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Preface

The theory of operators, created by V. Volterra, has as its
object the study of functions defined on infinite-dimensional spaces.
This theory has penetrated several highly important areas of
mathematics in an essential way: suffice it to recall that the
theory of integral equations and the calculus of variations are
included as special cases within the main areas of the general
theory of operators. In this theory the methods of classical mathem-
atics are seen to combine with modern methods in a remarkably effec-
tive and quite harmonious way. The theory often makes possible
altogether unforeseen interpretations of the theorems of set theory
or topology. Thus, for example, the topological theorem on fixed
points may be translated, thanks to the theory of operators (as has
been shown by Birkhoff and Kellogg) into the classical theorem on
the existence of solutions of differential equations. There are
important parts of mathematics which cannot be understood in depth
without the help of the theory of operators. Contemporary examples
are: the theory of functions of a real variable, integral equations,
the calculus of variations, etc.

This theory, therefore, well deserves, for its aesthetic value
as much as for the scope of its arguments (even ignoring its numerous
applications) the interest that it is attracting from more and more
mathematicians. The opinion of J. Hadamard, who considers the theory
of operators one of the most powerful methods of contemporary
research in mathematics, should come as no surprise.

The present book contains the basics of the algebra of operat-
ors. It is devoted to the study of so-called linear operators,
which corresponds to that of the linear forms a,x;, + a,z, + ... +
a,xr, of algebra.

The notion of linear operator can be defined as follows. Let E
and E, be two abstract sets, each endowed with an associative addi-
tion operation as well as a zero element.. Let y = U(x) be a function
(operator, transformation) under which an element y of E, corresponds
to each element x of E (in the special case where E, is the space of
real numbers, this function is also known as a functional). If, for
any z, and x, of E, we have U(x, + x,) = U(x,) + Ulx,), the operator
U is said to be additive. If, in addition, E and E, are metric
spaces, that is to say that in each space the distance between pairs
of elements is defined, one can consider continuous operators U.

?ow operators which are both additive and continuous are called
inear.

In this book, I have elected, above all, to gather together
results concerning linear operators defined in general spaces of a
certain kind, principally in the so-called B-spaces (i.e. Banach
spaces [trans.]), examples of which are: the space of continuous
functions, that of the pth.-power-summable functions, Hilbert space,
etc.
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I also give the interpretation of the general theorems in various
mathematical areas, namely, group theory, differential equations,
integral equations, equations with infinitely many unknowns, func-
tions of a real variable, summation methods, orthogonal series, etc.
It is interesting to see certain theorems giving results in such
widely varying fields. Thus, for example, the theorem on the exten-
sion of an additive functional settles simultaneously the general
problem of measure, the moment problem and the question of the
existence of solutions of a system of linear equations in infinitely
many unknowns.

Along with algebraic tools, the methods are principally those of
general set theory, which in this book are to the fore in gaining,
for this theory, several new applications. Also to be found in
various chapters of this book are some new general theorems. In
particular, in the last two chapters and the appendix: no part of
the results included therein has been published before. They con-
stitute an outline of the study of invariants with respect to linear
transformations (of B-spaces). In particular, Chapter XII includes
the definition and analysis of the properties of linear dimension,
which in these spaces plays a r8le analogous to that of dimension in
the usual sense in euclidean spaces.

Results and problems, which, for want of space, have not been
considered, are discussed briefly in the Remarks at the end of the
book. Some further references are also to be found there. In gen-
eral, except in the Introduction or, rather, its accompanying Remarks
at the end of the book, I do not indicate the origin of theorems
which either I consider too elementary or else are proved here for
the first time.

Some more recent work has appeared and continues to appear in the
periodical Studia Mathematica, whose primary purpose is to present
research in the area of functional analysis and its applications.

I intend to devote a second book, which will be the sequel to the
present work, to the theory of other kinds of functional operators,
using topological methods extensively.

In conclusion, I would like to express my sincere gratitude to all
those who have assisted me in my work, in undertaking the translation
of my Polish manuscript, or helping me in my labours with their
valuable advice. Most particularly, I thank H. Auerbach for his
collaboration in the writing of the Introduction and S. Mazur for his
general assistance as well as for his part in the drafting of the
final remarks.

Stefan Banach

Lwéw, July 1932
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Introduction

A. THE LEBESGUE - STIELTJES INTEGRAL

We assume the reader is familiar with measure theory and the
Lebesgue integral.

§1. Some theorems in the theory of the Lebesgue integral.

If the measurable functions mn(t) form a (uniformly) bounded
sequence and the sequence (xn(t)) converges almost everywhere in a
closed interval [aq,b] to the function z(t), then

b b
(1) lim [z, (t)dt = [z(t)dt.
nr® q a

More generally, if there exists a summable function ¢(t) 2 0 such
that |z,(t)| € ¢(¢) for 2=1,2,..., the limit function is also summ-
able and (1) is still satisfied.

If the functions z,(t) are summable in [a,b] and form a non-
decreasing sequence which converges to the function x(t), then (1)
holds, when the function x2(t) is summable, and

b
lim [z, (t)dt = +e
n+o g

otherwise. N
If the sequence (z(t)) of pt -power summable functions (p 2 1)
converges almost everywhere to the function x(t) and if

b
fixn(t)]pdt <k for n=1,2,...,
a

the function x(¢) is also pth—power summable.

§2., Some inequalities for pth—power summable functions.

The class of functions which are pth-power summable (p> 1) in
[a,p] will be denoted by . To the number D %hefe corresponds
the number g, connected with p by the equation 3+ 3= 1, and known as
the conjugate exponent of p. For p=2, we have equally ¢g= 2.

If x(¢t) € LP and y(¢) € L9, the function z(t)y(t) is summable and
its integral obeys the inequality

< (Z|x|Pdt)é (i|y1th)$ .

In particular, we therefore have for p= 2:

¢ (forae)' (fura).

b
faydt
a

b
lfxydt
a
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If the functions z(%t) and y(¢) belong to Lp, so does the function
z(t) + y(t) and we have:

(i|x4-y]pdt)é < (i|m|pdt>é + (z|y|pdt>é

These inequalities are analogues of the following arithmetic

inequalities:
1 1
n = n =
s (,z |ai|f’)".( p 15,19)%,
=1

(31 pt?) s (L s |p < (L1p.17) lp

of which the first yields, for p= 2, the well-known Schwarz

inequality:
n t ,n ]
s(j«:;). 163)
=1 f=1

For every pth-power summable function (p2 1) and every e > 0 there
exists a continuous function ¢(¢) such that

=

b
[lz= 91?7 < e.
a

§3. Asymptotic convergence.

The sequence (x,(t)) of measurable functions defined on some set is
said to be asymptotically convergent (or convergent in measure) to
the function x(t) defined on the same set, if for each > 0

lim m({t: ) =0,

n->w

where m(4) stands for the (Lebesgue) measure of the set 4.

A sequence (xn(t)] which is asymptotically convergent to the
function z(¢) always has a subsequence which converges pointwise to
this function almost everywhere.

For a sequence [xn(t)) to be asymptotically convergent, it is
necessary and sufficient that, for each £> 0,

lim m({#: fo; () = xk(t)| >e}) = 0.
4y ks
§4, Mean convergence.

A sequence (xn(t)) of pth-power.summable functions (p2 1) in [a,bd]
is said to be pth - power mean convergent to the pth- power summable
function x(¢t) if

lim f[x (¢) - z(¢) |Pat = o.
n+w g

A necessary and sufficient condition for such a function z(¢) to
exist is that

lim flx (t) -z (t)lpdt = 0.
T,k>e a
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The function xz(t) is then uniquely defined in [(a,b], up to a set of
measure zero.

A sequence of functions which converges in mean to a function z(t)
is also asymptotically convergent to this function and therefore
(c.£f. §3) has a subsequence which converges pointwise to the same
function almost everywhere.

§5. The Stieltjes Integral.

Let x(t) be a continuous function and o {(t) a function of bounded
variation in [ae,b]. By taking a partition of the interval [a,b] into
subintervals, using the numbers

a=t, <t <t,<...<t =b
and choosing an arbitrary number 6; in each of these subintervals, we
can, by analogy with the definition of the Riemann integral, form the
sum
n

s= ) lal) - alt

)] where ti 26.2t. ..
=1

-1 7 -1

One shows that for every sequence of subdivisions, for which the
length of the largest subinterval tends to 0, the sums S converge to
a limit which is the same for all such sequences; this limit is
denoted by

b
Jz () da(t)
a

and is called a Stieltjes integral.
This integral has the following properties:

b a

Jz(tYdalt) = =[z(t)da(t),

a b
b c e
Je(t)da(t) + [z(t)da(t) = [z(t)dals),
a b a

b b b
f[ml(t)+ xz,(t)])da(t) = fxl(t)da(t) + fxz(t)da(t).
a a a
The first mean value theorem here takes the form of the inequality
b
Jz(t)da(t) | 5 MV,
a

where M denotes the supremum of the absolute value |z(t)| and V the
total variation of the function «a(¢) in [ea,b].

If the function a(t) is absolutely continuous, the Stieltjes integ-
ral can be expressed as a Lebesgue integral as follows:

b b
[z (tydu(t) = [z(t)a’(t)dt.
a a

If a(t) is an increasing function (i.e. a(t’) < a(t”) whenever
agt’'<t”sb) and if, for each number s€ [a(a),a(b)], one puts

B(s) = sup({t:s2ait)}),
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one obtains:
b a(b)
(2) Je(®)da(e) = | z[B(s)1ds.
a a(a)
Proof. We have, by definition of B(s):
(3) Bla(z)] = ¢ for a £t £ b

Since R(s) is increasing, by hypothesis, and takes all values in
the interval [a,b] where, by (3), a=8[al(a)] and b= B8[a(b)], it is a
continuous function. It follows that the function z[B(s)] is contin-
uous as well,

Consider a subdivision § of [a,b] given by the numbers a =1¢t, < ¢, <
vee < tn = b and put a(ti) = ei for ¢=1,2,...,n. We have

9

I’I: =ej xz[B(s)lds = (ei- 91:_1).'6(97:)1
i-1

where 6! =8(s/) and 6, , <0} <6,. Clearly 8(8, ,) s B(s}) =07 5 B8(6,).

By (3) we have B(0, ,) = B[a(ti—l)] =t,, and similarly 8(6,) =¢t..

Consequently
ti—l < 61': s ti'
so that
I, = ‘”(e»:') lalg;) - “(ti-ﬂ]'

whence

a{b) n n
(4) [ =l8(s)1ds = ] I, =] =(0})[a(ey) = alt, )],

a(a) =1 =1

Now, since this last sum tends to fﬁx(t)da(t) when the maximum

length of the intervals of the subdivision § tends to 0, the equality
(4) yields (2), g.e.d.

This established, we now allow o(t) to be any function of bounded
variation. Such a function o(¢t) can always be written as a differ-
ence a, (t) - a, (¢t} of two increasing functions o, (¢) and a, (¢);
denoting as before the corresponding functions by B8, (s) and B,(s),
we obtain

b b b a, (b) a, (b)
Jz(£)da(t) = fx(t)da, () = [z(t)da, (¢) = | z[B, (s)lds= [ =z[B,(s)]ds.
a a a o, (@) 0, (@)

If the functions z,(¢t) are continuous and uniformly bounded and if
the sequence [a:n(t)) converges everywhere (pointwise) to a continuous
function x(t), we have, for every function a(t) of bounded variation

b
lim [ap, (¢)dal(t)

b
Jz(t)da(t),
a

n+® g
because
a, (b) a, (b)
lim [° z,[B8,(s)1ds = [ =zI[B, (s)]ds,
n¥re o, (a) o, (a)
and

a, (D) a, (b
lim [° x,[B,(s)lds = [ x[B,(s)]ds.
n+ o, (@) o, (@)
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§6. Lebesgue's theorem.

Let us note the following theorem, due to H. Lebesgque (4Annales de
Toulouse 1909).

For a sequence (mn(t)] of summable functions over [0,1] to satisfy

1
lim [a(t)z,(t)dt = 0
n+>° Q
for every bounded measurable function oal(t) on [0,1]1, €t Zs necessary
and sufficient that the following three conditions be simultaneously
satisfied:

1° the sequence (fé|xn(t)|dt) is bounded,

2° for every €> 0 there exists an n> 0 such that for every subset
H of [0,1] of measure <n, the inequality [men(t)dt]s € holds
for n=1,2,...,

u
3° lim fz,(¥t)dt = 0 for every 0Sus 1.
n+o Q

We shall become acquainted with other theorems of this kind later
in the book.

B. (B)-MEASURABLE SETS AND OPERATORS
IN METRIC SPACES.

§7. Metric spaces

A non-empty set E is called a metriec space or D-space when to each
ordered pair (x,y) of its elements there corresponds a number d(x,y)
satisfying the conditions:

1) d{(x,x) = 0, d(z,y) > 0 when z # y,

2) dlz,y) d(y.,x),

3) dlz,z) $ dlz,y) + dly,z).

The function d is called a metrie and the number d(x,y) is called

the distance between the points (elements) x,y. A sequence of
points (x,) is said to be convergent, when

(5) lim d(zx ) = 0;
psq7
the sequence (z,) is said to be convergent to the point x,, and we

write lim x, = x,, when
nreo

(6) lim d(xp,x,) = 0.

n-reo

pr¥q

The point z, is then known as the limit of the sequence (z,).

Remark. Sequences which are convergent in this sense are more
usually known as Cauchy sequences. [Trans.]

It is easy to see that (6) implies (5), since we always have
d(mp,xq) < d(mp,xo) + d(mo,xq).
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Consequently, a sequence convergent to a point is convergent for
this reason; of course, the converse is not always true.

A metric space with the property that every convergent sequence in
it converges to some point is said to be complete.

A metric space with the property that every (infinite) sequence of
its points has a subsequence convergent to some point is said to be
ceompact.

The euclidean spaces constitute examples of complete metric spaces.
We shall now describe some other important examples.

1. The set S of measurable functions in the interval [0,1]. For
each ordered pair (x,y) of elements of this set, put
1
- [z(t) - y(£)]
dlz,y) I1+ HGEIG IR
0
It is easily verified that conditions 1) - 3) above are satisfied.
In fact, it is clear that conditions 1) and 2) are satisfied, (we do
not distinguish between functions which only differ on a set of
measure zero) and to see that condition 3) also holds, it is enough
to remark that for every pair of real numbers a,b one has:

la + bl < lal + 15 .
T+ ta+bl = 1 + lal T + [b]

Thus "metrised", the set S therefore becomes a metric space; this
space is complete, since convergence of a sequence (xp) of its points
(to a point z,) means convergence in measure of the sequence of
functions (x,(t)) (to the function x,(t)) in [0,1].

2. The set s of all sequences of numbers. For each ordered pair
(x,y) of its elements, put

1E€n = Nzl
(1 + leg-npl) |

where, as in all the examples of sequence spaces, x= (§,) and
y= (ny,).

Thenset s then becomes a complete metric space. In fact, converg-
ence of a sequence of points (x;) and its convergence to a point z,
here mean (putting axy = (EJ") and x, = (£,)) that for each natural
number n, each of the sequences CESW) is convergent, and is converg-
ent to &, respectively, as m tends to infinity.

3. The set M of bounded measurable functions in [0,1]. If one
puts, for each pair z,y of its elements

T 1
dlz,y) = 2 - .
n=1 2"

d(z,y) = ess sup|xz(t) -y(t)|,
0stsl

one obtains a complete metric space. Convergence of a sequence of
points (x,) ( to a point z,, respectively) here means uniform con-
vergence almost everywhere in [0,1] of the sequence of functions
(zn(t)) (to the function =z,(t)).

4. The set m of bounded sequences of numbers. Putting

d{z,y) = sup Ign' nnl
15n

one clearly obtains from m a complete metric space.

5. The set C of continuous functions in [0,1]. For each pair ,y
of its elements put

dlz,y) = max |xz(t)-y(t)].
0stst
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The set ¢ then forms a complete metric space; convergence of a
sequence of its points (xy) (to a point x,, respectively) here
becomes uniform convergence in [0,1] of the sequence of functions
(xp(t)) (to the function x,(t)).

6. The set ¢ of convergent sequences of numbers. We define, for
each pair z,y of its elements, the distance d(x,y) exactly as we did
in the space m. It is then easily seen that ¢ also forms a complete
metric space.

7. The set ¢P) of functions with continuous pthderivative in
[0,1]1. Putting

dlz,y) = max |z(t) -y(¢)| + max |=P (&) - yP (1)),
0<t£1 0551
we obtain a complete metric space. A necessary and sufficient
condition for a sequence of points (xp) to be convergent (to a point
x g, respectively) in this space is that both the sequences Cmn(t)
and (x{P) (t)) of functions be uniformly convergent in [0,1] (the
first @o the function xo(t) and the second to the function xgm(t)).

8. The set LP, where p21, of pth-power summable functions in
[0,1]. Putting

1 1
dlx,y) = [f|x(t)- y(t)|pdt]P,
0

we see that the set LP becomes a complete metric space. For a sequ-
ence (x,) of its points to be convergent (to the point z, respec-
tively) it is necessary and sufficient that the sequence of functions
(xn (t)) be pth- power mean convergent in [0,1] (to the function
z,(t)).

9. The set Zp, where p21, of sequences of numbers such that the

«© N
series n§1|£n|p is convergent. Putting, for elements z,y of 1P

©

de) = [ T 16n - mal?]P

n=1
one obtains a complete metric space.

10. The set of analytic functions f(z) which are uniformly contin-
uous in the circle |z|<1 forms a complete metric space when one
defines the distance between two functions f(z) and g(z) as

max |f(z) - g(z)
|21

It should be noted that one can define sets of functions of n
variables corresponding to examples 3,5,7 and 8.

§8. Sets in metric spaces.

Let F be any metric space and ¢ an arbitrary set of elements
(points) of E.

A point x, is said to be an accumulation point of the set ¢ if
there exists a sequence of points (x,) such that z,#x, € ¢ for each
n and %1£ zp=x,. The set of all accumulation points of G is called

its derived set and is denoted by G’'. The set
¢ =6u¢’

is called the closure of the set (G; the set G is said to be closed
when G’ & ¢ and is called perfect when G’ = G. One says that a set
G is opern when its complement, i.e. the set E~G, is a closed set.
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Every open set is also called an entourage or neighbourhood of each
of its points.

Given a point x;, € E and a number r > 0, the set of all points x
such that d{z,x,) £ r, is called a sphere and that of the points such
that d(z,z,) < r, is called an open sphere; the point x, is called
the centre and the number r; the radius of this sphere or open
sphere respectively. A set G is said to be dense when ¢ = E and
nowhere dense when G contains no sphere.

The space E is said to be separable if it contains a countable
dense subset. It is easy to see that every compact metric space,
i.e. a metric space such that every sequence of its points has a
convergent subsequence, cf. p. 5, is separable.

A set G is said to be of the first category or of category I if it
can be written as the union of a countable family of nowhere dense
subsets; otherwise, it is said to be of the second category or
category II. A set G is of the first category at a point x, when
there exists a neighbourhood V of x, such that the set GnV is of
the first category; if no neighbourhood of the point x, has this
property, one says that the set G is of the second category at the
point x,.

One can prove the following

THEOREM 1. If a set G im an arbitrary metric space E is of the
second category, there exists in E a sphere K such that the set G is
of the second category at each point of Gn K.

For the time being, let E be a complete metric space. We shall
prove the

LEMMA. If (K,) is a sequence of spheres of radius r, in E such
that Knyy S Ky for n=1,2,... and lim r, = 0, there exists a point lying
in all these spheres. ne

Proof. Let x, be the centre of the sphere X,. By hypothesis, if
p < g we have zq € Kq = Kp, whence
(7) d(mp,xq) < I'p.

It follows from this that the sequence of points (z,) is converg-
ent. Putting, as E is complete, lig z, =x,, we have for p<gq, in
view of (7), d(xp,mo)s d(xp,mq)d-d(mq,xo)ﬁ rp+ d(xq,xo), whence
d(x,,x,) £ r,. Now, as p is arbitrary, the point z, belongs to all

the spheres X,, g.e.d.
A simple consequence of this lemma is the

0

THEOREM 2. Every complete metric space E is of the second
category.
Proof. Suppose, on the contrary that

(8) E =8 6

where each of the sets G, is nowhere dense. There then exists a
sequence of spheres (Xp,) of radii (ry) with the following properties:

- c =
kK, NG, =0, r;, <1 and Kﬁ+ _.Kn,Kh+1n Gn+1 @, r

1 7l+1< n+1

By the lemma, there exists a point x, which belongs to all these
spheres. Now, as X,N G, =¢ for each 2=1,2,..., this point cannot
belong to any Gy, which contradicts (8).

Now let E be any metric space and F an arbitrary subset of E. If
one uses the same definition of distance for elements of F as that
employed in the space E, the set F is itself a certain metric space.
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Consider a set Geg F. If it is, e.g., nowhere dense when regarded
as a subset of the metric space F, we say that it is nowhere dense
relative to (the set) F; only when F=FE do we usually omit the words
"relative to (the set) F". The same applies to the other defini-
tions introduced at the beginning of this section.

Theorem 1 implies that if the set ¢ is of category I at each of
its points relative to F, it is of category I relative to F.
Similarly, theorem 2 implies that if the metric space E is complete
and the set F is closed, then this set is of category II relative to
itself.

Consider in an arbitrary metric space E the smallest class BB of
subsets of this space satisfying the following conditions:

1) each closed set belongs toi&
2) each countable union of sets belonging to.ngelongs to.Zi
3) each complement of a set belonging to jgbelongs to B.

The sets of the class B are called the "B-measurable sets". A set
G is said to satisfy the Baire condition if every non-empty perfect
set P contains a point x, such that at least one of the sets PN G
and P~G is of category I at the point x, relative to P.

One has the following

THEOREM 3. [Every B-measurable set satisfies the Baire condition.
§9. Mappings in metric spaces.

Let E and E, be arbitrary non-empty sets. If to each element x€ E
there corresponds a certain element of E, one says that a mapping or
operator is defined in the set E. The element corresponding to z is
called the wvalue of this mapping at z; the set E is known as the
domain and the set of values the codomain or range of the mapping
concerned. In the special case where the values of the given
mapping are numbers, it is called a functional.

Now let E be a metric space and let U be a mapping with E as
domain and some metric space as codomain. The mapping U is said to
be continuous at the point z, if, for every sequence of points (xy)
converging to x,, one has lig Ulxy) = U(xo)’ the mapping U is said to

n
be continuous in E when it is continuous at each point of this space.
If a sequence of mappings (Up) and a further mapping Uy, all defined
in F and all with codomain lying in the same metric space, are given,
the sequence of mappings is said to converge at the point x, to the
mapping U, when the sequence of values CUn(xo)) converges to Ug(xz,);
the sequence of mappings (U,) is convergent in E to the mapping U,,
when it is convergent at each point of E. If the sequence of map-
pings (U,) is convergent in E to the mapping U, this last mapping is
called the Iimit of (Up) in E. Instead of saying "continuous map-
ping in E", one says, briefly, "continuous mapping", when it is
understood which space is concerned; the same applies to the other
terms.

Leti?be the smallest class of mappings, all having the same given

metric space E as domain and with codomains all lying in some other
metric space, which satisfies the conditions:

1) every continuous mapping belongs tof]

2) every limit of a convergent sequence of mappings belonging to
¢f, belongs to‘f.

The mappings of this class are known as “B-measurable mappings".
A mapping U with domain F and codomain also a metric space is
said to satisfy the Baire condition if, in each non-empty perfect
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set P F there exists a set G of category I relative to P such that
the mapping U restricted to the space P~ G, is continuous in this
space.

We have the following

THEOREM 4. Every B-measurable mapping satisfies the Baire condition.
Equally, one can prove

THEOREM 5. If the mapping U defined in the space E is a limit of
continuous mappings, there exists in E a set G of category I such
that the mapping U is continuous at each point of the set ENG.

The following theorem establishes a relationship between the B-
measurable sets and the B-measurable mappings; let E be the metric
space where they are defined and E, the space where they take their
values.

THEOREM 6. If the mapping U <s B-measurable, then for every B-
measurable set G,SE,, the set G of points x such that Ulx) € G, is
B-measurable.

THEOREM 7. If the spaces E and E, are separable and the mapping U
is continuous in E, then the images of the B-measurable gsets GSE
satisfy the Baire condition. If, further, x# x' always implies
Ulx) # U(x'), the images of the B-measurable sets are also B-measur-
able.

The first part of the theorem follows from the fact that the con-
tinuous image of a B-measurable set is always a so-called "analytic"
set and every analytic set satisfies the Baire condition. The proof
of the second part of the theorem as well as that of theorem 6, is
also to be found in Set theory by F. Hausdorff.

THEOREM 8. If the mappings U' and U" are B-measurable, so is the
funetional d(U'(x),U" (x)).

The proof follows from the fact that if the mappings U' and U” are
continuous, so is the functional d(U'(x),U"(x)) and for each point
Yo € E,, the functional dl(y,y,) =d(y,,y) is continuous in E,.

THEOREM 9. If (Up) is a sequence of B-measurable mappings, the
set of points where this sequence is convergent is a B-measurable
set.

Proof. For natural numbers p,q,r let G » be the set of points x

"My
such that CUp(x),Uq(x))=§%. By theorems 6 and 8 the sets G are
«© 0

© Psq,r
B-measurable. Now, G = so that G is B-measurable.

N, U neG ’

r=1p=1 q=p p,q,r
THEOREM 10. If (U;) and (Uy) are sequences of B-meagurable map-

pings and if, for each x € E, we have %i& d(Up(x) , Ul (x)) < =, the

functional 1im dCUé(m),U;(x)) i8 B-measurable.
n-co
Proof. For each pair of natural numbers p,q and each point z, put:

F_ (x) = max d(ur:(x), Ut(z)).
p»>q psnsp+q-1 "
One clearly has, for each x:
Timd(Uj=) ,U"(x)) = lim lim F_ (x).
nro n pr® goe 2q
It is therefore enough to show that each of the functionals Eb’q
is B-measurable. Now, by Theorem 8, each of the functionals
Fp,1(x) = dCUé(x),Ug(x)) is B-measurable and since one has for each
g>1

2F () = F q(m) + F () + |F_ () (z) |,

=-F
Pyqtl p p+q,1 p,q pq,1
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it follows by induction, again applying Theorem 8, that all the
functionals Eb’q are B-measurable.

THEOREM 11. Given a uence of non-negative continuous fune-
tionals (Fp) such that Tim Fn(x) < © for each element x of a set
00

ge
i
n->
GEE of category 1I, there exists a sphere KS E and a number N such
that Fp(x) £ N for each x€ K and each n=1,2,...
Proof. The sets Gi of points 2 such that Fn(x)é 7 for n=1,2,...

are clearly closed and Gs%glqi; there therefore exists an index ¥
such that G, is of category II. Since it is a closed set, it con-

tains a sphere X as required.
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CHAPTER I

Groups

§1. Definition of G-spaces.

Let a complete metric space F be given. Suppose that to each
ordered pair (z,y) of elements of the space E there corresponds a
unique element z of this space called the sum of x and y and which
we will denote by the symbol z+ y.

Suppose further that E is a group under this sum operation, i.e.
that

I,.
1
I,. there exists in E a zero-element O such that one has

(x+y) + 3 =2 + (y+2),

O+x=x +0=¢g for every xz€E,

I,. to each element x of E there corresponds an element (which we
will denote by -x) which satisfies the equation

x + (-x) = 0.
It follows easily from these axioms that:
a) there existe only one zero-element O in E,
b) one has (-z) + (x) = 8 for each x€E.
c) x+y =2x + 2 implies y = z.
Suppose further that the following axioms are satisfied:

II . limx_ = x implies lim (-x, ) = -z,
1 n-+o n n-ro n

II,. lim z_ = x and lim = imply lim(x_ + =2 + y.
2n pimz, 1imy, =y imply nm( n T, ¥

The complete metric spaces satisfying these axioms will be called
G-spaces.

Remark. We will write z- y instead of z+ (-y) and -z + y instead
of (-zx)+y.

§2. Properties of sub-groups.

Let E be a G-space. For an element z€ F and a set HEE, we will
denote by xH and Hx respectively the set of all elements y € E such
that y=x+ 2 (2+ z, respectively) where z€ H.

Clearly, one always has the identities

x(H, U H,) xHy U zH,,

x(H, ~H,) = xH,~zH,,

x(H,NH,) = xH, NzH,,
and the analogous identities for H,x and H,x.
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It is easily shown that if # has any of the properties closed,
open, nowhere dense, of category I, of category II or B-measurable
then the set x# also has the same properties. If z is an interior
point of H, x+z is an interior point of «x4.

A non-empty set HS E is called a subgroupof E, when the conditions
x€ H and y€ H imply x+ y€ H and -x€ H. Clearly then also 0¢€ H.

A set is said to be connected when it cannot be expressed as the
union of two non-empty disjoint relatively closed subsets of itself.
If £ is a connected set and H is a subset of F which is both open
and closed, one has H=E, for otherwise the set E~ H would also be
non-empty and closed.

THEOREM 1. Every subgroup HES E which is of category II and satis-
fies the Baire condition is both open and closed in E.

Proof. By theorem 1, p. 8, there exists an open sphere X in which
H is everywhere of category II. One can clearly assume that the
centre y, of XK belongs to H. As H satisfies the Baire condition,
the set X~ H is of category I. Now, as y, is an interior point of
K, the point ©=-y,+y, is an interior point of (-y,)X. Hence there
exists an open sphere X, € (-y,)X of centre 0. We have (-y,)[K~H] =
(=yo)X~ (-y,)# and as (-y,)H=H, since H is a subgroup, it follows
that (-y,) [K~H] = (-y,)XK~HE2K, ~H, from which it follows that,

K~ H and consequently (-y,)[X~ H], being of category I,K,~H is also
of category I.

Moreover, for each xz€ X, we have x€ xX,, since 0€ X, and x+ 0==x.
Consequently X, N xX, = #. "Hence there exists an open sphere
K, €K)naxK, of centre x. We have X,~HgK,~H and K,~xHSxK, ~xH=
x[Kl\H], from which it follows that the sets K,~H# and X, zH are
also of category I.

It follows from this that Hn xH= @; hence there exists a y such
that y€ # and y € xH#, wvhence -z + y € # and thus, ¥ being a subgroup,
—x=-x+y-y€H, hence x€ 4.

It is thus proved that X, £ H and, consequently, that © is an int-
erior point of A. Since for each ye¢ # we have yg=H and y=y+ 0,
each point y of # is an interior point. H is therefore an open set.

To show that it is also elosed, put %_{g ¥y, ¥ where y, €8 for each

n=1,2,---. Now, as %_{g (y-y,) = 0€ XK, S H, there exists an n such

that y-y,€ XK, & H, whence y=y-yp+y, € H, q.e.d.

This theorem implies the following

THEOREM 2. If the space E is connected, every subgroup HC E which
is of eategory II and satisfies the Baire condition coincides with E.

Remark. Since every B-measurable set satisfies the Baire condi-
tion, theorems 1 and 2 are valid, in particular, when HF is a B-
measurable set.

§3. Additive and linear operators.

Let E and E, be G-spaces and U an operator defined in EF whose co-
domain lies in E,.
The operator U is said to be additive when

Ulz+y) = Ulx) + Uly) for all x,y € E.
We then have Ul(x) = U(x+ 0) = Ulx) + U(O), whence

U(O) = 0,
and as 0= U(Q) =U(x-=x) = U(z) + U(-x), we have
U(-z) = -U(x).

A continuous additive operator is said to be linear.
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Remark. The word operator is more generally used than mappinrng in
this context.

THEOREM 3. Every additive operator that is continuous at one
point is a linear mapping.
Proof. Let x, be a point of continuity of the additive operator
U. Let zp€E, € F and lim x,=x. We have lim (zp-zx+ x;) =x,,
n-ro n->o

whence lim Ulzy, -z +a,) =Ulx,) and lim[U(mn)- Ux) + Ulz )] = Ulx,),
SO that 11m Ulzy) = Ulz), from whlch it follows that the operator in

questlon is also continuous at the arbitrary point x, i.e. that it
is linear.

THEOREM 4. Every B-measurable additive operator is a linear
operator.

Proof. By theorem 4, p. 10, such an operator U satisfies the
Baire condition. It is therefore continuous on a certain set #H
where E~H is of category I. Let %i& xy = 0. As the set zy[E~ H] =

E~zuH is of category I for eachn= 1,2,..., so also is the set
(E~H) unf_i’lxn[E\H] = (B~ v T (E~zn) 28~ (80 A ,8),

which consequently, by theorem 2, p. 8, does not exhaust the space E.
There thus exists a point x such that

x € H and x € xpH for each n=1,2,...,
whence (-z,+ x) € #, and as 1im(-mn4-m)= x, it follows that
11m Ul-zp+x) = Ulx), so that llm[U(-mn)+ U(x)] = U(z) and finally
llm U(x ) = 9. The operator U(m) is therefore continuous at the

501nt &) of E and consequently it is linear by theorem 3, just
proved.

Remark. It follows from the nature of the argument employed in
its proof that the theorem still holds for additive operators that
satisfy the Baire condition.

THEOREM 5. If the space E is connected and (U,) is a sequence of
linear operators, the set of points x for which the limit lim U, (x)
7>

exists is either of category I or is equal to all of E.

The proof follows easily from theorem 2, p. 8, as the set of
points x where the sequence of operators (U,) is convergent is B-
measurable by theorem 9, p. 10; by theorem 3, p. 9, this set
therefore satisfies the Baire condition while, further, every set of
points of convergence forms a group.

§4, A theorem on the condensation of singularities.

THEOREM 6. Suppose that a connected space E and a double sequence
of linear operators (U, ,) are given, and that (x,) is a sequence of

points sueh that the limit lim U (zp) does not exist for any
g pPsq

p=1,2,*++. Then the set H of points x such that the limit limlb q(x)
q-+® i

does not exist for any x€ H, for any value of p=1,2,..., is of
category 11 and its complement E~H is of category I.

Proof. For each p=1,2,..., let H, be the set of points of converg-
ence of the sequence (Up,q). We have Hp= E, since by hypothesis
Tp € E~Hp. By theorem 5, p. 10, the set Hp is of category I. Hence
the same is trug of the set pglﬂp, which completes the proof,

bec e H=E~ H
aus pUI P
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CHAPTER II

General vector spaces

§1. Definition and elementary properties of vector spaces.

Suppose that a non-empty set EF is given, and that to each ordered
pair (xz,y) of elements of E there corresponds an element z+ y of E
(called the sum of = and y) and that for each number ¢ and z€ E an
element tx of E (called the product of the number ¢ with the element
xr) is defined in such a way that these operations, namely addition
and scalar multiplication satisfy the following conditions (where
xz,y and z denote arbitrary elements of E and «,b are numbers):

1) =z +y =y + =z,

2) =+ (y + z) = (2 + y) + 2,
3), z+y=x + 2 implies y = =,
4) alx + y) = axz + ay,

5) (a + b)x = ax + bz,
6) al(bx) = (ab)x,
7) l.x = x.

Under these hypotheses, we say that the set E constitutes a vector
or linear space., It is easy to see that there then exists exactly
one element, which we denote by 0, such that xz+ 0=z for all x€F
and that the equality ax = bx where x# 0 yields a= b; furthermore,
that the equality ax = ay where a=# 0 implies x=y.

Put, further, by definition:

-x = (-1)x and x-y =z + (-y).

Examples 1-10 of metric spaces, described on pp. 5 and 6, also
serve as examples of vector spaces, when the usual definitions of
addition and scalar multiplication are adopted.

When x# y, we understand by the line segment joining x and y the
set of all elements of the form tx+ (1- t)y where ¢ is any number in
the interval [0,1].

A set GEFE is said to be convex, when it contains every line seg-
ment joining arbitrary pairs of elements of G.

If L, 4TypeevrZy are elements of a vector space, the expression

n

W&y + QpEy * ... + OpZp = ) OgTg,
1=1
where o,,0,,...,0, are arbitrary real numbers, is called a linear
combination of the elements x,,x,,...,%y.

§2. Extension of additive homogeneous functionals.

Let F and E, be two vector spaces and f a mapping in E whose co-
domain lies in E,.
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The mapping f is said to be additive when for each pair of ele-
ments x,y we have:

Fle + y) = flz) + fly);
it is called homogeneous when for each element x and each number %:

Ffltx) = tf(x).

THEOREM 1. Suppose that there are given
1° a functional p defined in E such that for all x,ycE
plz+y) < plx) + ply) and p(tx) = tp(x) for t2 0,
and

2° an additive homogeneous functional f defined in a vector sub-
space GS E (i.e. a subset of F that is itself a vector space
with the same definitions of the basic operations) such that
for each x€ G

flz) < pl=x),

then there always exists an additive homogeneous functional F
defined in E sueh that

F(x) s plx) for each x € E and F(x) = f(x) for each xz € G.

Proof. We can assume that G= E; let x,€ E~G. By 2°, for
z!', 2" € G we have:

fla™) = flz') = flz"=-=")

A

pla’-=x’) = pl{z"+x )+ (-x'-=z))]

N

plam+xy) + pl-x'-=ax,),
whence
“pl=2'-=z,) - flz') < plz"+=x4) = Flz").
The numbers
m = sup [-pl-z-2 ) = flz)] and ¥ = inf [p(z+ =z ) - f(x)]
r€G xEG

are therefore finite and ms M. If »
mg rogM, we have for each x€ G

, is any number such that

(1) pl-z-=zy) = Fflx) s r, < ple+txy) - flx).
Consider the set ¢ of all elements y of the form

(2) y = x + tx, where x€ ¢ and ¢ is a number.
Clearly G, is a vector space. Put

(3) gly) = flz) + tr,

where the element y is given by (2); as 2,€EE~G, each ye G, has a
unique representation in the form of (2) so that the functional g is
well-defined on G,. We also see that g is additive and homogeneous
on G, and coincides with f on G. We now show that

(4) gly) < ply) for each y € G, .

In fact, if one writes y in the form (2) it can be assumed that
t# 0. Putting g/t in place of x in the inequality (1) and multiply-
ing its right- or left-hand side, according as t> 0 or ¢t< 0, by ¢,
c(me obtains tr,gplx+ tz ) - f(x) which by (3) implies the inequality

4).

This established, it now suffices to well-order the set EXNG,
obtaining, by successive extensions of f, following the procedure
described above, a functional F satisfying the conclusion of the
theorem.
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COROLLARY. Given a functional p defined in E such that for z,y€ E
plz+y) s plx) + p(y) and pltx) = tplx) for tz20,

there exists an additive homogeneous functional F defined in E such
that, for each x¢ E

Flx) 5 p(=x).

In fact, consider an x € E and denote by G the set of all elements
of the form tz, where ¢t is an arbitrary number. G is then a vector
space. Putting f(tx,) = tp(x,) in G, we will have f(tx,) < p(tx,) for
any t, since t 2 0 implies tp(x,) =p(tx°) and t< 0 implies
0=p(0) splxy) + p(-x,), whence p(x,) 2 -p(-x,) and finally
tplx,) s -tp(-z,4) = p(tz,); the result now follows on applying theorem

§3. Applications: gemneralisation of the notions of integral, of
measure and of limit.

We are now going to discuss several interesting applications of
theorem 1 and its corollary.

1. Let E be the set of bounded real-valued functions x(s) defined
on a circle of unit circumference where s denotes arc-length meas-
ured from some fixed point, always in the same sense. With the
usual algebraic operations, E is a vector space.

Now, for each element x=2x(s) of E, let us define p(x) to be the
infimum of all the numbers M(xz;o,,0,,...,an) of the form

n
M(zi0y,0,,+00,0,) = sUP (% Y z(s+ ak)>,
~ 0gg <™ =

where G1s0s+-+s0, is an arbitrary finite sequence of numbers. The
functional p then satisfies all the hypotheses of the corollary. In
fact, it is plain that, firstly, one always has p(tx) = tp(x) for
t20.

Secondly, given two elements x=x(s) and y=y(s) of £ and a number
€> 0, there exist finite sequences of numbers o,,a,,-..,0; and
ByrByres+sBy such that

(5) M(:c;(ll,azl---,au) < p(x) + ¢ and M(y761162,---,Bv) s p(y) + £.

Arranging all the numbers o;+ B; where £=1,2,...,4 and j=1,2,...,v
as a single sequence YyrYyreeerYyp+ in some way, one has

(6) platy) S Mlatysy,rvareoerYyp)
and it is easily verified that
(7)) Mlz+yiv sYoreeerYyup) S Mleia s0,peceray) + M(yiBy,Byree-sBy)-

The relations (5) - (7) imply p(x+ y) £ p(x) + p(y) + 2e, which
proves the number ¢ > 0 being arbitrary, that p(x#-y)s p(x)+ p(y).

This established, consider therefore the functional F which exists
by the corollary.

Now, if z(s) =1, we have p(x) =1 and p(-z) =-1 and as F(x) £ p(=x)
and Flx) = -F(-z) 2 -p(-xz), one obtains Flz) = 1. If z(s) 20, we have
p(-z) £ 0 and moreover F(x) = -F(-z) 2 -p(-x), so that F(x) 20 also.

Furthermore, the functional F has the property of satisfying, for
each number s,, the equality Flz(s+ s,)] =Flx(s)]. 1In fact, if ome
puts y(g) =x(s+ gy) - x(s) and ag= (k- 1)s, for k=1,2,..., one has
for each n:

sup [x(s+ns,) -=z(s)],
X ERS

J1=

p(y) S M(y3;0,,0,,...40p) =
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so that p(y) £ 0; one similarly obtains p(-y) £0. But F(y) < p(y) and
Fly) = -F(-y) 2 -p(-y), whence F(y) = 0.

Thus, using the symbol fx(s)ds to denote the functional
3{F[x(s)] + F[x(1-s8)]}, one has the theorem:

To every function x(s) of the class E one can associate a number
fx(s)ds in such a way that the following conditions (where z(s) and
y(s) are arbitrary functions of the e¢lass E and a,b,s, are numbers)
are satisfied:

1) [lax(s) + by(s)lds = afx(s}ds + b[y(s)ds,
2) [ z(s)ds 2 0 when xz(s) z O,

3) [ x(s+s,)ds = [z(s)ds,

4) f x(1=-s8)ds = jx(s)ds,

5) [ 1ds = 1.

It is easy to check that the functional fx(s)ds, satisfying con-
ditions 1) - 5), always lies between the lower and upper Riemann
integrals of the function x(s). Consequently, for every R-
integrable function, this functional coincides with the integral of
the function.

For L-summable functions, the functional in question does not
always coincide with their L-integral. Nevertheless, starting with
the vector space G of such (L-summable) functions and defining the
functional f(x) in G to be the L-integral of the function z(s)e€ G,
theorem 1 furnishes a functional F defined in the space E such that
the functional Im(s)ds= H{Flx(s)] + Flx(1=-5)]} clearly satisfies con-
ditions 1) - 5) and, furthermore, coincides, for every L-summable
function, with the integral of that function.

v A

2. Consider now the class_G(of all subsets of the circumference
of the circle in question and denote by A, the circumference itself.
Putting, for each set A of this class, p(4) =jw(s)ds, where x(s) is
the characteristic function of the set A4 and therefore a function of
the space F discussed in 1, we obtain the theorem:

To each set A of the cZass_g(one can assign a number p(A) in such
a way that the following conditions (where A and B are arbitrary
sets of the cZassl]O are satisfied:

1) w(4 U B) = pu(4) + p(B) whenever ANB=@,
2) u(4) o,

3) ui(p) e(B) <¢f A = B,

4) u(4,y) = 1.

The functional p(4), which satisfies conditions 1) - 4) lies
between the inner and outer Jordan measures of the set 4. Con-
sequently, for every J-measurable set, this functional coincides
with the measure of the set.

For arbitrary L-measurable sets, the functional in question does
not always coincide with their L -measure, but, just as before, one
can arrange things in such a way that this property also holds.

[\

3. Let E be the set of all bounded real-valued functions x(s)
defined in [0,+~]; with the usual definitions of algebraic opera-
tions, this is a vector space.

For each element x=zxz(s) of E, denote by p(x) the infimum of all

1 I s .
the numbers %12 H~k§1x(s+ ay), where o,,0,,...,0, is an arbitrary

finite sequence of positive numbers. One easily verifies that the
functional p thus defined in the space E satisfies the hypotheses of
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the corollary. Denoting by the symbol %i& z(s) the functional F,
which exists by the corollary, one therefore has the theorem:
To every function z(s) €EE one can associate a number %ig x(g) in

such a way that the following conditions (where x(s) and y(s) are
arbitrary functions of E and a,b and &, 2 0 are numbers) are
satisfied:

1) Lim [ax(s) + by(s)] = a Lim x(s) +b Lim y(s),

2) Lim x(s) 2 0 whenever x2(s) 20,

3) Lim a(s+s,) = %ig z(s),
4) Lim 1 = 1.
ol
The functional Lim x(s) satisfying conditions 1) - 4) always lies

between 11m z(s) and llm x(s). It consequently coincides with
11m z(s) whenever thlS limit exists in the usual sense. Note that

L1m here denotes a certain generalised "limit", while lim is
reserved exclusively for limit in the usual sense.

4. Let (&,) be any bounded sequence. Define the function x(s) in
(0,+2) by: =x(s) =&, for n-1<g¢<n, and n=1,2,... The function z(s)
thus belongs to the set F discussed in 3. Putting %ig En = %}g z(s)

in the sense of 3, one has the theorem:
To each bounded sequence (&p) one can associate a number %1Q En

in such a way that the following conditions (where (&) and (ny,)
are arbitrary bounded sequences and a and b are numbers) are
satisfied:

1) ;LJ_J;Q (GEn + bnn) = a 1;-['_];1:.‘.} En +b %_];1;1 Ny

2) %ig £En,20, if £€,20 for n=1,2,...,

3) LiB Eney = LiE Ens

4) Lim 1 = 1.

N S

Conditions 1) - 4) imply that the functional %;Q £ thus defined
always lies between 11m En and 13w En. Consequently, for every
convergent sequence thls functional coincides with the limit of the

sequence in the usual sense.
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CHAPTER III

F-spaces

§1. Definitions and preliminaries.

Let E be a vector space which is also a complete metric space such
that the following conditions are satisfied, where z,z,,y are
elements of E and %,%; are numbers:

1° d(z,y) = dlz-y, 0),
2° lim hy
nFew

® for each =z,
0 for each h.

The spaces E with properties 1° - 3° will be called F-spaces. All
the examples 1 - 10 of metric spaces, described in §7 of the Intro-
duction, pp. 6,7, are, it is easy to see, also F-spaces.

0 implies %ig hpx

3° lim 2, = 0 implies lim iz,

Conditions 1° - 3° immediately imply the following properties of
the limit:

a) when %_{g xy =2z and lim yn=y, one has ;L._J;g} (xp + yp) =2+ y.

It is enough, in fact, to remark that one always has

dlzy+yprxzty)=dla,ty,—~x-y,0) sdley, -2+ y, -y, Yyn-y) +dly,-y,0) =
dlzy=2,0) +dly,—y,0) =dlx,,x) + dly,,y).
b) <Zf %ig hy=h, one has %ig hpx = hx, for any x€ E.

It is always true that d(k,x,hz) =d((h, - W)x,0).

We thus see that every F-space is at the same time a G-space. It
therefore follows that all the theorems of Chapter I continue to hold
when E is taken to be an F-space.

Now, observe that the (vector) F-spaces are connected, since for every
xz and y of E the set of elements of the form Zx + (1- %)y where
0<k<1 is a connected set containing the elements x and y.

Given an arbitrary sphere X(see p. 8) in the F-space E, it is easy
to see that the set xX (see the definition p. 13) is also a sphere.

Let ## 0. Then the operator Ul(x) = hx is a continuous bijective
operator of the space E onto itself and one easily sees that closed,
open, nowhere dense, category I, category II and B-measurable sets
are transformed respectively to sets of the same type.

In particular, one has the following theorem, which follows from
theorem 2 (Chapter I, §2) and from the remark, p.14, every F-space
being connected:

THEOREM 1. If E ¢{s an F-space, every linear subspace HS E which
is B-measurable and of category II is equal to E.
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§2. Homogeneous operators.

We are now going to concern ourselves with additive operators
defined in an F-space E whose co-domains lie in another F-space E,.

For all operators of this kind, theorems 3,4,5 and 6 of Chapter I
continue to hold. Furthermore, if one deflnes a homogeneous opera-
tor to be an operator U which satisfies U(ix) = AU (x) for all numbers
h, one has the-

THEOREM 2. Every Llinear operator is also homogeneous.

Proof. Suppose the operator U is linear. Then it is plain that
for each z€ E and each rational number », U(rz) = rU(xz). Now, if
(rp) is a sequence of rational numbers tending to %, we have
%}g rpx = hx. The continuity of the mapping U consequently yields,

Ulhz) = %igv(rnx)= %ig rpU{x) = h(x); thus the operator U is
homogeneous.

§3., Series of elements. Inversior of linear operators.
Put, for short,
|z| = d(z,0).

It is easily checked that the following relations hold for all =x
and y of E:

1° dlz,y) = |z-y]|,

2° |e| = 0; x = O <mplies |x| > O,
3° |-z| = =],

a° x| - |yl s le+yl| s |=]| + |yl

5° 1lim «

Llim =z implies 11m lz,| = Jx|.

n

Given a sequence (w ) of elements of E, the series .f 194 is said
to be convergent to an element x, or that x Zs the sum of this
series, if lim Z xz; = x. We writex = f X

n -0 =1

The definition of the sum of a series further implies the
relations:

6° =z =t implies |x| $ ¥ |xz] -

=7 =1 2 n
In fact, for each €> 0 there exists an n such that |x- 5xil < e
n E
whence |z|se+ |, E xi|s €+ i§1|mi| and, ¢ being arbitrary,
2] s 8, las -
-]
7° If the series i§1|mi| is convergent, the series .1 &; con-

verges to some element, (i.e. has a sum).

n q
Ind = .
& eed, put s, = I x;. If p<gq, we have |s 8, 84 z-p+ﬂx1|’
z=§+1lxi|. One thus sees that lfg*wlsp— s,| =0. Hence the series
(-]
121 { converges to some element.

This established, we shall now prove the following theorems.

THEOREM 3. The codomain of a linear operator is either of
category I or is equal to the whole of E,
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Proof. Suppose that the codomain Hg E, of the linear operator U
defined in EF is of the second category. We shall first show that

(1) for each €> 0 there exists a number n> 0 such that the image
of the open sphere {x:|x|< e} under U contains the open sphere

{y:lyf <nl.

To this end, suppose an €> 0 is given, and for each natural
number n denote by G, the set of points of the form x = nx’, where
x| < €/2, and by H, the image of G, under U, i.e. the set

{yty = Ulz) for some xz€ G,}. It follows that E= noglG" and that
L]
B= U Hy.
Now, since H is assumed to be of category II, the same is true of

some Hp,. Let K, be an open sphere centre y, and radius n, contain-
ed in Hy,.

It is immediate that the open sphere X, of centre -n—y1 and radius
Ln1 is contained in H!. Indeed, ye€k,, i.e. | y——-—y1| <= ! o
1mplles no.y € K,, because |n,y-y,|= ]noCy— —yl)| n,ly- —yl [<nys

hence there ex1st points ynE Hp, such that 11m Yn="n,Y, or, in other

ll/\

words, 11m —yn y, and so yne H, whence ye 2]

Let K be an arbitrary open sphere of centre y,€ #, contained in
K,. The set of points y, -y where y€ H then has every point of an
open sphere {y: Now, putting
y;=Ulx,) and y = U(:c) where x, and z belong to Gl, we have
ER -x[ |z |+ |#|<E and U(z,-x) =y,-y. It is thus established
that the derJ.ved set of the J.mage of the open sphere {x:
contains an open sphere {y:|y| < 7}.

Now let €; =€/5%¢ for ¢=1,2,... By the above, there exists a
sequence of numbers n¢ > 0 such that the derived set of the image of
the open sphere {z:|xz|< e;} contains an open sphere {y:|y|<n;} and
one can plainly assume that 1im ng=0. We are now going to define

by induction two sequences of p01nts (yp) and (x,) as follows. Put
ly| <n=n, and let:

a) y, be an arbitrary point of E, such that |y- ¥yl <n, and z, a
point of E such that Ulx,) =y, and Ta:l[ < €4

n
b) yp ke an arbitrary point of E, such that |y- kélyk[ <n,,; and

z, a point of E such that U(z,) =y, and |z, |<ey,.
We thus have

[+
(2) Loy, =
and, as |x,|<e,=%/2n,
(= o0
(3 Z |xn] < 2_

By 7° the series Zim” is nconvergent. Let x be the sum of this
series. By (3) and 6° we have |z| < ¢ and by (2): U(x) =n°§°1U(mn) =
nk 1yn y. The proposition (1) is thus proved

Now, as, for each y € E, we have 11m -y 9 and there consequently
exists a natural number 7 such that |1y| <n, one can find an x such
that Ul(zx) = ;Ly, and so U(nx) =y. However, it follows from this that

H=E,, which is the claim of the theorem.
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THEOREM 4. If the linear operator U maps E onto the whole of E,
then there exists, for every sequence of points (y,) of E, converg—
ent to y,=Ulx,), a sequence of poznts (z,) of E convergent to z,
and such that U(x ) =y, for n=1,2,...

Proof. Let (sny be a sequence of positive numbers tending to 0.
Since the operator U is linear, proposition (1), established in the
course of theorem 3, is valid; it follows from this that the image
of the open sphere {x:|xz| < e,} contains an open sphere {y:|y| < n,}
for each n=1,2,...

Take a natural number m, such that, for each m>m,, the inequality
|ym=y,| < np holds for at least one value of n and let, for a given
m such that yn# y,,ny be the largest of these values. Finally, let
x, be the point deflned by the conditions:

a) if m<m,, take xp to be an arbitrary point satisfying the
equation Ulxy) = yp,

b) if m>m, and yp=y,, take z, to be an arbitrary point of the
open sphere {x:|z- xz,] < emm} satisfying the same equation,

c) if m>m, and y,=y,, PUt z,=x,.

The sequence (z,) thus defined satisfies the requirements of the
theorem, as is ea51ly verified.

THEOREM 5. If the linear operator maps E bijectively onto E,, this
operator is bicontinuous (i.e. has a continuous inverse).
The proof follows immediately from theorem 4.

THEOREM 6. If a veector space E is an F-space under both the
metric dlx,y) as well as the metric d,(z,y), and if

lim d(z,,x) = 0 always <mplies lim d, (z,,z)= 0,
n-+w n-+o

then, conversely,
lim d, (x,,x) = 0 always implies 1im d(z,,x) =0,

n>eo
from which it foZZows that the notion of szzt is the same for both
metrics.

The proof follows from theorem 5, taking E, to the space E with
the metric d;(z,y) and the linear operator U to be the identity
operator, i.e. Ulzx) =x for z€cE.

THEOREM 7. Every additive operator U which satisfies the condi-
tion

lim z, = =

d lim U = impli = U
Llim an im U(x,) ¥y, tmplies y, (x,)

0 n-+o

is a linear operator.
Proof. Introduce a new metric in E defined by

(4) dl(x”x”) = d(ml’x”) + d(yl,y")

where x'€ E,2"€ E, y'=Ulz'}, y"=Ul(xz"), and d is the original
metric in F or E; as the case may be.

It is easy to see that with the metric d, the space E is an F-
space; in particular, to check that it is complete, let (x,) be a
sequence of points such that lim d, (xp,xq)= 0; it follows from (4)

that 1%? d(mp,m ) = g%? d(ypf;q)-o so that there exist an x, and a
Yo su%h that 11m d(m 1xy) —llm d(yn'yo) 0, and, since by hypothesis,
Yo = U(x ), we deduce from (4) that llm d, (xn,x ) =0.

Now, for each x' and x", we have by (4), dy(z",z") 2d(z',z");
consequently 11m d,(zp,x) =0 implies 11m d(mn,x)-o, by theorem 6



F-spaces 27

11m d(m ,x2) =0 implies, conversely, that 11m d, (m ,x) =0, and there-
fore, by (4), 11m Ulzy) = Ulx). The addltlve operator U is thus
continuous, q. e d.

LEMMA 1. Let U' and U" be two linear operators defzned in the F-
spaces E' and E" respectively whose co-domains lie in the F-space E,.
If, for each z, the equation U’(x)"U"(y) admits exactly one solu-
tion y=Ulx), the operator U is linear.

The proof follows from theorem 7, because, as one sees immediately,
%ig Ty =2, and %ig Ulxy) = ¥, imply y,= U(mo).

LEMMA 2. Suppose that an additive operator U and a linear opera-
tor V such that V(y) =0 implies y =0 are given, and that the opera-
tor V[U(<)] is linear. Then the operator U is also linear.

The proof follows from lemma 1, since the equation V[U(z)] = V(y)
admits exactly one solution y = U(x) for each z.

DEFINITION. A class "Jof linear operators is said to be total if
V(xz) = @ for each V€f:7implies that x = 0.

THEOREM 8. Let U be an additive operator from E to E, and let 7
be a total class of linear operators defined in E,. If V[U(+)}] is a
linear operator for every veJ, U is also a linear operator.

Proof. Suppose that %ig £, =2, and %ig Yn =Y, where y, = Ulx,) for

n=1,2,...
For each v €7 we have lim V[U(xn)]-llm V(yy) = Vly,) and, since

the operator VIU(-)] is llnear, 11m VIU(xzy)] =VI[U(xz,)], whence

VIiU(z,)]=-V{y,) =0, so that V[U(x ) Y,} =0 and, as the class T is
total Ulx,) =y,. By theorem 7, the operator U is thus linear.

THEOREM 9. Let (U;) and (V;) be two sequences of linear operators
defzned in E' and E" respectively with co-domains Zyzng in an F-space
If the system of equations Ujl(x) =V, (y), where i=1,2,...,
aémzts exactly one solution y= U(m) for each x, the operator U is
linear.
Proof. Indeed, suppose that lim x ==z, , and, for the correspond-
n->o

ing sequence (y,), that lim Yp = Y,- By virtue of the continuity of
the operators (U;) and (Vt), we then have U;(x,) =V;(y,) for

¢=1,2,..., whence y, = U{x,), which implies, by theorem 7, that the
operator U is continuous.

§4, Continuous non-differentiable functions.

As an application, we shall now demonstrate, by an easy deduction,
from theorem 4 of Chapter I, p. 15, the existence of a continuous
function without a derivative throughout some set of positive
measure.

Let ¢! denote the set of all continuous periodic functions of
period 1, and put, for each pair of functions z,(t) and x,(t) of ¢!:

de, (t) 2, (2)) =0n§1:)§{1 |z, (2) - =,

It is easy to see that ¢ ' is then an F-space.
For an arbitrary number %20, let

_x(t+h) =2 (t)
L

(5) yt) for 0sgts1.

Let S denote the space of measurable functions (cf. 1,p. 6), which
is an F-space (cf. §1, p. 23) and suppose that y(t) € S. The
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expression (5) then defines a linear operator with domain ¢! and co-
domain lying in S.
Suppose that lim 7%

= 0 where hn¢ 0 and
n->c0

n

(6) Uplz) = fifiﬁ%l__fifl for 0<t< 1.
n
Now, if every continuous function had a derivative almost every-
where, the limit of the expression (6), as n -+ =, would exist for
almost all values of . Consequently, for every x € ¢! the limit
112 Un(m) would exist, and would be defined in the space S5, i.e. it

would be a limit £z measure. Putting U(z) = lim Un(m), one would
n-+co

therefore obtain a B-measurable additive operator U which, by
theorem 4, Chapter I, p. 15, would be a linear operator. U is
clearly the derivative of the function =z (%).

It follows from the continuity of the operator U that if

lim xn(t)— 0 uniformly, we have 11m x4 (t) =0 in measure. However,
n-co n->

for xn(t)--51n 7% , we have 11m mn(t) 0 uniformly, whereas the
nt

sequence of derivatives (él—cos[2Tr

Hence there exist continuous functions with no derivative in a set
of positive measure.

)) does not tend to 0 in measure.

§5. The continuity of solutions of partial differential
equations.

Let F(x) =0 be a linear partial differential equation of the

second order, for example:

2 2 2
(7) Flz) = a %—% + azgvz + asgzg% + a“%% + a5%% +agx =0,
where a1(1 1,2,...,6) are contlnuous functions of the variables u
and v in a closed region ¢ having a simple closed curve C as
frontier.

It can happen that, with certain boundary conditions, the equation
(7) always has a unique solution z(u,v) which is continuous in ¢ and
which possess those partial derivatives that appear in_(7), i.e.
those of first and second order, in the interior G of G.

Within this hypothesis, the boundary conditions can be quite
varied. For example, the solution may be specified on a part of the
frontier (hyperbolic or parabolic type) or the normal derivative
along ¢ may be specified, etc.

Suppose now that, with ¢ denoting the parameter which describes (,
the equation (7) admits, for every function £(¢) that, along with all
its derivatives up to order »r, say, is continuous, a solution x(u,v)
that agrees with the function £(¢) on C.

Having stipulated this, we are going to show that

If the sequence (Ep(t)) satisfies the conditions (imposed on E(t))
and if llm En(t) =0 and 11m g(”%t)-o uniformly for ©=1,2,...,r,

then, zf (x (u,v)) denotos the sequence of corresponding solutzons
of the equation Flx) =0, we have: llm xp(u,v) =0 uniformly in G and

lim (3%x,/3u%) =0, llm (32x,/3v2) = 0,..., ete. (1.e. for all the

partzal derzvatzves appearzng in (7)) uniformly in every closed
region contained in G.

