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Preface

The theory of operators, created by V. Volterra, has as its
object the study of functions defined on infinite-dimensional spaces.
This theory has penetrated several highly important areas of
mathematics in an essential way: suffice it to recall that the
theory of integral equations and the calculus of variations are
included as special cases within the main areas of the general
theory of operators. In this theory the methods of classical mathem
atics are seen to combine with modern methods in a remarkably effec
tive and quite harmonious way. The theory often makes possible
altogether unforeseen interpretations of the theorems of set theory
or topology. Thus, for example, the topological theorem on fixed
points may be translated, thanks to the theory of operators (as has
been shown by Birkhoff and Kellogg) into the classical theorem on
the existence of solutions of differential equations. There are
important parts of mathematics which cannot be understood in depth
without the help of the theory of operators. Contemporary exampl~s

are: the theory of functions of a real variable, integral equations,
the calculus of variations, etc.

This theory, therefore, well deserves, for its aesthetic value
as much as for the scope of its arguments (even ignoring its numerous
applications) the interest that it is attracting from more and more
mathematicians. The opinion of J. Hadamard, who considers the theory
of operators one of the most powerful methods of contemporary
research in mathematics, should come as no surprise.

The present book contains the basics of the algebra of operat
ors. It is devoted to the study of so-called Zinear operators,
which corresponds to that of the linear forms alx l + alx l + ••• +
anx n of algebra.

The notion of linear operator can be defined as follows. Let E
and E l be two abstract sets, each endowed with an associative addi
tion operation as well as a zero element., Let y = U(x) be a function
(operator, transformation) under which an element y of E1 corresponds
to each element x of E (in the special case where E l is the space of
real numbers, this function is also known as a funationaZ). If, for
any Xl and Xl of E, we have U(x l + Xl) = U(X l ) + U(x l ), the operator
U is said to be additive. If, in addition, E and E l are metria
spaces, that is to say that in each space the distanae between pairs
of elements is defined, one can consider aontinuous operators U.
Now operators which are both additive and continuous are called
Zinear.

In this book, I have elected, above all, to gather together
results concerning linear operators defined in general spaces of a
certain kind, principally in the so-called B-spaaes (i.e. Banaah
spaaes [trans.]), examples of which are: the space of continuous
functions, that of the pth-power-summable functions, Hilbert space,
etc.



vi S. BANACH

I also give the interpretation of the general theorems in various
mathematical areas, namely, group theory, differential equations,
integral equations, equations with infinitely many unknowns, func
tions of a real variable, summation methods, orthogonal series, etc.
It is interesting to see certain theorems giving results in such
widely varying fields. Thus, for example, the theorem on the exten
sion of an additive functional settles simultaneously the general
problem of measure, the moment problem and the question of the
existence of solutions of a system of linear equations in infinitely
many unknowns.

Along with algebraic tools, the methods are principally those of
general set theory, which in this book are to the fore in gaining,
for this theory, several new applications. Also to be found in
various chapters of this book are some new general theorems. In
particular, in the last two chapters and the appendix: no part of
the results included therein has been published before. They con
stitute an outline of the study of invariants with respect to linear
transformations (of B-spaces). In particular, Chapter XII includes
the definition and analysis of the properties of ~inear dimension,
which in these spaces plays a rele analogous to that of dimension in
the usual sense in euclidean spaces.

Results and problems, which, for want of space, have not been
considered, are discussed briefly in the Remarks at the end of the
book. Some further references are also to be found there. In gen
eral, except in the Introduction or, rather, its accompanying Remarks
at the end of the book, I do not indicate the origin of theorems
which either I consider too elementary or else are proved here for
the first time.

Some more recent work has appeared and continues to appear in the
periodical Studia Mathematiaa, whose primary purpose is to present
research in the area of functional analysis and its applications.

I intend to devote a second book, which will be the sequel to the
present work, to the theory of other kinds of functional operators,
using topological methods extensively.

In conclusion, I would like to express my sincere gratitude to all
those who have assisted me in my work, in undertaking the translation
of my Polish manuscript, or helping me in my labours with their
valuable advice. Most particularly, I thank H. Auerbach for his
collaboration in the writing of the Introduction and S. Mazur for his
general assistance as well as for his part in the drafting of the
final remarks.

Stefan Banach

Lw6w, July 1932
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Introduction

A. THE LEBESGUE - STIELTJES INTEGRAL

We assume the reader is familiar with measure theory and the
Lebesgue integral.

§1. Some theorems in the theory of the Lebesgue integral.

If the measurable functions xn(t) form a (uniformly) bounded
sequence and the sequence (xn(t)) converges almost everywhere in a
closed interval [a,b] to the function x(t), then

(1)
b

lim Jxn(t)dt
n-+-OO a

b
Jx (t) dt.
a

More generally, if there exists a summable function ~(t) ~ 0 such
that IXn (t) I :;; ~ (t) for n=1 ,2, •.• , the limit function is also summ
able and (1) is still satisfied.

If the functions xn(t) are summable in [a,b] and form a non
decreasing sequence which converges to the function x(t), then (1)
holds, when the function x(t) is summable, and

b
lim Jxn(t)dt = +00
n-+-OO a

otherwise.
If the sequence (xn (t)) of pth -power summable functions (p ~ 1)

converges almost everywhere to the function x(t) and if

b
Jlxn(t)IPdt < K for n=1,2, .•• ,
a

the function x(t) is also pth-power summable.

§2. Some inequalities for pth_power summable functions.

The class of functions which are pth-power summable (p> 1) in
[a,b] will be denoted by LP. To the number p, there corresponds
the number q, connected with p by the equation p + q = 1, and known as
the aonjugate exponent of p. For p=2, we have equally q=2.

If x(t)E:LP and y(t)E:Lq, the function x(t)y(t) is summable and
its integral obeys the inequality

IfxYdtl ~ (flxIPdt)~ (fIYlqdt)~
a a a

In particular, we therefore have for p = 2:

IfxYdtl :;; (fX2dt)'.(fy2dt)'.
a a a
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If the functions x(t) and y(t) belong to LP, so does the function
x (t) + y (t) and we have:

bib 1 b 1

(f Ix + yIPdtl ~ (f 1x \Pdtl + (f 1y \Pdt l
a a a

These inequalities are analogues of the following arithmetic
inequalities:

1 1

I ra .b·1 ~ (r Ia·1 p)P. ( rlb.1 q)Ci ,
i=l 'l. 'l. i=l 'l. i=l 'l.

1 1 1ct la i + bi IPl ~ ct la i IPl + Ct1bi \pl,

of which the first yields, for P = 2, the well-known Schwarz
inequality:

I ra.b·1 ~ (r a·.)!.rr b'.)!.
i=l 'l. 'l. i=l 'l. \=1 'l.

For every pth_ power summable function (p €: 1) and every E> 0 there
exists a continuous function ~(t) such that

b
flx-~IP<E.
a

§3. Asymptotic convergence.

The sequence (xn(t)) of measurable functions defined on some set is
said to be asymptotiaaZZy aonvergent (or aonvergent in measure) to
the function x (t) defined on the same set, if for each E> 0

limm({t:lx (t)-x(t)l>d) =0,
n.... n

where m(A) stands for the (Lebesgue) measure of the set A.
A sequence (xn(t)) which is asymptotically convergent to the

function x(t) always has a subsequence which converges pointwise to
this function almost everywhere.

For a sequence (xn(t)) to be asymptotically convergent, it is
necessary and sufficient that, for each E> 0,

limm({t:jx.(t)-xk(t)l>d) = O.
i.k.... 'l.

§4. Mean convergence.

A sequence (xn(t)) of pth-pow.er.summable functions (p€: 1) in [a,b]
is said to be pth - power mean aonvergent to the pth - power summable
function x(t) if

b
lim f Ix n (t) - x (t) 1Pdt = o.
n-+oo a

A necessary and sufficient condition for such a function x(t) to
exist is that

b
lim flxi(t)-xk(t)IPdt O.

i,k-+-oo a
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The function x(t) is then uniquely defined in [a,b], up to a set of
measure zero.

A sequence of functions which converges in mean to a function x(t)
is also asymptotically convergent to this function and therefore
(c.f. §3) has a subsequence which converges pointwise to the same
function almost everywhere.

§5. The Stieltjes Integral.

Let x(t) be a continuous function and a(t) a function of bounded
variation in [a,b]. By taking a partition of the interval [a,b] into
subintervals, using the numbers

a = to < t l < t 2 < ••• < t n =b

and choosing an arbitrary number 6i in each of these subintervals, we
can, by analogy with the definition of the Riemann integral, form the
sum

n
S= LX(6.)[a(t.) -a(t

i
_1)]

i=l 1. 1.

One shows that for every sequence of subdivisions, for which the
length of the largest subinterval tends to 0, the sums S converge to
a limit which is the same for all such sequences, this limit is
denoted by

b
Jx(t)da(t)
a

and is called a Stieltjes integral.
This integral has the following properties:

b
Jx (t)da(t)
a

a
-!x(t)da(t) ,

b

b a
Jx(t)da(t) + Jx(t)da(t)
a b

a
Jx(t)da(t) ,
a

b
J[Xl (t) + x 2 (t) ]da(t)
a

b b
JX l (t)da(t) + JX

2
(t)da(t).

a a

The first mean value theorem here takes the form of the inequality

Ifx(t)da(t) I :> MV,
a

where M denotes the supremum of the absolute value Ix(t) I and V the
total variation of the function a(t) in [a,b].

If the function a(t) is absolutely continuous, the Stieltjes integ-
ral can be expressed as a Lebesgue integral as follows:

b b
!x(t)da(t) = !x(t)a' (t)dt.
a a

If ct(t) is an increasing function (Le. a(t') < ct(t") whenever
a~t'<t":;;b) and if, for each number sE [a(a),a(b)], one puts

IH s) = sup ( {t: s Ii: a it) }) ,
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b a.(b)
(2) Ix (t) da (t) = I x [13 (s) ] ds •

a a. (a)

Proof. We have, by definition of l3(s):

(3) 13 [a(t)] = t for a ::; t :> b.

Since l3(s) is increasing, by hypothesis, and takes all values in
the interval [a,b] where, by (3), a=l3[a(a)] and b=l3[a(b)], it is a
continuous function. It follows that the function x[l3(s)] is contin
uous as well.

Consider a subdivision 0 of [a,b] given by the numbers a = to < t 1 <
< t n = b and put a(t i ) = 8i for i=1 ,2, ... ,n. We have

8i
I. = I x[l3(s)]ds = (e. - e. 1) x(e~),

1- 8. 1- 1-- 1-
1--1

where 8i = l3(si) and 8i _
1

:> 8i ::> 8i · Clearly 13(8i _1) ::> l3(si) = 8i :> 13(8i )·

By (3) we have 13(8
i

_
1

) = l3[a(t
i
_

1
)] = t i _

1
and similarly 13(8 i ) = t i .

Consequently

so that

whence

(4)
a.(b) n n

I x[S(s)]ds = LI. = L x(8~) [a(t.) - alt. 1)]'
a. (a) £=1 1- i=1 1- 1- 1--

Now, since this last sum tends to I~x(t)da(t) when the maximum

length of the intervals of the subdivision 0 tends to 0, the equality
(4) yields (2), q.e.d.

This established, we now allow a(t) to be any function of bounded
variation. Such a function a(t) can always be written as a differ
ence a 1 (t) - a 2 (t) of two increasing functions a 1 (t) and a 2 (t) i
denoting as before the corresponding functions by 13 1 (s) and 13 2 (s),
we obtain

b b b a1 (b) a 2 (b)
Ix(t)da(t) =fx(t)da 1 (t)-Ix(t)da 2 (t) =I x[13

1
(s)]ds-I x[13 2 (s)]ds.

a a a a 2 (a) a 2 (a)

If the functions xn(t) are continuous and uniformly bounded and if
the sequence (xn(t») converges everywhere (pointwiser to a continuous
function x(t), we have, for every function a(t) of bounded variation

because

and

b
lim IXn(t)da(t)
n+oo a

a1 (b)
limf x n [13

1
(s)]ds

n+co a
1

(a)

a2 (b)
limf x n [13

2
(s)]ds

n+co a
2

(a)

b
Ix (t) da (t) ,
a

a 1 (b)

f xlI3 1 (s)]ds,
a 2 (a)

a 2 (b)
I x[13 2 (s)]ds.
a

2
(a)
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§6. Lebesgue's theorem.

Let us note the following theorem, due to H. Lebesgue (Annales de
Toulouse 1909).

For a sequenae (xn(t)) of summable funations over [0,1] to satisfy

1
lim fa(t)xn(t)dt = 0
n"'co 0

for every bounded measurable funation a(t) on [0,1], it is neaessary
and suffiaient that the following three aonditions be simultaneously
satisfied:

1° the sequenae (f~lxn(tlldt) is bounded,

2° for every € > 0 there exists an n> 0 suah that for every subset
H of [0,1] of measure <n, the inequality If~n(t)dtl ~ € holds
for n=1,2, •.. ,

u
3° lim fxn(t)dt = 0 for every o~ u~ 1.

n"'CO 0

We shall become acquainted with other theorems of this kind later
in the book.

B. (B)-MEASURABLE SETS AND OPERATORS
IN METRIC SPACES.

§7. Metric spaces

A non-empty set E is called a metria spaae or D-space when to each
ordered pair (x,y) of its elements there corresponds a number d(x,y)
satisfying the conditions:

1) d (x ,x) 0, d (x ,y) > 0 when x ., y,

2) d(x,y) d(y,x),

3) d(x,z) ~ d(x,y) + d(y,z).

The function d is called a metria and the number d(x,y) is called
the distanae between the points (elements) x,y. A sequence of
points (x n ) is said to be aonvergent, when

(5) lim d(xp'xq ) = 0;
p,q"'co

the sequence (x n ) is said to be aonvergent to the point xo' and we
write lim xn = xo' when

n"'co

(6) lim d(xn,x o) = o.
n"'CO

The point X o is then known as the limit of the sequence (x n ).

Remark. Sequences which are aonvergent in this sense are more
usually known as Cauahy sequences. [Trans.]

It is easy to see that (6) implies (5), since we always have

d(xp'xq ) ::; d(xp'x o) + d(xo'xq ).
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Consequently, a sequence convergent to a point is convergent for
this reason; of course, the converse is not always true.

A metric space with the property that every convergent sequence in
it converges to some point is said to be aomplete.

A metric space with the property that every (infinite) sequence of
its points has a subsequence convergent to some point is said to be
aompaat.

The euclidean spaces constitute examples of complete metric spaces.
We shall now describe some other important examples.

1. The set S of measurable funations in the interval [0,1]. For
each ordered pair (x,y) of elements of this set, put

1- J Ix(t) - y(t) I
d(x,y) - 1 + !x(t) _ y(t) I dt.

o
It is easily verified that conditions 1) - 3) above are satisfied.

In fact, it is clear that conditions 1) and 2) are satisfied, (we do
not distinguish between functions which only differ on a set of
measure zero) and to see that condition 3) also holds, it is enough
to remark that for every pair of real numbers a,b one has:

la+bl laJ + Ibl
1+la+bl~ +Ial +Ibl

Thus "metrised", the set S therefore becomes a metric space; this
space is complete, since convergence of a sequence (xn) of its points
(to a point xo) means convergence in measure of the sequence of
functions (x n (t») (to the function x 0 (t» in [0,1].

2. The set s of all sequenaes of numbers. For each ordered pair
(x,y) of its elements, put

\ _1 I Sn - nn Id(x,y) t.
n=l 2n (1 + Il;n - nn I )

where, as in all the examples of sequence spaces, x= (sn) and
y = (nn)·

The set s then becomes a complete metric space. In fact, converg
ence of a sequence of points (xm) and its convergence to a point X o
here mean (putting Xm = (s~m» and Xo = (Sn» that for each natural
number n, each of the sequences (~~m » is convergent, and is converg
ent to~, respectively, as m tends to infinity.

3. The set M of bounded measurable funations in [0,1]. If one
puts, for each pair x,y of its elements

d(x,y) = ess suplx(t) - y(t) I,
O:;;t~l

one obtains a complete metric space. Convergence of a sequence of
points (xn) ( to a point xO' respectively) here means uniform con
vergence almost everywhere in [0,1] of the sequence of functions
(xn(t») (to the function xo(t».

4. The set m of bounded sequenaes of numbers. Putting

d(x,y) = sup l~n - nnl
l~n

one clearly obtains from m a complete metric space.

5. The set C of aontinuous funations in [0,1]. For each pair x,y
of its elements put

d(x,y) = max Ix(t) - y(t) I.
O:;;t:;;l
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sequences of numbers suah that the

Putting, for elements x,y of zP

The set C then forms a complete metric space; convergence of a
sequence of its points (xn) (to a point xo' respectively) here
becomes uniform convergence in [0,1] of the sequence of functions
(xn(t») (to the function xo(t».

6. The set c of convergent sequences of numbers. We define, for
each pair x,y of its elements, the distance d(x,y) exactly as we did
in the space m. It is then easily seen that c also forms a complete
metric space.

7. The set c(Pl of functions with continuous pth derivative in
[0,1]. Putting

d(x,y) = max Ix(t)-y(t)1 + max Ix(P)(t) -y(P)(t)l,
O~t~l o~t~l

we obtain a complete metric space. A necessary and sufficient
condition for a sequence of points (xn) to be convergent (to a point
xo' respectively) in this space is that both the sequences (xn(t»)
and (xAPl (t») of functions be uniformly convergent in [0,1] (the
first to the ~unction xo(t) and the second to the function x~Pl(t».

8. The set LP, where p~l, of pth_ power summabZe functions in
[0,1]. Putting

we see that the set LP becomes a complete metric space. For a sequ
ence (x n ) of its points to be convergent (to the point X o respec
tively) it is necessary and sufficient that the sequence of functions
(xn(t») be p th _ power mean convergent in [0,1] (to the function
X o(t».

9. The set ZP, where p~1, of

series nt l~nlP is convergent.

one obtains a complete metric space.

10. The set of anaZytia funations fez) whiah are uniformZy aontin
uous in the circle Izl~1 forms a complete metric space when one
defines the distance between two functions f(z) and g(z) as

max If(z) - g(z) I.
Izl~l

It should be noted that one can define sets of functions of n
variabZes aorresponding to exampZes 3,5,7 and 8.

§8. Sets in metric spaces.

Let E be any metric space and G an arbitrary set of elements
(points) of E.

A point X o is said to be an aacumuZation point of the set G if
there exists a sequence of points (x n ) such that X o .. x n E G for each
n and ki~ x n = x o' The set of all accumulation points of G is called

its derived set and is denoted by G'. The set

G = G U G'

is called the cZosure of the set GI the set G is said to be cZosed
when G' S G and is called perfeat when G' = G. One says that a set
G is open when its complement, i.e. the set E'G, is a closed set.
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Every open set is also called an entourage or neighbourhood of each
of its points.

Given a point X o E E and a number r o > 0, the set of all points x
such that d(x,x o) ~ r o is called a sphere and that of the points such
that d(x,x o) < r o is called an open sphere; the point X o is called
the centre and the number r o the radius of this sphere £r open
sphere respectively. A set G is said to be dense when G = E and
nowhere dense when G contains no sphere.

The space E is said to be separable if it contains a countable
dense subset. It is easy to see that every compact metric space,
i.e. a metric space such that every sequence of its points has a
convergent subsequence, cf. p. 5, is separable.

A set G is said to be of the first category or of category I if it
can be written as the union of a countable family of nowhere dense
subsets; otherwise, it is said to be of the second category or
category II. A set G is of the first category at a point X o when
there exis ts a neighbourhood V of x 0 such that the set G n V is of
the first category; if no neighbourhood of the point X o has this
property, one says that the set G is of the second category at the
point x o'

One can prove the following

THEOREM 1. If a set G in an arbitrary metric space E is of the
second category, there exists in E d sphere K such that the set G is
of the second category at each point of G n K.

For the time being, let E be a complete metric space. We shall
prove the

LEMMA. If (Kn ) is a sequence of spheres of radius r n in E such
that Kn+l l;;; Kn for n=1, 2, .•• and lim r n = 0, there exists a point lying
in all these spheres. n+oo

Proof. Let xn be the centre of the sphere Kn • By hypothesis, if
p < q we have x q E Kq S Kp , whence

(7) d(xp'xq ) ~ r p '

It follows from this that the sequence of points (x n ) is converg
ent. Putting, as E is complete, lim x n = x 0' we have for p < q, in

n+oo

view of (7), d(xp'x o) ~ d(xp,xq) + d(xq'x o) ~ rp + d(xq,x o)' whence
d(xp'x o) ~ r p ' Now, as p is arbitrary, the point X o belongs to all
the spheres Kn , q.e.d.

A simple consequence of this lemma is the

THEOREM 2. Every complete metric space E is of the second
category.

Proof. Suppose, on the contrary that

(8)

where each of the sets Gn is nowhere dense. There then exists a
sequence of spheres (Kn ) of radii (rn) with the following properties:

Kl n Gl = lZl, r l < 1 and Kn+1 S Kn , Kn+1 n Gn+1 = 0, rn+1 < n~l

By the lemma, there exists a point X o which belongs to all these
spheres. Now, as Kn n Gn = 0 for each n=1 ,2, ••• , this point cannot
belong to any Gn , which contradicts (8).

Now let E be any metric space and F an arbitrary subset of E. If
one uses the same definition of distance for elements of F as that
employed in the space E, the set F is itself a certain metric space.
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Consider a set Gr;; F. If it is, e.g., nowhere dense when regarded
as a subset of the metric space F, we say that it is nowhere dense
relative to (the set) F; only when F = E do we usually omit the words
"relative to (the set) F". The same applies to the other defini
tions introduced at the beginning of this section.

Theorem 1 implies that if the set G is of category I at each of
its points relative to F, it is of category I relative to F.
Similarly, theorem 2 implies that if the metric space E is complete
and the set F is closed, then this set is of category II relative to
itself.

Consider in an arbitrary metric space E the smallest class 23 of
subsets of this space satisfying the following conditions:

1 ) each closed set belongs to 23,

2) each countable union of sets belonging to 23 belongs to23,

3) each complement of a set belonging to !Bbelongs to !B.
The sets of the class!B are called the "B-measurable sets". A set

G is said to satisfy the Baire aondition if every non-empty perfect
set P contains a point x 0 such that at least one of the sets P n G
and P'G is of category I at the point X o relative to P.

One has the following

THEOREM 3. Every B-measurable set satisfies the Baire aondition.

§9. Mappings in metric spaces.

Let E and E1 be arbitrary non-empty sets. If to each element x E E
there corresponds a certain element of E1 one says that a mapping or
operator is defined in the set E. The element corresponding to x is
called the value of this mapping at x; the set E is known as the
domain and the set of values the aodomain or range of the mapping
concerned. In the special case where the values of the given
mapping are numbers, it is called a funational.

Now let E be a metric space and let U be a mapping with E as
domain and some metric space as codomain. The mapping U is said to
be aontinuous at the point X o if, for every sequence of points (x n )
converging to x , one has lim U(xn ) =U(x 0); the mapping U is said to

o n.->
be aontinuous in E when it is continuous at each point of this space.
If a sequence of mappings (Un) and a further mapping Uo' all defined
in E and all with codomain lying in the same metric space, are given,
the sequence of mappings is said to aonverge at the point X o to the
mapping Uo when the sequence of values (Un(x o)) converges to Uo(xo);
the sequence of mappings (Un) is aonvergent in E to the mapping Uo'
when it is convergent at each point of E. If the sequence of map
pings (Un) is convergent in E to the mapping Uo this last mapping is
called the limit of (Un) in E. Instead of saying "continuous map
ping in E", one says, briefly, "continuous mapping", when it is
understood which space is concerned; the same applies to the other
terms.

Let 'Jbe the smallest class of mappings, all having the same given
metric space E as domain and with codomains all lying in some other
metric space, which satisfies the conditions:

1) every continuous mapping belongs to 'J,
2) every limit of a convergent sequence of mappin~s belonging to

'J, belongs to 'J.
The mappings of this .class are known as "B-measurable mappings".
A mapping U with domain E and codomain also a metric space is

said to satisfy the Baire aondition if, in each non-empty perfect
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set P ~ E there exists a set G of category I relative to P such that
the mapping U restricted to the space P'G, is continuous in this
space.

We have the following

THEOREM 4. Every B-measurabZe mapping satisfies the Baire condition.
Equally, one can prove

THEOREM 5. If the mapping U defined in the space E is a Zimit of
continuous mappings, there exists in E a set G of category I such
that the mapping U is continuous at each point of the set E' G.

The following theorem establishes a relationship between the B
measurable sets and the B-measurable mappings; let E be the metric
space where they are defined and E

l
the space where they take their

values.

THEOREM 6. If the mapping U is B-measurabZe, then for every B
measurabZe set Gl !:: El' the set G of points x such that U(x) E Gl is
B-measurabZe.

set of points x

sets G arep,q,r
is B-measurable.

For natural numbers p,q,r let G be the
1 p,q,r

(U (x),U (x») ~ r' By theorems 6 and 8 the
p q "" "" ""B-measurable. Now, G = n

1
U

1
n G ,so that G

r= p= q=p p,q,r

THEOREM 10. If (U~) and (U~) are s~ences of B-measurabZe map
pings and if, for each xEE, ~e have lim d(U~(x),U~(x»)<"", the

n"'''''
functionaZ lim d(Un'(x),U"(x») is B-measurabZe.

n+oo n
Proof. For each pair of natural numbers p,q and each point x, put:

F (x) = max d(U'(x), U"(x»).
p, q p:iin:iip+q-1 n n

THEOREM 7. If the spaces E and E
l

are separabZe and the mapping U
is continuous in E, then the images of the B-measurabZe sets G~E

satisfy the Baire condition. If, further, x., x' aZTNays impZies
U(x)" U(x'), the images of the B-measurabZe sets are aZso B-measur
abZe.

The first part of the theorem follows from the fact that the con
tinuous image of a B-measurable set is always a so-called "analytic"
set and every analytic set satisfies the Baire condition. The proof
of the second part of the theorem as well as that of theorem 6, is
also to be found in Set theory by F. Hausdorff.

THEOREM 8. If the maPF?ings U' and U" are B-measurabZe, so is the
functionaZ d(U'(x),U"(x}j.

The proof follows from the fact that if the mappings U' and U" are
continuous, so is the functional d(U'(x) ,U"(x») and for each point
Yo EEl' the functional d(y,yo) =d(yo'y) is continuous in E 1 •

THEOREM 9. If (Un) is a sequence of B-measurabZe mappings, the
set of points ~here this sequence is convergent is a B-measurabZe
set.

Proof·

such that

One clearly has, for each x:

limd(U~(x),U~(x») = lim lim F (x).
n+oo p+oo q+oo p,q

It is therefore enough to show that each of the functionals Fp,q
is B-measurable. Now, by Theorem 8, each of the functionals
Fp,l(X) = d(Up(x),Up(x») is B-measurable and since one has for each
q> 1

2F (x) = F (x) + F + 1 (x) + IFp q (x) - Fp+q 1 (x) I ,p,q+1 p,q pq, , ,
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it follows by induction, again applying Theorem 8, that all the
functionals Fp,q are B-measurable.

THEOREM 11. Given a ~uenae of non-negative aontinuous funa
tionaZs (Fn ) suah that IIiii Fn (x) < 00 for eaah eZement x of a set

n ....oo

GS E of aategory II, there exists a sphere KS; E and a number N suah
that Fn (x) ;:i N for eaah x E K and eaah n=1, 2, •••

Proof. The sets G. of points x such that F (x) ~ i for n=1,2, •••
1. 00 n

are clearly closed and G S;i~lGi ; there therefore exists an index N

such that GN is of category II. Since it is a closed set, it con
tains a sphere K as required.
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CHAPTER I

Groups

§1. Definition of G-spaces.

Let a complete metric space E be given. Suppose that to each
ordered pair (x,y) of elements of the space E there corresponds a
unique element z of this space called the sum of x and y and which
we will denote' by the symbol x + y.

Suppose further that E is a group under this sum operation, i.e.
that

1 1 , (x+y) + Z = x + (y+z),

1 2 , there exists in E a zero-element e such that one has

e + x = x + e = x for every x E E,

to each element x of E there corresponds an element (which we
will denote by -x) which satisfies the equation

x + (-x) = e.
It follows easily from these axioms that:

a) there exists only one zero-element e in E,

b) one has (-x) + (x) = e for each x E E.

c) x + y = x + z implies y = z.

Suppose further that the following axioms are satisfied:

II. lim x x implies lim (-x ) = -x,
1 n~oo n n+oo n

Il 2 • lim x n x and lim y = y imply lim(x + y ) = x + y.
n+oo n+oo n n+oo n n

The complete metric spaces satisfying these axioms will be called
G-spaces.

Remark. We will write x - y instead of x + (-y) and -x + y instead
of (-x) + y.

§2. Properties of sub-groups.

Let E be a G-space. For an element x E E and a set H £ E, we will
denote by xH and Hx respectively the set of all elements y€ E such
that y = x + Z (z + x, respectively) where z € H.

Clearly, one always has the identities

and the analogous

x(H 1 UH 2 )

x(H 1 ..... H2 )

x(H 1 n H2 )

identities for

xH 1 U xH 2 ,

xH 1 ..... xH 2 ,

xH 1 nxH 2 ,

H1 x and H2 x.
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It is easily shown that if H has any of the properties closed,
open, nowhere dense, of category I, of category II or B-measurable
then the set xH also has the same properties. If z is an interior
point of H, x +z is an interior point of xH.

A non-empty set HS E is called a subgroupof E, when the conditions
x € Hand y € H imply x + y € H and -x € H. Clearly then also 8 € H.

A set is said to be aonneated when it cannot be expressed as the
union of two non-empty disjoint relatively closed subsets of itself.
If E is a connected set and H is a subset of E which is both open
and closed, one has H =E, for otherwise the set E ..... H would also be
non-empty and closed.

THEOREM 1. Every subgroup H<:=. E whiah is of aategory II and satis
fies the Baire aondition is both open and aZosed in E.

Proof. By theorem 1, p. 8, there exists an open sphere K in which
H is everywhere of category II. One can clearly assume that the
centre Yo of K belongs to H. As H satisfies the Baire condition,
the set K ..... H is of category I. Now, as Yo is an interior point of
K, the point 8 = -Yo + Yo is an interior point of (-yo)K. Hence there
exists an open sphere K1 S (-yo)K of centre 8. We have (-Yo) [K ..... H] =
(-yo)K ..... (-yo)H and as (-yo)H= H, since H is a subgroup, it follows
that (-Yo) [K ..... H] = (-yo)K ..... H2K1 ..... H, from which it follows that,
K ..... H and consequently (-Yo) [K ..... H], being of category I,K1 ..... H is also
of category I.

Moreover, for each x € K1 we have x € xK 1 , since 8 € K1 and x + 0 = x.
Consequently K1 n xK1 .. 0. Hence there exists an open sphere
K 2 <:=.K1 nxK1 of centre x. We have K 2 ..... H>;.K1 'H and K 2 ..... xH>;.xK1 ..... xH=
x [K 1 ..... H], from which it follows that the sets K

2
..... Hand K 2 ..... xH are

also of category I.
It follows from this that H n xH .. 0; hence there exists a y such

tha t y € Hand y € xH, whence -x + y € H and thus, H being a subgroup,
-x =-x + y - Y € H, hence x € H.

It is thus proved that K1SH and, consequently, that 8 is an int
erior point of H. Since for each y € H we have yH = Hand y = y + 0,
each point y of H is an interior point. H is therefore an open set.

To show that it is also aZosed, put lim y = y where y € H for each
n-+<>o n n

n=1,2,···. Now, as ~i~ (y- Yn) = 8€ K1>;.H, there exists an n such

that y-Yn€K1>;.H, whence y=y-Yn+Yn€H, q.e.d.
This theorem implies the following

THEOREM 2. If the spaae E is aonneated, every subgroup H>;. E whiah
is of aategory II and satisfies the Baire aondition aoinaides with E.

Remark. Since every B-measurable set satisfies the Baire condi
tion, theorems 1 and 2 are valid, in particular, when H is a B
measurable set.

§3. Additive and linear operators.

Let E and E1 be G-spaces and U an operator defined in E whose co
domain lies in E

1
•

The operator U is said to be additive when

U(x + y) = U(x) + U(y) for all x,y € E.

We then have U(x) = U(x + 0) = U(x) + U(0), whence

U(8) = 8,

and as 8= U(8) = U(x- x) =U(x) + U(-x), we have

U(-x) = -U(x).

A continuous additive operator is said to be Zinear.
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Remark. The word operator is more generally used than mapping in
this context.

THEOREM 3. Every additive operator that is aontinuous at one
point is a linear mapping.

Proof. Let X o be a point of continuity of the additive operator
U. Let xnE E, xE E and lim x n = x. We have lim (xn- x+ x o) = x o '

n+oo n+oo
whence lim U(x n - x + x o) = U(x o) and lim[U(xn ) - U(x) + U(x o)] = U(x o)'

n+oo n+oo
so that lim U(xn) = U(x), from which it follows that the operator in

n...co

question is also continuous at the arbitrary point x, i.e. that it
is linear.

THEOREM 4. Every B-measurable additive operator is a linear
operator.

Proof. By theorem 4, p. 10, such an operator U satisfies the
Baire condition. It is therefore continuous on a certain set H
where E ..... H is of category I. Let lim xn = 0. As the set xn [E ..... H]

n...co
E ..... xnH is of category I for each n = 1,2, , so also is the set

(E ..... H) U U xn[E ..... H] = (E ..... H) U IT (E xnH) 2 E ..... CH n nxnH),
n=l n=l n=l

which consequently, by theorem 2, p. 8, does not exhaust the space E.
There thus exists a point x such that

x E H and x E xnH for each n=1,2, •.• ,

whence (-x n + x) E H, and as lim(-xn + x) = x, it follows that
n"'co

lim U(-x n + x) = U(x), so that lim[U(-x n ) + U(X)] = U(X) and finally
n+oo n+oo
lim U(x ) = 0. The operator U(X) is therefore continuous at the
n-i-OO n
point 0 of E and consequently it is linear by theorem 3, just
proved.

Remark. It follows from the nature of the argument employed in
its proof that the theorem still holds for additive operators that
satisfy the Baire condition.

THEOREM 5. If the spaae E is aonneated and (Un) is a sequenae of
linear operators, the set of points x for whiah the limit lim UnIx)

n"'co
exists is either of aategory I or is equal to all of E.

The proof follows easily from theorem 2, p. 8, as the set of
points x where the sequence of operators (Un) is convergent is B
measurable by theorem 9, p. 10; by theorem 3, p. 9, this set
therefore satisfies the Baire condition while, further, every set of
points of convergence forms a group.

§4. A theorem on the condensation of singularities.

THEOREM 6. Suppose that a aonneated spaae E and a double sequenae
of linear operators (Up q) are given, and that (x p ) is a sequenae of
points suah that the ltmit l~ Up,q(x p ) does not exist for any

p=1 ,2,···. Then the set H ~f points x suah that the limit lim Up q(x)_ q ...co ,

does not exist for any x E H, for any value of p=1 ,2, ••• , is of
aategory II and its aomplement E ..... H is of aategory I.

Proof. For each p=1,2, ••• , let Hp be the set of points of converg
ence of the sequence (Up,q). We have Hp~ E, since by hypothesis
xp € E ..... Hp . By theorem 5, p. 10, the set Hp is of category I. Hence
the same is tru~ of the set M

1
Hp , which completes the proof,

because H = E ..... pM1 Hp ' P
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CHAPTER II

General vector spaces

§1. Definition and elementary properties of vector spaces.

Suppose that a non-empty set E is given, and that to each ordered
pair (x ,y) of elements of E there corresponds an element x + y of E
(called the sum of x and y) and that for each number t and x E: E an
element tx of E (called the produat of the number t with the element
x) is defined in such a way that these operations, namely addition
and saalar multipliaation satisfy the following conditions (where
x,y and 3 denote arbitrary elements of E and a,b are numbers):

1) x + y = y + x,

2) x + (y + z) (x + y) + z,

3) x + y = x + 3 implies y = 3,

4) a(x + y) ax + ay,

5) (a + b)x ax + bx,

6) a(bx) (ab)x,

7) lox = x.

Under these hypotheses, we say that the set E constitutes a veator
or linear space. It is easy to see that there then exists exactly
one element, which we denote bye, such that x + e =x for all x E: E
and that the equality ax =bx where x"' e yields a =b; furthermore,
that the equality ax = ay where a"' 0 implies x = y.

Put, further, by definition:

-x = (-1)x and x - y = x + (-y).

Examples 1-10 of metric spaces, described on pp. 5 and 6, also
serve as examples of vector spaces, when the usual definitions of
addition and scalar multiplication are adopted.

When x"' y, we understand by the line segment joining x and y the
set of all elements of the form tx + (1 - t) Y where t is any number in
the interval [0,1].

A set Gr;;;.E is said to be aonvex, when it contains every line seg
ment joining arbitrary pairs of elements of G.

If x
l
,x

2
, ••• ,xn are elements of a vector space, the expression

n
(XIX I + (X2 X 2 + ••• + (Xnxn = L(Xixi,

i=l

where (XI'(X2' ••• '(Xn are arbitrary real numbers, is called a linear
aombination of the elements X I ,X 2 ' ••• 'xn .

§2. Extension of additive homogeneous functionals.

Let E and E
I

be two vector spaces and f a mapping in E whose co
domain lies in EI •
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The mapping f is said to be additive when for each pair of ele
ments x,y we have:

fix + y) = fix) + f(y);

it is called homogeneous when for each element x and each number t:

f(tx) = tf(x).

THEOREM 1. Suppose that there are given

1° a funationaZ p defined in E suah that for aZ Z x, Y E E

p(x+Y) ~ pix) + ply) and p(tx) = tp(x)for t~O,

and

2° an additive homogeneous funationaZ f defined in a veator sub
spaae G,= E (Le. a subset of E that is itself a vector space
with the same definitions of the basic operations) suah that
for eaah x E G

fix) ~p(x),

then there aZways exists an additive homogeneous funationaZ F
defined in E suah that

F(x) ~ pix) for each x E E and F(x) = fix) for eaah x E G.

Proof. We can assume that G., E; let X o E E ..... G. By 2°, for
x',x"E G we have:

f(x") - fix') = f(x"-x ' ) ~ p(x"-x') p[(x"+x o) + (-x'-x o)]

~ p(x"+x o) + p(-x'-x o),

whence

-p(-x'-xo) - fix') ~ p(x"+xo) - f(x").

The numbers

m = sup [-p (-x - x 0) - f (x)] and M = inf [p (x + x 0) - f (x) ]
xEG xEG

are therefore finite and m ~ M. If r o is any number such that
m ~ r 0 ~ M, we have for each x E G

(1) -p (-x - x 0) - f (x) ~ r 0 :> P (x + x 0) - f (x) •

Consider the set Go of all elements y of the form

(2) y x + tx o where x E G and t is a number.

Clearly Go is a vector space. Put

(3) g(y) = fix) + tr o '

where the element y is given by (2); as X o E E ..... G, each y E Go has a
unique representation in the form of (2) so that the functional g is
well-defined on G • We also see that g is additive and homogeneous
on G and coinciJes with f on G. We now show thato
(4) g(y) S ply) for each y E Go •

In fact, if one writes y in the form (2) it can be assumed that
t., O. Putting x/t in place of x in the inequality (1) and multiply
ing its right- or left-hand side, according as t> 0 or t < 0, by t,
one obtains tr o :> p (x + tx ) - fix) which by (3) implies the inequality
(4) • 0

This established, it now suffices to well-order the set E ..... G,
obtaining, by successive extensions of f, following the procedure
described above, a functional F satisfying the conclusion of the
theorem.
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COROLLARY. Given a funationaZ p defined in E suah that for x,yE E

p(x+ y) ::> pIx) + ply) and p(tx) = tp(x) for t<: 0,

there exists an additive homogeneous funationaZ F defined in E suah
that, for eaah x E E

F(x) ::; p(x).

In fact, consider an x 0 E E and denote by G the set of all elements
of the form tx o where t is an arbitrary number. G is then a vector
space. Putting f(tx o ) = tp(x o ) in G, we will have f(txo)::l p(tx o ) for
any t, since t <: 0 implies tp (x 0) =p (tx 0) and t < 0 implies
O=p(O):>p(xo)+p(-x o), whence p(xo)i::-p(-x o) and finally
tp (x 0) :> -tp (-x 0) =p (tx 0); the result now follows on applying theorem
1.

§3. Applications: generalisation of the notions of integral, of
measure and of limit.

We are now going to discuss several interesting applications of
theorem 1 and its corollary.

1. Let E be the set of bounded real-valued functions xIs) defined
on a circle of unit circumference where s denotes arc-length meas
ured from some fixed point, always in the same sense. With the
usual algebraic operations, E is a vector space.

Now, for each element x =x (s) of E, let us define p (x) to be the
infimum of all the numbers M(x;a1 ,a2 , ••• ,an) of the form

M(x;a ll a 2 ,··· ,an) = sup (* ~ X (s + a k »),
-""<s<"" k=l

where a 1 ,a2, ... ,an is an arbitrary finite sequence of numbers. The
functional p then satisfies all the hypotheses of the corollary. In
fact, it is plain that, firstly, one always has p(tx) = tp(x) for
t <: O.

Secondly, given two elements x=x(s) and y=y(s) of E and a number
8> 0, there exist finite sequences of numbers a 1 ,a 2 , ••• ,au and
Sl,S2""'Sv such that

(5) M(x;a 1 ,a 2 , ••• ,au )::; pIx) + 8 and M(y;Sl,S2""'Sv) :> ply) + 8.

Arranging all the numbers ai+ Sj where i=1;2, ••• ,u and j=1,2, ••• ,v
as a single sequence Y1 'Y 2 "",Yuv' in some way, one has

(6) p (x + y) ::; M(x+YIY 1 ,Y 2 ,'" 'Yuv)

and it is easily verified that

(7) M(x+Y;Y 1 'Y2""'Yuv):> M(x;a 1 ,a2 , ••• ,au ) + M(y;Sl,S2""'Sv)'

The relations (5) - (7) imply p (x + y) ::> p (x) + p (y) + 28, which
proves the number 8> 0 being arbitrary, that p (x + y) :ii p (x) + p (y) •

This established, consider therefore the functional F which exists
by the corollary.

Now, if x (s) = 1, we have p (x) = 1 and p (-x) = -1 and as F(x) :> p (-x)
and F(x) = -F(-x) ~ -p(-x), one obtains F(x) = 1. If xIs) <: 0, we have
pI-x) :> 0 and moreover F(x) = -F(-x) <: -p(-x), so that F(x) <: 0 also.

Furthermore, the functional F has the property of satisfying, for
each number so' the equality F [x (s + so) ] = F [x (s) ]. In fact, if one
puts y(s) =x(s+ so) -xIs) and ak= (k-1)so for k=1,2, ••• , one has
for each n:

ply) :> M(y;a 1 ,a2l ••• ,an) = ~_""~~~"" [x(s+nso)-x(s)],
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so that p(y):;; 0; one similarly obtains p(-y) ~o. But F(y):;; ply) and
F(y) = -F(-y) ~ -p(-y), whence F(y) = O.

Thus, using the symbol Jx(s)ds to denote the functional
HF[x(s)] + F[x(1-s)]}, one has the theorem:

To every funation xIs) of the alass E one aan assoaiate a number
Jx(s)ds in suah a way that the following aonditions (where xIs) and
y(s) are arbitrary funations of the alass E and a,b,so are numbers)
are satisfied:

1) J[ax(s) + by(s)]ds = aJx(s)ds + bJy(s)ds,

2) J x(s)ds ~ 0 when xIs) ~ 0,

3) J x(s+ so)ds = Jx(s)ds,

4) J x (1 - s) ds = Jx (s) ds,

5) J 1ds = 1.

It is easy to check that the functional Jx(s)ds, satisfying con
ditions 1) - 5), always lies between the lower and upper Riemann
integrals of the function x(s). Consequently, for every R
integrable function, this functional coincides with the integral of
the function.

For L-summable functions, the functional in question does not
always coincide with their L-integral. Nevertheless, starting with
the vector space G of such (L-summable) functions and defining the
functional fIx) in G to be the L-integral of the function xIs) E G,
theorem 1 furnishes a functional F defined in the space E such that
the functional Jx(s)ds=HF[x(s)]+F[x(1-s)]} clearly satisfies con
ditions 1) - 5) and, furthermore, coincides, for every L-summable
function, with the integral of that function.

2. Consider now the class!A(of all subsets of the circumference
of the circle in question and denote by Ao the circumference itself.
Putting, for each set A of this class, ~(A) =Jx(s)ds, where xIs) is
the characteristic function of the set A and therefore a function of
the space E discussed in 1, we obtain the theorem:

To eaah set A of the alass!A(one aan assign a number ~(A) in suah
a way that the following aonditions (where A and B are arbitrary
sets of the alass!J(l are satisfied:

1) ~(A U B) = ~(A) + ~(B) whenever AnB=(IJ,

2) ~ (A) ~ 0,

3) ~U) ~(B) if A ~ B,

4) ~ (A 0) = 1.

The functional ~(A), which satisfies conditions 1) - 4) lies
between the inner and outer Jordan measures of the set A. Con
sequently, for every J-measurable set, this functional coincides
with the measure of the set.

For arbitrary L-measurable sets, the functional in question does
not always coincide with their L-measure, but, just as before, one
can arrange things in such a way that this property also holds.

3. Let E be the set of all bounded real-valued functions xIs)
defined in [0,+00]; with the usual definitions of algebraic opera
tions, this is a vector space.

For each element x = x (s) of E, denote by p (x) the infimum of all
-- 1 n

the numbers lim _. k~l x (s + eLk), where eL1,eL Z ' ••• ,a.n is an arbitrary
8+00 n -

finite sequence of positive numbers. One easily verifies that the
functional p thus defined in the space E satisfies the hypotheses of
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a Hm xIs) +b Hm y(s),
x (s) ;;; 0,

the corollary. Denoting by the symbol ~~ xIs) the functional F,

which exists by the corollary, one therefore has the theorem:

To every funation x (s) € E one aan assoaiate a number ~!m x (s) in

suah a way that the following aonditions (where xIs) and y(s) are
arbitrary funations of E and a, band s 0 ~ 0 are numbers) are
satisfied:

1) Hm [ax (s) + by (s) 1
2) Lim x (s) i!: 0 whenever

s+oo

3) Lim x (s + so) = Lim x (s) ,
8+00 g-+<X>

4) Lim 1 = 1.s+oo
The functional ~im xIs) satisfying conditions 1) - 4) always lies

between lim xIs) and lim xIs). It consequently coincides with
~ s+oo

lim xIs) whenever this limit exists in the usual sense. Note that
s+oo

Lim here denotes a certain generalised "limit", while lim is
reserved exclusively for limit in the usual sense.

4. Let (~n) be any bounded sequence. Define the function xIs) in
(0,+00) by: xIs) =~n for n-1<s:>n, and n=1,2, ... The function xIs)
thus belongs to the set E discussed in 3. Putting k1m ~n =~1m x (s)

in the sense of 3, one has the theorem:

To eaah bounded sequenae (~n) one aan assoaiate a number ~!m ~n

in suah a way that the following aonditions (where (~n) and (nn)
are arbitrary bounded sequenaes and a and b are numbers) are
satisfied:

1) kim (a~n + bnn ) = a Hm ~n + b Hm nn'

2) k1m ~n~ 0, if ~n~ 0 for n=1,2, ... ,

3) Hm ~n+1 =k!m ~n'

4) k~ 1 = 1.

Conditions 1) - 4) imply that the functional k~ ~n thus defined

always lies between lim ~n and ~!m ~n. Consequently, for every

convergent sequence ~his functional coincides with the limit of the

sequence in the usual sense.
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CHAPTER III

F-spaces

§1. Definitions and preliminaries.

Let E be a vector space which is also a complete metric space such
that the following conditions are satisfied, where x,xn,Y are
elements of E and h,hn are numbers:

1° d(x,y) d(x- Y, 0l,

2° kim hn 0 implies ~im hnx = 0 for each x,

3° kim Xn 0 implies kim hXn = 0 for each h.
The spaces E with properties 1° - 3° will be called F-spaaes. All

the examples 1 - 10 of metric spaces, described in §7 of the Intro
duction, pp. 6,7, are, it is easy to see, also F-spaces.

Conditions 1° - 3° immediately imply the following properties of
the limit:

a) when kim X n = x and Hm Yn = Y, one has Hm (x n + Yn) = x + y.

It is enough, in fact, to remark that one always has

d(xn+Yn'x+y) =d(xn +Yn- x -y,0) ~d(xn-x+Yn-Y'Yn-Y)+d(Yn-y,0)

d(x n - x,0) + d(Yn - y,0) =d(xn,x) + d(Yn'Y)'

b) if Hm h n = h, one has Hm hnx =hx, for any x E E.

It is always true that d(hnx,hx) = d((h n - h)x,0).
We thus see that every F-spaae is at the same time a G-spaae. It

therefore follows that all the theorems of Chapter I continue to hold
when E is taken to be an F-space.

Now, observe that the (veator) F-spaaes are aonneated, since for every
x and Y of E the set of elements of the form hx + (1 - h) Y where
0:; h:; 1 is a connected set containing the elements x and y.

Given an arbitrary sphere K(see p. 8) in the F-space E, it is easy
to see that the set xK (see the definition p. 13) is also a sphere.

Let h .. O. Then the operator u(x) = hx is a continuous bijective
operator of the space E onto itself and one easily sees that closed,
open, nowhere dense, category I, category II and B-measurable sets
are transformed respectively to sets of the same type.

In particular, one has the following theorem, which follows from
theorem 2 (Chapter I, §2) and from the remark, p.14, every F-space
being connected:

THEOREM 1. If E is an F-spaae, every linear subspaae H=: E whiah
is B-measurable and of aategory II is equal to E.
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§2. Homogeneous operators.

We are now going to concern ourselves with additive operators
defined in an F-space E whose co-domains lie in another F-space E l •

For all operators of this kind, theorems 3,4,5 and 6 of Chapter I
continue to hold. Furthermore, if one defines a homogeneous opera
tor to be an operator U which satisfies U(hx) = hU(x) for all numbers
h, one has the"

THEOREM 2. Every Zinear operator is aZso homogeneous.
Proof. Suppose the operator U is linear. Then it is plain that

for each x E E and each rational number r, U (rx) = rU (x l . Now, if
(rn) is a sequence of rational numbers tending to h, we have
kim rnX = hx. The continuity of the mapping U consequently yields.

U(hx) =k!!ll U(rn x ) =Hm rnU(x) = h (x); thus the operator U is

homogeneous.

§3. Series of elements. InversioI of linear operators.

Put, for short,

Ixl = d(x,e).

checked that the following relations hold for all x

n
that Ix - i~lxi 1< E,

arbitrary,

Iy I
= Ix I·

It is easily
and y of E:

1° d (x, y) = Ix - y I,
lei = 0; x ~ e impZies Ixl > 0,

3 ° I-xl = Ix I,
4° Ixl - Iyl :> Ix+yl :> Ixl +

5° lim x n =x impZies lim IX n I
n+OO n+oo

Given a sequence (x n ) of elements of E, the series i~lxi is said

to be aonvergen~ to an element x, or that x is the sum of this

series, if lim '~1 Xi = x. We write x = '~1 Xi·n -¥JO '/-- '/--

The definition of the sum of a series further implies the
relations:

6° x = i~lxi impZies Ixl ::> i~l IXil·
In fact, for each E> 0 there exists an n such

n n
whence IxJ:> E+ li~lXil::> E+ dllxil and, E being

Ixl:>i~llxil.
7° If the series i~llxil is aonvergent, the series i~lxi aon

verges to some eZement, (i. e. has a sum).
n

put sn = i~l Xi'
One thus sees

q
If p< q, we have Isp - sql =i~+llxil:>

that lim Isp - Sq I = O. Hence the series
P-, q-¥JO

i~lxi converges to some element.

This established, we shall now prove the following theorems.

THEOREM 3. The aodomain of a Zinear operator is either of
aategory I or is equaZ to the whoZe of E

l
•
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Proof· Suppose that the codomain He;;. E1 of the linear operator U
defined in E is of the second category. We shall first show that

(1) for eaah E > 0 there exis ts a number n > 0 suah that the image
of the open sphere {x: Ix I < d under U aon tains the open sphere
{Y:lyl<nl.

To this end, suppose an E> 0 is given, and for each natural
number n denote by Gn the set of points of the form x = nx', where
Ix'i < E/2, and by Hn the image of Gn under U, Le. the set

{y:y=U(x) for some XEGn }. It follows that E=n~lGn and that

H=n~lHn'
Now, since H is assumed to be of category II, the same is true of

some Hno' Let K1 be an open sphere centre Y 1 and radius n1 contain
ed in Hno '

It is immediate that the open sphere K
2

of centre ;oY
1

and radius

...Ln is contained in H~. Indeed, Y E K 2 , Le. I Y - ...Ly1 1 < ...Ln1 ,
noll no no
implies noY E K 1 , because InoY - Y1[ = InoCy - -Y1) I:> nolY - ...LY1 1< n1;_ no no
hence there exist points Yn E: Hno such that lim Yn = noY' or, in other

. 1 - 1 _ n+"" ,
words, l~m -Yn = y, and so -Yn E H1 , whence Y E H1 •

n+OO no no
Let K 3 be an arbitrary open sphere of centre Y 3 E H1 contained in

K 2 • The set of points Y 3 - Y where Y E H1 then has every point of an
open sphere {y: lyl < Ti} as an accumulation point. Now, putting
Y3 = U(X 3) and Y = U(x) where x 3 and x belong to G1 , we have
Ix3-xl:> IX31+ Ixl<£ and U(x 3 -X)=y 3 -y. It is thus established
that the derived set of the image of the open sphere {x: Ixl < E}
contains an open sphere {y: Iy I < Til.

Now let Ei = E/ 2i for i=1 ,2,... By the above, there exists a
sequence of numbers ni> 0 such that the derived set of the image of
the open sphere {x:lxl < Ei} contains an open sphere {Y:IY[ < nil and
one can plainly assume that 1~ ni = O. We are now going to define

by induction two sequences of points (Yn) and (x n ) as follows. Put
IYI < n= n1 and let:

a) Y1 be an arbitrary point of E
t

such that Iy - Y11 < n2 and Xl a
point of E such that U(X 1 ) = Y1 and xli < Elf

n
b) Yn be an arbitrary point of E1 such that IY- k~lYkl <nn+1 and

x n a point of E such that U(X n ) = Yn and IX n I<En'
We thus have

(2) L Yn = Y
n =1

""
(3) I Ixnl <I...£..

n=l n=1 2n

By 7° the series n~lxn is convergent. Let x be the sum of this

series. By (3) and 6° we have Ix I < E and by (2): U(x) =n~lU(x n ) =

n~lYn:; y. The proposition (1) is thus proved.

Now, as, for each Y EEl we have lim hy = e and there consequently
n+""l

exists a natural number n such that I-Y I < n, one can find an x such
1 n

that U (x) = riY ' and so U (nx) = y. However, it follows from this that

H = E
1

, which is the claim of the theorem.
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Yo impLies Yo = U(x o)

THEOREM 4. If the Linear operator U maps E onto the whoLe of E
1

,

then there exists, for every sequenae of points (Yn) of E1 aonverg
ent to Yo =U(x o), a sequenae of points (x n ) of E aonvergent to X o
and suah that U(x1!) =Yn for n=1 ,2, ...

Proof. Let (En) be a sequence of positive numbers tending to O.
Since the operator U is linear, proposition (1), established in the
course of theorem 3, is valid; it follows from this that the image
of the open sphere {x: Ix I < En} contains an open sphere {y: Iy I < nn}
for each n=1,2, ...

Take a natural number m0 such that, for each m> m0' the inequality
IYm-Yol <nn holds for at least one value of n and let, for a given

m such that Ym" Yo' nm be the largest of these values. Finally, let
xm be the point defined by the conditions:

a) if m ~ m0' take xm to be an arbitrary point satisfying the
equation U(xmJ = Ym'

b) if m> mo and Ym" Yo' take xm to be an arbitrary point of the
open sphere {x: Ix- X o 1< Enm} satisfying the same equation,

c) if m> mo and Ym= Yo' put xm = xo'

The sequence (x n ) thus defined satisfies the requirements of the
theorem, as is easily verified.

THEOREM 5. If the Linear operator maps E bijeativeLy onto E1 , this
operator is biaontinuous (i.e. has a aontinuous inverse).

The proof follows immediately from theorem 4.

THEOREM 6. If a veator spaae E is an F-spaae under both the
metria d(x,y) as weLL as the metria d1(x,y), and if

lim d(xn,x) = 0 aLways impLies lim d 1 (xn,x)= 0,
n+oo n+oo

then, aonverseLy,

lim d1(xn,x) = 0 aLways impLies lim d(xn,x) = 0,
n+oo n+oo

from whiah it foLLows that the notion of Limit is the same for both
metrias.

The proof follows from theorem 5, taking E
1

to the space E with
the metric d1(x,y) and the linear operator U to be the identity
operator, Le. U(X) = x for x E E.

THEOREM 7. Every additive operator U whiah satisfies the aondi
tion

lim x n = X o and lim U(x n )
n+oo nTOO

is a Linear operator.
Proof. Introduce a new metric in E defined by

(4) d1{x',x"J = d{x',x") + d(y',y")

where x'E E,x"E E, y' = U(x'), y"= U(x"), and d is the original
metric in E or E1 as the case may be.

It is easy to see that with the metric d 1 the space E is an F
space; in particular, to check that it is complete, let (xnJ be a
sequence of points such that lim d 1 (xp,x q ) = 0; it follows from (4)

that lim d(xp'x q ) =·lim d(yp'PyqCl)= 0, so that there exist an X o and a
p,q~ p,q~

Yo such that lim d(x ,xo) = lim d(y ,Yo) = 0, and, since by hypothesis,
n+oo n n+oo n

Yo = U(x o)' we deduce from (4) that lim d 1 (xn,x o) = O.
n-+<><>

Now, for each x' and x", we have by (4), d1(x',x") <:d(x',x");
consequently lim d 1 (xn,x) = 0 implies lim d(xn,x) = 0; by theorem 6

n+oo n~
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that lim dl (xn'x) = 0, and there
n+oo

additive operator U is thus

lim d (x , x) = 0 implies, conversely,
n.-> n
fore, by (4), lim U(X n ) =U(X). The

n+oo

continuous, q.e.d.

LEMMA 1. Let U' and U" be two linear operators defined in the F
spaaes E' and E" respeatively whose ao-domains lie in the F-spaae El •

If, for eaah x, the equation U'(x) = U"(y) admits exaatly one solu
tion y = U(x), the operator U is linear.

The proof follows from theorem 7, because, as one sees immediately,
lim xn=x and lim U(X n ) =y imply y =U(x).
n.-> 0 n.-> 0 0 0

LEMMA 2. Suppose that an additive operator U and a linear opera
tor V suah that V(y) = e implies y = e are given, and that the opera
tor V[U(·)] is linear. Then the operator U is also linear.

The proof follows from lemma 1, since the equation V [U (x)] = V (y)
admits exactly one solution y = U(x) for each x.

DEFINITION. A class Clof linear operators is said to be total if
V(x) = e for each V E Cl implies that x = e.

THEOREM 8. Let U be an additive operator from E to El and let Cl
be a total alass of linear operators defined in E l • If V[U(·)] is a
linear operator for every VECl, U is also a linear operator.

Proof. Suppose that lim x n = Xo and lim Yn = Yo where Yn = U(x n ) for
n-+CO n~co

n=1 ,2, ...
For each VEClwe have lim V[U(xn )] =lim V(Yn) = V(Yo) and, since

n-+oo n-+CO
the operator V[U(·)] is linear, lim V[U(x n )] = V[U(x o)]' whence

n+OO

V[U(x o)] - V(Yo) = 0, so that V[U(x o) - Yo] = 0 and, as the class Cl is
total, U (x 0) = Yo' By theorem 7, the operator U is thus linear.

THEOREM 9. Let (Ui) and (Vi) be two sequenaes of linear operators
defined in E' and E" respeatively with ao-domains lying in an F-spaae
E. If the system of equations Ui(x) = Vi(y), where i=1,2, ••• ,
aamits exaatly one solution y =U(x) for eaah x, the operator U is
linear.

Proof. Indeed, suppose that lim x n = x o' and, for the correspond
n+oo

ing sequence (Yn)' that lim Yn =Yo' By virtue of the continuity of
n+oo

the operators (Ui) and (Vi), we then have Ui(X o) = Vi(Yo) for
i=1,2, ... , whence Yo=U(x o)' which implies, by theorem 7, that the
operator U is continuous.

§4. Continuous non-differentiable functions.

As an application, we shall now demonstrate, by an easy deduction,
from theorem 4 of Chapter I, p. 15, the existenae of a aontinuous
funation without a derivative throughout some set of positive
measure.

Let Cl denote the set of all continuous periodic functions of
period 1, and put, for each pair of functions xl(t) and x 2 (t) of Cl :

d(x l (t),x 2 (t)) = max Ixl(t) - x 2 (t) [.
O~t~l

It is easy to see that C 1 is then an F-space.
For an arbitrary number h;e 0, let

(5) y(t) = x(t+h)h-x(t) for 0::it::i1.

Let S denote the space of measurable functions (cf. 1,p. 6), which
is an F-space (cf. §1, p. 23) and suppose that y(t) E S. The
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expression (5) then defines a linear operator with domain C1 and co
domain lying in S.

Suppose that lim h n = 0 where hn " 0 and
n~oo

x(t+hn ) - x(t)
(6) Un (x) = h for 0:> t ~ 1.

n
Now, if every aontinuous funation had a derivative almost every

where, the limit of the expression (6), as n ~ 00, would exist for
almost all values of t. Consequently, for every x E: C1 the limit
lim UnIx) would exist, and would be defined in the space S, i.e. it
n~

would be a limit in measure. Putting U(x) =lim U (x), one would
n-+oo n

therefore obtain a B-measurable add~tive operator U which, by
theorem 4, Chapter I, p. 15, would be a linear operator. U is
clearly the derivative of the function x(t).

It follows from the continuity of the operator U that if
lim xn(t) = 0 uniformly, we have lim xJ(t) = 0 in measure. However,
n~ 1 (nt) n~oofor x n (t) =iisin 27T ' we have h!m Xn (t) = 0 uniformly, whereas the

sequence of derivatives (~os(~;)) does not tend to 0 in measure.

Hence there exist continuous functions with no derivative in a set
of positive measure.

§5. The continuity of solutions of partial differential
equations.

Let F(x) = 0
second order,

(7) F(x) =

be a linear partial differential equation of the
for example:

a2 x a2 x a2 x ax ax
al~ + a2aV2 + a3auav + a~au + a sav + a 6 x = 0,

where ai(i=1,2, ... ,6) are_continuous functions of the variables u
and v in a closed region G having a simple closed curve C as
frontier.

It can happen that, with certain boundary conditions, the equation
(7) always has a unique solution x(u,v) which is continuous in G and
which possess those partial derivatives that appear in (7), i.e.
those of first and second order, in the interior G of G.

Within this hy'pothesis, the boundary conditions can be quite
varied. For example, the solution may be specified on a part of the
frontier (hyperbolic or parabolic type) or the normal derivative
along C may be specified, etc.

Suppose now that, with t denoting the parameter which describes C,
the equation (7) admits, for every function ~(t) that, along with all
its derivatives up to order r, say, is continuous, a solution x(u,v)
that agrees with the function ~(t) on C.

Having stipulated this, we are going to show that

If the sequenae (~n(t») satisfies the aonditions (imposed on ~(t»)

and if lim ~n(t) = 0 and lim ~~i)(t) = 0 uniformly for i=1,2, ... ,r,
n+oo n+oo

then, if (xn(u,v») denotes the sequenae of aorresponding soluti£ns
of the equation F(x) = 0, we have; lim xn(u,v) = 0 uniformly in G and

n~oo

lim (a 2x n/au 2) = 0, lim (a 2x n/av 2) = 0, ... , eta. (i. e. for all the
n-+oo n+OO

partial derivatives appearing in (7)) uniformly in every alosed
region aontained in G.

For the proof, denote by E the set of all functions x(u,v) satis
fying (7), continuous in G and having both first-order partial
derivatives (i.e. those that appear in (7» continuous in G. Let
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(8)

(On) be a sequence of closed regions lying in G such that G = U Gk'
k=l

For each pair x(u,v) E E and y(u,v) E: E, put:

~
a~ a2x a2Yl

1 u, V'C.GkaU2" - auz +
d (x, y) = max-Ix (u, v) - y (u, v) I + L -r. . ..c-:---

u,veG k=l 2" 1+ max la2x_ftl + •••u, ve(;k au2 · au2

where in each term of the series the differences of all the partial
derivatives occurring in (7) appear.

