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Preface

The book Ground Vehicle Dynamics is the revised English edition of the
book Fahrzeugdynamik originally published in German back in 1993. During
the preparation of this English edition the first author Karl Popp passed
away far too early. In his spirit, and for his memories, two members of Karl
Popp’s research group at the Leibniz University Hanover, Matthias Kröger
and Lars Panning, agreed to contribute to the ongoing work on this edition of
the book. However, it took more time than originally planned and Matthias
Kröger moved to the Technical University Bergakademie Freiberg as head of
the Institute of Machine Elements, Design and Manufacturing.

Vehicle dynamics deals with the mechanical modeling as well as the math-
ematical description and analysis of vehicle systems. The aim of this book
is a methodologically based introduction to the dynamics of ground vehicle
systems. The different kinds of vehicles like automobiles, rail cars or magnet-
ically levitated vehicles are not considered one by one but the dynamically
common problems of all these vehicle systems are treated from a uniform
point of view. This is achieved by a system oriented approach. The evalu-
ation of meaningful mathematical models allows simulations of motion and
parameter studies well in advance of setting up a first prototype. The trend to
shorter periods for the development and to larger numbers of vehicle versions
demands from the engineer comprehensive computations, the fundamentals
of which are presented in this book.

The fundamental concept of this book is based on a modularization into
vehicle subsystems with standardized interfaces. In the first vital part the
models of vehicles, guidance and suspension systems as well as guideway sys-
tems are presented, they are mathematically described in detail and they are
assembled to complete vehicle-guideway systems. The second methodologi-
cally oriented part is devoted to the performance criteria driving stability,
driving safety and durability. Then, it follows a review on the computa-
tional methods for linear and nonlinear vehicle systems. The sophisticated
theoretical methods related to the demanding problems in vehicle dynam-
ics are applied in the third part to longitudinally, laterally and vertically
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decoupled motions providing the basics of vehicle dynamics. An appendix
with some results from the theory of optimal multivariable control systems
presents methods for the control design of mechatronic vehicle components.
The many problems included in the book show mainly simple applications
of the theory presented, and their solutions will support the reader in better
understanding the theory and the fundamentals of railway and road vehicles.

The book is devoted on the one hand to students of applied mechanics and
system theory as well as mechanical engineering and automotive engineering.
The book will support lectures on vehicle systems and provide a view on the
general behavior of ground vehicles. On the other hand the book illustrates to
engineers joining or working with a vehicle company, or one of their suppliers,
advanced methods which are the basis of software tools widely used today in
industry. Thus, the book may contribute to continuing education. Moreover,
the systematic methodologically based approach is a good example for many
divisions of mechanical engineering and mechatronics.

Compared to the successful German edition which has been out of print for
some years, the English edition has been only slightly revised. New references
are added throughout the book, in Chapter 2 the recursive formalisms for
multibody dynamics are discussed, in Chapter 6 the revised ISO Standard
2631 is considered, in Chapter 7 the standard time integration codes provided
by Matlab are evaluated and in Chapter 10 a planar half-car model has been
included to fill the gap between the quarter-car model and the complex vehicle
model. Since the book is now written in English, some German keywords are
added in the appendix. This may help the German reader to identify more
easily the technical terms for subjects in which she or he is interested.

The authors and contributors of the book acknowledge the continuous
support of the Institute of Engineering and Computational Mechanics at the
University of Stuttgart headed by Peter Eberhard. We thank our co-workers
from Hanover and the many students from Stuttgart, for typing formulas,
tables and text as well as for drawing the figures. Moreover, thanks are due
to members of the Institute of Engineering and Computational Mechanics for
proofreading the manuscript. In particular, Daniel Garćıa Vallejo, a post-doc
from the University of Seville, Spain contributed to the final editorial work
on the book during his stay at the Institute. Finally it has to be pointed
out that the cooperation with Petra Jantzen, Dieter Merkle and Christoph
Baumann from Springer-Verlag was excellent.

Freiberg Matthias Kröger
Hanover Lars Panning
Stuttgart Werner Schiehlen
October 2009
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Preface to the German Edition

Das vorliegende Buch entstand durch die bereits einige Zeit zurückliegende
Anregung unseres verehrten Lehrers, Herrn Prof. Dr. Dr. - Ing. E.h. K. Mag-
nus. Berücksichtigung fanden die Ergebnisse zahlreicher neuerer, zum Teil
gemeinsamer Forschungsarbeiten. Vor allem aber ist die mehr als zehnjährige
Lehrerfahrung der Verfasser aus Vorlesungen über Fahrzeugdynamik an der
Technischen Universität München, der Universität Hannover und der Uni-
versität Stuttgart eingeflossen. Hilfreich zur Aufbereitung des umfangreichen
Stoffes waren ferner die bei der Durchführung des Kurses ”Dynamics of High-
Speed Verhicles” am Internationalen Zentrum für Mechanik (CISM) in Udine
gesammelten Erfahrungen.

Die Fahrzeugdynamik befaßt sich mit der mechanischen Modellierung
sowie der maithematischen Beschreibung und Analyse von Fahrzeugsyste-
men. Ziel dieses Buches ist es, eine methodenorientierte Einführung in die
Dynamik landgestützter Fahrzeugsysteme zu geben. Dabei werden nicht die
einzelnen Fahrzeugarten wie Kraftfahrzeuge, Schienenfahrzeuge oder Mag-
netschwebebahnen nebeneinander betrachtet, sondern die allen Fahrzeugsys-
temen gemeinsamen dynamischen Probleme unter einheitlichen Gesichtspunk-
ten behandelt. Dies ist durch eine systemtheoretische Betrachtungsweise
möglich. Die Bereitstellung aussagekräftiger mathematischer Modelle erlaubt
Bewegungssimulationen und Parameterstudien lange bevor der erste Proto-
typ gebaut wird. Der Trend zu kürzeren Entwicklungszeiten und eine große
Variantenvielfalt verlangen heute vom Ingenieur umfassende Berechnungen,
für die dieses Buch die Grundlagen vermitteln soll.

Das Grundkonzept des vorliegenden Buches beruht auf einer Modular-
isierung der Fahrzeugteilsysteme mit standardisierten Schnittstellen. Im er-
sten zentralen Teil werden die Modelle für Fahrzeuge, Trag- und Führsysteme
sowie Fahrwege im einzelnen begründet, mathematisch ausführlich beschrieben
und zu Gesamtmodellen für Fahrzeug-Fahrweg-Systeme zusammengefaßt.
Der zweite, methodenorientierte Teil wird durch die Beurteilungskriterien
Fahrstabilität, Fahrsicherheit, Fahrkomfort und Bauteil-Lebensdauer ein-
geleitet. Anschließend folgt die Darstellung der Berechnungsmethoden für
lineare und nichtlineare Fahrzeugsysteme. Die der anspruchsvollen Auf-
gabenstellung ent-sprechenden theoretischen Verfahren werden im dritten
Teil am Beispiel einfacher Longitudinal-, Lateral- und Vertikalbewegun-
gen verdeutlicht. Ein Anhang mit Ergebnissen aus der Theorie optimaler
Mehrgrößenregelsysteme trägt dem Trend zu aktiven Fahrzeugkomponenten
Rechnung. Eine Vielzahl aufeinander abgestimmter und in die einzelnen Kapi-
tel eingestreuter Beispiele mit ausführlichen Lösungen sollen das Verständnis
der Theorie erleichtern und die Anschauung fördern.

Das Buch wendet sich einerseits an die Studierenden der Angewandten
Mechanik und Systemtheorie sowie der Fahrzeugtechnik. Es soll insbeson-
dere Vorlesungen über spezielle Fahrzeugsysteme unterstützen und den Blick
für allgemeine Zusammenhänge schärfen. Andererseits zeigt es dem in der
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Praxis stehenden Ingenieur die Fortschritte bei der Untersuchung komplexer
Fahrzeugmodelle auf und dient so der Weiterbildung. Darüber hinaus ist das
systematische Vorgehen beispielhaft für viele Bereiche des Maschinenbaus.
Die Verfasser danken Herrn Dipl.-Ing. R. Austermann und Herrn Dipl.-Ing.
P. Eberhard für die sorgfältige Durchsicht der Druckfahnen sowie Herrn W.
Pietsch für die Erstellung der Reinzeichnungen und Bilder. Dank gebührt
ferner den vielen Helfern beim Schreiben des Manuskripts. Schließlich gilt
unser Dank dem Verlag B. G. Teubner für die erwiesene Geduld und die
stets erfreuliche Zusammenarbeit.

Hannover K. Popp
Stuttgart W. Schiehlen
Sommer 1992
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1

System Definition and Modeling

Ground vehicle systems are composed by the vehicle body, the propulsion,
guidance and suspension devices, and the guideway, see Fig. 1.1. These com-
ponents are interacting dynamically with each other. As the vehicle is trav-
eling on the guideway, internal propulsion and suspension forces as well as
external disturbances are acting on the vehicle body. Furthermore, the mo-
tion of the vehicle affects passengers and goods carried on the vehicle. The
dynamical analysis of this interplay of forces and motions is the subject of
vehicle dynamics. This analysis requires an integrated treatment of all system
components interacting with each other.

The basis of a theoretical analysis of vehicle systems is an appropriate
mathematical model adapted to the given engineering task. The quality of
the results achievable on a system’s dynamical behavior depends on the un-
derlying model. Therefore, the mathematical model has to be as detailed as
possible to represent accurately and completely all the essential properties
of the vehicle system. On the other hand, the model has to be as simple as
possible to allow efficient and fast simulations of the vehicle motions essen-
tial for the manufacturers competing on a global market. These conflicting
requirements show that modeling is a difficult engineering task, in particular,
for complex systems like today’s vehicles.

For the modeling it is advisable to decompose the total system in sub-
systems, e.g. the components shown in Fig. 1.1, with interfaces for forces and
motions clearly defined. Then, the subsystems may be modeled separately
and composed by modular assembly to the mathematical model of the overall
system. The modular concept allows different modeling approaches for the
individual subsystems, it offers the required flexibility for design variations
and it is essential for the lucidity of large complex systems.

On principle, there are two procedures known for modeling, see Fig. 1.2,

• the empirical approach, and
• the axiomatic approach.
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Fig. 1.1. Vehicle system components

The empirical approach is based on measurements with prototypes of
components or vehicles, respectively, which are processed by identification
methods resulting in a mathematical model. For this purpose the system un-
der consideration is excited with known test signals and the responses are
recorded. From the input-output relation the parameters of the mathemat-
ical model are identified considering the a-prior-knowledge on the structure
of the system. This method is called parametric identification. If there is no
information on the structure of the system available, then a black box prob-
lem is given. In this case the structure of the system and its parameters have
to be found, too, and the method is called non-parametric identification.
For linear time-invariant systems reliable identification methods are avail-
able, Ljung (1999) and Pintelon and Schoukens (2001). In vehicle dynamics
the frequency response method proved to be successful but the covariance
method can be also applied.

The axiomatic approach results directly in a mathematical model by appli-
cation of fundamental, already mathematically described physical principles.
This model emphasizes the structure of the system as well as relations between
the system parameters. But some of the parameter values like damping coef-
ficients may remain unknown. For the application of the fundamental princi-
ples on complex systems it is often necessary to deal with more simple systems
of idealized elements which are called physical models. The already discussed
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Fig. 1.2. Approaches of modeling: empirical (left) and axiomatic (right)

conflicts related to mathematical modeling apply to physical modeling, too.
The models have to be as simple as possible and as detailed as required.

The mathematical description of complex dynamical systems requires in
general a combination of both approaches. Whenever possible, the less ex-
pensive axiomatic approach will be applied. The missing parameter values
have to be found by experiments, and the final results should be validated
empirically. The modeling is considered to be satisfactory if the theoretical
predictions coincide with the experimental findings.

In the following the axiomatic approach to modeling will be presented in
detail for all vehicle systems under consideration. To cover as many differ-
ent designs as possible, firstly the components shown in Fig. 1.1 are treated
separately by realistic models. Then, the components are assembled system-
atically resulting in the mathematical model of the global system easy to
assess and efficient to be analyzed computationally.
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The first step is the choice of a physical model which is determined by the
engineering task. Vehicles consist mainly of mechanical components which
can be modeled by

• MultiBody Systems (MBS),
• Finite Element Systems (FES),
• COntinuous Systems (COS).

The range of application of these structural different modeling approaches
depends on the geometry and the stiffness of the components to be modeled,
see Table 1.1. However, the boundaries of these ranges of application are
open, and the engineer has some freedom for his choice. The corresponding
mathematical models have also different structures. An important feature
is the number of degrees of freedom characterizing the linear independent
possibilities of motion of the physical model mathematically described by a
corresponding number of time-varying generalized coordinates.

Multibody Systems (MBS) consist of a finite number of rigid or flexible
bodies, respectively, which may also degenerate to particles. All of them are
characterized by matter and the corresponding inertia. The bodies and parti-
cles are interconnected with each other and with the environment by springs,
dampers and actuators as well as by bearings, joints and servomechanisms,
all of them without mass. An important hypothesis in vehicle dynamics is the
assumption of rigid bodies for the modeling of low frequency motions. Rigid
bodies are characterized by constant distances between all material points
resulting in six degrees of freedom of each body. However, the number of
degrees of freedom of a multibody system is reduced by the bearings. Due
to the compliant elements acting at a discrete number of node points on the
rigid bodies the stiffness distribution within a multibody system is inhomo-
geneous. Furthermore, there are no restrictions with respect to the geometry
resulting in the high adaptability of multibody systems. The motion behav-
ior is completely described by generalized coordinates the number of which is
equal to the number f of degrees of freedom. The linear equations of motion
of a multibody system read as

M ÿ(t) +D ẏ(t) +Ky(t) = f (t) . (1.1)

These equations represent a system of ordinary differential equations of sec-
ond order where the symmetric f × f -matrices M , D, K characterize the
inertia, the damping and the stiffness behavior of the vehicle component un-
der consideration. The f × 1 -column vector y(t) summarizes the generalized
coordinates and the f × 1 -column vector f(t) describes the time-dependent
excitation forces, see e.g. Table 1.2. Equations (1.1) have to be supplemented
by the initial conditions. Then, in terms of mathematics, an initial value
problem with an existing and unique solution is given.

Finite element systems (FES) consist of simple, non-rigid elements like
rods, beams, plates etc. with a finite number as degrees of freedom. At node
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Table 1.1. Physical models for vehicle components

Number of
Model Geometry

Stiffness Mathematical
degrees of

distribution model
freedom

Multibody ordinary
system complex homogeneous differential finite (small)
(MBS) equations

Finite ordinary
element system complex homogeneous differential finite (large)

(FES) equations

Continuous partial
system simple inhomogeneous differential infinite
(COS) equations

Table 1.2. Examples of physical models and their corresponding equations of
motion

f2 f1

w

EI, ρA
x

Multibody system
(MBS)

Finite element system Continuous system
(COS)(FES)

+ Ky(t) = f(t)

EI
δ4w(x, t)

δx4

+ ρA
δ2w(x, t)

δt2
= 0

Mÿ(t) + Dẏ(t) Mÿ(t) + Ky(t) = 0

points there are acting discrete loads, and there may be attached particles,
springs, bearings etc. Further, the boundary conditions are taken into account
by motions or forces, respectively, at the node points. The linear independent
motions of the node points represent the degrees of freedom of the total FES.
The number of degrees of freedom is finite due to the finite number of node
points, however, the numbers are much higher than with comparable multi-
body systems due to the non-rigid elements. The deformations within the
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finite elements between the node points are identified by shape functions. The
modeling procedure with FES is very flexible, there don’t exist any restric-
tions with respect to the geometric system design. Modeling is very efficient
by using uniform or similar elements, and by collecting groups of elements
in super-elements or sub-structures, respectively. Free undamped vibrations
occur in beam structures, see e.g. Table 1.2, resulting in equations of motion
of the form

M ÿ(t) +K y(t) = 0 (1.2)

where the symmetric f × f -matrices M and K characterizes the inertia and
stiffness properties, again. In addition, initial conditions have to be specified.
Thus, an initial value problem is given as in the case of MBS.

Continuous systems (COS) consist of non-rigid bodies with distributed
mass and stiffness parameters. As an example one-dimensional continua
with homogeneous mass and stiffness properties are considered, in particular
flexible beams as shown in Table 1.2. Due to the time-varying distances be-
tween the material points, beams have an infinite number of degrees of free-
dom. Mathematically, continuous beams are represented by partial differen-
tial equations. Thus, the equation of motion of an infinitesimal beam element
with plane cross sections reads as

EI
∂4w(x, t)

∂ x4
+ ρ A

∂2w(x, t)
∂ t2

= 0 , (1.3)

where EI means the flexural stiffness, ρA the related inertia, and w(x, t) is
the deflection. Equation (1.3) has to be completed by initial and boundary
conditions resulting in an initial and boundary value problem. In many cases
such problems can be transferred by separation of the variables with the
ansatz

w(x, t) = ϕ(x) y(t) (1.4)

into a boundary value eigenvalue problem for ϕ(x) and an initial value prob-
lem for y(t) which may be solved at least approximately.

Nowadays, the modeling of complex systems is strongly supported by com-
putational approaches. For MBS, and in particular for FES, many efficient
computer codes are available on the market, the characteristic features of
which are discussed by Kortuem and Sharp (1993).

The analysis of the different models is strongly depending on the kind
and the time behavior of the acting forces. The following kinds of forces are
distinguished:

• external forces and internal forces,
• applied forces and constraint forces,
• surface forces and volume forces.
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The first category depends on the system boundary chosen. Forces originating
from outside the boundary are called external forces while forces completely
defined within the system boundary are called internal forces. Internal forces
appear always twice according to the counteraction principal (actio = reactio)
with the same amount but opposite direction within the free body diagram.
Furthermore, internal forces may become external forces by changing the
system boundary upon decision of the analyst.

The second distinction is related to the cause of the forces. Applied forces
are a priori described by a physical force law. Constraint or reaction forces,
respectively, follow a posteriori from the principle of mechanics. With vehicle
systems, e.g., gravity forces represent applied forces while the forces between
a rigid rolling wheel and a rigid guideway belong to the constraint forces.

The third distinction is characterized by the distribution of forces. Sur-
face forces are area-related while volume forces are spatially distributed and,
therefore, they depend on the volume of the body under consideration. E.g.,
friction forces are surface forces while gravitational and magnetic forces are
counted as volume forces.

Regarding the time history of forces there are distinguished

• deterministic forces,
• stochastic forces.

Deterministic forces are uniquely determined by a given function of time,
e.g. periodic trajectories or impulsive functions. Stochastic forces, on the
other hand, are random in time, they can be characterized, however, using
statistical approaches and models. Some force trajectories typical for vehicle
systems are shown in Table 1.3.

A mathematical representation of generally periodic forces is obtained by
Fourier series as Ω = 2π/T

f(t) = f(t + T ) = f0 +
∞∑

j=1

(fcj cos jΩt + fsj sin jΩt) , (1.5)

where f0, fcj and fsj are the Fourier coefficients and Ω means the frequency
with the period T . In many applications there is only the basic harmonic
(j = 1) needed.

Short-time acting impulsive forces may be described by the Dirac δ - func-
tion:

f(t) = pδ(t − t0) . (1.6)

where p means the impulse intensity. Important properties of the δ - function
(or more accurately δ - distribution) read as

δ(t − t0) =
{

0
∞ for

t �= t0,
t = t0,

lim
ε→0

t0+ε∫

t0−ε
δ(τ − t0)dτ = 1 . (1.7)
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Table 1.3. Time history of forces acting on vehicles

Time history
Mathematical
representation

Examples from
vehicle systems

T

fs

f(t) = p δ(t − t0)

Mean value mf

Correlation function Rf (τ)

f(t) = fs sinΩt, Ω =
2π

T
of drive-train or

t

f(t)

t

f(t)

t

f(t)

t

f(t) f(t) ∼ [mf , Rf (τ)]

f(t) =
∞∑

j=0

fj{t − tK}j

t0

∞

Unbalance forces

Forces from peri-
odically con-
structed guide-
ways

Disturbances

Forces by driving
over an obstacle

Aerodynamic

Disturbances

wheels

+fsj sin jΩt)

f(t) = f0

+
∞∑

j=1

(fcj cos jΩt

f(t)

t

T from internal
combustion engi-
nes

forces due to gust
of wind

from random
guideway un-
evennessτ

Due to the infinitesimal short duration of the δ - function the force function
(1.6) is an idealization of real impulsive forces. The quantity p has the unit
force times time or mass times velocity, respectively. Thus, it can be inter-
preted as a variation of the mechanical impulse due to a force impact. A more
realistic description of short-time forces starting at time tk is provided by the
Heaviside functions {t − tk}j:
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f(t) =
∞∑

j=0

fj{t − tk}j (1.8)

where it yields

{t − tk}j =
{

(t − tk)j

0 for
t ≥ tk ,
t < tk .

(1.9)

As a special case it follows from (1.9) with j = 0 the unit step function de-
scribing curbstone obstacles. The coefficients fj have different units depend-
ing on the index j, and they have to be adjusted or identified, respectively,
to measured force functions. This completes the mathematical representation
of transiently acting forces. Moreover, the Heaviside functions allow also the
description of multiple obstacles when a series of starting times tk, k = 0, 1,
2, ... is used.

The description of stochastic processes will be presented in Section 4.2.1
in more detail. It turns out that for many applications in vehicle dynamics
Gaussian processes can be used which are uniquely defined by their mean
value mf and their correlation function Rf (τ):

f(t) ∼ [mf , Rf (τ)] . (1.10)

Under the assumption of ergodic processes both characteristics can also be
found from one realization f(t) by integration over an infinite period of time,

mf = lim
T→∞

1
2T

T∫

−T
f(t)dt , (1.11)

Rf (τ) = lim
T→∞

1
2T

T∫

−T
f(t + τ)f(t)dt = Rf (−τ) . (1.12)

In engineering, these definitions are used for large finite time intervals, too,
resulting in acceptable approximations. The correlation function character-
izes the relationship of the random variables at two times distinguished by
the correlation time τ . For τ → ∞ any relationship for the considered ran-
dom process disappears, one gets with mf = 0 therefore R(τ → ∞) = 0.
For τ → 0 the random variables are completely identical resulting in a max-
imum of the correlation function. This maximum agrees with the quadratic
mean as shown by (1.12), too. The correlation function is an even function,
R(τ) = R(−τ).





2

Vehicle Models

For the modeling of vehicle motions with frequencies up to 50 Hz the method
of multibody systems is most appropriate. The composition of the mechani-
cal model is obtained immediately from the design of the vehicle due to great
differences in the stiffness distribution, Fig. 2.1. In the following the gener-
ation of the equations of motion for multibody systems is presented step by
step up to the basics of computer-aided approaches.

2.1 Elements of Multibody Systems

The elements of multibody systems for vehicle modeling, see Fig. 2.1, include
rigid bodies which may also degenerate to particles, coupling elements like
springs, dampers or force controlled actuators as well as ideal, i.e. inflexi-
ble, kinematical connecting elements like joints, bearings, rails and motion
controlled actuators. The coupling and connection elements, respectively, are
generating internal forces and torques between the bodies of the system or
external forces with respect to the environment. Both of them are considered
as massless elements.

The constraints resulting from the connecting elements may be holonomic or
nonholonomic, scleronomic or rheonomic, respectively. Holonomic constraints
reduce the motion space of the system while nonholonomic constraints reduce
the velocity space. The constraint equations are called rheonomic if they de-
pend explicitly on time, and scleronomic otherwise. Real vehicle systems are
subject to holonomic constraints only which may be given by geometrical or
integrable kinematical conditions. However, in more simplified models, e.g.
rolling of a rigid wheel or wheelset on a rigid plane, nonholonomic constraints
may occur. Some configurations of holonomic connecting elements are listed
in Table 2.1 depending on the number of degrees of freedom characterizing
the remaining possibilities of motion. Now the motion of vehicle parts will
be described mathematically depending on space and time. This is the task
of kinematics.
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Table 2.1. Configurations of holonomic connecting elements

Degrees of freedom
Motion

1 2 3

Rotary Revolute joint Universal joint Spherical joint

Linear Prismatic joint Planar joint

Mixed Screw joint Cylindric joint General planar joint

2.2 Kinematics

The kinematics of a rigid body are presented in an inertial frame and a moving
reference frame, and followed by the kinematics of a multibody system.

2.2.1 Frames of Reference for Vehicle Kinematics

A prerequisite for the mathematical description of position, velocity and ac-
celeration of a mechanical system is the definition of appropriate frames of
reference. The frames required in vehicle dynamics are shown in Fig. 2.2 with
the details summarized in Table 2.2. There will be used only right-handed
Cartesian frames with the unit base vectors eν , |eν | = 1 where the Greek in-
dices generally take the integers 1, 2, 3. A basis or frame {O, eν}, respectively,
is completely defined by its origin O and its base vectors eν . For distinction
between different frames the upper right index is used if necessary. The in-
ertial frame

{
OI , eIν

}
serves as the general reference frame, in particular for

the evaluation of the acceleration. The given trajectory of the vehicle is as-
sumed to be a spatial curve with the moving frame

{
OB , eBν

}
also known as

Frenet frame or moving trihedron. The origin OB is moving with some speed
tangential to the trajectory. The reference frame

{
OR, eRν

}
is closely related

to the moving frame. Its origin and the first unit vector coincide with the
moving frame OR = OB , eR1 = eB1 . The second base vector eR2 , however, is
parallel to the guideway surface considering the bank of the road or the track,
respectively, pointing to the right with respect to the direction of motion.

The body-fixed frame
{
Oi, eiν

}
is the principal axis frame of the rigid

body Ki located in its center of mass Ci. This frame describes uniquely the
position of the body in space. Finally, there is defined a local frame

{
Oj , ejν

}

to describe constraint elements between bodies. It is oriented according to
the local specifications like the direction of a joint axis. In the following a
frame is simply identified by its name (upper right index) only.

2.2.2 Kinematics of a Rigid Body in an Inertial Frame

First of all some definitions and remarks on the nomenclature are presented.
The position of a particle P in space is uniquely defined by the position vector
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Fig. 2.2. Frames of reference

x represented in the inertial frame
{
OI , eIν

}
by its coordinates xν as

x = x1e1 + x2e2 + x3e3 . (2.1)

This set of coordinates may be summarized in a column matrix xI often
simply called a vector, i.e.,

xI =

⎡

⎣
x1

x2

x3

⎤

⎦ ≡ [x1 x2 x3

]T (2.2)

where upper right index defines the frame in which the coordinates are mea-
sured. This index will often be omitted if there isn’t any possibility for a
mix-up of frames or if there is used only one frame identified in the text. A
goal may be to present all vector and tensor quantities in one common frame,
e.g. the inertial frame I. Then, it is possible to integrate subsystems easily
into the complete system.

For a particle P moving in time its coordinates are time-dependent, too,
and they define a trajectory in space. The mathematical representation re-
sults in the vector equation x = x(t) equivalent to three scalar equations ac-
cording to the three degrees of freedom of the particle in the three-dimensional
space. The velocity v(t) and the acceleration a(t) of the particle follow by
differentiation with respect to time as
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Table 2.2. Frames of reference

Frame of reference Origin of frame Orientation of axis

Inertial frame OI eI
1, e

I
2 in horizontal plane

{OI , eI
v} space-fixed eI

3

eB
1 ≡ et tangential to trajectory

Moving frame OB

eB
2 ≡ en normal to trajectory

{OB , eB
v } trajectory-fixed

eB
3 ≡ eb bi-normal to trajectory

eR
1 ≡ eB

1

Reference frame OR

eR
2 in guideway plane

{OR , eR
v } trajectory-fixed

eR
3 normal to guideway plane

Oi ≡ Ci

Body-fixed frame
body-fixed in ei

v principal inertia axes
{Oi , ei

v} center of mass

Local frame Oi

{Oj , ej
v} arbitrary

ej
v locally specified axes

v(t) =
dIx(t)

dt
, vI(t) = ẋI(t) =

[
ẋ1 ẋ2 ẋ3

]T
, (2.3)

a(t) =
dIv(t)

dt
, aI(t) = v̇I(t) = ẍI(t) =

[
ẍ1 ẍ2 ẍ3

]T
. (2.4)

The upper right index refers to the frame of reference in which the operations,
in particular the differentiation, have to be executed. In the inertial frame I
the differentiation of vectors is just performed by differentiation of the scalar
coordinates.

The motion of a particle P on a curvilinear trajectory in space may be
presented in the moving frame B, too. The position of the point is uniquely
identified by the arc length s(t) as a generalized coordinate, Fig. 2.3. Then,
the position vector x is a function of the arc length, x = x(s). For the velocity
and acceleration vector it follows, see e.g. Magnus and Mueller-Slany (2005),

v(t) =
dIx(t)

dt
=

dIx(s)
ds

ds

dt
= v et , v = ṡ ,

vB(t) =
[

ṡ 0 0
]T

, (2.5)
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a(t) =
dIv(t)

dt
= atet + anen = v̇ et +

v2

ρ
en ,

aB(t) =
[
s̈ ṡ2/ρ 0

]T
, (2.6)

where ρ is the curvature of the trajectory in point P . Further, it is

• v = ṡ the tangent velocity,
• at = v̇ = s̈ the tangent acceleration, and
• an = v2

/
ρ = ṡ2

/
ρ the normal or centripetal acceleration.

Special cases of the general motion in space are the motion in a straight line
(ρ → ∞), and the motion on a circle (ρ = const). Often the functions s(t),
ṡ(t), s̈(t), ṡ(s), s̈(s), s̈(ṡ) are depicted in kinematical diagrams for graphical
visualization of the motion along a track.

Problem 2.1 Longitudinal motion of an automobile
The tangent acceleration at of an automobile depends during speed up on the
velocity, at = at(v), and during slow down on the time, at = at(t), according
to the driver’s input, see Fig. 2.4.
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t

Fig. 2.4. Acceleration functions: a) speed up at = at(v); b) slow down at = at(t)
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a) Compute time t required by the vehicle to reach a speed v > vI as well as
the distance s, and draw graphs of the functions v(s), at(s), s(t), v(t), at(t).
b) Compute the braking distance sB and the braking time tB for an initial
speed v0 = 40 m/s, and show the corresponding graphs.

Solution
a) From the fundamental relation

at(v) =
dv

dt
=

dv

ds

ds

dt
= v

dv

ds
(1)

one gets by integration with the initial conditions s(t0) = s0 and v(t0) = v0

the required quantities

t = t0 +

v∫

v0

dv

at(v)
, s = s0 +

v∫

v0

v

at(v)
dv , (2)

where the integration variables are characterized by a bar. The acceleration
at(v), e.g., may be given by a piecewise defined function, see Fig. 2.4 a),

at(v) =

⎧
⎪⎨

⎪⎩

aI 0 ≤ v ≤ vI ,
for

aI
vII − v

vII − vI
vI ≤ v ≤ vII .

(3)

For v > vI the evaluation of the integrals (2) with t0 = 0 and v0 = 0 results
in

t = t(v) =
1
aI

vI∫

0

dv +
vII − vI

aI

v∫

vI

dv

vII − v

=
1
aI

[
vI + (vII − vI)ln

vII − vI
vII − v

]
, (4)

s = s(v) =
1
aI

vI∫

0

vdv +
vII − vI

aI

v∫

vI

vdv

vII − v

=
1

2aI

{
v2
I + 2(vII − vI)

[
vII ln

vII − vI
vII − v

− (v − vI)
]}

. (5)

The speed v = vII is achieved only in the limit t → ∞ or s → ∞, respectively.
The desired kinematic diagrams follow either numerically by evaluation of the
corresponding inverse functions or graphically from the known functions (4)
and (5) where the special arrangement of the diagrams as shown in Fig. 2.5 is
helpful due to the two auxiliary diagrams connecting the different abscissae.
Starting from the known function at(v) and the graphs v(s), v(t) following
from (5) and (4) the missing graphs can be found pointwise.
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Fig. 2.5. Kinematical graphs of the speed up, given at(v)

For piecewise given functions it is often useful to introduce for each interval
i a new independent variable (index i) and to compute the required quantities
by continuous adding. The approach is based on the final values of interval
i − 1 which are used as initial values of interval i. To avoid any confusion,
all values at the end of an interval may be characterized by an asterisk. The
adding approach will be used for the solution of problem b).
b) From the fundamental relations

at(t) =
dv

dt
, v(t) =

ds

dt
(6)

one gets for the required quantities

v = v0 +

t∫

t0

a(t)dt , s = s0 +

t∫

t0

v(t)dt . (7)

With the piecewise representation of the variables
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t =
i=1∑

v=0

t∗v + ti , 0 ≤ ti ≤ t∗i , t∗0 = t0

at(ti) = ai , v(ti) = vi , s(ti) = si , i = 1, 2, . . . (8)

it follows from (7)

vi = v∗i−1 +

ti∫

0

ai(t)dt, si = s∗i−1 +

ti∫

0

vi(t)dt ,

v∗0 = v0 , s∗0 = s0 , i = 1, 2, . . . . (9)

The evaluation can be made in table form or by computer. With the inter-
vals shown in Fig. 2.6 and the numerical values t0 = 0, s0 = 0, v0 = 40 m/s,
|a∗

2| = |a∗
3| = a = 6 m/s2 one gets the numerical scheme shown in Table 2.3.

Table 2.3. Numerical scheme of the kinematics during slow down

Interval i t∗i [s] ai vi = v∗
i−1 +

∫ ti

0
ai(t)dt v∗

i [m/s]

1 1 0 v1 = v0 40

2 0.2 −a
t2
t∗2

v2 = v∗
1 − a

2t∗2
t22 39.4

3 6.57 −a v3 = v∗
2 − at3 0

Interval i t∗i [s] si = s∗i−1 +
∫ ti

0
vi(t)dt s∗i [m]

1 1 s1 = v0t1 40

2 0.2 s2 = s∗1 + v∗
1 t2 − at32

6t∗2
47.84

3 6.57 s3 = s∗2 + v∗
2 t3 − a

2
t23 177.20

The translational motion of a rigid body Ki is completely described by the
general relations for a particle related to a body-fixed point, e.g. the center
of mass Ci of the rigid body, and the corresponding position vector ri, see
Fig. 2.7. The rotational motion of a rigid body Ki follows from the relative
position of two frames where one of them is a body-fixed frame. For coinciding
origins the position of the body-fixed frame i relative to the inertial frame I
is defined by three rotation angles according to the three rotational degrees
of freedom of a rigid body in space. Both frames are related to each other
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Fig. 2.6. Kinematical graphs of the slow down, given at(t)

by three elementary rotations performed successively around different base
vectors using three rotation angles. If, for example, the frame i is revolved
around the coinciding 3-axes of frame I and i by the angle γ, the relation of
the corresponding base vectors is given by the matrix SIi as shown in Fig. 2.8
and reads as
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Fig. 2.7. Position of a rigid body Ki in the inertial frame I

⎡

⎢⎣
eI1
eI2
eI3

⎤

⎥⎦ =

⎡

⎢⎣
cos γ − sinγ 0
sin γ cos γ 0

0 0 1

⎤

⎥⎦

︸ ︷︷ ︸
SIi = γ3

⎡

⎢⎣
ei1
ei2
ei3

⎤

⎥⎦ (2.7)

The row ν of the elementary rotation matrix γ3 is composed of the coordi-
nates of the base vector eIν in frame i. The corresponding matrices for positive
rotations around the remaining axes read as

α 1 =

⎡

⎣
1 0 0
0 cosα − sinα
0 sin α cosα

⎤

⎦ , β2 =

⎡

⎣
cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

⎤

⎦ (2.8)

where the elementary rotation matrices are characterized by the name of
the rotation angle and the index related to the axis of rotation. There are
numerous possibilities to choose the name of the angle, however, the sequence
of the rotation axes used is not commutative. In vehicle dynamics the Cardano
angles α, β, γ are often used, see Fig. 2.9, which are different from the well-
known Euler angles ψ, ϑ, ϕ.

eI2
γ

ei1

eI1

ei2

ei3 = eI3

γ

Fig. 2.8. Elementary rotation with angle γ around 3-axes
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Fig. 2.9. Spatial rotation with Cardano angles α, β, γ

The resulting rotation matrices SIi which present the relation between
frames I and i are obtained by the corresponding matrix multiplications

SIi (α, β, γ) = α1 β2 γ3 , SIi (ψ, ϑ, ϕ) = ψ3 ϑ 1ϕ 3 . (2.9)

Since matrix products are not commutative, the sequence of the elementary
rotations has to be observed strongly. The Cardano and Euler angles, respec-
tively, are defined by successive rotations around the 1-, 2-, 3-axis and 3-, 1-,
3-axis, respectively, starting from the inertial frame I. The sequence of the
elementary rotations is uniquely identified by the sequence of the indices of
the elementary rotation matrices as shown in (2.9).

The rotation matrices are orthogonal matrices

SiI =
(
SIi
)−1

=
(
SIi
)T

= SiI , detS = +1 (2.10)

where the inversion is also represented by the exchange of the upper indices.
Thus, the inverse rotation matrix is simply found by transposition of the
original rotation matrix SIi. Using Cardano angles the rotation matrix reads
explicitly as

SIi (α, β, γ) =

⎡

⎣
cβcγ −cβsγ sβ

cαsγ + sαsβcγ cαcγ − sαsβsγ −sαcβ
sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ

⎤

⎦ , (2.11)

where the abbreviations c and s stands for cos and sin, respectively. In appli-
cations often small rotations are found, α, β, γ � 1, resulting in the linearized
rotation matrix

SIi (α, β, γ) =

⎡

⎣
1 −γ β
γ 1 −α

−β α 1

⎤

⎦ . (2.12)
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This result is also obtained if the elementary rotation matrices are linearized
and multiplied with each other. Due to the vector property of small rota-
tions the sequence of the multiplications has no longer to be considered. For
small rotations the Cardano angles may be assigned directly to the rota-
tional motions around the body-fixed axes, Fig. 2.10. In vehicle engineering
the following notations are used,

• α roll motion,
• β pitch motion,
• γ yaw motion.

eI
1

α

ei
1

ei
2

γ

ei
3

eI
3

OI
eI

2

driving direction

roll

pitch

C

yaw

β

Fig. 2.10. Notation of rotary vehicle motions

Problem 2.2 Rotation matrix for a railway wheelset
A railway wheelset is running on a straight track. Evaluate the rotation ma-
trix SRZ between the track related reference frame R and an intermediate
frame Z with origin in the wheelset’s center of mass C and the 2-axis along
the wheelset axle, see Fig. 2.11. The frame Z describes the wheelset motion
without the large rotation around the wheelset axle. The frame R is trans-
formed into the frame Z by two elementary rotations, the first one by angle
γ around the 3-axis and the second one by angle α around the 1-axis. Both
rotation angles may be considered as small, α, γ � 1.
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Fig. 2.11. Wheelset frames and rotations

Solution
The rotation matrix can be defined as a product of the elementary rotation
matrices γ3 and α1 where γ3 is applied firstly with respect to frame R and
then it follows α1 (s=̂ sin, c=̂ cos),

SRZ = γ3a1 =

⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 cα −sα
0 sα cα

⎤

⎦ =

⎡

⎣
cγ −cαsγ sαsγ
sγ cαcγ −sαcγ
0 sα cα

⎤

⎦ . (1)

Obviously, Eq. (1) is different from the definition (2.11) of the Cardano angle
even if β = 0 is considered. The reason is the interchange of the sequence of
the elementary rotations. For small angle one obtains from (1) by linearization

SRZ ≈
⎡

⎣
1 −γ 0
γ 1 −α
0 α 1

⎤

⎦ . (2)

Comparing (2) with (2.12) for β = 0 shows complete agreement. Thus, it
turns out again that the sequence of small elementary rotations has not to
be considered.

The coordinates of a vector x read differently for different frames. The rela-
tion between the coordinates xi in frame i and the coordinates xI in frame
I is given by the transformation law for vector coordinates as

xi = SiIxI and xI = SIixi , (2.13)

respectively, what is easily proven by (2.10). Please observe that the same
indices appear in both forms in a neighboring sequence. This property is often
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helpful in applications. Further, it has to be pointed out that the rotation
matrix S is a function of time, S = S(t), what has to be considered for time
derivations.

The position of a rigid body Ki in the inertial frame is uniquely described
by the position quantities {ri,SIi} which characterize the body-fixed frame
{Ci, eiν}. During motion the position quantities are functions of time. Thus,
the position coordinates of an arbitrary particle P of the rigid body read in
the inertial frame I as

rI(t) = rIi (t) + ρI(t) , ρI(t) = SIi(t)ρi , (2.14)

where in the body-fixed frame it yields ρi = const, see also Fig. 2.7.
The kinematics of a rigid body Ki will be now presented in the inertial

frame I. The change of the position of its particle P with respect to time
relative to frame I is found by differentiation of (2.14) as

ṙI(t) = ṙIi (t) + Ṡ
Ii

(t)ρi = ṙIi (t) + Ṡ
Ii

(t)SiI(t)ρI(t) . (2.15)

The first term on the right-hand side represents the translational velocity of
the origin Ci of the body-fixed frame i. The second term is obviously related to
the rotation of the body-fixed frame and represents the body’s rotation. This
term will now be discussed in more detail. The matrix product [Ṡ(t)ST(t)] is
skew symmetric, i.e. [•] = − [•]T, what follows immediately from the differ-
entiation of the orthogonality condition S(t)ST(t) = E according to (2.10):

d
dt

[
S(t)ST(t)

]
= Ṡ(t)ST(t) + S(t)Ṡ

T
(t)

=
[
Ṡ(t)ST(t)

]
+
[
Ṡ(t)ST(t)

]T
= 0 . (2.16)

The matrix product [•] will be abbreviated by the symbol ω̃ (t) and identified
by the corresponding three coordinates ων = ων(t), ν = 1(1)3, as follows

Ṡ
Ii
(
SIi
)T

= Ṡ
Ii
SiI = ω̃IIi(t) =

⎡

⎣
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎦ , ωIIi =

⎡

⎣
ω1

ω2

ω3

⎤

⎦ .

(2.17)

Both quantities, the skew symmetric tensor ω̃IIi and the corresponding ro-
tational velocity vector ωIIi, respectively, describe the rotational motion of
system i or body Ki, respectively, relative to the inertial frame I. The upper
indices indicate that both quantities are represented in the inertial frame I.
If there is no chance for mixing up the frames the upper and lower index I is
simply deleted. The skew symmetric tensor corresponding with a vector [•]
is further identified by the symbol [•̃] and it replaces the vector product

ω̃ρ ≡ ω × ρ . (2.18)
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In coordinates, in any frame, one gets accordingly

ω̃ ρ =

⎡

⎣
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎦

⎡

⎣
ρ1

ρ2

ρ3

⎤

⎦ =

⎡

⎣
ω2ρ3 − ω3ρ2

ω3ρ1 − ω1ρ3

ω1ρ2 − ω2ρ1

⎤

⎦ . (2.19)

This notation of the vector product is most valuable for numerical computa-
tions since the vector product is not defined in matrix calculus.

The rotational velocity vector ωiIi in the body-fixed frame i follows from
transformation or direct evaluation, respectively. The application of transfor-
mation (2.13) to (2.19) results in

ω̃iIi = SiI ω̃IIiS
Ii = SiI

(
Ṡ
Ii
SiI
)
SIi = SiIṠ

Ii
=
(
SIi
)T

Ṡ
Ii

. (2.20)

The first and second term of (2.20) represents the transformation law for
tensor coordinates where the same indices appear again in a neighboring
sequence, the first and last term show the direct evaluation. The correspond-
ing vector to (2.20) is ωiIi = SiIωIIi where the transformation law for vector
coordinates has been used again.

From (2.15) and (2.17) it follows for rigid body Ki

vI(t) = vIi (t) + ω̃IIi(t)ρ
I(t) . (2.21)

Considering (2.18), this is the relation for rigid body kinematics well-known
from each mechanics textbook as

v(t) = vi(t) + ωIi(t) × ρ(t) . (2.22)

The relations (2.21) or (2.22), respectively, represent the motion of a rigid
body composed by an absolute translational velocity vi of the body-fixed
reference point Oi = Ci, and a rotation with the angular velocity ωIi. The
fundamental kinematical quantities {vi,ωIi} are also denoted as twist char-
acterizing uniquely the motion of a rigid body.

Problem 2.3 Angular velocity of a rigid body
A rigid body is rotating in space. Evaluate the coordinates of the angular
velocity vector ωIi of a rigid body Ki in the inertial frame I and in a body-
fixed frame i provided that its position is given by time-varying Cardano
angles, see Fig. 2.9.

Solution
For the evaluation two different approaches are available. The analytical ap-
proach is based on the definitions (2.17) or (2.20), respectively, where the
rotation matrix SIi according to (2.11) has to be used. The necessary compu-
tation are left to the reader. The geometrical approach is based on the angular
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velocities α̇, β̇, γ̇ of the three elementary rotations the vectors of which are
simply added. From Fig. 2.9 follows

ωIi = α̇ eI1 + β̇ eZ2 + γ̇ ei1 (1)

where eZ2 is the 2-axis of an intermediate frame Z. If the unit vectors appear-
ing in (1) are transformed to the inertial frame I it remains

ωIIi =

⎡

⎣
1
0
0

⎤

⎦ α̇ +

⎡

⎣
0
cα
sα

⎤

⎦ β̇ +

⎡

⎣
sβ

−sαcβ
cαcβ

⎤

⎦ γ̇ =

⎡

⎣
1 0 sβ
0 cα −sαcβ
0 sα cαcβ

⎤

⎦

⎡

⎣
α̇

β̇
γ̇

⎤

⎦ . (2)

The coordinates ωIIi in the body-fixed frame i are obtained either by coor-
dinate transformation of (2), ωiIi = SiIωIIi, or by the geometrical approach
according to (2) by presentation of (1) in frame i,

ωiIi =

⎡

⎣
cβcγ

−cβsγ
sβ

⎤

⎦ α̇ +

⎡

⎣
sγ
cγ
0

⎤

⎦ β̇ +

⎡

⎣
0
0
1

⎤

⎦ γ̇ =

⎡

⎣
cβcγ sγ 0

−cβsγ cγ 0
sβ 0 1

⎤

⎦

⎡

⎣
α̇

β̇
γ̇

⎤

⎦ . (3)

It turns out from both representations that the coordinates of the angular
velocity vector depend on the time derivatives of the Cardano angles and on
the Cardano angles itself in addition. Only for small angles α, β, γ � 1 the
coordinates of the angular velocity vector

ωIIi = ωiIi =
[
α̇ β̇ γ̇

]T
for α, β, γ � 1 (4)

depend only on the time derivatives of the Cardano angles independent of
the frame used, frame I or frame i, respectively.

Problem 2.4 Angular velocity of a railway wheelset
A railway wheelset is running on a straight track. Evaluate the angular ve-
locity ωZRZ of the intermediate frame Z with the respect to the trajectory-
fixed reference frame R, represented in frame R, for the wheelset given in
Problem 2.2.

Solution
From Fig. 2.11 it follows immediately

ωZRZ =

⎡

⎣
cγ
sγ
0

⎤

⎦ α̇ +

⎡

⎣
0
0
1

⎤

⎦ γ̇ =

⎡

⎣
cγα̇
sγα̇
γ̇

⎤

⎦ . (1)

On the other hand one obtains by definition (2.17) using the rotational matrix
SRZ found in Problem 2.2 the skew symmetric matrix
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ωRRZ = Ṡ
RZ
SZR =

⎡

⎣
cγ −cαsγ sαsγ
sγ cαcγ −sαsγ
0 sα cα

⎤

⎦
• ⎡

⎣
cγ sγ 0

−cαsγ cαcγ sα
sαsγ −sαsγ cα

⎤

⎦

=

⎡

⎣
0 −γ̇ sγα̇
γ̇ 0 −cγα̇

−sγα̇ cγα̇ 0

⎤

⎦ ≡
⎡

⎣
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎦ . (2)

Then, it follows by rewriting the angular velocity vector

ωRRZ =

⎡

⎣
ω1

ω2

ω3

⎤

⎦ =

⎡

⎣
cγα̇
sγα̇
γ̇

⎤

⎦ . (3)

Comparing the computational efficiency of both approaches it turns out that
the geometrical considerations (1) are more efficient.

2.2.3 Kinematics of a Rigid Body in a Moving Reference Frame

From a mathematical point of view the kinematical description of the motion
of a rigid body is most convenient in the inertial frame I resulting in a more
simple representation of the fundamental laws of mechanics. In engineering
applications, however, a moving reference frame R related to the vehicle or
the guideway, respectively, turns out to be more adequate. The frame R allows
a problem-oriented choice of the coordinates and an efficient description of
the forces and torques acting on the system. Moving reference frames are
also useful in experiments since many measurement data are not related
to the inertial frame. The choice of the reference frame R depends on the
problem under consideration. In many cases the frame R characterizes the
large nonlinear reference motion of a vehicle while the small deviations from
the reference motion result in linear kinematical relations even for rotations.

In the following the motion of a rigid body is represented in a moving refer-
ence frame R the motion of which is given in the inertial frame I by the position
vector rR(t) of its origin and the rotation matrix SIR(t), see Fig. 2.12. This
means that the translational and rotational guidance velocities are also known,
vIR = ṙIR, ω̃IIR = ṠIRSRI according to (2.3) and (2.17). Considering Fig. 2.12,
the absolute position quantities {ri,SIi} of the rigid body read as

rIi (t) = rIR(t) + SIR(t)rRRi(t) , (2.23)

SIi(t) = SIR(t)SRi(t) . (2.24)

The notation of the position vectors originating from the inertial frame I is
simplified by omitting the index I. The vector rRi has the double index Ri

due to his origin OR, and it is represented in the reference frame R, too.
The absolute motion of the rigid body Ki is denoted by the twist {vi,ωIi}

which may be also evaluated in frame R. Formal differentiation of (2.23) in
frame I results in



2.2 Kinematics 29

eRν
OR

3
2

3

OI

ri1

2
3

1

2

1

eIν

eiνCi

rR

rRi

Bi

Fig. 2.12. Position of a rigid body in the reference frame R

ṙIi (t) = ṙIR(t) + Ṡ
IR

(t)rRRi(t) + SIR(t)ṙRRi(t) . (2.25)

By left-multiplication with SRI(t), i.e. transformation in the reference frame
R, it follows considering (2.20)

∗
rR
R = vRi (t) = vRR(t) + ω̃RIR(t) rRRi(t) + ṙRRi(t) , (2.26)

The symbol (∗) characterizes the differentiation in the inertial frame. Equa-
tion (2.26) means that the absolute velocity vi (observed in the inertial frame
I) includes the guidance velocity vR + ωIR × rRi supplemented by the rel-
ative velocity vrel = ṙRi (observed in the reference frame R). The guidance
velocity is the velocity of a particle which is fixed in the reference frame at
position rRi. Accordingly one gets by differentiation of (2.24) and subsequent
right-multiplication with SiI = SiRSRI considering (2.20) the corresponding
angular velocities as

ωIIi = ωIIR + ωIRi or ωRIi = ωRIR + ωRRi . (2.27)

Thus, the absolute angular velocity ωIi is just the sum of guidance and
relative angular velocity, ωIIR and ωIRi, respectively.

Due to the rotation of the frame R the guidance motion and the relative
motion characterized by the indices IR and Ri, respectively, are not simply
added but there appears an additional term in (2.26). This implies the well-
known law of differentiation in a rotating frame

dI

dt
r(t) =

dR

dt
r(t) + ωIR(t) × r(t) ,

∗
r(t) = ṙ(t) + ωIR(t) × r(t) . (2.28)

This equation is valid for arbitrary vectors r and can be used as a gen-
eral rule for the differentiation of vectors in different frames moving rel-
ative to each other. Equation (2.28) means that the absolute variation
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dI/dt r(t) =
∗
r(t) (observed in the inertial frame I) consists of the relative

variation dR/dt r(t) = ṙ(t) (observed in the inertial frame R) supplemented
by the rotation part ωIR(t) × r(t). Absolute and relative variation coincide
only if the vector r is parallel to the angular velocity vector ωIR. By formal
differentiation or application of (2.28) to (2.26) and (2.27), respectively, one
gets finally the absolute translational and rotational acceleration of the rigid
body Ki again written in the reference frame R as

aRi (t) =
∗
vi
R =

∗
vR
R +
(

˙̃ω
R

IR + ω̃RIR ω̃
R
IR

)
rRRi + 2ω̃RIRṙ

R
Ri + r̈RRi , (2.29)

αRIi(t) =
∗
ωIi
R = ω̇RIR + ω̃RIRω

R
Ri + ω̇RRi . (2.30)

Thus, in addition to the guidance and relative acceleration the Coriolis ac-
celeration with the characteristic factor 2 is found for translations.

Problem 2.5 Relative motion during cornering
A vehicle is running with constant speed vF on a circular elevated track
of radius R and height h. A passenger throws horizontally an empty bottle
modeled as a particle K under an angle ϕ opposite to the driving direction
with relative velocity vK , see Fig. 2.13 a).
a) Which relative velocity vK and which angle ϕ are required to hit the
ground at the center of the track?
b) How does the trajectory of the bottle look like observed by a passenger in
the vehicle?

Solution
First of all an inertial frame I and a vehicle-fixed frame R are defined,

a) b)

eI
1

eR
2

OIOI

eI
2

eI
1

OR

r γ

ϕ

v

eR
1

Kv

F

R

R

M

R

M
K

rRK

vF r

eI
2

Fig. 2.13. Relative motion during cornering: a) initial position; b) general position
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Fig. 2.13 b). The origin OI of the inertial frame represents the initial condi-
tion of the bottle’s trajectory.

a) The initial position rI0, the final position rIM and the absolute initial
velocity vI0 of the bottle K read in the inertial frame

rI0 =

⎡

⎣
0
0
0

⎤

⎦ , rIM =

⎡

⎣
0
R
h

⎤

⎦ , vI0 =

⎡

⎣
vF − vK cos ϕ

vK sin ϕ
0

⎤

⎦ . (1)

The bottle K reaches the center M of the circuit only if the motion takes
place in the eI2,e

I
3-plane resulting in a parabolic trajectory. This requires that

the velocity in eI1-direction is vanishing. Then, it yields

vF − vK cosϕ = 0 . (2)

The absolute acceleration aI of the bottle K in frame I reads as

aI =

⎡

⎣
0
0
g

⎤

⎦ , (3)

where g = 9.81 m/s2 means the gravitational acceleration. A time integration
considering (1) and (2) results in

vI(t) =

t∫

0

aIdt + vI0 =

⎡

⎣
0

vK sin ϕ
gt

⎤

⎦ , (4)

rI(t) =

t∫

0

vIdt + rI0 =

⎡

⎣
0

vK t sin ϕ
1
2gt2

⎤

⎦ , (5)

From the final condition of the trajectory rI(t = tM ) = rIM it follows

tM =

√
2h

g
, vK sin ϕ =

R

tM
= R

√
g

2h
. (6)

Equations (2) and (6) represent two equations for the required quantities vK
and ϕ. The evaluation yields

vK =

√
v2
F +

R2g

2h
, tan ϕ =

R

vF

√
g

2h
. (7)

b) The computation of the trajectory of the bottle rRRK(t) in the vehicle-
fixed frame R, Fig. 2.13 b), means a transformation of the trajectory (5)
from frame I to frame R. From Fig. 2.13 b) it follows
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rIRK(t) = rI(t) − rIR(t) , rIR(t) =

⎡

⎣
R sin γ

R(1 − cos γ)
0

⎤

⎦ , γ =
vF t

R
, (8)

where angle γ identifies the position of the vehicle on the circuit. The trans-
formation law reads as

rRRK(t) = SRIrIRK(t) = SRI
[
rI(t) − rIR(t)

]
,

SRI = γ3 =

⎡

⎣
cos γ − sinγ 0
sin γ cos γ 0

0 0 1

⎤

⎦ .
(9)

The evaluation results in

rRRK(t) =

⎡

⎣
cos γ sinγ 0

− sin γ cos γ 0
0 0 1

⎤

⎦

⎡

⎣
−R sinγ

vKt sinϕ − R (1 − cos γ)
1
2gt2

⎤

⎦

=

⎡

⎣
vK t sinγ sin ϕ − R sin γ

vK t cosγ sin ϕ + R(1 − cos γ)
1
2gt2

⎤

⎦ ,

γ =
vF
R

t , 0 ≤ t ≤ tM =

√
2h

g
. (10)

Finally, substitution of the time by the relation t =
R

vF
γ yields a trajectory

depending on angle γ only,

rRRK(γ) ≡
⎡

⎣
x
y
z

⎤

⎦ = R

⎡

⎣
−(1 − γ/γM ) sin γ

1 − (1 − γ/γM ) cos γ
(γ/γM )2h/R

⎤

⎦ , 0 ≤ γ ≤ γM =
vF
R

√
2h

g
.

(11)

In Fig. 2.14 some projections of trajectories on the horizontal eR1 , eR2 -plane
are shown depending on the system parameter γM as seen by an observer
in the vehicle. The parameter γM characterizes the position angle of the
vehicle when the bottle K hits the ground in the center M . It turns out
that with increasing speed vF ∼ γM the initial throw direction deviates more
and more from the direct line to the center M and that the tangent of the
trajectory turns against the driving direction of the vehicle. The trajectory
appears more and more bulged. At very high speeds (γM > 180◦) the relative
trajectory crosses the center line and approaches the center M helically.

2.2.4 Kinematics of Multibody Systems

So far only one free rigid body Ki was considered the position of which is
uniquely described in the inertial frame I as
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Fig. 2.14. Trajectory seen by an observer in the vehicle (projection on the hori-
zontal plane)

rIi = [ri1ri2ri3]
T

, SIi ≡ Si = Si(αi, βi, γi) . (2.31)

There are six position coordinates which are summarized in a 6 × 1- column
matrix, simply called local position vector, as

xi(t) = [ri1 ri2 ri3 αi βi γi]
T

. (2.32)

For a free multibody system consisting of p disassembled rigid bodies Ki,
i = 1(1)p, there exist 6p position coordinates resulting in a 6p × 1 global
position vector of an unconstrained system

x(t) =
[
xT

1 . . . . . .xT
p

]T
. (2.33)

Assembling the free system there appear constraints between the position
coordinates and their derivatives. In realistic models of vehicles only holo-
nomic constraints are found restricting the motion of the position coordi-
nates by geometric or integrable kinematic constraints. These constraints are
implicitly described by algebraical equations which may be time-dependent
(rheonomic), too,

ϕj(x, t) = 0 , j = 1(1)q . (2.34)

Due to the q constraints there remain f linear independent position coordinates
characterizing f = 6p − q degrees of freedom. The f independent position co-
ordinates are also called generalized coordinates and may be summarized in
a f × 1- column matrix as global position vector of the constraint system
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y(t) = [y1 . . . . . . yf ]
T . (2.35)

By (2.34) and (2.35) the vector x is an explicit function of the f generalized
coordinates representing the constraints explicitly,

x = x(y, t) . (2.36)

The choice of generalized coordinates is not unique. E.g., some of the local
position coordinates (absolute coordinates) or differences between local co-
ordinates (relative coordinates) may be chosen as generalized coordinates.
However, there exists a unique relation between different sets of generalized
coordinates represented by a regular, time-invariant f × f -matrix T result-
ing in the transformation

y (t) = Ty (t) , (2.37)

where y and y are the corresponding global position vectors. The position
variables (2.31) may be rewritten for the whole system as

ri(t) = ri(y, t) , SIi(t) ≡ Si(t) = Si(y, t) , i = 1(1)p . (2.38)

The corresponding velocity variables {vi,ωi}, ωi = ωIi, are obtained by dif-
ferentiation as

vi(t) = ṙi(t) =
∂ri
∂yT

ẏ +
∂ri
∂t

= JTi(y, t)ẏ + vi(y, t) , (2.39)

ωi(t) = ṡi(t) =
∂si
∂yT

ẏ +
∂si
∂t

= JRi(y, t)ẏ + ωi(y, t) , (2.40)

where ∂si describes the 3 × 1-vector of the infinitesimal rotation following
from the rotation matrix analogously to the rotational velocity (2.17) as

∂s̃i = ∂SiS
T
i :=

⎡

⎣
0 −∂si3 ∂si2

∂si3 0 −∂si1
−∂si2 ∂si1 0

⎤

⎦ , ∂si =

⎡

⎣
∂si1
∂si2
∂si3

⎤

⎦ . (2.41)

The 3 × f -functional or Jacobian matrices JTi ,JRi of translation and rota-
tion, respectively, identify the relation between the local and the generalized
or global coordinates. The structure of these matrices may be defined using
the rules of matrix multiplication as shown for the translation matrix

∂ri
∂yT

= ∂ri

(
1

∂yT

)
= JTi =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂ri1
∂y1

∂ri1
∂y2

· · ·
∂ri2
∂y1

∂ri2
∂y2

· · ·
∂ri3
∂y1

∂ri3
∂y2

· · ·

∂ri1
∂yf

∂ri2
∂yf

∂ri3
∂yf

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (2.42)
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In practice, the computation of the Jacobian matrices is often more easy if
firstly the position variables are characterized as functions of the vector x
considering (2.36) and secondly the chain rule of differentiation is applied.
Then, it yields, e.g.,

JTi =
∂ri
∂yT

=
∂ri
∂xT

∂x

∂yT
. (2.43)

From (2.39) and (2.40) one obtains by a second differentiation the acceleration
variables {ai,αi} depending on the position vector y and its derivatives,

ai(t) = v̇i(t) = JTi(y, t)ÿ +
∂vi
∂yT

ẏ +
∂vi
∂t

, (2.44)

αi(t) = ω̇i(t) = JRi(y, t)ÿ +
∂ωi
∂yT

ẏ +
∂ωi
∂t

. (2.45)

For scleronomic, time-invariant constraints the partial time derivatives in
(2.39), (2.40), (2.44) and (2.45) are vanishing.

In addition to the real motions, the virtual motions are required in the next
chapter dealing with dynamics. A virtual motion is defined as an arbitrary,
infinitesimally small variation of the position completely compatible with
the constraints at any time. Rheonomic constraints are treated as frozen at
the time under consideration. The symbol δ of the virtual motion has the
properties

δr �= 0 , δt ≡ 0 . (2.46)

The symbol δ follows the rules of calculus, i.e., it yields

δ(cr) = cδr , δ(r1 + r2) = δr1 + δr2 , δr(y) =
∂r

∂yT
δy . (2.47)

Thus, the virtual motion of a multibody system reads as

δri = JTiδy , δsi = JRiδy , i = 1(1)p . (2.48)

This completes the kinematics for rigid body vehicle systems.

Problem 2.6 Kinematic rolling of a cylinder
A rigid cylinder with radius R is rolling on a rigid plane without sliding. Eval-
uate the constraints, choose generalized coordinates and specify the Jacobian
matrices JT ,JR of the translation and rotation, respectively.

Solution
Using the inertial frame {OI , eIν} and the body-fixed frame {C, eKν }, see
Fig. 2.15, the position of the cylinder is uniquely specified by the position
vector rIC = [r1 r2 r3]T and the rotation matrix SIK (α, β, γ). The assumed



36 2 Vehicle Models

OI

eI
2

β̇

OI

β
ρeI

3 rP

eK
2

eK
3

eK
1

eI
1

cylinder K

R
CrCeI

1

CrC

P

Fig. 2.15. Rolling cylinder

rolling motion without sliding on the plane results in contact lines between
cylinder and plane which are parallel all the time. Thus, the center of mass
C travels on a straight line, and the corresponding geometric constraint con-
ditions read according to Fig. 2.15 as

r1 ≡ 0 , r2 ≡ 0 , α ≡ 0, , γ ≡ 0 . (1)

The original position and velocity variables {rC ,SIK}, {vC ,ωIK} are rewrit-
ten as (s=̂ sin, c=̂ cos)

rIC =

⎡

⎣
r1

0
0

⎤

⎦ , SIK = −β2 =

⎡

⎣
cβ 0 −sβ
0 1 0
sβ 0 cβ

⎤

⎦ , (2)

vIC =

⎡

⎣
ṙ1

0
0

⎤

⎦ , ωIIK =

⎡

⎣
0

−β̇
0

⎤

⎦ , ∂sIIK =

⎡

⎣
0

−∂β
0

⎤

⎦ . (3)

The angular velocity vector ωIIK or ∂sIIK , respectively, follows immediately
from Fig. 2.15 or formally by (2.17) as

ω̃IIK = Ṡ
IK

(SIK)T = β̇

⎡

⎣
−sβ 0 −cβ
0 0 0
cβ 0 −sβ

⎤

⎦

⎡

⎣
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎤

⎦ =

⎡

⎣
0 0 −β̇
0 0 0
β̇ 0 0

⎤

⎦ . (4)

Pure rolling requires that all particles of the cylinder coinciding with the
contact line are instantaneously reposing (instantaneous center of rotation).
Thus, to check the pure rolling condition only one particle will be considered.
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Choosing the particle P located under the center of mass C, one gets by the
specific position vector ρICP ≡ ρI = [0 0 R]T, Fig. 2.15, from the vanishing
absolute velocity vector vP according to (2.21) the relation

vIP = vIC + ω̃IIK ρ
I = 0 =

⎡

⎣
ṙ1

0
0

⎤

⎦+

⎡

⎣
0 0 −β̇
0 0 0
β̇ 0 0

⎤

⎦

⎡

⎣
0
0
R

⎤

⎦ =

⎡

⎣
ṙ1 − Rβ̇

0
0

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦ .

(5)

It follows in addition to (1) one kinematic constraint,

ṙ1 − Rβ̇ = 0 , (6)

which is integrable,

r1 − r10 = R(β − β0) . (7)

Altogether, (1) and (7) represent q = 5 holonomic constraints. The number of
degrees of freedom is f = 6 − q = 1. As generalized coordinates may be chosen
a) y = r1 or b) ȳ = β depending on the problem to be considered. According
to the choice of the generalized coordinate, different Jacobian matrices are
found.

a) For y = r1 it follows with (7), (2), (3) from (2.39), (2.40) and (2.43)

β = β(y) = β0 +
1
R

(y − r10) , (8)

rIC = rIC(y) =

⎡

⎣
y
0
0

⎤

⎦ , ∂sIIK(β(y)) =

⎡

⎣
0

−∂β(y)
0

⎤

⎦ , (9)

JT =
∂rIC
∂y

=

⎡

⎣
1
0
0

⎤

⎦ , JR =
∂sIIK
∂y

=

⎡

⎢⎢⎣

0

− 1
R

0

⎤

⎥⎥⎦ . (10)

b) For y = β it follows accordingly

r1 = r10 + R(y − β0) , (11)

rIC = rIC(r1(y)) =

⎡

⎣
r1(y)

0
0

⎤

⎦ , ∂sIIK = ∂sIIK(y) =

⎡

⎣
0

−∂y
0

⎤

⎦ , (12)

JT =
∂rIC
∂r1

∂r1

∂y
=

⎡

⎣
R
0
0

⎤

⎦ , JR =
∂sIIK
∂y

=

⎡

⎣
0

−1
0

⎤

⎦ . (13)
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Problem 2.7 Kinematic hunting of a railway wheelset
A rigid railway wheelset is rolling without sliding on a rigid track. The wheels
are nearly conical (nominal cone angle 2δ0, nominal roll radius r0) and the
track profile is square (gauge 2a). Evaluate kinematically the lateral motion
of the center of mass of the wheelset neglecting all inertia effects.

eZ
ν

β

β3 3

1

1

r0

3

2

1

OR

eR
ν

3

1

2
OI

eI
ν

z
y

x C

a a

2
eK

ν

Fig. 2.16. Frame for the description of the wheelset motion

Solution
For the solution there are four frames introduced, see Fig. 2.16: an inertial
frame I located in the middle of the track, a reference frame R characterizing
the undisturbed wheelset motion, an intermediate frame Z with the contact
points, see Problem 2.2, and a body-fixed frame K. The position vector of
the center of mass C in frame I, Fig. 2.16, reads as

rIC =

⎡

⎣
rC1

rC2

rC3

⎤

⎦ ≡
⎡

⎣
x
y
z

⎤

⎦ . (1)

The wheelset considered has a weakly curvilinear wheel profile only (roll
radius r0 and profile slope δ0 are related to the nominal position, Fig. 2.17 a)).
Due to the assumption of a rigid wheelset and a rigid track the contact
condition is punctual. The position of the contact points Pl,r (l=̂ left, r=̂
right) follows from a consideration of the plane with the contact points (frame
Z, Fig. 2.17 b)) as

ρZl =

⎡

⎣
0

−a + �al
rl

⎤

⎦ , ρZr =

⎡

⎣
0

a + �ar
rr

⎤

⎦ . (2)
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Fig. 2.17. Wheelset geometry: a) nominal position; b) general position

The transformation into frame I according to ρI = SIZ ρZ with SIZ =
SIR SRZ (SIR = E, SRZ see Problem 2.2) results in

ρIl =

⎡

⎣
1 −γ 0
γ 1 −α
0 α 1

⎤

⎦

⎡

⎣
0

−a + �al
rl

⎤

⎦ ≈
⎡

⎣
aγ
−a
rl

⎤

⎦ , (3)

ρIr =

⎡

⎣
1 −γ 0
γ 1 −α
0 α 1

⎤

⎦

⎡

⎣
0

a + �ar
rr

⎤

⎦ ≈
⎡

⎣
−aγ

a
rr

⎤

⎦ . (4)

where α, γ � 1 and �al,r � a are taken into account.
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The kinematic rolling condition for the wheelset results in a vanishing
absolute velocity of the material points of the wheelset which are instanta-
neously in contact with the track. The application of the rigid body relation
(2.21) yields

vIP l = vIC + ω̃IIK ρ
I
l = 0 , vIPr = vIC + ω̃IIK ρ

I
r = 0 . (5)

The velocity of the center of mass vIC follows by differentiation from (1). The
only missing quantity is therefore the angular velocity ωIIK of the wheelset.
This quantity follows according to Problem 2.4 considering that the frame K
is found relative to frame Z by an elementary rotation around the eZ2 -axis
with the rotation angle −β, Fig. 2.16, as

ωIIK =

⎡

⎣
cγ
sγ
0

⎤

⎦ α̇ +

⎡

⎣
0
0
1

⎤

⎦ γ̇ +

⎡

⎣
cαsγ

−cαsγ
−sα

⎤

⎦ β̇ . (6)

In the following only linear relations are used valid for small rotations
(α, γ � 1, α̇, γ̇ � β̇) and small displacements (�al,r � a). Then, one gets
from (6)

ωIIK ≈
⎡

⎣
α̇ + γβ̇

−β̇

γ̇ − αβ̇

⎤

⎦ . (7)

The evaluation of the rolling condition (5) neglecting all quantities which are
small of higher order yields

ẋ + aγ̇ − rlβ̇ = 0 , (8)

ẏ − rl(α̇ + γβ̇) = 0 , (9)
ż − aα̇ = 0 , (10)

ẋ − aγ̇ − rrβ̇ = 0 , (11)

ẏ − rr(α̇ + γβ̇) = 0 , (12)
ż + aα̇ = 0 . (13)

Equations (8) to (13) are related to the inertial frame. For a conical wheelset
δ0 �= 0 the vertical velocities (10) and (13) are depending on the roll angular
velocity α̇. In the average of (10) and (13) it remains ż = 0 what is confirmed
by the geometric relation (19).