For the proof, denote by E the set of all functions z(u,v) satis-
fying (7), continuous in G and having both first-order partlal
derivatives (i.e. those that appear in (7)) continuous in G. Let



F-spaces 29

(En) be a sequence of closed regions lying in & such that G = kﬁle.
For each pair «x(u,v) € E and y(u,v) € E, put:

ma; 3z 32%
d(z,y) = o) =y | + ] ORI
.y -u?%ﬁﬁlx “s? ylu,v k=1 2k 1+, max 2x  32y| ’

u,vely, |3uz ~ 3u2| toees

where in each term of the series the differences of all the partial
derivatives occurring in (7) appear.
Thus metrised, E constitutes an F-space and lim z,=2x, in the sense
n->o

of this metric, means that x, tends uniformly to x in G and that the

partial derivatives (appearing in (7)) tend uniformly to the

Tn
PRl RE
corresponding partial derivatives of the function x in every closed
region Gy, for k=1,2,...

Let E, be the set of functions £(¢), where t describes ¢, which are
continuous along with their first r derivatives. For each pair
g£(t) € E, and nl{¢t) € E,, put:

r . .
= - {7) _ (D)
da(g,n) max [E(E) = n(t) | + -;21?% [E¥%(e) = n* " () |«

Now denote by & = U{x) the operator defined in E which is the opera-
tor of restriction to ¢, i.e. for each function x=x(u,v) € E, the
function £ =&(¢t) is the restriction of z(u,v) to the frontier ¢ of G.
Thus defined, the operator U is plainly additive and continuous.

Now, as the co-domain of the operator U is an F-space, the inverse
operator U-!, which exists by hypothesis, is continuous by theorem 5,
p. 26, which implies the proposition to be proved.

Remark. If we drop the hypothesis of the uniqueness of the solu-
tion of equation (7), we would merely be able to conclude (by theorem
4, p. 26) that: (g£,(t)) having the same meaning as before, there
exists a sequence of functions (x,(u,v)) satisfying (7), which
restrict to the functions g,(¢) on ¢ and such that %ig zp(u,v) =0

Tn

uniformly in ¢ and 1i£ Suz

n

= 0,... uniformly in every closed region
contained in G.

§6. Systems of linear equations in infinitely many unknowns.

Let (agg), ¢=1,2,...; k=1,2,..., be an arbitrary array (double
sequence} of real numbers and let E, be an F-space whose elements are
sequences of numbers.

THEOREM 10. If for each sequence y = (ng) € E; the system of equa-
tions

(8) k“_z?laikgk =n; for i=1,2,...,

always has a unique solution (Ex), there exist linear functionals
Ex = fxly) for k=1,2,..., defined in E, such that

kgaikfk(y) =mn; for every y€E, and 1=1,2,...

Proof. Denote by E the set of all sequences g = (gk) which satisfy

the conditions
a) the series kglaikgk.is convergent for each i=1,2,...,

b) the sequence (n;) = (kzlaiksk) belongs to E,.
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For each pair z’= (§£') and z"= (£!) of elements of E, put:

n
actersan - sup(|y aancci- ep ),
dy(x',x") = distance between the sequences (kglaikgé) and (k£1aikg£)
in E, and define the distance d(x',z”) in E by means of the formula
e 1 _dilz’,z")

! n = —_—
dlz',z") iZOZi 1+dy(x",z") °

Observe that

(9) For every k=1,2,..., if llm x, =0 where x,= (gz”)e E, we have
lim £{™=0.
n-ro

In fact, by the uniqueness of the solutions of the system of
equations (8) the kth column contains at least one term a;x = 0.
Suppose therefore that

(10) @ik = 0 for k=1,2,... .
Since llm £, =0, we have lim d. (x,,0) = 0, whence 11m E(m 0,
By 4

because (10) gives a; . * 0, and it is now easy to show by induction

(n)_

that one has generally 11m g 0 for each natural number k.

This established, the proposition (9) enables us to show that F is
a complete vector space.

To this end, suppose that the sequence (mn), where z, = (g(m)

satisfies the condition lim (mp,x ) = 0. Consequently

13 B : () _ () -

im d(x - x, ) = 0, whence by (9), lim (g - Ek') for k=1,2,...,
pre,qre pro, g k
from which it follows that llm E Ek exists for each natural

n>

number k. Let x= (gk) It is ea311y checked that x € £ and that
lim d, (x ,x) = 0 for each ¢=0,1,..., whence lim d(x ,&) = 0; the space

n-»0 n-o
E is thus complete as claimed.

It follows from this that F is an F-space.
This established, put

= Ulx)

for every pair of sequences z = (gk)e E and y= (n;) € E, which satisfy
the system of equations (8).
One sees immediately that

(11 dly,0) = d,(x,0) < dlx,0),

where it is understood that d(y,e) denotes the metric in E, and
d(z,0), that in E.
By (1), 11m %, = 0 implies lim Ulx,) = ©. The operator U is there-

fore llnear and as it maps E bljectlvely onto E,, the inverse opera-
tor U~ % is also linear by theorem 5, p. 26. Consequently, if, for
k=1,2,..., one puts Ek fk(y) where x = U1 (y) = (£;), one sees that

%ig Yn = 0, where x, = (yn) (g“” , implies that 11m xy = 0, hence
lim gi) 0; thus the additive functionals fy are 11near functionals
i ad

in £ , g.e.d.

This theorem implies, as we shall see, the following theorem:
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If the system of equations (8) has exactly one solution for each
sequence (n;) belonging

1° to the space ¢, of sequences converging to 0,

2° to the space s,

3° to the space 1,

4° to the space 1P where p> 1,
there exists an array (bki) such that

£ = 7;21 bpsng for k=1,2,...,

where the sequences (£3) and (n;) satisfy the system of equations
(8), and which satisfies the respective conditions:

<
1° i§1|bki| < » for k=1,2,...,
2° each row is eventually zero (i.e. there exists a sequence of

natural numbere (ny) such that by, =0 for every i>ny),
3°  |bgg| < my, for i=1,2,..., for some sequence (my),

40 3, 15, 1P/P <o for k=1,2,...

Remark. If one assumes that the system of equations (8) has
exactly one solution for every convergent sequence (n;) (not necess-
arily convergent to 0), there exists, as well as the array (byy)
satisfying 1°, a sequence (ck) such that

Ex = oy %ig ng +i§1bkini for k=1,2,...

All these theorems follow from the general theorem established at
the beginning of this section (theorem 10, p. 29) by means of a
suitable representation of the linear functionals in each particular
space (see the theorems below and on p. 40-42).

§7. The space s.

We are going to establish the general form of linear functionals
in the space s of sequences of numbers (see the Introduction §7,2,

p. 6).

THEOREM 11. Every linear functional f defined in the space s is of
the form

N
(12) flz) = ¢Z1aigi'

where N ig a natural number depending on f.
Proof. Let z,= (gén) ;")= 0 for 22 n and gé"k 1. Put
flx,) = a,. For every sequence x = (§,), we have x==n§1£nxn, whence

x ® 0y . s .
flx) =n§15nf(xn)= n§1“n5n' Now, since this series is convergent for

where ¢

every sequence (£,), there exists a natural number ¥ such that ¢, =0
for each n > N, whence follows the form (12) of f.

M. O. Toeplitz has proved the following theorem:

THEOREM 12. For there to exist a sequence of numbers (£y) satis-
fying the system of equations (8), it is necessary and sufficient
that, for every finite sequence of numbers hl,hz,...hr,rthe condi-
tion ig1hiaik= 0 where k=1,2,... imglies the equality i§1hi”i= 0.

In particular, if the condition iélhi“¢k=° where k=1,2,...
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implies that h, =h,=...=hy,=0, the system of equations (8) has one
solution for every sequence (n;).

We shall now prove the

THEOREM 13. If the system of equations (8) has exzactly one solu-
tion for every sequence y = (n;), there exists, for every natural
number i, a natural number N; “such that a, k=0 for every k> N;.

Proof. Put &k-fk(y) for kzlaikgk"ni where £=1,2,... By

theorem 10, p. 29, f; is a linear functional defined in the space

of real sequences (cf. p. 6). There therefore exists, for every
natural number k, a finite sequence of numbers o z,0y%,---,0y %
such that k
Ny
(13) frly) = izl @ Ng = &y
Moreover, the equations of the system (13) are linearly
independent.

In fact, suppose, on the contrary, that there exists a finite
r
sequence of numbers h,,%,,...,h, such that k§1hkaik =0 where

=1,2,... Hence by (13) one would have
r r
(14) 2 hkgk = 3 h fi (y) = 0 for every sequence y= (n,).
k=1

Puttlng n =agj for some j < », where r is an arbitrary fixed
natural number, one immediately ascertains that, for the corgespond-
1ng solution (gk) of the system of equations (8), one has: £7=1 and
gk-o for every k= j. Substituting these values in (14) yields

0; consequently, all the coefficients %y vanish, which proves
tﬁe linear independence of the equations (13).

It follows from theorem 12 that, for every sequence (£y), there

exists a sequence of numbers (n;) satisfying the equations (13).

The series % a;3Ey is consequently convergent for every sequence

(gk), from which follows the existence, for each 7¢=1,2,..., of an N
meeting the requirements of the theorem.

Remark. If we drop the uniqueness hypothesis, i.e. that there
exists just one solution, the theorem ceases to be true.
Indeed, for an arbitrary sequence (nj), there exists a power

series defining an entire function kiogkzk with real coefficients gk
such that

0
I exd® = ny for j=1,2,...
=0

Thus, this system of equations has a solution for each sequence
(n;); this solution is clearly not unique, for there exists an
entire function given by a power series not identically equal to 0
such that

Z gkjk = 0 for F=1,2,.--.
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CHAPTER IV

Normed spaces

§1. Definition of normed vector spaces and of Banach spaces.

A vector space E is said to be normed if there is a functional on
E, called a norm and denoted by |z| or, more usually, lzl, satisfy-
ing the conditions:

1) el =0 and fzl > 0 if 2 = O,
2) lx+yl < lzl + lyl,
3) ltxl = |¢t|.lxl for every scalar t.

If one defines the distance between two elements x and y of E by
the formula

dlz,y) = lz-yl,

one clearly obtains a metric space. If, further, it is complete,
that is, recall, whenever (mp) is a sequence such that

pl%gwﬂxp-mqﬂ= 0, it is said to be a space of type B, i.e. a Banach
sﬁace or B-space. [trans.]

It is immediate that every B-space is also an F-space, but not
conversely: the examples of spaces given in the Introduction, p. 6,
which are all F-spaces, are also B-spaces, with the exception of the
spaces s and S.

§2. Properties of linear operators. Extension of linear
functionals.

We are first going to discuss normed spaces E, which are not nec-
essarily complete.

THEOREM 1. For an additive operator U defined in a vector space
G< E to be linear, it is necessary and sufficient that there exists
a number M such that

(1) IU(z)l & Mixl for every x € G.

Proof. The condition is necessary. 1In fact, if no such M existed,
there would exist a sequence (x,) such that IU(x,)l > Mylzyl where

My + +o. Putting Y, = . 2y, we would thus have ¥, =ﬁLV whence
n

N
Mnlznl

lim Y, = 0 and consequently lim U(Y,) = 0, which is impossible as
n- n-»o

_ 1

||U(Yn)|| —W . [IU(a:n)lI > 1.

The condition is sufficient. 1In fact, for any sequence (xyp) €6
and 2 € G, lim x, =z implies limlx - x,I =0, so that Limbu{z,) = U(x)} 1 =

n-+w n-+e n-+oo

%&g“U(x-—xn)Hé %ig Mlx - 2nl =0 and finally %ig Ulzy) =U(z), g.e.4.

For a given linear operator U defined in a vector space GE E, the
norm of the operator U in G, denoted by lUlg, is the smallest number

M satisfying condition (1). If G=E, one can write, simply, HUl
instead of IUlg.
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We therefore have IU(x)ll s IUllgz.lzl for every xz€ ¢ and it is easy to
see that

HUHG = sup{lU(x)l:x € G,lxl £ 1}.

Remark. In modern terminology, the term linear does not generally
imply that the operator U referred to is continuous. If it is
continuous, or, equivalently, Ul < «, we say U is a continuous oOr
bounded linear operator. [Trans.]

The question arises as to whether there exists, for every normed
vector space, a (continuous or bounded) [trans.] linear functional
defined in this space which is not identically zero. The affirmative
answer results from the following theorems, the first of which is an
easy consequence of theorem 1, Chapter II, §2, p. 18.

THEOREM 2. Suppose that f is a (bounded) linear functional
defined in a vector space GS E. Then there exists a linear funection-
al F defined in E which satisfies the conditions:

F(x) = f(z) for =z € G,
and I\Fi = HfHG.

For the proof, it is enough to put pl(x) = HxH.HfHG in theorem 1 of
Chapter 1II.

THEOREM 3. For every x,€E, x,2 0, there exists a linear function-
al F defined in E such that

Flz,) = Iz I and IF} = 1.

For the proof, use the preceding theorem 2, taking
G= {hx :h scalar} and putting f(kz,) = k.lx,l.

In particular, this result implies the existence in every normed
vector space of a continuous linear functional which is not identiec-
ally zero.

THEOREM 4. Let f be an arbitrary functional defined in a set
GE E. For there to exist a linear functional F defined in E and
satisfying the conditions

1° flx) = F(x) for = € G,
2° WFl ¢ M for some given number M > 0,

it is necessary and sufficient that the inequality
r r
Zh.f(m.)i s M. th"

i=1 & =1 © *

should hold, for every finite sequence x1,%2,...,%, of elements of G
and every finite sequence hl,hz,...,hr of real numbers.

Proof. The condition is necessary. In fact, we have

o § i
F( hx) BLABETAR
i=1 ©* i=1 = *
whence, by 2°,
r r
LhaFe) | s M|} ha,
=1 =1

and since, by 1°, F(xi)= flx.) for every xie G, the desired inequal-
ity follows. *
The condition is sufficient. 1In fact, let H be the vector space

r
of elements of the form z = 2 himi’ for r any natural number, hi
i=1
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arbitrary numbers and xz;,€G. Put ¢(z) -Z f(x ).
For z = Z h 2%z Z A x , we have, by hypothe51s,

= 0.

(7Y

’ 14
2 h flx.) - z h.x. - z h x,
=1 ¢ i= =1 ¥ g vt
The functional ¢ is thus well-defined in H and is easily seen to be

r
additive there. Furthermore, |¢(z)] = ’iglhif(xi)}s M

that l¢llg <M. The existence in E of the functional F with properties
1° and 2° is thus obtained from theorem 2, p. 34, putting f=¢ and
G=H.

In particular, if G is a sequence (x,) of elements of F and (¢,)
denotes the corresponding sequence of values of the functional f,
i.e. ep=flxy), n=1,2,..., we have the

THEOREM 5. For there to exist a linear functional F in Ewsatisfying
the conditions

1° F(xn) =e, for n=1,2,...,

Ene |
=1hixi so

and
2° IFh £ M,
for some given number M> 0, a given sequence (x,) of elements of E

and a given sequence l(cp) of real numbers, it is necessary and
sufficient that the inequality

2 hse;
i=1

A

~z21h 2

hold for every finite sequence hy,hy,...,h, of real numbers.

r

§3. Fundamental sets and total sets.

We are now going to establish several theorems which, in the
theory of normed spaces, play a role analogous to that played by
Weierstrass' theorem on the approximation of continuous functions by
polynomials in the theory of functions of a real variable.

LEMMA. (Given a vector space GS E and an element y, of E, whose
distance from G is d> 0, there exists a linear functional F defined
in E and satisfying the conditions

1) F(yo) =1,
2) F(xz) = 0 for x € G,

3) UFn = 1,
d

Proof. Let H be the set of elements x of the form
(2) =x = z' + ay, where o is an arbitrary real number and x' €G.

Thus defined, H is clearly a linear space and as d> 0, the repres-
entation (2) of an x € H is unique. We define the linear functional f

in A by putting f(x) = o for x of the form (2). As lzxl=lz’+ay.l=
]a|.“%% .d, it follows that |[f(x)]| = |a| £ Hmﬂ' whence

Iflg £ %. Moreover, if (x }£ G and llmﬂxn Yol =d, then
[flz,=yo)| =15 lxy, - nqu, whence 15 d.lflg, so that -< .

Consequently lflg= ;.

We conclude from this, by virtue of theorem 2, p. 34, replacing G
by H, that there exists a linear functional F defined in E and such
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that F(x) = f(x) for x€ F and IFl = HfHH= % (condition 3), so that, in

particular, F(x) =0 for € G (condition 2) and F(y,) =1 (condition
1)}, g.e.d.

THEOREM 6. For any subset GEE and an arbitrary element y, of E,
a necessary and sufficient condition for the existence of a sequence
(gn) of linear combinations of elements of G such that %i& gn =Yos

i8 that flx}) =0 for € G implies fly,) =0, for any (bounded) linear
funetional f.

Proof. The condition is necessary, since f(z) =0, for every x€ G,
implies that f(g,) =0 for n=1,2,..., whence f(%ig gn) = Flys) = 0.

The condition is also sufficient by virtue of the above lemma, if
one understands the 'G' of the lemma to denote the set of all linear
combinations of elements of the set ¢ considered here.

A set GEF is called fundamental when the set of all linear combin-
ations of elements of G is dense in E; it is called total when every
(bounded) linear functional f which vanishes on G vanishes on the
whole of E.

From theorem 6 easily follows the

THEOREM 7. For a set GEE to be fundamental, it is necessary and
sufficient that it be total.

A linear functional f is said to be orthogonal to an element x,,
when f(x,) =0; it is said to be orthogonal to G, when f(x) =0 for
every x € G.

The lemma at the start of this section implies, for every proper
closed linear subspace GT E, the existence in E of a continuous
linear functional, not identically zero and orthogonal to G.

§4, The general form of bounded linear functionals in the spaces
¢,LT,6,17,m and in the subspaces of m.

We shall now establish the general form of the bounded linear
functionals in certain particular normed spaces.

1. The space C. Since the norm defined in the space M, of (ess-
entially) bounded measurable functions on [0,1], coincides, for con-
tinuous functions, with that of the space (¢, we can regard ¢ as a
vector subspace of M.

Given a bounded linear functional f defined in ¢, there exists, by
theorem 2, p. 34, a linear functional F defined in M satisfying the
conditions

(1) F(x) = f(x) for every z€ C,
(2) "F"M = “f"C'
Put
_ J1 for 0sucst,
£y = Eglw) = {o for t<usz1,
and
(3) F(E,) = gl(t).

We shall show that g(¢) is a function of bounded variation. Let
a=to<t; <...<t, =b and e; = signlg(t;) - g(¢t;_,)] for ¢=1,2,...,n.

n n n

We have i£1|9(ti)' g(ti—l)l = igl{g(ti)— glty 1)le; = F[igl{éti- gti—1}ei] £
n

HFHM.|E§1{§ti-§ti_1}ed| and it is easily seen that the norm of this

sum is equal to 1. It follows from this, together with (2), that
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(4) variation g(t) £ HFHM = Hfﬂc.
0sts1
This established, let x(t) € ¢ and
n
r
(5) S =r-z_1:c(£).{££(u) - g, 0
N n n
The function z,(u) thus takes the values m(f) in the intervals
95112 respectively. As the function x = x(u) is continuous, we have
limlx - 2,1 = 0, whence, in view of (1):
n>o
(6) lim F(z,) = F(x) = fl(=z).

n-+0o
Moreover, (3) and (5) give
n
= r ry _ fzzt
riow = 10 [o5) - o)
r=1
so that, as x(t) € ¢ and g(¢t) is a function of bounded variationm,

lim Fl(z,) = [zx(t)dg, whence, by (6)
n-+o 1

(7) flx) = [z(t)dg for every xz(t) € C.
[}
Since, consequently,
1
|flz) ]| = }fx(t)dg < var g(t) max |x(t)],
0 0<ts1 0sts1
we have, in view of (4), putting Ifl = Hfﬂc:
var g(t) = lfl.
Oﬁtélg !

We have thus obtained the theorem:

Every (bounded) linear functional defined in the space C is of the
form

1
flx) = [z(t)dg,
0

where g(t) is a function independent of x(t) of variation lfl.

Conversely, given a function g(t) of bounded variation, the formula
(7) clearly defines a bounded linear functional f on (.

2. The space L¥ where r21. Given a bounded linear functional f
defined in the space LT, put:
_ _ J1 for Osust,
£ = 8. =10 for t<ust,
and
f(Et) = g(t).
We shall show that g(¢) is an absolutely continuous function.
Indeed, let §;,8,,-..,8n be non-overlapping intervals with end-
points t; and t; where t;< ¢! and ¢=1,2,...,n. Putting
; = signig(t}) = g(¢;)], we have
n

€; .
n
(8) leg(t;)-g(tin Zl{g(t;)-g(ti)}si=f(igiéi—iti}ei)

1=

T

< 170,

A

n
izl{géi_-gti}ei"-
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Since the function (g;i_ Eti)ei takes the value €; =11 in the

interval §; and vanishes elsewhere, it follows from the hypothesis
that the intervals 6i are non-overlapping that 1

- T r
.= € = 8. )
Asmee )es = (sl )
where léil denotes the length of §,. We therefore have, by (8),

T g6l - gl s "fll( I ls, I)

i=1

which proves the absolute continuity of g(¢).
This established, put g’(t) =a(t). The function a(t) is integ-

rable and, as §,=0, we clearly have f(g;) = foa(u)du, whence

1
(9) flg,) = J'&t(u)ot(u)du.

Let CL1C,rewesC
x(t) =e; for ¢,

n
e(t) = ;Lo\ 8ty ™

(10) flz) = }x(t)u(t)dt.
0

be arbitrary numbers, 0=¢ <t <...<¢,=1 and

n
Sttt and 27=1,2,...,n. It is plain that

i=-1=
gti—l , whence, by (9),

Thus (10) holds for every step-function x(t).

If x=2x(¢t) is now an arbitrary bounded measurable function, there
exists a uniformly bounded sequence of step-functions (m (t} ) which
converges to z(t) almost everywhere. Consequently

Lim f]xn(t) - z(t)|¥dt = 0,
whence llmﬂxn- xli =0 and ;n view of (10),
flz) = 11m Ix (t)ale)dt = zm(t)a(t)dt.
The egquality (10) thus holds for every bounded measurable function

z(t).
This established, consider now the case r> 1.

Put
la(t) |*"tsign a(t), if |a(t)|®°"! 5 &,
xn(t) = o
n sign o(¢), if a(#) | > n,
1
where 1+ L1=1. We have |f(x,)]= [[ 2, (5ot ds| = Ilfll(j1|x (t)lrdt)r
and as x_(t)a(t) = |xn(t)[ latt) | 2 Ix (). |x () | 48—“ we have

1 s /
o, (6) % eDat < ufu(nx (t)|1"dt) r
¢'Tn A
from which, since s/(s-1) = r, we conclude that
1 1
(Hx (t)|rdt)1_7' < 15,
o n
As this inequality holds for every natural number n, and as

]xn(t)lré Ja(t) |F87F = |a(£) |® and, almost everywhere, %ig |z tt)|F =
|o(t)|®, we obtain
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1 1
(11) (j]a(t)sdt)s < 0fl,
0

from which it follows that a(#) is an sth-power-summable function.
Hence, if z (¢} is any measurable rth-power-summable function, the
product x(t)a(t) is an integrable function.

Now define the sequence an(t)) as follows:

= {z (@) for lz ()|
(12) z, =z (8) = {n sign z(t) for lz(t)l

We then have

n,
n.

VA

n
o
-

1 1
: r, \i :
(£|x(t) -z, (¢)] dt)r and limlz - z |

n-+o

(13) e - an

from which it follows that

1
Jix@) - = (t)]a(t)dt‘
° n

1 1 1
(J’lx(t) - &, (£) |"dt)".(j|a(t) |sdt) ,
0 0

whence, using (13), f(x) = 1im f(xn)= jix(t)a(t)dt and as
neo

1
{m(t)a(t)dt - f(xh)i

A
[ Ll

[f)] =

it follows, in view of (11), that we have

1
1 =
< (f[a(t)[sdt>s.ﬂxﬂ,
[

1
Jz(t)a(t)dt
0
1
(] AL
IFi \gla(t)l dt) .

We have thus proved the following theorem:

Every bounded linear functional f defined in the space L¥ where
r>1 28 of the form

1
flz) = {x(t)?(t)dt
where a(t) € 1° and If1 = (fz|a(t)lsdt)§.

We now pass to the case r=1., Suppose O0gu<u+s<1 and set

z(t) = 1/h for ustsu+h,
0 for 0£t<u and uha<ts1.

h
f:+ a(t)dt‘ and as

We have, by (10}, |flz)| = |f2m(t)u(t)dt|= %
$Ifl.h. The

[f(z) | S WfFh. Nzl = Ifl.1, it follows that lfz+ha(t)dt

function g(u) = fﬁa(t)dt thus satisfies a Lipschitz condition and
since g’ (t) = a(t) almost everywhere, we conclude from this that
(14) ja(t)| < Ifl almost everywhere.
If now xz=2x(¢t) is an arbitrary integrable function and the
sequence (x,(t)) is defined as in (12), we have

e =z I = [lz(¢) -« (¢)[|dt > 0,

o

whence

1
flz) = lim £z ) = Lin Jo_(£)a(t)dt = [s(¢)a(s)dt,

+00 na>o 0 0
since |x,(t)alt)| < |2(t)a(t)]|. Now, as
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1 1
fe(tyol(e)dt| s [|z () |dt.ess.sup|alt)],
[} 0 0stsl
we obtain, in view of (14), the equality
Ifl = ess.sup|al(t)]|.
f osts1p| l
We have thus proved the following theorem:

Every bounded linear functional f defined in the space L* is of the
form

1
flz) = [z(t)ol(t)det,
0
where a(t) is an essentially bounded function and Ifl = ess.iup[a(t)|.
<
3. The space c¢. Let ostat

n _ J1 for n = ¢,
(15) & ° {0 for n # 1.

z, (ég) and z' = (gﬁ).

For f a given (bounded) linear functional on ¢, put

(16) f(xn) = Cn and f(x’) = C'.
Putting o= 1lim £ , where x = (£ ) € ¢, we thus have
>0 n n
r
o - aer = T 6 - wmy] = suelz, - al,
n=1 no>r
whence

r
= 1 i -
x ax’ + %1£n§1(€n a)xn
and consequently

Hence
Flz) = af(x’) + n§1(£n -a)flz ),
whence, using (16),
(17) flz) = ac’ + n§1(£n - a)Cn.

If x= (gn) now stands for the sequence given by

£ = sign Cy for n < »,
n 0 for n > r,

r

we have lxl =1, a=1lim £, =0 and f(x) =n§1|cn|, and as |fl(z)]| <
700

IFl.lxll, it follows that ng1|0”|§ Ifli. Since the natural number

r is arbitrary, the series |¢n| is convergent. Putting

n=1
¢t - %¢ =¢
n=1"n !
we have, generally, in view of (17),
0
(18) flx) =ac+ § €,E, where o = lim £ .
n=1 n-+w
Now let
£ = sign ¢, for n £ r,
n sign ¢ for n > ».
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Then lzl = 1, oo=1lim g =sign ¢ and
n->o
r
flz) = |¢] + e, + Z c,-sign ¢ s Ifl
n=1 n=r+l

and since this inequality holds for every natural number r, we
obtain

Cn
1

A

lel +
n

N~ 8

IFl.

Since, moreover,
Flz) = [|c| Z |c |]l|:z:l|

it follows that we have the equality

(19) el + J lc.| = fN.
n=1 "
Because of (18) and (19), the following theorem has thus been
proved:

Every bounded linear functional f defined in ¢ ig of the form
flz) = Clim g ) CpE,s for @ = (£) € e,
n->o n=1

and we have
o«

] + 7} lc, 1 = ufi.

n=1
The space 1T where rz1. As before, let x = 57 where the
p n i

gz are defined as in (15). We thus have, for any « = (gi)e r,
n i 1
r\~
e - .2 £ixiﬂ= (. ) |£i| )r + 0,
i=1 L=n+1
whence
(20) x—[ £,x

i=1
For a given bounded linear functional f defined in ZP, put
f(xi)= Ci' so that, by (20)

==
(21) flzy =7 g.c..
Consider now the case r=1.
Let £ =sign ¢ and £,=0 for ¢#n. We then have f(x) = |C | <.
Moreover, for every sequence x = (E ) € 1!, we have the inequality

< 0 nd conse tly Ifl = su c.|
£l (5, 16,1)- sup_legl = quently 1£1 = sup |0,

We have therefore proved the following theorem:
Every bounded linear functional f defined in 1! is of the form

fle) =73 C.E;s Ffor m = () € 1%,

i=1

where Ifl = sup |C.,
184<

Let us now consider the case r> 1. Let x°= (E;) where
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s-1_. .
|Ci| sign ¢, for ¢ £ n,

£ =
v 0 for 7 > n

and %+ é= 1. We then have

1 1
Izol = % .78 T, § lc.|® r
is1 ¢ is1 ¢

whence, because of (21),

1
n 1
flz°) = |ci|3 < Hfﬂ.( Y |c.|s)” ,

i=1

-3

so that

1
SARE
c.| < UFh
\’L.=1 / ’
and, since n is arbitrary,

(i;[ci[s>é hFl.

Furthermore, for every sequence z = (£,) € 1”, we have

IA

© © 1 o 1
_ r\7 s\s
p@ = | T egeg] s (T re (1 0e 1),
=1 =1 =1
whence we finally obtain the equality 1
Ifn = ( ) [ci|s)s
i=1

We have thus proved the following theorem:

Every bounded linear functional §f defined in the space 1Y, where
r>1, is of the form

flx) =

Z

he~-18

_ r
1ci£i’ where z = (£.) €1,
and we have

1
T ( ) |ci|s)3 where L + 1 = 1.
i1

5. The space m and its separable linear subspaces. Let E be a
separable linear subspace of m, so that its elements are bounded

sequences of numbers. Endow EF with the norm inherited from m,

in
other words, set

lzll = 122?w|€i| where = = (£.) € E.

Let (xn), where x, = (52), be a dense sequence in E. Consider x,

and z,. We are going to establish, for every €, > 0, the existence of

a natural number k, with the property that, for every pair X, and 1,
of real numbers,

(22) [A 2, + A,x,| 12$§k2|xlg; + ngzl.(1 + E,).

Putting aside the trivial case in which x, is a multiple of z,, or
vice versa, suppose, on the contrary, that there exists, for every
natural number k, a pair Af and A% such that

k k kr1 k
[Ayzy + Apx,| > 12%§k|11£i + AZE;I-(1 + Eg).

Denoting the larger of the two numbers [Af[ and [Af[ by m, and
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putting Z§= Af/mk and Z§= Af/mk, we would thus have

(23) 12a + 1, | > max, PIERNI NI

Since 1% IZl|+ |Zz| 2 for every natural number %k, the sequence
(Zf) and(ﬁz) have convergent subsequences. In fact, there exists an
increasing sequence (k.) of natural numbers such that the sequences’
(ij) and(ij) converge to, say, I, and I, respectively, where

|1+ |2,]£2. BAs k.->-+°° as j+~ and, besides,

% ks
éigl(l x, + l,x,) (12 + 17z, |
we would have, in view of (23},
N ,
[1,2, + 1,z,]| 22§¥|21£i + ZZ£;|.(1 +€,),

which is impossible because, by definition,
1 2
[Z,2, + L,z,] 2 ?g?lzlgi + zzgi[.

Having proved the existence of a natural number k, satisfying (22)
for every pair of numbers A; and 1,, it is easy to deduce by induc-
tion that, for any given sequence (tg;) of positive numbers, there
exists, for every »> 1, a natural number k, such that, for every
finite sequence Apsdprecerdy of real numbers, one has

7
(24) |hp@y+ Aty + oo + A2 | §1max (A, g + A gz cee # A E (14 e ).
This established, for every natural number n, denote byx for
2=1,2,...,n, the sequence
(25) gl,gz,...,g;n,o,o,o,...;

so that, by (24), we have, for arbitrary numbers AI,AZ,...,An,
(26) Ay xy + dpxy + o0 + xnmn[ S A+ dpxh 4. 4+ an;].(1 +e ).

Now let f be a bounded linear functional defined in E. Then
[Fhqzy #+ Aoy * con + Apzy) | S UFI. | A2y + Ay, + oo o + Apxy|, and
consequently, by (26), MFflx) # 2, Fflx,) + oot + Apflay)| £
IF1. (1 + €5) - R WS

Since by the deflnltlon (25) of :z:z we have z! € ¢, by theorem 5,

p. 35, there exists a linear functidnal f, defined in ¢ and satlsfy—
ing the conditions:

fn(xé) = f(xi) for <=1,2,...,n and anH < IFfk. (1 + en).

In view of the general form of bounded linear functionals in the
space ¢, established on p. 41, and because all the terms beyond the

k of the sequences x}, for ¢=1,2,...,n, are zero, we conclude that
there exists a finite sequence of numbers @, @, g glpy satisfying
the condltlons- "1 2 n

Z anjg; = f,le}) = flz,) for i=1,2,...,n,
i=1
and
kn
) |anj] = AF 0 S Bl (1 + e,
J=1
whence, putting
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an.
J  for j < ky,
(27) unj = 1+¢gp
0 for j > k,,
we obtain
S z 1
(28) jzlanjgj " T e flz;) for i=1,2,...,n,
and
0
(29) 1 lay, .| s Ufl.
g=1 4

Assume that the sequence (e,) has been chosen so that llm €, =0.
It then follows from (28) that %ig j§1“ng J-—f(xz) for <= 1 2,...,
and we shall show that this still holds, with the same doubly-
infinite array (op.), for every z€E.

To this end put x= (£;). Since the sequence (x,), where z, = (gZ),
is dense in E by definition, there exists, for every e€> 0, an

xt-(g } such that lx-«_.l < e, whence
i

- s (E. - &

‘Ean £5 f(m)‘ ‘jzloﬂa(ﬁg £

and as

+

£
jZ1anJ J

l Z “n (E - E?)[ < ( 2 |ay, . ).Hx -z .l £ Ifh.e,
il s J=1 J K
we have, for sufflclently large n,

Z an E - f(x)l S hflie + e+ Ifll.e = (201 + 1)e
J=1
and consequently we have
o
(30) lim § a, &. = f(z) for every = = (£,) € E.
70 J‘l J J dJ
We finally show that

(31) lim 2 { = Bfl.
nseo j=1 J
Indeed, if we put
-]
(32) M = lim 2 R
n+o =1 J

we have, by (30), |[fl(x)| <M su?|£ .| =M.lxl for every =z € E, whence,

as Ifl is the smallest number such that [f(x)| < Ifl.lxl for every
x € E, we conclude that Ifl £ ¥, which, by virtue of (32) and (29),
yields the equality (31).

Gathering together formulae (27), (29), (30) and (31), we see
that the following theorem has been established:

Every bounded linear functional f defined in a separable vector
subspace E of m ig¢ of the form
o«
f(x) = lim Z Oy . E
n—)oo']l J
wherq z = (gj) and (o, ) is an array of real numbers satisfying the
conditions: J
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1° ap,.=0 for j>k, where (k,) is an inecreasing sequence of

natural numbers,

L)

2° j§1|anj| < Ifl for n=1,2,...,

<o
° lim , = Ifl.
3 lim Jélla"jl (K

§5., Closed and complete sequences in the spaces C, Lr, e and 17,

We are here going to apply some earlier results to various ideas
and problems associated with properties of the particular spaces
that we have just discussed.

A sequence of functions (x,(¢)) where z,(t) €C, 0<t<1, is said
to be c¢losed in C when, for every gunction x(t) € ¢, there exists a

n
sequence of linear combinations (igza;)mi(t)) which converges
uniformly to x(t).
The sequence -(xy (¢)) is called complete in C when, for any func-

1
tion g(t) of bounded variation, the conditions onn(t)d9= 0 for

n=1,2,... imply that g(0) =g(¢) =g(1) for all but at most countably
many values of t¢.

A sequence of functions (x,(t)) where z,(t) €L and 0<ts 1 is
said to be closed in LY when, for every function z(t) € LY, there
exists a sequence (g,) of functions of the form

kn
- (n)
gnlt) = iz1ai z, (t)
which converges in mean with power r to x2(t), i.e. such that
1
lim [|x(¢) - g (¢)|Tat = o.
na>o 0 n
The sequence (z,(t)) is called complete in L* when, for any
function g(t) which is bounded and measurable or which belongs to

% where i+ i= 1, according as r=1 or r> 1, the conditions

1
jxn(t)g(t)dt = 0 for n=1,2,...
0

imply that g(t) = 0 almost everywhere.

Both notions occur in the theory of orthogonal series.

It is easy to see that a necessary and sufficient condition for a
sequence of functions to be closed in ¢, or in L¥, is that it be
fundamental, in the sense defined in §3, p. 35, of this chapter.
Similarly, for it to be complete, it is necessary and sufficient
that it be total, in the sense defined in the same place. To see
this, it is enough to recall the general form of bounded linear
functionals in ¢ and L¥ established on pp. 37-39.

Finally, theorem 7, p. 36, immediately implies that for a sequence
of functions to be complete in C, or LY respectively, it is necessary
and sufficient that it be closed.

In a similar way, one can define the notions of closed and complete
sequences for the spaces ¢ and 17.

§6. Approximation of functions belonging to ¢ and A by linear
combinations of functions.

Theorem 6, p. 36, can also be interpreted in various particular
normed spaces. Here are two examples of this:
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1. The space C. For there to exist polynomials in the terms of
the sequence (z, (£)) where x,(t) €C, 05 t< 1, which uniformly approx-
imate a given functton x(t)e c arbttrarzly cZoseZy, it is necessary
and sufficient that, for any function g(t) of bounded variation, the

1
conditions flxn(t)dg-o for n=1,2,... imply that | x(t)dg= 0.

2. The spaces LT For there to exist linear combtnatzons of
terms of the sequence Cx (t)) where xp () € LT, 0t <1, which approx-—
imate in the mean with the r 0 pover a given functzon x(t)e LY arbit-
rarily closely, it is necessary and sufficient that, for any function

g(t) which is bounded and measurable when r-—1 and which belongs to
L° where 14-5-1 when r>1, the conditions f glt)z, (¢)dt =0 for
n=1,2,... imply that f g(t)lx(t)dt = 0.

§7. The problem of moments.

We now discuss applications of theorem 5, p. 35.

The problem of moments is the name given to the problem of finding
conditions for the existence of a function f satisfying the infinite
set of equations

b
(33) ff¢idt = ¢, where ¢=1,2,...,

for a given sequence of functions (¢ ) and a given sequence of
numbers (c ).

We give here the solution of this problem in two special cases of
normed spaces: it is obtained by means of the appropriate interpre-
tation of theorem 5, p. 35, in these spaces.

I. The space C. Let x;=x;(t) where 02¢<1 be a continuous
function. Every bounded linear functional f in ¢ being (cf. p. 37)
of the form f(x) = fzx(t)dg where Hfﬂ=d%%£1g(t), theorem 5, p. 35,
yields the following theorem:

For there to exist a function g(t) with

var g(t) s M
0stst
and satisfying the equations

fxi(t)dg = ¢, for £=1,2,00.,
0

it is necessary and sufficient that, for every finite sequence of
real numbers hl,hz,.. yhp, one has

2 hzcz{ $ M. max i I nx, ()
i=1 0stg1'i=1

II. The space L¥. For r> 1, proceeding in a similar way, one
arrives at the following theorem:

For there to exist a function a(t) where 0=t <1 such that

1

1
[la(t)|%dt < ¥° where st =1

0 -

0
and which satisfies the equations
1
fz_(t)a(t)dt = c. where xz.(t) € L¥ and ©=1,2,...,
? 1 1 1

it is8 necessary and sufficient that, for every finite sequence of
real numbers h,y,h,,...,h; one has
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o] <o)L p )
h.e.| s M( h.x.(t) dt)
2y 2 0zl T
For r=1, the functions z.(t) must be integrable and the function
al(t) which is sought is (eSsentially) bounded and such that

ess sup|a(t)| < M.
0stsl
The necessary and sufficient condition is then the following:

1k
noe.l <. | h.z . (t ’dt.
RO [ Fama®

§8. Condition for the existence of solutions of certain systems
of equations in infinitely many unknowns.

We consider another problem, namely, given an array (oagk) and a
sequence of numbers (c;), we seek to establish conditions for the
existence of a sequence of numbers (z;) satisfying the infinite set
of equations

(34) kz1aikzk =ec, where 2=1,2,...
We here give, again with the help of theorem 5, p. 35, the solu-
tion of this problem in two particular spaces:

III. The space c. Let z; = (agkx) and

(35) lim a;g = 0 for £=1,2,...
k>
Since every bounded linear functional in the space ¢ is of the
form

fle) = ¢ lim £, +'{ C.E;
7> =1
where
x = () and Ifl = K| +izl[0i|

(cf. p. 40), theorem 5, p. 35, yields, in view of (35), the follow-
ing result:

For there to exist a sequence of numbers (zy) which satisfy the
equations (34) as well as the condition kéllzkl £M, it is necessary
and sufficient that, for every finite sequence of numbers hy,h,,...,
hy, one has the inequality

i )
h.e.| £ M sup k.o,
i1 v * k21lizy © R

L
IV. The space L. Let z;= (a;g) and assume that ,I,|agg| < for

i=1,2,... Since every bounded linear functional in 1! is of the
L=
form f(x) = i§1zi5i where x = (£;) and Ifl = igglzi[ (cf. p.41),
theorem 5, p. 35 immediately yields the following result:
For there to exist a bounded sequence (27) which satisfies the
equations (34) as well as the condition sup]zk|§ M, it is necessary
2>

and sufficient that, for every finite sequence of real numbers
Y PO one has the inequality

r
'iz1hici

r’

su. 1| Tn

< M. L0,
k=1lg=q Otk
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CHAPTER V

Banach spaces

§1. Linear operators in Banach spaces

We are here going to establish several general theorems concerning
Banach or B-spaces F, already defined at the beginning of Chapter IV,
in which their property of being complete as well as just normed
plays an essential role.

THEOREM 1. Let F be a B-measurable mapping and U an additive

operator, both defined in the Banach space E, such that IF(x)I2NU(x)I
for every x€ E. Then U is a bounded linear operator.

Proof. By theorem 4 of the introduction, p. 10, there exists a set
H< E of category I such that F is continuous in E~ H. Consequently,
for x, € E~H there exists an r>0 and an ¥ > 0 such that
(1) Iz = x,l implies IU(x}l < IF(z)l < M for every z € E ~ H.

Since the set {z:x€ E~H and lz-x,
more so, is the set ¢={x'+x:x€E~H, lz-xl ég and lz’l <§}.

I < g} is of category II, so even

Hence, in particular, G is non-empty and contains an element of the
form z’' + x,€E~H where z, €E~H. As |z, - x4l 51—;, we have

iz’ +z, -2z, <r, whence, by (1), 1U(z")I s I1U(x’ +2 )0 + IU(x, )} £ 2M.
Thus U is (norm)-bounded in the sphere {z:lzxl sg}, and, therefore, of

course, in every sphere. It then follows, by theorem 1 (Chapter IV,
§2), p. 33, that the mapping U is continuous and thus U is a bounded
linear operator.

THEOREM 2. Let U be an additive operator such that, for every x € E,
whenever (mn) is a sequence in E with %i& xp =2, limlU(x, )0 2 1U(z) .
Then U is a bounded linear operator. nre

Proof. The set G,={x€E: IU(x)l £n} is closed for n=1,2,... and
since E = nglGn' at least one of the sets G, contains a sphere in

which U is bounded, whence, as in the previous theorem, it follows
that U is continuous.

THEOREM 3. Let (U,) be a sequence of bounded linear operators
defined in E. Suppose that (Un(m)) is convergent for all x in a set
G which is dense in a sphere X and that the sequence (WU,l) is
bounded. Then the sequence (Un(x)) is convergent at every point z € E.

Proof. For a given zx,€ K, there exists, by hypothesis, a sequence
(z,) such that x,€ ¢ for n=1,2,... and %ig Xy =g
Now, for any three natural numbers n,p and g, we have:
Ip(xg) = Uglxo) £ Wplzg = xn) b + Wglen = xg) | + NUp(en) - Ug(aen) §
and so
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p};TwHUp(xo) - Uq(mo)u s 2Mlx | - mnﬂ where M = %iEHUpH,

whence, as lim lz, - = | = 0, we have lim U,(x,) - U (x,)F = 0,
n¥e " p,g>e P ae
which implies the convergence of the sequence (Un(z)).

Now let ¥ be an arbitrary element of E. Letting x{ denote the
centre of the sphere K, there exists an e > 0 such that x§+ ex€ K,
and so_the sequence (Up(z{+ ex)) is convergent. The convergence of

Un(x)) now_follows from that of the sequences (Un(z!)) and
Un(zf+ ex)).

THEOREM 4. Let (Uyp) be a sequence of bounded linear operators
defined in E. Then the set H= {x € E:E;EHUn(m)H< ©} {s either of
category 1 or is the whole of E.

The proof follows from theorem 1 (Chapter III, §1) p. 23, seeing
that # is a B- measurable linear subspace of E.

THEOREM 5. If the sequence (U,) of bounded linear operators in E
18 such that IEEHUn(x)H< o for every x € E, the sequence of norms
(lvyt) 4is bounded.

Proof. By theorem 11 of the introduction, p. 11, there exists a

sphere XS E and a number N such that lUy(z)ll £ ¥ for every € X and
n=1,2,... Letting r denote the radius of the sphere X, one easily

deduces that liuyl < Zg for every 2=1,2,...
THEOREM 6. If the sequence (x,) SE is such that Iim|f(z,)| <=
n->

for every bounded linear functional f defined inm E, the sequence of
norms (lzyll) is bounded.

Proof. The set E* of all bounded linear functionals on E, with
the norm previously defined for such functionals, constitutes a
Banach space. We define a sequence (F,) of functionals on E*, by
putting Fn(f) = f(x,) for each f e E*. The hypothesis that
Tim |f(zy) | < » consequently implies that Iim [Fj,(f}| <« for every
n>o 7+

f€ E*. By virtue of the preceding theorem 5, there thus exists a
number ¥ such that |Fp(f)| < N.Ifl for every »=1,2,... Moreover, as
z, € E, for every n=1,2,... there exists, by theorem 3 (Chapter IV,
§2) p. 33, a bounded linear functional f, defined in F such that
fnlzp)| = lzyl and Ifsl=1. We therefore have layl = |fy(xy) | =
Fulfp)| SN.Ifpl =¥, for every n, q.e.d.

§2., The principle of condensation of singularities.

THEOREM 7. Let (Upg) be a double sequence of bounded linear
operators in E such that

(2) lim lU__ | = o for every p=1,2,...
q+e rq

Then there exists a set GEE, independent of p, of category II in E,
such that, for every x € G:

(3) Tim IU_ (x)] = « for every p=1,2,...
g+ pq

Proof. The set Hp= {x¢€ E: TEEHqu(x)H < »} cannot be the whole of
E, because, by theorem 5 above, the hypothesis (2) would then be
contradicted. It followswfrom this, by theorem 4 above, that Ep and
consequently the set #H = pgiﬂp of all the elements x € E for which the
condition (3) fails to hold, is of category I in E. All that
remains, therefore, is to take G=E-N¥H.
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Remark. The codomains Ep of the operators Upg can vary with
p=1,2,..., whereas, for a given p, they must plainly be assumed to
be the same for all values of ¢, since, in the statement of theorem
7, we make use of the notion of convergence of the sequences
(vpg(x)) as ¢ tends to =.

The above theorem 7, together with theorem 6 (Chapter I, §4) p. 15,
constitute, in the setting of functional analysis, what is known as
the principle of condensation of singularities. We are going to
elaborate on this with the help of some examples.

Let (gk(t)) be an orthonormal sequence of square-integrable func-
tions in [0,1]. For any given integrable function x (%)} in [0,1],
the series

0 1
g, (t) g, (s)x(s)ds
oL 918 oy

is called the development of the function x(t) with respect to the
sequence Cgk(t)), provided, of course, that the integrals

figk(s)x(s)ds exist for each k=1,2,...

The following'theorems are available, for example in the spaces (
and Ll:

In €. Let (tp) be a given sequence of points in [0,1]. Then the
existence, for each p=1,2,..., of a continuous function zp(t) whose
development is divergent or unbounded, respectively, at t%e point t
implies the existence of a continuous function x(t) whose develop-
ment is divergent or unbounded, respectively, at each point tp, for
p=1,2,...

The proof follows from theorem 7, p. 50, together with theorem 6
(Chapter 1, §4), p. 15, if one puts
q 1
Upq (%) =kzlgk(tp)6fgk(8):c(8)ds,

considering the U as linear functionals on (.

pq
In LY. Let ([ap,Bp]) be a given sequence of sub-intervals of
[0,1]. Then the existence, for each p=1,2,..., of an integrable

function xp(t) whose development has the property that
B n 1
— P
Tim [ |e,(t) |dt = = where sy(t) = ) g, (t)[g, (t)x_(t)dt
implies the existence of an integrable function z(t) whose develop-
ment has the same property in all the intervals [ap,Bp] simultan-
eously.

The proof follows from theorem 7, p. 50, if one puts
q 1
Upq () =kzlgk(t){gk(t)x(t)dt for ap £ ¢t S By

and regards the Upq as linear operators defined in the space of
integrable functions on [0,1] whose codomains lie, respectively, in
the spaces of integrable functions in [ap,Bp].

Remark. In particular, if the set of points {(op,B8p):p=1,2,...}
form a dense subset of the unit square [0,1] x [0,17, the property in
question holds for z(t) in every subinterval [a,B8] of [0,1].

Based on this remark, one can prove, for the case of Fourier series,
the existence of an integrable function x(t) such that

Zzg’fasn(t)dt’= o for every subinterval [a,B] of [0,27].
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§3, Compactness in Banach spaces.

LEMMA. Given a closed linear subspace G which is a proper subset
of a linear subspace DEE, there exists, for every number >0, an
x, €D such that

Nzogh =1 and lz, - xll 2 1 - € for every x € G.

Proof. Let '€ D~G, let d be the distance of x’ from G and let n
be an arbitrary positive number. Then there exists a y’' € G such

elt=y’
that d<lz’' -y’ £d+n. Put z, =m}y,L". For every x € G one then

has lzg, - ! =-——1y—,T.||:x:’ -y’ -lz’-y'l.x| and since z€G and y' € G

-
. . . d
’ g, - | L —_—
imply that y’ + lz'-y HaéE G, this yields lx -zl 2 Il:c'—y'll'dgdH]'
whence, putting n= d°ﬁ' we have lz, -zl 21-¢.
Plainly, we also have lx,l = lzx’'-y'l/lx’-y’ll =1 and x, € D, because

x' €D and y' € GED.

THEOREM 8. If every norm-bounded subset of E is relatively
compact, then there is a finite set x,,%,,..., &y of elements of E
such that every x € E may be written in the form

(4) L= 0,y F 0,T, t e F Ay,
where 0,,0,,...,0, are numbers (which depend on zx).

Proof. Let x, be an arbitrary element of E such that lx,l =1 and,
for »>1, let xp;q be any element of E such that

(5) llxrﬂll = 1 and “'"’r+1 - a:ill 2 § for 2=1,2,...,r .

For each r2 1, let G, denote the set of all elements x € £ which
are of the form (4) and put D=F. If the theorem is false, we
.should have Gy =z D for every r, whence, according to the above lemma,
with 6=G,, €= 4% and &, =xpyq, we deduce the existence, for each
natural number r, of an zp+1 € E satisfying (5), i.e. of an infinite
sequence (z,) such that lxyl =1 and lxp-z4l 23 for p#q.

This sequence could not have any convergent subsequences, and
would therefore constitute a non-relatively compact set, although it
is norm-bounded. One would thus have a contradiction with the
hypothesis of the theorem.

§4, A property of the spaces ¥ ,c and A

By applying theorem 4 (Chapter I, §3) p. 15, to the general form
of the bounded linear functionals defined in these spaces, one
obtains the following theorems:

For Lr, where r21. If o(t), 0£ts£1, is a measurable function

and if the integral sz(t)a(t)dt exists for every func_tion x(t) ez;",

1 -
then fola(t)lr/(r 1)dt<oo, for »>1, and w(t) is an (essentially)

bounded function for r=1.
Proof. Put, for n a natural number

_ Jal(t) for |[a(t)
o, (t) = {n sign a(t) for |a(t)

We then have |z(t)a(t)|z |z(t)a,(t)|, so that, as %_j;gan(t) =al(t),

< n,
> n.

1 1
lim [x(t)a,(t)dt = [z(t)a(t)dt.
0

n>° g

Since, for n=1,2,..., ocn(t) is a bounded function, the expression
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jzx(t)un(t)dt defines a bounded linear functional in L¥, and so, by
theorem 4, p. 15, f;x(t)a(t)dt is also a bounded linear functional.
Consequently, by the theorem on the general form of bounded linear
functionals in the spaces ¥ where r> 1 (see p. 39), there exists a
function a(¢) € 27/ *"1) such that jim(t)&(t)dt= fix(t)a(t)dt for
every x(t) € r. Thus, putting

.y _ J1 for 0 £ ¢t £ ¢t,,
z(t) = {o for t, < t & ?,

we have [/ °a(t)dt'f ou(t)dt for every 02 ¢,$1, and so al(t) = a(t)
almost everywhere.

One argues in an analogous way for r= 1.

For e. If the series iziaigi 18 convergent for every convergent
sequence x = (£.), then iéilai|< ©,

Proof. Since, for each n=1,2,..., iZ a.g. is a bounded linear

n

functional in the space ¢ and 1&3 izlatgt s latg., one deduces from
theorem 4, p. 15, that Z azgt is also a bounded linear functional
on ¢. Consequently there exists an M> 0 such that

< Mzl = M. sup[E
121

Therefore, puttlng

£. = sign a; for é £ nand a; # 0,
A 0 for 27 > nor oy =0,

. 4 )
we obtain .1 |az| $¥ for each n=1,2,..., whence I |a,|sM.

]

For LT where r2 1. If the series i§1 o;E; is convergent for every

sequence x = (£;) € ¥, then L lai|r/(r-1)< ©, for r>1, and the

sequence (a;) <s bounded for r=1.
The proof is analogous to that of the preceding theorem.

§5. Banach spaces of measurable functions.

We pause here to discuss several properties of B-spaces satisfying
further special conditions. To this end, let E be a space of meas-
urable functions defined in the closed 1nterval [0,1] and such that
for any sequence (z,) = (z,(t))SE, 05ts1:

n+o
2. lim lagl
>0

zn; (t)) and an « such that |zpy ()| S |z (¢)| for every

1. lim lz,l = 0 Zmplies lim x,(t) = 0 almost everywhere;
n n+o

0 implies the existence in E of a subsequence

i=1,2,..., and almost every t, 0st<1;
3. 1lim xz,(t) =x(t) almost everywhere implies lim lzx,l 2 lxl.
n->o n->o
Particular examples of such spaces are ¥, ¢ and Lr, which have
been discussed repeatedly (cf. p. 6-7, 36-39, and 45-47); as far as
0
condition 2 is concerned, in the case where igluxniﬂ< ©, one merely
has to define the function x(¢) by the equality
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z(t) = |z, (£)].
=1

THEOREM 9. Let E and E, be two B-spaces satisfying conditions 1,2
and 3 and let K(s,t) be a function defined in the square [0,1] x
[0,11. If the integral

1

(6) u(s) = [K(s,t)x(t)dt
0

exists for every x € E and for almost every value of s and if u(s)€E,,
then u i1s a bounded linear operator.

Proof. Suppose that (x,) and x are such that

(7) lim bz, - zl =0

n>o

and let (x,) be any subsequence of (zn). By (7) as well as condi-
tion (2), there exists a subsequence (mn--x) of (zp-x) and a z€E

such that, for every <2=1,2,..., one has t) - z(t)]| € z(¢t) almost
everywhere. Clearly llm K(s,t)[xnt(t)-x(t?] 0 almost everywhere,

and |X(s,t). (xni-x)[ [K(s,t)|x z(t). FPurthermore the integral
j K(s,t)z(t)dt exists in a set H of measure 1, as z€ E. We there-
fore have llm f K(s, t)[wn (t) —x(t)]1dt = 0 and consequently

lim j K(s,t):cn (t)dt-j Kls,t)x(t)dt for s€ H.

Now, since every subsequence of (uy), where u,(s) = jiK(s,t)xn(t)dt,
has a subsequence which converges to u(s) almost everywhere, we have
%}g up(s) =u(s) almost everywhere, which, in view of 3 and theorem 2,
pP. 49, implies that the operator u defined by (6) is a bounded
linear operator.

§6. Examples of bounded linear operators in some special Banach

spaces.

We here give several applications of theorem 9, proved above, to
the spaces M, C and L

The space M., If K(s,t), for 0s<1 and 0<t< 1, is a measurable

function and if, for every s, ji|K(s,t)|dt< N < », the expression
1
(8) Ulz) = [K(s,t)xz(t)de
0

defines a bounded linear operator from ¥ into M.

The space C. If the function X(s,t) is continuous for 0<e< 1 and
0<t<1, expression (8) defines a bounded linear operator from ¢
into C.

The space L. 1If K(s,t) is a function which is measurable in the

1
square 0ss<1 and 0<t<1 and is such that foc(s)ds< N < @ where
C(s) =e8§%§?p |k(s,t) |, then (8) defines a bounded linear operator
from L' into Ll.

The spaces P, 1f K(s,t) is a function, measurable in the square
0<s8<<1 and 0£¢t51, and such that, for every pair of functions

z(t) € LP and y(s) € 19/04°1) yhere p22 and q2 2 we have
11
(9) &8, 8)x(t)y(s) |dsdt < =,
00
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then (8) defines a bounded linear operator from I? into L9,

Indeed, for any x € Lp, we have, for every ye€ LQ/(q_l’:
11 1 1

IfK(s,t)x(t)y(s)dsdt = jy(s)[fK(s,t)x(t)dt]ds,
[} ) [}

0
1
whence (cf. p. 52) foK(s,t)x(t)th 9 and consequently, by (8}, U is

a bounded linear operator.
For condition (9) to be satisfied, it is sufficient that
fﬁfﬁlK(s,t)lr/(r_l)dsdt< ®, where r is the smaller of the numbers p

and q/(g-1); in particular, that the function X(s,t) be bounded,
when r =1, and integrable when p =g = +w.
In fact, one has, by Riesz' inequality:

11 X r-1 o, 1, L
< {jj]K(s,t) |"‘1dsdt} r .{yx(s) |"ds}”.{j[y(t) ]"dt}".
00 0
In particular, for p=g¢g =2, condition (9) can therefore be

replaced by fzjz|K(s,t)[2dsdt< », which implies that the operator

given by (8) is a bounded linear operator from L[? into itself.
The same remark applies to the cases p=g=1 and p=gq= .

11
[[&(s, tyx(t)y(e) dedt
oo

§7. Some theorems on summation methods.

Given an infinite array of numbers

Aiys @ias see s g,

Ay1s Byys N TIREE
(2) ce e e e e e

Aigs Bips woe 5 Qugy one

e e e e e

we shall say that a sequence of numbers zx = (Ek) is summable (to Al(zx))

by the method A (which corresponds to the array A), when each series
o

Ai(x) =k§1aik€k is convergent and the sequence CAi(x)) also con-

verges (to 4(x)).

The method A is said to be permanent, when every convergent
sequence is summable to its limit by this method. It is called
reversible when, to every convergent sequence (n;), there corres-
ponds exactly one sequence x, not necessarily convergent, such that
A;(x) =ng for 7=1,2,... We shall say that a method B, corresponding
to the array B= (byx) <s not weaker than A, when every sequence
summable by method A is also summable by method B.

Finally, a method A is known as a perfect method, when it is both
permanent, reversible and such that the conditions

<0 [+:]
(10) ) lail < © and ) aza,, = 0 for k = 1,2,...
i=1 i=1
imply that
(11) a, = 0 for every 2 = 1,2,...

THEOREM 10. For a method A to be permanent, it is necessary and
sufficient that the following conditions be simultaneously
satisfied:
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(-]
1° kéllaikl £ M for every 1=1,2,...,
2°  lim a = 0 for every k=1,2,...,
i>e &
3° 1lim ,X.a., = 1.
Lo k=1"1k -
Proof. Necessity. The convergence of the series kélaikgk for
every convergent sequence z.= (gk) and for every <=1,2,... igplies
(cf. p. 53, for e¢) the absolute convergence of the series kglaik'

The A;, defined in the space ¢, are consequently bounded linear
functionals and since, for zxz€ e, (Ai(m)) is a convergent sequence, we
conclude, by theorem 5, p. 50, that condition 1° is satisfied.
Now, let £2 =1 for i=1,2,...,£2 =0 for Z7# n and £Z= 1 for every
0

- n - -
n=1,2,... Put xn-(gi) for n=0,1,2,... We have Ai(x°)"k§1aik and
Ai(xn)= a.. for ¢ and n natural numbers, so that A(x,) =1 and

A(zy) =0 for n>0, from which it follows that conditions 2° and 3°
are also satisfied.

The sufficiency of the three conditions follows from theorem 3,
p. 49, together with the fact that the sequence (mn) just defined is
fundamental in the space c.