Thus metrised, E constitutes an F-space and lim x n = x, in the sense
n~

of this metric, means that x n tends uniformly to x in 0 and that the

partial derivatives ~:~n, ... (appearing in (7)) tend uniformly to the

corresponding partial derivatives of the function x in every closed
region Ok' for k=1,2, •••

Let E1 be the set of functions sIt), where t describes C, which are
continuous along with their first r derivatives. For each pair
s (t) E: E 1 and n (t) E: E 1 , put:

r
d(s,n) = max I~(t) - n(t) I + L max Is,(i)(t) - n(i)(t) I.

tEC i=ltEC

Now denote by s = U(x) the operator defined in E which is the opera
tor of restriction to C, Le. for each function x =x(u,v) E: E, the
function ~= ~(t) is the restriction of x(u,v) to the frontier C of G.
Thus defined, the operator U is plainly additive and continuous.

Now, as the co-domain of the operator U is an F-space, the inverse
operator U-l, which exists by hypothesis, is continuous by theorem 5,
p. 26, which implies the proposition to be proved.

Remark. If we drop the hypothesis of the uniqueness of the solu
tion of equation (7), we would merely be able to conclude (by theorem
4, p. 26) that: (sn(t)) having the same meaning as before, there
exists a sequence of functions (xn(u,v)) satisfying (7), which
restrict to the functions ~n(t) on C and such that lim xn(u,v) = 0

uniformly in ° and lim :2~n = 0, .•• uniformly in ev~;; closed region
n+oo aU

contained in G.

§6. Systems of linear equations in infinitely many unknowns.

Let (aik)' i=1,2, ••• ; k=1,2, ••• , be an arbitrary array (double
sequence) of real numbers and let E

1
be an F-space whose elements are

sequences of numbers.

THEOREM 10. If for eaah sequenae y = (ni) E: E 1 the system of equa
tions

'f aOkSk = no for i=1 ,2, ... ,
k=l 1- 1-

aLways has a unique soLution (sk), there exist Linear funationaLs
sk=fk(Y) for k=1,2, ••• , defined in E 1 suah that

co

k~laikfk(Y) =Tli for every y E: E 1 and i=1 ,2, •••

Proof. Denote by E the set of all sequences x = (~k) which satisfy
the conditions

a) the series k!laiksk .is aonvergent for eaah i=1 ,2, ... ,

b) the sequenae (ni) = (k~laiksk) beLongs to E1 •



30 S. BANACH

For each pair X' = (~') and x" = (~") of elements of
k k

di(x',x") = ;~~(lk~laik(~k- ~k) I),
do (x' ,x") = distance between the sequences (kI 1aik~k)
in E

l
and define the distance d(x',x") in E by means

00 1 di(X',x")
d( - ',-") - I'~~ -L~ d ,,,.

i=021.1+ i(x,x)

E, put:

(

00 It)
and k~laik~k

of the formula

Observe that

(9) For every k=1 ,2, ••• , if ~±~ x n = e where x n = (~~n») E E, we have

lim ~ (n)= o.
n~oo k

In fact, by the uniqueness of the solutions of the system of
equations (8) the k th column contains at least one term aik" O.
Suppose therefore that

(10) a'k"O fork=1,2, •••
l.k (

Since lim x n = e, we have lim di., (xn,e) = 0, whence lim ~ln)= 0,
n-+OO n+oo -1. n-+oo

because (10) gives aill" 0, and it is now easy to show by induction

that one has generally lim ~~n)= 0 for each natural number k.
n~oo

This established, the proposition (9) enables us to show that E is
a complete vector space.

To this end, suppose that the sequence (x n ), where x n = (~t»)
satisfies the condition lim (xp'xq ) = o. Consequently

lim d (xp - xq ) = 0, whenf;;;"~;(9) , lim (~~p) - ~~)!) for k=1, 2, ••• ,
~,~ p-,q-
from Which it follows that lim ~k(n) = ~k exists for each natural

n~OO

number k. Let x = (~k). It is easily checked that x E: E and that
lim di(xn,x) = 0 for each i=0,1, ••• , whence lim d(xn,x) = 0; the space
n~ n+oo
E is thus complete as claimed.

It follows from this that E is an F-space.
This established, put

y = U(x)

for every pair of sequences x = (~k) E: E and y = (ni) E E
l

which satisfy
the system of equations (8).

One sees immediately that

do(x,e) :>d(x,e),

d(y,e) denotes the metric in E
l

and

d(y,e)(11)

where it is understood that
d(x,e), that in E.

By (11), lim x n =e implies lim U(x n ) = e. The operator U is there-
n+OO n+oo

fore linear and as it maps E bijectively onto E
l

, the inverse opera-
tor U- 1 is also linear by theorem 5, p. 26. Consequently, if, for
k=1 ,2, ... , one puts ~k = fk (yl where x = rr1 (y) = (~k)' one sees that

lim Yn= e, where x n = U-1(Yn) = (~(kn»), implies that lim x n = e, hence
n+oo () n~OO

lim ~t = 0; thus the additive functionals fk are linear functionals
n~oo

in E , q.e.d.

This theorem implies, as we shall see, the following theorem:
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If the system of equations (8) has exactZy one soZution for each
sequence (ni) beZonging

1° to the space Co of sequences converging to 0,
2° to the space s,
3° to the space Z,
4 ° to the space Zp where p> 1,

there exists an array (b ki2 such that

~k = .L bkini for k=1,2, •.• ,
'Z.=1

where the sequences (~k) and (ni) satisfy the system of equations
(8), and which satisfies the respective conditions:

1° J11bkil < co for k=1,2, •.. ,

2° each row is eventuaZZy zero (i.e. there exists a sequence of
naturaZ numbers (nk) such that bki = 0 for every i> nk) ,

3° Ibki!<mk, for i=1,2, ... , for some sequence (mk)'

4 0 co Ib jP/P-1 k-
i~l ki <cofor -1,2, •..

Remark. If one assumes that the system of equations (8) has
exactly one solution for every convergent sequence (ni) (not necess
arily convergent to 0), there exists, as well as the array (bki)
satisfying 1°, a sequence (ck) such that

~k = ck ~im ni + L bkin. for k=1,2, ••.
'Z.+OO i=l 'Z.

All these theorems follow from the general theorem established at
the beginning of this section (theorem 10, p. 29) by means of a
suitable representation of the linear functionals in each particular
space (see the theorems below and on p. 40-42).

§7. The space s.

We are going to establish the general form of linear functionals
in the space s of sequences of numbers (see the Introduction §7,2,
p. 6).

THEOREM 11. Every Zinear functionaZ f defined in the space s is of
the form

N
(12) fIx) = L a .C,

i=l 'Z. 'Z.

where N is a naturaZ number depending on f.

Proof. Let x n = ( ~ln) ) where ~i(n) = 0 for i .. n and ~;n)= 1. Put

f (x n ) =an' For every sequence x = (~n)' we have x =n~l ~nxn' whence

fIx) = n~l ~nf(xn) = n~l an~n' Now, since this series is convergent for
every sequence (~n)' there exists a natural number N such that an = 0
for each n > N, whence follows the form (12) of f.

M. o. Toeplitz has proved the following theorem:
THEOREM 12. For there to exist a sequence of numbers (~k) satis

fying the system of equations (8), it is necessary and sufficient
that, for every finite sequence of numbers h 1 ,h 2 , ••• hr , the condi-

tion .~ h.;a';k = 0 where k=1 ,2, ••• impZies the equaZity '~1 hini = o.
'Z.-1 • • r 'Z.-

In particuZar, if the condition i~l hiaik =0 where k=1 ,2, •••
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implies that h = h
2

= •.• = h r = 0, the system of equations (8) has one
solution for e~ery sequence (ni).

We shall now prove the
THEOREM 13. If the system of equations (8) has exactly one solu

tion for every sequence y = (ni)' there exists, for every natural
number i, a natural number Ni such that aik = 0 for every k> Ni·

Proof. PutE;,k=fk(y) for 'faokE;,k=n. where i=1,2, •.. By
k=l 1- 1-

theorem 10, p. 29, fk is a linear functional defined in the space
of real sequences (cf. p. 61. There therefore exists, for every
natural number k, a finite sequence of numbers alk,a2k,···,aN k
such that k

Nk
(13) !k(y) = L a·kn. = E;,k

i=l 1- 1-

Moreover, the equations of the system (13) are linearly
independent.

In fact, suppose, on the contrary, that there exists a finite
r

sequence of numbers h
1

,h 2 , ••• ,hr such that L hka. k =0 where
k=l 1-

i=1,2, ••. Hence by (13) one would have
r r

(14) L hkE;,k = L hkfk (y) = 0 for every sequence y = (ni)·
k=l k=l

Putting ni=aij for some j:>r, where r is an arbitrary fixed
natural number, one immediately ascertains that, for the correspond
ing solution (E;,k) of the system of equations (8), one has: E;,J= 1 and
E;,k = 0 for every k .. j. Substituting these values in (14) yields
hj = 0; consequently, all the coefficients hk vanish, which proves
the linear independence of the equations (13).

It follows from theorem 12 that, for every sequence (E;,k), there
exists a sequence of numbers (ni) satisfying the equations (13).

The series 'f aikE;,k is consequently convergent for every sequence
k=l

(E;,k)' from which follows the existence, for each i=1,2, .•• , of an Nimeeting the requirements of the theorem.

Remark. If we drop the uniqueness hypothesis, i.e. that there
exists just one solution, the theorem ceases to be true.

Indeed, for an arbitrary sequence (nj)' there exists a power

series defining an entire function 'f E;,kzk with real coefficients E;,k
k=o

such that
00

L E;,kjk = nj for j=1,2, •.•
k=o

Thus, this system of equations has a solution for each sequence
(ni); this solution is clearly not unique, for there exists an
entire function given by a power series not identically equal to 0
such that

YE;,k jk = 0 for j=1,2, •••.
k=O
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CHAPTER IV

Normed spaces
§1. Definition of normed vector spaces and of Banach spaces.

A vector space E is said to be normed if there is a functional on
E, called a norm and denoted by Ixl or, more usually, IIxll, satisfy
ing the conditions:

1 ) II 811 = 0 and II x II > 0 if x .. 8,

2) IIx + yll S IIxli + lIyll,

3) IItxll = Jtl.llxll for every scalar t.

If one defines the distance between two elements x and y of E by
the formula

d(x,y) = IIx - yll,

one clearly obtains a metric space. If, further, it is complete,
that is, recall, whenever (xp) is a sequence such that
lim IIxp-xq ll = 0, it is said to be a space of type B, Le. a Banach

p,q-+oo
space or B-space. [trans.]

It is immediate that every B-space is also an F-space, but not
conversely: the examples of spaces given in the Introduction, p. 6,
which are all F-spaces, are also B-spaces, with the exception of the
spaces sand S.

§2. Properties of linear operators. Extension of linear
functionals.

We are first going to discuss normed spaces E, which are not nec
essarily complete.

THEOREM 1. For an additive operator U defined in a vector space
Gs;;. E to be Zinear, it is necessary and sufficient that there exists
a number M such that

(1) IIU(x) II S Mllxll for every x E G.

Proof. The condition is necessary. In fact, if no such M existed,
there would exist a sequence (x n ) such that IIU(x n ) II> Mn IIxn II where

Mn -+ +00. Putting Yn = M
n

1I1xn II • xn, we would thus have IIYn ll = ~n' whence

lim Y n = 8 and consequently lim U(Yn) = 0, which is impossible as
n-+oo n-+oo

1
IIU(Yn ) 11= Mnllxnll • IIU(xn ) II> 1.

The condition is sufficient. In fact, for any sequence (xn) SG
and x E G, lim x n = x implies limllx - xnll = 0, so that limIlU(xn ) - U(X) II

n+oo n+OO n+oo

limllU(x - xn) II Slim Mllx - xnll = 0 and finally lim U(X n ) = U(x), q.e.d.
n+oo n+oo n+co

For a given linear operator U defined in a vector space GSE, the
norm of the operator U in G, denoted by IIUIIG, is the smallest number
M satisfying condition (1). If G= E, one can write, simply, IIUII
instead of IlUIiE.
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We therefore have IIU(x) II :> IIUII G.llxll for every xE G and it is easy to
see that

term linear does not generally
is aontinuous. If it is
we say U is a aontinuous or

and

every x 0 E E, x 0'" e, there exists a linear funation
suah that

F(x) = IIx o ll and IIFII

For the proof, use the preceding theorem 2, taking
G= {hxo:h scalar} and putting f(hx o) = h.llx o ll.

In particular, this result implies the existenae in every normed
veator spaae of a aontinuous linear funational whiah is not identia
aUy zero.

THEOREM 4. Let f be an arbitrary funational defined in a set
G~ E. For there to exist a linear funational F defined in E and
satisfying the aonditions

1 0 fIx) = F(x) for x E G,

2 0 IIFII S M for some given number M > 0,

it is neaessary and suffiaient that the inequality

I Ih.f(x·)1 SM·II Ih.x·/Ii=l 1- 1- i=l 1- 1-

IIUII G = sup{IIU(x)ll:x E G,lIxll ~ n.
Remark. In modern terminology, the

imply that the operator U referred to
continuous, or, equivalently, IIUII < 00,
bounded linear operator. [Trans.]

The question arises as to whether there exists, for every normed
vector space, a (continuous or bounded) [trans.] linear functional
defined in this space which is not identically zero. The affirmative
answer results from the following theorems, the first of which is an
easy consequence of theorem 1, Chapter II, §2, p. 18.

THEOREM 2. Suppose that f is a (bounded) linear funational
defined in a veator spaae G~E. Then there exists a linear funation
al F defined in E whiah satisfies the aonditions:

F(x) = fIx) for x E G,

IIFII = IIfIiG.
it is enough to put p (x) = IIxll.llf11 G in theorem 1 ofFor the proof,

Chapter II.

THEOREM 3. For
al F defined in E

should hold, for every finite sequenae X1,X2, •• • 'X r of elements of G
and every finite sequenae h 1 ,h 2 , ••• ,hr of real numbers.

Proof. The condition is necessary. In fact, we have

!FCLhixi)1 S IIFII.IIJ1hixill,

whence, by 2°,

I I h.F (x .) I ~ M·11 I h.x ·11i=l 1- 1- i=l 1- 1-

and since, by 10, F(x i ) = f(x i ) for every xi E G, the desired inequal
ity follows.

The condition is sufficient. In fact, let H be the vector space
r

of elements of the form z = L h.x., for r any natural number, hi
i=l 1- 1-



r
Put cjl(3) =d1hif(xi).

have, by hypothesis,

Nonned Spaces

arbitrary numbers and xi E: G.
I' S

For 3 = i~l hixi = i~l hi.xi.' we

Irs , 'IL h·f(x.) - L h·f(x.) ~
i=l ~ ~ i=l ~ ~

= 0.
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an for n=1,2, ••• ,

The functional cjl is thus well-defined in H and is easily seen to be

additive there. Furthermore, Icjl(3) 1= \J1hif(Xi) I:> M.IIJ1hixill so
that IIcjlllH ~ M. The existence in E of the functional F with properties
1 0 and 2 0 is thus obtained from theorem 2, p. 34, putting f = cjl and
G = H.

In particular, if G is a sequence (x n ) of elements of E and (an)
denotes the corresponding sequence of values of the functional f,
Le. an=f(xn), n=1,2, ••• , we have the

THEOREM 5. For there to exist a linear funational' F in Eo/satisfying
the aonditions

1 0 F (x n)

and

2 0 IIFII:> M,

for some given number M> 0, a given sequenae (x n ) of elements of E
and a given sequenae (an) of real numbers, it is neaessary and
suffiaient that the inequality

I I h.a.\ ~ M·II I h.x·11
i=l ~ ~ i=l ~ ~

hold for every finite sequenae h 1 ,h 2 , ••• ,hr of real numbers.

§3. Fundamental sets and total sets.

We are now going to establish several theorems which, in the
theory of normed spaces, playa role analogous to that played by
Weierstrass' theorem on the approximation of continuous functions by
polynomials in the theory of functions of a real variable.

LEMMA. Given a veator spaae Gs=E and an element Yo of E, whose
distanae from G is d> 0, there exists a linear funational F defined
in E and satisfying the aonditions

1) F (y 0) = 1,

2) F(x) = ° for x E G,

3) IIFII = 1
d

Proof. Let H be the set of elements x of the form

(2) x = x' + ayo where a is an arbitrary real number and x' EG.

Thus defined, H is clearly a linear space and as d> 0, the repres-
entation (2) of an x E H is unique. We define the linear functional f
in H by putting fIx) = a for x of the form (2). As IIxll = IIx' + aYoll =

lal.llx
a ' + Yoll <: lal·d, it follows that If(x) 1= lal :> II~II, whence

IIfliH ~~. Moreover, if (x ) s= G and limllxn - yoll =d, then
n n+oo 1

If(x n - Yo) I = 1 ::> IIx n - yoll. IIfIlH' whence 1:> d.llfIlH' so that d ~ IIf11 w
Consequently IIfll H = ~.

We conclude from this, by virtue of theorem 2, p. 34, replacing G
by H, that there exists a linear functional F defined in E and such
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that F(x) = fIx) for xE: Band IIFII = IIfIlB= ~ (condition 3), so that, in

particular, F(x) = 0 for x E: G (condition 2) and F(yo) = 1 (condition
1), q.e.d.

THEOREM 6. For any subset G£ E and an arbitrary element Yo of E,
a neaessary and suffiaient aondition for the existenae of a sequenae
(gn) of linear aombinations of elements of G suah that h~ gn =Yo,

is that fIx) = 0 for xE: G implies f(yo) = 0, for any (bounded) linear
funational f.

Proof. The condition is necessary, since fIx) = 0, for every xE: G,
implies that f(gn) = 0 for n=1,2, ••• , whence f(lim gn) =f(yo) = O.

n~oo

The condition is also sufficient by virtue of the above lemma, if
one understands the 'G' of the lemma to denote the set of all linear
combinations of elements of the set G considered here.

A set G~E is called fundamental when the set of all linear combin
ations of elements of G is dense in E; it is called total when every
(bounded) linear functional f which vanishes on G vanishes on the
whole of E.

From theorem 6 easily follows the

THEOREM 7. For a set G~E to be fundamental, it is neaessary and
suffiaient that it be total.

A linear functional f is said to be orthogonal to an element X o,
when f(x o) = 0; it is said to be orthogonal to G, when fIx) = 0 for
every x E: G.

The lemma at the start of this section implies, for every proper
alosed linear subspaae G~E, the existenae in E of a aontinuous
linear funational, not identiaally zero and orthogonal to G.

§4. The general form of bounded linear functionals in the spaces
C,Lr,a,lr,m and in the subspaces of m.

We shall now establish the general form of the bounded linear
functionals in certain particular normed spaces.

1. The spaae C. Since the norm defined in the space M, of (ess
entially) bounded measurable functions on [0,1], coincides, for con
tinuous functions, with that of the space C, we can regard C as a
vector subspace of M.

Given a bounded linear functional f defined in C, there exists, by
theorem 2, p. 34, a linear functional F defined in M satisfying the
conditions

(1) F(x) fIx) for every x E: c,
(2) IIFII M IIflic·
Put

l';,t l';,t (u) {1 for 0:;; u:;; t,
o for t < u:> 1,

and

(3) F(l';,t) = g (t).

We shall show that g(t) is a function of bounded variation. Let
a=tO<t 1 < ... <tn=b and Ei=sign[g(ti)-g(ti_1)] for i=1,2, ... ,n.

n n n
We have '!:1Ig(tiJ-g(ti_1JI = ·!:1{g(tiJ-g(t.._1J}e:.. = F[·!:1{l;t.-l;t. }e:i]:>

7-- 1,.- v v 1,.- 7- 1,.-1
n

IIFll w II·E {l;t. - l;t. }e:d and it is easily seen that the norm of this
·~=1 1,. 1,.-1

sum is equal to 1. It follows from this, together with (2), that



(5)

(4)

Normed Spaces

variation g(t) ~ IIFII MO:iit:ii1

This established, let x(t) E C and

zn = zn (u) = J1 x(~). {!;:!: (u) - !;!.:...!. (u) }.
n n

The function zn(u) thus takes the values xl:!:) in the intervals

('r~l~~] respectively. As the function x = x (u) is continuous, we

limllx-znll=O, whence, in view of (1):
n+oo
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have

(6) lim F(zn) = F(x) = f(x).
n+oo

Moreover, (3) and (5) give

F(zn) = r~lx(;).[g(~) - g(r~l)]

so that, as x(t) E C and g(t) is a function of bounded variation,

. 11
l~m F(zn) = ox(t)dg, whence, by (6)
n+oo 1

(7) fIx) Ix (t) dg for every x (t) E: C.
o

Since, consequently,

If (x) I = Ux (t) dg I :ii var g(t) max Ix{t) I,
O:iit:ii1 O:iit:ii1

we have, in view of (4), putting IIfll = IIfllc:

varg(t)=lIfll.
OH:ii1

We have thus obtained the theorem:

Every (bounded) Zinear funationaZ defined in the spaae C is of the
form

1
f (x) = Ix (t) dg ,

o
where g(t) is a funation independent of x(t) of variation IIfli.

Conversely, given a function g(t) of bounded variation, the formula
(7) clearly defines a bounded linear functional f on C.

2. The spaae Lr where r~1. Given a bounded linear functional f
defined in the space L r , put:

f1 for O:iiu:iit,
to for t<u:ii1,

and
fll;t) = g (t).

We shall show that g(t) is an absolutely continuous function.
Indeed, let O.,02, .•. ,On be non-overlapping intervals with end

points ti and t~ where ti < ti and i=1 ,2., ... ,no Putting
Ei =sign [g (ti) - g (t i ) 1, we have

(8 ) ~ Ig (t ~) - g (t .) I = ~ {g (t ~) - g (t .) h . = f( ~{q . - !; t ) Eo )
i=l ~ ~ i=l ~ ~ ~ i=l ~ ~ ~

:ii IIf ll ·IIJ {!;f.-!;t.hill.
~=1 ~ ~
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Since the function (~ti _ ~ti)E:i takes the value E:i = ±1 in the

interval 0i and vanishes elsewhere, it follows from the hypothesis
that the intervals 0i are non-overlapping that 1

IIJ1 (~ti - ~tJE:i II = cL I°i IY,
where 10i[ denotes the length of 0 .. We therefore have, by (8),

n ~ n 1
iLlg(t~) - g(ti)1 ~ II f UCL l oi IY,

which proves the absolute continuity of g(t).
This established, put g' (t) = edt). The function edt) is integ

t
rable and, as ~o = 0, we clearly ~ave f(~t) = Ioodu)du, whence

(9) f(~t) = I~t (u)a(u)du.
o

Let c 1 ,c 2 "" ,cn be arbitrary numbers, 0 = to < t < ... < t n = 1 and
x(t) =c-i for ti-1:;; t< t i and i= 1,2, ••• ,n. It is

1
plain that

x(t) = '~lc.(~t.- ~t. ), whence, by (9),
~- ~ ~ ~-1

1

(10) fix) = Ix (t) ex.(t)dt.
o

Thus (10) holds for every step-function x(t).
If x = x (t) is now an arbitrary bounded measurable function there

exists a uniformly bounded sequence of step-functions (xn(t)j which
converges to x(t) almost everywhere. Consequently

1

lim flxn(t) - x(t) Irdt = 0,
n+oo 0

whence limllxn - xII = 0 and, in view of (10),
n+oo 1 1

fix) = lim Ixn(t)a(t)dt = Ix(t)a(t)dt.
n+oo 0 0

The equality (10) thus holds for every bounded measurable function
x(t) •

This established, consider now the case r> 1.
Put

{

Iex(t) IS-1sign ex(t), if la(t) [S-l :;; n,
x

n
(t) =

n sign ex(t), if [a(t) IS- 1 > n,

where 1+ 1= 1. We have If(x
n

) I [I
1

x (t)a(t)dtl ~ IIfll(f1lx (t) Irdt)~
r son 0 n

and as x (t)ex(t) = Ix (t) [.ja(t) I ~ Ix (t) 1.lx (t) 1
1
/(S-1), we haven n n n

fix (t) 'S/(S-1)dt :;; IIfll(/lx (t) Ir dt)l/r
o non

from which, since s/ (s-1) = r, we conclude that

nlxn(t)lrdt)1-~ :;; IIfll.

As this inequality holds for every natural number n, and as

IXn(t)/r:;; /ex(t)l rs - r = la(t)l s and, almost everywhere, lim IXn(t)[r=
8 n+oo

Ia (t) I , we obtain



Normed Spaces

1 1
(11) (!la(t)sdt)S S IIfll,

from which it follows that a(t) is an sth-power-summable function.
Hence, if x(t) is any measurable rth-power-summable function, the
product x(t)a(t) is an integrable function.

Now define the sequence (xn(t») as follows:

(12) x
n {

X(t) for Ix(t) I S n,
xn(t) = n sign x(t) for Ix(t) I > n.

0,x (t) (dt)~ and limllx - x II
n n+oo n

We then have

(13) IIx - x II = (fIX(t)
n 0

from which it follows that

I!x(tla(tldt - f(xhl I = 1{[X(tl - Xn(tlla(tldtl
1 1 1 !

S (!IX(tl - Xn(tl Irdt)r.(!la(tl ISdt)S

whence, using (13), fIx) =lim fIx ) = fx(t)a(t)dt and as
n-+OO n 0

1 1 !
If(x)! = Ilx(t)a(t)dtl S (!!a(t)!Sdtt.IIXII,

it follows, in view of (11), that we have
1 1

IIfll = (l!a(t)ISdtt.

We have thus proved the following theorem:

Every bounded linear functional f defined in the space Lr where
r> 1 is of the form

1

fIx) = Ix(t)a(t)dt
o 1

where a(t) E L
S and IIfll = (I~ la(t) ISdt}s.

We now pass to the case r = 1 • Suppose 0 S u < u + h S 1 and set

( t) - {1 / h for u S t S u + h,
x - 0 for 0 S t < u and u -f. h < t S 1 .

We have, by (10), 1 f (x) I = 1 I: x (t) a (t) dt 1 = ~ II~+\ (t) dt I and as

!f(x) IS IIfll.llxll = IIf1l.1, it follows that I~+ha(t)dtl S IIfll.h. The

function g(u) = I~a(t)dt thus satisfies a Lipschitz condition and

since g' (t) =a (t) almost everywhere, we conclude from this that

(14) la(t) 1 S IIfll almost everywhere.

If now x =x (t) is an arbitrary integrable function and the
sequence (xn(t») is defined as in (12), we have

IIx - x IIn

1
Ilx(t) - xn(t) Idt ... 0,
o

whence
1

fIx) = lim fIx ) = lim Ix (t)a(t)dt
n-+oo n n+OO 0 n

since Ixn(t)a(t) 1 S Ix(t)a(tl I. Now, as

1

Ix(t)a(tldt,
o
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of the

ess.sup!a(t) I.
O:>t:>l

I{x(t)a(t)dt!

view of (14),

IIfll

we obtain, in

1

::> flx(t) Idt.ess.suPlcdt) I,
o OH:>l

the equality

= ess.supla(t) I.
O::>t:>l

We have thus proved the following theorem:

Every bounded linear funational f defined in the spaae L
1 is

form
1

f (x) = fx (t) a (t) dt ,

where a(t) is an essentially bou:aed funation and IIfll

3. The spaae a. Let

For f a given

(16 ) C' •

sup I sn - ai,
n>r

( 15)

Putting

whence

Sn = {1 for n = i,
i 0 for n ¢ i.

x = C~~) and x' = Cs~).n 'Z- v

(bounded) linear functional on a, put

f (x n ) = Cnand f (x ' )

a = lim S , where x = (s ) E a, we thus have
n+oo n n

Ilx - ax' - nt (Sn - alxnll

r
x = ax' + lim L (s - a)xnr-+-oon=l n

and consequently

x = ax' + L (Sn - a)x n •
n=l

Hence

fIx) af(x') + L (sn - a)f(xn ),
n;l

whence, using (16),

(17) fIx) .= aC' + L (sn - a)Cn •
n=l

If x = (Sn) now stands for the sequence given by

S = {sign Cn for n ~ r,
n 0 for n > r,

r
we have IIxll = 1, a = lim Sn = 0 and f(xl = ~ ICnl, and as If(x) 1 ::>

n-+-oo- r n-l
IIfll.llxll, it follows that nh 1CnI ::> IIfli. Since the natural number

r is arbitrary, the series nf1lCni is convergent. putting

C' - 'f C = C,n;l n

we have, generally, in view of (17),

(18 ) fIx) = aC + L CnSn where a lim Sn'
n;l n-+-oo

Now let

Sn {s~gn Cn for n ::> r,
sJ.gn C for n > r.
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Then IIxll 1, a.=lim I; = sign C and
n+oo n

r
f (x ) = ICI + L IC I + L C. sign C ~ II f II

n=l 11 n=r+1 n
and since this inequality holds for every natural number r, we
obtain

Ici + L Cn ~ IIfli.
n=l

Since, moreover,

fIx) ~ [ICI + nL ICnl ]IIXII

it follows that we have the equality

(19) Ici + L Ic I = IIfli.
n=l n

Because of (18) and (19), the following theorem has thus been
proved:

Every bounded Zinear funationaZ f defined in a is of the form

and we have

41

ICI + L IC j = IIfli.
n=l n

The spaae Zr where r ~ 1. As before, let x = (I;~) where the
n 'Z.

I;~ are defined as in (15). We thus have, for any x= (1;.) E Zr,
'Z. n 00 1 'Z.

IIx - L i;.x.lI= ( L 11;.('= -+- 0,
i=l 'Z. 'Z. i=n+1 'Z. r

whence

(20) x = L I;ixi.
i=l

For a given bounded linear functional f defined in Zr, put
f(x i ) = Ci ' so that, by (20)

(21) fIx) = L i;.C .•
i=l 'Z. 'Z.

for x = (1;.) E Z1 J
'Z.

Consider now the case r = 1.
Let I;n=sign Cn and l;i=O for io'-n. We then have fIx) = Icnl ~ IIfli.

Moreover, for every sequence x = (1;.) E Zl, we have the inequality

If(X)I~('~lll;.I). s~p Ic·1 and conse~uently IIfll=s\!p IC.I.
'Z.- 'Z. 1~'Z.<00 'Z. 1~'Z.<00 'Z.

We have therefore proved the following theorem:

Every bounded Zinear funationaZ f defined in Zl is of the form

fIx) = L C.I;'J
i=l 'Z. 'Z.

where II fll = sup IC .1 •
l:>i<oo 'Z.

Let us now consider the case r> 1. Let XO = (I;i) where



42 S. BANACH

!IC.I S
-

1sign C. for i ~ n,
~~ = 'l- 'l-

'l- 0 for i > n

and ~ + ~ = 1. We then have 1 1

IIxoll = ( I IC.lrs-r)r= ( I IC.ls)r
i=l 'l- i=l 'l-

whence, because of (21), 1

flxO) = I Ic.I S ~ IIfll.( I IC.ls)r,
i=l 'l- i=l 'l-

so that
1

( I IC • IS \8 ~ II fll,
'i= 1 'l- )

and, since n is arbitrary, 1

CL ICils)S ~ IIfli.

Furthermore, for every sequence x = I~.) E ~r, we have
00 00 ~ 1001

Iflx ) I = I L ~.c·1 :: ( L 1~.lr)r.( L IC.ls)s,
i=l 'l- 'l- i=l 'l- i=l 'l-

whence we finally obtain the equality
00 1

IIfll = (i~lICiIS)B
We have thus proved the following theorem:

Every bounded ~inear funationa~ f defined in the spaae ~r, where
r > 1, is of the form

I I:" ) E ,r,
"i "fIx) = L C.~., where x

i=l 'l- 'l-

1

IIfll = ( i IC.l s)8 where 1 + 1 = 1.
i=l 'l- r s

5. The spaae m and its separab~e ~inear subspaaes. Let E be a
separable linear subspace of m, so that its elements are bounded
sequences of numbers. Endow E with the norm inherited from m, in
other words, set

and we have

II x II = sup I~ . I where x = (~. ) E E.
l~i<oo 'l- 'l-

Let (x
n
), where x

n
= C~~), be a dense sequence in E.- Consider Xl

and Xl' We are going to establish, for every E l > 0, the existence of
a natural number k l with the property that, for every pair Al and Al
of real numbers,

(22) IA1X l + AlXll ~ max IA1~~ + Al~~1.11 + E l ).
l~i~kl 'l- 'l-

Putting aside the trivial case in wh1ch Xl is a multiple of Xl' or
vice versa, suppose, on the contrary, that there exists, for every
natural number k, a pair Af and A~ such that

IA~Xl + A~X21 > max IA~~~ + A~~~I. 11 + E l )·
l~i~k 'l- 'l-

Denoting the larger of the two numbers IA~I and IA~I by mk and
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k k k kputting ~1 = A1 /m k and ~2 = A2 /m
k

, we would thus have

(23) I ~~x + ~~x21 > max 1~kF,1. + ~~s~ I· (1 + E2).
1 l<"<k 1 1- 1-k k _v_

Since 1 :;; 1~ 1 I + 1~ 2 I :;; 2 for every natural number k, the sequence

(~~) and (~2k) have convergent subsequences. In fact, there exists an

increasing sequence (k.l of natural numbers such that the sequences'
k' k' J

(~lJ) andU2 J ) converge to, say, ~1 and ~2 respectively, where

1:> 1~11 + 1~21:> 2. As k.-+-+oo as j-+-oo and, besides,
J

k' k·
liml (~x + ~ x ) - (~lJxl + ~2Jx2) 1 0,
j-+-oo 1 1 2 2

we would have, in view of (23),

1~ 1Xl + ~ 2X 2 1 ~ ~~ 1~ 1q + ~ 2Si 1. (1 + E2) ,

which is impossible because, by definition,

l~lXl + ~2X21 ~ ~~~I~lSi + ~2sil.

Having proved the existence of a natural number k 2 satisfying (22)
for every pair of numbers Al and A2' it is easy to deduce by induc
tion that, for any given sequence (En) of positive numbers, there
exists, for every n> 1, a natural number k n such that, for every
finite sequence Al,A2, ••• ,An of real numbers, one has

(24) IA 1x 1 + A2X2 + ... + AX I:> max IA1S: + A2S~ + ... + A S~I.(1+E).
n n 1:>i::ikn 1- 1- n 1- n

This established, for every natural number n, denote byx
i
', for

i=1,2, ••• ,n, the sequence
iii

(25) Sl'S'2'''''Sk ,0,0,0, .•• ;
n

so that, by (24), we have, for arbitrary numbers A
1

,A 2 , ••• ,A
n

,

(26) IAlxl + A2X2 + ... + AX I :;; IAIXf + A2X~ + ... + A x'I.(1 +'e).n n n n n
Now let f be a bounded linear functional defined in E. Then

1f(AI X l + A2 X 2 + .•. + AnX11-) I :> IIfll·1 AI X I + A2 X 2 + ••• + AnXn I' and
consequently, by (26), IAd(x1) + A~f(X2) + ••. + Anf(xn) :;;
IIfll.(1+En)·IAlxf+A2x~+ .•• +AnXftl·

Since by the definition (25) of x~ we have xi E a, by theorem 5,
p. 35, there exists a linear functi6nal fn defined in a and satisfy
ing the conditions:

fn(xi) = f(x i ) for i=1,2, ••• ,n and IIfnll :;; IIfll.(1 + En)'

In view of the general form of bounded linear functionals in the
space a, established on p. 41, and because all the terms beyond the

th .
k n of the sequences xi, for i=1,2, ••• ,n, are zero, we conclude that
there exists a finite sequence of numbers a ,a , ••• ,ank satisfying
the conditions: n 1 n 2 n

k n '
L an.s~ = fn(xi) f(x i ) for i=1,2, ••• ,n,

j=l J J
and

k n
L Ian. 1

j=l J
whence, putting
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(27)

we obtain

(28)

and
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for j > k n •

1-1---- f(x.) for i=1.2 •...• n,
+ En v

(29) L I an. I :;; II fll .
j=l J

Assume that the sequence (En) has been chosen so that kim En = o.
It then follows from (28) that lim .ElanJ'~~ = f(xi) for i=1 ,2, ..• ,n+OO J= J
and we shall show that this still holds, with the same doubly-

infinite array (an'), for every xEE.
J n

To this end put x = (~i). Since the sequence (x n ), where x n = (~i)'

is dense in E by definition, there exists, for every E> 0, an

xi = (~~) such that IIx - x.1I < E, whence
J 1-

I.Y an .~j - f(x) I· ~ IJ an '(~J' - ~;) I+ IJ Cln '~J~ - f(xi )I+ If(Xi ) - f(x) II
J=l J J=l J J=l J

and as

I y an.(~· - ~~)II < (Y lan .i).lIx - x.1I :;; IIfll.E.
j=l J J J - j=l J 1-

we have, for sufficiently large n,

I Y an.~· - f(X)1 ~ IIfll.E + E + IIfll.E = (211fll + 1)E
j=l J J

and consequently we have

(30) lim L an ~.
n+oo j=l j J

We finally show that

fIx) for every x

(31)

Indeed, if we put

lim
n+oo

IIfli.

(32) M = lim L Ian .1.
n+oo j=l J

we have, by (30), If(x)1 ~M fiupl~.i =M.llxll for every xEE, whence,
J~l J

as IIfll is the smallest number such that If(x) i :;; IIfll.llxll for every
xE:E, we conclude that IIfli :;;M, which, by virtue of (32) and (29),
yields the equality (31).

Gathering together formulae (27), (29), (30) and (31), we see
that the following theorem has been established:

Every bounded linear funational f defined in a separable veator
subspaae E of m is of the form

fIx) = lim L an'~j
n+oo j=l J

where x= (~j) and (an.) is an array of real numbers satisfying the
aonditions: J
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1° Cl.n. =0 for j > k n where (k n ) is an increasing sequence of
J

natural numbers.

2° j~llC1.njl :;; IIfli fop n=1.2 .....

3° lim '~llC1.n.1 = IIfli.
n-+-oo J - J

§5. Closed and complete sequences in the spaces C. £r, c and lr.

We are here going to apply some earlier results to various ideas
and problems associated with properties of the particular spaces
that we have just discussed.

A sequence of functions (x n (t») where x n (t) € C, 0:;; t:> 1, is said
to be closed in C when, for every £unction x(t) € C, there exists a

sequence of linear combinations (i~7C1.~nlXi(t») which converges

uniformly to x(t).
The sequence .(xn(t») is called complete in C when, for any func

1
tion g(t) of bounded variation, the conditions I xn(t)dg=O for

• 0

n=1,2, ••• imply that g(O) =g(t) =g(1) for all but at most countably
many values of t.

A sequence of functions (xn (t») where xn (t) € £r and 0 ~ t :;; 1 is
said to be closed in £r when, for every function x(t) € £r, there
exists a sequence (gn) of functions of the form

k n
gn(t) = L CI..(nlx.(t)

i=l 1.- 1.-

which converges in mean with power r to x(t), i.e. such that
1

lim f!x(t) - gn(t) ,Pdt = O.
n-+-OO 0

The sequence (xn(t») is called complete in £r when. for any
function g(t) which is bounded and measurable or which belongs to

£ s where 1 + 1 = 1, according as r = 1 or r > 1, the conditions
r s 1

fx (t)g(t)dt = 0 for n=1,2, .••
o n

imply that g(t) =0 almost everywhere.
Both notions occur in the theory of orthogonal series.
It is easy to see that a necessary and sufficient condition for a

sequence of functions to be closed in C. or in £r, is that it be
fundamental, in the sense defined in §3. p. 35, of this chapter.
Similarly, for it to be complete, it is necessary and sufficient
that it be total, in the sense defined in the same place. To see
this, it is enough to recall the general form of bounded linear
functionals in C and £P established on pp. 37-39.

Finally, theorem 7, p. 36, immediately implies that fop a sequence
of functions to be complete in C. or £r respectively. it is necessary
and sufficient that it be closed.

In a similar way, one can define the notions of closed and complete
sequences for the spaces c and Zr.

§6. Approximation of functions belonging to C and £P by linear
combinations of functions.

Theorem 6, p. 36, can also be interpreted in various particular
normed spaces. Here are two examples of this:
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1. The space C. For there to exist polynomials in the terms of
the sequence (x n (t)) where x n (t) E C. 0:;; t ~ 1. which uniformly approx
imate a given function x(t) E C arbitrarily closely, it is necessary
and sufficient that, for any function g (t) of bounded variation, the

1
conditions I1xn(t)dg=O for n=1,2, ... imply that I x(t)dg=O.

a a
2. The spaces Lr . For there to exist linear combinations of

terms of the sequence (x n (t)) where X n (t) E Lr, 0:;; t ~ 1. which approx
imate in the mean with the r th power a given function x (t) E Lr arbit
rarily closely, it is necessary and sufficient that, for any function

g (t) which is bounded and measurab le when r = 1 and which be longs to

L
S where 1+1=1 when r>1. the conditions I1g(t)x (t)dt=O for

r s 1 a n
n=1,2, ... imply that Iog(t)x(t)dt=O.

§7. The problem of moments.

We now discuss applications of theorem 5. p. 35.
The problem of moments is the name given to the problem of finding

conditions for the existence of a function f satisfying the infinite
set of equations

b
(33) If~idt = c i where i=1.2 •.•••

a
for a given sequence of functions (~i) and a given sequence of
numbers (ci)'

We give here the solution of this problem in two special cases of
normed spaces: it is obtained by means of the appropriate interpre
tation of theorem 5. p. 35, in these spaces.

such that

be a continuous
C being (cf. p. 37)

theorem 5, p. 35,

c i for i=1,2, ••• ,

I. The space C. Let xi=xi(t) where O~ t~

function. Every bounded linear functional f in
1

of the form f (x) = I x (t) dg where IIfll =var g (t) ,
a O~t:;;l

yields the following theorem:

For there to exist a function g(t) with

var g(t) ~ M
o~t~l

and satisfying the equations
1

Ix. (t) dg
a 1-

it is necessary and sufficient that, for every finite sequence of
real numbers h 1,h 2 ••••• hr • one has

I r I I r IL h.c·
1

~ M. max 1 L h.x. (t) •
i=l 1- 1- O~t~l i=l 1- 1-

II. The space Lr . For r> 1, proceeding in a similar way, one
arrives at the following theorem:

For there to exist a function a(t) where 0 ~ t ~

1

Ila(t) ISdt :;; MS where ~ + i
a

and which satisfies the equations
1

{xi(t)a(t)dt = c i where xi(t) E Lr and i=1,2, •.• ,

it is necessary and sufficient that. for every finite sequence of
real numbers h 1.h 2 ••••• hk one has
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k 1 k r 1

I L h.a·1 :;; M(I\ L h.x.(t)! dt)r
i=l ~ ~ 0 i=l ~ ~

For r=1. the funations x.(t) must be integrable and the funation
a(t) whiah is sought is (e§sentially) bounded and suah that

ess supla(t) I :;; M.
0$t$1

The neaessary and suffiaient aondition is then the following:

I
k Ilk I
L h.a·

1

~ M.II Lh.x.(t) dt.
i=l ~ ~ 0 i=l~ ~

§8. Condition for the existence of solutions of certain systems
of equations in infinitely many unknowns.

We consider another problem, namely, given an array (aik) and a
sequence of numbers (ai), we seek to establish conditions for the
existence of a sequence of numbers (zi) satisfying the infinite set
of equations

(34) L a,kzk = a. where i=1,2, ••.
k=l ~ ~

We here give, again with the help of theorem 5, p. 35, the solu
tion of this problem in two particular spaces:

III. The spaae a. Let xi = (aik) and

(35) lim aik = 0 for i=1,2, .•.
k-+oo

Since every bounded linear functional in the space a is of the
form

where

fIx) e lim ~i + L e.~.
i+oo i=l ~ ~

x = (~i) and IIfll = lei + L le·1
i=l ~

(cf. p. 40), theorem 5, p. 35, yields, in view of (35), the follow
ing result:

For there to exist a sequenae of numbers (zk) whiah satisfy the

equations (34) as well as the aondition k~ll zk I ~ M. it is neaessary

and suffiaient that. for every finite sequenae of numbers h 1 .h 2 •••••

hr. one has the inequality

I f h.a·1 ~ M supl f h.a·kl·
i=l ~ ~ k~l i=l ~ ~

IV. The spaae ll. Let xi = (aik) and assume that k~llaikl < 00 for

i=1,2, ••• Since every bounded linear functional in II is of the

form fIx) = i~l zi~i where x = (~i) and IIfll = ~~~I zi I (ci. p.41),

theorem 5, p. 35 immediately yields the following result:

For there to exist a bounded sequenae (13k) whiah satisfies the
equations (34) as well as the aondition supl 13k I :;; M. it is neaessary

and suffiaient that. for every finite se~~~nae of real numbers
h 1 .h 2 ••••• hr • one has the inequality

I f h.a·1 :;; M. Y I f h.a· k I·
i=l ~ ~ k=l i=l ~ ~





that, for every x E E,
limJlU(x n ) II ~ IIU(x) II.
n+oo
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CHAPTER V

Banach spaces

§1. Linear operators in Banach spaces

We are here going to establish several general theorems concerning
Banach or B-spaces E, already defined at the beginning of Chapter IV,
in which their property of being aomplete as well as just normed
plays an essential role.

THEOREM 1. Let F be a B-measurable mapping and U an additive
operator, both defined in the Banaah spaae E, suah that IIF(x) II;;; IIU (x) II
for every x E E. Then U is a bounded linear operator.

Proof. By theorem 4 of the introduction, p. 10, there exists a set
H!: E of category I such that F is continuous in E -.... H. Consequently ,
for X o E E-.... H there exists an r> 0 and an M> 0 such that

(1) IIx - X o II implies IIU(x) II :> IIF(x) II :; M for every x E E -.... H.

Since the set {x:xE E-....H and IIx-xolI:;;~} is of category II, so even

more so, is the set G={x'+x:xEE-....H, IIx-xolI:>~ and IIx'II<~}'

Hence, in particular, G is non-empty and contains an element of the
rformx'+xlEE-""H where xlEE-""H. As IIxl-xoll:>2' we have

IIx' + Xl - xoll :> r, whence, by (1), IIU(x') II :> IIU(x' + Xl) II + lIU(x l ) II :> 2M.

Thus U is (norm) -bounded in the sphere {x: II x II :> ~}, and, therefore, of

course, in every sphere. It then follows, by theorem 1 (Chapter IV,
§2), p. 33, that the mapping U is continuous and thus U is a bounded
linear operator.

THEOREM 2. Let U be an adaitive operator suah
whenever (x n ) is a sequenae in E with lim xn = x,

n+oo

Then U is a bounded linear operator.

Proof. The set Gn = {x E E: IIU(x) II :> n} is closed for n = 1,2, ..• and
00

since E = n~l Gn , at least one of the sets Gn contains a sphere in
which U is bounded, whence, as in the previous theorem, it follows
that U is continuous.

THEOREM 3. Let (Un) be a sequenae of bounded linear operators
defined in E. Suppose that (Un (x») is aonvergent for all x in a set
G whiah is dense in a sphere K and that the sequenae (II Un II) is
bounded. Then the sequenae (Un (x») is aonvergent at every point x E E.

Proof. For a given X o E K, there exists, by hypothesis, a sequence
(x n ) such that x n E G for n=1 ,2, ... and lim x n =x o '

n+oo

Now, for any three natural numbers n,p and q, we have:

Wp(x o) - Uq(X o) II ::;; IIUp(xo - xn) II + IIUq(xn - x o) II + IIUp(xn) - Uq(xn) II

and so
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lim IIU (x o ) - U (x o ) II ~ 2Mllx o - x II where M = limllU II,
p,q+oo p q n n+oo p

whence, as lim IIx o - x II = 0, we have lim IIUp (x o) - Uq(x o) II 0,
n+oo n p,q+oo

which implies the convergence of the sequence (Un(x o)).
Now let x be an arbitrary element of E. Letting x~ denote the

centre of the sphere K, there exists an E> ° such that x~ + EX E K,
and so the sequence (Un(x~ + EX)) is convergent. The convergence of
(Un (x)) now follows from that of the sequences (Un(x~)) and
(Un (xb + EX)).

THEOREM 4. Let (Un) be a sequenae of bounded linear operators
defined in E. Then the set H = {x E E:l~mIlUn (x) 11< oo} is either ofn+OO

aategory I or is the whole of E.

The proof follows from theorem 1 (Chapter III, §1) p. 23, seeing
that H is a B- measurable linear subspace of E.

THEOREM 5. If the sequenae (Un) of bounded linear operators in E

is suah that limll Un (x) II < 00 for every x E E, the sequenae of norms
n+OO

(IIUn ll) is bounded.

Proof. By theorem 11 of the introduction, p. 11, there exists a
sphere K=E and a number N such that II Un (x) II ;:i N for every x E K and
n=1,2, ... Letting r denote the radius of the sphere K, one easily

Ndeduces that II Un II ~ 2; for every n=1,2, .•.

THEOREM 6. If the sequenae (x n ) ~E is suah that limlf(xn ) 1< 00

n+oo
for every bounded linear funational f defined in E, the sequenae of
norms (lIxn ll) is bounded.

Proof. The set E* of all bounded linear functionals on E, with
the norm previously defined for such functionals, constitutes a
Banach space. We define a sequence (F n ) of functionals on E*, by
putting Fn (f) = f (x n ) for each f E E*. The hypothesis that
lim If(x n ) 1< 00 consequently implies that lim IFnlf) 1< 00 for every
n+OO n+oo

f E E*. By virtue of the preceding theorem 5, there thus exists a
number N such that IFn(fll ~N.llfll for every n=1,2, ... Moreover, as
xn E E, for every n=1, 2, ••. there exists, by theorem 3 (Chapter IV,
§2) p. 33, a bounded linear functional fn defined in E such that

Ifn (xn) I = IIx n ll and IIfn ll = 1. We therefore have IIxnll = I fn (x n ) I =
Fn(fn ) I ;:i N.llfnll =N, for every n, q.e.d.

§2. The principle of condensation of singularities.

THEOREM 7. Let (Upq) be a double sequenae of bounded linear
operators in E suah that .

(2) lim IIU II = 00 for every p=1,2, .•.
q+oo pq

Then there exists a set G~ E, independent of p, of aategory II in E,
suah that, for every x E G:

(3) lim IIU (x) II = 00 for every p=1 ,2, .••
q+oo pq

Proof. The set Hp = {x E E: limll Upq (x) II < oo} cannot be the whole of
q+oo

E, because, by theorem 5 above, the hypothesis (2) would then be

contradicted. It follows from this, by theorem 4 above, that Hp and

consequen·tly· the set H =P~lHp of all the elements x E E for which the

condition (3) fails to hold, is of category I in E. All that
remains, therefore, is to take G= E ..... Ji •
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Remark. The codomains Ep of the operators Upq can vary with
p=1,2, •.• , whereas, for a given p, they must plainly be assumed to
be the same for all values of q, since, in the statement of theorem
7, we make use of the notion of convergence of the sequences
(Upq(x») as q tends to 00.

The above theorem 7, together with theorem 6 (Chapter I, §4) p. 15,
constitute, in the setting of functional analysis, what is known as
the principZe of condensation of singuZarities. We are going to
elaborate on this with the help of some examples.

Let (gk(t») be an orthonormal sequence of square-integrable func
tions in [0,1]. For any given integrable function x(t) in [0,1],
the series

1

L gk(t)fgk(s)x(s)ds
k=l 0

is called the deveZopment of the function x(t) with respect to the
sequence (gk(t»), provided, of course, that the integrals

1
fogk(s)x(s)ds exist for each k=1,2, .••

The following theorems are available, for example in the spaces C
and L 1 :

In C. Let (t p ) be a given sequence of points in [0,1]. Then the
existence, for each p=1,2, .•. , of a continuous function xp(t) whose
deveZopment is divergent or unbounded, respectiveZy, at the point t p
impZies the existence of a continuous function x(t) whose deveZop
ment is divergent or unbounded, respectiveZy, at each point t p , for
p=1, 2, ...

The proof follows from theorem 7, p. 50, together with theorem 6
(Chapter 1, §4), p. 15, if one puts

q 1

Upq (x) = L gk (t p ) fgk (s)x (s) ds,
k=l 0

considering the Upq as linear functionals on C.

In L1
• Let ([~p,Sp]) be a given sequence of sub-intervaZs of

[0,1]. Then the existence, for each p=1,2, ..• , of an integrabZe
function xp(t) whose deveZopment has the property that

___ Sp n 1

lim f Isn(t) Idt = 00 where snIt) = L gk(t)fgk(t)x (t)dt
n~oo ~ k=l 0 P

impZies thePexistence of an integrabZe function x(t) whose deveZop
ment has the same property in aZZ the intervaZs [~p,Sp] simuZtan
eousZy.

The proof follows from theorem 7, p. 50, if one puts
q 1

Upq(X) = L gk(t)fgk(t)x(t)dt for ~p ~ t ~ Sp
k=l 0

and regards the Upq as linear operators defined in the space of
integrable functions on [0,1] whose codomains lie, respectively, in
the spaces of integrable functions in [~p,Sp]'

Remark. In particular, if the set of points {(~p,Sp):p=1,2,••• }
form a dense subset of the unit square [0,1] x [0,1], the property in
question holds for x(t) in every subinterval [~,S] of [0,1].

Based on this remark, one can prove, for the case of Fourier series,
the existence of an integrabZe function x(t) such that

limlfSsn(t)dtl =00 for every subintervaZ [~,S] of [0,2'JT].
n~co a
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§3. Compactness in Banach spaces.

LEMMA. Given a closed linear subspace G which is a proper subset
of a linear subspace D£ E, there exists, for every number E> 0, an
x 0 E: D such that

"x o" = 1 and IIx o - xII ~ 1 - E for every x E: G.

Proo f. Let x' E: D"'" G, let d be the distance of x' from G and let n
be an arbitrary positive number. Then there exists a y' E: G such

x' y'
that d:;; "x' - y'" 1~ d + n· Put Xo = IIx':y' II' For every x E G one then

has "x 0 - x II = II x' _y , " • II x' - y' - "x' -y' II . x II and since x E: G and y' E G

imply that y' + "x'-y'"x E G, this yields IIx o - xII ~ IIx,~y,"·d ~ d~n'
whence, putting n =d. 1:

E
, we have IIx o - xII ~ 1 - E.

Plainly, we also have "xo" = "x'-y'lI/l1x'-y'" = 1 and Xo E D, because
x' E: D and y' E G~ D •

THEOREM 8. If every norm-bounded subset of E is relatively
compact, then there is a finite set X l 'X 2 ' ••• , Xr of elements of E
such that every x E: E may be written in the form

(4)

where a l ,a 2 , ••• ,ar are numbers (which depend on x).

Proof. Let Xl be an arbitrary element of E such that IIx l " 1 and,
for r> 1, let xr +l be any element of E such that

(5) "xr +1 " = 1 and "xr +1 - xi" ~ t for i=1,2, ••• ,r

For each r ~ 1, let Gr denote the set of all elements x E: E which
are of the form (4) and put D = E. If the theorem is false, we

.should have Gr ., D for every r, whence, according to the above lemma,
with G = Gr , E = ! and Xo = xr +l, we deduce the existence, for each
natural number r, of an Xr+l E: E satisfying (5), i.e. of an infinite
sequence (xr) such that "xrll = 1 and "xp - Xq" ~ ! for p" q.

This sequence could not have any convergent sUbsequences, and
would therefore constitute a non-relatively compact set, although it
is norm-bounded. One would thus have a contradiction with the
hypothesis of the theorem.

§4. A property of the spaces Lr,c and lr.

By applying theorem 4 (Chapter I, §3) p. 15, to the general form
of the bounded linear functionals defined in these spaces, one
obtains the following theorems:

For Lr , where r~1. If edt), O:;;t:;;1, is a measurable function

and if the integral f~x(t)a(t)dt exists for every function x(t) E Lr ,

then f~la(t)lr/(r-l)dt<oo, for r>1, and a(t) is an (essentially)

bounded function for r = 1.
Proof. Put, for n a natural number

(t) - {a (t) for Ia (t) I ~ n,
an - n sign edt) for a(t) > n.

We then have Ix(t)a.(t) I ~ Ix(t)an(t) I, so that, as liman(t) = a(t),
n~OO

1 1

lim fx(t)an(tldt = fx(t)a(t)dt.
n+co 0 0

Since, for n=1,2, ••• , an(t) is a bounded function, the expression
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M.supl ~.I .
i~l ~

f1x(t)an(t)dt defines a bounded linear functional in Lr , and so, by
o

theorem 4, p. 15, f1x(t)a(t)dt is also a bounded linear functional.
o

Consequently, by the theorem on the general form of bounded linear

functionals in the spaces Lr where r> 1 (see p. 39), there exists a
- r / (r- 1 ) f 1 - f 1function a(t) E L such that ox(t)a(t)dt = ox(t)a(t)dt for

every x(t) E Lr . Thus, putting

xli) = {01 for 0 ~ t ~ to'
for to < t :> 1,

f
t - t

we have /a(t)dt = f oOa(t)dt for every 0:> to·~ 1, and so a(t) =a(t)

aZmost everywhere.

One argues in an analogous way for r = 1 •

For a. If the series i~lai~i is aonvergent for every aonvergent

sequenae x = (~.). then .'f
1

1a.1 < 00.
~ ~= ~ n

Proof. Since,· for each n=1,2, ... , .I: a.~. is a bounded linear
n ~=1 ~ ~oo

functional in the space a and lim .I: a.~. = .I: a.~., one deduces from
00 n+oo ~=1 ~ ~ ~=1 ~ ~

theorem 4, p. 15, that i~lai~i is also a bounded linear functional

on a. Consequently there exists an M> 0 such that

I I a·~·1 ~ M~lIxll
i=l ~ ~

Therefore, putting

~ = {sign ai for i ~ nand ai ~ 0,
i 0 for i > n or ai = 0,

n 00

we obtain d1 lail:>M for each n=1,2, ... , whence i~l lail ~M.
00

For Zr where r;;: 1. If theooseries i~l ai~i is aonvergent for every

sequenae x= (~i) E Zr. then i~l lail r /(r-1) <00. for r> 1. and the

sequenae (ai) is bounded for r = 1.

The proof is analogous to that of the preceding theorem.

§5. Banach spaces of measurable functions.

We pause here to discuss several properties of B-spaces satisfying
further special conditions. To this end, let E be a space of meas
urable functions defined in the closed interval [0,1] and such that
for any sequence (x n ) = (x n (t») ~ E, 0 ~ t ~ 1:

1. lim IIxn ll 0 impZies lim xn(t) = 0 aZmost everywhere;
n~oo n+OO

2. l~ IIxnll = 0 impZies the existenae in E of a subsequenae

(xni(t») and an x suah that IXni(t) I ~ Ix(t) I for every

i=1.2 ..... and aZmost every t. 0 ~ t ~ 1;

3. lim x n (t) =x (t) aZmost everywhere impZies lim IIx n ll <: IIxll.
n+oo n+OO

Particular examples of such spaces are M, C and Lr , which have
been discussed repeatedly (cf. p. 6-7, 36-39, and 45-47); as far as

00

condition 2 is concerned, in the case where i~ll1xnil < 00, one merely

has to define the function x(t) by the equality
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x(t) = L Ixn.(t)j.
i=l 1,.

THEOREM 9. Let E and E1 be two B-spaoes satisfying oonditions 1,2
and 3 and Zet K(s,t) be a funotion defined in the square [0,1] x
[0,1]. If the integraZ

1

(6) u(s) = fK(s,t)x(t)dt
o

exists for every x E E and for aZmost every vaZue of s and if u (s) EEl'
then u is a bounded Zinear operator.

Proof. Suppose that (x n ) and x are such that

(7) lim IIx n - xII = 0
n+OO

and let (x n ) be any subsequence of (xn). By (7) as well as condi
tion (2), there exists a subsequence lX n ' - x) of (xn - x) and a z E E
such that, for every i=1,2, ••• , one has IXn·(t) -x(t) 1:0 zIt) almost
everywhere. Clearly ],im K(s,t) [xni(t) -x(tr] =0 almost everywhere,

1,.+00

and IK(s,t). (xni - x) 1:0 IK(s,t) I x z (t). Furthermore the integral

f~K(s,t)z(t)dt exists in a set H of measure 1, as zEE. We there

fore have ],im f ~K (s, t) [xni (t) - x (t) ] dt =0 and consequently
1 1,.+00 1

],im foK(s,t)xni(t)dt= foK(s,t)x(t)dt for sEH.
1,.+00 1

Now, since every subsequence of (un), where un(s) = foK(s,t)xn(t)dt,

has a subsequence which converges to u(s) almost everywhere, we have

lim un(s) = u(s) almost everywhere, which, in view of 3 and theorem 2,
n+oo

p. 49, implies that the operator u defined by (6) is a bounded

linear operator.

§6. Examples of bounded linear operators in some special Banach
spaces.

We here give several applications of theorem 9, proved above, to
the spaces M, C and Lr .

The spaoe M. If K(s,t), for 0:0 s:> 1 and 0:0 t:> 1, is a measurable

function and if, for every s, f~ IK(s,t) Idt < N < 00, the expression
1

(8) U(x) = !K(s,t)x(t)dt
o

defines a bounded linear operator from Minto M.

The spaoe C. If the function K(s,t) is continuous for 0:0 s:> 1 and
0:0 t:o 1, expression (8) defines a bounded linear operator from C
into C.

The spaoe L 1 • If K(s,t) is a function which is measurable in the
1

square 0:>s:>1 and 0:>t:>1 and is such that foC(s)ds<N<oowhere

CIs) =ess.sup IK(s,t) I, then (8) defines a bounded linear operator
O:>t:01

from L1 into L1 •

The spaoes LP. If K(s.t) is a function, measurable in the square
0:> s :0 1 and 0:0 t:ii 1, and such that, for every pair of functions

x(t) E LP and y(s) E Lq/(q-1) where p ~ 2 and q ~ 2 we have
11

(9) ffIK(s,t)x(t)y(s) Idsdt < 00,

o 0
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then (8) defines a bounded linear operator from LP into Lq.

tndeed, for any xELP, we have, for every YEL q /(q-1):
11 1 1

JJK(s,t)x(t)y(s)dsdt = JY(S)[JK(S,t)x(t)dt]dS,
00 1 0 0

whence (cf. p. 52) JoK(s,t)x(t)dtELq and consequently, by (8), U is

a bounded linear operator.

For condition (9) to be satisfied, it is sufficient that

J~J~ IK(s,t) jr/(r-1Idsdt < 00, where r is the smaller of the numbers P

and q/(q-1); in particular, that the function K(s,t) be bounded,
when r = 1, and integrable when P = q = +00.

In fact, one has, by Riesz' inequality:
11 11 2:... r-1 1 1. 1 1-

IHK(S,tlX(tlY(SldSdtl ~ {WK(S,t l Ir -
1
dSdt} r .{Ilx(SI (dst{{!y(tl Irdtt

In particular,. for P =q =2, condition (9) can therefore be

replaced by J~ J~ IK (s , t) 1
2 dsdt < 00, which implies that the operator

given by (8) is a bounded linear operator from L 2 into itself.
The same remark applies to the cases p = q = 1 and p = q = 00.

§7. Some theorems on summation methods.

Given an infinite array of numbers

all' a 12 ,

a
21

, a
22

,

(A)

we shall say that a sequence of numbers x= (Sk) is summabZe (to A(x»)

by the method A (which corresponds to the array A), when each series
00

Ai(x) = k~laiksk is convergent and the sequence (Ai (x») also con-

verges (to A(x»).
The method A is said to be permanent, when every convergent

sequence is summable to its limit by this method. It is called
reversibZe when, to every convergent sequence (ni)' there corres
ponds exactly one sequence x, not necessarily convergent, such that
Ai (x) =ni for i=1,2,... We shall say that a method B, corresponding
to the array B = (bik) is not weaker than A, when every sequence
summable by method A is also summable by method B.

Finally, a method A is known as a perfeat method, when it is both
permanent, reversible and such that the conditions

(10)

imply that

L la·1 < 00 and L a.aok = 0 for k = 1,2, ...
i=l 1- i=l 1- 1-

(11) a
i

= 0 for every i = 1,2, ...

THEOREM 10. For a method A to be permanent, it is neaessary and
suffiaient that the foZZowing aonditions be simuZtaneousZy
satisfied:
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k~1laikl ;;; M for every i=1 ,2, ... ,
lim a' k = 0 for every k=1,2, ..• ,
£-+00 ~

lim k~1aik = 1.
i+oo 00

Proof. Necessity. The convergence of the series k~1aikf.k for

every convergent sequence x.= (f. k ) and for every i=1,2, ••• i~plies

(cf. p. 53, for a) the absolute convergence of the series k~1aik.

