1/3
0 0 0 1

⎤
⎥⎥⎦ . (11.53)

Exercise Verify the transition matrix (11.53). Why must it be upper triangular for
all N?

The pdf of Xr The pdf vector p(r ) of Xr is determined by any of those that come before,
by means of the transition matrix. We have p(0) = p, and to pass from the pdf of one
variable to that of the next we multiply on the right by Q. The example p(1) = p(0) Q
reveals the general case:

p(1)
j = P(X1 = j) =

∑
i
P(X0 = i)P(X1 = j |X0 = i) =

∑
i
p(0)

i pij =
(

p(0)Q
)

j ,

p(r ) = p(r−1) Q = p(0) Qr (r ≥ 1). (11.54)

Example 11.53 continued Given that the pdf of X0 is p(0) = (1, 1, 1, 1)/4, determine
the pdf p(r ) of Xr for r = 1, 2, 3, 4. We have by (11.54) that p(1) = (0, 1, 1, 1)/3, p(2) =
(0, 1, 4, 4)/9, p(3) = (0, 1, 10, 16)/27, p(4) = (0, 1, 22, 58)/81. This means, for exam-
ple, that, after four balls are inserted, it is impossible that no cells are occupied, and the
probability that exactly two cells are occupied is 22/81.

Example 11.54 (Random walk with absorbing barriers) The walk takes place on
non-negative integer coordinates on the x-axis, moving 1 unit at a time, forward with
probability p, back with probability q. If barrier 0 or N is encountered, the walk
stops. Interpreting this, the only transitions with nonzero probability are given by
pi,i+1 = p, pi,i−1 = q (0 < i < N ), and p00 = pNN = 1. We exemplify below the tran-
sition matrix in the case N = 3.

Q =

⎡
⎢⎢⎣

1 0 0 0
q 0 p 0
0 q 0 p
0 0 0 1

⎤
⎥⎥⎦ . (11.55)
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0

5
q q q q

p p p p

Figure 11.25 Allowable transitions and their probabilities in the random walk of Ex-
ample 11.54.

Now consider Figure 11.25, showing the allowable transitions and their probabilities
in the case N = 5. It is noteworthy that this example is equivalent to the ‘gambler’s
ruin problem’. Their joint stake is N units, and at each throw of a coin the winner takes
one unit from the loser. Gambler A wins a throw with probability p, and we equate the
system’s state to his current finance. The game ends when either is broke, that is when
the state i is 0 or N.

n-step transitions Now some theory to help the gambler and random walker on their
way. If the state changes from, say, i to j in exactly n steps we say an n-step transition
occurred from i to j. Denote the probability of this by p(n)

ij = P(Xr+n = j |Xr = i). Such
a transition can occur by any path of length n (the number of arrows):

i → a → b → · · · → d → j.

The probability of this sequence is p(r )
i pia pab · · · pd j , and hence its conditional prob-

ability given that it begins in state i is, on dividing by pi (r ),

pia pab · · · pd j (11.56)

and p(n)
ij is therefore the sum of the corresponding expressions for all such paths of length

n:

p(n)
ij =

∑
1≤a,b,...,d≤m

pia pab · · · pd j ,

the states being labelled 0, 1, . . . , m. But this sum of n-fold products is, by the definition
of matrix product (see (7.17b)), simply the ij element of Qn . Writing P (n) = [p(n)

i j ], we
state this important observation as a theorem.

Theorem 11.55 The probability of n-step transitions in a Markov chain is given by the
nth power of the transition matrix,

P (n) = Qn. (11.57)

Example 11.56 (Continuation of Example 11.55) Below we show the matrix Q9 for the
walk/gamble with N = 5 as depicted in Figure 11.25, taking p = 2/3 and q = 1/3. The
matrix gives, by Theorem 11.56, the probability of every possible state of affairs and
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indicates those that are not possible by a zero entry.

Q9 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0.469 0 0.055 0 0.068 0.407
0.204 0.027 0 0.089 0 0.679
0.085 0 0.048 0 0.055 0.815
0.026 0.009 0 0.028 0 0.938

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The zeros in the first and last rows are present in every power Qn , as may be shown
inductively. We have given Gambler A (and right steps) a 2 : 1 advantage at each step.
Suppose Gambler A starts with an unfairly small stake of 1 unit to his opponent’s 4. The
matrix entries show something decisive. He has by now lost with probability p10 = 0.5
approx., and won with probability 0.4. Other results are much less likely. And although
he starts but one step from defeat he retains a realistic chance of victory.

With initial stake 2, his opponent having 3, Gambler A has P(lose)= p20 = 0.2, whilst
P(win) = p25 = 0.7, so the tide is now overwhelmingly in his favour, and more so for a
start still further to the right (in terms of the figure). What emerges too is that the chance
of a result either way by step 9 is very high.

Markov and independence Let us compare a Markov chain with a sequence of iid
random variables in which pi is the probability of outcome i. For a sequence of oucomes
i, j, k, . . . we have by (9.16) and Theorem 9.17 the two cases

p(i, j, k, . . .) =
{

pi p j pk · · · (independent trials),
pi pij pjk · · · (Markov chain).

(11.58)

Thus independence may be seen as the special case in which Q has constant columns,
i.e. the rows are identical.

Example 11.57 We show that, in the independence case above, the Markov formulation
results in Qn = Q (n ≥ 2). It suffices to prove Q2 = Q, then the rest follows by repeated
multiplication. Also, the 2 × 2 case shows how to proceed in general. Because the rows
of Q are identical we may write A = [1 1 . . . 1]T[row 1 of Q], according to the laws of
matrix multiplication. Then, since the middle two matrices form a dot product p + q = 1,

Q2 =
[

1
1

] [
p q

] [1
1

] [
p q

] = [
1
1

]
(p + q)

[
p q

] = [
1
1

] [
p q

] = Q.

The long term

Example 11.58 (A 2-state Markov chain) Due to glacial melting a certain river may
flood, but only in the month of October. It is thought that, rather than being independent,
the states of the river in consecutive Octobers (1 for flood, 0 for no flood) are better
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modelled by a Markov chain with transition matrix

Q =
[

1 − α α

β 1 − β

]
(0 < α, β < 1). (11.59)

Can we predict anything in the long term? It can be shown by induction on n ≥ 0 that

Qn = 1

α + β

{[
β α

β α

]
+ (1 − α − β)n

[
α −α

−β β

]}
. (11.60)

Now, the given condition 0 < α, β < 1 implies 1 − α − β < 1; also α + β < 2 and
so 1 − α − β > −1. In short, |1 − α − β| < 1 and hence (1 − α − β)n → 0 as n →∞.
With (11.60) this shows that

Qn → 1

α + β

[
β α

β α

]
as n →∞,

and thus if p is an initial probability vector with components p, q we have

pQn → 1

α + β

[
p q

] [β α

β α

]
= p + q

α + β

[
β α

] = 1

α + β

[
β α

]
, (11.61)

since p + q = 1. Of special note is that this long term effect is independent of the choice
of p. For now, we will be content with stating a general theorem of which this example
is a particular case.

Theorem 11.59 (Lipschutz, 1981) If some power of a transition matrix Q has all its
elements positive then (i) Q has a unique fixed probability vector t (the chain’s stationary
distribution, given by tQ = t), and t has all its entries positive, (ii) xQn → t as n →∞,
for any fixed probability vector x.

Sampling from a Markov chain Consider the pdf p(n) of Xn , converted into that of Xn+1

by the transition matrix thus: p(n+1) = p(n)Q. A sample from the chain is a sequence
X0, X1, . . . , possibly terminating, with Xi drawn from p(i). Thus, as p(i) approaches a
stationary value t, we are drawing, with increasing accuracy, samples from t itself. Here
is a simple algorithm.

ALGO 11.13 A sample of length n from a Markov chain.

Initialise p(0)

Repeat for i = 1, 2, . . . , n
Set p(i) = p(i−1) Q
Generate Xi from p(i) (ALGO 11.10)
Return Xi .

Exercise Perform the induction in (11.60) see Exercise 11.16.
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Example 11.60 Let {0, 1} denote the states in the chain of Example 11.58. Take
α = 0.8, β = 0.4 and p(0) = [1/2 1/2]. Then we have transition matrix and stationary
distribution

Q =
[

0.2 0.8
0.4 0.6

]
and t = [

1/3 2/3
]
.

The first few p(i) are, transposed,[
0.5
0.5

]
→

[
0.3
0.7

]
→

[
0.332
0.668

]
→

[
0.3336
0.6664

]
→

[
0.3333
0.6667

]
→ · · · ,

so even by p(4) we are close to the stationary distribution. The first 40 samples are
1110010110110110110001101111111111011100, and the relative frequency of a zero
is shown below for various sample sizes.

Sample size 10 100 1000 10000
Relative frequency of zero 0.30 0.37 0.32 0.34

Remarks 11.61 (1) (Sampling) We will see in Section 11.4.3 that it is possible and very
desirable to construct samples from an unknown density π (x) by constructing a Markov
chain which will have π (x) as stationary distribution, and then sampling from this chain.

(2) (Non-discrete case) We can handle Markov chains with the discrete state space S
replaced by a continuous space E. The pdfs become continuous ones and the transition
rule p(n) = Qp(n−1), or p(n)(y) =∑

x p(y|x)p(n−1)(x), becomes

p(n)(y) =
∫

E
p(y|x)p(n−1)(x)dx (11.61a)

The continuous conditional pdf p(y|x) is now called the transition kernel of the chain.
A pdf π (x) is then stationary for the Markov chain if∫

E
π (x)p(y|x)dx = π (y). (11.61b)

(3) (Non-homogeneous case) So far our chains have been homogeneous, in that the
transition probabilities have been stage-independent. If we remove this restriction then
each contiguous pair X, Y has its own transition matrix Q XY = [p(y|x)], and the same
notation is still utilised if X and Y are n > 1 steps apart. The previous n-step matrix Qn

of (11.57) is replaced by a product of 1-step matrices. Essentially the same argument
as used for Qn shows that in a chain X, U, V, . . . , W, Y we have, for any variable T
between X and Y,

Q XY = Q XU QU V · · · QW Y = Q X T QT Y . (11.62)
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Joint pdfs The following form of a joint pdf, for the chain X . . . Y cited above, shows
that deleting X or Y leaves a Markov chain with pdf as noted:

(i) p(x, u, v, . . . , w, y) p(x)p(u|x)p(v|u) · · · p(y|w),
(ii) pdf after deleting X p(u)p(v|u) · · · p(y|w),
(iii) pdf after deleting Y p(x, u, v, . . . , w, y)/p(y|w).

⎫⎬
⎭

(11.63)

Proof (i) p(x, u, v, . . . , w, y)
= p(x)p(u|x)p(v|x, u) · · · p(y|x, u, v, . . . , w) by Theorem 9.17
= p(x)p(u|x)p(v|u) · · · p(y|w) by the Markov Property (11.52).

(ii) p(u, v, . . . , w, y) =∑
x p(x, u, v, . . . , w, y) =∑

x p(x, u)p(v|u) . . . p(y|w) =
p(u)p(v|u) · · · p(y|w).

(iii) Here the fact that
∑

y p(y|w) = 1, by (9.26), causes the factor p(y|w) to disappear from (i).

References Lipschutz (1981), Lloyd (1984a) and Häggström (2002).

11.4.2 Monte Carlo methods

A Monte Carlo method is essentially one in which, instead of analysing a process, we
somehow simulate it and are thereby able to study its properties. In perhaps the earliest
known use, in 1876, de Forest picked cards randomly from a box as a way of simulating
a Gaussian process (see Kotz & Johnson, 1985).

One application since the 1940s has been the computation of integrals for which other
methods were unsuitable, often because of high dimensionality. For example, normal
numerical methods are less suitable for dimensions greater than about 12 (for further
details, see the end of this section). Such is the case for many integrals required in
Bayesian (and other) applications. However, the essential idea of Monte Carlo may be
conveyed through a 1-dimensional integral,

I =
∫ b

a
g(x)dx . (11.64)

Method 1: hit or miss We begin with the earlier and more easily comprehended of two
methods known as Monte Carlo. Suppose the graph of y = g(x) (a ≤ x ≤ b) lies below
the line y = c, and hence lies within the bounding box represented in Figure 11.26, of
area B = c(b − a). We expect intuitively that if the box is targeted at random points
then the frequency of hits below the graph of y = g(x) is proportional to this lower area,
giving us an approximation to the integral I of (11.64).

More precisely, let X, Y be independent random variables uniformly distributed
on respectively [a, b] and [0, c]. Then the pair (X, Y ) has joint pdf 1/c × 1/

(b − a) = 1/B for (x, y) in the bounding box a ≤ x ≤ b, 0 ≤ y ≤ c. A hit in formal
terms is the event H : Y ≤ g(X ), with a probability p which, given n trials of (X, Y ) in
which H occurs nH times, is estimated by its relative frequency:

p̂ = nH/n. (11.65)
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X

X
X

X

X

ba

c
y

Event H:Y ≤ g(X) (a ‘hit’)
x

y = g(x)

Figure 11.26 The Monte Carlo ‘hit or miss’ method. The area/integral shaded is esti-
mated by the proportion of random points x targeted on a bounding box which ‘hit’ this
area.

But using the pdf of (X, Y ), we have I = Bp because

p =
∫∫

H
(1/B)dx dy = (1/B)(area under curve y = g(x)) = I/B, (11.66)

so we take our estimator θ of I to be

θ1 = Bp̂ = BnH/n. (11.67)

An unbiased estimate To vindicate our choice we should like θ1 to be unbiased, that
is, having expected value E(θ1) = I . To check this we observe that nH is based on
Bernoulli trials (two outcomes only) and so is a binomial random variable with pa-
rameters n, p. Hence E(θ1) = (B/n)E(nH ) (by (11.67)) = (B/n)np (by (9.42)) =
Bp = I , as required, where the last equality is from (11.66). The variance is an im-
portant consideration, affecting accuracy, and we now determine it.

Theorem 11.62 In the above notation, E(θ1) = I and V (θ1) = I (B − I )/n.

Proof V (θ1) = (B2/n2)V (nH ) since Q1 = (B/n)nH , (11.67)
= (B2/n2)np(1 − p) by (9.42), since nH is Bin(n, p)
= I (B − I )/n since p = I/B, (11.66).

We can use this straight away to estimate the number of trials required for a
given accuracy from the Chebychev result (9.48b): P(|X − µ) ≥ ε) = V (X )/ε2. We
set X = θ1, µ = E(θ1) = I , and V (θ1) = I (B − I )/n to obtain P(|θ1 − I | ≥ ε) ≤
I (B − I )/nε2 and, considering the complementary event,

P(|θ1 − I | < ε) ≥ 1 − I (B − I )/nε2 ≥ 1 − δ if δ ≥ I (B − I )/nε2, or

P(|θ1 − I | < ε) ≥ 1 − δ if n ≥ I (B − I )/ε2δ. (11.68)

Now let us try the method on an example which we can solve analytically, and so
produce a value of the integral for comparison.

Example 11.63 We use the Monte Carlo hit or miss method to determine
∫ 2

0 xe−x2/2dx .
See Figure 11.27.
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Table 11.12. Comparative results for the hit and miss (θ1)
and sample mean (θ2) methods of Monte Carlo, for the
integral I in Example 11.63. The correct value to three

decimal places is 0.865.

n θ1 θ2

10 1.400 0.712
100 0.780 0.790

1000 0.882 0.860
10 000 0.885 0.865
20 000 0.864 0.865

0.6

0.5

0.4

0.3

0.2

0.1

1 2 3 4

Figure 11.27 The graph of y = xe−x2/2.

We take a = 0, b = 2, and box height c = 1. The value of the integral I to three
decimal places is 0.865, and (11.68) says that with δ = 1/10 we may be 90% sure the
estimate is within 0.02 of this if the number of trials is n ≥ (0.865)(1.135)/(0.02)2(0.1)
or approximately 24 500. In fact 20 000 trials estimated I as 0.864. More details are given
in Table 11.12, comparing the present method with a second which we now describe.

Exercise In Example 11.63, how big a sample gives 90% certainty of obtaining an
estimate within 0.01 of the true?

Method 2: a sample mean The idea is to represent the integral I of (11.64) as an
expected value, generate variates X1, . . . , Xn from the pdf (possibly a tall order) and
then estimate I by a sample mean. More particularly, if π (x) is any pdf which is positive
when g(x) �= 0 we may write

I =
∫ b

a
g(x)dx =

∫ b

a

g(x)

π (x)
π (x) dx = E[g(x)/π (x)], (11.69)

where X has g(x) as its pdf. The simplest choice for π is π (x) = 1/(b − a), the pdf of a
random variable X uniform on [a, b]. This gives I = E[(b − a)g(x)] = (b − a)E[g(x)],
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to be estimated unbiasedly as θ2 = (b − a)g(X ), or

θ2 = b − a

n

∑n

i=1
g(Xi ). (11.70)

It appears from Table 11.12 that the sample mean method is the more accurate. We
investigate this via variances, starting with the result below.

Theorem 11.64 In the above notation, the estimator θ2 is unbiased, and

V (θ2) = 1

n

(
(b − a)

∫ b

a
g(x)2dx − I 2

)
≤ V (θ1). (11.71)

Proof It remains to see that, because the Xi are iid, we have from (11.70) that

V (θ2) = n[(b − a)/n]2V [g(X )] = ((b − a)2/n){E[g(X )2] − E[g(X )]2}

= ((b − a)2/n)

(∫ b

a
g(x)2π (x)dx − (I/(b − a))2

)
,

which gives the formula for V (θ2) on setting π (x) = 1/(b − a) and simplifying. With
B = c(b − a) we have, since 0 ≤ g(x) ≤ c by definition,

n

b − a
[V (θ1) − V (θ2)] = cI −

∫ b

a
g(x)2dx ≥ cI −

∫ b

a
cg(x)dx = cI − cI = 0.

Remarks 11.65 The fact that V (θ2) is upper-bounded by V (θ1) explains the superior
performance of θ2 seen in Table 11.12. It can be shown that the inequality holds generally
(Hammersley & Handscomb, 1964), indicating that the way ahead lies with improving
the sampling technique. In the next section we introduce decisive improvements due to
Metropolis, Hastings and others through the introduction of Markov chains. Meanwhile,
here are the short comparative algorithms for the two methods.

ALGO 11.14 Estimate 1 ALGO 11.15. Estimate 2
for

∫ b
a g(x)dx, g(x) ≤ c for

∫ b
a g(x)dx

Generate U1, V1, . . . , Un, Vn in U (0, 1) Generate U1, . . . , Un in U (0, 1)
Set Xi = a + (b − a)Ui , Yi = cVi Set Xi = a + (b − a)Ui

Count nH , the number of i for Set S = g(X1) + · · · + g(Xn)
which Yi ≤ g(Xi )

Return c(b − a)nH/n. Return (b − a)S/n.

Summary of advantages of Monte Carlo (see Kalos & Whitlock, 1986) Let NQ stand
for numerical quadrature, or determining an integral by a standard numerical method. In
one dimension, NQ is better than Monte Carlo, but NQ is dimension-dependent, and in
higher dimensions things are different.
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(i) Convergence of Monte Carlo integration is independent of dimension, hence there is always
some dimension above which it converges faster than any NQ method.

(ii) A Monte Carlo method handles complicated regions much better than NQ.
(iii) Monte Carlo can always obtain greater accuracy by an increased number of sample points,

whereas NQ will usually require higher-order approximation.
(iv) NQ may present great difficulties in error estimation, whereas in the Monte Carlo case we

have a sample from which variance and more sophisticated error indications may be computed
(further details may be found in Gilks et al., 1997).

11.4.3 Markov Chain Monte Carlo

Our present objective is to improve the Monte Carlo sample mean method as a technique
for evaluating integrals which are not otherwise amenable, especially, but not exclusively,
those required for a Bayesian approach. This means finding a sampling method which
minimises or at least reduces the variance of the estimate. We mention three standard
methods before proceeding to the Markov chain approach of this section.

∗Reducing dimension – if possible, first integrate analytically with respect to a subset of
the variables.
∗Importance sampling – we aim to identify subregions that contribute most to the integral
and take a proportionately higher number of samples there.
∗Stratified sampling – we divide the domain of (usually) a single variable into subintervals
and sample from each separately. A useful technique is to perform importance sampling,
then stratify where the new formulation renders this convenient.

To establish notation, let f (x) be a function and π (x) a pdf, on the subspace S of real
k-space Rk , for some k. We seek the expected value of f (x) with respect to π (x),

E[ f (x)] =
∫

S
f (x)π (x)dx . (11.72)

In the present context, π (x) may be known only up to a constant γ , when the integral
becomes γ

∫
f (x)π (x)dx with γ = 1/

∫
π (x)dx ; however, γ will not normally need to

be determined, as we see shortly. We approximate E[ f (x)] as the mean of a sample
X1 . . . , Xn drawn from π (x),

E[ f (x)] ≈ 1

n

∑n

i=1
f (Xi ), (Xi ∼ π ). (11.73)

A Markov chain If we could ensure the samples were independent and as many as
we like, then the Weak Law of Large Numbers (10.29) would guarantee arbitrarily high
accuracy with arbitrarily high probability. However, it suffices to get {Xt} ranging over
E in the correct proportions for our density π (x) (cf. importance sampling), and the
Metropolis–Hastings algorithm achieves this by drawing X1, X2, . . . from a cleverly
constructed Markov chain with π (x) as stationary distribution (cf. Theorem 11.59).
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Part of the key to this lies in adapting the accept–reject concept of von Neumann, which
we have already encountered in Section 11.3.4. Given the latest generated sample Xt ,
a proposal Y for Xt+1 is generated from a proposal distribution q(Y |X ), with X = Xt .
In principle the algorithm works for any choice of q (Theorem 11.66), though some
choices result in better convergence. The proposal for Xt+1 is accepted with probability
α(Xt , Xt+1), where

α(X, Y ) = Min

(
1,

π (Y )q(X |Y )

π (X )q(Y |X )

)
. (11.74)

Here it is apparent that π and q need only be known up to constant multiples. The
minimum condition avoids a probability greater than 1, but does much more than that (see
the proof of Theorem 11.66). Leaving questions of convergence till later, the Metropolis–
Hastings algorithm may be stated thus:

ALGO 11.16 Markov Chain Monte Carlo sampling

Initialise X0

Repeat for t = 0, 1, 2, . . .

Generate Y ∼ q(Y |Xt )
Generate U ∼ U (0, 1)
If U ≤ α(Xt , Y ) set Xt+1 = Y , else Xt+1 = Xt

Until convergence occurs.

The next result ensures that a sequence of variates {Xi } generated by ALGO 11.16
will, after a period of convergence, or ‘burn-in time’, follow the distribution π (x). For
the second, necessary part, and for further information, we refer to Roberts (1996) and
Tierney (1994, 1996). For statement and proof we recall from Remarks 11.61 the nota-
tions of continuous state space E, transition kernel p(Xt+1|Xt ), and its n-step extension
p(n)(Xn|X0).

Theorem 11.66 For the Metropolis–Hastings algorithm, the following hold, indepen-
dently of the choice of X0 and of the proposal distribution q: (i) π (x) is a stationary
distribution of the Markov chain, (ii) p(n)(Xn|X0) → π (x) as n →∞.

Proof (i) We begin by establishing the equality

p(Xt+1|Xt ) = q(Xt+1, Xt )α(Xt , Xt+1) + τ (Xt+1 = Xt )(1 − At ), (11.75)

where At =
∫

E q(Y |Xt )α(Xt , Y )dY (11.76)

and τ is a function which equals 1 if its argument is TRUE, otherwise zero. Consider
ALGO 11.16. For given Xt , we may think of q(Y |Xt ) as the probability that Y is proposed,
and α(Xt , Y ) as the probability that Y is then accepted. Then At is the probability that
some Y is proposed and accepted. The two terms of (11.75) arise from the mutually
exclusive possibilities that either some candidate is accepted, or none.
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In the next required equality, to be applied to (11.75), each side is converted into the
other by interchanging the expressions t and t + 1:

π (Xt )q(Xt+1|Xt )α(Xt , Xt+1) = π (Xt+1)q(Xt |Xt+1)α(Xt+1, Xt ). (11.77)

To prove this, we look directly at the definition (11.74) of α. There are two possibilities,
Case 1 in which π (Xt+1)q(Xt |Xt+1) > π (Xt )q(Xt+1|Xt ) and Case 2 with the inequality
≤. In Case 1 we have

α(Xt , Xt+1) = 1, α(Xt+1, Xt ) = π (Xt )q(Xt+1|Xt )

π (Xt+1)q(Xt |Xt+1)
,

hence (11.77) holds, and similarly in Case 2 with Xt and Xt+1 interchanged.
Now we are ready to use this with (11.75) to obtain what is known as the detailed

balance equation of the chain, namely

π (Xt )p(Xt+1|Xt ) = π (Xt+1)p(Xt |Xt+1). (11.78)

To see this we note that, according to (11.75), the left hand side minus the right of
(11.78) is

π (Xt )q(Xt+1|Xt )α(Xt , Xt+1) + π (Xt )τ (Xt+1 = Xt )

×
(

1 −
∫

E
q(Y, Xt )α(Xt , Y )dY

)
− π (Xt+1)q(Xt |Xt+1)α(Xt+1, Xt )

−π (Xt+1)τ (Xt+1 = Xt )

(
1 −

∫
E

q(Y, Xt+1)α(Xt+1, Y )dY

)
= τ (Xt+1 = Xt ){π (Xt )[. . .] − π (Xt+1)[. . .]}, by (11.7)

where the expressions [. . . ] are read respectively from the previous lines. Now, if Xt+1 =
Xt then the second factor is zero, whereas Xt+1 = Xt implies by definition that τ = 0.
Thus (11.78) is proved. Finally, integrating both sides of this equation with respect to
Xt , we obtain∫

E π (Xt )p(Xt+1|Xt )dXt =
∫

E π (Xt+1)p(Xt |Xt+1)dXt

= π (Xt+1)
∫

E p(Xt |Xt+1)dXt

= π (Xt+1), since p(Xt |Xt+1) is a pdf.

This is a statement that π (x) is stationary (see (11.61b)), which completes the proof
of (i).

Choosing the proposal distribution q Although the Metropolis–Hastings algorithm
converges ultimately for any q, the actual choice for a particular problem may af-
fect considerably the number of iterations required for reasonable accuracy, and some
experimentation may well be desirable. We illustrate two common types of proposal
distribution.
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(a) (b)

Figure 11.28 The case π (x) = γ x exp(−x2/2) (0 ≤ x ≤ 2), and q(Y |X ) uniform, in-
dependent of X. (a) The first 20 samples. Horizontal segments denote rejected proposals.
(b) Frequencies out of 1000 for sample values from 0 to 2 in 20 intervals of width 0.1.
The distribution so far is very roughly π(x), the function shown in Figure 11.27.

X Y

Figure 11.29 Representation of some possible steps in a 2D random walk.

Example 11.67 The independence sampler. We take q(Y |X ) = q(Y ), independently of
the previous sample, X. The expression for α(x, y) simplifies to Min[1, λ(y)/λ(x)], where
λ(y) = π (y)/q(y), a function of y alone. We show in Figure 11.28 some results with q
uniform, independent of both X and Y .

Example 11.68 (The random walk sampler) Here the probability of Y being proposed
depends only on its distance from X. Thus, all directions are equally likely, as in the
best-known notion of a random walk (Kaye, 1989) but the length of the step from X to
Y is governed by a probability distribution q(y|x) = h(|y − x |). See Figure 11.29.

Since |y − x | = |x − y|, this form for q implies in particular that, as in the original
Metropolis algorithm, q is symmetric, meaning that q(y|x) = q(x |y), so that these ex-
presssions cancel to give α(x, y) = Min[1, π (y)/π (x)]. A widely used choice is to take
q to be normal with mean X. Thus in the 1-dimensional case

q(y|x) = γ e−(y−x)2/2σ 2
,

α(x, y) = Min[1, π (y)/π (x)], (11.79)

where γ = (2πσ 2)−1/2. That is, q = h(|y − x |) with h(z) = γ e−z2/2σ 2
. We explore cases

σ 2 = 9 and σ 2 = 1/2 in Figure 11.30.

Remarks 11.69 (1) As touched upon earlier, an important characteristic of the MCMC
method is that a large sample is available for statistics. In particular, we may test the
hypothesis that the samples do indeed follow the desired distribution π (x), using the
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(a) Sample Xi versus step number, i. (b) Frequency versus interval number. 
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Figure 11.30 The case π (x) = γ x exp(−x2/2) (0 ≤ x ≤ 2), and q(.|X ) ∼ N (X, σ 2).
We consider (a) σ 2 = 9, the first 20 steps: too large a variance results in very slow mix-
ing/convergence, (b) σ 2 = 1/2, the frequency distribution based on 1000 steps, divided
into 20 intervals, shows superior convergence to the case of q uniform in Figure 11.28(b).

methods of Section 11.1.6. Thus we divide the interval [0, 2] into four equal subinter-
vals, with N = 1000 samples, and compare the theoretical frequencies N pi with sample
frequencies fi by the statistic

z =
∑4

i=1
( fi − N pi )

2/N pi = 8.74.

There are no parameters to be estimated, so there are 4 − 1 = 3 degrees of freedom.
According to Table 11.5 we should accept the π (x) hypothesis at the 1% significance
level if z lies in the interval [0, 11.3], which it does.

(2) Though we have worked with a 1-dimensional variable for illustration, the MCMC
method deals also with general n-dimensional variables, whose pdfs may be hard to
compute/handle. In the next few sections we seek to ameliorate this problem.

(3) For more information on issues of convergences, see Gelman (1996).

References Texts: Gilks et al. (1997), Robert and Casella (1999). Pioneering papers:
Metropolis et al. (1953), Hastings (1970).

11.4.4 Bayesian networks

Here we approach the task of finding the distribution π (x) for the application of MCMC
methods and others. This in general can be difficult but is much facilitated by the Bayesian
network approach, in which conditionals are combined into a full pdf by use of a Directed
Acyclic Graph, or DAG (Frey, 1998). In the next section we use Bayesian networks
for a second problem, that of determining the pdf of one variable given the rest (for
Markov Random Fields). In Chapter 13 we apply belief propagation to such networks,
for decoding convolution codes and the remarkable turbocodes; the first vision application
in the present context is Bayesian Image Restoration, in Section 11.4.6. We need some
graphical notation.
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(c) Directed Acyclic Graph(b) Directed graph(a) Undirected graph

v1

v2

v3

v4

v5

Figure 11.31 Graph types mentioned in the text. Notice that (b) contains two cycles.

Notation 11.70 A (directed) graph is abstractly a pair G = (V, E), where V is a finite
set of points {v1, . . . , vn}, also called nodes or vertices, and E is a set of (ordered) pairs
(vi , v j ) (i �= j) called edges. A graph is represented in the plane by points or small
circles for vertices, with a line segment between vi and v j to represent an edge (vi , v j ).
If (vi , v j ) is ordered, the segment becomes an arrow vi → v j , referred to as a directed
edge. We then call vi a parent of v j , which is in turn a child of vi . If there is a sequence
of vertices w1 → w2 → · · · → wr , where wi is a parent of wi+1(1 ≤ i ≤ r − 1) we say
w1 is an ancestor of wr , which is a descendant of w1. If wr = w1 the sequence is a
cycle.

We emphasise that in a directed graph every edge is directed. If also there are no
cycles, we have a Directed Acyclic Graph (DAG), as illustrated in Figure 11.31.

Ancestral orderings A source node/vertex is one with no parent. Thus Figure 11.31(b)
has no source node whilst (c) has exactly one, namely v1. An ancestral ordering is a
relabelling of the vertices as, say, y1, . . . , yn , so that the ancestors of a vertex precede it
in the ordering. This is clearly equivalent simply to the parents of each vertex preceding
it or, again, to the children of each vertex following it. In Figure 11.31(c) the ordering
v1, . . . , v5 is already ancestral. Here is the key lemma showing how such orderings may
be constructed.

Lemma 11.71 Every Directed Acyclic Graph has (i) a source node, and (ii) an ancestral
ordering.

Proof Suppose G is a Directed Acyclic Graph with n nodes. For (i), choose any vertex
v, then any parent w of v, and so on. Since the number of vertices is finite and our
construction cannot form a cycle, we must eventually encounter a node with no parent,
i.e. a source node. For (ii), let y1 be a source node, which exists by (i), and form a subgraph
G2 by removing y1 and all edges starting at y1. Then G2 is acyclic and so contains a
source node y2. Repeating this we obtain subgraphs G2, . . . , Gn and nodes y1, . . . , yn ,
where the children of yi follow yi in the ordering (1 ≤ i ≤ n − 1). Thus y1, . . . , yn is an
ancestral ordering of G.
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ALGO 11.17 Ancestral ordering for a directed acyclic graph

(i) To obtain a source node: choose any node y
Repeat let y be any parent of y
Until y is a source node.

(ii) To obtain an ancestral ordering of G = G1

Repeat for i = 1, 2, 3, . . .

Choose any source node yi in Gi

Construct Gi+1 by removing yi and all edges from yi

Until Gi+1 is a single vertex yn

Then y1, . . . , yn is an ancestral ordering.

Exercise Find a second ancestral ordering for the DAG of Figure 11.31.

Definition 11.72 (Bayesian networks) (i) Let G be a DAG with vertex set V . We need a
notation for vertices relating to a given vertex vk . Since p already stands for probability,
let uk be the set of all parents of vk (u for ‘upper’), ck the children, dk the descendants,
and nk = V \{vk}\dk the non-descendants. (ii) A Bayesian network for a set of random
variables V = {v1, . . . , vn} consists of a DAG with a vertex for each variable, and a set
of probability functions p(vk |uk), 1 ≤ k ≤ n, such that

p(vk |uk ∪ w) = p(vk |uk), if w ⊆ nk . (11.80)

Thus vk is conditionally independent of any combination of its non-descendents, given
its parents. The edges directed towards each vertex are of course implied by the sets uk

specified in (11.80). Notice that uk contains neither ancestors of vk (besides parents), nor
children of vk , variables which in general might give information about vk itself; also,
we do not assume the vk already follow an ancestral ordering. In spite of this, we have
the following result yielding the full joint distribution of (v1, . . . , vn) in terms of parental
influence only.

Theorem 11.73 (Joint pdf from a Bayesian network) If p(vk |uk) are the probability
functions of a Bayesian network for random variables v1, . . . ,vn then a joint pdf is given
by �k p(vk |uk), or

p(v1, . . . , vn) =
n∏

k=1

p(vk |the parents of vk). (11.81)

Proof Since the right hand side of (11.81) is independent of the order of variables, and
an ancestral ordering exists by Lemma 11.71, it suffices to prove (11.81) in the case
that v1, . . . , vn are ancestrally ordered. Now, the Chain Rule for conditional probabilities
(Section 10.1.3) gives

p(v1, . . . vn) =
∏

k
p(vk |v1, . . . , vk−1). (11.82)
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x1

x3

x2

x5 x6
x7

x4

y1

y2

y4

y3 y6

y5
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(a) (b)

Figure 11.32 (a) Directed Acyclic Graph, (b) result of choosing and removing the first
two vertices y1, y2 of an ancestral ordering. By now the rest of a possible ordering is
obvious, and is indicated.

But, because v1, . . . , vn is an ancestral ordering, we have by definition of uk and nk that

uk ⊆ {v1, . . . , vk−1} ⊆ nk, (11.83)

and hence we may make the following partition into disjoint subsets:

{v1, . . . , vk−1} = uk ∪ w, where w = {v1, . . . , vk−1}\uk ⊆ nk . (11.84)

Finally, putting these facts together,

p(v1, . . . , vn) =
∏

k
p(vk |uk ∪ w) by (11.82) and (11.84)

=
∏

k
p(vk |uk) by (11.80), since w ⊆ nk .

Example 11.74 (Markov chains) A Markov chain is a special case of a Bayesian network.
To prove this we consider a chain X1, . . . , Xn, Y, Z and deduce (11.80) in the form

p(z|y, w) = p(z|y), for w ⊆ {X1, . . . , Xn}.
Proof p(w, y, z) =

∑
xi :Xi /∈w

p(x1, . . . , xn, y, z) =
∑

xi :Xi /∈w

p(x1, . . . , xn, y)p(z|y) =
p(w, y)p(z|y), giving p(z|y, w) = p(w, y, z)/p(w, y) = p(z|y), as required.

(2) (More general cases) We show in Figure 11.32(a) a Bayesian network for the compo-
nents of a random vector X = (X1, . . . , X7) with, as usual, the lower case lettering.
Applying (11.81) we obtain the joint pdf p(x1, . . . , x7) =
p(x1|x2)p(x2)p(x3|x2, x5)p(x4|x2)p(x5)p(x6|x2, x3, x4)p(x7|x4).

Example 11.75 Figure 11.33(a) depicts a Bayesian network connecting variables in an
investigation of the effects and spread of Hepatitis B in West Africa (Spiegelhalter et al.,
1996). In part (b) the diagram is extended to show the existence of certain deterministic
relations involved in the calculation, with shading on circles for observed variables
(variables from which readings were to be taken).

Applying (11.81) to the Bayesian network (a), and considering the five source nodes
first,

p(α0, σα, β0, σβ, σ, αi , βi , yij) =
p(α0)p(σα)p(β0)p(σβ)p(σ )p(αi |α0, σα)p(βi |β0, σβ)p(yij|αi , βi , σ ). (11.85)
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α0

αi

σα σβ
α0 σα σβ

αi

(a) yij yij

uij tij

βi βi

βo βo

σ σ

Figure 11.33 Bayesian network (a) and an expanded form (b), for Example 11.75.

To fill in these pdfs requires hypotheses gathered variously from evidence, experience,
and tentative trial. For the time being we will keep expressions reasonably compact by
using the standard normal pdf φ(x) = (2πσ 2)−1/2e−x2/2, so that p(z) ∼ N (a, b2) means
p(z) = φ[(z − a)/b)]. The source nodes will be allocated priors which use the gamma
distribution g(z) ∼ �a,b, that is g(z) = (au/�(b))zb−1e−ax (see Table 9.10).

Priors α0, β0 ∼ N (0, 104), σ−2, σ−2
α , σ−2

β ∼ �(1/100, 1/100), writing �(a, b) for �a,b.

Conditional distributions αi ∼ N (αo, σ
2
α ), βi ∼ N (βo, σ

2
β ), yij ∼ N (µij, σ

2).

Deterministic relation µij = αi + βi log(tij/730).

It was convenient to specify the distributions p(σ ) via the distributions g(τ ), with
τ = σ−2. Then Formula (9.32) for the pdf of a function of a random variable gives
p(σ ) = 2g(σ−2)/σ 3, and similarly for σα and σβ . Here g(x) = γ x−0.99e−0.01x , where
γ = (0.01)0.01/�(0.01). After substitutions, the result is

p(α0, σα, β0, σβ, σ, αi , βi , yij) = φ
( α0

104

)
φ

(
β0

104

)
2g(σ−2)

σ 3

2g
(
σ−2

α

)
σ 3

α

2g
(
σ−2

β

)
σ 3

β

×φ[(αi − α0)/σα]φ[(βi − β0)/σβ]

×φ[(yij − αi − βi log(tij/730))/σ ]. (11.86)

Example 11.76 (Expansion of Example 11.75) We now give some more details of the
current example, including the implications of subscripts i, j , and then simplify the
resulting expanded version of (11.86).

(i) y measures, from a blood sample, a person’s level of immunity to HB (Hepatitis B).
Measurements were made for each of 106 infants, at fairly regular intervals.

(ii) yij denotes the jth sample from the ith infant, taken at time tij, and having expected
value µij. Let j = 1, 2, . . . , ni .

(iii) A deterministic straight line relationship was discovered between µij and log ti j ,
with gradient βi , namely that given above.

Thus, Figure 11.33 is to be regarded as a DAG ‘layer’ corresponding to infant i , and
the figure implies a node yi j (and its expanded version in (b)) for each of j = 1, 2, . . . , ni .
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When this is taken into account the term in (11.86) involving yi j becomes a product of
such terms over all j which, together with φ[(αi − α0)/σα], constitute all the factors in
(11.86) that involve αi . Setting x = αi in Lemma 11.37(ii) we may combine them into
one normal pdf as follows:

φ[(αi − α0)/σα]
∏ni

j=1
φ[(yij − αi − βi log(tij/730))/σ ] ∝ φ[(αi − m)/s],

where m and s are given in terms of the rest by

1/s2 = 1/σ 2
α + ni/σ

2,

m/s2 = α0/σ
2
α + (1/σ 2)

∑ni

j=1
[yij − βi log(tij/730)]. (11.87)

(iv) Though the purpose of this example is to illustrate the use of a Bayesian network,
we remark that the investigators apply MCMC via a Gibbs sampler, the most widely
used method (see Section 11.4.5). As a result they establish the simple model for change
in immunity over time: (immunity at time t)/(immunity at time 0) ∝ 1/t .

Exercise Verify (11.87) or write out explicit formulae for m and s.

11.4.5 Markov Random Fields and the Gibbs sampler

Definition 11.77 The Gibbs sampler for a random vector X = (X1, . . . , Xn) is charac-
terised as a special case of MCMC by the following.

(i) Only one component is changed at a time – in fixed or random order. For example
(X1, X2, X3) → (X1, Y2, X3).

(ii) The proposal distribution, q, is the full conditional distribution of Xi , namely P(Xi | all other
components).

(iii) Every proposal is accepted.

Calculating q Along with all other conditionals, q is determined in principle by the
joint pdf of (X1, . . . , Xn), though the actual derivation may be impracticable. How-
ever, if we have a Bayesian network as in Section 11.4.4 we can read off the required
full conditionals directly, according to the following argument. We take advantage of
the fact that q need only be known up to a constant multiple; the proportionality sym-
bol will be used as previously to express the fact that we are omitting such constants.
Let v be any vertex, with children c(v), and write V−v for V \{v}. Then q becomes,
by (11.81),

p(v|V−v) = p(v, V−v)/p(V−v) = p(V )/p(V−v) (11.88)

∝ �{terms in p(V ) that contain v} (see below) (11.89)

= p(v |parents of v)
∏

w∈c(v)

p(w |parents of w). (11.90)

In line (11.89) the proportionality symbol signifies that we omit not only p(V−v) but
all other factors independent of v. The remaining factors from the joint pdf (11.81) are
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formulated in the next line, (11.90). They may be read off from (11.81) or from the
related graph. In particular they require no integration or summation to obtain.

p(v|V−v) =∏
(factors in (11.81) which refer to v). (11.90a)

Examples 11.78 We determine two of the full conditionals in Example 11.75 required
for Gibbs sampling. (i) Consider αi . According to (11.89), the required conditional is
the product of φ[(αi − α0)/σα] and all terms in (11.86) which contain αi for any value
of j from 1 to ni (see Example 11.76(ii)). But this is precisely what we calculated at
(11.87).

(ii) Consider σα. For simplicity we shall work with τα = σ−2
α . We calculate p(τα| the

rest) by applying the explicit formula (11.90). The children to be taken into account are
by implication α1, . . . , α106 (see Example 11.76(i)), and all have α0 as a second parent.
Let c = 0.01, which we take for both parameters in the gamma distribution, so that

p(τα| the rest) ∝ g(τα)
106∏
i=1

p(αi |τα, α0)

∝ τ c−1
α e−cτα

106∏
i=1

τ 1/2
α e−

1
2 (αi−α0)2τα

= τ c−1+53
α exp

[
−
(

c + 1/2

∑
i
(αi−α0)2

)
τα

]
.

Thus p(τα| the rest) ∼ �a,b, with parameters a = 53.01 and b = 0.01
+ 1/2

∑
i (αi − α0)2.

Markov Random Fields For consistency the n full conditionals must satisfy restric-
tions, and a celebrated result of Hammersley and Clifford (Theorem 11.84) gives the
consequences for the joint pdf π (x). Consequences which, as we shall see, are welcome
knowledge and useful in practice. The variables X1, . . . , Xn are associated with graph
points, now to be labelled 1, 2, . . . , n respectively. These points are often called sites,
especially when thought of as points in the plane.

Now, considering p(xi |x1, . . . , xi−1, xi+1, . . . , xn), it may be that some xk may be
omitted. Every j for which x j may not be omitted is called a neighbour of i, the set
of all such j being the neighbourhood �i of i. We call X1, . . . , Xn a Markov Random
Field (MRF) with neighbourhoods �1, . . . , �n . This notion lends itself naturally to mod-
elling digital images. It is, as the name suggests, a generalisation of a Markov chain, in
which case �i = {i − 1, i + 1} except for �1 = {2} and �n = {n − 1}. The 2-elements �i

are explained by the Bayesian formula p(x |y) = p(y|x)p(x)/p(y), which shows more
generally that if j is a neighbour of i then i is a neighbour of j. Thus we may say sim-
ply that they are neighbours, and represent this by an undirected edge between graph
points i, j .
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Figure 11.34 Graphs for Examples
11.79.

In establishing the connection between MRFs
and the Gibbs distribution, we follow the approach
of Besag (1974) (though the argument in Lemma
11.82 differs slightly).

Example 11.79 (i) The graph of a Markov chain,
with variables X1, . . . , X5, exemplifying the sim-
plest type of MRF, is shown in Figure 11.34(a).

(ii) Variables X1, . . . , X12, with graph shown in
Figure 11.34(b) as a finite square lattice L of size
a × b,

L = {(r, s) : r = 1, 2, . . . , a; s = 1, 2, . . . , b},
with 4-neighbour system; that is, i and j are neighbours if and only if they are one unit
apart in a horizontal or vertical direction.

(iii) Generalising (ii), we have an MRF whose variables are the grey values for images
in which each pixel is statistically related to a small neighbourhood of surrounding pixels
(see later in this section).

Assumptions 11.80 For present purposes we assume that (i) the variables are discrete,
with finite joint sample space � = {x : p(x) > 0}, (ii) a positivity condition holds: if
p(xi ) > 0 for 1 ≤ i ≤ n then p(x1, . . . , xn) > 0, and (iii) without loss of generality, each
xi can take the value 0 (by relabelling range spaces if necessary). Now we establish a
formula holding for any x, y in� (Besag, 1974), which illustrates that many factorisations
may be possible amongst the conditionals:

p(x)

p(y)
=

n∏
i=1

p(xi |x1, . . . , xi−1, yi+1, . . . , yn)

p(yi |x1, . . . , xi−1, yi+1, . . . , yn)
. (11.91)

Proof We combine relations p(xn|x1, . . . , xn−1) = p(x)/p(x1, . . . , xn−1) and
p(yn|x1, . . . , xn−1) = p(x1, . . . , xn−1, yn)/p(x1, . . . , xn−1) (cf. (11.88)) to introduce yn

beside the xs in a first step:

p(x) = p(xn|x1, . . . , xn−1)

p(yn|x1, . . . , xn−1)
p(x1, . . . , xn−1, yn).

Now we perform a similar operation with xn−1 and yn−1 to obtain

p(x1, . . . , xn−1, yn) = p(xn−1|x1, . . . , xn−2, yn)

p(yn−1|x1, . . . , xn−2, yn)
p(x1, . . . , xn−2, yn−1, yn).

Continuing the process, we arrive at (11.91), the positivity condition ensuring the de-
nominators involved are nonzero. This completes the proof.
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Notation We display for reference two abbreviations it will be convenient to use. In the
first, the ith value is absent, and in the (boldface) second it is set to zero.

x−i = (x1, . . . , xi−1, xi+1, . . . , xn), and xi = (x1, . . . , xi−1, 0, xi+1, . . . , xn).
(11.92)

Corollary 11.81 For any Markov Random Field X = (X1, . . . , Xn) the conditional prob-
ability P(Xi = xi , Xj = x j , . . . , Xk = xk | the rest) depends only on the values at sites
i, j, . . . , k and their neighbours.

Proof The case of {i, j, . . . , k} = {1, 2} shows how a proof is constructed in general.
Considering the result for events A, B, C, that P(A ∩ B|C) = P(A|C)P(B|A ∩ C)
(easily verified from the definitions of (9.8)), we have as required

p(x1, x2|x3, . . . , xn) = p(x1|x3, . . . , xn)p(x2|x1, x3, . . . , xn) = p(x1|�1)p(x2|�2).

Exercise Prove the above formula for P(A ∩ B|C).

The Gibbs distribution Expressed positively, our goal is to establish the most general
form of p(x) for an MRF, given the neighbourhood structure. We shall do so by de-
termining the most general form of a related function Q(x) which, by the assumption
p(0) > 0, we may define as

Q(x) = ln
p(x)

p(0)
(x ∈ �). (11.93)

To this end we consider the implications

eQ(x)−Q(xi ) = p(x)

p(xi )
= p(xi |x−i )p(x−i )

p(0|x−i )p(x−i )
= p(xi |x−i )

p(0|x−i )
. (11.94)

Lemma 11.82 The function Q(x) has the following unique expansion on �, where a
function Qr ...s equals zero if any of its arguments are zero (the ‘zero condition’).

Q(x) =
∑

1≤i≤n

Qi (xi ) +
∑

1≤i< j≤n

Qij(xi , x j )

+
∑

1≤i< j<k≤n

Qijk(xi , x j , xk) + · · · + Q12...n(x). (11.95)

Proof Notice first that, by definition, Q(0) = ln(1) = 0. There are two parts to the proof:
(i) uniqueness – we show that if the Qr ...s exist satisfying (11.95) and the zero condition,
then they are given by certain formulae in terms of Q(x), and (ii) existence – we must show
that these formulae actually do satisfy (11.95) and the zero condition. For uniqueness,
then, we have, by the zero condition and (11.95), that for 1 ≤ k ≤ n,

Q(x1, . . . , xk, 0, . . . , 0) = all terms of (11.95) involving x1, . . . , xk only. (11.96)

Of course, a similar relation holds for any choice of k arguments from the n, and we are
expressing this in terms of the first k only for easier reading. Now, the case k = 1 gives
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Figure 11.35 Cliques of sizes 1, 2, 3, 4. The first three are contained in the maximal
clique of size 4.

Q(x1, 0, . . . , 0) = Q1(x1), all other terms being zero. Also Q1(0) = Q(0, 0, . . . , 0) = 0.
And similarly Qi (xi ) is uniquely Q(0, . . . , 0, xi , 0, . . . , 0), with Qi (0) = 0. But now,
the Qr ...s with k arguments are given by those with fewer than k arguments by (11.96)
rearranged, as

Q12 . . . k(x1, . . . , xk) = Q(x1, . . . , xk, 0, . . . , 0)

−(all terms in x1, . . . , xk with fewer than k arguments). (11.97)

Further, if any of x1, . . . , xk are zero, the right hand side of (11.97) is zero, by general
(11.96) with fewer than k arguments. This establishes uniqueness.
(ii) Existence We have already verified that the formulae for the Q12...s satisfy the zero
condition. Now, the unique term Q12...n with n arguments is defined by (11.97) with
k = n, but this is simply (11.95) itself rearranged. Thus, (11.95) holds with the Qr ...s

given by the implicit formulae, and the proof is complete.

Example 11.83 In the case n = 2 of the lemma the right hand side Q1(x1) +
Q2(x2) + Q12(x1, x2) equals Q(x1, 0) + Q(0, x2) + [Q(x) − Q(x1, 0) − Q(0, x2)],
which is Q(x) as required.

Cliques To take full advantage of (11.95) we need another idea. A clique of graph
points/sites is either a singleton {i} or a subset in which every pair are neighbours, and is
maximal if it is contained in no larger clique. The maximal cliques in Examples 11.79(i)
and (ii) are all edges. We denote a typical clique by c and the set of all cliques by C . The
key result follows Figure 11.35, in which we give examples of cliques, each contained
in the next.

Theorem 11.84 (Hammersley & Clifford, 1974, unpublished) For any 1 ≤ i ≤ j <

· · · < s ≤ n the function Qij...s in the expansion (11.95) of Q(x) is null (identically
zero) unless the sites i, j, . . . , s form a clique. Subject to this restriction, the functions
Qr ...s may be chosen arbitrarily.

Proof Consider a pair of sites which are not neighbours, which, without loss of generality,
we may take to be sites 1 and 2. Setting x1 = 0 in (11.95) we see that Q(x1) is the sum of
all terms in the expansion of Q(x) which do not involve x1 and therefore Q(x) − Q(x1)
is the sum of all those that do. Hence, in the case xi = 0 for i > 2 there holds

Q(x) − Q(x1) = Q1(x) + Q12(x1, x2).
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But (11.94) shows that Q(x) − Q(x1) does not vary with x2 (2 is not a neighbour of 1),
and so, for all x1,

Q1(x1) + Q12(x1, x2) = Q1(x1) + Q12(x1, 0) = Q1(x1),

whence Q12 is null. Similarly, using suitable values of x, we see in sucession that all 3-,
4-, . . . , n-variable Q-functions involving sites 1 and 2 must be null. Thus if r . . . s is not
a clique, i.e. contains a pair of non-neighbours, then Qr ...s is null.

Conversely, any choice of Q-functions gives rise via (11.93) to a valid pdf p(x) sat-
isfying the positivity condition. Further, since Q(x) − Q(xi ), as we have seen, depends
upon xk only if there is a non-null Q-function involving both xi and xk , it follows from
(11.94) that the same holds for p(xi |x−i ). This completes the proof.

Corollary 11.85 (Equivalence of MRFs and Gibbs distribution) A random vector X is
an MRF with respect to a neighbourhood system with cliques C if and only if its joint pdf
has the form of a Gibbs distribution, namely

π (x) = γ e−U (x), wi th U (x) =
∑
c∈C

Vc(x), (11.98)

where Vc is a function that depends only on the sites of clique c, and γ is a constant.

Remarks 11.86 (i) The minus sign of (11.98) is appended in agreement with the Gibbs
distribution’s origin in statistical physics; there Vc is typically interpreted as a potential
energy and it is frequently helpful to maintain the analogy. Of course Vc = −Qr ...s , where
c = {r, . . . , s}. We call U (x) the energy function, and often work with this rather than
π (x).

(ii) Maximal cliques Since, for example, a general function of x1 plus a general function
of x1, x2 amounts to a general function of x1, x2, we may take the cliques in (11.98) to
be maximal. This is usually done, even if only implicitly.

(iii) Factorisation Using the property ea+b = ea · eb, we may rewrite (11.98) as a
useful factorisation into related clique potentials ψs , where C = {c1, . . . , cm}, the set of
cliques:

π (x) = γ�sψs(cs), (11.99)

For example, the Markov chain
1 2 3

has cliques c1 = {1, 2} and c2 =
{2, 3}, with a corresponding factorisation p(x) = γψ1(c1)ψ2(c2) = [p(x1)p(x2|x1)] ×
p(x3|x2).

(iv) Extension to general pdfs As observed by Besag (1974), the Gibbs equivalence
extends to a countably infinite sample space provided

∑
x exp Q(x) is finite, and to

(absolutely) continuous p(x) if exp Q(x) may be integrated over the whole of the sample
space.

Simulated annealing A factor 1/T before the
∑

in (11.98) has the effect of introducing
temperature T in the original physical situations, and in general if the temperature starts
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fairly ‘high’ and is judiciously lowered during Gibbs sampler iteration (see shortly) this
avoids homing in on a premature conclusion. The original technique, a special feature
of Gibbs distributions and MRFs, was named the ‘heat bath’ in physics, and called
simulated annealing by Geman and Geman (1984) when they introduced it into the
vision community.

The following result leads from the energy structure to this technique. Working with
inverse temperature β = 1/T , consider the energy function βU (x), with corresponding
pdf πβ(x) ∝ e−βU (x), or, inserting the constant,

πβ(x) = e−βU (x)
/∑

z
e−βU (z). (11.100)

Theorem 11.87 (See Winkler, 1991) Let π be a Gibbs distribution with energy function
U (x). Let m be the least value of U (x) and write M = {z: U (z) = m}. Then

Lim
β→∞

πβ(x) =
{

1/|M |, if x ∈ M,

0, otherwise.
(11.101)

Further, for sufficiently large β, the function β → πβ(x) is increasing for x ∈ M and
decreasing for x /∈ M.

Proof In the expression (11.100), we multiply top and bottom by eβm and split the sum
into cases U (z) = m and U (z) > m, obtaining

πβ(x) = e−β(U (x)−m)∑
z:U (z)=m e−β(U (z)−m) +∑

z:U (z)>m e−β(U (z)−m)
. (11.102)

Now consider the three exponential terms. If U (z) = m then exp[−β(U (z) − m)] =
exp(0) = 1, and the sum of such terms in the denominator equals |M |. Otherwise
U (z) > m, implying exp[−β(U (z) − m)] → 0 as β →∞. As β →∞, therefore, if
x is a minimum πβ(x) increases monotonically to 1/|M |, otherwise πβ(x) → 0. For
the rest, let x /∈ M and divide (11.102) through by its numerator to obtain in terms of
d(z) = U (z) − U (x):(

|{z: d(z) = 0}| +
∑

d(z)<0

e−βd(z) +
∑

d(z)>0

e−βd(z)

)−1

.

It remains to show that this new denominator eventually increases with β. Differentiating
it with respect to β gives∑

d(z)<0

−d(z)e−βd(z) +
∑

d(z)>0

−d(z)e−βd(z).

As β increases without limit the first term tends to infinity and the second to zero.
Therefore, for sufficiently large β, the derivative is positive, hence the denominator itself
is increasing, and the function β → πβ(x) is decreasing, as required.

Conclusions (i) The limiting pdf of (11.101) as β →∞ is the uniform distribution on
the set M of minimisers, (ii) sampling from this distribution yields minimisers of U,
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(iii) sampling from πβ for high β gives approximate minima. Analysis concerning the
implementation of (iii) leads to a cooling schedule for the temperature T (k) at the kth
sweep or update of the whole of x:

T (k) ∝ 1/ ln k (β = 1/T ). (11.103)

This is due to Geman and Geman (1984), who take the constant of proportionality to
be 3 or 4, say T (k) = 3/ ln k. A geometrically decreasing temperature such as T (k) ∝
ck (0 < c < 1) may work well. For further information see their paper or Winkler (1991).

Applying Gibbs Finally, here is a formula that facilitates putting the Gibbs connection
into practice, and assists in formulating priors for restoration problems and others (see
next section). For the desired iteration we need the full conditionals p(xi |x−i ) in terms
of the potential functions.

Theorem 11.88 (Full conditional formula) For a Markov random field X =
(X1, . . . , Xn), with energy (11.98), we have

p(xi |x−i ) = λ exp

[
−
∑
c:i∈c

Vc(x)

]
, (11.104)

summed over the cliques which contain i, and λ = 1/
∑

p(xi |x−i ) with summation over
all xi in the range space of Xi .

Proof Dividing the cliques into those that contain i and those that do not, we define

Si = exp

[
−
∑
c:i∈c

Vc(x)

]
, and Ti = exp

[
−
∑
c:i /∈c

Vc(x)

]
.

Then, recalling that ea+b = ea · eb, we have p(x) = γ Si Ti (i fixed), and hence

p(xi |x−i ) = p(x)/p(x−i ) since p(xi , x−i ) means p(x)
= Si Ti/

∑
(Si Ti ) over all xi in RXi

= Si Ti/Ti
∑

Si since Ti does not depend on xi

= Si/
∑

Si , as asserted.

Example 11.89 (i) In this small but instructive example (our next is the image prior of
Section 11.4.6), let the sites of x1, . . . , x9, with values in {1, 2, 3, 4, 5}, be arranged on
a 3 × 3 lattice. The neighbours of a site are to be the nearest in a horizontal, vertical, or
diagonal direction. Thus, in the representation in Figure 11.36, the central site 5 has eight
neighbours, a corner has three, and an edge site other than a corner has five neighbours.

The clique functions For a clique c = {r, s}, define Vc = 1 if xr = xs , otherwise Vc = 0.
Then p(xi |x−i ) has by (11.104) an energy function Ui =

∑
Vc (c: i ∈ c) equal to the

number of neighbours of site i with the same value as site i. This yields the following
pdf for conditional probabilities at the central site i = 5, with normalisation constant λ

given by λ(3e−2 + 2e−1) = 1, or λ = e2/(3 + 2e). For example, if x5 = 1 then site 5 has



372 Sampling and inference

ooo

o o

o o

o

o

1

(a) (b)

2 3

4 5

5

6

7 8

Site numbers Site values

9

o

o

ooo

oo

oo

2

3 4

2 1

1

3

Figure 11.36 (a) The sites numbered and positioned on their lattice, (b) the graph show-
ing all neighbour relations, and the site values except the central one, which we vary
through its range in the present example.

two neighbours with the same value, and so U5 = 2.

x5 1 2 3 4 5
U5 = no. of equal neighbours 2 2 2 1 1

p(x5|x−5) λe−2 λe−2 λe−2 λe−1 λe−1

The normalisation constant λ is given by λ = 1/(3e−2 + 2e−1), so we may conveniently
express the finite pdf as a 5-vector, p(x5|x−5) = (1, 1, 1, e, e)/(3 + 2e).

(ii) Mention should be made of the less interesting extreme cases (a) no neighbours, and
(b) every point is a neighbour of every other, so that there is effectively no neighbourhood
structure at all.

Exercise Find the conditional distribution p(x1|x−1) for Figure 11.36 with x5 = 5 (see
Exercise 11.22).

References Texts: Winkler (1991), Kinderman and Snell (1980). Papers: Geman &
Geman (1984), Besag (1974).

11.4.6 Bayesian image restoration

It is natural to model a digital image as a Markov Random Field, or MRF, on the grounds
that a pixel value is most influenced by its closest neighbours. Having done so, we find
that, under quite broad assumptions concerning a degradation process, the consequent
Bayesian posterior pdf for the original is also an MRF, and hence amenable to the Gibbs
or more general MCMC sampling methods of the previous sections. We use sampling to
estimate the mode of this pdf, that is, a hypothetical original image which maximises the
pdf. This estimate of the original image is known therefore as the maximum a posteriori,
or MAP, estimate.

Let x be a rectangular array of grey or colour values, at equally spaced points in an
original ‘true’ image, and let y be the corresponding array of values recorded by some
device such as a scanner, CCD camera, TV camera or remote sensing device. We may
consider some sources of degradation under the four headings of Table 11.13.
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Table 11.13. Some principal sources of image degradation (see also Section 15.3).

source examples

optical lens aberration or defocus
environmental motion blur, atmospheric interference
electronic 1. thermal noise: electron fluctuations in components.

2. shot noise: random arrival of photons (especially in emission
tomography)

digitisation 1. limited bandwidth (see Fourier Transform, Chapters 14, 15).
2. quantisation noise: errors due to rounding

Although we will not consider such full generality at this stage, the combined effect
of these is generally modelled as a linear blur effect x → x B (x a row vector and B a
matrix), followed by a nonlinear function �, and then by additive or multiplicative noise
η. That is, in terms of random variables

Y = �(X B) o η, (11.105)

where o denotes addition, multiplication, or possibly some other invertible operation on
two arguments. We recall the Bayesian formulation for the posterior,

p(x |y) = p(x)p(y|x)/p(y) ∝ p(x)p(y|x), (11.106)

where proportionality ∝ means equality up to multiplication by a factor λ which
is constant in the sense of being independent of x, and therefore recoverable as
λ = 1/

∑
x p(y|x)p(x) = 1/p(y) correctly. To evaluate the factors in (11.106) we must

decide on a suitable prior for p(x), and determine p(y|x) from the details of the assumed
noise model (11.105). Under the reasonable assumption that blur and noise at a given site
i depend only on a set �i of neighbours, the product p(x)p(y|x) is itself an MRF (Geman
& Geman, 1984), and therefore we may conveniently use Gibbs sampling to estimate it.
We assume that blur and noise happen to sites independently, so that p(y|x) = �p(yi |x).
Now let xA = {xk : k ∈ A} for a subset A of the sites. Then x�i denotes the set of all xk

that are neighbours of yi and we may write

p(y|x) =
n∏

i=1

p(yi |x�i ). (11.107)

Remark 11.90 The following relations not only are useful for our present purposes but
provide an excellent exercise in handling conditionals.

p(xi |x−1) ∝ p(x), (11.108)

p(xi |x−i , y) ∝ p(x |y). (11.109)

It is important to notice that, in these results and their proofs, xi for fixed i counts as the
variable, with x−i and y as parameters. Thus factors of p(xi | . . .) that do not involve xi

may be taken as part of a normalisation constant, recoverable by a suitable summation
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over all values of xi (see below). Alternatively, as here, their possible presence is indicated
by a proportionality sign. We have, for (11.109),

p(xi |x−i , y) = p(xi , x−i , y)/p(x−i , y) = p(x, y)/p(x−i , y)

= p(x |y) × [p(y)/p(x−i , y)] (∗)

∝ p(x |y),

which may be written in terms of a proportionality or normalisation constant γ , as
p(x |y)/γ , where γ is the sum of p(x |y) over all values of xi , namely

γ =
∑

xi
p(x |y) =

∑
xi

p(xi , x−i , y)/p(y) = p(x−i , y)/p(y).

This correctly recovers the value apparent from (*). Equation (11.108) may be obtained
by summing both sides of (11.109) over all values of y. The practical application of
(11.109) is that, to obtain p(xi |x−i , y) as required in Gibbs sampling, we may start with
p(x |y) and simply pick out the factors that involve xi . These are given by (11.110) below.
Indeed,

p(xi |x−i , y) ∝ p(x |y) by (11.109)
∝ p(x)p(y|x) by (11.106)
∝ p(xi |x−i )

∏
k∈�i

p(yk |x�k ) by (11.107), (11.108). (11.110)

Exercise Prove (11.108) in the same manner as (11.109) (see Exercise 11.23).

Applications 11.91 (i) The image prior Let the prior for an original image be an MRF
in which sites r , s are neighbours (r ∼ s), if {r, s} is a horizontal or vertical lattice edge.
Then the (maximal) cliques are these edges. For energy potentials we use the Potts model
(see e.g. Green, 1996) which means that, for a clique c = {r, s}, we let Vc = 1xr �=xs , the
function which is 1 where the condition xr �= xs holds, and zero otherwise. By Theorem
11.88 the required conditional, which is p(xi |x−i ), has energy function∑

c:i∈c

Vc(x) =
∑
r :r∼i

V{r,i}(x) =
∑
r :r∼i

1xr �=xi . (11.111)

(ii) The noise model Suppose the original image was degraded by Gaussian noise
with zero mean and variance σ 2, added independently to each pixel (no neighbour de-
pendency). That is, the � part in (11.110) reduces to k = i , and

p(yi |x�i ) = p(yi |xi ) ∼ N (xi , σ
2). (11.112)

(iii) The posterior conditional The energy function Ui (x) for the posterior
p(xi |x−i , y) of (11.110) is the sum of the energy (11.111) for p(xi |x−i ) and the en-
ergy for p(yi |xi ) in (11.112). Since the normal pdf γ exp[−(yi − xi )2/2σ 2] contributes
energy −(yi − xi )2/2σ 2, we have altogether

Ui (xi ) =
∑
r :r∼i

1xr �=xi + (yi − xi )
2/2σ 2. (11.113)
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Figure 11.37 The Gibbs sampler applied to an original image (a) corrupted by noise
with variance 1/4 into (b), with results shown after 5, 10, 15, 30, and 50 sweeps on
temperature scedule T (k) = 3/ log(1 + k).

Original image We start with the 20 × 100 rectangle of Figure 11.37(a), banded into
five grey levels, with straight vertical boundaries, and use ALGO 11.8 to add noise
with variance σ 2 = 1/4, to produce the corrupted version Figure 11.37(b). We perform
a total of 50 Gibbs sweeps over the whole image, with temperature schedule T (k) =
3/ log(1 + k); the results are shown after 5, 10, 15, 30 and 50 sweeps.

When Gibbs fails (See Green, 1996) In a similar manner to Bayesian restoration, one
may perform Bayesian reconstruction for an emission tomography image. In this, the
arrival of photons is modelled by a Poisson distribution and the energy function (11.111)
has 1xi �=x j replaced by a more general function φ(xi − x j ). The Gibbs sampler becomes
impractical and we must resort to general MCMC which, though found to be 20 times
more computationally expensive, is especially well-adapted to estimating accuracy of
convergence. For further discussion, see Besag (2000).

Handling boundaries So far we have modelled only the pixel intensities, but the bound-
aries have been recovered reasonably well. However, with a greater number of pixel
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intensities and more complex images, edge detection requires additional modelling, a hi-
erarchy of constructs rising above the pixel intensity level. For example, introducing and
allocating pdfs to small groupings of pixels which are potential edge elements. Some
references are Geman & Geman (1984), Winkler (1991), Johnson (1994) and Green
(1996).

Johnson specifies pixel neighbourhoods on the basis of area filled not by squares,
but by hexagons, an idea periodically considered for computer screens. His paper in-
cludes an iluminating discussion on the art of choosing priors so as, for example, to
encourage/discourage large regions of constant intensity.

Related methods (i) An alternative to Gibbs, called ICM for Iterated Conditional
Modes, was introduced by Besag, and others around the same time. See Besag (1986),
(2000) or Green (1990). We refer to this in the next section.

(ii) A method for allowing the dimension of our random vector X to change with
iteration is found in Green (1995). One nice consequence is a scheme for Bayesian curve
fitting reported as comparing favourably with spline methods that use many more knots
(Denison et al., 1998).

(iii) Much recent work has focussed on the concept of Perfect MCMC Simulation, the
aim being to, in effect, run the Markov chain from the infinite past and hence obtain a
perfect sample at time zero. See Propp and Wilson (1996) or Besag (2000).

References Geman & Geman (1984), Winkler (1991), Johnson (1994), Kittle and
Föglein (1984), Besag (2000).

11.4.7 The binary case – MAP by network flows

It turns out that in the special case of 2-colour, or binary, images, the MAP estimate
can be derived exactly by viable combinatorial means. The qualification of viable is
important, because it is well recognised that the MAP could in principle be determined
by a brute force testing of all 2n possible n-pixel images, the problem being that for, say,
an 800 × 600 image the number of possibilities is too great, at 2480000, or approximately
10144000. Thus it was no mean achievement of Grieg et al. (1989) to find a combinatorial
method, network flows, which reduces this to a manageable computation.

We set up the Bayesian formulation, then introduce the equivalent network flow prob-
lem and its solution, in the expectation that the flow method will be extended in due
course to the case of more than two colours (a step in this direction was taken by Ferrari
et al., 1995). The present exact binary version has proved most useful as a check on the
MAP estimates provided by both simulated annealing and the ICM technique of Besag
(1986); see Grieg et al. (1989).

The energy function will be a quadratic expression in pixel variables X =
(X1, . . . , Xn), in which the observed values Y = (Y1, . . . , Yn) play the role of constants.
Notice that 0 and 1 are the unique solutions of the equation z2 = z.
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Figure 11.38 The probabilites in channel noise are given by parameters p, q, possibly
equal. The transition matrix H has a, b element p(yi = b|xi = a), where a, b are 0 or 1.

(i) The image prior The energy for the image prior given by Application 11.91 is U (x) =∑
c Vc(x), where c runs through all edges c = {i, j} of the related graph, and Vc = 1xi �=x j ,

the function which equals 1 if xi �= x j , and zero otherwise. But given the restriction to
values xi , x j ∈ {0, 1} we may write Vc = (xi − x j )2, and then the following generality
is convenient:

U (x) = 1
2

∑
1≤i, j≤n

βij(xi − x j )
2, (11.114)

with all βij ≥ 0, but βii = 0 and βij = β ji (hence the factor 1/2). Now βij > 0 corresponds
to i and j being neighbours. Also, if all nonzero βij equal a fixed number β, then U (x) =
βv, where v is the number of unlike-coloured neighbour pairs.

(ii) The noise model Considering again the restriction to two colours, we concentrate
on the model often referred to as channel noise, in which each pixel is changed with a
probability depending on (at most) its present value. This is depicted in Figure 11.38,
both by arrows and by a transition matrix.

We obtain an energy contribution which is linear in the xi , by first observing that
since xi takes only the values 0, 1, and p(yi |xi ) = p(yi |0) if xi = 0, but equals p(yi |1)
if xi = 1, there holds

p(yi |xi ) = p(yi |0)1−xi p(yi |1)xi . (11.115)

As before, we convert this to energy form by the property p(y|x) = eln p(y|x) and compute
the log-likelihood function:

ln p(y|x) = ln
∏

i
p(yi |xi )

= ln
∏

i
p(yi |0)1−xi p(yi |1)xi

=
∑

i
[xi {ln p(yi |1) − xi ln p(yi |0)} + ln p(yi |0)]

=
∑

i
(λi xi + µi ),

with constants λi = ln[p(yi |1)/p(yi |0)] and µi = ln p(yi |0). The µi may be omitted
since their values do not affect which vector x minimises our energy function below.
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(iii) The posterior conditional Finally, the energy for the posterior p(x |y) ∝ p(y|x)p(x)
is U (x) = − ln p(y|x) +∑

c Vc(x) or, using (11.114) and the expression for ln p(y|x),

U (x) = −
n∑

i=1

λi xi + 1
2

∑
1≤i, j≤n

βij(xi − x j )
2. (11.116)

The maximum a posteriori estimate, or MAP, is that x = x̂ which minimises U (x). We
now reformulate this as a max/min problem in network flows, and derive the famous
theorem of Ford and Fulkerson (1962) which leads to a solution algorithm.

Networks and flows

Definition 11.92 A network N consists of (i) a digraph (V, E) in which two vertices are
distinguished, the source s and target (or sink) t, and (ii) a function c assigning to each
edge e its capacity c(e), a non-negative real number.

vu
5

7

2

oo

Figure 11.39 The total flow 7 into vertex v equals the flow out, 5 + 2, in agreement with
the conservation constraint of Definition 11.93.

Nomenclature for edges An edge e = {u, v} is said to start from, or point out of, its initial
vertex ı(e) = u, and to end at, terminate at, or point into its terminal vertex τ (e) = v

(see Figure 11.39). The indegree (outdegree) of u is the number of edges pointing into
(out of) u. Sometimes a source is defined to have indegree 0 and a sink outdegree 0, but
this is not essential in the present section. We define the notion of a flow on N, designed
to accord with our intuition about the flow of any incompressible substance such as a
liquid.

Definition 11.93 A flow on a network N is an assignment of a real number f (e) to the
edges satisfying (i) the capacity constraint: 0 ≤ f (e) ≤ c(e), and (ii) the conservation
constraint: for each vertex v other than s or t , the flow into v equals the flow out of v,
that is ∑

τ (e)=v

f (e) =
∑

ι(e)=v

f (e). (11.117)

The value of the flow, val( f ), is the net flow out of s, that is

val( f ) =
∑
ι(e)=s

f (e) −
∑

τ (e)=s

f (e). (11.118)

Augmenting paths The objective is to maximise the flow, and an important tool for
increasing the flow, if possible, is an s − t path s, u1, . . . , uk, t which is augmenting,
meaning that every forward edge {ui , ui+1} has flow strictly below capacity and every
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Figure 11.40 Increasing the flow in a network by use of augmenting paths.

edge directed the other way (backwards) has strictly positive flow. This means we can
increase val( f ) by 1, still obeying the constraints, if we add 1 to the flow of each forward
edge and subtract 1 from each backwards edge. Of course, we may be able to increase
the flow by more than 1 unit, as we see in the next example.

An edge labelled f/c denotes flow f and capacity c. We call this edge saturated if
f = c, since no increase in f is then possible.

Example 11.94 In the network of Figure 11.40(a), with val( f ) = 1, the path s, u, t is an
augmenting one. Indeed the bottleneck on this path (edge of least possible flow increase)
is 1/8 on the edge {s, u}, so we increase the flow by 7 on both edges of the path, to
obtain (b), with val( f ) = 8. The next easiest possibility is path s, v, t with bottleneck
1/6. Increasing the flow on both edges by 5 we obtain (c), with val( f ) = 8 + 5 = 13.

Considering (c), it looks at first as if there is no way to increase the flow further.
However, we can proceed along edge {s, v} because it is unsaturated. When we come to
the backwards edge {u, v} with positive flow, we reduce this flow, then go along {u, t}
increasing the flow of this forward edge to its capacity limit of 8. Thus we increase val( f )
by a further 1 and obtain network (d) with flow 14. It certainly seems obvious we can’t do
better here, but how would we prove this conviction in general? An answer is provided
through the next idea, that of a cut.

Definition 11.95 A cut in a network N is a pair (A, B) of subsets which partition the
vertex set V , with s in A and t in B. The set of edges directed from A to B (the edges
{a, b} with a in A and b in B) is denoted by A+, whilst A− is the set directed from
B to A. The capacity c(A, B) of the cut is the sum of the capacities of the A to B
edges only. Thus the cut (A,B) depicted in Figure 11.41 has capacity 5 + 3 = 8, where
A+ = {{a, b}, {u, v}} The total flow f (A, B) from A to B is the sum of the flows out of
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Figure 11.41 A cut (A, B) with capacity 8 (only the edges out of A are counted).
Here A+ = {ab, uv} and A− = {xw}. According to Theorem 11.96, the total flow in the
network represented must be 1 + 4 − 3 = 2.

A minus those into A, or

f(A, B) =
∑
e∈A+

f(e) −
∑
e∈A−

f (e). (11.119)

Theorem 11.96 Let (A, B) be a cut of the network N. Then the flow in N equals the flow
from A to B. Indeed

val( f ) = f (A, B) = total flow into t. (11.120)

Proof We interpret in two ways the sum

Z =
∑
x∈A

(∑
ι(e)=x

f (e) −
∑

τ (e)=x

f (e)

)
.

Firstly, by the conservation constraint (Definition 11.93), the sum differences in paren-
theses are zero except for x = s, hence Z equals the total flow out of s or, by definition,
val( f ). Secondly,

Z =
∑
x∈A

∑
ι(e)=x

f (e) −
∑
x∈A

∑
τ (e)=x

f (e)

=
∑

ι(e)∈A

f (e) −
∑

τ (e)∈A

f (e).

But an edge e with both ends in A makes a net contribution of f (e) − f (e) = 0, leaving
only the terms of (11.119). Thus val( f )= f (A, B), and the special case A = V \{t}, B =
{t} shows that val( f ) = the total flow into t .

Corollary 11.97 The value of any flow is bounded above by the capacity of any cut.
Hence, in any case of equality the flow is greatest possible and the cut capacity least.

Proof Let f be a flow and (A, B) a cut. Then

val( f ) = f (A, B) (Theorem 11.96) ≤ ∑
e∈A+

f (e) (by (11.119))

≤ ∑
e∈A−

c(e) = c(A, B).
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Exercise Deduce the second assertion of Corollary 11.97 from the first.

Theorem 11.98 (Ford & Fulkerson, 1962) ‘Max flow = Min cut’: in a network, the
greatest value of any flow equals the least capacity of any cut.

Proof Let f be an arbitrary maximal flow on a network. Then, according to Corollary
11.97, we need only produce a cut whose capacity equals val( f ). Let A be the set of
vertices reachable by an augmenting path from s (this includes s itself), and let B be the
complement V \A. Then t is in B, otherwise the flow could be increased by an augmenting
path, contradicting the maximality of val( f ). Now, any edge e = {u, v} in A+ must be
saturated, for otherwise an s−u augmenting path could be extended to v, implying v was
in A. Similarly, any edge in A− must have zero flow, to avoid an extension. Hence

val( f ) = f (A, B) (Theorem 11.96) = c(A, B) (by Definition 11.95).

Remarks 11.99 (i) The proof of Theorem 11.98 shows that if (A, B) is a cut and f
a flow then (A, B) has least possible capacity if and only if all edges pointing out
of A are saturated and those pointing in have zero flow, (ii) taking A = {s} we see
that, if the source has only outward pointing edges and these are saturated by a flow,
then val( f ) is greatest possible, (iii) the proof shows also that a flow is maximum –
there exists no greater flow, if and only if it is maximal – no further augmented path can
be added to what we already have. Thus, it does not matter by what route we have arrived
at our non-increasable flow; it will be greatest possible.

If there is no further augmenting path, we have maximum flow.

From energy to network

The energy function (11.116) is defined by nonzero constants λi depending on the ob-
served image y, and by positive constants βij depending (partly) on the neighbourhood
structure of our image model. These determine a network N = (V, E, s, t, c) as follows.
The vertex set V is {s, t, 1, 2, . . . , n}, and there are two kinds of edges: (a) for each
λi > 0, a directed edge {s, i} of capacity csi = λi , and for each λi < 0 a directed edge
{i, t} of capacity −λi , (b) for every neighbour pair i, j an undirected edge {i, j} (see
later), with capacity βij. The idea is to find a maximum flow, and then a minimum cut
(B, W ) specifies the pixels i ∈ B which are black in the MAP estimate. We shall shortly
justify all this, but first a simple example.

Example 11.100 Consider channel noise in which each pixel has a fixed probability p
of being changed. We have

λi = ln
p(yi |1)

p(yi |0)
=
{

ln[(1 − p)/p] = λ, say, if yi = 1,

ln[p/(1 − p)] = −λ, if yi = 0.

Also, λ > 0 ⇔ 1 − p > p ⇔ p < 1/2, so let us adopt the reasonable assumption that
p < 1/2. Thus, letting black pixels correspond to yi = 1, we have an edge {s, i} of
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Figure 11.42 Network graph of Example 11.100 for 2 × 2 square of two black and
two white pixels as indicated; the 4-neighbour lattice case with βij = 1 for neighbours
i, j. We take p = 1/6, giving λi = 1.6 approx. for black pixels and λi = −1.6 for white
(then −λi = +1.6).

capacity λ to each black pixel i, and an edge { j, t} of capacity −λ for each white pixel
j. See Figure 11.42.

From MAP candidate to cut

A candidate x for the MAP defines a cut (B, W ) by B = {s} ∪ {black pixels : xi = 1}
and W = {t} ∪ {white pixels : xi = 0}. The capacity of the cut, �cbw over all B–W edges
{b, w}, has three types of contribution, where 1 ≤ i, j ≤ n:

(a) B–W edges of type {s, i}. Given i, there is such an edge if and only if xi = 0 and
λi > 0, the capacity being λi . Hence we can represent its contribution by any expression
which equals λi if xi = 0, λi > 0, and otherwise zero. We use (1 − xi )Max(0, λi ).

(b) B–W edges of type {i, t} correspond to xi = 1, λi < 0, and have capacity −λi ,
hence the contribution for given i may be represented by the expression xi Max(0,−λi ).

(c) B–W edges of type {i, j}. Here we require an expression which equals βij if xi �= x j

and otherwise zero. But this is precisely the condition of (11.114), so let us again use
βij(xi − x j )2. We have altogether C(x), where

C(x) =
n∑

i=1

[(1 − xi )Max(0, λi ) + xi Max(0,−λi )] + 1
2

∑
1≤i, j≤n

βij(xi − x j )
2. (11.121)

To demonstrate the equivalence of the max-flow, min-cut problem to finding the MAP we
must show that x minimises C(x) if and only if x minimises the energy U (x) of (11.116).
We shall prove this by showing that C(x) − U (x) is independent of x. It remains to com-
pare the λi terms of the two sums; we observe firstly that Max(0, λi ) − Max(0,−λi ) = λi

whether λi is positive or negative. The calculation is then, for each i,

xiλi + (1 − xi )Max(0, λi ) + xi Max(0,−λi )
= xi [λi − Max(0, λi ) + Max(0,−λi )] + Max(0, λi ) (by rearranging)
= Max(0, λi ) = constant.

Example 11.101 For a simple but non-trivial illustration we suppose the 3 × 4 image of
Figure 11.43 was observed, assume a 4-neighbour dependence amongst pixels, and take
λ = 2, corresponding to a fixed error probability of 0.119 approx. at each pixel.
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Figure 11.43 Graph (90 degrees rotated) corresponding to the observed 3 × 4 black and
white pixel image, assuming λ = 2. Black pixels are represented by black graph points,
and each pixel has four neighbours except on the corners. The flow is conveyed outward
from the source along edges of capacity 2, along undirected edges (i, j) of capacity
βij = 1, and into the target, or sink, along directed edges of capacity 2 (an undirected
edge is simulated by a directed edge in each direction).

p pn
fin

fout

Figure 11.44 The information recorded at position p of the array flows, namely a triple
{p, fin, fout}, for each neighbour pn of p, with fin = fout = 0 initially. Point pn receives
the label {p, afin, afout} calculated from (11.122), and stored in labels[ pn].

The cut-flow algorithm

In the graph we repeatedly construct an augmented s–t path, increasing the flow along
it by the maximum possible. We reduce path construction to a series of 1-choice steps
by first scanning the vertices, as follows. To scan a vertex p is to label its neighbours pn.
Referring to Figure 11.44, the label is {p, afin, afout}, where fin stands for flow into pn
from p, and afin is available flow, described shortly. Similarly for flow out. Denoting the
capacity of the edge {p, pn} by cp, we can increase total flow into pn according to the
spare capacity cp – fin, or by decreasing outward flow if fout is positive. Thus, we begin
by labelling s as {−1,∞, 0} and proceed from the typical point p to its neighbour pn by
defining

afin = Min[afin(p), cp − fin],
afout = Min[afout(p), fout].

(11.122)

Notice that each labelled point has a unique predecessor, so that if/when we reach t we
may work back along a path to s, increasing inflow by afin(t), and decreasing outflow by
afout(t). On the other hand, the fact that afout= 0 at s ensures by (11.122) that afout = 0
at all points on the path, including t , though we have allowed the possibility of a more
general situation, should this be required.
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After each successful path we re-initialise the labels and commence a new scan.
Eventually the case arises where a point to be scanned has no unlabelled neighbours
with spare capacity (afout = afin = 0), and yet t has not been reached. Then the set B of
labelled vertices defines a cut and B\{s} is the set of black vertices in the MAP estimate
of the original image. Referring to Figure 11.44, we have the data structured into the
following arrays (besides the graph itself and its capacities):

flows[p] = sequence of labels {pn, fin, fout} corresponding to the

neighbours pn of p;

labels[pn] = {p, afin, afout}, where labels[s] = {−1,∞, 0};
labelQ = queue of points labelled but not yet scanned, in order of

appearance;

scanned[p]: set True when the scan of p is complete.

ALGO 11.18 Find the MAP estimate for an observed binary
image

Procedure scan
Set {prevPt, afin(p), afout(p)} = labels[ p]
Set pNbrs = flows[ p]
For i = 1, 2, . . . (label the ith neighbour, pn)

Get capacity p of edge (p, pn)
Compute afin, afout for pn, from (11.122)
Abandon pn if already labelled or afout = 0 = afin
Insert {p, afin, afout} at labels[ pn]
Append pn to end of labelQ

Main algorithm
For loopcount = 1, 2, 3, . . . , Max do

Initialise the arrays: flows, scanned, labels, labelQ
While labelQ is non-empty and Last[labels] �= t

Extract the first point, p, of labelQ
Scan p then set scanned[p] = True

If labelQ is empty, exit the For loop (cut found)
From t follow the unique labelled path back to s
Increase the inflows by afin(t) on path edges
Decrease the outflows by afout(t) on path edges
(end of For loop)

Output list of labelled points as ‘1’ positions in restored pic

Example 11.101 (continued) The algorithm applied to this example produced nine paths
(i) and a labelling for an attempted tenth path (ii), as indicated in Figure 11.45. Failure
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(ii) (i) 1.  s, 2, 3, t 4.  s, 4, 3, t 7.  s, 9, 13, t
      2.  s, 2, 6, t  5.  s, 7, 8, t 8.  s, 11, 12, t
      3.  s, 4, 8, t 6.  s, 7, 6, t 9.  s, 9, 8, 12, t

(iii) 

Figure 11.45 (i) List of successful augmentation paths for Example 11.101, (ii) points
in the labelling for the failed tenth path to t, (iii) the change (arrowed) defined by these
points.

occurred at vertex 3, from which there were no valid neighbours with which to proceed.
Thus the black pixels in the MAP estimate of the original image are those numbered
{2, 3, 4, 5, 6, 7, 9, 10, 11}.

The minimum value of C(x) is 9, computed in under 1 second. For comparison, this
flow was obtained by direct minimisation of C(x) over all 212 possible 3 × 4 binary
images, the calculation taking 35 seconds.

Example 11.102 Figure 11.46 shows a simple 5 × 10 image, its noisy version with each
pixel flipped with probability p = 0.25, and the MAP estimate with various values of β.
The restoration is perfect for 0.8 ≤ β ≤ 2.4, but all black thereafter. Notice the timing
contrast between the flow method and a complete search. Since the number of points has
increased from 12 (in Example 11.101) to a present 50, the computation time is increased
in the approximate ratio 238, to about 237 minutes, which is already unmanageable.

β = 0.4 β = 0.5 β = 0.6 or 0.7Original Noisy, p = 0.25

Figure 11.46 A simple binary image is corrupted by pixel noise with p = 0.25, and
restored by the flow method with various values of β. For β ≥ 2.4 the MAP estimate is
black, but for 0.8 ≤ β ≤ 2.3 the MAP restoration is perfect.

Termination So far we have been rather quiet about whether the flow algorithm must
terminate, and, if so, how soon. Here is a point-by-point discussion.

(1) If the initial flows are all integral, say zero, and the capacities too, then an aug-
menting path increases flow by at least one unit, so the process terminates after finitely
many steps (paths).

(2) Even if real numbers are involved, they are approximated by rationals for computer
calculation, and we obtain an equivalent problem in integers by multiplying through by a
common denominator M. However, M may be so large that the problem cannot be solved
in acceptable time (cf. directly minimising C(x) over all 2n cases, n ≥ 50). To fix ideas,
suppose M is of the order of 109, and consider the network of Figure 11.47.

The order of augmenting paths chosen in Figure 11.47(b) involves the huge number
2M of paths, yet the same may be accomplished by just two paths s, a, t and s, b, t .
The original algorithm of Ford and Fulkerson would have allowed this choice, but such
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a

b

s t

M

M

M

M

1

(a)

a

b

s t

M − 1

M − 1

M − 1

M − 1

1

(b)

Figure 11.47 (a) A simple network, with edges labelled by capacity, illustrating how
some choices of augmenting paths entail hugely more calculation than others, (b) the
spare capacities after paths s, a, b, t and s, b, a, t each increase flow by 1. The verti-
cal capacity 1 was lost then restored. Repeating this pair takes 2M paths to attain the
maximum flow 2M .

inefficiencies are eliminated by the simple additional feature due to Edmonds and Karp
(1972) of ‘first labelled, first scanned’, here implemented via the queue of labelled but
unscanned vertices, kept in array labelQ. Indeed, it results in a reasonable upper bound
on the computation, as we shortly describe.

Exercise What paths result when ALGO 11.18 is applied to the network of Figure 11.47?
(3) As may be seen, first labelled, first scanned ensures that each successive aug-

menting path is shortest possible. Edmunds and Karp show that in this circumstance the
number of paths satisfies, in the ‘big O’ notation (Definition 10.42),

no. of paths ≤ |E |(|V | + 2)/2 = O(n3), (11.123)

where |E | denotes the number of graph edges, not counting direction, and n = |V |;
the equality holds because |E | ≤ n(n − 1). Now let us see if this can be significantly
improved for the particular type of network graph with which we determine an MAP. One
way to count edges is to notice that, since each edge is incident on exactly two vertices
there holds 2E =∑

di , where di is the number of edges incident on the ith vertex. This
yields the equalities in the lemma below. The inequalities are obtained by maximising
k + m subject to 0 < k, m < n and km = n, the result being 2

√
n.

Lemma 11.103 For a k × m image with n = km vertices we have

|E | =
{

3n − (k + m) ≤ 3n − 2
√

n (4-neighbour case),
5n − 3(k + m) + 2 ≤ 5n − 6

√
n + 4 (8-neighbour case).

(11.124)

(4) It turns out that in our case the bound (11.123) may be reduced by a factor 2, as
follows. We recall that a bottleneck in a path is an edge of least possible flow increase.
The main step in the proof is to show that (given all augmenting paths are shortest
possible), any given edge e may play the role of a bottleneck as a forward edge in at most
(|V | + 2)/4 of these paths, and similarly as a backwards edge. Since there are |E | edges
altogether, the total number of paths cannot exceed |E | × (|V | + 2)/4 × 2, and we have
(11.123). However, the factor 2 may be dropped in our case because, as observed below
(11.122), all path edges are forward. Combining this fact with Lemma 11.103, we have
the inequalities below.
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Theorem 11.104 For a k × m image with n = km, the number of augmenting paths is
bounded above by{ 1

4 (3n − 2
√

n)(n + 2) (4-neighbour case),
1
4 (5n − 6

√
n + 4)(n + 2) (8-neighbour case)

}
= O(n2). (11.125)

Example 11.105 Before commenting on timing and other issues, it is time to add a
slightly larger example. We consider the letter ‘A’ in a 30 × 30 pixel matrix, as shown in
Figure 11.48 followed by, as usual, a version with added noise in the form of a probability
p = 0.25 for each pixel, of a change between black and white.

Original Noisy, p = 0.25 

β = 0.3 β = 0.4 β  = 0.5

β = 0.15 β = 0.2 β = 0.25

Originals

4-neighbour
prior 

8-neighbour
prior

Figure 11.48 Original letter ‘A’, noisy version with probability p = 0.25 of corruption
at pixels, followed by the exact maximum a priori estimates based on 4-neighbour 2β
and 8-neighbour β priors, for various values of β.

Results and conjectures

1. Complexity Let us think of the number of paths as representing the complexity/time
of the flow determination. By (11.125), the computation may be performed in polynomial
time, indeed this polynomial has degree as little as 2. In Table 11.14, however, the bounds
are roughly the squares of the actual values, suggesting that a closer analysis may reduce
the bounds to O(n). This is borne out by experiments (Grieg et al., 1989) in which,
successively, the solution for each component of a fine partition of the image is the
stepping stone for that of one with components twice the size. Such a technique typically
reduces a factor n to log n, which is worthwhile because n log n ultimately increases less
rapidly than n1+e for any positive e.
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Table 11.14. Upper bound and actual numbers of iterations for three
examples. Varying B changed the number of paths by less than 2%,

and we give representative figures only.

Example n 4-nbr bound paths used 8-nbr bound paths used

11.101 12 101 10 151 20
11.102 50 1766 34 2750 56
11.105 900 595 320 723 975 062 1385

2. Neighbourhoods and the value of β We are using a fixed value β for all nonzero βi j in
the image prior (11.114) and therefore, as observed, the corresponding energy is U (x) =
βv, where v is the number of unlike-coloured neighbour pairs. Thus we may expect that
an 8-neighbour prior model with parameter β will give similar results to a 4-neighbour
one with parameter 2β, unless the 8-neighbour model is a sufficiently superior model
of reality to offset this. In Figure 11.48 we compare the two choices, and it does appear
there is no reason to choose the computationally more expensive 8-neighbour prior.

References Exact MAP: Grieg et al. (1989), Ferrari et al. (1995).
Flow algorithm: Ford & Fulkerson (1962), Edmonds & Karp (1972), Even (1973).
Algorithms, polynomial time, NP-completeness: Manber (1989).
ICM method: Besag (1986), (2000).

Appendix Converting a list of variates or other values to a frequency table, or histogram.

ALGO 11.19 Frequency table

Input: (1) vector lst of values, (2) interval [a, b] in which they
lie, to be divided into n equal parts.
dx = (b − a)/n; x2 = a;
vals = lst in increasing order;
f = n-vector with fn = Length[lst];
For i = 1 to n − 1 do

x1 = x2; x2 = x2 + dx ;
While valsk < x2 do k = k + 1
k = k − 1; fi = k

For i = n down to 2 reduce fi by fi−1

Return f.

A Mathematica routine for drawing the frequency table

freqGraph[f ] := Module[{i, n = Length[f], pts, g};
g = Table[0, {2n + 2}];
Do[g[[{2i, 2i + 1}]] = f[[i]], { i, n }];
pts=Table[{Ceiling[i/2], g[[i]]}, {i, 2n + 2}];
Show[Graphics[Line[pts]], ImageSize −>72inches]; ];
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Exercises 11

1
√

Let X ∼ �α,u . (i) Show that for c, d > 0 there holds d�α,u(dx) = �dα,u(x), and hence
that cX∼ �α/c,u . (ii) Deduce that, for the normal distribution, S2 ∼ �a,b, where a =
(n − 1)/2σ 2, b = (n − 1)/2. (iii) Write down the mean and variance of S2 and verify
that V (S2) = O(1/n) (see Definition 10.42).

2
√

Which properties of Table 11.3 apply to the estimator X ?
3
√

A sample (X1, . . . , Xn) is taken of a variable in N (0, σ 2). Write down the likelihood
function L(x1, . . . , xn; σ ), and its logarithm l(σ ), and show that the most likely estimate of
σ is given by (1/n)

∑
x2

i . Verify that the ratio of this to the usual estimate S2 approaches
1 as n →∞.

4
√

The measured values {0.889, 1.6, 2, 1.78, 2.74, 2.9, 2.64, 2.71, 2.87, 3.51}of y correspond
respectively to x = 1, 2, . . . , 10. Find the regression line of y on x given by (11.17).

5
√

With S =∑
i (yi − a − bxi )2, the sum of squares error given by (11.14), show that the

Hessian matrix

H =
[
∂2S

/
∂a2 ∂2S

/
∂a∂b

∂2S
/
∂b∂a ∂2S

/
∂b2

]

has determinant 4n
∑

(xi − x)2 and hence is positive definite (assuming not all xi are
equal).

6
√

Company A claims improved accuracy over Company B for a certain product. A batch of 40
items tested from each vendor shows a reduction of the mean error from 180.1 microns to
178.6. Does this imply a genuine improvement at the 5% significance level, given variance
estimates 6.3, 7.4?

7
√

Is the normal distribution a reasonable model for the frequency distribution given below,
at the 1% significance level? Let fi denote the frequency of hits in interval [ai , ai+1), and
assume a sample mean of 0.0244 and variance 0.234.

ai −1.309 −0.958 −0.607 −0.256 0.095 0.446 0.797 1.148 1.499
fi 21 77 174 294 250 126 48 10 −

8
√

Let φ denote the standard normal pdf. (i) Express [φ((x − µ)/σ )]n in the form
φ((x − M)/�). (ii) A posterior distribution calculation arrives at φ((x1 − µ)/σ ) · · · ×
φ((xn − µ)/σ )φ((µ− µ0)/σ ); by viewing this as a product with a single variable, express
it in the form φ((µ − µn)/σn). Show that µn = x/(1 + 1/n) + O(1/n). Why may this be
written more simply as x + O(1/n)?

9
√

A Bayesian classifier has been arranged to correspond to plane decision functions di (x) =
‖x − mi‖, where m1 = (1, 5), m2 = (3, 2), m3 = (10, 7). Find equations for the decision
boundaries dij and determine their common point C. Sketch the result, and classify the
points (5, 0), (3, 7), (7, 6), (10, 9).

10
√

Specialise ALGO 11.1 to generate from the pdf f (x) = 3x2/8 (0 ≤ x ≤ 2). Construct a
frequency diagram based on 100 generated variates and tenfold division of RX (ALGO
11.19 at the chapter’s end may be useful). Now get a more convincing result by using 1000
variates.

11 (i) Use ALGO 11.8 to generate 1000 variates in N (0, 1) and hence draw a frequency
diagram based on the interval [−4, 4] divided into eight equal parts. (ii) Repeat for 2000
variates and a 16-fold division.
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12 Test the variates in Exercise 11.11(i) for normality by the method of Example 11.33,
estimating the parameters from the sample. Check both 1% and 5% levels of significance.

13
√

Use ALGO 11.9 to generate 10 variates from the 3D normal distribution with covariance
matrix

∑ = Rows[(1, 2, 3), (2, 5, 10), (3, 10, 26)] and mean (1,−1, 2).
14

√
A discrete random variable takes values 1, 2, 3, 4, 5 with probabilities p = (1, 2, 4, 10,
3)/20. Use ALGO 11.10 to generate 500 variates, then test for the correct distribution at
the 1% level of significance.

15
√

The occupancy problem, Example 11.53. (i) With N = 4 cells, determine the probabilities
of the various states 0, 1, 2, 3, 4 if the initial state is one cell occupied, and (a) four balls
are inserted, (b) five are inserted. (ii) If the initial probabilities are p(0) = (1, 2, 0, 0, 2)/5,

find the probabilities after four insertions.
16

√
The stationary vector in Example 11.58 is by definition an eigenvector of Q with eigenvalue
1. (i) Find the other eigenvalue and an eigenvector. (ii) Provide the inductive step for formula
(11.60) by showing that post-multiplying by Q just increases n by 1 in the formula. (Hint:
brute force or note that the first matrix is unchanged by this multiplication, and write the
second matrix as [α − β]T[1 − 1]; see (i).)

17
√

A Markov chain {Xr } with states {0, 1, 2} has the transition matrix shown below.⎛
⎜⎜⎝

1
3

1
3

1
3

1
2 0 1

2
1
4

1
2

1
4

⎞
⎟⎟⎠

(i) Show that for some N the matrix QN has only positive elements. Find the stationary
distribution t approximately (Theorem 11.59), by considering {xQn} for some x, and test
t as an eigenvector. (ii) Use ALGO 11.13 to generate a sample of size 40 from the chain,
with starting distribution p(0) = (1, 1, 1)/3. How do the frequencies compare with those
predicted by t?

18
√

Let g(x) = (4 − x2)−1/2. For Monte Carlo integration of g(x) over the interval [0, 1],
estimate the number N of trials required to give 90% certainty of the result being within
0.004 of the true value (see (11.68)). Compare the calculated integral with the results of
the two methods using N trials.

19
√

Use the random walk sampler given in (11.79) to generate a sample of size 10 000 from the
distribution π (x) = x exp(−x2/2), by the Markov Chain Monte Carlo method. Produce a
frequency diagram for samples over the interval [0, 2] divided into seven parts. Test for
correctness of the results at the 1% level (see Section 11.1.6).

20
√

(i) Taking the Directed Acyclic Graph of Figure 11.31 to be that of a Bayesian net-
work, write down the corresponding joint pdf p(v1, . . . , v5). (ii) A Bayesian network
for variables x1, . . . , x9 is labelled 1, . . . , 9 with edges (6, 7), (7, 8), (7, 9), (1, 9),
(3, 9), (1, 2), (1, 5), (2, 5), (2, 3), (3, 4). Diagram the graph and write down the expression
for p(x1, . . . , x9). Is the ordering ancestral?

21
√

For the Bayesian network (ii) of Exercise 11.20, write down the products for the full
conditional p(v|V−v) in the cases v = x1, . . . , x4.

22
√

In Example 11.89 with x5 = 5, determine the full conditionals p(x1|x−1) and p(x2|x−2).
23

√
(See Application 11.91 & preceding) (i) Derive (11.108) and verify the constant comes out
correctly. (ii) Calculate p(x1|x−1) for the lattice of Figure 11.36 with x5 = 5 and V{r,s] = 1
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if xr �= xs , otherwise zero. (iii) Using (ii), write down the contribution U1(x1) to the energy
of the posterior conditional, as a function of x1 = 1, 2, 3, 4, 5, by expressing it as the sum
of two 5-vectors.

24
√

(i) Increase the flow in Figure 11.40(a) to its maximum, using fewer than four augmenting
paths. (ii) Derive the second assertion of Corollary 11.97 from the first.

25
√

(i) Repeat Example 11.101 for the top left 2 × 3 section of the image. (ii) Implement ALGO
11.18 and repeat Example 11.102 with p = 0.15.





Part IV

Information, error and belief





12

Entropy and coding

In this chapter we introduce the basic idea of entropy, quantifying an amount of infor-
mation, and in its light we consider some important methods of encoding a sequence of
symbols. We shall be thinking of these as text, but they also apply to a byte sequence rep-
resenting pixel values of a digital image. In the next chapter we shall develop information
theory to take account of noise, both visual and otherwise. Here we focus on ‘noiseless
encoding’ in preparation for that later step. However, before leaving this chapter we take
time to examine an alternative approach to quantifying information, which has resulted
in the important idea of Minimum Description Length as a new principle in choosing
hypotheses and models.

12.1 The idea of entropy

Shannon (1948), the acknowledged inventor of information theory, considered that a
basis for his theory already existed in papers of Niquist (1924) and Hartley (1928). The
latter had argued that the logarithm function was the most natural function for measuring
information. For example, as Shannon notes, adding one relay to a group doubles the
number of possible states, but adds one to the base 2 log of this number. Thus information
might be measured as the number of bits, or binary digits bi = 0, 1, required to express
an integer in binary form: bm . . . b1b0 =

∑
i bi 2i . For example, 34 = 100010 takes six

bits. Shannon proposed a 5-component model of a communication system, reproduced
in Figure 12.1.

He divided source types into the categories discrete, continuous and mixed. It is perhaps
fortunate that Shannon had examples such as teletype and telegraphy to motivate the study

Transmitter Receiver Destination

Noise
source

Information
source

Figure 12.1 Shannon’s model of a communication system.

395
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l

s1 s2

sn

p1 pnp2

…

Figure 12.2 Tree with one root node ‘l’, representing the choice of a symbol si with
probability pi from the source alphabet, where i = 1, . . . , n.

of the discrete case, so that it was ready as the digital revolution drew near. For now we’ll
stick to a discrete source, emitting symbols from a fixed alphabet S = {s1, . . . , sn} of
size n. The principal problems Shannon addressed first in laying out his theory may be
stated thus.

1. (Noiseless coding) How can we encode the source symbols so as to minimise the message
length on transmission?

2. (Coding against noise) In the presence of noise, how can we introduce redundancy in the
coding so as to achieve an acceptably low error rate?

The idea is to invoke statistical properties of source symbols and transmission medium.
Now, in some situations the likelihood of a particular symbol’s appearance may be greater
or less, depending on what went before. For example, in English T is more likely after an
R than after a W. However, we begin by taking account only of the absolute probabilities
p1, . . . , pn of our source alphabet, as represented in Figure 12.2.

When a symbol appears, how much information does that convey? To put it another
way, how much uncertainty does its appearance remove? This information/uncertainty
was named entropy by Shannon because of an analogous meaning in statistical physics;
for more on this see Jaynes (1982) or Cover and Thomas (1991).

It seems reasonable to argue that the appearance of a less likely symbol tells us more,
so a first thought might be that the information conveyed by a symbol of probability p is
1/p or, at any rate, an increasing function of 1/p. If that function should be a logarithm,
the information conveyed being log(1/p), then the mean information per symbol over
the alphabet with probabilities p1, . . . , pn is the expected value

∑
i pi log(1/pi ).

This proves remarkably prophetic, for in a more precise vein we arrive at the same
function, denoted by H (p1, . . . , pn), which measures information in a deep mathematical
sense, thoroughly vindicated in ensuing results. We derive H by requiring it to satisfy
the following three axioms, whose reasonableness we shall briefly discuss. Implicitly, H
does not depend on the order in which the probabilities are listed.

AXIOM 1 (Continuity) H is a continuous function in the pi .

AXIOM 2 (Equiprobable case) If all pi are equal, pi = 1/n, denote the entropy
H (1/n, . . . , 1/n) by Q(n). Then Q(n) increases monotonically with n.
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p1 pn
pi = fi /N

fi choices

 Total of N choices

…

Figure 12.3 Choice from N equiprobable objects, split into choices from n subsets,
weighted according their size fi .

AXIOM 3 (Equiprobable choice subdivided) Let N = f1 + f2 + · · · + fn and pi =
fi/N . Then Q(N ) = H (p1, p2, . . . , pn) +∑

pi Q( fi ).

Some explanations are as follows. Axiom 1: we expect a small change in probability to
cause a correspondingly small change in uncertainty. Axiom 2: choosing from a bigger
pool of equally likely objects suggests more uncertainty. Axiom 3: Q(N ) is the uncertainty
in choosing one of N equally likely objects, but the choice may be subdivided thus.
Partition the objects into n bags, the ith bag containing fi of them. Now choose a bag.
Weighting the bags according to their number of objects, we assign bag i the probability
pi = fi/N : thus choosing which bag to use has entropy H (p1, . . . , pn). Finally, choose a
single object from the selected bag. This choice has entropy Q( fi ), according to Axiom 2.
Now Axiom 3 states plausibly that the total entropy Q(N ) equals the sum of the entropy
for each choice weighted by the probability of that choice occurring. (We suppose a base
given for logarithms.)

Theorem 12.1 A function H satisfying Axioms 1 to 3 has the form

H = −K
n∑

i=1

pi log pi (K any positive constant). (12.1)

Proof Apply Axiom 3 with all fi equal to f. Then N = n f and pi = 1/n, giving Q(n f ) =
H (1/n, . . . , 1/n) +∑

(1/n)Q( f ) (the
∑

part sums n identical terms 1/n) = Q(n) +
Q( f ). Letting s, m be any positive integers (but s ≥ 2) we have by repeated application
of this relation that

Q(sm) = m Q(s). (12.2)

Now let t, n be positive integers with n arbitrarily large. Then there exists an integer m
for which

sm ≤ tn < sm+1. (12.3)

Since the log function to given base is monotonic increasing, we may take logs and divide
by n log s in (12.3) to obtain

m

n
≤ log t

log s
<

m

n
+ 1

n
. (12.4)
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In a similar manner we apply the monotonic increasing function Q of Axiom 2 to (12.3) to
obtain Q(sm) ≤ Q(tn) < Q(sm+1), whence by (12.2) m Q(s) ≤ nQ(t) < (m + 1)Q(s),
or, on dividing by nQ(s),

m

n
≤ Q(t)

Q(s)
<

m

n
+ 1

n
. (12.5)

Since 1/n is arbitrarily small we may infer from (12.4), (12.5) that Q(t)/Q(s) and
(log t)/(log s) are arbitrarily close and hence equal. It follows that Q(t)/(log t) =
Q(s)/(log s) = constant, K, and hence, for any integer u,

Q(u) = K log u (K > 0), (12.6)

where K is positive because of Axiom 2. Making H the subject in Axiom 3 and substituting
formula (12.6) for Q(u) gives

H (p1, . . . , pn) = Q(N ) −
∑

pi Q( fi ) (i = 1, . . . , n)

= K log N −
∑

pi · K log( fi )

= K
{∑

pi log N −
∑

pi log( fi )
}

since
∑

pi = 1

= −K ·
∑

pi log( fi/N )

= −K ·
∑

pi log pi .

This proves the theorem when the pi are rational. However, any real number is the limit
of a sequence of rationals (see e.g. Hoggar, 1992), so by continuity (Axiom 1), the result
holds for real pi also.

First consequences for H

Remark 12.2 (Changing the base of logs) The formula logb x = logb a · loga x from
(12.8) below (think of the as ‘cancelling’), shows that choosing K is equivalent to setting
H = −∑

pi log pi with a suitable choice of base for the logarithm. Any base gives the
desired properties, and base 2 is the one appropriate when we are coding into binary
form, since entropy is then expressed in binary bits. We will use base 2 except where
otherwise stated, choosing K so that H (p1, . . . , pn) satisfies the first equality and hence
the rest, in

H = −
∑

pi log pi =
∑

pi log(1/pi ) = E[log(1/p)]. (12.7)

An occasional but important exception to the choice of base 2 is the natural logarithm,
taken to base e, and denoted by ln or Ln. In particular, it fits in with the important
properties below, where as usual the base is specified if necessary by a subscript.

logb a = 1/ loga b, logb x = loga x

loga b
,

d

dx
log x = 1

x ln 2
. (12.8)
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p1 p2

q1 q2
qm...

(a)

1/3
1/3

1/3

1/4 3/4 1/4 3/4

(b)

Figure 12.4 Decision paths involving more than one choice between alternatives.

Proof Set α = loga x , whence x = aα, and take logs to base b to get logb x = α logb a =
(logb a) loga x as noted above. This yields the first two equalities of (12.8) if we set x = b
to give 1 = logb b = logb a · loga b. The third now follows because log x = log2 x =
ln x/ ln 2, and ln x has derivative 1/x .

After a few preliminaries we shall be ready to prove a result, Shannon’s Noiseless
Encoding Theorem (Theorem 12.8) which, even by itself, justifies the entropy concept.

Example 12.3 Given the fomula (12.7) for H it is easy to see that Axiom 3 applies
without choices needing to be equiprobable. The following calculation based on Figure
12.4 shows why this is so, and that, however many branchings there are, the total entropy is
the sum of the entropy of probabilities at a branching node times the probability of arriving
at that node. Figure 12.4(a) represents m + 1 symbols with associated probabilities the
2-fold products p1q1, . . . , p1qm , and p2 itself. Their entropy is by definition the negative
of

m∑
i=1

p1qi log(p1qi ) + p2 log p2 = p1�(qi log p1 + qi log qi ) + p2 log p2

= (p1 log p1)�qi + p1�qi log qi + p2 log p2

= p1 H (q1, . . . , qm) + H (p1, p2), since �qi = 1.

Exercise Compute the entropy of the 5-symbol source represented in Figure 12.4(b).

Notation 12.4 (1) A sequence p1, p2, . . . , pn of real numbers is called a probability
distribution if 0 ≤ pi ≤ 1 for each i, and

∑
pi = 1. Then H (p1, . . . , pn) will be referred

to as the entropy of this distribution, or of any source whose symbols are governed by
this distribution, or of any random variable X whose probabilities are so governed. In the
latter case we may write H (X ) instead of H (p1, . . . , pn).

(2) It is convenient and customary to make the abbreviation

H (p) = H (p, 1 − p) = −p log p − (1 − p) log(1 − p), (12.9)

flagged by the appearance of H with only a single argument. This function on the unit
interval [0, 1] has its single maximum at p = 1/2, of value log 2, which equals 1 for our
default base 2 of logarithms. The graph is shown in Figure 12.5.

(3) There is an apparent difficulty with H (x) at x = 0, since log 0 is undefined. But the
product x log x tends to 0 with x, for any base of logarithms, and so we may consistently
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y = 2x

y = H(x)

1

0.8

0.6

0.4

0.2

10.80.60.50.40.2

Figure 12.5 Graphs of H (x) = −x log x − (1 − x) log(1 − x), and of y = 2x , meeting
at (1/2, 1).

a b

f(b)

f(a)

tf(a) + (1 − t)f(b)

f [ta + (1− t)b]

X

f(x)

Figure 12.6 A convex function on the interval (a, b).

define H (0) = 0. Thus 0 log 0 as a summand of H (p1, . . . , pn) is always to be interpreted
as 0.

(4) In the light of (3) we may write H (x1, . . . , xn, 0, . . . , 0) = H (x1, . . . , xn), and so
in particular H (p, q, 0) = H (p, q) = H (p), where of course p + q = 1.

We recall from Chapter 9 that a real-valued function f on an interval I of the real line is
called concave if the graph of f lies above every chord. That is, for a, b in I and 0 ≤ t ≤ 1,

f [ta + (1 − t)b] ≥ t f (a) + (1 − t) f (b), (12.10)

where we recall that ta + (1 − t)b divides in the ratio 1 − t : 1 the segment AB whose
endpoints have respective position vectors a, b. See Figure 12.6. The concavity is strict
if the inequality in (12.10) is strict, and f is convex if it is reversed. The strict concavity
property is visible for H (x) in Figure 12.5. It holds for any f with a negative second
derivative on the interior of I. In our case, up to a multiple of ln 2 we have H ′(x) =
− log x + log(1 − x), from (12.9), whilst H ′′(x) = −1/x(1 − x) < 0 on the interval
(0, 1). A useful elementary consequence is that H (x) lies above the chord it cuts out
from the line y = 2x between x = 0 and x = 1/2 (Figure 12.5), a fact we include in
part (iii) of the summary theorem now stated.

Theorem 12.5 (i) H (x) satisfies 0 ≤ H (x) ≤ 1 on the interval [0, 1]. In particuar,
H (0) = 0 = H (1), with a maximum of 1 at x = 1/2. (ii) H (x) is symmetrical about
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Figure 12.7 Illustration of the concavity property of H (p1, p2, p3), plotted as a function
of p1, p2. Note that p3 = 1 − p1 − p2 ≥ 0 and so we are restricted to p1 + p ≤ 1.

the line x = 1/2, that is H (1 − x) = H (x). (iii) H (x) is concave, with H (x) ≤ 2x for
0 ≤ x ≤ 1/2.

As we shall see in Chapter 13, the function H (p1, . . . , pn) satisfies a higher dimensional
form of concavity, visible for n = 3 in Figure 12.7. However, a partial generalisation of
Theorem 12.5 is given by the following result.

Theorem 12.6 (Extremal values of entropy) The entropy H of (p1, . . . , pn) attains its
greatest value, log n, when all pi take the same value 1/n. Furthermore:

(i) H ≥ 0, and H = 0 if and only if some pi equals 1,
(ii) if 0 < pi < 1 for some i, then H ≥ pi log(1/pi ) > 0.

Proof First observe that 0 ≤ pi ≤ 1, 1/pi ≥ 1, and so pi log(1/pi ) ≥ 0, with equality if
and only if pi = 0 or 1/pi = 1. For (i) we have certainly H ≥ 0. Further, the condition
H = 0 means that each term pi log(1/pi ) is zero; but we cannot have all pi = 0 because∑

pi = 1, and so at least one pi is positive, implying log(1/pi ) = 0, whence pi = 1.
Conversely, pi = 1 implies that the term pi log(1/pi ) is zero and (because

∑
pi =

1) that pk = 0 for k �= i . Thus H = 0. For (ii), suppose 0 < pi < 1 is given. Then
1/pi > 1 so log(1/pi ) > 0, which establishes (ii). For the assertion H ≤ log n we invoke
Jensen’s Inequality (9.51) for the single inequality sandwiched between the equalities
below:

H =
∑

pi log(1/pi ) = E[log(1/pi )] ≤ log E[1/pi ] since log is concave

= log
∑

pi (1/pi ) = log n.

Since the logarithm function is in fact strictly concave, equality holds if and only if 1/pi ,
and hence pi , is independent of i, implying that pi = 1/n. The reverse implication is
trivial.
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12.2 Codes and binary trees

Notation 12.7 We consider the case of a source emitting a message which consists of a
finite sequence of symbols, D = d1d2 . . . dN , all symbols being drawn from an alphabet
set S = {s1, s2, . . . , sn}. Since we shall wish to refer to the ith alphabet symbol we
will usually write S as a sequence, S = s1s2 . . . sn (possibly with commas). An example
is S = abcd and D = abbabccaaadadbd , in which n = 4 and the message length is
N = 15.

An encoding of the alphabet symbols and thereby of any message is a replacement si →
ci (1 ≤ i ≤ n) of each distinct symbol si by a binary word ci (i.e. a sequence of binary
bits). Taken in sequence these words form the codebook C = c1c2 . . . cn . An example
is a → 00, b → 01, c → 10, d → 11, with codebook 00, 01, 10, 11 (here commas are
necessary to separate the words).

What we would like is to find an encoding by which messages use the least possible
number of bits. Intuition suggests, rightly, that this means the most fequently used sym-
bols should be allocated the shortest codewords. Thus we consider the frequency fi with
which symbol si appears in the message. We’ll review and expand on the notation so far,
then state and prove the ground-breaking result Shannon was able to achieve.

S = s1, s2, . . . , sn , the source symbols, or alphabet.
D = d1, d2, . . . , dN , the message sequence, of length N.
F = f1, f2, . . . , fn , where fi is the frequency of si in message D. Thus fi is the

size of the set {k : 1 ≤ k ≤ N , dk = si }.
P = p1, p2, . . . , pn , where pi = fi/N , the relative frequency of si in D. It is the

probability that a symbol selected at random from D will be si (each symbol
choice equally likely).

C = c1, c2, . . . , cn , the codebook, where si → ci . A set of such codewords, leaving
open the actual pairing with symbols, is called simply a code. We denote the
length of ci by Li or |ci |.

M =
n∑

i=1
pi Li , the mean number of bits per symbol on encoding D by the code C.

Theorem 12.8 (Shannon’s Noiseless Coding Theorem) The mean number of bits per
symbol used in encoding a finite message cannot be less than the entropy. That is,

M ≥ H (p1, p2, . . . , pn).

Proof We use induction on n, the number of symbols in the alphabet. The result holds
when n = 1, for the mean number of bits per symbol is the length of the unique codeword,
whilst the entropy is −1 · log2 1 = 0. Consider a general case n ≥ 2 and define a code
C0 consisting of the codewords of C that start with ‘0’. Delete from D all symbols whose
codewords are not in C0, to obtain a message D0.

Without loss of generality, C has least possible number of bits per symbol. Now, if C0

were the whole of C, the code C ′
0 obtained by stripping off the initial 0s from the words of
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C0 would provide a codebook with fewer bits per symbol than C. Similarly for C1. Thus
neither C0 nor C1 exhausts the codewords of C and, since they have no codewords in
common, each uses fewer than n symbols. Hence we may apply the theorem inductively
to both.

Let
∑

0 denote summation over those integers i for which ci is in C0. Write q0 =
∑

0 pi .
Similarly define C1, D1,

∑
1, q1 from codewords starting with a ‘1’. Thus q0 + q1 = 1.

In C0 the new probability of symbol si is fi/
∑

0 fi = ( fi/N )/(
∑

0 fi/N ) = pi/q0,
implying by the inductive hypothesis∑

0

pi

q0
(Li − 1) ≥ −

∑
0

pi

q0
log2

pi

q0
.

After multiplying through by q0 and expanding the log we obtain∑
0

pi (Li − 1) ≥ −
∑

0
pi log2 pi +

(∑
0

pi

)
log2 q0.

Similarly, ∑
1

pi (Li − 1) ≥ −
∑

1
pi log2 pi +

(∑
1

pi

)
log2 q1.

Adding these inequalities and observing that
∑

0 pi +
∑

1 pi = q0 + q1 = 1, we find

n∑
i=1

pi Li ≥ 1 −
n∑

i=1

pi log2 pi + q0 log2 q0 + q1 log2 q1

= H (p1, . . . , pn) + 1 − H (q0)

≥ H (p1, . . . , pn), since H (x) ≤ 1 by Theorem 12.5 (i).

Example 12.9 Consider the message MERRY MEN MEET. We’ll assume here that
omitting the separating spaces between words presents no problem of interpretation
(achieving this in general is the topic of our next section). Encoding the ith symbol si as
the 3-bit binary form of integer i, we may write, in terms of Notation 12.7,

S = MERYNT → C = (001, 010, 011, 100, 101, 110),

F = 3 4 2 1 1 1,

P = 1

4

1

3

1

6

1

12

1

12

1

12
.

Thus the encoding takes three bits per symbol, compared with the entropy of Theorem
12.8:

∑
pi log(1/pi ) = 2.34 (to two decimal places). We have used 36 bits for the whole

message against a theoretical minimum of 12 × 2.34 = 28. We shall shortly see a way
to get closer. Meanwhile, Theorem 12.6 reassures us that the highest H can go depends
only on the relative frequencies of the symbols used, and not on the message length.

Prefix-free codes Suppose we have a stream of codewords with no extra symbols or
separators to mark the transitions from one codeword to another. A way to ensure we
know where one codeword ends and another starts is to insist that the code be prefix-free
(PF). That is, no codeword should form the first k digits, or k-prefix, of another, for any
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k. Prefix-free codes have an extremely useful graphical representation which we shall
make use of. First some definitions.

Codetrees In the present context a tree is a set of vertices, some joined to each other by
edges in such a way that

(1) every pair of vertices is joined by a path,
(2) there are no circuits.

Equivalently, every pair of vertices u, v is joined by a path which is unique. We can
therefore define the distance between u and v to be the length of the path as measured
by its number of edges. The tree is said to be rooted if one vertex is designated as root,
and then the vertices are classified by their distance d from the root, called their level or
depth. Vertices and edges of a tree are also known as respectively nodes and branches;
we shall use the synonyms interchangeably. In diagrams, level d nodes will be positioned
below those of level d − 1. This and the following are illustrated in Figure 12.8.

A vertex v is called the parent of any vertices to which it is joined in the next level.
They in turn are offspring of the parent and siblings of each other. We shall consider only
binary trees, in which a parent has exactly two offspring (and consequently there is an
even number of nodes at each level below the root). Nodes with no offspring are called
leaves, and play a key role. A PF code is represented by a rooted binary tree, called its
codetree, in which

(1) the edges from parent to offspring are labelled 0, 1 in some order,
(2) each source symbol corresponds to a leaf, and the associated codeword is the sequence of

labels from the root to that leaf.

Example 12.10 The code C = 00, 01, 100, 101, 110, 111 is prefix-free. We give its
codetree in Figure 12.8, then describe how this may be arrived at.

00 01

1

11

1

1

00

00

0

100 101 110 111

Root

Level 1

Level 2

Level 3

Level 0

u v

Figure 12.8 Code tree for the code of Example 12.10. There are two leaves at Level 2
and four at Level 3. Notice that, for example, v is the parent of sibling leaves labelled
00, 01.

From code to codetree We may proceed recursively from an initial root with offspring
labelled u, v and joined to the root by edges labelled respectively 0, 1. The next thing is
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to construct a codetree with root u for the code C ′
0 obtained by collecting the codewords

of C that start with ‘0’ and deleting the 0 from each one (in our example 00, 01 becomes
0, 1, hence the level 2 leaves). Then similarly for those beginning with ‘1’ and node v.
Conversely, any binary rooted tree becomes the codetree for a PF code after its sibling
pairs have been labelled with 0, 1 in some order. The fact that, by definition, no leaf is
on the path to another ensures the prefix-free property.

Optimal codes Restricting ourselves to PF codes to solve the separator problem, we
seek for each probability distribution P a code C which minimises the mean bit rate
M =∑

pi Li , where Li is the length of the ith symbol’s codeword. Such a code will
be called optimal. To find one it should help to know some of their characteristics. We
claim firstly that after possibly reallocating codewords and relabelling, whilst keeping
M constant, we may write

p1 ≤ p2 ≤ · · · ≤ pn but L1 = L2 ≥ · · · ≥ Ln. (12.11)

We show that after we arrange p1 ≤ p2 ≤ · · · ≤ pn the codewords can be reallocated to
achieve (12.11) as follows. (i) For every pair i < j such that Li < L j (out of order), we
see that pi = · · · = p j so we can switch ci and c j to restore order. For if pi < p j then
switching ci and c j would reduce M by pi Li + p j L j − pi L j − p j Li = (p j − pi )(L j −
Li ) > 0, contradicting optimality. Thus pi ≥ p j and, along with pi ≤ · · · ≤ p j , this
implies pi = · · · = p j .

(ii) It remains to deduce that L1 = L2. But if L1 > L2 then, since the unique codeword
c1 of greatest length L1 cannot have another codeword as prefix, we may replace c1 by
its prefix of length L2 without losing the PF property, and hence reduce M. But this
contradicts optimality, so we are left with L1 = L2.

This establishes the form of (12.11). Notice that the least two probabilities are p1, p2,
which may or may not be equal. If they are equal, we could switch the labels of symbols
1, 2 to obtain an equally valid list (12.11). For simplicity the pi ordering of (12.11) will
be described as increasing (rather than non-decreasing), and that of the Li as decreasing.
We are ready to prove the theorem below, which points to Huffman’s solution.

Theorem 12.11 (a) Any codetree with n leaves has 2n − 2 non-root nodes, and 2n − 2
edges, with an even number of both at each level. (b) An optimal code has two codewords
of greatest length that differ only in their last digit. They may be taken as c1, c2 in (12.11).

Proof (a) We can reduce a codetree to the root and two offspring leaves by repeatedly
deleting two sibling leaves and their connecting edges. Such a deletion transforms the
siblings’ parent into a new leaf, so the total number of leaves is reduced by just 1.
Thus n − 2 deletion operations are required to leave the node plus two leaves. Since
each deletion reduces both edges and non-root nodes by 2, their original number was
2 + 2(n − 2) = 2n − 2.
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(b) By (12.11) an optimal code has two or more codewords of greatest length. If there
aren’t two of these that differ only in their last digit, we can delete the last digit of each
and still have a PF code for the probabilities, contradicting the minimality of M.

12.3 Huffman text compression

We begin with a statement of Huffman’s coding system for text compression, then explore
the sense in which it achieves optimality. It is noteworthy that Huffman codes are routinely
used as part of systems designed for the compression of digital images. See, for example,
the JPEG system in Section 15.4.3.

Construction 12.12 (Huffman, 1952) Given a list L of nodes labelled with the prob-
abilities, we progressively reduce it to a singleton R, which is the root of the codetree
we construct in the process. We assume for convenience that all pi are positive and that
n ≥ 3.

Repeat
Replace any two nodes in L of least probability by
a parent labelled with the sum of their probabilities.

Until L is a singleton, R.

For each parent, label the edges to its offspring 0, 1 in either order. Then ci is the bit
sequence in the unique path from the root to the leaf labelled pi . Thus level d leaves are
assigned d-bit codewords.

Example 12.13 Here is an example to clarify what Huffman’s construction actually
is, before we prove that it works. Starting again with the probabilities of Example 12.9,
notice that at each stage there may be more than one valid choice. We aim to keep siblings
at the same height in the diagram and to avoid crossing edges. Two decimal places of
accuracy suffice for the following discussion; see Figure 12.9.

The original coding used 36 digits, an average of 3 per symbol, compared with the entropy
bound of 2.34. Here the mean is 2(1/4 + 1/3) + 3(1/6 + 1/12 + 1/12 + 1/12) = 2.42,
not perfection but certainly an improvement. The improvement in general is such that
Huffman codes are widely used in practice. Later we will see how to accomplish the
apparently impossible, of actually meeting the entropy bound provided a longer calcu-
lation is acceptable. But our next task is to prove and then dramatically improve upon
Huffman’s original method. We recall that a code is called optimal if it encodes with bit
rate M =∑

pi Li least possible, given that it is prefix-free.

Theorem 12.14 Huffman’s construction gives an optimal code.

Proof In the notation of (12.11) we are given probabilities p1 ≤ p2 ≤ · · · ≤ pn . Suppose
firstly that n ≥ 3. Whether the special cases p1 < p2 and p2 = p3 occur it remains true
that p1, p2 ≤ pi for i ≥ 3. We claim that there exists a (rooted binary) tree to minimise
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|L| = 1. The final codetree

Figure 12.9 Stages in building a Hoffman codetree, starting from the probabilites of
Example 12.9. We obtain a more efficient coding than before.

M for which the leaves p1, p2 are siblings (given this, it suffices to minimise over all such
trees). To show this we begin by noting that by Theorem 12.11 the number of vertices
and edges in a codetree with n leaves is finite, and so at least one tree T exists to minimise
M. In this tree, let S be a parent furthest from the root. Switch the offspring labels with
p1, p2. This cannot increase M, so M stays minimal.

In the Huffman manner, delete sibling nodes p1, p2, allocate probability p1 + p2 to
the parent, and make it a leaf of new tree T ′. The old and new situations are compared
in Figure 12.10.

If the chosen parent is a distance d from the root, the change in M is M(T ) − M(T ′) =
(d + 1)p1 + (d + 1)p2 − d(p1 + p2) = p1 + p2, a quantity independent of the choice
of how T is structured between the chosen parent and the root. It follows that T minimises
M for probabilites p1, p2, . . . , pn if and only if T ′ minimises M for p1 + p2, p3 . . . , pn .
For example, if U is a variant on the structure as mentioned above and M(U ) < M(T ),
then M(U ′) < M(T ′). However, by repeating the Huffman step we arrive at a tree with
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p1 p2

Reduced tree T':Tree T: S p1+p2

Level d + 1

Level d

Figure 12.10 The nodes altered when a stage of the Huffman construction converts tree
T into reduced tree T ′.

only two leaves, which minimises M simply because it is the only tree to choose from in
this case. This proves that Huffman’s construction minimises M for the original tree and
so gives an optimal code.

The sibling property Now for a structural characterisation of Huffman trees that will
be used later. Given a codetree with leaves labelled as usual by probabilities (12.11),
we extend the labelling recursively to all nodes by allocating to each parent the sum
of the probabilities of its offspring. Then the codetree has the sibling property if each
non-root node has a sibling and the 2n − 1 nodes can be listed in order of increasing (≤)
probability with each node adjacent to its sibling. Let us call this a sibling ordering. It
means the (2k − 1)st and 2kth in the list are siblings for 1 ≤ k ≤ n − 1. For example,
the non-root nodes of the Huffman tree of Figure 12.9 may be listed as n − 1 = 5 sibling
pairs: (

1

2
,

1

12

)
,

(
1

12
,

1

6

)
,

(
1

6
,

1

4

)
,

(
1

4
,

1

3

)
,

(
5

12
,

7

12

)
,

in agreement with the next result.

Theorem 12.15 A PF codetree is Huffman if and only if it has the sibling property.

Proof If a codetree is generated by Huffman’s construction then at each stage the sibling
nodes with least probabilities provide the next pair in the ordered list required by the
sibling property. Thus the codetree has the sibling property.

Starting, on the other hand, with a sibling property list for a codetree, we claim that
the first sibling pair p1, p2 must be leaves, and so provide the first step of Huffman’s
construction. Working our way up the list, we complete the construction. It remains to
justify our claim. Suppose that p2 is not a leaf but is the parent of q, r as depicted in
Figure 12.11.
Then:

p2 ≤ q, r being by hypothesis earlier in the sibling list

≤ q + r since q, r ≥ 0

= p2 by construction, since p2 is the parent of q, r,

implying all three probabilities are equal to zero (p2 ≤ q ≤ q + r ≤ p2), a condition we
have ruled out. This completes the proof.
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p2p1

rq

Figure 12.11 Figure for proof of Theorem 12.15.

Example 12.16 Figure 12.12 shows a Huffman codetree for probabilities (0.08, 0.12,
0.14, 0.16, 0.25, 0.25). The integer before each node shows its place in an ordering that
exhibits the sibling property.

.08 .12 .14

.25

.16

.20 .30

.45 .55

1

1

.25

2 3 4

56

9 10

7 8

Figure 12.12 Illustration of the sibling property in a Huffman codetree.

Theorem 12.17 In a sibling ordering on a codetree we have (i) every probability at
level d is less than or equal to every probability at level d − 1 (d ≥ 1), (ii) if p, q are
probabilities on the same level, where p is a parent, then p ≤ 2q.

Proof (i) The result follows by induction on the number of sibling pairs, for clearly if it
holds for the reduced tree T ′ of Figure 12.10 (with p1, p2 heading the list) then it holds
for T. For (ii), if p has offspring p1, p2 then

p = p1 + p2 by definition of sibling ordering

≤ q + q by part (i)

= 2q.