LEMMA 1. Let A be a permanent method and let Y, = (nS) be a con-
vergent sequence. If, for every sequence of numbers (0;) the condi-
o

tions (10) <imply that iglain2= 0, there exists, for every >0, a
convergent sequence x such that
(12) |Ai(m) - n2| < € for every ©=1,2,...

Proof. Let G denote the set of all convergent sequences (n;) to
which there correspond convergent sequences x such that ng; = 4;(x) for
2=1,2,... Regarded as a subset of the space ¢, the set ¢ thus def-
ined is clearly a vector subspace. If y, is not an accumulation
point of G, there exists, by the lemma of Chapter 1V, §3, p. 35, a
bounded linear functional F defined in ¢ such that F(y,) =1 and
F(y) =0 for every y € 6. Recalling the general form of bounded
linear functionals in the space ¢ (cf. Chapter IV, §4, p. 36), there

0

thus exists a sequence of numbers (a;) such that the series i§1“' is

absolutely convergent and such that: ke
@0

(13) izlaini +a iiﬁ n;, = 0 for (n.) € G,
-]
o 0 o —
(14) _2 a;n? + o lim n2 = 1.
1=1 1®

Since the method A is permanent, (13) implies

<«

(15) .2 aiAi(x) + o lim £, = 0 for every z = (Ek) € e
=1 ko0

and the preceding theorem 10 implies the existence of an ¥ satisfying

condition 1°. We consequently have
(-] o] o

oY ey gl s M.( ) |ai|)ﬂxﬂ,

i=1 k=1 =1

laggd.

whence
116) Yo d(x) =3 &,. Y a.a.,.
io, 01 k=1 k 22 ¢ ik

Putting, for a fixed natural number k, £k= 1 and En= 0 for n# k, we
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conclude from (15) that

(17) ) aa,, =0 for k = 1,2,...
i=1
Then putting £k= 1 for k=1,2,..., one deduces from (15), (16) and

®

(17) that o= 0, whence, by (14), that iglain2= 9, which, in view of
(17) , contradicts the hypothesis.

LEMMA 2. If the method A is permanent and the conditions (10)
zmpZy condition (11), there exists, for every convergent sequence
(n3) and every number €> 0, a convergent sequence x satisfying con-

dztzon (12).

The proof is immediate by virtue of the preceding lemma 1.

LEMMA 3. If x,= (E;) 18 a bounded sequence which is summable by a
permanent method A, there exists, for every €>0, a convergent
sequence x such that

(18) |4, (x) - Ai(xo)| < € for every 2=1,2,...

Proof. Put
(19) ng = A () for £ = 1,2,...,

and denote by (a;) any sequence satisfying the condltlons (10), p. 55.
By (19), we have

]

(20) z ain = 2 o, A (m )
i=1

and, as A is a permanent method, there exists by theorem 10, p. 55-6,

a number M satisfying 1°, whence
0

1o el daglotgil s w1 lal)ew g5)

i=1 k=1

a.ns = ( ) E?)( Y} a.a. ),
S A

o
so that, by (10), iglain;= 0. This established, the assertion of the

and by (20)

lemma follows immediately from lemma 1.

LEMMA 4. Let x, be a sequence which is summable by a method A
whieh is both permanent and reversible. If, for any e> 0, there
exists a convergent sequence x satisfying condition (18), the
sequence x, ts summable to the same number by every permanent method

B which is not weaker than A.

Proof. The reversibility of A implies (see Chapter IIf7 §6,
theorem 10, p. 29, and the remark, p. 31) the existence of a sequence
(¢.) and an array (B.k) having the following properties:

(21) 2 |85 < = for k =1,2,...,
21

(22) <f, for a convergent sequence y = (ni), one puts:

= frly) = iZ ByxN; * @ lim n, where k = 1,2,...,

7+

one has

0
kE aikgk =n; for ¢ = 1,2,...
=1
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Thus defined, the f3 are bounded linear functionals in the space ec.
Since, for every convergent sequence y the corresponding sequence
x = (gk) is, by hypothesis, summable by the permanent method B, each

of the series kglbikgk is convergent and so is the sequence of their
sums (B (x)).

For every y € ¢ put:

<0
F,(y) =kzlbikfk(y) for ¢« = 1,2,... and F(y) = %iﬁ F.(y).

Thus defined, the F; are bounded linear functionals; by theorem 4
(Chapter I, §3), p. 15, F is also a bounded linear functional.

This established, following the hypothesis, let x, be the given
sequence and x a convergent sequence satisfying (18). Putting
y = CAi(Wo)) and y = CAi(x)), we have y,€¢, y€c and ly-y e, so
that

(23) |B(x) - Blx,)| = |Fly) - Fly,)| s WFle
and, as A(x) = B(x), it follows that

[A{zy) - Blxzg)| € |4(x,y) - A(x)| + |Blx) - Blzy) |,
whence, by (18) and (23),
|4(xy) - Blxy)| £ IFle + €,

which implies that A(z,) = B(x,), g.e.d.

Lemmas 3 and 4 yield the following

THEOREM 11. If the permanent method B is not weaker than the
permanent reversible method A, every bounded sequence which is summ-
able by A is also summable by B to the same number.

Furthermore, lemmas 2 and 4 yield

THEOREM 12. If A <8 a perfect method and B a permanent method, not
weaker than A, every sequence summable by A is also summable by B to
the same number.
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CHAPTER VI

Compact operators

§1. Compact operators.

A bounded linear operator (between Banach spaces) U is said to be
eompact if it maps (norm) bounded sets to relatively compact sets.
EXAMPLE. Let, for <=1,2,...,n, X; be a bounded linear functional

n

X.(x)mi is

and x; an element of a space. Then U, given by U(x) =i§1 i

compact.
THEOREM 1. The codomain of any compact operator is separable.
Proof. The set G, = {U(z):lxl £ n} is relatively compact and there-

fore separable, and hence so is the set nﬁlGn which is equal to the
codomain of U. -

THEOREM 2. If (U,) <s a sequence of compact operators and the

bounded linear operator U is sueh that lim IU, - Ul =0, then U is
7N 00
also compact.

Proof. Let (x;) be a bounded sequence and (Ei) a subsequence of

(x;) obtained by a diagonal argument such that lim U, (Z;) exists for
7
each natural number n. Consequently, for n=1,2,7?., we have:
- = < - - - - ==
I[U(mp) U(xq)" < HU(mp) Un(xp)ﬂ + HUn(xp) Un(xq)ﬂ + HUn(xq) U(xq)ﬂ
so that
P < _ e - - -
HU(xp) U(zq)" s v Unﬂ(ﬂxpu + quu)+ HUn(xp) Un(xq)ﬂ,

whence, clearly p}%ﬂwHU(xp)— U(mq)ﬂ= 0. Hence (U(xi)) is a Cauchy

sequence from which the compactness of the operator U follows.

§2. Examples of compact operators in some special spaces.

If X(e,t) is a continuous function for 0s$s<1 and 0£¢t<1, the
function (of the variable s) given by

1
(1) ule) = [K(s,t)x(t)dt
0
is continuous, for any integrable function z(t). Regarded as an
operator defined in one of the spaces
(2) M, ¢, L' and L* where r > 1,

with codomain also in any of these spaces, the operator given by (1)
18 compact.
The proof rests on the following theorem of Arzeld:

For a bounded sequence of continuous functions (un(s)) to have a
uniformly convergent subsequence, it is sufficient that, for every
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number € > 0, there exists a number n> 0 such that the inequality
|s, - s,| <n implies the inequality |un(s }—uy(s,) | €€ for every
n=1,2,...

Indeed, assume that lx,l £ 1 and that, for 0<s <1 and 7=1,2,...,
up(s) = ftK(s,t)xn(t)dt. The continuity of X(s,t) implies the exist-

ence, for every € >0, of an n> 0 such that the inequality
|s, - 8,| <n implies that |K(s,,t)-K(s,,t)|Se for 0£¢%1. Con-

sequently
1

1
[up(s)) = uye,) | s {[K(sl,t) - K(s,,t) )z (£)dt| £ e£|xn(t)|dt,

which yields, by virtue of the inequality fllx (t) |dt s e, l, easily

seen to hold in the spaces (2), {u,(s;) -u, (s,)| £, so that, by
Arzeld's theorem, one can extract a unlformly convergent subsequence
from the sequence Cun(s)) Now, since any sequence of functions in
any of the spaces (2) which is uniformly convergent is also converg-
ent in the norm of the space, we have shown that the operator (1) is
compact in such spaces.

In particular, we have the following theorems:

The space C. For the operator (1) to be compact in C, it is suff-
ieient that, for every so, one has:

(3) lim _HK(s t) - K(s,t)|dt = 0.
s+s,°
In fact, for every ¢ > 0 one easily deduces from (3) the existence

of an n>0 such that {s,-s,| $n implies f |K(s,,t) = K(s,,t) |dt < e,

which implies, as before, the compactness of the operator (1) in C.
Condition (3) will be satisfied, for example, when the function

K(s,t) is bounded and such that lim X(s,t) = K(s,,t) for every s, and
8+8
almost every t. 0
Note finally that the operator given by

8
yle) = [K(e,t)x(t)dt
0

is also compact in ¢, if condition (3) is satisfied.

The spaces P, Let K(s,t) be a measurable function for 0<s <1 and
02t<1 and let r denote the smaller of the numbers p and q/(q=1)
where p>1 and g>1. If

11

(4) Jj[K(s £) |7 Vasdt < ,

1"

then (1) defines a compaet operator from P into 9.

Indeed let CKn(s,t)) be a sequence of continuous functions such
that
11 r
(5) lim [[|K,(s,£) - K(s,t) |7 'dedt = o.
n+w 00

Since, for n=1,2,..., the operator U, given by y = Uy(x) =
1
[ Enls,t)z(2)dt is compact from P into 19, it follows that

W, @ - v 9 s j|j (K, - Kxaz(t)dt|ds

< {{dS[f,,IKn _ Klr/(r' 1)dt]q(r—1)/r} (}I o) 'rdt)q/r'
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Now, as rSp, we have 1

(j|x(t)| dt) (}|x(t)[pdt);

i.e. ﬁiﬁ%r_l £1, we have

and since r £ ,
qg-1

MW, (x) = Ulx)l € jj[x - x|*7 dtds} T iz,

r—1

and so
r r-1

Nu, - Ul s [fj|x - x|” dtds] r,
00

whence, by (5), lig kU, - Ul =0, which implies, by theorem 2, p. 59,
n

the compactness of the operator U, i.e. of the operator given by (1),
where u(s) = U(x) € L9.

Remark. 1In particular, for p=q =2 the condition
11
[[x%(s,t)dsdt < +=
00

therefore implies the compactness of the operator (1) as an operator
from L? into itself.

§3. Adjoint (conjugate) operators

As usual, let £ and E, be two Banach spaces and U a bounded linear
operator from E to E,.

We shall denote by X and Y bounded linear functionals on E and E,
respectively.

Consider the expression Y[U(x)] where Y is an arbitrary bounded
linear functional on E,. This expression can clearly be regarded as
a functional defined on .E. Indeed, let us put

(6) X(x) = Y[U(z)].
Thus defined, the functional X is additive and continuous, because
we have |X(z)|= |Y[U(x)]|<hxl IUI. lxll, whence
(7) Xl < kybk.nul.
Now, the relation (6) serves to define a new operator U*, given by
X = U*(Y),

from the space E¥ of bounded linear functionals on E to the space E*
of those defined on E.

The operator U* is called the adjoint or conjugate of U. By (7),
it is additive and continuous.

THEOREM 3. For the adjoint U* of the bounded linear operator U,
we have IU*| = IUI.

Proof. Firstly, for every xz€ E, we have |Y([U(z)]]| s hyl.lul.lzh,
whence IU*(Y)l = 1Y(U)h < l¥l.livl and consequently

(8) o < wul.

Moreover, given an arbitrary x,€E, there exists, by theorem 3,
Chapter IV, §2, p. 34, a bounded linear functional Y, on E, such

that 1¥,l =1 and |Y,[U(x,)]]| =1U(z4) 0, and so IU(x, )II— |Y°[U(mo)]| s
HU*H.HYOH.Hx0H=HU*H lzyll, whence IU(z,) I s HU*l. 0z, H and consequently
(9) Il s Hu*l.

The result now follows from the inequalities (8) and (9).
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THEOREM 4. If U is a compact operator, so is its adjoint U*: in
other words, if (Yp) is a bounded sequence in E}, Z.e. Yyl <M, say,
then there exists a subsequence (Yn;) and an eZement X of E* such
that

(10) lim 1U*(¥p;) = XI = 0.

190

Proof. By theorem 1, p. 59, the codomain GE£E; of the operator U
contains a countable dense set, and so, by theorem 3, Chapter Vv, §1,
p. 49, we can extract, from the sequence (Y,) SEY¥, where I7,Il <M<
for every n,_a subsequence (Yn;) which is convergent for every y€ G,
i.e. (¥n;(y)) is convergent for every y€ G. Now put 11m YnylU(2)] =

%ig U*(Ypn,) [2] = %ig Xn¢($)= X{z) and let =z,
that
(11) lzzh = 1 and |X(xg) - Xni(xi)] 2 #hx - xniu.

Now, if the theorem were false, i.e. there existed n> 0 such that
lx - Xn$H> n for each £=1,2...., we would have by (11), putting
Y'- Y, .
7

(12) |2 10(2;)] = Lim Y3 [0(2)] |
J >

¢ be an element of E such

and, as lx;l =1 for every <, there would exist a sequence of indices
(k;) such that lim U(mki) =y,- We would therefore be able to find,
+>00

7
for any € > 0, a natural number ¥ such that, for every <> N, we had
ly,=Ulxy )k <€ and

i

Y, (y,) - 1im ¥, (y )| < ¢
ki 0 J'-Nn kj 0 I !

whence

IA

ROMUCT RS B }32 T W) 1| S [T lUemg) =yl lyki(y ) - }&}5 .ij(yo)l

’
+ |lim Yy [Ulxy, ) = y,]

lj»oo kg Ty |
S Mg+ €+ Me,

which is impossible by (12), as the number ¢ can be arbitrarily
small.

§4., Applications. Examples of adjoint operators in some special
spaces.

The space C. If K(s,t) is continuous for 0<s<1 ana 0<t< 1, the
expression
1

Ulx) = [K(s,t)x(t)dt
0

defines a bounded linear operator U on (.
Let Y be any bounded linear functional on ¢, which is therefore

1
(cf. Chapter IV, §4, p. 36) of the form Y(y) = foy(t)dY(t) where Y (t)

is a function of bounded variation. The functional U*(Y) = X given
by X(x) = Y[U(x)] is also a bounded linear functional on ¢, and is
therefore also of the form

1

(13) X(x) = [z(t)dX(t),

0
where X(t) is also a function of bounded variation, and we can
assume that X(0) = 0. Consequently, if we put

1

(14) y(s) = Ulx) (s) = [K(s,t)x(t)dt,
0
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we have, for every function x(t) € C:
1

1
(15) Jz(s)dX(s) = [y(s)d¥(s).
0 0 .
Consider the function defined by
1 for 0 ¢

s
z (8) =
v,n 0 for v + %

A

v

LAY
A

s 1,

and which is linear for v < s s v*-%. Putting =x for x in (14) and

v,n
(15), we obtain by changing the order of integration (Fubini),

1 1r1 1 1

Jzy pterde = I[J'K(s,t)wv’n(t)dt}dﬂs) = fxv,n(t)[fK(s,t)dY(s) ]dt,

0 [ Radl’] 0 0
whence, letting n+«, we have for s=0,1 and all points of continuity
of the function X(g), thus for all except at most countably many
points s,

. S[‘l
(16) X(s) = ILIK(s,t)dY(s)}dt;
oto

now, as the value of the Stieltjes integral (13) remains the same
when the value of the function X(¢) is altered at countably many
points (except 0 and 1), we can assume that the function X(s) is
defined by the formula (16) throughout [0,1], so that it is contin-
uous for 0<s<1.

The expression (16) can thus be regarded as a representation of
the adjoint operator U*, by which it is to be understood that if
Y(s) is a function of bounded variation which represents the bounded

linear functional given by jiy(s)dY(s), the corresponding function
. of bounded variation X(s) represents the bounded linear functional
given by jzm(t)dx(t).

For the bounded linear operator U given by
1

Ulz) (s) = x(s) - [K(s,t)x(t)dt,
0
with the same function X(s,t), we have
t 1
Ux(¥) (¢) = ¥(t) - [dt[k(s,t)dY(s) = X(t).
o 0

The LP spaces. If the function K(s,t) is measurable for 0<s <1
and 0<¢<1 and if

11
(17 J{|K(s,t)x (£) ¥ (3) |dsdt < o
, oo q

for every pair of functions x(¢) € P and Y(s) € l}q_1 where p > 1 and
q> 1, the operator U given by
1

Ulz) (s) = y(s) = {K(s,t)m(t)dt

is a bounded linear operator from P into 19.
The general bounded linear functional Y on the space 19 is of the
form
1

Y(y) = [¥(s)y(s)ds,
0 q

where Y(s) is a function belonging to Lq_1 and we have
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1 1 1 1
Y(y) = [Y(s)ds[K(s,t)z(t)dt = [z(¢t)dt{K(s,t)Y(s)ds.
0 [ 0 0

Putting
1

(18) X(t) = [K(s,t)Y(s)ds,
°
we have
1 1
[r(e)y(s)ds = [X(t)x(t)dt.
° 0

The expression (18) can be regarded as a representation of the
adjoint operator U*.
In the special case where p=g¢ > 1, the adjoint of the bounded
linear operator U given by
1

Ulx) (2) = xls) - [K(s,t)xz(t)de
0

is of the form
1

X(t) = UX(¥)(¢) = Y(¢) - [K(s,t)Y(s)ds.
0

The space L'. The above considerations apply equally to the space

L'. If (17) holds for xz€ L' and Y€ ¥, the expression
1

y(s) = Ulx) (s) = [K(s,t)x(t)dt
0

defines a bounded linear operator from L! into itself.
The adjoint operator is of the form
1

X(t) = U*(Y)(t) = [K(s,t)¥(s)ds
0
where Y(s) € M represents the bounded linear functional I:Y(s)y(s)ds
for y(s) € L', whilst X(t) € M represents the bounded linear function-
al jtx(t)m(t)dt for z(t) € L'. For corresponding pairs X,Y and x,y,

i.e. X=U*Y and y = Uz, we have
1

1
[x(t)z(t)dt = [Y(s)y(s)ds.
0 0
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CHAPTER VII

Biorthogonal sequences

§1. Definition and general properties. -
A sequence (x;) of elements and (f ) of bounded linear functionals
is said to be biorthogonal when

_ J1 foxr ¢ = j4
) fi(xj) B {0 for i = j:

Given an arbitrary zx € E, the series
(2) : 2 z,.f; )

is called the deveZopment of x with respect to the biorthogonal
sequence (x3), (fz).

In the case where the sequence (f;) constitutes a total set of
functionals (cf. Chapter III, §3, p. 27) and the series (2) is con-
vergent for some x, then x is the sum of this series; in fact, we
then have for every j=1,2,...,

fila -izlmi-fi(x)] = fil=) - fi@) = 0.
THEOREM 1. If the series (2) is convergent for every xz€ E, the

geries

Z £y (x) . Flz)
=1
is8 also convergent for every x € E for any bounded linear functional F.

Proof. Putting
n
Sp =.z fi'F(xi)’
=1

n n
we have 5, (z) = 7:glfi(:::).F(.ac,b-)= F[iglxi.fi(m)], from which the conver-
gence of the sequence (Sn(x)) for every z plainly follows.

THEOREM 2. If the partial sums (3) of the series

0

(4) izlfi'F(xi)
form a norm-bounded set for any bounded linear funcetional F, the
series (2) is convergent for every x € E which is the limit of some

sequence of linear combinations of terms of the sequence (x;), (Z.e.
for all x in the closed linear span of the x;).

Proof. Putting
(5) s, (=) 2 @, f, (@),

we have Fls,(x)] = E F(x ). fﬁ(x)-sn(x) (see (3)) and, as by hypo-

thesis s, £ M where M is a number independent of n, we have, for

every z € E, by theorem 6 (Chapter v, §1), p. 50, lim ks, (x)ll < =,
n+o
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There therefore exists by theorem 5 (Chapter Vv, §1) p.50, a number ¥,
independent of » and of =z, such that ls, (x)l S N.iizl.
Now, since we have lim s (x;)} =x; for every 2=1,2,..., a simple
>0
argument establishes the existence of lim s, (x) for every element
n-roo
x € E which satisfies the condition of the theorem.

THEOREM 3. If the partial sums (5) of the series (2) form a norm-
bounded set for any x € E, the series (4) is convergent for every
funetional F which is the limit of a sequence of linear combinations
of terms of the sequence (f;}, (f.e. for all F in the closed linear
span of the f;).

The proof is similar to that of theorem 2 above.

THEOREM 4. Under the same hypotheses, if,.further, (x;) is a
fundamental sequence, the series (2) is convergent for every x € E.

Proof. We have, by (5), lim Is,(z) | < » for every x € E, and,
nm
further, lim s,(x;) =x; for every i=1,2,... The convergence of the
+>c0
series (2) for every x € E now follows by virtue of theorems 5 and 3
(Chapter v, §1) pp. 49-50.
§2. Biorthogonal sequences in some special spaces.

Let us now consider how biorthogonal sequences behave in the
spaces which are of particular interest to us.
Put

1
_J1 for ¢ = 7,

(6) {mi(t)yj(t)dt =0 for i = j.

Assume further that Cxi(t)) is a sequence of functions in LP where

p > 1 and that Cyi(t)) is a sequence in Lp/(p—l); assume finally that
these sequences are complete (or, equivalently, closed).

THEOREM 5. Under these hypotheses, i1f the series
Zm (t)fy (t)z (t)dt

i=1
is pth power mean convergent for any function x(t) € Lp, the series
1

(7) y ) y; (t) [z (£)y () dt
t =1 0
is =7 power mean conveérgent for every function y(t) € Lp/(p—l).

Proof. Let the bounded linear functional f; on IP be defined by
1

filz) = [y, (8= (¢)dt for x(t) € P,
0

0
The series 2 1% .f;{x) is then pthpower mean (i.e. norm-) converg-
ent for every xeLp by hypothe51s. By theorem 3 above, the series
0
2L 1f,L.F(:c,L) = 1yt(t)j'omt(t)y(t)dt where y(t) € Lp/(p 1) is conse-
quently 5T power mean, or norm-, convergent for every bounded
linear functional F defined on the space Lp; hence the same is true

of the series (7) for every function y(z) € Lp/(p—l)' g.e.d.
In particular, when z;(¢) =y;(t) € LT where r is the larger of the

two numbers p and Eg—

T’ the theorem just proved implies the following

corollary.
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If the series

o 1
(8) 1z () [z (t)x(t)dt
=1 0
s pth power mean convergent for every x€ Lp, then it is EgT

th

power mean convergent for every x€.Lp/(p_1).

For example, one could take the xsy for ¢=1,2,..., to be
(essentially) bounded functions.

Now consider the case where, in the hypothesis (6), (z;(¢)) is a
sequence of integrable functions and Cyi(t)) is a sequence of func-
tions which are bounded for 0< ¢t < 1. Suppose, finally, that the
sequence Cmi(t)) is complete in L.

THEOREM 6. Under these hypotheses, if the series
izlmi(t)ftyiit)x(t)dt is mean convergent for every xz(t) € LY, then
the series i§1y¢(t)f1xi(t)y(t)dt 18 bounded almost everywhere for
every y(t) € ¥ and conversely.

The proof is similar to that of the preceding theorem 5: one
regards the x; as elements of the domain L! and the y; as represent-
ing bounded linear functionals, and then employs theorems 3 and 4,
p. 67.

In particular, when x;(t) = y;(t), we have the corollaries:

1° If the series (8), where x;(t) =y;(t) €M, is mean convergent
for every x(t) € L', then it is bounded for every x(t) €M and
conversely.

2° If the series (8), where x;(t) =y (t) €C and (z;) ;5 4
complete sequence in C, is uniformly convergent for every
z(t) € C, then it is mean convergent for every x(t) € L' and
conversely.

The proof is obtained, in one direction, by regarding the x; as
elements of the domain ¢ and the y; =x; as representing bounded
linear functionals, and, in the opposite direction, by regarding the
x; as elements of the domain L' and the y;==z; as representing
bounded linear functionals on L!.

§3. Bases in Banach spaces.

A sequence (x;) of elements of E is called a (Schauder) base when,
for every x € E, there exists a unique sequence of numbers (n;) such
that

o
x = z n.x..
i=1 ¢ *

Given a base (xi)' let E, be the set of sequences y= (”i) for
o0

which the series i§1”ixi is convergent. Putting
n
Iyl = sup " 2 n e
g=1 ¢ *

.
13n
it is easily shown that E,, thus normed, is a Banach space.
Now put

-2
z =Uly) = ]n
i=1
Thus defined, U is a bounded linear operator, because 1U(y)l s lyl,
and, as it maps E, bijectively onto E, its inverse U-1 is also a
bounded linear operator.
Finally, the map f; defined by

ey for every sequence y = (ni) € El.
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[+
f;l®) = n, where x =i21”imi
is a bounded linear functional, because Hnixiﬂé 2yl and
2 2
= — L -1
|£; ()] In;1 s “xi“uyu < HxiH"U o,

We thus have
==

x =iz1xifi(m) for every z € E

and, this development being unique, the relations (1) (p. 65) follow,
so that the sequence (z;),(f;) is biorthogonal.
Observe that for every bounded linear functional F defined on E

<o
the series i§1fi(x)F(xi) converges to F(x), because, for every z¢€ E,

one has:
«©

n
y f @) Flz;) = lin F[ ) xifi(m)} = Plz).
i=1 n-+o =1

It is not known if every separable Banach space has a base.

The question is only settled for certain special spaces. Thus,
for example, in LP, where p2 1, a base is given by the orthogonal
Haar system. In ¢ a base has been constructed by Schauder. 1In 1
for p2 1 a base is furnished by the sequence (x;) where

_ A i _ 1 for © = n,
T = (En) and g, = {0 for ¢ # n;
we then have f;(x) = &; for x= (§;). Finally in ¢ a base is given by
the same sequence together with the element x, = (£]) where ;=1 for
n=1,2,... We then have fo(x) =1lim g. for == (£,) € c.
T T T
§4. Some applications to the theory of orthogonal expansions.

THEOREM 7. Suppose that the sequences (x;), (f;) and (y;), (¢;) are

biorthogonal and that the equations f;(x)=¢;(y), for i=1,2,...,

have exactly one solution y=Ulx) for every x. Then the convergence
(> o

of the series i§1hixi implies that of the series i§1hiyi for every
sequence of numbers (hi)’
Proof. It is easily seen that if lim x =x, and lim y =y,, where
n-+o n 7 -0 n 0
Yp = Ulx,), then y =U(x,). It follows from theorem 7 (Chapter III,

§3) p. 26, that the operator U is bounded and linear. Therefore
putting NUl =M, we have lIU(x)ll S Mlxl and since, by definition,
U(xi)= Yy; for ¢=1,2,..., it follows that

n n
U(izlhixi) =1y,
for any real numbers hi' from which the result immediately follows.

COROLLARY. Suppose that (x;(t)) and (y;(t)) are orthonormal
sequences of continuous funetions, and that for every continuous
funetion x(t) there exists a unique continuous function y(t) such
that

1 1

Jz, (E)x(t)dE = [y, (t)y(t)dt.
° o
L
Then if the series iglhixi(t) is uniformly convergent so is the
series I h.y.(t).
1=1719¢
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Analogous corollaries hold for other function spaces.

THEOREM 8. Let (x;), (f;) be a biorthogonal sequence, where (f;)
is a total sequence, and let (h;) be a sequence of numbers such that
whenever (a;) s the sequence of coefficients of an element z (Z.e.
a;=filx) for 1=1,2,...), (h;a;) is the coefficient sequence of an
element y.

If under these conditions, (B;) is the coefficient sequence of a
bounded linear functional F (i.e. B;=Fl(x;) for i=1,2,...), the
sequence (h;B;) is also the coefficient sequence of some bounded
linear functional &.

Proof. By hypothesis, the system of equations hifi(x)= f:(y) for
7=1,2,... has, for every x, exactly one solution, which we denote by
y=Ulx).

The equalities %ig xp, = x, and %ig Yn =Y, where y, =Ul(x,) clearly

imply that y,=U(x;). Consequently, by theorem 7 (Chapter III, §3)
p. 26, U is a boun&ed linear operator. In particular, it is easily
checked that

(9) ’ U(mi) = hixi for every 7 = 1,2,...

Now, given a bounded linear functional F such that B; = F(xi) for
<=1,2,..., we have, in view of (9), FlU(x;)]1 =HhyF(x3) = hiBs, i.e.
the numbers %;B8; are the coefficients of the functional ¢ = U*(F),
g.e.d.

Note that if x=1lim z., U({x) is, by (9), the limit of a linear
A
combination of terms of the sequence (xi)‘
As an easy application of this remark we obtain the following

THEOREM 9. Let (x;(t)) be an orthonormal sequence of continuous
functions which is also a closed sequence in the space C.

If the sequence of scalars (h;) transforms every sequence (o;) of
coefficients of a bounded fumction into the coefficient sequence
(hgag) of another bounded function, them it transforms every coeffie-
tent sequence (B8;) of any continuous function into the coefficient
sequence (h;B;) of another continuous function.

The converse theorem is also true.

Lastly, we have
THEOREM 10. Let (mi(t)) be a complete orthonormal sequence of

bounded functions in Lp/(p—l)’ where p> 1.

If the sequence of scalars (h;) transforms the coeffieient
sequence (o) of an arbitrary function x(t) € P into the coefficient
sequence (h;o;) of another function y(t) € IP, then it also trans-

forms every coefficient sequence (B;) of an arbitrary function
z(t) € Lp/(p-l) into the coefficient sequence (h;B;) of a function
) eP/ PV 1p pew then P =M.






CHAPTER VIII

Linear functionals

§1. Preliminaries.

Given a closed linear subspace GE E and the dual space E* of bound-
ed linear functionals on E, we have already seen (cf. Chapter IV, §3,
p. 35, lemma) that, for any element x, € E~G, there exists a
functional f€ E* such that

flzy) = 1 and f(x) = 0 for every x € G.

This naturally leads one to inquire whether, conversely, the anal-
ogous relationship between subspaces 'S E* and elements of E holds.
To be precise, we require to know if, given a closed linear subspace
I £ E*, there exists, for an arbitrary funetional f,€ E*~T, an
element x € E such that

(1) fo(x) =1 and f(x) = 0 for every f € T.

The answer is , however, negative in general.

Indeed, take E = ¢, the space of convergent sequences of real num-
bers, so that E* is the dual space of ¢, and let I' be the space of
all elements f of E* of the form:

o« Lol
(2) flx) =i§1ai€i where x = (Ei) € c andizl|ai| < o,
Thus defined, T is a closed linear subspace of E*. 1In fact,
suppose

(3) lim kf, - fl =0,
where ne
@ (n)
(4) f, € T and £ (=) =izlai g, for n = 1,2,...

We need to show that feT'. Now (3) implies that 1lim Ipr - fqll =0,

. e s p,q**®
whence, since by definition

_ 25 () _ (@D
we conclude from (3), in view of the theorem of Chapter IV, §4, p. 41,
that

0
lim ¥ [alP) - ol9) =0
Psq+>® ;29 z t
and, consequently, that there exists a sequence (ai) such that
o o«
lim § |a{® - a,] =0and § |a,| < .
nro syt t i=1

We therefore have, for every x = (Ei) €c, the equality:

lim J a:"’'¢, = ] a.£.,
nve g1 g2 BT
whence, by (4),
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(=]
lim fn(m) ='z a. £
n-+o 1=
and since by (3)

lim |fn(x) - flz)| < lim an = fl-lxk = 0,

1> © n-ro
it follows that f(x) = s for every x¢€¢ ¢. The functional f is

thus of the form (2), so that, finally, feT.
This established, let

(5) Folx) = iiz E; for x = (gi) € e.

The functional fo thus defined plainly does not belong to r. How-
ever there exists no z, = E(O) € ¢ satisfying the conditions (1),
because as (1) and (5) 1mply that llm g(o) 1, it is impossible to
have g(o) 0, as required by (1), for every sequence of numbers
(ai) satlsfylng the conditions (2).

§2. Regularly closed linear spaces of linear functionals.

A linear subspace T of the dual E* of a Banach space F is said to
be regularly closed when there exists, for every element of E*~ T, an
element x, € E which satisfies the conditions (1).

The preceding example shows that a closed linear subspace of E* is
not always regularly closed. However, the converse is true: every
linear subspace T of E* which is regularly closed is also norm-
closed.

In fact, put

(6) f, € I for n=1,2,...
and
(7) lim If, - fI = 0.
n+o

If T ¢ I', a regularly closed linear subspace, there would exist an
z,€E satlsfylng (1), in particular, by (6) we would then have
Ffplzy) =0 for n=1,2,..., whence by (7), T (:c ) =1lim fn(x ) =
n->co

contradicting (1). Hence we must have f, ¢ r, i.e. the space T is
(norm) -closed.

It is easy to give examples of regularly closed spaces. Indeed,
let E be a Banach space and GS E any linear subspace of E. The set
I of bounded linear functionals f defined in E and such that

flx) = 0 for every z € G
is easily seen to be regularly closed.

Remark. If the set I' in question is not only a regularly closed
linear subspace but is also total, it then coincides with the whole
of E*.

In fact, the definition of total subset (see Chapter III, §3, p.
36) implies that the only element of E at which all the elements
f €T vanish is the (zero) element 0.

We shall now discuss the properties of- regularly closed spaces of
bounded linear functionals.

§3. Transfinitely closed sets of bounded linear functionals.

Given any ordinal number 6 which is a limit ordinal, i.e. has no
immediate predecessor, and a bounded sequence of real numbers (Cg)
of type 6, i.e. where 15E< 9, the transfinite limit superior o;
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(Cg), denoted by %i% Cg, is defined to be the infimum of the set of

real numbers {t: there exists an ordinal n (<6), depending on ¢,
such that (g < ¢ for all £2n}. The transfinite Limit inferior of
(Cg) is then defined by the formula
lim ¢, = - Tim (-C,).
£E+8 13 £+ g
LEMMA 1. If, for a sequence (fg) of type 0 of bounded linear
funetionals on E,

Ifgl ¢ M for 1 2 £ < 8,
there exists a bounded linear functional f satisfying the conditions:
(8) Kfl S M and lim fr(x) £ fix) € 1im f,(x) for every x € E.
f Lin fgl@) s £(@) s Tl fo(e) for cvery

The proof follows from theorem 1 (Chapter II, §2, p. 14), on put-
ting pl(zx) = éig fg(x). The functional p also satisfies p(x) < Mizl
>

for z € E.

Having established this lemma, we shall call a bounded linear
functional f which satisfies the conditions (8) a transfinite limit
of the sequence (fg).

In particular, when %ig ifp—- fll=0 the functional f is clearly a

transfinite limit of the sequence (f,) because then lim fn(x)= fix)
lim f, (x) for every x€E. e
7+

A linear space I' of bounded linear functionals is said to be
transfinitely closed, when every norm-bounded transfinite sequence
(fz) of elements of I has a transfinite limit f in T.

évery transfinitely closed space I' is also norm-closed.

In fact, (6) and (7) then yield 11m fn(x)-f (x) for every xz € E

and as every functional f which here satlsfles the condition
llm Fniz) £ filx) £ llm Ffplx) coincides with f,, it follows that f i

n+
the only transflnlte limit of the sequence (f,), so that f, €T which
is consequently (norm)-closed.

LEMMA 2. Given a transfinitely closed linear space T of bounded
linear functionals on E and a bounded linear functional f, 6 on E not
belonging to T, there exists, for each number M satisfying the
condition

0 <M< IUf = f,Il for every f €T,
an element x € E such that
Folzg) = 1, flzy) = 0 for every £ € T and lz,l < g

Proof. For any increasing sequence of numbers (ML) with M, =¥,
which tends to infinity, let m denote the largest cardinal number
satisfying the following condition: given any set G& E of power < m,
there exists an element f¢ I such that

(10) Bfi s M, and |f(x) - fo(x)]| < M,lzl for every = € G.

Note straightaway that the number m thus defined does not exceed
the cardinality of E because, if there existed an f€ I' such that
[flx) = folx) | s M,.lzl for every x € E, one would have lf- foll s M, =M,
contrary to the ﬁypothesis (9).

This said, we shall now show that m is a fini{te number.

Indeed, suppose that m is not finite and consider any set GEE of
power m. Arrange the elements of ¢ as a transfinite sequence (xg)
where 1<£< 6 and ¢ is the least ordinal of power m; 6 is plainly a
limit ordinal. Consequently, for every ordinal number n< 0 the
power of the set of terms of the sequence (mg) where 1< £<n is < m.
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By definition of m, there therefore exists, for every n< ¢, a linear
functional f, €T such that

(11)  Ifgl s ¥, and [fr@xg) - foleg)| S M. llzgll for every E<n

and, as I is transfinitely closed by hypothesis, there exists an
element f€ T which is a transfinite limit of the sequence (fp),
1£n<6, and therefore, by (11}, satisfies the conditions [fIl <M,
and If(xg)-fu(mg)| sMylxgl for 1££< 6, i.e. the conditions (10).
Thus assuming m was infinite, there would exist for every set G&FE
of power man f€T satisfying (10), contradicting the definition of
m.

Now as m is finite, there exists a finite set ¢, £ E such that no
functional f satisfying the conditions

Ifl < M, and |fix) - folx)| € Mylzl for every x € G,

belongs to T'.

By induction, one easily establishes the existence of a sequence
(G;) of finite subsets of F such that no functional f which, for
some k, satisfies the conditions

Ifl S My and |f(@) - fot@)| < M lzl for x € G, and 7 < k
belongs to I'. Consequently, if for some f we have:
(12) [Fex) = Ffotr | < Mylxll for x € G, and ©=1,2,...,

the functional f does not belong to T.

We can assume that the elements of the sets G;, where ¢=1,2,...,
have norms equal to M, /M;: one merely has to multiply these elements
by appropriate scalars. If the elements of these sets are then
arranged as a sequence (x,), first writing down the elements of G,,
followed by those of G, and so on, we obtain

(13) lim x =0 and lxz_I< 1 for n=1,2,...,
and if
(14) If(xn) - fo(xn)l <M, for n=1,2,...,

the functional f does not belong to T.

Let ¢, denote the set of all sequences of the form (f(x,)) for
feTr. Clearly GoES¢ and (fo(x,))€c. It follows from (14) that the
distance of (f,(z,)) from the linear space G, is 2¥;. In view of
the general form of bounded linear functionais on the space ¢ (cf.
Chapter 4, 84, p. 40), there thus exists by the lemma of Chapter IV,
§3, p. 35, putting G =G;, a sequence of numbers (C¢,) and a number ¢
such that

(15) ¢ lim folzy) + ] C fola)) =1,
n->o n=1
(16) ¢ lim f(x ) + ) ¢, flx) =0 for every f € T
n->o n=1
and
T 1
(17) |¢] +Z |cn| sy—l.
n=1

Therefore, putting x =n§10"m" it finally follows from (15)-(17),
using (13), that f,(z,) =1, flx,) =1 for every fe€T and
o
1
gl sn§1|0n|.llxnll s—M—l =y’ q.e.d.
Lemma 2 just proved implies the following
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LEMMA 3. The notions of regularly closed and transfinitely closed
are the same for linear spaces of bounded linear functionals.

Proof. 1If a linear space I' of bounded linear functionals is
transfinitely closed, it is (norm)-closed, which by lemma 2 immedi-
ately implies that T is regularly closed.

Conversely, let ' be a regularly closed linear space of bounded
linear functionals, (fy) an arbitrary norm-bounded sequence of type
6 of elements of I and’fo any functional which is a transfinite
limit of the sequence (fg)- We thus have

(18) lim f (x) < Ffolx) 5 lim f_(x) for every x € E.
6*6 £>8
1f, then, fo did not belong to I', there would exist, by definition
of ', an element x € E satisfying the conditions (1), p. 71, whence,
in particular, fy(x) =0, contradicting (18). Hence f, €T, from
which it follows that ' is transfinitely closed.

Lemmas 2 and 3 yield the following

THEOREM 1. Given a regularly closed linear space I of bounded
linear functionals on E and a bounded linear functional f, not
belonging to T, there exists for each number M satisfying the condi-
tion

0 <M< If - fol for every f €T
an element x € E such that

Folzy) =1, flzy) =0 for every f€T and [|x0|[<;—d

§4. Weak convergence of bounded linear functiomals.

A sequence (f,) of bounded linear functionals is said to converge

weakly to the functional f when
lim f (x) = flx) for every f € E.
n->oo

The functional f is called a weak limit of the sequence (f,).

It follows that the functional f is additive and B-measurable;
according to theorem 4 (Chapter I, §3, p. 15) it is therefore a
bounded linear functional. Moreover, by theorem 5 (Chapter Vv, §1,
p. 50), the sequence of norms ("fn") is bounded. Finally, we have

(19) IFfl < 1im Uf 0,
n-roo
because the weak convergence of the sequence (f,) to f implies that
Un |fple)| = [f(z)| for every z, and as [fx(a)| S Ifyl-lal for

n=1,2,..., we have |f(z)| s“xu.l%g Ify,l, from which (19) follows.
One. easily deduces the follow?ng

THEOREM 2. For a. sequence (fp) of bounded linear functionals to
converge weakly to the functiomnal f, it 18 necessary and sufficient
that both

v (20) the sequence (lifyll) Zs bounded
and
(21) %i& Fplz) = flx) for every x belonging to a dense (or
fundamental) set, hold.

THEOREM 3. If the space E ig separable, every norm-bounded
sequence of bounded linear functionals (f,) has a weakly convergent
subsequence.

Proof. It suffices to extract from the sequence (f,) a sub-
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sequence which converges at every point of a countable dense subset
of £ and this is easily accomplished by a diagonal procedure.

§5. Weakly closed sets of bounded linear functionals in separable
Banach spaces.

Given two sets of bounded linear functionals A and I' where AST,
the set A is said to be weakly dense in T when, for every feT,
there exists a sequence (f,) €A which converges weakly to f.

The set T of bounded linear functionals is said to be weakly
closed when I contains every functional f which is the weak limit of
a sequence of functionals of T.

THEOREM 4. If the space E is separable, every set T of bounded
linear functionals on E contains a countable subset A which is weak-
ly dense in T.

Proof. We need only consider the case where the set ' is norm-
bounded, because every set of bounded linear functionals is the
union of at most countably many sets having this property.

Let (x,) be a dense sequence in E and, for »=1,2,..., let 7, be
the subset of n-dimensional space defined by

(22) Z, = {(flz),flx,), ... ,flzy)): f € T}

There clearly exists for every n a countable subset A, of I' such
that the subset of points of Z, for which fe€ A, is dense in Z,. The
set A= U 1An is obviously countable and for every fe T there exists
a sequence (fn) € 8p<S A such that |fplx;) - filzg)| < l for every

2=1,2,...,n, and which therefore converges weakly to . since (f,)
is norm-bounded by hypothesis as (f,) s A,<T.

THEOREM 5. For separablée Banach spaces E, the notions of regular-
ly closed and weakly closed are the same for linear spaces of
bounded linear functionals on E.

Proof. Firstly, let (f,) be a sequence of bounded linear func-
tionals belonging to I' which converges weakly to a functional f,.
We thus have

(23) %ig Fniz) = f,(x) for every z € E.

If f, did not belong to the set T, assumed to be regularly closed,
there would exist, by the definition of this notion, an element
xz, € E satisfying the conditions

(24) £ (x,) = 1 and f(z,) = 0 for every f € T.
As (fn)C r, we would consequently have f,(xo) =0 for every
n=1,2,..., whence, by (23), f,(x,) =0, contradicting (24). It

follows from this that f,eT; the set ' is therefore weakly closed.

Remark. Note that the separability of E does not play any part in
this part of the proof.

Conversely, in view of lemma 3, p. 75, it is enough to show that
the set I, assumed to be weakly closed, is transfinitely closed.

Let (fg) be a sequence of type 6 such that

(25) fr € T and Ifgh s M for 1 5 £ < ®
and let (m ) be a dense sequence in E. By hypothesis, there exists
for every patural number n an ordinal g, such that

(26) l:.m fg(:c.b) -5 S ) lug Felap + % for 1 £ 4 < n.
Y

Now, as the space E is separable, by theorem 3, p. 75, one can
extract a weakly convergent subsequence from the sequence (fgn).
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Letting f denote the weak limit of the sequence (fg ), it follows
from (25) that f€ T and, further, (26) implies that f is a trans-
finite limit of the sequence (fg).

Theorems 1, p. 75 and 5, p. 75, which have just been established,
immediately imply the following

THEOREM 6. If the Banach space E is separable, then, given a
weakly closed linear space T of bounded linear functionals on E and
any bounded linear functionals f not belonging to T, there exists,
for each number M satisfying the condition

0 <M <If = f, I for every f €T
an element x, € E such that

Folzg) =1, flz,) = 0 for every f € T and lz,l < 1%1

In view of lemma 3, p. 75, theorem 5 implies that the notions of
regularly, transfinitely and weakly closed, as applied to linear
spaces of bounded linear functionals, are all equivalent for separ-
able Banach spaces E.

A consequence of this, recalling the remark on p. 76, is the
following

THEOREM 7. If the Banach space E is separable and T is a set of
bounded linear functionals on E which is not only a weakly closed
linear space but is also total, then T contains every bounded linear
funetional on E (i.e. T = E*),

§6. Conditions for the weak convergence of bounded linear func-
tionals on the spaces C, Lp, e and 17.

We go on to study weak convergence of bounded linear functionals
in several particular separable Banach spaces, namely, the spaces C,
¥ for p21, ¢ and 1P for p2 1.
' For a countable dense set we take: in (¢ and Lp, the polynomials
with rational coefficients, in ¢ and P respectively, the sequences
of rational numbers which are eventually constant and eventually
zero, respectively.

The spaces j24 for p>1. Since every bounded linear functional f

on P is of the form (cf. Chapter IV, §4, p.39)
1

(27) fz(t)a(t)dt where a(t) € P/ =1
4
the sequence of functionals
1
(28) (F,) where fp@) = [a(t)ay(£)dt and ay(t) € P/ P71
o

converges weakly to the functional given by (27), when
1

1
(29) lim {z(t)a_(t)dt = [x(t)alt)dt
nro 0 n 0
for every function x (%) € IP.
Now, one can easily show that for the sequence (28) to converge
weakly to the functional (27) it is necessary and sufficient that
the conditions:

(30) the sequence (fiIan(t)[p/(p_l)dt) is bounded
and
U u
(31) %ig foan(t)dt = [Lolt)dt for 0 £ u 51,

both hold.
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The proof follows from theorem 2, p. 75, given that
1 (p-1)/p
- p/p-1) 4.1
anﬁ = [{[an(t)| dtJ s

further, that the functions xu(t) defined for 0<u< 1 by the

conditions
_ 1 for 0 £ ¢ u,
xu(t) - {0 for u < t 1,
constitute a total subset of LP and finally that
1 u
{”u(t)"‘n(t)dt = {an(t)dt

BA A

for every n=1,2,...

The space Ll. Since every bounded linear functional f on L! is of
the form
1
(32) flz) = fz(t)alt)dt where a(t) € M
]

(cf. Chapter IV, §4, p. 40) the sequence of functionals
1

(33) (f,) where f (z) = {x(t)an(t)dt and o () € M

converges weakly to the functional given by (32) when
1 1
(34) 1lim jx(t)an(t)dt = [z (t)al(t)dt for every =z(t) € L!.
na>o 0 0
One shows as in the previous case that the sequence of linear
functionals (33) converges weakly to the functional (32) if and only
if we have both

(35) the sequence Can(t)) is a norm-bounded subset of M

and
u u
(36) 1lim jan(t)dt = falt)dt for every u with 0 < u < 1.
nero 0 0

Remark. The conditions (30) and (31) are clearly necessary and
sufficient for property (29) to hold. The same is true of the con-
ditions (35) and (36) for property (34).

The spaces 1P for p21. Since every bounded linear functional
on 1P is of the form

1P/ (P=lgop

(7 s 221%% where z = (£;) € ¥ and (o) € {M forg: 1:

(cf. Chapter IV, §4, p. 42), the sequence of functionals
P/ (P=1) gop

<o
= p>1,
(38) (fn) where fn(m) iglaingi and (uin) € {M for p = 1,
converges weakly to the functional (37) when
0 co
. _ - 14
(39) lim a;nEs -'2 a €, for every =z (g;) € 1%,
n+o 1=1 1=1

For the sequence of linear functionals (38) to converge weakly to
the functional (37), it is necessary and sufficient that
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T -1
(i) .
’L:

(40) the sequence be bounded
su o,
{i;? | 1n|] for p =1
and
(41) lim Oy, T O for ¢ = 1,2,...
7>c0

The proof follows from theorem 2, §4, p. 75, in view of the fact
that the elements

1 for © = g,

®; = (g,;) where £, = {o for ¢ = 7,

J
form a total sequence in 1P and, further, that f,(x;) = a,;, for all
natural numbers j and n; finally, one uses the expréssions for the
norms of bounded linear functionals on 7P, given on p. 42.

Remark. The conditions (40) and (41) are also necessary and
sufficient for (39) to hold.

The space ¢. In view of the general form of bounded linear func-
tionals f on ¢, given by

= i = 1
(42) fix) A %iﬂ £; +iZ1aiEi where x (gi) € ¢ and (ai) €1
(cf. Chapter IV, §4, p. 40), the sequence of bounded linear
functionals
o
(43} (f,) where f,(x) = An %im gi +'z aingi and (ain) € 1! for
7+ i=1
n=1,2,...

converges weakly to the functional (42) when
[ -
(44) 1lim [A lim £, + § a, g.] =4 lim £, + § o.E. for every
n>o0 70 z 1= o AR t =1 R

x = (Ei) € c.

It is easily shown that for the sequence (43) to converge weakly
to the functional (42), it ig necessary and sufficient that
o
(45) the sequence (izllainl + |An|> be bounded
and

0
(46) 212 (An + Z1a£") = A +iz1ai and iiﬁ a;, = o, for i=1,2,...

T

§7. Weak compactness of bounded sets in certain spaces.

The preceding results allow one to deduce, by virtue of theorem 3,
p. 75, the following theorems.

For LP where p> 1. Every sequence of functions (an(t)), where
an(t) € P, satisfying the condition

1
[la, () [Pat < u,
0

where M is a number independent of n, containg a subsequence
(“ni(t)) such that, for some function ao(t) € LP:
1

1
lim J;uni(t):c(t)dt = J;ao(t)x(t)dt for every z(t1€ P/ PV,

A
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Indeed, the expressions f:an(t)x(t)dt for n=1,2,..., can be
regarded as bounded linear functionals Lp/(p-l)_ Since they form a
norm-bounded set and the space Lp/(p—l) is separable, one can, by

theorem 3, p. 75, extract a weakly convergent subsequence from the
sequence (an(t)); one has then merely to apply the result establish-
ed for the LP spaces in §6, p. 77.

For M. Every norm-bounded_sequence of functions (an(t)DEEM con-—
tains a subsequence Cani(t)) such that, for some function o,(t) € M:
1 1

lim fani(t)m(t)dt = [a,(t)z(t)dt for every x(t) € L'.
o

1+ 0

The proof is analogous to the preceding one.

For Zp, p>1, and m, analogous theorems are available.

§8. Weakly continuous linear functionals defined on the space of
bounded linear functionals.

Let F be a linear functional defined on the space E* of all bound-
ed linear functionals on the Banach space E. Then F is said to be
weakly continuous when lim F(f,) = F(f) whenever the sequence (f;)

-+>00

n
and the element f in E* are such that (f,) converges weakly to f.

THEOREM 8. If the Banach space E is separable and the bounded
linear functional F on E* is weakly continuous, there exists an
element x, € E such that

(47) F(f) = flx,) for every f € E*.

Proof. If T denotes the set {f€ E*: F(f) =0}, it easily follows
from the weak continuity of F that I' is a weakly closed linear
space. We can evidently assume that I'# E* (for otherwise we need

merely take z,=0). Let, therefore, f, be a bounded linear func-
tional satisfying the eguation
(48) F(fy) = 1.

It follows from theorem 6, p. 77, that there exists an x € E such
that

(49) folxy) = 1 and f(xz,) = 0 for every f € T.
Now, the identity
(50) F =FfoF(f) + ¢ for every f € E*, where ¢ = f - fo.F(f),

yields, by (48), F(¢) = 0, whence ¢€TI and consequently, by (49),
¢ (xy) =0, which by (50) implies the property (47), qg.e.d.

Remark. If the space F is not separable, theorem 8 still holds
provided that F is a bounded linear functional and the set T is
regularly closed, which enables one to appeal to theorem 1, p. 75,
instead of theorem 6, p. 77, in the argument.
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CHAPTER IX

Weakly convergent sequences

§1. Definition. Conditions for the weak convergence of sequences
of elements.

A sequence (z,) of elements of F is said to be weakly convergent to
the element x € £ when
lim f(z,) = f(z) for every f € E*%,
n-roo
i.e. for every bounded linear functional f defined on the given space
E.

THEOREM 1. For the sequence (xz,) to converge weakly to x, it is
necessary and sufficient that

(1) the sequence (lx,l) be bounded
and
(2) 1lim ¢(x,) = ¢(x) for every ¢ € A where A is a dense subset of E*.
n->o
Proof. The necessity of (1) follows from theorem 6 (Chapter V, §1)
p. 50, while that of (2) is obvious.

To prove the sufficiency, consider an arbitrary functional f€ E*.
By (2) there then exists for every number ¢ > 0 a functional ¢ € A such

that ¢ - Fl <§€H where M=sup ({lz,l:n=1,2,...} U {lzl}), which is
finite by (1). Consequently,

Ifle = 2p)| S [0l = zy)| + 55 - Io = 2yl S [9@ = @) | + &

as lim ¢(xn)= ¢(x) and e is arbitrary, we conclude from this that
>0
%ig flzy) = flz), i.e. that the sequence (x,) converges weakly to z.

Remark. It is enough to require of the set A that the set of all
linear combinations of functionals of A be a dense subset of E*.

THEOREM 2. If the sequence (z,) converges weakly to =z, there
exists a sequence (gy,) of linear combinations of terms of the
sequence (x,) such that lim g, = x.

n-+-w©

The proof follows from theorem 6 (Chapter IV, §3) p. 36, and the

definition of weak convergence.

§2. Weak convergence of sequences in the spaces C, Lp, e and 7P,

We here discuss the weak convergence of sequences in some of the
more important special spaces.

The space C. In view of the general form of bounded linear func-
tionals in ¢ (see p. 37), for a sequence of continuous functions
(x4 (t)) to converge weakly to the continuous function x(t), it is
necessary and sufficient that

1

1
(3) lim [z (t)dgit) = [xz(t)dg ()
n>o g 0
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for every funetion g(t) of bounded variation.

It follows from this that for a sequence of functtons (x (t))esc
to converge weakly to the function x(t) € C, it is necessary and
sufficient that both

(4) the set {x,(¢):n=1,2,...} of functions is (norm)-bounded,
and
(5) 1lim xn(t) = x(t) for every t € [0,1].

n+w

In fact, the necessity of (4) follows from theorem 1, p. 81, and
that of (5) is a consequence of the fact that, if t; denotes an
arbitrary point in [0, 1], the linear functional fl(z) =x(t,) is

bounded, whence 11m f(x = f(x) and consequently 11m mn(to)-—x(to)

The sufflClency follows from the fact that condltlons (4) and (5)
imply the equality (3) for every function g(t) of bounded variation
(cf. Introduction §5, p. 4).

This established, one obtains, from theorem 2, the following
theorem:

If a sequence of continuous functions (z,(t)), 0<t<1, is (norm)-
bounded and converges everywhere to a continuous function x(t), then
there exists a sequence of polynomials (linear combinations) of
terms of the sequence (x,(t)) which converges uniformly to x(t).

This is a remarkable property of the space of continuous functions
which already fails, for example, for functions of the first Baire
class.

The LP spaces for p>1. The sequence (x,(t)) S IP converges weakly
to x(t) € LP when
1 1
lim [z (t)a(t)dt = [z (t)alt)dt
n+w 0 0

for every function a(t) € P/ p=1)
By the remark on p. 78, we have the following theorem:

For the sequence of functions (2, (£)) S IP to converge weakly to
the function x(t) € LP, it is necessary and sufficient that both

(6) the sequence (f|xn(t)]pdt) be bounded
and °
u u
()] lim [z (t)dt = {m(t)dt for 0 5 u 2 1.
n+o 0 n

The space L'. The sequence (x,(t))S L' converges weakly to z,€ L*

when
1 1

(8) lim jx (t)oa(t)dt = fx (ta(t)dt
n->o
for every (essentzaZZy) bounded functzon alt).

As a result of this, we have the following theorem:

For the sequence of functions (z,(t)) S L' to converge weakly to
the funetion x4(t) € L', it is necessary and sufficient that the
following eonditions aZZ be satisfied

1
(9) the sequence (j[mn(t)|dt) is bounded
°

(10) for every number €> 0 there exists a number n> 0 such that

J xn(t)dt} S e forn=1,2,...,
H
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for every set H £ [0, 1] of measure < nq,

(11) lim jm (t)dt = jm (t)dt for 0 < u < 1.
n-+co 0
In fact, (8) is equivalent to the statement that

lim jz[xn(t)- z,(t)la(t)dt =0 for al(t) € ¥; the theorem in question
n+oo

easily follows from this with the help of the theorem of Lebesgue
given on p. 5 (see Introduction, §6).

The space ¢. For a sequence (xp), where x, = (g")e e, to converge

weakly to the element z = (§;) € e, it is necessary and sufficient
that

(12) the sequence (lx,l) be bounded,
and
(13) lim g? = E£. and lim (lim g?) = lim g
n-+co T t n+0 \Zroo T 400

The proof is immediate, given that every bounded linear functional
f on ¢ is of the form f(x) =C 11m g, * §1ci5i where x = (Ei) and

bFl=|c| + i=1lci (see p. 41) and remembering that if one puts
lim Ei for 7 = 0,
f’l:(x) = e
£; for < 2 1,

the set of linear combinations of the f;'s constitute a dense subset
of the space of all bounded linear functionals on c.

The 1¥ spaces, p> 1. For a sequence (x,) where z, = (Eén)>€ 1P to
.converge weakly to x= (£;) € Zp, it 18 necessary and sufficient that
o
(14) the sequence of numbers ( 2 |gé")|p) be bounded
and =1
(15) lim g(”’ = £, for every i=1,2,...

n-+oo
The proof follows from the remark on p. 79.

The space ll. For a sequence (x,) where xz, = (gé"))e 1t to con-

verge weakly to = (£.) € 11, it is necessary and sufficient that
KA

. = (n) -
lim Iz, - xl = 0, Z.e. lim E lg - gi| = 0.
n+o nao £ =1
Consequently:

In the space 1!, weak convergence is equivalent to norm converg-
ence.
Proof. Suppose that (z,) converges weakly to xz. Putting
(")- g(")— g we thus have that the sequence (yn) where

Nz
(n) converges weakly to O as n-+ . Consequently, for every

Y
n-
bounded sequence of numbers (ci) we have
o]
(16) lim § cinén) = 0.
Letting nre 1=1

Q
,
—"—
O -
<
Q ©
s
4, S,
L
o

~
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we thus have

(17 lim n'®) = 0 for every j = 1,2,...
n-+o

We need to show that

==
(18) lim J |né")| = lim Ny, I = 0.

nro =1 n->ro
Suppose, on the contrary, that
<o

(19) Tim J "] > e > o.

nre {=1

By induction, let us define two increasing sequences of natural
numbers (nk) and (rk) as follows:

1° =n, is the least n such that igllnén)] > €
o«

and (n1)|< £

r
° X (n1)
2° r, is the least r such that _I |n)"*’| > 1=BaIng g,

Nm

3° ny is the least natural number exceeding L and such that

®©  (ng) Tk-1, _("p) €
;L In; 1 > € and I [n, *"| < L
4° ry is the least natural number exceeding Prq and such that
r n n
. k | ¢ k)l > € ana . 3 | ( k)l < £,
ﬁ—rk_1+1 7 2 z—rk+1 7 5

The sequences (nk) and (rk) thus defined exist by virtue of (17)
and (19).

Now let
sign n{")  for 1 < ¢ s ry,
(20) e. = n )
v sign né k1 for 7y < 7 £ Tyt
We thus have |ci[= 1 for every i=1,2,..., whence by (16)
0
(7z)
(21) lim ] e, = 0.
k+o =1
But, by (20), we have
b (ng) % (ng) Pr-1, (mg) < (ng)
['Z ein; | 2_ 2 ]ni | - 2 | 2 I 2 I " k I
=1 1=ry ¥ L=1 i=rk+1
whence, by 3° and 4°,
«©
Snk)[ € € € €
lem; " 25-5-2-%%

i=1
for every k=1,2,..., which contradicts (21). We therefore have (18),
q.e.d.

§3. The relationship between weak and strong (norm) convergence
in the spaces LP and 1 for p> 1.