The Ai' defined in the space a, are consequently bounded linear
functJ.onals and since, for xEa, (Ai(x)) is a convergent sequence, we
conclude, by theorem 5, p. 50, that condition 1° is satisfied.

Now, let q = 1 for i=1 ,2, ••. ,f.i = 0 for i" n and f.~ = 1 for every
n 00

n=1,2, ••• Put x n = (f. i ) for n=0,1,2, ..• We have Ai(x o) =k~1aik and

Ai (x n ) =ain for i and n natural numbers, so that A (x o) = 1 and

A (x n ) = 0 for n > 0, from which it follows that conditions 2° and 3°
are also satisfied.

The sufficiency of the three conditions follows from theorem 3,
p. 49, together with the fact that the sequence (x n ) just defined is
fundamental in the space a.

LEMMA 1. Let A be a permanent method and let Yo = (ni) be a aon
vergent sequenae. If, for every sequenae of numbers (exi) the aondi-

tions (10) imply that .E1ex.n~ =0, there exists, for every E> 0, a
~= ~ ~

aonvergent sequence x suah that

(12) IAi(x) - nil < E for every i=1,2, •••

Proof. Let G denote the set of all convergent sequences (ni) to
which there correspond convergent sequences x such that ni =Ai(x) for
i=1,2, ••• Regarded as a subset of the space a, the set G thus def~

ined is clearly a vector subspace. If Yo is not an accumulation
point of G, there exists, by the lemma of Chapter IV, §3, p. 35, a
bounded linear functional F defined in a such that F(yo) = 1 and
F (y) =0 for every y E G. Recalling the general form of bounded
linear functionals in the space a (cf. Chapter IV, §4, p. 36), there

00

thus exists a sequence of numbers (exi) such that the series i~1exi is
absolutely convergent and such that:

(13) L ex·n· + ex lim n· = 0 for (n i ) E G,
i=1 ~ ~ i+oo ~

(14 )

Since the method A

00

L ex.n~ + ex
i=1 ~ ~

is permanent,

lim ni = 1.
i+oo

(13) implies

(15) L a.A.(x) + ex lim f. k = 0 for every x = (f. k ) E a
i=1 ~ ~ k+oo

and the preceding theorem 10 implies the existence of an M satisfying
condition 1°. We consequently have

whence

:;; M.( Y lex.I)lIxll,
i=1 ~

(16 )

Putting, for a

L ex.A. (x) = L f. k · L ex.a"k"
i=1 ~ ~ k=1 i=1 ~ ~

fixed natural number k, f. k = 1 and f. n =0 for n" k, we
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conclude from (15) that

(17) L a.a· k = 0 for k = 1,2, ..•
i=l -z. -z.

Then putting t.k= 1 for k=1,2, •.. , one deduces from (15), (16) and

(17) that ~=O, whence, by (14), that .E1a.n~=·I. which, in view of
'Z-1IlI 'Z- 'l-

(17), contradicts the hypothesis.

LEMMA 2. If the method A is permanent and the conditions (10)
imply condition (11), there exists, for every convergent sequence
(ni) and every number E> 0, a convergent sequence x satisfying con
dition (12).

The proof is immediate by virtue of the preceding lemma 1.

LEMMA 3. If Xo = (t.k) is a bounded sequence which is summable by a
permanent method A, there exists, for every E> 0, a convergent
sequence x such that

(18)

Proof. Put

(19)

and denote by
By (19), we

°ni = Ai(X O ) for i = 1,2, ••• ,

(ai) any sequence satisfying the conditions (10), p. 55.
have

= L a.A. (x o )
i=l -z. -z.

there exists by theorem 10, p •. 55-6,

(20)
00

L a.n~
i=l -z. -z.

and, as A is a permanent method,
a number M satisfying 1°, whence

L Y la·l· la·kl· 1t.;1 5 M( Y la.l)sup
i=l k=l -z. -z. i=l -z. k~l

and by (20)

Ya.n~ = ( Yt.~)( Ya.a· k ),
ooi=l -z. -z. k=l i=l -z. -z.

50 that, by (10), i~lain~ = O. This established, the assertion of the

lemma follows immediately from lemma 1.

LEMMA 4. Let Xo be a sequence which is summable by a method A
which is both permanent and reversible. If, for any E> O. there
exists a convergent sequence x satisfying condition (18), the
sequence Xo is summable to the same number by every permanent method
B which is not weaker than A.

Proof. The reversibility of A implies (see Chapter IIi) §6,
theorem 10, p. 29, and the remark, p. 31) the existence of a sequence
(ai ) and an array (Sik~ having the following properties:

(21) L IS·kl < 00 for k = 1,2, ... ,
i=l -z.

(22) if, for a convergent sequence y = (n i ), one puts:

t.k = fk(y) L S ·kn. + ak lim ni where k = 1,2, ..• ,
i=l -z. -z. i-+oo

one has
00

L a·kt.k ni for i 1,2, •.•
k=l -z.
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Thus defined, the fk are bounded linear functionals in the space a.
Since, for every convergent sequence y the corresponding sequence
x = (Sk) is, by ~ypothesis, summable by the permanent method B, each

of the series k~lbikSk is convergent and so is the sequence of their

sums (Bi(x)).
For every yEa put:

F~(y) = I b~kfk(Y) for i = 1.2 •••. and F(y) = lim F.(y).
v k=l v i+oo 1-

Thus defined, the Fi are bounded linear functionals; by theorem 4
(Chapter I, §3), p. 15, F is also a bounded linear functional.

This established, following the hypothesis, let X o be the given
sequence and x a convergent sequence satisfying (18). Putting
y = (A . (x 0)) and y = (A . (x) ), we have Yo E a, yEa and II y - Yo II :; £, so
that 1- 1-

(23) !B(x) - B(x o) I = IF(y) - F(yo) I $ IIFII£

and, as A (x) =B (x), it follows that

IA (x 0) - B (x 0) I :; IA (x 0) - A (x) I + IB (x) - B (x 0) I ,
whence, by (18) and (23),

IA(x o) - B(x o) I $ IIFII£ + £,

which implies that A(x o) =B(x o)' q.e.d.

Lemmas 3 and 4 yield the following

THEOREM 11. If the pepmanent method B is not weakep than the
pepmanent pevepsibZe method A. evepy bounded sequenae whiah is summ
abZe by A is aZso summabZe by B to the same numbep.

Furthermore, lemmas 2 and 4 yield

THEOREM 12. If A is a pepfeat method and B a pepmanent method. not
weakep than A. evepy sequenae summabZe by A is aZso summabZe by B to
the same numbep.
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CHAPTER VI

Compact operators

§1. Compact operators.

A bounded linear operator (between Banach spaces) V is said to be
aompaat if it maps (norm) bounded sets to relatively compact sets.

EXAMPLE. Let, for i=1,2, ••• ,n, Xi be a bounded linear functional
n

and xi an element of a space. Then V, given by V(X) =i~lXi (x)xi is
compact.

THEOREM 1. The aodomain of any aompaat operator is separable.

Proof. The set Gn = {V(X}: IIxll ;;;; n} is relatively compact and there

fore separable, and hence so is the set n~lGn which is equal to the
codomain of V. -

THEOREM 2. If (Vn ) is a sequenae of aompaat operators and the
bounded linear operator V is suah that lim II Vn - VII =0, then V is

n-+-co
also aompaat.

Proof. Let (xi) be a bounded sequence and (xi} a subsequence of
(xi) obtained by a diagonal argument such that ~im Vn(xi} exists for

~-+-co

each natural number n. Consequently, for n=1,2, •.. , we have:

II V(x ) - V(x ) II ;;;; IIU (x ) - V (x ) II + II V (x ) - V (x ) II + IIU (x ) - V(x ) II
p q p np np nq nq q

so that

IIV(x ) - V(X ) II ;;;; IIv - V II (lix II + IIx II) + IIV (x ) - V (x ) II,
p q n p q np nq

whence, clearly lim II V (x ) - V (x ) II = O. Hence (V (x.}) is a Cauchy
p,q-+-co p q ~

sequence from which the compactness of the operator V follows.

§2. Examples of compact operators in some special spaces.

If K(s,t} is a continuous function for 0:> s;;;; 1 and 0 ~ t ~ 1, the
function (of the variable s} given by

1

(1) U (s} = fK (s , t} x (t) dt
o

is continuous, for any integrable function x(t}. Regarded as an
operator defined in one of the spaces

(2) M, C, L 1 and Lr where r > 1.,

with codomain also in any of these spaces, the operator given by (1)
is aompaat.

The proof rests on the following theorem of Arzela:

For a bounded sequenae of aontinuous funations (un(s») to have a
uniformly aonvergent subsequenae, it is suffiaient that, for every
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(3)

(4)

almost every t.
Note finally that the operator given by

s
y(s) = IK(s,t)x(t)dt

o
is also compact in C, if condition (3) is satisfied.

The spaces LP. Let K (s. t) be a measurable function for 0:;; s :;; 1 and
0:;; t:> 1 and let r denote the smaller of the numbers p and q / (q-1)
where p > 1 and q > 1. If

11 --!'-
fJIK(s,t)Ir-1 dsdt < 00,

o 0

then (1) defines a compact operator from LP into Lq .

Indeed let (Kn(s,t») be a sequence of continuous functions such
that

11 .2:-
(5) lim fJIKn(s,t) - K(s,t) 1r-1 dsdt = O.

n-+oo 00

Since, for n=1, 2, •.. , the operator Un given by y = Un (x)

f~Kn(S,t)x(t)dt is compact from LP into Lq , it follows that
1

II Un (x) - U(x) II q :> III' (~ - KXx(t)dt/qds
o 0

:;; {!ds[I~IKn - Klr/(r-l)dt]q(r-l)/r}.(llx(t) /rdt)q/r.

number £ > 0, there exists a number n> 0 such that the inequality
IS ,- szl < n implies the inequality IU n (S,) - un(sz) I:;; £ for every
n=1 ,2, ...

Indeed, assume that IIx n ll :;; 1 and that, for 0:;; s:;; 1 and n=1 ,2, ..• ,

un(s) =I~K(S,t)xn(t)dt. The continuity of K(s,t) implies the exist

ence, for every £ > 0, of an n > 0 such that the inequality

Is , - szl < n implies that IK(S"t) - K(sz,t) I::; £ for 0:;; t:;; 1. Con

sequently
1 1

IUn(S,) - Un(Sz) I :;; !I[K(Sl't) - K(Sz,t)]X (t)dtl :;; £Ilx (t) Idt,
o non

which yields, by virtue of the inequality I~ IX n (t) Idt :illxnll, easily

seen to hold in the spaces (2), IU n (S,) - un(sz) I:;; £, so that, by
Arzela's theorem, one can extract a uniformly convergent subsequence
from the sequence (un(s»). Now, since any sequence of functions in
any of the spaces (2) which is uniformly convergent is also converg
ent in the norm of the space, we have shown that the operator (1) is
compact in such spaces.

In particular, we have the following theorems:

The space C. For the operator (1) to be compact in C, it is suff-
icient that. for every so. one has:

1

lim IIK(so,t) - K(s,t) Idt = O.
s+s 0 0

In fact, for every £> 0 one easily deduces from (3) the existence

of an n> 0 such that IS 1 - szl :;; n implies I~ IK(S"t) - K(sz,t) Idt:;; £,

which implies, as before, the compactness of the operator (1) in C.
Condition (3) will be satisfied, for example, when the function

K(s,t) is bounded and such that lim K(s,t) =K(so,t) for every So and
s+s 0
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Now, as 1':;; p, we have 1
1 _

Ulx(t) Irdt)r
< q . q (1' - 1)

and since l' - --1' ~.e. :;;1, we have ~-1q- l' 11 r.

II Un (x) - U(x)ll :;; {UIKn - Klr-1dtdS}-rIlXIl,
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and so
11 ---2:.. 1'-1

IIUn - UII :;; [!t IKn - Kl
r

-
1
dtds] l' ,

whence, by (5), lim IlUn - UII = 0, which implies, by theorem 2, p. 59,
n~oo

the compactness of the operator U, i.e. of the operator given by (1),
where u(s) = U(x) E Lq.

Remark. In particular, for p =q = 2 the condition
11

JJK 2 (s,t)dsdt < +00
00

therefore implies the compactness of the operator (1) as an operator
from L 2 into itself.

§3. Adjoint (conjugate) operators

As usual, let E and E
1

be two Banach spaces and U a bounded linear
operator from E to E1 •

We shall denote by X and Y bounded linear functionals on E and E1
respectively.

Consider the expression Y[U(x)] where Y is an arbitrary bounded
linear functional on E

1
• This expression can clearly be regarded as

a functional defined on E. Indeed, let us put

(6) XIx) = Y[U(x)].

Thus defined, the functional X is additive and continuous, because
we have IX(x) 1= IY[U(x)]I:;;IIYII.IIUII.llxll, whence

(7) UII ~ IIYII.nulI.

Now, the relation (6) serves to define a new operator U*, given by

X = U* (Y) ,

from the space E~ of bounded linear functionals on E to the space E*
of those defined on E.

The operator U* is called the adjoint or aonjugate of U. By (7),
it is additive and continuous.

THEOREM 3. For the adjoint u* of the bounded Zinear operator U,
we have II U* II = II UII •

Proof. Firstly, for every xEE, we have IY[U(x)]I:;; IIYII.IlUII.llxll,
whence IIU*(Y) II = IIY(U)II:> IIYII.1lU1I and consequently

(8) lIu*1I :> 1lU1I.

Moreover, given an arbitrary X o E E, there exists, by theorem 3,
Chapter IV, §2, p. 34, a bounded linear functional X o on E1 such
that IIY o lI=1 and IY o [U(x o)]\=IIU(x o)lI, and so IIU(xu)ll=IYdU(xo)]I::;
nU*II.lIY olI.Rxoll= IIU*II.lIx o ll, whence IIU(x o)ll::O IIU*lI.lIx ull and consequently

(9) IlUII :;; IIU* II •

The result now follows from the inequalities (8) and (9).
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THEOREM 4. If U is a aompaat operator, so is its adjoint U*: in
other words, if (Yn ) is a bounded sequenae in E~, i. e. llYn II < M, say,
then there exists a subsequenae (Yni) and an element X of E* suah
that

(10) ~im IIU*(Yni ) - XII = O.
'2.+00

Proof. By theorem 1, p. 59, the codomain GS E 1 of the operator U
contains a countable dense set, and so, by theorem 3, Chapter V, §1,
p. 49, we can extract, from the sequence (Yn ) !::Et, where IIYn " < M< 00

for every n, a subsequence (Yni) which is convergent for every y E G,
Le. (Yni(y)) is convergent for every yE G. Now put ~im Yni[U(x)] =

'2.+00

lim U* (Yni ) [x] =lim Xni (x) =XIx) 'and let Xi be an element of E such
i+oo i+oo

that

that

IY£[U(Xi)] - l;im Y;'[U(Xi)] [ ~ ~
J+ex>

and, as IIxi II = 1 for every i, there would exist a sequence of indices
(k i ) such that l;im U(xk') = Yo' We would therefore be able to find,

'2.+00 '2.
for any E> 0, a natural number N such that, for every i > N, we had
II y 0 - U(x k .) II < E and

1- , . '
IYk.(yo) - ~~m Yk.(Y o) 1< E,

'2. J+oo J

(11) IIxili = 1 and IX(Xi) - Xni(Xi) I Ii: HX - Xnill.

Now, if the theorem were false, L e. there existed n > 0 such
IIX-Xni ll>n for each i=1.2 •••• , we would have by (11), putting
Yi=Yni :

( 12)

whence

IYk: [U(Xk') J - ~im Yk: [U(XIo'> J I :> IYk~ [U(Xk.,.) - Yoll + IYIo '. (y ) - lim Yk .(Y o) I
'2. '2. J+OO'2. "'Z. v '''2., j+ooJ

+ I~im Yk)U(xkJ - Yo] I
J+oo J '2.

:> M.E + E + M.E,

which is impossible by (12), as the number E can be arbitrarily
small.

§4. Applications. Examples of adjoint operators in some special
spaces.

The spaae C. If K(s, t) is continuous for 0:;; s:> 1 and 0:> t:> 1, the
expression

1

U(X) = JK(s,t)x(t)dt
o

defines a bounded linear operator U on C.
Let Y be any bounded linear functional on C, which is therefore

1
(cf. Chapter IV, §4, p. 36) of the form Y(Y) = Joy(t)dY(t) where Y(t)

is a function of bounded variation. The functional U* (Y) =X given
by XIx) =Y[U(x)] is also a bounded linear functional on C, and is
therefore also of the form

(13) XIx) = Jx(t)dX(t),
o

where X(t) is also a function of bounded variation, and we can
assume that X(O) = O. Consequently, if we put

1

(14) y(s) = U(x) (s) = fK(s,t)x(t)dt,
o
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E C:
1

fy (s) dY(s) •
o

(15)

we have, for every function x(t)
1

fx (s) dX (s)
o

Consider the function defined by

x (s) =11
for 0 :; s ~ v

v,n 0 for v + 1 ~ s :; 1,
n

and which is linear for v:; s:; v + k. Putting xv,n for x in (14) and

(15), we obtain by changing the order of integration (Fubini),

fXv,n(SJdS = f[fK(s,tlxv,n(tJdtJ1dY(SJ = fXv n(tl[fK(s,tJdY(SJ]dt,
o 00 0' 0

whence, letting n'" 00, we have for s=0,1 and all points of continuity
of the function X(s), thus for all except at most countably many
points s,

(16) XIs) flrfK(s,t)dY(S) ]dt;
o 0

now, as the value of the Stieltjes integral (13) remains the same
when the value of the function X(t) is altered at countably many
points (except 0 and 1), we can assume that the function XIs) is
defined by the formula (16) throughout [0,1], so that it is contin
uous for 0 ~ s :; 1 •

The expression (16) can thus be regarded as a representation of
the adjoint operator U*, by which it is to be understood that if
Y(s) is a function of bounded variation which represents the bounded

1
linear functional given by foy(s)dY(s), the corresponding function

of bounded variation XIs) represents the bounded linear functional
1

given by fox(t)dX(t).

For the bounded linear operator U given by
1

U(X) (s) = xIs) - fK(s,t)x(t)dt,
o

with the same function K(s.t), we have
t 1

U*(Y) (t) = Y(t) - fdtfK(s,t)dY(s) = X(t).
o 0

The LP spaces. If the function K(s,t) is measurable for 0 ~ s ~ 1
and 0 ~ t ~ 1 and if

(17 )
11

If IK(s,t)x(t)Y(s) Idsdt < 00

00 q

for every pair of functions x(t) E LP and Y(s) E L0 where p> 1 and
q> 1, the operator U given by

U(x) (s) = y(s) fK(s,t)x(t)dt
o

is a bounded linear operator from LP into Lq •
The general bounded linear functional Y on the space Lq is of the

form
1

Y(y) = fY(s)y(s)ds,
o q

where Y(s) is a function belonging to Lq-l and we have
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Y(y)
1 1

JY(s)dsJX(s,t)x(t)dt
o 0

1 1

Jx(t)dtJX(s,t)Y(s)ds.
o 0

Putting

(18 ) X(t)
1

JK(s,t)Y(s)ds,
o

we have
1 1

JY(s)y(s)ds JX(t)x(t)dt.
o 0

The expression (18) can be regarded as a representation of the
adjoint operator U*.

In the special case where p =q > 1, the adjoint of the bounded
linear operator U given by

1

U(x) (s) = xIs) - JX(s,t)x(t)dt
o

is of the form
1

X(t) = U*(Y) (t) = Y(t) - JX(s,t)Y(s)ds.
o

1

JY(s)y(s)ds.
o

X(t)

The spaae L 1 • The above considerations apply equally to the space
L 1 • If (17) holds for xEL 1 and YEM, the expression

1

y(s) = U(x) (s) = JX(s,t)x(t)dt
o

defines a bounded linear operator from L 1 into itself.
The adjoint operator is of the form

1

U*(Y) (t) = JX(s,t)Y(s)ds
o

where Y(s) EM represents the bounded linear functional J~Y(s)y(s)ds

for y(s) ELI, whilst X(t) EM represents the bounded linear function
1

al JoX(t)x(t)dt for x(t) ELI. For corresponding pairs X,Y and x,y,

i.e. X =U*y and y = Ux, we have
1

JX(t)x(t)dt
o
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CHAPTER VII

Biorthogonal sequences

§1. Definition and general properties.

A sequence (xi) of elements and (f i ) of bounded linear functionals
is said to be biorthogonal when

(1)

Given an arbitrary

f~(xJ') = {01 for i j,
" for i .. j.

x E E, the series

(2) L x··f·(x)
i=l 1. 1.

is called the development of x with respect to the biorthogonal
sequence (xi), (f i) .

In the case where the sequence (fi) constitutes a total set of
functionals (cf. Chapter III, §3, p. 27) and the series (2) is con
vergent for some x, then x is the sum of this series; in fact, we
then have for every j=1,2, ••• ,

f·[x - L x··f·(x)] f.(x) - f.(x) = O.
J i=l 1. 1. J J

THEOREM 1. If the series (2) is convergent for every x E E, the
series

L f· (x) • F (x.)
i=l 1. 1.

is also convergent for every xE E for any bounded linear functional F.

Proof. Putting
n

S = L f .. F (x.) ,
n i=l 1. 1.

n n
we have Sn (x) =i~lfi (x) .F(xi) =F[i~lxi.fi (x)], from which the conver-

gence of the sequence (Sn(x») for every x plainly follows.

THEOREM 2. If the partial sums (3) of the series

(4) L f··F(x.)
i=l 1. 1.

form a norm-bounded set for any bounded linear functional F, the
ser1.es (2) is convergent for every x E E which is the limit of some
sequence of linear combinations of terms of the sequence (xi)' (i.e.
for all x in the closed linear span of the Xi).

Proof. Putting
n

(5) s (x) = Lx .• f. (x),
n n i=l 1. 1.

we have F[sn(x)] =i~lF(xi).fi(X)=Sn(x) (see (3») and, as by hypo-

thesis II Sn II ;;; M where M is a number independent of n, we have, for

every xEE, by theorem 6 (Chapter V, §1), p. 50, lim IIs n (x) II <00.
n+oo
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(6)

There therefore exists by theorem 5 (Chapter V, §1) p.50, a number N,
independent of n and of x, such that IIs n (x)II ::>N.lixll.

Now, since we have lim sn (xi) = xi for every i=1',2, ••• , a simple
n-+-""

argument establishes the existence of lim sn(x) for every element
n-+-""

x E E which satisfies the condition of the theorem.

THEOREM 3. If the partial sums (5) of the series (2) form a norm
bounded set for any x E E, the series (4) is aonvergent for every
funational F whiah is the limit of a sequenae of linear aombinations
of terms of the sequenae (fi)' (i. e. for aU F in the atosed linear
span of the fi)'

The proof is similar to that of theorem 2 above.

THEOREM 4. Under the same hypotheses, if"further, (xi) is a
fundamentaZ sequenae, the series (2) is aonvergent for every x E E.

Proof. We have, by (5), lim IIsn (x) II < 00 for every x E E, and,
n-+-oo

further, lim sn (xi) =xi for every i=1 ,2,... The convergence of the
n-+-oo

series (2) for every x E E now follows by virtue of theorems 5 and 3
(Chapter V, §1) pp. 49-50.

§2. Biorthogonal sequences in some special spaces.

Let us now consider how biorthogonal sequences behave in the
spaces which are of particular interest to us.

Put

f
l _ f1 for i = j,
x.(t)y.(t)dt - to f '.'o ~ J or ~ P J.

Assume further that (xi(tl) is a sequence of functions in LP where

p> 1 and that (Yi(t)) is a sequence in LP/(P-1); assume finally that
these sequences are complete (or, equivalently, closed).

THEOREM 5. Under these hypotheses, if the series
1

~ x.(t)fy·(t)x(t)dt
i=1 ~ 0 ~

th Pis p power mean aonvergent for any funation x (t) E L , the series
1

(7) L y.(t)f:r:·(t)y(t)dt
. p th i=1 ~ 0 ~
~s -p---1 power mean aonvergent for every funation y (t) E LPI (p-1) •

Proof. Let the bounded linear functional fi on LP be defined by
1

f.(x) = fy.(t)x(t)dt for x(t) ELP •
~ 0 ~

The series i~1xi.fi(X) is then pthpower mean (i.e. norm-) converg-

ent for every xELP by hypothesis. By theorem 3 above, the series
"" 00 1 I( -1)
'~1fi.F(xi) = '~1Yi(t)fo:r:i(t)y(t)dt where y(t) E LP P is conse-
~- p th~-
quently ---1 power mean, or norm-, convergent for every bounded

P-
linear functional F defined on the space LP; hence the same is true

of the series (7) for every function y (t) E LPI (p-1), q.e.d.
In particular, when Xi(t) = Yilt) ELl' where l' is the larger of the

two numbers p and -E-
1

, the theorem just proved implies the following
p-

corollary.
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If the series

x(t) ELl, then

everywhere for

p th
then it is p-1

(8)
1

I x.(t)fx.(t)x(t)dt
i=l 'Z- 0 'Z-

is p th power mean aonvergent for every x E LP,

power mean aonvergen t for every x E LP / (p-1) •
For example, one could take the xi' for i=1,2, ••• , to be

(essentially) bounded functions.
Now consider the case where, in the hypothesis (6), (Xi(t)) is a

sequence of integrable functions and (Yi(t)) is a sequence of func
tions which are bounded for 0:> t ~ 1. Suppose, finally, that the
sequence (xi(t)) is complete in L 1 •

THEOREM 6. Under these hypotheses, if the series
00 1
'~lXi(t)foYi(t)X(t)dt is mean aonvergent for every

'Z- 00 1
the series i~lYi(t)foXi(t)y(t)dt is bounded aZmost

every y (t) EM and aonverseZy.

The proof is. similar to that of the preceding theorem 5: one
regards the xi as elements of the domain L 1 and the Yi as represent
ing bounded 11near functionals, and then employs theorems 3 and 4,
p. 67. .

In particular, when xi (t) = Yi (t), we have the corollaries:

1 0 If the series (8), where xi (t) =Yi (t) EM, is mean aonvergent
for every x(t) ELl, then it is bounded for every x(t) EM and
aonverseZy.

2 0 If the series (8), where xi (t) = Yi (t) E C and (xi) is a
aompZete sequenae in C, is uniformZy aonvergent for every
x(t) E C, then it is mean aonvergent for every x(t) ELl and
aonverseZy.

The proof is obtained, in one direction, by regarding the xi as
elements of the domain C and the Yi =xi as representing bounded
linear functionals, and, in the opposite direction, by regarding the
xi as elements of the domain L 1 and the Yi = xi as representing
bounded linear functionals on L 1

§3. Bases in Banach spaces.

A sequence (Xi) of elements of E is called a (Sahauder) base when,
for every x E E, there exists a unique sequence of numbers (ni) such
that

normed, is a Banach space.

lIyll = sup
l~n

easily shown that E
1

, thus
put

it is
Now

x = I n·x ..
i=l 'Z- 'Z-

Given a base (xi)' let E 1 be the set of sequences y = (ni) for

which the series i~lnixi is convergent. Putting

IIJ1 nixJ ,

x = U(y) = I n.x. for every sequence y = (n.) E E •
i=l 'Z- 'Z- 'Z- 1

Thus def ined, U is a bounded linear operator, because II U (y) II ~ II y II ,
and, as it maps E

1
bijectively onto E, its inverse U-1 is also a

bounded linear operator.
Finally, the map fi defined by
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f· (x) = n· where x = I n·x .
'Z- 'Z- i=l 'Z- 'Z-

is a bounded linear functional, because II nixill:;; 211 y II and

Ifi(x) I = Inil :;; 1I:'lIl1yll :;; 1I:.III1U-1II.llxll.
'Z- 'Z-

We thus have

x = I x·f· (x) for every x E E
i=l 'Z- 'Z-

and, this development being unique, the relations (1) (p. 65) follow,
so that the sequenae (xi)' (fi) is biorthogonat.

Observe that for every bounded linear functional F defined on E
00

the series i~lfi(x)F(xi) converges to F(x), because, for every xEE,

one has:

Yf·(x)F(x.) = lim F[ I x.f.(x)] = F(x).
i=l 'Z- 'Z- n~oo i=l 'Z- 'Z-

It is not known if every separabte Banaah spaae has a base.

The question is only settled for certain special spaces. Thus,
for example, in LP, where p?; 1, a base is given by the orthogonal
Haar system. In C a base has been constructed by Schauder. In t P
for p;;: 1 a base is furnished by the sequence (Xi) where

x. = (sni ) and si = {1 for i = n,
v n 0 for i ~ n;

we then have fi(x) = I;i for x= (I;i). Finally in a a base is given by
the same sequence together with the element X o = (I;~) where 1;; = 1 for
n=1,2, ... We then have fo(x) = lim 1;. for x= (1;.) Ea.

i~oo ~ ~

§4. Some applications to the theory of orthogonal expansions.

THEOREM 7. Suppose that the sequenaes (xi)' (fi) and (y i) , (<Pi) are
biorthogonat and that the equations fi (x) =<Pi (y), for i=1, 2, ... ,
have exaatty one sotution y = U(x) for every x. Then the aonvergenae

00 00

of the series i~lhixi impties that of the series i~lhiYi for every

sequenae of numbers (hi)'

Proof. It is easily seen that if lim x = x 0 and lim y = Yo' where
n~OO n n~oo n

Yn =U(x n ), then Yo = U(x o)' It follows from theorem 7 (Chapter III,

§3) p. 26, that the operator U is bounded and linear. Therefore
putting lIuli = Mi we have IIU(x) II ~ Mllxll and since, by definition,
U(xi) = y i for i =1 ,2, ••• , it follows that

u( I h.x.) = I h.y.
i=l 'Z- 'Z- i=l 'Z- 'Z-

for any real numbers hi' from which the result immediately follows.

COROLLARY. Suppose that (xi(t)) and (Yi(t)) are orthonormat
sequenaes of aontinuous funations, and that for every aontinuous
funation x(t) there exists a unique aontinuous funation y(t) suah
that

1

Jx . (t) x (t) dt
o 'Z-

Then if the series .E1h.x.(t)
'Z-= 'Z- 'Z-

series i~lhiYi(t).

1

= JY . (t) Y (t) dt.
o 'Z-

is uniformty aonvergent so is the



Biorthogonal sequences 69

Analogous corollaries hold for other function spaces.

THEOREM 8. Let (xi)' (fi) be a biorthogonal sequence, where (fi)
is a total sequence, and let (hi) be a sequence of numbers such that
whenever (ai) is the sequence of coefficients of an element x (i.e.
ai=fi(x) for i=1,2, ... ), (hiai) is the coefficient sequence of an
element y.

If under these conditions, (Si) is the coefficient sequence of a
bounded linear functional F (i.e. Si=F(xi) for i=1,2, ... ), the
sequence (hiSi) is also the coefficient sequence of some bounded
linear functional ~.

Proof. By hypothesis, the system of equations hiff(x) = fi(y) for
i=1,2, ... has, for every x, exactly one solution, wh1ch we denote by
y =U(x).

The equalities lim x n = x 0 and lim Yn = Yo where Yn = U(x n ) clearly
n~oo n~oo

imply that Yo = U(X q ). Consequently, by theorem 7 (Chapter III, §3)
p. 26, U is a bounded linear operator. In particular, it is easily
checked that

(9) U(X i ) = hixi for every i = 1,2, .••

Now, given a bounded linear functional F such that Si = F (xi) for
i=1,2, ... , we have, in view of (9), F[U(xi)] =hiF(xi) =hiSi, Le.
the numbers hiSi are the coefficients of the functional ~ = U* (F) ,
q.e.d.

Note that if x = ],im xi' U(X) is, by (9), the limit of a linear
1-+00

combination of terms of the sequence (xi)'
As an easy application of this remark we obtain the following

THEOREM 9. Let (xi(t») be an orthonormal sequence of continuous
functions which is also a closed sequence in the space C.

If the sequence of scalars (hi) transforms every sequence (ai) of
coefficients of a bounded function into the coefficient sequence
(hiai) of another bounded function, then it transforms every coeffic
ient sequence (Si) of any continuous function into the coefficient
sequence (hiSi) of another continuous function.

The converse theorem is also true.

Lastly, we have

THEOREM 10. Let (xi(t») be a complete orthonormal sequence of
bounded functions in DP/ (P-1), where p> 1.

If the sequence of scalars (hi) transforms the coefficient
sequence (ai) of an az>bitrary function x (t) E: LP into the coefficient
sequence (hiai) of another function y (t) E: LP, then it also trans-

forms every coefficient sequence (Si) of an arbitraz>y function

x(t) E: LP/(P-1) into the coefficient sequence (hiSi) of a function

it (t) E: LP/ (p-1) . If P = 00, then LP = M.





CHAPTER VIII

Linear functionals
§1. Preliminaries.

Given a closed linear sUbspace G~ E and the dual space E* of bound
ed linear functionals on E, we have already seen (cf. Chapter IV, §3,
p. 35, lemma) that, for any element X o E E ..... G, there exists a
funational f E E* such that

f(x o) = 1 and fIx) = 0 for every x E G.

This naturally leads one to inquire whether, conversely, the anal
ogous relationship between subspaces r~E* and elements of E holds.
To be precise, we require to know if, given a closed linear subspace
r 5:: E*, there exists, for an arbitrary funational foE E* ..... r, an
element x E E such that

(1) f o (x) = 1 and fIx) = 0 for every fEr.

The answer is , however, negative in general.
Indeed, take E =a, the space of convergent sequences of real num

bers, so that E* is the dual space of a, and let r be the space of
all elements f of E* of the form:

(2) f (x) = ~ a. I; .
i=l ~ ~

Thus defined, r is a
suppose

(3)

where

where x = (I;i) E a and L Ia ·1
i=l ~

closed linear subspace of E*.

lim "fn - f" = 0,
n-+-oo

In fact,

(n)

~ a. 1;. for n = 1,2, ...
i=l ~ ~

Now (3) implies that lim "fp - f q " =0,
p,q-+-oo

(4) f n E rand fn(x)

We need to show that fEr.

whence, since by definition

fp(x) - fq(x)

we conclude from (3), in view
that

= y (a~P) - a~q»)I;.,
i=l ~ ~ ~

of the theorem of Chapter IV, §4, p. 41,

lim Yla!P) - a!q) I = 0
p,q-+-oo i=l ~ ~

and, consequently, that there exists a sequence (a
i

) such that

lim Y la~n) - a.1 = 0 and Y la.1 < 00.

n-+-oo i=l ~ ~ i=l ~

We therefore have, for every x = (1;.) E a, the equality:
00 ~oo

lim L a~n)l;. = L a.I;.,
n-+-OO i~l ~ ~ i=l ~ ~

whence, by (4),
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and since by (3)

lim Ifn(x) - fIx) I ::; lim IIf - fII.lIxll = 0,
n~oo n+oo n

it follows that fIx) = .~ (X.I;. for every x Ea. The functional f is
'!-=1 '!- '!-

thus of the form (2), so that, finally, fEr.
This established, let

(5) f o (x) = ~im I;i for x = (I;i) E a.
'!- ...OO

The functional f o thus defined plainly does not belong to r. How-

ever there exists no X o = (l;jO») E a satisfying the conditions (1),

because as (1) and (5) imply that :J,im I;~O) = 1, it is impossible to
00 (0) '!- ...oo '!-

have i~l(Xil;i = 0, as required by (1), for every sequence of numbers

«(Xi) satisfying the conditions (2).

§2. Regularly closed linear spaces of linear functionals.

A linear subspace r of the dual E* of a Banach space E is said to
be regularlyalosed when there exists, for every element of E* .... r, an
element X o E E which satisfies the conditions (1).

The preceding example shows that a closed linear subspace of E* is
not always regularly closed. However, the converse is true: every
linear subspace r of E* which is regularly closed is also norm
closed.

In fact, put

(6) f n E r for n=1,2, •••

and

(7) lim IIfn - fll = O.
n"'oo

If f o i r, a regularly closed linear subspace, there would exist an
X o E E satisfying .(1), in particular, by (6) we would then have
fn(x o ) =0 for n=1,2, ••• , whence by (7), fo(x o ) = lim f (x o) =0,

n+oo n
contradicting (1). Hence we must have foE r, i. e. the space r is
(norm)-closed.

It is easy to give examples of regularly closed spaces. Indeed,
let E be a Banach space and G:: E any linear subspace of E. The set
r of bounded linear functionals f defined in E and such that

fIx) = 0 for every x E G

is easily seen to be regularly closed.

Remark. If the set r in question is not only a reg~larly closed
linear subspace but is also total, it then coincides with the whole
of E*.

In fact, the definition of total subset (see Chapter III, §3, p.
36) implies that the only element of E at which all the elements
fEr vanish is the (zero) element 0.

We shall now discuss the properties of· regularly closed spaces of
bounded linear functionals.

§3. Transfinitely closed sets of bounded linear functionals.

Given any ordinal number a which is a limit ordinal, i.e. has no
immediate predecessor, and a bounded sequence of real numbers (e!;)
of type a, Le. where 1 :;; I; < a, the transfinite limit superior of
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bounded
on E not
the

f is clearly a

lim f n (x) = fIx)
n+oo

(C~), denoted by !iW C~, is defined to be the infimum of the set of

real numbers {t: there exists an ordinal n «6), depending on t,
such that C~:> t for all ~ <: n}. The transfinite limit inferior of
(C~) is then defined by the formula

lim c~ = - lim (-C~).

~+a ~+a

LEMMA 1. If, for a sequence (f~) of type a of bounded linear
functionals on E,

IIf~1I :> M for 1 :> ~ < a,
there exists a bounded linear functional f satisfying the conditions:

(8) IIfll :> M and lim f~(x) :> fIx) :0 lim f~(x) for every x € E.
Fe" ~+6

The proof follows from theorem 1 (Chapter II, §2, p. 14), on put
ting pIx) =lim fe-Ix). The functional p also satisfies pIx) s: Mllxll

~+6 .,
for xEE.

Having established this lemma, we shall call a bounded linear
functional f wpich satisfies the conditions (8) a transfinite limit
of the sequence (f~).

In particular, wlien lim IIfn - fll = 0 the functional
n+oo

transfinite limit of the sequence (fn ) because then

lim f n (x) for every x € E.
n+oo

A linear space r of bounded linear functionals is said to be
transfinitely closed, when every norm-bounded transfinite sequence
(fE) of elements of r has a transfinite limit f in r.
~very transfinitely closed space r is also norm-closed.
In fact, (6) and (7) then yield lim f n (x) = f 0 (x) for every x € E

n+oo
and as every functional f which here satisfies the condition
lim fn(x) :0 f(:1:1 :> lim fn(x) coincides with f o' it follows that f o is
n~oo n~oo

the only transfinite limit of the sequence (fn ), so that f 0 € r which
is consequently (norm)-closed.

LEMMA 2. Given a transfinitely closed linear space r of
linear functionals on E and a bounded linear functional f o
belonging to r, there exists, for each number M satisfying
condition

o < M < IIf - foil for every fEr,
an e lemen t x 0 € E such that

f o (x o) = 1, f(x o) = 0 for every f € rand IIx o ll < b.
Proof. For any increasing sequence of numbers (Mi ) with M1 = M,

which tends to infinity, let m denote the largest cardinal number
satisfying the following condition: given any set G S E of power < m,
there exists an element f € r such that

(10) IIfll ~ M2 and !f(x) - fo(x) I :> M1llxll for every x € G.

Note straightaway that the number m thus defined does not exceed
the cardinality of E because, if there existed an fEr such that
If(x)-fo (x)I:OM)..lIxll for everyxEE, one would have IIf-fo ll:>M1 =M,
contrary to the nypothesis (9).

This said, we shall now show that m is a finite number.
Indeed, suppose that m is not finite and consider any set GS E of

power m. Arrange the elements of G as a transfinite sequence (x~)

where 1 :;; ~ < 6 and 6 is the least ordinal of power mi a is plainly a
limit ordinal. Consequently, for every ordinal number n< a the
power of the set of terms of the sequence (x~) where 1 :> ~ < n is < m.
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By definition of m, there therefore exists, for every n < 8, a linear
functional fn E: r such that

(11) IIfn" ~ M2 and Ifn(XE;) - fo(XE;) I :> MI .lxE;" for every E;<n

and, as r is transfinitely closed by hypothesis, there exists an
element fEr which is a transfinite limit of the sequence Un)'
1:>n<8, and therefore, by (11), satisfies the conditions IIfll:>M 2
and If(xE;)-fo(xE;)I:>MllxS" for 1~E;<8, Le. the conditions (10).
Thus assuming m was infinl.te, there would exist for every set G~ E
of power man fE: r satisfying (10), contradicting the definition of
m.

Now as m is finite, there exists a finite set GI S E such that no
functional f satisfying the conditions

IIfll :> M2 and If(x) - fo(x) I :> MIllxlI for every X E: GI
belongs to r.

By induction, one easily establishes the existence of a sequence
(Gi) of finite subsets of E such that no functional f which, for
some k, satisfies the conditions

IIfll :> Mk and If(x) - fo(x) I :> Mi"xlI for x E: Gi and i < k

belongs to r. Consequently, if for some f we have:

(12) If(x) - fo(X} I :> Mi"x" for x E: Gi and i= 1,2, ... ,

the functional f does not belong to r.
We can assume that the elements of the sets Gi' where i=1,2, ••• ,

have norms equal to MI/Mi: one merely has to multiply these elements
by appropriate scalars. If the elements of these sets are then
arranged as a sequence (xn), first writing down the elements of GI ,
followed by those of G

2
and so on, we obtain

(13) lim x
n

= e and Ix n "S 1 for n=1,2, ••• ,
n-+-oo

and if

(14) If(x
n

) - f o (x
n

) I :> MI for n=1 ,2, •.• ,

the functional f does not belong to r.
Let Go denote the set of all sequences of the form (f(x n ») for

fE: r. Clearly Go S a and (fo (x n ») E: a. It follows from (14) that the
distance of (fo(xn») from the linear space G is ~MI. In view of
the general form of bounded linear functionais on the space a (cf.
Chapter 4, §4, p. 40), there thus exists by the lemma of Chapter IV,
§3, p. 35, putting G = Go' a sequence of numbers (Cn ) and a number C
such that

(15) C lim f o (x n ) + L Cnfo (x
n

) = 1,
n-+-oo n=1

(16) C lim f(x
n

) + L C fIx ) = 0 for every f E: r
n-+-oo n=1 n n

and

(17) ICI + Y ICnl ~ ~ •
00 n=1 1

Therefore, putting xO=n~1Cnxn it finally follows from (15)-(17),

using (13), that f o (x o ) =1, f(x o ) = 1 for every fE: rand
00 1 1

"x o" ~n~1Icnl·llxnll SMI = if ' q.e.d.
Lemma 2 just proved implies the following
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LEMMA 3. The notions of regularly closed and transfinitely closed
are the same for linear spaces of bounded linear functionals.

Proof. If a linear space r of bounded linear functionals is
transfinitely closed, it is (norm)-closed, which by lemma 2 immedi
ately implies that r is regularly closed.

Conversely, let r be a regularly closed linear space of bounded
linear functionals, (f~) an arbitrary norm-bounded sequence of type
e of elements of rand fO any functional which is a transfinite
limit of the sequence (f~). We thus have

(18) lim f (x) ~ fo (x) ~ lim f (x) for ev~ry x E E.
~+e ~ ~+e ~

If, then, f o did not belong to r, there would exist, by definition
of r, an element x E E satisfying the conditions (1), p. 71, whence,
in particular, f~ (x) =0, contradicting (18). Hence fo E r, from
which it follows that r is transfinitely closed.

Lemmas 2 and 3 yield the following

THEOREM 1. Given a regularly closed linear space r of bounded
linear functionals on E and a bounded linear functional fo not
belonging to r," there exists for each number M satisfying the condi
tion

o < M < "f - f o" for every fEr
an element x 0 E E such that

f o (x o) = 1. f(x o) =0 for every fE rand "x o" < ~

§4. Weak convergence of bounded linear functionals.

A sequence (fn) of bounded linear functionals is said to converge
weakly to the functional f when

lim fn(x) = fIx) for every fEE.
n+oo

The functional f is called a weak limit of the sequence (fn).
It follows that the functional f is additive and B-measurablei

according to theorem 4 (Chapter I, §3, p. 15) it is therefore a
bounded linear functional. Moreover, by theorem 5 (Chapter V, §1,
p. 50), the sequence of norms ("fnlll is bounded. Finally, we have

(19) "f" ~ lim "fn ",
n+oo

because the weak convergence of the sequence (fn) to f implies that
lim Ifn(x) 1= If(x) I for every x, and as Ifn(x) I:> "fn"."x" for
n+oo

n=1 ,2, ... , we have If(x) I ~ "x" .lim "fn ", from which (19) follows.
'if"l'OOne, easily deduces the follow~ng

THEOREM 2. For a· sequence (fn) of bounded linear functionals to
converge weakly to the functional f. it is necessary and sufficient
that both

(20) the sequence ("fn") is bounded
and

(21) lim f n (x) .= fIx) for every x belonging to a dense (or
n+oo

fundamental) set. hold.

THEOREM 3. If the space E is separable. every norm-bounded
sequence of bounded linear functionals (fn ) has a weakly convergent
subsequence.

Proof. It suffices to extract from the sequence (fn ) a sub-
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sequence which converges at every point of a countable dense subset
of E and this is easily accomplished by a diagonal procedure.

§5. Weakly closed sets of bounded linear functionals in separable
Banach spaces.

Given two sets of bounded linear functionals 6 and r where 6 £ r,
the set 6 is said to be weak Zy dens e in r when, for every fEr,
there exists a sequence (fn) s;;; 6 which converges weakly to f.

The set r of bounded linear functionals is said to be weakZy
aZosed when r contains every functional f which is the weak limit of
a sequence of functionals of r.

THEOREM 4. If the spaae E is separabZe, every set r of bounded
Zinear funationaZs on E aontains a aountabZe subset 6 whiah is weak
Zy dense in r.

Proof. We need only consider the case where the set r is norm
bounded, because every set of bounded linear functionals is the
union of at most countably many sets having this property.

Let (x n ) be a dense sequence in E and, for n=1,2, ••• , let Zn be
the subset of n-dimensional space defined by

(22) Zn = {C!(X 1 ),f(X 2 ), ••• ,f(xn»): fEn.
There clearly exists for every n a countable subset 6n of r such

that the subset of points of Zn for which f E 6 n is dense in Zn' The
eo

set 6 = n~l 6n is obviously countable and for every fEr there exists

a sequence (fn )·!:: 6 n !:: 6 such that Ifn (xi) - f(xi) I <*for every

i=1,2, .•• ,n, and which therefore converges weakly to f, since (fn)
is norm-bounded by hypothesis as (fn) £ 6 n S;;; r.

THEOREM 5. For separabZe Banaah spaaes E, the notions of reguZar
Zy aZosed and weakZy aZosed are the same for Zinear spaaes of
bounded Zinear funationaZs on E.

Proof. Firstly, let (fn) be a sequence of bounded linear func
tionals belonging to r which converges weakly to a functional fo'

We thus have

(23) lim fn(x) = fo(x) for every x E E.
n+eo

If f o did not belong to the set r, assumed to be regularly closed,
there would exist, by the definition of this notion, an element
x 0 E E satisfying the conditions

(24) fo(x o) = 1 and f(xo) = ° for every fEr.

As (fn) == r, we would consequently have f n (xo) =° for every
n=1,2, ... , whence, by (23), fo(xo)=O, contradicting (24). It
follows from this that foE rl the set r is therefore weakly closed.

Remark. Note that the sBparability of E does not play any part in
this part of the proof.

Conversely, in view of lemma 3, p. 75, it is enough to show that
the set r, assumed to be weakly closed, is transfinitely closed.

Let (fl';) be a sequence of type 8 such that

(25) fl'; E rand "fl';" S M for t , I'; < 8

and let (xi) be a dense sequence in E. By hypothesis, there exists
for every natural number n an ordinal I';n such that

(26) lim f/:(xi) - ! S fl'; (x.) S lim f/:(x.) +! for 1 :> i , n.
1';+8" n n 1- 1';+8" 1- n

Now, as the space E is separable, by theorem 3, p. 75, one can
extract a weakly convergent subsequence from the sequence (fl';n)'
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Letting f denote the weak limit of the sequence (f~ ), it follows
from (25) that fE r and, further, (26) implies thatnf is a trans
finite limit of the sequence (fE).

Theorems 1, p. 75 and 5, p. 76, which have just been established,
immediately imply the following

THEOREM 6. If the Banaah spaae E is separable, then, given a
weakly alosed lineqr spaae r of bounded linear funationals on E and
any bounded linear funationals f o not belonging to r, there exists,
for eaah number M satisfying the aondition

o < M < llf - fo" for every fEr
an element X o E E suah that

fo(x o) = 1, f(xo) = 0 for every fEr and llxoll < h.
In view of lemma 3, p. 75, theorem 5 implies that the notions of

regularly, transfinitely and weakly alosed, as applied to linear
spaces of bounded linear functionals, are all equivalent for separ
able Banaah spaaes E.

A consequence of this, recalling the remark on p. 76, is the
following

THEOREM 7. If the Banaah spaae E is separable and r is a set of
bounded linear funationals on E whiah is not only a weakly alosed
linear spaae but is also total, then r aontains every bounded linear
funational on E (i. e. r = E*).

whengiven by (27),
1

= fx(t)u(t)dt
o

(29)

(27)

(28)

§6. Conditions for the weak convergence of bounded linear func
tionals on the spaces C, LP, a and lP.

We go on to study weak convergence of bounded linear functionals
in several particular separable Banach spaces, namely, the spaces C,
LP for p <: 1, a and lP for P ~ 1.

For a countable dense set we take: in C and LP, the polynomials
with rational coefficients, in a and lP respectively, the sequences
of rational numbers which are eventually constant and eventually
zero, respectively.

The spaaes LP for P > 1. Since every bounded linear functional f
on LP is of the form (cf. Chapter IV, §4, p.39)

1

fx(t)u(t)dt where u(t) E LP/ 1p- 1
)

o
the sequence of functionals

(fnl where fn(xl = fX(tlan(tldt and an(tl E LP/(p-ll
o

converges weakly to the functional
1

lim fx(t)un(t)dt
n+co 0

for every function x (t) E LP •
Now, one can easily show that for the sequenae (28) to aonverge

weakly to the funational (27) it is neaessary and suffiaient that
the aonditions:

(30) the sequenae (f~lan(t) IP/(P- 1l dt ) is bounded

and

(31) lim f~un(t)dt = f~u(t)dt for 0 ~ u ~ 1,
n-+-co

both hold.
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and

(38)

The proof follows from theorem 2, p. 75, given that

[

1 1(P-1)/p
IIfn ll = ![an(t) IP /<P-1)dt J '

further, that the functions xu(t) defined for 0::> u::> 1 by the
conditions

()
{0

1 for 0 :> t ::> u,
Xu t = for u < t ::> 1,

constitute a total subset of LP and finally that
1 u
fx (t)a (t)dt = fa (t)dt
o uno n

for every n=1,2, •••

The spaae L 1 • Since every bounded linear functional f on L 1 is of
the form

1

(32) fIx) = fx(t)a(t)dt where a(t) E M
o

(cf. Chapter IV, §4, p. 40) the sequence of functionals
1

(33) (f ) where f (x) = fx(t)a (t)dt and a (t) E Mn non n
converges weakly to the functional given by (32) when

1 1

(34) lim fx(t)a (t)dt = fx(t)a(t)dt for every x(t) E L 1 •
n~oo 0 n 0

One shows as in the previous case that the sequence of linear
functionals (33) converges weakly to the functional (32) if and only
if we have both

(35) the sequenae Can(t)) is a norm-bounded subset of M

u u
(36) lim fan(t)dt = fa(t)dt for every u with 0 ::> u ::> 1.

n+oo 0 0

Remark. The conditions (30) and (31) are clearly necessary and
sufficient for property (29) to hold. The same is true of the con
ditions (35) and (36) for property (34).

The spaaes zP for P ~ 1 • Since every bounded linear functional f
on zp is of the form

00 P {ZP/(P-1)for p > 1
(37) fIx) = L a.~. where x= (~.) E Z and (a.) EMf l'

i=l -z- -z- -z- -z- or P = ,
(cf. Chapter IV, §4, p. 42), the sequence of functionals

(f) h f () t <" d ( ) {ZP/ (P-1) for P > 1,
n were n x =.l ain~i an ain E M for P 1,

-z-=1

converges weakly to the functional (37) when
00 00

(39) lim L a. ~. = L a.~. for every x = (~i) E Zp.
n+oo i=l -z-n -z- i=l ~ -z-

For the sequenae of Zinear funationaZs (38) to aonverge weakZy to
the funationaZ (37), it is neaessary and suffiaient that
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Linear functionals

j( Y la, IP /(P-1 J ) for P > 1,
i=l 'l.n

(~~f lain l ) for P

be bounded
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(41) 1,2, ...

The proof follows from theorem 2, §4, p. 75, in view of the fact
that the elements

{
1 for i = j,

x j = (~ij) where ~ij = 0 for i ~ j,

form a total sequence in zP and, further, that f n (x .) = a jn for all
natural numbers j and n~ finally, one uses the expr~ssions for the
norms of bounded linear functionals on ZP, given on p. 42.

Remark. The conditions (40) and (41) are also necessary and
sufficient for· (39) to hold.

The spaae c. In view of the general form of bounded linear func
tionals f on a, given by

(42) fIx) = A lim ~i + L a.~, where x = (~i) E a and (ai ) E Zl
i"'''' i=l 'l. 'l.

(cf. Chapter IV, §4, p. 40), the sequence of bounded linear
functionals

(43) (fn) where fn(x) = An ~im ~i +,L ain~i and (ain ) E Zl for
'l. ...'" 'l.=1

n = 1,2, ...

converges weakly to the functional (42) when

(44) lim [A lim~. + Ya, ~.] = A lim ~i + L a.~. for every
n"'''' n i ...'" 'l. i=l 'l.n 'l. i ...'" i=l 'l. 'l.

x = (~i) E c.

It is easily shown that for the sequenae (43) to converge weakZy
to the funationaZ (42), it is neaessary and suffiaient that

(45) the sequenae ( Y Ia, I + IA I) be bounded
i= 1 'l.n n

and

(46) lim
n"'''''

( A +Ya,)=
n i=l 'l.n

'"
A +i~lai and ~:: ain = a i for i=1,2, ...

§7. Weak compactness of bounded sets in certain spaces.

The preceding results allow one to deduce, by virtue of theorem 3,
p. 75, the following theorems.

For LP where p> 1. Every sequenae of functions (an It)), where
an (t) E LP, satisfying the condition

1

fla (t)IPdt < M,
o n

is a number independent of n, aontains a subsequenae
suah that, for some funation a o (t) E LP:

1 1

lim fan.(t)X(tJdt = fao(t)x(tJdt for every x(t)E LP/(P-1J.
i-><» 0 'l. 0
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Indeed, the expressions f~an(t)x(t)dt for n=1,2, •.. , can be

regarded as bounded linear functionals LP/(P-l). Since they form a

norm-bounded set and the space LP/(P-l) is separable, one can, by

theorem 3, p. 75, extract a weakly convergent subsequence from the
sequence (an(t)); one has then merely to apply the result establish
ed for the LP spaces in §6, p. 77.

For M. Every norm-bounded sequenae of funations (an It)) £ M aon
tains a subsequenae (ani (t)) suah that, for some funation a o (t) E: M:

1 1

lim !an.(t)x(t)dt = fao(t)x(t)dt for every x(t) E: L 1
•

i+oo 0 ~ 0

The proof is analogous to the preceding one.

For lP, p > 1, and m, analogous theorems are available.

§8. Weakly continuous linear functionals defined on the space of
bounded linear functionals.

Let F be a linear functional defined on the space E* of all bound
ed linear functionals on the Banach space E. Then F is said to be
weakly aontinuous when lim F(fn ) = F(1l whenever the sequence (fn)

n-+-oo
and the element f in E* are such that (fn) converges weakly to f.

THEOREM 8. If the Banaah spaae E is separable and the bounded
linear funational F on E* is weakly aontinuous, there exists an
element X o E: E suah that

(47) F(f) = f(xo) for every f E: E*.

Proof. If r denotes the set {fE: E*: F(1l = O}, it easily follows
from the weak continuity of F that r is a weakly closed linear
space. We can evidently assume that r., E* (for otherwise we need
merely take x 0 =0). Let, therefore, f 0 be a bounded linear func
tional satisfying the equation

(48) F(f o ) = 1.

It follows from theorem 6, p. 77, that there exists an x 0 E: E such
that

(49) fo(x o) = 1 and f(xo) = 0 for every f E: r.
Now, the identity

(50) f = fo.F(f) + <P for every f E: E*, where <p = f - fo.F(!l,

yields, by (48), F(CP) =0, whence cpE: r and consequently, by (49),
<p (xo) =0, which by (50) implies the property (47), q.e.d.

Remark. If the space E is not separable, theorem 8 still holds
provided that F is a bounded linear functional and the set r is
regularly closed, which enables one to appeal to theorem 1, p. 75,
instead of theorem 6, p. 77, in the argument.
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CHAPTER IX

Weakly convergent sequences
§1. Definition. Conditions for the weak convergence of sequences

of elements.

A sequence (x n ) of elements of E is said to be weakZy aonvergent to
the element x E E when

lim f(x n ) = fIx) for every f E E*,
n+oo

i.e. for every bpunded linear functional f defined on the given space
E.

THEOREM 1. For the sequenae (x n ) to aonverge weakZy to x, it is
neaessary and suffiaient that

(1) the sequenae (lIx n II) be bounded

and

(2) lim <p (x n ) = <p (x) for every <p E 11 where 11 is a dense subset of E*.
n+oo

Proof. The necessity of (1) follows from theorem 6 (Chapter V, §1)
p. 50, while that of (2) is obvious.

To prove the sufficiency, consider an arbitrary functional f E E*.
By (2) there then exists for every number E> 0 a functional <p E 11 such

that II <p - fll < 2EM where M=sup ({ IIx n II: n=1 ,2, ••• } U {lix II}), which is

finite by (1). Consequently,

If(x - xn) I :0 I<p(x - xn) I + ~. IIx - xnll :0 1<p(X - X n) I + E;

as lim <P(xn ) =<P(x) and E is arbitrary, we conclude from this that
n+oo

~1~ f(x n ) = f(x), Le. that the sequence (x n ) converges weakly to x.

Remark. It is enough to require of the set 11 that the set of all
linear combinations of functionals of 11 be a dense subset of E*.

THEOREM 2. If the sequenae (x n ) aonverges weakZy to x, there
exists a sequenae (gn) of Zinear aombinations of terms of the
sequenae (x n ) suah that lim gn =x.

n+oo

The proof follows from theorem 6 (Chapter IV, §3) p. 36, and the
definition of weak convergence.

the spaces C, LP, a and Zp.

of sequences in some of the

(3)

§2. Weak convergence of sequences in

We here discuss the weak convergence
more important special spaces.

The spaae C. In view of the general form of bounded
tionals in C (see p. 37), for a sequenae of aontinuous
(xn(t») to aonverge weakZy to the aontinuous funation
neaessary and suffiaient that

1 1

lim Ix (t)dglt) = Ix(t)dg(t)
n+oo 0 n 0

linear func
funations
x(t), it is
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for every function g(t) of bounded variation.
It follows from this that for a sequence of functions (x n (t») f:: C

to converge weakly to the function x(t) E C, it is necessary and
sufficient that both

(4) the set {xn (t) :n=1, 2, ... } of functions is (norm) -bounded,

and

(5) lim xn(t) = x(t) for every t E [0,1].
n-+-co

In fact, the necessity of (4) follows from theorem 1, p. 81, and
that of (5) is a consequence of the fact that, if to denotes an
arbitrary point in [0,1], the linear functional fIx) =x(t o) is
bounded, whence lim f(x n ) =f(x) and consequently lim xn(t O ) =x(t o).

n+oo n+oo
The sufficiency follows from the fact that conditions (4) and (5)

imply the equality (3) for every function g(t) of bounded variation
(cf. Introduction §5, p. 4).

This established, one obtains, from theorem 2, the following
theorem:

If a sequence of continuous functions (x n (t»), 0::;; t::;; 1, is (norm)
bounded and converges everywhere to a continuous function x(t), then
there exists a sequence of polynomials (linear combinations) of
terms of the sequence (xn(t») which converges uniformly to x(t).

This is a remarkable property of the space of continuous functions
which already fails, for example, for functions of the first Baire
class.

The LP spaces for p> 1. The sequence (x n (t») f:: LP converges weakly
to x (t) E LP when

1 1

lim fxn(t)a(t)dt = fx(t)a(t)dt
n-+-co 0 -1 0

for every function a(t) E LP/(P ).

By the remark on p. 78, we have the following theorem:

For the sequence of functions (x n (t»)!:: LP to converge weakly to
the function x (t) E LP, it is necessary and sufficient that both

(6) the sequence (!Ixn(t) jPdt) be bounded

and

(7)
u

lim fxn(t)dt
n+co 0

The space L1
• The sequence

when

u
[x(t)dt for

(x n (t»)!::L 1

o ::;; u ::;; 1.

converges weakly to x 0 ELI

1 1

(8) lim fXn(t)a(t)dt = fxo(t)a(t)dt
n+oo 0 0

for every (essentially) bounded function a(t).

As a result of this, we have the following theorem:

For the sequence of functions (x n (t») £ L1 to converge weakly to
the function Xo (t) ELI, it is necessary and sufficient that the
following conditions all be satisfied

(9) the sequence (!IXn(t) Idt) is bounded

(10) for every number E > 0 there exists a number n> 0 such that

IJHmn(t)dtl ::;; E for n = 1,2, ••• ,
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the sequenae (lIxn ll) be bounded,

for every set H SO [0,1] of measure < n,
u u

(11) lim fxn(t)dt = fxo(t)dt for 0 ~ u ~ 1.
n+oo 0 0

In fact, (8) is equivalent to the statement that

lim fl[x (t) -xo(t)]a(t)dt=O for a(t) EM; the theorem in question
n-+C:O 0 n
easily follows from this with the help of the theorem of Lebesgue
given on p. 5 (see Introduction, §6).

The spaae a. For a sequenae (xn), where x n = (I;~) E a, to aonverge

weakly to the element x = (I;i) E a, it is neaessary and suffiaient
that

(12 )

and

(13) lim I;~ = I;i and lim (~im I;~) = ~im I;i'
n-+oo n+oo 1.+00 1.+00

The proof is immediate, given that every bounded linear functional

f on a is of the form fIx) = C lim 1;. + .~ C.I;. where x = (1;.) and
i+oo ~ ~=1 ~ ~ ~

IIfll = Ici + i~llCil (see p. 41) and remembering that if one puts

j
lim 1;. for i = 0,. ~

f. (x) = ~+oo

~ 1;. for i ~ 1,
~

the set of linear combinations of the fi's constitute a dense subset
of the space of all bounded linear functionals on a.

The lP spaaes, p> 1. For a sequenae (x n ) where x n = (I;~n») E lP to

aonverge weakly to x = (I;i) E lP, it is neaessary and suffiaient that

(14) the sequenae of numbers (iL II;~n) IP ) be bounded

and

( 15) lim I;~n) = 1;. for every i=1,2, •••
~ ~

n+oo

The proof follows from the remark on p. 79.

The spaae P. For a sequenae (x n ) where x n = ( I;~n) ) E II to (Jon

verge weakly to x = (I;i) E ll, it is neaessary and suffiaient that

lim IIx - xII = 0, i.e. lim Y II;~n) - 1;.1 = o.
n+oo n n+oo i=l ~ ~

Consequently:

In the spaae ll, weak aonvergenae is equivalent to norm aonverg
enae.

Proof. Suppose that (xn ) converges weakly to x. Putting

n ~n) = I; ~n) - 1;., we thus have that the sequence (y ) where

y: = (n~h)) co~verges weakly to 0 as n + 00. conseq~entlY, for every

bounded sequence of numbers (a.) we have
&;

(16) lim L a.n ~n) O.
n+oo i=l ~ ~

Letting

a.
~ {0

1 for j
for j

i,
~ i,
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we thus have

(17) lim n~n)
n-+-oo J

We need to show that

o for every j 1,2, •.•

(18 )

Suppose, on the

lim y In~n) I =
n-+-oo i=l 'L.
contrary, that

O.

e:< 
5,

and . ~ In ~ n 1) I
'L.=r+1 'L.

n k -
1

and such that

sequences of natural

r 1 is the least r such that

(19 ) lim y In~n)1 > e: > O.
n-+-oo i=l 'L.