By conclusion one gets three essential kinematical relations

(8) + (11) ⇒ ẋ − 1
2
(rl + rr)β̇ = 0 , (14)

(8) − (11) ⇒ aγ̇ − 1
2
(rl − rr)β̇ = 0 , (15)

(9) − (12) ⇒ γ̇ − 1
2
(rl + rr)(α̇ + γβ̇) = 0 . (16)
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Further, small rotations around the instantaneous center of rotation Q pro-
vide according to Fig. 2.17 b) the geometric relations

α ≈ rl − rr
2a

, (17)

−y ≈
[
q − 1

2
(rl + rr)

]
α , (18)

z = r0 − 1
2
(rl + rr) ≈ 0 , (19)

where it was observed that a positive rotation with angle α results in a
negative displacement y. Small rotations γ around the vertical axis do not
affect the result (18) since the displacement of y is proportional to γ2 what
means second order. After elimination of the roll radii difference by (17) as
well as the roll radii sum according to (19), it remains

ẋ − r0β = 0 , (20)

γ̇ − αβ̇ = 0 , (21)

ẏ − r0(α̇ + γβ̇) = 0 , (22)

y + (q + r0)α = 0 , q =
a

tan δ0
, (23)

z = 0 . (24)

This result is valid for conical wheels as well as for weekly curvilinear wheel pro-
files which may be approximated by cones. Since the kinematical constraints
are integrable, there remain five holonomic constraints for the six local position
variables. Thus, the wheelset has one degree of freedom. Equation (20) indi-
cates that the velocity of the center of mass of the wheelset in nominal traveling
direction corresponds to the velocity of a single wheel, see Problem 2.6. The
comparison of (21) with (7) shows that the absolute rotational velocity of the
vertical axis of the wheelset is vanishing while (24) states that the height of
the center of mass is constant relative to the track for the motion considered.
The differential equations (20)-(22) can be solved easily. For this purpose (23)
is differentiated and included in (22) resulting in

qα̇ + r0γβ̇ = 0 . (25)

Using the rolling condition (20) for the replacement of β̇, it follows from (21)
and (25) a pair of equations,

γ̇(t) − α(t)
ẋ(t)
r0

= 0 ,

α̇(t) + γ(t)
ẋ(t)
q

= 0 . (26)

Now, the independent variable t can be replaced by x as independent variable
where the differentiation rule
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d(•)
dt

=
d(•)
dx

dx

dt
or ˙(•) = ẋ(•)′ (27)

has to be considered. Then, from (26) it follows

γ′(x) − 1
r0

α(x) = 0 ,

α′(x) +
1
q
γ(x) = 0 . (28)

The elimination of γ(x) results finally in a differential equation of the second
order for the roll angle α(x) as

α′′(x) +
1

r0q
α(x) = 0 . (29)

The general solution with the initial conditions α(0) = −α0, α′(0) = 0 reads

α(x) = −α0 cosΩx , Ω2 =
1

r0q
=

tan δ0

r0a
, (30)

where the spatial angular frequency Ω is introduced. The required lateral
motion y(x) follows from (23) as

y(x) = y0 cosΩx , y0 = (q − r0)α0 . (31)

One gets harmonic lateral oscillations with the spatial angular velocity Ω,
Fig. 2.18. This motion is also denoted as wave motion, sine motion or hunting
motion, respectively. The wavelength λ reads

λ =
2π

Ω
= 2π

√
r0a

tan δ0
. (32)

This formula was published originally by Klingel (1883) and it is well-known
in railway engineering as Klingel formula. In addition to the nominal roll
radius r0 and the half gauge of the track a, the half cone angle δ0 is an
important parameter. With decreasing conicity of the wheels the wave length
is increasing. For cylindrical wheels δ0 the wave length approaches infinity.
Then, the wheelset loses the property of self-guidance. Negative cone angles
result in an unstable wheelset motion, Fig. 2.19.

The physical reason for a stable wheelset motion, i.e. the self-guidance of
the wheelset, can be observed in Fig. 2.18. For conical wheels with increasing
roll radii towards the wheelset center, a displacement of the wheelset center of
mass to the right results in a larger roll radius at the right wheel than at the
left wheel. Therefore, the right wheels overtake the left wheel while traveling
on the track, and the displacement of the center of mass is decreasing. If the
wheelset center of mass has reached the middle of the track, the axis of the
wheelset is inclined and the center of mass moves to the left. Then, the left
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Fig. 2.18. Hunting motion of a railway wheelset

wheels overtakes the right wheel and the conditions are reversed. As a result
a stable wheelset motion is obtained. For a wheelset with decreasing roll radii
towards the wheelset center, Fig. 2.19, a displacement of the wheelset center
of mass from the middle of the track is not decreasing but further increasing
with the result of an unstable wheelset motion. The stable motion can be
easily verified by an experimental wheelset consisting of two cones, e.g. made
by yogurt cups, running on two rods placed an a inclined plane, Fig. 2.20.

With a real wheelset the motion behavior is much more complex. Due
to elasticity of wheels and tracks the contact points have to be replaced by
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a) b) c)

x

y

x

y

x

y

Fig. 2.19. Wheelset motion with different conicities: a) stable motion; b) indifferent
motion; c) unstable motion

Fig. 2.20. Experimental setup showing the stable wheelset motion

contact patches, and purely kinematic rolling does no longer exist. Further-
more, the wheel and rail profiles are neither conical nor square, and the up
to now neglected inertia phenomena are of great influence.
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2.3 Dynamics

For the generation of the equations of motion of multibody systems, in addi-
tion to kinematics, the inertia of the bodies and the acting forces have to be
considered. The Newton-Euler approach, also called the synthetic method,
uses the free body diagram resulting in full set of local equations which may
be reduced by the principles of d’Alembert and Jourdain to the equations
of motion. The Lagrangian approach, representing the analytical method,
is based on energy considerations and the equations of motions are found
directly but without any information on the reaction forces.

2.3.1 Inertia Properties

The inertia of a rigid body Ki is characterized by its mass mi and its inertia
tensor ICi. The coordinates of the inertia tensor read in the body-fixed frame
{Ci, e

i
ν}, see Fig. 2.7, as

IiCi =
∫

mi

(ρTρE − ρρT)dm =

⎡

⎣
I11 I12

I21 I22

I31 I32

I13

I23

I33

⎤

⎦

Ci

= const . (2.49)

The vector ρ ≡ ρi = [ρ1 ρ2 ρ3]
T describes a material point P with mass dm

with respect to the center of mass Ci and E means the 3 × 3-identity matrix.
The inertia tensor IiCi is symmetric and positive definite, and constant in
the body-fixed frame eiν . The diagonal elements Iνν are called moments of
inertia, they are nonnegative. The off-diagonal elements are called products
of inertia and can be positive, negative or zero.

The coordinates of the inertia tensor depend on the mass distribution and
on the choice of the reference frame eiν . For a parallel displacement of the
body-fixed frame from the center of mass Ci to an arbitrary body-fixed point
Oi characterized by the vector s one gets

IiOi = IiCi + (sTsE − ssT)mi . (2.50)

This relation is also known as Huygens-Steiner principle. Thus, the diagonal
elements of an inertia tensor are minimal for the center of mass.

For a homogeneous, purely rotational displacement by the rotation matrix
Sii

′
from frame eiν to ei

′
ν around the center of mass the transformation law

for tensors reads as

IiCi = Sii
′
Ii

′
CiS

i′i or Ii
′
Ci = Si

′iIiCiS
ii′ . (2.51)

Please note that the inertia tensor may be time-variant if the frame {Ci, e
i′
ν }

is not body-fixed. This is especially true if the inertial frame is chosen, i′ ≡ I,
due to SiI = SiI(t).
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For all reference points there exists a special body-fixed frame in which
the off-diagonal elements of the inertia tensor are vanishing, e.g.,

ICi = diag [I1 I2 I3] = const . (2.52)

The remaining diagonal elements Iν are called principal moments of inertia
with reference to Ci and the corresponding axes are the principal inertia axes.
Both quantities follow from the eigenvalue problem

(IνE − IiCi)xν = 0 . (2.53)

Thus, the principal moments of inertia are the eigenvalues of the matrix IiCi
and the eigenvectors xν = ei

′
ν define the principal inertia axes which have

to be unit vectors xT
ν xν = 1. For more details see Schiehlen and Eberhard

(2004).

Problem 2.8 Inertia tensor of a railway wheelset
Evaluate the inertia tensor of a railway wheelset Fig. 2.21 a) by using the
strongly simplified model Fig. 2.21 b) with respect to the body-fixed principal
axes frame {C, eKν } located in the center of mass C.

eν

l

b)

a)

1

2

16
0

m
m

94
0

m
m

R

r

b
aa

C

1500 mm

CR

Fig. 2.21. Railway wheelset: a) real structure; b) simplified model
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3
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2

1C

mV Z

Fig. 2.22. Dimensions of a full cylinder

Solution
The moments of inertia of a full cylinder related to the center of mass C,
Fig. 2.22, read as

IV Z2 =
1
2
R2mV Z , (1)

IV Z1 = IV Z3 =
(

1
4
R2 +

1
12

l2
)

mV Z , (2)

characterized by mass mV Z , radius R and length l. The moments of inertia
of a hollow cylinder related to the center of mass C with mass mHZ , outside
radius R, inside radius r and length l are obtained by subtracting the part
of the bore with mass mB,

IHZ2 =
1
2
R2mV Z − 1

2
r2mB

=
1
2
(R2R2 − r2r2)πlρ

=
1
2
(R2 + r2)(R2 − r2)πlρ

=
1
2
(R2 + r2)mHZ , (3)

IHZ1 = IHZ3 =
(

1
4
R2 +

1
12

l2
)

mV Z −
(

1
4
r2 +

1
12

l2
)

mB

=
[
1
4
(R2 + r2) +

1
12

l2
]

mHZ , (4)

where the density ρ and mass relation

mHZ = mV Z − mB = (R2 − r2)πlρ (5)

are used.
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The principal axes of the wheelset follow from its rotational symmetry as
indicated in Fig. 2.21. For the wheelset it yields according to the cylinder
I1 = I3. For the wheelset axle with mass mW and center of mass CW = C it
remains, see (1) and (2),

IW2 =
1
2
r2mW , (6)

IW1 = IW3 =
(

1
4
r2 +

1
12

l2
)

mW . (7)

For one wheel with mass mR and center of mass CR it follows from (3) and
(4)

I ′R2 =
1
2
(R2 + r2)mR , (8)

I ′R1 = I ′R3 =
[
1
4
(R2 + r2) +

1
12

b2

]
mR . (9)

The transformation from reference point CR of the wheel to the reference
point C of the wheelset by the principle of Huygens-Steiner (2.50) results in

IR2 = I ′R2 =
1
2
(R2 + r2)mR , (10)

IR1 = I ′R1 + a2mR =
[
1
4
(R2 + r2)

1
12

b2 + a2

]
mR = IR3 . (11)

The addition of the shares of the axle and both wheels yields the inertia
tensor of the whole wheelset,

IKC =

⎡

⎣
I1 0
0 I2

0 0

0
0
I3

⎤

⎦

C

, (12)

I1 = IW1 + 2IR1

=
(

1
4
r2 +

1
12

l2
)

mW + 2
[
1
4
(R2 + r2) +

1
12

b2 + a2

]
mR , (13)

I2 = IW2 + 2IR2 =
1
2
r2mW + (R2 + r2)mR , (14)

I3 = I1 . (15)

For the realistic parameters

a = 7.5 dm, ρ = 7.85 kg/dm3,
b = 1.2 dm,
l = 20.0 dm, mW = 315.7 kg,
R = 4.7 dm,
r = 0.8 dm, mR = 634.8 kg,
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Table 2.4. Moments of inertia of a railway wheelset

Contribution to the principal moment of inertia
Component I1 = I3 % I2 %

[kgm2] [kgm2]

Axle W 105.7 11.8 1.0 0.7
2 wheels 73.7 8.2 144.3 99.3
(Reference point CR)
Steiner-share 714.2 80.0 0 0
of both wheels
Total 893.6 100 % 145.3 100 %

the numbers listed in Table 2.4 are found.
It turns out that the largest amount (80 %) of the moment of inertia

I1 = I3 is due to the Huygens-Steiner transformation while the moment of
inertia I2 of the rotation axis is dominated (99.3 %) by the moment of inertia
of both wheels.

2.3.2 Newton-Euler Equations

After these preliminaries the fundamental the laws of Newton (1687) and
Euler (1758), are introduced relating the translational motion represented by
the momentum p of a body K to the sum of the external forces f and the
rotational motion represented by the moment of momentum hO to the sum
of the external torques lO,

dI

dt
p = f ,

dI

dt
hO = lO . (2.54)

The time derivatives of the momentum p and the moment of momentum hO
have to be evaluated in the inertial frame I. The common reference point
O of the moment of momentum and the resulting external torque may be
an inertially fixed point like the origin of the inertial frame, O ≡ OI , or the
moving center of mass of the body, O ≡ C.

The fundamental laws (2.54) will be now applied to the rigid body Ki,
i = 1(1)p, of a multibody system and appropriate frames are chosen. First of
all, the bodies Ki are dismantled and the constraints are replaced by reaction
forces acting then externally on the bodies involved in the same amount
but with opposite sign according to the counteraction principle (action =
reaction). Further, the center of mass is used as reference point for all bodies,
O ≡ Ci.

In the inertial frame I momentum and moment of momentum for a rigid
body Ki using the inertia properties mi , ICi read as
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pIi = miv
I
Ci , mi = const , (2.55)

hICi = IICiω
I
i , IICi = IICi(t) , (2.56)

where vICi and ωIi mean absolute velocities. Introducing (2.55) and (2.56)
in (2.54) and omitting the index C one finally gets Newton’s and Euler’s
equations

mi
∗
vi
i = f Ii , mi = const , (2.57)

IIi ω̇
I
i + ω̃Ii I

I
iω

I
i = lIi , IIi = IIi (t) . (2.58)

In a second step these equations are transformed in a body-fixed frame re-
sulting in

miv̇
i
i = f ii , mi = const , (2.59)

Iiiω̇
i
i + ω̃iiI

i
iω

i
i = lii , Iii = const . (2.60)

Equations (2.57) and (2.58), and (2.59) and (2.60) look completely identical.
If there is only one body like in gyrodynamics, then (2.60) is preferable due
to the time-invariance of the inertia tensor. In multibody dynamics, however,
this advantage is fading.

Equations (2.60) are also known as Euler’s equations of gyrodynamics.
They can be found with the moment of momentum given in the body-fixed
frame also directly from (2.54) using the law of differentiation in a rotating
frame (2.28),

dI

dt
hii = ḣ

i

i + ω̃iih
i
i = lii , hii = Iiiω

i
i . (2.61)

For single rigid bodies it may be of some advantage to represent the moment
of momentum in a moving intermediate frame Z with the angular velocity
ωZ ≡ ωZ with respect to the inertial frame. The application of the law of
differentiation in a rotating frame (2.28) results in

dI

dt
hZi = ḣ

Z

i + ω̃Zi h
Z
i = lZi . (2.62)

Finally, in an arbitrarily moving reference frame R Newton’s and Euler’s
equations are also available, see e.g. Schiehlen and Eberhard (2004),

mir̈Ri + mi

[ ∗∗
rR +( ˙̃ωR + ω̃Rω̃R)rRi + 2ω̃RṙRi

]
= f i , (2.63)

Iiω̇Ri + ω̃RiIiωRi
+ [IiωR + ω̃RIiωR + ω̃RωRispIi + 2ω̃RiIiωR] = li . (2.64)

Now, the coordinates of all vectors and tensors are related to the reference
frame R where

∗∗
rR means that the second time derivation has to be performed
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in the inertial frame, see also Schiehlen and Eberhard (2004). As a matter of
fact, a large number of additional inertia forces and torques appear due to
the relative motion.

The Newton-Euler equations represent a set of 6p scalar equations for 6p
unknowns which are composed of unknown velocity and position variables
and unknown reaction forces and torques. In an unconstrained system reac-
tions do not exist, i.e., there are 6p ordinary differential equations (ODEs)
to be solved. In a completely constrained system motion does not occur at
all, i.e., altogether 6p algebraical equations have to be solved. In vehicle dy-
namics, due to a certain number of constraints between the bodies, motions
and reactions appear concurrently featuring a set of differential-algebraical
equations (DAEs). However, by the principles of dynamics, a minimal set of
f ODEs can be found facilitating the solution and simulation of the problem
as shown in Sect. 2.4.

A special case is given if a multibody system performs a plane motion
around a common principle axis. Then, the vectors of moment of momentum
and angular velocities are parallel, see (2.56). As an example a motion in the
eI1, e

I
3-plane is considered where the rotations take place around the principle

axis parallel to the eI2-axis. The six scalar equations of motion (2.57), (2.58)
are reduced by

v̇Ii = [ẍ1 0 ẍ3]
T , ω̇Ii = [0 ω̇2 0]T , (2.65)

f Ii = [f1 0 f3]
T

, lIi = [0 l2 0]T , (2.66)

to three equations

miẍ1 = f1 , (2.67)
miẍ3 = f3 , (2.68)

IIi2ω̇2 = l2 , IIi2 = Iii2 = const. (2.69)

It turns out that moments of inertia are identical and constant what is ad-
vantageous. However, it has to be pointed out that the motion remains only
planar if the forces and torques satisfy (2.66) all the time.

Problem 2.9 Equations of motion of a railway wheelset
The wheelset is an essential component of railway vehicles. Generate the
equations of motion of a wheelset using its free body diagram and the in-
ertia tensor found in Problem 2.8. The wheels with standard profile shall
be continuously in contact with the standard rails which are assumed to be
horizontal and straight.

Solution
The free body diagram with the contact forces acting on the left and right
wheel is shown in Fig. 2.23. According to Problem 2.7 the frames I, R, Z
and K are used. In the contact points Pl, Pr two additional frames {Pl, e

l
v}
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Fig. 2.23. Free body diagram of a railway wheelset

and {Pr, e
r
v} are attached where the 2-axes are tangential and the 3-axes

are normal to the wheel profile. The el1-axis and the er1-axis are parallel to
each other and parallel to the eZ1 -axis which is normal to the plane of the
contact points characterized by the eZ2 , eZ3 -plane. Thus, the rotation matrices
between the frames Z, l and r, respectively, read according to Fig. 2.23 as

SZl ≡ δl,1 =

⎡

⎣
1 0 0
0 cδl −sδl
0 sδl cδl

⎤

⎦ , SZr ≡ −δr,1 =

⎡

⎣
1 0 0
0 cδr sδr
0 −sδr cδr

⎤

⎦ . (1)

The rotation matrix SIZ is already known from Problem 2.2

SIZ = γ3α1 =

⎡

⎣
cγ −sγcα sγsα
sγ cγcα −cγsα
0 sα cα

⎤

⎦ . (2)

Then the transformation matrices SIl and SIr are found as

SIl = SIZSZl = γ3α1δl,1

= γ3(α+ δl)1 =

⎡

⎣
cγ −sγc(α + δl) sγs(α + δl)
sγ cγc(α + δl) −cγs(α + δl)
0 s(α + δl) c(α + δl)

⎤

⎦ , (3)

SIr = SIZSZr = γ3α1(−δr)1

= γ3(α− δr)1 =

⎡

⎣
cγ −sγc(α − δr) sγs(α − δr)
sγ cγc(α − δr) −cγs(α − δr)
0 s(α − δr) c(α − δr)

⎤

⎦ (4)

where the approach of elementary rotation matrices proves to be very efficient
due to pooling of the consecutively performed rotations around the 1-axis
with the angles α + δl and α − δr, respectively.
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The forces and torques acting in the contact points on the wheels are
assumed to be negative with respect to the contact point coordinates, see
Fig. 2.23,

f ll = −
⎡

⎣
ftl,1
ftl,2
fnl

⎤

⎦ , frr = −
⎡

⎣
ftr,1
ftr,2
fnr

⎤

⎦ , (5)

lll = −
⎡

⎣
0
0
ll

⎤

⎦ , lrr = −
⎡

⎣
0
0
lr

⎤

⎦ . (6)

On the rails these forces and torques are acting in positive direction. Now
the forces are transformed into the inertial frame

fIl = SIlf ll =

⎡

⎣
fl1
fl2
fl3

⎤

⎦ , f Ir = SIrfrr =

⎡

⎣
fr1
fr2
fr3

⎤

⎦ , (7)

fl1 = −cγftl,1 + sγc(α + δl)ft1,2 − sγs(α + δl)fnl ,

fl2 = −sγftl,1 − cγc(α + δl)ft1,2 + cγs(α + δl)fnl , (8)
fl3 = − s(α + δl)ft1,2 − c(α + δl)fnl ,

fr1 = −cγftr,1 + sγc(α − δr)ftr,2 − sγs(α − δr)fnr ,

fr2 = −sγftr,1 − cγc(α − δr)ftr,2 + cγs(α − δr)fnr , (9)
fr3 = − s(α − δr)ftr,2 − c(α − δr)fnr .

The translational equations of motion follow from the forces (8) and (9), and
the position vector rIC ≡ [x y z]T, see Problem 2.7, simply as

mẍ = fl1 + fr1 , (10)
mÿ = fl2 + fr2 , (11)
mz̈ = fl3 + fr3 + fG , fG = mg , (12)

The rotational equations of motions are generated more efficiently using the
moving reference frame Z as mentioned in (2.62). The evaluation of the
torques is more simple in frame Z, and the moments of inertia remain con-
stant due to the rotational symmetry of the wheelset. The torques with ref-
erence to the center of mass C follow from the contact torques ll, lr and the
torques of the contact forces f l,fr as

lZCl = SZllll + ρ̃
Z
ClS

Zlf ll =

⎡

⎣
ll1
ll2
ll3

⎤

⎦ , (13)

lZCr = SZrlrr + ρ̃ZCrS
Zrfrr =

⎡

⎣
lr1
lr2
lr3

⎤

⎦ . (14)
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The position vectors ρZCl,ρ
Z
Cr from the center of mass C to the contact points

Pl and Pr, respectively, read according to Fig. 2.23 as

ρZCl =

⎡

⎣
0

−a + ∆al
rl

⎤

⎦ , ρZCr =

⎡

⎣
0

a + ∆ar
rr

⎤

⎦ . (15)

The evaluation of (13) and (14) results in

ll1 = [(a − ∆al)sδl + rlcδ1]ftl,2 + [(a − ∆a1)cδl − rlsδl]fnl ,

ll2 = sδlll − rlftl,1 , (16)
ll3 = −cδlll − (a − ∆al)ftl,1 ,

lr1 = [(a + ∆ar)sδr + rrcδr]ftr,2 − [(a + ∆ar)cδr − rrsδr]fnr ,

lr2 = −sδrlr − rrftr,1 , (17)
lr3 = −cδrlr + (a + ∆ar)ftr,1 .

For the evaluation of the moment of momentum and its time derivative, see
(2.56) and (2.62), the rotational velocities ωZIK and ωZIZ of the wheelset K
and the reference system Z with respect to the inertial frame are required.
From Problem 2.7, (6) the angular velocity ωIIK is known. The transformation
in the reference frame Z using (2) results in

ωZIK = SZIωIIK =

⎡

⎣
cγ sγ 0

−cαsγ cαcγ sα
sαsγ −sαcγ cα

⎤

⎦

⎡

⎣
cγ cαsγ 0
sγ −cαcγ 0
0 −sα 1

⎤

⎦

⎡

⎣
α̇

β̇
γ̇

⎤

⎦

=

⎡

⎣
α̇

γ̇sα − β̇
γ̇cα

⎤

⎦ . (18)

The rotational velocity ωZIZ for the moving reference frame Z follows from
ωZIK by the condition β̇ = 0,

ωZIZ =

⎡

⎣
α̇

γ̇sα
γ̇cα

⎤

⎦ . (19)

Equation (19) can also be immediately read from Fig. 2.11 of Problem 2.2.
With the inertia tensor IZK = diag

[
I1 I2 I3

]
= const related to the center

of mass C and the moment of momentum hZK = IZKω
Z
IK one gets from (2.62)

the result

IZKω̇
Z
IK + ω̃ZIZI

Z
Kω

Z
IK = lZCl + l

Z
Cr (20)

or explicitly
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I1α̈ + I1γ̇
2sαcα − I2γ̇cα(−β̇ + γ̇sα) = ll1 + lr1 , (21)

I2(γ̈sα + α̇γ̇cα − β̈) = ll2 + lr2 , (22)

I1(γ̈cα − 2α̇γ̇sα) + I2α̇(−β̇ + γ̇sα) = ll3 + lr3 . (23)

In the following two cases are distinguished: a) the ideal case of a purely
kinematical rolling with point contact and b) the real case of rolling with
elastic contact.

a) In the case of purely kinematical rolling there exist two geometrical con-
straints between the chosen coordinates x, y, z, α, β, γ due to the continuous
contact between wheels and rails in the contact points Pl, Pr. In addition
there exist three kinematical constraints depending on the velocities of the
motion. For conical or nearly conical wheels and rectangular rails one gets
for small motions the five holonomic constraints (20)-(24) presented in Prob-
lem 2.7. Thus, the wheelset has one degree of freedom. The six equations of
motion (10)-(12) and (21)-(23) determine the motion on one hand and the
unknown force variables on the other hand. In this case the contact torques
ll, lr do not exit due to the point-shaped contact. For the computation of the
remaining six unknown constraint forces ftl,1, ftl,2, fnl, ftr,1, ftr,2, fnr there
are only five equations at hand. The problem is kinematically underdeter-
mined. The sum (ftl,2 + ftr,2) can be separated only by additional modeling
assumptions like a laterally elastic axis.
b) In the case of elastic contact there are typically chosen two degrees of
freedom for both, the lateral and the longitudinal motion characterized by
the lateral displacement y and the yaw angle γ as well as the longitudinal
displacement x and the angle β, see e.g. Law and Cooperrider (1974). The
two geometrical constraints representing the continuous contact in the con-
tact points Pl, Pr are maintained as constraints for the vertical displacement
z and the roll angle α. It yields generally

z = z(y, γ) , α= α(y, γ) (24)

and according to (18), (19) from Problem 2.7 for small displacements

z ≈ 0 , α = α(y) or α̇ = α′ẏ , (25)

where (·)′ ≡ d(·)/dy means the derivative with respect to the lateral displace-
ment y. For the longitudinal motion of the wheelset additional constraints
may be available. They follow from the engineering task and are usually re-
lated to the route of the wheelset, e.g., a constant forward velocity of the
center of mass, ẋ = ẋ0 = v0, and/or a constant angular velocity of the lateral
axis, β̇ = β̇0 = Ω = v0/r0.

The elastic contact results in a small contact patch due to local deforma-
tions. The force variables ftl,1, ftl,2, ll, ftr,1, ftr,2, lr are now known quantities
depending on the small slip motions between wheel and rail. The details of
the elastic contact law will be presented later in Sect. 3.4.
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The normal forces fnl, fnr follow from (12) and (21) considering the geo-
metrical constraints (24) and (25). Neglecting the inertia terms (ż ≈ 0, α̇ ≈ 0,
γ̇ ≈ 0) one obtains in approximation

fl3 + fr3 + fG = 0 , ll1 + lr1 = 0 . (26)

From (26) with (8), (9), (16) and (17) or immediately from Fig. 2.23 it fol-
lows for small displacements and rotations of the wheelset and small profile
inclinations (δl, δr � 1) in a first approximation

fnl ≈ 1
2a

[mga − ftl,2rl − ftr,2rr] ,

fnr ≈ 1
2a

[mga + ftl,2rl + ftr,2rr] . (27)

Finally, the static normal forces in the contact points Pl, Pr are evaluated in
the nominal position with equal wheel profiles (inclination angles δl = δr =
δ0, roll radii rl = rr = r0) as well as vanishing tangential contact forces.
Then, the force equilibrium in vertical direction yields according to Fig. 2.23

fnl,0 = fnr,0 = fn0 =
mg

2 cos δ0
. (28)

The static loads show the same amount for the left and right wheel with
horizontal components in opposite direction. The result (28) agrees with (27)
for small inclination angles δ � 1.

Problem 2.10 Inertia forces at a magnetically levitated (maglev)
vehicle
A maglev vehicle (mass m = 120000 kg) travels at a geographical latitude ϕ
with a course angle ψ (ϕ = 55◦, ψ = 0◦) on a straight horizontal track. Then,
the vehicle rides on a vertical transition track (radius r = 20 km) to a straight
inclined track with a constant slope of 35� (slope angle β ≈ tan β ≈ 0.035).
The vehicle speed v = 400 km/h = 111 m/s is constant all the time. Evaluate
the inertia forces acting on the vehicle

a) on the horizontal track due to the Coriolis force considering the earth
rotation,

b) in vertical transition neglecting the earth rotation.

Solution
The solution is based on the momentum principle (2.63)

mir̈Ri + mi[
∗∗
rR + ( ˙̃ωR + ω̃Rω̃R)rRi + 2ω̃RṙRi] = f i , (1)

where all coordinates are related to a corresponding moving frame. The ve-
hicle as a whole is considered as a rigid body (i = 1) with mass m.
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Fig. 2.24. Inertia force acting on a maglev vehicle: a) earth-fixed reference frame;
b) vehicle-fixed reference frame.

a) For the computation of the Coriolis forces due to earth rotation an earth-
fixed reference system R is used. Its origin OR is the instantaneous position
of the vehicle’s center of mass C. The rotational velocity ωRR is given at a
geographical latitude ϕ, Fig. 2.24 a), as

ωRR =
[
ωE cosϕ 0 −ωE sin ϕ

]T
, (2)

where ωE = 7.27 · 10−5 s−1 is the earth’s rotational velocity.
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The relative vehicle speed ṙRRI reads with a course angle ψ as

ṙRRi =
[
v cosψ −v sin ψ 0

]T
. (3)

Then, one gets the Coriolis force fCor acting on the vehicle as

fRCor = −2mω̃RRṙ
R
Ri = −2mvωE

⎡

⎣
0 sϕ 0

−sϕ 0 −cϕ
0 cϕ 0

⎤

⎦

⎡

⎣
cψ

−sψ
0

⎤

⎦ ,

= 2mvωE

⎡

⎣
sϕsψ
sϕcψ
cϕsψ

⎤

⎦ . (4)

For ψ = 0, i.e. a ride to the north, it remains just one non-vanishing force
coordinate

fCor,2 = 2mvωE sin ϕ = 1.586 kN . (5)

The amount of this force results in only 1.35 � of the vehicles weight fG =
mg. It has to be mentioned that the Coriolis force acting horizontally on the
vehicle is pointing at the northern hemisphere to the right relative to the
driving direction.
b) For consideration of the transition track a vehicle-fixed reference frame R
is used whose origin OR coincides with vehicle’s center of mass C, Fig. 2.24 b).
The rotational velocity ωRR reads as

ωRR =
[
0 ω 0

]T
, ω = v/r = const . (6)

The inertia force fT subject to the guidance motion follows due to rRRi ≡ 0
as

fRT = −m
∗∗
r R
R ,

∗∗
r R
R =
[
0 0 −v2/r

]T
, (7)

where the guidance acceleration
∗∗
rR matches the normal acceleration of the

trajectory. The only non-vanishing force coordinate reads as

fT3 = mv2/r = 73.9 kN . (8)

The inertia force fT3 amounts to 6.28 % of the vehicle.
For a multibody vehicle, i = 1(1)p, with small dimensions |rRi| � r and

small relative velocities |ṙ| � v, it turns out that the dominant part of the
inertia forces is due to the guidance acceleration

∗∗
rR,

fRTi = −mi
∗∗
r R
R . (9)

This inertia force is acting on all bodies of the vehicle as an additional weight
component during driving on the transition track. In the presented case the
additional weight component amounts to 6.28 % of the corresponding dead
weight. However, the time of this action is small, t = β/ω = βr/v = 6.31 s.
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2.3.3 Principles of d’Alembert and Jourdain

From the Newton-Euler equations the equations of motion can be found by
elimination of the reaction forces and torques resulting in a minimal set of
ordinary differential equations (ODEs). This is achieved computationally ef-
ficient by the principles of dynamics considering the virtual work of a con-
strained multibody system. For this purpose the external forces acting on the
dismantled bodies of the system are subdivided into applied forces f (e)

i and
torques l(e)i as well as constraint or reaction forces f (r)

i and torques l(r)i . The
latter ones do not contribute to the virtual work of the system,

δW r =
p∑

i=1

(f (r)T
i δri + l(r)Ti δsi) = 0 , (2.70)

where the virtual motions δ ri , δ si are known from (2.48). Equation (2.70)
can be interpreted as a generalized orthogonality condition. For this purpose,
in addition to the generalized coordinates yk , k = 1 (1) f , generalized reaction
forces gj , j = 1 (1) q, are introduced and summarized in a q × 1-vector as

g(t) = [g1 . . . . . . . . . gq]
T

. (2.71)

The number of generalized constraint forces is determined by the number q of
constraints. The local constraint forces and torques follow from the implicit
constraint equations (2.34) as

f
(r)T
i =

q∑

j=1

gj
∂ϕj
∂rT

i

=
q∑

j=1

gj
∂ϕj
∂xT

∂x

∂rT
i

= gTFT
Ti , (2.72)

l
(r)T
i =

q∑

j=1

gj
∂ϕj
∂sT

i

=
q∑

j=1

gj
∂ϕj
∂xT

∂x

∂sT
i

= gTFT
Ri , i = 1(1)p . (2.73)

The 3 × q- Jacobian matrices F Ti ,FRi are defined by (2.72) and (2.73), and
now the condition (2.70) can be rewritten as

δW r = gT

p∑

i=1

(FT
Ti δri + FT

Ri δsi)

= gT

p∑

i=1

(FT
TiJTi + FT

RiJRi) δy = 0 .

(2.74)

Finally, the global 6p × q- distribution matrix Q, and the global 6p × f - Ja-
cobian matrix J are introduced

Q = [FT
T1 . . . . . . . . .FT

Tp F
T
R1 . . . . . . . . .FT

Rp]
T ,

J = [JT
T1 . . . . . . . . .JT

Tp J
T
R1 . . . . . . . . .JT

Rp]
T .

(2.75)
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Then, one gets from (2.74) simply

Q
T
J = 0 , J

T
Q = 0 , (2.76)

what clearly shows the generalized orthogonality between motion and con-
straint. The orthogonality condition or the vanishing virtual work, respec-
tively, is independent from the coordinates chosen, and it is valid for all
constrained mechanical systems.

D’Alembert’s principle (1743) follows now from the Newton-Euler equa-
tions (2.57) and (2.58) after subdividing the external forces

f i = f
(e)
i + f (r)

i , li = l
(e)
i + l(r)i , (2.77)

and considering the orthogonality (2.70) as

p∑

i=1

[(miv̇i − f (e)
i )Tδri + (Iiω̇i + ω̃iIiωi − l(e)i )Tδsi] = 0 . (2.78)

Obviously, the reaction forces are eliminated in (2.78).
Analogously Jourdain’s principle (1908) can be stated which is based on

the fact that the virtual power of the reaction forces is vanishing, too,

δP r =
p∑

i=1

[f (r)T
i δ′vi + l(r)Ti δ′ωi] = 0 . (2.79)

The virtual velocities δ′vi , δ′ωi are arbitrary, infinitesimal small variations
of the velocities completely compatible with the constraints at any time and
at any position. Thus, it yields

δ′vi �= 0 , δ′ωi �= 0 , δ′ri ≡ 0 , δ′si ≡ 0 , δ′t ≡ 0 . (2.80)

Moreover, the symbol δ′ follows the rules of calculus. Then, it remains Jour-
dain’s principle as

p∑

i=1

[(miv̇i − f (e)
i )Tδ′vi + (Iiω̇i + ω̃iIiωi − l(e)i )Tδ′ωi] = 0 . (2.81)

Similar to d’Alembert’s principle all the reactions disappeared. However, the
virtual displacements are replaced by the virtual velocities and the some-
times cumbersome evaluation of the virtual rotations is dropped. Further,
Jourdain’s principle handles nonlinear and nonholonomic constraints, too,
which may appear in controlled vehicle systems.

In the American literature Jourdain’s principle is referred to as Kane’s
equations and the virtual velocities are denoted as partial velocities, see
Kane and Levinson (1985).

Applying D’Alembert’s or Jourdain’s principles for the generation of the
equations of motion, the reactions have not to be considered at all.
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2.3.4 Energy Considerations and Lagrange’s Equations

An alternative for the generation of the equations of motion is the analyti-
cal method by Lagrange (1788) based on energy considerations. The kinetic
energy T of a rigid body reads as

T =
1
2
mv2

C +
1
2
ωT ICω , (2.82)

where the inertia properties { m, IC} and the velocity properties { vC ,ω}
are related to the center of mass. The kinetic energy is composed by the
translational and rotational energy of the body, it is a scalar quantity which
may be computed in different frames, too.

The kinetic energy of a multibody system consisting of the bodies Ki,
i = 1(1)p, comprises the kinetic energy of all bodies as

T =
1
2

p∑

i=1

[(vIi )
Tmiv

I
i + (ωIi )

TIIiω
I
i ] , (2.83)

written consistently in the inertial frame I and related to the center of mass
Ci of each body Ki. If the work of the applied forces is independent of the
path, then the forces have a potential U and it yields

f (e) = −grad U , (2.84)

where U is a scalar function of the position. Forces satisfying (2.84) are called
conservative, they do not change the total energy of the system. In contrary,
non-conservative forces change the total energy, they are called dissipative
if the total energy is decreasing. Conservative forces may be due to gravity,
fG = mg, or elasticity, fF = −ks. The corresponding potentials read as

UG = −m g z , UF =
1
2
ks2 , (2.85)

where z represents the vertical displacement of the center of mass of a body
with mass m in the direction of gravity with acceleration g, and s means the
displacement of an elastic spring with coefficient k. A constant may be added
to the potentials, i.e., the origin of a potential can be arbitrarily chosen.
The potential energy U of a multibody system is given by the sum of the
body potentials U =

∑
U j . Multibody systems subject to conservative forces

only are called conservative systems. For such systems it yields the energy
conservation law

T + U = T0 + U0 = const . (2.86)

The energy conservation law may be derived from Newton’s and Euler’s law,
too, i.e. it does not contain any new information. Its application is advan-
tageous for conservative systems with one degree of freedom to evaluate a
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relation between the position and velocity variable. If there are two different
positions known, the unknown velocity can be found from (2.86).

Based on energy expressions, the equations of motion of multibody sys-
tems may also be found. This will be shown for multibody systems with
holonomic constraints. In contrary to the Newton-Euler equations, the bod-
ies of the system have not to be dismantled, the system is considered as a
whole. For this purpose the generalized coordinates yk (t) , k = 1(1)f , are de-
fined, and the position and the velocity variables (2.38), (2.39) and (2.40) are
evaluated. As a result the kinetic energy is available as a function of yk (t)
and ẏk (t) , k = 1(1)f ,

T = T (yk, ẏk) . (2.87)

The applied forces and torques are projected in the direction of the general-
ized coordinates and composed to the generalized forces

qk =
p∑

i=1

[(
∂rIi
∂yk

)T

f
(e)I
i +

(
∂sIi
∂yk

)T

l
(e)I
i

]
, k = 1(1)f , (2.88)

where the Jacobian matrices (2.42) are used. The generalized forces may be
also found by a decomposition of the total work of the applied forces and
torques

δW e =
p∑

i=1

[f (e)T
i δri + l(e)Ti δsi] =

f∑

k=1

qkδyk . (2.89)

In any case the reaction forces and torques do not appear.
Now the Lagrangian equations of the second kind read as, see e.g.

Magnus and Mueller-Slany (2005),

d
dt

(
∂T

∂ẏk

)
− ∂T

∂yk
= qk , k = 1(1)f . (2.90)

For the evaluation of the equations of motion two partial and one total differ-
entiations have to be performed with respect to one scalar function T (yk, ẏk).
As a result the minimal number f of equations of motion is found. However,
the reaction forces are completely lost and cannot be regained.

For conservative systems the generalized forces follow immediately from
the potential energy

qk = − ∂U

∂yk
. (2.91)

From (2.90) and (2.91) it remains

d
dt

(
∂T

∂ẏk

)
− ∂T

∂yk
+

∂U

∂yk
= 0 , k = 1(1)f . (2.92)
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Introducing the Lagrange function L = T − U also called the kinetic poten-
tial, equations (2.92) are even more simplified and reads

d
dt

(
∂L

∂ẏk

)
− ∂L

∂yk
= 0 , L = T − U , k = 1(1)f . (2.93)

For some engineering applications it is advantageous to use surplus co-
ordinates yj , j = 1(1)f + r, in addition to the f generalized coordinates
yk , k = 1(1)f . Then, there exist r geometric constraints between the sur-
plus coordinates

ϕn = ϕn(yj) = 0 , n = 1(1)r . (2.94)

The equations of motion are now extended by r Lagrangian multipliers
λn , n = 1(1)r, representing generalized constraint forces

d
dt

(
∂T

∂ẏj

)
− ∂T

∂yj
= qj +

r∑

n=1

λn
∂ϕn
∂yj

, j = 1(1)f + r . (2.95)

If (2.94) is replaced by (2.34) the Newton-Euler equations are obtained again.

Problem 2.11 Lagrangian equations of motion for a differential
gear
The differential gear shown in Fig. 2.25 is used for road vehicles to compensate
for the differences of the rotation angles of the wheels during cornering. It
consists of the driving wheel 1, the crown wheel 2, the driven wheels 3 and 4
as well as of the compensation wheels 5 and 6. The moments of inertia with
respect to the corresponding rotation axes including the connected rotating
parts are Ii, i = 1(1)6. Wheel 1 is driven by the torque M1, the wheels 3 and
4 are loaded by the torques M3 and M4, respectively. Generate Lagrange’s
equations for the given gear and discuss

a) the case of uniform motion and
b) the case of a suddenly changing load.

Solution
The generation of the equations of motion using Lagrange’s equation of the
second kind is carried out in five steps.

Step 1: Definition of the number of degrees of freedom and choice of the
generalized coordinates. The given differential gear has f = 2 degrees of free-
dom. This is obvious from locking of one degree of freedom. If for example the
driven wheel 4 is locked, then there remains a gear with one degree of free-
dom only. For two non-locked wheels the gear has two degrees of freedom. As
generalized coordinates the required rotation angles ϕ3 and ϕ4 of the driven
wheels are chosen. The remaining rotation angles are subject to the following
constraints where aj , j = 1, 2 are the corresponding transmission ratios,
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1
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M3 M4
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6

ϕ3 ϕ4

M1ϕ1

Fig. 2.25. Differential gear

ϕ1 =
a1

2
(ϕ3 + ϕ4) ,

ϕ2 =
1
2
(ϕ3 + ϕ4) ,

ϕ5 = a2(ϕ3 − ϕ4) ,

ϕ6 = a2(ϕ4 − ϕ3) . (1)

In the case of driving straight ahead it yields ϕ2 = ϕ3 = ϕ4 = ϕ1/a1. Then
the compensation wheels do not rotate around their own axes, ϕ5 = ϕ6 = 0
even if they are moving together with the crown wheel 2.

Step 2: Computation of the kinetic energy T . In this problem, the kinetic
energy is only due to the rotation of the wheels,

T =
1
2

6∑

i=1

Iiϕ̇
2
i . (2)

Using the constraints (1) the kinetic energy is found depending only on the
generalized angular velocities ϕ̇3 and ϕ̇4 as

T =
1
2

[
I1

a2
1

4
(ϕ̇3 + ϕ̇4)2 + I2

1
4
(ϕ̇3 + ϕ̇4)2 + I3ϕ̇

2
3 + I4ϕ̇

2
4

+ I5a
2
2(ϕ̇3 − ϕ̇4)2 + I6a

2
2(ϕ̇4 − ϕ̇3)2

]
. (3)
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Due to symmetry of the design I3 = I4 and I5 = I6, it remains from (3)

T =
1
2
A(ϕ̇2

3 + ϕ̇2
4) + Bϕ̇3ϕ̇4 , (4)

where the abbreviations

A =
I1a

2
1

4
+

I2

4
+ I3 + 2I5a

2
2 , (5)

B =
I1a

2
1

4
+

I2

4
− 2I5a

2
2 (6)

are introduced. It holds obviously A > B.
Step 3: Computation of the potential energy U or the generalized forces

qk, respectively. The generalized forces are easily obtained considering the
virtual work performed by the applied torques acting on the differential gear

δW e = M1δϕ1 − M3δϕ3 − M4δϕ4 , (7)

where the driving work is positive and the work of the driven wheels is neg-
ative. With the constraint ϕ1 = (ϕ3 + ϕ4)a1/2 from (1) it follows

δW e = M1
a1

2
(δϕ3 + δϕ4) − M3δϕ3 − M4δϕ4

=
(
M1

a1

2
− M3

)

︸ ︷︷ ︸
q3

δϕ3 +
(
M1

a1

2
− M4

)

︸ ︷︷ ︸
q4

δϕ4 . (8)

Thus, the generalized torques read as

q3 = M1
a1

2
− M3 , q4 = M1

a1

2
− M4 . (9)

Step 4: Evaluation of the Lagrangian equations of motion. From the fun-
damental equation (2.90) one gets

d
dt

(
∂T

∂ϕ̇k

)
− ∂T

∂ϕk
= qk , k = 3, 4 . (10)

Then, it follows considering (4) and (9) immediately for the equations of
motion

Aϕ̈3 + Bϕ̈4 =
1
2
M1a1 − M3 , (11)

Bϕ̈3 + Aϕ̈4 =
1
2
M1a1 − M4 , (12)

where the applied torques, Mj = Mj(ϕ̇j), j = 1, 3, 4, usually depend on the
angular velocity.

Step 5: Solution of the equations of motion and discussion. Even if the
solution of the equations of motion (11), (12) for given torques Mj = Mj(ϕ̇j)
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requires in general numerical time integration, the question stated above can
be answered.

a) A uniform motion (stationary driving straight ahead) results in constant
angular velocities ϕ̇3 = ϕ̇3,0 = const, ϕ̇4 = ϕ̇4,0 = const. Then, the angular
accelerations are vanishing and from (11) and (12) the torque relations

M3,0 = M4,0 =
1
2
M1,0a1 (13)

are obtained.

b) The consequences of a sudden load change can be estimated if it occurs
during uniform motion. Then, (11) and (12) provide for the angular acceler-
ations the following relations

ϕ̈3 =
1
2M1a1(A − B) − AM3 + BM4

A2 − B2
, (14)

ϕ̈4 =
1
2M1a1(A − B) − AM4 + BM3

A2 − B2
. (15)

For a uniform motion (Mj = Mj0, j = 1, 3, 4) the left hand side and the right
hand side of (14) and (15) are vanishing. If there is a sudden load change

M3 = M3,0 − ∆M3 (16)

occurring, e.g. by a sudden lowering of the friction at the tire connected to
the drive wheel 3, then it follows from (14), (15)

∆ϕ̈3 =
A∆M3

A2 − B2
, ∆ϕ̈4 =

−B∆M3

A2 − B2
. (17)

Thus, due to the fact A2 > B2, the driven wheel 3 is accelerated what
may result in a wheelspin of the tire at wheel 3, and the driven wheel 4 is
decelerated what may result in a locking of the tire at wheel 4. For very
strong load changes of this kind a vehicle may start skidding.

2.4 Equations of Motion for Multibody Systems

In Sect. 2.3 there has been presented two methods for the generation of the
equations of motion, the synthetical method by Newton-Euler, and the analyt-
ical method by Lagrange, respectively. The principal steps in the generation
process by the methods of Newton-Euler and Lagrange are shown in Fig. 2.26.
Common starting point is a mechanical model of the vehicle composed of the
elements of multibody systems. Common result are the equations of motion,
they are identical with both methods if the same generalized coordinates are
chosen. However, the effort is different. During the generation of the equa-

tions of motion using Lagrange’s equations there appear terms in
d
dt

(
∂T

∂ẏi

)
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which are afterwards eliminated by
∂T

∂yi
according to (2.90). This means a

useless computational effort which is not required with the Newton-Euler
approach, see e.g. Schiehlen and Eberhard (2004). On the other hand in the
Newton-Euler equations the reactions have to be eliminated. Thus, both of
the two approaches have disadvantages which are avoided by a combination
of the Newton-Euler equations with the principles presented in Sect. 2.3.3. In
any case, the resulting equations of motion are always ordinary differential
equations (ODEs). However, their form depends on the type of the multibody
system. There are ideal and non-ideal systems, the first ones are characterized
by applied forces and torques independent from any reaction while the second
ones show a such dependency. E.g., gravitational forces, spring and damper
forces are independent from any reaction while sliding friction forces and slip
dependent contact forces, regularly found with tires in vehicle dynamics, are
a function of the normal or reaction forces, respectively.

Within the class of ideal systems, ordinary and general multibody sys-
tems are distinguished. Ordinary multibody systems are due to holonomic
constraints and applied forces depending only on position and velocity quan-
tities, they can be always represented by a system of differential equations
of the second order. For nonholonomic constraints and/or general force laws
one gets general multibody systems.

The equations of ordinary multibody systems read as

M (y, t) ÿ (t) + k (y, ẏ, t) = q (y, ẏ, t) , (2.96)

where y is the f × 1-position vector of the generalized coordinates, M is the
f × f -symmetric inertia matrix, k is a f × 1-vector of generalized gyroscopic
forces including the Coriolis and centrifugal forces as well as the gyroscopic
torques, and the f × 1-vector q represents generalized applied forces. The
equations of motion resulting from Lagrange’s method have always the form
(2.96) while the Newton-Euler method may require some calculations to get
a symmetric inertia matrix.

In vehicle dynamics the deviations ỹ (t) from a reference motion y = yR (t)
are often small,

y(t) = yR(t) + ỹ(t) . (2.97)

Then, one obtains by a Taylor series expansion under the assumption of dif-
ferentiable vector functions and skipping of the second and higher order terms
from (2.96) the linearized equations of motion, see also Mueller and Schiehlen
(1985),

M(t)¨̃y(t) + P (t) ˙̃y(t) +Q(t)ỹ(t) = h(t) , (2.98)

where M(t) is the symmetric, positive definite inertia matrix while P (t) and
Q(t) characterize the velocity and position dependent forces and the vector
h(t) represents the external excitations. If all these matrices are time-invariant
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{ri, S
Ii}, {vi, ωi}

(d
dt

∂T

∂ẏj

−
∂T

∂yj

= qj , j = 1(1)f)

frames of reference, geometry data, inertia data
Multibody system,

Newton-Euler

Elimination of

constraint forces and torques

Lagrange

yi, i = 1(1)f

and its boundary

Degrees of freedom f ,
generalized coordinates

Lagrange’s equations

by

Equations of motion

Kinetic energy

Generation of equations of motion

bodies Ki, i = 1(1)p and

Position and velocity variables

External forces and torques

generalized forces qj

Definition of global system

Potential energyNewton’s and Euler’s equations
mivi = f i U = U(yi), qj = −∂U/∂yj

Dismantling of system,

constraint forces and torques

f i, li T = T (yi, ẏi)

Iiω̇i + ω̃iIiωi = li

Fig. 2.26. Generation of equations of motion by the methods of Newton-Euler and
Lagrange
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and subdivided in a symmetrical and skew-symmetrical part, then the equa-
tions of motion of a linear ordinary and time-invariant multibody system are
found reading as

Mÿ(t) + (D +G)ẏ(t) + (K +N)y(t) = h(t) , (2.99)

where ỹ was simply replaced by y and the f × f -matrices have the properties

M =MT > 0, D = DT, G = −GT, K = KT, N = −NT. (2.100)

These matrices have a physical meaning which can be identified after premul-
tiplication of (2.99) from the left by ẏT resulting in the total time derivative
of an energy expression

ẏTMẏ︸ ︷︷ ︸
d
dt

T

+ ẏTDẏ︸ ︷︷ ︸
2R

+ ẏTGẏ︸ ︷︷ ︸
0

+ ẏTKy︸ ︷︷ ︸
d
dt

U

+ ẏTNy︸ ︷︷ ︸
2S

= ẏTh︸︷︷︸
P

, (2.101)

The inertia matrixM determines the kinetic energy T = 1
2 ẏ

TM ẏ and there-
fore the inertia forces, from T > 0 it follows again the positive definiteness of the
inertia matrix. The damping matrixD defines via Rayleigh’s dissipation func-
tion R = 1

2 ẏ
TD ẏ the damping forces while the gyro matrix G describes the

gyroscopic forces which do not change the total energy of the system. The stiff-
ness matrix determines the potential energy U = 1

2y
TKy and, therefore, the

conservative position forces while the matrixN identifies the circulatory forces
also known as nonconservative position forces. Furthermore, S represents the
power of the circulatory forces and P describes the power of the external exci-
tation forces. ForD = 0, N = 0 and h = 0 the multibody system is conser-
vative, i.e., the total energy is constant for all motions,

T + U = const . (2.102)

The matrix properties (2.100) allow often to check the equations of motion
with respect to the physical phenomena involved.

The principal structure of the equation of motion of general MBS is different
from (2.96) and (2.99), respectively. Systems with nonholonomic constraints
are treated by Schiehlen and Eberhard (2004) and will be in Sect. 9.1.2 exem-
plified. Examples for general force laws are considered in Chap. 3.

Problem 2.12 Equations of motion for the bounce and pitch
vibrations of an automobile
The three-body system shown in Fig. 2.27 is qualified for the analysis of the
low frequency bounce and pitch vibrations of an automobile in the vertical
plane. The vehicle body is modeled as a rigid body while the axles together
with the wheels are considered as particles, they are connected with each other
by struts consisting of spring and damper. The support on the guideway is
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handled by the tires which are modeled as spring-damper-system, too. It is
assumed that only small pitch motions appear, and the springs and dampers
have a linear characteristic. In the equilibrium position the vehicle body shall
be completely horizontal. The stiffness of the tires is much larger than the
stiffness of the suspension springs. Therefore, the vehicle body is called the
sprung mass while the wheels are denoted as unsprung mass. The horizontal
guideway is characterized by an uneven profile ζ, the vehicle is travelling with
constant speed. For this vehicle model the equations of motion have to be
specified.

f2

f4

f4

z2

f3

β

zB
zA

z3

b)

m2

k1d2 eI
1

m1

eI
3

OI d1 z10z20

f1

z1
f3

m3, IC ≡ Ia)

k4 k3 d3

ζ2 ζ1

d4

ba

A C

H

v

A
C

z30

k2

B

B

V

Fig. 2.27. Three body system of an autombile: a) equilibrium position ; b) free
body diagram

Solution
All three masses show vertical bouncing motions while the vehicle body in
addition shows a pitching motion. All motions are restricted to the vertical
eI1, e

I
3-plane, see Fig. 2.27 a). The system has f = 4 degrees of freedom char-

acterized by the four generalized coordinates z1, z2, z3 and β. They describe
the deviations of the bodies from their reference position which coincides with
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the equilibrium position on an even road. In the equilibrium position the
gravity forces acting on the bodies are compensated by preloading forces of
the springs. Therefore, in the free body diagram Fig. 2.27 b) neither gravity
forces nor preloading forces of the springs are shown and the coordinates are
measured from the equilibrium position indicated by the dot and dash line.
Newton’s and Euler’s equations read for the bodies Ki, i = 1(1)3, using the
notation of the system parameters in Fig. 2.27 a) as

i = 1 : m1z̈1 = −f1 + f3 , (1)
i = 2 : m2z̈2 = −f2 + f4 , (2)
i = 3 : m3z̈3 = −f3 − f4 , (3)

Iβ̈ = bf3 − af4 . (4)

The corresponding spring and damper forces of the suspensions and the
wheels are given by

fj = kj(zj − ζj) + dj(żj − ζ̇j) , j = 1, 2 , (5)
f3 = k3(zB − z1) + d3(żB − ż1) , (6)
f4 = k4(zA − z2) + d4(żA − ż2) . (7)

The kinematical relation between the displacements zA, zB and the coordi-
nates z3, β follow for small pitch angles β ≤ 1, Fig. 2.27 b) as

zA = z3 + aβ , zB = z3 − bβ : (8)

Adopting (5)-(8) to (1)-(4) one gets the four equations of motion

m1z̈1 + k1z1 + d1ż1 − k3(z3 − bβ − z1) − d3(ż3 − bβ̇ − ż1) = k1ζ1 + d1ζ̇1 ,
(9)

m2z̈2 + k2z2 + d2ż2 − k4(z3 + aβ − z2) − d4(ż3 + aβ̇ − ż2) = k2ζ2 + d2ζ̇2 ,
(10)

m3z̈3 + k3(z3 − bβ − z1) + d3(ż3 − bβ̇ − ż1)

+ k4(z3 + aβ − z2) + d4(ż3 + aβ̇ − ż2) = 0 , (11)

Iβ̈ − bk3(z3 − bβ − z1) − bd3(ż3 − bβ̇ − ż1)

+ ak4(z3 + aβ − z2) + ad4(ż3 + aβ̇ − ż2) = 0 . (12)

The equations of motion can be well arranged in matrix form by introduction
of the column vector y of the generalized coordinates

y =
[
z1 z2 z3 β

]T
. (13)
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Then, it remains

Mÿ +Dẏ +Ky = h , (14)

with matrices and vectors

M = diag
[
m1 m2 m3 I

]
, h =

[
k1ζ1 + d1ζ̇1 k2ζ2 + d2ζ̇2 0 0

]T
,

D =

⎡

⎢⎢⎣

d1 + d3 0 −d3 bd3

0 d2 + d4 −d4 −ad4

−d3 −d4 d3 + d4 −bd3 + ad4

bd3 −ad4 −bd3 + ad4 b2d3 + a2d4

⎤

⎥⎥⎦ ,

K =

⎡

⎢⎢⎣

k1 + k3 0 −k3 bk3

0 k2 + k4 −k4 −ak4

−k3 −k4 k3 + k4 −bk3 + ak4

bk3 −ak4 −bk3 + ak4 b2k3 + a2k4

⎤

⎥⎥⎦ , (15)

where the 4×4-matricesM ,D,K describe the inertia, damping and stiffness
properties of the automobile while the 4 × 1-column vector h characterizes
the guideway unevenness.

For checking the equations of motions (14)-(17) the fact can be used that
the matrices M , D, K have to be symmetric since gyroscopic and noncon-
servative forces do not appear in the automobile model. Furthermore, in this
problem the matricesK and D have the same structure since all springs and
dampers are placed in parallel. Using the same indices for the parallel placed
springs and dampers it yields

K =K(ki) → D = K(di) ,

D =D(di) → K = D(ki) . (16)

Such kind of intuitive checkings are most valuable for large multibody systems
too, and they support the understanding of the mechanical background of the
model chosen.

The total wheel loads fV , fH acting at the front wheel (index V ) and the
rear wheel (index H) on the guideway are composed of the static loads f10,
f20 and the dynamic loads f1, f2, see (5) as

fV (t) = f10 + f1(t) , fH(t) = f20 + f2(t) . (17)

The static wheel loads follow from a statical analysis as

f10 =
(

m1 +
a

a + b
m3

)
g , f20 =

(
m2 +

b

a + b
m3

)
g , (18)

while the dynamic wheel loads depend on the solution of the equations of
motion subject to the road unevenness.
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2.5 Formalisms for Multibody Systems

The generation of equations of motion for large multibody systems is a non-
trivial task requiring numerous steps during the evaluation of the funda-
mental relations. Beginning with the space age in the middle of the 1960s
the generation of equations of motion was more formalized. The resulting
formalisms were used for the development of computer codes for multibody
systems, they are the basis of computational multibody dynamics. Twenty-
five years later, in 1990, there were known 20 formalisms described in the
Multibody System Handbook, Schiehlen (1990). Many of them are still used
today.

Multibody system formalisms are based on Newton-Euler equations or La-
grange’s equations, respectively, as described in Sect. 2.3 and Sect. 2.4. Re-
garding the computational procedure, numerical and symbolical formalisms
are distinguished. Numerical formalisms supply the elements of the matrices
as numbers in the case of linear time-invariant multibody systems (2.99). In
the case of linear time-variant systems (2.98) and nonlinear systems (2.96)
a numerical formalism provides the numbers in the equations of motion for
each time step required by the simulation programme. In contrary, symboli-
cal formalisms generate the equations of motion only once with the computer
how it is done with paper and pencil. The advantage is that variations of the
system parameters and, for time-variant systems, the running time have to be
inserted in the symbolical equations of motion only. Symbolical formalisms
are especially helpful for optimizations and control design.

Furthermore, non-recursive and recursive formalisms are distinguished.
Recursive formalisms make use of special topology properties of multibody
systems.

2.5.1 Non-recursive Formalisms

As an introduction the symbolical formalism Neweul is presented. Neweul is
a research software based on the Newton-Euler equations and the principles
of d’Alembert and Jourdain, it was developed at the University of Stuttgart
in a Fortran based version, see e.g. Kreuzer and Leister (1988). More re-
cently there is also the Maple-Matlab based version Neweul-M2 available, see
Kurz and Eberhard (2009). Neweul generates equations of motion in minimal
form (2.96) or (2.99), respectively, which may be solved by any integration
code for ordinary differential equations. The formalisms comprises five steps
which may be evaluated by hand for smaller multibody systems, too.

Step 1: System specification and input data.
At first the multibody system is defined and treated as a whole. The num-
ber of degrees of freedom is determined and the generalized coordinates
yk, k = 1(1)f , are chosen. The inertial frame I and the body fixed frames
i are defined. Each body Ki , i = 1(1)p, is dismantled, and the corresponding
inertia parameters { mi, Ii}, the position variables { rIi ,SIi} as well as the
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applied forces and torques { f (e)I
i , l

(e)I
i } are specified. The quantities IIi and

l
(e)I
i are related to the corresponding center of mass Ci. The input data read

as

f, y = [y1, . . . . . . , yj, . . . . . . , yf ]T , (2.103)

p,
{

mi, I
i
i

}
,
{
rIi ,S

Ii
}

,
{
f

(e)I
i , l

(e)I
i

}
, i = 1(1)p , (2.104)

rIi = [ ri1 ri2 ri3]
T

, SIi = SIi (αi, βi, γi) ≡ Si , i = 1 (1) p . (2.105)

The rotation matrices are described by three angles, e.g. the Cardano angles
αi, βi, γi.

Step 2: Element consideration, local equations.
Now the elements of the inertia tensors are computed in the inertial frame I
by the transformation

IIi = SIiIiiS
iI . (2.106)

Then, there are all quantities available in the inertial frame I which is the
only frame further used. Thus, the right upper index is no longer required
and just skipped. The local equations of motion for each body Ki read as

miv̇i = f
(e)
i + f (r)

i , i = 1(1)p , (2.107)

Iiω̇i + ω̃iIiωi = l
(e)
i + l(r)i , i = 1(1)p , (2.108)

where the external forces and torques are subdivided in the known applied
forces f

(e)
i and torques l

(e)
i and the unknown reactions f

(r)
i and l

(r)
i , cp.

Sect. 2.3.2 and 2.3.3. The reactions are eliminated later and, therefore, they
have not to be specified for the generation of the equations of motion.

Step 3: Relation between local and global quantities.
The relation between the position (2.105) of a single body Ki and the gen-
eralized coordinates (2.103) is given by the holonomic and, in general, also
rheonomic constraints. These relations are known from the input data as

ri = ri(y, t) , Si = Si(y, t) , i = 1(1)p , (2.109)

and the corresponding velocities {vi,ωi} and accelerations {ai,αi} are com-
puted as

vi = ṙi =
∂ri
∂yT

ẏ +
∂ri
∂t

= JTi(y, t)ẏ + vi(y, t) , (2.110)

ωi = ṡi =
∂si
∂yT

ẏ +
∂si
∂t

= JRi(y, t)ẏ + ωi(y, t) , (2.111)

ai = v̇i = JTi(y, t)ÿ +
∂vi
∂yT

ẏ +
∂vi
∂t

, (2.112)

ai = ω̇i = JRi(y, t)ÿ +
∂ωi
∂yT

ẏ +
∂ωi
∂t

. (2.113)
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For scleronomic constraints the partial time-derivatives are disappearing.
The 3 × f -Jacobian matrices JTi,JRi of translation and rotation, respec-

tively, present the relation between the local and global coordinates as shown
in Sect. 2.2.4 by the virtual motion

δri = JTiδy , δsi = JRiδy , i = 1(1)p . (2.114)

These matrices are available from kinematics by relations (2.110) and (2.111).
If the velocities are known {vi(y, ẏ, t),ωi(y, ẏ, t)}, the Jacobians may be also
found from the virtual velocities where position and time are treated as frozen
(δr ≡ 0, δ′v �= 0, δt ≡ 0). then it yields, cp. (2.110) and (2.111),

δ′vi = JTiδ
′ẏ , δ′ωi = JRiδ

′ẏ , i = 1(1)p . (2.115)

After these preparatory computations the local equations (2.107) and (2.108)
of all bodies Ki of the multibody system are evaluated as functions of the
generalized coordinates and their derivatives.

Step 4: System consideration, global equations.
At first the local equations, depending on the generalized coordinates, are
composed in global matrices and vectors. For this purpose the 6p × 6p-
diagonal matrix M of the inertia quantities is introduced

M = diag[m1E, m2E, . . . , mpE, I1, I2, . . . , Ip] , (2.116)

where E means the 3 × 3-unit matrix. Further, the 6p × 1-vectors q(e), q(r),k
are used to summarize all applied, reaction, Coriolis and gyroscopic forces and
torques. These three vectors are defined as follows

q = [fT
1 , . . . . . . ,fT

p , lT1 , . . . . . . , lTp ]T . (2.117)

And finally the global 6p × f -Jacobian matrix is introduced as

J = [JT
T1, . . . . . . ,J

T
Tp , JT

R1, . . . . . . ,J
T
Rp]

T. (2.118)

The global Newton-Euler equations are now represented as one 6p × 1-vector
equation

M Jÿ + k(y, ẏ, t) = q(e)(y, ẏ, t) + q(r) . (2.119)

These 6p equations are reduced to the minimal number of f ordinary differen-
tial equations by left pre-multiplication with the transposed f × 6p-Jacobian
matrix J

T
,

J
T
MJÿ + J

T
k(y, ẏ, t) = J

T
q(e)(y, ẏ, t) , (2.120)

where the term J
T
q(r) is vanishing due to (2.70).
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Summarizing the matrix products, one gets the equations of motion with
a symmetric inertia matrix,

M(y, t)ÿ(t) + k(y, ẏ, t) = q(y, ẏ, t) ,

M =MT = J
T
M J , k = J

T
k , q = J

T
q(e) , (2.121)

in complete agreement with (2.96).
Optional step 5: Computation of the reaction forces and torques.

In contrary to Lagrange’s approach, the reactions can be regained if the
global distribution matrix Q according to (2.75) and the generalized con-
straint forces vector g from (2.71) are employed. Then, it yields

q(r) = Qg. (2.122)

Due to the orthogonality condition (2.76) the left pre-multiplication of (2.119)

with Q
T
M

−1
results in linear, completely algebraic reaction equations

N̂ (y, t)g(t) + q̂(y, ẏ, t) = k̂(y, ẏ, t) ,

N̂ = N̂
T

= Q
T
M

−1
Q , q̂ = Q

T
M

−1
q(e) , k̂ = Q

T
M

−1
k , (2.123)

where N̂ is the symmetric, generally positive definite q × q-reaction matrix
while the q × 1-vectors q̂ , k̂ show the influence of the applied and gyroscopic
forces and torques on the reactions. On the other hand, by elimination of ÿ
in (2.119) one gets

q(r) = Qg = [E −M J(J
T
M J)−1J

T
] (k − q(e)) . (2.124)

Then, by partitioning of (2.124) only the required constraint forces and
torques may be computed.

In vehicle dynamics often contact forces are found resulting in nonideal
multibody systems. Then, the f equations of motion (2.121) have to be solved
simultaneously with the q equations of reaction (2.123).

The presented five steps show that the Neweul formalism is based on
the Newton-Euler equations, however, they are supplemented by typical fea-
tures of the analytical method like generalized coordinates and generalized
reactions. The required computations include summation, multiplication and
differentiation of vectors and matrices, simplification of trigonometrical ex-
pressions and linearization of expressions. These computations are symboli-
cally performed in Neweul. But the underlying formalism may be also exe-
cuted by any formula manipulation software like Maple or Matlab.

The most widely used numerical formalism in vehicle engineering is
Adams Multibody Dynamics (2009). The software Adams generates numeri-
cal solutions of the original non-reduced Newton-Euler equations (2.57) and
(2.58) rewritten as
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Mẍ+ k (x, ẋ, t) = q(e) (x, ẋ, t) +Qg , Q
T

= −∂ϕ(x, t)
∂xT

= −ϕx
(2.125)

where the 6p × 1-vector x(t) is composed by Cartesian coordinates and the
6p × q-distribution matrix Q of the reactions is found from the implicit con-
straints (2.34) written in matrix notation or (2.75), respectively. After two
total time derivatives of (2.34) a set of 6p + q linear equations remains for
the unknowns ẍ and g,
[
M ϕT

x

ϕx 0

] [
ẍ
g

]
=
[
q(e) − k

−ϕt − ϕ̇xẋ
]

. (2.126)

Here, M is a blockdiagonal 6p × 6p-matrix which allows the application of
sparse matrix techniques. Eqs. (2.126) represent differential-algebraical equa-
tions which are solved by Adams with special integration codes. As with all
commercial codes a graphical interface is used, and mathematical equations
are not to be handled. For more details search for Adams Multibody Dynamics
(2009).