Canonical Huffman codes

If in Figure 12.12 we label the sibling edges 0, 1 in the usual way so as to obtain a coding
of the original probabilities, say 1001100101 corresponding to the node order specified
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in the figure, we get the code 00, 10, 010, 011, 110, 111. A considerable time reduction
in coding and decoding results if we can ensure that, unlike the present example, the
codewords of a given length are consecutive binary integers. In this way much searching
is reduced to short direct calculation. Such a code is called canonical Huffman, and we
now describe how it may be obtained.

We begin with a Huffman tree to determine the number Nd of codewords of length d
for d = dmin, . . . , dmax. We then replace the d-bit codewords by the d-bit binary forms
of a sequence of consecutive integers Fd, . . . , Md in such a way that the PF property is
retained. These integers are obtained by the construction given below (F is for ‘first’ and
M is for ‘maximum’ integer).

(Converting to canonical Huffman)
Fdmax = 0; Mdmax+1 = −1
For d = dmax down to dmin do {working up the tree}
Fd = (Md+1 + 1)/2
Md = Fd + Nd − 1.

Of course, if some Nd = 0 then Md = Fd − 1 and no d-bit codewords are required.
However, the value of Md obtained is correct for proceeding to the next level, indeed, the
construction can cope with any number of consecutive levels with no leaves/codewords.
Moreover, the number Fd will always turn out to be an integer because Md+1 + 1 is the
total number of nodes (leaf and internal) at level d + 1, and so is even. The following
theorem provides the necessary theory.

Theorem 12.18 (a) Let the Huffman nodes at level d be numbered 0 to Md and
the leaves Fd to Md. Then Fd = (Md+1 + 1)/2 for d = dmax − 1 down to dmin.
(b) The canonical Huffman code is prefix-free.

Nodes at level d

0 1     ... Fd ... MdNumbering

Leaves

Proof (a) The key idea is that the nodes at a given level are partitioned into leaves and
parents; no node can be both. Further, since in our notation the number of nodes at level
d + 1 is Md+1 + 1, the number of parents at level d is p = (Md+1 + 1)/2. Therefore we
can number parents 0 to p − 1 and leaves (corresponding to codewords) from p to Md ,
as given in the construction.

(b) We must show that a d-bit codeword cannot be a prefix of any (d + r ) - bit codeword,
for any r ≥ 1. For some fixed value of r, let the first d bits of Md+r have integer value
k, and the last r the value e. Then, because Md+r is odd, 1 ≤ e ≤ 2r . We represent this
division of Md+r below:
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d bits, value k r bits, value e, 1 ≤ e < 2r .

Then it suffices to show that Fd ≥ k + 1. To do so we proceed step by step, showing
that

Fd+r−m ≥ 2r−m · k + 1 for 1 ≤ m ≤ r, (∗)

and then setting m = r . Firstly we observe that (∗) holds for m = 1 because Md+r =
2r · k + e, and by construction

Fd+r−1 = (Md+r + 1)/2 ≥ 2r−1 · k + 1, since e ≥ 1, e + 1 ≥ 2.

It remains to show that the truth of (∗) for any integer 1 ≤ m ≤ r − 1 implies its truth
for m + 1. We argue that

Fd+r−m−1 = (Md+r−m + 1)/2 by construction

≥ (Fd+r−m + 1)/2 ( given Nd+r−m > 0)

≥ (2r−mk + 1 + 1)/2 by hypothesis

= 2r−m−1k + 1.

Thus (∗) holds and we may set m = r to obtain Fd ≥ k + 1 as required. (The proof can
be modified to take account of case Nd = 0.)

Notice that the step from Md+1 to Fd is equivalent to deleting the last bit from Md+1

and adding 1 to the resulting d-bit integer. This may be observed in Table 12.1.

Example 12.19 If a Huffman tree yields the numbers of codewords 2, 3, 3 for respective
lengths d = 5, 4, 3 the canonical code is as shown in Table 12.1. A convenient exercise is
to convert the code of Example 12.16 into canonical form, given the number of codewords
of each length.

Table 12.1. Canonical Huffman codewords with lengths
from dmin = 3 to dmax = 5. The index id is the index

of the first codeword of length d, and is used in
encoding (see below).

symbol index codeword d Fd id

COMPUTER 1 00000 5 0 1
NAP 2 00001
FOR 3 0001 4 1 3
THE 4 0010
TAKE 5 0011
E 6 010 3 2 6
A 7 011
I 8 100
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A sample of the result for the text of the novel Far from the madding crowd is given
in Witten et al. (1994). The codeword lengths run from 4 to 18.

Economical storage A canonical ordering is lexicographic with most significant bits to
the left. That is to say, it follows the usual dictionary system: if x, y are symbols and T, U
denote sequences of symbols, then xT < yU if x < y, or if x = y but T < U . This is
because (a) the codewords of a given length are in numerical order and (b) a codeword of
length d exceeds the d-prefix of any longer codeword (Fd > k in the proof of Theorem
12.18). We store the corresponding symbols in this order in a 1-dimensional array with
an index i = 1, 2, . . . , n. For each length d, store as integers:

Fd : the first codeword of length d,
id : the index of the first codeword of length d.

To encode a symbol of index i: To decode the next bit sequence
d := dmax; d := dmin; c:= the first dmin bits;
while i < id do d := d − 1; while c < Fd (lexicographic order) do
codeword:= Fd + i − id . append the next bit to c; d: = d + 1;
(See Table 12.1) index:= id + c − Fd (as integers).

Example 12.20 As arranged by the canonical ordering, we need only store information
about the start and end of lists rather than the lists themselves. The storage requirements of
Example 12.19 are simply Fd = 0, 1, 2 and id = 1, 3, 6 (corresponding to d = 5, 4, 3 in
that order). The decoding algorithm applied to a received binary sequence 001101100001
interprets it as three successive codewords with indices 5, 7, 2, by the 3-column calculation
below. (Exercise: what is the message?) It is helpful to follow the progression from < to
≥ in, say, the third column. The process is easily visualised in Table 12.1.

d = 3: c = 001 < F3 d = 3: c = 011 ≥ F3 d = 3: c = 000 < F3

d = 4: c = 0011 ≥ F4 index = i3 + c − F3 d = 4: c = 0000 < F4

index = i4 + c − F4 = 6 + 3 − 2 = 7 d = 5: c = 00001 ≥ F5

= 3 + 3 − 1 = 5. index = i5 + c − F5 = 2

12.4 The redundancy of Huffman codes

Redundancy We proved Shannon’s result (Theorem 12.8) that, if, in a finite message,
the ith alphabet symbol is to appear with probability (relative frequency) pi , then a
lower bound on M, the mean bits per symbol used in encoding, is given by the entropy
H (p1, . . . , pn). Thus the difference

r = M − H (12.12)

is a measure of how well a chosen encoding performs, and is known as the redundancy of
that code. For example, a redundancy of 0.1 suggests that for every 1 Mb of storage used,
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p + q

p q

Tree T: Tree T' :S

Level d

Level d − 1

Figure 12.13 (Figure 12.10 with least probabilities p, q) Converting a Huffman tree
into its reduced tree T ′.

a theoretical 100 K might be pared off by an improved encoding method. Failing this
degree of perfection, we would obviously like the redundancy to be as little as possible;
for Huffman codes a very useful upper limit on redundancy is given by the following
result, which we shall prove after some necessary groundwork.

Theorem 12.21 (Gallager, 1978) Let pn be the probability of the most likely symbol in a
finite discrete source. Let σ = 1 − log2e + log2(log2e) = 0.086 (three decimal places).
Then the redundancy of the Huffman code for that source satisfies

r ≤ pn + σ always, (12.13)

r ≤ 2 − H (pn) − pn ≤ pn, if pn ≥ 1/2. (12.14)

To prove this we shall progress through some interesting results on the structure of
Huffman trees. Suppose we are given a Huffman codetree T. Then T has, by Theorem
12.15, a sibling ordering of the nodes: 1, 2, . . . , 2n − 1 in order of increasing probability
q1, q2, . . . , q2n−1 (q2n−1 = 1), where the probability of a node is the sum of the probabil-
ities of its two offspring and nodes 2k − 1, 2k are siblings for 1 ≤ k ≤ n − 1. Of course,
node 2n − 1 is the root. This leads to a simple and powerful method of obtaining results
by comparing T with its derived tree T ′, the latter obtained by deleting leaves 1, 2 and
redesignating their parent S as a leaf in the manner of Figure 12.13. Then T ′ has the
sibling property with nodes 3, 4, . . . , 2n − 1, which may be relabelled 1, 2, . . . , 2n − 3.

Lemma 12.22 For a sibling ordering of a Huffman tree, with n ≥ 2 leaves, and proba-
bilities {qi }, we have

M =
2n−2∑
i=1

qi =
n−1∑
k=1

(q2k−1 + q2k), (12.15)

H =
n−1∑
k=1

(q2k−1 + q2k) H

(
q2k−1

q2k−1 + q2k

)
. (12.16)

Proof The second equality in (12.15) is trivial; we consider only the first. For each of
(12.15) and (12.16) it suffices to show that, when we pass to the reduced tree, each side
has the same net loss, and that equality holds in the smallest case n = 2.

Equation (12.15) In the 2-leaf case, n = 2, the codewords are simply 0, 1 by cons-
truction, so there are automatically M = 1 bits per symbol. But q1 + q2 = 1, giving the
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desired equality. For the reduced tree assertion, since the length of codeword allocated to
a leaf equals the level of that leaf, we have M =∑

(level of leaf) × (probability of leaf),
so in the notation of Figure 12.13 its net loss is Mold − Mnew = dp + dq − (d − 1)(p +
q) = p + q (note: our notation implies p, q = q1, q2), which equals the loss q1 + q2 in∑

qi , as required.
Equation (12.16) In the case n = 2 the left hand side is H (q1), whilst the right hand

side takes the form (q1 + q2)H (q1/(q1 + q2)), which reduces correctly to H (q1) because
q1 + q2 = 1. Considering the reduction part, the left hand side, H loses (−p log p −
q log q) corresponding to leaves p, q, but gains −(p + q) log(p + q) from leaf p + q ,
whilst the right hand side loses

(p + q)H

(
p

p + q

)
= (p + q)

(
− p

p + q
log

p

p + q
− q

p + q
log

q

p + q

)

since 1 − p

p + q
= q

p + q

= −p log
p

p + q
− q log

q

p + q
on cancelling factors p + q

= −p log p + p log(p + q) − q log q + q log(p + q)

since log(a/b) = log a − log b

= −p log p − q log q + (p + q) log(p + q),

and this equals the net loss in H in passing from T to T ′. This completes the proof.

Definition 12.23 The following concept helps to show what is going on in a Huffman
codetree T. We say T is full down to level d if every node of level less than d is a parent,
or simply full if it is full down to its greatest level. The two cases are illustrated in Figure
12.14 and the first consequences appear in Lemma 12.24.

Lemma 12.24 (a) If a Huffman tree T is full up to level d, then for any level λ < d the
number of nodes is 2λ and their probabilities sum to 1 (thus, for a full subtree, the sum
of probabilities at each level is the same), (b) a Huffman tree is full down to the level of
leaf pn, and no further, (c) if pn ≥ 1/2 then the leaf pn has level 1.

q'Lq'1

level λ + 1 

level λ  

q2m
q2m

(a) (b)

(Other levels)

Figure 12.14 (a) A full tree, (b) a tree full down to level λ = 2, in the notation above.
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Proof (a) At each succeeding level before d, the number of nodes doubles and each
probability is split between siblings. But the root has assigned probability 1, so this
remains the sum at the levels before d. (b) Each node is either a parent or a leaf, so a
tree is full down to level d if and only if it has no leaf above level d. But by (12.11)
no leaf can lie above pn. (c) Since pn ≥ 1/2 and

∑
pi = 1, it follows that any pi , or a

sum thereof which excludes pn , is less than 1/2 and so less than pn . Therefore, when
Huffman’s coding is performed, pn will not be chosen until the last pair, and hence does
not appear until level 1.

Remark 12.25 (A formula for r) Substituting (12.15), (12.16) into the definition r =
M − H of redundancy we obtain

r =
n−1∑
k=1

(q2k−1 + q2k)

(
1 − H

(
q2k−1

q2k−1 + q2k

))
. (12.17)

Since there are n ≥ 3 leaves, the root has two offspring and there is at least one other
node, necessarily at a level at least 2. Hence there is a level λ less than the maximum,
down to which the tree is full (after that it may or may not be full). At this level there are
L = 2λ nodes (Lemma 12.24), whose probabilities may be written q ′

1 ≤ · · · ≤ q ′
L . Let

m be the greatest integer for which node 2m is at level λ+ 1; thus, for example, node
2m + 2 is at level λ. The notation is illustrated in Figure 12.14.
Then the terms in (12.17) from k = m + 1 to n − 1 are those of r = M − H for the full
tree, and we determine the contributions of these terms separately for M and H. For M,
we apply (12.15) and note that (by Lemma 12.24) the probabilities at each of the λ levels
sum to 1, giving M’s contributions as λ · 1 = λ. The contribution of H is the entropy for
a full tree with leaf probabilities (q ′

i ). Applying this fact to (12.17) we obtain

r = λ− H (q ′
1, . . . , q ′

L ) +
m∑

k=1

(q2k−1 + q2k)

(
1 − H

(
q2k−1

q2k−1 + q2k

))
. (12.18)

Now, since q2k−1 ≤ q2k we have 2q2k−1 ≤ q2k−1 + q2k and hence q2k−1/(q2k−1 + q2k) ≤
1/2. But 0 ≤ x ≤ 1/2 implies H (x) ≥ 2x (Theorem 12.5), and so the second term in
(12.18) is bounded above by

m∑
k=1

(q2k−1 + q2k)

(
1 − 2q2k−1

q2k−1 + q2k

)
,

which after simplification may be bracketed as −q1 + (q2 − q3) + · · · + (q2m−2 −
q2m−1) + q2m . This cannot exceed q2m because {qi } is increasing, and hence by (12.18)

r ≤ λ− H (q ′
1, . . . , q ′

L ) + q2m . (12.19)

Proof of the main result, Theorem 12.21 Firstly (12.14). With pn ≥ 1/2 the leaf pn is
at level 1 (Lemma 12.24) and taking λ = 1, L = 2 we have the situation depicted in
Figure 12.15.
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q1′ q2′ = pn

(Other levels exist below)

Figure 12.15 If pn ≥ 1/2 then leaf pn is at level 1.

Thus r ≤ 1 − H (1 − pn, pn) + q2m = 1 − H (pn) + q2m . By definition of m we have
q2m ≤ q ′

1 = 1 − pn , and so r ≤ 2 − H (pn) − pn . This is the first and main inequality in
(12.14). The second follows from Theorem 12.5 by H (pn) = H (1 − pn) ≥ 2(1 − pn)
(using 1 − pn ≤ 1/2).

The rest of this main proof is devoted to (12.13). Referring to Figure 12.14, we choose
λ so that the tree is full up to level λ but has a level λ + 1 in which q2m lies. Hence
q2m ≤ pn and, by (12.19) with Theorem 12.17,

r ≤ λ+ pn − Min{H (q1
′, . . . , qL

′) : 0 ≤ q1
′ ≤ · · · ≤ qL

′ ≤ 2q1
′,
∑

qi
′ = 1}.

(12.20)

Hence it remains to prove that the minimum in (12.20) is bounded below by λ−
σ , where σ = 1 − log(e) + log(log e). Now, the equality and the L + 1 inequalities in
(12.20), all linear, define a compact subset

Q = {(x1, . . . , xn): 0 ≤ x1 ≤ x2 ≤ · · · ≤ xL ≤ 2x1, and
∑

xi = 1} (12.21)

of real L-dimensional space, bounded by hyperplanes. Therefore the continuous function
H on Q attains a minimum and this occurs at a vertex (see e.g. Hoggar, 1992). Each vertex
satisfies the equations defining Q together with equality in L − 1 of the inequalities. That
is, all but two of

(a) x1 = 0,
(b) x1 = x2, x2 = x3, . . . , xL−1 = xL (L − 1 equations),
(c) xL = 2x1.

We note firstly that (a) is ruled out in such a solution because, with the inequalities, it
implies all xi are zero, contradicting

∑
xi = 1. Further, not all of (b) can hold, for if

they did we would have xi = 1 for 1 ≤ i ≤ n, which contradicts (c). Thus exactly one
of (b) must be omitted and the equations for a vertex reduce to

∑
xi = 1 and xi = x2 =

· · · = xi , xi+1 = · · · = xL = 2x1 for some choice of i = 1, 2, . . . , L − 1. Solving these:
i x1 + (L − i)2x1 = 1, so x1 = 1/(2L − i), and

H = −i x1 log x1 − (L − i)2x1 log(2x1)
= −x1{i log x1 + 2(L − i)(1 + log x1)} since log 2 = 1
= −x1{2(L − i) + (2L − i) log x1} now set t = L − i
= log(L + t) + 2L/(L + t) − 2 since x1 = 1/(L + t).
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We obtain a lower bound by using elementary calculus to minimise H over 1 ≤ t ≤
L − 1 with t varying continuously. From (12.8), (d/dx) log x = (1/x) ln 2, whence H has
derivative and sign pattern thereof (the arrows indicate t-values to left and right of the
zero):

dH

dt
= t − L(2 ln 2 − 1)

(L + t)2 ln 2
,

t → L(2 ln 2 − 1) →
dH/dt − 0 +

and hence the least value at the unique local minimum is given by t = L(2 ln 2 − 1), that
is L + t = 2L ln 2, and substituting this value gives

H = log(2L ln 2) + 2L/(2L ln 2) − 2 = log 2 + log L + log(ln 2) + 1/ ln 2 − 2.

Finally this equals λ− σ as required because of the relations log L = λ, log 2 = 1 and
1/ ln 2 = ln e/ ln 2 = log2(e), where we have added the subscript 2 for emphasis. This
completes the proof of Theorem 12.21, upper-bounding the redundancy of Huffman
codes.

Example 12.26 If English text is encoded character by character, the most common char-
acter is the space, at about pn = 0.18. Theorem 12.21 gives an upper limit on redundancy
of approximately 0.18 + 0.086 = 0.266 bits per symbol. Taking the entropy of English
as 5 bits per character (see e.g. Cover & Thomas, 1991), the Huffman redundancy as a
percentage is less than 0.266 × 100/5, or about 5%.

Remark 12.27 Slightly better bounds on Huffman redundancy can be obtained by sub-
dividing further the range of pn , and introducing p1 as a second parameter. We have
(Capocelli et al., 1986):

r ≤ pn − p1 + 0.086, if 0 < pn < 2/9,

r ≤ pn − p1 + 0.082, if 2/9 ≤ pn < 1/3.

This does not improve the English language bound, but reduces the redundancy bound
for ‘making men merry’, with p1 = 1/12 and pn = 1/4, down from 0.336 to 0.332.

12.5 Arithmetic codes

We have shown that no message code can average fewer bits per symbol than the value
of entropy (Theorem 12.8), and we shall shortly show that arithmetic codes, to be de-
scribed, come arbitrarily close to this bound as the message size increases. This is a
property not enjoyed by Huffman codes, but is bought at a greater computational cost.
However, if the cost is economic in our situation, we can have better compression. Like
the Huffman case, these codes are an option in the image compression standard JPEG (see
Chapter 15).

Arithmetic codes can seem hard to grasp, though the basic idea is simple (for their
origin, see Witten et al., 1994). The idea is an extension of the well-tried method of



418 Entropy and coding

0.1 0.2

0.137

1 2 3 4

... ...

A B

C D

Figure 12.16 Representing 0.137 on a ruler.

A

C D

0.137

B

0.20.1 1 2 3 4

… …

Figure 12.17 The ruler of Figure 12.16 as modified by an arithmetic code after the
arrival of digit 1 then digit 3, just before taking account of the 7. The scale is meant to
be distorted!

converting a string of symbols from the alphabet {0, 1, . . . , 9} to a number between 0
and 1. The connection may be expressed formally as 0.d1d2 . . . ↔∑

di 10−i , but is more
easily comprehended by the ruler representation recalled in Figure 12.16.

A first digit of 1 locates the number between A and B, a second digit of 3 locates it
between C and D, and a third digit of 7 positions it still more precisely, as arrowed in the
figure. The process is reversible: starting from our point on the ruler edge we read off
the first digit as 1 because on the coarsest scale (tenths) the point lies between 1 and 2,
then the second digit is 3 because the point lies between 3 and 4 (marked by C, D) on the
next finest scale, and so on; we decode in the same order as encoding was performed,
and recover the original 137.

The difference with arithmetic codes is that more-frequently occurring digits are al-
located more space in the corresponding graduations. Indeed, the graduation widths at
a given scale are altered so as to be proportional to the relative frequencies of the digits
they represent. The frequencies are first set at 1 per digit, then updated after every time
a new digit is processed.

Thus, in our example, we initialise the respective frequencies of {0, 1, . . . , 9} as
{1, 1, . . . , 1}. On receiving the first digit ‘1’ we update this to {1, 2, 1, . . . , 1}, and on
the arrival of 3 update it to {1, 2, 1, 2, 1, . . . , 1}. The ruler now looks something like
Figure 12.17. Although the point generated from the digits 137 is not actually at distance
0.137 from the zero of the scale, it still decodes back to 137 provided we use the same
ruler.

Using the same ruler in an algorithm means in practice that we compute the actual
positions of the new gradations. Below is a pseudocode version. It computes, after each
message symbol input, an interval [lo, hi] in which the output number must lie, and
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Table 12.2. Case n = 2. How message string aba is encoded as
(1/3 + 5/12)/2 = 0.375.

frequencies successive intervals [lo,hi], shaded diff = hi − lo

{1, 1}
a b

1/20 1 1/2

{2, 1}
ba

0 11/21/3 1/6

{2, 2}
a

0 15/121/3 1/2

b
1/12

outputs the midpoint. As usual, the alphabet is denoted by S = s1, . . . , sn . The frequencies
fi are cumulative, referring to symbols processed so far.

ALGO 12.1 Arithmetic encoding for a message string

Set all fi = 1(1 ≤ i ≤ n) and f0 = 0, ftotal = n, lo = 0, hi = 1;
For each new symbol, assumed to be sth in the alphabet, do:
fmin = f1 + · · · + fs−1; f max = f min + fs ;
diff = hi − lo;
hi = lo + diff ∗fmax/ftotal;
lo = lo + diff ∗fmin/ftotal;
fs = fs + 1; ftotal = ftotal + 1;
Output (hi + lo)/2.

Example 12.28 Arithmetic encoding of message strings aba (Table 12.2) and of abc.
(Table 12.3).

We can express 0.375 exactly as a binary fraction: 0.375 = 3/8 = 1/4 + 1/8 = 0.011.
Thus arithmetic encoding sends aba to 011, which is neatly one bit per symbol. What is
the entropy? This is defined, perhaps surprisingly, with probabilities based on over-
all rather than cumulative frequencies. Thus H = H (2/3, 1/3) = (2/3) × log (3/2)
+ (1/3) log 3 = 0.918 approx. This, of course, implies the message cannot be reduced
to two bits, but it also brings out the fact that even an arithmetic code may not reduce a
message to entropy rate if the message is short. The strength of these codes emerges as
more substantial bodies of text are introduced.

Finding the bits In the example above, the output number, which is exactly the decimal
fraction 29/120, is not a finite binary fraction. However, all we need is a binary fraction
strictly between lo and hi for it to be correctly decoded. To discover how this can be
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Table 12.3. Case n = 3. How message string abc is encoded as
(7/30 + 1/4)/2 = 0.2417.

frequencies successive intervals [lo, hi], shaded diff = hi − lo

{1, 1, 1} 1/3

{2, 1, 1} 1/12

{2, 2, 1} 1/60

1

1

1

0 1/6 1/4 1/3

0 1/47/30

0 1/3

a c

c

b

b

obtained with the least number of binary digits, we begin with a small but significant
observation.

Theorem 12.29 Suppose δ > 0. Then (i) the number of bits required to express a real
number z (0 < z < 1) so that the error is restricted to the interval [−δ/2, δ/2), is at most
Ceil[Log(1/δ)]. Furthermore (ii) if log(1/δ) = d + e, where d is the integer part and e
the fractional part, with 0 < e < 1, then d digits suffice with probability 2−e.

δ

2−k

(a) (b)

2−d

δ

Figure 12.18 Intervals of width δ compared with binary fractions spaced at 2−k and 2−d .

Proof (i) As illustrated in Figure 12.18(a), z can be represented as prescribed by k bits
if the interval [z − δ/2, z + δ/2) of width δ contains a k-bit binary fraction, and this in
turn holds if 2−k ≤ δ, a condition independent of the value of z. The least such k is

Min{k : 2−k ≤ δ} = Min{k : 2k ≥ 1/δ} = Min{k : k ≥ log(1/δ}}
= Ceil[log(1/δ)].

(ii) Referring to Figure 12.18(b), the probability p that there is a d-bit binary fraction
in an interval of width δ < 2−d may be taken, on the basis of a uniform distribution of
outcomes for z, to be the ratio δ/2−d . Then using the given notation, including that of
(ii), we have log(p) = d + log δ (all to base 2) = d − (d + e) = −e, whence p = 2−e.

Corollary 12.30 Let the final interval width diff of an arithmetic encoding satisfy
log(1/diff) = d + e, where d is an integer and 0 < e < 1. If the output is kept to d
bits it will output correctly with probability 2−e, but certainly correctly if d + 1 bits are
used.



12.5 Arithmetic codes 421

Example 12.31 (1) The message string of Table 12.3 has diff = 1/60 and d + e =
log 60 = 5.91 approx. Hence five bits suffice with probability 2−0.91 = 0.53, but six bits
give correct decoding, with bits/symbol = 2. The entropy is 3(1/3) log 3 = 1.58, implying
total bits of at least 4.7, hence of at least 5.

(2) Arithmetic encoding of the following text of 390 symbols was performed at a mean
rate of 4.58 bits per symbol, compared with entropy of 4.33.

‘Dear 4h graduand, I enclose some details of a PhD studentship whose closing date has been extended to
allow our own graduates of this year, both single and combined, to apply. The amount of the grant is a little
above the standard EPSRC award. A First or Upper second class degree is a prerequisite, but interviews can
take place at any suitable time.

Yours sincerely Stuart G. Hoggar’ (12.22)

Handling the small numbers The small example above coded to a bit sequence which,
as a number, required accuracy of up to about 2−1700. Thus it is unrealistic to handle
the whole encoded version within a computer calculation. This problem is easily solved
because of the linear nature of the calculation

diff = hi − lo,

hi = lo + a∗diff,
lo = lo + b∗diff,

where a, b are independent of hi, lo. When diff is so small that hi and lo have the first
one or more bits in common, say lo = 0.011 01 . . . , hi = 0.011 10 . . . , we can subtract
the common start c = 011, output c, then continue encoding. The result is that diff is
unchanged but hi = (lo − c) + a∗diff, and lo = (lo − c) + b∗diff, which is what we want.
The subtraction and output is repeated as appropriate.

ALGO 12.2 Arithmetic decoding

The decoder retraces (forwards) the path of the encoder. Similarly to the
latter, it can be adapted to process the long binary fraction in steps.

Input: code, symbolList, msgLength;
Set all fi = 1, ftotal = number of distinct symbols, lo = 0, hi = 1;
do msgLength times:

diff = hi − lo; s = 1;
While code ≥ lo + diff ∗ fs/ftotal do : lo = lo + diff ∗ fs/ftotal; s = s + 1;
hi = lo + diff ∗ fs/ftotal;
Output symbol number s;
fs = fs + 1; ftotal = ftotal + 1.

Example 12.32 (Example 12.28 continued (decoding)) Table 12.3 concluded with the
code 0.2417. Here are the three steps of ALGO 12.2 in which the original message is
recovered as abc.
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f1 f2 f3 ftotal lo hi Conclusion of the While loop

111 3 0 1 s = 1 lo = 0 hi = 1/3
211 4 0 1/3 s = 2 lo = 1/6 hi = 1/4
221 5 1/6 1/4 s = 3 lo = 7/30 hi = 1/4

Arithmetic codes – best possible? We wish to show that arithmetic codes are best
possible in the long run. That is, as N and the fi increase, the expression (from Corollary
12.30)

mean bits/symbol = 1
N log(1/diff) (12.23)

comes arbitrarily close to the entropy bit rate. A quick, rough, but insightful, argument
runs as follows. An encoder starts with diff = 1 and, for each new message symbol
received, scales diff by the cumulative probability

pi = fi/
∑n

s=1
fs . (12.24)

Thus diff is the product of the probabilities of the symbols encoded, and so log diff equals∑
log ps . Hence a symbol s of probability ps contributes − log(ps) to the output; but

this is the symbol’s entropy.
The argument of the last sentence is rough, indeed our small examples above do not

have bit rate equal to entropy. To achieve a precise argument we must obtain a formula
for diff in terms of the overall frequencies fi (the number of times the ith symbol of the
alphabet appears in the message). The following lemma provides this.

Lemma 12.33 The width of the final interval in an arithmetic encoding of a message of
length N from an alphabet of size n and frequencies fi is

diff = (N + n)(n − 1)!(�i fi !)

(N + n)!
(12.25)

Proof Suppose firstly that the message begins with all f1 copies of symbol s1, followed
by the f2 copies of s2, and so on. Then diff is scaled from 1 down to(

1

n
· 2

n + 1
· · · f1

n + f1 − 1

)
×
(

1

n + f1
· 2

n + f1 + 1
· · · f2

n + f1 + f2 − 1

)
× · · ·

×
(

1

n + f1 + f2 + · · · + fn−1
· 2

n + f1 + f2 + · · · + fn−1 + 1
· · · fn

n + N − 1

)
,

where we have simplified the last factor using
∑

fi = N . It is easier to see in retrospect
that, in whatever order the symbols arrive, we obtain a fraction with numerator the
product of factors fi ! for i = 1, 2, . . . , n, and denominator n(n + 1) · · · (n + N − 1) =
(n + N )!/[(n − 1)!(N + n)]. Hence the result.
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Notation 12.34 (1) To convert the expression for diff to one we can compare readily
with entropy, it is helpful to use the following notations, meaning that functions f (x)
and g(x) are ‘the same’ in some sense, as x →∞.

f (x) ∼ g(x) if f (x)/g(x) → 1 as x →∞, (12.26)

f (x) ≈ g(x) if f (x) − g(x) → 0 as x →∞. (12.27)

(2) The first need not entail closeness, for example (x + 9)/x → 1 as x →∞, though
the two functions always differ by 9. However, taking logs converts the ∼ relationship
of (12.26) into actual closeness:

if f (x) ∼ g(x) then log f (x) ≈ log g(x). (12.28)

This is easily verified by log f (x) − log g(x) = log[ f (x)/g(x)] → log(1) = 0. On
the other hand, (x + a)/x → 1 and (1/x) log x → 0, so we have the useful observations

log(x + a) ≈ log x for any constant a, (12.29)
1

x
log x ≈ 0. (12.30)

(3) Finally, here is Stirling’s classical formula for a positive integer k (see e.g. Leder-
mann and Vajda, 1982):

k! ∼
√

2πe−kkk+1/2. (12.31)

Theorem 12.35 The bit rate of an arithmetic code tends to the message entropy as N
and the frequencies fi become arbitrarily large.

Proof Applying Stirling’s Formula to expression (12.25) for diff, we obtain

diff ∼ (2π )(n−1)/2 (N + n)(n − 1)!�i e− fi f fi+1/2
i

e−(N+n)(N + n)N+n+1/2
.

Since �i e− fi = e−� fi = e−N , we have after cancellations

diff ∼ Kn�i f fi+1/2
i /(N + n)N+n−1/2 (Kn depends only on n).

Now we invoke (12.28) to compute the long-term bit rate (12.23), with N and the fi (but
not n) tending to infinity, from

1

N
log(1/diff ) ≈ 1

N

[
− log Kn −

∑
i
( fi + 1

2
) log fi + (N + n − 1

2
) log(N + n)

]
≈ −

∑
i
( fi/N ) log fi + log N using (12.29), (12.30)

≈ −
∑

i
( fi/N ) log fi +

∑
i
( fi/N ) log N since

∑
i
( fi/N ) = 1

=
∑

i
( fi/N ) log(N/ fi )

=
∑

i
pi log(1/pi ) on setting pi = fi/N .
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Table 12.4. A small table of comparisons.

Huffman codes arithmetic codes

stores tree no explicit tree stored
inefficient with high probabilites OK with all probabilities
faster slower but more compressed
OK for random access less good for random access

That is, the mean rate of bits per symbol tends to the entropy of p1, . . . , pn , as required.
Now that we have described both the Huffman and arithmetic methods, some comparisons
are in order. see Table 12.4.

12.6 Prediction by Partial Matching

Given that, as we have just shown, arithmetic codes approach the ideal entropy bit rate
as the message size increases, we should like to know how they fare in practice. The
answer is, very well, with long message compression better than Huffman, but they can
still be improved. Here we are concerned with the fact that an arithmetic code takes no
account of the frequency of pairs (or more generally k-tuples) of symbols. For example,
in an English language text, letter g is more likely to be followed by an s than by a z,
whilst th is a very common 2-letter combination, perhaps most often followed by e. We
may take advantage of this form of redundancy as follows.

As an arithmetic code works through the text to be encoded, symbol by symbol, it
predicts the probability of a symbol σ by its relative frequency of previous occurrence

P(σ ) = number of previous σ s

total symbols occurring before σ
. (12.32)

Suppose the k symbols immediately before σ are x1 . . . xk . We get a better prediction by
comparing the number of previous occurences of x1 . . . xk with the number of times this
sequence is followed by σ , which we may write as:

P(σ |x1 . . . xk) = number of times x1 . . . xk σ has occurred

number of times x1 . . . xk has occurred
. (12.33)

This is called Prediction by Partial Matching, or PPM, and the symbol sequence x1 . . . xk

is the context of σ . When PPM is combined with arithmetic encoding, the successive
intervals (lo, hi) are computed as before, but are now based on the PPM probabilities.
A simple example of the calculation is that for the last e in ‘making merry men’. We
have P(e) = 1/14, versus P(e|m) = (no. of previous mes)/(no. of previous ms) = 1/2,
reducing the corresponding number of bits to encode ‘e’ from log 14 = 3.8 down to
log 2 = 1.
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Example 12.36 We calculate the comparative probabilities and entropies for the last
nine symbols of the text below. The results (which require discussion) are shown in
Table 12.5.

In the beginning was the word, and the word was with God, and the word was God. He was in the beginning

with God. All things were made by him, and without him was not anything made that was made.

Table 12.5. Arithmetic versus PPM probabilities for last ‘was made.’ in the text above,
using contexts x1 of length 1. A space is denoted by []. Corresponding entropies are

numbered 1, 2 and given to one decimal place.

Symbol σ w a s [] m a d e ·
P(σ ) 12/189 12/190 6/191 41/192 4/193 13/194 11/195 12/196 2/197
P(σ |x1) 3/10 5/12 5/12 1 2/41 1/2 2/13 2/11 0
P(σ ) bits 4.0 4.0 5.0 2.2 5.6 3.9 4.1 4.0 6.6
P(σ |x1) bits 1.7 1.3 1.3 0 4.4 1.0 2.7 2.5 ∞

Remark 12.37 The number of bits for ‘was made.’ is thus reduced from 33 to 13, but
some questions about significance arise. (1) A probability of 1 in line 2 of the ‘space’
column corresponds to the fact that s has so far always been followed by [], as it is here.
The decoder knows this, and zero bits are used. (2) The bottom right∞ is caused by a zero
probability, arising because the contex ‘e’ occurred previously but was never followed
by a full stop sign ‘.’. Possible action for various situations of this kind is prescribed in
Table 12.6.

Table 12.6. Situations that may arise in using PPM with arithmetic codes,
and how they are handled. A symbol σ is preceded by context x1 . . . xk.

situation action remarks

no previous occurrence of try x2 . . . xk decoder has this
context x1 . . . xk information

no previous occurrence take arith. code P(σ ) no context available
of xk

no previous occurrence take P(σ ) = 1/n zero frequency
of σ (n = size of alphabet) situation

12.7 LZW compression

We come to an approach different from those of the previous sections, and characterised
by the use of a dictionary (in other contexts this might be called a codebook or look-up
table). That is, we replace a substring of the text, or phrase, by a pointer to that phrase.
The idea is that a pointer will require fewer bits to specify than a string. Yet a dictionary
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that is good for one context will be inefficient in another, so a method is desirable
which produces a new dictionary each time, specially adapted to the text proffered for
encoding.

Ziv and Lempel (1977) introduced an ingenious implementation of this idea in which
the dictionary has no separate existence but is spread throughout the text itself. One
replaces the text, phrase by phrase, with reference to an earlier appearance, in the form
of a triple 〈offset, length, next〉, where offset specifies how many characters back to refer,
length is the number of successive symbols given, and next is the text symbol following
these in the current position.

Example 12.38 The first few triples for the text below are 〈0, 0, t〉, 〈0, 0, h〉, · · · ,
〈0, 0, ‘ ’〉 because there is no earlier appearance of the corresponding text symbols,
indeed a triple’s third entry is present in order to handle that situation. However, after
some way into the text this need rarely occurs, and quite long runs of symbols are
repeated. This is illustrated even in the slightly artificial (to compensate for being
short) example, in which repeated phrases of length 2 upwards may be shaded and the
corresponding triples shown above.

〈11, 7, t〉 〈8, 4, s〉 〈20, 3, a〉〈16, 3, i〉 〈20, 5, .〉
the sea is the seat of season, that is the reason.

1 8 11 12 15 18 23 25 31 34 37 45

If, as here, offset < 25 and length < 23, then the pair may be specified in eight
bits, i.e. in one byte. With each character in the ASCII system (see www.cplusplus.
com/doc/paper/ascii.html) normally allocated one byte, the encoding proceeds at two
bytes per triple. Thus a triple, if compelled to specify one character, loses only one byte,
but in representing, for example, ‘is the’ (which includes two spaces), it saves six.

The basic scheme is usually referred to as LZ77, but there are many variants, based
principally on allocation of bits for the triples. A consideration is that a byte may be
regarded as a symbol, and on that basis GZip introduces further compression by applying
Huffman encoding to the offset parameters. A year later the authors (Ziv and Lempel,
1978) introduced the improvement LZ78, in which the triples are reduced to pairs (integer,
symbol) via the allocation of a number to each dictionary phrase, and finally Welch (1984)
contributed a dictionary system which removed the need for the symbol; thus the triples
had been reduced to singletons and the code to a sequence of integers.

This apparent magic was performed at the essentially zero expense of building up
a dictionary during both encoding and decoding which was initialised as the first 127
ASCII character codes. The result, which we now describe, is known as LZW compression
(Lempel–Ziv–Welch). Amongst other direct applications it forms the basis of Unix’s
compress, and is a part of the Graphics file formats GIF and TIFF (see e.g. Murray and
van Ryper, 1996).
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LZW encoding The dictionary, dict, is an array of strings, initialised as ASCII characters
1 to 127 in order. The position of a string in dict will be called its index. We use also the
following notation:

msg = the text string to be compressed, including spaces and punctuation marks;
code = the sequence of integers to which msg will be encoded;
max = greatest length of phrase allowed in dict;
i = position of current msg symbol;
str = a substring of msg beginning at the ith msg symbol;
next = the msg symbol following str.

ALGO 12.3 LZW encoding

Input the string msg
Set code = empty, i = 1, and repeat the following until msg is exhausted:
1. Locate in dict the message phrase str of greatest length L ≤ max

that begins at the ith message symbol.
2. Append the index of str to code.
3. Extend str by its next symbol next in msg, and append the result

to dict (omit if dict has reached a maximum allowable size).
4. Set i = i + L .
Output code and discard dict.

Example 12.39 The encoding of the short sequence msg = ‘ABRACADABRA’ shows
how LZW compression works. To keep numbers simple we initialise the dictionary to
the actual characters required, dict = {A, B, C, D, R}. Thus the first addition to dict has
index 6. The table below shows, column by column, how encoding proceeds.

msg A B R A C A D A B R A
code 1 2 5 1 3 1 4 6 8
added to dict AB BR RA AC CA AD DA ABR
index 6 7 8 9 10 11 12 13

Notice that an infinite loop cannot arise in determining str. We start with str of length
max and reduce to a minimum of a single symbol, at which stage it must be within dict
because the latter was initialised to contain all such singleton strings.

In this example str reduces to a singleton each time, until we consider the eighth
symbol of msg, an ‘A’, when str = AB with index 6. Therefore 6 is now appended to
code, AB is extended to ABR before being appended to dict (index 13), and the current
msg position is set at i = 10. But this leaves just RA, which is present in dict at index 8,
so coding is complete. We output code = {1, 2, 5, 1, 3, 1, 4, 6, 8} and discard dict.

Decoding On receiving code, a decoder attempts to follow in the encoder’s footsteps.
This begins with the initialised dict = {A, B, C, D, R} (normally ASCII 1 to 127) and
continues with repetition of the twin operations: looking up the dictionary phrase str
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corresponding to the latest codeword, and extending the dictionary itself. This means that
dict must be far enough advanced for the necessary looking-up. In the present example,
on reaching 6 the decoder finds this is the index of AB. For the dictionary insertion he
(the decoder) needs one more symbol of msg, and he has it because the next codeword
8 is within dict, yielding RA; so ABR is inserted into dict, though by now decoding is
complete.

Why decoding always works During encoding, the making of a dictionary entry always
occurs before it is used. This means the next codeword is already an index unless it
happens to be the entry we are in the process of making. But then we have the situation
depicted in Figure 12.19.

... A1 ... AL Z ...

A1 ... AL Conclusion: Z = A1.
A1 ... ALZ

msg

str

next dict entry

Figure 12.19 If the current dictionary entry is the next str, then its first and last symbols
are identical.

The equality shown in Figure 12.19 implies Z = A1. That is, str is to be extended by
repetition of its first symbol before insertion into the dictionary. Hence the else part in
the decoding algorithm, which we are now ready to give.

ALGO 12.4 LZW decoding

Input code
dict = ASCII characters numbered 1 to 127;
for i = 1 to codeLength − 1 do

ind = code[i];
str = dict[ind];
msg = msg + str;
nx = code[i + 1];
if nx ≤ Length[dict] then next = 1st character of dict[nx]

else next = 1st character of str;
Append str + next to dict; (∗ End for ∗)

Append dict[codeLength] to msg;
Return(msg);

Example 12.40 Here is a longer piece of text than in earlier examples.

Having spotted his prey in flight, Cat looked for a suitable path to the ceiling. Yes, the piano would make

an excellent start. He leapt expertly onto the piano keys as he had done many times before, dislodging a

small notebook and pencil, which he mildly regretted, for it was a point of honour and a demonstration of

expertise to avoid disturbing those fragile things which the Owners seemed to find important. By now he

was used to the sudden sound his first jump caused, and it disturbed him not a whit. Conserving momentum,
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because it felt good and seemed to work well, he continued in smooth flight upwards and gained the piano

top. There to greet him was a vase of, what did they call it? He was unable to produce the sound even

in imagination during those milliseconds in which he skidded with perfect judgement around it and turned

towards the higher objective of the tall slim music cupboard. Gaining this superior top he regarded from close

quarters, and with rapidly beating heart, the winged creature that cruised before him in blissful unawareness

of the danger from its new companion. The moth took a new fancy and headed for the window with its

flowers and scents. At this, Cat, quivering with desire, launched himself through space regardless of possible

consequences, and narrowly escaped an impaling on peri-flower sticks by a last minute shift of paws in

flight.

LZW encoding reduces this from 1456 characters to 760 integer codewords, a compres-
sion to about half size. See Table 12.7.

Table 12.7. Some comparative compressions using the LZW
method. Code size is given as a percentage of text size.

text length code bytes compression

abracadabra 11 9 82%
Sea (Example 12.38) 50 36 72%
Letter (Example 12.31) 390 269 69%
Word (Example 12.36) 198 119 60%
Cat (Example 12.40) 1456 760 52%

LZW in image compression Like other methods which encode a string of symbols,
LZW can encode any data expressed as a stream of bytes. Indeed, it is widely used to
encode image data, especially in standard GIF, where each pixel value is allocated up
to one byte. In this case the pixel values may be specified as, say, 4-bit, generating only
16 distinct symbols, and the dictionary initialised to just those symbols. Other graphics
formats such as TIFF make use of the byte-to-symbol idea in various ways, such as
packing a whole number of pixel values into one byte, or vice versa, for example using
two bytes for 16-bit colour. For encyclopaedic information on graphics formats, and some
interesting history of LZW, see Murray and van Ruyper (1996). Figure 12.20 is a simple
example in which LZW reduced an image to 61% of its size. As is to be expected, the
reduction is less than for a true language message, but improves greatly with image size.
The present case is already much better than a 1/4 sized version which reduced only as far
as 77%.

12.8 Entropy and Minimum Description Length (MDL)

In this section we make a journey from what may seem a purely theoretical idea of
complexity to the practical and useful Principle of Minimum Description Length.
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Figure 12.20 ‘Martial cats’ (adapted from Night mist Online). With bytes ordered row
by row and treated as character symbols, this 206 × 170 greyscale image was reduced
to 61% size by LZW compression.

12.8.1 Kolmogorov complexity

Kolmogorov, dissatisfied with entropy as a measure of information, strove for an ap-
proach which would be more intrinsic in the sense of dispensing with probabilities.
Eventually (Kolmogorov, 1965, 1968) he hit upon the idea known as Kolmogorov
complexity: the information carried by an object is the length of the shortest binary
computer program that describes the object. We shall shortly give definitions that
make this more precise, and show that it is computer-independent. To fix the mean-
ing of shortest program we focus on the imaginary computing machine of Turing
(1936).

Figure 12.21 Alan
Turing, 1912–1954.

The Turing machine In 1936 Turing (see Figure 12.21) grap-
pled with the idea of encapsulating human thought in a machine.
Whether he succeeded is perhaps still an open question, but most
subsequent concepts of a universal computer proved equivalent to
his original, in what they could and could not compute (Rojas,
1996, p. 5ff). Thus it remains a fundamental model. The Turing
machine is a Finite State Machine: a machine able to vary between
a finite number of states, the present state and input determining
what happens next.

In one version, a program tape feeds in from left to right the
successive digits of a binary string p = p1 p2 p3 . . . (a computer
program), as signalled by the machine. Represented in the simplified Figure 12.22, the
machine has a working tape (part of Turing’s human analogy), and outputs at intervals
successive digits x1, x2, x3, . . . For the equivalence of Turing machines with varying tape
arrangements, see Hennie and Stearns (1966). Turing machines and issues in geometry
are discussed by Minsky and Papert (1988).

Any computer U equivalent to a Turing machine will be called a universal computer.
An important question is: which binary strings x can be computed as the output U(p)
of a program p (itself a string)? For x to be considered computable, the machine must
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Finite State
Machine

p3 p2 p1 x3 x2 x1

Work tape

Figure 12.22 Simplified diagram of a Turing machine.

halt at some stage. Furthermore, since the tape always moves to the right in order to read
successive characters of p, as in Figure 12.22, no program which halts can be the start
of a larger one that halts, which is to say that the set of such programs is prefix-free, or
PF (Section 12.2). We are ready to discuss Kolmogorov’s key definition of complexity.

Definition 12.41 The Kolmogorov complexity K = KU (x) of a string x, with respect to
a universal computer U is the shortest length l(p) of any computer program for U that
outputs x. If we express the computation as x = U(p), we may write

K = Min
p:U(p)=x

l(p). (12.34)

Example 12.42 The Mandelbrot set M is output by a very simple program, and therefore
the Kolmogorov complexity of M is correspondingly small, in spite of the great and
beautiful complications found in this set (see e.g. Hoggar, 1992).

Varying the computer We may be writing instructions for a universal computer A that
possesses many functions and subroutines not present in our universal computer U . Ex-
amples could range from the exponential function to an inbuilt LZW data compressor
or even a Java compiler. But these can all be simulated in a pre-program fed into com-
puter U ahead of the A program. Let this also include conversion of the instruction
set of A into instructions for U . Denoting the length of the pre-program by cA, we
have:

Theorem 12.43 (Universality of K) If U is a universal computer, then for any other such
computer A we have

KU (x) = KA(x) + cA, (12.35)

for all strings x, where cA is a constant.

We emphasise that cA is independent of x and hence becomes negligible as the length
of x increases. From now on we assume a fixed universal computer and simply write c
for the length of whatever pre-program is required. Now, often the computer is given the
length of x and may use this information to shorten a calculation. Thus we define the
conditional Kolmogorov complexity K (x |l(x)) of x, given l(x), to be the length of the
shortest program that outputs x, given the length l(x),

K (x |l(x)) = Min{l(p): x = U(p) and l(x) is given}. (12.36)
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Example 12.44 One way to inform the computer of the length n = l(x) is to repeat
each digit of the binary form of n and mark the end unambiguously by the duo 01. For
example, the length 53 = 110101 is defined by 11110011001101. More generally, the
binary form of n requires �log n� ≤ 1 + log n bits, so we are specifying n to the computer
in up to 4 + 2 log n bits. Following this by a program that uses the knowledge of n, and
absorbing an extra 4 into the constant, we obtain the connection

K (x) ≤ K (x |l(x)) + 2 log l(x) + c. (12.37)

Example 12.45 (K and compression) If LZW compresses scanned portraits down to at
most 1/5 of their size, then for such an image of size n bytes we have, up to the addition
of a constant, K(portrait) ≤ 8n/5 + 2 log n.

Is K of any use? We claim K is non-computable, meaning that there is no general
algorithm to determine it for an arbitrary finite string. The reason is that at any time
a candidate shortest program may not have halted, and there is no general way to tell
whether it will and what it would print out. However, this emphatically does not render
the concept useless; for example:

1. The idea seems intrinsically important, and provides a framework for thinking analogous to
Occam’s Razor: one should seek the simplest explanation (Vitanyi & Li, 2000).

2. It is close to entropy in the long run, as we make precise and prove in the next section.
3. It has provided a new principle, the MDL Principle, valuable in practice for choosing the ‘best’

model; this is the topic of Section 12.8.3.

12.8.2 Complexity and entropy

Our first task in connecting K and entropy is to prove what is known as a source coding
theorem (Theorem 12.50). The nomenclature betokens a focus on coding the source
symbols, by contrast with our earlier result, Theorem 12.8, which is known as a channel
coding theorem because it makes a statement about the expected progress of a coded
message. We require, first, two results which are important in their own right and useful
later. The letter p now reverts to its more usual role as a pdf, with entropy E log(1/p(x)).
A form of relative entropy defines a distance between pdfs as follows.

Definition 12.46 Let p(x) and q(x) be two pdfs with the same finite range A. The
(Kullback–Liebler or Mahalanobis) distance d(p‖q) from p to q is

d(p‖q) =
∑
x∈A

p(x) log
p(x)

q(x)
= E p log

p(x)

q(x)
, (12.38)

where the expected value E p is taken, as indicated, with respect to p(x). Because of
the asymmetry in p and q, the relation d(p‖q) = d(q‖p) demanded by the distance
axioms fails, as does the triangle inequality d(p‖r ) ≤ d(p‖q) + d(q‖r ). Nevertheless,
d is very useful because of the remaining (and most basic) distance axiom it does satisfy,
as asserted in our next result.
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Theorem 12.47 In the notation above, d(p‖q) ≥ 0, with equality if and only if p = q.

Proof Let B = {x : p(x) > 0}, a subset of the range A of p. We have

−d(p‖q) = −
∑
x∈B

p(x) log
p(x)

q(x)
=
∑
x∈B

p(x) log
q(x)

p(x)

≤ log
∑
x∈B

p(x)
q(x)

p(x)
by Jensen’s Inequality, Theorem 9.84

= log
∑
x∈B

q(x) ≤ log
∑
x∈A

q(x) = log(1) = 0.

Hence d(p‖q) ≥ 0. If it is actually zero then both inequalities in the chain above be-
come equalities. We need a little care here. Since log is strictly concave, Jensen’s result
(Theorem 9.84) implies q(x) = p(x) = 1 everywhere, on B. But

∑
q(x) (x ∈ B) =∑

q(x) (x ∈ A) shows q(x) = 0 = p(x) for x ∈ A\B, and the proof is complete.

Exercise Verify that d(p‖p) = 0.

Definition 12.48 We earlier discussed (Notation 12.7) an encoding si → ci of message
symbols from an alphabet s1, . . . , sn , into binary words. There we began with a message
and assigned si a probability pi equal to its relative frequency of appearance in the
message. Then the mean codeword length over the message is M =∑

i pi Li , where ci

has length Li .

Now we assign probabilities in advance, taking the symbols as the range of a random
variable X. We call the rule si → ci an encoding of the source X, or simply a source
code. The expression

∑
i pi Li becomes the expected value L of codeword length. For

the following widely used ancillary result and its application we recall that an encoding
is prefix-free, or PF, if no codeword consists of the initial bits of another (our codes are
binary, but the result holds with k in place of 2 by a similar proof).

Theorem 12.49 (Kraft Inequality) In the notation of Definition 12.48, the n codewords
of a prefix-free source code satisfy

n∑
i=1

2−Li ≤ 1. (12.39)

Given L1, . . . , Ln satisfying (12.39), there is a prefix-free source code with word lengths
L1, . . . , Ln

Proof Consider a rooted tree in which each node has two branches, labelled 0, 1 in some
order. The successive symbols of a codeword define a path from the root to a node and,
since root-to-node paths are unique in a tree, this node defines the codeword uniquely.
This tree is to be full, all end-nodes being at a level D equal to the greatest length of
any codeword. Thus D = 3 in Figure 12.23. The number of nodes at level D is 2D, and
a codeword node at level Li has a set Ai of 2D−Li descendants at level D, as illustrated
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1

2

A1 A2

Root

Figure 12.23 Binary tree for the proof of Theorem 12.49. It contains the codetree.

in Figure 12.23. By the prefix-free property, no codeword node is on the path from the
root to any other, and so the sets Ai are disjoint, implying

∑
i 2D−Li ≤ 2D, and hence

the result of the theorem on dividing through by 2D.
Conversely, suppose we are given a set of desired codeword lengths satisfying (12.39).

Consider a binary tree as before, and set the nodes at each level in some order, say
lexicographic. Reorder the codewords by increasing length L1 ≤ L2 ≤ · · · , and, for
i = 1, 2, . . . , n in succession, label the first unlabelled node of level Li as codeword i
and delete its descendants (see Exercise 12.12 and solution). This gives the required PF
code, and completes the proof.

Theorem 12.50 Given a prefix-free source code for the random variable X, the expected
codeword length, L, satisfies

L ≥ H (X ). (12.40)

Proof Recalling Definition 12.48, let X have range A = {s1, . . . , sn} and pdf p =
{p1, . . . , pn}, the ith codeword having length Li . Then with summations from i = 1
to n, we have

L − H (X ) =
∑

pi Li −
∑

pi log(1/pi )

= −
∑

pi log 2−Li +
∑

pi log pi since a = − log 2−a

=
∑

pi
[

log pi − log 2−Li
]
.

We define a second pdf r = {ri } on A, where ri = 2−Li /γ , and γ =∑
2−Li (we have

just shown that γ ≤ 1). This enables us to re-express L − H (X ) more simply. In fact we
have log(pi/ri ) = log pi − log 2−Li + log γ , so that

L − H (X ) =
∑

pi log(pi/ri ) −
(∑

pi

)
log γ

= d(p‖r ) − log γ by Definition 12.46, and
∑

pi = 1

≥ 0 by Theorem 12.47 for d, and (12.39) for γ.

Bounding K below To achieve the connection between complexity and entropy we
now consider messages xm = x1 . . . xm with symbols xi in the alphabet {s1, . . . , sn}
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from which X takes its values. These xm constitute the range of the random vector
Xm = (X1, . . . , Xm), where the Xk are independent identically distributed, or iid, copies
of X. We consider the Kolmogorov complexity of Xm , given m, and relate it to H (X ) by
the result below.

Corollary 12.51 (Lower bound for complexity) Let Xm = (X1, . . . , Xm), where the Xk

are iid copies of the random variable X. The expected value of complexity satisfies

E[K (Xm |m)] ≥ mH (X ). (12.41)

Proof We apply Theorem 12.50 to the random variable Xm . Since the Xk are independent
copies of X, the new pdf is f (xm) = �p(xi ) (1 ≤ i ≤ m). We define a source code for Xm

by xm → a shortest program for xm . This code is prefix-free because, as earlier observed,
the halting property of a prefix program prevents a larger one being completed. We have
thus

E[K (Xm |m)] ≥ H (Xm) = −
∑
xm

p(x1) · · · p(xm) log[p(x1) · · · p(xm)]

= −
∑
xm

p(x1) · · · p(xm)[log p(x1) + · · · + log p(xm)]

= −
∑
xm

p(x1) · · · p(xm) log p(x1) + · · · terms for p(x2) · · · p(xm)

= −
∑

x2,..., xm

p(x2) · · · p(xm)
∑

x1

p(x1) log p(x1) + · · ·

= −
∑

x1

p(x1) log p(x1) + · · · since
∑

xk

p(xk) = 1

= H (X1) + · · · + H (Xm)

= mH (X ) since the Xk are iid copies of X.

An upper bound for K Our final task is to sandwich complexity between two bounds,
of which we have just derived the lower. Then, letting m tend to infinity, we shall deduce
a sense in which complexity is close to entropy in the long run. We start with a useful
lemma.

Lemma 12.52 For any base of logarithms, and integers 0 ≤ k ≤ m with m > 0, there
holds

log

(
m
k

)
≤ mH (k/m) (12.42)

Proof Writing the binomial coefficient as mCk we have for 0 ≤ p ≤ 1 that 1 =
[p + (1 − p)]m ≥ mCk pk(1 − p)m−k , the typical term of the binomial expansion. Taking
logs with respect to any fixed base gives, on setting p = k/m:

0 ≥ log

(
m
k

)
+ k log p + (m − k) log(1 − p) = log

(
m
k

)
− mH (k/m).
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Exercise Check the last equality above.

Theorem 12.53 Let Xm = (X1, . . . , Xm), where the Xk are iid copies of the random
variable X with range A. The expected value of complexity satisfies

E[K (Xm |m)] ≤ mH (X ) + |A| log m + c. (12.43)

Proof in the caseA = {0, 1} Suppose we seek a program to output a specific m-bit binary
sequence xm = x1 . . . xm with exactly k 1s. We shall input m, k and i, where our desired
string comes ith in a lexicographic list of m-bit words with k ones. The length of this
program, which includes the instructions for generating the list, will be an upper bound
for K (xm |m). We bound from above the number of bits required to specify m, k and i,
taken in order.

1. Specify m This is free because we are handling the conditional K (Xm |m).
2. Specify k Since 0 ≤ k ≤ m, Example 12.44 shows that 2 log m + 4 bits suffice.
3. Specify i The number of m-bit words with k 1s is the number of ways to choose k objects from

m objects, namely the binomial coefficient of Lemma 12.52, whose log2 therefore does not
exceed mH (k/m). Hence we have, for some constant c,

K (Xm |m) ≤ mH(k/m) + 2 log m + c. (12.44)

Since the range of X is {0, 1}, we have k = x1 + · · · + xm and H (X ) = H (p), where
p = E(X ), whence

E[K (Xm |m)] ≤ mE
[

H
(

1/m
∑

Xi

)]
+ 2 log m + c

≤ mH
[
1/m

∑
E(Xi )

]
+ 2 log m + c

by Jensen’s Inequality (Theorem 9.84), since H is concave

= mH [1/m × mE(X )] + 2 log m + c

= mH (X ) + 2 log m + c, giving the required inequality (12.43).

Now we are able to combine Corollary 12.51 and Theorem 12.53 into a 2-sided inquality
in which the last term tends to 0 as m tends to infinity, giving the main result of this
section, Theorem 12.54, on the connection between Kolmogorov complexity and entropy
for sufficiently long sequences. We have:

H (X ) ≤ E

[
1

m
K (Xm |m)

]
≤ H (X ) + (|A| log m + c)/m. (12.45)

Theorem 12.54 Let X1, X2, . . . be iid copies of the random variable X. Then, as
m →∞,

E

[
1

m
K (X1,· · · , Xm |m)

]
→ H (X ). (12.46)

Proof Let m →∞ in (12.45).
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History and related ideas Several authors arrived at a similar definition to Kolmogorov
at about the same time, particularly Solomonov (1964) and Chaitin (1996). Here are some
further developments.

1. MML or Minimum Message Length was introduced by Wallace and Boulton (1968): a mea-
sure of the goodness of ‘a classification based on information theory’. Unlike Kolmogorov
complexity, it is not a probability-free approach.

2. Chaitin (1975), working with the idea of program length as entropy plus an error term, achieved
some success in his search for definitions which would lead to at least close approximations
to the powerful formal results of information theory (such as are explored in Chapter 13).

3. Rissanen (1978) expounded the use of Minimum Description Length (MDL), without pdfs, as
a principle (see next section).

4. Vitanyi and Li (2000) defined ideal MDL, using Bayes’ Rule plus more-recent deep results on
a probability theory of individual objects.

12.8.3 The MDL Principle

Somewhat in the spirit of Kolmogorov complexity, Rissanen (1978) sugested that prin-
ciples such as least squares, maximum likelihood and maximum a posteriori (MAP)
estimates might be facets of a wider principle, namely one of Minimum Description
Length (MDL). Let us consider this in the vision context. We are given certain data, say
the colour values of a pixel array, and wish to determine the best model of the situation.
This presupposes of course that we have certain allowable models in mind.

An example would be the segmentations of the image, that is, all divisions of the
image into significant regions and their boundaries. This is illustrated in Figure 12.24.
Choosing the ‘best’ segmentation is an important step toward higher level interpretation
of an image, such as recognising a medical condition, a face, a tank, and so on.

An MDL approach might proceed thus. Let the allowable models be M1, . . . , MN .
Suppose we have a language in which model Mi receives a description Lm(Mi ), and a
further language which describes the actual data D relative to the model, say as Lc(D|Mi ).
If the bit length of a description is denoted by | . . . |, then the model selected by the MDL

Figure 12.24 An image before and after segmentation.
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Principle is that which minimises the total number of bits used,

|Lm(Mi )| + |Lc(D|Mi )|. (12.47)

Notice that, whatever demands this evaluation makes upon us, it does not require the
input of any probability density. Such a feature offers new options in problem-solving
which we’ll shortly illustrate. However, this is the place to bring out the connection
with MAP. There is a shortcut if certain models can be allocated probabilities. Suppose,
in a message or symbol sequence of length N, the symbol e occurs with frequency fe.
Shannon’s Coding Theorem (Theorem 12.8) implies that in any encoding the number of
bits corresponding to symbol e is at least fe log( fe/N ), or log( fe/N ) for each occurrence.

We know this limit can be approached arbitrarily closely with, e.g., arithmetic codes, as
messages lengthen (Theorem 12.35). On such grounds it is argued that when probabilities
pe are given in part of a problem we replace actual lengths in (12.47) by these theoretical
minima, even though they may not be integral. This appears to be a small extension of
Rissanen’s original principle, but a reasonable one. For further discussion, see the survey
of Barron, Rissanen and Yu (1998) and/or Rissanen (1983). In the extreme case that
everything has an associated probability, we may write

|Lc(D|Mi )| = − log P(D|Mi ), |Lm(Mi )| = − log P(Mi ), (12.48)

so if such probabilities exist then we are by (12.47) minimising − log[P(D|Mi ) ×
P(Mi )], or equivalently maximising P(D|Mi )P(Mi ). But by Bayes’ Theorem this is
a constant multiple of P(Mi |D), and we are back to the MAP estimate (see Chapter 11).
For comments on least squares and other connections, see Bishop (1995). Here is a short
list of MDL features.

Some MDL features

1. No probabilities or pdfs need be assumed or given.
2. Prior knowledge may be built into the descriptive language used.
3. Over-fitting is penalised, for extra parameters lengthen a description.
4. The MDL Principle may be used in part of a wider problem in which probabilities are invoked.

See Examples 12.55, 12.56 and references thereafter.

Example 12.55 (Segmentation) See Figure 12.24. This example is due to Leclerc (1989),
at the start of a wider investigation into MDL and image partitioning. Let N image pixels
form an m × n array, with labels i ∈ I = {1, 2, . . . , N }. Let u denote the underlying
image intensity, with constant value u(xi , yi ) = ui over the ith pixel area. We regard u
as a vector (ui ). The measured image, the data, is a corresponding vector z = (zi ), the
result of a vector r = (ri ) of white noise being added to the original. That is, z = u + r .
The MDL approach is then: given z, together with a language Lu to describe u, and a
language Lr to describe the noise according to its assumed type, we estimate u as that
vector u∗ which minimises

|Lu(u)| + |Lr (z − u)|. (12.49)



12.8 Entropy and Minimum Description Length (MDL) 439

1 2 3 4 5

6 7 8 9 10

11

16 17 18 19 20

12 13 14 15

Figure 12.25 A 4 × 5 image u, with pixels numbered 1 to 20. One region is shown with
its boundary line segments bold. Neighbour pixels of different intensity, such as those
numbered 8 and 9, imply a bounding segment between them.

The language Lu By hypothesis u consists of regions of constant intensity, with bounding
segments, necessarily horizontal or vertical, lying between neighbour pixels of differing
intensity. In this 4-neighbour system, let Ni be the set of neighbours of pixel i. Then
Figure 12.25 implies N8 = {3, 9, 13, 7} and the neighbours 3, 9 of 8 define respectively
a horizontal and a vertical edge segment.

Thus the number of bits required to describe a region is proportional to the number of
segments it contains, plus a constant for specifying the intensity. The bits for the whole
image are proportional to the total length of boundaries plus the number of regions.
To express this in terms of intensity values, consider the Kronecker delta, given by
δ(ui , u j ) = 1 if ui = u j , otherwise δ = 0. The number of boundary segments around
pixel i may be written

∑
j∈Ni

[1 − δ(ui , u j )]. (12.50)

In Figure 12.25 with i = 8, this quantity equals 2. Since each bounding segment is
contributed from two pixels (neglecting the image perimeter), the total bits required to
describe u may be written approximately as

|Lu| = b

2

∑
i∈I

∑
j∈Ni

[1 − δ(ui , u j )], (12.51)

where b equals (no. of bits required to encode each segment in a boundary sequence)
plus (no. of bits to encode constant intensity)/(mean region boundary length).

The language Lr of noise Here we use estimated probabilities, and (12.48) allows us to
assume a language Lr for which |Lr (r )| = − log P(r ). We suppose intensity values are
kept to precision q, so that k-bit accuracy means q = 2−k . By assumption the noise occurs
independently at each pixel, normally distributed, with common variance σ 2, quantised
to the nearest q, as indicated in Figure 12.26. Thus, with the standard normal distribution,
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si si+1
ri

q

Figure 12.26 Quantising Gaussian noise ri to the nearest q.

φ(z) = (2π )−1/2e−z2/2, we take

p(ri ) =
∫ si+1

si

(1/σ )φ(x/σ )dx = (q/σ )φ(ri/σ ). (12.52)

We shall need the log of this, for which the base change formula (12.8) gives, with
ln denoting logarithm to base e, the relation log(ey) = ln(ey)/ ln(2) = y/ ln(2). Hence
− log p(ri ) = a(ri/σ )2 + c, where a = 1/ ln(2), and c = log(σ

√
2π/q). It follows that

the least number of bits needed to describe the noise r = (ri )1≤i≤N is, by (12.48),

|Lr (r )| = − log p(r ) = − log �i p(ri ) = −
∑

i
log p(ri ) = a

∑
i
(ri/σ )2 + Nc.

Total bits Invoking also (12.51), and recalling that ri = zi − ui , the total bits are |Lu(u)| +
|Lr (r )| = L(u) + Nc, where the term Nc is constant and we are to minimise

L(u) = b

2

∑
i∈I

∑
j∈Ni

[1 − δ(ui , u j )] + a
∑
i∈I

(
zi − ui

σ

)2

. (12.53)

Now, the value of the second term, in which the pair ui , u j are always neighbouring
intensities, depends only on the way in which u is characterised by regions {Rt} of
respective constant intensity ut , with of course

⋃
t Rt = I . Indeed, if ∂(Rt ) denotes

boundary length, we may write

L(u) = a
∑

t

∑
i∈Rt

(
zi − ut

σ

)2

+ b
∑

t

∂(Rt ). (12.54)

Thus, for a given set of regions, the second term is constant and the first is a sum of
quadratics ft (ut ) = (1/s2)

∑
i (zi − ut )2, which minimise independently at 0 = d ft/dut ,

and hence at ut = (
∑

i zi )/(
∑

i 1), where i runs through Rt . This says that the intensity
across a region is the mean of the measured intensity across that region, in agreement
with the white noise model we adopted.

Finding the global minimum To complete the solution of this MDL problem we must
minimise L(u) over all 2N possible images of size m × n = N . Straightforward eval-
uation is not feasible; for example an 800 × 600 image has 2480 000 such possibilities.
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Descent based optimisation fails because L(u) has many local minima arising from the
Kronecker delta.

The complexity is even too great for simulated annealing (see Chapter 11). Leclerc
proposes a continuation method, in which L(u) is case s = 0 of a family L(u, s) for
which there exists a single computable minimum for sufficiently large s. Specifically,
δ(ui , u j ) is replaced by

ei j (u, s) = exp[−(ui − u j )
2/(sσ )2], (12.55)

so that ei j (u, s) → δ(ui − u j ) and L(u, s) → L(u), as s → 0. One can track back to the
desired minimum of L(u); for further details, see Leclerc (1989).

Example 12.56 (Video tracking – Smith, Drummond & Cipolla, 2000) The problem here
is: given a digital video sequence, how may we automatically identify the moving objects
and track them from frame to frame? A sample frame is shown in Figure 12.27.

a b

Figure 12.27 Scene of a moving car and van. Initialisation of the tracking algorithm is
best, according to the MDL Principle, if a 3-motion model is used (see Table 12.8).

A frame is segmented into regions of similar colour and intensity (likely to have the
same motion). In the authors’ approach the progress of region edges alone is observed
from one frame to the next, and an iterative procedure is used to determine the most
likely motions involved. The crucial initialisation step is decided via MDL. Given the
first two frames, the bits are expended as follows.

1. Motions A motion is defined by the six constants of an affine transformation[
x
y

]
→

[
a b
c d

] [
x
y

]
+
[

e
f

]

which includes rotation, reflection, translation, scaling and shear (see Chapter 16, Figure 16.10).
With 10-bit accuracy and nm distinct motions, this takes 60nm bits.

2. Edges With ne edges, each labelled by that one of the nm motions to which it belongs, we
require ne log nm bits.

3. Edge residuals The authors have a system of assigning a probability Le to the observed move-
ment of an edge e, given the assumed motion. The total bit cost here is

∑
e log Le, by (12.48).

The results are shown in Table 12.8. Since the 3-motion total uses the fewest bits, this
is the correct choice according to the MDL principle. Indeed, the authors report that it
worked well in practice.
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Table 12.8. Bit cost of initialisation for the car and van scene,
allowing cases of 1, 2 or 3 motions.

nm 1 2 3

motion 60 120 180
edges 0 322 510
residuals 3829 3362 2791

totals 3889 3804 3481

Further examples and applications of MDL

Denoising. Rissanen (2000).
Facet matching of automobiles. Maybank & Fraile (2000).
Feature extraction. Fua & Hansen (1991).
Generating segmentation break points. Lindeberg & Li (1997).
Motion tracking (differs from Example 12.56). Darrell & Pentland (1995).
Neural Networks. Zemel & Hinton (1995).
Object recognition. Pentland (1989).
Shape modelling. Davies et al. (2001), Thodberg & Olafsdottir (2003).
Survey. Barron, Risssanen and Yu (1998).
Wavelet thresholding. Hansen & Yu (2000).

Exercises 12

1
√

(i) Calculate H (1/2, 1/2) and H (1/2, 1/4, 1/4) exactly. (ii) Calculate the entropy of the
5-symbol source represented by Figure 12.4(b), in the form r + s

√
3 ( r, s rational).

(iii) Show that H (1/n, . . . , 1/n) = log n. (iv) Prove that loga b = 1/ logb a, from the
definition of log.

2
√

Construct a codetree for the PF code 11, 10, 011, 000, 010, 001. Does it agree with Theorem
12.11?

3
√

Construct a Huffman codetree for the probabilities (1, 10, 10, 10, 15, 16, 19, 19)/100. List
the codewords and verify they form a PF code. Write down a sibling ordering.

4
√

A Huffman code has 2, 5, 1 codewords of respective lengths 4, 3, 2. Construct the corre-
sponding canonical version.

5
√

Taking relative frequencies for probabilities, Huffman encode COME TO THE CEILIDH
HEIDI (don’t ignore spaces).

6
√

Calculate the redundancy in Exercise 12.5. Is it near the bounds of Theorem 12.21 or Remark
12.27?

7 Implement ALGOs 12.1 and 12.2 for arithmetic codes. Adapt them to deal with messages
of arbitrary length. How close can you get to zero redundancy in an example?

8 Carry out the first line of the proof of Theorem 12.35 by using Stirling’s Formula.
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9
√

Determine p(σ ) and the contextual probability p(σ |x1) for each of the last four symbols of
ABRACADABRA. Hence estimate the bits saved by using PPM in an arithmetic coding of
these four.

10 Implement LZW compression via ALGOs 12.3 and 12.4. Test on ABRACADABRA, then
on Example 12.40 or part thereof.

11
√

(i) Show that the distance d(p‖q) between pdfs p, q with the same range satisfies d(p‖p) =
0. (ii) Let the discrete pdfs p = {a, 1 − a} and q = {b, 1 − b} have range {1, 2}. Find
an expression for d(p‖q). (iii) Show that a = 1/2, b = 1/4 give an example for which
d(p‖q) �= d(q‖p), (a) by evaluating these approximately, (b) by showing that their equality
implies log 3 = 8/5.

12
√

For each n-tuple below, determine whether it can be the sequence of word lengths of
a PF code. For those which can, construct such a code. (i) (1, 1), (ii) (1, 2, 2), (iii)
(1, 2, 2, 3), (iv) (2, 2, 3, 3, 3, 3), (v) 2, 2, 3, 3, 3, 4), (vi) 2, 2, 3, 3, 4, 4, 4). Pick out
by inspection (say how) one that cannot be optimal.



13

Information and error correction

In the previous chapter we introduced Shannon’s concept of the amount of information
(entropy) conveyed by an unknown symbol as being the degree of our uncertainty about
it. This was applied to encoding a message, or sequence of symbols, in the minimum
number of bits, including image compression. The theory was ‘noiseless’ in that no
account was taken of loss through distortion as information is conveyed from one site to
another. Now we consider some ways in which information theory handles the problem
of distortion, and its solution. (For the historical development, see Slepian, 1974, Sloane
and Wyner, 1993, or Verdú and McLaughlin, 2000.)

Physically, the journey can be anything from microns along a computer ‘bus’, to
kilometres through our planet’s atmosphere, to a link across the Universe reaching a space
probe or distant galaxy. In Shannon’s model of a communication system, Figure 12.1,
we think of the symbols reaching their destination via a ‘channel’, which mathematically
is a distribution of conditional probabilities for what is received, given what was sent.

The model incorporates our assumptions about ‘noise’, which could be due to equip-
ment which is faulty or used outside its specifications, atmospheric conditions, interfer-
ence from other messages, and so on. Some possibilities are shown in Table 13.1.

We prove Shannon’s (‘noisy’) Channel Coding Theorem, then review progress in
finding practical error-correcting codes that approach the possibilites predicted by that
theorem for successful transmission in the face of corruption by a noisy channel. Besides
algebraic methods we consider probabilistic decoding, which invokes as much evidence
as possible concerning the original message, applied to convolutional codes and the new
turbocodes. For this we derive the Forward–Backward message-passing algorithm for
belief propagation in Bayesian networks.

13.1 Channel capacity

Shannon showed that every channel has a capacity, a maximum rate of reliable in-
formation transmission, given that we are willing to use sufficiently long codewords.
Furthermore, the capacity exists as a function of the cost of using such codewords. Cost
may be measured in, for example, bandwidth (see Chapter 14), power or finance.

444
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Table 13.1. Some channels and sources of error in traversing them.

channel some sources of distortion

cable attenuation (power fall-off with distance)
telephone thermal noise
fibre-optic self-interference (between adjacent symbols)
shielded cable-TV wire multi-user interference

radio (& TV) atmospheric conditions
indoor general electro-magnetic interference
terrestrial interference from other transmissions
deep space buildings, mountains, . . .

deliberate ‘jamming’

optical disk defect in medium
scratching
read/write head problems

RAM / ROM shorted or broken bus lines
arrival of atomic particles
power surge

1

0 3/4

1/4

2/3

1/3

1

0

Source

Transition graph Transition matrix

1/2

1/2

Q = 3/4 1/4
2/31/3

⎡
⎣ ⎢ 

⎤
⎦ ⎥ .

Figure 13.1 Transition graph and matrix for Example 13.2.

13.1.1 The Discrete Memoryless Channel

Definitions 13.1 An (X, Y ) channel is a pair of random variables X, Y possessing a
conditional pdf p(y|x) = P(Y = y | X = x). Then X, Y have a joint pdf given by
p(x, y) = p(x)p(y|x), and when p(x) > 0 a joint pdf determines the conditional by
p(y|x) = p(x, y)/p(x). In this channel context we call X the input variable and Y the
output, and their ranges RX , RY are the corresponding alphabet, sometimes denoted by
AX ,AY . For now we assume the channel is discrete, meaning that the alphabets are actu-
ally finite, say |RX | = r, |RY | = s, and memoryless – the values p(y|x) do not depend on
the outcomes of previous trials (see (13.10) later). The result is the Discrete Memoryless
Channel, or DMC.

We may conveniently exhibit the transition probabilities p(y|x) in an r × s transition
matrix Q = [p(y|x)], with rows indexed by RX and columns by RY . This is exempli-
fied in Figure 13.1 along with an equivalent transition graph defined by edges x → y,
each labelled with the corresponding value of p(y|x). We will sometimes append edges
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S → x (S for ‘Source’) labelled with the probability P(X = x). All arrowheads are op-
tional when the understood direction is from left to right.

Example 13.2 Let (X, Y ) be a channel with alphabets {0, 1}, both symbols equally
likely to be sent, and transition graph/matrix as shown in Figure 13.1. We determine the
probability of a successful transmission, i.e. that the intended symbol is received:

P(X = 0, Y = 0) + P(X = 1, Y = 1)

= P(X = 0)P(Y = 0|X = 0) + P(X = 1)P(Y = 1|X = 1)

= (1/2)(3/4) + (1/2)(2/3) = 17/24.

Notice that we can simply read off the required probabilities from the graph, following
the paths that together give us the required condition.

13.1.2 Entropies of a pair

Recalling from (12.7) that the entropy of X may be written H (X ) = E[log 1/p(x)], we
define related and exceedingly useful analogues for the random pair (X, Y ).

H (X, Y ) = E

[
log

1

p(x, y)

]
, the joint entropy of X, Y,

H (X |Y ) = E

[
log

1

p(x |y)

]
, the conditional entropy of X, given Y. (13.1)

Notice that H (X, Y ) is symmetrical in X, Y from its definition, whereas H (Y |X ) is by
implication defined via the values p(y|x) and is not in general equal to H (X |Y ). At this
point we should note for much future use the connections (see Section 10.1.3):

p(x |y)

p(x)
= p(x, y)

p(x)p(y)
= p(y|x)

p(y)
. (13.2)

This gives facility with our third and most important definition here, of a quantity upon
which will be based the concept and properties of channel capacity:

I (X ; Y ) = E

[
log

p(x, y)

p(x)p(y)

]
, the mutual entropy of X, Y. (13.3)

Again, symmetry in X, Y is clear from the definition which, like the previous two, may be
re-expressed in several ways using (13.2). However, the following, less obvious, result
points to an interpretation which suggests the relevance of mutual entropy.

Theorem 13.3 (i) Mutual entropy satisfies I (X ; Y ) = H (X ) − H (X |Y ), (ii) joint entropy
satisfies H (X, Y ) = H (X ) + H (Y ) − I (X ; Y ).
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H(X, Y ): H(X |Y ) H(Y |X )I(X; Y )

H(X ) H(Y )

Figure 13.2 Set theory analogue to relations between the various entropies.

Proof (i) Since p(x) =∑
y p(x, y) (marginal distribution) we have

H (X ) − H (X |Y )

=
∑

x
p(x) log

1

p(x)
−
∑

x,y
p(x, y) log

1

p(x |y)
by definition

=
∑

x,y

(
p(x, y) log

1

p(x)
− p(x, y) log

1

p(x |y)

)
p(x) =

∑
y

p(x, y)

=
∑

x,y
p(x, y) log

p(x |y)

p(x)
since log a − log b = log(a/b)

= I (X ; Y ) by definition, using (13.2).

For (ii),

H (X, Y ) = E

[
log

1

p(x, y)

]
by definition

= E

[
log

1

p(x)
+ log

1

p(y)
− log

p(x, y)

p(x)p(y)

]
= H (X ) + H (Y ) − I (X ; Y ) by linearity of E .

Remarks 13.4 (1) Figure 13.2 portrays an analogue of parts (i) and (ii) with relations
of set theory. It may be considered either as an insight or as an aidemémoire! Note the
special case H (X, X ) = H (X ) = I (X ; X ).
(2) Part (i) offers two viewpoints:

I (X ; Y ) = H (X ) − H (X |Y )

= amount of information sent minus uncertainty in what was sent

(Y being received);

I (X ; Y ) = H (Y ) − H (Y |X ) by symmetry

= amount of information received minus the part due to noise.

The conclusion is that I (X ; Y ) represents the ‘reduction in uncertainty’, or ‘true’ amount
of information the channel carries from X to Y. In the next section we consider sequences
of transmissions and will be able to define the channel’s capacity as the maximum mean
rate at which information can possibly be transferred, given the channel characteristics
defined by the transition matrix Q. But first we must know a little more about the behaviour
of a single transmission, and develop some techniques for calculation.
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1

0 4/5

1/5

3/4

1/4

1

0

Source

1/2

1/2

Q =
4/5 1/5

1/4 3/4
⎡ 
⎣ ⎢ 

⎤  
⎦ ⎥ .

Figure 13.3 Transition matrix and graph for Example 13.5.

Exercise Prove that H (X, X ) = H (X ) = I (X ; X ). (Hint: P(X = x, X = x) =
P(X = x).)

Example 13.5 Calculate H (Y ) and I (X ; Y ) for the channel with probabilities given in
Figure 13.3.

Solution Following the appropriate paths in Figure 13.3, we obtain for Y that p(0) =
(1/2)(4/5) + (1/2)(1/4) = 21/40, and hence the distribution has entropy H (Y ) =
H (21/40) = 0.998. To two decimal places this equals 1, corresponding to choosing the
output by the toss of a fair coin, so is information really carried? According to Remarks
13.4 the mutual information I gives an answer. It is easiest to compute as H (Y ) − H (Y |X )
because the given probabilities are of the form p(y|x). We obtain

H (Y |X ) =
∑

x,y
p(x, y) log

1

p(y|x)
by definition

=
∑

x,y
p(x)p(y|x) log

1

p(y|x)
substituting for p(x, y)

= 1
2

∑
x,y

p(y|x) log
1

p(y|x)
since p(x) = 1/2 always

= 1
2

(
4
5 log 5

4 + 1
5 log 5 + 1

4 log 4 + 3
4 log 4

3

)
using Q

= 1
2

[
H
(

1
5

)+ H
(

1
4

)]
by definition of H(x)

= 0.77, using Table 13.2.

Table 13.2. Values of H (x) (two decimal places).

k 2 3 4 5 6 7 8 9 10
H(1/k) 1 0.92 0.81 0.72 0.65 0.59 0.54 0.50 0.47

Finally, the information passed, as measured by I, is I (X ; Y ) = H (Y ) − H (Y |X ) = 0.23
bits, which is more reassuring. Reviewing this calculation, we ask if such might be
performed more automatically, without writing out definitions, and the answer is YES:
we are led to the matrix formulation below.

Notation 13.6 (Matrix method) In the usual manner, write Q = [qxy] =
Rows(Rx ) (x εRX ), and let [p(y)] denote the row vector with yth entry p(y). Similarly
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for [p(x)]. Then
[p(y)] = [p(x)]Q, (13.4)

H (Y |X ) =
∑

x
p(x)H (Rx ). (13.5)

To see this, notice that the first equality is another way of saying p(y) =∑
x p(x)p(y|x).

In the second case, since p(x) is constant as we sum over y, we obtain the second equality
in

H (Y |X ) =
∑

xy
p(x, y) log

1

p(y|x)
=
∑

x
p(x)

∑
y

p(y|x) log
1

p(y|x)
, (13.6)

and hence the result, since H (Rx ) has the form
∑

p log(1/p), where p runs through the
elements p(y|x) of row Rx as y varies.

Example 13.7 We re-solve Example 13.5 using the new formula.

H (Y |X ) =
∑

x
p(x)H (Rx ) by (13.5)

= 1
2 H

(
4
5 ,

1
5

)+ 1
2 H

(
1
4 ,

3
4

)
from the expression for Q

= 1
2

[
H
(

1
5

)+ H
(

1
4

)]
since H (p, 1 − p) = H (p).

Example 13.8 (The binary erasure channel) In a situation where it is especially important
not to get the wrong digit, there may be an arrangement for doubtful cases to be recorded
as an erasure symbol, here represented by a question mark. We need a fixed order for the
three output symbols, so let us take RY = {0, 1, ?}, along with RX = {0, 1}. See Figure
13.4.

Problem Suppose digits 0, 1 are sent with probabilities 1/3, 2/3, each still decipherable
with probability p when output. Draw a transition graph and matrix, and show that
H (Y |X ) = H (p), I (X ; Y ) = pH(1/3).

H (Y |X ) =
∑

x
p(x)H (Rx ) by (13.5)

= 1
3 H (p, 0, q) + 2

3 H (0, p, q) using Q

= 1
3 H (p) + 2

3 H (p) since H (p, q, 0) = H (p, q) = H (p)

= H (p).

1

0 p

q

p

q

1

0

Source

1/3

2/3

?    Q =
p 0 q

0 p
 ⎤

⎦ ⎥ 
⎤
⎦ ⎥ q

Figure 13.4 Transition graph and matrix for Example 13.8, where q = 1 − p.
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We have by (13.4) that [p(y)] = [p(x)]Q = [1/3 2/3]Q = [p/3 2p/3 q], whence

I (X ; Y ) = H (Y ) − H (Y |X ) = H (p/3, 2p/3, q) − H (p)

= − p

3
log

p

3
− 2p

3
log

2p

3
− q log q + p log p + q log q

= p

[
−1

3
log

p

3
− 2

3
log

2p

3
+ log p

]
(log(ap) = log a + log p)

= p

[
−1

3
log p − 1

3
log

1

3
− 2

3
log p − 2

3
log

2

3
+ log p

]
= pH(1/3), after cancellations.

Note: the above result holds with 1/3 replaced by an arbitrary probability a.

Example 13.9 Suppose the input and output alphabets of an (X, Y ) channel have size
r, with p(y|x) = α if x = y, otherwise p(y|x) = β. Show that H (Rx ) = H (α) + (1 −
α) log(r − 1) for each row Rx of the transition matrix.

Solution Each row of Q has one entry α and r − 1 βs, with first row, say, R1 =
[α β β · · · β], so

H (R1) = −α log α − (r − 1)β log β

= −α log α − (1 − α) log
1 − α

r − 1
from α + (r − 1)β = 1

= −α log α − (1 − α)[log(1 − α) − log(r − 1)]

= H (α) + (1 − α) log(r − 1) by definition of H (α).

Exercise Deduce the value of H (Y |X ) for Example 13.9.

13.1.3 Three properties of mutual entropy

An independence test An important test for independence of random variables X,
Y is whether their covariance is zero: we have the implications X, Y independent
⇒ Cov(X, Y ) = 0 (Remarks 10.50). Some, but not all, instances of dependence re-
sult in Cov(X, Y ) �= 0. For example, if the correlation coefficient ρ = Cov(X, Y )/σXσY

equals 1, which it cannot exceed, then Y = aX + b for constants a, b. But, as exhibited
in Example 13.11 below (see also Table 10.7), other forms of dependence may not result
in Cov(X, Y ) �= 0. On the other hand, I (X ; Y ) detects every kind of dependence, as we
see next. We remark that Jensen’s Inequality, Theorem 9.84, will be used routinely here
and throughout Section 13.1.

Theorem 13.10 If (X, Y ) is a channel then I (X, Y ) ≥ 0, with equality if and only if X,
Y are independent.
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Proof We have −I (X ; Y ) = E

[
log

p(x)p(y)

p(x, y)

]
by (13.3) (note the minus sign)

≤ log E

[
p(x)p(y)

p(x, y)

]
by Jensen’s Inequality (log is concave)

= log
∑

x,y
p(x)p(y) ‘cancelling’ two factors p(x, y)

= log
[∑

x
p(x)

∑
y

p(y)
]

= log(1) = 0 since
∑

p(x) = 1 =
∑

p(y).

Hence I ≥ 0. But Jensen tells us more: because the concavity of log is strict, equality
in place of ≤ holds if and only if p(x)p(y)/p(x, y) is a constant, say λ. But then
we have 1 =∑

x,y p(x)p(y) = λ
∑

x,y p(x, y) = λ (since p(x, y) is a pdf). Thus
p(x, y) = p(x)(y); in other words equality holds if and only if X, Y are independent.

Example 13.11 (Counterexample: I detecting dependency where covariance fails to
do so) Let an (X, Y ) channel satisfy Y = X2, where RX = {0, 1,−1}, RY = {0, 1} and
p(x) = 1/3 for each x. We show that Cov(X, Y ) = 0 but I (X ; Y ) �= 0. See Figure 13.5.

0

X XY

0

1

1 1

−1

0

1

−1

1

1

1

Y

Q =
1
0
0

⎡

⎣ 

⎢ 
⎢ 

⎡

⎣ 

⎢ 
⎢ 

0
1 .
1

Figure 13.5 Transition graph and matrix for Example 13.11.

Covariance We have E(X ) =∑
xp(x) = (0 + 1 − 1)(1/3) = 0, and E(XY ) =

E(X3)
∑

x x3 p(x, y) = 0(1/3) + 1(1/3) + (−1)(1/3) = 0. So Cov(X, Y ) = E(XY ) −
E(X )E(Y ) (Theorem 10.49) = 0.

Entropy Using (13.4), [p(y)] = [p(x)]Q = (1/3)[1 1 1]Q = (1/3)[1 2], so H (Y ) =
H (1/3). By (13.5) we have H (Y |X ) =∑

x p(x)H (Rx ) = (1/3)[H (1) + H (1) +
H (1)] = 0. Finally, I (X ; Y ) = H (Y ) − H (Y |X ) = H (1/3) �= 0. Hence, by Theorem
13.10, variables X, Y are not independent.

Concavity/convexity of I Reviewing its definition, the mutual entropy I (X ; Y ) varies
both with input probabilities p(x) and with transition probabilities p(y|x). It depends
on each type in a special but different way, described by the concepts of concave and
convex, as revealed in the next two results, where we spell out the meanings for I (X ; Y )
explicitly.

Theorem 13.12 I (X ; Y ) is concave in the input probabilities: suppose that, for i = 1, 2,
(a) (Xi ; Yi ) are random variables with the same alphabets and transition probabili-
ties as (X, Y ), (b) Xi has probability distribution pi (x), (c)p(x) = αp1(x) + βp2(x) for
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constants α, β ≥ 0. Then

I (X ; Y ) ≥ α I (X1; Y1) + β I (X2; Y2). (13.7)

Proof We observe firstly that, with pi (x, y) as joint distribution of (Xi ; Yi ), the dis-
tribution of Yi is pi (y) = pi (x, y)/p(x |y), and further we may by condition (c) write
p(x, y) = p(x)p(y|x) = αp1(x)p(y|x) + βp2(x)p(y|x). Then the right side minus the
left in (13.7), which we must show to be non-positive, is equal to∑

x,y
αp1(x, y) log

p(y|x)

p1(y)
+
∑

x,y
βp2(x, y) log

p(y|x)

p2(y)

−
∑

x,y
[αp1(x, y) + βp2(x, y)] log

p(y|x)

p(y)
by (13.2)

= α
∑

x,y
p1(x, y) log

p(y)

p1(y)
+β

∑
x,y

p2(x, y) log
p(y)

p2(y)
,after cancelling p(y|x).

This has the form αL1 + βL2, and is non-positive because by Jensen’s Inequality

L1 ≤ log
∑

x,y
p1(x, y)

p(y)

p1(y)
= log

∑
x,y

p(x |y)p(y) = log
∑

x,y
p(x, y)

= log 1 = 0,

and similarly for L2.

Theorem 13.13 I (X ; Y ) is convex in the transition probabilities: suppose that, for i =
1, 2, (a) Yi is a random variable with the same alphabet and input probabilities as Y, (b)
(X, Yi ) has transition probabilities pi (y|x), and (c)p(y|x) = αp1(y|x) + βp2(y|x) for
constants α, β ≥ 0. Then

I (X ; Y ) ≤ α I (X ; Y1) + β I (X ; Y2). (13.8)

Proof Analogously to above we let pi (x, y) denote the joint distribution of
(X, Yi ), so that the corresponding distributions of X given Yi may be written
pi (x |y) = pi (x, y)/p(y), and furthermore, by condition (c), p(x, y) = p(x)p(y|x)
= αp(x)p1(y|x) + βp(x)p2(y|x) = αp1(x, y) + βp2(x, y). Then the left side minus the
right in (13.8), which we must prove non-positive, is equal to∑

x,y
[αp1(x, y) + βp2(x, y)] log

p(x |y)

p(x)

−α
∑

x,y
p1(x, y) log

p1(x |y)

p(x)
− β

∑
x,y

p2(x, y) log
p2(x |y)

p(x)
by (13.2)

= α
∑

x,y
p1(x, y) log

p(x |y)

p1(x |y)
+β

∑
x,y

p2(x, y) log
p(x |y)

p2(x |y)
,after cancelling p(x).

This has the form αM1 + βM2, and is non-positive because by Jensen’s Inequality

M1 ≤ log
∑

x,y
p1(x, y)

p(x |y)

p1(x |y)
= log

∑
x,y

p(y)p(x |y)

= log
∑

x,y
p(x, y) = log 1 = 0,

and similarly for M2.
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13.1.4 Random vectors

We have introduced the idea of a symbol transmitted across a potentially noisy channel
being a random variable X and arriving at its destination as a random variable Y. Pro-
vided the effect of the channel may be modelled by an array of transition probabilities
p(y|x), these define a certain quantity I (X ; Y ), which we put forward as a measure of the
information that has been successfully carried across the channel. We also label X and Y
as respectively input (or source) and output, and name I (X ; Y ) the mutual information
of X, Y.

The next step is to consider a sequence of input symbols X1, . . . , Xd for some positive
integer d, and their corresponding outputs Y1, . . . , Yd . We take the viewpoint that our
input is now a random vector X = (X1, . . . , Xd), resulting in output random vector
Y = (Y1, . . . , Yd), and we consider the random pair (X, Y ). Because the earlier definitions
of I (X ; Y ), H (X ) and H (X, Y ) for d = 1 depend only on the pdfs p(x), p(y|x), and not
on X, Y being scalars, these definitions and resulting theorems carry over immediately
to the extended meaning of (X, Y ). In particular,

I (X ; Y ) = E log
p(x, y)

p(x)p(y)
= E log

p(y|x)

p(y)
= E log

p(x |y)

p(x)
, (13.9)

where expected values are given by E[ f (x, y)] =∑
x,y p(x, y) f (x, y) with x and y

ranging over all permitted d-vectors x = (x1, . . . , xd), y = (y1, . . . , yd). In this con-
text p(y|x) may be written as p(y1, . . . , yd |x1, . . . , xd). An illustration is given in
Figure 13.6.

Note 13.14 The following hold, both as stated and with the roles of x, y reversed.

(i)
∑

x

p(x1)p(x2) · · · p(xd ) =
∑

x1

p(x1) · · ·
∑

xd

p(xd ) = 1,

(ii)
∑

y

p(y1|x1) · · ·p(yd |xd ) = 1, for any fixed x = (x1, · · · , xd ).

Proof The first equality is a straightforward application of the laws of multiplication,
with the observation that

∑
xi

p(xi ) = 1 for each i (cf. Theorem 9.25). The second is
similar, with the latter equality replaced by

∑
yi

p(yi |xi ) = 1(xi fixed), which holds
because k(yi ) defined as p(yi |xi ) is a pdf. This is discussed in Section 10.1.3.

Examples 13.15 (Frequently used properties) Properties and arguments such as those
following will be used often and to good effect. The reader is advised to follow throught
the short examples below, in which we let {pi } be any probability distribution.

N1: log converts � to
∑

: log �pi =
∑

log pi .
N2: E commutes with

∑
:
∑

E[log pi ] = E[
∑

log pi ] (= E[log �pi ], by above) We may think
of
∑

jumping over E, then log, being converted to � by the latter.
N3: log A − log B = log A/B. We shall typically argue that E[log A

B ] − E[log A
C ] = E[log A

B −
log A

C ] = E[log C
B ] (A has vanished).
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N4: log(1) = 0. This is highly valuable when taken with
∑

pi = 1, for example: E[log
∑

pi ] =
E[log(1)] = E[0] = 0.

Definition 13.16 An (X, Y ) channel is memoryless if we may write

p(y|x) =
d∏

i=1
p(yi |xi ), (13.10)

where p(y|x) stands for p(y1, . . . , yd |x1, . . . , xd), or, in more detail, P(Y1 =
y1, . . . , Yd = xd |X = x1, . . . , Xd = xd). Of course, p(x) denotes simply p(x1, . . . , xd).
As a prelude to pairing two contrasting results on I (X ; Y ), we recall that X1, . . . , Xd are
called independent if

p(x) =
d∏

i=1
p(xi ). (13.11)

Example 13.17 Suppose a sequence X of three binary digits is transmitted, and received
as the sequence Y. We compute the transition matrix Q = [p(y|x)], assuming the (X, Y )
channel to be memoryless. The matrix is 8 × 8, with rows indexed by the triples x =
x1x2x3, which run through the 3-bit binary words 000, 001, . . . , 111. The columns are
indexed similarly by triples y = (y1, y2, y3). Thanks to the memoryless hypothesis we
need the p(y j |xi ) only in the case j = i , to complete our task. We shall take this to be a
simple matter of bit error probabilities, namely

p(y j |xi ) = p, if yi �= xi (error), (13.12)

implying that p(yi |xi ) = 1 − p if yi = xi . Thus, for example, if x = 101 and y = 110
then p(y|x) = (1 − p)p2 because x and y differ in exactly two places. This is where the
memoryless property (13.10) comes in. More generally, if triples x and y differ in exactly
w places then

p(y|x) = pw(1 − p)3−w. (13.13)

Q1 =

x \ y 000 001 010
000 (1 − p)3 p(1− p)2 p(1− p)2

001 p(1− p)2 (1− p)3

(1− p)3010 p(1− p)2

…… … … …
p2(1− p)

p2(1− p) p2(1− p)

p2(1− p)

…
…

…
…
…

111
p3

Figure 13.6 Transition matrix [p(y|x)] restricted to the first few rows and columns,
which are indexed by the eight binary triples 000, 001, 010, . . . , 111 in some fixed order,
say as binary integers. The latter ordering is adopted in Example 13.20 for computing
I (X, Y ).

Notice that w is the weight of the XOR (or Mod 2) combination x + y, where the weight
of a binary vector is the number of 1s amongst its digits, a pointer to important things
in the coding theorem to follow. In Figure 13.6 we illustrate the transition matrix Q1



13.1 Channel capacity 455

restricted to the first three rows and columns, corresponding to an ordering that begins
000, 001, 010.

Theorem 13.18 For an (X, Y ) channel we have

I (X ; Y ) ≤
∑

i
I (Xi ; Yi ), if (X, Y ) is memoryless, (13.14)

with the reverse inequality if X1, . . . , Xd are independent. Hence equality, if the memo-
ryless and independence conditions both hold.

Proof Let (X, Y ) satisfy the memoryless equality (13.10) for p(y|x). Guided by this we
choose from (13.9) the expression for I which involves p(y|x), and argue as follows. The
difference I (X ; Y ) −∑

I (Xi ; Yi ) is

E log
p(y|x)

p(y)
−
∑

i
E log

p(yi |xi )

p(yi )

= E log
p(y|x)

p(y)
− E log

∏
i

p(yi |xi )

p(yi )
see N2 of Examples 13.15

= E log

[
p(y|x)

p(y)

/∏
i

p(yi |xi )

p(yi )

]
see N3

= E log
�i p(yi )

p(y)
(memoryless) by (13.10)

≤ log E

[
�i p(yi )

p(y)

]
by Jensen’s Inequality

= log
∑

y
p(y)

�i p(yi )

p(y)
by definition of E

= log(1) (by Note 13.14, since the p(y)s cancel) = 0.

This proves the first part, the necessary ≤ sign reducing the result to inequality. Now
suppose that X1, . . . , Xd are independent. This time we choose the expression for I which
involves p(x). The difference

∑
i I (Xi ; Yi ) − I (X ; Y ) is

∑
i

E log
p(xi |yi )

p(xi )
− E log

p(x |y)

p(x)
by (13.9)

= E log
d∏

i=1

p(xi |yi )

p(xi )
− E log

p(x |y)

p(x)
see N2

= E log
�i p(xi |yi )

p(x |y)
since p(x) = �i p(xi ), see N3

≤ log E
�i p(xi |yi )

p(x |y)
by Jensen’s Inequality.
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As before, since log(1) = 0 the result will follow if the above expected value equals 1.
It is

∑
x,y

p(x, y)
�i p(xi |yi )

p(x |y)
by definition

=
∑

y

p(y)
∑

x

�i p(xi |yi ) since p(x, y) = p(y)p(x |y)

=
∑

y

p(y) (by Note 13.14) = 1, as required.

Corollary 13.19 A random vector X satisfies H (X ) ≤∑
i H (Xi ).

Proof We apply Theorem 13.18 to the (X, Y ) channel with Y = X , which is memoryless
because p(y|x) = 1 = p(yi |xi ) for all permitted integers i. The conclusion is I (X ; X ) ≤∑

i I (Xi ; Xi ), in other words H (X ) ≤∑
i H (Xi ).

Example 13.20 Continuing Example 13.17, we calculate and compare I (X ; Y ) with∑
I (Xi ; Yi ) for a sequence X of three binary digits sent down a noisy channel and

recovered as a binary triple Y. We have already determined (Figure 13.6) the transition
matrix Q1 = [p(y|x)], given that (X, Y ) is memoryless and that each symbol has a
probability p of being incorrectly conveyed (see (13.12)). To determine the various
mutual entropies I we need to know how successive bits Xi depend upon each other. We
shall suppose not that they are independent, but that the sequence X1, X2, X3 is Markov.
That is, X2 depends on X1, and X3 depends only on X2. We’ll assume that 0, 1 are
equally likely for X1, with a subsequent ‘sticky’ bias towards repetition. Specifically, let
p(xi+1|xi ) = 2/3 if xi+1 = xi , giving a Markovian transition matrix

Q2 =
[

2/3 1/3
1/3 2/3

]
= 1

3

[
2 1
1 2

]
. (13.15)

Computing
∑

I (Xi ; Yi ) In this part of the calculation the dependence on i seems
to fade, in spite of the matrix Q2 (results will be different for (X, Y )). We have
in succession [p(x1)] = [ 1

2
1
2 ], [p(x2)] = [p(x1)]Q2 = [ 1

2
1
2 ], and similarly [p(x3)] =

p(x2)]Q2 = [ 1
2

1
2 ], a third time! It is given that the transition matrix Q3 for each xi → yi

has the form

Q3 =
[

1 − p p
p 1 − p

]
= Rows (R0, R1), say. (13.16)

x

y
x1

Q3
Q2 Q2

xi

Q1 x2 x3
yi

Figure 13.7 The part played by each transition matrix of Example 13.20.
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Thus [p(yi )] = [p(xi )]Q3 = [ 1
2

1
2 ], for each of i = 1, 2, 3, whence H (Yi ) = H (1/2) =

1, and finally

H (Yi |Xi ) =
∑

xi=0,1

p(xi )H (Rxi ) = 1
2 H (1 − p, p) + 1

2 H (p, 1 − p) = H (p),

∑
I (Xi ; Yi ) =

∑
[H (Yi ) − H (Yi |Xi )] = 3(1 − H (p)).

Computing I (X ; Y ) We calculate in succession [p(x)], [p(y)], H (Y ) and H (Y |X ). By
the Markov property and (13.15) we may determine the vector [p(x)] from p(x) =
p(x1, x2, x3) = p(x1)p(x2|x1)p(x3|x2). Here is the result, with triples ordered by the
integer they represent (high bits to left).

x 000 001 010 011 100 101 110 111
18p(x) 4 2 1 2 2 1 2 4

(13.17)

Exercise Check the answers in (13.17).

Now we go from triples x to triples y, by applying the matrix Q1. Notice that interchanging
0 and 1 leaves the same number of 11s plus 00s, each of probability 4/9, in any triple.
We restrict this calculation to the case p = 0.1. We have exactly

[p(y)] = [p(x)]Q1 = (1/18) [3.37 2.09 1.45 2.09 2.09 1.45 2.09 3.37],

whence H (Y ) = −∑
p(y) log p(y) = 2.933, and writing Q1 = Rows(Rx ) yields

H (Y |X ) =∑
x p(x)H (Rx ) = 1.407. Finally, from the usual convenient formula I =

H (Y ) − H (Y |X ):

I (X ; Y ) = 1.526 < 1.593 =
∑

I (Xi ; Yi ).

This both verifies (13.14) for the memoryless case of (X, Y ) and illustrates the difference
in mutual entropy caused by dependence amongst the input symbols (independence of
the Xi would force equality in (13.14)).

Exercise Compute I (X ; Y ) for Example 13.20 with p = 0.2.

A further Markov connection A sequence X, Y, Z of random variables, which we take
as usual to include the case of random vectors, is by definition a Markov chain if each
variable depends only upon its immediate precursor, that is p(z|x, y) = p(z|y) for all x,
y, z for which p(x, y, z) > 0. Similarly for longer sequences. The pair (X, Y ) is itself a
random vector, and we have the following connection with mutual entropy.

Theorem 13.21 Let X, Y, Z be a sequence of random variables. Then, with equality in
case (13.18a) below if and only if X, Y, Z is a Markov chain, we have

I (X, Y ; Z ) ≥ I (Y ; Z ) (always), (13.18a)

I (X ; Z ) ≤ I (Y ; Z ) (if X, Y, Z is Markov). (13.18b)
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Proof (13.18a) The difference I (Y ; Z ) − I (X, Y ; Z ) is by (13.9)

E

[
log

p(z|y)

p(z)
− log

p(z|x, y)

p(z)

]

= E log
p(z|y)

p(z|x, y)
see N3 of Examples 13.15

≤ log E
p(z|y)

p(z|x, y)
by Jensen’s Inequality

= log
∑
x,y,z

p(x, y)p(z|y) since p(x, y, z) = p(x, y)p(z|x, y)

= log
∑
x,y

p(x, y)
∑

z

p(z|y)

= log
∑
x,y

p(x, y) (by Note 13.14) = log(1) = 0.

This establishes the main inequality (13.18a). The single inequality in the argument is
by Jensen’s result an equality if and only if p(z|y)/p(z|x, y) is a constant, say λ, as
x, y and z vary. But Note 13.14 shows that in that case we have for any given x, y
that 1 =∑

z p(z|y) = λ
∑

z p(z|x, y) = λ. Thus λ = 1, making X, Y, Z Markov, and
the proof is complete. For (13.18b) see Exercise 13.5.

13.1.5 Channel capacity

We proceed in stages to define the capacity of a channel, which will be used to predict the
rate at which information may be successfully transmitted to its destination, under various
conditions. We consider henceforth a discrete memoryless channel (DMC), meaning that
the input and output alphabets are finite as before, and that the memoryless condition
(13.10) holds: p(y|x) = �p(yi |xi ). Interpreting the subscripts in Xi , Yi as time, we may
say that output at discrete times t = i depends only on input at time t = i .

Cost Following Shannon (1948), we take account of factors which may limit the
optimisation of transmission, such as restrictions on power or bandwidth (see Chapter
14), under the blanket heading of a cost function κ for individual symbols xi . This
extends without ambiguity to d-vectors x by κ(x) =∑

i κ(xi ), with expected value

E[κ(X )] =
∑

x
p(x)κ(x) =

∑
i

E[κ(Xi )]. (13.19)

Definition 13.22 We say the channel (X, Y ) is a d-channel if X, Y are specifically
d-vectors, and that X is β-admissible if (1/d)E[κ(X )] ≤ β. The factor 1/d gives an
average over the d variables Xi . In practice we shall usually write the condition as
E[κ(X )] ≤ dβ. We are now ready to incorporate the measure I (X ; Y ) of information
successfully transmitted through the channel (X, Y ), by defining the dth capacity-cost
function

Cd(β) = MaxX {I (X ; Y ): E[κ(X )] ≤ dβ}, (13.20)
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x

y

Figure 13.8 Graph of a concave function: characterised by lying above every chord.

the maximum being taken over all β-admissible X, with the transition probabilities
[p(y|x)] fixed (it is [p(x)] that varies). That this maximum is actually achieved is (see
Hoggar, 1992) a consequence of the fact that I (X ; Y ) is a continuous function on the
bounded and closed set

{[p(x)]: p(x) ≥ 0 ∀x,
∑

x
p(x) = 1,

∑
x

p(x)κ(x) ≤ dβ}.
For the sequel we recall that increasing, for a function, will not be intended in the strict
sense unless explicitly stated. Thus f (t) is increasing if s < t ⇒ f (s) ≤ f (t).

Proposition 13.23 The function Cd(β) is increasing for β ≥ βmin, where βmin is the least
value of β for which Cd(β) is defined, namely the least cost of any symbol α:

βmin = Min
α

κ(α). (13.21)

Proof Firstly, β < βmin cannot occur, because E[κ(X )] =∑
i E[κ(Xi )] ≥

∑
i βmin =

dβmin. Secondly, the value βmin is actually attained for some X, as we now show. There is
by definition of βmin some symbol α0 for which βmin = κ(α0), and we may choose X so
that each Xi satisfies p(xi ) = 1 if xi = α0, otherwise p(xi ) = 0. With this choice there
follows that E[κ(Xi )] =

∑
α p(Xi = α)κ(α) = κ(α0) = βmin, whence E[κ(x)] = dβmin

as required.

Cd is increasing because β1 < β2 ⇒ {X: E[κ(X )] ≤ dβ1} ⊆ {X: E[κ(X )] ≤ dβ2} ⇒
Cd(β1) ≤ Cd(β2).

Theorem 13.24 The function Cd(β) is concave (see Figure 13.8).

Proof We must show that given s, t ≥ 0 with s + t = 1, and any costs β, γ ≥ βmin,
there holds the concavity property Cd(sβ + tγ ) ≥ sCd(β) + tCd(γ ). To show this we
recast the various parts in terms of mutual entropy. Since Cd is a maximum that is
actually attained, we may write, letting (Xi , Yi ) denote d-channels for the duration of this
proof,

Cd(β) = I (X1; Y1), where X1 is β-admissible, with distribution p1(x), say,

Cd(γ ) = I (X2; Y2), where X2 is γ -admissible, with distribution p2(x).

Now let the d-channel (X, Y ) be defined by X having distribution p(x) = sp1(x) + tp2(x),
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the transition probabilities being the same as those of (X1; Y1) and (X2; Y2). Then

Eκ(X ) =
∑

x
p(x)κ(x)

= s
∑

x
p1(x)κ(x) + t

∑
x

p2(x)κ(x)

= s E[κ(X1)] + t E[κ(X2)] by definition of E

≤ sdβ + tdγ = d(sβ + tγ ) by admissibilities of X1, X2.

Hence X is (sβ + tγ )-admissible, and we may argue that

Cd(sβ + tγ ) ≥ I (X ; Y ) by the maximum property of Cd

≥ s I (X1; Y1) + t I (X2; Y2) I being concave in p(x)

= sCd(β) + tCd(γ ) by definition of (X1; Y1), (X2; Y2).

This completes the proof of concavity. We now come to a crucial and slightly surprising
result, that enables us to formulate a definition of channel capacity which is independent
of the parameter d.

Theorem 13.25 We have Cd(β) = dC1(β) for any positive integer d.

Proof We may write E[κ(Xi )] = βi , and hence, with X = (Xi ), Y = (Yi ),

Cd(β) = I (X ; Y ) for some X, Y with E[κ(X )] ≤ dβ

≤
∑

i
I (Xi ; Yi ) by (13.14), the channel being memoryless

≤
∑

i
C1(βi ) = d

∑
i

1
d C1(βi )

≤ dC1
(

1
d

∑
i βi

)
since C1 is concave by Theorem 13.24

= dC1
(

1
d E[κ(X )]

)
since

∑
i
βi =

∑
i

E[κ(Xi )] = E[κ(X )]

≤ dC1(β) since C1 is increasing (Proposition 13.23),

and since E[κ(X )] ≤ dβ. Thus, if we can establish the reverse inequality, Cd(β) ≥
dC1(β), the proof will be complete. Consider the case that X1, . . . , Xd are indepen-
dent and have the same distribution, with E[κ(Xi )] ≤ β and I (Xi ; Yi ) = C1(β). Then

Cd(β) ≥ I (X ; Y ) since E[κ(X )] =
∑

i
E[κ(Xi )] ≤ dβ

=
∑

i
I (Xi ; Yi ) by Theorem 13.18 (memoryless/independent)

= dC1(β) since I (Xi ; Yi ) = C1(β) is given.

The two equalities for Cd(β) establish the desired equality. Hence the result for any d.

Definitions 13.26 We recall that, given the pdf of an input d-vector X, the channel
transition probabilities determine the pdf of the output Y and the value of I (X ; Y ). Thanks
to Theorem 13.25, we are in a position to define formally the capacity C(β) of the channel,
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βmin

Cmin
Cmin = C(βmin)

βmax

Cmax

Cmax = C(βmax)

Figure 13.9 Typical graph of C(β) as defined in Definitions 13.26.

independently of the size d of input sequence considered, by C(β) = Supd
1/dCd(β). See

Figure 13.9. By Theorem 13.25 this limit exists; indeed, for any positive integer n,

C(β) = 1
n Cn(β) = C1(β). (13.22)

The final two definitions below enable a convenient overview of the shape of the capacity
function C(β).

Cmax = MaxβC(β) = MaxX I (X ; Y ),

βmax = MinX {E[κ(X )] : I (X ; Y ) = Cmax}. (13.23)

Theorem 13.27 The function C(β) is (a) concave, (b) strictly increasing for βmin ≤ β ≤
βmax, and (c) constant for β ≥ βmax.

Proof (a) The function C(β) is concave because it equals C1(β), which we have shown
to be concave. For (b), it remains to proves strictness. We note firstly that by Definitions
(13.23), C(β) < Cmax for all valid β < βmax. Now let a, b be constants with βmin ≤ a <

b < βmax. Then C(b) < Cmax by the above observations, and C(a) ≤ C(b) by Proposition
13.23. But if C(a) = C(b) the concavity of C(β) is contradicted (see Figure 13.10). Thus
the increase in C(β) is strict for βmin ≤ β ≤ βmax. Finally, it is immediate from (13.23)
that C(β) = Cmax for all β ≥ βmax.

Example 13.28 We determine the cost-capacity function for the channel data of
Figure 13.11.

a b βmax

C(β)

Figure 13.10 How C(a) = C(b) contradicts concavity of C(β).
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Figure 13.11 Transition probabilities and costs for an (X, Y ) channel with RX =
{0, 2, 1} and RY = {0, 1}.

βmax= 1

1

C(β)

βmin = 0
β

Figure 13.12 C(β) in the case of Example 13.28.

(1) We have βmin = Minxκ(x) (by (13.21)) = 0, and consequently Cmin = C(0)

= MaxX {I (X ; Y ) :
∑

p(x)κ(x) = 0}
= MaxX {I (X ; Y ) : p(x) = 0 if κ(x) > 0}.

That is, Cmin is the value of I (X ; Y ) in the case [p(x)] = [0 1 0], for which H (X ) =
H (0, 1, 0) = H (1) = 0 (see Notation 12.4). But then 0 ≤ I (X ; Y ) ≤ H (X ) ≤ 0, imply-
ing that I (X ; Y ), and hence Cmin, is 0.
(2) General β ≥ 0 We determine [p(x)], then [p(y)] in terms of β. Let X be a
1-dimensional source/input which achieves I (X ; Y ) = C(β), E[κ(X )] = β. Then β =∑

p(x)κ(x) = p(0) + p(1) for the present cost function κ , whence by symmetry
p(0) = p(1) = β/2 and p(2) = 1 − β = α, say, where 0 ≤ α, β ≤ 1. So

[p(y)] = [p(x)]Q = [β/2 α β/2]Q =
[
α + β

2

α + β

2

]
=
[

1

2

1

2

]
.

Hence H (X ) = H (1/2) = 1, and H (Y |X ) =∑
p(x)H (Rx ) by (13.5)

= β

2
H (1, 0) + αH

(
1

2
,

1

2

)
+ β

2
H (0, 1) = α.

Thus C(β) = I (X ; Y ) = H (Y ) − H (Y |X ) = 1 − α = β (0 ≤ β ≤ 1), a simple linear
relationship. Applying Definitions (13.23): Cmax = MaxβC(β) = Max{β} = 1, hence
βmax = 1 from the relationship established. We may summarise the results in the graph
of Figure 13.12.

Remarks 13.29 (1) The example above shows that, though C(β) is strictly increasing,
its concavity need not be strict. (2) In calculating Cmin we needed to restrict to the source
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symbols x for which p(x) = βmin. A channel so restricted is called the reduced channel.
(3) In retrospect, the definitions imply C(β) = MaxX {I (X ; Y ): E[κ(X )] = β}. (4) In
general we need constrained optimisation to compute the capacity. For algorithms, see,
e.g. Blahut (1972, 1987) or Cover & Thomas (1991) However, here is one type in which
the answer is easy to compute.

Definition 13.30 A channel is symmetric if the transition matrix, not necessarily itself
symmetric, has the property that each row is a permutation of every other, the same
holding for columns also. An important special case is the Binary Symmetric Channel,
or BSC, with two input and two output symbols and a matrix of the form

Q =
[

a b
b a

]
, a, b ≥ 0 and a + b = 1. (13.24)

Theorem 13.31 The capacity Cmax of a symmetric DMC is achieved with equiprobable
inputs. If there are s output symbols and Rx is any row of the transition matrix, then

Cmax = log s − H (Rx ). (13.25)

Proof We invoke once more the formula I (X ; Y ) = H (Y ) − H (Y |X ) (Theorem 13.3).
According to Theorem 12.6, the first term H (Y ) has greatest value log s when p(y) is
constant. And this state of affairs is achievable by taking p(x) constant, since the columns
of Q differ only in the order of their elements and [p(y)] = [p(x)]Q. Further, the similar
property for the rows Rx of Q implies that H (Rx ) is the same for each row, and hence

H (Y |X ) =
∑

x
p(x)H (Rx ) (by (13.5)) = H (Rx )

∑
x

p(x) = H (Rx ).

Example 13.32 Determine the capacity of the channel with transition matrix

Q =
[

1/3 1/6 1/3 1/6
1/6 1/3 1/6 1/3

]
.

Solution In Q, the rows are permutations of
[

1/3 1/3 1/6 1/6
]

and the columns are permu-
tations of

[
1/3 1/6

]
; so the channel is symmetric, and by Theorem 13.31 the capacity is

Cmax = log 4 − H (1/3, 1/3, 1/6, 1/6) = 2 − (4/3 + log 3) = 0.0817 bits.

13.1.6 The Channel Coding Theorem

At this point we address the question of how we may convey information accurately
through a noisy channel. The rough answer is to add redundancy, hoping that thereby
the original message can be inferred in spite of errors. Both question and answer will
shortly be made more precise.

Considering the message, it is convenient to regard this as consisting of d-bit binary
words u = (u1, . . . , ud) (ui = 0 or 1). For example, the ASCII code of 8-bit words,
or bytes, is used to represent uniquely the lower and upper case versions of several
language alphabets, together with numerals and special symbols; however, the d-tuples
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could equally well refer to pixel colour values, or to more general quantities such as the
quantised values of an arbitrary input signal.

We have derived an upper limit Cmax, the channel capacity, for the information per
bit (or per unit time) at which information might be transferred across a given channel.
We shall prove the Channel Coding Theorem, which asserts that there is always a way
to get as close as we wish to this limit by suitably replacing our message d-vectors
with members of some set C = {c1, . . . , cM} of n-tuples over a finite alphabet A. We
call C a code or codebook and its elements codewords. The theorem asserts further, and
remarkably, that, no matter how much channel noise is present, the mean error rate per
codeword can be brought down below any given level, by suitable choice of C and its
decoding method f. The overall process is indicated in Figure 13.13.

U

message
vectors u

codewords
ci

Y

received
words y

decoded
words

f
noisy
channel

UX

Figure 13.13 Model of an encoding/decoding system, where X, Y is an input–output
pair.

Of course, there must be enough codewords for a distinct encoding of each message
d-tuple, and this will be so if 2d ≤ M , or d ≤ log2 M ; we view log2 M as representing
the number of encodable bits, and the rate R of the code as the number of bits per symbol.
Since there are n symbols, we have

rate R = log2 M

n
bits/symbol, (13.26)

= k/n if M = 2k . (13.27)

In any case, M = 2n R. (13.28)

That this definition of rate really corresponds to rate of infomation flow as measured
by I (X ; Y ) is borne out by the specifics of the Encoding Theorem. But first an example
from perhaps the best known of 1-error-correcting-codes, invented by Hamming (1950),
a contemporary of Shannon himself.

Example 13.33 (Hamming codes) Perhaps the most used alphabet is {0, 1}, the case of
binary codewords. For many transmission situations, including binary storage devices, it
may be realistically assumed that not more than one bit will be corrupted in any codeword.
Here the codes of Hamming are the most efficient (Remarks 13.46 below), for they pro-
vide the largest possible 1-error-correcting codes of length n = 2m − 1 (m = 2, 3, . . .).
In the case m = 3 the codewords may be taken as 00 . . . 0, 11 . . . 1, 1011000, 0100111,
and all cyclic permutations of these. As the reader may care to verify, any two codewords
differ in at least three places, so if one is corrupted in a single bit position it is still closer
to its original than to any other, and may thus be identified, or decoded. The encoding
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system is

[u1 . . . u4] → [u1 . . . u4]

⎡
⎢⎢⎣

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
1 1 1 1 1 1 1

⎤
⎥⎥⎦ . (13.29)

The parameters are M = 16 = 24, n = 7, so from (13.27) the rate is R = 4/7.

Definition 13.34 Suppose the channel delivers ci as vector y. A decoding rule is a
function f : Y → C ∪ {?}, where ‘?’ is a symbol denoting decoder failure (cf. Example
13.8). We need a notation for the probability of error, and will use

P (i)
E = P{ f (y) �= ci }. (13.30)

Not forgetting the cost, given for each symbol of the code’s alphabet, we say an n-tuple
is β-admissible if its total cost, the sum of costs of its coordinates, does not exceed β.
Shannon proved the following theorem (we follow the outline of McEliece (1987)); it
says that we can get the rate close to capacity in spite of error.

Theorem 13.35 Let C(β) be the capacity-cost function for a DMC (discrete memoryless
channel). If β > β0 ≥ βmin, R < C(β0), ε > 0, there is a β-admissible code of size M ≥
2n R, with a decoding rule for which the probability of error on a codeword is less than ε.

Note the directions of the inequalities. We want many codewords but small errors. In the
special case that cost need not be taken into account (‘cost is no object’) we set β0 = βmax

and obtain the result known as Shannon’s (noisy) Channel Coding Theorem. (For a direct
proof by a different approach, see Welsh, 1988.)

Corollary 13.36 (‘Noisy’ Channel Coding Theorem) Suppose we are given a DMC,
and real numbers R < Cmax, and ε > 0. Then there exist an n-code C of size M and a
decoding rule such that (a) M ≥ 2n R, and (b) P (i)

E < ε for i = 1, 2, . . . , M.

Proof of Theorem 13.35 We shall think of this proof as being in three parts: (1) getting
a handle on P (i)

E , (2) bounding P (i)
E , (3) completing the proof. For the duration of this

proof, let p(α) (α ∈ A) be a distribution that achieves C(β0) (see (13.20) ff ).
(1) A handle on P (i)

E We start to put into operation Shannon’s ingenious idea of showing
a desired encoding exists by considering expected values of a random code. We begin
by structuring as a sample space the set of channel input–output pairs � = {(x, y)} =
An ×An , by defining its distribution to be p(x, y) = p(x)p(y|x), where

p(x) = p(x1) · · · p(xn) (iid input symbols),
p(y|x) = �i p(yi |xi ) (the memoryless hypothesis).
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For the decoding rule we need a suitable definition of closeness so as to use ‘spheres’
round a point. With lower case x, y, write

I (x ; y) = log
p(y|x)

p(y)
, (13.31)

representing a typical term in I (X ; Y ) =∑
p(x, y)I (x ; y), and let R′ be a number strictly

between R and C(β0). Based on this, we define two sets:

A = {(x, y) : I (x ; y) ≥ n R′} (x, y close in mutual information)
A∗ = {(x, y) ∈ A : κ(x) ≤ nβ} ⊆ A.

Now we may define a decoding rule y → f (y) for an arbitrary code {c1, . . . , cM}. This
is done via a sphere S(y) around y consisting of vectors which are both close to y and
not too costly (see Figure 13.14).

y y
c1

S(y): f ( y) = ? S(y): f (y) = c1 S( y): f (y) = ?

y

c1

c2

Figure 13.14 Three cases in the decoding rule of the Channel Coding Theorem. Each
dot represents an n-tuple, which is a codeword if and only if so labelled.

S(y) = {x: (x, y) ∈ A∗}, and

f (y) =
{

ci , if S(y) contains a single codeword ci ,

? otherwise. (13.32)

The argument is facilitated by use of an indicator function χ for A∗. That is, χ (x, y) = 1
if (x, y) is in A∗, otherwise χ = 0. In this notation, writing also χ = 1 − χ , we have

x ∈ S(y) ⇔ χ (x, y) = 1, and x /∈ S(y) ⇔ χ̄ (x, y) = 1. (13.33)

(2) Bounding P (i)
E Consider the case when a fixed codeword ci is transmitted. From the

definition of f, an error can occur on sending ci and receiving y if and only if ci /∈ S(y)
and/or c j ∈ S(y) for some j �= i . Therefore

P (i)
E ≤

∑
y

p(ci → y & ci /∈ S(y)) +
∑

y
p(ci → y & c j ∈ S(y), some j �= i)

=
∑

y

χ (ci , y)p(y|ci ) +
∑
j �=i

∑
y

χ (c j , y)p(y|ci )

= Ti (c1, . . . , cM ), say.

We would like to identify an n-code for which Ti is small for all i; what we can do within
the scope of the present result is to show that one exists. A crucial idea here is to show that
under certain conditions the expected value of Ti tends to zero as n tends to infinity. We
view Ti as a random variable on the set of all possible n-codes of size M, with probability
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distribution given by choosing independently every entry ck j of every codeword ck .
In symbols,

p(c1, . . . , cM ) = �k p(ck) = �k, j p(ck j ), (13.34)

where the distribution of individual entries ck j ∈ A was chosen at the start of the proof
to achieve C(β0). The required expected value is

E(Ti ) = E[
∑

y

χ (ci , y)p(y|ci )] +
∑
j �=i

E[
∑

y

χ (c j , y)p(y|ci )]

= E1 +
∑
j �=i

E2, j , say. (13.35)

We bound each term, noting that each ck is an instance of x, and that i (but not ci ) is
fixed:

E1 =
∑

c1,...,cM

p(c1) · · ·p(cM )
∑

y

χ (ci , y)p(y|ci ) (by definition of E)

=
∑
ci ,y

p(ci )χ (ci , y)p(y|ci ) since
∑

ck

p(ck) = 1 for each k

=
∑
x,y

p(x, y)χ (x, y) since p(x)p(y|x) = p(x, y)

= P[(x, y) /∈ A∗] = P[I (x ; y) < n R′ or κ(x) > nβ]

≤ P[I (x ; y) < n R′] + P[κ(x) > nβ]. (13.36)

Considering the first term above, we note that

I (x ; y) = log
p(y|x)

p(y)
= log

n∏
i=1

p(yi |xi )

p(yi )
=
∑

i

log
p(yi |xi )

p(yi )
=
∑

i

I (xi ; yi ),

and since this is the sum of n iid random variables Zi = I (xi ; yi ), we may apply the Weak
Law of Large Numbers (10.29):

P(|Z1 + · · · + Zn − nµ| ≥ ε) → 0, as n →∞, (13.37)

where, by construction, µ = E(Zi ) = C(β0) > R′, and hence, taking ε = nµ− n R′, we
may infer that

P[I (x ; y) < n R′] = P[I − nµ < −ε] ≤ P[|I − nµ| ≥ ε] → 0, as n →∞,

which takes care of the first term of (13.36). For the second term we observe that κ(x)
equals

∑
i κ(xi ), another sum of n iid random variables, each with mean µ ≤ β0 < β.

A second application of (13.37) gives P[κ(x) > nβ0] → 0 as n →∞, and so E1 is
arbitrarily small for sufficiently large n.
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Bounding E2, j The argument is shorter in this case. Note that i, j are unequal but fixed.

E2, j =
∑

c1,...,cM

p(c1) · · · p(cM )
∑

y

χ (c j , y)p(y|ci )

=
∑
c j ,y

p(c j )χ (c j , y)
∑

ci

p(ci )p(y|ci ) since
∑

ck

p(ck) = 1 for each k

=
∑
c j ,y

p(c j )χ (c j , y)p(y) by the Total Probability Formula (10.10)

=
∑

(x,y)∈A∗
p(x)p(y) ≤

∑
(x,y)∈A

p(x)p(y), since A∗ ⊆ A.

Now, when (x, y) is in A we have p(x)p(y) ≤ 2−n R′
p(x, y), because n R′ ≤ I (x ; y) =

log[p(y|x)/p(y)] = log[p(x, y)/p(x)p(y)]. Consequently, since
∑

x,y p(x, y) = 1,

E2, j ≤ 2−n R′ ∑
(x,y)∈A

p(x, y) ≤ 2−n R′
. (13.38)

Completing the proof of Theorem 13.35 Considering the terms in (13.35), set M =
2 · 2Ceil(n R), so that (13.38) gives∑

j �=i

E2, j ≤ (M − 1)2−n R′ ≤ (22+n R − 1) ≤ 4 · 2−n(R′−R).

Since R′ − R is positive, we have that both E1 and the sum above are arbitrarily small
for sufficiently large n, and therefore, for any ε > 0,

E(Ti ) < ε/2 (n sufficiently large). (13.39)

With n such that (13.39) holds and M as specified above, define a random variable PE

on the space of all codes of size M by

PE (c1, . . . , cM ) = (1/M)
∑

i
P (i)

E (c1, . . . , cM ). (13.40)

Then E(PE ) ≤ (1/M)
∑

i E(Ti ) < ε/2, by (13.39) and (13.40). It follows that there
is a code with PE < ε/2. It may contain codewords which are not β-admissible, or
violate P (i)

E < ε for certain i, but if more than half of the codewords satisfy P (i)
E ≥ ε the

definition (13.40) gives PE ≥ ε/2, a contradiction. Thus, by deleting all codewords with
PE ≥ ε we obtain a code with at least 2Ceil(n R) codewords, each satisfying PE < ε. This
establishes the first part of the theorem. If β-admissibility fails, say κ(ci ) > nβ, consider
the decoding ci → y. In fact, S(y) = {x: (x, y) ∈ A, and κ(x) ≤ nβ} cannot contain ci ,
and so P (i)

E = 1, a contradiction. This completes the proof.

Remarks 13.37 Shannon’s result says that, by suitable coding of the source symbols
into codewords of some fixed length n, we can obtain information flow arbitrarily close
to a quantity called capacity, defined by the transition probabilities of the channel, and
which cannot be exceeded. There are three drawbacks:
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(1) the goodness of the code may depend on its having extremely long codewords,
(2) determining a suitable code is left as a huge search problem, and
(3) even if we find such a code by searching, it may be of no practical use because there is no

reasonably short decoding method.

Thus the search has focussed on codes with extra structure such as linearity, which give
promise of concise description and/or decoding procedures. For this we proceed to the
next section (recent success with a probabilistic approach is introduced in Section 13.3).

13.2 Error-correcting codes

In this section we take a brief look at some important milestones, following Shannon’s
Coding Theorem, in the attempts to find codes which are both close to his predictions of
the possible and simultaneously practicable to use. They have performed an honourable
role in communications. Some excellent general references are Sloane and MacWilliams
(1977), Lin and Costello (1983), Pretzel (1992) and McEliece (1987). The background
of linear algebra which we shall require is given in Chapters 7 and 8, especially Section
7.1.5. We restrict attention to a wide but restricted class of codes, shown by Elias (1955)
to suffice for the conclusion of Shannon’s Theorem to hold; namely binary codes with
the following extra structure.

(A) The elements of the alphabet {0, 1}, now to be denoted by Z2, may be added and multiplied
as integers, subject to the extra rule 1 + 1 = 0 (thus + is the XOR operation).

(B) This enables componentwise addition of vectors, and multiplication by scalars λ in Z2. That
is, the ith components satisfy (x + y)i = xi + yi and (λx)i = λxi . For example (1, 1, 0, 1)
+ (1, 0, 1, 1) = (0, 1, 1, 0). Thus we can form linear combinations

∑
i λi xi , where we write

xi = (xi1, . . . , xin). Note that we normally resort to boldface for vectors only when notation
is otherwise ambiguous.

(C) The code is linear, meaning here that the sum of any two codewords is another (and hence
that the vector 0 is a codeword). Equivalently, any linear combination of codewords is another
codeword.

Codes are subspaces For purposes of calculation we note that Zn
2 and a code C fit the

definition of vector space and subspace in Chapter 7, with Z2 in place of R, and dimension
k as the size of any maximal linearly independent subset. See further in Table 13.3.