As far_as the_connection between weak and norm convergence in the
spaces P and Zp, p> 1, is concerned, we have the following more
general theorems:

If the sequence (xy(t)), where x, (t) € P and p>1, converges weak-
ly to z(t) € L¥ and if, further,

1 1
lim [|z (¢)|Pdt = [|z(¢)|Pat,
n+eo 0 n 0
then the sequence (x,(t)) converges to x(t) in norm, i.e.
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1
lim j|x (t) - z(t)|Pdt = 0.
noreo
We are going to prove the analogous theorem for the P spaces,p > 1,
the case p =1 having already been discussed in the preceding section
§2.

If the sequence (x,), where zp = (g‘”’)e 1P and p2 1, converges
weakly to z = (gi)e 1P and if

lim 2z I = lzl,
n>o
then
(22) lim lx_ = =zl = 0.
n-+w
Proof. We have by (15), p. 83,
(m) _
(23) lim £, = £,
n->o
and

(24) ( Z 1™ -k, |P)P ( Lle™ - ¢l )P (izﬂls;"’ - silp)é,

for any natural number N. Now,
1 © 1
n -
( 1 g™ - Eilp)p $ ( Il E(")Ip)p + (,Z g, )
i=N i=N =N

whence by hypothesis, together with (23) and (24)

= (n) P 5 PP _ .0 3 P
Lim Z 1g;" - g% < [2( I lg;l )p] = 2" ] |g;]
ne+o =1 =N =N
Since lim i§N|£i|p =0 and ¥ is arbitrary, this implies (22), g.e.d.
N+ 7

§4, Weakly complete spaces.

If (xp) is a sequence of elements of a Banach space E such that
%ig f(xn) exists for every bounded linear functional f on E, it is

not necessarily the case that there exists an element x, € E to which
the sequence (x,) converges weakly, i.e. such that lig flz,) = flx,)
n

for every bounded linear functional fe€ E*,

Here is an example of this situation in the space ¢. Let (x,(t)),
0st¢t<1, be a norm-bounded sequence of functions which converges
everywhere to a function z(t) which is not continuous. The limit

%ig Izmn(t)dg then exists for every function g(t) of bounded varia-
tion (cf. Introduction §5, p. 4), but the sequence (mn(t)) does not
converge weakly to any continuous function.

Nevertheless, we have the following theorem:

In the spaces P and 1P for p2 1, the existence of lim f(z,), for

n->0

a sequence (x,), for any bounded linear functional f, implies that
the sequence (xp) converges weakly to some element x,.

Proof for L. If llm j zp (t)oa(t)dt, where (x,(t))SL', exists for
every function a(t)e M, we must have

lim f[xp(t) -z, (t)]o(t)dt = 0 for every al(t) € M.

>0 0

We shall show that there exists, for every €>0, an n> 0 and a
natural number ¥ such that
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(25) J |x (t) - = (t)ldt < g,

for every n 2 N and every subset H of [0,1] of measure <n.
Indeed, if this were not so, there would exist two strictly inc-
reasing sequences of natural numbers (pk) and (nk) and a sequence of

subsets (Hk) whose measures tend to 0 such that
IHk|Epk(t)-'mnk(t)|dt2 e, whence

lim j[m t) - x,_ (t}lol(t)dt = 0 for every alt) € M,
koo k
would contradlct the theorem of Lebesgue (see Introduction, §6,
p. 5).
This established, we therefore have in particular, if n is suffic-
iently small, fH|xn(t)|dt<§e for every n=1,2,...,N, whence by (25)
(26) J |2 (&) |dt < 3¢ for every n=1,2,...,
H n 2
provided that the measure of H is <n.
Put
t
(27) lim [z («)du = B(%).
n>w 0 n

We are going to show that the function g(¢) is absolutely continu-
ous.
In fact, for every e > 0 there exists by (26) an n > 0 such that

IH|xn(t)]dt< ¢ for n=1,2,..., and for every set H of measure <n. In

particular, if H consists of a finite number of non-overlapping
intervals with end-points t. and tf, we therefore have
t

lim I e (8)dt = lin ] ‘= (t)dt = ! [B(t5) - B(t)],
n-ro H n>o 5 t
whence |Z[B(t') - B(t. )]|= €, whlch gives the absolute continuity of

the functlon B(t).

This being so, we have only to put B’ (t)-—x (t) to conclude from
(27) together with the conditions for weak convergence established
on p. 77, that the sequence (m (t)) converges weakly to x(%).

Proof for [P, p>1. Suppose that lim j z, (t)y(t)dt, where
xpy () € P for n=1 +/2,..., exists for every y(t)E Lp/(p 1) fhe Fne
given by f,(y} = f z, (t}y (¢t} dt are clearly bounded linear functionals
on Lp/(p 1) and since, by hypothesis, 11m Fny) exists for every
y(t) e Lp/(p n iim f, (y) = f(y) also deflnes a bounded linear func-
tional f on Lp/(p 1 by theorem 4 (Chapter I, 8§83, p. 15); this f is
therefore (cf. Chapter IV, §4, p. 39) of the form
fly) = fx (t)y(t)dt, for yELp/(p 1) | where x, € LP.

It follows from this that
1 1
lim jx ()y(t)de = fx (t)y(t)dt for every y € P/ @ B,
7n-+o
i.e. that (xn) converges weakly to x,, g.e.d.

The proof for 1! is similar to that of the theorem proved in §2,
pp. 83-84, and consists of showing that the sequence (x ) converges
in norm to an element x,.
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The proof for 1P where p> 1 is similar to that for IF.

§5. A theorem on weak convergence.
We conclude this chapter with the following general theorem.

THEOREM 3. [Let U be a bounded linear operator from one Banach
space E to another E,. If a sequence (x;) converges weakly to x
in E, then the sequence (Ulxy)) converges weakly to Ulx,) <in E,.

Proof. Let Y be any bounded linear functional on E,. Then
X=U*(Y), given by X(x) = Y[U(x)], is a bounded linear functional on
E, as |[X(x)| = |Y[U(z)]| s BX0NU(2) N < RN HUN. Nzl

The weak convergence of (x,) to z, thus implies that

lim .Y[U(.‘En)] = lim X(xn) = X(xo) = Y[U(xo)]r
n> 7n->0

i.e. that (U(z,)) converges weakly to Ul(z,), g.e.d.

Remark. With the additional hypothesis that the operator U is
compact, the weak convergence of (x,) to z, implies that (Ul(xz,))
ceonverges to Ulx,) in norm, i.e. that

lim HU(xy) - Ulxy)l = 0.
n-b-eo

In fact, if this were not the case, there would exist an €> 0 and
a subsequence (xni) such that

(28) HU(mni) - U(mo)H > ¢ for every <2=1,2,...,

with the sequence CU(xni)) converging in norm to an element y’' €E,.
Now as the weak convergence of (xni) to x, implies, by the preceding
theorem 3, that of CU(xni)) to U(xy), we would have y' = U(x,), which
is impossible by (28).
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CHAPTER X

Linear functional equations

§1. Relations between bounded linear operators and their adjoints.

In this chapter we shall concern ourselves with equations of the
form y = U(x) where U is a bounded linear operator whose domain is a
Banach space FE and whose codomhin is a subspace E, of another Banach
space E'.

Bounded linear functionals on E, i.e. elements of the dual of E,
will be denoted by X and those on E’ by Y.

If the bounded linear operator U defines a bijective transformation
from E to E,, the inverse operator -l is clearly linear (although
not necessarily continuous). It is easy to see that for the inverse
operator to exist, it is necessary and sufficient that

U(x) = 0 implies x = 0.

If the inverse operator is continuous, there exists an ¥ > 0 such
that, if y=U(x), lxl s M. liylh.

Conversely, if there exists a number m > 0 such that milzl S IU(z} 1},
then U has a continuous inverse.
" If the Znverse operator is continuous, then #he codomain E, is
closed.

Indeed, putting 11m Yn =Y, where y, = Ulx,), we have

llm e, = x,l £ M. lim Hy = ygh =0
D, g p q P 14 q 4
whence, putting lim z, =z, we conclude that Ul(z) =y.
7+

If the functional Yo is a transfinite limit of the segquence (YE) of
type 6, then the conjugate functional X, = U*(Y,) is a transfinite
limit of the sequence (Xg) = (U*(¥g)) of "type 8.

In fact, for every x weé have Xg w)-YE[U(m)] where 1< £< 8.

LEMMA. If the adjoint operator U* has a continuous inverse and T,
denotes any regularly closed linear subspace of the dual of E', then
the corresponding set T =U*(T,) is also regularly closed.

Proof. By hypothesis there exists a number M > 0 such that
IU*(¥) Il 2 M.1Yl for every Y. Consequently, if Xg€ U*(T,) and liXxgl <
for every 1£&£< 0, where Xg— U*(Yg), we will also have Yger,; and

HYEH Lo for every 1<£< 6. Since, by hypothesis the set I'; is reg-

ularly closed, there exists by lemma 3 (Chapter VIII, §3, p. 75) a
transfinite limit Y, €T, of the sequence (Yz). The functional
X,=U*(Y,) clearly therefore belongs to U*(% ) and is a transfinite
limit of the sequence (XE)' The set I'= U*(Fl) is thus transfinitely
closed and therefore, by the same lemma, regularly closed, g.e.d.

THEOREM 1. If the adjoint operator U* has a continuous inverse,
the equation y = U(x) has a solution for every y.
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Proof. For any given non-zero y,€ E', let T, denote the set of
all bounded linear functionals Y such that Y(yo) =0 and let
I=u*(r,) ={Xx: x=U*(¥), Yer,}.

The set [I'; is regularly closed; it follows from this by the pre-
ceding lemma that the set T is also regularly closed. Moreover, if
Y, is a bounded linear functional such that Y,(y,) =1, the function-
al x,=U*(Y,) does not belong to I'. Hence by theorem 1 (Chapter
VIII, §3, p. 75) there exists an element x, € E such that

(1) Xy(zy) =1 and X(x,) = 0 for every X € T.
Putting
(2) Y, = Ulzxy),

we have Y (y,) =X,(z,) and Y(y,) = X(x,), whence by (1)
(3) Yolyy) = 1 and Y(y,) = 0 for every Y € T,.

_ Now, for any bounded linear functional Y, the functional
Y=Y- [Y(y,)].Y, clearly belongs to I',, because
Y(yqy) =Y(y,) - [Y(yy)]l.Y,(y,) =0. Consequently, we have, by (3),
Yi(y,)=Y(y,) - [¥(y,)].Y (y,) =Y(y,) - Y(yy) =0, so that Y(y, -y,) =0
for every Y. It follows that y, -y,=0, and so, by (2), x, satis-
fies y, =U{x,), and is therefore the required solution for the
arbitrarily chosen element y,, g.e.d.

Conversely, we have

THEOREM 2. If the equation X = U*(Y) admits a solution for every X,
then

1° the operator U has a continuous inverse,

2° the codomain of U is the set of y which satisfy the condition

(4) Y(y) = 0 <f U*(Y) = 0.

Proof. 1°. If the operator U did not admit a continuous inverse,
there would exist a sequence (x,) SF such that

(5) lim fze Il = o

n->o

and %ig ly,h = 0 where y, =Ul(z,).

Now, as the equation X = U*(Y) has a solution for any X by hypothe-
sis, we have lim X(x,) = lim Y(y,) = 0 for every bounded linear func-
n n

tional X defined in E, which, by theorem 6 (Chapter v, §1, p. 50),
implies that the sequence of norms (lz,l) is bounded, contradicting
(5).

2°. Suppose that for some element y, € E*,
(6) U*(Y) = 0 implies Y(y,) = 0.

Since the codomain E, of the operator U is closed by 1° above, if
yo 4id not belong to E,, there would exist (cf. Chapter IV, §3, p.
35, lemma) a bounded functional Y, such that

(7) Yoly,) =1

and Y,(y) =0 for every ye€ E,. Putting X, =U*(Y,), we would thus
have X (x) = Y,(y) =0 where y=U(x) € F,, whence U*(Y;) =0, which by
(6) would impfy that Yo(y°)= 0, contradicting (7). Consequently,
€E;-
yoConéersely, if u*(Y) = x=0, we have for every y € E, the equality
Y(y) =Xx(x) =0, g.e.d.
Replacing, in the preceding theorems 1 and 2,z,y,X,Y,U and U* by
Y,X,y,2,U* and U respectively and using theorems about functionals
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instead of those involving elements in the arguments, we obtain the
following theorems.

THEOREM 3. If the operator U admits a continuous inverse, the
equation X = U*(Y) has a solution for every bounded linear functional
X defined on E.

THEOREM 4. If the equation y=1Ul(x) has a solution for every y,
then

1° the operator U admits a continuous inverse,

2° 4its codomain is the set of X satisfying, for every xz€E, the
condition:

(8) X(x) =0 <f U(x) = 0.
Theorems 1-4 lead easily to the following theorems.

THEOREM 5. If the equation y =Ul(x) admits exactly one solution
for every y, then the equation X =U*(Y) also admits exactly one
solution for every X and conversely.

THEOREM 6. If the operators U and U* admit continuous inverses,
then for every y and for every X there exist exactly one x and one Y
such that y=Ul(x) and X =U*(Y).

THEOREM 7. If the equations y =U(x) and X =U*(Y) admit solutions
for every y and for every X, then these solutions are unique.

Furthermore, we shall prove the three theorems that now follow.

THEOREM 8. If the codomain of a bounded linear operator U is
closed, that of the adjoint operator U* is the set of X which satie-
fy condition (8): X(x) =0 <f U(x) = 0.

Proof. The derived set E] of the codomain E, S E’' of the operator
U, being a closed linear subspace, is itself a Banach space.

Now if Z denotes an arbitrary bounded linear functional on E] and
U¥(2) denotes the bounded linear functional X satisfying the equa-
tion

Z[U(x)] = X(x) for every x € E,

it is easily verified that the codomains of the operators U} and U*
are the same. Indeed, for every bounded linear functional Y on E’
and satisfying the condition

(9) z(y) = Y(y) for every y € E},
we have Z[U(x)] = Y[U(x)] for every x €E, whence
(10) Uf(z) = Ux(1)

and, by definition of Z, there exists, by theorem 2 (Chapter IV, §2,
p. 34), a bounded linear functional Y on E’ satisfying condition (9)
and therefore (10). Condition (8) follows from this by theorem 4,
2°, above, on replacing E’ by E,.

THEOREM 9. If the codomain of the bounded linear operator U* is
elosed, that of the operator U is the set of all y which satisfy
condition (4): Y(y) =0 <f U*(Y) =0.

Proof. The functionals 2z and U%(Z) being defined as in the proof
of the preceding theorem 8, observe that U$¥(2Z) = 0 implies Z(y) =0
for every y € E]; hence Z=0.

Now as the sets of Z and of X are Banach spaces, the operator U¥},
where X = U%¥(Z), admits a continuous inverse by theorem 5 (Chapter
ITI, §3, p. 26). It follows from this by theorem 1, p. 89, that the
equation y = U(x) possesses a solution for every y € E!. The codomain
E, = E] of the operator U is therefore closed.



92 S. BANACH

As condition (4) is plainly satisfied, when y€ E,, it only remains
to establish the converse, i.e. to show that every y, € E' which
satisfies (4) belongs to E,.

In fact, as E;, is a closed linear subspace, in the contrary case
(cf. Chapter IV, §3, p. 35, lemma) there would exist a bounded
linear functional Y, such that Yo(y,) =1 and Y, (y) =0 for every
YyE€EE, . Therefore, putting X, =U*(Y,), we would have X (x) = Y,(y) =0
for z€ E, whence X, =0, and consequently U*(Y,) =0, contradicting
condition (4) which Y, is assumed to satisfy.

THEOREM 10. If the codomain E, of the bounded linear operator U
i8 closed, there exists a number m> 0 such that for every y€ E, one
ean find a corresponding x € E satisfying the conditions

y = Ulx) and Nzl < miyl.

Proof. In the course of the proof of theorem 3 (Chapter III, §3,
p. 25) we established proposition (1) which, under the hypothesis of
the theorem to be proved, yields the existence for every e¢> 0 of an
n > 0 such that, given an arbitrary y satisfying the inequality
flyl <n, one can find a corresponding x satisfying the conditions
y=U(x) and Izl <e.

We easily deduce from this the existence, for every y, of an x
meeting the requirements of the theorem with m:=%.

§2. Riesz' theory of linear equations associated with compact

linear operators.

We are going to concern ourselves here with equations of the form
y=x-U(x), where U is a compact linear operator from the space E
into itself.

LEMMA. If the linear operator U is compact, then the operator T
given by T(x) =x - VU(x) transforms every bounded closed set GEE into
a closed set.

Proof. Put

(11) z, € G for n = 1,2,..., and lim T(mn) = Yo
n-+o

so that the sequence (U(x,)) thus forms a relatively compact set and
there exists a subsequence (U(xni)) which converges to some element
z,€E. As xp;= U(xni)*'T(xn'): we have, by (11), that
%_1’2 Tpy =%g*t Yo whence T(y,+ x,) =y,-

THEOREM 11. If U is a compact operator, the codomains of the
operators T and T*, given by

P(x) = x - U(x) and T*(X) = X - U*(X)
are closed.

Proof. With G denoting the set of solutions of the equation
T(x) =0, let y_ = 0 be a point of accumulation of the codomain of 7T,

so that there exists a sequence (xn)szE such that y, = lim T(x,).
n->co

If the sequence (lzx,Il) were bounded, the element y, would belong
to the codomain by the lemma just proved.

Letting d, denote the distance between x, and the set ¢, there
thus exists a wy € 6 such that

- 1
(12) d, <z, - wl g (1 + n)dn.
We have
(13) lim T(xn - wn) = Yo

n-rco
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If the sequence (Hxn-wnu) were bounded, the proof would be com-
plete by the preceding lemma.

Suppose therefore that lim lxz, - wyl = ©, whence, putting

Ty=Wy nre n
z"'=T§;:§;T’ we have, by (13), %}g T(2,) =0 and la,l=1. By the
lemma we can thus extract, from the sequence (z,), a subsequence

(3n;) convergent to an element w, such that T(w,) =0, whence w,€G.

Putting z, - w, = gn, We have

(14) lim Heniu =0,
XLyt 1>
so that z, - w, =WE§:E%T - w, = ¢, and consequently

Ty = wp—w,.lay = wyl = epllay = wyll, whence by (12)

(15) ||x,,i = upy T wlTg, = vl S uenin(1 + -711——;>d"i'

Now, by (14) and (15) there exists an ny such that
ng
A||a:nt. - uny = wollany = vl € —=;
but this is impossible because wni*'wo"xni"wni“€ G and dnyg is the
distance between zxp; and G.
Thus the codomain of T is closed. The argument for T* is similar.

THEOREM 12. If U <8 a compact linear operator, the equations
x — Ulx) = 0 and X - U*(X) =0
have at most a finite number of linearly independent solutions.

Proof. Suppose, on the contrary, that there exists an infinite
sequence (x,) of linearly independent elements of E satisfying the
equations x, - Ulxzy,) =0 for n=1,2,... Let E, be the set

n

i§1hixi: hi arbitrary real numbers;. Clearly
(16) x € En implies = - U(x) = 0

and it is easy to see that for every n=1,2,..., the set E, is a
closed linear subspace not containing x,,j and thus a proper subset
of En+1.

By the lemma of Chapter Vv, §3, p. 52, there therefore exists a
sequence (y,) such that

(17)  yn € By, Mygh = 1 and Uy, - 2l > 5 for every z € E___,
whence, by (16), yp = U(yn) = 0 and consequently y, =Ulyy,). The
sequence (y,) is, therefore, a relatively compact set, which contra-
dicts (17).

For the equation X - U*(X) = 0 the reasoning is similar, applied to
the dual space, of all bounded linear functionals on E, which is
itself a Banach space.

THEOREM 13. If, for a compact linear operator U, the equation
y=z- U(x), respectively Y=X-U*(X), has a solution for every y or
Y respectively, then the equation x- U(x) =0, respectively
X-U*(X) =0, has exactly one solution, namely =0 or X=0 respec-
tively.

Proof. Put
W () =2 - V@) = T(x) and 2 (@) = TIT @].

L?t Ep denote the set of all x€ E satisfying the equation

(® (x) =0 and suppose that there exists an x, # © such that T(x,) = 0.
Letting x, denote the element satisfying the equation z,_; = T(zy),

we therefore have

(n) (n-1)
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) (g (n+1)

) =%, 2 0and T

. ) = T(z,) = o,

n+l n+i

whence
Tuer € En+1 ~ En'

The set E, is plainly a closed linear subspace, and is a proper
subset of E,,;. Hence by the lemma on p. 92, there exists a
sequence (y,) satisfying condition (17).

Now, as y, € E,, we have, by definition of T and of E,, the equal-
ity T(yn) = yn- Ulyn), whence

(18) Ulyp) = Ulyg) =tp — lyg + Tlyp) — Tyl =yp - =
and p > g implies T(p n (x) = p(P71) (y ) + 7(P) (y ) - 7(P) (yg) = 0.

Consequently x € Ep_1, whence, by (17), Ty -xll >4, so ghat by
(18), WUlyp) - U(yq)€>} for p > g, which is impossible, as the
sequence &(yn) has convergent subsequences. It must therefore be
the case that z, =0, g.e.d.

For the equat:.on X - U*(X) = 0, the proof is similar, again working
with the dual space of E.

THEOREM 14. If, for a compact linear operator U, the equation
x=-U(x) =0, respectively X- U*(X) =0, has the unique solution x=0
or X =0 respectively, then the equation y=ax - U(x), respectively
Y=X-U*(X), has a solution for every y or for every Y respectively.

Proof. As the codomain of the operator I - U, where I is the
identity operator on E, I(x) =« for every x€ E, is closed by theorem
11, p. 92, the hypothesis implies, by theorem 3, p. 91, that the
equation Y= X- U*(X) has a solution for every Y. Hence by the pre-
ceding theorem 13, the only solution of the equation X- U*(X) =9 is
given by X =0 and consequently, by theorem 5, p. 91, the equation
y=z- U(x) is soluble for every y.

The proof for Y=X- U*(X) is similar.

THEOREM 15. If U is a compact linear operator, the equations
x - Ulx) = 0 and X - U*(X) = ©
have the same number of linearly independent solutions.
Proof. As before, put
(19) T(x) = x - U(x) and T#(X)
Let
(20) T(xg) = © for ¢=1,2,...,n and T*(X;) = O for i=1,2,...,V,

where the terms of the sequence (x;) and equally those of the

sequence (X;) are assumed to be linearly independent and the numbers

n and v denote, respectively, the largest possible numbers of lin-

early independent solutions of the equations T(z) = @ and T*(X) = 0.
Denote by z;, for ©=1,2,...,v, any element such that

3 - J1 for 2z =g
(21) Tjlae) = {o for 7 = §.

X - U*(X).

Such z; exist, as the linear subspace of functionals of the form

=1
X, + 2 8%
j=1 99 j=isn
is weakly closed and does not contain Xi.
Similarly, let Z;, for ¢=1,2,...,n, denote a bounded linear
functional such that

(22) 2;(ag) = {‘ for

=d,
0 for 7 = j
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Such functionals 2; exist, because x; does not belong to the
closed linear subspace of elements of the form
2 n

-1
P oms ) Bjxj.

J=1 J=1i+1
Having said this, suppose, to begin with, that v>n. Let
n
(23) R(x) = Ulx) + ] Z.(x).2, and W(x) =z - R(x).
=1

It is easy to see that the operator R thus defined is compact. We
shall show that the equation W(x) = © has exactly one solution,
namely x = 0.

In fact, suppose that W(x,) =0. We need to prove that =z, =o0.
Now, we have, by (19) and (23):

(24) W(xy) = 2y - Rlzy) = Tlx,) -.glzi(xo).zi =0
and by (20) -
(25) Xz._T(m) = 0 for every x and <=1,2,...,v;
we deduce from (21) and (24) that
(26) XiW(-"”o) = Zi(‘co) = 0 for 2=1,2,...,n,
whencg T(:co) = @, which implies by (20) and the definition of n that
*o = ;L,04%¢ where o; are suitable real numbers. By (26) and (22) we

therefore have 2z, (x,) =a; =0 for every ¢=1,2,...,n, whence, finally,
z,=0.
This established, we conclude, by theorem 14, p. 94, that the
n
equation x - R(x) = T'(x) - iglzi (x).z;=2,,4 has a solution. However

we immediately see, by (21) and (25), that X,, [x- R(x)] =0 and
‘moreover, by (21), that X,41(zp41) =1. The assumption that v>n is
thus untenable.

Now sugpose that v<n. Let R(x) = izlzi (x) -2, whence
R*(X) = i§1X(zi) 'Zi' \r;roceeding as above, one would then show that
the equgtion T*(z) - iglx(zi).zi =0 (the adjoint of the equation
T(x) - iglzi(x).zi = @) has exactly one solution, namely X =0. The

v
equation T*(x) - iglx(zi) 'Zi = Zv would therefore have a solution by

+1
theorem 14, p. 94, and this is, however, impossible, because we have
T*(X)xy,, = X[T(x,,,)] =0 for every X, whence, by (22), Z_ (x,,1)=0
for ¢=1,2,...,n and moreover Z,,, (xy;1) =1. Thus the asgumption
that v< n also leads to a contradiction.

§3. Regular values and proper values in linear equations.

Suppose now that U, still a bounded linear operator, maps F into
itself.

If I is the identity operator on E, then I - AU is a bounded linear
operator for every real number % and its adjoint is I - hU* where U¥*
is the adjoint of U.

Having said this, we are going to study the equations

(27) 2 - hU(x) = y and X - AU*(X) = Y.

1f, for a given %,, the first or second, respectively, of the
equations (27) admits exactly one solution for every y or for every
Y, respectively, then %, is called a regular value of this equation;
otherwise, %, is called a proper value. The set of all such proper
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values is called the spectrum.
If x or X, respectively, satisfies the first or second, respec-
tively, of the equations

(28) x + hU(x) = 0 and X + AU*(X) = 0O,

it is known as a proper element (vector) or functional respectively.

By theorem 5, p. 91, the two equations (27) have the same set of
regular values, and therefore also of proper values.

Theorems 1-9, established on p. 90 - 91, are easily seen to apply
to equations of the form (27). These theorems enable one to deduce
the behaviour of one of the two equations from that of the other and
conversely.

THEOREM 16. The set of regular values is open.

Proof. 1If ho is a regular value, there exists a number m> 0 sat-
isfying the conditions

lz = holUlz)k 2 molxl and 1X - & U (X)) 2 m. IXI.
Consequently, for every ¢ we have:
Iz = (hy + V@I 2 lx = A U@ I - [e]. U@ 2 @ - el )izl
and, similarly,
B = (B, + )UX(X)1 2 (m - Jel.lu*i). ixl.
It follows that, for |e| sufficiently small, the operators
I - (h, +€e)Uand I - (h, + €)U*

have bounded inverses, from which it follows, by theorem 6, p. 91,
that #,+ ¢ is also a regular value.

THEOREM 17. If |k|< 1/WUN, then h is a regular value.
Proof. If |h|<1/WUI, the solutions can be written in the form

[+ 00
(29) z=y+ VAU (y) ana x = ¥ + ] Aur (),
n=1 n=1
where
v <y ana v*P = yx,
'™ = g™ ana g (M = prrrttly,

The series (29) are convergent, because we have

o« >~ n
L AKOILED) [|h|.HUH} Lyl
n=1 n=1
and

o] o] n

§oua"u™ (g [lhl.HU*H] .
n=1 n=1

From (29) we obtain

o -]

v = U@ + ] ATV =L TV - @ - ),
n=1 n=1

whence x - hU(z) =y. Similarly, we have X - AU%*(X) = Y. The equations

(27) thus admit solutions for every y and for every Y respectively.

By theorem 7, p. 91, these solutions are therefore unique and con-

sequently % is a regular value, g.e.d.

THEOREM 18. If h=h' and
x - hU(x) =0 and X - R'U*(X) = 0O,
then X(x) = 0.
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In other words: any proper vector of the value h is orthogonal to
every proper functional of a value h' not equal to h.

Proof. We have X(x) = hX[U{x)] = AU*(X)z and as U*(X)=~£7X, it
follows that X(x)==%%x(m). If h=2h', we therefore have X(x) = 0.

4. Theorems of Fredholm in the theory of compact operators.

If, under the hypotheses of the previous section, the operator
is further supposed to be compact, one can state, for the equations
(28), the following theorems which constitute a generalisation of
Fredholm's theorems on integral equations.

THEOREM 19. The equations (28) have the same finite number d(h)
of linearly independent solutions.

This is just a restatement of theorem 15, p. 94.
THEOREM 20. If d(k) =0, &k is a regular value.
This is a consequence of theorems 14, p. 94, and 19, above.
THEOREM 21. 'If d(h) >0 and if
= 3 (X} respectively, for 1=1,2,...,d(h),

denote (linearly <independent) solutions of the equations (28), then
the equations (27) admit solutions for every y such that X;(y) =0
and for every Y such that Y(x;) =0 respectively, (¢=1,2,...,d(h)).

This is a consequence of theorems 8 and 9, respectively, p. 91,
and 11, p. 92.
We now prove the

THEOREM 22. If U is a compact linear operator, the proper values
of the first equation (27)

y = x = hU(x)
constitute an isolated (discrete) set.

Proof. Let (k) be an infinite sequence of proper values where
hy=zhy for £#j. Put

(30) z, = hpUlxy) and z, = o.
We first show that the vectors =z, are linearly independent.

In fact, if Ty 4Zpreee Ty Were linearly independent, but

n=1 n
xp = ;L 042y, we would havez,=h,Ul(xy) = I hpayU(xg), whence

7
n=1_ a3 -1 h
X, = iglhnzgmi and consequently :zlai<1-z¥)xi= 0. Since, by hypo-
= 7 = i
thesis, Z¥¢ 1 for n> 4, it is plain that the vectors TyrZyreeerTpy g

7
could not be linearly independent.
This established, for each n=1,2,..., let E, be the linear sub-

n
space of elements y of the form y = _Zluixi; it is closed and forms a
i=
proper subset of E,,;. For every y€ E,, we have, by (30),

00 = ageg - F s 5 T a1 -
¥ = hally) =) agxy = ) Bpag 7o = ai(1 - —f)x-
=1 * Y ¢y heo L he/7%

whence y = h,Uly) € E,_y. By the lemma on p. 92, there therefore
exists a sequence of elements (y,) satisfying the conditions (17),
p. 93.

Now suppose that the sequence (hn) were convergent. Since the
operator U is compact, the sequence (U(k,y,)) would constitute a
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relatively compact set. Moreover, for p > ¢ we have

(31) HU(hpyp) - U(hqu)ﬂ = lyp = Wp - hpU(yp) + U(hqu)]ﬂ
and, by (17), Yp € Ep, which implies, as we have seen, that
y -hpU(y ) € Ep—1; similarly th(yq) €E EE'p_l, whence, by (17) and
(§1), HU(gpyp)- Ulhgqyq)h > ¥ for every p>q, from which it follows
that the set {U(Anyn): n=1,2,...} would not be relatively compact.
This contradiction implies that no sequence (%) of distinct
proper values can be convergent. Hence they form a discrete set.

§5. Fredholm integral equations.

We now discuss several applications of the theorems just proved.
In the LP spaces, the equations of the form x - #U(x) =y are the
so-called Fredholm integral equations, which have the following
general form
1

(32) z(s) - th(s,t)m(t)dt = yl(s),
0

where the function X(s,t) satisfies certain conditions.

The adjoint equation X - 4ZU*(X) = Y takes the form
1

(33) x(t) - h{K(s,t)X(s)ds = y(¢t).

It is easy to see how the preceding theorems may be interpreted in
the context of these integral equations.
If K(s,t) satisfies the appropriate conditions, the operator which

maps x (t) to the function jtK(s,t)x(t)dt is compact and so the

theorems of §§2,3 and 4 of this chapter may be applied to the
equations (32) and (33). In particular, theorems 19-21 then become
the theorems of Fredholm mentioned, although, of course, they also
hold outside the field of integral equations.

§6., Volterra integral equations.

Equations of the form
s

(34) xz(s) - [K(s,t)xzlt)dt = y(s),
o
where X(s,t) is a continuous function, are called Volterra
equations.
The operator ffK(s,t)x(t)dt is then compact, as an operator in the
spaces ¢ and LP, p> 1.
We now show that the equation
s
(35) zls) - [K(s,t)x(t)dt = 0
]

admits the unique solution z(s) = 0.
Indeed, suppose that x(s) satisfies this equation; clearly x(s) is
a continuous function. Put
m = max |z(s)| and M = max |K(s,t)].
0gsst Ogsg1
0<tg1

We therefore have by (35)
s

(36) |z(s)| s M.[|x(t)|de,
°

whence Ix(s)l <M.m.s for 0<s <1, which, replacing x(¢t) by M.m.s in
(36), yields the inequality |x(s)| < M?®.m.s*/2. Iterating this pro-
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n
cedure, we therefore obtain |z (s)| él%ﬁil—.m for every n=1,2,...,
whence, clearly, x(s) =0.

This established, let us return to equation (34). Since for

x,y € ¢, and similarly for x,y € LP, the operator jiK(s,t)x(t)dt is

compact, by theorem 14, p. 94, the equation (34) possesses exactly
one solution x € ¢ or x € LP respectively for every y€ C or y€ L
respectively

§7. Symmetric integral equations.

If U is a bounded linear operator from L? to itself, its adjoint
U* can also be regarded as such an operator.
This is because the dual space of L? can also be regarded as L?
(cf. Chapter 1V, §4, p. 39).
The operator U is called symmetric, when
1

1
(37) [yUlx)det = [xU(y)dt for z,y€ L*.
0 0

Since ftyU(x)dt= ftxU*(y)dt, every symmetric operator coincides

with its own adjoint.
When the function X(s,t) is symmetric (i.e. X(s,t) = K(t,s) for all
s,t) and, further, the double integral
11

{[x(s,t)x(t)y(s)dsdt
0%

exists for all =z,y € L?, the operators U and V given by
1

Ulz) = [K(s,t)x(t)dt = y(s),
0

(38)
1

Viz) = =(s) - th(s,t)x(t)dt = yl(s),

are bounded linear operators whlch are symmetrlc because they satis-
fy the condition (37).

Equations of the form (38) are known as symmetric integral equa-
tions.

THEOREM 23. If U is a symmetric operator, the number h is a
regular value of the operator I - hU when this operator admits a
continuous inverse or when the equation x - hlU(zx) =y is soluble for
each y.

The proof follows from theorems 3 and 4, p. 91, due to the fact
that in these circumstances, the relevant equation and its adjoint
are one and the same.






CHAPTER XI

Isometry, equivalence,
isomorphism

§1. Isometry.

Let E and E, be metric spaces (see Introduction, §7, p. 5) and let
U be a bijective mapping from E onto E,. This mapping is said to be
isometric or is called an i<sometry if it does not change distances,
i.e. when

d(zy,2,) = d(U(zy), Ulx,))

for every pair z,,x, of elements of E.

Since normed vector spaces are metric spaces (cf. Chapter IV, §1,
p. 33), it makes sense to consider isometric transformations between
them.

§2. The spaces L? and 12.

THEOREM 1. The spaces L? and 1?2 are isometric.
Proof. Let (x7(£)), 0£t<1, be any complete orthonormal sequence
of functions in L[?. 1If x€ L?, we know that
o 1 2 1 2
m ) [{xi(t)x(t)dt] = [(=(£)) de.
i=1 0
If U(x) denotes the sequence y = (n;) where n; = szi(t)m(t)dt, we
have, by (1), that y€ 7*> and liU(x)l = lxzll. As U is additive and does

not alter the norms of elements, it is a bounded linear operator.
Moreover, it follows from the theory of orthogonal series that, for
each y € 12, there exists one and only one function x(z) € L?* such that
y=Ul(x).

The bounded linear operator U thus maps L? bijectively onto 12
without changing norms, and so distances are also unchanged. Con-
sequently the spaces L? and 1? are isometric.

Remark, We shall later see that the spaces P and 19 are only
isometric in the case p=¢g=2. This is a consequence of the coroll-
ary (Chapter XII, §3, p.119).

§3. Isometric transformations of normed vector spaces.

THEOREM 2. Every isometry U of one normed vector space to another
such that U(Q) =0 Zs a bounded linear operator.

Proof. First let EF be an arbitrary metric space and =z,,x, any pair
of points of E.
Let H, denote the set of points z € E such that

(2) d(xlxl) = d(xlxz) = Qd(:x:l,xz)

and, for »=2,3,..., let H, denote the set of points xz€ Hy_q such that,
for every z€4d, o,

(3) dlx,z) £ 38(H,_q)
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where §(H,.q) =sup {d(x,y): «,y€ Hp-1}, is the diameter of the set
Hp-1.
For the sequence (Hy) so defined, we have
(4) lim &§(#,) = 0.
n-+o

Indeed, if the sets #, are non-empty, we have for every pair x',x
of points of H,, =" € H,_1, since, by definition,
Hlayza...ayn_..., so that, by (3) d(x',:z:") G(Hn 1). Conse-
quently 6(Hn)= 6(Hn 1), whence §(Hy) E_ETTG(H ), and moreover, we
have by (2) for each pair z',z" of points of #,, the inequality
dlz',z") sdlx',z,) + d(x”,m ) =d(zy,x,), so that §(#,) £d(x,,z,) and
consequently §(H,) < 2n Sa=td(xy 2, }, whence (4).

It follows from this that the intersection of the sets A,, if non-
empty, reduces to a single point. We shall call this point the
centre of the pair =z;,z,.

Having said this, let E be a normed vector space, so that

dlz',z2") = fx’ - 2"l for all x',x" € E.

Put z = x,+x2,-x for x€ E. We easily see by induction that

n

(5) x € H, implies x € H#, for each n=1,2,...
Indeed, if x € H, we have lz =2yl = lz- 2,1l and Jx -z, = lx~2x,0l, so
that lz-x,01=llz-z,l =4%lz, -x,I, whence by (2} x€ #, and, assuming

(5) holds for n-1, we have, consequently, for
x!€ Hn 1, x,+x,-x' € Hyo 1. If x€ H,, we therefore have, by (3),

lI:c-a: ll(:c1+a:2—.1:’)-xll $8(H,.,), whence z € Hy.

We are going to show that the point £=1%(x, +x,) is the centre of
the pair =x,,x,. In fact, we have £€ H,, because’ lz, - El=1lx,- &l =
tlx, - xz,I. Suppose, the;efore, that £€ #,_1. For every z€ Hy.1, we
have, by (5),2,+x,-x=2€H,_ | and as 21 -zl = lz, + £, - 2xll = lz - £}

< 8(Hp_1), we conclude that &-zl £ 48(H,_,), whence £€ H,. Since
it belongs to H, for each natural number n, the point £ is therefore
the centre of x,,z,.

This established, let E, be another normed vector space and let U
be an isometry of E onto all of E, such that U(@) = 6. Since the
notion of centre is a metric space one, it is easily seen that the
centre of any pair «,,x, of points of EF will be mapped to the centre
of the pair Ulx,),U(z,) of E,. We therefore have

Uld(z, + 2,)] = $[U(x,) + Ulx,)] for =,,x, € E,

whence, putting x, =2 and x, =0, we obtain, because of the hypothe-
sis U(0) =0:

U(3x) = 3U(x) for every x € E.
It follows from this that, for any points x, and x, of E:
Ulxy + x,) = Uld (22 + 2x,)1 = 3U(2%)) + dU(2x,) = Ulx)) + Ulx,).
The operator U is thus additive, and, as it is continuous, in fact
a bounded linear operator.
§4., Spaces of continuous real-valued functions.

For any compact metric space @, (cf. Introduction, §7, p. 6), the
set E of continuous real-valued functions x(q) defined on @ may be
regarded as a Banach space, when addition and scalar multiplication
are defined in the usual (pointwise) way and the norm is taken to be
the maximum of the absolute value of the function.
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LEMMA. Let z(q) €E, q€ Q. For a given element q,€ @, the
inequality

(6) [z(q,)] > lz(q)| for every q = q,,
holds if and only if

7 1im Hx+hz% = Izl
h+0
exists for every z(q) €E.
Furthermore, i1f the function x(q) satisfies the inequality (6), we
have

hig ﬂfiﬁé%;:_ﬂfl = 3(q,) .sign x(q,) for every z(q) € E.
Proof. The condition is necessary. In fact, we have lxl -]x(qo)I

and as the continuous function |z + #z| attains its maximum, we
obtain

(8) lz(qy). + hz(q0)| - |x(qo)| g bx + hzl - lizli
lztqn) + hatap | = l=iqo |,

which depends on 4. Now, we deduce from
S |x(qp) + ha(qy) | and consequently

A

where ¢y is a point of
(8) that \x(?o) + hz(q
)

0% |x(q° a:(qh)]< Y|+ | =] .lzl, whence
%1m |z ( qp) | = ac(qo . hlS implies, by the compactness of @ that
(9) lim q, = q,.
h+0 h ’

This established, first consider the case where x(q ) > 0. There
then exists an g > 0 such that, for |%|<e, we have

|z(qq) + h2(q) | = |x(qy) | = z(qy) + ha(qy) - x(qy)
and, by (9),
lz(qy) + ka(qy) | = |2(qy) | = gy + ha(qy) - x(q,) < haiqy),

whence, by (8), hzl(q,) € lz+ hzl - Izl £ hz(qy) and consequently, again
by (9) together with the continuity of z(q),

la+hzll = lal

hz(q,)

lim
h+0
In the case where x(qo)< 0, we would obtain, proceeding similarly,

Hx+hz% - el _ -2lq,) -

= z(qu).

lim
h+0
We have thus proved the necessity of the condition (the existence
of the limit (7)), and at the same time, the second part of the
lemma.
To show that the condition is sufficient, suppose that the modulus
of the function z(gq) attains its maximum at two distinct points ¢,
and q, of @, i.e. that

|2(q,)| = |2lg) | 2 |=(q)]| for every q € a.

In the case where z(q,) >0, put z(q) =dl(q,q,). We then have:
hz + 2zl = Nzl 2 x(q,) + &. d(qo,ql) xz(gq,), whence

(10) Lim inf d22hl= ol 5 g, g1y > 0.

h+0+

At the same time we have lx + Azl - lxh 2 |x(q,) + kd(q,,q,) | - |z (q,) |
= 0, whence

(1 lim sup Hm+hz% = Nl <0,

h+0-
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and it follows from the inequalities (10) and (11) that the limit
(7) cannot exist.

In the case where x(q,) <0, the same conclusion is reached on put-
ting z(q) =-d(q,q,), g.e.d.

Two sets are said to be homeomorphic when there exists a bijection
from one to the other such that both it and its inverse are contin-
uous, and such a bijection is called a homeomorphism.

THEOREM 3. For two compact metric spaces @ and Q, to be homeo-
morphic, it is necessary and sufficient that the spaces E and E, of
continuous real-valued functions on the two spaces be isometric.

Proof. Necessity. It is easily verified that if f is a homeo-
morphism of ¢ onto @,, the transformation of E, to E under which, to
each function y € E;, there corresponds the function x € E given by
x(q) =ylf(q)] is an isometry of EF, onto the whole of E.

Sufficiency. Assuming that the spaces E and E, are isometric, let
V be an isometry of E onto E,, i.e. IV(x,) = V(x,)l=lz,-x,l for all
Ly ,T, €E.

Putting U(x) = V(x) - V(0), it is easily seen that the operator U
has the same properties as ¥V and, further, that U(0) = 0. By theorem
2, p.101, U is therefore a bounded linear operator.

Let ¢, be a given point of @ and let € £ be a function satisfying
the inequality (6) of the lemma on p.103. As the operator U leaves
norms unaltered, we have, for every number %, putting U(z) = ¢ for
z€ E:

lethzll = Hell _ ly+htl - Uiyl
h h !

whence, by the preceding lemma,

(12) z(q,).sign z(q,) = lim Jzhtl = Byl
h+0
Now, as the operator U maps E onto the whole of E,, the limit (12)
exists for every te€ E,'. Consequently there exists, by the lemma, a
qt €, such that [y(q})| > |ylq’)| for every point q'=#q} of @, and
lim 4 +ht"h_ gl - t(q}).sign y(q;) for every t € E,.
>0
It follows from this by (12) that z(q,).sign x(q,) = t(q}) .signy(q{)
whence, putting e(g}) = sign z(q,).sign y(q}), we obtain the follow-
ing relation between ¢, € @ and g€ @Q,:

(13) tlql) = alq,).c(qf) where [c(ql)| =1,

which holds whenever z€ E and ¢t =U(3).
Consider the function

qy = £lqe),
defined by this relation, from @ to @,.

Firstly, it is one-to-one. 1Indeed, if q{= f(q,) =q]=7F(q,), then
by (13) [z(q,)| = [a(g,)| for every function z€E, which implies that
g1 =4, on taking z to be the particular function given by
2lq) = d(q,q,) -

Furthermore, f maps Q onto all of Q. since for any ¢'€ @, we have

by (13), putting t(q’) =

1+d(q',g")"’
- 1
(14) |z(q°)| = ——1+d(qs,275) for every ¢, € Q.
Now as Izl = Itl =1, there exists a q, € @ such that |z(q,)|=1.

For the point ¢/ = f(qo) we therefore have, by (14),
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1 = - = P
T+ dq,a7 - 1, whence d(q;,q’) = 0 and consequently g q,-
Finally, the mapping f is continuous. In fact, let ¢, = lig qn and
: n

put q; = flq,) for n=1,2,... By (13), we must have %ig |t(q£)|=

|t(q}) | for every t€ E,, and so, in particular, for tl(q’') =dlq',q}),
we have lim dl(q),q{§) =d(q}.q{) =0. Consequently lim q¢/=gq/.
n-+o n >0 1

Since @ and @, are compact, it now follows that they are homeo-
morphic.

Remark. This proof shows that if U is an isometry of E onto E,
and U(0) = 6, then there exists a homeomorphism f from @ onto @, and
a continuous real-valued function ¢ on E, such that

ylg") = alf g .elqg")
where y=Ulz), q'€ ¢, and |e(q')| =1 for all q’.

Applications. The above theorem 3 implies, in particular, that
the space ¢ of continuous real-valued functions x(t), 0s¢t<1, is
not isometric-with the space of continuous real-valued functions
x(u,v) of two variables u and v, defined on the unit square,
Osusg1, 0svs. th

Nevertheless, the space P of p  -power summable functions on the
interval 0 t¢t< 1 <s isometric to the space of pth-power summable
functions defined on the unit square. 1In fact, there exists a
bijection t = ¢(u,v) which maps this square (less a set of measure
zero) onto the interval [0,1] (again excluding a set of measure
zero) in a measure-preserving fashion, i.e. measurable sets are
mapped to measurable sets of equal measure.

Thus, if to each function z(t) € LP, one makes correspond the func-
tion y(u,v) =xz[¢(u,v)], it is easy to see that one obtains a bijec-
tion between these two function spaces under which distances are
unchanged.

§5. Rotations.

A rotation of a Banach space E about the point x,€ E is, by
definition, any isometric bijection of E onto itself which maps the
point z, to itself.

By theorem 2, p.101, every rotation about © is a bounded linear
operator.

We are going to study rotations in some particular Banach spaces.

The space C. In C the most general rotation about 0 is given by
operators of the form

y(t) = e.xla(t)],

where xz(t) € C, €=+1 or -1, independently of x, and ol(t) is any
homeomorphism of the closed unit interval [0,1] onto itself.

The proof follows from the remark above, using the fact that if

e(t) is a continuous real-valued function on [0,1] such that
|e(t)] =1, then e(¢) is constant.

The space c¢. We can regard this space as the space of continuous
real-valued functions defined on a bounded closed set of real num-
bers with exactly one accumulation point. By the remark above, we
can easily deduce from this the following theorem.

In ¢, the most general rotation about © is given by y = Ulx) where
x = (En) €ec, y = (nn) € ¢ and n, = en.ET(n),

where (e,) is any convergent sequence such that |ey| =1 for n=1,2,...
and ¢(n) is an arbitrary bijection of the natural numbers onto them—
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selves, i.e. a permutation of the natural numbers.

The space L?. Every rotation of L? about @ is of the form
o 1

(15) y(¢) = | B (¢) [o (£)z(t)dt,
= [

n=
where xz(t) €L? and (o, (t)), (By(£t}) for 0 <t <1 are arbitrary com-
plete orthonormal sequences of functions in L2.

Proof. From (15), we have
1 o 1 2 1
J())2de = | [Ian(t)x(t)dt] = [(z(t))?dt,
° n=1to 0
whence lyll = lzll. Every transformation of the form (15) is thus a
rotation about 0.
Conversely, let U be a rotation about © in L? and let (an(t)) be
any complete orthonormal sequence in L2. Putting B, (%) =Ulay(£)],

for n=1,2,..., we therefore have
1

z(¢) = ] o (¢t)[a (t)z(t)dt
=1 0
and consequently y(t) = Ulz(¢t)] is of the form (15). Furthermore
1 1 2 1
(16) [Ce, (£))2at = j[u(an(t))] dt = [(a, (£))7dt = 1
0 0 0
and as B8; (¢) + Bj(t) = Ulay () + 0j(£)], we have for = j
1 1
{[Bi‘“ + B;(8)1%dt = {[ai(t) +ag(t)]%dE = 2,
whence by (16)
1
(17) JB.(£)B.(t)dt = 0 for < # j.
0 J

Consequently, if for some function B(t) € L? we have
Izﬁn(t)B(t)dt= 0, for any n=1,2,..., we will have, by (15),
Iiy(t)B(t)dt= 0 for every function y(t) € L?, from which it follows

that B(t) = 0. It follows from this together with (16) and (17) that
(Bn(t)) is a complete orthonormal sequence of functions in LZ2.

The space l2. A completely analogous theorem can be stated for 1°.
This is a consequence of the isometry of the spaces L2 and 12 (cf.
theorem 1, p.101).

The spaces LP and 1P where 1 Sp# 2. We have the following lemmas:

1. Let U be a rotation of P about 0, where 1<p=2. If for a
pair x, (t),x,(t) of functions belonging to L we have

(18) x,(t).x, () = 0 almost everywhere <in [0,1],

then for the pair y,(t),y,(t), where y, =U(x,) and y, = U(x,), we
also have

(19) Y, (£) .y, () = 0 almost everywhere in [0,1].

Proof. For each pair of numbers o,B we have by the hypothesis
(18), loax, + Bz, IP =Ta| Mz 1P+ |8|P Iz, 1P, whence, by definition of
y, and y,, it follows that lay, + By,I¥ = |a|P. 1y 1P+ |8|P. 1y,1P and
consequently X

1
(20)  Jloy, &) + By, |[Fat = |afF[|y, &) |Pat + |8]F]|y, ) |Fae.
0 0 0

In the case p=1, this yields on putting first a=8=1 and then

o =-B8=1, the relation
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1 1 1
Jlyr () + ya®) |dE = [lya () = g1 [dt = [(lya (&) ]| + |y2(8) 148,
0 0 0
which is only possible when condition (19) is satisfied.
In the case p > 2, we obtain from (20), denoting by # the set of
t€ [0,1] for which y, (¢).y, () # 0, the relation

|a|PJ ly, (&) |Pat + |s|pJH[y2(t) |Pat,
H

(21) J log, (£) + By, (&) |Pds
H

which gives, putting ¢(a,z) = |ay, () + Byzw)]p, the equalities

(22) a¢ = ploy, (£) + By, () Ip .signloy, (£) + Bya (L) 1.y (E)
and .
(23) 39 = pe-1) oy, (8) + By, (8) P72 [y, (812,

Now, as |ay, (£) + By, (t)|P 'e P/ (P=Dang y, (¢) € P, we can assert
that the integral fmfﬂlégldadt exists, whence by (22)

(24) J'Hﬁ -

and consequently

J $ (e, t)dt

D..IQ,

p.sion a. Ialp'ij ly, () |Pdt
H

0; it immediately follows from this,

‘——;

aa)a 0
since ——$2 0 by (2 ), that

{vel
29 50dt = J 204t
2 ’
JoJH da P da
whence by (24)
2 -
[ S5t = 2o 16172 1y, (00 |Pas
H H
and consequently by (23)
(25) J lay, () + By, (&) P2 (y, (0))2dt = [P~ 2[ ly, (¢) |Pas.
H
From (25), on putting a=0 and 8=1, we obtain the equality
(26) J |y2(t)|p'2. |y, (£} |*dt = 0,
H

which implies, by the definition of g7, that the measure of &,
m(H) =
Finally, in the case where 1< p< 2, consider for <=1 and 2 the

functional Y, where ¥, (y) = f ¥, (£)y(t)dt for y(¢) € L? and

¥, () = |yz(t)|p ! sign y;(t). The adjoint of U, U* is a rotation of
the space Lp/q’1)about © (for a proof of this see the proof of the
subsequent theorem 11, p.113). Put X;=0U*(y;) and

X; (@) = [ X; ()= (¢)dt where z€LP. We have X;(z;) = ¥;(y;) =

hY;h.lygl = 1Xz0.kzgll, whence by Riesz' inequality, X;(t) =0 for the
same values of ¢ for which x;(¢) = 0. Consequently X, (t).X,(t) =

and as —2—> 2, we conclude from the case previously considered that

Y, (&).y, (t)-—O, so that y,(¢).y,(¢) =0. Condition (19) is thus
proved

2. Let U be a rotation of Zp, where 1$p=2, about 0. If, for
two sequences x, = (Eél)) and x, = (Eéz)) belonging to 1¥ we have
gf1).g(2) = 0 for n=1,2,...,
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then for the sequences y, =Ulx,) = Cnél)) and y, = Ulx,) = (né2)) we
have, equally

1 2
né ).né - 0 for n=1,2,...

The proof is similar to that of the preceding lemma for the ?
spaces with the appropriate obvious modifications.

The two lemmas yield, respectively, the following theorems on the
general form of rotations.

I. Let U be a rotation of the space Lp, 1<p=2, about 0. Then
there exist two functions ¢(t) and Y(t) defined for 05 t=<1 and such
that the following conditions are satisfied:

(a) the funection ¢(t) maps almost all of the closed interval
[0,1] bijectively onto (almost all of) itself in such a way that
measurable sets are mapped to measurable sets and conversely,

(b) for almost every t€ [0,1], we have

V(t) = [1imﬂ_(¢_[t_st_‘ﬂll];la

h+0+
where O ([t,t+h]) = {¢p(s):t £ e £ t+h} i8 the image of the closed inter-
val [t,t+h] under the function ¢,

(¢} for every x€ LF
y(t) = xz[o(£)]. v ()
where y(t) = Ulz(t)].

Conversely, <1f ¢(t) is a funetion satisfying condition (a), there
exists a funetion Y(t)_defined by (b) and the operator U defined by
(c) Zs a rotation of P about 0.

II. Let U be any rotation of the space 1P, 1 s p=# 2, about 0.
Then there exists a function ¢ (n) and a sequence of numbers (ey)
such that

(a) ¢ is a permutation of the natural numbers,
(b) |ep| =1 for n=1,2,...,
(c) for every pair of sequences x = (g,) € 1P and y=(ny) € 1P where
y=Ulx)
n, = En'£¢(n) for n=1,2,...

Conversely, for any ¢ and (e,) satisfying the conditions (a) and
(b), the operator U given by y=Ul(x) as defined by condition (c) is
a rotation.

Proof. First let U be a rotation of 1P about 0. Put

(2 _ {1 for 2 = n,
(27) En % {0 for ¢ # n,

and x, = (gét)) for £=1,2,... We clearly have for each x = (gn)e P
(28) z =3 £,

. i=1
Putting y; = U(xi)= (néz)), we thus have, by (28), for y=U(z) =

(nn)' the equality y = izlgiyi' whence

(29) n, = ? 13 (2 for n=1,2
n 1:=1 inn 1lyoce

By (27) we have géz).géJ) =0 when % # j; we deduce from this by the
second lemma (above) that
(30) ”;(z“'”r(zg) =0 for £#4 and n=1,2,...
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Since y can be any sequence belonging to Zp, by (29) and (30), for
every natural number 2, there exists just one natural number ¢(n)

such that ni(")¢ 0. It follows from this by (29) that we have

(31) n, = £¢(n)'€n for €, = ni(") and n=1,2,...,

so that condition (c¢) is satisfied.
Furthermore, n, # n, implies ¢(n,) # ¢ (n,), because otherwise, by
(31}, we would have for each sequence (n,) € 1P the equality
€n,Nn, = €n,Nn, = 0 which is impossible; moreover, if there existed a
natural number n, such that ¢(n) # n, for n=1,2,..., we would have,
by (31), for the sequence x = (£,) where
£ = {1 for n = ng,
n 0 for n = ny,
the equality n, =0 for n=1,2,..., which is also impossible. Condi-
tion (a) is thus proved as well.
Finally, by the definition of a rotation, we have Iyl = lzl, which,
by (31), yields

v P (e [P . P . P
(32) nzllg¢(n)| .|€n| =3 |£n| for every x = (£ ) € F.

Consequently, if, given any natural number n,, one chooses the
sequence x = (£,) in such a way that
_J1 foxr n = n_,
£ = 0
o (n) 0 for n = n,,

it follows from (32) that {sn°|p= 1, whence |eno|= 1, which proves
condition (b).
The converse is obvious.

§6. Isomorphism and equivalence.

Two F-spaces E and E, are said to be isomorphic when there is a
bijective bounded linear operator from EF onto the whole of E;.

Let U be such an operator; by theorem 5 (Chapter III, §3, p. 24)
the inverse y~! is also a bounded linear operator, from which it
follows that U is a homeomorphism.

The spaces E and E, are said to be equivalent when there is a bi-
jective bounded linear operator U from E onto E, such that
|vlz) | = |z| for every z€ E.

If two spaces are equivalent, then they are necessarily isomorphic,
but, as we shall see, the converse is not true.

Consider two examples.

1° Let ¢, be the space of real sequences which converge to 0.
We have the theorem:

The spaces ¢ and e, are isomorphic.
In fact, if, for gz = (Ei)e e, we put

n, = %ig gi and n; = £ -n, for £ > 1,

-1
we clearly have %i& n; = 0, whence, putting y = (”i)' we have y € ¢,

and it is easy to see that the operator y = U(x) thus defined is
additive and satisfies the condition lU(z)ll £ 2lxll; it is therefore a
bounded linear operator.
Conversely, if y= (ni)e e¢,, we need only put, with z= (Ei),
gi =n;.y t M where 4=1,2,...,
to obtain x € ¢, since lim €i= n,, and to see that y=0 implies x= 0.
1->00
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It follows that U is a bounded linear operator which maps ¢ bi-
jectively onto Gy
2°. The spaces of bounded linear functionals defined on
P, 1P where p > 1, L', 1 and ¢
are equivalent, respectively, to the spaces
19, 19 where g + % =1, M, m and 1%.

This is nothing but a reformulation of the theorems on the general
form of bounded linear functionals established in Chapter IV, §4
(see p. 36).

Theorem 2, p.101, immediately implies the

THEOREM 4. Two Banach spaces E and E, which are isometric are
equivalent.

§7. Products of Banach spaces.

Given two Banach spaces E and E,, let Ex E, denote the space of
all ordered pairs (x,y) where x€ F and y€ E,, with addition and
scalar multiplication defined by putting

(x,y) + (x',y") = (z+x',y+y ') and &alx,y) = (hz,hy),

where, of course, xz,x'€E, y,y' € E, and 2 is a number, and with the
norm defined in such a way that the following condition is satisfied:

(33) limx_ = x, and 1lim y_ = y, if and only if
n-»+o n n-r>o n
lim I (= - (x I =o0.
e ( n,yn) ( olyo)

Thus defined, the space Ex E, is also a Banach space, which we
will call the product of the spaces E and E,.

It is easy to see that condition (33) wili be satisfied, if, in
particular, we take as norm of the pair z = (x,y) one or other of the
expressions

1) lzl
2) =zl

and that these are not the only expressions that meet this condition.
Moreover, it is quite clear that whatever norms are chosen, pro-
vided they satisfy condition (33), isomorphic spaces will always be
obtained.
To make clear which norm has been adopted, we shall denote the
product of the spaces E and E, by (Fx El)zp' when endowed with the

1
(kzI? + iylP1P where p2 1,
max [lzll,lyi],

norm 1) and by (Ex E,),, when endowed with the norm 2).

One similarly defines the product E; X E,x ...xE, of a finite
number of Banach spaces. It is plain that the product of separable
spaces is separable.

The product E x E will be called the square of E and will be denot-
ed by E?.

THEOREM 5. The spaces P, 1P, for p21, and ¢ are isomorphic with
their respective squares.

Proof. It is enough to associate with each function x(¢) € P the
pair of functions Cxl(t),xz(t)) defined by the formulae

x, () = x(%) and x,(t) = m(% + %) where 0 £ ¢t £ 1,

to set up a bijective bounded linear operator from ILP to (LP)Z2.
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Similarly, it is enough to associate with each sequence
x = (§,) € IP the pair of sequences x, = (n,),x, = (¢,) defined by the
formulae

n, =&, andc¢c =g for n=1,2,...,

to see that 1P can be mapped bijectively onto (IP)? by means of a
bounded linear operator.

Finally, with each sequence z = (£,) € ¢ let us associate the pair
xzy = (n,),x, = (£,) defined by the formulae
n, = an - &, and T, = £ - iim En + g, for n=1,2,...

n 2n+1 ©

We have

= + 1i =1,2,...
" ntl ;n lim nn for n=1,2,
n-orow nre nr e

and we see that we have a bounded linear bijection of ¢ onto c¢?.