2.5.2 Recursive Formalisms

For time integration of holonomic systems the inertia matrix in (2.96) or
(2.121), respectively, has to be inverted what is numerically costly for systems
with many degrees of freedom,

ÿ (t) =M−1 (y, t) [ q (y, ẏ, t) − k (y, ẏ, t)] . (2.127)

Recursive algorithms avoid this matrix inversion. A fundamental requirement,
however, is a chain or tree topology of the multibody system as shown in
Fig. 2.28. Contributions on recursive algorithms without loop topologies are
due, e.g., to Hollerbach (1980), Bae and Haug (1987a), Brandl et al. (1988),
Schiehlen (1991), (2006).

2.5.2.1 Kinematics

Recursive kinematics uses the relative motion between two neighboring bod-
ies and the related constraints as shown in Fig. 2.29. The absolute transla-
tional and rotational velocity vector wi of body i, also denoted as twist, is
related to the absolute velocity vector wi−1 of body i − 1 and the generalized
coordinates yi of the joint i between this two bodies. It yields
[
vOi
ωi

]

︸ ︷︷ ︸
wi

= Si,i−1

[
E −r̃Oi−1,Oi

0 E

]

︸ ︷︷ ︸
Ci

[
vOi−1

ωi−1

]

︸ ︷︷ ︸
wi−1

+Si,i−1

[
JTi
JRi

]

︸ ︷︷ ︸
J i

ẏi (2.128)
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Tree ChainLoop

Fig. 2.28. Topologies of multibody systems

Using the fundamentals of relative motion of rigid bodies, it remains for the
absolute acceleration

bi = Cibi−1 + J iÿi + βi(ẏi,wi−1) , i = 1(1)p . (2.129)

where the vector bi summarizes the translational and rotational accelerations
of body i as well.
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Fig. 2.29. Absolute twists and constraint wrenches for neighboring bodies
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For the total system one gets for the absolute acceleration in matrix
notation

b = C b+ Jÿ + β (2.130)

where the geometry matrix C is a lower block-subdiagonal matrix and the
Jacobian matrix J is a block-diagonal matrix as follows

C =

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
C2 0 0 · · · 0
0 C3 0 · · · 0
...

...
. . .

. . . 0
0 0 0 Cp 0

⎤

⎥⎥⎥⎥⎥⎦
, J =

⎡

⎢⎢⎢⎢⎢⎣

J1 0 0 · · · 0
0 J2 0 · · · 0
0 0 J3 · · · 0
...

...
. . .

. . .
...

0 0 0 0 Jp

⎤

⎥⎥⎥⎥⎥⎦
. (2.131)

From (2.130) it follows the non-recursive form of the absolute accelerations
as

b = (E −C)−1
J ÿ + β (2.132)

where the global Jabobian matrix J is found again, see (2.75) or (2.118),

J = (E −C)−1
J =

⎡

⎢⎢⎢⎢⎢⎣

J1 0 0 · · · 0
C2J1 J2 0 · · · 0
C3C2J1 C3J2 J3 · · · 0

...
...

...
. . .

...
∗ ∗ ∗ · · · Jp

⎤

⎥⎥⎥⎥⎥⎦
. (2.133)

Due to the chain topology the global Jacobian matrix is a lower triangular
matrix.

2.5.2.2 Newton-Euler Equations

Newton’s and Euler’s equations are now written for body i in its body-fixed
frame at the joint position Oi using the absolute accelerations and the ex-
ternal forces and torques summarized in the vector qi, denoted as wrench,
acting on the body with holonomic constraints:
[

miE mir̃
T
OiCi

mir̃OiCi IOi

]

︸ ︷︷ ︸
M i = const

[
aOi
αi

]

︸ ︷︷ ︸
bi

+
[
miω̃iω̃irOiCi
ω̃iIOiωi

]

︸ ︷︷ ︸
ki

=
[
f i
lOi

]

︸ ︷︷ ︸
qi

. (2.134)

Moreover, the external forces are composed of applied forces q(e)
i and con-

straints forces q(r)
i where the generalized constraint forces gi of the joint i

and gi+1 of the joint i + 1 appear:

qi = q
(e)
i + q(r)

i , q
(r)
i = Qigi −CT

i+1Qi+1gi+1 , i = 1(1)p . (2.135)
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2.5.2.3 Equations of Motion

For the total system a set of 18p scalar equations remains from (2.130),
(2.134) and (2.135) as

b = Jÿ + β , (2.136)

Mb+ k = q(e) + q(r) , (2.137)

q(r) = (E −C)TQg = Qg (2.138)

with 18p unknowns in the vectors b,y, q(r), g.
Now (2.136) and (2.138) are inserted in (2.137) and the global orthogo-

nality J
T
Q = 0 is used again resulting in the standard form (2.121) of the

equations of motion. The mass matrix is completely full, again, and the vec-
tor k depends not only on the generalized velocities but also on the absolute
velocities,

M =

⎡

⎣
JT

1 (M 1 +CT
2 (M2 +CT

3M3C3)C2)J1 J
T
1C

T
2 (M 2 +CT

3M3C3)J2

JT
2 (M2 +CT

3M3C3)C2J1 JT
1 (M2 +CT

3M3C3)J2

JT
3M3C3C2J1 JT

3M3C3J2

JT
1C

T
2C

T
3M3J3

JT
2C

T
3M3J3

JT
3M 3J3

⎤

⎦ ,

(2.139)

k = k (y, ẏ, w) . (2.140)

However, the mass matrix shows now a characteristic structure which can be
used for a Gauss transformation.

2.5.2.4 Recursion

There are three steps required to obtain the generalized accelerations.

1. Forward recursion to get the absolute motion starting with i = 1.
2. Backward recursion using a Gauss transformation starting with i = p.

As a result the system

M̂ ÿ + k̂ = q̂ (2.141)

is obtained where M̂ is a lower triangular matrix

M̂ =

⎡

⎣
JT

1 M̃1J1 0 0
JT

2 M̃ 2C2J1 JT
2 M̃2J2 0

JT
3 M̃3C3C2J1 J

T
3 M̃ 3C3J2 J

T
3 M̃3J3

⎤

⎦ , (2.142)

the block elements of which follow from the recursion formula.

M̃ i−1 = M i−1+CT
i (M̃ i−M̃ iJ i(JT

i M̃ iJ i)−1JT
i M̃ i)Ci . (2.143)
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3. Forward recursion for the generalized accelerations starting with i = 1.
The recursion requires some computational overhead. Therefore, the
recursive algorithms are more efficient than the matrix inversion
(2.127) only for more than p = 8 − 10 bodies.

There are also some extensions of the recursive approach to loop topologies,
see Bae and Haug (1987b) and Saha and Schiehlen (2001). Further, it has
to be mentioned that there are two commercial codes based on recursive
formalisms: Simpack (2009) and RecurDyn (2009). More details are available
on the corresponding websites.

Problem 2.13 Equations of motion of a drawbar trailer
For the trailer shown in Fig. 2.30 the nonlinear equations are required. The
system consists of a vehicle running on a horizontal plane straight ahead
with constant velocity v0 and the trailer represented by the drawbar 1 and
the wheel 2. The drawbar 1 with the inertia properties m1, IC1 is connected
to the vehicle by a rotational/translational joint G, which is supported by two
springs with the stiffness ky and kγ . In the neutral position of the joint the
spring forces and torques are vanishing due to the symmetry of the design.
At the other end of the drawbar wheel 2 with radius r and inertia parameters
{m2, IC2} is mounted. The wheel axis is horizontal, and the joint G and the
wheel center C2 have the same height above ground. For the mathematical
modeling as shown in Fig. 2.30 the frames I, R and Z as well as the body-
fixed frames 1 and 2 are used. The trailer is defined as a two-body system
with drawbar and wheel. The joint G at the traction vehicle has the forward
velocity v0, and the wheel contact point A due to the slip the contact forces
and torques ft1, ft2, l3 are acting. The friction in the joint and the bearing
are neglected.

Solution
The solution follows the formalism presented in Sect. 2.5.1 and comprises of
five steps.

Step 1: The trailer consists of p = 2 bodies and has f = 3 degrees
of freedom. The lateral joint displacement y, the drawbar angle γ and the
rotation angle β of the elastic wheel are chosen as generalized coordinates.
First of all the position variables of drawbar 1 and wheel 2 are evaluated
using the geometrical dimensions as

rI1 =

⎡

⎣
v0t − bcγ
y − bsγ

0

⎤

⎦ , SI1 = SIZ = γ3 =

⎡

⎣
cγ −sγ 0
sγ cγ 0
0 0 1

⎤

⎦ , (1)

rI2 =

⎡

⎣
v0t − acγ
y − asγ

0

⎤

⎦ , SI2 = SIZSZ2 = γ3(−β2) , (2)
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where sine and cosine are abbreviated as ”s” and ”c”. The absolute velocities
follow by differentiation of the position variables or from the elementary
angular velocities, respectively, as

vI1 =

⎡

⎣
v0 + bγ̇sγ
ẏ − bγ̇cγ

0

⎤

⎦ , ωI1 =

⎡

⎣
0
0
γ̇

⎤

⎦ , (3)

vI2 =

⎡

⎣
v0 + aγ̇sγ
ẏ − aγ̇cγ

0

⎤

⎦ , ωZ2 =

⎡

⎣
0

−β̇
γ̇

⎤

⎦ , ωI2 = SIZωZ2 =

⎡

⎣
β̇sγ

−β̇cγ
γ̇

⎤

⎦ . (4)

The force variables are defined in Fig. 2.30 b). The applied forces and torques
are due to gravity, spring and contact phenomena while the reaction forces
and torques follow from cutting the drawbar and the wheel free. For both
bodies related to their centers of mass it remains

f
(e)1
1 =

⎡

⎣
−kyysγ
−kyycγ

m1g

⎤

⎦ , l
(e)1
1 =

⎡

⎣
0
0

−kγγ − kyybcγ

⎤

⎦ , (5)

f
(r)1
1 =

⎡

⎣
fcγ − fs1

−fsγ − fs2
−fG0 − fG1

⎤

⎦ , l
(r)1
1 =

⎡

⎣
l − ls1

fG0b − fG1(a − b)
−fbsγ + fs2(a − b) − ls3

⎤

⎦ , (6)

f
(e)Z
2 =

⎡

⎣
−ft1
−ft2
m2g

⎤

⎦ , l
(e)Z
2 =

⎡

⎣
ft2r

−ft1r
−l3

⎤

⎦ , (7)

f
(r)Z
2 =

⎡

⎣
fs1
fs2

fG1 − fn

⎤

⎦ , l
(r)Z
2 =

⎡

⎣
ls1
0
ls3

⎤

⎦ . (8)

The transformation in the inertial frame I using (1) results in

f
(e)I
1 =

⎡

⎣
0

−kyy
m1g

⎤

⎦ , l
(e)I
1 =

⎡

⎣
0
0

−kγγ − kyybcγ

⎤

⎦ , (9)

f
(r)I
1 =

⎡

⎣
f − fs1cγ + fs2sγ
−fs1sγ − fs2cγ

−fG0 − fG1

⎤

⎦ ,

l
(r)I
1 =

⎡

⎣
(l − ls1)cγ − fG0bsγ + fG1(a − b)sγ
(l − ls1)sγ + fG0bcγ − fG1(a − b)cγ

−fbsγ + fs2(a − b) − ls3

⎤

⎦ , (10)

as well as



2.5 Formalisms for Multibody Systems 83
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Fig. 2.30. Two body system drawbar and wheel: a) model; b) free body diagram
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f
(e)I
2 =

⎡

⎣
−ft1cγ + ft2sγ
−ft1sγ − ft2cγ

m2g

⎤

⎦ , l
(e)I
2 =

⎡

⎣
ft2rcγ + ft1rsγ
ft2rsγ − ft1rcγ

−l3

⎤

⎦ , (11)

f
(r)I
2 =

⎡

⎣
fs1cγ − fs2sγ
fs1sγ + fs2cγ

fG1 − fn

⎤

⎦ , l
(r)I
2 =

⎡

⎣
ls1cγ
ls1sγ
ls3

⎤

⎦ . (12)

Step 2: The inertia tensors of both bodies have diagonal form in the cor-
responding body-fixed principal axes frame. Due to the rotational symmetry
of the wheel this is also true in the reference frame Z,

IIC1 = diag[I1,1 I1,2 I1,3] , IZC2 = diag[I2,1 I2,2 I2,3] , I2,1 = I2,3 = I .

(13)

The transformation in the inertial frame I results according to (2.106) using
the rotational matrices (1) in

IICi =

⎡

⎣
Ii,1c2γ + Ii,2s

2γ (Ii,1 − Ii,2)sγcγ 0
(Ii,1 − Ii,2)sγcγ Ii,1s2γ + Ii,2c2γ 0

0 0 Ii,3

⎤

⎦ , i = 1, 2 . (14)

The Newton-Euler equations (2.107), (2.108) of both bodies read explicitly
using (3), (4), (9)-(14) as

m1

⎡

⎣
bγ̈sγ + bγ̇2cγ

ÿ − bγ̈cγ + bγ̇2sγ
0

⎤

⎦ =

⎡

⎣
0

−kyy
m1g

⎤

⎦+

⎡

⎣
f − fs1cγ + fs2sγ
−fs1sγ − fs2cγ

−fG0 − fG1

⎤

⎦ , (15)

m2

⎡

⎣
aγ̈sγ + aγ̇2cγ

ÿ − aγ̈cγ + aγ̇2sγ
0

⎤

⎦ =

⎡

⎣
−ft1cγ + ft2sγ
−ft1sγ − ft2cγ

m2g

⎤

⎦+

⎡

⎣
fs1cγ − fs2sγ
fs1sγ + fs2cγ

fG1 − fn

⎤

⎦ , (16)

⎡

⎣
0
0

I1,3γ̈

⎤

⎦ =

⎡

⎣
0
0

−kγγ − kyybcγ

⎤

⎦+

⎡

⎣
(l − ls1)cγ − fG0bsγ + fG1(a − b)sγ
(l − ls1)sγ + fG0bcγ − fG1(a − b)cγ

−fbsγ + fs2(a − b) − ls3

⎤

⎦ ,

(17)
⎡

⎣
I2,2β̈sγ + I2,2β̇γ̇cγ

−I2,2β̈cγ + I2,2β̇γ̇sγ
Iγ̈

⎤

⎦ =

⎡

⎣
ft2rcγ + ft1rsγ
ft2rsγ − ft1rcγ

−l3

⎤

⎦+

⎡

⎣
ls1cγ
ls1sγ
ls3

⎤

⎦ . (18)

The translational motion of drawbar and wheel are characterized by (15),
(16) while (17) and (18) describe the rotations of these bodies. Altogether
these are 12 equations for the evaluation of f = 3 generalized coordinates as
well as q = 9 generalized constraint forces.

Step 3: The Jacobian matrices of translation and rotation are found most
easily for this problem by rewriting the velocities for a fixed traction vehicle
using (3) and (4)
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δ′v1 =

⎡

⎣
bsγδγ̇

δẏ − bcγδγ̇
0

⎤

⎦ , δ′ω1 =

⎡

⎣
0
0
δγ̇

⎤

⎦ , (19)

δ′v2 =

⎡

⎣
asγδγ̇

δẏ − acγδγ̇
0

⎤

⎦ , δ′ω2 =

⎡

⎣
sγδβ̇

−cγδβ̇
δγ̇

⎤

⎦ . (20)

By separation of the variation δ′ẏ = [δẏ δβ̇ δγ̇]T the virtual velocity vectors
(19) and (20), see also (2.115) follow as

δ′v1 = JT1δ
′ẏ =

⎡

⎣
0 0 bsγ
1 0 −bcγ
0 0 0

⎤

⎦

⎡

⎣
δẏ

δβ̇
δγ̇

⎤

⎦ ,

δ′ω1 = JR1δ
′ẏ =

⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦

⎡

⎣
δẏ

δβ̇
δγ̇

⎤

⎦ , (21)

δ′v2 = JT2δ
′ẏ =

⎡

⎣
0 0 asγ
1 0 −acγ
0 0 0

⎤

⎦

⎡

⎣
δẏ

δβ̇
δγ̇

⎤

⎦ ,

δ′ω2 = JR2δ
′ẏ =

⎡

⎣
0 sγ 0
0 −cγ 0
0 0 1

⎤

⎦

⎡

⎣
δẏ

δβ̇
δγ̇

⎤

⎦ . (22)

Step 4: The Jacobian matrices JT1, JT2, JR1, JR2 are now available
from (21), (22), and they are composed to the global Jacobian matrix J as

J
T

=
[
JT
T1

...JT
T2

...JT
R1

...JT
R2

]

=

⎡

⎢⎢⎢⎣

0 1 0
... 0 1 0

... 0 0 0
... 0 0 0

0 0 0
... 0 0 0

... 0 0 0
... sγ −cγ 0

bsγ −bcγ 0
... asγ −acγ 0

... 0 0 1
... 0 0 1

⎤

⎥⎥⎥⎦ . (23)

To extract the equations of motion of the trailer depending on the general-
ized coordinates and their time derivatives only, the reaction force variables
have to be eliminated form the twelve Newton-Euler equations (15)-(18). The
elimination procedure is a nontrivial task even if the problem treated is a com-
paratively simple system. This elimination procedure can be executed system-
atically by means of the Neweul formalism. By premultiplication of (15)-(18)
written as column matrices with the matrix J

T
, see (23), one gets immedi-

ately the three equations of motion. The column grouping of the Jacobian
matrices in (23) has to correspond with respect to translation, rotation and
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body index with the row grouping of the Newton-Euler equations (15)-(18)
what is already true for this problem. Thus, for example, the first equation of
motion of the trailer follows by addition of the second equation in (15) with
the second equation in (16) resulting in

(m1 + m2)ÿ + (m1b + m2a)(−γ̈cγ + γ̇2sγ) = −kyy − ft1sγ − ft2cγ . (24)

Accordingly, the two additional equations of motion of the two-body system
are found as

I2,2β̈ = ft1r , (25)

(I1,3 + I + m1b
2 + m2a

2)γ̈ − (m1b + m2a)ÿcγ = −kγγ − l3 + aft2 . (26)

The matrix representation of (24)-(26) is found using the abbreviations

m = m1 + m2 , mc̄ = m1b + m2a , IG = I1,3 + I + m1b
2 + m2a

2 , (27)

where m is the total mass, IG is the total moment of inertia with respect
to the eR3 -axis in the joint G and c means the distance of the total center
of mass C from G, see Fig. 2.30 a). Thus, the equations of motion have the
form (2.121),

⎡

⎣
m 0 −c̄mcγ
0 I2,2 0

−c̄mcγ 0 IG

⎤

⎦

︸ ︷︷ ︸
M(y)

⎡

⎣
ÿ

β̈
γ̈

⎤

⎦

︸ ︷︷ ︸
ÿ

+

⎡

⎣
c̄mγ̇2sγ

0
0

⎤

⎦

︸ ︷︷ ︸
k(y, ẏ)

=

⎡

⎣
−kyy − ft1sγ − ft2cγ

rft1
−kγγ − l3 + aft2

⎤

⎦

︸ ︷︷ ︸
q(y, ẏ)

.

(28)

The symmetric inertia matrix M can also be found directly by a congruence
transformation as

M = J
T
M J , M = diag[m1E, m2E, IIC1, I

I
C2] , (29)

The equations of motion (24)-(26) may be also evaluated for the assembled
two-body system cut only at the joint G and the contact point A. Equation
(24) follows from Newton’s equation for the eI2-direction where the horizontal
velocity vC2 = (ẏ − cγ̇cγ) of the total center of mass appears. Eqs. (25) and
(26) follow for the application of Euler’s equations for the eZ2 -axis and eI3-axis,
respectively, where the acceleration of the reference point G has to be con-
sidered according to (2.134). However, such a consideration of the assembled
trailer does not provide the reaction force variables within the system.

Step 5: The nine generalized constraint forces read for this problem as:
fG0, fG1, fL, fn l, ls1, ls2, f , fs1, fs2. First of all the four static equations
from (15)-(18) can be used to evaluate the reaction force variables fG0, fG1,
fn and l − ls1 rewritten as
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⎡

⎢⎢⎣

1 1 0 0
0 1 1 0

−bsγ (a − b)sγ 0 cγ
bcγ −(a − b)cγ 0 sγ

⎤

⎥⎥⎦

⎡

⎢⎢⎣

fG0

fG1

fn
l − ls1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

m1g
m2g
0
0

⎤

⎥⎥⎦ . (30)

The solutions are

fG0 =
a − b

a
m1g , fG1 =

b

a
m1g , fn =

(
b

a
m1 + m2

)
g , l = ls1 .

(31)

This result can easily confirmed by applying the static equilibrium conditions
based on Fig. 2.30 b). The remaining equations can be represented in form
(2.119). Then, the five missing reaction force variables can be computed for-
mally as presented in Sect. 2.5. In this case the computation is even simpler
due to the special structure of the equations. From (18) it follows

(18.1)cγ + (18.2)sγ ⇒ ls1 = I2,2β̇γ̇ − ft2r , (32)
(18.3) ⇒ ls3 = Iγ̈ + l3 . (33)

The acceleration vector ÿ may be obtained from (28) using Cramer’s rule
with the quotient of two determinants. Thus, one gets

ÿ =
D1(y, ẏ)

D(y)
, γ̈ =

D3(y, ẏ)
D(y)

, D = det[M(y)] . (34)

Comparing (33) and (34) results in

ls3 =
D3

D
I + l3 . (35)

The still missing reaction forces f , fs1, fs2 are obtained from (15), (16) as
⎡

⎢⎢⎣

0 m1bsγ
m1 −m1bcγ
0 m2asγ

m2 m2acγ

⎤

⎥⎥⎦

︸ ︷︷ ︸

[
ÿ
γ̈

]

︸ ︷︷ ︸

+

⎡

⎢⎢⎣

m1bcγ
m1bsγ
m2acγ
m2asγ

⎤

⎥⎥⎦

︸ ︷︷ ︸

γ̇2 =

M
∗
J

∗
ÿ∗ + k

∗
=

⎡

⎢⎢⎣

0
−kyy

−ft1cγ + ft2sγ
−ft1sγ − ft2cγ

⎤

⎥⎥⎦

︸ ︷︷ ︸

+

⎡

⎢⎢⎣

1 −cγ sγ
0 −sγ −cγ
0 cγ −sγ
0 sγ cγ

⎤

⎥⎥⎦

︸ ︷︷ ︸

⎡

⎣
f

fs1
fs2

⎤

⎦

︸ ︷︷ ︸

.

q(e)∗ + Q
∗

g∗

(36)
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Equations (36) represent a reduced number of the Newton-Euler equations
(2.119) which may be solved by left-multiplication with the matrix

Q+ =

⎡

⎣
1 0 1 0
0 0 cγ sγ
0 0 −sγ cγ

⎤

⎦ , (37)

where it yields Q+Q
∗

= E. Then, the required generalized constraint forces
read as

g∗ = Q+[M
∗
J

∗
ÿ∗ + k

∗ − q(e)∗] , ÿ∗ = [D1D3]T/D . (38)

In more general problems, however, numerical methods from linear algebra
have to be applied.

In an additional step the equations of motion and the equations of reaction
are linearized with the respect to the reference state

yR = 0 , γR = 0 , β̇R = Ω = v0/r . (39)

Then, it yields

y = yR + ỹ = ỹ , γ = γR + γ̃ = γ̃ , γ̃ � 1 ,

ẏ = ˙̃y , β̇ = Ω + ˙̃β , γ̇ = ˙̃γ , ˙̃β � Ω , (40)

where all position and velocity variables characterized by the tilde are small
of the first order. During linearization all variables small of second order and
higher are neglected. The linearized equations of motion follow immediately
from (28) considering sγ̃ = γ̃, cγ̃ = 1, ˙̃γ2 = 0 as

⎡

⎣
m 0 −c̄m
0 I2,2 0

−c̄m 0 IG

⎤

⎦

⎡

⎢⎣
¨̃y
¨̃
β
¨̃γ

⎤

⎥⎦+

⎡

⎣
ky 0 0
0 0 0
0 0 kγ

⎤

⎦

⎡

⎣
ỹ

β̃
γ̃

⎤

⎦ =

⎡

⎣
−ft1γ − ft2

rft1
aft2 − l3

⎤

⎦ . (41)

Obviously the inertia and stiffness matrix are time-invariant and symmetric.
The static reaction force variables (31) remain unchanged, the other variables
read as

l = ls1 = I2,2Ω ˙̃γ − ft2r ,

ls3 = I ¨̃γ + l3 ,

f = ft1 − ft2γ̃ ,

fs1 = ft1 ,

fs2 = ft2 + m2(¨̃y − a¨̃γ) , (42)

where the acceleration quantities are given by
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¨̃y = D̃1/D̃ , D̃1 = c̄m(aft2 − l3 − kγ γ̃) − IG(ft1γ̃ + ft2 + ky ỹ) ,

¨̃γ = D̃3/D̃ , D̃3 = m(aft2 − l3 − kγ γ̃) − c̄m(ft1γ̃ + ft2 + ky ỹ) ,

D̃ = m(IG − mc̄2) . (43)

According to (41) the longitudinal motion characterized by β̃ and the lateral
motion represented by ỹ and γ̃ are completely decoupled for small motions.

Problem 2.14 Application of Neweul formalism on a vehicle
model with f = 10 degrees of freedom
The research multibody dynamics tool Neweul is applied for the generation of
the equations of motion of a three dimensional model of an automobile. The
model presented in Fig. 2.31 consists of the vehicle body, a semi-trailing arm
rear suspension and two independent front wheel suspensions. The wheels as
well as the rear axle suspension are mounted elastically to the vehicle body.
The semi-trailing arm rear suspension consists of one axle carrier and two
control arms.

The inertia parameters as well as the 10 generalized coordinates are shown
in Fig. 2.31. The geometrical parameters as well as the position of the con-
necting points of the elastic coupling elements are presented in Fig. 2.32.
The guideway excitations are characterized by the four variables WS1, WS2,
WS3, WS4. The numerical parameters are summarized in Table 2.5.

The essential input steps will be shown but not completely listed. A de-
tailed description is available from Kreuzer and Leister (1988).

Position vector of generalized coordinates

The position vector reads as

y = [ZK AK BK ZT AT BT BSL BSR ZVL ZVR]T (1)

Frames

Altogether 18 frames are used. As an example the first frame is shown. The
frame No.1 describes the vehicle body by rotation and translation.

KOSART: S Classification of frame
KOSYNA: AUFBAU Name of frame
KOSYNA: I Name of reference frame

Number of elementary rotations: 2
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Fig. 2.31. Vehicle model with 10 degrees of freedom
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Fig. 2.32. Geometrical data of vehicle model, axle carrier and control arms enlarged
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Table 2.5. Numerical parameters

AS = 30 grd CT1 = 250000 N/m
RS = 0.45 m CT2 = 250000 N/m
RS1 = 0.37 m CT3 = 250000 N/m
UK = 1.384 m DAHL = 2100 kg/s
UK1 = 1.089 m DAHR= 2100 kg/s
UK2 = 1.28 m DAVL = 1900 kg/s
UK3 = 1.299 m DAVR = 1900 kg/s
UT1 = 0.07 m DT1 = 320 kg/s
UT2 = 0.14 m DT2 = 320 kg/s
VK = 0.744 m DT3 = 320 kg/s
VK1 = 0.31 m MK = 1130 kg
VK2 = 0.564 m MS = 42 kg
VT = 0.356 m MT = 25 kg
VT1 = 0.31 m MVL = 42.5 kg
WT = 0.305 m MVR = 42.5 kg
CAHL = 23300 N/m TK1 = 504 kgm2

CAHR = 23300 N/m TK2 = 1840 kgm2

CAVL = 15500 N/m TK3 = 0 kgm2

CAVR = 15500 N/m TS1 = 0.8 kgm2

CRHL = 200000 N/m TS2 = 0.5 kgm2

CRHR = 200000 N/m TS3 = 0.4 kgm2

CRVL = 180000 N/m TT1 = 1.5 kgm2

CRVR = 180000 N/m TT2 = 2 kgm2

TT3 = 0 kgm2

Elementary rotation No.1
rotation axis 1
WINK = AK
rotation angle

Elementary rotation No.2
rotation axis 2
WINK = BK
rotation angle

Number of subvectors of translation: 1

Subvector No.1
KOSYNA: I frame of subvector
Subvector
R(1) = 0
R(2) = 0
R(3) = ZK
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Inertia Data

Inertia data for body-fixed frame
KOSYNA: AUFBAU

Mass
MASS = MK

Inertia tensor
KOSYNA: AUFBAU frame for definition of the inertia tensor
I(1, 1) = TK1
I(2, 1) = 0
I(2, 2) = TK2
I(3, 1) = 0
I(3, 2) = 0
I(3, 3) = TK2

Applied forces and torques

External/internal force or torque
FLEART: IK Kind of force/torque

Frames affected by the force or torque
KOSYNA: NODE1 1. System (Action positive)
KOSYNA: NODE2 2. System (Action negative; for internal forces/

torques only)
Frame used for force/torque definition
KOSYNA: I

Force/torque inputvector
FLE(1) = 0
FLE(2) = 0
FLE(3) = SU5

Equations of linearized motion

There are only the nonvanishing elements printed.
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Inertia matrix

M(1,1) = 1130. M(7,4) = -18.9
M(7,5) = -14.786766

M(2,2) = 504. M(7,6) = -4.5025
M(7,7) = -9.23

M(3,3) = 1840.
M(8,4) = -18.9

M(4,4) = 109. M(8,5) = 14.786766
M(8,6) = -4.5025

M(5,5) = 49.811185 M(7,7) = 9.23

M(6,4) = 18.9 M(9,9) = 42.5
M(6,6) = 7.2525

M(10,10) = 42.5

Damping matrix

D(1,1) = 8960. D(4,1) = -5160. D(8,1) = 777.
D(1,3) = 1229.44 D(4,3) = -6488.64 D(8,2) = -438.228
D(1,4) = -5160. D(4,4) = 5160. D(8,3) = 994.56
D(1,6) = -777. D(4,6) = 777. D(8,4) = -777.
D(1,7) = 777. D(4,7) = -777. D(8,5) = 525.58564
D(1,8) = 777. D(4,8) = -777. D(8,6) = -143.745
D(1,9) = -1900. D(8,8) = 287.49
D(I,10) = -1900. D(5,2) = -1663.83

D(5,5) = 1983.2423 D(9.1) = -1900.
D(2,2) = 3500.944 D(5,7) = -525.58564 D(9,2) = -1413.6
D(2,5) = -1663.83 D(5,8) = 525.58564 D(9,3) = 2629.6
D(2,7) = 438.228 D(9.9) = 1900.
D(2,8) = -438.228 D(6,1) = -777.
D(2,9) = -1413.6 D(6,3) = -1003.968 D(10,1) = -1900.
D(2,10) = 1413.6 D(6,4) = 777. D(10,2) = 1413.6

D(6,6) = 153.153 D(10,3) = 2629.6
D(3,1) = 1229.44 D(6,7) = -143.745 D(10,10) = 1900.
D(3,3) = 15458.971 D(6,8) = -143.745
D(3,4) = -6488.64
D(3,6) = -1003.968 D(7,1) = 777.
D(3,7) = 994.56 D(7,2) = 438.228
D(3,8) = 994.56 D(7,3) = 994.56
D(3,9) = 2629.6 D(7,4) = -777.
D(3,10) = 2629.6 D(7,5) = -525.58564

D(7,6) = -143.745
D(7,7) = 287.49
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Stiffness matrix

K(1,1) = 827600. K(4,1) = -796600. K(8,1) = 8621.
K(1,3) = 885994. K(4,3) = -928898. K(8,2) = -4862.244
K(1,4) = -796600. K(4,4) = 1196600. K(8,3) = 11034.88
K(1,6) = -8621. K(4,6) = 98621. K(8,4) = -98621.
K(1,7) = 8621. K(4,7) = -98621. K(8,5) = 72945.527
K(1,8) = 8621. K(4,8) = -98621. K(8,6) = -21844.885
K(1,9) = -15500. K(8,8) = 43689.77
K(I,10) = -15500. K(5,2) = -65828.188

K(5,5) = 291806.36 K(9.1) = -15500.
K(2,2) = 80032.89 K(5,7) = -72945.527 K(9,2) = -11532.
K(2,5) = -65828.188 K(5,8) = 72945.527 K(9,3) = 21452.
K(2,7) = 4862.244 K(9.9) = 195500.
K(2,8) = -4862.244 K(6,1) = -8621.
K(2,9) = -11532. K(6,3) = -18384.88 K(10,1) = -15500.
K(2,10) = 11532. K(6,4) = 98621. K(10,2) = 11532.

K(6,6) = 29194.885 K(10,3) = 21452.
K(3,1) = 885994. K(6,7) = -21844.885 K(10,10) = 195500.
K(3,3) = 1150539.3 K(6,8) = -21844.885
K(3,4) = -928898.
K(3,6) = -18384.88 K(7,1) = 8621.
K(3,7) = 11034.88 K(7,2) = 4862.244
K(3,8) = 11034.88 K(7,3) = 11034.88
K(3,9) = 21452. K(7,4) = -98621.
K(3,10) = 21452. K(7,5) = -72945.527

K(7,6) = -21844.885
K(7,7) = 43689.77

Vector of excitations

H(4) = 200000. ∗ WS3 + 200000. ∗ WS4
H(5) = 149142.29 ∗ WS3 − 149142.29 ∗ WS4
H(6) = 45000. ∗ WS3 + 45000. ∗ WS4
H(7) = −90000. ∗ WS3
H(8) = −90000. ∗ WS4
H(9) = 180000. ∗ WS2
H(10) = 180000. ∗ WS1
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Models for Support and Guidance Systems

The tasks of the vehicle support and guidance system are

• support the vehicle on the track and guiding the vehicle along the
track,

• isolation of the vehicle body including passengers and goods from dis-
turbances caused by track unevenness and external loads e. g. wind
gusts.

The first task affects directly the driving safety, whereas the second task is
related to the driving comfort. To ensure a high driving safety, the support
and guidance system has to provide a firm connection to the track. This is in
contradiction to the demand for a high driving comfort which requests small
accelerations of the vehicle body and, therefore, requires a soft suspension.
For most vehicles, the resulting conflict of these tasks is solved by dividing the
support and guidance system into two subsystems: the primary suspension
system consisting of the components in the immediate vicinity of the track
and the secondary suspension system connecting the vehicle body and the
primary suspension system. This results in the basic vehicle set up shown in
Fig. 3.1. In general, the design of the primary and the secondary suspension
system cannot be performed independently from each other.

The primary and the secondary suspension system may consist of passive
and/or active elements. An element is passive if an external energy source is
not needed. On the other hand, an active element requires an external energy
source and a system to control the energy transfer as well.

In the following, models of secondary suspension systems are presented,
like passive spring and damper combinations, as well as models of the most
important passive and active primary suspensions systems. In particular,
wheels for road and rail vehicles, and magnetic actuators for magnetically
levitated vehicles are presented.
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car body

guideway

primary suspension

primary mass (unsprung mass)

secondary suspension

(spring mounted mass)
secondary mass

Fig. 3.1. Basic vehicle set-up

3.1 Models for Passive Spring and Damper Systems

Spring and damper elements are classified linear or nonlinear depending on
the relation of the corresponding forces and moments to the displacements
and velocities which may be linear or nonlinear. These elements can be used in
different combinations, thus, a great variety of the resulting force laws exist.
Simple linear elements are described first followed later by some nonlinear
elements. Only elements for translational motions are considered here, but
the transfer to rotational elements is straight forward.

In Table 3.1 the mechanical models for different combinations of linear
spring and damper elements are shown. Using the element parameters, the
corresponding applied forces can be expressed by the displacement s and their
time derivative ṡ, respectively. The displacement s is measured with respect
to the position of the unloaded springs.

The force law for a single displacement-proportional spring and for a single
velocity-proportional damper can be found in row 1 and 2 of Table 3.1. This
type of damping occurs in the motion of high viscous fluids or in damping by
the use of eddy currents. Because of the equilibrium condition, the total force
f of parallel combination of springs and/or dampers with the corresponding
forces fi is the sum of these forces,

f =
n∑

i=1

fi . (3.1)

Using this relationship the force law in Table 3.1, row 3 - 5, are derived. From
the free body diagram it follows that in series combination of elements, every
element is loaded with the same force f which is equal to the total force. In
a series combination of identical elements, the total displacement s and the
total velocity ṡ, respectively, is given as the sum of the individual values,
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Table 3.1. Linear force laws for different combinations of linear spring and damper
elements

Type Mechanical Model
Character-

istics
Force Law

1. Linear
spring

fF = ks

2. Linear
damper

fD = dṡ

3. Parallel set
of springs

fF =
n∑

i=1

kis = ks

k =
n∑

i=1

ki

4. Parallel set
of dampers

fD =
n∑

i=1

diṡ = dṡ

d =
n∑

i=1

di

5. Parallel set
of spring
and damper

f = dṡ + ks

6. Series set of
springs

s =
n∑

i=1

fF

ki
=

fF

k

fF = ks ,
1

k
=

n∑
i=1

1

ki

7. Series set of
dampers

ṡ =
n∑

i=1

fD

di
=

fD

d

fD = dṡ ,
1

d
=

n∑
i=1

1

di

8. Series set of
spring and
damper

1)

2)

ḟ +
k

d
f = kṡ

f(t = 0) = f0 , T =
d

k

9. Series and
parallel set
of springs
and
dampers

1)

2)

ḟ +
1

d
(k + k1)f =

1

d
kk1s + kṡ

f(t = 0) = f0 , T =
d

k + k1

fS =
kk1

k + k1
s0 , fE = kṡ0T
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s =
n∑

i=1

si , ṡ =
n∑

i=1

ṡi . (3.2)

Using these relationships, the force law in Table 3.1, row 6 and 7, are found.
In the cases considered so far, the forces f can be expressed as functions of
s and ṡ in the form

f = f (s) , f = f (ṡ) , f = f (s, ṡ) . (3.3)

In terms of the control theory, these relations describe a proportional (P), a
differential (D) or a proportional plus differential (PD) behavior.

The force law for a series combination of different elements is more com-
plex. For example in case a), Table 3.1, row 8, the damper force is

fD = dṡ1 (3.4)

and the spring force reads as

fF = k (s − s1) (3.5)

with the displacement s1 of the central node. Because of the series combi-
nation, both elements have the same force due to equilibrium, fD = fF = f .
Differentiation of Eq. (3.5) and elimination of ṡ1 leads to the force law

ḟ(t) +
k

d
f(t) = kṡ(t) , f(0) = f0 . (3.6)

The force f (t) is now described by a linear differential equation of first order.
The general solution

f(t) = e−k
d t

⎡

⎣f0 +

t∫

0

kṡ(τ)e
k
d τdτ

⎤

⎦ (3.7)

depends on the initial condition f0 and on the disturbance function ṡ (t). Two
examples are presented to illustrate the behavior of the solution

1) If a displacement step is applied at the initial time t = 0 (s = s0 = const,
ṡ = 0 for t > 0), the corresponding initial value of the force is f0 = ks0.
Thus, it follows from Eq. (3.7)

f(t) = ks0e−
k
d t . (3.8)

Due to the compliance of the damper, the force is decreasing from its
initial value f (t = 0) = f0 to the final value f (t → ∞) = 0.
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2) If a velocity step is applied at the initial time t = 0 (ṡ = ṡ0 = const,
s (t) = ṡ0t for t > 0), it follows from Eq. (3.7)

f(t) = dṡ0

(
1 − e−

k
d t
)

. (3.9)

The initial value of the force is now f0 = 0. The spring is
loaded and the force f (t) increases until its stationary final value
f (t → ∞) = fS = dṡ0 is reached. The force is then a pure damper force.

In both cases the differential equation (3.6) represents a balancing process of
the force, starting from a constant initial value to a constant final value. The
formal integration of Eq. (3.6) results in

f(t) +
k

d

t∫

0

f(t̄)dt̄ = k[s(t) − s(0)] + f0 . (3.10)

In terms of the control theory, the force law has an integral (I) behaviour.
Equation (3.6) is also valid for case b) of Table 3.1, row 8.

A generalization of the force law Eq. (3.6) results in the spring-damper-
combination shown in Table 3.1, row 9,

ḟ(t) +
1
d
(k + k1)f(t) =

1
d
kk1s(t) + kṡ(t) , f(0) = f0 . (3.11)

Now the response to a displacement step denoted by 1) results in a stationary
final value not equal to zero, whereas the response to a velocity step denoted
by 2) is a force growing with time. Such models with a spring in parallel to
one or more series of a spring and a damper are frequently used to model the
dynamic behavior of rubber elements, which show relaxation and creep.

In vehicle engineering, the force laws of most of the spring and damper
elements used deviate from linear behavior. Table 3.2 shows a selection of
nonlinear force laws including the corresponding characteristics. The char-
acteristics are frequently odd, f (s) = −f (−s), f (ṡ) = −f (−ṡ). This can be
expressed mathematically by using the signum-function

sgnx =
{

+1 for x > 0
−1 for x < 0 . (3.12)

Nonlinear springs with progressive or degressive characteristics can be found
in Table 3.2, row 1. Nonlinear characteristics can also be obtained by cer-
tain combinations of linear elements, like a spring with clearance or a spring
preloaded in the design position, e. g. Table 3.2, row 2 and 3. Dampers with
a quadratic characteristic are models for turbulent damping in fluids with
a low viscosity, cp. Table 3.2, row 4. Friction effects between rigid bodies
are of particular interest. These effects can be modeled by Coulomb’s friction
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Table 3.2. Nonlinear force laws for different combinations of spring and damper
elements as well as Coulomb sliders

Type
Mechanical

Model
Characteristics Force Law

1. Nonlinear
spring

fF = ks + αs3

α > 0 progressive
α = 0 linear
α < 0 degressive

2. Linear spring
with gap
(gap-width 2a)

fF =

⎧
⎨

⎩

k(s − a), s ≥ a
0,−a ≤ s ≤ a
k(s + a), s ≤ −a

3. Preloaded linear
springs
(preloading
displacement a)

fF =

{
k(s + a), s > 0
k(s − a), s < 0

f0 = ka

4. Quadratic
damper

fD = dṡ2sgnṡ

5. Coulomb slider

Stick:
|fR| ≤ µ0fN , ṡ = 0
Slip:
fR = µfN sgnṡ , ṡ �= 0

6. Coulomb slider
in series with a
linear spring

Stick:
(t∗ = 0 : s1 = 0 , sgnṡ1 = 0)

fT = k1(s − s1) − µfN sgnṡ1

|fT | ≤ µfN

Slip: fT = µfN sgnṡ

7. Parallel set of
Coulomb sliders
in series with
linear springs

f = k0s +
n∑

i=1

fTi(s, ṡi)

Stick (cp. 6.):
fTi =
ki(s − si) − µifNisgnṡi ,
|fTi | ≤ µifNi

Slip: fTi = µifNisgnṡ

8. Spring with a
displacement-
dependent
spring
coefficient

ḟ + ϑṡ sgn(ṡ)f = kṡ ,
f(t = 0) = f0 ,
1) s = s0 : f0 = ks0e

−ϑ|s0|

2) ṡ = ṡ0 :

T =
sgnṡ0

ϑṡ0
, fS =

k

ϑ
sgnṡ0
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law, cp. Table 3.2, row 5, where it must be strictly distinguished between
stick (static coefficient of friction µ0) and slip (coefficient of kinematic fric-
tion µ < µ0). The static friction force is a reaction force that cannot exceed a
certain limit, whereas the kinematic friction force is an applied force depend-
ing on the normal force which is a reaction force by itself. A series combi-
nation of a Coulomb friction element with a linear spring results in a simple
mechanical model for an element showing hysteretic effects. Often µ0 = µ
is assumed, than the hysteretic loop characteristic shown in Table 3.2, row
6, can be found. The parallel combination of Coulomb sliders in series with
springs allows an adjustment of the computed hysteretic loop to measured
data, cp. Table 3.2, row 7. Nonlinear elements can also have an integral action
included in the force law. The spring in Table 3.2, row 8, has a displacement-
dependent spring constant k̄ = k̄ (z) with the always positive displacement
of the spring z = z (t, τ) during the time interval τ ≤ τ̄ ≤ t

z = z(t , τ) =

t∫

τ

|ṡ(τ̄ ) |dτ̄ . (3.13)

In general, the corresponding force law follows from

f(t) = f0 +

t∫

0

k̄(t , τ)ṡ(τ)dτ . (3.14)

For k̄ (t, τ) = k = const, the linear force law is obtained

f (t) = ks (t) (3.15)

with s (0) = f0/k. For a spring characteristic exponentially decreasing with
the displacement z,

k̄(z) = ke−ϑz (3.16)

with a constant ϑ, it follows from Eq. (3.14)

f(t) = f0 +

t∫

0

k e
−ϑ

t∫
τ

|ṡ(τ̄ ) |dτ̄
ṡ(τ)dτ . (3.17)

It can be recognized that the spring force f (t) at the time t depends on
the previous motion. With the increase of the time duration (t − τ), the
time history of the velocities ṡ (τ) dating back become less important for the
response.

Differentiation of Eq. (3.14) with respect to time

ḟ(t) =
d
dt

t∫

0

k̄(t , τ)ṡ(τ)dτ = k̄(t , t)ṡ(t) +

t∫

0

∂

∂t
k̄(t , τ)ṡ(τ)dτ (3.18)
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in combination with Eqs. (3.16) and (3.13) leads to a differential equation for
the spring force

ḟ(t) + ϑṡ(t)sgn(ṡ)f(t) = kṡ(t) , f(0) = f0 . (3.19)

In contrast to Eq. (3.6), the spring force f (t) is governed by a piecewise
linear differential equation of first order. The response to a displacement step
(s = s0 = const, ṡ = 0 for t > 0) is the constant spring force

f = f0 = ks0e−ϑ|s0| , (3.20)

whereas the response to a velocity step (ṡ = ṡ0 = const for t > 0) shows a
similar behavior like the linear differential equation Eq. (3.6), but the sta-
tionary final value is a constant slip force, f (t → ∞) = fs = k/ϑ sgnṡ0, cp.
Table 3.2, row 8.

The element described by Eq. (3.19) was used by Kranz (1983) in a parallel
combination with a linear spring as a model for trapezoidal and parabolic
springs of a freight wagon. A comparison with measured data showed that
the resulting hysteretic behavior is described correctly by this model. The
model parameters ϑ and k can be identified easily by the measured static
spring characteristics.

For all elements given in Table 3.1 and 3.2 the appropriate parameters
like the spring constants, damping constants and coefficients of friction are
needed. In many cases, the spring constants can be determined analytically,
whereas the damping constants and coefficients of friction have to be found
by experiments.

Problem 3.1 Mathematical model of a layered leaf spring
The static force-displacement characteristic shown in Fig. 3.2 a) of a preloaded
layered truck leaf spring was measured. The measured parameters are, Cebon
(1986):

ko = ku = k1 = 60 N/mm ,

βo = βu = β = 1.2 mm ,

fo = 460 N ,

fu = −410 N ,

so = 7.3 mm .

Determine amathematicalmodelusing a springwithadisplacement-dependent
spring constant.

Solution
First of all a zero shift of the force coordinate is used to create an odd charac-
teristic, f(s) = −f(−s), with f = f̄ − fm and fm = 1

2 (fo + fu) = 25 N. The
upper and the lower tangent on the hysteresis loop are parallel (gradient
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b)
k1

k2, ϑ
s

f̄ − fm

a)
ko

ku

α

βu

soso

f̄

fo

I

III

II

βo

fu

s

fm

Fig. 3.2. a) Force-displacement characteristic; b) equivalent system for a layered
leaf spring

ko = ku = k1), thus, a model consisting of a parallel combination of a lin-
ear spring 1 (spring constant k1) and of a displacement-dependent spring 2
(parameters k2, ϑ) is chosen. This model, see Fig. 3.2 b), represents the leaf
spring. The total spring force results from

f(s) ≡ f̄(s) − fm = f1(s) + f2(s) ,

f1(s) = k1s .
(1)

The spring force f2(s) is given according to Eq. (3.17) after the transforma-
tion of the variables from time domain into space domain,

f2(s) =

s∫

0

k2e
−ϑ

s∫
σ

|dσ̄ |
dσ (2)

with the unknown parameters k2, ϑ. The solution of this function depends on

the displacement path z = z(s, σ) =
s∫
0

|dσ̄|. For path I, see Fig. 3.2 a), with

0 ≤ s ≤ s0, 0 ≤ σI ≤ s(zI = s − σI), it follows
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f2(s) =

s∫

0

k2e−ϑ(s−σI)dσI =
k2

ϑ
(1 − e−ϑs) , (3)

f2(s0) =
k2

ϑ
(1 − e−ϑs0) ≡ f∗ . (4)

For path I and path II with s0 ≥ s ≥ −s0, it can be obtained after splitting
the integral (2) into two separate integrals with the integration variables σI

and σII, respectively,

path I: 0 ≤ σI ≤ s0 (zI = s0 − σI + s0 − s = 2s0 − s − σI) ,

path II: s0 ≥ σII ≥ s0 (zII = σII − s) :

f2(s) =

s0∫

0

k2e−ϑ(2s0−s−σI)dσI +

s∫

s0

k2e−ϑ(σII−s)dσII

=
k2

ϑ

[(
e−ϑ(s0−s) − e−ϑ(2s0−s)

)
−
(
1 − e−ϑ(s0−s)

)]
, (5)

f2(−s0) =
k2

ϑ

[
e−2ϑs0

(
1 − e−ϑs0

)− (1 − e−2ϑs0
)] ≡ − (f∗∗ − e−2ϑs0f∗) ,

(6)

using the function

f∗∗ =
k2

ϑ
(1 − e−2ϑs0) . (7)

Analogously, for path I, II and III with −s0 ≤ s ≤ s0, is calculated after
splitting the integral (2) into three separate integral with the integration
variables σI, σII and σIII, respectively,

path I: 0 ≤ σI ≤ s0 (zI =s0− σI + 2s0 + s + s0 =4s0 + s − σI) ,

path II: s0 ≥ σII ≥ −s0 (zII = s0 + σII + s + s0 = 2s0 + s + σII) ,

path III: −s0 ≤ σIII ≤ s0 (zIII = s − σIII) :

f2(s) = k2

[
s0∫
0

e−ϑ(4s0+s−σI)dσI +
−s0∫
s0

e−ϑ(2s0+s+σII)dσII

+
s∫

−s0
e−ϑ(s−σIII)dσIII

]

=
k2

ϑ

[(
e−ϑ(3s0+s) − e−ϑ(4s0+s)

) − (e−ϑ(s0+s) − e−ϑ(3s0+s)
)

+(1 − e−ϑ(s0−s))
]

,

(8)



3.1 Models for Passive Spring and Damper Systems 107

f2(s0) =
k2

ϑ

[(
e−4ϑs0 − e−5ϑs0

)− (e−2ϑs0 − e−4ϑs0
)

+
(
1 − e−2ϑs0

)]

≡ f∗∗ (1 − e−2ϑs0
)

+ e−4ϑs0f∗ .

(9)

Assuming

e−2ϑs0 � 1 , (10)

the force-displacement-characteristic f2(s) reaches a steady-state condition
after just one load cycle and is bounded by f2(−s0) ≈ −k2/ϑ ≤ f2(s) ≤
f2(s0) ≈ k2/ϑ. This results in an approximation for the force law of the
displacement-dependent spring 2:

path II: (ds < 0) : f2(s) ≈ k2

ϑ

[
2e−ϑ(s0−s) − 1

]
, − s0 ≤ s ≤ s0 ,

(11)

path III: (ds > 0) : f2(s) ≈ −k2

ϑ

[
2e−ϑ(s0+s) − 1

]
, − s0 ≤ s ≤ s0 .

(12)

The gradient df2(s)/ds in the point s = +s0 of path II and in the point
s = −s0 of path III, respectively, is given by

df2(s)
ds

∣∣∣∣
s=±s0

≡ tan α ≈ 2k2 . (13)

Using the results above the unknown parameters k2 and ϑ can be identified
from measured data, cp. Fig. 3.2 a):

• The vertical distance between the upper and the lower tangent on the
hysteresis loop delivers

fo − fu ≈ 2
k2

ϑ
. (14)

• The projection of the corner points of the hysteresis loop on the hori-
zontal line through the intersections fo and fu permits the determina-
tion of the gradient given in Eq. (13). Using the projection, the part
of the linear spring is eliminated. This results in, cp. Fig. 3.2 a),

tan α =
fo − fu

β
≈ 2k2 . (15)

Using the given data, it follows from Eqs. (14) and (15)

ϑ ≈ 1
β

≈ 0.83 mm−1 ,

k2 ≈ f0 − fu
2β

=
1
2

tanα = 362.5 N/mm . (16)
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Finally, the validity of the assumption of Eq. (10) is checked

e−2ϑs0 = e−2·0.83·7.3 = 5.2 · 10−6 � 1 . (17)

Thus, it is shown that the used approximations are valid in the considered
case. This is due to a sufficiently large displacement s0 of the measured force-
displacement characteristic.

The relatively complicated hysteresis loop of the layered leaf spring can be
represented mathematically by the simple 3-parameter-model using Eqs. (1),
(11) and (12) with sufficient accuracy. An alternative to the presented model
with the displacement-dependent spring 2 is the use of a series combination
of a coulomb slider with a linear spring, cp. Table 3.2, row 6. This model
has the same number of parameters and is also able to represent a hysteretic
behavior. However, the resulting hysteresis loop has four corner points instead
of two and therefore the representation of the measured data is not as good
as using the representation with the model presented here. Two corner points
can be achieved using more elements in series and/or parallel combinations,
cp. Table 3.2, row 7.

3.2 Models of Force Actuators

Force actuators can be classified into magnetic, electromechanic, hydraulic
and pneumatic actuators as well as piezo actuators, depending on the princi-
ple of force generation. In automotive systems actuators are used in support
systems like servo steering or servo braking, and in active suspensions. Mag-
netic levitated trains are using the electromagnetic attraction by magnetic
actuators for support and guidance. In the following, models of magnetic ac-
tuators will be discussed. The structure of the resulting force laws is found
for other kinds of actuators, too.

3.2.1 Models of Magnetic Actuators

As usual in modeling it is not possible to find a simple mathematical model for
a magnetic actuator that is complete and exact. The models for the magnets
are either simple and represent the physical effect insufficiently or they are
exact but also complicated and hard to compute. Because of the dependency
of the magnet behavior on the actual geometry and the materials used, the
axiomatic way of modeling leads to coarse results. Therefore, methods based
on measurements are necessary. In the following, nonlinear and linearized
models of magnets are presented that can be adapted to measured static and
dynamic magnet characteristics. The models are based on a single magnet
whose magnetic effect is represented by a single force, see Fig. 3.3. The general
equation of the relation between voltage and current of the DC circuit reads
as
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rail

L(sges)

U

R
I

sges A

magnet

fges

N

Fig. 3.3. Model of a magnetic actuator

U(t) = RI(t) +
d
dt

Φges[I(t), sges(t)] , (3.21)

where U(t) represents the acting voltage and I(t) the current in the coil.
Furthermore, R is the resistance and Φges the magnetic flux which depends
on the current I, the gap sges, the geometry and the material of the magnet.
Equation (3.21) balances the voltages of the circuit. The external voltage has
to be the sum of potential drops in the circuit. The first potential drop fol-
lows from Ohm’s law, the second is caused by the electromagnetic induction.
The multiplication of Eq. (3.21) with the current I(t) and a time integration
results in an energy balance. Because of the equality of magnetic energy and
the work of the magnetic forces, the relation between magnetic flux Φges and
total force fges reads as

fges(t) = − ∂

∂sges

I(t)∫

0

Φges(i, sges)di . (3.22)

For measurement reasons it is more convenient to introduce the inductance
Lges in the magnetic flux

Φges(I, sges) = Lges(I, sges)I . (3.23)

Considering the change in time of the current I = I(t) and the gap sges =
sges(t) Eqs. (3.21) and (3.23) yield

U(t) = RI(t) +
(

∂Lges
∂I

I(t) + Lges

)
İ(t) +

∂Lges
∂sges

I(t)ṡ(t) , (3.24)

while Eqs. (3.22) and (3.23) result in
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fges(t) = − ∂

∂sges

I(t)∫

0

Lges(i, sges)i di . (3.25)

Equations (3.24) and (3.25) require realistic assumptions for the inductance
Lges. The following effects have to be taken into account for the calculation
of the inductance Lges:

• gap sges of the magnet,
• length lF of the flux lines in iron,
• permeability µF of the iron,
• variation of µF by the current I (saturation),
• diffusion of the flux lines,
• displacement of flux lines by eddy currents caused by changes of cur-

rent and movements of the magnet along the rail and
• influences of hysteresis.

A summary of models for the inductance Lges regarding the first five points
and the corresponding magnetic forces are given in Table 3.3. Effects of eddy
currents and hysteresis are hard to describe analytically. They result not only
in a lower inductance but also in higher voltage drops (temperature increase
of the magnet) that can be modeled by a raised resistance R. With respect
to these effects, the general model (3.24) is not sufficient. The eddy currents
and their negative effect can be suppressed by using laminated iron cores
and armatures as well as by materials with low electric conductivity. These
influences are only listed here, but they will not be discussed in detail.

In the following the nonlinear Eqs. (3.24) and (3.25) will be linearized ac-
cording to a reference point R. The equations are continuously differentiable.
Therefore, an expansion of Taylor series is possible. Small deviations around
the reference point are assumed. This assumption is justified since a controller
for the stabilization of the system is needed due to the unstable behavior of
the magnet. The controller minimizes the deviation from the reference values.
With the equations

U(t) = UR + u(t) , I(t) = IR + i(t) ,

fges(t) = fR + f(t) , sges(t) = sR + s(t)
(3.26)

and the nonlinear Eqs. (3.24), (3.25), one gets the equations for constant
reference values as

UR = RIR , fR = fges(IR, sR) , (3.27)

marked with the index R. The differences to the constant reference values
are described by the linearized equation for voltage and current as

u(t) = Ri(t) +
(

∂Lges
∂I

∣∣∣∣
R

IR + Lges|R
)

i̇(t) +
∂Lges
∂sges

∣∣∣∣
R

IR ṡ(t)

= Ri(t) + Kİ i̇(t) − Kṡ ṡ(t) .

(3.28)
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Table 3.3. Four models of the inductance Lges = Lk and the magnetic force
fges = fk of a magnetic actuator, k = 1(1)4

Equivalent
network

Inductance Lges = Lk Magnetic force fges = fk

1) Ideal magnet with the gap inductance LL

L1 = LL =
µ0AN2

2sges
f1 = fL =

µ0AN2

4

(
I

sges

)2

2) Magnet with gap and iron inductance, LL and LF

(equal cross sections AL = AF = A)

L2 =
µ0AN2

2sges + lF
µr

= LL
1

1 + lF
2sgesµr

f2 = µ0AN2

(
I

2sges + lF
µr

)2

= fL
1

(
1 + lF

2sgesµr

)2

3) Magnet with gap, iron and leakage inductance, LL, LF and Ls

L3 = LN (sges) + Ls

= LL
1

1 + lF
2sgesµr

+ Ls

Ls, L3 from measurements,

ηs =
Ls

L3

f3 =
1

2

∂LN

∂sges
I2

= fL
1

(
1 + lF

2sgesµr

)2

4) Magnet like model 3) regarding the B-H-curve

(partly approximation: µr ∼ 1/Ik, e. g. µr = c/I2)

L4 = LN (sges, I) + Ls

= LL
1

1 + lF I2

2sgesc

+ Ls

c, k from measurements

f4 =
∂

∂sges

I∫
0

L(sges, i)i di

= fL
1

1 + lF I2

2sgesc

Nomenclature
U voltage in V f magnetic force Indices
I current in A in N=VAs/m
R resistance in Ω = V/A µ0 inductance constant ges total
L inductance in H = Ωs µ0 = 4π · 10−7 H/m N efficient
s gap in m µr relative permeability s leakage
lF magn. distance in iron in m N number of windings L gap
A surface area of one pole ηs leakage factor F iron

in m2 c, k constants
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For the linearized force to current and gap relation one gets

f(t) =
∂fges
∂I

∣∣∣∣
R

i(t) +
∂fges
∂sges

∣∣∣∣
R

s(t)

= KI i(t) − Ks s(t) .

(3.29)

The values of Kİ , Kṡ, KI and Ks are constant and positive, and are related
to the reference point R. Due to the nonlinear characteristics the following
equation is valid

KI =
∂fges
∂I

∣∣∣∣
R

= − ∂

∂I

∂

∂sges

I∫

0

Lges(i, sges)i di

∣∣∣∣
R

= − ∂Lges(I, sges)
∂sges

∣∣∣∣
R

IR = Kṡ . (3.30)

The constants depend on the model used for the inductance. For example,
the idealized model 1) of Table 3.3 yields

Kİ = LLR , Kṡ = KI = LLR
IR
sR

, Ks = LLR
I2
R

s2
R

, LLR =
µ0AN2

2sR
.

(3.31)

From Eq. (3.31) a relationship between the constants can be found

K2
I

KİKs
= 1 . (3.32)

For more realistic magnet models like 3) and 4), the influence of leakage
inductance is taken into account. Then Eq. (3.32) is replaced by

K2
I

KİKs
= 1 − ηs , ηs =

Ls
Lges

∣∣∣∣
R

, (3.33)

with the leakage factor ηs. Equations (3.30)-(3.33) have to be understood
as theoretical approximations. In practice, the values of the constants could
be found by measured magnet characteristics. The values of KI and Ks can
be easily determined by static force characteristics, Fig. 3.4. By measured
voltage characteristics or by approximation using Eqs. (3.30) and (3.33) the
remaining parameters are found. Using the linearized Eqs. (3.28) and (3.29)
and eliminating of the current i, a linear differential equation of first order
follows for the force f ,

ḟ(t) + kff(t) = −kss(t) − kṡṡ(t) + kuu(t) , f(0) = f0 . (3.34)
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Fig. 3.4. Identification of the constants KI and Ks out of the static force
characteristics

The abbreviations are

kf =
R

Kİ

, ks =
R

Kİ

Ks , kṡ = Ks − KI

Kİ

Kṡ , ku =
KI

Kİ

, (3.35)

whereas with Eqs. (3.30) and (3.33) follows kṡ = ηsKs. Thus, all constants
in Eq. (3.35) are positive.

Comparing the force law (3.34) of an active magnetic actuator with the
force law (3.11) of a passive spring-damper-system one gets for u(t) = 0 the
same mathematical structure. But a main difference is the sign of the constant
factors with s(t) and ṡ(t). The reason is the decreasing absolute value of
the magnetic force for u(t) = 0 if the values of s(t) and ṡ(t) are increasing,
cp. Fig. 3.4, while the force in a spring-damper-system is increasing in the
same condition. This behavior leads to an unstable reference position of an
uncontrolled magnetic actuator. The system can be stabilized by a controller
for the voltage u(t). For example a linear controller reads as

u(t) = r1s(t) + r2ṡ(t) + r3f(t) (3.36)

where its input variables s(t), ṡ(t) and f(t) are measured continuously. The
coefficients rν , ν = 1(1)3, represent the gains of the controller. With such
a controller the reference position can easily be stabilized. Additionally all
characteristics of a passive spring-damper-system can be achieved with a
magnetic actuator using Eq. (3.36) and

r1 =
(

ks +
1
d
kk1

)
1
ku

, r2 = (kṡ + k)
1
ku

,

r3 =
[
kf − 1

d
(k + k1)

]
1
ku

. (3.37)

Then, Eq. (3.34) is identical with Eq. (3.11) in the case of small deflections
around the reference position. Especially great values of k and k1 cause a stiff



114 3 Models for Support and Guidance Systems

a) b) rail

guideway

fges(t) = fR + f(t) > 0

fges(t) = fR + f(t) > 0

magnetic actuator

wheel

Fig. 3.5. Unilateral contact: a) wheel; b) magnetic actuator

attachment to the reference position resulting in a so-called magnetic wheel
because of the similar kinematic behavior, see Gottzein (1984). The compari-
son of a controlled magnetic actuator with a wheel is also correct regarding to
the fact that each system has a one-sided constraint. An electromagnet is gen-
erating only attraction forces, a wheel only compression forces to the track,
fges(t) = fR + f(t) > 0, cp. Fig. 3.5. If the dynamic forces f(t) compensate
the static reference values fR, the wheel lifts of the track and accordingly the
magnetic actuator sticks to the track.

3.2.2 General Linear Model of Force Actuators

The mathematical structure of the linear magnet model (3.34) can also be
found with electromechanic, hydraulic and pneumatic actuators. In the case
of small deflections around the reference point without regarding friction and
inertia effects of force actuators the following equation is valid generally:

cḟ ḟ(t) + cff(t) = css(t) + cṡṡ(t) + cuu(t) , f(0) = f0 . (3.38)

The coefficients cḟ , cf , cs, cṡ, cu and the control signal u(t) depend on the
type of actuator and the design of the system. Because of the mounting of the
actuator between two points the dependency on the relative deflection s(t)
and the relative velocity ṡ(t) is always implied. The behavior of the actuator
in time domain depends mainly on the control signal u(t). If the system
is controlled, a classification in two control concepts is possible depending
on the sensor location. If sensor location and manipulation location are the
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same, the controlled closed-loop operator system has a structure similar to the
passive system of Eq. (3.11). If the sensor location and the actuator location
differ additional control laws may be designed to feedback sensor signals from
arbitrary locations. This feature is not available with passive elements.

3.3 Comparison of Passive and Active Elements

The relations of the force equations of passive and active elements are shown
in the previous sections. A comparison of both systems underlines the differ-
ences.

Passive elements show the following properties:

• There is no external energy source. The energy can only be stored in
springs or dissipated in dampers or friction elements, respectively.

• The simple design results in high reliability and robustness, less main-
tenance, low cost for manufacturing.

• The force generation depends on the relative movement of the mount-
ing point of the elements on the related bodies.

• A soft connection of contiguous bodies necessary for comfort reasons
in the case of secondary springs leads to large static displacements.

The last property follows from the rule of thumb for the eigenfrequency f0

of a linear spring-mass-system based on the static deflection s0,

f0 ≈ 5√
s0

, f0 in Hz , s0 in cm . (3.39)

A static deflection of the spring of s0 = 25 cm is necessary for the typical
eigenfrequency of the vehicle body of f0 = 1 Hz. Thus, additional static loads
cause big and undesired relative displacements. Equation (3.39) follows for a
spring-mass-system (mass m, spring constant k) with f0 = ω0/2π, ω2

0 = k/m
from the static balance of gravitational force and preload force of the spring,
mg = ks0. This balance results in k/m = g/s0 and f0 =

√
g/(4π2s0).

Active elements have the following properties:

• The necessary energy source causes a continuous energy consumption.
• The complex design results in lower reliability, higher manufacturing

and maintenance cost.
• All characteristics of passive systems can be achieved. The force gener-

ation is independent of local relative displacements, it is controllable
by any relative or absolute measured signal even if the sensor loca-
tion is off the actuator location. Depending on the measurements the
actuator can response soft or stiff.
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• A soft secondary suspension of the vehicle body, and, therefore, a
low eigenfrequency is achievable. A continuously adjustment of the
equilibrium condition is possible. The displacement due to additional
static load can be adjusted.

• A short reaction time of the actuator allows a fast compensation of
external disturbances.

To raise the reliability, sometimes active elements and passive elements are
used in parallel.

3.4 Contact Forces between Wheel and Guideway

Wheels represent the most important passive primary suspensions. Wheels
are robust and reliable. They have a simple design with low costs of pro-
duction and maintenance. Wheels combine ideally the tasks of supporting,
guiding and driving a vehicle. In comparison to alternative solutions with
active components like magnetically levitated vehicles wheels are more eco-
nomical.

Roughly classified, wheels can be distinguished as rigid and deformable
wheels, the latter can be divided into linear elastic wheels (e. g. steel wheels)
and wheels with a nonlinear elastic behavior (e. g. rubber wheels, tires). For
rigid wheels the contact forces can be determined in a simple manner. Due
to the complicated effects in the contact area this is not true for deformable
wheels. Hence, many theories describing the rolling contact have been devel-
oped, e. g. Kalker (1979), Sperling (1977).

In the following section rolling of rigid and deformable wheels is described.
Then, the contact forces for elastic wheels are evaluated (steel wheels), fol-
lowed by the results for nonlinear elastic wheels (rubber tires).

3.4.1 Rolling of Rigid and Deformable Wheels

In Problems 2.6 and 2.7 of Sect. 2.2 idealized rigid wheels on rigid guideways
are considered. The main characteristic of rigid contact is the point or line
contact, respectively, between the contact partners. However, there are two
states of motion which can appear alternatively:

a) pure kinematic rolling and
b) combined rolling and sliding.

These two states of motion are treated now more precisely for a plane motion
of a driven homogeneous wheel (mass m, moment of inertia IC , radius r, drive
torque MC), see Fig. 3.6. In case a) the material point P of the wheel, which
corresponds to the contact point, is not moving instantaneously, it sticks
to the guideway, vP = 0. The contact point is the instantaneous center of
rotation Q of the wheel. Therefore, the kinematic rolling condition

vC = ωr (3.40)
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Fig. 3.6. States of motion of a free rigid wheel on a rigid guideway: a) kinematic
rolling; b) combination of rolling and sliding

is valid. This condition represents a fixed relation between the velocity of
the center of gravity vC and the rotational velocity ω. The forces fn, ft at
point P are reaction forces shown in Fig. 3.6 a) in the free body diagram.
According to the Coulomb’s friction law in the case of sticking it yields

|ft| ≤ µ0fn , fn ≥ 0 , (3.41)

with the coefficient of static friction µ0. The special case fn = 0 represents a
vanishing contact what means a unilateral constraint. Newton’s law of motion
and Euler’s law of motion yield

0 = mg − fn , (3.42)
mv̇C = ft , (3.43)
IC ω̇ = MC − ftr . (3.44)

Together with Eq. (3.40) four equations for the four unknown variables
vC , ω, fn, ft are available. The evaluation results in
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v̇C =
MC/r

m + IC/r2
, ω = vC/r , (3.45)

fn = mg , ft =
mMC/r

m + IC/r2
. (3.46)

The solution of the equation of motion (3.45) depends on the time behav-
ior of the driving torque MC = MC(t) as well as on the initial conditions.
Pure rolling occurs as long as the condition of Eq. (3.41) is fulfilled. Thus,
Eq. (3.46) yields a condition for the drive torque MC ,

|MC | ≤ µ0(m + IC/r2)gr . (3.47)

The reaction force ft does not perform any mechanical work, it acts in the
wheel’s instantaneous center of rotation.