Every basis {R1, . . . , Rk} of a code C has the same size, and the matrix G =
Rows(R1, . . . , Rk) is called a generator matrix for C because the codewords may be
generated by forming all linear combinations of the rows of G. Thus, specifying the 2k

codewords of C may be reduced to listing the k rows of G. We call C an (n, k) code. As
a further shortening, in writing a binary codeword we will often omit the commas and/or
parentheses.

Example 13.38 (Proving the rows are independent) We may rephrase independence as
saying that no linear combination of vectors equals the zero vector (except the all-zeros
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Table 13.3. Vector space rules reviewed for the scalar field Z2.

Let V denote Zn
2 or a subspace C thereof (here a subset closed under addition). We say of

vectors u1, . . . , um in V that

(1) they are linearly dependent (LD) if one of the ui equals a linear
combination of the rest, otherwise they are linearly independent (LI),

(2) they span V, if every v ∈ V is some linear combination
∑

λi ui ,
(3) they form a basis of V if every v ∈ V is a unique linear combination

∑
λi ui .

Finding a basis u1, . . . , um is a basis of V if and only if any two of the following hold:
(4) u1, . . . , um span V,
(5) m = dim V ,
(6) u1, . . . , um are linearly independent.

combination). Let us apply this to the rows of G1 below.

G1 =
⎡
⎣ R1

R2

R3

⎤
⎦ =

⎡
⎣1 0 1 1 0

0 1 0 1 1
0 0 1 1 0

⎤
⎦ .

∑
λi Ri = 0 says in detail that λ1(1 0 1 1 0) + λ2(0 1 0 1 1) + λ3(0 0 1 1 0) = 0, so

equating the first three entries of the sum to zero we obtain

1 λ1 + 0 λ2 + 0 λ3 = 0, whence λ1 = 0,

0 λ1 + 1 λ2 + 0 λ3 = 0, whence λ2 = 0,

1 λ1 + 0 λ2 + 1 λ3 = 0, whence λ3 = 0, given that λ1 = 0.

We have shown formally that if a linear combination of the rows equals zero then all
coefficients λi must be zero. Thus the rows are independent. We see in retrospect that
such a method must work when, as here, the matrix possesses a diagonal of ones with all
zeros below (or equally all zeros above), and in future we shall make such an inference
of LI by inspection without further calculation.

Example 13.39 List the codewords of the code C generated by G1 above, and show that
the matrix G2 below generates the same code.

G2 =
⎡
⎣1 1 1 0 1

0 1 1 0 1
1 1 0 1 1

⎤
⎦ .

Solution The codewords are the sums of the rows Ri of G1 taken 0, 1, 2 or 3 at a time.
They are:

0 = 00000, R1 = 10110, R2 = 01011, R3 = 00110
R1 + R2 = 11101, R2 + R3 = 01101, R3 + R1 = 10000, R1 + R2 + R3 = 11011.

The three rows of G1 have been shown to be LI, and since they do span the code we have
by Table 13.3 (4), (6) that the code’s dimension is 3 (number of elements in a basis). By
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inspection, the three rows of G2 lie in the code. Using the criteria (5), (6) of Table 13.3,
it suffices to show that these rows are LI. But in this simple case of just three vectors, LI
holds because no two are equal and their sum is nonzero.

Definitions 13.40 We end this introduction with two important ideas to which we shall
return. (1) A code C is said to be cyclic if, when x = x1 . . . xn is in C, so is its cyclic shift,
Sx = x2 . . . xnx1. Thus the code of Example 13.39 is not cyclic. Neither is it equivalent
to a cyclic code, where two codes C and C ′ are called equivalent if C ′ can be obtained
from C by applying a fixed permutation to the entries of C. We shall discover that many
codes can be made cyclic in this way and thus greatly simplified in their description and
in calculations involving them.

13.2.1 Nearest neighbour decoding

We are using nearest neighbour decoding if, on receiving a codeword R, possibly cor-
rupted, we assume the original was the closest actual codeword to R, where the (Hamming)
distance d(x, y) between codewords is defined to be the number of entries in which x, y
differ. Thus d(1010, 1101) = 3. For both theory and practice it is expedient to relate
this to the weight w(x) of a codeword x, defined as the number of nonzero entries of x.
Indeed, counting the places where x, y differ amounts to counting the nonzero elements
of x + y (= x − y). For example, 1010 + 1101 = 0111, and it is an easy exercise to
show that (as integers 0, 1, 2, 3, . . . )

d(x, y) = w(x + y), and w(x) = d(x, 0) = x · x . (13.41)

The dot product equality depends on 12 = 1 and implies that d(x, y) = (x − y) · (x − y),
showing that d(x, y) satisfies the usual axioms for a distance: (i) d(x, y) ≥ 0, and
d(x, y) = 0 ⇒ x = y, (ii) d(x, y) = d(y, x), (iii) the triangle inequality d(x, z) ≤
d(x, y) + d(y, z). The following result gives the basic facts for nearest neighbour de-
coding, where the minimum distance δ of a code (also written dmin) is the least distance
between distinct codewords, and wmin is the least weight of any nonzero (�= 0) codeword.

Theorem 13.41 (i) The presence of error can be detected in a received codeword if there
are fewer than δ errors, (ii) up to (δ − 1)/2 errors can be corrected, (iii) δ = wmin.

Proof Let c be sent and R received. (i) With fewer than δ errors c cannot have been
transformed into another codeword; since R is therefore not in C, it is known that error
has occured. (ii) If e ≤ (δ − 1)/2 then 2e + 1 ≤ δ, hence R, being distance e from c,
is still closer to c than to any other codeword c′, as illustrated in Figure 13.15. Finally,

e ≥ e + 1c R c'

Figure 13.15 If the minimum distance is 2e + 1 then after e errors the corrupted version
R of codeword c is still nearer to c than to another codeword c′.
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(iii) holds because by (13.41) every distance is a weight and every weight is a distance.
Specifically, δ = d(x, y) (for some x, y) = w(x + y) ≥ wmin = w(z) (for some z) =
d(z, 0) ≥ δ. Hence, equality of all terms in the chain.

Example 13.42 A code C has codewords x = x1, . . . , x7, where xt = xt−1 + xt−2 +
xt−4 (t = 5, 6, 7). (i) Express the defining relations in matrix form. (ii) Find a generator
matrix and list the codewords. (iii) How many errors will C correct? Decode the received
word 1011001, given that it has one error.

Solution (i) The relation given by t = 5 is x5 = x4 + x3 + x1, which, since−1= 1, may
be written x1 + 0x2 + x3 + x4 + x5 = 0, or in matrix form [1 0 1 1 1 0 0][x1 · · · x7]T = 0.

The other two relations are similarly defined by matrices of their coefficients, and the
three relations combine into a single matrix equation⎡

⎣1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤
⎦
⎡
⎣ x1

· · ·
x7

⎤
⎦ = 0, (13.42)

where each row of the 3 × 7 coefficient matrix H defines one equation and the right hand
zero stands for a column vector of three corresponding zeros. The form of H, with a diag-
onal of ones above zeros, show that its rows, and hence equivalently the three equations,
are independent. They therefore reduce the code’s dimension from a maximum possible
of 7 down to 7 − 3 = 4. By Table 13.3 the rows of a generator matrix can be any four LI
codewords we can find, by whatever means we find them. It happens that each of the rows
R of H satisfy HRT = 0, and so does the all-ones vector R = [11 . . . 1], so these four will
do. However, if inspection is not so easy, the next part provides a systematic approach.

(ii) Listing the codewords If we do happen to have a generator matrix then the code
may be listed as the sums of its rows taken 1, 2, 3 or 4 at a time. However, this may be
rather tedious, or computationally intensive, and we take the opportunity to illustrate a
technique based on the row operations of Chapter 8, in which the equations are converted
to an equivalent set expressing the last codeword entries x5, x6, x7 in terms of the first
four: x1, x2, x3, x4. With the latter going through all 2 × 2 × 2 × 2 = 16 possibilities we
simply append x5, x6, x7 in turn. Let us write H ≈ H1 if H1 is obtained from H by a
combination of the following two operations:

Ri ↔ R j (interchange rows i and j),

Ri → Ri − R j (subtract row j from row i),

each of which changes the equations to an equivalent set (one with the same solutions).
We have, by subtracting row 1 from the rest, then row 2 from row 3:

H =
⎡
⎣1 0 1 1 1 0 0

0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤
⎦ ≈

⎡
⎣1 0 1 1 1 0 0

1 1 1 0 0 1 0
1 0 0 1 0 1 1

⎤
⎦ ≈

⎡
⎣1 0 1 1 1 0 0

1 1 1 0 0 1 0
0 1 1 1 0 0 1

⎤
⎦ .
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This gives the relations in the required form (which means the last three columns form
an identity matrix). This new and equivalent set of relations is conveniently re-expressed
from the third matrix in the form x5 = x1 + x3 + x4, x6 = x1 + x2 + x3, and x7 = x2 +
x3 + x4. The codewords are therefore

0000000 0100011 1000110 1100101
0001101 0101110 1001011 1101000
0010111 0110100 1010001 1110010
0011010 0111001 1011100 1111111

Any four independent codewords will do for the rows of a generator matrix G, in the
present example. One simple choice consists of the words beginning 1000, 0100, 0010,
0001, giving G in the form G = [I4|A], where I4 is the 4 × 4 identity matrix and A is
some 4 × 3 matrix. The I4 means that, when we encode by z → zG, the first four bits
of a codeword are the four (‘information’) bits in z.

(iii) Error-correction Inspecting the codewords, we see that the nonzero ones have
weights 3 or 4, so the minimum weight and hence minimum distance are 3, giving
the capability to correct (3 − 1)/2 = 1 error (Theorem 13.41). Comparing our received
word 1011001 with each codeword in turn, we find a unique codeword from which it
differs in exactly one place, namely 1001001. Finally, notice that C is cyclic. A way to
achieve this will appear in the next section.

Using the parity check matrix Notice that to determine δ directly the number of com-
parisons is 16C2 = 120, whereas Theorem 13.41 reveals that δ = wmin, so that we need
only inspect the 15 nonzero codewords for their minimum weight. However, the example
above points to an even quicker way which is often valid (as it is for Example 13.42),
by inspecting only the matrix of relations. A matrix H with n-bit rows is called a parity
check matrix for C if (as in the example above) C is the subspace of Zn satisfying linear
relations RxT = 0, where R runs through the rows of H. That is,

x ∈ C ⇔ H xT = 0. (13.43)

If the row space of H has dimension m, then C may be defined by a set of m independent
relations and so has dimension k = n − m (Corollary 8.24 applies here). We will normally
assume that the rows of H are LI, so that there are no ‘redundant’ rows, and H is m × n.

Theorem 13.43 Suppose the columns of a parity check matrix are nonzero and distinct.
Then the corresponding code has wmin ≥ 3 and so corrects one error.

Proof Let ei denote the n-vector with 1 in position i and 0 elsewhere. Suppose wmin = 1.
Then C contains some ei , and the definition of H implies 0 = HeT

i = column i of H,
a contradiction. But if wmin = 2 then C contains a codeword c = ei + e j (i �= j), and
so 0 = HcT = HeT

i + HeT
j = (column i of H) + (column j of H), implying equality of

columns i and j of H. Since this is again a contradiction, we have wmin ≥ 3.
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H =

A1
A2
A3
A4⎦ 

⎥ 
⎥ 

⎦ 

⎦ ⎦ 

⎥ 
⎥ 

=

1 0 0 0 1 1 1 1 0 1 0 1 1 0 0
0 0 0 1 1 1 1 0 1 0 1 1 0 0 1
0 0 1 1 1 1 0 1 0 1 1 0 0 1 0
0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

 

Figure 13.16 Parity check matrix for a cyclic Hamming code in the case m = 4, with
first row generated from initial values 1000 by the recurrence relation an = an−1 + an−4.

13.2.2 Hamming single-error-correcting codes

Because the ability to correct a single error is enough in many hardware situations, it is
worth describing the excellent codes of Hamming (1950) which do so. They are optimal
in a sense to be described. They exploit Theorem 13.43 by specifying a parity check
matrix H with maximum number of columns subject to their being nonzero and distinct,
namely the binary integers 1 to 2m − 1 in some order. Thus a Hamming code has length
n = 2m − 1 for some m ≥ 2, say, and all Hamming codes of a given length are equivalent
by permuting the columns of H. The rows of H are independent because, for example,
the columns include those of the identity matrix Im (see Figure 13.16 and/or Theorem
8.20). It is natural to ask if the columns of H can be so ordered that the resulting code is
cyclic, and the anwer is YES.

Construction 13.44a (Cyclic Hamming codes) The first row of H is a binary sequence
A1 = a1a2 . . . of length n = 2m − 1 which, if joined cyclically, contains all nonzero m-
bit words. Such an A1 can be obtained by a suitable linear recurrence an = c1an−1 +
· · · + cman−m with initial values, say, 1 followed by m − 1 zeros (see Remark 13.52(4)
below). Let Ai denote the i th shift ai ai+1 . . . ai+n−1; then the successive rows of H are
to be A1, . . . , Am . This produces a Hamming code because the m-bit words found in A1

become the columns of H, as seen in Figure 13.16 in the case m = 4, where each digit
is recycled one place down and to the left.

The code is cyclic because, the recurrence being linear, the sum of two distinct shifts
Ai + A j is another, At , say (see Exercise 13.9); thus the set of all relations satisfied by
the code is unchanged under cyclic permutations, and hence so is the code itself. The
maximal property of Hamming codes is established from the following result for any
binary code.

Example 13.44b (i) Show that the code of Example 13.42 is of Hamming type, (ii)
construct a cyclic Hamming code of length 7, using the relations xt = xt−2 + xt−3(t ≥ 4).

Solution (i) The code has length 7 and a pcm (13.42) whose columns consist of the
nonzero 3-bit words. Thus it satisfies the definition of a Hamming code with n = 7 and
m = 3. (ii) For applying Construction 13.44a, the first row of the pcm must obey the
recurrence, but its first three bits may be any nonzero 3-bit word. If one chooses 111, the
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resulting pcm is

H1 =
⎡
⎣1 1 1 0 0 1 0

1 1 0 0 1 0 1
1 0 0 1 0 1 1

⎤
⎦ .

Exercise Determine the 16 codewords of the Hamming code defined above.

Theorem 13.45 Let nCi denote the number of ways of choosing i objects from n distinct
objects (see Section 9.1.4). If a binary code C, not necessarily linear, has length n, and
corrects e errors, then its size is bounded by |C | ≤ 2n/(1 + nC1 + nC2 + · · · + nCe).

Proof Since C corrects e errors, any word in the sphere Se(c1) of radius e around a
codeword c1 is corrected to c1, and is at distance at least e + 1 from any other codeword
c2. Hence this sphere is disjoint from the one of radius e around c2, as depicted in
Figure 13.17. On the other hand, a word at distance i from an arbitrary codeword c
differs from c in i places, for which the number of possibilities is the number of ways
to choose i objects from n, written nCi . Therefore the number Ne of words in Se(c1)
is 1 + nC1 + nC2 + · · · + nCe, independently of the choice of codeword. The disjoint
spheres, one for each codeword, contain together |C |Ne words, a subset of the 2n words
of Zn

2 . Hence the inequality.

ee

c1
c2

Figure 13.17 If a code corrects e errors then spheres of radius e around distinct code-
words are disjoint.

Remarks 13.46 (1) The Hamming code satisfies |C | = 2k = 2n−m = 2n/2m = 2n/(n +
1), the bound of Theorem 13.45. Hence the code would be of greatest possible size (for
its length and error-correcting), even were the linearity restriction to be removed.

(2) As a further application there is no (17, 10) binary code C that corrects two
errors, for the existence of C entails 210 ≤ 217/(1 + 18 + 18 · 17/2), or 1 ≤ 128/172, a
contradiction.

(3) There are, these days, good reasons for needing 2-error-correction. Reasons and
solutions for this are given in Rao and Fujiwara (1989).

Linear feedback shift registers (LFSRs) The device represented in Figure 13.18, called
a linear feedback shift register, or LFSR, extends initial values a0a1 . . . ar−1 to a binary
sequence {an} by the recurrence relation

an = c1an−1 + c2an−2 + · · · + cr an−r . (13.44)
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The upper cells, or stages, form a shift register, each cell representing a 2-state device
which stores a digit 0 or 1, and connected to a successor cell. At equal intervals a master
clock sends a ‘tick’ signal and the content of each cell is shifted to its successor, except
for the last, whose content may be transmitted elsewhere. The first becomes zero if not
replenished.

ar−1 ar−2

cr−1

+

c1

c2
cr

a1 a0

Figure 13.18 A linear feedback shift register, or LFSR.

Simultaneously, the content of cell i is multiplied by a binary digit ci and sent to an
adding device which sums the products and, in a feedback loop, sends the result ar =
c1ar−1 + · · · + cr a0 to stage 1. Thus n − r ticks later the device performs (13.44) and
has so far output a0a1 . . . an−r . The diagram may be simplified, for since the multipliers
ci are 0 or 1 we obtain the desired result by omitting the ith connection (or tap) if ci

is 0, and making it if ci = 1. Figure 13.19 shows an LFSR to generate the sequence of
Construction 13.44a, with an = an−1 + an−4.

Polynomial form of the LFSR This is required in recursive convolutional codes
(see Section 13.3.2). Now, since the first r input values reappear unchanged, it will
be convenient to denote them by a−r , . . . , a−1, and to define a generating function
G(x) =∑

n≥0 anxn , which can then be shown to satisfy

G(x) = g(x)/ f (x), with (13.45)

f (x) = 1 +
∑r

i=1
ci x

i ,

and g(x) =
∑r

i=1
ci x

i (a−i x
−i + · · · + a−1x−1), (13.46)

where deg(g) < deg( f ). Furthermore, g(x) = 1 under initial conditions a−r . . . a−1 =
10 . . . 0.

+

Figure 13.19 An LFSR to generate the sequence associated wih the polynomial
x4 + x + 1 and recurrence relation an = an−1 + an−4 (it is an m-sequence; see Remarks
13.52(4)).
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Proof Because we are working Mod 2, the following equalities establish the result.

G(x) =
∑∞

n=0

(∑r

i=1
ci an−i

)
xn by (13.44)

=
∑r

i=1
ci x

i
∑∞

n=0
an−i x

n−i on reversing the order of
summation

=
∑r

i=1
ci x

i [a−i x
−i + · · · + a−1x−1 + G(x)] by definition of G(x), hence:

G(x) = g(x) + [ f (x) − 1]G(x) by definition of f and g, which suffices, since G = −G.

Exercise Verify from formula (13.46) that g = 1 when a−r . . . a−1 = 10 . . . 0 (see
Exercise 13.15).

13.2.3 Finite fields and minimal polynomials

The structure of finite fields is extremely useful for constructing and proving results
about error correcting codes. We begin with Mod 2 polynomials, or polynomials over
Z2, meaning polynomials

∑
i fi x i whose coefficients lie in Z2. The set of all such

polynomials is denoted by Z2[x]. We may abbreviate f to its sequence of coefficients
fn . . . f1 f0 provided no zeros are omitted. Thus x4 + x + 1 is 10011. Remembering that
addition is performed Mod 2 (i.e. 1 + 1 = 0) we may exhibit multiplication and division
as in Figure 13.20. The addition has no carry from one digit to the next.

Because 1 + 1 = 0, squaring a sum produces no cross-terms, for example (x +
y)2 = x2 + 2xy + y2 = x2 + y2, we have, for constants or polynomials a, b, . . . , z and
polynomial f (x):

(a + b + · · · + z)2 = a2 + b2 + · · · + z2 (13.47)

f (x)2 =
∑

i
f 2
i x2i =

∑
i

fi x
2i = f (x2), (13.48)

and similar results hold with power 2 replaced by power q = 2t , the result of squaring t
times. For example, (x2 + x + 1)2 = x4 + x2 + 1, and (x + y)q = xq + yq .

1 0 0 1 1

1 1 1

1 0 0 1 1

1 0 0 1 1

1 0 0 1 1

1 1 1 1 0 0 1

1 1 1

1 0 1 ) 1 1 0 0 1

1 0 1

1 1 0

1 0 1

1 1 1

1 0 1

1 0

Figure 13.20 Multiplication and division in shorthand polynomial notation, represent-
ing (x4 + x + 1)(x2 + x + 1) = x6 + x5 + x4 + x3 + 1 and (x4 + x3 + 1)/(x2 + 1) =
x2 + x + 1 with remainder x. Note: multiplication can alternatively be done with highest
powers to the right.
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Irreducible polynomials A polynomial f (x) of degree n is irreducible if it is not divis-
ible by a polynomial of positive lower degree. Equivalently, it does not factorise into a
product of such polynomials. For example, x3 + 1 is not irreducible because it factorises
into (x + 1)(x2 + x + 1). A first observation is that to establish whether f is irreducible
we need only test divisibility into f of polynomials which are themselves irreducible,
and of degree ≤ n/2 (why?). Further, if n ≥ 2 then we can divide f by x + c (c any
constant) to obtain quotient q(x) and remainder R, meaning f (x) = q(x)(x + c) + R.
Setting x = c yields R = f (c), hence the Factor Theorem, in which ‘is a factor of ’ is
abbreviated to ‘divides’:

(x + c) divides f (x) if and only if f (c) = 0. (13.49)

To be irreducible f must be non-divisible by both x and x + 1, and so have both constant
term 1 and odd number of nonzero coefficients. From these two observations and (13.47)
we deduce:

Classification 13.47 The irreducible polynomials of degrees 1 to 4 are x, x + 1, then
x2 + x + 1, then x3 + x + 1, x3 + x2 + 1, and, in degree 4, x4 + x + 1, x4 + x3 +
1, x4 + x3 + x2 + x + 1.

Finite fields A finite field F is essentially a set on which the usual laws of arithmetic
apply, but which, unlike the real and complex number fields, is finite. To guarantee
finiteness, F must have some extra laws governing the structure, otherwise, for exam-
ple, if γ is in f then so are all its infinitely many powers. One way to construct such
a field is as follows. Given an irreducible degree n polynomial of the form p(x) =
xn + pn−1xn−1 + · · · + p1x + 1, we consider the set of all polynomials of degree
≤ n − 1, subject to polynomial addition and multiplication, with a substitution rule for
reducing polynomials to degree ≤ n − 1:

xn → pn−1xn−1 + · · · + p1x + 1. (13.50)

For example, with n = 3 and p(x) = x3 + x2 + 1 we substitute x3 → x2 + 1, so that

(x2 + 1)2 = x4 + 2x2 + 1 = x4 + 1 since 2 = 0

= x · x3 + 1

→ x(x2 + 1) + 1 = x3 + x + 1

→ x2 + x .

Notice that replacing x3 by x2 + 1 changed x · x3 into x(x2 + 1), a difference of x(x3 −
x2 − 1), or simply xp(x). This idea gives the key connection below.

Theorem 13.48 Applying (13.50) results in subtraction of a multiple of p(x). Hence
polynomials f, g reduce to the same polynomial of degree ≤ n − 1 if and only if f and g
differ by a multiple of p(x).
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Proof (i) Replacing a term xk · xn by xk(pn−1xn−1 + · · · + p1x + 1) makes a difference
of xk p(x). (ii) Suppose that f, g both reduce to h of degree ≤ n − 1. Then by (i) there
are polynomials a(x), b(x) such that

f (x) − a(x)p(x) = h(x) = g(x) − b(x)p(x),

impying that f (x) − g(x) = (b(x) − a(x))p(x), a multiple of p(x). (iii) Suppose con-
versely that f, g differ by a multiple of p, say f (x) − g(x) = c(x)p(x), and that
they reduce to polynomials h, k of degree ≤ n − 1, say f (x) − a(x)p(x) = h(x)
and g(x) − b(x)p(x) = k(x). Then subtraction gives h(x) − k(x) = (c(x) + b(x) −
a(x))p(x), which, by considering degrees, is possible only if both sides are identically
zero. Thus h(x) = k(x) and the proof is complete.

Guided by Theorem 13.48, we group together as one object, denoted by [ f (x)], all mod
2 polynomials which can be converted to f (x) by (13.50). These are the polynomials
which differ from f (x) by a multiple of p(x), that is to say

[ f (x)] = { f (x) + g(x)p(x): g in Z2[x]}. (13.51)

We call [ f (x)] a class, and all its elements representives of this class. Addition and
multiplication of classes is performed via an arbitrary choice of representatives. That is,
if β = [ f (x)] and γ = [g(x)] then

β + γ = [ f (x) + g(x)], and βγ = [ f (x)g(x)]. (13.52)

It can be verified that these rules are independent of the choices of representative (an
exercise), using the observation

[ f (x)] = [g(x)] ⇔ p(x) divides f (x) − g(x). (13.53)

Notice that [0] acts as zero and [1] as 1, so we shall simply denote them by 0, 1 respectively.
Also [p(x)] = 0, and more generally [ f (x)] = 0 if and only if p(x) divides f (x).

Theorem 13.49 Let F be the set whose elements are the classes [ f (x)] defined by an
irreducible polynomial p, with addition and multiplication as given by (13.52). Then F
is a finite field of order 2n, with [0] acting as zero and [1] acting as identity.

Proof The axioms for a field are given in Table 13.4. The only property not immediate
from the construction of F is that any nonzero element α in F has an inverse δ in F. We
establish this by first proving that if β, γ are in F then

αβ = αγ ⇒ β = γ (Cancellation Law). (13.54)

For this, let α = [ f (x)], β = [g(x)] and γ = [h(x)]. Then p does not divide f, since
α �= 0, and

αβ = αγ ⇒ p(x) divides f (x)g(x) − f (x)h(x) by (13.53)

⇒ p(x) divides f (x)(g(x) − h(x))

⇒ p(x) divides g(x) − h(x),
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Table 13.4. Axioms for a field

A field F is a set of elements together with operations α, β → α + β and α, β → αβ
satisfying, for all α, β, γ in F:

α + β = β + α, αβ = βα (Commutative Law),
α + (β + γ ) = (α + β) + γ, α(βγ ) = (αβ)γ (Associative Law),

α(β + γ ) = αβ + αγ (Distributive Law).

Further, F must contain elements 0, 1, and for every element α an element−α and (if α �= 0)
an element α−1, such that

0 + α = α, (−α) + α = 0, 0α = 0,

1α = α, (α−1)α = 1.

We normally refer to the respective operations as addition and multiplication, to 0 and 1 as
the zero and identity, to −α and α−1 as the negative of α and its inverse, and to βα−1 as β
divided by α. The order of F is the number of elements it contains. A finite field is one of
finite order, in our case 2n for some positive integer n.

since p is irreducible and does not divide f (x). But this implies β = γ by (13.53). Finally,
consider the set of all elements αδ as δ runs once through the nonzero elements of F. By
the Cancellation Law, no two of these products are equal and none is zero. Hence exactly
one equals 1, and we have unique δ with αδ = 1. This completes the proof, the number
of elements of F being the number of ways to choose the n coefficients in a polynomial
of degree ≤ n − 1.

Working with finite fields The next example shows how we can calculate with finite
fields in practice. Most of the time we can dispense with the class notation and denote an
element of F by a single symbol, as previewed above. In particular we can often express
all elements in terms of an element α = [x], the class of the single-term polynomial x.

Example 13.50 Let F be the finite field defined by p(x). Taking f (x) = 1 + x + x3 as
an example, we express the element [ f (x)] in terms of α = [x]. By the laws (13.52) for
addition and multiplication in F, we have [ f (x)] = [1 + x + x3] = [1] + [x] + [x]3 =
f (α). This simple argument works for any f (x), indeed we have the following (recall
that −1 = +1 mod 2):

[ f (x)] = f (α), where α = [x], and (13.55)

p(α) = 0, hence αn = pn−1α
n−1 + · · · + p1α + p0. (13.56)

Example 13.50 continued So far p(x) could be any irreducible polynomial, but now
take p(x) = x4 + x + 1. Keeping α = [x], we may represent a polynomial in α by
its sequence of coefficients, such as a3a2a1a0 (shorthand notation). Thus we write
α3 = 1000, α2 = 0100, α = 0010, and 1 = α0 = 0001. Notice how multiplication
by α moves digits one place to the left, analogously to the decimal system. The key



13.2 Error-correcting codes 481

Table 13.5. Powers of α = [x] as polynomials of degree ≤ 3 in
α, where α4 = α + 1.

i αi i αi i αi i αi

1 0010 5 0110 9 1010 13 1101
2 0100 6 1100 10 0111 14 1001
3 1000 7 1011 11 1110 15 0000
4 0011 8 0101 12 1111

observation is how, using (13.56) with this notation, we may write any power as such a
polynomial. Thus p(α) = 0 says α4 = α + 1, or in shorthand notation 10000 = 0011,
whence α5 = 0110, α6 = 1100 and α7 = 10000 + 1000 = 0011 + 1000 = 1011. In
this way we easily construct Table 13.5 of successive powers of α in terms of the 24

polynomials of degree ≤ 3.

αi da2a1a0 [α4 = b3b2b1b0]

αi+1 d(b3b2b1b0) + a2a1a00.

Thus (a) the 24 = 16 elements of F may alternatively be written as
0, α, α2, α3, . . . , α15 (= 1), and (b) we can express the sum of two or more pow-
ers as a single power by first converting them back to polynomials via the table. For
example, α2 + α11 = 0100 + 1110 = 1010 = α9. In this case α and p(x) have the
useful special properties defined below.

Definition 13.51 (i) (Order) In the notation of Table 13.4ff, let F be a finite field of order
2n . The order, ord β, of an element β of F is the least positive integer e for which βe = 1.
It follows that e|(2n − 1) and that β t = 1 if and only if (ord β)|t (see Exercise 13.12 and
its solution).

(ii) (Primitivity) We say β is primitive if it has order 2n − 1; equivalently, the nonzero
elements of F may be listed as {β, β2, . . . , β2n−1 (= 1)}. A primitive polynomial p(x) is
one for which [x] is a primitive element in the field defined by p(x).

Exercise What is the order of the element β = α3 in Table 13.5? Is α2 primitive?

Remarks 13.52 (1) (Example) Table 13.5 shows that x4 + x + 1 is primitive. Such poly-
nomials exist in every degree and are extensively tabulated (see e.g. Lidl & Niederreiter,
1986). The first few degrees yield 111, 1011, 1101, 10011, 11001. See also Table 13.6.

(2) (Why p must be irreducible) If p were not irreducible the product of two nonzero
elements could be zero, for p(x) = f (x)g(x) implies 0 = [p(x)] = [ f (x)][g(x)].

(3) (Example) We calculate the order of the element β = α5 in Example 13.50. In fact,
β t = 1 ⇔ α5t = 1 ⇔ 15|5t . The least possible t is 3, which is therefore the order of β.
The ord column of our later Table 13.7 was obtained in this way.
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Table 13.6. Some primitive polynomials Mod 2 in degrees up to 15.

x + 1 x6 + x + 1 x11 + x2 + 1
x2 + x + 1 x7 + x + 1 x12 + x6 + x4 + x + 1
x3 + x + 1 x8 + x4 + x3 + x2 + 1 x13 + x4 + x3 + x + 1
x4 + x + 1 x9 + x4 + 1 x14 + x5 + x3 + x + 1
x5 + x2 + 1 x10 + x3 + 1 x15 + x + 1

(4) (m-sequences and Hamming codes) Relation (13.56) expresses a power of α in
terms of the previous n powers. Since the rows of Table 13.5 are powers of α and
p(x) = x4 + x + 1, we have row t = row (t − 3) + row (t − 4). This recurrence relation
holds in particular for the end bits of each row, giving a sequence 000100110101111 . . . ,

which has period 15 because α15 = 1. It is an alternative sequence in Construction 13.44a
for a cyclic Hamming code, where p(x) = x4 + x3 + 1 is implied.

More generally, we can use a primitive polynomial of degree n to construct a sequence
of period 2n − 1 containing all nonzero n-bit words. This sequence has longest possible
period, for one generated by a recurrence of length n, and is called an m-sequence, or
maximal length linear recurring sequence. The construction may be implemented by an
LFSR as depicted in Figure 13.19, and provides the rows of a pcm for a Hamming code.

Exercise Repeat Example 13.50 with p(x) = x4 + x3 + 1. Is this p(x) primitive?

Minimal polynomials

Definition 13.53 Let F be a field of order 2n , and λ an element of F. A minimal polynomial
of λ is a Mod 2 polynomial M(x) of least possible degree such that λ is a root. Such a
polynomial does exist because λ satisfies xord(λ) = 1. Furthermore, M is unique, for if
f, g are minimal polynomials of λ, let h = f − g. Then h(λ) = 0, but the leading terms
of f and g cancel, so deg(h) < deg( f ), contradicting the minimality of deg ( f ). Thus
there is a unique minimal polynomial M = Mλ of λ.

This polynomial is constructed via the conjugates of λ, namely λ itself together with
successive squares λ2, λ4, λ8, . . . , and so on until a duplicate appears. In Table 13.7 we
partition the elements of F into sets of mutual conjugates, one set per row.

Table 13.7. Minimal polynomials of the sets of conjugates in field F defined
by p(x) = x4 + x + 1. We omit elements 0, 1 with respective minimal

polynomials x and x + 1. For ord λ see Remarks 13.52 (3).

λ ord λ Mλ shorthand

α, α2, α4, α8 15 x4 + x + 1 10011
α3, α6, α12, α9 5 1 + x + x2 + x3 + x4 11111
α5, α10 3 1 + x + x2 111
α7, α14, α13, α11 15 x4 + x3 + 1 11001
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A useful tool is the reciprocal f∗ of a polynomial f, obtained by writing the coefficients
in reverse order. For example, the reciprocal of 1011 is 1101. In formula terms, f∗(x) =
xdeg( f ) f (1/x).

Theorem 13.54 Let F be a finite field containing an element λ, and let f, g be Mod 2
polynomials. Then (i) the minimal polynomial Mλ is irreducible, (ii) λ is a root of f (x)
if and only if Mλ divides f, (iii) if λ is a root of f (x), then so are its conjugates, and λ−1

is a root of f∗(x).

Proof Write M = Mλ. (i) If M(x) = f (x)g(x) with f, g of lower degree than M then
we have 0 = M(λ) = f (λ)g(λ), whence f (λ) = 0 or g(λ) = 0, in either case con-
tradicting the minimality of degree M. (ii) We take deg M ≤ deg f without loss of
generality and divide M into f, to obtain quotient q(x) and remainder r (x), where
f (x) = q(x)M(x) + r (x). Setting x = λ gives f (λ) = r (λ), whence the result. (iii) The
remark about conjugates holds because f (λ2) = f (λ)2 (see (13.48)). Regarding λ−1, let
f (λ) = 0. Then f∗(λ−1) = (λ−1)deg( f ) f (λ) = 0 as required.

Example 13.55 We determine minimal polynomials Mλ for elements of the field F of
order 24 = 16 defined by p(x) = x4 + x + 1 (Example 13.50). By Theorem 13.54(iii)
we have found Mλ if we produce a polynomial with λ as a root and having degree equal
to the number of conjugates of λ. Further, Mλ is the minimal polynomial of each of these
conjugates. We make use of these facts to construct Table 13.7, beginning with p(x),
which satisfies p(α) = 0, (13.56), and has degree equal to 4, the number of conjugates
of α. Notice that, in each list of conjugates, repeated squaring takes us through the list
cyclically back to the start. This is true in general, though a proof is left as an exercise.

For the second line we observe that because β = α3 has order 5 (as do the other conju-
gates of β) we may write 0 = (β5 − 1) = (β − 1)(1 + β + β2 + β3 + β4). Since β �= 1,
this implies that 1 + β + β2 + β3 + β4 = 0, that is, β is a root of the fourth degree poly-
nomial 1 + x + · · · + x4. The third line follows similarly since α5 has order 3. The last
line follows from Theorem 13.54 (iii), since the conjugates are the inverses of those of
the first line.

Product formula Sometimes we need the following elementary result, which is obtained
by considering the mCi ways a factor xm−i arises in the expansion of (x − a1)(x −
a2) · · · (x − am).

m∏
i=1

(x − ai ) = xm − σ1xm−1 + σ2xm−2 + · · · + (−1)mσm (13.57)

where σi is the sum of all products of a1, . . . , am taken i at a time. For example,
σ1(a1, a2, a3) = a1 + a2 + a3 but σ2 = a1a2 + a1a3 + a2a3. This is especially useful
when a minimal polynomial Mβ must be computed directly, unlike the method of Ta-
ble 13.7. Write ai = β2i , so that a2

i = ai+1, and suppose the conjugates are cyclically
a1, . . . , am . It follows that [σi (a1, . . . , am)]2 = σi (a2

1, . . . , a2
m) = σi (a2, . . . , am, a1) =

σi (a1, . . . , am), the last being by symmetry, and hence σi is 0 or 1 (the only solutions
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of z2 = 1). Thus (13.57) becomes a polynomial over Z2 with least degree for which β

is a root, and hence by definition equals Mβ . As a check of Mα in Table 13.7, we have
σ1 = α + α2 + α4 + α8 (by definition) = 0 (by Table 13.5). Similarly for σ2, the sum of

4C2 = 6 terms, whilst σ3 = 1 = σ4. Thus we recover the original x4 + x + 1.
This completes some valuable groundwork for the celebrated codes of the next section

and beyond.

13.2.4 BCH and Reed–Solomon codes

All codes in this section will be cyclic. BCH codes are named for their near simultaneous
discovery by Hocquenghem (1959) and Bose and Ray-Chaudhuri (1960). They yield a t-
error-correcting code for every positive integer t. At that time no satisfactory method was
known for decoding in the presence of error, and improvements were made over the next
15 years by various authors, including notably Berlekamp (1974), and culminating in the
method we shall present from Sugiyama et al. (1975). It uses the Euclidean Algorithm
in a most ingenious way.

Reed–Solomon codes (1960) are especially suited for correcting errors which occur
in a burst. They have been widely used in practice for error correction of CD players, for
example. They can be approached as a generalisation of BCH codes, as we do here.

Generator polynomials for cyclic codes It turns out that cyclic codes of length n
correspond to, and may be constructed from, divisors of xn − 1. The story begins with
our regarding a binary n-vector a = (a0, . . . , an−1) as a polynomial a(x) =∑

i ai x i .
Then Z2

n becomes the space Vn−1 of Mod 2 polynomials of degree ≤ n − 1, a code C
being a subspace thereof. We arrange (similarly to using p(x) in the previous section)
that the product of two polynomials of Vn−1 reduces to another, by taking xn − 1 = 0.

The crucial observation is that, for any codeword c(x), we may form the prod-
uct xc(x) = c0x + c1x2 + · · · + cn−2xn−1 + cn−1xn = cn−1 + c0x + · · · + cn−2xn−1, a
cyclic shift. Thus if C is to be cyclic it must also contain xc(x), whence it may be seen
that C is cyclic if and only if

c(x) ∈ C, r (x) ∈ Vn−1 ⇒ r (x)c(x) ∈ C. (13.58)

Let g(x) be a polynomial of least degree in a cyclic (n, k) code C. Then g is unique, for
if h is in C and has the same degree then g − h is a codeword of lower degree (leading
terms cancel), a contradiction. An example is the Hamming (7, 4) code of Example 13.42,
whose codewords are the cyclic permutations of 0001101 and 1110010, together with
the all-ones and all-zeros words. We cycle these round until the nonzero digits are as far
to the left as possible and obtain as generator polynomial g(x) = 1 + x + x3. The basic
result that makes generator poynomials useful is proved below.

Exercise Find the generator polynomial for the Hamming code of Example 13.44b.

Theorem 13.56 If the cyclic code C has generator polynomial g then the binary n-vector
c is in C if and only if g(x)|c(x).
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Proof If g|c then c is in C by (13.58). Conversely, suppose that c is in C. Then
deg g ≤ deg c by minimality of deg g, and we can divide to obtain the identity between
Mod 2 polynomials: c(x) = q(x)g(x) + r (x), where deg r < deg g. From this, q(x)g(x)
has the same degree as c, and lies in C by (13.58). Therefore, by linearity of C, so does the
polynomial r (x) = c(x) − q(x)g(x). But r has lower degree than g, so, by the minimality
of deg g, we must have r = 0. Thus g|c as required.

Theorem 13.56 shows that if g has degree m then C consists of all linear combinations
of 1 · g(x), xg(x), x2g(x), . . . , xk−1g(x), where k = n − m. We can encode a k-vector
I = (I0, I1, . . . , Ik−1) of ‘information bits’ into codeword c by the simple formula c(x) =
I (x)g(x), or in more detail

c0 + c1x + · · · + cn−1xn−1 = (Ik−1xk−1 + · · · + I1x + I0)(g0 + g1x + · · · + gm xm).

(13.59)

Equating coefficients of the xi gives ci =
∑

Ir gi−r over certain integers r, or in matrix
form

[c0 c1 . . . cn−1] = [I0 I1 . . . Ik−1]

⎡
⎢⎢⎣

g0 g1 . . . gm

g0 g1 . . . gm

. . .

g0 g1 . . . gm

⎤
⎥⎥⎦ . (13.60)

Thus G is a generator matrix, and decoding in the absence of error may be peformed
by c(x) → c(x)/g(x). In fact, with a little more work we can show that g(x)|(xn − 1),
which gives both a classification of cyclic (n, k) codes in terms of divisors of xn − 1
of degree n − k and a way to obtain those codes. The new reader may be guessing that
h(x) = (xn − 1)/g(x) leads to a pcm, and this is indeed so, after a reversal of coefficient
order. That is, if h(x) = h0 + h1x + · · · + hk xk then a pcm may be taken to have as rows
[hk . . . h1h0 0 . . . 0] and its next k − 1 cyclic shifts.

Example 13.57 A cyclic code of length 7 has a generator polynomial 1 + x2 + x3.
Encode the information bits 1100 (a) by polynomial multiplication, (b) by a generator
matrix.

Solution (a) The coefficients in the generator polynomial may be written g0g1 . . . gm =
1011, in particular m = 3, so the code has dimension n − m = 7 − 3 = 4 as implied by
the information bits. Encoding by polynomials, I (x)g(x) = (1 + x)(1 + x2 + x3) = 1 +
x + x2 + x4, giving a codeword 1110100. (b) The matrix equation c = IG for encoding
becomes

[c0 . . . c6] = [1100]

⎡
⎢⎢⎣

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

⎤
⎥⎥⎦ = [1110100], as before.
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The shift register as polynomial multiplier/encoder If what would be the successive
feedback digits of an LFSR (Figure 13.18) are instead output from the adder as a new
sequence v0, v1, . . . , we have the Feed Forward Shift Register, or FFSR, as shown in
Figure 13.21.

ui+1... ...

+
vi = g0ui + g1ui−1 + ... + grui−r

 ui−r

gr

g1

g0

ui ui−1

Figure 13.21 Feed Forward Shift Register to output successive coefficients vi of xi in
a polynomial product v(x) = g(x)u(x).

With the arrangement of Figure 13.21, the product v(x) = g(x)u(x) is revealed by the
succession of output digits vi = g0ui + g1ui−1 + · · · + gr ui−r , this formula giving the
coefficient of xi in the product. On each tick, the sequence u is shifted one further stage and
vi is computed and output. Figure 13.22 shows steps in encoding the information digits
I3 I2 I1 I0 for the Hamming code of Example 13.42, by multiplying I (x) by the generator
polynomial g(x) = 1 + x + x3. It encodes I3 . . . I0 = 1110 into c6 . . . c0 = 1100010.

+ + +

11 1 01

010

110

1100010
(a) (b) (c)

Figure 13.22 (a) LFSR for multiplying u(x) by 1 + x + x3, (b) the result after three
ticks in the case u(x) = I (x) of degree 3, where I3 I2 I1 I0 = 1110, (c) the same, after
seven ticks.

Exercise Check the output above, i.e. multiply the two polynomials by hand (see Figure
13.20).

BCH codes

Let n be a positive integer and N = 2n − 1. We show how to construct, for every positive
integer t with 2t + 1 < N , a cyclic code of length N which corrects t errors. There
are several equivalent possibilities, all said to be of type BCH(N , t). We construct the
code by defining a generator polynomial and show by use of a pcm (13.43) that the
minimum weight/distance is at least 2t + 1, sufficient for correcting t errors (Theorem
13.41). Referring to Definition 13.51, let the primitive polynomial p(x) define a field F =
{0, α, . . . , αN−1 (= 1)} and, in a slightly extended version of a minimal polynomial, let
g(x) be the Mod 2 polynomial of least degree whose roots include all powers ofα up toα2t .

Now g(x) is, by Theorem 13.54 (ii), the product of all Mαi (1 ≤ i ≤ 2t) after any
repetitions are deleted (see Example 13.59 below). Thus, g(x) need not be irreducible
but there holds for any Mod 2 polynomial f, that f (αi ) = 0 (1 ≤ i ≤ 2t) if and only if g| f .
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Theorem 13.58 The cyclic code C with generator polynomial as above has a pcm the
2t × (n − 1) matrix H = [αi j ], 1 ≤ i ≤ 2t, 0 ≤ j ≤ n − 1, and hence minimum weight
2t + 1.

Proof Note that row i of H is [1 αi α2i . . . α(n−1)i ], whose elements are the ith powers
of the similarly placed elements [1 α α2 . . . α(n−1)] of row 1. We argue that H is a pcm,
for if c(x) is a binary n-vector then

c is in C ⇔ g(x)|c(x) by Theorem 13.56
⇔ c(αi ) = 0 (1 ≤ i ≤ 2t) by Theorem 13.54 (ii)
⇔∑

j c j (αi ) j = 0 (1 ≤ i ≤ 2t) by definition of c(x)
⇔ (row i of H )cT = 0 (1 ≤ i ≤ 2t) by definition of H
⇔ HcT = 0.

Thus H is a pcm of C as defined by g(x). Now we must show that wmin ≥ 2t + 1. Let r
be an integer satisfying 1 ≤ r ≤ 2t . Then any r × r determinant from the first r rows of
H is of Vandermonde type:∣∣∣∣∣∣∣∣

e1 e2 . . . er

e2
1 e2

2 . . . e2
r

. . . . . . . . . . . .

er
1 er

2 . . . er
r

∣∣∣∣∣∣∣∣
= e1e2 . . . er

∏
i> j

(ei − e j ) (13.61)

(see Examples 7.31), which is nonzero because the ei are nonzero and distinct. Hence
(Rules 7.28) the chosen r columns of H are linearly independent. Since this holds for each
r, from 1 to 2t , it follows that any set of dependent columns has size at least 2t + 1. But
HcT = 0 is a linear relation between w(c) columns, and so wmin ≥ 2t + 1 as required.

On the other hand, the generator polynomial, of degree 2t , provides a codeword 1 · g(x)
of weight w ≤ 2t + 1, and so 2t + 1 is the exact minimum weight.

Example 13.59 Find a generator polynomial/matrix for the BCH(15, 3) code obtained
from the primitive polynomial x4 + x + 1. Encode the message bits 10110.

Solution Since t = 3 the generator polynomial is the minimal polynomial of
{α, α2, . . . , α6}, namely, by the comments above Theorem 13.58, g(x) = Mα Mα3 Mα5 =
10011 × 11111 × 111 (Table 13.7) = 10100110111, of degree 10, whence k = 15 −
10 = 5. Note that in Formula (13.60) the order of coefficients is reversed to g0g1 . . . ,

giving in this case

G =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 1 1 0 0 1 0 1
1 1 1 0 1 1 0 0 1 0 1

1 1 1 0 1 1 0 0 1 0 1
1 1 1 0 1 1 0 0 1 0 1

1 1 1 0 1 1 0 0 1 0 1

⎤
⎥⎥⎥⎥⎦ , (13.62)

where empty spaces signify zeros. The encoding is [10110]G = 110010100001110.
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Remark 13.60 BCH codes have minimum distance δ = wmin (see Theorem 13.41(iii))
= 2t + 1 = deg g(x) + 1, hence the dimension is k = n − deg g(x) = n − δ + 1, or δ =
n − k + 1. This can be shown to be the greatest possible value of δ for a linear code with
given values of n, k (hint: HcT = 0 is a linear relation amongst w(c) columns of H, and
k = n − r (H )). Codes such as those of BCH type satisfying δ = n − k + 1 are therefore
said to be maximum distance separable, or MDS.

Decoding BCH codes Suppose a codeword c is corrupted into the received word R.
We calculate the syndrome S(x) = S1 + S2x + · · · + S2t x2t−1, noting that subscripts are
shifted one from the usual numbering, where Si = [row i of H ]RT =∑

R jα
i j ( j =

0, . . . , n − 1). It follows that S2i = S2
i , a useful aid to calculation. Further, R is (by

definition of pcm) a true codeword if and only if S(x) is the zero polynomial, and we
may hope that a nonzero S(x) will contain useful information about the errors in R.

In fact, S(x) determines all error positions after an application of the Euclidean Al-
gorithm to S(x) and x2t . For notation, if a polynomial f1 be divided into a polynomial
f2, we denote the quotient and remainder respectively by Quot( f1, f2) and Rem( f1, f2).
Then a sequence of quotients {qi }, remainders {ri }, and an auxiliary sequence {ti } are
constructed as follows.

Initial values r−1 = x2t , r0 = S(x), t−1 = 0, t0 = 1.

Repeat for i = 1, 2, 3, . . .

qi = Quot(ri−1, ri−2)

ri = Rem(ri−1, ri−2)

ti = qi ti−1 + ti−2

Until deg(ri ) < t. Set L = i. (13.63)

The Error Locator Polynomial is σ (x) = tL , and the error positions are those j for which
α− j is a root of σ (x). A general algorithm for finding such roots in given in Pretzel
(1992).

Example 13.61 A BCH(15, 2) code is defined by a primitive polynomial x4 + x +
1. A codeword is transmitted and received with a maximum of two errors, as R =
1001110 . . . 0. We decode completely the word R, using Table 13.5 to add the various
powers of α. The syndrome coefficients are

S1 = [row 1 of H ]RT = 1 + α3 + α4 + α5 = α6,

S2 = S2
1 = . . . = α12,

S3 = (cubes from row 1) = 1 + α9 + α12 + α15 = α8,

S4 = S2
2 = α24 = α9.

Enhanced shorthand It is convenient to use the enhanced notation [dn . . . d0] to denote the
polynomial in which xi has coefficient αdi , reserving the symbol ∗ for zero coefficients:
an actual zero di signifies α0, or unity. Note that α15 = 1. The Euclidean Algorithm
calculation proceeds as in Table 13.8.



13.2 Error-correcting codes 489

Table 13.8. Stages in the Euclidean algorithm calculation
for {qi , ri , ti }.

i qi ri ti

1 [6 5] [8 7 11] q1

2 [1 ∗] [6] 1 + q1q2 = 1 + (α6x + α5)αx = [7 6 0]

By the time the table extends to line L = 2 the remainder polynomial has degree
less than 2, in fact degree 0, so we stop. The roots of the error locator polynomial
σ (x) = tL = α7x2 + α6x + 1 can be found by trying each power of α until a root λ is
found, then considering σ (x)/(x − λ). Alternatively, we note that by (13.57) the roots
λ, µ of σ (x) = ax2 + bx + c satisfy λ+ µ = −b/a = α14, λµ = c/a = α8, and then
use Table 13.5 to find which of the allowed products α · α7, α2 · α6, . . . has sum α14. In
fact the roots are α (= α−14) and α7 (= α−8), so the error positions are 8, 14 and the
corrected codeword is c = 100111001000001. To complete the decoding we need the
code’s generator g(x), the minimal polynomial of {α, α2, α3, α4}, which by Table 13.7
is 10011 × 11111 = 111010001 (top bits to left). Then the information bits are given by
I (x) = c(x)/g(x) = x6 + x5 + x3 + 1, or in codeword notation 1001011.

Reed–Solomon codes

These codes are especially effective for correcting an error burst, or sequence of suspect
bits. Like the BCH codes they have been well-used in practice. Starting with a finite
field F of order 2n with a primitive element α, we generalise from BCH(n, t) to Reed–
Solomon type RS(n, t) by allowing coefficients of g(x) and codeword entries to lie in F
rather than be restricted to Z2. The number of entries corrected is still t, but each entry
takes in n successive bits which are corrected with that entry. We note two differences in
calculation.

1. It is not now necessary for g(x) to have all conjugates of a root as roots. Thus g(x) = �i (x −
αi ) (1 ≤ i ≤ 2t), of degree 2t only, but Formula (13.57) applies.

2. The Error Evaluator Polynomial w(x) = rL gives the required error Ei at position i, corre-
sponding to a root β = α−i of S(x), by

Ei = w(β)/σ ′(β), (13.64)

where σ ′(x) is the formal derivative of σ (x) with respect to x. That is, d/dx(xr ) = r xr−1. For
example, d/dx (ax2 + bx + c) = b, since 2ax = 0.

Example 13.62 A Reed–Solomon code of type RS(7, 2) is obtained over the field F
of order 8, using the primitive polynomial x3 + x + 1. In the usual notation: (i) encode
the information word [α 0 1] and express the result in binary form, (ii) a corrupted
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codeword is received as

R = [α3 α 1 α2 0 α3 1]

after error bursts that affect at most two of the seven coordinate positions; determine the
original codeword, (iii) what input word produced this codeword?

Solution The field is F = {0, α, α2, . . . , α7 = 1}, where α3 = α + 1. Sums of powers
of α, and hence also the binary form of codewords, may be read from the computed
Table 13.9.

Table 13.9. Powers of α as polynomials with coefficients abc,
deduced from α3 = α + 1.

i 1 2 3 4 5 6 7

αi 010 100 011 110 111 101 001

(i) For encoding we determine the generator polynomial g(x) = �i (x − αi ) = x4 +
σ1x3 + σ2x2 + σ3x + σ4, where σ1 = α + α2 + α3 + α4 = α3, σ2 = α3 + α4 + α5 +
α5 + α6 + α7 = 1 (note α5 + α5 = 0), σ3 = α9 + α8 + α7 + α6 = α, and finally σ4 =
α10 = α3. In enhanced shorthand g(x) = [0 3 0 1 3]. Then c(x) = I (x)g(x), or in
matrix form

c = [
α 0 1

] ⎡⎣α3 α 1 α3 1
α3 α 1 α3 1

α3 α 1 α3 1

⎤
⎦ = [

α4 α2 1 α2 α3 α3 1
]
.

The binary form of this codeword is, from Table 13.9, 110100001100011011001.
(ii) We first calculate the syndrome S(x) = S1 + S2x + S3x2 + S4x3, where

S1 = [row 1 of H ]RT = [1 α . . . α6]RT = α3 + α2 + α2 + α5 + α8 + α6 = α3,

S2 = [row 2 of H ]RT = [1 α2 . . . α12]RT = α4, similarly S3 = α4, S4 = 0.

In the notation of (13.63), r0 = S(x) = [4 4 3], r−1 = x2t = x4. By stage L = 1, the
remainder has degree less than t (= 2), in fact q1, r1, t1 equal respectively [3 3 5],
[0 1], [3 3 5]. Thus the error locator polynomial is σ (x) = t1 = α3(x2 + x + α2),
and the evaluator polynomial is w(x) = r1 = x + α. We shall find the roots of σ (x) by
trying all powers of α:

i 0 1 2 3 4 5 6
σ (αi ) α5 α4 1 α4 0 0 1

The error positions are thus 7 − 4 = 3 and 7 − 5 = 2. To determine the actual coordinate
errors Ei we apply (13.64), noting that α′(x) = α3.

E2 = w(α5)/σ ′(α5) = (α5 + α)/α3 = α6/α3 = α3,

E3 = w(α4)/σ ′(α4) = (α4 + α)/α3 = α2/α3 = α6.
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Adding these to positions 2, 3 of R we obtain the corrected codeword c =
[α3 α α 1 0 α3 1]. The addition expressed in binary is

R = 011 010 001 100 000 011 001
E = 000 000 011 101 000 000 000

. . .

c = 011 010 010 001 000 011 001

(iii) The input word corresponding to c is c(x)/g(x). Noting that in shorthand notation the
coefficients of higher powers go to the left, we obtain [0 3 ∗ 0 1 1 3]/[0 3 0 1 3] =
[0 ∗ 0], or as a binary input word, 001000001.

Exercise How long a bit error burst can the RS code above be certain to correct?

13.2.5 Aiming for the Shannon prediction

We remarked at the end of Section 13.1 that the search for good codes has focussed
on those with extra structure, especially linearity, with a view to an easily implemented
description of the code and its decoding method. In particular, the structure of finite
fields has given us the practical Hamming, BCH, and Reed–Solomon codes. These all
have fixed length n (and are therefore called block codes), dimension k, and hence fixed
rate R = k/n. Each will correct a certain fixed number of errors in a codeword with
certainty. Beyond this, as channel noise increases so does the probability of decoding
error. But Shannon’s Coding Theorem says that the probability of decoding error can be
made arbitrarilty small (for any rate below capacity). This leads us to consider sequences
{C (i)} (i = 1, 2, 3, . . .) of linear codes with, say,

length ni , dimension ki , minimum distance di ,

where ni become arbitrarily large as i increases. We regard the behaviour of di/ni as
measuring the goodness of a code, and look for sequences of codes for which both
this ratio and the rate Ri = ki/ni approach positive constants as i tends to infinity. This
proved elusive and was widely regarded as unattainable up to about 1972. For example the
Hamming codes of Construction 13.44 form a sequence {C (m)}, where n = 2m − 1, k =
n − m and d = 3, whence Rm:= (2m − m − 1)/(2m − 1) → 1 as m →∞, which is very
satisfactory; but unfortunately, because d remains constant, we have d/n → 0. The BCH
codes, with reduced rate, but better error-correction and practical decoding, nevertheless
fall at the d/n hurdle, with d/n → 0. Similarly for the Reed–Solomon case.

Construction 13.63 (Justesen codes) It was a considerable surprise when Justesen (1972)
presented his sequence of codes derived in an ingenious yet simple way from a sequence
of Reed–Solomon codes RS(m) in which, for given m and limit rate R < 1/2 the code
RS(m) has

length N = Nm = 2m − 1,

dimension K = Km = Min{K: K/2N ≥ R},
minimum distance d = dm = N − K + 1. (13.65)
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Gilbert bound H−1(1 − R)

Justesen codes

Hamming codes

BCH codes
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Figure 13.23 The presence of the curve known as the Gilbert bound implies that
sequences of codes exist with the limit pairs above the curve, but the proof is non-
constructive. The Justesen code graph points fall below but, unlike those for previous
codes, they do rise above the horizontal axis.

The minimum distance formula above follows for RS codes in a similar manner to BCH
codes (thus they, like the BCH codes, are maximum distance separable). The purpose
of the dimension formula will appear shortly. Let α be the primitive element of the
field F of order 2m that defines RS(m). For each codeword a = (a0, . . . , aN−1) of RS(m),
we construct a codeword c = (c0, . . . , cN−1) of a new code C (m) by replacing a j by
the pair c j = (a j , α

j a j ) ( j = 0, 1, . . . , N − 1). A useful point to notice is that ci =
c j �= 0 ⇒ αi = α j ⇒ i = j . Thus all nonzero entries of c are distinct, and furthermore
the code is linear over F because the multiple αj appears precisely at the jth pair c j .
Expressing elements of F as m-bit binary words, we have the Justesen code C (m), of
length n = 2m(2m − 1).

On the other hand the rate is Rm = K/2N which, with K as defined in (13.65), implies
that Rm → R as m →∞ since k/2N becomes an ever closer rational approximation to
R. Justesen proved the following result.

Theorem 13.64 For any rate R with 0 < R < 1/2 there is a sequence of Justesen codes
C (m) with Rm → R as m →∞ and lim

(m→∞)
dm/nm ≥ (1 − 2R)H−1(1/2).

Remarks 13.65 (1) Justesen proved a similar result for 1/2 ≤ R < 1 by a modification
for the construction we have outlined. (2) In Figure 13.23 we graph the pairs (Lim
Rm , Lim (d/n)) for Hamming, BCH, and Justesen codes, along with the Gilbert bound
(Sloane and MacWilliams, 1977).

Gallager codes As early as 1962 Gallager introduced his codes (Gallager, 1963), based
on a probabilistic approach with sparse matrices. However, his decoding method was
impractical in computing terms at the time and the codes lay largely forgotten for a
further 35 years, to be rediscovered by MacKay and Neal (1997). The problem is to
account theoretically for the excellent results these codes give in practice. Meanwhile,
in investigating what turned out to be a special case of Gallager codes, Sourlas (1989)
discovered a fruitful connection with statistical physics, currently exploited by various
other workers also. See e.g. Kabashima and Saad (1998, 2004).
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Turbocodes Whereas Justesen codes (Justesen, 1972) can be viewed as produced by a
process of ‘concatenation’ of RS codes with a simple code, the turbocodes of Berrou,
Glavieux and Thitimajshima (1993) are found by combining two or more codes of the
type known as convolutional, in which instead of codewords of fixed length one uses a
continuous bit stream. A useful further reference is Frey (1998). Turbocodes appear to be
the best presently known, and are currently being implemented in the communications
field. We introduce both types after preparing for their decoding with the necessary study
of belief propagation, in the next section, 13.3.

13.3 Probabilistic decoding

The success of the codes and decoding methods we have described in detail so far is
largely due to their inbuilt algebraic structure. Decoding, after the passage through a noisy
channel, uses linear algebra over finite fields to operate nearest neighbour decoding. These
are excellent methods, but an opportunity is lost when the received signal is quantised
to, say, 0 or 1. Suppose, for example, that we are allowed to retain the actual signal value
and it is 0.2; then, instead of simply interpreting this as 0, we can use it as evidence in a
probabilistic analysis.

There are two main approaches, (i) the maximum likelihood, or ML, method for
binary words (see e.g. Lin and Costello, 1983), and (ii) maximum a posteriori (MAP)
determination for each bit variable zk , given the vector e of all available data. The MAP
method utilises knowledge of the pdf p(zk |e) for each k.

In proceeding with this approach our first task is to show how these pdfs may be
obtained from a Bayesian network of the relevant probabilities by belief propagation
(Pearl, 1997, Frey, 1998) as henceforth described. We remark that, though introduced
here in time for its application to error-correcting codes, the method is of increasing
importance in vision (see the Bayesian image restoration techniques of Section 11.4.6),
and we shall have this in mind, though reserving further applications to their appropriate
place.

13.3.1 Belief propagation in Bayesian networks

For a fuller introduction to Bayesian networks we refer to Section 11.4.4, especially
Notation 11.70ff and Definition 11.72ff to which the reader may wish to refer, but here
is a short recapitulation. A Baysesian network for random variables v1, . . . , vn consists
of (i) a Directed Acyclic Graph, or DAG, with nodes labelled by the vk , and (ii) a set
of corresponding probability functions p(vk |uk), with uk as the set of all parents of vk ,
satisfying what we may call the separation property

p(vk |uk ∪ w) = p(vk |uk) (13.66)

for any set w of non-descendants of vk (this excludes vk itself). Notice that if vk is a
source node, one without parents, then p(vk |uk) reduces to p(vk). With this proviso, a
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WUT
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Figure 13.24 A simple Bayesian network. The end-nodes consist of source nodes
X, Y, Z and a terminal node W. The belief network problem is to compute p(u|x, y, z, w)
for every internal node such as u. Notice that the subnetwork T, U, V, W is a Markov
chain.

joint pdf is given by the product of the probability functions,

p(v1, . . . , vk) =
n∏

k=1
p(vk |uk). (13.67)

Thus, all probabilistic questions about the vk can in principle be answered from the net-
work, and the local nature of the factors, each depending only on a small ‘neighbourhood’
of variables, may greatly reduce computation. Markov chains (Section 11.4) are a special
case.

Now for belief propagation We use the following metaphor. The expressions Belief
(x) = p(x |e), to be determined, quantify our belief about internal nodes x in the light of
evidence e, the vector of all end-node variables.

The source nodes are referred to as causal evidence; their pdfs are supplied from prior
beliefs about, say, an image formation or bit encoding process, whilst the terminal nodes
are called diagnostic, say bit or pixel values as actually measured (observed, instantiated).
After some preliminaries we arrive at the Forward–Backward Algorithm for propagating
information from the end nodes across the network via the probability functions; in other
words, for belief propagation.

Examples 13.66 (i) Conditioning on another variable Given a Bayesian network, we
can obtain for any two variables X, Y of the network, a matrix Q = Q XY = [p(y|x)],
whose x, y entry is p(y|x). To do so, we sum the joint pdf (13.67) over all other variables
to obtain p(x, y), sum p(x, y) over y to get p(x), then take p(y|x) = p(x, y)/p(y). A
standard formula is then

p(y) =
∑

x
p(y|x)p(x), or [p(y)] = [p(x)]Q XY (13.68)

where, as usual, [p(y)] is a row vector specifying the pdf of Y (see Notation 13.6). We
refer to this as conditioning any variable, y, on any other variable, x.

(ii) Using a subnetwork Suppose we wish to determine p(t |x) in Figure 13.24. In
keeping with the comment below (13.67), this can be found by considering only the
variables x, y, z, t because, with the probability functions relating them, they form a
subnetwork that is itself Bayesian (more on this principle shortly). Thus p(x, y, z, t) =
p(x)p(y)p(z)p(t |x, y, z). As a check we may obtain this formally from the corresponding
expression for the full p(x, y, z, t, u, v, w) by summing over u, v, w (Exercise 13.16).
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Then for p(t |x) we have

p(t |x) = p(x, t)/p(x) =
∑

y,z
p(x, y, z, t)/p(x) =

∑
y,z

p(y)p(z)p(t |x, y, z).

(iii) Markov chain reduction We need two results for successive X, Y, Z in a Markov
chain which hold even if there are other variables between them: X → · · · → Y
→ · · · → Z . The first says that we can condition p(z|x) on any variable Y between
X and Z, in a Markov chain.

p(z|x) =
∑

y
p(z|y)p(y|x), (13.69a)

p(z|x, y) = p(z|y). (13.69b)

These are immediate because removing any variable from a Markov chain leaves another
Markov chain. We have established this for first and last variables in (11.63) of Chapter
11. Now we’ll prove it for an interior variable such as W in a chain X1 . . . Xm W Y1 · · · Yn .
If we write x = (x1, . . . , xm) for brevity, it suffices to verify that p(y1|x) = p(y1|xm).
We have p(y1|x) = p(x, y1)/p(x)

=
∑

w
p(x, w, y1)/p(x) =

∑
w

p(x)p(w|xm)p(y1|w)/p(x)

=
∑

w
p(y1|w)p(w|xm),

which equals p(y1|xm), as required, since the triple Xm W Y1 is Markov.

Remarks 13.67 Continuing to use γ for a normalising constant determined by its context,
we collect here some useful formulae for random variables A, . . . , Z . The value of γ

may be inferred in the first two cases by summing the right hand side over x and equating
the result to 1. The third reduces to (13.69a) if X, Y, Z form a Markov chain, and this
may be a useful way to remember it. We will use these formulae extensively in what
follows.

p(x |a) = γ p(a|x)p(x) (Bayes), γ = p(a)−1, (13.70a)

p(x |a, b) = γ p(a|x, b)p(x |b), γ = p(a|b)−1, (13.70b)

p(z|x) =
∑

y
p(z|x, y)p(y|x), (‘non-Markov’) (13.70c)

Proof (b) By definition of conditional probability we have p(x |a, b) =
p(x, a, b)/p(a, b) = p(x, a, b)/p(x, b) × p(x, b)/p(b) × p(b)/p(a, b) = p(a|x, b) ×
p(x |b)/p(a|b).

Exercise Derive (13.70c) by noting that p(x, z) is the sum of p(x, y, z) over y (Exercise
13.17).

Assumption 13.68 For the duration of Section 13.3 we shall assume our Bayesian net-
works to be singly connected; that is, that there are no cycles even in the underlying
undirected graph, where edge directions are discounted. This graph is therefore a tree,
with a unique undirected path between any two points. With directions restored, the path
might look like this: A → B → C ← Z . However, to establish some ideas, it is helpful
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e+ … … e−U X Y

λ (y)λ (x)

π(x)π(u)

Figure 13.25 The Markov chain case of a Bayesian network.

to begin with the special case of a Markov chain. (For an approach to cycle inclusion,
see e.g. Frey and MacKay, 1998.)

Markov chains and message passing

Let us assume the network is a Markov chain. Thus there are a single causal node e+ and
single diagnostic node e−, as in Figure 13.25. Belief(x) is determined from a purely causal
part π (x) = p(x |e+) and diagnostic part λ(x) = p(e−|x). These in turn are determined
by the corresponding π, λ of the neighbours of x which, we say metaphorically, pass
them to node x as messages. We imagine each node to have a memory and processor unit,
and that a node’s memory is always online to its neighbours.

Message passing essentially originates at the end-nodes, and an effective algorithm
is one which does this in a coherent way, with each message sent exactly once. The
following result handles the Markov case, with the implied message passing illustrated
in Figure 13.25, where passing the π messages forward from the left, then the λ mes-
sages backwards from the right, enables Belief(· · ·) to be computed for each internal
node.

Theorem 13.69 Let U → X → Y be part of a Markov chain from e+ to e−. Then
with the definitions π (x) = p(x |e+), λ(x) = p(e−|x), and Belief (x) = p(x |e+, e−), we
have

Belief(x) = γ λ(x)π (x), (13.71)

[λ(x)] = [λ(y)]QT
XY , and [π (x)] = [π (u)]QUX . (13.72)

Proof Applying (13.70b) to the definition of Belief(x), with a, b = e−, e+ (note the
order), we have

Belief(x) = γ p(e−|x, e+)p(x |e+) by (13.70b)
= γ p(e−|x)p(x |e+) by (13.69b),
= γ λ(x)p(x) by definition, whilst, by (13.69a):

λ(x) = p(e−|x) =
∑

y
p(e−|y)p(y|x) =

∑
y
λ(y)p(y|x), as required,

π (x) = p(x |e+) =
∑

u
p(x |u)p(u|e+) =

∑
u
π (u)p(x |u), completing the proof.

Note 13.70 (i) (Numerical answers) Belief(x) has end-node variables as parameters. We
may compare the normal distribution’s p(x |µ) = γ exp[−(x − µ)2/2] with the param-
eter µ allowed to be itself a random variable. By message passing from these end-nodes
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Table 13.10. Starting the message off from an end-node E.

No. situation action

(i) E → X π (e) = p(e|e) = p(e), to be estimated
(ii) Z → E observe E = é, say. Estimate or use known λ (z) = p(é|z)
(iii) Z → E,

no observation
Assume all outcomes equally likely: [λ(e)] = [p(e|e)] =
γ [1 . . . 1]

we aim to reduce to zero the number of free (unfixed) parameters in Belief(x) for each
node X. Table 13.10 show how passing begins.

(ii) (Generic constants) In worked examples we may encounter the product of several
normalising constants named γ . We simply denote the unknown product also by γ , and
calculate it at the appropriate time.

(iii) (Independence) In proofs we will often wish to infer independence of a pair of sets
of random variables U , V from independence of a pair of super-sets A ⊇ U, B ⊇ V .
The argument may be expressed as follows. Let x, y, u, v be variables, or sequences
thereof, with p(x, u, y, v) = p(x, u)p(y, v). We must deduce that p(u, v) = p(u)p(v).
We have p(u, v) =∑

x,y p(x, u, y, v) =∑
x,y p(x, u)p(y, v) =∑

x p(x, u)∑
y p(y, v) = p(u)p(v), as required.

Example 13.71 (Adapted from Pearl, 1997) A murder weapon has been recovered from
a crime scene and sent for fingerprint testing. It is certain one of three suspects is the
guilty party. To analyse the likelihoods we use variables

X = the killer,
Y = the last to hold the weapon,

E = possible fingerprint readings.

Now, X generates expectations about the identity of Y, which generates expectations
about E. However, X has no influence on E once Y is known. Thus we may model the
probabilistic relationships by a Markov-type Bayesian network with message passing,
as indicated below.

The killer is normally the last person to hold the murder weapon, say 80% of the time,
and, assuming the other two suspects equally likely, this information is expressible by
the transition matrix with, as usual, rows x and columns y:

Q XY = [p(y|x)] =
⎡
⎣0.8 0.1 0.1

0.1 0.8 0.1
0.1 0.1 0.8

⎤
⎦ ,
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which is independent of the order 1, 2, 3 in which the suspects are listed. In this case
the fingerprint expert has identified a unique print é which is not submitted to the court.
Rather, he passes on a list that says he is 80% sure it came from the first suspect, 60%
sure it was from the second, and 50% sure it was from the third. These numbers do not
add up to 100%, but, normalised by suitable γ , they provide probability estimates. We
are in case (ii) of Table 13.10 (its z is our y), so we may take

[λ(y)] = [p(é|y)] = γ [8 6 5], γ = 1/(8 + 6 + 5).

Our causal node happens to be labelled X rather than E, but, guided by Table 13.10, case
(i), we produce, from the non-fingerprint trial evidence, estimates of the likelihood of guilt
of the respective suspects as 80%, 10% and 10%, that is [π (x)] = [0.8 0.1 0.1] (γ = 1).

Message passing Passing messages as depicted in the figure, we have by (13.72)

[λ(x)]= [λ(y)]QT
XY =γ

[
8 6 5

]⎡⎣0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

⎤
⎦=γ

[
0.75 0.61 0.54

]
,

and [π (y)] = [π (x)]Q XY = [0.8 0.1 0.1]

⎡
⎣0.8 0.1 0.1

0.1 0.8 0.1
0.1 0.1 0.8

⎤
⎦

= [0.66 0.17 0.17].

Most likely suspect Using the elementwise multiplication notation [a b] ◦ [x y] =
[ax by], we may represent Belief(x) = γ λ(x)π (x) in matrix form as
[Belief(x)] = γ [λ(x)] ◦ [π (x)] = γ [0.75 0.61 0.54] ◦ [0.8 0.1 0.1], resulting in
[0.840 0.085 0.070], and pointing to suspect 1 as the most likely murderer by far.

The last gun handler Without jumping to conclusions, let us determine belief as to which
suspect Y last touched the murder weapon. For this (see Note 13.70(ii)) we calculate
Belief (y) = γ λ(y)π (y), or in matrix form [Belief(y)] = γ [8 6 5] ◦ [0.66 0.17 0.17],
which equals [0.738 0.143 0.119], implicating the first suspect again.

Updating the evidence A new witness comes forward to say she saw the suspect else-
where at the estimated time of death, reducing the odds on his guilt from 80% to 28%
and causing a revision in π (x) to [0.28 0.36 0.36]. Passing the new π (x) message along
to node Y causes the following re-computation:

[π (y)] = [π (x)] Qxy = [0.30 0.35 0.35]

[Belief(x)] = γ [0.75 0.61 0.54] ◦ [0.28 0.36 0.36] = [0.337 0.352 0.311],

[Belief(y)] = γ [8 6 5] ◦ [0.30 0.35 0.35] = [0.384 0.336 0.280],

and now, although suspect 1 is most likely the last to handle the gun, suspect 2 is most
likely to have committed the crime.
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Belief networks in general

Suppose that, as in Figure 13.26, a Bayesian network G has a node X with parents
U1, . . . , Ur and children Y1, . . . , Ys . We adopt the notation now descibed.

V+: the set of vertices ‘above’ X, namely those joined to X via some parent. Then
V+ partitions into the sets V+

i of points joined to X by its parent Ui . The subset e+

of end-nodes in V+ partitions correspondingly into sets e+i ⊆ V+
i . In Figure 13.26 for

example, V+
1 includes T as well as U1, and e+1 includes T.

V−: the set of vertices ‘below’ X, those joined to X via some child. Corresponding
divisions to the case of V+ hold, with the plus sign replaced by minus. Thus e−1 in
Figure 13.26 includes the source node Z.

X

Y1

U1
Ur

…

…

Ys

T

Z

e+

e−

V+

V−

Figure 13.26 A node X whose parents are U1, . . . , Ur and children Y1, . . . , Ys . Because
the network is singly connected, X divides the nodes into the set V+ connected to X via
a parent and the set V− connected to X by a child. There is no edge joining V+ and V−.

Notes (i) These definitions of e+ and e− reduce in the Markov case to just one causal
and one diagnostic node. Here e+ and e− may each contain both types. (ii) It is important
that no two of the r + s sets Vi

+ and V−
j share a vertex/variable; indeed, such a vertex

would create a cycle through X, contrary to Assumption 13.68. (iii) If A, B are sets
of nodes/variables, we write A, B or (A, B) for their combination, e.g. (V+, x) and
(V+, V−).

Subnetworks

According to the notation for a Bayesian network described above, the parents of nodes
of (V+, x) all lie in (V+, x), which is therefore itself a Bayesian net, and we have (13.73a)
below. Further, the parents of V− lie in (V−, x), giving (13.73b), which says that (V−, x)
is a Bayesian net with X as a source node provided p(x) is supplied.

p(V+, x) = � probability functions of nodes of (V+, x), (13.73a)

p(V−, x) = p(x) � probability functions of nodes of (V−). (13.73b)

Thus both (V+, x) and (V−, x) are Bayesian networks, creating a kind of symmetry.
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X

Y1

U1
U3

Y2

U2

V2−V1−

V1+

V2+

V3+

Figure 13.27 Expanded version of Figure 13.26, in the case r = 3, s = 2. The parents
of V+

i nodes lie in V+
i , and those of V−

j lie in {V−
j , x}.

Theorem 13.72 The following equivalent results hold for V− and V+ and for these
replaced by respective subsets thereof:

p(V+, V−|x) = p(V+|x)p(V−|x) (symmetry), (13.74)

p(V−|x, V+) = p(V−|x) (X separates V−from V+). (13.75)

Proof Combining the two parts of (13.73) gives p(V+, x, V−) = p(V+, x) p(V−, x)/
p(x). Dividing by a further factor p(x) and applying the definition of conditional prob-
ability, we immediately obtain (13.74). Dividing instead by p(V+, x) gives (13.75), so
the results are equivalent. For replacement by subsets, see Note 13.70(iii).

Theorem 13.73 (Independence) We have the following independence results, in which
the first two hold also if each set V±

i is replaced by a subset of itself. For the third we
write u = (ui ) and e+ = (e+i ).

p(V+
1 , . . . , V+

r ) = �i p(V+
i ), (13.76)

p(V−
1 , . . . , V−

s |x) = � j p(V−
j |x), (13.77)

p(u|e+) = �i p(ui |e+i ). (13.78)

Proof For the replacement by subsets, see Note 13.70(iii). As illustrated in Figure 13.27,
the parents of V+

i lie in V+
i , which gives (13.76). Also

p(V−
1 , . . . , V−

s |x) = p(V−|x) = �(probability functions of V−) by (13.73b)

= � j (probability functions of V−
j ) see Figure 13.27

= � j [p(V−
j , x)/p(x)] see Figure 13.27

= � j p(V−
j |x).

This proves (13.77). We prove (13.78) in the case when no e+i coincides with Ui ; further
work handles this special case. Now, since ui , e+i are in V+

i , we have

p(u|e+) = p(u, e+)/p(e+)
= p(u1, e+1 , . . . , ur , e+r )/p(e+1 , . . . , e+r )
= �i p(ui , e+i )/�i p(e+i ) by (13.76)
= �i [p(ui , e+i )/p(e+i )]
= �i p(ui |e+i ).
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Ui

Yj

X

πX(ui)

λYj(x)

λY(x)

U

X

Y Z

πX (u)

λZ(x)

(a) (b)

Figure 13.28 (a) A node X must receive a λ message from each child Yi and a π message
from each parent Ui , (b) the case of one parent, two children.

Computing Belief (x)

The key definitions in the Markov case hold good with the enlarged meaning of e+ and
e−, namelyλ(x) = p(e−|x), π (x) = p(x |e+), and Belief(x) = p(x |e). To compute these,
the node X is passed messages as depicted in Figure 13.28 and defined at (13.79) and
(13.80). The results just obtained yield Theorem 13.74 below, enabling the calculation
to be described concisely. We define

πX (ui ) = p(ui |e+i ) for a parent Ui of X, (13.79)

λY j (x) = p(e−Y j
|x), for a child Y of X. (13.80)

Theorem 13.74 We have in the notation above that Belief(x) = γ λ(x)π (x), where, with
u = (u1, . . . , ur ),

λ(x) =
∏s

j=1
λY j (x), and π (x) =

∑
u

p(x |u)
∏r

i=1
πX (ui ). (13.81)

Proof The Markov case proof, that Belief(x) = γ λ(x)π (x), holds formally for the en-
larged meaning of e± because (13.75) says that X separates V− from V+. We have

Belief(x) = p(x |e) = p(x |e−, e+) = γ p (e−|x, e+) = p(x |e+) by (13.70b)
= γ p(e−|x)p(x |e+) by (13.75), separation
= γ λ(x)π (x) by definition.

λ(x) = p(e−|x) = p(e−1 , . . . , e−s |x) by definition
= � j p(e−j |x) by (13.77), since e−j ⊆ V−

j

= � jλY j (x) by (13.80), whereas

π (x) = p(x |e+)

=
∑

u
p(x |u, e+)p(u|e+) by (13.70c)

=
∑

u
p(x |u)p(u|e+) by (13.66)

=
∑

u
p(x |u)�i p(ui |e+i ) by (13.78)

=
∑

u
p(x |u)�iπX (ui ) by (13.79).
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The levels method

Referring to Figure 13.28 above and the formulae of (13.81), notice that the calculation
of λs does not require knowledge of πs, and vice versa. Further, λ for X is computed
from child λs and parent πs. An algorithm for computing them all must therefore satisfy:

λ is computed for each child of X before λ(x) itself, (13.82a)

π is computed for each parent of X before π (x) itself, (13.82b)

every λ, π is computed exactly once. (13.82c)

Suppose for simplicity that our network allows only single parents. Then, starting from
any node and proceeding against the arrows, we come to a unique source node S which
we shall take as root, with all its arrows pointing downwards as in Figure 13.29(a). The
level of each vertex V is its distance from S, the number of edges in the unique S–V
path.

S

U

Y

T

W X

Z A

T

W X

Z A

level

1

2

3

level

1

2

3

S

U V

Y(a) (b)

V

Figure 13.29 (a) A single parent network with root at source node S, showing the nodes
level by level, (b) the same network with T selected as root. Notice how the subgraph
S, U, V, Y is preserved one level down.

A method satisfying (13.82) Calculate the λs in one level at a time, from bottom to top,
then the πs working from top to bottom. Does this work if we replace S as root by
another node T, as depicted in Figure 13.29(b)? Certainly condition (13.82c) holds still.
We must check that (13.82a, b) still hold in spite of any arrow reversals from down to up,
such as that of S → T . What happens in general is sufficiently illustrated in the case of
Figure 13.30.

λ1

λ2
π1

π2

S

T

W

(a) (b)

S

λ1 π2
λ2 π1

T

W

Figure 13.30 (a) Part of a Bayesian network, (b) the same with T as root node.

The order of computation in (a) is λ1, λ2, π1, π2 and in (b) it is λ1 and π1 in either
order, followed by λ2 and π2 in either order. Thus (b) correctly maintains the order of λ1
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Figure 13.31 Achieving in two stages (a) the downward passing of π messages, or (b)
the upward passing of λ messages. We see that (a) and (b) can be described in formally
identical fashion. For the ∗ notation see (13.83).

Figure 13.32 (a) Bayesian network, (b) its factor graph, (c) graph for Forward–Backward
Algorithm, with Y chosen as root. The extra nodes A, B, D correspond to Remark 13.75.

before λ2, and π1 before π2, and (13.82) remains true. Further, since a general Bayesian
network may be split into single-parent ones (cf. Figure 13.27), the method is valid in
this case too.

The factor graph

In search of an algorithm to implement Theorem 13.74 whilst keeping to the levels
method, we convert the Bayesian network to its factor graph as follows. We add a node
identified with each probability function. If node X has parents U1, . . . , Ur we denote its
probability function p(x |u1, . . . , ur ) by f A, say, add a node A (filled-in circle) and edge
A → X , and replace each edge Ui → X by an edge Ui → A. The principle applies also
to each child Y j of X and its parents (which of course include X).

The result is indicated in the expansion of Figure 13.28(a) to the two diagrams of
Figure 13.31; the conversion for a small but complete network is shown in Figure 13.32.
The new node/function symbols are taken from early in the alphabet, whilst variables
are denoted by later letters U, . . . , Z . The name factor graph is appropriate because the
new nodes specify the factorisation (13.67) of the network’s joint pdf. Introducing it
enables us to represent the two stages in message formation, implied by Theorem 13.74,
by messages along its edges, and to handle both λ and π messages by a prescription
which does not distinguish between them.

In Figure 13.31(a), the messages passed from U to A and from A to X are denoted
by respectively mU A and m AX . Similarly for part (b). In both cases (see also below) we
form a product g(w) of messages, then change variables by forming a sum f ∗g, where f
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is a probability function ( f A or fB), and the ∗ symbol denotes summation over variables
common to f and g:

( f ∗g)(v) =
∑

w
f (v, w)g(w). (13.83)

Three out of the four messages in Figure 13.31 are specified by Theorem 13.74. The
fourth, m B X , is the conversion ofλ(y) intoλ(x) by the summationλ(x) =∑

y p(y|x)λ(y);
where p(y|x) plays the role of fB(x, y). And now, comparing the two halves of Figure
13.31, we discover the remarkable fact that the same message-passing procedure can
be carried out for both λ and π , albeit in opposite directions. This single procedure is
formulated in Table 13.11.

Table 13.11. Deriving a message-passing procedure common to
both λ and π types.

λ mYB = ∏
C �=B

mCY mBX = fB ∗ ∏
Z �=X

mZB (Z is unique here)

π mUA = ∏
C �=A

mCU (C is unique here) mAX = f A ∗
∏

Z �=X
mZA

Both mXA = ∏
C �=A

mCX (X A = Y B or U A) mAY = f A
∗ ∏

Z �=Y
mZA (AY = AX or BX)

Remark 13.75 (i) End-nodes We can reduce the various end-node cases in Table 13.10
to one, in practice, by an extra function node A (see Figure 13.32, where A = D for the
terminal node Z ). To formulate this, let [δx,x ′] denote a pdf for X in which the probability
of every value is zero except for p(x ′) = 1. The schema is:

A X
mAX =  fA =

estimated pdf for X,  if X is a source node,
[δx, ′x ], if X is observed as x',
γ [11...1] if X is diagnostic but unobserved.

⎧
⎨
⎪

⎩⎪
Case

A X B

(ii) Nodes of degree 2 If node X is joined only to the function nodes
A, B (see right), we have a shortcut

mXB = mAX.

Proof From Table 13.11 we have m X B = �m DX (D �= B) = m AX .

Belief(x) We note finally that the earlier formulation λ(x)π (x) has become the product
of all messages arriving at X, and so we have the algorithm below, with normalisation
constant γ determined from

∑
x Belief(x) = 1.
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ALGO 13.1 The Forward–Backward Algorithm for belief propagation
in a Bayesian network (factor graph form)

1. Group the nodes in levels from a root, from right to left.
2. Perform message passing defined in Table 13.11, by levels, from

extreme left forward, then back.
3. Return: for each internal network node X,

Belief(x) = γ
∏
C

mCX (x).

Example 13.76 The dependent variables X, Y, Z take values 0, 1. The pdfs of X and
Y are both given a prior estimation of [0.9 0.1]. Given that fC (x, y, 1) = p(z = 1|x, y)
is the matrix S = [sXY ] with rows [0.001 0.135] and [0.250 0.600], use the Forward–
Backward Algorithm with root Y to determine Belief(x) and Belief(y) in the light of an
observation Z = 1.

Solution Figure 13.32 shows steps (a), (b), (c) in forming the graph we are to use for the
algorithm, with an extra node D catering for Z. Since Z is observed to take the second of
the two range values, we give it the pdf fD = [0 1]. We are given f A = fB = [0.9 0.1]
as initial estimates for the pdfs of X and Y. Notice that steps 1, 2 and 5 below use Remark
13.75(ii), and that we avoid unnecessary calculation in steps 5 and 6 (the steps are not
level numbers).

Forwards
1. m XC = m AX = f A = [0.9 0.1].
2. m ZC = m DZ = fD = [0 1].
3. mCY (y) =∑

x,z fC (x, y, z) m ZC (z) m XC (x) =∑
x p(z = 1|x, y) m XC (x), using m ZC (0) =

0. We can conveniently express this in matrix form because summation is over the first subscript
in S = [sxy]. In fact

mCY = m XC S = [0.9 0.1]

[
0.001 0.135
0.250 0.600

]
= [0.026 0.182] (three decimal places).

4. m BY = fB = [0.9 0.1].

Backwards
5. (mY B is not needed) mY C = m BY = [0.9 0.1].
6. (mC Z is not needed) mC X (x) =∑

y,z fC (x, y, z)mY C (y)m ZC (z) =∑
y f (x, y, 1)mY C (y),

whence mC X = mY C ST (summing over the second subscript in S)

= [0.9 0.1]

[
0.001 0.250
0.135 0.600

]
= [0.014 0.285] (three decimal places).

Belief The messages have been propagated. Finally, p(x |data) = Belief(x) =
γ mAX(x)mCX(x), or, in vector form, γ [0.9 0.1] ◦ [0.014 0.285] = γ [0.013 0.029] =
[0.31 0.69], whereas p(y|data) = γ m BY (y)mCY (y), or, in vector form, γ [0.9 0.1] ◦
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[0.026 0.182] = γ [0.023 0.018] = [0.56 0.44].

prior estimate updated belief
p(x) [0.9 0.1] [0.31 0.69]
p(y) [0.9 0.1] [0.56 0.44]

This is a fairly radical updating of the prior estimate for both cases, in the light of an
observed variable.

Exercise Repeat the forward step of Example 13.76 with X and Y having prior pdfs [0.8
0.2] (see Exercise 13.18).

The loopy case Although the Forward–Backwards Algorithm was established only for
a network with no cycles, it is found to work in practice if some cycles are present.
For progress in this case, see Frey and MacKay (1998) and McEliece and Yildirim
(2003).

13.3.2 Convolutional codes

Rather than encoding binary data in blocks, a convolutional code takes an incoming data
stream bit by bit and outputs in response two bits. These pairs are found by interleaving
(taking alternate members of) two sequences {an} and {bn}, produced simultaneously
from the original with the aid of a shift register. The code is called systematic if one
sequence is in fact a duplicate of the input, and non-recursive if the shift register is
used only in feed-forward mode (see Figures 13.21 and 13.22). Here is a non-recursive
example.

Example 13.77 Encode the bit stream u6 . . . u1u0 = 1011010 by the convolutional en-
coder shown in Figure 13.33.

un un−1 un−2u

+

+

{an}

{bn}

Figure 13.33 Convolutional encoding of an input sequence u = u0, u1, . . . The shift
register is represented by three successive squares and is used in feed-forward mode for
both sequences {an} and {bn}.

Solution In the convolutional code represented in Figure 13.33 we have, with ur = 0 for
r < 0 and r > 6,

c2n+1 = an = un + un−2,

c2n = bn = un + un−1 + un−2, (13.84)
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Table 13.12. First few and last few steps in encoding the bit stream u6 . . . u1u0.

register un un−1 un−2 Output a Output b

u0 0 0 a0 = u0 b0 = u0
u1 u0 0 a1 = u1 b1 = u1 + u0
u2 u1 u0 a2 = u2 + u0 b2 = u2 + u1 + u0
. . . . . . . . .
u6 u5 u4 a6 = u6 + u4 b6 = u6 + u5 + u4
0 u6 u5 a7 = u5 b7 = u6 + u5
0 0 u6 a8 = u6 b8 = u6

or in polynomial form a(x) = (1 + x2)u(x), b(x) = (1 + x + x2)u(x), c(x) = xa(x2)
+ b(x2).
The easiest way ‘by hand’ is probably to
perform polynomial multiplication for

1011010 u(x)

a(x), b(x), then to interleave their coefficients 101 1+x2

directly. The calculation is shown to the right.
The result is shown below, with an bold:

1011010
1011010
100110010 a(x)

c = (1101) 00101000011100 1011010 xu(x)
(The bracketed bits are appended as u leaves
the register, the first and last states being zero
(see Table 13.12).

110000110 b(x)

The state diagram as encoder

A natural first thought is to equate the encoder state with the register bits, but instead it is
more convenient to proceed as follows. When the shift register of a convolutional encoder
contains un . . . un−r , the state of the encoder is defined to be the binary word un−1 . . . un−r .
The input bit is then un . The encoder is (by definition) a Finite State Machine, because it
possesses a finite number of states, and the input and present state determine the output
and next state. This connection, which we must explore, is conveniently seen in a state
diagram, namely a directed graph with nodes s0, s1, . . . representing the possible states,
and a directed edge si → s j labelled un/anbn if input un and state si result in output anbn

and next state s j .

Example 13.78 In Figure 13.34 we give the state diagram for the encoder above, with
the necessary information first calculated in table form to the left, from (13.84).

To encode our bit stream u6 . . . u1u0 = 1011010 directly from the state diagram we
simply follow successive edges whose labels have first digits un = 0, 1, 0, 1, 1, 0, 1 (then
0, 0). The input starts with u0 = 0 when the initial state is 00. We locate the edge outwards
from this state whose label begins with 0 (= u0). The complete label is 0/00 so the output
is 00. Further, this edge returns to state 00. However, the next input bit u1 = 1 corresponds
to an outward edge labelled 1/11 so the output this time is 11. Now we have arrived at state
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Figure 13.34 State diagram for the convolutional encoder of Figure 13.33. The four
states are represented by squares. A transition in response to input bit 0 is represented
by a black arrow and response to input 1 by grey. An arrow labelled un/anbn denotes
a transition in which bit un is input and bits an, bn output. The given input stream is
followed by zeros.

10, from which u2 = 0 results in output 01. Continuing thus, and setting u7 = u8 = 0,
we obtain as before the codeword c17 . . . c0 = 11 01 00 10 10 00 01 11 00.

Exercise Encode u6 . . . u1 u0 = 0101001.

Trellis diagrams for decoding

For illustration we have discussed the encoding of a bit stream of length only 7. By con-
trast, in practice, the stream may contain many thousands of bits. But although there is no
theoretical limit on length, it will eventually terminate, and what is received after encod-
ing and transmission is a finite word R which we can regard as a corruption (potentially)
of an original finite codeword. We describe an ingenious technique for simultaneously
decorrupting R and recovering the original bit stream (later we’ll see how belief networks
fit in).

A trellis diagram for a convolutional encoder is a graph whose nodes consist of a
copy of those of the state diagram for each time/encoding step t = 0, 1, 2, . . . , with a
copy of each si → s j edge, now running from si at time t to s j at time t + 1. This has the
great advantage that an encoding corresponds to a path in the trellis diagram from t = 0
to the greatest value tmax. Figure 13.35 shows the trellis diagram derived from the state
diagram of Figure 13.34 for t = 0 to 7, the steps that handle an input stream of length 5.
Above it is placed a sample received word R.

For the states we use the notation A, B, C, D of Figure 13.34. Let xt be the node for
state x at time t . Then the path for a complete encoding starts at A0 and ends at A7,
because A is the all-zeros state. Notice that, by definition, each edge is part of a parallel
set corresponding to a single edge of the state diagram, one copy for each time step;
hence the name trellis. For decoding purposes we attach the output labels only to the
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Figure 13.35 A received vector R, followed by the trellis diagram derived from Figure
13.34, for decoding R. Every edge is reproduced for each time step. See the text for
details.

leftmost representatives. Thus the edge from At to Ct+1 is labelled with a small 11 in the
case t = 0.

The decoding of a sample received vector R proceeds as follows. We label each trellis
edge with the Hamming distance 0, 1 or 2 between the 2-bit output obtained on traversing
that edge and the corresponding bit pair of R. These distances may be verified for the
vector R shown above the trellis diagram, in which they have been inserted. Summed for
a path from A0 to A7, they give the Hamming distance of R from the codeword defined by
that path. For example, the path ACBACDBA gives distance 9 (the reader should check
this). The following result says that we should minimise this total distance to determine
the maximum likelihood original codeword.

Theorem 13.79 Let each input bit to a convolutional encoder be 0 or 1 with equal
probability 1/2, and have a fixed probability of transmission error p < 1/2. Then the
original codeword corresponds, with maximum likelihood, to a path through the trellis
diagram whose length (in the sense specified above) is minimal.

Proof We are assuming the discrete memoryless channel of Example 13.17 and so, if
the original codeword was c, of length N, and its Hamming distance from R was w, then
w bits were changed, in each case with probability p, and N − w bits were unchanged,
with probability 1 − p. Therefore we have the likelihood, similarly to (13.13),

p(y|c) = pw(1 − p)N−w (N -bit words). (13.85)

On the other hand, d/dw[log p(y|c)] = d/dw[w log p + (N − w) log(1 − p)] =
log p − log(1 − p) = log[p/(1 − p)], which is negative because 0 < p < 1/2 implies
p < 1 − p. This proves the theorem.
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Viterbi’s decoder Consider this observation. If, in a trellis diagram, node x is on a
minimal path from node v to node z, then the section of the path leading from v to x is
minimal; otherwise we could shorten it and so reduce the v–z path.

In keeping with Viterbi’s notation let the metric of a path (we have just been calling it
simply distance) be the sum of the distance labels along it. A survivor of a set of v–z
paths is one of least metric amongst them; by this definition there is always at least one
survivor! Now we can state the algorithm which gives maximum likelihood decoding for
a convolutional code, based on the preceding observation.

ALGO 13.2 (Viterbi) A path of least metric from t = 0 to
greatest time tmax of a trellis.

For t = 0 to tmax − 1 do
For each surviving path up to time t,
determine the metrics of extensions to time t + 1,
and keep only the survivors.

Example 13.80 We apply Viterbi’s algorithm to decode the received vector R of Figure
13.35. The successive steps are charted in Figure 13.36. At each stage of the iteration we
show possible path extensions, with surviving paths and their destination states indicated
in bold.

For example, two paths survive to time t = 1, but only one to t = 2. By t = 3
there are two survivors, a0a1c2b3 and a0a1c2d3. By t = 7 there is a unique survivor
a0a1c2d3b4c5b6a7. Following this path in the trellis diagram gives 00 11 10 10 00 01 11 as
the most likely correct codeword. The original input stream is easily obtained by following
the same order a0a1c2d3b4c5b6a7 in the state diagram, which gives u0 . . . u6 = 0110100.
Reversing the bit order, to compare with Figure 13.33, we have u6 . . . u0 = 0010110.
Since the encoder appends 00 to every codeword, the original bit stream was 10110. By
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Figure 13.36 Possible 1-step paths starting at times 0, 1, . . . , 6, with surviving paths
and their destination states shown bold.
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implication it is one of 25 = 32 possibilities and, inspecting the trellis diagram, we see,
by way of confirmation, that there are exactly 25 distinct paths from left to right.

Exercise What was the distance from R of the most likely codeword in the example
above?

13.3.3 Convolutional decoding by belief propagation

We outline the recent belief network approach to convolutional decoding. This time the
state of the encoder is taken to be the whole contents of the register, for omitting the first
bit as we did in the previous section results in (possibly undirected) cycles in the proposed
network, which is then not singly connected (see Assumption 13.68). The variables are
as follows. At time t we have input bit ut , state st , output bits c2t , c2t+1, and their possibly
corrupted versions y2t and y2t+1 after transmission through a noisy channel. We consider
firstly the case of a convolutional code that is systematic, that is c2n = un . The result is
Figure 13.37, with the probability functions to be defined below.

u0

s0

c0 c1 c2 c3 c4 c5

s1 s2

u1 u2

..........

y0 y1 y2 y3 y4 y5

Figure 13.37 Bayesian network for a systematic convolutional code (after Frey, 1998).
Removing the horizontal arrows reveals a sequence of connected units, each characterised
by the unique st node it contains.

Deterministic relations Of course, some of our variables depend on others in a de-
terministic way, but we can nevertheless incorporate such relations in the structure by
allocating probability 1 to outcomes which must be certain. This guarantees their oc-
currence, because ranges are finite. We can express the probability functions in a form
suitable for computer implementation by using the Kronecker delta function: δ(v, w) = 1
if v = w, and 0 otherwise. The result of this discusion is summarised in Table 13.13.

(i) States The encoder state at time t is by definition the sequence st = ut ut−1 . . . ut−M ,
where the integer M is called the encoder’s memory. Since st−1 = ut−1 . . . ut−M−1 we
may say that st is a function ρ of st−1 and ut , writing st = ρ(st−1, ut ), where ρ returns the
concatenation of ut and the first M bits of st−1. We convert this to a probability function
by the argument that, for t ≥ 1,

p(st |st−1, ut ) = p(St = st |St−1 = st−1, Ut = ut ) by definition
= 1 if st = ρ(st−1, ut ), otherwise 0 by probability
= δ(st , ρ(st−1, ut )) by definition.
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Table 13.13. Deterministic relations converted to probability functions for a class of
convolutional codes (systematic, non-recursive).

original probability function remarks

s0 = [u0 0 . . . 0] p(s0|u0) = δ(s0, u0) two values
st = ρ(st−1, ut ), p(st |st−1, ut ) = ρ: prefix ut to st , delete ut−M−1

t ≥ 1 δ(st , ρ(st−1, ut ))
c2t = ut p(c2t |ut ) = δ(c2t , ut )
c2t+1 = β · st p(c2t+1|st ) = δ(c2t+1, β · st ) β = (βi ), st = [ut ut−1 . . . ut−M ]

(ii) The sequences interleaved The equality c2t = ut becomes p(c2t |ut ) = δ(c2t , ut ),
whilst c2t+1 is a linear combination of the bits of st , which we may write compactly as a
dot product β · st , where β = (β0, . . . , βM ). Then p(c2t+1|st ) = δ(c2t+1, β · st )

Probabilistic relations Notice that, in the notation of Example 13.77, we have b(x) =
β(x)u(x). For the more obviously probabilistic part, we assume as usual that an input bit
is 0 or 1 with equal probability 1/2, and that a codeword bit is subject to channel error,
flipped between 0 and 1, with probability p < 1/2. In terms of vectors and matrices this
becomes

[p(ut )] = [1/2 1/2], (13.86)

[p(yt |ct )] =
[

q p
p q

]
(q = 1 − p). (13.87)

Applying the Forward–Backward Algorithm The code’s Bayesian/belief network
shown in Figure 13.37 consists of units like those of Figure 13.38, each unit joined to
the next by an edge st → st+1, whilst our objective is to determine the 2-value pdf p(ut |
the data) and hence the MAP estimate of ut , for each t involved. For this we proceed as
far as necessary with the Forward–Backward Algorithm. Notice that, in Figure 13.38,
function nodes are introduced in accordance with Remarks 13.75 as follows. Nodes A, H
incorporate the measured values of the received bits yi , whilst B, G supply the assumed
probability 1/2 of error in those bits. The function identified with D is the assumed pdf
[1/2 1/2] for each ut .

A
u0

B C

D

E

FGH
y1

y0

c1

u0c0

s0

Figure 13.38 The first st unit in the belief network of Figure 13.37, shown in factor
graph form. For more details, see the text.
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One way to implement the Forward–Backward Algorithm is, referring also to Figure
13.37:

(a) for each t, propagate forward to E and F for the unit, and store the results at St ,
(b) with the information from (a), propagate forwards along s0 → s1 → · · ·, then back to s0,
(c) for each t, propagate from st to ut (no more is needed).

Example 13.81 We perform step (a) in the case t = 0, supposing that the shift register
part has β0 = 1, and the transmitted bits are received as y0, y1, . . . = 1, 0, . . . Considering
Table 13.13, we have a complete list of the probability functions in matrix form after
noting that, with I2 as 2 × 2 identity matrix,

[p(c0|u0)] = I2 = [p(s0|u0)] = [p(c1|s0)]. (13.88)

The first two equalities are equivalent to the formulae p(c0|u0) = δ(c0, u0) and p(s0|u0) =
δ(s0, u0) from Table 13.13. For the third we observe that the matrix [p(c1|s0)] = [δ(c1, β ·
s0)] has rows indexed by s0, whose two possible values are (i) [00 . . . 0], giving c1 =
β · s0 = 0, and (ii) [10 . . . 0], giving c1 = β · s0 = 1.

The top layer of unit 0
(1) mY1G = m HY1 (Remark 13.75(ii)) = [1 0] (Remark 13.75(i)), since the observed value of y1

is the first value in its range (in this case, 0).
(2) mC1 F = mGC1 = mY1G[p(y1|c1)]T (the sum is over y1 since the result is a function of c1) =

[1 0]

[
q p
p q

]
(by (13.87)) = [q p].

(3) Similarly m F S0 = mC1 F [p(c1|s0)]T = [q p]I2 (by (13.88)) = [q p].

The second layer of unit 0
(4) mY0 B = m AY0 = [0 1], since the observed value of y0 is the second in its range.

(5) mC0C = m BC0 = mY0 B[p(y0|c0)]T = [0 1]

[
q p
p q

]
(by (13.87)) = [p q].

(6) mCU0 = mC0C [p(c0|u0)]T = [p q]I2 = [p q].
(7) m E S0 = mU0 E [p(s0|u0)] = mU0 E I2 = mU0 E

= mCU0 ◦ m DU0 = [p q] ◦ [1/2 1/2] = (1/2)[p q].

(Further short cuts are possible, though we do not pursue them here.)

13.3.4 Turbocodes

To describe the turbocodes of Berrou, Glavieux and Thitimajshima (1993), the remark-
able codes so close in performance to Shannon’s predicted optimum, we need a little
more on convolutional codes. Turbocodes are usually built by combining systematic
convolutional codes which are recursive.

This means that, although as before we interleave two sequences {an} and {bn},
of which an is a copy of the incoming bit un , and bn is produced by the register in
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feed-forward mode, there is a modification to the register input: it is now un plus a bit dn

obtained by linear feedback. The result is called an RSC code, for ‘recursive systematic
convolutional’. To illustrate this we have converted one feedforward part of the encoder
shown in Figure 13.33 into feedback, giving Figure 13.39.

+

+

+

un

dn

an

bn

vn vn−1 vn−2

Figure 13.39 Recursive systematic convolutional code (adapted from Figure 13.33).

Polynomial description The register bits are no longer taken from the input, so let us
denote them by vn, . . . , vn−M . Then feedforward coefficients g0 . . . gM determine the
output by ak =

∑
givk−i (0 ≤ i ≤ M) and the feedback coefficients f1 . . . fM invoke

the input by vn = un +
∑

fivn−i (1 ≤ i ≤ M), which may be rearranged (Mod 2) as
un =

∑
fivn−i (0 ≤ i ≤ M, f0 = 1). In polynomial terms a(x) = g(x)v(x) and u(x) =

f (x)v(x), from which we eliminate v(x) to obtain

f (x)a(x) = g(x)u(x). (13.89)

Example 13.82 Consider the recursive systematic convolutional code represented in Fig-
ure 13.39. Equation (13.89) becomes (1 + x2)a(x) = (1 + x + x2)u(x). Strictly speak-
ing, this is a result for infinitely long input sequence {un} and output {an}, because
we cannot in general divide the right hand side by 1 + x2 but must resort to using
(1 + x2)−1 = 1 + x2 + x4 + · · · .
Turbocodes Figure 13.40 represents a standard construction of turbocodes by using two
RSC codes C1, C2 in parallel, with a second characteristic feature, that of scrambling
the input before feeding it to the second RSC code C2. The scrambling is always a
form of interleaving, which means that we repeatedly buffer a fixed number of input bits
and send them on in a different sequence. This is crucial for the superb performance of
turbocodes.

A rough argument is as follows (see Berrou and Glavieux, 1996). We want to achieve
maximum scattering of the data; a certain bit may be corrupted, but hopefully there
will be bits at a safe distance which ensure correction. This, of course, goes with the
long codewords associated with the Shannon limit (Remarks 13.37). An approach in the
present context is that we want to create as many changes as possible in the (sequence-
wise) distances between pairs of input bits before sending them to the second RSC code.
Suppose we do this in sections of N = m2 bits. That is, we have a function d sending
1, . . . , N to the same set in a different order. Heegard and Wicker (1998) define a measure
of the effectiveness of this function, the dispersion γ (d), or proportion of pairs whose
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RSC code C1

RSC code C2

non-
uniform
inter-
leaving

un

un

dn

zn

yn

xn

Figure 13.40 A typical turbocode, the parallel concatenation of two RSC codes with
non-uniform interleaving. The variable xn plays the role of the systematic parts of both
RSC codes. The emerging output bits xn, yn, zn are interleaved in threes. The rate of the
turbocode is 1/3 since the output is three times as long as the input.

relative positions are changed. That is,

γ = | {(�x , �y) : �x = b − a, �y = d(b) − d(a), 1 ≤ a < b ≤ N }|/N C2, (13.90)

where |A| denotes the size of a set A (repeats are deleted, above) and N C2 = N (N − 1)/2,
the number of distinct pairs of integers lying from 1 to N.

Let us illustrate why non-uniformity is required. Uniform interleaving in this context
amounts to writing the first N = m2 integers row by row into an m × m matrix, then
reading them column by column. This gives, in case m = 3,⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦, and so 1, 2, . . . , 9 becomes 1, 4, 7, 2, 5, 8, 3, 6, 9. The dispersion is

|{{1,−5}, {1, 3}, {2,−2}, {2, 6}, {3, 1}, {4,−4}, {4, 4}, {5,−1}, {5, 7}, {6, 2},
{7, 5}, {8, 8}}|/36 = 1/3.

In fact, this innocent 1/3 disguises the fact that in the uniform case, dispersion tends
to zero as N increases (Exercise 13.22). By contrast, a truly random procedure yields
approximately γ = 0.81. Takeshita and Costello (2000) propose a non-uniform inter-
leaving which satisfies the criteria of (a) reasonably high dispersion at approximately
0.72, and (b) simple to implement, of little computational cost. We give a partial proof.

Theorem 13.83 Let k and r be positive integers, with k odd. Let N = 2r and define a
non-uniform interleaving d(m) = cm, where

cm = km(m + 1)/2 (reduced Mod N), 0 ≤ m < N . (13.91)

Then (i) cm may be computed in linear fashion, cm = cm−1 + km (Mod N ), and (ii) the
sequence {cm} has greatest possible period, N.

Proof (i) We have c0 = 0 and for m ≥ 1 we calculate cm − cm−1 = (k/2)[m(m + 1) −
(m − 1)m] = km, as required. For (ii), observe that cm+s − cm = (k/2)[(m + s)(m +
s + 1) − m(m + 1)] = (k/2)s(s + 2m + 1). We must show that this cannot be 0 Mod N ,
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that is, divisible by N , if 0 ≤ m < m + s < N (and s ≥ 1). First suppose that s is even.
Then not only k is odd (given) but also s + 2m + 1, so if N divides cm+s − cm then N
divides s, which is impossible because 0 < s < N . So assume that s is odd. But now if N
divides cm+s − cm then N divides m + (s + 1)/2, which is again impossible on grounds
of size, because s ≥ 1 implies m + (s + 1)/2 ≤ m + s.

For further analysis of turbocodes see Rusmeviechientong and Van Roy (2001).

13.4 Postscript: Bayesian nets in computer vision

In Section 13.3 we developed belief propagation in Bayesian nets, for their application
to codes for protecting transmitted data, including image data. But belief networks can
be an important tool in a probabilistic approach to computer vision itself when Bayesian
methods are to be used, typically in a high-level use under the heading of Image Under-
standing. Here are some examples.
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Figure 13.41 Radiograph of the human hand (Dartmouth College).
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Example 13.84 (Auto-detection of arthritic conditions in the hand, based on radio-
graphs) This proposed system by Levitt et al. (1993) points to the great potential of large
belief networks.

Objective The input to the system consists of X-ray pictures of a human hand. The output
consists of likelihoods of a variety of arthritic situations being present, or a statement
that evidence so far is insufficient for a reliable conclusion (or is contradictory).

Method A Bayesian belief network, updated by successive pieces of evidence obtained
by feature extraction (low-level image processing) from available radiographs. Included
in the system is a mechanism for predicting the presence of further features and testing
for them.

Model A 53-part 3-dimensional model is proposed, with pdfs for its parameters sourced
from statistics of the population at large. Typical items are dimensions and relative sizes
of the phalanges, the bones inside the digits (fingers and thumb), and metacarpals, the
bones of the palm. See Figure 13.41. There is a 2-level hierarchy describing relations (a)
between digits and their component metacarpals, and (b) between phalanges and their
surrounding entities.

Priors Based on the general population we estimate prior probabilities of the kind
P(phalanx information | evidence).

Further applications of belief networks

1. What kind of image? Jepson and Mann (1999).
2. 3D interpretation of images, Mann and Binford (1992).
3. Video surveillance. Park and Aggarval (2003).
4. Human motion analysis. Aggarval and Cai (1999).
5. Document analysis. Souafi-Bensafi et al. (2002).
6. Medical image segmentation. Levitt et al. (1993).
7. Analysis of aerial urban images. Jaynes et al. (2003).
8. Protein image analysis. Leherte et al. (1997).
9. Learning iris recognition. Freeman et al. (2002).

Further issues in channel coding

Zero-error capacity It is possible to find a channel capacity under the constraint that
noise be eliminated, according to Shannon (1956). An important contribution was made
with combinatorial techniques by Lovasz (1979).

Channels with memory As is common, we proved the Channel Coding Theorem for
memoryless channels. A recent application of channels with memory is in wireless net-
working. For theory in this case see e.g. Rossi et al. (2004) and references therein.
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Exercises 13

1
√

Let (X, Y ) be a discrete memoryless channel with input and output symbols {0, 1}. Suppose
that input 1 is twice as likely as input 0 and that, on the average, one in ten symbols 0 are
changed to 1 and twice as many the other way. (i) Construct a transition graph and matrix.
(ii) What is the likelihood of a successful transition? (iii) Use the formula [p(y)] = [p(x)]Q
of (13.4) to find whether more 0s or more 1s arrive over time.

2
√

Prove that an (X, Y ) channel satisfies (i) H (X, X ) = H (X ) = I (X ; X ), (ii) H (Y ) −
H (Y |X ) = I (X ; Y ).

3
√

A channel (X, Y ) with input/output alphabet {0, 1} satisfies [p(x)] = [1/2 1/2] and
P(Y = 0|X = 1) = P(Y = 1|X = 0) = 1/4. Determine (i) H (X ) and H (Y ), (ii) H (Y |X )
and I (X ; Y ).

4
√

The channel (X, Y ) has RX = {0, a,−a} (a �= 0), with pdf p = (1/2, 1/4, 1/4) and Y
determined from X by Y = X2. Show that Cov(X, Y ) = 0 but I detects the dependence:
I (X ; Y ) �= 0.

5
√

(a) Compute I (X ; Y ) for Example 13.20 with p = 0.2. (b) Prove (13.18b).
6
√

(i) Each matrix below is the transition matrix of a DMC. In any case that is sym-
metric, calculate the capacity Cmax. (ii) Let p1 + · · · + pr = 1 (pi ≥ 0). Prove that
H (p1/2, . . . , pr/2, p1/2, . . . , pr/2) = H (p1, . . . , pr ) + log 2. Hence explain the coinci-
dence of two answers in (i).

[
1/3 2/3

2/3 1/3

]
,

[
1/4 1/2 1/4

1/2 1/4 1/4

]
,

[
1/6 1/12 1/6 1/12 1/6 1/12 1/6 1/12

1/12 1/6 1/12 1/6 1/12 1/6 1/12 1/6

]
.

7
√

A code C has generator matrix G = Rows[Ri ] = Rows[01101, 11101, 11011].
(i) List all the codewords as linear combinations of the Ri . (ii) Deduce using (i)
that the rows of G are independent. (iii) Show that three nonzero codewords are indepen-
dent if no two are equal and their sum is not zero. (iv) Find a generator matrix of C that
involves no row of G. (v) Is the code C cyclic?

8
√

A code C has codewords y = y1 . . . y7 defined by yr = yr+2 + yr+3 + yr+4 (1 ≤ r ≤ 3).
(i) Write down the parity check matrix H and use row operations to convert H so that the
first three columns form an identity matrix (reduced echelon form). Write down the new
form of the equations. (ii) List eight codewords using (i), check that the code includes
1111111, and hence list the other eight. (iii) Write down a generator matrix. (iv) State the
minimum distance of C. How many errors can C correct? (v) Apply nearest neighbour
decoding to 1001101, 0110001, 1110101, 0001111, 1011001.

9
√

(i) Sequences (xi ) and (yi ) satisfy a linear recurrence relation zn = c1zn−1 + c2zn−2 + · · · +
cr zn−r (n ≥ r ). Show that their sum satisfies the same relation. (ii) Construct a pcm for a
cyclic Hamming code of length 7 using the relation xt = xt−1 + xt−3. (iii) Show that there
is no (18.10) binary code that corrects three errors. (iv) Verify from formula (13.46) that
g = 1 when a−r . . . a−1 = 10 . . . 0.

10
√

(i) Without performing division, show that x + 1 is not a factor of x3 + x + 1 or of x3 +
x2 + 1. (ii) Multiply the polynomials of (i) by longhand and by shorthand. Do you get the
same answer? (iii) To factorise x5 + x + 1, what single division is required? Perform it and
draw the appropriate conclusion. Is x6 + x4 + 1 irreducible? (iv) Show the rules of (13.53)
do not depend on choice of representatives.
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11
√

Let F be the finite field defined by p(x) = x4 + x3 + 1. With α = [x] as usual, express α4

as a polynomial a3a2a1a0 (abbreviated form). (i) Hence tabulate the powers of α in this
form. (ii) What are the orders of αi for 1 ≤ i ≤ 6? (iii) How does the table show that α is
primitive? (iv) Repeat the table for p(x) = 1 + x + · · · + x4. Is this polynomial primitive?

12
√

(i) Let β be an element of order e in a finite field. Show that β t = 1 if and only if e divides
t. (ii) Make a table of minimal polynomials (Table 13.7) for elements of the finite field
defined by p(x) = x4 + x3 + 1.

13
√

A cyclic code of size 16 contains the words 1111111 and 0111001. Find a generator poly-
nomial and hence a generator matrix and pcm. Is the code of Hamming type?

14
√

(This requires the solution to Exercise 13.12.) Construct a generator matrix for the
BCH(15, 3) code defined by the primitive polynomial x4 + x3 + 1 and encode 11000.

15 (i) Construct a generator matrix for the Reed–Solomon code of type RS(7, 2) defined by the
primitive polynomial x3 + x2 + 1. Encode [1 0 α]. (ii) For the RS code of Example 13.62,
error-correct and decode the received word R = [α5 α 1 α2 0 α3 1].

16
√

Perform the verification promised in Example 13.66(ii).
17

√
Prove (13.70c): p(z|x) =∑

y p(z|x, y)p(y|x) (Hint: p(x, z) =∑
y p(x, y, z)).

18 Repeat the forward step of Example 13.76 with X and Y having prior pdfs [0.8 0.2].
19 Encode u6 . . . u0 in the convolutional encoder of Example 13.78.
20 (i) Verify the distances for the received vector R in the trellis diagram of Figure 13.35.

(ii) Check that the path ACBACDBA gives distance 9 from R. (iii) What is the distance from
R of the most likely codeword in Example 13.80?

21 Check the details of Example 13.81.
22 Show that, in the uniform case, dispersion tends to zero as N increases (see (13.90)).
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14

The Fourier Transform

The Fourier Transform is a wonderful way of splitting a function into helpful parts,
possibly modifying those parts and putting them back together again. One gains insight
and/or the power to change things in a desired direction. Here we are particularly inter-
ested in its value for interpreting and restoring digital image data. Although the story
of the Fourier Transform really begins with the so-called continuous case, where the
definitions are integrals, our main concern is with the discrete version, which in any case
is what is generally used when implementing even the continuous transform. We come
to the continuous case second.

We begin in Section 14.1 with basic definitions and tools rooted in simple yet powerful
properties of the complex numbers. We introduce filtering and the Convolution Theorem,
two reasons for the wide use of the transform. Redundancy in the DFT is utilised to arrive
at the Fast Fourier Transform (FFT), which reduces the complexity of calculation from
O(N 2) to O(N log2 N ), another reason for the DFT’s ubiquity.

The short Section 14.2 introduces the Continuous Fourier Transform and its tool the
Dirac delta function, concluding with the highly desirable properties listed in Table 14.2.
In Section 14.3 we explore connections between the three types of Fourier Transform:
Fourier series, the continuous transform, and the DFT; noting that for a finite interval
appropriately sampled the DFT is a good approximation to the continuous version.

This chapter anticipates the next, in which we extend all things to two dimensions.
By then we can model many effects, such as motion or focus blur, by the technique of
convolution, which is handled especially simply by the Fourier Transform. This simplicity
enables us to restore an image from many kinds of noise and other corruption.

14.1 The Discrete Fourier Transform

14.1.1 Basic definitions and properties

The Fourier Transform A wide and useful class of functions f (x) can be reconstructed
from their measured, or sampled, values fi at N equally spaced points, for some N (see
Section 14.3.3). The N-point (discrete) Fourier Transform f → F converts the N-vector
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f of values f0, . . . , fN−1 into an N-vector F of values F0, . . . , FN−1, by

Fk =
N−1∑
n=0

e−2π ikn/N fn. (14.1)

What does this mean? Firstly, the form of (14.1) means that, with f and F as columns (here
preferred), the transform can be expressed in matrix form, F = T f . Secondly, the Fk are
complex numbers (see Section 8.1.1) so their introduction should be justified by their
advantages (it is). Thirdly, a first hint of these benefits emerges when we denote e−2π i/N

by a single variable w, and invoke the laws of complex numbers to write e−2π ikn/N = wkn .
This enables us to write (14.1) in a simple form:

F = T f, where

T = [wkn], and w = e−2π i/N . (14.2)

Here [wkn] is the N × N matrix with (k, n) entry wkn , and is therefore symmetric. Note
that the rows and columns are indexed from 0 to N − 1. To record the dependence on N
we may write T = TN and w = wN . Of course, (14.2) looks very compact, and often it’s
exactly what we need. But sometimes we want a more visible matrix form (N.B. Row
k = kth powers of Row 1).

⎡
⎢⎢⎢⎢⎢⎢⎣

F0

F1

· · ·
Fk

· · ·
FN−1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 w w2 . . . wN−1

· · ·
1 wk w2k . . . w(N−1)k

· · ·
1 wN−1 w2(N−1) . . . w(N−1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f0

f1

·
·
·

fN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14.3)

Examples 14.1 In the case N = 2, we have w = e−2π i/2 = e−π i = −1, whereas in the
case N = 4 the result is w = e−2π i/4 = e−π i/2 = −i. The resulting matrices already il-
lustrate simplifying features which we will soon state and prove for the general case
(Theorem 14.5).

[
F0

F1

]
=
[

1 1
1 −1

] [
f0

f1

]
, and

⎡
⎢⎢⎣

F0

F1

F2

F3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎤
⎥⎥⎦
⎡
⎢⎢⎣

f0

f1

f2

f3

⎤
⎥⎥⎦ . (14.4)

Examples 14.2 The following example with N = 4, and using the matrix above, il-
lustrates that the transform of a constant vector [α α . . . α] is an impulse (a nonzero
component followed by zeros). This fact is visible in (14.4) because our constant vector
has the form α[1 1 1 1], so Fk equals α times the sum of the elements of row k of T,
which is 4 for k = 0 and otherwise zero. In this case the transform happens to be real,
and so we can plot Fk on a graph in the manner of Figure 14.1.
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1

4

n k

[1     1     1     1] [4     0     0     0]

constant impulse

0 1 2 3

fn Fk

0 1 2 3

Figure 14.1 The Fourier Transform of a constant vector [1 1 . . . 1] in the case N = 4.
As will be shown in the general case, the result is an impulse (nonzero only at the zeroth
position).

Notation 14.3 A transform component Fk is in general a complex number and so has
both a real part x = Re(Fk) and an imaginary part y = Im(Fk), where Fk = x + iy. This
is illustrated in Figure 14.2(a), along with the second, and important viewpoint, that Fk

is equivalently defined by its amplitude (or modulus) r = |Fk | = √
(x2 + y2), and phase

angle (or argument) θ = arctan (y/x).

We say Fk corresponds to frequency k (in what way will emerge later), and, in con-
formity with this, refer to the sequence {|Fk |} as the spectrum of [ fn], and to {|Fk |2} as
the power spectrum.

x

y

r

θ

.Fk = x + iy
= reiθ w6 = 1

w = e-2πi/6
w2

w3

w4 w5

y

(a) (b)

Figure 14.2 (a) Aspects of the complex number Fk , where x = r cos θ and y = r sin θ ,
(b) the powers of the complex number w6 = e−2π i/6 are uniformly spaced round a circle,
and comprise all sixth roots of 1.

Roots of unity We recall some key facts. The complex number w = wN = e−2π i/N =
cos(2π/N ) − i sin(2π/N ) has argument −2π/N , which is 1/N of a full turn. Thus each
time we multiply a number by wN we increase its argument by 1/N of a turn, and
after doing this precisely N times we are back to the original direction. Since also wN

has modulus
√

[cos2(2π/N ) + sin2(2π/N )] = 1, the powers of wN are spaced round a
circle of radius 1, or unit circle, at intervals of 1/N turn, as illustrated for the case N = 6
in Figure 14.2(b). Such a figure, representing complex numbers in the plane, is called an
Argand diagram. We highlight a fact about complex numbers that will shortly be useful
(see e.g. Hoggar, 1992).

A polynomial equation of degree n has no more than n
distinct solutions, real or complex.

We call wN an Nth root of unity because w N = 1. It is not the only Nth root of 1, indeed
all its powers are too, but wN has the additional feature that no lesser power equals 1 (the
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circle spacing rules that out) and so it is said to be a primitive Nth root of unity. Since the
N powers are distinct (the circle spacing again), they constitute all N solutions of zN = 1
according to the box above. Then the simple but powerful result Theorem 14.4 enables
us to exploit these facts.

Theorem 14.4 Let α be a complex number satisfying αN = 1 but α �= 1. Then

α−1 = α = αN−1, (14.5)

1 + α+ · · · +αN−1 = 0, (14.6)

and, if N = 2M with αM �= 1, then αM = −1. (14.7)

Proof Dividing both sides of the equation αN = 1 by α gives αN−1 = α−1. On the other
hand, α must have the form eiθ for some angle θ , so that α · α = eiθ · e−iθ = e0 = 1,
hence α = α−1 and (14.5) is established. Now observe that 0 = αN − 1 = (α − 1)(1 +
α + α2 + · · · + αN−1). Since the first factor is not zero (α �= 1), the second must be, and
we have the equality (14.6). For (14.7), note that the complex number β = αM satisfies
the equation z2 = 1. But by the previous box this equation has at most two distinct roots.
Since both 1 and −1 satisfy z2 = 1 there are no more roots, so if β �= 1 we must have
β = −1.

Notation We recall the elementwise product of two vectors (x1, . . . , xk) ◦ (y1, . . . , yk) =
(x1 y1, . . . , xk yk), or in other notation (X ◦ Y )i = (X )i (Y )i . An example is (1, w, w2) ◦
(1, w2, w4) = (1, w3, w6). In the theorem below we take X, Y to be columns or rows of
the matrix T . The next use of this product is at (14.15).

Theorem 14.5 The Discrete Fourier Transform is linear; that is, if f → F and g → G,
and λ is a constant, then f + g → F + G and λ f → λF. Furthermore, if Rk is the kth
row of the N-point DFT matrix then (with (i) to (iii) holding similarly for columns),

(i) Rk ◦ Rj = Rk+ j ,
(ii) RN−k = Rk (the complex conjugate),

(iii) RM = [1 −1 . . . 1 −1] if N = 2M (N even),
(iv) the transform of a constant vector is an impulse, and vice versa,
(v) if f is real then FN−k = F k .

Proof The Fourier Transform is linear trivially, because it is given by a matrix. In (i) to
(iii) it suffices to prove equality of nth elements for any n; the result for columns is
immediate because T is symmetric. (i) According to the notation, (Rk)n = wkn , and
so (Rk ◦ Rj )n = (Rk)n(Rj )n = wkn w jn = w(k+ j)n = (Rk+ j )n . For (ii) we observe that
(RN−k)n = w(N−k)n = wNn w−kn = w−kn (since wN = 1), which is the conjugate of wkn

and so equals (R k)n as required. For case (iii) we have (RM )n = (wM )n which equals,
correctly, (−1)n by (14.7). In case (iv) it suffices by linearity to consider only the transform
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of a vector with components 1. For 0 ≤ k ≤ N − 1, there follows

Fk = Rk · [11 . . . 1] =
∑N−1

n=0
(Rk)n =

∑N−1

n=0
wkn = 1 + α + · · · + αN−1,

where α = wk satisfies αN = (wN )k = 1. Hence, if k = 0 then α = 1 and Fk = N , oth-
erwise α �= 1 and (14.6) gives Fk = 0. It remains to remark that the transform of an
impulse is a multiple of the first column of the DFT matrix T, which is all 1s. Part (v) is
the exercise below.

Exercise Prove part (v) of Theorem 14.5 by giving the definition of each side of the
equality.

Examples 14.6 (1) (Evaluating
∑

wk) Let w = e2π i/6. Verify directly from the Binomial
Theorem that, as predicted by Equation (14.6), there holds 1 + w + w2 + w3 + w4 +
w5 = 0. You may assume w6−n is the conjugate of wn .

Solution w = cos(2π/6) + i sin(2π/6) = (1 + i
√

3)/2, whence
w2 = (1 + 2i

√
3 + (i

√
3)2)/4 = (1 + 2i

√
3 − 3)/4 = (−1 + i

√
3)/2,

w3 = (1 + 3i
√

3 + 3(i
√

3)2 + (i
√

3)3)/8 = (1 + 3i
√

3 − 9 − 3i
√

3)/8 = −1,
w4 = conjugate of w2 = (−1 − i

√
3)/2,

w5 = conjugate of w = (1 − i
√

3)/2.
Adding: 1 + w + w2 + w3 + w4 + w5 = 1 − 1 + (1/2)(1 + i

√
3 − 1 + i

√
3 − 1 −

i
√

3 + 1 − i
√

3 = 0.
This does draw attention to the value of (14.6), bypassing a calculation such as that above
yet predicting its result. We will repeatedly invoke this zero sum. For the reader: deduce
that w3 = −1 without using the Binomial Theorem.

(2) (Reconstructing T ) In the case N = 4, given that row 1 of the DFT matrix is [1 −i −
1 i], can we use the various sections of Theorem 14.5 to reconstruct the rest? Of course,
the first row (numbered zero) and column are all ones because w0 = 1. Apart from this:
by (iii) R2 = [1 −1 1 −1],
by (i) R3 = R2 ◦ R1 = [1 −1 1 −1] ◦ [1 −i −1 i] = [1 i −1 −i], in agreement with
(14.4), and, as a further check, (ii) states that R3 = R 4−1 = R 1 = [1 i −1 − i], correctly.

Exercise Recover the 4-point DFT matrix from its top left hand 2 × 2 submatrix.

Example 14.7 We sample the function f (x) = (1/4) sin 10x + (1/2) sin 40x + sin 50x
at N = 200 equally spaced points over the interval [0, 2π ], to obtain a vector of values
[ fn] as graphed in Figure 14.3(a). The next graph, (b), shows the DFT amplitudes |Fk |
against k. The first thing to notice is symmetry about k = 100 as a result of FN−k = Fk

(Theorem 14.5(v)) implying |FN−k | = |Fk |. Thus, as in the simpler previous example,
we can infer the second half of the Fks from the first half.

Now consider 0 ≤ k ≤ 100. We find spikes at k = 10, 40 and 50 corresponding to
the k in sin kx for each part of f (x). This highlights the fact, to be established in Section
14.1.2, that Fk really does correspond to frequency within the limits of our 200-point
approximation of f (x). It also illustrates:
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(a) Spatial domain (b) Frequency domain
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Figure 14.3 (a) Graph of 200 sample points of the function f (x) = (1/4) sin 10x +
(1/2) sin 40x + sin 50x , (b) the amplitudes of the DFT values, |Fk |, against k. Notice the
occurrence in pairs predicted by Theorem 14.5(v). The labels of (a), (b) anticipate the
discussion below.

linearity: each individual sine term transforms to a pair of spikes, and the sum of the three
sines transforms to the sum of all the spikes, and

simplicity: though complicated to behold, the function is very simple after being transformed.
This is part of a more general idea in which we seek a transform which brings out the
essential nature of a function.

14.1.2 Inversion

We find that the DFT is invertible, with an inverse very similar to the original, enabling
us to write down conveniently the DFT pair shown in the next theorem.

Theorem 14.8 The inverse DFT, or IDFT, may be described in the following two ways:

T−1
N = (1/N )T N (matrix form), (14.8a)

Fk =
∑N−1

n=0
wkn fn,

fn = 1
N

∑N−1
k=0 w−kn Fk

⎫⎪⎬
⎪⎭ (DFT pair). (14.8b)

Proof Formulas (14.8) are equivalent to TN T N = NI, which we prove by considering the
(k, m) element of TN T N with 0 ≤ k, m < N , namely

(T T )km =
∑N−1

r=0
wkr w−rm by definition of T and matrix multiplication

=
∑N−1

r=0
αr where α = wk−m

=
{

0, if k �= m, by(14.6), since α �= 1, but αN = 1 (given wN = 1)
N , if k = m, since α = w0 = 1.
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That is, T T = NI, and so T [(1/N )T ] = I , implying that T has the stated inverse (see
(7.20)). The first part of (14.8b) is a restatement of the definition (14.1) and the second
states that fn = (row n of T−1) · [F0 . . . FN−1], a consequence of f = T−1 F .

Bases, coefficients and frequencies Since T−1 exists, we may write T−1 =
[C0 C1 . . . CN−1], with kth column Ck . Then the equation F = Tf may be rewritten
as f = T−1 F , or

f = �k FkCk, (14.9)

expressing f as a linear combination of the columns of T−1 as basis vectors (see (7.30)).
Notice that (1/N T )(1/N T ) = 1/N I , hence CT

j Ck = 1/Nδ jk and so the Cj are orthogonal,
each of length 1/

√
N (see Section 8.1.1).

Returning to f = �k FkCk , we emphasise that Fk is called the coefficient (or compo-
nent) in frequency k. This is appropriate because Ck is in an important sense a function
with frequency k. Specifically, its nth column entry

Ck(n) = (1/N )
(
e−2π ik/N

)n

varies with the discrete variable n, and if we make a complete cycle through the column,
n = 0, 1, . . . , N , then the argument of the complex number Ck(n) increases by 2πk.
That is, it undergoes k complete periods, or has frequency k.