By induction, let us define two increasing
numbers (n

k
) and (r

k
) as follows:

1° n 1 is the least n such that

nk is the least natural number exceeding
00 (nk) rk-1 (nk) e:
i~llni I> e: and i~l In i 1<5'

4° r k is the least natural number exceeding r
k

-
1

and such that
rk (nk) e: 00 (nk) e:

. - L 1 In. I > -2 and . - L 1 In. I < -5''L.-rk_1+ 'L. 'L.-r k+ 'L.

The sequences (n k ) and (rk ) thus defined exist by virtue of (17)
and (19).

Now let

_ !Sign n~nl)
a i - . (nk-tl)

s~gn ni for r k < i ~ r k +
1

•

have la.1 = 1 for every i=1,2, .•• , whence by (16)
'L.

(nk)
Ia.n. =0.

i=l 'L. 'L.
lim
k-+-oo

(20), we have
00 (n )

I I a.n. k I
i=l 'L. 'L.

3° and 4°,

I
~ Ink) I '> ~ _ ~ _ ~ __ e:
l. a.n. I" -i=l 'L. 'L. 2 5 5 10

k=1,2, .•. , which contradicts (21). We therefore have (18),

We thus

(21)

(20)

But, by

whence, by

for every
q.e.d.

§3. The relationship between weak and strong (norm) convergence
in the spaces LP and zP for P > 1 •

As far as the connection between weak and norm convergence in the
spaces LP and ZP, p> 1, is concerned, we have the following more
general theorems:

If the sequenae (:x:n (t»), where x n (t) E LP and P > 1, aonverges weak
Zy to x (t) E LP and if. further,

1 1

lim Jlxn(t) IPdt = Jlx(t) IPdt,
n~oo 0 0

then the sequenae (xn(t») aonverges to x(t) in norm, i.e.
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1

lim fix (t) - x(t) ,Pdt = o.
n-+oo 0 n

We are going to prove the analogous theorem for the ~P spaces, P > 1 ,
the case P = 1 having already been discussed in the preceding section
§2.

If the sequenae (x n ), where Xn =(I;~n») E· ~P and P ~ 1, aonverges

weak~y to x = (I;) E ~P and if

lim IIxn ll = IIxll,
n-+-oo

then

o.- xII
n-+-oo
lim IIxn

We have by (15), p. 83,

lim I;t l = I;i
n-+-oo

1

( y II;~n) ..:. I;.IPW ~ (N!lll;~n)
i=l '/- '/-! i=l '/-

natural number N. Now,

(r II; ~ n) _ 1;. Ip)~ ~ ( Y II; ~ n lIP)~
i=N '/- '/- i=N '/-

(24)

(22)

Proof·

(23)

for any

and

Since lim
N-+-oo

N is arbitrary, this implies (22), q.e.d.

n-+-oo

by hypothesis, together with (23) and (24)

~ [2(iIN 1 I;i IP )PJP = 2PiINll;i1P.

whence

§4. Weakly complete spaces.

If (xn) is a sequence of elements of a Banach space E such that
~1~ f(x n ) exists for every bounded linear functional f on E, it is

not necessarily the case that there exists an element xoE E to which
the sequence (xn) converges weakly, Le. such that lim fIx ) = f(x o )

n+CO n
for every bounded linear functional f E E*.

Here is an example of this situation in the space C. Let (xn(t)),
o ~ t :0 1, be a norm-bounded sequence of functions which converges
everywhere to a function zIt) which is not continuous. The limit

lim f
1
x n (t)dg then exists for every function g(t) of bounded varia-

n+oo 0

tion (cf. Introduction §5, p. 4), but the sequence (xn(t)) does not
converge weakly to any continuous function.

Nevertheless, we have the following theorem:

In the spaaes LP and ~P for P <: 1, the existenae of lim f(x n ), for
n-+-oo

a sequenae (x n ), for any bounded ~inear funationa~ f, imp~ies that
the sequenae (xn) aonverges weak~y to some e~ement x o'

1
Proof for L 1

• If lim f xn(t)cdt)dt, where (x n (t))SL 1 , exists for
n+OO 0

every function edt) EM, we must have
1

lim f[x (t) - x (t)]a(t)dt 0 for every a(t) E M.
p,q-+-oo 0 P q

We shall show that there exists, for every e: > 0, an n > 0 and a
natural number N such that
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(25) IHlxN(t) - xn(t) Idt < E,

for every n ~ N and every subset H of [0,1] of measure <n.
Indeed, if this were not so, there would exist two strictly inc

reasing sequences of natural numbers (Pk) and (n k ) and a sequence of

subsets (H k ) whose measures tend to 0 such that

IHklxPk(t) -lXnk(t) Idt ~ E, whence

lim I[xp (t) - xnk(t)]~(t)dt = 0 for every ~(t) E M,
k-+oo 0 k

would contradict the theorem of Lebesgue (see Introduction, §6,
p. 5).

This established, we therefore have in particular, if n is suffic-

iently small, IHlxn(t) Idt<!E for every n=1,2, ••• ,N, whence by (25)

(26) IHIXn(t) Idt < ~E for every n=1,2, ... ,

provided that the measure of H is <no
Put

is absolutely continu-

L [a(t~) - alt.)],
i 1. 1.

the absolute continuity of

t
lim Ix (u)du = B(t).
n+oo 0 n
that the function B(t)

(27)

IHI x n (t) Idt < E

particular, if
intervals with

We are going to show
ous.

In fact, for every E> 0 there exists by (26) an n> 0 such that

for n=1,2, .•. , and for every set H of measure <no In

H consists of a finite number of non-overlapping
end-points t. and t', we therefore have

1. t~ 1.
lim I xn(t)dt = lim L I1.xn (t)dt =
n-+oo H n-+oo i ti

whence IPB(ti) - B(t i )] I ~ E, which gives

the function B(t).
This being so, we have only to put a' (t) = X o (t) to conclude from
(27) together with the conditions for weak convergence established
on p. 77, that the sequence ex (t») converges weakly to xo(t).

n 1
Proof for LP, p> 1. Suppose that lim I xn(t)y(t)dt, where

n-+oo 0 I -1
xn(t)ELP for n=1,2, ..• , exists for every y(t)ELP (P ). The fn'

given by fn(y) = I~xnlt)ylt)dt are clearly bounded linear functionals

on LPI (P-1) and since, by hypothesis, lim fn(y) exists for every
I( -1) n-+oo

y(t) E LP P , lim f (y) = fly) also defines a bounded linear func-
I n-+oo n

tional f on LP (p-1) by theorem 4 (Chapter I, §3, p. 15); this f is

therefore (cf. Chapter IV, §4, p. 39) of the form

f(y)=I>olt)y(t)dt, for yELPI(p-1), where xoELP.

It follows from this that
1 1

lim Ix (t)y(t)dt = Ixo(t)y(t)dt for every y E LP/(p-1),
n+oo 0 n 0

i.e. that (x n ) converges weakly to xo' q.e.d.

The proof for Zl is similar to that of the theorem proved in §2,
pp. 83-84, and consists of showing that the sequence (x n ) converges
in norm to an element xo.
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The proof for zP where p> 1 is similar to that for LP •

87

§5. A theorem on weak convergence.

We conclude this chapter with the following general theorem.

THEOREM 3. Let U be a bounded Zinear operator from one Banaah
spaae E to another E1 • If a sequenae (xn) aonver~es weakZy to x
in E, then the sequenae (U(x n )) aonver~es weakZy to U(x o) in E1 •

Proof. Let Y be any bounded linear functional on E1 • Then
X=U*(Y), given by XIx) =Y[U(x)], is a bounded linear functional on
E, as IX(x)l= IY[U(x)]I:>IIYII.IIU(x)II:>IIYII.IIUII.llxll.

The weak convergence of (x n ) to X o thus implies that

limY[U(xn )] =limX(xn ) =X(x o) =Y[U(x o)],
n700 n+oo

i.e. that (U(x n )) converges weakly to U(x o), q.e.d.

Remark. With the additional hypothesis that the operator U is
aompaat, the weak convergence of (xn) to X o implies that (U(x n ))
aonver~es to U(x o ) in norm, i.e. that

lim IIU(x n ) - U(x o) II = O.
n+oo

In fact, if this were not the case, there would exist an E> 0 and
a subsequence (xni) such that

(28) IIU(xni) - U(x o )1I > E for every i=1,2, •.. ,

with the sequence (U(xni)) converging in norm to an element Y'EE~.
Now as the weak convergence of (xn.) to X o implies, by the preced1ng
theorem 3, that of (U(xni)) to U(x~), we would have y' = U(x o), which
is impossible by (28).
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CHAPTER X

Linear functional equations

§1. Relations between bounded linear operators and their adjoints.

In this chapter we shall concern ourselves with equations of the
form y = U (x) where U is a bounded linear operator whose domain is a
Banach space E and whose codomR~n is a subspace E

1
of another Banach

space E'. .
Bounded linear functionals on E, i.e. elements of the dual of E,

will be denoted by X and those on E' by Y.
If the bounded linear operator U defines a bijective transformation

from E to E1 , the inverse operator U- 1 is clearly linear (although
not necessarily continuous). It is easy to see that for the inverse
operator to exist, it is necessary and sufficient that

U(x) = 8 implies x = 8.

If the inverse operator is continuous, there exists an M> 0 such
that, if y=U(x), IIxll:>M.llyli.

Conversely, if there exists a number m> 0 such that mllxll ::> IIU(x) II,
then U has a continuous inverse.

If the invepse opepatop is aontinuous, then 8he aodomain E1 is
alosed.

Indeed, putting lim Yn = y, where Yn = U(x n ), we have
n--'

lim IIxp - xqll :> M. lim lIyp - Yqll = 0,
p,q~oo p,q~oo

whence, putting lim x n = x, we conclude that U(x) = y.
n~oo

If the functional Yo is a transfinite limit of the sequence (Y~) of
type a, then the conjugate functional X o =U*(Y o ) is a transfinite
limit of the sequence (X~) = (U*(Y~») of type a.

In fact, for every x we have Xt;(x) =Yt;[U(x)] where 1:> ~< a.
LEMMA. If the adjoint opepatop U* has a aontinuous invepse and f 1

denotes any pegulaply alosed lineap subspaae of the dual of E', then
the aoppesponding set f =U*(f 1 ) is also pegulaply alosed.

Ppoof. By hypothesis there exists a number M> 0 such that
IIU*(Y)II ~M.IIYII for every Y. Consequently, if X~E U*(f 1 ) and JIX~II:> c
for every 1 :::i I; < a, where XI; =U* (Yt;) , we will also have Y~ E f 1 and

IIYt;II:>hc for every 1 :> t; < a. Since, by hypothesis the set f 1 is reg

ularly closed, there exists by lemma 3 (Chapter VIII, §3, p. 75) a
transfinite limit Yo E f 1 of the sequence (Ye). The functional
X o =U*(Y o ) c~early therefore belongs to U*(fd and is a transfinite
limit of the sequence (X~). The set f = U* lfd is thus transfinitely
closed and therefore, by the same lemma, regularly closed, q.e.d.

THEOREM 1. If the adjoint opepatop U* has a aontinuous invepse,
the equation y =U(x) has a solution fop evepy y.
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Proof. For any given non-zero Yo E E', let r l denote the set of
all bounded linear functionals Y such that Y (Y 0) = 0 and let
r=u*(rl)={x: X=U*(Y), YEf l }.

The set fl is regularly closed; it follows from this by the pre
ceding lemma that the set r is also regularly closed. Moreover, if
Yo is a bounded linear functional such that Yo(Yo) =1, the function
al X 0 = U* (Y 0) does not belong to f. Hence by theorem 1 (Chapter
VIII, §3, p. 75) there exists an element Xo E E such that

(1) X o (x o ) = 1 and X(x o ) = 0 for every X E r.
Putting

(2) Y 1 = U (x 0 ) ,

we have Yo (Y l ) = X o (x o ) and Y(Yl) = X(x o )' whence by (1)

(3) Yo (Yl) = 1 and Y(Yl) = 0 for every Y E fl'

Now, for any bounded linear functional Y, the functionalr = Y - [Y (Y 0)] • Yo clearly belongs to r l' because
r(yo) = Y(Yo) - [Y(Yo) ]'Y o (Yo) = O. Consequently, we have, by (3),
Y (Y l) = Y (y l) - [Y (Y 0 ) ] • Yo (y l) = Y (y l) - Y (y 0 I = 0, so that Y (Y 1 - Yo) = 0
for every Y. It follows that Yl - Yo =0, and so, by (2), X o satis
fies Yo = U.(x 0)' and is therefore the required solution for the
arbitrarily chosen element Yo' q.e.d.

Conversely, we have

THEOREM 2. If the equation X= U*(Y) admits a soZution for every X,
then

1° the operator U has a aontinuous inverse,

2° the aodomain of U is the set of Y whiah satisfy the aondition

(4) Y(y) = 0 if U*(Y) = O.

a continuous inverse,the operator U did not admit
a sequence (x n ) ~ E such that

lim IIx II
n

(5)

Proof. 1 0. If
there would exist

n-+-oo

and lim llYn II = 0 where Yn =U(Xn ).
n-+-oo

Now, as the equation X = U* (y) has a solution for any X by hypothe
sis, we have lim X(X n ) =lim Y(Yn) =0 for every bounded linear func-

n-i-OO n-+oo

tional X defined in E, which, by theorem 6 (Chapter V, §1, p. 50),
implies that the sequence of norms (lIx n ll) is bounded, contradicting
(5) •

2 ° . Suppose that for some element Yo E E* ,

(6) U*(Y) = 0 implies Y(Yo) = o.

Since the codomain E l of the operator U is closed by 1° above, if
Yo did not belong to E l , there would exist (cf. Chapter IV, §3, p.
35, lemma) a bounded functional Yo such that

(7) Yo(Yo) = 1

and Yo(y) = 0 for every Y EEl' Putting X o = U*(Y o), we would thus
have X 0 (x) = Y (Y) =0 where Y =U(X) EEl' whence U* (Y 0) = 0, which by
(6) would impiy that Yo(Yo) = 0, contradicting (7). Consequently,
YoEE l •

Conversely, if U* (y) = X =0, we have for every' y EEl the equality
y(y) = X (x) = 0, q.e.d.

Replacing, in the preceding theorems 1 and 2,x,y,X,Y,U and U* by
Y,X,y,x,U* and U respectively and using theorems about functionals
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instead of those involving elements in the arguments, we obtain the
following theorems.

THEOREM 3. If the operator U admits a continuous inverse, the
equation X = U* (Y) has a soZution for every bounded "linear functionaZ
X defined on E.

THEOREM 4. If the equation y = U(x) has a soZution for every y,
then

1° the operator U admits a continuous inverse,

2° its codomain is the set of X satisfying, for every x E E, the
condition:

(8) XIx) = 0 if U(X) = o.
Theorems 1-4 lead easily to the following theorems.

THEOREM 5. If the equation y =U(x) admits exactZy one soZution
for every y, then the equation X =U* (Y) aZso admits exactZy one
soZution for every X and converseZy.

THEOREM 6. If the operators U and U* admit continuous inverses,
then for every y and for every X there exist exactZy one x and one Y
such that y = U(x) and X = U* (Y).

THEOREM 7. If the equations y = U(x) and X = U* (Y) admit soZutions
for every y and for every X, then these soZutions are unique.

Furthermore, we shall prove the three theorems that now follow.

THEOREM 8. If the codomain of a bounded Zinear operator U is
cZosed, that of the adjoint operator U* is the set of X which satis
fy condition (8): XIx) = 0 if U(x) = o.

Proof. The derived set E~ of the codomain ElSE' of the operator
U, being a closed linear subspace, is itself a Banach space.

Now if Z denotes an arbitrary bounded linear functional on E~ and
Ur(Z) denotes the bounded linear functional X satisfying the equa
tion

Z[U(x)] = XIx) for every x E E,

it is easily verified that the codomains of the operators Ur and U*
are the same. Indeed, for every bounded linear functional Y on E'
and satisfying the condition

(9) Z(y) = Y(y) for every y E E~,

we have Z[U(x)] =Y[U(x)] for every x EE, whence

(10) Uf(Z) = U*(Y)

and, by definition of Z, there exists, by theorem 2 (Chapter IV, §2,
p. 34), a bounded linear functional Yon E' satisfying condition (9)
and therefore (10). Condition (8) follows from this by theorem 4,
2°, above, on replacing E' by E I •

THEOREM 9. If the codomain of the bounded Zinear operator U* is
cZosed, that of the operator U is the set of aZZ y which satisfy
condition (4): Y (y) = 0 if U* (Y) = o.

Proof. The functionals Z and Ur(Z) being defined as in the proof
of the preceding theorem 8, observe that Ur (Z) = 8 implies Z (y) = 0
for every y E E~ i hence Z = 8.

Now as the sets of Z and of X are Banach spaces, the operator Ur,
where X =Uf (Z), admits a continuous inverse by theorem 5 (Chapter
III, §3, p. 26). It follows from this by theorem 1, p. 89, that the
equation y = U (x) possesses a solution for every y E E~. The codomain
E I =E~ of the operator U is therefore closed.
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Proof·

(11)

As condition (4) is plainly satisfied, when y EEl' it only remains
to establish the converse, i.e. to show that every Yo E E' which
satisfies (4) belongs to E1 •

In fact, as E1 is a closed linear subspace, in the contrary case
(cf. Chapter IV, §3, p. 35, lemma) there would exist a bounded
linear functional Yo such that Yo (Yo) = 1 and Yo (y) = 0 for every
y EEl' Therefore, putting X o = U* (Yo)' we would have X 0 (x) = Yo (y) = 0
for x E E, whence X 0 = 0, and consequently U* (Y 0) = 0, contradicting
condition (4) which Yo is assumed to satisfy.

THEOREM 10. If the codomain E1 of the bounded linear operator U
is closed, there exists a number m> 0 such that for every y EEl one
can find a corresponding x E E satisfying the conditions

y = U(x) and IIxll :;;; mllyll.

Proof. In the course of the proof of theorem 3 (Chapter III, §3,
p. 25) we established proposition (1) which, under the hypothesis of
the theorem to be proved, yields the existence for every E> 0 of an
n> 0 such that, given an arbitrary y satisfying the inequality
lIyll < n, one can find a corresponding x satisfying the conditions
y = U(X) and IIxll < E.

We easily deduce from this the existence, for every y, of an x

meeting the requirements of the theorem with m = f.
n

§2. Riesz' theory of linear equations associated with compact
linear operators.

We are going to concern ourselves here with equations of the form
y = x - U(x), where U is a compact linear operator from the space E
into itself.

LEMMA. If the linear operator U is compact, then the operator T
given by T (x) = x - lJ (x) transforms every bounded closed set G~ E into
a closed set.

Put

x n E G for n = 1,2, ••• , and lim T(x n ) = Yo'
n-+-oo

so that the sequence (U(x n )) thus forms a relatively compact set and
there exists a subsequence (U(xni)) which converges to some element
xoEE. As xni=U(Xni) +T(xn .), we have, by (11)·, that
lim xn' = x 0 + Yo' whence T (y 0'"+ x 0) = Yo'
n-+oo 'l-

THEOREM 11. If U is a compact operator, the codomains of the
operators T and T*, given by

T(x) = x - U(X) and T*(X) = X - U*(X)

are closed.

Proof. With G denoting the set of solutions of the equation
T (x) = 0, let y ., 0 be a point of accumulation of the codomain of T,
so that there ~xists a sequence (xn)~E such that Yo=lim T(x n ).

n-+-oo
If the sequence (lIxn II) were bounded, the element Yo would belong

to the codomain by the lemma just proved.
Letting dn denote the distance between x n and the set G, there

thus exists a wn E G such that

( 12) d :;;; IIx - W II :;;; (1 + l)d •n n n n n

We have

(13) lim T(x
n

- W
n

) Yo'
n-+-oo
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If the sequence (II x n - wn II) were bounded, the proof would be com
plete by the preceding lemma.

Suppose therefore that lim IIxn - wn ll = 00, whence, putting
x -w n~OO

zn = II n nil' we have, by (13), lim T(zn) = 0 and IIz n ll = 1. By the
xn-wn n+OO

lemma we can thus extract, from the sequence (zn), a subsequence
(zni) convergent to an element we such that T(W e ) =0, whence Wo E: G.
Putting zn - W o = En' we have

(14 ) lim IIEn.1I = 0,
i-+oo 1-

so that zn - W = II
xn

-
Wn

l - W o = En and consequently
o x n wnl

xn-wn-wo.llxn-wnll = Enllxn-wn ll , whence by (12)

(15) Ilxni - wni - Wollxni - Wnillil :;; IIE ni ll(1 + n
1
Jdni •

Now, by (14) and (15) there exists an ni such that
dni

.llxni - wni - wollxni - Wnillil :;; -2-;

but this is impossible because wni + we II xni - wni II E: G and dni is the
distance between xni and G.

Thus the codomain of T is closed. The argument for T* is similar.

THEOREM 12. If U is a eompaet linear operator, the equations

x - U(X) = 0 and X - U*(X) = 0

have at most a finite number of linearly independent solutions.

Proof. Suppose, on the contrary, that there exists an infinite
sequence (xn) of linearly independent elements of E satisfying the
equations xn-U(xn) =0 for n=1,2, ••• Let En be the set

.{.£ h.x.: h. arbitrary real nUmbers}. Clearly-z.=l -z. -z. -z.
(16) x E: En implies x - U(x) = 0

and it is easy to see that for every n =1 ,2, •.. , the set En is a
closed linear subspace not containing xn+l and thus a proper subset
of En+l'

By the lemma of Chapter V, §3, p. 52, there therefore exists a
sequence (Yn) such that

(17) Yn E: En' IIYnll = 1 and llYn - xII > ~ for every X E: En_l ,

whence, by (16), Yn - U(Yn) = 0 and consequently Yn = U(Yn). The
sequence (Yn) is, therefore, a relatively compact set, which contra
dicts (17).

For the equation X - U* (X) = 0 the reasoning is similar, applied to
the dual space, of all bounded linear functionals on E, which is
itself a Banach space.

eompaet linear operator U, the equation
Y =X - U* (X), has a solution for every Y or
equation x - U(x) =0, respeetively
one solution, namely x =0 02' X =0 respee-

THEOREM 13. If, for a
Y = x - U(x), respeetive ly
Y respeetively, then the
X - U* (X) =0, has exaetly
tively.

Proof· Put

T(l) (x) = x - U(x) = T(x) and T(n) (x) = T[T(n-l) (x) l.

L~t En denote the set of all x E: E satisfying the equation
T(n} (x) =0 and suppose that there exists an xl;z: 0 such that T(x l ) =0.
Letting Xn denote the element satisfying the equation xn-l =T(x n ),
we therefore have
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whence

T(n) (x )
n+1

Xl '" 8 and T(n+1) (x )
n +1

T(x
l

) 0,

U(X) and T*(X) = X - U*(X).x -T(x) =

have the

Proof·

(19)

x n + 1 € En + 1 ' En'
The set En is plainly a closed linear subspace, and is a proper

subset of En +1 • Hence by the lemma on p. 92, there exists a
sequence (Yn) satisfying condition (17).

Now, as Yn E: En' we have, by definition of T and of En' the equal
ity T(Yn) =Yn - U(Yn), whence

(18) U(Yp) - U(Yq) = Yp - [Yq + T(yp) - T(yq ) l = Yp - X

and p> q implies T(P-l) (x) =T(P-1) (Yq) + T(P) (Yp) - T(P) (Y ) = 0.
Consequently x € Ep -1, whence, by (17), lIyp - xII >!, so ~hat, by

(18), W(Jt,f) - U(yqlll >; for p>q, which is J.mpossible, as the
sequence LU(Yn)) has convergent subsequences. It must therefore be
the case that Xl =0, q.e.d.

For the equation X - U* (X) = 0, the proof is similar, again working
with the dual space of E.

THEOREM 14. If, for a compact linear operator U, the equation
x - U(x) = 0, respectively X - U* (X) = 0, has the unique solution x = 0
or X = 0 respectively, then the equation y =x - U(x), respectively
Y=·X- U*(X), has a solution for every y or for every Y respectively.

Proof. As the codomain of the operator I - U, where I is the
identi ty operator on E, I (x) =x for every x E: E, is closed by theorem
11, p. 92, the hypothesis implies, by theorem 3, p. 91, that the
equation Y =X - U* (X) has a solution for every Y. Hence by the pre
ceding theorem 13, the only solution of the equation X - U* (X) = 0 is
given by X = 8 and consequently, by theorem 5, p. 91, the equation
y =x - U (x) is soluble for every y.

The proof for Y = X - U* (X) is similar.

THEOREM 15. If U is a compact linear operator, the equations

x - U(x) = 0 and X - U*(X) = 0

same number of linearly independent solutions.

As before, put

Let

(20) T(xi) = 0 for i=1,2, ••• ,n and T*(Xi) = 0 for i=1,2, ... ,v,
where the terms of the sequence (xi) and equally those of the
sequence (Xi) are assumed to be linearly independent and the numbers
n and v denote, respectively, the largest possible numbers of lin
early independent solutions of the equations T(x) = 0 and T* (X) = 0.

Denote by zi, for i=1,2, ••• ,v, any element such that

(21) X ( ) {1 for i = j,
j zi = 0 for i '" j.

Such zi exist, as the linear subspace of functionals of the form
i-1 v
L a.X. + L ~.X.

j=l J J j=i+1 J J
is weakly closed and does not contain Xi'

Similarly, let Zi' for i=1,2, ••• ,n, denote a bounded linear
functional such that

(22) ( ) = {1 for i j,
Zj xi 0 for i '" j.
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Such functionals Zi exist, because xi does not belong to the
closed linear subspace of elements of the form

i-1 n
L (X.X· + ~ S·x.,

j=1 J J j=1.+1 J J
Having said this, suppose, to begin with, that v> n. Let

n
(23) H(x) = U(x) + L Z. (X).2. and W(x) = x - H(x).

i= 1 1. 1.

It is easy to see that the operator H thus defined is compact. We
shall show that the equation W(x) =8 has exactly one solution,
namely x =8.

In fact, suppose that W(x o) = 8. We need to prove that X o = 8.
Now, we have, by (19) and (23):

(24) W(x o)
n

- H (x 0) = T (x 0) - L Z. (x 0) • Z .
i=1 1. 1.

o

and by (20)

(25) XiT(x) = 8 for every x and i=1,2, ••• ,v;

we deduce from (21) and (24) that

(26) XiW(x o ) = Zi(x O ) = 0 for i=1,2, ••• ,n,

whenc~ T(x o ) =8, which implies by (20) and the definition of n that

X o = i~1aixi where (Xi are suitable real numbers. By (26) and (22) we

therefore have Zi(x o ) =(Xi=O for every i=1,2, ••• ,n, whence, finally,
X o = 0.

This established, we conclude, by theorem 14, p. 94, that the
n

equation x - H (x) = T (x) - ih Zi (x) • zi = zn+ 1 has a solution. However

we immediately see, by (21) and (25), that Xn + 1 [x - H (x)] =0 and
'moreover, by (21), that Xn+ 1 (zn+1) 1. The assumption that v>n is
thus untenable.

v
Now suppose that v < n. Let H(x) =i~1 Zi (x) ,zi' whence

v .
H*(X) = .L X(z.) .Z .• Proceed1ng as above, one would then show that

1.=1 1. 1. v
the equation T*(x) - .L

1
X(Z.).Z.=0 (the adjoint of the equation

v 1.= 1. 1.
T(X)-.L Z.(x).z.=0) has exactly one solution, namely X='0. The

1.=1 1. l. v
equation T*(X) - i~1X(zi) ,Zi = ZV+1 would therefore have a solution by

theorem 14, p. 94, and this is, however, impossible, because we have
T*(X)XV+1=X[T(xV+1)] =0 for every X, whence, by (22), Z.(xv +1)=0
for i=',2, ••• ,n and moreover ZV+1 (x V+1) = 1. Thus the as§umption
that v < n also leads to a contradiction.

§3. Regular values and proper values in linear equations.

Suppose now that U, still a bounded linear operator, maps E into
itself.

If I is the identity operator on E, then I - hu is a bounded linear
operator for every real number h and its adjoint is I - hU* where U*
is the adjoint of U.

Having said this, we are going to study the equations

(27) x - hU(x) = y and X - hU*(X) = Y.

If, for a given ho' the first or second, respectively, of'the
equations (27) admits exactly one solution for every y or for every
Y, respectively, then h o is called a regular value of this equation;
otherwise, h o is called a proper value. The set of all such proper
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values is called the speatrum.
If x or X, respectively, satisfies the first or second, respec

tively, of the equations

(28) x + hU(x) = 0 and X + hU*(X) = 0,

it is known as a proper eZement (veator) or funationaZ respectively.
By theorem 5, p. 91, the two equations (27) have the same set of

regular values, and therefore also of proper values.
Theorems 1-9, established on p. 90 - 91, are easily seen to apply

to equations of the form (27). These theorems enable one to deduce
the behaviour of one of the two equations from that of the other and
conversely.

THEOREM 16. The set of reguZar vaZues is open.

Proof. If h o is a regular value, there exists a number m> 0 sat
isfying the conditions

IIx - hoU(x) II ;;: m.llxll and IIX - hoU*(X) II ~ m.IIXIi.

Consequently, for every E we have:

IIx - (h o + E)U(x)1I ~ IIx - hoU(x) II - [EI.IIU(x) II ~ em - IEI.IIUII)lIxll

and, similarly,

IIX - (h o + dU*(X) II ;;: em - IE!.IIU*II).IIXII.

It follows that, for lEI sufficiently small, the operators

I - (h o + E)U and I - (h o + E)U*

have bounded inverses, from which it follows, by theorem 6, p. 91,
that h o + E is also a regular value.

THEOREM 17. If Ihi < 1/ IIU II, then h is a regu Zar vaZue.

Proof. If Ihl< 1/IIUII, the solutions can be written in the form

(29) x = Y + ~ hnU(n) (y) and X = Y + ~ hnU* (n) (y),
n=l n=l

where
U (1) = U and U* (1)

U(n) = U[U(n-l) j and U*(n)
U* ,
u*[u*(n-l)j.

o,

~ Y[l h l.IIU*II]n. 1IY 1I.
n=l

The series (29) are convergent, because we have

and

~ IIhnU*(n) (Y) II
n=l

From (29) we obtain

~ n (n+l) 1 m n (n) 1
U(x) = U(y) + L h U (y) = h· Lh U (y) = h. (x - y),

n=l n=l
whence x - hu (x) = y. Similarly, we have X - hU* (X) = Y. The equations
(27) thus admit solutions for every y and for every Y respectively.
By theorem 7, p. 91, these solutions are therefore unique and con
sequently h is a regular value, q.e.d.

THEOREM 18. If h .. h' and

x - hU(x) =0 and X - h'U*(X)

then XIx) o.
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In other words: any proper veator of the value h is orthogonal to
every proper funational of a value h' not equal to h.

Proof. We have Xix) = hX[U(x)] = hU*(X)x and as U*(X) = ;,X, it

follows that X (x) =h\X (x). If h ., h r, we therefore have X (x) = O.

§4. Theorems of Fredholm in the theory of compact operators.

If, under the hypotheses of the previous section, the operator
is further supposed to be compact, one can state, for the equations
(28), the following theorems which constitute a generalisation of
Fredholm's theorems on integral equations.

THEOREM 19. The equations (28) have the same finite number d(h)
of linearly independent solutions.

This is just a restatement of theorem 15, p. 94.

THEOREM 20. If d (h) = O. h is a regular value.

This is a consequence of theorems 14, p. 94, and 19, above.

THEOREM 21. °If d(h) > 0 and if

{xi}' {Xi} respeatively. for i=1.2•..•• d(h).

denote (linearly independent) solutions of the equations (28). then
the equations (27) admit solutions for every y suah that Xi(y) = 0
and for every Y suah that Y(xi) = 0 respeatively. (i=1. 2 •••• • d(h)).

This is a consequence of theorems 8 and 9, respectively, p. 91,
and 11, p. 92.

We now prove the

THEOREM 22. If U is a aompaat linear operator. the proper values
of the first equation (27)

y = x - hU(x)

aonstitute an isolated (disarete) set.

En be the linear sub-

it is closed and forms a

Proof. Let (h n ) be an infinite sequence of proper values where
hi ;t hj for i;t j. Put

(30) x n = hnU(xn) and x n ., e.
We first show that the vectors x n are linearly independent.

In fact, if X1 ,X 2 , ••• ,Xn_ 1 were linearly independent, but
n-l n-l

x n = igl(XiXi, we would havexn = hnU(xn) = iglhn(XiU(Xi)' whence

n-l C1.i n-l ( hn )
x n = i gl h~"'Fli xi and consequently igl (Xi 1 - hi xi = O. Since, by hypo-

thesis, h~"1 for n>i, it is plain that the vectors xl'x
2

, ••• ,xn_ 11.
could not be linearly independent.

This established, for each n=1,2, ••• , let
n

space of elements y of the form y = .L (Xixii
1.=1

proper subset of En+ 1 • For every y E En' we have, by (30),

n n xi n-l ( hn)
y - hnU(y) = L (X.X. - L hn(Xi ~ = L (Xi 1 - ~ xi.

i=l 1. 1. i=l i i=l i
y- hnU(y) E En-i' By the lemma on p. 92, there therefore
a sequence of elements (Yn) satisfying the conditions (17),

whence
exists
p. 93.

Now suppose that the sequence (hn ) were convergent. Since the
operator U is compact, the sequence (U(hnYn)) would constitute a
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relatively compact set. Moreover, for p> q we have

(31) IIU(hpYp) - U(hqYq) II = lIyp - Wp - hpU(yp) + U(hqYq) III

and, by (17), Yp E Ep , which implies, as we have seen, that
Yp-hp U(Yp)EEp-lI similarly hqU(Yq)EEqSEp-l, whence, by (17) and
(31), IIU(hp Yp) - U(hqYq) II>; for every p> q, from which it follows
that the set {U(hnYn): n=1,2, ••• } would not be relatively compact.

This contradiction implies that no sequence (h n ) of distinct
proper values can be convergent. Hence they form a discrete set.

§5. Fredholm integral equations.

We now discuss several applications of the theorems just proved.
In the LP spaces, the equations of the form x - hU(x) = yare the

so-called Fredholm integral equations, which have the following
general form

(32)
1

x(s) - hfK(s,t)x(t)dt = y(s),
o

where the function K(s,t) satisfies certain conditions.
The adjoint equation X - hU* (X) =Y takes the form

1

(33) X(t) - hIK(s,t)X(s)ds = y(t).

It is easy to see how the preceding theorems may be interpreted in
the context of these integral equations.

If K(s,t) satisfies the appropriate conditions, the operator which

maps x(t) to the function f1K(s,t)x(t)dt is compact and so the
o

theorems of §§2,3 and 4 of this chapter may be applied to the
equations (32) and (33). In particular, theorems 19-21 then become
the theorems of Fredholm mentioned, although, of course, they also
hold outside the field of integral equations.

§6. Volterra integral equations.

Equations of the form

(34)
s

x(s) - fK(s,t)x(t)dt = y(s),
o

where K(s,t) is a continuous function, are called Volterra
equations.

The operator f~K(s,t)x(t)dt is then compact, as an operator in the

spaces C and LP, P > 1 •
We now show that the equation

s
(35) x(s) - fK(s,t)x(t)dt 0

o
admi ts the unique solution x (s) =o.

Indeed, suppose that x(s) satisfies this equation~ clearly x(s) is
a continuous function. Put

m = max 1x (s) 1 and M = max 1K (s , t) I .

O:>s:>l 0:>s:>1
0:>t:>1

We therefore have by (35)
s

(36) Ix(s) 1 :> M.flx(t) Idt,
o

whence Ix(s) I:> M.m.s for 0:> s:> 1, which, replacing x(t) by M.m.s in
(36), yields the inequality Ix(s) I :>M'.m.s'/2. Iterating this pro-
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n
cedure, we therefore obtain Ix (s) I :> ~,s) •m for every n =1 ,2, ... ,

n.
whence, clearly, x(s) = O.

This established, let us return to equation (34). Since for

x,y E: C, and similarly for x,y E: LP, the operator f~K (s, t)x (t) dt is

compact, by theorem 14, p. 94, the equation (34) possesses exactly
one solution x E: C or x E LP respectively for every y E C or yELP
respectively
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§7. Symmetric integral equations.

If U is a bounded linear operator from L2 to itself, its adjoint
U* can also be regarded as such an operator.

This is because the dual space of L 2 can also be regarded as L 2

(cf. Chapter IV, §4, p. 39).
The operator U is called symmetria, when

1 1

(37) fyU(x)dt = fxU(y)dt for x,y E L 2
•

o 0

Since f ~yu (x) dt = f ~xu* (y) dt, every symmetria operator aoinaides

with its own adjoint.
When the function K(s,t) is symmetric (Le. K(s,t) =K(t,s) for all

s,t) and, further, the double integral
11

ffK(s,t)x(t)y(s)dsdt
00

exists for all x,y E: L 2
, the operators U and V given by

1

U(x) fK(s,t):x;(t)dt = y(s),
o

(38)
1

V(x) = x(s) - hJK(s,t)x(t)dt = y(s),
o

are bounded linear operators which are symmetric because they satis
fy the condition (37).

Equations of the form (38) are known as symmetria integraZ equa
tions.

THEOREM 23. If U is a symmetria operator, the number h is a
reguZar vaZue of the operator I - hU when this operator admits a
aontinuous inverse or when the equation x - hU(x) =y is soZubZe for
eaah y.

The proof follows from theorems 3 and 4, p. 91, due to the fact
that in these circumstances, the relevant equation and its adjoint
are one and the same.
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CHAPTER XI

Isometry, equivalence,

isomorphism
§1. Isometry.

Let E and El be metric spaces (see Introduction, §7, p. 5) and let
V be a biject~ve mapping from E onto E1 • This mapping is said to be
isometria or is called an isometry if it does not change distances,
Le. when

d(XllX2) = d(V(xd, V(x 2 »)

for every pair X 1 ,X 2 of elements of E.
Since normed vector spaces are metric spaces (cf. Chapter IV, §1,

p. 33), it makes sense to consider isometric transformations between
them.

§2. The spaces £2 and ~2.

THEOREM 1. The spaaes £2 and ~2 are isometria.

Proo f. Let (xi (t) ), a:; t :; 1, be any complete orthonormal sequ~nce
of functions in £2. If x E £2, we know that

(1) Y [Ix.(t)X(t)dt]2 = f(X(t»)2 dt .
i=l 0 1- 0

If V(x) denotes the sequence y= (ni) where ni= f~xi(t)x(t)dt, we

have, by (1), that yE l' and IIV(x)ll = IIxli. As V is additive and does
not alter the norms of elements, it is a bounded linear operator.
Moreover, it follows from the theory of orthogonal series that, for
each y E l', there exists one and only one function x (t) E £2 such that
y =V(x).

The bounded linear operator V thus maps £2 bijectively onto ~2

without changing norms, and 50 distances are also unchanged. Con
sequently the spaces £2 and ~2 are isometric.

Remark. We shall later see that the spaces £P and £q are only
isometric in the case p = q = 2. This is a consequence ofi the coroll
ary (Chapter XII, §3, p.119).

§3. Isometric transformations of normed vector spaces.

THEOREM 2. Every isometry V of one normed veator spaae to another
suah that V (0) =0 is a bounded tinear operator.

Proof. First let E be an arbitrary metric space and X1 ,X 2 any pair
of points of E.

Let HI denote the set of points x E E such that

(2) d(x,x 1 ) = d(x,x 2) = id(xllx z )

and, for n=2,3, ... , let Hn denote the set of points xE Hn_ 1 such that,
for every 3 E: Hn- 1 '

(3)
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where 0(Hn-1) =sup {d(x.y): x,yEHn _1}' is the diameter of the set
Hn-1·

For the sequence (Hn ) so defined, we have

(4) limo(Hn ) =0.
n+oo

Indeed, if the sets Hn are non-empty, we have for every pair x' ,x"
of points of Hn , x" E Hn- 1 , since, by definition,

H1 2H 2 2 ••• 2Hn 2 ••• , so that, by (3) d(x',x") :O~0(Hn_1). Conse-
1 1quently o(Hn ) ~20(Hn-1)' whence o(Hn ) ~ 2n-io(H1), and moreover, we

have by (2) for each pair x',x" of points of H1 , the inequality
d(x',x") ~d(X',X1) +d(x",x 1 ) =d(xl'x 2 ), so that 0(H 1 ) ~d(Xl'X2) and

1consequently 0 (Hn ) ~ 2n - 1d(x 1 ,x 2 ), whence (4).

It follows from this that the intersection of the sets Hn , if non
empty, reduces to a single point. We shall call this point the
centre of the pair X1,X2.

Having said this, let E be a normed vector space, so that

d(x',x") = IIx' - x"l1 for all x',x" E E.

Put x=Xl + X2 - x for x E E. We easily see by induction that

(5) x E Hn implies x E Hn for each n=1,2, •••

Inde~d, if xE_H1 we have IIX-X111 = IIx-x211 and !x-x211 = IIX-X111, so
that IIx - xlII = IIx - x211 = ! IIX1 - x211, whence by (2) x E H 1 and, assuming
(5) holds for n-1, we have, consequently, for
x:"EHn-1, X1 +X 2 -X'EHn-1. If xEHn , we the!:efore have, by (3),
IIx - x' II = II (Xl + x 2 - x') - x II :0 !<5 (Hn- 1 ), whence x E Hn •

We are going to show that the point F,; =t (Xl + x
2

) is the centre of
the pair Xl ,x 2 • In fact, we have F,; E H 1 , because IIx 1 - F,;II = IIx 2 - F,;II =
!lIx1-x211. Suppose, the!:efore, that F,;EHn-1. For every xEHn-1, we
have, by (5) ,Xl + X2 - X = x E Hn _ 1 and as 211 F,; - x II = IIX1 + X 2 - 2x II = II x - F,; II
:0 0 (Hn - 1 ), we conclude that II F,; - x II ~ H (Hn-1)' whence F,; E Hn • Since
it belongs to Hn for each natural number n, the point F,; is therefore
the centre of X 1 'X 2 •

This established, let E1 be another normed vector space and let U
be an isometry of E onto all of E 1 such that U(6) =6. Since the
notion of centre is a metric space one, it is easily seen that the
centre of any pair X 1 ,X 2 of points of E will be mapped to the centre
of the pair U(x 1 ),U(X2) of E1 • We therefore have

U[! (:1>1 + x 2 )] = ![U(xd + U(X 2 )] for xl'x 2 E E,

whence, putting Xl =x and x 2 =e, we obta·in, because of the hypothe
sis U(6)=6:

U(!x) = !U(x) for every x E E.

It follows from this that, for any points Xl and x 2 of E:

U(x1 + x 2) = U[!(2x1 + 2x2)] = tU(2x1} + !U(2x2) = U(X1) + U(X2)·

The operator U is thus additive, and, as it is continuous, in fact
a bounded linear operator.

§4. Spaces of continuous real-valued functions.

For any compact metric space Q, (cf. Introduction, §7, p. 6), the
set E of continuous real-valued functions x(q) defined on Q may be
regarded as a Banach space, when addition and scalar multiplication
are defined in the usual (pointwise) way and the norm is taken to be
the maximum of the absolute value of the function.
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LEMMA. Let x (q) E E, q E Q. For a given el-ement q 0 E Q, the
inequaZity

(6) Ix(qo) I > Ix(q) I for every q .. qo,

hol-ds if and onl-y if

(7) lim IIx+hllll - IIxll
h-+o h

exists for every II (q) E E.
Furthermore, if the function x(q) satisfies the inequal-ity (6), we

have

lim IIx+hll~ - IIxll = ll(qO) . sign x(qo) for every ll(q) E E.
h->o

Proof. The condition is necessary. In fact, we have IIxll = Ix (q 0) I
and as the continuous function I x + hlll attains its maximum, we
obtain

-ll (q 0) •

II (q u) •

(8) !X(qol. + hll(qo) I - Ix(qo) I :;; IIx + hzll - IIxll

= Ix(qh) + hll(qh) I - Ix(qo) I,

where qh is a point of Q which depends on h. Now, we deduce from
(8) that IX(,?o) + hll(q~) I:;; lx(qh) + hll(q7;z) I and consequently
0:> Ix(qo) - Ix(qh) I:> Ihl·lll(qo) 1+ Ihl·lll (qh) I:> 2Ihl.II11Il, whence
lim jx(qh)1 = Ix(qo)l. This implies, by the compactness of Q that
h-+oo

(9 ) lim qh = q 0 •

h-+o
This established, first consider the case where x(qo) > 0. There

then exists an E> ° such that, for Ih I < E, we have

Ix(qo) + hll(qo) I - Ix(qo) I = x(qo) + hll(qO) - X(qo) = hll(qO)

and, by (9),

IX(qh) + hll(qh) I - Ix(qo) I = X(qh) + hll(qh) - X(qo) :> hll(qh)'

whence, by (8), hll (qo) :;; IIx + hllil - IIxll :;; hll (qh) and consequently, again
by (9) together with the continuity of ll(q),

1 , IIx+hllll - IIxll
~m h

h-+O
In the case where x (q 0) < 0, we would obtain, proceeding similarly,

lim IIx+hllll - IIxll
h-+O h

We have thus proved the necessity of the condition (the existence
of the limit (7)), and at the same time, the second part of the
lemma.

To show that the condition is sufficient, suppose that the modulus
of the function x(q) attains its maximum at two distinct points qo
and ql of Q, i.e. that

Ix(qo) I = IX(ql) I ;;: Ix(q) I for every q E Q.

In the case where x(qo) >0, put ll(q) =d(q,ql)' We then have:
IIx + hllil - IIxll <: x(qo) + h.d(qo,ql) - x(qo)' whence

(10) lim inf IIx+hlll~ - IIxll ;;: d(qO,ql) > 0.
h-+O+

At the same time we have IIx+ hBil- IIxll <: IX(ql) + hd(ql,ql) 1- IX(ql) I
0, whence

( 11) 1 , IIx+hzll - IIxll :> 0,
~m sup h

h-+O-
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and it follows from the inequalities (10) and (11) that the limit
(7) cannot exist.

In the case where x (q 0) < 0, the same conclusion is reached on put
ting z(q) = -d(q,ql)' q.e.d.

Two sets are said to be homeomorphia when there exists a bijection
from one to the other such that both it and its inverse are contin
uous, and such a bijection is called a homeomorphism.

THEOREM 3. For two aompaat metria spaaes Q and Ql to be homeo
morphia, it is neaessary and suffiaient that the spaaes E and El of
aontinuous real-valued funations on the two spaaes be isometria.

Proof. Necessity. It is easily verified that if f is a homeo
morphism of Q onto Ql' the transformation of El to E under which, to
each function y EEl there corresponds the function x E E given by
x(q) =y[f(q)] is an isometry of El onto the whole of E.

SUfficiency. Assuming that the spaces E and El are isometric, let
V be an isometry of E onto E l , Le. IIV(x l ) - V(x 2 ) II = IIx l - x 2 11 for all
X l ,x 2 EE.

Putting U(X) =V(X) - V(0), it is easily seen that the operator U
has the same properties as V and, further, that U(0) = 0. By theorem
2, p.101, U is therefore a bounded linear operator.

Let q 0 be a given point of Q and let :x; E E be a function satisfying
the inequality (6) of the lemma on p.103. As the operator U leaves
norms unaltered, we have, for every number h, putting U(Z) = t for
z E E:

IIx+hzll - IIxll
h

lIy+htll - lIyll
h

whence, by the preceding lemma,

(12) z(qo).sign x(qo) = lim lIy+htll - lIyll
h+o h

Now, as the operator U maps E onto the whole of E
l

, the limit (12)
exists for every tEE. Consequently there exists, by the lemma, a
q~EQl such that ly(q~)1 > Iy(q')l for every point q'~q~ of Ql and

lim lIy+htll - lIyll = t(q~).sign y(q~) for every t EEl.
h+O h

It follows from this by (12) that z(qo).sign x(qo) = t(q~) .signy(q~)

whence, putting dq p =sign x (q 0) • sign y (q p, we obtain tlie follow
ing relation between q 0 E Q and q ~ E Ql:

(13) t(q~) = z(qo).dq~) where IdqPI = 1,

which holds whenever z E E and t = U (z ) •
Consider the function

q~=f(qo)'

defined by this relation, from Q to Ql.
Firstly, it is one-to-one. Indeed, if q{ = f(ql) =q~ = f(q2)' then

by (13) IZ(ql) 1= !Z(q2) I for every function zEE, which implies that
q ~ =q 2' on taking z to be the particular function given by
zlq)=d(q,ql)· _

Furthermore, f maps Q onto all of Ql' since for any q' E Q1 we have

by (13), putting t(q') = l+d(~',q')'

(14) I ( ) I 1, r for eery E Qz qo = l+d(qo,~o) v qo •

Now as liz II = lit II = 1, there exists a qo E Q such that Iz(qo) I = 1.
For the point q~=f(qo) we therefore have, by (14),
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1 = 1, whence d(qo',q-') =0 and consequently q-'=qo'.
1+d(q',q')

Fin£lly, the mapping f is continuous. In fact, let qo= lim qn and
n-+-OO

put q~=f(qn) for n=1,2, ••• By (13), we must have ;im It(q~) I =
It(qpl for every tEE l , and so, in particular, for t(q') =d(q',q~),

we have lim d(q' ,qp = d(q~,q~) = O. Consequently lim qn' = q~.
n-+OO n n+oo

Since Q and Ql are compact, it now follows that they are homeo
morphic.

Remark. This proof shows that if V is an isometry of E onto E
l

and V(8) = 8, then there exists a homeomorphism f from Q onto Ql and
a continuous real-valued function E on El such that

y(q') = x[r 1 (q')].dq')

where y = V (x), q' E Ql and Idq') I = 1 for all q'.

App~ications. The above theorem 3 implies, in particular, that
the space C of continuous real-valued functions x (t), 0 ~ t ~ 1, is
not isometric' with the space of continuous real-valued functions
x(u,v) of two variables u and v, defined on the unit square,
0~u~1, 0:;; v:;; 1. th

Nevertheless, the space LP of p -power summable functions on the
interval 0:;; t ~ 1 is isometric to the space of pth_power summable
functions defined on the unit square. In fact, there exists a
bijection t = </l (u, v) which maps this square (less a set of measure
zero) onto the interval [0,1] (again excluding a set of measure
zero) in a measure-preserving fashion, i.e. measurable sets are
mapped to measurable sets of equal measure.

Thus, if to each function x (t) E LP, one makes correspond the func
tion y(u,v) =x[</l(u,v)], it is easy to see that one obtains a bijec
tion between these two function spaces under which distances are
unchanged.

§5. Rotations.

A rotation of a Banach space E about the point X o E E is, by
definition, any isometric bijection of E onto itself which maps the
point X o to itself.

By theorem 2, p.101, every rotation about 8 is a bounded linear
operator.

We are going to study rotations in some particular Banach spaces.

The space C. In C the most genera~ rotation about 8 is given by
operators of the form

y(t) = E.x[a(t)],

where x (t) E C, E = +1 or -1, independent~y of x, and a (t) is any
homeomorphism of the c~osed unit interva~ [0,1] onto itse~f.

The proof follows from the remark above, using the fact that if
E(t) is a continuous real-valued function on [0,1] such that
IE (t) I = 1, then E (t) is constant.

The space c. We can regard this space as the space of continuous
real-valued functions defined on a bounded closed set of real num
bers with exactly one accumulation point. By the remark above, we
can easily deduce from this the following theorem.

In c, the most genera~ rotation about 8 is given by y = V(x) where

x = (~n) E c, y = (nn) E c and nn = En.~i(n)'

where (En) is any convergent sequence such that IEn = 1 for n=1, 2, ..•
and </lIn) is an arbitrary bijection of the natura~ numbers onto them-
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is thus a

1

fCX(t))2dt,
o

the form (15)

(15)

seZves, i.e. a permutation of the naturaZ numbers.

The spaae L2. Every rotation of L2 about 8 is of the form
00 1

y(t) = L 13 (t) fa (t)x(t)dt,
n=l non

where x (t) E L2 and Can (t)), CI3n (t)) for 0 ~ t ~ 1 are arbitrary aom
pZete orthonormaZ sequenaes of funations in L2.

Proof. From (15), we have

fCy(t))2dt = I [f a
n

(t)X(t)dt]2
o n=l 0

whence lIyll = IIxli. Every transformation of
rotation about 8.

Conversely, let U be a rotation about e in L2 and let Can(t)) be
any complete orthonormal sequence in L2. Putting I3 n (t) = U[an(t)],
for n=1,2, ••• , we therefore have

00 1

x(t) = L a (t)fa (t)x(t)dt
n=l non

(15). Furthermore
1

fCa (t))2dt = 1
o n

for i ~ j

(16 )

and consequently y (t) = U [x (t)] is of the form

fCI3 (t))2dt = f[uCa (t))]2 dt =
o non

and as l3i (t) + I3j (t) = U [ai (t) + aj (t)], we have
1 1

f[I3.(t) + 13.(t)]2dt f[a.(t) + a.(t))'dt = 2,
o 1- J 0 1- J

whence by (16)
1

(17) fl3.(tll3.(t)dt = 0 for i ~ j.
o 1- J

Con sequently, if for some function 13 (t) E L 2 we have
1

f ol3n (t)l3(t)dt=O, for any n=1,2, ••• , we will have, by (l5),

f~y(t)l3(t)dt=O for every function y(t) EL2 1 from which it follows

that l3(t) = O. It follows from this together with (16) and (17) that
Cl3n (t)) is a complete orthonormal sequence of functions in L2.

The spaae Z2. A completely analogous theorem can be stated for Z2.
This is a consequence of the isometry of the spaces L2 and Z2 (cf.
theorem 1, p.101).

The spaaes LP and Zp where 1;;; p ~ 2. We have the following lemmas:

1. Let U be a rotation of LP about e, where 1:;; P ~ 2. If for a
pair X1(t),X2(t) of funations beZonging to LP we have

(18) Xl (t) .x 2 (t) = 0 aZmost everywhere in [0,1]-,

then for the pair Y1 (t) ,Y2 (t), where Y1 = U(x 1 ) and Y2 = U(x 2 ), we
aZso have

(19) Y1(t)'Y2(t) = 0 aZmost everywhere in [0,1].

Proof. For each ~air of numbers a,S we have by the hypothesis
(18), lIax 1 +l3x 2 I1 P = laI P.llx1 I1 P + II3IP.llx2I1P, whence, by definition of

Y1 and Y2' it follows that lIaY1+13Y2I1P= laIP.IIY1I1P+ II3IP.lIy2I1P and
consequenily 1 1

(20) flaY1 (t) + I3Y2 (t) jPdt = lai PflY1 (t) IPdt + I131 PflY2 (t) IPdt.
o 0 0

In the case P = 1, this yields on putting first a = 13 = 1 and then
a =-13 =1, the relation
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i. 1 1

flYl(tl + Y2(t) Idt = fIYl(t) - YZ(t) Idt = f[IYl(t) I + IY2(tlljdt,
o 0 0

which is only possible when condition (19) is satisfied.
In the case p> 2, we obtain from (20), denoting by H the set of

t E [0,1] for which Yl (t) 'Y2 (t) ., 0, the relation

(21) fHlaYl(t) + SY2(tl IPdt = lalPfHIYl(tl IPdt + ISIPfHIYz(t) IPdt,

which gives, putting cj> (a, t) = lay 1 (t) + SY2 (t ) IP, the equalities

(22) ~~ = plaYl(t) + SY2(t) IP-
1
.sign[ayl(tl + SY2(tlj'Yl(tl

and

107

J .£.1dt
H aa '

a2 cj> 2(23) aa7 = p(p-1)lay l (t) + 6y 2 (t)I P- .[y l (t)]2.

Now, as !aYl(t) + 6Y2(t)IP-1ELP/(P-lland Yl(t) ELP , we can assert

that the integral f:fHI~ldadt exists, whence by (22)

(24) t ~: = :a I
H

4>(a,tldt = p.sign a.laIP-1JHIYl(t) IPdt

and consequently f (~) dt = 0; it immediately follows from this,aZm H aa a=O
since w;: 0 by (23), that

(I
H
~dadt

whence by (24)

In ~:tdt = p(p-1) laIP-2IH'Yl (t) IPdt

and consequently by (23)

(25) fn!ayl(tl + IlY2(tlI P-
2
'(Yl(t))2dt = laI"P-2J

H
IYl(tl IPdt.

From (25), on putting a = 0 and S = 1, we obtain the equality

(26) f)Y2(t)IP-2.IYl(t)12dt = 0,

which implies, by the definition of H, that the measure of H,
m(H) = O.

Finally, in the case where 1 < P < 2, consider for i=1 and 2 the

functional Yi where Yi(Y) = f~Yi(t)Y(t)dt for yet) ELP and

Y.(t) = IYi(t) IP- 1 .sign Yilt). The adjoint of U, U* is a rotation of

t~e space LP/(P-l) about e (for a proof of this see the proof of the

subsequent theorem 11, p.113). Put Xi=U*(Yi) and

Xi(x) = f~Xi(t)X(t)dt where xELP • We have Xi(xi) =Yi(Yi) =

lIYill.IIYili = IIXill.llxill, whence by Riesz' inequality, Xi(t) = 0 for the
same values of t for which xi(t) =0. Consequently Xl (t).X 2 (t) =0

and as ....E.... > 2, we conclude from the case previously considered that
p-l

Yl (t) 'Y 2 (t) = 0, so that Yl (t) 'Y2 (t) = O. Condition (19) is thus
proved.

2. Let U be a rotation of Z-P, where 1::: P" 2, about e. If, for

two sequenaes Xl = (F;(1l) and x 2 =(F;(2l) belonging to z-P we have
n n

ql).q2l = 0 for n=1,2, ••• ,
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then for the sequences Yl = U(x 1 ) = (nJl») and Y2 = U(x 2) (nJ2 l ) we
have, equally

n(ll.n(2) = a for n=1,2, ..•
n n

The proof is similar to that of the preceding lemma for the LP
spaces with the appropriate obvious modifications.

The two lemmas yield, respectively, the following theorems on the
general form of rotations.

1. Let U be a rotation of the space LP, 1;>; p;< 2, about 8. Then
there exist two funations <jl (t) and 1jJ (t) defined for 0:0 t ~ 1 and such
that the following aonditions are satisfied:

(a) the funation <jl(t) maps almost all of the alosed interval
[0,1] bijeatively onto (almost all of) itself in such a way that
measurable sets are mapped to measurable sets and aonversely,

(b) for almost every t E: [0,1], we have

1jJ(t) = [limm(<jl[t,t+h])]~
h...O+ h

where <jl( [t,t+h]) = {<jl(s):t ~ s ~ t+h} is the image of the dosed inter
val [t,t+h] under the funation <jl,

(c) for every x E: LP

y(t) = x[<jl(t)].1jJ(t)

where y(t) = U[x(t)].

Conversely, if <jl(t) is a funation satisfying aondition (a), there
exists a funation 1jJ(t) defined by (b) and the operator U defined by
(c) is a rotation of LP about 0.

II. Let U be any rotation of the space lP, 1 ~ P;< 2, about 8.
Then there exists a funation <jl(n) and a sequence of numbers (En)
such that

(a) <jl is a permutation of the natural numbers,

(b) IEn I = 1 for n=1, 2, ••. ,

(c) for every pair of sequenaes x = (~n) E: lP and y = (nn) E: lP where
y = U(x)

nn = En'~<jl(n) for n=1,2, •••
Conversely, for any <jl and (En) satisfying the aonditions (a) and

(b), the operator U given by y =U(x) as defined by aondition (c) is
a rotation.

Proof. First let U be a rotation of lP about 0. Put

{
1 for i n,
Q for i ;< n,

We clearly have for each x = (~ ) E: lP
n

~ (i) =
n

fori=1,2, ..•

(29)

(30)

Putting

(nn)' the

x = L ~ ox ••
o i=l '!- '!-

Yo = U(X 0) = (nn('!-»)' we thus have, by (28), for y = U(X)'!- '!-
equality y = i~l ~iYi' whence

_ "" (il _
nn -i~l~inn for n-1,2, ...

By (27) we have ~Ji).~Jj) =0 when i;<j; we deduce from this by the
second lemma (above) that

n (i) • n (j) = 0 for .... J' d 1 2n n v an n=, , .••

(27)

and x. = (~( i ) )
'!- n

(28)
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Since y can be any sequence belonging to ZP, by (29) and (30), for
every natural number n, there exists just one natural number ~(n)

such that n~(n)", O. It follows from this by (29) that we have
n.

(31) nn = S~(n)·En for En = n:(n) and n=1,2, ••• ,

so that condition (c) is satisfied.
Furthermore, nl"' n2 implies ~(nl)"' ~(n2)' because otherwise, by

(31), we would have for each sequence (nn) E zP the equality
En2nnl - En

1
nn2 = 0 which is impossible; moreover, if there existed a

natural number no such that ~ (n) "' no for n=1, 2, •.• , we would have,
by (31), for the sequence x = (Sn) where

_ {1 for n = no'
Sn - 0 for n "' no'

the equality nn = 0 for n=1, 2, ..• , which is also impossible. Condi
tion (a) is thus proved as well.

Finally, by the definition of a rotation, we have lIyll = IIxll, which,
by (31), yields

one chooses the

=1, which proves

n = no'
n "' no'
whence IEn 0 I

"" ""
(32) ntl~ep(n)IP.Ie:nIP=n!ll~nIP for every x =

Consequently, if, given any natural number no'
sequence x = (/;n) in such a way that

{
1 for

/;~(n) = 0 for

that IEnoI P = 1,it follows from (32)
condition (b).

The converse is obvious.

§6. Isomorphism and equivalence.

Two F-spaces E and E1 are said to be isomorphia when there is a
bijective bounded linear operator from E onto the whole of E1 •

Let U be such an operator; by theorem 5 (Chapter III, §3, p. 24)
the inverse U- 1 is also a bounded linear operator, from which it
follows that U is a homeomorphism.

The spaces E and E1 are said to be equivaZent when there is a bi
jective bounded linear operator U from E onto E

1
such that

IU(x) 1= Ixl for every xE E.
If two spaces are equivalent, then they are necessarily isomorphic,

but, as we shall see, the converse is not true.
Consider two examples.

1° Let a o be the space of real sequences which converge to O.
We have the theorem:

The spaaes a and a o are isomorphia.

In fact, if, for x= (Si) E a, we put

nl = lim s· and n· = /;. 1 - nl for i > 1,
i~oo ~ ~ ~-

we clearly have ],im n.=O, whence, putting y= (n.), we have yEa o1.+00 1. 1-
and it is easy to see that the operator y =U(X) thus defined is
additive and satisf ies the condition II U (x) II ::; 211 x II; it is therefore a
bounded linear operator.

Conversely, if y= (ni) Ea o' we need only put, with x= (Si)'

Si = ni+l + nl where i=1,2, ••. ,
to obtain x E a, since lim S. = n

1
, and to see that y = 0 implies x = O.

i+oo -z.
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It follows that U is a bounded linear operator which maps c bi
jectively onto co.

2°. The spaces of bounded linear functionals defined on

LP, lP where P > 1, L1 , II and c

are equivalent, respectively, to the spaces

Lq lq where 1 + 1 = 1, M, m and ll., p q

This is nothing but a reformulation of the theorems on the general
form of bounded linear functionals established in Chapter IV, §4
(see p. 36).

Theorem 2, p.101 , immediately implies the

THEOREM 4. Two Banach spaces E and E1 which are isometric are
equivalent.

§7. Products of Banach spaces.

Given two Banach spaces E and E1 , let Ex E1 denote the space of
all ordered pairs (x, y) where x E E and y EEl' with addition and
scalar mUltiplication defined by putting

(x,y) + (x',y') = (x+x',y+y') and h(x,y) = (hx,hy),

where, of course, x,x/EE, y,y'EE 1 and h is a number, and with the
norm defined in such a way that the following condition is satisfied:

(33) lim x n = X o and lim y = yo if and only if
n+oo n+oo n

lim II (xn'Yn) - (xo,yo)ll = O.
n-+-oo

Thus defined, the space Ex E
1

is also a Banach space, which we
will call the product of the spaces E and E .

It is easy to see that condition (33) will be satisfied, if, in
particular, we take as norm of the pair z = (x,y) one or other of the
expressions

1
1) II z II [ II x II P + II y II p] p where p ;;: 1 ,

2) liz II max [lIxll,lIyll],

and that these are not the only expressions that meet this condition.
Moreover, it is quite clear that whatever norms are chosen, pro

vided they satisfy condition (33), isomorphic spaces will always be
obtained.