In case b) a sliding motion exists between wheel and guideway. This occurs
if the condition (3.47) is violated. In this case the sliding velocity in the
contact point corresponds with the absolute velocity vP of the point P of the
wheel because the guideway is inertially fixed. The contact point is no longer
the instantaneous center of rotation of the wheel. The following equation
describes the velocity vP in the inertial frame,

vIP = vIC + ω̃IrICP =

⎡

⎣
vC
0
0

⎤

⎦+

⎡

⎣
0 0 −ω
0 0 0
ω 0 0

⎤

⎦

⎡

⎣
0
0
r

⎤

⎦ =

⎡

⎣
vC − rω

0
0

⎤

⎦ . (3.48)

The ratio ν of the sliding velocity vP = vC − rω to the rolling velocity vC is
denoted as rigid body slip

ν =
vP
vC

=
vC − rω

vC
. (3.49)

The force ft in point P shown in the free body diagram, Fig. 3.6 b), is an
applied force, which follows from the Coulomb’s friction law in the case of
sliding,

ft = −µfn
vP
|vP | = −µfn sgnvP , fn ≥ 0 , vP = vC − rω , (3.50)

with the kinematic coefficient of friction (µ < µ0). The applied force ft de-
pends on the reaction force fn. Newton’s law of motion and Euler’s law of mo-
tion, Eqs. (3.42)-(3.44), hold in this case, too. In combination with Eq. (3.50)
four equations for the four unknown variables vC , ω, fn, ft are available again.
Now the evaluation results in

v̇C = −µg sgn(vC − rω) , ω̇ =
1
IC

(MC − rmv̇C) , (3.51)

fn = mg , ft = −µmg sgn(vC − rω) . (3.52)
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The equations of motion (3.51) are coupled. To solve the problem a direc-
tion of vP = vC − rω is assumed, e. g. vP < 0, then v̇P is determined and the
differential equation for ω can be solved in dependency of MC = MC(t) and
the initial conditions. The validity of the assumption must be checked after-
wards. If the assumption is wrong, the calculation must be repeated with the
contrary assumption. The force ft is dissipative. It performs the mechanical
work

W =

t∫

0

ftvPdt = −
t∫

0

µmg |vP | dt . (3.53)

A comparison of both cases shows that in case a) the contact point is the
instantaneous center of rotation of the wheel but not in case b). In case a) the
force ft is a reaction force and in case b) the force is an applied, dissipative
force. The always existing friction reacts in different manner. In case a) the
static friction force is used to accelerate the wheel center where a particular
limit value must not be exceeded. In case b) the friction results in a sliding
force. In both cases a sufficient number of equations are at hand to solve the
dynamic problem completely.

Now deformable wheels on real non-rigid guideways are described. The
main characteristic of a deformable rolling contact is a finite contact area
between the contact partners.

In the following it is assumed that the eigenfrequencies of the contact part-
ners and of the guideway are much higher than the frequencies of deformation
in the contact patch. This is equivalent to the assumption of low frequency
motions and perturbations. The assumption is true for vehicle performance
problems like stability of motion, driving safety and driving comfort but not
for structural dynamic problems like structure-borne noise radiation, noise
development etc. For the vehicle dynamic problems handled here, it is as-
sumed that the contact partners show elastic behavior only in the contact
zone and the rest of the body is considered to be rigid. In this combination
the models consist of rigid bodies with an elastic contact pair. In the following
the focus is constricted to linear elastic contact pairs.

For static elastic contact pairs the contact area and the dedicated contact
pressure in dependency of normal forces, principal curvatures and material
parameters were calculated by Hertz (1895). His results are discussed later
in more detail.

The effects of a rolling elastic contact pair with friction was treated by
Carter (1926) and Fromm (1927), cp. also Krause and Poll (1980) using the
Hertzian theory for discoidal wheels and plane motion (two-dimensional prob-
lem). Based on that, an illustrative physical explanation of the complicated
processes in the contact area is given.

First, the rolling process is described using a brush model, see Fig. 3.7,
for better understanding. If a circular brush is rotated and linear moved over
a plane under normal load, it can be seen, that the brush hairs stick at the
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Fig. 3.7. Deformations of the brush hairs

run-in of the contact area and show an increasing bending until the brush
hairs slide back near the run-out edge. Such a brush model can be used as a
discretized mechanical model for an elastic wheel. If elastic leaf springs are
used instead of the brush hairs, qualitatively the forces shown in Fig. 3.8 a) are
obtained where the contact area EA is divided into a sticking zone EG and
a sliding zone GA. Due to the elastic deformation tangential static friction
forces occur in the sticking zone while in the sliding zone kinematic friction
forces emerge. The sum of all the different tangential forces result in the
total tangential force. Therefore, the rolling elastic contact is much more
complex as in the case of rigid contact due to the simultaneous existence
of sticking and sliding in the contact area. This is also true for the motion
because generally there is a small relative velocity vC between the contact
partners. This relative motion related to the rolling velocity is called slip.
Two contributions to the slip can be distinguished:

a) deformation or micro slip caused by elastic deformation in the contact
area,

b) rigid body slip ν as a result of the violation of the rolling condition
which may be also found for a rigid contact pair, cp. Eq. (3.49).

The sum of both slip contributions is called total slip or true slip.
Using a two-dimensional continuous model shown in Fig. 3.8 b) in the case

of µ = µ0, the principle of rolling elastic contact is explained. The normal
pressure distribution p is shown for the contact line EA corresponding to the
Hertzian theory. According to the Coulomb’s friction law, the shear stress dis-
tribution τ is proportional to the normal pressure distribution in the sliding
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Fig. 3.8. Rolling elastic contact with friction: a) plane discrete mechanical model
(brush model); b) plane continuous mechanical model
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zone GA, τ = µp. In the sticking zone GE the shear stresses are smaller. The
integral over the different shear stresses τ results in the total tangential force
ft =

∫
A

τdA. The normal pressure distribution p provides the total normal

force fn =
∫

A

pdA.

The location of the boundary point G between the sticking and sliding
zone is affected fundamentally by the rigid body slip ν. With large slip the
marginal point G is closely situated to the run-in E (G′ in Fig. 3.8 b); the
shear stresses τ and the transmitted force ft are high. With smaller slip ν
the marginal point G moves close to the run-out A (G′′ in Fig. 3.8 b). Here,
the shear stresses τ and the force ft are small. In the extreme case with a
vanishing slip (ν = 0) the sticking zone covers the full contact area (G ≡ A).
Then the shear stresses τ disappear and it holds ft = 0. The resulting force
ft increases with increasing slip due to a smaller sticking zone and a larger
sliding zone. If the sliding zone is equal to the total contact zone (G ≡ E) a
maximum tangential force occurs. This is the case for a certain value of rigid
body slip ν. A larger slip results only in a higher sliding velocity. Similar to
the rigid sliding contact the force ft remains constant.

The main variable for the generation of forces in rolling contact is the slip ν.
Therefore, the force ft is described in dependency of the slip ν. The tangential
force ft is an applied force like the Coulomb sliding friction force and acts in
the counter direction of the sliding velocity and the slip whereas the normal
force fn is a reaction force. The ft-ν-characteristic is odd, ft(ν) = −ft(−ν).

The ratio of the tangential and normal force ϕ̄ = ft/ |fn|, the so-called
rolling contact coefficient is generally plotted in dependency of the absolute
value |ν| of the slip.

The contribution of Carter (1926) does not distinguish between the co-
efficient of sticking and sliding friction, µ = µ0, the coefficient of friction
µ = const is assumed which is independent of the sliding velocity. Then,
the characteristic ϕ̄ = ϕ̄(ν) shown in Fig. 3.9 a) is obtained. A descrip-
tion with a normalized rolling contact coefficient ϕ = ft/(µ |fn|) = ϕ(ν) with
ϕ ≤ 1 is also common. In practise the coefficient of kinematic or sliding fric-
tion, respectively, depends on the sliding velocity and, therefore, on the slip,
µ = µ(|ν|), with a falling characteristic, cp. e. g. Kraft (1976). Then, a char-
acteristic as shown in Fig. 3.9 b) holds. The occurring maximum ϕ̄max is
named maximum rolling contact coefficient.

The explanation given by Carter (1926), describing the two-dimensional
rolling of a discoidal wheel with elastic contact and friction, is qualitatively also
valid for an arbitrarily shaped wheel and a general motion (three-dimensional
problem). The explanation is valid for pairing between steel wheel and rail as
well as with some restrictions between tire and road. For the three-dimensional
problem there is no preferred direction of the sliding velocity what results in
different slip variables. It has to be distinguished between longitudinal, lat-
erallateral and aligning slip. Correspondingly longitudinal and lateral force
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a)

b)

ϕ = ft/|fn|

ϕ = ft/|fn|

|ν|

|ν|

µmax

ϕmax

µ

µ0 = µ

Fig. 3.9. The rolling contact coefficient ϕ̄ in dependency of the slip ν: a) coefficients
of friction µ0 = µ = const; b) coefficient of kinematic friction µ = µ (ν), µ0 > µ

tangential in the contact patch and an aligning torque perpendicular to the
contact patch appears, too. These forces and the torque are applied ones but
they depend on the normal force in the contact area which is a reaction force.

3.4.2 Definition of the Rigid Body Slip

The consideration of the planar motion of a rolling wheel so far shows the
central role of the rigid body slip for the evaluation of the contact forces.
Therefore, the slip between the contact partners must be defined in the case
of a spatial motion, too. In Fig. 3.10, the contact partners wheel R and
guideway S are separated from each other and a plane through the contact
point P is displayed. The wheel plane is perpendicular to the wheel axis. Point
P denotes the contact point, where the two contact partners R and S, which
are assumed here to be rigid with regard of their contact, touch each other.
The points PR and PS denote material points of R and S, respectively, which
coincide instantaneously with the contact point P . For an elastic contact,
the contact area is characterized by the plane K. In standard applications,
the orientation of this plane corresponds to a tangential plane through P
for locally rigid contact partners. For the kinematic description the following
Cartesian coordinate frames are introduced:
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Fig. 3.10. Description of contact pairs for the calculation of rigid body slip

Inertial frame I
{
OI , eIν

}
,

Wheel fixed frame R
{
OR, eRν

}
, OR ≡ C,

Guideway tangential frame S
{
OS , eSν

}
,

Contact plane frame K
{
OK , eKν

}
, OK ≡ P .

For rotationally symmetric wheels an axle-fixed frame
{
OZ , eZν

}
, which

does not rotate around the symmetry axis, is often used instead of the body-
fixed frame R. In Fig. 3.10, all e3-base vectors are assumed to be parallel, al-
though this is not generally the case. The additionally introduced frame K
with its origin P is fixed to the moving contact patch. The contact plane is de-
fined by the base vectors eK1 and eK2 where eK1 is perpendicular to the wheel
axis and heads in driving direction, eK2 points to the right with regard to the
driving direction, while eK3 is perpendicular to the contact plane and points
downwards, cp. Fig. 3.10. In the following, all rigid body slip variables as well
as the contact force variables are related to the contact plane frame K.

The motions of the contact partners relative to each other are restricted
by constraints. The relative velocity does only occur in the contact plane,
with the relative rotation perpendicular to it. The slip variables

νK =

⎡

⎣
ν1

ν2

ν3

⎤

⎦ =
1
v0

⎡

⎢⎣
v̄K1

v̄K2

ω̄K3

⎤

⎥⎦ (3.54)
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can be derived from the coordinates of the sliding velocity v̄KP at P and
the sliding angular velocity ω̄K described in frame K. In general, the slip
variables are related to the wheel velocity v0 in driving direction while in the
case of a wheelset the mean value of the velocity at the left and right wheel
is used. As it is shown in Fig. 3.10, this speed v0 is equal to the absolute
velocity of the contact point P in eK1 -direction.

The sliding velocity vectors {v̄P , ω̄} result from the difference between
the absolute velocities {vPR,ωR} and {vPS ,ωS} of wheel R and guideway
S, respectively, evaluated at PR and PS , which are coinciding with the con-
tact point P . Alternatively, the sliding velocity can be determined from the
difference between the corresponding relative velocities {vPR,rel,ωR,rel} and
{vPS,rel,ωS,rel} with respect to the contact point P . This yields

v̄KP = vKPR − vKPS = vKPR,rel − vKPS,rel ,

ω̄K = ωKR − ωKS = ωKR,rel − ωKS,rel (3.55)

in the contact plane frame K. Thus, motions of the guideway are also admit-
ted which may be due to structural vibrations. Considering Eq. (3.55), the
slip can be defined as

νK =

⎡

⎣
ν1

ν2

ν3

⎤

⎦ =
1
v0

⎡

⎢⎣
vKR1 − vKS1

vKR2 − vKS2

ωKR3 − ωKS3

⎤

⎥⎦ =
1
v0

⎡

⎢⎣

vKR1,rel − vKS1,rel

vKR2,rel − vKS2,rel

ωKR3,rel − ωKS3,rel

⎤

⎥⎦ . (3.56)

The slip process represents a plane motion, which is described by two trans-
lational and one rotational kinematic quantities. The longitudinal slip ν1 as
well as the lateral slip ν2 are derived from the difference between the absolute
or relative velocities at the points PR and PS with regard to the orientation
of eK1 and eK2 , respectively. Whereas the aligning slip ν3 results from the
difference between the angular velocities in eK3 -direction perpendicular to
the contact plane. The aligning slip is also called spin creepage in railway
engineering. The longitudinal slip ν1 and lateral slip ν2 are non-dimensional
variables, they are commonly represented in percent or one tenth of a per-
cent (νi =̂ νi · 100% =̂ νi · 1000�, i = 1, 2); the aligning slip has the unit
1/length.

In general, the calculation of slip is difficult. It depends on the current
contact geometry and motion which differ from application to application.
Hence, only some general hints can be given. It is appropriate to evaluate
the absolute velocity vPi at the material points Pi, i = R, S, by means of
the kinematic relations of rigid bodies described in the inertial frame I, cp.
Eq. (2.21),

vIPi = vIOi + ω̃Iiρ
I
Oi,P i , (3.57)

i = R, S,
vKPi = SKIvIPi , (3.58)
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or in the moving body-fixed reference frame i = R or i = S, respectively, cp.
Eq. (2.26),

viP i = viOi + ω̃iiρ
i
Oi,P i + ρ̇iOi,P i , (3.59)

i = R, S,
vKPi = SKiviP i , (3.60)

followed by a transformation into the contact plane frame K. Because Pi is
a material point of the rigid body, the relative velocity vanishes, ρ̇Oi,Pi ≡ 0.
Therefore, Eq. (3.59) is simplified to

viP i = viOi + ω̃iiρ
i
Oi,P i , i = R, S . (3.61)

If an axle-fixed frame
{
OZ ≡ C, eZν

}
is used instead of R, Eq. (3.59) is still

valid for i = Z and ρ̇ZC,PR = ω̃ZZRρ
Z
C,PR, which leads formally to Eq. (3.61),

regarding ωZ ≡ ωR = ωIZ + ωZR. If the contact points Pi change relatively
with regard to the bodies i, i = R, S, the current position vectors ρOi,Pi just
have to be applied to Eq. (3.57) and Eq. (3.59). In many applications the
guideway is fixed, which implies vKPS ≡ 0 and ωKS ≡ 0.

The evaluation of the relative velocities vPi,rel for i = R, S is appropriately
done in the contact plane frame K. Therefore, it is useful to consider the
contact plane K as motionless while the bodies R and S move above or
below K, respectively. This yields to negative values vKi1,rel, i = R, S, of the
longitudinal relative velocities.

3.4.3 Contact Forces for Elastic Wheels on Elastic Rails

This section describes some results of Kalker’s theory, cp. Kalker (1979), for
the three-dimensional problem of an rolling elastic contact with friction. In
the case of ideal test conditions, Kalker’s theory has been confirmed by ex-
periments. Therefore, it is accepted worldwide in railway engineering. First, a
single wheel is considered. Then, the conclusions are transferred to a wheelset
which is an important component of railway vehicles.

Initially, the slip of a rigid body, introduced in Sect. 3.4.2, is considered.
When calculating the slip of real wheel/rail pairs, a difficulty arise from the
evaluation of the contact point position, depending on gauge and profile ge-
ometry as well as the location of the wheelset related to the track. In this
context, it is advisable to use special algorithms for the contact geometry
or to refer to measured data, cp. e. g. Garg and Dukkipati (1984). Often the
evaluation is simplified by approximations with regard to contact geometry,
e. g. conical wheels and a rail profile based on a combination of circular arcs of
different radii. If the yaw angle of the wheel axis is small, the lateral displace-
ment of the rail’s and wheel’s contact point are of the same size, therefore,
no lateral slip occurs, cp. Sect. 3.4.2. Hence, the lateral slip can be evaluated
by the assumption of the contact point lying in the middle of the rail.
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Problem 3.2 Slip for a conical wheel
Evaluate the slip variables considering a conical wheel (rolling radius r0, apex
angle 2δ, δ � 1), which is running straight ahead on a fixed rail with center
velocity vC and angular velocity ω, cp. Fig. 3.11, without any lateral motion.
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Fig. 3.11. Conical wheel with slip on a rail

Solution
The evaluation of the sliding velocity v̄KP between wheel and rail can be
carried out in two manners. In the contact plane frame K, which is moving
with velocity vC along the rail, the sliding velocity v̄KP directly results from
the difference of the relative velocities at the material points of wheel and
rail coinciding with the contact point P ,

v̄KP = vKPR,rel − vKPS,rel =

⎡

⎣
−r0ω

0
0

⎤

⎦−
⎡

⎣
−vC

0
0

⎤

⎦ =

⎡

⎣
vC − r0ω

0
0

⎤

⎦ . (1)

When using the inertial frame I, the sliding velocity vIPR of the wheel’s point
currently corresponding with the contact point P arise from the rigid body
relation given in Eq. (3.57). The absolute velocity of rail point vIPS coinciding
with P is vanishing. The transformation into the contact plane frame K by
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SKI = δ1 does not change the coordinates in longitudinal direction, there-
fore, the result

v̄KP = SKI
(
vIPR − 0

)
=

⎡

⎣
1 0 0
0 cδ −sδ
0 sδ cδ

⎤

⎦

⎡

⎣
vC − r0ω

0
0

⎤

⎦ =

⎡

⎣
vC − r0ω

0
0

⎤

⎦ (2)

is identical to Eq. (1). To evaluate the sliding angular velocity ω̄K its descrip-
tion in the inertial frame I is appropriate. One gets from ωIR = [0 − ω 0]T,
cp. Fig. 3.11, and ωIS ≡ 0 by analogy with the transformation Eq. (2)

ω̄K = SKI
(
ωIR − 0

)
=

⎡

⎣
1 0 0
0 cδ −sδ
0 sδ cδ

⎤

⎦

⎡

⎣
0

−ω
0

⎤

⎦ =

⎡

⎣
0

−ωcδ
−ωsδ

⎤

⎦ . (3)

Using the related velocity v0 = vC , the slip vector is obtained according to
Eq. (3.56). It can be linearized for small angles δ � 1:

νK ≡
⎡

⎣
ν1

ν2

ν3

⎤

⎦ =
1
v0

⎡

⎢⎣

v̄K1

v̄K2

ω̄K3

⎤

⎥⎦ =
1
vC

⎡

⎣
vC − r0ω

0
−ωsδ

⎤

⎦ ≈

⎡

⎢⎢⎢⎣

1 − r0
ω

vC
0

− ω

vC
δ

⎤

⎥⎥⎥⎦ . (4)

Assuming for instance r0ω ≈ 1.001vC, a slip vector ofνK≈[−0.001 0 −δ/r0

]T

is obtained. In this example, the longitudinal slip is given by the related
difference between the wheel’s centroid and circumferential velocity. Whereas
the aligning slip ν3 results from the projection of the wheel’s angular velocity
on the eK3 base vector of the contact plane.

Using the slip variables, the rigid body sliding velocity vKQ can be specified
in each point Q of the contact plane K. Sliding means a plane motion, hence,
under consideration of the position vector rKPQ = [x y 0]T, cp. Fig. 3.12, it
yields

vKQ = vKP + ω̃KrKPQ

=

⎡

⎣
v̄K1
v̄K2
0

⎤

⎦+

⎡

⎣
0 −ω̄K3 0

ω̄K3 0 0
0 0 0

⎤

⎦

⎡

⎣
x
y
0

⎤

⎦ =

⎡

⎣
v̄K1 − ω̄K3 y
v̄K2 + ω̄K3 x

0

⎤

⎦ . (3.62)

Together with Eq. (3.54) one gets

vKQ ≡ v(x, y) = v0

⎡

⎣
ν1 − ν3y
ν2 + ν3x

0

⎤

⎦ . (3.63)

Due to the elastic deformation of wheel and rail in the contact plane as well as
the material point’s motion relative to the coordinate frame K approximated
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Fig. 3.12. Contact plane K with forces acting on the wheel

by the velocity −v0e
K
1 , the true sliding velocityw(x, y) at point Q depends on

the rigid body’s sliding velocity v(x, y) and the material derivative u̇(x, y, t)
of the elastic surface displacements uK = uKR − uKS = [u1 u2 0]T. That is, cp.
Kalker (1979),

wK
Q ≡ w(x, y) = v(x, y) + u̇(x, y, t)

= v0

⎡

⎣
ν1 − ν3y
ν2 + ν3x

0

⎤

⎦+

⎡

⎣
∂u1/∂t − v0∂u1/∂x
∂u2/∂t − v0∂u2/∂x

0

⎤

⎦ . (3.64)

The shape of the contact area K and surface pressure p(x, y) = |σ33(x, y)| are
assumed according to the static elastic contact described by Hertz (1895).
Hence, the contact area is an ellipse with the semi-axes a and b. The surface
pressure at point Q with its coordinates x, y reads as

p(x, y) =
3|fn|
2πab

√
1 −
(x

a

)2

−
(y

b

)2

, (3.65)

with |fn| representing the absolute value of the normal force in eK3 -direction.
Sections which are parallel to either of the semi-axis, i. e. x = const or
y = const exhibit elliptic pressure distribution. The friction characteristic at
the contact patch is described by Coulomb’s laws of friction. If the tangen-
tial stresses τ31 and τ32 acting on the wheel are combined to the vector
τ = τ (x, y) = [τ31 τ32]

T, the sticking or sliding zone, respectively, are char-
acterized by

|τ | ≤ µp for w = 0 , (3.66)
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or

τ = −µp
w

|w|
|τ | = µp

⎫
⎬

⎭ for w �= 0 , (3.67)

where µ = const denotes the kinematic coefficient of friction; the static coeffi-
cient of friction is set to µ0 = µ. Now, the problem of contact force evaluation
can be expressed as follows.

Firstly, the tangential stresses τ =
[
τ31 τ32

]T
are determined in order to

derive the contact forces and the torque, cp. Fig. 3.12,

fK =
[
ft1 ft2 lP3

]T
, (3.68)

ft1 =
∫

K

τ31dxdy , (3.69)

ft2 =
∫

K

τ32dxdy , (3.70)

lP3 =
∫

K

(τ32x − τ31y)dxdy , (3.71)

under consideration of Eqs. (3.66) and (3.67) with the real sliding velocity
w given by Eq. (3.64). The vectors of surface displacement u and tangential
stress τ are linked together by the constitutive relations of an elastic half-
space. Now, the border between sticking and sliding zone is evaluated for
given values ν1, ν2, ν3, v0, |fn|, a, b. This reveals a boundary value problem
with a free boundary, which in general has to be solved numerically. The
relation

fK = fK(νK) (3.72)

is referred to as contact force to slip relation or contact force law, respectively.
In the case of a rolling elastic contact between wheel and rail the underlying
theories can be distinguished according to Kalker (1979) by their complexity.

1) Simplified theory with the material law specified by

u =
[

u1

u2

]
=
[

γ1τ31

γ2τ32

]
. (3.73)

2) Exact theory with the material law derived from the basic equations of
elasticity theory where the contact partners are assumed as isotropic elastic
half-spaces.
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3) Linear theory for small sliding velocities. According to Eq. (3.64) it is
assumed that w(x, y) → 0. This yields to a linear contact force law

fK = −FνK , F = const . (3.74)

where the 3 × 3 -contact matrix F appears. The linear theory represents an
approximation, because the friction law is violated at the run-out. It’s value
consists in an approximation of the exact theory for ν → 0. This is depicted
by Fig. 3.9. The tangents at the origin can be correctly determined by means
of the linear theory.

A theory is denoted dynamic or quasistatic, depending on wether the in-
ertia effects are considered or not. Additionally, the rolling contact is called
steady or unsteady, if the terms ∂uν/∂t, ν = 1, 2, in Eq. (3.64) are vanishing
or not, respectively. For most applications it is sufficient to use quasistatic
and steady theories.

In terms of tangential forces the following symmetry conditions are gener-
ally valid:

ft1(ν1, ν2, ν3) = −ft1(−ν1, ν2, ν3) = ft1(ν1, −ν2, −ν3) , (3.75)
ft2(ν1, ν2, ν3) = ft2(−ν1, ν2, ν3) = −ft2(ν1, −ν2, −ν3) . (3.76)

3.4.3.1 Linear Law of Contact Forces

In the following the half-axes a, b of the contact ellipse are determined by
Hertz’s theory and the results of the linear theory of Kalker are presented. It
is assumed that the eK1 , eK3 - and the eK2 , eK3 - plane are the principal curvature
planes of wheel and rail track, respectively, in the contact point P , what is
in real applications not exactly the case. The deviations can be neglected if
there are only small angles between the principal curvature planes and the
coordinate plane. The starting point for the calculation of the half-axes of
the contact ellipse are the principal curvature radii RR1, RR2, RS1, RS2, with
reference to the contact point P for wheel and rail in the undeformed state,
see Fig. 3.13. The principal curvature radii RR1, RS1 can be determined in the
eK1 , eK3 - plane. For a straight rail track RS1 → ∞ holds while RR1 is given
by the rolling radius r0, RR1 = r0. The principal curvature radii RR2, RS2

are visible in the eK2 , eK3 - plane. A principal curvature radius is positive if
the body considered is convex in P , and the radius is negative if the body is
concave. In Fig. 3.13 all principal curvature radii are positive. The half-axes
a and b of the ellipse are for contacting bodies of the same material

eK1 : a = m 3

√
3(1 − ν̄2) |fn|

E(A + B)
, (3.77)

eK2 : b = n 3

√
3(1 − ν̄2) |fn|

E(A + B)
(3.78)
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RS1 → ∞

RR2

eK
1

eK
3

P
eK

2

eK
3

P

RS2

RR1 = r0

Fig. 3.13. Principal curvature radii of wheel and rail

where:

m, n parameters,
|fn| absolute value of the normal force,
E, ν̄ Young’s modulus and Poisson’s ratio of the material of the contact

pair (e. g. steel: E ≈ 210 kN/mm2, ν̄ ≈ 0.3)
A, B curvatures of the contact partners in both principal curvature planes,

A =
1

RR2
+

1
RS2

, B =
1

RR1
+

1
RS1

=
1
r0

. (3.79)

The parameters m, n result from Table 3.4 by means of the angle ϑ
(0◦ ≤ ϑ ≤ 180◦) where

ϑ = arccos
A − B

A + B
, (3.80)

A − B =
1

RR2
+

1
RS2

− 1
r0

, (3.81)

A + B =
1

RR2
+

1
RS2

+
1
r0

. (3.82)

For the relation of the half-axes a, b of the contact ellipse holds in dependency
of the angle ϑ:
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Table 3.4. Coefficients m, n for evaluation of the semi-axes of contact ellipse a, b
and axis ratio g = min(a/b, b/a), from Kalker (1967b)

ϑ [◦] m n g =
b

a
=

n

m
ϑ [◦] m n g =

a

b
=

m

n

0 ∞ 0 0 90 1 1 1
0.5 61.40 0.1018 0.00166 95 0.944 1.061 0.890
1 36.89 0.1314 0.00356 100 0.893 1.128 0.792

1.5 27.48 0.1522 0.00554 105 0.846 1.202 0.704
2 22.26 0.1691 0.00760 110 0.802 1.284 0.625
3 16.50 0.1964 0.0119 115 0.759 1.378 0.551
4 13.31 0.2188 0.0164 120 0.717 1.486 0.483
6 9.79 0.2552 0.0261 125 0.678 1.611 0.421
8 7.86 0.2850 0.0363 130 0.641 1.754 0.365
10 6.604 0.3112 0.0471 135 0.604 1.926 0.314
20 3.813 0.4123 0.108 140 0.567 2.136 0.265
30 2.731 0.493 0.181 145 0.530 2.397 0.221
35 2.397 0.530 0.221 150 0.493 2.731 0.181
40 2.136 0.567 0.265 160 0.4123 3.813 0.108
45 1.926 0.604 0.314 170 0.3112 6.604 0.0471
50 1.754 0.641 0.365 172 0.2850 7.86 0.0363
55 1.611 0.678 0.421 174 0.2552 9.79 0.0261
60 1.486 0.717 0.483 176 0.2188 13.31 0.0164
65 1.378 0.759 0.551 177 0.1964 16.50 0.0119
70 1.284 0.802 0.625 178 0.1691 22.26 0.00760
75 1.202 0.846 0.704 178.5 0.1522 27.48 0.00554
80 1.128 0.893 0.792 179.0 0.1314 36.89 0.00365
85 1.061 0.944 0.890 179.5 0.1018 61.40 0.00166
90 1.00 1.00 1 180 0 ∞ 0

0◦ ≤ ϑ < 90◦ ⇔ a > b ,

ϑ = 90◦ ⇔ a = b ,

90◦ < ϑ ≤ 180◦ ⇔ a < b .

(3.83)

With Eqs. (3.80) and (3.79) the relation between a, b in dependency of A and
B follows

A � B ⇔ a � b . (3.84)

Using the linear theory of Kalker the contact forces can be calculated by
means of the half-axes a, b of the contact ellipse and the ratio g

g = min(a/b, b/a) . (3.85)



134 3 Models for Support and Guidance Systems

For the contact forces acting on the wheel the following relation is valid, cp.
Eq. (3.74),
⎡

⎣
ft1
ft2
lP3

⎤

⎦

︸ ︷︷ ︸

= −
⎡

⎣
f11 0 0
0 f22 f23

0 −f23 f33

⎤

⎦

︸ ︷︷ ︸

⎡

⎣
ν1

ν2

ν3

⎤

⎦

︸ ︷︷ ︸

fK = − F νK

, (3.86)

f11 = abGC11 , f22 = abGC22 , f33 = (ab)2GC33 , f23 = (ab)
3
2 GC23 .

(3.87)

The equations contain the shear modulus G (steel: G ≈ 80 kN/mm2) and the
four Kalker coefficients Cij . These coefficients depend on the ratio g and the
Poisson’s ratio ν̄. They are listed in Table 3.5, cp. Kalker (1967b). Equations
(3.86) and (3.87) result in

ft1 = −c2GC11ν1 , (3.88)

ft2 = −c2G(C22ν2 + cC23ν3) , (3.89)

lP3 = −c3G(−C23ν2 + cC33ν3) , (3.90)

where c =
√

ab is the geometric mean radius of the contact ellipse. The tan-
gential force ft1 acting in longitudinal direction of the rail track only depends
on the longitudinal slip ν1 while the tangential force ft2 acting in lateral di-
rection depends on the lateral slip ν2 and on the aligning slip ν3. This is
consistent to the general laws of symmetry of Eqs. (3.75) and (3.76). The
contact forces acting on the rail track are in opposite to the forces acting on
the wheel.

The following relationship between the material constants E, ν̄ and G is
valid for linear elastic materials:

G =
E

2(1 + ν̄)
. (3.91)

In the case of different materials for wheel {GR, ν̄R} and rail track {GS , ν̄S}
Kalker (1967b) uses substituted parameters to evaluate Eqs. (3.87)-(3.90)
and also Eqs. (3.77) and (3.78),

1
G

=
1
2

(
1

GR
+

1
GS

)
, G =

2GRGS

GR + GS
,

ν̄

G
=

1
2

(
ν̄R
GR

+
ν̄S
GS

)
,

1 − ν̄2

E
=

1
4

(
1 − ν̄R

GR
+

1 − ν̄S
GS

)
. (3.92)
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Table 3.5. Kalker’s coefficients depending on Poisson’s ratio ν̄ and the axis-ratio
g of the contact ellipse, from Kalker (1967b) (Λ = ln(16/g2), ln 4 = 1.386)

C11 C22 C23 C33

g ν̄ = 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5 0 0.25 0.5

a

b

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0 π2/ (4(1 − ν̄)) π2/4 π
√

g/ (3(1 − ν̄)) π2/ [16(1 − ν̄)g]
· [1 + ν̄(Λ/2
+ ln 4 − 5)]

0.1 2.51 3.31 4.85 2.51 2.52 2.53 0.33 0.473 0.73 6.42 8.28 11.7
0.2 2.59 3.37 4.81 2.59 2.63 2.66 0.48 0.603 0.81 3.46 4.27 5.66
0.3 2.68 3.44 4.80 2.68 2.75 2.81 0.61 0.715 0.89 2.49 2.96 3.72
0.4 2.78 3.53 4.82 2.78 2.88 2.98 0.72 0.823 0.98 2.02 2.32 2.77
0.5 2.88 3.62 4.83 2.88 3.01 3.14 0.83 0.929 1.07 1.74 1.93 2.22
0.6 2.98 3.72 4.91 2.98 3.14 3.31 0.93 1.03 1.18 1.56 1.68 1.86
0.7 3.09 3.81 4.97 3.09 3.28 3.48 1.03 1.14 1.29 1.43 1.50 1.60
0.8 3.19 3.91 5.05 3.19 3.41 3.65 1.13 1.25 1.40 1.34 1.37 1.42
0.9 3.29 4.01 5.12 3.29 3.54 3.82 1.23 1.36 1.51 1.27 1.27 1.27

b

a

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0 3.40 4.12 5.20 3.40 3.67 3.98 1.33 1.47 1.63 1.21 1.19 1.16
0.9 3.51 4.22 5.30 3.51 3.81 4.16 1.44 1.59 1.77 1.16 1.11 1.06
0.8 3.65 4.36 5.42 3.65 3.99 4.39 1.58 1.75 1.94 1.10 1.04 0.95
0.7 3.82 4.54 5.58 3.82 4.21 4.67 1.76 1.95 2.18 1.05 0.97 0.85
0.6 4.06 4.78 5.80 4.06 4.50 5.04 2.01 2.23 2.50 1.01 0.90 0.75
0.5 4.37 5.10 6.11 4.37 4.90 5.56 2.35 2.62 2.96 0.96 0.82 0.65
0.4 4.84 5.57 6.57 4.84 5.48 6.31 2.88 3.24 3.70 0.91 0.75 0.55
0.3 5.57 6.34 7.34 5.57 6.40 7.51 3.79 4.32 5.01 0.87 0.67 0.45
0.2 6.96 7.78 8.82 6.96 8.14 9.79 5.72 6.63 7.89 0.83 0.60 0.34
0.1 10.7 11.7 12.9 10.7 12.8 16.0 12.2 14.6 18.0 0.80 0.53 0.23

Problem 3.3 Contact area and contact forces for wheel-rail
contact
In the following, the wheel-rail contact of Problem 3.2 for a given cone an-
gle δ = 2.9o (tan δ ≈ δ = 1/20 = 0.05) and a rolling radius r0 = 500 mm is
considered. The track is characterized by a straight line and a transver-
sal main curvature radius RS2 = 300 mm. Wheel and rail consist of steel
(E ≈ 210 kN/mm2, G ≈ 80 kN/mm2, ν̄ ≈ 0.3). Evaluate for given wheel
loads of fR = 100 kN and fR = 50 kN, respectively,
a) the size and location of the contact ellipse,
b) the size and orientation of the tangential forces and the aligning torque
due to the slip variable presented in Problem 3.2.

Solution
a) Considering δ � 1, the wheel’s main curvature radius simplifies to RR1 = r0

as well as the normal force is almost equal to the wheel load, i.e. fn = fR.
For the main curvature radii
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RR1 = r0 = 500 mm , RR2 → ∞ , RS1 → ∞ , RS2 = 300 mm , (1)

the values of A, B and ϑ result from Eqs. (3.79) - (3.82),

A =
1

RR2
+

1
RS2

=
1

300
mm−1 , B =

1
RR1

+
1

RS1
=

1
500

mm−1 , (2)

A − B =
2

1500
mm−1 , A + B =

8
1500

mm−1 , (3)

ϑ = arccos
A − B

A + B
= arccos0.25 ≈ 75.5o . (4)

A linear interpolation, using the auxiliary variable ϑ, yields the parameters

m = 1.19 , n = 0.85 . (5)

For the given numerical numbers, the semi-axes of the ellipse are obtained
by Eq. (3.77), Eq. (3.78) for fn = 100 kN as

a = 7.43 mm , b = 5.31 mm . (6)

In this case, the semi-axis a in eK1 -direction along the rail, is greater than
the semi-axis b orientated across the rail. The relation a > b immediately
results from A > B, cp. Eq. (2). The area Ā of the ellipse and the axis ratio
g = min(a/b, b/a) are

Ā = πab = 124 mm2 = 1.24 cm2 , g =
b

a
=

n

m
= 0.714 . (7)

The normal force fn = 50 kN leads to different absolute values of a = 5.90 mm,
b = 4.21 mm, Ā = 78 mm2, whereas the axis ratio g = b/a = 0.175 remains
unchanged.
b) In the case of a constant axis ratio g = const, Kalker’s coefficients Cij
for ν̄ = 0.3 are determined by quadratic interpolation of the values ν̄ = 0,
ν̄ = 0.25, ν̄ = 0.5,

Cij(ν̄ = 0.3) = Cij(ν̄ = 0.25) + 0.08 [Cij(ν̄ = 0.25) − Cij(ν̄ = 0)]
+ 0.12 [Cij(ν̄ = 0.5) − Cij(ν̄ = 0.25)] . (8)

Table 3.6. Values of Eq. (8)

g =
b

a
C11(ν̄ = 0.3) C22(ν̄ = 0.3) C23(ν̄ = 0.3) C33(ν̄ = 0.3)

0.8 4.544 4.065 1.786 1.025

0.7 4.722 4.296 1.987 0.9446

0.714 4.697 4.264 1.959 0.9559
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The results are shown in Table 3.6 for g = 0.8 and g = 0.7. Then, Kalker’s
coefficients for g = 0.714 result from a linear interpolation of the values for
g = 0.7 and g = 0.8. Finally, the contact forces are calculated by means of
Eqs. (3.88)-(3.90), with c =

√
ab = 6.28 mm according to Eq. (6) as well

as the slip values νK ≈ [−0.001 0 − δ/r0]
T taken from Problem 3.2 with

δ/r0 = 10−4 mm−1,

ft1 = −c2G C11 ν1 = 14.82 kN , (9)

ft2 = −c2G (C22 ν2 + c C23 ν3) = 3.88 kN , (10)

lP3 = −c3G (−C23 ν2 + c C33 ν3) = 11.9 kNmm = 0.019 kNm . (11)

Although no transversal slip occurs in this example, i.e. ν2 = 0, the align-
ing slip ν3 causes a tangential force ft2 transversal to the rail. However,
this transversal component is smaller than the longitudinal component ft1.
Both tangential forces and the aligning torque act on the wheel in positive
direction.

For the normal force fn = 50 kN, Kalker’s coefficients are equal to those
of fn = 100 kN because of the same ratio g = b/a. But the changed value of
c =

√
ab = 4.98 mm results in force values ft1 = 9.34 kN, ft2 = 1.94 kN,

lP3 = 4.72 kNmm.

3.4.3.2 Contact Forces Considering Saturation

The advantage of Kalker’s linear theory is the straightforward evaluation of
the contact forces fK as mentioned in Sect. 3.4.3.1. In contrary, the simpli-
fied as well as the exact theory can only be applied numerically. The cor-
responding computer programs Rollen, Usetab and Contact based on the
theory of Kalker (1979) and Kalker (1967a) are now commercially available,
see VORtech Computing (2009).

The limitation of the linear theory is that only initial gradients of the con-
tact forces fK(νK → 0) can be determined, cp. Fig. 3.9. To determine the
contact forces and to verify the theoretical approaches, a lot of experimen-
tal tests have been made. It turned out that the initial gradients of contact
forces vary between 50 % - 100 % of the values according to Kalker’s theory.
This discrepancy is caused by a thin film of contamination in the contact
patch. If the thin film of contamination is removed from the wheel and the
rail, the experimental results show a good correlation with Kalker’s exact
theory and the initial gradients with the linear theory as well. Therefore,
the design of railway vehicles has to be insensitive to changes of the con-
tact forces. Moreover, for the determination of contact forces the accuracy
demanded may be reduced. The last statement leads to the many heuristic
approaches such as the nonlinear saturation characteristics of the rolling con-
tact coefficient, Fig. 3.9, starting from the initial gradients which are simple to
calculate.
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All nonlinear approaches have in common that the resulting tangential
force f∗

t and the corresponding normalized rolling contact coefficient ϕ∗ are
limited as a result of Coulomb’s law,

f∗
t =
√

f∗2
t1 + f∗2

t2 ≤ µ |fn| , ϕ∗ =
f∗
t

µ |fn| ≤ 1 . (3.93)

The corresponding values for ft � µ |fn|, respectively ϕ � 1,

ft =
√

f2
t1 + f2

t2 , ϕ =
ft

µ |fn| (3.94)

are known from Kalker’s linear theory. But they can not be used for increas-
ing slip. At first, approximations for the nonlinear saturation behavior are
searched in the form f∗

t = f∗
t (ft), respectively ϕ∗ = ϕ∗(ϕ), with the following

properties

f∗
t =

⎧
⎨

⎩

ft ft � µ |fn|
for

µ |fn| ft ≥ µ |fn|
or ϕ∗ =

⎧
⎨

⎩

ϕ ϕ � 1 ,
for

1 ϕ ≥ 1 .
(3.95)

The dimensionless representation of ϕ∗ = ϕ∗(ϕ) offers advantages for cal-
culations. The following equations show three simple approximations ϕ∗

i (ϕ),
i = 1, 2, 3, which satisfy the required properties. The approximations get bet-
ter with increasing index i, cp. Fig. 3.14,

i = 1 : ϕ∗
1 =

⎧
⎨

⎩

ϕ 0 ≤ ϕ ≤ ϕG1

for
1 ϕ ≥ ϕG1

, ϕG1 = 1 ; (3.96)

i = 2 : ϕ∗
2 = 1 − e−ϕ , 0 ≤ ϕ < ∞ ; (3.97)

i = 3 : ϕ∗
3 =

⎧
⎪⎨

⎪⎩

ϕ − 1
3
ϕ2 +

1
27

ϕ3 0 ≤ ϕ ≤ ϕG3

for
1 ϕ ≥ ϕG3

, ϕG3 = 3 . (3.98)

The linear/constant characteristic of Eq. (3.96) is a rough approximation
while the cubic/constant characteristic of Eq. (3.98), which is based on in-
vestigations of Johnson and Vermeulen (1964), approximates the exact char-
acteristic of saturation well, cp. Garg and Dukkipati (1984). The exponential
characteristic of Eq. (3.97) is also a rough approximation again, but it does
not require partitioning of the slip domain.

The aim is to get the coordinates ft1, ft2 of the tangential force f t using
the developed approximation. Therefore, an information about the directions
of the forces is necessary. Useful relations are known for two special cases,
cp. Garg and Dukkipati (1984).
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1

ϕ∗

2

0
ϕG1 = 1 ϕG3 = 3

ϕ∗

1 ϕ∗

3

ϕ

ϕ∗

Fig. 3.14. Saturation characteristics of the normalized rolling contact coefficient:
a) ϕ∗

1 linear/constant; b) ϕ∗
2 exponential; c) ϕ∗

1 cubic/constant

Limit Case I. If the slip is small (ϕ � 1), the coordinates ft1, ft2 of the
tangential force follow from Kalker’s linear theory. The direction of the tan-
gential force ft =

√
f2
t1 + f2

t2 is described by the angle α = αI measured from
longitudinal direction,

sin αI = ft2/ft

cosαI = ft1/ft
, αI = arctan(ft2/ft1) . (3.99)

The saturation behavior of the tangential force f∗
t is transferred to the coor-

dinates f∗
t1 and f∗

t2 proportionally,

f∗
t1 = f∗

t ft1/ft = f∗
t cosαI ,

f∗
t2 = f∗

t ft2/ft = f∗
t sin αI ,

f∗
t = ϕ∗(ϕ)µ |fn| , ϕ � 1 .

(3.100)

Limit Case II. If the slip is big enough only kinematic friction occurs (ϕ � 3),
and the resulting tangential force f∗

t =
√

f∗2
t1 + f∗2

t2 = µ |fn| points into
the direction contrary to the resulting slip ν =

√
ν2
1 + ν2

2 . This direction is
described with the angle α = αII measured from longitudinal direction,

sin αII = −ν2/ν

cosαII = −ν1/ν
, αII = arctan(ν2/ν1) . (3.101)
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This yields the tangential forces f∗
t1, f∗

t2

f∗
t1 = −f∗

t ν1/ν = f∗
t cosαII ,

f∗
t2 = −f∗

t ν2/ν = f∗
t sinαII ,

f∗
t = µ |fn| = ϕ∗(ϕ)µ |fn| , ϕ∗ > 3 .

(3.102)

Equations (3.100) and (3.102) are also the basis for a more general way to cal-
culate the components f∗

t1, f
∗
t2 of the tangential forces between the limit cases

I (ϕ � 1, α = αI) and II (ϕ � 3, α = αII). The angle α = α(ϕ) is described
as a function of ϕ similar to the normalized rolling contact coefficient ϕ∗(ϕ).
According to Garg and Dukkipati (1984), a linear characteristic α = α(ϕ) for
αI ≤ α ≤ αII may be chosen. This yields in conjunction with the approxima-
tion i = 3

i = 3 : α3(ϕ) =

⎧
⎨

⎩

αI + (αII − αI)ϕ/ϕG3 0 ≤ ϕ ≤ ϕG3

for
αII ϕ ≥ ϕG3

, ϕG3 = 3 .

(3.103)

Thus, for the calculation of approximated tangential forces f∗
t1 and f∗

t2 it
holds considering the saturation

f∗
t1 = f∗

t cosα(ϕ) , f∗
t2 = f∗

t sin α(ϕ) , f∗
t = ϕ∗(ϕ)µ |fn|

αI ≤ α(ϕ) ≤ αII , 0 ≤ ϕ < ∞ , 0 ≤ ϕ∗(ϕ) ≤ 1 .
(3.104)

With the combination of different approximations for ϕ∗(ϕ) and α(ϕ) many
approximations for the tangential forces are possible. For coarse calculations
the approximations ϕ∗ = ϕ∗

i , i = 1, 2 or 3, with α = αI for ϕ < 1 respec-
tively α = αII for ϕ > 1 may be used. Better approximations are achieved
for ϕ∗ = ϕ∗

3, α = α3.

Problem 3.4 Contact forces considering approximated saturation
Calculate starting from Problem 3.3 with normal force fn = 100 kN and co-
efficient of kinematic friction µ = 0.4:

a) The approximated value for the tangential forces f∗
t1 and f∗

t2 using different
saturation approaches ϕ∗

i , see Eqs. (3.96)-(3.98), and direction angles αi, see
Eqs. (3.99), (3.101) and (3.103).
b) The achievable maximum acceleration a1max of the railway vehicle.
c) The longitudinal slip ν1 during constant acceleration a1 = const of the
train within 0 ≤ a1 ≤ a1max.

Solution
a) Starting point are the results of Problem 3.3 for fn = 100 kN:
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ft1 = 14.82 kN , ft2 = 3.88 kN , ν1 = −0.001 , ν2 = 0 . (1)

This yields

ft =
√

f2
t1 + f2

t2 = 15.32 kN , ν =
√

ν2
1 + ν2

2 = 0.001 . (2)

The normalized rolling contact coefficient ϕ∗ is

ϕ∗ =
ft

µ |fn| = 0.383 . (3)

Taking into account that the lateral slip ν2 is zero due to driving straight-
forward even if the longitudinal slip ν1 is very high, the boundary angles αI

and αII read

αI = arctan(ft2/ft1) = 14.67◦ , αII = arctan(ν2/ν1) = 0 . (4)

The angle α3 is calculated with Eq. (3.103)

α3(ϕ) = αI + (αII − αI)ϕ/3 = αI

(
1 − ϕ

3

)
= 12.8◦ . (5)

With these results the tangential forces f∗
t1, f

∗
t2 have the values given in Ta-

ble 3.7 for different combinations {ϕ∗
i , αj} of the approximations. The differ-

ences of the results are only small. The result in the last column using the
combination {ϕ∗

3, α3} is considered to be the best approximation.

b) Simplified assumptions are applied for the railway vehicle:

• The motion of the vehicle is straight on along a horizontal rail track.
• The normal forces and the tangential forces in the rail contact are

equal for each wheel f∗
t1,i = f∗

t1, |fn|i = mig, mi = m.
• The cone angle is small, δ < 1, so the wheel loads fR are approximated

by the normal forces, fR = mg ≈ |fN |.
• Forces from air resistance are neglected.

Table 3.7. Tangential forces f∗
t1 and f∗

t2 for different combinations of {ϕ∗
i , αj}

Combinations of the approximation methods
ϕ∗

1, αI ϕ∗
2, αI ϕ∗

3, αI ϕ∗
3, α3

ϕ∗
i (ϕ), ϕ = 0.383 0.383 0.318 0.336 0.336

f∗
t = ϕ∗

i (ϕ)µ|fn| 15.32 kN 12.72 kN 13.44 kN 13.44 kN

α 14.67◦ 14.67◦ 14.67◦ 12.80◦

f∗
t1 = f∗

t cos α 14.82 kN 12.31 kN 13.00 kN 13.11 kN

f∗
t2 = f∗

t sin α 3.88 kN 3.22 kN 3.40 kN 2.98 kN
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The achievable maximum acceleration while driving straight on depends on
the maximum transmissible tangential force f∗

t1,max = µ |fn| per wheel. From
Newton’s law of motion in eI1-direction for the whole vehicle with p rail
contact points follows

a1max

p∑

i=1

mi =
p∑

i=1

(f∗
t1,max)i =

p∑

i=1

µ |fn|i = µg

p∑

i=1

mi . (6)

This yields with µ = 0.4

a1max = µg = 3.92 m/s2 . (7)

c) If the acceleration a1 = const (0 ≤ a1 ≤ a1max) of the railway vehicle is
known, the necessary tangential force f∗

t1 per wheel follows from Eq. (6),

f∗
t1 = ma1 =

|fn|
g

a1 . (8)

Using of the saturation characteristic, in a first step the tangential force ft1
and in a second step using Kalker’s linear theory the corresponding longi-
tudinal slip ν1 is determined. To simplify matters here the approximations
{ϕ∗

2, αII} are used. So a simple but qualitative correct solution for ν1 is found.
Initially from Eqs. (3.104) and (3.97) with αII = 0 follows

f∗
t1 =ϕ∗

2(ϕ)µ |fn| cosαII = (1 − e−ϕ)µ |fn| , (9)

f∗
t2 =ϕ∗

2(ϕ)µ |fn| sin αII = 0 . (10)

Comparing of Eq. (9) and Eq. (8) and solving for ϕ, cp. Eq. (3.94), yields

ϕ ≡ ft
µ |fn| = − ln

(
1 − a1

µg

)
, ft =

√
f2
t1 + f2

t2 . (11)

If f2
t2 is neglected compared to f2

t1 what is consistent with the approximation
α = αII = 0, cp. Eq. (10), it follows

ft1 ≈ ft = −µ |fn| ln
(

1 − a1

µg

)
. (12)

On the other hand from Kalker’s linear theory, see Eq. (3.88), with the nu-
merical values from Problem 3.3 it follows

ft1 = −c2GC11ν1 = −14.82 · 103ν1 kN . (13)

A comparison of Eqs. (12) and (13), and solving for the longitudinal slip ν1,
yields

ν1 =
µ |fn|

c2GC11
ln
(

1 − a1

µg

)
, (14)

= 2.70 ln
(

1 − a1

µg

)
· 10−3 . (15)
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Table 3.8. Results for the longitudinal slip using Eq. (15)

a1

µg
=

a1

a1max
0 0.1 0.2 0.3 0.4 0.5

−ν1[�] 0 0.280.600.961.381.87

a1

µg
=

a1

a1max
0.6 0.7 0.8 0.9 0.95 1.0

−ν1[�] 2.473.254.346.218.09 ∞

The evaluation of Eq. (15) results in the longitudinal slip ν1 in dependence of
a1/µg = a1/a1max, see Table 3.8. Due to the acceleration of the railway vehi-
cle only negative values of longitudinal slip occur. They are as usual denoted
in one-tenth of a percent, ν1 [�] =̂ 103ν1. On the non-accelerated wheel no
longitudinal slip occurs. With increasing numbers of constant acceleration
the longitudinal slip increases. For maximum acceleration the longitudinal
slip converges to infinity what means wheel spin.

Problem 3.5 Contact forces and linear equations of motion for a
railway wheelset
For the free wheelset from Problem 2.9 using the contact patch systems{
Pi, e

i
ν

}
, i = l, r with l =̂ left, r =̂ right determine:

a) the slip

νii =
[
νi1 νi2 νi3

]T
, (1)

b) the contact forces

f̄
i
i = − [fti,1 fti,2 li

]T
, (2)

according to Kalker’s linear theory,
c) the linear equations of motion for small lateral and yaw motions using the
results from Problem 2.9.

Solution
The notations from Problem 2.9 are used where the contact forces fti,j , li,
j = 1, 2, on both wheels are defined pointing in opposite direction, see
Fig. 2.23. This is considered with the negative sign in Eq. (2).
a) The calculation of the slip is carried out in three steps:

1) Calculation of the absolute velocities of the wheels’ and the rails’ ma-
terial points (wheel R and rail S) coinciding with the contact points Pi
and calculation of the absolute angular velocities in the intermediate
system Z.
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2) Transformation of the relative velocities and the relative angular ve-
locities into the contact patch systems eiν , i = l, r.

3) Linearization of the slip for small deviations from the nominal motion
with respect to translation and rotation.

Step 1: The absolute velocity of the point coinciding with Pi on the wheel
results from the rigid body relation,

vZPi = vZC + ω̃ZIKρ
Z
Ci , vZC = SZIvIC , i = l, r . (3)

With the values defined in Problem 2.9,

SZI =

⎡

⎣
cγ sγ 0

−cαsγ cαcγ sα
sαsγ −sαcγ cα

⎤

⎦ , vIC =

⎡

⎣
ẋ
ẏ
ż

⎤

⎦ ,

ωZIK =

⎡

⎣
α̇

γ̇sα − β̇
γ̇cα

⎤

⎦ , ρZCi =

⎡

⎣
0

∓a + ∆ai
ri

⎤

⎦ , (4)

it follows

vZPi =

⎡

⎢⎣
ẋcγ + ẏsγ + (γ̇sα − β̇)ri − γ̇(±a + ∆ai)cα

−ẋcαsγ + ẏcαcγ + żsα − α̇ri

ẋsαsγ − ẏsαcγ + żcα + α̇(±a + ∆ai)

⎤

⎥⎦ , i = l, r . (5)

Here and in the following the upper algebraic sign holds for i = l and the lower
one for i = r. The absolute velocity of the point coinciding with Pi on the rail
is equal to zero since the rail is fixed. Therefore, Eq. (5) already denotes the
relative velocity v̄ZPi = vZPi. For the same reason the angular velocity ωZIK
of the wheelset, cp. Eq. (4), already denotes the relative angular velocity,
ω̄Z = ωZIK .

Step 2: The transformation of the relative velocity into the contact
area systems eiν is carried out with the transformation matrices SiZ , cp.
Problem 2.9,

v̄iP i = SiZ v̄ZPi , ω̄i = SiZω̄Z , SiZ =

⎡

⎣
1 0 0
0 cδi ±sδi
0 ∓sδi cδi

⎤

⎦ , i = l, r . (6)

Then, it follows

v̄iP i,1 = ẋcγ + ẏsγ + (γ̇sα − β̇)ri + γ̇(±a − ∆ai)cα ,

v̄iP i,2 = −ẋsγc(α ± δi) + ẏcγc(α ± δi) + żs(α ± δi)

− α̇ricδi + α̇(−a ± ∆ai)sδi ,

ω̄i3 = γ̇c(α ± δi) ± β̇sδi , i = l, r . (7)
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Step 3: The slip according to Eq. (3.54) follows from Eq. (7) by relation to
the medium speed v0. Assuming that the wheelset in its nominal state moves
along the rail track with ẋ = ẋ0 = v0, for pure rolling the angular velocity
β = β0 = Ω = v0/r0 would arise. With respect to the nominal state, consid-
ering the constraint equations

z ≈ 0 , α = α(y) , α̇ = α′ẏ , (·)′ ≡ d(·)/dy , (8)

for small deviations of position and angle, the velocities Eq. (7) can be lin-
earized, cp. Eqs. (24) and (25) of Problem 2.9. With

ẋ = v0 + ˜̇x , ˜̇x � v0 , ẏ � v0 , ż = z′ẏ , z′ � 1 ,

β̇ = Ω + ˜̇β , ˜̇β � Ω , Ω = v0/r0 ,
α � 1 , α̇ � Ω , ∆ai � a ,
γ � 1 , γ̇ � Ω ,

(9)

one gets from (7) for the slip

νii =
1
v0

⎡

⎢⎣
v̄iP i,1

v̄iP i,2

ω̄i3

⎤

⎥⎦ =
1
v0

⎡

⎢⎣
v0(1 − ri/r0) ± aγ̇

(ẏ − v0γ)c(α ± δi) − α̇(ricδi + asδi)

γ̇c(α ± δi) ± Ωsδi

⎤

⎥⎦ , i = l, r .

(10)

Considering small wheel conicities, δi � 1, i = l, r, from Eq. (10) it remains

νii =
1
v0

⎡

⎢⎣
v0(1 − ri/r0) ± aγ̇

ẏ − v0γ − α̇ri

γ̇ ± Ωδi

⎤

⎥⎦ , i = l, r . (11)

b) The contact forces

f̄
i
i = −F iνii (12)

follow from Kalker’s linear theory with the slip vector νii, cp. Eqs. (3.86)
and (3.87). The calculation of Kalker coefficients required for the matrices
F i, is difficult for real wheel/rail contacts. The reason is that the contact
points Pi are shifted into lateral direction on the profiles of wheel and rail,
and the main radii of curvature depend highly on the wheelset position.
For small deviations from the nominal position the Kalker coefficients are
calculated with the average main radii of curvature, then the deviations due
to the different main curvature planes of wheel and rail are considered to
be negligible. As normal forces the static values fn0 are used, cp. Eq. (28)
in Problem 2.9. Assuming constant and similar Kalker coefficients for both
contact points Pi, i = l, r, it follows from Eq. (12) with Eq. (2) using the slip
of Eq. (11)
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f̄
i
i = −

⎡

⎣
fti,1
fti,2
li

⎤

⎦ = −
⎡

⎣
f11 0 0
0 f22 +f23

0 −f23 f33

⎤

⎦

⎡

⎣
νi1
νi2
νi3

⎤

⎦ ,

fti,1 =
f11

v0
[v0(1 − ri/r0) ± aγ̇] ,

fti,2 =
f22

v0
[ẏ − v0γ − α̇ri] +

f23

v0
[γ̇ ± Ωδi] ,

li = −f23

v0
[ẏ − v0γ − α̇ri] +

f33

v0
[γ̇ ± Ωδi] , i = l, r .

(13)

Due to different slip the contact forces on the left and right wheel are different.

c) With Eqs. (9) and (13), the equations of motion found in Problem 2.9
can be linearized and described explicitly by generalized coordinates. Usu-
ally the inertial system is used. In Problem 2.9 the translatory equations of
motion (10)-(12) are given in the inertial frame I,

mẍ = fl1 + fr1 ,

mÿ = fl2 + fr2 ,

mz̈ = fl3 + fr3 + mg .

(14)

Using the rotational matrix SIZ and the linearized values, a transformation
of the rotational equations of motion (21)-(23) into the inertial frame I leads
to

I1α̈ + I2γ̇Ω = (ll1 + lr1) − γ(ll2 + lr2) ,

−I2β̈ = γ(ll1 + lr1) + (ll2 + lr2) − α(ll3 + lr3) ,

I1γ̈ − I2α̇Ω = α(ll2 + lr2) + (ll3 + lr3) .

(15)

The coordinates fiν , liν , i = l, r, of the forces and torques are given in
Problem 2.9 by Eqs. (8), (9), (16) and (17) depending on the contact forces.
Substitution, linearization and neglect of small values lead to the equations
relevant to the lateral and yaw motion

mÿ = −γ(ftl,1 + ftr,1) − (ftl,2 + ftr,2) + (α + δl)fnl + (α − δr)fnr , (16)
mz̈ = −(fnl + fnr) + mg , (17)
I1α̈ + I2γ̇Ω = a(fnl − fnr) + rlftl,2 + rrftr,2 , (18)
I1γ̈ − I2α̇Ω = −a(ftl,1 − ftr,1) − (ll + lr) . (19)

Due to the constraint equations (8) it holds z ≈ 0 and α = α(y). Therewith,
the unknown reaction forces fnl and fnr can be calculated from Eqs. (17) and
(18), where the inertia terms due to mz̈ � mg, I1α̈ � mgα are neglected,

fnl =
1
2a

I2γ̇Ω − 1
2a

(rlftl,2 + rrftr,2) +
1
2
mg , (20)

fnr = − 1
2a

I2γ̇Ω +
1
2a

(rlftl,2 + rrftr,2) +
1
2
mg . (21)
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For the lateral and the yaw motion follows from Eqs. (16) and (19) with the
contact forces of Eq. (13) and the normal forces given in Eqs. (20) and (21)

mÿ + 2
f22

v0

(
ẏ − v0γ − α̇

rl + rr
2

)
+ 2

f23

v0

(
γ̇ + Ω

δl − δr
2

)

+ 2γf11

(
1 − rl + rr

2r0

)
− mg

(
α +

δl − δr
2

)
− δl + δr

2a
I2γ̇Ω

+
δl + δr

2a

[
f22

v0
(rl + rr)(ẏ − v0γ) − f22

v0
(r2
l + r2

r)α̇

+
f23

v0
(rl + rr)γ̇ +

f23

v0
(rlδl − rrδr)Ω

]
= 0 , (22)

I1γ̈ − I2α̇Ω − 2
f23

v0

(
ẏ − v0γ − α̇

rl + rr
2

)
+ 2

f33

v0

(
γ̇ + Ω

δl − δr
2

)

+ 2a
f11

v0

(
−v0

r0

rl − rr
2

+ aγ̇

)
= 0 . (23)

The term mg (α + (δl − δr)/2) in Eq. (22) is called lateral gravitational stiff-
ness due to the fact that it represents a restoring force in lateral direction. In
literature sometimes a small gravitational term can also be found in yaw equa-
tion (23), which is due to a different orientation of the contact area frames.
Considering the constraint equations (8), α = α(y), α̇ = α′ẏ, in Eqs. (22) and
(23) it turns out that the lateral and yaw motion are decoupled from the other
motions. The resulting differential equations are nonlinear, although the co-
ordinates y, γ and their derivations occur only linear. The reason is that the
running radii ri and the angles of inclination δi as well as α = α(y) are non-
linear functions of the lateral displacement y. They depend on the profile
shapes of the contact partners and on the locations of the contact points,
cp. Garg and Dukkipati (1984). Linear equations of motion arise from conic
wheels (δl = δr = δ0) and rectangular rails, cp. Problem 2.7. With Eqs. (17)-
(19) and Eq. (23) from Problem 2.7 one gets

δl = δr = δ0 ⇒ 1
2
(δl + δr) = δ0 ,

1
2
(δl − δr) = 0 ,

z = r0 − 1
2
(rl + rr) ≈ 0 ⇒ 1

2
(rl + rr) ≈ r0 ,

−y ≈
[
q − 1

2
(rl + rr)

]
α =

[
a

tan δ0
− r0

]
α ≈ a

δ0
α ⇒ −α̇ ≈ δ0

a
ẏ ,

α ≈ rl − rr
2a

≈ −δ0

a
y ⇒ 1

2
(rl − rr) ≈ −δ0y . (24)

With Eq. (24) it follows from Eqs. (22) and (23)
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mÿ + 2
f22

v0

(
ẏ +

δ0r0

a
ẏ − v0γ

)
+ 2

f23

v0
γ̇ + mg

δ0

a
y − I2

δ0v0

ar0
γ̇

+
δ0

a

[
f22

v0
2r0(ẏ − v0γ) +

f23

v0
2r0γ̇

]
= 0 , (25)

I1γ̈ + I2
δ0v0

ar0
ẏ − 2

f23

v0

(
ẏ +

δ0r0

a
ẏ − v0γ

)
+ 2

f33

v0
γ̇

+ 2a
f11

v0

(
δ0v0

r0
y + aγ̇

)
= 0 . (26)

For small values (δ0r0/a � 1) the desired equations of motion read in matrix
notation

[
m 0
0 I1

] [
ÿ
γ̈

]
+

⎧
⎪⎨

⎪⎩
2
v0

[
f22 f23

−f23 a2f11 + f33

]
+

⎡

⎢⎣
0 −I2

δ0v0

ar0

I2
δ0v0

ar0
0

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

[
ẏ
γ̇

]

+

⎡

⎢⎢⎣
mg

δ0

a
−2f22

2f11
aδ0

r0
2f23

⎤

⎥⎥⎦

[
y
γ

]
=
[

0
0

]
. (27)

These are the differential equations of an ordinary mechanical system with
all kinds of forces, cp. Eq. (2.99),

Mÿ + (D +G)ẏ + (K +N)y = 0 ,

M =MT > 0 , D =DT , G = −GT , K = KT , N = −NT ,
(28)

with

y =
[

y
γ

]
, M =

[
m 0
0 I1

]
, D =

2
v0

[
f22 0
0 a2f11 + f33

]
,

G =

⎡

⎢⎣
0

2f23

v0
− I2

δ0v0

ar0

−2f23

v0
+ I2

δ0v0

ar0
0

⎤

⎥⎦ ,

K =

⎡

⎢⎣
mg

δ0

a
f11

aδ0

r0
− f22

f11
aδ0

r0
− f22 2f23

⎤

⎥⎦ ,

N =

⎡

⎢⎣
0 −f11

aδ0

r0
− f22

f11
aδ0

r0
+ f22 0

⎤

⎥⎦ . (29)
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Particular properties of the equations of motion of the wheelset are

a) the occurrence of nonconservative position forces,
b) decreasing damping forces with increasing speed.

Both properties result from the contact forces and have an essential impact
on the stability of the wheelset. On pure kinematic rolling, cp. Problem 2.7, a
deviation from the nominal position leads to a periodic lateral motion of the
wheelset called hunting motion. Unlike to this, in the general case considered
here initial perturbations may decrease below a critical speed and increase
above it. From the equations of motion (27)-(29) the corresponding critical
speed can be evaluated as shown in Sect. 9.2.2.

3.4.4 Contact Forces of Elastic Tires on a Rigid Road

The general considerations on the planar rolling of a wheel including frictional
rolling contact, see Sect. 3.4.1, are also valid for the tire/road contact. Never-
theless, the results for the expansion to the spatial problem of the wheel/rail
contact, see Sect. 3.4.3, can not directly be transferred to the tire/road con-
tact. The reason is the fiber-reinforced tire structure which does not behave
like an isotropic elastic half space around the contact area. Thus, the linear
relations between stresses and strains are not valid anymore, which are the
basis of Kalker’s theory. Further differences to the wheel/rail contact are the
significant larger elastic deformations within the tread and the side wall or
carcass, respectively, of the tire, as well as a strongly slip dependent coeffi-
cient of friction of the tire/road contact. The length 2a of the contact area
or contact patch, respectively, of a tire amounts to around 150 mm. It is 10
times larger than a typical length of a wheel/rail contact.

Although the results of Sect. 3.4.3 can not be transferred completely, the
proceeding and the structure of the equations will be retained in the following.
The goal remains to give a law for the contact forces (3.72) in dependance
of the slip. Concerning the tire/road contact problem, almost all developed
theories are based on material laws like Eq. (3.73), and usually discoidal
tires are assumed. Especially the cornering behavior of the tire is considered
which plays a major role for holding the driving direction of road vehicles.
Regarding the consideration of the elastic tire deformation within the contact
patch, three different modeling approaches are distinguished:

• brush or spring model,
• model of a pre-stressed rope on an elastic foundation,
• model of a pre-stressed beam on an elastic foundation.

A comparison of the steady-state rolling elastic contact theories based on
these models is given in Sperling (1977). Other contributions deal with the
development of unsteady rolling theories, see Weber (1981), Boehm (1985),
Pacejka (2002).



150 3 Models for Support and Guidance Systems

3.4.4.1 The Brush Model

In the following, a simplified steady state theory from Pacejka (2002) is pre-
sented, which is based on the brush model by Fromm (1927). The advantage
of this theory is the explicit description of the contact forces, and, further-
more, it allows an easy enhancement and adjustment to measured data. The
tread of the tire is assumed to be elastic, the carcass and the wheel rim to
be rigid.

First, the model input quantities are defined. A rigid discoidal wheel rolling
straight ahead with an elastic rolling contact on a planar horizontal road is
considered. In Fig. 3.15 a rolling wheel without slip (velocity vC , angular
velocity ω =

∗
ω) is shown. Due to the elastic contact, it is subject to a static

deflection,

ρ = r0 − r , (3.105)

where r0 and r denote the wheel radii without and with load, respectively.
The point PR in Fig. 3.15 coincides with the instantaneous center of rotation
of the rolling wheel without slip. The center is located slightly below the road
surface due to the elastic deflection. The rolling condition results in

vC =
∗
ωre , re ≈ r0 − ρ/3 , (3.106)

where re denotes the effective or dynamical rolling radius. For the driven or
the braked wheel with ω �= ∗

ω the point PR, see Fig. 3.15, is no longer identical

ρ

r

ω

1 vC

3r0

3

1
road

tire

eR
ν

C

a a

P

PR

re

Fig. 3.15. Tire conditions for the elastic rolling contact with static deflection ρ,
and effective rolling radius re



3.4 Contact Forces between Wheel and Guideway 151

to the instantaneous center of rotation of the wheel. Its velocity written in
the contact patch frame K{P, eKν } amounts to

vKP1 = vC − ωre . (3.107)

Since the road is rigid, this velocity is equal to the relative velocity v̄KP1 = vKP1.
According to the slip definition (3.54) the longitudinal slip follows as

νK1 = 1 − ωre
vC

. (3.108)

In vehicle engineering other slip definitions, presented in Table 3.9, are used,
too. In the following, the slip definition (3.49) will be used, where in specific
applications it might be beneficial to distinguish between driving and brak-
ing slip, according to Mitschke and Wallentowitz (2004). The point PR in
Fig. 3.15 is considered to be fixed to the wheel, with the distance CPR = re
within the wheel plane, see also ??. The velocity of the wheel within the
wheel plane serves as the reference velocity v0. It is equal to the absolute
velocity of the origin P of the contact plane frame K along the eK1 -direction,
cp. Sect. 3.4.2.