In harmony with this, the transfer of a calculation from { fn} to {Fk} is described as a
transfer of the problem from the spatial domain (sometimes it is time), to the frequency
domain. Sometimes we refer to spatial/temporal frequencies according as the variable
refers to distance/time.

We develop the frequency idea under the next heading, but first a recapitulation ap-
plying equally to sine and cosine functions. The function sin x has period 2π ; that is,
the function values repeat after an increment of 2π in x, and 2π is the least interval with
such a property; consequently (see Figure 14.4):{

sin ωx has period 2π/ω,

sin 2πnx has frequency n.
(14.10)

(a)

1 2 3 4 5

−1

−0.5

0.5

1

(b)

π 5

−1

−0.5

0.5

1

Figure 14.4 (a) cos πx = cos 2π (1/2)x ; considering (14.10), this function has fre-
quency ω = 1/2 and period 1/ω = 2, (b) cos 2t , with period 2π/2 = π and frequency
1/π .
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Lowpass filtering Often we want to modify or improve the original f in a way that can
be described in terms of the frequency components Fk . For example, suppose we receive
f = g + h, where h is an unknown ‘noise’ which we want to eliminate. Suppose further
that, although h itself is unknown, we know it is restricted to higher frequencies k > c
than those occupied by the true signal g. Then we can recover g as follows.

ALGO 14.1 A lowpass filter with threshold c

1. Apply the DFT, f → F .
2. Set all components with frequency k > c to zero.
3. Apply the IDFT (inverse transform) to the result.

Why does this work? In step 1, since f = g + h, we get F = G + H , whose com-
ponents with k > c are precisely the components of H. That is, we may write F =
[G0 . . . Gc Hc+1 . . . HN−1]. Step 2 reduces this to [G0 . . . Gc 0 . . . 0], which is simply G,
and is inverted by step 3 back to the desired g. See Figure 14.5.

g   + h G   + H

the original           noise

c0 k
(a) (b)

Figure 14.5 (a) Received signal consisting of an original g plus noise h, (b), transform of
the result in which frequencies above k > c are known to be those of the noise. Therefore
the original signal g can be recovered by steps 1 to 3 in ALGO 14.1.

Example 14.9 In this example the function g, shown in Figure 14.6(a), was output with
some noise distortions (see ALGO 11.8 and Figure 11.21). It is known that, to a good
approximation, this noise can be considered restricted to frequencies above 32. After
steps 1 to 3 are applied with c = 32, to remove this noise, we obtain the graph of Figure
14.6(b).

(a) (b)
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2
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Figure 14.6 (a) Original noisy function, (b) result after removing all frequency compo-
nents Fk with k > 32.
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Filtering in general This means changing the components Fk in some way, then apply-
ing the inverse transform. By changing Fk to zero for k > c we have applied a lowpass
filter, one in which we ‘pass’, or allow, only lower frequencies. Analogously, a highpass
filter preserves only frequency components Fk with k above some designated threshold.
Filters exist for many purposes, including the artistic, and we shall meet more of them
later. Figure 14.7 is a diagram of the general format. Example 14.9 is the special case
g + f → G + F → G → g.

[Fk] [F ′k][ fn]
DFT FILTER IDFT

[ f ′n]

Figure 14.7 The general schema for filtering (derivatives are not implied).

Such filters with a sharp threshold, or cutoff, are said to be ideal. Paradoxically so,
because, as we shall see in Section 15.2.2, this very sharpness causes a form of distortion
called ringing. However, this may be taken care of by more sophisticated filters.

14.1.3 Convolution

The Fourier transform has an important and useful relationship to the convolution of a
vector/sequence, in which the value fn at a point is replaced by a fixed linear combination
of the values at that point and its neighbours.

Such replacement occurs in many situations, as we shall see, but a simple first example
is the ‘smoothing’ technique of averaging the immediate neighbours (Figure 14.8). In
every case, we can by suitable labelling regard the process as polynomial multiplication
if we wish; this is considered next.

20 40 60 80 100 120

0.5

1

1.5

2

Figure 14.8 The noisy function of Figure 14.6(a) smoothed by the averaging effect of
convolution with [1/3 1/3 1/3].

Definition 14.10 Let f (x) =∑
i fi x i be the polynomial associated with a vector f. Then

the convolution product h = f ∗g of two vectors f, g is given by

h(x) = f (x)g(x), (14.11a)

That is, hn =
∑

i+ j=n

fi g j , or equivalently hn =
∑

i
fi gn−i , (14.11b)
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which simply expresses the way in which terms of h(x) having given de-
gree n are calculated when we multiply two polynomials. A simple example
is: (1− 2x)(1− x + x3)= 1− 3x + 2x2 + x3 − 2x4, which gives [1 −2]∗[1 −1 0 1] =
[1 −3 2 1 −2]. (We discussed polynomial multiplication earlier, in Chapter 13, where
we descibed a shift register method of carrying out the process.) Thus the properties of
polynomial multiplication carry over to convolution, and in particular ∗ is associative,
commutative and distributive over addition.

Exercise Determine the convolution product [1 2 3]∗[2 −1].

Example 14.11 (Edge-detection) Replacing the function value at a point by a linear
approximation to the second derivative leads to a method of edge-detection in a 2-
dimensional image (see Section 15.2.4). The process will be carried out by 2D convolution
in Chapter 15. Here we illustrate the 1D version. Suppose the function values fn apply
to points spaced at distance d. Then, by Taylor’s Theorem (10.41),

fn+1 = fn + d f ′n +
d2

2
f ′′n + d3

6
f ′′′n + O(d4),

fn−1 = fn − d f ′n +
d2

2
f ′′n − d3

6
f ′′′n + O(d4),

where O(d4) means a function bounded in absolute value by a constant multiple of d4,
as d → 0 (Section 10.3.3), and so

f ′′n = ( fn−1 − 2 fn + fn+1)/d2 + O(d2).

Thus, on the basis of small d, the second derivative is proportional to [1 −2 1]∗ f (with
a subscript shift to line up f ′′n with fn). Figure 14.9 is an example in which f is a Bessel
function (see e.g. Sneddon, 1961). Note, f ′′ is negative for the first peak of f, positive
for the second, etc.

(a)

−0.2

0.4

0.2

0.6
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0.2

0.1

0.3

−0.1

−0.3
−0.4

−0.2

20 40 60 80 100

Figure 14.9 (a) Graph of the Bessel function J1 on interval [0, 10] with spacing
d = 0.1, (b) graph of the second derivative, represented as the convolution [1 −2 1] ∗
100J1.

Padding To bring out the connection with the DFT we extend (‘pad’) the vec-
tors f, g with zeros before forming f ∗g so that f, g, h all have the same length



14.1 The Discrete Fourier Transform 533

N = r + s + 1, where f, g have respective degrees r, s. For example, (1 + x)(1 + 2x −
x2) = 1 + 3x + x2 − x3 tells us that

[1 1 0 0]∗[1 2 −1 0] = [1, 3, 1 −1].

Matrix view The equations (14.11) for h = f ∗g can be expressed by a matrix product:

[h0 . . . hN−1] = [ f0 . . . fr ]

⎡
⎢⎢⎣

g0 g1 . . . gs

g0 g1 . . . gs

. . .

g0 g1 . . . gs

⎤
⎥⎥⎦ , (14.12)

where the blanks represent zeros. (This is how information bits were encoded in Chapter
13.) For example, h0 = f0g0, h1 = f0g1 + f1g0, and so on. To exploit this in proving
the theorem below, we describe (14.12) in terms of a shift operator S which, applied
to a row or column vector, shifts its components backwards one place cyclically. Thus,
S[1 2 5] = [2 5 1], whereas S−1[1 2 5] = [5 1 2]. Let u, v be vectors of the same
length and write Ri for the ith row of the DFT matrix T = [wkn]. Then

Su · Sv = u · v, (14.13)

SRi = λRi , where λ = wi . (14.14)

This is because S[u0 . . . uN−1] · S[v0 . . . vN−1] = [u1 . . . uN−1 u0] · [v1 . . . vN−1 v0] =∑
i uivi = u · v, and SRi = S[1 λ λ2 . . . λN−1] = [λ λ2 . . . λN−1λN ] (since 1 = λN ) =

λRi . Now we are ready for the relationship which helps to give the Fourier Transform
its special place.

Theorem 14.12 (Convolution Theorem for the DFT) The Discrete Fourier Transform
converts convolution into the elementwise product. That is, h = f ∗g ⇒ H = F ◦ G, or
simply

f ∗g → F ◦ G. (14.15)

Matrix proof We let h = f ∗g and deduce H = F ◦ G. Considering (14.12) we see that
the rows of the (r + 1) × N matrix are successive shifts of the first (such a matrix is called
a circulant). Hence its transpose Cg has ith column S−i g, and, transposing both sides
of (14.12), we obtain this equation in the form below, where, by implication, g0 . . . gs is
padded with zeros on the right up to length N.

h = Cg f = [g S−1g . . . S−r g] f,

with f, g, h written as column vectors. We must show that Hi = Fi Gi for 0 ≤ i ≤ N − 1.
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We have

Hi = (T h)i = (Row i of T )h Example 7.22(3)
= Ri Cg f = Ri [g S−1g . . . S−r g] f substituting for h
= [Ri g Ri S−1g . . . Ri S−r g] f Example 7.22(4)
= [Ri g S Ri g . . . Sr Ri g] f by (14.13)
= [Ri g λRi g . . . λr Ri g] f by (14.14)
= Ri g[1 λ . . . λr ] f Ri g is a scalar
= (Ri g)(Ri f ) by definition of Ri .

Thus Hi = Fi Gi for each i, in other words H = F ◦ G and the proof is complete. How-
ever, this is not the end of the story, as the next portion of text makes clear.

Polynomial proof It is important to bring out the Convolution Theorem in terms of
matrices, but a proof directly in terms of polynomials is hard to beat for brevity, besides
providing further insight as to why the result should be true at all. Let h(x) = f (x)g(x)
as before, and w = e−2π i/N . A key observation is that

Fk =
∑

wkn fn =
∑

fn · (wk)n = f (wk),

and similarly for g and h. For the polynomial identity h(x) = f (x)g(x) im-
plies h(wk) = f (wk)g(wk), giving the Convolution Theorem Hk = Fk Gk (0 ≤ k ≤
N − 1). A similar argument will be applied later for higher dimensions.

Example 14.13 We verify the Convolution Theorem in the case f = [1 2 0], g =
[1 −1 0].
(i) Using polynomial multiplication, (1+ 2x)(1− x)= 1+ x − 2x2, so f ∗g = [1 1 − 2]
(ii) We must apply the 3-point DFT, with w = e−2π i/3, and w3 = 1:

T ( f ∗g) =
⎡
⎣1 1 1

1 w w2

1 w2 w

⎤
⎦
⎡
⎣ 1

1
−2

⎤
⎦=

⎡
⎣ 0

1 + w − 2w2

1 + w2 − 2w

⎤
⎦ (T is simplified by w3=1),

(Tf ) ◦ (Tg) =
⎡
⎣ 3

1 + 2w
1 + 2w2

⎤
⎦ ◦

⎡
⎣ 0

1 − w
1 − w2

⎤
⎦

=
⎡
⎣ 0

(1 + 2w)(1 − w)
(1 + 2w2)(1 − w2)

⎤
⎦ =

⎡
⎣ 0

1 + w − 2w2

1 + w2 − 2w4

⎤
⎦,

which equals T ( f ∗g) because w3 = 1.

Remarks 14.14 (1) One of the great advantages of the Convolution Theorem is that
it enables us to undo corruption to an image when, as often, this can be expressed
as a convolution. Important examples are image blur from either camera or motion.
(We come to this in Chapter 15, after the extension to two dimensions.) (2) A second,
and famous, benefit is that it enables us to use the DFT to determine the result of
convolution, leading to a huge speedup because of the Fast Fourier Transform, which we
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shall derive in Section 14.1.4. (3) We have T−1 = (1/N )T and, since the proof of the
Convolution Theorem goes through equally well with w replaced by its conjugate, there
is a convolution theorem for the IDFT with an extra factor N:

(1/N )T−1(F∗G) = T−1 F ◦ T−1G, compared with T ( f ∗g) = (Tf ) ◦ (Tf ).

14.1.4 The Fast Fourier Transform (FFT)

By looking more closely at the DFT we find all manner of redundancies; the simplest
is perhaps the symmetry RN−k = R k , which reduces the calculation by one half. Let us
create a baseline by assuming that addition, subtraction and multiplication take equal
times, and call them simply arithmetic operations. In general the numbers involved
will be complex, even though f is real. The dot product of two N-vectors involves N
multiplications followed by N − 1 additions, a total of 2N − 1 operations. Computing
F = Tf requires a dot product for each row, hence a total of N (2N − 1) operations, a
function which increases as N 2.

The Fast Fourier Transform, or FFT, is really a class of algorithms which reduce
the DFT arithmetic operations to O(N log2 N ), giving a roughly 100-fold reduction for
1024 points (see Section 10.3.3 for the ‘O’ notation). Since log N to any base increases
ultimately less rapidly than any positive power of N, it is highly desirable to reduce an
N to a log N . We consider the most common case N = 2γ for a positive integer γ , to
which others are frequently converted by a padding of zeros. For other cases, see the end
of the present section.

The essential idea is to provide an economical way of reducing the calculation to one
on vectors of half size, M, where N = 2M . Thus we shall refer to the M-point DFT with
matrix TM = [wkn

M ], where by definition wM = e−2π i/M , compared with w = e−2π i/N,
hence both

wM = −1 and wM = w2. (14.16)

Notation We divide f into two M-vectors by even versus odd subscripts, but divide F by
low versus high. More formally:

fev = [ f2r ], fod = [ f2r+1] (0 ≤ r ≤ M − 1), and (14.17)

Flo = [F0 . . . FM−1], Fhi = [FM . . . FN−1]. (14.18)

We simplify diagrams by setting D = DM = diag(1, w, . . . , wM−1), the M × M matrix
with the first M powers of w along its main diagonal and zeros elsewhere (recall w has
2M distinct powers). For example, corresponding to N = 2, 4, 8 respectively:

D1 = [1], D2 =
[

1 0
0 −i

]
, and D4 =

⎡
⎢⎢⎣

1 0 0 0
0 w 0 0
0 0 w2 0
0 0 0 w3

⎤
⎥⎥⎦(w = e−2π i/8

)
.
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Theorem 14.15 Write x = TM fev and y = TM fod. Then the N-point DFT is given by

Flo = x + Dy, Fhi = x − Dy. (14.19)

Proof As n runs from 0 to N − 1 we describe the even values by n = 2r and the odd by
n = 2r + 1, where r runs from 0 to M − 1. This gives the second line below.

Fk =
∑N−1

n=0
wkn fn by definition

=
∑M−1

r=0
w2rk f2r +

∑M−1

r=0
w(2r+1)k f2r+1

=
∑M−1

r=0
wkr

M f2r + wk
∑M−1

r=0
wkr

M f2r+1 by (14.16).

Consider the last expression for Fk . With k running from 0 to M − 1, the Flo range,
we obtain the first equation of (14.19). For Fhi we replace k by M + k (again, 0 ≤ k ≤
M − 1), observing that wM

M+k = wk
M because w M

M = 1, whereas wM+k = −wk because
wM = −1. This gives

FM+k =
∑M−1

r=0
wkr

M f2r − wk
∑M−1

r=0
wkr

M f2r+1 = xk − wk yk .

Thus, letting k run from 0 to M − 1, we obtain (Flo is similar),

Fhi =

⎡
⎢⎢⎣

x0 − w0 y0

x1 − w1 y1

· · ·
xM−1 − wM−1 yM−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x0

x1

. . .

xM−1

⎤
⎥⎥⎦−

⎡
⎢⎢⎢⎣

w0

w1

. . .
wM−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

y0

y1

· · ·
yM−1

⎤
⎥⎥⎦

= x − Dy.

Conclusion 14.16 Since Theorem 14.15 applies to x, y too, it gives a recursive method
for the FFT when N = 2γ . Let us see if we have really shortened the calculation.

calculation no. of arithmetic operations

Dy M (D is diagonal)
x ± Dy M

Total 3M , or (3/2)N

In the next step, the vectors are half as long but there are twice as many, so we con-
clude that each step takes (3/2)N operations. By γ steps, everything is expressed
in terms of individual elements fi , giving a final total of (3/2)Nγ = (3/2)N log2 N .
Here are some comparative values of the speedup factor (old time)/(new time) =
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2(2N − 1)/3 log2 N , to the nearest integer.

N 16 64 256 512 1024
speedup 5 14 43 76 136

ALGO 14.2 A recursive routine for the FFT of a vector f whose
length is a power of 2

Function FFT( f )
Local variables N = Length ( f ), w, fev, fod, x, y, D, z
If N = 1 then Return (f ) else

Construct fev, fod from f
x = FFT ( fev)
y = FFT ( fod)
w = exp(−2π i/N )
D = (1, w, . . . , wN/2−1)
z = D ◦ y (elementwise product)
Return (Join [x + z, x − z])

(Join makes Flo, Fhi into the single vector F)

The butterfly notation We represent step (14.19) of the FFT by a diagram in which
the expression on the right is the sum of those at the start of the arrows into it, possibly
pre-multiplied by ±D. The result is Figure 14.10, built in two stages, and suggestive of
a butterfly. Our objective is to represent a complete FFT calculation in a single diagram.

x

y
D

−D

x

−D

D

xx

y y Fhi y

Flo
Flo

Fhi

(a)  Flo = x + Dy (b)  Fhi = x − Dy (c) Butterfly of (a), (b)

Figure 14.10 Building up the butterfly to incorporate both Flo = x + Dy and Fhi =
x − Dy.

Case N = 2 At this, beginning stage, we have M = 1, TM = [1], whence x = TM fev =
f0 and y = TM fod = f1. The butterfly diagram simplifies to

f0

−1

1
f1 F1

F0

Thus F0 and F1 are given immediately in terms of the values of f0 and f1. Specifically,
F0 = f0 + f1 and F1 = f0 − f1, in agreement with the earlier formula of (14.4).
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Case N = 4 From this case on, everything depends on subscript order in the ex-
pressions for x, y, all of the form TM [ fa fb . . . fc], Let us represent this expres-
sion by ab . . . c enclosed in a rectangle, the value of M being the number of sub-
scripts. In the present case fev, fod, Flo, Fhi have respective subscript sequences [0 2],
[1 3], [0 1], [2 3]. See Figure 14.11.

Flo

Fhi−D

D

T2 fev

T2 fod

Dbecomes

−D

00
1

1 2

2

33

Figure 14.11 Case N = 4.

Case N = 8 Starting from the right in Figure 14.12, we express T8 as two applications
of T4. Neither of the resulting 4-vectors has subscripts in order 0123, but (14.20) tells us
what to do. We separate out even and odd subscript positions. This gives us the column
preceding the rightmost in Figure 14.12. Similarly, we obtain the two preceding columns
by considering the cases N = 4 and N = 2.

 0

 2

 4

 6

 1

 3

 5

 7

000

100

010

110

001

101

011

111

 0
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 2
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 1
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 3

 7

 0
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 2
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 1

 5

 3

 7

 0

 1

 2

 3

 4

 5

 6

 7

000

001

010

011

100

101

110

111

1
−1

1

1

1

−1

−1

−1

D4

D2

−D4

−D2

D2

−D2

Figure 14.12 The 8-point DFT carried out by the method of the FFT (Fast Fourier
Transform). A dotted line separates Fhi and Flo. The binary numbers in columns are the
binary forms of the integer subscripts nearest to them in the diagram. Observe that one
column may be obtained from the other by reversing bit order.

Bit reversal ALGO 14.2 works from right to left in Figure 14.12. We may alternatively
assemble the DFT parts by working rightwards from the individual function values, with
no reordering, if they are listed in the appropriate order for this: 04261537. A strong clue
to how the order changes is provided by the binary subscript values exhibited in Figure
14.12 (high bits to left). To pass from the standard ordering to that required we simply
reverse bits and take the resulting integer as the new subscript. This may be seen level
by level, but it is true in general, as we see by the following argument.

A quick proof of bit reversal Start with a list of the (n + 1)-bit binary words bn . . . b1b0

in increasing order as integers. Then the words with bn = 0 precede those with bn = 1.
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Similarly those with bn = 0, bn−1 = 0 precede those with bn = 0, bn−1 = 1, and so on,
until we have successive bits b1 as 0011 . . . and b0 as 0101 . . . By selecting even numbers
first at every stage in the FFT we reverse this situation, right back to bn alternating 0101 . . .

Exercise Find the DFT matrix T4 from a 4-point FFT butterfly diagram (answer at (14.4),
solution at Exercise 14.6).

Speeding up convolution by the FFT Since the FFT is such a fast way of doing the
DFT, can we compute a convolution f ∗g faster by transforming to the frequency domain,
performing elementwise multiplication F ◦ G, then transforming back? Notice first that
the matrix of the inverse DFT is a factor 1/N times the conjugate of the DFT matrix
itself, so inversion may also be performed (by the FFT) in (3/2)N log2 N arithmetic
operations. Here, then, are the steps in performing convolution of two N-point sequences
using the FFT, and the number of operations required in each step:

f, g → F, G → F o G → T−1(F o G) = f *g,
3N log2N 1.5N log2NN

a total of order O(N log2 N ) operations compared with N 2 for a straight convolution
calculation. Because log2 N increases so slowly compared with N we obtain a great
increase in speed overall.

Other FFTs Methods for the case when N is not a power of 2 naturally depend on the
precise factorisation of N. Some good methods with similar speedup factor to the present
case are surveyed in Chapter 10 of Briggs and Henson (1995). A wide range of FFTs are
unified in the matrix framework of van Loan (1992).

14.1.5 Choices in defining the DFT

(1) The initial constant For the DFT, IDFT pair to work, the matrices [w±kn] used must be
prefixed by constants whose product is 1/N , because the product of these two matrices
is N times the identity matrix (see the proof of (14.8)). We have followed the common
convention used in signal processing. This and other possibilities are shown in Table 14.1.

Table 14.1. Some choices for the DFT and IDFT.

convention DFT IDFT w

signal processing 1 · [wkn] (1/N )[w−kn] e−2π i/N

data analysis (1/N )[wkn] 1 · [w−kn] e2π i/N

also used (1/N )1/2[wkn] (1/N )1/2[w−kn] e±2π i/N

(2) The value of N Most frequently, N is taken to be a power of 2 to facilitate fast
calculation by the FFT method. However, there are fast methods for more general values
of N, as mentioned above. We shall always assume that, at least, N is even.
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(3) The interval of n and k For simplicity we have (mostly) opted for n, k =
0, 1, . . . , N − 1, but because of the periodicity of wn , any N successive values of
n will do to define the DFT. It may be convenient to have the interval centred on
zero and this is easily achieved by shifting values by N/2 to the left, to obtain
n = −N/2, . . . , 0, . . . , N/2− 1. Similarly for k, with Fk±N = Fk .

(4) The Hartley Transform is an alternative to the DFT that has some advantages,
including a restriction to real numbers, and moreover possesses a fast version. An intro-
duction and comparison with the DFT are given in Briggs and Henson (1995).

(5) For further information on the FFT and its applications, see comments at the end
of this chapter, and the standard text of Brigham (1988).

14.1.6 Converting a standard DFT/FFT routine

Cycle vector to required standard position
Apply standard routine
Cycle back

14.2 The Continuous Fourier Transform

Pre-dating the DFT was the Fourier Transform, identified more closely as being con-
tinuous rather than discrete, and defined by integration rather than summation. It is
foundational, an important theoretical tool, and one that provides elegant proofs having
counterparts for the DFT, the latter being the tool for practical calculation. Such results
may be precise (the Convolution Theorem), or limited by an accuracy with which the
DFT approximates the continuous version. An excellent example of the second case
occurs in the extension to two dimensions: f (x, y) → F(u, v). Rotation of an image in
the x–y plane causes the same rotation in the transformed image (Theorem 15.7), and
this is easily visible in the DFT plane, though it cannot normally be expressed there with
absolute precision (see Figure 15.4, Chapter 15).

14.2.1 The 1-dimensional case

Properties of the Continuous Fourier Transform are reflected in the DFT more and more
clearly as its sample points are taken closer. An example is visibility of a spike at frequency
k corresponding to a summand cos 2πkt in f (t). We have already seen this in Example
14.7, and Section 14.2.2 will continue the theme (the delta function comes in here). But
to define the Fourier Transform we must introduce integration and differentiation for a
function of real variables that is allowed to take complex values.

Integration The Continuous Fourier Transform is defined as an integral of a complex
function, but, because the variable is nevertheless real, everything works much as before
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if we define the derivative to act on the real and imaginary parts separately:

d

dt
[ f (t) + ig(t)] = d f

dt
+ i

dg

dt
, (14.20)

where the functions f and g are real (and differentiable), and similarly for integration.
The exponential function works splendidly, as is most conveniently proved after we note
the usual rules that still apply. We shall revert frequently to the compact notation f ′ or
f ′(t) for d f/dt .

Theorem 14.17 Let φ and ψ be complex functions of a real variable t. Then

(φψ)′ = φψ ′ + φ′ψ (Product Rule) (14.21)

(φ/ψ)′ = (ψφ′ − φψ ′)/ψ2 (Quotient Rule) (14.22)
d

dt
φ(ψ(t)) = φ′(ψ(t))ψ ′(t) (Chain Rule). (14.23)

Proof The proofs are routine verifications. As a sample we consider the first. Write
φ(t) = f (t) + ig(t) and ψ(t) = u(t) + iv(t). Then

[( f + ig)(u + iv)]′ = [ f u − gv + i(gu + f v)]′ since i2 = −1

= ( f u − gv)′ + i(gu + f v)′ by (14.20)

= f u′ + f ′u − (gv′ + g′v) + i(gu′ + g′u + f v′ + f ′v)

= ( f + ig)(u + iv)′ + ( f + ig)′(u + iv) by (14.20).

Theorem 14.18 Let α be the complex number a + ib, where a, b are real. Then
d

dt
eαt = αeαt and, if α �= 0, then

∫
eαt dt = (1/α)eαt + constant. (14.24)

Proof We start with eibt and apply the Product Rule (14.21).

d

dt
eibt = d

dt
[cos bt + i sin bt]

= −b sin bt + ib cos bt (by (14.20)) = ibeibt ,

d

dt
eαt = d

dt
e(a+ib)t = d

dt
[eat · eibt ]

= aeat · eibt + eat · ibeibt by the above, and the Product Rule (14.21)

= (a + ib)eat · eibt = (a + ib)eat+ibt = αeαt .

Now we are ready to define Fourier’s original continuous transform F(s) in which,
compared with the discrete frequencies k of the DFT, the variable s is to be regarded as a
continuously varying frequency. We often write f → F for the Fourier Transform, and
sometimes f → F[ f ].
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Theorem 14.19 (Fourier) With the first equality below defining the Fourier Transform,
we have a (transform, inverse) pair.

F(s) = ∫∞
−∞ f (t)e−2π ist dt,

(Fourier pair)
f (t) = ∫∞

−∞ F(s)e2π ist ds.
(14.25)

Theorem 14.20 Change of origin and scale have the following effect on the transforms:

(i) g(t) = f (t − a) transforms to G(s) = e−2π iasF(s) (Shift Theorem),
(ii) f (t/a) transforms to |a|F(sa) (a �= 0) (Similarity Theorem).

Proof f (t − a) →
∫ ∞

−∞
f (t − a)e−2π ist dt

=
∫ ∞

−∞
f (u)e−2π is(u+a)du where u = t − a, hence

t = u + a, du = dt

= e−2π isa
∫ ∞

−∞
f (u)e−2π i su du since e−2π isa is constant

as t varies
= e−2π isa F(s) as asserted.

f (t/a) →
∫ ∞

∞
f (t/a)e−2π ist dt (now assume a > 0)

= a
∫ ∞

−∞
f (u)e−2π isaudu where u = t/a, hence t = ua,

dt = adu
= aF(as).

If a < 0, the limits of integation are reversed because, as t increase, u decreases. This
introduces an extra minus sign, so both a > 0 and a < 0 are covered by the formula
|a|F(sa).

Example 14.21 (Some transforms) (i) A Gaussian type function e−π t2
transforms to

e−πs2
, (ii) A standard Gaussian N (0, σ 2) transforms to e−s2/2τ 2

, with τ = 1/(2πσ ).
(iii) A centred unit box → sinc (x) = sin(πx)/(πx). See Figure 14.13.

(a)
−1/2 1/2 (b) −5 5

1
1

Figure 14.13 (a) Centred unit box, with height 1 for |x | < 1/2, otherwise zero (discon-
tinuity is indicated by the small circles, (b) its Fourier Transform sin(πs)/πs, known
as the sinc function. Inverting back gives height 1/2 at the discontinuities (see Example
14.21 and Theorem 14.25).
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Proof (i) e−π t2 →
∫ ∞

−∞
e−π t2

e−2π ist dt =
∫ ∞

−∞
e−π(t2+2π ist)dt

= e−πs2
∫ ∞

−∞
e−π (t+is)2

dt since e−πs2
is constant as t varies

= e−πs2
∫ ∞

−∞
e−π t2

dt (Exercise 14.7) = e−πs2
, by (10.52).

(ii) The first part yielded F(s) = e−πs2
when f (t) = e−π t2

. The second part is a nice
application of the change-of-scale formula (Theorem 14.20) with a = √

(2πσ 2) written
(1/a) f (t/a) → F(as).

(iii) Applying the definition (14.25), a centred unit box transforms to

∫ 1/2

−1/2
1 · e−2π ist dt = [

e−2π ist/(−2π is)
]1/2

−1/2 =
1

πs

1

2i
(eiπs − e−iπs) = (sin πs)/πs.

Theorem 14.22 (Convolution Theorem) Convolution becomes product under the Fourier
transform: f (t)∗g(t) → F(s)G(s). That is, f ∗ g → F ◦ G.

Proof We have defined the convolution product in the context of pdfs (Section 10.2.2)
and it applies here with

f (t)∗g(t) =
∫ ∞

−∞
f (u)g(t − u)du by definition

→
∫ ∞

−∞

(∫ ∞

−∞
f (u)g(t − u)du

)
e−2π ist dt by definition

=
∫ ∞

−∞
f (u)

(∫ ∞

−∞
g(t − u)e−2π ist dt

)
du after rearranging

=
∫ ∞

−∞
f (u)e−2π ius G(s) du by the Shift Theorem

= G(s)
∫ ∞

−∞
f (u)e−2π ius du G(s) constant as u varies

= F(s)G(s) by definition of F(s).

The corresponding result for the DFT was proved as Theorem 14.12. The results of this
and the next section are summarised in Table 14.2 of Section 14.2.2.
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Example 14.23 (Cross-correlation) The cross-correlation of real functions f and g is

Rf g(s) =
∫ ∞

−∞
f (t)g(t + s)dt . (14.26)

Show that (i) f (−t) → F(−s) = F(s), and hence that (ii) R f g = f (−t)∗g(t) →
F(s)G(s).

Solution (i) Theorem 14.20(ii) with a = −1 gives f (−t) → F(−s) as required. For the
equality,

F(−s) =
∫ ∞

−∞
f (t)e−2π i(−s)t dt =

∫ ∞

−∞
f (t)e−2π ist dt = F(s).

(ii) To help get the definitions right, let us write h(t) = f (−t). Then

f (−t)∗g(t) = h(t)∗g(t) =
∫ ∞

−∞
h(t)g(s − t)dt =

∫ ∞

−∞
f (−t)g(s − t)dt

=
∫ ∞

−∞
f (u)g(u + s)du (putting u = −t) = R f g(s) by definition.

By part (i) and the Convolution Theorem this implies R f g → F(s)G(s).

Exercise Deduce that Rff → |F(s)|2.

Remark The Correlation Theorem provides another proof that ∗ is commutative, as-
sociative and distributive over addition (cf. Section 10.2.2). For example, ( f ∗g)∗h →
(F ◦ G) ◦ H = F ◦ (G ◦ H ) gives associativity. Here, of course, (F ◦ G)(s) =
F(s)G(s).

14.2.2 The Dirac delta function δ(x)

This δ(x) is quite different from δxy , the Kronecker delta. The former, δ(x), is something
slightly more general than a function, but to guide our intuition it is helpful to think of
it as a function (see Penrose, 1999, Physics Section), and to describe it as the limit of
well-defined functions {gn(x)} as n →∞, where the graph of gn(x) is a (2/n) × (n/2)
rectangle of fixed area 1 but becoming arbitrarily thin and tall as n increases. Formally,
gn(x) = n/2 if |x | ≤ 1/n and zero otherwise, as depicted in Figure 14.14. This is why
δ(x) is often called a spike, and also an impulse function.

−1 1 x

Figure 14.14 The graph of gn(x) for n = 1, . . . , 5. As n increases the area remains
constant at 1, but the width tends to zero.
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Strictly, δ(x) is a mapping from functions f to numbers, as defined below:∫ ∞

−∞
f (x)δ(x) dx = lim

n→∞

∫ ∞

−∞
f (x)gn(x) dx . (14.27)

Remark The following is a simple but crucial consequence, and a characteristic feature
of the delta function. It is known as the sifting or testing property:∫ ∞

−∞
f (x)δ(x − x0)dx = f (x0). (14.28)

Proof Following strictly the definition in (14.27), we start with (14.28) in the case x0 = 0.∫ ∞

−∞
f (x)gn(x)dx =

∫ 1/n

−1/n
f (x)(n/2) dx by definition of gn(x)

= (2/n)[ f (αn)n/2] for some αn in [−1/n, 1/n]

= f (αn),

by the Mean Value Theorem (Ledermann & Vajda, 1982), which states that, if f is
continuous, ∫ b

a
f (x)dx = (b − a) f (α) for some α in [a, b].

The integral thus simplifies to f (αn), which tends to f (0) as n →∞. Hence (14.28) is
proved in the case x0 = 0. For general x0 we take δ(x − x0) as the limit of {gn(x)} with
the rectangles translated by x0.

Exercise Write down the steps that give (14.28) for general x0.

Example 14.24 (1) The Fourier transform of a spike at the origin has every frequency,
at constant amplitude 1. This is because δ(x) transforms, by definition, to the integral∫ ∞

−∞
f (x)δ(x) dx (where f (x) = e−i2πwx ) = f (0) (by (14.28)) = e0 = 1.

(2) The inverse transform of δ(w − w0) is
∫∞
−∞ ei2πwxδ(w − w0) dw = ei2πw0x , and sim-

ilarly the inverse transform of δ(w + w0) is
∫∞
−∞ ei2πwxδ(w + w0) dw = e−i2πw0x , hence

taking the averages we have by linearity that the inverse transform of (1/2)[δ(w − w0) +
δ(w + w0)] is cos 2πw0x , a cosine function of frequency w0 (see (14.10)). This verifies
an entry in Table 14.2 to the effect that the Fourier Transform of a cosine of frequency
k is a pair of spikes (impulses), at frequencies ±k. This idealised description is easily
visualised by the action of the Discrete Fourier Transform. For example, in Figure 14.3
the transform of the sum of three sines (similar effect to cosines) consists of three corre-
sponding pairs of spikes, easily visible in their filled-out approximated form.

(3) More generally, a function expressible as a possibly infinite sum of sine and cosine
functions of various frequencies (the Fourier series of the next section) transforms to a
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Table 14.2. The Continuous Fourier Transform in some useful cases. For the normal/
Gaussian distribution, see Chapter 9. If the normalisation constant γ is present

we say f is standardised Gaussian, otherwise just of Gaussian type.

h(t) H (s) remarks

centred unit square sin(πs)/πs Figure 14.13
e−π t2

e−πs2
Example 14.21

f ∼ N (0, σ 2) Gaussian type e−s2/2τ 2
(τ = 1/2πσ ) Example 14.21

f (t − a) e−2π ias F(s) Shift Theorem
f (t/a) aF(as) Similarity Theorem
f (t)∗g(t) F(s)G(s) Convolution Theorem
δ(t) (impulse) 1 (constant) Example 14.24 (1)
1 (constant) δ(s) (impulse) Example 14.24 (2)
cos(2πkt) impulse pair at frequencies ±k Example 14.24 (2)
f (−t) F(−s) = F(s) Example 14.23
f ′(t) 2π is F(s) Exercise 14.8
t f (t) (i/2π )F ′(s) Example 14.24 (4)

corresponding sum of spikes, known variously as a spike train, Shah function or comb
function.

(4) It is useful to include in Table 12.2 the transforms of the derivative f ′(t), and of
t f (t). The first is left as Exercise 14.8, and the second follows from

d f

ds
= d

ds

∫ ∞

−∞
f (t)e−2π ist dt =

∫ ∞

−∞
(−2π it) f (t)e−2π ist dt = −2π iF[t f (t)].

Exercise Show f ′(t) → 2π iF(s) (Use integration by parts and note that | f (t)| → 0 as
t →∞.)

Further information on the Fourier Transform and series may be found in Walker
(1988) or Ledermann and Vajda (1982).

14.3 DFT connections

The DFT exists as a useful transform with an inverse, independently of whether it equals or
approximates anything else, and can be used in its own right. We discussed the importance
of relating the DFT and the Continuous Fourier Transform in the introduction to Section
14.2. In Figure 14.15 is an overview of the connections we shall explore. The journey
begins with a small survey of Fourier series.

14.3.1 The background – Fourier series

We start here because it is an opportunity to state the widest class of functions we might
possibly consider.
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Fourier Transform

discrete frequency
s = k

Complex Fourier Series 
(real for real functions)

Discrete Fourier Transform

discrete space 
x = n

Finite interval 
band-limited

Niquist sampling

Figure 14.15 Some relationships between the Fourier Transform, Fourier series, and
DFT. Note that if time rather than space is a variable, then x = n becomes t = n.

Real Fourier series

Suppose the real function f (x) is defined only on a finite interval I of width L. We wish
to represent f (x) as a sum of harmonics (waves, modes) that is, of sines and cosines of
various frequencies. This representation extends f by periodicity to the whole real line.
Notice that, for every one unit increase in x, the wave sin(2πn)x goes through n complete
periods of length 2π (similarly for cosines). We convert these periods from 2π to L by
replacing x by x/L and hence using the forms

sin
2πn

L
x, cos

2πn

L
x,

and these appear in the Fourier expansion result stated as Theorem 14.25. It is only
necessary that f be piecewise continuous, meaning that f has only a finite number of
discontinuities, and that each such point c involves only a finite jump from the left hand
limit f (c−) to the right hand limit f (c+), as defined respectively below.

f (c−) = Lim
x→c
x<c

f (x), f (c+) = Lim
x→c
x>c

f (x). (14.29)

This is illustrated in Figure 14.16(a), where f (0−) = −1 and f (0+) = 1, a jump of
height 2.

x
−π π −π π 3π 5π

x

(a) (b)

1

−1

Figure 14.16 The graphs of (a) the step function f (x) of Example 14.26, and (b) the
sum of the Fourier series of f (x) over [−π, 5π ]. A solid dot indicates the mean value
converged to at a discontinuity.
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Theorem 14.25 (Fourier) Let f(x) be piecewise continuous on the interval I of length L.
Then the Fourier series of f(x), written

f (x) ∼ a0

2
+

∞∑
n=1

(
an cos

2πn

L
x + bn sin

2πn

L
x

)
, (14.30)

where

an = 2
L

∫
I

f (x) cos 2πn
L x dx and bn = 2

L

∫
I

f (x) sin 2πn
L x dx, (14.31)

converges to f(x) at points x where f is continuous, and otherwise to the mean of the
left and right limits (14.29); at both end-points a, b of the interval I, convergence is to
(1/2)[ f (a+) + f (b−)]. (This is consistent with extending f by periodicity, see Figure
14.16.) The series (14.30) is unique, given its convergence to f (x) as described (a proof
is given in Bracewell, 1986).

Example 14.26 Determine the Fourier series of the step function f (x) on [−π, π ]
given by f (x) = −1 if x ≤ 0 and f (x) = 1 if x > 0. Sketch the sum of the series over
the interval [−π, 5π ], marking the values at discontinuites and end-points of f (x). See
Figure 14.16.

Notice that L = 2π , so 2πnx/L = nx. Firstly, the symmetry of f (x) gives πa0 =∫
I f (x)dx = 0.

πan =
∫ 0

−π

(−1) cos nx dx +
∫ π

0
cos nx dx = 0, since sin(±nπ ) = 0 (n ≥ 1).

πbn =
∫ 0

−π

(−1) sin nx dx +
π∫

0

sin nx dx =
[cos nx

n

]0

−π
−
[cos nx

n

]π

0
(n ≥ 1)

= 2 − 2(−1)n

n
since cos(±nπ ) = (−1)n and cos(0) = 1

= 0 if n is even and 4/n if n is odd. Put n = 2m − 1.

Hence the Fourier series of f (x) is S(x) = 4
π

∑∞
m=1

sin(2m−1)x
2m−1 . Now see Figure 14.17.

A useful source of many more examples is Murphy (1993). It is by no means obvious
how successfully one can represent a step function (typified by Figure 14.16(a)) as a sum

(a) (b) 

1 2 3−2 −1

−0.5

0.5

1

1 2 3−3

−0.5

0.5

1

−2 −1

1

−3

Figure 14.17 The Fourier series summed for the step function of Example 14.26:
(a) sum of the first 10 terms, (b) sum of the first 100 terms.
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π/2−π/2

A π/2

−π/2

A

B

B

(b)(a)

Figure 14.18 (a) Graph of the even function cos x , where areas A and B are equal, (b)
the odd function sin x , with area A = −(area B). This illustrates (14.33) with L = π/2.

of cosines, so let us see how close the fit is for, say, the first 10 and the first 100 terms.
This is exemplified in Figure 14.17, and it is remarkable how well the series performs
with just those 100 terms. The 10-term graph, (a), illustrates how convergence to the
mean of left and right hand limits may proceed.

Even and odd functions An important simplification occurs in calculating (for example)
the Fourier series of f (x), if f is even or odd, as characterised below:

f (x) is

{
even, if f (−x) = f (x),
odd, if f (−x) = − f (x). (14.32)

This means that, for integrating over a symmetrical interval [−L , L], the area B to the
right of the vertical axis x = 0 is either doubled up or cancelled by a corresponding area
A to the left, as in Figure 14.18. That is,∫ L

−L
f (x)dx =

{
2
∫ L

0 f (x)dx, if f is even,

0, if f is odd.
(14.33)

Example 14.27 (Combining even and odd functions) (1) If g(x) is a product of functions,
each even or odd, then, by counting minus signs, we see that g(x) is even/odd according
as its number of odd factors is even/odd. Thus, because f (x) in Figure 14.16 is odd, so
is f (x) cos nx, giving an = 0 by (14.33), and hence a series of sine terms only. This does
not, of course, apply to the constant term a0, although this happens to be zero anyway.

(2) Similarly, an even function is a sum of cosines only.
(3) An easy example of a function that is neither even nor odd is f (x) = cos x + sin x .

It also illustrates the general method of expressing f = fe + fo, the sum of even and odd
parts given uniquely by fe(x) = (1/2)[ f (x) + f (−x)], and fo = (1/2)[ f (x) − f (−x)].
The verification is left as an exercise (the argument is the same as for (7.16), where a
matrix is expressed as the sum of a symmetric and a skew part).

Exercise Find the Fourier series of f (x) = x2 on the interval [−π, π ].

Complex Fourier series

Can we apply the real Fourier series twice to obtain a corresponding complex series with
sine and cosine terms compacted into the form einx ? The answer is YES. For simplicity
we’ll take the finite interval as [0, 2π ]; results are easily converted to [0, L] by replacing x
by (2π/L)x , and integrals are the same over any complete cycle of sin x , such as [−π, π ].
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An advantage of the complex series is its compactness; though the extra coefficients with
negative subscripts are essential. The result is as follows (note the minus sign in the
definition of cn).

Theorem 14.28 Let f (x) = g(x) + ih(x), where g and h are piecewise continuous on
the interval [0, 2π ]. Then the Fourier series

S(x) =
∑∞

n=−∞ cneinx , where cn = 1

2π

∫ 2π

0
f (x)e−inx dx, (14.34)

converges to f (x) at points x where f is continuous, and otherwise to the mean of the left
and right limits; at both end-points (a, b) = (0, 2π ), convergence is to (1/2)[ f (a+) +
f (b−)]. The coefficients cn are unique, given that S(x) converges to f (x) as described.

Proof We assume without loss of generality that f, g, h are continuous, and concentrate
on the interval [0, 2π ]. We show that if f (x) has an expansion

∑
n cneinx then cn has the

form given in (14.34), and that, moreover, S(x) equals the Fourier series for g(x) plus i
times that for h(x). Thus the existence of the real series implies that of the complex, and
the uniqueness of the complex series implies that of the real. For uniqueness we observe
the orthogonality relation ∫ 2π

0
einx · e−imx dx = 2πδmn. (14.35)

Proof For n = m the integrand becomes 1, so the integral equals 2π , otherwise we obtain∫ 2π

0
ei(n−m)x dx = [

ei(n−m)x/i(n − m)
]2π

0 (by (14.24)) = 0,

since e2πki = 1 for any integer k (= n − m). Now we can deduce the form of cn as follows.∫ 2π

0
f (x)e−imx dx =

∫ 2π

0

(∑∞
−∞ cneinx

)
e−imx dx

=
∑∞

n=−∞ cn

∫ 2π

0
einx · e−imx dx interchanging limits

=
∑∞

n=−∞ cn(2πδmn) by (14.35)

= 2πcm .

This establishes uniqueness of the coefficients cm . For the connection with real series
we split the complex sum into parts corresponding to positive and negative values of n,
then apply the formulae einx = cos nx + i sin nx and e−inx = cos nx −i sin nx :

S(x) = c0 +
∑∞

n=1
cneinx +

∑∞
n=1

c−ne−inx

= c0 +
∑∞

n=1
(cn + c−n) cos nx +

∑∞
n=1

i(cn − c−n) sin nx .
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But

cn + c−n = 1

2π

∫ 2π

0
f (x)(einx + e−inx )dx = 1

2π

∫ 2π

0
(g(x) + ih(x)) · 2 cos nx dx,

whereas i(cn − c−n) = 1
2π

∫ 2π

0 (g(x) + ih(x)) · 2 sin nx dx . Considering (14.31) with L =
2π , this shows that S(x) equals the sum of the series for g(x) plus i times the series for
h(x), as asserted. That is, S(x) = f(x), completing the proof of Theorem 14.28.

Remarks 14.29 Let us record in more detail the relationship between real and complex
coefficients. Suppose that f (x) = g(x) + ih(x), where g, h are real functions, and that
f, g, h have respective Fourier coefficients cn, (an, bn), (a′n, b′n). In this notation we have
just shown that

cn + c−n = an + ia′n, i(cn − c−n) = bn + ib′n. (14.36)

Series for real functions Setting a′n = 0 = b′n in (14.36) and rearranging, we obtain for
real and complex series of a real function{

cn = 1
2 (an − ibn), c−n = 1

2 (an + ibn),
an = cn + c−n, bn = i(cn − c−n).

(14.37)

Shortcuts (i) In particular, c−n is the complex conjugate of cn , and when these pairs
are suitably combined we obtain for a real function the usual real series. (ii) Once a
function is expressed as a sum of sines and cosines, with coefficients possibly complex,
uniqueness of the complex series implies that we will obtain it correctly if we simply
substitute

cos nx = 1/2(einx + e−inx ), sin nx = 1

2i
(einx − e−inx ).

Example 14.30 Determine the real and complex Fourier series of f (x) = sin x + cos 3x .
Real series We simply observe that f (x) is already expressed as a real Fourier series,
and since such expression is unique there is nothing more to be done.
Complex series This must be (1/2i)(eix − e−ix ) + (1/2)(e3ix − e−3ix ).

Exercise Find the complex series for 1 + 2 sin x cos x + 2i cos 5x .

14.3.2 The DFT as approximation to the Fourier Transform

Suppose that f (x) is zero outside the finite interval I = [0, L] and we wish to approximate
the Fourier transform

F(ω) =
∫ ∞

−∞
f (x)e−2π iωx dx, (14.38)

where we have replaced the earlier s by Greek ω in traditional fashion, to emphasise its
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later role as frequency. We approximate in one of the simplest ways, namely by writing
g(x) = f (x)e−2π iωx and using the values g(xn) at equally spaced grid points xn obtained
by dividing I into N equal subintervals. That is, xn and the grid width �x are given by

�x = L/N , and xn = n�x (n = 0, 1, . . . , N ). (14.39)

The following argument applies to the real and imaginary parts of g(x) separately, and
thence to g(x) itself. One way to approximate the required area is to straighten the curved
portion over each subinterval into a straight line segment and add up the trapezium-
shaped areas T (this is known as the Trapezoidal Rule, see e.g. Swokowski, 2000).
(See Figure 14.19.)

0 xn = n∆ x ∆x L

g(x)

x

T

Figure 14.19 Area under a function g(x), approximated by that under a sequence of
straight line segments, namely the sum of areas of trapezia such as T.

Since the area of a trapezium equals the mean length of its parallel sides times the distance
between them, this gives

F(ω) ≈ 1
2�x

[
g(0) + g(L) + 2

∑N−1

n=1
g(xn)

]
. (14.40)

Because the N-point DFT (14.1), by its definition, repeats at the Nth point, we should
assume g(L) = g(0), which simplifies (14.40) to

F(ω) ∼= �x

∑N−1

n=0
g(xn) = �x

∑N−1

n=0
f (xn)e−2π iωnL/N , since xn = nL/N . (14.41)

This is beginning to look like the DFT, except that it holds so far for all ω. Two equivalent
considerations lead to the same choice of ω-values in their role as frequencies.

Reciprocity relations for the DFT The inverse of the DFT is unique. To make it operable
here for values ω = ωk we require, according to (14.41) and (14.1), 2π iωknL/N =
2π ikn/N , or ωk = k/L (k = 0, 1, . . . , N − 1). Thus our grid spacing of �x = L/N on
the spatial axis implies a grid spacing on the frequency axis of

�ω = 1/L , where ωk = k�ω. (14.42)

See Figure 14.20.
Observe that the ω-grid spacing �ω = 1/L corresponds to a period L, the full extent

of the spatial grid. Thus we could equivalently have begun with this maximum period as
a hypothesis for the waves of (14.42) and inferred the correct ωk for the DFT. Denoting
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∆x = L/N ∆ω = 1/L

Spatial grid Frequency grid

Figure 14.20 Spatial and frequency grid spacing for the DFT, with N subintervals.

the highest frequency N/L on the grid by �, we may now infer the important reciprocity
relations

�L = N, (14.43)

�x�ω = 1/N. (14.44)

One interpretation of these relations is that, for given N, the spatial and frequency grid
lengths vary inversely, as do their grid spacings. We have now derived the DFT as an
approximation to the Fourier Transform. How good an approximation it is, and when it
is exact, we will learn in the next section. The answer depends of course on the sampling
rate N.

Exercise Deduce the reciprocity relations from the definitions of the �s.

14.3.3 The DFT, Fourier series and sampling rate

Here is a result which will be fundamental to what follows.

Theorem 14.31 Let the function f (x) be zero outside of a finite interval I. Then the
N-point DFT coefficients F0, . . . , FN−1 are related to the complex Fourier series co-
efficients by

(1/N )Fk = ck +
∑∞

j=1 (ck+ jN + ck− jN ). (14.45)

It follows that if cs = 0 for |s| > µ, where µ ≤ N/2, then the DFT and Fourier coeffi-
cients are identical (up to a constant multiple N).

Proof For simplicity we take the finite interval as [0, 2π ]. The case [0, L] and translates
thereof work the same way but look more complicated (see e.g. Briggs & Henson, 1995).
Further, since we are dealing with Fourier series, convergence at the end-points is to their
mean value, so we may without loss of generality take these values to be the same. Thus we
divide the interval into N equal portions, set xn = 2πn/N , and take n = 0, 1, . . . , N − 1
for the DFT. Let w = e−2π i/N . Applying the Fourier series (14.34) to f (x) at x = xn , we
may write

fn = f (xn) =
∞∑

m=−∞
cmeimxn =

∞∑
m=−∞

cmeim2πn/N =
∞∑

m=−∞
cmw−mn. (14.46)
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Figure 14.21 Position of integers k ± jN ( j �= 0) relative to the interval [−N/2,
N/2 − 1].

On the other hand, applying the DFT to f0, . . . , fN−1 yields

Fk =
N−1∑
n=0

fnwkn (by (14.8)) =
N−1∑
n=0

wkn
∞∑

m=−∞
cmw−mn (by (14.46))

=
∞∑

m=−∞
cm

N−1∑
n=0

w(k−m)n, on interchanging limits.

Now, the successive powers of w, as exhibited in Figure 14.2(b) at the start of this chapter,
repeat with period N and no less. Therefore wk−m = 1 if and only if k and m differ by
an integral multiple of N, or m = k ± jN for some positive integer j . So by (14.6) with
α = wk−m the inner sum

∑
n above is zero unless m = k ± jN , when wk−m = 1 and the

sum becomes N. This establishes (14.45).
For the last part we take k in the symmetrical interval −N/2, . . . , 0, . . . , N/2 − 1.

Then, for any k so placed, the integers k − N , k − 2N , . . . are to the left, outside the
interval, and k + N , k + 2N , . . . are outside on the right, as depicted in Figure 14.21.

So if cs = 0 for s outside this interval then (14.45) reduces to (1/N )Fk = ck . But this
condition on cs is a consequence of the given one: cs = 0 for |s| > µ, where µ ≤ N/2.

The periodic band-limited case A real or complex function f (x) is said to be L-periodic
if f (x) has period L, band-limited if its Fourier coefficients ck are zero outside a finite
range (‘band’) of k, and piecewise monotone on the finite interval I if the latter can be
split into a finite number of subintervals, on each of which f (x) is either non-increasing
or non-decreasing.

Corollary 14.32 (The Niquist sampling rate) Suppose the function f (x) is zero outside
a finite interval (or is L-periodic) and is band-limited to |k| ≤ kmax. Then the N-point
DFT determines the function exactly if N ≥ 2kmax.

Proof Theorem 14.31 applies with µ = kmax, for then N ≥ 2kmax implies µ ≤ N/2.

Shannon (1949) proved a more general result, in which the hypothesis on Fourier coeffi-
cients becomes one on the Fourier Transform, and the corresponding Niquist condition
is given in the notation of the reciprocity relations. Furthermore, his result gives the
remarkable explicit formula below for reconstructing f (x) using the sinc function in the
form sinc(x) = (sin x)/x .

Theorem 14.33 (Shannon Sampling Theorem) Let f be a band-limited function whose
Fourier Transform is zero outside of the interval [−�/2, �/2]. If �x is chosen so that
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�x ≤ 1/�, then f may be reconstructed exactly from its samples fn = f (xn) = f (n�x )
by

f (x) =
∞∑

n=−∞
fnsinc[π (x − xn)/�x ]. (14.47)

Aliasing The Shannon Theorem tells us that a band-limited function can be reconstructed
by sampling provided we sample sufficiently often to ‘resolve’ its higher frequencies. If
we do not, the higher frequencies will cause the introduction of lower frequencies which
are not part of f, and which are therefore called aliases of these higher frequencies. We can
see this already in (14.45). If there is no lower-frequency coefficient ck , a higher frequency
ck+N will nevertheless make a contribution to a frequency k term Fk . This is illustrated
in Figure 14.22, where the frequency −16 component of f (t) cannot be resolved by the
samples of less than the Niquist frequency of 2 × 16 points (though 28 points are better
than 24) and is replaced by aliases at lower frequencies. The low-frequency component
(frequency 1) is successfully reconstructed.

1

0.5

−0.5

−1

0.2 0.4 0.6 0.8 1

(a) (b) (c)

Figure 14.22 (Aliasing) (a) The original function f (t) = cos 2π t + (1/10) cos 32π t ,
(b) f (t) reconstructed from a 24 point sample by (14.47). Aliasing has introduced gratu-
itous low-frequency components, (c) reconstruction from a 28 point sample-less aliasing.

Some ‘real life’ examples (i) Artifacts in a computer image caused by inadequate
resolution (sampling rate). (ii) An effect on motion films, also called strobing: if the
frame rate is too little then the wheels of a forward moving car (or waggon) can appear to
rotate backwards. Of course, for every frame rate there is a speed for which the rotation
will not be adequately captured by the camera. (iii) Similar effects may be obtained by
not-rapid-enough periodic illumination of an otherwise darkened scene, which might
include objects on a rotating turntable.

The periodic non-band-limited case We can bound the difference between Fk and
ck by using (14.45) and the following bound, of independent interest, on the Fourier
coefficients.

Theorem 14.34 Suppose that the pth derivative f (p)(x) is bounded and piecewise
monotone on [0, L], and that if p ≥ 1 the first p −1 derivatives of f are L-periodic,
and continuous on [0, L]. Then the Fourier and DFT coefficients of f satisfy, for
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constants C, D,

|ck | ≤ C/|k|p+1 (k ∈ Z), (14.48)

|1/N Fk − ck | ≤ D/N p+1 (|k| ≤ N/2, p ≥ 1). (14.49)

We may take C = (L/2π )p Maxx | f (p)(x)|, and D = 2p+1π2C/3.

Proof The first inequality We shall be content to prove that |ck | ≤ C/|k|p when p ≥ 1.
The improvement to index p + 1, and the special case p = 0, are found in e.g. Walker
(1988). We integrate by parts p times as follows.

Lck =
∫ L

0
f (x)e−i2πkx/Ldx = [

f (x)e−i2πkx/L/(−i2πk/L)
]L

0

+ L

i2πk

∫ L

0
f ′(x)e−i2πkx/Ldx · · · =

(
L

i2πk

)p ∫ L

0
f (p)(x)e−i2πkx/Ldx,

each successive constant term being zero because e−i2πm = 1 for any integer m. The last
integral is bounded in absolute value by LB, where B is the greatest absolute value of the
integrand, B = Maxx | f (p)(x)| (this exists because [0, L] is a closed bounded interval,
see e.g. Hoggar, 1992). Hence |ck | ≤ C/|k|p with C = B(L/2π )p, and we have dealt
with (14.48). Proceeding to (14.49), we have

|(1/N )Fk − ck | = |
∑∞

j=1
(ck+ j N + ck− j N )|, where |cm | ≤ C/|m|p+1 by(14.45)

≤
∑∞

j=1
{C/|k + jN |p+1 + C/|k − jN |p+1} by (14.48)

= C

N p+1

∑∞
j=1

{1/( j + k/N )p+1 + 1/( j − k/N )p+1}. (∗∗)

We were able to drop the modulus signs because j − k/N is rendered positive by the
(14.49) condition |k| ≤ N/2, or |k/N | ≤ 1/2. We see that the infinite sum is bounded
by a quantity independent of N and k, as follows. Starting with ±k/N ≥ −1/2 (from
−1/2 ≤ k/N ≤ 1/2), we have j ± k/N ≥ j − 1/2 ≥ j/2 ( since j ≥ 1), whence

0 < 1/( j ± k/N )p+1 ≤ 2p+1/j p+1 ≤ 2p+1/j2 (p ≥ 1).

Now consider
∑

j 1/j2. The fact that this sum converges is shown by an elementary test
(see e.g. Ledermann & Vajda, 1982, or Swokowski, 2000, p. 566), and this is enough to
establish the existence of the constant D. However, the value of the sum, π2/6, may be
computed in a standard way from a Fourier series expansion, as at the end of Example
14.35 below. Then our series (∗∗) must converge to a sum bounded by 2p+1π2/3, which
is independent of N and k. This completes the proof, giving |(1/N )Fk − ck | ≤ D/N p+1

with D = 2p+1π2C /3 (for detailed rules on infinite sums, see the cited references).

Example 14.35 We consider bounds given by Theorem 14.34, starting with (1) Case
p = 0 Here f (x) is to be bounded and piecewise monotone, allowing jumps, so the step
function of Figure 14.16 is an example. The first bound is |ck | ≤ C/k, which tells us that
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ck decreases at least as rapidly as the reciprocal 1/k, as k increases through 1, 2, 3, . . .

What is the actuality? We found in Example 14.26 that bn = 0 and an = 4/πn for n odd
(otherwise zero). Formulae (14.37) convert this to

ck = (1/2)ak = (2/π)/k, in agreement with the bound C/k (k > 0).

(2) Case p = 1 Here we consider both the ck themselves and how closely they are
determined by the DFT. Now it is f ′(x) that must be bounded and monotonic, whilst
f (x) is L-periodic and continuous on [0, L] (or any interval of width L). A useful example
is f (x) = x2 on [−π, π ], extended by periodicity. In Figure 14.23 we show f (x) and
its derivative over two periods. Note that f ′(x), though discontinuous, is nevertheless
piecewise monotonic.

(a)
−π π 2π 3π0

(b)

0−π π 2π 3π

Figure 14.23 The graphs of (a) f (x) = x2 and (b) f ′(x) = 2x , both extended by peri-
odicity from [−π, π ]. The latter is piecewise monotonic, as required by Theorem 14.34.

Since p + 1 = 2, the bounds are |ck | = C/k2 and |(1/N )Fk − ck | ≤ D/k2. Let us
determine C and D. Since L/2π = 1, we have C = Max|2x | (−π ≤ x ≤ π ) = 2π , and
D = 4π2C/3 = 8π3/3. Turning now to the actual coefficients, note that the real Fourier
series f (x) is even, so bn = 0 without further calculation, and we get (Theorem 14.25)

f (x) = π2/3 +
∑∞

n=1

4(−1)n

n2
cos nx, (14.50a)

|ck | ≤ 2π/k2 (actual value ± 4/k2), and |(1/N )Fk − ck | ≤ (8π3/3)/N 2,

(14.50b)

so, for instance, if N = 256 then the DFT coefficients determine the Fourier ones to
within 0.001 approx. A further point of interest here is that (14.50) give us the sum S of
reciprocal squares required in the proof of the inequality (14.49), for, setting x = π in
(14.50) and noting that cos nπ = (−1)n , we obtain π2 = π2/3 + 4S, whence S = π2/6
as quoted.

1. Do the DFT coefficients define f (x) completely? YES, over any finite interval, provided
f (x) is band-limited and our sampling rate equals at least the Niquist rate (twice the maximum
frequency, over the interval). See Corollary 14.32.

2. How do the DFT and the Continuous Fourier Transform relate? The DFT is essentially
the Trapezoidal Rule approximation. See Section 14.3.2. The error is at worst of order �2

x , but
as little as zero under certain complicated conditions (Briggs & Henson, 1995).
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3. Any other connections? The DFT solves the least squares curve fitting problem rather beau-
tifully for a polynomial in e(2π/L)ix over an interval of width L, giving zero error (Briggs &
Henson, 1995).

Some history of the FFT

We have noted the Fast Fourier Transform for its great improvement in speed as a way to
calculate the DFT. Though Cooley and Tukey (1965) were not its first inventors, indeed
the fundamental argument was known to Gauss, it was their landmark paper which
introduced it for the first time to a wide readership and achieved general acceptance of
its importance. See Heideman et al. (1985).

Exercises 14

1
√

(a) In the case N = 4, write down the top left quarter of the Fourier Transform matrix. Now
deduce the rest by using Theorem 14.5 (i) for rows and columns and (iii) for rows only. (b)
Repeat for the case N = 6.

2
√

(a) Let w = e−2π i/N . Show that if N = 6 then w2 and w4 are cube roots of 1 other than
1 itself. Why does it follow that 1 + w2 + w4 = 0 = 1 + w4 + w8? (b) Deduce that
[1 0 1 0 1 0] → [3 0 0 3 0 0] under T (Theorem 14.5(v) may help).
(c) Can you prove the general result for N = 2M , even?

3 Let { fn} be the sample values of f (x) = (1/4) sin 10πx + (1/2) sin 40πx at 200 equally
spaced points in the interval [0, 1]. Using the DFT, show f in both the spatial and the
frequency domains (cf. Figure 14.3). Identify the peaks in the frequency domain with the
components of f.

4
√

(a) Write down the 4-point DFT matrix and its inverse. (b) What are (i) the periods of sin
14t and cos 3x , (ii) the frequencies of sin 2π N x, sin 8πx and sin 3πx?

5
√

(a) Determine the convolution product [1 2 3] ∗ [1 0 2 1] by polynomial multi-
plication. (b) Smooth the values [1 5 2 −2 4 6] by the averaging effect of con-
volution with [1/2 1/2]. Do this (i) by polynomial multiplication and (ii) by replacing
old values with the appropriate linear combinations. (c) Verify the Convolution Theorem
T ( f ∗g) = (T f ) ◦ (T g) in the case f = [2 1 0], g = [−1 1 0].

6
√

(a) Recover the DFT matrix T4 from a 4-point butterfly diagram. (b) Implement the N-point
DFT as simple matrix multiplication, and ALGO 14.2 for the FFT. Compare their times for
N = 2n , and n = 3, 4, . . . , 12.

7
√

(Used in Example 14.21.) Let I = ∫∞
−∞ e−π (t+is)2

dt . Show that dI/ds = 0 and find I by
setting s = 0.

8
√

(i) Show that the Fourier transform of d f/dt is 2π is F(s). (You may assume that | f (t)| → 0
as t → 0.) (ii) Find the transform of t2 f (t), then that of tn f (t).

9
√

Let b(t) be the unit box, b(t) = 1 for 0 < t < 1, otherwise zero. (i) Calculate the transform
B(s). (ii) Use the Shift Theorem to show the transform of the centred unit box is sinc(s).
(iii) What is the transform of the convolution product of n centred boxes?

10
√

Use the method of Example 14.24 to find the transform of sin(2πkt).
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11
√

Let f (x) = x (−π < x < π ). (i) Is this function even, odd, or neither? What kind of terms
will the Fourier series S(x) contain? (ii) Calculate S(x), and sketch its graph from −3π to
3π . (iii) By setting x = π/2, find a formula for 1 + 1/3 + 1/5 + · · ·.

12
√

Find the complex series for 1 + 2 sin x cos x + 2i cos 5x .
13

√
Let f (t) = cos 2π t + (1/8) cos 40π t on the interval [0, 1]. (i) What is the minimum
sampling rate N for this function to be reconstructible? Perform reconstruction with
(ii) N/2 samples, (iii) N samples.



15

Transforming images

Here we extend all things Fourier to two dimensions. Shortly we will be able to model
many effects on an image, such as motion or focus blur, by the 2D version of convolution,
which is handled especially simply by the Fourier Transform. This enables us to restore an
image from many kinds of noise and other corruption. We begin Section 15.1 by showing
how the Fourier Transform, and others, may be converted from a 1- to a 2-dimensional
transform of a type called separable, reducing computation and adding simplicity. In the
Fourier case we may apply the FFT in each dimension individually, and hence speed
calculation still further.

In Section 15.1.3 we prove that certain changes in an image result in predictable
changes in its transform. We include the effect of both rotation and projection,
which are germane to computerised tomography in Chapter 18. In Section 15.1.4 we
present consequences of the 2D Convolution Theorem for the Fourier Transform, and
offer a polynomial-based proof that purports to show ‘why’ the result holds. Section
15.1.5 establishes connections between correlation and the Fourier Transform, for later
use.

We begin Section 15.2 by considering the low-level operation of changing pixels solely
on the basis of their individual values, then move on to the possibilites of ‘filtering’ by
changing Fourier coefficients. Next we see how the same effect may be accomplished
by convolving the original with a matrix of coefficients. We introduce filters that achieve
edge-detection in an image.

Section 15.3 emphasises filters as a tool in reconstructing an image after a known type
of distortion has occurred, such as by motion blur, inadequate camera lens or atmosphere
effects. There is a huge variety of ideas here. Our selection includes the Wiener filter,
based on probabilistic models of image and noise.

In Section 15.4 we focus on the use of transforms in compression, introducing the
Discrete Cosine Transform, or DCT, which is a relative of the DFT. The DCT has
advantages for natural images and is easily converted to two dimensions by the method of
Section 15.1.1. Finally, we show how the DCT fits into the widely used JPEG compression
method, indicating why, on theoretical grounds, it should be good for natural images.

560
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Figure 15.1

15.1 The Fourier Transform in two dimensions

15.1.1 Separable transforms in general

The object f to be transformed is now an array/matrix, say of grey values taken by a
corresponding array of pixels in a digital image. These values are thought of as consisting
of uniformly spaced samples from a continuous model of an original image. To make
things more concrete, we show in Figure 15.1 an image of 109 × 128 pixels, and the
submatrix of the first seven rows and columns of the array of its grey values. For simplicity,
though, the theoretical discussion will be about square images.

But we have a problem. To apply a general linear transform to an N × N array or
matrix, f = [ fmn]0 ≤ m,n ≤ N−1, we must first rearrange the elements of f, say row by
row, into a single vector f ′ of length N 2. Then a linear transform is given by f ′ → K f ′,
for some N 2 × N 2 matrix K. So far so good, but K is very large, about one million
square for images of size N = 1024, so this takes a great deal of computation. Given that
multiplying a k-vector by a k × k matrix takes k(2k − 1) arithmetic operations (Section
14.1.4), the requirement here is N 2(2N 2 − 1), of order O(N 4).

However, many transforms, including those in which we are most interested, can be
put into effect by multiplying f on both sides by a matrix of the same size as itself. Thus
our example of size one million reverts down to one thousand. The property is that of
being separable, as we now describe.

The separable case A 2D transform on f is called separable if its effect may be obtained
by applying a 1D transform X → MX to each column of f in turn, and then to each row
of the resulting array. This, of course, gives a nice algorithm for performing the 2D
transform by repeated use of a 1D routine (see Section 15.5.2 for the n-dimensional
case). First we’ll express the result in terms of M, where f has columns D0, . . . , DN−1,
and the 2D transform performs f → F . Replacing each column Di by MDi as prescribed
means f → [MD0 . . . MDN−1], which equals Mf by (7.26). To transform the rows of
this result we may transpose them to columns, pre-multiply by M, then transpose back:
Mf → (Mf )T → M(Mf )T → MfMT. Thus we have the 2D transform–inverse pair

F = M f MT,

f = M−1 F(M−1)T.
(15.1)
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Table 15.1. The number of arithmetic operations required by a
2D linear transform on an N × N array. The last row

anticipates Theorem 15.6.

transform type number of operations order

general N 2(2N 2 − 1) O(N 4)
separable 2N 2(2N − 1) O(N 3)
Fourier, by the FFT 3N 2 log N O(N 2 log N )
FFT on a separable array 3N log N + N 2 O(N 2)

The formula for f is the result of simply multiplying each side of the DFT formula above
it by M−1 on the left and by M−1 transposed on the right. It is not quite obvious in
advance whether a different result is obtained if we transform the columns first, but the
expression (15.1) makes clear that there is no difference, because of associativity of the
matrix product, that is: (Mf )MT = M( fMT). Now, considering computation, the number
of arithmetic operations for multiplying two N × N matrices is N 2(2N − 1), giving a
total for the 2D transform (15.1) of N 2(2N − 1). Thus a separable transform reduces a
potential O(N 4) operations to O(N 3). This is a huge saving for large N.

Example 15.1 The 2D Discrete Fourier Transform (DFT) may be defined by (15.1)
with M = T , the DFT matrix of Chapter 14, so it is indeed separable. The next section
is devoted to some consequences. Here we note that because the DFT has a shortened
method, the FFT, reducing N-vector times matrix to (3/2)N log N operations, we have
the last reduction shown in Table 15.1.

Components and bases The idea of a basis for arrays of a given size has proved ex-
tremely fruitful, with the possibility of bases specially adapted to simplicity and economy
of use (more on this later). We begin by supposing that M−1 has columns C0, . . . , CN−1

and letting E jk be the N × N matrix consisting of zeros except for 1 in position ( j, k).
Then we may write

f = M−1 F(M−1)T by (15.1)

= M−1
(∑

jk Fjk E jk
)
(M−1)T since F =∑

jk Fjk E jk by defn. of E jk

=∑
jk Fjk M−1 E jk(M−1)T by linearity

=∑
jk FjkC j CT

k by (7.32c) and M−1 = [C0, . . . , CN−1].

That is,

f =
∑

jk
FjkC j C

T
k . (15.2)

This expresses an arbitrary array f as a linear combination of matrices {C j CT
k }. Moreover,

these matrices form a basis for the N × N matrices (i.e. f may be uniquely so expressed),
according to (7.10), because there are exactly the right number, N 2, of them.
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Nature of the basis These matrices ε jk = C j CT
k are of a very special type; they are rank

1 matrices, meaning that each row is a multiple of one fixed nonzero row (see Section
8.2.2). For example, let C j = [2 3 0] and Ck = [2 4 10]. Then

ε jk =
⎡
⎣2

3
0

⎤
⎦ [4 2 1] =

⎡
⎣ 8 4 2

12 6 3
0 0 0

⎤
⎦ .

We observe that the uth row of the product is the uth element of C j times the row CT
k . In

fact, writing array positions in parenthesis, we have the equivalent expressions

ε jk = C j C
T
k , and ε jk(u, v) = C j (u)Ck(v). (15.3)

Inner products We want to see what happens to dot products and orthogonality when
we pass from one to two dimensions of array. The dot/inner product of two equal-sized
matrices A, B is defined to be their dot product as long vectors,

A · B =
{

� j,ka jkb jk (real case),

� j,ka jkb jk (complex case). (15.4)

Notice that the complex case simply becomes the real definition if the numbers are real,
when bi j = bi j . Now we are ready to state the key results, of which only (15.5) remains
to be proved.

Theorem 15.2 Let M−1 = [C0 . . . CN−1] and ε jk = C j CT
k . Then the 2D transform

(15.1) defined by M sends an array f to its components Fjk w.r.t. {ε jk} as basis.
Furthermore,

ε jk · εpq = (C j · C p)(Ck · Cq). (15.5)

Thus {ε jk} is orthogonal/orthonormal according as the respective property holds for
{C j }, and if all C j have length L then all ε jk have length L2.

Proof ε jk · εpq = �u,v ε jk(u, v)ε pq(u, v) by (15.4)
= �uv C j (u)Ck(v)C p(u)Cq(v) by (15.3)
= �uC j (u)C p(u) �vCk(v)Cq(v) by rearrangement
= (C j · C p)(Ck · Cq) by definition of C j · Ck .

Exercise Deduce the last sentence of Theorem 15.2 from (15.5).

15.1.2 Constructing the 2D Fourier Transform

The DFT in two dimensions To convert the 1D Discrete Fourier Transform to a 2D version
we simply follow the standard procedure we have just set up. That is, we substitute the
Fourier matrix T for M in Equations (15.1). Since T is symmetric the result is as follows.
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Theorem 15.3 (Matrix formulation) The 2D Discrete Fourier Transform f → F, be-
tween square arrays indexed by 0, 1, . . . , N − 1, where T = [wkn] is the 1D transform
matrix, with w = e−2π i/N , is given by

{
F = Tf T,

f = T−1 FT−1 (DFT pair). (15.6)

Now let us spell this out in terms of the elements of T. By the laws of matrix multiplication
(see (7.17c)), the jkth element Fjk of F is given by

Fjk =
∑

m,n(T ) jm fmn(T )nk

=∑
m,n w jm fmnwkn

=∑
m,n fmnw jm+kn.

Theorem 15.4 (Equation formulation) The 2D Discrete Fourier Transform is given in
terms of the elements of the 1D transform matrix T = [wkn] by

{
Fjk =

∑N−1
m,n=0 fmnw jm+kn

fmn = 1
N 2

∑N−1
j,k=0 Fjkw−( jm+kn) (DFT pair). (15.7)

Exercise (a) What is the image of an impulse at the origin, f00 = 1 and otherwise zero?
(b) Derive the IDFT formula above from the formula T−1 = 1

N 2 T .

Theorem 15.5 (Basis formulation) With T−1 = [C0 . . . CN−1] = (1/N )[w−kn], the 2D
Discrete Fourier Transform sends an array f to its components Fjk w.r.t. an orthogonal
basis {ε jk}, where ε jk = C j Ck

T has length 1/N. Moreover, in the present notation,

Ck(n) = (1/N )w−kn, ε jk(u, v) = (1/N 2)w− ju−kv. (15.8)

Proof We apply Theorem 15.2. We saw earlier in the 1D case (14.9ff) that {C j } are
orthogonal of length 1/

√
N . Hence the {ε jk} are orthogonal of length 1/N .

Example Note that an orthonormal basis in 2D is given by {Nε jk}. Let us compute an
example in the case N = 4.

T =

⎡
⎢⎢⎣

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎤
⎥⎥⎦ , T−1 = 1

4

⎡
⎢⎢⎣

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎥⎦ ,

ε12 = C1CT
2 = 1

16

⎡
⎢⎢⎣

1
i

−1
−i

⎤
⎥⎥⎦[1 −1 1 −1

] = 1

16

⎡
⎢⎢⎣

1 −1 1 −1
i −i i −i

−1 1 −1 1
−i i −i i

⎤
⎥⎥⎦ .

Exercise Derive the (u, v) element of ε jk .
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The continuous case The 2D Fourier Transform, and in practice its discrete form the
DFT, are of great value in both analysing and improving a digital image, as we shall
indicate step by step. A most helpful simplifying feature of continuous as well as discrete
Fourier Transforms is separability: a transform can be converted to higher dimensions
by applying it one dimension at a time. Carrying out this idea for the 2-dimensional
continuous case gives

F(u, v) =
∫ ∞

−∞

(∫ ∞

−∞
f (x, y)e−2π ixudx

)
e−2π iyvdy, (15.9)

and hence the transform/inverse pair

⎧⎪⎪⎨
⎪⎪⎩

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−2π i(xu+yv) dx dy,

f (x, y) =
∫ ∞

−∞

∫ ∞

−∞
F(u, v)e2π i(xu+yv) du dv (Fourier pair).

(15.10)

Also, by essentially the same argument as used in the 1D case, Example 14.23(i), we
have

f (−x,−y) → F(−u,−v) =F(u, v). (15.11)

Exhibiting the discrete transform

There are two important things to notice about the way the discrete transform is portrayed
in Figure 15.2 and thereafter.

(1) It is the power spectrum that is shown That is, a point ( j, k) of the array is
assigned a grey value proportional to the squared amplitude of the complex number Fjk .
Although this does not reveal the argument (phase angle) of Fjk , such a display turns out
nevertheless to be extremely useful in practice.

(2) The origin is at the centre The 1-dimensional symmetry FN−k =Fk of Theorem
14.5(v) leads in two dimensions to FN− j,N−k =F jk . This means that with the origin
in upper left hand position the low-frequency components would be distributed across
the four corners, whereas with the origin centrally placed (say −N/2 ≤ j, k < N/2)

(a)   (b)

Figure 15.2 (a) Jean Baptiste Joseph Fourier (1768–1830), and (b) the 2-dimensional
Fourier Transform of his portrait. See the discussion in the text.
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+

+

(a) (b) (c)

…

=

=

Figure 15.3 Three images (a), (b), (c) with periodicity, and their transforms shown
below. Each frequency in the image transforms to a pair of dots (central symmetry),
which coincide for the constant. Notice the additivity property: the sum of the first two
images is the third, hence the same holds for their transforms.

the relation is equivalent by periodicity to F− j,−k =F jk , made manifest now in the
diagram by |F− j,−k | = |Fjk | (note: the amplitude of a complex number is unchanged
by conjugation). This result is described as central symmetry (or 1/2 turn symmetry, or
antipodality); it may be observed in Fourier’s transformed image in Figure 15.2(b), and
in Figures 15.2 and 15.4.

The effect of image periods Consider the periodic vertical bars and their transform in
Figure 15.3(a). We have seen (Table 14.2) that a cosine function cos 2πwx transforms in
one dimension to a pair of idealised spikes at frequencies ±w, visible in their approxi-
mating DFT form. What can be expected in the 2-dimensional case if we have a cosine
variation in one dimension only? An answer is provided by applying the continuous
transform to f (x, y) = cos 2πwx , conveniently done with the form (15.9).

F(u, v) =
∫ ∞

−∞

(∫ ∞

−∞
cos(2πwx)e−2π ixu dx

)
e−2π iyv dy

=
∫ ∞

−∞
1/2[δ(u + w) + δ(u − w)]e−2π iyv dy by Examples 14.24

= 1/2[δ(u +w)+ δ(u −w)]
∫ ∞

−∞
e−2π iyv dy = 1

2 [δ(u +w)+ δ(u −w)]δ(v).

Since δ(v) = 0 for v �= 0, the result is a pair of dots on the horizontal axis at coordinate
positions ±w. This is visible in Figure 15.3(a), with one central dot signifying a constant
background (zero frequency) that happened to be included.

Rotation Consider Figure 15.3(b). This has bars, as does case (a), but the bars are closer,
implying higher frequency, and furthermore slanted relative to the horizontal and vertical
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directions. We shall see (Corollary 15.8) that a rotation of the image causes an identical
rotation of its transform, and therefore the effect of vertical bars in (a) implies the effect
seen in (b), firstly in direction, and thence in the wider spacing of the (approximately)
dots corresponding to frequency.

Additivity For Figure 15.3(c) we have added grey levels of the bars of (a) and (b) and,
sure enough, the transform is the sum of their individual transforms. This is the additivity
property of the transform, an easy consequence of the integral and matrix definitions.
We survey basic properties in Table 15.2 at the end of this section.

Transforming separable arrays Sometimes an array is itself separable, the product of
vectors, f = ghT, where g, h are the column vectors with respective elements gm and
hm , as exemplified below (the ε jk of (15.3) are also examples). This simplifies computing
the transform F which, by Theorem 15.6 below, is a separable array GHT.

⎡
⎣ g0h0 g0h1 g0h2

g1h0 g1h1 g1h2

g2h0 g2h1 g2h2

⎤
⎦ =

⎡
⎣ g0

g1

g2

⎤
⎦[h0 h1 h2

]→
⎡
⎣G0

G1

G2

⎤
⎦[H0 H1 H2

]

Complexity considerations (i) We require two applications of the FFT to determine
G and H, then N 2 multiplications to construct GHT. The total of 3N log N + N 2 was
anticipated in Table 15.1. (ii) We avoid Nth roots of unity with high N, so as to preserve
accuracy. Hence it is customary to divide a large image into 8 × 8 blocks. This gives the
option of transforming each complete row or column of the image eight entries at a time
by the 8-point 1-dimensionl FFT.

Theorem 15.6 (Separable arrays) If the input is separable in the sense that

f (x, y) = g(x)h(y) (continuous case), (15.12a)

fmn = gmhn (0 ≤ m, n ≤ N − 1), (15.12b)

then the Fourier output factorises as respectively F(u, v) = G(u)H (v), and Fjk = G j Hk.

Proof For the discrete case, writing f = ghT gives F = TfTT (by (15.6)) = TghTT T =
(Tg)(Th)T = GHT, a separable array, alternatively expressed as Fjk = G j Hk . In the
continuous case we have

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)e−2π i(ux+vy) dx dy

=
∫ ∞

−∞
g(x)e−2π iux dx

∫ ∞

−∞
h(y)e−2π ivy dy,

which equals G(u)H (v) as required.
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15.1.3 Rotation and projection theorems

Here we establish some powerful features of the Fourier Transform available only in two
dimensions. Some can be proved with strict accuracy for the continuous case only, but tell
us what to expect of the DFT in practice, provided sampling is done with reasonable detail.
The cause of imprecision is that in general certain transforms such as rotation cannot be
expressed exactly in integer coordinates. Our first result supplies the similarity, rotation
and shift theorems which follow.

Theorem 15.7 (Fourier Transform of generalised rotation) Let M = Rows[(a, b),
(c, d)], with determinant � = ad − bc �= 0. Then (i) f (ax + by, cx + dy) → F(Au +
Cv, Bu + Dv)/|�|, where (A, C, B, D) = (d,−c,−b, a)/�, the elements of M−1, or
(ii) in matrix terms

f ([x y]M) → F([u v](M−1)T)/|�|.
Proof Write f (ax + by, cx + dy) = g(x, y). Then we are to determine G(u, v), where

G(u, v) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)e−2π i(ux+vy) dx dy.

For this, we make the change of variables w = ax + by, z = cx + dy. Then the infinite
region of integration is unchanged. We must substitute for x, y in terms of w, z, and to
this end we take [

A C
B D

]
=
[

a c
b d

]−1

= 1

�

[
d −c

−b a

]
.

Finally (Theorem 10.10), we have to multiply the integrand by the absolute value of the
Jacobian determinant

J =
∣∣∣∣∂(x, y)

∂(w, z)

∣∣∣∣ =
∣∣∣∣∂(w, z)

∂(x, y)

∣∣∣∣
−1

=
∣∣∣∣a c
b d

∣∣∣∣
−1

= 1/�.

Carrying out this prescription, we obtain

G(u, v) =
∫ ∞

−∞

∫ ∞

−∞
|J | · f (ax + by, cx + dy)e−2π i[(Aw+Bz)u+(Cw+Dz)v] dw dz

=
∫ ∞

−∞

∫ ∞

−∞
|J | · f (w, z)e−2π i[(Au+Cv)w+(Bu+Dv)z] dw dz

= F(Au + Cv, Bu + Dv)/|�|, as required.

Corollary 15.8 (i) (Similarity Theorem) f (x/α, y/β) → |αβ|F(αu, βv),
(ii) (Rotation Theorem) If M is a rotation or reflection matrix, then

f ([x y]M) → F([u v]M),

(iii) (Shift Theorem) f (x − a, y − b) → e−2π i(au+bv) F(u, v).
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Proof (i) In the notation of Theorem 15.7, (A, C, B, D) = (1/β, 0, 0, 1/α)αβ =
(α, 0, 0, β), whereas in (ii) we know from Section 7.4.1 that M is orthogonal: (M−1)T =
M and det(M) = ±1. In case (iii) we change variables by w = x − a, z = y − b, and
the integral becomes∫ ∞

−∞

∫ ∞

−∞
f (w, z)e−2π i[u(a+w)+v(z+b)]dw dz

= e−2π i(ua+vb)
∫ ∞

−∞

∫ ∞

−∞
f (w, z)e−2π i[uw+vz]dw dz.

Remarks 15.9 (1) According to the Shift Theorem, translating the image causes F(u, v)
to be multiplied by complex numbers eiθ of unit modulus, leaving the displayed |F(u, v)|
unchanged (see the second column of Figure 15.4).

(2) By the Rotation Theorem, any rotation or reflection performed on the image is
also performed on the DFT. The effect is visible in the, necessarily discrete, display,
within the limits of accuracy (see the third and fourth columns of Figure 15.4). It fol-
lows that rotation or reflection symmetry in the original image is also present in the
display.

(3) The Rotation Theorem is used in the theorem below, important for correcting lens
blur in Section 15.3.3, and for tomography in Chapter 18, by extending from a single
direction to all directions.

Theorem 15.10 (Projection Theorem) The projection of f (x, y) onto the x-axis,

p(x) =
∫ ∞

−∞
f (x, y) dy, has 1D Fourier Transform equal to F(u, 0).

Hence, by the Rotation Theorem the projection of f (x, y) onto a line at angle θ to the
x-axis has 1D Fourier Transform equal to F(u, v) evaluated along a line at angle θ to
the u-axis

Proof The 1D Fourier Transform of p(x) is by (14.25)

P(u) =
∫ ∞

−∞
p(x)e−2π iux dx =

∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−2π i(ux+0y)dx dy = F(u, 0).

Example 15.11 (Discrete Projection Theorem) We show that the Projection Theorem
has an exact discrete counterpart for the special case of projection onto one axis. A special
case is given in Figure 15.5.

Fjk =
∑

m,n fmnw jm+kn the DFT in two dimensions, (15.7);

Fj0 =
∑

m,n fmnw jm restriction to the first dimension

=∑
m

(∑
n fmn

)
w jm on rearranging

=∑
m p(m)w jm by definition of p(m)

= P( j) the DFT of p(m).
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[ fmn ] =
1 3 2 6
2 0 5 9
0 7 3 8
6 4 8 5

 
,      [p(m)] = [9  14  18  28]

Figure 15.5 An array and its projection p(m) onto the first axis/dimension.

Theorem 15.12 (Fourier Transform of a Laplacian) Suppose that f (x, y) and its first
and second derivatives tend to zero as |(x, y)| increases. Then ∇2 f →−4π2(u2 +
v2)F(u, v) under the Continuous Fourier Transform (this is first used in Example 15.18).

Proof We recall that ∇2 f = ∂2 f/∂x2 + ∂2 f/∂y2. It suffices to show that ∂2 f/∂x2 →
−4π2u2 F(u, v), and to note that a similar argument yields ∂2 f/∂y2 →−4π2v2 F(u, v).
We have

∂2 f/∂x2 →
∫ ∞

−∞

∫ ∞

−∞
(∂2 f/∂x2) e−2π i(ux+vy) dx dy =

∫ ∞

−∞
Ix e−2π ivy dy, where

Ix =
∫ ∞

−∞
(∂2 f/∂x2) e−2π iux dx (now integrate by parts)

=
[
∂ f

∂x
e−2π iux

]∞
−∞

−
∫ ∞

−∞

∂ f

∂x
(−2π iu) e−2π iux dx

=
∫ ∞

−∞

∂ f

∂x
(2π iu)e−2π iux dx

= [
f (x, y)(2π iu)e−2π iux

]∞
−∞ +

∫ ∞

−∞
f (x, y)(2π iu)2 e−2π iux dx

= −4π2u2
∫ ∞

−∞
f (x, y)e−2π iux dx, hence finally

∂2 f/∂x2 →−4π2u2
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−2π iux e−2π ivy dx dy = −4π2u2 F(u, v).

15.1.4 The discrete 2D Convolution Theorem

A huge number of operations on digital images (for example) amount to replacing each
value in an array by a linear combination of its neighbours, suitably defined. Just as in the
1D case, this may be expressed as a convolution product, whose calculation is shortened
by a convolution theorem relating the process to the Fourier Transform. As before, the
way to make this work is to arrange that as we traverse a row within a neighbourhood,
forming products, the column number increases in one array whilst decreasing in another,
leaving the sum of column numbers constant, as in gi3h j2 + gi4h j1 + gi5h j0, in which
the sum of second subscripts is 5. With this done similarly for row numbers, the result
is once more to imitate polynomial multiplication, now in two variables. The earlier
h(x) = f (x)g(x) becomes:
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Figure 15.6 Image and its result after convolving with the edge-detecting Laplacian.

Definition 15.13 The polynomial corresponding to an array f = [ fi j ] is f (x, y) =
�i, j fi j x i y j . The (discrete) convolution product h = f ∗g of arrays f, g is the array h
given by

h(x, y) = f (x, y)g(x, y). (15.13a)

That is to say

hmn =
∑

p+s=m
q+t=n

f pq gst , (15.13b)

which is the coefficient of xm yn in f (x, y)g(x, y); or, equivalently,

hmn =
∑

p,q
f pq gm−p,n−q . (15.13c)

The formulation (15.13a) shows that, just as in one dimension, convolution is associative,
commutative, and distributive over addition (padding with zeros may be needed to ensure
same-sized arrays for addition). In applications generally, we view a small array g, called
the kernel, as transforming a much larger array f by the process of convolution with g,
and we want the result to be the same size as the original f, with fmn replaced by a linear
combination of its original neighbours.

We may think of placing the central element of the matrix of g over the array, multi-
plying each array element by the matrix element above it, then adding the results. If the
kernel is a square matrix of size k = 2r + 1, we then shift the subscripts so that g00 is
the central element and take −r ≤ p, q ≤ r in (15.13c)

Example 15.14 (2D Laplacian edge-detection) see Figure 15.6. We have already il-
lustrated the 1D case, in which convolution with the vector [1 −2 1] replaces an
array value by an approximation to the second derivative of the sampled function
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(Example 14.11). A sufficiently small second derivative is taken as marking a maximal
rate of change, and hence a boundary point. Applying this idea in two dimensions, we
take edge pixels to occur at small values of the Laplacian ∇2 f = ∂2 f/∂x2 + ∂2 f/∂y2,
now approximated by applying the formula of Example 14.11 in each dimension to give

∇2 fmn = ( fm,n−1 − 2 fm,n + fm,n+1) + ( fm−1,n − 2 fm,n + fm+1,n). (15.14)

The result in convolution terms g∗ f is, according to (15.13), an array larger than f. Since
here we only want to exchange old values for new, we must drop terms corresponding
to subscripts outside the range of f. On the other hand, Formula (15.14) with subscripts
mn in a border row or column of f refers to subscripts outside the range of f. Here we
supply the missing values via an all-round border of zeros, as illustrated below. For g
of size k = 2r + 1 the border should be of width r, and then the new array is the same
size as the old. In the present case g has size 3 and the border has width 1 all round. We
may think of placing the central element of matrix g over each element of f in turn, to
perform the calculation.

⎛
⎝0 1 0

1 −4 1
0 1 0

⎞
⎠ ∗

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 6 8 10 12 0
0 7 9 11 23 0
0 8 10 22 14 0
0 9 21 13 15 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎝
−9 −7 −9 −15
−5 0 20 −55
−6 20 −40 4
−7 −52 6 −33

⎞
⎟⎟⎠

(Laplacian)
g f g∗ f

Notice that, to achieve the given rules (15.13), we must first rotate g by 180◦, but, as is
often the case, this leaves the matrix unchanged. A more sophisticated development is
carried out, in Example 15.30, and the border issue is further discussed more generally
below.

Border disputes Usually, of course, the boundary values are few in number compared
with those calculated ‘correctly’. For example, f might be 256 × 256 and g is commonly
3 × 3. If we can tolerate the error, perhaps by ensuring that nothing important is situated
within half the width/height of g from the boundary, well and good. If not, there are
several options.

(1) Extend the image by repeating border rows and columns enough times (we have just handled
one 3 × 3 case of g, in Example 15.14).

(2) Allow the image to wrap around on itself, to supply the extra rows and columns. This
simulates the image being periodic.

(3) Set the affected border and near-border output values to zero, or to some other constant that
is acceptable.

(4) Eliminate the affected pixels in the output image and accept a slightly reduced size.
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Separable kernels If a kernel g is separable, as defined in (15.12), then convolution by
g can be achieved as a result of convolutions in each dimension separately. We recall that
to say that g is separable means that g factors into a simple but unusual looking matrix
product g = abT, where a, b are column vectors, such as

g = abT =
⎡
⎣1

0
3

⎤
⎦[2 4 7

] =
⎡
⎣2 4 7

0 0 0
6 12 21

⎤
⎦ . (15.15)

Thus g consists of repetitions of the row vector, with the ith copy multiplied by the ith
element of the column. This situation is easily recognised for a small matrix. To spell
out the consequences, let a = [ai ], b = [b j ], so that by definition gi j = ai b j and

g(x, y) = �i, j gi j x
i y j = �i, j ai b j x

i y j = �i ai x
i� j b j y j = a(x)b(y). (15.16)

Thus f (x, y)g(x, y) = [ f (x, y)a(x)]b(y) = f (x, y)b(y)]a(y), which is to say that con-
volution by g is achievable as convolution by a and convolution by b, in either order.
Notice that if f is N × N the number of multiplications is reduced from k2 N 2 to 2k N 2,
a reduction by one third in the simplest case k = 3. An example follows.

Exercise Verify the reduction in calculation for a separable convolution, given above.

Example 15.15 (Smoothing) A simple way of smoothing a sequence of function values
in 1D is to replace each value by the average of itself and two immediate neighbours,
which is equivalent to convolution by (1/3)[1 1 1]. In one extension to 2D an average
is taken over fmn and its eight immediate neighbours, but in this case the convolution
matrix is separable as

1

9

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ = 1

9

⎡
⎣1

1
1

⎤
⎦ [ 1 1 1 ] = 1

3

⎡
⎣1

1
1

⎤
⎦ 1

3
[ 1 1 1 ].

This can be accomplished by separate 1D convolutions, as illustrated in Figure 15.7.

1
2

3
4

5
6

x 1
2

3
4

5
6

y

0

5

2
3

4
5

1
2

3
4

5
6

x 1
2

3
4

5
6

y

0

5

2
3

4
5

1
2

3
4

5
6

x 1
2

3
4

5
6

y

0

5

2
3

4
5

Figure 15.7 The separable convolution of Example 15.15. Array values are represented
by height of the surface, and the arows indicate the successive smoothing directions.

Convolution and the DFT Just as was done in one dimension, we wish to apply the
same sized DFT to f, g, and f ∗g for the purpose of linking convolution and Fourier
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Transform, for later use. The polynomial viewpoint tells us to what size f and g must be
extended by zeros to achieve this link. We simply apply the 1D rule in both directions.
Since we are keeping arrays square anyway, the new size, N, is

N = size of f + size of g − 1. (15.17)

Theorem 15.16 (Convolution Theorem for the 2-dimensional DFT) Under the Discrete
Fourier Transform in two dimensions, convolution becomes pointwise product:

f ∗g → FoG. (15.18)

Proof Rather than generalise the matrix proof of the 1-dimensional case, we use a more
bare-handed approach which brings out the remarkable consequences of the property
of w = e−2π i/N that wr+s = wr · ws . Here N is to be the size of arrays f, g and f ∗g.
Writing f ∗g = h, we must show that Hjk = Fjk G jk (0 ≤ j, k ≤ N − 1). Recalling the
formula TfT of (15.6) for the 2D transform, where T = [wkn] is the matrix of the N-point
DFT in one dimension, we have

Hjk =
∑
m,n

w jmhm,nw
kn by (15.7)

=
∑

m,n,p,q

w jm( f p,q gm−p,n−q)wkn by (15.13c).

Now we substitute λ = m − p and µ = n − q , and hence may sum over permissible
λ, µ instead of m, n, eliminating the latter by m = λ+ p, n = µ+ q . Then the powers
of w split into jm = j p + jλ and kn = kµ+ kq. Distributing these four appropriately
gives

Hjk =
∑

λ,µ,p,q

(w j p f p,qw
kq)(w jλgλ,µwkµ) =

∑
p,q

w j p f p,qw
kq
∑
λ,µ

w jλgλ,µwkµ

= Fjk G jk .

A polynomial proof The following proof, using the definition of convolution in terms of
polynomials in two variables, may add insight into ‘why’ the Convolution Theorem holds.
We parallel the polynomial proof of Theorem 14.12 in one dimension, and everything
falls into place. By Definition 15.13, the convolution h = f ∗g of arrays is given by
h(x, y) = f (x, y)g(x, y), where f (x, y) is the polynomial

∑
fmnxm yn , and similarly

for g and h. The critical connection,

Fjk = f (w j , wk), (15.19)

holds because Fjk =
∑

mn w jm+kn fmn =
∑

mn fmn(w j )m(wk)n . But the polynomial iden-
tity h(x, y) = f (x, y)g(x, y) has as a special case h(w j , wk) = f (w j , wk)g(w j , wk)
which, by (15.19) applied also to G and H, gives the Convolution Theorem Hjk =
Fjk G jk (0 ≤ j, k ≤ N − 1).
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The continuous 2D Convolution Theorem Besides the discrete version, we will have
much use for the continuous convolution f ∗g of functions f and g in two dimensions. It
is defined analogously to that in one dimension, by

f ∗g =
∫ ∞

−∞

∫ ∞

−∞
f (s, t)g(x − s, y − t)ds dt . (15.20)

Theorem 15.17 (Convolution Theorem) In two dimensions the continuous Fourier trans-
form converts convolution to pointwise product: f ∗g → FoG.

Proof We let f ∗g = h and prove that H (u, v) = F(u, v)G(u, v). Starting with the
definition,

H (u, v) =
∫ ∞

−∞

∫ ∞

−∞
h(x, y)e−i(ux+vy) dx dy

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (s, t)g(x − s, y − t)e−i(ux+vy)dsdt dxdy

by (15.20).

We change the integration variables x, y to p = x − s, q = y − t , so that dxdy becomes
dp dq, ux = up + us and vy = vq + vt , giving

H (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (s, t)e−i(us+vt)ds dt

∫ ∞

−∞

∫ ∞

−∞
g(p, q)e−i(up+vq) dp dq

= F(u, v)G(u, v) by definition of F, G.

Example 15.18 With what function g(x, y) should one convolve a function f (x, y) so
as to produce the Laplacian ∇2 f ? We require ∇2 f = g∗ f . Let us apply the Fourier
Transform:

∇2 f →−4π2(u2 + v2)F(u, v) by Theorem 15.12,

g∗ f → G(u, v)F(u, v) by Theorem 15.17.

Therefore G(u, v) = −4π2(u2 + v2), and applying the inverse transform to it yields
g(x, y).

15.1.5 Fourier Transforms and the statistics of an image

In Section 15.3 we shall wish to explore the possibility of reconstructing a degraded
image by convolving with some array (called a kernel), based upon a statistical analysis
of the properties of this image, and general knowledge of its type. Here we lay some
foundations. We suppose the image is of a certain type (X-ray image, traffic, face, natural
scene, . . . ), and seek common characteristics in terms of correlation between values at
different pixel positions.
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(s, t) = (2, 1) (s, t) = (−1, 1)

s, t 9 Cff (s, t) s, t 9 Cff (s, t) s, t 9 Cff (s, t) 9 Cff (s, t)s, t

0, 0 6 × 1 + 3 × 9 = 33

0, 1 6 × 3 = 18

0, 2 3 × 1 =  3

1, 0 4 × 1 + 2 × 4 = 12

1, 1 4 × 3 = 12

1, 2 2 × 1 = 2

2, 0 2 × 1 + 9 = 11

2, 1 2 × 3 = 6

2, 2 1 × 1 = 1

−1, 1 4 × 3 = 12

−1, 2 2 × 1 = 2 

−2, 1 2 × 3 = 6

−2, 2 1 × 1 = 1

1
1

1

1
1

13

3
311

11

11 3

3
3

Figure 15.8 Pairs with the same relative position (s, t) in an array, and a complete table.

Discrete correlation For this purpose we take each value fmn to be a random variable and
describe the array f = [ fmn] as a Markov Random Field (these were studied in Chapter
11). The correlations are determined, at least approximately, by a sample of images in the
class specified. However, a standard simplifying assumption, which is often vindicated
by good results in image reconstruction, is that the random field is ergodic. That is, the
correlation statistics of the whole class are sufficiently well approximated by those of an
individual image. We assume ergodicity for the rest of the present section. This means
we take the correlation between fmn and fm+s,n+t to be the mean product of pixel values
with the same relative positions (s, t). Let E stand for expected value. We thus define the
auto-correlation function C f f by

C f f (s, t) = E[ fmn fm+s,n+t ] = (1/N 2)
∑

m,n fmn fm+s,n+t . (15.21)

Example 15.19 We compute the correlation function of the array

⎡
⎣1 3 1

1 3 1
1 3 1

⎤
⎦ in

Figure 15.8.

Continuous correlation We now proceed to the continuous case, thought of as un-
derlying the discrete. Further, we widen the discussion to correlation between different
arrays/functions, by defining the cross-correlation R f g(x, y) between random fields f
and g, by

Definition 15.20

R f g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (s, t)g(s + x, t + y)ds dt .

In terms of 2-dimensional coordinates r = (x, y) and s = (s, t), the ergodic hypothesis
for this case is the second equality below (integrals are understood to be over the whole
plane).

R f g(r ) = E[ f (s)g(s + r )] = ∫
f (s)g(s + r )ds. (15.22)
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Table 15.2. Some properties of the continuous 2D Fourier Transform.

spatial domain frequency domain remarks

g(x, y) + h(x, y) G(u, v) + H (u, v) additivity
g(x)h(y) G(u)H (v) separable product
f (x/α, y/β) |αβ|F(αu, βv) Similarity Theorem
f (x − a, y − b) e−2π i(au+bv) F(u, v) Shift Theorem
f (x, y) rotated by θ ) F(u, v) rotated by θ ) Rotation Theorem
f (x, y)∗g(x, y) F(u, v)G(u, v) Convolution Theorem
∇2 f = ∂2 f/∂x2 + ∂2 f/∂y2 −4π2(u2 + v2)F(u, v) Laplacian
g(−x,−y) G(−u,−v) = G(u, v) preserves even/oddness
R f g S f g = F(u, v)G(u, v) cross-correlation
R f f S f f = |F(u, v)|2 auto-correlation

As a special case, R f f is the auto-correlation of f. We can now prove two celebrated
results pointing to future development of the Wiener filter (Section 15.3.4). Since R f g

already starts with a capital letter we will denote its Fourier transform by S f g. Note that
in this context a complex conjugate will be indicated by an overbar.

Theorem 15.21 The continuous Fourier transform maps correlations as follows:{
S f g = F(u, v)G(u, v) = Sg f (the Correlation Theorem),
S f f = |F(u, v)|2 (the Wiener–Kinchine Theorem).

(15.23)

Proof By an essentially identical argument to that used in one dimension (Example
14.23), we may express R f g as a convolution and then the result is immediate by the
Convolution Theorem. We have

R f g = f (−r )∗g(r ), (15.24)

where we have suppressed an argument τ of R f g for simplicity, the proof being

f (−r )∗g(r ) =
∫

f (−r )g(τ − r )dr

=
∫

f (s)g(s + τ )ds (putting s = −r ) = R f g(τ ).

By the Convolution Theorem applied to (15.24), and using (15.11), we have R f g →
F(u, v)G(u, v), and in particular R f f →F(u, v)F(u, v) = |F(u, v)|2.

Exercise Deduce the rest of (15.23) from its first equality.

15.2 Filters

We have laid the ground work for the general idea of a filter, which uses the powerful
properties of the Fourier Transform and convolution, both to enhance and to transform
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digital images in other desirable ways. The first step is a short discussion of what may
be done on a more elementary level before this power is brought to bear.

15.2.1 Greyscale transforms

We consider digital images in which each pixel is allocated a greyscale value, normally
in the range 0, 1, . . . , 255, corresponding to an 8-bit word, or byte. This, of course,
represents similar discussions for values that have other colour significance, such as red,
green, blue. In so far as the images are for the direct benefit of humans, the following
observed facts are influential (see e.g. Bruce, Green and Georgeson, 1996).

1. Brightness discrimination is poor if illumination is lacking.
2. Perceived brightness is not absolute, but depends on contrast with the background.
3. For a given background, perceived brightness varies as the logarithm of actual intensity.
4. The eye can distinguish up to about 40 grey levels.
5. If the number of grey levels is less than about 24, the eye may see contours where a smooth

transition is being modelled.

For example, a radiograph may contain all the information an observer requires, but
his/her eye does not perceive this because the image is poorly developed. Or perhaps a
photograph was taken with poor illumination, so that boundaries, objects and distinctions
may exist unperceived in the image, or may require inordinate effort and strain to see.
For such reasons, we may employ a technique of changing each grey level p consistently
to a suitably chosen new one q.

This method is illustrated by the three images in Figure 15.9. The first does indeed
enshrine a picture, but the variation in brightness is almost invisible to the naked eye.
However, after the brightness is increased (by a mapping of the form p → p + b), to
yield image (b), something is certainly visible, if rather vague. What it needs next is an
increase in contrast, p → cp, over some range. This is provided in image (c), now more
clearly a view of foliage.

We would really like to automate this process, and a tool to aid both eye and automation
is an image’s histogram, namely a graph of the number (frequency) n p of pixels with
value p. Equivalently, we may plot the relative frequency f p = n p/N 2, a change of
vertical scale in the graph, where the image is N × N and so has N 2 pixels in total. This
is done in Figure 15.10 for each image in Figure 15.9.

               (a) (b) (c)

Figure 15.9 Successive versions of an image after greyscale transformations.
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(a) (b) (c)

Figure 15.10 Histograms of the images of Figure 15.9. Largest/darkest values are to
the right of the scale. Thus (a) is very dark with tiny contrast, (b) is brighter with only
slightly more contrast, whilst (c) has reasonable contrast for the eye to see.

Histogram equalisation What we have used so far is a mapping p → q which divides
the range of p into intervals, and over each interval applies a transformation of the form
p → b + cp, whose graph is a straight line of gradient c, the contrast factor. If, for
example, we wished to stretch the p interval from 70–140 to 50–200, the graph of q
against p could be that shown in Figure 15.11.

p

(70, 50)

(140, 200)

50

100

150

200

250

50 100 150 200 250

q

Figure 15.11 A function p → q expanding the greyscale interval 70–140 to 50–200.
This is allowed for by a reduction in contrast for the intervals before and after, as may
be seen from the gradients there, of value less than 1.

Exercise What is the middle contrast ratio in Figure 15.11?

Our ideal at this point is histogram equalisation, a greyscale transformation causing
all pixel values to appear with the same frequency. This can be achieved exactly in the
ideal case of pixel values varying continuously, and then quantisation to integer values
gives the result approximately, but usually to good effect.

Suppose for simplicity that the pixel values lie in the interval [0, 1]. As the number of
discrete values p = pi taken by p is allowed to increase, the graph of relative frequencies
fi approaches a probability density function f (p) on [0, 1], which we may assume to be
positive (see remarks following (9.27)). If we apply to this the transformation q = F(p)
(the cdf of p, see (9.29)) then the new pdf is

g(q) = f (p)/|dF/dp| (substituted in terms of q) by (9.32)
= f (p)/| f (p)| by Theorem 9.44, since F is differentiable
= 1 where | f (p)| = f (p) because f (p) > 0.



15.2 Filters 581

Figure 15.12 Car and its histogram of grey values before and after histogram equali-
sation. The first car may look better, but the second brings out some new details in the
darker areas, including part of the rear number plate.

This is the desired constant value, and equals 1 because the interval width is 1 (Example
9.42). For the discrete counterpart we replace probability by relative frequency to obtain
p →∑

r≤p fr for the cdf function. To revert to values of p lying in {0, 1, . . . , pmax}, we
scale up the sum by pmax and round the result to the nearest integer. The rule becomes

p → pmax

∑
r≤p

fr (rounded) = (pmax/N 2)
∑
r≤p

nr (rounded). (15.25)

This is the automation we sought. Figure 15.12 shows the result of histogram equalisation
on a car which is partly shrouded in darkness, with the histogram before and after the
change. Notice that, although the histogram is by no means perfectly horizontal, a definite
improvement in clarity is obtained around the dark wheels.

The median filter Here we discuss the removal of image degradation due to random
pixel values being changed by a large amount, known as impulse noise, or shot noise (cf.
Table 11.13). The median filter determines a new pixel value from a specified neigh-
bourhood of that pixel, but not by convolution. Instead, the values at the pixel and its
neighbours are put in order, with repetitions where these occur, and the median, or value
midway through the list, is selected. Thus in the 3 × 3 neighbourhood below the new
value is the fifth in the list, namely the integer 6.

5 6 7
4 40 5
6 7 5

4 5 5 5 6 6 7 7 40
↑

Median
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The median filter is nonlinear, yet simple to apply. Notice that an averaging process
would give undue weight to the value 40. An example is shown in Figure 15.13. It is true
though that, generally, convolution-type filters are preferred because of their intimate
connection with the Fourier Transform (Theorem 15.16).

(a)    (b)

Figure 15.13 (a) Image with shot noise: each pixel has probability 1/10 of being cor-
rupted into black, (b) result after applying median filter with 3 × 3 neighbourhoods. A
further application removes the remaining visible black spots, but leaves a slight blur.

15.2.2 Highpass and lowpass filters

The idea of changing an image f by modifying, or filtering, its frequency components,
(15.7) or (15.10), is a natural extension from the corresponding process in one dimension,
which was introduced in Section 14.1.2. The DFT case may be diagrammed as

f
DFT−→ F

Filter−→ F ′ IDFT−→ f ′. (15.26)

It is often helpful to think of the filter process F → F ′ (F ′ not the derivative) as multi-
plying F by a transfer function H. That is, F ′ = F ◦ H , or, in components, the alternative
forms

F ′
jk = Fjk Hjk (discrete), F ′(u, v) = F(u, v)H (u, v) (continuous). (15.27)

A highpass filter passes on higher-frequency components at the expense of lower ones
and so enhances finer details of an image. It is said to be ideal (idealised) if it operates a
simple cutoff value k0. That is, H (u, v) = 1, causing no change, except for

H (u, v) = 0 if |u| < k0 and |v| < k0 (box filter), (15.28a)

H (u, v) = 0 if
√

(u2 + v2) < k0 (disk filter). (15.28b)

Lowpass filters similarly pass on low frequencies, so in terms of Figure 15.14 we would
have H = 0 outside the shaded areas. The problem with an ideal, box-type filter is that,
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k0 u

v v

(a) k0 u(b)

Figure 15.14 Ideal highpass filters, the transfer function being H (u, v) = 0 inside the
shaded area, and 1 elsewhere. (a) Box filter, (b) disk filter.

besides performing its filtering task, it causes ringing, the multiple duplication of edges.
We illustrate ringing with Figure 15.15, in which a deliberately simple image is used so
as to make the effect stand out.

(a) (b)

Figure 15.15 Illustration of ringing: (a) simple image f, (b) the result f ′ of applying to
f an ideal highpass filter with cutoff k0 = 13. The original edges are now accompanied
by ghostly duplicates.

The cause and cure of ringing The Convolution Theorem (Theorem 15.17) tells us
that by multiplying F by H and inverting we get the result f ∗h of convolving f with the
inverse h of H. The problem is that the sharp edges of H give rise to significant frequency
components in h (the IDFT is similar to the DFT in this respect, because T−1 = 1/N )T ).
This edge effect is illustrated in Figure 15.6 of the previous chapter. It is a special case
of aliasing, for which see Theorem 14.33.

Each such component produces its own copy of an edge in f (by linearity), hence the
ringing effect as seen in Figure 15.15. A cure is to mitigate the sharp cutoff possessed
by H into a more gentle ‘roll-off’, and one way to do so is to use a Butterworth filter of
order n ≥ 1, defined in terms of r = √

(u2 + v2) by

H (u, v) =
{

1/[1 + (r/k0)2n] (lowpass),
1/[1 + (k0/r )2n] (highpass). (15.29)

The usefulness of this filter is illustrated in Figure 15.20 of Section 15.2.3, following a
discussion of its implementation.

Butterworth versus Gaussian As we see in Figure 15.16, a suitable choice of But-
terworth filter leaves a range of low frequencies relatively unaltered and cuts off the
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H(u, υ)

r/k0

H(u, υ)

r/k0

H(u, υ)

r/k0

1

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.2

11

n = 1 n = 5 n = 20

1

Figure 15.16 Butterworth lowpass filter for various orders n, where r = √
(u2 + v2).

At n = 1 the cutoff is gradual. By n = 20 the filter is close to the ideal lowpass filter
with a sharp cutoff at r = k0 (where r/k0 = 1).

rest quickly but smoothly. If requirements are less exacting, the Gaussian curve may be
an excellent alternative, since it is separable, easily implemented in either frequency or
equivalently spatial domain (see Table 14.2 of the previous chapter) and, as we show
below, well-approximated at integer values by the use of binomial coefficients. We shall
see in the next section, 15.2.3, how the effect of a Butterworth filter may be satisfactorily
approximated by a small convolution mask in the spatial domain. For related filters see
Marven and Ewers (1996).

Binomial approximation to the Gaussian filter Here we show how to obtain a matrix
of any size for a Gaussian filter. We saw earlier (Corollary 10.46) that, in performing
calculations with the binomial distribution involving many trials, results of acceptable
accuracy could be obtained by computing areas under the standard normal (Gaussian)
distribution. Now we need the return compliment. Over the range of integer values k for
which we require to evaluate the Gaussian function f (k), we may obtain a remarkably
close approximation from the binomial coefficients themselves. If f has mean n/2 (easily
changed) and variance n/4, then

f (k) ∼= 2−n

(
n
k

)
(k = 0, 1, . . . , n). (15.30)

To see this we recall from Section 10.3.3 the binomial random variable X ∼ B(n, p),
the number of successes in n independent trials, each with probability p of suc-
cess. Here P(X = k) equals approximately the area under the Gaussian f (x) =
(1/σ

√
2π ) exp[−(x − µ)2/2σ 2] between x = k − 1/2 and x = k + 1/2, where µ = np

and σ 2 = np(1 − p). Considering Figure 15.17(a), this area is approximately that of the
rectangle of width 1 and height f (k), namely f (k) itself.

The binomial formula (9.41), with coefficients written nCk , gives f (k) = nCk pk(1 −
p)n−k . Setting p = 1/2 we obtain (15.30), which is the most accurate version (Remark
10.48), and usually yields sufficient cases of σ as n varies; Table 15.3 lists such cases.
If desired, we can vary σ 2 = np(1 − p) continuously downwards from its maximum
of n/4, which occurs with p = 1/2. Figure 15.17 (b) and (c) illustrate the surprising
accuracy of (15.30) in the cases n = 4 and 6. We take n even to obtain an odd number
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Table 15.3. Some parameters for the binomial approximation to the
Gaussian mask.

n σ = (1/2)
√

n mask/matrix size 1D coefficients (×2n)

2 0.7 3 × 3 1, 2, 1
4 1.0 5 × 5 1, 4, 6, 4, 1
6 1.2 7 × 7 1, 6, 15, 20, 15, 6, 1
8 1.4 9 × 9 1, 8, 28, 56, 70, 56, 28, 8, 1

f(2)

0.3

0.2

0.1

1 2 3

oo

o o

o0.4

0.3

0.2

0.1

1−1 2 3 4 5
o

o

o

o

o

o

o

0.3
0.25
0.2

0.15
0.1

0.05

1 2 3 4 5 6

n = 4 n = 6(a) (b) (c)

Figure 15.17 (a) Area under a Gaussian between k − 1/2 and k + 1/2 approximated
by a rectangle; (b) and (c) represent consequent binomial approximations ‘o’ to the
Gaussian.

of coefficients, hence a central member. The coefficients, by construction, add up to
2−n(1 + 1)n = 1, and so leave a region of constant intensity unchanged.

Exercise Why (above) is a region of constant intensity unchanged?

Example 15.22 (Convolution masks for Gaussian smoothing) Since the 2D Gaussian is
separable because of ex2+y2 = ex2 · ey2

, we can obtain suitable matrices by the separable
method of (15.15) and Table 15.3, as follows.

n = 2 :
1

4

⎡
⎣1

2
1

⎤
⎦ 1

4

[
1 2 1

] = 1

16

⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦ , (15.31)

n = 4 :
1

16

⎡
⎢⎢⎢⎢⎣

1
4
6
4
1

⎤
⎥⎥⎥⎥⎦

1

16

[
1 4 6 4 1

] = 1

256

⎡
⎢⎢⎢⎢⎣

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

⎤
⎥⎥⎥⎥⎦ . (15.32)

Here is a key observation, which relates blurring (lowpass filtration), to edge enhacement
(highpass filtration). See also Figure 15.18.
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A highpass filter may be achieved by subtracting from the 
original image the result of applying a lowpass filter (and
vice versa). 

Original Gaussian blur (lowpass)  Highpass filter 

Figure 15.18 A highpass filter created by subtracting the result of lowpass Gaussian
blur (approximated by binomials with n = 6). As is typical, the lowpass filter causes
edges to be less sharp, whilst the highpass filter retains edges but loses some distinctions
of shading.

15.2.3 Small convolution approximations to large filters

Suppose we have a filter F → F ′, with transfer function H. That is, F ′(u, v) =
H (u, v)F(u, v). Then the Convolution Theorem tells us that f ′ = h∗ f , the convolu-
tion of f by kernel h. In general the exact h will be N × N and complex, comparing
very unfavourably in this respect with the small and real convolution masks of (15.31)
and (15.32) for the Gaussian. However, we will see how to approximate the effect of H
by the best possible convolution mask h = ĥ, of a given size r < N . We’ll see that a
frequently found condition on H (being ‘antipodal’) ensures that h is real. In a mild abuse
of notation we will normally drop the subscript and write ĥ for both the size r mask and
its extension by zeros to size N, retaining the r when emphasis is required.

Symmetry The antipodal property we want to define for h is intimitely related to other
symmetry properties useful for reducing calculation and storage requirements. All are
easy properties of both Gaussian and Butterworth filters, and we describe them in turn.

Definition 15.23 Let M be a square matrix of odd size N − 1 with rows R1, . . . , RN−1

and columns C1, . . . , CN−1. We consider symmetry operations on M. (i) Suppose we
perform the row interchanges Rk ↔ RN−k for 1 ≤ k ≤ N − 1. We may describe this as
a reflection operation in a horizontal mirror at row N/2. In the 3 × 3 matrix of (15.33)
it sends R1 ↔ R3, the mirror R2 being unchanged by R2 ↔ R2. If this leaves all matrix
elements unchanged we shall say M has a horizontal mirror. A similar definition holds for
columns and a vertical mirror. The matrices of (15.31) and (15.32) have both horizontal
and vertical mirror symmetry. Those of (15.33) below have neither.
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(ii) The result of reflection in a horizontal and a vertical mirror (in either order) is that
each element mkj is sent to its antipodal counterpart m N−k,N− j (1 ≤ k, j ≤ N − 1), and
M to its antipodal image. We say M is antipodal if this image is M itself. This differs from
symmetric, where mkj = m jk , and we compare these two symmetry properties below. The
definitions apply formally unchanged when M has even order with rows R0, . . . , RN−1,
the extra row and column being numbered zero (more general antipodality is considered
in Section 17.3.2).

Symmetric :

⎡
⎣1 2 3

2 5 4
3 4 0

⎤
⎦ , Antipodal :

⎡
⎢⎢⎣

0 0 0 0
0 1 2 3
0 4 5 4
0 3 2 1

⎤
⎥⎥⎦ . (15.33)

If rows and columns are numbered relative to the centre (N/2, N/2) the antipodal pairs
become m−k,− j = mk, j . In any case the centre in each matrix above is the unique
element 5.

Theorem 15.24 The following hold, and also with the roles of f and F reversed, for
the N-point DFT. (i) If f is symmetric then so is F, and similarly for (ii) the mirror and
(iii) the antipodal property. (iv) F is real if and only if the antipodal image of f is its
conjugate f̄ .

Proof For a short proof we note that the row operations Rk ↔ RN−k (1 ≤ k ≤ N − 1)
on an N × N matrix M are equivalent, by Theorem 8.17, to forming the product PM,
where P is the matrix which results from performing these operations on the identity
matrix IN . This is illustrated below in the case N = 4, for a simple choice of M.

I P M PM⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 0 0
3 3 3 3
2 2 2 2
1 1 1 1

⎤
⎥⎥⎦ .

By Examples 8.21, P is symmetric as above, and performing the operations of P twice
takes us back to the original M, so P2 = I . Gathering some crucial properties of P we
state:

P−1 = P = PT, (15.34a)

PT = T = TP. (15.34b)

It remains to prove (15.34b). Since R0 = [1 1 . . . 1] = R0 in the Fourier matrix T, the
first equality is equivalent to the relation RN−k = Rk (1 ≤ k = N − 1) of Theorem 14.5.
The second is obtained by transposing the first, upon observing that T, T and P are
symmetric.

Using P The horizontal mirror property of (ii) becomes PF = F if and only if P f = f
(the vertical is an exercise). The antipodal image of a matrix M is PMP, because column
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operations Ck ↔ CN−k (1 ≤ k ≤ N − 1) are obtained by post-multiplying by PT(= P)
(see above Theorem 8.20), and of course a complex matrix is real if and only if it equals
its complex conjugate. Now the proof reduces to showing

(i) f T → FT, (ii)Pf → PF, (iii)P f P → PFP, (iv)P f̄ P → F, (15.35)

which follow from (15.34). This achieves the result because, for example, f → F and
f T → FT carry the implication f = f T if and only if F = FT. In (iv) PfP= f̄ ⇔ Pf̄ P =
f ⇔ F = f .

Exercise Fill in the details of (15.35). See Exercise 15.10.

The convolution mask We find an r × r matrix to best approximate the effect of a
transfer function H on the N-point DFT. One standard approach is to write an N × N
array as a vector of length N 2, use N 2 × N 2 matrices (see Gonzalez and Woods, 1993),
and invoke the extremal properties of a pseudo-inverse matrix (see Remarks 8.57). In
fact, it is possible to phrase the problem so as to keep within matrices of size N. However,
a yet simpler way, and one which makes the solution clear by orthogonality, is to employ
the standard basis {E jk} for N × N arrays where, we recall, E jk has a 1 in position j, k
and 0 elsewhere. This gives the general result below, which we then specialise to the
most-used case.

Theorem 15.25 (Approximating a convolution mask) Let T send h → H and ĥ → Ĥ .
If ĥ is fixed at certain entries, then ‖H − Ĥ‖ is minimised as ĥ varies, by the rule:
ĥ jk = h jk except where otherwise constrained.

Proof We determine ‖H − Ĥ‖ in terms of h and ĥ. Recalling the notation of Theorem
15.5, we write as before T−1 = [C0 . . . CN−1] = (1/N )T , noting the implication that
column j of T is NC j , and express the effect of T upon E jk in terms of our earlier basis
elements ε jk = C j Ck

T.

E jk → TE jkT = (column j of T ) (column k of T )T by (7.32c)

= NC j NC
T
k = N 2ε jk .

Now it is easy to determine ‖H − Ĥ‖. We have

h = � jkh jk E jk → � jkh jk N 2ε jk = H, (15.36)

ĥ = � jk ĥ jk E jk → � jk ĥ jk N 2ε jk = Ĥ , (15.37)

and so H − Ĥ = �(h jk − ĥ jk)N 2ε jk . Crucially, by Theorem 15.5, {ε jk} are orthogonal
of equal length and therefore so are {ε jk}. Thus

‖H − Ĥ‖2 = � jk |h jk − h jk |2 N 4‖ε jk‖2, (15.38)

which is minimised when we take ĥ = h except at those entries where the former is fixed.
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Remarks 15.26 The optimum ĥ of Theorem 15.25 is the array we would obtain by
computing h as T−1 HT−1, then deleting all those rows and columns which are to be
absent in ĥ. This is a remarkable property of the DFT, and holds true whatever row/column
numbers are allowed by ĥ. (In fact, they need not be the first r, nor need they even be
contiguous.) Having noted this, we may achieve the same result by reducing T−1 to
a matrix Sr of only r columns, corresponding to the desired r rows/columns of the
approximation:

ĥ = ST
r HSr . (15.39)

This follows from the routine observation that the rows of h = T−1 HT−1 are determined
by the rows of the first factor and the columns by the last. Thus, (row k of h) = (row
k of T−1)H T−1 = CT

k H T−1, so we reduce to the desired rows by taking ST
r H T−1.

Considering the columns similarly reduces the latter to (15.39).

Example 15.27 (A cure for under-sampling) Let us approximate the Butterworth filter
of order 1 with N = 128 and cutoff k0 = 20, by convolution masks of various sizes. As
illustrated in Figure 15.19, the 7 × 7 mask contains the 5 × 5 which in turn contains the
3 × 3 mask.

ĥ7 =

0.18 0.37 0.64 0.87 0.64 0.37 0.18
0.37 0.89 1.7 2. 1.7 0.89 0.37
0.64 1.7 5.1 9.3 5.1 1.7 0.64
0.87 2. 9.3 26. 9.3 2. 0.87
0.64 1.7 5.1 9.3 5.1 1.7 0.64
0.37 0.89 1.7 2. 1.7 0.89 0.37
0.18 0.37 0.64 0.87 0.64 0.37 0.18

Figure 15.19 Approximate convolution mask for a Butterworth filter, illustrating that
the 7 × 7 contains the 5 × 5, which contains the 3 × 3 version. Each matrix is symmetric,
antipodal, and has horizontal and vertical mirror symmetry, as predicted by Theorem
15.24.

These containments are, of course, implied by Theorem 15.25; changing the size
does not alter previously computed elements. Further on, in Figure 15.20, we show
comparative results of the various sized masks. First some practicalities. To function as a
mask, ĥ must be numbered from its centre, which simply means appropriate cyclic array
rotations.

Calculating H and h The matrix H in both Gaussian and Butterworth cases can be
expressed in terms of the distance r from the zero frequencies. In effect, we first translate
this zero to the centre, so that r = √

(u2 + v2), where u = j − N/2, v = k − N/2. In
Figure 15.20 we apply this matrix to compare the results of the Butterworth filter with
sizes 3, 5 and 7, smoothing an under-sampled image which has the usual zigzag edges.
ALGO 15.1 below is one way to incorporate the rotations in computing h.
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(a)

(c) (d)

(b)

Figure 15.20 (a) 128 × 128 image (slightly cropped), undersampled, and therefore con-
taining zigzag edges and other signs of ‘pixillation’, (b), (c), (d) smoothing with But-
terworth filter of order 1 and cutoff 20, using respective sizes 3, 5, 7 as recorded in
Example 15.27. The smoothing even by size 3 gives a dramatic improvement in quality
at the expense of a slight blur. Perhaps only the mouth benefits by going up to size 7.
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ALGO 15.1 Butterworth filter HN×N of order d and cutoff
k0, and its approximating convolution mask h of size 2k + 1.

Function but(i, j):
r = √

[(i − N/2)2 + ( j − N/2)2]
but = 1/[1 + (r/k0)2d]

H = array but (i − 1, j − 1), 1 ≤ i, j ≤ N
Rotate H backwards N/2 rows and columns (centre to top left)
h = InverseFourier [H]
Rotate h forwards k rows and columns
Return ĥ as the first 2k + 1 rows/columns

(Note: we may replace ‘but’ by more general H (r ).)

Symmetry One result of the Butterworth dependence on r rather than separate coordi-
nates is that H is not only antipodal but symmetric, and has both horizontal and vertical
mirror symmetry. The reason is that, in terms of u and v, these symmetries involve only
an interchange of u and v or a sign change of one or both, and r is unaffected by these.
By Theorem 15.24, the same properties hold for ĥr of whatever size. The symmetries are
visible in the matrix of Figure 15.19 above. They generate the dihedral group D8 (see
Section 2.4), consisting of reflections in four equally spaced mirrors at 45◦, and multiples
of a quarter turn.

This means we could get by with calculating less than a quarter of the elements of
ĥ and filling in the rest by symmetry (again, see Figure 15.19). Finally, we emphasise
that, in spite of the non-real nature of the DFT, the elements of h and its approximations
are real. Indeed, a finer analysis shows that they are positive for h of size less than about
N/8, as we find in Figure 15.19.

Complexity The dot product of two m-vectors takes 2m − 1 arithmetic operations, so
(15.39) takes 2r (2N − 1), where r is typically between 3 and at most 9. This improves
on the method in which arrays are written out row by row as long vectors, which requires
O(N 4) operations.

Power and cutoff Though we use cutoff 20 and it seems that the power in higher-
frequency radii is negligible, this is not so; in fact, by removing these higher frequencies
(smoothly) we achieve a significant improvement over the original jaggy and mottled
appearance. See Table 15.4.

Table 15.4. Power in various frequency bands for original in Figure 15.20.

radius 0–10 10–20 20–30 30–40 40–50 50–60
power 109.866 0.7120 0.210 0.090 0.047 0.030
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15.2.4 Edge-detection filters

Here we consider edge-detection as distinct from enhancement, meaning that we process
an image so that what remains is an automated clear delineation of the edges, at the
expense of all else. This is an important early step towards object recognition (Chapter
18), by providing a basis for segmenting the image into constituent parts. The methods
we describe in this section are designed to cope with a certain amount of noise, unlike
the pure Laplacian of Figure 15.6, which is very noise-sensitive. However, the Laplacian
will shortly re-enter as part of the zero-crossing method of Marr and Hildreth (1980),
Marr (1982). Meanwhile, we note the general schema, with two parts:

(a) smooth in one direction – to mitigate the effect of noise;
(b) take as edge pixels those whose value is changing most rapidly.

Typically, we smooth in one direction only, say horizontally, then estimate the gradient
at right angles to this, as a difference between values. This may be repeated for several
directions, then the maximum modulus or the sum of moduli of gradients is taken as
edge indicator.

Example 15.28 The Sobel edge-detector Here we use the horizontal, vertical and one
direction between, with smoothing by the 1D Gaussian. The masks are as follows.

h1 =
⎡
⎣−1

0
1

⎤
⎦ [

1 2 1
] =

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ (∂1 f = h1

∗ f )

h2 =
⎡
⎣1

2
1

⎤
⎦ [−1 0 1

] =
⎡
⎣−1 0 1
−2 0 2
−1 0 1

⎤
⎦ (∂2 f = h2

∗ f )

Smoothing

Estimate
gradient

Estimate gradient

Smoothing

Smoothing

Estimate
gradient h3 =

⎡
⎣ 0 1 2
−1 0 1
−2 −1 0

⎤
⎦ (∂3 f = h3

∗ f )

The mask h3 is obtained by cycling the non-central elements of h2 one place anti-
clockwise. The criterion for an edge pixel is that |∂1 f | + |∂2 f | + |∂3 f | exceed a thresh-
old. Alternatively, we simply plot this value, as is done in Figure 15.23.

Example 15.29 The Prewitt edge-detector This time the smoothing is by simple average.
The method is sometimes called the compass operator, for eight directions are explored,
with masks all generated from h1 shown below by repeated cycling of the non-centre
elements. Now the the greatest of the eight absolute values is compared with a threshold.
This method also gives a notional direction for the edge at right angles to the direction
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−4 −2 2 4

1

2

−4 −2 2 4

1

−4 −2 2 4

−0.6

Figure 15.21 A function f (x) and its first and second derivatives, indicating how the
position of greatest slope at an edge leads to a zero crossing of the second derivative (i.e.
a place where this derivative equals zero and so crosses the horizontal axis).

of greatest change.

h1 =
⎡
⎣−1

0
1

⎤
⎦ [

1 1 1
] =

⎡
⎣−1 −1 −1

0 0 0
1 1 1

⎤
⎦ ,

h2 =
⎡
⎣−1 −1 0
−1 0 1

0 1 1

⎤
⎦ . . . , h8 =

⎡
⎣0 −1 −1

1 0 −1
1 1 0

⎤
⎦ .

Example 15.30 The zero-crossing edge-detector Marr and Hildreth (1980), Marr (1982)
based this approach on belief about how the human eye processes edges. The graphs in
Figure 15.21 illustrate in one dimension how a maximum gradient corresponding to an
edge implies a zero of the second derivative of pixel values at the edge position.