To make clear which norm has been adopted, we shall denote the
product of the spaces E and E1 by (E x E1) lP' when endowed with the

norm 1) and by (E x E 1 ) 00' when endowed with the norm 2).
One similarly defines the product E1 x Ez x ••• x En of a finite

number of Banach spaces. It is plain that the product of separable
spaces is separable.

The product Ex E will be called the square of E and will be denot
ed by E'.

THEOREM 5. The spaces LP, lP, for p;;: 1, and c are isomorphic with
their respective squares.

Proof. It is enough to associate with each function x (t) E LP the
pair of functions (x 1 (t) ,xz(t)) defined by the formulae

x 1 (t) = x(~) and xz(t) = x(~ + ~) where 0 ~ t ~ 1/

to set up a bijective bounded linear operator from LP to (LP)'.
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Similarly, it is enough to associate with each sequence
x = (Sn) E: ZP the pair of sequences Xl = (nn) ,x 2 = (l;;n) defined by the
formulae

nn = s2n and l;;n = S2n-l for n=1,2, ••• ,
to see that zP can be mapped bijectively onto (ZP)2 by means of a
bounded linear operator.

Finally, with each sequence x = (Sn) E: a let us associate the pair
Xl = (nn) ,x 2 = (l;;n) defined by the formulae

nn = S2n - Sl and l;;n = s2n+l - lim Sn + Sl for n=1,2, •••
n-+-oo

We have

Sl = lim l;;n' S2n = Dn + lim l;;n and S2n+l = l;;n + lim Dn for n=1,2, ...
n-+oo n+r» n-+oo

and we see that we have a bounded linear bijection of a onto a 2
•

THEOREM 6. The spaae e is isomorphia with the produat e x a.

Proof. Let E denote the subspace of e consisting of the functions
x (t) E: e which satisfy the condition

x(~) = 0 for n=1,2, •••

For each function x (t) E: e, construct the function ;; (t) E: e such

that ;;(~) = x(~) and which is linear in the intervals [n11 '~] for

every natural number n.
With each x(t) E: e we associate the pair (consisting of a function

and a sequence of numbers)

( y (t) .(.~ (*])) where y (t) = x (t) - ;; (t) •

We clearly have y (t) E: E and (x (*]) E: a..
It is easy to see that this correspondence defines a bounded lin

ear operator.
Equally, we see that for each pair (y (t) , (s ») E: E x a there exists

a continuous function x (t) such that y (t) = x (~) -;; (t) and Sn = x(*)

for n=1,2, ••• , from which it follows that the transformation under
consideration is bijective between all of e and all of E x a. These
two spaces are therefore isomorphic.

Hence the spaces e x a and E x a x a = E x a' are isomorphic. Now, as
a' is isomorphic with a, by the preceding theorem 5, the space e x a
is isomorphic with E x a and therefore with e, q. e. d.

THEOREM 7. The spaae e is isomorphia with eaah of the spaaes e(p)
for p=1,2, ...

Proof. With each function x (t) E: e (p) (ci. Introduction, §7, p. 7),

associate the pair consisting of the function y (t) = x (P) (t) and the

set of p numbers: x(O) ,x'(0), ••• ,xp- 1 (0). With RP denoting p-dimen

sional space, e{Pl is thus isomorphic with ex Rp and consequently,
by the preceding theorem 6, with e x a x Rp .

Now, as axR is isomorphic with a, the space e{P) is isomorphic
with ex a and ~herefore, again by theorem 6, with the space e, q.e.d.

THEOREM 8. The spaae e is isomorphia with the spaae e'.

Proof. With each pair (x(t),y(t») of functions of e, associate
the pair (z (t) , s) where z (t) E: e is the function defined by the
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formulae

{
X(2t) for 0 ~ t ~ "

z(t) = y(2t-1) - y(O) + x(1) for 1 :;; t ~ 1,

and S is the number determined, for each y(t) E e, by the equation
s = y (0).

The space e2 is thus mapped to ex R, where R is the real line.
This transformation is a bounded linear operator and since, by def-

inition, we have x (t) = z(~) and y (t) = zG + ~) - zG) + S, it is bi

jective. We have thus established the isomorphism of the spaces e2

and ex R and since, by theorem 6 p. 111, e is isomorphic with e x a,
the space e2 is isomorphic with e x a x R, and therefore, because a" R
and a are isomorphic, with the space ex a and consequently (again by
theorem 6) with the space e, q.e.d.

Remark. It is not known if the space e is isomorphic with the
space of all continuous (real-valued) functions defined on the unit
square.

§8. The space e as the universal space.

THEOREM 9. Every separabZe Banaah spaae E is equivaZent to a
aZosed Zinear subspaae of the spaae e.

Proof. Let r be the set of all bounded linear functionals on E of
norm~ 1 and let (x n ) be a sequence in E, with IIxn ll:> 1 for n=1,2, ... ,
which is dense in the ball {x E E: IIx II ~ 1 }.

Define a distance in r by putting, for each pair f
l
,f 2 of func

tionals belonging to r

is a com-

1 If 1 (X n )-f 2 (X n ) InL 2n '1 + If 1 (X n ) f 2 (X n ) I'
with this definition of distance, r

(34)

We shall show that,
pact metric space.

Consider a sequence (fi) £ r such that li!\! d(fp,fq ) =O. By (34),p,q 00

the lim f. (x n ) then exists. As II f.' II :> 1, it follows from theorem 3
·+00 1.,. "..

(Cha~ter V, §1, p. 50) that the sequence Cfi(x)) is convergent for
each x E E1 hence the sequence of functionals (fi) is weakly converg
ent to a bounded linear functional f, say, and IIfll ~ 1, whence fE r.
As lim f.(x n ) =f(xn ) for n=1,2, ... , we conclude from (34) that

i+oo 1.,.

l,im d (f ., fl =O. Thus r is complete.
1.,.+00 t.

Now, given any sequence (fi)Sr, we can, by a diagonal procedure,
extract a subsequence (fik) such that lim fik(xn) exists for

k+oo
n=1,2, •.• , whence, as above, we deduce the existence of a functional
fE r such that lim d(fik,fl = O. Hence r is sequentially compact,

k+oo
and therefore a compact metric space.

Consequently there exists a continuous map of the (perfect,
nowhere dense) Cantor set P s;; [0,1] onto the space r. If f t E r
denotes the functional which is the image of the point t E P under
this map, let x E E be an arbitrary element and define y (t) as
follows: for each t E P put

y(t) = ft(x)

and for the points of the set [0,1] 'P, complete the definition of
the function y(t) in a linear manner, specifically, for tE [0,1] 'P,
putting

y (t)
y(t') - y(t")

t' _ t" . (t - ttl) + y (t") ,
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where t' and t" denote the nearest points of P such that t' < t < t".
Let us examine the properties of the function y(t) thus defined.
If lim t n = t where (t n ) ~ P, the sequence (ft n ) converges weakly

n-+-ex>
to ft ' whence lim ft n (x) = ft (x), so that lim y (t n ) = y (to)' Theo n~oo 0 n~oo

function y is thus continuous in P. Since it is linear elsewhere,
it is therefore continuous throughout [0,1], hence y (t) 10 C.

Moreover, by theorem 3 (Chapter IV, §2, p. 34) there exists a
functional flO r such that [fIx) 1= IIxli. Let to 10 [0,1] be the point
such that f= ft. We thus have Iy(t o) [ = lIt (x) 1= IIxll and as

o 0

ly(t)1 = Ift(x)1 :> Iftl.llxll :> IIxll for every t 10 P,

we conc~ude from this, since the function Iy(t) I attains its maximum
in the set p,. tha t max Iy (t) I = II x II •

O~t~l

We have thus associated with each element x 10 E an element
y = y (t) 10 C and, putting y = U(x), we see that we have defined an
additive operator. As lIyll = II U(X) II = IIxll, it is actually a bounded
linear operator and maps the space E isometrically onto a subspace
E l of C. The spaces E and El~C are therefore equivalent, q.e.d.

THEOREM 10. Every separable metria spaae E aan be mapped iso
metriaally onto a subset of C.

Proof.By a remark due to M. Frechet, every separable metric space
E can be mapped isometrically onto a subset of m. Such a mapping
may be obtained, as is easily verified, by associating with each
x 10 E the sequence (';n) defined by the formula

';n = d(x,x n ) - d(xo,x n ) for n=1,2, ••• ,

where the sequence (x n ) forms a dense subset of E.
Consequently, it is enough to consider only the case where E ~ m.

It is easily shown that the space consisting of all linear combina
tions of elements of E together with all limits of sequences thereof
is a separable Banach space.

By the preceding theorem 9 there thus exists an isometric mapping
of this space and a fortiori of its subset E, onto a subset of C,
q.e.d.

Remark. By theorem 9 and 10
space C can be regarded as the
(respectively metric) spaces.
thus reduces to that of closed

which have just been established, the
universal space for separable Banach
The study of separable Banach spaces
linear subspaces of the space C.

§9. Dual spaces.

Given a Banach space E, the space E* of all bounded linear func
tionals defined in E is clearly another Banach space. We shall call
E* the dual or aonjugate space of E.

THEOREM 11. If two Banaah spaaes E and E l are isomorphia or
equivalent r~speatively, the spaaes E* and Et are equally isomorphia
or equivalent, respeatively.

Proof. In fact, if U is a linear homeomorphism of E onto E l , it
follows from theorem 5 (Chapter X, §1, p. 91) that the adjoint
operator U* is equally a linear homeomorphism of Ef onto E*, so that
these latter two spaces are isomorphic.

If, further, E and E l are equivalent, we have, whenever X= U*(Y):

IIXII = sup IX(x) I = sup IY(U(xi)1 = sup IY(y) I = IIYII,
IIxIIS1 IIxll:>l lIyllS1

so that the spaces E* and E~ are equivalent in this case, q.e.d.

Remark. Nevertheless, the equivalence of the spaces E* and Ef
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n=1 ,2, ...
it follows
isometric,

does not always imply that of the spaces E and E1 •

Consider, by way of example, the spaces E = a and E1 = (a);". The

duals of these spaces are E* = II and Et = (Z 1) ~ 1, which are easily
shown to be equivalent.

However this is not true of the spaces E and El' We can regard E
as the space of continuous real-valued functions defined on the set

Q consisting of the numbers 0 and ~, for n=1,2, ••• , while the space
E1 can be regarded as the space of continuous real-valued functions

defined on the set Q1 consisting of the numbers 0,1,1 and 1 + 1, for
n n

Now as the sets Q and Q1 in question are not homeomorphic,
from theorem 3, p. 104, that the spaces E and E1 are not
and therefore a fortiori not equivalent.

12. If the dual spaae E* is separable, so also is theTHEOREM
spaae E.

Proof. Let r~E* denote the set of all bounded linear functionals
on E of norm 1, so that, by hypothesis, there exists a sequence
(Xn ) s r which is dense in r.

Let (xn) be a sequence of elements of E which satisfies the con
ditions

(35) IIxn ll = 1 and Xn(x n ) > ! for n=1,2, ...

If the space E is not separable, then the sequence (x n ) is not
fundamental in E, and therefore, by theorem 7 (Chapter IV, §3, p.36),
it is not total either. Consequently there exists a functional
X E: r such that

(36) II XII = 1 and X(x n ) = 0 for n=1,2, •.•

Putting Zn =Xn - X, we consequently have by (35) and (36)
Zn(xn) =Xn(xn) - X(xn) > L whence IIZ n ll> it so that IIXn - XII>! for
every natural number n, which is impossible, as the sequence (Xn ) is
assumed dense in r and X belongs to r.

THEOREM 13. Let E be a separable Banaah spaae suah that every
norm-bounded sequenae (xi) of elements of E aontains a subsequenae
whiah is weakly aonvergent to an element of E. Then the spaae E is
equivalent to the spaae E** (the dual of E*).

Proof. Let G be the set of bounded linear functionals F defined
on E* which are of the form F (X) =X (x 0)' for every X E: E*, for some
xoE:E independent of F. We thus have jF(X)I:> IIXII.llx o ll, whence
IIFII :> IIxo II. By theorem 3 (Chapter IV, §2, p. 34) there exists,
moreover, a functional X0 E E* such that II X0 II = 1 and X0 (x 0) = II x 0 II, so
that F(X o) = IIx o ll, whence IIFII ~ IIx oll. These two inequalities give
IIFII = IIx oII.

G is a total subset of the space E** of all bounded linear func
tionals on E*.

In fact, if for some XoEE* we have F(X o) =0 for any FEG, we also
have X o (x) = 0, for any x E: E, and so X o = O.

We now show that the set G is transfinitely alosed.
To this end, let a be any limit ordinal and (F!':) S G, for 1 :> ~ < a,

a norm-bounded transfinite sequence of functionals. There therefore
exists a number M> 0 such that IIF~II < M for 1 :> ~ < a and by definition
of G every functional F~ is of the form F~(X) =X(x~;l. Let (Xi) be a
dense sequence in E which is separable by hypothes1s.

For every natural number n let x~n) be any term of (Xi) which
satisfies the inequality

(37)
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Ft) (X) = X(xt») for X E: E*.

In the case where 8 is cofinal with w(therefore when there exists
a sequence (1;.) of transfinite numbers such that lim 1;. = 8 and 1;. < 8

~ i~oo ~ ~

for i=1,2, ••• ), the sequence (xk~)) contains a subsequence which

converges weakly to an element x tn) E: E. Clearly we then have

lim F(n) (X) ~ lim F(n) (X) = lim x(x(~)) ~ X(x(n))
1;+8 I; i+oo I;i i+oo I;~

and consequently the functional F(n)(X) =X(x(n») is a transfinite

limit of the sequence (Ft n ») •
In the case where the limit ordinal 8 is not cofinal with w, the

transfinite sequence (x~n»), which, by definition, has at most coun

tably many distinct terms, includes a term x(n) such that for every

n < 8 there exists an I; > n with x~n) = x(n). We then have

lim F(n) (X) = lim X(x(n») ~ X(x(n)),
1;+8 I; 1;+8 I;

from which it follows that the functional F(n) (X) =X(x(n») is again

a transfinite limit of the sequence (F~n») •

This established, consider the sequence_(x(n»). Thi2 contains a
subsequence which converges weakly to an x E: E. Put X (x) =F" (X). We
thus have, on the one hand

(38) lim F(n) (X) ~ Fa(X) for every X E: E*
n+oo

and, on the other hand, by definition of G" F o E: G. Now, by (37) we

have X(xl;) ~ x(x~n») - ~IIXII, whence, by definition of FI; and F~n) ,

lim F~ (X) lim X(X~) ~ lim X(x (n») - llixil
1;+8 S 1;+8 S 1;+8 I; n

lim F(n) (X) - lliXIi ~ F(n) (X) - llixli
1;+8 I; n n

and consequently, by (38), lim FI; (X) ~ lim F (n) (X) ~ F 0 (X). The func-

tional F o is therefore a tr~~~finite ll;it of the sequence (FI;) and
as F o E: G, the set G is indeed transfinitely closed.

Since it is both total and transfinitely closed, it follows from
the remark (Chapter VIII, §2, p. 72) together with lemma 3 (Chapter
VIII, §3, p. 75) that the set G is equal to the entire space E**.

By definition of G, there therefore corresponds to every FE: E** an
x E: E such that, as was proved to begin with, IIFII = IIxli. The operator
U defined by U(x) =F is consequently a bounded linear bijection
which maps E to E** with no change in norm. The spaces E and E**
are thus equivalent, q.e.d.

Remark. Thus, for example, the spaces LP and ZP, for p> 1, are
equivalent to the dual spaces of the spaces of bounded linear func
tionals on therli (cf. p. 110, 2°).

THEOREM 14. The duaZ spaae of a produat of Banaah spaaes is iso
morphia to the produat of their duaZs.

Proof. If E1 ,E 2 , ••• ,En are Banach spaces, ,we have to establish
the isomorphism of the space E* where E = E1 X E2 X ••• x En with the
space E~ x E~ x •.• x E~. We need only consider the case where n = 2.
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Let X l ,X 2 and z denote elements of E l ,E 2 and E respectively, and
let Xl ,X 2 and Z denote bounded linear functionals on these respec
tive spaces.

Let H be the set of all pairs (xl,El) where Xl E: E l • We can thus
regard H as a subset of E =E 1 X E 2 and consequently every bounded
linear functional Z, restricted to the space H, determines a bounded
linear functional Xl on E l • Put

Z(z) = Xl (Xl) for z (xl,El)

and, similarly,

Z(z) = X 2 (x 2 ) for z = (El,x 2 ).

For z = (X l 'X 2 ) we therefore have, as is easily verified,

(39) Z (z) = Xl (Xl) + X 2 (x 2 ).

Conversely, given two bounded linear functionals Xl E: Et and
X 2 E: E~, the formula (39) def ines a functional Z E: E*.

The correspondence is bijective and takes the form of a bounded
linear operator from Et x E~ onto the whole of E*, so that these two
spaces are isomorphic, q.e.d.

Remark. Putting E = [E l X E 2 x .•• x EnJ ~p or E = [E l x E 2 x ••. x EnJ""

respectively, it is easily seen that the dual space E* is isometric,

for p> 1, with the space [Et x E~ x '" x E~]~/(P-l) and, for p = 1, with

the spa~e [E~ x E~ x ... x E~J"" or with the space [E~ x E~ x •.. x E~] ~l'
respect~vely.
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CHAPTER XII

Linear dimension

§1. Definitions.

Given two F-spaces E and E
l

, we shall say that the Zinear dimension
of the space E does not exceed that of the space E l , or, symbolically:

(1) dimZE S dimZE l ,

if E is isomorphic with a closed linear subspace of E •
We will say that the spaces E and E l have the same iinear dimension,

symbolically:

when both (1) and

(2)

hold simultaneously.
We will say that the linear dimension of E is strictZy Zess than

that of E l , when (1) holds but (2) does not. Symbolically, we shall
write:

dimZE < dimZE l •

Finally, we shall say that the linear dimensions of the two spaces
are incomparabZe when neither (1) nor (2) holds.

It follows that isomorphic spaces always have the same linear
dimension. It is unknown whether or not the converse is true, but I
think it very likely that there exist Banach spaces, even separable
ones, which have equal linear dimensions without being isomorphic.

Every space which is isomorphic with n-dimensional Euclidean space
will simply be called n-dimensionaZ. A Banach space for which no
such n exists will be said to be infinite-dimensionaZ.

§ 2. Linear dimension of the spaces c and ZP, for p ~ 1 •

THEOREM 1. If, for a Banach space E, one has

(3)

or

(4) dim Z
E < dim

Z
zP for some p ~ 1,

then E is a finite-dimensionaZ space.

Proof. As the space c is isomorphic with the space Co of sequences
of numbers convergent to 0 (cf. Chapter XI, §6, p. 109, 1°), there
exists, by (3), a closed linear subspace G= Co isomorphic with E. If
E, and therefore G also, were infinite-dimensional, there would exist,
for every natural number N, a sequence of N + 1 elements I!. € G,
i=1,2, ..• ,N+1 such that ~

N+l
I a.l!. = 0 implies a l =a 2 = .•• =aN+ 1=0.

i=l ~ ~
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Consequently, putting z. = CS i ), we would be able to find numbers
'l- n N+l i

CJ.., i=1 ,2, ••• ,N+1, not all zero, satisfying the equations '~lCJ.iS = 0
v N+l 'l-- n

for n=1,2, ••• ,N. With (Sn) denoting the sequence z=ihCJ.iz i , we

would therefore obtain

(5) UzU > 0 and Sn = 0 for n=1,2, ••• ,N.

We have thus established the eXistence, for every natural number N,
of an element Z = (Sn) of G satisfying (5).

Now ~efine, by induction, a sequence (Yi) of elements of G, where

y. = Cn'l-), by choosing for Y
1

any element of G with lIy11l = 1 and for'l- n
y., i=1,2, ••• , an element of G such that

'l- i
(6) UYiU = 1 and nn = 0 for n=1,2, ••• ,Ni _

I
,

where Ni -
1

is the least natural number satisfying the inequality

(7) In i - 1 1 < ~1 for every n ~ N._ 1 ·
n 3'l-- v

The existence of such a sequence (Yi) is an immediate consequence
of the result just established above.

Let Go be the set consisting of all polynomials of the form
l'

i g1CJ.
i

Y
i

where 1'=1,2, ... together with all limits of sequences there-

of i.e. Go is the closure of the set of all such polynomials. Go is
clearly a closed linear subspace of co'

This established, let:= (s~) be any bounded sequence and put

(8) n = L s.n'l- for n=1,2, •••
n i=1 'l- n

We shall show that

exists a natural number

In~.1 = 1 for i=1,2, ••• ,
'l-

definition of N.'l-
Ni - 1 :> mi < Ni

Ni = 00; there therefore

suffix n in question,

(9)

whence by

(11)

1 3
'G UxU ~ sup In I :> 2UxU •

n~1 n
Indeed, given a suffix n, there exists, by (6), a natural number

m. such that'l-
(10)

and consequently lim
i-+oo

k such that, for the

(12)

where No = 1.
For every i> k, we consequently have, by (11), Nk:; Ni -

1
~ whence,

by (12), n < Ni -
1

• We conclude, by virtue of (6), that n-~ = 0 for

every i > k, and therefore by (8) that
k .

(13) nn =.L sin~
'l-=1

For every i< k we also have, by (11), Ni:it.N
k

_
1

, whence, by (12),

N.:it.n, so that, by (7), Inil <~. Since Inkl:> 1 and Is.l:it. UxU for'l- n 3'l- n v

every i, it follows from this, by (13), that, on the one hand, we
have k-l

Innl :> IIxU L~ + UxU :> ~UxU
i= 1 3 'l-
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3
( 14 ) sup In I ~ 211 x II ,

n<::l n
and on the other hand, for every k satisfying (12),

k-1
(15) In I ~ Il;kl.lnkl -lIxll 2l..,. ~ Il;kl.lll - -21I1xll .

n n '_1 3'l. n
'l.- 2

Now there exists a k such that Il;k I <:: 311x II, so that, according to

(10), we have Ink 1=1. Consequently, as the relation (15) was
mk

proved for the arbitrarily chosen suffix n, we deduce from it, for

n=mk:lnnl ~~IIXII-~IIXII=~lIxlI, whence ~~~ Innl <::~lIxli. Taking this

inequality together with the inequality (14), we see that formula
(9) has thus been established.

Now, with every x = (I;i) let us associate the sequence y = (nn)'
defined by formula (8). By (9), the sequence y is bounded and we
have, putting y = U(x),

1 3
(16) 611xll ~ IIU(x)ll ~ 211xll,

so that U is a bounded linear operator.

However, for xi = (I;~), where

I;i = {1 for i = n,
n 0 for i ~ n,

we have, by definition, y. = U(x.) for i=1,2, ••• Consequently for
co'l. 'l.

X = (I;i) E a 0 we have x = d~ll;ixi whence, by the continuity of the

operator U, it follows that y= U(X) = .E
1

1;·U(X.) = .E
1
1;.y., so that,

'l.= 'l. 'l. 'l.= 'l. 'l.
this last series being convergent, we obtain y EGo'

Conversely, let y E Go' By definition of Go we therefore have
r n n r n n

y = lim sn where S = .L
1

rJ..y.; for t = .L
1

rJ..x. we consequently have
n~ n 'l.= 'l. 'l. n 'l.= 'l. 'l.

tnEa o and U(tn)=sn' Now (16) yields tlltp-tqll:i!lIU(tp-tq)lI=

lisp - sqll ; the equality p~~~collsp - sqll = 0 thus implies

lim IItp - tqll = O. Hence the sequence (t ) is convergent. Putting
p,q~co n
x = ~1~ tn' we therefore have x E a 0 and U(x) = y, from which it

follows that the operator U is one-to-one and maps aD onto att of Go.
The spaces aD and Go are thus isomorphic and as Go =G, this

implies that dimtao ~ dimtG, from which it follows, due to the iso
morphism of G with E and of aD with a, that dimta ~ dim E, which con
tradicts the hypothesis (3). E is therefore finite-dim~nsional,
q.e.d.

The proof for t P , P <:: 1, is similar.

§3. Linear

THEOREM 2.
ges weakty to

(17)

dimension of the spaces LP and t P for p > 1 •

Every sequence of funations (Xi (t)) =LP whiah
o aontains a subsequenae (Xik(t)) suah that

II
n II __ jo(nh)for 1 < P :i! 2,
2 x·

k=l 'l.kll O(n!)forp ~ 2.

aonver-

Proof. The proof will rest on the following inequality for p > 1 :
p p p 1 EJ,Pl ..

(18) la + bl :i! lal + pial - b.sign a + Albl P + B 2 laIP-JlbI J ,
j=2
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1

+ pflsn_lIP-l.sign S x. dt
o n-l vn

1 E1p) 1 ••

+ AflXi IPdt + B l flsn_lIP-JlxinIJdt.
o n j=2 0

The weak convergence of the sequence (xn(t») implies, by virtue of
theorem 1 (Chapter IX, §1, p. 89) that the sequence of numbers
(lIxn ll) is bounded and, without loss of generality, we can assume that
that

where a and b are arbitrary real numbers, A and B are constants
which only depend on P and E(p) denotes the integer part of p. The
last term on the right hand side thus vanishes when p:> 2.

Define the sequence (Xik) by induction, putting i 1 = 1 and, for
n> 1, letting in be any natural number such that the inequality

1

(19) pllISn_1(t)IP-1. sign Sn-l(t).Xin(t)dtl :> 1,

where sn-l (t) = ~~~Xik (t), is satisfied. Such an in exists since, by

hypothesis, the sequence (Xi(t») converges weakly to O-and

ISn-t<t)IP-1 EL
q where ~ + ~ = 1.

Putting a = sn-l (t) and b = xi n (t), the inequality (18) yields, on
integration:

1

f IsiPdt ::>
o n

(20)

(21) IIx n ll :::i 1 for n=1 ,2, .•.

Now, in the case P > 2, we have by (21), in view of Riesz I inequal
ity (c£. Introduction, §2, p.1) for 2::>j:>p:

1 p-j j [1 P ](P-j)/p [1 P 1(P-2)/p
~ISn-ll IXinl dt:::i !ISn-11 dt ::> 1 + !ISn-11 dt J

whence, by (19) and (20), IIs n ll P ::> IIs n- 1I1 P+ 1 + A + Bp (1 + IIs n _ 1 I1 P- 2 ) ,
which by iteration yields

(22)

where C = 1 + A + Bp and D =Bp.
Let M = C + D + 2. We are going to show by induction that

(23) IIs n ll :> M.n! for n=1,2, •••

In fact, by definition of sn and by (21) we have IIs 1 11:> 1 and,
assum1ng that the inequality (23) holds for suffixes less than some

n-l
given n, we have by (22) that IIsn liP:> D. MP-2 kh k (P-2) /2 + C. n :;;

D. MP-2. np/2 + C. n :> MPnP/2 (D. M- 2 + n l-p/2 C• M-P) , which implies (23)
since, as is easily checked, the sum in brackets is <1 for p> 2.

By (23), the equality IIsn ll =a-In!) for p> 2 is thus -established.
We now pass to the case where 1 < P ::> 2. By definition of sn we

deduce from (20) and (21) that f~lsnIPdt:: f~lsn-lIPdt+ 1 +A+B,

whence II sn liP:> II Sn-l11P + C, where C = 1 + A + B, and consequently
IIs n ll P :: IIs 1 11 P + C(n-l) :: C.n, so that, putting MP = C we obtain

II sn II :::i M. n 1 /p, from which the equality II sn II =a (n 1 /p) follows in this
case also, q.e.d.

Remark. The above theorem is no longer true, for any p> 1, if the
symbol a in the relations (17) is replaced by o.

Indeed for P;;: 2 let xi (t) =sin 27Tit. Since we have

],im f~a.(t)sin 27Titdt= 0 for any integrable function a.(t), the
'1--+-00
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n
sequence (Xi(tl)£LP is weakly convergent. Putting snltl =k~lxik(t)

where (xik(t)) denotes an arbitrary subsequence, we therefore have

1 )1 (1 1
IIs n (tlll = (!lsn(t)IPdt Ii ~ !s~(t)dt) = J2.n1,

which shows that 0 cannot be replaced by o.
For 1 < P ;:; 2, putting

f
2i / P for ...!.,. ~ t ~ _.1_

21- 21--1

lo for 0 ;:; t < ...!.,. and _1_ < t ~ 1,
21- 2i - 1

The weak convergence of (xi) to 0 implies

(24)

we have, for any subsequence (Xiklt)), the equality
1 1!

IIs n ll = (!ISn(t) IPdt)f? = nP,

which demonstrates the impossibility of replacing 0 by 0 in this
latter case also.

THEOREM 3. Every sequence (xi) of eZements of ZP, where p> 1,
which converges weakZy to 0, contains a subsequence (Xik) such that

II I x II = O(n
1

/
p

).
k=l i k

Proof. Let xi = C~i).
r

(cf. p. 83) that

(25)

and that

lim ~i = 0 for r=1,2, •••
i-+ro r

(26) IIx
i

li ~ M for i=1,2, •••

The sequence (xik) is defined inductively in the following way:
XiI =Xl and xin' for n> 1, is any term of the sequence (xi) satis
fying the inequality

N N
(27) L Ie + ~~nIP ;:; L I~.IP + 1,

j=l J J j=l J.

n-1
where (~j) = sn-1 =k~lxik and N denotes a natural number such that

(28)
00

L I~ ·1 P ;:; 1.
j=N J

Such an xin exists by virtue of (25). We have by definition
N .

IIsn ll P = IIsn- 1 + Xin"P ~ L I~. - ~~nIP
j=l J J

whence by (27) and Holder's inequality

IIs n " P ~ ~ I~ ·I P + 1 + [(.i I~.IP)~ + (.i 1~~nIP)~]P
j = 1 J J =N J J =N J

and consequently, by (26) and (28), IIsnIlP~lIsn-1I1P+1+(1+M)P=
IIs n-1I1 P+C where C= 1 + (1 +M)P. It follows from this that IIs n ll P ;:;
C.n, from which, by definition of Sn, the equality (24) follows,
q.e.d.

Remark. The above theorem 3 no longer holds for every P > 1 if 0
is replaced by 0 in the formlula (24).
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In fact, it is enough to put

Si _ f1 for i = r,
r - to for i ~ r,

II 00 11_ l/pto have k~lxik - n for any subsequence (xik).

We are going to deduce from theorems 2 and 3 just proved, several
relationships, firstly between the linear dimensions of the spaces
LP and Lq, then between those of the spaces zP and zq and finally
between the linear dimensions of the spaces LP and those of the
spaces zq, with p,q > 1 throughout.

LEMMA. If dimZLP :;; dimzLq, where P, q > 1, then either q:> P :;; 2 or
2:> p:> q.

Proof. By hypothesis, there exists a bounded linear operator U
which maps LP injectively onto a closed subspace a of L q • If the
sequence (xn ) SLP is weakly convergent to e, the same is true of the
sequence (Yn) where Yn = U(xn). By theorem 2, p. 119, there con
sequently exists a subsequence (Yin) such that

(29) III y. 11= O(n<P(q») where <p(q) ={~//i ~or 1 ~ i:;; 2,
k=l ~k or q ~ •

As the inverse operator U- 1 is continuous, there exists an M> 0
such that IIxll ;:;; Mllyll, where x = U- 1 (y), for every yEa, whence

IlkLXikl1 :;; MllktYikl1 and consequently, by (29), Ilktxikll =0 (n<p (q»,

so that, (Xi) being any sequence weakly convergent to e, we conclude
from (29) that

(30) <P(p) ;:;; <p(q).

Now as the spaces of bounded linear functionals on LP and Lq are

(cf. Chapter XI, §6, p. 110, 2°) isometric with LP/(P-l) and

Lq/(q-l) respectively, we have that the adjoint operator u* maps

Lq/(q-l) to LP/(P-l) and it follows from theorem 3 (Chapter X, §1,

p. 91) that its codomain is all of the space LP/(P-l). By theorem
10 (Chapter X, §1, p.92), there therefore exists an m> 0 such that
to each XE LP/(P-l) there corresponds a YE Lq /(q-l) in such a way
that X= U*(Y) and IIYII ;:;;mIlXII.

Having said this, let (X n ) be any sequence of elements of LP/(P-1)
which converges weakly to 0 and (Yn ) the sequence satisfying the
conditions Xn =U*(Yn ) and IIY~II:> mllXnll for every natural number n.
Since the sequence of norms LIIYnll) is bounded, (Yn ) has a weakly
convergent subsequence (Yn ·), (see Chapter VIII, §7, p. 80). If Yo
denotes the limit of this ~ubsequence, we have U* (Y 0) = 0, since the
sequence (Xni ) converges weakly to O. We consequently have
Xni = U* (Yni - Yo) and, further, the sequence (Yni - Yo) converges
weakly to O. Putting Yi =Yni - Yo for i=1 ,2, ••• , we can therefore,
by theorem 2, p. 119, extract a subsequence (Yik) such that

(32) II ~ Yi II = o(n<p(~))
k=l k II

whence, putting Xik = U* (Yik)' we obtain IIX\kll:> II U*II.IIYikll and

(33) II ~ Xi II = o(n<P(q~f))
k= 1 k

Since (Xik) is a subsequence of (Xn ), we conclude from (32) and
(33), in view of the remark on p. 121, that
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M[ I (a~ + bi)];·
i=o ~

whence, by (30) and the definition of the function ~, the desired
inequalities follow without difficulty.

This lemma easily leads to the following theorems.

THEOREM 4. If dimlLP = dimlLq, where P, q > 1, we have P = q.

THEOREM 5. If 1 < P < 2 < q, the spaaes LP and Lq are of inaompar-
able linear dimensions.

THEOREM 6. If 1 < P .. 2, we have dimlL2 < dimlLP.

Proof. For x (t) E: L2 , let

y(t) = ~ + L (aicos 2i t + b.sin 2i t)
2 i=l ~

where a.=l(1fx(t)cositdt and b.=lf201fx(t)sinitdt, for any
~ 1f a ~ 1f

i=0,1 ,2, ...
00 21f

As i~o(ai+bi) = fax2(t)dt, there exists a constant M>O, depend-

ing only on P, such that

21f 1::
[f Iy(t) IP]p ::;;
o

Putting y =U(x), we therefore have y E: LP and the above inequality
can be written in the form

lIyll :;; Mllxll,

from which it follows that U is a bounded linear operator.
Moreover there exists a constant K such that

[ I (a 2. + b 2.)]; ~ Kf
1f

ly(t) Idt,
i=O ~ ~ 0

whence, by Riesz' inequality (see Introduction, §2, p. 1):
00 ] 1 21f }1

[ L (a 2. + b 2.) ; ~ K(21T)P[f Iy(t) IPdt P,
i=o ~ ~ 0

so that IIxli ::;; Cllyll where C =K(21f) lip, from which it follows that U
has a continuous inverse.

Consequently we have the relationship

diml (L 2 ) ~ diml(LP)

where the equality sign is excluded (since we would then have, by
theorem 4 above, the equality P = 2, contrary to hypothesis), q.e.d.

It is worth noting that the following problem is still open: is it
true that for q < P < 2, just as for 2 < P < q, we always have
dimlLP < dimlLq?

For the spaces lP and lq we have the

THEOREM 7. The spaaes lP and l q where 1 < P .. q > 1 are of inaompar
able linear dimensions.

Proof. Putting dimllP::;; dimllq and proceeding as in the proof of
the lemma, p. 122, one obtains the inequalities (which correspond to
the formulae (30) and (34»:

1 <.1 E..:1 riP _ q and P ~ q ,
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whence P =q, contrary to hypothesis.

We now pass to the relationships between the linear dimensions of
LP and zq.

THEOREM 8. If dimZLP :;; dimZ Zq where P, q > 1, we have P = q = 2.

Proof. By the same procedure one obtains (in place of (30) and
(34» :

where

<I> (p) < 1 and "'(2..-)- q 'I' p-1
:;; .L.!q ,

(35)

1
1n for n :;; 2,

<I> (n) =

~ for n ~ 2.

It immediately follows from this that p=q=2, q.e.d.
The above theorem 8 implies, by virtue of theorem 1 (Chapter XI,

§ 2, p. 101) the

COROLLARY. For dimZLP = dimZ zq, it is neaessary and suffiaient
that p=q=2.

THEOREM 9. If 1 < P'" 2, we have dimZLP> dimzZP .

Proof. Indeed, if, on the contrary, we had dimzLP ::; dimzZP , we
would have by theorem 8 above, putting P = q there, the equality P = 2,
contrary to hypothesis.

It therefore remains to show that the spaces in question are of
comparable linear dimensions. To this end put

for 0 ::; t < ~ and __1__ < t :;; 1,
2t. 2i - 1

00

whence f~IYi(t)IPdt=1, so that Yi(t)ELP for i=1,2, ••• ; for every

x= (~.) E ZP, let
t.

y(t) = L ~.y.(t),
i=l t. t.

lOOp
whence f 0 IY (t) IPdt =i~ll ~i I • Consequently, putting y = U (x), we

obtain lIyll = IIxll, which shows that U is a bounded linear operator
that admits a continuous inverse. Moreover, it maps zP isomorphic
ally onto a subspace of LP.

THEOREM 10. For 1 < q < P < 2, just as for 2 < P < q, the spaaes LP
and zq are of inaomparabZe Zinear dimensions.

Proof. Assuming that dimZLP <: dimZZq, the argument used in the
proof of the lemma, p. 122, leads to the inequalities (analogous to
(30) and (34»:

1 ~ <I>(p) and.L.! :;; <1>(2..-),q q p-1

where the function <I> is defined by the formula (35). We immediately
deduce from this that either P::; q :;; 2 or 2::; q :;; p, contrary to
hypothesis.
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The following question nevertheless remains unsettled: is i
true that p < q < 2, or "likewise 2 < q < p, imp "lies the inequa"lity
dim~LP > dim~ ~q?
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Appendix
Weak convergence in Banach spaces

We distinguish two notions of weak convergence in Banach spaces,
namely: weak convergence of bounded linear functionals and that of
elements (cf. Chapter VIII, §4 and Chapter IX, §1). The two notions
are clearly different. We are here going to add several theorems
connected with the study of these notions.

§1. The weak derived sets of sets of bounded linear functionals.

Given a separable Banach space, let r be an arbitrary set of
bounded linear functionals defined on E.

Let us call a bounded linear functional X a weak aaaumulation
point of the set r when there exists a sequence of bounded linear
functionals (Xk) with Xk" X and Xk E: r for every k=1 ,2, ... , which
converges weakly to the functional X.

The set of all weak accumulation points of the set r will be called
the weak derived set (of order 1) of r, and the weak derived set" of
the weak derived set of order n-1 of r will be called the weak
derived set of order n of r. The successive weak derived sets of r
will be denoted by r (1) , r (2) , ••• , r (n) , •••

If r is a linear set, we evidently have

r ~ r(l) ~ r(2) ~ ... ~ r(n) ~ r(n+1) ~ ...

It is easy to give an example of a linear set r which is closed,
without being weakly closed.

Indeed, take for r the set of bounded linear functionals X defined
on the space a o of the form

(1) X(x) L C.l;.,. "Z-"Z-
oo "Z-=1

where x = (l;i) E: a o and C1 =i~2Ci.

It is easy to see that the set r thus defined is linear, closed and
thatit does not contain the functional of the form (1) where C1 = 1
and C. = 0 for i=2,3, ••• Moreover, since this last functional (see
the R~marks to Chapter VIII, §6, p. 148) is the weak limit of the
sequence (Xk ) of functionals of the form (1) where

C. = {1 for i = 1 or i = k,
"Z- 0 for i .. 1 and i .. k,

the set r is not weakly closed.

THEOREM 1. For every natural number n there exists a linear set of
bounded linear funationals defined on the spaae a o whose weak derived
set of order n is not weakly alosed.

Proof. Every bounded linear functional X defined on a o being of

the form (1) where x = (l;i) E a o and i~ll Ci 1= II XII , let /),1 be the set of
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those for which one has C2i = 0 and "'2 the set of those where C
2i

-
1

=
o for i=1 ,2, •••

Set up a one-to-one correspondence between pairs 1',S of natural
numbers and even numbers N(l',s) and denote by Zl' s the bounded lin-

ear functional on Co given by Zl'
l

S (x) = i~l CiF;,i w~ere x = (F;,i) E: Co and

(2) C = {1 for i = N(l',s),
i 0 for i ~ N(l',s).

Let G be an arbitrary linear set of bounded linear functionals
defined on co. Let H be the set of all functionals of the form (1)

where C
2

• = 0 for i=1, 2, •.• and such that the functional .E
1

C
2

• 1 F;, •
~ ~= ~- ~

belongs to G. The set H thus defined is clearly linear and we have
H £: "'1. Being a subspace of 7- 1

, the set '" 1 is separable. H there
fore contains a sequence of functionals (Yl') which is dense in the
set of bounded linear functionals of norm :> 1 belonging to Hand
such that

(3) "Yl'" S 1 for 1'=1,2, •••

For 1',S natural numbers, put:

(4)

(5)

(6)

and let r denote the linear set of functionals X of the form
00 00

X = I al' SXl' S = L Yl' I al' S + L l'al' SZl' s'
1',s=1 ' , 1'=1 s=l ' 1',s=1 ' ,

where at most finitely many of the al' S are non-zero.
By virtue of (4) and (5) we therefore have, by definition of the

sets "'1 and "'2
11

00 11"00 1_
00

I aI', SXl', S ~ II I l'al', SZl', sl - I 11'al', sl·
l' s=l l' s=l l' s=l

Now let (Xk), where Xk E: r f~r k=1 ,2, .•. , be ~ sequence which is
weakly convergent to X. By (5) we can put

(7) x
k

I a(kl x xk + xk'1',s=1 1',S 1',S
where

(8) X' = I Y I a(kl and X" = I l'a(k)z
k 1'=1 l' s=l 1',S k 1',S=1 1',S 1',S

Clearly Xi< E: "'1 and X'k E: "'2 for any k, from which it follows that
the sequences (Xk) and (Xk) converge weakly to some functionals
X' E "'1 and X" E: "'2; consequently X =X' + X".

With H' denoting, as usual, the derived set of H in the ordinary
sense, we shall show moreover that

(9) X' E: H'.

In fact, due to the weak convergence of the sequence (Xk) to X,
there exists a number M> 0 such that "Xk" S M for k=1 ,2, .•• , whence,

by (6)-(8), E 1 11'a(k l l :>M; therefore, putting b(k)= E
1
a(k l , we

1',S= 1',S l' s= 1',S
can write

(10) Y 11'b(k) I :> M for k=1,2, •••
1'= 1 l'

Hence there exists a subsequence (of indices)

limit b = lim b (kj) exists for every 1'=1,2, •••
r j-+oo 11

We therefore have, by (10),

(k.) such that the
J
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+ Lib),
r=m

the inequality

( 11)

For each natural

I Ib(kj) -
1'= 1 l'

which, by (11) and

L rlbrl :> M.
1'=1

number m we consequently have
m-l 00

b) ;> L Ib(kj) - b I + L Ib(kj) I
1'=1 l' l' r=m l'

the definition of b r , yields

lim I Ib(k j ) - brl :> 2Mlm,
j-+oo 1'=1 l'

whence, as m is arbitrary,

lim I Ib(k j ) - b I = o.
j-+oo 1'=1 l' l'

Observe that, by (3) and (11), the series r~lbrYr is convergent

and the above equality implies, by (8), that X' is its sum. As
Yr E: H for every natural number l' and H is a linear set, we therefore
have X'EH'.

It is thus proved that for X = X' + X" E: f (1)' where X' E: /:;1 and
X"E:/:;2' we have X'E:H'. Formula (9) is thereby established.

Moreover, it is easily shown that the sequence (Zr,s) converges
weakly to e as s -+ 00; hence, by (4), the sequence (Xr,s) converges
weakly to Yr as s -+ 00. We therefore have

(12) Yr l;;; f (1) for 1'=1,2, •••

Now let (X
k

) l;;; f (1) be a sequence which converges weakly to
XE:/:;lnf(2)' We p ainly have Xk=Xk+X'k, where XkE:H' and X~E/:;2'
It is easily seen that the sequence (Xk) converges weakly to X,
whence X E: H(1)' Conversely, for each X E H(1)' there exists a
sequence (Xk) l;;;H which converges weakly to X. Without loss of gener
ality we can assume that IIXkll ;> 1 for k=1 ,2,... By definition of the
sequence (Yr ), there exists, for every k, an index rk such that
IIXk - Yrkll ~ 11k 'from which it follows that the sequence (Yrk) is also
weakly convergent to X. It follows from this, by (12), that XE f(2)'
whence XE: /:;1 n f(2)' since H(l) l;;;/:;1 by definition of /:;1'

Hence

(13) /:;1 n f(2) = H 1

Continuing in this way, it is shown by induction that, in general,
one has

(14) /:;1 n f(n+l) = H(n) for every n=1,2, ••.
This established, let us return to the given set G. If we assume

that the derived set G' of G is not weakly closed, the same will
clearly be true of the derived set H' of H, and, by (9) and (13), the
same will hold for the weak derived set f(l) of f. Similarly, assum
ing that the weak derived set G(n-l) of G of order n-1 is not weakly
closed, the same will evidently be true of the weak derived set H(n)
of H, of order n,· and so, by (14), also of the weak derived set
f(n+l) of f of order n+1, q.e.d.

Remark. One can define the weak derived sets f(~) of f of trans
finite order ~ for transfinite numbers ~ of the second class by put
ting f(~) =n~~ f(n)or f(~) = (f(~_l)(1)' according as ~ is or is not

a limit ordinal.

One can then establish, by induction, the following theorem, analo
gous to theorem 1:

For every transfinite number ~ of the seaond aLass, there exists a
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(16 )

Linear set of bounded Linear funationaLs on the spaae aD whose weak
derived set of order ~ is not weakLy aLosed.

Nevertheless, one can show that, if E is a separable Banach space
and r an arbitrary set of bounded linear functionals on E, there
always exists a number ~, finite or transfinite of the second class,
such that the set r(~) is weakly closed. This is an easy consequence
of theorem 4 (Chapter VIII, §5, p. 76).

THEOREM 2. Let E be a separabLe Banaah spaae and r a Linear sub-
spaae of E*, the duaL spaae of E. A neaessary and suffi.aient aondi-
tion for r (1) =E* is that there exist a number M> 0 suah that, for
eaah x E E, r' aontains a funationaL X satisfying the aonditions

(15) II XII :;; M and IX(x) 1= IIxli.

Proof. Necessity. For each natural number n, let ~n be the set of
bounded linear functionals X on E which are weak limits of sequences
(Xk) contained in r satisfying the inequality IIXkll;;; n for k=1 ,2, •..

We therefore have, by theorem 2 (Chapter VIII, §4, p. 75),
00

r(1) = n~l~n' whence, by hypothesis

E* = U ~ •
n=l n

Observe that ~n is a closed set. Indeed, let (Xj) ~ ~n be a sequ
ence where ],imIlX

J
. - xII = O. By definition of ~n' there therefore

J+OO •
exists, for each j, a sequence (xJ

k) which converges weakly to X.,
. . J

where xiE rand II Xi II :;; n fo~ k=1,2, ••• If (xr ) is a dense sequence

in E, the equalities lim xJ
k (x ) = X . (x ) and lim X . (x ) = X (x ), which

k+oo r J r j+oo J r or
hold for any j and r, imply the existence of a sequence (xi.) such

that lim X~ (x ) =X(x ) for every r=1,2, .•• Since IIXJk

o

II:> n~ it
j+oo j r r .f

follows, by theorem 2 (Chapter VIII, §4, p. 75) that the sequence

(X~ J converges weakly to X, whence X E ~n'
T~US, as every ~n is closed and E* is itself a Banach space, the

equality (6) implies the existence of an index no such that ~no con
tains a ball K ~ E*. Let X' denote the centre and p the radius of K.

Given an element x E E, there exists, by theorem 3 (Chapter IV, §2,
p. 34), a functional X 0 E E* such that

(17) X 0 (x) = II x II and IIX 0 II = 1.

Put

(18 ) A = --_P--- and X" = AX O + (1-A)X'.1+IIX'1I

It easily follows that IIX"-X'II:>p, whence X"EK==~n. There con
sequently exist two sequences (Xk) and (Xk) of functio~als belonging
to r converging weakly to X' and X" respectively; we therefore have
both

(19) IIXkll ~ no and IIXkll ;;; no for k=1 ,2, ...

The sequence {tXk- (1~A) xd is contained in r and, by (18), con

verges weakly to XO' By (17), there consequently exists an index k o
such that

(20) fx k" (x) - (1-A)X' (x) = exllxll where! < ex < 2.
1\ 0 A k o
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Therefore, putting x=~Gx~o - (1~A)Xko)' we obtain XE r, XIx) = IIxll,
2n

and, by virtue of (18)-(20), IIXII~M=-_o(2+2I1X'II+p), from which it
p

follows that M is independent of x. Condition (15) is thus seen to
be satisfied.
Suff ic iency. Let /'; denote the set {X: X E r and II X II ;:;; 1 }• Then, by

theorem 4 (Chapter VIII, §5, p. 76), replacing r by /'; and /'; by (Xr )
therein, there exists a sequence (Xr ) ~ /'; which is weakly dense in /';.
Put, for each x E E,

(21) Y = (nr) where nr = Xr(x) for r=1,2, •••

We therefore have

(22) Inri ~ IIXr ll.llxll ~ IIxll,

whence y Em, and

(23) lIyll ;:;; IIxll,

where the norm of y is that of the space m.
Moreover, with X E r denoting a functional which, by hypothesis,

satisfies the condition (15), put X' = ~X. Then IIX'II ~ 1, so that

X' E/';.
There therefore exists a subsequence (Xro) which converges weakly

to X', whence ],im IXrJo(x) I = IX'(x)l, which~ by (15) and (21), yields
-- J+oo 1
lim Inri ~ IX' (x) I ~ M-lIxll and consequently
r+oo

(24) lIyll ~ ~lIxli.

Thus, putting y = V(x), we see easily from (21) and (23) that V is
a bounded linear operator; by (24), the same is true of the inverse
operator V-i. Since the space E is separable by hypothesis, the co
domain E1 of V is also separable, as V is continuous.

Having said this, let X be any bounded linear functional on E and
put

(25) Y(y) =X[U-l(y)],

so that, the inverse V- 1 being a bounded linear operator, Y is a
bounded linear functional on E1 • By the theorem of S. Mazur
(Chapter IV, §4, p. 44), replacing (~j) by (nr) therein, there
therefore exists a double sequence of numbers (anr ) such that

x (x),
n

because r is a lin-

k n
= I a X (x) =
r=l nr r

for n=1 ,2, •.• ,

(26)

(27)

Y(y) = lim I a n for y E E1
n+oo r=l nr r

and anr = 0 for r> kn , where (k n ) is a sequence of natural numbers.
By (21), this leads to:

00 k nI a nrnr = I a nrnrr= 1 r= 1
from which it follows that Xn E r
ear set and Xr E /'; ~ r.

Moreover, we have, by (26) and (27), Y[U(x)] = lim Xn(x), whence,_ n~oo _
by (25), XIx) =lim Xn(x) for every XEE; the sequence (Xn ) therefore

n+oo
converges weakly to X. Hence X E r (1)' which shows that the condi
tion is indeed sufficient, q.e.d.

It is easy to see that the set E of all bounded aontinuous reai
valued funations x(q), defined on any metria spaae Q, aonstitutes a
Banaah spaae, when addition and scalar multiplication are defined in
the usual (pointwise) way and the norm is given by
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Every bounded Zinear funationaZ X defined on E is the
two non-negative bounded Zinear funationaZs on E.

each subset S of Q, put

(28) IIxll = sup Ix (q) I
q€Q

If, further, the space Q is aompaat, the space E in question is
separabZe.

In these circumstances (with Q compact), we have the following

THEOREM 3. Let (qr) denote a sequenae of points whiah is dense in
Q. Then, for eaah bounded Zinear funationaZ X defined on E, there
exists an array of reaZ numbers (~ir) and a sequenae of naturaZ num
bers (k n ) suah that

ki
lim L airx(qr) = XIx) for x € E.
i-+oo r=l

The proof follows from the preceding theorem 2, due to the fact
that, under these conditions, the set r of bounded linear function

m
als of the form ig1aix(qi)' where the ai are real numbers and m is

an arbitrary natural number, satisfies the hypothesis of theorem 2.
Indeed, for each x € E, there exists a qo € Q such that

x(qo) <: ! max Ix(q) 1= Hxll and as X o (x) =x(qo) is a bounded linear
q€Q

functional of norm 1, one has only to put M = 2.
Theorem 3 can also be easily proved by direct application of the

theorem of S. Mazur, p. 44.

§2. Weak convergence of elements.

Now let Q be a general abstract set, not necessarily a metric
space, and E the Banach space of all bounded real-valued functions
x(q) defined on Q, with the norm (28).

A functional X defined on E will be called non-negative when, for
any function x€ E, the condition x(q) <: 0, for every q€ Q, implies
that X (x) ;: O.

THEOREM 4.
differenae of

Proof. For

(29) j.l (S) = sup X(<P
T

)
TSS

where <P
T

denotes the characteristic function of the set T. We thus
have

(30) 0 ~ j.l(S) :;; IIXII

and <P(S, U S2) = j.l(S,) + j.l(S2) for disjoint sets S, and S2'
By (29), we have, further

(31) X(<P s ) :;; j.l (S).

For every function x € E such that IIxll = 1 let

(32) xn(q) = ~ for ~ ~ x(q) < i~1, where -n:;; i ~ n.

We clearly have Ixn(q) -x(q) I:> 1/n for every q€ Q, whence
IIxn -xll:;; 1/n and consequently

(33) x = lim x n •
n-+oo

With S. denoting the set {q€Q: xn(q) =i/n}, where -n:;;i:;;n, put
~,n n

(34) X'(x) lim L 1j.l(S. ).
n-+oo i=-n n ~,n

It is easily shown that, by (33), the limit (34) exists and that,
by (30), IX' (x) I :> IIXII.
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Now the functional X' is non-negative, because, supposing that

(35) x (q) ~ 0 for every q E Q,

we obtain, from (30) and (34), the inequality

(36) X'(x) <1;0.

Observe, moreover, that (32) yields
n .

x n (q) = .L ;cj>Si n (q) ,
"Z-=O '

whence, by (31)
n .

X(X n ) ~ L 1::1.I(S. )
i=On "Z-,n

and (34)

XIx) ~ X' (x),

that the~nctional

X" = X' - X

because, by (37), we alwaf$ have the inequal
condition (35) holds. Finally, X = X' - X", by

(38)

is also non-negative,
ity X" (x) <1; 0 whenever
(38) •

and consequently by (33)

(37)

from which it follows

where the symbol Lim
p.21. We then have,

(41)

from which
e.

Sufficiency. In order to prove that a sequence of functions (xn),
where II Xn II < M for n = 1 ,2, ••• , converges weakly to e, it is now enough
to show, conversely, that there exists no non-negative bounded lin
ear functional X which satisfies the inequality (41).

Suppose, on the contrary, that such a functional X exists; we can
obviously assume that

(42) IIXII = 1 and lim X(X n ) > ex > O.

THEOREM 5. For a norm-bounded sequenae of funations (x n ) ~E to
aonverge weakly to e, it is neaessary and suffiaient that

(39) lim lim Ixn(q.) I = 0
n-+oo i-HXI 1-

for every sequenae of points (qi) £ Q.

Proof. Necessity. Sup~e, on the contrary, that for some
sequence (q.) £ Q we have lim lim Ixn (q.) I > ex > O. There therefore

t. n-+oo i-+oo 1-
exists an increasing sequence (n k ) of natural numbers such that
lim Ixnk (q .) I > ex> 0 for every k and we can consequently extract, by
1+00 1-
k diagonal procedure, a subsequence (qij) of (qi) such that

(40) !lim xnk(qi') I > ex > 0 for k=1,2, •.•
j-+«> J

Consider the bounded linear functional X defined by the formula

XIx) = Lim x(qi.) for every x E E,
j-+«> J

has the meaning defined in Chapter II, §3,
by (40), IX(xnk) I >ex for k=1,2, ••. , whence

lim IX(x n ) I > ex > 0,
n-+«>

it follows that the sequence (xn) does not tend weakly to

n-+«>
Put, for every q E Q

sn(q)

and
{

XOn (q) if xn (q) <1; 0,
if xn(q) < 0,
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tn(q) = xn(q) - Sn(q)·

At least one of lim X(sn) and lim X(t n ) must clearly exceed !a.
n~oo n+oo

Assume, therefore, that

(43) lim X(sn) > !a > O.
n-+-oo

Put, then, for each q E Q

_ !Sn(q) if sn(q) ;;: 1
6a ,

yn(q) -lo if sn(q)
1

< 6a .

Then IIs n - Yn ll < 1 whence, by (42) and (43)- 6a ,

(44) lim X(Yn) > ~a > O.
n-+-oo

Let Sn denote the subset {q E Q: Ixn(q) I ~ ia} of Q and let <P n be

its characteristic function. As IIYnB ~ IIs n ll ~ IIx n ll < M, we have
1<Pn(q) ~MYn(q) for every qEQ and n=1,2, ••• , so that, as the func-

tional X is non-negative, X(M.<p n );;: X(Yn)' whence, by (44), putting
8=a/3M,

(45) lim X(<P n ) > 8 > O.
n-+-oo

Consider the set-function F defined for the subsets S of Q by

(46) F(S) = X(<PS)

where <PS is the characteristic function of S. The inequality (45)
can therefore be written in the form lim F(Sn) > 8> o. Let n 1 be the
least natural number such that n-+-

oo

(47) lim F(Sn n Sn) > O.
n-+oo 1

Such an n 1 exists.
Indeed, suppose, on the contrary, that lim F (Sk n Sn) =0 and con

n-+-oo

sequently that

Putting

(
k· ) 1k j < nj < k j +1 , F(Snj) > 8 and F iyf(Si n Snj) < ~8.

k·
T. = Sn ...... . uJ

1
(S. n sn.l, we would consequently have

J J ~= ~ J

Tj1 n Tj2 = 0, the empty set, for jl ~ j2(48)

lim F(i~l (Si n Sn) ) = 0
n-+-oo

for k=1,2, ••• There would thus exist two increasing sequences
and (n.) such that for j=1,2, •••

J

and

of the set Tj'

n=1 ,2, ...

whence xCL Yj) ~ 1, for

(50)

(49) F(Tj ) > ~8 for j=1,2, •••

Hence, with Yj denoting the characteristic function
formulae (48) and (49) would yield

x(.I y.) > n.~8 for

r
1

J IIHowever, by (48), we have j~lYj II ~ 1,
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n=1,2, ..• , contradicting (50).
proceeding as for (47), one establishes the existence of an

increasing sequence (nj) satisfying the inequalities
lim F(Sn n Sn n ••• n Sn. n Sn) > 0, from which it follows that none of
n-><X> 1 2 J
the sets (Snj) is ~mpty.

Now let qi' for ~=1,2, .•. , be an arbitrary point of the set
Sn

1
n Sn 2 n ••• n Sni' We thus have qi E Snj whenever i ~ j, whence, by

definition of the set Sn' we have the inequality IXnj(qi) I <: ~a for

each j=1,2, •.• It follows from this that ~ IXnj(qi) I~~a and con-
-- I 1 ~+oosequently that lim lim x n (qi) I ~ Ga., contrary to the hypothesis (39).
n-+oo 1:'+00

THEOREM 6. For a norm-bounded sequence (x n ) in a Banach space E
to converge weakly to e, it is necessary and sufficient that one has

(51) lim ~im IX i (x n ) I = 0
n+oo 1-+00

for each sequence of functionals (Xi) belonging to a set r of bound
ed linear functionals on E possessing the following properties:

1° r is a norm-bounded set of bounded linear functionals

2° there exists a number N> 0 such that, for each element x E E,
the set r contains a functional X satisfying the inequality

(52) XIx) ~ N.llxll.

Proof. To show that the condition is sufficient, consider the
space E1 of all bounded real-valued functions defined on r. With
each element x E E associate the function fEEl given by the relation

(53) fIX) = XIx) for X E r.
Let M = sup II XII and put f = U(x). By (53) and (52), N.llxll ~ IIfll :;;

M.llxll; con~~~uentlY, as U is additive, both U and its inverse are in
fact bounded linear operators.

This established, if the sequence (xn) satisfies the condition
(51), it follows, by (53), putting fn(X) = X(xn), that
lim lim I fn (X .) I = O. It follows from this by theorem 5, p. 133,
n+00 'i7+OO 'l- _
that the sequence (fn) converges weakly to 0. As U 1 is a bounded
:j.inear operator and x n =U-1 (fn), it results, by theorem 3 (Chapter
IX, §5, p. 87) that the sequence (xn) converges weakly to 0.

A similar argument shows that the condition is necessary.

THEOREM 7. For a norm-bounded sequence (x n ) in a Banach space E
to converge weakly to e, it is necessary and sufficient that one has

(54) lim X(X n ) = 0 for every X E r,
n+oo

where r is a set of functionals possessing properties 1° and 2° (of
theorem 6) and, further, is weakly compact.

Proof. The condition is necessary by the definition of weak co~

vergence of elements. To prove that it is sufficient, it is enough,
by virtue of theorem 6, to show that (54) implies (51).

Suppose on the contrary, that there exists a subsequence (xnk) and
a sequence (Xi) SO r such that

(55) ~im IXi(xnk ) I > a. > 0 for k=1,2, .••
~+oo

Now, as the set r is, by hypothesis, weakly compact, there would
exist a subsequence (Xi') weakly convergent to a functional X0 E r,
whence, by (55), !X o (xnf) I ~ a. > 0 for k=1 ,2, ••. , contradicting (54).

The following theorems are easily deduced from the theorems that
have just been established.
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THEOREM 8. For a norm-bounded sequenae (x n ) of aontinuous reaZ
vaZued funations on a aompaat metria spaae Q to aonverge weakZy to e,
it is neaessary and suffiaient that one has

lim xn(q) = 0 for every q E Q.
n-+-oo

The proof comes from theorem 7, with E denoting the space of con
tinuous real-valued functions on Q and r the set of all bounded lin
ear functionals X on E of the form X (x) =x (q), for x E E, for some
q E Q. We clearly then have IIXII = 1 for every X E r and it is easy to
see that r also satisfies the other hypotheses of theorem 7.

Remark. In particular, theorem 8 immediately yields conditions
for the (weak) convergence of sequences of continuous functions on
the closed unit interval and square, respectively.

THEOREM 9. For a sequenae of funations (x n ) ~M, the spaae of
(essentiaZZy) bounded reaZ-vaZued funations on [0,11, to aonverge
weakZy to e, it is neaessary and suffiaient that for every sequenae
of funations (a.(t») suah that

1- 1

JIa . (t) I = 1 for i = 1 ,2, .•• ,
o 1-

we have
1

lim lim IJa.(t)x (t)dtl = O.
n-Jo-OO:r+oo 0 t. n

The proof follows from theorem 6, p. 135, with r denoting the set
of all bounded linear functionals X on M of the form

1 1

Xix) = Jx(t)a(t)dt where Jla(t)!dt = 1.
o 0

We then have IIXII = 1 for every X E r and, for each x EM, there
exists a function a(t) satisfying the conditions

1 1

Jla(t) Idt = 1 and Ja(t)x(t)dt ~ Hxll.
o 0

It is thus enough to put N = ! in the theorem mentioned.

THEOREM 10. For a sequenae (x n ), where X n = (1;~), of eZements of m,

the spaae of bounded reaZ sequenaes, to aonverge weakZy to 0, it is
neaessary and suffiaient to have, for every sequenae of indiaes (k i )

lim lim 11;~.1 = o.
n-+oo i-+oo 1.-

The proof follows from theorem 6, p. 135, with r denoting the
sequence (X.) of all functionals of the form

J
X.(x) = 1;. for x = (1;.) Em and j=1,2, ...

J J J
We then have II Xj II = 1 for j=1,2, .•• and there further exists, for

each x Em, a j such that 1X . (x) I ii: ! II x II • We therefore put N =!.
J
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Remarks

INTRODUCTION

§3. We write lim as x n (t) = x (t) when the sequence of functions
n+oo

(xn (t)) converges asymptotically to the function x (t) •

§5. The last theorem implies that if [xn(t)) is a uniformly
bounded sequence of functions and (xn(t)] is everywhere convergent,

then lim fbxn(t)da(t) exists for every function a(t) of bounded
n-+oo a

variation (cf. F. Riesz, Sur le theoreme de M. Egoroff et sur les
operations fonationeUes Zineaires, Acta Szeged 1 (1922), p. 18-26).

§6. The proof of Lebesgue's theorem, from H...Lebesgue, Annales de
Toulouse 1909, is also to be found in H. Hahn, Uber Folgen linearer
Operationem, Monatshefte fur Math. u. Phys. 32 (1922), p. 1-88.