After these preparations, a rigid, cornering, discoidal wheel with elastic
rolling contact is presented, cp. Pacejka (2002). Let the wheel plane be ver-
tical. Then, the moving axle-fixed reference frame R{C, eRν } and the contact
area frame K{P, eKν } have the same orientation, see Fig. 3.16 a). The absolute
velocities of the wheel (index R) {vCR,ωR} amount to

Table 3.9. Comparison of different slip definitions, considering longitudinal slip as
an example, for a wheel rolling within a vertical plane

Slip for

driving

braking

vC − ωre

vC

ωre − vC

vC

ωre − vC

ωre

ωre − vC

ωre

vC − ωre

vC

Source
This
book

Pacejka
(1986)

Pacejka
(1975)

Mitschke and
Wallentowitz

(2004)

Slip value for wheelspin,
ω → ∞ −∞ ∞ 1 1

Slip value for blocking
wheel, ω = 0

1 -1 −∞ 1

Slip value for free rolling
wheel, vC = ωre

0 0 0 0

vCtranslative velocity of the wheel center along the wheel plane
ω angular velocity of the wheel around the wheel axis
re effective rolling radius
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b)

a)

2

1

eK
2

α

vC

P

wheel

vC

ω

re

eK
3

vC1

eK
1

ωre

vC2

eK
ν

3 2

3

α

wheel plane

eR
ν

C

PR

vP

1

road plane

P

Fig. 3.16. Illustration of the conditions of a skewing or cornering, respectively,
wheel: a) wheel and road plane; b) projection on the road plane

vKCR = vRCR =

⎡

⎣
vC cosα

−vC sin α
0

⎤

⎦ , ωKR = ωRR =

⎡

⎣
0

−ω
0

⎤

⎦ , (3.109)

where vC , ω denote the velocity and the angular velocity of the wheel, respec-
tively. The slip angle, in accordance with vehicle engineering terminologies,
is referred to as α. The absolute velocity vPR of the wheel point P results
from the rigid body relation

vKPR = vRPR = vRCR + ω̃RRr
R
CP =

⎡

⎣
vC cosα − ωre

−vC sinα
0

⎤

⎦ . (3.110)
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Therein rRCP = [0 0 re]T with the effective rolling radius re is used instead of
r, cp. Fig. 3.16. The absolute velocities {vPS ,ωS} of the road (index S) are
vanishing.

Consequently, the sliding velocities {v̄P , ω̄} agree with {vPR,ωR} from
Eqs. (3.110), (3.109), cp. Fig. 3.16 b). The slip according to definition (3.54)
reads as

νK ≡
⎡

⎣
ν1

ν2

ν3

⎤

⎦ =
1
v0

⎡

⎣
v̄K1
v̄K2
ω̄K3

⎤

⎦ =
1
v0

⎡

⎣
vC cosα − ωre

−vC sinα
0

⎤

⎦ . (3.111)

The reference velocity v0 agrees with vRCR,1 = vC cosα, cp. Eq. (3.109). Thus,
for the slip it remains

ν1 =
vC cosα − ωre

vC cosα
= 1 − ωre

vC cosα
,

ν2 = − vC sin α

vC cosα
= − tanα ,

ν3 = 0 .

(3.112)

Next, the contact forces are calculated separately for lateral slip and then for
the longitudinal slip based on the brush model.

3.4.4.2 Contact Forces for Pure Lateral Slip

For pure lateral slip (ν1 = 0 or reω = vc cosα) Fig. 3.17 shows the conditions
within the contact patch during the steady rolling process. The continu-
ous load in normal direction is simplified by a parabolic function instead of
the elliptical shaped characteristic following from the Hertzian theory, cp.
Fig. 3.17 a),

qn(x) =
3 |fn|
4a

[
1 −
(x

a

)2
]

≥ 0 , −a ≤ x ≤ a , (3.113)

where |fn| corresponds to the wheel load and a denotes half the length of the
patch. The deformation of the wheel within the contact area is characterized
by the lateral displacements u2 of the brush hairs, which are considered to be
leaf springs, see Fig. 3.17 b). Within the sticking zone the line of contact runs
straight and parallel to the velocity vC starting from the run-in boundary E
to the limit point G,

u2(x) = (a − x) tan α , xG ≤ x ≤ a , (3.114)

while within the sliding zone it is decreasing according to the sliding friction
level, and it joins the wheel plane again at the run-out A. For the special
case of small slip angles α → 0 and thus for small lateral slip ν2 → 0 the
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Fig. 3.17. Conditions within the contact area according to the brush model: a) side
view; b) top view

limit point G moves to the run-out A. Then, Eq. (3.114) with tan α ≈ α is
valid within the entire contact patch −a ≤ x ≤ a. The lateral tread stiffness
k2 = const, which is related to the patch length, can be extracted from static
measurements. It corresponds to the lateral stiffness of the leaf springs for
constant patch width. From the displacements u2(x) follows the lateral force
ft2 as well as the aligning torque lP3,

ft2 = k2

a∫

−a
u2(x)dx = 2k2a

2α = −2k2a
2ν2 , (3.115)

lP3 = k2

a∫

−a
u2(x)xdx = −2

3
k2a

3α =
2
3
k2a

3ν2 . (3.116)

Therefore, the initial gradient of the contact force to slip relation for pure lat-
eral slip complies with the linear theory of Kalker for the wheel/rail contact,
cp. Eq. (3.86),
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fK = −FνK ,

[
ft2
lP3

]
= −

[
f22 ∗

−f23 ∗
] [

ν2

0

]
, (3.117)

f22 = − ∂ft2
∂ν2

∣∣∣∣
ν2→0

= 2k2a
2 , f23 =

∂lP3

∂ν2

∣∣∣∣
ν2→0

=
2
3
k2a

3 . (3.118)

The coefficients f22, f23 are referred to as cornering stiffness and aligning
torque stiffness, the lateral force ft2 as cornering force and the moment lP3

as alignment torque, too.
At next, the special case of large slip angles α → π/2 is considered. This

results in a very large lateral slip ν2 = − tan α → −∞ and the limit point G
moves to the run-in E. In this case the entire contact area corresponds to
the sliding zone, the continuous load qt2 in the lateral direction results from
Eq. (3.113) and Coulomb’s sliding friction law as

|qt2(x)| = µqn(x) =
3
4

µ

a
|fn|
[
1 −
(x

a

)2
]

, −a ≤ x ≤ a . (3.119)

From this follows the maximum possible lateral displacement u2,max(x), see
Fig. 3.17 b),

|u2,max(x)| = |qt2(x)| /k2 = µqn(x)/k2 . (3.120)

The coordinate xG of the limit point G can be derived by equating the cor-
responding relations given by Eqs. (3.120) and (3.114),

|u2,max(xG)| = |u2(xG)| ⇒ µqn(xG)/k2 = (a − xG) |tanα| . (3.121)

If the coordinate x is described as

x = a − 2aλ , 0 ≤ λ ≤ 1 , (3.122)

then, from Eqs. (3.121) and (3.113) it follows with xG = a − 2aλG

λG = 1 − θ2 |tan α| , θ2 =
2
3

k2a
2

µ |fn| . (3.123)

For λG = 0 one gets xG = a, i. e. the limit point coincides with the run-in E.
The corresponding slip angle α = αG, resulting in a complete sliding within
the entire contact zone, follows directly from Eq. (3.123) as

|tan αG| =
1
θ2

. (3.124)

Then, the contact forces ft2 and lP3 can be calculated explicitly.
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For |α| ≥ αG (complete sliding) the continuous load qt2(x) in the lateral
direction, cp. Eq. (3.119), is integrated along the patch length, resulting in

ft2 =

a∫

−a
qt2(x)dx , lP3 =

a∫

−a
qt2(x)xdx = 0 , (3.125)

where the torque lP3 disappears due to the even function qt2(x) = qt2(−x).
For |α| ≤ αG the contact forces are derived from the sum of two inte-

grals along the sliding area (−a ≤ x ≤ xG or 1 ≥ λ ≥ λG) using Eq. (3.125)
and along the sticking area (xG ≤ x ≤ a or λG ≥ λ ≥ 0),using Eqs. (3.115),
(3.116), respectively. After introducing the normalized rolling contact coeffi-
cients ϕ2, ϕ3 and the normalized lateral slip ν∗

2 , the results read as

ϕ2 =
ft2

µ |fn| , ϕ3 =
lP3

µa |fn| , ν∗
2 = θ2 |ν2| = θ2 |tan α| ,

λG = 1 − ν∗
2 , |tan αG| =

1
θ2

, ν∗
2G = 1 , θ2 =

2
3

k2a
2

µ |fn| ,

−π

2
≤ α ≤ π

2
,

(3.126)

ϕ2 =

⎧
⎨

⎩

(1 − λ3
G)sgnα = (3ν∗

2 − 3ν∗2
2 + ν∗3

2 )sgnα |α| ≤ αG , ν∗
2 ≤ 1 ,

for
sgnα |α| ≥ αG , ν∗

2 ≥ 1 ,

(3.127)

− ϕ3 =

⎧
⎪⎪⎨

⎪⎪⎩

λ3
G(1 − λG)sgnα

= (ν∗
2 − 3ν∗2

2 + 3ν∗3
2 − ν∗4

2 )sgnα |α| ≤ αG , ν∗
2 ≤ 1 ,

for
0 |α| ≥ αG , ν∗

2 ≥ 1 .

(3.128)

The rolling contact coefficients are uneven functions of the slip angle and
consequently of the lateral slip, ϕ2(α) = −ϕ2(−α), ϕ3(α) = −ϕ3(−α). The
corresponding functions are displayed graphically in Fig. 3.18. By moving
the reference point from P to the reference point N the contact quantities
{ft2, lP3} are reduced to one resulting force ft2 only, cp. Fig. 3.17. From the
equilibrium of torques, lN3 = lP3 − xNft2 = 0, arises the coordinate xN of
the point N ,

xN =
lP3

ft2
= a

ϕ3

ϕ2
=

⎧
⎪⎪⎨

⎪⎪⎩

−a

3
1 − 3ν∗

2 + 3ν∗2
2 − ν∗3

2

1 − ν∗
2 + ν∗2

2 /3
≤ 0 |α| ≤ αG , ν∗

2 ≤ 1 ,

for
0 |α| ≥ αG , ν∗

2 ≥ 1 .

(3.129)
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Fig. 3.18. Normalized rolling contact coefficient ϕ2, ϕ3 for pure lateral slip (slip
angle α)

For complete sliding (|α| ≥ αG) one gets xN = 0, N ≡ P , while for lateral slip
(|α| ≤ αG) it follows xN ≤ 0. Then, the point N is displaced backwards and
is located between the point P and the run-out A, see Fig. 3.17. Therefore,
the length of the line PN = |xN | is called pneumatic trail n. For disappearing
slip, ν∗

2 → 0, Eq. (3.129) results in the limit n0 of the pneumatic trail,

n0 = |xn(ν∗
2 → 0)| = −a

lP3

ft2

∣∣∣∣
ν∗
2→0

=
a

3
. (3.130)

The value n0 = a/3 is smaller than the real trail. Also, the dependency of
the contact forces ft2 and lP3 on the normal force |fn| according to the
brush model does not completely agree with the experimental results. An
improvement can be achieved by taking the elasticity of the carcass into
account by means of a rope model, cp. Pacejka (2002). Nevertheless, the
given theoretical results fit qualitatively well to the experimental data. This
also holds for the contact force due to longitudinal slip, which is described
using the brush model in the follow section.

3.4.4.3 Contact Force for Pure Longitudinal Slip

Again the conditions within the contact patch are considered, see Fig. 3.19.
Here, the contact patch frame K is separated from the road to get a better
overview. Figure 3.19 a) shows the conditions within the road-fixed inertial
frame I. The sliding velocity v̄K1 results from the difference of the absolute
velocities of the wheel and the road, cp. Eq. (3.110),
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v̄K1 = vC1 − ωre , vC1 = vC cosα , (3.131)

where the effective rolling radius re is used again. If the contact area frame K
is considered as not moving, see Fig. 3.19 b), the result is the same. Here v̄K1
results from the difference of the corresponding relative velocities where vC1

denotes the relative velocity of the road and vr = ωre the relative velocity of
the wheel.

The deformations of the brush hairs, which are considered to be leaf
springs, are evaluated conveniently within the frame K depending on the
longitudinal coordinate x (eK1 -direction). Observing one leaf spring on its
way through the contact area, starting at the run-in E(x = a) to an arbi-
trary position indicated by x, see Fig. 3.19b, then the distance ∆s = a − x is
passed in a time ∆t = ∆s/vr, whereas vr = ωre denotes the relative velocity
of the wheel within the contact zone with respect to frame K. The distance
∆sK passed by the contact point K of the leaf spring in the time ∆t within
the sticking area amounts to

∆sK = vC1∆t , ∆t =
∆s

vr
, ∆s = a − x , vr = ωre , (3.132)

where vC1 denotes the relative velocity of the road in respect to the frame
K. The longitudinal displacement u1(x) of the leaf spring itself follows from
the distance difference. In the contact area frame K one gets

−u1(x) = ∆sK − ∆s =
(

vC1

vr
− 1
)

∆s =
vC1 − ωre

ωre
(a − x) . (3.133)

This relation applies to the sticking zone xG ≤ x ≤ a. The same results are
derived if the process is observed within the inertial frame, see Fig. 3.19 a).
The displacement u1 follows from the sliding velocity vC1 − ωre multiplied
with the time ∆t = ∆s/vr according to Eq. (3.132). Using the longitudinal
slip ν1, Eq. (3.112) then it follows from Eq. (3.133)

u1(x) = −(a − x)
ν1

1 − ν1
, ν1 =

vC1 − ωre
vC1

, xG ≤ x ≤ a . (3.134)

If for the slip definition the velocity vr = ωre of the wheel is selected as the
reference velocity, a differently defined longitudinal slip σ1 is obtained. With
this slip σ1 it follows from Eq. (3.133) directly

u1(x) = −(a − x)σ1 , σ1 =
vC1 − ωre

ωre
, xG ≤ x ≤ a . (3.135)

The relation between the different definitions of slip is simply

σ1 =
ν1

1 − ν1
, ν1 =

σ1

1 + σ1
. (3.136)

If Eq. (3.135) is compared to the corresponding relation (3.114) for the lateral
displacements u2(x) for pure lateral slip a formal analogy, u1(x) = u2(x), is
found for



160 3 Models for Support and Guidance Systems

σ1 = − tanα = ν2 . (3.137)

Thus, the results valid for pure lateral slip can be transferred directly to
the case of longitudinal slip. Identical coefficients of friction µ1 = µ2 = µ,
µ = const, and identical stiffnesses k1 = k2 in longitudinal and lateral direc-
tion are assumed. Then, for the contact force it follows from Eqs. (3.137) and
(3.136) the identity

ft1

(
σ1 =

ν1

1 − ν1

)
≡ ft2(ν2) , (3.138)

cp. Fig. 3.20. By adapting the abscissa scale, the normalized lateral rolling
contact coefficient ϕ2 = ϕ2(α) is identical to the normalized longitudinal
rolling contact coefficient ϕ1(σ1). With Eq. (3.137) the identity reads as

ϕ1(− arctanσ1) ≡ ϕ2(α) . (3.139)

As a result of the analogy of longitudinal and lateral displacements within
the contact patch, further results can be transferred also for k1 �= k2. Full lon-
gitudinal sliding begins analogous to Eq. (3.124) for tan αG = ±1/θ1. From
Eqs. (3.137) and (3.136) follow the corresponding limit slips σ1G and ν1G,
respectively,

σ1G = ± 1
θ1

, ν1G =
1

1 ± θ1
, θ1 =

2
3

k1a
2

µ |fn| . (3.140)

For small longitudinal slips |ν1| � 1 the linearized characteristic of the longi-
tudinal displacements, u1(x) = −(a − x) ν1, results from Eq. (3.134). Analo-
gously to Eq. (3.115) the corresponding contact force ft1 is obtained,

ft1 = −2k1a
2ν1 , |ν1| � 1 . (3.141)

Hereby the coefficient f11 of the contact force slip relation for longitudinal
slip reads as, cp. Eq. (3.118)

f11 = −∂ft1
∂ν1

∣∣∣∣
ν1→0

= 2k1a
2 . (3.142)

Fig. 3.20. Analogy of contact force characteristics for lateral and longitudinal slip,
µ1 = µ2 = µ, k1 = k2
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3.4.4.4 Linear Contact Force Law

From Eq. (3.141) together with Eq. (3.117), Eq. (3.118) follows the linear
dependency between contact forces and slip for longitudinal and lateral slip
in analogy to the linear theory of Kalker for the wheel/rail contact, cp.
Eq. (3.86),

fK = −FνK , (3.143)

⎡

⎣
ft1
ft2
lP3

⎤

⎦ = −
⎡

⎣
f11 0 ∗
0 f22 ∗
0 −f23 ∗

⎤

⎦

⎡

⎣
ν1

ν2

0

⎤

⎦ ,

f11 = 2k1a
2 , f22 = 2k2a

2 , f23 =
2
3
k2a

3 , (∗ arbitrary) . (3.144)

Thus, a description is found for the linear relation of the contact force and
the slip in the elastic rolling contact between tire and road as well as between
wheel and rail, see Eq. (3.86). However, the influence of the aligning slip is
neglected in Eq. (3.144). As already mentioned, only the starting slope of
the contact forces for νK → 0 can be obtained from the linear theory. An
advantage of such a standardized description is the possibility to add heuris-
tical approaches of the saturation. The saturation behaviour of the wheel/rail
contact forces at simultaneous longitudinal and lateral slip can be adopted
directly to the tire/road contact, cp. Eqs. (3.93)-(3.104). Because of the anal-
ogy of the local deformation caused by pure longitudinal or pure lateral slip,
respectively, in the tire/road contact even if both types of slip occur simul-
taneously, further relations can be found based on the brush model. This
will be shown in the following section. Again, equal coefficients of friction
µ1 = µ2 = µ, µ = const, and equal tread stiffness values k1 = k2 = k in lon-
gitudinal and lateral direction are assumed.

3.4.4.5 Contact Forces for Simultaneous Longitudinal and Lateral
Slip

The hairs of the brush model are regarded as leaf springs. Due to the isotropic
stiffness and friction their displacement is directly opposite to the sliding
direction v̄P . This leads in the sticking zone as well as in the sliding zone
to a corresponding longitudinal and lateral slip. Hence, the directions of the
forces and displacements are defined just like for the special cases considered
so far in contradiction to the wheel/rail contact. The displacement vector u
of the leaf springs in the sticking zone reads in the contact area frame K

uK = −∆t v̄KP , ∆t =
∆s

vr
=

a − x

ωre
,

[
u1

u2

]
= −a − x

ωre

[
vC cosα − ωre

−vC sinα

]
, (3.145)
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with ∆t corresponding to Eq. (3.132) and v̄KP from Eq. (3.110) in two-di-
mensional vector notation. If the slip definition σK with the circumferential
velocity vr = ωre as reference velocity is used instead of νK , the following
equations are obtained, cp. Eqs. (3.111), (3.112),

σK =
1
vr
v̄KP =

v0

vr

1
v0
v̄KP =

v0

vr
νK ,

v0

vr
=

vC cosα

ωre
=

1
1 − ν1

,

[
σ1

σ2

]
=

1
1 − ν1

[
ν1

ν2

]
, ν2 = − tanα . (3.146)

With Eq. (3.146) it follows from Eq. (3.145)

uK(x) = −(a − x)σK , xG ≤ x ≤ a . (3.147)

The advantage of this notation is that the displacements ui depend exclu-
sively on the slip σi, i = 1, 2, independent from each other. Therefore, the
contact forces at simultaneous longitudinal and lateral slip are calculated ac-
cordingly to the case of pure lateral slip. The results of Eqs. (3.113)-(3.129)
can be transferred directly. The tangential force f∗

t reads in the frame K, cp.
also Eq. (3.102),

f∗K
t = −f∗

t

σ
σK . (3.148)

In analogy to Eqs. (3.126) and Eq. (3.127) one gets

f∗
t =
√

f∗2
t1 + f∗2

t2 , ϕ∗ =
f∗
t

µ |fn| ≤ 1 , (3.149)

σ =
√

σ2
1 + σ2

2 , σ∗ = θσ , (3.150)

λ∗
G = 1 − σ∗ , σG =

1
θ

, σ∗
G = 1 , θ =

2
3

ka2

µ |fn| , (3.151)

ϕ∗ =

⎧
⎨

⎩

1 − λ∗3
G = 3σ∗ − 3σ∗2 + σ∗3 σ∗ ≤ 1

for
1 σ∗ ≥ 1 .

(3.152)

The components f∗
t1, f

∗
t2 of the tangential force result from

f∗
t1 = −ϕ∗µ |fn| σ1/σ ,

f∗
t2 = −ϕ∗µ |fn| σ2/σ

(3.153)

by using the normalized rolling contact coefficient ϕ∗ from Eq. (3.152). The
aligning torque l∗P3 results in analogy to Eq. (3.129) as

l∗P3 = xNf∗
t2 , (3.154)

xN =
l∗P3

f∗
t2

=

⎧
⎪⎪⎨

⎪⎪⎩

−a

3
1 − 3σ∗ + 3σ∗2 − σ∗3

1 − σ∗ + σ∗2/3
< 0 σ∗ ≤ 1

for
0 σ∗ ≥ 1.

(3.155)
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Pure sliding occurs for σ∗ ≥ 1 or σ ≥ 1/θ. Figure 3.21 shows the typical
f∗
t1, f∗

t2-diagram representing the longitudinal and lateral forces f∗
t1 and f∗

t2

in dependence on the longitudinal slip ν1 and the slip angle α. The dia-
gram is limited by the friction circle with the radius µ |fn|. As an example
a driven cornering tire is shown in the diagram’s origin. It has to be no-
ticed that the contact area frame K is rotated by 180� for reasons of conve-
nience. In this example the longitudinal slip is ν1 = −0.05 and the slip angle
is α = 0.1 rad =̂ 5.73◦. The corresponding point E is located within the fric-
tion circle. The resulting tangential force vector f∗

t has the coordinates f∗
t1,

f∗
t2 and points opposite to the sliding velocity vector v̄P . The left side of the

diagram characterizes the driving case while the right side covers the brak-
ing case. If a tire is blocked, the circumferential velocity vr = ωre disappears
and the sliding velocity v̄P coincides with the velocity of the center of mass
vC , v̄P = vC . The resulting force f∗

tB points opposite to v̄P , its absolute
value is given by the sliding friction force, |f∗

tB| = µ |fn|. The correspond-
ing point B in the characteristic diagram is located on the friction circle,
whereas the slip angle α arises between the axis of abscissa and the line PB.
The case of pure sliding is marked in Fig. 3.21, too. The corresponding points
are located on the friction circle, namely for braking between B and G′ and
for driving between A and G. The points G and G′ have unequal values
of their ordinate which explains the asymmetry of the curves α = const in
the characteristic diagram. The construction of the characteristic diagram by
the tangential force-slip-characteristics f∗

t1 = f∗
t1 (ν1) and f∗

t2 = f∗
t2 (α) is in-

dicated in Fig. 3.21 by the corresponding plots. In general, the characteristic
diagram of the longitudinal and lateral forces found in this way shows good
agreement with experimental results. However, the aligning torque character-
istic (3.154), (3.155) shows great discrepancies. Pacejka (1986) has proposed
a correction term for the aligning torque with regard to the tangential and
lateral stiffnesses c1 and c2 of the carcass, respectively. It is assumed that the
point of application Q of the tangential forces is displaced in the contact area
relative to P by rKPQ =

[
w1 w2

]T as a result of the elasticity of the carcass.
Then, it follows for the aligning torque

l∗P3,korr = l∗P3 − w2f
∗
t1 + w1f

∗
t2 , wi =

f∗
ti

ci
, i = 1, 2 ,

l∗P3,korr = xN (σ∗)f∗
t2 + f∗

t1f
∗
t2

(
1
c1

− 1
c2

)
.

(3.156)

All these results obtained for the brush model allow several extensions, cp.
Pacejka (1975), Pacejka (1986):

• Consideration of anisotropic stiffness and friction behavior, k1 �= k2,
µ1 �= µ2.

• Implementation of slip-dependent and normal load-dependent coeffi-
cients of friction µ = µ (fn, ν), occurring especially on wet roads, cp.
Gaebel et al. (2008).
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• Embedding of experimentally identified contact force slip relations in
semi-empirical models. In this case characteristics are used, which are
acquired at certain nominal conditions and transferred to other con-
ditions by means of similarity relations, cp. Gaebel et al. (2008).

• Description of unsteady conditions, e. g. dynamical tire load or lateral
force variations, cp. Weber (1981), Gutzeit et al. (2006).

Problem 3.6 Contact forces for a road vehicle
Figure 3.22 shows a simplified model of a road vehicle, as given by
Riekert and Schunck (1940), also known as bicycle model. This model per-
mits a rigorous analysis of the motion in the horizontal plane, if the forces and
torques affecting the vehicle are known. The twist {vC , ψ̇ = Ω}, the lengths
lv = lh = l, the steering angle δ, the weight G of the vehicle, and the driving
force ft1,h at the rear axle are given. The indices v and h refer to the vir-
tual front and rear tire, respectively, placed in the middle of the vehicle. The
velocity vC of the center of mass diverges with the body slip angle β � 1
from the longitudinal axis of the vehicle. The angular velocity Ω shall be
small, Ωl � vC . Both tires have the same characteristics. The length of the
contact patch is 2a, the coefficient of sliding friction is µ = const, the specific
stiffnesses k1 = k2 = k of the tread and the stiffnesses c1, c2 of the carcass are
known. The following values are given: a = 0.1 m, k = 900 kN/m2, c1 → ∞,
c2 = 60 kN/m, µ |fn| = µG/2 = 2000 N.

Evaluate the contact forces in dependence on the slip angle on a) the front
tire, b) the rear tire and c) the resulting wrench {f , lC} referred to the center
of mass.

Solution
The slip angle αv, αh can be taken from Fig. 3.22,

αv = δ + β − Ωlv
vC

, αh = β +
Ωlh
vC

. (1)

Assuming small angles for the velocities vv, vh of the tire centers it yields

vv ≈ vh ≈ vC . (2)

Now, the slip is calculated according to definition (3.112).

a) The front wheel is not driven, thus

ν1v = 0 , ν2v = − tanαv (3)

holds. The contact forces according to Eq. (3.115), Eq. (3.116) or Eq. (3.118)
are obtained for small slip angles as

ft1,v = 0 ,

ft2,v = −f22ν2v = 2ka2 tan αv = 18 tan αv kN ,

lP3 ,v = f23ν2v = −2
3
ka3 tanαv = −0.6 tan αv kNm . (4)
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Fig. 3.22. Simplified vehicle model by Riekert and Schunck (1940) with contact
forces

The slip angle αv may take also larger values depending on the steering
angle δ. The limit angle αvG, above which pure sliding occurs, results from
Eq. (3.124)

|tan αvG| =
1
θ

=
3µ |fn|
2ka2

=
1
3

, αvG = 18.43◦ . (5)

According to Eqs. (3.126)-(3.128) the corresponding contact forces yield for
αv > 0 with ν∗

2 = θ tan αv = 3 tanαv
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ft1,v = 0 , (6)

ft2 ,v = µ |fn| ϕ2 = µ |fn|
⎧
⎨

⎩

3ν∗
2 − 3ν∗2

2 + ν∗3
2 ν∗

2 ≤ 1
for

1 ν∗
2 ≥ 1

, (7)

lP3,v = aµ |fn| ϕ3 = −aµ |fn|
⎧
⎨

⎩

ν∗
2 − 3ν∗2

2 + 3ν∗3
2 − ν∗4

2 ν∗
2 ≤ 1

for
0 ν∗

2 ≥ 1
.

(8)

The evaluation of Eqs. (7) and (8) results in values, which are stated in
Table 3.10. Figure 3.23 illustrates the corresponding curves.

b) The rear wheel is driven. From the given tangential force ft1,h results
a longitudinal slip ν1h, which is initially not known and assumed in an in-
terval −0.35 ≤ ν1h ≤ 0.35 (ν1h < 0 represents driving, ν1h > 0 braking). The
lateral slip yields

ν2h = − tanαh . (9)

The contact forces result for simultaneous longitudinal and lateral slip from
Eqs. (3.149)-(3.156) with consideration of σ1h = ν1h/(1 − ν1h), σ2h =
− tanαh /(1 − ν1h), σ =

√
σ2

1h + σ2
2h, σ∗ = θσ = 3σ,

f∗
t1,h = −ϕ∗µ |fn| σ1/σ ,

f∗
t2 ,h = −ϕ∗µ |fn| σ2/σ ,

l∗P3,h = xNf∗
t2,h , l∗P3,korr = l∗P3,h − f∗

t1,hf
∗
t2,h

1
c2

,

(10)

Table 3.10. Contact force and torque at front wheel

αv tan αvft2,v lP3,v xNv = lP3,v/ft2,v

[o] [-] [N] [Nm] [mm]

0 0 0 0 −33.33̄
2.86 0.05 772 -18.53 -24.0
5.71 0.10 1314-20.58 -15.7
8.53 0.15 1667-14.96 -9.0
11.31 0.20 1872- 7.68 -4.10
14.04 0.25 1969- 2.36 -1.20
16.70 0.30 1998- 0.18 -0.09
18.43 0.33̄ 2000 0 0



168 3 Models for Support and Guidance Systems

xNv

1000

ft2,v

2000

0,4

-2

-4

0

-20

-10 lP3,v

θ = 3

ft2,v

N

tan αv
0.30.20.1

arctan f22

-arctan f23

tan αvG

lP3,v

Nm

a = 0.1m

xNv

cm

Fig. 3.23. Characteristics of the contact forces ft2,v; lP3,v and of the coordinate
xNv of the point of force incidence at the front wheel in dependence of the slip
angle αv

ϕ∗ =

⎧
⎨

⎩

3σ∗ − 3σ∗2 + σ∗3 σ∗ ≤ 1
for

1 σ∗ ≥ 1
, (11)

xN =

⎧
⎪⎪⎨

⎪⎪⎩

−a

3
1 − 3σ∗ + 3σ∗2 − σ∗3

1 − σ∗ + σ∗2/3
σ∗ ≤ 1

for
0 σ∗ ≥ 1

. (12)

The results of the evaluation of Eqs. (10)-(12) for tan αh = 0.15 are stated in
Table 3.11. It turns out that the corrected aligning torques l∗P3,korr according

Table 3.11. Contact forces and torques at rear wheel for tanαh = 0.15

ν1h σ1h σ2h σ f∗
t1,h f∗

t2,h l∗P3,h l∗P3,korr

[N] [N] [Nm] [Nm]

0.35 0.5385 -0.23080.5859-1838 788 0 24.139
0.30 0.4286 -0.21430.4792-17281008 0 29.030
0.20 0.25 -0.18750.3125-15991199 0 31.953
0.10 0.1111 -0.16670.2003-10381559-6.392 20.579
0 0 -0.15000.1500 0 1667-14.96 -14.960

-0.10-0.0909-0.13640.1639 965 1448-10.86 -34.149
-0.20-0.1667 -0.125 0.2084 1504 1128 -4.06 -32.335
-0.30-0.2308-0.11540.2561 1775 888 -0.852 -27.122
-0.35-0.2593-0.11110.2821 1832 785 -0.243-24.351
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rear tire in dependence on the longitudinal force f∗
t1,h for tan αh = 0.15, θ = 3,

a = 0.1 m

to Eq. (3.156) deviate significantly from the uncorrected values l∗P3,h. The re-
sults are shown in Fig. 3.24 together with the friction circle. This f∗

t2,h, f∗
t1,h-

diagram is designed corresponding to Fig. 3.21, where the boundary points
with the friction circle are G and G′. The blocked wheel is characterized by
the point B. From Fig. 3.24 it can be seen, that the lateral force f∗

t2,h de-

creases for an increasing absolute value of the longitudinal force,
∣∣∣f∗
t1,h

∣∣∣ > 0.
Furthermore, the corresponding longitudinal slip ν1h can be estimated for
given longitudinal forces f∗

t1,h.

c) The resulting wrench {f , lC} related to the center of mass yield in a
vehicle-fixed reference frame R{C, eRν }, cp. Fig. 3.22,

fR1 = f∗
t1,h − ft2,v sin δ ,

fR2 = f∗
t2,h + ft2,v cos δ ,

lRC3 = l∗P3,korr + lP3,v + ft2,vlv cos δ − f∗
t2,hlh .

(13)

These contact forces are required for the equations of motion, from which the
vehicle motion follows. The lateral motion of an automobile is discussed in
more detail in Chap. 9.
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Problem 3.7 Contact forces and linear equations of motion for a
drawbar trailer
For the model of a trailer treated in Problem 2.13, the contact forces have
to be determined and added to the equations of motion. Small motions rel-
ative to the reference position yR = 0, γR = 0 can be assumed. For the case
of a laterally fixed trailer joint, y = yR = 0, the path of motions has to be
discussed.

Solution
The linearized equations of motion (41) from Problem 2.13 read as

⎡

⎣
m 0 −c̄m
0 I2,2 0

−c̄m 0 IG

⎤

⎦

⎡

⎢⎣
¨̃y
¨̃β
¨̃γ

⎤

⎥⎦+

⎡

⎣
ky 0 0
0 0 0
0 0 kγ

⎤

⎦

⎡

⎣
ỹ

β̃
γ̃

⎤

⎦ =

⎡

⎣
−ft1γ − ft2

rft1
aft2 − l3

⎤

⎦ . (1)

The contact forces ft1, ft2, lP3 ≡ l3 correspond with the free body diagram
in Fig. 2.30 b), where their directions are introduced opposite to the positive
coordinate directions. Under assumption of the brush model, cp. Eq. (3.144),
the contact force law yields
⎡

⎣
ft1
ft2
l3

⎤

⎦ =

⎡

⎣
f11 0 ∗
0 f22 ∗
0 −f23 ∗

⎤

⎦

⎡

⎣
ν1

ν2

0

⎤

⎦ . (2)

The wheel of the trailer is rolling freely, it is neither driven nor braked.
Therefore, the longitudinal slip and the longitudinal force disappear, ν1 = 0,
ft1 = 0. Then, the equation of the wheel rotation can be separated. From
Eqs. (1) and (2) as well as (3.144) it follows
[

m −c̄m
−c̄m IG

] [ ¨̃y
¨̃γ

]
+
[

ky 0
0 kγ

] [
ỹ
γ̃

]
=
[ −f22ν2

(af22 + f23)ν2

]
, (3)

f22 = 2k2a
∗2 , f23 =

2
3
k2a

∗3 , af22 + f23 = (a + a∗/3)f22 ≈ af22 . (4)

Here, k2 denotes the lateral stiffness of the tire tread and a∗ the length of the
contact patch, where a∗ � a is assumed. The lateral slip ν2 results according
to definition (3.54) to

ν2 = v̄K2 /v0 = vKC2/v0 . (5)

The velocity vKC2 of the center of mass of the wheel in the contact area frame
K results from the transformation of the velocities vIC2 given in the inertial
frame I, cp. Eq. (4) from Problem 2.13,
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vKC2 = SKIvIC2 = (−γ)3 vIC2

=

⎡

⎣
cγ sγ 0

−sγ cγ 0
0 0 1

⎤

⎦

⎡

⎣
v0 + aγ̇sγ
ẏ − aγ̇cγ

0

⎤

⎦ =

⎡

⎣
v0cγ + ẏsγ

−v0sγ + ẏcγ − aγ̇
0

⎤

⎦ . (6)

After linearization of Eq. (6) it follows from Eq. (5)

ν2 = −γ̃ +
˙̃y

v0
− a ˙̃γ

v0
. (7)

Then, the equations of motion follow from Eq. (3) as
[

m −c̄m
−c̄m IG

]

︸ ︷︷ ︸

[ ¨̃y
¨̃γ

]

︸︷︷︸
+

f22

v0

[
1 −a

−a a2

]

︸ ︷︷ ︸

[ ˙̃y
˙̃γ

]

︸︷︷︸
+
[

ky −f22

0 kγ + af22

]

︸ ︷︷ ︸

[
ỹ
γ̃

]

︸︷︷︸
=
[

0
0

]

︸︷︷︸
,

M ÿ + D ẏ + (K +N) y = 0

(8)

with

K =
[

ky −f22/2
−f22/2 kγ + af22

]
, N =

[
0 −f22/2

f22/2 0

]
. (9)

The equation of motion of a trailer with two degrees of freedom has a similar
structure to the equation of motion of a railway wheel set, cp. Eqs. (27)
and (28) of Problem 3.5. Especially the skew symmetric matrix N of the
nonconservative position forces and the damping matrix D, whose elements
decrease with increasing velocity v0, occur in both cases.

For the special case of the laterally fixed trailer joint one degree of freedom
(ỹ ≡ 0) and therewith the first row of Eq. (8) are lost. The following equation
remains:

IG ¨̃γ +
1
v0

f22a
2 ˙̃γ + (kγ + af22)γ̃ = 0 . (10)

It describes a damped oscillation of the trailer around the vertical axis
through the coupling joint. Remarkable is that even without a torsional spring
(kγ = 0) a restoring torque occurs. It is generated by the contact force due
to lateral slip. This contact force simultaneously affects a damping torque,
which decreases with increasing velocity v0. Concluding it is noted that the
calculation of the contact force is based on the simple brush model. This
results in simple contact force slip relations. Refined contact models leads to
more complex equations. A comparison of different rolling theories and their
impact on the motion behavior of a wheel with a drawbar is presented by
Sperling (1977).





4

Guideway Models

After the discussion of vehicle models and models for support and guidance
systems, guideway models are treated now for ground vehicle systems. De-
pending on the kind of the vehicle and design aspect, different tasks exist.
The vehicle dynamicist dealing with the design of road or rail vehicles re-
gards the guideway as rigid in a first approximation. He is interested in the
disturbances, which affect the vehicle from the guideway. The structural dy-
namicist, who designs bridges, pillared guideways or rails, regards the vehicles
as moving loads and is interested in the elastic deformations of the structural
elements. In contrast to this partial system consideration, in the case of a
strong dynamic interaction between vehicle and guideway, the behavior of
the vehicle - guideway system has to be analyzed and optimized as a whole.
Such strong dynamic interactions exist e.g. for rapid magnetically levitated
vehicles on pillared guideways. The consideration of the guideway into the
system optimization has also great importance for economic reasons. A good
portion of the entire investment - for magnetically levitated transport systems
about 75 % - is accounted for the guideway.

In the following models for elastic guideways as well as disturbance mod-
els for rigid guideways are developed. It is shown that in both cases linear
mathematical relations arise. Therefore, both models can be superposed, if
necessary.

4.1 Models for Elastic Guideways

The first theoretical works on the dynamics of elastic structures under moving
loads were inspired by the collapse of the railway bridge in Chester, England,
in 1847, see e. g. Lewis and Gagg (2004). Since that time much research has
been dedicated to this subject. A summary of the engineering literature, the
used methods and obtained results can be found in Fryba (1999), Popp (1981)
and Kortuem and Wormley (1981).
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Fig. 4.1. Vehicle - guideway system models for: a) magnetically levitated vehicles;
b) railway vehicles

For guided ground vehicles a useful assumption is an infinitely long guide-
way. Figure 4.1 shows typical designs like pillared guideways for magnetically
levitated vehicles and continuously supported tracks for railways. By replac-
ing the loading of the vehicles to the guideway by the free body diagrams
resulting in external forces to the elastic structure, in both cases a system
of forces moving with the velocity v is achieved. In vertical direction these
forces consist of a constant weight and time-dependent magnetic forces or
dynamic wheel loads, respectively. It is recognized that the forces in vertical
direction are dominating. Therefore, the elastic deformations due to bending
have a substantial influence on the vertical dynamics of the total system.

The guideway for magnetically levitated vehicles, Fig. 4.1 a), is designed
as a periodic structure consisting of identical guideway elements on rigid
pillars. Continuous beams have a smaller static displacement as single- and
multi-span beams if supported by pillars with the same distance, but the
dynamic behavior is less favorable. Therefore, the standard designs consist
of single-span beams, double-span beams or two-field structural elements.
The total model of the vehicle - guideway system has to contain at least
as much guideway elements as coupled by the moving vehicle. For efficiency
reasons a model boundary of constant length is used, which contains only the
minimum number of coupled guideway elements. The model boundaries are
gradually shifted with the vehicle movement if the foremost force reaches the
next resting guideway element. There, the initial and transition conditions
have to be adapted for the guideway elements.
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The track system for railways, Fig. 4.1 b), is designed as a continuously
bedded, infinitely long structure. The regarded model has to be sufficiently
large, so that the elastic deformations at the model boundary disappear.
The model boundary may be shifted continuously according to the vehicle
movement.

The guideways are modeled and analyzed by simple straight beams.
For pillared periodic structures with finite beam length modal methods
(Bernoulli’s ansatz of standing waves) are used, while continuously bed-
ded beams of infinite length are examined by means of wave methods
(D’Alembert’s ansatz of progressive waves).

4.1.1 Models for Periodically Pillared Beams

The investigation of the elastic guideway deformations is performed in three
stages:

1) mathematical description of a single guideway element,
2) summing up of the guideway elements coupled by the vehicle within

the system boundary,
3) calculation of the guideway deformations due to the interactions with

the moving vehicle in the context of the total system with considera-
tion of the gradual shift of the system boundary by adaptation of the
initial and transfer conditions.

Figure 4.2 shows usual guideway elements. Each element of length L consists
of s fields of homogeneous beams of length Li with constant bending stiffness
(EI)i and distributed mass (ρA)i, i = 1(1)s. Because of the with velocity v
moving forces fµ(t) = fµstat + fµdyn(t), µ = 1(1)m, in each field beam dis-
placements wi(ξi, t), 0 ≤ ξi ≤ Li, occur due to bending. The calculation of
these displacements is carried out using the Bernoulli-Euler’s beam theory.
This theory assumes small deformations, plane cross sections during bending
as well as linear elastic material behavior. Rotational inertia and shear de-
formations are neglected. A comparison with the more accurate Timoshenko
beam theory not neglecting both of the last mentioned phenomena, results
in a relative error for the first five eigenfrequencies smaller than 5 % if the
length to height ratio of the beam is larger than 20. The partial differential
equation (PDE) of the beam reads as

(EI)iw′′′′
i (ξi, t) + (ρA)iẅi(ξi, t) =

∑

µ

fµ(t)δ(ξi − ξiµ) , (4.1)

for the field i with 0 ≤ ξi ≤ Li. Here ( )′ and ˙( ) indicate spatial and time
derivatives, respectively, δ( ) is the Dirac function or distribution and ξiµ
the point where the force fµ acts on the field i. The solution of Eq. (4.1) is
obtained under consideration of the initial and boundary conditions from the
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Fig. 4.2. Models for periodically pillared guideway, consisting of: a) single-span
beam; b) double-span beam; c) two-field structural element

separation theorem using the spatial-dependent eigenfunctions ϕij(ξi) and
the time-dependent generalized coordinates or modal coordinates zj(t),

wi(ξi, t) =
∞∑

j=1

ϕij(ξi)zj(t) , i = 1(1)s . (4.2)

The eigenfunction ϕij(ξi) indicates the j-th eigenmode of the unloaded beam
field i and has the following properties:

• The eigenfunction ϕij(ξi) is a solution of the eigenvalue problem

ϕ′′′′
i (ξi) −

(
λi
Li

)4

ϕi(ξi) = 0 , (4.3)

with the eigenvalue λi which is a dimensionless value by introducing
the length Li,

λ4
i = ω2L4

i

(
ρA

EI

)

i

. (4.4)
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• The eigenfunction ϕij(ξi) fulfills the boundary conditions. The adjust-
ment of the general solution of Eq. (4.3) to the boundary conditions
results in a transcendent equation - the frequency equation - for the
angular eigenfrequency ω of the beam vibrations. This equation has
an infinite number of solutions ωj with a corresponding number of
eigenfunctions ϕij(ξi), which are to be normalized.

• The eigenfunction ϕij(ξi) is orthogonal with regard to the whole guide-
way element. The orthogonality condition is

s∑

i=1

Li∫

0

(ρA)iϕij(ξi)ϕik(ξi)dξi =

⎧
⎨

⎩

0 j �= k
for

Mj =
s∑
i=1

Mij j = k
,

(4.5)

where Mj is called modal mass.

With these properties and the fading out characteristic of the Dirac distribu-
tion a normalized differential equation follows from Eq. (4.1) for the modal
coordinates zj(t) of a guideway element

z̈j(t) + ω2
j zj(t) =

1
Mj

∑

µ

ϕij(ξiµ)fµ(t) . (4.6)

To solve Eq. (4.6) the initial and transition conditions must be considered.
For engineering applications the procedure is modified as follows:

• Approximation of the solution of Eq. (4.2) by the first f eigenfunctions
ϕij(ξi), j = 1(1)f . As reference value for f can be used s ≤ f ≤ 2s for
the computation of the beam deformation and f > 3s for the evalu-
ation of the bending moments and stresses, whereby s is the number
of the fields of a guideway element. A further reference value is the
frequency range of interest 0 ≤ ωj ≤ ωmax where ωf ≤ ωmax has to be
satisfied.

• A modal damping 2Djωj żj(t) is added on the left side of Eq. (4.6).
From measurements arises that the damping ratios Dj vary within a
wide range, 0.005 ≤ Dj ≤ 0.05, where the smaller ones are for steel
structures and the larger ones for reinforced concrete structures. The
measurements provide often only the damping ratio D1 of the first
eigenmode. Then, the damping ratios Dj for j > 1 must be determined
from hypotheses. The most usual assumptions for the damping ratios
are viscous damping

Dj = D1
ωj
ω1

, (4.7)

where the higher eigenfunctions according to their higher eigenfrequen-
cies are damped more strongly, and hysteretic damping or structural
damping
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Dj = D1 , (4.8)

where the damping ratios are the same for all eigenmodes.
• Representations of the approximative solution Eq. (4.2) and the differ-

ential equations (4.6), extended by a damping term, in vector notation,

wi(ξi, t) = ϕT(ξi)z(t) , (4.9)

z̈(t) +∆ż(t) +Ωz(t) = M−1
∑

µ

ϕ(ξiµ)fµ , (4.10)

with

ϕ = [ϕ1, ..., ϕf ]T , z = [z1, ..., zf ]T , M = diag(Mj) ,

∆ = diag(2Djωj) , Ω = diag(ω2
j ) , j = 1(1)f . (4.11)

It can be recognized that the mathematical description of an individual guide-
way element (stage 1 ) requires only the determination of the angular eigen-
frequencies ωj and to the associated eigenfunctions ϕij(ξi). With Eq. (4.5)
also the modal masses Mj are known. By adding the modal damping ratios
Dj the differential equation (4.10) for the f × 1-vector z (t) of the modal
coordinates of a guideway element finally is found. These equations have the
same characteristics as the equations of motion (2.99) for ordinary multibody
systems. The description of the guideway elements within the system bound-
aries (stage 2 ), coupled by the vehicle, is therefore straightforward. The final
computation of the guideway deformations (stage 3 ) requires models for the
interaction forces fµ(t) and is performed during the analysis of the complete
system. The next section deals with the determination of eigenfrequencies
and eigenfunctions for bending vibrations in more detail. This investigation
is also called modal analysis.

4.1.2 Modal Analysis of Beam Structures for Bending Vibrations

As a basic example the modal analysis is performed for a single-span beam,
see Fig. 4.2 a). Here, the field index i is omitted. The general solution of the
eigenvalue problem of Eq. (4.3) for λ �= 0 reads as

ϕ(ξ) = C1 cosh(λξ/L) + C2 sinh(λξ/L) + C3 cos(λξ/L)+C4 sin(λξ/L)
(4.12)

where for λ = 0 the solution of the differential equation ϕ′′′′(ξ) = 0 resulting
from Eq. (4.3) is given by a polynomial.

Equation (4.12) is now rewritten in vector notation,

ϕ(ξ) = cTa(λξ/L) = aT(λξ/L)c , (4.13)
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with the vector of constants

c = [C1 , C2 , C3 , C4]T , (4.14)

and the vector of trigonometric and hyperbolic functions

a(·) = [C(·) , S(·) , c(·) , s(·)]T , (4.15)

where

C(·) = cosh(·) , S(·) = sinh(·) , c(·) = cos(·) , s(·) = sin(·) . (4.16)

The boundary conditions of the double-sided simply supported beam are

ϕ(0) = 0 , ϕ′′(0) = 0 , ϕ(L) = 0 , ϕ′′(L) = 0 . (4.17)

The adaptation of the general solution (4.12) to the boundary conditions
(4.17) results in the constants C1 = C2 = C3 = 0 and the transcendental fre-
quency equation

C4 sinλ = 0 . (4.18)

The eigenvalues λj and the angular eigenfrequencies ωj follow from the non-
trivial solutions of Eq. (4.18),

λj = jπ , ω2
j =
(

jπ

L

)4
EI

ρA
, j = 1(1)∞ . (4.19)

If the free parameter is set to C4 =
√

2 the eigenfunctions ϕj and the modal
masses Mj are

ϕj =
√

2 sin jπ
ξ

L
, Mj =

L∫

0

ρAϕ2
j (ξ)dξ = ρAL , j = 1(1)∞ . (4.20)

Table 4.1 shows a listing of the modal values of simple beams with different
boundary conditions. For complicated beam structures an analytical modal
analysis is not possible any more and numerical methods are applied. Two of
the numerous calculation methods, cp. Knothe (1971), are

• the Deformation Method (DEM) or dynamic stiffness method, cp.
Kolousek et al. (1973) and

• the Finite Element Method (FEM), cp. e. g. Knothe and Wessels
(2008).

Here the deformation method is described. After linearization of the basic
relations, this method yields the stiffness and mass matrix found by the finite
element method, too. The approach of the modal analysis is equal for both
methods. In analogy to the formalism of multibody systems, cp. Sect. 2.5,
the procedure can be divided into five steps.

Step 1: Specification of the system and input data.
First the elastic guideway structure element is considered as a whole and

is divided into
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i = 1(1)s fields of homogeneous, straight beams with constant profile
and

κ = 1(1)knodes at the boundaries of the fields, with
ν = 1(1)npossible displacements of the nodes.

Nodes have to be located at the supports and intermediate supports, at loca-
tions with variations of cross-sectional area, stiffness or inertia and at points
carrying additional springs or masses. In order to improve the computational
accuracy of the method, nodes can be located additionally at any position
of the structure. Each guideway element has a global, inertially fixed Carte-
sian frame. Its origin is located preferably at the left support, cp. Fig. 4.2.
The node displacements and rotations are described by generalized coordi-
nates qν , ν = 1(1)n. The specific fields i are cut free and characterized by the
length of the field Li, the bending stiffness (EI)i and the distributed mass
(ρA)i. If there are additional springs or masses at the nodes κ they have to
be specified with the mass mκ, moment of inertia Iκ, spring constant kκ or
torsion spring constant cκ. The input data are:

n , q = [q1, ..., qν , ..., qn]T , (4.21)
s, {Li, (EI)i, (ρA)i} , i = 1(1)s , (4.22)
k, {cκ, Iκ, kκ, mκ} , κ = 1(1)k . (4.23)

Step 2: Element model, local equations.
A single beam element is regarded and described in a local frame, see

Fig. 4.3. For lucidity the index i will be omitted in this section. The equation
of motion of an unloaded beam element is given by Eq. (4.1) with fµ ≡ 0.
With the ansatz w(ξ, t) = ϕ(ξ) sin ωt the solution is represented by the eigen-
functions ϕ(ξ), cp. Eqs. (4.12)-(4.16). The same applies to the bending mo-
ment Mb(ξ, t) = −EIw′′(ξ, t) and the shear force Q(ξ, t) = M ′

b(ξ, t). After
disregarding of the harmonic time function, the internal forces and bend-
ing moments, and deformations w and declinations ζ at the left and right
boundary of the beam (index l, r), cp. Fig. 4.3, are described as follows:

Ml = −EIϕ′′(0) , ζl = ϕ′(0) ,

Ql = EIϕ′′′(0) , wl = ϕ(0) ,

Mr = EIϕ′′(L) , ζr = ϕ′(L) ,

Qr = −EIϕ′′′(L) , wr = ϕ(L) . (4.24)

The variables in Eq. (4.24) are summarized to a boundary force vector f and
a boundary displacement vector v

f = [Ml Ql Mr Qr]T , v = [ζl wl ζr wr ]T . (4.25)

Inserting the eigenfunctions ϕ(ξ) = aT(λξ/L)c and their derivatives into
Eq. (4.24) yields



182 4 Guideway Models

Mr

w(x, t)

ζr

r

ρA = const
EI = constw

ζl

L

Ql

Qr

Ml

ξ

l

Fig. 4.3. Free body diagram of a beam element with boundary forces and boundary
deformations

f =D(λ)c , v = E(λ)c , λ4 = ω2L4 ρA

EI
, (4.26)

with the matrices D(λ),E(λ), depending on the eigenvalue, and the coeffi-
cient vector c. The elimination of the vector c results in

c = E−1(λ)v , f = D(λ)E−1(λ)v = F (λ)v , (4.27)

where

F (λ) = EI

⎡

⎢⎢⎣

F2/L −F4/L2 F1/L −F3/L2

−F4/L2 F6/L3 F3/L2 F5/L3

F1/L F3/L2 F2/L F4/L2

−F3/L2 F5/L3 F4/L2 F6/L3

⎤

⎥⎥⎦ , (4.28)

F1 = −λ[S(λ) − s(λ)]/N ,

F2 = −λ[C(λ)s(λ) − S(λ)c(λ)]/N ,

F3 = −λ2[C(λ) − c(λ)]/N ,

F4 = λ2[S(λ)s(λ)]/N ,

F5 = λ3[S(λ) + s(λ)]/N ,

F6 = −λ3[C(λ)s(λ) + S(λ)c(λ)]/N ,

N = C(λ)c(λ) − 1 .

(4.29)

The symmetric field matrix F (λ) combines the boundary displacements v and
the boundary forces f of one beam element. Due to its eigenvalue dependence
the field matrix is also called dynamical stiffness matrix. The elements of the
matrix are described by the frequency functions Fµ = Fµ(λ), µ = 1(1)6, that
have been introduced by Kolousek et al. (1973). The frequency functions are
also integrated in the matrix
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E−1(λ) =
1

2λ3

⎡

⎢⎢⎣

−LλF2 λ(λ2 + F4) −LλF1 λF3

L(λ2 − F4) F6 LF3 F5

LλF2 λ(λ2 − F4) LλF1 −λF3

L(λ2 + F4) −F6 −LF3 −F5

⎤

⎥⎥⎦ , (4.30)

required in the following.
Step 3: Relation between local and global coordinates.
The n nodal degrees of freedom are found considering the boundary and

transition conditions and are described by the n × 1-vector q, cp. Eq. (4.21).
The relation between the boundary displacement vector vi of the beam
element i and the generalized coordinates q is given by the 4 × n Jaco-
bian matrix J i. This matrix describes also the relation between the virtual
displacements,
vi = J iq , δvi = J iδq . (4.31)

The global 4s × n Jacobian matrix J̄ results from summarizing all boundary
displacements into a 4s × 1- vector v̄,

v̄ = J̄q , δv̄ = J̄δq , (4.32)

v̄ = [vT
1 , ...,vT

i , ...,vT
s ]T , J̄ = [JT

1 , ...,JT
i , ...,JT

s ]T . (4.33)

The Jacobian matrices here are Boolean matrices with the elements 0 and 1.
Step 4: Consideration of the whole system, global equations.
Every beam element i, i = 1(1)s, of a guideway element is characterized

by the following quantities:

eigenvalue: λi = λi(ω) = Li
4
√

ω2(ρA/EI)i , (4.34)

eigenfunction: ϕi = ϕi(ξi) = aT
i ci , ai = a(λiξi/Li) , (4.35)

vector of constants: ci = E−1
i (λi)vi , (4.36)

dynamic stiffness: f i = F i(λi)vi . (4.37)

The field matrices F i are combined into a global 4s × 4s field matrix ¯̄F

¯̄F = diag(F i) . (4.38)

The principle of virtual work applied to the inner forces results with Eq. (4.32)
in

δW e
int =

s∑

i=1

δvT
i f i =

s∑

i=1

δvT
i F ivi = δv̄T ¯̄F v̄ = δqTJ̄

T ¯̄F J̄q = 0 . (4.39)

Due to δqT �= 0 it follows

J̄
T ¯̄F J̄q = F̄ (ω)q = 0 , F̄ = F̄

T
, (4.40)

with the n × n dynamic stiffness matrix F̄ (ω) of the beam system. Equations
(4.40) describe an implicit eigenvalue problem. The influence of the additional
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ξ

w

wκ mκ, Jκ

ζκ

Cκ

node coordinates

kκ

Fig. 4.4. Description of the additional masses and springs at node κ with coordi-
nates wκ and ζκ

masses and springs at node κ, cp. Fig. 4.4, can be considered by the virtual
work of the external forces

δW e
ext = −

k∑

κ=1

[
δζκ(cκ − ω2Iκ)ζκ + δwκ(kκ − ω2mκ)wκ

]

= −δqT(KZ − ω2MZ)q , (4.41)

with the n × n stiffness matrix KZ and the n × n mass matrix MZ of the
additional elements. The equality of the virtual work of the internal and
external forces according to Eqs. (4.39) and (4.41) yields
[
F̄ (ω) +KZ − ω2MZ

]
q = F̂ (ω)q = 0 , (4.42)

with the n × n dynamic stiffness matrix F̂ (ω) of the whole system including
the additional elements.

Step 5: Calculation of the angular eigenfrequencies and eigenfunctions.
The angular eigenfrequencies ωj and the related eigenvectors qj can be ob-
tained by the numerical solution of the implicit eigenvalue problems (4.40)
or (4.42), respectively. The first f values, j = 1(1)f , are sufficient to approx-
imate the solution. The eigenfunctions ϕij(ξi) follow by a reverse calculation
from Eqs. (4.32) and Eqs. (4.34)-(4.36) as

λij = λi(ωj) = Li
4

√
ω2
j (ρA/EI)i , (4.43)

vij = J iqj , (4.44)

cij = E−1
ij vij , E−1

ij = E−1
i (λij) , (4.45)

ϕij(ξi) = aT
ijcij = aT

ijE
−1
ij vij , aij = ai(λijξi/Li) . (4.46)



4.1 Models for Elastic Guideways 185

The modal analysis applying the deformation method (DEM) is finished after
this step. As an example, the results for a two-field structural element (see
Fig. 4.2 c)) are shown in Table 4.2.

Table 4.2. Results of the modal analysis of a two-field structural element according
to Fig. 4.2 c) consisting of 3 beams

f = 12.13 Hz
ω = 76.22 s−1

λ1 = 3.926

f = 39.33 Hz
ω = 247.1 s−1

λ1 = 7.068

f = 9.46 Hz
ω = 59.42 s−1

λ1 = 3.467
λ3 = 1.086

f = 33.12 Hz
ω = 208.1 s−1

λ1 = 6.487
λ3 = 2.031

f = 6.14 Hz
ω = 38.55 s−1

λ1 = 2.792
λ3 = 0.874

f = 10.54 Hz
ω = 66.25 s−1

λ1 = 3.660
λ3 = 1.146

f = 33.18 Hz
ω = 208.5 s−1

λ1 = 6.494
λ3 = 2.034

L1,2 = 20 m; (ρA)1,2 = 2.3 · 103 kg/m; (EI)1,2 = 0.9 · 1010 Nm2

L3 = 5.66 m; (ρA)3 = 1.725 · 103 kg/m; (EI)3 = 0.45 · 1010 Nm2

The finite element method (FEM) requires the same five steps for a solu-
tion. If the frequency functions (4.29) are developed in power series of λ and
approximated by the first two series terms, the basic relations of the FEM
are obtained easily:
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F1 ≈ 2 +
3

420
λ4 , F4 ≈ −6 +

22
420

λ4 ,

F2 ≈ 4 − 4
420

λ4 , F5 ≈ −12 − 54
420

λ4 ,

F3 ≈ 6 +
13
420

λ4 , F6 ≈ 12 − 156
420

λ4 .

(4.47)

An approximation of the dynamic stiffness matrix for one beam element is
obtained by replacing the frequency functions in Eq. (4.28) by Eq. (4.47).
Then, this matrix can be divided into two parts,

F̃ =K − ω̃2M , K =KT , M =MT , (4.48)

K =
EI

L3

⎡

⎢⎢⎣

4L2 6L 2L2 −6L
6L 12 6L −12
2L2 6L 4L2 −6L
−6L −12 −6L 12

⎤

⎥⎥⎦ ,

M =
ρAL

420

⎡

⎢⎢⎣

4L2 22L −3L2 13L
22L 156 −13L 54

−3L2 −13L 4L2 22L
13L 54 22L 156

⎤

⎥⎥⎦ .

(4.49)

The stiffness matrix K and the mass matrix M are identical to the cor-
responding matrices of the FEM. Executing the modal analysis with the
approximation (4.48), instead of Eq. (4.42) an explicit eigenvalue problem is
obtained,
[
(K̄ +KZ) − ω̃2(M̄ +MZ)

]
q̃ = 0 , (4.50)

K̄ = J̄
Tdiag(Ki)J̄ , M̄ = J̄

Tdiag(M i)J̄ , i = 1(1)s . (4.51)

From a similar approximation of the eigenfunctions given by Eq. (4.46), the
interpolation polynomials of the FEM are found by expanding the product
aT
ij(λijξi/Li)E−1

ij (λij) into a power series of ξi and truncating after the third
order term,

ϕij(ξi) = aT
ijE

−1
ij vij ≈ ãT

ij(ξi)ṽij , (4.52)

where

ãij(ξi) =

⎡

⎢⎢⎣

ξi(1 − ξi/Li)2

1 − 3(ξi/Li)2 + 2(ξi/Li)3

ξ2
i (ξi/Li − 1)/Li

3(ξi/Li)2 − 2(ξi/Li)3

⎤

⎥⎥⎦ . (4.53)

Here, the cubical Hermitian polynomials (4.53) were obtained from the series
expansion of the exact eigenfunctions. These polynomials are the basis of the
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FEM. A comparison of both methods is given in Table 4.3, numerical exam-
ples can be found in Popp and Bremer (1983). For comparably good results
the FEM requires much more nodes than the DEM. Therefore, the complex-
ity to solve an explicit eigenvalue problem with higher order (FEM) has to
be compared with the solution of an implicit eigenvalue problem (DEM). Nu-
merical examples have demonstrated that the computation time of the DEM
is less than applying the FEM.

Table 4.3. Comparison of the Deformation Method (DEM) and the Finite Element
Method (FEM) for a modal analysis of beam structures

DEM FEM

Solution method exact approximation
Eigenvalue problemimplicit explicit
Number of nodes minimallarge at high solution accuracy

Problem 4.1 Modal analysis of a double-span beam
The modal analysis has to be performed by the deformation method for a
symmetrical double-span beam, cp. Fig. 4.2 b). For a comparison the eigen-
values shall be calculated with the finite element method with minimal num-
ber of nodes. The parameters for both fields of the double span beam are:
L1 = L2 = L/2, (EI)1 = (EI)2 = EI, (ρA)1 = (ρA)2 = ρA.

Solution
The aforementioned five steps are applied.

Step 1: Specification of the system and input data. Starting from the left
hand side, the double-span beam is divided into:

i = 1(1)s , s = 2 fields with
κ = 1(1)k , k = 3 nodes at the bearings, with
ν = 1(1)n , n = 3 possible node rotations ζν .

The 3 × 1 vector q of the generalized coordinates is

q =
[
ζ1 ζ2 ζ3

]T
. (1)

Step 2: Element model, local equations. With the element relations (4.25)-
(4.29) the local equations are

f i = F i(λi)vi , (2)

ci = E−1
i (λi)vi , i = 1, 2 , (3)

λ4
i = λ4 = ω2

(
L

2

)4
ρA

EI
. (4)
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Step 3: Relation between local and global coordinates. The relationship
between the local coordinates vi, i = 1, 2, and the global coordinates given in
Eq. (1) follows from the boundary and transition conditions

wl1 = wl2 = wr1 = wr2 = 0 , ζl1 = ζ1 , ζr1 = ζl2 = ζ2 , ζr2 = ζ3 ,

(5)

yielding the global 8 × 3 Jacobian matrix J̄ ,
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζl1
wl1
ζr1
wr1
ζl2
wl2
ζr2
wr2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
v̄

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
J̄

⎡

⎣
ζ1

ζ2

ζ3

⎤

⎦

︸ ︷︷ ︸
q

. (6)

Step 4: Consideration of the whole system, global equation. Combining
both of the local Eqs. (2) gives the system description
[
f1

f2

]

︸ ︷︷ ︸
=
[
F 1 0
0 F 2

]

︸ ︷︷ ︸

[
v1

v2

]

︸ ︷︷ ︸
,

f̄ = ¯̄F v̄ .

(7)

Because of the symmetry F 1 = F 2 = F holds. With the frequency functions
F1, F2 of Eq. (4.29) and Eq. (4.40), it follows

J̄
T ¯̄F J̄q =

2EI

L

⎡

⎣
F2(λ) F1(λ) 0
F1(λ) 2F2(λ) F1(λ)

0 F1(λ) F2(λ)

⎤

⎦

︸ ︷︷ ︸

⎡

⎣
ζ1

ζ2

ζ3

⎤

⎦

︸ ︷︷ ︸

= 0

︸︷︷︸

.

F̄ [λ(ω)] q = 0

(8)

Since the system has no single masses and springs, Eq. (8) is the required
global equation. The condition for the solution of the implicit eigenvalue
problem given by Eq. (8) reads as

det F̄ [λ(ω)] = 2F2(λ)[F 2
2 (λ) − F 2

1 (λ)] = 0 . (9)

From F2(λ) = 0 the frequency equation follows,

coshλ sin λ − sinh λ cosλ = 0 . (10)
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The equation is equivalent to the frequency equation of structure 3 in Ta-
ble 4.1. The first three eigenvalues are

λs1 = 3.93 , λs2 = 7.07 , λs3 = 10.21 . (11)

The frequency equation following from F 2
2 (λ) − F 2

1 (λ) = 0 reads as

sin λ = 0 ⇒ λaj = jπ , j = 1(1)∞ . (12)

Equation (12) is equal to that of structure 1 in Table 4.1. The corresponding
eigenvectors result from insertion of both eigenvalue groups λsj , λ

a
j in Eq. (8),

qsj = Ks
j

⎡

⎣
1
0

−1

⎤

⎦ , qaj = Ka
j

⎡

⎣
1

(−1)j

1

⎤

⎦ , (13)

where Ks
j and Ka

j are scaling factors. Regarding the algebraic signs of the
node rotations, it can be recognized that the first eigenvalue group λsj has
symmetrical and the second eigenvalue group λaj asymmetrical eigenmodes.

Step 5: Calculation of the angular eigenfrequencies and eigenfunctions.
The angular eigenfrequencies ωj directly result from Eq. (4) with Eqs. (11)
and (12)

ωj = 4
(

λj
L

)2
√

EI

ρA
. (14)

The eigenfunctions ϕij(ξi) are obtained by reverse calculation. Firstly, the
local displacements vij are calculated by inserting Eq. (13) into Eq. (6),

vs1j = Ks
j

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦ , va1j = Ka
j

⎡

⎢⎢⎣

1
0

(−1)j

0

⎤

⎥⎥⎦ ,

vs2j = Ks
j

⎡

⎢⎢⎣

0
0

−1
0

⎤

⎥⎥⎦ , va2j = Ka
j

⎡

⎢⎢⎣

(−1)j

0
1
0

⎤

⎥⎥⎦ .

(15)

According to Eq. (4.46) the eigenfunctions ϕij(ξi) can be expressed by the
coefficient vectors cij = E−1

ij (λij)vij . Using Eq. (4.29) and Eq. (4.30) one
gets
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cs1j = K̄s
j

⎡

⎢⎢⎣

0
1/ sinhλj

0
−1/ sinλj

⎤

⎥⎥⎦ , ca1j =
√

2K̄a
j

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦ ,

cs2j = K̄s
j

⎡

⎢⎢⎣

1
− cotλ1

−1
cotλj

⎤

⎥⎥⎦ , ca1j =
√

2K̄a
j

⎡

⎢⎢⎣

0
0
0

(−1)j

⎤

⎥⎥⎦ ,

(16)

where K̄s
j and K̄a

j are scaling factors. Setting K̄s
j = K̄a

j = 1, equal generalized
masses Mj are obtained for all eigenmodes,

Mj =
2∑

i=1

Mij =
2∑

i=1

L/2∫

0

ρAϕ2
ij(ξi)dξi = ρAL , j = 1(1)∞ . (17)

Finally, the eigenvalues are calculated by the finite element method. By re-
placing the frequency functions F1 and F2 approximately by Eq. (4.47), the
explicit eigenvalue problem follows from Eq. (8) as

2EI

L

⎧
⎨

⎩

⎡

⎣
4 2 0
2 8 2
0 2 4

⎤

⎦− λ̃4

420

⎡

⎣
4 −3 0

−3 8 −3
0 −3 4

⎤

⎦

⎫
⎬

⎭
︸ ︷︷ ︸

⎡

⎣
ζ̃1

ζ̃2

ζ̃3

⎤

⎦

︸ ︷︷ ︸

= 0

︸︷︷︸

,

F̃ [λ̃(ω)] q̃ = 0 .

(18)

The condition for the solution, cp. Eq. (9), is given by

F2(λ) [F2(λ) − F1(λ)] [F2(λ) + F1(λ)]

≈
[
4 − 4

420
λ̃4

] [
2 − 7

420
λ̃4

] [
6 − 1

420
λ̃4

]
= 0 .