This time both smoothing and gradient check are performed in two dimensions. We
smooth by the 2D Gaussian g(r ), then apply the Laplacian and determine the ‘zero
crossings’ (or the pixels at which the Laplacian is below a threshold in absolute value).
Thus, if h is a convolution mask for the Laplacian we compute f → h∗(g∗ f ), which
equals (h∗g)∗ f . But h∗g is a discrete version of∇2g, which we can calculate analytically.
First of all we establish the useful formula for any suitably differentiable function g(r ):

∇2g(r ) = g′′(r ) + g′(r )/r. (15.40)

To see this we differentiate r2 = x2 + y2 with respect to x to obtain 2r∂r/∂x = 2x ,
whence ∂r/∂x = x/r , and so

∂g(r )/∂x = ∂g/∂r · ∂r/∂x = x[g′(r )/r ],
∂2g(r )/∂x2 = g′(r )/r + x(∂/∂x)[g′(r )/r ] by the Product Rule

= g′(r )/r + (x2/r )∂/∂r [g′(r )/r ] since ∂r/∂x = x/r
= g′(r )/r + (x2/r )[rg′′(r ) − g′(r )]/r2 by the Quotient Rule.

Similarly for ∂2g(r )/∂y2 and, adding the two parts and simplifying by x2 + y2 = r2, we
obtain (15.40). Specialising to the Gaussian g(r ) = γ exp[−r2/2σ 2](γ = 1/σ

√
(2π )),

we have the relation g′(r ) = −rg(r )/σ 2 and, differentiating again with respect to r:

g′′(r ) = (r2 − σ 2)g(r )/σ 4. (15.41)
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0.1

0

−0.1
−2

0

2
−2

0

2
0.044 0.098 0.11 0.098 0.044

0.098

0.11

0.098

0.044

0.098 0. −0.24 0.

−0.24

0.−0.24

−0.8

0.

−0.240.11

0.098

0.044 0.098 0.11 0.098

(LoG mask)

Figure 15.22 (a) The Laplacian of Gaussian function (σ = 1) as a surface, and (b)
the 5 × 5 convolution mask obtained by evaluating the function over x, y = −2, . . . , 2.
Note the D8 symmetries (see Section 2.4), including horizontal, vertical and diagonal
reflections.

Warning: this expression is sometimes mistakenly identified with the Laplacian, but
according to (15.40) we have yet to add in the term g′(r )/r . When this is done, we have

∇2g(r ) = r2 − 2σ 2

σ 4
g(r ). (15.42)

Firstly, here is a rough tryout of the LoG method (o stands for ‘of’) on the 54 × 61 image
(a) below, consisting of two connected regions, differently shaded. Employing ALGO
15.1 with H (r ) from (15.42), we denote the image array by f, take σ = 2 in (15.42), and
exhibit black those pixels satisfying the edge criterion |(LoG)∗ f | < 45.

This results in (b), which does
distinguish the edges from the
shading and white surround.

(a) (b)

Remark Marr and Hildreth (1980) noted the difference of two Gaussians (DoG) function
of Wilson and Bergen (1979) as a good approximation to their LoG operator over a
certain range of σ ratios σ1/σ2. Indeed, LoG and DoG are proportionate as σ1/σ2 → 1,
but of course the limiting case is of no practical help. Marr and Hildreth showed that a
good compromise is σ1/σ2 = 1.6, based on an engineering-type tradeoff between filter
bandwith and sensitivity. For further developments see Castleman (1996).

Example 15.31 We compare the edge-detection properties of the Sobel, Prewitt and zero-
crossing methods. The Prewitt and Sobel results for the present example, the windmill of
Figure 15.23, are very hard to distinguish, and we give only the Sobel. The superiority of
the Marr–Hildreth method comes out, for example, in its detection of edges in the lower
left windmill vane, compared with a blur in the Sobel case.

An encyclopaedic study of applications is found in Russ (1995), whilst Baldock and
Graham (2000) stress biomedical applications such as chromosomes. Seul, O’Gorman
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Figure 15.23 An original windmill photo digitised at 327 × 233, followed by the result
of the Sobel method, then the Marr–Hildreth Laplacian-of-Gaussian (LoG) method. The
detail is superior in the LoG case.

and Sammon (2000) focus on practical issues in general. For a survey of methods and
approaches to edge-detection, see Davies (1997).

15.3 Deconvolution and image restoration

In Chapter 11 we studied some probabilistic approaches to image restoration, assuming
the presence of additive noise. Here we introduce firstly the method of restoration by
deconvolution in the context of image blurring by motion, camera lens imperfection or
atmospheric disturbance; this method is noise-sensitive. We then derive the all-purpose
Wiener filter, based on probabilistic models of the image and its distortion, and allowing
for additive noise as well as blur. We begin with the idea of expressing the image
distortion as the convolution of the original with some mask.

15.3.1 Motion blur

(a) The original (b) clarity lost (motion blur) (c) clarity regained

Figure 15.24 (b) The original image is blurred due to motion during exposure to the
camera, but restored in (c) by methods described below. Notice that the blur disguises
both the card number and the identity of the child.
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Let us suppose that a camera records light for a short time T during which the image
moves a short distance, but that the shutter opens and closes sufficiently fast that no
account need be taken of this transition. An important assumption that helps us to analyse
the situation is that the object under observation is rigid, so that, if t denotes time from
the start, every image point follows the same path (a(t), b(t)), 0 ≤ t ≤ T . Consider first
a continuous model, where f (x, y) represents true image values and g(x, y) the values
as recorded.

(a(t), b(t))

(x − a(0)), y − b(0))

(x, y)

t = 0

t = T

(i) (ii)

Figure 15.25 (i) The motion of every point, (ii) the path whose points contribute to
g(x, y).

By considering Figure 15.25, we conclude that g(x, y) is given by a time average of f
over the path that leads to (x, y). For the time that the camera would have spent collecting
photons from a given small region R around (x, y) is, by virtue of the motion, expended
across all parts that finally line up under R. The recorded image is therefore

g(x, y) = 1/T

∫ T

0
f (x − a(t), y − b(t)) dt, with transform

G(u, v) =
∫ ∞

0

∫ ∞

0
g(x, y) e−2π i(ux+vy) dx dy

= 1/T

∫ ∞

0

∫ ∞

0

[∫ T

0
f (x − a(t), y − b(t))dt

]
e−2π i(ux+vy) dx dy

= 1/T

∫ T

0

[∫ ∞

0

∫ ∞

0
f (x − a(t), y − b(t)) e−2π i(ux+vy) dx dy

]
dt

= 1/T

∫ T

0
F(u, v) e−2π i(ua(t)+vb(t)′dt by the Shift Theorem, Table 15.2

= F(u, v)H (u, v), since F is independent of t, where

H (u, v) = 1/T

∫ T

0
e−2π i(ua(t)+vb(t)′dt . (15.43)

Thus, provided the integration in (15.43) may be performed, we have discovered a transfer
function H for the effect of motion, and we may recover F(u, v) = G(u, v)/H (u, v)
(unless H has a zero in the region of interest), and hence f (x, y) from the Inverse
Fourier Transform. Let us proceed with the case of uniform motion in the x-direction,
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say a(t) = αt/T , and b(t) = 0. We have then

H (u, v) = 1

T

∫ T

0
e−2π iuat/T dt = 1

T

[
e−2π iuat/T /(−2π iua/T )

]T

0 , by (14.24)

= (1/2π iuα)[1 − e−2π iuα]

= (1/2π iuα)[ eπ iuα − e−π iuα] e−π iuα

= (1/πuα) sin πuα e−π iuα since eiθ − e−iθ = 2i sin θ, hence the

Theorem 15.32 Suppose image blur is caused by uniform motion through a distance α

in the x-direction during exposure time. Then, writing sinc x = (1/x) sin x, we have a
transfer function

H (u, v) = sinc(πuα)e−iπuα. (15.44)

Exercise Show that H (−u,−v) = H (u, v) in (15.44). It follows that g = f ∗h, where
h is real although H is not (see Theorem 15.24).

Deducing the motion from the image If no zero of H (u, v) exists within the range
of interest, we may obtain the original image f as the inverse transform of F(u, v) =
G(u, v)/H (u, v). On the other hand we can, in one fell swoop, discover whether such
zeros exist, and, if they do, deduce the motion distance from the spacing between lines
in the transform G consequent upon these zeros. This facilitates solving the problem in
the discrete version towards which we almost inevitably turn. Let us now consider this
case.

The discrete case Suppose that a camera produces an N × N pixel array fm,n from the
scene, that the uniformly covered horizontal distance is d + 1 pixel units, and that the
area recorded is white up to the dth pixel horizontally, n = 0, 1, . . . , d − 1. Then, for
each m, the averaging process due to motion implies a new pixel value

gm,n = ( fm,n + fm,n−1 + · · · + fm,n−d)/(d + 1). (15.45)

Example 15.33 To illustrate what happens in detail we take a 1 × 7 pixel strip, with
an illumination scale ranging from f = 0 as black to f = 1 as white. Note that the
appearance according to Equation (15.45) is the same whatever (uniformly related)
scale we use, such as grey levels 0 to 255, or percentage illumination. The result is
shown in Figure 15.26.

1 1 0 0 0 1 1 1     1    2/3   1/3   0   1/3   2/3

Before
motion

After
motion

Figure 15.26 Light values captured by a camera when the scene is stationary, and when
it moves uniformly three pixels to the right (d = 2). Here 0 is black and 1 is white.
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Blurring and back We recapitulate that motion is to be d + 1 units in a horizontal
direction. Suppose the image array of values has columns C0, . . . , CN−1. If it is desired
to simulate blur for aesthetic or other reasons, this can be done in place on the image
itself by working from right to left (ALGO 15.2). The inverse operation exists and can
be formulated so as to likewise replace the columns one by one, but this time working
from left to right (ALGO 15.3). The algorithms are given below; they were applied in
Figure 15.24 with d = 12.

ALGO 15.2 Blur the array ALGO 15.3 Deblur the array
[C0, . . . , CN−1] [B0, . . . , BN−1]

For i = N − 1 down to d For i = d to N − 1
Bi = (Ci + Ci−1 + · · · + Ci−d)/(d + 1) Ci = (d + 1)Bi − Bi−1 · · · − Bi−d

How ALGO 15.3 works The blurred and original arrays are by definition related by Bi =
(Ci + Ci−1 + · · · + Ci−d)/(d + 1), which rearranges as Ci = (d + 1)Bi − Ci−1 − · · · −
Ci−d . But this is the actual calculation performed by ALGO 15.2 in working from left to
right, for Bi−1, . . . , Bi−d have been overwritten by the re-calculated Ci−1, . . . , Ci−d .

The DFT estimation of blur Suppose we do not know the extent d of the blur. We aim
to deduce the value of d from the DFT of the image F ◦ H , specifically the positions
of its zeros, where H is a discrete version of the transfer function (15.44). We shall see
that the zeros of H occur very distinctly, in equally spaced vertical lines, and so the zero
positions of F ◦ H will normally reveal this spacing. Notice first that the discrete blur
operation (15.45) is equivalent to applying to f the following 1 × (d + 1) convolution
mask h, based on d + 1 ones followed by d zeros:

h = (1 1 . . . 1 0 . . . 0)/(d + 1).

We may say g = f ∗h, the result of convolving f with a vector h representing the motion
that caused the blur. Since the zero positions of the inverse transform H are unaltered by
nonzero scalings, including those generated by shifts (see Table 15.2), we may recast h
as an N × N array whose nonzero elements are ones at positions 00, 01, . . . , 0d . To aid
in determining H we use the N × N basis matrices Est consisting of zeros except for
‘1’ at position (s, t); then (d + 1)h = E00 + E01 + · · · + E0d . This helps because (see
(7.32c)) the DFT, with rows R0, . . . , RN−1, sends Est to (column s of T )T(row t of T)
= RT

s Rt , and so

(d + 1)H =
∑d

t=0
RT

0 Rt = RT
0

∑d

t=0
Rt .

Since R0 = [11 . . . 1], this is a matrix whose every row is
∑

Rt , from which it follows
that the zeros of H indeed occur in complete columns. Continuing, we note that the case
k = 0 of Hjk is special: (d + 1)Hj 0 =∑

t Rt (0) (0 ≤ t ≤ d) =∑
t 1 = d + 1. But for
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0 < k ≤ N − 1, with w = e−2π i/N ,

(d + 1)Hjk =
∑d

t=0
Rt (k) =

∑d

t=0
wtk

=
∑d

t=0
(wk)t = [1 − (wk)d+1]/(1 − wk),

where the last equality is from the summation formula 1 + r + · · · + rd = (1 −
rd+1)/(1 − r ), with r = wk �= 1. To simplify the expression for Hjk we observe that

1 − e−2iα = e−iα(eiα − e−iα) = e−iα2i sin α,

whence (d + 1)Hjk = 1 − e−2π ik(d+1)/N

1 − e−2π ik/N
= e−π ik(d+1)/N

e−π ik/N
· sin (πk(d + 1)/N )

sin (πk/N )
, and

finally

Hjk =
⎧⎨
⎩

sin (πk(d + 1)/N )

(d + 1) sin (πk/N )
e−π ikd/N , if 1 ≤ k ≤ N − 1,

1, if k = 0.

(15.46)

The denominator of Hjk (k > 0) is never zero, because 0 < πk/N < π . The numerator is
zero when k(d + 1)/N is an integer; that is, when N divides k(d + 1). If K = N/(d + 1)
is an integer, the least such k equals K and this is the spacing distance between the lines of
zeros. If not, this situation obtains approximately, and we have an estimate d + 1 = N/K
from the lines of small grey level spaced approximately K apart.

Example 15.34 Figure 15.27 shows the DFT of the blurred image of Figure 15.24(b).
The distance between the uniformly spaced vertical lines is 10 pixels, implying motion
of d + 1 = 128/10 = 12.8 units, a reasonable approximation to the actual 13.

Continuous versus discrete The expressions (15.44) and (15.46) for H have some
similarity, except that the discrete version has a period N. This is typical; the DFT, by its
very definition, produces an expression as if the original function were periodic. Later
we will use the discrete formula (15.46) to construct an example for the Wiener filter.

Figure 15.27 The DFT of the blurred image of Figure 15.24(b).
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15.3.2 Gaussian optics – the thin lens

An image focussed through the usual spherical-faced lens is subject to some degree of
blur, in spite of otherwise excellent focussing by the user. Our purpose in this section is
to express the blur as a convolution of a perfect original, and thence to eliminate it. An
excellent starting point is the first approximation, Gaussian optics, in which precise focus
is possible. We begin with the exact laws. When a ray of light crosses a plane boundary
between two media, it is refracted (deviated) towards or away from the surface normal
at the crossing point in accordance with Snell’s Law, (15.47) below, as shown in Figure
15.28. To medium i we attribute refractive index µi , defined as the ratio of light speed in
that medium to light speed in vacuo.

P′′

P ′

θ2
θ3

θ1

P

A

B

O C

Index µ1 Index µ2

Figure 15.28 A ray PO incident at the media boundary gives rise to a reflected ray OP′
and a refracted ray OP′′. Implicitly 0 ≤ θ1, θ2, θ3 ≤ π/2.

Theorem 15.35 Referring to Figure 15.28, a reflected ray OP′ and refracted ray OP′′

both lie in the plane formed by the incident ray PO and surface normal OC. The Law of
Reflection states further that θ3 = θ1, whilst the direction of the refracted ray is given by
Snell’s Law:

µ1 sin θ1 = µ2 sin θ2. (15.47)

Remarks 15.36 (First implications of Snell’s Law)

(1) Rays are reversible That is, if P ′′O is incident then OP is the refracted continuation.
(2) A normal ray crosses the boundary with no change of direction (θ1 = 0 implies θ2 = 0).
(3) On entering a denser medium a ray swings towards the normal (µ1 < µ2 implies θ1 > θ2).
(4) As θ1 increases, so does θ2. If the first medium is denser (µ1 > µ2), this increase continues until

the ray skims the boundary (θ2 = π/2). After this critical value of θ1, Snell’s Law requires the
impossible sin θ2 > 1, and so we have only a reflected ray OP′. This total internal reflection
enables optical fibres to channel light (see e.g. Born and Wolf, 1999).

Refraction at a spherical boundary In Figure 15.29, we represent the two cases we
must investigate to obtain results for a lens. Here QRS is the path of a ray journeying
from a medium of refractive index µ to one of index µ′, the boundary being spherical
with centre O, and concave towards the ray in (a) but convex in (b). The refracted ray
RS, extended backwards, meets the axis in Q′. In case (a) we take µ > µ′, so by Remark
15.36(3) the ray is refracted away from the normal. In case (b) this is reversed. The result
in both cases is that Q′ is to the left of Q, as shown.
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Figure 15.29 A ray QR is incident on the spherical boundary between two media, where
relative to QR the boundary is (a) concave (and µ > µ′), and (b) convex (and µ < µ′).

Let α and α′ be the angles of divergence of the rays, namely the angles RQA and RQ′A.
To obtain the same formulae for both concave and convex cases we define the signed
distances

r = AO, u = AQ, v = AQ′, (15.48)

and denote angle ROA by φ in (a) but by its negative −φ in (b) because rotation from OA
to OR is in opposite directions in the two cases. We let y = MR, as shown.

The first-order approximation This means taking the labelled angles so small that,
in the formulae cos θ = 1 − θ2/2 + · · · and sin θ = θ − θ3/6 + · · ·, terms of degree
higher than 1 may be neglected. Thus sin θ = θ and cos θ = 1 , and we shall show that
there follow

α = −y/u, α′ = −y/v, φ = −y/r. (15.49)

Proof (i) AM is negligible, for AM = AO − MO = RO − RO cos φ = 0, (ii) |QR| =
|QR| cos α = |QM| = |QA|, so that α = sin α = y/|QR| = y/|QA| = y/(−u), and sim-
ilarly α′ = y/(−v), (iii) for φ we have in case (a) that sin φ = y/|OR| = y/|OA| =
y/(−r ), and in case (b) that sin φ = − sin(−φ) = −y/|OR| = −y/|AO| = −y/r , as
before.

Applying Snell’s Law Considering Figure 15.29, we have for the incidence–refraction
pair (θ, θ ′) = (φ − α, φ − α′) in case (a) and its negative in case (b), and so we may in
either case write Snell’s Law as µ sin(φ − α) = µ′ sin(φ − α′). Moreover, should Q and
Q′ lie on the opposite side of O to that portrayed then (θ, θ ′) has the opposite sign to that
given here, so our result is the same again; they cannot themselves lie on opposite sides
of O (by inspection of Figure 15.28). Now we use the assumed equality of an angle and
its sine to express Snell’s Law in the form

µ(φ − α) = µ′(φ − α′), or µ′α′ − µα = (µ′ − µ)φ,

whence, on substituting from (15.49) and dividing through by y,

µ′

v
− µ

u
= µ′ − µ

r
. (15.50)
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The thin convex lens A lens may be defined as a portion of a transparent refractive
medium bounded by two spherical surfaces. Its axis is the line joining the sphere centres,
and this cuts the lens at vertices A, A′ as shown in Figure 15.30, where we represent
a lens of refractive index µ convex towards the surrounding medium of air on either
side. Following the sign convention in (15.48) we will say the first (leftmost) surface has
radius r > 0 and the second has radius s < 0. The thin lens assumption is then that the
thickness AA′ is negligible (compared with the radii).

Q′ Q A

R
S

1 µ

Q′′A′

1

Figure 15.30 Passage of a light ray QRSQ′′ through a thin convex lens.

Suppose a ray from Q on the axis is refracted on entering and leaving the lens, then
meets the axis again at Q′′. We seek a formula connecting the signed quantities u = AQ
and v = AQ′′, using the intermediate w = AQ′. In this notation, and neglecting AA′, we
apply (15.50) to case (b) of Figure 15.29, and then to case (a), yielding

µ/w − 1/u = (µ − 1)/r and 1/v − µ/w = (1 − µ)/s,

whence, on adding,

1

v
− 1

u
= (µ− 1)

(
1

r
− 1

s

)
= 1

f
, (15.51)

say, where f, for reasons shortly to appear, is called the focal length of the lens. Notice
that the position of Q′′ therefore depends only on that of Q and not on the (small) angle
α at which the ray leaves the axis. We say that Q is focussed at its conjugate Q′′; the
lens will focus the points of a small object placed at Q as points of an image at Q′′. An
important investigative tool in this regard is the behaviour of rays parallel to the axis. The
effect of such a ray is obtained by letting u →−∞, when (15.51) gives a position F2,
say, for Q′′, whilst v →∞ gives the position F1 for Q such that a ray emerges parallel
to the axis. The result from (15.51) is

AF1 = − f, AF2 = f. (15.52)

F1, F2 are called the principal foci, and are shown in Figure 15.31. Their equidistance
from the lens is surprising because the curvatures of the lens faces may differ. They
support an extremely useful formula of Isaac Newton, for estimating the relative positions
of object and image:

F1 Q · F2 Q′′ = − f 2. (15.53)



15.3 Deconvolution and image restoration 603

Q A
Q′′

F1 F2

P

P′′

Figure 15.31 Constructing the image Q′P ′′of an object QP.

Proof F1 Q · F2 Q′′ = (AQ − AF1)(AQ′′ − AF2) = (u + f )(v − f ) by (15.51)

= u f · v f (1/ f + 1/u)(1/ f − 1/v)

= uv f 2(1/v)(−1/u) = − f 2.

Finding the image Since the product in (15.53) is always negative, F1 Q and F2 Q′′

have opposite signs, hence Q and Q′′ are either both outside the interval [F1, F2] or both
within it. Further, as Q moves to the left, away from F1, its conjugate Q′′ must approach
F2, so that a ray parallel to the axis is refracted through the principal focus on the far
side of the lens.

Now let QP be a small object represented by a straight line at right angles to the axis
at Q. The paths of the arrowed rays leaving P in Figure 15.31 are determined by the
principal foci and intersect at the image P′′ of P. The fact that this is vertically below
the image Q′′ of Q is verified by the ray from P through the lens centre A, which for
geometrical reasons passes through P′′ also (an exercise). The magnification M obtained
is considered negative because OP is inverted. It is (considering similar triangles PQA
and P ′′Q′′A)

M = Q P

Q′′P ′′ =
v

u
(< 0). (15.54)

Example 15.37 An object is placed on the axis of a thin lens of radii r = 10, s = −12,
nearest the face of radius r, at a distance of 15 units from it. Given that the lens has
refractive index 1.5, and that the refractive index of air may be assumed to be unity,
determine (i) the focal length of the lens, (ii) the position of the image and (iii) the
magnification.

Solution (i) According to (15.51), we have 1/ f = (µ − 1)(1/r − 1/s) = (1/2)(1/10 +
1/12) = 11/120, whence f = 10.9 approx. (ii) Setting u = −15 and using 1/v − 1/u =
1/ f from (15.51), we obtain 1/v = −1/15 + 11/120 = 1/40, hence the image is 40 units
to the right of the lens. (iii) The magnification is v/u = −40/15 = −2.67 approx.

15.3.3 Lens blur and atmospheric blur

Lens blur

The next step in accuracy is to allow that rays from one object/source point, rather than
focus at a single point, may produce more generally a small spot of light of varying
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intensity in the image plane. This intensity variation is called the point spread function,
or psf.

In terms of Figure 15.31 with z as signed distance along the axis, the spot area is
increased if the light is collected in a parallel plane a little away from the in-focus
position z = v. Again, if the point source moves off the z-axis to a point P(x0, y0) in the
object plane z = u, then the spot moves to P ′′ in the image plane z = v, namely

P ′′(Mx0, My0), where M = v/u. (15.55)

Blur by convolution Two frequently reasonable assumptions lead us to model blur as
the convolution of a psf for the lens with the original image. (i) Linearity Increasing the
intensity of the point source causes a proportionate intensity increase in the spot, and the
result of two point sources is the sum of their separate effects. (ii) Shift invariance For
source points P close to the axis, the psf varies so little with P that we may treat it as
invariant.

Finding the psf (The thin line method) We give one approach which uses the Fourier
Transform of the psf, called the Optical Transfer Function, or OTF. Denoting the latter
by H (u, v), we suppose an initial (continuous) image f (x, y) becomes g(x, y) under
lens blur, where, in the usual notation,

G(u, v) = H (u, v)F(u, v). (15.56)

Here the image is to be a thin line along the y-axis, represented as the product of an
impulse δ(x) with the constant function 1 on the y-coordinate. Then f (x, y) is the
separable function

f (x, y) = δ(x) · 1y. (15.57)

The hope is that knowledge of G(u, v) for this case alone will yield H (u, v) in general.
Now, the transform of the separable function (15.57) is the product of the 1D transforms
of δ(x) and 1y which, by Table 14.2 of Section 14.2, are 1u and δ(v). Applying this to
(15.56) gives G(u, v) = H (u, v)1uδ(v), whence, with v = 0,

G(u, 0) = H (u, 0). (15.58)

Since we may assume circular symmetry of the psf, a property possessed by the lens
itself, the same holds for its transform H (u, v), by the Rotation Theorem (Corollary
15.8). With this observation and Equation (15.58) we have

H (u, v) = H (r, 0), (r = √
(u2 + v2)),= G(r, 0), (15.59)

and consequently H may be determined from the measured transform of the image of
a thin line. (This could actually be taken in any direction, according to the Rotation
Theorem.)
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Figure 15.32 Eliminating lens blur.

Example 15.38 Given a digital photo subject to lens blur, and a photo of a thin line
under the same conditions, we eliminate blur as illustrated in the progression from (a) to
(c) in Figure 15.32 and explained below.

Notice that, because we are working with a finite approximation, we cannot use (15.59)
as it stands, but must construct a discrete version. Our assumptions are:

1. the psf of the camera lens has radial symmetry,
2. this psf is separable (not essential),
3. the original subject was surrounded by a region of white.

For greatest accuracy we want to ensure the Convolution Theorem holds exactly, no terms
being neglected (this entails Assumption 3). To keep a precise hold on the calculation,
we refer back to the polynomial definition of convolution, firstly in one dimension;
thus, let f = [ f0 f1 . . .], write f (x) =∑

fi x i , and similarly for vectors g, h. Then, we
recall, the convolution product g = h∗ f is defined by the polynomial multiplication
g(x) = h(x) f (x). That is, g = [gi ] if g(x) =∑

gi xi .
Now extend the vectors f, g, h by zeros to any length N which exceeds the degree of

g, and the Convolution Theorem (14.15) gives Gk = Hk Fk (0 ≤ k ≤ N − 1).

Using the blurred line Suppose that in one dimension the psi has the effect of
convolution with the kernel a = [a0 a1 . . . ad], where radial symmetry implies ai =
ad−i (0 ≤ i ≤ d). If this converts a line with constant pixel values 1 into one with values
b = [b0 b1 . . .], then

⎧⎪⎨
⎪⎩

b0 = a0,
b1 = a0 + a1,
. . .
bd = a0 + a1 + · · · + ad ,

whence

⎧⎪⎨
⎪⎩

a0 = b0,
a1 = b1 − b0,
. . .
ad = bd − bd−1,

or a = b − [0 b0 · · · bd−1].

(15.59′)

The values bi obtained in the present case are represented by heights in Figure 15.32(b).
After applying (15.59′), the 1D kernel is seen to be the row vector, to three significant
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figures:

a = [0.0276 0.0825 0.203 0.408 0.671 0.905 1.000 0.905 0.671 0.408

0.203 0.0835 0.0276].

Note that only the first d + 1 = 14 values of the blurred line are required in the calculation.
By radial symmetry this defines the complete psi, though we use the simplifying second
assumption listed, that it is actually separable, and so defined by the 13 × 13 matrix aTa.

Deblurring the image The polynomial argument for the Convolution Theorem applies
equally in two dimensions (see (15.19)). Our blurred 2-dimensional image g and the
kernel h are square, of respective sizes 128 and 13, corresponding to polynomial degrees
127 and 12, so we take the least possible value N = 140 for applying the DFT in each
dimension. Denoting the original image by f, we have g = h∗ f , and hence by the 2D
Convolution Theorem, (15.18),

G jk = Hjk Fjk (0 ≤ j, k ≤ N − 1).

Provided that, as in this example, all Hjk are nonzero, we may divide to get Fjk =
G jk/Hjk , and then the inverse DFT converts F to the original f. The result is seen in
Figure 15.32(c); it may be compared to the accurate but slightly cropped version at the
start of the current chapter (Figure 15.1; the integer grey values shown there are recovered
exactly). We conclude with a method of dealing with undesired zeros of the array H.

Dealing with zeros of H It is easy to construct an example in which Hjk = 0 occurs.
Suppose we approximate the Gaussian kernel by h = aTa, where the vector a consists of
the binomial coefficients in (1 + x)4/16. In polynomial notation, h(x, y) = (1 + x)4(1 +
y)4/256 and Hjk = (1 + w j )4(1 + wk)4/256, where w = e−2π i/N (see (15.19)). Looking
for zeros, we observe that 1 + wk = 0 ⇔ wk = −1 ⇔ e−2kπ i/N = −1 ⇔ 2k/N is an odd
integer ⇔ 2k/N = 1 (since 0 ≤ k ≤ N − 1) ⇔ k = N/2.

Thus no problem arises if N is odd but, in the likely case that N is even, we may
prevent zeros occurring by increasing N (as discussed above) to the next odd number.
For general h(x, y) we may try out varying values of N, and the deblurred image, cropped
to its original size, will be the same for every N such that all Hjk are nonzero.

Lenses in general For more on the general properties of lenses, see e.g. Castleman
(1996).

Atmospheric blur

When a distant object is focussed, turbulence in Earth’s atmosphere may have a noticeably
degrading effect on the image obtained. We outline the ingenious argument of Hufnagel
and Stanley (1964) leading to their compact expression (15.65) below, for an OTF, which
enables at least partial image restoration. Figure 15.33 indicates the geometry, with x, y, z
coordinates.
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Figure 15.33 Configuration for image focus after turbulence.
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Figure 15.34 (a) Right-handed triad formed by the fields E, H and their mutual direction
of propagation, (b) advancing wavefront of such triples from a source S.

The wave theory of light It was the Scottish physicist James Clerk Maxwell who
first identified light as a form of electromagnetic radiation. In this parlance, a light ray
in direction R corresponds to a sinusoidal (wavelike) variation in electric field E and
magnetic field H, always at right angles to one another, propagating in the direction R
perpendicular to the plane of E and H. This is indicated in Figure 15.34. In a uniform
unimpeding situation a point source results in an infinity of rays covering all directions,
corresponding to a sphere (‘wavefront’) of disturbance expanding at the speed of light.
The eye experiences a colour determined by the wavelength λ = 2π/ f , where f is the
common frequency of E and H.

The behaviour of light is governed by Maxwell’s Equations, shown in Table 15.5.
Assuming a lossless medium, each component V = V (x, y, z, t) of E or of H must
satisfy the differential equation

∇2V = (n/c)2∂2V/∂t2, (15.60)

where the refractive index n is non-constant, but assumed not to vary appreciably over

Table 15.5. Maxwell’s equations for the propagation of light
(no charge/flux).

∇ × E = −µ∂ H/∂t,∇ · εE = 0,
∇ × H = −µ∂ E/∂t,∇ · µH = 0.

µ(permeability) = µ0 in vacuo and most applications;
ε(permittivity) = ε0 in vacuo, where

√
(ε/ε0) = n, the refractive index;

× is the vector cross product (see Section 7.3.1);
∇ = i∂/∂x + j∂/∂y + k∂/∂z, (i, j, k are unit axis vectors, Section 7.1.2).
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Figure 15.35 Graph of sin(kz − wt) against z at times t = 0 and t = 1. The wave ad-
vances at the speed of light.

distances of the order of a wavelength. A wave propagating in the z-direction is given by
a solution (see below) of the form

V = Aei(kz−wt) (k/w = n/c). (15.61)

Why V is complex The solution, literally, is the real part of V. For example, if A = a + ib,
the actual solution is a cos(kz − wt) − b sin(kz − wt), but we add the imaginary part of
Aei(kz−wt) so as to form this exponential, because of the resulting gains in conciseness
and ease of calculation. We may immediately illustrate this by the process of verifying
(15.61) as a solution of (15.60) in the case A is constant. We have, using (14.24) to
differentiate:

∂V/∂t = A(−iw)ei(kz−wt) = (−iw)V, whence ∂2V/∂t2 = −w2V,

whereas ∇2V = ∂2V/∂z2 = (ik)2V = −k2V = (n2/c2)∂2V/∂t2, as required.

Why V is a moving wave Consider, for example, the graph of sin(kz − wt) against z,
as t varies. Figure 15.35 shows the result for t = 0 and t = 1, making clear that, as t
increments, the sine wave simply moves to the right. In unit time it moves a distance
w/k, which by (15.61) equals c/n, the speed of light in a medium of refractive index n.

Solving the impossible equation The particular form of (15.61) we require must take
into account what goes on between the distant object and the lens; there is not only
refraction but diffraction, the change in progress of light when its wavefront is restricted,
and scintillation, the gratuitous sparkling effect that turbulence can engender (see e.g.
Born & Wolf, 1999). Thus we must allow in (15.61) a non-constant A = A(r , t) =
A(x, y, z, t), which leads to

∇2 A + 2ik ∂ A/∂t + 2k2 N A = 0, (15.62)

where N = N (r , t) is a normalised form of the refractive index. Hufnagel remarks that no
general analytic solution is known, but, assuming the result to be a photographic image,
we are effectively averaging over exposure time, and therefore we may reasonably seek
a solution expressible in terms of time averages 〈. . .〉. This turns out to be tractible, and
the solution with boundary condition A ≡ 1 at z = 0 (see Figure 15.33) is shown to be
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Table 15.6. Details of the ‘structure constant’ CN (cgs units).

CN = 10−6(ρ/ρ0)Cθ (z), ρ/ρ0 = pressure relative to that at ground level
Cθ = αε1/3γ /β(> 0) θ = temperature in degrees Kelvin

ε = energy/unit mass dissipated by viscous friction
β = mean shear rate of wind
γ = mean vertical temperature gradient
α = constant determined by experiment

expressible as

H (u, v) = exp[−(k2/2)
〈
S2
〉
], where S =

∫ L

0
[N (u, z) − N (v, z)]dz, (15.63)

and k = 2π/λ when the wavelength λ is in cgs units (centimetre–gram–second). The first
equality, for its validity, requires S(u, v) to be normal, with mean 0, which it arguably is
by the Central Limit Theorem (as a sum of many random effects, see Section 10.3.3), and
that radial symmetry holds. On the other hand, we have not assumed that diffraction and
scintillation are absent, but rather eliminated them by the averaging process. By further
physical considerations the authors simplify the integration in (15.63) to

〈S2〉 = 2.9p5/3
∫ L

0
C2

N (z)dz, where p = √
(u2 + v2), (15.64)

and where the scientific details of the function CN are those given in Table 15.6.

Example 15.39 (1) For a path through the whole atmosphere at angle α to the vertical,

〈S2〉 = 2.9p5/3 sec α

∫ ∞

0
C2

N dh = (1.7 × 10−10 sec α)p5/3.

(2) For a horizontal path at altitude h, we have CN = constant, and 〈S2〉 = 2.9p5/3LCN
2.

Example (Djurle and Båck, 1961) Distance L = 7 miles = 1.1 × 106 cm, height h =
5 × 103 cm, wavelength λ = 0.55 microns, we have k = 2π/λ = 1.1 × 10−5 cm−1, and

H (u, v) = exp
[− 5.4(u2 + v2)5/6

]
.

Conclusion A useful way to determine the Optical Transfer Function H (u, v) due to
atmospheric turbulence, for a given image, is to start with the constant d below for
a similarly obtained image, and to vary it until acceptable blur reduction is achieved
(some other forms of blur may of course need to be reduced also, as discussed in earlier
sections):

H (u, v) = e−d(u2+v2)5/6
, atmospheric blur. (15.65)
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15.3.4 Random fields and the Wiener filter

Here for the first time in this deconvolution section we introduce noise of unknown source.
Suppose firstly that the colour values J0(r ) at points r = (x, y) of an image suffer a blur
or other degradation which can be expressed as a convolution of J0 with some function
S(r ), together with an independent additive error N (r ) (spatial noise) which accounts for
such things as experimental error, background radiation, or granularity in photographic
emulsion. That is, we may express the observed colour value J (r ) as

J (r ) =
∫

S(r ′)J0(r − r ′)dr ′ + N (r ), (15.66)

where with suitable definitions the integral may be taken formally over the whole plane.
Since N (r ) is unknown, Equation (15.66) cannot be solved directly for the desired original
J0(r ). Instead, we take J0 and N to be independent random fields, N of zero mean, and
estimate J0 by a simple convolution

Ĵ 0(r ) =
∫

M(r ′)J (r − r ′)d r ′, (15.67)

with M chosen to minimise the expected squared difference

e = E[( Ĵ 0(r ) − J0(r ))2]. (15.68)

A matrix approach

The analysis is here carried out in a matrix version for the discrete case as an approxima-
tion to the continuous, following the outline of Helstrom (1967), but with the addition
of detailed proofs. Let J, J0 and Ĵ 0 represent vectors of image pixel values taken in
the same order over a rectangular grid. Suppose the integrals in (15.66) and (15.67) are
approximated by suitable quadrature formulae (such as Simpson’s Rule). Then the two
equations take the form

J = SJ0 + N , and Ĵ 0 = MJ (15.69)

(J0 is the original, J is observed, S applies Simpson’s Rule, and N is noise), where S and
M are matrices, and we wish to choose M to minimise the expected sum of squared errors
between the original J0 and our estimate Ĵ 0. In terms of a difference vector D = Ĵ 0 − J0,
this quantity may be written E[‖D‖2]. The independent noise vector N is assumed to
have zero mean. Some preliminaries follow.

Given a matrix V of random variables, we consider its expected value E[V ], in which
each entry vi j is replaced by the expected value E[vi j ]. Here we let Cov(X) stand for
E[X XT], where X is a random column vector with mean not necessarily the zero vector.
Let A, B be constant matrices and Y a random vector independent of X , with zero mean.
Thus E[Xi Y j ] = E[Xi ]E[Y j ] = 0. Then by a small extension of Theorem 10.56 (see
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Exercise 15.17):

E[AVB] = AE[V ]B, (15.70a)

Cov[AX] = ACov[X ]AT, (15.70b)

Cov[AX + BY] = Cov[AX] + Cov[BY]. (15.70c)

Our first task is to express the minimisation in terms of covariance, aided by the matrix
trace function Tr(P) =∑

i pii , the sum of diagonal elements. The connection is given
by Tr (DDT) =∑

i

∑
k dikdik = ‖D‖2. We are thus to minimise

E[‖D‖2] = E[Tr(DDT)] = Tr E[DDT] (since trace is linear) = Tr[Cov(D)],

by definition of Cov. To allow extra flexibility in the way particular differences influence
the conclusion (e.g. to allow for some characteristic of the human visual system), we
insert a positive definite matrix G and then minimise more generally

Tr GCov(D). (15.71)

Notice that, since G may be factorised in the form H T H (Theorem 8.39), the expression
(15.71) is equivalent to replacing each factor D by its own weighted form HD, because

Tr GCov(D) = Tr H THE[DDT] = Tr E[H THDDT] by (15.70a) = Tr E[HDDT H T],

(since Tr(PQ) = Tr(QP)), which equals Tr Cov(HD) by definition of Cov. Of
course G = I weights errors at all points equally, but, surprisingly, it turns out that
the optimal M does not depend on the precise choice of G. We derive a necessary result
on differentiation, then the main result.

Lemma 15.40 For a function f of a matrix M, let ∂ f/∂ M denote the matrix [∂/∂mi j ].
Then, provided the implied derivatives and products exist for matrices M, A, B,

∂/∂ M Tr(AMB) = AT BT,

∂/∂ M Tr(AMBMT) = ATMBT + AMB.

Proof ∂/∂m pqTr(AMB) = ∂/∂m pq
∑

i

∑
r,s air mrsbsi =

∑
i aipbqi = (AT BT)pq , whilst

∂/∂m pq Tr(AMBMT) = ∂/∂m pq

∑
i

∑
r,s,t

air mrsbst mit

=
∑

i

∑
r,s,t

(air mrsbst∂mit/∂m pq + air (∂mrs/∂m pq )bst mit )

=
∑

i,t
aipbqt mit +

∑
r,s

apr bsqmrs (p, q = r, s or i, t)

= (ATMBT + AMB)p,q .

Theorem 15.41 With Ĵ 0 as given in (15.69) and weighting matrix G of (15.71), let
φn = Cov(N ) and φ0 = Cov(J0). Then the minimising matrix M and minimised expected
squared error E[‖D‖2], are given by

M = φ0ST(Sφ0ST + φn)−1 and E[‖D‖2] = Tr G(φ0 − MSφ0) (15.72)
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Proof We are to minimise Tr GCov(D)

= Tr GCov[(MS − I )J0 + MN] by (15.69)
= Tr G[Cov((MS − I )J0) + Cov(MN)] by (15.70c)
= Tr G[(MS − I )φ0(MS − I )T + Mφn MT] by (15.70b)
= Tr G[(MS)φ0(MS)T − MSφ0 − (MSφ0)T + φ0 + Mφn MT].

The derivatives of the various terms are given by Lemma 15.40, using the trace properties
Tr(AB) = Tr (BA) = Tr (BA)T and the symmetry of G, φ0 and φn . The result is

∂/∂ M Tr G Cov(D) = 0 ⇔ 2GM(Sφ0ST) − 2Gφ0ST + 2GMφn = 0

⇔ M(Sφ0ST) − φ0ST + Mφn = 0 since G is invertible

⇔ M(Sφ0ST + φn) = φ0ST.

This gives the expression for M. Multiplying by MT on the right, we rewrite it in the
form (MS − I )φ0(MS)T + Mφn MT = 0 and substitute in the third expression for Tr G
Cov(D), converting the latter into Tr G(I − MS) φ0, the formula of (15.72) for E[‖D‖2].

Remarks At this point we need estimates for Cov(N) and Cov(J0). These may be hard
to come by with confidence. The situation is much improved by the Wiener filter, which
we now introduce.

The Wiener filter

In the present approach we go as far as possible with the continuous model, and only
discretise at the last possible moment. The Continuous Fourier Transform plays a crucial
role, starting with Theorem 15.21 from the introductory Section 15.1.5.

Notation Changing slightly the notation of (15.66) and (15.67), we shall say that a
random field f (r) suffers distortion into random field g(r) by convolution with field h(r)
and added random noise n(r). The estimate f̂ of the original f is to be convolution with a
fixed function m(r), chosen to minimise the expected squared difference e. Thus we write:

g(r ) =
∫

h(r − r ′) f (r ′)dr ′ + n(r ), (15.73)

f̂ (r ) =
∫

m(r − r ′)g(r ′)dr ′, (15.74)

e = E[( f (r ) − f̂ (r ))2]. (15.75)

Method We find f̂ by determining its Fourier Transform F̂ as follows. Equation (15.74)
states that f̂ = m∗g, so, by the Convolution Theorem (Theorem 15.17),

F̂(v, v) = M(u, v)G(u, v). (15.76)

We are given the measured g, hence its transform G. Our goal is now to obtain a usable
expression for M(u, v), so that we may determine F̂ from (15.76). We prove the key
result below, then the ancillary results required for its application. Finally, we bring them
together to deduce Wiener’s formula.
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Theorem 15.42 The function m(r) minimises the squared error e if it satisfies

E[ f (r )g(s)] = E[(g)(s)
∫

m(r − r ′)g(r )′dr ′] (15.77)

Proof We need only prove that, given (15.77), the error e′ due to an arbitrary choice m ′

in place of m satisfies e′ ≥ e. Before taking expected values, we do some rearranging
with arguments temporarily suppressed.(

f −
∫

m ′gdr′
)2

=
{

f −
∫

mgdr′ +
∫

(m − m ′)dr′
}2

=
{

f −
∫

mgdr′
}2

+
{∫

(m − m ′)gdr′
}2

+2

{
f −

∫
mgdr′

}
×

{∫
(m − m ′)gdr′

}
.

Taking expected values, and noting that the square middle term must be non-negative,
we have in succession, as shortly explained below,

e′ ≥ e + 2E

[{
f −

∫
mgdr′

}{∫
(m(r − s) − m ′(r − s))g(s)ds

}]
,

= e + 2E

[∫ (
f −

∫
mgdr′

)
(m(r − s) − m ′(r − s))g(s)ds

]
,

= e + 2
∫

(m(r − s) − m ′(r − s)) E

[
g(s)

(
f −

∫
mgdr ′

)]
ds.

where we have substituted s for r ′ in the second integral of the first line. This implies the
next line since (f − ∫

mgdr ′) does not involve s. The third line follows because E and
integration may be interchanged and m−m ′ is fixed, not probabilistic. But the expected
value is zero by (15.77), so we have e′ ≥ e and the proof is complete.

Theorem 15.43 In the usual notation, let S f g and Sgg be the respective Fourier Trans-
forms of the cross- and auto-correlation functions R f g and Rgg. Then the Fourier Trans-
form of m is given by

M(u, v) = Sg f (u, v)/Sgg(u, v). (15.78)

Proof From the definition (15.22) we have, with τ = r − s,

Rg f (τ ) = E[g(s) f (r )] = E

[
g(s)

∫
m(r − r ′)g(r ′)d r ′

]
by (15.77)

= E
∫

m(r − r ′)g(r ′)g(s)d r ′ since s is independent of r ′

=
∫

m(r − r ′)E[g(r ′)g(s)]d r ′ switching E and integration

=
∫

m(r − r ′)Rgg(r ′ − s)d r ′ by (15.22) (definition of Rgg).

=
∫

m(t)Rgg(τ − t)dt where t = r − r ′, and τ = r − s.
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This equals m∗Rgg(τ ), whence, by the Convolution Theorem, Sg f (u, v) =
M(u, v)Sgg(u, v), and the proof is complete.

Remark We have not yet arrived, for in order to use (15.78), which depends crucially
on its numerator, we must determine correlations between g and the original image f.
But f is unknown. Eventually we will have to guess something, and the analysis which
follows shows us that the ratio Snn/Sgg is the thing to go for, by converting (15.78) into
the more amenable form (15.80) of Theorem 15.45 below. Most of the work is done in
the following lemma.

Lemma 15.44 In the notation of (15.73), and with the zero mean assumption that f and
n are uncorrelated, and at least one has zero mean, there holds

Sgg(u, v) = S f f (u, v)|H (u, v)|2 + Snn(u, v). (15.79)

Proof We prove in succession three equalities, of which substituting the last two in the
first results in (15.79):

(i) Sgg(u, v) = H (u, v) S f g(u, v) + Sng(u, v),
(ii) S f g(u, v) = H (u, v)S f f (u, v),

(iii) Sng(u, v) = Snn(u, v).

(i) We multiply (15.73) by g(r + s) and take expected values: Rgg(s) = E[g(r )g(r + s)]

= E

[
g(r + s)

∫
h(r − r ′) f (r ′)d r ′

]
+ E[n(r )g(r + s)]

=
∫

h(r − r ′)E[ f (r ′)g(r + s)]d r ′ + Rng(s)

=
∫

h(r − r ′)R f g(r + s − r ′)d r ′ + Rng(s)

=
∫

h(−α)R f g(s − α)dα + Rng(s) (α = r ′ − r ).

This says that Rgg = h(−t)∗R f g(t) + Rng , which the Convolution Theorem converts to (i).
(ii) Multiplying (15.73) by f (r − s) and taking expected values we obtain an equality in which

the last term is E[ f (r − s)n(r )] = E[ f (r − s)] E[n(r )] = 0 by the zero mean assumption.
Thus

R f g(s) = E

[
f (r − s)

∫
h(r − r ′) f (r ′)d r ′

]

=
∫

h(r − r ′)E[ f (r − s) f (r ′)]d r ′

=
∫

h(r − r ′)R f f (r ′ − r + s)d r ′

=
∫

h(α)R f f (s − α)d r ′ (α = r − r ′).

Thus R f g = h∗R f f and the Convolution Theorem gives Equation (ii).
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(iii) Finally, multiplying (15.73) by n(r − s) and taking expected values gives

Rng(s) =
∫

h(r − r ′)E[ f (r ′)n(r − s)]d r ′ + Rnn(s).

But the expected value is zero by the zero mean assumption so, taking transforms, we
arrive at (iii). Using (ii) and (iii) to substitute for S f g(u, v) and Sng(u, v) in (i) we obtain
(15.79).

Theorem 15.45 (The Wiener filter) We assume that the original field f and added noise
are uncorrelated and at least one has zero mean. Then the transfer function M(u, v),
relating f to the estimate with least expected error, is given by

M(u, v) = H (u, v)

|H (u, v)|2 + Snn(u, v)/S f f (u, v)
. (15.80)

Proof Starting from the basic equation M(u, v) = Sg f /Sgg(u, v) of (15.78), we observe
that the denominator is supplied in suitable form by (15.79) and that for the numerator
we have Sg f (u, v) = S f g(u, v) (by (15.23)) = H (u, v)S f f (u, v) by (ii) of the proof of
(15.79). Substituting (after which we divide through by S f f (u, v)),

M(u, v) = H (u, v)S f f (u, v)

S f f (u, v)|H (u, v)|2 + Snn(u, v)
.

Remarks 15.46 (1) In the absence of noise, (15.80) reduces to simple deconvolution
M = 1/H. In its presence there is no difficulty at points with H (u, v) = 0.

(2) If H (u, v) �= 0, we can represent M(u, v) (see below) as the usual non-noise part
1/H times a correction factor which is a real number, lying between 0 and 1, and which
equals 1 in the absence of noise:

M(u, v) = 1

H (u, v)
× |H (u, v)|2

|H (u, v)|2 + Snn/S f f
. (15.81)

(3) In the absence of information about Snn and S f f , the Wiener filter is often used
successfully by a trial of several constant values of the ratio Snn/S f f , as indicated earlier.
We demonstrate for the case of motion blur plus noise in the next example.

Example 15.47 In Figure 15.36 we show firstly an original image and its motion-blurred
version which was successfully restored by an operation of deconvolution based on
knowledge of the motion. In (c) we have added something on top of the blur, namely
Gaussian noise with σ = 10. The next image, (d), illustrates the devastating effect noise
may have on a deconvolution method which is otherwise perfectly accurate.

In (e) we make a first attempt at restoration using the Wiener filter, estimating the
variable quantity Snn/S f f by the constant function with value 0.3. The result is far superior
to simple deconvolution (d), but only a marginal improvement over (c). However, since
the noise looks much less after Wiener, it is interesting to see if this helps deconvolution
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(a) The original from Figure
15.24(a).

(b) After blur by 13-pixel
movement.

(c) After blur plus Gaussian noise,
with σ = 10.

(d) After resoration by deblur con-
volution only. A hopeless case!

(e) First Wiener filter attempet,
constant = 0.3.

(f) Case (e) after straight deblur
following Wiener.

(g) Wiener filter with constant =
0.08.

(h) Wiener filter with constant =
0.04.

(i) Wiener filter with constant =
0.01.

Figure 15.36 The original blurred image of Figure 15.24 is further degraded by additive
Gaussian noise with sigma = 10. Reconstruction by simple deblur now fails completely.
The Wiener filter surmounts the noise to a considerable degree, rendering the numbers
approx. 90% readable. See further comments below.

to succeed. It does help, as shown in (f), but the result is not an improvement on the
noisy version (c) we began with. Here, as elsewhere, the Wiener filter gives an excellent
chance of improvement through a small amount of trial and error used to determine a
constant value for Snn/S f f .

References Castleman (1996), Petrou and Bosdogianni (2000).

The final improvement Our assessment of improvement depends what is wanted from
the image. One criterion is ‘What is most pleasing to the eye?’ But let us focus on three
others: (1) can we read the card number? (2) is the noise diminished? (3) is the face more
recognisable?
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If the card number is the main issue, the Wiener version of Figure 15.36 is probably
best, with about 90% readability, a large improvement on the noisy blurred version. On
the other hand, (h) is almost as readable yet with less noise. Yet, taking criterion (3) into
account, (i) may be best overall because the boy’s smile is beginning to reappear.

15.4 Compression

As observed earlier, one way to reduce storage requirements is simply to neglect the
highest-frequency components of the DFT. This can be effective if, as is often the case,
the neglected components are very small. In this section we present firstly the more
general pyramid method of Burt and Adelson (1983), which does not make this high-
frequency assumption. Secondly, in Sections 15.4.2–3, we lead up to the well-tried
JPEG image compression, beginning with the Discrete Cosine Transform (DCT) which,
though deterministic, is a good approximation to the statistically based K–L transform of
Chapter 10.

15.4.1 Pyramids, sub-band coding and entropy

We will presently justify pyramid as a term for the coming method, noting at this stage
that it combines the ideas both of predictive and of sub-band coding. In the former, a next
section of data is predicted from that already encountered, by some fixed process known
to the decoder (see e.g. Section 12.6). We then store the difference between prediction
and reality. The more accurate our prediction, the fewer bits are required to store this
difference. In the present case, prediction is based on sub-band encoding, in which a
signal f, be it audio, image or other, is split into a sum

∑
fi in such a way that each fi has

non-neglectable Fourier components only in a predetermined subrange, or sub-band, of
that occupied by the original (see Section 15.2.2). The splitting is done by a collection
or bank of filters, realised as convolution kernels. Then each fi is encoded by a method
that takes advantage of its particular frequency range.

Pyramid encoding Suppose we wish to encode an image array g0 in compressed form.
The method uses a Gaussian-like kernel, which we shall describe, to obtain a lowpass
version w∗g0. Because of the decreased range of frequencies, we should not lose much
if we downsample w∗g0 by throwing away alternate pixel values, to form a roughly
half-sized array

g1 = REDUCE(g0).

Obviously this requires about a quarter the storage space of g0. However, the prediction
we actually subtract is a conversion EXPAND(g1) of g1 back to the original size by
interpolating for the missing values, as in (15.83) below. We store the difference

L0 = g0 − EXPAND(g1).
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Figure 15.37 A Gaussian pyramid formed by g0 and its successors.

Figure 15.38 The Laplacian pyramid of differences Lk = gk − EXPAND(gk+1). This
sequence is the encoded version of the original: (L4, L3, L2, L1, L0).

Since the pixel array values of the residue L0 are, we assume, small, they may be stored
with fewer bits than those of g0. Given g1, the original may be reconstructed as

g0 = L0 + EXPAND(g1).

What do we do with g1? The answer is, of course, that we repeat the process so as to reduce
storage for g1, then for its successor and so on, until we reach a satisfactorily simple gN ,
having stored differences L0, L1, . . . , L N . Since each gk is by construction half the size
of its predecessor, the sequence may be described as pyramidal (see Figure 15.37), and
is termed a Gaussian pyramid because of the approximately Gaussian kernel used. The
saved sequence {Li } is termed a Laplacian pyramid (see Figure 15.38) because each
member may be thought of as the difference between two Gaussians (an approximation
to the Laplacian due to Marr and Hildreth, 1980, see remark preceding Example 15.31).
There follow an example of the first pyramid and a pseudocode description of the encoding
and decoding methods.
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a
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REDUCE

EXPAND

Figure 15.39 A 1-dimensional version of the Gaussian pyramid. The value of each node
in a given level is the weighted average, with coefficients u = (c, b, a, b, c), of five nodes
in the level above.

ALGO 15.4 Pyramid encoding of image g0 ALGO 15.5 Pyramid decoding of

For k = 0 to N − 1 do L0, . . . , L N

gk+1 = REDUCE(gk) hN = L N

Lk = gk − EXPAND(gk+1) For k = N−1 down to 0 do
Store Lk , delete gk Return h0.

Store L N = gN hk = Lk + EXPAND(hk+1)

Definitions 15.48 (i) The kernel w There is no loss in taking this as separable, w(m, n) =
u(m)u(n), and letting u be a symmetric 5-vector, say u = (c, b, a, b, c). Thus w has size
5 × 5. Two further useful properties we opt to require are

Normalisation:
∑

u(m) = 1(m = −2, . . . , 2), and
Equal contribution: all nodes at a given level gk contribute the same weight 1/4 to
nodes at the next gk+1. According to Figure 15.39 this implies a + 2c = 2b, which, with
normalisation a + 2b + 2c = 1, gives the general form b = 1/4, c = 1/4 − a/2, with a
as a parameter.

(ii) REDUCE sends gk to gk+1 by convolving with w, then deleting alternate sample
points, i.e.

gk+1(i, j) =
2∑

m,n=−2

w(m, n)gk(2i + m, 2 j + n). (15.82)

(iii) EXPAND converts an array h(M+1)×(N+1) to an array k(2M+1)×(2N+1) by

k(i, j) =
3∑

m,n=−2

w(m, n)h

(
i − m

2
,

j − n

2

)
(i − m and j − n even). (15.83)

Notice that this is the same as inserting a zero between every horizontally or vertically
adjacent pair of an array then convolving the result with w.

Decoding and progressive transmission A nice feature of the pyramid method of
encoding and decoding is that it lends itself well to progressive transmission, in which
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First version:
h4 = L4 (sent).

Second version:
h3 = L3 (sent) + EXPAND(h4).

Third version:
h2 = L2 (sent) + EXPAND(h3).

Fourth version:
h1 = L1 (sent) + EXPAND(h2).

Fifth version: the original image
h0 = L0 (sent) + EXPAND(h1).

Figure 15.40 Successively more accurate images obtained by progressive transmission
using the Laplacian pyramid method. All images are kept at the same size, as they would
be when viewed on the computer screen.

the recipient of an image is sent first a rather coarse electronic version L N , followed by
successive additions L N−1, . . . , L0 which render the image more and more faithful to the
original. The advantage of this is that the user need only accept sufficient transmission
to obtain a version of the image adequate for his/her purposes. We show in Figure 15.40
the successively more accurate versions of the image we have been exemplifying.

Quantisation A key to compression is that, although we begin with one array and end
by storing several, namely the Li , these finally occupy considerably less memory space
because (i) each Li has 1/4 the number of elements of its predecessor, and (ii) these
difference arrays, if we have predicted well, will have a very small range of values only,
and so may be stored using few bits. In other words we are going to quantise these values
to pre-selected possibilities, or quantisation levels. In a uniform quantisation we simply
divide all values by an integer, most conveniently a power of 2, and round each value to
the nearest integer.

An important point for viewing purposes is that the human eye is more sensitive to
errors at high frequencies, and so we should preferably allow more quantisation levels for
an Li with larger i, where high frequencies are more prevelant. Further details, including
a reduction from eight bits per pixel overall to 1.58, are given in Burt and Adelson (1983).
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Table 15.7. Entropies of the various portions of the pyramid
process, with probabilites estimated from histogram frequencies.

original level 1 level 2 level 3 level 4

4.73 5.69 5.47 5.63 5.74

0 50 100 150 200 250 −100 0 100 1000

(a) Original image "Tini" (b) First Laplace level, L4 (c) Second Laplace level, L3

Figure 15.41 Histograms of original Tini and first two Laplace levels.

Entropy Our technique of subtracting predicted values can be expected to remove corre-
lation between pixels and hence reduce entropy. The maximum entropy occurs, according
to Theorem 12.6, when all 256 pixel values i are equally likely and so have probability
p(i) = 1/256. The entropy of this distribution is then

H = −
∑235

i=0
p(i) log2 p(i) = −256(1/256)(−8) = 8. (15.84)

The entropy of our untouched example is 4.73. We give some details related to this for
various Laplacian levels Li . Selected histograms appear in Figure 15.41, and entropies
in Table 15.7.

Conclusion The frequencies are closely grouped around the zero grey level, as desired,
and as we should expect. However, the entropies appear to increase rather than decrease.
This is reasonably attributed to the effect of outliers – artifact grey levels with very
low frequency, caused by noise, and not representative of the class of images which we
are implicitly considering. In fact, the method works well as a compression technique.
A detailed information-theoretic study of pyramid structures is caried out by Rao and
Pearlman (1991). Including the original paper, general references are as given below.
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15.4.2 The Discrete Cosine Transform

The N-point Discrete Cosine Transform, or DCT, is related to the 2N-point Discrete
Fourier Transform, from which it may be computed (Remarks 15.52 below). Although
it has the pleasant feature of being real, the DCT does not have all the properties of
the DFT; however, it does have the advantage of superior results for the compression of
natural images by the method of neglecting least important coefficients. We shall see that
part of the explanation for the surprising success of the DCT is its ‘asymptotic’ relation
to the K–L Transform of Chapter 10 (see Section 15.5.1). We note finally at this point
that it was the foundational transform chosen by the international committee JPEG (the
Joint Picture Experts Group) in seeking an agreed system for compression; a reference is
Wallace (1991). By way of introduction, let us state that the Discrete Cosine Transform
is by definition linear, and so (Theorem 7.56) may be expressed via a suitable matrix M
as

f → F, where F = Mf, (15.85)

with f written as a column vector with components f0 to fN−1, and similarly for F. We
saw in (14.9) how choosing M is equivalent to choosing a basis {φk} = {φ0, . . . , φN−1}
for the space of N-vectors, and expressing f in terms of that basis: f =∑

k Fkφk . In fact
the φk are the columns of M−1 and the DCT is the special case in which φk is the vector
whose nth component is

φk(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

N
cos

(2n + 1)kπ

2N
, for n = 1, 2, . . . , N − 1,√

1

N
, for n = 0.

(15.86)

Here, as sometimes elsewhere, we write the discrete component number n in the form of
a variable to avoid having too many subscripts at once, especially in the 2-dimensional
case to follow. A crucial fact about the φk that simplifies calculation is that they are
mutually orthogonal unit vectors, in other parlance an orthonormal set. That is, the dot
product, or inner product, of any pair,

φ j · φk =
∑N−1

n=0
φ j (n)φk(n), (15.87)

is equal to 1 if j = k and otherwise zero, or in shorthand notation (cf. (7.9))

φ j · φk = δ jk . (15.88)

Theorem 15.49 The set {φk} forms an orthonormal basis (ONB) for the space of real
N-vectors.

Proof We derive the orthonormality property, which implies (by Theorem 7.14) that {φk}
forms a basis. Firstly, consider the special cases involving n = 0, for which we set α =
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ekπ i/2N so that α2n+1 has real part cos((2n + 1)kπ/2N ). Then φ0 · φ0 = (1/N )
∑

1 =
(1/N )N = 1, as required, whilst φ0 · φk (k ≥ 1) is the real part

Re
∑N−1

n=0

√
2

N
α2n+1 = Re

√
2

N
α
∑N−1

n=0
(α2)n,

which is zero by (14.6), since (α2)N = 1 but α2 �= 1. Finally, for j, k = 1, . . . ,

N − 1 we have

φ j · φk = 2

N

∑N−1

n=0
cos

(2n + 1) jπ

2N
cos

(2n + 1)kπ

2N
by definition

= 1

N

∑N−1

n=0

[
cos

(2n + 1)( j + k)π

2N
+ cos

(2n + 1)( j − k)π

2N

]
by formula

= 1

N
Re

∑N−1

n=0
[β2n+1 + γ 2n+1], where β = e(( j+k)/2N )π i, γ = e(( j−k)/2N )π i.

Consider z =∑
β2n+1 = β

∑
(β2)n = β(1 − β2N )/(1 − β2) = (1 − β2N )/(β−1 − β).

Since β2N = ±1 is real and β = β−1, the conjugate of z is (1 − β2N )/(β − β−1) = −z,
and so z has real part zero. The same argument holds for

∑
γ 2n+1 unless j = k, when

γ = e0 = 1 and
∑

γ 2n+1 = N . Thus we have shown that φ j · φk = δjk as required.

Orthogonal matrices The orthonormality of {φk} derived above shows (by Section 7.2.4)
that the matrix of columns [φk · · ·φN−1] is orthogonal, so its transpose acts as inverse.
Thus the matrices M and M−1 below are orthogonal, where φk is given by (15.86).

M = [φ0 · · ·φN−1]T, M−1 = [φ0 · · ·φN−1]. (15.89)

The lines of Table 15.8 are immediate from (15.89). The extension to two dimensions is
derived similarly to that of the Discrete Fourier Transform, by applying the 1D transform
independently in the two directions of the array (see Section 15.1.1). The formula f =
MTFM holds because M−1 = MT. In fact line (iii) gives a secure base for spelling out
its more barehanded versions, as we now do in Table 15.8.

Table 15.8. Three aspects of the Discrete Cosine Transform f → F, as
defined by the orthogonal matrix M given in (15.89).

(i) matrix view F = Mf hence Fk = φk · f =∑
n φk(n) fn

(ii) basis view f = M−1 F which equals
∑

k Fkφk

(iii) 2D extension F = MfMT hence f = MTFM ( f, F now N × N )

Unpacking in terms of M To keep things as unified as possible we write M jk for the j, k
element of M, and MT

jk (= mkj ) for that of the transpose, then apply the usual formula
(7.17b) for the product of three matrices. Secondly, we put this in terms of the basis
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vectors {φk} by substituting M jm = φ j (m). All variables run from 0 to N − 1.

Fjk =
∑

m,n
M jm fmn MT

nk, and fmn =
∑

jk
MT

mj Fjk Mkn. (15.90)

Fjk =
∑

m,n
[φ j (m)φk(n)] fmn, and fmn =

∑
j,k

[φ j (m)φk(n)]Fjk . (15.91)

The DCT barehanded Here we express the 2D Discrete Cosine Transform in terms of its
constituent cosines. We first simplify summation by writing d(k) = √

(2/N ) for k = 1,

2, . . . , N − 1 and d(0) = √
(1/N ), so that for all k, φk(n) = d(k) cos[(2n + 1)kπ/2N ].

The result is the pair

Fjk =
N−1∑

m,n=0

[
d( j)d(k) cos

(2m + 1) jπ

2N
cos

(2n + 1)kπ

2N

]
fmn, (15.92)

fmn =
N−1∑
j,k=0

[
d( j)d(k) cos

(2m + 1) jπ

2N
cos

(2n + 1)kπ

2N

]
Fjk . (15.93)

Remark 15.50 (The 2D basis) The differently summed but identical expressions in
(15.91) point to a basis {σ jk} for the space of N × N matrices such as f and F . The
basis matrix with index jk has m, n element

σ jk(m, n) = φ j (m)φk(n). (15.94)

Figure 15.42 The 64 basis matrices for the 2-dimensional DCT in the case N = 8.

This choice was established in Section 15.1.1 for the complex case (which includes the
real) in which we laid down how to convert an arbitrary invertible linear transform in 1D
into a separable one in 2D (σ jk was ε jk and φk was Ck there). We already know from
Theorem 15.2 that, because {φk} is an orthonormal basis, so is {σ jk}. For this, the inner
(dot) product of two matrices is the sum of products of corresponding elements, one
from each matrix (i.e. their dot product when written out as long vectors). Figure 15.42
illustrates this basis in the normally used case N = 8. There are 64 basis arrays σ jk , each
being an 8 × 8 matrix of grey values.
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Example 15.51 (Image compression) In Figure 15.43 we show a 272 × 168 image and its
2D transform (15.92). For this, the image is divided into successive 8 × 8 pixel squares,
each transformed by the DCT with N = 8.

Groningen tower DC Transform 25/64 coefficients 9/64 coefficients 1/64 coefficients

Figure 15.43 Groningen tower, its Discrete Cosine Transform, and reconstructions.

Implementation issues Because the DCT is separable, we can achieve the result speed-
ily and conveniently (see Table 15.1, line 2) by applying the 1D transform to the rows,
then to the columns, of the image array. For this purpose a row or column is parti-
tioned into 8-vectors and the 8 × 8 DCT matrix M applied to these in turn. At the end,
each 8 × 8 subimage f has had both rows and columns transformed by f → MfMT, as
required.

To test out compression by the DCT, we keep, say, the first t elements of a transformed
8-vector and set the rest to zero, so that, for each 8 × 8 square, only a t × t submatrix
containing t2 out of 64 coefficients is retained. Inverting the result in cases t = 5, 3 and
1, we obtain the last three images of Figure 15.43 as approximations to the original.
Thus we can reduce the storage requirements for such an image without serious loss, and
things only really break down at the reduction to 1/64 of the coefficients (at this stage
each 8 × 8 portion is the mean grey shade of its original). In the next section we will see
how compression may be taken considerably further.

Remarks 15.52 (1) (The DCT from the 2N-point Fourier Transform) There are various
ways to compute the N-point DCT from the 2N-point DFT, partly depending on which
definitions of the transforms are adopted (see Section 14.1.5 for some choices). Suppose
we want the DCT of vector g = [g0, . . . , gN−1]. Let f → F denote the 2N-point DFT,
where f = [ fn] = [0 g0 0 g1 . . . 0 gN−1], each gi padded on the left by a single
zero. Then we claim that the DCT G of g is given by appropriately scaling the real part
of Fk ,

Gk = d(k) ReFk (k = 0, 1, . . . , N − 1), (15.95)

where d(k) = √
(2/N ) for i ≤ k ≤ N − 1 and d(0) = √

(1/N ).
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Table 15.9. The four steps of JPEG.

1. Divide the image into 8 × 8 pixel blocks and apply the DCT to each
2. Quantise the DCT coefficients
3. Re-order the coefficients by the zigzag method
4. Apply Huffman (or arithmetic) encoding

Proof With w = e−2π i/2N , the 2N -point Fourier Transform is

Fk =
∑2N−1

r=0
frw

rk (now let r = 2n or 2n + 1, where n = 0, . . . , N − 1)

=
∑N−1

n=0
f2nw

2nk +
∑N−1

n=0
f2n+1w

(2n+1)k

=
∑N−1

n=0
gnw

(2n+1)k since f2n = 0 and f2n+1 = gn,

which has real part
∑

gn cos((2n + 1)kπ/2N ), as required. The d(k) come from (15.86).
(2) (Why the DCT is so good) There are reasons why the DCT is especially good

for compressing highly correlated images such as natural ones. Briefly, as correlation
increases, the DCT basis becomes closer to that of the K–L Transform of Chapter 10,
which has significant optimality properties. As mentioned earlier, we cover the theory in
Section 15.5.1.

(3) (Benefits of an ONB) We claim that, as a consequence of our orthonormal basis
{σ jk}, the squared error obtained by omitting certain basis elements equals the sum
of squares of neglected coefficients. To see this, let f =∑

Fjkσ jk for a certain 8 × 8
patch of an image, and let f become f̂ when we negect certain coefficients. Then the
resulting squared error is ‖ f − f̂ ‖2 = ( f − f̂ ) · ( f − f̂ ) = (

∑′ Fjkσ jk) · (
∑′ Fpqσpq),

where
∑′ denotes summation over the neglected terms. But, because of the orthogonality

property that σ jk · σpq = 0 unless ( j, k) = (p, q), this sum simplifies to
∑′ F2

jkσ jk · σ jk ,
which equals

∑′ F2
jk , the sum of squares of neglected coefficients.

15.4.3 JPEG and beyond

History In 1987 a working party was set up, drawn from experts worldwide, with the
objective of developing an internationally agreed system of image compression. After
a great deal of research and testing, the result was published in 1991 (see e.g. Wallace,
1991) and thence referred to as JPEG, for Joint Picture Experts Group. Since then it
has been widely used, not least as a standard method for picture transmission over the
Internet. JPEG includes a system for lossless compression, but we shall concentrate on
the mostly used ‘lossy’ system designed to give results acceptably accurate to the human
eye whilst providing many-to-one compression. The system, based largely on the DCT,
is summarised in Table 15.9 with details following.
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Fjk

djk

Figure 15.44 Quantising the coefficient Fjk by step size d jk . Here Fjk is quantised to
the integer q jk = 4.

Some details

1. DCT versus JPEG Though the DCT is the first part of JPEG, the succeeding stages of Table
15.9 ensure that JPEG achieves considerably greater compression, for a given quality, than the
DCT alone.

2. Quantisation Each block of DCT coefficients is quantised according to the same 8 × 8 table of
step sizes d jk , supplied either in the implementation or by a user. This means that a coefficient
Fjk becomes an integer q jk , equal to the rounded number of steps covered in Fjk . That is,

q jk = Round(Fjk/d jk). (15.96)

Thus, as portrayed in Figure 15.44, the coefficient is subject to an error of at most ±d jk/2 on
inversion, when it is re-calculated as q jk times d jk . In practice this is the largest source of error.
However, its effect is minimised by the d jk being chosen with a view to greater accuracy in
those coefficients found by experiment to be the more significant for image viewing (see e.g.
Watt & Policarpo, 1998).

3. Re-ordering If the coefficients were ordered row by row in the usual manner, then the last of
one row and first of the next would be contiguous in the ordering but over eight pixel widths
apart in the image. To improve on this, a zigzag path is taken (Figure 15.45) so that contiguous
coefficients in the ordering refer to pixels that are adjacent, either vertically, horizontally or
diagonally.

4. Entropy encoding As a final but critical step the coefficients are converted to symbol sequences
and encoded according to the entropy methods of Chapter 12. That is, most usually, by the
Huffman encoding scheme, but permissibly by arithmetic encoding, which, though more com-
plicated, is slightly closer to the entropy lower bound.

0 1 5 6 14 15

2 4 7 13 16

3 8 12 17

9 11 18
10 19 54

20 55 60

56 59 61

57 58 62 63

 

Figure 15.45 The zigzag method of ordering an 8 × 8 array.



628 Transforming images

15.5 Appendix

15.5.1 The DCT and the K–L transform

The DCT was introduced by Ahmed, Natarajan and Rao (1974) as a transform whose
performance compared favourably with the K–L Transform, in spite of the fact that
the coefficients in the latter are not fixed, but rather optimised by taking into account
statistical features.

The result in the K–L case (Section 10.4.4) is that the original pixel variables, consti-
tuting a vector X = [X0, . . . , X N−1]T, are transformed into independent variables Y =
[Y0, . . . , YN−1]T with variance in decreasing order: V (Y0) ≥ V (Y1) ≥ · · · ≥ V (YN−1).
The K–L transform is given by Y = MX, which projects X onto an ONB (orthonormal
basis) formed by the rows of M, themselves eigenvectors of the covariance matrix C
of X0, . . . , X N−1. That is, the element of C are expected values ci j = E[Xi X j ]. For
simplicity we are taking the Xi to have zero mean and unit variance, but they are not
assumed to be Gaussian.

Thus the DCT would give the same transform if its own corresponding orthonormal
basis vectors coincided with the above-mentioned eigenvectors of C. Ahmed et al. ex-
hibited their closeness for a useful special case in which N = 8. Our task is to show that,
under the assumptions of Table 15.10, theory predicts they must always be close.

Table 15.10. Assumptions which imply that the DCT approximates the KLT.

A X0, X1, X2, . . . form a first order Markov chain (Section 11.4.1): the conditional dependence
of Xi given the preceding variables reduces to dependence only upon Xi−1 (i ≥ 1).

B The chain is stationary: individual Xi are identically distributed, on some range S, and the
joint pdf of (Xi , Xi+1) is the same for all valid i.

C The inter-pixel correlation ρ = E[X0 X1] is close to its maximum of 1 (see Section 10.4.1).

The form of the correlation matrix We need certain consequences of Assumption B.
As an exercise let us deduce that, as we might expect, the correlation between any two
adjacent pixels is the same. We have E[Xi Xi+1] =∑

xi xi+1 p(xi , xi+1) (xi , xi+1 ∈ S),
which is the same for each i because p remains the same and the pair (xi , xi+1) runs
through the same values. We may now write

E[Xi Xi+1] = ρ. (15.97)

Theorem 15.53 We have E[Xk Xk+n] = ρn for all valid k and n.

Proof The proof does not depend on k, so for simplicity we write it out for the case
k = 0. Proceeding by induction on n, we note that the result is true for n = 1 by (15.97),
and assume it inductively for some fixed n ≥ 0. That is,

E[X0 Xn] = ρn (n fixed). (15.98)
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Define a new variable e = Xi+1 − ρXi , which is independent of i by Assumption B, and
which rearranges as Xi+1 = ρXi + e. We claim that

E[eX0] = 0. (15.99)

For, ρ = E[X0 X1] = E[X0(ρX0 + e)] = E[ρX2
0 + eX0] = ρE[X2

0] + E[eX0], which
equals ρ + E[eX0] by the assumption E[X0] = 0, V (X0) = 1 (why?). Subtracting ρ,
we obtain E[eX0] = 0, and may complete the inductive step by arguing that

E[X0 Xn+1] = E[X0(ρXn + e)] = E[ρX0 Xn + eX0)]

= ρE[X0 Xn] + E[eX0]

= ρn+1 by (15.99) and the inductive hypothesis E[X0 Xn] = ρn.

Thus for i ≤ j we have ci j = E[Xi X j ] (by definition) = ρ j−i , otherwise ci j =
E[X j Xi ] = ρi− j . The two cases may be combined into

ci j = ρ| j−i |. (15.100)

In particular, ci j is constant along any diagonal j = i+ constant, the defining property
of a Toeplitz matrix (ours is a special case). Recalling that E[Xi Xi ] = V (Xi ) = 1 by
hypothesis, we use (15.100) to write C in the form

C = Rows[Si (1 ρ ρ2 . . . ρn−1)], (15.101)

That is, row i of C is the ith backward shift of [1 ρ ρ2 · · · ρn−1], for 0 ≤ i ≤ N − 1.

The eigenvalues of C Following Grenander and Szegö (1958) we perform row and col-
umn operations on the matrix C − λI in the eigenvalue (or characteristic) equation
|C − λI | = 0, yielding a recurrence relation for the determinant, and in due course ex-
pressions for the eigenvalues and vectors of C. For size n + 1 let us write the determinant
in the form

�n(λ) =

∣∣∣∣∣∣∣∣
1 − λ r r2 . . .

r 1 − λ r . . .

r2 r 1 − λ . . .

. . . . . . . . . . . .

∣∣∣∣∣∣∣∣
(n ≥ 2), (15.102)

where λ denotes an eigenvalue to be found and we have replaced ρ by r for ease of vision.
Now we perform the row and column operations R1 → R1 − rR2 and C1 → C1 − rC2

in (15.102), expand the result by its first row, then expand subdeterminants using Rules
7.28, to obtain the relation for n ≥ 2,

�n(λ) = [1 − λ− r (1 + λ)]�n−1(λ) − r2λ2�n−2(λ). (15.103)

It is useful to make this hold for n ≥ 1, as we may by defining �−1 = 1, and �0 =
1 − λ. Then (15.103) gives �1 correctly as (1 − λ)2− r2. The first trick is to express
an eigenvalue λ in terms of a new variable, x , via the trigonometric function cos x , by
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setting

λ = 1 − r2

1 + r2 − 2r cos x
. (15.104)

The second trick, a more standard one, is to seek a solution to (15.103) of the form
�n = zn . Substituting this, and observing that 1 − λ− r (1 + λ) = −2λr cos x , gives
a quadratic equation z2 + (2λr cos x)z + r2λ2 = 0, with solutions z = −λre±ix . The
general solution may therefore be written λr (Aeix + Be−ix ), with A, B determined from
the cases n = −1 and n = 0. Some tricky manipulation results in Table 15.11, after which
(cf. Clarke, 1981) we show that the eigenvectors approach the basis vectors (15.86) of
the DCT as ρ → 1.

Table 15.11. Eigenvalues, and the corresponding eigenvectors forming the orthonormal
basis for the K –L (Karhunen–Loève) transform on variables X0, . . . , X N−1,

in the case that the correlation matrix C is given by ci j = ρ| j−i | with
ρ = E[Xi Xi+1] being independent of i .

Eigenvalues λn = 1 − ρ2

1 + ρ2 − 2ρ cos wn
, where wn ∈ [0, π ) are the solutions of

tan Nwn = −(1 − ρ2) sin wn

(1 + ρ2) cos wn − 2ρ
, for n = 0, 1, . . . , N − 1. (∗)

Eigenvectors Kn =
[(

2

N + λn

)1/2

sin

{
wn

(
t − N − 1

2

)
+ (n + 1)π

2

}]
0≤t≤N−1

Theorem 15.54 In the limit as ρ → 1 there are n solutions w = wn in the half-open
interval [0, π ), and they are given by wn = nπ/N for 0 ≤ n ≤ N − 1. The eigenvalues
(λn) are (N , 0, . . . , 0).

Proof To ensure that the denominator in (∗) of Table 15.11 is nonzero, first consider
solutions w in the open interval (0, π ), for which | cos w| < 1. Now, since (1 + ρ2) −
2ρ = (1 − ρ)2, we can get 1 + ρ2 arbitrarily close to 2ρ by taking ρ sufficiently close
to 1 and hence ensure that the denominator is indeed nonzero. Letting ρ → 1 we obtain
tan Nw = 0, with solutions Nw = nπ (n ∈ Z). The solutions w lying in (0, π ) are wn =
nπ/N (1 ≤ n ≤ N − 1).

Secondly, we must investigate w = 0 as a possible solution. To let ρ → 1 in this case
we start with w small but nonzero and use the small-angle approximations tan Nw =
Nw, cos w = 1 − w2/2 in (∗). We obtain the expression for Nw shown in (15.105) below,
which tends to 0 as ρ → 1, giving the solution w = 0 = 0π/N and completing the proof
for the wn:

Nw = −(1 − ρ2)w

(1 + ρ2)(1 − w2/2) − 2ρ
= −(1 − ρ2)w

(1 − ρ)2 − (1 + ρ2)w2/2
. (15.105)
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Eigenvalues Consider the formula for λn in Table 15.11. For n > 0 we have as before
| cos w| < 1 and, similarly to the case of (∗), we ensure a nonzero denominator by taking
ρ close enough to 1. Hence, in the limit, λn = 0. For n = 0 we must again start with w
small but nonzero. Rearranging (15.105),

w2 = (2/(1 + ρ2))[(1 − ρ)2 + (1 − ρ2)/N ]. (15.106)

To let ρ → 1 we take σ = 1 − ρ, then it suffices to expand w2 up to the linear term in
σ . The first factor in (15.106) becomes 2(2 − 2σ + σ 2)−1 = (1 − σ + σ 2/2)−1 = 1 +
σ . Substituting this gives w2 = (1 + σ )(σ 2 + (2σ − σ 2)/N ) = 2σ/N = 2(1 − ρ)/N .
Replacing cos w by the small-angle formula 1 − w2/2 therefore gives the last expression
below for λ which trivially tends to N as ρ → 1, completing the proof:

1 − ρ2

1 + ρ2 − 2ρ(1 − w2/2)
= 1 − ρ2

(1 − ρ)2 + ρw2
= 1 − ρ2

(1 − ρ)2 + ρ · 2(1 − ρ)/N

= 1 + ρ

1 − ρ + 2ρ/N
.

The basis vectors With wn and λn as determined, the formulae of Table 15.11 for the
KLT eigenvectors yield

K0(t) =
(

2

N + N

)1/2

sin(π/2) =
√

1

n
= φ0(t),

Kn(t)=
(

2

N

)1/2

sin

{
nπ

N

(
t − N − 1

2

)
+ (n + 1)π

2

}
(next we use sin(θ +π/2)= cos θ )

=
√

2

N
cos

{
nπ (2t + 1 − N

2N
+ nπ

2

}
=
√

2

N
cos

nπ (2t + 1)

2N
= φn(t),

which is exactly the DCT basis. Therefore the transforms coincide, under the assumptions
given in Table 15.10, and hence are close in practice.

15.5.2 The Fourier Transform in n dimensions

The Fourier Transform is separable, which means that an n-dimensional transform is
implemented by applying the 1D version to each dimension separately. How this is done
for the Fourier and other separable transforms, we have already seen in two dimensions
at the start of this chapter, both in the discrete and continuous cases. For the present
extension let us take coordinates x = (x1, . . . , xn) and u = (u1, . . . , un). Following the
prescription for moving up a dimension in the continuous case gives

F(u1, . . . , un) =
∫ ∞

−∞

⎛
⎝ ∫

x1...xn−1

f (x1, . . . , xn) e−2π i(x1u1+···+xn−1un−1)dx1 . . . dxn−1

⎞
⎠e−2π ixnun dxn.

(15.107)
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In fact, writing x1u1 + · · · + xnun = x · u we may express the transform–inverse pair
compactly as

F(u) = ∫
Rn f (x)e−2πx.udx,

f (x) = ∫
Rn F(u)e2πx.udu.

(15.108)

The discrete case For simplicity we keep to the same coordinate notation and assume
each xi or uj takes the same values 0, 1, . . . , N − 1. Then performing summation instead
of integration and taking w = e−2π i/N we have

F(u) =∑
x f (x)wx·u,

f (x) =∑
u F(u)w−x·u.

(15.109)

This may be achieved dimension by dimension, through the 1D routine, in which we
multiply vectors by a matrix (or apply the FFT). For instance the nth dimension requires
us to make the replacement

fk ≡ f (x1, . . . xn−1, k) →
∑

xn
f (x1, . . . xn−1, xn)wkxn (0 ≤ k ≤ N − 1). (15.110)

or in vector terms [ fk]0≤k≤N−1 → T [ fk]0≤k≤N−1.

ALGO 15.6 The DFT for an n-dimensional array f (x1, . . . , xn)

If n = 1 Return Tf, else set F = f
For k = 1 to n do

For all x1, . . . , xn−1 do {Fourier transform of vector}
[F(x1, . . . , xn−1, k)]0≤k≤N−1 = T [F(x1, . . . , xn−1, k)]0≤k≤N−1

Forward-rotate coordinates of F
Return F
[For the inverse DFT, replace T by T−1]

Every dimension to transformed.

In Mathematica
dft[f−] := Module[{n, d, i, k, cycle, F = f},

n = TensorRank[f]; d = Dimensions[f][[1]];
cycle = RotateRight[Range[n]];
If[n < 2, Return[Fourier[f]]];
For[k = 1, k ≤ n, k++,

F = Flatten[F, n - 2];
Do[F[[i]] = Fourier[F[[i]]], {i, Length[F]}];
Do[F = Partition[F, {d}], {n - 2}];
F = Transpose[F, cycle]; ];

Return[F]; ];

Example 15.55 This very simple example in dimension n = 3 with N = 2 illustrates
what is going on. Our function will be f (x, y, z) = 4x + 2y + z + 1. All numbers are
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Table 15.12. The values f (x, y, z) and how they change under Fourier
transform with respect to each coordinate z, y, x in turn.

x, y, z f (x, y, z) Fourier w.r.t. z Fourier w.r.t. y Fourier w.r.t. x

000 1 3 10 36
001 2 −1 −2 −4
010 3 7 −4 −8
011 4 −1 0 0

100 5 11 26 −16
101 6 −1 −2 0
110 7 15 −4 0
111 8 −1 0 0

Table 15.13. An overview. Brief definitions and results for the
n-dimensional analogues of four key results of the Fourier transform.
In (ii) we may take x, u as columns, replacing xM by Mx and u(M−1)T

by (M−1)T u. The discrete case of (iv) is found on the last line.

title definitions result

(i) shift f (x − a) → e−2π ia·u F(u)
(ii) ‘rotation’ D = |Det(Mn×n)| �= 0 f(xM) → F(u(M−1)T/D
(iii) projection p(x1, . . . , xn−1) = p(x1, . . . , xn−1) →∫

f (x1, . . . , xn)dxn F(u1, . . . , un−1, 0)
(iv) convolution ( f ∗g)(x) = ∫

f (t)g(x − t)dt
h = f ∗g if h(x) = f (x)g(x) f ∗g → FoG

real, for the 2-point Fourier matrix is Rows([1 1], [1 −1]). Table 15.12 shows how the
values of f change when we transform with respect to z, y, x , in that order, as in ALGO
15.6.

For example, in the z column, [ f (0, 0, k)]0≤k≤1 = [1 2] → [3 −1]. After completing
this column we transform e.g. [ f (1, k, 0)]0≤k≤1 = [11 15] → [26 −4] and, when this
column is complete, we perform e.g. [ f (k, 1, 1)]0≤k≤1 = [0 0] → [0 0].

Main results for the n-dimensional Fourier Transform

Proofs of main results

(i) Shift Theorem f (x − a) → ∫
f (x − a)e−2π i(x·u)dx (put y = x − a) = ∫

f (y)
e−2π i(y+a)·udy = e−2π i(a·u)

∫
f (y)e−2π i(y·u)dy = e−2π i(a·u) F(u).

(ii) ‘Rotation’ Theorem Beyond two dimensions it is easier to work with complete
matrices rather than resorting to their elements. We write

f (xM) = g(x) → G(u) =
∫

g(x)e−2π i(x·u)dx.
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We change variables in the integral by w = xM , or x = w M−1. Theorem 10.10 tells us
how to do this. The Jacobian is J = [∂x/∂w] = Det(M)−1, which is constant, whence

G(u) =
∫

|J | f (w)e−2π i(w M−1·u)dw .

Now we reconstruct the dot product to isolate w , by expressing it as a matrix product (here
u is a row): w M−1 · u = w M−1uT = w · v, where v = u(M−1)T. Then, with |J | = 1/D,

G(u) =
∫

|J | f (w)e−2π i(w ·v)dw = F(v)/D, as required.

(iii) Projection

p(x1, . . . , xn−1) =
∫

f (x)dxn →
∫(∫

f (x)dxn

)
e−2π i(x1u1+···+xn−1un−1)dx1 · · · dxn−1

=
∫

f (x)e−2π ix·(u1,...,un−1,0) dx = F(u1, . . . , un−1, 0).

(iv) Continuous convolution

( f ∗g)(x) =
∫

f (x − t)g(t)dt →
∫ (∫

f (x − t)g(t)dt
)

e−2π i(x·u)dx

=
∫ (∫

f (x − t)e−2π i(x·u)dx
)

g(t)dt

=
∫

e−2π i(t ·u) F(u)g(t)dt (Shift Theorem)

= F(u)
∫

g(t)−2π i(t ·u)dt = F(u)G(u).

Proof (iv) (Discrete) We write f and F with discrete subscripts fi j ...k and Frs...t and
identify f with the polynomial f (z1, . . . , zn) =∑

i, j,...,k fi j ...k z1
i z j

2 · · · zn
k . Then firstly

(15.109) becomes the alternative,

Frs...t =
∑

i, j,...,k
fi j,...kwri+s j+···+tk, , (15.111)

and, secondly, the index law, wri+s j+···+tk = (wr )i (ws) j · · · (wt )k , converts (15.111) into
the equality

Frs...t = f (wr , ws, . . . , wt ). (15.112)

Now the n-dimensional Convolution Theorem drops out: f ∗g = h ⇒ f (z)g(z) =
h(z) ⇒ f (wr , ws, . . . , wt )g(wr , ws, . . . , wt ) = h(wr , ws, . . . , wt ) (all r, s, . . . , t) ⇒
Frs...t Grs...t = Hrs...t and FoG = H .

Finally, we specialise to the version of the Projection Theorem required for some of
the more developed forms of tomography (see the end of Section 18.4).
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Example 15.56 The 3D Projection Theorem Let p(x, y) = ∫
f (x, y, z)dz (projection

onto the xy-plane). Then p(x, y) → F(u, v , 0).

Exercises 15

1
√

(i) Show that φ( f ) = M fN , a matrix product, is a linear transformation. (ii) Let M and N
be invertible. Show that φ( f ) = 0 implies f = 0. (iii) Given F = M fMT (M invertible),
express f in terms of F. (iv) Derive the alternative expression Tr(ABT) for the dot product
(A, B) of real matrices. (v) Let A = uTu, where u is a unit row vector. Simplify A2.

2
√

(i) Use Formula (15.7) to determine the Discrete Fourier Transform of an impulse at the
origin: fmn = 0 except when m = n = 0. (ii) What is F, when f is a general impulse:
fmn = 0 except when (m, n) = (µ, λ)? Express this as a (rank 1) matrix uTv, where u, v

are row vectors.
3
√

(Using separability) (i) Find the 2D Discrete Fourier Transform of the separable array
f = Rows[(1, 1, 1), (2, 2, 2), (3, 3, 3)], using w3 = 1 and 1 + w + w2 = 0 to simplify the
calculation. (ii) Repeat for f = Rows[(1, 2, 3), (0, 0, 0), (1, 2, 3)].

4 Implement the DFT and test Theorem 15.7 in the manner of Figure 15.4.
5
√

(i) Show that discrete convolution with the Laplacian (15.14) gives zero if taken over a
region of pixel values which change linearly. (ii) A 4 × 4 pixel array has constant value 1.
What values does the Laplacian give (a) on pixels at the edge of the array (with all-round
border of zeros appended), (b) on the ‘interior’? What are the values if the original constant
is changed to 100?

6 Convolve an image array with the discrete Laplacian. How well does it bring out the
boundaries (see Figure 15.6).

7
√

(i) Find the discrete auto-correlation function of the array Rows[(1, 2, 1),
(0, 1, 2), (2, 0, 1)]. (ii) Find the (continuous) Fourier Transform S f f of the autocorrelation
R f f , when f (x, y) = exp[−π (x2 + y2)]. (iii) Find S f g if g(x, y) = cos 2πk(x + y). (Hint:
split the cosine.)

8 (i) Experiment with brightness and contrast on several images, making some features invisi-
ble to the naked eye, and restoring them by another change of brightness and/or contrast. (ii)
Perform histogram equalisation on a deserving candidates obtained in part (i). Add small
spots to an image and then attempt to remove them by median filtering, in the manner of
Figure 15.13.

9
√

(i) Show that the Butterworth transfer function H (r ) passes through the point (k0, 1/2) for
all n ≥ 1, and that the gradient is most negative when r equals a value which approaches k0

as n increases. (ii) Why does convolution with the binomial approximation to the Gaussian
filter leave an area of constant intensity fixed? (iii) Write down the matrix in the case n = 3.
Determine the variance.

10
√

(a) Derive (15.35) from (15.34). (b) Prove Theorem 15.24 (ii) for a vertical mirror. (c) How
many symmetry properties from Theorem 15.24 hold for the mask shown in Figure 15.22?

11 Repeat Figure 15.20 for another image.
12 (a) Implement ALGO 15.1 to obtain a 7 × 7 version of the LoG convolution mask. Check

that Figure 15.22 is a submatrix (to within limits of accuracy). (b) Apply 3 × 3, 5 × 5
and 7 × 7 versions to a simple multi-shaded image to detect edges. Did the 7 × 7 version
perform noticeably the best?
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13 (a) Write down all eight Prewitt masks as laid down in Example 15.29. (b) For a chosen
image, compare the edge-detection capabilities of LoG, Sobel and Prewitt.

14
√

(a) Show that if H(u, v) = sinc(πuα)e−iπuα then H (−u,−v) is the complex conjugate
of H (u, v). (ii) Use ALGO 15.2 to blur an image, then ALGO 15.3 to bring it back.
(c) Examine the DFT of the blurred image in (b) to predict what the blur distance must have
been (see Figure 15.27).

15
√

A small object is placed on the axis of a thin lens of radii r = 12 and s = −16, nearest the
face of radius 12, at a distance of 16 units. The lens has refractive index µ = 1.6. Assuming
the surrounding medium is gaseous, of refractive index 1.0, determine (i) the focal length
f of the lens, (ii) the position of the image, and (iii) the magnification achieved. Verify
Newton’s formula (15.53).

16 Start with a digital photo subject to lens blur and a photo of a thin line under the same
conditions (or simulate this by applying a Gaussian blur to a digital image). (i) Measure the
vector b of grey values for the blur of a thin line, as in Figure 15.32(b). (ii) Compute the
kernel vector a by (15.59′). (iii) Determine the transfer function H (u, v) by (15.59) (u, v are
discrete for this). (iv) Calculate the DFT of the true image by F(u, v) = G(u, v)/H (u, v),
and recover the original by F → f .

17
√

Derive the formulae of (15.70).
18 Add blur and noise to a digital image that includes portrayal of significant numbers. Try to

regain legibility by experimenting with a range of fixed values of Snn/S f f for the Wiener
filter.

19 Implement ALGOs 15.4 and 15.5, and produce Guassian and Laplacian pyramids for a
digital image. What compression can you achieve?

20 (a) Partition a digital image into 8 × 8 blocks and apply the DCT to each. Reprint the image
with successively fewer coefficients retained before inversion (see Figure 15.43). (b) Repeat
with 4 × 4 blocks. Does this give any advantage?

21 Implement the N-point DCT via the 2N-point DFT (Remarks 15.52), and check that it gives
the correct matrix in two dimensions for N = 8.

22 (The n-dimensional Fourier Transform) (a) Repeat Example 15.55 with (i) f (x, y, z) =
8 − 4x − 2y − z and (ii) f = 1, by hand and/or computer. Can you explain the relation
between the three answers? (b) Write out a proof of the 3-dimensional Projection Theorem.
(c) Check that the n-dimensional ‘Rotation’ Theorem with vectors treated as columns gives
the stated result for this case.
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Scaling

Both wavelets and fractals (even just fractal dimension) have seen an explosion of ap-
plications in recent years. This text will point mainly to the vision side, but at the end
of this chapter we give references that indicate something of the range. The story begins
with Section 16.1 which is about fractals; this points to the value of the scaling theme,
thereafter explored through wavelets and multiresolution. The present chapter concen-
trates on wavelets with the most structure: the Haar and Daubechies types. In the next
this is relaxed for application to B-splines, then to surface wavelets.

16.1 Nature, fractals and compression

The potential to compress an image has to do with its degree of redundancy, and so comes
broadly under image analysis. Here, more specifically, we are interested in the redundancy
that may come from self-similarity of different parts of the image, rather than from more
general correlation. This idea arose essentially from Mandelbrot’s observations about
the nature of natural images. For example, one part may be approximately congruent to
another at a different scale, as in Figure 16.1. The basic way to turn this into a method
of compression goes back to Barnsley and Sloan (1988) and is the subject of Section
16.1.3. For subsequent exploitation see Section 16.1.4 plus Barnsley (1992), Barnsley
and Hurd (1994), Peitgen et al. (1992), Fisher (1995) and Lu (1997).

16.1.1 The fractal nature of Nature

Natural scenes, including the human face, possess plenty of correlation, as revealed by
Principal Component Analysis (Section 10.4.4) and its approximate relative the Discrete
Cosine Transform (Section 15.4.2). Though correlation is expressed in numbers, much
visual similarity is observable to the human eye. Perhaps the most easily seen similarities
occur in objects with repeated branching. Examples are actual trees, river courses seen by
satellite, and then lungs, blood vessels and the like. However, this property, of appearance
at one scale being repeated at many others, occurs widely in non-branching situations
too, such as clouds, coastlines, and mountains.

637
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(a) This geological structure could be small, but it's part of
the Svoge anticline in Bulgaria, with true scale indicated 
by the shadowy humans at bottom left.

(b) Clouds. Are we in an airliner about to
enter, or viewing from several miles below?  

Figure 16.1 Some natural scenes, illustrating similarity across a range of scales.

Here is a test. If this similarity holds, there should be many situations where it is
impossible without further clues to have a reliable sense of distance. This is certainly
borne out by human mis-estimation of how far away mountains, clouds and distant
coastlines are. One symptom of the scale phenomenon is seen in Figure 16.1(a), where,
in accordance with custom, a familiar object is included to give the scale. A small
superimposed human figure would give a quite different impression!

Example 16.1 (Modelling) In respect of modelling Nature it was Mandelbrot’s (1983) ob-
servation that many objects, hitherto considered as mathematical monsters to be avoided,
had far greater potential than the usual lines, planes and spheres to represent natural
things such as we have discussed. For example, he proposed the model of a snowflake
consisting of three pieces of the Koch curve, Figure 16.2, now often called the snowflake
curve.

Figure 16.2 Snowflake represented by three pieces of the Koch curve fitting round a
triangle (third stage of the construction in Figure 16.3).

We may say the curve consists of four copies of itself, scaled to 1/3 size, rotated and
placed in positions AB, BC, CD, DE as indicated in Figure 16.3, where we show a recipe
for constructing the curve, Mandelbrot’s Initiator–Generator Method.
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A B D E

C

Initiator. Length 1 unit.

Stage 2.  Length (4/3)2. Stage 3.  Length (4/3)3.

Generator & stage 1.   Length 4/3.

Figure 16.3 Three stages of the Koch curve. At each, we replace every line segment by
a suitably scaled copy of the generator.

Obviously, for any given illustration the process must stop at some finite stage, but
abstractly the Koch curve is the result of continuing ad infinitum. The property of having
detail at every scale is implied by the fact that each 1/3 sized part is a copy of the whole
and therefore so is each of its own parts, and so on. Mandelbrot gave the name fractal
to such sets, from the Latin fractus, meaning broken. He provided a precise technical
definition (see Section 16.1.3) and later (Feder, 1989) a rough but inclusive one:

A fractal is a shape made up of parts similar to the whole in some way. (16.1)

The complete (ad infinitum) Koch curve was considered a ‘monster’ on two accounts.
(1) It has infinite length, for in passing from one stage to the next we increase the
length by a factor 4/3, and (2) non-smoothness: a unique tangent does not exist at corner
points B, C, D, and the proportion of such points tends to 1 as the construction stages
proceed.

On the other hand, in practical situations we actually use not this monster, but its ap-
proximation up to some scale. One consequence of adopting (16.1) is that by interpreting
similar in a non-technical sense we can apply the word fractal to such as both the Koch
curve and its practical approximations. The same holds for the fern in Figure 16.11 of
Section 16.1.3.

Artificial images of Nature Fractal ideas were used to computer-generate images of
natural scenes which were both realistic and strikingly attractive. Early examples were
the mountain, lake and valley combinations of Voss (1988), and the planet Genesis in
The Wrath of Khan. The planet’s fractal-based construction was undetected, and by that
token a complete success. The cases cited used an extension of the Brownian motion
model, in which fractal dimension (see the next section) appears as a parameter. A useful
exposition of this is given by Feder (1989), along with applications to physics. Further
visual examples are included in Peitgen and Saupe (1988) and of course in the text of
the originator, Mandelbrot (1983).
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16.1.2 Fractal dimension

Now we consider more precisely the relation between similar parts of an object at
different scales. Remarkably, there is often a consistency of structure which enables
us to define a quantity called fractal dimension, applying over all or at least a range of
scales. It can be seen to emerge as a generalisation of the usual dimensions 1, 2, 3 as
follows. If a regular object such as a line, square or cube is divided into N equal parts,
then as N increases there is a decrease in the ratio r of part size to the whole. But how
exactly does this decrease depend on N and the dimension? In the case of a square of
side 1 unit divided into equal squares of ratio r we have Nr2 = 1, hence r = (1/N )1/2.
Table 16.1 illustrates that r is given in respective dimensions 1, 2, 3 by

r = 1

N 1/1
,

1

N 1/2
,

1

N 1/3
. (16.2)

Table 16.1. Scaling properties in dimensions 1, 2 and 3,
corresponding to (16.2).

Dimension 1 Dimension 2 Dimension 3

The snowflake curve again Does a similar formula hold for a more general object divisible
into N reduced copies of itself? A candidate is the snowflake curve where, at the kth stage,
we have divided the original into 4k copies, each of size (1/3)k . So for each k there hold
N = 4k and 1/r = 3k . The key idea here is to take logs, resulting in

log4 N = k = log3(1/r ) = D log4(1/r ) (change of base),

where D = log3 4 according to the formula loga x = (loga b)(logb x) of (12.8). Thus
N = (1/r )D or, on rearranging,

r = 1

N 1/D
. (16.3)

The significant thing here is that the non-integer quantity D = 1.26 fulfils the same role
as dimension in Table 16.1. How far can we usefully take this? Let us consider something
not quite so regular.

Coastlines and frontiers Here is the connection with our previous comments. The
fact is that the measured length of a coastline or land frontier (henceforth referred to
collectively as borders) depends on the size of your ruler units. This is aptly illustrated
by the different lengths of their common frontier given by Belgium and The Netherlands,
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Figure 16.4 Borders.

Figure 16.5 Measuring L(ε) for dividers set at width ε. The zigzag’s actual length is
about 4.85 units of the exhibited dividers.

respectively 449 and 380 km (Mandelbrot, 1983); see Figure 16.4. The reason is that,
as the measurement unit, which we shall call ε, becomes smaller, we pick out greater
detail. For a coastline this might be bays and inlets, then subinlets and the shape of
jutting cliffs. Figure 16.5 shows the effect of measuring a zigzag line with dividers set at
various widths. The reader may like to try out this exercise on other shapes, and indeed
on a coastline as presented in an atlas.

We see that, as ε becomes smaller, the measured distance L(ε) approaches the sum
of the lengths of the component line segments. How does L(ε) vary with ε for borders
the world over? Is there a common theme or structure? The answer is found in the
graphs of Figure 16.6 by L. F. Richardson (1961), page 609, who in his day could give
no theoretical interpretation for these experimental results. The point to observe is that,
within certain limits,

the graph of log10(L) against log10(ε) is a straight line. (16.4)

The slope of this line characterises in some way the border it refers to. We will see that the
straight line property is explicable on the hypothesis that over a fair range of scales the de-
tails of a border look much the same, though they are different details, of a different size.
This has led to a concept of dimension D, calculated from the graph slope, and not nec-
essarily a whole number. First, we must reformulate Richardson’s results of Figure 16.6.

The straight line graph implies a linear relation

log10 L = a + b log10 ε (b < 0), (16.5)
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1.0 1.5 2.0 2.5 3.0 3.5

3.5

3.0 LAND FRONTIER
OF PORTUGAL

WEST COAST OF BRITAIN

GERMAN LAND-FRONTIER, 1900

Figure 16.6 Part of Richardson’s data on coastline and frontier lengths: log10(length)
against log10(ε). (Distances are in kilometres.)

in which the slope b is negative. Taking 10 to the power of each side, we obtain L = Aεb

with A = 10a , or

L = Aε1−D, where D = 1 − b. (16.6)

But, since L equals ε times the number N (ε) of steps of size ε used to measure L, we
have Aε1−D = εN (ε) and so

N (ε) ∝ 1/εD, (16.7)

where ∝ denotes proportional to. This rearranges also to

ε ∝ 1/N 1/D, (16.8)

which is essentially the same relation as (16.3). Thus we are led to interpret D as a
dimension, reasonably called fractal dimension. We may think of it as pointing to a set’s
intricacy. The Richardson graphs provide a measure of the ruggedness of coastlines and
borders that does not depend on one specific unit of measurement. For abstract fractals
the dimension may apply over arbitrarily small scales, whilst for practical situations it is
profitable to consider a convenient range of scales. In fact, the idea of fractal dimension
has proved surprisingly fruitful for studying relationships between more general variables
in science and engineering, so that conferences are held with the title of, for example,
Fractals in the Sciences (e.g. Peitgen et al., 1999). One nice example is that the power
of a battery may be expressed in terms of the fractal dimension of an electrode surface
(Avnir & Pfeifer, 1983). Many applications are detailed by Kaye (1989) in a volume of
over 400 pages. Some further useful references are given at the end of this section.

Some practicalities In investigating the existence and value of a fractal-type power law
between physical quantities it is useful to bear in mind the following.

(1) It is usually more convenient to plot log N (or an analogue) rather than log L. How does this
affect the graph? Setting L = Nε and D = 1 − b in the original (16.5) we obtain

log10 N = a − D log10 ε. (16.9)
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2.58 3 4 5.17

5.43

2.32

log ε ←

Figure 16.7 Richardson graph for the Belgian–Dutch border, with logs to base 2. The
graph’s slope is −1.19 (approx.), implying dimension D = 1.19.

Thus, provided we are justified in assuming the plotted points represent a straight line graph,
fractal dimension is given by the negative slope. The ‘best straight line’ formula is (11.17).

(2) We may use any fixed base of logarithms Noting (Remark 12.2) the base change for-
mula (logd 10)(log10 x) = logd x , we multiply (16.9) through by logd 10 to obtain logd N =
(a loga 10) − D logd ε. Thus, changing the base of logarithms leaves the graph’s slope, and
hence the measured value of fractal dimension, unchanged. See Figure 16.7.

(3) We may use any fixed measurement unit If the measurement unit is changed then (16.9)
applies with ε multiplied by some constant α, allowing us to write log N = a − D log(αε) =
a − D(log α + log ε) = (a − D log α) − D log ε, with slope unchanged at (−D).

(4) We may use the box counting method (see e.g. Feder, 1989 or Falconer, 1997): we plot log N
against log ε still, but now ε is the linear size of a mesh laid over a digitised image, and N
is the number of mesh squares that intersect the object under consideration. In Figure 16.8
we show the build-up of 6-pixel sized squares in such a mesh, where they cut the Icelandic
coastline.

Further applications of fractal dimension Some general references are Kaye (1989),
Peitgen, Henriques and Penedo (1991), Mandelbrot (1983) and Schroeder (1991). There
follows a selection for particular fields.

Astronomy: Beer and Roy (1990),
Bio/medical: West and Goldberger (1987),
Cartography: Brivio and Marini (1993)
Chemistry: Feder (1989), Avnir and Pfeifer (1983),
Engineering: New Scientist, 9 June, 1990,
Geography: Burrough (1981),
Geology: Turcotte (1992),
Music: Voss (1988),
Physics: Petronero and Posati (1986).

Example 16.2 This is an investigation as to whether the trabecular (fissured) bone in
the leg of a horse exhibits a fractal dimension (see Hoggar et al., 1998, and Martinelli,
1999). We plot log2 N against log2 ε , where ε is the linear size of a mesh laid over a
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D = 1.35 D = 1.18

Figure 16.8 The coastline of Iceland, with sample mesh boxes which intersect it. By
performing box counting calculations on different regions separately, we find that the
West coast has a fractal dimension of 1.35, which is greater than that of the East at 1.18.
This puts a numerical value on the apparent greater ruggedness of the West.

(a) (b)
log ε ←

Figure 16.9 (a) Cross-section of trabecular bone from horse ankle (source: Martinelli,
1999), (b) Richardson-type graph of log N , for investigating the existence and numerical
value of fractal dimension.

digitised image of the relevant bone cross-section of a recently deceased horse, and N
is the number of mesh boxes that intersect a part of the bone. With the image scanned
at 800 dpi, measurements were expressed in pixels, with integer box sizes from 6 to 24.
The result (Figure 16.9) models two fractal dimensions, each operative over a specific
range of scales, namely 1.16 for the smaller and 1.45 for the larger scales.
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16.1.3 Iterated Function Systems

The Koch snowflake curve, we noted, consists of four copies of itself which have been
transformed in the sense of being scaled down by a factor 1/3. Of course, some rotation
and translation were also necessary to put these pieces together. Reflection could also
be usefully employed, to give a more symmetrical procedure with the same outcome.
A remarkably wide range of images will emerge (a first example is Figure 16.11) if we
allow also non-uniform scaling and shear, as illustrated in Figure 16.10 and explained
thereafter.

(a) Original Lena. (b) The result of non-uniform
scaling by 4/5 horizontally
and 6/5 vertically. 

(c) Effect of horizontal shear
with parameter 1/3.

Figure 16.10 Non-uniform scaling (b) and shear (c) applied to image (a).

A shear is performed relative to some straight line as axis, and according to a parameter
α. In more detail, a general point P at signed distance d from the axis is moved a signed
distance αd parallel to this axis. In Figure 16.10 the axis of shear is the x-axis, the distance
of a point from this axis is of course its y-coordinate, and the parameter is 1/3. Thus
(x, y) → (x + αy, y) with α = 1/3. More generally, all our permitted transforms may
be represented in the matrix form[

x
y

]
→

[
a b
c d

] [
x
y

]
+
[

e
f

]
, (16.10)

collectively referred to as affine. We shall say (16.10) has code (a, b, c, d, e, f).
Thus the transformations of Figure 16.10 are the special cases[

x
y

]
→

[
4/5 0
0 6/5

] [
x
y

]
, and

[
x
y

]
→

[
1 1/3
0 1

] [
x
y

]
, (16.11)

with respective codes (4/5, 0, 0, 6/5, 0, 0) and (1, 1/3, 0, 1, 0, 0). These two trans-
formations may be performed relative to arbitrary axes by judicious composition with
isometries – rotation, reflection or translation (see e.g. Hoggar, 1992).

Example 16.3 (The fern) Figure 16.11 shows a version of the surprisingly lifelike fern
from Barnsley (1992). It consists of four transformed copies of itself. Starting from the
bottom, the stem is the result of squeezing and shortening the whole, whilst the lower
two branches are obtained by non-uniform scaling down, rotating and translating into
position. The rest, lying above the darkened branches, is the result of a contraction
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Table 16.2. IFS codes for the fern of Figure 16.11.

a b c d e f

w1 68 4 −1 71 40 3
w2 20 51 −19 9 36 128
w3 3 −51 24 21 212 63
w4 1 0 0 42 139 92

Note: Entries to be divided by 100. For y-axis drawn downwards, change the sign of b,
c and f.

towards the top, with a slight shear. Such observations lead to the main topic of the
present section, below.

Figure 16.11 Fern represented as a union of transformed copies of itself: the lower stem
and three differently shaded areas. The codes are given in Table 16.2.

Iterated Function Systems Let us regard an image X as a subset of the plane, and
suppose it consists of N reduced copies of itself, transformed by affine maps w1, . . . , wN

into their appropriate shapes and positions. That is,

X = w1(X ) ∪ w2(X ) ∪ · · · ∪ wN (X ). (16.12)

If each wi is contractive, reducing distances to not more than some multiple r < 1 of
their original, or

|w(x) − w(y)| ≤ r |x − y|, (16.13)

then we call {w1, . . . , wN } an Iterated Function System (IFS) for X. The great significance
of this idea is that X can be reconstructed from the IFS alone, starting from an arbitrary
compact set, according to the following result of Hutchinson (1981). Note that compact
means bounded and closed, a property possessed by our image-representing sets by virtue
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Third iteration Fifteenth iteration

First iteration Second iteration

Figure 16.12 The fern of Figure 16.11 reconstructed from its IFS maps (Table 16.2) by
(16.15), starting from a large circle.

of their finiteness. Now, starting with any compact set E, the IFS defines a new set

W (E) = w1(E) ∪ w2(E) ∪ · · · ∪ wN (E), (16.14)

put together from component parts in the same way as X. Indeed, if E = X , this simply
gives us X back again. The remarkable result of Hutchinson says that, however different
E is from X, the successive new sets W n(E) become arbitrarily close to X itself, or

W n(E) → X, as n →∞. (16.15)

For a detailed proof see e.g. Hoggar (1992). It was an observation of Barnsley (1988)
that to record only the coefficients a, . . . , e for each transformation of an IFS would
take much less memory space than recording the pixel values, and would thus provide a
method of compression.

Example 16.4 (The fern continued) Let us test out in Figure 16.12 the IFS method
(16.15) for recovering the original fern image of Figure 16.11. Notice that we made
things rather hard for the IFS by starting with such a large and wrongly shaped object,
the circle. Neverthess, Hutchinson’s Theorem produced the correct final result after a
small number of iterations. Figure 16.13 is an accidental example that points to artistic
use (this direction is further explored on page 354 in Hoggar, 1992).

Project Determine affine maps {w1, . . . , w4} for an IFS to generate the snowflake curve
of Figure 16.3. Now recover the curve by computer iteration.
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IFS codes for Moscow by night.

50 0 0 75 65 0
33 1 0 77 139 20
35 −1 0 77 29 22

Figure 16.13 Moscow by night (black on white) is the attractor of an IFS with only three
maps, as listed above.

16.1.4 Fractal Compression by PIFS

The IFS method for encoding images was later adapted to a more flexible and efficient
scheme, now to be described (see e.g. Barnsley and Sloan, 1988). We represent parts of
an image as transforms, not now of the whole, but simply of larger parts. The image is
partitioned into subsets R called range blocks, or ranges, and the corresponding larger
sets D are their domain blocks, or domains. In this scheme we extend a, . . . , f of our IFS
code (16.10) by new parameters s, t , in order to handle a greyscale value g(x, y) at each
pixel (x, y). The original (16.10) is extended to include a linear greyscale transformation
g → sg + t , resulting in (16.16) below. In this sense s plays the role of a contrast factor
and t that of an increase in brightness (see Section 15.2.1).

w :

⎡
⎣ x

y
g

⎤
⎦→

⎡
⎣a b 0

c d 0
0 0 s

⎤
⎦
⎡
⎣ x

y
g

⎤
⎦+

⎡
⎣ e

f
t

⎤
⎦ , (16.16)

Reserving w for the extended use above, it is useful to retain a notation for the effect on
points (x, y):

v(x, y) = (ax + by + e, cx + dy + f ). (16.17)

Let us take greyscale as a height function and model an image as a surface z = g(x, y) over
the plane region occupied by the image, where we know g at discrete pixel coordinates.
Then the map w of (16.16) sends the portion of the surface lying above D to a surface
w(g) lying above R, with height h = sg(x, y) + t at the point v(x, y), as we illustrate in
Figure 16.14.

Distinguishing the ranges and their associated domains and parameters by subscripts
i = 1, . . . , N , we define the collage map W by

W (g) = w1(g) ∪ · · · ∪ wN (g). (16.18)

Thus W (g) is a surface over the image region, and hence is a new greyscale version of the
image. We call {w1, . . . , wN }, with its associated domain and range blocks, a partitioned
IFS, or PIFS for the image. The idea is that if W (h) = h, at least up to an acceptable
approximation, then under mild conditions shortly discussed under ‘Some theory’, the
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w

(x, y)
D

v(x, y)
R

g
h

Figure 16.14 The greyscale surface g above domain D defines a surface h above R whose
height at v(x, y) is a linear function of g, namely sg(x, y) + t .

R1 R2

R8R7 d pixels

Dj
Ri

v

Figure 16.15 Each domain D j is a 2 × 2 array of range blocks which is transformed to
some range block Ri .

true greyscale h is recovered from any initial scale g by

if W (h) = h then W n(g) → h. (16.19)

First implementation It is helpful first to explore one simple implementation, illustrat-
ing how s and t are chosen. There are to be no rotations, reflections or shear; only scaling
and translation, so b = c = 0 in (16.17). The image is partitioned into equal square range
blocks of size d × d , say, and each candidate domain consists of a 2 × 2 array of range
blocks, such as that shown in Figure 16.15. The domains also partition the image.

Now we number the domains, say row by row from j = 1 to M. Restricting domain-
to-range transformations to scaling by 1/2, then translation into position, we may specify
a transform w of type (16.16) in the form

( j, t, s) = (domain no, offset, scale), (16.20)

where D j is the domain whose 2d × 2d grey values transform as nearly as possible
into the d × d values of range block R. Some details remain to be specified. Firstly, we
are involved in mapping 2 × 2 arrays of pixels to single pixels, so one possibility is to
down-sample, taking the top left of the four pixel values, before applying g → sg + t .
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Grey values xu

Target
 values

yu
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x

x

x
x
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(a) (b)
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x
x

x

x

y

y

Figure 16.16 Possible scenarios for fitting the best straight line. (a) Certain data points
have the same x-value, (b) all points have the same x-value xu , so we take xu → y.

However, a method that better utilises available information and hence may give better
results is to reduce the four to their average. Suppose this converts D j to D̄ j . The code
(16.20) for a range block R is determined in two stages, where summation takes place
over the pixel positions (p, q) in a d × d array.

Find j to minimise dist (R, D̄ j ), where dist(A, B) =∑
p,q(Apq − Bpq)2, (16.21a)

determine s, t to minimise
∑

p,q[s(D̄ j )pq + t − Rpq]2. (16.21b)

Remark 16.5 Listing the pixel values of a range block as u = 1, . . . , n (= d2), we see
that (16.21b) is the problem of fitting a straight line y = sx + t to a list of data points
(xu, yu) so as to minimise the sum of squares of deviations. As remarked earlier, we have
already determined the solution (11.17), which is as follows.

Letting

x = (1/n)
∑

u xu, y = (1/n)
∑

u yu,

Sxy =
∑

u xu yu − nx y, Sxx =
∑

u xu
2 − nx2,

we set

s = Sxy/Sxx , t = y − sx . (16.22)

Two comments are in order. Firstly, the grey values xu need not be distinct, so there may
be clusters of data points in the same vertical line, as depicted in Figure 16.16. However,
this does not invalidate (16.22). Secondly, because Sxx =

∑
u(xu − x)2 this quantity can

be zero, but only if all xu are the same. In this case we get the scenario depicted in Figure
16.16(b), and it is appropriate to take s = 0 and t = y.

Example 16.6 We encode the image (a) (‘Elleke’) of Figure 16.17. For itera-
tion/decoding, the initial image was that shown at (b), quite unlike the original. Notice
that, even after only one iteration, the coded image is emerging; still more so with the
smaller range block size d = 4. Of course, halving the range size quadruples the number
of ranges and hence also the space used for encoding.

Example 16.7 (Encoding the ranges for Elleke) For the purpose of illustration it is
convenient to take range blocks of size d = 16 pixels. The (square) image for encoding
has size 128, so there are 82 such ranges, and 42 domains of size 2d = 32. Part of the
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Table 16.3. PIFS codes for the first few ranges in Example 16.7, Figure 16.17.

range domain offset scale range domain offset scale

1 3 218 −0.007 9 10 −6 0.857
2 3 220 −0.034 10 10 −6 1.098
3 2 56 0.461 11 6 123 0.123
4 13 51 0.625 12 6 123 0.160
5 3 −3 0.863 13 3 4 0.889
6 3 215 0.050 14 3 215 0.046
7 3 230 −0.010 15 4 49 0.772
8 3 220 0.033 16 10 8 1.054

(a) Original 'Elleke' encoded (b) Starting image: 'Tini' (c) One iteration of Tini with d = 8

(d) One iteration with d = 4 (e) Three iterations, d = 4 (f) Six iterations, d = 4

Figure 16.17 (a) Image to be encoded, (b) initial image for iterated decoding, (c) result
after single iteration step with 8 × 8 range block, (d) result after re-encoding with d = 4
and performing a single iteration.

code is shown in Table 16.3, with range numbers added. The original first row contained
a header in the present implementation, in which the blocks are numbered row by row
upwards relative to the displayed images. Figure 16.18 illustrates the code (13, 51, 0.625)
for range number 4.

Some theory of PIFSs Notice that in defining a PIFS we did not require that the plane
transform parts v(x, y), defined in (16.17), should be contractive. Indeed, because each w
maps a vertical line of points over (x, y) to a vertical line over v(x, y) (see Figure 16.14),
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(a) Domain: 32 × 32 (b) Reduced (c) Regressed (d) Range: 16 × 16

Figure 16.18 Case of 16 × 16 sized range blocks. The range (d) is from Elleke’s collar,
and the best domain, (a), found for it is top left in the image (edge of hair).

z1

z2

z'2

z'1

(x, y) v(x, y)

w

Figure 16.19 The map w brings points together in a vertical line.

it is enough that w be z-contractive (for details see Fisher, 1995). That is, if w(x, y, z1) =
(x ′, y′, z′1) and w(x, y, z2) = (x ′, y′, z2

′), then, as depicted in Figure 16.19,

|z1
′ − z2

′| ≤ r |z1 − z2|, or (16.23a)

| f (v(x, y)) − g(v(x, y))| ≤ r | f (x, y) − g(x, y)|, (16.23b)

for some r with 0 ≤ r < 1. For example, the scale column of Table 16.3 contains a value
of r for each case of w implied. Inspection shows that two values slightly exceed 1;
however, in practice this suffices for our purposes. We define the distance d between
greyscale surfaces f, g over the image area, I, to be the greatest vertical spacing between
them:

d( f, g) = MaxI | f (x, y) − g(x, y)|. (16.24)

The key property we require for proving results is that the collage map W of (16.18),
converting a surface f to a new surface W ( f ) over the image area, is contractive in that,
for any surfaces f, g over I,

d(W ( f ), W (g)) ≤ αd( f, g) (16.25)

for some fixed α in the interval 0 ≤ α < 1. Both here and in (16.23) the least parameter
(r or α) for which the inequality holds is called the contractivity or contraction ratio.
For an individual transformation by a matrix M this is the greatest eigenvalue of MT M ;
see (8.35). Here is the theorem that says the PIFS method must decode to the exact
original if we have the wi exactly right – we’ll deal with the approximation issue after
that.
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Theorem 16.8 Let W be the collage map of a PIFS whose maps wi are z-contractive
with ratios ri . Then W is contractive with ratio at most α = Maxi (ri ). Consequently,
there is a unique surface A left unchanged by W and, for any initial surface g,

W n(g) → A. (16.26)

Proof We observe that the height of W ( f ) at (x, y) is denoted by W ( f )(x, y), and that
the range Ri has domain Di . Some Di may coincide (cf. Table 16.3), but this is not a
problem. As usual, I denotes the image region in the (x, y)-plane. We have

d(w( f ), W (g)) = Max
(x,y)∈I

|W ( f )(x, y) − W (g)(x, y)|

=Max
i

Max
(x,y)∈Ri

|W ( f )(x, y)−W (g)(x, y)| since I = ∪i Ri

=Max
i

Max
(x,y)∈Di

| f (vi (x, y))−g(vi (x, y))| since Ri = vi (Di )

≤ Max
i

Max
(x,y)∈Di

ri | f (x, y) − g(x, y)| by (16.23b)

≤ Max
i

Max
(x,y)∈Di

α| f (x, y) − g(x, y)| since α = Max
i

(ri )

= α Max
i

Max
(x,y)∈Di

| f (x, y) − g(x, y)| since α is constant

= α Max
(x,y)∈∪i Di

| f (x, y) − g(x, y)|

≤ α Max
(x,y)∈I

| f (x, y) − g(x, y)| since ∪i Di ⊆ I

= αd( f, g) by definition of d( f, g).

The argument from here on is identical to that which derives (16.26) for the IFS case
from the Banach Fixed Point Theorem. The topological details are omitted because they
would take us too far afield, but they are developed in full in Hoggar (1992). However,
we will prove the important Corollary 16.10.

Remarks 16.9 (i) The surface A in Theorem 16.8 is called the attractor of the PIFS,
because W n(g) → A. (ii) In practice, although we would like to find a PIFS for our target
surface h, our best efforts produce an IFS for which A is only an approximation to h.
Can we be sure that getting W (h) close enough to h will ensure that A is close enough
to the desired h? The following corollary answers in the affirmative.

Corollary 16.10 (The Collage Theorem) With the hypotheses of Theorem 16.8, we have
that if a surface g satisfies d(g, W (g)) ≤ ε then

d(A, g) ≤ ε

1 − α
. (16.27)

Proof We need the fact that d satisfies the distance axioms derived in Table 16.4. For
brevity, write gn = W n(g). This entails g0 = g and d(gn, gn+1) = d(W (gn−1), W (gn)) ≤
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αd(gn−1, gn) (by Theorem 16.8) ≤ α2d(gn−2, gn−1), and so on. Therefore,

d(g0, gn) ≤ d(g0, g1) + d(g1, g2) + · · · + d(gn−1, gn) see Table 16.4(iii)

≤ d(g0, g1) + αd(g0, g1) + · · · + αn−1d(g0, g1) as observed

= d(g0, g1)(1 + α + · · · + αn−1)

= d(g0, g1)(1 − αn)/(1 − α) by the sum of a G.P.

≤ ε(1 − αn)/(1 − α) since d(g0, g1)

= d(g, W (g)) ≤ ε.

Now let n →∞, so that gn = W n(g0) → A by (16.26) and also αn → 0. This yields
d(g0,A) ≤ ε/(1 − α), as required.

Table 16.4. The Distance Axioms for d(f, g).

(i) d( f, g) ≥ 0 always, and d( f, g) = 0 implies f = g.
(ii) d( f, g) = d(g, f ).
(iii) d( f, h) ≤ d( f, g) + d(g, h) (The Triangle Inequality).

Proof We apply the definition of d to the following respective observations for
any point x:

(i) 0 ≤ | f (x) − g(x)|, (ii) | f (x) − g(x)| = |g(x) − f (x)|,
(iii) | f (x) − h(x)| = |[ f (x) − g(x)] + [g(x) − h(x)]|

≤ | f (x) − g(x)| + |g(x) − h(x)|.

Notice that our theory of PIFS allowed for a wider class of plane transformations than
were included in Example 16.6, notably rotation and reflection, indeed anything affine,
as defined by (16.17). We now consider such further options, of which some go beyond
the partition restriction (though remaining within the IFS framework). Our motivations
are accuracy and speed.

Sources of more accurate domains

(i) Bigger images The small, 128-square images in Figure 16.17 illustrate a shortage of domains.
As a general principle, larger images offer more scope for the across-scale similarity we need
for accurately matching domain to range.

(ii) Overlapping domains So far our domains have exactly tiled the image. Another possibility
is to double the number of domains in each direction by starting a new domain at each range
position. This improves fitting, at a cost of two more bits to record the domain number for
each range.

(iii) Using symmetries of the square Each original domain can provide up to eight possible fits
with a range if we compose the original wi with a symmetry of the square, that is, an isometry
that sends the square onto itself. These are the multiples of a 1/4 turn about the square’s centre,
and (see Figure 16.20) reflections in its four axes of symmetry. Together they are called the
dihedral group D8 (see Section 2.4). We give the formulae required for implementation in
Table 16.5.
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Table 16.5. The symmetries of a d × d square in terms of centre Cartesian
coordinates (x, y) and row, column numbers (r, c), where 1 ≤ r, c ≤ d.

The reflection Ry=0 in the x-axis changes the sign of y but converts r to r̄ ,
where r̄ = d + 1 − r .

symmetry 1/4 turn 1/2 turn 3/4 turn Ry=0 Ry=x Rx=0 Ry=−x

(x, y) → (−y, x) (−x,−y) (y,−x) (x,−y) (y, x) (−x, y) (−y,−x)
(r, c) → (c, r ) (r , c) (c, r ) (r , c) (c, r ) (r, c) (c, r )

x = 0y = −x y = x

y = 0

Figure 16.20 The axes of symmetry of a square centred at the origin. Other symmetries
are given by multiples of a quarter turn.

Domain pools for speed

The idea of a domain pool, or library of available domains, is that they be classified
according to a pre-determined system, before range-by-range encoding starts. Then each
range in turn is classified and compared only with domains in the same class. This can
greatly cut down the search for best domain. Early pioneers of this approach were Jacquin
(1989), who classified domains as, for example, flat, edge or texture, and Jacobs et al.
(1990) (see also Fisher, 1995).

An easily described method used by the latter is to compare the four quadrants of
a square for (a) mean brightness and (b) variance (estimated as standard deviation) of
brightness. If the quadrants comprise four levels then these can appear in 4 × 3 × 2 × 1 =
24 orders. However, each order is converted into eight others (including itself) by the
rotations and reflections comprising D8, as we described in (iii) above. This reduces the
classification to the three classes represented in Figure 16.21. The possible permutations
of brightness variance then raise this to 3 × 24 = 72 classes.

Exercise Find another representative for class (a) of Figure 16.21.

(a) (b) (c)

Figure 16.21 Representatives of the three classes of domain determined by mean bright-
ness of each quadrant. None can be changed into another by an element of D8, the group
of symmetries of the square (1/4 turns and reflections).
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Figure 16.22 (a) A square twice subdivided, (b) corresponding part of the quadtree in
which the top node represents the outer square, (c) HV partitioning of a rectangle close
to an edge region (see (ii) HV partitioning).

Subdividing the ranges

We note two main methods for subdividing a range if closeness of fit to a domain cannot
be obtained within some threshold. Further details are given in Fisher (1995).

(i) Quadtree partitioning We recursively divide as follows: if the rms difference between the
current square and every candidate domain exceeds a chosen threshold, then subdivide the
square into its quadrants. The subdivisions are recorded in a tree in which every node represents
a square portion of the image and, if subdivision is made, has four subnodes corresponding
to the quadrants numbered 0, 1, 2, 3 in, say, clockwise order (see Figure 16.22).

We start with a tree of fixed depth, so that the image is already subdivided into equal
squares, the image itself being represented by the root, and place some limit on the depth
of subdivision. The domain pool has a judicious choice of domains of varying sizes, and a
candidate domain is always twice the size of the range.

(ii) HV partitioning This is a way of subdividing ranges which adapts more flexibly, and hence
more effectively, than the quadtree method. This flexibility is found in the method being:

(a) not restricted to squares – rectanges are allowed,
(b) not restricted to division into equal quadrants.

Positively, a rectangle is split by a horizontal or vertical line corresponding to the most
edge-like part of the rectangular pixel array, with a bias towards the centre. The following
search for a best vertical line (Figure 16.22(c)) is repeated analogously for the horizontal,
then the better of the two is taken. With rectangle columns numbered from 0 to W − 1
we compute

c j = the mean pixel value in column j,
bias( j) = Min( j, W − j − 1)/(W − 1), normalised distance to the

rectangle boundary,

v j = |c j − c j+1| × bias( j).

Then v j represents a horizontal rate of change of pixel value times a bias which increases
towards the centre, and we choose j to maximise this. Thus, other things being equal,
we prefer to divide at the centre, but the system responds to evidence of edges nearer
the rectangle boundary too. A domain pool of rectangles is chosen, and a range may
be fitted by a domain of two or three times the size independently in either direction.
A classification scheme similar to Figure 16.21 is incorporated, with symmetries of
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the square reduced to those of a rectangle (identity, 1/2 turn, horizontal and vertical
reflections), hence yielding six classes rather than three.

Further developments

(i) Archetypes (Boss and Jacobs, 1991) One seeks the member of a set best able to cover the
rest. This ties in with vector quantization, as we shall see under ‘Artificial Neural Networks’
in Chapter 18.

(ii) Orthonormal bases (Vines and Hayes, 1994) Here we represent a pixel array as a long
vector and a PIFS code becomes a matrix of corresponding size. Range blocks are coded by
projection onto an orthonormal basis constructed by the Gram–Schmidt method (see Defi-
nition 7.17 and Section 7.4.3). The number of basis vectors required is minimised, reducing
dimensionality of the procedure and leading to improved compression and decoding speed.

(iii) Non-deterministic finite automata This approach of Culik and Kari (1993) is integrated
by them with a wavelet approach, to produce results better than those obtained by either
method separately (wavelets are introduced in the next section).

(iv) Fractal compression for images with texture, see Obrador et al. (1995).

Comparison with JPEG

We compare Fractal Image Compression, or FIC, with the JPEG system based on the
Discrete Cosine Transform, or DCT, details of the latter system being covered in Chapter
15. The general criteria will be speed, quality and compression ratio. For a wider ranging
comparison, see Anson (1993).

(1) Speed Whereas JPEG encodes and decodes in similar times, the FIC is asymmetrical in this
respect. One example generated the following times, in seconds.

JPEG FIC
Encode 41 480
Decode 41 7

Since then times have much decreased, but the situation so far is that FIC comes into its own
when used for image databases, where encoding time is less important than decoding. An oft
cited example is the 10000 FIC images of Microsoft’s Encarta multimedia encyclopaedia. We
come next to some benefits of FIC – why should it be used anyway?