§7. The three conditions 1)-3) can be replaced by the following
two: 1*) d(x,y) = 0 if and only if x = y, 2*) ,d(x,z) :> d(x,y) + d(y,z),
cf. A. Lindenbaum, Sur les espaaes metriques, Fundamenta Mathematicae
8 (1926) [po 209-222] p. 211,

The distance between the elements x and y. in S can also be defined
by the formula d(x,y) = inf [w + m({t: Ix (t) - Y (t) I> w})]. The metric

O:;;w<oo
thus obtained is equivalent to that given in the text.

Similarly, in s the metric d(x,y) =inf [1+ max I~k-nkl] is equi
l:;;n n l:>k:;;n

valent to that given in the text (cf. M. Frechet, Lea espaaes
abstraits, Paris 1928, p. 82 and 92).

In the examples 1,3,5,7,8 and 10 one could take the functions to be
defined on a more general set. Thus, for example, in 5, p. 6, the
functions can be supposed to be defined on an arbitrary compact
metric space, or even just a complete metric space, provided, in
this last case, one only considers bounded continuous functions.

Many examples of metric spaces, interesting from the point of view
of the theory of operators, can be found in the cited works of H.
Hahn and M. Frechet; with regard to its applications, the spaces
considered in the works of J. Schauder, Zur Theorie stetiger
Abbildungen in Funktionalraumen and Bemerkungen zu meiner Arbeit ...
Math. Zeitschr. 26 (1927), p. 47-65 and 417-431, deserve special
attention. [Cf. also J. P. Schauder, Oeuvres, PWN. Editions Scienti
fiques de Pologne, Warsaw 1978, p. 63-82 and 83-98].

Among other examples, we note the following.

11. The spaae Q of all almost periodia funations with the metric
d(x,y) = max Ix(t) - y(t) I.

-oo<t<+oo
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defined for all real

IM(u) = 0,
u

for p ~ 1, of aU funations defined in the unit
equivaZent (i.e. equal almost everywhere) to
The appropriate metric here is given by the

d(x,y)

12. The spaae HP,
airaZe S2 + t 2 :£ 1 and
harmonia funations.
formula

from which it
LP.

Replacing, in the definition of M(u), the condition 4 0 by

lim M(1 )M(2u) < +00 without altering the definition of N(v), the spaae
u~ u 00

o of reaZ sequenaes (~n) suah that the series n~lM(~n) is aonvergent,

metrised by

1

( If Ix(s,t) - y(s,t) IPdsdt )P
S2 +t 2 :£ 1

13. The spaae R of funations defined in [0,1] and equivaZent to
Riemann integrabZe funations with the metric d(x,y) =
ess sup Ix (t) - y (t) I. For a function z (t), 0:£ t:£ 1, measurable and

O:£t:£l
bounded above almost everywhere, ess sup zIt) denotes the infimum of

O:ot:01
the numbers w such that z (t) :0 w almost everywhere.

Examples 11 and 12 are to be found in the work of G. Ascoli,
SugZi spazi Zineari metriai e Ze Zoro varieta Zineari, Annali di
Mathematica X (1932), p. 33-81, and example 13 in that of W. Or~icz,

Beitrage zur Theorie der OrthogonaZentwiakZungen, Studia Mathematica
1 (1929), p. 1-39 and 241-255.

Orlicz has further studied a class of spaces, which includes the
LP spaces, for p> 1, with which the other spaces in the class share
many properties.

Specifically, let M(u) be a convex function

values u and such that 1 0 M(-u) = M(u), 2 0 lim
1 -- 1 u....oo

3 0 lim -M(u) = +00 and 4 0 lim -M()M(2u) < +00.
u++oo U u++oo u

Let N(u) be the function defined for all real values of v by the
relations: N(v) =max [uv-M(u)], when v~O and N(v) =N(-v) for
v < O. O<u<oo

This done, the set 0 of aZZ funations x(t) defined on [0,1] for

whiah the integraZ f~M[X(t)]dt exists, metrised as foZZows
1 1

d(x,y) = sup f[x(t) - y(t)]w(t)dt where fN[w(t)]dt :£ 1,
o 0

aonstitutes a aompZete metria spaae.
In particular, for

M(u) = P~1(1 - ~)P.luIP
where p> 1, one has N(v) = [vI P/(P-1) and 1

d(x,y) = (!IX(t) - y(t)IP)P,

follows that the space 0 in this case coincides with

d(x,y) = sup L (~n - nn)wn where x = (~n)' y = (nn) and LN(wn) ~ 1,
n=l n=l

aZso aonstitutes a aompZete metria spaae, of which the Zp spaces,
p> 1, are particular cases (cf. W. Orlicz, ~ber eine gewisse KZasse
von Raumen vom Typus (B), Bull. de l'Acad. Polonaise des Sci. et des
Lettres, February 1932).

We finally observe that none of the spaces 1-13, 0 and 0 is com
pact; further: in each of them, the compact sets are nowhere dense.
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§8. The spaces 1,2,5-10 and 12, as well as the spaces 0 and 0 of
W. Orlicz are separable. On the other hand the spaces 3,4,11 and 13
are not separable, while being of the power of the continuum, like
the previous ones. In each of these latter spaces the sets of power
less than that of the continuum are nowhere dense.

Theorem 6: see F. Hausdorff, Mengen~ehre, Berlin and Leipzig 1927,
p. 195, II.

§9. As K. Kuratowski has observed, if a B-measurable operator
maps a separable metric space E bijectively to a metric space E l ,

the inverse operator satisfies the Baire condition. The proof rests
on theorem 7, p. 10, and on the following theorem: for an operator U
from a metric space E to another metric space E l to satisfy the
Baire condition, it is necessary and sufficient that, for each
closed set Gl £ E l , the set G = U-1 (G 1 ) of elements x E E such that
U(x)EG 1 satisfy the Baire condition (see K. Kuratowski, La propri€t€
de Baire dans ~es espaaes m€triques, Fundamenta Mathematicae 16
(1930), p. 390-394.

Every analytic set satisfies the Baire condition: cf. O. Nikodym,
Sur une propri€t€ de ~'op€ration A, Fundamenta Mathematicae 7 (1925),
p. 149-154; the proof for Euclidean spaces, which is to be found
there, can be applied to the general case without difficulty, bear
ing in mind the aforementioned theorem on sets of Category I.

CHAPTER I

§1. In view of the fact that F-spaces, studied in subsequent
chapters, are particular examples of G-spaces, when one regards them
as groups with respect to the addition oper~tion defined on them, we
have chosen to settle at the outset on the name addition for the
fundamental group operation and to make the statements and notation
comply with this.

All the metric spaces 1-13, 0 and 0 equally constitute G-spaces,
as one sees immediately, the fundamental group operation being taken
as the usual addition of functions or sequences, respectively. All
these spaces are abe~ian, i.e. their addition is commutative, sym
bolically x + y = y + x.

Among other examples of G-spaces, one can mention the following:

14. The space of homeomorphisms of a compact metric space Q into
itself, when the distance between two homeomor~hisms x and y is
defined by the formula d(x,y) =s~S d(x(q),y(q))+~~6d(x-1(q),y-1(q)),

and 'addition' is taken to meanqthe usual composition of functions.

15. The space of isometric transformations of a ball (lying in a
metric space) into itself, when distance and addition are defined as
in the preceding example.

16. The space of all functions defined on a metric space Q and
taking as values complex numbers of modulus 1 (one can further take
them to be continuous or even uniformly continuous), when the dis
tance between two functions x and y is defined by the formula
d(x,y) = sup Ix(q) - y(q) I and 'addition' is the usual multiplication

qEiJ
of funct~ons.

17. The space of bijective transformations of the set of natural
numbers to itself, or permutations of the natural numbers, with the
metric
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d(x,y) = y...!.... Ix(n)-y(n)1 + /x- 1 (n)-y-1(n)1 ,
n=12n (1 + Ix(n) - yIn) I + Ix- 1 (n) - y-1 (n) I)

(where x(n), etc., denotes the image of n under the transformation
x, etc.) and with 'addition' being composition of transformations.

Given an arbitrary G-space E, if a sequence (x n ) of elements of E
is convergent, we plainly have

(I) lim d(xp - x q ,0) = 0,
P.q-+""

but, in general, we do not know, conversely, if the condition I
always implies the convergence of this sequence.

If, in a metric space E, addition of elements is defined in such
a way that E, with this addition, becomes a group, and even the
axioms III and lIz are satisfied, it is not sufficient that the
condition I always implies the convergence of the sequence (x n ) to
an element of E, for the space E to be complete. Nevertheless, it
is not known whether there then exists in E another metric, equiva
lent to the given metric, which would make E a G-space. D. van
Dantzig has shown that this is the case under the additional hypo
thesis that E is an abelian space; in this case, one can even find
an equivalent translation-invariant metric, i.e. such that one has
d(x.y) =d(x+z,y+z) for every z E: E (cf. D. van Dantzig, Einige Siitze
uber topologische Gruppen, Jahresber. d. Deutsch. Math. Ver. 41,
1932) •

The definition of G-spaces, along with all the theorems of the
text, is to be found in the note: S. Banach, Uber metrische Gruppen,
Studia Mathematica 3 (1931), p. 101-113 [Oeuvres II, p. 402-411];
cf. also F. Leja, Sur la notion de groupe abstrait topologique,
Fundamenta Mathematicae 9 (1927), p. 37-44.

§2. The spaces 1-10 (Introduction, §7, p. 6), as well as the
spaces 11-13, 0 and 0 defined here (see ~. 138) are connected.

§3. As well as theorem 5, p. 15, we have the theorem: the space E
being connected. if (Un) is a sequence of bounded linear functionals.
the set of points where this sequence is bounded is either of categ
ory I or is the whole of E.

§4. It follows from the previous remark that, the space E being
connected. if (Up q) is a double sequence of bounded linear func
tionals such that: for a sequence (x p )!: E one has l~: 1 Up • q (xp) I =+""

for any p. the set of all x E: E such that 11m 1 Up qtX ) 1= +"" for
q~oo ,

p=1.2 •... is of category II and its complement is of category I.

One can show that theorems 3-7 of Chapter III (p. 24-26) hold even
for G-spaces E and E l , when the space E is assumed separable (cf.
S. Banach, loco cit., Studia Math. 3, p. 101-113 [Oeuvres II, p.
402-411]). Theorem 5, p. 15 is also an immediate consequence of
theorem 4, p. 15, and the remark, p. 139. The hypothesis that ·E be
separable is essential; it would be interesting to know if the
theorems 3-7 in question also hold for non-separable, but connected.
G-spaces.

It is to be noted that the following two properties are equivalent
for every G-space E:

(a) if U is a bounded linear operator which maps E bijectively to
a G-space E l , the inverse U-1 is also a bounded linear operator;

(S) given another metric d*(x.y) on E with respect to which E is
equally a G-space, if lim xn = x 0 always implies lim d* (xn.x 0) = 0,

n+oo n+OO

then one also has the reverse implication.



Remarks 141

Moreover, it is unknown whether or not these properties hold, for
example, for the function space E of example 16, p. 139, when Q
there denotes the set of complex numbers of modulus 1.

CHAPTER II

§1. One can equally consider vector spaces with multiplication of
elements, not only by real numbers, but also by complex numbers
without modifying axioms 1)-7). These spaces form the point of dep
arture of the theory of complex linear operators and of a class,
much larger still, of analytic operators, which furnish a general
isation of ordinary analytic functions (cf. for example, L.
Fantappie, I funzionali analitiai, Citta di Castello 1930). We
intend to expound this theory in another volume.

A subset H of a vector space E is called a Hamel base in E when
every element 3: E E is a (finite) linear combination of elements of H
and no element of H is a linear combination of other elements of H,
i.e. H is a linearly independent set. Every vector space admits
Hamel bases and any two such are always of the same cardinality.

§2. The preceding remark implies, for every vector space E, the
existence of non-zero additive, homogeneous functionals on E.

§3. The last theorem (see p. 21, 4) immediately implies that to
each subset 8 of the set of natural numbers N one can assign a meas
ure m(8) in such a way that 1) m(8) <: 0, 2) m(8 1 U 8 2 ) = m(8d + m(8 2 )

for disjoint sets 8 1 and 8 2 , 3) m(8 1 ) = m(8 2 ), when 8 1 " 8 2 and 4)
m (N) = 1.

For any measure satisfying the conditions 1) to 4), the set of all
numbers of the form an + b for n=1, 2, •.• , with a and b fixed, has
measure 1/a; the set of all prime numbers has measure O. A measure
satisfying conditions 1)-4) does not always coincide with the
density (when this is defined), but one can always arrange matters
in such away that this additional condition is also satisfied.

Regarding this theorem, cf. S. Mazur, 0 metodaah sumowalno§ai,
Ksiega Pamiatkowa I Polskiego Zjazdu Matematycznego (in Polish),
supplement to the Annales de la Societe Polonaise de Math. (1929),
p. 102-107, see p. 103.

CHAPTER III

§1. Regarding the definition of F-spaces, see M. Frechet, Les
espaaes abstraits topologiquement affines, Acta. Math. 47 (1926),
p. 25-52.

The spaces 11-13, 0 and 0, defined on p. 138, are clearly also
F-spaces. S. Mazur has observed that every F-space satisfies the
condition

(1) if lim x n =x, lim Yn =Y, lim hn = h and lim k n = k, then
n+oo n+OO n+oo n+oo

lim (hnxn + knYn) =hx + kyo
n-+-oo

It is unknown whether or not in every vector space, which is com
plete and satisfies condition (1), the metric can be replaced by an
equivalent metric which makes the space an F-space.

§3. Theorems 3-9, p. 24-27, remain valid for every metric vector



142 S. BANACH

space E satisfying condition (1) and the following condition:

(2) if lim (x p - Xq) = 0, there exists an e'lement x E E suah that
p,q-+-co

limxn=x.
n-+-co

Mazur suggests that this last condition can be replaced by the
hypothesis that the space E is complete. A simple proof of theorems
3-5 for the case of Banach spaces is to be found in the note of J.
Schauder, Uber die Umkehrung 'linearer stetiger, Funktiona'lopera
tionen, Studia Math. 2 (1930), p. 1-6 [Oeuvres, p. 162-167].

Now consider, in an F-space E, an arbitrary closed linear subspace
G. It is clear that a partition of E into disjoint subsets is
obtained if we agree that two elements x and y of E shall be in the
same subset if and only if x - Y E G. The following theorem holds:
the set E' of subsets of E thus obtained constitutes an F-space,
when the distance and the basic operations are defined by the con
ditions, where X,Y and Z denote elements of E':

1° d(X,Y)=inf {d(x,y):xEX and yEY},

2° X+Y=Z={x+y: xEX and yEY},

3° tX= Y= {tx:x EX}.

The proof of this theorem may be found in my book Teorja operaayj,
Tom. I, Warsaw 1931, p. 47-49 (in Polish); cf. also F. Hausdorff,
Zur Theorie der 'linearen metrisahen Raume, Journ. f. reine u. angew.
Math. 167 (1932), p. 294-311.

Using this theorem, one can show that, if U is a continuous linear
operator from an F-space E into another F-space E

l
, then if E is

separab'le, the aodomain of U is B-measurab'le. However, it is not
known if the hypothesis that E be separable is essential.

§4. The method applied here has been further developed by S. Saks
and H. steinhaus who have used it to treat various problems in the
theory of functions (cf. S. Saks, [Sur 'les fonatione'l'les de M.
Banaah et 'leur app'liaation aux deve'loppements des fonations] , Funda
menta Mathematicae 10 (1927), p. 186-196, and H. Steinhaus
[Anwendungen der Funktionenana'lysis auf einige Fragen der ree'l'len
Funktionentheoriel, studia Mathematica 1 (1929), p. 51-81).

The following works include applications of another method from
the theory of operators to this and related problems:

S. Mazurkiewicz, Sur 'les fonations non derivab'les, Studia Math. 3
(1931), p. 92-94. 1

S. Mazurkiewicz, Sur _'l 'integra'le f f(x+t) + f(x-t) - 2f(x) dt ibido t ,.,
p. 114-118.

S. Banach, Uber die Baire'sahe Kategorie gewisser Funktionenmengen,
ibid., p. 173-179, [Oeuvres I, p. 218-222].

H. Auerbach and S. Banach, Uber die Ho'ldersahe Bedingung, ibid.,
p. 180-184, [Oeuvres I,. p. 223-227].

S. Kaczmarz, Integra'le vom Dinisahen Typus, ibid., p. 189-199.

§5. Other applications of the theory of operators to problems in
differential equations are given in the following notes:

S. Banach, Sur aertains ensemb'les de fonations aonduisant aux
equations partie'l'les du seaond ordre, Math. Zeitschr. 27 (1927), p.
68-75 [Oeuvres I, p. 169-177].

W. Orlicz, Zur Theorie der Differentia'lg'leiahung ~= f(x,y), Bull.
Acad. Polon. Sci. et des Lett., February 1932.
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§6. Case 4° of the final theorem of this section is already known
(cf. F. Riesz, Les systemes d'equations Zineaires a une infinite
d'inaonnues, Paris 1913).

§ 7. Given a closed linear subspace G'= s, for each element
x 0 E s ..... G there exists a bounded linear functional f on s such that
fIx) = 0 for every x E G and f(xo) = 1.

Theorem 12 implies that if the codomain of a bounded linear opera
tor on s also lies in s, then it is closed. The reference for this
theorem is o. Toeplitz, Uber die AUfZosung undendZiah vieZer
Zinearer GZeiahungen mit unendZiah vie Zen Unbekannten, Rendiconti
del Circ. Mat. di Palermo XXVIII (1909), p. 88-96.

CHAPTER IV

§1. Normed"vector spaces have been discussed independently of me
and almost simultaneously by N. Wiener, in his work, Limit in terms
of aontinuous transformations, Bull. de la Soc. Math. de France 150
(1922), p. 124-134.

The general class of Banach spaces was studied for the first time
in my work, Sur Zes operations dans Zes ensembZes abstraits et Zeur
appZiaation aux equations integraZes, Ph. D. thesis, University of
Leopol, June 1920; published in Fund. Math. 3 (1922), p. 133-181.

The spaces 11-13, 0 and 0 defined on p. 138, are Banach spaces.
On the other hand, the space s of example 2, p. 6 (see also p. 31-32)
is not a Banach space, nor, as S. Mazur has shown, is it even homeo
morphic to any Banach space.

§2 and 3. Theorems 2-6 may be found in the note of H. Hahn, Uber
Zinearer GZeiahungen in Zinearen Raumen, Journal fUr die reine und
angewandte Mathematik 157 (1927) p. 214-229; cf. also S. Banach, Sur
Zes fonationeUes Zineares, Studia Math. 1 (1929) p. 211-216
[Oeuvres II, p. 375-380], in particular theorem 2 and the remark.

Theorem 4 was proved for certain special spaces by F. Riesz
Untersuahungen uber Systeme integrierbarer Funktionen, Mathematische
Annalen 69 (1910), p. 449-497) and, in a more general form, by E.
Helly (~ber Zineare FunktionaZoperationen, Berichte der Wiener
Akademie der Wissenschaften, IIa, 121 (1912), p. 265-297).

For F-spaces E, one can establish the equivalence of the following
two properties:

(~) Given a continuous linear functional f defined on a linear
subspace G'= E, there exists a continuous linear functional F on the
whole of E such that F(x) = fIx) for every x E G.

(6) Under the same conditions, if, further, G is closed, there
.exists, for every x 0 E E ..... G, a continuous linear functional F on E
such that F(x o) .. 0 but F(x) = 0 for· any x E G.

However, these properties do not necessarily hold in all F-spaces.
Thus, for example, any continuous linear functional on the space S
must vanish identically.

Given two Banach spaces E and E l and a bounded linear operator U,
defined on the linear subspace G'= E and whose codomain lies in E l ,

we do not know if it may be extended from G to the whole of E, i.e.
if there exists a bounded linear operanor V defined on all of E,
with codomain in E l , such that V(x) = U(x) for every xE G.
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This extension of U is always possible when E1 is finite-dimen
sional, but even then the condition II VII E = II UII G is not always
realisable.

§4. The general form of bounded linear functionals on the space C
was first established by F. Riesz (Sur ~es operations fonatione~~es
~ineaires, C. R. Acad. Sc. Paris 149 (1909), p. 947-977).

r
The general form of bounded linear functionals on the space L ,

r> 1, was proved, for r = 2, by M. Frechet (Sur ~es ensemb~~s de
fonations et ~es operations ~ineaires, C. R. Acad. Sc •. par1s 144
(1907), p. 1414-1416), and in the general case by F. R1esz, loco
cit., Math. Ann. 69 (1910), p. 449-497 (see p. 475).

The general form of bounded linear functionals on the space L 1 was
first shown by H. Steinhaus (Additive und stetige Funktiona~opera

tionen, Math. Zeitschr. 5 (1918), p. 186-221).

The conditions 1°_3°, p. 45, can be replaced by the following two:

1) an· = 0 for every j> n where n=1 ,2, •••
nJ

2) j~llanJI = IIfli for n=1,2, ...
This theorem is due to S. Mazur.

The general form of bounded linear functionals in the Orlicz
spaces 0 and 0 (cf. p. 138) is established in his paper mentioned
there. Thus, for example every bounded linear functional f on the

space 0 is of the form f(x) = I
1
x(t)a(t)dt where aCt) is a function

1 0
such that IoNCka(t»)dt exists for some k lying between 0 and 1.

Acco~ding to F. Riesz the norm of the bounded linear functional

f(x) = I>(t)dg(t) on C, where get) is a function of bounded varia

tion, is equal to the variation of the function get) defined as
follows:

g(o) = g(O), g(l) = g(l) and get) = lim g(t+h) for 0 < t < 1.
h+O+

§6. See F. Riesz, Sur ~'approximation des fonations aontinues et
des fonations sommab~es, Bull. Calcutta Math. Soc. 20 (1928/9), p.
55-58.

§7. These two theorems are both due to F. Riesz (cf. the papers
of Riesz and Helly already mentioned in the Remarks to §2 of this
Chapter.

§8. See F. Riesz' book, Les systemes d'equations ~ineaires a une
infinite d'inaonnues, Paris 1913.

CHAPTER V

§1. Theorem 3, p. 49, (cf. S. Banach and H. Steinhaus, Sur ~e

prinaipe de ~a aondensation de singu~arites, Fund. Math. 9, (1927)
p. 50-61) [Oeuvres II, p. 368], implies that the set Q of points of
convergence of a norm-bounded sequence of bounded linear operators
(Un) is always closed. In the general case Q is an Foo .

In this connection, it should be noted that, as has been shown by
S. Mazur and L. Sternbach, if (Un) is a sequence of bounded linear
funationa~s and the set Q of its points of convergence is not closed,
there exists in Q a sequence of points (xi) and a point X o E E ...... Q
such that ],im xi=x o and the double sequence CUn(xi») is bounded.

"2.+00



Remarks 145

We deduce from this as a corollary that under these conditions Q is
not an Fa. Moreover, these statements may be extended to the case
where (xi) is, more generally, a sequence of bounded linear
operators, provided that their codomains lie in a space E l , also a
Banach space and posessing the property:

(y) for every sequence (Yn), where Yn EEl and IIYnll = 1 for
n=1,2, •.. , there exists a sequence of numbers (t n ) such that the

00

series ng1tnYn is divergent while the sequence of norms of its

partial sums is bounded.
Property (y) is possessed, for example, by the space c as well as

all finite-dimensional Banach spaces.
The above-mentioned corollary may be made more precise, due to a

remark of S. Mazur and myself, in the sense that, under the stated
conditions, the set Q is not a Goo. As an application, it yields
the theorem that every infinite-dimensional Banach space E contains
a linear subspace that is an Faa without being a Goo. S. Mazur and
L. Sternbach have further shown that every space of this kind con
tains a linear subspace which, without being an Fa, is the inter
section of an Fa and a Go; nevertheless every Go linear subspace is
in fact closed.

In certain Banach spaces one can establish the existence of linear
subspaces which are Faoa sets without being Faa'S. Whether such
subspaces always exist in infinite-dimensional Banach spaces remains
an open problem. Further, it is not known if there exist F-spaces
containing linear subspaces of higher Borel class or linear sub
spaces which are analytic but not B-measurable or, again, linear
subspaces satisfying the Baire condition without being analytic.
Every infinite-dimensional F-space contains linear subspaces failing
to satisfy the Baire condition.

These problems are connected with certain questions concerning
additive operators. If E and E l are F-spaces, every additive B
measurable operator U defined in a closed linear subspace G~ E and
whose codomain lies in E l is, by virtue of theorem 4, p. 15, contin
uous. Moreover, if the set G is not closed, the operator U may not
be continuous: we know of examples where, G being B-measurable, the
operator U is discontinuous, of the first Baire class; however, we
know of no example where it is of a higher Baire class. Similarly,
it is not known if the operator U can satisfy the Baire condition
without at the same time being B-measurable.

Inverting bounded linear operators leads to linear operators which
are discontinuous. If E and E l are F-spaces and the bounded linear
operator U maps E bijectively to a closed set Gl ~ E l , the inverse
operator U- 1 is continuous by theorem 5, p. 26. Moreover, if Gl is
not closed, the operator U- 1 is not necessarily continuous, but if
the space E is separable, it is always B-measurable. Thus, for
example, in the case where E = E

l
= L 2

, this operator is of Baire
class I.

§3. The lemma and theorem 8 are to be found in the note of F.
Riesz, loco cit., p. 151. It is easily seen that the converse of
theorem 8 is also true. Furthermore, theorem 8 may be generalised
as follows: every F-space containing a baZZ which is compact is
finite-dimensionaZ; it is easy to see that the converse is also
true.

§4. The theorem on L r , proved on p. 52, is due, for r> 1, to F.
Riesz. For r = 1, it is due to H. Lebesgue (see Annales de Toulouse,
1909). The theorem for Zr was discovered by E. Landau (Uber einen
Konvergenzsatz, Gottinger Nachrichten 1907, p. 25-27).

§6. All these examples are well known.
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§7. The method A, which corresponds to the array A, is called
norma~, when aik = 0 for i < k and aik" 0 for i = k. For k> 0, the Ck
Ces~ro methods and similarly the Ek Euler methods are examples of
such methods. These last are perfect methods, according to S. Mazur
(loc. cit. Studia Math. 2, p. 40-50).

Theorem 10 is due to o. Toeplitz (Uber a~~gemeine ~ineare Mitte~
bi~dungen, Prace Mat.-Fiz. XXII, Varsovie (1911) p. 113-119).

We do not know if theorem 11, p. 58, holds when the method A is
not reversible. For a special class of reversible methods, namely
normal methods (see above), this theorem has been proved by s. Mazur
(loc. cit. Math. Zeitschr. 28 (1928), p. 599-611, Satz VII).

Theorem 12, p. 97, can be completed as follows: if the method A is
permanent, reversible and such that each sequence which is summable
by A to a number is also summable to the same number by every per
manent method weaker than A, then A is a perfect method. Also,
regarding theorem 12, for normal methods, cf. S. Mazur, Uber eine
Anwendung der Theorie der Operationen bei der Untersuahung der
Toep~itssahen Limitierungsverfahren, Studia Math. 2 (1930) p. 40-50.

The theorem on the general form of bounded linear functionals def
ined on a separable linear subspace E of m(see p. 44) shows that
every bounded linear functional f agrees on E with a genera~ised

~imit obtained by a certain method A, i.e. there exists an array A
such that every sequence x E: E is summable to f (x) by the method
corresponding to this array. Moreover, if E is not separable, this
theorem can fail to hold; furthermore, there can then exist, as S.
Mazur has observed, a sequence (fn) of bounded linear functionals on
E, weakly convergent to a bounded linear functional f and such that
fn coincides, for every n=1,2, ... , with a generalised limit obtained
by a suitable method, while f lacks this property.

CHAPTER VI

§1. The notion of a compact operator is due to D. Hilbert and F.
Riesz who were also the first to show its utility.

According to a remark of S. Mazur, we have the following theorem:
if (Un) is a sequence of compact linear operators, defined in a
Banach space E and such that lim Un (x) =x for every x E: E, a necess-

n-+-'"
ary and sufficient condition for a set G':E to be compact is that
the convergence of Wn(x») on G be uniform. A space E for which such
a sequence of operators exists is separable by theorem 1, p. 59.
The question of if, conversely, every separable Banach space E
admits such a sequence of operators, remains open.

On the subject of criteria for the compactness of a set G': E, cf.
also A. Kolmogoroff, Uber Kompakheit der Funktionenmengen bei der
Konvergens im Mitte~, Gottinger Nachrichten 1931, pp. 60-63.

§2. All these examples are known.

§3. The notion of adjoint operator was first introduced in its
full generality in my note Sur ~es fonatione~~es ~ineaires II,
Studia Math. 1 (1929), p. 223-239 [Oeuvres II, p. 381-395], which
also includes theorem 3, p. 61. The proof of theorem 4, p. 62, is
also to be found in the note of J. Schauder, Dber ~ineare vo~~
stetige Funktiona~operationen, Studia Math. 2 (1930), p. 185-196.
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CHAPTER VII

147

§1. W. Orlicz has observed that for weakly complete spaces E
theorem 2, p. 65, can be sharpened, namely, the series (2) is then
convergent for every x € E.

A biorthogonal system (xi), (Ii) is called aomplete if the
sequences (xi) and (Ii) are total sequences (see the definitions
p. 27 and 36). One can show that there exist complete biorthogonal
systems in every separable Banach space.

A biorthogonal system (xi), (Ii) is said to be normalised when we
have IIxill = II Ii II = 1 for i=1,2, ••• According to a remark of H.
Auerbach, there exist complete normalised biorthogonal systems in
every finite-dimensional Banach space. Nevertheless, we do not know
if this is so in every separable Banach space or even if there
always exists a complete biorthogonal system such that IIxill = 1 for
i =1 , 2 , • •. and l, im II Ii II < 00.

1--+-00

§2. The previous remark implies that, in theorem 5, p. 66, we can
suppress the hypothesis that the sequences (xi(t») and (Yi(t») are
complete.

§3. The notion of base was first introduced in a general setting
by J. Schauder in the paper Zur Theorie stetiger Abbildungen in
Funktionalraumen, Math. Zeitschr. 26 (1927), p. 47-65, which also
shows how a base may be constructed in the space C.

The theorem which states that the Haar system constitutes a base
in LP where p <: 1 is to be found in the note of J. Schauder, Eine
Eigensahalt des Haarsahen Orthogonalsystems, Math. Zeitschr. 28
(1928), p. 317-320.

It can be shown that if a given sequence (x n ) in a Banach space E
is such tha t for every x € E there exists exactly one sequence of
numbers (t n ) with the property that the sequence

kCL tnxn )

converges weakly to x, then the sequence (xn) constitutes a base in
E.

The space cP (see example 7, p. 7) has a base for p=1,2, ..• ;
however, we do not know if there is one in example 10, p. 7.
Furthermore, we do not know if there is a base in, for example, the
space of all real-valued functions x(s,t) defined in the square
0:> s :> 1,0 :;; t:> 1 which admit continuous partial derivatives of the
first order, where the algebraic operations are defined in the usual
(pointwise) way and the norm is given by

II x II = max Ix (s , t) I + max Ix ~ (s , t) I + max Ix t (s , t) I .
O:>s,t:>l O~s,t:>l O~s,t:>l

The existence of a base in every separable Banach space E is
equivalent by theorem 9, established in Chapter XI, §8, p. 112, to
the existence of a base in every closed linear subspace E 1 of C.
Now we know of no example of a separable infinite-dimensional Banach
space, not isomorphic with L 2 and such that each of its closed
linear subspaces contains a base. At the same time, note that every
infinite-dimensional Banach space contains an infinite-dimensional
closed linear subspace which does have a base.

The notion of base can clearly be introduced, more generally, for
F-spaces. In the space s a base is given, for example, by the
sequence of elements
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( ) h ( i) and ~ i = {1 f or ~ = n,xi were xi = sn ~n 0 for ~ ~ n.

The space S has no base; this is a consequence of the fact that
there exists no non-zero continuous linear functional on S.

§4. Theorem 8, cf. S Banach and H. Steinhaus, Sur queZques
appZiaations du aaZauZ fonationneZ a Za theorie des series orthogon
aZes, Studia Math. 1 (1929), p. 191-200.

Theorem 10, cf. W. Orlicz, Beitrage zur Theorie der OrthogonaZ
entwiakZungen, Studia Math. 1 (1929), p. 1-39 and 241-255.

CHAPTER VIII

§4 and 5. According to a remark of S. Mazur, theorems 2-4, p. 75
76, also hold in F-spaces E, on replacing condition (20) in theorems
2 and 3 by the condition that the sequence of functionals (fn) be
bounded over a ball.

§6. The conditions for the weak convergence of functionals were
given for the space a by H. Hahn and for the spaces ZP, p ~ 1, by
F. Riesz.

Conditions (35) and (36) were discovered by H. Lebesgue.

Conditions (45) and (46), for the weak convergence of bounded
linear functionals on the space a (see p. 79), for the case of the

space a o take the form: 1 0 the sequenae (i~llainl) is bounded and

2 0 lim ain = ai for i=1 ,2, .••
n-+-o:>

§7. The theorem on weak compactness in LP, p>1, is due to F.
Riesz, loco cit., Math. Annalen 69 (1910), p. 466-467.

CHAPTER IX

§1. The notion of weak convergence (of elements) was first stud
ied by D. Hilbert, in the space L 2 , and by F. Riesz in the spaces
LP, for p> 1.

A subset G of a Banach space E is said to be (relatively) weakZy
(sequentiaZZy [trans.]) aompaat, when every sequence of elements of
G has a weakly convergent subsequence. In the spaces LP and ZP, for
p> 1, every bounded set is relatively weakly sequentially compact
(cf. p. 79-80). The same is true in a and a o while the spaces C,L l ,

Zl and m do not enjoy this property.

§ 2. The theorem on weak convergence of sequences in LP, P > 1, was
proved by F. Riesz, loco cit., Math. Annalen 69 (1910), p. 465-466.

The conditions for the weak convergence of sequences in the space
a were given by H. Hahn and in the spaces C and ZP, P <: 1, by F.
Riesz. The theorem on p. 83 on the equivalence of norm and weak
convergence in the space Zl is to be found in the note of J. Schur,
Dber Zineare Transformationen in der Theorie der unendZiahen Heihen,
Journ. f. reine U. angew. Math. 151 (1921), p. 79-111.

It should be noted that the weak convergence of a sequence of
bounded linear functionals on a Banach space E is not a sufficient



Remarks 149

condition for the weak convergence of the same sequence when regard
ed as a sequence of e~ements of the space E*, (in modern terminol
ogy, weak* convergence of such a sequence does not imply its weak
convergence [trans.]). Thus, for example, in ~1 the notion of weak
convergence depends on whether ~1 ts regarded as a space of bounded
linear functionals (on e.g. co: this would give us a type of weak*
convergence [trans.]), or not.

§3. The theorem stated here for LP , p> 1, was first proved by M.
Radon (Sitzungsberichte der Akad. fur Wissensch. in Wien, 122 (1913),
Abt. IIa, p. 1295-1438). Cf. also F. Riesz, Acta Litt. Ac. Scient.
Szeged, 4 (1929), pp. 58-64 and 182-185.

§4. A Banach space E is said to be weak~y (sequentia~~y) comp~ete

when every weak Cauchy sequence (x n ) ~ E (which implies that
lim f(xn) exists for every bounded linear functional f on E) is
n-+-oo
weakly convergent to some element of E. The space co' and therefore
also the spaces c and m, are not weakly sequentially complete. The
properties of weak sequential completeness was established for the
space L 1 by H. Steinhaus (see Additive und stetige Funktiona~oper
ationen, Math. Zeitschr. 5 (1918), p. 186-221) and for the spaces LP
and ~P, for p> 1, by F. Riesz (see Untersuchungen iiber Systeme
integrierbarer Funktionen, Math. Ann. 69 (1910), p. 449-497).
According to a remark of W. Orlicz (loc. cit. Bull. de l'Acad.
Polon. des Sci. et des Let., February 1932), the space 0 is weakly

complete, if lim ----N(1)N(2u)<+00; the same is true of the space o.
u~oo u

A series of elements of a Banach space is called unconditiona~~y

convergent when it is always convergent no matter how the terms are
ordered. Property 7° (Chapter III, §3, p. 24)established for F
spaces immediately implies that the absolute convergence of a series

'always implies its unaonditiona~ convergence, but it is not known if
the converse is true in other than finite-dimensional spaces. W.
Orlicz has proved the following theorems:

(1) The sum of an unconditiona~~y convergent series is independ
ent of the order of its terms,

(2) For a series to be unconditiona~~y convergent, it is necess
ary and suffiaient that every subseries of it be aonvergent,

(3) For the same aona~usion, it is neaessary and suffiaient that
every subseries be weak~y aonvergent (to some e~ement).

It follows from this, under the hypothesis that the space E is
weakly sequentially complete, that a necessary and sufficient condi-

00

tion for the unconditiona; convergence of a series n~lxn of elements

of E is that the series n~llf(xn) I be convergent for every bounded

linear functional f on E. This last result enables one to establish,
for weakly sequentially complete spaces, several important propert
ies of unconditionally convergent series, entirely analogous to
those of unconditionally convergent series of numbers. Thus, for

00

example, a series n~lxn is unconditionally convergent when there

exists a number M> 0 such that Ilxn + xn + ••• + xnk II < M for any set
of distinct suffixes n ll n2l" .,nkt,lor , Again, when the series

00

nE
1

tnxn is convergent for any sequence of numbers (t n ) converging to

O. These theorems playa part in the theory of orthogonal series
(cf. W. orlicz, loco cit., Studia Math. 1 (1929), p. 241-255).
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CHAPTER X

§1. On the subject of the theory of linear equations, developed
in this chapter, see F. Hausdorff, Zur Theorie der Zinearen Baume,
Journ. f. reine u. angew. Math. 167 (1932), p. 294-311.

The theorems of this section were proved in the case E = E' = L 2 by
E. Hellinger and O. Toeplitz (see IntegraZgZeiahungen und GZeiahung
en mit unendZiahvieZen Unbekannten, Encyklopedie der Math. Wiss.,
Leipzig 1923-1927). In the more general case where E =E' = LP , with
p> 1, theorems 1 and 3 were proved by F. Riesz, loco cit., Math.
Ann. 69 (1910), p. 449-497 and for E=E'=ZP where p> 1 by the same
author in his book Les systemes d'equations Zineaires a une infinite
d'inaonnues, Paris 1913. Theorems 2 and 4 for E= E' = LP and ZP res.
pectively, where P ~ 1, were proved by S. Saks, Bemarques sur Zes
fonationeZZes Zineaires dans Zes ahamps LP, Studia Mathematica 1
(1929), p. 217-222.

§2. The theorems of this section, except those involving the
notion of the adjoint operator, were first proved by F Riesz (~ber

Zineare FunktionaZgZeiahungen, Acta Mathematica 41 (1918), p. 71-98).

For certain special cases, theorem 15 was established by F. Riesz,
loco cit., Acta Mathematica 41 (1918), p. 96-98. In its full gener
ality, but formulated differently, this theorem was proved by T. H.
Hildebrandt (Vber voZZstetige Zineare Transformationen, Acta Mathem
atica 51 (1928). p. 311-318) and in the version given here by J.
Schauder, Uber Zineare, voZZstetige FunktionaZoperationen, Studia
Math. 2 (1930), p. 183-196 [Oeuvres, p. 177-189]. If, in this same
theorem, one suppresses the hypothesis that the operator U is com
pact, the equations in question cannot have the same number of
linearly independent solutions. Nevertheless, one can show that for
U = I one has the inequality n:; \I and that it again becomes an equal
ity when, further, the space E is weakly sequentially complete and
such that its bounded subsets are relatively weakly compact (see S.
Mazur, Uber die NuZZsteZZen Zinearer Operationen, Studia Math. 2
(1930), p. 11-20).

§4. For these theorems cf. J. Schauder, loco cit., Studia Math. 2
(1930), p. 183-196 [Oeuvres, p. 177-189].

Theorem 22: cf. F. Riesz, loco cit., Acta Mathematica 41 (1918), p.
90, Satz 12.

CHAPTER XI

§2. The oldest known example of an isometry between two Banach
spaces is that of the isometry of L 2 to Z2 which is given by the
Riesz-Fischer and Parseval-Fatou theorems.

§3. Theorem 2 was proved by S. Mazur and S. Ulam (see C. R. Acad.
Sci. 194, Paris 1932, p. 946-948). It is not known if this theorem
holds for F-spaces; according to a remark o£ Mazur and Ulam, it
fails, however, for G-spaces. The same authors have, furthermore,
pointed out the following corollary of this theorem 2: it is not
possible to define, in a metric space E, operations (of addition and
scalar multiplication) in two different ways, in such a way that in
both cases E becomes a normed vector space with the same zero
element 8.
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§4. We know of no example of a pair of separable infinite
dimensional Banach spaces which are not homeomorphic; however, we do
not know how to prove that, for example, C is homeomorphic to a.
Equally, we have not been able to establish the homeomorphism of C
and Zl. The spaces LP and zq are, however, homeomorphic for any
P, q ~ 1 (see S. Mazur, Une remarque SUI' Z' homeomorphie des ahamps
fonationeUes, Studia Math. 1 (1929). p. 83-85).

Of particular interest seems to be the question of whether C is
homeomorphic with the space of continuous functions on the square.
We know of no example of two compact metric spaces of finite, but
different, dimensions (in the sense of Menger-Urysohn) such that the
spaces of continuous functions defined on them are homeomorphic.

§5. The notion of rotation can be interpreted generally in G
spaces. It can happen that the only possible rotation about 8 is
that given by the identity operator, Le. U(x) =x; in F-spaces the
transformation v(x) = -x is also a rotation about 8. There exist
infinite-dimensional Banach spaces where these are the only two
rotations about 8. The general form (15) of rotations in L 2

, est
ablished on p. ·106, (actually known for a long time), shows that,
for every pair of elements x and y of norm 1, there exists a rota
tion about 8 which maps x to y. S. Mazur has asked the question if
every separable infinite-dimensional Banach space, possessing this
property is isometric with L 2

•

§6. The notion of isomorphism also makes sense in G-spaces. Two
G-spaces are equivalent when there exists an additive isometric
transformation from one to the other.

For two isomorphic Banach spaces E and E
"

put

d(E,E , ) = inf [log(IIUII.lIu- l lill
where the inf is taken over all isomorphisms U from E to E, . If
d(E,E , ) =0, the spaces E and E, will be called aZmost isometria.
Isometric spaces are at the same time almost isometric. The con
verse is always true for finite-dimensional spaces, but we do not
know how to refute the conjecture that, for example, the spaces a
and ao' which are not isometric, are almost isometric.

Consider the set JE of all spaces which can be obtained from a
given Banach space E by replacing the norm with any equivalent norm.
It is plain that every space belonging to JE is isomorphic with E
and that every space isomorphic with E is isometria with a space
belonging to the set JE. Let us partition JE into subsets, putting
two spaces in the same subset , when they are almost isometric. For
two subsets '1 and '2 of JE put d('l' '2) =d(E

"
E 2 ) where E , and E 2

are any two spaces belonging to '1 and '2 respectively. One can
show that this distance is well-defined and that the set IE of all
the " thus metrised, constitutes a complete metric space. I have
introduced these notions in collaboration with S. Mazur.

§7. Theorems 6,7, and 8 are due to K. Borsuk.

One can also study infinite products. Let us denote by
(E , xE 2 x ••• ) , where E

"
E 2 , ••• are Banach spaces, the Banach space

. aD
E defined as follows: the elements of E are all sequences (xn) where
xn E: En for n=1 ,2, ... such that limllxnll = OJ addition and scalar

n+""
multiplication is defined termwise, and the norm in E is given by

II (x n ) II = max IIxnll. In an analogous way, one can define, for example,
n<:l

the spaces (E , xE 2 X .")a' (E , XE 2 x ···)m and (E , XE 2 X .'.)Zp where
p <: 1.
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§8. The theorems of this section are due jointly to S. Mazur and
myself.

P. Urysohn was the first to show the existence of a separable
metric space containing subspaces isometric to every given separable
metric space (see P. Urysohn, Sur un espaae metrique universel,
Bull. Sci. Math. 151 (1927), p. 1-38).

Theorem 10, proof: cf. M. Frechet, Les dimensions d'un ensemble
abstrait, Math. Annalen 68 (1910), p. 161.

§9. It is not known if the equivalence of the spaces Et and E~

always implies the isomorphism of the spaces E1 and E2 (cf. theorem
11, p. 171). The converse of theorem 12, p •. 114, is plainly false,
but we do not know if the same is true of the converse of theorem 13,
p. 114, in other words, if the equivalence of the separable Banach
space E and the space E** does or does not imply the existence, in
every bounded sequence of elements of E, of a subsequence weakly
convergent to an element of E. The following question also remains
open: given a Banach space E whose dual space E* is not separable,
does there exist in E a bounded sequence with no weakly convergent
subsequence?

CHAPTER XII

§3. The theorems of this section were discovered in collaboration
with S. Mazur. For the proof of the inequality (18) see S. Banach
and S. Saks, Sur la aonvergenae forte dans le ahamp LP, Studia
Math. 2, p. 51-57 [Oeuvres II, p. 397].

Theorem 6, proof: the existence of the constant M follows from a
theorem of A. Zygmund (see Sur les sepies tpigonometriques laaun
aires, Proc. London Math. Soc. 5 (1930), p. 138~145).

We here list a series of, respectively, isometria, isomorphia and
dimensional invariants, i.e. properties which, if they are possessed
by some Banach space E, are also possessed by any space which is
isometric with, isomorphic with or has the same linear dimension as
E respectively.

Isometria invariants:

(1) The weak convergence of a sequence (xn) to xo' together with
the condition lim IIxnll = IIxoll, implies that lim IIxn - xoll = O.

n~oo n+oo

(2) II x uII = 1 implies the existence of exactly one bounded linear
functional f such that f(x») = 1 and IIfli = 1.

(3) Isometry of the space with its dual space.

(4) Isometry of the space with every infinite-dimensional closed
linear subspace.

(5) Isometry of every pair of linear subspaces of a given (finite)
dimension n;;: 2.

Isomorphia invariants:

(6) Existence of a base.

(7) Existence for every closed linear subspace S of a closed
linear subspace T such that every element x can be written in exact
ly one way in the form x =s + t where s E Sand t E T.
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(8) Existence for eVery closed linear subspace S of a bounded
linear transformation from the whole space onto all of S.

(9) Existence for every separable space E of a bounded linear
transformation of the given space onto the whole of E.

(10) Isomorphism of the space with its dual space.

(11) Isomorphism of the space with its square.

DimensionaZ properties:

153

The property of being weakly (sequentially) complete.

Weak compactness of bounded subsets.

Existence of a base in every closed linear subspace.

Isomorphism of all infinite-dimensional closed linear sub-

( 12)

( 13)

(14 )

(15)
spaces.

(16) Equality of the linear dimension of all infinite-dimensional
closed linear subspaces.

(17) Equivalence of weak and norm convergence of sequences of
elements.

(18) Equality of the linear dimension of the space with that of
its square.

In the table that follows, the presence and absence, where known,
of these properties in various spaces is indicated by + and 
respectively; the blank squares correspond to open (and difficult)
problems while the symbols ~ and e correspond to results obtained
since the book was first published: cf. the survey article of Cz.
Bessaga and A. Pelczynski which follows. .

As S. Mazur has observed, there exist separable infinite-dimension
al spaces which, without being isomorphic with L 2

, posess property
(3), and therefore also property (10), whilst there exists no such
space, at least among known spaces, which possesses property (4) ,(5)
or (14). Moreover, Mazur has shown that every infinite-dimensional
separable space which possesses property (5) for n = 2 is, conversely,
isometric with L 2

• Property (6) fails in all non-separable spaces,
but we do not know if all separable spaces possess it. It is still
not known if there exists a separable infinite-dimensional space
which, without being isomorphic to L2 ,L l or Zl possesses property (8).
Properties (11) and (18) hold for all known infinite-dimensional
spaces; nevertheless, we do not know how to prove or disprove that
every separable space possesses property (14). Finally, we know of
no example of an infinite-dimensional space which, without be~ng
isomorphic with L 2

, possesses property (15).

It should be noted that none of the isometric invariants considered
here is an isomorphic invariant. Moreover, we do not know if all the
isomorphic properties listed are not at the same time dimensional
invariants. Among other open problems, we point out the following:

1° Let Xl and X2 be any two non-zero bounded linear functionals
on an infinite-dimensional Banach space E. With Gl and G2 denoting
the kernels (null-spaces) of these respective functionals, one can
show that dimZG l =dimZG 2 ; is it true that dimZG l =dimZE?

2° If the linear dimensions of two Banach spaces are incomparable,
is the same true of those of their squares?
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SPACE C(P) P
'lp 1 <p"'2M m C p~l (J a o L1 L 2 L 1 <p"'2 'l1

(1 ) - - - - - - - + + + +

u (2) - - - - - - - + + - +
.....
><
+l (3) - - - - - - - + - - -Q)

8
'" (4) - - - - - - - + - - -.....

(5) - - - - - - - + - - -
(6) - - + + + + + + + + +

(7) e e e e e e - + e - e
Ul u
Eo< .....
Z ..c: (8) e e e e e e + + +..: '"H ><

0
~ 8 (9) e e e e - - + - - + -..:
> '"z .....
H (10) - - - - - - - + - - -

(11 ) + + + + + + + + + + +

(12) - . - - - - - + + + + +

( 13) - - - - + + - + + - +

';;l (14) - - e e e e e + e e
<:
0
.~ (15) - - - - e e - + - e
<:
Q)

.~ (16) - - - - + + - + - + +
'0

(17) - - - - - - - - - + -
( 18) + + + + + + + + + + +

We conclude by noting several results of S. Mazur concerning the
geometry of normed vector spaces.

With E denoting such a space, a trans'lation of E is any isometry of
E to itself of the form U (x) = x + x 0' where x 0 E E; the sets obtained
by translation of linear subspaces will be called 'linear varieties.
A linear variety H'" E will be known as a hyperp'lane, when there
exists no closed linear variety G such that H ~ G~ E and H'" G '" E. We
will say that a set A 'lies on one side of the hyperplane H, when
every line segment joining two points of A ..... H is disjoint from H. A
set C will be called a aonvex body when it is closed, convex and has
interior points. A hyperplane H will be called a supporting p'lane
of the convex body C when C lies on one side of H and is at distance
o from H; in particular, H can therefore pass through frontier points
of C.

With this terminology, we have the theorem: through each frontier
point Xo of a convex body C there passes a supporting plane H of C
(cf. G. Ascoli, Sug'li spazi 'lineari ... , Annali di Mathematica 10
(1932), p. 33-81). It follows from this that every closed convex set
is weakly closed. In other words: given a sequence of points (xn) of
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E which is weakly convergent to x 0 E E, there exist non-negative

numbers c~n), both indices being natural numbers, such that, for
'Z.

every n, c~n) = 0 for sufficiently large i and the sequence of points
'Z. 00 (n)

(Y n ), where Yn = i~l ci xi' converges to xo. This last convergence

result was obtained by S. Mazur and myself, albeit by another
method.

In particular, for the space C, it has also been established by
D. C. Gillespie and W. A. Hurwitz (see On sequences of continuous
functions having continuous Zimits, Trans. Amer. Math. Soc. 32
(1930), p. 527-543) and, independently, by Z. Zalcwasser (see Sur
une propriete du champ des fonctions continues, Studia Math. 2
(19~0), p. 63-67).

One can further show that a necessary and sufficient condition for
the weak convergence of a (bounded) sequence (x n ) to a point X o is
that every (bounded) convex body containing infinitely many of the
points xn contains x o•
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Index

Abelian (space), 139
Aaaumulation (point of), 7, 127
Addition, 17, 139
Additive functional, operator, 14
Adjoint equation, 95, operator, 61
Almost isometria spaces, 151
Analytia set, 10
Asymptotia convergence, 2

limit, 137

Baire aondition, for sets, 9
for operators, 9,10

Base, 67
Hamel, 141

Biorthogonal sequence, 65
Body; convex, 154

Category I, II (Baire), 8
Cauahy aondition, 5
Centre of a sphere, 8

of a pair of points, 102
Class, total (of linear operators), 27
Closed (set), 8
Closure of a set, 8
Codomain, 9
Combination (linear), 17
Compaat space, 6
Compaatness, weak, 79, 148
C~mplete biorthogonal system, 147

sequence of elements
of C,,45
of Lr , 45

space, set, 6
weakly, 149

Condensation of singularities
(principle of), 50
(theorem on), 15

Conjugate exponents, 1
Conneated (set, space), 14
Continuous (operator), 9

weakly (functional), 80
Convergenae, asymptotic, 2

in mean, 2
in measure,. 2
unconditional, 149
weak (of elements), 81
weak (of functionals), 75

Convergent (of operators), 9

Convergent, series, 24
sequence,S

Convex body, 154
function, 138
set ,space , 17

Dense set, 8
Derived (set), 7

transfinite, 129
weak, 127

Development of an element, 65
of a function, 51

Diameter of a set, 102
Dimension, linear, 117
Dimensional (invariant), 152, 153
Distanae, 5
Domain, 9

Element, proper (of an equation), 96
Entourage, 8
Equations adjoint, 95

symmetric, 99
Equivalenae (of spaces), 109
EXponents (conjugate), 1
Extension of a functional, 17

Funational, 9
additive, 14, 18
bounded linear, 14
continuous, 9, (weakly), 80
non-negative, 132
orthogonal (to an element or set of

elements), 36
proper (of an equation), 96

Fundamental (set of elements), 36

Group, 13

Homeomorphism, 104
Homogeneous (operator), 18
Hyperplane, 154

Inaomparable (dimensions), 117
Invariant dimensional, 152, 153

isometric, 152
isomorphic, 152, 153

Inversion (of a linear operator), 24
Isometry, isometria (space), almost, 151
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Isometry, isometric space, traBsform
tion, 101
invariant, 152

Isomorphism, isomorphic spaces, 109
invariants, 152

Lim, generalised limit, 21, 146
Limit, 5

asymptotic, 137
of operators, 9
(-point), 5
transfinite, 73
weak, 75, 82

Linear combination, 17
dimension, 117
operator, 14
set, space, 17
transformation, 101
variety, 154

Measurable (B)-set, 9
operator, 9

Measure (convergence in), 2
Method of summation normal, 58, 146

perfect, 55
permanent, 55
reversible, 55
weaker than, 55

Metric (space), 5
translation-invariant, 140

Moments, problem of, 46

Neighbourhood, 8
Non-dense, 8
Non-negative (functional), 132
Norm of an element, 33

of an operator, 33
Normal method of summation, 58
Normalised sequence, 68
Normed space, 33

Operator, 9
additive, 14
adjoint, 61
bounded linear, 14
continuous, 9
homogeneous, 18
(B)-measurable, 9
symmetric, 99

Perfect (set), 7
(method of summation), 55

Permanent (method of summation), 55
Plane, supporting, 154
Point, accumulation,

of elements, 7
of functionals, 127

Point, limit, 7
Principle of condensation of

singularities, 50
Problem of moments, 46

Product of spaces, 11 0
Proper element, functional, value

(of an equation), 95

Regular (value of an equation), 95
ReguZarly closed (set of functionals),

72
Reversible (method of summation), 55
Rotation, 105

Segment, 17
Separable (space), 8
Sequence, biorthogonal, 65

closed, 45
complete, 45
complete biorthogonal, 149
convergent (of elements), 5

(of operators), 9
asymptotically, 2
in mean, 2
weakly (of elements), 81

(of functionals), 75
normalised, 68
(-point), 5
transfinite, 73
weak, 75

Set, analytic or A, 10
compact, 6

(weakly), 79, 148
connected, 14
convex, 17
category I,ll, 8
closed, 7

(weakly), 76
(regularly), 72

dense, 8
(weakly), 76

derived, 7
(weak), 127
(transfinite), 129

fundamental (of elements), 36
linear, 17
(B)-measurable, 9

(J)-, (L)-, 20
nowhere dense, 8
open, 8
perfect, 7
total (of elements), 36

(of functionals), 27
vector, 17
weakly complete, 149

Sets, homeomorphic, 104
SinguZarities (condensation of), 50
Space, abelian, 139

Banach, 34
C 6
c tp ) , 7
c, 7
CD' 109
compact, 6

(weakly), 79
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Space, complete, 6
connected, 14
dual, 113
D, 5
F-, 23
0-, 13
H(P), 138
linear, 17
rP, 7
7P, 7
M, 6
m, 6
metric, 5
normed, 34
0, 138
0, 138
Q, 137
R, 138
S, 6
s, 6
separable, 8
universal, 152

Spaces, equivalent, 109
isometric, 102

(almost), 151
isomorphic, 109

Spectrum (of an equation), 95,96
Sphere, 8

open, 8
Subgroup, 14
Summation (methods of), 55
Supporting plane, 154
System biorthogonal: see sequence

Total set of elements, 36
of functionals, 27

Transfinite (derived set), 129
(limit), 73

Transfinitely closed (set of
functionals), 73

Transformation, isometric, 101
linear, 101

Translation, 154
Translation-invariant metric, 140

Universal (space), 113, 152

Value of an operator, 9
proper, of an equation, 95
regular, of an equation, 95

Variety, linear, 154
Vector (set, space), 17

Weak convergence,
(of elements), 81
(of functionals), 75
derived, 128
limit, 75
method of summation, 55

Weakly compact (space), 79
complete (space), 149
continuous (functional), 80
convergent (sequence of

functionals), 75
closed (set of functionals), 76
dense (set of linear

functionals), 76
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Introduction

The purpose of this survey is to present some results in the
fields of the theory of Banach spaces which were initiated in the
monograph Theory of tin ear operators. The reader interested in the
theory of functional analysis and the development of its particular
chapters is referred to the Notes and Remarks in the monograph by
Dunford and Schwartz [1], and to the Historical Remarks of Bourbaki
[2] (*).

The extensive bibliography at the end of this survey concerns only
the fields which are discussed here, but even in this respect it is
not complete. Large bibliographies of various branches of function
al analysis can be found in the following monographs: Dunford and
Schwartz[1], Kothe [1], Lacey [1], Lindenstrauss and Tzafriri [1],
Semadeni [1], Singer [1].

Banach's monograph Theory of tin ear operators is quoted in this
survey as [B]. When writing, for instance, [B], Rem. V, §2, we
refer to "Remarks" to Chapter V, §2 of.the monograph.

Some recent information is contained in the section "Added in
proof".

Notation and terminotogy. We attempt to adjust our notation to
that which is now commonly used (e.g. in Dunford and Schwartz [1])
and which differs to some extent from the notation of Banach.

We write Loo and tOO instead of M and m and we shall often deal with
the following natural generalizations of LP.

1. Let 1 ;;;; P ;;;; 00. Let /1 be a non-trivial measure defined on a
sigma-field L of subsets of a set S. For any /1-measurable scalar
valued function f defined on S, we let

IIfllp = ([slf(S) IP,u(ds) )l/P for 1 ;;;; P < 00;

IIflloo = ess sup If(s) I.
sES

LP(/1) is the Banach space (under the norm 11·11 ) of all classes of
almost everywhere equal functions f defined og S such that IIfllp < 00.

If S is an arbitrary non-empty set and /1 is the measure defined
for all subsets A of S by letting /1 (A) = 00 if A is infinite and /1 (A)
the cardinality of A otherwise, then the resulting space LP(/1) will
be denoted by tp(S).

In the case where S is finite and has n elements, the space tp(S)
will be denoted by t p •n

2. By ao(S) we denote the closed linear subspace of tOOlS) consist
ing of points fE tOOlS) such that, for every <S> 0, the set
{sES: If(s) I ><S} is finite.

(*) Numbers in brackets refer to the "Bibliography" as well as to the
"Additional bibliography".
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3. By elK) we denote the Banach space of all continuous scalar
valued functions defined on a compact Hausdorff space K, with the
norm IIfll =sup I f(k) I •

kEK
We shall be concerned with the Banach spaces over the fields of

both real and complex scalars.
By a subspace of a Banach space X we shall always mean a closed

linear subspace of X.
For any Banach space X we denote by X* and X** the dual (conjugate)

and the second dual (second conjugate) of X. If T: X-+- Y is a con
tinuous linear operator, then T* and T** denote the conjugate
(adjoint) and the second conjugate operator of T.

In the sequel we shall use the phrases "linear operator", "contin
uous linear operator" and "bounded linear operator" as synonyms; the
same concerns "linear functionals", etc.

By a projection on a Banach space X we shall mean a bounded linear
projection, Le. a bounded linear operator P: X+ X which is idem
potent. A subspace of X which is a range of the projection is said
to be compZemented in X.
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CHAPTER I

§1. Reflexive and weakly compactly generated Banach spaces.
Related counter examples.

Theorem 13 in [B], Chap. XI, was a starting point for many invest
igations. In 'order to state the results let us recall several,
already standard, definitions.

The weak topoZogy of a Banach space X is the weakest topology in
which all bounded linear functionals on X are continuous. A subset
WcX is said to be weakZy aompaat if it is compact in the weak
topology of X; W is said to be sequentiaZZy weakZy aompaat if, for
every sequence of elements of W, there is a subsequence which is
weakly convergent to an element of W. The map x: X .... X** defined by
(xx) (x*) =x* (x) for x E: X, x* E: X* is called the aanoniaaZ embedding
of X into X**. A Banach space X is said to be refZexive if
x (X) =X**. Banach' s Theor.em 13, which we mentioned at the beginning,
characterizes reflexive spaces in the class of separable Banach
spaces. The assumption of separability turns out to be superfluous.
This is a consequence of the following fundamental fact, discovered
by Eberlein [1] and smulian [1].

1.1. A subset W of a Banach spaae X is weakZy aompaat if and onZy
if it is sequentiaZZy weakZy aompaat.

A simple proof of 1.1 was given by Whitley [1]. For other proofs
and generalizations see Bourbaki [1], Kothe [1], Grothendieck [1],
Ptak [1], Pelczynski [1].

From 1.1 we obtain the classical characterization of reflexivity
generalizing Theorem 13 in [B], Chap. XI.

1.2. For every Banaah spaae X the foZZowing statements are equi
vaZent:

(i) X is refZexive.

(ii) The unit baZZ of X is weakZy aompaat.

(iii) The unit baZZ of X is sequentiaZZy weak aompaat.

(iv) Every separabZe subspaae of X is refZexive.

(v) Every desaending sequenae of bounded non empty aonvex aZosed
sets has a nonempty interseation.

(vi) X* is refZexive.

Many interesting characterizations of reflexivity have been given
by James [4], [5]. One of them, James [3], is theorem 1.3 below (see
James [6] for a simple proof). For simplicity, we shall state this
theorem only for real spaces.

1.3. A reaZ Banaah spaae X is refZexive if and onZy if every
bounded Zinear funationaZ on X attains its maximum on the unit baZZ
of X.
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It is interesting to compare 1.3 with the following theorem of
Bishop and Phelps [1] (see also Bishop and Phelps [2]).

1.4. For every real Banach space X, the set of bounded linear
functionals which attain their least upper bounds on the unit ball
is norm-dense in X*.

The reader interested in other characterizations of reflexivity is
referred to Day [1], to the survey by Milman [1], to Kothe [1] and
the references therein.

James supplied counter-examples showing that the assumptions of
Theorem 13 in [B], Rem. XI, in general cannot be weakened and
answering questions stated in [B], Rem. XI, §9.

EXAMPLE 1 (James [2]). Let J be the space of real or complex
sequences x = x (j) 1~j<"" such that l}m x (j) = 0 and

IIxll = sUP(!X(Pl)-X(P2) 1
2 +••• + !X(Pn_1'-X(Pn) 1

2 + IX(Pn'-X(Pl) 1
2
)! < "",

where the supremum is extended over all finite increasing sequences
of indices Pl<P2<"'<Pn (n=1,2, ... ).

It is easily seen that J under the norm 11·11 is a separable Banach
space.

1.5. The space J has the following properties:

(a) J is isometrically isomorphic to J**.

(b) x(J) has codimension 1 in J**, i.e. dim J** /x(J) = 1-

(c) There is no Banach space X over the field of complex numbers
which regarded as a real space, is isomorphic to the space J of real
sequences (Dieudonne [1]).

(d) The space J x J is not isomorphic to any subspace of J
(Bessaga and Pelczynski [1]).

(e) J is not weakly complete but has no subspace isomorphic to co.

Statement (d) answers a question in [B], Rem. p. 153. Other
examples of Banach spaces non-isomorphic to their Cartesian squares
have been constructed by Semadeni [1] (cf. 11.20 in this article)
and by Figiel [1]. Figiel's space is reflexive, while the dual of
Semadeni's space is isomorphic to its Cartesian square.