(19)

The approximations λ̃j , q̃j of the eigenvalues and corresponding eigenvectors
are

λ̃s1 = 4.5270 , λ̃a1 = 3.3098 , λ̃a2 = 7.0872 ,
(λs1 = 3.9266 , λa1 = 3.1416 , λa2 = 6.2832) ,

(20)

q̃s1 = K̃s
1

⎡

⎣
1
0

−1

⎤

⎦ , q̃a1 = K̃a
1

⎡

⎣
1

−1
1

⎤

⎦ , q̃a2 = K̃a
2

⎡

⎣
1
1
1

⎤

⎦ , (21)

where in Eq. (20) the exact values are given in brackets for comparison. It
can be seen that the eigenvalues are overestimated by the FEM approxima-
tion. While there are relative errors for the eigenvalues up to 15.3 %, the



4.1 Models for Elastic Guideways 191

eigenvectors agree well with the exact values. Applying the FEM, only ap-
proximations for the first three eigenvalues and eigenvectors can be computed
using the chosen minimal node number. The DEM provides all values exactly.
Increasing the number of nodes, a FEM approximation for higher eigenvalues
and eigenvectors is possible. The eigenvalues are always overestimated and
the error decreases with an increasing number of nodes.

4.1.3 Models for Continuously Bedded Beams

Contrary to magnetically levitated vehicles on pillared guideways the dynamic
interaction is generallyweak for railwayvehicles onbedded tracks.Thus, for the
investigations of the dynamics in the interesting frequency range up to about
50 Hz even for high-speed trains the dynamic interactions of vehicle and elastic
guideway are neglected and rigid tracks are assumed. On the other hand, to de-
sign the track and to investigate the vibrations in the foundation, in particular
for the analysis of high frequency processes such as structure-borne sound prop-
agation, material wear, rail corrugation, roll and cornering noises the guideway
dynamics is of importance. Therefore, numerous models have been developed
describing the tracks in different ways, see e.g. Popp and Schiehlen (2003). The
track consists of rails, sleepers, pads between rails and sleepers, ballast and
foundation. In the following, the classical model of an infinitely long beam
on an elastic foundation is presented, cp. Table 4.4 b). This model is treated
by Timoshenko (1915) who calculated stresses subject to a static force. The
dynamic effects of moving forces are examined by Doerr (1943) for a constant
single force and by Mathews (1958) for a harmonic time-variant force. This
model has experienced numerous extensions.

Starting point for the modeling is a plane track system as shown in
Table 4.4. Both rails were combined to one beam as a result of the assumed
symmetry. Distributing the sleeper masses, foundation springs and founda-
tion dampers continuously, see Table 4.4 a), the differential equation can be
obtained under assumption of the Bernoulli-Euler beam theory,

EIw′′′′(x, t) + Tw′′(x, t) + µẅ(x, t) + βẇ(x, t) + γw(x, t) = f(t)δ(x − vt) .

(4.54)

Here, ( )′ and ˙( ) denote the partial derivatives with respect to space and
time, respectively, EI is the bending stiffness and µ = ρA denotes the dis-
tributed mass of the beam. Furthermore, T is the longitudinal pressure force
on the beam, β and γ are the viscous damping and stiffness per unit of length
of the foundation, respectively, f (t) is the force moving with constant veloc-
ity v, and δ is the Dirac function. Introducing a frame moving with the force
f(t) and applying the transformation x = vt + ξ, v = const, Eq. (4.54) yields

EIw̄′′′′(ξ, t) + (T + µv2)w̄′′(ξ, t) − βvw̄′(ξ, t) − 2µv ˙̄w′(ξ, t)

+ µ ¨̄w(ξ , t) + β ˙̄w(ξ , t) + γw̄(ξ , t) = f(t)δ(ξ) . (4.55)
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Table 4.4. Track models

Name Mechanical system Mathematical model and data

Track
system

Data:
l = 4b = 0.63 m

EI = 12.81 · 106 Nm2

ρA = 120 kg/m

}
2 rails

m =

{
100 kg (wood sleepers)
300 kg (concrete sleepers)

c = (4 . . . 10) · 107 N/m

a)

EIw′′′′ + Tw′′ + µẅ + βẇ + γw
= f(t)δ(x − vt)

EIw̄′′′′ + (T + µv2)w̄′′ − βvw̄′ − 2µv ˙̄w′

+µ ¨̄w + β ˙̄w + γw̄ = f(t)δ(ξ)
µ = ρA + m/l , β = d/l , γ = c/l

b)

Classical model:
EIw′′′′ + µẅ + γw = f(t)δ(x − vt)
EIw̄′′′′ + µ ¨̄w + γw̄

+µv2w̄′′ − 2µv ˙̄w′ = f(t)δ(ξ)
µ = ρA + m/l , γ = c/l

c)

EIw′′′′ + µ(x)ẅ + γ(x)w = f0δ(x − vt)
µ(x + l) = µ(x) = µ0 + µ1 cos(2πx/l)
γ(x + l) = γ(x) = γ0 + γ1 cos(2πx/l)
µ0 = ρA + m/l , µ1 = 1.8 m/l
γ0 = c/l , γ1 = 1.8 c/l

The solution of Eq. (4.55) is achieved by methods for propagating waves. The
boundary conditions are considered at infinity according to the Sommerfeld
radiating condition.

For a travelling constant force f = f0 = const the behavior of the solution
depends substantially on the velocity ratio ν,

ν =
v

vcr
, vcr =

√
1
µ

[√
4γEI(1 − D2) − T

]
, D =

β

2
√

µγ
, (4.56)

where the critical speed vcr and the damping ratio D of the foundation are
introduced. The critical speed is about vcr ≈ 1100 . . .2050 km/h for the real-
istic rail data given in Table 4.4 with weak damping and without longitudinal
pressure forces (D � 1, T = 0). These values are much higher than the veloc-
ities of high-speed trains operating nowadays. The critical speed is reduced
by larger longitudinal pressure forces and larger foundation damping ratios
as well as by the inertia of the ballast.
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In the engineering practice with subcritical velocities ν < 1 a stationary
wave remains after transient effects vanish for t → ∞. The stationary wave
moves with the constant travelling force f0, and its amplitude w̄0(ξ) decreases
exponentially with the distance ξ from the location where the force is applied.
For D = 0, T = 0, a wave results which is symmetrical to this location,

w̄0(ξ) =
f0e−α|ξ|

4α
√

γEI

(
cos δξ +

α

δ
sin δ |ξ|

)
,

α =
√

1 − ν2 4
√

γ/(4EI) , δ =
√

1 + ν2 4
√

γ/(4EI) . (4.57)

The static beam displacements w̄s(ξ) follow from Eq. (4.57) for ν = 0. The
influence of the velocity v on the beam displacements is found by examining
the dynamic amplification function ϕ, i. e. the relation between dynamic and
static beam displacement at the location where the force is applied,

ϕ =
w̄0(ξ = 0)
w̄s(ξ = 0)

=
1√

1 − ν2
, (D = 0 , T = 0) . (4.58)

With the track system data of Table 4.4, values of ϕ ≤ 1.071 result from
Eq. (4.58) for v = 400 km/h, i. e. in the worst case a dynamic amplification
of only about 7 % follows related to the static displacement. For D > 0
the symmetry of the wave disappears and the maximum beam displacement
occurs at ξ < 0.

For overcritical velocities with ν > 1 waves with constant amplitude prop-
agate to both sides from the location where the force is applied. The am-
plitudes and wavelengths in front of this location are smaller than behind
it. The dynamic amplification functions ϕ are shown in Fig. 4.5 depending
on the velocity ratio ν and the foundation damping ratio D. They were cal-
culated by Fryba (1999). The quality of the model based on a continuous
foundation can be checked by assuming the sleeper mass and foundation
to be homogeneously distributed over the width b. Expanding them into
a Fourier series, considering only the constant term and the fundamental
harmonic and neglecting the damping influence, a sine-shaped distributed
mass and foundation stiffness is obtained, cp. Table 4.4 c). This model can
be treated in the steady state by applying a perturbation method with the
ansatz w̄(ξ) = w̄0(ξ) + w̄1(ξ), w1(ξ) � w̄0(ξ), where the basic solution w̄0(ξ)
is used according to Eq. (4.57), cp. Popp and Mueller (1982). It follows that
the maximum amplitude w̄1(ξ = 0) of the first approximation is only about
1/1000 of the corresponding amplitude of the basic solution w̄0(ξ = 0). The
amplitude w̄1(ξ = 0) also represents the periodic oscillations at the location
where the moving force is applied and it is decisive for dynamic interactions.

The case of a harmonic time-dependent travelling force f(t) = f0 cosωt,
cp. Table 4.4 b), has been examined first by Matthews (1958) and Matthews
(1959). The behavior of the solution depends on the velocity ratio ν and on
the frequency ratio η, with
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Fig. 4.5. Dynamic amplification functions ϕ dependent on the velocity ratio ν and
the foundation damping ratio D (T = 0)

η =
ω

ωcr
, ωcr =

√
γ

µ
, (4.59)

where resonance occurs for the critical angular frequency ωcr and v = 0,
D = 0. For the track system data given in Table 4.4, a resonance frequency
fcr = ωcr/2π ≥ 52 Hz is found. For velocity ratios between 0 < ν < 1 the res-
onance already occurs at lower frequency ratios 1 > η > 0. In the case without
damping and steady state condition the solution can be described by waves
of the form

w̄0(ξ, t) = ȳ1(ξ) cos ωt + ȳ2(ξ) sin ωt . (4.60)

In the subcritical region 0 < ν < 1 which is limited according to Matthews
(1958) by a declining curve in the η, ν-space, cp. Fig. 4.6, the amplitudes of
the wave decrease exponentially at both sides of the location where the force
is applied, as with the model of a constant moving force. In the supercritical
region the waves propagate with constant amplitude.

The results of Mathews have been generalized for a Timoshenko beam, cp.
Bogacz et al. (1989). Then, the relations are much more complex. For exam-
ple, two critical speeds appear, one for the shear waves and one for the longitu-
dinal waves. Instead of the one solution area, examined by Mathews, there are
22 areas and 8 border lines in the η, ν-space, with qualitatively different be-
havior of the solution. The solution for the Bernoulli-Euler beam is included in
the solution variety for the Timoshenko beam as a special case. In general, the
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Fig. 4.6. Subcritical region in dependence of the speed ratio ν and the frequency
ratio η, (D = 0, T = 0)

Bernoulli-Euler beam model provides precise results in the subcritical region,
while it is insufficient in the supercritical region.

The solution for a moving harmonic time-dependent single force is the
basis for the investigation of coupled vehicle - guideway systems with several
points of force application. In general, every contact point is a transmitter
and receiver for propagating waves at the same time. The resulting much
more complex relations are not discussed here.

4.2 Perturbation Models for Rigid Guideways

Vehicles on rigid guideways are subject to perturbations due to various rea-
sons. Generally, individual obstacles and the guideway unevenness can be dis-
tinguished. The obstacles comprise steps (rail joints, curbstone edges) and
cambers (potholes and bumps) that can be expressed mathematically by step
and impulse functions, primarily resulting in free vibrations of the vehicle.
The guideway unevenness causes forced vibrations of the vehicle. The uneven-
ness is a permanent and, therefore, very important source of excitation. In
the past, it has been assumed sometimes to be sinusoidal and, thus, it was
treated deterministically as well. Nowadays, the unevenness is regarded as ran-
dom and statistical methods are applied. In principle, the guideway uneven-
ness could be measured locally with sufficient accuracy and reproducibility,
and be treated deterministically. Nevertheless, the main focus in vehicle dy-
namics is the consideration of the variety of local unevenness representing the
globally roads or tracks. For this purpose, stochastic processes provide suitable
mathematical models discussed in the following. At first, the guideway uneven-
ness is described by an unevenness profile, depending on a position coordinate,
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Fig. 4.7. Rail track coordinates for perturbation profile definition

which is later transformed into the time domain by means of the vehicle ve-
locity. The unevenness is represented by a stochastic excitation process acting
on the vehicle causing random vibrations. The resulting system response is a
stochastic process, too, discussed later in this section.

In the case of railway tracks or pillared guideways for magnetically lev-
itated vehicles, four unevenness profiles occur while in the simpler case of
roads the unevenness is characterized by only two perturbation profiles. Fig-
ure 4.7 shows the cross-section of a railway track with its center defined by
the coordinates yG and zG, measured in the inertial system I. The bank angle
is indicated by θG � 1, and the gauge of the track by gG which is measured
between the points Sl and Sr in a depth h below the top of the rail head.
The coordinates yl, yr and zl, zr of the points Sl, Sr (gauge) and the points
Ll, Lr (head of the rail) on the left and right rail, respectively, are given by

yl = yG − gG/2 , yr = yG + gG/2 , (4.61)
zl = zG − 2lθG/2 , zr = zG + 2lθG/2 , (4.62)

where the length 2l is denoted as span. The deviations ∆(•) of the individ-
ual coordinates from their nominal values are introduced as perturbation or
unevenness profiles ζ(•)(x) which depend on the longitudinal coordinate x.
Usual perturbation profiles for rails are

lateral alignment: ζy(x) = ∆yG(x) , (4.63)

vertical alignment: ζz(x) = ∆zG(x) , (4.64)

bank variation: ζθ(x) = 2l∆θG(x) , (4.65)

gauge variation: ζg(x) = ∆gG(x) . (4.66)

These perturbations are uncorrelated and defined consistently as lengths.
From here, the deviations ∆yl,r, ∆zl,r can be calculated by means of
Eqs. (4.61) and (4.62).
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Perturbation profiles of roads are related only to the vertical unevenness.
They can be determined by either Eqs. (4.64) and (4.65) or according to
Eq. (4.62). In contrast to rails, both resulting perturbation profiles are cor-
related in the case of parallel lanes.

The investigation of perturbation profiles has been a subject of re-
search activities for a long time. Numerous measurements of road profiles
(Mitschke and Wallentowitz (2004), Braun (1969), Voy (1977), Bormann
(1978)), railway tracks (ORE (1971), Helms and Strothmann (1977)) and
magnetic guideways (Sussmann (1974), Snyder III and Wormley (1977),
Kropac and Mucka (2005)) show that the different perturbation profiles may
be characterized by

• stationary, normally distributed, ergodic random processes.

Prior to modeling the individual perturbation profiles, general stochas-
tic processes with the properties mentioned above are discussed, cp.
Crandall and Mark (1963), Newland (1975), Heinrich and Henning (1978).

4.2.1 Mathematical Description of Stochastic Processes

Considering a particular type of road, e. g. a freeway, the unevenness may be
characterized by a large number of measurements ζ(r)(x), r = 1, 2, ..., with
ζ(r)(x) �= ζ(s)(x) for r �= s, each representing a small section of the road sur-
face, see Fig. 4.8 a). The independent variable x denotes the distance to an ar-
bitrarily chosen starting point of each measurement. At large, these measure-
ments are assumed to represent the freeway with sufficient accuracy. However,
all individual profiles are different from each other ζ(r)(x) �= ζ(s)(x), r �= s.
The whole of the profiles ζ(r)(x) is representing the stochastic process ζ(x) of
the freeway unevenness. Each measurement ζ(r)(x) is called a realization or

ζ(3)(x)
ζ(2)(x)
ζ(1)(x)

ζ1 = ζ(x1)

random variable

realizations

x1x2

p(ζj) points
inflection

ζj

b) a)

ζ(x)
ζ2 = ζ(x2)

σ1 < σ2

pmax ∼
1
σ

2σ

ξ

b

a

mζ

x

Fig. 4.8. Guideway unevenness described as a stochastic process: a) realizations
ζ(r)(x) and random variable ζj ; b) probability density function p(ζj)
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pattern function of the process. The unevenness values ζj = ζ(xj) at certain
distances x = xj , j = 1, 2, ..., are random variables that can be analyzed sta-
tistically. The probability density function p(ζj), see Fig. 4.8 b), can be used
to evaluate the probability Pr for the unevenness value included in a given
interval [a, b]

Pr(a ≤ ζj ≤ b) =

b∫

a

p(ζj)dζj , 0 ≤ Pr ≤ 1 . (4.67)

Replacing the integration limits by infinite values, all unevenness values ζj
are included, i. e. the probability Pr = 1 is found,

∞∫

−∞
p(ζj)dζj = 1 . (4.68)

The so-called moments of the probability density are referred to as expected
values E{•}, characterizing the random variables. The most important are
the mean value mζ(xj), a moment of first order, and the variance Pζ(xj) or
square of the standard deviation σ2

ζ (xj), a central moment of second order.
For j = 1 it holds

mζ(x1) = E{ζ(x1)} ≡
∞∫

−∞
ζ1p(ζ1)dζ1 , (4.69)

mζ2(x1) = E{ζ2(x1)} ≡
∞∫

−∞
ζ2
1p(ζ1)dζ1 , (4.70)

Pζ(x1) ≡ σ2
ζ (x1) = E{[ζ(x1) − mζ(x1)]2} = E{ζ2(x1)} − m2

ζ(x1) . (4.71)

The averaging is based on the ensemble of all realizations at a fixed location
x = xj . The calculation of the mean or expected value E{·} is a linear oper-
ation where E{c} = c holds if c = const. These properties have been used in
Eq. (4.71). Moments of first and second order are well-known from the mechan-
ical properties of the center of mass and the moment of inertia. For the reader
not familiar with mean values and variances, this mechanical analogy may be
helpful to illustrate the stochastic relationships of Eqs. (4.69) - (4.71): For an
infinitely long rod with a mass density of p(ζ) where, according to Eq. (4.68),
the total mass is normalized to 1, the mean value of Eq. (4.69) is equivalent to
the coordinate of the center of mass. The mean square value given in Eq. (4.70)
corresponds to the rod’s moment of inertia related to the point of origin. The
variance of Eq. (4.71) is comparable to the moment of inertia related to the cen-
ter of mass. Thus, the relationship σ2

ζ = E{ζ2} − m2
ζ in Eq. (4.71) can be inter-

preted as a mechanical analogy to the Huygens-Steiner theorem. The moments
of first and second order provide essential information about the distribution
of a certain variable, here mass and probability, respectively.



4.2 Perturbation Models for Rigid Guideways 199

The statistical relations of two random variables ζ1 = ζ(x1) and ζ2 = ζ(x2)
of the same stochastic process ζ give a further insight into the process. For this
purpose, the (auto)correlation Rζ(x1, x2) or, by using the central moments
of second order, the (auto)covariance Pζ(x1, x2) are introduced by

Rζ(x1, x2) = E{[ζ(x1)ζ(x2)]} =

∞∫

−∞

∞∫

−∞
ζ1ζ2p(ζ1, ζ2)dζ1dζ2 , (4.72)

Pζ(x1, x2) = E{[ζ(x1) − mζ(x1)][ζ(x2) − mζ(x2)]}
= E{ζ(x1)ζ(x2)} − mζ(x1)mζ(x2) , (4.73)

where p(ζ1, ζ2) denotes the joint probability density. The prefix ’auto’ indi-
cates that both random variables considered belong to the same stochastic
process. If they belong to different processes, the prefix ’cross’ is used in-
stead. In the case of identical correlation positions x1 = x2, the correlation
of Eq. (4.72) turns into the quadratic mean value given in Eq. (4.70) and the
covariance of Eq. (4.73) into the variance of Eq. (4.71).

Now the properties of stationarity, normal (Gaussian) distribution and
ergodicity are explained and described mathematically.

A stochastic process is called stationary (or homogeneous) if its statistical
properties are invariant with respect to a change of the origin of the x-axis.
Thus, all probability densities are equal, p(ζ1) = p(ζ2) = p(ζ), and the joint
probability density only depends on the correlation distance ξ = x1 − x2.
Consequently, all random variables and the overall stochastic process as well
are characterized by the same mean and square mean value, respectively. A
stationary stochastic process can always be centralized such that the mean
value vanishes. Hence, for centralized stationary processes from Eqs. (4.69)-
(4.73) it yields

mζ(x) = const = 0 , (4.74)
Rζ(x1, x2) = Pζ(x1, x2) = Rζ(ξ = x1 − x2) , (4.75)

mζ2(x) = σ2
ζ (x) = Rζ(ξ = 0) = const . (4.76)

For centralized processes, correlation and covariance are identical. Accord-
ing to Eq. (4.75), the so-called correlation function, characterizing the entire
stochastic process, depends only on the correlation distance ξ.

A stochastic process is called normally distributed or Gaussian if the ran-
dom variable ζj = ζ(xj) for each xj shows a probability density function of
the form

p(ζj) =
1

σj
√

2π
exp

[
− (ζj − mj)2

2σ2
j

]
(4.77)

with the mean value mj = mζ(xj) and the standard deviation or dispersion
σj = σζ(xj), respectively. It is obvious that a normally distributed process
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can be characterized completely by its first and second moment, i. e. mean
value and variance. Higher moments can be reduced to these two quanti-
ties. The density function given in Eq. (4.77) shows the well-known Gaussian
bell-shaped curve, see Fig. 4.8 b). The curve is symmetric with respect to
ζj = mj and shows the maximum value pmax = 1/(σj

√
2π) at ζj = mj and

inflection points at ζj = mj ± σj = ζw with p(ζw) = pmax/
√

e. Small disper-
sions σj indicate that the random variable is concentrated at the vicinity of
the mean value mj . The probability that the random variable ζj is included
in an interval of the width 2kσj, k = 1, 2, ..., around the mean value mj can
be calculated by means of Eq. (4.67). These so-called reliability intervals are
also referred to as kσ-limits with k = 1, 2, ...:

k = 1 : Pr(m − σ ≤ ζ ≤ m + σ) = Pr(|ζ − m| ≤ σ) = 0.6827 ,

k = 2 : Pr(|ζ − m| ≤ 2σ) = 0.9545 ,

k = 3 : Pr(|ζ − m| ≤ 3σ) = 0.9973 ,

k = 4 : Pr(|ζ − m| ≤ 4σ) = 0.99994 ,

(4.78)

where the index j has been neglected due to reasons of clarity. Thus, the
probability that a Gaussian random variable is outside the 2σ-limit is only
Pr = 0.0455 =̂ 4.55 %. For stationary, normally distributed processes the in-
dex j in Eq. (4.77) may be completely omitted according to Eqs. (4.74) and
(4.76).

A stationary stochastic process is called ergodic if the expected values of
the random variables ζj = ζ(xj) can be obtained from the mean values of a
pattern function or realization ζ(r)(x) of sufficient length over the coordinate
x (or time t, respectively). Thus,

• the ensemble average is equivalent to the mean value over the space
(or time, respectively).

Therefore, for an ergodic process it follows that

mζ = lim
X→∞

1
2X

X∫

−X
ζ(r)(x)dx , (4.79)

Rζ(ξ) = lim
X→∞

1
2X

X∫

−X
ζ(r)(x)ζ(r)(x − ξ)dx , (4.80)

mζ2 = Rζ(ξ = 0) = lim
X→∞

1
2X

X∫

−X
[ζ(r)(x)]2dx , (4.81)

Pζ(ξ) = lim
X→∞

1
2X

X∫

−X
[ζ(r)(x) − mζ ][ζ(r)(x − ξ) − mζ ]dx , (4.82)
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σ2
ζ = Pζ(ξ = 0) = lim

X→∞
1

2X

X∫

−X
[ζ(r)(x) − mζ ]2dx . (4.83)

In many cases, it is not easy to decide if a process is ergodic. In the present
case of the road unevenness, ergodicity is plausible, considering the back-
ground of Fig. 4.8. Regardless of the measurement method - analyzing one
single, very long measurement of the perturbation profile or using several
shorter measurements whose ensemble is analyzed - the statistical variables
remain the same. However, the experimental costs to determine a space (or
time) mean are lower than to average an ensemble. In practice, neither an
infinitely large ensemble nor an infinitely long realization can be obtained,
always resulting in approximated expected values.

In the following, centralized processes with a mean value mζ = 0 are as-
sumed. Thus, the quadratic mean value is equivalent to the variance and the
correlation function is equivalent to the covariance function, respectively.

In engineering applications, stationary processes are usually characterized
by their spectral power density or, briefly, spectral density Sζ(Ω) that can
be determined by the Fourier transform of the correlation function Rζ(ξ),

Sζ(Ω) =
1
2π

∞∫

−∞
Rζ(ξ)e−iΩξdξ , (4.84)

Rζ(ξ) =

∞∫

−∞
Sζ(Ω)eiΩξdΩ , (4.85)

mζ = 0 : Pζ = σ2
ζ = Rζ(ξ = 0) =

∞∫

−∞
Sζ(Ω)dΩ . (4.86)

Here, Ω is the spatial angular frequency (wave number) given in rad/m with
Ω = 2π/λ = 2πF where the wave length λ and the spatial frequency F oc-
cur. Equations (4.84) and (4.85) are usually referred to as Wiener-Chintschin
relation, where in the literature the factor 1/2π is sometimes assigned to
Eq. (4.85), or the modified factor 1/

√
2π is assigned to both equations. The

advantage of the definition of the spectral density chosen here becomes evi-
dent in Eq. (4.86), where the variance is directly related to the spectral power.
Therefore, the stochastic process of the guideway unevenness can be charac-
terized equivalently by the correlation function Rζ(ξ) in the spatial domain as
well as by the spectral density Sζ(Ω) in the frequency domain. The variance
follows from Eq. (4.86) with Rζ(ξ = 0) or as an integral over the contributions
Sζ(Ω)dΩ to the variance, respectively. A contribution Sζ(Ω)dΩ can also be
interpreted as the variance of the process after passing a narrow-band filter
of the bandwidth dΩ. Both functions are even,
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Rζ(ξ) = Rζ(−ξ) , Sζ(Ω) = Sζ(−Ω) , (4.87)

allowing a simpler analysis of the integrals given in Eqs. (4.84)-(4.86) by using
the so-called one-sided spectral density

Φζ(Ω) =

⎧
⎨

⎩

2Sζ(Ω) Ω ≥ 0
for

0 Ω < 0
(4.88)

without negative angular frequencies. Accordingly, Sζ(Ω) is denoted as two-
sided spectral density. Table 4.5 gives twelve typical correlation functions
Rζ(ξ) and their corresponding one-sided spectral densities Φζ(Ω).

So far, just one scalar stochastic process has been considered. Taking an-
other scalar process into account, e. g. the perturbation profiles ζl and ζr of
the left and right lane of a road, it has to be distinguished between auto- and
crosscorrelation functions and their spectra accordingly. This can be achieved
by introducing a double subscript for the cross quantities, their pair of Fourier
transforms is written analogously to Eqs. (4.84) and (4.85) as

Slr(Ω) =
1
2π

∞∫

−∞
Rlr(ξ)e−iΩξdξ , (4.89)

Rlr(ξ) =

∞∫

−∞
Slr(Ω)eiΩξdΩ . (4.90)

In general, the cross spectral density is a complex quantity. The following
special kind of symmetry conditions hold:

Rlr(ξ) = Rrl(−ξ) , Slr(Ω) = Srl(−Ω) . (4.91)

The coherence function γ(Ω) with

γ2(Ω) =
|Slr(Ω)|2

Sl(Ω)Sr(Ω)
, 0 ≤ γ ≤ 1 , (4.92)

is used to characterize the correlation between two processes. A value of γ ≡ 0
indicates that two processes, e. g. the perturbation profile of the left and right
lane, are completely uncorrelated, whereas they are completely correlated for
γ ≡ 1. Generally, the coherence depends on the frequency, see Eq. (4.92).

In the case of n scalar processes ζν , ν = 1(1)n, they can be merged into
an n × 1 vector process ζ. The mean value mζ is then replaced by the n × 1
mean value vector mζ and the variance Pζ by the n × n covariance matrix
P ζ , see Mueller and Schiehlen (1985). Corresponding to Eq. (4.71) it follows
that

mζ(x) = E{ζ(x)} ,

P ζ(x) = E{[ζ(x) −mζ(x)][ζ(x) −mζ(x)]T} = PT
ζ (x) .

(4.93)
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Table 4.5. Correlation functions R(ξ) and according one-sided spectral densities
Φ(Ω) (all constants are positive)

Correlation function One-sided spectral density

R (ξ) =
∞∫
0

Φ (Ω) cos ΩξdΩ Φ (Ω) =
2

π

∞∫
0

R (ξ) cos Ωξdξ

Colored noise:

σ2e−α|ξ| 2ασ2

π

1

Ω2 + α2
(I)

σ2e−α|ξ| cos βξ
2ασ2

π

Ω2 + α2 + β2

(Ω2 − α2 − β2)2 + 4α2Ω2
(II)

σ2e−α|ξ|
(

cos βξ − α

β
sin β |ξ|

)
4ασ2

π

Ω2

(Ω2 − α2 − β2)2 + 4α2Ω2
(III)

σ2e−α|ξ|
(

cos βξ +
α

β
sin β |ξ|

)
4ασ2

π

α2 + β2

(Ω2 − α2 − β2)2 + 4α2Ω2
(IV)

σ2e−DΩ0|ξ|
(

cos Ωdξ +
DΩ0

Ωd
sin Ωd |ξ|

)

with Ωd =
√

1 − D2Ω0

4DΩ0σ
2

π

Ω2
0

(Ω2 − Ω2
0)2 + 4D2Ω2

0Ω
2

(V)

σ2

β − α

[
βe−α|ξ| − αe−β|ξ|

] 2αβ (α + β) σ2

π

1

(Ω2 + α2) (Ω2 + β2)
(VI)

σ2e−αξ2 σ2

√
πα

e−
Ω2
4α (VII)

σ2e−αξ2
cos βξ

σ2

√
4πα

[
e−

(Ω+β)2

4α + e−
(Ω−β)2

4α

]
(VIII)

Harmonic function:

σ2 cos βξ σ2δ (Ω − β) (IX)

White noise:

qwδ (ξ)
1

π
qw (X)

Band-limited white noise:

qw
sin αξ

πξ

⎧
⎪⎨

⎪⎩

1

π
qw if 0 ≤ Ω ≤ α

0 otherwise

(XI)

Ideal band filter:

2qw
sin αξ/2 cos βξ

πξ

⎧
⎪⎨

⎪⎩

1

π
qw if 0 ≤ β − α

2
≤ Ω ≤ β +

α

2

0 otherwise

(XII)
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The variances of the individual processes occur here as the diagonal elements
of the matrix P ζ . Obviously, the variances have significant importance in
stationary ergodic Gaussian processes. They can be interpreted as:

• central moment of second order of random variables, see Eqs. (4.71),
(4.93),

• mean square value of centralized realizations, see Eq. (4.83),
• spectral power of a centralized process, see Eq. (4.86),
• square of the dispersion of the probability density and, thus, deter-

mining the Gaussian distribution, see Eq. (4.77), and the width of the
confidence intervals, see Eq. (4.78).

Problem 4.2 White and colored noise
The spectral densities have to be derived and interpreted for the correlation
functions given in Table 4.5 X, I and IV.

Solution
Firstly, the Fourier transform of the one-sided spectral density Φ(Ω) is cal-
culated. Using Euler’s identity, e±iΩξ = cosΩξ ± i sinΩξ, and dividing the
integral given in Eq. (4.84) into two integration intervals yields

S(Ω)=
1
2π

⎡

⎣
0∫

−∞
R(ξ)(cos Ωξ − i sin Ωξ)dξ+

∞∫

0

R(ξ)(cos Ωξ − i sinΩξ)dξ

⎤

⎦ .

(1)

Applying the coordinate transformation ξ = −ξ̄ to the first integral and con-
sidering R(ξ) = R(−ξ) = R(ξ̄) according to Eq. (4.87) gives

2S(Ω) =
1
π

⎡

⎣
∞∫

0

R(ξ̄)(cosΩξ̄ + i sinΩξ̄)dξ̄ +

∞∫

0

R(ξ)(cosΩξ − i sin Ωξ)dξ

⎤

⎦.

(2)

With 2S(Ω) = Φ(Ω) it follows that

Φ(Ω) =
2
π

∞∫

0

R(ξ) cosΩξdξ . (3)

Analogously, the backward transformation is derived,

R(ξ) =

∞∫

0

Φ(Ω) cos ΩξdΩ . (4)
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Now, inserting the correlation functions of Table 4.5 in Eq. (3) yields the
following results that are depicted in Table 4.6 additionally.

Table 4.6. Comparison of the correlation function R(ξ) and the spectral density
Φ(Ω) of white and colored noise

R = σ2e−α|ξ|

ξ

R = σ2e−α|ξ|

ξ

ξ 4ασ2

π

correlation function R(ξ)

white

name of
noise process

·(cosβξ + α
β

sin β | ξ |)

(double log. scale)

noise
(X)

colored
noise
(I)

colored
noise
(IV)

R Φ

Ω

Φ =
1
π
· qw

R Φ

Ω

Φ = 2ασ2

π
· 1

Ω2+α2

R Φ

Ω

Φ =

· α2+β2

(Ω2−α2−β2)2+4α2Ω2

spectral density Φ(Ω)

R = qw · δ(ξ)

∞
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1) R(ξ) = qwδ(ξ): White noise (X)
Evaluating the integral given in Eq. (3) yields

Φ(Ω) =
2
π

∞∫

0

qwδ(ξ) cosΩξdξ =
1
π

qw = const . (5)

Evaluating the integral of Eq. (5), attention should be paid to the fact that
the discontinuity of the Dirac function occurs at the lower limit of integration.
Thus, at ξ = 0 the fading out by the Dirac function is limited to only half of
the integrand. The same result can be obtained by the transformation given
in Eq. (4.84) with S(Ω) = Φ(Ω)/2. A stochastic process with the property
given in Eq. (X) is completely uncorrelated for ξ �= 0. It is characterized by
a uniform spectral density at all frequencies. According to the visible white
light that contains spectral contributions of all frequencies, such a random
process is called white noise w(x). White noise is characterized by an infinite
variance,

Pw = σ2
w = Rw(ξ = 0) =

∞∫

0

Φ(Ω)dΩ = ∞ . (6)

It becomes evident that such a process is just a mathematical idealization that
can not occur in reality. Nevertheless, it is helpful and frequently applied as a
limit case of real processes. Stationary, normally distributed white noise can
be characterized by the mean value mw = 0 and the intensity qw, abbreviated
by

w(x) ∼ N(0, qw) . (7)

2) R(ξ) = σ2e−α|ξ| , α > 0: Coloured noise (I)
The solution is given by Eq. (3):

Φ(Ω) =
2σ2

π

∞∫

0

e−αξ cosΩξdξ

=
2σ2

π

[
e−αξ

Ω2 + α2
(−α cosΩξ + Ω sin Ωξ)

]ξ=∞

ξ=0

=
2σ2

π

α

Ω2 + α2
. (8)

The evaluation is quite simple in this case because |ξ| = ξ holds for ξ ≥ 0
and the term in square brackets vanishes at the upper integration limit.
The resulting so-called colored noise shows a maximum spectral density of
Φmax = 2σ2/πα at the angular frequency Ω = 0 and an asymptotic behavior
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Φ ∼ 1/Ω2 for Ω → ∞. The variance σ2 = R(ξ = 0) is finite and the corre-
lation decreases monotonously with increasing correlation distance ξ. From
Table 4.6, the difference between colored and white noise is obvious.

3) R(ξ) = σ2e−α|ξ|(cos βξ +
α

β
sin β |ξ|) , α > 0: Coloured noise (IV)

The solution is performed analogously to 2) by means of the trigonometric
identities for products of harmonic functions,

Φ(Ω) =
2σ2

π

∞∫

0

e−αξ(cosβξ +
α

β
sin βξ) cos Ωξdξ

=
2σ2

π

∞∫

0

{e−αξ
1
2
[cos(β + Ω)ξ + cos(β − Ω)ξ]

+ e−αξ
α

2β
[sin(β + Ω)ξ + sin(β − Ω)ξ]}dξ

=
σ2

π

{
e−αξ

[
1

α2 + (β + Ω)2
(−α cos(β + Ω)ξ

+ (β + Ω) sin(β + Ω)ξ)

+
1

α2 + (β − Ω)2
(−α cos(β − Ω)ξ + (β − Ω) sin(β − Ω)ξ)

+
α

β(α2 + (β + Ω)2)
(−α sin(β + Ω)ξ − (β + Ω) cos(β + Ω)ξ)

+
α

β(α2 + (β − Ω)2)
(−α sin(β − Ω)ξ

− (β − Ω) cos(β − Ω)ξ)
]}ξ=∞

ξ=0

=
σ2

π

[
α

α2 + (β + Ω)2
+

α

α2 + (β − Ω)2

+
α

β

(
β + Ω

α2 + (β + Ω)2
+

β − Ω

α2 + (β − Ω)2

)]

=
4ασ2

π

α2 + β2

N
. (9)

Herein, the denominator can be expressed in different ways,

N = [α2 + (β + Ω)2][α2 + (β − Ω)2]

= (Ω2 − α2 − β2)2 + 4α2Ω2

= (Ω2 + α2 − β2)2 + 4α2β2 . (10)

Again, the result is a colored noise process with the maximum spectral density



208 4 Guideway Models

Φmax =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ασ2

π

α2 + β2

α2β2
Ω =

√
β2 − α2 β ≥ α ,

at for
ασ2

π

4
α2 + β2

Ω = 0 β ≤ α

(11)

and the asymptotic behavior Φ ∼ 1/Ω4 for Ω → ∞. The variance
σ2 = R(ξ = 0) is finite again. With increasing correlation distance ξ, the cor-
relation oscillatory approaches a value of zero.

4.2.2 Models for Unevenness Profiles

From the analysis of the numerous measured data of guideway unevenness it
emerges a tendency to standardization. A simple and frequently used model
for road unevenness reads as

Φζ(Ω) = Φ0

(
Ω0

Ω

)w
, 0 < ΩI ≤ Ω ≤ ΩII < ∞ , (4.94)

cp. Mitschke and Wallentowitz (2004), Voy (1977), where the frequency range
is limited. Here, Ω0 [rad/m] denotes a reference spatial angular frequency
and Φ0 = Φζ(Ω0) [m2/(rad/m)] serves as degree of unevenness and specifies
whether the road is good or bad. The wavelength is given by λ = 2π/Ω. The
waviness w is a measure if the road contains mainly long waves (high w) or as
well short waves (small w) with significant spectral densities. For roads the
waviness ranges in an interval 1.75 ≤ w ≤ 2.25 with a mean value of w ≈ 2.
Applying the model (4.94) to the rail unevenness a mean value of w ≈ 4 is
obtained in the higher frequency range. Equation (4.94) is characterized by
decreasing straight lines (slope −w) if plotted in an Ω-Φζ-diagram with a
double logarithmic scale, cp. Fig. 4.9 a).

A similar, slightly more complicated model can be used for both road and
rail unevenness, cp. Dodds and Robson (1973), Garg and Dukkipati (1984),

Φζ(Ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ0

(
Ω0

Ω

)w1

0 < ΩI ≤ Ω ≤ Ω0 ,

for

Φ0

(
Ω0

Ω

)w2

Ω0 ≤ Ω ≤ ΩII < ∞ ,

(4.95)

where different values of the waviness w1, w2 with w1 < w2 occur in the two
frequency ranges, cp. Fig. 4.9 b). In the case of tracks, Eq. (4.95) is applied
for all four perturbation profiles.

The models (4.94) and (4.95) represent approximations of measured
spectral densities in the bounded frequency range 0 < ΩI ≤ Ω ≤ ΩII < ∞.
Within both models the limit Ω → 0 would result in infinite spectral densities
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Φζ → ∞, hence, leading to infinite variances Pζ → ∞ as well. To avoid this
unrealistic fact, improved unevenness models have been proposed which are
valid in the entire frequency range,

I: ΦζI(Ω) =
2ασ2

π

1
Ω2 + α2

, 0 ≤ Ω < ∞ , (4.96)

II: ΦζII(Ω) =
2ασ2

π

Ω2 + α2 + β2

(Ω2 − α2 − β2)2 + 4α2Ω2
, 0 ≤ Ω < ∞ , (4.97)

with the positive constants α, β and σ2. For these spectral densities the
corresponding correlation functions are now calculated. Adapting Eq. (4.85)
to the one-sided spectral density Φζ(Ω) yields

Rζ(ξ) =

∞∫

0

Φζ(Ω) cos ΩξdΩ . (4.98)

Inserting Eqs. (4.96), (4.97) into Eq. (4.98) yields, cp. Table 4.5,

I: RζI(ξ) = σ2e−α|ξ| , (4.99)

II: RζII(ξ) = σ2e−α|ξ| cosβξ , (4.100)

102

10−3

10−5

10−6

10−7

10−8

10−9

100 101
rad/m10−1

road

road

excellent

average

cast
track

Φζ(Ω)

Ω0

Ω

Φ0

10−1 100
rad/m101 102

10−9

10−8

10−7

10−6

10−5

10−3

excellent
rail
average
rail
poor
rail

Φζ(Ω)

Φ0

Ω0

Ω

a) b)

arctanw

arctanw2

arctanw1

Fig. 4.9. Simple guideway models with coarse values for the degree of unevenness
Φ0 = Φζ(Ω0) in m2/(rad/m), Ω0 = 1 rad/m: a) Model (4.94) for road unevenness
with w = 2; b) Model (4.95) for lateral and vertical rail alignment with w1 = 2,
w2 = 4
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where σ2 = Rζ (ξ = 0) denotes the finite variance of the guideway uneven-
ness. For Ω → ∞ the spectral densities of Eqs. (4.96) and (4.97) follow the
relation Φ ∼ 1/Ω2 which leads to a good approximation of measured road
spectra. Models IV to VI in Table 4.5 are suitable as rail spectra. Data for
corresponding parameters can be found e. g. in Garg and Dukkipati (1984).

4.2.3 Models for Vehicle Excitation Processes

From the presented models for the guideway unevenness ζ(x) corresponding
models for the vehicle excitation ζ(t) depending on the time t can be found
where permanent guideway contact is assumed and only one contact point is
regarded. The transformation of the spatial into the time domain ζ(x) → ζ(t)
is carried out via the velocity v(t) of the vehicle,

dx(t) = v(t)dt , x(t) = x(t0) +

t∫

t0

v(τ)dτ . (4.101)

In the case of time-variant velocities v(t) one gets non-stationary vehicle
excitation processes in the time domain even from stationary stochastic un-
evenness processes in spatial domain, cp. Rill (1983), Czerny (1987). This
topic is not treated here. In the following, a constant velocity, v = const, is
assumed resulting in stationary vehicle excitation processes. Setting t0 = 0
and x(t0) = 0, it follows from Eq. (4.101)

x(t) = vt , τ =
ξ

v
, ω = vΩ , v = const . (4.102)

Here, τ denotes the correlation time according to the correlation distance
ξ and ω [rad/s] is the angular frequency with respect to time. Since the
variances Rζ(0) of the guideway unevenness ζ(x) and of the vehicle excitation
ζ(t) must be equal, from (4.98) the relation Φζ(ω)dω = Φζ(Ω)dΩ proves.
Hence, with Eq. (4.102) the one-sided spectral density Φζ(ω) [m2/(rad/s)] of
the vehicle excitation follows as

Φζ(ω) =
1
v
Φζ

(
Ω =

ω

v

)
. (4.103)

From the unevenness model given in Eq. (4.94), one gets the spectral density
in the time domain for an average waviness w = 2 of roads as

Φ̃ζ(ω) =
1
v
Φ̃0

(
vΩ0

ω

)2

= vΦ̃0

(
Ω0

ω

)2

. (4.104)

Up to here exclusively the stochastic process ζ(t) of the vehicle displacement
has been regarded. However, additionally the processes ζ̇(t) and ζ̈(t) of the
excitation velocity and the excitation acceleration have to be considered. The
respective spectral densities then yield, cp. e. g. Newland (1975),
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Φζ̇(ω) = ω2Φζ(ω) , Φζ̈(ω) = ω4Φζ(ω) . (4.105)

Applying Eq. (4.105) to (4.104), a white noise process with the spectral
density

Φ̃ζ̇(ω) = ω2vΦ̃0

(
Ω0

ω

)2

= vΦ̃0Ω
2
0 = const (4.106)

is obtained for the excitation velocity ζ̇(t). The corresponding correlation
function reads

Rζ̇(τ) = qζ̇δ(τ) , qζ̇ = πvΦ̃0Ω
2
0 , (4.107)

where qζ̇ denotes the noise intensity and δ(τ) is the Dirac distribution. In
analogy, from model (4.94) it follows a white noise process for the excitation
acceleration ζ̈(t) using the characteristic waviness of w = 4 for rails as

˜̃Φζ̈(ω) = ω4v ˜̃Φ0

(
Ω0

ω

)4

= v ˜̃Φ0Ω
4
0 = const , (4.108)

Rζ̈(ω) = qζ̈δ(τ) , qζ̈ = πv ˜̃Φ0Ω
4
0 . (4.109)

The white noise processes show an infinite variance and are, consequently,
unrealistic. On the other hand it is possible to reduce the effort to calculate
stochastic vehicle vibrations for vehicle excitations according to Eqs. (4.106)-
(4.109). Therefore, the velocity white noise for road vehicles and the acceler-
ation white noise for rail vehicles are important engineering approximations.

Improved models for the vehicle excitation ζ(t) are based on Eqs. (4.96) and
(4.97). These models represent normally distributed, stationary colored noise
processes. They can be obtained by solving a linear time-invariant system of
differential equations excited by a white noise process w(t). Interpretive-ly
explained, such a system of differential equations changes the shape of the
correlation function of excitation, therefore, it is termed shape filter, cp.
Fig. 4.10. In general it holds that stationary, Gaussian and ergodic processes
affecting a linear time-invariant system of differential equations do not change

white noise

w(t)

v̇ = Fv(t) + gw(t)

ζ(t) = hT v(t) −→ ∞ ζ(t)

outputretlfiepahstupni

Reλ(F ) < 0 (t) ∼ N(0 w)
colored noise

, ,
,

Fig. 4.10. Illustration of the mode of operation of a shape filter
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their properties. Stationarity, normal distribution and ergodicity are trans-
ferred from the input process to the output process. The equations for the
shape filter read

ζ(t) = hTv(t) , (4.110)
v̇(t) = Fv(t) + gw(t) , Reλ(F ) < 0 , w(t) ∼ N(0, qw) . (4.111)

At steady-state conditions the colored noise process ζ(t) is obtained by the
superposition of the state variables vi(t), i = 1(1)m, which are merged into
an m × 1 state vector v(t), cp. Eq. (4.110). The state vector v satisfies
Eq. (4.111) for an asymptotically stable system matrix F , where the exci-
tation is due to a white noise w(t) with mean value zero and intensity qw.
The quantities F , g and h characterize completely the shape filter. For the
processes given by Eqs. (4.96), (4.99) and Eqs. (4.97), (4.100), respectively,
these quantities read as

I : F = −αv , g = g , h = 1 , (g2qw = 2αvσ2) , (4.112)

II : F =
[

0 1
−(α2 + β2)v2 −2αv

]
, g = g

[
0
1

]
, h =

[
v
√

α2 + β2

1

]
,

(g2qw = 2αvσ2) .

(4.113)

Since some of the model parameters are multiplicatively connected there are
some options to define them. By setting e. g. g = 1, it follows for both shape
filters an exciting noise intensity of qw = 2αvσ2. It turns out that the intensity
of the vehicle excitation increases proportionally with the velocity v.

In general the shape filter parameters are not found by means of analyti-
cal approximations but directly from measured values of the spectral density
Φζ (Ω) where the order m of the filter has to be preset. For m = 2 the pro-
cedure is described in detail by Mueller et al. (1980).

In all models for vehicle excitations mentioned above only one single con-
tact point with the guideway is assumed, leading always to scalar stochastic
excitation processes. However, real multi-wheeled vehicles show multiple con-
tacts with the guideway. For i = 1(1)q axles and k = 1(1)s lanes there are q · s
contact points with an identical number of scalar excitation processes. They
may be summarized in a (q · s) × 1 vector process ζ of the excitations.

If the contact points are located in one lane it is possible to get the corre-
sponding exciting processes ζi(t), i = 1(1)q, from the process ζ1(1) ≡ ζ(t) of
the foremost contact point by a time delay ti,

ζi(t) = ζ(t − ti) , ti =
li
v

, 0 = t1 < t2 < ... < tq , i = 1(1)q , (4.114)

where li denotes the distance between the foremost and the i-th axle and v
describes the constant velocity. Further details are given by Mueller and Popp
(1979).
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For parallel driving lanes their statistical dependence has to be considered
when required. For road unevenness, correlation measurements can be found
in Bormann (1978), which Rill (1983) applied to a shape filter and considered
them in the analysis. A typical vector process for the excitation of a four
wheeled vehicle reads (v =̂ front, h =̂ rear, l =̂ left, r =̂ right),

ζ(t, T ) =

⎡

⎢⎢⎣

ζlv(t)
ζrv(t)
ζlh(t)
ζrh(t)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

ζl(t)
ζr(t)

ζl(t − T )
ζr(t − T )

⎤

⎥⎥⎦ , T ≡ t2 =
l2
v

, (4.115)

where the delay T results from the axle-center distance l2 and the constant
velocity v.
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Models for Vehicle-Guideway-Systems

For modeling purposes the ground vehicle systems have been decomposed into
the subsystems vehicle, guidance and suspension system, and guideway. These
subsystems have been considered extensively in Chap. 2 to Chap. 4. Now they
will be assembled to the mathematical model of the complete system. This
means the final step of the modeling of a vehicle system.

5.1 State Equations of the Subsystems

The dynamics of all the subsystems can be described consistently by state
equations. The state space representation is widely used in control and system
theory, and it proves to be most appropriate for vehicle dynamics, too. Refer-
ences of the state representation for control problems are found in Foellinger
(2008) and for vibration engineering in Mueller and Schiehlen (1985). The
equations of motion of a vehicle read according to (2.96)

M(y, t)ÿ(t) + k(y, ẏ, t) = q(y, ẏ, t) (5.1)

or in linearized form according to (2.99)

Mÿ(t) + (D +G)ẏ(t) + (K +N)y(t) = h(t) , (5.2)

where the vector h(t) includes the forces acting on the vehicle generated by
the suspension and guidance system.

The equations of motion (5.1) and (5.2) are systems of differential equa-
tions of second order, they have to be completed by the initial conditions for
position and velocity

y(0) = y0 , ẏ(0) = ẏ0 . (5.3)

The state vector of the vehicle is composed correspondingly by the state
variables of position and velocity as
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xF (t) =
[
y(t)
ẏ(t)

]
. (5.4)

Thus, xF is the nF × 1-state vector of all state variables. For ordinary multi-
body systems, and therefore also for vehicles, it yields nF = 2f where f is
the number of degrees of freedom again.

Using the state vector (5.4) the equations of motion are easily transferred
in the corresponding state equations. In the nonlinear case one gets

ẏ(t) = ẏ(t)

ÿ(t)︸︷︷︸
ẋF (t)

=M−1(y, t)[q(y, ẏ, t) − k(y, ẏ, t)]︸ ︷︷ ︸
aF (xF , t)

, (5.5)

where aF is a nF × 1-vector function depending on the state variables and
the time t. For vehicles performing small linear motions it remains

ẋF (t) = AFxF (t) +BFuF (t) , (5.6)

where

AF =
[

0 E

−M−1(K +N) −M−1(D +G)

]
(5.7)

is the nF × nF -system matrix, BF the nF × rF -input matrix and uF the
rF × 1-input vector of the excitations acting on the vehicle.

The state equations are completed according to (5.3) by the initial condi-
tions reading as

xF (0) = xF0 . (5.8)

Since the state equations are systems of differential equations of the first or-
der, the initial conditions are represented by one nF × 1-vector the dimension
of which is doubled compared to (5.3).

The suspension systems of a vehicle are described in the most general case
according to (3.38) by linear differential equations of the first order,

cḟ ḟ(t) + cff(t) = css(t) + cṡṡ(t) + cuu(t) , f(0) = f0 . (5.9)

Considering that a vehicle has several suspension devices, one gets from (5.9)
state equations of the form

ẋT (t) = ATxT (t) +BTuT (t) , xT (0) = xT0 , (5.10)

where xT is a nT × 1-state vector of force variables, AT is the corresponding
nT × nT -system matrix and uT is the rT × 1-input vector of the relative
motions of the suspension elements and the control variables of the control
device.
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The guidance systems of wheeled vehicles are described only statically
in Chap. 3. For the contact forces it yields according to (3.86) or (3.143),
respectively, the relation

fK = −FvK . (5.11)

Therefore, the state equations are degenerated and only algebraic equations
occur reading as

ALxL(t) +BLuL(t) = 0 . (5.12)

The nL × 1-state vector xL summarizes the force variables whereas uL is the
rL × 1-input vector of the relative or slip motions in the contact point. The
matrix AF is according to the assumptions on Chap. 3 a unit matrix while
the nL × rL-input matrix BL includes, e.g., the Kalker coefficients or the
corresponding characteristics of the tire.

It has to be mentioned that guidance systems show instationary behavior
with more complex models, too. Then, the algebraic equations (5.12) mutate
to real state equations with time derivatives. This may be of engineering
relevance for road vehicles with rubber tires. More details are presented in
the comprehensive report by Lugner and Ploechl (2005).

Rigid guideways are characterized by their special profile functions which
are transformed into pure temporal functions xs(t) using the vehicle speed.
In the deterministic case the excitation functions due to the guideway are
summarized in the nW × 1-vector

xW (t) = [xT
s (t) ẋT

s (t)]T , (5.13)

which has to be supplemented by the first derivative if damping is considered
as shown in (5.13). The deterministic functions are mainly used to describe
individual obstacles. Randomly uneven guideways require the modeling by
stochastic processes. Starting with a white noise excitation it follows a colored
noise process via a shape filter as described in (4.110) and (4.111) resulting
in

xW (t) = CWRxR(t) , (5.14)
ẋR(t) = ARxR(t) +BRw(t) ,

xR(0) = 0 , w(t) ∼ (0,QW ) , (5.15)

where the shape filter is characterized by the time-invariant matricesAR,BR

and CWR. The nR × 1-vector xR represents the random process generated
by the rR × 1-vector process of white noise w(t) with the rR × rR-intensity
matrix Qw.

Elastic guideways consisting of beam structures are mechanical systems
described by equations of motion, again. According to (4.10) it yields for a
finite number of eigenvalues and the assumption of modal damping
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z̈(t) + ∆ż(t) +Ωz(t) =M−1
∑

k

ϕ[xk(t)]fk(t) . (5.16)

Based on the vector z of the modal beam coordinates a nE × 1-state vector
can be defined for the elastic guideway as

xE(t) =
[
z(t)
ż(t)

]
. (5.17)

Then, the equations of motion (5.16) are transferred once again into state
equations as

ẋE(t) = AExE(t) +BE(t)uE(t) , xE(0) = 0 . (5.18)

In contrary to the system matrix AE , the input matrix BE(t) is now time-
variant. Furthermore, the rE × 1-input vector uE includes the dynamic and
static forces acting via the primary suspension from the vehicle on the guide-
way. The static force result due to the beam deflection in a forced excitation
of the complete system.

The vector xW of the effective deflection of the beam can be found from
Eq. (4.9) by the eigenmodes considering the vehicle speed as a pure temporal
function

xW (t) = CWE(t)xE(t) . (5.19)

The matrix CWE summarizes the eigenmodes of the beam related to the
vector z. In contrary to (5.14) the vector xE depends dynamically on the
guideway acting forces as shown in (5.18). Therefore, there is a feedback
between vehicle and guideway in the case of elastic structures what does not
occur for rigid guideways.

5.2 State Equations of the Complete System

The state equations of the subsystems or vehicle system components, respec-
tively, have been consistently introduced in Sect. 5.1.

These equations can now be assembled resulting in the state equations
of the complete system as required by the engineering tasks. There will be
only linear systems considered sufficient for the investigation of small vibra-
tions and for a stability analysis. As a basic principle the procedure can be
transferred directly to nonlinear systems.

For the assembly of the complete system the input and output variable of
the subsystems have to be connected properly to each other. The generalized
forces acting on the vehicle are summarized in the rF × 1-vector uF . Further,
forces are generated by the suspension and guidance system and they serve
as state variables featuring the nF × 1-vector xT of the suspension devices
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and the nL × 1-vector xL of the guidance systems. Therefore, it yields for
the suspension system

uF (t) = CFTxT (t) , (5.20)

and for the guidance system

uF (t) = CFLxL(t) , (5.21)

with the rF × nT,L-coupling matrices CFT,L.
On the other hand, the suspension system is controlled by the rT × 1-

input vector uT . This input depends on the relative motions of the vehicle
and the guideway as well as the control variables of the control device. In
particular, the controller feeds back the measured motions of the vehicle and
the guideway. With the assumption of a simple PD-controller, it yields

uT (t) = CTFxF (t) +CTWxW (t) , (5.22)

where the rT × nF,W -coupling matrices CTF,W occur. In analogous manner
it follows for the guidance system

uL(t) = CLFxF (t) +CLWxW (t) , (5.23)

where the slips uL in the wheel contact points are obtained via the rL × nF,W -
coupling matrices CLF,W from the relative velocities with respect to the
guideway as indicated, e.g., in (3.111).

An elastic guideway is loaded by the dynamic forces of the primary sus-
pension collected in the rE × 1-vector uE . Furthermore, the weight of the
vehicle distributed via the different axles results in static loads summarized
in the rP × 1-vector wP . Then, it yields

uE(t) = CETxT (t) +CEPwP (t) (5.24)

with the corresponding rE × nT,P -coupling matrices CET,P .
That is the end of the mathematical description of the complete vehicle

system. Due to the large number of engineering tasks there is a great variety
of different systems which may represent a complete system. As examples
one complete system for the lateral motion and two complete systems for the
vertical motion are presented in more detail.

For small lateral motions the state equations of the complete system follow
from (5.6), (5.21), (5.12) and (5.23) as

ẋF (t)=(AF −BFCFLA
−1
L BLCLF )xF (t) −BFCFLA

−1
L BLCLWxW (t)

xF (0) = xF0 . (5.25)

For an even track, xW = 0, a homogeneous system of differential equations
is found which is the basis for an analysis of the driving stability.
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For small vertical vibrations on an elastic guideway the state equations of
the complete systems follow from (5.6), (5.10), (5.18), (5.19), (5.20), (5.22)
and (5.24) as

⎡

⎣
ẋF
ẋT
ẋE

⎤

⎦

︸ ︷︷ ︸

=

⎡

⎣
AF BFCFT 0

BTCTF AT BTCTWCWE

0 BECET AE

⎤

⎦

︸ ︷︷ ︸

⎡

⎣
xF
xT
xE

⎤

⎦

︸ ︷︷ ︸

+

⎡

⎣
0
0

BECEP

⎤

⎦

︸ ︷︷ ︸

wP

︸︷︷︸

.

ẋ(t) = A(t) x(t) + B(t) w(t)
(5.26)

On the other hand, vertical vibrations on a randomly uneven rigid road result
in state equations of the complete system based on (5.6), (5.10), (5.14), (5.15),
(5.20), and (5.22),

⎡

⎣
ẋF
ẋT
ẋR

⎤

⎦

︸ ︷︷ ︸

=

⎡

⎣
AF BFCFT 0

BTCTF AT BTCTWCWR

0 0 AR

⎤

⎦

︸ ︷︷ ︸

⎡

⎣
xF
xT
xR

⎤

⎦

︸ ︷︷ ︸

+

⎡

⎣
0
0
BR

⎤

⎦

︸ ︷︷ ︸

w(t)

︸︷︷︸

.

ẋ(t) = A(t) x(t) + B(t) w(t)
(5.27)

By comparison of (5.26) and (5.27) it turns out that an elastic guideway
experiences an additional coupling via the primary suspension. Both complete
systems (5.26) and (5.27) are truly inhomogeneous systems of differential
equations which are the basis for an analysis of the driving comfort.

In the global system matrix A(t) matrix product like BFCFT , BTCTF

and BECET appear. Thus, the definition of the matrices B and C is not
unique what facilitates the modeling in many cases. The dynamicist is free
to choose the most suitable vectors and matrices.

The general form of the state equations of a linear model of the complete
vehicle-guideway system reads as

ẋ(t) = A(t)x(t) +B(t)w(t) (5.28)

where x means the n × 1-state vector, w the r × 1-excitation vector, A the
n × n-system matrix and B the n × r-input matrix. In many cases the ma-
trices A and B are time-invariant so that the computations are more simple.
The general form of the nonlinear state equations is given by

ẋ(t) = a(x,w, t) (5.29)

where the n × 1-vector function a can be found from linear and nonlinear
subsystems correspondingly.
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Problem 5.1 State equations of the vertical motion of an actively
controlled automobile
The car model shown in Fig. 5.1 a) has an active suspension on the front
and rear axle. This means an extension of the automobile considered in
Problem 2.12. Now the subsystems vehicle, suspension devices and road, in-
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Fig. 5.1. Automobile with active suspension a) equilibrium position b) free body
diagram

cluding a PD-controller, are described and assembled to a complete vehicle
system.

Solution
The subsystem vehicle consists of the car body and the wheel and axles
masses which are subject to the applied forces shown in Fig. 5.1 b). For the
given system parameters the state equations of the vehicle read as
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ż1

ż2

ż3

β̇

· · ·
z̈1

z̈2

z̈3

β̈

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
0

... E...· · · · · ·...
0

... 0...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

β

· · ·
ż1

ż2

ż3

β̇

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

· · · · · · · · · · · · · · · · · · · · · · · ·
− 1

m1
0

1
m1

0

0 − 1
m2

0
1

m2

0 0 − 1
m3

− 1
m3

0 0
b

I
−a

I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

⎡

⎢⎢⎢⎣

f1

f2

f3

f4

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸

.

ẋF = AF xF + BF uF

(1)

The suspension system is composed of the passive primary suspension with
relative motions u1, u2, u̇1, u̇2 and the active secondary suspension with the
control variables u3 and u4 compare (5.22). Its degenerated state equations
read according to (5.10) as

[
E
]

︸ ︷︷ ︸

⎡

⎢⎢⎣

f1

f2

f3

f4

⎤

⎥⎥⎦

︸ ︷︷ ︸

=

⎡

⎢⎢⎢⎣

k1 0 d1 0
... 0 0

0 k2 0 d2

... 0 0
0 0 0 0

... 1 0
0 0 0 0

... 0 1

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u̇1

u̇2

· · ·
u3

u4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

.

AT xT = −BT uT

(2)

The automobile is running on a rigid road with a given profile ζ(t). Then,
the vector of the excitation function reads as

xW =
[
ζ1 ζ2 ζ̇1 ζ̇2

]T
. (3)

The subsystems (1), (2) and (3) are assembled by the coupling relations to the
complete system. To begin with, the 4 × 4-coupling matrix between vehicle
and suspension device is

CFT = E , (4)

what means that the generalized forces are acting immediately from
the suspension devices on the vehicle. The kinematical relations of the pri-
mary suspension and the control gains k5, ..., k8, d5, ..., d8 of the PD-controller
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are integrated in the coupling matrices between the suspension device and
the vehicle as well as between the vehicle and the guideway, respectively,

CTF =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
... 0 0 0 0

0 1 0 0
... 0 0 0 0

0 0 0 0
... 1 0 0 0

0 0 0 0
... 0 1 0 0· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

−k6 0 k5 −bk5

... −d6 0 d5 −bd5

0 −k8 k7 ak7

... 0 −d8 d7 ad7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

CTW =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

· · · · · · · · · · · · · · ·
0 0 0 0
0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Now the complete state equations of the automobile can be compiled. With
(1), (5.20), (2), (5.22) and (3) it follows as discussed in Sect. 5.2 for the
complete vehicle system

ẋF = (AF −BFBTCTF )xF −BFBTCTWxw ,

xF (0) = xF0 . (7)

In particular, it is considered that the matrices AT and CFT are unit matri-
ces. For the special choice of the control gains

k5 = k6 = k3 , k7 = k8 = k4 , d5 = d6 = d3 , d7 = d8 = d4 (8)

one gets again the passively suspensed automobile treated on Problem 2.12.
Then, the corresponding state equations follow from (7), too.
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Assessment Criteria

The assessment of a vehicle’s dynamical properties is related to three essential
motions:

• longitudinal motion (driving and braking),
• lateral motion (guidance and steering),
• vertical motion (suspension and damping).

These three motions of a vehicle are more or less decoupled, so that the as-
sessment criteria can be formulated separately for each motion. Of course,
coupled criteria can be developed if necessary. But the more sophisticated
criteria have to meet also the vehicle’s rating by test drivers. Thus, the ques-
tion of a mathematical formulation of assessment criteria is more difficult
and can often be answered empirically only. Sometimes an interdisciplinary
approach is helpful taking into account ergonomical knowledge.

The criteria to assess the longitudinal motion are known as vehicle per-
formance comprising maximum speed, gradeability and vehicle acceleration.
These criteria are self-explanatory and do not need any further consideration.
However, it should be mentioned that the exact measurement of the vehicle
performance in driving tests is a nontrivial problem.

The essential criterium for the lateral motion is the driving stability. The
vehicle should follow safely a trajectory prescribed by the track or steering
system, respectively. Thus, a stability problem is given, that can be solved
applying the well developed methods of stability analysis in system dynamics.

For the vertical motion the criteria ride comfort and driving safety are
essential. The wheel suspension should absorb the disturbances due to the
road irregularities so that a comfortable ride is achieved. At the same time
the weight of the vehicle should be transferred to the road with minor wheel
vibrations so that the vertical load variations remain small avoiding lateral
force reductions and driving safety deterioration.

Besides the vehicle motions the static and dynamic forces acting on the
vehicle parts are important criteria, because the durability of the vehicle
components depends strongly on the resulting stresses. These loads can be
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calculated in advance by model based numerical simulations. In the following
sections the criteria driving stability, ride comfort and safety as well as some
aspects of durability are considered.

6.1 Driving Stability

The lateral motion is generally characterized by linear or nonlinear state
equations, respectively, see e. g. (5.25)

ẋ(t) = Ax(t) (6.1)
ẋ(t) = a(x, t) , x(t0) = x0 . (6.2)

Therefore, the driving stability is defined as stability in the sense of Lyapunov.
Then it yields: the equilibrium position x(t) = 0 of the dynamical system
(6.2) subject to a(0, t) = 0 is called stable in the sense of Lyapunov if for
any initial time t0 and each ε > 0 a positive number δ = δ(ε, t0) > 0 exists
such that for all initial conditions bounded by

‖x0‖ < δ (6.3)

the corresponding trajectories x(t) remain bounded for all t ≥ 0 as

‖x(t)‖ < ε , t ≥ t0 . (6.4)

Here ‖x(t)‖ means the norm of the vector x. An often used norm is, e.g., the
Euclidian norm ‖x(t)‖ =

√
xTx. If, in addition,

lim
t→∞x(t) = 0 , (6.5)

then the system is called asymptotically stable. Further, the equilibrium po-
sition x(t) = 0 is called instable if it is not stable.

Problem 6.1 Stability of a system of second order
Present for a system of second order with the state vector x = [x1 x2]T the
solutions of an asymptotic stable, a stable and an instable system graphically
in the state plane.

Solution
The trajectories of three different systems of second order are shown in the
state plane, all of them starting from the same initial condition, Fig. 6.1. At
first an ε-neighborhood of the equilibrium position located in the origin of
the frame is chosen. Then, a δ-neighborhood is specified in such a way that
the stable and asymptotic stable trajectories remain completed within the
ε-neighborhood. This means that the δ-neighborhood may be possibly very
small. The Euclidian norm serves as vector norm
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x2

x1

Fig. 6.1. Trajectories of a system of second order shown in the state space

‖x‖ =
√

x2
1 + x2

2 , (1)

where the neighborhoods are characterized by circles with the center at the
origin.

6.2 Ride Comfort

Ride comfort is based on the subjective human perception. Numerous exper-
imental investigations in ergonomics have shown that the human perception
of vibrations depends on the acceleration,

K = K(a) , (6.6)

where K is a nondimensional perception measure and a is the absolute value
of the acceleration in horizontal (x,y) or vertical (z ) direction, respectively,
see Fig. 6.2. Furthermore, the position of the human body (sitting, stand-
ing or lieing) is of importance. In ergonomics the vibration tests have been
performed using deterministic, especially harmonic, excitations. In vehicles,
however, the human body usually is exposed to random vibrations. Therefore,
in the following the different types of excitation are considered separately.
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z

Fig. 6.2. Direction of exposure to vibration of a seated human

6.2.1 Deterministic Excitation

For a rough qualitative assessment of ride comfort during deterministic exci-
tation it yields

K ∼ amax , (6.7)

i.e. the maximum acceleration value is a first perception measure. As a thumb
rule amax ≤ 0.5 m/s2 results in a good ride comfort. More refined relations be-
tween K and a are given in international or national standards that are based
on extensive ergonomical investigations. The ISO International Standard 2631
(1974) or VDI - Richtlinie 2057 (1979), respectively, are better qualified for the
understanding of the assessment problem and will be used firstly. Then, the re-
vised standards published more recently are discussed.

For harmonic excitations the aforementioned standards give a precise rela-
tion that suits well for vehicle dynamics. Starting from the harmonic accelera-
tion

a(t) = A sin ωt , ω = 2πf , (6.8)

with amplitude A[m/s2] and frequency f [Hz] the root mean square (rms)
value arms of the acceleration can be determined,

arms =

√√√√√ 1
T

T∫

0

a2(t)dt =
A√
2

[m/s2] , (6.9)

where the unit m/s2 has to be used. Then the perception measure K reads
for vertical excitation

K = 10arms
√

f , 1 ≤ f ≤ 4 ,

K = 20arms , 4 ≤ f ≤ 8 ,

K = 160armsf
−1 , 8 ≤ f ≤ 80 ,

(6.10)
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and for horizontal excitation

K = 28arms , 1 ≤ f ≤ 2 ,

K = 56armsf
−1 , 2 ≤ f ≤ 80 .

(6.11)

Equations (6.10) and (6.11) can be interpreted as experimentally determined
frequency response functions of the human perception, they are depicted in
Fig. 6.3.
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Fig. 6.3. Frequency responses of the perception measure: a) vertical exposure;
b) horizontal exposure for original standards (1974 or 1975-1979)

From Figure 6.3 a) it can be seen that a vertical excitation between
4 and 8 Hz is perceived as very unpleasant, because in this frequency
range the resonance of the human stomach occurs. The perception K is a
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nondimensional measure characterizing the subjective impression of test per-
sons related to the criteria well-being and comfort, efficiency of labor and
impairment of health, respectively. Here, the exposure time plays an essential
role. The original standards ISO 2631 and VDI 2057, respectively, describe
the relation between exposure time and the mentioned criteria, see Fig. 6.4.
The perception measure required for road vehicles is about

2 < K < 10 . (6.12)

Subclasses of the perception can be defined and the corresponding vibration
levels are described as:

C1 / C2 noticeable ,

D1 / D2 strongly noticeable ,

E1 / E4 very strongly noticeable .