£ = lim Cn' E2n =n_ + lim Cn and 52

THEOREM 6. The space C is isomorphic with the product C xc.

Proof. Let E denote the subspace of ¢ consisting of the functions
x(t) € ¢ which satisfy the condition

x(%) = 0 for n=1,2,...

For each function z(¢) € ¢, construct the function z(t) € ¢ such

1 1

that 5(;)==x(; and which is linear in the intervals for

a1
n+l'n
every natural number =n.

With each z(t) € ¢ we associate the pair (consisting of a function

and a sequence of numbers)

(y(t),(w[%])> where y(t) = z(t) - x(t).

We clearly have y(t) € E and {«x % €c..

It is easy to see that this correspondence defines a bounded lin-
ear operator.

Equally, we see that for each pair (y(t),(gn))e E x ¢ there exists
a continuous function z(¢) such that y(¢) =z (¢) - x(¢) and g, == %)
for n=1,2,..., from which it follows that the transformation under
consideration is bijective between all of ¢ and all of Ex ¢. These
two spaces are therefore isomorphic.

Hence the spaces Cx c¢ and Ex ex e =Ex ¢? are isomorphic. Now, as
e¢? is isomorphic with ¢, by the preceding theorem 5, the space (x e
is isomorphic with E x ¢ and therefore with ¢, g.e.d.

THEOREM 7. The space C is isomorphic with each of the spaces C(p)
for p=1,2,...

Proof. With each function z(t) € C(p) (cf. Introduction, §7, p. 7),
associate the pair consisting of the function y(¢) =m(p)(t) and the
set of p numbers: x(O),x'(O),...,xp_l(O). with FP denoting p-dimen-

sional space, C(p) is thus isomorphic with ¢ x Ep and consequently,
by the preceding theorem 6, with Cxex R .

Now, as ¢ x R, is isomorphic with ¢, the space C(p) is isomorphic
with ¢ x e and €herefore, again by theorem 6, with the space ¢, g.e.d.

THEOREM 8. The space C is isomorphic with the space C*.

Proof. With each pair (z(t),y(¢)) of functions of C, associate
the pair (z(t),£) where z(t) € ¢ is the function defined by the
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formulae
2(t) = x (2t) for 0 £ ¢t £ &,
T ly(2t-1) - y(0) + x(1) for ¥} s ¢t £ 1,
and £ is the number determined, for each y(t) € ¢, by the equation

E=y(0).

The space (¢? is thus mapped to Cx R, where R is the real line.
This transformation is a bounded linear operator and since, by def-
inition, we have x(t) = z(%) and y(t) = z(% + %)— z(%)+ g, it is bi-
jective. We have thus established the isomorphism of the spaces c?
and ¢ x R and since, by theorem 6 p. 111, ¢ is isomorphic with (x ¢,
the space ¢? is isomorphic with ¢x ¢x R, and therefore, because ¢x R
and ¢ are isomorphic, with the space Cx ¢ and consequently (again by
theorem 6) with the space (¢, g.e.d.

Remark. It is not known if the space ¢ is isomorphic with the
space of all continuous (real-valued) functions defined on the unit
square.

§8. The space ¢ as the universal space.

THEOREM 9. Every separable Banach space E is equivalent to a
closed linear subspace of the space C.

Proof. Let I be the set of all bounded linear functionals on E of
norm< 1 and let (x,) be a sequence in E, with lx, 1 1 for »n=1,2,...,
which is dense in the ball {x€ E:llxl £ 1}.

Define a distance in T by putting, for each pair f,,f, of func-
tionals belonging to T

v oA IfeEn-feEnl
(34) a(f,,f,) n§1 T 1F, e oF, w0 T

We shall show that, with this definition of distance, T' is a com-
pact metric space.
Consider a sequence (f;) ST such that p}%mwd(fp,fq) =0. By (34),

the llm f (z,) then exists. As If;Is51, it follows from theorem 3

(Chapter Vv, §1, p. 50) that the sequence (fl(x)) is convergent for
each x € E; hence the sequence of functionals (f;) is weakly converg-
ent to a bounded linear functional f, say, and HfH 1, whence fe€T.
As 11m f; (x,) = f(z,) for n=1,2,..., we conclude from (34) that

11m d(f ,f) =0. Thus I' is complete.

Now, given any sequence (f_b)C ', we can, by a diagonal procedure,
extract a subsequence (fzk) such that 11m fik(xn) exists for

n=1,2,..., whence, as above, we deduce the existence of a functional
f €T such that %ig d(ftk,f)-o Hence T is sequentially compact,

and therefore a compact metric space.

Consequently there exists a continuous map of the (perfect,
nowhere dense) Cantor set P< [0,1] onto the space I'. If fL€T
denotes the functional which is the image of the point ¢ € P under
this map, let £ € £ be an arbitrary element and define y(t) as
follows: for each t€ P put

y(t) = felx)
and for the points of the set [0,1] ~ P, complete the definition of
the function y(¢) in a linear manner, specifically, for t€ [0,1] ~P,
putting
y(p) = LB = #le) (p _ ymy b oyemy,

I_tll
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where t' and t" denote the nearest points of P such that t/<¢t< ¢t”.

Let us examine the properties of the function y(¢) thus defined.

If lim ¢, =t where (t¢,) S P, the sequence (ftn) converges weakly
n-+w

to fto, whence %iﬁ Feyl2) = fto(x)' so that %i& y(t,) =y(t,). The

function y is thus continuous in P. Since it is linear elsewhere,
it is therefore continuous throughout [0,1], hence y(z¢) € C.
Moreover, by theorem 3 (Chapter IV, §2, p. 34) there exists a

functional f€ T such that [f(x)| =1lzl. Let ¢, € [0,1] be the point
such that f= fto' We thus have |y(t,)| = [fto(x)| = gl and as
ly(e)| = [ft(a:)| g [fel-lzl £ Izl for every t € P,

we conclude from this, since the function |y(t)| attains its maximum
in the set P,,thatogiilly(t)|= lel.

We have thus associated with each element x € E an element
y=y(t) € C and, putting y = U(x), we see that we have defined an
additive operator. As lyll=1IU(z)l = lzl, it is actually a bounded
linear operator and maps the space E isometrically onto a subspace
E, of ¢. The spaces E and E, E(C are therefore equivalent, g.e.d.

THEOREM 10. Every separable metric space E can be mapped iso-
metrically onto a subset of C.

Proof.By a remark due to M. Fréchet, every separable metric space
E can be mapped isometrically onto a subset of m. Such a mapping
may be obtained, as is easily verified, by associating with each
x € E the sequence (&n) defined by the formula

n
where the sequence (x,) forms a dense subset of E.

Consequently, it is enough to consider only the case where ESm.
It is easily shown that the space consisting of all linear combina-
tions of elements of E together with all limits of sequences thereof
is a separable Banach space.

By the preceding theorem 9 there thus exists an isometric mapping
of this space and a foritiori of its subset E, onto a subset of C,
g.e.d.

E = d(x,xn) - d(xo,mn) for n=1,2,...,

Remark. By theorem 9 and 10 which have just been established, the
space ¢ can be regarded as the universal space for separable Banach
(respectively metric) spaces. The study of separable Banach spaces
thus reduces to that of closed linear subspaces of the space C.

§9. Dual spaces.

Given a Banach space E, the space E* of all bounded linear func-
tionals defined in E is clearly another Banach space. We shall call
E* the dual or conjugate space of E.

THEOREM 11. If two Banach spaces E and E, are isomorphic or
equivalent respectively, the spaces E* and Ef are equally isomorphic
or equivalent, respectively.

Proof. 1In fact, if U is a linear homeomorphism of F onto E,, it
follows from theorem 5 (Chapter X, §1, p. 91) that the adjoint
operator U* is equally a linear homeomorphism of E¥ onto E*, so that
these latter two spaces are isomorphic.

If, further, F and E, are equivalent, we have, whenever X = U*(Y):

ixl = sup [X(x)] = sup |¥(U(x))]| = sup |¥(y)| = h¥I,
sl flel£1 hylist
so that the spaces E* and E} are equivalent in this case, gq.e.d.
Remark. Nevertheless, the equivalence of the spaces E* and £}
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does not always imply that of the spaces F and E,.
Consider, by way of example, the spaces E=c¢ and E, = (¢)3. The

duals of these spaces are E*=1' and Ef = (Zl);l, which are easily
shown to be equivalent.

However this is not true of the spacesF and E,. We can regard E
as the space of continuous real-valued functions defined on the set

@ consisting of the numbers 0 and %, for n=1,2,..., while the space
E, can be regarded as the space of continuous real-valued functions

defined on the set @, consisting of the numbers 0,1,% and 14-%, for

n=1,2,... Now as the sets @ and ¢, in question are not homeomorphic,
it follows from theorem 3, p. 104, that the spaces E and E, are not
isometric, and therefore a fortiori not equivalent.

THEOREM 12. If the dual space E* is separable, so also is the
space E.

Proof. Let I'€ E* denote the set of all bounded linear functionals
on E of norm 1, so that, by hypothesis, there exists a sequence
(X,) €T which is dense in T.

Let (x;) be a sequence of elements of F which satisfies the con-
ditions

(35) Hxnﬂ = 1 and Xn(xn) > % for n=1,2,...

If the space E is not separable, then the sequence (x,) is not
fundamental in E, and therefore, by theorem 7 (Chapter IV, §3, p.36),
it is not total either. Consequently there exists a functional
X €T such that

(36) Ixl = 1 and X(xn) = 0 for »=1,2,...

Putting Zp = X, - X, we consequently have by (35) and (36)
Zp (xn) = Xp(xy) - X(2) > 3, whence 1Z,> %, so that X, - Xl >} for
every natural number n, which is impossible, as the sequence (X,) is
assumed dense in I and X belongs to T.

THEOREM 13. Let E be a separable Banach space such that every
norm-bounded sequence (x;) of elements of E contains a subsequence
which is weakly convergent to an element of E. Then the space E is
equivalent to the space E** (the dual of E*).

Proof. Let G be the set of bounded linear functionals F defined
on E* which are of the form F(X) = X(z,), for every Xe€ E*, for some
x, € E independent of F. We thus have |F(X)| < IXW.lz,l, whence

IFIl < laxyl. By theorem 3 (Chapter IV, §2, p. 34) there exists,
moreover, a functional X, € E* such that IXol =1 and Xo(zo) = lzoh, so
that F(X,) = lz,Il, whence |Fi 2 lx,I. These two inequalities give

BEN = Nyl

G is a total subset of the space E** of all bounded linear func-
tionals on E*,

In fact, if for some X, € E* we have F(X,) =0 for any Fe€ G, we also
have X,(x) =0, for any x€ E, and so X,=0.

We now show that the set G is transfinitely closed.

To this end, let 6 be any limit ordinal and (Fz) €G, for 15£< 6,
a norm-bounded transfinite sequence of functionals. There therefore
exists a number M> 0 such that I1Fell <M for 1< E< 6 and by definition
of G every functional Fg is of thé form FE(X)= X(xg). Let (x;) be a
dense sequence in E which is separable by hypothesis.

For every natural number n let xén) be any term of (x;) which
satisfies the inequality

(n) _ 1
(37) ng mgﬂ <z
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and put

Fé”’(x) = X(x(n)) for X € E*.

In the case where 6 is cofinal with w(therefore when there exists
a seguence (E ) of transfinite numbers such that llm E =6 and g <9
e

for =1 2,...), the sequence Cxé ) contains a subsequence whlch

")e E. Clearly we then have

converges weakly to an element
Tim 7™ (x) z Iim F(")(X) = Tim X(m(n)) 2 x(=™)
£+6 £ 1+ 7

and consequently the functional F(n)(X)"X( (n)) is a transfinite

limit of the sequence (F%n)) .
In the case where the limit ordinal 6 is not cofinal with w, the

transfinite sequence (xén)), which, by definition, has at most coun-

(n)

tably many distinct terms, includes a term x such that for every

() _ ,(n)

n< 6 there exists an £ > n with xg We then have

Tim 7™ (x) = TIm X(x‘”’) 2 (=),
ere &8 () (n)

from which it follows that the functional F (x) = x(z'™’) is again
a transfinite limit of the sequence (7!™)

This established, consider the sequence_(m(")) This contains a
subsequence which converges weakly to an z € E. Put X(x) =F, (X). We
thus have, on the one hand

(38) Tim 7™ (x) 2 P, (X) for every X € E*
n-+o

and, on the other hand, by definition of G, F,€ G. Now, by (37) we
have X(xg) X(x(n))--HXH, whence, by deflnltlon of Fg and Fén)

Tin £ (x) = Tim x(z,) 2 Tim X(m(n)) uxn

£+6 £+6 E+9

=Tm 7™ -l 2 r M - i
>0 ©

and consequently, by (38}, llm FE(X)> 11m F(n)(X)> F,(x). The func-

tional F, is therefore a transflnlte 11m1t of the sequence (FE) and
as F,€ G, the set ¢ is indeed transfinitely closed.

Since it is both total and transfinitely closed, it follows from
the remark (Chapter VIII, §2, p. 72) together with lemma 3 (Chapter
VIII, §3, p. 75) that the set G is equal to the entire space E**.

By definition of @, there therefore corresponds to every F€ E** an
x € E such that, as was proved to begin with, IFl = lxll. The operator
U defined by Ul(x) = F is consequently a bounded linear bijection
which maps £ to E** with no change in norm. The spaces E and E**
are thus egquivalent, g.e.d.

Remark. Thus, for example, the spaces IP and Zp, for p> 1, are
equivalent to the dual spaces of the spaces of bounded linear func-
tionals on them (cf. p. 110, 2°).

THEOREM 14. The dual space of a product of Banach spaces is iso-
morphic to the product of their duals.

Proof. 1If E,,E,,...,E, are Banach spaces, we have to establish
the isomorphism of the space E* where E=F; x E; X ... X Ep with the
space E¥x Eyx ... x E}. We need only consider the case where n = 2.
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Let z,,r, and z denote elements of E,,E, and E respectively, and
let X,,X, and Z denote bounded linear functionals on these respec-
tive spaces.

Let # be the set of all pairs (x,,0) where x, € E;. We can thus
regard H as a subset of E=E, x E, and consequently every bounded
linear functional Z, restricted to the space H, determines a bounded
linear functional X, on E,. Put

z2(z) = X, (z;) for z

it

(x,,0)
and, similarly,
zZ(z) = X,(x,) for z = (0,x,).

For z= (x,,z,) we therefore have, as is easily verified,

(39) 2(3) = X;(x,) + X,(z,).

Conversely, given two bounded linear functionals X, € E¥ and
X, € £%¥, the formula (39) defines a functional Z¢€ E*.

The correspondence is bijective and takes the form of a bounded
linear operator from E¥ x E%¥ onto the whole of E*, so that these two
spaces are isomorphic, g.e.d.

Remark. Putting E= [E, X E, x ... X Eplyp or E=[Ey X E,; X cou X Ep]
respectively, it is easily seen that the dual space E* is <sometric,
for p> 1, with the space [E¥xEfx ... x E'Z]ﬂ)/(p—l) and, for p=1, with

the space [Efx E¥yx ...x E;]m or with the space [Efx E:x el X Eglzl,
respectively.



CHAPTER XII

Linear dimension

§1. Definitions.

Given two F-spaces E and E;, we shall say that the linear dimension
of the space E does not exceed that of the space E,, or, symbolically:

(1) ) disz < dimZEl,
if EF is isomorphic with a closed linear subspace of E,.

We will say that the spaces E and E, have the same %inear dimension,
symbolically:

dimZE = dimZEl,
when both (1) and
. < Ai

(2) dlsz1 < dlmZE
hold simultaneously.

We will say that the linear dimension of E is strictly less than
that of E,, when (1) holds but (2) does not. Symbolically, we shall
write:

' dim;E < dim E, .

Finally, we shall say that the linear dimensions of the two spaces
are incomparable when neither (1) nor (2) holds.

It follows that isomorphic spaces always have the same linear
dimension. It is unknown whether or not the converse is true, but I
think it very likely that there exist Banach spaces, even separable
ones, which have equal linear dimensions without being isomorphic.

Every space which is isomorphic with n-dimensional Euclidean space
will simply be called n-dimensional. A Banach space for which no
such n exists will be said to be infinite-dimensional.

§2. Linear dimension of the spaces ¢ and Zp, for p21.
THEOREM 1. If, for a Banach space E, one has
(3) dimZE < dimzc
or
(4) dim E < dimZZp for some pz 1,
then E {s a finite-dimensional space.

Proof. As the space ¢ is isomorphic with the space ¢, of sequences
of numbers convergent to 0 (cf. Chapter XI, §6, p. 109, 1°), there
exists, by (3), a closed linear subspace GE ¢, isomorphic with E. If
E, and therefore G also, were infinite-dimensional, there would exist,
for every natural number ¥, a sequence of ¥+ 1 elements z,€ G,
<=1,2,...,N+1 such that v

N+1

izlaizi = 0 implies o,=a,=...=a, ,=0.
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Consequently, putting z, = CB ), we would be able to find numbers

O 2=1,2,...,N+1, not all zero, satisfying the equatﬁg?s NZ a¢6
for n=1,2,...,N. With (By) denoting the sequence z = iélaizi
would therefore obtain

(5) Izl > 0 and g =0 for n=1,2,...,H.

We have thus established the existence, for every natural number ¥,

of an element z = (B,) of ¢ satisfying (5).
Now deflne, by 1nductlon, a sequence (y ) of elements of G, where
Cni), by choosing for y, any element of G with Iy, =1 and for
yi' z=1,2,..., an element ef G such that
(6) Iyl =1 and n> = 0 for n=1,2,...,0,_,.
where Ni—l is the least natural number satisfying the inequality

i-1 1 N
(7) [nn | < T for every n 2 N,_,.

The existence of such a sequence (y;) is an immediate consequence
of the result just established above.

Let G, be the set consisting of all polynomials of the form
121 oY, where r=1,2,... together with all limits of sequences there-
of i.e. G, is the closure of the set of all such polynomials. G, is
clearly a closed linear subspace of c¢,.

This established, let x = (gi) be any bounded sequence and put

(8) n, = I g;n, for n=1,2,...

We shall show that

(9) D1zl s sup |n | < 31zl
nz1 "

Indeed, given a suffix n, there exists, by (6), a matural number
m, such that

(10) |n1 | =1 for 2=1,2,...,
mg
whence by definition of IV1
<
(11) Nz ) Sy < Ni
and consequently lim F_. = «; there therefore exists a natural number

1>
k such that, for the suffix »n in question,

(12) I} Sn<Uh

k-1 k?

where N,=1.
For every i >k, we consequently have, by (11), Ny < i-1" whence,

by (12), n< N1 =
every < > k, and therefore by (8) that
k

_ A
(13) n, _izlginn
For every << k we also have, by (11), N; < Nk—l' whence, by (12},

7 1 . k
N,s$n, so that, by (7), |n |<—=. Since [n,| €1 and |£.] <zl for

every 7, it follows from this, by (13), that, on the one hand, we
have

We conclude, by virtue of (6), that ﬂ;= 0 for

k=1 4 3
in,| = "m"iz1§7 + lxl s Shal,
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whence
(14) sup |n_| < §Ilacll,
n 2
nz1
and on the other hand, for every k satisfying (12},
k-1
k 1 k 1
(15) [n,i 2 & n, | -uxuizlg 2 gl | - Szl
Now there exists a k such that |€k|; %Hxﬂ, so that, according to
(10) , we have |n2k| = 1. Consequently, as the relation (15) was
proved for the arbitrarily chosen suffix n, we deduce from it, for

. 251 - 1yop ol 1 L
n=ms nn| 2 Slzl - Shal = zlxl, whence sup [n,| 2 ghel. Taking this

inequality together with the inequality (14), we see that formula
(9) has thus been established.

Now, with every z = (£;) let us associate the sequence y = (ny)
defined by formula (8). By (9), the sequence y is bounded and we
have, putting y=U(z),

(16) : Hiel s W@ s 3e,
so that U is a bounded linear operator.

However, for z, = Cg;), where

gi _ 1 for 7 = »n,
n 0 for 7 # n,
we have, by definition, y; = U(xi) for 2=1,2,... Consequently for
x = (Ei)e ¢, we have z = iglgixi whence, by the continuity of the
operator U, it follows that y = Ul(x) = izlgiu(xi) =i§1g.y., so that,
this last series being convergent, we obtain y € G,.
Conversely, let y€ G,. By definition of G, we therefore have

=1lim s, where g = gn oy.; for ¢t = g"anm we consequently have
¥ nyo 1 n- 181 G%g¥g7 n ifl [ At A q ¥
t,€c, and U(tn)= s,. Now (16) yields gﬂtp— tqﬂs ﬂU(tp— tq)ﬂ=

Hsp- qu;'the equality ligwﬂsp- qu= 0 thus implies

plégwﬂtp- tqﬂ= 0. Hence the sequence (tn) is convergent. Putting
z'= %im ty, we therefore have x€ ¢, and Ul(x) =y, from which it
>0

follows that the operator U is one-to-one and maps ¢, onto all of G,.
The spaces ¢, and G, are thus isomorphic and as G, S G, this
implies that dimze, £ dim,G, from which it follows, due to the iso-
morphism of ¢ with F and”of ¢, with ¢, that dimjye £ dim,F, which con-
tradicts the hypothesis (3). E is therefore finite-diménsional,
g.e.d.
The proof for Zp, pz1, is similar.

§3. Linear dimension of the spaces P and 1P for p>1.
THEOREM 2. Every sequence of functions Cxi(t))EELp which conver-
ges weakly to 0 contains a subsequence (xik(t)) such that

n " O(np) fOI’1 < p < 2,

LT

(17)

O(ni) forp 2 2.
Proof. The proof will rest on the following inequality for p > 1:

_ Ep) .
(18) la + b|P < |a|? + plalP b.sign a + Alb|P + B Xp 12| |p|Y,
J=2
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where a¢ and b are arbitrary real numbers, A and B are constants
which only depend on p and E(p) denotes the integer part of p. The
last term on the right hand side thus vanishes when p £ 2.

Define the sequence (xik) by induction, putting <, =1 and, for
n>1, letting <, be any natural number such that the inequality

1
(19) pl”sn_l(t) |P71.sign sp_y (8).2¢, (8)dE| s 1,
0
where s,_, (t) = Zgixik(t) , 1s satisfied. Such an ¢, exists since, by
hypothesis, the sequence (mi(t)) converges weakly to 0-and
lsp-1 () |P" €129 where 1.1,
Putting @ =sp-y (t) and b=x;,(t), the inequality (18) yields, on

integration:

1
p
{[sn| dt

A

1 1

P Pl g _
{Isn_ll dt + p{|sn_1| . sign sn—1x‘vndt
(20)

+

F P Eip) 1 p-d i
A£|min| dt + B L {|sn_1| |min| dt.
The weak convergence of the sequence (mn(t)) implies, by virtue of

theorem 1 (Chapter IX, §1, p. 89) that the sequence of numbers
Cﬂxnﬂ) is bounded and, without loss of generality, we can assume that
that

(21) fx,l £ 1 for »=1,2,...

Now, in the case p > 2, we have by (21), in view of Riesz' inequal-
ity (cf. Introduction, §2, p.1) for 2< j<p:

1 . . 1 - 1 -2
JlonslPmy 9t 5 [[1og-11Pa8] 797 5 1+ [[1ogeafPas] 7277
0 0 0

whence, by (19) and (20), lsnlP s NepqhP+ 1+ 4+ Bp(1+ lsy_q1P7?),
which by iteration yields
n-1
(22) le P s Con + D § lsp P72
k=1
where C=1+ A4+ Bp and D = Bp.
Let M=C+ D+ 2. We are going to show by induction that

(23) lspl s M.n? for n=1,2,...
In fact, by definition of s, and by (21) we have ls,I £ 1 and,
assuming that the inequality (23) holds for s%ffixes less than some
n-
given n, we have by (22) that ls,IP s D.MP_zkglk(P‘z)/2+ c.ng

D.MP~2.nP/2 4 ¢.n s MPrP/2(D.u~2 + n17P/2¢, y~P), which implies (23)
since, as is easily checked, the sum in brackets is <1 for p>2.
By (23), the equality Ilsnll = 0(n¥) for p > 2 is thus established.
We now pass to the case where 1<ps< 2. By definition of s, we

deduce from (20) and (21) that [,|s,[Pdt s [ |-y |Pdt+1+4+8B,

whence ||s,,llp < lsp-1 1P + ¢, where =1+ 4+ B, and consequently

len P g ||slllp+ C(n-1) s C.n, so that, putting MF = ¢ we obtain

lepl s 4.2>/P, from which the equality lsyl=0(n'/P) follows in this
case also, g.e.d.

Remark. The above theorem is no longer true, for any p> 1, if the
symbol 0 in the relations (17) is replaced by o.
Indeed for p22 let x;(¢) =sin 2n{t. Since we have

lirg j;a(t)sin 2nitdt = 0 for any integrable function a(t), the
i
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n
sequence Cxi(t))s;Lp is weakly convergent. Putting s, () = kglxik(t)
where (xik(t)) denotes an arbitrary subsequence, we therefore have
1 1 1
- P 4. \p o1 4
s, ()1 = (£|sn(t)| dt)P 2 ({s;(t)dt) = g3ents

which shows that 0 cannot be replaced by o.
For 1<p < 2, putting .

fzi/P for - § t 5 —
2t 21-1
xz.(t) =
1
< 1 1

0 for 0 £ ¢t < — and —
2’L 21—1

<t 21,

we have, for any subsequence (xik(t)), t?e equality
1
s, = (I|sn(t)|Pdt)P = P,
[]
which demonstrates the impossibility of replacing ¢ by o in this
latter case also.

THEOREM 3. ZEvery sequence (x;) of elements of Zp, where p> 1,
which converges weakly to 0, contains a subsequence (xik) such that

n
J . 1 = 0(n1/Py.
, k=1 “k

Proof. Let z;= CE;). The weak convergence of (xi) to 0 implies
(cf. p. 83) that

(24)

(25) lim gi = 0 for r=1,2,...
and that e
(26) la b < M for i=1,2,...

The sequence (x;;) is defined inductively in the following way:
ziy, =%, and x4,, for n>1, is any term of the sequence (x;) satis-
fying the inequality

N . N
(27) Vlg, + g'n|P <}
j=1 7 J j=1
o n-1
where (gj) _sn-l"k§1mik and N denotes a natural number such that

|5j|p + 1,

b

o«
(28) ' Vole.P < 1.
g=n 7
Such an Ty exists by virtue of (25). We have by definition
N . o
A
Teph? = Nspoy + xg, 0P ) g, - gjn[P + 1 |gj
=1 j=N
whence by (27) and HOlder's inequality
N o« l © . l.p
tont? 5§ 15517« 1+ [( T 15,2 + (1 161P]
j=1 ¢ g=u iy ]
and consequently, by (26) and (28), lenlP < Hsn-1Hp+ 1+ (1+mP =
lsp—11P+c where ¢=1+ (1+MP. It follows from this that Hsnﬂps
C.n, from which, by definition of s, the equality (24) follows,
d.e.d.

+ a:;.”lp,

Remark. The above theorem 3 no longer holds for every p> 1 if 0
is replaced by o in the formlula (24).
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In fact, it is enough to put

gt - f1 for i = »,
r |0 for i # »,

1xik"= nl/p for any subsequence (xik).

We are going to deduce from theorems 2 and 3 just proved, several
relationships, firstly between the linear dimensions of the spaces
P and Lq, then between those of the spaces 7Y and 17 and finally
between the linear dimensions of the spaces LY and those of the

spaces 19, with p.q> 1 throughout.

LEMMA. If dimZLps dimZLq, where p,q> 1, then either q<sp<2 or
2<psgq.

Proof. By hypothesis, there exists a bounded linear operator U
which maps P injectively onto a closed subspace G of 9. If the
sequence (x,) SLP is weakly convergent to 0, the same is true of the
sequence (y;) where ypn = Ulzp). By theorem 2, p. 119, there con-
sequently exists a subsequence (y;,) such that

- 0G* @) wnere 000 {18 7L $157
-1

As the inverse operator U - is continuous, there exists an M> 0
such that Izl SMlyl, where x=U"1(y), for every y € G, whence

'= M"k=1yik" and consequently, by (29), "kglmiku= o(n

to have “kz

(29) "ofy

¢(q),

" 2,24
ke1v vk
so that, (x;) being any sequence weakly convergent to 0, we conclude
from (29) that

(30 d(p) s 0(q).

Now as the spaces of bounded linear functionals on I? and 19 are
(cf. Chapter XI, §6, p. 110, 2°) isometric with Lp/(p-l) and
Lq/(q—l) respectively, we have that the adjoint operator U* maps
Lq/(q—l) to P/ (P=1) 4ng it follows from theorem 3 (Chapter X, §1,

p. 91) that its codomain is all of the space P/ -1 By theorem
10 (Chapter X, §1, p.92), there therefore exists an m > 0 such that

to each x€ P/ P"1) there corresponds a Y€ 19/ 45 such a way
that X = U*(Y) and Yl £ mhxl.

Having said this, let (X,) be any sequence of elements of Lp/(p-i)
which converges weakly to 0 and (Y,) the sequence satisfying the
conditions X, = U*(¥,) and 1¥,1 < miXy |l for every natural number n.
Since the sequence of norms tﬂynu is bounded, (Y,) has a weakly
convergent subsequence (Yni): (see Chapter vIII, §7, p. 80). 1If Y,
denotes the limit of this subsequence, we have U*(Y,) = 0, since the
sequence (X,.) converges weakly to 0. We consequently have
Xn;=U*(¥p;="Y,) and, further, the sequence (Yny - Y,) converges
weakly to 0. Putting Y;=1Yn;-Y, for ¢=1,2,..., we can therefore,
by theorem 2, p. 119, extract a subsequence (Yﬂk) such that

| . (¢( ))

2 sz"
whence, putting X = U*(sz)r we obtain Hx-kﬂg HU*H.Hyikﬂ and
) ik

7 | 0(n¢(5gT)§
k=1

Since (X¢;) is a subsequence of (X,), we conclude from (32) and
(33), in v1ew of the remark on p. 121, that

(32)

(33)
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B _q_
(34) o(21) s o)
whence, by (30) and the definition of the function ¢, the desired
inequalities follow without difficulty.
This lemma easily leads to the following theorems.

THEOREM 4. If dimZLp= dimZLq, where p,q> 1, we have p=gq.

THEOREM 5. If 1<p< 2<gq, the spaces P and 19 are of incompar-
able linear dimensions.

THEOREM 6. If 1<p#2, we have dimyL? < dimyZP.
Proof. For z(t) € L*, let
4 T i oL
y(£) = = +izl(aicos 27t + b sin 27¢)
0
where a, = %jz x (t)cositdt and bi= %jﬁﬂx(t)sinitdt, for any
2=0,1,2,...
o 2T

As igo(a;+ b;)= Io x2 (t)dt, there exists a constant M > 0, depend-

ing only on p, such that

[ e [1 (@ o]
y () ] M a? + b2 }.
0 i=o *

7Y

Putting y = U(x), we therefore have y€ LP and the above inequality
can be written in the form

Iyl < Mlxl,

‘from which it follows that U is a bounded linear operatof.
Moreover there exists a constant X such that

® 2T
[_Z (a2 + b;)]* < k[ |y(¢)|dt,
=0 0

whence, by Riesz' inequality (see Introduction, §2, p. 1):
® sr2m 1
[ ] (af + b;)]* < x(zn)p[; |y(t)|pdt]p,
=0 0
so that lxl £ Clyl where C= K(Zn)l/p, from which it follows that U
has a continuous inverse.
Consequently we have the relationship

dim, (2%) £ dimZ(Lp)

where the equality sign is excluded (since we would then have, by
theorem 4 above, the equality p =2, contrary to hypothesis}), g.e.d.

It is worth noting that the following problem is still open: <s <t
true that for q<p< 2, just as for 2<p<q, we always have
dimzz? < dimy192

For the spaces 7P and 19 we have the

THEOREM 7. The spaces 1P and 19 vhere 1<p#q>1 are of incompar-
able linear dimensions.

Proof. Putting dimzlp§<dimzlq and proceeding as in the proof of

the lemma, p. 122, one obtains the inequalities (which correspond to
the formulae (30) and (34)):

1<
p S

al=a
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whence p = g, contrary to hypothesis.

We now pass to the relationships between the linear dimensions of
P ana 19.

THEOREM 8. If dimZLp §dimZZq where p,q> 1, we have p=q=2.

Proof. By the same procedure one obtains (in place of (30) and
(34)):

1 - PRk §
¢ (p) §q and ¢(p-1) < 7’
where
% for n £ 2,
(35) p(n) =
% for n 2 2.

It immediately follows from this that p=¢=2, gq.e.d.
The above theorem 8 implies, by virtue of theorem 1 (Chapter XI,
§2, p. 101) the

COROLLARY. For dimZLp= dimZZq, it is necessary and sufficient
that p=q = 2.

THEOREM 9. If 1<p=#2, we have dimyZP > dim;7%.

Proof. Indeed, if, on the contrary, we had dimZLp sdimzlp, we
would have by theorem 8 above, putting p = ¢ there, the equality p =2,
contrary to hypothesis.

It therefore remains to show that the spaces in question are of
comparable linear dimensions. To this end put

28/P gor L < ¢ g

5% 2i-1

Y, (t) =

0 for 0 £t < - and —
2t 2"

7 <t £1,
whence jz|yi(t)|pdt= 1, so that y;(t) € P for ¢=1,2,...; for every
z=(£,) € P, let

y(t) = ] £y, (8),
i=1

1 >
whence foly(t)|pdt= i§1|gi|p' Consequently, putting y =Ul(x), we

obtain Iyl = lzll, which shows that U is a bounded linear operator
that admits a continuous jinverse. Moreover, it maps 1P isomorphic-
ally onto a subspace of I?.

THEQREM 10. For 1< gq<p< 2, just as for 2<p<q, the spaces j724
and 1% are of incomparable linear dimensions.

Proof. Assuming that dimZLpi dimzlq, the argument used in the
proof of the lemma, p. 122, leads to the inequalities (analogous to
(30) and (34)):

..1 < 9_1 (_P_.)

< ¢ and < ¢

q () q p-1 !

where the function ¢ is defined by the formula (35) . We :meedlately

deduce from this that either p<4g<2 or 2<q<p, contrary to
hypothesis.



Linear dimension

The following question nevertheless remains unsettled: <s <
true that p< qq< 2, or likewise 2< q<p, implies the inequality

. 7] 2
dlmZL > dlmZZ ?
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Appendix
Weak convergence in Banach spaces

We distinguish two notions of weak convergence in Banach spaces,
namely: weak convergence of bounded linear functionals and that of
elements (cf. Chapter VIII, §4 and Chapter IX, §1). The two notions
are clearly different. We are here going to add several theorems
connected with the study of these notions.

§1. The weak derived sets of sets of bounded linear functionals.

Given a separable Banach space, let I' be an arbitrary set of
bounded linear functionals defined on E.

Let us call a bounded linear functional X a weak accumulation
point of the set I' when there exists a sequence of bounded linear
functionals (Xy) with Xz =X and X3 €' for every k=1,2,..., which
converges weakly to the functional X.

The set of all weak accumulation points of the set I' will be called
the weak derived set (of order 1) of I'y, and the weak derived set of
the weak derived set of order n-1 of T will be called the weak
derived set of order n of I'. The successive weak derived sets of T
will be denoted by r(l),r(z) ('t

If I' is a linear set, we evidently have

r e F(l) c F(z) € ...eT
It is easy to give an example of a linear set I' which is closed,
without being weakly closed.
Indeed, take for I' the set of bounded linear functionals X defined
on the space ¢, of the form

reeesl

(n) c F(n+1) [

0

(1 X(z) =] C.E.,
0 1=

where m-(Ei)E e, and 0= 1,0,

It is easy to see that the set I' thus defined is linear, closed and
that it does not contain the functional of the form (1) where ¢, =1
and ¢,=0 for £=2,3,... Moreovex, since this last functional (see
the Rémarks to Chapter VIII, §6, p. 148) is the weak limit of the
sequence (Xk) of functionals of the form (1) where

c, = {1 for % or i = k

=1 = &,
0 for £ # 1 and <2 = k,
the set I' is not weakly closed.

THEOREM 1. For every natural number n there exists a linear set of
bounded linear functionals defined on the space ¢, whose weak derived
set of order n is not weakly closed.

Proof. Every bounded linear functional X defined on ¢, being of
the form (1) where z= (E,) €, and I [C | =1Xl, let A, be the set of
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those for which one has (,;=0 and A, the set of those where ¢
0 for <4=1,2,...

Set up a one-to-one correspondence between pairs r,s of natural
numbers and even numbers N(r,s) and denote by 2y, ¢ the bounded lin-

24-1"

ear functional on ¢, given by Zr;s(x) Z ngz where x = (£4) € ¢, and

_ [1 for 7 = N(r,s),
(2) €y = {o for < * N(r,s).

Let G be an arbitrary linear set of bounded linear functionals
defined on ¢,. Let H be the set of all functionals of the form (1)
where C2i= 0 for 4=1,2,... and such that the functional 'EICZz 151
belongs to G. The set # thus defined is clearly linear and we have
HES A,. Being a subspace of 1!, the set A, is separable. H there-
fore contains a sequence of functlonals (¥, ) which is dense in the
set of bounded linear functionals of norm § 1 belonging to A and
such that

(3) y,I £ 1 for r=1,2,...
For r,s natural numbers, put:
(4) Xp,s = Yp + vhyp g

and let T denote the linear set of functionals X of the form

o] <0 o <0
(5) X = ] apekps = 11, 1 ar,s * ) ray glp,gs
r,s=1 r=1 s=1 r,s=1
where at most finitely many of the ap, g are non-zero.
By virtue of (4) and (5) we therefore have, by definition of the
sets A; and A,
0 -2
(6) V ) ap,s¥r, 5| 2 I ) rar,szr,s“ = 1 |rap, ol
r,s=1 r,s=1 r,s=1
Now let (Xg), where X, €T for k=1,2,..., be a sequence which is
weakly convergent to X. By (5) we can put

]

v (k) R "
(7 X, . §=1ar’sxr’s = X} + X1,
where
S T (k) T 13
(8) =)y Ja and x = § ra "'z
ot s=1 r,s k », =1 r,8s r,s"

Clearly Xk€ A, and x'e A, for any k, from which it follows that
the sequences (Xk) and (Xz) converge weakly to some functionals
X'€ A, and X" € A,; conseqiently X=X"'+X".

With A’ denoting, as usual, the derived set of # in the ordinary
sense, we shall show moreover that

(9) X' e Hg',

In fact, due to the weak convergence of the sequence (Xz) to X,
there exists a number M > 0 such that IXzl < ¥ for k=1,2,..., whence,
- 4 (k) . : (ky _ 2 (k)
by (6)-(8), r,§=1|rar’s|§ M; therefore, putting br = sglar,s' we

can write

(10) 7 17{F| s M for x=1,2,...
r=1
Hence there exists a subsequence (of indices) (kj) such that the

limit b =1lim b;kJ) exists for every »r=1,2,...
We there%ore have, by (10),
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0
(11) Z r|br| < M.
r=1
For each natural number m we consequently have

o -1 0 ©
(k) " (k) (k)
Db, - b | s ] b9 = b |+ ] b0 + ] [P,
r=1 r r r=1 r r r=m r r=m r

which, by (11) and the definition of b,, yields the inequality

o
— k.
Tim § (%9 - 5,1 s 2m/m,
whence, as m is arbitrary,

I k
1im § 5% - b_| = 0.
. r r
Jre r=1 o
Observe that, by (3) and (11}, the series l,‘glbl,,lfl,, is convergent

and the above equality implies, by (8), that X' is its sum. As
Y,€ H for every natural number r and H is a linear set, we therefore
have X'€ RH'.
It is thus proved that for x=X'+X"€T ), where X’'€ A, and
X"€A,, we have X' € H'. Formula (9) is thereby established.
Moreover, it is easily shown that the sequence (Zr,s) converges
weakly to 0 as s > «; hence, by (4), the sequence (Xr,s) converges
weakly to Y, as s+ x. We therefore have

(12) Y, € F(i) for r=1,2,...

Now let (Xk)EIw ) be a seguence which converges weakly to,
XEA, NT(2)." We piainly have X, = X! + g", where Xy € H' and X €D,
It is easily seen that the sequénce™ (X converges weakly to"X,
whence X € H¢yy. Conversely, for each §€ H(1), there exists a
sequence (Xz) S H which converges weakly to X. Without loss of gener-
.ality we can assume that lIXgll £ 1 for k=1,2,... By definition of the
sequence (Yp), there exists, for every k, an index rj such that
X3 - Yppl £ 1/k from which it follows that the sequence (Yrg) is also
weakly convergent to X. It follows from this, by (12), that X€ T (),
whence X€ A, N T (5, since (1) S A, by definition of A,;.

Hence

(13) by N T,y =8,y

Continuing in this way, it is shown by induction that, in general,
one has

(14) By 0Ty = H(n) for every n=1,2,...

This established, let us return to the given set G. If we assume
that the derived set G’ of G is not weakly closed, the same will
clearly be true of the derived set A’ of HZ, and, by (9) and (13), the
same will hold for the weak derived set I(y) of I'. Similarly, assum-
ing that the weak derived set G(p-1) of G of order n-1 is not weakly
closed, the same will evidently be true of the weak derived set Hp)
of H, of order =n, and so, by (14), also of the weak derived set
F(n+1) of I' of order n+1, gq.e.d.

Remark. One can define the weak derived sets T(g) of T of trans-
finite order & for transfinite numbers £ of the second class by put-
ting T(g) = ngi T(por I'(g) = (r(g-l))(l)' according as £ is or is not

a limit ordinal.

One can then establish, by induction, the following theorem, analo-
gous to theorem 1:

For every transfinite number £ of the second class, there exists a
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linear set of bounded linear functionals on the space c, whose weak
derived set of order £ is not weakly closed.

Nevertheless, one can show that, if E is a separable Banach space
and T an arbitrary set of bounded linear functionals on E, there
always exists a number &, finite or transfinite of the second class,
such that the set I'(y) is weakly closed. This is an easy consequence
of theorem 4 (Chapter VIII, §5, p. 76).

THEOREM 2. Let E be a separable Banach space and T a linear sub-
space of E*, the dual space of E. A necessary and sufficient condi-
tion for T (1) =E* is that there exist a number M> 0 such that, for
each € E, T contains a functional X satisfying the conditions

(15) bxl £ M and |X(z)]| = bzl.

Proof. Necessity. For each natural number n, let A; be the set of
bounded linear functionals X on E which are weak limits of sequences
(Xz) contained in T satisfying the inequality lXxxl £» for k=1,2,...
We therefore have, by theorem 2 (Chapter VIII, §4, p. 75),

Ty = n§1An' whence, by hypothesis
16 E* = A .
( ) nU1 n

Observe that A, is a closed set. 1Indeed, let (X;) A, be a sequ-
ence where 11mHXJ- Xl =0. By definition of A,, thére therefore

exists, for"each j, a sequence (XJ) which converges weakly to X.,
where Xie I' and HX%H n for k=1,2,... If (xp) is a dense sequegce
in E, the equalities llm XJ(x ) = X (m ) and lim X. (x ) = X(xr), which
hold for any J and r, 1mp1y the ex1stence ofJamsequence (XJ ) such
that lim XJ (x )-—X(x ) for every r=1,2,... Since nxi hsn, it
follo%s, bthheorem 2 (Chapter VIII, §4, p. 75) that tﬁe sequence
(Xi.) converges weakly to X, whence X € A,.

Thus, as every A, is closed and E* is itself a Banach space, the
equality (6) implies the existence of an index n, such that An, con-
tains a ball X Eg*. Let X'’ denote the centre and p the radius of X.

Given an element x € E, there exists, by theorem 3 (Chapter Iv, §2,
p- 34), a functional X, € E*¥ such that

(17) X, (x) = Izl and IX,0 = 1.
Put
= P = -
(18) A= W and X" = >\X0 + (1-0)x'.

It easily follows that X" - X'H W whence X" € KC=An° There con-
sequently exist two sequences (Xk) and (X;) of functionals belonging
to T converging weakly to X' and X" respectively; we therefore have
both

(19) Ix,1 £ n, and Ixgh < n, for k=1,2,...

AL
The sequence {XXZ (1XA) k} is contained in T and, by (18), con-
verges weakly to X,. By (17), there consequently exists an index %k,

such that

(20) %X;o(x) - iliilxéo(x) = allxl where % < o < 2.
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Therefore, putting X—-1(1XZ - (1;A)Xio>, we obtain X€T, X(x) = lxl,

n
and, by virtue of (18)-(20), HXH§54=-—53(2+ 20x'01 + p), from which it

follows that M is independent of x. Condition (15) is thus seen to
be satisfied.
sufficiency. Let A denote the set {X: X€T and lxll £1}. Then, by
theorem 4 (Chapter VIII, §5, p. 76), replacing I' by A and A by (Xp)
therein, there exists a sequence (Xy) E A which is weakly dense in A.
Put, for each xz€ FE,

(21) y = (np) where ny = Xp(x) for r=1,2,...

We therefore have

(22) Inpl < lxpl .zl < lzh,
whence y € m, and

(23) lyl < Nk,

where the norm of y is that of the space m.

Moreover, with X € I' denoting a functional which, by hypothesis,
satisfies the condition (15), put X’==%X. Then X'l £ 1, so that
X'eA.

There therefore exists a subsequence (X5.) which converges weakly

to X', whence 11m |XpJ(x)| |X*(z) |, which? by (15) and (21), yields
Tim |ny| 2 IX’(x)I lﬂmﬂ and consequently
o0

(24) Iyl 2 iz,

Thus, putting y =U(x), we see easily from (21) and (23) that U is
a bounded linear operator; by (24), the same is true of the inverse
operator v-l, Ssince the space E is separable by hypothesis, the co-
domain E, of U is also separable, as U is continuous.

Having said this, let X be any bounded linear functional on E and
put

(25) Ty = xw iy,
so that, the inverse gt being a bounded linear operator, Y is a
bounded linear functional on E,. By the theorem of S. Mazur

(Chapter 1V, §4, p. 44), replacing (E ) by (ny) therein, there
therefore exists a double sequence of numbers (a,,) such that
(26) Y(y) = 1lim § o__n_for y € E,
mrw pog T
and o,y =0 for r> kp, where (k,) is a sequence of natural numbers.
By (21), this leads to:
n kn -
(27) z o, N, =r21unrnr =r§1a X (z) =X (x),
from which it follows that Xn€ I for n=1,2,..., because I' is a lin-
ear set and Xp€ AET.
Moreover, we have, by (26) and (27), Y[U(m)]l-llm X (), whence,

by (25), X(x) = 11m Xn(x) for every x € E; the sequence (Xn) therefore

converges weakly to X. Hence X¢€ F(l)' which shows that the condi-
tion is indeed sufficient, g.e.d.

It is easy to see that the set E of all bounded continuous real-
valued functions xz(q), defined on any metric space @, constitutes a
Banach space, when addition and scalar multiplication are defined in
the usual (pointwise) way and the norm is given by
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(28) lzl = sup |x(q)]
q€qQ
If, further, the space @ is compact, the space E in question is
separable.

In these circumstances (with @ compact), we have the following

THEOREM 3. Let (qyp) denote a sequence of points which is dense in
Q. Then, for each bounded linear functional X defined on E, there
exists an array of real numbers (oir) and a sequence of natural num-
bers (ky,) such that

ki
lim § a;px(gyp) = X(x) for z € E.
140 p=1
The proof follows from the preceding theorem 2, due to the fact
that, under these conditions, the set I' of bounded linear function-
m
als of the form i§1aiw(qi)' where the a, are real numbers and m is
an arbitrary natural number, satisfies the hypothesis of theorem 2.
Indeed, for each x € E, there exists a g, € § such that
z(g,) 23 zax |{q) | = 4lxl and as X,(x) =x(q,) is a bounded linear

functional of norm 1, one has only to put M= 2.

Theorem 3 can also be easily proved by direct application of the
theorem of S. Mazur, p. 44.

§2. Weak convergence of elements.

Now let @ be a general abstract set, not necessarily a metric
space, and E the Banach space of all bounded real-valued functions
x(q) defined on @, with the norm (28).

A functional X defined on E will be called non-negative when, for
any function x € E, the condition z(q) 20, for every g€ @, implies
that X(x) 2 0.

THEOREM 4. Every bounded linear functional X defined on E is the
difference of two non-negative bounded linear functionals on E.

Proof. For each subset S of @, put

(29) w(5) = sup X(¢,)
TES

where o denotes the characteristic function of the set 7. We thus
have

(30) 0 < u(s) < Ixi
and @ (S, U S,) =u(s,) +u(s,) for disjoint sets 5, and S,.

By (29), we have, further

(31) X(¢S) < u(s).

For every function x € E such that lxfl =1 let

(32) xylq) = i for % < xlq) < E%l, where -n <4 < n.

We clearly have Ixn(q)-x(q)| £ 1/n for every g€ @, whence
lz, -zl £1/n and consequently

(33) z = lim =_.

n
n-+o
With 5. . denoting the set {q€ @: x,(q) =</n}, where -n<<<n, put
’
n R
(34) X' (x) = lim Tuts, ).
n--o iZ—n n tyn

It is easily shown that, by (33), the limit (34) exists and that,
by (30), |Xx'(z)]| s X},
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Now the functional X' is non-negative, because, supposing that
(35) x(q) 2 0 for every ¢q € @,
we obtain, from (30) and (34), the inequality
(36) X'(x) 2z 0.
Observe, moreover, that (32) yields

n .
i@ = 1 Eb, @
=0 ’
whence, by (31)

n .
X(z,) S izoi”(si,n’
and consequently by (33) and (34) )
(37) X(z) £ x'(x),
from which it follows that the&functional
(38) ) X" = x' - X

is also non-negative, because, by (37), we alwafs have the inequal-
ity X" (x) 2 0 whenever condition (35) holds. Finally, X=X'-X", by
(38).

THEOREM 5. For a norm-bounded sequence of functions (x,) S E to
converge weakly to O, it is necessary and suffzczent that"

(39) lim lim |=, (q; )| =

n-+o z—»w
for every sequence of points (q | Ry

Proof. Necessity. Suppose, on the contrary, that for some
sequence (q, ) €@ we have llm 11m |xn(q )| >2>0. There therefore
n--

- exists an increasing sequence (n ) of natural numbers such that
lim |mnk(q }|>a>0 for every k and we can consequently extract, by
é*glagonal procedure, a subsequence (q¢ .} of (q ) such that

(40) |11m Ty (92 dl >a>0 for k- 1,2,...

1 >0
Consider the bounded linear functional X defined by the formula

X(2z) = Lim x(qz .) for every z € E, Y
5 500
where the symbol Lim has the meaning defined in Chapter II, §3,
p.21. We then have, by (40), |X(mnk)|> o for x=1,2,..., whence

(41) Iim |X(zy)| > @ > O,
n->r0
from which it follows that the sequence (x,) does not tend weakly to
0.

Sufficiency. In order to prove that a sequence of functions (x,),
where lxpl < M for n=1,2,..., converges weakly to O, it is now enough
to show, conversely, that there exists no non-negatlve bounded lin-
ear functional X which satisfies the inequality (41).

Suppose, on the contrary, that such a functional X exists; we can
obviously assume that

(42) fxl = 1 and lim X(x,) > a > 0.
n-o
Put, for every q € @
_ [xnlq) if zp(q) 2 0
sy (q) {0 if zn(q) < O,

and
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tn(q) = -’En(Q) - sn(q)-
At least one of lim X(s,) and lim X(t,) must clearly exceed ia.
n-roo 00
Assume, therefore, that "

(43) lim X(sp) > 3a > O.
i
Put, then, for each g € ¢

an(q) if sn(q) 4 %a,
yn(q) = : 1

lO if sn(q) < ga-
Then ls, - y,l < %a, whence, by (42) and (43)
(44) TIm X(y,) > 3o > 0.

n-reo 1
Let S, denote the subset {q€ @: |x,(q)]| 2 go} of @ and let ¢, be
its characteristic function. As lypl s syl € lxyll < M, we have

$n (q) 2éyn(q) for every g€ @ and n=1,2,..., so that, as the func-

tional X is non-negative, X(M.¢,) 2 X(y,), whence, by (44), putting
B=o0/3M,

(45) Iim X(¢,) > B > O.

n->o
Consider the set-function F defined for the subsets S of @ by
(46) F(5) = X(¢g)

where ¢g is the characteristic function of 5. The inequality (45)
can therefore be written in the form lim F($,) >8> 0. Let n, be the
B

least natural number such that "

(47) lim F(5, n s,) > 0.
n->0 1
Such an n; exists.
Indeed, suppose, on the contrary, that lim F(Spn S,) =0 and con-
n-+oo

sequently that

. k \ -
lim F(ig1(si n Sn)} =0

n->o
for k=1,2,... There would thus exist two increasing sequences (k.)
and (nj) such that for j=1,2,... J

k.
J 1
Ry <mg < kg, F(5p0 > g oand F(udGs; snj)) < 1g.

% -
Putting Tj= Snj\\ig{(sirlsnj), we would consequently have

(48) le nry = @, the empty set, for j, # j,
and
1 ,
(49) F(Tj) > 58 for j=1,2,...

Hence, with Yj denoting the characteristic function of the set Tj,
formulae (48) and (49) would yield

n
(50) x(,z yj) > n.38 for n=1,2,...

n n
However, by (48), we have |j£1Yj" <1, whence X(jglyj>§ 1, for
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n=1,2,..., contradicting (50).

Proceeding as for (47), one establishes the existence of an
increasing sequence (nj) satisfying the inequalities
1&& F(Snln Snzn «ee NS, .0nS8,) >0, from which it follows that none of

n
the sets (Snj) is empty.

Now let ¢.9 for 2=1,2,..., be an arbitrary point of the set
snlrlsnzn <+ NSp;. We thus have ¢; € Snj whenever 7 2 j, whence, by

definition of the set S,, we have the inequality lxnj(qi)|z %a for

each 7=1,2,... It follows from this that lim Ixnj(qi)|z€a and con-
sequently that lim lim |xn(qi)|z %a, contrg;§ to the hypothesis (39).
nao Tie

THEOREM 6. For a norm-bounded sequence (xy) in a Banach space E
to converge weakly to O, it is necessary and sufficient that one has

(51) lim lim [X.(x,)| = 0

n>o 70 t

for each sequence of functionals (X;) belonging to a set T of bound-
ed linear funetionals on E possessing the following properties:

1° T is a norm-bounded set of bounded linear functionals

2° there exists a number N> 0 such that, for each element xz€E,
the set T contains a functional X satisfying the inequality

(52) X(x) 2 N.lxh.

Proof. To show that the condition is sufficient, consider the
space E, of all bounded real-valued functions defined on T. With
each element x € £ associate the function f€ E; given by the relation

(53) f(x) = X(zx) for x € T.
Let M= sup Xl and put f=U(x). By (53) and (52), N.lzl 2 Ifl <

M.zl ; conégguently, as U is additive, both U and its inverse are in
fact bounded linear operators.
This established, if the sequence (x,) satisfies the condition
(51), it follows, by (53), putting f,(X) = X(x,), that
lim lim |fp(X,)|=0. It follows from this by theorem 5, p. 133,
7>

n->o
that the sequence (f;) converges weakly to 0. As Z/_1 is a bounded
linear operator and z, = U~1(fy), it results, by theorem 3 (Chapter
IX, §5, p. 87) that the sequence (xp) converges weakly to O.

A similar argument shows that the condition is necessary.

THEOREM 7. For a norm-bounded sequence (xy) <in a Banach space E
to converge weakly to O, it is necessary and sufficient that one has

(54) lim X(x,) = 0 for every X € T,
n->o
where T i8 a set of functionals possessing properties 1° and 2° (of
theorem 6) and, further, is weakly compact.

Proof. The condition is necessary by the definition of weak con-
vergence of elements. To prove that it is sufficient, it is enough,
by virtue of theorem 6, to show that (54) implies (51).

Suppose on the contrary, that there exists a subsequence (mnk) and
a sequence (X;) ET such that

(55) lim |Xi(xnk)| >a >0 for k=1,2,...

7>

Now, as the set I' is, by hypothesis, weakly compact, there would
exist a subsequence (X;;) weakly convergent to a functional X,€T,
whence, by (55), [Xo(xnk)lz a>0 for k=1,2,..., contradicting (54).

The following theorems are easily deduced from the theorems that
have just been established.
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THEOREM 8. For a norm-bounded sequence (x,) of continuous real-
valued functions on a compact metric space § to comverge weakly to O,
it 18 necessary and sufficient that one has

lim z,(q) = 0 for every q € Q.
n-rc
The proof comes from theorem 7, with EF denoting the space of con-
tinuous real-valued functions on @ and I' the set of all bounded lin-
ear functionals X on E of the form X(xz) =xz(q), for € E, for some
q€ Q. We clearly then have Xl =1 for every Y€ T and it is easy to
see that I also satisfies the other hypotheses of theorem 7.

Remark. In particular, theorem 8 immediately yields conditions
for the (weak) convergence of sequences of continuous functions on
the closed unit interval and square, respectively.

THEOREM 9. For a sequence of functions (xy) €M, the space of
(essentially) bounded real-valued functions on [0,1], to converge
weakly to O, it is necessary and sufficient that for every sequence
of functions (ai(t)) such that

1

j|ai(t)[ =1 for ©2=1,2,...,
0
we have

1
lim lim |fe.(¢)z_(t)dt| = 0.
naw Tos 0 T n
The proof follows from theorem 6, p. 135, with T denoting the set
of all bounded linear functionals X on M of the form
1 1

X(z) = [z(t)a(t)dt where [|a(t)]|dt = 1.
0 0

We then have Xl =1 for every X€T and, for each x € M, there
exists a function a(t) satisfying the conditions
1

1
[la(z)|dt = 1 and [o(t)z(t)dt 2 izl
0 0

It is thus enough to put ¥ = % in the theorem mentioned.
THEOREM 10. For a sequence (zy), where z, = (EZ), of elements of m,

the space of bounded real sequences, to converge weakly to 0, it <s
necessary and sufficient to have, for every sequence of indices (ki)
lim lim |g7 | = 0.
n¥re >0 T
The proof follows from theorem 6, p. 135, with ' denoting the
sequence (X,) of all functionals of the form

X.(x) = Ej for x = (Ej) € m and j=1,2,...

We then haveHXjH= 1 for j=1,2,... and there further exists, for
each x€m, a j such that |Xj(x)| 2 ilzll. We therefore put V= 4}.
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INTRODUCTION

§3. We write 11m as z, (t) = x(t) when the sequence of functions
an(tD converges asymptotlcally to the function z(t).

§5. The last theorem implies that if (x,(£)) is a uniformly
bounded sequence of functions and an(t) is everywhere convergent,

then %im jgxn(t)da(t) exists for every function a(t) of bounded
e

variation (cf. F. Riesz, Sur le théoréme de M. Egoroff et sur les
opérations fonectionelles lindaires, Acta Szeged 1 (1922), p. 18-26).

§6., The proof of Lebesgue's theorem, from H. Lebesgue, Annales de
Toulouse 1909, is also to be found in H. Hahn, Uber Folgen linearer
Operationem, Monatshefte flir Math. u. Phys. 32 (1922), p. 1-88.

§7. The three conditions 1)-3) can be replaced by the following

- two: 1*) d(x,y) =0 if and only if xz=y, 2*) d(x,2) sd(z,y) +d(y,z),
cf. A. Lindenbaum, Sur les espaces métriques, Fundamenta Mathematicae
8 (1926) [p. 209-222] p. 211.

The distance between the elements x and y - in S can also be defined
by the formula d(x,y) = lnf [w+m({t:|x(t) -y(¢)|>w})]. The metric
thus obtained is equlvalent to that given in the text.

Similarly, in s the metric d(m,y)-%nf [%1132§ ng-nkl] is equi-
valent to that given in the text (cf. M. Fréchet, Les espaces
abstraits, Paris 1928, p. 82 and 92).

In the examples 1,3,5,7,8 and 10 one could take the functions to be
defined on a more general set. Thus, for example, in 5, p. 6, the
functions can be supposed to be defined on an arbitrary compact
metric space, or even just a complete metric space, provided, in
this last case, one only considers bounded continuous functions.

Many examples of metric spaces, interesting from the point of view
of the theory of operators, can be found in the cited works of H.
Hahn and M. Fréchet; with regard to its applications, the spaces
considered in the works of J. Schauder, Zur Theorie stetiger
Abbildungen in Funktionalriumen and Bemerkungen zu meiner Arbeit...
Math. Zeitschr. 26 (1927), p. 47-65 and 417-431, deserve special
attention. [Cf. also J. P. Schauder, Oeuvres, PWN. Editions Scienti-
fiques de Pologne, Warsaw 1978, p. 63-82 and 83-98].

Among other examples, we note the following.

11. The space @ of all almost periodic functions with the metric
d(x,y) = n@x |z (t) - y(t)[.
—<{ <+
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12. The space BP, for p2 1, of all functions defined in the unit
circle s2 + t? <1 and equivalent (i.e. equal almost everywhere) to
harmoniec functions. The appropriate metric here is given by the
formula 1

( [ lzts,t) - y(s,t) |Pdedt )P
g2+t <1

13. The space R of functions defined in [0,1] and equivalent to
Riemann integrable functions with the metric d(x,y) =
egstsup |x(t} = y(¢t)|. For a function z(t), 0<t <1, measurable and

d(x,y)

bounded above almost everywhere, egstsup z(t) denotes the infimum of
the numbers w such that z(¢) £ w almost everywhere.