In connection with question 1° in [B], Rem XII, p. 153, we shall
mention that all subspaces of codimension one (i.e. kernels of
continuous linear functionals) of a given Banach space are isomor
phic to each other but .it is not known whether there exists an
infinite-dimensional Banach space which is not isomorphic to its sub
space of codimension one. However, there exist infinite-dimensional
normed linear spaces (Rolewicz [1] and Dubinsky [1]) and infinite
dimensional locally convex complete linear metric spaces (Bessaga,
Pelczynski and Rolewicz [1]) with this property.

Now we shall discuss another example of James [8].

EXAMPLE 2. Let I= {(n,i):n=0,1,2, ... ; 0;;; i< 2n }. Call a segment
any subset of I of the form (n,i 1 ) ,(n+1,i 2), , (n+m,im) such that
0;;;ik+1-2ik~1 for k=1,2, ... ,m-1 (m,n=0,1, ). Let F denote the
space of scalar-valued functions on I with finite supports. The
norm on F is defined by the formula

IIxll = sup (I I .L X(n,i)!2)!,
q=l (n,1-)ESq

with the supremum taken over all finite systems of pair-wise dis
joint segments Sl,S2""'Sp' The completion of F in the norm 11·11
will be denoted by DJ.
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1.6. The Banach space DJ has the following properties (James [8]):

(a) DJ is separable and has a non-separable dual.

(b) The unit ball of DJ is conditionally weakly compact, i.e.
every bounded sequence (xn) of elements of DJ contains a sub

sequence (xk n ) such that lim x* (xk ) exists for every x* E (DJ) *.
n n

(c) Every separable infinite-dimensional subspace E of the space
(DJ)* contains a subspace isomorphic to the Hilbert space l2.

(d) No subspace of DJ is isomorphic to ll.

(e) If B is the closed linear subspace of (DJ)* spanned by the
functionals fni for 0;;;;i<2n ; n=0,1, .•. , where fni(x)=x(n,i) for
x E DJ, then B* = DJ and the quotient space (DJ) */B is 'isomorphic to a
non-separable Hilbert space (Lindenstrauss and Stegall [1]).

Property (b) of the space J and property (e) of DJ suggest the
following problem: Given a Banach space X, does there exist a
Banach space Y such that the quotient space Y**/x(Y) is isomorphic
to X? This problem is examined in the papers by James [7], Linden
strauss [5], Davis, Figiel, Johnson and Pelczynski [1]. The results
already obtained in this respect concern an important class of WCG
Banach spaces.

A Banach space X is said to be WCG (an abbreviation for weakly
compactly generated) if there exists a continuous linear operator
from a reflexive Banach space to X whose range is dense in X (cf.
Amir and Lindenstrauss [1], Davis, Figiel, Johnson and Pelczynski
[1]). Obviously every reflexive Banach space is WCG. We know that
(Davis, Figiel, Johnson and Pelczynski [1]).

1.7. For every WCG Banach space X there exists a Banach space Y
such that the quotient space Y**/x(Y) is isomorphic to X.

Setting Z = Y*, we obtain

1.8. If X is a WCG Banach space, then there exists a bounded
linear operator T: Z* on~o X such that Z** is a direct sum of x(Z)

and the subspace T*(X*) which is isometrically isomorphic to X*.

Moreover, if X is separable, then the space Z above can be so
constructed that Z* is separable and has a Schauder basis (Linden
strauss [5]).

The WCG spaces have been introduced by Amir and Lindenstrauss[1].
They share many properties of finite-dimensional Banach spaces.
Amir and Lindenstrauss [1] proved the following:

1.9. If X is a WCG Banach space, then for every separable sub
space E of X there exists a projection P: X~X of norm 1 whose range
P(X) contains E and is separable.

The last result is a starting point for several theorems on re
norming WCG spaces. Recall that, if E is a normed linear space with
the original norm II· II, then a norm p: E'" R is equivalent to II. II if
there is a constant a> 0 such that a-1p (x) :> IIxll ;;;; ap (x) for x EX.
Troyansky [1] has proved the following:

1.10. For every WCG Banach space X there exists an equivalent
norm p whiah is locally uniformly convex, i. e. for every x E X with
p (x) = 1 and for every sequence (xn) in X, the condition
lim p (x n ) = 2-1 lim p (x + x n ) = 1 implies lim p (x - x n ) = O.

n n n
In particular, the norm p is strictly convex, Le. pIx) +p(y)

p (x + y) implies the linear dependence of x and y.
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Assertion 1.10 for separable Banach spaces is due to Kadec [1], [2].
The existence of an equivalent strictly convex norm for WCG spaces
has been established by Amir and Lindenstrauss [1].

In connection with 1.10 let us mention the following result of
Day [2]:

1.11. The spaae lOOtS) with unaountable S admits no equivalent
striatly aonvex norm.

More information on renorming theorems can be found in Day [1] and
papers by Asplund [1], [2], Lindenstrauss [6], Troyansky [1], Davis
and Johnson [1], Klee [1], Kadec [2], Kadec and Pelczynski [2],
Whitfield [1], Restrepo [1].

In contrast to the case of separable and reflexive Banach spaces
we have (Rosenthal [1])

1.12. There exists a Banaah spaae X whiah is not WCG but is iso
morphia to a subspaae of a WCG spaae.

Concluding this section, we shall discuss one more example.

EXAMPLE 3 (Johnson and Lindenstrauss [1]). Let S be an infinite
family of subsets of the set of positive integers which have finite
pair-wise intersections (cf. Sierpinski [1]). Let Eo be the
smallest linear variety in loo containing all characteristic func
tions XA for A E S and all sequences tending to zero. It is easily
seen that the formula

Illy III =fix +.I aA.XA·llx +(.I laA.I')! for y =.I aA'XA"
J=l J J J=l J J=l J J

where xEao and Alt .•. ,AnES (n=1,2, .•. ), defines a norm on Eo. The
coefficient functionals gk (y) = Y (k) for y E Eo are continuous in this
norm. Let E be the Banach space which is the completion of Eo in
the norm III· III and let fk be the continuous linear functional on E
which extends gk (k=1,2, •.• ). Then

1.13. The spaae E has the following properties:

(a) The linear funationals f1.f2"" separate points of E.

(b) E is not isomorphia to a subspaae of any WCG spaae. in partia
ular E is not isomorphiaally embeddable into loo.

(c) E* is isomorphia to the produat II x l2(S). henae it is WCG.
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CHAPTER II

Local properties of
Banach spaces

§2. The Banach-Mazur distance and projection constants.

The distance between isomorphic Banach spaces introduced in [B],
Rem. XI, §6, p. 151, plays an important role in the recent investig
ations of isomorphic properties of Banach spaces, and in particular
in the study of the properties of finite-dimensional subspaces of a
given Banach space X, which are customarily referred to as the
"local properties" of the space X.

Let a <: 1. Banach spaces X and I are said to be a-isomorphia if
there exists an isomorphism T of X onto I such that IITII·IIT- 1 11 ~ a.
The infimum of the numbers a for which X and I are a-isomorphic is
called the Banaah-Mazur distanae between X and I and is denoted by
d(X,I). Obviously 1-isomorphisms are the same as isometrical iso
morphisms.

2.1. There exist Banaah spaaes X 0' Xl with d (X 0' Xl) = 1 whiah are
not isometriaaZZy isomorphia.

Proof. Consider in the space a o two norms

IIxli. = sup IX{jl! + (I 12-j X{j + ill»! for x = (x{j»,i=O,l.
'l- j j=l .

For i=0,1, let Xi be the space a o equipped with the norm 11·11 .•
For n=1,2, ••• , let Tn :X o"'X 1 be the map defined by 'l-

(x(1),x(2), ... ) ... (x(n),x(1), .•. ,x(n-1),x(n+1), .•. ).

Then each Tn is an isomorphism of X o onto Xl and lim IITnIlIlT~ll1 = 1-
n

Hence d (X 0 ,X1) = 1. On the other hand, the norm II· II 0 is strictly
convex (for the definition see section 1 after 1.10) while 11.11 1 is
not. Therefore X o is not isometrically isomorphic to Xl.

Let us mention that d(a,a o ) =3, which is related to a question in
[B], Rem. XI, §6, p. 151. Interesting generalizations of this fact
are due to Cambern [1] and Gordon [1]; see also 10.19 and the
comment after it.

From the compactness argument it follows that, for arbitrary
Banach spaces X, I of the same finite dimension, there exists a u (X, I)
isomorphism of X onto I.

The following important estimation is due to John [1]:

2.2. If X is an n-dimensionaZ Banaah spaae, then d(X,Z~) ~ In.

Since d(Z~,Zh) = In (cf. 2.3), the estimation above is the best
possible. The exact rate of growth of the sequence (d n ), where
dn = sup {d(X,I): dim X=dim Y=n}, is unknown. From 2.2 and the
"triangle inequality" d(X,Z) ~ d(X,I) ·d(I,Z) it fOllows that
In~dn;£n for n=1,2, •••

The computation of the Banach-Mazur distance between given iso
morphic Banach spaces is rather difficult. Gurarii, Kadec and
Macaev [1],[2] have found that

2.3. If ei ther 1 ;£ P < q ~ 2 or 2::; p < q :;; 00, then
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d(l.P 1.q) = n 1/ p- 1 / q (n=1,2, ••• );
n' n

if 1 :0 P < 2 < q :> 00. then

(12-1)d(1.~,1.~) :> max (n1/p-1/2,n1/2-1/q) :> I2d(1.~,1.~) (n=1,2, •.. ).

For generalizations of 2.3 to the case of spaces with symmetric
bases and some matrix spaces see Guraril, Kadec and Macaev [2], [3] ,
Garling and Gordon [1].

Estimations of the Banach-Mazur distance are related to the com
putation of so-called "projection constants". Let a <: 1 and let X be
a Banach space. A subspace 1 of X is a-comp1.emented in X if there
exists a linear proj ection P: X o:to 1 with II P II :> a. The infimum of

the numbers a such that 1 is a-complemented in X will be denoted
p(I,X). For any Banach space E we let

p (E) = sup p(i (E) ,X),
where the supremum is extended over all Banach spaces X and all iso
metrically isomorphic embeddings i: E'" X. The number p (X) is called
the projection constant of the Banach space E.

In general, if dim E = 00, then p (E) = 00. No characterization of the
class of Banach spaces E with p (E) < 00 is known (cf. section 11).
The projection constant of a Banach space E is closely related to
extending linear operators with values in E.

2.4. Let E be a Banach space. If p (E) < 00, then, for every trip 1.e
(X,I,T) consisting of a Banach space X, its subspace 1 and a contin
uous 1.inear operator T: 1'" E and for every E > 0, there exists a
1.inear operator 'if: X ... E such that

(*) 'if extends T and II Til :0 C· II Til

with C =p (E) + E. Converse1.y, if for every trip1.e (X,I,T) there is a
T satisfying (*), then p (E) :0 C. We have p (E) =00 if and on1.y if
there exists a trip1.e (X,I,T) such that T admits no extension to a
bounded 1.inear operator defined on the who1.e of X.

Using the theorem of John 2.2, Kadec and Snobar [1] have shown
that

2.5. IfdimX=n, thenp(X):;;,In (n=1,2, •• ,).

The estimation 2.5 gives the best rate of growth. We find that
(Grunbaum [1], Rutowitz [1], Daugavet [1])

2.6. p(1.~) = TI-!nr(~)/r(n;l) ~ I2n7i (n=2,3, ••• ).

Rutovitz [1] and Garling and Gordon [1] estimated projection con
stants of the spaces 1.p.

n 1/
2.7. If 2:op:ooo, then p(1.~) =n Pa.p(n), where 1/,IZ<a.p (n) :>a.oo(n)

1 (n=1,2, ••• ). If 1:>p:>2, then p(1.~)=n!a. (n), where 1~a. (n)~

( . TI)-1 P Psl.nhZ (n=1, 2, ... ) .

Remark. Theorem 2.7 concerns real spaces 1.~. However, in the
complex case, the rate of growth is the same.

For generalizations of 2.7 to spaces with symmetric bases see
Garling and Gordon [1] and the references therein.

By 2.7 we have in particular p(1.:) = 1 for n=1 ,2, ••• ; the last
property isometrically characterizes the spaces 1.n in the class of
finite-dimensional Banach spaces (see Nachbin [1] and 10.15).

It is easy to show that p (X) :> d (X, 1.n) for every n-dimensional
Banach space X. It is not known whether the quantities p(X) and
d(X,1.;) are of the same rate of growth, i.e. whether there exists a
constant K> 0 independent of n and such that d (X, 1.;) :0 Kp (X) for
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every n-dimensional Banach space X. Also, the numbers

an = sup {pIX): dim X = n} for n = 2,3, •••

have not been computed. Some results concerning the last problem
are given in Gordon [2].

The Banach-Mazur distance and projection constants are connected
with other isometric invariants of finite-dimensional Banach spaces.
The asymptotic behaviour of these invariants in some classes of
finite-dimensional Banach spaces with the dimensions growing to
infinity gives rise to isomorphic invariants of infinite-dimensional
Banach spaces. These problems have many points in common with the
theory of Banach ideals. The interested reader is referred to
Grothendieck [5], [6], Lindenstrauss and Pelczynski [1], Pietsch [1]
with references, Gordon [2] ,[3], [4], Garling and Gordon [1], Gordon
and Lewis [1], Gordon, Lewis and Retherford [1],[2], Snobar [1],
Milman and Wolfson [1], Figiel, Lindenstrauss and Milman [1].

§3. Local representability of Banach spaces.

The following. concept, introduced by Grothendieck [6] and James
[10], originates from the Banach-Mazur distance.

Let a;;: 1. A Banach space X is "loaa"l"ly a-representab"le in a Banach
space Y, if for every b> a every finite-dimensional subspace of X is
b-isomorphic to a subspace of Y. If X is locally a-representable in
Y and Y is locally a-representable in X, we say that X is "loaa"l"ly a
isomorphia to Y. The space X is said to be "loaa"l"ly representab"le in
Y ("loaa"l"ly isometria to Y) if X is locally 1-representable in Y
(locally 1-isomorphic to Y).

First, we shall discuss the problem of finding Banach spaces which
are locally representable in the spaces "lP (1::: p < 00) and a o• We
know (Grothendieck [5], Joichi [1], cf. also 9.7) that

3.1. A Banaah spaae X is "loaa"l"ly a-representab"le in "l2 if and
on"ly if X is a-isomorphia to "l2.

Theorem 3.1 can be generalized to the case- of "lP with 1 ~ P < 00

(Bretagnolle, Dacunha-Castelle and Krivine [1], Bretagnolle and
Dacunha-Castelle [1], Dacunha-Castelle and Krivine [1], Linden
strauss and Pelczynski [1]) as follows:

3.2. Let 1 ::: p < 00 and "let a ~ 1. A Banaah spaae X is "loaa"l"ly a
representab"le in "lP if and on"ly if X is a-isomorphia to a subspaae
of a spaae LP (/d (in partiau"lar to a subspaae of LP when X is sep
arab"le).

Thus, by the results of Schoenberg J1], [2]", the local represent
ability of a Banach space X in some"l for 1 ~ P ::: 2 can be character
ized by the fact that the norm of X is negative definite. For
2n < p ::: 2n+2 (n=1 ,2, ••• ) more sophisticated conditions have been
found by Krivine [1].

The last theorem is also valid for p = 00. In fact, we have

3.3. (i) For every aardina"l n;;: ~o, there is a aompaat Hausdorff
spaae K suah that the topo"logiaa"l weight of the spaae C(K) is nand
every Banaah spaae whose topo"logiaa"l weight is ::: n is isometriaa"l"ly
isomorphia to a subspaae of the spaae C(K).

(ii) Every Banaah spaae is "loaa"l"ly representab"le in the spaae ao.

Statement (i) generalizes the classical Banach-Mazur theorem ([B],
Chap. XI, Theorem 9), which says that every separable Banach space
is isometrically isomorphic to a subspace of C. The proof of (i) is
almost the same as that of Theorem 9 but, instead of using the fact
that every compact metric space is a continuous image of the Cantor
set, it employs the theorem of Esenin-Volpin [1] (which was proved
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under the continuum hypothesis), stating that for every cardinal
n ~~o there is a compact Hausdorff space K of the topological weight
n such that every compact Hausdorff space of topological weight ~ n
is a continuous image of K.

Statement (ii) follows from the fact that every centrally symmet
ric k-dimensional polyhedron with 2n vertices is affinely equivalent
to the intersection of the cube [-1,1]n (the unit ball of the space
l;';') with a k-dimensional subspace of l~ for k=1, 2, ..• ; n ~ k (Klee
[2]) •

Next consider the problem: Given p E [1,00], characterize Banach
spaces in which lP is locally representable. We present answers for
p=1,2,oo. (The case of arbitrary p, due to Krivine [2] (cf. also
Maurey and Pisier [3], Rosenthal [9]) is much more difficult.) The
following beautiful result is due to Dvoretzky [1]:

3.4. The space l2 is locally representable in every infinite
dimensional Banach space.

This result is a simple consequence of the following fact concern
ing convex bodies:

3.5. (Dvoretzky's theorem on almost spherical sections). For
every E > 0 and for every positive integer k, there exists a positive
integer N = N(k, El such that every bounded convex body (= convex set
with non-empty interior) B in the real or complex space IN which is
symmetric with respect to the origin admits an intersection with a
k-dimensional subspace Y which approximates up to E a Euclidean k
ball, i. e.

sup {UxU: x E Y n K}/inf {UxU: x E Y\K} < + E.

The proof of the real version of 3.5 is due to Dvoretzky [2]
(previously it was announced in Dvoretzky [1]). Some completions
and simplifications can be found in Figiel [2]. An essentially
simpler proof, based on a certain isoperimetric theorem of P. Levy,
has been given by Milman [2], cf. also Figiel, Lindenstrauss and
Milman [1]. The proof of Figiel [5] based on an idea of Szankowski
[1] is short and elegant.

Banach spaces with unconditional bases (for the definition see §7)
have the following property (Tzafriri [1]):

3.6. If X is an infinite-dimensional Banach space with an uncondi
tional basis, then there exists a constant M, a sequence of projec
tions Pn : X+X with UPnU ~M for n=1,2, ... and a pE {1,2,oo} such that
sup d(Pn (X), l~) ~ M.

n
The proof of 3.6 is based on the Brunel-Sucheston [1] technique of

constructing sub-symmetric bases, which employs a certain combinat
orial theorem of Ramsey [1]. A similar argument yields also the
following weaker version of Dvoretzky's theorem: For every infinite
dimensional Banach space X there is an a <: 1 such that l2 is a
representable in X.

Characterizations of Banach spaces in which co' equivalently loo,
is locally represented are connected with the theory of random
series. Recall that a measurable real function f on a probabilistic
space (n,~) is called a standard Gaussian random variable if

t
~(w E n: f(w) < t} = 1 Je- S2

/
2 ds.

1211 _00
The Rademacher functions (rj)l~j<oo are defined on the interval [0,1]

by the formula
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We have

3.7. For every Banach space X the foZZowing statements are
equivaZent:

(i) The space Co is not ZocaZZy a-representabZe in X for any a ~ 1.

(ii) The space Co is not ZocaZZy representabZe in X.

(iii) The space Co is not ZocaZZy representabZe in the product
space (XxXx "')Zp for any pE [1,(0).

(iv) There are a q E [2,(0) and a constant C> 0 such that

( J IIx.ll
q

j\l/
q

:;; cJI111J r.(t)x·lldt
J=l J 0 J=l J J

for arbitrary Xl"'" Xn E X and n=1, 2, ...

(v) For every sequence (x n ) of eZements of X and for every
sequence of independent standard Gaussian random variabZes, the
series L fn(w)x n converges aZmost everywhere iff so does the series

n
L rn(t)xn .
n

The equivalence between (i) and (ii) has been proved by Giesy [1].
The other implications in 3.7 are due to Maurey and Pisier [2].
Other equivalent conditions, stated in terms of factorizations of
compact linear operators, can be found in Figiel [3].

The next theorem characterizes Banach spaces in which the space
is not locally representable.

3.8. For every Banach space X the foZZowing statements are
equivaZent:

(i) The space Zl is not ZocaZZy a-representabZe in X for any a ~ 1.

(ii) The space Zl is not ZocaZZy representabZe in X.

(iii) The space Zl is not ZocaZZy representabZe in the product
space (Xx Xx ",)zp for any pE (1,00).

(iv) There are a q E (1,00) and a constant c> 0 such that

III I r.(t)x.111Idt ::> c( I IIx.ll
q )l/q

o i=l 1.- 1.- i=l 1.-

for arbitrary x 1 , ••• ,xn EX and n=1,2, ••.

(v) There are a q E (1,00) and a constant c> 0 suah that

ess inf II I r.(t)x·11 :;; c( I IIx.ll
q )l/q

O~t::>l i=l 1.- 1.- i=l ~
for arbitrary Xl" •.. 'Xn E X and n=1 ,2, •••

The equivalence between (i) and (ii) has been proved by Giesy [1].
The other implications in 3.8 are due to Pisier [1].

Let us notice in connection with 3.7 and 3.8 that if a Banach
space X has a subspace isomorphic either to Zl or to 00' then, for
every a <: 1, there is a sUbspace of X which is a-isomorphic to Zl or
co' respectively (James [9]). It is not known whether the spaces Zp
with 1 < p < 00 have an analogous property.

Obviously, if a Banach space X has a subspace isometrically iso
morphic to a space Zp or co' then the space Zp or co' respectively,
is locally a-representable in X for some a <: 1. Converse implica
tions are, in general, false. The spaces Zp for 1 :;; p < 00, p" 2, and
Co do not contain any subspace isomorphic to Z2 (cf. 12.) in con
trast to Dvoretzky's theorem 3.5. Even more "pathological" in this
respect is the example due to Tzirelson [1]. Below we present a
modified version of this example given by Figiel and Johnson [2].
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EXAMPLE. Let Eo be the space of all scalar sequences having at
most finitely many non-zero coordinates and let (II· lin) be the
sequence of norms on Eo defined by

IIxlio = sup Ix(k) I
k

IIxll n+1 = max (IIXlln'~.I II. Vf> x(i)eilln)'
J = 1 'Z.=V (J-1 >+1

where e i = (0,0, •••.,1,0, ••• ), and the supremum is extended over all
the 'Z.th place

increasing finite sequences of indices vIOl < v(1) < ••• < vIm) such
that v (0) ~ m. Let

IIxli = lim IIxli
n

for x E Eo.
n

It is easy to show that the limit above exists. Let E be the com
pletion of Eo in the norm II· II • Then

3.9. E is a separable Banach space with an unconditional basis
which does not contain isomorphical ly any space lP (1:> P ::; 00) or co'

Concluding this section, we shall state a theorem of general nat
ure indicating the difference between the local and the global
structure of Banach spaces.

3.10. (The Princip le of Local Reflexivity). Every Banach space
is locally isometric to its second dual.

This fact is a consequence of the following result. (For simplic
ity we identify the Banach space X with its canonical image xIX) in
X**. )

3.11. Let X be a Banach space, let E and G be finite-dimensional
subspaces of X** and X*, respective ly, and let 0 < E < 1.. Assume that
there is a projection P of X** onto E with IIPII:> M. Then there are a
continuous linear operator T: E+ X and a projection Po of X onto
T(E) such that

(a) T(e) =e for e E En X.

(b) f(Te) = e (f) for e E E and fE G.

(c) IITII'IIT- 1 11 $ 1 + E.

(d) IIP olI:>M(1+E).

Moreover, if P = Q* where Q is a projection of X* into X*, then the
projection Po can be chosen so as to satisfy (d) and the additional
condition

(e) P~*(x**) = P(x**) whenever P(x**) EX.

Theorem 3.10 and a part of 3.11 have been given by Lindenstrauss
and Rosenthal [1]. Theorem 3.11 in the present formulation is due
to Johnson, Rosenthal and Zippin [1]. For an alternative proof see
Dean [1].

§4. The moduli of convexity and smoothness; super-reflexive
Banach spaces. Unconditionally convergent series.

Intensive research efforts have been devoted to the invariants of
the local structure of Banach spaces related to the geometrical
properties of their unit spheres. In this section we shall discuss
two invariants of this type: the modulus of convexity (Clarkson
[1]) and the modulus of smoothness (Day [3]).

Let X be a Banach space; for t> 0, we set

0x(t) = inf {1-Hx+yll: IIxll = lIyll = 1, IIx-yli ~ t},
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PX(t) = t sup {lIx+yll + IIx-yli - 2: IIxli = 1, lIyll = t},

The functions OX and PX are called, respectively, the moduZus of
convexity and the moduZus of smoothness of the Banach space X. The
space X is said to be uniformZy convex (resp. uniformZy smooth) if
ox(t) > 0 for t> 0 (resp. lim px(t)/t = 0).

t-+o
The moduli of convexity and smoothness are in a sense dual to each

other. We have (Lindenstrauss [8], cf. also Figiel [6]).

4.1. For every Banach space X, PX* (t) = sup (ts/2-ox (s»).
O:>s :;;2

The next result characterizes the class of Banach spaces for which
one can define an equivalent uniformly convex (smooth) norm.

4.2. For every Banach space X the foZZowing conditions are equi
vaZent:

(a) X is isomorphic to a Banach spaae which is both uniformZy
convex and uniformZy smooth.

(b) X is isomorphic to a uniformZy smooth space.

(c) X is isomorphic to a uniformZy convex space.

(d) Every Banach space whiah is ZocaZZy a-representabZe in X, for
some a > 1, is refZexive.

(e) Every Banach space ZocaZZy representabZe in,X is refZexive.

(f) The duaZ space X* satisfies conditions (a)-(e).

A Banach space satisfying the equivalent conditions of 4.2 is said
to be super-refZexive.

Theorem 4.2 is a product of combined efforts of R. C. James [10],
[11] and Enflo [2]. The implication: .. (b) and (c) .. (a)" has been
proved by Asplund [2]. For the characterizations of super-reflex
ivity in terms of "geodesics" on the unit spheres see James and
Schaffer [1], and in terms of basic sequences, see V. I. Gurarii and
N. 1. Gurarii [1] and James [12] ,.

If X is a super-reflexive Banach space, then by (e) neither Zl nor
Co is locally representable in X. Therefore the product

(n x zi x Z~ x ... ) z>
is an example of a reflexive Banach space which is not super
reflexive. A much more sophisticated example is due to James [13],
who proved that

4.3. There exists a refZexive Banach space RJ which is not super
refZexive but is suah that Zl is not ZocaZZy representabZe in RJ

Clarkson [1] has shown that, for 1 < P < "", the spaces LP and Zp are
uniformly convex. The exact values of oX (t) for X = LP , Zp have been
computed by Hanner [1] and Kadec [5]. Their results together with
4.1 yield the following asymptotic formulae:

4.4. If X is either LP or Zp with 1 < p< "", then

0X(t) = apt k + o(tk ), PX(t) = bptm
+ o(tm),

with k=max(2,p), m=min(2,p), where ap and bp are suitabZe positive
constants depending onZy on p. Moreover, if Y is a uniformZy aonvex
(resp. uniformZy smooth) Banaah space which is isomorphic to LP or
ZP, then, for smaZZ positive t, we have Oy(t) ;S 0Zp(t) (resp.
Py (t) ~ PZp (t) ) •

Orlicz spaces (i.e. the spaces (0) and (0) in the terminology of
[B], p. 138) admit equivalent uniformly convex norms iff they are
reflexive (see Milnes [1]).

The moduli of convexity and smoothness are connected with the
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properties of unconditionally convergent series in the space X. Let
us notice that the property: "the series ~Enxn of elements of a

Banach space X is convergent for every sequence of signs (En)" is
equivalent to the unconditional convergence of the series in the
sense of Orlicz [3], cf. [B], Rem. IX, §4.

We have

4.5. If LEnxn with xn's in a uniformly convex Banach space X is

conver~ent for every sequence of signs (En). then n~1 eX (lIxn II) < 00.

If n~1Enxn with xn's in a uniformly smooth Banac~ space X is

divergen t for every sequence of signs (En). then n~ 1p X (lIxn II) =00.

The first statement of 4.5 is due to Kadec [5], the second to
Lindenstrauss [8].

Combining 4.4 with 4.5, we obtain (Orlicz [1], [2])

4.6. Let 1 < P < 00. If L fn is an unconditionally convergent ser
n

ies in the space LP (or more generally. in LP(~». then

n~1I1fnIlC(P) < 00. where c(p) =max(p.2).

The last fact is also valid for the space L 1
, which is non

reflexive, and hence is not uniformly convex. We have (Orlicz [1])

4.7. If in the space L1 the series * fn is unconditionally con

vergent. then n~1l1fnll2 < 00.

The exponents c(p) in 4.6 and 2 in 4.7 are the best possible.
This can easily be checked directly for p > 2; for 1 ~ p ::; 2 it follows
from the crucial theorem on unconditionally convergent series due to
Dvoretzky and Rogers [1] (cf. also Figiel, Lindenstrauss and
Milman [1]).

4.8. Let (an) be a sequence of positive numbers such that

n~1 ah < 00. Then in every infinite-dimensional Banach space X there

exists an unconditionally convergent series L Xn such that IIxnll =an
n

for n=1.2 ••.. In particular. in every infinite-dimensional Banach

space there is an unconditionally convergent series L Xn such that
00 n

n~1l1xnll =00.

Combining 4.8 with 4.5, we get

4.9. For every Banach space X there exist positive constants a
and b such that eX(t):> at 2 and PX(t) ;;: bt 2 for small t > O.

Concluding our discussion, we shall state another theorem on un
conditionally convergent series, which generalizes the theorem of
Orlicz [1] (mentioned in [B], Rem. IX, §4, p. 149).

4.10. For every Banach space X the following statements are
equivalent:

(a) For every series ~xn of elements of X. if n~1Ix* (x n ) I < 00 for

every X* E X*. then the series LXn is unconditionally convergent.
n

(b) For every series LXn of elements of X the condition
n n

s:p ~k~1rk(t)Xk~ < 00

almost everywhere on [0,1] implies the unconditional convergence of
the series ~xn' (Here r n denotes the n-th Rademacher function for
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n=1 ,2, ... )
(c) No subspaae of X is isomorphia to ao'

The equivalence of conditions (a) and (c) is proved in Bessaga and
Pelczynski [3]. The equivalence of (b) and (c) is due to Kwapien
[2].

There is ample literature concerning the moduli of convexity and
smoothness and other related invariations of Banach spaces. In
addition to the references already given in the text, the reader may
consult books by Day [1], Chapt. VII, §2, Lindenstrauss and Tzafriri
[1] ,[2], the surveys by Milman [1], Zizler [1], Cudia [2], Linden
strauss [4] ,[6] and papers by Asplund [1], Bonic and Frampton [1],
Cudia [1], Day [4], Day, James and Swaminathan [1], Figiel [1],
Figiel and Pisier [1], V. I. Gurarii [2] ,[3] ,[4], Henkin [1],
LOvaglia [1], Nor-dlander [1], [2]. --

The theory of unconditionally convergent series is related to the
theory of absolutely summing operators, originated by Grothendieck,
and radonifying operators in the sense of L. Schwartz, which is a
branch of measure theory in infinite-dimensional linear spaces. The
interested reader is referred to the following books and papers:
Grothendieck [1], [2], Pietsch [1], [2], [3], Persson and Pietsch [1],
Lindenstrauss and Pelczynski [1], Maurey [1], Kwapien [1], L.
Schwartz [1], [2].

For further information see "Added in proof".





179

CHAPTER III

The approximation property

and bases

There are many instances in op~rator theory where it is convenient
to represent a given linear operator as a limit of a sequence of
operators with already known properties. The best investigated
classes of oper~tors are finite rank operators and compact operators,
therefore it is natural to ask whether every continuous linear oper
ator can be approximated by linear operators from these classes.
Such a question was raised in [B], Rem. VI, §1, p. 146. Banach,
Mazur and Schauder have already observed that the approximation
problem is related to the problem of existence of a basis, and to
some questions on the approximation of continuous functions (cf.
Scottish Book [1], problem 157). A detailed study by Grothendieck
[4] published in the middle fifties explained the fundamental role
of the approximation problem in the structure theory of Banach
spaces, and that this problem arises in various contexts (for
instance, if one attempts to determine the trace of a nuclear oper
ator). Substantial progress was made in 1972 by Enflo [3], who
constructed the first example of a Banach space which does not have
the approximation property.

§5. The approximation property.

We begin with some notation. By an operator we shall mean a con
tinuous linear operator. For arbitrary Banach spaces X and Y, we
denote

B (X, Y) = the space of all operators from X into Y,
K (X, Y) =the space of all compact operators from X into Y,
P (X, Y) = the space of all finite rank operators from X into Y.

For any T E B (X, Y), we let III Till sup{ II Tx II: IIx II ~ 1}, the operator norm
of T.

Definition. A Banach space Y has the ap( = the approximation
property) if every compact operator with range in Y is the limit, in
the operator norm, of a sequence of finite rank operators, i.e. for
every Banach space X and for every KE K(X,Y), there exist F n E p(X,Y)
(n=1 ,2, ••• ) such that lim IIIFn - Kill = O.

n
The approximation property can easily be expressed in intrinsic

terms of Y. We have (cf. Grothendieck [4] and Schaefer [1], Chap.
III, §9).

5.1. For every Banaah spaae Y the following statements are equi
valent:

(i) Y has the ap.

(ii) given a aompaat subset C of Y, there exists a finite rank
operator FEPlY,Y) suah that IIFy-yll< 1 for all yEC.

The celebrated result of Enflo [3] on the existence of a Banach
space which fails the ap has been improved by Davie [1], [2], Figiel
[4] and Szankowski [2] as follows:



180 A. Pelczynski and Cz. Bessaga

5.2. For every pE [1,00]' p;t.2, there exists a subspaae Ep of the
spaae Zp whiah does not have the approximation property. Moreover,
Eooca o'

Davie's proof is short and elegant. It uses some properties of
random series. Figiel's proof seems to be the most elementary. For
other proofs of Enflo's theorem and related theorems see Figiel and
pelczynski [1] and Kwapien [4]. Kwapien's result seems to be inter
esting also from the point of view of harmonic analysis. He has
shown that

5.3. For eaah p with 2 < P < 00, there exist inareasing sequenaes
(nk) and (mk) of positive integers suah that ~he aZoseq Zinear sub
spaae of LP spanned by the funations fk (t) = e'l-nk 2rrt + e'l-mk 2rrt
(k=1,2, ... ) faiZs the approximation property.

It is interesting to compare 5.2 with the observation by W. B.
Johnson [3] that there is a Banach space which is not isomorphic to
a Hilbert space but such that every subspace of the space has ap.

Starting from one example of a Banach space which does not have
the ap, one can construct further examples by passing to the dual
space and taking products, because the approximation property is
preserved under these operations. We have

5.4. Any aompZemented subspaae of a Banaah spaae having the ap
has the ap.

5.5. Let (Ei) be a sequenae of Banaah spaaes eaah having the ap.
Then the produat (E 1 x E2 X ••• ) Zp has the ap for 1 :;; p < 00.

5.6. (Grothendieck [4]). If X* has the ap, then so does X.
The last result is an easy consequence of the improved Local

Reflexivity Principle 3.11.
It is interesting to note that the converse of 5.6 is false.

Namely, from 1.8 it follows that

5.7. (Lindenstrauss [5]). There exists a Banaah spaae whiah has
the ap (even has a basis) but whose duaZ does not have the ap.

W. B. Johnson [1] gave a simple construction of such a space. Let
(B n ) be a sequence of finite-dimensional Banach spaces such that,
for every E> 0 and for every finite-dimensional Banach space B,
there exists an index no such that d(B,Bno ) < 1 + E. Let us set

BJ = (B 1 x B2 + "')Zl'
Then the space BJ has the following universality property:

5.8. The aonjugate of any separabZe Banaah spaae is isomorphia to
a aompZemented subspaae of the spaae (BJ)*.

The space Ep of 5.2, being separable and reflexive for 1 < P < 00, is
a conjugate of a separable Banach space. Hence, by 5.4 and 5.8,
(BJ)* does not have the ap. On the other hand, it follows from 5.5
and the fact that every finite-dimensional Banach space has the ap
that the space BJ has the approximation property.

The next two results do not directly concern the general theory of
Banach spaces; however, they are closely related to theorem 5.2.

5.9. There exists a aontinuous reaZ funation f defined on the
square [0,1] x [0,1] whiah aannot be uniformZy approximated by funa
tions of the form

n
g(s,t) =.L ajf(s,tj)f(sj,t)

J =1
where al, ... ,a~ are arbitrary reaZ numbers, sl, ... ,sn,t1, ... ,tn ,
beZong to the 'l-ntervaZ [0,1], and n=1,2, ...
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5.10. We have

(a) For every real S with 1< S:> 1 there exists a real matrix

A = (aij)'i,j=l suah that

(+) A2 = 0, i.e . .L aijajk = 0 for i,k=1,2, ... ,
J =1

(++)

L aii;c O.
i=l 2

A = (aij) satisfies (+) and (++) with S = 3' thenIf a matrix(b)

(+++)

co

i~l aii = O.

Grothendieck [4] has proved that 5.9 and 5.10 (a) for S= 1 are
equivalent to the existence of a Banach space not having the ap.
(The implication .. 5.9 .. 5.2 for p = co" was already known to Mazur
around the year"1936.) 5.10 (a) for 2/3< S< 1 was observed by Davie
[3]. 5.10 (b) is due to Grothendieck [4].

Finally note that there are uniform algebras (Milne [1]) and
Banach lattices (Szankowski [3]) which fail to have ap.

§6. The bounded approximation property.

In general, a proof that a particular Banach space has the approx
imation property shows that the space in question already has a
stronger property. Several properties of that type are discussed by
Lindenstrauss [1], Johnson, Rosenthal and Zippin [1], Grothendieck
[4] and Pelczy~ski and Rosenthal [1]. Here we shall only discuss
the bounded approximation property, and in the next section the
existence of a Schauder basis.

said to have the bap (= the
there exists a constant a;;: 1 such
compact set C c Y, there exists an

the bap, then it has the ap.

shown that the converse of 6.2 is not

From 5.1 we

6.2. If a

Definition. A Banach space Y is
bounded approximation property) if
that, for every E> 0 and for every
FEF(X,X) such that

(*) II Fx - x II < E for x E C and III F III ::; a.

More precisely, we then say that Y has the bap with a constant a.
It is not difficult to show that

6.1. A separable Banaah spaae Y has the bap if and only if there
exists a sequenae (Fn ) of finite rank operators suah that

lim IIFny - yll = 0 for all y E Y.
n

immediately get

Banaah spaae has

Figiel and Johnson [1] have
true.

6.3. There exists a Banaah spaae FJ which has the ap but fails
the bap.

The idea of the proof of 6.3 is the following. Let X be a Banach
space with the bap and such that X* does not have the ap. For
instance let X = BJ of 5.8. Next we make use of the following lemma:

6.4. Let Y be a Banaah spaae and let a;;: 1. If every Banaah spaae
isomorphia to Y has the bap with the aonstant a, then Y* has the bap.

It follows from 6.4 that, for every positive integer n, there
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exists a Banach space Xn isomorphic to X and such that Xn does not
have the bap with any constant a less than n. We put

FJ = (Xl X X 2 X "')Z2'

Clearly, every isomorphic image of a space having the ap has the
ap. Thus each Xn has the ap. Hence, by 5~5, the space FJ has the
ap. On the other hand, FJ fails the bap. This follows from the
fact that if a Banach space Y has the bap with a constant a and if Z
is a subspace of Y which is the range of a projection of norm ~ 1,
then Z has the bap with a constant ~ a.

The space FJ also has the following interesting property:

6.5. There is no sequenae (Kn ) of aompaat Zinear operators suah
that lim IIKnx- xII = 0 for aZZ xE: FJ.

n
Indeed, the existence of such a sequence combined with the fact

that FJ has the ap would imply the existence of a sequence (Fn ) of
finite rank operators such thatlllFn-Knlli ~2-n for n=1,2, •.. Hence
we would have lim IIFnx - x II = 0 for all x E: X, which, by 6.1, would

n
contradict the fact that the space FJ does not have the bap.

The result 6.5 answers in the negative a question raised in [B],
Rem. VI, § 1, p. 146 .

Freda Alexander [1] has observed that, for p> 2, there exists a
subspace Xp of the space Lp such that F(Xp,Xp) is not dense (in the
norm topology) in K(Xp,Xp ).

Example 6.3 of Figiel and Johnson contrasts with the following
deep result (Grothendieck [4], cf. Lindenstrauss-Tzafriri [1] for a
simple proof).

6.6. If a Banaah spaae X is either refZexive or separabZe and
aonjugate to a Banaah spaae and if X has the ap, then X has the bap.

Next observe that the improved Local Reflexivity Principle 3.11
yields an analogue of 5.6.

6.7. (Grothendieck [4]). If X is a Banaah spaae suah that X* has
the bap with a aonstant a, then X has the bap with a aonstant ~ a.

We conclude this section with a result which gives a characteriza
tion of the bounded approximation property in an entirely different
language.

Let S be a closed subset of a compact metric space T and let E and
X be closed linear subspaces of the spaces CIS) and CIT), respec
tively. The pair (E.X) is said to have the bounded extension prop
erty, if, given £ > 0, every function f E: E has a bounded family of
extensions

~(f,£) = {f£,w: W ~ S, W is open in T} c X

such tha t If £ , W(t) I ~ £ whenever t E: T\ W.

6.8. For every separabZe Banaah spaae Y the foZZowing aonditions
are equivaZent:

(i) Y has the bap,

(ii) for every aZosed subset of a aompaat metria spaae T, for
every isometriaaZZy isomorphia embedding i: Y+ CIS) and for every
aZosed Zinear subspaae X of the spaae CIT) suah that the pair
(i(Y),X) has the bounded extension property, there exists a bounded
Zinear operator L: i(Y)+X suah that (L!l(s)= f(s) for sE:S and
fE:i(Y).

The proof of the implication (i) ~ (ii) is due to Ryll-Nardzewski,
cf. Pelczynski and Wojtaszczyk [1] and Michael and Pelczynski [1].
The implication (ii) ~ (i) has been established by Davie [2].
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§7. Bases and their relation to the approximation property.

The bounded approximation property is cl!Qsely connected with the
property of the existence of a basis in the space. Recall that a
sequence (en) of elements of a Banach space X constitutes a basis
for X if, for every x EX, there exists a unique sequence of scalars
(fn(x)) such that

x = I fn(x)e n•
n=l

The map x -> fn (x) is a continuous linear functional on X called the
n-th aoeffiaient funationaZ of the basis (en) ([B], Chap. VII, §3).
Let us set

n
Sn(x) = I fm(x)e m for x E X; n=1,2, •••

m=l
Clearly (Sn) is a sequence of finite rank projections with the prop
erty: lim IIS n (x)-xll=O for xEX. Thus, by 6.1, we get

n
7.1. If a Banaah spaae X has a basis, then X is separabZe and has

the bounded approximation property.

Hence every example of a separable Banach space which fails the
bap provides an example of a separable Banach space which does not
have any basis. No example of a Banach space which has the bap and
does not have any basis is known.

On the other hand, we have also a "positive" result relating the
bap and the existence of a basis.

7.2. A separabZe Banaah spaae has the bap if and onZy if it is
isomorphia to a aompZemented subspaae of a Banaah spaae with a basis.

This has been established by Johnson, Rosenthal and Zippin [1]
and Pelczynski [6].

Let us mention some theorems related to 7.2.

7.3. (Lindenstrauss [5], Johnson [1]). Let X be a separabZe aon
jugate (resp. separabZe refZexive) Banaah spaae. Then X has the bap
if and onZy if X is isomorphia to a aompZemented subspaae of a sep
arabZe aonjugate {resp. refZexive) spaae with a basis.

Note that, by 6.6, one can replace in 7.3 the "bap" by the "ap".

7.4. There exists a Banaah spaae UB, unique up to an isomorphism,
with a basis (en) with the aoeffiaient funationaZs (fn) suah that:

(a) every separabZe Banaah spaae with the bap is isomorphia to a
aompZemented subspaae of UB;

(b) for every basis (Yk) of a Banaah spaae Y, there exist an ina
reasing sequenae (mk) of indiaes, an isomorphia embedding T: Y-> UB
and a proje';,tion P: UB->T(Y) suah that Tyk = IIYkllenk for k=1,2, •..

and PIx) = k~lfnk(x)enk for xE UB.

Part (b) has been proved by Pelczynski [8]. (a) follows from (b)
via 7.2. Schechtman [2] gave a simple proof of 7.3 (b). Johnson
and Szankowski [1], completing 7.3 (a), have shown that if E is a
Banach space such that every separable Banach space with ap is iso
morphic to a complemented subspace of E, then E is not separable.

A still open question is "the finite-dimensional basis problem".
For a basis (en) with the coefficient functionals (fn), we put

K(en) = sup sup II I fn(xlenll·
m II~II ~1 n=l

Next, if X is a Banach space with a basis, we let K(X) = inf K(en)
where the infimum is taken over all bases for X. Finally, we define
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finite-dimensional differentiable manifold with
Denote by Ck(~) the Banach space of all real

have all continuous partial derivatives of

K(n) = sup {K(X): dim X = n}.

The finite-dimensional basis problem is the following: is it true
that lim K (n) = 00.

It i~ easy to show that K(2) = 1 and it is known that K(n) > 1 for

n> 2 (Bohnenblust [2]). It follows from John I s theorem 1.1 that

K(n) ;;; ni . Enflo [4] has proved that there exists a Banach space X
isomorphic to the Hilbert space l2 and such that K(X) > 1. Using 7.2
it is easy to show that Johnson's space BJ of 5.8 has a.basis. Thus,
by 6.4, we infer that, for each n, there exists a Banach space Xn
(isomorphic to BJ) with a basis and such that K(Xn ) ;;: n.

In the same way as for the ap and bap we have

7.5 (Johnson, Rosenthal and Zippin [1]). If X* has a basis, then
so does X. Conversely, if X has a basis, X* is separable and has
the ap, then X* has a basis.

On the other hand, it follows from Lindenstrauss [5] that there
exists a Banach space Z with a basis such that z* is separable and
fails the ap, and hence Z* does not have any basis.

For the most common Banach spaces bases have been constructed. We
mention here two results of this nature.

7.6 (Johnson, Rosenthal and Zippin [1)). If X is a separable
Banaah spaae suah that either X or X* is isomorphia to a aomplement
ed subspaae of a spaae E whiah is either C or LP (1;;; p < 00), then X
has a basis.

Let ~ be a compact
or without boundary.
functions on ~ which
order;;; k.

k7.7. The spaae C (~) has a basis.

In particular, for ~ = [0,1] x [0,1] and k = 1, we obtain a positive
answer to the question ([B], Rem. VII, §3, p. 147) whether the space
C1 ([0,1] x [0,1]) has a basis.

The proof of 7.7 is reduced to the case of concrete manifolds by
the following result of Mityagin [3]:

7.8. For a fixed pair (k,n) of natural numbers, if ~l and ~2 are
n-dimensional differentiable manifolds with or without boundary, then
the spaaes Ck(~l) and Ck(~2) are isomorphia.

Now 7.7 follows from Ciesielski [1], Ciesielski and Domsta [1],
and independently from Schonefeld [1], [2], where explicit construc
tions of bases in Ck(~) are given, for ~ being either the n-cube
[0,1]n or the n-torus Tn (n,k=1,2, ... ). .

Bockariev [1] answering a question of [B], Rem. VII, §3, p. 147,
has shown that the Disc Algebra = the space of [B], Example 10, p. 7
has a basis.

The theorem of Banach stating that

7.9. Every infinite-dimensional Banaah spaee aontains an infinite
dimensional subspaae with a basis;

and announced in [B], Rem. VII, §3, p. 147, has been improved and
modified in several papers (cf. Bessaga and Pelczyrlski [3], [4], Day
[5], Gelbaum [1], Davis and Johnson [2], Johnson and Rosenthal [1],
Kadec and Pelczyriski [2], Milman [1], Pelczyriski [7]). In particu
lar, it has been shown that

7.10. (Pelczyriski [7]). Every non-reflexive Banaah spaae aontains
a non-reflexive subspaae with a basis.
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7.11 (Johnson and Rosenthal [1]). Every infinite Banach space
which is the conjugate of a separab~e Banach space contains an
infinite-dimensiona~ subspace which has a basis and which is a con
jugate space.

7.12 (Johnson and Rosenthal [1]). Every separab~e infinite
dimensiona~ Banach space admits an infinite-dimensiona~quotient
with a basis.

The separability assumption in 7.12 is related to the open question
whether every Banach space has a separable infinite-dimensional
quotient.

There is a huge literature concerning the classification of bases
and their generalizations, and also concerning the properties of
special bases. The reader may consult the books by Day [1], Linden
strauss and Tzafriri [1], Singer [1] and the surveys by Milman [1]
and McArthur [1], where bases in Banach spaces are discussed, the
book by Rolewicz [2] and the surveys by Dieudonne [2] ,[3], Mityagin
[1] ,[2] and McArthur [1], where bases in general linear topological
spaces are treated.

Concluding this section, we add that the question raised in [B],
Rem. VII, §1, p. 147 has been answered by Ovsepian and Pelczynski
[1]. We have (cf. Pelczydski [9])

7.13. Every separab~e Banach space X admits a biorthogona~ system
(xn.fn) such that IIxnll=1 for n=1,2, ... , lim IIfnll=1, and (a) if

n
fEX'" and f(xn} =0 for aU n, then f=O, and (b) if xEX and
fn (x) = 0 for a~~ n, then x = O. Moreover, given c> 1 the biorthogona~

sequence can be chosen so that sup IIfnll < c.
n

It is unknown whether the "Moreover" part of 7. 13 is true for c = 1 •

§8. Unconditional bases.

A basis (en) for a Banach space X is unconditiona~ if

L If (x}x*(e ) I < 00 for all x E X; x* E X*,
n=l n n

where (fn) is the sequence of coefficient functionals of the basis
(en) .

The existence of an unconditional basis in the space is a very
strong property. It determines on the space the Boolean algebra of
projections (po), where, for any subset 0 of positive integers, the
projection Po E B(X,X} is defined by

po(x} = L fn(x}e n ,
nEo

and, in the real case, it determines also the lattice structure on X
induced by the partial ordering: x<y iff fn(x} ~fn(Y} for n=1,2, ...

Several results on unconditional bases can be generalised to an
arbitrary Boolean algebra of projections, and Banach lattices. The
reader is referred to Dunford and Schwartz [1] and Part III, Linden
strauss and Tzafriri.

To illustrate the consequences of the existence of an unconditional
basis in a Banach space, we state an already classical result due to
R. C. James [1].

8.1. A Banach space with an unconditiona~ basis is ref~exive if
and on~y if none of its subspaces is isomorphic either to Co or to
P.

From 8.1, 1.5 and 1.6 it immediately follows that the spaces J and
DJ defined in §1 have no unconditional bases. In fact, these spaces
cannot be isomorphically embedded into any Banach space with an un-
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conditional basis. Therefore the universal space C ([B], Chap. XI,
§8) has no unconditional basis.

The existence of unconditional bases in sequence spaces like Zp
(1 :> P < 00), a 0 and in separable Orlicz sequence spaces ( = the space
(0) in the notation of [B], Rem. Introduction, §7, p. 138) is
trivial. The next result of Paley [2] and Marcinkiewicz [1] is much
more difficult.

8.2. The Haar system is an unaonditionaZ basis in the spaaes LP
for 1 < P < 00.

For a relatively simple proof of this theorem see Burkholder [1].
The Paley-Marcinkiewicz theorem can be generalised to symmetric

function spaces. A symmetria funation spaae is a Banach space E con
sisting of equivalence classes of Lebesgue measurable functions on
[0,1] such that

(a) L
oo

e E eLl,

(b) if f
l

EE,f2 is a measurable function on [0,1] such that if
If2 1 is equidistributed with Ifll, then f2 EE, and IIf2I1E= IIflilE'

The following result is due to Olevski! [1], cf. Lindenstrauss and
Pelczynski [2] for a proof.

8.3. A symmetria funation spaae E has an unaonditionaZ basis if
and onZy if the Haar system is an unaonditionaZ basis for E.

Combining 8.2 with the interpolation theorem of Semenov [1], we
get

8.4. Let E be a symmetria funation spaae and Zet gE(t) = ~X[O.tl ~E

where X denotes the aharaateristia funation of the intervaZ
[0. t 1

[0 t]. If 1 < lim inf gE(2t)/gE(t):> lim sup gE(2t)/gE(t) < 2, then
, t+o t+o

the Haar system is an unaonditionaZ basis for E.

A corollary to this theorem is the following result, established
earlier in a different way by Gaposhkin [1]:

8.5. An OrZiaz funation spaae ( = the spaae (0) in the notation
of [B], p. 138) has an unaonditionaZ basis if and onZy if it is
refZexive.

An important class of unconditional bases is that of symmetric
bases. A basis (en) for X with the sequence of coefficient func
tionals (fn) is called symmetria if for every x E X and for every

permutation p(.) of the indices, the series Efn(x)e converges.
n=l p(n)

The next result is due to Lindenstrauss [9].

8.6. Let (Yk) be an unaonditionaZ basis in a Banaah spaae Y. Then
there exist a symmetria basis (x n ) in a Banaah spaae X and an iso
morphia embedding T: Y + X whose vaZues on the veators Yk are

TlI
k

= ak' L xnfork=1,2, ... ,
nk<n:;;nk+l

for some saaZars ak and indiaes 1 :> n l < n 2 < •••
For every symmetric basis (en) with the coefficient functionals f n

(n=1,2, ••• ) and for every increasing sequence of indices (nk), the
operator P: X + X def ined by

00 -1 nk+l
PIx) = L (n k 1 - nk)l) . L L f (.}(x)e.,

k= 1 + pEl1k j=nk+1 p J J

where l1k denotes the set of all permutations of the indices
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the subspace of X

Hence, by 8.6, we have

nk+1, ... ,nk+l' is a bounded projection onto
nk+l

spanned by the blocks L e. (k=1,2, ••. ).
j=nk+1 J

8.7 (Lindenstrauss [9]). Every Banaah spaae with an unaonditionaZ
basis is isomorphia to a aompZemented subspaae of a Banaah spaae
with a symmetria basis.

It is not known whether the converse of 8.7 is true or, equiva
lently, whether every complemented subspace of a Banach space with
an unconditional basis has an unconditional basis. The question is
open even for complemented subspaces of LP (1 < P < 00; p;o 2).

The next result is similar to 7.4.

8.8. There exists, a unique up to an isomorphism, Banaah spaae US,
with a symmetria basis suah that every Banaah spaae with an unaon
ditionaZ basis is isomorphia to a aompZemented subspaae of us. More
over, the spaae us has an unaonditionaZ but not symmetria basis (en)
with the foZZowing property:

(*) for every'unaonditionaZ basis (Yk) in any Banaah spaae Y,
there exist an t-somorphia embedding T: Y -+ US and an inareasing
sequenae of indiaes (nk) suah that Tyk = IIYkllenk for k=1,2, ...

The existence of an unconditional basis with property (*) has been
established by Pelczynski [8], see also Zippin [2] for an alterna
tive simpler proof. Combining (*) with 8.7 one gets the first state
ment of 8.8.

In contrast to 7.5, we have

8.9. There exists a Banaah spaae X whiah does not have any unaon
ditionaZ basis, but its aonjugate X* does.

An example of such a space is C(WW), the space of all scalar
valued continuous functions on the compact Hausdorff space of all
ordinals ~ wW, whose conjugate is Zl (cf. Bessaga and Pelczynski [2],
p. 62 and Lindenstrauss and Pelczynski [1], p. 297). The existence
of a Banach lattice without ap (Szankowski [g]) yields that (US)*
fails to have ap. (However, if X* is separable and X has an uncon
ditional basis, then X* also has an unconditional basis!)

We do not know whether every infinite-dimensional Banach space con
tains an infinite-dimensional subspace with an unconditional basis
(compare with 7.9).

We shall end this section with the discussion of the "unconditional
finite-dimensional basis problem", which has been solved by Y. Gordon
and D. Lewis. For an unconditional basis (en) with the coefficient
functionals (fn ), we let

Ku(e n ) = sup {Llfn(x)x*(en)l: II xII ~ 1, IIx*1I ~ n.
n

Next, if X is a Banach space with an unconditional basis, we set
Ku(X) = inf Ku(e n ), where the infimum is taken over all unconditional
bases for X. Finally, we define

K(n) = sup {K (X): dim X = n}.
u u

Let Bn = B (Z~' Zh), the n 2 dimensional Banach space of all linear
operators from the n-dimensional Euclidean space into itself.

Gordon and Lewis [1] have proved that

8.10. There exists a C> 0 suah that Cln ~ Ku (B n ) ~ In, for n=1, 2, ...

In fact, they have obtained a slightly stronger result:

8.11. If Y is a Banaah spaae with an unaonditionaZ basis and Y
aontains a subspaae isometriaaZZy isomorphia to Bn , then for every
projeation P of Y onto this subspaae, we have
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IIPII·Ku (Y) ~ Cln,

where C> a is a universal aonstant independent of n.

The exact rate of growth of the sequence (KJn») has
found by Figie~ Kwapien and Pelczynski [1] who proved
It follows from John's Theorem 2.2 that K(n) ~/n.

u

recently be
that K(n) ~

u
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CHAPTER IV

§9. Characterizations of Hilbert spaces in the class of Banach
spaces.

The problems concerning isometric and isomorphic characterizations
of Hilbert spaces in the class of Banach spaces, posed in [B], p.
151-2, have stimulated the research activity of numerous mathemati
cians. Isomorphic characterizations of Hilbert spaces have proved
to be much more· difficult than the isometric characterizations.

We say that a property (P) isometrically (isomorphically) charac
terizes Hilbert spaces in the class of Banach spaces if the follow
ing statement is true: "A Banach space X has property (P) iff X is
isometrically isomorphic (is isomorphic) to a Hilbert space". By a
Hilbert space we mean any Banach space H (separable, non-separable,
or finite-dimensional) whose norm is given by IIxll = (x,x)!, where
(. , .): H x H'" K is an inner product and K is the field of scalars
(real or complex numbers).

We shall first discuss isometric characterizations of Hilbert
spaces. Results in this field are extensively presented in Day's
book [1], Chap. VII, §3. Therefore here we shall restrict ourselves
to discussing the most important facts and giving supplementary
information.

The basic isometric characterization of Hilbert spaces is due to
Jordan and von Neumann [1].

9.1. A Banach space X is isometrically isomorphic to a Hilbert
space iff it satisfies the parallelogram identity:

IIx + yll2 + IIx - yP = 2(lIx1l 2 + lIyll2) for all x,y € X.

As an immediate corollary of 9.1 we get

9.2. A Banach space X is isometrically isomorphic to a Hilbert
space if and only if every two-dimensional subspace of X is isomet
ric to a Hilbert space.

An analogous characterization but with 2-dimensional subspaces
replaced by 3-dimensional ones was earlier discovered by Frechet [1].
In the thirties Aronszajn [1] found other isometric characteriza
tions of a Hilbert space, which, as 9.2, are of a two-dimensional
character, i.e. are stated in terms of properties of a pair of
vectors in the space.

A characterization of an essentially 3-dimensional character was
given by Kakutani [1] (see also Phillips [1]) in the case of real
spaces, and by Bohnenblust [1] in the complex case. It states that

9.3. For a Banach space X with dim X <: 3 the following statements
are equivalent:

(i) X is isometrically isomorphic to a Hilbert space,

(ii) every 2-dimensional subspace of X is the range of a projec
tion of norm 1.
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(iii) every subspace of X is the range of a projection of norm 1.

Here and in the sequel, by "dim" we mean the algebraic dimension
with respect to the corresponding field of scalars.

Assume that H is a Hilbert space with 2 < dim H:> 00 and 2:> k < dim H.
Obviously all k-dimensional subspaces of H are isometrically iso
morphic to each other. The question ([B], Rem. XII, p. 152, prop
erties (4) and (5» whether the property above characterizes Hilbert
spaces has been solved only partially, i.e. under certain dimensional
restrictions. Let us say that a real (resp. complex) Banach space X
has the property Hk , for k=2, 3, .•. , if dim X ~ k and all subspaces of
X of real (resp. complex) dimension k are isometrically isomorphic
to each other.

9.4. The following two tables give the dimensional restrictions
on Banaah spaaes X under which the property Hk implies that X is
isometriaally isomorphia to a Hilbert space.

The real case

k even k+1 :; dim X :; 00

k odd k+2 :; dim X :; 00

The complex case

k even k+1 :; dim X :; 00

k odd 2k :; dim X :; ""

The real case of k= 2, dim X< "", was solved by Auerbach, Mazur and
Ulam [1]. The case of dim X = "" is a straightforward consequence of
Dvoretzky's [2] theorem on almost spherical sections (see 3.5).
This was observed in Dvoretzky [1]. The remaining statements are
due to Gromov [1]. The simplest unsolved case is k = 3, dim X = 4.

We shall mention two more isometric characterizations of Hilbert
space.

9.5 (Foias [1], von Neumann [1]). A complex Banach space X is
isometriaally isomorphic to a Hilbert spaae if and only if, for
every linear operator T: X .... X and for every polynomial P with com
plex coefficients, the inequality IIP(T) II :; IITII. supl P(z) I holds.

Izl=l
9.6 (Auerbach [1], von Neumann [2]). A finite-dimensional Banaah

space X is isometrically isomorphic to a Hilbert space if and only
if the group of linear isometries of X acts transitively on the unit
sphere of X, i. e. for every pair of points x, y € X such that
IIxll = lIyll = 1, there is a linear isometry T: X .... X such that T(a:) = y.

onto
Remark. Let 1 :> P < 00 and let I.L be an arbitrary non-sigma-finite

non-atomic measure. Then the group of linear isometries of the
space LP(I.L) acts transitively on the unit sphere of the space.
Therefore the assumption of 9.6 that X is finite-dimensional is
essential. The question whether there exists a separable Banach
space other than a Hilbert space whose group of linear isometries
acts transitively on the unit sphere remains open (cf. [B], Rem. XI,
§5, p. 151).

Now we shall discuss various isomorphic characterizations of a
Hilbert space. The simplest among them reflects the fact that all
subspaces of a fixed dimension of a Hilbert space are isometric, and
hence are "equi-isomorphic". More precisely, we have

9.7. For every Banach space X the following statements are equiv
alent:

(1)

(2)

X is isomorphic to a Hilbert space,

sup sup dIE, n) < 00

n E€rtln(X)
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(3) sup sup d(E,Z2) < 00,

n EE'lfI(X) n
where~(X) (resp.~n(X» denotes the famiZy of aZZ n-dimensionaZ
subspaaes (resp. quotient spaaes) of the spaae X.

From the theorem of Dvoretzky, it follows that conditions (2) and
(3) can be replaced, respectively, by

(2') sup sup d(E,F) < 00,

n E,FE~n (Xl
(3') sup sup d(E,F) < 00.

n E,FE~n(Xl
Theorem 9.7 is implicitly contained in Grothendieck [5]. The

equivalence between (1) and (2) was explicitly stated by Joichi [1],
cf. here 3.1. In connection with 9.7 note that the following
question is still unanswered: "If X is a Banach space and all
infinite-dimensional subspaces of X are isomorphic to each other, is
X then isomorphic to a Hilbert space?" ([B], Rem. XII, p. 153).

The following elegant result of Lindenstrauss and Tzafriri [3]
(cf. also Kadec and Mityagin [1]) is an isomorphic analogue of
theorem 9. 3. .

9.8. A Banaah spaae X is isomorphia to a HiZbert spaae if and
onZy if:

(*) eaah subspaae of X is aompZemented.

This theorem shows that property (7) discussed in [B] on p. 152-3
is a feature of Banach spaces isomorphic to a Hilbert space only.

The proof of 9.8 starts with an observation of Davis, Dean and
Singer [1] that condition (*) implies

00 > sup Pn (Xl = sup inf {IIPII: P is a projection of X onto E}.
n E[Un(Xl

Next, by an ingenious use of Dvoretzky's Theorem 3.4, it is shown
that sup Pn (X) < 00 implies condition (2) of 9.7.

n
HistoriaaZ remark. Theorem 9.8 states that every Banach space

which is not isomorphic to any Hilbert space has a non-complemented
subspace. The construction of such subspaces in concrete Banach
spaces was relatively difficult. Banach and Mazur [1] showed that
every isometrical isomorph of Zl in the space C is not complemented.
Murray[1] constructed non-com~mented subspaces in the spaces LP.
For a large class of Banach spaces with a symmetric basis an
elegant construction of non-complemented subspaces was given by
Sobczyk [2].