(2) Zooming Displaying a JPEG image at higher resolution than its original encoding causes
artifacts to appear. This is not generally true for FIC; where detail is absent due to scaling it
fills in with a result more acceptable to the human eye (to double the resolution we double the
plane translation parts of the PIFS codes). Thus FIC may be used for a wider range of scales
without the necessity for re-scanning at higher resolutions.

(3) Edge reproduction Compression via JPEG/DCT means assuming that higher frequencies are
less important. This unsharpens edges, sometimes creating a ripple effect. Not being subject
to this limitation, FIC is better at handling edges.

(4) Compression A photographic quality image can be compressed by JPEG in the ratio 20–25
to 1 without degradation observable by the human eye, whereas FIC is able to achieve up
to 100 : 1 where there is a large affine redundancy it can take advantage of. Furthermore,
degradation and breakdown, when they occur, will generally continue to present a more natural
appearance with FIC than with JPEG.
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Postscript Though fractal encoding is slower than could be desired, much progress in
both encoding and decoding speeds continues to be made, such as is reported in the papers
of ‘Further developments’ above. We mention too the interesting work of McGregor et al.
(1996).

16.2 Wavelets

Wavelets relate both to the previous section in using the idea of varied scale and to the
previous chapter, Fourier Transforms, in the provision of a basis for the transform which
is at once an insight-provider and a practical tool. Wavelets provide a basis which picks
out information, not at varying freqencies but at different scales. To give a broad hint
of this, let V j be a space of functions which provide detail up to a resolution of 2− j

units, where V 0 ⊆ V 1 ⊆ V 2 ⊆ · · ·. We envisage expressing an image function to best
approximation as a linear combination of basis functions of V j .

This means that better resolution is obtained as we proceed from using V j to us-
ing V j+1. The step is accomplished through basis functions additional to those of
V j , called wavelets: ψ

j
0 , ψ

j
1 , . . . ; the function is corrected by multiples of these.

Furthermore, and a reason wavelet families can be hard to discover, these level j
wavelets may be obtained for each j from a mother wavelet ψ by scaling and translation,

ψi
j (x) = ψ(2 j x − i).

In a similar manner, the basis functions for V j must be derivable from a so-called scaling
function φ (sometimes called a father wavelet). The sequence of V j is said to provide
a multiresolution approach.

A few types of wavelet were in use long before the name for them arose naturally in
1975 work on seismic waves (see e.g. Hubbard, 1996). The functions of Gabor (1946)
are amongst the first, and we shall discuss them in their place. Those due to Haar (1955)
may be regarded as the simplest case in several families known; in particular the wavelet
family introduced by Daubechies which has proved so effective in applications (see
Section 16.3). We begin with the Haar case and apply it to the compression of images.

16.2.1 The Haar approach

Like the N-point DFT and DCT of Chapter 15, the Haar transform is linear, f → Mf,
where M is a matrix whose rows form an orthogonal basis of N-space. However, compared
with the frequency tuning supplied by the former transforms, the Haar version captures
fine geometrical detail, down to a level governed by the value of N. The scale changes
are octaves, or multiples of 2. Further, for each scale there is a basis vector element
corresponding to every possible position.

Consider a 1D image of N pixels over the half-open interval [0, 1) = {x : 0 ≤ x < 1}.
Let us regard the profile of pixel values [a0 . . . aN−1] as a piecewise constant function on
[0, 1), in which each constant ai is the function’s value over a subinterval of width 1/N .



16.2 Wavelets 659

Our transform is built from repetitions of the case N = 2, in which a key observation is
that [a0a1] can be recovered from its mean m = (1/2)(a0 + a1), and half-difference, or
detail coefficient d = (1/2)(a0 − a1), as

[a0 a1] = [m + d m − d] = m × [1 1] + d × [1 − 1]. (16.28)

At every level we replace successive pairs like a0, a1 by their mean m together with a detail
coefficient d specifying how far a0 and a1 differ from their mean. For reconstruction, the
pair m, d reverts to m + d, m − d .

Example 16.11 Case N = 4. Here is the result for pixel values [10 6 1 3], with
means shown in the first vertical list and detail coefficients in the second.

10 6 1 3 (Detail coefficients)
8 2 2 −1

5 3

For the first scaling level we replace 10, 6 by mean 8 and detail coefficient 2; similarly
1, 3 becomes 2 with coefficient −1. At the last level, the pair 8, 2 becomes mean 5 and
detail coefficient 3. Reconstruction begins with overall mean 5 converted by coefficient 3
to 8, 2 through the formulation m, d → m + d, m − d . Then coefficients 2, −1 are used
similarly to convert respectively 8 to 10, 6 and 2 to 1, 3. Now we express the process in
terms of basis vectors, resulting in the build-up of Table 16.6.

Exercise Transform and then reconstruct the 1D image [9 6 5 3] similarly to Example
16.11.

Deriving basis functions

To recapitulate, we are looking for a basis which will define the Haar Transform. Return-
ing to (16.28), we may write [a0 a1] = mφ(x) + dψ(x), where φ is a unit box function
and ψ a split box, defined to be zero except for

φ(x) = 1, if 0 ≤ x < 1,

ψ(x) =
{

1, if 0 ≤ x < 1/2,

−1, if 1/2 ≤ x < 1. (16.29)

We move from one scale level to the next by the halving process of (16.28). At level j the
unit interval is divided into 2 j subintervals of width (1/2) j = 2− j , so we need versions
of φ and ψ scaled horizontally to take their nonzero values on precisely such intervals,
and also translated so as to be nonzero on the ith interval for suitable i. These 2− j -sized
boxes and split boxes are illustrated in Figure 16.23 and formally defined as follows:

φ
j
i (x) = φ(2 j x − i),

ψ
j

i (x) = ψ(2 j x − i),
(0 ≤ i < 2 j). (16.30)
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1

φ0
2

1

ψ0
2

1

ψ1
2

1

ψ2
2 ψ3

2

1

φ1
2

1

φ2
2

0 1

φ0
2 + ψ0

2

0 1

φ0
2 − ψ0

2

φ3
2

0 0 0 0 1

0 0 10 0

Figure 16.23 Box and split box functions (wavelets) in the case j = 2. The first
row form a basis for the space V 2. Comparing a box with its split version in row 2
we see that φ2

i ± ψ2
i give half-width boxes as in row 3. Hence the first two rows together

span V 3.

These are correct, because, for example, φ
j
i (x) = 1 ⇔ 0 ≤ 2 j x − i < 1 ⇔ i ≤ 2 j x <

(i + 1) ⇔ i · 2− j ≤ x < (i + 1) · 2− j , that is, x lies in the ith subinterval of width 2− j ;
and simply splits this interval into a positive and a negative half. Those derived from ψ

are now known as wavelets of ψ .

16.2.2 The box basis and multiresolution

For N = 2 j the function/pixel profile [a0 . . . aN−1] takes value ai on the ith subinterval
and so it equals a unique linear combination of boxes

∑
i aiφ

j
i . That is to say {φ j

i }0≤i<2 j

form a basis of the space V j of such functions, the box basis. In fact, the case j = 2
(subinterval width 1/4) is the first row of Figure 16.23.

Further, V j is contained in V j+1 because a function constant on the ith subinterval is
constant on its two half-width subintervals. We thus have the sequence

V 0 ⊆ V 1 ⊆ V 2 ⊆ · · · , (16.31)

which is called a multiresolution, because as j increases the relevant subintervals become
smaller and so we can better approximate a function on [0, 1) by one in V j . An example
is given in Table 16.6, further ahead. We need to extend slightly the idea of an inner
product of N-vectors to that of two functions f, g on [0, 1), namely

〈 f, g〉 = ∫ 1
0 f (x)g(x)dx, (16.32)
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provided they are square-integrable, that is 〈 f, f 〉 is a well-defined non-negative number
so that we can write ‖ f ‖ = 〈 f, f 〉1/2 just as for ordinary vectors. (More generally,
we integrate over a common interval of definition of f and g.) Now, if i �= k then the
box functions φ

j
i and φ

j
k are never nonzero simultaneously (Figure 16.23), so they are

orthogonal, or in symbols 〈φi
j , φk

j 〉 = 0. But if i = k they are both 1 precisely on the
ith subinterval, hence 〈

φ
j
i , φ

j
i

〉 = area of (2− j × 1) box = 2− j . (16.33)

Thus {φ j
i }0≤i<2 j is an orthogonal basis of V j . Indeed,{2 j/2φ

j
i } is an ONB, or orthonormal

basis, with members not only orthogonal but of unit length.

The next level

As noted after (16.29), Equation (16.28) indicates the way to move from one level of
detail V j to the next by using split-box functions ψ

j
i . As may be seen from Figure 16.23,

for example, φ2
i + ψ2

i = 2φ3
2i and φ2

i − ψ2
i = 2φ3

2i+1. The same diagram at half the scale
size shows that functions φ4

i may be determined from φ3
i ± ψ3

i , the previous superscripts
being increased by 1. We need the following auxiliary result.

Theorem 16.12 (a) ψ
j

i and ψk
p are orthogonal unless they are identical, when ‖ψ j

i ‖2 =
2− j . (b) For fixed j, every ψ

j
i is orthogonal to the elements of V j+1.

Proof (a) If j = k but i �= p the two functions are never nonzero simultaneously, so
their inner product (16.32) is zero. If j < k and the functions are nonzero on a common
interval then the kth takes values ±1 where the other is constant, hence the integral
consists of two areas of opposite sign summing to zero (Figure 16.24). Also, 〈ψ j

i , ψ
j

i 〉 =
area of a (2− j × 1) box = 2− j . Part (b) is similar since we only need to show that ψ

j
i is

orthogonal to our box basis functions for V j .

0 11/2 3/41/4

ψ0
1

ψ2
3

Figure 16.24 The inner product (16.32) of split boxes from different scales is zero
because, where they are both nonzero, one is constant and the other is +1 and −1 over
equal intervals. Here both are nonzero on [2/8, 3/8], and the product is (1)(1/16) +
(−1)(1/16) = 0.
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Corollary 16.13 Let W j be the space spanned by {ψi
j }0≤i<2 j . Then these functions are

an orthogonal basis of W j , and

V j ⊕ W j = V j+1. (16.34a)

The equality says that every function in V j+1 is a unique sum f + g of functions f in V j

and g in W j . Theorem 16.12(b) reveals that f, g are orthogonal. It follows by applying
this equality with j = 0, 1, 2, . . . that

V j = V 0 ⊕ W 0 ⊕ W 1 ⊕ · · · ⊕ W j−1, (16.34b)

and an ONB for V j is given by φ0
0 and {2k/2ψk

i } for 0 ≤ k < j, 0 ≤ i < 2k .

Example 16.14 With the data of Example 16.11 we build up the function [10 6 1 3]
through the increasing resolutions V j , by adding on the computed components of the
wavelet (split box) basis functions ψ

j
i . The stages are shown in Table 16.6. They illustrate

V 2 = V 0 ⊕ W 0 ⊕ W 1 and f = 5φ0
0 + 3ψ0

0 + 2ψ1
0 − ψ1

1 .

Table 16.6. Adding on wavelet components up to the maximum resolution,
in Example 16.14.

summand result resolution

5 × = in V 0

+3× = in V 1

=
+2 ×
−1 × in V 2

As vectors We are writing a function in V k as the vector of its values on successive
2−k wide subintervals. Can we use the dot product (ai ) · (bi ) =

∑
ai bi instead of the

all-encompassing but harder integral (16.32)? Inside V k lie the basis functions φ0
0 and

{2k/2ψk
i } ( j ≤ k − 1), and the overlap argument of Theorem 16.12 shows that they remain

orthogonal when treated as vectors. This fact is not affected by scaling; for example the
dot product φ0

0 · ψ0
0 in V 1 is (1, 1) · (1,−1) = 0, whilst in V 2 it becomes (1, 1, 1, 1) ·

(1, 1, −1, −1), which is again zero.

Length The unit interval [0, 1) is divided into 2k equal parts, so for j ≤ k the func-
tion vectors φ

j
i and ψ

j
i have absolute value 1 over an interval of width 2− j , covering
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2− j/2−k = 2k− j coordinate positions. Therefore, to maintain unit length they should be
normalised by a factor 2( j−k)/2. The ONB in case k = 3 is listed in Figure 16.25.

=  ( 1 1 1 1 1 1 1 +1) / √8
=  ( 1 1 1 1 −1 −1 −1 −1) / √8
=  ( 1 1 −1 −1 0 0 0 0) / √4
=  ( 0 0 0 0 1 1 −1 −1) / √4
=  ( 1 −1 0 0 0 0 0 0) / √2
=  ( 0 0 1 −1 0 0 0 0) / √2
=  ( 0 0 0 0 1 −1  0) / √2
=  (0 0 0 0 0

0
0 1 −1) / √2

ψ0
0

φ0
0

ψ0
1

ψ1
1

ψ0
2

ψ1
2

ψ2
2

ψ3
2

Figure 16.25 The Haar ONB in the case k = 3.

16.2.3 The 2D Haar Transform

We recall (Section 15.1.1) the schema for a 1D transform f → M f , where M−1 =
[C0 . . . CN−1], which equals MT when, as here, the columns Cr form an ONB. Thus M
consists of the ONB written as rows Ri = CT

i . The related cases are:

One dimension (f is a vector): f → Mf , the coefficients w.r.t. orthonormal
basis {Cr }.
Two dimensions (f is a matrix): f → Mf MT, coefficients w.r.t. orthonormal
basis {Cr CT

s }.

Let N = 2k and write our basis vectors as N-vectors. We have just listed the case
k = 3 in Figure 16.25. The consequent 2D version {Cr CT

s }0≤r,s≤7 is depicted in
Figure 16.26.

Orthogonality, coefficient ordering and error (see also under DCT) Here we have linearly
ordered the whole 2D array of Haar coefficients and deleted the smallest in absolute value
up to various chosen levels, resulting in Figure 16.27. Table 16.7 recalls the theory and
ALGO 16.1 implements it for the present purpose.

Table 16.7. Approximation using an orthonormal basis (ONB).

Let e1, . . . , en be an ONB and let f = c1e1 + · · · + cnen , with c2
1 ≤ c2

2 ≤ · · · ≤ c2
n .

If we drop the first t coefficients, to approximate f by g, the squared error is

‖ f − g‖2 = ( f − g) · ( f − g) = (∑t
i=1 ci ei

) · (∑t
j=1 c j e j

)
=∑

i, j ci c j ei · e j =∑
i, j ci c jδi j (ON basis) =∑t

i=1 c2
i .

% error = 100

√
c2

1 + · · · + c2
t

c2
1 + · · · + c2

n

, % coefficients used = 100(n − t)/t.
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Figure 16.26 Representation of the 8 × 8 Haar basis, with 1 = white, 0 = grey, and
−1 = black, except in the top left basis element, with the constant 1 shown as grey. We
may compare the corresponding diagram for the DCT in Figure 15.42 of the previous
chapter.

Original ‘Jo’.
(128 × 128)

1% error, using
55% of coefficients.

5% error, using
12% of coefficients.

10% error, using
3% of coefficients.

Figure 16.27 Compression of this 128 × 128 image down to 12% of coefficients gives
no discernible deterioration. The percentage and sum of squares error are measured as
in Table 16.7. Thus, for example, there are 1282 coefficients to start with.

ALGO 16.1 To approximate f using the transform f → M · f · MT with given
% error, where M has columns C1, . . . , Cw.

Function Bi j (p) (pth 2D basis element)
i = 1 + Floor[(p − 1)/w]; j = 1 + (p − 1)Mod w

RETURN Ci C j
T

HaarComp(F, percentErr)
For i, j = 1 to w do p = (i − 1)w + j ; dp = Fi j (F becomes w2-vector

[dp])
Order the pairs (d2

p, dp) in ascending order of d2
p (new array ‘pairs’)

err = 0; threshold = (
∑

p d2
p)(percentErr/100)2

While err + pairs(1, 1) ≤ threshold do err = err + pairs(1, 1); delete
pairs(1)

f = f − f ; nCoeffs = Length (pairs)
For n = 1 to nCoeffs do (reconstruct approx. f )

p = pairs(n, 2); f = f + dp
∗Bi j (p)

PRINT(% coefficients used, 100∗nCoeffs/w2); RETURN f.
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Four wavelet features of Haar

1. V 0 ⊆ V 1 ⊆ V 2 ⊆ · · · (multiresolution),
2. V j ⊕ W j = V j+1 (W j = further details).
There are functions φ, ψ such that
3. {φ(2 j x − i)}0≤i<2 j is a basis of V j (φ = scaling function),
4. {ψ(2 j x − i}0≤i<2 j is a basis of W j (ψ = mother wavelet).

Four properties not possessed by all wavelets, and hard to achieve simultaneously, are
that the bases of V j and W j be orthogonal, and that φ and ψ have compact support. The
last phrase, for a function f, means that f is zero outside of some finite closed interval
[a, b]. The least such interval is the actual support. Thus the box wavelet φ had compact
support [0, 1]. We shall see how other wavelets fare.

16.3 The Discrete Wavelet Transform

Our second main study leads up to the wavelets discovered by Daubechies (1988, 1992)
which have proved to be so successful as the FBI’s chosen method of compression for
fingerprint data (Brislawn, 1995).

Earlier, in Section 16.2, we performed the Discrete Wavelet Transform, or DWT,
in the Haar case, by the standard method of generating an explicit orthonormal basis
and projecting coordinate vectors onto it. With basis vectors as rows of a matrix M
(which is therefore an orthogonal matrix), the transform becomes x → Mx, with 2D
form g → MgMT for an array g. We pause here to establish the more general framework
of filter banks which do not require orthogonality; it is foundational, a source of insights
and techniques in this and the following chapter.

16.3.1 Filter banks for multiresolution

At this point we presuppose only a multiresolution sequence {V j } with complementary
wavelet spaces {W j }. That is, denoting the dimensions by v j and w j , we are given

V 0 ⊆ V 1 ⊆ V 2 ⊆ · · · , where V k ⊕ W k = V k+1 for k = 0, 1, 2, . . . , (16.35a)

vk = dim V k, wk = dim W k (hence vk + wk = vk+1). (16.35b)

To proceed further some choice of bases must be made, but there are no requirements
of orthogonality, or the existence of a mother or father wavelet. Thus the ⊕ sign here
means simply that W k is a subspace of Vk+1, and every element of Vk+1 is a unique sum
f + g of an element f in V k and an element g in W k . The first step is to combine the
basis elements φ

j
i (x) of V j and ψ

j
i (x) of W j into row vectors:

� j (x) = [
φ

j
0 (x) φ

j
1 (x) . . .

]
, (16.36)

� j (x) = [
ψ

j
0 (x) ψ

j
1 (x) . . .

]
. (16.37)

This notation enables us to express the element of V j with coordinates c j =
[c0

j c1
j . . .]T, in the form of a matrix product � j (x)c j . And similarly for the
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element of W j with coordinate vector d j . In more detail,∑
i
c j

i φ
j
i (x) = � j (x) · c j (element of V j ), (16.38)∑

i
d j

i ψ
j

i (x) = � j (x) · d j (element of W j ). (16.39)

On the other hand, V j−1 ⊆ V j from (16.35) implies that every generator of V j−1 is a
linear combination of those of V j , say φ

j−1
i (x) =∑

k pkiφ
j
k (x) for scalars pki which

together form the elements of a matrix P j . Similarly W j−1 ⊆ V j implies a coefficient
matrix Q j . Thus in matrix notation

� j−1(x) = � j (x)P j , (16.40a)

� j−1(x) = � j (x)Q j . (16.40b)

The filter bank Figure 16.28 portrays the filter bank arising from the multiresolution
(16.35) with which we began. It consists of the matrices P j , Q j , and the coordinate
vectors c j , d j together with matrices A j , B j shortly to be determined, which convert
between c j , d j as shown. The A, B matrices are designated analysis matrices, because
they are used to decompose c j into constituent parts, whilst the P, Q are called synthesis
matrices since they may be used to reconstitute c j . The needed formulae are derived in
Theorem 16.16, after an example of the P, Q calculation.

c j c1 c0

d0

cj−1

dj−1
dj−2

Aj

B j
...

Figure 16.28 Filter bank for a multiresolution. From this we write down the Discrete
Wavelet Transform as Equation (16.41). According to (16.35), the vector c j and its
transform have the same number of coordinates. We reverse direction by c j = P j c j−1 +
Q j d j−1.

The Discrete Wavelet Transform is c j → (c0, d0, d1, . . . , d j−1). (16.41)

Example 16.15 We determine P2 and Q2 of (16.40) for the Haar wavelets of the previous
section. Here φ

j
i (x) is the box function with value 1 on the interval 2− j [i, i + 1), so we

can read off the required relationships from Figure 16.29.

The notation is �1(x) = [
φ1

0(x) φ1
1(x)

]
, and �2(x) = [

φ2
0(x) φ2

1(x) φ2
2(x) φ2

3(x)
]
,

and the figure reveals that φ1
0(x) = φ2

0(x) + φ2
1(x) and φ1

1(x) = φ2
2(x) + φ2

3(x). Express-
ing this in the form � j−1(x) = � j (x)P j ,

[
φ1

0(x) φ1
1(x)

] = [
φ2

0(x) φ2
1(x) φ2

2(x) φ2
3(x)

]
⎡
⎢⎢⎣

1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ (= P2). (16.42)
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10

1

1/2

φ0
1(x) φ1

1(x)

φ0
2 φ1

2 φ2
2 φ3

2

x

Figure 16.29 Relation between box functions at levels 1 and 2. The diagram indicates
where each function takes the value 1 (elsewhere it is zero).

Notice that, on the right hand side of the equality, the columns of this matrix product
correspond to the columns of the second matrix, P2. It is well to be aware of this fact
about matrix products!

The split box function ψ1
i (x) may be found from the box φ1

i (x) by reversing the sign
in its right half. Thus, considering Figure 16.29, ψ1

0 (x) = φ2
0(x) − φ2

1(x) and ψ1
1 (x) =

φ2
2(x) − φ2

3(x). In the notation �1(x) = �2(x)Q2, this becomes

[
ψ1

0 (x) ψ1
1 (x)

] = [
φ2

0(x) φ2
1(x) φ2

2(x) φ2
3(x)

]
⎡
⎢⎢⎣

1 0
−1 0

0 1
0 −1

⎤
⎥⎥⎦ (= Q2). (16.43)

The filter bank relations The filter bank diagram asserts that we may obtain c j−1 and
d j−1 from c j by multiplying by respective matrices A j and B j , and that we may go in
the reverse direction using P j and Q j . We now show how this can be arranged.

Theorem 16.16 (Filter Bank Theorem) The filter matrices A j and B j may be defined,
and c j recovered from c j−1 and d j−1, by the following relations:[

A j

B j

]
= [

P j Q j
]−1

, and hence c j = P j c j−1 + Q j d j−1. (16.44)

Proof

(i) Inverses Let us establish that [P j |Q j ] is necessarily invertible. By (16.35b) it is square, so
it suffices to show that no nonzero linear combination of the columns of P j and Q j can
be zero (see Rules 7.28). But by (16.40) such a combination gives v + w = 0, where v

is in V j−1 and w is in W j−1. Then V j = V j−1 ⊕ W j−1 from (16.35) implies the unique
solution v = w = 0, so the columns are independent and the matrix is invertible (see
Rules 7.28).

(ii) A uniqueness property Recall that a coefficient vector c j defines an element � j (x)c j in
V j . But the connection V j = V j−1 ⊕ W j−1 renders this as a unique sum of an ‘averag-
ing’ component � j−1(x)c j−1 in V j−1 plus a ‘detail’ component � j−1(x)d j−1 in W j−1.
That is,

� j−1(x)c j−1 +� j−1(x)d j−1 = � j (x)c j . (16.45)
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(iii) With this preparation we are ready to show that the formulae c j−1 = A j c j and d j−1 = B j c j

are equivalent to (16.44). Suppose the formulae hold. With them we substitute for c−1 and
d j−1 in the left hand side of (16.45) and replace � j−1(x) and � j−1(x) using (16.44). The
result is

� j (x)P j A j c j +� j (x)Q j B j c j = � j (x)c j , or, factorising,

� j (x)(P j A j + Q j B j )c j = � j (x)c j .

Since this is to hold for all c j , we may drop the factor c j and then, because � j (x) is a basis,

P j A j + Q j B j = I, that is [ P j Q j ]

[
A j

B j

]
= I. (16.46)

Thus the two partitioned matrices are inverses, as in (16.44). Now suppose conversely that
(16.46) holds. Multiply on the left by � j (x) and on the right by c j , and substitute for � j (x)P j

and � j (x)Q j by (16.40) to obtain

� j−1(x)(A j c j ) + � j−1(x)(B j c j ) = � j (x)c j .

By the uniqueness of c j−1 and d j−1 in (16.45), the last equation shows that A j c j = c j−1 and
B j c j = d j−1, as required. Thus the equivalence is established. Finally, multiply (16.46) on
the right by c j , then replace A j c j by c j−1 and B j c j by d j−1 to get P j c j−1 + Q j d j−1 = c j .
This completes the proof of Theorem 16.16.

Example 16.17 (A2 and B2 for Haar wavelets) Example 16.15 supplies P2 and Q2 for
the Haar case. By Theorem 16.16,

[
A2

B2

]
= [ P2 Q2 ]−1 =

⎡
⎢⎢⎣

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

⎤
⎥⎥⎦
−1

.

We could determine the inverse by Cramer’s Rule or by row operations (ALGO 8.2),
but here it is easily observed that the rows of the matrix D = [P2|Q2] are orthogonal,
with common squared length 2. This says that DDT = 2I and so D−1 = (1/2)DT (see
(7.20)). Thus

A2 = 1
2

[
1 1 0 0
0 0 1 1

]
, B2 = 1

2

[
1 −1 0 0
0 0 1 −1

]
, e.g. in Figure 16.28:

c2 =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦

A2−→ c1 = 1

2

[
3

7

]
∈ V 1,

B2−→ d1 = 1

2

[−1

−1

]
∈ W 1.
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Recovery c2 = P2c1 + Q2d1

=

⎡
⎢⎢⎣

1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ 1

2

[
3
7

]
+

⎡
⎢⎢⎣

1 0
−1 0

0 1
0 −1

⎤
⎥⎥⎦ 1

2

[−1
−1

]

= 1
2

⎡
⎢⎢⎣

3
3
7
7

⎤
⎥⎥⎦+ 1

2

⎡
⎢⎢⎣
−1

1
−1

1

⎤
⎥⎥⎦ = 1

2

⎡
⎢⎢⎣

2
4
6
8

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ .

The transform (DWT) and its inverse Here are recursive algorithms to calculate the
Discrete Wavelet Transform in one dimension, the standard extension to two dimensions
(Section 15.1.1), and their inverse transforms. They are based on Table 16.8.

ALGO 16.2. The Discrete Wavelet Transform (DWT)

The recursive routine dwt(c) converts the global variable trans, initialised empty,
to the DWT of c. Assumes the matrices A j and B j are available.

dwt(c):
j = log2 Length(c)
If j ≥ 2 then extend trans by B j · c and call dwt(A j · c)

else RETURN trans extended by A1 · c, B1 · c

inverse dwt(y);
k = log2 Length[y]
function d[ j] = elements 2 j + 1 to 2 j+1 of y
function c[ j] = P j · c[ j − 1] + Q j · d[ j − 1] ( j ≥ 2)
function c[1] = P1 · y[1] + Q1 · y[2]
RETURN c[k]

2D version: assume array pic has rows R1 to RK and columns C1 to CL .
For the inverse, replace dwt by inverse dwt.

DWT(pic);
For i = 1 to K do Ri = dwt(Ri );
For j = 1 to L do C j = dwt(C j );
RETURN matrix [C1 . . . CL ].

Remarks 16.18 We are about to move to our strongest case of multiresolution, orthogonal
wavelets. They are a powerful tool, but applications to B-splines and surfaces are powerful
in other ways and require varying sets of additional assumptions to the minimalist (16.35).
These will be presented in the next chapter.
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Table 16.8. Summary of steps leading to a filter bank, Figure 16.28.

item comment

V 0 ⊆ V 1 ⊆ V 2 ⊆ · · · we start with this nesting of spaces, a
multiresolution

V j = V j−1 ⊕ W j−1 W j−1 is called a complement of V j−1 in V j

V j has basis � j (x) =
[
φ

j
i (x)

]
, 0 ≤ i < v j

c j defines element � j (x)c j =∑
i c j

i φ
j
i (x)

� j−1(x) = � j (x)P j refining relations (defines P j )

W j−1 has basis � j−1(x)
d j−1 defines an element � j−1(x)d j−1

� j−1(x) = � j (x)Q j

c j−1 = A j c j and d j−1 = B j c j analysis filters A j , B j

c j = P j c j−1 + Q j d j−1 (recovery of c j ) synthesis filters P j , Q j

16.3.2 Orthogonal wavelets

So far in Section 16.3 our discussion has been based on the minimal assumptions used
for multiresolutions: the existence of the increasing sequence of spaces {Vj } and the
definition of W j as some complement of V j in V j+1 with the ramifications outlined in
Table 16.8. We now add the three orthogonality possibilities, i.e. that

Vj and W j are orthogonal, and their bases are orthonormal.

We throw in what is generally assumed for wavelets, and nearly true for the end-point
corrected subdivision wavelets of Chapter 17, namely that the basis functions φ

j
i (x) may

be obtained by scaling and translation from a single function φ(x), and similarly for the
ψ

j
i (x). We recall the nomenclature of φ as scaling function, sometimes father wavelet,

and ψ as mother wavelet. A formal definition follows.

Definition 16.19 We say wavelets derived from a multiresolution are orthogonal if, in
the notation of Table 16.8, W j is the orthogonal complement to V j (see also Definition
7.19ff ), and there are functions φ(x) and ψ(x) such that, for each valid j,

� j (x) = {
φ

j
i (x)

}
is orthonormal and φ

j
i (x) = φ(2 j x − i), (16.47)

� j (x) = {
ψ

j
i (x)

}
is orthonormal and ψ

j
i (x) = ψ(2 j x − i). (16.48)

Gram matrices The lemma below will be extremely useful. Let F be a row vector of
functions f1, . . . , f p and let G be a row vector of functions g1, . . . , gq . Then 〈F, G〉
denotes the matrix with 〈 fr , gs〉 in the (r, s) place. This p × q matrix of inner products
is also known as the Gram matrix of F and G. We need to know what happens when
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the entries of F and G are replaced by linear combinations of their originals. Here is the
answer.

Lemma 16.20 In the notation above, let P, Q be real matrices for which the products
FP and GQ exist. Then

〈FP, GQ〉 = PT〈F, G〉Q. (16.49)

Proof Let (C)uv be the (u, v) entry of a matrix C, and (X )u the uth entry of a vector X.
Then we must show that the two sides of Equation (16.49) have equal (u, v) entries for
arbitrary permissible u, v. This is achieved as follows.

(〈FP, GQ〉)uv = 〈(FP)u, (GQ)v〉 by definition of〈, 〉
= 〈∑r fr (P)ru,

∑
s gs(Q)sv〉 matrix multiplication

=∑
r,s(P)ru(Q)sv〈 fr , gs〉 by linearity

=∑
r,s(PT)ur (〈F, G〉)rs(Q)sv by definition of PT and 〈, 〉

= (PT〈F, G〉Q)uv by (7.17b).

Sometimes it is convenient to work with bases that are only orthogonal and to insert
scaling factors at a later stage. We allow for this in the following formulation of first
implications of orthogonality for wavelets (we do not yet use the existence of the father
or mother wavelet).

Theorem 16.21 Assume the spaces V j and W j are orthogonal to each other. Write P
for P j and Q for Q j . If the bases of V j and W j are both orthonormal then [P|Q] is an
orthogonal matrix, i.e. A j = PT, B j = QT, and PT Q = 0 ( = QT P). If the bases are
orthogonal with respective constant squared lengths λ j and µ j , then

PTP = (λ j−1/λ j )I , and QTQ = (µ j−1/µ j )I , (16.50)

A j = (λ j/λ j−1)PT, and B j = (λ j/µ j−1)QT. (16.51)

Proof We are given that 〈� j , � j 〉 = λ j I, 〈� j , � j 〉 = µ j I , and 〈� j , � j 〉 = 0. Invoking
(16.40) to express � j−1 and � j−1 in terms of � j , we have the respective consequences:

λ j−1 I = 〈� j−1, � j−1〉 = PT〈� j , � j 〉P (see Lemma 16.20) = λ j PTP,

µ j−1 I = 〈� j−1, � j−1〉 = QT〈� j , � j 〉Q (see Lemma 16.20) = λ j QTQ,

0 = 〈� j−1, � j−1〉 = PT〈� j , � j 〉Q (see Lemma 16.20) = λ j PTQ.

The first two yield (16.50); the three together imply the block matrix product[
(λ j/λ j−1)PT

(λ j/µ j−1)QT

]
[P|Q] =

[
I 0
0 I

]
. But [P|Q]−1 =

[
A j

B j

]
(Table 16.8),

and so we have (16.51). Then setting λ j = µ j = 1 gives orthogonality of the matrix
[P|Q].

Implications of father and mother wavelets For fixed j the basis functions φ
j
i (x) =

φ(2 j x − i) are shifted copies. That is, the columns of P j are shifts of each other. More
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formally, let P j have (i, k) element p( j, i, k). Then the relation � j−1(x) = � j (x)P j of
(16.40) becomes

φ
j−1
k (x) =

∑
i

p( j, i, k)φ j
i (x), (16.52a)

and to determine the implications for P j we observe that

φ
j−1
k+1 (x) = φ

j−1
k (x − 1) by (16.47)

=∑
i p( j, i, k)φ j

i (x − 1) by (16.52)
=∑

i p( j, i, k)φ j
i+1(x) by (16.47)

=∑
i p( j, i − 1, k)φ j

i (x) by relabelling.

Comparing with (16.52a) shows that p( j, i, k + 1) = p( j, i − 1, k), that is, the (k + 1)st
column of P j is the kth shifted down one place. Similar considerations apply to Q j , A j

and B j ; this is visible in the Haar case, Example 16.17, and still more significantly in
Examples 16.22 below.

The columns of P j are rotations of the first. Similarly
for the columns of Q j and rows of A j , B j

(16.52b)
(when father and mother wavelet exist).

16.3.3 Daubechies wavelets

Up till the mid 1980s it was widely believed that orthogonal wavelets with compact sup-
port were restricted to the ubiquitous Haar wavelets (see end of Section 16.2). Daubechies
(1988) changed all that with her discovery of a whole family whose simplest case is the
Haar. For every positive integer N there is a scaling function φ = φN , with support
[0, 2N − 1], and related mother wavelet ψ defined via φ. These arise from a sequence
h0, . . . , h2N−1 with remarkable properties, constructed by Daubechies (see Theorem
16.25).

Since our primary objective in this section is to try out the Daubechies wavelets as a
compression tool, we will begin by highlighting their matrices which enable us to use the
DWT without knowing bases. Property (16.52b) allows the following concise definition.

Matrix A j The first row of A j is [h0 h1 . . . h2N−1 0 0 . . . 0], of length 2 j ,
and successive rows are obtained by cycling forward two places. Thus orthonormality of
the rows of A j says ∑

n
hn−2khn−2i = δki . (16.53)

Matrix B j This matrix is formed similarly to A j , from [g0 g1 . . . g2N−1 0 0 . . . 0] of
length 2 j , where

gn = (−1)nh2N−1−n. (16.54)
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Thus we also know the transposes P j , Q j and can perform the appropriate DWT and its
inverse in one or more dimensions by ALGO 16.2. (Further, we can use P j and Q j to
generate the wavelet basis curves by recursive subdivision, a theme of Chapter 17.)

Examples 16.22 (The simplest Daubechies wavelets)
(1) N = 1 (Haar wavelets) Here φN is the unit box, h0 = h1 = 1/

√
2, and Equation

(16.54) gives g0 = h1, g1 = −h0. Thus

A2 =
[

h0 h1 0 0
0 0 h0 h1

]
= 1√

2

[
1 1 0 0
0 0 1 1

]
, and

B2 =
[

g0 g1 0 0
0 0 g0 g1

]
= 1√

2

[
1 −1 0 0
0 0 1 −1

]
.

(2) N = 2 We are given (h0, . . . , h3) = (1/4
√

2)(1 +√
3, 3 +√

3, 3 −√
3, 1 −√

3),
and (16.54) supplies (g0, . . . , g3) = (h3,−h2, h1,−h0). Noting that P2 and Q2 are the
respective transposes of A2 and B2, we have, for example,

A2 =
[

h0 h1 h2 h3

h2 h3 h0 h1

]
and A3 =

⎡
⎢⎢⎣

h0 h1 h2 h3

h0 h1 h2 h3

h0 h1 h2 h3

h2 h3 h0 h1

⎤
⎥⎥⎦,

B2 =
[

h3 −h2 h1 −h0

h1 −h0 h3 −h2

]
and B3 =

⎡
⎢⎢⎣

h3 −h2 h1 −h0

h3 −h2 h1 −h0

h3 −h2 h1 −h0

h1 −h0 h3 −h2

⎤
⎥⎥⎦.

(3) N = 3 This is the last case for which solutions for g, h can be given expli-
citly. However, it requires multiple square roots, and so we shall be content to
record the 9-digit decimal forms: h = {0.332 670 552, 0.806 891 509, 0.459 877 502,

−0.135 011 020,−0.085 441 274, 0.035 226 292}.
Theorem 16.23 The Daubechies relations (16.53), (16.54) imply that the rows of B j are
orthonormal, and orthogonal to those of A j . Thus [A j/B j ] and [P|Q] are orthogonal
matrices.

Proof (i) The inner products of rows of B j are the same sums as those of A j (hence
orthonormality) because a double shift cancels the effect of the factor (−1)n , and the
subscript change n → 1 − n shifts, then reverses the direction of, the row elements.
(ii) More explicitly here, orthogonality of the rows of A j to those of B j means that∑

n hn−2k gn−2i = 0 (all k, i). By cyclic shifting of subscripts we simplify this for con-
venience to

∑
n hngn−2i = 0, that is, to

∑
n(−1)nhnh2i+1−n = 0. But these terms cancel

in pairs:

(−1)nhnh2i+1−n + (−1)2i+1−nh2i+1−nhn = 0.
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Example 16.24 Let us compare the potential of the Daubechies wavelets in cases N = 1
(Haar) and N = 2, 3. At 10% error the Haar version starts to break up (see the earlier
Figure 16.27), so we shall apply all three at this level. Though subjectively the comparison
is not clearcut, the pixillation does decrease as N increases. The results are shown in
Figure 16.30.

Original ‘Jo’.
(128 × 128)

N = 1: 10% error, using
3% of coefficients.

N = 2: 10% error using
2.01% of coefficients.

N = 3: 10% error using
2.25% of coefficients.

Figure 16.30 The first three Daubechies wavelets compared at 10% error for picture
quality and for percentage of coefficients retained at this level. Case N = 1, Haar, re-
produced from Figure 16.27.

Some theory We can only give here a small flavour of this ground-breaking work, since
a great many technical details are involved. However, here is the Fundamental Theorem
from Daubechies (1988, 1992), in which are found exact details on the required speed
of convergence. The notation φ̂ is used for the Fourier Transform of φ.

Theorem 16.25 Let {hn} be a sequence satisfying (i) |hn| does not increase too fast with
n, and moreover

∑
n hn = √

2, (ii)
∑

n hn−2khn−2i = δki (orthogonality). Define

H (x) = (1/
√

2)
∑

n
hne−inx , (16.55)

and suppose that for some positive integer N there is a factorisation

H (x) = [(1 + e−ix )/2]N
∑

n
fne−inx (16.56)

where | fn| does not increase too fast with n (this condition involves N). Define⎧⎪⎨
⎪⎩

gn = (−1)nh1−n,

φ̂(x) =∏∞
j=1 H (2− j x),

ψ(x) = √
2
∑

n gnφ(2x − n). (16.57)

Then φ is a scaling function (father wavelet) and ψ is the corresponding mother wavelet.
These wavelets are orthogonal.

Examples 16.26 (1) The case N = 1 This is easily obtained by taking h0 = h1 = 1/
√

2,
and hence H (x) = [(1 + e−ix )/2]1. Then φ̂(x) =∏∞

j=1 H (2− j x) = (1 − e−ix )/ix (see
Daubechies, 1992). We can identify this expression from Table 14.2 of Chapter 14, lines
1, 4, 5, which reveal that φ is a certain box function (see Exercise 16.12).
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(2) The case N = 2 With the given values of h0, . . . , h3, and setting z = e−ix

and r = √
3 to simplify notation, we may write H = (1/4)[(1 + r ) + (3 + r )z +

(3 − r )z2 + (1 − r )z3]. This is to be divisible by (1/4)(1 + z)2. Performing the
calculation, we find that exact division is indeed possible, and the quotient is (1 + r ) +
(1 − r )z.

Exercise Perform the Fourier calculation of (1), and the division in (2) above.

16.3.4 Fingerprints

Figure 16.31 Part of a sample fingerprint

On each human finger and thumb is a system of ridges, unique for each individual,
indeed for each finger. It is laid down early, and remains constant except for increase in
size before adulthood. This remarkable pattern, or fingerprint, such as in Figure 16.31,
exhibits about 150 features recognizable to a human expert, though it is considered that
a subset of 10–12 features suffices to establish legally a person’s identity. A desciption
of how to compare prints, such as may be found on the FBI’s website www.LANL.gov,
is extremely detailed, but we indicate in Figure 16.32 the three key types: loops, arches
and whorls, from which further subdivisions are made.

(a) Loops (b) Arches (c) Whorls

Figure 16.32 The highest level features formed from fingerprint ridges.

Problems of space and speed The issue is well illustrated by statistics of the United States
FBI. Each day about 5000 fingerprints arrive to be stored and 35 000 to be compared with
the data held, of the order of 300 million prints. Until the start of digitisation all data was
held on cards, with some degree of categorisation so that the final expert check was not
too laborious for a given case. However, the sheer numbers demand more economical
storage and a way to drastically shorten the turnaround time for an identification request.
Faster transmission is highly desirable too (see Chapter 13 for the issue of error-free
transmission). A huge step towards solving these problems is digital compression.
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Original 128 × 128 Discrete Wavelet Transform Discrete Cosine Transform

Wavelet compression
46% coefficients

DCT compression
50% coefficients

DCT compression
38% coefficients

DCT compression
25% coefficients

Wavelet compression
32% coefficients

Wavelet compression
22% coefficients

Figure 16.33 Wavelet compression with Daubechies type N = 2, versus compression
by the Discrete Cosine Transform. The DCT version breaks down catastrophically by
reduction to 25% of coefficients, whilst the wavelet is slightly blurred but nevertheless
decipherable.

Enter wavelets Given that fingerprints are to be scanned, the resolution was fixed at 500
ppi (pixels per inch), and compression methods were explored for reduction of around
15:1. The anticipated best method was JPEG, based on the DCT, the Discrete Fourier
Transform (see Chapter 15). However, it was found that at such ratios the DCT, unlike
wavelets, did not preserve ridges with sufficient accuracy. An example is given in Figure
16.33. Typically, a wavelet-compressed fingerprint became only gradually more blurred
with over-compression. A partial explanation is that the 8 × 8 JPEG tiles are too closely
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related to the natural frequency of ridges at 500 dpi. Thus the wavelet method was
preferred.

Some implementation details As in JPEG, the wavelet coefficients are passed through
a further stage, of entropy compression as symbol sequences. Huffman encoding (see
Chapter 12) was chosen for this because, although arithmetic encoding is theoretically
superior, it requires more computation and in this case gave no gain in compression. It
should be mentioned that just before this stage the coefficients are quantised according
to an empirical formula developed at the FBI (see e.g. Brislawn, 1995). Also, although
vector quantisation (Chapter 18) is theoretically superior to scalar (one value at a time)
the latter was in this case equally good and so was chosen. The result was termed WSQ,
for Wavelet Scalar Quantisation.

Finally, the FBI system would accept some variety of wavelet formulation from out-
side, with co-transmission of wavelet filter coefficients, quantisation parameters, and
Huffman information.

16.4 Wavelet relatives

16.4.1 Discrete versus continuous wavelets

We introduce briefly the Continuous Wavelet Transform, or CWT. It arguably precedes
the discrete transform in the logical order of things. In any case, some contexts call for an
initial continuous model, even if it is to be later approximated by a discrete one. Indeed, it
is an extremely useful property of wavelets that the correspondence between continuous
and discrete filter banks is even closer than in the Fourier case. See, for example, Strang
and Nguyen (1997). As preparation we suppose, given a real function g(x) such that the
following integral Cg exists:

Cg =
∫ ∞

−∞
|u|−1|G(u)|2du < ∞, (16.58)

where G(u) is the Fourier Transform of g(x) (see Chapter 14). This implies in particular
that the integrand doesn’t ‘blow up’ at x = 0, so G(0) = 0, which says (by definition of
G(0)) that the mean of g(x) exists and is zero,

∫
g(x)dx = 0. Therefore g(x) has a sign

change, and tends to zero as |x | → ∞. Terming g a basic wavelet, we define a family of
wavelets ga,b(x) given by

ga,b(x) = |a|−1/2g

(
x − b

a

)
(16.59)

where the parameters a �= 0 and b are continuous, i.e. lie on the real line R. Then the
corrresponding Continuous Wavelet Transform (CWT) and its inverse, established by
Grossman and Morlet (1984), are given by the pair

⎧⎪⎨
⎪⎩

F(a, b) =
∫ ∞

−∞
f (x)ga,b(x)dx,

f (x) = C−1
g

∫∞
−∞

∫∞
−∞ a−2 F(a, b)ga,b(x)da db. (16.60)
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Dyadic Wavelet Transform It turns out that, under conditions which are not unduly
demanding, we can still recover f (x) after throwing away the transform for ‘almost
all’ values of a. The values we retain are those of the dyadic form 2 j for j in the set
Z = {. . . ,−2,−1, 0, 1, 2, . . .}. To arrive at this conclusion we first express the CWT as
a convolution so as to bring to bear the Fourier Transform as a tool. Consider a function
ψ(x), which we’ll think of as a potential basic wavelet though all we ask at first is that
it have zero mean. We define the dilation of ψ by scaling factor s to be

ψs(x) = (1/s)ψ(x/s). (16.61)

The initial factor 1/s simplifies taking the Fourier Transform ψ̂ s of ψs (the Fourier ‘hat’
is convenient for Greek letters). For we have, by the Similarity Theorem (Table 14.2)
applied to (16.61),

ψ̂ s(w) = s−1 · sψ̂(sw) = ψ̂(sw). (16.62)

This supports the following reformulation of the CWT. The Wavelet Transform of f (x)
at scale s and position x is

Ws f (x) = ( f ∗ψs)(x). (16.63)

This unpacks as
∫

f (y)(1/s)ψ((x − y)/s)dy, so we have simply inserted an extra factor
and changed the sign of the argument of ψ . The Dyadic Wavelet Transform (DWT) of
f defined by ψ is the sequence of functions {W2 j f (x)} j∈Z . We’ll see that inversion is
possible, that is, f may be recovered from this sequence, provided certain bounds exist
on the Fourier Transform of ψ . Specifically, there are constants A, B > 0 such that the
dyadic condition holds:

A ≤
∑

j

|ψ̂(2 j w)|2 ≤ B. (16.64)

To prove this, we first observe that W j
2 and its Fourier Transform Ŵ obey

W2 j f (x) = ( f ∗ψ2 j )(x), (16.65)

Ŵ f2 j (x) = f̂ (w)ψ̂(2 j w), (16.66)

where the first equality is the case s = 2 of (16.63), and the second follows by the
Convolution Theorem and (16.62). We have

Theorem 16.27 Let ψ(x) satisfy the dyadic condition (16.64). Let χ (s) be any function
satisfying χ̂ (2 jw) =ψ̂(−2 jw)/� j |ψ̂(2 jw)|2. Then the Dyadic Wavelet Transform of f
(w.r.t ψ) is stable and invertible:

A‖ f ‖2 ≤
∑

j

‖W2 j f ‖2 ≤ B‖ f ‖2, (16.67)

f (x) =
∑

j

W2 j f (x)∗χ2 j (−x). (16.68)
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Proof of (16.68) Since the Fourier Transform of a function g(−x) is the complex
conjugate of ĝ(w), the right hand side of (16.68) has Fourier Transform

∑
j

f̂ (w)ψ̂(2 j w)ψ̂(2 j w) /(
∑

j
|ψ̂(2 j w)|2) = f̂ (w)

∑
j
|ψ̂(2 j w)|2/(

∑
j
|ψ̂(2 j w)|2)

= f̂ (w), proving (16.68)

16.4.2 The Gabor Transform

Interestingly, Gabor (1946) discovered his transform as the solution to an optimisation
problem in the theory of communication, not long before the appearance of Shannon’s
(1948) Information Theory.

To describe the transform we need to go back to the wavelet-related idea of a window,
introduced to mitigate the problem of the Continuous Fourier Transform’s infinite support
by restricting calculation to a chosen region (the window). As noted by Strang and
Nguyen (1997), wavelets come from a mother wavelet by translation and scaling, whereas
windows come from a single window function g(t) by translation and modulation:

gmn(t) = eim�t g(t − nT ). (16.69)

Thus unit increase in n gives translation by T, but the same change in m increases
frequency by �, the modulation effect. The Gabor window is created by a Gaussian

g(t) = g(0)exp[−t2/2σ 2]. (16.70)

Applying the Gabor Transform to a signal means projecting it onto the {gmn} as basis
functions. Each gmn has its own window and so abstracts information in a certain region.
But this is a region encapsulating both space (or time) and frequency, because of the choice
of modulation rather than scaling. The specific choice of g is Gabor’s unique solution
for minimising (in a technical sense defined by him) the combined error. According to
Daugman (1985) this is similar to the operation of the human visual cortex, and so the
Gabor filter is a good candidate for studying the former.

A disadvantage is that the Gabor basis is not orthogonal, so projection onto this basis
does not have the simplicity of orthogonal wavelets, for example. However, some methods
for doing so are surveyed in Ibrahim and Azimi-Sadjadi (1996). Finally, the transform is
not invertible, which perhaps explains why it appears to have been overtaken by wavelets.
However, the Gabor coefficients continue to provide insight in their many applications.

16.4.3 Canny edge-detection

We make a useful comparison with the Marr–Hildreth edge-detector (Section 15.2.4),
where, for each pixel, Gaussian smoothing is followed by the Laplacian. The argument
is that edge pixels are those at which the magnitude of the intensity gradient is a local
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maximum, hence the second derivative is zero. The Laplacian supplies the greatest second
derivative over all directions, so where it is zero we have a gradient maximum. The two
processes are combined into a single Laplacian of Gaussian operator LoG.

Canny (1986) sought to improve on this. His initial point of departure was to use
the first derivative of the Gaussian as an operator DG and determine its greatest value,
rather than proceeding to the second derivative. This is slightly more accurate than LoG;
however, it was actually arrived at by mathematical analysis as a close approximation to
the optimal operator for the criteria

1. low error rate: no spurious edges but none missed,
2. good localisation: the detector points to the centre of the edge.

This means employing a threshold above which DG is to lie for an edge pixel, which
admits the possibility of streaking, in which part of a contour fails to clear the hurdle,
and so is lost. Canny’s solution is hysteresis – if some pixels pass, then nearby ones are
reconsidered with a lower threshold. Alongside this, the effect of noise is deduced and
reduced through a Wiener filter (15.3.4).

Scaling We now have probabilistic information about the noise which enables the
detector to output the probability of error should we designate a pixel as edge (by a
Bayesian method, Section 11.2). This is where Canny introduces scaling. There is a
discrete choice of operator widths σ , and one chooses the least (if any) for which we are
below the new threshold. This choice is seen to improve performance in 1 and 2 above.
It should be mentioned that Canny has refinements not given here.

Conclusions The result is generally considered to be amongst the best. The main
drawback is a high computational cost compared with other edge-detectors, though as
computer power increases this may become less significant. Clearly, the greater the im-
portance of accuracy, the more attractive Canny’s method is. Amongst such applications
is probably scene analysis (see Section 13.4), but in the next section we follow Mallat’s
wavelet version and a medical application.

16.4.4 Wavelets in edge-detection

Mallat and Zhong (1992) incorporate the basic edge-detectors of Marr, Hildreth and
Canny into a wavelet scheme which both offers simplifications and leads to further
developments such as the medical image technique of Example 16.28 below. They use
the previously introduced dyadic scales s = 2 j ( j = 0,±1, . . .). We recall that the dyadic
wavelet transform (DWT) at scales defined by ψ(x) is given by

Ws f (x) = ( f ∗ψs)(x), where ψs(x) = (1/s)ψ(x/s). (16.71)

For present purposes we choose ψ(x) to be the first or second derivative of a smooth-
ing function θ (x), which must satisfy

∫
θ (x)dx = 1 and θ(x) → 0 as x →±∞ (here

assumed to be Gaussian). Denoting the respective transforms by W a and W b, we will
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show that

W a
s f (x) = s

d

dx
( f ∗ θs)(x),

(16.72)

W b
s f (x) = s2 d2

dx2
( f ∗ θs)(x),

which has the desirable effect of smoothing at scale s then differentiating, and hence pro-
viding the output for the respective detectors on a multiscale basis (so far in dimension 1).
To prove this we observe that by definition (θ ′)s(x) = (1/s)θ ′(x/s), whereas (θs)′(x) =
d

dx [ 1
s θ (x/s)] = 1

s2 θ
′( x

s ). Thus W a
s f (x) = f ∗ (θ ′)s = s f ∗ (θs)′ = s d

dx ( f ∗ θs), where
Theorem 10.21 supplies the last equality, and similarly for W b.

The extension to 2D. Define the gradient∇ f (x, y) of a function f (x, y) to be the vector
in the direction of greatest rate of increase of f, and length equal to that increase, at the
point (x, y). Then ∇ f (x, y) is at right angles to the lines of constant f , as portrayed
in Figure 16.34(a), and is independent of the choice of origin and axis directions. We’ll
prove that, whatever the choice of axes, ∇ f equals the vector (∂ f/∂x, ∂ f/∂y), and show
how to obtain the derivative of f in any direction via ∇ f .

(a) (b)

∂f /∂y

∂f /∂x

f

∆

Figure 16.34 (a) The gradient of f (x, y) is perpendicular to lines f = constant, (b)
∇ f = (∂ f/∂x, ∂ f/∂y).

Without loss of generality we determine ∇ f at the origin. Differentiating f along a
ray t(cos θ, sin θ ), we have ∂ f/∂t = ∂ f/∂x dx/dt + ∂ f/∂y dy/dt = (∂ f/∂x, ∂ f/∂y) ·
(cos θ, sin θ ) = |(∂ f/∂x, ∂ f/∂y)| · 1 · cos λ, where λ is the angle between vectors
(∂ f/∂x, ∂ f/∂y) and (cos θ, sin θ). Hence the greatest value of ∂ f/∂t occurs when
cos λ = 1, λ = 0, giving

∇ f = (∂ f/∂x, ∂ f/∂y), and ∂ f/∂t = n · ∇ f, (16.73)

the latter for differentiating along a ray pointing in the direction of unit vector n.
The smoothing function now has the form θ (x, y) with scaled version θs(x, y) =
(1/s2)θ (x/s, y/s). Using partial differentiation we can apply (16.72) in the x- and y-
directions separately to get the first equality below for the components of a 2D wavelet
W = (W x , W y) (see Exercise 16.14). The second equality is (16.73).

[
W x

s

W y
s

]
= s

⎡
⎣ ∂

∂x ( f ∗ θs)(x, y)

∂
∂y ( f ∗ θs)(x, y)

⎤
⎦ = s∇( f ∗ θs)(x, y). (16.74)
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(a) (b) (c)

Figure 16.35 (a) X-ray computerised tomography image of human head, 256 × 256
Pixels. (b) Contrast enhancement by simple stretch of intensity gradient magnitudes.
(c) Result with stretch factor ∝ 1/(gradient magnitude). (Images by Lu, Healy and
Weaver, 1994.)

Thus Canny detection is equivalent to locating the maxima of a wavelet transform mod-
ulus. Mallat and Zhong (1992) show that, using multiscale information in this form, the
whole dyadic wavelet transform can be recovered from its value at edge pixels, with suf-
ficient accuracy that the inverted wavelet (Theorem 16.27) presents an image which, to
the human eye, is generally indistinguishable from the original. They adapt their method
for image compression, demonstrating a ratio of the order of 30 : 1 (in all this, the Fourier
Transform is widely used as a tool). Subsequent work tackles noise reduction and the
special case of texture, for example. A useful reference is Mallat (1999).

Example 16.28 (Medical imaging) Lu, Healy and Weaver (1994) consider the problem
of low contrast in medical images such as computed tomography, magnetic resonance,
and ultrasound (see Section 18.4). The standard solutions of linear change of grey
intensity and even histogram equalisation (see Section 15.2.1) have drawbacks. For
example, they may magnify noise, or be hard to automate satisfactorily.

Lu et al. have had considerable success in reducing such problems by their method
based on the Mallat–Zhong theory, in which contrast is enhanced automatically by scaling
the multiscale gradient maxima from (16.74), then applying the reconstruction algorithm.
The method enables extra features such as selectively enhancing objects of a chosen size.
Important examples are shown in Figures 16.35 and 16.36.

Some application areas of wavelets

Astronomy and the Hubble telescope problem: Jaffard et al. (2001),
Contrast enhancement: Lu et al. (1994),
Curves and surfaces: Lounsbery et al. (1997),
Denoising a signal, music and speech: Hubbard (1996),
Edge-detection: Mallat and Zhong (1992),
Fingerprint storage and look-up for FBI: Brislawn (1995),
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(a) (b) (c)

Figure 16.36 (a) MR (magnetic resonance) image of human head, 256 × 256 pixels,
(b) contrast enhancement by simple stretch of intensity gradient magnitudes, (c) result
with smaller stretch at fine scales to reduce effect of noise. (Images by Lu, Healy and
Weaver, 1994.)

Image compression: Mallat (1999),
Remote sensing and registration (Fitting together partial images, however acquired.):

Starck et al. (2000), Djamdji et al. (1993a,b),
Seismic waves: Koornwinder (1993),
Turbulence: Jaffard et al. (2001),
Video compression: Strang and Nguyen (1997).

Exercises 16

1 Program Mandelbrot’s Initiator–Generator construction for the snowflake curve of
Figure 16.3.

2 Plot a Richardson graph (see Figure 16.6) for the Sweden–Norway border using dividers,
with map blow-up if necessary.

3
√

Write down the matrix A for which f : x → Ax gives a shear in the x-direction of two units
per unit height. Find geometrically the image under f of a triangle with vertices (0, 0), (−1,
0), (0, 1) and check that your matrix gives the same result.

4
√

Determine affine maps {w1, . . . , w4} for an IFS whose attractor is the snowflake curve of
Figure 16.3, with ends (0, 0) and (1, 0). (Complex numbers may help.) Now recover the
curve by computer iteration.

5 Implement Fractal Compression via (16.20–22). Select two unlike same-sized images;
compress one, then decompress using the second image for starting set, as exemplified in
Figure 16.17.

6
√

(Haar wavelets) Similarly to Example 16.11, transform and then reconstruct the 1D image
values, (i) [9 6 5 3], and (ii) [6 8 13 7 4 8].

7
√

Illustrate V 2 = V 0 ⊕ W 0 ⊕ W 1 by decomposing the function on the interval [0, 1] repre-
sented by [3 1 6 10] (see Example 16.4). Can you express this composition geometrically
(see Table 16.6)?
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8
√

Write out the vector orthonormal basis of V 2. Find the component of the vector f =
(10, 6, 1, 3) of Example 16.14 with respect to each basis vector, by the ususal dot product.
Why does this NOT contradict the expression for f in that example?

9
√

(a) Write down the matrix M = Rows(R0, . . . , R3) for the 1D transform based on the Haar
ONB for V 2. (b) What are the 2D generators gi j in terms of the Rk? (c) Compute the
generators g12 and g23 and verify that they are orthogonal, of unit length. (d) Prove that
{gi j } must form an ONB, based on properties of R0, . . . , R3. Evaluate the inner product of
2g12 + g23 and g24 − 2g23.

10
√

(a) Draw the diagram for a filter bank in the case j = 2 (see Figure 16.28). Determine as
a 4-vector the Discrete Wavelet Transform of c2 = [1 2 3 4]T for the unscaled Haar bases
(begun in Example 16.17). (b) Verify your result by working back up the filter bank via
ck = Pkck−1 + Qkdk−1 (ALGO 16.2 does this for inverse-dwt). (c) Implement ALGO 16.2
and test it with the data of parts (a) and (b).

11
√

(a) Given Pp×r and Qq×s , what are the dimensions of the matrices involved in 〈FP, GQ〉 of
(16.49)? (b) In the notation of Theorem 16.21, what are λ j for the inner product (16.32) on
Haar basis functions (16.30)? Expressing split boxes in terms of boxes, and using linearity
of inner products, deduce µ j = λ j (argued geometrically in the text). What relationships
result from Theorem 16.21? (c) Repeat for the Haar basis functions as unscaled vectors
in V k for fixed k > j (see after Example 16.14), and deduce that the relationships are
unchanged.

12
√

(a) Use Table 14.2, lines 1, 4, 5 to show that if the Fourier transform φ̂ is (1 − e−is)/is
then φ is a certain box of size 2π (see Examples 16.26). (b) Verify the quotient in Example
16.26 (2).

13 Use ALGO 16.2 to compare Haar and more general Daubechies wavelets, as in Figure
16.30.

14
√

Define the 2D wavelet Ws = (W x
s , W y

s ) by W z
s f = f ∗ψ z

s (z = x or y), where ψ z = ∂φ/∂z,
the derivative of the standard 2D Gaussian. Verify that Ws f = s∇( f ∗ψs) in the case
f (x, y) = xy.



Part VI

See, edit, reconstruct





17

B-spline wavelets

The B-spline has long been important in computer graphics for representing curves and
surfaces, but it was recently realised that the recursive subdivision method of construc-
tion could be used to formulate B-splines in wavelet terms; this led to excellent new
applications (see Stollnitz et al., 1996) in which curves and surfaces could be analysed
or modified at any chosen scale, from local to global. In addition to proving results, we
provide some exemplification of these things.

By introducing an equivalent definition of B-splines as an m-fold convolution of boxes
we bring out an intimate connection with the Fourier transform. This in turn provides an
alternative derivation of such formulae as the Cox–de Boor relations.

The last two sections are designated as appendices, optional follow-up to the main
treatment. In Section 17.4 we derive wavelet-identifying formulae that hold for arbitrary
size of control polygon, whilst Section 17.5 addresses mathematical aspects of the natural
generalisation from curve to surface wavelets achievable by the subdivision system of
Loop (1987). Multiresolution and editing examples are exhibited.

17.1 Splines from boxes

We begin with Bézier splines, to give background and to introduce some of the ideas
behind splines, including that of convexity in Section 17.1.2. Moving on to the even more
useful B-splines in Section 17.1.3, we present their definition as a convolution of box
functions, excellent for the coming wavelet formulation. We have, of course, considered
box functions in the context of Haar wavelets (Section 16.2), and convolution in connec-
tion with the Fourier Transform (Chapter 14). This relationship makes it easy to apply the
transform to B-splines (Section 17.1.4), and gives a convenient way to derive the Cox–de
Boor relations of Section 17.1.5; these then confirm that the convolution definition has
returned the usual B-splines (see e.g. Farin, 2002). Finally, in Section 17.1.6, we derive
features of the cubic B-splines which are useful in applications. This case is the one in
which we shall be most interested.

687
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Q0

P1

P2

P3P0

Q1 Q2

Q3

Figure 17.1 Splicing three 4-knot Bézier curves so as to keep first-order continuity (i.e.
fixed tangent direction) at the joins. Note that P3 and Q0 label the same point. A similar
result is achieved by a single B-spline in Figure 17.11.

17.1.1 The Bézier background

One way to design or to approximate a curve is to form a spline. That is, a sequence
of curves agreeing at their end-points, with parallel tangents there (see Figure 17.1). It
was for car-body design that Paul Bézier (1966, 1972) introduced to Renault the splines
bearing his name, in which each contributing curve is a polynomial of some degree
n defined by n + 1 control points (or knots) P0, . . . , Pn . These points are in general
3-dimensional, but here we focus on the plane. The Bézier curve P(t) is given by

P(t) =
n∑

i=0

( n
i

)
t i (1 − t)n−i Pi (0 ≤ t ≤ 1), (17.1)

where we identify a point Pi with its coordinates/position vector so that we may form
this linear combination. The coefficients are Bernstein polynomials,

Bn,i (t) =
( n

i

)
t i (1 − t)n−i . (17.2)

Example 17.1 (Cubic Bézier splines) In the case n = 3 (four knots) let us highlight the
binomial coefficients by writing them explicitly as 1 3 3 1, in

P(t) = 1(1 − t)3 P0 + 3(1 − t)2t P1 + 3(1 − t)t2 P2 + 1t3 P3. (17.3)

Considering tangents in Figure 17.1, differentiation gives P ′(0) = 3(P1 − P0), and
P ′(1) = 3(P3 − P2), so the Bézier curve is tangent at its end-points to respective line
segments P0 P1 and P2 P3. Further, as we shall soon see, the Bézier curve lies within its
defining polygon P0 P1 P2 P3. These two properties make for a judicious splicing together
of cubic Bézier pieces to design a longer curve (again, see Figure 17.1). Our next task
is to establish the polygon property but to note some limitations, before introducing the
more powerful B-splines. For this we need the idea of a convex set.

17.1.2 Convexity properties

Definition 17.2 A set S is convex if, when points A, B are in S, so is the whole line
segment AB. Figure 17.2 gives examples of convex and non-convex sets. The third is
not convex because it contains the points A and B but not the complete segment AB.
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convex convex non-convex
BC

A

Figure 17.2 Some convex and non-convex sets.

We have the following formula, giving the points of a segment AB in terms of position
vectors:

AB = {sA + tB : s, t ≥ 0, s + t = 1}, (17.4)

for with s, t so restricted, sA + tB is, by (1.3) of Chapter 1, the point on AB dividing
AB in the ratio t : s (with A, B as respective special cases t = 0 and s = 0). This simple
idea motivates the definition of the convex hull of a set of points A1, . . . , An as the set
of all convex linear combinations:

s1 A1 + · · · + sn An; all si ≥ 0 and
∑

i
si = 1. (17.5)

For example, the convex hull of A, B is the segment AB, and that of three points A, B, C
is the filled-in triangle ABC, whereas the second case in Figure 17.2 is its own convex
hull. This follows from the theorem below, which gives us a good handle on convex sets.
One convex combination is the centre of gravity, (A + B + C)/3.

Theorem 17.3 The convex hull of points A1, . . . , An, B consists of the line segments AB,
where A is in the convex hull of A1, . . . , An. In particular, a convex hull is itself convex.

Proof Let A be in the convex hull of the Ai and let P lie on AB. Then in vector terms

P = rA + tB (r, t ≥ 0, r + t = 1)
= r

∑
si Ai + tB (all si ≥ 0 and

∑
si = 1).

This is a linear combination of A1, . . . , An, B, and, moreover, it lies in their convex
hull because all the coefficients are non-negative, with sum

∑
(rsi ) + t = r (

∑
si ) + t =

r + t = 1. Conversely, let P be in the convex hull of A1, . . . , An, B (where we omit the
trivial case t = 1),

P =
∑

i
mi Ai + tB (mi , t ≥ 0, and m1 + · · · + mn + t = 1).

Then we may write P = (1 − t)
∑

i (mi/(1 − t))Ai + tB, where
∑

i (mi/(1 − t))Ai

is in the convex hull of A1 . . . An alone since it has coefficient sum
∑

i (mi/

(1 − t)) = (
∑

i mi )/(1 − t)) = (1 − t)/(1 − t) = 1. See Figure 17.3.

Remarks 17.4 (i) (Barycentric coordinates) Triangle ABC consists of the points

P = rA + sB + tC, with r, s, t ≥ 0 and r + s + t = 1.
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A1

P B

A2

Figure 17.3 By Theorem 17.3, the convex hull of {A1, A2, B} is filled in by line segments
PB, where P lies on A1 A2. Thus the convex hull is the filled-in triangle A1 A2 B.

Figure 17.4 An affine transformation sends convex sets to convex sets, illustrated here
by rectangle, triangle, and circle. The effect on Bézier curves is illustrated in Figure 17.5.

In fact, r, s, t are unique (unless ABC degenerates into a straight line, Exercise 17.2), and
so may be used as alternative coordinates for P. They are called barycentric coordinates,
important in Section 17.5.3.

(ii) A set need not be closed to be convex, though ours will be. Convex hulls are closed
because their defining equations (17.5) don’t involve strict inequalities (Hoggar, 1992).

(iii) As noted earlier, each of the three Bézier curves in Figure 17.1 lies within the
convex polygon formed by its control points. This is the convexity property of Bézier
curves, which we will now prove.

Corollary 17.5 A Bézier curve lies within the convex hull of its control points.

Proof A point P(t) on a general Bézier curve with control points A1, . . . , An is given
by the formula (17.1). Clearly, the coefficients (17.2) are non-negative, so it remains to
show their sum is 1. But for any value of t these coefficients are precisely the summands
in the binomial expansion of (t + (1 − t))n = 1n , which equals 1 as required.

The result of affine transformations Later we will be particularly concerned with
what happens to splines under scaling; for example, does the scaled control polygon
control the scaled curve? The answer is fortunately YES, for this and for more generally
rotation, reflection and shear, summed up in the name affine (see Section 16.1.3, especially
Figure 16.10). The following result shows that both control and convexity are preserved.

Theorem 17.6 Let f be an affine transformation, f (P) = MP + c, where M is a matrix
and c is a vector. Then (i) f sends lines to lines, and convex sets to convex sets; indeed,
if points A, B, P are collinear and sent by f to A′, B ′, P ′, then P ′ divides A′B ′ in the
same ratio as P divides AB; (ii) if P(t) is the Bézier curve with control points {Pi } then
f (P(t)) is the Bézier curve with control points { f (Pi )}. See Figures 17.4 and 17.5.
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Proof One formula handles all cases. Let P0, . . . , Pn be points, and let s0, . . . , sn be
constants with

∑
si = 1. We do not assume the si are non-negative, but it nevertheless

follows that

f
(∑

si Pi

)
=
∑

si f (Pi ). (17.6)

This is because, starting from the right, we have
∑

si (MPi + c) =∑
si MPi + (

∑
si )c =

M
∑

si Pi + c = f (
∑

si Pi ). Note the use of
∑

si = 1. For (i) we take n = 1 and P0 P1 =
AB, and recall from (1.3) of Chapter 1 that any point P on the line through A, B has
the form sA + tB with s + t = 1 (s or t is negative outside the segment AB). Equation
(17.6) says that P is sent by f to sA′ + tB′, which establishes both the ratio property and
the fact that f sends lines to lines. Specialising to the case si ≥ 0, we have that f sends
a line segment AB to a line segment A′B ′, and hence convex sets to convex sets. For (ii)
we simply put si = Bn,i (t) in (17.6).

Example 17.7 We design a simple car outline by splicing together two Bézier curves,
of respectively four and nine knots. The second curve has repeated, or double, knots, so
as to enhance the radiator part by pulling the curve towards those knots. Here are the
control polygons, with coordinates relative to the axes in Figure 17.5.

First control polygon: (0, 0), (2, 8), (16, 8), (16.5, 6).
Second control polygon: (16.5, 6), (17, 4), (20, 4), (23, 4), (23, 4), (23, 2), (23, 0), (23, 0), (0, 0).

Figure 17.5 Our first ‘car outline’ consists of Bézier control polygons meeting at the
windscreen. The second, sleeker model, is obtained from the first by a vertical uniform
contraction. Since scaling is affine, the second model is similarly formed of Bézier curves
(Theorem 17.6). Later, a single B-spline will suffice, see e.g. Figures 17.14 and 17.15.

Bézier limitations In spite of having some excellent properties, the Bézier curves carry
two inconvenient limitations in practical use. Firstly, if we attempt to exercise greater
flexibility by adding control points, we thereby increase its degree as a polynomial, so that
small changes can have large unsought-for consequences. Secondly, we cannot change
small parts of a curve in isolation. This is because, considering the Bézier formula,
each basis function (17.2) contributes throughout the whole domain [0, 1] of P(t) (see
Figure 17.6). Thus we generalise next to B-splines, which have the advantages of Bézier
splines but overcome their limitations.

Note De Casteljau at Citroën developed a similar theory no later than Bézier himself, and
gave the following geometrical construction for the point r (t), 0 ≤ t ≤ 1, on the Bézier
curve with control points P0 P1 P2 P3: let vi be the point on Pi Pi+1 dividing it as t : 1
and let wi do the same for the vi . Then r (t) does the same for the wi . Equivalence with
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B3,0

B3,1 B3,2

B3,3

Figure 17.6 The Bernstein basis for Bézier curves. Notice that each basis function
contributes over the whole interval (though some become very small near the end-points).

the algebraic definition (17.3) is derived in e.g. Hoggar (1992), and most texts involving
such splines.

17.1.3 B-splines by convolution

We define spline functions φk(t), which are piecewise polynomial on the interval
[0, k + 1]. This means that on each unit subinterval [i, i + 1] (0 ≤ i ≤ k) the func-
tion φk(t) equals some polynomial pi (t). Apart from this, φk(t) is zero. The first few
cases are illustrated in Figure 17.7, where it is apparent that the polynomial pieces fit
together smoothly. In fact (Theorem 17.8) the polynomials agree as closely as possible
without being identical.

φ1(t) φ2(t) φ3(t)

Figure 17.7 The B-spline functions φk(t) for k = 1, 2, 3. Dotted lines show φk composed
of k + 1 polynomial pieces of unit width, which fit together smoothly; it is zero outside
the open interval (0, k + 1).

It might be thought that the φk(t) are very complicated to handle. But this is not the case,
for after some initial results the individual polynomials fade from sight; we are using
relationships that do not reference them. Why should this be so? One answer is that a
polynomial-free definition can be given.

Our choice, via the continuous convolution product, has two additional benefits. Firstly,
it provides an effortless link to the Fourier Transform (see Table 17.1), demonstrating
an intrinsic connection, and offering a further polynomial-free approach to results and
calculation. Secondly, and perhaps most importantly, it leads in a natural way to a key
result (Theorem 17.21) connecting splines with recursive subdivision.
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1
t

1
b (t) b (t )

x−1 x−1x x0

(a) (b)

1 2
t

1

0

Figure 17.8 Calculating φ1(x) as b(t)∗b(t), which equals by (17.8) the area of the shaded
portion in each case: (a) 0 ≤ x ≤ 1, and (b) 1 ≤ x ≤ 2. The result is given below.

Starting with φ0 = b(t), the box function equal to 1 on the interval [0, 1], and otherwise
zero, we define

φk = b∗φk−1 = b∗b∗ · · ·∗ b (k + 1 factors, k ≥ 1). (17.7)

Later we will see how these convolutions of boxes generalise the Haar box functions of
Section 16.2. Here we note in passing that φk approaches the normal distribution curve
as k increases, because φk is the pdf of the sum of many independent variables, each
with pdf the box function (see Section 10.2.2). Meanwhile we must derive some first
properties.

We begin by calculating the first few functions directly from the definition. See
Figure 17.8. Taking x as the new variable, applying the first equality of (17.7), and
setting u = x − t , we may write

φk(x) =
∫ ∞

−∞
b(t)φk−1(x − t)dt =

∫ 1

0
φk−1(x − t)dt =

∫ x

x−1
φk−1(u)du. (17.8)

Sample polynomials Here we apply (17.8) directly. The first line shows how to obtain
formula (17.9) below.

0 ≤ x ≤ 1: φ1(x) =
∫ x

0
1 · du = x, whence φ2(x) =

∫ x

0
φ1(u)du = x2/2,

1 ≤ x ≤ 2: φ1(x) =
∫ 1

x−1
1 · du (since φ0(u) = 0 for u > 1) = 2 − x, whence

φ2(x) =
∫ 1

x−1
φ1(u)du +

∫ x

1
φ1(u)du =

∫ 1

x−1
udu +

∫ x

1
(2 − u)du

= −(2x2 − 6x + 3)/2,

2 ≤ x ≤ 3: φ2(x) =
∫ 2

x−1
φ1(u)du =

∫ 2

x−1
(2 − u)du = (x − 3)2/2,

φk(x) = xk/k! for 0 ≤ x ≤ 1. (17.9)

The calculation above shows how, because b(t) is zero outside the unit interval [0, 1], φk

becomes a different polynomial on successive intervals [i, i + 1]. The next result shows
that the polynomial pieces agree smoothly, and suggests the general shape depicted in
Figure 17.7.
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Theorem 17.8 The spline function φk(x) has the following properties: (i) it is symmetric
on the interval (0, k + 1) and zero outside it; (ii) it possesses derivatives up to order
k − 1, where (for all x)

φk
′(x) = φk−1(x) − φk−1(x − 1) (k ≥ 2); (17.10)

(iii) φk(x) has a unique maximum, on its line of symmetry x = (k + 1)/2; to the left it is
strictly increasing, and to the right decreasing (0 < x < k + 1).

Proof (i) Symmetry A curve y = f (x) is symmetric, with x = a as line of symmetry, if
f (2a − x) = f (x). Clearly, the box function is symmetric, b(1 − x) = b(x), so suppose
inductively that φk−1 is symmetric, which means φk−1(k − x) = φk−1(x). Then, by (17.8),

φk(x) =
∫ x

x−1
φk−1(u)du =

∫ x

x−1
φk−1(k − u)du =

∫ k−x+1

k−x
φk−1(y)dy (y = k − u),

which equals φk(k + 1 − x), again by (17.8). That is, φk is symmetric. We consider only
the case x ≤ 0, then symmetry covers x ≥ k + 1. Firstly, φ1(x) = 0 by (17.8) because
b(u) = 0 on [x − 1, x] except in the case u = x = 0, a single point, which does not affect
the integral. Similarly, (17.8) now shows inductively that φk(x) = 0 for k ≥ 1.

(ii) Derivatives Suppose that φk−1 is continuous (everywhere). Then its integral from
0 to x exists as a function F(x), say. By (17.8), φk(x) = F(x) − F(x − 1), whence φk is
differentiable with φ′

k(x) = F ′(x) − F ′(x − 1). But this equals the the right hand side of
(17.10) as required, since F ′(t) = φk−1(t) (by the Fundamental Theorem of Calculus).
Substituting the continuous function φ1 in the right hand side of (17.10), we see that φ2

has continuous first derivative. Then repeated differentation of (17.10) shows that φk has
derivatives up to order k − 1.

(iii) Maximum We proceed by induction on k ≥ 1. The result is true for k = 1 be-
cause φ1(x) = x for 0 ≤ x ≤ 1, and is symmetric about x = 1 (see Figure 17.7). As-
sume the result holds for some k ≥ 1; we must deduce its truth for φk+1. By symmetry,
it suffices to show that φ′

k+1(x) > 0 for 0 < x < (k + 2)/2, or equivalently, by (17.10),
that φk(x − 1) < φk(x) there. But the inductive hypothesis gives φk(x − 1) < φk(x) pro-
vided 0 < x < (k + 1)/2, the region of increase of φk , so it remains to establish the
inequality over the remaining range (k + 1)/2 ≤ x < (k + 2)/2 for φk+1. We invoke
symmetry: φk(x) = φk(k + 1 − x); to apply this we observe that x − 1 < k + 1 − x ⇔
2x < k + 2 ⇔ x < (k + 2)/2. Since the latter inequality does hold, we have

φk(x − 1) < φk(k + 1 − x) = φk(x),

so φ′
k+1(x) < 0 by (17.10), and the inductive step is complete.

Example 17.9 (Explicit continuity checks) In calculational terms, (17.9) gives the (k −
1)st derivative as x, which is trivially zero at x = 0. Thus, by symmetry, there is a zero
of order k − 1 at each end-point of the interval [0, k + 1]. This is also predicted by
Theorem 17.8 as follows: since φk is identically zero outside the interval [0, k + 1], so is
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its (k − 1)st derivative, and hence by continuity this derivative is zero at the end-points
0, k + 1. This explains φ3’s faster approach to zero than φ2, in Figure 17.7.

We check that the derivative φ′
2 is continuous, as asserted by Theorem 17.8. A glance

at Figure 17.7 reminds us that, assuming symmetry, we need only check the point x = 1.
Let f (a−) and f (a+) stand for the limits as x approaches a through values respectively
less/greater than a. From the sample polynomials below Figure 17.8,

φ′
2(1−) = Lim

x→1

d

dx
(x2/2) = Lim

x→1
x = 1, and

φ′
2(1+) = Lim

x→1

d

dx
(−2x2 + 6x − 3)/2 = Lim

x→1
(3 − 2x) = 1.

Exercise Check by calculation, as above, that φ′
2 is continuous at x = 2.

17.1.4 The Fourier Transform

Our definition of φk as the convolution of k + 1 copies of the box function b(t) is
ideal for deriving certain kinds of relations between the splines, because of the Con-
volution Theorem and the fact that the Fourier Transform of b(t) is straightforward
(Exercise 14.9). The theory of the (continuous) Fourier Transform may be reviewed from
Section 14.2.

What we need is summarised in Table 17.1. We’ll use it here to derive the well-known
relations discovered independently by Cox (1972) and de Boor (1972). Historically, these
relations have provided a recursive method for computer calculation of φk at given points
using only the operations of addition (allowing for spill), and a shift to divide by 2. They
are themselves a possible starting point for a derivation of B-splines (Farin, 2002).

Table 17.1. The Continuous Fourier Transforms of certain functions (cf. Table 14.2 of
Section 14.2.2). Here b(t) is the unit box at the origin, with value 1 on 0 ≤ x ≤ 1

(sometimes 0 < x < 1, the transform being the same).

function transform function transform

(i) b(t) B(s) = (1 − e−2π is)/2π is (iv) f (t − a) e−2π ias F(s)
(ii) f (t)∗g(t) F(s)G(s) (v) t f (t) (i/2π)F ′(s)
(iii) φk(t) B(s)k+1 (vi) f ′(t) 2π is F(s)

We verify the transform of φk(t). The transform of b(t) is by definition (see (14.25))

B(s) =
∫ ∞

−∞
b(t)e−2π ist dt =

∫ 1

0
e−2π ist dt = [

e−2π ist/(−2π is)
]1

0

= (1 − e−2π is)/2π is,

as asserted. Now the Convolution Theorem, represented by entry (ii) of Table 17.1, gives
the transform of the (k + 1)-fold convolution product φk as a table entry B(s)k+1. We are
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ready for a first application of the Fourier Transform to splines, to give a ‘polynomial-
free’ proof of the Cox-de Boor relations (this needs no consideration of intervals). In the
present notation they assert that, starting from φ0(t) = b(t):

φk(t) = t

k
φk−1(t) + k + 1 − t

k
φk−1(t − 1) (k ≥ 1). (17.11)

Proof A useful point to note here is that the derivative of sB(s) simplifies to e−2π is ,
whence

sB′(s) + B(s) = e−2π is . (17.12)

The right hand side of (17.11) simplifies by the derivative formula (17.10) (see the
exercise below) to 1/k times tφ′

k(t) + (k + 1)φk−1(t − 1), so we must show that the
latter transforms to kB(s)k+1. According to Table 17.1 the transform is

i

2π

d

ds
[2π is B(s)k+1] + (k + 1)e−2π is B(s)k

= −[s(k + 1)B(s)k B ′(s) + B(s)k+1] + (k + 1)e−2π is B(s)k

= B(s)k[(k + 1)(e−2π is − sB ′(s)) − B(s)],

which simplifies to k B(s)k+1 as required, on substituting (17.12). This completes the
proof.

Exercise Prove (17.10) by Fourier Transforms.

Convexity We now prove a result that will imply a much more powerful convexity
property for B-splines than for Bézier (except when the two coincide as a very special
case).

Theorem 17.10 The sum Sk(t) = φk(t) + φk(t − 1) + · · · + φk(t − k) is equal to 1 when
t lies in the interval [k, k + 1].

Proof Proofs can be given using (17.11) or the Fourier Transform, but we offer a proof
that aims at exposing the ‘real’ reason why the result holds, based on the probability
origins of convolution. We have by (17.8):

Sk(t) =
∑k

j=0

∫ t− j

t− j−1
φk−1(u)du =

∫ t

t−k−1
φk−1(u)du, (17.13)

since the areas summed are, in reverse order, contiguous. But because φk−1(x) is zero
outside the interval [0, k], and we are considering k ≤ t ≤ k + 1 (or equivalently t ≥ k
and t − k − 1 ≤ 0), the integral (17.13) is simply the area under the curve φk−1(x)
illustrated in Figure 17.9.

This area is 1 for a very simple reason. Because b(t) ≥ 0 and the area under its graph is
unity, b(t) is a pdf, or probability density function. Therefore φk−1(t), as the convolution
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k0t − k − 1

φk − 1(x)

x
t

Figure 17.9 The graph of a probability density function, or pdf. Under such a curve the
area is always unity (see Section 9.3.2).

product of copies of b(t), is also a pdf (see Section 10.2.2), and hence has sub-curve area
1 as asserted.

Table 17.2. How convolution is affected by translation,
scaling and addition (Chapter 10, Theorem 10.21).

convolution f (t)∗g(t) result h(x)

(i) f (t + a)∗g(t) h(t + a)
(ii) f (t/d)∗g(t/d) d × h(x/d)
(iii) (λ+ µ)∗σ λ∗σ + µ∗σ

17.1.5 Basis functions: Cox–de Boor relations

We obtain a B-spline basis function Ni,m(x) by first centring φm−1 about the origin, a left
translation of m/2 units, then translating right by i units. This is seen in Figure 17.10,
whose graphs are, as prescribed, translated copies of those belonging to Figure 17.7. To
shift a function f (x) by α units to the left, we replace x by x + α in the argument. Table
17.2(i) shows that, if we centre the box function by replacing t by t + 1/2, then φk in
(17.7) is shifted 1/2 unit more than φk−1, as it should be, so (17.7) defines centred φk

if it starts with centred boxes. Formal B-spline definitions follow.

N12 N22 N32
N13 N23 N33 N14 N24 N34

m = 2: linear m = 3: quadratic m = 4: cubic

Figure 17.10 Some B-spline basis functions Ni,m(t) in the cases m = 2, 3 and 4. We
will normally use the cubic case, m = 4. Note that the line of symmetry is x = i and
that Ni,4(x) is positive only for x less than m/2 units either side of this line, otherwise
zero.
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Definition 17.11 The ith B-spline basis function of order m ≥ 2 (0 ≤ i ≤ m) is given by

N0,m(x) = φm−1(x + m/2) (centred), (17.14)

Ni,m(x) = N0,m(x − i) (translated). (17.15)

Notice that the order, m, is 1 more than the degree; also that x = i is the line of symmetry
of Ni,m and contains its maximum. We now deduce three useful consequences of the
definition of Ni,m , namely:

Ni+1,m(x) = Ni,m(x − 1), (17.16)

Ni,m(x) = 0 if x ≤ i − m/2 or x ≥ i + m/2, (17.17)

i.e. |x − i | ≥ m/2,

and the Cox–de Boor relations

Ni,m(x) = m − 2x

2(m − 1)
Ni,m−1

(
x − 1

2

)+ m + 2x

2(m − 1)
Ni,m−1

(
x + 1

2

)
. (17.18)

Proof For (17.16) we observe that both sides of the equation are by definition equal
to N0,m(x − i − 1). In the case of (17.17) we argue that Ni,m(x) = N0,m(x − i) =
φm−1(x + m/2 − i), which by Theorem 17.8 is zero except between end-points: 0 <

x + m/2 − i) < m, that is except for i − m/2 < x < i + m/2. Thus we have (17.17).
The updated Cox–de Boor relations (17.18) in terms of Ni,m may be obtained by centring
the φk of (17.11) and substituting in terms of N0,m . Then the case i = 0 implies that of
general i = 0, 1, 2, . . . , by (17.15).

Table 17.3 shows some explicitly calculated B-spline basis functions.

Table 17.3. Low-degree B-spline basis functions. We extend results to the
case x < 0 by symmetry: N0,m(−x) = N0,m(x), and to the

case i > 0 by translation, (17.15).

N0,2(x) N0,3(x) N0,4(x)

1 − x on [0, 1] 3
4 − x2 on

[
0, 1

2

]
1
6 (3x3 − 6x2 + 4) on [0, 1]

1
2

(
x − 3

2

)2
on

[
1
2 , 3

2

]
1
6 (2 − x)3 on [1, 2]

Example 17.12 We use the Cox–de Boor relations (17.18) to deduce the expression for
N0,4(x) on [1, 2], from the formulae for N0,3. With i = 0 and m = 4 the relations become

N0,4(x) = 4 − 2x

2 · 3
N0,3

(
x − 1

2

)
+ 4 + 2x

2 · 3
N0,3

(
x + 1

2

)
.

Given that x lies in [1, 2], we have x − 1/2 in [1/2, 3/2], and x + 1/2 in the interval
[3/2, 5/2]. Also, N0,3 is zero in the latter interval. Therefore

N0,4(x) = 4 − 2x

2 · 3
· (x − 2)2

2
+ 0 = 1

6
(2 − x)3.
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B-splines Now we are ready to define a B-spline curve with control points P0, . . . , Pn . It
is a parametric curve in the same dimension as the points Pi , here taken in the plane. The
curve is traced out as the parameter t increases from 0 to n. We derive two fundamental
properties, then concentrate on the cubic case, our main theme.

Definition 17.13 The B-spline of order m (degree m − 1) and control points P0, . . . , Pn

is the function

Bm(t) =∑n
i=0 Ni,m(t) Pi (0 ≤ t ≤ n). (17.19)

Theorem 17.14 (a) (Affine invariance) If f is an affine transformation then f (Bm(t)) is
the B-spline with control points f (Pi ). (b) (Strong convexity) Bm(t) lies in the convex
hull of m successive control points. They are symmetrically numbered relative to the pair
Pr , Pr+1 if t is in [r, r + 1] (m even), and relative to Pr if t is in [r − 1/2, r + 1/2] (m odd).

Proof (a) Similarly to the case of Bézier splines, we apply Equation (17.6) with si =
Ni,m(t). For (b) we start with the convexity relations of Theorem 17.10, setting t =
x + m/2 − i and k = m − 1, to obtain, by definition of Ni,m ,

Ni,m(x) + Ni+1,m(x) + · · · + Ni+m−1,m(x) = 1 (x in [i + m/2 − 1, i + m/2]).
(17.20)

For this range of x we have B(x) =∑
j N j,m(x) Pj (i ≤ j ≤ i + m − 1). Other terms

are zero by (17.17) because j ≤ i − 1 implies x ≥ i + m/2 − 1 ≥ j + m/2, and because
j ≥ i + m implies x ≤ i + m/2 ≤ j − m + m/2 = j − m/2. Here the coefficient sum
is unity by (17.20), and hence B(x) lies in the convex hull of the m points Pi , . . . , Pi+m−1.
The proof is completed by expressing the cases of m even/odd as

m = 2s : x in [i + s − 1, i + s],

B(x) in convex hull of Pi . . . Pi+s−1 Pi+s . . . Pi+2s−1 (put r = i + s − 1),

m = 2s + 1: x in [i + s − 1/2, i + s + 1/2],

B(x) in convex hull of Pi . . . Pi+s . . . Pi+2s (put r = i + s).

Example 17.15 (i) The case m = 3. Here B(x) lies in the convex hull of P3 P4 P5 if x
lies in the range 3.5 ≤ x ≤ 4.5.

(ii) The cubic case, m = 4. Now B(x) is in the convex hull of P2 P3 P4 P5 if 3 ≤ x ≤ 4.
Notice that B(3) lies in the intersection of the convex hulls of P1 P2 P3 P4 and P2 P3 P4 P5

(why?). Hence in Figure 17.11 it lies on the segment P2 P3 P4.

17.1.6 Cubic B-splines

Remarks 17.16 (a) (Zeros) Recalling that the absolute value |t − i | is the distance of
t from i, we have from (17.17) that cubic B-splines satisfy

Ni,4(t) = 0 if and only if |t − i | ≥ 2. (17.21)
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P0

P1

P2

P3

P8
P7

P6

P5P4

P9 = P10

••

•

•
•

•

•

• •

•

Figure 17.11 Single cubic B-spline curve, using the control points previously distributed
between three Bézier curves in Figure 17.1. Successive dark dots denote curve points
B(i).

(b) (Near-zeros) When t is two units from i, the function has a zero of order 3.
This may be proved by setting x = 2 in the expression of Table 17.3 for N0,4, and
illustrated by N2,4 and N3,4 in Figure 17.10. Thus, for t slightly closer than two units to
i, we may expect Ni,4(t) to be negligibly different from zero. Here are some useful values.

distance of t from i 0 0.5 1 1.5 1.8 1.9 2
Ni,4(t) 2/3 23/48 1/6 1/48 ≤ 10−3 ≤ 2 · 10−4 0

(17.22)

(c) (Derivatives) N ′
0,4(±1) = ∓1/2, otherwise N ′

0,4 (integer) = 0.

Proof N ′
0,4(1) = [d/dt(2 − t)3/6]t=1 (Table 17.3) = −3/6 = −1/2, so by symmetry

N ′
0,4(−1) = 1/2. Also N ′

0,4(0) = 0 by symmetry, and the remaining integers j satisfy
| j − i | ≥ 2 as in case (a).

Exercise Verify the above values of Ni,4(t) (it suffices to take i = 0).
(d) (Sketching) Figure 17.12 illustrates two properties of a cubic B-spline which may

facilitate sketching, given the control polygon P0 . . . Pn .

•

•

•

•
•

•

• •

••

•

Figure 17.12 Cubic B-spline with points highlighted at parameter increments of 1/2.
The control points are (0, 0), (0, 0), (4, 9), (9, 7), (9, 0), (14, 3), (6, 4), (0, 0), (0, 0). The
double points ensure tangency at the end-points of the curve, see Remarks 17.17(e).
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(i) B(i + 1/2) is close to the midpoint of Pi Pi+1, and
(ii) B(i) is 1/3 of the way from Pi to the midpoint of Pi−1 Pi+1.

These apply, of course, whilst the cited subscripts are within range. Explicit formulae
are (i) B(i + 1

2 ) = 23
24 × 1

2 (Pi + Pi+1) + 1
24 × 1

2 (Pi−1 + Pi+2), (ii) B(i) = 2
3 Pi + 1

3 ×
1
2 (Pi−1 + Pi+1). We derive formula (ii), leaving (i) for Exercise 17.9. By (17.21) there
are only the following nonzero terms when, as here, i is an integer:

B(i) = Ni−1,4(i)Pi−1 + Ni,4(i)Pi + Ni+1,4(i)Pi+1

= (1/6)Pi−1 + (2/3)Pi + (1/6)Pi+1,

by (17.22). Notice that (i) says B(i + 1/2) is 1/24 of the way along the join of the
midpoint of Pi Pi+1 to the midpoint of Pi−1 Pi+2.

Using collinear and double control points

Remarks 17.17 (Collinear control points and convexity) Suppose a cubic B-spline has
four successive control points PQRS in a straight line. Then, by convexity, Theorem
17.14(b), part of the curve lies along the segment QR. Moreover, if we allow P to
approach Q and/or S to approach R, and to form double points, then we obtain the useful
special cases below. Detailed calculation shows that in these cases not quite all of QR is
included in the curve. However, by the list in (17.22), the departure may be so small as
to be invisible in practice. Here, a control point is represented by a small circle, which is
filled in if the point is double.

Segment QR is part of the curve Curve tangent to control polygon at Q

(a) P Q R S (d) P Q S

(b) Q R S (e) Q S (provided Q      = P0)

(c) Q R (f ) see below

Case (f): three point Pi−1 Pi Pi+1, collinear and equally spaced The curve satisfies B(i) =
Pi and is tangent to the control polygon there (i = 1 below).

Discussion and Proof of (f ) The following serves to establish (f) for any three suc-
cessive control points that are collinear and equally spaced. Consider a control polygon
P0 P1 . . . Pn for a cubic B-spline curve B(t), in which the first three points are collinear,
equally spaced, as represented in Figure 17.13. Because Ni,4(t) = 0 for |t − i | ≥ 2 (see
(17.21)), we have for t ≤ 2,

B(t) = N0,4(t)P0 + N1,4(t)P1 + N2,4(t)P2 + N3,4(t)P3 (+ no more terms).
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Figure 17.13 Cubic B-spline curve for control polygon P0 P1 P2 P3 with three points
collinear. The curve is tangent to the polygon at P1, and this remains true if the polygon
is extended to P4 P5 . . . Pn because Ni,4(t) = 0 for t ≤ i − 2 and t ≥ i + 2.

Let us establish whether B(0) = P0. We have B(0) = N0,4(0)P0 + N1,4(0)P1 =
(2/3)P0 + (1/6)P1, which is not even on the line through P0, P1 because 2/3 + 1/6 �= 1
(see (17.4)). The non-coincidence is well brought out in Figure 17.13, but what happens
at P1? We have

B(1) = N0,4(1)P0 + N1,4(1)P1 + N2,4(1)P2 by (17.21)
= (1/6)P0 + (2/3)P1 + (1/6)P2 by (17.22)
= P1, because P0 + P2 = 2P1.

This is a promising start. One approach to the tangency is to consider the interval
1 ≤ t ≤ 1.1, where the table of (17.21) tells us that P3 contributes at most 2 · 10−4 P3,
and so near to P1 the curve will appear to coincide with the polygon, as illustrated in
Figure 17.13. In fact we have, in terms of derivatives,

B ′(1) = N ′
0,4(1)P0 + N ′

1,4(1)P1 + N ′
2,4(1)P2

= (−1/2)P0 + 0P1 + (1/2)P2

= (1/2)(P2 − P0), hence B(t) is tangent at P1.

First conclusions In Figure 17.11 the tangencies at P3 and P6 are explained by (f)
above and the tangent at end-point P9 comes from (e). Similarly for the end-points in
Figure 17.12.

Example 17.18 (The car) We try to draw the ‘car outline’ of Figure 17.5 as a single
cubic B-spline. That earlier version consisted of two Bézier splines tangent at the intended
windscreen. Here we combine the two control polygons into P0 to P12 listed below:

(0, 0), (2, 8), (16, 8), (16.5, 6), (16.5, 6), (17, 4), (20, 4), (23, 4), (23, 4),

(23, 2), (23, 0), (23, 0), (0, 0).

The points are shown in Figure 17.14(i), with repeats filled-in. The resulting B-spline
curve (ii) is nevertheless closer to the designer’s very conservative intentions in respect of
(a) a straighter windscreen, (b) rectangular front and (c) straight underside. These were
aimed for by use of the repeated points. This measure of success derives from Theorem
17.14(b), and is obtained by exploiting the configurations in Remarks 17.17. See also
Figure 17.15.
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(i) (ii)

•

•

Figure 17.14 (i) Control points, with repeats shown filled, (ii) the car outline B(t) as a
single B-spline, within its control polygon. Note that the car is a parametric curve, traced
out as t increases from 0 to 12.

Exercise Use Remarks 17.17 to explain the tangents and straight line portions of
Figure 17.14. Can any points be omitted?

Figure 17.15 The previous car made more curvaceous by addition of further control
points. The final list is shown below.
(0, 0), (0, 0), (2, 8), (16, 8), (16.5, 6), (16.5, 6), (17, 4), (20, 4), (22.6, 4), (23, 3.6),
(23, 2), (23, 0), (23, 0), (20, 0), (20, 0), (18, −2), (16, 0), (16, 0), (7, 0), (7, 0),
(5, −2), (3, 0), (3, 0), (0, 0), (0, 0).

17.2 The step to subdivision

17.2.1 A fundamental theorem

Here we consider B-splines
∑

i Ni,m(t)Pi which are uniform in the sense that successive
control points P0, . . . , Pn have x-coordinates incremented by a fixed mesh width d, say
x(Pk) = kd .

Scaling To prove the Fundamental Theorem 17.21 on generating B-splines by recursive
subdivision, we need to know what happens with Ni,m when unit 1 is scaled to unit d. To
find out, we replace x by x/d in the above definition (similarly in Table 17.3), and add
an extra argument d. Thus, beginning with the centred unit box b(d, x), we may define

N0,1(d, x) = b(d, x) =
{

1 if x ∈ [− d
2 , d

2 ],
0, otherwise,

(17.23)

and, taking into account Table 17.2(ii) for convolution, this results in

Ni+1,m(d, x) = Ni,m(d, x − d) (m ≥ 1), (17.24)

d × Ni,m(d, x) = b(d, t)∗Ni,m−1(d, t), (17.25)

Ni,m(d, x) = 0 if

{
x ≤ i − md/2 or x ≥ i + md/2,

i.e. |x − i | ≥ md/2.
(17.26)
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Figure 17.16 Splitting a polygon by insertion of midpoints. This halves the fixed hori-
zontal distance between successive vertices.

P0
2

P1

P2

P3

P4

P1
2

P2
2

P3
2

P0

Figure 17.17 Split polygon with first few new vertices labelled. The defined linear B-
spline coincides with the polygon before, and hence also after, the split (Theorem 17.19).

Exercise Write down an expression for N0,4(x, d) valid for 0 ≤ x ≤ d (see Table 17.3).

Splitting The first step in recursive subdivision is called splitting, which means re-
finement of a polygon by inserting the midpoint of each edge, as in Figure 17.16.
Thus a polygon P0 . . . Pn with n + 1 vertices becomes a polygon of n + 1 + n = 2n + 1
vertices, which we’ll denote by P2

0 P2
1 . . . P2

2n . The new vertices are given in terms of the
old by P2

2i = Pi and P2
2i+1 = 1

2 (Pi + Pi+1). We are about to show formally that a linear
B-spline B2(t) is unaffected by splitting. That is, the two expressions below are equal:

B2(t) =
∑n

i=0
Ni,2(1, t)Pi (original), (17.27)

B2(t) =
∑2n

j=0
N j,2

(
1
2 , t

)
P2

j (after split). (17.28)

Theorem 17.19 (Linear B-splines, m = 2) A linear B-spline coincides with its control
polygon. Hence splitting leaves the B-spline unchanged. See Figure 17.17.

Proof We prove the result for the case d = 1 and then it will follow for general d > 0
because scaling converts one case to the other (Theorem 17.14). Thus we begin with the
formula (17.27) for the B-spline B2(t) and show that it coincides with its own control
polygon P0 . . . Pn .

Let the parameter t lie in the interval [i, i + 1]. Then B2(t) lies in the convex hull of Pi

and Pi+1 (Theorem 17.14 with m = 2), which is the line segment Pi Pi+1. It remains to
prove that B2(t) = Pi for 0 ≤ i ≤ n. But (17.17) gives N j,2(i) = 0 for | j − i | ≥ 1, that
is for j �= i , and we know that Ni,2(i) = 1 (see e.g. Figure 17.10) so, omitting terms that
are zero, B2(i) = Ni,2(i)Pi = Pi . This completes the proof.

Subdivision A subdivision step consists of splitting followed by an averaging step, in
which a new polygon is formed whose vertices are weighted averages of the old. Our
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m  2

m  3

m  4
P0

2

P0
3

P0
4

0 1 2 3

Figure 17.18 The result of splitting followed by two simple averaging steps. Note how
the initial point moves 1/4 unit horizontally on each averaging.

averaging step will consist of m − 2 repeats of what is naturally termed a simple averaging
step, in which a new polygon is formed by averaging successive vertex pairs of the old.
Thus the sequence {Pi } becomes {(Pi + Pi+1)/2} and the number of vertices is reduced
by 1. In summary

Subdivision step = split + average, where
Average = m − 2 simple averages in succession.

We have denoted the original control polygon by P0 . . . Pn and the result of a splitting
step by P2

0 P2
1 . . . P2

2n . The resulting polygon after the first simple average will be labelled
P3

0 P3
1 . . . P3

2n−1 (m = 3), the next P4
0 P4

1 . . . P4
2n−2 (m = 4), and so on. This is illustrated

in Figure 17.18, where for simplicity we take d = 1. To revert to general d, soon to be
needed, we just multiply horizontal distances by d.

Remark 17.20 With unit mesh d = 1, each simple averaging step does the following:

(i) reduces the number of control points by 1,
(ii) retains the mesh width 1/2,

(iii) starts the new polygon 1/4 unit to the right of the previous polygon, by (ii),
(iv) cuts corners.

Theorem 17.21 (Fundamental Theorem, Lane and Riesenfeld, 1980) Let P0 . . . Pn

be the control polygon of a uniform B-spline of order m ≥ 2. Then, after subdivi-
sion consisting of splitting once, then m − 2 simple averaging steps, the new polygon
Pm

0 Pm
1 . . . Pm

2n−(m−2) defines a B-spline which agrees with the original over the reduced
range e ≤ x ≤ n − e, where e = (m − 2)/2. That is, if we define{

P2
2i = Pi ,

P2
2i+1 = 1

2 (Pi + Pi+1)
and Pk+1

i = 1
2 (Pi

k + Pi+1
k) (k ≥ 2), (17.29)

then
∑n

i=0
Ni,m(1, x)Pi =

∑2n−m+2

i=0
Ni,m

(
1
2 , x − e/2

)
Pm

i . (17.30)
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− 1
2 0 1

2

b(1
2 , x + 1

4) b(1
2 , x − 1

4)

Figure 17.19 Illustration of b(1, x) as the sum of 1/2-width boxes, b(1, x) = b(1/2, x +
1/4) + b(1/2, x − 1/4).

Proof We proceed by induction from the already established case m = 2 of Theorem
17.19. To apply the inductive hypothesis, i.e. the truth of the present theorem for B-splines
of order m − 1, we observe that the box function b(1, x) is the sum of half-width boxes
centred at x = ±1/4, as illustrated in Figure 17.19. Note that the shift of 1/4 to the left
for a half-width box originally centred at x = 0 is achieved by replacing x by x + 1/4.
For the rightwards shift, x becomes x − 1/4. This gives the hatched boxes of the figure.

Now we are ready for the inductive step from m − 1 to m, brought about naturally by
the convolution definition of B-splines.

∑n

i=0
Ni,m(1, x)Pi =

∑n

i=0
b(1, x)∗Ni,m−1(1, x)Pi by(17.25)

= b(1, x) ∗
∑n

i=0
Ni,m−1(1, x)Pi (∗is distributive)

= b(1, x) ∗
∑2n−m+3

i=0
Ni,m−1

(
1
2 , y

)
Pm−1

i

(inductive hypothesis)

where y = x − e/2, e = (m − 3)/2, e ≤ x ≤ n − e,

=
∑2n−m+3

i=0
b(1, x)∗Ni,m−1

(
1
2 , y

)
Pm−1

i (∗is distributive)

=
∑2n−m+3

i=0
b
(

1
2 , x − 1

4

) ∗ Ni,m−1
(

1
2 , y

)
Pm−1

i +
∑2n−m+3

i=0
b
(

1
2 , x + 1

4

) ∗
Ni,m−1

(
1
2 , y

)
Pm−1

i , on splitting b(1, x) as in Figure 17.19

= 1
2

∑2n−m+3

i=0
Ni,m

(
1
2 , y − 1

4

)
Pm−1

i + 1
2

∑2n−m+3

i=0
Ni,m

(
1
2 , y + 1

4

)
Pm−1

i

by (17.25),

with d = 1/2 and the translation rule of Table 17.2(i). Now we can drop a term from
each sum (last of the first, first of the second), as follows. We know from (17.26) that
N0,m(1/2, t) = 0 if t ≥ m/4 or t ≤ −m/4, and so may argue using (17.24) that, since
y − 1/4 = x + 1/2 − m/4,

N2n−m+3,m

(
1

2
, y − 1

4

)
= N0,m

(
1

2
, x − n − 1 + m

4

)
= 0 if x ≤ n − m − 2

2
,

N0,m

(
1

2
, y + 1

4

)
= N0,m

(
1

2
, x + 1 − m

4

)
= 0 if x ≥ m − 2

2
.
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This reduces the sums to

1

2

∑2n−m+2

i=0
Ni,m

(
1

2
, y − 1

4

)
Pm−1

i + 1

2

∑2n−m+3

i=1
Ni,m

(
1

2
, y + 1

4

)
Pm−1

i

= 1

2

∑2n−m+2

i=0
Ni,m

(
1

2
, y − 1

4

)
Pm−1

i + 1

2

∑2n−m+2

i=0
Ni+1,m

(
1

2
, y + 1

4

)
Pm−1

i+1

after replacing i by i + 1 in the second sum

= 1

2

∑2n−m+2

i=0
Ni,m

(
1

2
, y − 1

4

)
Pm−1

i + 1

2

∑2n−m+2

i=0
Ni,m

(
1

2
, y − 1

4

)
Pm−1

i+1

by (17.24)

=
∑2n−m+2

i=0
Ni,m

(
1

2
, y − 1

4

)
Pm

i by (17.29),

which is the result for B-splines of order m. This completes the proof by induction on m.

17.2.2 B-splines by subdivision

Binomials It turns out that the averaging part of the subdivision step is given by bino-
mial coefficients. In the cubic case m = 4, for example, we have after the two simple
averagings:

P4
i = 1

4

[
1 · P2

i + 2 · P2
i+1 + 1 · P2

i+2

]
.

The binomial coefficients 1 2 1 are no accident because, apart from factors 1/2, we are
performing the calculation of Pascal’s triangle for multiplying by 1 + x , when we take
Pk+1

i as the sum of the two elements above it in level k. Thus, after doing this three
times we have multiplied by (1 + x)3, and so taken a linear combination of the starting
layer with coefficients 1 3 3 1 (and divided by 23). If we perform m − 2 averagings the
coefficients are those in the expansion of [(1 + x)/2]m−2 and then, by Theorem 9.12 of
Chapter 9, the general formula is

Pm
i = (1/2m−2)

∑m−2

k=0

(
m − 2

k

)
P2

i+k . (17.31)

Equivalently, we may say that simple averaging is, by its definition, convolving the
sequence of heights of the control points with the sequence {1/2, 1/2}, and the same
conclusion follows (cf. our use of continuous convolution to prove Theorem 17.21).

Exercise Use Pascal’s triangle to determine coefficients for the averaging step in the
case m = 7.

Recursive subdivision We have defined a single subdivision step for the control polygon
of a B-spline to be splitting followed by m − 2 simple averagings, where m is the order
of the spline. The Fundamental Theorem of the previous section shows that the result is
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the control polygon of a B-spline that agrees with the original over a reduced domain of
definition which excludes an interval of width (m − 2)/2 from each end.

Recursive subdivision is a sequence of subdivision steps, each performed on the result
of the previous step. After performing k iterations of subdivision, we arrive at a control
polygon Pm,k

0 Pm,k
1 . . . Pm,k

rk
, which we shall refer to as the kth (subdivision) iterate, where

the last subscript rk tends to infinity with k. By Remarks 17.20(iii) we have, after the first
iteration, x(Pm,1

0 ) = (m − 2)/4. For the next iteration the mesh starts at d = 1/2, so the
initial polygon point moves on half as far, i. e. by (m − 2)/8. After k iterations the total
comes to

x
(
Pm,k

0

) = m − 2

4

(
1 + 1

2
+ 1

22
+ · · · + 1

2k−1

)

→ m − 2

4
· 1

1 − 1/2
= m − 2

2
, as k →∞.

Thus the limit curve covers exactly the interval e ≤ x ≤ n − e, over which it equals
(by Theorem 17.21) the specified B-spline.

Theorem 17.22 (Convergence) In the notation above, the kth iterate of the control
polygon approaches the B-spline it defines, as k →∞. In symbols, if e = (m − 2)/2,
then

Pm,k
0 Pm,k

1 . . . Pm,k
rk

→ {Bm(x − e) : e ≤ x ≤ n − e}. (17.32)

Proof Considering any stage k of subdivision, let P be a point on the B-spline curve
itself. Then by strong concavity, Theorem 17.14, this point lies in the convex hull of m
successive points of the latest control polygon. Therefore, if the diameter, or greatest
distance between points of such hulls, tends to zero as k increases, it will follow that the
polygons approximate the curve with arbitrary precision as k →∞. Thus it suffices to
show that for any finite permissible i and i + s (say s ≤ m) we have∣∣Pm,k

i+s − Pm,k
i

∣∣→ 0, as k →∞, (17.33)

where |A − B| equals the length |AB| of a line segment. But by the triangle inequality∣∣Pm,k
i+s − Pm,k

i

∣∣ ≤ ∣∣Pm,k
i+s − Pm,k

i+s−1

∣∣+ ∣∣Pm,k
i+s−1 − Pm,k

i+s−2

∣∣
+ · · · + ∣∣Pm,k

i+1 − Pm,k
i

∣∣,
so we need only prove (17.33) for an arbitrary pair of adjacent points, the case s = 1. Now
let δ = Maxi |Pi+1 − Pi |, and consider the first subdivision. We first insert the splitting
midpoints, reducing the maximum edge length to δ/2. Successive simple averaging
cannot increase the maximum, as Figure 17.20 confirms.

In either case, |PQ| = (1/2)|AC| ≤ (1/2){|AB| + |BC|} ≤ Max{|AB|, |BC|} ≤ δ/2.
It follows that, after k subdivisions,∣∣Pm,k

i+1 − Pm,k
i

∣∣ ≤ δ/2k → 0, as k →∞. (17.34)
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A P B Q C
A

B

CP
Q

Figure 17.20 The two cases of simple average performed after splitting. Here P bisects
AB and Q bisects BC, where |AB|, |BC | ≤ δ/2.

This completes the proof. Before illustrating this result we prepare for a little more control
of the curve.

End-correcting cubic B-splines In the cubic case, m = 4, the subdivision method of
Theorem 17.21 provides a B-spline that starts at x = (m − 2)/2 = 1, losing one control
point, with symmetrical loss of a single point on the right. We can retain the original
end-points and cause the B-spline to be tangent there, as follows.

Construction 17.23 (End-point tangency) On the left we simply add a ‘virtual’ control
point P−1 that satisfies P−1 P0 = P0 P1 as vectors. Then the B-spline is tangent at P0

to P0 P1, where the subdivision-constructed version begins. This is Figure 17.13 with
P0 P1 P2 relabelled P−1 P0 P1. The right hand end of the polygon is modified similarly.

P−1 P0 P1

Example 17.24 Figure 17.21 is our first example of a cubic B-spline by recursive sub-
division, validated by Theorems 17.21 and 17.22, with the end-correction proposed in
Construction 17.23. Original polygon heights 1, 0, 4, 2, 4 become 2, 1, 0, 4, 2, 4, 6 with
the addition of the new end-points P−1, P6. Notice that as few as six iterations suffice to
produce a convincing curve.

The control polygon with vertices
(0, 2), (1, 1), (2, 0), (3, 4), (4, 2), 
(5, 4), (6, 6).

Result after one iteration. Result after 6 iterations.

Figure 17.21 From control polygon to recursive B-spline curve, tangent at end-points.

Parametric and crossing curves Suppose we wish to model a curve with multiple
y-values for given x. Then we treat it as a parametric curve. This means applying the
previous uniform spline function methods to x and y coordinates separately. Thus to each
value of the uniformly increasing parameter t we allocate a pair (x, y), and are back to
the situation where the control polygon may cross itself.

Example 17.25 We model a simplified face, using the end correction as described above.
The control polygon is shown in Figure 17.22(a) at reduced scale to accommodate the
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extra edges displayed. After one iteration these appendages are much reduced, and by the
time we have an accurate curve they have disappeared, leaving the curve ends tangentially
directed. Notice, finally, that at each stage successive control vertices correspond to equal
increments of the parameter. This holds by definition.

 (a) Control polygon (b) First iteration (c) Sixth iteration

Figure 17.22 Parametric B-spline for ‘face’. The end-correction points are intru-
sive in the control polygon but disappear after six iterations. Later we see how to
avoid them altogether (see e.g. Figure 17.29). The original vertices were (3, 1),
(10, 1), (10, 2.5), (12.5, 5), (10, 6), (12.5, 6.5), (12.5, 7.5), (15.5, 9), (12, 10),
(12, 13), (12, 15.5), (6, 15), (1, 10), (3, 1).

Exercise Write down the extra control points of Figure 17.22.

17.2.3 Subdivision and basis functions

Recursive subdivision Our method of obtaining B-splines is but one example of recur-
sive subdivision, which we’ll outline in its wider sense and show to be equivalent to a
nested system of function spaces V 0 ⊆ V 1 ⊆ V 2 ⊆ · · ·. This will prepare the ground for
a wavelet formulation. The idea is to create a function f (x) as the limit of successive
refinements f j (x) of an initial function f 0(x) which is linear between integer values of
x (thus piecewise linear). On each refinement the mesh, i.e. the interval of linearity, is
halved by insertion of midpoints, so the vertices at which f j (x) is to be calculated are
(the so-called dyadic integers):

x = i/2 j (17.35)

for fixed j. A convenient way to incorporate together the splitting and averaging steps
that convert level j − 1 into level j is to write

f j

(
i

2 j

)
=
∑

k
rk f j−1

(
i + k

2 j

)
, (17.36)

where for each i we allow k to vary. A key observation is that i + k
2 j = 1

2 j−1 · i + k
2 . This

means that, because the last factor (i + k)/2 is alternately an integer and a half-integer as k
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Mesh point numberi − 1 i + 1

1 ei
j(x)

i

Figure 17.23 A hat function e j
i (x).

increases, the expression (i + k)/2 j alternates between a vertex from the previous level
and the midpoint between two such vertices. The sequence of coefficients r = (rk) =
(. . . , r−1, r0, r1, . . .) is called the averaging mask (the same idea is used for discrete
convolution). The subdivision system is called stationary if, as is normally assumed, r
does not vary with level, and uniform if r remains constant as we vary i for a given level.

Example 17.26 (B-splines by Theorem 17.21) (i) The choice r = (r0, r1) = (1/2)(1, 1)
is our B-spline construction: splitting, then a simple average, giving when iterated a
quadratic B-spline. This is Chaikin’s Algorithm, and originally due to him (Chaikin,
1974).

(ii) The choice r = (r−1, r0, r1) = (1/4)(1, 2, 1) is a B-spline of order 4, or cubic
B-spline.

(iii) Setting r = (r−1, r0, r1, r2) = (1/8)(1, 3, 3, 1) yields the B-spline of order 5
(degree 4).

Subdivision and hat functions Let the function values at level j form a vector f j with
ith entry f j

i . One basis for the vectors f j consists of vectors e j
i = [0 . . . 0 1 0 . . . 0]

of appropriate length, and all zeros except for 1 in position i. Thus we may write

f j =
∑

i
f j
i e j

i . (17.37)

We write either f j (x) or ‘the function f j ’ for the piecewise linear function which
interpolates linearly between the values forming the vector f j . The function e j

i (x) shown
in Figure 17.23 is called a hat function because of its shape. Notice that we need the
consistency assertion of Theorem 17.27 below.

Theorem 17.27 Consistency holds: given f j =∑
i f j

i e j
i , we have

f j (x) =
∑

i
f j
i e j

i (x). (17.38)

Proof It suffices to check the second equality on the overlap of two hat functions. We
may take this overlap to be the interval [0, 1], for translation and scaling do the rest.
Consider Figure 17.24. The sum of the hat functions at t in [0, 1] is (1 − t)y1 + t y2. But
this is the required interpolation between P1 and P2.

Basis functions As a special case of a control polygon, e j
i (x) has a limit under subdivi-

sion; it depends on i and j, say

e j
i (x) → φ

j
i (x). (17.39)
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0 1

y1
y2

P1
P

P2

t 2

Figure 17.24 Adding hat functions on their overlap.

We’ll soon see that the φ
j
i (x) are the basis functions we require. First observe that f j (x),

being a stage on the way to f (x), tends to the same limit f (x) under subdivision, for
every starting stage j. Therefore we have, by equating limits of the two sides in (17.38),
and replacing j by j − 1, that

f (x) =
∑

i
f j
i φ

j
i (x) =

∑
i

f j−1
i φ

j−1
i (x). (17.40)

Example 17.28 We illustrate in Figure 17.25 the convergence e j
i (x) → φ

j
i (x) in the cases

of the cubic B-spline, with averaging mask (1, 2, 1)/4 and of the Daubechies fractal basis
function with mask (1 +√

3, 1 −√
3)/2. In both cases six iterations are ample, but we

show the original followed by the results of one, two and three iterations for the purpose
of comparison. The 6-iteration version of the Daubechies case will be found shortly in
Figure 17.26.

Convergence of a cubic B-spline basis function, with mask (1, 2, 1)/4.

Convergence of a Daubechies basis function, with mask (1 + √3, 1 − √3)/2.

Figure 17.25 Convergence of a hat function to a basis function for cubic B-splines and
to a fractal basis function of Daubechies, under their respective averaging masks. In each
case, the original is followed by three iterations of subdivision.

Identifying the functions We now have two sets of functions for the B-spline case, the
φ

j
i and the Ns. To see that they coincide, recall from (17.19) the definition Bm(t) =∑

s Ns,m(t)Ps . If we choose the vertices Pi to be those of e j
i (x) as a control polygon,

then (17.19) reduces to Bm(t) = Ni,m(t). But by Theorems 17.21 and 17.22 this is also
the result obtained by recursive subdivision.
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Figure 17.26 Daubechies’ fractal basis functions φ3
2(x) and φ3

5(x) generated by recursive
subdivision (17.36), with uniform averaging mask (r0, r1) = (1 +√

3, 1 −√
3)/2.

Independence Let’s get a small but important detail out of the way. How do we know
the spanning functions φ

j
0 (x), φ

j
1 (x), . . . ( j fixed) are linearly independent and hence

can be basis functions? It suffices to show that we cannot have f j
i not all zero but yet

have
∑

i f j
i φ

j
i (x) = 0. But if we did, our subdivision scheme would convert the nonzero

vector f j into the zero function, which is impossible by hypothesis, and clearly so for
the averaging schemes we consider.

Exercise How do we know the first case in Figure 17.25 does not extend further along
the x-axis?

17.2.4 Nested spaces

Having shown how a convergent subdivision process provides the functions φ
j
i (x), we

assemble all φ
j
i (x) for fixed j into a row vector [φ j

i (x)] and denote the space they span
by V j . Thus we write

� j (x) = [
φ

j
0 (x) φ

j
1 (x) . . .

]
, (17.41)

V j = span � j , of dimension v j . (17.42)

For example, a control polygon P0 . . . Pn gives �0(x) = [φ0
0(x) φ0

1(x) . . . φ0
n(x)], span-

ning the space V 0, of dimension v0 = n + 1. Now we show that V j−1 is contained in
V j (all j) by using the subdivision process to express each generator φ

j−1
i (x) of the first

space V j−1 as a linear combination from the second. This is Equation (17.44) below. We
shall deduce it from (17.43). Firstly, according to (17.36), each entry of f j is linear in
those of the previous level, so there is some matrix P j for which the first equation below
holds:

f j = P j f j−1 (subdivision), (17.43)

� j−1(x) = � j (x)P j (refining relations), (17.44)

where the f j are expressed as columns. To infer (17.44) we observe that the equality of
sums in (17.40) may be written in matrix form � j (x) f j = � j−1(x) f j−1, giving

� j−1(x) f j−1 = � j (x) f j = � j (x)P j f j−1 (by (17.43)).
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Since this holds for all possible j and f j , we have proved (17.44). Notice that it tells
us in particular that φ

j−1
i (x) is a linear combination with coefficients in column i of P j .

For the matrix rule that makes this easy to pick out, see Example 7.22(4). We have now
the wavelet-ready situation of nested spaces (‘rough’ contained in ‘refined’):

V j−1 ⊆ V j ( j = 1, 2, . . .). (17.45)

Corollary 17.29 Any convergent subdivision system defines a sequence of nested spaces,
and conversely any nested system of spaces can be defined by a subdivision system.

The uniform case A key observation is that, with the averaging mask uniform, suc-
cessive φ

j
i (x) at the same level will be shifted copies of each other, say φ

j
i (x) =

φ
j
0 (x − i · 2− j ). This applies to the B-splines considered so far, and was illustrated in

Figure 17.10. A further example comes from the uniform mask for the Daubechies case,
illustrated in Figure 17.26.

Furthermore (assuming stationarity, which will hold in all our cases), each time we
move to a new level, the basis functions keep the same shape but are shrunk by a factor
2. Taking these two facts together, there is a scaling function/father wavelet φ(x) from
which all the basis functions may be derived by scaling and translation:

φ
j
i (x) = φ(2 j x − i) (uniform stationary case).

Example 17.30 (P j for cubic B-splines) Determine P1 for cubic B-splines with (i) three
control points, (ii) five control points.

Solution The midpoint insertions of the splitting step convert N (= n + 1) points at one
level to 2N − 1 at the next. The new points may be expressed in terms of the old by a
matrix S j sending variables y0, y1, . . . to z0, z1, . . . , say. Its rows are shifted copies of
the first two because of repeating the same linear combination with shifted subscripts.
Similarly, averaging may be performed by a matrix R j , sending z0, z1, . . . to w0, w1, . . .

with each row a shifted copy of the mask (1, 2, 1)/4. This converts 2N − 1 points to
2N − 3, so the complete subdivision step is accomplished by the matrix P j = R j S j , of
dimensions 2N − 3 × N , highlighted below. Hence in the case N = 3, for example, we
finish with a 3 × 3 matrix. The calculations are as follows.

(i) The case of N = 3 control points

S1 split

⎡
⎢⎢⎢⎢⎣

z0

z1

z2

z3

z4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

y0

(y0 + y1)/2
y1

(y1 + y2)/2
y2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
1
2

1
2
1
1
2

1
2
1

⎤
⎥⎥⎥⎥⎦
⎡
⎣ y0

y1

y2

⎤
⎦ ,
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R1 average

⎡
⎣w0

w1

w2

⎤
⎦ =

⎡
⎢⎣

1
4 (z0 + 2z1 + 2z2

1
4 (z1 + 2z2 + 2z3

1
4 (z2 + 2z3 + 2z4

⎤
⎥⎦ = 1

4

⎡
⎣1 2 1

1 2 1
1 2 1

⎤
⎦
⎡
⎢⎢⎢⎢⎣

z0

z1

z2

z3

z4

⎤
⎥⎥⎥⎥⎦ ,

Subdivision: P1 = R1S1 = 1
4

⎡
⎣1 2 1

1 2 1
1 2 1

⎤
⎦× 1

2

⎡
⎢⎢⎢⎢⎣

2
1 1

2
1 1

2

⎤
⎥⎥⎥⎥⎦= 1

8

⎡
⎣4 4 0

1 6 1
0 4 4

⎤
⎦ .

(ii) The case of N = 5 control points

P1 = R1S1 = 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1
1 2 1

1 2 1
1 2 1

1 2 1
1 2 1

1 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1 1

2
1 1

2
1 1

2
1 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1
8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 4
1 6 1

4 4
1 6 1

4 4
1 6 1

4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7×5.

Clearly something pretty symmetrical is going on here and we might hope that some
simple formula applies. Notice that the columns of P1 are the binomial coefficients in
(1 + x)4, with cutoff at top and bottom. We tie all this together through banded matrices
in Section 17.4 (see Equation (17.67)). Here is a reminder of some matrix dimensions.

P j
(2N−3)× N = R j

(2N−3)× (2N−1) S j
(2N−1)× N (uniform case).

Exercise Find P1 for a 4-point control polygon.

17.2.5 An end-correction for tangency

In this section we pursue the end-corrected (hence non-uniform) cubic B-splines which
will be used in applications. We recall Construction 17.23 in which, to ensure a cubic
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B-spline is tangent at an end-point P0, we extend the control polygon by a virtual point
P−1 such that P0 is the midpoint of P−1 P1.

Can we replace such virtual points by a modification of the averaging mask? The key
observation is that the mask (1, 2, 1)/4 leaves unchanged any vertex which is midway
between its two neighbours in the polygon. For, if Qi is the midpoint of Qi−1 Qi+1, then
the mask performs

Qi → (Qi−1 + 2Qi + Qi+1)/4 = (Qi−1 + Qi+1 + 2Qi )/4

= (2Qi + 2Qi )/4 = Qi .

P−1

P0

P1

P−1

P0

P1

M1

M2

P0

M1

M2

Figure 17.27 Splitting, then averaging, steps as they affect the first few polygon points.
Notice P0 is unchanged and finishes as it began, midway between its current neighbours.

Thus the first subdivision step, as represented in Figure 17.27, results in no change to the
position of P0, which, moreover, acquires a new virtual point M1. The next subdivision
repeats this process except that of course the mesh halves each time. Therefore the same
limit is achieved very simply, without points, by changing the mask r to a not-quite-
uniform one.

The mask: r = (1) at end-points, otherwise r = (1, 2, 1)/4. (17.46)

Example 17.31 For the end-corrected cubic B-spline we have, in the case of N = 3
polygon vertices (and similarly for higher levels),

P1 = R1S1 = 1

4

⎡
⎢⎢⎢⎢⎣

4
1 2 1

1 2 1
1 2 1

4

⎤
⎥⎥⎥⎥⎦

1

2

⎡
⎢⎢⎢⎢⎣

2 0 0
1 1 0
0 2 0
0 1 1
0 0 2

⎤
⎥⎥⎥⎥⎦ = 1

8

⎡
⎢⎢⎢⎢⎣

8 0 0
4 4 0
1 6 1
0 4 4
0 0 8

⎤
⎥⎥⎥⎥⎦ .

Remarks 17.32 In terms of the matrix P j , the difference between (17.46) and the
uniform case considered earlier is the appending of an extra row [8 0 . . . 0]/8 at the
start and [0 . . . 0 8]/8 at the end. This means that N points at one level become 2N − 1
at the next, rather than 2N − 3.

The form of P j means that we have rediscovered a scheme due to Hoppe et al. (1994).
The symmetry of the mask (17.46) ensures that not only S j but also R j is antipodal, and
hence also their product P j (see Exercise 17.15 and Section 17.3.2). As before, here is
a reminder of the relevant matrix dimensions.

P j
(2N−1)× N = R j

(2N−1)× (2N−1) S j
(2N−1)× N (end-corrected).
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Exercise Compute P2 for the example above.

Example 17.33 Corresponding to a control polygon with N = 3 vertices we determine
the basis functions φ1

i and φ2
i for an end-corrected cubic B-spline, and plot them in

Figure 17.28, where they may be compared. In the first case of j we start from each hat
function vector (1, 0, 0, 0, 0), . . . , (0, 0, 0, 0, 1) in turn, and apply the subdivision step
given by the mask (17.46) and implemented in ALGO 17.1 (this is more economical than
matrix multiplication, though we shall need P j later). In the second case, j = 2, the hat
functions have 2 × 5 − 1 = 9 entries.

0 1 2 3 4

Figure 17.28 (a) The end-corrected cubic B-spline basis functions (17.41) at level 1 and
at level 2 by ALGO 17.1. Notice that the first and last functions in each case differ most
noticeably from the rest because of the non-uniform end-correction. We may compare
the uniform basis functions of Figure 17.10.

Example 17.34 (The face revisited ) In Figure 17.29, the same stages as Figure 17.22
are used to create the B-spline face, but using the non-uniform mask (17.46) instead of
extra points. Thus the extraneous lines and partial curves disappear.

Control polygon First iteration Sixth iteration

Figure 17.29 The face from Figure 17.22, now by non-uniform subdivision (17.46).

An explicit basis The chosen edge-correction simply extends the original control poly-
gon P0 P1 . . . Pn by a dependent point P−1, positioned so that P0 is the mean of P−1 and
P1, or equivalently P−1 = 2P0 − P1, and similarly for Pn+1 after Pn . Subject to this, the
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resulting B-spline curve is in the usual notation, where Ni (t) = Ni,4(t),

B(t) = N0(t)P−1 + N1(t)P0 + N2(t)P1 + N3(t)P2 + · · · (1 ≤ t ≤ n + 1)

= N0(t)[2P0 − P1] + N1(t)P0 + N2(t)P1 + N3(t)P2 + · · ·
= [N1(t) + 2N0(t)]P0 + [N2(t) − N0(t)]P1 + N3(t)P2 + · · · ,

so the basis has changed by

[N0 N1 N2 · · ·] → [N1 + 2N0 N2 − N0 N3 · · ·]

= [N0 N1 · · · Nn+2]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 . . . 0 0
1

1
0

. . .
1

1
0 0 . . . −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17.47)

Thus only the first two and last two basis functions have departed from uniformity. This is
visible in Figure 17.28 at the two different scales employed. Note that we make use of N0

to Nn+2, and that when drawing the curve we restrict the parameter t to 1 ≤ t ≤ n + 1. For
further reassurance let us check tangency at the end-points. Recalling that, for example,
N0(1) = 1/6, N ′

0(1) = −1/2 (Remarks 17.16), we find that B(t) is indeed tangent to the
control polygon at P0, because

B(1) = [N1(1) + 2N0(1)]P0 + [N2(1) − N0(1)]P1

= (2/3 + 2/6)P0 + (1/6 − 1/6)P1 = P0,

B ′(1) = [N ′
1(1) + 2N ′

0(1)]P0 + [N2
′(1) − N ′

0(1)]P1 = P1 − P0.

Exercise Show that B(t) is tangent to the control polygon at Pn .

ALGO 17.1 Creating end-corrected cubic splines by subdivision

(a) Subdivide: for list f of values, plane points, or 3D points; uses mask (17.46).
{d , k} = Dimensions[ f ]; g = f [1];
For i = 1 to d − 1, append ( f [i] + f [i + 1])/2 then f [i + 1] to g; (Splitting)
For j = 1 to k, g[{2, 3, . . . , 2d − 2}, j] = Convolve [{1, 2, 1}/4, g [All, j]
(Averaging)
RETURN [g].

(b) Basis function φ
j
i ; heights at level J (c) Cubic spline: level J approximation

g = Row i of a size v j identity matrix Do f = subdivide [ f ] J times
Do g = subdivide [g] J − j times RETURN [ f ].
RETURN[g].
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17.3 The wavelet formulation

Reviewing progress so far, we have a multiresolution system V 0 ⊆ V 1 ⊆ V 2 ⊆ · · · for
cubic B-splines, in which subdivision down to level j gives an approximation lying in V j .
We distinguish two cases, the uniform one with which we began, and the non-uniform
adaption (Section 17.2) designed to produce tangency at the control polygon end-points.
Non-uniformity refers to not all the basis functions at the same level being translates of
each other, though most are in this case (see e.g. Figure 17.28).