Examples 11 and 12 are to be found in the work of G. Ascoli,
Sugli spazi lineari metrici e le loro varieta lineari, Annali di
Mathematica X (1932), p. 33-81, and example 13 in that of W. Orlicz,
Beitrdge zur Theorie der Orthogonalentwicklungen, Studia Mathematica
1 (1929), p. 1-39 and 241-255.

Orlicz has further studied a class of spaces, which includes the
72 spaces, for p> 1, with which the other spaces in the class share
many properties.

Specifically, let M(u) be a convex function defined for all real

values u and such that 1° M (- u)-—M(u), 2° llm -M(u) =0,
3° llm -M(u)--+°° and 4° li M( )M(Zu)< +m

Let N(u) be the functlon deflned for all real values of v by the
relations: N(v) =max [uv-M(u)], when v 20 and N(v) = N(-v) for
»p<O0. O0<u<®o

This done, the set 0 of all functions z(t) defined on [0,1] for

which the integral IzM[x(t)]dt exists, metrised as follows
1 1
dlz,y) = sup [lz(t) - y(t)lw(t)dt where [Nlw(t)ldt < 1,
0 °

constitutes a complete metric space.
In particular, for
(1 - 3)
Mu) = —{1 - =) .|u
w = L1 - 1) ]
where p> 1, one has F¥(v) ={v|p/(p—1) and

1 -
d(x,y) = (,glm(t) - y(t)lp)p,

from which it follows that the space 0 in this case coincides with
Le.
Replacing, in the definition of M(u), the condition 4° by

Tim M( )M(Zu)< +o without altering the definition of N(v), the space
U0

o of real sequences (&,) such that the series n=1M(£n) i8 convergent,

metrised by

d(x,y) = sup Z (p = Mydu, where T = (&), ¥ = (ny) and ] Niw)) s 1,
n=1 n=1

also constitutes a complete metric space, of which the P spaces,
p> 1, are particular cases (cf. W. Orlicz, Uber eine gewisse Klasse
von Rdumen vom Typus (B), Bull. de 1'Acad. Polonaise des Sci. et des
Lettres, February 1932).

We finally observe that none of the spaces 1-13, 0 and o is com-
pact; further: in each of them, the compact sets are nowhere dense.
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§8. The spaces 1,2,5-10 and 12, as well as the spaces 0 and o of
W. Orlicz are separable. On the other hand the spaces 3,4,11 and 13
are not separable, while being of the power of the continuum, like
the previous ones. In each of these latter spaces the sets of power
less than that of the continuum are nowhere dense.

Theorem 6: see F. Hausdorff, Mengenlehre, Berlin and Leipzig 1927,
p.- 195, II.

§9. As K. Kuratowski has observed, if a B-measurable operator
maps a separable metric space E bijectively to a metric space E,,
the inverse operator satisfies the Baire condition. The proof rests
on theorem 7, p. 10, and on the following theorem: for an operator U
from a metric space E to another metric space E, to satisfy the
Baire condition, it is necessary and sufficient that, for each
closed set G, SE,, the set G=U-1(G,) of elements x € E such that
U(x)€G, satisfy the Baire condition (see K. Kuratowski, La propriété
de Baire dans les espaces métriques, Fundamenta Mathematicae 16
(1930), p. 390-394.

Every analytic set satisfies the Baire condition: cf. O. Nikodym,
Sur une propriété de l'opération A, Fundamenta Mathematicae 7 (1925),
p- 149-154; the proof for Euclidean spaces, which is to be found
there, can be applied to the general case without difficulty, bear-
ing in mind the aforementioned theorem on sets of Category I.

CHAPTER I

§1. In view of the fact that F-spaces, studied in subsequent
chapters, are particular examples of G-spaces, when one regards them
as groups with respect to the addition operation defined on them, we
have chosen to settle at the outset on the name addition for the
fundamental group operation and to make the statements and notation
comply with this.

All the metric spaces 1-13, 0 and o equally constitute G-spaces,
as one sees immediately, the fundamental group operation being taken
as the usual addition of functions or sequences, respectively. All
these spaces are abelian, i.e. their addition is commutative, sym-
bolically x+y =y + z.

Among other examples of G-spaces, one can mention the following:

14, The space of homeomorphisms of a compact metric space ¢ into
itself, when the distance between two homeomorphisms x and y is
defined by the formula d(z,y) = sup d(x(q),y(q)) + 228 A=t ,y @),

and ‘'addition' is taken to mean the usual composition of functions.

15. The space of isometric transformations of a ball {(lying in a
metric space) into itself, when distance and addition are defined as
in the preceding example.

16. The space of all functions defined on a metric space § and
taking as values complex numbers of modulus 1 (one can further take
them to be continuous or even uniformly continuous), when the dis-
tance between two functions x and y is defined by the formula
dlz,y) =sgs |x(q) = y(q)| and 'addition' is the usual multiplication

of functions.

17. The space of bijective transformations of the set of natural
numbers to itself, or permutations of the natural numbers, with the
metric
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_v 4 le(n) ~y(n) | *+ |z=l(n) -y~ 1 (n)|
dlxz,y) = —. i =7
ne12® (1 + |z -y(n)| + 27 (n) -y~ 1 (n) )
(where x(n), etc., denotes the image of n under the transformation
x, etc.) and with ‘addition' being composition of transformations.

Given an arbitrary G-space E, if a sequence (z;,) of elements of E
is convergent, we plainly have

(1) p%;gmd(mp mq,O) 0,
but, in general, we do not know, conversely, if the condition I
always implies the convergence of this sequence.

If, in a metric space E, addition of elements is defined in such
a way that E, with this addition, becomes a group, and even the
axioms II, and II, are satisfied, it is not sufficient that the
condition I always implies the convergence of the sequence (x,) to
an element of E, for the space EF to be complete. Nevertheless, it
is not known whether there then exists in EF another metric, equiva-
lent to the given metric, which would make E a G-space. D. van
Dantzig has shown that this is the case under the additional hypo-
thesis that £ is an abelian space; in this case, one can even find
an equivalent translation-invariant metric, i.e. such that one has
dl(x,y) =d(x+z,y+z) for every z€ E (cf. D. van Dantzig, Einige Sdtze
iber topologische Gruppen, Jahresber. d. Deutsch. Math. Ver. 41,
1932).

The definition of G-spaces, along with all the theorems of the
text, is to be found in the note: S. Banach, Uber metrische Gruppen,
Studia Mathematica 3 (1931), p. 101-113 [Oeuvres II, p. 402-411];
cf. also F. Leja, Sur la notion de groupe abstrait topologique,
Fundamenta Mathematicae 9 (1927), p. 37-44.

§2, The spaces 1-10 (Introduction, §7, p. 6), as well as the
spaces 11-13, 0 and o defined here (see p. 138) are connected.

§3. As well as theorem 5, p. 15, we have the theorem: the space E
being connected, if (Up) <8 a sequence of bounded linear functionals,
the set of points where this sequence is bounded is either of categ-
ory I or is the whole of E.

§4., It follows from the previous remark that, the space E being
connected, if (Up,q) s a double sequence of bounded linear func-
tionals such that, for a sequence (xp) SE one has Tim |Up qlap) | = +»

+eo

for any p, the set of all x€ E such that I+ |Up,q?m)|- +e for
-Q0
p=1,2,... is of category 1II and its complement is of category I.

One can show that theorems 3-7 of Chapter III (p. 24-26) hold even
for G-spaces E and E,, when the space E is assumed separable (cf.
S. Banach, loc. cit., Studia Math. 3, p. 101-113 [Oeuvres II, p.
402-411)). Theorem 5, p. 15 is also an immediate consequence of
theorem 4, p. 15, and the remark, p. 139. The hypothesis that E be
separable is essential; it would be interesting to know if the
theorems 3-7 in question also hold for non-separable, but connected,
G-spaces.

It is to be noted that the following two properties are equivalent
for every G-space E:

(a) if U is a bounded linear operator which maps E bijectively to
a G-space F,, the inverse v-1 is also a bounded linear operator;

(R) given another metric d*(x,y) on E with respect to which E is
equally a G-space, if lig xp =x, always implies lig d*(xzp,x4) =0,
n n

then one also has the reverse implication.
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Moreover, it is unknown whether or not these properties hold, for
example, for the function space E of example 16, p. 139, when @
there denotes the set of complex numbers of modulus 1.

CHAPTER II

§1. One can equally consider vector spaces with multiplication of
elements, not only by real numbers, but also by complex numbers
without modifying axioms 1)-7). These spaces form the point of dep-
arture of the theory of complex linear operators and of a class,
much larger still, of analytic operators, which furnish a general-
isation of ordinary analytic functions (cf. for example, L.
Fantappié, I funzionali analitici, Cittd di Castello 1930). We
intend to expound this theory in another volume.

A subset H of a vector space E is called a Hamel base in E when
every element x € E is a (finite) linear combination of elements of &
and no element of A is a linear combination of other elements of #,
i.e. H is a linearly independent set. Every vector space admits
Hamel bases and any two such are always of the same cardinality.

§2., The preceding remark implies, for every vector space E, the
existence of non-zero additive, homogeneous functionals on E.

§3. The last theorem (see p. 21, 4) immediately implies that to
each subset S of the set of natural numbers N one can assign a meas-
ure m(S) in such a way that 1) m(S) 20, 2) m(S,US,) =m(8,) +m(S,)
for diejoint sets S, and S,, 3) m(S,) =m(5,), when S, =S5, and 4)
m(N) = 1.

For any measure satisfying the conditions 1) to 4), the set of all
numbers of the form aen+ b for n=1,2,..., with a and » fixed, has
measure 1/a; the set of all prime numbers has measure 0. A measure
satisfying conditions 1)-4) does not always coincide with the
density (when this is defined), but one can always arrange matters
in such a way that this additional condition is also satisfied.

Regarding this theorem, cf. S. Mazur, 0 metodach sumowalnodeci,
Ksiega Pamiatkowa I Polskiego Zjazdu Matematycznego (in Polish),
supplement to the Annales de la Société Polonaise de Math. (1929),
p. 102-107, see p. 103.

CHAPTER III

§1. Regarding the definition of F-spaces, see M. Fréchet, Les
espaces abstraits topologiquement affines, Acta. Math. 47 (1926),
p. 25-52.

The spaces 11-13, 0 and o, defined on p. 138, are clearly also
F-spaces. §S. Mazur has observed that every F-space satisfies the
condition

(1) 4f lim z, ==z, lim y, =y, lim k, =% and lim k, =k, then
n-+o n->o n-co n-+o
?:’Ltig} (hpxy + knyn) = hx + ky.
It is unknown whether or not in every vector space, which is com-
plete and satisfies condition (1), the metric can be replaced by an
equivalent metric which makes the space an F-space.

§3. Theorems 3-9, p. 24-27, remain valid for every metric vector
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space E satisfying condition (1) and the following condition:
(2) <f lim (x, - 24) =0, there exists an element x € E such that
P, g-+o p q
%im Xy =2,

Mazur suggests that this last condition can be replaced by the
hypothesis that the space E is complete. A simple proof of theorems
3-5 for the case of Banach spaces is to be found in the note of J.
Schauder, Uber die Umkehrung linearer stetiger, Funktionalopera-
tionen, Studia Math. 2 (1930), p. 1-6 [Oeuvres, p. 162-167].

Now consider, in an F-space E, an arbitrary closed linear subspace
G. It is clear that a partition of E into disjoint subsets is
obtained if we agree that two elements z and y of E shall be in the
same subset if and only if x-y€ G. The following theorem holds:
the set E’ of subsets of F thus obtained constitutes an F-space,
when the distance and the basic operations are defined by the con-
ditions, where X,Y and Z denote elements of E':

1° d(x,Y) =inf {d(x,y):x€ X and y€ ¥},
2° XY+Y=2={x+y: x€ X and y€ ¥},
3° tX=Y={tx:x €X}.

The proof of this theorem may be found in my book Teorja operacyj,
Tom. I, Warsaw 1931, p. 47-49 (in Polish); cf. also F. Hausdorff,
Zur Theorie der linearen metrischen Raume, Journ. f. reine u. angew.
Math. 167 (1932), p. 294-311.

Using this theorem, one can show that, if U is a continuous linear
operator from an F-space E into another F-space E , then if E is
separable, the codomain of U is B-measurable. However, it is not
known if the hypothesis that E be separable is essential.

§4. The method applied here has been further developed by S. Saks
and H. Steinhaus who have used it to treat various problems in the
theory of functions (cf. S. Saks, [Sur les fonctionelles de M.
Banach et leur application aux développements des fonctions]l, Funda-
menta Mathematicae 10 (1927), p. 186-196, and H. Steinhaus
[Anwendungen der Funktionenanalysis auf einige Fragen der reellen
Funktionentheorie], Studia Mathematica 1 (1929), p. 51-81).

The following works include applications of another method from
the theory of operators to this and related problems:

S. Mazurkiewicz, Sur les fonetions non dérivables, Studia Math. 3
(1931), p. 92-94.

S. Mazurkiewicz, Sur .l'intégrale f flzst) + f(x t) A—f(m)dt ibid.
p. 114-118.

S. Banach, Uber die Baire'sche Kategorie gewisser Funktionenmengen,
ibid., p. 173-179, [Oeuvres I, p. 218-222].

H. Auerbach and S. Banach, Uber die Holdersche Bedingung, ibid.,
p. 180-184, [Oeuvres I, p. 223-227].

S. Kaczmarz, Integrale vom Dinischen Typus, ibid., p. 189-199.

§5. Other applications of the theory of operators to problems in
differential equations are given in the following notes:

S. Banach, Sur certains ensembles de fonctions conduisant auzx
équations partielles du second ordre, Math. Zeitschr. 27 (1927), p.
68-75 [Oeuvres I, p. 169-177].

W. Orlicz, Zur Theorie der szferentzalglezehung = f(z,y), Bull.
Acad. Polon. Sci. et des Lett., February 1932.
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§6. Case 4° of the final theorem of this section is already known
(cf. F. Riesz, Les systémes d'équations linéaires a une infinité
d'inconnues, Paris 1913).

§7. Given a closed linear subspace G& s, for each element
x,€ s~ G there exists a bounded linear functional f on s such that
f(z) =0 for every € G and f(z,) =1.

Theorem 12 implies that if the codomain of a bounded linear opera-
tor on s also lies in s, then it is closed. The reference for this
theorem is O. Toeplitz, Uber die Auflosung undendlich vieler
linearer Gleichungen mit unendlich vielen Unbekannten, Rendiconti
del Circ. Mat. di Palermo XXVIII (1909), p. 88-96.

CHAPTER IV

§1. Normed vector spaces have been discussed independently of me
and almost simultaneously by N. Wiener, in his work, Limit in terms
of continuous transformations, Bull. de la Soc. Math. de France 150
(1922), p. 124-134.

The general class of Banach spaces was studied for the first time
in my work, Sur les opérations dans les ensembles abstraits et leur
application aux équations intégrales, Ph. D. thesis, University of
Leopol, June 1920; published in Fund. Math. 3 (1922), p. 133-181.

The spaces 11-13, 0 and o defined on p. 138, are Banach spaces.
On the other hand, the space s of example 2, p. 6 (see also p. 31-32)
is not a Banach space, nor, as S. Mazur has shown, is it even homeo-
morphic to any Banach space.

§2 and 3. Theorems 2-6 may be found in the note of H. Hahn, Uber
linearer Gleichungen in linearen Raumen, Journal fiir die reine und
angewandte Mathematik 157 (1927) p. 214-229; cf. also S. Banach, Sur
tes fonetionelles linéares, Studia Math. 1 (1929) p. 211-216
[Oeuvres II, p. 375-380], in particular theorem 2 and the remark.

Theorem 4 was proved for certain special spaces by F. Riesz
Untersuchungen iiber Systeme integrierbarer Funktionen, Mathematische
Annalen 69 (1910), p. 449-497) and, in a more general form, by E.
Helly (Uber lineare Funktionaloperationen, Berichte der Wiener
Akademie der Wissenschaften, IIa, 121 (1912), p. 265-297).

For F-spaces E, one can establish the equivalence of the following
two properties:

() Given a continuous linear functional f defined on a linear
subspace GS E, there exists a continuous linear functional F on the
whole of E such that F(x) = f(x) for every xz€G.

(8) Under the same conditions, if, further, ¢ is closed, there
exists, for every x,€ E~ G, a continuous linear functional F on E
such that F(x,) # 0 but F(x) =0 for any zx€ G.

However, these properties do not necessarily hold in all F-spaces.
Thus, for example, any continuous linear functional on the space S
must vanish identically.

Given two Banach spaces F and E, and a bounded linear operator U,
defined on the linear subspace GSF and whose codomain lies in E,,
we do not know if it may be extended from G to the whole of E, i.e.
if there exists a bounded linear operator V defined on all of E,
with codomain in E,, such that V(z) = U(x) for every xz€ G.
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This extension of U is always possible when E, is finite-dimen-
sional, but even then the condition |Vlg=lUl; is not always
realisable.

§4. The general form of bounded linear functionals on thg space (
was first established by F. Riesz (Sur les opérations fonctionelles
linéaires, C. R. Acad. Sc. Paris 149 (1909}, p. 947-977) .

The general form of bounded linear functionals on the space Lr,
#> 1, was proved, for r=2, by M. Fréchet (Sur les ensemblgs de
fonctions et les opérations linéaires, C. R. Acad. Sc. Paris 144
(1907), p. 1414-1416), and in the general case by F. Riesz, loc.
cit., Math. Ann. 69 (1910), p. 449-497 (see p. 475).

The general form of bounded linear functionals on the space L! was
first shown by H. Steinhaus (Additive und stetige Funktionalopera-
tionen, Math. Zeitschr. 5 (1918), p. 186-221).

The conditions 1°-3°, p. 45, can be replaced by the following two:

1) Op s = 0 for every j>n where n=1,2,...
n
2) j§1|an3|= Ifl for n=1,2,...

This theorem is due to S. Mazur.

The general form of bounded linear functionals in the Orlicz
spaces 0 and o (cf. p. 138) is established in his paper mentioned
there. Thus, for example every bounded linear functional f on the

space 0 is of the form f(x) =sz(t)a(t)dt where o(t) is a function

such that JiNCka(t))dt exists for some k lying between 0 and 1.
According to F. Riesz the norm of the bounded linear functional

fz) =fzx(t)dg(t) on ¢, where g(t) is a function of bounded varia-

tion, is equal to the variation of the function E(t) defined as
follows:

g0y = g(0), g(1) = g(1) and g(¢) = lim g(t+h) for 0 < t < 1.
>0+
§6. See F. Riesz, Sur l'approximation des fonections continues et
des foncetions sommables, Bull. Calcutta Math. Soc. 20 (1928/9), p.
55-58.

§7. These two theorems are both due to F. Riesz (cf. the papers
of Riesz and Helly already mentioned in the Remarks to §2 of this
Chapter.

§8. See F. Riesz' book, Les systémes d’'équations linéaires & une
infinité d'inconnues, Paris 1913.

CHAPTER V

§1. Theorem 3, p. 49, (cf. S. Banach and H. Steinhaus, Sur le
principe de la condensation de singularités, Fund. Math. 9, (1927)

p. 50-61) [Qeuvres II, p. 368], implies that the set @ of points of
convergence of a norm-bounded sequence of bounded linear operators
(Up) is always closed. In the general case @ is an Fgg.

In this connection, it should be noted that, as has been shown by
S. Mazur and L. Sternbach, if (U,) is a sequence of bounded linear
funetionals and the set @ of its points of convergence is not closed,
there exists in @ a sequence of points (x;) and a point x,€ EN@Q

such that lim x; =x, and the double sequence (U,(z;)) is bounded.
L0
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We deduce from this as a corollary that under these conditions @ is
not an Fg. Moreover, these statements may be extended to the case
where (mi) is, more generally, a sequence of bounded linear
operators, provided that their codomains lie in a space E,, also a
Banach space and posessing the property:

(v} for every sequence (yp), where y, € E, and lynl =1 for
n=1,2,..., there exists a sequence of numbers (t,) such that the
[ee]

series I tuy, is divergent while the sequence of norms of its
n=1

partial sums is bounded.

Property (Y) is possessed, for example, by the space ¢ as well as
all finite-dimensional Banach spaces.

The above-mentioned corollary may be made more precise, due to a
remark of S. Mazur and myself, in the sense that, under the stated
conditions, the set @ is not a G§g. As an application, it yields
the theorem that every infinite-dimensional Banach space E contains
a linear subspace that is an Fg§ without being a G§g. S. Mazur and
L. Sternbach have further shown that every space of this kind con-
tains a linear subspace which, without being an Fg, is the inter-
section of an Fg and a G§; nevertheless every G§ linear subspace is
in fact closed.

In certain Banach spaces one can establish the existence of linear
subspaces which are Fg§g sets without being Fg§'s. Whether such
subspaces always exist in infinite-dimensional Banach spaces remains
an open problem. Further, it is not known if there exist F-spaces
containing linear subspaces of higher Borel class or linear sub-
spaces which are analytic but not B-measurable or, again, linear
subspaces satisfying the Baire condition without being analytic.
Every infinite-dimensional F-space contains linear subspaces failing
to satisfy the Baire condition.

These problems are connected with certain questions concerning
additive operators. If F and E, are F-spaces, every additive B-
measurable operator U defined in a closed linear subspace GES E and
whose codomain lies in E, is, by virtue of theorem 4, p. 15, contin-
uous. Moreover, if the set G is not closed, the operator U may not
be continuous: we know of examples where, G being B-measurable, the
operator U is discontinuous, of the first Baire class; however, we
know of no example where it is of a higher Baire class. Similarly,
it is not known if the operator U can satisfy the Baire condition
without at the same time being B-measurable.

Inverting bounded linear operators leads to linear operators which
are discontinuous. If E and E, are F-spaces and the bounded linear
operator U maps E bijectively to a closed set G, S E,, the inverse
operator U~" is continuous by theorem 5, p. 26. Moreover, if G, is
not closed, the operator v~1" is not necessarily continuous, but if
the space F is separable, it is always B-measurable. Thus, for
example, in the case where E=F = L?, this operator is of Baire
class I.

§3. The lemma and theorem 8 are to be found in the note of F.
Riesz, loc. cit., p. 151. It is easily seen that the converse of
theorem 8 is also true. Furthermore, theorem 8 may be generalised
as follows: every F-space containing a ball which is compact is
finite-dimensional; it is easy to see that the converse is also
true.

§4. The theorem on Lr, proved on p. 52, is due, for r> 1, to F.
Riesz. For r=1, it is due to H. Lebesgue (see Annales de Toulouse,
1909). The theorem for 1¥ was discovered by E. Landau (Uber einen
Konvergenzsatz, G6ttinger Nachrichten 1907, p. 25-27).

§6. All these examples are well known.
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§7. The method A, which corresponds to the array A, is called
normal, when ajx =0 for <k and a;3# 0 for ¢=k. For k>0, the (g
Cesaro methods and similarly the Ei Euler methods are examples of
such methods. These last are perfect methods, according to S. Mazur
(loc. cit. Studia Math. 2, p. 40-50).

Theorem 10 is due to O. Toeplitz (Uber allgemeine lineare Mittel-
bildungen, Prace Mat.-Fiz. XXII, Varsovie (1911) p. 113-119).

We do not know if theorem 11, p. 58, holds when the method A is
not reversible. For a special class of reversible methods, namely
normal methods (see above), this theorem has been proved by S. Mazur
(loc. cit. Math. Zeitschr. 28 (1928), p. 599-611, Satz VII}).

Theorem 12, p. 97, can be completed as follows: if the method A is
permanent, reversible and such that each sequence which is summable
by A to a number is also summable to the same number by every per-
manent method weaker than A, then A is a perfect method. Also,
regarding theorem 12, for normal methods, cf. S. Mazur, Uber eine
Anwendung der Theorie der Operationen bei der Untersuchung der
Toeplitzschen Limitierungsverfahren, Studia Math. 2 (1930) p. 40-50.

The theorem on the general form of bounded linear functionals def-
ined on a separable linear subspace E of m(see p. 44) shows that
every bounded linear functional f agrees on F with a generalised
limit obtained by a certain method A, i.e. there exists an array A
such that every sequence xz € F is summable to f(xz) by the method
corresponding to this array. Moreover, if F is not separable, this
theorem can fail to hold; furthermore, there can then exist, as S.
Mazur has observed, a sequence (f;) of bounded linear functionals on
E, weakly convergent to a bounded linear functional f and such that
fn coincides, for every n=1,2,..., with a generalised limit obtained
by a suitable method, while f lacks this property.

CHAPTER VI

§1. The notion of a compact operator is due to D. Hilbert and F.
Riesz who were also the first to show its utility.

According to a remark of S. Mazur, we have the following theorem:
if (U,) is a sequence of compact linear operators, defined in a
Banach space E and such that lim Un(m) =z for every x € E, a necess-

n-so

ary and sufficient condition for a set GEE to be compact is that
the convergence of(pn(x)) on G be uniform. A space F for which such
a sequence of operators exists is separable by theorem 1, p. 59.
The question of if, conversely, every separable Banach space E
admits such a sequence of operators, remains open.

On the subject of criteria for the compactness of a set GEE, cf.
also A. Kolmogoroff, Uber Kompakheit der Funktionenmengen bei der
Konvergenz im Mittel, Gbttinger Nachrichten 1931, pp. 60-63.

§2. All these examples are known.

§3. The notion of adjoint operator was first introduced in its
full generality in my note Sur les fonctionelles linéaires II,
Studia Math. 1 (1929), p. 223-239 [Oeuvres II, p. 381-395], which
also includes theorem 3, p. 61. The proof of theorem 4, p. 62, is
also to be found in the note of J. Schauder, Uber lineare voll-
stetige Funktionaloperationen, Studia Math. 2 (1930), p. 185-196.
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CHAPTER VII

§1. W. Orlicz has observed that for weakly complete spaces E
theorem 2, p. 65, can be sharpened, namely, the series (2) is then
convergent for every x € E.

A biorthogonal system (x¢), (f;) is called complete if the
sequences (x;) and (f;) are total sequences (see the definitions
p. 27 and 36). One can show that there exist complete biorthogonal
systems in every separable Banach space.

A biorthogonal system (z;),(f;) is said to be normalised when we
have lazgl = If¢Il =1 for 4=1,2,... According to a remark of H.
Auerbach, there exist complete normalised biorthogonal systems in
every finite-dimensional Banach space. Nevertheless, we do not know
if this is so in every separable Banach space or even if there
always exists a complete biorthogonal system such that lz;Il =1 for
2=1,2,... and Iim If 0l < o,

>0

§2. The previous remark implies that, in theorem 5, p. 66, we can
suppress the hypothesis that the sequences (x;(t)) and (y;(¢)) are
complete.

§3. The notion of base was first introduced in a general setting
by J. Schauder in the paper Zur Theorie stetiger Abbildungen in
Funktionalrdumen, Math. Zeitschr. 26 (1927), p. 47-65, which also
shows how a base may be constructed in the space C.

The theorem which states that the Haar system constitutes a base
in L¥ where p 2 1 is to be found in the note of J. Schauder, Eine
Eigenschaft des Haarschen Orthogonalsystems, Math. Zeitschr. 28
(1928), p. 317-320.

It can be shown that if a given sequence (xy,) in a Banach space E
is such that for every z € £ there exists exactly one sequence of
numbers (¢p) with the property that the sequence

k
(1 nmn)

converges weakly to z, then the sequence (x;) constitutes a base in
E.

The space cP (see example 7, p. 7) has a base for p=1,2,...;
however, we do not know if there is one in example 10, p. 7.
Furthermore, we do not know if there is a base in, for example, the
space of all real-valued functions z(s,t) defined in the square
0£8£1,0£¢<1 which admit continuous partial derivatives of the
first order, where the algebraic operations are defined in the usual
(pointwise) way and the norm is given by

el = max |z(s,t)| + max [xf(s,t)| + max |x[(s,t)].
O<s, t£1 0ss, ts1 0Ss, t=1

The existence of a base in every separable Banach space F is
equivalent by theorem 9, established in Chapter XI, §8, p. 112, to
the existence of a base in every closed linear subspace E, of (.

Now we know of no example of a separable infinite-dimensional Banach
space, not isomorphic with L? and such that each of its closed
linear subspaces contains a base. At the same time, note that every
infinite-dimensional Banach space contains an infinite-dimensional
closed linear subspace which does have a base.

The notion of base can clearly be introduced, more generally, for
F-spaces. In the space s a base is given, for example, by the
sequence of elements :
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1 for 2 = n,

- (% T _
(@) where =, = (£} and £ = {o for i # n.

The space S has no base; this is a consequence of the fact that
there exists no non-zero continuous linear functional on S.

§4. Theorem 8, cf. S Banach and H. Steinhaus, Sur quelques
applications du calcul fonctionnel & la théorie des sériee orthogon-
ales, Studia Math. 1 (1929), p. 191-200.

Theorem 10, cf. W. Orlicz, Beitrdge zur Theorie der Orthogonal-
entwicklungen, Studia Math. 1 (1929), p. 1-39 and 241-255.

CHAPTER VIII

§4 and 5. According to a remark of S. Mazur, theorems 2-4, p. 75-
76, also hold in F-spaces E, on replacing condition (20) in theorems
2 and 3 by the condition that the sequence of functionals (fy) be
bounded over a ball.

§6. The conditions for the weak convergence of functionals were
given for the space ¢ by H. Hahn and for the spaces 1P, pz21, by
F. Riesz.

Conditions (35) and (36) were discovered by H. Lebesgque.

Conditions (45) and (46), for the weak convergence of bounded
linear functionals on the space ¢ (see p. 79}, for the case of the

space ¢, take the form: 1° the sequence (i§1|ainl) is bounded and
2° 1im aip = og for 2=1,2,...
n->o

§7. The theorem on weak compactness in Lp, p>1, is due to F.
Riesz, loc. cit., Math. Annalen 69 (1910), p. 466-467.

CHAPTER IX

§1. The notion of weak convergence (of elements) was first stud-
ied by D. Hilbert, in the space [?, and by F. Riesz in the spaces
Lp, for p> 1.

A subset ¢ of a Banach space E is said to be (relatively) weakly
(sequentially ([trans.]) compact, when every sequence of elements of
G has a weakly convergent subsequence. In the spaces L[ and Zp, for
p> 1, every bounded set is relatively weakly sequentially compact
(cf. p. 79-80). The same is true in ¢ and ¢, while the spaces c,Lt,
1* and m do not enjoy this property.

§2. The theorem on weak convergence of sequences in Lp, p>1, was
proved by F. Riesz, loc. cit., Math. Annalen 69 (1910), p. 465-466.

The conditions for the weak convergence of sequences in the space
¢ were given by H. Hahn and in the spaces ¢ and Zp, pz21, by F.
Riesz. The theorem on p. 83 on the equivalence of norm and weak
convergence in the space 1! is to be found in the note of J. Schur,
Dber lineare Transformationen in der Theorie der unendlichen Retihen,
Journ. f£. reine u. angew. Math. 151 (1921), p. 79-111.

It should be noted that the weak convergence of a sequence of
bounded linear functionals on a Banach space E is not a sufficient
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condition for the weak convergence of the same sequence when regard-
ed as a sequence of elements of the space E*, (in modern terminol-
ogy, weak* convergence of such a sequence does not imply its weak
convergence [trans.]). Thus, for example, in 7! the notion of weak
convergence depends on whether 1! is regarded as a space of bounded
linear functionals (on e.g. c¢,: this would give us a type of weak*
convergence [trans.]), or not.

§3. The theorem stated here for Lp, p>1, was first proved by M.
Radon (Sitzungsberichte der Akad. fiir Wissensch. in Wien, 122 (1913),
Abt. IIa, p. 1295-1438). Cf. also F. Riesz, Acta Litt. Ac. Scient.
Szeged, 4 (1929), pp. 58-64 and 182-185.

§4. A Banach space EF is said to be weakly (sequentially) complete
when every weak Cauchy sequence (x,) S E (which implies that
%im flzpn) exists for every bounded linear functional f on E) is
+00

weakly convergent to some element of E. The space ¢,, and therefore
also the spaces ¢ and m, are not weakly sequentially complete. The
properties of weak sequential completeness was established for the
space L' by H. Steinhaus (see Additive und stetige Funktionaloper-
ationen, Math. Zeitschr. 5 (1918), p. 186-221) and for the spaces A3
and 1, for p> 1, by F. Riesz (see Untersuchungen uber Systeme
integrierbarer Funktionen, Math. Ann. 69 (1910), p. 449-497).
According to a remark of W. Orlicz (loc. cit. Bull. de 1l'Acad.
Polon, des Sci. et des Let., February 1932), the space 0 is weakly

complete, if tig N( )
A series of elements of a Banach space is called unconditionally

convergent when it is always convergent no matter how the terms are
ordered. Property 7° (Chapter III, §3, p. 24)established for F-
“spaces immediately implies that the absolute convergence of a series
always implies its unconditional convergence, but it is not known if
the converse is true in other than finite-dimensional spaces. W.
Orlicz has proved the following theorems:

N(2u)<+»; the same is true of the space o.

(1) The sum of an unconditionally convergent series is independ-
ent of the order of its terms,

(2) For a series to be unconditionally convergent, it is necess-—
ary and sufficient that every subseries of it be convergent,

(3) For the same conclusion, it is necessary and sufficient that
every subseries be weakly convergent (to some element).

It follows from this, under the hypothesis that the space E is
weakly sequentially complete, that a necessary and sufficient condi-

tion for the unconditional convergence of a series Z 1%n of elements
of E is that the series |f(xn)| be convergent for every bounded

linear functional f on E. Thls last result enables one to establish,
for weakly sequentially complete spaces, several important propert-
ies of unconditionally convergent series, entirely analogous to
those of unconditionally convergent series of numbers. Thus, for

0

example, a series Z 1%n is unconditionally convergent when there

exists a number M> 0 such that lxy, t o, + ...4-xnkH< M for any set

of distinct suffixes n,,n,,...,n%, 0r, agaln, when the series
o«

ngltnxn is convergent for any sequence of numbers (t,) converging to

0. These theorems play a part in the theory of orthogonal series
(cf. W. Orlicz, loc. cit., Studia Math. 1 (1929), p. 241-255).
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CHAPTER X

§1. On the subject of the theory of linear equations, developed
in this chapter, see F. Hausdorff, Zur Theorie der linearen Raume,
Journ. f£. reine u. angew. Math. 167 (1932), p. 294-311.

The theorems of this section were proved in the case E=E'=[? by
E. Hellinger and O. Toeplitz (see Integralgleichungen und Gleichung-
en mit unendlichvielen Unbekannten, Encyklopedie der Math. Wiss.,
Leipzig 1923-1927). In the more general case where E=E' = Lp, with
p>1, theorems 1 and 3 were proved by F. Riesz, loc. cit., Math.
Ann. 69 (1910), p. 449-497 and for E=E'= 1P where p > 1 by the same
author in his book Les systémes d’'équations linéaires a_une infinité
d'inceonnues, Paris 1913. Theorems 2 and 4 for E=E'= P and 1P res-
pectively, where p 2 1, were proved by S. Saks, Remarques sur les
fonetionelles linéaires dans les champs LF, Studia Mathematica 1
(1929), p. 217-222.

§2. The theorems of this section, except those involving the
notion of the adjoint operator, were first proved by F Riesz (Uber
lineare Funktionalgleichungen, Acta Mathematica 41 (1918), p. 71-98).

For certain special cases, theorem 15 was established by F. Riesz,
loc. cit., Acta Mathematica 41 (1918), p. 96-98. 1In its full gener-
ality, but formulated differently, this theorem was proved by T. H.
Hildebrandt (Uber vollstetige lineare Traamsformationen, Acta Mathem-
atica 51 (1928). p. 311-318) and in the version given here by J.
Schauder, Uber lineare, vollstetige Funktionaloperationen, Studia
Math. 2 (1930), p. 183-196 [Oeuvres, p. 177-189]1. 1If, in this same
theorem, one suppresses the hypothesis that the operator U is com-
pact, the equations in question cannot have the same number of
linearly independent solutions. Nevertheless, one can show that for
U=1I one has the inequality n £ v and that it again becomes an equal-
ity when, further, the space E is weakly sequentially complete and
such that its bounded subsets are relatively weakly compact (see S.
Mazur, Uber dié Nullstellen linearer Operationen, Studia Math. 2
(1930), p. 11-20).

§4. PFor these theorems c¢f. J. Schauder, loc. cit., Studia Math. 2
(1930), p. 183-196 [Oeuvres, p. 177-189].

Theorem 22: c¢f. F. Riesz, loc. cit., Acta Mathematica 41 (1918), p.
90, Satz 12.

CHAPTER XI

§2. The oldest known example of an isometry between two Banach
spaces is that of the isometry of L? to 1? which is given by the
Riesz-Fischer and Parseval-Fatou theorems.

§3, Theorem 2 was proved by S. Mazur and S. Ulam (see C. R. Acad.
Sci. 194, Paris 1932, p. 946-948). It is not known if this theorem
holds for F-spaces; according to a remark of Mazur and Ulam, it
fails, however, for G-spaces. The same authors have, furthermore,
pointed out the following corollary of this theorem 2: it is not
possible to define, in a metric space E, operations (of addition and
scalar multiplication) in two different ways, in such a way that in
both cases E becomes a normed vector space with the same zero
element 0.
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§4. We know of no example of a pair of separable infinite-
dimensional Banach spaces which are not homeomorphic; however, we do
not know how to prove that, for example, ¢ is homeomorphic to ec.
Equally, we have not been able to establish the homeomorphism of ¢
and I'. The spaces ¥ ana 19 are, however, homeomorphic for any
p,q2 1 (see S. Mazur, Une remarque sur l'homéomorphie des champs
fonetionelles, Studia Math. 1 (1929). p. 83-85).

Of particular interest seems to be the question of whether ¢ is
homeomorphic with the space of continuous functions on the square.
We know of no example of two compact metric spaces of finite, but
different, dimensions (in the sense of Menger-Urysohn) such that the
spaces of continuous functions defined on them are homeomorphic.

§5. The notion of rotation can be interpreted generally in G-
spaces. It can happen that the only possible rotation about 0 is
that given by the identity operator, i.e. Ul(x) = x; in F-spaces the
transformation V(x) = -z is also a rotation about 0. There exist
infinite-dimensional Banach spaces where these are the only two
rotations about ©. The general form (15) of rotations in L?, est-
ablished on p. 106, (actually known for a long time), shows that,
for every pair of elements x and y of norm 1, there exists a rota-
tion about © which maps =z to y. §S. Mazur has asked the question if
every separable infinite-dimensional Banach space possessing this
property is isometric with L?.

§6. The notion of isomorphism also makes sense in (G-spaces. Two
G-spaces are equivalent when there exists an additive isometric
transformation from one to the other.

For two isomorphic Banach spaces E and E,, put
d(E,E,) = inf [log(1ul.hu=1)]

where the inf is taken over all isomorphisms U from E to E,. If
d(E,E,) =0, the spaces F and E, will be called almost isometriec.
Isometric spaces are at the same time almost isometric. The con-
verse is always true for finite-dimensional spaces, but we do not
know how to refute the conjecture that, for example, the spaces ¢
and c¢,, which are not isometric, are almost isometric.

Consider the set Jp of all spaces which can be obtained from a
given Banach space F by replacing the norm with any equivalent norm.
It is plain that every space belonging to Jgp is isomorphic with E
and that every space isomorphic with F is {sometric with a space
belonging to the set Jgp. Let us partition Jgp into subsets, putting
two spaces in the same subset 1 when they are almost isometric. For
two subsets 1, and 1, of Jg put d(1,,1,) =d(E,,E,) where E, and E,
are any two spaces belonging to i1, and 1, respectively. One can
show that this distance is well-defined and that the set Igp of all
the 1, thus metrised, constitutes a complete metric space. I have
introduced these notions in collaboration with S. Mazur.

§7. Theorems 6,7, and 8 are due to K. Borsuk.

One can also study infinite products. Let us denote by
(E, x E, x "')c , where E,,E,,... are Banach spaces, the Banach space

B 0
E defined as follows: the elements of £ are all sequences (xp) where
xy € En for n=1,2,... such that limlz,l = 0; addition and scalar
n-+co

multiplication is defined termwise, and the norm in E is given by
H(xn)l-max lx,l. In an analogous way, one can define, for example,

the spaces (Ey xE,; % .vi)gy (B xEyx . ..), and (E, x E, X where

|
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§8. The theorems of this section are due jointly to S. Mazur and
myself.

P. Urysohn was the first to show the existence of a separable
metric space containing subspaces isometric to every given separable
metric space (see P. Urysohn, Sur un espace métrique universel,
Bull. Sci. Math. 151 (1927), p. 1-38).

Theorem 10, proof: cf. M. Fréchet, Les dimensions d'un ensemble
abstrait, Math. Annalen 68 (1910), p. 161.

§9. It is not known if the equivalence of the spaces E} and E%
always implies the isomorphism of the spaces E, and E, (cf. theorem
11, p. 171). The converse of theorem 12, p..114, is plainly false,
but we do not know if the same is true of the converse of theorem 13,
p. 114, in other words, if the equivalence of the separable Banach
space F and the space E** does or does not imply the existence, in
every bounded sequence of elements of E, of a subsequence weakly
convergent to an element of E. The following question also remains
open: given a Banach space F whose dual space E* is not separable,
does there exist in E a bounded sequence with no weakly convergent
subsequence?

CHAPTER XII

§3. The theorems of this section were discovered in collaboration
with S. Mazur. For the proof of the inequality (18) see S. Banach
and S. Saks, Sur la convergence forte dans le champ LY, Studia
Math. 2, p. 51-57 [Oeuvres II, p. 397].

Theorem 6, proof: the existence of the constant M follows from a
theorem of A. Zygmund (see Sur les séries trigonométriques lacun-
aires, Proc. London Math. Soc. 5 (1930), p. 138-145).

We here list a series of, respectively, Zsometrie, isomorphic and
dimensional invariants, i.e. properties which, if they are possessed
by some Banach space E, are also possessed by any space which is
isometric with, isomorphic with or has the same linear dimension as
E respectively.

Isometric invariants:

(1) The weak convergence of a sequence (x;) to z,, together with

the condition lim lgyll = lx,l, implies that lim lxy, - 2,0l = 0.
n->co n->oo
(2) lx,l =1 implies the existence of exactly one bounded linear

functional f such that f(xzy) =1 and Ifl =1.
(3) Isometry of the space with its dual space.

(4) Isometry of the space with every infinite-dimensional closed
linear subspace.

(5) Isometry of every pair of linear subspaces of a given (finite)
dimension 7 2 2.

Isomorphic invariants:
(6) Existence of a base.

(7) Existence for every closed linear subspace S of a closed
linear subspace T such that every element x can be written in exact-
ly one way in the form xz=s+ t where s€ S and t€ T.
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(8) Existence for every closed linear subspace S of a bounded
linear transformation from the whole space onto all of &S.

(9) Existence for every separable space E of a bounded linear
transformation of the given space onto the whole of E.

(10) Isomorphism of the space with its dual space.

(11) Isomorphism of the space with its square.

Dimensional properties:

(12) The property of being weakly (sequentially) complete.
(13) Weak compactness of bounded subsets.

(14) Existence of a base in every closed linear subspace.

{15) Isomorphism of all infinite-dimensional closed linear sub-
spaces.

(16) Equality of the linear dimension of all infinite-dimensional
closed linear subspaces.

(17) Equivalence of weak and norm convergence of sequences of
elements.

(18) Equality of the linear dimension of the space with that of
its square.

In the table that follows, the presence and absence, where known,
of these properties in various spaces is indicated by + and -
respectively; the blank squares correspond to open (and difficult)
problems while the symbols ® and © correspond to results obtained
since the book was first published: cf. the survey article of Cz.
Bessaga and A. Pelczyriski which follows.

As S. Mazur has observed, there exist separable infinite-dimension-
al spaces which, without being isomorphic with L[?, posess property
(3), and therefore also property (10), whilst there exists no such
space, at least among known spaces, which possesses property (4),(5)

or (14). Moreover, Mazur has shown that every infinite-dimensional
separable space which possesses property (5) for n=2 is, conversely,
isometric with L?. Property (6) fails in all non-separable spaces,

but we do not know if all separable spaces possess it. It is still
not known if there exists a separable infinite-dimensional space
which, without being isomorphic to L?,L' or I! possesses property (8).
Properties (11) and (18) hold for all known infinite-dimensional
spaces; nevertheless, we do not know how to prove or disprove that
every separable space possesses property (14). Finally, we know of
no example of an infinite-dimensional space which, without being
isomorphic with L?, possesses property (15).

It should be noted that none of the isometric invariants considered
here is an isomorphic invariant. Moreover, we do not know if all the
isomorphic properties listed are not at the same time dimensional
invariants. Among other open problems, we point out the following:

1° Let X, and X, be any two non-zero bounded linear functionals
on an infinite-dimensional Banach space E. With G, and G, denoting
the kernels (null-spaces) of these respective functionals, one can
show that dim;G, = dim;G,; is it true that dim;G, = dim;E?

2° 1If the linear dimensions of two Banach spaces are incomparable,
is the same true of those of their squares?
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We conclude by noting several results of S. Mazur concerning the
geometry of normed vector spaces.

With E denoting such a space, a translation of E is any isometry of
E to itself of the form U(x) =x+zx,, where z,€ E; the sets obtained
by translation of linear subspaces will be called linear varieties.
A linear variety H## E will be known as a hyperplane, when there
exists no closed linear variety G such that HSGESE and H# G#E. We
will say that a set A lies on one side of the hyperplane H, when
every line segment joining two points of A~ F is disjoint from F. A
set ¢ will be called a convex body when it is closed, convex and has
interior points. A hyperplane H will be called a supporting plane
of the convex body ¢ when ¢ lies on one side of F and is at distance
0 from H; in particular, H can therefore pass through frontier points
of C.

With this terminology, we have the theorem: through each frontier
point xz, of a convex body (¢ there passes a supporting plane H of ¢
(cf. G. Ascoli, Sugli spazi lineari ..., Annali di Mathematica 10
(1932), p. 33-81). It follows from this that every closed convex set
is weakly closed. In other words: given a sequence of points (xp) of
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E which is weakly convergent to x, € E, there exist non-negative
(n)

numbers e; both indices being natural numbers, such that, for

every n, c{n)= 0 for sufficiently large 7 and the sequence of points
7' ©  (n)

(yn), where Yy = ¢§1°i %, converges to z,. This last convergence

result was obtained by S. Mazur and myself, albeit by another
method.

In particular, for the space (¢, it has also been established by
D. C. Gillespie and W. A. Hurwitz (see On sequences of continuous
functions having continuous limits, Trans. Amer. Math. Soc. 32
(1930), p. 527-543) and, independently, by Z. Zalcwasser (see Sur
une propriété du champ des fonctions continues, Studia Math. 2
(1930), p. 63-67).

One can further show that a necessary and sufficient condition for
the weak convergence of a (bounded) sequence (x,) to a point z, is
that every (bounded) convex body containing infinitely many of the
points x, contains z;.
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Index

Abelian (space), 139 Convergent, series, 24
Accunulation (point of), 7, 127 - sequence, 5
Addition, 17, 139 Convex body, 154
Additive functional, operator, 14 function, 138
Adjoint equation, 95, operator, 61 set,space, 17
Almost isometric spaces, 151
Analytic set, 10 Dense set, 8
Asymptotic convergence, 2 Derived (set), 7
limit, 137 transfinite, 129
weak, 127
Baire condition, for sets, 9 Development of an element, 65
for operators, 9,10 of a function, 51
Base, 67 Diameter of a set, 102
Hamel, 141 Dimension, linear, 117
Biorthogonal sequence, 65 Dimensional (invariant), 152, 153
Body; convex, 154 Distance, 5
Domain, 9
Category 1, 1I (Baire), 8
Cauchy condition, S Element, proper (of an equation), 96
Centre of a sphere, 8 Entourage, 8
of a pair of points, 102 Equations adjoint, 95
Class, total (of linear operators), 27 symmetric, 99
Closed (set), 8 Equivalence (of spaces), 109
Closure of a set, 8 Exponents (conjugate), 1
Codomain, 9 Extension of a functional, 17
Combination (lineaxr), 17
Compact space, 6 Functional, 9
Compactness, weak, 79, 148 additive, 14, 18
Complete biorthogonal system, 147 bounded linear, 14
sequence of elements continuous, 9, (weakly), 80
of C,,45 non-negative, 132
of Lr, 45 orthogonal (to an element or set of
space, set, 6 elements), 36
weakly, 149 proper (of an equation), 96
Condensation of singularities Fundamental (set of elements), 36
tprinciple of), 50
(theorem on), 15 Group, 13
Conjugate expomnents, 1
Connected (set, space), 14 Homeomorphism, 104
Continuous (operator), 9 Homogeneous (operator), 18
weakly (functional), 80 Hyperplane, 154
Convergence, asymptotic, 2
in mean, 2 Incomparable (dimensions), 117
in measure, 2 Invariant dimensional, 152, 153
unconditional, 149 isometric, 152
weak (of elements), 81 isomorphic, 152, 153
weak (of functionals), 75 Inversion (of a linear operator), 24

Convergent (of operators), 9 Isometry, isometric (space), almost, 151



158 Index of terminology

Isometry, isometric space, tramsform-
tion, 101
invariant, 152

Isomorphism, isomorphic spaces, 109
invariants, 152

Iim, generalised limit, 21, 146

Limit, 5
asymptotic, 137
of operators, 9
(~point), 5
transfinite, 73
weak, 75, 82

Linear combination, 17
dimension, 117
operator, 14
set, space, 17
transformation, 101
variety, 154

Measurable (B)-set, 9
operator, 9
Measure (convergence in), 2
Method of summation normal, 58, 146
perfect, 55
permanent, 55
reversible, 55
weakexr than, 55
Metric (space), 5
translation-invariant, 140
Moments, problem of, 46

Netighbourhood, 8
Non-dense, 8
Non-negative (functional), 132
Norm of an element, 33

of an operator, 33
Normal method of summation, 58
Normalised sequence, 68
Normed space, 33

Operator, 9
additive, 14
adjoint, 61
bounded linear, 14
continuous, 9
homogeneous, 18
(B) -measurable, 9
symmetric, 99

Perfect (set), 7
(method of summation), 55
FPermanent (method of summation), 55
Plane, supporting, 154
Point, accumulation,
of elements, 7
of functionals, 127
Point, limit, 7
Principle of condensation of
singularities, 50
Problem of moments, 46

Product of spaces, 110
Proper element, functional, value
(of an equation), 95

Regular (value of an equation), 95

Regularly closed (set of functionals),
72

Reversible (method of summation), 55

Rotation, 105

Segment, 17
Separable (space), 8
Sequence, biorthogonal, 65
closed, 45
complete, 45
complete biorthogonal, 149
convergent (of elements), 5
(of operators), 9
asymptotically, 2
in mean, 2
weakly (of elements), 81
(of functionals), 75
normalised, 68
(~point), 5
transfinite, 73
weak, 75
Set, analytic or 4, 10
compact, 6
(weakly), 79, 148
connected, 14
convex, 17
category I,II, 8
closed, 7
(weakly) , 76
(regularly), 72

dense, 8
(weakly) , 76

derived, 7
(weak), 127

(transfinite), 129
fundamental (of elements), 36
linear, 17
(B)-measurable, 9
(J)‘: (L)_I 20
nowhere dense, 8
open, 8
perfect, 7
total (of elements), 36
(of functionals), 27
vector, 17
weakly complete, 149
Sets, homeomorphic, 104
Singularities (condensation of), 50
Space, abelian, 139

Banach, 34

C, 6
Ctp) , 7
e, 7
ey, 109

compact, 6
(weakly), 79
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Space, complete, 6
connected, 14
dual, 113
D, 5
F-, 23
G-, 13
7P, 138
linear, 17

. 7
P, 7
M, 6
m, 6
metric, 5
normed, 34

0, 138
0, 138
Q, 137
R, 138
s, 6
s, 6

separable, 8
universal, 152
Spaces, equivalent, 109
isometric, 102
(almost), 151
isomorphic, 109
Spectrum (of an equation), 95,96
Sphere, 8
open, 8
Subgroup, 14
Summation (methods of), 55
Supporting plane, 154
System biorthogonal: see sequence

Total set of elements, 36
of functionals, 27

Transfinite (derived set), 129
(limit), 73

Transfinitely closed (set of
functionals), 73

Transformation, isometric, 101
linear, 101

Translation, 154

Translation—-invariant metric, 140

Universal (space), 113, 152

Value of an operator, 9
proper, of an equation, 95
regular, of an equation, 95

Variety, linear, 154

Vector (set, space), 17

Weak convergence,
(of elements), 81
(of functionals), 75
derived, 128
limit, 75
method of summation, 55
Weakly compact (space), 79
complete (space), 149
continuous (functional), 80
convergent (sequence of
functionals), 75

closed (set of functionals), 76

dense (set of linear
functionals), 76
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Introduction

The purpose of this survey is to present some results in the
fields of the theory of Banach spaces which were initiated in the
monograph Theory of linear operators. The reader interested in the
theory of functional analysis and the development of its particular
chapters is referred to the Notes and Remarks in the monograph by
Dunford and Schwartz [1], and to the Historical Remarks of Bourbaki
[2] (*). -

The extensive bibliography at the end of this survey concerns only
the fields which are discussed here, but even in this respect it is
not complete. Large bibliographies of various branches of function-
al analysis can be found in the following monographs: Dunford and
Schwartz[1], Kéthe [1], Lacey [1], Lindenstrauss and Tzafriri [1],
Semadeni [1], Singer [1].

Banach's monograph Theory of linear operators is quoted in this
survey as [B]. When writing, for instance, [B], Rem. V, §2, we
refer to "Remarks" to Chapter Vv, §2 of .the monograph.

Some recent information is contained in the section "Added in
proof".

Notation and terminology. We attempt to adjust our notation to
that which is now commonly used (e.g. in Dunford and Schwartz [1])
and which differs to some extent from the notation of Banach.

We write I® and 1*® instead of ¥ and m and we shall often deal with
the following natural generalizations of L¥.

1. Let 1Ssp<». Let u be a non-trivial measure defined on a
sigma-field I of subsets of a set S. For any p-measurable scalar-
valued function f defined on 5, we let

- p 1/p ©s
Fi (Jslf(s)| u(ds)) for 1 £ p < o

Ifl, = ess sup |[f(s)].

s€ES
Lp(u) is the Banach space (under the norm l-l_) of all classes of
almost everywhere equal functions f defined oh § such that liflip< .

If § is an arbitrary non-empty set and p is the measure defined
for all subsets 4 of S by letting p(4) =« if A is infinite and p(4) =
the cardinality of A otherwise, then the resulting space Lp(u) will
be denoted by 1P (s).

In the case where § is finite and has n elements, the space 1P (5)
will be denoted by zﬁ.

2. By c¢,(S) we denote the closed linear subspace of 1°(S) consist-
ing of points f€ 1®(S) such that, for every & > 0, the set
{s€5:|f(s)| > 6} is finite.

(*) Numbers in brackets refer to the "Bibliography" as well as to the
"Additional bibliography".
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3. By ((X) we denote the Banach space of all continuous scalar-
valued functions defined on a compact Hausdorff space X, with the
norm Ifl =sup |f(k)]|.

kEK

We shall be concerned with the Banach spaces over the fields of
both real and complex scalars.

By a subspace of a Banach space X we shall always mean a closed
linear subspace of X.

For any Banach space X we denote by X* and X** the dual (conjugate)
and the second dual (second conjugate) of X. If 7: X+ Y is a con-
tinuous linear operator, then T* and T** denote the conjugate
(adjoint) and the second conjugate operator of T.

In the sequel we shall use the phrases "linear operator", “contin-
uous linear operator" and “"bounded linear operator" as synonyms; the
same concerns "linear functionals", etc.

By a projection on a Banach space X we shall mean a bounded linear
projection, i.e. a bounded linear operator P: X+ X which is idem-
potent. A subspace of X which is a range of the projection is said
to be complemented in X.
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CHAPTER I

§1. Reflexive and weakly compactly generated Banach spaces.
Related counter examples.

Theorem 13 in [B], Chap. XI, was a starting point for many invest-
igations. In order to state the results let us recall several,
already standard, definitions.

The weak topology of a Banach space X is the weakest topology in
which all bounded linear functionals on X are continuous. A subset
Wc X is said to be weakly compact if it is compact in the weak
topology of X; W is said to be sequentially weakly compact if, for
every sequence of elements of W, there is a subsequence which is
weakly convergent to an element of W. The map x: X-» X** defined by
(xx) (x*) = 2*(x) for x€ X, x*€ X* is called the canonical embedding
of X into X**, A Banach space X is said to be reflexive if
x(X) = X**, Banach's Theorem 13, which we mentioned at the beginning,
characterizes reflexive spaces in the class of separable Banach
spaces. The assumption of separability turns out to be superfluous.
This is a consequence of the following fundamental fact, discovered
by Eberlein [1] and Smulian [1].

1.1. A subset W of a Banach space X is weakly compact if and only
if it is sequentially weakly compact.

A simple proof of 1.1 was given by Whitley [1]. For other proofs
and generalizations see Bourbaki [1], K&the [1], Grothendieck [1],
Ptak [1], Pelczyriski [1].

From 1.1 we obtain the classical characterization of reflexivity
generalizing Theorem 13 in [B], Chap. XI.

1.2. For every Banach space X the following statements are equi-
valent:

(i) X 28 reflexive.

(ii) The unit ball of X is weakly compact.
(iii) The unit ball of X is sequentially weak compact.
(iv) Every separable subspace of X is reflexive.

(v) Every descending sequence of bounded nonempty convex closed
sets has a nonempty intersection.

(vi) X* is reflexive.

Many interesting characterizations of reflexivity have been given
by James [4],[5]. One of them, James [3], is theorem 1.3 below (see
James [6] for a simple proof). For simplicity, we shall state this
theorem only for real spaces.

1.3. A real Banach space X is reflexive if and only if every
bounded linear functional on X attains its maximum on the unit ball
of X.
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It is interesting to compare 1.3 with the following theorem of
Bishop and Phelps [1] (see also Bishop and Phelps [2]).

1.4. For every real Banach space X, the set of bounded linear
functionals which attain their least upper bounds on the unit ball
i8 norm-dense in X*.

The reader interested in other characterizations of reflexivity is
referred to Day [1], to the survey by Milman [1], to K&the [1] and
the references therein.

James supplied counter-examples showing that the assumptions of
Theorem 13 in [B], Rem. XI, in general cannot be weakened and
answering guestions stated in [B], Rem. XI, §9.

EXAMPLE 1 (James [2]). Let J be the space of real or complex
sequences « = x(j)1<j<w such that 1lim x(j)} =0 and
= J

hell = sup(|a(p)-(py) |? +.u.+ [x(pn_l)—ac(pn)]2 + |x(pn)-x(p1)|2)b < o,

where the supremum is extended over all finite increasing sequences
of indices p,<p,< ... <p, (r=1,2,...).

It is easily seen that J under the norm -l is a separable Banach
space.

1.5. The space J has the following properties:
(a) J is “isometrically isomorphic to J**.
(b) x(J) has codimension 1 in J**, Z.e. dim J** /x(J) =1.

(c) There is no Banach space X over the field of complex numbers
whiceh regarded as a real space, is isomorphic to the space J of real
sequences (Dieudonné [1]).

(d) The space JxJ is not isomorphic to any subspace of J
(Bessaga and Pelczyriski [1]).

(e) J is not weakly complete but has no subspace isomorphic to c,.

Statement (d) answers a question in [B], Rem. p. 153. Other
examples of Banach spaces non-isomorphic to their Cartesian squares
have been constructed by Semadeni [1] (cf. 11.20 in this article)
and by Figiel [1]. Figiel's space is reflexive, while the dual of
Semadeni's space is isomorphic to its Cartesian square.

In connection with question 1° in [B], Rem XII, p. 153, we shall
mention that all subspaces of codimension one (i.e. kernels of
continuous linear functionals) of a given Banach space are isomor-
phic to each other but .it is not known whether there exists an
infinite-dimensional Banach space which is not isomorphic to its sub-
space of codimension one. However, there exist infinite-dimensional
normed linear spaces (Rolewicz [1] and Dubinsky [1]) and infinite-
dimensional locally convex complete linear metric spaces (Bessaga,
Pelczyriski and Rolewicz [1]) with this property.

Now we shall discuss another example of James [8].

EXAMPLE 2. Let I={(n,4):n=0,1,2,...; 0<<< 2"}, cCall a segment
any subset of I of the form (n,7,),(n+1,%,),...,(n+m,Z,) such that
0L Zper - 24 <1 for k=1,2,...,m-1 (myn=0,1,...). Let F denote the
space of scalar-valued functions on I with finite supports. The
norm on F is defined by the formula

m(n,i)lz)&,

Izl = sup (E | 1
g=1"'{n,Z)€S,

with the supremum taken over all finfie systems of pair-wise dis-
joint segments Sl,Sz,...,Sp. The completion of F in the norm .1l
will be denoted by DJ.
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1.6. The Banach space DJ has the following properties (James [8]):
(a) DJ <is separable and has a non-separable dual.