(6.13)

Obviously, the description of perception shows some uncertainties, due to the
subjective human nature.
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6.2.2 Stochastic Excitation

Experimental results for a stochastic excitation of test persons are limited.
However, they confirm the interpretation of the subjective human perception
as response of a vibration system to stochastic excitation, too, and the possi-
bility to describe the perception using methods of linear system theory. The
rms-value of a Gaussian process a(t) is equivalent to its standard deviation
σa,

arms = σa =

√√√√√
∞∫

0

Φa(ω)dω , (6.14)

where Φa(ω) is the single sided power spectral density (PSD) of the process
under consideration. The standard deviation is a scalar parameter character-
izing globally the stochastic process, however, it is frequency independent.
Thus, the weighting of frequencies and the calculation of the rms-value have
to be interchanged what is allowed for linear stochastic systems. This results
in the variance σ2

a of the weighted process a(t),

σ2
a =

∞∫

0

α2|F (ω)|2Φa(ω)dω . (6.15)

Here, α is a dimensional factor, F (ω) is the frequency response function of a
weighting filter and Φa(ω) is the single sided PSD of the mechanical accelera-
tion process a(t). The still unknown quantities of the frequency weighting in
(6.15) are found by comparison with the results for deterministic excitation.
For vertical excitation the dimensional factor α reads

α = 20 s2/m (6.16)

and the frequency response function is given by

|F (ω)| =
1
20

K(arms, f) , f = ω/2π , (6.17)

where the perception measure K according to (6.10) is used.
The frequency response function (6.17) can be well approximated by a

linear weighting filter or shape filter. This yields in the frequency domain

F (ω) = h
T
(iωE − F )−1g

=
b0 + b1(iω) + . . . + br(iω)r

a0 + a1(iω) + . . . + as−1(iω)s−1 + (iω)s
.

(6.18)

Here, h and g are s × 1-vectors and F is a s × s-matrix characterizing the
shape filter. Furthermore, ai, i = 0(1)s − 1, and bj , j = 0(1)r ≤ s are coeffi-
cient of the shape-filter response function. The following relation holds,
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F =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 1
−a0 −a1 −a2 · · · −as−1

⎤

⎥⎥⎥⎥⎥⎦
, g =

⎡

⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤

⎥⎥⎥⎥⎥⎦
, h

T
= [b0b1 . . . br . . . 0] ,

(6.19)

i.e. the system matrix F is chosen as Frobenius matrix. In time domain the
shape filter can be described equivalently by differential equations,

a(t) = αh
T
v(t) ,

v̇(t) = Fv(t) + ga(t) .
(6.20)

Here, v is the s × 1-state vector of the shape filter that is excited by the
acceleration a(t). The scalar product of the s × 1-vectors h and v(t) results
in the frequency weighted scalar acceleration a(t). The coefficients of the
shape filter have to be determined in such a way that the given frequency
response function (6.17) is approximated sufficiently well. This can always be
achieved by choosing the order s of the filter sufficiently large.

6.2.3 Shape Filter for the Human Perception

Now a second order shape filter is determined so that the frequency response
function (6.10) for the human perception of vibration is approximated well.

The shape filter of second order, s = 2, has the following form according
to (6.19) and (6.20):

a = α[b0 b1]
[

v1

v2

]
, (6.21)

[
v̇1

v̇2

]
=
[

0 1
−a0 −a1

] [
v1

v2

]
+
[

0
1

]
a(t) . (6.22)

Choosing the numbers

a0 = 1200 s−2, b0 = 500 s−2,
a1 = 50 s−1, b1 = 50 s−1,
α = 20 s2m−1.

in the case of vertical excitation results in the frequency response function
depicted in Fig. 6.5. It turns out, that already a second order shape filter
approximates the standard ISO 2631 (1974) surprisingly well. The deviations
remain completely within the tolerances allowed by the standard.

Similarly, a second order shape filter regarding the frequency weighting
(6.11) for the horizontal excitation can be determined using the numbers
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Fig. 6.5. Shape filter frequency response of perception in vertical direction

a0 = 75 s−2, b0 = 31.25 s−2,
a1 = 12.5 s−1, b1 = 12.5 s−1,
α = 28 s2m−1.

Thus, the computation of the perception measure K results simply in

K = σa , (6.23)

that includes the frequency weighting automatically. Using the K-value from
(6.23), the exposure time admissible for the criteria comfort, efficiency and
health follows from Fig. 6.4.

6.2.4 Revised Standards for Human Exposure to Whole-body
Vibration

The revised standards, ISO 2631 (2004) and VDI 2057 (2002) use a slightly
changed perception measure, see Fig. 6.6. Moreover, the exposure time is no
longer included in the standards. Instead, it is assumed that the perception
is proportional to the energy involved. Then, it yields for the variances of the
frequency-weighted acceleration σ2

a and the energy-equivalent acceleration
σ2
ae during exposure time Te the relation

σ2
aT0 = σ2

aeTe (6.24)

where the assessment period T0 is usually 8 hours and Te < T0 is the ex-
posure time which may be composed by several segments. The perception is
described immediately with respect to the root mean square of the frequency
weighted accelerations σa as shown in Table 6.1.

The shape filter of the human perception can be easily adapted to the
revised perception measure. Then, the coefficients of (6.18) read as
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Fig. 6.6. Frequency response of perception measure K: original and revised stan-
dards.

a0 = 2170 s−2 , a1 = 77.5 s−1 , b0 = 875 s−2 , b1 = 82 s−1

as shown by Rill (2007).

6.3 Ride Safety

Ride safety is related to the longitudinal braking forces and the lateral guid-
ance forces of a vehicle. The tangential contact forces between tire and road
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Table 6.1. Subjective perception and frequency-weighted acceleration

Root-mean-square σae of Description of
frequency-weighted perception
acceleration a(t)

[m/s2]

< 0.01 not perceptible
0.01 < σae < 0.02 barely perceptible
0.02 < σae < 0.08 easily perceptible
0.08 < σae < 0.32 strongly perceptible

0.32 < σae extremely perceptible

are depending directly on the normal forces in the contact area. Hence, the
remaining minimum wheel load is a criterion for ride safety.

The total wheel load fWheel can be divided into a static load fStat due to
the vehicle weight and a critical dynamic load fDyn,crit generated by vehicle
vibrations,

fWheel(t) = fStat + fDyn,crit(t) , (6.25)

and visualized in Fig. 6.7.

t

fWheel

fStat

fDyn,crit

Fig. 6.7. Statical and dynamical wheel load

The remaining minimum total wheel load reads

fWheel,min = fStat − fDyn,crit . (6.26)

This defines the safety margin R,

R =
fStat − fDyn,crit

fStat
, (6.27)
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a scalar quantity varying in the range of 0 ≤ R ≤ 1. The safety margin for a
vehicle in standstill is R = 1, it can drop for a fast moving vehicle on a rough
road down to R = 0.

For roads with a randomly disturbed surface the dynamic wheel load vari-
ations can be determined from numerical simulations. For an assessment of
the ride safety the standard deviation σf of the vertical wheel load variations
may be used. This yields

R∗ =
fStat − σf

fStat
, (6.28)

where R∗ has to be considered as a statistical quantity.
The computation of the dynamical wheel load variations, i.e. fDyn,crit or

σf , respectively, is based on the state and input quantities of the complete
vehicle system. Depending on the tire model also the relative displacements
and velocities have to be known. Hence, the following general expressions can
be given,

fDyn = bTx or σ2
f = bTP xb (6.29)

where b denotes a n × 1-vector of coefficients, x(t) the n × 1-state vector and
P x the corresponding n × n-covariance matrix.

For railway vehicles the driving safety is closely related to the derailment
safety. According to the many reasons for derailments different safety bound-
aries have been defined, see Krugmann (1982) and Brabie (2007). A primary
reason for derailment is the climbing up of the wheel flange during curving.
This risk can be avoided if the ratio of the acting lateral and vertical forces
in the contact point does not exceed certain boundaries. In this case the
dynamical wheel loads play also a central role.

For trucks the driving safety may be also affected by the motion of sloshing
cargo. In particular, granular and fluid materials are excited by the vehicle’s
manoeuvres as shown in Fig. 6.8.

Fleissner, Lehnart and Eberhard (2009) introduced a new method for the
dynamic simulation of tank trucks. The approach couples Multibody Sys-
tems methods (MBS) and Lagrangian particle methods such as the Discrete
Element Method (DEM) and Smoothed Particles (SPH) using co-simulation.
For the simulation of both, sloshing cargo with free surfaces and granular
materials in tank trucks, the co-simulation approach couples a Lagrangian
framework for the 3D simulation of granular materials and fluid models im-
plemented in Pasimodo (2009) with the commercial multibody system sim-
ulation software Simpack (2009). Simulations can be used to investigate the
impact of different tank designs on the stability of the silo vehicle system.
Comparisons between two different tank designs showed the positive effect
of a subdivision of the tank into compartments in terms of braking stability.
Moreover, simulations show that the lateral motion of a sloshing cargo can
be beneficial in terms of rolling stability in lane change maneuvers.
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Fig. 6.8. Sloshing motion (lateral displacement) of granular cargo during a double
lane change manuever with a speed of 20 m/s2, see Fleissner et al. (2009)

6.4 Durability of Components

The assessment criteria discussed have been related to the motion of the vehi-
cle, they are concerned with the passengers of the vehicle itself. For the design
of a vehicle additional information on the loads acting on the components for
proper dimensioning is required. Since vehicles running on roads or tracks, re-
spectively, are subject to high dynamical loads, for the design of the compo-
nents the dynamical stresses are most important. Thus dimensioning is only
possible with respect to the durability. The dynamical analysis of vehicles may
provide data for the durability design of vehicle components, too.

For the dimensioning of a suspension control arm, Fig. 6.9 the forces
f1(t), f2(t) and f3(t) and the torque l3(t) acting on the joints are essen-
tial. These quantities are reaction forces within the vehicle and do not occur
in the equations of motion. Therefore it is necessary to use the Newton-Euler
equations (2.119) which still include the reactions. An alternative is offered
by the evaluation of all reactions of the system according to (2.123). However,
the computational cost is high. A computationally less expensive method for
the evaluation of the reaction forces was presented by Schramm (1986) by
treating the joints independently from each other.

The reaction forces and torques are the basis for the stress evaluation of
the component under consideration by finite element approaches. A railway
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Fig. 6.9. Dynamical loads acting on a suspension control arm

bogie stress analysis was presented by Claus (2004) the theory of which is
described in Claus and Schiehlen (2002) Finally, with the stress dynamics
characterizing the cycles of the stress, the durability can be estimated see,
e.g., Melzer (1994).

In addition to the durability the wear of railway wheelset is an important
problem where short-term dynamics and long-term wear have to be consid-
ered in a feedback loop, see Meinders and Meinke (2003).
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Computational Methods

The global vehicle system is completely described by the state equations
(5.28) or (5.29), respectively. The state equations represent immediately the
basis for the assessment of the driving stability, too, see (6.1) and (6.2).
For the assessment of the driving comfort, in contrary, additional dynamical
effects have to be considered as described by the shape filter (6.20). Thus, the
state equations of the vehicle system have to be supplemented by the shape
filter prior to the computational analysis.

The input of the shape filter is the acceleration a(t) at some seat position, a
quantity composed of the states and excitation variables of the entire vehicle
system,

a(t) = cTx(t) + dTw(t) , (7.1)

where c is a weighting vector of the states and d a weighting vector of the
excitations. Thus, the state equations (5.28) extended by the shape filter
(6.20) read
[
ẋ
v̇

]

︸︷︷︸
=
[
A 0
gcT F

]

︸ ︷︷ ︸

[
x
v

]

︸︷︷︸
+
[
B

gdT

]

︸ ︷︷ ︸
w ,

˙̃x = Ã x̃ + B̃ w .

(7.2)

The extended system (7.2) has exactly the same structure as the vehicle
system (5.28), so that system (5.28) is considered subsequently without loss
of generality. The required computational methods can be subdivided into
numerical and analytical methods that are described in the following sections.

7.1 Numerical Simulation

The given set of linear or nonlinear differential equations (5.28) or (5.29),
respectively, can be analyzed by numerical time integration. For random
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excitations a single realization is sufficient due to ergodicity. In the case of
nonlinear systems the random response in general is not normal distributed
any more. Even so, in many cases one computes the first two moments only
for assessment purposes. However, the effort of numerical simulations is al-
ways large due to the complexity of the vehicle system models. Thus, the
proper choice of the integration methods is very important. Nevertheless, it
is not possible to give general recommendations since on the one hand new in-
tegration methods are developed by numerical mathematicians, on the other
hand the performance of the computers is increasing continuously. Often the
engineer applies an integration methods at hand and performs test runs for
comparison, e.g., by using just Matlab.

A theoretical review of time integration methods can be found in
Hairer et al. (2008). The numerical time integration for the simulation of
automobile motions is considered by Rill (1994).

7.1.1 Simulation of Vertical Motions of Vehicles

Different integration methods are applied to the simulation of the vertical
motion of the front and rear axle of a nonlinear 16 degrees of freedom (16-
DOF) vehicle model under a ramp excitation. Furthermore, a vehicle with
5 degrees of freedom (5-DOF) in vertical direction is considered as a test
example for a random excitation.

The ramp is crossed first by the front axle and then by the rear axle, this
results in a time delay in the corresponding vibration responses, see Fig. 7.1.
According to Rill (1981), the following time integration codes are compared:
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Fig. 7.1. Vertical response of front and rear wheels of a 16-DOF vehicle model
after ramp excitation
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• Single step methods, Runge-Kutta-Fehlberg procedure of order 5 and
6 (RKF5, RKF6),

• Predictor-corrector multi-step methods, Shampine-Gordon procedure
(SGDE),

• Extrapolation methods, Stoer-Bulirsch procedure (SB).

The results of the large vehicle model are found in Fig. 7.2 where the maximal
deviation in the state variables from the reference solution is shown. It can
be seen that the Shampine-Gordon procedure (Shampine and Gordon, 1984)
leads to the best results with respect to computing time and accuracy.

reference solution SGDE at ε = 10−10
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Fig. 7.2. Comparison of time integration codes for a 16-DOF vehicle model after
ramp excitation

The random excitation of the small vehicle model is generated by a ran-
dom superposition of harmonic functions characterizing the road roughness
profile, see Fig. 7.3 and Table 7.1. The vertical motion of the front axle, see
Fig. 7.4, follows the road profile, whereas the high frequency components of the
excitation are no longer visible. Nevertheless, the integration procedure must
take into account the high frequencies. Applying the procedures mentioned
above, lead to the results presented in Fig. 7.5 where the maximal deviation in
the state variables from the reference solution is shown, too. Here, the simple
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Runge-Kutta-Fehlberg procedures are superior due to the fast evaluation of
the right hand side of the differential equations.

The numerical integration procedures result in time histories that have
to be evaluated in order to assess ride comfort and safety. In the case of
random excitation the computation of the performance criteria requires time
averaging what can be easily executed during simulation by an additional
time integration.
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Fig. 7.3. Realization of a random process of road roughness

Table 7.1. Approximation of random excitation N = 28

k 1 − 10 11 − 19 19 − 28

∆Ωk [rad/m] 0.0628 0.628 6.28

Ωk [rad/m] k∆Ωk (k − 9) ∆Ωk (k − 8) ∆Ωk

Φk Uniformly distributed random number 0 ≤ Φk ≤ 2π

L (Φk) AS/Ω2
k, AS = 3·10−5 m
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The high computation times shown in Fig. 7.2 and Fig. 7.5 are due to the
computer technology in the early 1980s. But for the comparison this does not
matter.

In a more recent study by Rill and Schiehlen (2009) the efficiency and
accuracy of Matlab time integration codes are compared. As benchmark
the vertical motion of a 8-DOF vehicle is used with bump and random
excitation. Matlab offers seven solvers for technical computing.

ode23 is a one-step solver. Based on an explicit Runge-Kutta (2,3) pair
of Bogacki and Shampine. It may be more efficient than ode45
at crude tolerances and in the presence of mild stiffness.

ode45 is a one-step solver. Based on an explicit Runge-Kutta (4,5) for-
mula, the Dormand-Prince pair. It is a one-step solver - in com-
puting, it needs only the solution at the immediately preceding
time point. In general, ode45 is the best function to apply as a
“first try” for most problems.

ode113 Variable order Adams-Bashforth-Moulton PECE solver. It may
be more efficient than ode45 at stringent tolerances and when
the ODE function is particularly expensive to evaluate. ode113
is a multistep solver - it normally needs the solutions at several
preceding time points to compute the current solution.

ode15s Variable-order solver based on the numerical differentiation for-
mulas (NDFs). Optionally it uses the backward differentiation
formulas, BDFs, (also known as Gear’s method). Like ode113,
ode15s is a multistep solver. If you suspect that a problem is stiff
or if ode45 failed or was very inefficient, try ode15s.

ode23s Based on a modified Rosenbrock formula of order 2. Because it is
a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which
ode15s is not effective.

ode23t An implementation of the trapezoidal rule using a “free” inter-
polant. Use this solver if the problem is only moderately stiff and
you need a solution without numerical damping.

ode23tb An implementation of TR-BDF2, an implicit Runge-Kutta for-
mula with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order 2. Like
ode23s, this solver may be more efficient than ode15s at crude
tolerances. For the reference a partially implicit Euler solver is
used considering the equations of motion.

As reference a partially implicit Euler solver is used considering the equations
of motion (2.96) where ẏ(t) is replaced by v(t). With the explicit step

v(t + h) = v(t) + hM (y (t))−1 (q (y (t) ,v (t) , t) − k (y (t) ,v (t))) , (7.3)

the new velocity v (t + h) is found where h is the step-size. Further, an im-
plicit step yields the new position
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y(t + h) = y(t) + hv (t + h) . (7.4)

The partial implicit Euler code is denoted as ode1m. The results for step-sizes
of h = 1 ms and h = 0.1 ms are used for the comparison with the Matlab
time integration results.

All Matlab solvers use automatic step-size control, i.e., the simulation
results are computed with different time intervals. Therefore, the computa-
tional efficiency is checked by integral criteria as it is standard in vehicle
dynamics for the assessment of the dynamical properties driving comfort and
driving safety using root mean square (rms) values or effective (eff) values,
respectively,

weff =

√
1
T

∫ T

0

w2 (t)dt. (7.5)

The computation of this time integral is executed by the solver used for
the simulation, too. The criteria chosen are the computation time related to
ode1m with step-size h = 1 ms, the driver’s acceleration related to the gravity
acceleration of 9.81 m/s2 and the dynamic wheel loads related to the static
wheel loads. The results are summarized in Fig. ??. It turns out that all Mat-
lab codes may meet the required accuracy due to automatic step-size control.
However, there are major differences with respect to the computational effi-
ciency. In particular, the implicit codes ode15s, ode23s, ode23t, and ode23tb
consume extremely large computation times. Most favorable was the explicit
code ode45 based on an explicit Runge-Kutta (4,5) formula. On the other
hand, for low accuracies and/or real time simulations the partially implicit
Euler code ode1m is an interesting alternative.

7.2 Linear Systems

For the analysis of linear vehicle models the efficient tools of the linear vibra-
tion and system theory can be used. Then, a numerical simulation is generally
not really required.

7.2.1 Stability

Many established methods are available for the stability analysis of linear
systems, see e.g. Mueller and Schiehlen (1985). In addition to the eigenvalue
criteria there may be used for simple models the criteria based on the char-
acteristic equation (Hurwitz, Routh) and for purely mechanical systems the
criteria based on the parameter matrices of the related differential equations
of the second order (Thomson and Tait, P.C. Mueller). In vehicle dynamics,
however, the mathematical models or differential equations, respectively, are
often more complex, and a numerical solution of the eigenvalue problem has
to be performed.
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Fig. 7.6. Code comparison for bump and random excitation
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The linear system

ẋ = Ax , x(0) = x0 (7.6)

with the time-invariant n × n-system matrixA is asymptotically stable if and
only if all eigenvalues λi have a negative real part Re λi < 0, i = 1(1)n. As
usual in engineering, in vehicle dynamics asymptotic stability of the system
is required. The lateral vibrations of a railway bogie, e.g., shall damp out in
time after impulsive excitation.

Problem 7.1 Stability of the hunting motion of a railway wheelset
According to Klingel’s formula (31), (32) in Problem 2.7 a kinematically
rolling railway wheelset performs a harmonic undamped oscillation. It has to
be shown that the criterium for asymptotic stability is not met.

Solution
The state equations of the kinematics of a railway wheelset read according
to (28) of Problem 2.7 as

[
γ′

α′

]
=

⎡

⎢⎢⎣
0

1
r0

−1
q

0

⎤

⎥⎥⎦

[
γ
α

]
. (1)

The eigenvalues of this system follow form its characteristic equation

det(λE −A) = det

⎡

⎢⎢⎣
λ

1
r0

1
q

λ

⎤

⎥⎥⎦ = λ2 +
1

r0q
= 0 (2)

as

λ1,2 = ±i
√

1
r0q

. (3)

Thus, it yields Re λi = 0, i.e. the railway wheelset is kinematically not asymp-
totically stable. To achieve asymptotic stability the model has to be extended
by dynamical phenomena due to the rolling contact.

7.2.2 Frequency Response Analysis

Harmonically excited vehicles are rarely found in practice. However, the sinu-
soidal excitation is widely used in vehicle testing due to its good repeatability.
Then, for comparison a theoretical frequency response analysis is required,
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too. Furthermore, frequency responses have to be used for the investigation
of unbalance phenomena.

An asymptotically stable linear system under harmonic excitation

ẋ = Ax+ b(1) cosΩt + b(2) sin Ωt

= Ax+ beiΩt + be−iΩt (7.7)

with the time-invariant n × n-system matrix A and the real n × 1-excitation
vectors b(1), b(2) or the complex n × 1-excitation vector b yields the stationary
response

x(t) = g(1) cosΩt + g(2) sin Ωt

= geiΩt + ge−iΩt (7.8)

with the corresponding n × 1-vectors g(1), g(2) or g of the frequency response.
Here, b and g, respectively, mean the conjugate complex vectors. The corre-
sponding complex n × n-frequency response matrix F reads as

g = (iΩE −A)−1b = Fb . (7.9)

Then, the amplitude frequency response ai of the i-th coordinate of the state
vector is given by

ai(Ω) = 2
√

[Re gi(Ω)]2 + [Im gi(Ω)]2 . (7.10)

For the evaluation of frequency responses often numerical methods are used
to avoid the explicit handling of complex quantities what is not so easy.

Problem 7.2 Unbalance excitation of wheel vibrations
The vertically moving wheels may perform vibrations excited by unbalances,
Fig. 7.7. The frequency response of these vibrations is required.

Solution
The equation of motion of one wheel reads with respect to its equilibrium
condition as

mz̈ + dż + (k1 + k2)z = mεΩ2 cosΩt (1)

where ε = mur/m characterizes the magnitude of the unbalance. The state
equations read as

[
ż
z̈

]
=

[
0 1

−k1 + k2

m
− d

m

]

︸ ︷︷ ︸
A

[
z
ż

]
+

[
0

1
2
εΩ2

]

︸ ︷︷ ︸
b

eiΩt +

[
0

1
2
εΩ2

]

︸ ︷︷ ︸
b

e−iΩt , (2)

and for the frequency response matrix it follows
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Fig. 7.7. Vehicle wheel with unbalance

F =
1

−Ω2 + iΩ
d

m
+

k1 + k2

m

⎡

⎢⎢⎣
iΩ +

d

m
1

−k1 + k2

m
iΩ

⎤

⎥⎥⎦ . (3)

The complex frequency response g1 of the state variable z results in

g1 =

(
−Ω2 +

k1 + k2

m

)
− iΩ

d

m
(

−Ω2 +
k1 + k2

m

)2

+ Ω2

(
d

m

)2

1
2
εΩ2 . (4)

Then, it yields for the amplitude frequency response

a1(Ω) =
εΩ2

√(
k1 + k2

m
− Ω2

)2

+
(

d

m
Ω

)2
. (5)

Figure 7.8 shows frequency responses for different values of the shock absorber
characteristic.

7.2.3 Random Vibration

The investigation of random vibrations may be performed in the frequency
domain using the spectral analysis or in the time domain applying the co-
variance analysis. Assuming that x(t) = 0 is an asymptotically stable equi-
librium position, then from E {w(t)} = 0 it follows E {x(t)} = 0, i. e. the
mean value of the state vector vanishes in the steady state. Thus, as essen-
tial goal it remains to calculate the characteristic variances, e.g. the variance
σ2
a = E

{
a2(t)

}
of the frequency-weighted acceleration a(t).
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Fig. 7.8. Amplitude frequency response of a vertical wheel vibration excited by
unbalance

7.2.3.1 Spectral Density Analysis

The spectral density (PSD) is a characteristic quantity of a random process
in the frequency domain. In particular, for linear systems the spectral density
of the input and output processes are related to each other by its frequency
response. However, one should keep in mind that the ride comfort and safety
criteria depend primarily on variances and not on spectral densities.

The n × n-spectral density matrix Sx(ω) of the entire vehicle system de-
scribed by the state equations (5.28), where A = const and B = const are
assumed, follows for an excitation by the white noise process w(t) ∼ (0,QW )
as

Sx(ω) = (iωE −A)−1BQWB
T(−iωE −A)−T . (7.11)

Thus, the spectral density matrix Sx(ω) is gained from the input intensity
matrix QW by matrix multiplications with the frequency response matrix
F x = (iωE −A)−1. Since the state vector x(t) and the system matrix A
often can be partitioned it is possible to get partial results by the spectral
density matrices of the road excitation, the suspension system and the chassis,
respectively. This may reduce the numerical effort considerably. The scalar
spectral density of the scalar acceleration a(t), given by (7.1), reads

Sa(ω) = (cTF x(ω)B + dT)QW (BTFT
x (−ω)c+ d) (7.12)
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where the n × n -frequency response matrix F x has been used again. Equa-
tion (7.12) shows that the spectral density is a quadratic expression, i. e.,
the sum of quantities leads to additional terms in the result. Using the spec-
tral density (7.12), the frequency weighting required due to (6.15) can be
performed very easily. It remains

Sa(ω) = α2
∣∣F (ω)| 2Sa . (7.13)

The variance follows from the spectral density by integration over an infinite
interval,

σ2
a =

∞∫

−∞
Sa(ω)dω . (7.14)

The numerical computation of the spectral density (7.14) is generally not
difficult. However, one has to deal with complex matrices, many approxima-
tion points and a very large integration interval. This can lead to numerical
errors and considerable computation times. The integration (7.14) is avoided
applying the covariance analysis as shown in the next section.

Special care requires the spectral analysis of multi-axle vehicles. The ex-
citation at different axles is given by an excitation function with time delay,

Bw(t) =
m∑

i=1

Biζi(t) ,

ζi(t) = ζ(t − ti) , 0 = t1 < t2 < ... < tm ,

ti =
li
v

, i = 1, ..., m ,

(7.15)

where li denotes the distance between the front axle, and the i-th axle and
v = const is the vehicle speed. An example of an excitation with time delay
is shown in Fig. 7.1.The spectral density matrix of a two-axle vehicle under
random excitation reads

Sx(ω) = (iωE −A)−1[B1SζB
T
1 +B2SζB

T
2 + eiω(t1−t2)B2SζB

T
1

+ eiω(t2−t1)B1SζB
T
2 ](−iωE −A)−T .

(7.16)

In frequency domain, the time delay (t2 − t1) results in additional terms,
weighted by the exponential function.

7.2.3.2 Covariance Analysis

In contrast to spectral density analysis, the covariance analysis yields directly
the variances that are required for the assessment of the vehicle performance.
The covariance matrix of the entire vehicle system follows from an algebraic
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equation, the so-called Lyapunov matrix equation, and integrations are not
required. An essential prerequisite of the covariance analysis is a white noise
input process. This can always be achieved by modeling the random vehicle
excitation by means of a shape filter.

The Lyapunov matrix equation corresponding to the state equations (5.28)
of the entire vehicle system reads

AP x + P xA
T +BQWB

T = 0 (7.17)

where P x = E{xxT} denotes the symmetric n × n-covariance matrix and
QW is the r × r-intensity matrix of the white noise input. An extensive
derivation of (7.17) can be found in Mueller and Schiehlen (1985). Stable
numerical procedures to solve the Lyapunov matrix equation are given in
Smith (1968) and Kreisselmeier (1972), and are available in Matlab, too. As
a result one gets the variances of all state variables of the system. However,
the computation of the ride comfort requires the variance of the frequency
weighted acceleration. Thus, the covariance analysis has to be applied to the
extended system (7.2). The covariance matrix of the extended state vector x̃
reads

P x̃ =
[
P x P xv

P vx P v

]
(7.18)

where P xv = PT
vx holds. The s × 1-vector process v(t) yields according to

(6.20) immediately the frequency weighted acceleration and its variance

σ2
a = α2h

T
P v h . (7.19)

This is the relation corresponding to (7.14). The investigation of multi-axle
vehicles is also possible by the covariance analysis. The theory needed is
available, as shown in Mueller et al. (1980). In contrast to spectral analysis,
the covariance analysis can also be applied to nonstationary and nonlinear
problems without difficulties.

Problem 7.3 Random vibrations of a single wheel
A wheel guided in vertical direction is excited by the road roughness and
performs random vibrations, see Fig. 7.9. The variance of the dynamic wheel
load variations has to be investigated applying the covariance analysis.

Solution
The road roughness is characterized by white velocity noise ζ̇(t) ∼ (0, q). The
equation of motion of the wheel reads

mz̈ + dż + (k1 + k2)z = k1ζ(t) , (1)

where ζ(t) is a scalar random process. After differentiation with respect to
time the corresponding state equation has the form
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ζ(t)
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dk2

Fig. 7.9. Vehicle wheel subject to random excitation

[
z̈...
z

]

︸ ︷︷ ︸
=
[

0 1
−κ12 −δ

]

︸ ︷︷ ︸

[
ż
z̈

]

︸︷︷︸
+
[

0
κ1

]

︸ ︷︷ ︸
ζ̇(t) ,

ẍ = A ẋ + Bw(t) ,

(2)

where the abbreviations δ = d/m, κ12 = (k1 + k2)/m, κ1 = k1/m have been
used and the random excitation is given by a white velocity noise process.
Then, the Lyapunov equation reads

AP ẋ + P ẋA
T +BqBT = 0 , (3)

where the 2 × 2-covariance matrix of the first derivative ẋ of the state vector
is introduced,

P ẋ =
[

P11 P12

P12 P22

]
=
[

Pżż Pżz̈
Pżz̈ Pz̈z̈

]
. (4)

The solution of (3) yields the following matrices

AP ẋ =
[

P12 P22

−κ12P12 − δP12 −κ12P12 − δP22

]
, (5)

BqBT =
[

0 0
0 κ2

1q

]
. (6)

Due to the symmetry of the covariance matrix from (3) it follow altogether
three linear equations for the three unknowns,
⎡

⎣
0 2 0

−κ12 −δ 1
0 2κ12 2δ

⎤

⎦

⎡

⎣
P11

P12

P22

⎤

⎦ =

⎡

⎣
0
0

κ2
1q

⎤

⎦ , (7)

having the solutions
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P11 =
k2
1

2d(k1 + k2)
q , P12 = 0 , P22 =

k2
1

2dm
q . (8)

The weighting vector b of the dynamic wheel loads reads according to (1)

fDyn = k1(z − ζ) =
[−d −m

]

︸ ︷︷ ︸
bT

[
ż
z̈

]

︸︷︷︸
ẋ

, (9)

where k2 � k1 has been regarded. The variance σ2
f of the dynamic wheel load

variation reads

σ2
f = bTP ẋb =

[
k1d

2
+

k2
1m

2d

]
q . (10)

It turns out, that σ2
f becomes a minimum if the normalized damping coeffi-

cient D = d/(2
√

k1m) = 0.5 is chosen. In this case of optimal damping it fol-
lows σ2

f = k1

√
k1m q. This result shows that small wheel masses m and small

tire stiffnesses k1 are reducing the dynamic wheel load variations. However,
there are design limits for these parameters due to the durability of wheel
and tire.

The assumption k2 � k1 is necessary in this example, since an idealized
white velocity noise process has been considered. In the general case of colored
noise this assumption is not required.

7.3 Nonlinear Systems

Nonlinearities occur by all events in vehicle dynamics if the amplitudes are
strongly increasing due to self-excitation or forced excitation, respectively.
Typical examples include nonlinear characteristics of suspension devices to
avoid hard impacts in vertical direction. The lateral motion of a railway
wheelset is also strongly nonlinear if large displacements occur resulting in
lateral impacts of the wheel flange. Therefore, some approximation methods
for nonlinear vibrations are discussed. In contrary to numerical simulations,
approximation methods provide only qualitative results.

7.3.1 Harmonic Linearization

Harmonic linearization in an approximation procedure for free self-excited
oscillations and harmonically forced nonlinear vibrations. The state equations
(5.29) are now decomposed in a linear and a nonlinear part,

ẋ(t) = Ax(t) + f(x) + bc cosΩt + bs sin Ωt . (7.20)
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Further, it is assumed that a periodic solution with the period T exists

x(t) = x(t + T ) . (7.21)

where two cases are distinguished,

• vanishing excitation, T unknown,
• harmonic excitation, T = 2π/Ω known.

The periodic solution is now approximated by a harmonic solution

x(t) ≈ xh(t) = xc cosΩt + xs sin Ωt . (7.22)

The nonlinearities are assumed to show odd characteristics

f(x) = −f(−x) , (7.23)

and shall be described by a linear ansatz at the best

f(x) ≈ F hx . (7.24)

Thus, the remaining error

e(t) = f (xh(t)) − F hxh(t) (7.25)

has to be minimized

∂

∂Fhij

T∫

0

eTedt = 0 , i, j = 1(1)n . (7.26)

With this condition, the non-unique equivalent n × n-coefficient matrix

F h = F h(xc,xs; Ω) . (7.27)

can be found. Then, the linearized substituted system has the form

x(t) = (A+ F h)x(t) + bc cosΩt + bs sin Ωt . (7.28)

By inserting of the approximated solution (7.22) in (7.28) one gets conditions
for the vectors xs, xc and the frequency Ω if not known.

The coefficients of the equivalent matrix F h are available in tables for
many nonlinearities, see e.g. Magnus et al. (2008). The evaluation of the
unknown xs, xc and Ω is not unique and has to be handled in each case
individually.

Problem 7.4 Harmonic linearization of self-excited vibrations
The development of nonlinear hunting motions of a railway wheelset can be
explained qualitatively by an instability for small amplitudes and a strong
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damping for large amplitudes due to the wheel flange. The resulting hunt-
ing represents a limit cycle as it is found with the Van der Pol differential
equation. Evaluate the limit cycle by harmonic linearization.

Solution
The Van der Pol differential equation reads as

ÿ + (−2δ + εy2)ẏ + y = 0 . (1)

where δ is the positive real part of the eigenvalues of the corresponding linear
system (ε = 0). On the other hand large amplitudes of y(t) result in a strong
damping to ε > 0.

The state equations read as
[

ẏ
ÿ

]

︸︷︷︸
=
[

0 1
−1 2δ

]

︸ ︷︷ ︸

[
y
ẏ

]

︸︷︷︸
+
[

0
−εy2ẏ

]

︸ ︷︷ ︸
,

ẋ = A x + f(x)

(2)

where the nonlinear 2 × 1-vector function f(x) is replaced by the linear
approximation

f(x) =
[

F11 F12

F21 F22

]

︸ ︷︷ ︸
F h

[
y
ẏ

]

︸︷︷︸
x

. (3)

With the harmonic solution (7.22) based on the vectors

xc =
[

a
0

]
, xs =

[
0

−aΩ

]
(4)

one gets from (7.26)

F11 = F12 = F21 = 0 , F22 = −εa2

4
. (5)

Inserting (2) to (5) in (7.28), it follows

a =

√
8δ

ε
, Ω = 1 . (6)

The limit cycle has the amplitude A =
√

8δ/ε and the frequency is Ω = 1.
In Fig. 7.10 some trajectories are shown.

Problem 7.5 Harmonic linearization of a forced oscillator
The suspension springs of a vehicle show a nonlinear progressive characteristic
to avoid impacts by large displacements. This behaviour is modeled by an
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limit cycle
x2

x1

limit cycle

linearized
harmonically

Fig. 7.10. Limit cycle of the Van der Pol differential equation

oscillator with a cubic spring what results in a Duffing differential equation.
Evaluate the frequency response by the method of harmonic linearization.

Solution
The Duffing differential equation reads as

ÿ + y + αy3 = b cosΩt . (1)

According to the ansatz function (7.22) and (7.24) one gets

yh = A cosΩt (2)

and

y3 ≈ khy . (3)

From (7.26) it follows

∂

∂kh

T∫

0

(y3
h − khyh)2dt = 0 (4)

or

kh =
3
4
A2 . (5)
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Thus, the differential equation (1) is substituted by a linear system where
the eigenfrequency depends on the amplitude A of the oscillator,

ÿ +
(

1 +
3
4
αA2

)
y = b cosΩt . (6)

For the evaluation of the still unknown amplitude A, (2) is inserted in (6).
Then, it remains the relation

3
4
αA3 + (1 − Ω2)A − b = 0 . (7)

This polynomial of the third order has a maximum of three real roots which
result in a non-unique frequency response A(Ω), Fig. 7.11. The resonance of
the undamped system (1) at Ω = 1 does not longer exist, it remains a finite
amplitude A(Ω = 1) = 4b/3a. It turns out that the frequency response of
nonlinear systems is characterized by a bent backbone.

bent
backbone curve

A0

1 Ω

A(Ω)

Fig. 7.11. Frequency response of Duffing differential equation

7.3.2 Statistical Linearization

The statistical linearization deals with the qualitative analysis of nonlinear
stochastically forced systems. The stochastic differential equations read ac-
cording to (7.20) as

ẋ(t) = Ax(t) + f(x(t)) +Bw(t) , (7.29)

where w(t) is a stationary, Gaussian and zero mean process, E{w(t)} = 0.
The assumption is that there exists an also Gaussian and stationary solu-

tion process

x(t) ≈ xst(t) , E{xstxT
st} = P x , (7.30)
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and that the nonlinearities have an odd characteristic (7.23). Then, the non-
linearity is approximated by a linear ansatz,

f(x) ≈ F stx (7.31)

and the expected value

E{eT
stest} = Min (7.32)

of the resulting error

est = f (xst(t)) − F stxst(t) (7.33)

shall be minimized. After some lengthly evaluations one gets

F st = F st(P x) . (7.34)

The linearized substituted system has the form

ẋ(t) = (A+ F st)x(t) +Bw(t) . (7.35)

It turns out that for the determination of the approximated solution process
always the complete covariance matrix P x is required. This means that the
covariance analysis is most adequate for nonlinear systems. Further details
are reported by Mueller et al. (1980).

7.3.3 Investigation of Linearized Systems

The methods presented in Sect. 7.2 for linear system can be applied to the
linearized system (7.28) and (7.35), too. However, the stability is theoretically
not guaranteed. Nevertheless one gets often useful results.

The linearized state equations (7.28) of self-excited systems bc = bs = 0
hold always a pair of purely imaginary eigenvalues λ = ±iω and therefore,
they are not asymptotically stable. But it is possible to check at least the
orbital stability of the limit cycle by considering the system behavior in the
limit cycle’s neighborhood. For this purpose the amplitudes of the solution
ansatz (7.22) are varied by a parameter µ = 1 + ε, ε � 1. Orbital stability is
at hand if the following conditions are fulfilled:

µ = 1 : λ1,2 = ±iω ; limit cycle
Re λi < 0 , i = 3(1)n ;

(1 − ε) < µ < 1 : Re λ1,2 > 0 , Reλi < 0 , i = 3(1)n ;
1 < µ < (1 + ε) : Re λi < 0 , i = 1(1)n .

Obviously these conditions are based on plausibility considerations only.
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The frequency response analysis of harmonically linearized systems results
in an amplitude-dependent frequency response matrix

F (Ω) = [iΩE −A− F h(xc,xs; Ω)]−1 (7.36)

which is known in control theory as describing function, too. A simple case
of frequency response is given in Problem 7.5.

The investigation of random vibrations of statistically linearized systems
requires the covariance matrix of the solutions process. Starting with the
spectral density matrix Sw of the excitation one gets the spectral density
matrix of the solution

Sx(ω) = F (ω;P x)BSwBTFT(−ω;P x) . (7.37)

On the other hand, it yields for the covariance matrix

P x =

+∞∫

−∞
Sx(ω;P x)dω (7.38)

a relation which can be solved only iteratively by numerical methods

P (i+1)
x =

∞∫

−∞
Sx(ω;P (i)

x )dω , lim
i→∞

P (i)
x = P x . (7.39)

This procedure is computationally costly since the iteration (7.39) involves
an improper integral.

The covariance analysis of a statistically linearized system results in a
nonlinear Lyapunov matrix equation as

[A+ F st(P x)]P x + P x [A+ F st(P x)]
T +BQWB

T = 0 (7.40)

where w(t) ∼ (0,QW ) means a white noise process. This equation has also
to be solved numerically but it is a purely algebraic equation. Moreover,
the convergence is proven so that covariance analysis provides theoretically
well-grounded results.

The approximation methods for nonlinear systems assume that the system
show a quasi-linear dynamical behavior. In particular, periodical solutions are
searched. But nonlinear system may show strongly irregular, chaotic behav-
ior, too. For their analysis more recently developed methods of nonlinear
dynamics are required, see, e.g., Moon (1987) and Kreuzer (1987). Due to
the nonlinearities and the high number of degrees of freedom in vehicles, see
True (2007), undoubtedly chaotic vibrations may occur. However, the distinc-
tion between stochastically excited random vibrations and nonlinear chaotic
vibration is theoretically intricate and experimentally hardly possible.
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7.4 Optimization Problems

Optimal behavior of a vehicle system is achieved by the proper choice of
design variables. Since the driver does not have any influence on the condition
of the guideway the design variables have to be chosen from the parameters
pj, j = 1(1)s, of the vehicle and the suspension and guidance devices. These
parameters are summarized in an s × 1-vector

p = [p1, p2, . . . , ps]
T (7.41)

and the state equations (5.28) are rewritten in the form

ẋ(t) = A(p, t)x(t) +B(p, t)w(t) . (7.42)

As performance criteria for an optimization the assessment criteria intro-
duced in Chap. 6 are at hand. These criteria can be classified in instationary
processes like driving stability and stationary processes like driving comfort
and safety on uneven guideways. Thus, a general cost function reads as

J =
1
T

T∫

0

xT
instatQinstatxinstatdt +

1
T

T∫

0

xT
statQstatxstatdt (7.43)

where Q are the corresponding n × n-assessment matrices and T means the
period considered. Inserting (7.42) into (7.43) it remains

J = J(p) = Min . (7.44)

This optimization condition can be usually only computationally evaluated.
In addition to (7.44) also constraints of the parameters have to be considered.

The optimization of mechanical systems was primarily developed in struc-
tural dynamics, see, e.g., Haug and Arora (1979). The multicriteria optimiza-
tion problems were considered in detail in Stadler (1988). Contributions to
the parameter optimization of multibody systems are due Bestle (1994). An
typical application of these methods was presented by Wimmer and Rauh
(1996).

Furthermore, genetic algorithms may be used to the design optimization
of vehicle systems, see e.g., Baumal et al. (1998).
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Longitudinal Motions

The longitudinal or forward motion, respectively, is most important for all
vehicles representing the desired motion for any transportation task. In par-
ticular, the performance of a vehicle depends on the driving performance
achieved by its propulsion system resulting in the longitudinal motion what
will be discussed in the following. In this chapter only road vehicles are consid-
ered particularly challenging by the tire elasticity. From the many references
the books by Gillespie (1992), Mitschke and Wallentowitz (2004) and Wong
(2001) are mentioned.

8.1 Elastic Wheel

An essential component of drive and brake systems is the wheel with an elastic
tire which has been treated in detail in Sect. 3.4.4. The important relations
for the longitudinal motion are summarized once again in this Section. The
contact force ft1 of the elastic wheel depends according to (3.138) on the
longitudinal slip s where the definitions on the last column of Table 3.9 are
used. Then, it yields

ft1 = ϕ1(s)fn , (8.1)

where ϕ1 is the rolling contact coefficient and fn means the normal force.
The longitudinal slip is distinguished by the kind of motion:

Driving slip sA =
ν1

ν1 − 1
,

Braking slip sB = ν1 (8.2)

where ν1 = 1 − ωre/vc, see also (3.108). Then, it yields

0 ≤ sA,B ≤ 1 . (8.3)
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The special cases included are sA,B = 0 for pure rolling, sA = 1 for wheelspin-
ning (pure slipping) and sB = 1 for wheel locking (pure sliding). The differ-
ences in the rolling contact coefficient for driving and braking are neglected
here, ϕA(sA) = ϕB(sB) = ϕ1(sA,B). A typical rolling contact coefficient in
dependency of the slip s is shown in Fig. 3.9. Moreover, the rolling contact
coefficient depends on many factors:

• tire type,
• tire profile,
• road surface,
• surface condition (wet, dry),
• speed,
• wheel load,
• lateral force.

Therefore, the rolling contact coefficient has to be measured experimentally.
Nevertheless, the models presented in Sect. 3.4.4 are most helpful as well as
Pacejka’s magic formula, see Pacejka (2002). As a result tire characteristics
as shown in Fig. 8.1 are found.

0 1

transition slip

deformation slip

slide slipµ

µ0

s

ϕ(s)

Fig. 8.1. Rolling contact coefficient ϕ in dependency of slip s

It follows once again for the elastic tire:

• forces can not be transmitted without slip.

Standard driving conditions are characterized by a slip of 3 − 10%, i.e., the
slip is due to the deformation of the tire but there is no sliding on the road
surface. In Table 8.1 some characteristic values of the sticking and sliding
friction coefficient µ0 and µ are summarized which limit the maximal value
of the rolling contact coefficient. The rolling contact coefficients are subject
to major variations resulting in the well-known problems for safe braking.
Therefore, it is desirable to use the maximum rolling contact coefficient if
required. For this purpose anti-lock braking systems (ABS) and acceleration
slip regulators (ASR) have been developed which ensure the utilization of
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Table 8.1. Friction coefficients between tire and road

Road Static friction Dynamic friction
coefficient µ0 coefficient µ

Asphalt and concrete (dry) 0.8 - 1.0 0.75
Asphalt (wet) 0.5 - 0.7 0.45 - 0.6
Concrete (wet) 0.8 0.7
Gravel 0.6 0.55
Snow 0.2 0.15
Ice 0.1 0.07

the maximum rolling contact coefficient by control engineering means. More
recently both systems have been included in an electronic stability program
(ESP). For engineering details see Bosch (2007), Leiber and Czinczel (1979),
Burckhardt (1986).

Problem 8.1 Control process of a vehicle wheel
A braked wheel with an elastic tire is subject to a torque MC = −M(t). For
the control design of the relative velocity vP in the contact point, a linear
model shall be used.

Solution
For the solution of the given task the equations of motion (3.51) of the slipping
wheel is applied. As position coordinates the absolute motion xC of the center
of mass and the relative motion xP of the contact point P are introduced.
Then, it yields according to (8.2) for the kinematics considering the negative
velocity vp in the contact point

vC = ẋC , ω =
1
r
vC +

1
r
vP . (1)

Inserted in (3.43) and (3.44) it follows

ẍC = v̇C =
1
m

ft(vC , vP ) , (2)

ẍP = v̇P = −mr2 + IC
mIC

ft(vC , vP ) − r

IC
M(t) . (3)

Obviously, the equations of motion (2), (3) are strongly nonlinear due to the
contact force ft(vC , vP ). The typical control process is highly nonlinear, too.

However, during the very beginning of the braking event only deformation
slip occurs and it remains for the contact force

ft =
vP
vC

kfn (4)

where k is a constant coefficient. Initially, the velocity changes ∆vC are small
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vC = vC0 + ∆vC , |∆vC | � vC0 ,

|vP | � vC0 (5)

where vC0 is the initial velocity of the wheel. Then, (4) can be linearized, and
one gets from (3) a scalar PT1-control process for the velocity in the contact
point

v̇P +
mr2 + IC

mIC

kfn
vC0

vP = − r

IC
M(t) . (6)

For this PT1-control process a standard control design could be used. But
such a control design is not feasible for ABS braking systems. The strong
nonlinearities and the very high reliability requirements are handled digitally
with logical circuits.

For the longitudinal motion of the elastic wheel another consequence of the
elasticity has to be considered and that is the rolling resistance or rolling
friction, respectively. The steady rolling process of the viscoelastic rubber
tire results in a certain energy loss. The consumption of energy results in
a rolling resistances torque MR proportional to the normal force or wheel
load, respectively, see Fig. 8.2. It yields for a constant speed, v = const.,
ω = const.,

MR = efn = rϕrfn , fx =
MR

r
= −WR . (8.4)

The rolling resistance can be interpreted differently: either as the displace-
ment e of the action line of the normal force fn or the torque MR, both
resulting in a resistance force WR acting on the car body. Typical values for
passenger cars are ϕr = e/r = 0.01 − 0.02.

r

e

mg

fz

fn

fx

mg
MR

fz

fn

fx

xfxfx

ω ω

Fig. 8.2. Free wheel diagram with applied torque MR and constraint force fx in
the bearing acting as resistance force WR on the car body
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8.2 Entire Vehicle

The equations of motion in longitudinal direction are generated now for a
two-axle automobile as shown in Fig. 8.3. According to the free body prin-
ciple the vehicle is represented by three bodies in the vertical plane. The
vehicle model has three degrees of freedom if the suspension of the front and
rear axle are neglected. The generalized coordinates chosen are the forward
motion x and the rotational motions ϕV , ϕH of both wheels of the front and
rear axle, respectively. In the front and rear bearings two reaction forces are
acting at each axle named as FxV , FzV , FxH , FzH . The road is loaded by the
normal forces NV and NH due to the radially rigid wheels. Applied forces
are acting as aerodynamic forces and torques WL, FL, ML on the vehicle
body, as driving or braking torques MV , MH , respectively, between the ve-
hicle body and the axles as well as tangential forces TV , TH on the wheels
due to the tangentially elastic tires. The rolling resistance is considered by a
displacement of the normal forces NV , NH , representing applied forces, too.
The climbing resistance is characterized by the inclination angle α of the
road.

Using the geometrical dimensions defined in Fig. 8.3 Newton’s and Euler’s
equations of the plane motion read as follows.

Vehicle body

mẍ = −mg sin α − WL − FxV − FxH , (8.5)
0 = mg cosα − FL − FzV − FzH , (8.6)
0 = −ML + MV + MH − (h − r)(FxV + FxH) + lV FzV − lHFzH . (8.7)

Front axle

mV ẍ = −mV g sin α + FxV + TV , (8.8)
0 = FzV − NV , (8.9)

IV ϕ̈V = MV − rTV − eVNV . (8.10)

Rear axle

mH ẍ = −mHg sin α + FxH + TH , (8.11)
0 = FzH − NH , (8.12)

IH ϕ̈H = MH − rTH − eHNH . (8.13)

The mass of the vehicle body is denoted m, the mass of both wheels at
each axle is mV , mH , and IV , IH are the corresponding moments of inertia.
There are nine equations (8.5) to (8.13) available for the nine unknown of
this model, namely x, ϕV , ϕH , FxV , FzV , FxH , FzH , NV , NH . Thus, the
dynamics of the vehicle are completely determined.

The assumption of a constant slip sAV = sAH = sA = const, sBV = sBH =
sB results in additional constraints for driving or braking, respectively,
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Fig. 8.3. Planar model of an automobile

ϕ̇V = ϕ̇H =
ẋ

r(1 − sA)
driving , (8.14)

ϕ̇V = ϕ̇H =
ẋ

r
(1 − sB) braking , (8.15)

with the consequence that the tangential forces TV and TH are reaction
forces which can be eliminated. With (8.8) and (8.10) or (8.11) and (8.13),
respectively, one gets for the axles for

driving
(

mV,H +
IV,H
r2

1
1 − sA

)
ẍ = −mV,Hg sin α + FxV,H +

1
r
MV,H − WRV,H ,

(8.16)
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braking

(
mV,H +

IV,H
r2

(1 − sB)
)

ẍ = −mV,Hg sin α + FxV,H − 1
r
MV,H − WRV,H ,

(8.17)

where the rolling resistance force WR characterizes the rolling resistance ac-
cording to (8.4). Furthermore, the braking torques have a negative sign. Due
to the slip the generalized inertia of the driven wheel is increasing while it is
decreasing for the braked wheel. The slip supports the stopping power of the
vehicle in a natural manner.

Further, for vanishing slip s = 0 it follows from (8.5), (8.16) or (8.17) the
fundamental equation of the longitudinal motion as
(

m + mV + mH +
IV + IH

r2

)
ẍ =

MV + MH

r
−WL−WR−G sinα , (8.18)

where WR = WRV + WRH means the total rolling resistance of all four wheels
and G = (m + mV + mH) g represents the total weight of the vehicle.

8.3 Aerodynamic Forces and Torques

The aerodynamic forces and torques are most essential for the driving per-
formance of the automobiles at medium and high speeds. The aerodynamics
are also important for energy conservation and economic efficiency of cars.

The aerodynamic resistance is originating from three sources:

• shape resistance due to the turbulence of the air flow at the rear of
the vehicle with a strong influence of the design of the vehicle (85%)

• friction resistance due to the shear flow at the car body depending on
its surface (10%)

• internal resistance due to the flow through the car body (5%). The in-
ner flow is required for the cooling of the engine and the air ventilation
of the passenger compartment.

The aerodynamic resistance and therefore the aerodynamic forces are mainly
resulting form the turbulent flow and they are proportional to the dynamic
pressure

pL =
1
2
ρv2
L (8.19)

where ρ is the air density and vL is the velocity of the air relative to the car.
The aerodynamic forces and torques depend on dimensionless coefficients c,
the characteristic area A of the vehicle and the wheel base l.
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The air resistance reads as

WL = cWApL , (8.20)

the lifting force as

FL = cAApL , (8.21)

and the aerodynamic torque is given by

ML = cMAlpL . (8.22)

Furthermore, for the lateral motion the side force

SL = cNApL (8.23)

and the yaw torque

MLz = cMzAlpL (8.24)

have to be considered. The coefficients c depend as already mentioned
strongly on the body design and the direction of the air flow relative to
the vehicle. Some air resistance coefficient cW for head-on flow are presented
in Table 8.2. These coefficients are found experimentally in wind tunnels or
evaluated by computational fluid dynamics (CFD) software. All new vehicles
are subject to a thorough optimization to reduce the air resistance. As shown
by (8.20) the air resistance force depends not only on the coefficients cW
often used in commercials but also on the front surface A of the vehicle.

Table 8.2. Air resistance coefficients of different vehicles types

Type of value Air resistance coefficient cW

Passenger car 0.3 - 0.4
Bus 0.6 - 0.7
Truck 0.6 - 1.0
Motor cycle 0.5 - 1.0

8.4 Driving and Braking Torques

The acceleration or driving torque, respectively, and the braking torque are
acting on the front and/or rear axle of the vehicle depending on its design,

MV,H = MAccelerationV,H − MBrakingV,H . (8.25)

The braking torque MB originates form the brake system and it is controlled
by the driver via the brake pedal. Therefore, the braking torque MB(t) is an
arbitrary function of time t.
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The acceleration torque MA is originating from the engine and it is trans-
ferred by the transmission to the axles. In the drivetrain the transmission
ratios iD and iG of differential and gearbox as well as the moments of in-
ertia IG and IM of gearbox and engine have to be regarded. For the engine
an averaged constant moment of inertia is chosen. Further, the degree of
efficiency of the transmission is an important characteristic. The degree of
efficiency is around η = 0.98 for manual transmissions while η = 0.85 and
more is achieved by automatic transmissions. For a front drive vehicle, e.g.,
the driving torque reads as

MAV = ηiDiGMM (ẋ) − [(iDiG)2IM + (iD)2IG]
ẍ

r
. (8.26)

The engine torque MM depends on the engine speed as shown in Fig. 8.4.
The engine speed ωM is related to the vehicle speed ẋ as

ωM = iDiG
ẋ

r
. (8.27)

Thus, the fundamental equation of the longitudinal motion (8.18) can be
rewritten as

M̂ẍ = Â − B̂ − G sin α − WL − WR (8.28)

using the following abbreviations:
generalized inertia

M̂ = m + mV + mH +
IV + IH

r2
+ i2D

IG
r2

+ i2Di2G
IM
r2

,

driving force

Â =
1
r
ηiDiGMM (ẋ) ,

total braking force

B̂ =
1
r
(MBV + MBH) ,

vehicle weight

G = (m + mV + mH)g ,

air resistance force

WL = WL(ẋ2)

rolling resistance force

WR = ϕrG cosα .

It is to be mentioned that (8.18) is subject to numerous assumptions where
the vanishing tire slip and the constant moment of inertia of the engine are
just two of them.



272 8 Longitudinal Motions

consumption
minimum

ωMmin ωMmax

ωM

MM

power maximum

Fig. 8.4. Engine torque MM as a function of the engine speed ωM for a combustion
engine

Problem 8.2 Acceleration of an automobile
For the evaluation of the acceleration of an automobile on a horizontal road
the following data are given.

Total mass m + mV + mH = 1200 kg ,
Moment of inertia at one axle IV = IH = 1.8 kgm2 ,
Moment of inertia of transmission IG = 0 ,
Moment of inertia of engine IM = 0.25 kgm2 ,
Transmission ratio (high gear) iDiG = 4 ,
Wheel radius r = 0.3 m ,
Engine torque MM = 300 Nm ,
Engine speed ωM = 360 s−1 ,
Degree of efficiency η = 0.9 ,
Braking forces B = 0 ,
Inclination of road α = 0 ,
Front area A = 2 m2 ,

Air density ρ = 1.2 kg/m3
,

Air resistance coefficient cW = 0.3 ,
Rolling resistance coefficient ϕr = 0.02 .

Solution
The solution follows from the fundamental equation (8.28). The quantities
required are computed as follows.

The vehicle speed is according to (8.27)

v = ẋ =
ωMr

iDiG
= 97 km/h . (1)
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The air resistance force WL is given by (8.18), (8.20) and (1)

WL =
1
2
cWAρv2

L = 262 N . (2)

For the rolling resistance force it yields according to (8.4)

WR = ϕr(m + mV + mH)g = 235 N . (3)

Further, one gets the driving force

Â =
1
r
ηiDiGMM = 3600 N (4)

and the generalized inertia as

M̂ = 1284 kg . (5)

Thus, for the acceleration it yields

a = ẍ =
1
M̂

(Â − WL − WR) = 2.4 m/s2 . (6)

It turns out that the rotating part of engine and wheels have only a small
influence on the acceleration in a high gear.

8.5 Driving Performance

In this section some quantities characterizing the driving performance are
presented.

The maximum speed is defined for a horizontal road. With α = 0, B̂ = 0
and ẍ = 0 it follows from (8.28) an equation for the maximum speed

Â(vmax) = WR + WL(v2
max) . (8.29)

A graphical representation is shown in the driving performance diagram,
Fig. 8.5, which is obtained from the motor characteristics, Fig. 8.4, and five
different gear or transmission ratios, respectively.

The gradability is found for small grade angles p=tan(α) ≈ sin(α),
cos(α)≈1 with ẍ = 0, B̂ = 0 also from (8.28) as

pmax =
Âmax

G
− WL(v(Âmax))

G
− ϕr . (8.30)

The maximal available driving force Âmax and the corresponding speed
v(Âmax) can be found from the driving performance diagram, too.
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drag WL and

i = 3, 5

i = 2, 5

rolling friction WR
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Fig. 8.5. Driving performance diagram, driving and resistance forces depending
on the vehicle speed v for different transmission ratios

For the evaluation of the traction limits for maximum acceleration and
maximum braking the tangential forces TV,H have to be determined in addi-
tion. For this purpose the equations (8.10) and (8.13) with (8.14), (8.15) and
(8.28) are at hand. Neglecting the moments of inertia of the wheels it follows
immediately form (8.10) or (8.13), respectively, in the case of braking for the
tangential forces

TV,H = −B̂V,H − WRV,H , (8.31)

where only the braking forces B̂V,H = MBV,H/r appear. The maximum tan-
gential forces are determined by the maximal rolling contact coefficient ϕmax
and the wheel load at the front and rear axle FzV , FzH known from (8.6)
and (8.7),

TV,H,max ≤ ϕmaxFzV,H . (8.32)

Corresponding results can be derived for the acceleration of the vehicle. Then,
it turns out that four wheel drive improves the traction limits what is most
valuable for driving in winter time.
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The mileage of a car is also an important feature of a vehicle. As shown in
Fig. 8.4 the consumption minimum of a combustion engine is different from
its maximum power. A low mileage is achieved for low and medium engine
speeds. This properties can be considered in the transmission design. Often
a vehicle is more economic in the fifth gear as in the fourth gear which may
deliver the maximum speed, see Fig. 8.5.
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Lateral Motions

The lateral motion of vehicles is discussed separately for road and rail ve-
hicles. Due to different constraints both kinds of vehicles require dynamical
approaches different from each other. In contrary to automobiles equipped
with actively operated steering, railway vehicles have a passive lateral guid-
ance. For automobiles driving stability is achieved or improved, respectively,
by interplay of the driver and the vehicle.

9.1 Handling of Road Vehicles

The analysis of automobile handling is an extremely complex problem. But
the fundamental handling behavior of road vehicles can already be under-
stood by the strongly simplified model published by Riekert and Schunck
(1940) today also denoted as bicycle model. This model is based on the fol-
lowing assumptions:

• constant vehicle speed, vanishing longitudinal acceleration
• vanishing width of the vehicle, no roll motion
• constant wheel loads, no heave and pitch motion
• small displacements, linear tire forces
• wheels without inertia.

Such a simplified vehicle model is depicted in Fig. 9.1.

9.1.1 Elastic Wheel

For the road vehicle handling the elastic wheel is the most important compo-
nent, treated in detail in Sect. 3.4.4. Here, the essential relations are reviewed
once again. The lateral force

S = ϕ2(α)fn (9.1)
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Fig. 9.1. Simplified vehicle model or bicycle model, respectively

is depending on the slip angle α or the lateral slip ν2, respectively, see (3.112)
as well as on the normal wheel load fn. The characteristic of the rolling
contact coefficient ϕ2 is shown in Fig. 9.2. The action point of the lateral
force ft2 is displaced to the rear by the trail nS according to (3.130). For
small slip angles α � 1 and constant normal load fn = const it follows from
Fig. 9.2 a lateral force linearly depending on the slip angle and a constant
trail

S = kSα , nS = const (9.2)

where kS is the lateral force coefficient or cornering stiffness, respectively.
According to (3.115) and (3.130) it yields kS = 2k2a

2 and nS = a/3, respec-
tively. The lateral force coefficient and the trail are usually found from exper-
iments. Characteristic values are given by Mitschke and Wallentowitz (2004).
For a rough estimate kS = 40 kN/rad and nS = 3 cm represent characteristic
numbers for medium-size automobiles.
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ϕ2(α)

α

µ

Fig. 9.2. Rolling contact coefficient ϕ2 of a tire depending on the slip angle α

9.1.2 Vehicle Model

The whole vehicle is represented by the model shown in Fig. 9.1 running on
elastic wheels without inertia. Thus, a system consisting of one rigid body is
given performing a motion in a horizontal plane. The vehicle speed is assumed
to be constant, v = const, what is considered as a nonholonomic constraint.
For the evaluation of the equations of motion a vehicle-fixed moving reference
frame {C, ev} is used resulting in a simple representation of the tire forces.

As generalized coordinates for the description of the f = 3 degrees of free-
dom in the horizontal plane the coordinates x,y of the center of mass C in
the inertial frame {0, eIv} and the yaw angle ψ are introduced. Due to the
nonholonomic constraint

v =
√

ẋ2 + ẏ2 =
√

v2
1 + v2

2 = const (9.3)

there remain g = 2 generalized velocities, the body slip angle β and the yaw
angular velocity ψ̇. The body slip angle β characterizes the e2-component of
the vehicle speed vector and represents therefore a normalized velocity. Then,
the kinematic relations of the plane motion in the inertial frame read as

ẋ = v cos(ψ + β),
ẏ = v sin(ψ + β),
ψ̇ = ψ̇,

⎫
⎬

⎭ (9.4)

while one gets in the moving vehicle-fixed frame

v1 = v cosβ,
v2 = v sin β,

ω3 = ψ̇

⎫
⎬

⎭ (9.5)

Obviously, both representations (9.4) and (9.5) comply with the constraint
(9.3).

The accelerations are now computed in the moving vehicle-fixed frame
according to Sect. 2.2.3 resulting in
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⎡

⎣
a1

a2

a3

⎤

⎦ =

⎡

⎣
v̇ cosβ − vβ̇ sinβ

v̇ sin β + vβ̇ cosβ
0

⎤

⎦+

⎡

⎣
0 −ψ̇ 0

+ψ̇ 0 0
0 0 0

⎤

⎦

⎡

⎣
v cosβ
v sinβ

0

⎤

⎦ . (9.6)

Considering v = const and a small body slip angle β � 1, it remains

a1 = −vβψ̇,

a2 = v(ψ̇ + β̇),
α3 = ψ̈,

⎫
⎬

⎭ (9.7)

where the first two equations represent the lateral acceleration supplemented
by the yaw angle acceleration. In matrix notation,
⎡

⎢⎢⎢⎢⎣

a1

a2

α3

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0 0

v 0

0 1

⎤

⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L

⎡

⎣
β̇

ψ̈

⎤

⎦

︸ ︷︷ ︸
ż

+

⎡

⎢⎢⎢⎢⎣

−vβψ̇

vψ̇

0

⎤

⎥⎥⎥⎥⎦
, (9.8)

the 3 × 2-Jacobian matrix L appears and the 2 × 1-vector z(t) of the gener-
alized velocities is introduced.

In the wheel contact points the lateral velocities v2V and v2H are found
which follow with small slip angles αV,H and a front wheel with small angle
δV according to Fig. 9.1 as

v2V = (δV − αV )v = vβ + lV ψ̇ , (9.9)

v2H = −αHv = vβ − lHψ̇ . (9.10)

Then, one gets immediately the slip angles at the front axle V and the rear
axle H as

αV = δV − β − lV ψ̇

v
, (9.11)

αH = −β +
lH ψ̇

v
. (9.12)

The front wheel angle δV depends on the steering angle δL where only the
elasticity of the steering assembly is considered. The equilibrium of the torque
at the front wheel results in

cL

(
δL
iL

− δV

)
= (nk + nS)SV , (9.13)

where cL means the generalized torsion spring coefficient. Further, iL is the
transmission ratio of the steering gear, nk the suspension trail, nS the trail of
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the tire and SV the lateral tire force. Thus, on the right hand side of (9.13)
the tire reset torque of the vehicle is found. Neglecting the steering elasticity,
cL → ∞, it follows from (9.13)

δV =
1
iL

δL , (9.14)

i.e., the front wheel angle δV can be chosen directly as input variable for the
handling of the vehicle.

In the contact points of the wheels there are acting longitudinal and lat-
eral tire forces TV,H and SV,H . Furthermore, the vehicle is subject to the
air resistance force WL, lateral aerodynamic force SL and the aerodynamic
torque MLz. For small slip angles it yields in addition

TV,H � N , SV,H � N (9.15)

where N is the vertical tire load.
The Newton-Euler equations read with (9.8) and the mentioned forces and

torques neglecting quadratically small terms as
⎡

⎢⎢⎢⎢⎣

0 0

mv 0

0 I

⎤

⎥⎥⎥⎥⎦

⎡

⎣
β̇

ψ̈

⎤

⎦+

⎡

⎢⎢⎢⎢⎣

−mvψ̇β

mvψ̇

0

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

TV + TH − WL

SV + SH + SL

SV lV − SH lH + MLz

⎤

⎥⎥⎥⎥⎦
. (9.16)

Here, m is the mass and I the moment of the inertia of the vehicle with
respect to the yaw axis. The equations of motion follow from Jourdain’s
principle (2.81) what means in this case a left multiplication of (9.16) with
the transposed Jacobian matrix L

T
from (9.8):

[
mv2 0

0 I

] [
β̇

ψ̈

]
+
[

mv2ψ̇
0

]
=
[

v(SV + SH + SL)
SV lV − SH lH + MLz

]
. (9.17)

The reaction force related to the nonholonomic constraint (9.3) reads from
(9.16) as

TV + TH = WL − mvψ̇β , (9.18)

where an allocation of the reaction force TV + TH to the front and rear axle
is not possible due to the simplicity of the model chosen.

Considering the linear elastic characteristic of the tires with respect to the
small lateral forces (9.15) assumed, it yields

SV,H = kS V,HαV,H . (9.19)

Inserting the slip angles (9.11) and (9.12) one gets from (9.17) and (9.19) the
differential equations of the Riekert-Schunck model as
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mvβ̇ + (kSV + kSH)β +
(

mv +
kSV lV − kSH lH

v

)
ψ̇ = SL + kSV δV ,

(9.20)

Iψ̈ +
1
v
(kSV l2V + kSH l2H)ψ̇ + (kSV lV − kSH lH)β = MLZ + kSV lV δV .

(9.21)

These equations of motion are very useful for a fundamental analysis for
steady-state cornering and driving stability of an automobile.

9.1.3 Steady-state Cornering

For the steady-state cornering on a circular path with vanishing aerodynamic
forces and torques a relation between the body slip angle and the radius of
the path can be evaluated. The corresponding assumptions are

SL = MLZ = 0 , (9.22)

ψ̈ = β̇ = 0 , ψ̇0 = const , β0 = const . (9.23)

Comparing to (9.8) it is obvious that (9.23) means stationary behavior, in-
deed. The vehicle is travelling with constant speed according to (9.3) and
with constant angular velocity ψ̇0 due to (9.23). Thus, the radius R of the
circular path of the center of mass C follows from

R =
v

ψ̇0

(9.24)

according to Fig. 9.1.
From (9.20) and (9.21) one gets together with (9.22) and (9.23) the linear,

inhomogeneous system of equations

(kSV + kSH)β0 +
(

mv +
kSV lV − kSH lH

v

)
ψ̇0 = kSV δV , (9.25)

(kSV lV − kSH lH)β0 +
kSV l2V + kSH l2H

v
ψ̇0 = kSV lV δV . (9.26)

After multiplication of (9.25) with lV , subtraction of (9.26) and consideration
of (9.24) it remains for the body slip angle

β0 =
lH
R

(
1 − lV

kSH lH l
mv2

)
(9.27)

where l = lV + lH is the wheel base.
The first term characterizes the behavior of a vehicle with rigid wheels

while the second term shows the influence of the elastic wheel with the corner-
ing stiffness kSH . Inserting (9.27) in (9.25) one gets after some manipulations
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δV =
l

R

(
1 +

kSH lH − kSV lV
kSV kSH l2

mv2

)
. (9.28)

The steering behavior undergoes a noticeable change increasing with the
square of the speed v if the term kSH lH − kSV lV is not vanishing. In vehicle
dynamics this phenomenon is called understeer or oversteer, respectively. For

kSH lH > kSV lV (9.29)

understeering occurs, i.e., the steering angle δV required from the driver is
larger than for neutral steering. On the other hand,

kSH lH < kSV lV (9.30)

means the contrary, i.e., a smaller steering angle δV is sufficient. Oversteer
vehicles are more easy to drive and less effort of the driver is required, they
appear to be more favourable at a first glance.