Combining 9.8 with earlier results of Grothendieck [4], we obtain

9.9. The onZy, up to an isomorphism, ZoaaZZy aonvex aompZete
Zinear metria spaaes with property (*) are the HiZbert spaaes, the
spaae s of aZZ saaZar sequenaes, and the produat sX H, where H is an
infinite-dimensionaZ HiZbert spaae.

In the same way as 9.8 one can prove (cf. Lindenstrauss and
Tzafriri [3])

9.10. A Banaah spaae X is isomorphia to a HiZbert spaae if and
onZy if, for every subspaae Y of X and for every aompaat Zinear
operator T: Y ... Y, there exists a Zinear operator T: X ... Y whiah
extends T.

An interesting characterization of a Hilbert space is due to
Grothendieck [5] (cf. also Lindenstrauss and Pelczyfiski [1]).

9.11. A Banaah spaae X is isomorphia to a HiZbert spaae if and
onZy if
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(**) there is a constant K such that. for every scalar matrix

(aij)~.j=1 (n=1.2 •... ) and every xl •...• XnEX of norm 1. xt •...• x~EX*

of norm 1. there are scalars Sl' • ••• sn.tl •...• tn each of absolute
value ~ 1 such that .

\ ) .aijx1(Xj) I :> KI) .aijsit j I·
~.J ~.J

In contrast to the previous characterizations, it is not easy to
show that Hilbert spaces have property (**). Interesting proofs of
this fact were recently given by Maurey [1], Maurey and Pisier [1],
Krivine [3].

Closely related to 9.12 is the following characterization (cf.
Grothendieck [5], Lindenstrauss and Pelczynski [1]).

9.12. A separable Banach space X is isomorphic to a Hilbert space
iff X and X* are isomorphic to subspaces of the space L l iff X and
X* are isomorphic to quotient spaces of C.

In the above theorem the assumption of separability of X can be
dropped if one replaces the spaces L l and C by "sufficiently big"
.1:1 and.1:", spaces. (For the definition see section 1o. )

Let us notice that every separable Hilbert space is isometrically
isomorphic to a subspace of L l (cf. e.g. Lindenstrauss and
pelczynski [1]). We do not know whether 9.12 admits an isometrical
version, i.e. whether every infinite dimensional Banach space X such
that X and X* are isometrically isomorphic to subspaces of L l is
isometrically isomorphic to a Hilbert space. For partial results
see Bolker [1]. For dim X < '" the answer is negative (R. Schneider
[1]) .

From the parallelogram· identity one obtains by induction, for
n=2,3, ••• and for arbitrary elements of a Hilbert space,

n
2- n \, 2 _ \' 2

LII EIX l + E 2 X 2 + ••• + Enxnll -.L IIxjll ,
E J=1

wh~re L denotes the sum extended over all sequences (El, ••• ,En ) of
E

±1's. The following isomorphic characterization of Hilbert spaces,
due to Kwapien [1], is related to the above identity.

9.13. A Banach space X is isomorphic to a Hilbert space if and
only if there exists a constant A such that

r 1 J II x j II 2 ~ LII J E jX j 11
2

:> A J II x j II 2
J=1 E J=1 J=1

for arbitrary Xl •• ••• XnE X and for n=2.3 •...
From 9.13 Kwapien [1] has derived another isomorphic characteriza

tion of Hilbert spaces. In order to state it, we shall need some
additional notation. Let L~(R.X) denote the normed linear space
consisting of simple functions with values in the Banach s~ace X and
with supports of finite Lebesgue measure in R. We define If I =

<f~:lIf·(t)1I2dt)' for fEL~(R.X). By L2 (R.X) we denote the completion

of L~(R.X) in the norm "I. The Fourier transformation
F: L~ (R.X) ... L' (R.X) is defined by the classical formula

-,+'" -ist
F(n (t) = (27T) f e f(s)ds.

Under this notation we have

9.14. For every complex Banach space X the following statements
are equivalent
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(i) X is isomorphia to a Hilbert spaae.

(ii) There is a aonstant A> 0 suah that

.I IIxjllz:;; Ayfll. I ejitXjllZdt
J=-n 0 J=-n

for arbitrary x-n, ...• xo> ... ,xn€X and for ~=1,2, ...

(iii) There exists a aonstant A > 0 suah that

Yfll. I eijtXjllZdt::; A.I IIxj llz
o J=-n J=-n

for arbitrary x-n, ... ,xo, ... ,xn€X and for n=1,2 ....

(iv) The Fourier transformation F: L~ (R,X) ~ L2 (R,X) is a bounded
linear operator.

Using 9.13 Figiel and Pisier [1] have proved that

9.15. A Banaah spaae X is isomorphia to a Hilbert spaae if and
only if there exist a aonstant A> 0 and Banaah spaaes Xl and X z iso
morphia to X suah that Xl is uniformly aonvex, Xz is uniformly
smooth and the moduli of aonvexity and smoothness satisfy the inequ
alities Ox (t) <: At 2

, Px (t):;; At 2 for small t> O.
1 2

Meskov [1] improving a result of Sundaresan [1] has shown that

9.16. A real Banaah spaae X is isomorphia to a Hilbert spaae if
and only if X and X* have equivalent norms whiah are twiae different
iable everywhere exaept the origins of X and X*.

An operator T: X ~ Y is nualear if there are x~ € X*, y. € Y
00 * 00 J J

(j=1 ,2, ••. ) with .L 1 11x .III1YJ·1I < 00 and Tx = .L1x~ (x)y. for x € X. P.
J= J J= J J

0rno observed (cf. Johnson, Konig, Maurey and Retherford [1]).

9. 17. A Banaah spaae X is isomorphia to a Hilbert spaae iff every
nualear T: X ~ X has summable eigenvalues.

Enflo [1.] gave a non-linear characterization of Hilbert spaces.

9.18. A Banaah spaae X is isomorphia to a Hilbert spaae if and
only if X is uniformly homeomorphia to a Hilbert spaae H. i.e. there
is a homeomorphism h: X ~ H suah that hand h- 1 are uniformly aon

onto
tinuous funations in the metrias induaed by the norms of X and H.
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CHAPTER V

Classical Banach spaces

The spaces LP(~) and C(K) are distinguished among Banach spaces by
their regular properties. However, most of those properties, of
both isomorphic and isometric character, extend to some wider class
es of spaces, which can easily be defined in terms of finite
dimensional structure, i.e. by requiring certain properties of
finite-dimensional subspaces of a given space.

Definition, (Lindenstrauss and Pelczytiski [1]). Let 1 ~ P ~ 00 and
let A > 1. A Banach space X is an~ A spaae if, for every finite
dimensional subspace E eX, there is a finite-dimensional subspace
Fe X such that F::> E and d (F, z,~) < A, where k = dim F. The space X is
an~p spaae provided that it is an:.£p, A space for some AE (1,00).

The class..Ep = Up' is the required class of spaces which haveA>l ,/\
most of the isomorphic properties of the spaces LP(~) and C(K) (for
p = 00). From the point of view of the isometric theory the natural
class is the subclass Of~p consisting of all those spaces X which
are~p,A for every A> 1, Le. the class A~fp,A.

§10. The isometric theory of classical Banach spaces.

First, we shall discuss the case 1 ~ P < 00, which is simpler than
that of p = 00. We have

10.1. Let 1:> p < 00. A Banaah spaae X is isometriaaZ, z,y isomorphia
to an LP (~) spaae if and on z,y if X is an ~p, A spaae for every A > 1.

Recall that a projection P: X -+- X is said to be aontraative if
IIpll ~ 1.

10.2. If P is a aontraative projeation in a spaae LP(~), then
y= PCLP(~)) is an~p,A spaae for every A> 1.

The proofs of 10.1 and 10.2 are due to the combined effort of many
mathematicians (for the history see Lacey [1]). They are based in
an essential way on the following theorem on the representation of
Banach lattices, which (in a less general form) has been discovered
by Kakutani and Bohnenblust.

Recall, that if x is a vector in a Banach lattice, then Ixl is
defined to be max (x, 0) + max (-x, 0).

10.3. Let 1 ~ P :> 00. A Banaah Z,attiae X is Z,attiae-isometriaaZ, z,y,
isomorphia to a Banaah Z,attiae LP lid if and on z,y if (lIxll P + lIy liP) 1/p =
IIx + yll whenever min (Ix I, Iy I) = 0, for x,y EX. (If P =00, then by
(lIxIlP+ lIyIlP)1/p we mean max (lIxll,lIyll)).

We also have (Ando [1])

10.4. If X is a Banaah Z,attiae with dim X<: 3, then X is Z,attiae
isometriaaZ,Z,y isomorphia to a Z,attiae LP(~) if and onz,y if every
proper subZ,attiae of X is the image of a positive aontraative pro
jeation.

In partiauZ,ar, if 1 ~ P < 00, then every separabZ,e subspaae of LP (~)
is aontained in a subspaae of the spaae whiah is isomorphia to a
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The equality means here
forfELP*(IJ,).

theorem of Riesz [1]

space LP(v) and which is the image of a contractive projection.

For 1 < P < co the spaces LP (IJ,) are reflexive (and even uniformly
convex and uniformly smooth). We have

10.5. (LP(IJ,))*=LP*(IJ,), with p*=p/(p-1).
the canonical isomorphism given by f'" J. fdj,l

This is a generalization of the classical
(ci. [B], p. 37).

Theorem 10.5 remains valid for P = 1 (p * = co) in the case of sigma
finite measures. For arbitrary measures we have only the following
fact (see e.g. Pelczynski [2]):

10.6. For every measure j,I there exists a measure v (which in
general is defined on another sigma-field of sets) such that the
spaces L1 (j,I) and L1 (v) are isomorphic and such that the map f ... J. fdv
is an isometrical isomorphism of LCO(v) onto (L 1 (v))*.

The following theorem is due to Grothendieck [2]:

10.7. If X* is isometrically isomorphic to a space C(K), then X
is isometrically isomorphic to a space L1 (v).

The isometric classification of spaces LP(v) reduces to the
Boolean classification of measure algebras (S,L,IJ,). The latter is
relatively simple in the case of sigma-finite measures. We have

10.8. If j,I is a sigma-finite measure, then the space LP(j,I) is
isometrically isomorphic to a finite or infinite product

(zP(A) x LPp,nl) x LPp,n 2 ) x •.. )
P

where A is the set of atoms of the measure j,I and n 1 ,n 2 , ••• is a
sequence of distinct cardinals and An denotes the measure which is
the product of n copies of the measure A defined on the field of all
subsets of the two-point set {O,H such that A({O})=A({1})=!.

Theorem 10.8 is a consequence of a profound result of Maharam [1]
stating that every homogeneous measure algebra is isomorphic to a
measure algebra of the measure An for some cardinal n.

From 10.8 and the remark after 10.4 it easily follows that every
separable space LP(IJ,) is isometrically isomorphic to the image of a
contractive projection in the space LP (for 1 :> P < co) •

Now we shall discuss the case P =co.

Definition. A Banach space X is called a Lindenstrauss space if
its dual X* is isometrically isomorphic to a space L 1 (1J,).

The classical theorem of Riesz on the representation of linear
functionals on C(K) (for the proof see, for instance, Dunford and
Schwartz [1] and Semadeni [2]) combined with theorem 10.3 shows that
all the spacesC(K) are Lindenstrauss spaces. It is particularly
interesting to note that the class of Lindenstrauss spaces is essen
tially wider than the class of spaces C(K), for instance Co is a
Lindenstrauss space which is not isometrically isomorphic to any
space C(K). Also, if S is a Choquet simplex (for the definition see
Alfsen [1]), then the space Af(S) of all affine scalar functions on
S is a Lindenstrauss space; so is the space in 11.15. Now we state
several results.

10.9. For every Banach space X the following statements are equi
valent:

(1)

(2)

(3)
C(K) •

X is an.1! , space for every A > 1,co, A

X is a Lindenstrauss space,

the second dual X** is isometrically isomorphic to a space
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10.10. A Lindenstrauss space X is isometrically isomorphic to a
space C(K) if and only if the unit ball of X has at least one
extreme point and the set of extreme points of x* is w*-closed.

Every space LOO(~) is isometrically isomorphic to a space C(K).

The following is an analogue of 10.2:

10.11. If P is a contractive projection in a Lindenstrauss space
X, then PIX) is a Lindenstrauss space.

It should be noted that not all Lindenstrauss spaces are images of
spaces C(K) under contractive projections (cf. Lazar and Linden
strauss [1] for details). However, we have

10.12 (Lazar and Lindenstrauss [1]). Every separable Linden
strauss space is isometrically isomorphic to the image of a con
tractive projection in a space Af(S).

Grothendieck [4] has observed that in the class of Banach spaces
Lindenstrauss spaces can be characterized by some properties of the
extension of linear operators, and spaces Ll(~) can be characterized
by properties of lifting linear operators. We have

10.13. For every Banach space X the following statements are
equivalent:

(a1) X is a Lindenstrauss space.

(a2) For arbitrary Banach spaces E,F, an isometrically isomorphic
embedding j: F'" E, a compact line<:.r operator T: F'" X and E > 0, there
exists a compact linear operator T: E ... X which extends T (i.e. T= Tj)
and is such that IITII::; (1 + E) IITII.

(a3) For arbitrary Banach spaces Y,Z, an isometrically isomorphic
embedding j: X'" Y and a cOTfJpact linear operator_T: X'" Z_there exists
a compact linear operator T: Y'" Z such that T =Tj and IITII = IITII.

10.14. For every Banach space X the following statements are
equivalent:

(a*1) X is isometrically isomorphic to a space Ll(~).

(a*2) For an arbitrary Banach space E, its quotient space F, a
compact linear operator T: X ... F and E > 0 there. exists a compact lin
ear operator 1': X ... E with 111'11::; (1 + ElIiTIl which lifts T, i. e. T = <pT,
where <p is the quotient map of E onto F.

(a*3) For arbitrary Banach spaces Y,Z, a linear operator
<p: Y ... X and a compact linear operator T: Z ... X there exists aonto _ _ _
compact linear operator T: Z... Y such that IITII = IITII and T= <pT.

Other interesting characterizations can be found in Lindenstrauss
[1], [2] •

Omitting in (a2) ,(a3) (resp. in (a*2), (a*3» the requirement that
the linear operators T.and l' should be compact, we obtain character
izations of important classes of injective (resp. projective) Banach
spaces. They are narrow ·subclasses· of Lindenstrauss spaces (resp.
of spaces Ll(~»i see the theorems below.

Recall that a compact Hausdorff space K is said to be extremally
disconnected if the closure of every open set in K is open.

10.15 (Nachbin-Goodner-Kelley). For every Banach space X the
following statements are equivalent:

(b1) X is isometrically isomorphic to a space C(K) with K extrem
ally disconnected.

(b2) For arbitrary Banach spaces E,F, an isometrically isomorphic
embedding j: E'" F, and a linear operator T: E'" X, there exists a
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linear operator l' such that T = Tj and II Til = 111'11.

(b3) X satisfies (a2) with "compact linear operator" replaced by
"linear operator".

(b4) X satisfies (a3) with "compact linear operator" replaced by
"linear operator".

10.16. For every Banach space X the following statements are
equivalent:

(b*1) X is isometrically isomorphic to a space II (S).

(b*2) For an arbitrary Banach space E, its quotient ~pace F and a
linear operator T: X + F there exists a linear operator T: X + E such
that II I'll = II Til and T = <1>1' where <1>: E + F is the quotient map.

(b*3) X satisfies (a*2) with "compact linear operator" replaced
by "linear operator".

(b*4) X satisfies (a*3) with "compact linear operator" replaced
by "linear operator".

The isometrical classification of the spaces C(K) reduces to the
topological classification of compact Hausdorff spaces. For compact
metric spaces this fact has been established by Banach (see [B],
Chap. IX, Theorem 3). The general result is due to M. H. Stone [1]
and S. Eilenberg [1]. It is as follows:

10.17. Compact Hausdorff spaces K1 and K2 are homeomorphic if and
only if the spaces C(K

1
) and C(K 2) are isometrically isomorphic.

D. Amir [1] and M. Cambern [1] have strengthened this result as
follows: If there is an isomorphism T of C(K 1 ) onto C(K 2 ) such that
II Til' II T- 1 11 < 2, then K1 and K2 are homeomorphic. The constant 2 is
the best possible; there are compact metric spaces K1 and K2 such
that dCC(Kd,C(K2»)=2 (H. B. Cohen [1]). However, if Kl and K2 are
countable compacta, then dCC (Kl) ,C (K 2») ~ 3 (Y. Gordon [1]).

An isometric classification of Lindenstrauss spaces is not known.
Many interesting partial results can be found in Lindenstrauss and
Wulbert [1] and Lazar and Lindenstrauss [1]. Let us note that the
space Co is minimal among Lindenstrauss spaces in the following
sense.

10.18 (Zippin [1]). Every infinite-dimensional Lindenstrauss
space X contains a subspace V which is isometrically isomorphic to
the space co' Moreover, if X is separable, then the subspace V can
be chosen so as to be the image of a contractive projection in the
space X.

The class of separable Lindenstrauss spaces admits a maximal
member. More precisely:

10.19 (Pelczy~ski and Wojtaszczyk [1]). There exists a separable
Lindenstrauss space r with the property that for every separable
Lindenstrauss space X and for every e: > 0 there is an isometrically
isomorphic embedding T: X ... r with IIxll:;; IITxll :;; (1 + e:) IIxll for x E X and
such that T(X) is the image of a contractive projection from X.

Wojtaszczyk [1] has shown that the space r with the above proper
ties can be constructed in such a way that it is a Gurarii space of
the universal arrangement (cf. Gurarii [1]), i.e. it has the follow
ing property:

(*) For every pair F::> E of finite-dimensional Banach spaces, for
every isometrically isomorphic embedding T: E+ r and for every e: > 0,
there is an extension T: F+ r such that lie II :> IITell :;; (1 + e:) lie II for
e E E.
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Gurarii [1] has shown that every Banach space satisfying condition
(*) is a·· Lindenstra·uss space and that the Gurarii space is unique up
to an almost-isometry, i.e. if r 1 and r z are Gurarii spaces, then
d(r 1 ,r Z ) =1. Luski [1] proved that the Gurarii space is isometric-
ally unique. ..

The reader interested in the topics of this section is referred to
the monograph by Lacey [1], which contains, among other things,
proofs of the majority of the results stated here both for the real
and for the complex scalars. Many results and an extensive biblio
graphy on elK) spaces can be found in Semadeni's book [2]. For the
connections of Lindenstrauss spaces with Choquet simplexes see
Alfsen [1]. Further information can be found in the following sur
veys: Bernau-Lacey [1], Edwards [1], Lindenstrauss [2], [4], Proceed
ings of Conference in Swansea [1], and in the papers: Effros [1],
[2] , [3], Lazar [1], [2] , [3], Lindenstrauss and Tzafriri [2].

§11. The isomorphic theory of~p spaces.

The isomorphic theory of~p spaces is, in general, much more com
plicated than the metric theory of LP(~) spaces and Lindenstrauss
spaces. The theory is still far from being completed. Many prob
lems remain open. The only case in which the situation is clear is
that of p = 2. From 9.7 it immediately follows

11.1. A Banaah spaae X is an~z spaae if and only if it is iso
morphia to a Hilbert spaae.

The basic theorem of the general theory Of~ spaces is the follow
ing result, due to Lindenstrauss and Rosenthal [1]. (Recall that
p* = pi (p-1) for 1 < p < 00; p* = 1 for p = 00; p* = 00 for p = 1.)

11.2. Let 1 :;; p :;; 00 and p" 2. For every Banaah spaae X whiah is
not isomorphia to a Hilbert spaae the following statements are
equivalent:

(1) X is an~p spaae.

(2) There is a aonstant a> 1 suah that, for every finite-dimen
sional subspaae E of X, there are a finite-dimensional spaae l~, a
linear operator T: l~ + X and a projeation P of X onto T(l~) suah
that lIyll:;; IITyll :;; allyll for y E l~, T(l~)::> E, IIPII:;; a.

(3) X* is isomorphia to a aomplemented subspaae of a spaae LP*(~).

(4) X* is an~p* spaae.

This yields the following corollary:

11.3. We have

(a) Let 1 < P < 00 and let X be a Banaah spaae whiah is not iso
morphia to any Hilbert spaae. Then X is an~p spaae if and only if
X is isomorphia to a aomplemented subspaae of a spaae LP(~).

(b) Every ~1 spaae (resp. ~oo spaae) is isomorphia to a subspaae
of an L1(~) spaae (resp. LOO(~)).

(c) If X is an ~1 spaae (resp. an~oo spaae), then X** is iso
morphia to a aomp lemen ted subspaae of a spaae L 1 (~) (resp. L OO (~) ).

A Hilbert space can be isomorphically embedded as a complemented
subspace of an LP (~) space for 1 < P < 00. (The subspace of LP spanned
by the Rademacher system {sgn sin 2n nt:n=O,1, ... } is such an
example.) On the other hand, by Grothendieck [3], no complemented
subspace of a space L1(~) is isomorphic to an infinite-dimensional
Hilbert space. This is the reason why the assumption that X is not
isomorphic to any Hilbert space does not appear in (b) and (c).
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The paper Lindenstrauss and Rosenthal [1] contains many interest
ing characterizations of~p spaces. Here we shall quote the follow
ing analogues of 10.13 and 10.14. Recall that a Banach space a is
said to be injeative if for every pair of Banach spaces Z::> Y and for
every linear operator T: y ... a, there is a linear operator T: z ... a
which extends T.

11.4. For every Banaah spaae X the foZZowing statements are
equivaZent:

(1) X is an ~l spaae.

(2) For aZZ Banaah spaaes Z and Y and any surjeative Zinear oper
ator ,p: z ... Y, every aompaat Zinear operator T: X ... Y has a aompaat
Ufting T: x ... z (i.e. T=,pT).

(3) For aZZ Banaah spaaes Z and Y and any surjeative Zinear oper
ator ,p: z ... X, every aompaat Zinear operator T: y ... X has a aompaat
Ufting T: y ... Z.

(4) X* is an injeative Banaah spaae.

The reader interested in characterizations of~p spaces in terms
of Boolean algebras of projections (due to Lindenstrauss, Zippin and
Tzafriri) is referred to Lindenstrauss and Tzafriri [2]. Other
characterizations, in the language of operator ideals, can be found
in Retherford and Stegall [1], Lewis and Stegall [1], in the surveys
by Retherford [1] and Gordon, Lewis and Retherford [1] and in the
monograph by Pietsch. [1].

Now we shall discuss the problem of isomorphic classification of
the spaces ~p' If 1 < 12 < 00, then by 11.3, the problem reduces to
that of isomorphic classification of complemented subspaces of
spaces Lp(~); also in the general case it is closely related to the
latter problem. The latter problem is completely answered only for
Zp (S) spaces for 1 :> 12 < 00. We have (Pelczyriski [3], Kothe [2],
Rosenthal [2]).

11 .5. Let 1 ~ 12 < 00. If X is a aomp Zemen ted subspaae of a spaae
zP (S) (resp. of a o (S»), then X is isomorphia to a spaae Zp (T)
(resp. ao(T»).

To classify all separable~p spaces for 1 < 12 < 00 one has to
describe all complemented subspaces of Lp. This programme is far
from being completed. Lindenstrauss and Pelczynski [1] have observ
ed that Lp, ZP, Zp x P and Ep = (P X Z2 X ••• ) Zp are isomorphically

distinct .£.12 spaces for 1 < 12 < 00, 12 '" 2. Next Rosenthal [3], [4] has
discovered less trivial examples of ~p spaces.

Let 00 > 12 > 2. Let Xp be the space of scalar sequences x= ex (n»)
such that

IIxll = max(CLlx(n)lp)1/p,CLlx(n)12/l0g(n+1)p) < 00.

Let Bp = (Bp , 1 x Bp , 2 x •.• ) Zp, where Bp, n is the space of all square

summable scalar sequences equipped with the norm

IIxliB = max(n 1/ p- 1/ 2 ['y IX(j)1 2)!,[,Y Ix(j) 112 )1/12).
p,n J=l J=l

For 1 < 12 < 2 we put Xp = (Xp *)* and Bp = (Bp *)*'

11.6. (Rosenthal). Let 1 < 12< 00,12'" 2. The spaaes Xp',B p ,
(Xp x Xp x ••• ) Zp,Xp x Ep and Xp x Bp are isomorphiaaHy distinat~p

spaaes eaah different from Lp, ZP, Zp x P , Ep '

Taking "Lp-tensor powers" of Xp Schechtman [1] proved
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11.7. There exists infiniteZy many mutuaZZy non-isomorphia
infinite-dimensionaZ separabZe.I!p spaaes (1 < P < "", p" 2).

Johnson and Odell [1] have proved

11.8. If 1 < p < "", then every infinite-dimensionaZ separabZe..f!p
spaae whiah does not aontain Z2 is isomorphia to Zp.

11.8 yields the following earlier result of Johnson and Zippin[1].

11.9. Let X be an infinite-dimensionaZ..f!p spaae with 1 < p < "". If
X is either a subspaae or a quotient of ZP, then X is isomorphia to
Zp.

The above fact is also valid for the space ao.
Now let us pass to p = 1. The problem of isomorphic classification

of complemented subspaces of spaces Ll(~) is a very particular case
of that of isomorphic classification of.I:l spaces. Even in the
separable case neither of these problems is satisfactorily solved.

In contrast to 11.9 we have

11.10. Among. subspaaes of Zl there ~re infiniteZy many isomorph
iaaZZy distinat infinite-dimensionaZ~~ spaaes.

This has been established by Lindenstrauss [7]. His construction
of the required subspaces Xl ,X2 , ••• of Zl is inductive and based on
the fact that every separable Banach space is a linear image of Zl.
Xl = ker h 1 , where h 1 is a linear operator of Zl onto L1 , and
Xn+ 1 =ker hn , where hn is a linear operator of Zl onto Xn for
n=2,3, •••

We do not know whether the set of all isomorphic types of separ
able..f!p spaces is countable (1:;; p < "", p" 2) .

In contrast to 11.10 the following conjecture is probable.

CONJECTURE. Every infinite-dimensionaZ aompZemented subspaae of
L1 is isomorphia either to Zl or to L1

•

What we know is:

11.11 (Lewis and Stegall [1]). If X is an infinite-dimensionaZ
aompZemented subspaae of L1 and X ~s isomorphia to a subspaae of a
separabZe duaZ ·spaae (in partiauZar, to a subspaae of Zl), then X is
isomorphia to Zl.

This implies that:

(a) The spaae L 1 is not isomorphia to any subspaae of a separabZe
duaZ Banaah spaae (Gelfand [1], Pelczynski [2]).

(b) The spaae Zl is the onZy (up to isomorphisms) separabZe
infinite-dimensionaZ..f!l spaae whiah is isomorphia to a duaZ spaae.

The proof of (b) follows from 11.11, 11.3 (c) and the observation
that every dual Banach space is complemented in its second dual nIn the non-separable case it is not known whether every dual-L1
space is isomorphic to a space L1(~). Also it is not known which
L1(~) spaces are isomorphic to dual spaces. For sigma-finite meas
ures ~, Ll(~) is isomorphic to a dual space iff ~ is purely atomic
(Pelczynski [2], Rosenthal [5]).

Now we shall discuss the situation for p = "". It seems to be the
most complicated because of new phenomena which appear both in the
separable and in the non-separable case. First, in contrast to the
case of 1 :> p < "" (where there were only two isomorphic types of
infinite-dimensional separable LP(~) spaces, namely LP and Zp),
there are infinitely many isomorphically different separable
infinite-dimensional spaces C(K). The complete isomorphic classifi
cation of such spaces is given in the next two theorems.
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11.12 (Milutin [1]). If K is an uncountable compact metric space,
then the space C(K) is isomorphic to the space C.

For every countable compact space K, let a(K) denote the first
ordinal a such that the ath derived set of K is empty.

11.13 (Bessaga and Pelczyrlski [2]). Let Kl and K2 be countable
infinite compact spaces such that a (K l ) ;:;; a (K 2 ) • Then the spaces
C(K l ) and C(K 2 ) are isomorphic if and only if there is a positive
integer n such that a(K l ):;; a(K 2 ) :;; a(Kl)n.

The theorem of Milutin 11.12 answers positively the question of
Banach (cf. [B], p. 112).

It is easy to show that if K is a countable infinite compact space
then the Banach space (C(K»)* is isomorphic to ll. Hence, by 11.13,
there are uncountably many isomorphically different Banach spaces
whose duals are isometrically isomorphic. This answers another
question in [B], Rem. XI, §9.

The problem of describing all isomorphic types of complemented
subspaces of separable spaces C(K) is open. The answer is known for
c being isomorphic to Co (cf. 11.5) and C (WW) (Alspach [1]). This
problem can be reduced to that of isomorphic classification of com-
plemented subspaces of the space C. It is very likely that .

CONJECTURE. Every complemented subspace of C is isomorphic either
to C or to C(K) for some countable compact metric space K.

The following result of Rosenthal [6] strongly supports this con
jecture.

11.14. If X is a complemented subspace of C such that X* is non
separable, then X is isomorphic to C.

The class of isomorphic types of Lindenstrauss spaces is essential
ly bigger than that of complemented subspaces of C(K). We have

11.15 (Benyamini and Lindenstrauss [1]). There exists a Banach
space BL with (BL)* isometrically isomorphic to II and such that BL
is not isomorphic to any complemented subspace of any space C(K).

From the construction of Benyamini and Lindenstrauss [1] it easily
follows that, in fact, there are uncountably many isomorphically
different spaces with the above property. Combining 11.15 and 10.19,
we conclude that the Gurarii space r is also an example of a Linden
strauss space which is not isomorphic to any complemented subspace
of any C(K).

Bourgain [1] gave a striking example of an infinite dimensional
separable~oo space which does not have subspaces isomorphic to co;
hence, by 10.18, it is not isomorphic to any Lindenstrauss space.
Let us note that the results of Pelczynski [3] and Kadec and Pel
czynski [1] imply

11.16. If 1 :;; p < 00, then every infinite-dimensional.rp space has a
complemented subspace isomorphic to lP. Every infinite-dimensional
complemented subspace of a space C(K) contains isomorphically the
space co'

Our last result on separable~oo spaces is the following character
isation of co'

11.17. Every Banach space E isomorphic to Co has the following
property:

(8) If F is a separable Banach space containing isometrically E,
then E is complemented in F.

Conversely, if an infinite-dimensional separable Banach space E
has property (S), then E is isomorphic to co'
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The first part of 11.17 is due to Sobczyk [1] (cf. Veech [1] for a
simple proof). The second part is due to Zippin [3]. A particular
case of Zippin's result, assuming that E is isomorphic to a C(K)
space, was earlier obtained by Amir [2].

Now we shall be concerned with the problem of isomorphic classifi
cation of non-separable spaces C(K). The multitude of different
non-separable spaces C(K) and the variety of their isomorphical in
variants is so rich that there is almost no hope of obtaining any
complete description of the isomorphic types of non-separable spaces
C(K), even for K's of cardinality continuum. The results which have
been obtained concern special classes of spaces C(K) and their com
plemented subspaces. Among general conjectures the following seems
to be very probable.

CONJECTURE. Every C(K) space is isomorphic to a space C(K o) for
some compact totally disaonneated Hausdorff space Ko•

The following result is due to Ditor [1].

11.18. For every aompaat Hausdorff space K, there exist a totally
disconneated aompaat Hausdorff space Ko' a continuous surjeation
4>: K-+ Ko and a ·contractive positive projection P: C(K o ) -+ 4>°(C(K»),

onto
where 4>0: C(K) -+ C(K o ) is the isometric embedding defined by 4>0 (f) =
f 04> for f E C(K) . Hence C(K) is isometric to a comp lemen ted subspace
ofC(Ko)·

An analogous result for compact metric spaces was earlier estab
lished by Milutin [1], cf. Pelczyrtski [4].

The theorem of Milutin 11.12 can be generalised only to special
classes of non-metrizable compact spaces. Recall that the topolog
ical weight of a topological space K is the smallest cardinal n such
that there exists a base of open subsets of K of cardinality n. We
have (Pelczyrtski [4])

11.19. Let K be a aompact Hausdorff space whose topological
weight is an infinite cardinal n. If K is either a topological
group or a product of a family of metric spaces, then C(K) is iso
morphic to C([O,1]n).

In particular, for every compact space K satisfying the assump
tions of 11.19, the space C(K) is isomorphic to its Cartesian square.
This property is not shared by arbitrary infinite compact Hausdorff
spaces. We have (Semadeni [1])

11.20. Let WI be the first uncountable ordinal and let [WI] be
the space of all ordinals which are ~ WI with the natural topology
determined by the order. Then the space C([WI]) is not isomorphic
to its Cartesian square.

Numerous mathematicians have studied injective spaces (whose def
inition was given before 11.4). Theorem 10.15 of Nachbin, Goodner
and Kelley suggests the following

CONJECTURE. Every injective Banach space is isomorphic to a space
C(K) for some extremally disconnected compact Hausdorff space K.

It is easy to see that: (1) every complemented subspace of an in
jective space is injective, (2) every space lOO(S) is injective, (3)
a Banach space is injective if and only if it is complemented in
every Banach space containing it isometrically, (4) every Banach
space X is isometrically isomorphic to a subspace of the space lOO(S),
where S is the unit sphere of X*. From the above remarks it follows
that

11.21. A Banach space X is injective if and only if it is iso
metrically isomorphic to a complemented subspace of a space loo(S).
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Lindenstrauss [3] has shown (cf. 11.5):

11.22. Every infinite-dimensiona~ comp~emented subspace of ~oo

(= ~OO(S) for a countab~e infinite S) is isomorphic to ~oo.

As a corollary from this theorem we get the following earlier
result of Grothendieck [3].

11.23. Every separab~e injective Banach space is finite-dimension
al.

Theorem 11.22 cannot be generalized to the spaces ~OO(S) with un
countable S. In fact, we have

11.24 (Akilov [1]). For every measure ~ the space Loo(~) is injec
tive.

11.25 (Pelczydski [3], [5], Rosenthal [5]). Let ~ be a sigma
finite measure. Then the space LOO(~) is isomorphic to ~OO(S) if and
on~y if the measure ~ is separab~e (i.e. the space Ll(~) is separ
ab~e).

Theorem 11.24 is closely related to the following

11.26. (a) An~oo space isomorphic to a dua~ space is injective.

(b) An injective bidua~ space is isomorphic to an LOO(~).

11.26 (a) follows from 11.4 (4) because by Dixmier [1] every dual
Banach space is complemented in its second dual. 11.26 (b) is due
to Haydon [1].

Applying deep results of Solovay and Gaifman concerning complete
Boolean algebras, Rosenthal [5] has shown that

11.27. There exists an injective Banach space which is not iso
morphic to any dua~ Banach space.

Let us mention that Isbell and Semadeni [1] have proved that

11.28. There exists a compact Hausdorff space K which is not ex
trema~~y disconnected and is such that elK) is injective.

Concluding this section, let us notice that the "dual problem" to
the last conjecture is completely solved. Namely (cf. 10.16) we
have

11.29 (Kothe [2]). For every Banach space X the fo~~owing state
ments are equiva~ent:

(1) X is projective, i.e. for every pair E,F of Banach spaces,
for every ~inear surjection h: F~E and [or every ~inear operator
T: X ~ E, there exists a Unear operator T: X ~ F which Ufts T, i. e.
h'lf! = T.

(2) X is isomorphic to a space ~l(S).

The reader interested in the problems discussed in this section is
referred to Lindenstrauss and Tzafriri [1],[2], Semadeni [2], Bade
[1], Pelczynski [4] and Ditor [1], Lindenstrauss [2], [4], Rosenthal
[9], and to the references in the above mentioned books and papers,
see also "Added in proof".

§12. The isomorphic structure of the spaces LP(~).

The starting point for the discussion of this section is [B], Chap.
XII. We shall discuss the following question:

1. Given 1 ::: Pl < pz < 00. What are the Banach spaces E which are
simultaneously isomorphic to a subspace of LPl and to a subspace of
LPz?
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One can ask more generally:
II. Which Banach spaces X are isomorphic to subspaces of a given

space LP(Il)?
One of the basic results in this direction is theorem 3.2 of this

survey, which can be restated as follows:

12.1 A Banach space E is (isometric) isomorphic to a subspace of
a space LP(~) iff E is ZocaZZy (isometricaZZy) isomorphicaZZy rep
resentabZe in ZP.

We shall restrict our discussion to the case where 1 :0 P < 00 and E
is a separable Banach space. Since every separable subspace of the
space LP(Il) is isometrically isomorphic to a subspace of LP~ in the
sequel we shall study isomorphic properties of the spaces L¥. It
turns out that the case 2 < P < 00 is much simpler than that of 1 :;; p < 2.
The following concepts will be useful in our discussion.

Definition. Let 1 :0 P < 00. We shall say that a subspace E of the
space LP is a standard image of Zp if there exist isomorphisms
T: Zp ... E and U: LP ... if such that, for n;< m (n,m=1 ,2, .•. ), the

onto onto
intersections of the supports of the functions UT(en) and UT(em)
have measure zero. Here en (for n=1,2, .•. ) denotes the nth unit
vector in the space Zp.

A subspace E of the space LP will be called stabZe if it is closed
in the topology of the convergence in measure, i.e. for every
sequence (fn) of elements of E, the condition

lim f~lfn(t)I/(1+lfn(t)l)dt=Oimplies lim IIfnllp=O.
n n
It is easy to see that

12.2. (a) Every sequence of functions in LP which have pair-wise
disjoint supports spans a standard image of Zp.

(b) Every standard image of Zp is compZemented in LP.

Much deeper, especially for 1 :0 P < 2, is the next result, which
shows that the property of subspaces of LP of being stable does not
depend on the location of the subspace in the space.

12.3. Let 1:op<00 and p;<2. Then, for every infinite-dimensionaZ
subspace E of the space LP, the foZZowing statements are equivaZent:

(1) E is stabZe.

(2) No subspace of E is a standard image of Zp.

(3) No subspace of E is isomorphic to Zp.

Moreover, if p> 1, conditions (1) - (3) are equivalent to those
stated below:

(4) There exists a q E [1,p) and a constant Cq such that

(*) IIfllp :;; IIfllq :;; Cqllfllp for fEE.

(5) For every q E [1,p) there is a Cq such that (*) hoZds.

The last theorem, for p > 2, is due to Kadec and Pelczyriski [1],
and for 1 :;; p < 2, is due to Rosenthal [7]. The following result of
Kadec and Pelczydski [1] is an immediate corollary of 12.3.

12.4. Let E be an infinite-dimensionaZ subspace of a space LP
with 2 < P < 00. Then E is stabZe if and onZy if E is isomorphic to a
HiZbert space.

Suppose that 2 < P < 00 and E is a subspace of LP which is isomorphic
to a Hilbert space. Then, by 12.4 and by the condition 12.3 (5) with
q = 2, the orthogonal (with respect to the L 2 inner product) projec
tion of LP onto E is continuous as an operator from LP into LP•
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(*)

Hence, by 12.3 (2) and 12.2 (b), we get

12.5. Let 2 < P < 00 and Zet E be a subspaae of LP. Then:

(al if E is isomorphia to a HiZbert spaae, then E is aompZemented
in LP;

(b) if E is not isomorphia to any HiZbert spaae, then E aontains
a aompZemented subspaae isomorphia to Zp.

The next result is due to Johnson and Odell [1].

12.6. Suppose that E is a subspaae of a spaae LP with 2 < P < 00.

Then E is isomorphia to a subspaae of the spaae Zp if and onZy if no
subspaae of E is isomorphia to a HiZbert spaae.

The assumption of 12.6 that p> 2 is essential. For each p with
1 :> p < 2, there is a subspace E of LP such that E is not isomorphic
to any subspace of Zp and no infinite dimensional subspace of E is
stable (Johnson and Odell [1]).

Now we shall discuss the situation for 1 :> P < 2. In this case
there are many isomorphically different stable subspaces of the
space LP. The crucial fact is the following theorem, which goes
back to P. Levy [1]; however, it was stated in the Banach space lan
guage much later (by Kadec [4] for zq, and by Bretagnolle, Dacunha
Castelle and Krivine [1] and Lindenstrauss and Pelczynski [1] in the
general case).

12.7. If 1 :> p < q:> 2; then the spaae LP aontains a subspaae Eq
isometriaaZZy isomorphia to Lq

The proof of 12.7 employs a probabilistic technique. Its idea is
the following:

1 • For every q with 1 < q :> 2, there exists a random variable (
measurable function) ~q: R'" R which has the characteristic function

~q(S) = JRexp(~q(t) .is)dt = exp(-jslq)

is such that, for each p < q, I';q E LP (R). By LP (Rn ) we denote here
space LP(A), where A is the n-dimensional Lebesgue measure for

and
the
Rn •

2. Let I';ql, ••. ,l';qn be independent random variables each of the
same distribution as I'; , for instance let I';qj E LP (Rn ) be defined by
I';qj (t l ,t2l ••• ,tn ) = I';q dj ). Assume that all" .,an are real numbers

such that jtlajlq= 1, and let n= jtajl';qj. Since the random vari

ables I';ql, ••. ,l';qn are independent and have the same distribution and
hence tlie same characteristic functions as I';q, we have

nAn
n(S) = L a.1'; .(S) = Lexp(-Isa·l q)

j=l J qJ j=l J
n A

= eXP(-ls!q. L la.!q) = exp(-!s!q) = I'; (S).
j=l J q

Hence n has the same distribution as I';q and therefore

II I a.1'; ·11 = II n II = II I'; II if I Ia ·1 q = 1,
j=l J PJ P P q P j=l J

for every p with 1 :> p < q.
3. By (*), the linear operator T: ZP .... LP (Rn ) defined by

n n
T(all •. .,an) = IIl';qllpl'j~lajl';qj is an isometric embedding. Hence Lq

is locally representable in Zp. Applying 12.1 we complete the proof.
By Banach [B], p. 124, Theorem 10, and the fact that the space Zl

is not reflexive, it follows that if 1 :> P < q < 2, then Zp is not iso-
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morphic to any subspace of Lq • Hence, by 12.3, the subspaces Eq of
12.7 are stable.

Theorem 12.7 can be generalized as follows (Maurey [1]):

12.8. Let 1 < p:o q < 2. Then, for every measure /J., there exists a
measure v such that the space Lq(/J.) is isometricaZZy isomorphic to a
subspace of the space LP(v).

Rosenthal [7] has discovered another property of stable subspaces
of LP, which can be called the extrapolation property.

12.9. If 1;;; p < 00, p" 2, and E is a stabZe subspace of the space
LP, then there exist an isomorphism U of LP onto itseZf and an E: > 0
such that U(E) is a cZosed stabZe subspace of the space LP+E:, i.e.
there is a C> 0 such that IIfllp;;; IIfllp+E:;;; Cllfllp for every fE E.

Combining 12.9 with the result of Kadec and Pelczyrtski [1] showing
that

12.10. Every non-refZexive subspace of L1 contains a standard
image of Zl, we obtain the following:

12.11 (Rosenthal [7]). Every refZexive subspace of the space L 1

is stabZe, hence isomorphic to a subspace of a space LP for some
p>1.

The results of Chap. XII of [B] and Orlicz [2], Satz 2 combined
with 12.3, 12.4 and 12.7 yield an answer to question (I) stated at
the beginning of this section and to the question in [B] on p. 124.
We have

12.12. Let E be an infinite-dimensionaZ Banach space and Zet
1 ;;; p < q < 00. E is isomorphic to a subspace of LP and to C! subspace
of Lq if and onZy if E is isomorphic to a subepace of Lm1n (q,2l. In
particuZar, if q;;; 2, then dimZLP ~ dimzLq ~ dim

Z
zq, and if p" 2 < q,

then dimZLP is incomparabZe with dimzL q and with dimzZ q

The fact that, for 2 < P < q, the linear dimensions of LP and Zq are
incomparable has been established first by Paley [1]. The incompar
ability of dimZLP and dimzLq for q> 2> P is due to Orlicz [2]. For

1 < P < 00, p" 2, there exist the subspaces of the space LP which are
isomorphic to Zp but are not standard images of ZP. This is a con
sequence of the following theorem of Rosenthal [3], [8], and Bennett,
Dor, Goodman, Johnson and Newman [1].

12.13. If either 1 < P < 00, p" 2, then there exists a non-comp Zem
ented subspace of Zp which is isomorphic to the whoZe space.

It is not known whether every subspace of Zl which is isomorphic
to Zl is complemented in the whole space.

By 12.7 and the fact that, for p" q no subspace of Zp is isomorph
ic to zq, it follows that the assumption p> 2 in 12.5 (b) is indis
pensable. The following result is related to 12.5 (a):

12.14. (a) Let 1 < P < 2 and Zet E be an infinite-dimensionaZ sub
space of the space LP. If E is isomorphic to the HiZbert space,
then E contains an infinite-dimensionaZ subspace which is compZement-
ed in LP. "

(b) If 1 ;;; p < 00, p" 2, then there exists a non-compZemented sub-"
space of LP which is isomorphic to a HiZbert space.

Part (a) is due to Pelczyrtski and Rosenthal [1], and part (b) - to
Rosenthal [8] for 1 ;;; p:o 4/3 and to Bennett, Dor, Goodman, Johnson
and Newman for all p with 1 ;;; p < 2.

In connection with the table in [B], p. 154 (property (15)) let us
observe (cf. Pelczynski [3] and 5.2) that



208 A. PelczyOski and cz. Bessaga

12.15. If 1 :> P < "',. p" 2, then there exists an infinite-dimension
aZ cZosed Zinear subspace of Zp which is not isomorphic to the whoZe
space.

The following theorem of Johnson and Zippin [1] gives a descrip
tion of subspaces with the approximation property of the spaces Zp.

12.16. If E is a subspace of a space Zp with 1 < p< "', and E has
the approximation property, then E is isomorphic to a compZemented
subspace of a product space (Gi. x G2 x ••• ) ZP' where Gn's are finite-

dimensionaZ subspaces of the space Zp.
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CHAPTER VI

§13. The topological structure of linear metric spaces.

The content of [B], Rem. XI, §4 was a catalyst for intensive
investigations of the topological structure of linear metric spaces
and their subsets. These investigations have led to the following
theorem.

13.1. ANDERSON-KADEC THEOREM. Every infinite-dimensionaZ, separ
abZe, ZocaZZy convex compZete Zinear metric space is homeom~phic to
the HiZbert space Z2.

This result fully answers one of the questions raised in [B], Rem.
XI, §4, p. 151 and disproves the statement that the space s is not
homeomorphic to any Banach space ([B], Rem. IV, §1, p. 143). Theor
em 13.1 is a product of combined efforts of Kadec [11], [12], Ander
son [1] and Bessaga and Pelczynski [5], [6]. For alternative or
modified proofs see Bessaga and Pelczynski [7] and Anderson and Bing
[1]. Earlier partial results can be found in papers by Mazur [1],
Kadec [6], [7] , [8] , [9] , [10], Kadec and Levin [1], Klee [1], Bessaga
[1] •

In the proofs of 13.1 and other results on homeomorphisms of
linear metric spaces three techniques are employed:

A. Kadec's coordinate approach. The homeomorphism between spaces
X and Y is established by setting into correspondence the points
x E X and y E Y which have the same "coordinates". The "coordinates"
are defined in metric terms with respect to suitably chosen uniform
ly convex norms (see the text after 1.9 for the definition) of the
spaces.

B. The decomposition method, which consists in representing the
spaces in question as infinite products, and performing on the pro
ducts suitable "algebraic computations" originated by Borsuk [1]
(cf. [B], Chap. XI, §7, Theorems 6-8). For the purpose of stating
some results, we recall the definition of topological factors. Let
X and Y be topological spaces. Y is said to be a factor of X
(written YIX) if there is a space W such that X is homeomorphic to

Y x W. A typical result obtained with the use of the decomposition
method is the following criterion, due to Bessaga and Pelczynski
[5] , [6] :

13.2. Let X and H be a Banach space and an infinite-dimensionaZ
HiZbert space, respectiveZy, both of the same topoZogicaZ weight.
Then HIX impZies that X is homeomorphic to H.

Many applications of 13.2 depend on the following result of Bartle
and Graves [1] (see also Michael [1], [2] , [3] for a simple proof and
generalizations).

13.3. Let X be a Banach space. If Y is either a cZosed Zinear
subspace or a quotient space of X, then Ylx.

Notice that both 13.2 and 13.3 are valid under the assumption that
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X is merely a locally convex complete linear metric space.
Also the next result due to Torunczyk [3], [4] , [5], and some of its

generalizations give rise to applications of the decomposition
method.

13.4. If X is a Banaah spaae and A is an absoZute retraat for
metria spaaes whiah aan be topoZogiaaZZy embedded as a aZosed subset
of X, then A I(X x X x ••• ) Z" If H is an infinite-dimensionaZ HiZbert
spaae and A is a aompZete absoZute retraat for metria spaaes and the
topoZogiaaZ weight of A is Zess than or equaZ to that of H, then AIH.

C. The absorption teahnique, which gives an abstract framework
for establishing homeomorphisms between certain pairs (X,E) and
(I,F) consisting of metric spaces and their subsets, when X and Y
are already known to be homeomorphic. (The pairs (X,E) and (I,F)
are said to be homeomorphia, in symbols (X,E) ~ (I,F), if there is a
homeomorphism h of X onto I which carries E onto F, and hence
carries X\E onto X\F). A particular model designed for identifying
concrete spaces homeomorphic to Roo can briefly be described as fol
lows. Consider the Hilbert cube Q= [-1,1]00 and its pseUdo-interior
P= (-1,1)00, which is obviously homeomorphic to Roo. It turns out
that every subset Ac Q which is such that (Q,A) ~ (Q,Q\P) can be
characterized by certain property involving extensions and approxim
ations of maps and related to Anderson's [2] theory of Z-sets,
called cap (for compact absorption property). Hence, in order to
show that a metric space E is homeomorphic to ROO it is enough to
represent E as a subset of a space X homeomorphic to Q so that the
complement X\E has cap. For applying this technique it is conveni
ent to have many models for the Hilbert cube. An important role in
this respect is played by the following classical theorem, due to
Keller [1],

13.5.
HiZbert

and the

Every infinite-dimensionaZ
spaae Z2 is homeomorphia to

remark of Klee [4]

aompaat aonvex subset of the
the HiZbert aube,

13.6. Every aompaat aonvex subset of any ZoaaZZy aonvex Zinear
metria spaae is affineZy embeddabZe into Z2.

For more details concerning the model presented here·and other
models of the absorption technique see papers by Anderson [4],
Bessaga and Pelczynski [8], [7], [9], Torunczyk [2] and the book by
Bessaga and Pelczynski [10], Chapters IV, V, VI, VIII. The most
general axiomatic setting for "absorption" with miscellaneous
applications is presented by Torunczyk [2] and Geoghegan and Summer
hill [1].

During the years 1966-1977 several authors attempted to extend the
Kadec-Anderson theorem to Banach spaces of an arbitrary topological
weight; for the in£ormation see Bessaga and Pelczynski [1], Chap.
VII, and also Torunczyk [5], Terry [1]. The final solution has been
obtained only recently by Torunczyk [6] who proved

13.7. Let X be a aompZete metria spaae whiah is an absoZute
retraat for metria spaaes and Zet ~=wX. the density aharaater of X.
Then X is homeomorphia to the HiZbert spaae Z2 (~) if and onZy if the
foZZowing two aonditions are satisfied:

(a) X x Z2 is homeomorphia to X,

(b) every aZosed subset A of X with wA<~ is a Z-set, i.e. for
every aompaat KcX the identity embedding of K into X is the uniform
Zimit of a sequenae of aontinuous maps of K into X\A.

In particular,

13.8. Every ZoaaZZy aonvex aompZete metria Zinear spaae is homeo-
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morphic to a Hilbert space.

Detailed proofs and other characterizations of Hilbert spaces and
Hilbert space manifolds can be found in Torunczyk [6].

It is natural to ask if in the Anderson-Kadec Theorem 13.1 the
assumption of local convexity is essential. This problem is open
and only very special non-locally convex spaces are known to be
homeomorphic to l2. For instance (Bessaga and Pelczynski [9]):

13.9. The space S ([B], Introduction, §7, p. 6) is homeomorphic
to l2. More generally, if X is a separable complete metric space
which has at least two different points, then the space MX of all
Borel measurable maps f: [0,1] +X with the topology of convergence in
(the Lebesgue) measure is homeomorphic to l2.

More examples are presented in Bessaga and Pelczynski [10], Chap.
VI.

It is known that a non-complete normed linear space cannot be
homeomorphic to any Banach space. This easily follows from the
theorem of Mazur and Sternbach [1] that every Go linear subspace of
a Banach space must be closed. There are at least ~l topologically
different separable normed linear spaces which can be distinguished
by their absolute Borel types (Klee [5], and Mazur - unpublished).
Henderson and Pelczynski have proved that even among sigma-compact
normed linear spaces there are at least ~l topologically different
(cf. Bessaga and Pelczynski [10), Chapter VIII, §5).

It is not known whether every normed linear space is homeomorphic
to an inner product space.

Using suitable absorption models, one can prove (Bessaga and
Pelczynski [8] and [10], Chap. VIII, §5, Torunczyk [2])

13.10. If X is an infinite-dimensional normed linear space ~hich

is a countable union of its finite-dimensional compact subsets, then
X is homeomorphic to the subspace L R of ROO consisting of all
'sequences having at most finitely many non-zero coordinates. If X
is a sigma-compact normed linear space containing an infinite-dimen
sional compact convex subset, then X is homeomorphic to the pseudo
boundary Q\P of the Hilbert cube.

For more details on topological classification of non-complete
linear metric spaces the reader is referred to Bessaga and Pelczyn
ski [10], Chap. VIII and the references therein.

Another interesting problem is to find which subsets of a given
infinite-dimensional Banach space are homeomorphic to the whole
space. The situation is completely different from that in the
finite-dimensional case. For instance, we have

13.11. Let X be an infinite-dimensional Banach space. Then the
following kinds of subsets X are homeomorphic to the whole space:

(i) spheres,

(ii) arbitrary closed convex bodies (= closed convex sets with non
empty interior), in particular: closed balls, closed half-spaces,
strips between two half-spaces and so on,

(iii) the sets X\A, where A is sigma-compact.

This result for the space l2 and several other special spaces has
been obtained by Klee [3],[6]. The general case can be reduced to
that of l2 by factoring from X a separable space, homeomorphic to l2,
and by applying some additional constructions, cf. Bessaga and
Pelczynski [10], Chap. VI.

The investigations of topological structure of linear metric spaces
resulted in active development of the theory of infinite-dimensional
manifolds. If E is a linear metric space, then by a topological man-
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ifoZd modeZZed on E (briefly: an E-manifoZd) we mean a metrizable
topological space M which has an open cover by sets homeomorphic to
open subsets of E. In the same manner one defines manifolds model
led on the Hilbert cube.

A fundamental theorem on topological classification of manifolds
with a fixed model E, an infinite-dimensional linear metric space
satisfying certain conditions, is due to Henderson (see Henderson
[1], [2] and Henderson and Schori[1]). For simplicity we state this
theorem in the case of Hilbert spaces.

13.12. Let H be an infinite-dimensionaZ HiZbert spaae. Then
every aonneated H-manifoZd is homeomorphia to an open subset of H.
H-manifoZds M1 and M2 are homeomorphia if and onZy if they are of
the same homotopy type, Le. there are aontinuous maps f: M1 '" M2 and
g: M2 '" M1 suah that the aompositions gf and fg are homotopia to the
identities idM1 and id

M2
, respeativeZy.

For analogous results on infinite-dimensional differential mani
folds, see Burghelea and Kuiper [1], Eells and Elworthy [1],
Elworthy [1], Moulis [1].

The systematic theory of manifolds modelled on the Hilbert cube
has been developed by Chapman [2], [3], [4], [5] and is closely related
to the simple homotopy theory of polyhedra (Chapman [5], [6], cf.
Appendix to Cohen [1]) and has some points in common with Borsuk's
shape theory (Chapman [1]). Chapman [7] is an excellent source of
information.

We conclude this section with some comments concerning the class
ification of Banach spaces with respect to uniform homeomorphisms.
Banach spaces X and Yare uniformZy homeomorphia if there exists a
homeomorphism f:X ... Y such that both f and f- 1 are uniformly contin-
uous. onto

There are non isomorphic but uniformly homeomorphic Banach spaces
(Aharoni and Lindenstrauss [1]). However, Enflo [1] has proved that

a Banach space which is uniformly homeomorphic to a Hilbert space is
already isomorphic to the Hilbert space (cf. 9.13 here).

Combining the results of Lindenstrauss [10] and Enflo [5] we get

13.13. If 1 ;;; p < q;;; 00, then, for arbitrary measures I.l and v, the
spaaes LP(I.l) and Lq(v) are not uniformZy homeomorphia, exaept the
aase where dim LP (I.l) =dim Lq (v) < 00.

To state the next result (due to Lindenstrauss [10]) we recall that
a closed subspace S of a metric space M is said to be a uniform
retraat of M if there is a uniformly continuous map r: M'" S such that
r (x) = x for x E: S.

13.14. If a Zinear subspaae Y of a Banaah spaae X is a uniform
retraat of X and x(Y) is aompZemented in Y**, then Y is aompZemented
in X.

Observe that if Y is reflexive or, more generally, conjugate to a
Banach space, then x(Y) is complemented in y** (cf. Dixmier [1]).

On the other hand, we have (see Lindenstrauss [10])

13.15. Let K be a aompaat metria spaae. Then every isometria
image of C(K) in an arbitrary metria spaae M is a uniform retraat of
M.

Combining 13.14 and 13.15 with the result of Grothendieck [3] (ci.
Pelczynski [3]) that no separable infinite-dimensional conjugate
Banach space is complemented in a C(K), we get

13.16. If K is an infinite aompaat metria spaae, then the spaae
C(K) is not uniformZy homeomorphia to any aonjugate Banaah spaae.

Enflo [6] has shown that
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13.17. No subset of a HiZbert space is uniformZy homeomorphic to
the space C.

In "Added in proof" we present Aharoni's and Ribe's contributions
to the classification of Banach spaces with respect to uniform
homeomorphisms.

Uniform homeomorphisms of locally convex complete metric spaces
have been studied by Mankiewicz [1], [2], cf. also Bessaga [1], §11.
In particular, Mankiewicz [2] has proved that

13.18. If X is one of the"spaces Z',S,Z2 x sand Y is a ZocaZZy
convex Zinear metric space which is uniformZy homeomorphic to X,
then Y is isomorphic to X.

From 13.18 it immediately follows that s is not uniformly homeo
morphic to Z2 (a more general fact is proved in Bessaga [1], p. 282).

§14. Added in proof.

Ad §2. The following basic fact in the isomorphic theory of
Banach spaces, due to H. P. Rosenthal, is related to the discussion
in §9 Chap. IX and to Example 2 in §3 of this survey.

14.1. Let (xn) be a bounded sequence in a Banach space. Then
(xn) contains a subsequence equivaZent to the standard vector basis
of Zl iff (xn) has a subsequence whose no subsequence is a weak
Cauchy sequence.

For the proof (for ~eal Banach spaces) see Rosenthal [11]; Dor [1]
has adjusted Rosenthal's proof to cover the complex spaces. For
related but more delicate results the reader is referred to the
excellent survey by Rosenthal [12] and to the papers: Odell and
Rosenthal [1] and Bourgain, Fremlin and Talagrand [1].

For further information on WCG spaces and renorming problems the
reader is referred to the lecture notes by Diestel [1] and to the
book by Diestel and Uhl [1].

Ad §3. Theorems 13.7 and 13.8 generalize to the case of arbitrary
p E: (1,00). We have

14.2 (Krivine [2]). Let 1 < P < 00. Then Zp is ZocaHy represent
abZe in a Banach space X iff zp is ZocaZZy a-representabZe in X for
some a ~ 1.

For an alternative proof of 14.2 see Rosenthal [10].
Using 14.2, Maurey and Pisier [3] have established

14.3. Let X be a Banach space, Zet PX (resp. qx) be the supremum
(resp. infimum) of pE: [1,001 such that there is a positive C= C(q,X) <

00 with the property that, for every finite sequence (Xj) of eZements

H~rj(t)Xj~dt ~
J

(resp . foll~rj(t)xjlldt ~ C(~IIXjllq)l/q),
J J

where (rj) are the Rademacher functions.

Then ZPX and zqx are ZoaaZZy representabZe in X.

Observe that 1 ~ PX:;; 2 and 00 ~ qX ~ 2. (The right-hand side inequal
ities follow from Dvoretsky' s Theorem.) In the limit case PX = 1
(resp. qX=oo) Theorem 14.3 yields 13.8 equivalence (i) and (iv)
(resp. 13.7).

Entirely different criterion of local representability of Zl was
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discovered by Milman and Wolfson [1].

14.4. Let X be an infinite-dimensional Banaah spaae with
property that there is a C< 00 suah that for every n=1,2, ...
an n-dimensional subspaae, say En, of X with d(En , l;) :> Cln.
is loaally representable in X.

the
there is

Then II

Ad §4. R. C. James [14] improved 4.3 by constructing a non
reflexive Banach space of type 2, i.e. satisfying 13.8 (iv) with
q = 2.

The reader interested in the subject discussed in §4 is referred
to the books and notes: Lindenstrauss and Tzafriri [1], volume II,
Maurey and Schwartz [1] (various exposes by Maurey, Maureyand
Pisier, and Pisier), Diestel [1], and to the papers: Figiel [6], [7],
[8], and Pisier [2].

Ad §5. 14.5 (Szankowski [4]). The spaae of all bounded linear
operators from l2 into itself fails to have the approximation
proplfirty.

Ad §a. The following result, due to Maurey and Rosenthal [1], is
related to the question whether every infinite-dimensional Banach
space contains an infinite-dimensional subspace with an uncondition
al basis.

14.6. There exists a Banaah spaae whiah aontains a weakly aon
vergent to zero sequenae of veators of norm one suah that no infin
ite subsequenae of the sequenae forms an unaonditional basis for the
subspaae whiah it spans.

Ad §9. The paper by Enflo, Lindenstrauss and Pisier [1], contains
an example of a Banach space X which is not isomorphic to a Hilbert
space but which has a subspace, say Y, such that both Y and X/Yare
isometrically isomorphic to l2 (cf. also Kalton and Peck [1]).

Ad §§10 and 11. We recommend to the reader the surveys: Rosen
thal [9] ,[12]. The reader might also consult the book by Diestel
and Uhl [1].

Most of the recent works on C(K) spaces concern non-separable C(K)
spaces. The reader is referred to Alspach and Benyamini [1],
Argyros and Negropontis [1], Benyamini [2], Dashiell [1], Dashiell
and Lindenstrauss [1], Ditor and Haydon [1], Etcheberry [1], Hagler
[1], [2], Haydon [1], [2], [3], [4], Gulko and Oskin [1], Kislyakov [1],
Talagrand [1], Wolfe [1]. The separable C(K) spaces are studied in
the papers: Alspach [1], Benyamini [1], Billard [1], Zippin [1].

Ad §12. The reader interested in the subject should consult the
seminar notes by Maurey and Schwartz [1] and the memoir by Johnson,
Maurey, Schechtman and Tzafriri [1]. The reader is also referred to
the survey by Rosenthal [9] and to the papers: Alspach, Enflo and
Odell [1], Enflo and Rosenthal [1], Enflo and Starbird [1], Gamlen
and Gaudet [1], Stegall [1], [2].

Ad §13. The following result of Ribe [1] shows that, despite the
example of Aharoni and Lindenstrauss [1] mentioned in §13, the
classification of Banach spaces with respect to uniform homeomorph
isms is "close" to linear topological classification.

14.7. If Banaah spaaes X and Yare uniformly homeomorphia, then
there is an a ~ 1 suah that X is loaally a-representable in Y and Y
is loaally a-representable in X.

It is known, however (Enflo oral communication), that the spaces
L1 and ll, which are obviously locally representable each into the
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other, are not uniformly homeomorphic. On the other hand, isomorph
ically different Banach spaces might have the same "uniform dimen
sion ll

•

14.8 (Aharoni [1]). There is a constant K so that for every sep
arable metric space (x,d) there is a map T: X->-c o satisfying the
condition d(x,y) :;; IITx - Tyll :> Kd(x,y) for every x,y E X. Hence every
separable Banach space is uniformly homeomorphic to a bounded subset
of co·

14.9 (Aharoni [2]). For 1 :> P :> 2,1 :> q < co, LP is uniformly homeo
morphic to a subset of lq, i.e. there is a subset Zc lq and a homeo
morphism f: LP ->- Z such that f and f- 1 are uniformly continuous.
Moreover, LP is uniformly homeomorphic to a bounded subset of itself.
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