(b) The unit ball of DJ is conditionally weakly compact, i.e.
every bounded sequence (xy) of elements of DJ contains a sub-
sequence (xk,) such that lim x*(xkn) exists for every x*€ (DJ)*.

n

(c} Every separable infinite-dimensional subspace E of the space
(DJ) * contains a subspace isomorphic to the Hilbert space 12.

(d) No subspace of DJ is isomorphic to L.

(e) If B is the closed linear subspace of (DJ)}* spanned by the
functionals f,; for 05 << 2™, n=0,1,..., where f,;(x) =x(n,Z) for
x € DJ, then B*=DJ and the quotient space (DJ)*/B is “isomorphic to a
non-separable Hilbert space (Lindenstrauss and Stegall [1]).

Property (b) of the space J and property (e) of DJ suggest the
following problem: Given a Banach space X, does there exist a
Banach space Y such that the quotient space Y**/x(Y) is isomorphic
to X? This problem is examined in the papers by James [7], Linden-
strauss [5)}, Davis, Figiel, Johnson and Pelczyriski [1). The results
already obtained in this respect concern an important class of WCG
Banach spaces.

A Banach space X is said to be WCG (an abbreviation for weakly
compactly generated) if there exists a continuous linear operator
from a reflexive Banach space to X whose range is dense in X (cf.
Amir and Lindenstrauss [1], Davis, Figiel, Johnson and Pelczyriski
[1]). Obviously every reflexive Banach space is WCG. We know that
(Davis, Figiel, Johnson and Pelczyriski [1]).

1.7. For every WCG Banach space X there exists a Banach space Y
such that the quotient gpace Y**/x(Y) ig <somorphic to X.

Setting z=Y#*, we obtain

1.8. If X is a WCG Banach space, then there exists a bounded

linear operator T: 7% O;;Q X sueh that 2** is a direct sum of x(Z)

and the subspace T*(X*) which is isometrically isomorphic to X*.

Moreover, if X is separable, then the space Z above can be so
constructed that Z* is separable and has a Schauder basis (Linden-
strauss [5]).

The WCG spaces have been introduced by Amir and Lindenstrauss(1].
They share many properties of finite-dimensional Banach spaces.
Amir and Lindenstrauss [1] proved the following:

1.9. If X 48 a WCG Banach space, then for every separable sub-
space E of X there exists a projection P: X-> X of norm 1 whose range
P(X) contains E and is separable.

The last result is a starting point for several theorems on re-
norming WCG spaces. Recall that, if £ is a normed linear space with
the original norm I+, then a norm p: E~+ R is equivalent to .| if
there is a constant ¢ > 0 such that ¢~lp(x) < lzl s ap(x) for z€ X.
Troyansky [1] has proved the following:

1.10. For every WCG Banach space X there exists an equivalent
norm p which is locally uniformly comvex, i.e. for every x € X with
plx) =1 and for every sequence (xy) in X, the condition
lrilm plxy) =2-1 lim p(x+ x,) =1 implies lim p(x- z,) = 0.

n n

In particular, the norm p is strictly convex, i.e. pl(x) + p(y) =
plx +y) implies the linear dependence of x and y.
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Assertion 1.10 for separable Banach spaces is due to Kadec [1],[2].
The existence of an equivalent strictly convex norm for WCG spaces
has been established by Amir and Lindenstrauss [1].

In connection with 1.10 let us mention the following result of
Day [2]:

1.11. The space 1%®(S) with uncountable S admits no equivalent
strictly convex norm.

More information on renorming theorems can be found in Day [1] and
papers by Asplund [1],[2], Lindenstrauss [6], Troyansky [1], Davis
and Johnson [1], Klee [1], Kadec [2], Kadec and Pelczyriski [2],
Whitfield [1], Restrepo [1].

In contrast to the case of separable and reflexive Banach spaces
we have (Rosenthal [1])

1.12. There exists a Banach space X whiech is not WCG but is iso-
morphie to a subspace of a WCG space.

Concluding this section, we shall discuss one more example.

EXAMPLE 3 (Johnson and Lindenstrauss [1]). Let S be an infinite
family of subsets of the set of positive integers which have finite
pair-wise intersections (cf. Sierpifiski [1]). ©Let E;, be the
smallest linear variety in I* containing all characteristic func-
tions x4 for A€ S and all sequences tending to zero. It is easily
seen that the formula

n n 3 n

gl = “x + ZCA.XA-" + ( ) |0A-|2) for y = § c4.X4 .

j=1 4 79X roq J g=1 979
where x€ ¢, and 4,,...,4p€ S (n=1,2,...), defines a norm on E,. The
coefficient functionals gy (y) =y(k) for y€ E, are continuous in this
norm. Let E be the Banach space which is the completion of E, in
the norm || [| and let f; be the continuous linear functional on E
which extends g3 (k=1,2,...). Then

1.13. The space E has the following properties:
(a) The linear functionals f,,f,,... Separate points of E.

(b) E is not isomorphic to a subspace of any WCG space, in partic-
ular E is not isomorphically embeddable into 1%.

(c) E* is isomorphic to the product 1! x 1%2(3), hence it is WCG.
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CHAPTER II

Local properties of |
Banach spaces

§2. The Banach-Mazur distance and projection constants.

The distance between isomorphic Banach spaces introduced in [B],
Rem. XI, §6, p. 151, plays an important role in the recent investig-
ations of isomorphic properties of Banach spaces, and in particular
in the study of the properties of finite-dimensional subspaces of a
given Banach space X, which are customarily referred to as the
"local properties" of the space X.

Let @2 1. Banach spaces X and Y are said to be a-isomorphic if
there exists an isomorphism T of X onto ¥ such that ITh-I7-1] < a.
The infimum of the numbers a for which X and Y are ¢-isomorphic is
called the Banach-Mazur distance between X and Y and is denoted by
d(X,Y). Obviously 1-isomorphisms are the same as isometrical iso-
morphisms.

2.1. There exist Banach spaces X,,X, with d(X,,X,) =1 which are
not isometrically isomorphic.

Proof. Consider in the space ¢, two norms

Izl = sup fe() | + ( ) |2'jx(j + i)|’>* for z = (&(f)):€=0,1.
J =1

For ¢=0,1, let X; be the space ¢, equipped with the norm H-Hi.
For n=1,2,..., let Tp:X,~+ X, be the map defined by
(z(1),2(2),...) » (&(n),z(1),...,z(n=-1),z(n+1),...).
Then each T, is an isomorphism of X, onto X, and l%m HTnHHT;1H= 1.
Hence d(X,,X;) = 1. On the other hand, the norm l-ll, is strictly
convex (for the definition see section 1 after 1.10) while l-l, is

not. Therefore X, is not isometrically isomorphic to X;.

Let us mention that d(e,e,) = 3, which is related to a gquestion in
[B], Rem. XI, §6, p. 151. Interesting generalizations of this fact
are due to Cambern [1] and Gordon [1]; see also 10.19 and the
comment after it.

From the compactness argument it follows that, for arbitrary
Banach spaces X,Y of the same finite dimension, there exists a u(X,Y)-
isomorphism of X onto Y.

The following important estimation is due to John [1]:

2.2. If X is an n-dimensional Banach space, then d(X,Z;)é vn.

Since d(Z:,Zﬁ)= v/n (cf. 2.3), the estimation above is the best
possible. The exact rate of growth of the sequence (dp), where
dn= sup {d(X,Y): dim X=dim Y=n}, is unknown. From 2.2 and the
"triangle inequality" d(X,Z2) £d(X,Y)-d(Y,Z2) it follows that
/nsdpsn for n=1,2,...

The computation of the Banach-Mazur distance between given iso-
morphic Banach spaces is rather difficult. Gurarii, Kadec and
Macaev [1],[2] have found that

2.3. If either 1<p<qs2 or 25p<qsw», then
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d(18,19) = VP (pa1,2,.00;
if 1€p<2< qgswo, then
2-1)d(12,19) < max (/P2 128y ¢ e, 1) (net2,.0.

For generalizations of 2.3 to the case of spaces with symmetric
bases and some matrix spaces see Guraril, Kadec and Macaev [2],[3],
Garling and Gordon [1].

Estimations of the Banach-Mazur distance are related to the com-
putation of so-called "projection constants". Let @2 1 and let X be
a Banach space. A subspace Y of X is a-complemented in X if there
exists a linear projection P: X'o;;o Y with Pl £ a¢. The infimum of

the numbers g such that Y is g-complemented in X will be denoted
p(¥,X). For any Banach space E we let

p(E) = sup p(<(8),X),

where the supremum is extended over all Banach spaces X and all iso-
metrically isomorphic embeddings <: E-+ X. The number p(X) is called
the projection constant of the Banach space E.

In general, if dim E=«, then p(E) = . No characterization of the
class of Banach spaces E with p(E) <« is known (cf. section 11).
The projection constant of a Banach space E is closely related to
extending linear operators with values in E.

2.4. TLet E be a Banach space. If p(E) <=, then, for every triple
(X,Y,T) consisting of a Banach space X, its subspace Y and a contin-
uous linear operqgtor T: Y-+ E and for every € >0, there exists a
linear operator T: X+ E such that

(*) T extends T and ITh < C-ITH

with C=p(E) +e. Conversely, if for every triple (X,Y,T) there is a
T satisfying (*), then p(E) £ C. We have p(E) =« if and only if
there exists a triple (X,Y,T) such that T admits no extension to a
bounded linear operator defined on the whole of X.

Using the theorem of John 2.2, Kadec and Snobar [1] have shown
that

2.5. If dim X=n, then p(X)sv/n (n=1,2,...,).
The estimation 2.5 gives the best rate of growth. We find that
(Griinbaum [1], Rutowitz [1], Daugavet [1])
2.6, p(12) = v tn ( )/r(”*l) ~ VIRTE (n=2,3,...).
Rutovitz [1] and Garling and Gordon [1] estimated projection con-
stants of the spaces ZZ
/

2.7. If 2<ps o, then p(Zp) ap(n), where 1/v2< ap(n) <
1 (n=1,2,...). If1<sps2, then p(Zp) =n a (n), where 12 a

- p
(sinhg) Vr=1,2,...).

Remark. Theorem 2.7 concerns real spaces Zﬁ. However, in the
complex case, the rate of growth is the same.

a (n) =
(%) 2

For generalizations of 2.7 to spaces with symmetric bases see
Garling and Gordon [1] and the refgrences therein.

By 2.7 we have in particular p(Zn) =1 for n=1,2,...; the last
property isometrically characterizes the spaces 1% in the class of
finite-dimensional Banach spaces (see Nachbin [1] and 10.15).

It is easy to show that p(X) £d(x,1%) for every n-dimensional
Banach space X. It is not known whether the quantities p(X) and
d(x, Z ) are of the same rate of growth, i.e. whether there exists a
constant K> 0 independent of n and such that d(X,13) < Kp(X) for
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every n-dimensional Banach space X. Also, the numbers
¢p = sup {p(X): dim X = n} for n = 2,3,...

have not been computed. Some results concerning the last problem
are given in Gordon [2].

The Banach—-Mazur distance and projection constants are connected
with other isometric invariants of finite-dimensional Banach spaces.
The asymptotic behaviour of these invariants in some classes of
finite-dimensional Banach spaces with the dimensions growing to
infinity gives rise to isomorphic invariants of infinite-dimensional
Banach spaces. These problems have many points in common with the
theory of Banach ideals. The interested reader is referred to
Grothendieck [5],[6], Lindenstrauss and Pelczyfiski [1], Pietsch [1]
with references, Gordon [2],(3],[4], Garling and Gordon [1], Gordon
and Lewis [1], Gordon, Lewis and Retherford [1],[2], Snobar [1],
Milman and Wolfson [1], Figiel, Lindenstrauss and Milman [1].

§3. Local representability of Banach spaces.

The following concept, introduced by Grothendieck [6] and James
[10], originates from the Banach-Mazur distance.

Let a21. A Banach space X is locally a-representable in a Banach
space Y, if for every b > a every finite-dimensional subspace of X is
b-isomorphic to a subspace of Y. If X is locally gq-representable in
Y and Y is locally a-representable in X, we say that X is locally a-
igsomorphic to Y. The space X is said to be locally representable in
Y (locally isometric to Y) if X is locally 1-representable in Y
(locally 1-isomorphic to Y).

First, we shall discuss the problem of finding Banach spaces which
are locally representable in the spaces P (1¢ p<«) and e¢,. We
know (Grothendieck [5], Joichi [1], cf. also 9.7) that

3.1. A Banach space X is locally a-representable in 12 <f and
‘only if X is a-isomorphic to 12.

Theorem 3.1 can be generalized to the case of 1P with 1¢ p<
(Bretagnolle, Dacunha-Castelle and Krivine [1], Bretagnolle and
Dacunha-Castelle [1], Dacunha-Castelle and Krivine [1], Linden=-
strauss and Pelczydski [1]) as follows:

3.2. Let 1£€p<o and let a2 1. A Banach space X is locally a-
representable in 1P if and only if X is a-isomorphic to a subspace
of a space LP(u) (in particular to a subspace of LP when X is sep-
arable).

Thus, by the results of Schoenberg 51],[2]7 the local represent-
ability of a Banach space X in some 1Y for 1<p< 2 can be character-
ized by the fact that the norm of X is negative definite. For
2n<p £ 2n+2 (n=1,2,...) more sophisticated conditions have been
found by Krivine [1].

The last theorem is also valid for p=~. In fact, we have

3.3. (i) For every cardinal n2¥,, there is a compact Hausdorff
space K such that the topological weight of the space C(X) s n and
every Banach space whose topological weight is £ n is isometrically
isomorphic to a subspace of the space C(K).

(ii) Every Banach space is locally representable in the space c,.

Statement (i) generalizes the classical Banach-Mazur theorem ([B],
Chap. XI, Theorem 9), which says that every separable Banach space
is isometrically isomorphic to a subspace of ¢. The proof of (i) is
almost the same as that of Theorem 9 but, instead of using the fact
that every compact metric space is a continuous image of the Cantor
set, it employs the theorem of Esenin-Volpin [1] (which was proved
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under the continuum hypothesis), stating that for every cardinal

n 2R, there is a compact Hausdorff space X of the topological weight
n such that every compact Hausdorff space of topological weight < =n
is a continuous image of K.

Statement (ii) follows from the fact that every centrally symmet-
ric k-dimensional polyhedron with 2n vertices is affinely equivalent
to the intersection of the cube [—1,1]” (the unit ball of the space
13) with a k-dimensional subspace of 17 for k=1,2,...; n2k (Klee
[21).

Next consider the problem: Given p€ [1,~], characterize Banach
spaces in which 1P is locally representable. We present answers for
p=1,2,%. (The case of arbitrary p, due to Krivine [2] (cf. also
Maurey and Pisier (3], Rosenthal [9]) is much more difficult.) The
following beautiful result is due to Dvoretzky [1]:

3.4. The space 1* is locally representable in every infinite-
dimensional Banach space.

This result is a simple consequence of the following fact concern-
ing convex bodies:

3.5. (Dvoretzky's theorem on almost spherical sections). For
every € >0 and for every positive integer k, there exists a positive
integer N=N(k,e) such that every bounded convex body (= convex set
with non—empty interior) B in the real or complex space Zﬁ which is
symmetric with respect to the origin admits an intersection with a
k-dimensional subspace Y which approximates up to € a Euclidean k-
ball, Z.e.

sup {lxl: z € ¥ N X}/inf {lxll: 2z € Y\K} < 1 + €.

The proof of the real version of 3.5 is due to Dvoretzky [2]
(previously it was announced in Dvoretzky [1]). Some completions
and simplifications can be found in Figiel [2]. An essentially
simpler proof, based on a certain isoperimetric theorem of P. Levy,
has been given by Milman [2], cf. also Figiel, Lindenstrauss and
Milman [1]. The proof of Figiel [5] based on an idea of Szankowski
[1] is short and elegant.

Banach spaces with unconditional bases (for the definition see §7)
have the following property (Tzafriri [1]):

3.6. If X is an infinite-dimensional Banach space with an uncondi-
tional basis, then there exists a constant M, a sequence of projec-—
tions Pp: X+ X with 1Pyl £ M for n=1,2,... and a p€ {1,2,»} sueh that
sup a(e, (1), z%) <M.

The proof of 3.6 is based on the Brunel-sSucheston [1] technique of
constructing sub-symmetric bases, which employs a certain combinat-
orial theorem of Ramsey [1]. A similar argument yields also the
following weaker version of Dvoretzky's theorem: For every infinite-
dimensional Banach space X there is an a2 1 such that 1% i{s a-
representable in X.

Characterizations of Banach spaces in which ¢,, equivalently 1%,
is locally represented are connected with the theory of random
series. Recall that a measurable real function f on a probabilistic
space (Q,un) is called a standard Gaussian iandom variable if

—_—c2
p{w € Q: Fflw) < ¢} = £ Je 8% /24,
V2T e
The Rademacher functions (rj)1§j<m are defined on the interval [0,1]

by the formula
rj(t) = sgn sin 2Jnt, J=1,2,...
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We have

3.7. For every Banach space X the following statements are
equivalent:

(i) The space ¢, is not locally a-representable in X for any az 1.
(ii) The space ¢, is not locally representable in X.

(iii) The space ¢, is not locally representable in the product
space (X x X x "')Zp for any p€ [1,).

(iv) There are a g€ [2,») and a constant C> 0 such that
7 Viza ¢ ofl 5

( ) Hx.ﬂq} 7 < efj 1 r.(t)x.l
Jj=1 J ollj24 J d

for arbitrary x,,...,zp € X and n=1,2,...

N

(v) For every sequence (x,) of elements of X and for every
sequence of independent standard Gaussian random variables, the
series L fplw)x, converges almost everywhere iff so does the series

L rp(t)ay
Ly
» rp n
The equivalence between (i) and (ii) has been proved by Giesy [1].
The other implications in 3.7 are due to Maurey and Pisier [2].
Other equivalent conditions, stated in terms of factorizations of
compact linear operators, can be found in Figiel [3].

The next theorem characterizes Banach spaces in which the space
is not locally representable.

3.8. For every Banach space X the following statements are
equivalent:

(i) The space 1! is not locally a-representable in X for any az 1.
(ii) The space 11 is not locally representable in X.

(iii) The space 1 is not locally representable in the product
space (X x Xx "')ZP for any p€ (1,x).

(iv) There are a g€ (1,») and a constant C >0 such that
1 n n
(15 e 012 fas < of 3 1e09)174
oll;27 % i %
for arbitrary x,,...,xp, € X and n=1,2,...

i=1

(v) There are a q€ (1,») and a constant C >0 such that

< c( % uxiuq)l/q

=1

n
ess inf 2 r.(t)x.
osts1 Mg=1 v
for arbitrary x,y...,x, € X and n=1,2,...

The equivalence between (i) and (ii) has been proved by Giesy [1].
The other implications in 3.8 are due to Pisier [1].

Let us notice in connection with 3.7 and 3.8 that if a Banach
space X has a subspace isomorphic either to I! or to ¢,, then, for
every a2 1, there is a subspace of X which is e-isomorphic to 1! or
¢y, respectively (James [9]). It is not known whether the spaces 1
with 1< p <~ have an analogous property.

Obviously, if a Banach space X has a subspage isometrically iso-
morphic to a space 1P or ¢y, then the space I¥ or ¢,, respectively,
is locally a-representable in X for some ¢ 2 1. Converse implica-
tions are, in general, false. The spaces 1P for 1x p<», p# 2, and
¢, do not contain any subspace isomorphic to 7Z? (cf. 12.) in con-
trast to Dvoretzky's theorem 3.5. Even more “pathological® in this
respect is the example due to Tzirelson [1]. Below we present a
modified version of this example given by Figiel and Johnson [2].
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EXAMPLE. Let E, be the space of all scalar sequences having at
most finitely many non-zero coordinates and let (l-l,) be the
sequence of norms on E, defined by

kzlly = sup |z (k)|
k

v{j)

m
1 .
lell = max (Hxﬂn,Q.X o) z(i)e; n)’
J=1"i=v(j-1)+1
where e; = (0,0,...,1,0,...}, and the supremum is extended over all

. . . the 7th place . .
increasing finite sequences of indices v(0) <v(1) < ... < v(m) such

that v(0) 2m. Let

lzl = lim Hxﬂn for x € E.
n
It is easy to show that the limit above exists. Let E be the com-
pletion of E, in the norm K.l. Then

3.9. E is a separable Banach space with an unconditional basis
which does not contain isomorphically any space 1¥ (1<ps®) or c;.

Concluding this section, we shall state a theorem of general nat-
ure indicating the difference between the local and the global
structure of Banach spaces.

3.10. (The Principle of Local Reflexivity). Every Banach space
18 locally isometric to its second dual.

This fact is a consequence of the following result. (For simplic-
ity we identify the Banach space X with its canonical image x(X) in
X**.)

3.11. Let X be a Banach space, let E and G be finite-dimensional
subspaces of X** and X*, respectively, and let 0< e< 1., Assume that
there is a projection P of X** onto E with IPl £ M. Then there are a
continuous linear operator T: E+ X and a projection P, of X onto
T(E) such that

(a) T(e)=e for e€ ENX.

(b) f(Te) =e(f) for e€ E and fE€G.
() Irn-ur tis1+e.

(d) P llsM(1+¢).

Moreover, if P=Q* where @ is a projection of X* into X*, then the
projection P can be chosen so as to satisfy (d) and the additional
condition

(e) PF*(x**) = P(x**) whenever P(x**) € X.

Theorem 3.10 and a part of 3.11 have been given by Lindenstrauss
and Rosenthal [1]. Theorem 3.11 in the present formulation is due
to Johnson, Rosenthal and Zippin [1]. For an alternative proof see
Dean [1].

§4. The moduli of convexity and smoothness; super-reflexive
Banach spaces. Unconditionally convergent series.

Intensive research efforts have been devoted to the invariants of
the local structure of Banach spaces related to the geometrical
properties of their unit spheres. In this section we shall discuss
two invariants of this type: the modulus of convexity (Clarkson
[1]) and the modulus of smoothness (Day [3]).

Let X be a Banach space; for ¢t >0, we set

SX(t) = inf {1-%lx+yl: lxh = Nyl = 1, hz-yb 2 ¢},
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py(t) = % sup {lz+yl + dz-yl - 2: Nzl = 1, Uyl = ¢l

The functions 8y and py are called, respectively, the modulus of
convexity and the modulus of smoothness of the Banach space X. The
space X is said to be uniformly convex (resp. uniformly smooth) if
Sx(t) >0 for ¢>0 (resp. %ig px(t)/t = 0).

The moduli of convexity and smoothness are in a sense dual to each
other. We have (Lindenstrauss [8], cf. also Figiel [6]).

4.1. For every Banach space X, Pyx(t) = o3ue, (ts/2-68x(s)).

The next result characterizes the class of Banach spaces for which
one can define an equivalent uniformly convex (smooth) norm.

4.2. For every Banach space X the following conditions are equi-
valent:

(a) X is isomorphic to a Banach space which is both uniformly
convex and uniformly smooth.

(b) X Zs isomorphic to a uniformly smooth space.
(c) X Zs Zsomorphic to a uniformly convex space.

(d) Every Banach space which is locally a-representable in X, for
some a> 1, is reflexive.

(e) Every Banach space locally representable in X is reflexive.
(£) The dual space X* satisfies conditions (a)-(e).

A Banach space satisfying the equivalent conditions of 4.2 is said
to be super-reflexive.

Theorem 4.2 is a product of combined efforts of R. C. James [10],
[11] and Enflo [2]. The implication: " (b} and (¢) = (a)" has been
proved by Asplund [2]. For the characterizations of super-reflex-
ivity in terms of "geodesics" on the unit spheres see James and
Schaffer [1], and in terms of basic sequences, see V. I. Gurarii and
N. I. Gurarii [1] and James [12] N

If ¥ is a super-reflexive Banach space, then by (e) neither 7! nor
¢, is locally representable in x. Therefore the product

(21 x 13 x 13 % T

is an example of a reflexive Banach space which is not super-
reflexive. A much more sophisticated example is due to James [13],
who proved that

4.3. There ezxzists a reflexive Banach space RJ which is not super-
reflexive but is such that 1! is not locally representable in RJ

Clarkson [1] has shown that, for 1< p< =, the spaces P and 1P are
uniformly convex. The exact values of §y(t) for X’=Lp,Zp have been
computed by Hanner [1] and Kadec [5]. Their results together with
4.1 yield the following asymptotic formulae:

4.4. If X is either LP or 1P with 1<p< =, then
§y(t) = aptk + o(zk), pylt) = bpt™ + o(t™),

with k=max(2,p), m=min(2,p), where ap and b are suitable positive
constants depending only on p. Moreover, § 18 a uniformly gonvex
(resp. uniformly smooth) Banach space whzch is isomorphiec to LF or
1P, then, for small positive t, we have 8y(t) s §,p(t) (resp.

l
py(t) 2 pp (D).

Orlicz spaces (i.e. the spaces (o) and (0) in the terminology of
[B], p. 138) admit equivalent uniformly convex norms iff they are
reflexive (see Milnes [1]).

The moduli of convexity and smoothness are connected with the
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properties of unconditionally convergent series in the space X. Let
us notice that the property: "the series §€n$n of elements of a

Banach space X is convergent for every sequence of signs (€p)" is
equivalent to the unconditional convergence of the series in the
sense of Orlicz [3], cf. [B], Rem. IX, §4.

We have

4.5. If Zenmn with xn's in a uniformly convex Banach space X is
convergent for every sequence of signs (€y), then Z GX(Han)< o,

If n§1€nxn with xp's in a uniformly smooth Banacz space X is
divergent for every sequence of signs (€,), then nglpx(ﬂxnﬂ)= o,

The first statement of 4.5 is due to Kadec [5], the second to
Lindenstrauss [8].
Combining 4.4 with 4.5, we obtain (Orlicz [1],I[2])

4.6. Let 1<p<=». If Z fn ©s an unconditionally convergent ser-—
ies in the space P (or more generally, in P (u)), then
1Ilfnlc(p) <®, where c(p) =max(p,2).

The last fact is also valid for the space L', which is non-
reflexive, and hence is not uniformly convex. We have (Orlicz [1])

4.7. If in the space L' the series Z fn is unconditionally con-
vergent, then > anﬂ

The exponents c(p) in 4.6 and 2 in 4.7 are the best possible.
This can easily be checked directly for p> 2; for 1<p<2 it follows
from the crucial theorem on unconditionally convergent series due to
Dvoretzky and Rogers [1] (cf. also Figiel, Lindenstrauss and
Milman [1]).

4.8. Let (ap) be a sequence of positive numbers such that
n§1a§< ©, Then in every infinite-dimensional Banach space X there
exists an unconditionally convergent series % xp such that lxyll = ay
for n=1,2,... In particular, in every infinite-dimensional Banach
space there is an unconditionally convergent series E &y such that

"xnl-w
Comblnlng 4.8 with 4.5, we get

4.9. For every Banach space X there exist positive constants a
and b such that §y(t) £ at® and px(t) 2 bt® for small t > 0.

Concluding our discussion, we shall state another theorem on un-
conditionally convergent series, which generalizes the theorem of
Orlicz [1] (mentioned in [B], Rem. IX, §4, p. 149).

4.10. For every Banach space X the following statements are
equivalent:

o
(a) For every series Lxy of elements of X, if n21|x*(mn)|< © for
” 2
every x*€ X*, then the series %xn 18 unconditionally convergent.

(b) For every series %mn of elements of X the condition
n
z rk(t)xk" < ®»
k=1
almost everywhere on [0,1] implies the unconditional convergence of
the series gmn. (Here ry, denotes the n-th Rademacher function for

sup
n
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n=1,2,...)

(c) ©No subspace of X is isomorphiec to e,

The equivalence of conditions (a) and (c¢) is proved in Bessaga and
Pelczyriski [3]. The equivalence of (b) and (c)} is due to Kwapien
[2].

There is ample literature concerning the moduli of convexity and
smoothness and other related invariations of Banach spaces. 1In
addition to the references already given in the text, the reader may
consult books by Day [1], Chapt. VII, §2, Lindenstrauss and Tzafriri
[1]1,[2], the surveys by Milman [1], Zizler [1], Cudia [2], Linden-
strauss [4],[6] and papers by Asplund [1], Bonic and Frampton [1],
Cudia (1], Day [4], Day, James and Swaminathan [1], Figiel [1],
Figiel and Pisier [1], V. I. Gurariil [2],[3]1,(4], Henkin [1],
Lovaglia [1], Nordlander [1],[2].

The theory of unconditionally convergent series is related to the
theory of absolutely summing operators, originated by Grothendieck,
and radonifying operators in the sense of L. Schwartz, which is a
branch of measure theory in infinite-dimensional linear spaces. The
interested reader is referred to the following books and papers:
Grothendieck ([11,[2], Pietsch [1],[2],[3], Persson and Pietsch [1],
Lindenstrauss and Pelczyfiski (1], Maurey [1], Kwapied [1], L.
Schwartz [1],(2].

For further information see "Added in proof".
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CHAPTER III

The approximation property
and bases

There are many instances in operator theory where it is convenient
to represent a given linear operator as a limit of a sequence of
operators with already known properties. The best investigated
classes of operators are finite rank operators and compact operators,
therefore it is natural to ask whether every continuous linear oper-
ator can be approximated by linear operators from these classes.
Such a question was raised in [B], Rem. VI, §1, p. 146. Banach,
Mazur and Schauder have already observed that the approximation
problem is related to the problem of existence of a basis, and to
some questions on the approximation of continuous functions (cf.
Scottish Book [1], problem 157). A detailed study by Grothendieck
[4] published in the middle fifties explained the fundamental role
of the approximation problem in the structure theory of Banach
spaces, and that this problem arises in various contexts (for
instance, if one attempts to determine the trace of a nuclear oper-
ator). Substantial progress was made in 1972 by Enflo [3], who
.constructed the first example of a Banach space which does not have
the approximation property.

§5. The approximation property.

We begin with some notation. By an operator we shall mean a con-
tinuous linear operator. For arbitrary Banach spaces X and Y, we
denote

B(X,Y) = the space of all operators from X into Y,

K (X,Y) = the space of all compact operators from X into Y,

FP(X,Y) = the space of all finite rank operators from X into Y.

For any TEB(X,Y), we let TNl = sup{IZ7xl: lxl €1}, the operator norm
of T.

Definition. A Banach space Y has the ap( = the approximation
property) if every compact operator with range in Y is the limit, in
the operator norm, of a sequence of finite rank operators, i.e. for
every Banach space X and for every K€ K(X,Y), there exist F,€ F(X,Y)
(n=1,2,...) such that limllF, - Kli = 0.

n

The approximation property can easily be expressed in intrinsic
terms of Y. We have (cf. Grothendieck [4] and Schaefer [1], Chap.
III, §9). ’

5.1. For every Banach space Y the following statements are equi-
valent:
(i) Y has the ap.

(ii) given a compaet subset C of Y, there exists a finite rank
operator FE€ F(Y,Y) such that IFy-yl< 1 for all y€C.

The celebrated result of Enflo [3] on the existence of a Banach
space which fails the ap has been improved by Davie [1],[2], Figiel
[4] and Szankowski [2] as follows:
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5.2, For every p€ [1,®], p# 2, there exists a subspace Ep of the
space 1P whieh does not have the approximation property. Moreover,
E'oo cey.

Davie's proof is short and elegant. It uses some properties of
random series. Figiel's proof seems to be the most elementary. For
other proofs of Enflo's theorem and related theorems see Figiel and
Pelczyriski [1] and Kwapierdl [4]. Kwapieri's result seems to be inter-
esting also from the point of view of harmonic analysis. He has
shown that

5.3. For each p with 2< p< =, there exist increasing sequences
(ng) and (my) of positive integers such that the closed linear sub-
space of LP spanned by the functions fy(t) = etNk2mt + gtmi2mt
(k=1,2,...) fails the approximation property.

It is interesting to compare 5.2 with the observation by W. B.
Johnson [3] that there is a Banach space which is not isomorphic to
a Hilbert space but such that every subspace of the space has ap.

Starting from one example of a Banach space which does not have
the ap, one can construct further examples by passing to the dual
space and taking products, because the approximation property is
preserved under these operations. We have

5.4. Any complemented subspace of a Banach space having the ap
has the ap.

5.5. Let (E;) be a sequence of Banach spaces each having the ap.
Then the product (E; x E, x ...)Zp has the ap for 1< p< .,

5.6. (Grothendieck [4]). If X* has the ap, then so does X.

The last result is an easy consequence of the improved Local
Reflexivity Principle 3.11.

It is interesting to note that the converse of 5.6 is false.
Namely, from 1.8 it follows that

5.7. (Lindenstrauss [5]1). There exists a Banach space which has
the ap (even has a basis) but whose dual does not have the ap.

W. B. Johnson [1] gave a simple construction of such a space. Let
(B,) be a sequence of finite-dimensional Banach spaces such that,
for every ¢ > 0 and for every finite-dimensional Banach space B,
there exists an index n, such that d(B,Bp ) <1+e. Let us set

BJ = (Bl x B, + ---)Z],-
Then thé space BJ has the following universality property:

5.8. The conjugate of any separable Banach space is isomorphic to
a complemented subspace of the space (BJ)*.

The space Ep of 5.2, being separable and reflexive for 1<p<», is
a conjugate of a separable Banach space. Hence, by 5.4 and 5.8,
(BJ)* does not have the ap. On the other hand, it follows from 5.5
and the fact that every finite-dimensional Banach space has the ap
that the space BJ has the approximation property.

The next two results do not directly concern the general theory of
Banach spaces; however, they are closely related to theorem 5.2.

5.9. There exists a continuous real function f defined on the
square [0,1]1 x [0,1] which cannot be uniformly approximated by func-
tions of the form

n
gls,t) =} ajf(s,tj)f(sj,t)
Ly

where @ysees,dy are arbitrary real numbers, 81,...,8pst15.+458p,
belong to the interval [0,1]1, and n=1,2,...
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5.10. We have
(a) For every real B with %( B< 1 there exists a real matrix
= . o d

A= (G?J)i,j=1 such that

o
(+) A2 =0, i.e. jzlaijajk = 0 for 1,k=1,2,...,
v B
(++) Y sup [a¢j| < w,
Jj=1
-
(+++) ) agz; = 0.
i=1 P
(b) If a matriz A= (aij) satisfies (+) and (++) with B= 3 then
«©
iL195:0= 0.

Grothendieck [4] has proved that 5.9 and 5.10 (a) for B=1 are
equivalent to the existence of a Banach space not having the ap.
(The implication "5.9=5.2 for p=«" was already known to Mazur
around the year '1936.) 5.10 (a) for 2/3< B8< 1 was observed by Davie
[3]. 5.10 (b) is due to Grothendieck [4].

Finally note that there are uniform algebras (Milne [1]) and
Banach lattices (Szankowski [3]) which fail to have ap.

§6. The bounded approximation property.

In general, a proof that a particular Banach space has the approx-
imation property shows that the space in question already has a
stronger property. Several properties of that type are discussed by
Lindenstrauss [1], Johnson, Rosenthal and Zippin [1], Grothendieck
[4] and Pelczyriski and Rosenthal [1]. Here we shall only discuss
the bounded approximation property, and in the next section the
existence of a Schauder basis.

Definition. A Banach space Y is said to have the bap (= the
bounded approximation property) if there exists a constant a2 1 such
that, for every £ > 0 and for every compact set Cc Y, there exists an
Fe F(X,X) such that

(*) IFx — =)l < ¢ for x € € and Il FIl £ a.

More precisely, we then say that y has the bap with a constant aq.
It is not difficult to show that

6.1. A separable Banach space Y hags the bap if and only if there
exists a sequence (F,) of finite rank operators such that

lim #F,y = yl = 0 for all y € X.
n

From 5.1 we immediately get
6.2. If a Banach space has the bap, then it has the ap.

Figiel and Johnson [1] have shown that the converse of 6.2 is not
true.

6.3. There exists a Banach space FJ whieh has the ap but fails
the bap.

The idea of the proof of 6.3 is the following. Let X be a Banach
space with the bap and such that X* does not have the ap. For:
instance let X=BJ of 5.8. Next we make use of the following lemma:

6.4. Let Y be a Banach space and let a2 1. If every Banach space
isomorphic to Y has the bap with the constant a, then Y* has the bap.

It follows from 6.4 that, for every positive integer n, there



182 A. Pelczyfiski and Cz. Bessaga

exists a Banach space X, isomorphic to X and such that X, does not
have the bap with any constant g less than n. We put

FJ = (X X X, X ceu)y2.

Clearly, every isomorphic image of a space having the ap has the
ap. Thus each X, has the ap. Hence, by 5.5, the space FJ has the
ap. On the other hand, FJ fails the bap. This follows from the
fact that if a Banach space Y has the bap with a constant a and if 2
is a subspace of Y which is the range of a projection of norm < 1,
then Z has the bap with a constant < «.

The space FJ also has the following interesting property:

6.5. There is no sequence (K,) of compact linear operators such
that I%m lkpx - xlh =0 for all x€ FJ.

Indeed, the existence of such a sequence combined with the fact
that FJ has the ap would imply the existence of a sequence (F,) of
finite rank operators such that Il F, - K, ll <27" for n=1,2,... Hence
we would have l%m lFpze- 20 =0 for all x € X, which, by 6.1, would

contradict the fact that the space FJ does not have the bap.

The result 6.5 answers in the negative a question raised in [B],
Rem. VI, §1, p. 146.

Freda Alexander [1] has observed that, for p > 2, there exists a
subspace Xp of the space Lp such that F(Xp,Xp) is not dense (in the
norm topology) in K(Xp,Xp).

Example 6.3 of Figiel and Johnson contrasts with the following
deep result (Grothendieck [4], cf. Lindenstrauss-Tzafriri [1] for a
simple proof).

6.6. If a Banach space X is either reflexive or separable and
conjugate to a Banach space and if X has the ap, then X has the bap.

Next observe that the improved Local Reflexivity Principle 3.11
yields an analogue of 5.6.

6.7. (Grothendieck [4]). If X is a Banach space such that X* has
the bap with a constant a, then X has the bap with a constant £ a.

We conclude this section with a result which gives a characteriza-
tion of the bounded approximation property in an entirely different
language.

Let S be a closed subset of a compact metric space T and let F and
X Dbe closed linear subspaces of the spaces (¢ (S} and C(T), respec-
tively. The pair (E.X) is said to have the bounded extension prop-
erty, if, given €> 0, every function f€ F has a bounded family of
extensions

®(f,e) = {fe,W= W>258, W is open in T} = X
such that |fc p(¢)| <€ whenever t€ I\W.

6.8. For every separable Banach space Y the following conditions
are equivalent:

(i) Y has the bap,

(ii) for every closed subset of a compact metric space T, for
every isometrically isomorphic embedding <: Y+ C(S) and for every
closed linear subspace X of the space C(T) such that the pair
(2(x),x) nas the bounded extension property, there exists a bounded
Zi?ear operator L: i(Y) > X such that (Lf)(s)= f(s) for s€ S and
FeEL(Y).

The proof of the implication (i) = (ii) is due to Ryll-Nardzewski,
cf. Pelczyriski and Wojtaszczyk [1] and Michael and Pelczyrski [1].
The implication (ii) = (i) has been established by Davie [2].



Some aspects of the present theory of Banach spaces 183

§7. Bases and their relation to the approximation property.

The bounded approximation property is cloesely connected with the
property of the existence of a basis in the space. Recall that a
sequence (e,) of elements of a Banach space X constitutes a basis
for X if, for every x € X, there exists a unique sequence of scalars
(fn(x)) such that

«©
= ] falz)ey,.
n=1
The map x-*fn(x) is a continuous linear functional on X called the
n-th coefficient functional of the basis (e,) ([B], Chap. VII, §3).
Let us set

n
Splx) = § fplx)e, for z € X; n=1,2,...
m=1
Clearly (S,) is a sequence of finite rank projections with the prop-
erty: lim lIS,(x) -zl =0 for x€ X. Thus, by 6.1, we get
n

7.1. If a Banach space X has a basis, then X is separable and has
the bounded approximation property.

Hence every example of a separable Banach space which fails the
bap provides an example of a separable Banach space which does not
have any basis. No example of a Banach space which has the bap and
does not have any basis is known.

On the other hand, we have also a "positive" result relating the
bap and the existence of a basis.

7.2. A separable Banach space has the bap <if and only <if it <s
teomorphic to a complemented subspace of a Banach space with a basis.

This has been established by Johnson, Rosenthal and Zippin [1]
and Pelczynski [6].
Let us mention some theorems related to 7.2.

7.3. (Lindenstrauss [5], Johnson [1]). Let X be a separable con-
jugate (resp. separable reflexive) Banach space. Then X has the bap
if and only if X is isomorphic to a complemented subspace of a sep-
arable conjugate (resp. reflexive) space with a bastis.

Note that, by 6.6, one can replace in 7.3 the "bap" by the "ap".

7.4. There exists a Banach space UB, unique up to an tsomorphism,
with a basis (en) with the coefficient functionals (f,) such that:

(a) every separable Banach space with the bap is isomorphic to a
complemented subspace of UB;

(b) for every basis (yx) of a Banach space Y, there exist an inc-
reasing sequence (my) of indices, an isomorphic embedding T: Y+ UB
and a projection P: UB~> T(Y) such that Ty = lyglepn; for k=1,2,...

o

and P(x) = xE Fri(x) eny For =€ UB.

Part (b) has been proved by Pelczyriski [8]. (a) follows from (b)
via 7.2. Schechtman [2] gave a simple proof of 7.3 (b). Johnson
and Szankowski [1], completing 7.3 (a), have shown that if E is a
Banach space such that every separable Banach space with ap is iso-
morphic to a complemented subspace of E, then E is not separable.

A still open question is "the finite-dimensional basis problem".
For a basis (e,) with the coefficient functionals (fn), we put

K(ep) = sup sup
m

balz1 2 Jri@en|-

Next, if X is a Banach space with a ba51s, we let K(X) = inf K(ep)
where the infimum is taken over all bases for X. Finally, we define
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k" = sup {K(X): dim X = n}.

The finite-dimensional basis problem is the following: is it true
that lim ¥®) = w,

It ig easy to show that K(2)= 1 and it is known that K(n)> 1 for
n > 2 (Bohnenblust (2]). It follows from John's theorem 1.1 that

k" < ni. Enflo [4] has proved that there exists a Banach space X
isomorphic to the Hilbert space 7? and such that X(X) > 1. Using 7.2
it is easy to show that Johnson's space BJ of 5.8 has a basis. Thus,
by 6.4, we infer that, for each n, there exists a Banach space X,
(isomorphic to BJ) with a basis and such that X (Xp) 2 n.

In the same way as for the ap and bap we have

7.5 (Johnson, Rosenthal and Zippin [1]). If X* has a basis, then
go does X. Conversely, if X has a basis, X* is separable and has
the ap, then X* has a basis.

On the other hand, it follows from Lindenstrauss [5] that there
exists a Bandch space 2 with a basis such that Z# is separable and
fails the ap, and hence Z* does not have any basis.

For the most common Banach spaces bases have been constructed. We
mention here two results of this nature.

7.6 (Johnson, Rosenthal and Zippin [1])). If X is a separable
Banach space such that either X or X* is isomorphic to a complement-
ed subspace of a space E which is either C or LP (1<p< =), then X
has a basis.

Let Q be a compact finite-dimensional differentiable manifold with
or without boundary. Denote by ¢k (Q) the Banach space of all real
functions on Q@ which have all continuous partial derivatives of
order = k.

7.7. The space Ck(Q) has a basis.

In particular, for Q= [0,1] x [0,1] and k=1, we obtain a positive
answer to the question ([B], Rem. VII, §3, p. 147) whether the space
¢ ([0,1]1 x [0,1]) has a basis.

The proof of 7.7 is reduced to the case of concrete manifolds by
the following result of Mityagin [3]:

7.8. For a fized pair (k,n) of natural numbers, <if Q, and Q, are
n-dimensional dszerentzable manifolds with or without boundary, then
the spaces Ck(Q ) and Ck(Q,) are isomorphic.

Now 7.7 follows from Ciesielski [1], Ciesielski and Domsta [1],
and independently from Schonefeld [1],([2], where explicit construc-
tions of bases in ck(Q)_are given, for Q being either the n-cube
f0,11™ or the n-torus 7" (n,k=1,2,...).

Bockariev [1] answering a questlon of [B], Ren. VII §3, p. 147,
has shown that the Disc Algebra = the space of [B], Example 10, p. 7
has a basis.

The theorem of Banach stating that

7.9. Every infinite-dimensional Banach space contains an infinite-
dimensional subspace with a basis;

and announced in [B], Rem. VII, §3, p. 147, has been improved and
modified in several papers (cf. Bessaga and Pelczyriski [3],[4], Day
[5]1, Gelbaum [1], Davis and Johnson [2], Johnson and Rosenthal [1],
Kadec and Pelczyriski [2], Milman [1], Pelczyrski [7]). In particu-
lar, it has been shown that

7.10. (Pelczyrski [7]). Every non-reflexive Banach space containg
a non-reflexive subspace with a basis.
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7.11 (Johnson and Rosenthal [1]). Every <infinite Banach space
which is the conjugate of a separable Banach space contains an
infinite-dimensional subspace which has a basis and which i8 a con-
Jjugate space.

7.12 (Johnson and Rosenthal [1]). Every separable infinite-
dimensional Banach space admits an infinite-dimensional quotient
with a basis.

The separability assumption in 7.12 is related to the open question
whether every Banach space has a separable infinite-dimensional
quotient.

There is a huge literature concerning the classification of bases
and their generalizations, and also concerning the properties of
special bases. The reader may consult the books by Day [1], Linden-
strauss and Tzafriri [1], Singer [1] and the surveys by Milman [1]
and McArthur [1], where bases in Banach spaces are discussed, the
book by Rolewicz [2] and the surveys by Dieudonné [2],[3], Mityagin
[1],[2] and McArthur [1], where bases in general linear topological
spaces are treated.

Concluding this section, we add that the question raised in [B],
Rem. VII, §1, p. 147 has been answered by Ovsepian and Pelczyrski
[11. We have (cf. Pelczynski [9])

7.13. Every separable Banach space X admits a biorthogonal system
(xn, fn) such that lxpxh=1 for n=1,2,..., lim Ifyl =1, and (a) if

n
fe€Xx* and flxp) =0 for all n, then f=0, and (b) if x€ X and
fnlx) =0 for all n, then x=0. Moreover, given e¢>1 the biorthogonal
sequence can be chosen so that sup lful < c.

n

It is unknown whether the "Moreover" part of 7.13 is true for e=1.

§8. Unconditional bases.

A basis (eyp) for a Banach space X is unconditional if
0
) |fn(m)m*(en)| < o for all = € X; x* € X*,
n=1
vwhere (f,) is the sequence of coefficient functionals of the basis
(en) .

The existence of an unconditional basis in the space is a very
strong property. It determines on the space the Boolean algebra of
projections (Pg), where, for any subset ¢ of positive integers, the
projection Pg€ B(X,X) is defined by

Polz) = ] fplx)ey,
neg
and, in the real case, it determines also the lattice structure on X
induced by the partial ordering: x<y iff fp(x) € f,{y) for n=1,2,...
Several results on unconditional bases can be generalised to an
arbitrary Boolean algebra of projections, and Banach lattices. The
reader is referred to Dunford and Schwartz [1] and Part III, Linden-

strauss and Tzafriri.
To illustrate the consequences of the existence of an unconditional

basis in a Banach space, we state an already classical result due to
R. C. James [1].

8.1. A Banach space with an unconditional basis is reflexive <if
and only if none of its subspaces is isomorphic either to ¢, or to
Zl

From 8.1, 1.5 and 1.6 it immediately follows that the spaces J and
DJ defined in §1 have no unconditional bases. In fact, these spaces
cannot be isomorphically embedded into any Banach space with an un-
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conditional basis. Therefore the universal space ¢ ([B], Chap. XI,
§8) has no unconditional basis.

The existence of unconditional bases in sequence spaces like 1P
(1£p<=®), ¢, and in separable Orlicz sequence spaces ( = the space
(0) in the notation of [B], Rem. Introduction, §7, p. 138) is
trivial. The next result of Paley [2] and Marcinkiewicz [1] is much
more difficult.

8.2, The Haar system is an unconditional basis in the spaces j 14
for 1< p< w,

For a relatively simple proof of this theorem see Burkholder [1].

The Paley-Marcinkiewicz theorem can be generalised to symmetric
function spaces. A symmetric function space is a Banach space E con-
sisting of equivalence classes of Lebesgue measurable functions on
[0,1] such that

(a) 1cEecL?,

(b) if f, €E,f, is a measurable function on f0,1] such that if
[f,| is equidistributed with |[f,|, then f, €E, and If,lg=If,lg.

The following result is due to Olevskil! [1], cf. Lindenstrauss and
Pelczyriski [2] for a proof.

8.3. 4 symmetric function space E has an unconditional basis if
and only if the Haar system is an unconditional basis for E.

Combining 8.2 with the interpolation theorem of Semenov [1], we
get

8.4. Let E be a symmetric function space and let g,(t) = "X[O,t]"E
where X(0,] denotes the characteristic function of the interval
f im i <14 2t t) < 2, then
[0,t}. If 1< %ig inf gE(2t)/gE(t).=%ig'sup gE( )/gE( ) ,
the Haar system is an unconditional basis for E.
A corollary to this theorem is the following result, established
earlier in a different way by Gaposhkin [1]:

8.5. An Orliecz function space ( = the space (0) in the notation
of [B], p. 138) has an unconditional basis if and only if it <is
reflexive.

An important class of unconditional bases is that of symmetric

bases. A basis (e;) for X with the sequence of coefficient func-
tionals (f,) is called symmetriec if for every x € X and for every

permutation p(.) of the indices, the series nglf”(x)ep(n) converges.
The next result is due to Lindenstrauss [9].

8.6. Let (yx) be an unconditional basis in a Banach space Y. Then
there exist a symmetric basis (xy) in a Banach space X and an iso-
morphic embedding T: Y+ X whose values on the vectors yj are

Tyk= P ) z, for k = 1,2,...,
nE<NENgyq
for some scalars cy and indices 1<ny;<n,<...

For every symmetric basis (ep) with the coefficient functionals f,
(n=1,2,...) and for every increasing sequence of indices (ny), the
operator P: X +X defined by

b -1 Tr+1
Plz) = ] ((”k+1 - "k)!) - 1 f
k=1 pENly, J=ngp+1
where Il denotes the set of all permutations of the indices

p () ®eg



Some aspects of the present theory of Banach spaces 187

nE+lyeeesngyqr is a boun%ed projection onto the subspace of X
spanned by the blocks z * ej (k=1,2,...). Hence, by 8.6, we have
J=nyg+l

8.7 (Lindenstrauss [9)). Every Banach space with an unconditional
basis is isomorphic to a complemented subspace of a Banach space
with a symmetric basis.

It is not known whether the converse of 8.7 is true or, equiva-
lently, whether every complemented subspace of a Banach space with
an unconditional basis has an unconditional basis. The gquestion is
open even for complemented subspaces of P (1< p<o; p#2).

The next result is similar to 7.4.

8.8. There exists, a unique up to an isomorphism, Banach space US,
with a symmetric basis such that every Banach space with an uncon-
ditional basis is isomorphic to a complemented subspace of US. More-
over, the space US has an unconditional but not symmetric basis (ey)
with the following property:

(*) for every “unconditional basis (yy) in any Banach space y,
there exist an isomorphic embedding T: Y-+ US and an znereaszng
sequence of indices (ng) such that Ty, = lygleny for k=1,2,

The existence of an unconditional basis with property (*) has been
established by Pelczyriski [8], see also Zippin [2] for an alterna-
tive simpler proof. Combining (*) with 8.7 one gets the first state-
ment of 8.8.

In contrast to 7.5, we have

8.9. There exists a Banach space X which does not have any uncon-
ditional basis, but its conjugate X* does.

An example of such a space is ¢ (w®), the space of all scalar-
valued continuous functions on the compact Hausdorff space of all
ordinals £ w®, whose conjugate is 1! (cf. Bessaga and Pelczyriski [2],
p. 62 and Lindenstrauss and Pelczyriski [1], p. 297). The existence
of a Banach lattice without ap (Szankowski [8]) yields that (US)*
fails to have ap. (However, if X* is separable and X has an uncon-
ditional basis, then X* also has an unconditional basis!)

We do not know whether every infinite-dimensional Banach space con-
tains an infinite-dimensional subspace with an unconditional basis
(compare with 7.9).

We shall end this section with the discussion of the "unconditional
finite-dimensional basis problem", which has been solved by Y. Gordon
and D. Lewis. For an unconditional basis (e,) with the coefficient
functionals (f,), we let

K, (e ) = sup {glfn

s el <1, bx*l < 1],

Next, if X is a Banach space with an unconditional basis, we set
Ky (X} = inf X, (e,), where the infimum is taken over all unconditional
bases for X. Finally, we define

K;n) = sup {Ku(X): dim X = n}.

Let B, =B(13,1%), the n* dimensional Banach space of all linear
operators from the n-dimensional Euclidean space into itself.
Gordon and Lewis [1] have proved that

8.10. There exists a C >0 such that Cv/n < Ky(By) £ vVn, for n=1,2,
In fact, they have obtained a slightly stronger result:

8.11. If Y is a Banach space with an unconditional basis and Y
containe a subspace isometrically isomorphie to B,, then for every
projection P of Y onto this subspace, we have
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IPh-&,(Y) 2 CVn,
where C>0 18 a universal constant independent of n.

The exact rate of growth of the sequence CK&n)) has recently be
found by Figiel, Kwapierl and Pelczyfiski [1] who proved that K;”)z
It follows from John's Theorem 2.2 that K;n)é /.
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CHAPTER IV

§9. Characterizations of Hilbert spaces in the class of Banach
spaces.

The problems concerning isometric and isomorphic characterizations
of Hilbert spaces in the class of Banach spaces, posed in [B], p.
151-2, have stimulated the research activity of numerous mathemati-
cians. Isomorphic characterizations of Hilbert spaces have proved
to be much more difficult than the isometric characterizations.

We say that a property (P) <sometrically (isomorphically) charac-
terizes Hilbert spaces in the c¢lass of Banach spaces if the follow-
ing statement is true: "A Banach space X has property (P) iff X is
isometrically isomorphic (is isomorphic) to a Hilbert space". By a
Hilbert space we mean any Banach space H (separable, non-separable,
or finite-dimensional) whose norm is given by lzl = (x,x) %, where
(-,-): HxH>K is an inner product and X is the field of scalars
(real or complex numbers).

We shall first discuss isometric characterizations of Hilbert
spaces. Results in this field are extensively presented in Day's
book [1], Chap. VII, §3. Therefore here we shall restrict ourselves
to discussing the most important facts and giving supplementary
information.

The basic isometric characterization of Hilbert spaces is due to
Jordan and von Neumann [1].

9.1. A Banach space X is isometrically isomorphic to a Hilbert
space iff it satisfies the parallelogram identity:

le + yu?2 + lz = yh? = 2(Hzl? + lyl?) for all xz,y € X.
As an immediate corollary of 9.1 we get

9.2. A Banach space X is isometrically isomorphic to a Hilbert
space 1f and only if every two-dimensional subspace of X is isomet-
rie to a Hilbert space.

An analogous characterization but with 2-dimensional subspaces
replaced by 3-dimensional ones was earlier discovered by Fréchet [1].
In the thirties Aronszajn [1] found other isometric characteriza-
tions of a Hilbert space, which, as 9.2, are of a two-dimensional
character, i.e. are stated in terms of properties of a pair of
vectors in the space.

A characterization of an essentially 3-dimensional character was
given by Kakutani [1] (see also Phillips {[1]) in the case of real
spaces, and by Bohnenblust [1] in the complex case. It states that

9.3. For a Banach space X with dim X 2 3 the following statements
are equivalent:

(i) X <s Zsometrically <isomorphic to a Hilbert space,

(ii) every 2-dimensional subspace of X is the range of a projec-
tion of norm 1.
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(iii) every subspace of X is the range of a projection of norm 1.

Here and in the sequel, by "dim" we mean the algebraic dimension
with respect to the corresponding field of scalars.

Assume that H is a Hilbert space with 2<dim £~ and 2£ k< dim 4.
Obviously all k-dimensional subspaces of F are isometrically iso-
morphic to each other. The question ([B], Rem. XII, p. 152, prop-
erties (4) and (5)) whether the property above characterizes Hilbert
spaces has been solved only partially, i.e. under certain dimensional
restrictions. Let us say that a real (resp. complex) Banach space X
has the property H*, for k=2,3,..., if dim X2 k and all subspaces of
X of real (resp. complex) dimension k are isometrically isomorphic
to each other.

9.4. The following two tables give the dimensional restrictions
on Banach spaces X under which the property gk implies that X is
isometrically isomorphic to a Hilbert space.

The real case The complex case
k even k+1 £ dim X £ « k even k+1 £ dim X £ =
k odd k+2 £ dim X £ o k odd 2k £ dim X £ =

The real case of k=2, dim X< », was solved by Auerbach, Mazur and
Ulam [1]). The case of dim X =« is a straightforward consequence of
Dvoretzky's [2] theorem on almost spherical sections (see 3.5).

This was observed in Dvoretzky [1]. The remaining statements are
due to Gromov [1]. The simplest unsolved case is k=3, dim X=4.

We shall mention two more isometric characterizations of Hilbert
space.

9.5 (Foias [1], von Neumann [1]). A complex Banach space X is
tsometrically itsomorphic to a Hilbert space if and only if, for
every linear operator T: X+ X and for every polynomial P with com-
plex coefficients, the inequality IP(T)I g HTH]sup|P(z)| holds.

z(=1

9.6 (Auerbach [1], von Neumann [2])}. A finite-dimensional Banach
space X is isometrically isomorphic to a Hilbert space if and only
if the group of linear isometries of X acts transitively on the unit
sphere of X, i.e. for every pair of points x,y€ X such that
Il =yl =1, there is a linear isometry T: Xoﬁ%ox such that T(x) =y.

Remark. Let 1<p< o and let p be an arbitrary non-sigma-finite
non-atomic measure. Then the group of linear isometries of the
space LP () acts transitively on the unit sphere of the space.
Therefore the assumption of 9.6 that X is finite-dimensional is
essential. The question whether there exists a separdble Banach
space other than a Hilbert space whose group of linear isometries
acts transitively on the unit sphere remains open (cf. [B], Rem. XI,
§5, p. 151).

Now we shall discuss various isomorphic characterizations of a
Hilbert space. The simplest among them reflects the fact that all
subspaces of a fixed dimension of a Hilbert space are isometric, and
hence are "equi-isomorphic". More precisely, we have

9.7. For every Banach space X the following statements are equiv-
alent:

(1) X is isomorphic to a Hilbert space,

(2) sup _sup d(E,1}) ¢ =
n BEU,x
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(3) sup sup d(E,1%) < o,
n E€ (X) "
whereQJn(X) (resp.QIn(X)) denotes the family of all n-dimensional
subspaces (resp. quotient spaces) of the space X.

From the theorem of Dvoretzky, it follows that conditions (2) and
(3) can be replaced, respectively, by

(27) sup sup d(E,F) < =,
n E,Fe Ly (X)
(37) sup sup d(E,F) < =.

n E,FeLM(X)

Theorem 9.7 is implicitly contained in Grothendieck [5]. The
equivalence between (1) and (2) was explicitly stated by Joichi [1],
cf. here 3.1. In connection with 9.7 note that the following
question is still unanswered: "If X is a Banach space and all
infinite-dimensional subspaces of X are isomorphic to each other, is
X then isomorphic to a Hilbert space?" ([B], Rem. XII, p. 153).

The following elegant result of Lindenstrauss and Tzafriri [3]

(cf. also Kadec and Mityagin [1]) is an isomorphic analogue of
theorem 9.3. ’

9.8. A Banach space X is isomorphic to a Hilbert space if and
only 1f:

(*) each subspace of X is complemented.

This theorem shows that property (7) discussed in [B] on p. 152-3
is a feature of Banach spaces isomorphic to a Hilbert space only.

The proof of 9.8 starts with an observation of Davis, Dean and
Singer [1] that condition (*) implies

o > sup P, (X) = sup inf {lPl: P is a projection of X onto E}.
n E€lin(X)
Next, by an ingenious use of Dvoretzky's Theorem 3.4, it is shown
that sgp P,(X) <» implies condition (2) of 9.7.

Historiecal remark. Theorem 9.8 states that every Banach space
which is not isomorphic to any Hilbert space has a non-complemented
subspace. The construction of such subspaces in concrete Banach
spaces was relatively difficult. Banach and Mazur [1] showed that
every isometrical isomorph of 7! in the space ¢ is not complemented.
Murray[1] constructed non-com mented subspaces in the spaces LY.
For a large class of Banach spaces with a symmetric basis an
elegant construction of non-complemented subspaces was given by
Sobczyk [2].

Combining 9.8 with earlier results of Grothendieck [4], we obtain

9.9. The only, up to an isomorphism, locally convex complete
linear metric spaces with property (*) are the Hilbert spaces, the
space s of all scalar sequences, and the product sx H, where H is an
infinite—-dimensional Hilbert space.

In the same way as 9.8 one can prove (cf. Lindenstrauss and
Tzafriri [3])

9.10. A Banach space X is isomorphic to a Hilbert space if and
only if, for every subspace Y of X and for every compact linear
operator T: Y +Y, there exists a linear operator T: X +Y which
extends T.