9.1.4 Driving Stability

The driving stability is analyzed for a vehicle running straight ahead, δV = 0,
and vanishing aerodynamics SL = MLZ = 0. Then, it remains from (9.20)
and (9.21) a homogeneous system of differential equations for the generalized
velocities denoted in matrix form as
⎡

⎢⎢⎣
β̇

ψ̈

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣
−kSV + kSH

mv
−1 − kSV lV − kSH lH

mv2

−kSV lV − kSH lH
I

−kSV l2V + kSH l2H
Iv

⎤

⎥⎥⎦

︸ ︷︷ ︸
A

⎡

⎢⎢⎣
β

ψ̇

⎤

⎥⎥⎦ . (9.31)

The driving stability depends on the eigenvalues of the system matrix A, see
Sect. 7.2.1. The eigenvalues are computed via the characteristic equation

det(λE − A) = λ2 + a1λ + a2 = 0 (9.32)

with the characteristic coefficients

a1 =
kSV + kSH

mv
+

kSV l2V + kSH l2H
Iv

(9.33)

and

a2 =
kSV kSH l2

Imv2

(
1 +

kSH lH − kSV lV
kSV kSH l2

mv2

)
. (9.34)

The eigenvalues of (9.32) are
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λ1,2 = −a1

2
±
√

a2
1

4
− a2 . (9.35)

Asymptotic stability is guaranteed according to Sect. 7.2.1 if all eigenvalues
have negative real parts. Then, the characteristic coefficients have to meet
the Hurwitz conditions

a1 > 0 , a2 > 0 . (9.36)

For the vehicle under consideration a1 > 0 is always meet, see (9.33). The
second condition is for understeer vehicles (9.29) also meet while for over-
steer vehicles (9.30) a critical vehicle speed vcrit exists which shall not to be
exceeded,

v2
crit =

1
m

kSV kSH l2

kSV lV − kSH lH
. (9.37)

This means that oversteer vehicles may be unstable. Therefore, today’s ve-
hicles are designed to be slightly understeering and, thus, naturally stable.
Higher steering effort by the driving is the price to be paid for a reliable
driving stability.

In addition to the driving stability naturally designed, by electronic de-
vices the stability behavior of vehicle can be achieved artificially. The me-
chanical design is then supplemented by a control system device, see e.g.,
Kiencke and Nielsen (2005) and Rajamani (2006).

Problem 9.1 Driving stability of a road vehicle
With the assumptions of the Riekert-Schunck or bicycle model, respectively,
a rough estimation of the driving stability of an automobile can be obtained.
The tires may have the same cornering stiffness kSV = kSH = 80 kN/rad at
the front and the rear axle. The critical speed has to be evaluated depending
on the position of the center of mass. The wheelbase is l = 3 m, the mass of
the vehicle is given as m = 1200 kg.

Solution
The position of the center of mass measured from the front axle is introduced
as independent variable. Then, it yields

lH = l − lV . (1)

Inserting (1) in (9.37) one gets with kSV = kSH = kS

vcrit =

√
kSl

m

1
2(lV /l) − 1

. (2)

For the given data the factor
√

kSl/m =
√

200m/s = 14.14 m/s is found. The
result is shown in Fig. 9.3. It is obvious that the critical speed may be low
for rear loaded vehicles. That is the reason why today almost all automobiles
are designed with front engine.



9.2 Driving Stability of Railways 285

1

2

3

0
lv/l

understeering oversteeringvcrit√
ksl/m

0.2 0.4 0.6 0.8 1.0

Fig. 9.3. Critical speed vcrit of an automobile depending on the position lV /l of
the center of mass

9.1.5 Experimental Studies

The complex dynamics of lateral motions of road vehicles requires in ad-
dition to design and simulation also testing and validation. For this pur-
pose all major automobile manufactures are using special test tracks, see
e.g. ATP Automotive Testing Papenburg (2009). Moreover, there are special
measurement devices for vehicle dynamics testing available like the dSPACE
tools, see Nishimura and Ohoha (2007). Such sophisticated tools enable the
test engineer to perform measurement, calibration, and bypassing tasks with
a minimal workload.

The question of checking of simulation results found by theoretical models
is discussed in simulation engineering under the heading of validation, often
supplemented by model verification. With strongly increasing cost in auto-
motive testing on one hand, and the steadily increasing computational power
of simulation tools on the other hand, it is a very responsible engineering
task to find a good compromise between simulation and testing.

9.2 Driving Stability of Railways

A lateral motion of a railway vehicle occurs already in the case of pure rolling
due to the hunting motion of the wheelsets. The corresponding differential
equations have been analyzed in Problem 7.2. Due to the more general con-
tact phenomena between wheel and rail wheelsets show slip and may perform
lateral motions independent from the longitudinal motion. The fundamental
stability behavior of railways can be already discussed for a single wheelset.
For this purpose the equations of motion found in Problem 3.5 will be used
and analyzed in detail.
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9.2.1 Equation of Motion of a Railway Wheelset

The equations of motion (27) of Problem 3.5 are simplified for a stability
analysis as follows. The contact force coefficients are referred to the weight
G = mg of the wheelset, they are equal with respect to the 1- and 2-direction
and neglected in the 3-direction. Then, it yields

f11 =
1
2
hmg , f22 =

1
2
hmg , f23 = f33 = 0 (9.38)

with a rolling contact coefficient h. The moment of inertia related to the 1-
axis is approximated by I1 = ma2, i.e., the wheel inertia is concentrated in
its center of mass what is feasible according to Problem 2.8. The moment of
inertia related to the 2-axis is introduced as I2 = 1

2mr2
0. Then, it remains

⎡

⎢⎢⎣
1 0

0 a2

⎤

⎥⎥⎦

⎡

⎢⎢⎣
ÿ

γ̈

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

hg
v0

−r0v0

2a
δ0

r0v0
2a δ0

hga2

v0

⎤

⎥⎥⎦

⎡

⎢⎢⎣
ẏ

γ̇

⎤

⎥⎥⎦+

⎡

⎢⎢⎣
g δ0

a −hg

hgaδ0
r0

0

⎤

⎥⎥⎦

⎡

⎢⎢⎣
y

γ

⎤

⎥⎥⎦ = 0 .

(9.39)

Due to the assumption introduced the mass of the wheelset disappears in the
equations of motion (9.39) what makes the stability analysis more simple.

9.2.2 Stability of a Free Wheelset

The motion behavior of a free wheeset without bogie and vehicle body is
studied for different speeds. It turns out that the wheelset is an inherent
unstable component which can fulfil its task only in concurrence within the
whole railway vehicle.

For very small speeds only the rolling contact has to be considered. Then,
it remains from the equations of motion (9.39) only the terms directly de-
pending on the contact forces
⎡

⎢⎢⎣

hg
v0

0

0 hga2

v0

⎤

⎥⎥⎦

⎡

⎢⎢⎣
ẏ

γ̇

⎤

⎥⎥⎦+

⎡

⎢⎢⎣
0 −hg

hgaδ0
r0

0

⎤

⎥⎥⎦

⎡

⎢⎢⎣
y

γ

⎤

⎥⎥⎦ = 0 . (9.40)

The characteristic equation of this system reads as

det

⎡

⎢⎢⎣
λ

v0a −1
a

δ0
r0

λa
v0

⎤

⎥⎥⎦ (hga)2 = 0 (9.41)
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or

λ2 +
δ0

r0a
v2
0 = 0 . (9.42)

Considering the abbreviations (23) of Problem 2.7, one gets

λ1,2 = ±i

√
1

r0q
v0 , (9.43)

what is exactly the frequency of the hunting motion, see (3) in Problem 7.1.
In contrary to Problem 2.7 and Problem 7.1 the time was not normalized so
that in (9.43) still the vehicle speed v0 appears.

For small speeds the weight and the contact forces define the motion. The
corresponding terms of the equation of motion (9.39) are
⎡

⎢⎢⎣

hg
v0

0

0 hga2

v0

⎤

⎥⎥⎦

⎡

⎢⎢⎣
ẏ

γ̇

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

gδ0
a −hg

hgaδ0
r0

0

⎤

⎥⎥⎦

⎡

⎢⎢⎣
y

γ

⎤

⎥⎥⎦ = 0 . (9.44)

According to the Hurwitz-Kriterium (9.36) asymptotic stability is given. The
gravitational force in concurrence with the contact forces result in energy dis-
sipation and a damped hunting motion occurs. The corresponding normalized
damping coefficient reads as

D =

δ0v0

ha

2

√
δ0v

2
0

r0a

=
1
2

√
δ0r0

h2a
(9.45)

and for the eigenfrequency it yields

ωD = ω0

√
1 − D2 , (9.46)

where ω0 is the eigenfrequency in the undamped case.
For medium speeds the motion is determined by gravitation, rolling con-

tact and inertia. However, the gyroscopic forces are still neglected. Then,
characteristic equation reads as

det

⎡

⎢⎢⎣
λ2 + hg

v0
λ + gδ0

a −hg

hgδ0
r0a λ2 + hg

v0
λ

⎤

⎥⎥⎦ a2 = 0 , (9.47)

or
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λ4 + 2
hg

v0︸︷︷︸
a1

λ3 +
(

h2g2

v2
0

+
gδ0

a

)

︸ ︷︷ ︸
a2

λ2 +
hg2δ0

av0︸ ︷︷ ︸
a3

λ +
h2g2δ0

r0a︸ ︷︷ ︸
a4

= 0 . (9.48)

According to the Hurwitz criterium, see e.g. Mueller and Schiehlen (1985)
the conditions on the characteristic coefficients are for asymptotic stability

a1 > 0 , a2 > 0 , a3 > 0 , a4 > 0 , (9.49)

and

H3 = a1a2a3 − a2
3 − a2

1a4 > 0 . (9.50)

The conditions (9.49) are completely met for the characteristic coefficients in
(9.48). Therefore, only the Hurwitz determinant (9.50) has to be investigated.
From

H3 =
h2g4δ0

av2
0

[
2gh2

v2
0

+
δ0

a
− 4h2

r0

]
> 0 (9.51)

it follows the critical speed

v2
0 < v2

crit =
gr0

2(1 − D2)
, (9.52)

where the normalized damping coefficient (9.45) was used as an abbrevia-
tion. For the critical speed (9.52) the wheelset is operating at its vibration
boundary, the critical frequency is

ω2
crit =

a3

a1
=

gδ0

2a
. (9.53)

For high speeds only the gravitational, gyroscopic and inertia forces are con-
sidered. The limited contact forces are neglected here. The equations of mo-
tion read now as
⎡

⎣
1 0

0 a2

⎤

⎦

⎡

⎣
ÿ

γ̈

⎤

⎦+

⎡

⎣
0 −r0v0

2a δ0

r0v0
2a δ0 0

⎤

⎦

⎡

⎣
ẏ

γ̇

⎤

⎦+

⎡

⎣
gδ0
a 0

0 0

⎤

⎦

⎡

⎣
y

γ

⎤

⎦ = 0 . (9.54)

The corresponding characteristic equation is

λ4 +
(

r2
0v

2
0

4a4
δ2
0 +

gδ0

a

)
λ2 = 0 . (9.55)

The eigenvalues are obtained as

λ2
1,2 = 0 , λ2

3,4 = −
(

r2
0v2

0

4a4
δ2
0 +

gδ0

a

)
. (9.56)



9.2 Driving Stability of Railways 289

The wheelset is not asymptotically stable due to the double zero eigenvalue.
Moreover the wheelset is unstable due to the double nullity of the character-
istic matrix, see e.g. Mueller and Schiehlen (1985). At very high speeds the
wheelset which is a rigid body behaves like a gyro. The nutation frequency
is found as ωN = (r0δ0/2a2)v0 for v0 > ga.

Thus, it turns out that a railway wheelset is a dynamical critical compo-
nent. Only in concurrence of several wheelsets in bogies under the vehicle
body itself the indispensable asymptotic behavior is achieved. Obviously the
design of railway vehicles for very high speeds is a challenging task for ve-
hicle engineers. The latest world record of a high-speed railway vehicle was
established by the French railways SNCF on 3 April 2007 with 574.8 km/h
or 160 m/s respectively on the new track Strassbourg-Paris.

Problem 9.2 Stabilization of railway wheelsets
For the following numbers the critical parameters of a railway wheelset have
to be evaluated. Engineering measures to be taken for the stabilization of
wheelsets shall be discussed. The number given: a = 0.75 m, δ0 = 26 grd =
0.45 rad, h = 100.

Solution
A railway wheelset is characterized by the following parameters for increasing
speed. The frequency of the hunting motion is according to (9.43)

ωS =
√

δ0

r0a
v0 with

√
δ0

r0a
= 1.09

[
1
m

]
. (1)

It has to be pointed out that a pure hunting motion does occur only for very
low speeds v0 without any slipping in the contact point.

Considering gravity one gets the normalized damping coefficient (9.45) as

D =
1
2h

√
δ0r0

a
= 0.0027 , (2)

what means a very low damping. Thus, the eigenfrequency in the damped
hunting motion remains unchanged

ωD ≈ ωS . (3)

The critical speed (9.52) is found as

vcrit =

√
1
2
gr0 = 1.56 m/s = 5.63 km/h . (4)

A free wheelset is getting unstable for a very low speed and it is of no use
for engineering applications. The nutation frequency of the wheelset follows
from (9.56) for v0 > ga as
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ωN =
r0δ0

2a2
v0 with

r0δ0

2a2
= 0.2

[
1
m

]
. (5)

This unacceptable behavior of a free wheelset is completely changed by its
assembly in bogies under the vehicle body. Essential features are:

1. The weight of the vehicle body boosts the normal force in the contact
patch and the rolling contact forces are getting much higher.

2. The viscoelastic coupling of the wheelsets in the bogie, and the bogies
with the vehicle body as well, results in a strongly stabilizing effect.
The dynamical behavior of such designs has been investigated in detail,
e.g., by De Pater (1987), Wickens (1987) and Iwnicki (2006).
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Vertical Motions

The vertical motions of road and rail vehicles can be treated jointly again.
The investigations of the vertical motion provide a basis for the optimization
of the driving comfort, and the driving safety as far as road vehicles are
concerned. The contact forces in wheel contact patches most important for the
longitudinal and lateral motions are directly affected by the vertical motion
according to the rolling contact laws. The fundamental principles of a vehicle
suspension can be completely studied by a model with two vertical degrees of
freedom. However, for a more detailed analysis more complex models can be
used, too. For magnetically levitated vehicles the active suspension control
has to be considered, too. For wheeled vehicles actively controlled suspensions
are also of increasing interest.

10.1 Principles of Vehicles Suspension

The main tasks of a vehicle suspension are twofold. On the one hand the
vehicle body has to be carried on constant height without vibrational accel-
erations while on the other hand the vehicle wheels should follow the uneven
profile of the road without any delay resulting in a constant wheel load. Both
requirements are inconsistent with each other, and, therefore, the problem
may be solved by frequency decoupling. Then, the eigenfrequency of the body
should be as low as possible while the eigenfrequency of the wheels has to be
as high as possible. However, there are design constraints which restrain the
frequency decoupling, like the limited relative motion space between of the
wheels and the body. This means that an optimal design has to consider the
engineering constraints, and the design process has to include the randomly
uneven road in addition to the vehicle structure.

The fundamentals of vehicle suspensions are presented for a car model con-
strained to vertical motions only, Fig. 10.1, which offers frequency decoupling
by two degrees of freedom and includes random excitation by road uneven-
ness. Such a model is often denoted as quarter car model, too. With respect
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Fig. 10.1. Vehicle model for the analysis of vertical vibrations

to the equilibrium condition the linear equations of motion read as
[

mA 0
0 mR

] [
z̈A
z̈R

]
+
[

dA −dA
−dA dA

] [
żA
żR

]

+
[

cA −cA
−cA cA + cR

] [
zA
zR

]
=
[

0
cR

]
ζ(t)

(10.1)

where mA is the body mass, mR is the generalized mass of all wheels as well
as dA, cA and cR represent the generalized damping coefficient, body spring
coefficient and tire spring coefficient of all wheels. For the derivation of these
equations of motion see Problem 2.12. As excitation a white velocity noise
with intensity q is assumed,

ζ̇(t) ∼ (0, q) . (10.2)

Using the abbreviations

a =
cA
mA

, b =
cA
mR

, c =
cR
mR

, d =
dA
mA

, e =
dA
mR

(10.3)

one gets from (10.1) the state equations which have been differentiated once
to obtain an velocity excitation of the vehicle,
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⎡

⎢⎢⎣

z̈A
z̈R...
z A...
z R

⎤

⎥⎥⎦

︸ ︷︷ ︸

=

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

−a a −d d
b −b − c e −e

⎤

⎥⎥⎦

︸ ︷︷ ︸

⎡

⎢⎢⎣

żA
żR
z̈A
z̈R

⎤

⎥⎥⎦

︸ ︷︷ ︸

+

⎡

⎢⎢⎣

0
0
0
c

⎤

⎥⎥⎦

︸ ︷︷ ︸

ζ̇(t) .

︸ ︷︷ ︸

ẍ = A ẋ + B w(t)

(10.4)

For the assessment of the vehicles performance driving comfort, driving safety
and suspension travel are used. It yields for the vertical acceleration charac-
terizing the driving comfort

aA = z̈A =
[
0 0 1 0

]
ẋ = cTẋ , (10.5)

and for the dynamical wheel load affecting the driving safety

f = cR(ζ − zR) = mAz̈A + mRz̈R =
[
0 0 mA mR

]
ẋ = eTẋ (10.6)

and for the suspension travel

s = zA − zR =
1
cA

(−mAz̈A − dA( ˙zA − ˙zR))

=
[

−dA
cA

dA
cA

−mA

cA
0
]
ẋ = gTẋ

(10.7)

where the 4 × 1-weighting vectors c, e, g are introduced. Then, it remains
for the standard deviations of acceleration and wheel load

σ2
a = cTPc = P33 (10.8)

and

σ2
f = eTPe = m2

AP33 + 2mAmRP34 + m2
RP44 (10.9)

as well as the standard deviation the suspension travel

σ2
s = gTPg =

1
c2
A

[
d2
A (P11 − 2P12 − P22) + 2dAmA (P13 − P23) + m2

AP33

]

(10.10)

with the stationary 4 × 4-covariance matrix

P = E{ẋ(t)ẋT(t)} = const . (10.11)

The problem is reduced now to the evaluation of the covariance matrix (10.11)
of the system (10.4). For this purpose the covariance analysis is most ade-
quate offering analytical solutions for low order systems in contrary to the
power spectral density approach. The corresponding Lyapunov matrix equa-
tion (7.17) reads
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AP + PAT +BqBT = 0 . (10.12)

For the solution a matrix polynomial is applied as outlined by Mueller and
Schiehlen (1985). This polynomial reads for n = 4 as follows

P =
1

2 detH

3∑

k=0

Hk+1,1

2k∑

m=0

(−1)mAmQA
T
2k−m (10.13)

where

H =

⎡

⎢⎢⎣

a1 1 0 0
a3 a2 a1 1
0 a4 a3 a2

0 0 0 a4

⎤

⎥⎥⎦ (10.14)

is the 4 × 4-Hurwitz matrix also known from stability theory and Hk+1,1 are
the corresponding scalar cofactors. Further,

ai , i = 1(1)4 (10.15)

mean the characteristic coefficients of the system matrix A. In addition, the
4 × 4 - auxiliary matrices are defined by

Am = AAm−1 + amE , m = 0(1)6 (10.16)

where it yields Ap = 0, p = 4(1)6. The 4 × 4-intensity matrix reads as

Q = qBBT . (10.17)

Some intermediate results are listed for the following quantities. Character-
istic equation:

det(λE −A) = λ4 + (d + e)λ3 + (a + b + c)λ2 + cdλ + ac = 0 . (10.18)

Determinant of Hurwitz matrix:

detH = a4H3 = ac(c2de) . (10.19)

Cofactors of Hurwitz matrix:

H11 = a4(a2a3 − a1a4) = ac3d ,

H21 = −a3a4 = −ac2d ,

H31 = a1a4 = ac(d + e) ,

H41 = −(a1a2 − a3) = −(a + b)(d + e) − ce .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(10.20)

Auxiliary matrices multiplied by 4 × 1-matrix B:
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A0B = B = c[ 0 0 0 1 ]T ,

A1B = AB + a1B = c[ 0 1 d d ]T ,

A2B = AA1B + a2B = c[d d a a ]T ,

A3B = AA2B + a3B = c[a a 0 0 ]T ,

A4B = 0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(10.21)

Then, the elements of the covariance matrix required for the assessments
(10.8) to (10.10) are easily found as

P11 =
q

2e
(a + b) , P12 =

q

2e
(a + b − c) , P13 = 0 , (10.22)

P22 =
q

2e
(a + b − 2c +

c(c + d2)
a

) , P23 =
q

2e
cd , (10.23)

P33 =
q

2de
[cd3 + a2(d + e)] , (10.24)

P34 =
q

2de
[cd(d2 − a) + a2(d + e)] , (10.25)

P44 =
q

2de
[(a − c)2d + cd3 + a2e] . (10.26)

Inserting (10.22) to (10.26) in (10.8) to (10.10), and eliminating the abbrevi-
ations (10.3), it remain the final results

σ2
a =

q

2

[
cRdA
m2
A

+
c2
A(mA + mR)

dAm2
A

]
, (10.27)

σ2
f =

q

2

[(
1 +

mR

mA

)3
c2
AmA

dA
+
(

1 +
mR

mA

)2

cRdA

− 2
(

1 +
mR

mA

)
cAcRmR

dA
+

c2
RmR

dA

]
, (10.28)

σ2
s =

q

2

(
mA + mR

dA

)
. (10.29)

Thus, analytical explicit solutions are found which can be used for optimiza-
tion of the original design parameters.

The optimization will be performed for a compact passenger car with a
body mass mA = 1200 kg. Then, there remain four design variables with the
following reference values:

Wheel mass mR = 80 kg ,
Body spring cA = 30000 N/m ,
Tire spring cR = 320000 N/m ,
Shock absorber dA = 4800 Ns/m .
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These design variables are generalized quantities. e.g., the wheel mass mR

includes not only the masses of the four wheels but also the corresponding
moments of inertia of the control arms of the wheel suspensions.

For the discussion of the sensitivity with respect to the design variables
the following specific quantities are useful.

σ2
a(cA, dA)

σ2
a reference

Driving comfort by suspension strut

σ2
f (cA, dA)

σ2
f reference

Driving safety by suspension strut

σ2
s (cA, dA)

σ2
s reference

Suspension travel by suspension strut

σ2
a(cR, mR)

σ2
a reference

Driving comfort by axle and tire

σ2
f (cR, mR)

σ2
f reference

Driving safety by axle and tire

σ2
s (cR, mR)

σ2
s reference

Suspension travel by axle and tire

Thus, the original four-dimensional optimization problem is reduced to two
two-dimensional optimization problems which are evaluated graphically for
driving comfort, driving safety and suspension travel, Fig. 10.2 to Fig. 10.4,
where the height of the box represents driving comfort, driving safety, and
suspension travel, respectively, of the reference values. For the strut param-
eters the following tendencies are found.

1. Large and small damper coefficients are harmful, for medium damping
comfort and safety are optimal.

2. Small spring and damper coefficients improve the comfort consider-
ably.

However, soft springs result in large variations of the equilibrium position due
to body mass variations which may be only compensated by a level control
system.

3. The safety is insensitive to the spring coefficient.
4. The reference value of the damping coefficient yields optimal safety.

The damping coefficient with optimal comfort deteriorates the safety essen-
tially. Since the efficiency of a damper decreases with time, drivers feel in
used cars more comfortable forgetting about safety.

5. The suspension travel is independent of the spring coefficient and re-
quires a damping coefficient as less as possible.
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Fig. 10.2. Driving comfort and driving safety by suspension strut variables
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Fig. 10.3. Driving comfort and driving safety by axle and tire design variables
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Fig. 10.4. Suspension travel by suspension strut variables, and axle and tire design
variables
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The suspension travel is characterized by an optimum on the boundary of
the design parameter space.

For axle and tire parameters also some general tendencies are observed.

1. The comfort is independent of the wheel mass.
2. Small wheel mass improves safety essentially. The generalized mass

can be also reduced by a suitable suspension design. Nevertheless, the
reductions are limited.

3. Small tire stiffness improves comfort and safety. The air pressure in
the tires is responsible for the tire stiffness and can not reduced essen-
tially. Low pressure results in strong wear of the tire and weak lateral
guidance of the vehicle. Therefore, the reference value of the tire spring
coefficient is a boundary optimum.

4. The suspension travel is independent of the tire spring and insensitive
to the tire mass.

In summary, the reference values of the suspension are close to an opti-
mum which was found empirically during the development of the automobile
in more than a century. Further progress will be achieved in the future by
mechatronic system design where the stochastic methods presented will be
most helpful.

Some results for an active suspension system are presented by
Schiehlen et al. (2007).

10.2 Random Vibrations of a Two Axle Vehicle

An extended covariance analysis is now presented for the two axle vehicle
shown in Fig. 10.5, see also Mueller and Popp (1979). The vehicle with four
degrees of freedom is excited by white velocity noise again.

The vehicle parameters read as

m1 = 100 kg k4 = 51208 N/m
m2 = 54 kg d3 = 3198 Ns/m
m3 = 1247 kg d4 = 3434 Ns/m
J = 1945 kgm2 a = 1.2 m
k1 = k2 = 343350 N/m b = 1.3 m
k3 = 47382 N/m l = a + b = 2.5 m

Small motions are assumed and the time lag t2 = l/v between front and rear
axle excitation has to be taken into account.

The generalized coordinates are summarized in the position vector y(t) =
[z1(t) z2(t) z3(t) β(t)]T. Then, the equations of motion read as

Mÿ(t) +Dẏ(t) +Ky(t) = s1ζ1(t) + s2ζ2(t) ,

ζ1(t) = ζ(t) , ζ2(t) = ζ(t − t2) ,
(10.30)
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where M , D, K characterize the inertia, damping and stiffness matrix, re-
spectively, and s1, s2 are the excitation input vectors,

M = diag[m1 m2 m3 J ] ,

s1 = [k1 0 0 0]T ,

s2 = [0 k2 0 0]T ,

(10.31)

d3

m3, J

β

d4 k3k4

z2 m2 m1 z1

z3

a b

seat

positionCIV III II I

ζ2 ζ1
eR

3

eR
1

car body

v

rear
axle axle

front

k2 k1

l

Fig. 10.5. Two axle vehicle model traveling on rough road

D =

⎡

⎢⎢⎣

d3 0 −d3 bd3

0 d4 −d4 −ad4

−d3 −d4 d3 + d4 −bd3 + ad4

bd3 −ad4 −bd3 + ad4 b2d3 + a2d4

⎤

⎥⎥⎦ , (10.32)

K =

⎡

⎢⎢⎣

k1 + k3 0 −k3 bk3

0 k2 + k4 −k4 −ak4

−k3 −k4 k3 + k4 −bk3 + ak4

bk3 −ak4 −bk3 + ak4 b2k3 + a2k4

⎤

⎥⎥⎦ . (10.33)

From (10.30) the vehicle state space representation can be obtained,
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ẋ(t) = Ax(t) + b1ζ1(t) + b2ζ2(t) = Ax(t) +Bξ , (10.34)

x(t) =
[
y(t)
ẏ(t)

]
, ξ(t) =

[
ζ1(t)
ζ2(t)

]
, A =

[
0 E

−M−1K −M−1D

]
,

b1 =
[

0
M−1s1

]
, b2 =

[
0

M−1s2

]
, B =

[
b1 b2

]
. (10.35)

In order to use white noise vehicle excitation, ζ̇(t) ≡ w(t), (10.35) has to be
differentiated,

ẍ(t) = Aẋ(t) +Bw(t) . (10.36)

Here, the autocorrelation matrix of the white noise vector process w reads

Rw(τ) = E{w(t)wT(t − τ)} = qζ̇

[
δ(τ) δ(τ + t2)

δ(τ − t2) δ(τ)

]
. (10.37)

Thus, the covariance matrix P ẋ follows in the steady state from the extended
algebraic Lyapunov equation

AP ẋ+P ẋA
T+Q = 0, Q = qζ̇

⌈
b1b

T
1 + b2bT2 + eAt2b1b

T
2 + b2bT

1 eA
Tt2
⌉
.

(10.38)

From P ẋ the variances σ2
a of the car body acceleration z̈P (t) at any position

P with coordinate xP = aTy can immediately be calculated by

σ2
a = [0T aT]P ẋ

[
0
a

]
. (10.39)

A similar expression holds for the variances σ2
f of the wheel loads fi = ki(ζi−

yi), i = 1, 2, but here (10.30) has to be used to get the weighting vector of the
displacements as shown in Sect. 10.1. Fig. 10.6 shows some numerical results
where a smooth road excitation (qζ̇ = 3.14 · 10−6v m2/s, solid line) and a
rough road excitation (qζ̇ = 24.7 · 10−6v m2/s, dashed line) is assumed.

In Fig. 10.6 a) the standard deviation σf/fStat of the load variation of the
front and rear wheel is plotted against speed v where fStat denotes the static
load. It increases with

√
v since the excitation intensity is proportional to v.

Even in the worst case (rough road, front wheel, maximum speed) the safety
margin R∗ according to (6.28) takes the value R∗ = 1 − σF /fStat ≈ 0.75
indicating a safe ride.

In Fig. 10.6 b) the standard deviation σa/g of the car body acceleration
versus the vehicle length is given, which clearly shows a minimum for the
center of mass position at different speeds. Neglecting the time lag between
front and rear excitation (dotted line) can lead to incorrect results especially
near the seat position.
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Fig. 10.6. Wheel load variation and vertical accelerations of the two axle vehicle.
The dotted line in b) does not consider the time lag between front and rear axle.
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The covariance analysis has also an important application in optimization
problems. Fig. 10.6 c) shows a simple example, where the influence of the
nondimensional damping ratio D = Di ≡ di/(2

√
kimi), i = 3, 4, (m3 =

m3a/l, m4 = m3b/l) on the standard deviation of the seat acceleration, σaS /g,
is studied. Best results are obtained in the range 0.1 ≤ D ≤ 0.25. However,
tradeoffs considering the wheel load variation call for higher damping. For a
more detailed ride comfort evaluation the perception measure K has to be
calculated. A rough approximate estimation using the thumb rule amax ≤
0.5 m/s2 ≈ 0.05g shows that the worst case (rough road, maximum speed,
maximum damping) certainly results in a bad ride comfort.

10.3 A Complex Vehicle Model

For the refinement of advanced automobiles a three body model is not suffi-
cient. Therefore, a complex vehicle model is analyzed adopted from Problem
2.14.

The vehicle model proposed by Kreuzer and Rill (1982) consists of the
componentes listed in Table 10.1. The model is shown in Fig. 10.7, and the
corresponding data are found in Table 10.2, see also Hirschberg (1981). The
state equations read as

ẋF = AxF +B1xW (t) +B2xW (t − t2) , (10.40)

where the state vector consists of n = 40 variables composed by 2 ∗ 19 = 38
body state variables and by 2 state variables describing the two serial spring-
damper devices according to Table 3.1. These devices are used to reduce the
engine vibrations without increasing the noise in the car body. The excitation
of the vehicle is due to the left and right road profile, both of them with a
time delay of

t2 = l/v (10.41)

between front and rear axle as discussed by (7.15). The road unevenness is
modeled by colored noise processes as shown in (5.14) and (5.15).

The assessment is based on the vertical acceleration at the point (U, V )
related to the vehicle body and the four dynamic wheel loads,

σa = σa(U, V ) , σfi , i = 1(1)4 . (10.42)

The result of the computation by Kreuzer and Rill (1982) using the covari-
ance analysis, see Sect. 7.2.3.2, is shown in Fig. 10.8. In the middle of the car
body, i.e. for the driver and the left passenger, the driving comfort is high.
The dynamical wheel load variation is larger at the rear axle than at the
front axle. This is due to the front wheel drive of the vehicle chosen.

A parameter optimization can be performed only numerically for such a
complex vehicle model as indicated in Section 7.4. Specific results for the
design of the suspension dynamics can be found by such a complex model.
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Table 10.1. Parts of the vehicle model

Components Mass Rigid Constraints Degrees of Generalized
points bodies freedom coordinates

Front wheels 2 - 4 2 Z1, Z2
Chassis - 1 3 3 ZK, AK, BK
Engine - 1 1 5 XM , Y M , ZM ,

AM , BM
Drive shaft - 2 10 2 ZG, BG
Rear axle - 1 3 3 ZT , AT , BT

- 2 10 2 BS1, BS2
Exhaust pipe 1 - 2 1 ZA
Driver 1 - 2 1 ZF

Total 4 7 35 19
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Table 10.2. Parameters of the vehicle model

Unit Unit

Engine
RMM = 293 kg T2M = 31.09 kgm2

T1M = 9.175 kgm2 D12M = 0.6024 kgm2

Engine mounting
CS = 580000 N/m DQR = 20 Ns/m
DS = 2900 Ns/m DQL = 20 Ns/m
CLR = 95000 N/m CVR = 183000 N/m
CLL = 95000 N/m CVL = 183000 N/m
DLR = 20 Ns/m DVR = 20 Ns/m
DLL = 20 Ns/m DVL = 20 Ns/m
CQR = 113000 N/m CH = 88000 N/m
CQL = 113000 N/m DH = 25 Ns/m

Chassis
RMK = 1130 kg CAHL = 52800 N/m
T1K = 504 kgm2 DAVR = 1880 Ns/m
T2K = 1840 kgm2 DAVL = 1880 Ns/m
CAVR = 10700 N/m DAHR = 5700 Ns/m
CAVL = 10700 N/m DAHL = 5700 Ns/m
CAHR = 52800 N/m

Drive shaft
RMG1 = 4.8 kg D1 = 40 Ns/m
RMG2 = 7.2 kg C2 = 51 Nm/rad
TG1 = 0.78 kgm2 D2 = 0.00006 Nms/rad
TG2 = 2.3 kgm2 C3 = 40000 N/m
C1 = 6380000 N/m D3 = 30 Ns/m

Exhaust pipe
RMA = 8 kg CB = 2400 N/m
CA = 67600 N/m DA = 210 Ns/m

Rear axle
RMT = 25 kg CT1 = 250000 N/m
RMS = 40.2 kg CT2 = 250000 N/m
TT1 = 1.5 kgm2 CT3 = 250000 N/m
TT2 = 2 kgm2 CRHR = 175000 N/m
TS1 = 0.8 kgm2 CRHL = 175000 N/m
TS2 = 0.5 kgm2 CDH = 5500 N/m
TS3 = 0.4 kgm2

Front wheels
RMV = 42.5 kg CRVL = 150000 N/m
CRVR = 150000 N/m CDV = 20000 N/m

Driver
RMF = 60 kg DF = 360 Ns/m
CF = 54000 N/m
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Fig. 10.8. Driving comfort σa depending on the horizontal position on the car
body and dynamical loads σf of the four wheels related to the static wheel load
fstat

10.4 Magnetically Levitated Vehicles

Magnetically levitated (maglev) vehicles are an alternative to wheeled railway
vehicles in particular for high speeds. While wheels have to provide propul-
sion, guidance and suspension simultaneously, magnetically levitated vehicles
are separating these tasks. Then, each mode of operation can be controlled
separately offering much more freedom to the designer and more comfort
to the passenger. Maglev vehicles called Transrapid have been developed in
Germany during the last three decades, see Transrapid International (2009).

Special consideration requires the active control of the vertical motion of
maglev vehicles which is excited by the elastic displacement of the elevated
guideway due to the vehicles weight and perturbations of the guideway. The
state equations (5.26) of the vertical vibrations of a vehicle on a flexible
guideway have to be analyzed in detail where the choice of the controller for
the suspension system with magnetic actuators according to Sect. 3.2 is an
important engineering task. For the assessment of maglev vehicles the human
body acceleration or the human perception of vibration according to Sect. 6.2,
respectively, as well as the size of the air gap between the magnets on the
vehicle and the rail at the guideway are the essential design criteria. Small
air gaps result in damages of the magnets by hitting to rail due to vertical
vibrations. Large air gaps, on the other hand, reduce the load capacity of the
magnet and result to increased weight of the magnetic suspension system.
Therefore, the air gap is an important criterium for the controller design, too.
A detailed treatment of the vertical dynamics of maglev vehicles is due to Popp
(1978), and it is closely related to the notation used in this book. In particular,
the concepts of height control providing optimal comfort and gap control
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guaranteeing a proper operation of the levitation magnet are discussed. The
dynamic and control requirements for electro- and maglev suspensions have
been discussed by Goodall (2004) with reference to the people mover at Birm-
ingham Airport, a low speed shuttle in operation from 1984 to 1995.

However, for high-speed vehicles the requirements of driving comfort and
levitation can not be met simultaneously by control devices only. Therefore,
a secondary suspension has to be provided for maglev vehicles, too. The
levitation magnets follow by a stiff gap control the guideway as wheels are
doing while the vehicle body is supported by a soft suspension system, see
Fig. 10.9. This design principle is called in the literature ’magnetic wheel’,
see Gottzein (1984). Thus, the principle of frequency decoupling and opti-
mal damping well proven for automobiles and railways has been transferred
to maglev vehicles. An actively controlled secondary suspension offers addi-
tional possibilities which are only weakly coupled to the kind of the primary
suspension control chosen.

vehicle body

gap control

supporting magnets

suspension
secondary

guideway

Fig. 10.9. Principle of the magnetic wheel
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Appendix: Optimal Control of Multivariable
Systems

In the following, some basics of controller design of linear multivariable sys-
tems are recapitulated without giving derivations. Details can be found in
Bryson (2002), Williams II and Lawrence (2007) and Heimann et al. (2007).

A.1 Mathematical Model

The mathematical model of an uncontrolled, time-invariant system Σ reads

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0 , (A.1)
y(t) = Cx(t) (A.2)

where the vectors and matrices are defined as

u r × 1 control vector, A n × n system matrix,
x n × 1 state vector, B n × r input or control matrix,
y m × 1 measurement vector, C m × n output or measurement

matrix.

Figure A.1 shows the system structure. The equations of the dynamical sys-
tem (A.1) and the measurement system (A.2) can be read from the summing-
point of the integrator and the system output, respectively.

∫

A
dyn. system system

measuring

u(t)
x0

B C
x(t) y(t)ẋ(t)

Fig. A.1. System structure
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A.2 Task Formulation and Structure Issues

The aim of designing the control is to find a control law u (t) such that
the system state x (t) takes a desired state xs = const (fix point control)
or xs = xs (t) (follower control) keeping it regardless of the kind, position
and magnitude of disturbances. Two structural questions are to be addressed
before designing the control law:

I. Can the dynamical behavior of the system be changed by a control
function u (t) in the desired way (is the system controllable)?

II. Can sufficient information on the system be obtained from the mea-
surements (is the system observable)?

I. Controllability
Definition: The system Σ of order n is complete controllable, if there exists
for any initial condition x (0) = x0 and for any arbitrary state x1 a finite
time t1 > 0 and a input function u (t) defined in the time interval [0, t1], so
that the trajectory starting in x0 reaches x1 at t = t1.

Kalman - criterion:
Σ completely controllable requires

rankQS = rank [B
...AB

...A2B
... · · · ...An−1B] = n .

(A.3)

Hautus - criterion:
Σ completely controllable requires

(λiE −AT)x̄i = 0 ⇒ BTx̄i �= 0 , i = 1(1)n .
(A.4)

II. Observability
Definition: The system Σ is completely observable, if there exists for any
arbitrary initial condition x (0) = x0 a finite time t1 > 0 so that the initial
condition x0 can be deduced by the knowledge of the control function u (t)
and the measured function y (t) in the time interval [0, t1].

Kalman - criterion:
Σ completely observable requires

rankQB = rank [CT
...ATCT

...AT2CT
... · · · ...ATn−1CT] = n .

(A.5)

Hautus - criterion:
Σ completely observable requires

(λiE −A)x̄i = 0 ⇒ Cx̄i �= 0 , i = 1(1)n .
(A.6)

The Kalman criteria enable a yes/no statement for controllability and ob-
servability from the examination of the rank of the controllability matrix
QS resp. the observability matrix QB. The Hautus criteria enable addi-
tional statements about not controllable and not observable modes, for which
BT x̄i = 0 and CT x̄i = 0 respectively holds. Here, x̄i are the eigenvectors
of the eigenvalues λi of system Σ.
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A.3 Structure and Properties of Controllers

In the following, linear controllers for linear systems Σ are designed which
transfer the state vector x (t) from the initial condition x (t0) = x0 �= 0 (ini-
tial disturbance) to the target state xs = 0. This control task corresponds
to a complete fixed-point control. Other control tasks can be reduced to or
derived by this basic task.

The controller must assure that the controlled system

a) is asymptotically stable,
b) has a certain performance.

This aim can be achieved with the principle of feedback. The deviation of
the system output from the target state is countersteered by amplifying and
changing its algebraic sign and feeding it back to the system input. This is
termed a linear state or output feedback respectively,

u(t) = −Kxx(t) , (A.7)
u(t) = −Kyy(t) , (A.8)

depending on the linear feedback of the state vector or the output vector,
cp. Fig. A.2 (a) and (b). The constant feedback matrices Kx and Ky are
composed by the control gains. The system state x (t) is often not directly
available. Therefore, a state estimation x̂ (t) must be deduced from measure-
ments y (t) by an observer. Normally a complete state feedback cannot be
realized, but a feedback of the state estimation x̂ (t), Fig. A.2 c). Firstly the
design of the controller is treated followed by the observer design.

A.4 Controller Design

Two methods are discussed to determine the gain matrix Kx for an ideal
state feedback. These methods show the power of the feedback principle. The
case of an output feedback can be realized with these methods as well, if the
measurement matrix C is a regular n × n matrix. Therefore, the number of
measured quantities must be equal to the number of state variables. In this
case the feedback matrix reads Ky =KxC

−1. If the number of measured
quantities is less then the number of state variables, more specific methods
of control theory may be used to determine Ky.

A.4.1 Controller Design by Pole Assignment

If and only if the system Σ of order n is complete controllable, a state feedback
u(t) = −Kxx(t) can be found so that the closed-loop system

ẋ(t) = Âx(t) , Â = A−BKx (A.9)
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∫

A

u(t)
x0

C
x(t) y(t)ẋ(t)

B

∫

A

u(t)
x0

C
x(t) y(t)ẋ(t)

B

a)

b)

c)

-Ky

-Kx

x̂(t)
observer

∫

A

u(t)
x0

C
x(t) y(t)ẋ(t)

B

-Kx

Fig. A.2. Control loops: a) output feedback; b) ideal state feedback; c) state feed-
back with observer

has arbitrarily prescribed eigenvalues. For complete controllable systems with
only one input, r = 1,

ẋ(t) = Ax(t) + bu(t) , u(t) = −kT
xx(t) (A.10)

and the target eigenvalues λ̂i, i = 1 (1)n, or the target characteristic polyno-
mial, respectively,

p̂(λ) = (λ − λ̂1)(λ − λ̂2) . . . (λ − λ̂n) = λn + â1λ
n−1 + . . . + ân−1λ + ân

(A.11)
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the feedback vector kT
x is determined uniquely,

kT
x = eT

nQ
−1
S p̂(A) . (A.12)

Here en is the n-th unit vector, QS the controllability matrix and p̂ (A) the
matrix-polynomial built of the system matrix A,

eT
n = [0, 0, 0, . . . , 0, 1] , (A.13)

QS = [b
...Ab

... · · · ...An−1b] , (A.14)

p̂(A) = An + â1A
n−1 + . . . + ân−1A+ ânE . (A.15)

For complete controllable systems with multiple inputs ambiguous solutions
appear in the calculation of the feedback matrix Kx. The target eigenvalues
have at least to guarantee asymptotic stability, see Sect. 7.2.1.

A.4.2 Optimal Controller Due to a Quadratic Integral Criterion

For the completely controllable system Σ of order n the following cost func-
tion is used:

J [x(t),u(t)] =
1
2

∞∫

0

[xT(t)Qx(t) + uT(t)Ru(t)dt → Min (A.16)

with the weighting matrices Q = QT ≥ 0, R = RT > 0. The matrices A

and Q must be completely observable
(

rank
[
Q

...ATQ
... · · · ...ATn−1Q

]
= n

)
.

Then a unique optimal control

u̇(t) = −R−1BTPx(t) = −Kxx(t) , (A.17)

exists for the cost function shown above. Herein P = PT > 0 is the unique,
positive definite solution of the Riccati equation

ATP + PA− PBR−1BTP +Q = 0 . (A.18)

The minimal value of the cost function concludes in

J∗ = xT
0Px0 . (A.19)

The closed-loop control

ẋ(t) = Âx(t) , Â = A−BKx = A−BR−1BTP , (A.20)

is asymptotically stable.
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A.4.3 Choice of Poles and Weighting Matrices

The difficulty of both methods for controller design is the appropriate assign-
ment of the poles and the weighting matrices, respectively. It makes sense to
choose the weighting matrices as diagonal matrices. The stronger the weight-
ing of a quantity in the cost function, the smaller this quantity will be due
to the optimization. Only the weighting ratio of the control variables and
the state variables is important. Therefore, R = E,Q = diag (qi) can be set,
where

qi =
u2
max

(xi,max)2
(A.21)

holds as a rule of thumb. Here u2
max =

(
uTu
)
max

is a measure of the max-
imum available control energy and xi,max the maximum tolerated value of
the i-th state variable.

As a reference for the choice of the poles, the pole configuration for two
special cases of cost functions for a scalar control u (r = 1) will be given.

a) Mirroring of the uncontrolled system poles. The special case

J = lim
ρ→0

1
2

∞∫

0

e2γt(ρxTQx+ u2)dt → Min (A.22)

results in a pole configuration that yields minimal control energy for a target
stability measure γ. Let λi, i = 1 (1)n be the poles of the uncontrolled system
Σ, k < n of them on the left side and the remaining n − k poles on the
right side of the line Reλ = −γ in the root locus plane. The k poles on
the left side of the line Reλ = −γ and the n − k control path poles that
are mirrored on the line are chosen as poles λ̂i, i = 1 (1)n of the closed-loop
control, Litz and Preuss (1977):

λ̂i = λi i = 1(1)k ,
for

λ̂i = −λi − 2γ i = k + 1(1)n .

(A.23)

b) Butterworth configuration. The limit case

J = lim
ρ→∞

1
2

∞∫

0

(ρxTQx+ u2)dt → Min (A.24)

results in a pole configuration that yields minimal deviation for the controlled
system. Using the nomenclature defined in Sect. A.4.1 the following applies
for the poles λ̂i, i = 1(1)n:
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1. All poles have negative real parts.
2. The k < n dominant poles satisfy the equation

p(λ̂2) = bT[adj(−λ̂E −A)]TQ adj(λ̂E −A)b = 0 . (A.25)

3. The n − k remaining poles are infinitely large and represent a stable
Butterworth configuration. They are located in the root locus plane on
a circle around the origin with a radius proportional to ρn−m

2 (ρ → ∞),

λ̂i = lim
ρ→∞

[
ρ
n − m

2
ejψi
]

, i = k + 1(1)n , j =
√−1 . (A.26)

The phase angles Ψi follow from

Ψi =
2m + 1
n − k

· 90◦ n − k even,

for m = 0, 1, 2, . . . ,

Ψi =
2m + 1
n − k

· 180◦ n − k uneven,

(A.27)

where Ψi has to be chosen so that 90◦ < Ψi < 270◦ holds. Explicitly, for
n − m = 1 (1) 4 the results are given in Table A.1. In order to get restricted
control quantities and finite actuating energy, the dominant poles are set ex-
actly, the remaining poles approximatively in Butterworth configuration, but
with a finite radius.

Table A.1. Results of Eq. (A.27)

n − k 1 2 3 4

Ψi +180◦ ±135◦ ±120◦; +180◦ ±112.5◦;±157.5◦

A.5 Structure and Properties of Observers

The control laws presented are depending on the state vector x, e. g. the op-
timal control (A.17), but from the measurements only the vector y = Cx is
available. In many cases the number of measures is smaller than the system
order. Then the inversion of the measurement matrix C and a direct repre-
sentation of the state vector by x = C−1y is not possible. The not measured
state variables Tx (T row-regular s × n-matrix) can be simulated by the
s × 1-vector ξ (t) with an observer. The observer is formulated mathemati-
cally as an asymptotical estimator for the estimations x̂ (t) of the state x (t),
Luenberger (1964).
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Estimation:

x̂(t) = S1ξ(t) + S2y(t) : lim
t→∞[x(t) − x̂(t)] = 0 . (A.28)

Observation:

ξ̇(t) = Dξ(t) + TBu(t) +Ly(t) : lim
t→∞[ξ(t) − Tx(t)] = 0 . (A.29)

With Eqs. (A.1) and (A.2) the following matrix relations are available:

S1T + S2C = En , (A.30)
DT − TA = −LC , (A.31)
d
dt

(ξ − Tx) =D(ξ − Tx) , (A.32)

with

Reλ̄i(D) < 0 , i = 1(1)s , n − m ≤ s ≤ n . (A.33)

Regarding the dimension s there are two special cases,

a) the minimal observer with s = n − m,
b) the complete observer with s = n.

For the complete observer, T = En applies. From Eqs. (A.30) and (A.31) it
follows

S1 + S2C = En , D = A−LC . (A.34)

C
∫

A

x0

dyn. system

∫

A

B C

ξ0
ξ

S1

S2

-

y(t)x

x̂

u(t)
B

L

observer

Fig. A.3. Block diagram of a dynamical system with complete observer
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Therefore, the observer equations read

x̂ = S1ξ + S2y ,

ξ̇ = (A−LC)︸ ︷︷ ︸
D

ξ +Bu+Ly . (A.35)

For the error δ = ξ − x it remains, cp. Eq. (A.32),

δ̇ =Dδ = (A−LC)δ . (A.36)

The corresponding system setup is given in Fig. A.3. Obviously, the complete
observer is basically a simulation of the original system. The error signal
between original and simulated system is fed back and used for control.

A.6 Observer Design

For the design of an n-dimensional observer the gain matrix L is re-
quired, cp. Eq. (A.35). This is done by specifications of the observer matrix
D = A−LC. Beside the requirement of asymptotical stability Eq. (A.33)
the transient response of the observer shall be much faster than that
of the dynamical system. With the transition to the transposed matrix
DT = AT −CTLT the similarity to a linear control loop is evident, cp.
Eq. (A.9) with

A =̂ AT, B =̂ CT, Kx =̂ LT . (A.37)

Therefore, the methods described in Sect. A.4 for designing linear state con-
troller are adaptable to the design of observer, too.

A.6.1 Observer Design with Pole Assignment

If the system Σ of order n with m ≤ n measured variables is complete ob-
servable, there exist always matrices S1, S2, T , D and L, which fulfill the
relations of Eq. (A.30)-(A.32). The order s of the observer can be chosen ar-
bitrarily in the range n − m ≤ s ≤ n. The eigenvalues λ̄i (D) , i = 1 (1) s, can
also be set arbitrarily regarding Eq. (A.33). For complete observable systems
with only one output, m = 1,

ẋ(t) = Ax(t) +Bu(t) , y(t) = cTx(t) , (A.38)

the dimension s of the observer is either s = n or s = n − m = n − 1. For an
n-dimensional observer the gain matrix L results in a n × 1 feedback vector
l. The matrix

D = A− lcT (A.39)
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has arbitrarily prescribed eigenvalues λ̄i, Reλ̄i < 0, i = 1 (1)n, or the corre-
sponding characteristic polynomial

p̄(λ) = (λ − λ̄1)(λ − λ̄2) . . . (λ − λ̄n) = λn + d1λ
n−1 + . . . + dn−1λ + dn .

(A.40)

The feedback vector l is determined uniquely as

l = p̄(A)(QT
B)−1en . (A.41)

Here en is the n-th unit vector, QB the observability matrix and p̄ (A) the
matrix-polynomial built of the system matrix A:

en = [0, 0, 0 . . .0, 1]T , (A.42)

QB = [c
...ATc

... · · · ...ATn−1c] , (A.43)

p̄(A) = An + d1A
n−1 + . . . + dn−1A+ dnE . (A.44)

The matrices S1 and S2 can be chosen as

S1 = En − ccT

cTc
, S2 =

c

cTc
(A.45)

or

S1 = En , S2 = 0 . (A.46)

A.6.2 Optimal Observer Due to a Quadratic Integral Criterion

For an n-dimensional observer the equation for the error δ = ξ − x is given
by Eq. (A.36). The transposed error differential equation

η̇(t) = (AT −CTLT)η(t) (A.47)

has the structure of a control loop with state feedback, cp. Eq. (A.9),

η̇(t) = ATη(t) +CTν(t) , η(0) = η0 , (A.48)

ν(t) = −LTη(t) . (A.49)

The complete controllability of the system of Eq. (A.48) corresponds to the
complete observability of the system given by Eqs. (A.1) and (A.2). In anal-
ogy to Sect. A.4.2 the following can be stated: For the complete observable
system or the complete controllable system (A.48), respectively, both of order
n, and the cost function

J [η(t),ν(t)] =
1
2

∞∫

0

[ηT(t)Qη(t) + νT(t)Rν(t)]dt → Min (A.50)
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with the weighting matrices Q = QT ≥ 0, R = RT > 0 and
(
ATQ

)
com-

pletely observable, there exists one unique optimal control

ν∗(t) = −R−1CPη(t) = −LTη(t) . (A.51)

Herein P = PT > 0 is the unique, positive definite solution of the Riccati
equation

AP + PAT − PCTR−1CP +Q = 0 . (A.52)

The optimal value for the criterion results in

J∗ = ηT
0Pη0 . (A.53)

The closed-loop control

η̇(t) =DTη(t) , DT = AT −CTLT = AT −CTR−1CP (A.54)

is asymptotically stable, and, therefore, the n-dimensional observer of Eq.
(A.36), too. The results of Sect. A.4.3 for the choice of the poles and the
weighting matrices can also be used for designing the observer.

A.7 Structure of (Optimal) Controlled Multivariable
Systems

For the complete controllable and complete observable system Σ a state feed-
back according to Sect. A.4 and a state observer according to Sect. A.6 can
be found, each with the specified properties. The structure of the complete
system is depicted in Fig. A.2 c).

The complete multivariable control system is described mathematically as:

Dynamical system:

ẋ(t) = Ax(t) +Bu(t) , (A.55)

Measurement:

y(t) = Cx(t) ,

Observer:

ξ̇(t) = Dξ(t) + TBu(t) +Ly(t) , (A.56)

x̂(t) = S1ξ(t) + S2y(t) ,

Controller:

u(t) = −Kxx̂(t) . (A.57)
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S1

S2

y(t)

x̂(t)

C
∫

A

x0

ξ0

u(t)
B

L

x(t)

ξ(t)

D

B
∫

T

−Kx

Fig. A.4. Block diagram of the complete control system

The eigenvalues of the linear, time invariant complete system, Fig. A.4, are
composed of the n eigenvalues of the control loop with ideal state feedback
and the s eigenvalues of the observer. For the characteristic polynomial and
the eigenvalues holds:

pges(λ) = p̂A−BKx(λ) · p̄D(λ) , (A.58)

λi,ges =

⎧
⎨

⎩

λ̂i(A−BKx) i = 1(1)n
for

λ̂i−n(D) i = (n + 1)(1)(n + s) .

The realizable complete control loop is extended by an observer compared
to the ideal state feedback. With respect to the eigenvalues of the complete
system, the controller can be designed separately from the design of the
observer.
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Appendix: Key Words

B.1 English - German

A
acceleration Beschleunigung
aligning torque stiffness Bohrmomentbeiwert

B
beam Balken

continuously bedded kontinuierlich gebetteter
double-span Zweifeldträger
pillared periodisch gestützter
single-span Einfeldträger

bicycle model Riekert-Schunck Modell
body slip angle Schwimmwinkel
boundary value problem Randwertproblem
braking force Bremskraft
brush model Bürstenmodell

C
Cardano angle Kardanwinkel
connecting element Bindungselement
constraint Bindung, Zwangsbedingung
contact force Kontaktkraft

law -gesetz
tire-road Reifen-Straße
wheel-rail Rad-Schiene

control gain Reglerverstärkung
control vector Steuervektor
controllability Steuerbarkeit
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controller Regler
design -entwurf
gain -verstärkung

cornering Kurvenfahrt
stiffness Seitenkraftbeiwert

cost function Gütekriterium
coupling element Koppelelement
creepage Radsatzschlupf

D
Damper Dämpfer

characteristic -Kennlinie
parallel combination -Parallelschaltung
series combination -Reihenschaltung

damping Dämpfung
normalized coefficient -smaß, Lehrsches

degree of efficiency Wirkungsgrad
degree of freedom Freiheitsgrad
degree of unevenness Unebenheitsgrad
derailment Entgleisung
differential Differentialgetriebe
driving comfort Fahrkomfort
driving performance Fahrleistung
driving performance diagram Fahrzustandsschaubild
driving safety Fahrsicherheit
driving stability Fahrstabilität
durability Lebensdauer

E
eigenmode Schwingungsform
elementary rotation Elementardrehung
equation of motion Bewegungsgleichung
equation of reaction Reaktionsgleichung
excitation Erregung

bump Bodenwellen-
ramp Rampen-
random Zufalls-
time delay zeitverzögerte
unbalance Unwucht-

exposure time Einwirkungsdauer

F
feedback matrix Rückführmatrix
force Kraft

applied eingeprägte
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constraint Reaktions-
contact Kontakt-
dissipative dissipative
cornerning Seiten-
friction Reibungs-
generalized verallgemeinerte
lateral Seiten-
reaction Reaktions-
travelling bewegte

force actuator Kraftstellglied
foundation Bettung
frame Koordinatensystem
frequency decoupling Frequenzentkopplung
frequency response Frequenzgang
friction Reibung

sliding Gleit-
sticking Haft-

friction coefficient Reibungsbeiwert

G
gradability Steigfähigkeit
gravitational stiffness Gravitationssteifigkeit
guidance system Führsystem
guideway Fahrweg
gyro matrix Kreiselmatrix

H
handling Kurshaltung
hunting motion Sinuslauf

I
inertia matrix Massenmatrix
inertia properties Trägheitseigenschaften
initial value problem Anfangswertproblem
input matrix Eingangsmatrix

L
lateral motion Querbewegung

M
maglev vehicle Magnetschwebefahrzeug
magnetic actuator Magnetstellglied
magnetic wheel Magnetisches Rad
maximum rolling contact coefficient Kraftschlußbeiwert
mean value Mittelwert
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mileage Kraftstoffverbrauch
model Ersatzsystem
modeling Modellbildung
moment of inertia Trägheitsmoment
motion Bewegung

hunting Sinuslauf
plane ebene

moving load bewegte Last
multibody system Mehrkörpersystem
multivariable system Mehrgrößensystem

N
node displacement Knotenverschiebung
noise process Rauschprozeß

O
observability Beobachtbarkeit
oversteer übersteuern

P
perception Wahrnehmung
pitch nicken
pole assignment Polvorgabe
position vector Lagevektor
power spectral density spektrale Leistungsdichte
probability density Wahrscheinlichkeitsdichte
product of inertia Devitationsmoment

R
railway wheelset Eisenbahnradsatz
random vibration Zufallsschwingungen
reliability interval Vertrauensintervall
resistance Widerstand

climbing Steigungs-
rolling Roll-

ride comfort Fahrkomfort
rolling condition Rollbedingung
rolling contact coefficient Kraftschlußbeanspruchung

normalized normierte
maximum maximale

rolling elastic contact rollender elastischer Kontakt
rolling radius Rollradius
roll rollen
rotation matrix Drehmatrix
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S
safety margin Sicherheitsreserve
saturation Sättigung
shape filter Formfilter
slip Schlupf

aligning Bohr-
braking Brems-
driving Antriebs-
lateral Quer-
longitudinal Längs-
micro Mikro-
rigid body Starrkörper-

slip angle Schräglaufwinkel
speed Fahrgeschwindigkeit
spring Feder

characteristic -kennlinie
leaf Blatt-
parallel connection -Parallelschaltung
series connection -Reihenschaltung

state equation Zustandsgleichung
stiffness matrix Steifigkeitsmatrix
subsystem Teilsystem
surface pressure Flächenpressung
suspension Federung
suspension travel Federweg
system boundary Systemgrenze

T
time integration Zeitintegration
tire Reifen

carcass -karkasse
torque Moment

aligning Bohr-
braking Brems-
driving Antriebs-

track model Schienenmodell
trail Nachlauf

suspension konstruktiver
trailer Anhänger
transmission ratio Übersetzung
twist Bewegungswinder

U
understeer untersteuern
unevenness Unebenheit
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V
vehicle-guideway-system Fahrzeug-Fahrweg-System
velocity Geschwindigkeit
vibration Schwingung

W
waviness Welligkeit
wheel Rad

braked gebremstes
conical konisches
cornering schräglaufendes
deformable deformierbar
driven angetriebenes
elastic elastisches
rigid starres

wheel load Radlast
wheelset Radsatz
wrench Kraftwinder

Y
yaw gieren, schleudern
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A
Anfangswertproblem initial value problem
Anhänger trailer

B
Balken beam

Einfeldträger single-span
kontinuierlich gebetteter continously bedded
periodisch gestützter pillared
Zweifeldträger double-span

Beiwert coefficient
Beobachtbarkeit observability
Beschleunigung acceleration
Bettung foundation
bewegte Last moving load
Bewegung motion

ebene plane
Sinuslauf hunting

Bewegungsgleichung equation of motion
Bewegungswinder twist
Bremskraft braking force
Bindung constraint
Bindungselement connecting element
Bohrmomentbeiwert aligning torque stiffness
Bürstenmodell brush model

D
Dämpfer damper

-Parallelschaltung parallel combination
-Reihenschaltung series combination
-kennlinie characteristic

Dämpfung damping
-smaß, Lehrsches normalized coefficient

Devitationsmoment product of inertia
Differentialgetriebe differential
Drehmatrix rotation matrix

E
Eingangsmatrix input matrix
Einwirkungsdauer exposure time
Eisenbahnradsatz railway wheelset
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Elementardrehung elementary rotation
Entgleisung derailment
Erregung excitation

Bodenwellen- bump
Rampen- ramp
stochastische stochastic
Unwucht- unbalance
zeitverzögerte time delay
Zufalls- random

Ersatzsystem model

F
Fahrgeschwindigkeit speed
Fahrkomfort driving comfort, ride comfort
Fahrleistung driving performance
Fahrsicherheit driving safety
Fahrstabilität driving stability
Fahrweg guideway
Fahrzeug-Fahrweg-System vehicle-guideway-system
Fahrzustandsschaubild driving performance diagram
Feder spring

-kennlinie characteristic
-Parallelschaltung parallel connection
-Reihenschaltung series connection
Blatt- leaf

Federung suspension
Federweg suspension travel
Flächenpressung surface pressure
Formfilter shape filter
Freiheitsgrad degree of freedom
Frequenzentkopplung frequency decoupling
Frequenzgang frequency response
Führsystem guidance system

G
Geschwindigkeit velocity
gieren yaw
Gravitationssteifigkeit gravitational stiffness
Gütekriterium cost function

K
Kardanwinkel Cardano angle
Knotenverschiebung node displacement
Kontaktkraft contact force

-gesetz law
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Rad-Schiene wheel-rail
Reifen-Straße tire-road

Koordinatensystem frame
Koppelelement coupling element
Kraft force

bewegte travelling
dissipative dissipative
eingeprägte applied
Kontakt- contact
Reaktions- constraint
Reibungs- friction
Seiten- cornerning
verallgemeinerte generalized

Kraftschlußbeanspruchung rolling contact coefficient
normierte normalized

Kraftschlußbeiwert maximum rolling contact coefficient
Kraftstellglied force actuator
Kraftstoffverbrauch mileage
Kraftwinder wrench
Kreiselmatrix gyro matrix
Kurshaltung handling
Kurvenfahrt cornering

L
Lagevektor position vector
Lebensdauer durability

M
Magnetisches Rad magnetic wheel
Magnetschwebefahrzeug maglev vehicle
Magnetstellglied magnetic actuator
Massenmatrix inertia matrix
Mehrgrößensystem multivariable system
Mehrkörpersystem multibody system
Mittelwert mean value
Modellbildung modeling
Moment torque

Antriebs- driving
Bohr- aligning
Brems- braking

N
Nachlauf trail

konstruktiver suspension
nicken pitch
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P
Polvorgabe pole assignment

Q
Querbewegung lateral motion

R
Rad wheel

angetriebenes driven
deformierbar deformable
elastisches elastic
gebremstes braked
konisches conical
schräglaufendes cornering
starres rigid

Radlast wheel load
Radsatz wheelset
Radsatzschlupf creepage
Randwertproblem boundary value problem
Rauschprozeß noise process
Reaktionsgleichung equation of reaction
Regler controller

-entwurf design
-verstärkung gain

Reibung friction
Gleit- sliding
Haft- sticking

Reibungsbeiwert friction coefficient
Reifen tire

-karkasse carcass
Riekert-Schunck Modell bicycle model
Rollbedingung rolling condition
rollen roll
rollender elastischer Kontakt rolling elastic contact
Rollradius rolling radius
Rückführmatrix feedback matrix

S
Sättigung saturation
Schienenmodell track model
schleudern yaw
Schlupf slip

Antriebs- driving
Bohr- aligning
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Brems- braking
Längs- longitudinal
Mikro- micro
Quer- lateral
Starrkörper- rigid body

Schräglaufwinkel slip angle
Schwimmwinkel body slip angle
Schwingung vibration
Schwingungsform eigenmode
Seitenkraftbeiwert cornering stiffness coefficient, lateral

force coefficient
Sicherheitsreserve safety margin
Sinuslauf hunting motion
spektrale Leistungsdichte power spectral density
Steigfähigkeit gradability
Steuervektor control vector
Steuerbarkeit controllability
Systemgrenze system boundary

T
Teilsystem subsystem
Trägheitseigenschaften inertia properties
Trägheitsmoment moment of inertia

U
Übersetzung transmission ratio
übersteuern oversteer
Unebenheit unevenness
Unebenheitsgrad degree of unevenness
untersteuern Understeer

V
Vertrauensintervall reliability interval

W
Wahrnehmung perception
Wahrscheinlichkeitsdichte probability density
Welligkeit waviness
Widerstand resistance

Roll- rolling
Steigungs- climbing

Wirkungsgrad degree of efficiency

Z
Zeitintegration time integration
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Zufallsschwingungen random vibration
Zustandsgleichung state equation
Zwangsbedingung constraint
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absolute, 30
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relative, 30
rms value, 228
rotational, 30
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analysis

covariance, 251
spectral density, 250

angular velocity 26, 36

B
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bedded, 191
differential equation, 175
double-span, 187
element, 181
Euler-Bernoulli, 175
pillared, 175
single-span, 178
structure, 179
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bicycle model 165, 277
body slip angle 279
boundary value problem 6
braking force 271
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C
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coherence function 202
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computational methods 239
concerning

steady-state, 282
connecting element 11
constraint 11

explicit, 34
geometrical, 55
holonomic, 11, 33, 41, 79
implicit, 33
kinematical, 55
nonholonomic, 11, 279
rheonomic, 11
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contact area 119, 129
contact ellipse 131
contact force 153, 170

lateral slip, 153, 161
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control gain 313
control vector 311
controllability 312
controller
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optimal, 315
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state feedback, 313
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generalized, 33, 176
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Coriolis acceleration 30
Coriolis force 58
cornering 30, 282
cornering stiffness 155, 278
correlation 199
correlation function 9, 201

auto, 202
cross, 202
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Coulomb’s friction 101, 120
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covariance 199
covariance analysis 251
covariance matrix 252, 293
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assessment, 261
performance, 261

cylinder
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rolling, 35

D
damper

characteristics, 101
parallel combination, 98
series combination, 98

damping
hysteretic, 177
modal, 177
normalized coefficient, 254, 287
optimal, 254, 310
structural, 177
viscous, 177

damping matrix 69
degree of efficiency 271
degree of freedom 4
degree of unevenness 208
derailment 236
differential 271
differential equation

Duffing, 257
linear, 239
nonlinear, 239
ordinary, 67
Van der Pol, 256

differential gear 63
Dirac function 7, 175, 191
dispersion 200
driving comfort 293
driving force 271
driving performance 273

diagram, 274
driving safety 225, 293
driving stability 225, 226, 283
durability 225, 237

E
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eigenfunction 176, 180, 183, 184
eigenmode 176, 178
eigenvalue 46, 176, 179, 183, 247,
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eigenvalue problem 46, 178
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energy

kinetic, 61
potential, 61

equation
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equation of motion 66
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railway wheelset, 51, 286

equation of reaction 76
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bump, 244
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stochastic, 231
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F
feedback

output, 313
state, 313

feedback matrix 315
force

applied, 6, 59
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concerning, 155
constraint, 6, 59
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dissipative, 61
external, 6
friction, 118
generalized, 67
generalized reaction, 59
internal, 6
lateral, 155, 278
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formalism
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numerical, 73
recursive, 73
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continuous, 193
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Fourier transform 201
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reference, 15, 28
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frequency response 248
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coefficient, 265
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functional matrix 34
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generalized force 62
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guidance system 217
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Kalman criterion 312
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Lagrange’s equation 61
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experimental studies, 285
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linearization

equation of motion, 88
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statistical, 258

load
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Lyapunov matrix equation 252,
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M
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method

analytical, 66
deformation, 179
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modal analysis 178
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model

mathematical, 1
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motion
absolute, 28
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plane, 51
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nonlinear system 254
numerical simulation 239
numerical time integration 239
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orthogonality condition 177
oversteer 283

P
perception

human, 227
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position vector 13
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