We are ready to introduce a wavelet system assisting us to move between levels,
and giving the potential to manipulate the curve at any chosen scale independently of
others.

17.3.1 Semi-orthogonal wavelets

Manipulating a B-spline curve at any scale lies in our ability to construct a filter bank, as
described in the previous chapter at Section 16.3.1. Table 17.4 shows the present position.

Table 17.4. For achieving a B-spline filter bank, what we have is summarised in
line (i) and what we further require appears in line (ii).

space and basis matrix relation

(i) � j = [φ0
j φ1

j . . .] is basis of V j ⊆ V j+1 � j−1 = � j P j

(ii) � j = [ψ0
j ψ1

j . . .] is basis of W j and V j ⊕ W j = V j+1 � j−1 = � j Q j

To achieve line (ii) of the table we begin with the wavelet spaces W j . The minimal
requirement is that W j be complementary to V j in the larger space V j+1, meaning that
each f in V j+1 is a unique sum g + h, where g is taken from V j and h from W j . This
is the assertion V j ⊕ W j = V j+1. As we observed earlier, there are many choices for
W j , analogously to choosing the y-axis in any direction not parallel to the x-axis. Our
actual selection corresponds to making the y-axis perpendicular to the x-axis. That is, of
all possible complements of V j in V j+1, we let W j be the unique orthogonal one,

W j = {h ∈ V j+1: 〈g, h〉 = 0 for all g in V j }. (17.48)

This makes W j the most efficient way to ‘upgrade’ an element of V j to one in V j+1

(perpendicular to the ‘old’ vector). For a proof that W j is actually complementary to
V j , see Definition 7.19ff. Now, Equation (17.48) defines W j , but leaves open the precise
form of wavelets, i.e. the basis fuctions ψ

j

i which, whatever the choice, we bring together
as a row vector, writing{

� j (x) = [
ψ

j
0 (x) ψ

j
1 (x) . . .

]
,

W j = span � j (x), of dimension w j = v j+1 − v j .
(17.49)
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Since the basis functions of W j−1 lie within V j , they are linear combinations of its basis
and may be expressed in terms thereof by some matrix Q j , giving the first equation
below. The second is the earlier noted (17.44), expressing the basis of V j−1 in terms of
that of V j , and is paired here for convenience of reference.

� j−1(x) = � j (x)Q j , (17.50a)

� j−1(x) = � j (x)P j . (17.50b)

These equations are crucial for our next task, which is to express (17.48) as an equation for
Q j . The wavelets we find are called semi-orthogonal because, out of three orthogonality
properties (Section 16.3.2) that may hold, namely that V j is orthogonal to W j and
both have orthonormal bases, it is practicable to insist upon the first, (17.48), but no
more.

The equation M Q = 0 To get an explicit equation for Q j we recall the following from
(16.49) of the previous chapter. Let F = [ f1 . . . f p] and H = [h1 . . . hq] be row vectors
of functions. Then their Gram matrix G = 〈F, H〉 is the p × q matrix of their inner
products, with (k, i) entry 〈 fk, hi 〉, and we have

〈FP, HQ〉 = PT〈F, H〉Q, (17.51)

where P, Q are real matrices for which the products FP and HQ exist. Now the semi-
orthogonal property may be written in terms of bases as 〈� j−1, � j−1〉 = 0. The idea
is then to express the two bases in terms of one by Equations (17.50), obtaining
〈� j P j , � j Q j 〉 = 0. By (17.51) this is the same as

MQ j = 0, where M = (P j )T 〈� j , � j 〉. (17.52)

Thus Q j is formed from vectors in the (column) null-space of M. Indeed, its columns are to
be a basis thereof according to the dimension information assembled for reference in Table
17.5. Note that the matrices P j , Q j , and the partition [P j |Q j ] each have independent

Table 17.5. Dimensions of some matrices involved in
computing spline wavelets, where v j = Dim V j = number of

vertices in jth subdivision, which equals 2v j−1 − 3 in the
uniform case and 2v j−1 − 1 in the non-uniform.

matrix dimensions (general j)

P j v j × v j−1

G j = 〈� j , � j 〉 v j × v j
M v j−1 × v j

Q j v j × w j−1
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columns (see Theorem 16.16). We derive some useful implementation details before
exemplifying the result.

Exercise Why are the columns of Q j a basis for the null-space of M (see Exercise
17.17)?

Finding G and M To determine the equation for matrix M we must first compute
the Gram matrix G j = 〈� j , � j 〉. But what should be the inner product? Importantly,
the formula (17.51) expressing M in terms of G holds independently of this choice,
and in the present context it works well to standardise on the integral definition of
Chapter 16,

〈 f, g〉 =
∫ ∞

−∞
f (x)g(x)dx .

We begin with the uniform case, from which the non-uniform edge-corrected case follows
by (17.47) with the aid of Formula (17.51). The basis functions at level 0 are Ni (x) =
Ni,4(x).

Theorem 17.35 (Uniform cubic B-splines) The inner products at level j are a constant
multiple of those at level 0. There are four nonzero distinct inner products at a given
level: 〈

φ
j
i , φ

j
k

〉 = 2− j 〈Ni , Nk〉 = 2− j c|i−k|, (17.53)

where [c0 c1 c2 . . .] = [2416 1191 120 1 0 . . . 0]/140. (17.54)

Proof (i) Because the averaging mask is not only stationary but uniform, φ
j
i (x) =

N0(2 j x − i), and so with the substitution t = 2 j x we obtain

〈
φ

j
i , φ

j
k

〉 = ∫ ∞

−∞
N0(2 j x − i)N0(2 j x − k)dx = 2− j

∫ ∞

−∞
N0(t − i)N0(t − k)dt

= 2− j 〈Ni , Nk〉.
On the other hand,

〈Nk, Ni 〉 =
∫ ∞

−∞
N0(x − k)N0(x − i)dx =

∫ ∞

−∞
N0(t)N0(t − (i − k))dt

= 〈N0, Ni−k〉,
but, since i and k may be interchanged in 〈Ni , Nk〉, the result depends only on |i − k|, and
so may be written in the form c|i−k|. Finally, cs = 0 for s ≥ 4 because then N0 and Ns are
not zero simultaneously, so the calculation simplifies to four inner products, determined
by simple integration, and involving only the polynomials of Table 17.3.

Example 17.36 (The uniform B-spline case with v j−1 = 4) After using Theorem 17.35
to give the appropriate 5 × 5 Gram matrix G we compute M = PTG (the bold entries
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are explained below).

1

8

⎛
⎜⎜⎝

4 1 0 0 0
4 6 4 1 0
0 1 4 6 4
0 0 0 1 4

⎞
⎟⎟⎠ 1

140

⎛
⎜⎜⎜⎜⎝

2416 1191 120 1 0
1191 2416 1191 120 1

120 1191 2416 1191 120
1 120 1191 2416 1191
0 1 120 1191 2416

⎞
⎟⎟⎟⎟⎠

= 1

1120

⎛
⎜⎜⎝

10855 7180 1671 124 1
17291 24144 18481 7904 1677

1677 7904 18481 24144 17291
1 124 1671 7180 10855

⎞
⎟⎟⎠ .

17.3.2 Finding Q with symmetry

Symmetry Notice that the matrix M in Example 17.36 above is not symmetric but it
is antipodal. That is, every element equals its antipodes, obtained by reflection through
the centre of the array. For example, the bold antipodal pair in M takes the (numera-
tor) value 7180, another pair is 7904. The property is also known as central symme-
try; or as 1/2 turn symmetry because the matrix remains unchanged under a 1/2 turn.
We’ll show that M is always antipodal and use this fact to shorten and simplify the
calculation of Q.

If we let α(A) denote the result of replacing every element of A by its antipodes,
then α(A) = A is equivalent to A being antipodal. As hinted, we may think of α

as 1/2 turn about the array centre. For a row or column vector this simply reverses
the order of elements, whilst a more general matrix has both rows and columns
reversed.

Example 17.37 (i) α[1 2 3] = [3 2 1],

(ii) α

[
0 1 2 3
6 5 4 0

]
=
[

0 4 5 6
3 2 1 0

]
(think of a 1/2 turn),

(iii) α :

[
1 2
3 4

]
→

[
3 4
2 1

]
→

[
4 3
1 2

]
(switch rows, then columns),

(iv) α

[
0 1 2 3
3 2 1 0

]
=
[

0 1 2 3
3 2 1 0

]
(antipodal case),

(v) α

[
1 0
0 1

]
=
[

1 0
0 1

]
, and in general α(In) = In .

α(A) as a matrix product We know from Section 8.2.1 that, if A is an r × s matrix and if Pn

denotes the result of reversing the order of rows in the identity matrix In , then α(A) may
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be obtained by multiplying A on the left by Pr and on the right by PT
s . Here is an example.

Notice that, in terms of rows Ri , the effect is: P3·Rows (R1, R2, R3) = Rows(R3, R2, R1).

P3 APT
2 =

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦
⎡
⎣a d

b e
c f

⎤
⎦[0 1

1 0

]
=
⎡
⎣ c f

b e
a d

⎤
⎦[0 1

1 0

]

=
⎡
⎣ f c

e b
d a

⎤
⎦ = α(A).

Further, since Pn is restricted to permutations of rows it is orthogonal, as observed in
Example 8.21(iii). In summary, we have

α(A) = Pr APT
s , and P−1

n = PT
n . (17.54)

Theorem 17.38 (i) A matrix product AB satisfies α(AB) = α(A)α(B), (ii) the property
of being antipodal is preserved under taking products, inverses, and transposes, (iii) if
the vector w is a solution of Ax = 0 then so is α(w).

Proof (i) Let A be r × s and B be s × t . Applying (17.54) we have α(A)α(B) = Pr

APT
s · Ps BPT

t = Pr ABPT
t = α(AB).

(ii) If A, B are antipodal then α (AB)= α(A)α(B) =AB, so AB is antipodal. Now let the
invertible matrix A be antipodal. Then I = α(A · A−1) = α(A) · α(A−1) = A · α(A−1),
implying that α(A−1) = A−1, whence A−1 is antipodal. The result for AT is left as an
exercise.

(iii) Let Aw = 0. Then α(A)α(w) = 0 by part (i), so if A is antipodal we have A · α(w)
= 0. that is, α(w) is also a solution of Ax = 0.

Corollary 17.39 (Antipodal masks) Suppose α(ith mask from last) = ith mask, for all
valid i, and level j of a subdivision scheme. Then, in wavelet notation, the matrices P j

and M j are antipodal and there is an antipodal solution for Q j .

Proof (i) The argument is helpfully illustrated in Example 17.36. We have P j = R j S j ,
where matrix S j is defined by the insertion of midpoints and is clearly antipodal (a useful
exercise), whilst R j is antipodal because of the antipodally related masks. By Theorem
17.38 the product P j and its transpose are antipodal.

(ii) Antipodal solution Suppose the level j basis functions are labelled φ1, . . . , φN−1

By the mask hypothesis the graph of φN−i is the reflection of that of φi in a vertical
axis through the centre of the interval [1, N ]. Therefore integration gives 〈φi , φk〉 =
〈φN−i , φN−k〉, which means that 〈� j , � j 〉 is antipodal, and hence by Theorem 17.38
that M = (P j )T〈� j, � j 〉 is antipodal also. Finally, by the last part of Theorem 17.38, the
solutions of Mx = 0 occur in antipodal pairs, and so can be assembled into an antipodal
solution for the matrix Q j .
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Solving for Q

Remarks 17.40 Let M be s × t and have independent rows. (i) We seek t − s independent
solutions of Mx = 0, to form the columns of Q (see Corollary 8.24). In our case t − s
is even, and our strategy is to look first for (t − s)/2 solutions, each having its first
nonzero entry one further on than the previous solution vector. Theorem 17.38 shows
their antipodes are also solutions, so we complete Q by appending the present matrix of
solutions after a half turn.

(ii) Let M have columns C1 to Ct . Then, because these are s-vectors, any set of s + 1
columns, Mc = [Cc . . . Cc+s], is linearly dependent; equivalently there is some nonzero
column vector z with Mcz = 0 (Theorem 7.7 shows how to find z). Suitably padding z
with zeros fore and aft gives a solution x = z of Mx = 0, with its first nonzero entry at
some position c′, possibly greater than c, and we look next at columns c′ to c′ + s. The
following Mathematica implementation (ALGO 17.2) allows t − s odd as well as even,
the last but one line creating the appropriate antipodal images. If M has exact rational
entries, so has the solution Q.

(iii) This strategy in principle could fail, either in finding (t − s)/2 solutions in the
echelon form demanded, or by the complete set admitting dependence. However, neither
problem occurred in the B-spline context. Should failure occur, we can always fall back
upon a standard package and proceed without the convenience of antipodality.

Exercise Use (17.54) to show that if A is antipodal then so is its transpose.

ALGO 17.2 Find an antipodal solution Q to MQ = 0 (Mathematica)

find Q[M−] := Module[{s, t, j, c, Q, y, a1, a2, Q2, sol, cols},
{ s, t } = Dimensions[M]; a2 = Ceiling[(t − s)/2];
Q = { }; c = 1;
Do[sol = {};

For[j = 1, (j ≤ s) & & (sol == {}), j++,
cols = Take[M, All, {c, c + j}];
sol = NullSpace[cols];]; (End For)

y = Join[Table[0, {c − 1}], sol[[1]]]; y = PadRight[y, t];
Q = Append[Q, y];
While[y[[c]] == 0, c = c + 1]; c = c + 1, a2]; (End Do)

Q2 = Take[Q, t − s − a2];
Q2 = Reverse[Transpose[Reverse[Transpose[Q2]]]];
Return[Transpose[Join[Q, Q2]]]; ];

Example 17.41 (Uniform cubic splines) Starting with v0 = 5, we use ALGO 17.2 to
solve for Q1 and hence determine a basis of W 0 in the form �0 = �1 Q1. The general
case may be found in Section 17.4 (Appendix). We refer to Table 17.5 of Section 17.3.1
for dimensions, and for matrix sizes. Thus v1 = 2v0 − 3 = 7 and w0 = v1 − v0 = 2;
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consequently MQ = 0 has just two independent solutions and there are two wavelet
basis functions. The matrices PT and M are 5 × 7, and so Q is 7 × 2. See Figure 17.30.

Q =

−7.18 0.
14.69 1.

−17.41 −5.22
12.62 12.62
−5.22 −17.41

1. 4.69
0. −7.18

M = PTG = 1

1120

10855 7180 1671 124 001
17291 24144 18481 7904 1677 124 1
1677 7904 18482 24264 18482 7904 1677

1 124 1677 7904 18481 24144 17291
100 124 1671 7180 10855

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Figure 17.30 The solution of MQ = 0, and consequent wavelet basis �1 Q1 of W0, in
the case v0 = 5 (uniform). The solution for Q is shown to two decimal places.

Example 17.42 (1) Non-uniform cubic B-spline Here we calculate for the end-corrected
case. We take v0 = 5 again, but this time v1 = 2v0 − 1 = 9 (Table 17.5), and w0 =
v1 − v0 = 4, so there are four wavelets. Let us review the relevant matrix dimensions
from Table 17.5:

(PT)5×9 G9×9 Q9×4. (17.55)

The Gram matrix G is 9 × 9 but because this is the non-uniform case we must convert
it from the uniform Gram matrix G11 of size 11 by taking

G = ETG11 E (17.56)

(see (17.47) and (17.51)), where E11×9 is the identity matrix I9 with a row
[2 − 1 0 . . . 0] prefixed and the reverse of this row appended. Figure 17.31 gives the
result, using ALGO 17.2 to find Q.

(2) An aide-mémoire In the next section it will be very important that the block matrix
[P j |Q j ] is square, in fact invertible. The following easily remembered picture shows
how the respective dimensions ensure squareness.

[P j |Q j ] = v j P j Q J (w j−1 = v j − v j−1)

v j−1 w j−1
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Q1 =

22.36 0.0. 0.
0.
1.

0.95.45 1.5
−131.6 6.14 0.

64.94 −15.53 −5.87 1.
−14.06 13.87 13.87 −14.06

1. −5.87 −15.53 64.94
0. 1. 6.14 −131.61
0. 0. 1.5 95.45
0. 0. 0. 22.36

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

M = PTG = 1

1120

116506 −17178 8152 1679 01124 0
−17632 25989 24140 18481 7904 1677 124

126 1676 7904 18482 24264 18482 7904
0 1 124 1677 7904 18481 24140

000 1 124 1679 10855

⎡

⎣

⎢
⎢
⎢

0
1 0

1676 126
25989 −17632

−17178 116565

⎤

⎦

⎥
⎥
⎥

Figure 17.31 Matrix Q1, and consequent four basis wavelets for W 0. Notice that the
last two columns of Q1 are the first two reversed, because we have, as we may, taken an
antipodal solution for Q1 (see Corollary 17.38).

17.3.3 The filter bank and curve editing

The filter bank The idea of a filter bank was first introduced in Section 16.3.1. We now
have in place the components of a wavelet filter bank for B-splines. This will enable us,
as discussed, to edit B-spline curves at any chosen scales independently. In the present
notation a filter bank is a collection of pairs of linear transforms defined by filter matrices
A j : V j → V j−1 and B j: V j → W j−1, providing conversion across levels of detail. They
fit together in Figure 17.32, and invert the action of P j and Q j , as recalled in Equations
(17.57) to (17.59) below.

Notation review c j is a column vector whose length is the dimension v j of V j . The
elements y of c j may be extended to coordinate pairs (x, y). In either case the basis
function φ

j
i (t) is the limit of the hat function e j

i as subdivision is repeated with mask
(17.46). In calculation we stop at some level J judged sufficiently accurate, and represent
φ

j
i as the column vector of values at mesh points. We assemble the columns φ

j
i for fixed

(a)
Vj

V j−1

W j−1
W j−2 W 0

V1 V 0…

(b) c j
c j−1

d j−1
d

j − 2
d0

c1 c0…Aj

B j

Figure 17.32 Representations of a filter bank: (a) how the filter bank relates the spaces
{V j } and {W j }, (b) transforming explicit vectors c j . We recover c j from the filtered
values c j−1 and d j−1 by Equation (17.59): c j = P j c j−1 + Q j d j−1.
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Table 17.6. Summary of relations leading to a filter bank. The lines specific to the case
of B-splines (i.e. specifying semi-orthogonality), are lines 2 and 6.

item comment

V 0 ⊆ V 1 ⊆ V 2 ⊆ · · · we start with this nest of spaces (multiresolution)
V j = V j−1 ⊕ W j−1 W j−1 = {v ∈ V j : 〈v, x〉 = 0 for all x ∈ V j−1}

V j has basis � j (x) = [φ j
i (x)], 1 ≤ i ≤ v j or 0 ≤ i ≤ v j − 1

c j defines element � j (x)c j = �i c j
i φ

j
i (x)

� j−1(x) = � j (x)P j refining relations (defines Pj )
� j−1(x) = � j (x)Q j 〈V j−1, W j−1〉 = 0 defines Q j , whence � j−1(x)

W j−1 has basis � j−1(x)
d j−1 defines an element � j−1(x)d j−1

c j−1 = A j c j and d j−1 = B j c j analysis filters A j , B j

c j = P j c j−1 + Q j d j−1 (recovery of c j ) synthesis filters P j , Q j

j into a matrix � j which replaces � j (t). Thus the matrix product � j · c j is correctly a
linear combination (or pair of linear combinations) of these columns. To recapitulate:

�i is obtained by recursive subdivision.

P j is the subdivision matrix and determines Q j by the semi-orthogonal wavelet condition
that spaces V j and W j be orthogonal. Then we can use the following three standard
formulae, established earlier (Section 16.3.1) for filter banks in general. One may say
that A and B are called analysis matrices or filters because they take things apart; P
and Q are synthesis filters because they put parts together. A fuller résumé is given in
Table 17.6. [

A j

B j

]
= [

P j |Q j
]−1

, (17.57)

c j−1 = A j c j , and d j−1 = B j c j (analysis), (17.58)

c j = P j c j−1 + Q j d j−1 (synthesis). (17.59)

Which B-spline? We standardise henceforth on the slightly non-uniform cubic B-spline
of Section 17.2.5, referred to as end-corrected, and designed to be tangent to the control
polygon at its end-points. In this case we noted that v j+1 = 2v j − 1. This implies that,
if v j = 2 j + 1 for any given level j, then the same formula holds for every level. That is
the option we take for simplicity:

v j = 2 j + 1 (v j = Dim V j ). (17.60)
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Curve editing at different scales

We shall be concerned with plane parametric curves (and surfaces in Section 17.5), but
firstly we suppose we are given a curve y = f (x) specified up to level L. That is, f (x)
may be written as a linear combination of level L basis functions

f (x) =
∑

i
cL

i φL
i (x) (= �L (x) · cL ). (17.61)

The actual control points are then (i · 2−L , cL
i ), where the heights cL

i form the com-
ponents of a vector cL whose length is vL , the dimension of V L . The problem is to
modify the curve (17.61) (and its parametric relatives) at one level, whilst leaving it
intact in other respects. In particular, how may we edit the overall sweep but keep the
local character/fine detail, or change the local character whilst preserving the overall
sweep?

(a) Changing the sweep We derive the necessary formula and apply it to a 2D anima-
tion. The formula and proof apply equally whether the rows of c j are single scalars, or
coordinate pairs/triples.

Theorem 17.43 The overall change �cL in the curve height (17.61) due to a change
�ck at level k is given by

�cL = P L P L−1 · · · Pk+1(�ck). (17.62)

Proof In this calculation the ds will cancel each other, as indicated in the formula asserted.
We have, from level k up to level k + 1 in the filter bank of Figure 17.32,

�ck+1 = new ck+1 − old ck+1 by definition

= [Pk+1(ck +�ck) + Qk+1dk] − [Pk+1ck + Qk+1dk] by (17.59)

= Pk+1(�ck).

Repeating this argument for levels above the (k + 1)st, we arrive at the relation (17.62).

Example 17.44 (Animation ‘Nessie arises’) We use Theorem 17.43 to change the overall
sweep of an originally supine ‘Nessie’ (component vector c5, Figure 17.33) to the raised
position of the template in Figure 17.34, whose component vector is �c2 = [0, 2, 0, 6, 4].
To do so we first compute the effect of �c2 on c5, namely �c5 = P5 P4 P3�c2. Let � j

c5 (Nessie's control polygon)
heights {i Mod 2: 1 ≤ i ≤ 33} Φ5.c5   (Nessie at rest)

Figure 17.33 Inventing Nessie.
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∆c2  (sweep control polygon)
heights {0, 2, 0, 6, 4} Φ2.∆c2   (sweep template)

Figure 17.34 Preparing Nessie animation, from polygons to B-spline versions.

stand for the approximation of the basis functions in � j (x) by subdivision up to level 8.
Then the successive frames of the animation are the curves ness(t) = �5 · (c5 + t�c5),
say for t = 0, . . . , 1. See Figure 17.35.

t = 1/3 t = 2/3 t = 1

Figure 17.35 Stages in Nessie animation: the curve ness (t) = �5 · (c5 + t�c5).

(b) Smoothing a curve Here we use the filter bank matrices A j : c j → c j−1 to smooth
over several levels in succession: c8 → c7 → · · · → c2 → c1 (see Figure 17.37). To
determine A j we use ALGO 17.2 to solve the equation M Q j = 0 of (17.52) and then
invert [P j |Q j ] as recalled in (17.57). (This will be done for all cases simultaneously in
Section 17.4.)

Example 17.45 First we make a wobbly figure 2 on which to experiment, then we
perform the smoothing. The 2 will be specified in parametric form by a control polygon
c8. Thus c8 lists control points rather than just their heights, and now our curves can curl
back upon themselves as required. We recall that Rows [u, v, . . .] is a matrix with rows
as listed, and define

two a3 = Rows [(2, 14), (14, 15), (14, 17), (3, 1), (1.5, 1.5), (4, 5), (9, 2),
(12, 0.8), (18, 2)],

wobble a8 = {(t, 10 Cos[π t/4]) : t = 1, 2, 3 . . . , 257},
wobbly two c8 = a8 + P8 · P7 · P6 · P5 · P4 · a3 (85/1000).

We obtain smoother versions of the wobbly figure of Figure 17.36, represented in
parametric form by c8. We follow a path through the filter bank diagram by first computing
the analysis filters A8, A7, . . . , A3. The result is shown in Figure 17.37.
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a3, the template for 2 The B-spline Φ3 . a3 The wobbly 2: Φ3 . c3

Figure 17.36 Creating the wobbly 2.

c7 c6 c5

c4 c3 c2

Figure 17.37 Using the filter bank to smooth a wobbly 2 through levels c8 down to c2.

It is hard to distinguish between c8 and c7, but by c6 there are clear signs of smoothing.
From c6 to c5 there is a sudden shakeout of wrinkles, with slight improvement by c4. A
Niquist view (see Section 14.3.3) is that c5 has only 33 components, so it cannot sustain
the vibration frequency offered by the wobble at level 8. The image remains visually
constant down to c3, by which time the best possible job is done because at the next
level, c2, the ‘2’ looks significantly different though still recognisable. By the last level
(not shown) its identity has gone, leaving only a curved line.

(c) Changing the character at different scales We explore changing the character of
various facial features, using a small library of ‘characters’ adaptable to different scales.
The features will be simultaneously displayed B-splines of the end-corrected type upon
which we have standardised. Likewise, all basis functions will be subdivided down to
level 8.

Example 17.46 (The face) Below are the control polygons for the unchanged face, where
Rows [u, v, . . .] is a matrix with rows as listed. We keep symmetry, taking the second
eye and brow to be the reflections of the first in the y-axis. A polygon pol with 2 j + 1
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(a) (b)

Figure 17.38 (a) Control polygons for the face and features of Example 17.46, (b) the
B-spline version that results.

vertices contributes as feature the B-spline � j · pol.

face = Rows[(0, 1), (1, 1), (4, 2), (5, 10), (0, 11), (−5, 10), (−4, 2), (−1, 1), (0, 1)],
mouth = Rows[(0, 2), (2, 2.5), (0, 3), (−2, 2.5), (0, 2)],
eye1 = Rows[(−2, 7), (−0.8, 7.5), (−2, 8), (−3.2, 7.5), (−2, 7)],
nose = Rows[(0, 4), (1/2, 4), (0, 6), (−1/2, 4), (0, 4)],
brow1 = Rows[(−3, 8), (−2, 8.75), (−1, 9)].

In Figure 17.38 we show firstly the control polygons great and small that define the initial
face outline and features, and secondly the face as an amalgam of the specified B-spline
components.

The library Each item except curls is a sequence of 257 = 28 + 1 plane points. A
subsequence of n copies of the origin (0, 0) is denoted by 0n . These enable us to line up
effects on the face outline at the desired positions.

curls = {
1
2 (2 − t/16 + cos(π t/4), sin(π t/4))

}
1≤t≤64,

hair = 096, curls, 097,

lash = {
(t/512, 1

10 cos(π t/d))
}

1≤t≤257 with d = 4,

lightlash = lash with d = 8,

beard = 1
4 curls, 0129, 1

4 curls

Armed with these items we produce the three variations shown in Figure 17.39, by
changing the character at scales appropriate to the various cases.

Conclusions

1. We have changed the character of the original face of Figure 17.38(b) in regard to hair, brows
(twice) and beard; the respective scales were j = 4, 1 and 7.

2. A contribution � j · pol, whatever the scale, is a B-spline approximated as a polygon on
v8 = 257 vertices. This is consequent upon the choice of representing � j by approximation
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(a) Face + hair (b) Brows thickened (c) Beard added, brows lightened

Figure 17.39 The face with some features changed in character.

down to level L = 8. In practice even the relatively long face outline appears satisfactorily
smooth; otherwise we would try L = 9, and so on.

3. Clearly, much more could be done with this example. For instance, we could easily extend
the library by a design for teeth. On the other hand, the character of hair, brows and beard can
be modified further by changing parameters such as magnitude and frequency (already done
with the brows). To assist the reader, we confirm some details in Table 17.7.

Table 17.7. The B-spline components in Example 17.46. The symbol Pjk denotes the
matrix product P j P j−1 · · · Pk generated by the application of (17.62).

Figure Components

original face, 17.38(b) �3 · face, �2 · mouth, �2 · eye1, �2 · eye2, �2 ·
nose, �1 · brow1, �1 · brow2

change of hair, 17.39(a) �3 · face → �8 · (hair + P84 · face)
change of brow, 17.39(b) �1 · browα → �8 · (lash + P82 · browα) (α = 1, 2)
change of brow/beard, 17.39(c) lash → lightlash, �8 · (hair + P84 · face) →

�8 · (hair + beard + P84 · face)

Note: hair is obtained by changing the character of the face outline in an appropriate region of
the parameter.

17.4 Appendix: band matrices for finding Q, A and B

We have shown how to compute transform matrices P, Q, A, B at each level j for a B-spline
wavelet filter bank, and applied them to a class of problems. A key tool was recursive
subdivision (see Section 17.2.2). We found Q by solving MX = 0 (see (17.52)) where M
is the product of the refining/subdivision matrix P j , transposed, and a matrix G of inner
products of basis functions.

Our objective now is a solution valid simultaneously for all values of j. The first thing
to note is that the matrix M is banded, that is, its nonzero entries are confined to a band
around the main diagonal. But there is more to it than this (besides antipodality); we will
succeed by reducing almost all matrix products we encounter to the same calculation
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as multiplying two polynomials (this is Theorem 17.51). Then the simple observation
that a polynomial product of the form g(x)g(−x) has no odd powers leads to an almost
complete solution of M X = 0 in Section 17.4.2. This is applied to uniform and non-
uniform B-splines in Section 17.4.3, and we conclude with the problem of inverting
[P|Q] once we have got it.

17.4.1 Band matrices and polynomials

In this section we define and gather needed results, about polynomials and the related
matrices we’ll work with. In a general polynomial f (x) the coefficient of xi will be
denoted by fi . Then in a polynomial product h(x) = f (x)g(x) the term hi xi equals the
sum of all products ( f j x j )(gk xk) with total degree j + k equal to i. For example, if,
as we typically suppose, f, g have respective degrees r, s then h0 = f0g0, h1 = f0g1 +
f1g0, . . . , hr+s = fr gs . For the connection with matrices we may visualise these products
by writing the reversed coefficients of g(x) below those of f (x), with an overlap:

f0 . . . fi . . . fr

gs . . . gi . . . g0

implying hi = f0gi + f1gi−1 + · · · + fi g0. (17.63)

These expressions will shortly reappear as elements in matrix products, providing a usable
connection in our special case. Firstly we need the following observation. It relates to
polynomials such as 1 + 3x + 3x2 + x3 which are symmetrical (antipodal), but it is not
restricted to binomial powers and Pascal’s Triangle (for these see Section 9.1.4).

Lemma 17.47 (a) If polynomials f (x) and g(x) are symmetrical then so is their product
f (x)g(x), (b) for any polynomial f (x), the product f (x) f (−x) has no odd powers.

Proof (a) Let f (x), g(x) have respective degrees r, s and product h(x). Define the re-
ciprocal f∗(x) = xr f (1/x). This is f with the order of coefficients reversed, so ‘f is
symmetrical’ means f = f∗. Considering products,

( f g) ∗ (x) = xr+s f (1/x)g(1/x) = xr f (1/x)xs g(1/x) = f∗(x)g∗(x). (17.63b)

Hence f∗ = f and g∗ = g together imply ( f g)∗ = f g, as required. For (b) we write
a(x) = f (x) f (−x) = a0 + a1x + · · · Then a(−x) = f (−x) f (x) = a(x), and equating
coefficients of x2i+1 in the equation a(−x) = a(x) gives (−1)2i+1a2i+1 = a2i+1, whence
a2i+1 = 0.

Examples 17.48 (a) The product of symmetrical polynomials (1 + 7x + x2)(1 + 2x +
2x2 + x3) = 1 + 9x + 17x2 + 17x3 + 9x4 + x5 is symmetrical. (b) Let h(x) = (1 +
x)10. Then h(x)h(−x) = (1 + x)10(1 − x)10 = [(1 + x)(1 − x)]10 = (1 − x2)10, with no
odd powers. Less easily predictable is the disappearance of the odd terms in (1 + 2x −
5x2 + x3)(1 − 2x − 5x2 − x3) = (1 − 14x2 + 2x4 − x6).
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Why band matrices?

Definition 17.49 A matrix G is banded with polynomial g(x) = g0 + g1x + g2x2 +
· · · + gnxn and shift d if the first row of G is the sequence g0g1g2 . . . gn followed by
zeros and each row is the previous one shifted d places to the right. For example, the
matrix below is banded with polynomial 1 + 2x + 5x2 + x3 and shift 2. As usual a blank
entry denotes zero. ⎡

⎣1 2 5 1
1 2 5 1

1 2 5 1

⎤
⎦

A look at this matrix helps us to see that, given n and d, the dimensions of Gr×c are not
independent, in fact

c = n + 1 + (r − 1)d. (17.64)

Now consider the matrix equation below, in which G is banded with shift 1.

[ f0 . . . fr 0 . . . 0]

1 × m

⎡
⎢⎢⎢⎣

g0 g1 gs

0 g0 gs−1 gs

. . . . . .
g0 g1 gs

⎤
⎥⎥⎥⎦

m×n

= [h0 . . . hr+s 0 . . . 0].
1 × n

(17.65)

The definition of matrix multiplication tells us that hi = [ f0 . . . fr 0 . . . .0] [i th
column of G]. For example h0 = f0g0, h1 = f0g1 + f1g0, . . . , hr+s = fr gs , whilst for
general i:

hi =
∑

k
fk gi−k (note: the subscripts add up to i)

= coefficient of xi in h(x) = f (x)g(x), by (17.63a)

Thus in (17.65) we are performing polynomial multiplication in matrix form. The next
observation is that, if vector f is shifted d places, the corresponding polynomial is xd f (x).
But xd f (x) × g(x) = xdh(x), so the vector h is shifted d places too. Applying this row by
row with d = 2 gives the example below, and general d gives Theorem 17.51 following
it.

Exercise A band matrix G has polynomial (1 + x)3, shift 2, and 4 rows. Compute the
number of columns by (17.63) then verify by writing out the matrix.

Example 17.50 Here we use the important fact that row i of a matrix product H = FG
equals (row i of F) ·G, to deduce that since F below has shift 2, so does H (the notation
is carried over from (17.65)).[

f0 f1 · · · fr−1 fr 0 0 0 0
0 0 f0 f1 · · · fr−1 fr 0 0
0 0 0 0 f0 f1 . . . fr−1 fr

][
G

]
=
[

h0 . . . hr+s 0 0 0 0
0 0 h0 . . . hr+s 0 0
0 0 0 0 h0 . . . hr+s

]
.
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Theorem 17.51 (Band multiplication) Let F, G be banded with respective polynomials
f, g but shifts d and 1. Then FG (if it exists) is banded with shift d and polynomial
f (x)g(x).

Example 17.52 (i) (d= 1) We take f (x) = (1 + x)2 and g(x) = (1 + x)3. Then Theorem
17.51 tells us that, since f (x)g(x) = (1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x + 1,

⎡
⎣1 2 1

1 2 1
1 2 1

⎤
⎦
⎡
⎢⎢⎢⎢⎣

1 3 3 1
1 3 3 1

1 3 3 1
1 3 3 1

1 3 3 1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣1 5 10 10 5 1

1 5 10 10 5 1
1 5 10 10 5 1

⎤
⎦ .

3 × 5 5 × 8 3 × 8

Notice that the nonzero coefficient sequences were all symmetrical, as predicted by
Lemma 17.47(a). (ii) (d = 2) Now consider the following product, for which a shortcut
is clearly desirable.

⎡
⎣1 2 3 4

1 2 3 4
1 2 3 4

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 3 −4
1 −2 3 −4

1 −2 3 −4
1 −2 3 −4

1 −2 3 −4
1 −2 3 −4

1 −2 3 −4
1 −2 3 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We try for a band matrix solution. The first matrix F is banded with polynomial
f (x) = 1 + 2x + 3x2 + 4x3 and shift 2, whilst the second, G, is banded with polynomial
f (−x) and shift 1. By Theorem 17.51 the result is banded with polynomial h(x) =
f (x) f (−x) and shift 2. Further, Lemma 17.47 tells us that h(x) has only even powers,
which means that in multiplication we need not even calculate the coefficents of odd
powers. In fact such a product may be evaluated as the difference of two squares, h(x) =
(1 + 3x2)2 − (2x + 4x3)2 = 1 + 2x2 − 7x4 − 16x6. Thus the first row of H3×11 is
[1 0 2 0 − 7 0 − 16 0 . . . 0].

Products of truncations

We shall need products of polynomial band matrices which are truncated in the sense
of the first and last few columns being removed. The first case we deal with has been
settled by other means, but now we give it a new perspective before proceeding further.
A small version suffices, in which the transposed refining matrix PT is a product M1 M2,
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say (transposing Example 17.30),

8PT =
⎡
⎣2 1

1 2 1
1 2

⎤
⎦

3×5

⎡
⎢⎢⎢⎢⎣

1
2 1
1 2 1

1 2
1

⎤
⎥⎥⎥⎥⎦

5×3

=
⎡
⎣4 1 0

4 6 4
0 1 4

⎤
⎦

3×3

.

The entries obviously have something to do with the coefficients in the expansions
of (1 + x)2 and (1 + x)4. In fact the left hand matrices are distinct trunctations of band
matrices with polynomial (1 + x)2, the first band matrix having shift d = 2. The question
is whether the product could have been abstracted from a band matrix with polynomial
(1 + x)4 and d = 2. The answer is YES because there are enough zeros around. Consider
the product with truncated parts restored, but judiciously partitioned:

[
1 2 1

1 2 1
1 2 1

]
3×7

⎡
⎢⎢⎢⎢⎣

1 2 1
1 2 1

1 2 1
1 2 1

1 2 1
1 2 1

1 2 1

⎤
⎥⎥⎥⎥⎦

7×9

=
[

1 4 6 4 1
1 4 6 4 1

1 4 6 4 1

]
3×9

.

This has the partitioned form

[
L1 M1 N1

]
1×3

⎡
⎣ x 0 x

x M2 x
x 0 x

⎤
⎦

3×3

= [
x M1 M2 x

]
1×3

, (17.66)

which shows that to find the product of such truncated matrices we may simply multiply
the corresponding polynomials to find the product of the non-truncated (enlarged) ver-
sions and take M1 M2 as the middle columns of the resulting band matrix, as in (17.65),
where ‘middle’ refers to the column positions taken by M2 within its enlargement. In
particular,

(Uniform B-splines)PT is obtained by deleting the first three and

last three columns of the band matrix with polynomial (17.67)

(1 + x)4/8, shift 2, and given number of rows.

17.4.2 Solving the matrix equation FX = 0

We’ll see that determining Q from the equation MQ = 0 of (17.52) can be done in
two parts, corresponding to (i) an end-point correction involving the first three or
four columns of Q, and (ii) the rest. Although part (ii) can involve an arbitrary num-
ber of vertices, there is at least one very simple solution, given by the result now
stated.
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Theorem 17.53 Let Fa×b be a band matrix with polynomial f (x) and shift 2. Suppose
a < b and that f0 and fn are nonzero. Then a set of (b − a) distinct solutions of the
equation F X = 0 is given by the alternate interior columns of the b-rowed band matrix
with polynomial f (−x) and shift 1. That is

[− f1 f0 0 . . . 0], [− f3 f2 − f1 f0 0 . . . 0], . . . , [0 . . . 0 ± fn ∓ fn−1].

Exercise Verify that the alternate interior columns are as stated.

Proof of theorem Consider the product FG = H , where g(x) = h(−x). All rows and
columns are to be numbered starting from zero. We are given the shifts d = 2 for
F, d = 1 for G, and hence d = 2 for H. Also, and crucially, hs = 0 when s is odd, by
Lemma 17.47(b). Therefore we may write

F · (column 2i + 1of G) = column 2i + 1 of H =

⎡
⎢⎢⎣

h2i+1

h2i−1

h2i−3

· · ·

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
· · ·

⎤
⎥⎥⎦ .

Thus the odd-numbered columns of G (i.e. the alternate interior ones) are solutions of FX
= 0. They are distinct because f0 and fn are nonzero. Let G be b × c. It remains to verify
that the number (c − 1)/2 of odd columns is equal to b − a. But since F is a × b with shift
2 we have from formula (17.64) that b = n + 1 + 2(a − 1) = n + 2a − 1 and, since G is
b × c, that c = (n + 1) + 1(b − 1) = n + b. Eliminating, we obtain b − a = (c − 1)/2,
as required.

Example 17.54 Solve the equation FX= 0, where F =
⎡
⎣1 2 3

1 2 3
1 2 3

⎤
⎦

3×7

.

Solution The matrix G of Theorem 17.53, with polynomial g(x) = f (−x), and the
corresponding matrix S of columns that are solutions of FX = 0, are given by

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 3
1 −2 3

1 −2 3
1 −2 3

1 −2 3
1 −2 3

1 −2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1 3
−2

1 3
−2

1 3
−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the rows of Fa×b are linearly independent, the number of independent solutions to
be found is b − a = 7 − 3 = 4 (see Examples 8.25(iv)). If the four solutions we already
have are independent, then the task is complete. But independence is established by the
observation that there are four rows in S which may be combined to form −2 times the
identity I4, so we are done.
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Remarks 17.55 (i) Although the four solutions in the example above turned out to be
independent, this is not guaranteed by Theorem 17.53. In fact, a counter-example is given
by F3×8 based on f (x) = p + qx + px2 + qx3. The five solution vectors we obtain are
not independent. However, the cases we want in practice do have independence, and
Theorem 17.53 presents the correct number of solutions.
(ii) According to Corollary 8.24, the number of independent solutions equals the nullity
of F, that is b − r (F), where r (F) may be defined as the number of nonzero rows in
any echelon form of F. However, the d-fold shift ensures that F is already in echelon
form, so, in the present polynomial banded case, the number of independent solutions of
F X = 0 is simply b − a.

Exercise Find a nonzero linear combination of the solutions in Remark 17.55(i) which
equals the zero vector.

17.4.3 Application to cubic B-splines

We aim to compute in general the matrix Q = Q j expressing a wavelet basis in terms
of the cubic spline basis, which at level j = 0 is {Ni ≡ Ni,4(x) ≡ N0,4(x − i)}. The
semi-orthogonality condition has identified the columns of Q as a maximal sized set of
independent solutions of the matrix equation (PTG)X = 0, where G is the matrix of
inner products of the Ni (see (17.53)).

Application 1: uniform splines

We begin with the solutions of F X = 0 offered by Theorem 17.53, then extend slightly
to get a complete set for Q. Let us look at the forms of PT and G.

The matrix PT Prompted by (17.67) we set p(x) = (1 + x)4/8 so that we may write the
antipodal PT, with L (= v j−1) rows, in the form

PT =

⎡
⎢⎢⎢⎢⎣

p3 p4

p1 p2 p3 p4

0 p0 p1 p2 p3 p4

0 0 0 p0 p1 p2 p3 p4 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦

L × 2L−3

(17.68)

The matrix G According to (17.53) the Gram matrix G at level j has (i, k) element
2− j c|i−k|, where [c0c1c2 . . .] = 1

140 [2416 1191 120 1 0 . . . 0], involving only four distinct
nonzero values. The symmetry between i and k means that the rows after the first three
are successive shifts of the 7-vector [c3c2c1c0c1c2c3].

We relabel this as a vector g = [g0 . . . g6] = 1
140 [1 120 1191 2416 1191 120 1], so

that the middle rows (all but the first and last three) of G constitute a band matrix with
polynomial g(x) and shift 1. Finally, since the solution of (PTG)X = 0 does not depend
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on the constant factor 2− j , we omit this and write

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g3 g4 g5 g6

g2 g3 g4 g5 g6

g1 g2 g3 g4 g5 g6

g0 g1 g2 g3 g4 g5 g6

g0 g1 g2 g3 g4 g5 g6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2L−3)×(2L−3).

(17.69)

Most of PTG is accounted for by the argument that the middle L − 6 rows of PTG
equal the middle L − 6 rows of PT, times G, namely a banded matrix with polynomial
h(x) = p(x)g(x), where, dropping constant multipliers, the coefficients in h(x) form the
vector

h = [1 124 1677 7904 18482 24624 18482 7904 1677 124 1]. (17.70)

Considering now the first three rows of PT, we can use (17.63) to identify all elements
of the corresponding rows of H (a case of matrix M in (17.52)) with entries taken from
the vector h, except for the elements ai , b j :

the L − 6 
middle rows.

a0 a1 a2 h9 h10
b1 b2 b3 h7 h8 h9 h10
h2 h3 h4 h5 h6 h7 h8 h9 h10
h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10
0   0    h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10..........................................................................

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10
h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

(antipodal images of first 3 rows)

H = 

Observe that PT, G and hence H, are antipodal by Theorem 17.38. This entails h(x) being
symmetric, which it is because p(x) and g(x) are symmetric (Lemma 17.47). Notice that
both PT and H are L × (2L − 3) for some L. Therefore by Remark 17.55(ii) we must
find (2L − 3) − L = L − 3 independent solutions to H X = 0.

The L − 9 middle solutions Recall that H X = 0 is equivalent to X satisfying Ri X = 0
for each row Ri of H. The matrix µ of middle rows of H has rank (2L − 3) − (L − 6) =
L + 3, and Theorem 17.53 gives us that many solutions from h(−x), of which the first
six are

[−h1 h0 0 . . . 0], [−h3 h2 − h1 h0 0 . . . 0], . . . , [0 h10 − h9 · · · − h1 h0 0 . . . 0].

This shows that all but the first six and last six solutions have a minimum of three leading
and three trailing zeros and hence satisfy H X = 0 in spite of any nonzero elements in the
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first three and last three columns of H. Thus far we have a total of L + 3 − 12 = L − 9
solutions, so there are six more to find.

The six end solutions We shall seek three solutions with respectively 0, 1, 2
leading zeros and as many trailing zeros as possible. Their antipodal images pro-
vide the remaining three. Now, because of shifting in the middle rows, the first eight
columns of H have only zeros after the seventh row, giving eight vectors of length 7
which must therefore be linearly dependent (Theorem 7.7), say u1C1 + · · · + u8C8 = 0.
Thus X1 = [u1 . . . u8 0 . . . 0]T satisfies H X = 0. Similarly, we guarantee to find X2 =
[0 v2 · · · v9 0 · · · 0] and X3 = [0 0 w3 . . . w10 0 . . . 0] as solutions, by considering re-
spectively eight and nine rows. ALGO 17.2 will find solutions in this form. Rewriting
the columns of Q as rows for compactness, we obtain

u1 u2 u3 . . . u6 −124 1 0 0 0 0 0 0 . . .

0 v1 v2 . . . v5 v6 v7 −124 1 0 0 0 0 . . .

0 0 w1 . . . w4 w5 w6 w7 w8 −124 1 0 0 . . .

band matrix with polynomial x3h(−x) and shift 2

antipodal image of the first three rows

where u, v, w are perturbations of the last few coefficients in h(x), varying more as we
move leftwards. For comparison, here are the entries of u rounded to integers, compared
with h; precise rational or accurate decimal answers are of course produced by ALGO
17.2, depending on the type of arithmetic used.

u −10 641 21 776 −25 835 18 822 −7999 1677 −124 1
h . . . −7904 18 482 −24 264 18 482 −7904 1677 −124 1

Scaling Although our solution is independent of scale, it may be useful to scale Q j by
a factor such as 2− j .

Application 2: end-corrected cubic B-splines

We seek the solution of (PTG)X = 0 with PT and G as adapted from the uniform case, for
edge-correction. We saw in Remarks 17.32 that P acquires an additional row [1 0 . . . 0]
at the start and [0 . . . 0 1] at the end. These become columns in the L × (2L − 1) matrix
PT . Both P and PT are still antipodal.

As previewed in Example 17.42, the new Gram matrix is ETGE, where G is the uniform
case of size 2L + 1 and E is the identity matrix I2L−1 preceded by [2 −1 0 . . . 0] and
followed by its reverse.
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u1 u2 u3 u4 u5 u6 −124 0 ...0000

0 0 0

0 0

0

001

1

10 v 1 v 2 v 3 v 4 v 5 v 6 v 7 −124 0 ...

0 w1 w2 w3 w4 w5 w6 w7 w8 −124 0 ...

z1 z 2 z3 z 4 z 5 z 7 z 7 z 8 z9 −124 1 0 ...

band matrix with polynomial x3 h(−x) and shift 2
antipodal image of the first four rows 

0

000

Figure 17.40 The matrix QT, with first four rows non-standard.

The only change in the form of G is to the submatrix formed by the first three rows
and columns (and its antipodal image). Pre-multiplying by PT to get the new version,
say M = PTG, we obtain a matrix which differs from the uniform version H above only
in replacement of the top left 3 × 3 submatrix with one of dimensions 3 × 4, the extra
column being part of one at the start of M.

The extra column means that we have to begin our standard solutions one double shift
further on and so we use ALGO 17.2 to find four special solutions rather than three. As
observed, this is a small price to pay when the solutions run to many more. The matrix
QT in Figure 17.40 shows how to specify a solution of any size, taking into account that
it is antipodal.

As in the uniform case, the special solutions found by find Q (ALGO 17.2) have
last two entries −124, 1, and as a whole they are recognizably perturbations of the
last few coefficients in h(x). Here, finally, is ALGO 17.3 to output the solution for
arbitrary j.

ALGO 17.3 Find Q at arbitrary level j for non-uniform
B-splines (Mathematica)

width = 2ˆj + 1;
If[j ≤ 4, Return[findQ(j)]; (ALGO 17.2)
z = {0, 0, 1, −124, 1677, −7904, 18482, −24264, 18482, −7904, 1677, −124, 1};
z = PadRight[z, width];
H = Transpose[findQ [(j = 4 )]]; (Solve MX = 0 in small case only)
H2 = PadLeft[Take[H, −4], {4, width } ];
H = PadRight[Take[H, 4], {4, width } ];
Do[z = RotateRight[z, 2]; H = Append[H, z], {2ˆ( j − 1) − 8} ];
H = Join[H, H2];
Return[Transpose[H]]; ];

Figure 17.41 shows the wavelet basis in the case j = 3.
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Figure 17.41 End-corrected wavelet basis in the end-corrected case. Note the degree of
homogeneity away from the first and last.

Application 3: inverting [P|Q] to obtain A, B

1. Rescaling Q If the determinant of [P|Q] = [P j |Q j ] is out of range for successful inversion,
this may be remedied by rescaling Q to λQ, where λ is some positive number. The result is
that A is unaffected but B is scaled by λ−1, because

[P|Q]

[
A
B

]
= I ⇔ PA + QB = I ⇔ PA + (λQ)(λ−1 B) = I. (17.72)

2. Interleaving The matrix [P|Q] is sparse in the sense that its nonzero elements are restricted to a
relatively narrow band around the main diagonal. However, this band becomes narrower still if
the columns of P and Q are interleaved. On a modest 500 MHz computer running Mathematica
the inversion time for [P|Q] of size 1025 was reduced from 164 to 29 seconds, a factor of
about 5.5. A routine supplied with the actual band dimensions after interleaving, and using
triangular decomposition, would probably be fastest (see e.g. Golub & van Loan, 1996).

3. Getting the true inverse We began with a modified [P|Q]; how do we get the inverse we
actually want? The answer is to de-interleave the rows, as the following argument shows. Let
[P|Q] have size 2d + 1 and let S be the result of interleaving the rows of the identity matrix
I2d+1, then

we interleave the columns, obtaining [P|Q]ST (see above Theorem 8.20)
we invert the result, obtaining (ST)−1[P|Q]−1

which we should pre-multiply by ST. But, since S performs permutation only, we have from
Example 8.21(iii) that ST = S−1. Thus we should de-interleave the rows.

ALGO 17.4 Interleaving routines (Mathematica)

Interleave rows of pq (‘ILrows’) De-interleave rows of pq
d = (Length[pq] − 1)/2; d = (Length[pq] − 1)/2;
m = Table[0, {2d + 1}, {2d + 1}]; A = Take[pq, {1, 2d + 1, 2}];
m[[Range[1, 2d + 1, 2] ]] = Take[pq, d + 1]; B = Take[pq, {2, 2d, 2}];
m[[Range[2, 2d, 2] ]] = Take[pq, −d]; Return[Join[A, B]];
Return[m]; Interleave columns of pq (‘ILcolsL’)

Transpose[ILrows[Transpose[pq]]];

Further developments For analysis of subdivision via eigenvalues and -vectors see
Farin (2002). For using connections between B-splines and Bézier polynomials to convert
scanned data to polynomials, see Stollnitz et al. (1996).



17.5 Appendix: surface wavelets 743

(a) (b) (c) (d)

Figure 17.42 (a) Original face as bicubic tensor-product B-spline surface, (b), (c), (d):
face changed at respectively narrow, intermediate, and broad scale. (Images by Stollnitz
et al., 1996.)

17.5 Appendix: surface wavelets

How should the subdivision method for B-splines be generalised to two dimensions for
multiresolution? A natural first approach is to consider how a 1D transform is extended
to 2D (see Section 15.1.1) and look for an analogy in the spline context. This suggests
we start with two spline bases {N j,m(s)}0≤ j≤M and {Nk,m(t)}0≤k≤N , and form a 2D basis
consisting of all products N j,m(s)Nk,m(t). Then a set of control points {Pjk} in 3-space
defines a surface whose point with parameters s, t is.

P(s, t) =
∑

j,k
N j,m(s)Nk,m(t)Pjk . (17.73)

Such tensor product surfaces are a well-established technique (Farin, 2002), and mul-
tiresolution may be performed through, for example, the hierarchical B-splines of Forsey
and Bartels (1988). In fact, though, subdivision applied to surfaces was pioneered as early
as 1978 by Doo and Sabin and by Catmull and Clark.

The first wavelet approach to multiresolution of surfaces with arbitrary topology was
that of Lounsbery (1994) and Hoppe et al. (1994), using the triangular face subdivi-
sion system of Loop (1987). Their work led not only to applications in multiresolution
and compression but to editing at different scales, image look-up, scan conversion and
more (Stollnitz et al. 1996). We introduce some of the mathematics, and then note later
contributions by Bertram et al. (2004).

17.5.1 Loop subdivision

We start with a triangulated surface which has subdivision connectivity: that is, it may
be obtained from a simpler control polyhedron by successive subdivisions of the type
proposed. Eck et al. (1995) provide an algorithm to ensure this. We reinterpret, for such
a surface, the steps formerly carried out in creating a B-spline from its control polygon.
As before, a single iteration of subdivision consists formally of

Splitting step: insert the midpoint of every edge,
Averaging step: replace every vertex by a linear combination.
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After splitting step, M01Control polyhedron, M0 After averaging step, M1

ρ )

Figure 17.43 Loop’s subdivision step applied to a regular octahedron, where w → ρ(w).
For the M-notation, see the text.

The splitting step For the B-spine splitting we had to specify which vertex pairs formed
an edge after the midpoint insertion; the implied rule was that an edge AB with midpoint
M is replaced by edges AM, MB. Here, rather than new edges, we must specify the new
triangles: in fact, they form a natural division of each original triangle into four half-sized
copies, as indicated in Figure 17.43.

The averaging step Each vertex is replaced by a linear combination of itself and its
neighbours (the vertices joined to it by an edge). The process is described as an averaging
scheme because the coefficients are chosen so as to sum to unity. In Loop’s system, the
simplest to yield a smooth surface, a vertex w0 with n neighbours w1, . . . , wn , after the
splitting step, undergoes

w0 → w1 + w2 + · · · + wn + α(n)w0

n + α(n)
, (17.74)

where α(n) = n(1 − β)/β, and β = β(n) = 5
4 −

(
3 + 2 cos 2π

n

)2
/32. (17.75)

Most coefficients that occur in practice may be read from Table 17.8.

Table 17.8. Some coefficients in Loop’s averaging formula, for central vertex with n
neighbours.

n 2 3 4 5 6

α(n) −14/39 −1/3 4/31 (3 + 16
√

5)/41 ≈ 0.946 2
1/(n + α(n)) 39/64 3/8 31/128 0.168 1/8

Getting the base mesh Before we can consider multiresolution of a surface, which we’ll
assume is subdivided into a mesh in some way (see e.g. Turk and Levoy, 1994 or Kobbelt
et al., 1999), it must be approximated to required accuracy by a surface obtainable
specifically by Loop subdivision, from some base mesh (control polyhedron) M. The
property of being so obtainable from M is called Loop subdivision connectivity to M.

Determining a suitable approximating surface is highly non-trivial. In their ingenious
method Eck et al. (1995) invoke properties of harmonic maps going back to Eels and
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Figure 17.44 Approximating a triangulated figure for Loop subdivision (Eck et al.,
1995).

Lemaire (1988). They aggregate mesh pieces into Voronoi regions (Section 11.2.2),
then take the dual (Section 6.3.1) triangulation. The process is partially illustrated in
Figure 17.44.

17.5.2 Parameters and basis functions

Let us denote the control polyhedron by M0, a topological space provided with a list
of points called vertices and a list of the vertex triples that constitute its triangles, the
latter implying which point pairs are to be edges. After j subdivision steps we obtain a
polyhedron M j with 4 j times as many triangular faces as M0. To tie in subdivision with
wavelets, we must next parametrise M j .

We need an analogue to the parameter t of B-splines. In that case t lies in some interval
[a, b], topologically equivalent to the B-spline curve. We see that t could be taken on the
control polygon itself, and this points the way to the step from curves to surfaces.

Suppose the subdivisions starting from M0 are performed without the averaging step.
The result M j

0 has the same point set as M0 but acquires a list of vertices and triangles
in exact correspondence with those of M j . This provides a natural parametrisation,

σ = σ j : M0
j → M j , (17.76)

where, if ui is a typical vertex of M j
0 and vi is the corresponding vertex of M j , we define

σ by σ (ui ) = vi on vertices and by linearity over the triangles of M j
0 . Thus σ is piecewise

linear on M0. Figure 17.43 provides an illustration in the case j = 1.

Hat functions To proceed by analogy with B-spline wavelets we shall require basis func-
tions mapping M0 into the real numbers: for each vertex u of M0

j , we define firstly the
hat function eu : M0 → R to be the unique piecewise linear function on M0 which sends
u to 1, sends all other vertices to 0, and is linear on triangles. If u lies in a flat part of M0

we may conveniently represent eu(x) as a height. Thus eu is represented as a pyramid
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Figure 17.45 Hat function for surface wavelets.

with base polygon u1 . . . un formed from the neighbours of u in M j
0 . This is illustrated

in Figure 17.45.
Barycentric coordinates Consider the triangle with vertices u, v, w. We saw in Sec-

tion 17.1.2 that every point of this triangle may be written ru + sv + tw for unique
non-negative numbers r, s, t satisfying r + s + t = 1, called its barycentric coordinates.
Further, if θ is an affine transformation (linear, possibly combined with translation), then
θ preserves barycentric coordinates:

θ (ru + sv + tw) = rθ(u) + sθ(v) + tθ (w). (17.77)

This is one reason why barycentric coordinates are so useful, and the following theorem
shows how they fit in well with hat functions.

Theorem 17.56 A piecewise linear function ρ: M j
0 → M j is a linear combination of

hat functions, as follows. If ρ(ui ) = vi , where ui is the ith vertex of M j
0 with hat function

ei , then

ρ(x) =
∑

i
vi ei (x). (17.78)

Proof It suffices to check the equality over an arbitrary triangle � of M j
0 , with ver-

tices u1, u2, u3 say. Let x be a point of � with barycentric coordinates r1, r2, r3.
Notice that, using (17.77) with θ = e1, we have e1(x) = e1(r1u1 + r2u2 + r3u3) =
r1e1(u1) + r2e2(u2) + r3e3(u3) = r1, since ei (uk) = δik , and similarly

ei (x) = ri (i = 1, 2, 3). (17.79)

Now, considering the sum in (17.78), the only ei that are nonzero anywhere on � are
e1, e2, e3 themselves, so the sum evaluates at x to

v1e1(x) + v2e2(x) + v3e3(x) = r1v1 + r2v2 + r3v3 by(17.79)

=
∑

i
riρ(ui )

= ρ(x), by(17.77) with θ = ρ.
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Basis functions If the vertices in M j are v
j
i (i = 1, 2, . . .), then by Theorem 17.56 we

may write the parametrisation of M j as

σ j (x) =
∑

i
v

j
i e j

i (x), (17.80)

where e j
i (x) is the hat function of the ith vertex at level j. To see what happens as

further subdivisions are performed, we consider a matrix equivalent to (17.80), in which
a piecewise function on M j

0 is specified by a column vector listing its values at the
vertices of M j

0 . Thus e j
i (x) becomes a column vector e j

i = [0 . . . 0 1 0 . . . 0]T with
1 in position i, and we may write

σ j =
∑

i
e j

i v
j
i . (17.81)

Since the passage from the jth to the ( j + 1)st subdivision is linear, it is given by some
subdivision matrix P j+1. That is,

σ j+1 = P j+1
∑

i
e j

i v
j
i =

∑
i

(
P j+1e j

i

)
v

j
i , (17.82)

whence σ j+2 =∑
i (P j+2 P j+1e j

i )v j
i , and so on. The limit of . . . P j+2 P j+1e j

i as more
subdivisions are performed is φ

j
i (x), the ith basis function at level j. Thus, taking limits

in (17.82),

σ (x) =
∑

i
φ

j
i (x)v j

i . (17.83)

Figure 17.46 An approximation to φ3
i (x), starting from the hat function of Figure 17.45.

The φ
j
i (x), exemplified in Figure 17.46, play a role similar to those used earlier for

B-splines. At a given level, these functions have approximately the same shape, and
when we go up one level the shape is maintained but the scale decreases by a factor
4. For fixed j the φ

j
i (x) are linearly independent and so form a basis of the space V j

spanned by them; we list these basis elements as a row vector � j (x). Formally,

� j (x) = [
φ

j
1 (x) φ

j
2 (x) . . .

]
,

V j = span � j (x), v j = dim V j ,

� j−1(x) = � j (x)P j , (17.84)
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and we are part-way to recreating the filter bank of Figure 17.32 for surface wavelets.
Our next task is to establish an inner product.

17.5.3 The inner product

To define wavelets we need an inner product 〈 , 〉 on the spaces V j . Suppose that our
greatest refinement is level J; then all V j lie within V J and we need only define 〈 , 〉 on
V J . Let τ , with area |τ |, be a typical triangle in the Jth splitting M J

0 and let f, g be real
functions on the space M0. Then we define their inner product 〈 f, g〉 to be the sum over
all such triangles:

〈 f, g〉 =
∑

1
|τ |

∫
τ

f (x)g(x)dx . (17.85)

Theorem 17.57 (a) The inner product 〈 , 〉 satisfies the axioms of (7.8). That is, for f,
g, h in V J and real λ we have (i) 〈g, f 〉 = 〈 f, g〉, (ii) 〈 f, g + h〉 = 〈 f, g〉 + 〈 f, h〉, (iii)
〈λ f, g〉 = λ〈 f, g〉.
(b) Let u, v be vertices of M J

0 . Then

〈eu, ev〉 =
{

1
12 × no. of triangles with edge uv, if v �= u,

1
6 × no. of triangles with vertex u, if v = u.

(17.86)

Proof (a) Because (17.85) is a sum it suffices to check the axioms for an arbitrary term,
and there they hold because, respectively, g(x) f (x) = f (x)g(x), f (x)(g(x) + h(x)) =
f (x)g(x) + f (x)h(x), and (λ f (x))g(x) = λ( f (x)g(x)). (b) We only need to consider the
two cases in (17.86), for if distinct u, v are not neighbours, then eu(x)ev(x) = 0 for all x
by definition of eu and ev, and so 〈eu, ev〉 = 0.

Now observe that, by applying an isometry if necessary, we may take a typical triangle τ

of M J
0 to lie in the xy-plane, with vertices u, v, w, as shown in Figure 17.47. This change

of coordinates does not affect the integral because the Jacobian has absolute value 1
(Theorem 10.10).

Let P(x, y) have barycentric coordinates r, s, t . Since r = 1 − s − t , a point of τ
is uniquely determined by the pair (s, t). Also, the condition r ≥ 0 is equivalent to
s + t ≤ 1, so τ consists of points with s, t ≥ 0, s + t ≤ 1. To change coordinates in the

(a, b)w

1

(a) (b)

u y

(0, 0) (d, 0)
u

w
1

y
τ τ

Figure 17.47 Shaded heights of (a) eu(x) and (b) ev(x) over the triangle τ .
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integral from (x, y) to (s, t), note

(x, y) = ru + sv + tw = (sd + ta, tb), and hence
∂(x, y)

∂(s, t)
=
∣∣∣∣d a

0 b

∣∣∣∣ = bd = 2|τ |,

whence
1

|τ |
∫

τ

Fdxdy = 1

|τ |
∫

τ

F ×
∣∣∣∣∂(x, y)

∂(s, t)

∣∣∣∣ dsdt = 2
∫ 1

0
dt
∫ 1−t

s=0
Fds. (17.87)

It suffices to show that the contribution of τ is 1/12 or 1/6, as indicated. The heights
of eu, ev fall off linearly from 1, their graphs over τ being represented by the shaded
surfaces in Figure 17.47. A point x of τ with barycentric coordinates r, s, t satisfies
eu(x)ev(x) = rs = (1 − s − t)s. Hence, according to (17.87) integration over τ makes a
contribution to 〈eu, ev〉 of

2
∫ 1

0
dt
∫ 1−t

s=0
(1 − s − t)sds = 1

3

∫ 1

0
(1 − t)3dt = 1

12

and to 〈eu, eu〉 of 2
∫ 1

0
dt
∫ 1−t

s=0
(1 − s − t)2ds = 2

3

∫ 1

0
(1 − t)3dt = 1

6 as required.

ALGO 17.5 The matrix G = G J of inner products on V J

G = 0 (vJ × vJ )
A = Rows[(2, 1, 1), (1, 2, 1), (1, 1, 2)]
For each triangle {a, b, c} of M J

0 , increment
G[{a, b, c}, {a, b, c}] by A (∗)

Return G/12

(∗) Increment gaa, gbb, gcc by 2 and gab etc. by 1.

G j , in general Having determined G J , we can work down step by step for
G J−1, G J−2, . . . using a relation (Exercise 17.27) which holds as before because 〈 , 〉
obeys the axioms, namely for an inner product (Theorem 17.57)

G j−1 = (P j )TG j P j . (17.88)

17.5.4 Building orthogonality

We aim to convert ‘coarse’ functions at level j − 1 to more refined versions at level j by
adding on a ‘difference’. Now that we have inner products we can use orthogonality to
make this efficient. That is, we can get good improvement for small differences because
they point close to the optimum direction (which is at right angles to the coarse version).

More specifically, we convert the coarse functions in V j−1 to the more refined ones
of V j by adding functions from a space W j−1, whose members are called wavelets. The
minimum requirement is

V j−1 ⊕ W j−1 = V j , (17.89)
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meaning (as before) that every f in V j is a unique sum of members g in V j−1 and h
in W j−1. Then W j−1 is described as a complement (or complementary subspace) of
V j−1 in V j . For B-spline curves we were able to take W j−1 as the unique orthogonal
complement (every such pair g, h orthogonal), but in the case of surfaces there are too
many constraints for this. Fortunately, in practical terms we are able to get satisfactorily
close, by three stages:

1. use easily chosen ‘lazy’ wavelets – no attempt at orthogonality;
2. modify these towards orthogonality (‘lifting’);
3. introduce biorthogonal bases (see shortly).

Lazy wavelets Let us exhibit the two kinds of basis functions corresponding to old versus
new points by writing � j (x) = [φ j

1 . . . φ
j
α φ

j
α+1 . . . φ

j
β], where α = v j−1 and β = v j . The

functions numbered from α + 1 to β correspond to the midpoints inserted in converting
M j−1 to M j . We make these our lazy wavelets, and take W j−1 as the space they span,
defining ⎧⎪⎪⎨

⎪⎪⎩
�

j−1
lz (x) = [

ψ
j−1

1 ψ
j−1

2 . . .
]
, ψ

j−1
m = φ

j
m+v j−1

,

W j−1 = span �
j−1

lz (x),

w j−1 = Dim W j−1 = v j − v j−1. (17.90)

Lifting We improve each lazy wavelet ψ
j−1

m in the direction of orthogonality to the
members of V j−1, by subtracting a linear combination of generators of V j−1 which are
associated with certain vertices in M j−1. These vertices are to form a k-disk neighbour-
hood of m, which we’ll now describe. Let m be the (index of) the midpoint of the edge
with indices {p, q}. The distance between two vertices in M j−1 is defined as the least
number of edges in any path between them. For any integer k ≥ 0, the k-disk at m, de-
noted by K Dm , consists of the points whose distance from the nearer of p or q does not
exceed k.

This is illustrated in Figure 17.48. The pseudoinverse (Remarks 8.57) yields the co-
efficients which cause the sum of squares of inner products 〈� j−1, � j−1〉, ideally zero,
to be at least minimised. In the matrix the lazy part is � j−1 = � j Q j , where Q j has

(a)

m

p

q

3

4

5

6

7

(b)

Figure 17.48 (a) Vertices are referred to by their indices (positions in a list). At m we
have the 0-disk {p, q}, the 1-disk {p, q, 3, 4, 5}, and the 2-disk {p, q, 3, 4, 5, 6, 7}.
(b) A lifted wavelet in the case J = 5, K = 2.
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the form [0|I ]T so that computing A, B as before is particularly simple. Lifting adds
certain linear combinations from � j−1 = � j P j , expressible by a matrix T j and giving
� j−1 = � j (Q j − P j T j ).

This preserves the simplicity because (see Exercise 17.27)

[P|Q]−1 =
[

A

B

]
implies [P |(Q − PT )]−1 =

[
A + T B

B

]
. (17.91)

Biorthogonal bases Recall that, if U = {u1, . . . , un} is an ONB for a space S and w =∑
i xi ui is a vector in S, then the components xi are given by the easy formula xi =

〈w, ui 〉. For a general basis U this does not hold; however, if we find the dual basis
V = {v1, . . . , vn}, defined by

〈U, V 〉 = I, (17.92)

then xi = 〈w, vi 〉. (17.93)

The defining equation (17.92) says that any given vi satisfies 〈ui , vi 〉 = 1 but is at right
angles to the rest of U. Since vi is thus orthogonal to an n − 1 dimensional subspace of S,
which defines it up to multiplication by a scalar, the condition 〈ui , vi 〉 = 1 ensures uniqe-
ness. We call U the primal basis; however, the symmetry 〈V, U 〉 = 〈U, V 〉 means that
if V is the dual of U then U is the dual of V, so one may say U, V are biorthogonal
duals. To prove (17.93) we start from the right: 〈w, vi 〉 = 〈∑r xr ur , vi 〉 =∑

r xr 〈ur , vi 〉 =
∑

r xrδri = xi .

Example 17.58 Figure 17.49 depicts a basis u1, u2, u3 of 3-space, in which u1, u2 are
at 120◦ but u3 is a vector of length 2 perpendicular to both. We make some deductions
about the dual basis v1, v2, v3.

(i) By the duality condition (17.92), v1, v2 are perpendicular to v3, which puts them
in the plane of u1 and u2.

(ii) v3 is easily computed (in terms of u3). By (17.92) it is perpendicular to u1, u2

and so is parallel to u3. Thus v3 = αu3 for some scalar α, and 〈ui , vi 〉 = 1 implies
1 = 〈u3, αu3〉 = α〈u3, u3〉 = 4α, giving α = 1/4 and v3 = (1/4)u3.

u1

u3

v3

v2v1

u2

Figure 17.49 A basis u1, u2, u3 for 3-space, and the dual basis.
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Theorem 17.59 (i) The dual of an orthonormal basis is itself, (ii) if U, V are dual bases
then 〈V, V 〉 = (〈U, U 〉)−1.

Proof (i) Orthonormality of U is equivalent to 〈U, U 〉 = I . But this means that V = U
is the unique solution of 〈U, V 〉 = I . (ii) Let e1, . . . , en be an orthonormal basis for
S, and let the components of ui , vi with respect to this basis form the ith columns
of matrices L = [Lri ] and M = [Msi ]. That is, ui =

∑
r Lri er and vi =

∑
s Lsi es .

Then

〈ui , uk〉 =
∑

r,s
Lri Lsk〈er , es〉 =

∑
r

Lri Lrk = (LTL)ik .

That is, 〈U, U 〉 = LTL; similarly 〈V, V 〉 = MT M , and further we have I = 〈U, V 〉 =
LT M . But the last says that, since LT, M are square, they are inverse matrices,
so we can reverse their order and take transposes to get MLT = I = LMT. Finally,
these equalities give 〈U, U 〉〈V, V 〉 = LTL MT M = LT · I · M = I . This suffices to
establish that the square matrices 〈U, U 〉 and 〈V, V 〉 are inverse, and the proof is
complete.

Example 17.60 (a) Find the dual basis V of U = {(1, 1), (1, 2)}. (b) Use this to find the
components with respect to U of the vector x = (3, 5), and check their correctness.

Solution (a) v1 · u2 = 0 says v1 may be written α(2,−1). Then v1 · u1 = 1 requires
α = 1. Similarly, v2 · u1 = 0 gives v2 = β(1,−1) and v2 · u2 = 0 yields β = −1. Thus
V = {(2,−1), (−1, 1)}.

(b) x = x1u1 + x2u2, where (17.93) predicts x1 = x · v1 = (3, 5) · (2,−1) = 1 and
x2 = (3, 5) · (−1, 1) = 2. We have found x = 1(1, 1) + 2(1, 2), which is clearly correct.

Example 17.61 In an implementation of Example 17.58, write c = cos(2π/3), s =
sin(2π/3), and take U = {(1, 0, 0), (c, s, 0), (0, 0, 1)}. We compute that V =
{(s,−c, 0)/s, (0, 1, 0)/s, (0, 0, 1)} (Figure 17.47 facilitates this), whence, in illustration
of Theorem 17.79,

〈U, U 〉 =
⎡
⎣1 c 0

c 1 0
0 0 1

⎤
⎦ , 〈V, V 〉 = (1/s2)

⎡
⎣ 1 −c 0
−c 1 0

0 0 1

⎤
⎦ .

Exercise Perform the computation of V and verify that the matrices above are
inverses.

Now we have the ingredients for a filter bank, multiresolution, and editing of wavelet
surfaces at different scales. The next two figures ((17.50) and (17.51)) illustrate these
capabilities in turn.



17.5 Appendix: surface wavelets 753

(a) (b) (c)

Figure 17.50 (a) Head approximated by Loop subdivision, (b) intermediate resolution,
(c) coarse resolution. (Stollnitz et al., 1996.)

(a) (b) (c)

Figure 17.51 (a) Medium resolution cat, (b) surface edited at a coarse level,
(c) surface edited at a finer level. (Eck et al., 1995.)

Further work

Bertram et al. (2000) returned to the idea of tensor products (17.73) for surface wavelets,
offering the necessary algorithm for converting any polyhedral surface into a square
mesh to start with. A key objective of theirs was to handle extremely complex surfaces
required in scientific visualisation such as computational physics and medical imaging.
Thus it was especially important to avoid the need for working with matrices which are
global to the surface, linked simultaneously to a huge range of variables.

Subsequently to the work of Lounsbery and others it was realised that their lifting
operations fitted in a framework of Sweldens (1996) for biorthogonal wavelets. Bertram
et al. (2000, 2004) developed bicubic and more general subdivision surfaces in which
computation with large matrices was replaced by a sequence of simple lifting operations
of the typical form v = αu + w, each having an equally simply written inverse. Figure
17.52 was obtained by Bertram (2004) by applying local lifting with Loop subdivision.
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Figure 17.52 Progressive transmission of Venus data (Bertram, 2004), using Loop
subdivision.

Exercises 17

1
√

Find the convex hull of the points A(−1, 1), B(−1,−1), C(0, 0), D(1, 1), E(1,−1),
F(3/2, 0).

2
√

Prove that (i) barycentric coordinates in a triangle are unique, (ii) a convex linear combi-
nation of convex linear combinations is convex linear.

3 (a) Design a rough car profile by splicing two Bézier curves. (b) Implement de
Casteljau’s construction and check it against the results of (a).

4
√

(See Figure 17.7.) (a) Prove from the polynomial expressions of Figure 17.8 ff that φ2(x) is
symmetrical about the line x = 3/2, that is, φ2(3 − x) = φ2(x). (b) Use (17.9) to determine
φ3(x) for 3 ≤ x ≤ 4. (c) Check that the derivative of φ2(x) is continuous at x = 1 and that
it satisfies (17.10) there.

5
√

(Section 17.1.4) (a) Differentiate s B(s). (b) Prove the formula φ′
k(x) = φk−1(x) − φk−1(x −

1) by Fourier Transforms.
6 Starting from the box φ0, use (17.11) and computer generation to graph in succession

φ1(x), φ2(x) and φ3(x).
7
√

(a) Use Table 17.3 to find polynomial expressions for (i) N1,4(x) on [2, 3], (ii) N0,4(x) on
[−2, 0]. (b) Use the Cox–de Boor relations in the form (17.18) to reproduce (by computer
generation) the graphs of Figure 17.10, starting from the centred box.

8 Graph the cubic B-spline based on the second control polygon of Example 17.7. Check the
strong convexity prediction of Theorem 17.14.

9
√

(a) Verify the near-zeros of (17.22) via N0,4(t). (b) Derive formula (i) of Remark 17.16(d).
(c) Using (i) and (ii) of that remark, draw a prospective control polygon and sketch the path
of its B-spline.

10 (a) Use Remarks 17.17 to explain the tangents and straight line portions of the car in
Figure 17.14. (b) Design and implement a car profile similar to that of Figure 17.15.

11
√

(Section 17.2.1) Write down expressions for N0,4(x, d) on [0, d] and [d, 2d] (see
Table 17.3).
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12
√

(B-splines by subdivision, Section 17.2.2) (a) Use Pascal’s triangle to detemine coeffi-
cients for subdivision in the case m = 8. (b) Write down the two extra control points
required in Figure 17.22 and hence implement subdivision for cubic B-splines with
this control polygon. After how many subdivision iterations is the curve smooth to the
eye?

13
√

(Uniform B-splines) What are the subdivision masks required to obtain basis functions
φ

j
i (x) for (a) quadratic B-splines, (b) quartic B-splines? How will the graph change as j

varies? As i varies? Perform six iterations for (a), (b), starting from suitable hat functions
e j

i (x), with i = 0 and 1.
14
√

Determine P1 = R1S1 for uniform cubic B-splines with four control points (see
Example 17.30).

15
√

(End-corrected B-splines, Section 17.2.5) (a) A matrix Am×n with rows numbered 1 to m − 1
and columns 1 to n − 1 for convenience is antipodal if each element ai j equals its antipodal
image am−i,n− j . Show that if Bn×p is also antipodal then so is AB (see Section 17.3.2 for
another approach). (b) Compute P2 = R2S2 for Example 17.31, exhibiting enough of each
matrix that antipodality defines the rest, and stating the dimensions.

16
√

(a) Show that an end-corrected cubic B-spline with control points P0 to Pn is tangent to
the control polygon at Pn (similar to P0, handled at the end of Section 17.2.5). (b) Use
ALGO 17.1 to plot the basis functions at levels 3 and 4. Verify by eye that only the first two
and last two depart from being uniform. (c) Construct a control polygon with a view to the
corresponding cubic B-spline forming the semblance of a face. Now apply ALGO 17.1. If
necessary, modify your polygon and repeat the recursive subdivision.

17
√

(Section 17.3.1) (a) Given that � j is LI (linearly independent), prove that G = 〈� j , � j 〉
is invertible. (b) Show that the space of solutions of Mx = 0 has dimension w j−1, where
M = (P j )TG.

18 Use computer algebra and exact integration of polynomials to verify the four inner products
in (17.53b) (the original calculation was performed by Mathematica).

19
√

(Section 17.3.2) Show that, if a matrix Ar×s is antipodal, so is its transpose.
20
√

(Exercise/project) (a) For Example 17.41 with v0 changed to 6, note the levels and dimen-
sions of the relevant matrices PT, G, M and Q. Write or print them out, using (17.53b) and
ALGO 17.2. (b) Now compute and graph the wavelet basis functions of W 0 determined
by Q.

21 (Exercise/project) (a) Considering the end-corrected B-spline of Example 17.42 with the
same value v0 = 5, verify the levels and dimensions of the relevant matrices P, G, M, Q.
Determine G as specified and verify M, and then Q according to ALGO 17.2. (b) Graph the
non-uniform wavelet basis functions of W 0.

22 (Exercise/project) Rerun Example 17.44 with different sweep polygon heights.
23 (Exercise/project) Revisit Example 17.45 with your own template for ‘2’. Repeat for another

symbol.
24 (Exercise/project) (a) Repeat Example 17.46. (b) Modify hair, brows and beard, in turn. (c)

Add teeth to the library, then to the face.
25
√

(Section 17.4.1) (a) A band matrix F has polynomial f (x) = (1 + x)3, shift 2 and five rows.
Compute the number of columns by (17.64), then verify this by writing out the matrix. (b)
The product H = FG exists, where G is banded with polynomial g(x) = (1 + x)2 and shift
1. Determine H. (c) The 6-rowed matrix F is banded with polynomial 1 − 2x + 3x2 + x3
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and shift 2, whilst G is banded with polynomial 1 + 2x + 3x2 − x3. The product FG exists;
find it.

26
√

(Section 17.4.2) (a) Solve the equation F X = 0, where F is the band matrix with first row
[1 0 2 4 0 0 0 0] and shift 2. (b) Find a nonzero linear combination of the solutions in
Remark 17.55(i) which equals the zero vector.

27
√

(Section 17.5.3) (a) Determine the matrix G0 of inner products when M0 consists of trian-
gles {1, 2, 3}, {1, 2, 4}. (b) Derive the relation G j−1 = (P j )TG j P j . (c) Derive the relation
(17.91).

28
√

(a) Find the components of x = (2, 3) with respect to the basis U = {(1, 0), (1, 2)} in
the plane, by first finding the dual basis V. Check your conclusion and verify that
〈U, U 〉 = 〈V, V 〉−1. (b) Find the components of y = (1, 0,−3) with respect to the basis U of
Example 17.61, and verify your conclusion. (c) Find the dual basis of U =
{(1, 2, 2)/3, (2, 1,−2)/3, (2,−2, 1)/3}. (N.B. Theorem 17.59(i).)
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Further methods

An artificial neural network, or just net, may be thought of firstly in pattern recognition
terms, say converting an input vector of pixel values to a character they purport to
represent. More generally, a permissible input vector is mapped to the correct output,
by a process in some way analogous to the neural operation of the brain (Figure 18.1).
In Section 18.1 we work our way up from Rosenblatt’s Perceptron, with its rigorously
proven limitations, to multilayer nets which in principle can mimic any input–output
function. The idea is that a net will generalise from suitable input–output examples by
setting free parameters called weights.

In Section 18.2 the nets are mainly self-organising, in that they construct their own
categories of classification. We include learning vector quantisation and the topologically
based Kohonen method. Related nets give an alternative view of Principal Component
Analysis. In Section 18.3 Shannon’s extension of entropy to the continuous case opens up
the criterion of Linsker (1988) that neural network weights should be chosen to maximise
mutual information between input and output. We include a 3D image processing example
due to Becker and Hinton (1992). Then the further Shannon theory of rate distortion is
applied to vector quantization and the LBG quantiser.

In Section 18.4 we begin with the Hough Transform and its widening possibilities
for finding arbitrary shapes in an image. We end with the related idea of tomography,
rebuilding an image from projections. This proves a fascinating application of the Fourier
Transform in two and even in three dimensions, for which the way was prepared in
Chapter 15.

18.1 Neural networks

The human visual system is to this day shrouded in a great deal of mystery. For ex-
ample, how are objects recognised and internally processed so effectively? Though
much progress has been made (Bruce et al., 1996), simulating the process by
computer lags far behind the human brain. And this, in spite of the hints picked up
by intensive study of the neural networks embodied in both human and animal brains.

757
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Cell

Dendrites

Axon

to dendrites
of other neurons

Figure 18.1 Notional diagram of a neuron, with synaptic gap between dendron and cell.

Nevertheless, as discussed in Davies (1997), neural networks are now established as a
standard tool in computer vision.

In the biological case, as portrayed in Figure 18.1, electrical signals arrive at a neuron
cell via connecting tissue called dendrites, the signals are modified in regions called
synaptic gaps, and the result charges up the cell. When charge reaches a certain threshold,
a signal is conducted by the cell’s axon to the dendrites of other cells to which it is thus
connected, then the cell’s potential drops back, and the process restarts in response to
new signals.

After noting an early attempt at neural simulation in Section 18.1.1, we consider some
basic vision tasks achievable by Rosenblatt’s single-celled perceptron in Section 18.1.2.
His learning algorithm is proved in Section 18.1.3, and some limitations established.
However, we show in Section 18.1.4 how the limitations of the single cell or layer thereof
may be overcome by recourse to several layers of cells, once the back propagation
learning algorithm is available. In all these cases, learning is of the supervised type, in
which desired outcomes are specified in advance.

In Section 18.1.5 we see how net output for classification problems can be designed
as a probability, and finally, in Section 18.1.6, how distributing data into an ensemble of
nets gives special benefits. We conclude with examples from cancer screening and from
remote sensing.

18.1.1 In the beginning McCulloch–Pitts

Although the idea of interconnected neuron cells communicating with each other was
known earlier, the first abstract calculational model was proposed by McCulloch and Pitts
(1943). This used the relatively new discovery that incoming signals could be inhibitory,
preventing the discharge of a cell. We simplify their scheme to two kinds of computing
units, in which input and output signals take the values 0 and 1 only. They are represented
in Figure 18.2.

The cell ‘fires’ in the sense that the output z is 1, if and only if the total input attains
the value shown mid-cell, as follows. Case (a) has the effect of an OR function because
x + y ≥ 1 holds when either x or y or both take value 1. In case (b) the inputs yi are
made to be inhibitory by having their sign reversed before adding their effect, and then
the threshold requirement

(x1 + · · · + xn) + (y1 + · · · + ym) ≥ n (18.1)
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y1

ym

x1

xn

z(b)z

x

y

(a) n1

Figure 18.2 McCulloch–Pitts units. (a) Simple OR unit: outputs 1 if x + y ≥ 1, that
is x, y or both are 1. (b) General AND unit. A dark circle denotes sign reversal, hence
output z is 1 if and only if all xi are 1 and all y j are 0.

x

y

1

1

1 z = XOR(x, y)

Figure 18.3 McCulloch–Pitts units implementing the XOR function.

allows output 1 if all xi are 1 and all yi are 0, but for no other combination of values. In
fact, every logical function f (x, . . . , z) is a multiple OR of such functions, and so can
be implemented by a circuit of McCulloch–Pitts units. We illustrate in Figure 18.3 with
the XOR function f (x, y) = 1 on (1, 0) and (0, 1), otherwise f (x, y) = 0. The top left
cell outputs 1 if x = 0, y = 1, whilst that below gives 1 if x = 1, y = 0.

Exercise Draw a McCulloch–Pitts circuit for f (x, y, z) = 1 when exactly one of x, y, z
is 1.

18.1.2 Rosenblatt’s Perceptron

Although any function can be approximated with arbitrary precision by a McCulloch–
Pitts network, the topology quickly becomes very complex. In the same vein, adapting
a network is liable to be a cumbersome process. With the aim of improving on this
situation and having in mind the application to object recognition, Rosenblatt (1958,
1962) introduced his perceptron cell, in which the topology was very simple, but there
were free parameters called weights which could be changed as an adaption or even
learning process.

In a single perceptron cell, input values x1, . . . , xn arrive at the cell along connecting
lines, or edges in graphical terminology. As indicated in Figure 18.4, we associate with
the ith edge a real number wi , the ith weight, which modifies the effect of input xi in the
threshold criterion

w1x1 + w2x2 + · · · + wnxn ≥ θ, or w · x ≥ θ, (18.2)

where x = (x1, . . . , xn) and w = (w1, . . . , wn) are called respectively the input vector
and weight vector, and θ is the threshold.
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w1

wn

x1

xn

zθ

Figure 18.4 A single perceptron cell.

The perceptron as edge-detector In the pixel array of an image, one type of criterion
for a pixel to belong to an edge is that a certain linear combination (or convolution) of
values over a neighbourhood of that pixel exceeds some threshold. This is exactly the
test a perceptron will perform. The 3 × 3 array (b) shown in Figure 18.5 approximates
the Marr–Hildreth edge-detector of Section 15.2.4, for pixel values ranging from 0 as
white to 1 as black. The result with array (b) as weights, and threshold 4, is shown in
Figure 18.5(c). Notice that the image edges are successfully abstracted, in spite of two
different shades of grey filling.

(a)

−1 −1 −1
−1  8 −1
−1 −1 −1

(b) (c)

Figure 18.5 (a) Greyscale version of image, (b) perceptron weights corresponding to
pixels in a neighbourhood, (c) edge pixels isolated by perceptron with threshold 4.

Parallel processing Although the calculation above can be carried out in serial fashion,
pixel by pixel, parallel processing of all pixels at once is obviously possible if a separate
perceptron is available for each pixel, as is not unusual in biological systems.

The perceptron as letter-detector With its threshold system, a single perceptron can
detect the presence of a letter, say ‘T’, in a small matrix of pixels, each of which pro-
vides an input variable. An example is the 5 × 5 case below, in which the weights +1
delineate the letter itself. Thus a perfect T has vector x = (1, 1, 1, 1, 1, 0, 0, 1, 0, 0, . . .)
and the weight vector is set at w = (1, 1, 1, 1, 1,−1,−1, 1,−1,−1, . . .). The first issue
is sensitivity to noise. Each pixel flip from black (1) to white (0) or vice versa reduces
w · x by 1 (why?). Figure 18.6 illustrates that we can recover from 2 or 3 noisy pixels by
setting the threshold at 6. This is fine provided the perceptron does not have to cope with

Weights: shade = 1, white = −1 w . x = 9 w . x  = 8 w . x  = 7

−1

Figure 18.6 Pattern of weights and value of w · x in ‘T’ and two noisy versions.
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a translated or rotated version. However, we shall shortly introduce multi-layer networks,
which can handle such variations.

Exercise What happens to w · x in Figure 18.6 if the ‘T’ is moved a pixel to the left?

The perceptron as linear separator Since a perceptron fires, or outputs 1, in response
to input x satisfying w · x ≥ θ and outputs 0 if w · x < θ , it has separated points into
opposite sides of the hyperplane w · x = θ . We say opposite because, given a finite set
of points so separated, we can reduce θ by a sufficiently small amount that any points
formerly on the hyperplane are now on the positive side. Indeed, we’ll normally choose θ

to avoid equality (we discussed such divisions earlier, in Section 11.2.2). The situation is
perhaps easiest to see for points in the plane case n = 2, for which w · x = θ is a straight
line. Two examples follow.

Considering logical functions of two variables, can we find a perceptron to implement
the AND function? That is, to place a line between the point (1, 1) and the set of
points {(1, 0), (0, 1), (0, 0)}? Two possibilities are illustrated in Figure 18.7. The first
line L1: x + y = 3/2 is the case w = (1, 1) and θ = 3/2.

L1

L2

1

1

1

1

yy

x x
(a) (b)

Figure 18.7 (a) Implementing the AND function by L1: x + y = 3/2, that is w =
(1, 1), θ = 3/2. An alternative is L2: x/5 + y/7 = 4. (b) Implementing the XOR func-
tion means separating the dark points from the light, a task that looks impossible, and is
proved so below.

Theorem 18.1 A single perceptron cell cannot implement the XOR function.

Proof Suppose for a contradiction that f (x1, x2) is the XOR function and there are
weights w1, w2 and a threshold θ such that w · x ≥ θ ⇔ f (x1, x2) = 1. Then we have
the following table.

x1 x2 f implications

0 0 0 w1 · 0 + w2 · 0 < θ

0 1 1 w1 · 0 + w2 · 1 ≥ θ

1 0 1 w1 · 1 + w2 · 0 ≥ θ

1 1 0 w1 · 1 + w2 · 1 < θ

Adding the first and last lines gives w1 + w2 < 2θ , but adding the middle two gives the
contradiction w1 + w2 ≥ 2.
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−1

1

0

y

yin

Figure 18.8 Activation function f for a perceptron cell, where yin = w · x. Here f (z) =
−1, 0 or 1 according as z < 0, z = 0 or z > 0; also known as sgn(z).

18.1.3 The Perceptron Learning Algorithm

So far we have exemplified setting the perceptron weights for edge-detection with n = 9
and letter recognition with n = 25 in Figure 18.4. More generally, we would like the cell
itself to learn to recognise variants of the same letter (for example) in agreement with our
human opinion. For this it requires a set of training vectors, some designated as legitimate
variants, some alien. A reasonable spread of cases is required, to give the best chance
of generalising, that is of correctly identifying future input after training is complete.
We shall shortly introduce Rosenblatt’s learning algorithm, ALGO 18.1, which finds the
desired weights povided only that they actually exist. First, some notation is useful.

Notation 18.2 (i) Absorbing the threshold We may reduce all cases to θ = 0 by incor-
porating an extra weight, via the observation that w1x1 + · · · + wnxn ≥ θ if and only if
w1x1 + · · · + wnxn + (−θ ) · 1 ≥ 0, and similarly for the strict and reversed inequalities.
Thus we take −θ as an additional weight w0, called the bias, and insert an extra but fixed
input x0 = 1 (portrayed as a black circle as in Figure 18.12 below). Then with x and w
so extended the threshold condition becomes w · x ≥ 0.

(ii) The excitation function Another simplifying notational device is to arrange for
the perceptron to output +1 for x with w · x > 0, and −1 in response to w · x < 0. The
undesirable w · x = 0 is to result in output zero. We call w · x the activation of the cell, by
analogy with the biological neuron cell’s build-up of charge, and the function converting
this to the perceptron cell’s response is termed the activation function, say f (z). Thus
the function presented here is a step function with discontinuity at zero, as portrayed in
Figure 18.8. The learning algorithm ALGO 18.1 results. The remarkable fact is that it
works.

ALGO 18.1 (Perceptron learning) For training pairs xi , ti (1 ≤ i ≤ L).

Initialise w, say w = 0.
REPEAT (cycle)

For each training pair x, t do
y = f (w · x)
If y �= t then w = w+ tx

UNTIL no weight change occurs during cycle.
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γ

w new

x

w

Figure 18.9 Updating the weights. When w · x ≤ 0, which means w, x are at angle
≥ π/2, the update is wnew = w + x. The angle is reduced to γ as illustrated. However,
convergence of the process must be established by logical proof.

Theorem 18.3 (Convergence of perceptron learning, Rosenblatt, 1962) Suppose a per-
ceptron has training vectors xi , with target inputs ti = ±1 (1 ≤ i ≤ L). Then ALGO
18.1 terminates after a finite number of cycles provided there exists a solution. That is,
if there exists a weight vector w∗ for which

w∗ · xi > 0 if ti = 1, and w∗ · xi < 0 if ti = −1. (18.3)

Proof The two conditions of (18.3) combine into the single condition w∗ · (ti xi ) > 0,
rendering the problem as: find w∗ such that w∗ · x > 0 for each training vector x. In other
terms the angle between w∗ and x is to be acute. A further simplification is that, since
the sign of w∗ · x is unaffected by multiplying w∗ by a positive constant, we may take
‖w∗‖ = 1. We define

δ = Min {w∗ · xi }, and M = Max ‖xi‖2. (18.4)

Following Minsky and Papert (1988) we assume for simplicity that the initial weight
vector is zero, w(0) = 0. As the training vectors are tested in succession, a weight update
occurs whenever a training vector xi is found for which the latest (rth) update, which
we’ll term w(r ), satisfies w(r ) · xi ≤ 0. See Figure 18.9. Then, given the existence of w∗,
we get one of two key inequalites by w∗ · w(r + 1) = w∗ · [w(r ) + xi ] = w∗ · w(r ) +
w∗ · xi ≥ w∗ · w(r ) + δ, by (18.4), whence

w∗· w(n) ≥ nδ after n updates. (18.5)

If we can find a fixed upper bound on n, we will have shown that the
algorithm halts. Consider the standard argument ‖a + b‖2 = (a + b) · (a + b) =
a · a + b · b + 2a · b =‖a‖2 + ‖b‖2+2a · b. This supplies the inequality in

‖w(r + 1)‖2 = ‖w(r ) + xi‖2 = ‖w(r )‖2 + ‖xi‖2 + 2w(r ) · xi

≤ ‖w(r )‖2 + M by (18.4), since w(r ) · xi ≤ 0,

hence

‖w(n)‖2 ≤ nM after n updates. (18.6)
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Finally
nδ ≤ w∗· w(n) (by (18.5))

≤ ‖w∗‖‖w(n)‖ by Remark 7.20 (cos θ ≤ 1)
≤ √

(nM) by (18.6), since ‖w∗‖ = 1.

Squaring, then dividing both sides by n, yields n ≤ M/δ2. Thus, after at most this number
of updates no further change is called for, and the algorithm halts.

n

g(n)

n1

Figure 18.10

Remark If the initial weight vector w(0), is not zero, the
above arguments adapt slightly to give (Exercise 18.4)

[w(0) · w∗ + nδ]2 ≤ ‖w(0)‖2 + nM.

That is, a certain quadratic g(n) = δ2n2 + αn + β, with
positive leading coefficient δ2, is non-positive for all per-
missible n. Thus n is bounded by an axis crossing n1, as
shown in Figure 18.10.

Example 18.4a Here is a simple example with four training vectors,
(1, 1, 1), (1, 0, 1), (1, 1, 0), (0, 1, 1) and respective targets 1,−1,−1,−1. In ac-
cordance with Notation 18.2, the training vectors are given an extra coordinate x0 = 1,
and the weight vector has a bias component w0 which is determined along with the
other components during the iteration of ALGO 18.1. Equilibrium was reached after 25
cycles, with w = (−8, 3, 4, 2). Thus the separating plane is 3x + 4y + 2z = 8. This is
depicted between separated points, in Figure 18.11, accompanied by some intermediate
results.

(a) (b)

cycle weight vector

5
10
15
20
25

−3, −1, −11,
−4, 1, 01,
−6, 1, 02,
−7, 2, 13,
−8, 3, 24,

Figure 18.11 (Example 18.4) (a) Separating plane 3x + 4y + 2z = 8 determined by
the Perceptron Learning Algorithm, (b) the weight vector after every fifth cycle, the last
being being constant.

The single-layer perceptron net

Example 18.4b In a single-layer perceptron net, a sequence, or layer, of perceptrons
receives the same inputs, but each is trained separately to a different outcome by
ALGO 18.1. In the present example the input values x1 to x63 are the values in a 9 × 7
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pixel array representing one of the letters ABCDEJK. The configuration is indicated in
Figure 18.12, where the bias unit with fixed input x0 = 1 is represented by a black circle.

x0 =1

x1

x63

y1

y7

Input layer Output layer

w01

w63,7

Figure 18.12 Configuration of the single-layer perceptron net in Example 18.4b.

The data of Figure 18.13 (adapted from Fausett, 1994) was used to train each perceptron
to recognise a single one of the seven letters and reject the rest, the corresponding outputs
being 1 and −1.

After training, the net was fed in turn each of the 21 noisy versions shown in
Figure 18.14.

Results Of the 21 letters tested, 14 gave exactly the corect response, with one output
being +1 and the rest −1. Of the rest, four letters were identified as themselves or
one other; that is, there were two outputs +1 and five −1s (further details in Porn-
charoensin, 2002). This can be improved by inserting another layer, as we see in the next
section.

Figure 18.13 Training data for Example 18.4b.
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Figure 18.14 Noisy test data for Example 18.4b.

The Pocket Algorithm If no separating plane exists, the Perceptron Learning Algorithm
continues until terminated by a limit on its number of cycles. A useful all-round solution
is to modify the original so as to retain (‘pocket’) a copy of the weight vector which
so far has correctly classified the most training vectors, and a note of how many. This
is due to Gallant (1990), who showed that, in spite of occasional loss of a potentially
good solution, the probability of minimal mis-classification is arbitrarily close to 1 after
sufficiently many cycles.

Limitations of the perceptron

Minsky and Papert (1969) set out to discover and prove rigorously what a perceptron could
and could not do. They considered a general scenario in which information from different
parts of an image was processed by functions ψi in any fixed way and sent as input to a
single perceptron. The key point is that, although the functions may use thresholds or any
other computing device, all adaptive parameters are restricted to the weights of a single
perceptron which makes the final judgment. Of many remarkable and ingenious results,
one concerned the diameter-limited perceptron, indicated in Figure 18.15, in which ψi

has no access to the whole image, but is restricted to its own ‘receptive field’.

Theorem 18.5 (Minsky and Papert) No diameter-limited perceptron can determine
whether a geometrical figure is connected.

Proof Suppose on the contrary that a certain diameter-limited perceptron can cor-
rectly classify geometric figures as connected or not. Then, for a suitable version of
Figures 18.16 (A)–(D) below, no receptor field contains points from both ends, so we
may group the functions ψi into three: (1) those which can access points on the left ends
of the figures, (2) those which can access the right and (3) the rest. With

∑
subscript
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ψ1

ψ2

ψ3

w3

w2

w1

θ

perceptron

computing devices

image

Figure 18.15 General perceptron system considered by Minsky and Papert. Adaptive
parameters are restricted to the weights wi of the single perceptron and its threshold θ .

A B C D

Figure 18.16

indicating group number, the perceptron computes

I =
∑

1
wi xi +

∑
2

wi xi +
∑

3
wi xi , (18.7)

and we may assume without loss of generality that I (X ) > 0 when a figure X is connected,
and otherwise I (X ) < 0. In particular, IA = I (A) < 0 because figure A is not connected.

(i) In a transition from figure (A) to the connected figure (B), only
∑

2 changes, say by �2,
resulting in IA +�2 > 0.

(ii) Passing from (A) to the connected figure (C), only
∑

1 changes, say by �1, resulting in
IA +�1 > 0.

(iii) In passing from (A) to (D),
∑

1 is the same as for (C), and
∑

2 the same as for (B), so the
change is �1 +�2, resulting in IA +�1 +�2 < 0 because (D) is not connected. But (i) and
(ii) together give 2IA +�1 + �2 > 0, so we must have IA > 0. This contradiction proves
the theorem.

Remarks (1) The edge-detecting potential of a perceptron was illustrated in Figure 18.5,
where we imply the presence of a bank of perceptrons, one for each pixel. These percep-
trons, having fixed weights, could therefore be used as the functions ψi in Figure 18.15.
However, according to Theorem 18.5, this information is not sufficient for a perceptron
to determine in general whether a figure is connected. Interestingly, though, as shown by
Minsky and Papert (1988), a perceptron can perform the desired task if equipped with a
knowledge of the number of holes in a geometrical figure.

(2) Nevertheless, after much work had been expended in exploring the pattern recog-
nition properties of a perceptron, the 1969 book of Minsky and Papert seemed to throw
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doubt on the usefulness of continuing in this direction, because of the variety of tasks
they proved to be impossible. This prompted a move towards artificial intelligence and
other approaches. Yet, as the authors themselves comment, the message is rather that a
new breakthrough was required. Rosenblatt himself sought to advance by assembling
perceptrons in other than a single layer, but was unable to find the required learning
algorithm. The later breakthrough is the topic of our next section.

18.1.4 Multilayer nets and backpropagation

First we introduce the multilayer perceptron net, or MLP. This is a set of perceptron
cells organised into a sequence of layers, in which all connections are one-way (called
forward) from a perceptron to every cell in the next layer. A first illustration appears in
Figure 18.17.

1
1

x1

y1z1

xn yd

input layer hidden layer output layer

zp

Figure 18.17 Two-layer perceptron net. The units shown as black circles supply fixed
input 1 for treating threshold as a weight, as described in Notation 18.2.

A circle labelled yi represents a cell Yi with output yi , and similarly for zi . The xi

circles represent input points rather than actual cells. In each layer of weights the zeroth
input is fixed at 1, as prescribed in Notation 18.2, so that we may reduce the thresholds
to 0 by introducing an extra weight (the bias). In a general multilayer net, the number
of layers means the number of perceptron layers, or equivalently the number of layers
of weights. Thus Figure 18.17 represents a 2-layer net and requires a new algorithm for
determining weights.

Example 18.6 A 2-layer MLP realising the XOR function is adapted from the
McCulloch–Pitts solution of Figure 18.3, with excitation function f (x) = 1 if x > 1/2,
otherwise f (x) = 0. Since a threshold is used, no bias is required. The resulting diagram
is given in Figure 18.18. In the accompanying table, subscript ‘in’ signifies input.

y

z1

z2

x1

x2

1

−1

−1

1

1

1

x1 x2 z2z1z1,in z2,in
0
0
1
1

0
1
0
1

0
−1

1
0

0
1

−1
0

0
0
1
0

0
1
0
0

y
0
1
1
0

Figure 18.18 MLP for Example 18.6.
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Figure 18.19 Sigmoid curves: (a) the binary sigmoid f (x) = 1/(1 + e−σ x ) with σ =
1, 2, 3, (b) the corresponding bipolar sigmoid g(x) = 2 f (x) − 1 = tanh(σ x/2).

The now well-known backpropagation method for training an MLP was discovered
independently by several workers (see e.g. Rumelhart, Hinton and Williams, 1986). It
requires the activation function to be differentiable so that a method called gradient
descent (see later) can be incorporated.

Thus the sharp jump at the origin in Figure 18.8 should be commuted to a smooth
transition, resulting in a sigmoid-type function. This is a curve f (z) with the general
S-shape of those in Figure 18.19. More specifically, the gradient is everywhere positive,
the graph is symmetric under a 1/2 turn, and there are values a < b to which f (z) tends
as z tends to infinity in either direction. The standard binary sigmoid with range (0, 1),
and its derivative, may be written

f (x) = 1/(1 + e−σ x ), f ′(x) = σ f (x)[1 − f (x)]. (18.8)

Thus the slope at any point increases with σ , as illustrated in Figure 18.19, and further-
more, by considering f (x) for negative, zero and positive x, we see that as σ tends to 0
the family approaches the earlier discontinuous activation function of Figure 18.8, which
we have therefore succeeded in ‘smoothing out’.

Finally, we convert the range (0, 1) to (−1, 1) by a stretch and translation y →
2y − 1, obtaining the bipolar sigmoid g(x) = 2 f (x) − 1 = (1 − e−σ x )/(1 + e−σ x ) =
tanh(σ x/2).

Discovering the backpropagation method

Imitating the simple perceptron algorithm, we would like to cycle repeatedly through the
training vectors, adjusting the weights after each vector (xi ) has propagated forward to
produce output (yk), until no (or minimal) further adjustment is required. As before, tk
denotes the target value of yk . Thus the weights will be adjusted on the basis of minimising
the squared error:

E = (1/2)
∑

k
(tk − yk)2 (to be minimised). (18.9)

We can proceed by considering gradients, because the activation functions are differ-
entiable and E is a differentiable function of all the weights, say w1, . . . , wN , and so
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w2

w1

Figure 18.20 Surface E(w1, w2) = w2
1 − w2

2. An arrow shows the direction of steepest
descent at a point P(1/2,−1, E), in agreement with ∇E = 2(w1,−w2) and Theorem
18.7.

we can aim for a minimum of E by determining the direction of steepest descent of E
in (w1, . . . , wN )-space. This is the method of steepest descent applied to our case. It is
illustrated in Figure 18.20 for N = 2.

Theorem 18.7 The greatest rate of increase of a differentiable function
E(w1, . . . , wN ) occurs in the direction of the gradient ∇E = (∂ E/∂w1, . . . , ∂ E/

∂wN ). Hence the greatest rate of decrease is in the direction −∇E.

Proof We require the instantaneous rate of change of E as we move from a given point
P in the direction of a unit vector u. That is, the rate of change of E as we move along
a ray w(s) = P + su, evaluated at s = 0. Here w = (w1, . . . , wN ), where each wi is a
function of the parameter s. See Figure 18.21. Then

dE

ds
= ∂ E

∂w1

dw1

ds
+ · · · + ∂ E

∂wN

dwN

ds
by the Chain Rule

= (∇E) ·
(

dw1

ds
, . . . ,

dwn

ds

)
by definition of ∇E

= (∇E) · u since dwi/ds = ui .

As u varies, this has greatest value when u is in the direction of ∇E , since the lengths of
∇E and u are fixed.

P

w (s)

∇E

E = c1
E = c2

Figure 18.21 Proof of Theorem 18.7.
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Conclusion To move the overall weight vector w closer to a minimum of E we should
increment by a suitably chosen negative multiple of ∇E , say �w = −γ∇E . Thus,
keeping the same learning constant γ > 0 throughout, we increment a general weight
α, in whatever layer it may be, by the quantity �α = −γ ∂ E/∂α. Differentiating (18.9),
we may write

�α = γ
∑

k(tk − yk)∂yk/∂α (weight update). (18.10)

The problem now is to determine ∂y/∂α for any output y and weight α. We’ll take it
that all excitation functions are the same, denoted by f ; the notation will show where
any variants should be inserted if they exist. As a general notation, cin denotes the input
into a cell C, with output f (cin). First we note two very simple but valuable relations
obtained by differentiation, based on a weight w on the connection from cell t to cell u
of Figure 18.22. This result does not depend on the number of other cells in the same
layer as T or U.

t u
w

Figure 18.22

∂u/∂w = t f ′(uin), (18.11a)

∂u/∂t = w f ′(uin). (18.11b)

Proof We have u = f (uin) and uin = tw + (terms independent of w and t). Differentiat-
ing, ∂u/∂w = f ′(uin)∂uin/∂w = t f ′(uin), whereas ∂u/∂t = f ′(uin)∂uin/∂t = w f ′(uin).

Notation 18.8 In Figure 18.23, z j is the output of the j th cell in one layer and yk is the
kth output in the next. The connection weights w jk between these cells form a weight
matrix [w jk] whose kth column w k lists the connection weights to cell Yk . The outputs
z j form a vector z, and similarly for other layers.

(a) (b)

zj

z1

yk

wjk

w1k

up
αpi xi

vij
zj

Figure 18.23 (a) Here Z is the last layer before output, (b) any successive layers U, X, Z.

Theorem 18.9 (Backpropagation) Suppose a training vector for an MLP gives outputs
yk corresponding to target vectors tk . Then the gradient descent formula (18.10) implies
that weights may be updated in reverse order of layers. Expressed in Notation 18.8 we
have
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(i) (output layer) �w k = Ak z, where Ak = γ (tk − yk) f ′(yk−in),
(ii) (working back) if �v j = N j x then �αi = Pi u, where Pi = f ′(xi−in)

∑
j vi j N j .

Proof (i) Consider Figure 18.23(a). In this case the sum in (18.10) reduces to a single
element and we have �w jk = γ (tk − yk)∂yκ/∂w jk = γ (tk − yk) f ′(yk−in)z j , by (18.11a)
with t = xi and u = yk . This is the equality of j th elements in (i), and hence establishes
that result. For the next part we move to Figure 18.23(b).

(ii) �vi j =
∑

k
γ (tk − yk)∂yk/∂vi j by (18.10)

=
∑

k
γ (tk − yk)∂yk/∂z j × ∂z j/∂vi j by the Chain Rule

=
[∑

k
γ (tk − yk)∂yk/∂z j f ′(z j−in)

]
× xi by (18.11a) with t = xi , u = z j .

This has the form N j xi , with N j independent of i, so �v j can indeed be expressed as
N j x. Continuing, we derive an expression for the previous layer of weights and relate it
to what we have just found. We have

�αpi =
∑

k
γ (tk − yk)∂yk/αpi by (18.10)

=
∑

k
γ (tk − yk)∂yκ/∂xi × ∂xi/∂αpi by the Chain Rule

=
∑

k
γ (tk − yk)

∑
j
∂yk/∂z j by the Chain rule

× ∂z j/∂xi f ′(xi−in)u p and (18.11a)

=
∑

k
γ (tk − yk)

∑
j
∂yk/∂z j

× f ′(z j−in)vi j f ′(xi−in)u p by (18.11b)

= f ′(xi−in)
∑

j
νi j N j u p by definition of N j , which completes the proof.

Example 18.10 For now we’ll set the learning constant γ at 1. Before doing anything
big let us investigate convergence when weights are found for the XOR function. This
will bring out some useful pointers. Figure 18.24 shows the result of trying for the XOR
function with two or three hidden units and a single output.

(a) Zero init., 2 hidden units (b) Zero init., 3 hidden units (c) Random init., 2 hidden units

Figure 18.24 Error against number of cycles in backpropagation training for the XOR
function, with one hidden layer. Weights are initialised at zero in cases (a) and (b).
However, (c), with initial weights randomised between ± 1/2, is dramatically better.
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Here are the approximate weight matrices for the two weight layers obtained in case
(c) of Figure 18.24, with third row corresponding to bias/threshold. The net was trained
to produce outputs 0, 1, 1, 0 in response to the input vectors (0, 0), (0, 1), (1, 0), (1, 1),
with total square error < 0.05.

V =
⎛
⎝−3.285 79 − 5.468 73
−3.266 25 − 5.541 2

4.697 38 1.838 69

⎞
⎠, W =

⎛
⎝ 6.189 47
−6.771 58

−2.675

⎞
⎠ output 0.1, 0.9, 0.9, 0.1

target 0, 1, 1, 0.

Thus the rounded output gives the desired targets. For further improvements in initiali-
sation, see Fausett (1994). It is widely reported that bipolars ±1 with tanh sigmoid yield
noticeably faster convergence than binaries, although the two choices are mathematically
equivalent. An explanation suggested by Rojas (1996) is that two vectors with entries
±1 have greater likelihood of being orthogonal than two with entries 0, 1.

ALGO 18.2 (Backpropagation) For 2-layer MPL with input units Xi ,
hidden units Z j , output units Yk, and weight matrices [vi j ], [w jk].

Initialise weights. Set activation function f, learning rate γ , and max-Error.
REPEAT (cycle)

Set etotal = 0;
For each training pair x, t do

(*Feed forward*)
z0 = x0 = 1 (for bias)
For j = 1 to jmax do z j−in = v j · x; z j = f (z j−in);
For k = 1 to kmax do yk−in = w k · z; yk = f (yk−in);
etotal = etotal + ‖t − y‖2;

(*Propagate back*)
For k = 1 to kmax do Ak = γ (tk − yk) f ′(yk−in);
For j = 1 to jmax do B j = f ′(z j−in)

∑
k w jk Ak ;

(*Update weights*)
For k = 1 to kmax do w k = w k + Akz;
For j = 1 to jmax do v j = v j + B j x;

UNTIL etotal < maxError.

The examples we are about to discuss in some detail happen to be medical ones, so
let us first note two other types of application. (1) Denoising Networks with back-
propagation are compared with other methods of reducing noise in Davies (1997).
(2) Pattern recognition One useful example is the recognition of handwritten charac-
ters, such as in Mayraz and Hinton (2002). See Section 18.1.5 for further background.

Example 18.11 (Testing the human eye) A basic objective is to automate eye testing
for a very large list of potential eye defects, so that a sufficiently large section of the
population can be tested as appropriate, in spite of a relatively small resource of human
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(a) (b)

2–70 hidden
units

22 output
nodes

110 input
nodes

Figure 18.25 (a) Sample points in the eye’s visual field at which a small flash may be
undetected, indicating one catgegory of defect, (b) 2-level net used for classification.

experts. Our first of two examples concerns visual field defects of the eye, of which 22
types are categorised according to positions on a grid at which a person fails to detect a
small flash (Figure 18.25).

Keating et al. (1993) convert results at 110 grid positions into an input vector for
a 2-layer neural network with output layer of 22 units, each trained to target value 1
for a particular defect. The authors experiment with a single hidden layer of between
2 and 70 units; best performance was obtained with 30–40 units, there being even a
slight deterioration thereafter for the chosen number of 15 000 iterations of the training
set.

Training/results A set of 490 input vectors was split into 440 training vectors (an equal
number of each defect), and 50 reserved for testing the net’s generalisation. Out of the 22
output values, in the interval [0, 1], the value nearest to 1 was taken as the net’s diagnosis
of defect. After training, the net’s first choices were 98.2% correct. The test inputs were
only slightly less ably diagnosed, at 96% (many more details appear in the cited paper).

Second example: screening of diabetic patients A person with diabetes has enhanced
risk of retinal defect and in a worst case, of eventual blindness. It is estimated that the
latter risk is halved by regular checks.

As noted, clinicians are too few, and so research proceeds for a method of automating
the procedure with suficient credibility to be relied upon by an expert. This time (Gardner
et al., 1996) data comes from 700 × 700 digital images of the retina. The question here
is, can a neural net identify two retinal conditions typical of diabetes: haemorrhage,
or leakage from blood vessels, which appears in the form of a flame, blot or dots, and
exudates (exuded matter, appearing as flaky, or discrete yellow)? See Figure 18.26.

Input Starting from 147 diabetic and 32 normal images the authors generate a total of
200 diabetic and 101 normal inputs, available as either 30 × 30 or 20 × 20 squares of
pixels. In preparation for training these were classified by human expert into one of:

1. normal, and without blood vessels,
2. vessels: normal but with blood vessels,
3. exudate: the square contains exudated material,
4. haemorrhage: the square contains leaked haemorrhage.

Training/results Amongs other projects the net was trained three times, for distinguishing
between normal and cases 2, 3, 4 above. As in the first example, the authors experimented
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Figure 18.26 Digital photograph of human retina showing blood vessels, haemorrhage,
and exudates (light in the greyscale image). Courtesy of David Keating, Tennant Institute,
Glasgow, UK.

to find the most efficient number of hidden units. This increased dramatically for the
haemorrhage case, which also required the larger 30 × 30 square (deemed unnecessary
in the other cases). Some results are summarised in Table 18.1. The overall conclusion
is that nets are a promising adjunct to the clinical process but that more work needs to
be done.

Table 18.1. Results for neural network identification of diabetic
eye symptoms.

compared hidden units size of square iterations % correct

vessels 80 20 120 000 93.7
exudates 80 20 300 000 94.1
haemorrhage 300 30 380 000 89.6

18.1.5 Classification: can outputs be probabilities?

In using a net for classification, the idea is that each input vector belongs to one of
certain predetermined classes. Each class is to be associated with a particular output unit,
which is given a training target of 1 for input in its own class and (we assume for now)
zero otherwise. After training, however, unless there is a fixed threshold applied, say
converting output exceeding 0.8 into 1, we get a result lying anywhere in the interval
[0, 1]. Is it possible this can be interpreted as a probability? We’ll consider first a particular
case, then a general one.
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C1

C2

Figure 18.27 Single-layer net for allocating input into two classes.

Example 18.12 Consider a single-layer net with input vector x and two outputs,
corresponding to classes C1 and C2. The sigmoid is to be binary, f (x) = 1/(1 + e−x ).
See Figure 18.27.

We address the problem: choose weights so that, for input x, the kth output is the prob-
ability p(Ck |x) that x lies in class Ck . Shortly we’ll come up against the need for an
expression for the distribution of x given its class, but first let us see what Bayes’ Theo-
rem can do to help. We have

p(C1|x) = p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

= [1 + p(x|C2)p(C2)/p(x|C1)p(C1)]−1, or

p(C1|x) = [1 + e−α]−1, where α = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
. (18.12)

This works because of the properties exp[ln z] = z and − ln z = ln(1/z). Suppose that
p(x|Ck) follows a normal distribution (multivariate since x is a vector) with vector means
µ1, µ2 for the respective clases, but having equal correlation matrices of common inverse
Q (= QT). That is (see Equation (10.54)), for some normalisation constant γ ,

p(x|Ck) = γ exp[−1/2(x − µk)Q(x − µk)T]. (18.13)

Can we substitute this in (18.12) and finish by writing α in the form w · x + w0 for some
weight vector w? We have

α = ln
γ exp[− 1

2 (x − µ1)Q(x − µ1)T] p(C1)

γ exp[− 1
2 (x − µ2)Q(x − µ2)T] p(C2)

= ln exp{− 1
2

(
x QxT − µ1 QxT − xQµT

1 + µ1 QµT
1

)
+ 1

2

(
xQxT − µ2 QxT − xQµT

2 + µ2 QµT
2

)}+ ln[p(C1)/p(C2)]

= (µ1 − µ2)QxT + 1
2

(
µ2 QµT

2 − µ1 QµT
1

)+ ln[p(C1)/p(C2)],

since ln exp z = z and because xQµT
k , as a 1 × 1 matrix, equals its own transpose µk QxT.

Thus α = w · x + w0, with w = (µ1 − µ2)Q, and w0 is given by the terms independent
of x.
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C

hidden
layers

Figure 18.28 General multilayer net, with focus on a single output class C.

The general case More general distributions and more layers are allowed in Bishop
(1995), but here we follow an approach due to Rojas (1996). Thus we allow a multilinear
net with no specific model of distribution. Any number of outputs/classes may be taken;
we simply focus on an arbitrary choice of one, say C. See Figure 18.28. The first obser-
vation is that the trained net defines a function v → y(v) from input space to output at
C, which we require to lie in the interval [0, 1] after the action of some differentiable
sigmoid.

Suppose input space may be divided into volumes V centred at (or at least containing)
points v, with V so small that we may take the probability of x being in class C to be the
same for all x in V . Then we may define

p(v) = p(C |x ∈ V (v)). (18.14)

If x is in class C the output target is 1 so the error is 1 − y(v). If not, the error is y(v) since
the output should be 0. The total expected squared error at C is obtained by summing the
contributions due to all small volumes V , namely

EC =
∑

V
{p(v)[1 − y(v)]2 + [1 − p(v)]y(v)2}. (18.15)

We assume (‘plasticity’) that y → y(v) can be computed independently for each small
volume V . As a consequence EC can be minimised by minimising each term of (18.15)
separately. Thus, after perfect training the derivative of each term with respect to y is
zero, on each small volume V , or

2p(v)[1 − y(v)](−1) + 2[1 − p(v)]y(v) = 0,

which simplifies to y(v) = p(v). That is, the output may be treated as a probability.
Finally, this gives

EC =
∑

V
p(v)(1 − p(v)) (variance).

Remark 18.13 In the discussion above, the output lying in, say, [−1, 1] is not really a
restriction, for we can convert it to [0, 1] by a simple transformation y → 2y − 1. Thus
we could calculate internally in terms of bipolar sigmoids if desired.

Overtraining Figure 18.29 illustrates the result of too rigorous a training. At the point
marked STOP, the error in output is still decreasing as more training cycles are completed
but the error in a separate test set has started to increase. This means that training
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STOP  training
training  cycles

Error

training

testing

Figure 18.29 Comparative error in output for training vectors and a test set, as the
number of training cycles increases (see text).

has begun to build in peculiarities of the training vectors which we do not wish to
require of subsequent data. A suitable time to stop training in this case is the point
indicated.

18.1.6 Getting the right minimum (ensembles)

A committee solution Continuing the theme above, it is possible for nets with the same
topology (structure of connections), trained on different though representative sets of
data, to differ too much in their subsequent performance. This form of instability may be
attributed to finding a local rather than a global minimum of squared error. A widely used
method of improving this situation is to distribute the available training vectors between
several training schedules and average the results of the nets. Let us see how much, and
under what assumptions, this can help.

For simplicity we consider the case of a single output, aiming to approximate a true
but unknown function φ(x) of the input. Figure 18.30 represents a division of training
vectors between a committee, or ensemble, of nets, with output functions yi (x) after
training. However, in the following discussion we assume only that the nets have been
trained somehow, and may vary in the size and number of hidden layers. In any case, the
ith net has error a function of x,

εi (x) = yi (x) − φ(x) (1 ≤ i ≤ N ). (18.16)

net 1 net N. . .

available training vectors

net 2

Figure 18.30 Dividing the available training input between an ensemble, or commitee,
of nets, with a view to optimal use of information.

The general committee Let us consider a general linear combination of the nets’ outputs,
y(x) =∑

i wi yi (x), subject to
∑

i wi = 1, of which an important special case is the
average, given by wi = 1/N . To find an expression for the expected squared error Egencom
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of the committee, we begin with the error itself, thus:

y(x) − φ(x) =
[∑

wi yi (x)
]
− φ(x) =

∑
[wi yi (x) − wiφ(x)] (since

∑
i
wi = 1)

=
∑

wiεi (x),

Egencom = E
[{∑wiεi (x)}2

]
. (18.17)

The averaging committee Let Eavecom be the expected squared error of the averaging
committee, the case wi = 1/N . To get a bound for this, consider the result of averaging
the errors of the nets taken individually,

Eave = E
[
(1/N )

∑
εi (x)2

]
. (18.18)

The conclusion that follows from this is most striking if we suppose that the signed
errors εi not only have mean zero, but are uncorrelated. That is, E[ε jεk] = 0 for
j �= k. Then the only terms remaining in (18.17) after we set wi = 1/N are Eavecom =
E
[∑

(1/N 2)εi (x)2
]
. Comparing this with (18.18) yields

Eavecom = 1
N Eave, (18.19)

a most welcome improvement. Of course, the εi (x) could happen to be highly correlated,
leaving (18.19) very far from true; however, there is no risk of disaster in proceeding
with the averaging committee, for it remains true that

Eavecom ≤ Eave, (18.20)

as may be seen by setting wi = 1/N in the inequality (
∑

wiεi )2 ≤ (
∑

w2
i )(
∑

ε2
i ) (see

Remark 7.20), then taking expected values. Thus in practice a very useful improvement
may well be obtained in this way, even with as few as N = 2 or 3 nets. But is there anything
we can do to ensure improvement over Eave? After all, some nets of the ensemble may
deserve to make a more highly weighted contribution than others. We’ll next discuss how
such weighting might be determined.

Optimum committees To progress we need an estimate of E[ε jεk], obtained by taking
a finite sample, which here means a sequence of training vectors and their target out-
puts, say (xm, tm) for 1 ≤ m ≤ M . The sample error row vector for the ith net may be
written

ei = (yi (xm) − tm)1≤m≤M . (18.21)

Since the sample size is M, the standard estimate (11.11) for E[ε jεk] is 1
M−1 e j eT

k (with
extra terms if the errors are not zero-mean). This is by definition the ( j, k) element of
the correlation matrix S which, we’ll need to assume, has an inverse Q. From (18.17) we
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may write

Egencom = E

[(∑
wiεi

)2
]
= E

[∑
w j wkε jεk

]
(1 ≤ j, k ≤ N )

=
∑

w j wk E[ε jεk],

which is now estimated as
∑

w j wk S jk , or in vector form wSwT, where w = (w1, . . . , wN ).
If we also write j for the all-ones vector [1 1 . . . 1], the objective is to choose w so as to:

minimise wSwT, subject to jwT = 1, (18.22)

where S is given and w varies. According to the Lagrange Multiplier method (see e.g.
Bishop, 1995) we may achieve this by intoducing an extra variable λ and finding the
stationary value of the function F = w SwT + λ( jwT − 1). We have, by Remarks 8.57,

(∂ F/∂w1, . . . , ∂ F/∂wN ) = 2w S + λ j = 0, (18.23)

∂ F/∂λ = jwT − 1 = 0. (18.24)

Equation (18.23) gives wS = (−λ/2) j and since S has an inverse Q we have w =
(−λ/2) j Q. Substituting this in (18.24) to determine λ gives 1 = jwT = (−λ/2) j Q jT,
in which Q is symmetric (QT = Q) because S is symmetric. Hence, finally, the easily
remembered formula for the optimum combination to be used for the committee,

w = jQ

jQjT , (18.25)

where the denominator is a ‘1 × 1’ matrix and therefore a scalar. (It is positive because
S, and therefore Q, is positive definite: see e.g. Corollary 8.35 and Theorem 10.54.) For a
survey of ensemble methods, see Sharkey (1999). Notice finally that our arguments did
not depend on the input–output conversions being performed specifically by nets; this
fact will be useful in Example 18.16 shortly.

Remark (Global minima in the linear case) If all excitation functions are the identity or
at least linear, the input–output mapping is linear. For this case Baldi and Hornik (1999)
have completely classified the landscape of local and global minima that can occur.

Example 18.14 Screening for cancer

Screening against breast cancer means examining a photograph of the area at risk (see
Figure 18.31), for microcalcification of tissue, a pointer to the possibility of cancer (easily
cured with early diagnosis). The second step is a judgement as to whether changed tissue
is benign or malignant. An excellent example of work towards the automation of step
1, with its drawbacks of smallness and low contrast, is Papadopoulos et al. (2002), here
cited for its use of networks in combination. This use takes place after preparatory steps
which include a reduction of input variables from 22 to 9 through a Principal Components
Analysis (see Section 10.4.4) which shows that these nine variables contribute 97% of
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Figure 18.31 X-ray photographs of suspect mammary tissue. Source: Hans Killgren
Consulting, Sweden.

the variance. Experimentation leads to a choice of net with two hidden layers (3-layer)
as depicted in Figure 18.32.

Input layer
9 units

1st hidden layer
20 units

2nd hidden layer 
10 units

Output layer
1 unit

Figure 18.32 Neural net used in cancer research.

After training and averaging over two nets, the authors find that their system identifies
more than 90% of cases of microcalcification, over a large number of samples.

Example 18.15 (Medical decision support) By contrast with the previous example,
Cunningham et al. (2000) used an ensemble of ten neural nets in their work on predicting
the success or failure of in vitro fertilisation, or IVF. The selected features to be used for
prediction were converted into 53 input variables. A single hidden layer was implemented.
Data samples comprised 290 successful and 1065 unsuccessful cases.

The nets were seen to overfit after about 250 training cycles. Amongst the results were
that accuracy across individual nets varied from 46 to 68% so that a lucky strike would
give a false implication of 68% correctness. What of the ensemble? This more accurate
calculation stabilised results at a realistic 59%.

Example 18.16 (Remote sensing) At one time remote sensing, e.g. by satellite, was
considered a military method only, but in recent decades it has broadened out mas-
sively. Often satellite data is the only information available for large tracts of the ocean,
mountains and tropical forests. Civilian applications include identifying mineral and oil
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reserves, monitoring crops, locust breeding grounds, remote sources of flooding, pol-
lution, weather forecasting and invaluable developments in mapping land cover, urban
or otherwise. The general problem under consideration here (Giacinto et al., 2000) was
to allocate each pixel of a remotely sensed image to one of a given list of classes. The
specific case is an agricultural area near the village of Feltwell, England, divided into
small irregularly shaped fields with five classes: sugar beet, potatoes, carrots, stubble and
bare soil. See Figure 18.33.

Figure 18.33 Remote sensing of patchwork of crops near Feltwell, UK (1984). (a) Part
of radar image, (b) the same with field boundary subsequently superimposed.

The thrust of the paper is this: 90% accuracy here, by a neural net or otherwise, is
known to require a great deal of preliminary design and processing, so suppose instead
we combine several net and non-net functions x → y(x) into an ensemble of five. We
aim for a variety noted for the non-correlation of their errors. We may expect to im-
prove over any of the methods individually, given Equations (18.19) and (18.25) for, as
noted at the derivation of these equations, it is not necessary for the functions all to be
nets.

Some details The remote-sensing equipment provided six optical and nine radar-type
measurements, a total of 15 input values per pixel. Some 10 000 pixels were split between
training and testing (further database details are in Serpico and Roli, 1995). The desired
accuracy was achieved.

From theory to practice Although artificial neural networks, or ANNs, have demon-
strated much potential, their application thus far in clinical medicine is sparse, especially
considering the amount of related research to be found. The problem is tackled head-on
and frankly in a special issue of Cancer (Vol. 91 (2001), 1589–1697), from which some
of the following observations are taken. In mind are automated assistance in diagnosis,
decision-making, treatment and prognosis.

Problem 1: getting the data is hard A vast reservoir of data exists, scattered, worldwide
and variously recorded. The difficulty is to agree on a uniform system and computerise
it. By the appearance of this text, a multi-billion-dollar operation may be far advanced
(Levine, 2001).
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Problem 2: finding out what to do is hard Firstly, the information a clinician needs may
be found only in engineering journals (some exceptions are Artificial Intelligence in
Medicine, and Computers in Medicine and Biology). Secondly, ‘The challenge to those
who advocate neural networks is to make the system transparent, so that it overtly will
generate the variables that the oncologist requires in decision-making’ (Yarbro, 2001).
This could mean that, after training, a net might be converted to one from which rules
comprehensible to a human user can be extracted. Promising results in this direction have
been obtained by Hayashi et al. (2000). A text on general visual inspection by ANNs is
Rosandich (1997).

18.2 Self-organising nets

Why self-organising? It may be that we cannot apply supervised learning (the output for
every traing vector being specified) because the desired outputs are simply not known in
advance. In that case there are techniques, mostly biologically inspired, to discover much
of the deep structure of the data itself. This may reveal, for example, significant feature
vectors which could be used in classification (cf. Section 11.2.2). A useful example to
think of is the determination of principal components, Section 18.2.1, for which self-
organised, or unsupervised, learning provides an alternative to conventional methods
(cf. Section 10.4.4).

Again, there is a wealth of classification methods, each best in its own domain, but
unsupervised learning gives the opportunity to construct a net which optimises itself for
particular applications as their sample data is encountered. More generally, we may use
one part of a net hierarchy to design other parts (see especially Behnke, 2003, for this).

Within the unsupervised/self-organised theme there is a broad division of learning
methods into reinforcement versus competitive types. These are introduced in respective
Sections 18.2.1 and 18.2.2, and followed in 18.2.3 by Kohonen’s two special types of
competitive net.

18.2.1 Hebbian reinforcement learning and PCA

One of the earliest learning paradigms was enunciated by Hebb (1949) in a book entitled
The Organization of Behaviour. Biologically, it says ‘when an axon of cell A is near
enough to excite a cell B and repeatedly. . . takes part in firing it . . . A’s efficiency as one
of the cells firing B is increased’. This is generally described as reinforcement learning;
one simple artificial analogy is as follows.

For the ith cell input xi (1 ≤ i ≤ n) feeding into a cell with output y = w · x, as
portrayed in Figure 18.34, we take the weight update �wi to be

�wi = αyxi , (18.26)

or, in vector notation,

�w = αyx, (18.27)
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wi

xn

xi

x1

Figure 18.34 Part of a network with one layer of weights.

where α is called the learning constant, and is there to help ensure the changes in wi

are not too abrupt. Note that this learning is unsupervised, for no ‘correct’ output is
prescribed corresponding to the training vectors.