An interesting characterization of a Hilbert space is due to
Grothendieck [5] (c¢f. also Lindenstrauss and Pelczyfiski [1]).

9.11. A Banach space X is isomorphie to a Hilbert space if and
only <if
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(**) <there is a constant K such that, for every scalar matrix

(aij)z,j=1(”=1’2’°") and every £,,...,x, €X of norm 1, xf,...,mze X*
of norm 1, there are scalars 8,,...,8p,ty,...,ty each of absolute
value £ 1 such that '
*
‘i?jaijmi(zj)\ <K

In contrast to the previous characterizations, it is not easy to
show that Hilbert spaces have property (**). Interesting proofs of
this fact were recently given by Maurey [1], Maurey and Pisier [1],
Krivine [3].

Closely related to 9.12 is the following characterization (cf.
Grothendieck [5], Lindenstrauss and Pelczyfiski [1]).

) a--s.t~i.
P % 3
i) J J

9.12. A separable Banach space X is isomorphic to a Hilbert space
iff X and X* are isomorphic to subspaces of the space L' iff X and
X* are isomorphic to quotient spaces of C.

In the above theorem the assumption of separability of X can be
dropped if one replaces the spaces [! and ¢ by "sufficiently big"

1 and_ll,spaces. (For the definition see section 10.)

Let us notice that every separable Hilbert space is isometrically
isomorphic to a subspace of L! (cf. e.g. Lindenstrauss and
Pelczyriski [1]). We do not know whether 9.12 admits an isometrical
version, i.e. whether every infinite dimensional Banach space X such
that X and X* are isometrically isomorphic to subspaces of L! is
isometrically isomorphic to a Hilbert space. For partial results
see Bolker [1]. For dim X< «» the answer is negative (R. Schneider
[11).

From the parallelogram- identity one obtains by induction, for
n=2,3,... and for arbitrary elements of a Hilbert space,

n
27l @, + Epmy ¥ oaee + gqapl? = ) e s02,
€ J=1
where I denotes the sum extended over all sequences (511---'5n) of
€
+1's. The following isomorphic characterization of Hilbert spaces,
due to Kwapieri [1], is related to the above identity.

9.13. A Banach space X is isomorphic to a Hilbert space if and
only if there exists a constant A such that

L " 5 n 5 n

Ve T T2 R 2” ) em“ $ A Y lzsl

L J P L d
J=1 e'g=1 Jj=1

for arvbitrary x,,...,xp € X and for n=2,3,...

From 9.13 Kwapier [1] has derived another isomorphic characteriza-
tion of Hilbert spaces. In order to state it, we shall need some
additional notation. Let L} (R,X) denote the normed linear space
consisting of simple functions with values in the Banach space X and
with supports of finite Lebesgue measure in R. We define TfI =

(It:“fit)ﬂzdt)i for fe€ L3 (R,X). By L?(R,X) we denote the completion

of L% (R,X) in the norm |{:|. The Fourier transformation
F: L3 (R,X) » L* (R,X) is defined by the classical formula

2

- -3 st
F(A () = (2m) *[e fls)ds.

Under this notation we have

9.14. For every complex Banach space X the following statements
are equivalent
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(i) X <is isomorphic to a Hilbert space.

(ii) There is a constant A >0 such that

n 2m) 7 (it
T zji2 saf| 3 of :z:j"zdt
Jj=—n 0 "j==n )
for avbitrary T-p,...,Ty,...,%y €X and for x=1,2,...

(iii) There exists a constant A> 0 such that

2w n Pt n
[|. 1 e asi?dt <4 ] lxj1?
0 "j=-n Jj=-n
for arbitrary T_,,...,%4,...,%, € X and for n=1,2,...

(iv) The Fourier transformation F: L%(R,X)-fL’(R,X) i8 a bounded
linear operator.

Using 9.13 Figiel and Pisier [1] have proved that

9.15. A Banach space X is isomorphic to a Hilbert space if and
only if there exist a constant A >0 and Banach spaces X, and X, iso-
morphic to X such that X, is uniformly convex, X, is uniformly
smooth and the moduli of convexity and smoothness satisfy the inequ-
alities le(t)z At?, pxz(t)s At? for small t > 0.

MeSkov [1] improving a result of Sundaresan [1] has shown that

9.16. A real Banach space X is isomorphic to a Hilbert space <if
and only <f X and X* have equivalent norms which are twice different-
iable everywhere except the origins of X and X*.

An operator T: X Y is nuclear if there are z*€ x*, y.ev
Lo <0
(7=1,2,...) with jglll:c;H lyjl <= and Tz = jglx;(x)yj for x€ X. P.
@rno observed (cf. Johnson, Kdénig, Maurey and Retherford [1]).

9.17. A Banach space X is isomorphic to a Hilbert space iff every
nuclear T: X> X has summable eigenvalues.

Enflo [1] gave a non-linear characterization of Hilbert spaces.

9.18. A Banach space X is isomorphic to a Hilbert space if and
only if X is uniformly homeomorphic to a Hilbert space H, i.e. there

is a homeomorphism h: X -1 B such that h and h~1 are uniformly con-
onto

tinuous functions in the metrics induced by the norms of X and H.
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Classical Banach spaces

The spaces LP(u) and C(X) are distinguished among Banach spaces by
their regular properties. However, most of those properties, of
both isomorphic and isometric character, extend to some wider class-
es of spaces, which can easily be defined in terms of finite-
dimensional structure, i.e. by requiring certain properties of
finite-dimensional subspaces of a given space.

Definition. (Lindenstrauss and Pelczyriski [1]). Let 1<p s« and
let 2> 1. A Banach space X is an ) space if, for every finite-
dimensional subspace Ec X, there is a finite-dimensional subspace
Fc X such that FoFE and d(F, Zi) < A, where k=dim F. The space X is
an space provided that it 1s an_f; ) space for some A€ (1,2).

The classlz,= Agi PsA is the required class of spaces which have

most of the isomorphic properties of the spaces tP(u) and C(X) (for
p=«). From the point of view of the isometric theory the natural

class is the subclass of consisting of all those spaces X which

are /, ) for every A>1, i.e. the class Agfl;’x'

§10. The isometric theory of classical Banach spaces.

First, we shall discuss the case 1<p<», which is simpler than
that of p=«., We have

10.1. Let 1< p<®, A Banach space X is isometrically isomorphic
to an LY (p) space if and only if X is an_[%’k space for every A > 1.

Recall that a projection P: X+ X is said to be contractive if
el < 1.

10.2, If P is a contractive projection in a space Lp(u), then
Y= PCLp(u) is an_[%’x space for every A > 1.

The proofs of 10.1 and 10.2 are due to the combined effort of many
mathematicians (for the history see Lacey [(1]). They are based in
an essential way on the following theorem on the representation of
Banach lattices, which (in a less general form) has been discovered
by Kakutani and Bohnenblust.

Recall, that if x is a vector in a Banach lattice, then |x[ is
defined to be max (x,0) + max (-x,0).

10.3. Let 1<pso. A Banach lattice X is lattice-isometriecally
isomorphic to a Banach lattice LP () if and only if (lzIP + 1y1Py17pP -
bz + yl whenever min (|z|,|y|) =0, for z,y€ X. (If p=w, then by
(Hxﬂp~kﬂyup)1/9 we mean max (lxi,lyl)).

We also have (Ando [1])

10.4. If X is a Banach lattice with dim X2 3, then X is lattice-
isometrically isomorphic to a lattice LP(u) <if and only i1f every
proper sublattice of X is the image of a positive contractive pro-
jection.

In particular, if 1< p< », then every separable subspace of LP (1)
ig contained in a subspace of the space which is isomorphic to a
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space P (v) and which is the image of a contractive projection.

For 1< p< « the spaces Lp(u) are reflexive (and even uniformly
convex and uniformly smooth). We have

10.5. Lp(u))*'-Lp (), with p*=p/(p-1). The equagzty means here
the canonical {somorphism given by f~+ [-fdu for fe€ P* ().

This is a generalization of the classical theorem of Riesz [1]
(cf. [B], p. 37).

Theorem 10.5 remains valid for p=1 (p*=«) in the case of sigma-
finite measures. For arbitrary measures we have only the following
fact (see e.g. Pelczyriski [2]):

10.6. For every measure u there exists a measure v (which in
general 18 defzned on another sigma-field of sets) such that the
spaces L' (u) and L' (V) are isomorphic and such that the map f=+ [-fdv
is an isometrical isomorphism of L*(v) onto (L1 (v))*.

The following theorem is due to Grothendieck [2]:

10.7. If X* is isometrically zsomorphzc to a space C(K), then X
is isometrically isomorphic to a space L' (V).

The isometric classification of spaces Lp(v) reduces to the
Boolean classification of measure algebras (S,Z,p). The latter is
relatively simple in the case of sigma-finite measures. We have

10.8. If u is a sigma-finite measure, then the space LF (u) is
isometrically isomorphic to a finite or infinite product

(zP(a) x P (A"1) x P (A"2) «x ...)p

where A is the set of atoms of the measure u and ny,n,,... 18 a
sequence of distincet cardinals and A" denotes the measure which is
the product of n copies of the measure A defined on the field of all
subsets of the two-point set {0,1} such that A({0}) =A({1}) = &.

Theorem 10.8 is a consequence of a profound result of Maharam [1]
stating that every homogeneous measure algebra is isomorphic to a
measure algebra of the measure A" for some cardinal n.

From 10.8 and the remark after 10.4 it easily follows that every
separable space LP(p) is isometrically isomorphic to the image of a
contractive projection in the space LP (for 1<p<«).

Now we shall discuss the case p = o,

Definition. A Banach space X is called a LGdenstrauss space if
its dual X* is isometrically isomorphic to a space L! (u).

The classical theorem of Riesz on the representation of linear
functionals on ¢(X) (for the proof see, for instance, Dunford and
Schwartz [1] and Semadeni [2]) combined with theorem 10.3 shows that
all the spaces C(X) are Lindenstrauss spaces. It is particularly
interesting to note that the class of Lindenstrauss spaces is essen-
tially wider than the class of spaces C(X), for instance ¢, is a
Lindenstrauss space which is not isometrically isomorphic to any
space (C(X). Also, if S is a Choquet simplex (for the definition see
Alfsen [1]), then the space Af(S) of all affine scalar functions on
S is a Lindenstrauss space; so is the space in 11.15. Now we state
several results.

10.9. For every Banach space X the following statements are equi-
valent:

(1) X s an_l;’A space for every A >1,
(2) X is a Lindenstrauss space,

(3) the second dual X** is isometrically isomorphic to a space
c(x).
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10.10. A Lindenstrauss space X is isometrically isomorphic to a
space C(K) <if and only if the unit ball of X has at least one
extreme point and the set of extreme points of X* is w*-closed.

Every space L¥(u) is isometrically isomorphiec to a space C(K).

The following is an analogue of 10.2:

10.11. If P is a contractive projection im a Lindenstrauss space
X, then P(X) is a Lindenstrauss space.

It should be noted that not all Lindenstrauss spaces are images of
spaces ((X) under contractive projections (cf. Lazar and Linden-
strauss [1] for details). However, we have

10.12 (Lazar and Lindenstrauss [1]). Every separable Linden-
strauss space is isometrically isomorphic to the image of a con-
tractive projection in a space Af(S).

Grothendieck [4] has observed that in the class of Banach spaces
Lindenstrauss spaces can be characterized by some properties of the
extension of linear operators, and spaces L!(n) can be characterized
by properties of lifting linear operators. We have

10.13. For évery Banach space X the following statements are
equivalent:

(al) X <s a Lindenstrauss space.

(a2) For arbitrary Banach spaces E,F, an isometrically isomorphic
embedding j: F~E, a compact linegr operator T: F+X and €>0, there
exists a compact Zznear operator P: E+X which extends T (i.e. T= T4)
and is such that 70 < (1+ €)liTh,

(a3) For arbitrary Banach spaces Y,Z, an isometrically isomorphic
embedding j: X+ Y and a compact Zznear operator T: X+ 7 _there exists
a compact linear operator T: Y~ % such that T=1Tj and ITI=1lrl,

10.14. For every Bamnach space X the following statements are
equivalent:

(a*1) X <s isometrically isomorphic to a space LY (u).

(a*2) For an arbitrary Banach space E, its quotient space F, a
compact linear operator T: X+ F and € >0 there exists a compact lin-
ear operator P: X+ E with 1P g (1+e) Tl which 1ifts T, i.e. T= 4T,
where ¢ is the quotient map of E onto F.

(a*3) For arbitrary Banach spaces Y,Z, a linear operator

¢t Y ;' X and a compaet linear operator T: Z-+ X there exists a
onto - w
compact linear operator T: Z+Y such that VTl =Tl and T = ¢T.

Other interesting characterizations can be found in Lindenstrauss
[11,[2].

Omitting in (a2),(a3) (resp. in (a*2),(a*3)) the requirement that
the linear operators T and T should be compact, we obtain character-
izations of important classes of injective (resp. projective) Banach
spaces. They are narrow subclasses of Lindenstrauss spaces (resp.
of spaces L[ {u)); see the theorems below.

Recall that a compact Hausdorff space X is said to be extremally
disconnected if the closure of every open set in X is open.

10.15 (Nachbin-Goodner-Kelley). For every Banach space X the
following statements are equivalent:

(b1) X is isometrically isomorphic to a space C(K) with K extrem-
ally disconnected.

(b2) For arbitrary Banach spaces E,F, an isometrically isomorphic
embedding j: E~+F, and a linear operator T: E~+ X, there exists a
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linear opervator T sueh that T=Tj and T = W7,

(b3) X satisfies (a2) with "compact linear operator" replaced by
"linear operator”.

(b4) X satisfies (a3) with "compact linear operator" replaced by
"linear operator”.

10.16. For every Banach space X the following statements are
equivalent:

(b*1) X <8 isometrically isomorphic to a space 11 (5).

(b*2) For an arbitrary Banach space E, its quotient space F and a
linear operator T: X+ F there exists a linear operator I': X+ E such
that ITH =17} and T = ¢T where ¢: E>F is the quotient map.

(b*3) X satisfies (a*2) with "compact Llinear operator” replaced
by "linear operator”.

(b*4) X satisfies (a*3) with "compaet linear operator” replaced
by "linear operator”.

The isometrical classification of the spaces (¢ (x¥) reduces to the
topological classification of compact Hausdorff spaces. For compact
metric spaces this fact has been established by Banach (see [B],
Chap. IX, Theorem 3). The general result is due to M. H. Stone [1]
and S. Eilenberg [1]. It is as follows:

10.17. Compact Hausdorff spaces K, and K, are homeomorphic if and
only if the spaces C(K,) and C(K,) are isometrically isomorphic.

D. Amir [1] and M. Cambern [1] have strengthened this result as
follows; If there is an isomorphism T of C(K,) onte C(K,) such that
uTu-uT'1u< 2, then K, and XK, are homeomorphic. The constant 2 is
the best possible; there are compact metric spaces X; and K, such
that d(c(k1),c(k;)) =2 (H. B, Cohen [1]). However, if k; and Kk, are
countable compacta, then d{C(X,),C(k;)) 2 3 (Y. Gordon [1]).

An isometric classification of Lindenstrauss spaces is not known.
Many interesting partial results can be found in Lindenstrauss and
Wulbert [1] and Lazar and Lindenstrauss [1]. Let us note that the
space ¢, is minimal among Lindenstrauss spaces in the following
sense.

10.18 (zippin [1]). Every infinite~dimensional Lindenstrauss
space X contains a subspace V which is isometrically isomorphic to
the space ¢,. Moreover, if X is separable, then the subspace V can
be chosen so as to be the image of a contractive projection in the
space X.

The class of separable Lindenstrauss spaces admits a maximal
member. More precisely:

10.19 (Pelczyriski and Wojtaszczyk [1]). There exists a separable
Lindenstrauss space T with the property that for every separable
Lindenstrauss space X and for every ¢ >0 there is an isometrically
isomorphic embedding T: X~»>T with lxll < 1Tzl £ (1+ e)lxzl for x€ X and
such that T(X) is the image of a contractive projection from X.

Wojtaszczyk [1] has shown that the space [ with the above proper-
ties can be constructed in such a way that it is a Guraril space of
the universal arrangement (cf. Guraril [1]), i.e. it has the follow-
ing property:

(*) For every pair FoE of finite-dimensional Banach spaces, for
every isometrically isomorphic embedding T: E~>T and for every e >0,
there is an extension T: F~+T such that lel £ 1Tell 2 (1 +¢€)lel for
e € E.
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Guraril [1] has shown that every Banach space satisfying condition
(*) is a Lindenstrauss space and that the Guraril space is unique up
to an almost-isometry, i.e. if T'; and T, are Guraril spaces, then
d(T;,T;) =1. Luski [1] proved that the Gurariil space is isometric-
ally uniqgue.

The reader interested in the topics of this section is referred to
the monograph by Lacey [1], which contains, among other things,
proofs of the majority of the results stated here both for the real
and for the complex scalars. Many results and an extensive biblio-
graphy on C(K) spaces can be found in Semadeni's book [2]. For the
connections of Lindenstrauss spaces with Choquet simplexes see
Alfsen [1]. Further information can be found in the following sur-
veys: Bernau-Lacey [1], Edwards [1], Lindenstrauss [2],[4], Proceed-
ings of Conference in Swansea [1], and in the papers: Effros [1],
[2],[3), Lazar [1],[2},[3], Lindenstrauss and Tzafriri [2].

§11. The isomorphic theory of_[% spaces.

The isomorphic theory of_[% spaces_is, in general, much more com-
plicated than the metric theory of P (n) spaces and Lindenstrauss
spaces. The theory is still far from being completed. Many prob-
lems remain open. The only case in which the situation is clear is
that of p=2. From 9.7 it immediately follows

11.1. A4 Banach space X is an_Z; space 1f and only if <t is iso-
morphic to a Hilbert space.

The basic theorem of the general theory of.l; spaces is the follow-
ing result, due to Lindenstrauss and Rosenthal [1]. (Recall that
p*=p/(p-1) for 1<p<»; p*=1 for p=o; pt*=w for p=1.)

11.2. Let 1$ps> and p# 2. For every Banach space X which is
not isomorphic to a Hilbert space the following statements are
-equivalent:

(1) X <s an_[% space.

(2) There is a constant ¢ > 1 such that, for every finite-dimen-
sional subspace E of X, there are a fznzte -dimensional space 1y, @
linear operator T: Z%-*X and a prOJectzon P of X onto T(Zn) such
that Iyl s 7yl < eyl for y€ Zn, T(Z )2 E, IPI<e.

(3) X* i{s isomorphic to a complemented subspace of a space Lp*(u).
(4) x* is an_[%* space.

This yields the following corollary:

11.3. We have

(a). Let 1<p<« and let X be a Banach space which is not iso-
morphic to any Hilbert space. Then X is an. Ly space if and only <if
X is isomorphic to a complemented subspace of a space L¥ (u).

(b) Every.ll space (resp. Lo space) is isomorphic to a subspace
of an LY (u) space (resp. L®(u)).

(c) If X is an_ll space (resp. an_ L, space), then X** is iso-
morphic to a eomplemented subspace of a space L' (u) (resp. L®(u)).

A Hilbert space can be isomorphically embedded as a complemented
subspace of an P () space for 1< p<«. (The subspace of ? spanned
by the Rademacher system {sgn sin 2"%t:n=0,1,...} is such an
example.) On the other hand, by Grothendleck [3]1, no complemented
subspace of a space L!(u) is isomorphic to an infinite-dimensional
Hilbert space. This is the reason why the assumption that X is not
isomorphic to any Hilbert space does not appear in (b) and (c).
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The paper Lindenstrauss and Rosenthal [1] contains many interest-
ing characterizations of spaces. Here we shall quote the follow-
ing analogues of 10.13 and 10.14. Recall that a Banach space G is
said to be injective if for every pair of Banach spaces Z> Y and for
every linear operator T: Y+ G, there is a linear operator F: 2+ ¢
which extends T.

11.4. For every Banach space X the following statements are
equivalent:

(1) X s an_ll space.

(2) For all Banach spaces 7 and Y and any surjective linear oper-
ator ®: 7+ Y, every compact linear operator T: X+ Y has a compact
lifting T: X+ 2 (1.e. T=8T).

(3) For all Banach spaces 72 and Y and any surjective linear oper-
ator ®: Z+ X, every compact linear operator T: Y-+ X has a compact
lifting T: Y~ 2.

(4) X* ig an injective Banach space.

The reader interested in characterizations of_[% spaces in terms
of Boolean algebras of projections (due to Lindenstrauss, Zippin and
Tzafriri) is referred to Lindenstrauss and Tzafriri [2]. Other
characterizations, in the language of operator ideals, can be found
in Retherford and Stegall [1], Lewis and Stegall [1], in the surveys
by Retherford [1] and Gordon, Lewis and Retherford [1] and in the
monograph by Pietsch. [1].

Now we shall discuss the problem of isomorphic classification of
the spaces_[;. If 1< p< =, then by 11.3, the problem reduces to
that of isomorphic classification of complemented subspaces of
spaces L (n); also in the general case it is closely related to the
latter problem. The latter problem is completely answered only for
1P (s) spaces for 1£p< o, We have (Pelczyriski [3], Kdthe [2],
Rosenthal [2]).

11.5. Let 1<p<w. If X is a complemented subspace of _a space
1P (8) (resp. of e,(S)), then X is <somorphic to a space 1P (1)
(resp. co(T)).

To classify all separable_l% spaces for 1< p< « one has to
describe all complemented subspaces of IP. This programme is far
from being completed. Lindenstrauss and Pelczyriski [1] have observ-
ed that 1P,7¥,7P x 12 and Ep= (12 x 1% x ...) p are isomorphically

distinct _/; spaces for 1<p<«, p# 2. Next Rosenthal [3],[4] has
discovered {ess trivial examples of _[% spaces.

Let »>p> 2. Let Xp be the space of scalar sequences x = (x(n))
such that

bzl = max(( y |x(n)|p]1/p,[ ¥ |x(n)|=/1og(n+1)]*) < w,
n=1 n=1 .
Let Bp = (Bp,1x Bp,2 "')ZP’ where Bp,n is the space of all square

summable scalar sequences equipped with the norm
0

-
lzly = max(nl/p_1/2[ ) |x(j)|2]*,[ ) |x(j)|P]1/P).
p,n Jj=1 J=1
For 1< p<2 we put X, = (Xp#)* and Bp = (Bpx) *.
11.6. (Rosenthal). Let 1<p<®, p# 2. The spaces Xp,Bp,
(XpxXpx ...);p,Xp x Ep and Xpx Bp are isomorphically distinct_[;
spaces each different from tP,1P, 1P x Zz,Ep.

Taking "Lp-tensor powers" of Xp Schechtman [1] proved
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11.7. There exists infinitely many mutually non-isomorphic
infinite-dimensional separable_[% spaces (1< p<®, p=2).

Johnson and 0Odell [1] have proved

11.8. If 1< p< =, then every infinite-dimensiongl separable_[%
space which does not contain l* is isomorphic to 1F.

11.8 yields the following earlier result of Johnson and Zippin[1].

11.9. Let X be an infinite—dimensional.l% space with 1<p<w, If
Xpis either a subspace or a quotient of 1P, then X is isomorphic to
i-.

The above fact is also valid for the space c¢,.

Now let us pass to p=1. The problem of isomorphic classification
of complemented subspaces of spaces L' (p) is a very particular case
of that of isomorphic classification of_[l spaces. Even in the
separable case neither of these problems is satisfactorily solved.

In contrast to 11.9 we have

11.10. Among. subspaces of 1, therilgre infinitely many isomorph-
teally distinet <infinite-dimensional L, spaces.

This has been established by Lindenstrauss [7]. His construction
of the required subspaces %,,X,,... of 11 is inductive and based on
the fact that every separable Banach space is a linear image of 11!.
X, = ker h,, where %, is a linear operator of 1! onto L!, and
Xp4+1 = ker hy, where h, is a linear operator of 1! onto X, for
n=2,3,...

We do not know whether the set of all isomorphic types of separ-
able [, spaces is countable (1<p<w®, p=2).

In contrast to 11.10 the following conjecture is probable.

CONJECTURE. Every infinite-dimensional complemented subspace of
‘L* {s isomorphic either to L' or to L.

What we know is:

11.11 (Lewis and Stegall [1]). If X is an infinite-dimensional
complemented subspace of L* and X is isomorphic to a subspace of a
separable dual -space (in particeular, to a subspace of 1), then X is
isomorphic to 11.

This implies that:

(a) The space L' is not isomorphic to any subspace of a separable
dual Banach space (Gelfand [1], Pelczyrski [2]).

(b) The space 1! is the only (up to isomorphisms) separable
infinite-dimensional L, space which is isomorphie to a dual space.

The proof of (b) follows from 11.11, 11.3 (¢) and the observation
that every dual Banach space is complemented in its second dual.

In the non-separable case it is not known whether every dual L,
space is isomorphic to a space L'(n). Also it is not known which
L' (1) spaces are isomorphic to dual spaces. For sigma-finite meas-
ures u, L'(n) is isomorphic to a dual space iff p is purely atomic
(Pelczyriski [2], Rosenthal [5]).

Now we shall discuss the situation for p=«. It seems to be the
most complicated because of new phenomena which appear both in the
separable and in the non-separable case. First, in contrast to the
case of 1<p < » (where there were only two isomorphic_types of
infinite-dimensional separable L* (u) spaces, namely LY and Py,
there are infinitely many isomorphically different separable
infinite-dimensional spaces C(X). The complete isomorphic classifi-
cation of such spaces is given in the next two theorems.
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11.12 (Milutin [1]). If K Zs an uncountable compact metric space,
then the space C(K) is isomorphic to the space C.

For every countable compact space X, let a(X) denote the first
ordinal o such that the oath derived set of X is empty.

11.13 (Bessaga and Pelczyriski [2]). Let K, and K, be countable
infinite compact spaces such that al(K,) £a(XK,). Then the spaces
C(K;) and C(K,) are isomorphic if and only if there is a positive
integer n such that a(K;) S a(X,) < a(Kl)n.

The theorem of Milutin 11.12 answers positively the question of
Banach (cf. [B], p. 112).

It is easy to show that if X is a countable infinite compact space
then the Banach space (C(X))* is isomorphic to 1!. Hence, by 11.13,
there are uncountably many isomorphically different Banach spaces
whose duals are isometrically isomorphic. This answers another
question in [B], Rem. XI, §9.

The problem of describing all isomorphic types of complemented
subspaces of separable spaces (C(X) is open. The answer is known for
e being isomorphic to ¢, (cf. 11.5) and C(w¥) (Alspach [1]). This
problem can be reduced to that of isomorphic classification of com-
plemented subspaces of the space ¢. It is very likely that ’

CONJECTURE. Every complemented subspace of C is isomorphic either
to C or to C(K) for some countable compact metric space K.

The following result of Rosenthal [6] strongly supports this con-
jecture.

11.14. If X is a complemented subspace of C such that X* is non-
separable, then X is isomorphic to C.

The class of isomorphic types of Lindenstrauss spaces is essential-
ly bigger than that of complemented subspaces of ((X). We have

11.15 (Benyamini and Lindenstrauss [1]). There exists a Banach
space BL with (BL)* isometrically isomorphic to 1' and sueh that BL
i8 not isomorphic to any complemented subspace of any space C(X).

From the construction of Benyamini and Lindenstrauss [1] it easily
follows that, in fact, there are uncountably many isomorphically
different spaces with the above property. Combining 11.15 and 10.19,
we conclude that the Gurariil space ' is also an example of a Linden-
strauss space which is not isomorphic to any complemented subspace
of any C(X).

Bourgain [1] gave a striking example of an infinite dimensional
separable_ZL space which does not have subspaces isomorphic to c¢,;
hence, by 10.18, it is not isomorphic to any Lindenstrauss space.
Let us note that the results of Pelczyriski [3] and Kadec and Pel-
czyfiski [1] imply

11.16. If 1<p< e, then every infinite-dimensional_[% space has a
complemented subspace isomorphic to 1¥. Every infinite-dimensional
complemented subspace of a space C(X) contains isomorphically the
space c,.

Our last result on separable_ZL spaces is the following character-
isation of ¢,.

11.17. Every Banach space E isomorphic to ¢, has the following
property:
(S) If F ig a separable Banach space containing <isometrically E,
then E is complemented in F.
Conversely, if an infinite-dimensional separable Banach space E
has property (S}, then E is isomorphic to c,.
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The first part of 11.17 is due to Sobczyk [1] (cf. Veech [1] for a
simple proof). The second part is due to Zippin [3]. A particular
case of Zippin's result, assuming that E is isomorphic to a C(X)
space, was earlier obtained by Amir [2].

Now we shall be concerned with the problem of isomorphic classifi-
cation of non-separable spaces ((X). The multitude of different
non-separable spaces C(XK) and the variety of their isomorphical in-
variants is so rich that there is almost no hope of obtaining any
complete description of the isomorphic types of non-separable spaces
C(K), even for K's of cardinality continuum. The results which have
been obtained concern special classes of spaces (¢ (X) and their com-
plemented subspaces. Among general conjectures the following seems
to be very probable.

CONJECTURE. Every C(X) space is isomorphic to a space C(X)) for
some compact totally disconnected Hausdorff space K,.

The following result is due to Ditor [11].

11.18. For every compact Hausdorff space K, there exist a totally
disconnected compact Hausdorff space K,, a continuous surjection
¢: K+ K, and a -contractive positive projection P: C(Ko)oﬁzo¢°(C(K)),

where ¢°: C(K) » C(K,) is the isometric embedding defined by ¢°(f) =
fo¢ for fe C(X). Hence C(X) is Zgsometrie to a complemented subspace
of'C(Ko).

An analogous result for compact metric spaces was earlier estab-
lished by Milutin [1], cf. Pelczyrski [4].

The theorem of Milutin 11.12 can be generalised only to special
classes of non-metrizable compact spaces. Recall that the topolog-
ical weight of a topological space X is the smallest cardinal n such
that there exists a base of open subsets of X of cardinality n. We
have (Pelczyriski [4])

11.19. Let K be a compact Hausdorff space whose topological
weight <s an infinite cardinal n. If K is either a topological
group or a product _of a family of metriec spaces, then C(K) is iso-
morphic to C([0,117).

In particular, for every compact space X satisfying the assump-
tions of 11.19, the space (C(X) is isomorphic to its Cartesian square.
This property is not shared by arbitrary infinite compact Hausdorff
spaces. We have (Semadeni [1])

11.20. Let w, be the first uncountable ordinal and let [wi] be
the space of all ordinals which are < w, with the natural topology
determined by the order. Then the space C([w;]) is not isomorphic
to its Cartesian square.

Numerous mathematicians have studied injective spaces (whose def-
inition was given before 11.4). Theorem 10.15 of Nachbin, Goodner
and Kelley suggests the following

CONJECTURE. Every injective Banach space is isomorphie to a space
C(K) for some extremally disconnected compact Hausdorff space K.

It is easy to see that: (1) every complemented subspace of an in-
jective space is injective, (2) every space 1%°(S) is injective, (3)
a Banach space is injective if and only if it is complemented in
every Banach space containing it isometrically, (4) every Banach
space X is isometrically isomorphic to a subspace of the space 1*(S),
where S is the unit sphere of X*. From the above remarks it follows
that

11.21. A Banach space X is injective if and only <if it is iso-
metrically isomorphic to a complemented subspace of a space 1°(S).
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Lindenstrauss [3] has shown (cf. 11.5):

11.22. Every infinite-dimensional complemented subspace of 1%
(=1%°(S) for a countable infinite S) is isomorphic to 1®.

As a corollary from this theorem we get the following earlier
result of Grothendieck [3].

11.23. Every separable injective Banach space is finite-dimension-
al.

Theorem 11.22 cannot be generalized to the spaces 1*(5) with un-
countable g. In fact, we have

11.24 (Akilov [1]). For every measure u the space L*(u) is injec-
tive.

11.25 (Pelczyriski [3],[5], Rosenthal [5]). Let u be a sigma-
finite measure. Then the space L*(u) is isomorphic to 17(S) <if and
only if the measure u is separable (i.e. the space L' (u) is separ-
able).

Theorem 11.24 is closely related to the following
11.26. (a) An Lo space isomorphic to a dual space is injeective.
(b) An injective bidual space is isomorphic to an L*™(u).

11.26 (a) follows from 11.4 (4) because by Dixmier [1] every dual
Banach space is complemented in its second dual. 11.26 (b) is due
to Haydon [1].

Applying deep results of Solovay and Gaifman concerning complete
Boolean algebras, Rosenthal [5] has shown that

11.27. There exists an injective Banach space which is not iso-
morphiec to any dual Banach space.

Let us mention that Isbell and Semadeni [1] have proved that

11.28. There exists a compact Hausdorff space K which is not ex-
tremally disconnected and is such that C(K) <s injective.

Concluding this section, let us notice that the "dual problem" to
the last conjecture is completely solved. Namely (cf. 10.16) we
have

11.29 (Kdthe [2]). For every Banach space X the following state-
ments are equivalent:

(1) X <s projective, i.e. for every pair E,F of Banach spaces,
for every linear surjection h: F+E and for every linear operator
T% X+ E, there exists a linear operator T: X+ F which lifts T, <.e.
ht=1r.

(2) X is isomorphic to a space L' (5).

The reader interested in the problems discussed in this section is
referred to Lindenstrauss and Tzafriri [1],([2], Semadeni [2], Bade
[11, Pelczyﬁski [4] and Ditor [1], Lindenstrauss [2],[4], Rosenthal
[9], and to the references in the above mentioned books and papers,
see also "Added in proof”.

§12. The isomorphic structure of the spaces P ().

The starting point for the discussion of this section is (B], Chap.
XII. We shall discuss the following question:

I. Given 1s5p, <p,<«. What are the Banach spaces E which are

simultaneously isomorphic to a subspace of P! and to a subspace of
Fzz?
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One can ask more generally:

I1I. Which Banach spaces xy are isomorphic to subspaces of a given
space LP(u)?

One of the basic results in this direction is theorem 3.2 of this
survey, which can be restated as follows:

12.1 A_Banach space E is (isometric) isomorphic to a subspace of
a space P (u) iff E is locally (isometrically) isomorphically rep-
resentable in 1P.

We shall restrict our discussion to the case where 1 <p<» and F
is a separable Banach space. Since every separable subspace of the
space LP(p) is isometrically isomorphic to a subspace of LP, in the
sequel we shall study isomorphic properties of the spaces Lb
turns out that the case 2<p< « is much simpler than that of 1 sp < 2.
The following concepts will be useful in our discussion.

Definition. Let 1s£p< . We shall say that a subspace E of the
space LP is a standard image of 1P if there exist isomorphisms

T: Zl;n:oE and U: Lpo;toLp such that, for nzm (a,m=1,2,...), the

intersections of the supports of the functions UT(ep) and UT(ep)
have measure zero. Here e, (for n=1,2,...) denotes the nth unit
vector in the space 1

A subspace E of the space P will be called stable if it is closed
in the topology of the convergence in measure, i.e. for every
sequence (f,) of elements of E, the condition

lim [ Fat8) [/ 1+ F5(8) DAt = 0 implies lim Ifnlp =
n
It is easy to see that

12.2. (a) Every sequence of functions in IP whieh have pair-wise
disjoint supports spans a standard image of 1

(b) Every standard image of 1P is complemented in LP.

Much deeper, especially for 1<p< 2, is_the next result, which
shows that the property of subspaces of P of being stable does not
depend on the location of the subspace in the space.

12.3. Let 1£p<» and p# 2. Then, for every infinite-dimensional
subspace E of the space LP, the following statements are equivalent:

(1) E is stable.
(2) ©No subspace of E is a standard image of 1P,
(3) No subspace of E is isomorphic to 1P,

Moreover, if p> 1, conditions (1)-(3) are equivalent to those
stated below:

(4) There exists a q€ [1,p) and a constant Cq such that

(*) Hfﬂp < Hqu < Cqﬂfup for f € E.

(5) For every q€ [1,p) there is a Cq such that (*) holds.

The last theorem, for p> 2, is due to Kadec and Pelczyfiski [1],

and for 12p< 2, is due to Rosenthal [7]. The following result of
Kadec and Pelczyrski [1] is an immediate corollary of 12.3.

12.4. Let E be an infinite-dimensional subspace of a space LF
with 2< p< . Then E is stable if and only if E is isomorphic to a
Hilbert space.

Suppose that 2<p<® and E is a subspace of LP which is isomorphic
to a Hilbert space. Then, by 12.4 and by the condition 12.3 (5) with
q =2, the orthogonal (with respect to the L? inner product) projec-
tion of L¥ onto E is continuous as an operator from IP into L
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Hence, by 12.3 (2) and 12.2 (b), we get
12.5. Let 2<p< ® and let E be a subspace of LP. Then:

(a i1f E is isomorphic to a Hilbert space, then E is complemented
in L¥;

(b) <f E is not isomorphic to any Hilbert space, then E contains
a complemented subspace isomorphic to 1¥.

The next result is due to Johnson and 0Odell [1].

12.6. Suppose that E is a subspace of a space P with 2< p < .
Then E is isomorphie to a subspace of the space 1P if and only if no
subspace of E is isomorphic to a Hilbert space.

The assumption of 12.6 that p> 2 is essential. For each p with
1£p<2, there is a subspace E of 1P such that E is not isomorphic
to any subspace of 7P and no infinite dimensional subspace of F is
stable (Johnson and Odell [1]).

Now we shall discuss the situation for 1<p< 2. In this case
there are many isomorphically different stable subspaces of the
space L. The crucial fact is the following theorem, which goes
back to P. Levy [1]; however, it was stated in the Banach space lan-
guage much later (by Kadec [4] for 19, and by Bretagnolle, Dacunha-
Castelle and Krivine [1] and Lindenstrauss and Pelczyriski [1] in the
general case).

12.7. If 1$p<q$2; then the space IP contains a subspace Eq
isometrically isomorphie to LY.

The proof of 12.7 employs a probabilistic technique. 1Its idea is
the following:

1. For every q with 1< g £2, there exists a random variable ( =
measurable functiom) Eq: R+ R which has the characteristic function

gq(s) = JReXPCEq(t)-is)dt = exp(-|2|9)

and is such that, for each p<q,g4€ tP(R). By LP(R") we denote here
tge space LY (A), where X is the n-dimensional Lebesgue measure for
2. Let &q1,...,£qn be independent random variables each of the
same distribution as £, for instance let £, € LP (™) be defined by
qu(tl,tz,...,tn)= Eq(gj). Assume that ¢,,...,c¢, are real numbers

n n . .
such that j§1|ej|q= 1, and let n= jélcquj. Since the random vari-

ables £49,...,84gn are independent and have the same distribution and
hence the same characteristic functions as gq, we have

nooa n
Ae) =Y e .8) =3 exp(-|sc.|D)
=1 J 79 J=1 d

n ~
= exp(-[s]? ] 1e;|D) = exo(-ls|?) = € (o).
2
Hence n has the same distribution as Eq and therefore

n n
(*) “ ¢, .||=uu=u I if 19 =1
jzl itpilp = 1Mlp = ME4Mp 1 jzl|GJ| ’
for every p with 1<p<gq.
3. By (*), the linear operator 7T: Zi-*Lp(Rn) defined by
_ n
T(eyse--rcn) = ngﬂpl..élcquj is an isometric embedding. Hence A

J
is locally representable in 1P, Applying 12.1 we complete the proof.

By Banach [B], p. 124, Theorem 10, and the fact that the space 1!
is not reflexive, it follows that if 1<p< ¢ < 2, then 7P is not iso-
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morphic to any subspace of 9. Hence, by 12.3, the subspaces Eq of
12.7 are stable.
Theorem 12.7 can be generalized as follows (Maurey [1]):

12.8. Let 1<p<£q< 2. Then, for every measure u, there exists a
measure Vv such that the_space LVWw) s isometrically isomorphic to a
subspace of the space LF (v).

Rogenthal [7] has discovered another property of stable subspaces
of LP, which can be called the extrapolation property.

12.9. If 1sp<», p#2, and E is a stable subspace of the space
Lp, then there exist an isomorphism U of IP onto itself ang an €>0
such that U(E) is a closed stable subspace of the space L , i.e.
there is a C> 0 such that Hfﬂpé Hfﬂp+€§ Clflip for every f€E.

Combining 12.9 with the result of Kadec and Pelczyriski [1] showing
that

12.10. Every non-reflexive subspace of L' contains a standard
image of 1!, we obtain the following:

12.11 (Rosenthal [71). Every reflexive subspace of the space L*
is stable, hence isomorphic to a subspace of a space L¥ for some
p>1.

The results of Chap. XII of [B] and Orlicz [2], Satz 2 combined
with 12.3, 12.4 and 12.7 yield an answer to question (I) stated at
the beginning of this section and to the question in [B) on p. 124.
We have

12.12. Let E be an infinite—-dimensional Banagh space and let
1$p<q<w. E is isomorphic to a subspace of LP and to a subspace
of L9 if and only if E is isomorphic to a subspgee of LMIn(q.2)" rp
particular, if q< 2, then dimZLpg dimZng dimZZq, and if p#% 2< q,

then dimZLp'is incomparable with dimZLq and with dimZZq.
The fact that, for 2<p< g, the linear dimensions of L? and 19 are

incomparable has_been established first by Paley [1]. The incompar-
ability of dimZLp and dimZLq for ¢>2>p is due to Orlicz [2]. For

1<p<w, p# 2, there exist the subspaces of the space P which are
isomorphic to zP but are not standard images of 7P. This is a con-
sequence of the following theorem of Rosenthal [3],[8], and Bennett,
Dor, Goodman, Johnson and Newman [1].

12.13. If either 1<p<w, p# 2, then there exists a non-complem-
ented subspace of 1P which is isomorphic to the whole space.

It is not known whether every subspace of 1! which is isomorphic
to 1! is complemented in the whole space.

By 12.7 and the fact that, for p# ¢ no subspace of 1P is isomorph-
iec to 19, it follows that the assumption p>2 in 12.5 (b) is indis-
pensable. The following result is related to 12.5 (a):

12.14. (@) Let 1<p< 2 and let E be an infinite-dimensional sub-
space of the space LP. If E is isomorphic to the Hilbert space,
then E gontains an infinite-dimensional subspace which is complement-
ed in L*.

(b) If 1<p<e, pz2, then there exists a non-complemented sub-
space of LP which s isomorphic to a Hilbert space.

Part (a) is due to Pelczyriski and Rosenthal [1], and part (b) - to
Rosenthal [8] for 1s<p<4/3 and to Bennett, Dor, Goodman, Johnson
and Newman for all p with 1sp< 2.

In connection with the table in [B], p. 154 (property (15)) let us
observe (cf. Pelczyriski [3] and 5.2) that
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12.15. If 1<$p<w, p# 2, then there exists an infinite-dimension-
al closed linear subspace of 1Y whieh is not isomorphic to the whole
space.

The following theorem of Johnson and Zippin [1] gives a descrip-
tion of subspaces with the approximation property of the spaces P.

12.16. If E is a subspace of a space 1P with 1< p< », and E has
the approximation property, then E is isomorphic to a complemented
subspace of a product space (G x G, X “‘)Zp’ where Gp's are finite-

dimensional subspaces of the space 1P,
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CHAPTER VI

§13. The topological structure of linear metric spaces.

The content of [B], Rem. XI, §4 was a catalyst for intensive
investigations of the topological structure of linear metric spaces
and their subsets. These investigations have led to the following
theorem.

13.1. ANDERSON-KADEC THEOREM. Every infinite-dimensional, separ-
able, locally convex complete linear metric space is homeomorphic to
the Hilbert space L2.

This result fully answers one of the questions raised in [B], Rem.
XI, 84, p. 151 and disproves the statement that the space s is not
homeomorphic to any Banach space ([B], Rem. IV, §1, p. 143). Theor=-
em 13.1 is a product of combined efforts of Kadec [11],[12], Ander-
son [1] and Bessaga and Pelczyriski [5],[6]. For alternative or
modified proofs see Bessaga and Pelczyriski [7] and Anderson and Bing
[1]. Earlier partial results can be found in papers by Mazur [1],
Kadec [6],([7],[8],[9]1,[10], Kadec and Levin [1], Klee [1], Bessdga
[11.

In the proofs of 13.1 and other results on homeomorphisms of
linear metric spaces three techniques are employed:

A. KXadec's coordinate approach. The homeomorphism between spaces
X and Y is established by setting into correspondence the points
x€ X and y € Y which have the same "coordinates". The "coordinates"
are defined in metric terms with respect to suitably chosen uniform-
ly convex norms (see the text after 1.9 for the definition) of the
spaces.

B. The decomposition method, which consists in representing the
spaces in question as infinite products, and performing on the pro-
ducts suitable "“algebraic computations" originated by Borsuk [1]
(cf£. [B], Chap. XI, §7, Theorems 6-8). For the purpose of stating
some results, we recall the definition of topological factors. Let
X and Y be topological spaces. Y is said to be a factor of X
(written Y|X) if there is a space W such that X is homeomorphic to
¥Yx W. A typical result obtained with the use of the decomposition
method is the following criterion, due to Bessaga and Pelczyriski
[51,[6]:

13.2. Let X and H be a Banach space and an infinite-dimensional
Hilbert space, respectively, both of the same topological weight.
Then H|X implies that X is homeomorphic to H.

Many applications of 13.2 depend on the following result of Bartle
and Graves [1] (see also Michael [1],[2],(3] for a simple proof and
generalizations).

13.3. Let X be a Banach space. If Y is either a closed linear
subspace or a quotient space of X, then Y|X.

Notice that -both 13.2 and 13.3 are valid under the assumption that
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X is merely a locally convex complete linear metric space.

Also the next result due to Toruriczyk [3],[4],([5], and some of its
generalizations give rise to applications of the decomposition
method.

13.4. If X is a Banach space and A is an absolute retract for
metric spaces which can be topologically embedded as a closed subset
of X, then A[(XxXx ...)Zz. If H is an infinite-dimensional Hilbert

space and A ig¢ a complete absolute retract for metric spaces and the
topological weight of A is less than or equal to that of H, then A|H.

C. The absorption technique, which gives an abstract framework
for establishing homeomorphisms between certain pairs (X,E) and
(Y,F) consisting of metric spaces and their subsets, when X and Y
are already known to be homeomorphic. (The pairs (X,E) and (Y,F)
are said to be homeomorphic, in symbols (X,E) ~ (Y,F), if there is a
homeomorphism %# of X onto Y which carries E onto F, and hence
carries X\E onto X\F). A particular model designed for identifying
concrete spaces homeomorphic to R* can briefly be described as fol-
lows. Consider the Hilbert cube g¢= [-1,1]® and its pseudo-interior
P=(-1,1)°, which is obviously homeomorphic to EF*. It turns out
that every subset Ac g which is such that (Q,4) ~ (§,9\P) can be
characterized by certain property involving extensions and approxim=-
ations of maps and related to Anderson's [2] theory of Z-sets,
called cap (for compact absorption property). Hence, in order to
show that a metric space E is homeomorphic to R® it is enough to
represent £ as a subset of a space X homeomorphic to § so that the
complement X\E has cap. For applying this technique it is conveni-
ent to have many models for the Hilbert cube. An important role in
this respect is played by the following classical theorem, due to
Keller [1],

13.5. Every infinite-dimensional compact convex subset of the
Hilbert space 1*® is homeomorphic to the Hilbert cube,

and the remark of Klee [4]

13.6. Every compact convex subset of any locally convex linear
metric space is affinely embeddable into 12%.

For more details concerning the model presented here .and other
models of the absorption technique see papers by Anderson [4],
Bessaga and Pelczyriski [8],[7]1,[9], Toruriczyk [2] and the book by
Bessaga and Pelczyriski [10}, Chapters IV, Vv, VI, VIII. The most
general axiomatic setting for "absorption" with miscellaneous
applications is presented by Toruriczyk [2] and Geoghegan and Summer-
hill [1].

During the years 1966-1977 several authors attempted to extend the
Kadec-Anderson theorem to Banach spaces of an arbitrary topological
weight; for the information see Bessaga and Pelczyriski [1], Chap.
VII, and also Toruriczyk [5], Terry [1]. The final solution has been
obtained only recently by Toruriczyk [6] who proved

13.7. Let X be a complete metric space which is an absolute
retract for metric spaces and let R=wX, the density character of X.
Then X is homeomorphic to the Hilbert space 1, (R} if and only if the
following two conditions are satisfied:

(a) Xx 1, is homeomorphic to X,

(b) every closed subset A of X with wA<R Z¢ a Z-set, i.e. for
every compact K< X the identity embedding of K into X is the uniform
limit of a sequence of continuous maps of K into X\A.

In particular,

13.8. Every locally convex complete metric linear space is homeo~
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morphie to a Hilbert space.

Detailed proofs and other characterizations of Hilbert spaces and
Hilbert space manifolds can be found in Toruriczyk [6].

It is natural to ask if in the Anderson-Kadec Theorem 13.1 the
assumption of local convexity is essential. This problem is open
and only very special non-locally convex spaces are known to be
homeomorphic to 7,. For instance (Bessaga and Pelczyriski [9]):

13.9. The space S ([B], Introduction, §7, p. 6) is homeomorphic
to 1®. More generally, if X is a separable complete metric space
which has at least two different points, then the space My of all
Borel measurable maps f:[0,1]1 +X with the topology of convergence in
(the Lebesgue) measure is homeomorphic to 1%,

More examples are presented in Bessaga and Pelczyriski [10], Chap.
VI.

It is known that a non-complete normed linear space cannot be
homeomorphic to any Banach space. This easily follows from the
theorem of Mazur and Sternbach [1] that every Gg linear subspace of
a Banach space must be closed. There are at least R; topologically
different separable normed linear spaces which can be distinguished
by their absolute Borel types (Klee [5]}, and Mazur - unpublished).
Henderson and Pelczyriski have proved that even among sigma-compact
normed linear spaces there are at least ¥; topologically different
(cf. Bessaga and Pelczyriski [10], Chapter VIII, §5).

It is not known whether every normed linear space is homeomorphic
to an inner product space.

Using suitable absorption models, one can prove (Bessaga and -
Pelczyfiski [8] and [10], Chap. VIII, §5, Torusiczyk [2])

13.10. If X is an infinite-dimensional normed linear space which
is a countable union of its finite-dimensional compact subsets, then
X is homeomorphic to the subspace L R of R® consisting of all
‘sequences having at most finitely many non-zero coordinates. If X
18 a sigma—-compact normed linear space containing an infinite-dimen-—
sional compact convex subset, then X is homeomorphie to the pseudo-
boundary Q\P of the Hilbert cube.

For more details on topological classification of non-complete
linear metric spaces the reader is referred to Bessaga and Pelczyn-
ski [10], Chap. VIII and the references therein.

Another interesting problem is to find which subsets of a given
infinite-dimensional Banach space are homeomorphic to the whole
space. The situation is completely different from that in the
finite-dimensional case. For instance, we have

13.11. Let X be an infinite-dimensional Banach space. Then the
following kinds of subsets X are homeomorphic to the whole space:

(i) spheres,

(ii) arbitrary closed convex bodies (=closed convex sets with non
empty interior), in particular: closed balls, closed half-spaces,
strips between two half-spaces and so on,

(iii) the sets X\A, where A is sigma-compact.

This result for the space 1? and several other special spaces has
been obtained by Klee [3],[6]. The general case can be reduced to
that of 12? by factoring from X a separable space, homeomorphic to 12,
and by applying some additional constructions, cf. Bessaga and
Pelczyriski [10], Chap. VI.

The investigations of topological structure of linear metric spaces
resulted in active development of the theory of infinite-dimensional
manifolds. If E is a linear metric space, then by a topological man-
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ifold modelled on E (briefly: an E-manifold) we mean a metrizable
topological space M which has an open cover by sets homeomorphic to
open subsets of E. In the same manner one defines manifolds model-
led on the Hilbert cube.

A fundamental theorem on topological classification of manifolds
with a fixed model EF, an infinite-dimensional linear metric space
satisfying certain conditions, is due to Henderson (see Henderson
[1],[2] and Henderson and Schori[1]). For simplicity we state this
theorem in the case of Hilbert spaces.

13.12. Let H be an infinite-dimensional Hilbert space. Then
every connected H-manifold is homeomorphic to an open subset of H.
H-manifolds M, and M, are homeomorphic <if and only if they are of
the same homotopy type, i.e. there are continuous maps f: M, +M, and
g:s M, > M, such that the compositions gf and fg are homotopic to the
identities idM1 and isz, respectively.

For analogous results on infinite-dimensional differential mani-
folds, see Burghelea and Kuiper [1], Eells and Elworthy [1],
Elworthy [1], Moulis [1].

The systematic theory of manifolds modelled on the Hilbert cube
has been developed by Chapman [2],[3],[4],([5] and is closely related
to the simple homotopy theory of polyhedra (Chapman [5],[6], cf.
Appendix to Cohen [1]) and has some points in common with Borsuk's
shape theory (Chapman [1]). Chapman (7] is an excellent source of
information.

We conclude this section with some comments concerning the class-
ification of Banach spaces with respect to uniform homeomorphisms.
Banach spaces X and Y are uniformly homeomorphic if there exists a
homeomorphism f:X > ¥ such that both f and f-! are uniformly contin-
uous. onto

There are non isomorphic but uniformly homeomorphic Banach spaces
(Aharoni and Lindenstrauss [1]). However, Enflo [1] has proved that
a Banach space which is uniformly homeomorphic to a Hilbert space is
already isomorphic to the Hilbert space (cf. 9.13 here).

Combining the results of Lindenstrauss [10] and Enflo [5] we get

13.13._ If 1Sp<qs», then, for arbitrary measures u and v, the
spaces LY (u) and_L* (v) are not uniformly homeomorphic, except the
case where dim LY (u) = dim L™ (v) < o,

To state the next result (due to Lindenstrauss [10]) we recall that
a closed subspace S of a metric space M is said to be a uniform
retract of M if there is a uniformly continuous map r: M~ S such that
r(x) =x for x€ S.

13.14. If a linear subspace Y of a Banach space X is a uniform
retract of X and x(Y) is complemented in Y**, then Y is complemented
in X. . . . :

Observe that if Y is reflexive or, more generally, conjugate to a
Banach space, then x(Y) is complemented in Y** (cf. Dixmier [1]).

On the other hand, we have (see Lindenstrauss [10])

13.15. Let K be a compact metric space. Then every isometric
image of C(X) in an arbitrary metric space M is a uniform retract of

Combining 13.14 and 13.15 with the result of Grothendieck [3] (cf.
Pelczyriski [3]) that no separable infinite-dimensional conjugate
Banach space is complemented in a ((X), we get

13.16. If X is an infinite compact metric space, then the space
C(K) is not uniformly homeomorphic to any conjugate Banach space.

Enflo [6] has shown that
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13.17. No subset of a Hilbert space is uniformly homeomorphic to
the space C.

In "Added in proof" we present Aharoni's and Ribe's contributions
to the classification of Banach spaces with respect to uniform
homeomorphisms.

Uniform homeomorphisms of locally convex complete metric spaces
have been studied by Mankiewicz [1},([2], cf. also Bessaga [1], §11.
In particular, Mankiewicz [2] has proved that

13.18. If X is one of the spaces 1%,s8,1> xs and Y is a locally
convex linear metric space whieh is uniformly homeomorphic to X,
then Y i1s isomorphic to X.

From 13.18 it immediately follows that s is not uniformly homeo-
morphic to I, (a more general fact is proved in Bessaga [1], p. 282).

§14., Added in proof.

Ad §2. The following basic fact in the isomorphic theory of
Banach spaces, due to H. P. Rosenthal, is related to the discussion
in §9 Chap. IX and to Example 2 in §3 of this survey.

14.1. Let (xp) be a bounded sequence in a Banach space. Then
(xn) contains a subsequence equivalent to the standard vector basis
of 1 iff (xn) has a subsequence whose no subsequence is a weak
Cauchy sequence.

For the proof (for real Banach spaces) see Rosenthal [11]; Dor [1]
has adjusted Rosenthal's proof to cover the complex spaces. For
related but more delicate results the reader is referred to the
excellent survey by Rosenthal [12] and to the papers: Odell and
Rosenthal [1] and Bourgain, Fremlin and Talagrand [1].

For further information on WCG spaces and renorming problems the
reader is referred to the lecture notes by Diestel [1] and to the
book by Diestel and Uhl [1].

Ad §3. Theorems 13.7 and 13.8 generalize to the case of arbitrary
p€ (1,°). We have

14.2 (Krivine [2]). Let 1< p< »., Then P is locally represent-
able in a Banach space X i1ff LP is locally a-representable in X for
some a2 1.

For an alternative proof of 14.2 see Rosenthal [10].
Using 14.2, Maurey and Pisier [3] have established

14.3. Let X be a Banach space, let pxy (resp. qy) be the supremum
(resp. infimum) of p€ [1,»] such that there is a positive C= C(q,X) <
®© with the property that, for every finite sequence (xj) of elements

! q\1/q
grj(t)xj“dt < C(gﬂxjﬂ )

!
(resp. z er(t)mj“dt 2 C(;“xj“q)i/q)’

where (rj) are the Rademacher functions.

Then 1PX gnd 19X are locally representable in X.

Observe that 1<py<2 and »2gy2z 2. (The right-hand side inequal-
ities follow from Dvoretsky's Theorem.) In the limit case py=1
(resp. gy = ») Theorem 14.3 yields 13.8 equivalence (i) and (iv)
(resp. 13.7).

Entirely different criterion of local representability of 1! was
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discovered by Milman and Wolfson [1].

14.4. Let X be an infinite-dimensional Banach space with the
property that there is a C< o such that for every n=1,2,... there is
an n-dimensional subspace, say Ep, of X with d(En,1%) <C/n. Then 11!
is locally representable in X.

Ad §4. R. C. James [14] improved 4.3 by constructing a non-
reflexive Banach space of type 2, i.e. satisfying 13.8 (iv) with
q=2.

The reader interested in the subject discussed in §4 is referred
to the books and notes: Lindenstrauss and Tzafriri [1], volume II,
Maurey and Schwartz [1] (various exposés by Maurey, Maurey and
Pisier, and Pisier), Diestel [1], and to the papers: Figiel [6],[7],
[8], and Pisier [2].

Ad §5. 14.5 (Szankowski (4]). The space of all bounded linear
operators from 1l* into itself fails to have the approximation
property.

Ad §8. The following result, due to Maurey and Rosenthal [1], is
related to the question whether every infinite-dimensional Banach
space contains an infinite-dimensional subspace with an uncondition-
al basis.

14.6. There exists a Banach space which contains a weakly con-
vergent to zero sequence of vectors of norm one sueh that no infin-
ite subsequence of the sequence forms an unconditional basis for the
subspace which it spans.

Ad §9. The paper by Enflo, Lindenstrauss and Pisier [1], contains
an example of a Banach space X which is not isomorphic to a Hilbert
space but which has a subspace, say Y, such that both Y and X/Y are
isometrically isomorphic to 1? (cf. also Kalton and Peck [1]).

Ad §810 and 11. We recommend to the reader the surveys: Rosen-
thal [9],[12]. The reader might also consult -the book by Diestel
and Uhl [1].

Most of the recent works on ((X) spaces concern non-separable (C(X)
spaces. The reader is referred to Alspach and Benyamini [1],
Argyros and Negropontis [1], Benyamini [2], Dashiell [1], Dashiell
and Lindenstrauss [1], Ditor and Haydon [1], Etcheberry [1], Hagler
[11,([2], Haydon [1],[2},[31,([4], Gulko and Oskin [1], Kislyakov [1],
Talagrand [1], Wolfe [1]. The separable C(X) spaces are studied in
the papers: Alspach [1], Benyamini [1], Billard [1], Zippin [1].

Ad §12. The reader interested in the subject should consult the
seminar notes by Maurey and Schwartz [1] and the memoir by Johnson,
Maurey, Schechtman and Tzafriri [1]. The reader is also referred to
the survey by Rosenthal [9] and to the papers: Alspach, Enflo and
Odell [1], Enflo and Rosenthal [1], Enflo and Starbird [1], Gamlen
and Gaudet [1], Stegall [1],[2].

Ad §13. The following result of Ribe [1] shows that, despite the
example of Aharoni and Lindenstrauss [1] mentioned in §13, the
classification of Banach spaces with respect to uniform homeomorph-
isms is "close" to linear topological classification.

14.7. If Banach spaces X and Y are uniformly homeomorphic, then
there is an a2 1 such that X is locally a-representable in Y and Y
is locally a-representable in X.

It is known, however (Enflo oral communication), that the spaces
L' and 7', which are obviously locally representable each into the
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other, are not uniformly homeomorphic. On the other hand, isomorph-
ically different Banach spaces might have the same "uniform dimen-
sion".

14.8 (Aharoni [1]). There is a constant X so that for every sep-
arable metric space (X,d) there is a map T: X c¢, satisfying the
condition d(x,y) £ iTx - Tyl £ Kd(x,y) for every x,y € X. Hence every
separable Banach space is uniformly homeomorphic to a bounded subset
of c,.

14.9 (Aharoni [2]). For 1<p<£2,1<g< >, IP is uniformly homeo-
morphic to a subset of 1L*, Zi.e. there is a subset Zc 1* and a homeo-
morphism f: IP + 2 such that f and F£~1 are uniformly continuous.
Moreover, L¥ is uniformly homeomorphic to a bounded subset of itself.
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