Principal Component Analysis Oja (1982), starting from Equation (18.27), devised an
algorithm for computing the principal components of a set of data vectors x1, x2, . . . , xN ,
in which activation, as before, leaves the input w · x to cell Y unchanged (so y = w · x),
and a dampening term proportional to y2 is subtracted. That is,

�w = α(yx − y2w), where y = w · x. (18.28)

The extra term was cleverly devised so that the size of w does not increase without
limit; in fact w approaches a unit vector as iteration proceeds. The proof of convergence
to (approximately) the principal component is too specialised to give here, but may be
found in Oja’s original paper or in Haykin (1994).

We recall that principal components can be used, for example, to facilitate data com-
pression, to reduce the dimension of a set of data, or to supply feature vectors. The
first principal component of a set of vectors x1, x2, . . . , xN in n-space is an n-vector w
with direction such as to minimise the sum of squared errors resulting if every xi were
replaced by its projection onto w. In the plane this gives the direction of the best straight
line through a scattering of data points.

The second principal component of x1, x2, . . . , xN is the first principal component of
the residuals obtained by subtracting their projections onto w, and so on recursively for
the third and later components. Thus any method which gives the first component leads
to the rest. We showed in Section 10.4.4 that these components are a set of eigenvectors
for the correlation matrix of x1, x2, . . . , xN .

Example 18.17 Let us compare results with the earlier Example 10.69: coordinates
(x1, x2) for a rough car outline. The points after subtraction of the mean were

x1 −5.80 −0.79 2.03 3.44 4.15 −3.01
x2 0.12 −1.86 −0.66 −1.08 0.65 2.83

The first principal component was computed to be a unit vector R1 = (0.988,−0.155).
In applying Oja’s method, an epoch will denote a sequence of updates (18.28), one from
each of the six data vectors. The first thing we expect to notice is how the choice of
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Table 18.2. Computing the first principal component by Oja’s neural net method.

no. of epochs vector no. of epochs vector

α = 0.1 10 (0.992, – 0.138) α = 0.01 150 (0.989, – 0.145)
20 (0.989, – 0.158) 200 (0.989, – 0.151)
30 (0.988, – 0.161) 250 (0.988, – 0.154)

α = 0.02 150 (0.988, – 0.155) 300 (0.988, – 0.155)
200 (0.988, – 0.156)

learning constant α affects the speed of convergence and the accuracy of the final result.
Table 18.2 gives some specimen cases, in each of which there is no change after the last
stage shown.

Remarks 18.18 (1) We see in Table 18.2 that as α decreases the final result becomes
more accurate, though it may take longer to reach. On the other hand, if α is increased
to too large a value, no amount of iteration will restore accuracy.

(2) For general-dimensional cases, rather than computing principal components one
at a time we can introduce further cells and make each yield a different component, by
passing information between them in one direction only – to cells earmarked for lower
components. This is the method of Sanger (1989). Notice that although the neurons are
converging at the same time, the second is unlikely to converge correctly until the first
is well on the way, and so on. In spite of this, the time required for training is less than
if the net were trained one weight vector at a time (see e.g. Haykin, 1994).

(3) PCA may also be approached through nets with supervised learning, by taking
output to be the same as input (see e.g. Davies, 1997). A detailed analysis of this case
appears in Baldi and Hornik (1989). For PCA and neural nets in general, see Diamantaras
and Kung (1996).

Other Hebbian examples

(1) Object recognition strategies: Draper and Baek (2000).
(2) Finding significant components of a visual scene: Edelman et al. (2002).
(3) Hierarchical neural networks for image interpretation: Behnke (2003).

18.2.2 Competitive learning

In the previous section we considered unsupervised learning by reinforcement. Now we
look at the competitive kind. We have, as before, a set of n nodes for n-vector input, and
a single layer of weights. The number of output units is specified in advance, and the
result of training is that, when a vector x is input, a responding ‘1’ is output only by
the winning cell, that is the one with greatest excitation wm · x. All other cells output
zero. The weight vector wm is then considered a representative or exemplar for this
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n-vector
input

w 1

w 2

wd

Figure 18.35 Cell connections for competitive learning, where w i is the weight vector
to the ith output node.

mth category or class of input. Standard applications include pattern recognition and
compression. See Figure 18.35.

Notice that greatest excitation corresponds to least distance, provided all input vectors
are normalised to some fixed length a and all weights are kept at the same length b, for then
the squared distance between w and x is (w − x) · (w − x) = w · w − 2w · x + x · x =
a + b − 2w · x.

The basic training scheme is that, with input and weight vectors normalised to unit
length, an input vector x causes update only to the weight vector wm nearest to it. This
scheme is for obvious reasons designated winner takes all. A simple form of update is
�wm = x, but a more sophisticated one, with greater flexibility, is

�wm = α(x − wm), (18.29)

where as usual α is a learning constant in the range 0 < α < 1. It is understood that after
a weight vector is updated it is renormalised to unit length. The usual procedure is to
decrease α gradually as learning proceeds, either by a fixed amount or by a fixed ratio,
so that progressively finer adjustments are made.

The k-means algorithm Though not originally in neural network terms (MacQueen,
1967), this method arrives at an updating scheme which is effectively a subcase of (18.29).
It has the convenience of allowing the input vectors and their representatives to vary in
length, and, in keeping with this, the ‘winner’ is based on least distance rather than
greatest inner product. Specifically, a training vector x is allocated to the class of the
nearest repesentative wm , which is then reset as the mean of its enlarged class (hence the
title k-means).

To derive the update formula, suppose that the class size is n − 1 before updating.
Then the sum of its members is (n − 1)wm and the new representative may therefore be
written as [(n − 1)wm + x]/n. The increment �wm is this last expression minus wm ,
and simplifies to

�wm = (1/n)(x − wm)
(k-means),

(18.30)
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72 × 80 pixels Blocks size 8 × 8. Codebook

of 45 blocks out of 90.

Blocks size 4 × 4. Codebook

of 100 blocks out of 399.

Figure 18.36 The k-means algorithm applied to a small face. By using a smaller block
size in the third case we double the compression with little loss in quality overall.

which is (18.29) with α replaced by 1/n, the latter quantity conveniently decreasing each
time wm is updated. It is worth noting that the choice of mean as class representative
minimises the sum of squared deviations of class members from itself (Exercise 18.10).
Let us record a simple procedure for applying the k-means technique, in ALGO 18.3.

ALGO 18.3 (k-means algorithm)

Choose k initial representatives w1, . . . , w k

REPEAT (epoch)
For each training vector x

allocate x to the class with representative wm nearest to x
reset wm as the mean of its class, using Equation (18.30)

UNTIL all changes are zero (or below some defined threshold).

Exercise Derive (18.30) from the paragraph above it.

Example 18.19 We experiment with two faces, the first with white background (Figure
18.36), and the second with a street background (Figure 18.37). In the first instance, each
image is divided into 8 × 8 pixel blocks, whose values are written as 64-vectors, and used
for training (in principle the system should be trained on many photos repesenting the

128 × 128 pixels. Block size 8 × 8. Codebook of 

128 blocks out of 256.

Block size 4 × 4. Codebook of

    128 blocks out of 1024

Figure 18.37 The k-means algorithm applied to a larger face. This time the 4 × 4 blocks
give quadrupled compression (altogether 8:1) with little if any loss, between the second
and third cases.
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type to be compressed). The intial representatives were chosen randomly from amongst
the training vectors. The results are shown in Figures 18.36 and 18.37. Stability was
attained after at most eight epochs.

Remarks 18.20 Although k-means compression does not have the power of some, such
as PCA, or fractal or wavelet compression, it is a useful benchmark, and an illustration
of the widely used idea of grouping vectors into clusters. In such a method the cluster
representatives are said to form a codebook, or look-up table. It is also, importantly, an
example of vector quantisation, a topic to be revisited later in this chapter under the
heading of Information Theory.

Further examples

(1) Self-organizing receptor fields (simulating cells of the visual cortex): Fukushima (1999).
(2) Recognising partly occluded patterns, especially the human face and its various components:

Fukushima (2000).
(3) Extracting faces from a scene, recognising and tracking: Walder and Lovell (2003).

18.2.3 Kohonen nets and LVQ

Our main purpose in this section is to introduce Kohonen nets, whose speciality is to
organise data into a space of chosen (lower) dimension and topological type. Learning
here is described as unsupervised because the output resulting from a training vector is
not specified in advance. We pair Kohonen nets with his related but contrasting Learning
Vector Quantisation, or LVQ, in which supervision is applied (see Figure 18.38). The
link is that in both cases the learning is competitive. See e.g. Kohonen (1982, 1988,
2001).
The training proceeds in one of two directions, depending on whether we wish primarily
to

(A) quantise each member of a class by its exemplar, or
(B) represent the data in a lower-dimensional form.

Similarly to k-means, it is helpful and commonly done to consider the exemplars as
entries in a codebook or look-up table, in which one may find the quantised version/class
of a given vector.

Case A. Learning Vector Quantisation Also known as LVQ, this simpler case is illustrated
in Figure 18.38 (after training), and the update procedure for each presented training
vector, given its target class T, is shown in ALGO 18.4. We have here a method of
quantising vectors as distinct from merely scalars. An important result of Shannon states
roughly (but see later) that a sequence of scalars can best be quantised by arranging them
as a set of n-vectors (n ≥ 2). The title ‘learning’ reflects the fact that the net learns from
the training vectors how the exemplars should be chosen. After the net has been trained
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by suitably representative data, every input vector is assigned to the class of its nearest
representative.

50

0
0 20 40 60 80

10

20
30

40

Figure 18.38 Plane input vectors into classes by exemplars (shown bold), as a result
of Learning Vector Quantisation. Notice the boundaries bisect the joins of the exem-
plars at right angles. We have seen this situation before in Bayesian classification,
Section 11.2.2.

Case B. The Kohonen net This is really an ingenious unsupervised relative of (A) inspired
by the mystery of the brain’s representation of our 3-dimensional world in lesser dimen-
sions (the cerebral cortex, see e.g. Rojas, 1996), in which exemplars are constrained to
form a lower-dimensional structure. This constraint is applied by updating not only an
exemplar but its neighbourhood Ni of exemplars. How they enshrine the dimension is
illustrated by some low dimensional cases as follows. We list the nodes 1 to d on a lattice
of the desired dimension: along an axis for dimension 1 and as an array for dimension
2. We define the neighbourhood of radius r for node i by:

Ni = Ni (r ) = {k: 1 ≤ k ≤ d, ∂(i, k) ≤ r}, (18.31)

where the distance ∂(i, k) is |i − k| in one dimension. Figure 18.39 illustrates how the
neigbourhoods can be defined so as to produce either an open curve or a closed one (the
two are of course toplogically different).

1 2 3 4 5 6 7 98

Ni  =  {i − 1, i, i + 1} if 2 ≤ i ≤ 8,  in both cases.

Figure 18.39 Neighbourhoods for constraining the exemplars into a curve which is (a)
open, with N1 = {1, 2} and N9 = {8, 9} or (b) closed, with N1 = {9, 1, 2} and N9 =
{8, 9, 1}.

Two-dimensional neighbourhoods Figure 18.40 illustrates how two different but stan-
dard definitions of distance in two dimensions give rise by Equation (18.31) to different
shapes of neighbourhood, namely a circle and a square. Hexagonal neighbourhoods are
sometimes used also – see e.g. Fausett (1994).

Initialisation and parameter setting The initial exemplars are usually a subset of the
training vectors, or perhaps chosen randomly. As seen in ALGO 18.4, a learning param-
eter α is used which, along with the neighbourhood radius, must be reduced as iteration
proceeds, according to some plan or schedule. Commonly α is either reduced or scaled
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(a) (b)

Figure 18.40 Two-dimensional neighbourhoods of radius 1 defined by two
cases of distance ∂ = ∂((x, y), (a, b)). (a) Euclidean: ∂ = √

[(x − a)2 + (y − b)2],
(b) ∂ = Max{|x − a|, |y − b|}.

(a, b)

d

b

d

+ +

x x

Figure 18.41 A random point ‘+’ of the 1/2 rectangle shears to the random point ‘+’
of a general triangle.

down by a fixed constant on each iteration. These two scheduling methods are called
respectively arithmetic and geometric. A third is to take α = 1/t , where t is the number
of the current iteration. Satisfactory results may require a little experimentation.

Iteration may be performed by random selection from the training set, or by repeatedly
cycling through this set. There is so far no general convergence theorem, though partial
results are known (see e.g. Kohonen, 2001).

Example 18.21 We attempt to convert the 2D area of an equilateral triangle into a 1D
open line. The result is that the line moves towards a space-filling curve, as illustrated in
Figure 18.42. Here are some details. The learning constant γ is reduced geometrically
from 1 to 0.01 over the specified number of iterations. The neighbours of the winner are
those immediately before and after it in the list (except that end points have only one
such neighbour). They are updated with reduced learning constant γ /2.

Simulation We require a sequence of random points, uniformly distributed over whatever
triangle is chosen. Figure 18.41 depicts a suitable procedure for an arbitrary triangle. We
choose random points uniformly over a rectangle, take those which fall into the lower
triangular half, and map them by a shear onto the chosen triangle. Since the shear is
area-preserving, we retain a uniform choice. The procedure is formalised in (18.32).

x = y = ∞
While x/d + y/b > 1 do (x, y) = (Random in [0, d], Random in [0, b])
Return (x + (a/b)y, y).

(18.32)

Figure 18.42 shows this method in use for training Kohonen weight vectors.
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4000 iterations – less crossing 6000 iterations – curve uncrossed 8000 iterations

1000 random points Random path of 40 points,
squeezed towards centre

2000 iterations – much crossing

Figure 18.42 Stages in Kohonen training of 40 weight vectors along a path. Training
vectors are random points of an equilateral triangle, the learning constant reduced ge-
ometrically over 10 000 iterations. Kohonen (1982, 2001) obtains a Peano curve this
way.

Remarks 18.22 We have cited Kohonen’s original version of LVQ. Subsequent develop-
ments are discussed in Ripley (1996). In the topographic case the radius may be reduced
with time and, within this, α may be reduced for points away from the centre. Here are
the two algorithms under the heading ALGO 18.4.

ALGO 18.4 Kohonen and LVQ nets
Initialise exemplars, learning parameter (and radius if applicable)

REPEAT for chosen number of iterations
Choose a training vector x
Find nearest exemplar wm

LVQ Kohonen net

(Update the ‘winner’ wm)
wm = wm + α(x − wm) if x is in class m,
wm = wm − α(x − wm) otherwise

(Update the ‘winner’ wm and its neighbourhood)
Adjust learning constant and radius
For all i in the neighbourhood do
wi = wi + α(x − wm)
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Further Kohonen examples

(1) Oja (1992) demonstrates how both supervised and unsupervised learning are useful at different
stages of computer vision. Kohonen self-organising nets/maps are used at two successive
stages: firstly to cluster image pixels around triples of feature parameters (such as are obtained
by the Canny edge-detector, Section 16.4.3), and secondly to cluster the resulting exemplars
into representatives of higher-level features. This is successfully applied to (a) texture feature
extraction from textured but not yet segmented images, and (b) global curve feature extraction
from binary images. These of course have potential for data compression.

(2) Lamar et al. (2000) apply Kohonen maps to hand gesture recognition.
(3) (Data visualisation) Kohonen and Somervuo (2002), and also Nikkilä et al. (2002) use

Kohonen nets for the organization and visualisation of large databases of symbol sequences,
typically protein sequences. This is a relatively new application area.

(4) (Enhanced LVQ) Hammer and Villmann (2002) propose a more powerful version of Learning
Vector Quantisation with, for example, automatic pruning of less relevant data.

(5) Haritopoulos et al. (2002) apply Kohonen nets to image denoising.

18.3 Information Theory revisited

We have reviewed a number of algorithms for artificial neural networks, but so far
Information Theory has played no part. Yet it is natural to ask if maximising information
between input and output variables could either imply previous methods or create new
and better ones.

This approach was pioneered by Linsker (1988, 1992, 1993, 1997), and we provide
an introduction to the results. To do so we must extend our earlier study of entropy and
mutual information from the discrete to the continuous case. There are several ways to
derive the result of this extension (see e.g. Kolmogorov, 1956 b). We adapt the method
found in Cover and Thomas (1991), where Gaussian variables turn out once again to be
a benchmark case against which others may be judged.

18.3.1 Differential entropy

Let X be a continuous random variable on the real line, with pdf f (x). To use previous
results on the discrete case we take X as the limiting case of a quantised version X�, based
on dividing the line into subintervals of width � by mesh points n� (n = 0,±1,±2, . . .).
The probabilities pn of X� are to be

pn = P(n� ≤ X ≤ (n + 1)�) =
∫ (n+1)�

n�

f (x)dx, (18.33)

whence
∑

pn =
∫

R f (x)dx = 1, as well as pn ≥ 0. The corresponding discrete values xn

of X� should satisfy n� ≤ xn ≤ (n + 1)�, but conveniently the Mean Value Theorem
says xn may be chosen so that the area under the graph of f (x) between x = n� and
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n∆ (n + 1)∆xn

f(x)

x

Figure 18.43 The pdf of a continuous random variable X, with xn chosen so that the
area P(n� ≤ X ≤ (n + 1)�) equals that of the rectangle shown, of height f (xn).

(n + 1)� equals the rectangular area � f (xn) in Figure 18.43. That is,

pn = �× f (xn). (18.34)

With the aid of (18.34) we find that, although entropy for continuous variables is unde-
fined, mutual information comes through unscathed. First let us apply the definition of
discrete entropy (see (12.7)) to our approximation X� and see what happens as � → 0.
We have

H (X�) = −∑
n pn log pn

= −∑
n pn log[� f (xn)] by (18.34)

= −∑
n pn[log �+ log f (xn)] by log(ab) = log(a) + log(b)

= − log �
∑

n pn −
∑

n � f (xn) log f (xn) by (18.34)
= − log �−∑

n[ f (xn) log f (xn)]� since
∑

n pn = 1.

As � → 0, the first term tends to infinity, and we’ll come back to that. The second
term approaches what is called the differential entropy, h(X ) = −∫ f (x) log( f (x))dx
(assuming the integral exists). This does not measure information directly, but suppose
Z is another continuous real variable with pdf g(x) and quantization Z�. Then because
the terms log � cancel in the subtraction we may write

H (X�) − H (Z�) = −∑
n[ f (xn) log f (xn)]�+∑

n[g(xn) log(g(xn))]�

→ h(X ) − h(Z ).

But, since mutual information is a difference between entropies, it too tends to a finite
limit as � → 0, and many arguments used for mutual information in the discrete case
carry over to the continuous, with summation replaced by integration. The appropriate
definitions are gathered in Table 18.3.

Example 18.23 I (X ; Y ) = E log 1/p(x) + E log 1/p(y) − E log 1/p(x, y) = h(X ) +
h(Y ) − h(X, Y ). The reader may like to show similarly that I (X ; Y ) = h(X ) − h(X |Y )
(Exercise 18.12).

Theorem 18.24 Let X1, . . . , Xn be independent continuous random variables; then
h(X1, . . . , Xn) = h(X1) + h(X2) + · · · + h(Xn).
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Proof It suffices to handle the case n = 2, since this can be used as an inductive step to
reach any n. Taking the variables as X , Y , let their respective pdfs be f (x) and g(y). As
independent variables they have a joint pdf p(x, y) = f (x)g(y), so that, with integrals
over the whole real line,

h(X, Y ) = −E log p(x, y)

= −
∫ ∫

p(x, y) log p(x, y)dxdy

= −
∫ ∫

f (x)g(y)[log f (x) + log g(y)]dxdy using log(ab) = log a + log b

= −
∫ ∫

g(y)[ f (x) log f (x)]dx dy −
∫ ∫

f (x)[g(y) log g(y)]dx dy

= −
∫

f (x) log f (x)dx −
∫

g(y) log g(y)dy, since
∫

f (x)ldx = 1

=
∫

g(y)dy = h(X ) + h(Y ).

Table 18.3. Definitions and relations for differential entropy. The various pdfs
are all denoted by p, with arguments removing any ambiguity. The last

line defines the mutual information of X and Y in the present,
continuous case. The use of expected value E allows
convenient comparison of the four entities defined.

name definition other expressions

differential entropy of X h(X ) = E log 1/p(x) −∫ p(x) log p(x)dx
joint differential entropy h(X, Y ) = E log 1/p(x, y) −∫∫ p(x, y) log p(x, y)dxdy

of X and Y
differential entropy of h(X |Y ) = E log 1/p(x |y) h(X, Y ) − h(Y )

X given Y
mutual information of I (X ; Y ) = E log[p(x, y)/ h(X ) + h(Y ) − h(X, Y )

X and Y p(x)p(y)] = h(Y ) − h(Y |X )

Gaussian random vectors It will be extremely useful to have an explicit formula for the
differential entropy of Gaussian variables (also called normal). We have already derived
the necessary properties (Section 10.4.3). A continuous n-dimensional random vector
X = (X1, . . . , Xn) is defined to be Gaussian if, for some positive definite n × n matrix
Q and n-vector µ, it has a pdf

f (x) = (2π )−n/2|Q|1/2 exp[− 1
2 (x − µ)Q(x − µ)T]. (18.35)

Remarks 18.25 It follows that each Xi is Gaussian with mean µi , where µ =
(µ1, . . . , µn), and variance σ 2

i given by the ith diagonal element of Cov(X ). Further,
Q is the inverse covariance matrix, Q = Cov(X )−1. Note that the Xi need not be inde-
pendent, but if they are then Cov(X )i j = E[(Xi − µi )(X j − µ j )] (by definition) = 0 for
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i �= j . Finally, we recall the useful formula in which y is an n-vector and Qi j is the (i, j)
entry of Q:

yQyT =
∑

i, j
Qi j yi y j . (18.36)

Examples 18.26 (1) Case n = 1 Here X = X1, µ = µ1, σ = σ1 and the 1 × 1 ma-
trix Q is the scalar Cov(X)−1 = 1/E[(X − µ)2] = 1/σ 2. We recover the familiar
form

f (x) = (2πσ 2)−1/2 exp[−(x − µ)2/2σ 2]. (18.37)

(2) Case n = 2. Let Q =
[

1 −1
−1 2

]
, µ = (0, 0). Determine the variances and the pdf.

Solution We have |Q| = 1 so (18.36) gives f (x1, x2) = (2π )−1 exp[− 1
2 (x2

1 − 2x1x2 +
x2

2 )]. Secondly, Cov(X ) = Q−1 = Rows[(2, 1), (1, 1)], whence σ 2
1 = 2 and σ 2

2 = 1.

Theorem 18.27 An n-dimensional Gaussian variable X = (X1, . . . , Xn) has differential
entropy

h(X ) = n
2 [1 + log

(
2π |Q|−1/n

)
]or, to base e, n

2 ln
(
2πe|Q|−1/n

)
. (18.38)

Proof We use (18.35) to write the pdf as γ exp[− 1
2 (x − µ)Q(x − µ)T] with γ =

(2π )−n/2|Q|1/2. Then

h(X ) = −
∫

f (x) log f (x)dx

= −
∫

f (x) log γ dx + 1
2

∫
f (x)(x − µ)Q(x − µ)Tdx

= − log γ + 1
2

∫
f (x)

∑
i j

Qi j (x − µ)i (x − µ) j dx by (18.36)

= − log γ + 1
2

∑
i j

Qi j

∫
f (x)(x − µ)i (x − µ) j dx

= − log γ + 1
2

∑
i j

Qi j E[(x − µ)i (x − µ) j ] by definition of expectation E

= − log γ + 1
2

∑
i j

Qi j (Q−1) j i since Cov(X ) = Q−1

= − log γ + 1
2

∑
i

∑
j

Qi j (Q−1) j i

= − log γ + 1
2

∑
i
(Q Q−1)i i = − log γ + n

2
(since Q Q−1 = I ).

Finally, − log γ = (n/2) log(2π ) − (1/2) log |Q| = (n/2) log(2π |Q|−1/n). This gives
the first expression of (18.38) for h(X ), and the second follows because 1 = logee.
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Corollary 18.28 Let X = (X1, . . . , Xn), where X1, . . . , Xn are independent and Xi is
Gaussian with mean µi and variance σ 2

i (1 ≤ i ≤ n). Then to base e

h(X ) = n
2 ln 2πe

(
σ 2

1 · · · σ 2
n

)1/n
; for one variable: 1

2 ln(2πeσ 2). (18.39)

Proof Since the Xi are independent, E[(x − µ)i (x − µ) j ] = 0 for i �= j so Cov(X ) =
diag(σ 2

1 , . . . , σ 2
n ) and |Q| = (σ 2

1 · · · σ 2
n )−1. Substituting in (18.38) gives the simpler

(18.39).

Exercise When is the differential entropy of a Gaussian random vector positive?

Exercise Deduce (18.39) from the case n = 1. (Hint: use Theorem 18.24.)

Continuous random vectors Now for the result that tells us the sense in which Gaus-
sians are a unique extremal case, with which others may be compared.

Theorem 18.29 Let X = (X1, . . . , Xn) be an n-dimensional continuous random vari-
able, in which the components Xi need not be independent, but the variance of Xi is
given to be σi

2. Then,

h(X ) ≤ n
2 ln 2πe

(
σ 2

1 · · · σ 2
n

)1/n
, (18.40)

with equality if and only if the Xi are independent Gaussians.

Proof Let the pdf of X be p(x). Then Xi has a pdf pi (xi ), the marginal pdf, obtained by
integrating p(x) over all the component variables except xi itself (see Section 10.1.1),
and, consequently,∫

p(x)(xi − µi )
2dx =

∫
pi (xi )(xi − µi )

2dxi = σ 2
i . (18.41)

Now let Y = (Y1, . . . , Yn), where the Yi are independent Gaussian variables with
joint pdf g(y) = �i gi (yi ). Let Yi have the same parameters as Xi , so gi (yi ) =
(2πσ 2

i )−1/2 exp[−(yi − µi )2/2σ 2
i ]. The main proof proceeds by an ingenious combi-

nation of p(x) and g(x). We note firstly that

−
∫

p(x) log g(x)dx = −
∫

p(x)
∑

i
log gi (xi )dx (logs to base e)

=
∑

i

∫
p(x) 1

2

[
log 2πσ 2

i + (xi − µi )
2/σ 2

i

]
dx

= 1
2

∑
i

(
log 2πσ 2

i + 1
)

by (18.41)

= n
2 log 2πe

(
σ 2

1 · · · σ 2
n

)1/n
(Exercise 18.12)

= h(Y ) = −
∫

g(y) log g(y)dy, by (18.39).
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Therefore h(X ) − h(Y ) = −
∫

p(x) log p(x)dx+
∫

p(x) log g(x)dx

=
∫

p(x) log
g(x)

p(x)
dx = E log[g(x)/p(x)]

≤ log
∫

p(x)
g(x)

p(x)
dx by Jensen’s Inequality, (9.51)

= log
∫

g(x)dx = log(1) = 0,

with (by Jensen’s result) equality if and only if g(x)/p(x) = 1 almost everywhere, and
so the proof is complete since isolated function values do not affect the value of an
integral.

Example 18.30 (Example 18.26 revisited) Let us test out the upper bound (18.40)
on Gaussian differential entropy. Consider the case n = 2 with Cov(X ) = Q−1 =
Rows[(2, 1), (1, 1)]. From this we read off the values σ 2

1 = 2, σ 2
2 = 1, and so the

upper bound for such an example is

h(X ) ≤ ln 2πe
(
σ 2

1 σ 2
2

)1/2 = ln(2πe
√

2).

The entropy in this specific case of Q is, by (18.38),

h(X ) = ln
(
2πe|Q|−1/2

) = ln(2πe),

which is strictly less than the upper bound, as predicted by the non-independence of the
components of X (the off-diagonal elements of Cov(X ) being nonzero).

18.3.2 Mutual information and neural nets

Now we are ready to explore Linsker’s (1988) principle of maximum information for nets,
or Infomax. The application will be to self-organising nets with a single layer of weights,
with the question: how should the net adapt in the presence of various kinds of noise?
The examples are due to Linsker, and conclude with one that preserves topology in the
sense of Kohonen. To incorporate noise the following lemma is useful. It is questionably
obvious to intuition, so the agreement with theory is reassuring.

Lemma 18.31 Suppose that the continuous random variables Y, U, Z satisfy Y = U +
Z, where U and Z are independent. Then h(Y|U) = h(Z).

Proof Being independent, (U, Z) have a joint pdf p(u)g(z), where p, g are respective
pdfs of U and Z. The substitution z = y − u, or equivalently the change of variables
u, y → u, z (= y − u) has Jacobian 1 (see Theorem 10.10), so we may say that U, Y
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have joint pdf f (u, y), with

f (u, y) = p(u)g(z), and p(y|u) = f (u, y)/p(u) = g(z). (18.42)

Hence h(Y |U ) = −
∫∫

f (u, y) log p(y|u)du dy

= −
∫∫

p(u)g(z) log g(z)du dz, on substituting

z = y − u, by (18.42)

= −
∫

g(z) log g(z)dz since
∫

p(u)du = 1

= h(Z ).

Example 18.32 (Processing noise, single neuron) Consider a single neuron with input
vector X , output Y (a single scalar), weight vector w, and additive noise N on the output.
Our model is Y = w · X +N , where

Y is N (µ, σ 2), N is N
(
0, σ 2

0

)
, and X, N are independent.

We wish to maximise the mutual information between input and output, namely

I (X ; Y ) = h(Y ) − h(Y |X ) (see Table 18.3)

= h(Y ) − H (N ) by Lemma 18.31 with U = w · X and Z = N
= 1

2 ln(2πeσ 2) − 1
2 ln

(
2πeσ 2

0

)
by (18.39)

= ln(σ/σ0) (a version of the signal to noise ratio, or SNR).

Conclusion: we should aim for greatest output variance.

Example 18.33 (Processing noise, two neurons)

y1

y2

Input
nodes

w1

w2

Figure 18.44 Single-layer net with two neurons.

Now we extend the number of neurons to two, as portrayed in Figure 18.44, with input
X, output pair Y = (Y1, Y2), weight vectors w1, w2, and noise vector N = (N1,N2).
The noise is additive as before, that is Y1 = w1 · X +N1, Y2 = w2 · X +N2; in fact we
take

Y = U +N , where Ui = wi · Xi is in N
(
0, σ 2

i

)
, (18.43)

Ni and Xj are independent for all i, j, (18.44)

N1,N2 ∼ N
(
0, σ 2

0

)
, and are independent. (18.45)
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Mutual information Writing R = Cov(Y ) (= Q−1), the covariance matrix, we may
use the results of the previous section to compute I (X ; Y ) (see also basic results of
Section 10.2.3). Thus:

I (X ; Y ) = h(Y ) − h(N ) by Lemma 18.31

= log
(
2πe|R|1/2

)− log
(
2πe

(
σ 2

0 · σ 2
0

)1/2)
by (18.38), (18.39)

= log
(|R|1/2/σ 2

0

)
.

The covariance matrix We take the noise variances σ 2
0 as fixed and so maximising

I (X ; Y ) means maximising |R|; it will turn out there are two cases of interest. Note that
we assume noise is independent of the Ui (as well as zero mean), hence zero covariances
E[UiN j ]. Write R = [Ri j ], then

Rii = V [Yi ] = V [Ui +Ni ] = V [Ui ] + V [Ni ] (by independence) = σ 2
i + σ 2

0 ,

R12 = R21 = E[(U1 +N1)(U2 +N2)] since Ui ,Ni have zero means
= E[U1U2 + U1N2 + U2N1 +N1N2]
= E[U1U2] by (18.44) and (18.45)
= σ1σ2σ12, if ρ12 is the correlation coefficient (Section 10.4)

of U1, U2.

Finally, |R| = R11 R22 − R2
12 = σ 4

0 + σ 2
0 (σ 2

1 + σ 2
2 ) + σ 2

1 σ 2
2 (1 − ρ2

12). With σ0 fixed, the
mutual input–output information will be greatest when |R| is greatest, and we want to
know what properties of σ1 and σ2 will achieve this. There are two cases, between which
a tradeoff must be made.

Case 1: large noise variance With σ0 large the third term of |R| is neglible com-
pared with the other two, and the first is fixed, so we should maximise the over-
all output variance σ 2

1 + σ 2
2 (measured in the absence of noise). We may charac-

terise this as REDUNDANCY, as opposed to the next case, where the best policy is
diversity.

Case 2: small noise variance When σ0 is small, it is the third term of |R| which dom-
inates, and this time the system performs best if σ 2

1 and σ 2
2 are individually large (for

instance it is no good here having a large sum if one of them is zero). That is, we need
DIVERSITY.

Example 18.34 (Image processing) Suppose we are given adjacent but non-overlapping
pixel patches of an image. They might appear as in Figure 18.45.

Figure 18.45 Adjacent patches of an image have something in common due to their
shared history, and mutual information is one approach to making use of this fact.
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We don’t know what the picture values should be but we do know that different parts
have common cause(s), such as

lighting,

orientation,

reflective properties,
slightly different version, e.g. due to motion;

therefore we expect, not equality between patches, but some form of coherence. We
cannot expect that patches have minimal squared difference, but we may hypothesise
that they have shared information. The method of Becker and Hinton (1992) proceeds
via a net with one hidden layer, globally represented in Figure 18.46, in which a patch
labelled A sends input to a module and thence to an output Ya . It is argued that we
should maximize, over all possible weight connection vectors, the information which the
mean of Ya and Yb conveys about the common underlying signal X. That is, maximize
I [(Ya + Yb)/2; X ], based on model (18.46) and Formula (18.47) below.

input Binput A

hidden layer hidden layer

ya yb

maximise mutual info,

Figure 18.46 Overall plan for two patches of an image.

We assume that the modules of Figure 18.46 receive input produced by a common
Gaussian signal X that is corrupted by independent Gaussian noise additions Na,Nb.
That is,

Ya = X +Na, and Yb = X +Nb. (18.46)

Lemma 18.35 (Becker, 1992) With the model (18.46), and assuming all variables to be
Gaussian, the mutual information I (Ya; Yb) is given by

I (Ya; Yb) = 1
2 log

V (Ya + Yb)

V (Ya − Yb)
. (18.47)

Proof We may write Y = (Ya + Yb)/2 = (Na +Nb)/2 + X . Now, a linear combination
of Gaussian variables is Gaussian (see Example 10.41), and this applies in particular to
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Y, (Ya ± Yb)/2, and (Na ±Nb)/2, so we may argue as follows.

I (Y ; S) = h(Y ) − h(Y |X ) see Table 18.3

= h(Y ) − h[(Na +Nb)/2] by Lemma 18.31

= (1/2) log 2πeV (Y )−(1/2) log 2πeV [(Na+Nb)/2] by (18.39)

= (1/2) log{V [(Ya + Yb)/2]/V [(Na +Nb)/2]} log a − log b = log(a/b)

= (1/2) log[V (Ya + Yb)/V (Na +Nb)] V (r Z ) = r2V (Z )

= (1/2) log[V (Ya + Yb)/V (Na −Nb)] Na,Nb independent

= (1/2) log[V (Ya + Yb)/V (Ya − Yb)] Na −Nb = Ya − Yb.

Becker and Hinton (1992) construct a net which, given examples from a random-dot
stereogram, can learn features such as depth and surface curvature. This work is further
extended in Becker and Hinton (1993). For more details, see these cited papers.

Remarks 18.36 (1) Edge and motion detection Tang (1991) obtains an exact analytic
solution to a class of network information minimisation problems, and applies it to
edge-detection and motion detection.

(2) The Gaussian assumption Linsker (1993) shows that it is justified to assume that
the input is Gaussian, in the sense that the correct maximum will be obtained for given
means and variances, provided the input–output relation is linear, i.e. no sigmoid or
other nonlinear function is employed. This reference is also a source for the relevance of
mutual information to multiresolution, wavelets and pyramid encoding.

(3) Information and texture Mumford et al. (1997) propose a Minimax Entropy Prin-
ciple applied to texture, which leads to a new Markov Random Field model of texture.

18.3.3 A general learning rule

We have tackled the special case of two output nodes in Example 18.33, but Infomax,
Linsker’s principle of maximising the input–output mutual information I (X ; Y ), can do
more. In fact it leads to a weight updating analogous to the backpropagation algorithm of
supervised learning, provided we can find a way to perform gradient ascent of I (X ; Y ).
That is, if we can find an expression for the derivative of I (X ; Y ) with respect to the
weights; for then we know the update directions which will increase mutual information.
Following Linsker (1992), we’ll denote the matrix of weights by C, and so take, with
X, Y, N as column vectors,

Y = CX +N , (18.48)

where N is an additive noise vector with zero mean. Then, as in Example 18.33,

I (X ; Y ) = h(Y ) − h(Y |X ) = h(Y ) − h(N ). (18.49)

We assume, though, that the noise is independent of the weights, so for the purpose
of differentiation we may focus on h(Y ) alone. Let w be any weight cni , and denote
differentiation with respect to w by a superscript dash (prime). Then I ′(X ; Y ) = h′(Y ).
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Further, writing R = Cov(Y ), the covariance matrix of Y, we have by Equation (18.38)
that h(Y ) equals a constant plus (1/2) ln |R|. In summary, therefore,

I ′(X ; Y ) = ∂

∂w

1

2
ln |R|. (18.50)

Construction 18.37 Functions of matrices To tackle (18.50) we must extend the matrix
background of Chapter 8. For A = [ai j ] we let A′ = ∂ A/∂w = [a′i j ], the matrix of deriva-
tives (when these exist). The product rule (AB)′ = A′B + AB ′ holds because (AB)′ has
(i, j) entry (

∑
aisbs j )′ =

∑
a′isbs j +

∑
a′isbs j . For present purposes we may take A to

be a real symmetric n × n matrix, giving the benefit (Theorem 8.30) that A is closely
related to the diagonal matrix D = diag(λ1, . . . , λn) = diag[λ j ] of its eigenvalues λ j ,
which are necessarily real. Specifically, there is an invertible matrix P such that

A = PDP−1 = P · diag[λ j ] · P−1, (18.51)

and, conversely, if A may be so represented then the λ j are the eigenvalues of A. This
is very powerful because it shows that many results about numbers hold for complete
matrices, via ‘cancellation’ of P and P−1. Note firstly that we may form powers Ak

and hence polynomials f (A). For example, A2 = PDP−1 · PDP−1 = PD2 P−1 = P ·
diag[λ2

j ] · P−1, and more generally

f (A) = P · f (D) · P−1 = P · diag[ f (λ j )] · P−1, (18.52)

A′ = PD′P−1 = P · diag[λ′j ] · P−1. (18.53)

A−1 = P · diag
[
λ−1

j )
] · P−1. (18.54)

Exercise Verify (18.54) by checking that A · A−1 = I .

Because any two diagonal matrices D1 and D2 commute (D1 · D2 = D2 · D1), the same
holds for any two plynomials in A, which in turn commute with A′ and A−1, as seen
through the examples above. Observe that exponentials eA are well-defined because
(18.52) shows that if pk(x) → p(x) then pk(A) → p(A), and we may take for pk(x) the
sum of the first k terms in the series expansion of ex .

Similarly for ln A, provided A is positive definite so that the λ j are positive (see
Corollary 8.35) and their logarithms exist; that is, ln A = P diag[ln λ j ]P−1. Now we can
state two results that take us on from (18.50).

Lemma 18.38 If A is positive definite then ∂/∂w ln |A| = Tr(A−1 A′).

Proof We note that the determinant of a matrix equals the product of its eigenvalues λ j

and the trace of A equals their sum (Lemma 8.5). According to (18.51) the eigenvalues of
ln A are the values ln(λ j ). Thus ln |A| = ln �λ j =

∑
ln(λ j ) = Tr ln(A), and it remains

to observe that

∂/∂w ln A = P · diag[∂/∂w ln(λ j )] · P−1 = P · diag
[
λ−1

j λ′j
] · P−1 = A−1 A′.
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Lemma 18.39 Let 〈Z〉 = (1/N )
∑

Zi , the estimated expected value of Z over N samples
Zi . Then R′ = (CLCT)′, where, averaging over a given set of N training column vectors,
we take

L = Cov(X ) = 〈X XT〉, and R = Cov(Y ) = 〈Y Y T〉. (18.55)

Proof If M, P are fixed matrices for which MZP exists, then 〈MZP〉 =
(1/N )

∑
MZi P = M[(1/N )

∑
Zi ]P = M〈Z〉P . Thus with Y = C X +N , and the ad-

ditive noiseN independent of X and C , the term Cov(N ) drops out when we differentiate
the final equality below:

R = 〈YYT〉 = 〈(CX +N )(CX +N )T〉
= C〈XXT〉CT + C〈XN T〉 + 〈N XT〉CT + 〈NN T〉,
= CLCT + Cov(N ), by definition of L .

Remarks 18.40 It is necessary to make the reasonable assumption that training vectors
are chosen so that, as a set of n-vectors, they span the whole space Rn . It follows that the
covariance matrix R is positive definite (see Exercise 18.14) and therefore, as remarked
earlier, ln R is well-defined. The following theorem provides a basis for gradient ascent
of I (X ; Y ) by giving its derivatives in terms of the weight matrix C.

Theorem 18.41 ∂ I/∂cni = (R−1CL)ni for each entry cni of C, that is

∂ I/∂C = R−1CL.

Proof Putting together the various pieces, we may argue as follows, starting from (18.50).

∂ I/∂w = ∂/∂w 1
2 Tr(R−1 R′) by Lemma 18.38

= 1
2 TrR−1[CLC′T + C ′LCT] by Lemma 18.39 and the Product Rule

= Tr R−1CLC′T since both terms contribute the same

=∑
m,p(R−1CL)mp∂cmp/∂cni Tr ABT =∑

ampbmp

= (R−1CL)ni the only nonzero term.

Making the learning rule local We’re now in a position to perform gradient ascent by
the updating rule

�cni = γ (R−1CL)ni , (18.56)

but there is a problem: the factor R−1 makes the update depend in a complicated way
upon values at all nodes, and so this rule cannot be described as local. The ingenious
approach of Linsker (1992) uses the fact that we don’t actually need R−1 on its own,
for

(R−1CL)ni = 〈R−1CXXT〉ni = 〈R−1Y · XT〉ni = 〈(R−1Y )n(X )i 〉.
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The aim becomes to estimate the product R−1Y by an updating process. For this we
begin with a matrix F = I − αR, with 0 < α < 1 chosen to aid/ensure convergence of
the sequence {yt} defined by

y0 = Y, yt+1 = Y + Fyt (t = 0, 1, 2, . . .). (18.57)

This works because if yt → y∞ then y∞ = Y + (I − αR)y∞, from which R−1Y = αy∞.
On the other hand, we need the matrix R = 〈Y Y T〉 for F in order to calculate y∞. An
estimate R̂ is updated by each new training vector (the same idea was used for k-means
at (18.30)), as prescribed in step 2 of the algorithm below.

ALGO 18.5 Weight matrix for maximum mutual information

Initialise C and R̂ to zero; set α, γ and an integer t
Repeat for M = 1, 2, 3, . . .

1. Choose a training vector X and determine the output Y
2. Perform update �R̂ = 1

M (YYT − R̂)
3. Estimate y∞ as yt , using (18.57)
4. Compare yt+1 and repeat step 3 with new α if necessary
5. Perform update �C = γα(y∞XT)

Until changes are within tolerance.

Locality This learning scheme is indeed local in that �R̂mn uses information only at
positions m and n of Y and at (m, n) in R̂; further, �cni uses only (y∞)n and (X )i .

Further developments (i) More noise The model so far allowed additive noise after
application of the weight matrix, implying that, to know Y, we must be able to measure
the output. Continuing this point, Linsker extends his method to include input noise also:
X = S + N , where S is the original input signal and N is noise. This is done by first
allowing the net to learn R with noise only, as input; then in a second phase it learns R
with signal plus input noise. Details are found in Linsker (1992).

(ii) Nonlinear activation Bell and Sejnowski (1995) study the case in which nonlin-
ear activation functions such as sigmoids are used, obtaining a learning method which
incorporates the derivatives of these functions. They show that, in this case, one can
obtain output variables that are statistically independent: p(x, y) = p(x)p(y). This situ-
ation is called independent component anaysis, or ICA, as distinct from PCA, where the
components are just uncorrelated. However, the results depend on taking no account of
noise.

(iii) Linsker (1997) showed how his earlier learning algorithm can incorporate the
results of Bell and Sejnowski so as to remove both their restriction on noise and his
restriction to Gaussian input and linearity, whilst still keep learning fully local.

(iv) Kohonen learning A useful introduction to Infomax learning in the case of
Kohonen’s topographic map approach is given by Haykin (1994). A powerful learn-
ing algorithm was developed recently by van Hulle (2002).
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18.3.4 Shannon’s Rate Distortion Theory

Information Theory has something to say about quantisation. Importantly, it predicts that,
if we have a set of symbols to quantise, it is better to quantise them together in blocks rather
than separately, for this will result in better compression for the same permitted error.

We begin with the idea of a source sequence U = (U1, . . . , Uk) of independent vari-
ables Ui , with common pdf, whose values are symbols from the source alphabet AU . The
sequence is processed through some channel and becomes V = (V1, . . . , Vk), where each
Vi takes values in the destination alphabet AV (which usually contains AU ). The source
(and entropy) will be discrete, that is the alphabets will be finite, until we consider the
Gaussian source. We emphasise that, until other possibilities are explicitly considered,
the source will be memoryless, another way of saying the Ui are independent.

An error or distortion d(ui , vi ) is considered to occur when ui is reproduced by the
channel as vi . The distortion between sequences u and v is then simply defined as

d(u, v) =
∑

i
d(ui , vi ) (1 ≤ i ≤ k). (18.58)

Example 18.42 (k = 2) AU = AV = {0, 1, 2, . . . , 9}with d(ui , vi ) = |ui − vi |. Taking
u = (1, 2) and v = (4, 7) gives d(u, v) = |1 − 4| + |2 − 7| = 3 + 5 = 8.

Assumptions 18.43 The case AU = AV above is fairly typical. We don’t need AV to
be completely general and it will be enough to assume two things:

(i) for each u in AU there is some v = vu with d(u, vu) = 0,

(ii) for each v inAV there is at most one u with d(u, v) = 0.

Equivalently, in the distortion matrix [d(u, v)], with rows u and columns v, each row has
at least one zero, and each column at most one. This is certainly true for the Hamming
distance d(u, v) = 0 if u = v, otherwise d(u, v) = 1. For example, in the caseAU = AV

and U = (U1, U2, U3) the distortion matrix is

[d(u, v)] =
⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦.

Definitions 18.44 We define the rate distortion function R(D), which we’ll see represents
the number of binary bits need to represent a source symbol if distortion D is acceptable.
It is a minimum of mutual information which exists similarly to (13.20), as follows:

Rk(D) = Min{I (U ; V ) : E[d] ≤ k D}, (18.59a)

R(D) = Mink(1/k)Rk(D) (mean per symbol). (18.59b)

Formula (18.59b) converts a mean distortion over k symbols to a per-symbol distortion.
In fact it may be shown that R(D) = R1(D) (we omit the technical proof of this fact).
That is

R(D) = Min{I (U ; V ) : E[d] ≤ D} (k = 1). (18.60)
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Test channels It should be explained that the minimum of I (U ; V ) is taken over all test
channels, that is choices of {p(v|u)}, with the source statistics p(u) fixed, and subject
to the constraint E[d] ≤ D. We express this constraint in terms of p(v|u) by noting that
u, v have a joint pdf p(u, v) = p(u)p(v|u), whence

E[d] =∑
u,v p(u)p(v|u)d(u, v). (18.61)

The compression interpretation of R(D) Suppose that U = (U1, . . . , Uk) can be rep-
resented by n bits X = (X1, . . . , Xn) from which V can be recovered with distortion
limited by E[d] ≤ k D. Considering the diagram U → X → V with logs to base 2, we
have by Corollary 13.19, Theorem 13.3 and Theorem 13.21 in succession, that

n ≥ H (X ) ≥ I (X ; V ) ≥ I (U ; V ),

which is at least kR(D) by (18.59b). Thus n/k ≥ R(D), meaning at least R(D) bits per
symbol are needed.

Some properties of R(D) This function is hard to compute exactly except in a few
special cases such as the Gaussian (Theorem 18.48 below). However, the problem was
considered solved with the advent of an effective numerical algorithm due to Blahut
(1972) (see also Gray, 1990). The graph of R(D) has a fairly simple general appearance.
We show that, as in Figure 18.47,

R(D) is non-decreasing between two values Dmin and Dmax,

undefined to the left, and zero to the right of these.

Dmax

H(U)

R(D)

D

Figure 18.47 Typical graph of R(D), the rate distortion function. Its general shape is
derived in the text.

Working with single (rather than k) symbols we may consider u ∈ AU .

(a) Dmin = 0. Since D < 0 is impossible (D is a distortion) we show that R(0) exists, i.e. that
there exists a test channel for which E[d] = 0. Define p(v|u) = 1 if v = vu (see Assumptions
18.43), otherwise zero. Then E[d] =∑

u,v p(u)p(v|u)d(u, v) =∑
u p(u)d(u, vu) = 0.

(b) R(D) is non-increasing Let 0 ≤ D1 < D2. Then E[d] ≤ D1 implies E[d] ≤ D2, hence the
set inclusion {I (U ; V ) : E[d] ≤ D1} ⊆ {I (U ; V ) : E[d] ≤ D2}. But enlarging a set cannot
increase its minimum, so R(D2) ≤ R(D1). That is, R(D) is non-increasing.



18.3 Information Theory revisited 807

(c) R(D) = 0 for D ≥ Dmax, where we define

Dmax = Minv

∑
u p(u)d(u, v) =∑

u p(u)d(u, v0), say. (18.62)

Proof Referring to (18.59) we see that R(Dmax) = 0 follows if we produce a test channel
with I (U ; V ) = 0 and E[d] = Dmax. For this channel we ensure I (U ; V ) = 0 by a deter-
ministic choice: p(v|u) = 1 if v is the symbol v0 of (18.62), otherwise p(v|u) = 0 (see
Exercise 13.5). This gives E[d] =∑

u,v p(u)p(v|u)d(u, v) =∑
u p(u)d(u, v0) = Dmax

as required. Thus R(Dmax) = 0. It remains to remark that, since R(D) is non-increasing,
it stays zero for D > Dmax. Now we note a useful equality for R(0), proved below and
indicated earlier, in Figure 18.47:

R(0) = H (U ). (18.63)

To see this, recall that R(0) = Min{I (U ; V ) : E[d] = 0} and let (U, V ) be a test channel
achieving this minimum. We need H (U |V ), which is defined by {p(u|v)}. For this we
note firstly that if the channel sends u to v then p(v|u) is nonzero and the zero sum
0 = E[d] =∑

p(u)p(v|u)d(u, v) implies that d(u, v) is zero. Hence, given v, there is
by Assumption 18.43(ii) at most one candidate u for u → v.

Thus the ‘reverse channel’ (V, U ) has the special property that p(u|v) is always 0 or 1,
and so H (U |V ) = −∑

p(v)p(u|v) ln p(u|v), which is zero since 1 · ln(1) and 0 · ln(0)
are both zero. Finally, R(0) = I (U ; V ) = H (U ) − H (U |V ) = H (U ).

Calculating R(D) As exemplified above, a standard method we will use to determine
R(D) is to bound it below on general grounds, say R(D) ≥ B, then to show this bound
is tight by exhibiting a special channel with I (U, V ) = B, implying R(D) ≤ B. We start
with an inequality that relates H (X |Y ) to the probability Pe of error if we guess that
X = Y .

Theorem 18.45 (Fano’s Inequality) Let X, Y be random variables taking the same r
values. Writing Pe = P(X �= Y ), we have

H (X |Y ) ≤ H (Pe) + Pe log(r − 1). (18.64)

Proof Let Z be another discrete random variable, and define the function G(z) =∑
x,y p(y)p(z|x, y). We claim that H (X |Y ) ≤ H (Z ) + E[log G], for

H (X |Y ) = E[log 1/p(x |y)] see Section 13.1.2

=∑
x,y,z p(x, y, z) log 1/p(x |y) since p(x, y) =∑

z p(x, y, z)

=∑
z p(z)

∑
x,y[p(x, y, z)/p(z)] log 1/p(x |y)

≤ ∑
z p(z) log{∑x,y[p(x, y, z)/p(z)] 1/p(x |y)} by Jensen’s Inequality

(9.54), since p(x, y, z)/p(z)] sums over x, y to 1,

=∑
z p(z) log 1/p(z) +∑

z p(z) log
∑

x,y p(x, y, z)/p(x |y).
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But the
∑

x,y term equals G(z) because p(x, y, z) = p(x, y)p(z|x, y) =
p(y)p(x |y)p(z|x, y), giving the claimed inequality. For Fano’s Inequality (un-
published, 1952) we define Z = 0 if X = Y and Z = 1 if X �= Y . Writing∑

x,y =
∑

x=y +
∑

x �=y we find that G(0) = 1 and G(1) = r − 1. Thus E[log G] =
P(Z = 0) log(1) + P(Z = 1) log(r − 1) = Pe log(r − 1), completing the proof.

Exercise With G(z) as above, verify that G(0) = 1.

Example 18.46 Determine R(D) for the binary symmetric source (AU = AV = {0, 1}),
with Hamming distance, and source statistics {p, q} (p ≤ q).

Solution We showed that Dmin = 0, and (18.62) gives Dmax = Min{p · 0 + q · 1, p · 1 +
q · 0} = p, so we now let 0 < D < p. Notice that, for any (U, V ) channel with Hamming
distance,

E[d] = P(U = 0, V = 1) · 1 + P(U = 1, V = 0) · 1 = P(U �= V ). (18.65)

For a lower bound on R(D), let channel (U, V ) achieve R(D), so that D = E[d] = Pe,
by (18.65), where we set (X, Y ) = (U, V ) in Fano’s Inequality to obtain H (U |V ) ≤
H (Pe) + Pe log(1) = H (D), whence R(D) = I (U ; V ) = H (U ) − H (U |V ) ≥ H (U ) −
H (D).

u = 0

u = 1

v = 0 (probability α)

v = 1

D

D

1 − D

1 − D

Figure 18.48 ‘Backwards’ test channel for Example 18.46, defined by p(u|v) = D if
v �= u and P(V = 0) = α.

To prove that our inequality is actually an equality we need a special test channel with
E[d] = D and I (U ; V ) = H (U ) − H (D). It suffices to insist, as in Figure 18.48, that
p(u|v) = D if u �= v (Exercise 18.15). This can be realised provided the implied value
α of P(V = 0) lies in the open interval (0, 1); the implied {p(v|u)} is automatically a
genuine pdf because

∑
v p(v|u) =∑

v p(u, v)/p(u) = p(u)/p(u) = 1. To compute α

we observe that p = P(U = 0), so

p = P(U = 0|V = 0)P(V = 0) + P(U = 0|V = 1)P(V = 1)

= (1 − D)α + D(1 − α),

whence α = (p − D)/(1 − 2D). With 0 < D < p ≤ 1/2, we have 0 < p − D < 1 −
2D, so 0 < α < 1 as required. Thus we have shown R(D) = H (U ) − H (D) for the
binary symmetric channel.
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Figure 18.49 Graph of R(D) = H (p) − H (D) for the binary symmetric source with
statistics {p, q}, and p = 0.1, 0.2, 0.3, 0.5.

Graphs We can conveniently graph some possibilities, because H (U ) = H (p) (see
(12.9)), and so R(D) = H (p) − H (D). This is shown in Figure 18.49 for various values
of p.

18.3.5 Source coding and the Gaussian source

The definition of rate distortion R(D), being based on mutual information, carries over
with I (X ; Y ) to the continuous case. Now we are ready to consider a source which is
Gaussian N (0, σ 2), with squared error distortion. That is, the source emits independent
symbols U1, U2, . . . , where Ui is N (0, σ 2), converted by a channel to Vi , say, and with
distortion measured for single symbols by d(u, v) = (u − v)2. To determine the rate
distortion function, which in this case can be done explicitly, we consider three assertions
of which the last two are intuitively expected.

Theorem 18.47 Differential entropy satisfies (i) h(aX ) = h(X ) + log |a| provided
a is a nonzero constant, (ii) h(X |Y ) ≤ h(X ) (conditioning cannot increase en-
tropy), and (iii) h(X ± Y |Y ) = h(X |Y ). Properties (ii) and (iii) also hold for discrete
entropy.

Proof (i) Let X have pdf f (x). Then the pdf of Y = aX is fY (y) = |a|−1 f (y/a) by
(9.33). Thus

h(Y ) = −
∫

fY (y) log fY (y)dy by definition, Table 18.3

= −
∫

|a|−1 f (y/a) log(|a|−1 f (y/a))dy now substitute y = ax

= −
∫

f (x) log(|a|−1 f (x))dx whether |a| = −a or a

=
∫

f (x) log |a|dx −
∫

f (x) log f (x)dx

= log |a| + h(X ).
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(ii) We prove (ii) and (iii) for the discrete case. The continuous is analogous, with integrals
in place of sums (see Exercise 18.17). Let X, Y have joint pdf p(x, y); then X has the
marginal pdf p(x) =∑

y p(x, y).

H (X |Y ) = −∑
x,y p(x, y) log p(x |y) by definition

≤ −∑
x,y p(x, y) log p(x) since p(x |y) ≤ p(x)

= −∑
x [
∑

y p(x, y)] log p(x)

= −∑
x p(x) log p(x) = H (X ).

(iii) We let Z = X + Y and show that H (Z |Y ) = H (X |Y ) (the case Z = X − Y is sim-
ilar). We write p(y) = P(Y = y) and p(x |y) = P(X = x |Y = y). Then P(Z = z|Y =
y) = P(X = z − y|Y = y) = p(z − y|y). Hence, using the substitution x = z − y to
transform the summation,

H (Z |Y ) = −
∑

z,y
p(y)p(z − y|y) log p(z − y|y)

= −
∑

x,y
p(y)p(x |y) log p(x |y) = H (X |Y ).

Theorem 18.48 The rate distortion function for a Gaussian N (0, σ 2) source with squared
error distortion is zero for D > σ 2, otherwise

R(D) = 1
2 log(σ 2/D), for 0 < D ≤ σ 2. (18.66)

Proof Let U be the proposed Gaussian source. (a) Let (U, V ) be a test channel achieving
I (U ; V ) = R(D), where 0 < D ≤ σ 2. Then, writing τ 2 = Var[U − V ],

R(D) = I (U ; V ) = h(U ) − h(U |V ) by Table 18.3

= h(U ) − h(U − V |V ) by Theorem 18.47 (iii)

≥ h(U ) − h(U − V ) by Theorem 18.47 (ii)

≥ h(U ) − h(W ), where W ∼ N (0, τ 2) by (18.40),

≥ h(U ) − h(Z ), where Z ∼ N (0, D) by (18.39),

since τ 2 = E[(U − V )2] − (E[U − V ])2

≤ E[d] ≤ D

= 1
2 log 2πeσ 2 − 1

2 log 2πeD by (18.39)

= 1
2 log(σ 2/D).

(b) We have proved that R(D) ≥ 1
2 log(σ 2/D). Now we need an explicit test channel with

I (U ; V ) = 1
2 log(σ 2/D), which will imply the reverse inequality R(D) ≤ 1

2 log(σ 2/D)
and so establish the desired equality. We define the required channel (U, V ) by defining a
joint pdf for its ‘reverse’ (V, U ). This is done implicitly by defining U = V + Z , where
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Z ∼ N (0, D) is independent of V . Then E[d] = E[(U − V )2] = E[Z2] = D, and

I (U ; V ) = h(U ) − h(U |V )
= h(U ) − h(V + Z |V )
= h(U ) − h(Z ) by Lemma 18.31, V and Z being independent
= 1

2 log 2πeσ 2 − 1
2 log 2πeD by Formula (18.39)

= 1
2 log(σ 2/D).

(c) The case D ≥ σ 2 We know that R(D) ≥ 0 so it remains to exhibit a test chan-
nel with I (U ; V ) = 0 (implying R(D) ≤ 0). We do so by taking V = 0. Then E[d] =
E[(U − V )2] = E[U 2] = σ 2 ≤ D, as required, and, since in this case h(U |V ) = h(V )
(see Exercise 18.16),

I (U ; V ) = h(U ) − h(U |V ) = h(U ) − h(U ) = 0.

Example 18.49 Let us rearrange R = 1
2 log(σ 2/D) to get D = σ 22−2R . This says that

with one bit per symbol the expected distortion is σ 22−2 = σ 2/4, whilst two bits per
symbol improve this to distortion only σ 2/16. In fact, each further bit of description
divides the expected distortion by a factor of 4.

The Source Coding Theorem

Now suppose a channel converts a source k-vector u to its nearest neighbour f (u) in a
list C = {v1,v2, . . . ,vM}, called a source code, or codebook, where each vi is a k-vector
over AV . This is of course vector quantisation, or VQ. How should we evaluate the merit
of C? A clever code causes little distortion in spite of having few codewords, say M ≤ 2n

with small n. Then the codewords may be indexed by n-bit words and the rate is n/k.
More precisely, we define the rate of C to be

R = (log2 M)/k. (18.67)

Thus a code quantises well if it keeps the rate down, for a given distortion. With this in
mind we’ll say the code C is D-admissible if the expected distortion for a single symbol
u in AU (the case k = 1) satisfies

E[d(u, f (u))] ≤ D. (18.68)

We are ready to state the remarkable Source Coding Theorem of Shannon, which we shall
do in the form offered by Berger (1971) (see Section 13 for channel coding). It states in
effect that there is a limit to the efficacy of quantisation, determined by the statistics of
the source, but that this limit may be approached arbitrarily closely by encoding the data
in sufficiently large blocks at a time.

Theorem 18.50 (Source Coding/VQ) Given ε > 0 and D ≥ 0, then provided k is suffi-
ciently large there is a (D + ε)-admissible code of length k, with rate R < R(D) + ε.
Conversely, no D-admissible code has a rate less than R(D).
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Gaussians again

The form of R(D) for a Gaussian N (0, σ 2) source leads to a helpful geometrical view-
point. Recall that it is the expected value or average of distortion that is to be considered.
Bearing this in mind, we may say that the codewords {v1,v2, . . . ,vM} must be arranged
in space so that no k-vector can be further than squared distance kD from its quantising
codeword. That is, each k-vector must lie in a sphere of radius

√
(k D) centred at that

codeword.

Figure 18.50 The
M codeword-centred
spheres of radius√

(k D) lie within a
larger sphere of radius√

(kσ 2).

Since this applies to every k-vector these spheres must
together cover the region of Rk occupied by the k-vectors.
But this is limited by the fact that the expected squared
length of a k-vector is k E[U 2

i ] = kσ 2, so they occupy
a sphere of radius

√
(kσ 2) centred at the origin, as sug-

gested in Figure 18.50. Thus the number M of small
spheres/codewords is at least the ratio of sphere volumes,
and a lower bound for M is (cf. Theorem 18.50)

(
big radius

small radius

)k

=
(√

kσ 2

√
k D

)k

=
(

σ 2

D

)k/2

.

How does this compare with the Source Coding Theorem, which says we get arbitrarily
close to a code with R = R(D)? With M denoting the number of codewords, we have
from (18.67) and (18.66) that (log2 M)/k = R = (1/2) log2(σ 2/D), hence (Exercise
18.16)

M = 2k R (any source), and (18.69a)

M =
(

σ 2

D

)k/2

(Gaussian source), (18.69b)

which meet our geometrically obtained lower bound. Thus we have sketched a proof of
the Source Coding Theorem for a Gaussian source (in general see Cover and Thomas
(1991)).

Example 18.51 Codes in the plane, k = 2 The arrangement for equal overlapping
disks that just cover a plane region (Kershner, 1939) is shown in Figure 18.51(a).
With each codeword x being at the centre of a disk, the Voronoi region of x , or set
of points nearer to x than to any other centre, forms a regular hexagon, as illustrated
in Figure 18.51(b). A point on the boundary of two Voronoi regions is thus equidistant
from two codewords, and may be quantised to either. Similarly in higher dimensions
than 2.

The hexagon centres form a lattice, meaning that they consist of all integral linear
combinations ma + nb of two independent vectors, say a = (1, 0) and b = (1,

√
3)/2.

For general k the problem is naturally more complicated, but best solutions are known in
many dimensions, typically equipped with an especially simple algorithm for determining
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a

b

(a) (b)

Figure 18.51 (a) The best covering of the plane by equal disks, (b) the corresponding
tiling of the plane by regular hexagons. Their centres form the plane lattice consisting
of all integral linear combinations ma + nb as described in the text.

the nearest lattice point/codeword to an arbitrary point. Such quantisers, sending each
point to its nearest lattice point, are called lattice quantisers. An excellent reference for
all this is Conway and Sloane (1988). But see also Gray (1990).

18.3.6 The LBG quantiser

The rate distortion function R(D) depends on the distribution p(u) of the input vectors.
Can one produce a VQ algorithm which is guided explicitly by this distribution so as to
keep distortion low? Following Linde, Buzo and Gray (1980) we show that alternating
between the two steps below produces a non-increasing sequence of expected distortions
E[d]. This forms the basis of their LBG quantiser, expressed as ALGO 18.6.

Step A. Given a set of codewords, find the partition into nearest neighbour subsets (the Voronoi
regions of the codewords).

Step B. Given a partition {S1, . . . , SM} of k-space, find codewords x̂(Si ) to minimise the expected
distortion over each Si .

Consider first the feasibility of Step B. In the case of uniformly distributed u and distortion
d(u, x) = (u − x)2, the codewords should be simply the centres of gravity. But this is by
no means always the requirement. Here are two simple examples with non-uniform pdfs
to illustrate both the discrete and continuous cases of p(u).

Example 18.52 (Discrete case, k = 1) Let Si = {1, 2, 3, 4} with corresponding proba-
bilities p(u) = 1/6, 1/6, 1/3, 1/3. Table 18.4 shows E[d] for each choice of codeword
x = xi .

The expected distortion is least when x = 3, that is x̂(Si ) = 3. Notice for later that the
same conclusion will follow (to a good approximation) if we estimate the probabilities
from a sufficiently large sample of values of u. In this context these samples are referred
to as training vectors.
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Table 18.4. E[d] for Example 18.52.

x d(u, x) (u = 1, 2, 3, 4) E[d]

1 0, 1, 4, 9 0/6 + 1/6 + 4/3 + 9/3 = 27/6
2 1, 0, 1, 4 11/6
3 4, 1, 0, 1 7/6
4 9, 4, 1, 0 15/6

Example 18.53 (Continuous case, k = 1) We find the codeword x̂(Si ) giving the least
mean distortion in a continuous non-uniform case. Let Si be the interval [0, 1], with pdf
p(u) = γ e−2u for some constant γ (its value does not affect the outcome). We have, for
a codeword with coordinate x,

E[(u − x)2] =
∫ 1

0
(u − x)2 p(u)du = γ

∫ 1

0
(u − x)2e−2udu,

which has the form f (x) = ax2 + bx + c, after integration by parts. Because a > 0 the
minimum occurs when d f/dx = 0, i.e. when x = −b/2a = (e2 − 3)/(2(e2 − 1)). Thus
x̂(Si ) = 0.34 approx., which is not the midpoint of the interval [0, 1] as it would be in
the uniform case.

Notation 18.54 We suppose the values of u lie in a set S partitioned into M subsets
S1, . . . , SM and that in each Si a codeword xi has been chosen. Let Ei denote expected
value when u is restricted to Si . We show that, with every u in Si quantised to q(u) =
xi (1 ≤ i ≤ M), the overall mean distortion is

E[d] =
M∑

i=1

Ei [d(u, xi )]P(U ∈ Si ). (18.70)

Proof Consider the discrete case of p(u) (the continuous is similar). Let f (u) be the
function on S defined by f (u) = d(u, xi ) if x ∈ Si . Then the overall expected distortion
is
∑

u f (u)p(u) which splits into sums over the Si separately as∑
i

∑
Si

f (u)p(u) =
∑

i

∑
Si

f (u)P(U = u|U ∈ Si )P(U ∈ Si )

=
∑

i
Ei [ f (u)]P(U ∈ Si ).

Theorem 18.55 The mean distortion E[d] is not increased by Steps A or B.

Proof for Step A: improving the partition We exchange the existing partition for the
Voronoi one. Before, each u was quantised to some codeword, now it is sent to the nearest
one. Hence the mean distortion cannot increase. Step B: improving the codewords. We
are given a partition {Si } and codewords xi . In each Si we exchange xi for the distortion-
minimising x̂(Si ). Thus, by definition, Ei [d(u, x̂(Si ))] ≤ Ei [d(u, xi )], and so by (18.70)
the overall mean distortion E[d] does not increase.
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ALGO 18.6 LBG Quantiser based on a distribution, or on training vectors

Initialisation Set the value of M, codewords x1, . . . , xM , a distortion threshold
ε ≥ 0, and a maximum number MAX of iterations. Set m = 0 and D0 = ∞.

REPEAT (m = 1, 2, 3, . . .)
Change the current partition to Voronoi (Step A)
Compute the mean distortion Dm = E[d] by (18.70) or (18.71)
If (Dm−1 − Dm)/Dm ≤ ε then return current codewords

else replace current codewords by {x̂(Si )} (Step B)
UNTIL return has occurred or m = MAX.

Remarks 18.56 (1) (Using training vectors) Suppose we are to simulate the distribu-
tion of u by N training vectors. Then, unlike in the k-means method, Steps A and B
straightforwardly involve all N vectors at every iteration, as does the mean distortion,

E[d] = 1
N

∑M

i=1

∑
u∈Si

d(u, xi ). (18.71)

(2) According to Theorem 18.55 we have in ALGO 18.6 that D0 ≥ D1 ≥ D2 ≥ · · · ≥
0, whence (see e.g. Hoggar, 1992) Dm must converge to some limit D∞. If this limit is
reached, successive iterations produce no change, indeed a finite number of iterations
suffice in the discrete case (Gray, Kieffer and Linde, 1980, page 188).

(3) The algorithm is valid for a wide range of pdfs and measures of distortion, an
important advance on previous results. For more on this, see Linde, Buzo and Gray
(1980). The case k = 1 is due to Lloyd (1957).

Example 18.57 (The case k = 2, M = 3, N = 55) For a simple example we set k = 2
so that both our 55 training vectors and the progressing codewords, three in number, may
be illustrated in the plane. This is seen in Figure 18.52, where points quantised to the
i th codeword are allocated the ith shading, for i = 1, 2, 3. Codewords are marked by a
circle for clarity, their cluster of data points being obvious. The rate is

R = (log2 M)/k = 0.79 bits/symbol,

and only ten iterations are required to achieve a constant mean distortion of 3.46. The
final codewords are (2.33, 4.67), (2.73, 8.86), (6.94, 9.72).

Example 18.58 The case M = 2k codewords (k = 1, . . . , 6), with N = 100 000
samples This example investigates, for constant rate R = 1, the reduction in distortion as k
increases from the scalar case k = 1 to a vector quantiser of block size k = 6. A Gaussian-
generated sample of 100 000 was used (see Section 11.3.5 for how to do this). The number
M of codewords to be used was determined by 1 = R = (log2 M)/k, implying M = 2k .

Results (after Linde, Buzo and Gray, 1980) are indicated in Figure 18.53. Notice that
the lower bound distortion of Shannon’s Theorem is only predicted to be approachable
for arbitrary large k.



816 Further methods

Mean distortion 36.89 Mean distortion 6.36 Mean distortion 5.07

Mean distortion 4.08 Mean distortion 3.56 Mean distortion 3.46

Figure 18.52 Movement of the three codewords ‘O’ towards their distortion-minimising
positions, the start and then every second iteration. Rectangles represent the fixed train-
ing vectors; those quantised to the same codeword are shaded similarly, so that their
requantisation may be easily observed as iteration proceeds.
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Figure 18.53 Quantiser distortion and its lower bound for increasing block size.

Fortunately a lower bound for finite k was discovered by Yamada, Tazaki and Gray
(1980, page 12 with r = 2), which may be written in the form

D(k)(R) = D(R) ·
{

e

1 + k/2
�(1 + k/2)2/k

}
. (18.72)

For �(z) see Section 9.3.6. Comparison with this bound is made in Figure 18.53: block
length k = 6 gives a result within 6% of that optimal figure.

Example 18.59 Comparison with k-means (see Section 18.2.2) We refer to Figure 18.54
for this case, in which LBG required only three iterations to achieve its minimum squared
distortion of 1614, in the case ε = 0.1. The distortion was reduced successively by taking
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Original image
128 × 128 pixels

k-means method
Distortion 2034

LBG method (ε = 0.1)
Distortion 1614

LBG method (ε = 0.01)
Distortion 1549

LBG method (ε = 0.001)
Distortion 1494

Figure 18.54 LBG and k-means quantisation compared for an image of 128 × 128
pixels. As anticipated, the LBG algorithm achieves significantly smaller distortion. Sur-
prisingly, the human visual system appears to prefer the k-means result (see discussion
in the text). The first two images are reproduced from Figure 18.37. The original image
is split into 1024 blocks of size 4 × 4, which are quantised to 128 codewords. Blocks
are expressed as vectors of length k = 16.

ε = 0.01 and 0.001. The result in the latter case is perhaps acceptable visually, and yet
the human visual system seems to prefer the more distorted k-means version. This raises
the issue of how we ought to measure distortion in the case of natural images. A difficult
question and the subject of much research. We give some indication of progress in the
sequel.

Examples and developments

Some issues that emerge are: should one use a lattice quantiser, the LBG algorithm or
Bayesian theory with prior knowledge of images; how can we define distortion so as to
agree more closely with human visual perception of an image; what weight should we
give to different kinds of visual information so that our system will best recognise human
faces, medical clues, military vehicles etc? We cite below a selection of both books and
papers which address these questions.

Advances in VQ – books and papers
Vector Quantization and Signal Compression (Gersho and Gray, 1992).
Information Theory: 50 years of Discovery (Verdú and McLaughlin, 2000).
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(1) (Lattices) Lattice quantisers applied to non-Gaussian sources such as DCT coefficients of an
image (see Section 15.4.2). Distortion results are good (Sayood, Gibson and Rost, 1984).

(2) (Lattices) Lattice quantisers are applied to wavelet coefficients of images. Low distortion
results (da Silva, Sampson and Ghanbari, 1996).

(3) (Complexity) The authors use a sequence of codebooks in such a way that, following prob-
abilistic considerations, they reduce calculational complexity and retain low distortion. Test
images are natural scenes (Kossentini, Chung and Smith, 1996).

(4) (Bayesian risk) The authors observe that VQ can be viewed as a form of classification, since it
assigns a single codeword to a group of input pixels. They use this idea to explore simultaneous
compression and classification, applying the method of Bayesian risk (see Section 11.2). Their
application is to CT lung images (Perlmutter et al., 1996).

(5) (VQ for medical images) By using histograms based on a suitable number of medical exam-
ples, the authors obtain statistics for the DCT coefficients of such images. The results may
be regarded as Laplacian (see Section 9.4.4) and deviations therefrom. Based on this they
construct a VQ algorithm which gives good results for their application of interest, namely
sections of the human heart (Mohsenian, Shahri and Nasrabadi, 1996).

VQ and human vision – books and papers
Digital Images and Human Vision (Watson, 1993)
Handbook of Medical Image Processing (Bankman, 2000)

(1) Extending LBG with free parameters that may be determined by subjective image quality
(Wegmann and Zetzsche, 1996).

(2) Distortion measure for images using hypothesis testing techniques, with application to iden-
tifying signs of breast cancer (Garcı́a et al., 2003).

(3) Using rate distortion theory to quantify accuracy of an estimated object orientation as a
function of codebook size (Dong and Carin, 2003).

(4) Quantising colour and spatial information simultaneously for face and object recognition,
with distortion measured by Mahalanobis distance (see Section 12.8.2) (Walder and Lovell,
2003).

VQ and memory If we abandon the memoryless assumption for sources, a finer analysis
can provide greater compression. Some approaches are: Wyner and Ziv (1971), stationary
sources with memory; Davisson and Pursley (1975), direct proof of coding theorem; Lee
and Laroia (2000), using Viterbi codebook; and Lu and Pearlman (2004, to appear), very
fast algorithm.

18.4 Tomography

Suppose we want information about the internal structure of an object which we wish to
avoid damaging, such as a human brain, or which we cannot reach, such as a distant black
hole. Then a suitable probe is required, and Deans (1993) lists ten that have been used,
including X-rays, gamma rays, the electron microscope, sound waves (e.g. ultrasound
scanners), nuclear magnetic resonance (or NMR) and the radio waves of astronomy.
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Figure 18.55 Three collinear points + in (x, y)-space (a) yield three intersecting curves
in (θ, ρ)-space (b). They meet at approximately θ = 27◦, ρ = 9, in agreement with the
line’s equation x/10 + y/20 = 1.

Within all this, tomography, from Greek tomos, or slice, means to produce an image
of a plane section of an object. In Computerised Tomography (CT), Computer Assisted
Tomography (CAT) or Computerised Axial Tomography (also CAT) the desired image
is reconstructed by a computer calculation from information generated by probes. More
precisely how this is done, based on the famous transform of Radon (see Deans, 1993),
will be described in Section 18.4.2. We begin with what was shown by Deans (1981) to
be a special case, the remarkably useful transform of Hough (1962).

18.4.1 The Hough Transform

In its basic form the Hough Transform detected straight lines in images, originally particle
tracks in a bubble chamber, but it can be generalised to detect almost any bounded
plane object, as we shall see. Some sample applications are industrial: auto-inspection
of biscuits, cakes etc., machine parts (Davies, 1997) and medical: vertebrae in X-ray
images (Tezmol et al., 2002).

Theory We construct a transform in which collinear points are sent to a single point.
This begins with the observation that, as illustrated in Figure 18.55(a), an arbitrary line
L in the (x, y)-plane has an equation in the form

L: x cos φ + y sin φ = r (r ≥ 0, 0 ≤ φ < 2π ), (18.73)

where r is the distance |ON| from the origin to L, and φ is the angle between ON and the
positive x-axis. Thus r and φ are determined uniquely from the line.

Exercise Verify that (θ, ρ) = (27, 9) correctly identifies the line in Figure 18.55.

We now argue as follows: L contains the point (a, b)
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⇔ the equation ρ = a cos θ + b sin θ between ρ and θ has a solution (θ, ρ) =
(φ, r )

⇔ the curve ρ = a cos θ + b sin θ in Cartesian coordinates (θ, ρ) contains the
point (φ, r ).

Conclusion

if (a1, b1), (a2, b2), . . . are collinear points on L then the curves

ρ = ai cos θ + bi sin θ in (θ, ρ)-space intersect at the point (φ, ρ).

Implementation (Vote counting) We consider black and white images, with lit pixels
as black. The (θ, ρ)-space is also called parameter space or Hough space. Suppose
for each black pixel with coordinates (a, b) we plot in parameter space the curve ρ =
a cos θ + b sin θ . Then the image with shot noise in Figure 18.56(a) results in Figure
18.56(b), in which a straight line (18.73) yields many curves through the corresponding
point (φ, r ). More precisely, since the line is drawn on a grid and therefore approximately,
and because the values of θ and ρ are quantised, we get instead a small cloud of points
with multiple hits. Each hit is termed a vote. Thus vote counting yields approximately the
parameters φ, r of a line in the image. Figure 18.56(c) illustrates the small cloud of points
forming predictably a ‘butterfly’ shape which facilitates a more accurate estimation of
the values of φ, r .

(b) Curves from the image points (c) Butterfly(a)

Figure 18.56 (a) Image of two lines plus shot noise, (b) the curves generated by black
pixels of the image, each point shaded according to the number of curves passing through
it, (c) the butterfly effect around a point corresponding to the pixels of an image line.

Unless lines are very short the Hough Transform picks them out even in the presence
of other figures, such as circles, and much noise. This property of robustness is very
advantageous, and carries over to the more general version we now describe.

The Generalised Hough Transform (GHT) For a time it was thought that the Hough
Transform was no longer a research topic, until the realisation came that it was not just a
trick that worked for one case but that its vote counting principle could be widely applied.
For this, we consider images with continuously varying (though to be quantised) colour
intensity. As exemplified in Figure 18.57, we compute for each edge pixel P a normal
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Figure 18.57 Two figures identified by vote-counting to determine their centres: (a)
circle with given radius r, (b) ellipse with given parameters a, b. We take c = P ±
(a cos φ, b sin θ ), where tan φ = (b/a) tan θ (Exercise 18.21).

direction PN and hence an estimated position of the object’s centre C or other chosen
reference point. This may be done analytically (by formula) or by a look-up table. Then
vote counting over the edge pixels gives the position of C.

We use the Sobel matrices of Chapter 15, Example 15.28 to estimate the intensity
gradients gx , gy at a point P, set g = √

(g2
x + g2

y), and conclude that P belongs to an
edge if g exceeds some threshold H. Then the normal vector PN at P makes an angle θ

with the positive x-axis, where

(cos θ, sin θ ) = (gx , gy)/g. (18.74)

Remarks 18.60 (1) (Sense of the normal) In the absence of information as to which
sense of the calculated normal is required we may simply allow both, and vote counting
picks out the true centre with the others as noise.

(2) (Orientation) If we are only detecting the centre then the parameter space can
be a copy of the image space. If, however, say in the case of an ellipse, we want to
detect both centre and orientation, this may be handled by an extra parameter taking
values 0, 1, . . . , 359, i.e. the parameter space goes up a dimension. But this entails
an exponential increase in the number of points for computation, a highly undesirable
situation.

An alternative solution is to keep the 2D parameter space but insert a centre for
every possible orientation, at every edge point. Certainly in the case of an ellipse, as the
analysis of Davies (1997) shows, the combined true centre and true orientation retain the
popular vote and are clearly identified.

(3) (Size) We may replace orientation by size in the discussion above, but if we want
to detect ellipses (say) of any orientation and size then the parameter space must be
3-dimensional.

(4) (Probability) A probabilistic analysis of the Hough Transform is carried out by
Stephens (1991), whilst the Randomised Hough Transform (RHT) of Xu and Oja (1993)
reduces computation by a probabilistic sampling of the data.

Excellent general references are Leavers (1992) and Davies (1997).

Example 18.61 Finding a circular cell of radius 28.5 units in a figure of dimensions
83 × 167. In this case we dispensed with the threshold H for gradient g and computed
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(a) (b)

W1

W2

Figure 18.58 Finding the cell, given its radius 28.5. The image is 83 × 167 pixels. (a)
Vote counting totals near the maximum, (b) the computed circle overlaid on the original
image.

candidate centres from every point that yielded a nonzero gradient. Then an averaging
step was performed in which each pixel was allocated the votes of the 3 × 3 block centred
upon it. This yielded a unique maximum of 61, as indicated in Figure 18.58. Some nearby
points had vote totals close to this, as may be expected, but the computed centre is fairly
close to the true.

18.4.2 Tomography and the Radon Transform

In the medical and other spheres we need to know internal properties of a 3D object, say a
heart or brain, whose interior we cannot directly access, or do not wish to disturb by doing
so. A common approach is to build up a 3D picture from cross-sections, thus reducing
the problem to inference about a thin slice – the literal meaning of tomography, as noted
earlier. One solution is radiology, in which X-rays are projected through the slice in a
series of straight lines (Figure 18.59), and the loss in power (attenuation) measured for
each ray by exterior sensors. Will some mathematical theory enable us to infer a density
distribution across the slice? The answer for this and many other forms of tomography
begins with the observation that, for each ray, we are measuring the value of density
integrated along the ray’s straight line path. In the case of radiology this may be seen as
follows.

Sensors

Source of rays

Profile: height at x = ρ gives
sensor reading at x = ρ.

x

x

Figure 18.59 We represent one group of parallel rays sent through a slice, and
the corresponding measurements. This is repeated for a series of equally spaced
directions.



18.4 Tomography 823

According to physical theory, if a ray of intensity I0 travels a distance x through a
homogeneous medium of attenuation coefficient u, the intensity drops to

I = I0e−ux . (18.75)

Thus if it traverses successive paths of lengths xi through media of coefficients ui , the
emerging ray has intensity

I = I0e−u1x e−u2x · · · e−un x = I0e−
∑

ui xi .

If u varies continuously, modelled by letting n tend to infinity, then the sum becomes by
definition an integral,

I = I0e−
∫

L u(x)dx ,

where L denotes the straight line path through the medium. Taking the logarithm to base
e, of both sides, we obtain

log I = log I0 + log e−
∫

u(x)dx = log I0 −
∫

u(x)dx, or

∫
u(x)dx = log(I0/I ), (18.76)

which is what we can measure by recording both I0 and its attenuated version I by means
of suitably placed sensors.

We wish to determine the values of a plane density function f (x, y), given the integrals
of f along certain lines L in the plane. Such an integral is also termed the projection of
f along L. How many projections suffice to fix the 2-dimensional function f ? In the
continuous case, where (x, y) are real numbers, the answer is an infinity, and the Inverse
Radon Transform converts these projections to the 2D function f (x, y) (see Deans, 1993,
Appendix A).

18.4.3 The Fourier method of reconstruction

Paradoxically, perhaps, it is by first investigating the continuous case that we are led
to an appropriate discrete approximation through a projection property of the Fourier
Transform. An especially simple discrete version was established in Example 15.11 for
projection along lines parallel to the y-axis, where we found in that special case that an
exact result holds. Of course, we cannot expect precision when non-rational sines and
cosines are introduced as a consequence of arbitrary directions, but the continuous is the
place to start. We may think of an arbitrary line L for projection as the result of rotating
an arbitrary vertical line x = ρ about the origin, through some angle φ, as depicted in
Figure 18.60.

We now need the value of f (x, y) at the arbitrary point P, with signed coordinate η

measured along L from O′ as indicated. But this point, given its position on L, is the
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Figure 18.60 Arbitrary line L obtained by rotating the line x = ρ about O through angle
φ.

rotated image of (ρ, η), and so can be expressed by a matrix product [ρ η]R, where R is
the rotation matrix given in (7.39),

R =
[

cos φ sin φ

− sin φ cos φ

]
. (18.77)

In these terms the projection of f along L is by definition

pφ(ρ) =
∫ ∞

−∞
f ([ρ η]R)dη, (18.78)

which, for given φ, is a function of ρ, with 1D Fourier Transform

Pφ(u) =
∫ ∞

−∞
pφ(ρ)e−2π iuρdρ by (14.25)

=
∫ ∞

−∞

(∫ ∞

−∞
f ([ρ η]R)dη

)
e−2π iuρdρ, by substituting (18.78)

=
∫ ∞

−∞

∫ ∞

−∞
g(ρ, η)e−2π i(ρu+0v)dρ dη, writing g(ρ, η) = f ([ρ η]R)

= G(u, 0),

where G is the Fourier Transform (15.10) of g. But g is obtained from f by rotating the
coordinate pair [ρ η], so by the Rotation Theorem (Corollary 15.8) we may write in turn

G(u, 0) = F([u 0]R) = F(u cos φ, u sin φ), by Formula (18.77).

We state our conclusion formally, then see how it may be used in practice.

Theorem 18.62 (General projection property of the Fourier Transform) Let pφ(ρ) be the
projection of f (x, y) along the line (ρ, φ): x cos φ + y sin φ = ρ (see Figure 18.60(b)).
If the 1D Fourier Transform of pφ is Pφ(u), then the 2D Fourier Transform F of f satisfies

F(u cos φ, u sin φ) = Pφ (u) (u �= 0). (18.79)

Approximation In principle the original function may be recovered as the inverse 2D
Fourier Transform of F, where F is given by (18.79) (we’ll see how to take care of the
origin). The only obstacle to a discrete version is that F is thus specified at points given
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by polar coordinates, and we must in some way interpolate these values onto a uniform
rectangular grid. We shall shortly adopt a simple bilinear approach.

Consider an image of N × N pixels, N = 2n, occupying an origin-centred square
bounded by the four lines x = ±1 and y = ±1. We suppose a scale has been chosen
so that the grey values f (x, y) are zero outside and on the unit circle x2 + y2 = 1.
Also, f (x, y) is constant over each pixel, but nevertheless the integral of f (x, y) along
a projection line (ρ, φ) increases continuously as the line is traversed. The mesh/pixel
width is �m = 1/n, and a pixel with lower left coordinates (i, j)�m is labelled (i, j).
An example is Figure 18.61(a).

(a)

O

pixel (−2, 1)

(b)

ρ2
ρ1

ρ0
ρ−1

φ

Figure 18.61 (a) In the simple case n = 2, the pixel (−2, 1) must have value 0 since it
lies partly outside the unit circle, (b) projection lines (ρr , φ) for r = −1, 0, 1, 2.

We divide the ranges [−1, 1] of ρ and [0, π ] of φ into N = 2n equal parts, with incre-
ments and discrete values therefore given by

�ρ = �m = 1/n, ρr = r�ρ, −n ≤ r ≤ n, (18.80a)

�φ = π/2n, φs = s�ρ, 0 ≤ s ≤ n. (18.80b)

Now we are ready to invoke the Projection Theorem. For every fixed φs we have the
following equality of 2n-vectors:

F(ρr cos φs, ρr sin φs)−n≤r≤n−1 = Pφs (ρr )−n≤r≤n−1 by (18.79)

= �ρ × DFT of pφs (ρr )−n≤r≤n−1 (approx),

where the DFT approximation to the Continuous Fourier Transform comes from the
Trapezium Rule for integration, which holds in this finite form because pφ(ρ) is zero for
ρ outside the finite interval [−1, 1] and at its end-points (see Section 14.3.2).

Computing the projections Let the constant grey value on pixel (i, j) be denoted by
fi j . If a line (ρ, φ) crosses the pixel, entering at P0 and leaving at P1, the contribution
to projection along this line is |P0 P1| fi j , as in Figure 18.62. Should the line lie along
the common boundary of adjacent pixels, a decision is required. We could use the mean
grey value of the two pixels, but this would model two pixels of equal value, a potential
blurring effect. It seems preferable to adopt a consistent choice of one pixel or the other as
contributor, and Figure 18.62 indicates that we choose the pixel to the right of a vertical
line and that above a horizontal one, i.e. we take the greater i or j where there is a choice.
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ρ fij

P0

P1

φ value value fij

∆m

value fij

∆m

(a) Contribution  |P0P1| fij (b) Contribution (∆m)fij (c) Contribution zero 

Figure 18.62 How the pixel at position (i, j) with grey value fi j contributes to projection
along the line (ρ, φ), if (a) the line enters at P0 and exits at P1, (b), (c) it lies along an
edge.

Calculating the projection can become complicated. Here is a simple algorithm for
determining the intercept of the line (ρr , φs) on the pixel (i, j), applicable to all cases. It
is based on the formula (1 − t)A + tB for the points of the extended line through A, B,
in which 0 ≤ t ≤ 1 identifies those points on the segment AB itself (see Section 17.1.2
and/or (1.3) of Chapter 1).

ALGO 18.7 Intercept of line (ρr , φs) on pixel (i, j)

Input r , s, n, i , j and set meets = {} (this is to be P0, P1)
v = (cos(sπ/2n), sin(sπ/2n))
verts = {(i, j), (i, j + 1), (i + 1, j + 1), (i + 1, j)} (cyclic order of vertices)
REPEAT four times
{A, B} = first two vertices
t = (r − A · v)/((B − A) · v)
If 0 ≤ t ≤ 1 then append (tB + (1 − t)A)/n to meets
Cycle verts one place to left

meets = Union(meets) (removes any duplicates)
If |meets| < 2 OR both meets have y = ( j + 1)/n OR both have x = (i + 1)/n,
then return zero (see Figure 18.62(c)),
else set {P0 P1} = meets and return

√
[(P0 − P1) · (P0 − P1)]

Exercise Derive the expression for t in ALGO 18.7 (Exercise 18.22).

Interpolating for F(x, y) We must handle the fact that the sequences f−n, . . . , fn−1 to
which we are to apply the DF do not have their origin at the start, the required position for
our standard version Fk =

∑N−1
r=0 fr wrk (w = e2π i/N , N = 2n). Instead we should take

Fk =
∑n−1

r=−n fr wrk . But this is easily achieved: cycle f back n places, apply the standard
DFT, then cycle forward n places. A similar remark applies to the inverse DFT, and in
two dimensions we simply apply the cycle to both dimensions (see Section 15.1.2)

Thus we compute the values of F(x, y) at the points with polar coordinates (ρr , φs)
for −n ≤ ρ ≤ n − 1, 0 ≤ s ≤ n − 1. These points, all circle–radius intersections, are
illustrated in Figure 18.63(a) for the case n = 4. The intersections needed for interpo-
lation but not explicitly accounted for have F = 0, arising from the arrangement that
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Figure 18.63 (a) The case n = 4: the radius–circle intersections at which F(x, y) is
known, and the rectangular grid points for which it must be interpolated (or is known to
be zero). (b) Sandwiching a grid point P between concentric circles ρ = ρr , ρr+1, and
between successive radius vectors OC, OD at angles φs, φs+1 to the x-axis.

nonzero-valued pixels are restricted to the interior of the unit circle (the largest circle in
Figure 18.63(a)). This excludes the origin, a special case dealt with in Remarks 18.63
below. Referring to Figure 18.63, let fX denote the value of f at a point X. Then linear
interpolation along QR specifies that

fR − fP

fP − fQ
= t

q
or, on rearranging, fP = q fR + t fQ

q + r
,

where q denotes the length of QP and t the length of PR. Similarly, linear interpolation
along the arcs AQB and CRD gives

fQ = α fB + β f A

α + β
and fR = α fD + β fC

α + β
.

Substituting these in the expression for fP completes our bilinear interpolation formula
(notice that α + β = �φ and q + t = �ρ):

fP = q(α fD + β fC ) + t(α fB + β f A)

(α + β)(q + t)
. (18.81)

Remarks 18.63 (What to do at the origin) The central value seems to present a problem
for F since each of the 2n directions in which we computed a 1-dimensional DFT offers
its own value for F0,0. We could in hope take their average, but the following arguments
show that any value will do for our purposes, so it may as well be zero.

(1) The origin is not used in the interpolation process for any other grid point P,
because OP is longer than �ρ (see Exercise 18.22) and so P lies between two circles
away from the origin as in Figure 18.63(b) above.

(2) Adding a constant δ to F0,0 has the effect of adding the same constant δ/N 2 to
every value f (x, y), on applying the (2D) inverse DFT to F(x, y). This is sometimes
referred to as impulse becomes constant under the DFT. To prove it, since the DFT is
linear, we need only show that if Fi j is zero except for F0,0 = 1 then fi j = 1/N 2 for all
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i, j . A suitable formula to use is (15.7):

fi j = (1/N 2)
∑

m,p
Fmpw−(mi+pj). (18.82)

Provided the origin has subscripts 0, 0 this gives fi j = (1/N 2)F0,0w−(0i+0 j) = 1/N 2 as
required.

(3) Finally, the true outer pixel values are known to be zero, so if their calculated
mean value is γ we simply subtract γ from all values (but in Mathematica, for example,
the values are translated so as to have minimum zero anyway, making this correction
unnecessary).

Example 18.64 (Pre-interpolation) Consider the case n = 4 with just one nonzero pixel
value, 100, at the origin. Write down the projections pφ(ρr ) for s = 2 and apply the DFT.

r = 0 

r = 1
1/4

1/4

O

value 100φ

Figure 18.64 Solution
of Example 18.64.

Solution We are to take φ = s�φ = 2(π/8). As seen in the
partial diagram (Figure 18.64), pφ(ρr ) is nonzero only when
r = 1. By elementary geometry, the required intercept for a
unit square would be 2(

√
2 − 1), so here it is 2(

√
2 − 1)/4 =

0.207. Thus pφ(ρr )−4≤r≤3 = (0, 0, 0, 0, 0, 20.7, 0, 0). For the
DFT we have the situation f = (0, . . . , 0, 1, 0, . . . , 0) ( f1 =
1), whence
Fk =

∑
r fr wrk (w = e−π i/4) = f1wk , and in this case

Pφ = 20.7(w−4, w−3, . . . , w0, . . . , w3). (18.83)

By plotting these powers around a circle (see e.g. Figure 14.2 of Chapter 14) we can
easily write each in the form (±1 ± i)/

√
2. Note the simplification w4 = w−4 = −1.

Example 18.65 It is time for a reconstruction trial. We begin with the simple square of
Figure 18.65, all pixel boundaries shown.

(a) (b) (c)

Figure 18.65 (a) Original 32 × 32 pixel image, (b) projection profiles pφ(ρr ), repre-
sented as rows of grey values, (c) the reconstructed image.

Example 18.66 Figure 18.66 is a more seriously sized case at 64 × 64 pixels, a not-too-
well contrasted heart-type image.
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(a) (b) (c)

Figure 18.66 (a) Original 64 × 64 pixel image, (b) projection profiles represented as
rows of grey values, (c) the reconstructed image.

18.4.4 Further developments

Gridding We have presented the basic Fourier Transform approach to reconstructing an
image from its projections. It works because of the Fourier Projection Property (18.79). It
is fast because of its implementation by the FFT (Fast Fourier Transform, Section 14.1.4).
A drawback is the need for interpolation from (ρ, φ) to (x, y) coordinates, which reduces
accuracy compared with some competing methods (see e.g. Deans, 1993).

However, this problem was solved by O’Sullivan (1985), who used the Fourier Con-
volution Property to replace interpolation by the more general gridding, in which the
original greyscale function is considered to be convolved with a sinc function (see Fig-
ure 14.13) and resampled at the grid points. The values obtained are not necessarily good
interpolants, but the Fourier-inverted result is accurate provided the region of interest
lies in a rectangle whose width and height are half those of the original image.

Gridding became a standard method. Amongst further developments, Jackson et al.
(1991) compared use of the sinc funtion with other candidates such as Gaussians, and
found that improvements were possible in some circumstances. A detailed analysis by
Sedarat and Nishimura (2000) showed that it could be improved by introducing and
optimising certain extra parameters.

Probabilistic approaches The approach via probability is well illustrated in a recent
paper of Denisova (2004), who remarks that statistical reconstructed methods are becom-
ing standard in tomography. The general approach is the MAP, or maximum a posteriori
algorithm (see Section 11.4.6), using a Markov Random Field to model the (in this case)
emitted photons. As with Sedarat and Nishimura, the optimisation of parameters is an
objective. In an earlier paper, Ding and Liu (1996) use the MAP approach to focus on
edges in the image. We are well-prepared for the probabilistic theory since Chapter 11.

Higher dimensions Certain forms of tomography lend themselves to a 3D approach, as
distinct from building up slices. Examples are Positron Emission Tomography (PET) and
Nuclear Magnetic Resonance (NMR). The analogue of the Projection Theorem in one
higher dimension is used and, after a version of gridding, we apply the 3-dimensional
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Fourier Transform. Useful references are Matej and Lewitt (2001), and the subsequent
development by Matej et al. (2004). The 3D Transform and Projection Theorem are
covered in Chapter 15, Section 15.5.2.

Exercises 18

1
√

Draw McCulloch–Pitts networks for f (x, y, z) in the cases f = 1 when (a) exactly one of
x, y, z is 1, (b) exactly two of x, y, z are 1, (c) all three are 1.

2
√

In Figure 18.6, will the T be detected if (a) it is upside-down, (b) it is shifted one pixel to
the left (in a suitably enlarged array), (c) its three extremities are lost?

3
√

Can the plane sets S = {(1, 2.5), (3, 4.5)}, T = {(2, 4.1), (4, 6.3)} be linearly separated
(draw lines through the points of S and of T)? If so, find a separating line and write down
the weights and threshold of a corresponding perceptron cell.

4
√

(Convergence of perceptron learning) In the proof of Theorem 18.3, what do (18.5) and
(18.6) become if we do not assume w(0) = 0? Combine them to get the inequality noted
after the main proof.

5
√

(a) Perform two cycles of the Perceptron Learning Algorithm (ALGO 18.1) for input vectors
(x1, x2) = (1, 0), (0, 1), (0, 0), (1, 1) with respective targets 1, 1, 1, −1. (b) Implement
ALGO 18.1 to add in x0 = 1 for input vectors, run (a), check your calculation, and show
the final result in the (x, y)-plane.

6 (Section 18.1.4) Implement ALGO 18.2 for backpropagation and hence obtain a 2-layer
perceptron net which reproduces the XOR function (cf Example 18.10).

7
√

(Section 18.1.5) Check the details for arriving at an expression for α in Example 18.12.
8
√

(Section 18.1.6.) (a) Deduce the expression Eavecom = (1/N 2)
∑

E[εi (x)2] in the case of
uncorrelated errors. (b) Show that in the correlated case we still have Eavecom = Eave, as
stated in (18.20).

9 Compute the PCA vectors for the car of Example 18.17, using the algorithm of Equation
(18.28), with learning parameter 0.2, 0.15, 0.1, 0.05, 0.01, 0.001. Compare the results for
speed and accuracy.

10
√

(a) Show that for fixed points a1, . . . , aN in n-space the sum of squared deviations from
a point x is least when x is the mean, (1/N )

∑
ai . (b) Derive the k-means update for-

mula (18.30) from the paragraph preceding it. (c) Apply the k-means algorithm, ALGO
18.3, to a small face using 8 × 8 versus 4 × 4 blocks in the manner of Figures 18.36
and 18.37.

11 (a) Use Equation (18.32) to generate 1000 points of the right-angled triangle with vertices
(0, 0), (1, 0), (0, 1). (b) Apply the Kohonen method of Figure 18.42 to generate a preliminary
stage of a space-filling curve in your triangle.

12
√

(Section 18.3.1) (a) Prove from the definitions that I (X ; Y ) = h(X ) − h(X |Y ) = h(Y ) −
h(Y |X ). (b) Prove that 1

2

∑
i (log 2πσ 2

i + 1) = n
2 log 2πe(σ 2

1 · · · σ 2
n )1/n (used in the proof

of Theorem 18.29).
13

√
(Section 18.3.1) (a) For what values of |Q| is the differential entropy of a Gaussian random
vector positive? (b) Deduce (18.39) from the case n = 1 (hint: Theorem 18.24).

14
√

(Section 18.3.3) Let A be a real symmetric matrix with eigenvalues λ j . (a) Show that
A−1 = P diag[λ−1

j ]P−1 for some matrix P. (b) Show that A2 commutes with its derivative
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with respect to any variable. (c) Show that if a set of training vectors X of length n span
real n-space then R = 〈X XT〉 is positive definite.

15
√

(a) (Proof of Fano’s Inequality) Show that G(0) = 1 and G(1) = r − 1 for the function
G(z) =∑

x,y p(y)p(z|x, y), where X, Y take the same r values and Z = 0 if X = Y ,
otherwise Z = 1. (b) (Example 18.46) A channel (U, V ) satisfies p(u|v) = D if u �= v,
where 0 ≤ D ≤ 1. Show that H (U |V ) = H (D).

16
√

(a) Let U be in N (0, s2) and define a channel (U, V ) by V = 0. Show that h(U |V ) = h(U ).
(b) Deduce (18.69) from (18.66) and (18.67).

17
√

Prove that (a) h(X |αY ) = |α|h(X |Y ), and (b) h(X + Y |Y ) = h(X |Y ), then deduce (c)
h(X − Y |Y ) = h(X |Y ).

18
√

(a) Find the position x of a codeword to minimise its sum of squared distances from points
x1, . . . , xM in n-space (take any valid shortcuts). (b) Find the position of a codeword to
minimise expected squared distance from points u in [a, b] uniformly distributed. (c) Repeat
for the interval [0, 1] and p(u) proportional to e−u .

19 Implement ALGO 18.6, then compare LBG and k-means results for the face of
Exercise 18.10.

20
√

(a) Verify that the curve intersection θ = 27◦, ρ = 9 in Figure 18.55(b) correctly identifies
the line x/10 + y/20 = 1. (b) Take three points on the line x/8 + y/5 = 1 and show that
the common point of the three corresponding curves identifies the line.

21
√

An ellipse with centre (p, q) has a parametric form (p, q) + (a cos φ, b sin φ) (0 ≤ φ ≤ 2π )
(circle squeezed by factor b/a in y-direction). Verify this and use it to derive the formula
for the centre given at Figure 18.57.

22
√

(a) (Section 18.4.2) Why does the bilinear interpolation in Figure 18.63 not involve the
origin? (b) Derive the expression for the parameter t in ALGO 18.7.
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Verdú, S. and McLaughlin, S. W. (eds.) (2000), Information Theory: 50 Years of Discovery,

IEEE Press.
Vines, G. and Hayes, M. H. (1994) IFS image coding using an orthonormal basis. ISCAS 1994,

621–624.
Vitanyi, P. M. B. and Li, M. (2000), Minimum description length, induction, Bayesianism, and

Kolmogorov complexity, IEEE Trans. Information Theory, 46, 446–464.



844 References

Voss, R. F. (1988) Fractals in nature: from characterisation to simulation. In The Science of
Fractal Images. (Peitgen, H.-O. and Saupe, D., eds.), Springer-Verlag.

Vranic, D. V. and Saupe, D. (2001a), 3D shape descriptor based on 3D Fourier-transform, in
Proc. EURASIP Conference on Digital Signal Processing for Multimedia Communications
and Services (ECMCS 2001) (K. Fazekas, ed.), Budapest, Hungary, 2001, 271–274.

(2001b) A feature vector approach for retrival of 3D objects in the context of MPEG-7, in
Proceedings of the International Conference on Augmented Virtual Environments and
Three-dimensional Imaging (ICAV3D 2001) (V. Giagourta and M. G. Strinzis, eds.),
Mykonos, Greece, 2001 pp. 37–40.

Walder, C. J. and Lovell, B. C. (2003), Face and object recognition using colour vector
quantisation, In Proc. of Workshop on Signal Processing and its Applications, (V. Chandra,
ed.), Brisbane, Australia, 2002.

Walker, J. S. (1988), Fourier Analysis, Oxford University Press.
Wallace, C. S. and Boulton, D. M. (1968), An information measure for classification, Computer

J. 11, 185–195.
Wallace, G. (1991), The JPEG still picture compression standard, Comm. ACM 34, No 4, 31–44.
Watson, B, ed. (1993), Digital Images and Human Vision, MIT Press.
Watt, A. and Policarpo, F. (1998), The Computer Image, Addison-Wesley.
Wegmann, B. and Zetzsche, C. (1996), Feature-specific vector quantization of images, IEEE

Trans. on Image Processing 5, 274–288.
Welch, T. A. (1984), A technique for high performance data compression, IEEE Computer 17,

8–20.
Welsh, D. J. A. (1988), Codes and Cryptography, Oxford University Press.
West, B. J. and Goldberger, A. L. (1987), Physiology in Fractal Dimensions, Amer. Sci. 75,

354–365.
Wilson, H. R. and Bergen, J. R. (1979), A four mechanism model for spatial vision. Vision

Research 19, 19–32.
Winkler, G. (1991), Image Analysis, Random Fields and Dynamic Monte Carlo Methods,

Springer-Verlag.
Witten, I. H., Moffatt, A. and Bell, T. C. (1994), Managing Megabytes, Van Nostrand Reinhold.
Wyner, A. and Ziv, J. (1971) Bounds on the rate distortion function for stationary sources with

memory, IEEE Trans. on Information Theory, IT-17, 508–513.
Xu, L. and Oja, E. (1993), Randomized Hough Transform (RHT): basic mechanisms,

algorithms, and computational complexities, Computer Vision and Image Understanding
57, 131–154.

Yamada, Y., Tazaki, S. and Gray, R. M. (1980), Asymptotic performance of block quantizers
with a difference distortion measure, IEEE Trans. on Information Theory IT-26, 6–14.

Yarbro, J. W. (2001), Introductory remarks to the conference on prognostic factors and staging
in cancer management, Cancer 91, 1593–1594.

Zemel, R. S. and Hinton, G. E. (1995), Learning population codes by minimising description
length, Neural Computation 7, 549–564.

Ziv, J. and Lempel, A. (1977) A universal algorithm for sequential data compression, IEEE
Trans. on Information Theory, IT-23, 337–343.

(1978) Compression of individual sequences via variable rate coding, IEEE Trans. on
Information Theory, IT-24, 530–536.



Index

1-tailed, 320

2D transform
components & bases, 562
separable, 561

2D transforms
built from 1D, 561

absolute value, 8
accept–reject method, 336
acceptance region, 318
affine transformation, 645, 690
Aliasing, 555
alphabet, 402
ancestral ordering, 360
Archimedean tiling, 100
Argand diagram, 525
arithmatic codes, 438

and binary fractions, 418
and message entropy, 423
campared with Huffman, 424
long term best possible, 423

arthritic conditions, 517
ASCII system, 426
atmospheric blur, 606, 609
Axioms for a field, 480

B-spline, 699
affine invariance, 699
and nested spaces, 713
and probability, 697
and scaling functions, 714
as convolution of boxes, 693
basis functions, 698
by recursive subdivision, 708
by subdivision recursive, 704
car design, 702
combine point/polygon, 699
Cox-do Boor relations, 698
cubic case, 699
derivatives, 694
end-point tangency, 709, 715
face, 710, 717
Fourier transform, 695
multiple points, 701
sketching aids, 700

subdivision and basis functions, 710, 712
subdivision theorem, 705
uniform vs non-uniform, 719

B-spline wavelets, 719
and face editing, 731
and successive smoothing, 730
bond matrix equations, 737
curve editing, different scales, 728
end-corrected basis, 741
filter bank, 726
finding the wavelet space, 720
inner product, 721
matrix formulation, 719
using symmetry, 722

band matrices, 732
bandwidth, 444
Barnsley, 645
Barycentric coordinates, 689, 746
basepoint, 50
basis, 117
basis of a vector space, 122
Bayes classifier, 332
Bayes minimum risk classifier, 331
Bayes’ Theorem, 217, 224
Bayesian approach, 324
Bayesian image restoration, 372
Bayesian network, 359, 493
Belgian–Dutch border, 643
Belief networks

vision applications, 517
Belief networks, 499
belief propagation, 493, 511
Bernoulli trials, 247, 352
Bernstein polynomials, 688, 692
beta distribution, 250
beta function, 238
better score, 247
binomial distribution, 239
Binomial Formula, 215
Biorthogonal bases, 751
bit error probabilities, 454
bits, 395
bits per symbol, 464
bivariate, 287
bivariate normal distribution, 334
Border disputes, 573
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box counting method, 643
braid, 27, 43

identifying, 45
brightness, 579, 648
butterfly notation, 537
Butterworth filter, 583, 591
Bézier, 688

capacity, 444
capacity-cost function, 465
Cauchy distribution, 248, 269
CD players, 484
cell, 50
Central Limit Theorem, 282, 305, 321, 342, 344,

609
centre of gravity, 9
centre of symmetry, 4
centred rectangular net, 68
Chaikin’s Algorithm, 711
Chain Rule for conditional, 361
Chain Rule for conditional probabilities, 219
Chain Rule for Conditionals, 265
channel, 444

(X, Y), 445
binary erasure, 449
binary symmetric, 463
capacity, 458, 460
cost function capacity, 459
discrete, 445
memoryless, 445, 454
noisey, 463
sources of noise, 444
transition graph, 445
transition probabilities, 445
with memory, 517

Channel Coding Theorem, 465
channel noise, 377
Chebychev’s inequality, 251, 309, 352
chi-squared distribution, 250
chi-squared test, 322
chip fabrication, 326
Cholesk decomposition, 343
clique, 368
closed bounded, 556
code

BCH, 484
convolutional, 506
cyclic, 471, 484
equivalent, 471
error-connecting, 469
for source symbols, 402
Gallager, 492
generator matrix, 469
Hamming, 464, 474
Justesen, 491
linear, 468
long codewords, 468, 515
optimal, 405
parity check matrix, 473
prefix-free, 403
probabilistic approach, 492
random, 465, 466
rate, 811
rate R, 464

Reed-Solomon, 484, 489
turbo, 493, 515
vector space, 469

codebook, 402, 464
codetree, 404
cofactor, 131
collage map, 648
Collage Theorem, 653
communication system, 395
compact, 646
complex, 162

dot product, 163
matrices, 163

Complex Fourier series, 549
Component Formula, 124
components, 8, 17
composing reflections, 24
Composing rotations, 28
composition, 16
concave, 400
conditional probability

axioms for, 218
conditional probability, 217
conjugate of an isometry, 32
constrained optimisation, 463
continuous model, 561
contractive, 646
contrast, 579, 648
convex function, 252
convex hull, 689
convex linear combinations, 689
convex set, 689
convolution, 271

and chi-squared, 271
and edge-deletion, 532
and the DFT, 533
and the FFT, 539
and the gamma distribution, 271
as pdf, 270
definition, 271

convolution, 269, 531
convolution mask, 588
Convolution Theorem, 533, 575, 576, 605, 612

a polynomial proof in 2D, 575
polynomical proof, 534

Convolutional codes, 506
cooling schedule, 371
coordinates, 8
Corkscrew Rule, 118
correlation

and independence, 287
and normal variables, 292

correlation coefficient, 286
correlation matrix, 628, 776
Correlation Theorem, 578
covariance matrices, 287, 335, 342
Cox-de Boor relations, 696
Coxeter graphs, 91, 95
Cramer’s Rule, 135
cross-correlation, 613
cumulative distribution function random variate

inverse transform method, 337
cyclic, 38
cyclic Hamming code, 482



Index 847

Daubechies
basis functions, 712

Daubechies wavelets
and fingreprints, 675
and JPEG, 677
construction, 672
use in compression, 674

DCT
and image compression, 625
and JPEG, 622
and K-L transform, 622
and natural images, 622
and the K-L transform, 628
basehanded, 624
basis matrices, 624
definition, 622
from DFT, 625
matrix orthonormal, 622
real, 622
separable, 625

De Morgan’s laws, 211
deblurring by decomolution, 606
decision boundary, 331, 333
decision functions, 330
decision theoretic, 330
decoding rule, 465, 466
deconvolution, 595, 615
degrees of freedom, 322
descriptor, 330
detail coefficient, 659
determinant

and basis, 53
difinition, 131
for area, 53
for vector product, 141, 142
general formula, 157
gives area, 143
of linear transform, 153
of trangular matrix, 132
proof of rules, 155
rules, 131
Vandermonde, 134

deterministic relations, 362
DFT

choices, 540
coefficients, 529
equation form, 524
first properties, 526
fort version, FFT, 535
inverse, 528
matrix form, 524
reciprocity relation, 553

DFT (Discrete Fourier Transforms), 524
diamond, 51, 59
dictionary, 426
differentiating along a ray, 681
diffraction, 608
dihedral group, 36, 95, 591
dihedral group, 654
dimension of a vector space, 122
Dirac delta function, 544
Directed Acyclic Graph, 359, 493
discrete, 5, 43
Discrete Cosine Transform, or DCT, 622

Discrete Fourier Transform, 330
Discrete Wavelet Transform, 666
distance, 404
distance classifier, 332
distinction

discrete, 227
distribution

beta, 250
binomial, 239
chi-squared, 250
continuous, 228, 249
cumulative (cdf), 230
exponential, 231
gamma, 249
normal (gaussian), 243
of function u(x), 233
of sample mean, 305
of sample variance, 307
Poisson, 241
standard normal, 244, 246
table, 248, 249
testing for it, 323
uniform, 231
variance, 237

domain blocks, 648
domain pool, 655
dot product of matrices, 563

echelon form, 175
echelon form, 174
edge-detection, 376

by Laplacian, 573
Canny, 680
difference of Gaussians (DoG), 594
filter, 592
Laplacian of Gaussian (LoG), 594
Marr-Hildreth, 680, 760
Prewitt, 593
Sobel, 592
wavelet formulation, 680
zero-crossing, 593

eigenvalue equation, 164
eigenvalues

and rotation angle, 169
and singular values, 198
and trace, 166
calculating, 165
nonzero, 189

eigenvector
as rotation axis, 169

elementwise product, 526
Elleke, 650
end-corrected B-splines, 740
End-nodes, 504
energy function, 369
energy potentials, 374
entropy

and codeword length, 434
and complexity, 435
and uncertaintly, 447
as information, 396
axioms, 396
basic properties, 400
concavity, 401
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entropy (cont.)
conditional, 446
differential, 793
extremal values, 401
formula, 397
joint, 446
mutual, 446
of a distribution, 397
of Gaussian, 795, 796

equiprobable, 214
equivalent, 41, 81
error detection/correction, 471
Error Locator Polynomial, 488
Escher, 3, 37, 49
estimator

efficient, 309
table of properties, 311
unbaised, 309

Euclidean Algorithm, 484, 488
Euler’s construction, 28
Even and odd functions, 549
events, 209

as sets, 209
complementory, 212
confining, 210
independent, 220
mutually exclusive, 210
probability, 212
relative frequency, 212

expectation
of function, 273
of sum or product, 273

expected number of trials, 339
expected value, 235
experiment, 209

factor graph, 503
Factor Theorem, 133
Fast Fourier Transform (FFT), 535
feature, 330
feature extraction, 517
ferm from IFS, 647
filter

bank, 617
Butterworth, 583, 589, 590
convolution-type, 582
Gaussian, 584, 585
highpass, 531, 582
ideal, 582
lowpass, 530, 583
mask (matrix), 584
median, 581
small convolution for, 586
Wiener, 610

filter bank
and DWT, 666
and multiresolution, 666
general format, 665
notation, 670
Theorem, 667

fingerprint, 675
finite field, 478
Finite State Machine, 430
flow on a network, 381

for k-means, 786
Forward–Backward Algorithm, 494, 505, 512
Fourier descriptors, 330
Fourier series, 546
Fourier Transform, 540

and complex functions, 541
and inverse, 542
arithmetic operations, 561
convolution theorem, 543
of a spike, 545
of base and gaussian, 542
of cross convolution, 544
relation to DFT, 546, 551
shift/similarity theories, 542
table of, 545

Fourier transform in 2D, 563
additivity, 567
and cross correlation, 578
and image statistics, 576
and periodic images, 566
and rotation, shift, prijection, 568
and separable arrays, 567
components and basis, 564
continuous properties, 578
continuous case, 565
Convolution Theorem, 575
display, 565
from 1D transform, 564
preserves rotations, 567
processes antipodality, 587
separable, 565

Fourier transform in n-space, 632
Fractal Compression, 648, 651
fractal dimension

and Richardson graph, 643
by box counting, 644
in science and engineering, 643
practicalities, 643

fractal dimension, 640
fratal power low, 642
frequency

observed, 324
theoretical, 324

frequency of pairs, 424
fundamental region, 5, 100
Fundamental Theorem of Algebra, 163
Fundamental Theorem of Calculus, 232

Gabor window, 679
gamma distribution, 248, 363
gamma function, 238, 329
Gauss, 315
Gaussian filter

binomial approximation, 585
Gaussian kernel, 617
Gaussian noise, 374
Gaussian optics, 600
Gaussian pyramid, 618
Gaussian/normal noise, 342
generated, 39
generating function, 476
generator polynomial, 485
Genesis, 639
geometric progression, 228
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Gibbs distribution, 367
Gibbs sampler, 364, 373, 375
GIF, 426
glacial melting, 348
Glides, 19
Gram matrix, 670, 721, 738
Gram–Schmidt process, 125, 175
Granada, 3
graphics formats, 429
grey level, 579
Greyscale transforms, 579
Groningen tower, 625
groups, 40

isomorphic, 79
multiplication tables, 80

group of symmetries, 37
GZip, 426

Haar transform
8 × 8 basis, 663
2D from 1D, 663
coefficients, 663
compression, 664

Haar wavelets
box function, 660
inner product, 660
multiresolution, 660
orthogonal, 661
split box function, 659

hat functions, 711
Hepatitis B, 362
Here we extend, 560
Hessian matrix, 314
hexagonal net, 51, 71
hexagons, 376
histogram, 579, 621
histogram equalisation, 580
homogeneous, 345
honeycomb, 332
Hough

and vote counting, 820
Hough Transform

generalised, 820
parameter space, 821
randomised, 821

How isometry types combine, 31
Huffman codes

and English text, 417
canonical version, 410
construction, 406
for text compression, 406
optimality, 406
redundancy, 412
sibling property, 408

Huffman encoding, 627
human eye, 620
human visual system, 817
hypergeometric distribution, 247
hypothesis testing, 318

Iceland, 644
identifying pattern types, 75
image blur, 597
image degradation, 373

image of a line of symmetry, 31
image prior, 374, 377
Image Understanding, 516
independence sampler, 358
independent, 261, 454, 455
independent trials, 223, 348
Infomax

local learning rule, 803
information, 395, 444

of coin toss, 236
information theory, 256
inter-pixel correlation, 628
interleaving, 513, 742
Inverse Transform Method, 343
Irreducible polynomials, 478
isometries, 3

combing, 23
combining in 3D, 171
deefsification, 18
notation, 25

isometry, 10
isomorphic, 79
Iterated Function Systems, 646

Jacobian, 266, 276, 341
Jensen’s Inequality, 252, 450
Joint pdf, 258, 361
JPEG, 406, 626

Knuth, 336
Koch curve, 639
Kohonen nets

applications, 792
Kolmogorov, 209
Kolmogorov complexity, 430, 431
Kraft Inequality, 433
Kullback–Liebler, 432

Laplacian pyramid, 618
Laplao distribution, 250
lattice, 371
Law of Large Numbers, 275
LBG quantiser

and k–means, 817
learning

competitive, 785
reinforcement (Hebbian), 783, 785
supervised, 783
unsupervised, 783, 788

least squares
and maximum likelihood, 317

leaves, 404
lens aberration, 373
lens blur, 605
levels method, 502
lexicographic, 412, 434
lexicographical order, 94
likelihood function, 312
line group, 43
line segment, 7
linear feedback, 514
linear feedback shift register, 475
linearly dependent, 121
log-likelihood function, 312, 377
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logarithm
changing the base, 398

LZW compression, 425, 427
LZW in image compression, 429

m-sequences, 482
Mahalanobis, 432
Mandelbrot set, 431
MAP by network flows, 376
MAP estimate, 373, 512
marginal distribution, 259
marginal pdf, 290
Markov, 345
Markov chain, 345, 628

and Monte Carlo (MCMC), 351
sampling from, 349

Markov Property, 345
Markov Random Fields, 364
matrix

of linear transformation, 148
3D reflection, 170
3D rotation, 170
ABC, 130
and change of basis, 152
and equation solving, 177
antipodal, 587
block products, 138
bonded, 732
Cholesky factorization, 191
covariance, 287
Cramer’s Rule, 135
diagonal, 128
diagonalising, 180
differentiating, 203
echelon form, 174
functions, 802
inner product, 203
integral, 53
inverse, 134
inversion by row operations, 179
norm, 193
nullity, 177
of 2D rotation/reflection, 146
of coefficients, 53
of isometry, 154
of normal pdf, 290
of projection, 150
of quadratic form, 183
operations on columns, 175
operations or rows, 173
orthogonal, 136
product, 127
pseudoinverse, 202
rank, 172
row space (range), 172
Russian Multiplication, 139
singular value decomposition (SVD), 197
skew, 129
symmetric, 129
Toeplitz, 629
trace, 166
transpose, 129
triangular, 132, 187

matrix norm, 193

maxflow, min cut Theorem, 381
maximum likelihood, 509
maximum likelihood estimate, 311
Maxwell’s equations, 607
MCMC, 355, 364, 375
MDL

and entropy, 437
and image segmentation, 437, 438
and least squares, 438
and MAP, 438
and prior knowledge, 438
and video tracking, 441
applications more, 442
is Minimum Description Length, 437
needs no probabilities, 438
the Principle, 437

mean time to failure, 233
Mean Value Theorem, 545
median filter, 581
medical imaging, 753
memoryless, 454, 455
message passing, 496
method of least squares, 315
Metropolis–Hastings algorithm, 355
minimal path, 510
Minimal polynomials, 482
minimum distance, 471
minimum length condition, 52
minimum weight, 486
minor, 131
mirror directions, 72
mirror line, 13
modal matrix, 294

diagonalies covariance matrix, 295
used in PCX, 295

modal matrix, 181
moment generating function, 278
moments, 277
monster, 639
Monte Carlo methods, 351
Moslem art, 3
motif, 28
motion blur, 373
moving wave, 608
multinomial distribution, 247
Multiplication Principle, 214
multiplication table, 40
multiplication tables of C4 and D4, 80
multiresolution, 658, 660, 743
multivariate, 287
multivariate normal distribution, 325, 332
Multivariate normal generation, 342
murder weapon, 497
mutual entropy

and Markov chains, 455
concave/convex properties, 451
detects dependence, 450
key formulae, 453
measures information transfer, 447

mutual entropy/information, 453

n-dimensional integral, 266
n-space, 120, 163
n-step transition, 347
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nearest neighbour decoding, 471
neighbour, 365
net, 50

activation, 762
and mutual information, 797
backpropagation algorithm, 769
bias, 762
cancer screening, 780
centred, 60
denoising, 773
ensemble/committee, 778
eye diagnosis, 774
for doing PCA, 784
for k-means, 786
hascagonal, 59
invariance, 56
kohonen, 788
McCulloch-Pitts, 758
multilayer, 768
outputs as probabilities, 775
overtraining, 777
pattern recognition, 773
perceptron, 759
remote sensing, 781
self-organising, 783
sigmoid, 769
square, 59
supervised learning, 783
the five types, 59, 60
using PCA, 780
weight matrix, 771
weights, 759
XOR with 2 layers, 772

Networks and flows, 378
Newton’s lens formula, 602
Niquist sampling rate, 554
noise

and learning, 804
and neurons, 798
DFT estimate, 598
Gaussian, 439, 615, 800
lens blur, 603
motion blur, 596
white, 438
Wiener filter, 615

noise model, 377
noiseless, 444
noiseless encoding, 395
noisy letter restored by MAP, 387
norm

agreement, 194
Frobenius, F-norm, 193
inequalities, 195
invariant, 194
ratio, R-norm, 193
vector norm, 193
via eigenvalues, 194
via singular values, 198

normal
conditionals, 292
quadratic form, 289

normal approximation
to binominal, 284
to every thing, 282

normal d-vector
covariance, 291
marginals, 290

normal pdf
matrix, 291

null hypothesis, 318
number theory, 55, 58
numerical quadrature, 354

object recognition, 330, 335
observed frequency, 321
Occam’s Razor, 432
occupancy problem, 346
octaves, 658
orbit, 50
order of an element, 40
Order of magnitude, 281
order of observation, 328
orthogonal complement, 125, 719, 750
orthogonal projection, 125
orthogonally similar, 180
orthonormal basis, 124
orthonormal basis, or ONB, 123
orthonormal set, 122

‘(φ)’ part, 12
parameter estimation, 325
parents, 361
partitioned IFS, or PIFS, 648
Pascal distributions, 247
Pascal’s Triangle, 216
path, 509
pattern, 330
pattern class, 330
pattern recognition, 330
pattern vector, 330
PCA

and Active Shape Models, 301
and covariance, 294
and data competition, 295
and feature, 301
and invalid regression lines, 301
and the K-L transform, 295
and the modal matrix, 294
for a car body, 296
for a face, 298, 300
minimise error, 297

perceptron
as edge-detector, 759
as letter-detector, 760, 765
as linear separator, 761
can’t do XOR, 761
learning algorithm, 762
limitations, 766
of Rosenblatt, 759
pocket algorithm, 766
single layer, 764

periodic band-limited case, 554
periodic non-band-limited case, 555
permutation, 155
Permutations and combinations, 215
photons, 375
piecewise continuous, 547
piecewise linear, 745
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plane pattern, 48
aeation, 99
by point group, 92
equivalent, 66
examples, 73
identifying the style, 75
signature znxy, 65
the 17 types, 64

plane patterns, 3
point spread function (psf), 604
Poisson distribution, 242, 375
position vector, 8
positive definite, 343
positive semi-definite, 288
posterior, 325
posterior conditional, 374, 378
Potts model, 374
pre-program, 431
Prediction by Partial Matching, 424
predictive coding, 617
prefix-free, 403, 431
principal axes, 294
prior, 325
prior knowledge, 327
probabilities, 361
probability distribution, 399
probability distribution function (pdf),

227
probability function, 212, 227, 361, 493
progressive transmission, 619, 620
Projection Theorem, 569
proposal distribution, 356
prudent gambler, 235, 238
pseudoinverse, 750
Pushkin, 345
pyramid method, 617

quadratic form
and eigenvalues, 185
conflecting the squares, 184
for normal pdf, 289
matrix, 184
positive definite, 186, 187
principal minor criterion, 188
rank, 184
type, 185

Quadtree partitioning, 656
quantisation levels, 620
quantisation noise, 373

Radiograph, 516
random variable

binomial, 239
concentrated, 227
continuous, 228
discrete, 227
distribution, 227
expected value E(X), 235
expected value E[u(X)], 236
functions u(x), 232
normal (gaussian), 243
Poisson, 241
range, 227
variance, 237

random variable, 227, 335
accept-reject method, 338
discrete, 344
table of algorithms for, 336
uniform distribution, 336

random vectors
and conditionals, 262, 265
and independence, 261, 276
continuous, 260
discrete, 259
functions of, 265
joint pdf, 260

Random walk, 346
random walk sampler, 358
range blocks, 648
rank

and equations, 178
and nullity, 178
invariance, 176
of quadratic form, 184

rate distortion
and compression, 806
for Gaussian source, 810

rector
basis, 117
and coordinate axes, 116
coplanar, 117
finding the angle, 119
orthogonal, 120
right-handed triple, 118
scalar product, 118

recurrence relation, 629
reduced echelon form, 177
redundancy, 463
Reflection, 12, 15
refracted ray, 600
refractive index, 600
regression, 315

and PCA, 316
relative frequency, 212, 402
reliability theory, 232, 248
remote sensing, 330, 372
rhombus cell, 60, 68
Richardson graph, 642, 643
Roman ‘Pelta’ design, 76
Roots of unity, 525
rotation, 11
rotation subgroup, 38
Rotation Theorem, 568, 604
row operations, 173
Russian multiplication, 139

saddle, 186
sample, 304
sample space

equiprobable, 214
finite, 213
partitioned, 225

sample space, 209
sampling distribution, 305
scalar, 8
scalar triple product, 141
scale phenomenon, 638
scaling function, 658
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scintillation, 608
section formula, 9
Segmentation, 438
sense of an isometry, 13
separable

kernel/convolution, 574
transforms, 561

separable function, 604
separator problem, 405
set

partitioned, 814
Shannon, 395
shannon’s channel coding theorem, 444
Shannon’s Coding Theorem, 438
Shannon’s Noiseless Coding Theorem, 402
shot noise, 373, 581
significance level, 318
similar, 180
Simpson’s Rule, 610
simulated annealing, 370, 441
simulation, 335
sin c function, 554
singly connected, 495
Singular Value Decomposition, 297, 298

and approximation, 199
and projection, 199
and pseudoinverse, 205
derivation, 197

singular values, 197
smokers, 239, 275
Snell’s Law, 600
Snowflake, 638
source

binary symmetric, 808
Gaussian, 809
message, 402
statistics, 396
symbols, 402

source code, 433, 493
span, 123
speed of light, 608
spline functions, 692
split + average, 705
split box, 659
standard deviation, 237
state diagram, 507
stationary, 628
stationary distribution, 349
statistic, 305
statistical physics, 369
stochastic, 345
Striling’s formula, 423
strobing, 555
sub-band coding, 617
subdivision matrix, 747
sum of squares, 184
surface, 743

astrology topology, 743
base mesh, 744
compression, 743
control polyhedron, 743
limit, 747
Loop subdivision, 743
multiresolution, 743

parametrisation, 745
rat function, 745
subdivision connectivity, 744
tensor product, 743
triangulated, 743
wavelet, 743

surface wavelet
analogy with B-splines, 743
basis function, 747
filter bank, 752
inner product, 748
liftin the logy, 750

survivor, 510
symmetric, 181

new from old, 65, 69
symmetry group, 5
symmetry group of a cube, 81
syndrome, 490

Taylor’s Theorem, 264
temperature schedule, 375
tensor product surfaces, 743
Testing for a normal distribution, 323
tetrahedron, 10
The crystallographic restriction, 58
The square net, 69
theoretical frequency, 322
thin lens, 600, 602
TIFF, 426
tilings

and cosceter graphs, 93
archimedean, 93
regular, 95

Toeplitz matrix, 629
Tomography

and gridding, 829
and the Radon Transform, 823
Fourier Projection property, 824
higher dimensions, 829
probabilistic approaches, 829
simulated example, 828

topology, 743
Total Probability Formula, 225
trace, 166
transfer function, 582, 596, 615
transformation, 10
transition kernel, 356
transition matrix, 445
transitional probabilities, 345, 445
translate, 11
translation, 3, 11
translation rectors

basis, 49
translation subgroup, 50
translation symmetries

basix, 64
translation vectors, 48
Trapezoidal Rule, 557
tree, 404

binary, 404
rooted, 404, 433

trellis diagram, 508
trials

Bernoulli, 247
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triangle inequality, 126, 432
tumour, 330
Turbocodes, 514
turbulence, 607
Turing machine, 430, 431

unbiased estimate, 352
uncertainty, 325, 444
uniform B-splines, 738
unit vector, 116
universal computer, 430
universal set, 210
upper triangular, 346

Vandermonde, 487
Vandermonde determinant, 134
variance

of sum or product, 274
variance, 237
vector, 7

recapitulation, 115
vector quantisation

advances and applications, 817
and source coding, 811
by lattice, 812
LBG algorithm, 813
Shannon’s Theorem, 812

Vector space rules, 470
vectors

and coordinate geometry, 143
scalar triple product, 141
vector product, 140

vendors vectors
joint pdf, 259

Venus
progressive transmission, 754

vertex level(depth), 404
Video tracking, 441
Viterbi’s decoder, 510
Voronoi, 745
voronoi region, 332

wallpaper, 6
wavelet

biothogonal , 753
Daubechies, 672
father, 658
Haar, 658
mother, 658
orthonormal, 670
parental implications, 672
seismic, 658
semi-orthogonal, 720

wavelet transform
and edge-detection, 681
and Fourier, 678
and medical imaging, 682
continuous, 677
discrete (DWT), 667
dyadic, 678
further applications, 682
Gabor, 679
Haar, 663

wavelet transform daubechies, 672
Weak Law of Large Numbers, 276, 355, 467
weight w(x) of a codeword, 471
Wiener filter, 578, 595, 612, 615
Wythoff’s construction, 95
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